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Preface to the 5th Edition

The first edition of Fundamentals of Momentum, Heat, and Mass Transfer, published in

1969, was written to become a part of what was then known as the ‘‘engineering science

core’’ of most engineering curricula. Indeed, requirements for ABET accreditation have

stipulated that a significant part of all curricula must be devoted to fundamental subjects.

The emphasis on engineering science has continued over the intervening years, but the

degree of emphasis has diminished as new subjects and technologies have entered the

world of engineering education. Nonetheless, the subjects of momentum transfer (fluid

mechanics), heat transfer, and mass transfer remain, at least in part, important components

of all engineering curricula. It is in this context that we now present the fifth edition.

Advances in computing capability have been astonishing since 1969. At that time, the

pocket calculator was quite new and not generally in the hands of engineering students.

Subsequent editions of this book included increasingly sophisticated solution techniques as

technology advanced. Now,more than 30 years since the first edition, computer competency

among students is a fait accompli and many homework assignments are completed using

computer software that takes care of most mathematical complexity, and a good deal of

physical insight. We do not judge the appropriateness of such approaches, but they surely

occur and will do so more frequently as software becomes more readily available, more

sophisticated, and easier to use.

In this edition, we still include some examples and problems that are posed in English

units, but a large portion of the quantitative work presented is now in SI units. This is

consistent withmost of the current generation of engineering textbooks. There are still some

subdisciplines in the thermal/fluid sciences that use English units conventionally, so it

remains necessary for students to have some familiarity with pounds, mass, slugs, feet, psi,

and so forth. Perhaps a fifth edition, if it materializes, will finally be entirely SI.

We, the original three authors (W3), welcome Dr. Greg Rorrer to our team. Greg is a

member of the faculty of the Chemical Engineering Department at Oregon State University

with expertise in biochemical engineering. He has had a significant influence on this

edition’s sections on mass transfer, both in the text and in the problem sets at the end of

Chapters 24 through 31. This edition is unquestionably strengthened by his contributions,

and we anticipate his continued presence on our writing team.

We are gratified that the use of this book has continued at a significant level since the

first edition appeared some 30 years ago. It is our continuing belief that the transport

phenomena remain essential parts of the foundation of engineering education and practice.

With the modifications and modernization of this fourth edition, it is our hope that

Fundamentals of Momentum, Heat, and Mass Transfer will continue to be an essential

part of students’ educational experiences.

Corvallis, Oregon J.R. Welty

March 2000 C.E. Wicks

R.E. Wilson

G.L. Rorrer
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Chapter 1

Introduction to Momentum

Transfer

Momentum transfer in a fluid involves the study of the motion of fluids and the

forces that produce these motions. From Newton’s second law of motion it is known

that force is directly related to the time rate of change of momentum of a system.

Excluding action-at-a-distance forces such as gravity, the forces acting on a fluid, such

as those resulting from pressure and shear stress, may be shown to be the result of

microscopic (molecular) transfer of momentum. Thus the subject under consideration,

which is historically fluid mechanics, may equally be termed momentum transfer.

The history of fluid mechanics shows the skillful blending of the nineteenth- and

twentieth century analytical work in hydrodynamics with the empirical knowledge in

hydraulics that man has collected over the ages. The mating of these separately

developed disciplines was started by Ludwig Prandtl in 1904 with his boundary-layer

theory, which was verified by experiment. Modern fluid mechanics, or momentum

transfer, is both analytical and experimental.

Each area of study has its phraseology and nomenclature. Momentum transfer

being typical, the basic definitions and concepts will be introduced in order to provide a

basis for communication.

1.1 FLUIDS AND THE CONTINUUM

Afluid is defined as a substance that deforms continuously under the action of a shear stress.

An important consequence of this definition is that when a fluid is at rest, there can be no

shear stresses. Both liquids and gases are fluids. Some substances such as glass are

technically classified as fluids. However, the rate of deformation in glass at normal

temperatures is so small as to make its consideration as a fluid impractical.

Concept of a Continuum. Fluids, like all matter, are composed of molecules whose

numbers stagger the imagination. In a cubic inch of air at room conditions there are some

1020 molecules. Any theory that would predict the individual motions of these many

molecules would be extremely complex, far beyond our present abilities.

Most engineering work is concerned with the macroscopic or bulk behavior of a fluid

rather than with the microscopic or molecular behavior. In most cases it is convenient to

think of a fluid as a continuous distribution of matter or a continuum. There are, of course,

certain instances inwhich the concept of a continuum is not valid. Consider, for example, the

number of molecules in a small volume of a gas at rest. If the volume were taken small

enough, the number of molecules per unit volume would be time-dependent for the

microscopic volume even though the macroscopic volume had a constant number of

1



molecules in it. The concept of a continuum would be valid only for the latter case. The

validity of the continuum approach is seen to be dependent upon the type of information

desired rather than the nature of the fluid. The treatment of fluids as continua is valid

whenever the smallest fluid volume of interest contains a sufficient number of molecules to

make statistical averages meaningful. The macroscopic properties of a continuum are

considered to vary smoothly (continuously) from point to point in the fluid. Our immediate

task is to define these properties at a point.

1.2 PROPERTIES AT A POINT

When a fluid is in motion, the quantities associated with the state and the motion of the fluid

will vary from point to point. The definition of some fluid variables at a point is presented

below.

Density at a Point. The density of a fluid is defined as the mass per unit volume. Under

flow conditions, particularly in gases, the density may vary greatly throughout the fluid. The

density, r, at a particular point in the fluid is defined as

r ¼ lim
DV!dV

Dm

DV

where Dm is the mass contained in a volume DV, and dV is the smallest volume surrounding

the point for which statistical averages are meaningful. The limit is shown in Figure 1.1.

The concept of the density at a mathematical point, that is, at DV ¼ 0 is seen to be

fictitious; however, taking r ¼ limDV!dV (Dm/DV) is extremely useful, as it allows us to

describe fluid flow in terms of continuous functions. The density, in general, may vary

from point to point in a fluid and may also vary with respect to time as in a punctured

automobile tire.

∆V

δV

∆m
∆V

Molecular domain Continuum domain

Figure 1.1 Density at a point.
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Fluid Properties and Flow Properties. Some fluids, particularly liquids, have densities

that remain almost constant over wide ranges of pressure and temperature. Fluids which

exhibit this quality are usually treated as being incompressible. The effects of compres-

sibility, however, aremore a property of the situation than of the fluid itself. For example, the

flow of air at low velocities is described by the same equations that describe the flow of

water. From a static viewpoint, air is a compressible fluid andwater incompressible. Instead

of being classified according to the fluid, compressibility effects are considered a property of

the flow. A distinction, often subtle, is made between the properties of the fluid and the

properties of the flow, and the student is hereby alerted to the importance of this concept.

Stress at a Point. Consider the force DF acting on an element DA of the body shown in

Figure 1.2. The force DF is resolved into components normal and parallel to the surface of

the element. The force per unit area or stress at a point is defined as the limit of DF/DA as

DA! dA where dA is the smallest area for which statistical averages are meaningful

lim
DA!dA

DFn

DA
¼ sii lim

DA!dA

DFs

DA
¼ tij

Here sii is the normal stress and tij the shear stress. In this text, the double-subscript

stress notation as used in solid mechanics will be employed. The student will recall that

normal stress is positive in tension. The limiting process for the normal stress is illustrated in

Figure 1.3.

Forces acting on a fluid are divided into two general groups: body forces and surface

forces. Body forces are those which act without physical contact, for example, gravity and

electrostatic forces. On the contrary, pressure and frictional forces require physical contact

for transmission. As a surface is required for the action of these forces they are called surface

forces. Stress is therefore a surface force per unit area.1

∆A

∆Fn

∆Fs

∆F

Figure 1.2 Force on an

element of fluid.

∆A

δA

∆Fn
∆A

Molecular domain Continuum domain

Figure 1.3 Normal stress at a point.

1 Mathematically, stress is classed as a tensor of second order, as it requires magnitude, direction, and

orientation with respect to a plane for its determination.
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Pressure at a point in a Static Fluid. For a static fluid, the normal stress at a point may be

determined from the application of Newton’s laws to a fluid element as the fluid element

approaches zero size. It may be recalled that there can be no shearing stress in a static fluid.

Thus, the only surface forces present will be those due to normal stresses. Consider the

element shown in Figure 1.4. This element, while at rest, is acted upon by gravity and normal

stresses. The weight of the fluid element is rg(DxDyDz/2).

For a body at rest, SF ¼ 0. In the x direction

DFx � DFs sin u ¼ 0

Since sin u ¼ Dy/Ds, the above equation becomes

DFx � DFs
Dy

Ds
¼ 0

Dividing through byDyDz and taking the limit as the volume of the element approaches

zero, we obtain

lim
DV!0

DFx

DyDz
� DFs

DsDz

� �
¼ 0

Recalling that normal stress is positive in tension, we obtain, by evaluating the above

equation

sxx ¼ sss (1-1)

In the y direction, applying SF ¼ 0 yields

DFy � DFs cos u � rg
DxDyDz

2
¼ 0

Since cos u ¼ Dx/Ds, one has

DFy � DFs
Dx

Ds
� rg

DxDyDz

2
¼ 0

y

x

z

∆y

∆Fx

∆Fs

∆Fy

∆x
q ∆z

∆s

Figure 1.4 Element in a static fluid.

Dividing through by DxDz and taking the limit as before, we obtain

lim
DV!0

DFy

DxDz
� DFs

DsDz
� rgDy

2

� �
¼ 0
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which becomes

�syy þ sss � rg

2
ð0Þ ¼ 0

or
syy ¼ sss (1-2)

It may be noted that the angle u does not appear in equation (1-1) or (1-2), thus the

normal stress at a point in a static fluid is independent of direction, and is therefore a scalar

quantity.

As the element is at rest, the only surface forces acting are those due to the normal stress.

If we were to measure the force per unit area acting on a submerged element, we would

observe that it acts inward or places the element in compression. The quantity measured is,

of course, pressure, which in light of the preceding development, must be the negative of the

normal stress. This important simplification, the reduction of stress, a tensor, to pressure, a

scalar, may also be shown for the case of zero shear stress in a flowing fluid. When shearing

stresses are present, the normal stress components at a point may not be equal; however, the

pressure is still equal to the average normal stress; that is

P ¼ �1
3ðsxx þ syy þ szzÞ

with very few exceptions, one being flow in shock waves.

Now that certain properties at a point have been discussed, let us investigate themanner

in which fluid properties vary from point to point.

1.3 POINT-TO-POINT VARIATION OF PROPERTIES IN A FLUID

In the continuum approach tomomentum transfer, use will bemade of pressure, temperature,

density, velocity, and stress fields. In previous studies, the concept of a gravitational field has

been introduced.Gravity, of course, is avector, and thus a gravitationalfield is a vectorfield. In

this book, vectors will be written in boldfaced type. Weather maps illustrating the pressure

variation over this country are published daily in our newspapers. As pressure is a scalar

quantity, such maps are an illustration of a scalar field. Scalars in this book will be set in

regular type.

In Figure 1.5, the lines drawn are the loci of points of equal pressure. The pressure

varies continuously throughout the region, and onemay observe the pressure levels and infer

the manner in which the pressure varies by examining such a map.

Figure 1.5 Weather map—an example of a scalar field.
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Of specific interest in momentum transfer is the description of the point-to-point

variation in the pressure. Denoting the directions east and north in Figure 1.5 by x and y,

respectively, we may represent the pressure throughout the region by the general function

P(x, y).

The change in P, written as dP, between two points in the region separated by the

distances dx and dy is given by the total differential

dP ¼ @P

@x
dxþ @P

@y
dy (1-3)

In equation (1-3), the partial derivatives represent themanner in whichP changes along

the x and y axes, respectively.

Along an arbitrary path s in the xy plane the total derivative is

dP

ds
¼ @P

@x

dx

ds
þ @P

@y

dy

ds
(1-4)

In equation (1-4), the term dP/ds is the directional derivative, and its functional relation

describes the rate of change of P in the s direction.

A small portion of the pressure field depicted in Figure 1.5 is shown in Figure 1.6. The

arbitrary path s is shown, and it is easily seen that the terms dx/ds and dy/ds are the cosine and

sine of the path angle,a, with respect to the x axis. The directional derivative, therefore, may

be written as

dP

ds
¼ @P

@x
cosaþ @P

@y
sina (1-5)

There are an infinite number of paths to choose from in the xy plane; however, two

particular paths are of special interest: the path for which dP/ds is zero and that for which

dP/ds is maximum.

The path forwhich the directional derivative is zero is quite simple to find. Setting dP/ds

equal to zero, we have

sina

cosa

����
dP/ds¼0

¼ tan a

����
dP/ds¼0

¼ � @P/@x

@P/@y

y

x

α
dx

ds

dy

dy
ds

= sin α

dx
ds

= cos α

Path s

Figure 1.6 Path s in the xy

plane.
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or, since tan a ¼ dy/dx, we have

dy

dx

����
dP/ds¼0

¼ � @P/@x

@P/@y
(1-6)

Along the path whose slope is defined by equation (1-6), we have dP ¼ 0, and thus P is

constant. Paths along which a scalar is constant are called isolines.

In order to find the direction forwhich dP/ds is amaximum,wemust have the derivative

(d/da)(dP/ds) equal to zero, or

d

da

dP

ds
¼ �sin a

@P

@x
þ cosa

@P

@y
¼ 0

or

tan a
dP/ds is max

¼ @P/@y

@P/@x

���� (1-7)

Comparing relations (1-6) and (1-7), we see that the two directions defined by these

equations are perpendicular. The magnitude of the directional derivative when the direc-

tional derivative is maximum is

dP

ds

����
max

¼ @P

@x
cosaþ @P

@y
sina

where cosa and sin a are evaluated along the path given by equation (1-7). As the cosine is

related to the tangent by

cosa ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 a

p

we have

cosa

����
dP/ds is max

¼ @P=@xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@P/@xÞ2 þ ð@P/@yÞ2

q
Evaluating sin a in a similar manner gives

dP

ds

����
max

¼ ð@P/@xÞ2 þ ð@P/@yÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@P/@xÞ2 þ ð@P/@yÞ2

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@P

@x

� �2

þ @P

@y

� �2
s

(1-8)

Equations (1-7) and (1-8) suggest that the maximum directional derivative is a vector of

the form
@P

@x
ex þ @P

@y
ey

where ex and ey are unit vectors in the x and y directions, respectively.

The directional derivative along the path of maximum value is frequently encountered

in the anlaysis of transfer processes and is given a special name, the gradient. Thus the

gradient of P, grad P, is

gradP ¼ @P

@x
ex þ @P

@y
ey
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where P ¼ P(x, y). This concept can be extended to cases in which P ¼ P(x, y, z). For this

more general case

gradP ¼ @P

@x
ex þ @P

@y
ey þ @P

@z
ez (1-9)

Equation (1-9) may be written in more compact form by use of the operation =
(pronounced ‘‘del’’), giving

=P ¼ @P

@x
ex þ @P

@y
ey þ @P

@z
ez

where

= ¼ @

@x
ex þ @

@y
ey þ @

@z
ez (1-10)

Equation (1-10) is the defining relationship for the= operator in Cartesian coordinates.

This symbol indicates that differentiation is to be performed in a prescribedmanner. In other

coordinate systems, such as cylindrical and spherical coordinates, the gradient takes on a

different form.2 However, the geometric meaning of the gradient remains the same; it is a

vector having the direction and magnitude of the maximum rate of change of the dependent

variable with respect to distance.

1.4 UNITS

In addition to the International Standard (SI) system of units, there are two different English

systems of units commonly used in engineering. These systems have their roots inNewton’s

second law of motion: force is equal to the time rate of change of momentum. In defining

each term of this law, a direct relationship has been established between the four basic

physical quantities used in mechanics: force, mass, length, and time. Through the arbitrary

choice of fundamental dimensions, some confusion has occurred in the use of the English

systems of units. Using the SI system of units has greatly reduced these difficulties.

The relationship between force and mass may be expressed by the following statement

of Newton’s second law of motion:

F ¼ ma

gc

where gc is a conversion factor which is included to make the equation dimensionally

consistent.

In the SI system,mass, length, and time are taken as basic units. The basic units aremass

in kilograms (kg), length in meters (m), and time in seconds (s). The corresponding unit of

force is the newton (N). One newton is the force required to accelerate a mass of one

kilogram at a rate of one meter per second per second (1 m/s2). The conversion factor, gc, is

then equal to one kilogram meter per newton per second per second (1 kg �m/N � s2).
In engineering practice, force, length, and time have been frequently chosen as defining

fundamental units. With this system, force is expressed in pounds force (lbf), length in feet,

and time in seconds. The corresponding unit ofmasswill be that whichwill be accelerated at

the rate of 1 ft/(s)2 by 1 lbf.

2 The forms of the gradient operator in rectangular, cylindrical, and spherical coordinate systems are listed in

Appendix B.

8 Chapter 1 Introduction to Momentum Transfer



This unit of mass having the dimensions of (lbf)(s)
2/(ft) is called the slug. The

conversion factor, gc, is then a multiplying factor to convert slugs into (lbf)(s)
2/(ft), and

its value is 1 (slug)(ft)/(lbf)(s)
2.

A third system encountered in engineering practice involves all four fundamental units.

The unit of force is 1 lbf, the unit of mass is 1 lbm; length and time are given in units of feet

and seconds, respectively. When 1 lbm at sea level is allowed to fall under the influence of

gravity, its acceleration will be 32.174 (ft)/(s)2. The force exerted by gravity on 1 lbm at sea

level is defined as 1 lbf. Therefore the conversion factor, gc, for this system is 32.174

(lbm)(ft)/(lbf)(s)
2.3

A summary of the values of gc is given in Table 1.1 for these three English systems of

engineering units, along with the units of length, time, force, and mass.

As all three systems are in current use in the technical literature, the student should be

able to use formulas given in any particular situation. Careful checking for dimensional

consistency will be required in all calculations. The conversion factor, gc, will correctly

relate the units corresponding to a system. There will be no attempt by the authors to

incorporate the conversion factor in any equations; instead, it will be the reader’s

responsibility to use units that are consistent with every term in the equation.

1.5 COMPRESSIBILITY

A fluid is considered compressible or incompressible depending on whether its density is

variable or constant. Liquids are generally considered to be incompressible whereas gases

are certainly compressible.

The bulk modulus of elasticity, often referred to as simply the bulk modulus, is a fluid

property that characterizes compressibility. It is defined according to

b� dP

dV /V
(1-11a)

or as

b� � dP

dr/r
(1-11b)

and has the dimensions N/m2.

Table 1.1

System Length Time Force Mass gc

1 meter second newton kilogram
1
kg � m
N � s2

2 foot second lbf slug 1 ðslugÞðftÞ
ðlbfÞðsÞ2

3 foot second lbf lbm 32:174 ðlbmÞðftÞ
ðlbfÞðsÞ2

3 In subsequent calculations in this book, gc will be rounded off to a value of 32.2 lbmft/
2 lbf.
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Disturbances introduced at some location in a fluid continuum will be propagated at a

finite velocity. The velocity is designated the acoustic velocity; that is, the speed of sound in

the fluid. It is symbolized C.

It can be shown that the acoustic velocity is related to changes in pressure and density

according to

C ¼ dP

dr

� �
½

(1-12)

Introducing equation (1-11b) into this relationship yields

C ¼ � b

r

� �
½

(1-13)

For a gas, undergoing an isentropic process where PVk ¼ C, a constant, we have

C ¼ kP

r

� �
½

(1-14)

or

C ¼ ðkRTÞ½ (1-15)

The question arises concerning when a gas, which is compressible, may be treated in a

flow situation as incompressible, that is, when density variations are negligibly small. A

common criterion for such a consideration involves theMach number. TheMach number, a

dimensionless parameter, is defined as the ratio of the fluid velocity, v, to the speed of sound,
C, in the fluid:

M ¼ v

C
(1-16)

A general rule of thumb is that when M < 0.2 the flow may be treated as incompressible

with negligible error.

EXAMPLE 1 A jet aircraft is flying at an altitude of 15,500 m, where the air temperature is 239 K. Determine

whether compressibility effects are significant at airspeeds of (a) 220 km/h and (b) 650 km/h.

The test for compressibility effects requires calculating theMach number,M, which, in turn, requires

that the acoustic velocity at each airspeed, be evaluated.

For air, k ¼ 1.4, R ¼ 0.287 kJ/kg�K, and
C ¼ ðkRTÞ½
¼ ½1:4 ð0:287 kJ/kg � KÞð239KÞð1000N �m/kJÞðkg �m/N � s2Þ�½
¼ 310m/s

(a) At v ¼ 220 km/hr ð61:1m/sÞ

M ¼ v

C
¼ 61:1m/s

310m/s
¼ 0:197

The flow may be treated as incompressible.

(b) At v ¼ 650 km/hr ð180:5m/sÞ

M ¼ v

C
¼ 180:5m/s

310m/s
¼ 0:582

Compressible effects must be accounted for.
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1.6 SURFACE TENSION

The situation where a small amount of unconfined liquid forms a spherical drop is familiar

to most of us. The phenomenon is the consequence of the attraction that exists between

liquid molecules. Within a drop a molecule of liquid is completely surrounded by many

others. Particles near the surface, on the contrary, will experience an imbalance of net force

because of the nonuniformity in the numbers of adjacent particles. The extreme condition is

the density discontinuity at the surface. Particles at the surface experience a relatively strong

inwardly directed attractive force.

Given this behavior, it is evident that some work must be done when a liquid particle

moves toward the surface. As more fluid is added the drop will expand creating additional

surface. The work associated with creating this new surface is the surface tension,

symbolized, s. Quantitatively, s is the work per unit area, N�m/m2 or force per unit length

of interface in N/m.

A surface is, in reality, an interface between two phases. Thus both phases will have the

property of surface tension. The most common materials involving phase interfaces are

water and air, but many others are also possible. For a given interfacial composition, the

surface tension property is a function of both pressure and temperature, but a much stronger

function of temperature. Table 1.2 lists values ofs for several fluids in air at 1 atm and 208C.
For water in air the surface tension is expressed as a function of temperature according to

s ¼ 0:123 ð1� 0:00139 TÞN/m (1-17)

where T is in Kelvins.

In Figure 1.7 we show a free body diagram of a hemispherical drop of liquid with the

pressure and surface tension forces in balance. The condition examined is typically used for

this analysis as a sphere represents the minimum surface area for a prescribed volume. The

pressure difference, DP, between the inside and outside of the hemisphere produces a net

pressure force that is balanced by the surface tension force. This force balance can be

expressed as

pr2DP ¼ 2prs

and the pressure difference is given by

DP ¼ 2s

r
(1-18)

Table 1.2 Surface tensions of some fluids in air

at latm and 20 8C

Fluid s(N/m)

Ammonia 0.021

Ethyl alcohol 0.028

Gasoline 0.022

Glycerin 0.063

Kerosene 0.028

Mercury 0.440

Soap solution 0.02S

SAE 30 oil 0.035

Source: Handbook of Chemistry and Physics, 62nd Ed,

Chemical Rubber Publishing Co., Cleveland, OH, 1980.

2prs

pr2∆P

Figure 1.7 A free body

diagram of a hemispherical

liquid droplet.
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For the case of a soap bubble, which has a very thin wall, there are two interfaces and the

pressure difference will be

DP ¼ 4s

r
(1-19)

Equations (1-18) and (1-19) indicate that the pressure difference is inversely proportional

to r. The limit of this relationship is the case of a

fully wetted surface where r ffi 1, and the

pressure difference due to surface tension is zero.

A consequence of the pressure difference

resulting from surface tension is the phenomenon

of capillary action. This effect is related to howwell

a liquid wets a solid boundary. The indicator for

wetting or nonwetting is the contact angle, u,

defined as illustrated in Figure 1.8.With umeasured

through the liquid, a nonwetting case, as shown in

the figure, is associated with u> 908. For a wetting
case u < 908. For mercury in contact with a clean

glass tube u ffi 1308. Water in contact with a clean glass surface will completely wet the

surface and, for this case, u ffi 0.

Illustrated in Figure 1.9 is the case of a small glass tube inserted into a pool of (a) water

and (b) mercury. Note that water will rise in the tube and that in mercury the level in the tube

is depressed.

For the water case, the liquid rises a distance h above the level in the pool. This is the

result of attraction between the liquid molecules and the tube wall being greater than

the attraction between water molecules at the liquid surface. For the mercury case, the

intermolecular forces at the liquid surface are greater than the attractive forces between

Liquid

Gas

Solid

q q

Figure 1.8 Contact angle for a non-

wetting gas–liquid–solid interface.

h

h

(b)(a)

Figure 1.9 Capillary effects with a tube inserted in (a) water and (b) mercury.
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liquid mercury and the glass surface. The mercury is, thus, depressed a distance h below the

level of the pool.

A free body diagram of the wetting liquid is shown in Figure 1.10. The upward force,

due to surface tension

2prs cos u

will be equal to the downward force due to the weight of liquid having volume V ¼ pr2h.

Equating these forces we obtain

2pr s cos u ¼ rgpr2h

and the value of h becomes

h ¼ 2s cos u

rgr
(1-20)

EXAMPLE 2 Determine the distance h that mercury will be depressed with a 4-mm-diameter glass tube inserted

into a pool of mercury at 208C (Figure 1.11).

Equation (1-20) applies, so we have

h ¼ 2s cos u

rgr

Recall that, for mercury and glass, u ¼ 1308.

Formercury at 208C r ¼ 13,580 kg/m3, and formercury in air s ¼ 0.44N/m (Table 1.2) giving

h ¼ 2ð0:44N/mÞðcos130�Þ
ð13580kg/m3Þð9:81m/s2Þð2� 10�3mÞ

¼ 2:12� 10�3 m ð2:12mmÞ

pr2h

2prs

Figure 1.10 Free body

diagram of a wetting

liquid in a tube.

h

Figure 1.11 Capillary depression of

mercury in a glass tube.

1.6 Surface Tension 13



PROBLEMS

1.1 The number of molecules crossing a unit area per unit time

in one direction is given by

N ¼ 1
4 nv

where n is the number of molecules per unit volume and v is the
averagemolecular velocity. As the averagemolecular velocity is

approximately equal to the speed of sound in a perfect gas,

estimate the number of molecules crossing a circular hole 10�3

in. in diameter. Assume that the gas is at standard conditions. At

standard conditions, there are 4� 1020 molecules per in.3.

1.2 Which of the quantities listed below are flowproperties and

which are fluid properties?

1.3 For a fluid of density r in which solid particles of density rs
are uniformly dispersed, show that if x is the mass fraction of

solid in the mixture, the density is given by

rmixture ¼
rsr

rxþ rsð1� xÞ
1.4 An equation linking water density and pressure is

Pþ B

P1 þ B
¼ r

r1

� �7

where the pressure is in atmospheres and B ¼ 3000 atm. Deter-

mine the pressure in psi required to increasewater density by 1%

above its nominal value.

1.5 What pressure change is required to change the density of

air by 10% under standard conditions?

1.6 Using the information given in Problem 1.1 and the pro-

perties of the standard atmosphere given in Appendix G,

estimate the number of molecules per cubic inch at an altitude

of 250,000 ft.

1.7 Show that the unit vectors er and eu in a cylindrical

coordinate system are related to the unit vectors ex and ey by

er ¼ ex cos u þ ey sin u

and

eu ¼ �ex sin u þ ey cos u

1.8 Using the results of Problem 1.7, show that der/du ¼ eu and

deu /du ¼ �er .

1.9 Using the geometric relations given below and the chain

rule for differentiation, show that

@

@x
¼ � sin u

r

@

@u
þ cos u

@

@r

and

@

@y
¼ cos u

r

@

@u
þ sin u

@

@r

when r2 ¼ x2 þ y2 and tan u ¼ y/x.

1.10 Transform the operator = to cylindrical coordinates

(r, u, z), using the results of Problems 1.7 and 1.9.

1.11 Find the pressure gradient at point (a,b) when the pressure

field is given by

P ¼ r1v21 sin
x

a
sin

y

b
þ 2

x

a

� �
where r1, v1, a, and b are constants.

1.12 Find the temperature gradient at point (a, b) at time

t ¼ (L2/a) ln e when the temperature field is given by

T ¼ T0e
�at=4L2 sin

x

a
cosh

y

b

where T0, a, a, and b are constants.

1.13 Are the fields described in Problems 1.11 and 1.12

dimensionally homogeneous? What must the units of r1 be

in order that the pressure be in pounds per square footwhen v1 is

given in feet per second (problem 1.11)?

1.14 A scalar field is given by the function f ¼ 3x2y þ 4y2.

a. Find rf at the point (3, 5).

b. Find the component of rf that makes a �608 angle with

the x axis at the point (3, 5).

1.15 If the fluid of density r in Problem 1.3 obeys the perfect

gas law, obtain the equation of state of the mixture, that is,

P ¼ f (rs, (RT/M), rm, x). Will this result be valid if a liquid is

present instead of a solid?

1.16 Using the expression for the gradient in polar coordinates

(Appendix A), find the gradient of c(r, u) when

c ¼ A r sin u 1� a2

r2

� �
Where is the gradientmaximum?The termsA and a are constant.

1.17 Given the following expression for the pressure field

where x, y, and z are space coordinates, t is time, and P0, r,

V1, and L are constants, find the pressure gradient

P ¼ P0 þ 1
2rV

2
1 2

xyz

L3
þ 3

x

L

� �2þV1t

L

� �
1.18 Avertical cylindrical tank having a base diameter of 10m

and a height of 5 m is filled to the top with water at 208C. How
much water will overflow if the water is heated to 808C?

1.19 A liquid in a cylinder has a volume of 1200 cm3 at 1.25

MPa and a volume of 1188 cm3 at 2.50 MPa. Determine its bulk

modulus of elasticity.

pressure temperature velocity

density stress speed of sound

specific heat pressure gradient
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1.20 A pressure of 10 MPa is applied to 0.25 m3 of a liquid,

causing a volume reduction of 0.005 m3. Determine the bulk

modulus of elasticity.

1.21 The bulk modulus of elasticity for water is 2.205 GPa.

Determine the change in pressure required to reduce a given

volume by 0.75%.

1.22 Water in a container is originally at 100 kPa. The water is

subjected to a pressure of 120 MPa. Determine the percentage

decrease in its volume.

1.23 Determine the height to which water at 688Cwill rise in a

clean capillary tube having a diameter of 0.2875 cm.

1.24 Two clean and parallel glass plates, separated by a gap of

1.625 mm, are dipped in water. If s ¼ 0.0735 N/m, determine

how high the water will rise.

1.25 A glass tube having an inside diameter of 0.25mm and an

outside diameter of 0.35mm is inserted into a pool of mercury at

208C such that the contact angle is 1308. Determine the upward

force on the glass.

1.26 Determine the capillary rise for a water–air–glass

interface at 408C in a clean glass tube having a radius of

1mm.

1.27 Determine the difference in pressure between the inside

and outside of a soap film bubble at 20 8C if the diameter of the

bubble is 4mm.

1.28 An open, clean glass tube, having a diameter of 3 mm, is

inserted vertically into a dish ofmercury at 208C.Determine how

far the column of mercury in the tube will be depressed for a

contact angle of 1308.

1.29 At 608C the surface tension of water is 0.0662N/m and

that of mercury is 0.47N/m. Determine the capillary height

changes in these two fluids when they are in contact with air in a

glass tube of diameter 0.55mm. Contact angles are 08 for water
and 1308 for mercury.

1.30 Determine the diameter of the glass tube necessary to

keep the capillary-height change of water at 308C less than

1mm.

Problems 15



Chapter 2

Fluid Statics

The definition of a fluid variable at a point was considered in Chapter 1. In this

chapter, the point-to-point variation of a particular variable, pressure, will be considered

for the special case of a fluid at rest.

A frequently encountered static situation exists for a fluid that is stationary on

Earth’s surface. Although Earth has some motion of its own, we are well within normal

limits of accuracy to neglect the absolute acceleration of the coordinate system that, in

this situation, would be fixed with reference to Earth. Such a coordinate system is said

to be an inertial reference. If, on the contrary, a fluid is stationary with respect to a

coordinate system that has some significant absolute acceleration of its own, the

reference is said to be noninertial. An example of this latter situation would be the fluid

in a railroad tank car as it travels around a curved portion of track.

The application of Newton’s second law of motion to a fixed mass of fluid reduces

to the expression that the sum of the external forces is equal to the product of the mass

and its acceleration. In the case of an inertial reference, we would naturally have the

relation �F ¼ 0; whereas the more general statement �F ¼ ma must be used for the

noninertial case.

2.1 PRESSURE VARIATION IN A STATIC FLUID

From the definition of a fluid, it is known that there can be no shear stress in a fluid at rest.

This means that the only forces acting on the fluid are those due to gravity and pressure. As

the sum of the forcesmust equal zero throughout the fluid, Newton’s lawmay be satisfied by

applying it to an arbitrary free body of fluid of differential size. The free body selected,

shown in Figure 2.1, is the element of fluid Dx Dy Dz with a corner at the point xyz. The

coordinate system xyz is an inertial coordinate system.

z

y

∆y

∆x
∆z

x

P1

P4

P5

P2

P3

P6

Figure 2.1 Pressure forces on a

static fluid element.
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The pressures that act on the various faces of the element are numbered 1 through 6.

To find the sum of the forces on the element, the pressure on each face must first be

evaluated.

We shall designate the pressure according to the face of the element upon which the

pressure acts. For example, P1 ¼ Pjx,P2 ¼ PjxþDx, and so on. Evaluating the forces acting

on each face, along with the force due to gravity acting on the element rgDxDyDz,we find
that the sum of the forces is

rg(DxDyDz)þ (Pjx � PjxþDx)DyDzex

þ (Pjy � PjyþDy)DxDzey þ (Pjz � PjzþDz)DxDyez ¼ 0

Dividing by the volume of the element Dx Dy Dz, we see that the above equation

becomes

rg� PjxþDx � Pjx
Dx

ex �
PjyþDy � Pjy

Dy
ey �

PjzþDz � Pjz
Dz

ez ¼ 0

where the order of the pressure terms has been reversed. As the size of the element

approaches zero,Dx,Dy, andDz approach zero and the element approaches the point (x, y, z).

In the limit

rg ¼ lim
Dx;Dy;Dz!0

PjxþDx � Pjx
Dx

ex þ
PjyþDy � Pjy

Dy
ey þ

PjzþDz � Pjz
Dz

ez

� �
or

rg ¼ @P

@x
ex þ @P

@y
ey þ @P

@z
ez (2-1)

Recalling the form of the gradient, we may write equation (2-1) as

rg ¼ =P (2-2)

Equation (2-2) is the basic equation of fluid statics and states that the maximum rate of

change of pressure occurs in the direction of the gravitational vector. In addition, as isolines

are perpendicular to the gradient, constant pressure lines are perpendicular to the gravita-

tional vector. The point-to-point variation in pressure may be obtained by integrating

equation (2-2).

EXAMPLE 1 The manometer, a pressure measuring device, may be analyzed from the previous discussion. The

simplest type of manometer is the U-tube manometer shown in Figure 2.2. The pressure in the tank

at point A is to be measured. The fluid in the tank extends into the manometer to point B.

Choosing the y axis in the direction shown, we see that equation (2-2) becomes

dP

dy
ey ¼ �rgey

Integrating between C and D in the manometer fluid, we have

Patm � PC ¼ �rmgd2

and then integrating between B and A in the tank fluid, we obtain

PA � PB ¼ �rTgd1
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As elevations B and C are equal, the pressures, PB and PC, must be the same. We may, thus,

combine the above equations to obtain

PA � Patm ¼ rmgd2 � rTgd1

The U-tube manometer measures the difference between the absolute pressure and the atmo-

spheric pressure. This difference is called the gage pressure and is frequently used in pressure

measurement.

EXAMPLE 2 In the fluid statics of gases, a relation between the pressure and density is required to integrate

equation (2-2). The simplest case is that of the isothermal perfect gas, where P ¼ rRT/M. Here R is

the universal gas constant,M is the molecular weight of the gas, and T is the temperature, which is

constant for this case. Selecting the y axis parallel to g, we see that equation (2-2) becomes

dP

dy
¼ �rg ¼ �PMg

RT

Separating variables, we see that the above differential equation becomes

dP

P
¼ �Mg

RT
dy

Integration between y ¼ 0 (where P ¼ Patm) and y ¼ y (where the pressure is P) yields

ln
P

Patm
¼ �Mgy

RT

or

P

Patm
¼ exp �Mgy

RT

	 


In the above examples, the atmospheric pressure and a model of pressure variation

with elevation have appeared in the results. As performance of aircraft, rockets, and many

types of industrial machinery varies with ambient pressure, temperature, and density, a

d1

d2

Patm

D

CB

A

g
y

Fluid in tank – rT
Manometer fluid – rM

Figure 2.2 A U-Tube

manometer.
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standard atmosphere has been established in order to evaluate performance. At sea level,

standard atmospheric conditions are

P ¼ 29:92 in:Hg ¼ 2116:2 lbf/ft
2 ¼ 14:696 lbf/in:

2 ¼ 101 325N/m2

T ¼ 519�R ¼ 59�F ¼ 288K

r ¼ 0:07651 lbm/ft
3 ¼ 0:002378 slug/ft3 ¼ 1:226 kg/m3

A table of the standard atmospheric properties as a function of altitude is given in

Appendix G.1

2.2 UNIFORM RECTILINEAR ACCELERATION

For the case in which the coordinate system xyz in Figure 2.1 is not an inertial coordinate

system, equation (2-2) does not apply. In the case of uniform rectilinear acceleration,

however, the fluid will be at rest with respect to the accelerating coordinate system. With a

constant acceleration, we may apply the same analysis as in the case of the inertial

coordinate system except that �F ¼ ma ¼ rDxDyDza, as required by Newton’s second

law of motion. The result is

=P ¼ r(g� a) (2-3)

The maximum rate of change of pressure is now in the g� a direction, and lines of

constant pressure are perpendicular to g� a.

The point-to-point variation in pressure is obtained from integration of equation (2-3).

EXAMPLE 3 A fuel tank is shown in Figure 2.3. If the tank is given a uniform acceleration to the right, what will

be the pressure at point B?

From equation (2-3) the pressure gradient is in the g� a direction, therefore the surface of

the fluid will be perpendicular to this direction. Choosing the y axis parallel to g� a, we find that

equation (2-3) may be integrated between point B and the surface. The pressure gradient becomes

dP/dy ey with the selection of the y axis parallel to g� a as shown in Figure 2.4. Thus,

dP

dy
ey ¼ �rjg� ajey ¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ a2

p
ey

To fuel pump

g

Vent

Fuel

B

Figure 2.3 Fuel tank at rest.

1 These performance standard sea-level conditions should not be confused with gas-law standard conditions

of P ¼ 29.92 in. Hg ¼ 14.696 lb/in.2 ¼ 101 325 Pa, T ¼ 4928R ¼ 328F ¼ 273 K.
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Integrating between y ¼ 0 and y ¼ d yields

Patm � PB ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ a2

p
(� d)

or

PB � Patm ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ a2

p
(d)

The depth of the fluid, d, at point B is determined from the tank geometry and the angle u.

2.3 FORCES ON SUBMERGED SURFACES

Determination of the force on submerged surfaces is done frequently in fluid statics. As

these forces are due to pressure, use will be made of the relations describing the point-to-

point variation in pressure which have been developed in the previous sections. The plane

surface illustrated in Figure 2.5 is inclined at an anglea to the surface of the fluid. The area of
the inclined plane is A, and the density of the fluid is r.

a

y

g

C

C

b

a

a

b

PG

η

η

View C–C

η

η

Centroid
of area

Figure 2.5 A submerged plane

surface.

d

y

B

q

g – a g

–a

a

Figure 2.4 Uniformly

accelerated fuel tank.
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The magnitude of the force on the element dA is PG dA, where PG is the gage pressure;

PG ¼ �rgy ¼ rgh sina, giving

dF ¼ rgh sina dA

Integration over the surface of the plate yields

F ¼ rg sina

Z
A

h dA

The definition or the centroid of the area is

h� 1

A

Z
A

h dA

and thus

F ¼ rg sina hA (2-4)

Thus, the force due to the pressure is equal to the pressure evaluated at the centroid of the

submerged area multiplied by the submerged area. The point at which this force acts (the

center of pressure) is not the centroid of the area. In order to find the center of pressure,

we must find the point at which the total force on the plate must be concentrated in order

to produce the same moment as the distributed pressure, or

Fhc:p: ¼
Z
A

hPG dA

Substitution for the pressure yields

Fhc:p: ¼
Z
A

rg sina h2 dA

and since F ¼ rg sina hA, we have

hc:p: ¼
1

Ah

Z
A

h2 dA ¼ Iaa

Ah
(2-5)

The moment of the area about the surface may be translated from an axis aa located at the

fluid surface to an axis bb through the centroid by

Iaa ¼ Ibb þ h2A

and thus

hc:p: � h ¼ Ibb

Ah
(2-6)

The center of pressure is located below the centroid a distance Ibb /Ah.

EXAMPLE 4 A circular viewing port is to be located 1.5 ft

belowthe surface of a tank as shown in Figure 2.6.

the magnitude and location of the force acting

Find on the window.

The force on the window is

F ¼ rg sinaAh

where
a ¼ p/2 and h ¼ 1:5 ft;

1.5 ft.

1 ft.

Figure 2.6 Submerged window.
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the force is

F ¼ rgAh ¼ (62:4 lbm/ft3)ð32:2 ft/s2)(p/4 ft2)(1:5 ft)

32:2 lbmft/s2 lbf

¼ 73:5 lbf(327 N)

The force F acts at hþ Icentroid

Ah
. For a circular area, Icentroid ¼ pR4/4, so we obtain

hc:p: ¼ 1:5þ pR4

4pR21:5
ft ¼ 1:542 ft

EXAMPLE 5 Rainwater collects behind the concrete retain-

ing wall shown in Figure 2.7. If the water-

saturated soil (specific gravity ¼ 2.2) acts as

a fluid, determine the force and center of

pressure on a 1-m width of the wall.

The force on a unit width of the wall is obtain-

ed by integrating the pressure difference

between the right and left sides of the wall.

Taking the origin at the top of the wall and

measuring y downward, the force due to

pressure is

F ¼
Z

(P� Patm)(1) dy

The pressure difference in the region in contact with the water is

P� Patm ¼ rH2Ogy

and the pressure difference in the region in contact with the soil is

P� Patm ¼ rH2Og(1)þ 2:2 rH2Og(y� 1)

The force F is

F ¼ rH2Og

Z 1

0

y dyþ rH2Og

Z 4

0

½1þ 2:2(y� 1)� dy

F ¼ (1000 kg/m3)(9:807 m/s2)(1 m)(13:4 m2) ¼ 131 414 N(29 546 lbf)

The center of pressure of the force on the wall is obtained by taking moments about the top of the

wall.

Fyc:p: ¼ rH2Og

Z 1

0

y2 dyþ
Z 4

1

y½1þ 2:2ðy� 1Þ� dy

� �

yc:p: ¼
1

(131 414 N)
(1000 kg/m3)(9:807 m/s2)(1 m)(37:53 m3) ¼ 2:80 m (9:19 ft)

1 mWater

3 mSoil

Figure 2.7 Retaining wall.
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The force on a submerged curved surface may be obtained from knowledge of the

force on a plane surface and the laws of statics. Consider the curved surface BC

illustrated in Figure 2.8.

By consideration of the equilibrium of the fictitious body BCO, the force of the curved

plate on body BCO may be evaluated. Since �F ¼ 0, we have

FCB ¼ �W� FCO (2-7)

The force of the fluid on the curved plate is the negative of this or Wþ FCO. Thus, the

force on a curved submerged surface may be obtained from the weight on the volume

BCO and the force on a submerged plane surface.

2.4 BUOYANCY

The body shown in Figure 2.9 is submerged in a fluid with density r. The resultant force F

holds the body in equilibrium.

The element of volume h dA has gravity and pressure forces acting on it. The

component of the force due to the pressure on the top of the element is�P2 dS2 cosa ey,

where a is the angle between the plane of the element dS2 and the xz plane. The pro-

duct dS2 cos a then is the projection of dS2 onto the xz plane, or simply dA. The net

g

W

Force on plane
surface OC

Weight of fluid in
volume COB

FCO

FBC

O B

C

Figure 2.8 Submerged

curved surface.

y

x

z

F

dA

P1

P2

dS1

dS2

a

h

Figure 2.9 Forces

on submerged

volume.
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pressure force on the element is (P1 � P2) dA ey, and the resultant force on the

element is

dF ¼ (P1 � P2) dA ey � rBgh dA ey

where rB is the density of the body. The difference in pressure P1 � P2 may be expressed as

rgh, so

dF ¼ (r� rB)gh dA ey

Integration over the volume of the body, assuming constant densities, yields

F ¼ (r� rB)gVey (2-8)

where V is the volume of the body. The resultant force F is composed of two parts, the

weight �rBgVey and the buoyant force rgVey. The body experiences an upward force

equal to the weight of the displaced fluid. This is the well-known principle of

Archimedes. When r> rB, the resultant force will cause the body to float on the

surface. In the case of a floating body, the buoyant force is rgVsey, where Vs is the

submerged volume.

EXAMPLE 6 A cube measuring 1 ft on a side is submerged so that its top face is 10 ft below the free surface of

water. Determine the magnitude and direction of the applied force necessary to hold the cube in this

position if it is made of

(a) cork (r ¼ 10 lbm/ft
3)

(b) steel (r ¼ 490 lbm/ft
3).

The pressure forces on all lateral surfaces of the cube cancel. Those on the top and bottom do not, as

they are at different depths.

Summing forces on the vertical direction, we obtain

�Fy ¼ �W þ P(1)jbottom � P(1)jtop þ Fy ¼ 0

where Fy is the additional force required to hold the cube in position.

Expressing each of the pressures as Patm þ rwgh, and W as rcgV , we obtain, for our force

balance

�rcgV þ rwgð11 ftÞð1 ft2Þ � rwgð10 ftÞð1 ft2Þ þ Fy ¼ 0

Solving for Fy, we have

Fy ¼ �rwg½ð11Þð1Þ � 10ð1Þ� þ rcgV ¼ �rwgV þ rcgV

The first term is seen to be a buoyant force, equal to the weight of displaced water.

Finally, solving for Fy, we obtain

(a) rc ¼ 10 lbm/ft
3

Fy ¼ �ð62:4 lbm/ft3Þð32:2 ft/s2Þð1 ft3Þ
32:2 lbmft/s2 lbf

þð10 lbmft3Þð32:2 ft/s2Þð1 ft3Þ
32:2 lbmft/s2 lbf

¼ �52:4 lbf ðdownwardÞð�233NÞ
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(b) rc ¼ 490 lbm/ft
3

Fy ¼ � (62:4 lbm/ft
3)ð32:2 ft/s2)(1 ft3)

32:2 lbmft/s2 lbf
þ (490 lbmft

3)(32:2 ft/s2)(1 ft3)

32:2 lbmft/s2/lbf

¼ þ 427:6 lbf(upward)(1902N)

In case (a), the buoyant force exceeded the weight of the cube, thus to keep it submerged 10 ft below

the surface, a downward force of over 52 lbwas required. In the second case, theweight exceeded the

buoyant force, and an upward force was required.

2.5 CLOSURE

In this chapter the behavior of static fluids has been examined. The application of Newton’s

laws of motion led to the description of the point-to-point variation in fluid pressure, from

which force relations were developed. Specific applications have been considered, includ-

ing manometry, forces on plane and curved submerged surfaces, and the buoyancy of

floating objects.

The static analyses that have been considered will later be seen as special cases of more

general relations governing fluid behavior. Our next task is to examine the behavior of fluids

in motion to describe the effect of that motion. Fundamental laws other than Newton’s laws

of motion will be necessary for this analysis.

PROBLEMS

2.1 On a certain day the barometric pressure at sea level is 30.1

in. Hg, and the temperature is 708F. The pressure gage in an air-
plane in flight indicates a pressure of 10.6 psia, and the tempera-

ture gage shows the air temperature to be 468F. Estimate as

accurately as possible the altitude of the airplane above sea level.

2.2 The open end of a cylindrical tank 2 ft in diameter and

3 ft high is submerged in water as shown. If the tank weights

250 lb, to what depth h will the tank submerge? The air

barometric pressure is 14.7 psia. The thickness of tank wall

may be neglected. What additional force is required to bring the

top of the tank flush with the water surface?

2 ft

Air

h 3 ft

2.3 In Problem 2.2 above, find the depth at which the net force

on the tank is zero.

2.4 If the density of sea water is approximated by the equation

of state r ¼ r0 exp½ð p� patmÞ/bÞ�, where b is the compressi-

bility, determine the pressure and density at a point 32,000 ft

below the surface of the sea. Assume b ¼ 300,00 psi.

2.5 The change in density due to temperature causes the take-

off and landing speeds of a heavier-than-air craft to increase as

the square root of the temperature. What effect do temperature-

induced density changes have on the lifting power of a rigid

lighter-than-air craft?

2.6 The practical depth limit for a suited diver is about 185 m.

What is the gage pressure in sea water at that depth? The specific

gravity of sea water is 1.025.

2.7 Matter is attracted to the center of Earth with a force

proportional to the radial distance from the center. Using the

known value of g at the surface where the radius is 6330 km,

compute the pressure at Earth’s center, assuming the material

behaves like a liquid, and that the mean specific gravity is

5.67.

2.8 The deepest known point in the ocean is 11,034 m in the

Mariana Trench in the Pacific. Assuming sea water to have a

constant density of 1050 kg/m3, determine the pressure at this

point in atmospheres.
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2.9 Determine the depth change to cause a pressure increase of

1 atm for (a) water, (b) seawater (SG¼ 1.0250), and (c) mercury

(SG ¼ 13.6).

2.10 Find the pressure at point A.

2 
in

. 5 
in

.
7 

in
.

Kerosene

Mercury

Water temp. = 150°F
A

2.11 Using a liquid having a specific gravity of 1.2 and

inverting a tube full of this material as shown in the figure,

what is the value of h if the vapor pressure of the liquid is 3 psia?

h

2.12 What is the pressure pA in the figure? The specific gravity

of the oil is 0.8.

H2O

Open

Hg

Air

Oil 10'

15'

1'

pA

2.13 Find the difference in pressure between tanks A and B, if

d1 ¼ 2 ft, d2 ¼ 6 in., d3 ¼ 2.4 in., and d4 ¼ 4 in.

d1

d3

d4

A a

d2

H2O 45°

Air

Hg

B

b

2.14 What is the pressure difference between points A and B if

d1 ¼ 1.7 ft, d2 ¼ 1 in., and d3 ¼ 6.3 in.?

H2O

H2O

A

B

d1

d3

d2

Hg

2.15 A differential manometer is used to measure the pressure

change caused by a flow constriction in a piping system as

shown. Determine the pressure difference between points A and

B in psi. Which section has the higher pressure?

4 in.

10 in.

A

B

H2O

Hg
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2.16 The car shown in the figure is accelerated to the right at a

uniform rate. What way will the balloon move relative to the

car?

a

Water

2.17 The tank is accelerated upward at a uniform rate. Does the

manometer level go up or down?

P = 2 psig

2.18 Glass viewingwindows are to be installed in an aquarium.

Each window is to be 0.6 m in diameter and to be centered 2 m

below the surface level. Find the force and location of the force

acting on the window.

2.19 Find the minimum value of h for which the gate shown

will rotate counterclockwise if the gate cross section is (a)

rectangular, 4 ft � 4 ft; (b) triangular, 4 ft at the base � 4 ft

high. Neglect bearing friction.

h

H2O

4 ft Air

Gate

6 psig

(a) (b)

2.20 A circular log of radius r is to be used as a barrier as

shown in the figure below. If the point of contact is at O,

determine the required density of the log.

r o

2.21 A rectangular block of concrete 3 ft� 3ft� 6 in. has its 6-

in. side half buried at the bottom of a lake 23 ft deep. What force

is required to lift the block free of the bottom? What force is

required to maintain the block in this position? (Concrete

weights 150 1b/ft3.)

2.22 A dam spillway gate holds back water of depth h.

The gate weights 500 1b/ft and is hinged at A. At what

depth of water will the gate rise and permit water to flow

under it?

h

CG

A

10 ft

6 ft

15 ft

60°

2.23 It is desired to use a 0.75-m diameter beach ball to stop a

drain in a swimming pool. Obtain an expression that relates the

drain diameter D and the minimum water depth h for which the

ball will remain in place.

D

Water

2.24 Awatertight bulkhead 22 ft high forms a temporary dam

for some construction work. The top 12 ft behind the bulkhead

consists of sea water with a density of 2 slugs/ft3, but the bottom

10 ft begin a mixture of mud and water can be considered a fluid

of density 4 slugs/ft3. Calculate the total horizontal load per unit
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width and the location of the center of pressure measured from

the bottom.

2.25 The circular gate ABC has a 1 m radius and is hinged at B.

Neglecting atmospheric pressure, determine the force P just

sufficient to keep the gate from opening when h ¼ 12 m.

Water

1 m

1 m

A

h

Pa

Pa

B

PC

2.26 The figure below shows an open triangular channel in

which the two sides, AB and AC, are held together by cables,

spaced 1m apart, between B andC. Determine the cable tension.

A

B C

6 m

8 m

1 mCable

Water

2.27 The dam shown below is 100 m wide. Determine the

magnitude and location of the force on the inclined surface.

Water
at 27°C 128 m

96 m

2.28 The float in a toilet tank is a sphere of radius R and is

made of a material with density r. An upward buoyant

force F is required to shut the ballcock valve. The density

of water is designated rw. Develop an expression for x,

the fraction of the float submerged, in terms of R, r, F, g,

and rw.

2.29 A cubical piece of wood with an edge L in length

floats in the water. The specific gravity of the wood is 0.90.

What moment M is required to hold the cube in the position

shown? The right-hand edge of the block is flush with the

water.

M
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Chapter 3

Description of a Fluid in Motion

The development of an analytical description of fluid flow is based upon the

expression of the physical laws related to fluid flow in a suitable mathematical form.

Accordingly, we shall present the pertinent physical laws and discuss the methods used

to describe a fluid in motion.

3.1 FUNDAMENTAL PHYSICAL LAWS

There are three fundamental physical laws that, with the exception of relativistic and nuclear

phenomena, apply to each and every flow independently of the nature of the fluid under

consideration. These laws are listed below with the designations of their mathematical

formulations.

The next three chapterswill be devoted exclusively to the development of a suitableworking

form of these laws.1

In addition to the above laws, certain auxiliary or subsidiary relations are employed in

describing a fluid. These relations depend upon the nature of the fluid under consideration.

Unfortunately, most of these auxiliary relations have also been termed ‘‘laws.’’ Already in our

previous studies,Hooke’s law, theperfect gas law, andothers have beenencountered.However

accurate these ‘‘laws’’ may be over a restricted range, their validity is entirely dependent

upon the nature of the material under consideration. Thus, while some of the auxiliary

relations that will be used will be called laws, the student will be responsible for noting the

difference in scope between the fundamental physical laws and the auxiliary relations.

3.2 FLUID-FLOW FIELDS: LAGRANGIAN
AND EULERIAN REPRESENTATIONS

The term field refers to a quantity defined as a function of position and time throughout a

given region. There are two different forms of representation for fields in fluid mechanics.

Lagrange’s form and Euler’s form. The difference between these approaches lies in the

manner in which the position in the field is identified.

In the Lagrangian approach, the physical variables are described for a particular

element of fluid as it traverses the flow. This is the familiar approach of particle and

Law Equation

1. The law of conservation of mass Continuity equation

2. Newton’s second law of motion Momentum theorem

3. The first law of thermodynamics Energy equation

1 The second law of thermodynamics is also fundamental to fluid-flow analysis. An analytic consideration of

the second law is beyond the scope of the present treatment.
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rigid-body dynamics. The coordinates (x, y, z) are the coordinates of the element of fluid

and, as such, are functions of time. The coordinates (x, y, z) are therefore dependent

variables in the Lagrangian form. The fluid element is identified by its position in the

field at some arbitrary time, usually t ¼ 0. The velocity field in this case is written in

functional form as

v ¼ v(a, b, c, t) (3-1)

where the coordinates (a, b, c) refer to the initial position of the fluid element. The

other fluid-flow variables, being functions of the same coordinates, may be

represented in a similar manner. The Lagrangian approach is seldom used in fluid

mechanics, as the type of information desired is usually the value of a particular fluid

variable at a fixed point in the flow rather than the value of a fluid variable

experienced by an element of fluid along its trajectory. For example, the determination

of the force on a stationary body in a flow field requires that we know the pressure and

shear stress at every point on the body. The Eulerian form provides us with this type of

information.

The Eulerian approach gives the value of a fluid variable at a given point and at a given

time. In functional form the velocity field is written as

v ¼ v(x, y, z, t) (3-2)

where x, y, z, and t are all independent variables. For a particular point (x1, y1, z2) and t1,

equation (3-2) gives the velocity of the fluid at that location at time t1. In this text the

Eulerian approach will be used exclusively.

3.3 STEADY AND UNSTEADY FLOWS

In adopting the Eulerian approach, we note that the fluid flow will, in general, be a function

of the four independent variables (x, y, z, t). If the flow at every point in the fluid is

independent of time, the flow is termed steady. If the flow at a point varies with time, the flow

is termed unsteady. It is possible in certain cases to reduce an unsteady flow to a steady flow

by changing the frame of reference. Consider an airplane flying through the air at constant

speed v0, as shown in Figure 3.1. When observed from the stationary x, y, z coordinate

system, the flow pattern is unsteady. The flow at the point P illustrated, for example, will

vary as the vehicle approaches it.

y

x

z

P

v0

Figure 3.1 Unsteady flow

with respect to a fixed

coordinate system.
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Now consider the same situation when observed from the x0, y0, z0 coordinate system
which is moving at constant velocity v0 as illustrated in Figure 3.2.

The flow conditions are now independent of time at every point in the flow field, and

thus the flow is steady when viewed from the moving coordinate system. Whenever a body

moves through a fluid with a constant velocity, the flow field may be transformed from an

unsteady flow to a steady flow by selecting a coordinate system that is fixed with respect to

the moving body.

In the wind-tunnel testing of models, use is made of this concept. Data obtained for a

static model in a moving stream will be the same as the data obtained for a model moving

through a static stream. The physical as well as the analytical simplifications afforded by

this transformation are considerable. We shall make use of this transformation whenever

applicable.

3.4 STREAMLINES

A useful concept in the description of a flowing fluid is that of a streamline. A streamline is

defined as the line-drawn tangent to the velocity vector at each point in a flow field.

Figure 3.3 shows the streamline pattern for ideal flow past a football-like object. In steady

flow, as all velocity vectors are invariant with time, the path of a fluid particle follows a

streamline, hence a streamline is the trajectory of an element of fluid in such a situation. In

unsteady flow, streamline patterns change from instant to instant. Thus, the trajectory of a

fluid element will be different from a streamline at any particular time. The actual trajectory

of a fluid element as it traverses the flow is designated as a path line. It is obvious that path

lines and streamlines are coincident only in steady flow.

Figure 3.3 Illustration of

streamlines.

y

x

z

P
y'

x'

z'

v0

Figure 3.2 Steady flow with

respect to a moving

coordinate system.
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The streamline is useful in relating that fluid velocity components to the geometry of

the flow field. For two-dimensional flow this relation is

vy
vx

¼ dy

dx
(3-3)

as the streamline is tangent to the velocity vector having x and y components vx and vy. In
three dimensions this becomes

dx

vx
¼ dy

vy
¼ dz

vz
(3-4)

The utility of the above relations is in obtaining an analytical relation between velocity

components and the streamline pattern.

Some additional discussion is provided in Chapter 10 regarding the mathematical

description of streamlines around solid objects.

3.5 SYSTEMS AND CONTROL VOLUMES

The three basic physical laws listed in Section 3.1 are all stated in terms of a system.

A system is defined as a collection of matter of fixed identity. The basic laws give

the interaction of a system with its surroundings. The selection of the system for

the application of these laws is quite flexible and is, in many cases, a complex problem.

Any analysis utilizing a fundamental law must follow the designation of a specific system,

and the difficulty of solution varies greatly depending on the choice made.

As an illustration, consider Newton’s second law,F¼ma. The terms represented are as

follows:

F ¼ the resultant force exerted by the surroundings on the system.

m ¼ the mass of the system.

a ¼ the acceleration of the center of mass of the system.

In the piston-and-cylinder arrangement

shown in Figure 3.4, a convenient sys-

tem to analyze, readily identified by

virtue of its confinement, is the mass of

material enclosed within the cylinder

by the piston.

In the case of the nozzle shown in

Figure 3.5, the fluid occupying the nozzle

changes from instant to instant. Thus

different systems occupy the nozzle at

different times.

A more convenient method of ana-

lysis of the nozzle would be to consider

the region bounded by the dotted line.

Such a region is a control volume. A

control volume is a region in space

through which fluid flows.2

System

Figure 3.4 An easily identifiable system.

Figure 3.5 Control volume for analysis of flow

through a nozzle.

2 A control volume may be fixed or moving uniformly (inertial), or it may be accelerating (noninertial). Primary

consideration here will be given to inertial control volumes.
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The extrememobility of a fluidmakes the identification of a particular system a tedious

task. By developing the fundamental physical laws in a form that applies to a control volume

(where the system changes from instant to instant), the analysis of fluid flow is greatly

simplified. The control-volume approach circumvents the difficulty in system identifica-

tion. Succeeding chapters will convert the fundamental physical laws from the system

approach to a control-volume approach. The control volume selected may be either finite or

infinitesimal.
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Chapter 4

Conservation of Mass:

Control-Volume Approach

The initial application of the fundamental laws of fluid mechanics involves the law of

conservation of mass. In this chapter, we shall develop an integral relationship that

expresses the law of conservation of mass for a general control volume. The integral

relation thus developed will be applied to some often-encountered fluid-flow situations.

4.1 INTEGRAL RELATION

The law of conservation ofmass states that mass may be neither created nor destroyed.With

respect to a control volume, the law of conservation of mass may be simply stated as

rate of mass

efflux from

control

volume

8>><
>>:

9>>=
>>;�

rate of mass

flow into

control

volume

8>><
>>:

9>>=
>>;þ

rate of

accumulation

of mass within

control volume

8>><
>>:

9>>=
>>; ¼ 0

Consider now the general control volume located in a fluid flow field, as shown in

Figure 4.1.

For the small element of area dA on the control surface, the rate of mass efflux ¼
(rv)(dA cos u), where dA cos u is the projection of the area dA in a plane normal to the

velocity vector, v, and u is the angle between the velocity vector, v, and the outward directed

unit normal vector, n, to dA. From vector algebra, we recognize the product

rv dA cos u ¼ r dAjvj jnj cos u

q v

n

dA

Streamlines
at time t

Figure 4.1 Fluid flow through a

control volume.

as the ‘‘scalar’’ or ‘‘dot’’ product

r(v:n) dA
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which is the form we shall use to designate the rate of mass efflux through dA. The

product rv is the mass flux, often called the mass velocity, G. Physically, this product

represents the amount of mass flowing through a unit cross-sectional area per unit

time.

If we now integrate this quantity over the entire control surface, we haveZ Z
c:s:

r(v: n) dA

which is the net outward flow of mass across the control surface, or the net mass efflux from

the control volume.

Note that if mass is entering the control volume, that is, flowing inward across the

control surface, the product v: n ¼ jvj jnj cos u is negative, since u> 90�, and cos u is

therefore negative. Thus, if the integral is

positive, there is a net efflux of mass;

negative, there is a net influx of mass;

zero, the mass within the control volume is constant.

The rate of accumulation of mass within the control volume may be expressed as

@

@t

Z Z Z
c:v:

r dV

and the integral expression for the mass balance over a general control volume becomesZ Z
c:s:

r(v: n) dAþ @

@t

Z Z Z
c:v:

r dV ¼ 0 (4-1)

4.2 SPECIFIC FORMS OF THE INTEGRAL EXPRESSION

Equation (4-1) gives the mass balance in its most general form. We now consider some

frequently encountered situations where equation (4-1) may be applied.

If flow is steady relative to coordinates fixed to the control volume, the accumulation

term, @/@t
RRR

c:v: r dV , will be zero. This is readily seen when one recalls that, by the

definition of steady flow, the properties of a flow field are invariant with time, hence the

partial derivative with respect to time is zero. Thus, for this situation the applicable form of

the continuity expression is Z Z
c:s:

r(v: n) dA ¼ 0 (4-2)

Another important case is that of an incompressible flow with fluid filling the control

volume. For incompressible flow the density, r, is constant, hence the accumulation term

involving the partial derivative with respect to time is again zero. Additionally, the density

term in the surface integral may be canceled. The conservation-of-mass expression for

incompressible flow of this nature thus becomesZ Z
c:s:

(v: n) dA ¼ 0 (4-3)

The following examples illustrate the application of equation (4-1) to some cases that

recur frequently in momentum transfer.
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EXAMPLE 1 As our first example, let us consider the common situation of a control volume for which mass

efflux and influx are steady and one dimensional. Specifically, consider the control volume indi-

cated by dashed lines in Figure 4.2.

Equation (4-2) applies. As mass crosses the control surface at positions (1) and (2) only, our

expression is Z Z
c:s:

r(v:n) dA ¼
Z Z

A1

r(v:n) dAþ
Z Z

A2

r(v: n) dA ¼ 0

The absolute value of the scalar product (v:n) is equal to the magnitude of the velocity in each

integral, as the velocity vectors and outwardly directed normal vectors are collinear both at (1) and

(2). At (2) these vectors have the same sense, thus this product is positive, as it should be for an efflux

of mass. At (1), where mass flows into the control volume, the two vectors are opposite in sense,

hence the sign is negative. We may now express the continuity equation in scalar formZ Z
c:s:

r(v:n) dA ¼ �
Z Z

A1

rv dAþ
Z Z

A2

rv dA ¼ 0

Integration gives the familiar result

r1v1A1 ¼ r2v2A2 (4-4)

In obtaining equation (4-4), it is noted that the flow situation inside the control volume

was unspecified. In fact, this is the beauty of the control-volume approach; the flow

inside the control volume can be analyzed from information (measurements) obtained on

the surface of the control volume. The box-shaped control volume illustrated in Figure 4.2

is defined for analytical purposes; the actual system contained in this box could be as

simple as a pipe or as complex as a propulsion system or a distillation tower.

In solving Example 1, we assumed a constant velocity at sections (1) and (2). This

situationmay be approached physically, but a more general case is one in which the velocity

varies over the cross-sectional area.

EXAMPLE 2 Let us consider the case of an incompressible flow, for which the flow area is circular and the

velocity profile is parabolic (see Figure 4.3), varying according to the expression

v ¼ vmax 1� r

R

� �2� �

v1
A1
r1 v2

A2
r2

1

2
Figure 4.2 Steady one-dimensional flow

into and out of a control volume.
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where vmax is the maximum velocity which exists at the center of the circular passage

(i.e., at r ¼ 0), and R is the radial distance to the inside surface of the circular area consi-

dered.

The above velocity-profile expression may be obtained experimentally. It will also be

derived theoretically in Chapter 8 for the case of laminar flow in a circular conduit. This

expression represents the velocity at a radial distance, r, from the center of the flow section. As

the average velocity is of particular interest in engineering problems, we will now consider the

means of obtaining the average velocity from this expression.

At the station where this velocity profile exists, the mass rate of flow is

(rv)avgA ¼
Z Z

A

rv dA

For the present case of incompressible flow, the density is constant. Solving for the average velocity,

we have

vavg ¼ 1

A

Z Z
A

v dA

¼ 1

pR2

Z 2p

0

Z R

0

vmax 1� r

R

� �2� �
r dr du

¼ vmax

2

In the previous examples, we were not concerned with the composition of the

fluid streams. Equation (4-1) applies to fluid streams containing more than one

constituent as well as to the individual constituents alone. This type application is

common to chemical processes in particular. Our final example will use the law

of conservation of mass for both the total mass and for a particular species, in this

case, salt.

EXAMPLE 3 Let us now examine the situation illustrated in Figure 4.4. A tank initially contains 1000 kg

of brine containing 10% salt by mass. An inlet stream of brine containing 20% salt by mass

flows into the tank at a rate of 20 kg/min. The mixture in the tank is kept uniform by

stirring. Brine is removed from the tank via an outlet pipe at a rate of 10 kg/min. Find the

amount of salt in the tank at any time t, and the elapsed time when the amount of salt in the tank

is 200 kg.

vmax
R

r
cLcL

Figure 4.3 A parabolic velocity

profile in a circular flow passage.
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We first apply equation (4-1) to express the total amount of brine in the tank as a function of

time. For the control volume shownZ Z
c:s:

r(v: n) dA ¼ 10� 20 ¼ �10 kg=min

@

@t

Z Z Z
c:v:

r dV ¼ d

dt

Z M

1000

dM ¼ d

dt
(M � 1000)

whereM is the total mass of brine in the tank at any time. Writing the complete expression, we haveZ Z
c:s:

r(v: n) dAþ @

@t

Z Z Z
c:v:

r dV ¼ �10þ d

dt
(M � 1000) ¼ 0

Separating variables and solving for M gives

M ¼ 1000þ 10t (kg)

We now let S be the amount of salt in the tank at any time. The concentration by weight of salt

may be expressed as

S

M
¼ S

1000þ 10t

kg salt

kg brine

Using this definition, we may now apply equation (4-1) to the salt, obtainingZ Z
c:s:

r(v:n) dA ¼ 10S

1000þ 10t
� (0:2)(20)

kg salt

min

and

@

@t

Z Z Z
c:v:

r dV ¼ d

dt

Z S

S0

dS ¼ dS

dt

kg salt

min

The complete expression is nowZ Z
c:s:

r(v: n) dA þ @

@t

Z Z Z
c:v:

r dV ¼ S

100þ t
� 4 þ dS

dt
¼ 0

20 kg/min

10 kg/min

Salt content
20% by mass

Tank, initial content 1000 kg

Control volume

Figure 4.4 A mixing

process.
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This equation may be written in the form

dS

dt
þ S

100þ t
¼ 4

which we observe to be a first-order linear differential equation. The general solution is

S ¼ 2t(200þ t)

100þ t
þ C

100þ t

The constant of integration may be evaluated, using the initial condition that S¼ 100 at t¼ 0 to

giveC¼ 10,000. Thus the first part of the answer, expressing the amount of salt present as a function

of time, is

S ¼ 10 000þ 400t þ 2t2

100þ t

The elapsed time necessary for S to equal 200 kg may be evaluated to give t ¼ 36.6 min.

PROBLEMS

4.1 The velocity vector in a two-dimensional flow is given by

the expression v ¼ 10ex þ 7xey m=s when x is measured in

meters. Determine the component of the velocity that makes

a �30� angle with the x axis at the point (2, 2).

4.2 Using the velocity vector of the previous problem, deter-

mine (a) the equation of the streamline passing through point

(2, 1); (b) the volume of flow that crosses a plane surface

connecting points (1, 0) and (2, 2).

4.3 Water is flowing through a large circular conduit with a

velocity profile given by the equation v ¼ 9(1� r2=16) fps.

What is the average water velocity in the 1.5-ft pipe?

8 ft

r

d = 1.5 ft

4.4 Water enters a 4-in. square channel as shown at a velocity

of 10 fps. The channel converges to a 2-in. square configuration

as shown at the discharge end. The outlet section is cut at 308 to
the vertical as shown, but the mean velocity of the discharging

water remains horizontal. Find the exiting water’s average

velocity and total rate of flow.

4 in.

4 in.

2 in.

2 in.

30°

4.3 CLOSURE

In this chapter we have considered the first of the fundamental laws of fluid flow:

conservation of mass. The integral expression developed for this case was seen to be quite

general in its form and use.

Similar integral expressions for conservation of energy and of momentum for a general

control volumewill be developed and used in subsequent chapters. The student should now

develop the habit of always starting with the applicable integral expression and evaluating

each term for a particular problem. Therewill be a strong temptation simply towrite down an

equation without considering each term in detail. Such temptations should be overcome.

This approach may seem needlessly tedious at the outset, but it will always ensure a

complete analysis of a problem and circumvent any errors that may otherwise result from a

too-hasty consideration.
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4.5 Water enters one end of a perforated pipe 0.2m in diameter

with a velocity of 6 m/s. The discharge through the pipe wall is

approximated by a linear profile. If the flow is steady, find the

discharge velocity.

0.5 m

6 m/s

v
2

v

v

2

4.6 The velocities in a circular duct of 20-in. diameter were

measured as follows:

Find (a) the average velocity; (b) the flow rate in cubic feet per

second.

4.7 Salt water containing 1.92 lb/gal of salt flows at a fixed

rate of 2 gal/min into a 100-gal tank, initially filled with fresh

water. The density of the incoming solution is 71.8 lb/ft3. The

solution, kept uniform by stirring, flows out at a fixed rate of

19.2 lb/min.

(a) How many pounds of salt will there be in the tank at the

end of 1 h and 40 min?

(b) What is the upper limit for the number of pounds of

salt in the tank if the process continues indefinitely?

(c) Howmuch time will elapse while the quantity of salt in the

tank changes from 100 to 150 lb?

4.8 In the piston and cylinder arrangement shown below, the

large piston has a velocity of 2 fps and an acceleration of

5 fps2. Determine the velocity and acceleration of the smaller

piston.

d = 0.5 in.

2 fps
5 fps 2

d = 4 in.

Oil

4.9 Show that in a one-dimensional steady flow the following

equation is valid:

dA

A
þ dv

v
þ dr

r
¼ 0

4.10 Using the symbol M for the mass in the control volume,

show that equation (4-6) may be written

@M

@t
þ
Z Z

c:s:
d _m ¼ 0

4.11 Ashockwavemovesdownapipe as shownbelow.Thefluid

properties change across the shock, but they are not functions of

time. The velocity of the shock is vw.Write the continuity equation

and obtain the relation between r2, r1, v2, and vw. The mass in the

control volume at any time is M ¼ r2Axþ r1Ay. Hint: Use a

control volume that is moving to the right at velocity, vw.

x y

r2
v2

r1
v1 = 0

vw

Shock

4.12 The velocity profile in circular pipe is given by v ¼
vmax(1� r=R)1=7; where R is the radius of the pipe. Find the

average velocity in the pipe in terms of vmax.

4.13 In the figure below, the x-direction velocity profiles are

shown for a control volume surrounding a cylinder. If the flow is

incompressible, what must the rate of flow be across the hor-

izontal control-volume surface?

v0 v0vx = v0

vx = v0

x

d

6d

Distance from

center (in.)

Velocity

(fps)

0 7.5

3.16 7.10

4.45 6.75

5.48 6.42

6.33 6.15

7.07 5.81

Distance from

center (in.)

Velocity

(fps)

7.75 5.47

8.37 5.10

8.94 4.50

9.49 3.82

10.00 2.40

. . . . . .
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4.14 Two very long parallel plates of length 2L are separated a

distance b. The upper plate moves downward at a constant rateV.

A fluid fills the space between the plates. Fluid is squeezed out

between the plates. Determine the mass flow rate and maximum

velocity:

(a) If the exit velocity is uniform.

(b) If the exit velocity is parabolic.

V

2L

x

4.15 A thin layer of liquid, draining from an inclined plane,

has a velocity profile vx 	 v0(2y=h� y2=h2); where v0 is the

surface velocity. If the plane has width 10 cm into the paper,

determine the volume rate of flow in the film. Suppose that h¼ 2

cm and the flow rate is 2 L/min. Estimate v0.

h

x

y

vx

4.16 The V-shaped tank has widthw into the paper and is filled

from the inlet pipe at volume flow Q. Derive expressions for (a)

the rate of change dh/dt and (b) the time required for the surface

to rise from h1 to h2.

Q

h

20° 20°

4.17 A bellowsmay bemodeled as a deforming wedge-shaped

volume. The check valve on the left (pleated) end is closed

during the stroke. If w is the bellows width into the paper, derive

an expression for outlet mass flow _m0 as a function of stroke u(t).

L

q m0

4.18 Water flows steadily through the piping junction, entering

section 1 at 0.0013 m3/s. The average velocity at section 2 is

2.1m/s.Aportion of the flow is diverted through the showerhead,

which contains 100 holes of 1-mm diameter. Assuming uniform

shower flow, estimate the exit velocity from the showerhead jets.

2 cm

1 21.5 cm

4 cm

4.19 The jet pump injects water at V1 ¼ 40 m/s through a

7.6 cm pipe and entrains a secondary flow of water V2¼ 3 m/s in

the annular region around the small pipe. The two flows become

fully mixed downstream, where V3 is approximately constant.

For steady incompressible flow, compute V3.

25 cm

7.6 cm
V2

V1 V3

4.20 A vertical, cylindrical tank closed at the bottom is parti-

ally filled with an incompressible liquid. A cylindrical rod of

diameterdi (less than tank diameter, d0) is lowered into the liquid

at a velocity V. Determine the average velocity of the fluid

escaping between the rod and the tank walls (a) relative to

the bottom of the tank and (b) relative to the advancing rod.
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4.21 The hypodermic needle shown below contains a liquid

serum (r ¼ 1 g/cm3). If the serum is to be injected steadily at

6 cm3/s, how fast should the plunger be advanced (a) if leakage in

the plunger clearance is neglected and (b) if leakage is 10%of the

needle flow?

V

2 cm

0.8 mm

4.22 Incompressible steady flow in the inlet between parallel

plates is uniform, V0 ¼ 8 cm/s, while downstream, the flow

develops into the parabolic profile vx ¼ az(z0 � zÞ, where a is a
constant. What is the maximum value of vx?

z

x

V0 z0

4.23 An incompressible fluid flows past a flat plate, as in the

figure below, with a uniform inlet profile and a polynomial exit

profile

vx ¼ v0
3h� h3

2

� �
where h ¼ y

d

Compute the volume flowQ across the top surface of the control

volume. The plate has width b into the paper.

v0 v0

y
Q

x

d

4.24 Rework Problem 4.14 if the plates are circular and have

radius L.
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Chapter 5

Newton’s Second Law of Motion:

Control-Volume Approach

The second of the fundamental physical laws upon which fluid-flow analyses are

based is Newton’s second law of motion. Starting with Newton’s second law, we shall

develop integral relations for linear and angular momentum. Applications of these

expressions to physical situations will be considered.

5.1 INTEGRAL RELATION FOR LINEAR MOMENTUM

Newton’s second law of motion may be stated as follows:

The time rate of change of momentum of a system is equal to the net force acting on

the system and takes place in the direction of the net force.

We note at the outset two very important parts of this statement: first, this law refers

to a specific system, and second, it includes direction as well as magnitude and is therefore

a vector expression. In order to use this law, it will be necessary to recast its statement

into a form applicable to control volume which contains different fluid particles (i.e., a

different system) when examined at different times.

In Figure 5.1, observe the control volume located in a fluid-flow field. The system

considered is the material occupying the control volume at time t, and its position is shown

both at time t and at time t þ Dt.
Referring to the figure, we see that

Region I is occupied by the system only at time t.

Region II is occupied by the system at t þ Dt.

Region III is common to the system both at t and at t þ Dt.

I
III

Boundary of system
at time t

Streamlines
at time t

Boundary of system
at time t + ∆t

Stationary control volume

II

Figure 5.1 Relation between

a system and a control volume

in a fluid-flow field.
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Writing Newton’s second law for such a situation, we have

�F ¼ d

dt
(mv) ¼ d

dt
P (5-1)

where the symbols F, m, and v have their usual meanings and P represents the total linear

momentum of the system.

At time t þ Dt, the linear momentum of the system that now occupies regions II and III

may be expressed as

PjtþDt ¼ PIIjtþDt þ PIIIjtþDt

and at time t we have

Pjt ¼ PIjt þ PIIIjt
Subtracting the second of these expressions from the first and dividing by the time interval

Dt gives

PjtþDt � Pjt
Dt

¼ PIIjtþDt þ PIIIjtþDt � PIjt � PIIIjt
Dt

We may rearrange the right-hand side of this expression and take the limit of the resulting

equation to get

lim
Dt!0

PjtþDt � Pjt
Dt

¼ lim
Dt!0

PIIIjtþDt � PIIIjt
Dt

þ lim
Dt!0

PIIjtþDt � PIjt
Dt

(5-2)

Considering each of the limiting processes separately, we have, for the left-hand side

lim
Dt!0

PjtþDt � Pjt
Dt

¼ d

dt
P

which is the form specified in the statement of Newton’s second law, equation (5-1).

The first limit on the right-hand side of equation (5-2) may be evaluated as

lim
Dt!0

PIIIjtþDt � PIIIjt
Dt

¼ d

dt
PIII

This we see to be the rate of change of linear momentum of the control volume itself, since,

as Dt!0, region III becomes the control volume.

The next limiting process

lim
Dt!0

PIIjtþDt � PIjt
Dt

expresses the net rate of momentum efflux across the control surface during the time interval

Dt. AsDt approaches zero, regions I and II become coincidentwith the control-volume surface.

Considering the physical meaning of each of the limits in equation (5-2) and Newton’s

second law, equation (5-1), we may write the following word equation for the conservation

of linear momentum with respect to a control volume:

sum of

forces acting

on control

volume

8>><
>>:

9>>=
>>; ¼

rate of

momentum

out of control

volume

8>><
>>:

9>>=
>>;�

rate of

momentum

into control

volume

8>><
>>:

9>>=
>>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

net rate of momentum efflux from

control volume

þ

rate of

accumulation

of momentum

within control

volume

8>>>><
>>>>:

9>>>>=
>>>>;

(5-3)
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We shall now apply equation (5-3) to a general control volume located in a fluid-flow

field as shown in Figure 5.2 and evaluate the various terms.

The total force acting on the control volume consists both of surface forces due to

interactions between the control-volume fluid, and its surroundings through direct contact,

and of body forces resulting from the location of the control volume in a force field. The

gravitational field and its resultant force are the most common examples of this latter type.

We will designate the total force acting on the control volume as �F.
If the small area dA on the control surface is considered, we may write

rate of momentum efflux ¼ v(rv)(dA cos u)

Observe that the product (rv)(dA cos u) is the rate of mass efflux from the control volume

through dA, as discussed in Chapter 4. Recall further that dA cos u is the area, dA projected

in a direction normal to the velocity vector, v, where u is the angle between v and the

outwardly directed normal vector, n. We may then multiply the rate of mass efflux by v to

give the rate of momentum efflux through dA. From vector algebra this product may be

written as

v(rv)(dA cos u) ¼ v(r dA)½jvj jnj cos u�
The term in square brackets is the scalar or dot product, v: n and the momentum efflux term

becomes

rv(v: n) dA
Integrating this quantity over the entire control surface, we haveZ Z

c:s:
vr(v: n) dA

which is the net momentum efflux from the control volume.

In its integral form the momentum flux term stated above includes the rate of

momentum entering the control volume as well as that leaving. If mass is entering the

control volume, the sign of the product v: n is negative, and the associatedmomentumflux is

q v

n

dA

Streamlines
at time t

Figure 5.2 Fluid flow through a

control volume.

an input. Conversely, a positive sign of the product v: n is associated with a momentum

efflux from the control volume. Thus, the first two terms on the right-hand side of equation

(5-3) may be written

rate of momentum

out of control

volume

8<
:

9=
;�

rate of momentum

into control

volume

8<
:

9=
; ¼

Z Z
c:s:

vr(v: n) dA
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The rate of accumulation of linear momentum within the control volume may be

expressed as

@

@t

Z Z Z
c:v:

vr dV

and the overall linear-momentum balance for a control volume becomes

�F ¼
Z Z

c:s:
vr(v: n) dAþ @

@t

Z Z Z
c:v:

rv dV (5-4)

This extremely important relation is often referred to in fluid mechanics as the

momentum theorem. Note the great similarity between (5-4) and (4-1) in the form

of the integral terms; observe, however, that equation (5-4) is a vector expression

opposed to the scalar form of the overall mass balance considered in Chapter 4. In

rectangular coordinates the single-vector equation, (5-4), may be written as three

scalar equations

�Fx ¼
Z Z

c:s:
vxr(v: n) dAþ @

@t

Z Z Z
c:v:

rvx dV (5-5a)

�Fy ¼
Z Z

c:s:
vyr(v: n) dAþ @

@t

Z Z Z
c:v:

rvy dV (5-5b)

�Fz ¼
Z Z

c:s:
vzr(v: n) dAþ @

@t

Z Z Z
c:v:

rvz dV (5-5c)

When applying any or all of the above equations, it must be remembered that each

term has a sign with respect to the positively defined x, y, and z directions. The

determination of the sign of the surface integral should be considered with special

care, as both the velocity component (vx) and the scalar product (v:n) have signs. The

combination of the proper sign associated with each of these terms will give the correct

sense to the integral. It should also be remembered that as equations (5-5a–c) are written

for the fluid in the control volume, the forces to be employed in these equations are those

acting on the fluid.

A detailed study of the example problems to follow should aid in the understanding of,

and afford facility in using, the overall momentum balance.

5.2 APPLICATIONS OF THE INTEGRAL EXPRESSION
FOR LINEAR MOMENTUM

In applying equation (5-4), it is first necessary to define the control volume that will make

possible the simplest and most direct solution to the problem at hand. There are no general

rules to aid in this definition, but experience in handling problems of this type will enable

such a choice to be made readily.

EXAMPLE 1 Consider first the problem of finding the force exerted on a reducing pipe bend resulting from a

steady flowof fluid in it. A diagram of the pipe bend and the quantities significant to its analysis are

shown in Figure 5.3.

The first step is the definition of the control volume. One choice for the control volume, of

the several available, is all fluid in the pipe at a given time. The control volume chosen in this

manner is designated in Figure 5.4, showing the external forces imposed upon it. The external
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forces imposed on the fluid include the pressure forces at sections (1) and (2), the body force

due to theweight of fluid in the control volume, and the forces due to pressure and shear stress, Pw

and tw, exerted on the fluid by the pipe wall. The resultant force on the fluid (due to Pw and tw) by

the pipe is symbolized as B, and its x and y components as Bx and By, respectively.

Considering the x- and y-directional component equations, (5-5a) and (5-5b), of the overall

momentum balance, the external forces acting on the fluid in the control volume are

�Fx ¼ P1A1 � P2A2 cos u þ Bx

and

�Fy ¼ P2A2 sin u �W þ By

Each component of the unknown forceB is assumed to have a positive sense. The actual signs for these

components, when a solution is obtained, will indicate whether or not this assumption is correct.

Evaluating the surface integral in both the x and y directions, we haveZ Z
c:s:

vxr(v: n) dA ¼ (v2 cos u)(r2v2A2)þ (v1)(�r1v1A1)Z Z
c:s:

vyr(v: n) dA ¼ (�v2 sin u)( p2 v2A2)

The accumulation term is zero in both equations, as, for the problem considered, flow is steady.

v1

v2

1

2y

W

x
q

Figure 5.3 Flow in a reducing pipe bend.

1

2

P1

P2Pw

W

Pw

τw

τw

q
Figure 5.4 Control

volume defined by

pipe surface.
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The complete momentum expressions in the x and y directions are

Bx þ P1A1 � P2A2 cos u ¼ (v2 cos u)(r2v2A2)þ v1(�r1v1A1)

and

By þ P2A2 sin u �W ¼ ð�v2 sin u)(r2v2A2)

Solving for the unknown force components Bx and By, we have

Bx ¼ v22r2A2 cos u � v21r1A1 � P1A1 þ P2A2 cos u

and

By ¼ �v22r2A2 sin u � P2A2 sin u þW

Recall that we were to evaluate the force exerted on the pipe rather than that on the fluid.

The force sought is the reaction to B and has components equal in magnitude and opposite in

sense to Bx and By. The components of the reaction force, R, exerted on the pipe are

Rx ¼ v22r2A2 cos u þ v21r1A1 þ P1A1 � P2A2 cos u

and

Ry ¼ v22r2A2 sin u þ P2A2 sin u �W

Some simplification in form may be achieved if the flow is steady. Applying equation (4-3), we

have

r1v1A1 ¼ r2v2A2 ¼ _m

where _m is the mass flow rate.

The final solution for the components of R may now be written as

Rx ¼ _m(v1 � v2 cos u)þ P1A1 � P2A2 cos u

Ry ¼ _mv2 sin u þ P2A2 sin u �W

The control volume shown in Figure 5.4 for which the above solution was obtained

represents only possible choice. Another is depicted in Figure 5.5. This control volume is

bounded simply by the straight planes cutting through the pipe at sections (1) and (2). The fact

that a control volume such as this can be used indicates the versatility of this approach, that is,

that the results of complicated processes occurring internally may be analyzed quite simply by

considering only those quantities of transfer across the control surface.

1

2W

By

P1

P2

Bx

Figure 5.5 Control

volume including fluid

and pipe.
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For this control volume, the x- and y-directional momentum equations are

Bx þ P1A1 � P2A2 cos u ¼ (v2 cos u)(r2v2A2)þ v1(�v1r1A1)

and

By þ P2A2 sin u �W ¼ (�v2 sin u)(r2v2A2)

where the force having components Bx and By is that exerted on the control volume by the section

of pipe cut through at sections (1) and (2). The pressures at (1) and (2) in the above equations are

gage pressures, as the atmospheric pressures acting on all surfaces cancel.

Note that the resulting equations for this control volume are identical to those obtained for

the one defined previously. Thus, a correct solution may be obtained for each of several chosen

control volumes so long as they are analyzed carefully and completely.

EXAMPLE 2 As our second example of the application of the control-volume expression for linear momentum

(the momentum theorem), consider the steam locomotive tender schematically illustrated in

Figure 5.6, which obtains water from a trough by means of a scoop. The force on the train due

to the water is to be obtained.

The logical choice for a control volume in this case is the water-tank/scoop combination. Our

control-volume boundarywill be selected as the interior of the tank and scoop.As the train ismoving

with a uniform velocity, there are two possible choices of coordinate systems. We may select a

coordinate system either fixed in space or moving1 with the velocity of the train, v0. Let us first
analyze the system by using a moving coordinate system.

The moving control volume is shown in Figure 5.7 with the xy coordinate system moving at

velocity v0. All velocities are determined with respect to the x and y axes.

1 Recall that a uniformly translating coordinate system is an inertial coordinate system, hence Newton’s

second law and the momentum theorem may be employed directly.

h

v0

Figure 5.6 Schematic of

locomotive tender

scooping water from a

trough.

h

y

x

Fx

v0
Figure 5.7 Moving coordinate system

and control volume.
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The applicable expression is equation (5-5a)

�Fx ¼
Z Z

c:s:
vxr(v: n) dAþ @

@t

Z Z Z
c:v:

vxr dV

In Figure 5.7, �Fx is represented as Fx and is shown in the positive sense. As the forces due to

pressure and shear are to be neglected, Fx is the total force exerted on the fluid by the train and scoop.

The momentum flux term isZ Z
c:s:

vxr (v: n) dA ¼ r(�v0)(�1)(v0)ðhÞ (per unit length)

and the rate of change of momentum within the control volume is zero, as the fluid in the control

volume has zero velocity in the x direction.

Thus,

Fx ¼ rv20h

This is the force exerted by the train on the fluid. The force exerted by the fluid on the train is the

opposite of this, or �rv20h.
Now let us consider the same problem with a stationary coordinate system (see Figure 5.8).

Employing once again the control-volume relation for linear momentum

�Fx ¼
Z Z

c:s:
vxr(v: n) dAþ @

@t

Z Z Z
c:v:

vxr dV

we obtain

Fx ¼ 0þ @

@t

Z Z Z
c:v:

vx r dV

where the momentum flux is zero, as the entering fluid has zero velocity. There is, of course, no fluid

leaving the control volume. The terms@=@t
RRR

c:v: vxr dV, as thevelocity, vx ¼ v0 ¼ constant,may be

written as v0@=@t
RRR

c:v: r dV or v0(@m=@t), where _m is the mass of fluid entering the control volume

at the rate @m=@t ¼ rv0h so that Fx ¼ rv20h as before.

The student should note that, in the case of a stationary coordinate system and amoving control

volume, care must be exercised in the interpretation of the momentum fluxZ Z
c:s:

vr(v: n) dA

Regrouping the terms, we obtainZ Z
c:s:

vrðv: nÞ dA �
Z Z

c:s:
v d _m

Thus, it is obvious that while v is the velocity relative to fixed coordinates, v:n is the velocity relative
to the control-volume boundary.

h

y

x

Fx v0

Figure 5.8 Stationary

coordinate system and

moving control volume.
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EXAMPLE 3 A jet of fluid exits a nozzle and strikes a

vertical plane surface as shown in Figure 5.9.

(a) Determine the force required to hole

the plate stationary if the jet is

composed of

i. water

ii. air.

(b) Determine the magnitude of the rest

the restraining force for a water jet

when the plate is moving to the right

with a uniform velocity of 4 m/s.

The control volume to be used in this analysis is shown Figure 5.10.

The coordinates are fixed with the control volume

which, for parts (a) and (b) of this example, is stationary.

Writing the x-directional scalar form of the momen-

tum theroem, we have

�Fx ¼
Z Z

c:s:
vxr(v:n) dAþ @

@t

Z Z Z
c:v:

vxr dv

Evaluation of each term in this expression yields

�Fx ¼ �FZ Z
c:s:

vxr(v:n) dA ¼ v jr(�v jA j)

@

@t

Z Z Z
c:v:

vxr dv ¼ 0

and the governing equation is

F ¼ rA jv
2
j

We may now introduce the appropriate numerical values and solve for F. For case (a)

(i) rw ¼ 1000 kg/m3

F ¼ (1000 kg/m3)(0:005m2)(12m/s)2

¼ 720N

(ii) rw ¼ 1:206 kg/m3

F ¼ (1:206 kg/m3)(0:005m2)(12m/s)2

¼ 0:868N

For case (b), the same control volumewill be used. In this case, however, the control volume and the

coordinate system are moving to the right at a velocity of 4 m/s. from the perspective of an observer

moving the control volume, the velocity of the incoming water jet is (v j � v0) ¼ 8m/s.

The x-directional component form of the momemtum theorem will yield the expression

F ¼ rA j(v j � v0)
2

Substitution of appropriate numerical values yields

F ¼ (1000 kg/m3)(0:005m2)(12� 4m/sÞ2
¼ 320N

y

C.V.

x F

3

2

1

.

Figure 5.10 Control volume for

Example 3.

Plate

F

Aj = 0.005 m2

Vj = 12 m/s

Figure 5.9 A fluid jet striking a vertical plate.
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5.3 INTEGRAL RELATION FOR MOMENT OF MOMENTUM

The integral relation for the moment of momentum of a control volume is an extension

of the considerations just made for linear momentum.

Starting with equation (5-1), which is a mathematical expression of Newton’s second

law of motion applied to a system of particles (Figure 5.11)

�F ¼ d

dt
(mv) ¼ d

dt
P (5-1)

we take the vector or ‘‘cross’’ product of a position vector, r, with each term and get

r� �F ¼ r� d

dt
(mv) ¼ r� d

dt
P (5-6)

The quantity on the left-hand side of equation (5-6), r� SF, is the resultant moment, �M,

about the origin as shown in Figure 5.11, due to all forces applied to the system. Clearly, we

may write

r� �F ¼ �r� F ¼ �M
where �M is, again, the total moment about the origin of all forces acting on the

system.

The right-hand side of equation (5-6) is the moment of the time rate of change of linear

momentum. This we can write as

r� d

dt
mv ¼ d

dt
(r� mv) ¼ d

dt
(r� P) ¼ d

dt
H

Thus, this term is also the time rate of change of the moment of momentum of the sys-

tem. We shall use the symbol H to designate moment of momentum. The complete

expression is now

�M ¼ d

dt
H (5-7)

Aswith its analogous expression for linearmomentum, equation (5-1), equation (5-7)

applies to a specific system. By the same limit process as that used for linear momentum,

y

z

x

r

mv Σ F

Figure 5.11 A system and its

displacement vector r.
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we may recast this expression into a form applicable to a control volume and achieve a

word equation

sum of

moments

acting on

control

volume

8>>>><
>>>>:

9>>>>=
>>>>;

¼

rate of

moment of

momentum

out of control

volume

8>>>><
>>>>:

9>>>>=
>>>>;

�
rate of

moment of

momentum into

control volume

8>><
>>:

9>>=
>>;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
net rate of efflux of moment of

momentum from control volume

þ

rate of

accumulation

of moment

of momen�
tum within

control

volume

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
(5-8)

Equation (5-8) may be applied to a general control volume to yield the following

equation:

�M ¼
Z Z

c:s:
(r� v)r(v: n) dAþ @

@t

Z Z Z
c:v:

(r� v)r dV (5-9)

The term on the left-hand side of equation (5-9) is the total moment of all forces acting on

the control volume. The terms on the right-hand side represent the net rate of efflux of

moment of momentum through the control surface and the rate of accumulation of

moment of momentum within the control volume, respectively.

This single-vector equation may be expressed as three scalar equations for the

orthogonal inertial coordinate directions x, y, and z as

�Mx ¼
Z Z

c:s:
(r� v)xr(v: n) dAþ @

@t

Z Z Z
c:v:

(r� v)xr dV (5-10a)

�My ¼
Z Z

c:s:
(r� v)yr(v: n) dAþ @

@t

Z Z Z
c:v:

(r� v)yr dV (5-10b)

and

�Mz ¼
Z Z

c:s:
(r� v)zr(v:n) dAþ @

@t

Z Z Z
c:v:

(r� v)zr dV (5-10c)

The directions associated with Mx and (r � v) are those considered in mechanics

in which the right-hand rule is used to determine the orientation of quantities having

rotational sense.

5.4 APPLICATIONS TO PUMPS AND TURBINES

The moment-of-momentum expression is particularly applicable to two types of devices,

generally classified as pumps and turbines. We shall, in this section, consider those having

rotary motion only. If energy is derived from a fluid acting on a rotating device, it is

designated a turbine, whereas a pump adds energy to a fluid. The rotating part of a turbine is

called a runner and that of a pump an impeller.

The following two examples illustrate how moment-of-momentum analysis is used to

generate expressions for evaluating turbine performance. Similar approacheswill be used in

Chapter 14 to evaluate operating characteristics of fans and pumps.
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EXAMPLE 4 Let us first direct our attention to a type of turbine known as the Pelton wheel. Such a device is

represented in Figure 5.12. In this turbine, a jet of fluid, usually water, is directed from a nozzle

striking a system of buckets on the periphery of the runner. The buckets are shaped so that thewater is

diverted in such a way as to exert a force on the runner which will, in turn, cause rotation. Using the

moment-of-momentum relation, we may determine the torque resulting from such a situation.

We must initially define our control volume. The dashed lines in Figure 5.13 illustrates the

control volume chosen. It encloses the entire runner and cuts the jet of water with velocity v0 as

shown. The control surface also cuts through the shaft on both sides of the runner.

The applicable scalar form of the general moment-of-momentum expression is equa-

tion (5-10c) written for the z direction. All rotation is in the xy plane, and—according to the

right-hand rule—the vector representation of a quantity having angular motion, or a tendency

to produce angular motion, has a sense normal to the xy plane, that is, the z direction. Recall

that a positive angular sense is that conforming to the direction in which the thumb on the right

hand will point when the fingers of the right hand are aligned with the direction of counter-

clockwise angular motion.

�Mz ¼
Z Z

c:s:
(r� v)zr(v: n) dAþ @

@t

Z Z Z
c:v:

r (r� v)z dV

Evaluating each term separately, we have, for the external moment

�Mz ¼ Mshaft

w

w × rv0

Bottom view of bucket

Figure 5.12 Pelton wheel.

Pat

v0

y

x

Figure 5.13 Control volume for

analysis of Pelton wheel.
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where Mshaft, the moment applied to the runner by the shaft, is the only such moment acting on

the control volume.

The surface integral Z Z
c:s:

(r� v)zr(v: n) dA

is the net rate of efflux of moment of momentum. The fluid leaving the control volume is illustrated

in Figure 5.14. The x-direction component of the fluid leaving the control volume is

frv� (v0 � rv) cos ugex

Here it is assumed that the z components of the velocity are equal and opposite. The leaving velocity

is the vector sum of the velocity of the turbine bucket, rv, and that of the exiting fluid relative to the

bucket and leaving at an angle u to the direction of motion of the bucket, (v0 � rv) cos u. These

velocity vectors are shown in the figure. The final expression for the surface integral is nowZ Z
c:s:

(r� v)zr(v: n) dA ¼ r½rv� (v0 � rv) cos u�rQ� rv0rQ

The last term, rv0rQ, is the moment of momentum of the incoming fluid stream of velocity v0 and
density r, with a volumetric flow rate Q.

As the problem under consideration is one in which the angular velocity, v, of the wheel is

constant, the term expressing the time derivative of moment of momentum of the control volume,

@/@t
RRR

c:v: (r� v)zr dV ¼ 0. Replacing each term in the complete expression by its equivalent, we

have

�Mz ¼ Mshaft ¼
Z Z

c:s:
(r� v)zr (v: n) dAþ @

@t

Z Z Z
c:v:

r(r� v)z dV

¼ r½rv� (v0 � rv) cos u�rQ� rv0rQ ¼ �r(v0 � rv)(1þ cos u)rQ

The torque applied to the shaft is equal in magnitude and opposite in sense toMshaft. Thus our final

result is

Torque ¼ �Mshaft ¼ r(v0 � rv)(1þ cos u)rQ

v0

v0 – ⎜w × r ⎜

y

x

Nozzle

q

w × r

Turbine bucket

Figure 5.14 Velocity

vectors for turbine bucket.
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EXAMPLE 5 The radial-flow turbine illustrated in

Figure5.15maybeanalyzedwith theaidof

the moment-of-momentum expression. In

this device, the fluid (usually water) enters

the guide vanes, which impart a tangential

velocity and hence angular momentum to

the fluid before it enters the revolving

runner which reduces the angular momen-

tum of the fluid while delivering torque to

the runner.

The control volume to be used is

illustrated below in Figure 5.16. The outer

boundary of the control volume is at radius

r1, and the inner boundary is at r2. The

width of the runner is h.

Wewill use equation (5-9) in order to

determine the torque. For steady flow this

equation becomes

�M ¼
Z Z

c:s:
(r� v)r(v:n) dA

Evaluating each term separately, we have,

for the external moment of the runner on

the fluid

�M ¼ Mfluidez ¼ �Tez

where T is the shaft torque. The surface

integral requires the evaluation of the vector product (r� v) at the outer boundary r1 and at the inner

boundary r2. If we express the velocity of the water in polar coordinates v ¼ vrer þ vueu, so that

(r� v) ¼ rer� (vrer þ vueu) ¼ rvuez. Thus the surface integral, assuming uniform velocity dis-

tribution, is given byZ Z
c:s:

(r� v)r(v: n) dA ¼ fr1vu1r(�vr1 ) 2pr1hþ r2vu2rvr22pr2hgez

The general result is

�Tez ¼ �rvr1vu12pr
2
1hþ rvr2vu22pr

2
2h

� 
ez

The law of conservation of mass may be used

rvr12pr1h ¼ _m ¼ rvr22pr2h

so that the torque is given by

T ¼ _m(r1vu1 � r2vu2 )

The velocity at r1 is seen from Figures 5.15 and 5.16 to be determined by the flow rate

and the guide vane angle a. The velocity at r2, however, requires knowledge of flow conditions

on the runner.

The velocity at r2 may be determined by the following analysis. In Figure 5.17, the flow

conditions at the outlet of the runner are sketched. The velocity of the water v2 is the vector
sum of the velocity with respect to the runner v 0

2 and the runner velocity r 2v.

Figure 5.15 Radial-flow turbine.

w

a

v1

y

r2

r1

x

h

Figure 5.16 Radial-flow turbine-runner control

volume.

56 Chapter 5 Newton’s Second Law of Motion: Control-Volume Approach



The velocity vu2, the tangential velocity of the

water leaving the runner, is given by

vu2 ¼ r2v� v00 sinb

where b is the blade angle as shown. The fluid is

assumed to flow in the same direction as the blade. The

radial component of the flow may be determined from

conservation of mass

vr2 ¼ v02 cosb ¼ _m

2prr2h

Thus,

T ¼ _m r1vu1 � r2 r2v� _m tan b

2prr2h

� �� �
In practice, the guide vanes are adjustable to

make the relative velocity at the runner entrance

tangent to the blades.

5.5 CLOSURE

In this chapter, the basic relation involved has been Newton’s second law of motion. This

law, as written for a system, was recast so that it could apply to a control volume. The result

of a consideration of a general control volume led to the integral equations for linear

momentum, equation (5-4), and moment of momentum, equation (5-9). Equation (5-4)

is often referred to as the momentum theorem of fluid mechanics. This equation is one of

the most powerful and often-used expressions in this field.

The student is again urged to start always with the complete integral expression when

working a problem. A term-by-term analysis from this basis will allow a correct solution,

whereas in a hasty consideration certain terms might be evaluated incorrectly or neglected

completely. As a final remark, it should be noted that the momentum theorem expression, as

developed, applies to an inertial control volume only.

w

v2′

v2

r2w

b

Figure 5.17 Velocity at runner exit

(only one blade is shown).

PROBLEMS

5.1 A two-dimensional object is placed in a 4-ft-wide water

tunnel as shown. The upstream velocity, v1, is uniform across the

cross section. For the downstream velocity profile as shown, find

the value of v2.

v1 = 20 fps v2

2 ft 4 ft

5.2 If, in the system for Problem 5.1, the total drag on the

object is measured to be 800 N/m of length normal to

the direction of flow, and frictional forces at the walls are

neglected, find the pressure difference between inlet and outlet

sections.

5.3 Rework Problem 5.1 if the exit velocity profile is given by

v ¼ v2 1� cos
py

4

� �
when y is measure vertically from the center line of the water

tunnel.

5.4 A stationary jet engine is shown. Air with a density

of 0.0805 lbm/ft
3 enters as shown. The inlet and outlet
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cross-sectional areas are both 10.8 ft2. The mass of fuel

consumed is 2% of the mass of air entering the test section.

For these conditions, calculate the thurst developed by the

engine tested.

v1

300 fps

v2

900 fps

Fuel

5.5

(a) Determine themagnitude of the x and y components of the

force exerted on the fixed blade shown by a 3-ft3/s jet of

water flowing at 25 fps.

(b) If the blade is moving to the right at 15 fps, find the

magnitude and velocity of the water jet leaving the blade.

25 fps

30°

5.6 The pump in the boat shown pumps 6 ft3/s of water through

a submergedwater passage, which has an area of 0.25 ft2 at the bow

of the boat and 0.15 ft2 at the stern.Determine the tension in the res-

training rope, assuming that the inlet and exit pressures are equal.

30°

Pump

5.7 Oil (sp. gr. ¼ 0.8) flows smoothly through the circular

reducing section shown at 3 ft3/s. If the entering and leaving

velocity profiles are uniform, estimate the force which must be

applied to the reducer to hold it in place.

1

2

P = 50 psig
D = 12 in.

P = 5 psig
D = 2.5 in.

5.8 At the end of a water pipe of 3-in. diameter is a nozzle

that discharges a jet having a diameter of 1½ in. into the open

atmosphere. The pressure in the pipe is 60 psig (pounds per

square inch gage), and the rate of discharge is 400 gal/min.What

are themagnitude and direction of the force necessary to hold the

nozzle to the pipe?

5.9 A water jet pump has an area A j ¼ 0:06 ft2 and a jet

velocity vj ¼ 90 fps, which entrains a secondary stream of water

having a velocity vs ¼ 10 fps in a constant-area pipe of total

area A ¼ 0.6 ft2. At section 2, the water is thoroughly mixed.

Assuming one-dimensional flow and neglecting wall shear

(a) find the average velocity of mixed flow at section 2;

(b) find the pressure rise ðP2 � P1Þ, assuming the pressure of

the jet and secondary stream to be the same at section 1.

1 2
Aj

vj

vs

v2

5.10 If the plate shown is inclined at an angle as shown, what

are the forces Fx and Fy necessary to maintain its position? The

flow is frictionless.

v = 100 fps 3

4

Fy

Fx

m = 2 slugs/s•

5.11 A steady, incompressible, frictionless, two-dimensional

jet of fluid with breadth h, velocity v, and unit width impringes

on a flat plate held at an angle a to its axis. Gravitational forces

are to be neglected.

(a) Determine the total forceon the plate, and the breadths

a, b, of the two branches.

(b) Determine the distance 1 to the center of pressure (c.p.)

along the plate from the point 0. (The center of pressure is

the point at which the plate can be balanced without

requiring an additional moment.)

a b

h

V

l

a
0
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5.12 A plate moves perpendicularly toward a discharging jet

at the rate of 5 fps. The jet discharges water at the rate of 3 ft3/s

and a speed of 30 fps. Find the force of the fluid on the plate and

compare it with what it would be if the plate were stationary.

Assume frictionless flow.

5.13 The shockwave illustrated below is moving to the right at

vw fps. The properties in front and in back of the shock are not a

function of time. By using the illustrated control volume, show

that the pressure difference across the shock is

P2 � P1 ¼ r1vwv2

x y

r2

P2

v2

r1

P1

v1 = 0

vw

5.14 If the shock-wave velocity in Problem 5.13 is approxi-

mated by the speed of sound, deterine the pressure change

causing a velocity change of 10 fps in

(a) air at standard conditions;

(b) water.

5.15 Consider the differential control volume shown below.By

applying the conservation of mass and the momentum theorem,

show that

dPþ rv dv þ g dy ¼ 0

∆s

∆y
1

2

P1, r1

P2, r2

v1, A1

v2, A2

5.16 Water flows steadily through the horizontal 308 pipe

bend shown below. At station 1, the diameter is 0.3 m, the

velocity is 12 m/s, and the pressure is 128 kPa gage. At station

2, the diameter is 0.38 m and the pressure is 145 kPa gage.

Determine the forces Fx and Fz necessary to hold the pipe bend

stationary.

1

2

x

z

30°

5.17 The rocket nozzle shown below consists of three

welded sections. Determine the axial stress at junctions 1

and 2 when the rocket is operating at sea level. The mass flow

rate is 770 lbm/s.

1 2 3
Welds

v
D
P

900 fps
18 in.

990 psia

3400 fps
12 in.

530 psia

6700 fps
24 in.

26 psia

Thickness = 3/8 in.

5.18 The pressure on the control volume illustrated below is

constant. The x components of velocity are as illustrated. Deter-

mine the force exerted on the cylinder by the fluid. Assume

incompressible flow.

d

6d

vx = v0

vx = v0
v0 v0

5.19 Water flows in a pipe at 3 m/s. A valve at the end of the

pipe is suddenly closed. Determine the pressure rise in the

pipe.

5.20 A dam discharge into a channel of constant width as

shown. It is observed that a region of still water backs up behind

the jet to a height H. The velocity and height of the flow in the

channel are given as v and h, respectively, and the density of
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the water is r. Using the momentum theroem and the control

surface indicted, determine H. Neglect the horizontal momen-

tum of the flow that is entering the control volume from above

and assume friction to be negligible. The aire pressure in the

cavity below the crest of falling water is to be taken as atmo-

spheric.

H

h v

5.21 A liquid of density r flows through a sluice gate as shown.

The upstream and downstream flows are uniform and parallel, so

that the pressure variations at stations 1 and 2may be considered

hydrostatic.

(a) Determine the velocity at station 2.

(b) Determine the force per unit width, R, necessary to hold

the sluice gate in place.

1 2

h

R

V2

V1

L

P = Patm

P = Patm

5.22 As can often be seen in a kitchen sink when the faucet is

running, a high-speed channel flow (v1, h1) may ‘‘jump’’ to a

low-speed, low-energy condition (v2, h2). The pressure at sec-

tions 1 and 2 is approximately hydrostatic, and wall friction is

negligible. Use the continuity andmomentum relations to find h2
and v2 in terms of (h1, v1).

V1

V2

h1

h2

5.23 For the pipe-flow-reducing section D1 ¼ 8 cm, D2 ¼
5 cm, and p2 ¼ 1 atm. If v1 ¼ 5m/s and themanometer reading

is h ¼ 58 cm, estimate the total force resisted by the flange

bolts.

1
2

Water
V1

h

Hg

5.24 An open tank car as shown travels to the right at a

uniform velocity of 4.5 m/s. At the instant shown the car passes

under a jet of water issuing from a stationary 0.1-m-diameter

pipe with a velocity of 20 m/s. What force is exerted on the

tank by the water jet?

45°

4.5 m/s

5.25 An open tank L ft long as shown below travels to the right

at a velocity vc fps. A jet of areaAj exhausts fluid of density r at a

velocity vj fps relative to the car. The tank car, at the same time,

collects fluids from an overhead sprinkler which directs fluid

downward with velocity vs. Assuming that the sprinkler flow is

uniform over the car area, Ac, determine the net force of the fluid

on the tank car.

Aj

Lvj

vc

vs
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5.26 A liquid column of height h is confined in a vertical tube

of cross-sectional area A by a stopper. At t ¼ 0, the stopper is

suddenly removed, exposing the bottom of the liquid to atmo-

spheric pressure. Using a control-volume analysis of mass and

vertical momentum, derive the differential equation for the

downward motion v(t) of the liquid. Assume one-dimensional,

incompressible, frictionless flow.

V(t)
h(t)

5.27 Sea water, r ¼ 64 lbm/ft
3, flows through the impeller of

a centrifugal pump at the rate of 800 gal/min. Determine the

torque exerted on the impeller by the fluid and the power

required to drive the pump. Assume that the absolute velocity

of the water entering the impeller is radial. The dimensions are

as follows:

v ¼ 1180 rpm t2 ¼ 0:6 in:
r1 ¼ 2 in: u2 ¼ 135�
r2 ¼ 8 in: t1 ¼ 0:8 in:

t1
t2 q2

w

q1
r2

r1

5.28 In Problem 5.27 determine

(a) the angle u1 such that the entering flow is parallel to the

vanes;

(b) the axial load on the shaft if the shaft diameter is 1 in. and

the pressure at the pump inlet is atmospheric.

5.29 A water sprinkler consists of two 1/2-in. diameter jets

at the ends of a rotating hollow rod as shown. If the water

leaves at 20 fps, what torque would be necessary to hold the

sprinkler in place?

12 in.

30°

5.30 A lawn sprinkler consists of two sections of curved

pipe rotating about a vertical axis as shown. The sprinkler

rotates with an angular velocity v, and the effective discharge

area is A, thus the water is discharged at a rate Q ¼ 2vyrA,
where vr is the velocity of the water relative to the rotating

pipe. A constant friction torque Mf resists the motion of the

sprinkler. Find an expression for the speed of the sprinkler in

terms of the significant variables.

R

vr

w

a

5.31 The pipe shown below has a slit of thickness 1/4 in. so

shaped that a sheet of water of uniform thickness 1/4 in. issues

out radially from the pipe. The velocity is constant along the pipe

as shown and a flow rate of 8 ft3/s enters at the top. Find the

moment on the tube about the axis BB from the flow of water

inside the pipe system.

3 ft 6 ft

B

B

A = 4 in.2

5.32 Water flows at 30 gal/min through the 0.75-in.-diameter

double-pipe bend. The pressures are p1 ¼ 30 lbf/in.2 and
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p2 ¼ 24 lbf/in.2. Compute the torque T at point B necessary to

keep the pipe from rotating.

B

3 ft
50°1

2

5.33 The illustration below shows a vane with a turning

angle u which moves with a steady speed vc. The vane receives
a jet that leaves a fixed nozzle with speed v.

(a) Assume that the vane is mounted on rails as shown in the

sketch. Show that the power transmitted to the cart is

maximum when vc/v ¼ 1/3

(b) Assuming that the are a large number of such vanes attached

to a rotating wheel with peripheral speed, vc, show that the

power transmitted is maximum when vc/v ¼ 1/2.

q
v

vc
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Chapter 6

Conservation of Energy:

Control-Volume Approach

The third fundamental law to be applied to fluid-flow analyses is the first law of

thermodynamics. An integral expression for the conservation of energy applied to a

control volume will be developed from the first law of thermodynamics, and examples

of the application of the integral expression will be shown.

6.1 INTEGRAL RELATION FOR THE CONSERVATION OF ENERGY

The first law of thermodynamics may be stated as follows:

If a system is carried through a cycle, the total heat added to the system from its

surroundings is proportional to the work done by the system on its surroundings.

Note that this law is written for a specific group of particles—those comprising the

defined system. The procedure will then be similar to that used in Chapter 5, that is,

recasting this statement into a form applicable to a control volume which contains

different fluid particles at different times. The statement of the first law of thermo-

dynamics involves only scalar quantities however, and thus, unlike the momentum

equations considered in Chapter 5, the equations resulting from the first law of thermo-

dynamics will be scalar in form.

The statement of the first law given above may be written in equation form as

%dQ ¼ 1

J
%dW (6-1)

where the symbol % refers to a ‘‘cyclic integral’’ or the integral of the quantity evalu-

ated over a cycle. The symbols dQ and dW represent differential heat transfer and work

done, respectively. The differential operator, d, is used as both heat transfer and work

are path functions and the evaluation of integrals of this type requires a knowledge of

the path. The more familiar differential operator, d, is used with a ‘‘point’’ function.

Thermodynamic properties are, by definition, point functions, and the integrals of

such functions may be evaluated without a knowledge of the path by which the change in

the property occurs between the initial and final states.1 The quantity J is the so-called

‘‘mechanical equivalent of heat,’’ numerically equal to 778.17 ft lb/Btu in engineering

units. In the SI system, J ¼ 1 N m/J. This factor will not be written henceforth, and the

student is reminded that all equations must be dimensionally homogeneous.

1 For a more complete discussion of properties, point functions and path fuctions, the reader is referred to

G. N. Hatsopoulos and J. H. Keenan, Principles of General Thermodynamics. Wiley, New York, 1965, p. 14.
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We now consider a general thermo-

dynamic cycle, as shown in Figure 6.1.

The cycle a occurs between points 1 and 2

by the paths indicated. Utilizing equation

(6-1), we may write, for cycle aZ 2

1a

dQþ
Z 1

2a

dQ

¼
Z 2

1a

dW þ
Z 1

2a

dW

(6-2a)

A new cycle between points 1 and 2 is

postulated as follows: the path between

points 1 and 2 is identical to that

considered previously; however, the cycle

is completed by path b between points 2 and 1, which is any path other than a between

these points. Again equation (6-1) allows us to writeZ 2

1a

dQþ
Z 1

2b

dQ ¼
Z 2

1a

dW þ
Z 1

2b

dW (6-2b)

Subtracting equation (6-2b) from equation (6-2a) givesZ 1

2a

dQ�
Z 1

2b

dQ ¼
Z 1

2a

dW �
Z 1

2b

dW

which may be written Z 1

2a

ðdQ� dWÞ ¼
Z 1

2b

ðdQ� dWÞ (6-3)

As each side of equation (6-3) represents the integrand evaluated between the

same two points but along different paths, it follows that the quantity, dQ – dW, is

equal to a point function or a property. This property is designated dE, the total energy

of the system. An alternate expression for the first law of thermodynamics may be

written

dQ� dW ¼ dE (6-4)

The signs of dQ and dW were specified in the original statement of the first law; dQ

is positive when heat is added to the system, dW is positive when work is done by the

system.

For a system undergoing a process occurring in time interval dt, equation (6-4) may be

written as

dQ

dt
� dW

dt
¼ dE

dt
(6-5)

Consider now, as inChapter 5, a general control volumefixed in inertial space located in

a fluid-flow field, as shown in Figure 6.2. The system under consideration, designated by

dashed lines, occupies the control volume at time t, and its position is also shown after a

period of time Dt has elapsed.

r

P

a

a

b

1

2

Figure 6.1 Reversible and irreversible

thermodynamic cycles.
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In this figure, region I is occupied by the system at time t, region II is occupied

by the system at t þ Dt, and region III is common to the system both at t and at

t þ Dt.
At time t þ Dt the total energy of the system may be expressed as

EjtþDt ¼ EIIjtþDt þ EIIIjtþDt

and at time t

Ejt ¼ EIjt þ EIIIjt
Subtracting the second expression from the first and dividing by the elapsed time interval,

Dt, we have

EjtþDt � Ejt
Dt

¼ EIIIjtþDt þ EIIjtþDt � EIIIjt � EIjt
Dt

Rearranging and taking the limit as Dt ! 0 gives

lim
Dt! 0

EjtþDt � Ejt
Dt

¼ lim
Dt! 0

EIIIjtþDt � EIIIjt
Dt

þ lim
Dt! 0

EIIjtþDt � EIjt
Dt

(6-6)

Evaluating the limit of the left-hand side, we have

lim
Dt! 0

EjtþDt � Ejt
Dt

¼ dE

dt

which corresponds to the right-hand side of the first-law expression, equation (6-5).

On the right-hand side of equation (6-6) the first limit becomes

lim
Dt! 0

EIIIjtþDt � EIIIjt
Dt

¼ dEIII

dt

which is the rate of change of the total energy of the system, as the volume occupied by the

system as Dt ! 0 is the control volume under consideration.

The second limit on the right of equation (6-6)

lim
Dt! 0

EIIjtþDt � EIjt
Dt

represents the net rate of energy leaving across the control surface in the time inter-

val Dt.

I
III II

Boundary of system
at time t

Stationary
control
volume

Streamlines
at time t

Boundary of system
at time t + ∆t

Figure 6.2 Relation

between a system and a

control volume in a fluid-

flow field.
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Having given physical meaning to each of the terms in equation (6-6), we may now

recast the first law of thermodynamics into a form applicable to a control volume expressed

by the following word equation:

rate of addition

of heat to control

volume from

its surroundings

8>><
>>:

9>>=
>>;�

rate of work done

by control volume

on its surroundings

8<
:

9=
; ¼

rate of energy

out of control

volume due to

fluid flow

8>><
>>:

9>>=
>>;

�
rate of energy into

control volume due

to fluid flow

8<
:

9=
;þ

rate of accumulation

of energy within

control volume

8<
:

9=
;

(6-7)

Equation (6-7) will now be applied to the general control volume shown in Figure 6.3.

The rates of heat addition to and work done by the control volume will be expressed

as dQ/dt and dW/dt.

Consider now the small area dA on the control surface. The rate of energy leaving

the control volume through dA may be expressed as

rate of energy efflux ¼ e(rv)(dA cos u)

The product (rv)(dA cos u) is the rate of mass efflux from the control volume

through dA, as discussed in the previous chapters. The quantity e is the specific energy

or the energy per unit mass. The specific energy includes the potential energy, gy, due

to the position of the fluid continuum in the gravitational field; the kinetic energy of the

fluid, v2/2, due to its velocity; and the internal energy, u, of the fluid due to its thermal

state.

The quantity dA cos u represents the area, dA, projected normal to the velocity vector, v.

Theta (u) is the angle between v and the outwardly directed normal vector, n. We may now

write

e(rv)(dA cos u) ¼ er dA½jvj jnj� cos u ¼ er(v:n)dA
which we observe to be similar in form to the expressions previously obtained for mass and

momentum. The integral of this quantity over the control surfaceZ Z
c:s:

er(v: n)dA

represents the net efflux of energy from the control volume. The sign of the scalar product,

v: n, accounts both for efflux and for influx of mass across the control surface as considered

q v

n

dA

Streamlines
at time t

Figure 6.3 Fluid flow through a

control volume.
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previously. Thus, the first two terms on the right-hand side of equation (6-7) may be

evaluated as

rate of energy

out of control

volume

8<
:

9=
;�

rate of energy

into control

volume

8<
:

9=
; ¼

Z Z
c:s:

er(v: n)dA

The rate of accumulation of energy within the control volume may be expressed as

@

@t

Z Z Z
c:v:

er dV

Equation (6-7) may now be written as

dQ

dt
� dW

dt
¼
Z Z

c:s:
er(v: n) dAþ @

@t

Z Z Z
c:v:

er dV (6-8)

A final form for the first-law expression may be obtained after further consideration of

the work-rate or power term, dW/dt.

There are three types of work included in the work-rate term. The first is the shaft

work, Ws, which is that done by the control volume on its surroundings that could cause

a shaft to rotate or accomplish the raising of a weight through a distance. A second kind

of work done is flowwork,Ws, which is that done on the surroundings to overcome normal

stresses on the control surface where there is fluid flow. The third type of work is

designated shear work, Wt , which is performed on the surroundings to overcome shear

stresses at the control surface.

Examining our control volume for flow and shear work rates, we have, as shown in

Figure 6.4, another effect on the elemental portion of control surface, dA. Vector S is the

force intensity (stress) having components sii and tij in the directions normal and tangential

to the surface, respectively. In terms of S, the force on dA is S dA, and the rate of work done

by the fluid flowing through dA is S dA:v.

The net rate of work done by the control volume on its surroundings due to the presence

of S is

�
Z Z

c:s:
v: S dA

where the negative sign arises from the fact that the force per unit area on the surroundings

is –S.

dA

q
v

S

n Figure 6.4 Flow and shear work for

a general control volume.

6.1 Integral Relation for the Conservation of Energy 67



The first-law expression, equation (6-8), may now be written as

dQ

dt
� dWs

dt
þ
Z Z

c:s:
v:S dA ¼

Z Z
c:s:

er(v:n) dAþ @

@t

Z Z Z
c:v:

er dV (6-9)

where dWs /dt is the shaft work rate.

Writing the normal stress components of S as siin, we obtain, for the net rate of work

done in overcoming normal stressZ Z
c:s:

v:S dA
� �

normal

¼
Z Z

c:s:
v:siin dA ¼

Z Z
c:s:

siiðv:nÞ dA

The remaining part of the work to be evaluated is the part necessary to overcome

shearing stresses. This portion of the required work rate, dWt /dt, is transformed into

a form that is unavailable to do mechanical work. This term, representing a loss of

mechanical energy, is included in the derivative form given above and its analysis is

included in Example 3, to follow. The work rate now becomes

dW

dt
¼ dWs

dt
þ dWs

dt
þ dWt

dt
¼ dWs

dt
�
Z Z

c:s:
sii(v:n) dAþ dWt

dt

Substituting into equation (6-9), we have

dQ

dt
� dWs

dt
þ
Z Z

c:s:
siiðv:nÞdAþ dWt

dt
¼
Z Z

c:s:
erðv:nÞdAþ @

@t

Z Z Z
c:v:

er dV

The term involving normal stress must now be presented in a more usable form. A

complete expression for sii is stated in Chapter 9. For the present, we may say simply that

the normal stress term is the sum of pressure effects and viscous effects. Just as with shear

work, the work done to overcome the viscous portion of the normal stress is unavailable

to do mechanical work.We shall thus combine thework associated with the viscous portion

of the normal stress with the shear work to give a single term, dWm/dt, the work rate

accomplished in overcoming viscous effects at the control surface. The subscript,m, is used

to make this distinction.

The remaining part of the normal stress term, that associated with pressure, may be

written in slightly different form if we recall that the bulk stress, sii, is the negative of the

thermodynamic pressure, P. The shear and flow work terms may now be written as

follows: Z Z
c:s:

sii(v: n)dA� dWt

dt
¼ �

Z Z
c:s:

P(v:n) dA� dWm

dt

Combining this equation with the one written previously and rearranging slightly will yield

the final form of the first-law expression:

dQ

dt
� dWs

dt
¼
Z Z

c:s:
eþ P

r

� �
r(v: n) dAþ @

@t

Z Z Z
c:v:

er dV þ dWm

dt
(6-10)

Equations (6-10), (4-1), and (5-4) constitute the basic relations for the analysis of

fluid flow via the control-volume approach. A thorough understanding of these three

equations and a mastery of their application places at the disposal of the student very

powerful means of analyzing many commonly encountered problems in fluid flow.

The use of the overall energy balance will be illustrated in the following example

problems.

68 Chapter 6 Conservation of Energy: Control-Volume Approach



6.2 APPLICATIONS OF THE INTEGRAL EXPRESSION

EXAMPLE 1 As a first example, let us choose a control volume as shown in Figure 6.5 under the conditions of

steady fluid flow and no frictional losses.

For the specified conditions the overall energy expression, equation (6-10), becomes

dQ

dt
� dWs

dt
¼
Z Z

c:s:
r eþ P

r

� �
(v: n)dAþ @

@t

Z Z Z
c:v:

er dV

0�steady flow

þ dWm

dt

Considering now the surface integral, we recognize the product r(v:n) dA to be the mass flow

rate with the sign of this product indicating whether mass flow is into or out of the control volume,

dependent upon the sense of v: n. The factor by which the mass-flow rate is multiplied, e þ P/r,

represents the types of energy that may enter or leave the control volume per mass of fluid. The

specific total energy, e, may be expanded to include the kinetic, potential, and internal energy

contributions, so that

eþ P

r
¼ gyþ v2

2
þ uþ P

r

As mass enters the control volume only at section (1) and leaves at section (2), the surface

integral becomes Z Z
c:s:

r eþ P

r

� �
(v: n) dA ¼ v22

2
þgy2 þ u2 þ P2

r2

� �
(r2v2A2)

� v21
2
þgy1 þ u1 þ P1

r1

� �
(r1v1A1)

The energy expression for this example now becomes

dQ

dt
� dWs

dt
¼ v22

2
þ gy2 þ u2 þ P2

r2

� �
(r2v2A2)� v21

2
þgy1 þ u1 þ P1

r1

� �
(r1v1A1)

In Chapter 4, the mass balance for this same situation was found to be

_m ¼ r1v1A1 ¼ r1v2A2

If each term in the above expression is now divided by the mass flow rate, we have

q� _Ws

_m
¼ v22

2
þ gy2 þ u2 þ P2

r2

� �
� v21

2
þ gy1 þ u1 þ P1

r1

� �

1

2
υ1, A1, r1

dWs

dt

υ2, A2, r2

dQ
dt

Figure 6.5 Control volume with

one-dimensional flow across

boundaries.

! !

0
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or, in more familiar form

v21
2
þ gy1 þ h1 þ q

_m
¼ v22

2
þ gy2 þ h2 þ

_Ws

_m

where the sum of the internal energy and flow energy, uþ P/r, has been replaced by the enthalpy, h,

which is equal to the sum of these quantities by definition h � u þ P/r.

EXAMPLE 2 As a second example, consider the situation shown in Figure 6.6. If water flows under steady

conditions in which the pump delivers 3 horsepower to the fluid, find the mass flow rate if frictional

losses may be neglected.

Defining the control volume as shown by the dashed lines, we may evaluate equation (6-10)

term by term as follows:

dQ

dt
¼ 0

� dWs

dt
¼ (3 hp)(2545Btu / hp�h)(778 ft�lbf / Btu)(h /3600 s)

¼ 1650 ft lbf /s

Z Z
c:s:

eþ P

r

� �
r(v:n)dA ¼

�Z Z
A2

eþ P

r

� �
r(v:n)dAþ

Z Z
A1

eþ P

r

� �
r(v:n) dA

¼ v22
2
þ gy2 þ u2 þ P2

r2

� �
(r2v2A2)

� v21
2
þ gy1 þ u1 þ P1

r1

� �
(r1v1A1)

¼
�
v22 � v21

2
þ g( y2 � y1)þ (u2 � u1)þ P2

r2
� P1

r1

� ��
(rvA)

Here it may be noted that the pressure measured at station (1) is the static pressure while the

pressure measured at station (2) is measured using a pressure port that is oriented normal to

the oncoming flow, that is, where the velocity has been reduced to zero. Such a pressure is designated

the stagnation pressure, which is greater than the static pressure by an amount equivalent to the

change in kinetic energy of the flow. The stagnation pressure is, thus, expressed as

Pstagnation ¼ P0 ¼ Pstatic þ 1

2
rv2

12 in. Pump

Shaft work

6 in.1

2

6 in.Hg

Figure 6.6 A control

volume for pump analysis.
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for incompressible flow, hence the energy flux term may be rewritten asZ Z
c:s:

eþ P

r

� �
r(v:n) dA ¼ P02 � P1

r
� v21

2

� �
(rvA)

¼
(
6(1� 1/13:6) in:Hg(14:7 lb/in:2)(144 in:2/ft2)

(62:4 lbm/ft
3)(29:92 in:Hg)

� v21
64:4(lbm ft /s2 lbf)

)
f(62:4 lbm/ft3)(v1)(p/4 ft2)g

¼ 6:30 � v21
64:4

� �
(49v1) ft lbf /s

@

@t

Z Z Z
c:v:

er dV ¼ 0

dWm

dt
¼ 0

In the evaluation of the surface integral the choice of the control volume coincided with the

location of the pressure taps at sections (1) and (2). The pressure sensed at section (1) is the static

pressure, as the manometer opening is parallel to the fluid-flow direction. At section (2), however,

the manometer opening is normal to the flowing fluid stream. The pressure measured by such an

arrangement includes both the static fluid pressure and the pressure resulting as a fluid flowingwith

velocity v2 is brought to rest. The sum of these two quantities is known as the impact or stagnation

pressure.

The potential energy change is zero between sections (1) and (2) and as we consider the flow to

be isothermal, the variation in internal energy is also zero. Hence, the surface integral reduces to the

simple form indicated.

The flow rate of water necessary for the stated conditions to exist is achieved by solving the

resulting cubic equation. The solution is

v1 ¼ 16:59 fps (5:057m/s)

_m ¼ rAv ¼ 813 lbm/s (370 kg/s)

EXAMPLE 3 A shaft is rotating at constant angular velocity v in the bearing shown in Figure 6.7. The shaft

diameter is d and the shear stress acting on the shaft is t. Find the rate at which energy must be

removed from the bearing in order that the lubricating

oil between the rotating shaft and the stationary bearing

surface remains at constant temperature.

The shaft is assumed to be lightly loaded and concentric

with the journal.The control volume selected consists of

a unit length of the fluid surrounding the shaft as shown

in Figure 6.7. The first law of thermodynamics for the

control volume is

dQ

dt
� dWs

dt
¼
Z Z

c:s:
r eþ P

r

� �
(v : n)dA

þ @

@t

Z Z Z
c:v:

re dV þ dWm

dt

D

d

w
dQ
dt

Figure 6.7 Bearing and control

volume for bearing analysis.
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From the figure we may observe the following:

1. No fluid crosses the control surface.

2. No shaft work crosses the control surface.

3. The flow is steady.

Thus dQ/dt = dWm/dt = dWt/dt. The viscous work rate must be determined. In this case all of the

viscous work is done to overcome shearing stresses; thus the viscous work is
RR

c:s: t(v
: et) dA. At the

outer boundary, v ¼ 0 and at the inner boundary
RR

c:s: t(v
: et)dA ¼ �t(vd/2)A, where et indicates

the sense of the shear stress, t, on the surroundings. The resulting sign is consistent with the concept

of work being positive when done by a system on its surroundings. Thus,

dQ

dt
¼ �t

v d2p

2

which is the heat transfer rate required to maintain the oil at a constant temperature.

If energy is not removed from the system then dQ/dt ¼ 0, and

@

@t

Z Z Z
c:v:

er dV ¼ � dWm

dt

As only the internal energy of the oil will increase with respect to time

@

@t

Z Z Z
c:v:

er dV ¼ rp
D2 � d2

4

� �
dm

dt
¼ � dWm

dt
¼ v

d2p

2
t

or, with constant specific heat c

c
dT

dt
¼ 2tv d2

r(D2 � d2)

where D is the outer bearing diameter.

In this example the use of the viscous-work term has been illustrated. Note that

1. The viscous-work term involves only quantities on the surface of the control volume.

2. When the velocity on the surface of the control volume is zero, the viscous-work term is zero.

6.3 THE BERNOULLI EQUATION

Under certain flow conditions, the expression of the first law of thermodynamics applied

to a control volume reduces to an extremely useful relation known as the Bernoulli

equation.

If equation (6-10) is applied to a control volume as shown in Figure 6.8, in which flow

is steady, incompressible, and inviscid, and in which no heat transfer or change in internal

energy occurs, a term-by-term evaluation of equation (6-10) gives the following:

dQ

dt
¼ 0

dWs

dt
¼ 0
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Z Z
c:s:

r eþ P

r

� �
(v: n) dA ¼

Z Z
A1

r eþ P

r

� �
(v: n) dA

þ
Z Z

A2

r eþ P

r

� �
(v: n) dA

¼ gy1 þ v21
2
þP1

r1

� �
(� r1v1A1)

þ gy2 þ v22
2
þP2

r2

� �
(r2v2A2)

@

@t

Z Z Z
c:v:

er dV ¼ 0

The first-law expression now becomes

0 ¼ gy2 þ v22
2
þ P2

r

� �
(rv2A2)� gy1 þ v21

2
þ P1

r

� �
(rv1A1)

As flow is steady, the continuity equation gives

r1v1A1 ¼ r2v2A2

which may be divided through to give

gy1 þ v21
2
þ P1

r
¼ gy2 þ v22

2
þ P2

r
(6-11a)

Dividing through by g, we have

y1 þ v21
2g

þ P1

rg
¼ y2 þ v22

2g
þ P2

rg
(6-11b)

Either of the above expressions is designated the Bernoulli equation.

Note that each term in equation (6-11b) has the unit of length. The quantities are often

designated ‘‘heads’’ due to elevation, velocity, and pressure, respectively. These terms, both

individually and collectively, indicate the quantities which may be directly converted to

produce mechanical energy.

Equation (6-11)may be interpreted physically tomean that the total mechanical energy

is conserved for a control volume satisfying the conditions uponwhich this relation is based,

that is, steady, incompressible, inviscid, isothermal flow,with no heat transfer or work done.

These conditions may seem overly restrictive, but they are met, or approached, in many

physical systems. One such situation of practical value is for flow into and out of a stream

2

1

Streamlines

A1

A2

Control volume

Figure 6.8 Control volume for steady, incompressible, inviscid, isothermal flow.
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tube. As stream tubes may vary in size, the Bernoulli equation can actually describe the

variation in elevation, velocity, and pressure head from point-to-point in a fluid-flow field.

A classic example of the application of the Bernoulli equation is depicted in Figure 6.9,

in which it is desired to find the velocity of the fluid exiting the tank as shown.

The control volume is defined as shown by dashed lines in the figure. The upper

boundary of the control volume is just below the fluid surface, and thus can be considered

to be at the same height as the fluid. There is fluid flow across this surface, but the surface

area is large enough that the velocity of this flowing fluid may be considered negligible.

Under these conditions, the proper form of the first law of thermodynamics is

equation (6-11), the Bernoulli equation. Applying equation (6-11), we have

y1 þ Patm

rg
¼ v22

2g
þ Patm

rg

from which the exiting velocity may be expressed in the familiar form

v2 ¼
ffiffiffiffiffiffiffi
2gy

p
As a final illustration of the use of the control-volume relations, an example using all

three expressions is presented below.

EXAMPLE 4 In the sudden enlargement shown below in Figure 6.10, the pressure acting at section (1) is

considered uniformwith valueP1. Find the change in internal energy between stations (1) and (2) for

steady, incompressible flow. Neglect shear stress at the walls and express u2 � u1 in terms of v1, A1,

and A2. The control volume selected is indicated by the dotted line.

Conservation of Mass Z Z
c:s:

r(v: n)dAþ @

@t

Z Z Z
c:v:

r dV ¼ 0

2

1Constant level
maintained in tank

y1

u2

Figure 6.9 Control

volume for Bernoulli

equation analysis.

1 2

u1, u1
A1, r1

A2

Pd = P1

Figure 6.10 Flow through a

sudden enlargement.
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If we select station (2), a considerable distance downstream from the sudden enlargement, the

continuity expression, for steady, incompressible flow, becomes

r1v1A1 ¼ r2v2A2

or

v2 ¼ v1
A1

A2
(6-12)

Momentum

�F ¼
Z Z

c:s:
rv(v: n)dAþ @

@t

Z Z Z
c:v:

rv dV

and thus

P1A2 � P2A2 ¼ rv22A2 � rv21A1

or

P1 � P2

r
¼ v22 � v21

A1

A2

� �
(6-13)

Energy

dQ

@t
� dWs

dt
¼
Z Z

c:s:
r eþ P

r

� �
(v: n) dAþ @

@t

Z Z Z
c:v:

re dV þ dWm

dt

Thus,

e1 þ P1

r

� �
(rv1A1) ¼ e2 þ P2

r

� �
(rv2A2)

or, since rv1A1 ¼ rv2A2,

e1 þ P1

r
¼ e2 þ P2

r

The specific energy is

e ¼ v2

2
þ gyþ u

Thus our energy expression becomes

v21
2
þ gy1 þ u1 þ P1

r
¼ v22

2
þ gy2 þ u2 þ P2

r
(6-14)

The three control-volumeexpressionsmay nowbe combined to evaluate u2� u1. Fromequation

(6-14), we have

u2 � u1 ¼ P1 � P2

r
þ v21 � v22

2
þ g( y1 � y2) (6-14a)

Substituting equation (6-13) for (P1 � P2)/r and equation (6-12) for v2 and noting that y1 ¼ y2,

we obtain

u2 � u1 ¼ v21
A1

A2

� �2

�v21
A1

A2
þ v21

2
� v21

2

A1

A2

� �2

¼ v21
2

1� 2
A1

A2
þ A1

A2

� �2
" #

¼ v21
2

1� A1

A2

� �2
(6-15)
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Equation (6-15) shows that the internal energy increases in a sudden enlargement. The

temperature change corresponding to this change in internal energy is insignificant, but from

equation (6-14a) it can be seen that the change in total head,

P1

r
þ v21

2
þ gy1

� �
� P2

r
þ v22

2
þ gy2

� �
is equal to the internal energy change. Accordingly, the internal energy change in an incompressible

flow is designated as the head loss, hL, and the energy equation for steady, adiabatic, incompressible

flow in a stream tube is written as

P1

rg
þ v21
2g

þ y1 ¼ hL þ P2

rg
þ v22
2g

þ y2 (6-16)

Note the similarity to equation (6-11).

6.4 CLOSURE

In this chapter the first law of thermodynamics, the third of the fundamental relations

upon which fluid-flow analyses are based, has been used to develop an integral expression

for the conservation of energy with respect to a control volume. The resulting expression,

equation (6-10), is, in conjunction with equations (4–1) and (5–4), one of the fundamental

expressions for the control-volume analysis of fluid-flow problems.

A special case of the integral expression for the conservation of energy is the Bernoulli

equation, equation (6-11). Although simple in form and use, this expression has broad

application to physical situations.

PROBLEMS

6.1 The velocity profile in the annular control volume of

Example 3 is approximately linear, varying from a velocity of

zero at the outer boundary to a value of vd/2 at the inner

boundary. Develop an expression for the fluid velocity, v(r),

where r is the distance from the center of the shaft.

6.2 Sea water, r ¼ 1025 kg/m3, flows through a pump at

0:21m3/s. The pump inlet is 0.25 m in diameter. At the inlet

the pressure is –0.15 m of mercury. The pump outlet, 0.152 m in

diameter, is 1.8m above the inlet. The outlet pressure is 175 kPa.

If the inlet and exit temperature are equal, howmuch power does

the pump add to the fluid?

6.3 Air at 708F, Flows into a 10-ft3 reservoir at a velocity of

110 fps. If the reservoir pressure is 14 psig and the reservoir

temperature 708F, find the rate of temperature increase in the

reservoir. Assume the incoming air is at reservoir pressure and

flows through a 8-in.-diameter pipe.

6.4 Water flows through a 2-in.-diameter horizontal pipe at a

flow rate of 35 gal/min. The heat transfer to the pipe can be

neglected, and frictional forces result in a pressure drop of 10 psi.

What is the temperature change of the water?

6.5 During the flow of 200 ft3/s of water through the hydraulic

turbine shown, the pressure indicated by gage A is 12 psig.What

should gage B read if the turbine is delivering 600 hp at 82%

efficiency?GageB is designed tomeasure the total pressure, that

is, P + rv2/2 for an incompressible fluid.

D = 2 ft

A

B

15 ft

Turbine

6.6 During the test of a centrifugal pump, a Bourdon pres-

sure gage just outside the casing of the 12-in.-diameter suction

pipe reads�6psig (i.e., vacuum).On the10-in.-diameter discharge
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pipe anothergage reads 40psig.Thedischargepipe is 5 ft above the

suction pipe. The discharge ofwater through the pump ismeasured

to be 4 ft3/s. Compute the horsepower input of the test pump.

6.7 A fan draws air from the atmosphere through a 0.30-m-

diameter round duct that has a smoothly rounded entrance. A

differential manometer connected to an opening in the wall of the

duct shows a vacuum pressure of 2.5 cm of water. The density of

air is 1.22 kg/m3. Determine the volume rate of air flow in the duct

in cubic feet per second.What is the horsepower output of the fan?

0.30 m

Fan

2.5 cm

6.8 Find the change in temperature between stations (1) and

(2) in terms of the quantities A1, A3, v1, v3, cv, and u. The internal
energy is given by cvT. The fluid is water and T1 ¼ T3, P1 ¼ P3.

1

3

2

q
Top view

6.9 Aliquidflows fromA toB in a horizontalpipe line shownata

rate of 3 ft3/s with a friction loss of 0.45 ft of flowing fluid. For a

pressure head at B of 24 in., what will be the pressure head at A?

12 in. 6 in.

PA

A B

24 in.

6.10 In Problem 6.26, compute the upward force on the device

fromwater and air. Use the results of Problem 6.26 as well as any

other data given in that problem that youmay need. Explain why

you cannot profitably use Bernoulli’s equation here for a force

calculation.

6.11 A Venturi meter with an inlet diameter of 0.6 m is

designed to handle 6 m3/s of standard air. What is the required

throat diameter if this flow is to give a reading of 0.10 m of alco-

hol in a differential manometer connected to the inlet and the

throat? The specific gravity of alcohol may be taken as 0.8.

6.12 The pressurized tank shown has a circular cross section of

6 ft in diameter. Oil is drained through a nozzle 2 in. in diameter

in the side of the tank. Assuming that the air pressure is

maintained constant, how long does it take to lower the oil

surface in the tank by 2 ft? The specific gravity of the oil in the

tank is 0.85 and that of mercury is 13.6.

6 ft

5 ft
Oil

2 in.

P – Patm = 4 in. Hg

6.13 An automobile is driving into a 45-mph headwind at

40 mph. If the barometer reads 29 in. Hg and the temperature is

408F, what is the pressure at a point on the auto where the wind
velocity is 120 fps with respect to the auto?

6.14 Water is discharged from a 1.0-cm-diameter nozzle

that is inclined at a 308 angle above the horizontal. If the jet

strikes the ground at a horizontal distance of 3.6 m and a

vertical distance of 0.6 m from the nozzle as shown, what is

the rate of flow in cubic meters per second? What is the total

head of the jet? (See equation (6-11b).)

30°

0.60 m

3.6 m

6.15 The pump shown in the figure delivers water at 598F at

a rate of 550 gal/min. The inlet pipe has an inside diameter

of 5.95 in. and it is 10 ft long. The inlet pipe is submerged 6 ft

into the water and is vertical. Estimate the pressure inside the

pipe at the pump inlet.
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6.16 In the previous problem, determine the flow rate at

which the pump inlet pressure is equal to the vapor pressure

of thewater. Assume that friction causes a head loss of 4 ft. The

vapor pressure of water at 598F is 0.247 psi.

6.17 Using the data of Problem 5.27, determine the velocity

head of the fluid leaving the impeller. What pressure rise would

result from such a velocity head?

6.18 In order to maneuver a large ship while docking, pumps

are used to issue a jet of water perpendicular to the bow of

the ship as shown in the figure. The pump inlet is located

far enough away from the outlet that the inlet and outlet do not

interact. The inlet is also vertical so that the net thrust of the

jets on the ship is independent of the inlet velocity and

pressure. Determine the pump horsepower required per pound

of thrust. Assume that the inlet and outlet are at the same

depth. Which will produce more thrust per horsepower, a

low-volume, high-pressure pump or a high-volume, low-

pressure pump?

Jet

Side

Top

6.19 Determine the head loss between stations (1) and (2) in

Problem 5.7.

6.20 Multnomah Falls in Oregon has sheer drop of 165 m.

Estimate the change in water temperature caused by this

drop.

6.21 An ‘‘air cushion’’ vehicle is designed to traverse

terrain while floating on a cushion of air. Air, supplied by

a compressor, escapes through the clearing between the

ground and the skirt of the vehicle. If the skirt has a

rectangular shape 3 � 9 m, the vehicle mass is 8100 kg

and the ground clearance is 3 cm, determine the airflow rate

needed to maintain the cushion and the power given by the

compressor to the air. Assume that the air speeds within the

cushion are very low.

6.22 The solution to Problem 5.22 is

h2 ¼ h1

2
1þ 8v21

gh1

� �1=2

�1

" #

Show that Bernoulli’s equation applied between sections 1 and 2

does not give this result. Derive all expressions for the change in

total head across a hydraulic jump.

6.23 Residentialwateruse, exclusiveoffireprotection, runsabout

80 gallons per person per day. If thewater is delivered to a residence

at 60 psig, estimate the monthly energy required to pump thewater

from atmospheric pressure to the delivery pressure. Neglect line

losses and elevation changes. Assume the pumps are 75% efficient

and are driven by electric motors with 90% efficiency.

6.24 A 1968 Volkswagen sedan is driving over a 7300-ft-high

mountain pass at a speed of v m/s into a headwind of W m/s.

Compute the gage pressure in mPa at a point on the auto where

the velocity relative to the auto is v –Wm/s. The local air density

is 0.984 kg/m3.

6.25 A liquid is heated in a vertical tube of constant diameter,

15 m long. The flow is upward. At the entrance the average

velocity is 1m/s, the pressure 340,000 Pa, and the density is 1001

kg/m3. If the increase in internal energy is 200,000 J/kg, find the

heat added to the fluid.

6.26 Water flows steadily up the vertical pipe and is then

deflected to flow outward with a uniform radial velocity. If

friction is neglected, what is the flow rate of water through

the pipe if the pressure at A is 10 psig?

1
2 in.

12 in.

8 in.

A

5 ft

6.27 Water flows through the pipe contraction shownat a rate of

1 ft3/s. Calculate the differential manometer reading in inches of
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mercury, assuming no energy loss in the flow. Be sure to give the

correct direction of the manometer reading.

6 in. 4 in.

?

6.28 The figure illustrates the operation of an air lift pump.

Compressedair is forced into a perforatedchamber tomixwith the

water so that the specific gravity of the air–water mixture above

the air inlet is 0.5. Neglecting any pressure drop across section (1),

compute the discharge velocity v of the air–water mixture. Can

Bernoulli’s equation be used across section (1)?

0.90 m

1.8 m

Compressed
air

1

u = ?

6.29 Rework Problem with the assumption that the momentum

of the incoming air at section (1) is zero. Determine the exit

velocity, v, and the magnitude of the pressure drop at section (1).

6.30 Air of density 1.21 kg/m3 is flowing as shown. If

v ¼ 15 m/s, determine the readings on manometers (a) and

(b) in the figures below.

24 m/s

u

Oil

S.G. = 0.86

u

H2O

Air

(a)

(b)

6.31 Referring to the figure, assume the flow to be frictionless

in the siphon. Find the rate of discharge in cubic feet per second,

and the pressure head at B if the pipe has a uniform diameter of 1

in. How long will it take for the water level to decrease by 3 ft?

The tank diameter is 10 ft.

4 ft

10 ft

B

H2O

6.32 In Problem 6.31, find the rate of discharge if the fric-

tional head loss in the pipe is 3.2 v2/g where v is the flow

velocity in the pipe.

6.33 Assume that the level of water in the tank remains the

same and that there is no friction loss in the pipe, entrance, or

nozzle. Determine

(a) the volumetric discharge rate from the nozzle;

(b) the pressure and velocity at points A, B, C, and D.

20 ft

3 ft

23 ft
20 ft

A

B

C

D

2 in.
Diameter

4 in. Diameter

6.34 Water in an open cylindrical tank 15 ft in diameter dis-

charges into the atmosphere through a nozzle 2 in. in diameter.

Neglecting friction and the unsteadiness of the flow, find the time

required for thewater in the tank to drop from a level of 28 ft above

the nozzle to the 4-ft level.

6.35 A fluid of density r1 enters a chamber where the fluid

is heated so that the density decreases to r2. The fluid then escapes

through a vertical chimney that has a height L. Neglecting friction

and treating the flow processes as incompressible except for the

heating, determine the velocity, v, in the stack. The fluid velocity

entering the heating chambermay be neglected and the chimney is

immersed in fluid of density r1.

V

r2

r1

r1

L2

Heating section
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6.36 Repeat the previous problem without the assumption that

the velocity in the heating section is negligible. The ratio of the

flow area of the heating section to the chimney flow area is R.

6.37 Consider a 4-cm pipe that runs between a tank open to the

atmosphere and a station open to the atmosphere 10m below the

water surface in the tank. Assuming frictionless flow, what will

be the mass flow rate? If a nozzle with a 1-cm diameter is placed

at the pipe exit, what will be the mass flow rate? Repeat the

problem if a head loss of 3 v2/g occurs in the pipe where v is the
flow velocity in the pipe.

6.38 The tank in the previous problem feeds two lines, a 4-cm

pipe that exits 10mbelow thewater level in the tank and a second

line, also 4 cm in diameter runs from the tank to a station 20 m

below thewater level in the tank. The exits of both lines are open

to the atmosphere. Assuming frictionless flow, what is the mass

flow rate in each line?
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Chapter 7

Shear Stress in Laminar Flow

In the analysis of fluid flow thus far, shear stress has been mentioned, but it has not

been related to the fluid or flow properties. We shall now investigate this relation for

laminar flow. The shear stress acting on a fluid depends upon the type of flow that

exists. In the so-called laminar flow, the fluid flows in smooth layers or lamina, and

the shear stress is the result of the (nonobservable) microscopic action of the molecules.

Turbulent flow is characterized by the large scale, observable fluctuations in fluid and

flow properties, and the shear stress is the result of these fluctuations. The criteria for

laminar and turbulent flows will be discussed in Chapters 12 and 13. The shear stress

in turbulent flow will be discussed in Chapter 13.

7.1 NEWTON’S VISCOSITY RELATION

In a solid, the resistance to deformation is themodulus of elasticity. The shearmodulus of an

elastic solid is given by

shear modulus ¼ shear stress

shear strain
(7-1)

Just as the shear modulus of an elastic solid is a property of the solid relating shear

stress and shear strain, there exists a relation similar to (7-1), which relates the shear

stress in a parallel, laminar flow to a property of the fluid. This relation is Newton’s law of

viscosity

viscosity ¼ shear stress

rate of shear strain
(7-2)

Thus, the viscosity is the property of a fluid to resist the rate at which deformation takes

place when the fluid is acted upon by shear forces. As a property of the fluid, the viscosity

depends upon the temperature, composition, and pressure of the fluid, but is independent

of the rate of shear strain.

The rate of deformation in a simple flow is illustrated in Figure 7.1. The flow parallel

to the x axis will deform the element if the velocity at the top of the element is dif-

ferent than the velocity at the bottom.

The rate of shear strain at a point is defined as�dd/dt. FromFigure 7.1, itmay be seen that

�dd

dt
¼ �lim

Dx,Dy,Dt!0

djtþDt � djt
Dt

¼ �lim
Dx,Dy,Dt!0

fp/2� arctan ½(vjyþDy � vjy)Dt/Dy�g � p/2

Dt

� �
(7-3)

In the limit, �dd/dt ¼ dv/dy ¼ rate of shear strain:
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Combining equations (7-2) and (7-3) and denoting the viscosity by m, we may write

Newton’s law of viscosity as

t ¼ m
dv

dy
(7-4)

The velocity profile and shear stress variation in a fluid flowing between two parallel plates

is illustrated in Figure 7.2. The velocity profile1 in this case is parabolic; as the shear stress is

proportional to the derivative of the velocity, the shear stress varies in a linear manner.

7.2 NON-NEWTONIAN FLUIDS

Newton’s law of viscosity does not pre-

dict the shear stress in all fluids. Fluids

are classified as Newtonian or non-

Newtonian, depending upon the rela-

tion between shear stress and the rate

of shearing strain. In Newtonian fluids,

the relation is linear, as shown in Figure

7.3.

In non-Newtonian fluids, the shear

stress depends upon the rate of shear

strain. While fluids deform continuously

under the action of shear stress, plastics

will sustain a shear stress before defor-

mation occurs. The ‘‘ideal plastic’’ has a

1 The derivation of velocity profiles is discussed in Chapter 8.

h

h

u t

Figure 7.2 Velocity and

shear stress profiles for

flow between two parallel

plates.

Ideal plastic

Real plastic

Pseudo plastic

Newtonian fluid

DilatantYield
stress

Rate of strain

t

Figure 7.3 Stress rate-of-strain relation for

Newtonian and non-Newtonian fluids.

u, x

y

d
∆y

∆x

(u ⎜y+∆y – u ⎜y) ∆t

Element at
time t

Element at
time t + ∆t Figure 7.1 Deformation of a

fluid element.
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linear stress rate-of-strain relation for stresses greater than the yield stress. Thixotropic

substances such as printer’s ink have a resistance to deformation that depends upon

deformation rate and time.

The No-Slip Condition

Although the substances above differ in their stress rate-of-strain relations, they

are similar in their action at a boundary. In both Newtonian and non-Newtonian

fluids, the layer of fluid adjacent to the boundary has zero velocity relative to the

boundary. When the boundary is a stationary wall, the layer of fluid next to the wall is

at rest. If the boundary or wall is moving, the layer of fluid moves at the velocity of

the boundary, hence the name no-slip (boundary) condition. The no-slip condition is

the result of experimental observation and fails when the fluid no longer can be treated

as a continuum.

The no-slip condition is a result of the viscous nature of the fluid. In flow situations in

which the viscous effects are neglected—the so called inviscid flows—only the component

of the velocity normal to the boundary is zero.

7.3 VISCOSITY

The viscosity of a fluid is a measure of its resistance to deformation rate. Tar and molasses

are examples of highly viscous fluids; air and water, which are the subject of frequent

engineering interest, are examples of fluids with relatively low viscosities. An under-

standing of the existence of the viscosity requires an examination of the motion of fluid on a

molecular basis.

The molecular motion of gases can be described more simply than that of liquids. The

mechanism by which a gas resists deformation may be illustrated by examination of the

motion of the molecules on a microscopic basis. Consider the control volume shown in

Figure 7.4.

y

x

ux = ux(y)

t

t

∆x

∆y

Figure 7.4 Molecular motion at the surface of a control volume.
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The top of the control volume is enlarged to show that, even though the top of the

element is a streamline of the flow, individual molecules cross this plane. The paths of

the molecules between collisions are represented by the random arrows. Because the top

of the control volume is a streamline, the net molecular flux across this surface must

be zero, hence the upward molecular flux must equal the downward molecular flux. The

molecules that cross the control surface in an upward direction have average velocities

in the x direction corresponding to their points of origin. Denoting the y coordinate of

the top of the control surface as y0, we shall write the x-directional average velocity of the

upward molecular flux as vxjy�, where the minus sign signifies that the average velo-

city is evaluated at some point below y0. The x-directional momentum carried across

the top of the control surface is then mvxjy� per molecule, where m is the mass of the

molecule. If Z molecules cross the plane per unit time, then the net x-directional

momentum flux will be

�
Z

n¼1
mn(vxjy� � vxjyþ) (7-5)

The flux of x-directional momentum on a molecular scale appears as a shear stress

when the fluid is observed on a macroscopic scale. The relation between the molecular

momentum flux and the shear stress may be seen from the control-volume expression for

linear momentum

�F ¼
Z Z

c:s:
rvðv: nÞ dAþ @

@t

Z Z Z
c:v:

rv dV (5-4)

The first term on the right-hand side of equation (5-4) is the momentum flux. When a

control volume is analyzed on a molecular basis, this term includes both the macroscopic

and molecular momentum fluxes. If the molecular portion of the total momentum flux is to

be treated as a force, it must be placed on the left-hand side of equation (5-4). Thus the

molecular momentum flux term changes sign. Denoting the negative of the molecular

momentum flux as t, we have

t ¼ � �
Z

n¼1
mn(vxjy� � vxjyþ) (7-6)

We shall treat shear stress exclusively as a force per unit area.

The bracketed term, (vxjy� � vxjyþ) in equation (7-6), may be evaluated by noting that

vxjy� ¼ vxjy0 � (dvx/dyjy0 )d, where y� ¼ y0 � d. Using a similar expression for yþ, we
obtain, for the shear stress

t ¼ 2 �
Z

n¼1
mn

dvx
dy

����
y0

dn

In the above expression d is the y component of the distance between molecular

collisions. Borrowing from the kinetic theory of gases, the concept of the mean free path, l,
as the average distance between collisions, and also noting from the same source that

d ¼ 2/3l, we obtain, for a pure gas,

t ¼ 4

3
mlZ

dvx
dy

����
y0

(7-7)

as the shear stress.
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Comparing equation (7-7) with Newton’s law of viscosity, we see that

m ¼ 4

3
mlZ (7-8)

The kinetic theory gives Z ¼ NC/4, where

N ¼ molecules per unit volume

C ¼ average random molecular velocity

and thus

m ¼ 1

3
NmlC ¼ rlC

3

or, using2

l ¼ 1ffiffiffi
2

p
pNd2

and C ¼
ffiffiffiffiffiffiffiffi
8kT

pm

r

where d is the molecular diameter and k is the Boltzmann constant, we have

m ¼ 2

3p3=2

ffiffiffiffiffiffiffiffiffi
mkT

p

d2
(7-9)

Equation (7-9) indicates that m is independent of pressure for a gas. This has been

shown, experimentally, to be essentially true for pressures up to approximately 10

atmospheres. Experimental evidence indicates that at low temperatures the viscosity

varies more rapidly than
ffiffiffiffi
T

p
. The constant-diameter rigid-sphere model for the gas

molecule is responsible for the less-than-adequate viscosity-temperature relation. Even

though the preceding development was somewhat crude in that an indefinite property,

the molecular diameter, was introduced, the interpretation of the viscosity of a gas

being due to the microscopic momentum flux is a valuable result and should not be

overlooked. It is also important to note that equation (7-9) expresses the viscosity entirely

in terms of fluid properties.

A more realistic molecular model utilizing a force field rather than the rigid-

sphere approach will yield a viscosity-temperature relationship much more consis-

tent with experimental data than the
ffiffiffiffi
T

p
result. The most acceptable expression

for nonpolar molecules is based upon the Lennard–Jones potential energy func-

tion. This function and the development leading to the viscosity expression will

not be included here. The interested reader may refer to Hirschfelder, Curtiss, and

Bird3 for the details of this approach. The expression for viscosity of a pure gas that

results is

m ¼ 2:6693� 10�6

ffiffiffiffiffiffiffiffi
MT

p

s2Vm
(7-10)

2 In order of increasing complexity, the expressions for mean free path are presented in R. Resnick and

D. Halliday, Physics, Part I, Wiley, New York, 1966, Chapter 24, and E. H. Kennard, Kinetic Theory of Gases,

McGraw-Hill Book Company, New York, 1938, Chapter 2.
3 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New

York, 1954.
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where m is the viscosity, in pascal-seconds; T is absolute temperature, in K; M is the

molecular weight; s is the ‘‘collision diameter,’’ a Lennard–Jones parameter, in Å

(Angstroms); Vm is the ‘‘collision integral,’’ a Lennard–Jones parameter that varies in a

relatively slow manner with the dimensionless temperature kT/e; k is the Boltzmann

constant, 1.38 � 10�16 ergs/K; and e is the characteristic energy of interaction between

molecules. Values of s and e for various gases are given in Appendix K, and a table of Vm

versus kT/e is also included in Appendix K.

For multicomponent gas mixtures at low density, Wilke4 has proposed this empirical

formula for the viscosity of the mixture:

mmixture ¼ �
n

i¼1

ximi

�x jfi j
(7-11)

where xi, xj are mole-fractions of species i and j in the mixture, and

fi j ¼
1ffiffiffi
8

p 1þ Mi

Mj

� ��1/2
1þ mi

m j

 !1/2
Mj

Mi

� �1/42
4

3
52 (7-12)

where Mi, Mj are the molecular weights of species i and j, and mi, mj are the viscosities of

species i and j. Note that when i ¼ j, we have fi j ¼ 1.

Equations (7-10), (7-11), and (7-12) are for nonpolar gases and gas mixtures at low

density. For polar molecules, the preceding relation must be modified.5

Although the kinetic theory of gases is well developed, and the more sophisticated

models of molecular interaction accurately predict viscosity in a gas, the molecular theory

of liquids is much less advanced. Hence, the major source of knowledge concerning the

viscosity of liquids is experiment. The difficulties in the analytical treatment of a liquid are

largely inherent in nature of the liquid itself. Whereas in gases the distance between

molecules is so great that we consider gas molecules as interacting or colliding in pairs, the

close spacing of molecules in a liquid results in the interaction of several molecules

simultaneously. This situation is somewhat akin to anN-body gravitational problem. In spite

of these difficulties, an approximate theory has been developed by Eyring, which illustrates

the relation of the intermolecular forces to viscosity.6 The viscosity of a liquid can be

considered due to the restraint caused by intermolecular forces. As a liquid heats up, the

molecules become more mobile. This results in less restraint from intermolecular forces.

Experimental evidence for the viscosity of liquids shows that the viscosity decreases with

temperature in agreement with the concept of intermolecular adhesive forces being the

controlling factor.

Units of Viscosity

The dimensions of viscosity may be obtained from Newton’s viscosity relation

m ¼ t

dv/dy

4 C. R. Wilke, J. Chem. Phys., 18, 517–519 (1950).
5 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York,

1954.
6 For a description of Eyring’s theory, see R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport

Phenomena, Wiley, New York, 1960, Chap. 1.
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or, in dimensional form

F/L2

(L/t)(1/L)
¼ Ft

L2

where F ¼ force, L ¼ length, t ¼ time.

Using Newton’s second law of motion to relate force and mass (F ¼ ML/t2), we find

that the dimensions of viscosity in the mass–length–time system become M/Lt.

The ratio of the viscosity to the density occurs frequently in engineering problems.

This ratio, m/r, is given the name kinematic viscosity and is denoted by the symbol v. The
origin of the name kinematic viscosity may be seen from the dimensions of v:

v� m

r

 M/Lt

M/L3
¼ L2

t

The dimensions of v are those of kinematics: length and time. Either of the two names,

absolute viscosity or dynamic viscosity, is frequently employed to distinguish m from the

kinematic viscosity, v.
In the SI system, dynamic viscosity is expressed in pascal-seconds (1 pascal-second ¼

1 N n � s/m2 ¼ 10 poise ¼ 0.02089 slugs/ft � s ¼ 0.02089 lbf � s/ft2 ¼ 0.6720 lbm/ft � s).
Kinematic viscosity in the metric system is expressed in (meters)2 per second (1m2/s ¼ 104

stokes ¼ 10.76 ft2/s).

Absolute and kinematic viscosities are shown in Figure 7.5 for three common gases

and two liquids as functions of temperature. A more extensive listing is contained in

Appendix I.
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7.4 SHEAR STRESS IN MULTIDIMENSIONAL LAMINAR
FLOWS OF A NEWTONIAN FLUID

Newton’s viscosity relation, discussed previously, is valid for only parallel, laminar flows.

Stokes extended the concept of viscosity to three-dimensional laminar flow. The basis of

Stokes’ viscosity relation is equation (7-2)

viscosity ¼ shear stress

rate of shear strain
(7-2)

where the shear stress and rate of shear strain are those of a three-dimensional element.

Accordingly, we must examine shear stress and strain rate for a three-dimensional body.

Shear Stress

The shear stress is a tensor quantity requiring magnitude, direction, and orientation with

respect to a plane for identification. The usual method of identification of the shear stress

involves a double subscript, such as txy. The tensor component, tij, is identified as follows:

t ¼ magnitude

first subscript ¼ direction of axis to which plane of action of shear stress

is normal

second subscript ¼ direction of action of the shear stress:

Thus txy acts on a plane normal to the x axis (the yz plane) and acts in the y direction. In

addition to the double subscript, a sense is required. The shear stresses acting on an element

DxDyDz, illustrated in Figure 7.6, are indicated in the positive sense. The definition of

positive shear stress can be generalized for use in other coordinate systems. A shear stress

component is positive when both the vector normal to the surface of action and the shear

stress act in the same direction (both positive or both negative).

For example, in Figure 7.6(a), the shear stress tyx at the top of the element acts on

surfaceDx Dz. The vector normal to this area is in the positive y direction. The stress tyx acts

in the positive x direction, hence tyx as illustrated in Figure 7.6(a) is positive. The student

may apply similar reasoning to tyx acting on the bottom of the element and conclude that tyx
is also positive as illustrated.

As in the mechanics of solids, ti j ¼ t ji (see Appendix C).

Rate of Shear Strain

The rate of shear strain for a three-dimensional element may be evaluated by determining the

shear strain rate in the xy, yz, and xz planes. In the xy plane illustrated in Figure 7.7, the shear

strain rate is again�dd/dt; however, the elementmaydeform in both the x and they directions.

Hence, as the element moves from position 1 to position 2 in time Dt

�dd

dt
¼ �lim

Dx,Dy,Dt!0

djtþDt � djt
Dt

¼ �lim
Dx,Dy,Dt!0

	
p/ 2� arctanf[(vxjyþDy � vxjy)Dt]/Dyg

Dt

�arctanf[(vyjxþDx � vyjx)Dt]/Dxg � p/2

Dt
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As the shear strain evaluated above is in the xy plane, it will be subscripted xy. In the limit,

�ddxy/dt ¼ @vx/@yþ @vy /@x. In a similar manner, the shear strain rates in the yz and xz

planes may be evaluated as

� ddyz

dt
¼ @vy

@z
þ @vz

@y

� ddxz

dt
¼ @vx

@z
þ @vz

@x

x

y

d
∆y

∆x

(ux ⎜y+∆y – ux ⎜y) ∆t

(uy ⎜x+∆x – uy ⎜x) ∆t

1 2

uy

ux

t

t + ∆t

Figure 7.7 Shear strain

in the xy plane.
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Figure 7.6 Shear stress

acting in a positive

sense.
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Stokes’s Viscosity Relation

(A) Shear Stress. Stokes’s viscosity relation for the shear-stress components in

laminar flow may now be stated with the aid of the preceding developments for rate

of shear strain. Using equation (7-2), we have, for the shear stresses written in

rectangular coordinate form

txy ¼ tyx ¼ m
@vx
@y

þ @vy
@x

� �
(7-13a)

tyz ¼ tzy ¼ m
@vy
@z

þ @vz
@y

� �
(7-13b)

and

tzx ¼ txz ¼ m
@vz
@x

þ @vx
@z

� �
(7-13c)

(B) Normal Stress. The normal stress may also be determined from a stress rate-of-strain

relation; the strain rate, however, is more difficult to express than in the case of shear strain.

For this reason the development of normal stress, on the basis of a generalized Hooke’s law

for an elastic medium, is included in detail in Appendix D, with only the result expressed

below in equations (7-14a), (7-14b), and (7-14c).

The normal stress in rectangular coordinates written for a newtonian fluid is

given by

sxx ¼ m 2
@vx
@x

� 2

3
=: v

� �
� P (7-14a)

syy ¼ m 2
@vy
@y

� 2

3
=: v

� �
� P (7-14b)

and

szz ¼ m 2
@vz
@z

� 2

3
=: v

� �
� P (7-14c)

It is to be noted that the sum of these three equations yields the previously mentioned

result: the bulk stress, s ¼ (sxx þ syy þ szz) /3; is the negative of the pressure, P.

7.5 CLOSURE

The shear stress in laminar flow and its dependence upon the viscosity and kinematic

derivatives has been presented for a cartesian coordinate system. The shear stress in other

coordinate systems, of course, will occur frequently, and it is to be noted that equation (7-2)

forms the general relation between shear stress, viscosity, and the rate of shear strain. The

shear stress in other coordinate systems may be obtained from evaluating the shear-strain

rate in the associated coordinate systems. Several problems of this nature are included at the

end of this chapter.
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PROBLEMS

7.1 Sketch the deformation of a fluid element for the following

cases:

(a) @vx/@y is much larger than @vy/@x;

(b) @vy/@x is much larger than @vx/@y.

7.2 For a two-dimensional, incompressible flow with velocity

vx ¼ vx(y), sketch a three-dimensional fluid element and illus-

trate the magnitude, direction, and surface of action of each

stress component.

7.3 Show that the axial strain rate in a one-dimensional flow,

vx ¼ vx(x), is given by @vx/@x: What is the rate of volume

change? Generalize for a three-dimensional element, and deter-

mine the rate of volume change.

7.4 Using a cylindrical element, show that Stokes’s viscosity

relation yields the following shear stress components.

tru ¼ tur ¼ m r
@

@r

vu
r

� �
þ 1

r

@vr
@u

� �

tuz ¼ tzu ¼ m
@vu
@z

þ 1

r

@vz
@u

� �

tzr ¼ trz ¼ m
@vz
@r

þ @vr
@z

� �
7.5 Estimate the viscosity of nitrogen at 175 K using equa-

tion (7-10).

7.6 Calculate the viscosity of oxygen at 3508K and compare

with the value given in Appendix I.

7.7 What is the percentage change in the viscosity of water

when the water temperature rises from 60 to 1208F?

7.8 At what temperature is the kinematic viscosity of glycerin

the same as the kinematic viscosity of helium?

7.9 According to the Hagen–Poiseuille laminar flow model,

the volumetric flow rate is inversely proportional to the viscosity.

What percentage change in volumetric flow rate occurs in a

laminar flow as the water temperature changes from near freez-

ing to 1408F?

7.10 Repeat the preceding problem for air.

7.11 An automobile crankshaft is 3.175 cm in diameter.

A bearing on the shaft is 3.183 cm in diameter and 2.8 cm

long. The bearing is lubricated with SAE 30 oil at a temperature

of 365 K. Assuming that the shaft is centrally located in the

bearing, determine howmuch heat must be removed to maintain

the bearing at constant temperature. The shaft is rotating at 1700

rpm, and the viscosity of the oil is 0.01 Pa � s.
7.12 If the speed of the shaft is doubled in Problem 7.11, what

will be the percentage increase in the heat transferred from the

bearing? Assume that the bearing remains at constant tempera-

ture.

7.13 Two ships are traveling parallel to each other and

are connected by flexible hoses. Fluid is transferred from

one ship to the other for processing and then returned. If the

fluid is flowing at 100 kg/s, and at a given instant the first ship

is making 4 m/s whereas the second ship is making 3.1 m/s,

what is the net force on ship one when the above velocities

exist?

7.14 An auto lift consists of 36.02-cm-diameter ram that slides

in a 36.04-cm-diameter cylinder. The annular region is filled

with oil having a kinematic viscosity of 0.00037 m2/s and a

specific gravity of 0.85. If the rate of travel of the ram is 0.15m/s,

estimate the frictional resistance when 3.14 m of the ram is

engaged in the cylinder.

7.15 If the ram and auto rack in the previous problem

together have a mass of 680 kg, estimate the maximum sink-

ing speed of the ram and rack when gravity and viscous fric-

tion are the only forces acting. Assume 2.44 m of the ram

engaged.

7.16 The conical pivot shown in the figure has angular

velocity v and rests on an oil film of uniform thickness h.

Determine the frictional moment as a function of the angle a,

the viscosity, the angular velocity, the gap distance, and the

shaft diameter.

D

h
2a

w

7.17 For water flowing in a 0.1-in.-diameter tube, the velocity

distribution is parabolic (see Example 4.2). If the average

velocity is 2 fps, determine the magnitude of the shear stress

at the tube wall.

7.18 What pressure drop per foot of tube is caused by the shear

stress in Problem 7.17?

7.19 The rate of shear work per unit volume is given by the

product tv. For a parabolic velocity profile in a circular tube

(see Example 4.2), determine the distance from thewall at which

the shear work is maximum.
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Chapter 8

Analysis of a Differential Fluid

Element in Laminar Flow

The analysis of a fluid-flow situation may follow two different paths. One type of

analysis has been discussed at length in Chapters 4–6 in which the region of interest

has been a definite volume, the macroscopic control volume. In analyzing a problem

from the standpoint of a macroscopic control volume, one is concerned only with gross

quantities of mass, momentum, and energy crossing the control surface and the total

change in these quantities exhibited by the material under consideration. Changes

occurring within the control volume by each differential element of fluid cannot be

obtained from this type of overall analysis.

In this chapter, we shall direct our attention to elements of fluid as they approach

differential size. Our goal is the estimation and description of fluid behavior from a

differential point of view; the resulting expressions from such analyses will be

differential equations. The solution to these differential equations will give flow

information of a different nature than that achieved from a macroscopic examination.

Such information may be of less interest to the engineer needing overall design

information, but it can give much greater insight into the mechanisms of mass,

momentum, and energy transfer.

It is possible to change from one form of analysis to the other, that is, from a

differential analysis to an integral analysis by integration and vice versa, rather easily.1

A complete solution to the differential equations of fluid flow is possible only if the

flow is laminar; for this reason only laminar-flow situations will be examined in this

chapter. A more general differential approach will be discussed in Chapter 9.

8.1 FULLY DEVELOPED LAMINAR FLOW IN A CIRCULAR
CONDUIT OF CONSTANT CROSS SECTION

Engineers are often confrontedwith flow of fluids inside circular conduits or pipes.We shall

now analyze this situation for the case of incompressible laminar flow. In Figure 8.1, we

have a section of pipe in which the flow is laminar and fully developed; that is, it is not

influenced by entrance effects and represents a steady-flow situation.Fully developed flow is

defined as that for which the velocity profile does not vary along the axis of flow.

We now consider the cylindrical control volume of fluid having an inside radius, r,

thicknessDr, and lengthDx. ApplyingNewton’s second law to this control volume, wemay

1 This transformation may be accomplished by a variety of methods, among which are the methods of vector

calculus. We shall use a limiting process in this text.
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evaluate the appropriate force and momentum terms for the x direction. Starting with the

control-volume expression for linear momentum in the x direction

�Fx ¼
Z Z

c:s:
rvx(v: n) dAþ @

@t

Z Z Z
c:v:

rvx dV (5-5a)

and evaluating each term as it applies to the control volume shown, we have

�Fx ¼ P(2prDr)jx � P(2pr Dr)jxþDx þ trx(2pr Dx)jrþDr � trx(2pr Dx)jrZ Z
c:s:

vxr(v: n) dA ¼ (rvx)(2pr Drvx)jxþDx � (rvx)(2pr Drvx)jx

and

@

@t

Z Z Z
c:v:

vxr dV ¼ 0

in steady flow.

The convective momentum flux

(rvx)(2pr Drvx)jxþDx � (rvx)(2pDrvx)jx
is equal to zero as, by the original stipulation that flow is fully developed, all terms are

independent of x. Substitution of the remaining terms into equation (5-5a) gives

�[P(2pr Dr)jxþDx � P(2prDr)jx]þ trx(2pr Dx)jrþDr � trx(2pr Dx)jr ¼ 0

Canceling terms where possible and rearranging, we find that this expression reduces to the

form

�r
PjxþDx � Pjx

Dx
þ (rtrx)jrþDr � (rtrx)jr

Dr
¼ 0

Evaluating this expression in the limit as the control volume approaches differential size,

that is, as Dx and Dr approach zero, we have

�r
dP

dx
þ d

dr
(rtrx) ¼ 0 (8-1)

Note that the pressure and shear stress are functions only of x and r, respectively, and thus

the derivatives formed are total rather than partial derivatives. In a region of fully

developed flow, the pressure gradient, dP/dx, is constant.

∆r
P ⎜x

P ⎜x+∆x

x

∆x Figure 8.1 Control volume

for flow in a circular conduit.

The variables in equation (8-1) may be separated and integrated to give

trx ¼ dP

dx

� �
r

2
þ C1

r
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The constant of integrationC1 may be evaluated by knowing a value of trx at some r. Such a

condition is known at the center of the conduit, r ¼ 0, where for any finite value of C1, the

shear stress, trx, will be infinite. As this is physically impossible, the only realistic value for

C1 is zero. Thus, the shear-stress distribution for the conditions and geometry specified is

trx ¼ dP

dx

� �
r

2
(8-2)

We observe that the shear stress varies linearly across the conduit from a value of 0 at

r ¼ 0, to a maximum at r ¼ R, the inside surface of the conduit.

Further information may be obtained if we substitute the Newtonian viscosity relation-

ship, that is, assuming the fluid to be Newtonian and recalling that the flow is laminar

trx ¼ m
dvx
dr

(8-3)

Substituting this relation into equation (8-2) gives

m
dvx
dr

¼ dP

dx

� �
r

2

which becomes, upon integration,

vx ¼ dP

dx

� �
r2

4m
þ C2

The second constant of integration,C2, may be evaluated, using the boundary condition that

the velocity, vx, is zero at the conduit surface (the no-slip condition), r ¼ R. Thus,

C2 ¼ � dP

dx

� �
R2

4m

and the velocity distribution becomes

vx ¼ � dP

dx

� �
1

4m
(R2 � r2) (8-4)

or

vx ¼ � dP

dx

� �
R2

4m
1� r

R

� �2� �
(8-5)

Equations (8-4) and (8-5) indicate that the velocity profile is parabolic and that the

maximum velocity occurs at the center of the circular conduit where r ¼ 0. Thus,

vmax ¼ � dP

dx

� �
R2

4m
(8-6)

and equation (8-5) may be written in the form

vx ¼ vmax 1� r

R

� �2� �
(8-7)

Note that the velocity profile written in the form of equation (8-7) is identical to that used

in Example 4.2. We may, therefore, use the result obtained in Example 4.2 that

vavg ¼ vmax

2
¼ � dP

dx

� �
R2

8m
(8-8)
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Equation (8-8) may be rearranged to express the pressure gradient, �dP/dx, in terms

of vavg

� dP

dx
¼ 8mvavg

R2
¼ 32mvavg

D2
(8-9)

Equation (8-9) is known as the Hagen–Poiseuille equation, in honor of the two men

credited with its original derivation. This expression may be integrated over a given

length of conduit to find the pressure drop and associated drag force on the conduit

resulting from the flow of a viscous fluid.

The conditions for which the preceding equations were derived and apply should be

remembered and understood. They are as follows:

1. The fluid (a) is Newtonian,

(b) behaves as a continuum.

2. The flow is (a) laminar,

(b) steady,

(c) fully developed,

(d) incompressible.

8.2 LAMINAR FLOW OF A NEWTONIAN FLUID
DOWN AN INCLINED-PLANE SURFACE

The approach used in Section 8.1 will now be applied to a slightly different situation, that of

a Newtonian fluid in laminar flow down an inclined-plane surface. This configuration and

associated nomenclature are depicted in Figure 8.2. We will examine the two-dimensional

case, that is, we consider no significant variation in the z direction.

The analysis again involves the application of the control-volume expression for linear

momentum in the x direction, which is

�Fx ¼
Z Z

c:s:
vxr(v � n) dAþ @

@t

Z Z Z
c:v:

rvx dV (5-5a)

L

y

x ∆y

g
∆x

q

Figure 8.2 Laminar flow down an inclined-plane surface.

Evaluating each term in this expression for the fluid element of volume ðDxÞðDyÞð1Þ as
shown in the figure, we have

�Fx ¼ PDyjx � PDyjxþDx þ tyx DxjyþDy � tyx Dxjy þ rgDxDy sin uZ Z
c:s:

rvx(v: n) dA ¼ rv2xDyjxþDx � rv2xDyjx
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and

@

@t

Z Z Z
c:v:

rvx dV ¼ 0

Noting that the convective-momentum terms cancel for fully developed flow and that the

pressure–force terms also cancel because of the presence of a free liquid surface, we see that

the equation resulting from the substitution of these terms into equation (5-5a) becomes

tyx DxjyþDy � tyx Dxjy þ rgDxDy sin u ¼ 0

Dividing by (Dx)(Dy)(1), the volume of the element considered, gives

tyxjyþDy � tyxjy
Dy

þ rg sinu ¼ 0

In the limit as Dy! 0, we get the applicable differential equation

d

dy
tyx þ rg sinu ¼ 0 (8-10)

Separating the variables in this simple equation and integrating we obtain for the shear

stress

tyx ¼ �rg sinuyþ C1

The integration constant, C1, may be evaluated by using the boundary condition that the

shear stress, tyx, is zero at the free surface, y ¼ L. Thus the shear-stress variation becomes

tyx ¼ rgL sinu 1� y

L

h i
(8-11)

The consideration of a Newtonian fluid in laminar flow enables the substitution of

m(dvx/dy), to be made for tyx, yielding

dvx
dy

¼ rgL sinu

m
1� y

L

h i
which, upon separation of variables and integration, becomes

vx ¼ rgL sinu

m
y� y2

2L

� �
þ C2

Using the no-slip boundary condition, that is, vx ¼ 0 at y ¼ 0, the constant of integration,

C2, is seen to be zero. The final expression for the velocity profile may now be written as

vx ¼ rgL2 sinu

m

y

L
� 1

2

y

L

� �2� �
(8-12)

The form of this solution indicates the velocity variation to be parabolic, reaching the

maximum value

vmax ¼ rgL2 sinu

2m
(8-13)

at the free surface, y ¼ L.

Additional calculations may be performed to determine the average velocity as was

indicated in Section 8.1. Note that there will be no counterpart in this case to the Hagen–

Poiseuille relation, equation (8-9), for the pressure gradient. The reason for this is the
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presence of a free liquid surface along which the pressure is constant. Thus, for our present

case, flow is not the result of a pressure gradient but rather the manifestation of the

gravitational acceleration upon a fluid.

8.3 CLOSURE

Themethod of analysis employed in this chapter, that of applying the basic relation for linear

momentum to a small control volume and allowing the control volume to shrink to

differential size, enables one to find information of a sort different from that obtained

previously. Velocity and shear-stress profiles are examples of this type of information. The

behavior of a fluid element of differential size can give considerable insight into a given

transfer process and provide an understanding available in no other type of analysis.

This method has direct counterparts in heat and mass transfer, where the element may

be subjected to an energy or a mass balance.

In Chapter 9, the methods introduced in this chapter will be used to derive differential

equations of fluid flow for a general control volume.

PROBLEMS

8.1 Express equation (8-9) in terms of the flow rate and the pipe

diameter. If the pipe diameter is doubled at constant pressure

drop, what percentage change will occur in the flow rate?

8.2 A 40-km-long pipeline delivers petroleum at a rate of 4000

barrels per day. The resulting pressure drop is 3:45� 106 Pa. If a

parallel line of the same size is laid along the last 18 km of the

line, what will be the new capacity of this network? Flow in both

cases is laminar and the pressure drop remains 3:45� 106 Pa.

8.3 A 0.635-cm hydraulic line suddenly ruptures 8 m from a

reservoir with a gage pressure of 207 kPa. Compare the laminar

and inviscid flow rates from the ruptured line in cubic meters per

second.

8.4 A common type of viscosimeter for liquids consists of a

relatively large reservoir with a very slender outlet tube, the rate

of outflow being determined by timing the fall in the surface

level. If oil of constant density flows out of the viscosimeter

shown at the rate of 0.273 cm3/s, what is the kinematic viscosity

of the fluid? The tube diameter is 0.18 cm.

8 cm

55 cm

Oil

8.5 Derive the expressions for the velocity distribution and for

the pressure drop for a Newtonian fluid in fully developed

laminar flow in the annular space between two horizontal,

concentric pipes. Apply the momentum theorem to an annular

fluid shell of thickness Dr and show that the analysis of such a

control volume leads to

d

dr
(rt) ¼ r

DP

L

The desired expressions may then be obtained by the substitu-

tion of Newton’s viscosity law and two integrations.

8.6 A thin rod of diameter d is pulled at constant velocity

through a pipe of diameter D. If the wire is at the center of the

pipe, find the drag per unit length of wire. The fluid filling the

space between the rod and the inner pipe wall has density r and

viscosity m.

8.7 The viscosity of heavy liquids, such as oils, is frequently

measured with a device that consists of a rotating cylinder inside

a large cylinder. The annular region between these cylinders is

filled with liquid and the torque required to rotate the inner

cylinder at constant speed is computed, a linear velocity profile

being assumed. For what ratio of cylinder diameters is the

assumption of a linear profile accurate within 1% of the true

profile?

8.8 Two immiscible fluids of different density and viscosity are

flowing between two parallel plates. Express the boundary

conditions at the interface between the two fluids.

8.9 Determine the velocity profile for fluid flowing between

two parallel plates separated by a distance 2h. The pressure drop

is constant.
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8.10 Fluid flows between twoparallel plates, a distance h apart.

The upper plate moves at velocity, v0; the lower plate is

stationary. For what value of pressure gradient will the shear

stress at the lower wall be zero?

8.11 Derive the equation of motion for a one-dimensional,

inviscid, unsteady compressible flow in a pipe of constant cross-

sectional area neglect gravity.

8.12 A continuous belt passes upward through a chemical bath

at velocity v0 and picks up a film of liquid of thickness h, density,

r, and viscosity m. Gravity tends to make the liquid drain down,

but the movement of the belt keeps the fluid from running off

completely. Assume that the flow is a well-developed laminar

flow with zero pressure gradient, and that the atmosphere

produces no shear at the outer surface of the film.

(a) State clearly the boundary conditions at y ¼ 0 and y ¼ h to

be satisfied by the velocity.

(b) Calculate the velocity profile.

(c) Determine the rate at which fluid is being dragged up with

the belt in terms of m; r; h; v0:

8.13 The device in the schematic diagram below is a viscosity

pump. It consists of a rotating drum inside of a stationary case.

The case and the drum are concentric. Fluid enters at A, flows

through the annulus between the case and the drum, and leaves at

B. The pressure at B is higher than that at A, the difference being

Dr: The length of the annulus is L. The width of the annulus h is
very small compared to the diameter of the drum, so that the flow

in the annulus is equivalent to the flow between two flat plates.

Assume the flow to be laminar. Find the pressure rise and

efficiency as a function of the flow rate per unit depth.

A B

h

R

Ω

Drum

Case

8.14 Oil is supplied at the center of two long plates. The

volumetric flow rate per unit length is Q and the plates remain

a constant distance, b, apart. Determine thevertical force per unit

length as a function of the Q, m, L, and b.

8.15 Aviscous filmdrains uniformly down the side of a vertical

rod of radius R. At some distance down the rod, the film

approaches a terminal or fully developed flow such that the

film thickness, h, is constant and vz ¼ f(r). Neglecting the shear

resistance due to the atmosphere, determine the velocity dis-

tribution in the film.

8.16 Determine the maximum film velocity in Problem 8.15.
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Chapter 9

Differential Equations

of Fluid Flow

The fundamental laws of fluid flow, which have been expressed in mathematical form

for an arbitrary control volume in Chapters 4–6, may also be expressed in mathematical

form for a special type of control volume, the differential element. These differential

equations of fluid flow provide a means of determining the point-to-point variation of

fluid properties. Chapter 8 involved the differential equations associated with some

one-dimensional, steady, incompressible laminar flows. In Chapter 9, we shall express

the law of conservation of mass and Newton’s second law of motion in differential

form for more general cases. The basic tools used to derive these differential equations

will be the control-volume developments of Chapters 4 and 5.

9.1 THE DIFFERENTIAL CONTINUITY EQUATION

The continuity equation to be developed in this section is the law of conservation of mass

expressed in differential form. Consider the control volume Dx Dy Dz shown in Figure 9.1.

The control volume expression for the conservation of mass isZ Z
rðv � nÞdAþ @

@t

Z Z Z
r dV ¼ 0 (4-1)

which states that

net rate of mass

flux out of

control volume

8<
:

9=
;þ

rate of accumulation

of mass within

control volume

8<
:

9=
; ¼ 0

y

z

x

∆z

∆y

∆x

ruy ⎜y+∆y

rux ⎜x+∆x

ruz ⎜z+∆z

ruy ⎜y

rux ⎜x

ruz ⎜z

Figure 9.1 Mass flux

through a differential

control volume.
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The mass flux r(v � n) at each face of the control volume is illustrated in Figure 9.1. The

mass within the control volume is r Dx Dy Dz, and thus the time rate of change of mass

within the control volume is

@

@t
ðr Dx Dy DzÞ

The student is reminded that the density in general can vary from point to point, that is,

r ¼ r(x, y, z, t).

The net mass flux out of the control volume in the x direction is

ðrvxjxþDx � rvxjxÞDyDz
in the y direction

ðrvyjyþDy � rvyjyÞDxDz

and in the z direction

ðrvzjzþDz � rvzjzÞDxDy
The total net mass flux is the sum of the above three terms. Substituting into equation (4-1)

yields

ðrvxjxþDx � rvxjxÞDyDzþ ðrvyjyþDy � rvyjyÞDxDz

þ ðrvzjzþDz � rvzjzÞDxDyþ
@

@t
ðrDxDyDzÞ ¼ 0

The volume does not change with time, so we may divide the above equation by Dx Dy Dz.
In the limit as Dx, Dy, and Dz approach zero, we obtain

@

@x
ðrvxÞ þ @

@y
ðrvyÞ þ @

@z
ðrvzÞ þ @r

@t
¼ 0 (9-1)

The first three terms comprise the divergence of the vector rv. The divergence of a vector

is the dot product with =

div A� = � A

The student may verify that the first three terms in equation (9-1) may be written as = � rv,
and thus a more compact statement of the continuity equation becomes

= � rvþ @r

@t
¼ 0 (9-2)

The continuity equation above applies to unsteady, three-dimensional flow. It is apparent

that, when flow is incompressible, this equation reduces to

= � v ¼ 0 (9-3)

whether the flow is unsteady or not.

Equation (9-2) may be arranged in a slightly different form to illustrate the use of

the substantial derivative. Carrying out the differentiation indicated in (9-1), we have

@r

@t
þ vx

@r

@x
þ vy

@r

@y
þ vz

@r

@z
þ r

@vx
@x

þ @vy
@y

þ @vz
@z

� �
¼ 0

100 Chapter 9 Differential Equations of Fluid Flow



The first four terms of the above equation comprise the substantial derivative of the density,

symbolized as Dr/Dt, where

D

Dt
¼ @

@t
þ vx

@

@x
þ vy

@

@y
þ vz

@

@z
(9-4)

in cartesian coordinates. The continuity equation may, thus be written as

Dr

Dt
þ r= � v ¼ 0 (9-5)

When considering the total differential of a quantity, three different approaches may

be taken. If, for instance, we wish to evaluate the change in atmospheric pressure, P, the

total differential written in rectangular coordinates is

dP ¼ @P

@t
dt þ @P

@x
dxþ @P

@y
dyþ @P

@z
dz

where dx, dy, and dz are arbitrary displacements in the x, y, and z directions. The rate of

pressure change is obtained by dividing through by dt, giving

dP

dt
¼ @P

@t
þ dx

dt

@P

@x
þ dy

dt

@P

@y
þ dz

dt

@P

@z
(9-6)

As a first approach, the instrument to measure pressure is located in a weather station,

which is, of course, fixed on Earth’s surface. Thus, the coefficients dx/dt, dy/dt, dz/dt

are all zero, and for a fixed point of observation the total derivative, dP/dt, is equal to the

local derivative with respect to time @P/@t.
A second approach involves the pressure-measuring instrument housed in an aircraft

which, at the pilot’s discretion, can be made to climb or descend, or fly in any chosen x, y, z

direction. In this case, the coefficients dx/dt, dy/dt, dz/dt are the x, y, and z velocities of the

aircraft, and they are arbitrarily chosen, bearing only coincidental relationship to the air

currents.

The third situation is one in which the pressure indicator is in a balloon that rises, falls,

and drifts as influenced by the flow of air in which it is suspended. Here the coefficients dx/

dt, dy/dt, dz/dt are those of the flow and they may be designated vx, vy, and vz, respectively.
This latter situation corresponds to the substantial derivative and the terms may be grouped

as designated below

dP

dt
¼ DP

Dt
¼ @P

@t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
local

rate of

change of

pressure

þ vx
@P

@x
þ vy

@P

@y
þ vz

@P

@z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rate of change

of pressure

due to motion

(9-7)

The derivative D/Dt may be interpreted as the time rate of change of a fluid or flow

variable along the path of a fluid element. The substantial derivative will be applied to

both scalar and vector variables in subsequent sections.

9.2 NAVIER–STOKES EQUATIONS

The Navier–Stokes equations are the differential form of Newton’s second law of motion.

Consider the differential control volume illustrated in Figure 9.1.

9.2 Navier–Stokes Equations 101



The basic tool we shall use in developing the Navier–Stokes equations is Newton’s

second law of motion for an arbitrary control volume as given in Chapter 5P
F ¼

Z Z
c:s:

rvðv � nÞdAþ @

@t

Z Z Z
c:v:

rvdV (5-4)

which states that

sum of the external
forces acting on the

c:v:

( )
¼ net rate of linear

momentum efflux

	 

þ

time rate of change
of linear momentum

within the c:v:

( )

As the mathematical expression for each of the above terms is rather lengthy, each will be

evaluated separately and then substituted into equation (5-4).

The development may be further simplified by recalling that we have, in the prior case,

divided by the volume of the control volume and taken the limit as the dimensions approach

zero. Equation (5-4) can also be written

lim
Dx;Dy;Dz! 0

P
F

DxDyDz
¼ lim

Dx;Dy;Dz! 0

RR
rvðv � nÞ dA
DxDyDz

þ lim
Dx;Dy;Dz! 0

@/@t
RRR

rv dV

DxDyDz (9-8)

11 12 13

11 Sum of the external forces. The forces acting on the control volume are those due to

the normal stress and to the shear stress, and body forces such as that due to gravity. Figure 9.2

y

x

syy ⎜y+∆y

sxx ⎜x+∆x

tyx ⎜y+∆y

tyx ⎜y

txy ⎜x

syy ⎜y

sxx ⎜x

txy ⎜x+∆x

z

y

szz ⎜z+∆z

syy ⎜y+∆y

tzy ⎜z+∆z

tzy ⎜z

tyz ⎜y

szz ⎜z

syy ⎜y

tyz ⎜y+∆y

x

z

sxx ⎜x+∆x

szz ⎜z+∆z

txz ⎜x+∆x

txz ⎜x

tzx ⎜z

sxx ⎜x

szz ⎜z

tzx ⎜z+∆z

Figure 9.2 Forces acting on a differential control volume.
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illustrates the various forces acting on the control volume. Summing the forces in the

x direction, we obtainP
Fx ¼ðsxxjxþDx � sxxjxÞDyDzþ ðtyxjyþDy � tyxjyÞDxDz

þ ðtzxjzþDz � tzxjzÞDxDyþ gxrDxDyDz

where gx is the component of the gravitational acceleration in the x direction. In the limit

as the dimensions of the element approach zero this becomes

lim
Dx;Dy;Dz! 0

P
Fx

DxDyDz
¼ @sxx

@x
þ @tyx

@y
þ @tzx

@z
þ rgx (9-9)

Similar expressions are obtained for the force summations in the y and z directions

lim
Dx;Dy;Dz! 0

P
Fy

DxDyDz
¼ @txy

@x
þ @syy

@y
þ @tzy

@z
þ rgy (9-10)

lim
Dx;Dy;Dz! 0

P
Fz

DxDyDz
¼ @txz

@x
þ @tyz

@y
þ @szz

@z
þ rgz (9-11)

12 Net momentum flux through the control volume. The net momentum flux through

the control volume illustrated in Figure 9.3 is

lim
Dx;Dy;Dz! 0

RR
rvðv � nÞdA
DxDyDz

¼ lim
Dx;Dy;Dz! 0

�
rvvxjxþDx � rvvxjx
� 

DyDz

DxDyDz

þðrvvyjyþDy � rvvyjyÞDxDz
DxDyDz

þ rvvzjzþDz � rvvzjz
� 

DxDy

DxDyDz

¼ @

@x
rvvxð Þ þ @

@y
rvvy
� þ @

@z
rvvzð Þ

(9-12)

Performing the indicated differentiation of the right-hand side of equation (9-12) yields

lim
Dx;Dy;Dz! 0

RR
rvðv � nÞdA
DxDyDz

¼ v
@

@x
ðrvxÞ þ @

@y
ðrvyÞ @

@z
ðrvzÞ

� �

þ r vx
@v

@x
þvy

@v

@y
þvz

@v

@z

� �

y

z

x

rvuy ⎜y + ∆y

rvux ⎜x + ∆x

rvuz ⎜z + ∆z

rvuy ⎜y

rvux ⎜x

rvuz ⎜z

Figure 9.3 Momentum

flux through a

differential control

volume.
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The above term may be simplified with the aid of the continuity equation

@r

@t
þ @

@x
ðrvxÞ þ @

@y
ðrvyÞ þ @

@z
ðrvzÞ ¼ 0 (9-1)

which, upon substitution, yields

lim
Dx;Dy;Dz! 0

RR
rvðv � nÞdA
DxDyDz

¼ �v
@r

@t
þ r vx

@v

@x
þ vy

@v

@y
þ vz

@v

@z

� �
(9-13)

13 Time rate of change of momentum within the control volume. The time rate of

change of momentum within the control volume may be evaluated directly

lim
Dx;Dy;Dz! 0

@/@t
RRR

vr dV

DxDyDz
¼ ð@/@tÞrvDxDyDz

DxDyDz
¼ @

@t
rv ¼ r

@v

@t
þ v

@r

@t
(9-14)

We have now evaluated all terms in equation 9-8

lim
Dx;Dy;Dz! 0

P
F

DxDyDz
¼

@sxx
@x

þ @tyx
@y

þ @tzx
@z

þrgx

� �
ex

@txy
@x

þ @syy
@y

þ @tzy
@z

þrgy

� �
ey

@txz
@x

þ @tyz
@y

þ @szz
@z

þrgz

� �
ez

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð9-9Þ

ð9-10Þ

ð9-11Þ

lim
Dx;Dy;Dz! 0

RR
rvðv � nÞdA
DxDyDz

¼ �v
@r

@t
þ r vx

@v

@x
þ vy

@v

@y
þ vz

@v

@z

� �
(9-13)

lim
Dx;Dy;Dz! 0

@/@t
RRR

rvdV

DxDyDz
¼ r

@v

@t
þ v

@r

@t
(9-14)

It can be seen that the forces are expressed in components, whereas the rate-of-change-of-

momentum terms are expressed as vectors. When the momentum terms are expressed as compo-

nents, we obtain three differential equations that are the statements of Newton’s second law in the x,

y, and z directions

r
@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

þ vz
@vx
@z

� �
¼ rgx þ @sxx

@x
þ @tyx

@y
þ @tzx

@z
(9-15a)

r
@vy
@t

þ vx
@vy
@x

þ vy
@vy
@y

þ vz
@vy
@z

� �
¼ rgy þ @txy

@x
þ @syy

@y
þ @tzy

@z
(9-15b)

r
@vz
@t

þ vx
@vz
@x

þ vy
@vz
@y

þ vz
@vz
@z

� �
¼ rgz þ @txz

@x
þ @tyz

@y
þ @szz

@z
(9-15c)

11

12

13
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It will be noted that in equations (9-15) above, the terms on the left-hand side represent

the time-rate of change of momentum, and the terms on the right-hand side represent the

forces. Focusing our attention on the left-hand terms in equation (9-15a), we see that

@vx
@t|fflfflffl{zfflfflffl}

local

of change

of vx

þ vx
@vx
@x

þ vy
@vx
@y

þ vz
@vx
@z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rate of change in

vx due to motion

¼ @

@t
þ vx

@

@x
þ vy

@

@y
þ vz

@

@z

� �
vx

The first term, @vx=@t, involves the time rate of change of vx at a point and is called the
local acceleration. The remaining terms involve the velocity change from point to point,

that is, the convective acceleration. The sum of these two bracketed terms is the total

acceleration. The reader may verify that the terms on the left-hand side of equations (9-15)

are all of the form

@

@t
þ vx

@

@x
þ vy

@

@y
þ vz

@

@z

� �
vi

where vi ¼ vx, vy, or vz. The above term is the substantial derivative of vi.
When the substantial derivative notation is used, equations (9-15) become

r
Dvx
Dt

¼ rgx þ @sxx
@x

þ @tyx
@y

þ @tzx
@z

(9-16a)

r
Dvy
Dt

¼ rgy þ @txy
@x

þ @syy
@y

þ @tzy
@z

(9-16b)

and

r
Dvz
Dt

¼ rgz þ @txz
@x

þ @tyz
@y

þ @szz
@z

(9-16c)

Equations (9-16) are valid for any type of fluid, regardless of the nature of the stress

rate-of-strain relation. If Stokes’s viscosity relations, equations (7-13) and (7-14), are used

for the stress components, equations (9-16) become

r
Dvx
Dt

¼ rgx � @P

@x
� @

@x

2

3
m= � v

� �
þ = � m

@ v

@x

� �
þ = � m=vxð Þ (9-17a)

r
Dvy
Dt

¼ rgy � @P

@y
� @

@y

2

3
m= � v

� �
þ = � m

@ v

@y

� �
þ = � ðm=vyÞ (9-17b)

and

r
Dvz
Dt

¼ rgz � @P

@z
� @

@z

2

3
m= � v

� �
þ = � m

@ v

@z

� �
þ = � ðm=vzÞ (9-17c)

The above equations are called the Navier–Stokes1 equations and are the differential

expressions of Newton’s second law of motion for a Newtonian fluid. As no assumptions

1 L. M. H. Navier, Mémoire sur les Lois du Mouvements des Fluides, Mem. de l’Acad. d. Sci., 6, 398 (1822);

C. G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, Trans. Cambridge Phys. Soc., 8

(1845).
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relating to the compressibility of the fluid have been made, these equations are valid for

both compressible and incompressible flows. In our study of momentum transfer we shall

restrict our attention to incompressible flow with constant viscosity. In an incompressible

flow, = � v ¼ 0. Equations (9-17) thus become

r
Dvx
Dt

¼ rgx � @P

@x
þ m

@2vx
@x2

þ @2vx
@y2

þ @2vx
@z2

� �
(9-18a)

r
Dvy
Dt

¼ rgy � @P

@y
þ m

@2vy
@x2

þ @2vy
@y2

þ @2vy
@z2

� �
(9-18b)

r
Dvz
Dt

¼ rgz � @P

@z
þ m

@2vz
@x2

þ @2vz
@y2

þ @2vz
@z2

� �
(9-18c)

These equations may be expressed in a more compact form in the single vector
equation

r
Dv

Dt
¼ rg� =Pþ m=2v (9-19)

The above equation is the Navier–Stokes equation for an incompressible flow. The

Navier–Stokes equations are written in cartesian, cylindrical, and spherical coordinate

forms in Appendix E. As the development has been lengthy, let us review the assumptions

and, therefore, the limitations of equation (9-19). The assumptions are

1. incompressible flow,

2. constant viscosity,

3. laminar flow.2

All of the above assumptions are associated with the use of the Stokes viscosity

relation. If the flow is inviscid ðm ¼ 0Þ, the Navier–Stokes equation becomes

r
Dv

Dt
¼ rg� =P (9-20)

which is known as Euler’s equation. Euler’s equation has only one limitation, that being

inviscid flow.

EXAMPLE 1 Equation (9-19) may be applied to numerous flow systems to provide information regarding

velocity variation, pressure gradients, and other information of the type achieved in Chapter 8.

Many situations are of sufficient complexity to make the solution extremely difficult and are

beyond the scope of this text. A situation for which a solution can be obtained is illustrated in

Figure 9.4.

Figure 9.4 shows the situation of an incompressible fluid confined between two parallel, vertical

surfaces. One surface, shown to the left, is stationary, whereas the other is moving upward at a

constant velocity v0. If we consider the fluidNewtonian and the flow laminar, the governing equation

2 Strictly speaking, equation (9-19) is valid for turbulent flow, as the turbulent stress is included in the

momentum flux term. This will be illustrated in Chapter 12.
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of motion is the Navier–Stokes equation in the form given by equation (9-19). The reduction of each

term in the vector equation into its applicable form is shown below.

r
Dv

Dt
¼ r

@v

@t
þ vx

@v

@x
þ vy

@v

@y
þvz

@v

@z

	 

¼ 0

rg ¼ �rgey

=P ¼ dP

dy
ey

where dP/dy is constant, and

m=2v ¼ m
d2vy
dx2

ey

The resulting equation to be solved is

0 ¼ �rg� dP

dy
þ m

d2vy
dx2

This differential equation is separable. The first integration yields

dvy
dx

þ x

m
�rg� dP

dy

	 

¼ C1

Integrating once more, we obtain

vy þ x2

2m
�rg� dP

dy

	 

¼ C1xþ C2

The integration constants may be evaluated, using the boundary conditions that vy ¼ 0 at x ¼ 0, and

vy ¼ v0 at x ¼ L. The constants thus become

C1 ¼ v0
L
þ L

2m
�rg� dP

dy

	 

and C2 ¼ 0

The velocity profile may now be expressed as

vy ¼ 1

2m
�rg� dP

dy

	 

Lx� x2
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þ v0
x

L|{z} (9-21)

11 12

It is interesting to note, in equation (9-21), the effect of the terms labeled11 and12 , which are
added. The first term is the equation for a symmetric parabola, the second for a straight line. Equation

(9-21) is validwhether v0 is upward, downward, or zero. In each case, the termsmaybe added to yield

the complete velocity profile. These results are indicated in Figure 9.5. The resulting velocity profile

obtained by superposing the two parts is shown in each case.

y

x u0

L

Fluid

Figure 9.4 Fluid between

two vertical plates with

the one on the left

stationary and the other

on the right moving

vertically upward with

velocity v0:
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Euler’s equation may also be solved to determine velocity profiles, as will be shown in

Chapter 10. The vector properties of Euler’s equation are illustrated by the example below, in

which the form of the velocity profile is given.

EXAMPLE 2 A rotating shaft, as illustrated in Figure 9.6, causes the fluid to move in circular streamlines with a

velocity that is inversely proportional to the distance from the shaft. Find the shape of the free surface

if the fluid can be considered inviscid.

As the pressure along the free surface will be constant, we may observe that the free surface is

perpendicular to the pressure gradient. Determination of the pressure gradient, therefore, will enable

us to evaluate the slope of the free surface.

Streamlines

Figure 9.6 Rotating shaft in a

fluid.

u0

+

=

=

=

u0

+ +

Figure 9.5 Velocity

profiles for one surface

moving upward, downward,

or stationary.

Rearranging equation (9-20), we have

=P ¼ rg� r
Dv

Dt
(9-20)

The velocity v ¼ Aeu/r, where A is a constant, when using the coordinate system shown in

Figure 9.7. Assuming that there is no slip between the fluid and the shaft at the surface of the
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shaft, we have

vðRÞ ¼ vR ¼ A

R

ez

z

r

w

q

er

eq

Figure 9.7 Cylindrical coordinate system for

rotating shaft and fluid.

and thus A ¼ vR2 and

v ¼ vR2

r
eu

The substantial derivative Dv/Dt may be evaluated by taking the total derivative

dv

dt
¼ �vR2

r2
eur_þ vR2

r

deu

dt

where deu/dt ¼ �u_er . The total derivative becomes

dv

dt
¼ �vR2

r2
r_eu � vR2

r
u_er

Now the fluid velocity in the r direction is zero, and u̇ for the fluid is v/r, so

dv

dt

� �
fluid

¼ Dv

Dt
¼ �vR2

r2
ver ¼ �v2R4

r3
er

This result could have been obtained in a more direct manner by observing that Dv/Dt is the local

fluid acceleration, which for this case is �v2er/r. The pressure gradient becomes

=P ¼ �rgez þ r
v2R4er

r3

From Figure 9.8, it can be seen that the free surface makes an angle b with the r axis so that

tan b ¼ rv2R4

r3rg

¼ v2R4

gr3
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9.3 BERNOULLI’S EQUATION

Euler’s equation may be integrated directly for a particular case, flow along a streamline. In

integrating Euler’s equation, the use of streamline coordinates is extremely helpful.

Streamline coordinates s and n are illustrated in Figure 9.9. The s direction is parallel

to the streamline and the n direction is perpendicular to the streamline, directed away from

the instantaneous center of curvature. The flow and fluid properties are functions of position

and time. Thus, v ¼ v(s, n, t), andP ¼ P(s, n, t). The substantial derivatives of the velocity

and pressure gradients in equation (9-20) must be expressed in terms of streamline

coordinates so that equation (9-20) may be integrated.

Following the form used in equations (9-6) to obtain the substantial derivative, we have

dv

dt
¼ @v

@t
þ ṡ

@v

@s
þ ṅ

@v

@n

As the velocity of the fluid element has components ṡ ¼ v; ṅ ¼ 0, the substantial derivative

of the velocity in streamline coordinates is

Dv

Dt
¼ @v

@t
þ v

@v

@s
(9-22)

z

r

Free surface

b–rgez

er
rw2R4

r3

∇P

Figure 9.8 Free-surface slope.

y

z

x

en es
v

Streamlines

Figure 9.9 Streamline

coordinates.
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The pressure gradient in streamline coordinates may be written as

=P ¼ @P

@s
es þ @P

@n
en (9-23)

Taking the dot product of equation (9-20) with es ds, and using equations (9-22) and

(9-23), we obtain

r
@v

@t
� es dsþ v

@v

@s
� es ds

� �
¼ rg � es ds� @P

@s
es þ @P

@n
en

� �
� es ds

or, as @v/@s � es ¼ @/@sðv � esÞ ¼ @v/@s, we have

r
@v

@t
� es dsþ @

@s

v2

2

	 

ds

� �
¼ rg � es ds� @P

@s
ds (9-24)

Selecting g to act in the �y direction, we have g � es ds ¼ �g dy. For steady incom-

pressible flow, equation (9-24) may be integrated to yield

v2

2
þ gyþ P

r
¼ constant (9-25)

which is known as Bernoulli’s equation. The limitations are

1. inviscid flow,

2. steady flow,

3. incompressible flow,

4. the equation applies along a streamline.

Limitation 4 will be relaxed for certain conditions to be investigated in Chapter 10.

Bernoulli’s equation was also developed in Chapter 6 from energy considerations for

steady incompressible flow with constant internal energy. It is interesting to note that the

constant internal energy assumption and the inviscid flow assumptionmust be equivalent, as

the other assumptionswere the same.Wemay note, therefore, that the viscosity in someway

will effect a change in internal energy.

9.4 CLOSURE

We have developed the differential equations for the conservation of mass and Newton’s

second law of motion. These equations may be subdivided into two special groups

@r

@t
þ = � rv ¼ 0 (9-26)

(continuity equation)

Inviscid flow

r
Dv

Dt
¼ rg� =P (9-27)

(Euler’s equation)

Incompressible, viscous flow

= � v ¼ 0 (9-28)

(continuity equation)

r
Dv

Dt
¼ rg� =Pþ m=2v (9-29)

(Navier–Stokes equation

for incompressible flow)
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In addition, the student should note the physical meaning of the substantial derivative

and appreciate the compactness of the vector representation. In component form, for

example, equation (9-29) comprises some 27 terms in cartesian coordinates.

PROBLEMS

9.1 Apply the law of conservation of mass to an element in a

polar coordinate system and obtain the continuity equation for a

steady, two-dimensional, incompressible flow.

9.2 In cartesian coordinates, show that

vx
@

@x
þ vy

@

@y
þ vz

@

@z

may bewritten ðv � =Þ.What is the physicalmeaning of the term

ðv � =Þ?
9.3 In an incompressible flow, the volume of the fluid is

constant. Using the continuity equation, = � v ¼ 0, show that

the fluid volume change is zero.

9.4 FindDv/Dt in polar coordinates by taking the derivative of

the velocity. (Hint: v ¼ vrðr; u; tÞer þ vuðr; u; tÞeu: Remember

that the unit vectors have derivatives.)

9.5 For flow at very low speeds and with large viscosity (the

so-called creeping flows) such as occur in lubrication, it is

possible to delete the inertia terms, Dv/Dt, from the Navier–

Stokes equation. For flows at high velocity and small viscosity, it

is not proper to delete the viscous term v=2v. Explain this.

9.6 Using the Navier–Stokes equations and the continuity

equation, obtain an expression for the velocity profile between

two flat, parallel plates.

9.7 Does the velocity distribution in Example 2 satisfy con-

tinuity?

9.8 The atmospheric density may be approximated by the

relation r ¼ r0 exp(� y/b), where b ¼ 22,000 ft. Determine

the rate at which the density changes with respect to body falling

at v fps. If v ¼ 20,000 fps at 100,000 ft, evaluate the rate of

density change.

9.9 In a velocity field where v¼ 400[(y/L)2ex þ (x/L)2ey] fps,

determine the pressure gradient at the point (L, 2L). The y axis is

vertical, the density is 64:4 lbm/ft
3 and the flow may be con-

sidered inviscid.

9.10 Write equations (9-17) in component form for cartesian

coordinates.

9.11 Derive equation (2-3) from equation (9-27).

9.12 In polar coordinates, the continuity equation is

1

r

@

@r
ðrvrÞ þ 1

r

@vu
@u

¼ 0

Show that

(a) if vu ¼ 0, then vr ¼ F(u)/r;

(b) if vr ¼ 0, then vu ¼ f (r).

9.13 Using the laws for the addition of vectors and equation (),

show that in the absence of gravity,

(a) the fluid acceleration, pressure force, and viscous force all

lie in the same plane;

(b) in the absence of viscous forces the fluid accelerates in the

direction of decreasing pressure;

(c) a static fluid will always start to move in the direction of

decreasing pressure.

9.14 Obtain the equations for a one-dimensional steady, vis-

cous, compressible flow in the x direction from the Navier–

Stokes equations. (These equations, togetherwith an equation of

state and the energy equation,may be solved for the case ofweak

shock waves.)

9.15 Obtain the equations for one-dimensional inviscid,

unsteady, compressible flow.

9.16 Using the Navier–Stokes equations as given in Appendix

E work Problems 8.17 and 8.18.

9.17 Using the Navier–Stokes equations, find the differential

equation for a radial flow in which vz ¼ vu ¼ 0, and vr ¼ f (r).

Using continuity, show that the solution to the equation does not

involve viscosity.

9.18 Using the Navier–Stokes equations in Appendix E, solve

Problem 8.13.

9.19 For the flow described in Problem 8.13, obtain the

differential equation of motion if vu ¼ f (r; t).

9.20 Determine the velocity profile in a fluid situated between

two coaxial rotating cylinders. Let the inner cylinder have radius

R1, and angular velocityV1; let the outer cylinder have radiusR2

and angular velocity V2.
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Chapter 10

Inviscid Fluid Flow

An important area in momentum transfer is inviscid flow, in which, by virtue of the

absence of shear stress, analytical solutions to the differential equations of fluid flow

are possible.

The subject of inviscid flow has particular application in aerodynamics and

hydrodynamics and general application to flow about bodies—the so called external

flows. In this chapter, we shall introduce the fundamentals of inviscid flow analysis.

10.1 FLUID ROTATION AT A POINT

Consider the element of fluid shown in Figure 10.1. In time Dt the element will move in the

xy plane as shown. In addition to translation, the element may also deform and rotate. We

have discussed the deformation previously in Chapter 7. Now let us focus our attention on

the rotation of the element. Although the element may deform, the orientation will be given

by the average rotation of the line segments OB and OA or by denoting the rotation by

vz ¼ d

dt

aþ b

2

� �
where the counterclockwise sense is positive. From Figure 10.1, we see that

vz ¼ lim
Dx;Dy;Dz;Dt! 0

1

2

� arctan
�
vyjxþDx � vyjx
� 

Dt
�
=Dx

� �
Dt

þ arctanf� �ðvxjyþDy � vxjyÞDt
�
=Dyg

Dt

 !

O

y

x

A
t

�y

�x

B

a

b

O

A

t + �t

B

Figure 10.1 Rotation of a fluid

element.
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which becomes, in the limit,

vz ¼ 1

2

@vy
@x

� @vx
@y

� �
(10-1)

The subscript z indicates that the rotation is about the z axis.

In the xz and yz planes the rotation at a point is given by

vy ¼ 1

2

@vx
@z

� @vz
@x

� �
(10-2)

and

vx ¼ 1

2

@vz
@y

� @vy
@z

� �
(10-3)

The rotation at a point is related to the vector cross product of the velocity. As the

student may verify

=� v ¼ @vz
@y

� @vy
@z

� �
ex þ @vx

@z
� @vz

@x

� �
ey þ @vy

@x
� @vx

@y

� �
ez

and thus

=� v ¼ 2v (10-4)

The vector =� v is also known as the vorticity. When the rotation at a point is zero

the flow is said to be irrotational. For irrotational flow =� v ¼ 0, as can be seen from

equation (10-4). The significance of fluid rotation at a point may be examined by a

different approach. The Navier–Stokes equation for incompressible flow, equation (9-29),

may also be written in the form

r
Dv

Dt
¼ �=Pþ rg� m½=� ð=� vÞ� (9-29)

It may be observed from the above equation that if viscous forces act on a fluid, the flow

must be rotational.

The kinematic condition =� v ¼ 0 is not the first time we have encountered a

kinematic relation that satisfies one of the fundamental physical laws of fluid mechanics.

The law of conservation ofmass for an incompressible flow,= � v ¼ 0; is also expressed as a
kinematic relation. The use of this relation is the subject of the next section.

10.2 THE STREAM FUNCTION

For a two-dimensional, incompressible flow, the continuity equation is

= � v ¼ @vx
@x

þ @vy
@y

¼ 0 (9-3)

Equation (9-3) indicates that vx and vy are related in some way so that @vx/@x ¼
�ð@vy/@yÞ: Perhaps the easiest way to express this relation is by having vx and vy both
related to the same function. Consider the function F(x; y); if vx ¼ F(x; y), then

@vy
@y

¼ � @F

@x
or vy ¼ �

Z
@F

@x
dy
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Unfortunately, the selection of vx ¼ F(x; y) results in an integral for vy. We can easily

remove the integral sign if we make the original F(x,y) equal to the derivative of some

function with respect to y. For example, if F(x; y) ¼ (@C(x; y)/@y]; then

vx ¼ @C

@y

As @vx/@x ¼ �(@vy/@y); we may write

@vy
@y

¼ � @

@x

@C

@y

� �
or

@

@y
vy þ @C

@x

� �
¼ 0

for this to be true in general

vy ¼ � @C

@x

Instead of having two unknowns, vx and vy, we now have only one unknown, C. The

unknown,C, is called the stream function. The physical significance ofC can be seen from

the following considerations. As C ¼ C(x; y); the total derivative is

dC ¼ @C

@x
dxþ @C

@y
dy

Also

@C

@x
¼ �vy and

@C

@y
¼ vx

and thus

dC ¼ �vy dxþ vx dy (10-5)

Consider a path in the xy plane such thatC ¼ constant: Along this path, dC ¼ 0; and
thus equation (10-5) becomes

dy

dx

����
C¼constant

¼ vy
vx

(10-6)

The slope of the pathC ¼ constant is seen to be the same as the slope of a streamline as

discussed in Chapter 3. The function C(x; y) thus represents the streamlines. Figure 10.2

illustrates the streamlines and velocity components for flow about an airfoil.

The differential equation that governs C is obtained by consideration of the fluid

rotation,v, at a point. In a two-dimensional flow,vz ¼ ½ [(@vy/@x)� (@vx/@y)], and thus if

Figure 10.2 Streamlines

and the stream function.
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the velocity components vy and vx are expressed in terms of the stream function C, we

obtain, for an incompressible, steady flow

�2vz ¼ @2C

@x2
þ @2C

@y2
(10-7)

When the flow is irrotational, equation (10-7) becomes Laplace’s equation

=2C ¼ @2C

@x2
þ @2C

@y2
¼ 0 (10-8)

10.3 INVISCID, IRROTATIONAL FLOWABOUT
AN INFINITE CYLINDER

In order to illustrate the use of the stream function, the inviscid, irrotational flow pattern

about a cylinder of infinite length will be examined. The physical situation is illustrated in

Figure 10.3. A stationary circular cylinder of radius a is situated in uniform, parallel flow in

the x direction.

As there is cylindrical symmetry, polar coordinates are employed. In polar coordi-

nates,1 equation (10-8) becomes

@2C

@r2
þ 1

r

@C

@r
þ 1

r2
@2C

@u2
¼ 0 (10-9)

where the velocity components vr and vu are given by

vr ¼ 1

r

@C

@u
vu ¼ � @C

@r
(10-10)

The solution for this case must meet four boundary conditions. These are as follows:

1. The circle r ¼ a must be a streamline. As the velocity normal to a streamline is

zero, vrjr¼a ¼ 0 or @C/@ujr¼a ¼ 0:

2. From symmetry, the line u ¼ 0 must also be a streamline. Hence vuju¼0 ¼ 0 or

@C/@rju¼0 ¼ 0:

3. As r!1 the velocity must be finite.

4. The magnitude of the velocity as r!1 is v1; a constant.

q
u�

r

y

a
x

Figure 10.3 Cylinder in a uniform

flow.

1 The operator =2 in cylindrical coordinates is developed in Appendix A.
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The solution to equation (10-9) for this case is

Cðr; uÞ ¼ v1r sinu 1� a2

r2

� �
(10-11)

The velocity components vr and vu are obtained from equation (10-10),

vr ¼ 1

r

@C

@u
¼ v1 cosu 1� a2

r2

� �
(10-12)

and

vu ¼ � @C

@r
¼ �v1 sinu 1þ a2

r2

� �
(10-13)

By setting r ¼ a in the above equations, the velocity at the surface of the cylinder may be

determined. This results in

vr ¼ 0

and

vu ¼ �2v1 sinu (10-14)

The velocity in the radial direction is, of course, zero, as the cylinder surface is a

streamline. The velocity along the surface is seen to be zero at u ¼ 0 and u ¼ 180�: These
points of zero velocity are known as stagnation points. The forward stagnation point is at

u ¼ 180�; and the aft or rearward stagnation point is at u ¼ 0�: The student may verify

that each of the boundary conditions for this case are satisfied.

10.4 IRROTATIONAL FLOW, THE VELOCITY POTENTIAL

In a two-dimensional irrotational flow =� v ¼ 0; and thus @vx/@y ¼ @vy; /@x: The

similarity of this equation to the continuity equation suggests that the type of relation

used to obtain the stream function may be used again. Note, however, that the order of

differentiation is reversed from the continuity equation. If we let vx ¼ @f(x; y)/@x, we
observe that

@vx
@y

¼ @2f

@x@y
¼ @vy

@x

or

@

@x

@f

@y
� vy

� �
¼ 0

and for the general case

vy ¼ @f

@y

The function f is called the velocity potential. In order for f to exist, the flow must be

irrotational. As the condition of irrotationality is the only condition required, the velocity

potential can also exist for compressible, unsteady flows. The velocity potential is

commonly used in compressible flow analysis. Additionally, the velocity potential, f exists

for three-dimensional flows, whereas the stream function does not.
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The velocity vector is given by

v ¼ vxex þ vyey þ vzez ¼ @f

@x
ex þ @f

@y
ey þ @f

@z
ez

and thus, in vector notation

v ¼ =f (10-15)

The differential equation defining f is obtained from the continuity equation. Considering

a steady incompressible flow, we have = � v ¼ 0; thus, using equation (10-15) for v, we

obtain

=�=f ¼ =2f ¼ 0 (10-16)

which is again Laplace’s equation; this time the dependent variable is f. Clearly, C and f

must be related. This relation may be illustrated by a consideration of isolines ofC and f.

An isoline of C is, of course, a streamline. Along the isolines

dC ¼ @C

@x
dxþ @C

@y
dy

or

dy

dx

����
C¼constant

¼ vy
vx

and

df ¼ @f

@x
dxþ @f

@y
dy

dy

dx

����
df¼0

¼ � vx
vy

Accordingly

dy/dx f¼constant ¼ � 1

dy/dx

����
����
C¼constant

(10-17)

and thus C and f are orthogonal. The orthogonality of the stream function and the

velocity potential is a useful property, particularly when graphical solutions to

equations (10-8) and (10-16) are employed.

Figure 10.4 illustrates the inviscid, irrotational, steady incompressible flow about an

infinite circular cylinder. Both the streamlines and constant-velocity potential lines are

shown.

Figure 10.4 Streamlines and constant

velocity potential lines for steady,

incompressible, irrotational, inviscid flow

about a cylinder.
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10.5 TOTAL HEAD IN IRROTATIONAL FLOW

The condition of irrotationality has been shown to be of aid in obtaining analytical solutions

in fluid flow. The physical meaning of irrotational flow can be illustrated by the relation

between the rotation or vorticity,=� v, and the total head,P/rþ v2/2þ gy: For an inviscid
flow we may write

Dv

Dt
¼ g� =P

r
(Euler’s equation)

and

Dv

Dt
¼ @v

@t
þ =

v2

2

� �
� v� ð=� vÞ (Vector identity)

As the gradient of the potential energy is�g, Euler’s equation becomes, for incompressible

flow

=
P

r
þ v2

2
þ gy

	 

¼ v� ð=� vÞ � @v

@t
: (10-18)

If the flow is steady, it is seen from equation (10-18) that the gradient of the total head

depends upon the vorticity, =� v: The vector ð=� vÞ is perpendicular to the velocity

vector; hence, the gradient of the total head has no component along a streamline. Thus,

along a streamline in an incompressible, inviscid, steady flow,

P

r
þ v2

2
þ gy ¼ constant (10-19)

This is, of course, Bernoulli’s equation, which was discussed in Chapters 6 and 9. If the

flow is irrotational and steady, equation (10-18) yields the result that Bernoulli’s equation is

valid throughout the flow field. An irrotational, steady, incompressible flow, therefore, has a

constant total head throughout the flow field.2

10.6 UTILIZATION OF POTENTIAL FLOW

Potential flowhas great utility in engineering for the prediction of pressure fields, forces, and

flow rates. In the field of aerodynamics, for example, potential flow solutions are used to

predict force and moment distributions on wings and other bodies.

An illustration of the determination of the pressure distribution from a potential flow

solutionmay be obtained from the solution for the flowabout a circular cylinder presented in

Section 10.3. From the Bernoulli equation

P

r
þ v2

2
¼ constant (10-20)

We have deleted the potential energy term in accordance with the original assumption of

uniform velocity in the x direction. At a great distance from the cylinder the pressure is

P1, and the velocity is v1, so equation (10-20) becomes3

Pþ rv2

2
¼ P1 þ rv21

2
¼ P0 (10-21)

2 A more general result, Crocco’s theorem, relates the vorticity to the entropy. Thus it can be shown that a

steady, inviscid, irrotational flow, either compressible or incompressible, is isentropic.
3 The stagnation pressure as given in equation (10-21) applies to incompressible flow only.
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where P0 is designated the stagnation pressure (i.e., the pressure at which the velocity

is zero). In accordance with equation (10-19), the stagnation pressure is constant

throughout the field in an irrotational flow. The velocity at the surface of the body is

vu ¼ �2v1 sinu, thus the surface pressure is

P ¼ P0 � 2rv21sin2u (10-22)

A plot of the potential flow pressure distribution about a cylinder is shown in Figure

10.5.

10.7 POTENTIAL FLOWANALYSIS—SIMPLE PLANE FLOW CASES

In this section, a number of cases will be considered in which solutions are achieved for

two-dimensional, incompressible irrotational flow. We begin with some very straightfor-

ward flow situations.

Case 1. Uniform flow in the x direction.

For a uniform flow parallel to the x axis, with velocity v1 ¼ constant; the stream

function and velocity potential relationships are

vx ¼ v1 ¼ @C

@ y
¼ @f

@x

vy ¼ 0 ¼ @C

@x
¼ @f

@y

which integrate to yield

C ¼ v1y

f ¼ v1x

Case 2. A line source or sink.
A line source, in two dimensions, is a flow which is radially outward from the source

which is the origin in this example. The reverse, or sink flow, has the flow directed inward.
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Figure 10.5 Pressure distribution

on a cylinder in an inviscid,

incompressible, steady flow.
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The source strength is the volume flow rate per unit depth, Q ¼ 2prvr: The radial velocity
associated with a source is

vr ¼ Q

2pr

and the azimuthal velocity is given by vu ¼ 0: The stream function and velocity potential

are evaluated from the expressions

vr ¼ Q

2pr
¼ 1

r

@C

@u
¼ @f

@r

vu ¼ 0 ¼ � @C

@r
¼ 1

r

@f

@u

Integrating these expressions, we obtain for the line source

C ¼ Q

2p
u

f ¼ Q

2p
ln r

For sink flow, the sign of the radial velocity is negative (inward) and thus Q is negative.

The expressions for a line source or sink present a problem at r ¼ 0, the origin, which

is a singular point. At r ¼ 0, the radial velocity approaches infinity. Physically this is

unrealistic, and we use only the concept of line source or sink flow under conditions where

the singularity is excluded from consideration.

Case 3. A line vortex.

Vortex flow is that which occurs in a circular fashion around a central point, such as a

whirlpool.A freevortex is onewherefluidparticles are irrotational, i.e., theydonot rotate as they

move in concentric circles about the axis of thevortex.Thiswould be analogous to people sitting

in cabins on a ferris wheel. For an irrotational flow in polar coordinates (see Appendix B), the

product rvumust be constant. The stream function and velocity potential can bewritten directly,

vr ¼ 0 ¼ 1

r

@C

@u
¼ @f

@r

vu ¼ K

2pr
¼ � @C

@r
¼ 1

r

@f

@u

which, upon integration, become

C ¼ � K

2p
ln r

f ¼ K

2p
u

where K is referred to as the vortex strength. When K is positive, the flow is observed to be

counterclockwise about the vortex center.

10.8 POTENTIAL FLOWANALYSIS—SUPERPOSITION

It was shown earlier that both the stream function and the velocity potential satisfy Laplace’s

equation for two-dimensional, irrotational, incompressible flow. As Laplace’s equation is

linearwe can use known solutions to achieve expressions for bothC andw formore complex

situations using the principle of superposition. Superposition, simply put, is the process of

adding known solutions to achieve another, i.e., ifC1 andC2 are solutions to=
2C ¼ 0, then

so is C3 ¼ C1 þC2 a solution.
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The reader is reminded that the solutions obtained for these very specialized flow

conditions are idealizations. They apply for inviscid flow which is a reasonable approx-

imation for conditions outside the region, near a solid body, where viscous effects are

manifested. This region, the boundary layer, will be considered in some depth inChapter 12.

Some cases will now be considered where the elementary plane flows of the previous

section give some interesting and useful results through the process of superposition.

Case 4. The doublet.

A useful case is achieved from considering a source-sink pair on the x axis as the

separation distance, 2a, approaches zero. Geometrically, we can note that the streamlines

and velocity potential lines are circles with centers on the y and x axes but with all circles

passing through the origin that is a singular point.

The strength of a double, designated l, is defined as the finite limit of the quantity

2aQ as a! 0. For our case, the source is placed on the x axis at�a and the sink is placed on

the x axis at þa. The resulting expressions for C and f in polar coordinates are

C ¼ � l sinu

r

f ¼ l cosu

r

Case 5. Flow past a half body—superposition of uniform flow and a source.

The stream function and velocity potentials for uniform flow in the x direction and for a

line source are added together, yielding

C ¼ Cuniform flow þCsource

¼ v1yþ Q

2p
u ¼ v1r sinu þ Q

2p
u

f ¼ funiform flow þ fsource

¼ v1xþ Q

2p
ln r ¼ v1r cosu þ Q

2p
ln r

Case 6. Flow past a cylinder—superposition of uniform flow and a doublet.

As a final illustration of the superposition method, we will consider a case of

considerable utility. When the solutions for uniform flow and the doublet are superposed,

the result, similar to the past case, defines a streamline pattern inside and around the outside

surface of a body. In this case the body is closed and the exterior flow pattern is that of ideal

flow over a cylinder. The expressions for C and w are

C ¼ Cuniform flow þCdoublet

¼ v1y� l sinu

r
¼ v1r sinu � l sinu

r

¼ v1r � l

r

� �
sinu

f ¼ funiform flow þ fdoublet

¼ v1xþ l cosu

r
¼ v1r cosu þ l cosu

r

¼ v1r þ l

r

� �
cosu
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It is useful, at this point, to examine the above expressions in more detail. First, for the

stream function

C ¼ v1r � l

r

� �
sinu

¼ v1r 1� l/v1
r2

� �
sinu

where, as we recall, l is the doublet strength. If we choose l such that

l

v1
¼ a2

where a is the radius of our cylinder, we obtain

Cðr; uÞ ¼ v1r sinu 1� a2

r2

� �
which is the expression used earlier, designated as equation (10-11).

10.9 CLOSURE

In this chapter, we have examined potential flow. A short summary of the properties of the

stream function and the velocity potential is given below.

Stream function

1. A stream function C(x; y) exists for each and every two-dimensional, steady,

incompressible flow, whether viscous or inviscid.

2. Lines for which C(x; y) ¼ constant are streamlines.

3. In cartesian coordinates

vx ¼ @C

@y
vy ¼ � @C

@x
(10-23a)

and in general

vs ¼ @C

@n
(10-23b)

where n is 908 counterclockwise from s.

4. The stream function identically satisfies the continuity equation.

5. For an irrotational, steady incompressible flow

=2C ¼ 0 (10-24)

Velocity potential

1. The velocity potential exists if and only if the flow is irrotational. No other

restrictions are required.

2. =f ¼ v:

3. For irrotational, incompressible flow, =2f ¼ 0:

4. For steady, incompressible two-dimensional flows, lines of constant velocity

potential are perpendicular to the streamlines.
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PROBLEMS

10.1 In polar coordinates, show that

=� v ¼ 1

r

@ðrvuÞ
@r

� @vr
@u

� �
ez

10.2 Determine the fluid rotation at a point in polar coordi-

nates, using the method illustrated in Figure 10.1.

10.3 Find the stream function for a flow with a uniform free-

streamvelocity v1:The free-streamvelocity intersects the x axis

at an angle a.

10.4 In polar coordinates, the continuity equation for steady

incompressible flow becomes

1

r

@

@r
ðrvrÞ þ 1

r

@vu
@u

¼ 0

Derive equations (10-10), using this relation.

10.5 The velocity potential for a given two-dimensional flow

field is

f ¼ 5

3

� �
x3 � 5xy2

Show that the continuity equation is satisfied and determine the

corresponding stream function.

10.6 Make an analytical model of a tornado using an irrota-

tional vortex (with velocity inversely proportional to distance

from the center) outside a central core (with velocity directly

proportional to distance). Assume that the core diameter is 200 ft

and the static pressure at the center of the core is 38 psf below

ambient pressure. Find

(a) the maximum wind velocity;

(b) the time it would take a tornadomoving at 60mph to lower

the static pressure from �10 to �38 psfg;

(c) the variation in stagnation pressure across the tornado.

Euler’s equation may be used to relate the pressure gra-

dient in the core to the fluid acceleration.

10.7 For the flow about a cylinder, find the velocity variation

along the streamline leading to the stagnation point. What is the

velocity derivative @vr/@r at the stagnation point?

10.8 In Problem 10.7, explain how one could obtain @vu/@u at
the stagnation point, using only r and @vr/@r:

10.9 At what point on the surface of the circular cylinder in a

potential flow does the pressure equal the free-stream pressure?

10.10 For the velocity potentials given below, find the stream

function and sketch the streamlines

(a) f ¼ v1L
x

L

� �3� 3xy2

L3

� �
(b) f ¼ v1

xy

L

(c) f ¼ v1L

2
ln x2 þ y2
� 

:

10.11 The stream function for an incompressible, two-dimen-

sional flow field is
c ¼ 2r3 sin 3u

For this flow field, plot several streamlines for 0 � u � p=3:
10.12 For the case of a source at the origin with a uniform free-

stream plot the streamline c ¼ 0.

10.13 In Problem 10.12, how far upstream does the flow from

the source reach?

10.14 Determine the pressure gradient at the stagnation point

of Problem 10.10(a).

10.15 Calculate the total lift force on the Arctic hut shown

below as a function of the location of the opening. The lift force

results from the difference between the inside pressure and the

outside pressure. Assume potential flow and the hut is in the

shape of a half-cylinder.

q
u�

0pening

10.16 Consider three equally spaced sources of strength m

placed at (x, y) ¼ (� a, 0),(0, 0), and (a, 0). Sketch the resulting

streamline pattern. Are there any stagnation points?

10.17 Sketch the streamlines and potential lines of the flowdue

to a line source of at (a, 0) plus an equivalent sink at (�a, 0).

10.18 The stream function for an incompressible, two-

dimensional flow field is

c ¼ 3x2yþ y

For this flow field, sketch several streamlines.

10.19 A line vortex of strength K at (x, y) ¼ (0, a) is combined

withopposite strength vortex at (0,� a):Plot the streamline pattern

and find the velocity that each vortex induces on the other vortex.

10.20 A source of strength 1:5m2/s at the origin is combined

with a uniform streammoving at 9 m/s in the x direction. For the

half-body which results, find

(a) the stagnation point;

(b) the body height as it crosses the y axis;

(c) the body height at large x;

(d) the maximum surface velocity and its position (x, y).

10.21 When a doublet is added to a uniform stream so that the

source part of the doublet faces the stream, a cylinder flow

results. Plot the streamlines when the doublet is reversed so that

the sink faces the stream.

10.22 A 2-m-diameter horizontal cylinder is formed by bolting

two semicylindrical channels together on the inside. There are

12 bolts per meter of width holding the top and bottom together.

The inside pressure is 60 kPa (gage). Using potential theory for

the outside pressure, compute the tension force in each bolt if the

free stream fluid is sea-level air and the free-stream wind speed is

25 m/s.
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Chapter 11

Dimensional Analysis

and Similitude

An important consideration in all equations written thus far has been dimensional

homogeneity. At times it has been necessary to use proper conversion factors in order

that an answer be correct numerically and have the proper units. The idea of

dimensional consistency can be used in another way, by a procedure known as

dimensional analysis, to group the variables in a given situation into dimensionless

parameters that are less numerous than the original variables. Such a procedure is very

helpful in experimental work in which the very number of significant variables presents

an imposing task of correlation. By combining the variables into a smaller number of

dimensionless parameters, the work of experimental data reduction is considerably

reduced.

This chapter will include means of evaluating dimensionless parameters both in

situations in which the governing equation is known, and in those in which no equation

is available. Certain dimensionless groups emerging from this analysis will be familiar,

and some others will be encountered for the first time. Finally, certain aspects of

similarity will be used to predict the flow behavior of equipment on the basis of

experiments with scale models.

11.1 DIMENSIONS

In dimensional analysis, certain dimensions must be established as fundamental, with all

others expressible in terms of these. One of these fundamental dimensions is length,

symbolized L. Thus, area and volume may dimensionally be expressed as L2 and L3,

respectively. A second fundamental dimension is time, symbolized t. The kinematic

quantities, velocity and acceleration, may now be expressed as L/t and L/t2, respectively.

Another fundamental dimension is mass, symbolized M. An example of a quantity

whose dimensional expression involves mass is the density that would be expressed as

M/L3. Newton’s second law of motion gives a relation between force and mass and

allows force to be expressed dimensionally as F ¼ Ma ¼ ML/t2. Some texts reverse this

procedure and consider force fundamental, with mass expressed in terms of F, L, and t

according to Newton’s second law of motion. Here, mass will be considered a fundamental

unit.

The significant quantities in momentum transfer can all be expressed dimensionally in

terms ofM, L, and t; thus these comprise the fundamental dimensions we shall be concerned

with presently. The dimensional analysis of energy problems in Chapter 19 will require the

addition of two more fundamental dimensions, heat and temperature.
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Some of the more important variables in momentum transfer and their dimensional

representations in terms of M, L, and t are given in Table 11.1.

11.2 DIMENSIONAL ANALYSIS OF GOVERNING DIFFERENTIAL EQUATIONS

The differential equations that describe fluid behavior as developed in Chapter 9 are

powerful tools for analyzing and predicting fluid phenomena and their effects. The Navier–

Stokes equations have been solved analytically for a few simple situations. For more

complex applications, these relationships provide the basis for a number of sophisticated

and powerful numerical codes.

In this section, we will use the differential forms of the continuity and momentum

(Navier–Stokes) equations to develop some useful dimensionless parameters that will be

valuable tools for subsequent analysis. This process will now be illustrated as we examine

two-dimensional incompressible flow.

The governing differential equations are the following.

Continuity:

@vx
@x

þ @vy
@y

¼ 0 (9-3)

Momentum:

r
@v

@t
þ vx

@v

@x
þ vy

@v

@y

� �
¼ rg� =rþ m

@2v

@x2
þ @2v

@y2

� �
(9-19)

We now stipulate the reference values for length and velocity

� reference length L

� reference velocity v1

Table 11.1 Important variables in momentum transfer

Variable Symbol Dimension

Mass M M

Length L L

Time t t

Velocity v L/t

Gravitational acceleration g L/t2

Force F ML/t2

Pressure P M/Lt2

Density r M/L3

Viscosity m M/Lt

Surface tension s M/t2

Sonic velocity a L/t

and, accordingly, specify nondimensional quantities for the variables in equations (9-3) and

(9-19) as
x ¼ x/L vx ¼ vx/v1
y ¼ y/L vy ¼ vy/v1

t ¼ tv1
L

v ¼ v/v1

= ¼ L=
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The last quantity in this list, =, is the dimensionless gradient operator. As = is composed

of first derivatives with respect to space coordinates, the product L= is seen to be

dimensionless.

The next step is to nondimensionalize our governing equations by introducing the

specified dimensionless variables. This process involves the chain rule for differentiation;

for example, the two terms in equation (9-3) are transformed as follows:

@vx
@x

¼ @vx
@x

@vx
@vx

@x

@x
¼ @vx

@x
ðv1Þð1=LÞ ¼ v1

L

@vx
@x

@vy
@y

¼ @vy
@y

@vy
@vy

@y

@y
¼ v1

L

vx
@x

Substitution into equation (9-3) gives

@vx
@x

þ @vy
@y

¼ 0 (11-1)

and we see that the continuity equation has the same form in terms of dimensionless

variables as it had originally.

Utilizing the chain rule in the same manner as just discussed, the equation of motion

becomes

rv21
L

@v

@t
þ vx

@v

@x
þ vy

@v

@y

� �
¼ rgþ 1

L
=Pþ mv1

L2
@2v

@x2
þ @2v

@y2

� �
(11-2)

In equation (11-2), we note that each term has the units M/L2t2 or F/L3. Also, it

should be observed that each term represents a certain kind of force, that is

� rv21
L

is an inertial force

� mv21
L

is a viscous force

� rg is a gravitational force

� P/L is a pressure force

If we next divide through by the quantity, rv21/L, our dimensionless equation becomes

@v

@t
þ vx

@v

@x
þ vy

@v

@y
¼ g

L

v21
� =P
rv21

þ m

Lv1r

@2v

@x2
þ @2v

@y2

� �
(11-3)

This resulting dimensionless equation has the same general characteristics as its original

except that, as a result of its transformation into dimensionless form, each of the original force

terms (those on the right-hand side) has a coefficient composed of a combination of variables.

An example of these coefficients reveals that each is dimensionless. Additionally, because of

the manner in which they were formed, the parameters can be interpreted as a ratio of forces.

Consideration of the first term, gL/v21, reveals that it is, indeed, dimensionless. The

choice of gL/v21 or v21/gL is arbitrary; clearly both forms are dimensionless.

The conventional choice is the latter form. The Froude number is defined as

Fr� v21/gL (11-4)

This parameter can be interpreted as a measure of the ratio of inertial to gravitational

forces. The Froude number arises in analyzing flows involving a free liquid surface. It is

an important parameter when dealing with open-channel flows.
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The next parameter, P/rv21, is observed to be the ratio of pressure forces to inertial

forces. In this form it is designated the Euler number,

Eu�P=rv21 (11-5)

A modified form of equation (11-5), also clearly dimensionless, is the coefficient of drag

CD ¼ F/A

rv21=2
(11-6)

which, we will see directly, has application to both internal and external flows.

The third dimensionless ratio that has been generated is the Reynolds number, which is

conventionally expressed as

Re� Lv1r=m (11-7)

In this form the Reynolds number is observed to represent the ratio of inertial forces to

viscous forces. The Reynolds number is generally considered the most important

dimensionless parameter in the field of fluid mechanics. It is ubiquitous in all of the

transport processes. We will encounter it frequently throughout the remainder of this text.

If equation (11-3) can be solved, the results will provide the functional relationships

between applicable dimensionless parameters. If direct solution is not possible then one

must resort to numerical modeling or experimental determination of these functional

relationships.

11.3 THE BUCKINGHAM METHOD

The procedure introduced in the previous section is, obviously, quite powerful when one

knows the differential equation that pertains to a specific fluid flow process. There are,

however, many situations of interest in which the governing equation is not known. In these

cases, we need an alternative method for dimensional analysis. In this section, we discuss a

more general approach for generating dimensionless groups of variables. This procedure

was proposed by Buckingham1 in the early part of the twentieth century. It is generally

referred to as the Buckingham method.

The initial step in applying the Buckinghammethod requires the listing of the variables

significant to a given problem. It is then necessary to determine the number of dimensionless

parameters into which the variables may be combined. This number may be determined

using the Buckingham pi theorem, which states

The number of dimensionless groups used to describe a situation involving n

variables is equal to n – r, where r is the rank of the dimensional matrix of

the variables.

Thus,

i ¼ n� r (11-8)

where

i ¼ the number of independent dimensionless groups

n¼ the number of variables involved

and

r¼ the rank of the dimensional matrix

1 E. Buckingham, Phys. Rev. 2, 345 (1914).
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The dimensional matrix is simply the matrix formed by tabulating the exponents

of the fundamental dimensions M, L, and t, which appear in each of the variables

involved.

An example of the evaluation of r and i, as well as the application of the Buckingham

method, follows.

EXAMPLE 1 Determine the dimensionless groups formed from the variables involved in the flow of fluid external

to a solid body. The force exerted on the body is a function of v,r,m, andL (a significant dimension of

the body).

A usual first step is to construct a table of the variables and their dimensions.

Before determining the number of dimensionless parameters to be formed, we must know r. The

dimensional matrix that applies is formed from the following tabulation:

F v r m L

M 1 0 1 1 0

L 1 1 �3 �1 1

t �2 �1 0 �1 0

The numbers in the table represent the exponents of M, L, and t in the dimensional expression

for each variable involved. For example, the dimensional expression of F is ML /t2, hence the

exponents 1, 1, and �2 are tabulated versus M, L, and t, respectively, the quantities with which

they are associated. The matrix is then the array of numbers shown below

1 0 1 1 0

1 1 �3 �1 1

�2 �1 0 �1 0

0
@

1
A

The rank, r, of a matrix is the number of rows (columns) in the largest nonzero determinant

that can be formed from it. The rank is 3 in this case. Thus, the number of dimensionless

parameters to be formed may be found by applying equation (11-4). In this example

i ¼ 5� 3 ¼ 2.

The two dimensionless parameters will be symbolizedp1 andp2 andmay be formed in several

ways. Initially, a core group of r variablesmust be chosen, whichwill consist of those variables that

will appear in each pi group and, among them, contain all of the fundamental dimensions. Oneway

to choose a core is to exclude from it those variables whose effect one desires to isolate. In the

present problem it would be desirable to have the drag force in only one dimensionless group,

hence it will not be in the core. Let us arbitrarily let the viscosity be the other exclusion from the

core. Our core group now consists of the remaining variables v, r, and L, which, we observe,

include M, L, and t among them.

Variable Symbol Dimensions

Force F ML/t2

Velocity v L/t

Density r M/L3

Viscosity m M/Lt

Length L L
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We now know that p1 and p2 both include r, L, and v ; that one of them includes F and the other

m; and that they are both dimensionless. In order that each be dimensionless, the variables must be

raised to certain exponents. Writing

p1 ¼ varbLcF and p2 ¼ vdreL fm

we shall evaluate the exponents as follows. Considering each p group independently, we write

p1 ¼ varbLcF

and dimensionally

M0L0t0 ¼ 1 ¼ L

t

� �a M

L3

� �b
(L)c

ML

t2

Equating exponents of M, L, and t on both sides of this expression, we have, for M

0 ¼ bþ 1

for L

0 ¼ a� 3bþ cþ 1

and for t

0 ¼ �a� 2

From these we find that a ¼ �2, b ¼ �1, and c ¼ �2, giving

p1 ¼ F

L2rv2
¼ F/L2

rv2
¼ Eu

Similarly for p2 we have, in dimensional form

1 ¼ L

t

� �d M

L3

� �e
(L) f

M

Lt

and for exponents of M

0 ¼ eþ 1

for L

0 ¼ d � 3eþ f � 1

and for t

0 ¼ �d � 1

giving d ¼ �1, e ¼ �1 and f ¼ �1. Thus, for our second dimensionless group we have

p2 ¼ m/rvL ¼ 1/Re

Dimensional analysis has enabled us to relate the original five variables in terms of only two

dimensionless parameters in the form

Eu ¼ f(Re) (11-9)

CD ¼ f (Re) (11-10)
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The two parameters, Eu and CD, were also generated in the previous section by an

alternate method. The functions f(Re) and f (Re) must be determined by experiment.

Table 11.2 lists several dimensionless groups that pertain to fluid flow. Similar tables

will be include in later chapters that list dimensionless parameters common to heat transfer

and to mass transfer.

11.4 GEOMETRIC, KINEMATIC, AND DYNAMIC SIMILARITY

An important application and use of the dimensionless parameters listed in Table 11.2 is in

using experimental results obtained using models to predict the performance of full-size

prototypical systems. The validity of such scaling requires that the models and prototypes

possess similarity. Three types of similarity are important in this regard; they are geometric,

kinematic, and dynamic similarity.

Geometric similarity exists between two systems if the ratio of all significant dimen-

sions is the same for each system. For example, if the ratio a/b for the diamond-shaped

section in Figure 11.1 is equal in magnitude to the ratio a/b for the larger section, they are

geometrically similar. In this example, there are only two significant dimensions. For more

complex geometries, geometric similarity would be achieved when all geometric ratios

between model and prototype are equal.

b

a

1 2

Figure 11.1 Two

geometrically

similar objects.

Table 11.2 Common dimensionless parameters in momentum transfer

Name/Symbol

Dimensionless

group

Physical

meaning Area of application

Reynolds number, Re Lvr/m Inertial force

Viscous force

Widely applicable in a

host of fluid flow

situations

Euler number, Eu P/rv2

Coefficient of skin

friction, Cf

F/A

rv2/2

Pressure Force

Inertial force

Flows involving pressure

differences due to

frictional effects

Froude number, Fr v2/gL Inertial force

Gravitational force

Flows involving free

liquid surfaces

Weber number, We rv2L

s

Inertial force

Surface tension force

Flows with significant

surface tension effects

Mach number, M v/C Inertial force

Compressibility force

Flows with significant

compressibility effects
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Kinematic similarity similarly exists when, in geometrically similar systems 11 and

12 , the velocities at the same locations are related according to

vx
vy

� �
1

¼ vx
vy

� �
2

vx
vz

� �
1

¼ vx
vz

� �
2

The third type of similarity, dynamic similarity, exists when, in geometrically and

kinematically similar systems, the ratios of significant forces are equal between model and

prototype. These force ratios that are important in fluid flow applications include the

dimensionless parameters listed in Table 11.2.

The process of scaling using these similarity requirements will be presented in

Section 11.5.

11.5 MODEL THEORY

In the design and testing of large equipment involving fluid flow, it is customary to build

small models geometrically similar to the larger prototypes. Experimental data achieved

for the models are then scaled to predict the performance of full-sized prototypes accord-

ing to the requirements of geometric, kinematic, and dynamic similarity. The following

examples will illustrate the manner of utilizing model data to evaluate the conditions for a

full-scale device.

EXAMPLE 2 A cylindrical mixing tank is to be scaled up to a larger size such that the volume of the larger

tank is five times that of the smaller one. What will be the ratios of diameter and height

between the two?

Geometric similarity between tanks a and b in Figure 11.1 requires that

Da

ha
¼ Db

hb

or

hb

ha
¼ Db

Da

The volumes of the two tanks are

Va ¼ p

4
D2
aha and Vb ¼ p

4
D2
bhb

The scaling ratio between the two is stipulated as,
Vb
Va

¼ 5; thus,

Vb

Va
¼ (p/4)D2

bhb

(p/4)D2
bha

¼ 5

and we get

Db

Da

� �2hb

ha
¼ 5

Da

Db

ha
hb

A

B

Figure 11.2 Cylindrical mixing tanks for

Example 2.
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We now substitute the geometric similarity requirement that gives

Db

Da

� �3

¼ Lb

La

� �3

¼ 5

and the two ratios of interest become

Db

Da
¼ Lb

La
¼ 51/3 ¼ 1:71

EXAMPLE 3 Dynamic similarity may be obtained by using a cryogenic wind tunnel in which nitrogen at low

temperature and high pressure is employed as theworking fluid. If nitrogen at 5 atm and 183K is used

to test the low speed aerodynamics of a prototype that has a 24.38mwing span and is to fly at standard

sea-level conditions at a speed of 60 m/s, determine

(1) The scale of the model to be tested.

(2) The ratio of forces between the model and the full-scale aircraft.

Conditions of dynamic similarity should prevail. The speed of sound in nitrogen at 183 K is

275 m/s.

For dynamic similarity to exist, we know that both model and prototype must be geometrically

similar and that the Reynolds number and the Mach number must be the same. A table such as the

following is helpful.

The conditions listed for the prototype have been obtained fromAppendix I. EquatingMach numbers

we obtain

Mm ¼ Mp

v ¼ 275

340
60 ¼ 48:5m/s

Equating the Reynolds numbers of the model and the prototype we obtain

Rem ¼ Re p

r 48:5L

m
¼ 1:225 � 60 � 24:38

1:789 � 10�5
¼ 1:002� 108

Model Prototype

Characteristic length L 24.38 m

Velocity v 60 m/s

Viscosity m 1:789 � 10�5 Pa � s
Density r 1:225 kg/m3

Speed of sound 275 m/s 340 m/s
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Using equation (7-10), we may evaluate m for nitrogen. From Appendix K, e/k ¼ 91:5K and

s ¼ 3:681 Å for nitrogen so that kT/ e ¼ 2 and Vm ¼ 1:175 (Appendix K). Thus,

m ¼ 2:6693�10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28�183p

(3:681)2(1:175)
¼ 1:200�10�5 Pa�s

The density may be approximated from the perfect gas law

r ¼ P

P1

M

M1

T1

T
r1

so that

r ¼ 5
28

28:96

� �
288

183

� �
1:225 ¼ 7:608 kg/m3

Solving for the wing span of the model, we obtain

L ¼ 3:26m ð10:7 ftÞ
The ratio of the forces on the model to the forces experienced by the prototype may be determined

equating values of Eu between the model and the prototype. Hence

F

rV2AR

� �
model

¼ F

rV2AR

� �
prototype

where AR is a suitable reference area. For an aircraft, this reference area is the projected wing area.

The ratio of model force to prototype force is then given by

Fm

Fp
¼ rm

r p

V2
m

V2
p

AR;m

AR; p
¼ (rV2)m

(rV2)p

lm

l p

� �2

where the ratio of reference areas can be expressed in terms of the scale ratio. Substituting numbers

Fm

Fp
¼ 7:608

1:225

48:5

60:0

� �2 3:26

24:38

� �2

¼ 0:0726

The forces on the model are seen to be 7.26% the prototype forces.

11.6 CLOSURE

The dimensional analysis of a momentum-transfer problem is simply an application of the

requirement of dimensional homogeneity to a given situation. By dimensional analysis the

work and time required to reduce and correlate experimental data are decreased substan-

tially by the combination of individual variables into dimensionless p groups, which are

fewer in number than the original variables. The indicated relations between dimensionless

parameters are then useful in expressing the performance of the systems towhich they apply.

It should be kept in mind that dimensional analysis cannot predict which variables are

important in a given situation, nor does it give any insight into the physical transfer

mechanism involved. Even with these limitations, dimensional analysis techniques are a

valuable aid to the engineer.
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If the equation describing a given process is known, the number of dimensionless

groups is automatically determined by taking ratios of the various terms in the expression to

one another. This method also gives physical meaning to the groups thus obtained.

If, on the contrary, no equation applies, an empirical method, the Buckinghammethod,

may be used. This is a very general approach but gives no physical meaning to the

dimensionless parameters obtained from such an analysis.

The requirements of geometric, kinematic, and dynamic similarity enable one to use

model date to predict the behavior of a prototype or full-size piece of equipment. Model

theory is thus an important application of the parameters obtained in a dimensional analysis.

PROBLEMS

11.1 The power output of a hydraulic turbine depends on the

diameterD of the turbine, the density r of water, the heightH of

water surface above the turbine, the gravitational acceleration g,

the angular velocity v of the turbine wheel, the discharge Q of

water through the turbine, and the efficiency h of the turbine. By

dimensional analysis, generate a set of appropriate dimension-

less groups.

11.2 Through a series of tests on pipe flow,H. Darcy derived an

equation for the friction loss in pipe flow as

hL ¼ f
L

D

v2

2g
;

in which f is a dimensionless coefficient that depends on (a) the

average velocity v of the pipe flow; (b) the pipe diameter D;

(c) the fluid density r; (d) the fluid viscosity m; and (e) the

average pipewall uneveness e (length). Using the Buckinghamp

theorem, find a dimensionless function for the coefficient f.

11.3 The pressure rise across a pump P (this term is propor-

tional to the head developed by the pump) may be considered to

be affected by the fluid density r, the angular velocity v, the

impeller diameter D, the volumetric rate of flow Q, and the fluid

viscosity m. Find the pertinent dimensionless groups, choosing

them so that P, Q, and m each appear in one group only. Find

similar expressions, replacing the pressure rise first by the power

input to the pump, then by the efficiency of the pump.

11.4 The maximum pitching moment that is developed by the

water on a flying boat as it lands is noted as cmax The following

are the variables involved in this action:

(a) According to the Buckingham p theorem, how many inde-

pendent dimensionless groups should there be which char-

acterize this problem?

(b) What is the dimensional matrix of this problem?What is its

rank?

(c) Evaluate the appropriate dimensionless parameters for this

problem.

11.5 The rate at which metallic ions are electroplated from

a dilute electrolytic solution onto a rotating disk electrode is

usually governed by the mass diffusion rate of ions to the

disk. This process is believed to be controlled by the follow-

ing variables:

Obtain the set of dimensionless groups for these variables where

k, m, and D are kept in separate groups. How would you

accumulate and present the experimental data for this system?

11.6 The performance of a journal bearing around a rotating

shaft is a function of the following variables: Q, the rate of flow

lubricating oil to the bearing in volume per unit time; D, the

bearing diameter;N, the shaft speed in revolutions perminute;m,

the lubricant viscosity;r, the lubricant density; ands, the surface

tension of the lubricating oil. Suggest appropriate parameters to

be used in correlating experimental data for such a system.

11.7 The mass M of drops formed by liquid discharging by

gravity from a vertical tube is a function of the tube diameter D,

liquid density,surface tension, and the acceleration of gravity.

Determine the independent dimensionless groups that would

allow the surface-tension effect to be analyzed.Neglect any

effects of viscosity.

11.8 The functional frequency n of a stretched string is a

function of the string length L, its diameter D, the mass density

r, and the applied tensile force T. Suggest a set of dimensionless

parameters relating these variables.

a ¼ angle made by flight path of plane with horizontal,

b ¼ angle defining attitude of plane,

M ¼ mass of plane,

L ¼ length of hull,

r ¼ density of water,

g ¼ acceleration of gravity,

R ¼ radius of gyration of plane about axis of pitching.

Dimensions

k ¼ mass-transfer coeficient L/t

D ¼ diffusion coefficient L2/t

d ¼ disk diameter L

a ¼ angular velocity 1/t

r ¼ density M/L3

m ¼ viscosity M/Lt
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11.9 The power P required to run a compressor varies with

compressor diameterD, angular velocity v, volume flow rate Q,

fluid density r, and fluid viscositym. Develop a relation between

these variables by dimensional analysis, where fluid viscosity

and angular velocity appear in only one dimensionless para-

meter.

11.10 A large amount of energy E is suddenly released in the

air as in a point of explosion. Experimental evidence suggests the

radius r of the high-pressure blast wave depends on time t as well

as the energy E and r the density of the ambient air.

(a) Using the Buckingham method, find the equation for r as a

function of t, r, and E.

(b) Show that the speed of the wave front decreases as r in-

creases.

11.11 The size d of droplets produced by a liquid spray

nozzle is thought to depend upon the nozzle diameter D, jet

velocityV, and the properties of the liquid r,m, and s. Rewrite

this relation in dimensionless form. Take D, r, and V as

repeating variables.

11.12 Identify the variables associated with Problem 8.13 and

find the dimensionless parameters.

11.13 A car is traveling along a road at 22.2 m/s Calculate the

Reynolds number

(a) based on the length of the car,

(b) based on the diameter of the radio antenna.

The car length is 5.8 m and the antenna diameter is 6.4 mm.

11.14 In natural-convection problems, the variation of density

due to the temperature difference DT creates an important

buoyancy term in the momentum equation. If a warm gas at

TH moves through a gas at temperature T0 and if the density

change is only due to temperature changes, the equation of

motion becomes

r
Dv

Dt
¼ �=Pþ m=2vþ rg

TH

T0
� 1

� �

Show that the ratio of gravity (buoyancy) to inertial forces acting

on a fluid element is

Lg

V2
0

TH

T0
� 1

� �

where L and V0 are reference lengths and velocity, respectively.

11.15 A1/6-scalemodel of a torpedo is tested in awater tunnel

to determine drag characteristics. What model velocity corre-

sponds to a torpedo velocity of 20 knots? If the model resistance

is 10 lb, what is the prototype resistance?

11.16 During the development of a 300-ft ship, it is desired to

test a 10% scale model in a towing tank to determine the drag

characteristics of the hull. Determine how the model is to be

tested if the Froude number is to be duplicated.

11.17 A 25% scale model of an undersea vehicle that has a

maximum speed of 16 m/s is to be tested in a wind tunnel with a

pressure of 6 atm to determine the drag characteristics of the full-

scale vehicle. The model is 3 m long. Find the air speed required

to test the model and find the ratio of the model drag to the full-

scale drag.

11.18 An estimate is needed on the lift provided by a hydrofoil

wing section when it moves through water at 60 mph. Test data

are available for this purpose from experiments in a pressurized

wind tunnel with an airfoil section model geometrically similar

to but twice the size of the hydrofoil. If the lift F1 is a function

of the density r of the fluid, the velocity v of the flow, the angle of
attack u, the chord lengthD, and the viscositym, what velocity of

flow in the wind tunnel would correspond to the hydrofoil

velocity for which the estimate is desired? Assume the same

angle of attack in both cases, that the density of the air in the

pressurized tunnel is 5:0� 10�3 slugs/ft3; that its kinematic

viscosity is 8:0� 10�5 ft2/s; and that the kinematic viscosity

of the water is approximately 1:0� 10�5 ft2/s: Take the density
of water to be 1:94 slugs/ft3:

11.19 Amodel of a harbor is made on the length ratio of 360:1.

Storm waves of 2 m amplitude and 8 m/s velocity occur on

the breakwater of the prototype harbor. Significant variables are

the length scale, velocity, and g, the acceleration of gravity. The

scaling of time can be made with the aid of the length scale and

velocity scaling factors.

(a) Neglecting friction, what should be the size and speed of the

waves in the model?

(b) If the time between tides in the prototype is 12 h, what

should be the tidal period in the model?

11.20 A40% scalemodel of an airplane is to be tested in a flow

regime where unsteady flow effects are important. If the full-

scale vehicle experiences the unsteady effects at a Mach number

of 1 at an altitude of 40,000 ft, what pressure must the model be

tested at to produce an equal Reynolds number? The model is to

be tested in air at 708F.What will the timescale of the flow about

the model be relative to the full-scale vehicle?

11.21 A model ship propeller is to be tested in water at the

same temperature that would be encountered by a full-scale

propeller. Over the speed range considered, it is assumed that

there is no dependence on the Reynolds or Euler numbers, but

only on the Froude number (based on forward velocity V and

propeller diameter d). In addition, it is thought that the ratio of

forward to rotational speed of the propeller must be constant (the

ratio V/Nd, where N is propeller rpm).

(a) With a model 041 m in diameter, a forward speed of

2.58 m/s and a rotational speed of 450 rpm is recorded.

What are the forward and rotational speeds corresponding

to a 2.45-m diameter prototype?

(b) A torque of 20 N �m is required to turn the model, and the

model thrust is measured to be 245 N. What are the torque

and thrust for the prototype?
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Chapter 12

Viscous Flow

The concept of fluid viscosity was developed and viscosity defined in Chapter 7.

Clearly, all fluids are viscous, but in certain situations and under certain conditions, a

fluid may be considered ideal or inviscid, making possible an analysis by the methods

of Chapter 10.

Our task in this chapter is to consider viscous fluids and the role of viscosity as it

affects the flow. Of particular interest is the case of flow past solid surfaces and the

interrelations between the surfaces and the flowing fluid.

12.1 REYNOLDS’S EXPERIMENT

The existence of two distinct types of viscous flow is a universally accepted phenomenon.

The smoke emanating from a lighted cigarette is seen to flow smoothly and uniformly for a

short distance from its source and then change abruptly into a very irregular, unstable

pattern. Similar behavior may be observed for water flowing slowly from a faucet.

Thewell-ordered type of flowoccurswhen adjacent fluid layers slide smoothly over one

anotherwithmixing between layers or lamina occurring only on amolecular level. It was for

this type of flow that Newton’s viscosity relation was derived, and in order for us to measure

the viscosity, m, this laminar flow must exist.

The second flow regime, in which small packets of fluid particles are transferred

between layers, giving it a fluctuating nature, is called the turbulent flow regime.

The existence of laminar and turbulent flow, although recognized earlier, was first

described quantitatively by Reynolds in 1883. His classic experiment is illustrated in Figure

12.1.Water was allowed to flow through a transparent pipe, as shown, at a rate controlled by

a valve. A dye having the same specific gravity as water was introduced at the pipe opening

and its pattern observed for progressively larger flow rates of water. At low rates of flow, the

dye pattern was regular and formed a single line of color as shown in Figure 12.1(a). At high

flow rates, however, the dye became dispersed throughout the pipe cross section because of

(a) Re < 2300 (b) Re > 2300

Water Water
DyeDye Valve Valve

Figure 12.1 Reynolds’s experiment.
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the very irregular fluid motion. The difference in the appearance of the dye streak was, of

course, due to the orderly nature of laminar flow in the first case and to the fluctuating

character of turbulent flow in the latter case.

The transition from laminar to turbulent flow in pipes is thus a function of the fluid

velocity. Actually, Reynolds found that fluid velocity was the only one variable determin-

ing the nature of pipe flow, the others being pipe diameter, fluid density, and fluid viscosity.

These four variables, combined into the single dimensionless parameter

Re� Drv

m
(12-1)

form the Reynolds number, symbolized Re, in honor of Osborne Reynolds and his

important contributions to fluid mechanics.

For flow in circular pipes, it is found that below a value for Reynolds number of 2300

the flow is laminar. Above this value the flowmay be laminar as well, and indeed, laminar

flow has been observed for Reynolds numbers as high as 40,000 in experiments wherein

external disturbances were minimized. Above a Reynolds number of 2300, small

disturbances will cause a transition to turbulent flow whereas below this value distur-

bances are damped out and laminar flow prevails. The critical Reynolds number for pipe

flow thus is 2300.

12.2 DRAG

Reynolds’s experiment clearly demonstrated the two different regimes of flow: laminar and

turbulent. Another manner of illustrating these different flow regimes and their dependence

upon Reynolds number is through the consideration of drag. A particularly illustrative case

is that of external flow (i.e., flow around a body as opposed to flow inside a conduit).

The drag force due to friction is caused by the shear stresses at the surface of a solid

object moving through a viscous fluid. Frictional drag is evaluated by using the expression

F

A
�Cf

rv21
2

(12-2)

where F is the force, A is the area of contact between the solid body and the fluid, Cf is

the coefficient of skin friction, r is the fluid density, and v1 is the free-stream fluid

velocity.

The coefficient of skin friction, Cf which is defined by equation (12-2), is dimension-

less.

The total drag on an object may be due to pressure as well as frictional effects. In such a

situation another coefficient, CD, is defined as

F

AP
�CD

rv21
2

(12-3)

where F, r, and v1 are as described above and, additionally

CD ¼ the drag coefficient

and

AP ¼ the projected area of the surface

The value of AP used in expressing the drag for blunt bodies is normally the maximum

projected area for the body.
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The quantity rv21/2 appearing in equations (12-2) and (12-3) is frequently called the

dynamic pressure.

Pressure drag arises from two principal sources.1 One is induced drag, or drag due

to lift. The other source is wake drag, which arises from the fact that the shear stress

causes the streamlines to deviate from their inviscid flow paths, and in some cases to sepa-

rate from the body altogether. This deviation in streamline pattern prevents the pressure over

the rest of a body from reaching the level it would attain otherwise. As the pressure at the

front of the body is now greater than that at the rear, a net rearward force develops.

In an incompressible flow, the drag coefficient depends upon the Reynolds number and

the geometry of a body. A simple geometric shape that illustrates the drag dependence upon

the Reynolds number is the circular cylinder. The inviscid flow about a circular cylinder

was examined in Chapter 10. The inviscid flow about a cylinder of course, produced no

drag, as there existed neither frictional nor pressure drag. The variation in the drag

coefficient with the Reynolds number for a smooth cylinder is shown in Figure 12.2. The

flow pattern about the cylinder is illustrated for several different values of Re. The flow

pattern and general shape of the curve suggest that the drag variation, and hence the effects

of shear stress on the flow, may be subdivided into four regimes. The features of each

regime will be examined.

Regime 1

In this regime the entire flow is laminar and the Reynolds number small, being less than 1.

Recalling the physical significance of the Reynolds number from Chapter 11 as the ratio of

the inertia forces to the viscous forces, we may say that in regime 1 the viscous forces

predominate. The flow pattern in this case is almost symmetric, the flow adheres to the body,

10–1 10– 0 101 102 103 104

Regimes
III IVIII

105 106

CD

Reynolds number =

0.01

0.1

1

10

100

rvD
m

Figure 12.2 Drag coefficient for circular cylinders as a function of Reynolds number. Shaded

regions indicate areas influenced by shear stress.

1 A third source of pressure drag, wave drag, is associated with shock waves.
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and the wake is free from oscillations. In this regime of the so-called creeping flow, viscous

effects predominate and extend throughout the flow field.

Regime 2

Two illustrations of the flowpattern are shown in the second regime.As theReynolds number

is increased, small eddies form at the rear stagnation point of the cylinder. At higher values of

theReynolds number, these eddies grow to the point atwhich they separate from thebodyand

are swept downstream into thewake. The pattern of eddies shown in regime 2 is called a von

Kármán vortex trail. This change in the character of the wake from a steady to an unsteady

nature is accompanied by a change in the slope of the drag curve. The paramount features of

this regime are (a) the unsteady nature of the wake and (b) flow separation from the body.

Regime 3

In the third regime the point of flow separation stabilizes at a point about 808 from the

forward stagnation point. The wake is no longer characterized by large eddies, although it

remains unsteady. The flow on the surface of the body from the stagnation point to the point

of separation is laminar, and the shear stress in this interval is appreciable only in a thin layer

near the body. The drag coefficient levels out at a near-constant value of approximately 1.

Regime 4

At a Reynolds number near 5� 105, the drag coefficient suddenly decreases to 0.3.

When the flow about the body is examined, it is observed that the point of separation

has moved past 908. In addition, the pressure distribution about the cylinder (shown in

Figure 12.3) up to the point of separation is fairly close to the inviscid flow pressure

distribution depicted in Figure 10.5. In the figure it will be noticed that the pressure

variation about the surface is a changing function of Reynolds number. The minimum

point on the curves for Reynolds numbers of 105 and 6� 105 are both at the point of flow

(P
–

P �
)/

   
ρv

�2
1 2

q, degrees
0 30 60 90 120 150 180

–4

–3

–2

–1

0

1

2

v�

P�

θ

Re = 6 � 105

Inviscid flow

Re = 105

Figure 12.3 Pressure distribution

on a circular cylinder at various

Reynolds numbers.
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separation. From this figure it is seen that separation occurs at a larger value of u for

Re ¼ 6� 105 than it does for Re ¼ 105.

The layer of flow near the surface of the cylinder is turbulent in this regime,

undergoing transition from laminar flow close to the forward stagnation point. The

marked decrease in drag is due to the change in the point of separation. In general, a

turbulent flow resists flow separation better than a laminar flow. As the Reynolds number

is large in this regime, it may be said that the inertial forces predominate over the viscous

forces.

The four regimes of flow about a cylinder illustrate the decreasing realm of influ-

ence of viscous forces as the Reynolds number is increased. In regimes 3 and 4, the flow

pattern over the forward part of the cylinder agrees well with the inviscid flow theory.

For other geometries, a similar variation in the realm of influence of viscous forces is

observed and, as might be expected, agreement with inviscid-flow predictions at a given

Reynolds number increases as the slenderness of the body increases. The majority of

cases of engineering interest involving external flows have flow fields similar to those of

regimes 3 and 4.

Figure 12.4 shows the variation in the drag coefficient with the Reynolds number for a

sphere, for infinite plates, and for circular disks and square plates. Note the similarity in

form of the curve ofCD for the sphere to that for a cylinder in Figure 12.2. Specifically, one

may observe the same sharp decrease in CD to a minimum value near a Reynolds number

value of 5� 105. This is again due to the change from laminar to turbulent flow in the

boundary layer.

EXAMPLE 1 Evaluate the terminal velocity of a 7.5-mm-diameter glass sphere falling freely through

(a) air at 300 K; (b) water at 300 K; and (c) glycerin at 300 K. The density of glass is

2250 kg/m3.

Reynolds number = rvD/m
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Strokes drag
CD = 24/Re
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v� D Circular
disk and
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v� D Spheres

Figure 12.4 Drag coefficient versus Reynolds number for various objects.
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The terminal (steady state) velocity of a falling body is reached when the force due to

fluid drag matches the body’s weight. In this case the weight of the glass sphere can be expressed

as

rs
pd3

6
g

The fluid drag force is given by

CD

rf v
21

2

pd2

4

and a force balance yields

CDv
2
1 ¼ 4

3

rs
rf

dg

The drag coefficient,CD, is plotted as a function ofReynolds number, Red, in Figure 12.4.AsCD

is a function of v1, we are unable to solve explicitly for v1 unless Red < 1, which would permit

the use of Stokes’ law in expressing CD. A trial-and-error solution is, thus, required. The condi-

tions to be satisfied are our force balance expression and the graphical relation between CD and Red
in Figure 12.4.

For air at 300 K

n ¼ 1:569� 10�5 m2/s

r ¼ 1:177 kg/m3

Red ¼ dv1
n

¼ (7:5� 10�3 m)v1
1:569� 10�5 m2/s

¼ 478:0 v1

(A)

Inserting known values into our force balance expression, we have

CDv
2
1 ¼ 4

3

2250 kg/m3

1:177 kg/m3
(7:5� 10�3 m)(9:81m/s2)

¼ 187:5m2/s2

(B)

Normally the trial-and-error procedure to achieve a solutionwould be straightforward. In this case,

however, the shape of theCD vs. Red curve, given in Figure 12.4, poses a bit of a problem. Specifically,

the value of CD remains nearly uniform, that is, 0:4<CD< 0:5, over a range in Red between

500<Red < 105; over 3 orders of magnitude!

In such a specific case, we will assume CD ffi 0:4, and solve equation (B) for v1:

v1 ¼ 187:5

0
m2/s2

� �1/2
¼ 21:65m/s

Equation (b) then yields

Red ¼ (478:0)(21:65) ¼ 1:035� 104

These results are compatible with Figure 12.4 although the absolute accuracy is obviously not

great.
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Finally, for air, we determine the terminal velocity to be, approximately

v1 ffi 21:6m/s (a)

For water at 300 K

n ¼ 0:879� 10�6 m2/s

r ¼ 996:1 kg/m3

Red ¼ (7:5� 10�3 m)v1
0:879� 10�6 m2/s

¼ 8530 v1

CDv
2
1 ¼ 4

3

2250 kg/m3

996 kg/m3
(7:5� 10�3 m)(9:81m/s2)

¼ 0:0981

As in part (a), we will initially assume CD ffi 0:4, and achieve the result that

v1 ¼ 0:495m/s

Red ¼ 4220

These results, again, satisfy Figure 12.4. Thus, in water

v1 ¼ 0:495m/s (b)

Finally, for glycerin at 300 K

n ¼ 7:08� 10�4 m2/s

r ¼ 1260 kg/m3

Red ¼ (7:5� 10�3 m)v1
7:08� 10�4 m2/s

¼ 10:59 v1

CDv
2
1 ¼ 4

3

2250 kg/m3

1260 kg/m3
(7:5� 10�3 m)(9:81m/s2)

¼ 0:1752

In this case we suspect the Reynolds number will be quite small. As an initial guess we will

assume Stokes’ law applies, thus CD ¼ 24/Re:
Solving for v1 for this case, we have

CDv
2
1 ¼ 24n

dv1
v21 ¼ 0:1752m2/s2

v1 ¼ (0:1752m2/s2)(7:5� 10�3 m)

24(7:08� 10�4 m2/s)

¼ 0:0773m/s

To validate the use of Stokes’ law, we check the value of Reynolds number and get

Red ¼ (7:5� 10�3 m)(0:0773m/s)

7:08� 10�4 m2/s

¼ 0:819

which is in the allowable range. The terminal velocity in glycerin thus

v1 ¼ 0:0773m/s (c)
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12.3 THE BOUNDARY-LAYER CONCEPT

The observation of a decreasing region of influence of shear stress as theReynolds number is

increased led Ludwig Prandtl to the boundary-layer concept in 1904. According to Prandtl’s

hypothesis, the effects of fluid friction at high Reynolds numbers are limited to a thin layer

near the boundary of a body, hence the term boundary layer. Further, there is no significant

pressure change across the boundary layer. This means that the pressure in the boundary

layer is the same as the pressure in the inviscid flow outside the boundary layer. The

significance of the Prandtl theory lies in the simplification that it allows in the analytical

treatment of viscous flows. The pressure, for example, may be obtained from experiment or

inviscid flow theory. Thus the only unknowns are the velocity components.

The boundary layer on a flat plate is shown in Figure 12.5. The thickness of the

boundary layer, d, is arbitrarily taken as the distance away from the surface where the

velocity reaches 99% of the free-stream velocity. The thickness is exaggerated for clarity.

Figure 12.5 illustrates how the thickness of the boundary layer increases with

distance x from the leading edge. At relatively small values of x, flow within the

boundary layer is laminar, and this is designated as the laminar boundary-layer

region. At larger values of x the transition region is shown where fluctuations

between laminar and turbulent flows occur within the boundary layer. Finally, for

a certain value of x, and above, the boundary layer will always be turbulent. In the

region in which the boundary layer is turbulent, there exists, as shown, a very thin film

of fluid called the laminar sublayer, wherein flow is still laminar and large velocity

gradients exist.

The criterion for the type of boundary layer present is the magnitude of Reynolds

number, Rex, known as the local Reynolds number, based on the distance x from the leading

edge. The local Reynolds number is defined as

Rex� xvr

m
(12-4)

For flow past a flat plate, as shown in Figure 12.5, experimental data indicate that for

(a) Rex < 2� 105 the boundary layer is laminar,

(b) 2� 105 <Rex < 3� 106 the boundary layer may be either laminar or turbulent,

(c) 3� 106 <Rex the boundary layer is turbulent

δ

n�

x

Region of transition

Laminar
boundary-layer

region

Turbulent
boundary-layer

region

Streamline

Laminar sublayer Figure 12.5 Boundary layer

on a flat plate. (The thickness

is exaggerated for clarity.)
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12.4 THE BOUNDARY-LAYER EQUATIONS

The concept of a relatively thin boundary layer at high Reynolds numbers leads to some

important simplifications of the Navier–Stokes equations. For incompressible, two-

dimensional flow over a flat plate, the Navier–Stokes equations are

r
@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

	 

¼ @sxx

@x
þ @tyx

@y
(12-5)

and

r
@vy
@t

þ vx
@vy
@x

þ vy
@vy
@y

	 

¼ @txy

@x
þ @syy

@y
(12-6)

where txy¼tyx¼m(@vx/@yþ @vy/@x), sxx¼�Pþ 2m(@vx/@x) and syy¼�Pþ 2m(@vy/
@y). The shear stress in a thin boundary layer is closely approximated by m(@vx/@y). This
can be seen by considering the relativemagnitudes of @vx/@y and @vy/@x FromFigure 12.5,

we may write vxjd/vyjd 
 O(x/d), where O signifies the order of magnitude. Then

@vx
@y


O
vxjd
d

� �
@vy
@x


 O
vyjd
x

� �

so

@vx/@y

@vy/@x

O

x

d

� �2
which, for a relatively thin boundary layer, is a large number, and thus @vx/@y�
@vy/@x: The normal stress at a large Reynolds number is closely approximated by

the negative of the pressure as m(@vx/@x) 
 O(mv1/x) ¼ O(rv21/Rex); therefore

sxx’ syy’ � P: When these simplifications in the stresses are incorporated, the

equations for flow over a flat plate become

r
@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

� �
¼ � @P

@x
þ m

@2vx
@y2

(12-7)

and

r
@vy
@t

þ vx
@vy
@x

þ vy
@vy
@y

� �
¼ � @P

@y
þ m

@2vy
@x2

(12-8)

Furthermore,2 the terms in the second equation are much smaller than those in the first

equation, and thus @P/@y’ 0; hence @P/@x ¼ dP/dx; which according to Bernoulli’s

equation is equal to �rv1dv1/dx:
The final form of equation (12-7) becomes

@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

¼ v1
dv1
dx

þ n
@2vx
@y2

(12-9)

2 The order of magnitude of each term may be considered as above. For example, vx(@vy/@x) 
 O(v1(v1/x)

(d/x)) ¼ O(v21d/x2):
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The above equation, and the continuity equation

@vx
@x

þ @vy
@y

¼ 0 (12-10)

are known as the boundary-layer equations.

12.5 BLASIUS’S SOLUTION FOR THE LAMINAR
BOUNDARY LAYER ON A FLAT PLATE

One very important case in which an analytical solution of the equations of motion has been

achieved is that for the laminar boundary layer on a flat plate in steady flow.

For flow parallel to a flat surface, v1(x) ¼ v1 and dP/dx ¼ 0, according to the

Bernoulli equation. The equations to be solved are now the following:

vx
@vx
@x

þ vy
@vx
@y

¼ n
@2vx
@y2

(12-11a)

and

@vx
@x

þ @vy
@y

¼ 0 (12-11b)

with boundary conditions vx ¼ vy ¼ 0 at y ¼ 0, and vx ¼ v1 at y ¼ 1.

Blasius3 obtained a solution to the set of equations (12-11) by first introducing the

stream function, C, as described in Chapter 10, which automatically satisfies the two-

dimensional continuity equation, equation (12-11b). This set of equations may be reduced

to a single ordinary differential equation by transforming the independent variables x, y, to h

and the dependent variables from C(x, y) to f(h)

where

h(x; y) ¼ y

2

v1
nx

� �1/2
(12-12)

and

f (h) ¼ C(x; y)

(nxv1)1/2
(12-13)

The appropriate terms in equation (12-11a) may be determined from equations (12-12)

and (12-13). The following expressions will result. The reader may wish to verify the

mathematics involved.

vx ¼ @C

@y
¼ v1

2
f 0(h) (12-14)

vy ¼ � @C

@x
¼ 1

2

nv1
x

� �1/2
(h f 0 � f ) (12-15)

@vx
@x

¼ � v1h

4x
f 00 (12-16)

@vx
@y

¼ v1
4

v1
nx

� �1/2
f 00 (12-17)

@2vx
@y2

¼ v1
8

v1
nx

f 000 (12-18)

3 H. Blasius, Grenzshichten in Flüssigkeiten mit kleiner Reibung, Z. Math. U. Phys. Sci., 1, 1908.
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Substitution of (12-14) through (12-18) into equation (12-11a) and cancellation gives, as

a single ordinary differential equation

f 000 þ f f 00 ¼ 0 (12-19)

with the appropriate boundary conditions

f ¼ f 0 ¼ 0 at h ¼ 0

f 0 ¼ 2 at h ¼ 1
Observe that this differential equation, although ordinary, is nonlinear and that, of

the end conditions on the variable f (h), two are initial values and the third is a boundary

value. This equation was solved first by Blasius, using a series expansion to express the

function, f (h), at the origin and an asymptotic solution to match the boundary condition

at h ¼ 1. Howarth4 later performed essentially the same work but obtained more

accurate results. Table 12.1 presents the significant numerical results of Howarth. A plot

of these values is included in Figure 12.6.

A simpler way of solving equation (12-19) has been suggested in Goldstein5 who

presented a scheme whereby the boundary conditions on the function f are initial values.

Table 12.1 Values of f, f 0, f 00, and vx/v1 for laminar flow parallel to a flat plate (after Howarth)

h ¼ y

2

ffiffiffiffiffiffiffi
v1
nx

r
f f 0 f 0 0

vx
v1

0 0 0 1.32824 0

0.2 0.0266 0.2655 1.3260 0.1328

0.4 0.1061 0.5294 1.3096 0.2647

0.6 0.2380 0.7876 1.2664 0.3938

0.8 0.4203 1.0336 1.1867 0.5168

1.0 0.6500 1.2596 1.0670 0.6298

1.2 0.9223 1.4580 0.9124 0.7290

1.4 1.2310 1.6230 0.7360 0.8115

1.6 1.5691 1.7522 0.5565 0.8761

1.8 1.9295 1.8466 0.3924 0.9233

2.0 2.3058 1.9110 0.2570 0.9555

2.2 2.6924 1.9518 0.1558 0.9759

2.4 3.0853 1.9756 0.0875 0.9878

2.6 3.4819 1.9885 0.0454 0.9943

2.8 3.8803 1.9950 0.0217 0.9915

3.0 4.2796 1.9980 0.0096 0.9990

3.2 4.6794 1.9992 0.0039 0.9996

3.4 5.0793 1.9998 0.0015 0.9999

3.6 5.4793 2.0000 0.0005 1.0000

3.8 5.8792 2.0000 0.0002 1.0000

4.0 6.2792 2.0000 0.0000 1.0000

5.0 8.2792 2.0000 0.0000 1.0000

4 L. Howarth, ‘‘On the solution of the laminar boundary layer equations,’’ Proc. Roy. Soc. London, A164 547

(1938).
5 S. Goldstein, Modern Developments in Fluid Dynamics, Oxford Univ. Press, London, 1938, p. 135.
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If we define two new variables in terms of the constant, C, so that

f ¼ f /C (12-20)

and

j ¼ Ch (12-21)

then the terms in equation (12-19) become

f (h) ¼ Cf(j) (12-22)

f 0 ¼ C2f0 (12-23)

f 00 ¼ C3f00 (12-24)

and

f 000 ¼ C4f000 (12-25)

The resulting differential equation in f(j) becomes

f000 þ ff00 ¼ 0 (12-26)

and the initial conditions on f are

f ¼ 0 f0 ¼ 0 f00 ¼ ? at j ¼ 0

The other boundary condition may be expressed as follows:

f0(j) ¼ f 0(h)
C2

¼ 2

C2
at j ¼ 1

An initial condition may be matched to this boundary condition if we let f 00(h ¼ 0) equal

some constant A; then f00(j ¼ 0) ¼ A/C3: The constant A must have a certain value to

v�

nx

n x
/v

�

h  = y

0 1.0 2.0 3.0
0

0.2

0.4

0.6

0.8

1.0

1
2

Blasius theory

Figure 12.6 Velocity distribution in the laminar boundary layer over a flat plate. Experimental

data by J. Nikuradse (monograph, Zentrale F. wiss. Berichtswesen, Berlin, 1942) for the Reynolds

number range from 1:08� 105 to 7:28� 105.
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satisfy the original boundary condition on f 0. As an estimate we let f00(j ¼ 0) ¼ 2; giving
A ¼ 2C3: Thus initial values of f, f0, and f00 are now specified. The estimate on f00 (0)
requires that

f0(1) ¼ 2

C2
¼ 2

2

A

� �2/3
(12-27)

Thus equation (12-26) may be solved as an initial-value problem with the answer scaled

according to equation (12-27) to match the boundary condition at h ¼ 1.

The significant results of Blasius’s work are the following:

(a) The boundary thickness, d, is obtained from Table 12.1. When h ¼ 2:5, we have
vx/v1ffi 0:99 thus, designating y ¼ d at this point, we have

h ¼ y

2

ffiffiffiffiffiffiffi
v1
nx

r
¼ d

2

ffiffiffiffiffiffiffi
v1
nx

r
¼ 2:5

and thus

d ¼ 5

ffiffiffiffiffiffiffi
nx

v1

r
or

d

x
¼ 5ffiffiffiffiffiffiffiffiffi

v1x

n

r ¼ 5ffiffiffiffiffiffiffiffi
Rex

p (12-28)

(b) The velocity gradient at the surface is given by equation (12-27):

@vx
@y y¼0

¼ v1
4

v1
nx

� �1/2
f 00(0) ¼ 0:332 v1

ffiffiffiffiffiffiffi
v1
nx

r���� (12-29)

As the pressure does not contribute to the drag for flow over a flat plate, all the drag is

viscous. The shear stress at the surface may be calculated as

t0 ¼ m
@vx
@y

����
y¼0

Substituting equation (12-29) into this expression, we have

t0 ¼ m 0:332 v1
ffiffiffiffiffiffiffi
v1
nx

r
(12-30)

The coefficient of skin friction may be determined by employing equation (12-2) as

follows:

Cfx � t

rv21/2
¼ Fd/A

rv21/2
¼

0:332mv1
ffiffiffiffiffiffiffi
v1
nx

r
rv21/2

¼ 0:664

ffiffiffiffiffiffiffiffiffi
n

xv1

r

Cfx ¼ 0:664ffiffiffiffiffiffiffiffi
Rex

p ð12-31Þ

Equation (12-31) is a simple expression for the coefficient of skin friction at a particular

value of x. For this reason the symbolCfx is used, the x subscript indicating a local coefficient.
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While it is of interest to know values ofCfx, it is seldom that a local value is useful; most

often onewishes to calculate the total drag resulting from viscous flow over some surface of

finite size. The mean coefficient of skin friction that is helpful in this regard may be

determined quite simply from Cfx according to

Fd ¼ ACfL
rv21
2

¼ rv21
2

Z
A

Cfx dA

or the mean coefficient, designated CfL, is related to Cfx by

CfL ¼ 1

A

Z
A

Cfx dA

For the case solved by Blasius, consider a plate of uniform widthW, and length L, for which

CfL ¼ 1

L

Z L

0

Cfx dx ¼ 1

L

Z L

0

0:664

ffiffiffiffiffiffiffi
n

v1

r
x�1/2dx

¼ 1:328

ffiffiffiffiffiffiffiffiffi
n

Lv1

r

CfL ¼ 1:328ffiffiffiffiffiffiffiffi
ReL

p (12-32)

12.6 FLOW WITH A PRESSURE GRADIENT

In Blasius’s solution for laminar flow over a flat plate, the pressure gradient was zero. A

much more common flow situation involves flow with a pressure gradient. The pressure

gradient plays a major role in flow separation, as can be seen with the aid of the boundary-

layer equation (12-7). If wemake use of the boundary, conditions at thewall vx ¼ vy ¼ 0, at

y ¼ 0 equation 12-7 becomes

m
@2vx
@y2

����
y¼0

¼ dP

dx
(12-33)

which relates the curvature of the velocity profile at the surface to the pressure gradient.

Figure 12.7 illustrates the variation in vx, @vx/@y, and @2vx/@y
2 across the boundary layer

for the case of a zero-pressure gradient.

vx

y y

+–∂vx
∂y

y

∂ 2vx

∂y2

Figure 12.7 Variation in velocity and velocity derivatives across the laminar boundary layer

when dP/dx ¼ 0.

150 Chapter 12 Viscous Flow



When dP/dx ¼ 0, the second derivative of the velocity at the wall must also be zero;

hence the velocity profile is linear near the wall. Further, out in the boundary layer, the

velocity gradient becomes smaller and gradually approaches zero. The decrease in

the velocity gradient means that the second derivative of the velocity must be negative.

The derivative @2vx/@y
2 is shown as being zero at the wall, negative within the boundary

layer, and approaching zero at the outer edge of the boundary layer. It is important to note

that the second derivative must approach zero from the negative side as y! d. For values of

dP/dx 6¼ 0, the variation in vx and its derivatives is shown in Figure 12.8.

A negative pressure gradient is seen to produce a velocity variation somewhat similar to

that of the zero-pressure-gradient case. A positive value of dP/dx, however, requires a

positive value of @2vx/@y
2 at the wall. As this derivative must approach zero from the

negative side, at some pointwithin the boundary layer the second derivativemust equal zero.

A zero second derivative, it will be recalled, is associated with an inflection point. The

inflection point is shown in the velocity profile of Figure 12.8. We may now turn our

attention to the subject of flow separation.

In order for flow separation to occur, the velocity in the layer of fluid adjacent to the

wall must be zero or negative, as shown in Figure 12.9. This type of velocity profile is seen

vx

y y

+–∂vx
∂y

dP
dx

dP
dx

dP
dx

dP
dxdP

dx

dP
dx

y

∂ 2vx

∂ y2

Figure 12.8 Variation in vx and its derivatives across the boundary layer for various pressure

gradients.

Separation point

Separated
regiond

Figure 12.9 Velocity

profiles in separated-

flow region.
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to require a point of inflection. As the only type of boundary-layer flow that has an

inflection point is flow with a positive pressure gradient, it may be concluded that a

positive pressure gradient is necessary for flow separation. For this reason a positive

pressure gradient is called an adverse pressure gradient. Flow can remain unseparated

with an adverse pressure gradient, thus dP/dx> 0 is a necessary but not a sufficient

condition for separation. In contrast a negative pressure gradient, in the absence of sharp

corners, cannot cause flow separation. Therefore, a negative pressure gradient is called a

favorable pressure gradient.

The presence of a pressure gradient also affects the magnitude of the skin friction

coefficient, as can be inferred fromFigure 12.8. Thevelocity gradient at thewall increases as

the pressure gradient becomes more favorable.

12.7 VON KÁRMÁN MOMENTUM INTEGRAL ANALYSIS

TheBlasius solution is obviously quite restrictive in application, applying only to the case of

a laminar boundary layer over a flat surface. Any situation of practical interest more

complex than this involves analytical procedures that have, to the present time, proved

inferior to experiment. An approximate method providing information for systems involv-

ing other types of flow and having other geometries will now be considered.

Consider the control volume in Figure 12.10. The control volume to be analyzed is

of unit depth and is bounded in the xy plane by the x axis, here drawn tangent to the

surface at point 0; the y axis, the edge of the boundary layer, and a line parallel to the y

axis a distance Dx away. We shall consider the case of two-dimensional, incompressible

steady flow.

A momentum analysis of the defined control volume involves the application of the

x-directional scalar form of the momentum theorem

�Fx ¼
Z Z

c:s:
vxr(v: n) dAþ @

@t

Z Z Z
c:v:

vxr dV (5-5a)

A term-by-term analysis of the present problem yields the following:

�Fx ¼ Pdjx � PdjxþDx þ Pjx þ
PjxþDx � Pjx

2

� �
(djxþDx � djx)� t0Dx

where d represents the boundary-layer thickness, and both forces are assumed

negligible. The above terms represent the x-directional pressure forces on the

0

Control volume
y

x

vy

vx

�x

Stream lines

d

Figure 12.10 Control volume for integral analysis of the boundary layer.
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left, right, and top sides of the control volume, and the frictional force on the bottom,

respectively.

The surface integral term becomes

Z Z
c:s:

vxr(v: n)dA ¼
Z d

0

rv2xdy
xþDx

�
Z d

0

rv2xdy

����
����
x

�v1 _mtop

and the accumulation term is

@

@t

Z Z Z
c:v:

vxr dV ¼ 0

as this is a steady-flow situation.

An application of the integral equation for conservation of mass will giveZ Z
c:s:

r(v: n) dAþ @

@t

Z Z Z
c:v:

r dV ¼ 0 (4-1)

Z Z
c:s:

r(v: n) dA ¼
Z d

0

rvx dy
xþDx

�
Z d

0

rvx dy

����
����
x

� _mtop

@

@t

Z Z Z
c:v:

r dV ¼ 0

and the mass-flow rate into the top of the control volume, _mtop, may be evaluated as

_mtop ¼
Z d

0

rvxdy
xþDx

�
Z d

0

rvxdy

����
����
x

(12-34)

The momentum expression, including equation (12-34), now becomes

�(PdjxþDx � Pdjx)þ
PjxþDx � Pjx

2
þ Pjx

� �
(djxþDx � djx)� t0 Dx

¼
Z d

0

rv2x dy xþDx �
Z d

0

rv2x dy

����
����
x

�v1
Z d

0

rvx dy
xþDx

�
Z d

0

rvx dy

����
����
x

� �
Rearranging this expression and dividing through by Dx, we get

� PjxþDx � Pjx
Dx

� �
djxþDx þ

PjxþDx � Pjx
2

� �
djxþDx � djx

Dx

� �
þ Pdjx � Pdjx

Dx

� �

¼
R d
0 rv

2
xdyjxþDx �

R d
0 rv

2
x dyjx

Dx

 !
� v1

R d
0 rvxdyjxþDx �

R d
0 rvx dyjx

Dx

 !
þ t0

Taking the limit as Dx!0 we obtain

�d
dP

dx
¼ t0 þ d

dx

Z d

0

rv2x dy� v1
d

dx

Z d

0

rvx dy (12-35)
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The boundary-layer concept assumes inviscid flow outside the boundary layer, for

which we may write Bernoulli’s equation

dP

dx
þ rv1

dv1
dx

¼ 0

which may be rearranged to the form

d

r

dP

dx
¼ d

dx
(dv21)� v1

d

dx
(dv1) (12-36)

Notice that the left-hand sides of equations (12-35) and (12-36) are similar. We may thus

relate the right-hand sides and, with proper rearrangement, get the result

t0

r
¼ d

dx
v1

� �Z d

0

(v1 � vx) dyþ d

dx

Z d

0

vx(v1 � vx) dy (12-37)

Equation (12-37) is the vonKármánmomentum integral expression, named in honor of

Theodore von Kármán who first developed it.

Equation (12-37) is a general expression whose solution requires a knowledge of the

velocity, vx, as a function of distance from the surface, y. The accuracy of the final result will

depend on how closely the assumed velocity profile approaches the real one.

As an example of the application of equation (12-37), let us consider the case

of laminar flow over a flat plate, a situation for which an exact answer is known. In

this case the free-stream velocity is constant, therefore (d/dx)v1 ¼ 0 and equation

(12-36) simplifies to

t0

r
¼ d

dx

Z d

0

vx(v1 � vx) dy (12-38)

An early solution to equation (12-38) was achieved by Pohlhausen, who assumed for

the velocity profile a cubic function

vx ¼ aþ byþ cy2 þ dy3 (12-39)

The constants a, b, c, and dmay be evaluated if we know certain boundary conditions that

must be satisfied in the boundary layer. These are

(1) vx ¼ 0 at y ¼ 0

(2) vx ¼ v1 at y ¼ d

(3)
@vx
@y

¼ 0 at y ¼ d

and

(4)
@2vx
@y2

¼ 0 at y ¼ 0

Boundary condition (4) results from equation (12-33), which states that the second

derivative at thewall is equal to the pressure gradient. As the pressure is constant in this case,

@2vx/@y
2 ¼ 0. Solving for a, b, c, and d from these conditions, we get

a ¼ 0 b ¼ 3

2d
v1 c ¼ 0 d ¼ � v1

2d3
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which, when substituted in equation (12-39), give the form of the velocity profile

vx
v1

¼ 3

2

y

d

� �
� 1

2

y

d

� �3
(12-40)

Upon substitution, equation (12-38) becomes

3v

2

v1
d1

¼ d

dx

Z d

0

v21
3

2

y

d
� 1

2

y

d

� �3� �
1� 3

2

y

d
þ 1

2

y

d

� �3� �
dy

or, after integrating

3

2
v
v1
d

¼ 39

280

d

dx
(v21d)

As the free-stream velocity is constant, a simple ordinary differential equation in d results

d dd ¼ 140

13

v dx

v1
This, upon integration, yields

d

x
¼ 4:64ffiffiffiffiffiffiffiffi

Rex
p (12-41)

The local skin-friction coefficient, Cfx, is given by

Cfx � t0
1
2rv

21
¼ 2v

v21

3

2

v1
d

¼ 0:646ffiffiffiffiffiffiffiffi
Rex

p (12-42)

Integration of the local skin-friction coefficient between x ¼ 0 and x ¼ L as in equation

(12-32) yields

CfL ¼ 1:292ffiffiffiffiffiffiffiffi
ReL

p (12-43)

Comparing equations (12-41), (12-42), and (12-43) with exact results obtained by Blasius

for the same situation, equations (12-28), (12-31), and (12-32), we observe a difference of

about 7% in d and 3% in Cf . This difference could, of course, have been smaller had the

assumed velocity profile been a more accurate representation of the actual profile.

This comparison has shown the utility of the momentum integral method for the

solution of the boundary layer and indicates a procedure that may be used with reasonable

accuracy to obtain values for boundary-layer thickness and the coefficient of skin friction

where an exact analysis is not feasible. Themomentum integral methodmay also be used to

determine the shear stress from the velocity profile.

12.8 DESCRIPTION OF TURBULENCE

Turbulent flow is the most frequently encountered type of viscous flow, yet the analytical

treatment of turbulent flow is not nearly well developed as that of laminar flow. In this

section, we examine the phenomenon of turbulence, particularly with respect to the

mechanism of turbulent contributions to momentum transfer.

In a turbulent flow the fluid and flow variables vary with time. The instantaneous

velocity vector, for example, will differ from the average velocity vector in both magnitude

and direction. Figure 12.11 illustrates the type of time dependence experienced by the
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axial component of the velocity for turbulent flow in a tube. While the velocity in Figure

12.11a is seen to be steady in its mean value, small random fluctuations in velocity occur

about themeanvalue. Accordingly, wemay express the fluid and flow variables in terms of a

mean value and a fluctuating value. For example, the x-directional velocity is expressed as

vx ¼ vx(x; y; z)þ v0x(x; y; z; t) (12-44)

Here vx(x; y; z) represents the time-averaged velocity at the point (x, y, z)

vx ¼ 1

t1

Z t1

0

vx(x; y; z; t) dt (12-45)

where t1 is a time that is very long in comparison with the duration of any fluctuation.

The mean value of v0x(x; y; z; t) is zero, as expressed by

v0x ¼
1

t1

Z t1

0

v0x(x; y; z; t) dt ¼ 0 (12-46)

Hereafter, Q will be used to designate the time average of the general property, Q,

according to Q ¼ 1/t1
R t1
0 Q(x; y; z; t)dt. While the mean value of the turbulent fluctuations

is zero, these fluctuations contribute to the mean value of certain flow quantities. For

example, the mean kinetic energy per unit volume is

KE ¼ 1

2
r½(vx þ v 0

x)
2 þ (vy þ v 0

y)
2 þ (vz þ v 0

z)
2�

The average of a sum is the sum of the averages; hence the kinetic energy becomes

KE ¼ 1

2
r v2x þ 2vxv 0

x þ v 02
x

� þ �v2y þ 2vyv 0
y þ v 02

y

þ v2z þ 2vzv 0
z þ v 02

z

� n o
or, since vxv 0

x ¼ vxv 0
x ¼ 0;

KE ¼ 1

2
r
�
v2x þ v2y þ v2z þ v 02

x þ v 02
y þ v 02

z


(12-47)

A fraction of the total kinetic energy of a turbulent flow is seen to be associated with the

magnitude of the turbulent fluctuations. It can be shown that the rms (root mean square)

value of the fluctuations, (v 02
x þ v 02

y þ v 02
z )1/2 is a significant quantity. The level or

intensity of turbulence is defined as

I �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
v 02
x þ v 02

y þ v 02
z


/3

q
v1

(12-48)

(a) (b)

v
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v(x, y, z)
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t

_
v(x, y, z, t)

Figure 12.11 Time dependence of velocity in a turbulent flow: (a) steady mean flow;

(b) unsteady mean flow.
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where v1 is the mean velocity of the flow. The intensity of turbulence is a measure of

the kinetic energy of the turbulence and is an important parameter in flow simulation. In

model testing, simulation of turbulent flows requires not only duplication of Reynolds

number but also duplication of the turbulent kinetic energy. Thus, the measurement of

turbulence is seen to be a necessity in many applications.

The general discussion so far has indicated the fluctuating nature of turbulence. The

random nature of turbulence lends itself to statistical analysis. We shall now turn our

attention to the effect of the turbulent fluctuations on momentum transfer.

12.9 TURBULENT SHEARING STRESSES

In Chapter 7, the random molecular motion of the molecules was shown to result in a net

momentum transfer between two adjacent layers of fluid. If the (molecular) randommotions

give rise to momentum transfer, it seems reasonable to expect that large-scale fluctuations,

such as those present in a turbulent flow, will also result in a net transfer of momentum.

Using an approach similar to that of Section 7.3, let us consider the transfer ofmomentum in

the turbulent flow illustrated in Figure 12.12.

The relation between themacroscopic momentum flux due to the turbulent fluctuations

and the shear stress may be seen from the control-volume expression for linear momentum

�F ¼
Z Z

c:s:
vr(v: n) dAþ @

@t

Z Z Z
c:v:

vr dV (5-4)

The flux of x-directional momentum across the top of the control surface isZ Z
top

vr(v: n) dA ¼
Z Z

top

v0yr(vx þ v0x) dA (12-49)

If the mean value of the momentum flux over a period of time is evaluated for the case of

steady mean flow, the time derivative in equation (5-4) is zero; thus

�Fx ¼
Z Z

v 0
yr(vx þ v 0

x)dA ¼
Z Z

v0yrvx dA%0

þ
Z Z

rv 0
yv

0
xdA (12-50)

The presence of the turbulent fluctuations is seen to contribute a mean x directional

momentum flux of rv 0
xv

0
ys per unit area. Although the turbulent fluctuations are functions

�y

�x

vx = vx(y)

y

x

vy
– –

vx
' '

Figure 12.12 Turbulent motion at the surface of a control volume.
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of position and time, their analytical description has not been achieved, even for the

simplest case. The close analogy between the molecular exchange of momentum in

laminar flow and the macroscopic exchange of momentum in turbulent flow suggests that

the term rv0xv
0
y

¯
be regarded as a shear stress. Transposing this term to the left-hand side of

equation (5-4) and incorporating it with the shear stress due to molecular momentum

transfer, we see that the total shear stress becomes

tyx ¼ m
d vx
dy

� rv 0
xv

0
y (12-51)

The turbulent contribution to the shear stress is called the Reynolds stress. In turbulent

flows it is found that the magnitude of the Reynolds stress is much greater than the

molecular contribution except near the walls.

An important difference between themolecular and turbulent contributions to the shear

stress is to be noted.Whereas the molecular contribution is expressed in terms of a property

of the fluid and a derivative of the mean flow, the turbulent contribution is expressed solely

in terms of the fluctuating properties of the flow. Further, these flow properties are not

expressible in analytical terms. While Reynolds stresses exist for multidimensional

flows,6 the difficulties in analytically predicting even the one-dimensional case have proved

insurmountable without the aid of experimental data. The reason for these difficulties may

be seen by examining the number of equations and the number of unknowns involved. In the

incompressible turbulent boundary layer, for example, there are two pertinent equations,

momentum and continuity, and four unknowns, vx, vy, v
0
x, and v 0

y.

An early attempt to formulate a theory of turbulent shear stress was made by

Boussinesq.7 By analogy with the form of Newton’s viscosity relation, Boussinesq

introduced the concept relating the turbulent shear stress to the shear strain rate. The shear

stress in laminar flow is tyx ¼ m(dvx/dy); thus by analogy, the Reynolds stress becomes

(tyx)turb ¼ At
d vx
dy

where At is the eddy viscosity. Subsequent refinements have led to the introduction of the

eddy diffusivity of momentum, eM �At/r, and thus

(tyx)turb ¼ reM
d vx
dy

(12-52)

The difficulties in analytical treatment still exist, however, as the eddy diffusivity, eM , is a

property of the flow and not of the fluid. By analogy with the kinematic viscosity in a

laminar flow, it may be observed that the units of the eddy diffusivity are L2/t.

12.10 THE MIXING-LENGTH HYPOTHESIS

A general similarity between the mechanism of transfer of momentum in turbulent flow

and that in laminar flowpermits an analog to bemade for turbulent shear stress. The analog

to the mean free path in molecular momentum exchange for the turbulent case is the

mixing length proposed by Prandtl8 in 1925. Consider the simple turbulent flow shown in

Figure 12.13.

6 The existence of the Reynolds stresses may also be shown by taking the time average of the Navier–Stokes

equations.
7 J. Boussinesq, Mem. Pre. par div. Sav., XXIII, (1877).
8 L. Prandtl, ZAMM, 5, 136 (1925).
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The velocity fluctuation v 0
x is hypothesized as being due to the y-directional motion of a

‘‘lump’’ of fluid through a distance L. In undergoing translation the lump of fluid retains the

mean velocity from its point of origin. Upon reaching a destination, a distance L from the

point of origin, the lumpof fluidwill differ inmeanvelocity from that of the adjacent fluid by

an amount vxjy�L � vxjy. If the lump of fluid originated at yþ L, the velocity difference

would be vxjyþL � vxjy. The instantaneous value of v0xjy is then vxjy�L � vxjy, the sign of L,
of course, depending on the point of origin with respect to y. Further, the mixing length,

although finite, is assumed to be small enough to permit the velocity difference to bewritten

as and thus

vxjy�L � vxjy ¼ �L
dvx
dy

and thus

v0x ¼ �L
dvx
dy

(12-52)

The concept of the mixing length is somewhat akin to that of the mean free path of a

gas molecule. The important differences are its magnitude and dependence upon flow

properties rather than fluid properties.With an expression for v0x at hand, an expression for v0y
is necessary to determine the turbulent shear stress, �rv 0

xv
0
y.

Prandtl assumed that v0x must be proportional to v 0
y. If v

0
x and v 0

y were completely

independent, then the time average of their product would be zero. Both the continuity

equation and experimental data show that there is somedegree of proportionality between v 0
x

and v 0
y. Using the fact that v 0

y
 v 0
x, Prandtl expressed the time average, v 0

xv
0
y, as

v 0
xv

0
y ¼ �(constant)L2

d vx
dy

����
���� d vxdy

(12-53)

The constant represents the unknown proportionality between v 0
x and v

0
y as well as their

correlation in taking the time average. The minus sign and the absolute value were

introduced to make the quantity v 0
xv

0
y agree with experimental observations. The constant

in (12-53), which is unknown, may be incorporated into the mixing length, which is also

unknown, giving

v 0
xv

0
y ¼ �L2

d vx
dy

����
���� d vxdy

(12-54)

Comparison with Boussinesq’s expression for the eddy diffusivity yields

eM ¼ L2
d vx
dy

����
���� (12-55)

y

vx

y

L

Figure 12.13 The Prandtl mixing

length.
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At first glance it appears that little has been gained in going from the eddy viscosity to

the mixing length. There is an advantage, however, in that assumptions regarding the nature

and variation of the mixing length may be made on an easier basis than assumptions

concerning the eddy viscosity.

12.11 VELOCITY DISTRIBUTION FROM THE MIXING-LENGTH THEORY

One of the important contributions of the mixing-length theory is its use in correlating

velocity profiles at large Reynolds numbers. Consider a turbulent flow as illustrated in

Figure 12.13. In the neighborhood of the wall the mixing length is assumed to vary

directly with y, and thus L ¼ Ky, where K remains a dimensionless constant to be

determined via experiment. The shear stress is assumed to be entirely due to turbul-

ence and to remain constant over the region of interest. The velocity vx is assumed to

increase in the y direction, and thus d vx/dy ¼ jd vx/dyj. Using these assumptions, we may

write the turbulent shear stress as

tyx ¼ rK2y2
d vx
dy

� �2

¼ t0(a constant)

or

d vx
dy

¼
ffiffiffiffiffiffiffiffiffi
t0/r

p
Ky

The quantity
ffiffiffiffiffiffiffiffiffi
t0/r

p
is observed to have units of velocity. Integration of the above equation

yields

vx ¼
ffiffiffiffiffiffiffiffiffi
t0/r

p
K

In yþ C (12-56)

where C is a constant of integration. This constant may be evaluated by setting vx ¼
vxmax at y ¼ h, whereby

vxmax � vxffiffiffiffiffiffiffiffiffi
t0/r

p ¼ � 1

K
ln
y

h

h i
(12-57)

The constant K was evaluated by Prandtl9 and Nikuradse10 from data on turbulent

flow in tubes and found to have a value of 0.4. The agreement of experimental data for

turbulent flow in smooth tubes with equation (12-57) is quite good, as can be seen from

Figure 12.14.

The empirical nature of the preceding discussion cannot be overlooked. Several

assumptions regarding the flow are known to be incorrect for flow in tubes, namely

that the shear stress is not constant and that the geometry was treated from a two-

dimensional viewpoint rather than an axisymmetric viewpoint. In view of these obvious

difficulties, it is remarkable that equation (13-15) describes the velocity profile so

well.

9 L. Prandtl, Proc. Intern. Congr. Appl. Mech., 2nd Congr., Zurich (1927), 62.
10 J. Nikuradse, VDI-Forschungsheft, 356, 1932.
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12.12 THE UNIVERSAL VELOCITY DISTRIBUTION

For turbulent flow in smooth tubes, equation (12-57) may be taken as a basis for a more

general development. Recalling that the term
ffiffiffiffiffiffiffiffiffi
t0/r

p
has the units of velocity, we may

introduce a dimensionless velocity vx/
ffiffiffiffiffiffiffiffiffi
t0/r

p
. Defining

vþ � vxffiffiffiffiffiffiffiffiffi
t0/r

p (12-58)

we may write equation (12-56) as

vþ ¼ 1

K
½ln y� þ C (12-59)

The left-hand side of (12-59) is, of course, dimensionless; therefore the right-hand side of

this equation must also be dimensionless. A pseudo-Reynolds number is found useful in

this regard. Defining

yþ �
ffiffiffiffiffiffiffiffiffi
t0/r

p
n

y (12-60)

we find that equation (12-59) becomes

vþ ¼ 1

K
ln

nyþffiffiffiffiffiffiffiffiffi
t0/r

p þ C ¼ 1

K
(ln yþ þ ln b) (12-61)

where the constant b is dimensionless.

Equation (12-61) indicates that for flow in smooth tubes vþ ¼ f (yþ) or

vþ � vxffiffiffiffiffiffiffiffiffi
t0/r

p ¼ f ln
y
ffiffiffiffiffiffiffiffiffi
t0/r

p
n

	 

(12-62)

The range of validity of equation (13-19)may be observed from a plot (see Figur 12.15)

of vþ versus ln y+, using the data of Nikuradse and Reichardt.
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Equation (12-57)

Figure 12.14 Comparison of

data for flow in smooth tube

with equation (12-57).

12.12 The Universal Velocity Distribution 161



Three distinct regions are apparent: a turbulent core, a buffer layer, and a laminar

sublayer. The velocity is correlated as follows:

for turbulent core, yþ � 30

vþ ¼ 5:5þ 2:5 ln yþ (12-63)

for the buffer layer, 30 � yþ � 5

vþ ¼ �3:05þ 5 ln yþ (12-64)

for the laminar sublayer, 5> yþ> 0

vþ ¼ yþ (12-65)

Equations (12-63) through (12-65) define the universal velocity distribution. Because

of the empirical nature of these equations, there are, of course, inconsistencies. The velocity

gradient, for example, at the center of the tube predicted by (12-63) is not zero. In spite of

this and other inconsistencies, these equations are extremely useful for describing flow in

smooth tubes.

In rough tubes, the scale of the roughness e is found to affect the flow in the turbulent

core, but not in the laminar sublayer. The constant b in equation (13-19) becomes ln b ¼
3:4� ln ½(e ffiffiffiffiffiffiffiffiffi

t0/r
p

)/n� for rough tubes. As the wall shear stress appears in the revised

expression for ln b, it is important to note that wall roughness affects the magnitude of the

shear stress in a turbulent flow.

12.13 FURTHER EMPIRICAL RELATIONS FOR TURBULENT FLOW

Two important experimental results that are helpful in studying turbulent flows are the

power-law relation for velocity profiles and a turbulent-flow shear-stress relation due to

Blasius. Both of these relations are valid for flow adjacent to smooth surfaces.
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Figure 12.15 Velocity correlation for flow in circular smooth tubes at high Reynolds number

(H. Reichardt, NACA TM1047, 1943).
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For flow in smooth circular tubes, it is found that over much of the cross section the

velocity profile may be correlated by

vx
vxmax

¼ y

R

� �1/n
(12-66)

where R is the radius of the tube and n is a slowly varying function of Reynolds number. The

exponent n is found to vary from a value of 6 at Re ¼ 4000 to 10 at Re ¼ 3,200,000. At Rey-

nolds numbers of 105 the value of n is 7. This leads to the frequently used one-seventh-power

law, vx/vxmax ¼ (y/R)1/7. The power-law profile has also been found to represent the velocity

distribution in boundary layers. For boundary layers of thickness d, the power law is written

vx
vxmax

¼ y

d

� �1/n
(12-67)

The power-law profile has two obvious difficulties: the velocity gradients at the wall

and those at d are incorrect. This expression indicates that the velocity gradient at thewall is

infinite and that the velocity gradient at d is nonzero.

In spite of these inconsistencies, the power law is extremely useful in connection with

the von Kármán-integral relation, as we shall see in Section 12.14.

Another useful relation is Blasius’s correlation for shear stress. For pipe-flowReynolds

numbers up to 105 and flat-plate Reynolds numbers up to 107, the wall shear stress in a

turbulent flow is given by

t0 ¼ 0:0225rv2xmax

n

vxmax ymax

� �1/4
(12-68)

where ymax ¼ R in pipes and ymax ¼ d for flat surfaces.

12.14 THE TURBULENT BOUNDARY LAYER ON A FLAT PLATE

The variation in boundary-layer thickness for turbulent flow over a smooth flat plate may be

obtained from the vonKármánmomentum integral. Themanner of approximation involved

in a turbulent analysis differs from that used previously. In a laminar flow, a simple

polynomial was assumed to represent the velocity profile. In a turbulent flow, we have seen

that the velocity profile depends upon the wall shear stress and that no single function

adequately represents the velocity profile over the entire region. The procedure we shall

follow in using the von Kármán integral relation in a turbulent flow is to utilize a simple

profile for the integrationwith theBlasius correlation for the shear stress. For a zero pressure

gradient the von Kármán integral relation is

t0

r
¼ d

dx

Z d

0

vx(v1 � vx) dy (12-38)

Employing the one-seventh-power law for vx and the Blasius relation, equation (12-68)

for t0, we see that equation (12-38) becomes

0:0225v21
n

v1d

� �1/4
¼ d

dx

Z d

0

v21
y

d

� �1/7� y

d

� �2/7	 

dy (12-69)

where the free-stream velocity, v1, is written in place of vxmax. Performing the indicated

integration and differentiation, we obtain

0:0225
n

v1d

� �1/4
¼ 7

72

dd

dx
(12-70)
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which becomes, upon integration

n

v1

� �1/4
x ¼ 3:45 d5/4 þ C (12-71)

If the boundary layer is assumed to be turbulent from the leading edge, x ¼ 0 (a poor

assumption), the above equation may be rearranged to give

d

x
¼ 0:376

Re1/5x

(12-72)

The local skin-friction coefficient may be computed from the Blasius relation for shear

stress, equation (12-67), to give

Cfx ¼ 0:0576

Re1/5x

(12-73)

Several things are to be noted about these expressions. First, they are limited to values of

Rex< 107, by virtue of the Blasius relation. Second, they apply only to smooth flat plates.

Last, amajor assumption has beenmade in assuming the boundary layer to be turbulent from

the leading edge. The boundary layer is known to be laminar initially and to undergo

transition to turbulent flow at a value of Rex of about 2� 105.We shall retain the assumption

of a completely turbulent boundary layer for the simplicity it affords; it is recognized,

however, that this assumption introduces some error in the case of a boundary layer that is

not completely turbulent.

A comparison of a laminar and a turbulent boundary layer can be made from Blasius’s

laminar-flow solution and equations (12-28), (12-72), and (12-73). At the same Reynolds

number, the turbulent boundary layer is observed to be thicker, and is associated with a

larger skin friction coefficient. While it would appear then that a laminar boundary layer is

more desirable, the reverse is generally true. In most cases of engineering interest, a

turbulent boundary layer is desired because it resists separation better than a laminar

boundary layer. Thevelocity profiles in laminar and turbulent boundary layers are compared

qualitatively in Figure 12.16.
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Figure 12.16 Comparison of

velocity profiles in laminar and

turbulent boundary layers. The

Reynolds number is 500,000.
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It can be seen that the turbulent boundary layer has a greater mean velocity, hence both

greatermomentum and energy than the laminar boundary layer. The greater momentum and

energy permit the turbulent boundary layer to remain unseparated for a greater distance in

the presence of an adverse pressure gradient than would be the case for a laminar boundary

layer.

Consider a flat plate with transition from laminar flow to turbulent flow occurring on

the plate. If transition from laminar flow to turbulent flow is assumed to occur abruptly

(for computational purposes), a problem arises in how to join the laminar boundary layer to

the turbulent layer at the point of transition. The prevailing procedure is to equate the

momentum thicknesses, equation (12-44), at the transition point. That is, at the start of

the turbulent portion of the boundary layer, the momentum thickness, u, is equal to the

momentum thickness at the end of the laminar portion of the boundary layer.

The general approach for turbulent boundary layers with a pressure gradient involves

the use of the von Kármán momentum integral as given in equation (12-46). Numerical

integration is required.

12.15 FACTORS AFFECTING THE TRANSITION
FROM LAMINAR TO TURBULENT FLOW

The velocity profiles and momentum-transfer mechanisms have been examined for both

laminar and turbulent flow regimes and found to be quite different. Laminar flow has also

been seen to undergo transition to turbulent flow at certain Reynolds numbers.

So far the occurrence of transition has been expressed in terms of the Reynolds number

alone, while a variety of factors other than Re actually influence transition. The Reynolds

number remains, however, the principal parameter for predicting transition.

Table 12.2 indicates the influence of some of these factors on the transition Reynolds

number.

12.16 CLOSURE

Viscous flow has been examined in this chapter for both internal and external geometries.

Two approaches were employed for analyzing laminar boundary layer flows—exact

analysis using boundary layer equations and approximate integral methods. For turbulent

boundary layer analysis along a plane surface, an integral method was employed.

Concepts of skin friction and drag coefficients were introduced and quantitative

relationships were developed for both internal and external flows.

Table 12.2 Factors affecting the Reynolds number of transition from laminar to turbulent flow

Factor Influence

Pressure gradient Favorable pressure gradient retards transition; unfavorable pressure

gradient hastens it

Free-stream turbulence Free-stream turbulence decreases transition Reynolds number

Roughness No effect in pipes; decreases transition in external flow

Suction Suction greatly increases transition Re

Wall curvatures Convex curvature increases transition Re. Concave curvature

decreases it

Wall temperature Cool walls increase transition Re. Hot walls decrease it
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Approaches to modeling turbulent flows were introduced, culminating in expressions for

the ‘‘universal’’ velocity distribution. This approach considers turbulent flows to be described

in three parts: the laminar sublayer, the transition or buffer layer, and the turbulent core.

The concepts developed in this chapter will be used to develop important expressions

for momentum flow application in the next chapter. Similar applications will be developed

in the sections related to both heat and mass transfer in later sections of this text.

PROBLEMS

12.1 If Reynolds’s experiment was performed with a 38-mm-

ID pipe, what flow velocity would occur at transition?

12.2 Modern subsonic aircraft have been refined to such an

extent that 75% of the parasite drag (portion of total aircraft drag

not directly associated with producing lift) can be attributed to

friction along the external surfaces. For a typical subsonic jet, the

parasite drag coefficient based on wing area is 0.011. Determine

the friction drag on such an aircraft

a. at 500 mph at 35 000 ft;

b. at 200 mph at sea level.

The wing area is 2400 ft2.
12.3 Consider the flow of air at 30 m/s along a flat plate. At

what distance from the leading edge will transition occur?

12.4 Find a velocity profile for the laminar boundary layer of

the form

vx
vxd

¼ c1 þ c2yþ c3y
2 þ c4y

3

when the pressure gradient is not zero.

12.5 Evaluate and compare with the exact solution d, Cfx, and

CfL for the laminar boundary layer over a flat plate, using the

velocity profile

vx ¼ a sin by:

12.6 There is fluid evaporating from a surface at which

vxjy¼0 ¼ 0, but vxjy¼0 6¼ 0. Derive the von Kármán momentum

relation.

12.7 The drag coefficient for a smooth sphere is shown below.

Determine the speed at the critical Reynolds number for a

42-mm-diameter sphere in air.

CD

Re = Dv/n
103 104 105 106 107
0

0.1

0.2

0.3

0.4

0.5

12.8 Plot a curve of drag vs. velocity for a 1.65-in.-diameter

sphere in air between velocities of 50 fps and 400 fps.

12.9 For what wind velocities will a 12.7-mm-diameter cable

be in the unsteady wake region of Figure 12.2?

12.10 Estimate the drag force on a 3-ft-long radio antennawith

an average diameter of 0.2 in. at a speed of 60 mph.

12.11 A 2007 Toyota Prius has a drag coefficient of 0.26 at

road speeds, using a reference area of 2.33 m2. Determine the

horsepower required to overcome drag at a velocity of 30 m/s.

Compare this figurewith the case of head and tail winds of 6m/s.

12.12 The lift coefficient is defined as CL� (lift force)/
1
2rv

2
xAr. If the lift coefficient for the auto in the previous problem

is 0.21, determine the lift force at a road speed of 100 mph.

12.13 The auto in Problems and showed a sensitivity to yaw

angle. At a yaw angle of 208, the lift coefficient increased to 1.0.
What is the lift force at 100 mph for this case?

12.14 What diameter circular plate would have the same drag

as the auto of Problem 12.11?

12.15 Estimate the normal force on a circular sign 8 ft in

diameter during a hurricane wind (120 mph).

12.16 A1998 Lexus LS400 has a drag coefficient of 0.28 and a

reference area of 2.4 m2. Determine the horsepower required to

overcome drag when driving at 70 mph at sea level.

a. on a hot summer day T ffi 100�F.
b. on a cold winter day T ffi 0�F
12.17 A baseball has a circumference of 9 1

4 inches and a

weight of 5 1
4 ounces. At 95 mph determine

a. the Reynolds number.

b. the drag force.

c. the type of flow (see the illustration for Problem ).

12.18 Golfball ‘‘dimples’’ cause the drag drop (see Figure 12.4

and the illustration for Problem 12.7) to occur at a lower

Reynolds number. The table below gives the drag coefficient

for a rough sphere as a function of the Reynolds number. Plot the

drag for1.65-in.-diameter sphere as a function of velocity. Show

several comparison points for a smooth sphere.

Re � 10�4 7.5 10 15 20 25

CD 0.48 0.38 0.22 0.12 0.10
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12.19 The lift coefficient on a rotating sphere is very approxi-

mately given by

CLffi 0:24
RV

V

� �
�0:05 over the range of 1:5>

RV

V

� �
> 0:2:

Here R is the sphere radius and V is rotation rate of the sphere.

For the baseball in Problem 12.17, determine the rotation rate for

a baseball thrown at 110 mph to have the lift equal the weight.

How many rotations would such a ball make in 60 ft 6 in.?

12.20 If the vertical velocity at the wall is not zero such as

would be the case with suction or blowing, what modifications

occur to equation (12-33)?

12.21 If the turbulence intensity is 10%, what fraction of the

total kinetic energy of the flow is due to the turbulence?

12.22 In a house, water flows through a copper tubewith a 0.75-

in.ID, at a flow rate of 2 gpm. Determine the Reynolds number for

a. hot water (T ffi 120�F):
b. cold water (T ffi 45�F):
12.23 Plot the boundary-layer thickness along a flat plate for

the flow of air at 30 m/s assuming

a. laminar flow;

b. turbulent flow.

Indicate the probable transition point.

12.24 For the fully developed flow ofwater in a smooth 0.15-m

pipe at a rate of 0:006m3/s, determine the thickness of

a. the laminar sublayer;

b. the buffer layer;

c. the turbulent core.

12.25 Using Blasius’ correlation for shear stress (equation 12-

68), develop an expression for the local skin-friction coefficient in

pipes. In pipes, the average velocity is used for the friction coeffi-

cient and the Reynolds number. Use the one-seventh-power law.

12.26 For a thin a plate 6 in. wide and 3 ft long, estimate the

friction force in air at a velocity of 40 fps, assuming

a. turbulent flow;

b. laminar flow.

The flow is parallel to the 6-in. dimension.

12.27 Using a sine profile the laminar flow and a one-seventh-

power law for turbulent flow, make a dimensionless plot of the

momentum and kinetic energy profiles in the boundary layer a

Reynolds number of 105.

12.28 Estimate the friction drag on a wing by considering the

following idealization. Consider thewing to be a rectangular flat

plate, 7 ft by 40 ft, with a smooth surface. The wing is flying at

140 mph at 5000 ft. Determine the drag, assuming

a. a laminar boundary layer;

b. a turbulent boundary layer.

12.29 Compare the boundary-layer thicknesses and local skin-

friction coefficients of a laminar boundary layer and a turbulent

boundary layer on a smooth flat plate at a Reynolds number of

106. Assume both boundary layers to originate at the leading

edge of the flat plate.

12.30 Use the 1/7 power-law profile and compute the drag

force and boundary layer thickness on a plate 20 ft long and 10 ft

wide (for one side) if it is immersed in a flow of water of 20 ft/s

velocity. Assume turbulent flow to exist over the entire length of

the plate. What would the drag be if laminar flow could be

maintained over the entire surface?

12.31 The turbulent shear stress in a two-dimensional flow is

given by

(tyx)turb ¼ reM
@vx
@y

¼ �rvxvy

Expanding v 0
x and v

0
y in a Taylor series in x and y near thewall and

with the aid of the continuity equation

@v 0
x

@x
þ @v 0

y

@y
¼ 0

show that, near the wall, eM 
 y3þ higher order terms in y. How

does this compare with the mixing-length theory?

12.32 Evaluate the velocity derivative, @vx/@y, for the power-
law velocity profile at y ¼ 0 and y ¼ R:

12.33 Using the Blasius shear-stress relation (12-68) and the

power-law velocity profile, determine the boundary-layer thick-

ness on a flat plate as a function of the Reynolds number and the

exponent n.
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Chapter 13

Flow in Closed Conduits

Many of the theoretical relations that have been developed in the previous chapters

apply to special situations such as inviscid flow, incompressible flow, and the like.

Some experimental correlations were introduced in Chapter 12 for turbulent flow in or

past surfaces of simple geometry. In this chapter, an application of the material that has

been developed thus far will be considered with respect to a situation of considerable

engineering importance, namely fluid flow, both laminar and turbulent, through closed

conduits.

13.1 DIMENSIONAL ANALYSIS OF CONDUIT FLOW

As an initial approach to conduit flow, we shall utilize dimensional analysis to obtain the

significant parameters for the flow of an incompressible fluid in a straight, horizontal,

circular pipe of constant cross section.

The significant variables and their dimensional expressions are as represented in the

following table:

Each of the variables is familiar, with the exception of the pipe roughness, symbolized e. The

roughness is included to represent the condition of the pipe surface and may be thought of as

the characteristic height of projections from the pipe wall, hence the dimension of length.

Variable Symbol Dimension

Pressure drop DP M/Lt2

Velocity v L/t

Pipe diameter D L

Pipe length L L

Pipe roughness e L

Fluid viscosity m M/Lt

Fluid density r M/L3

According to the Buckingham p theorem, the number of independent dimensionless

groups to be formed with these variables is four. If the core group consists of the variables v,
D, and r, then the groups to be formed are as follows:

p1 ¼ vaDbrc DP

p2 ¼ vdDer f L

p3 ¼ vgDhrie

p4 ¼ v jDkrlm
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Carrying out the procedure outlined in Chapter 11 to solve for the unknown exponents in

each group, we see that the dimensionless parameters become

p1 ¼ DP

rv2

p2 ¼ L

D

p3 ¼ e

D

and

p4 ¼ vDr

m

The first p group is the Euler number. As the pressure drop is due to fluid friction, this

parameter is often written with DP/r replaced by ghL where hL is the ‘‘head loss’’; thus p1

becomes

hL

v2/g

The thirdp group, the ratio of pipe roughness to diameter, is the so-called relative roughness.

The fourth p group is the Reynolds number, Re.

A functional expression resulting from dimensional analysis may be written as

hL

v2/g
¼ f1

L

D
;
e

D
;Re

� �
(13-1)

Experimental data have shown that the head loss in fully developed flow is directly

proportional to the ratio L/D. This ratio may, then, be removed from the functional

expression, giving

hL

v2/g
¼ L

D
f2

e

D
;Re

� �
(13-2)

The function f2, which varies with the relative roughness and Reynolds number, is

designated f, the friction factor. Expressing the head loss from equation (13-2) in terms of

f, we have

hL ¼ 2 ff
L

D

v2

g
(13-3)

With the factor 2 inserted in the right-hand side, equation (13-3) is the defining relation for

ff, the Fanning friction factor. Another friction factor in common use is the Darcy friction

factor, fD, defined by equation 13-4.

hL ¼ fD
L

D

v2

2g
(13-4)

Quite obviously, fD ¼ 4 ff . The student should be careful to note which friction factor he

is using to properly calculate frictional head loss by either equation (13-3) or (13-4). The

Fanning friction factor, ff, will be used exclusively in this text. The student may easily

verify that the Fanning friction factor is the same as the skin friction coefficient Cf.

Our task now becomes that of determining suitable relations for ff from that theory and

experimental data.
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13.2 FRICTION FACTORS FOR FULLY DEVELOPED
LAMINAR, TURBULENT, AND TRANSITION
FLOW IN CIRCULAR CONDUITS

Laminar Flow

Some analysis has been performed already for incompressible laminar flow. As fluid

behavior can be described quitewell in this regime according toNewton’s viscosity relation,

we should expect no difficulty in obtaining a functional relationship for ff in the case of

laminar flow. Recall that, for closed conduits, the flowmay be considered laminar for values

of the Reynolds number less than 2300.

From Chapter 8, the Hagen–Poiseuille equation was derived for incompressible,

laminar, conduit flow

� dP

dx
¼ 32

mvavg
D2

(8-9)

Separating variables and integrating this expression along a length, L, of the passage, we get

�
Z P

P0

dP ¼ 32
mvavg
D2

Z L

0

dx

and

DP ¼ 32
mvavgL

D2
(13-5)

Recall that equation (8-9) held for the case of fully developed flow; thus vavg does not

vary along the length of the passage.

Forming an expression for frictional head loss from equation (13-5), we have

hL ¼ DP

rg
¼ 32

mvavgL

grD2
(13-6)

Combining this equation with equation (13-3), the defining relation for ff

hL ¼ 32
mvavgL

grD2
¼ 2 ff

L

D

v2

g

and solving for ff, we obtain

ff ¼ 16
m

Dvavgr
¼ 16

Re
(13-7)

This very simple result indicates that ff is inversely proportional to Re in the laminar

flow range; the friction factor is not a function of pipe roughness for values of Re< 2300, but

varies only with the Reynolds number.

This result has been experimentally verified and is the manifestation of the viscous

effects in the fluid, damping out any irregularities in the flow caused by protrusions from a

rough surface.

Turbulent Flow

In the case of turbulent flow in closed conduits or pipes, the relation for ff is not so simply

obtained or expressed as in the laminar case. No easily derived relation such as the Hagen–

Poiseuille law applies; however, some use can be made of the velocity profiles expressed in

Chapter 12 for turbulent flow. All development will be based on circular conduits; thus we
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are primarily concerned with pipes or tubes. In turbulent flow a distinction must be made

between smooth- and rough-surfaced tubes.

Smooth Tubes. The velocity profile in the turbulent core has been expressed as

vþ ¼ 5:5þ 2:5 ln yþ (12-63)

where the variables vþ and yþ are defined according to the relations

vþ � vffiffiffiffiffiffiffiffiffi
t0/r

p (12-58)

and

yþ �
ffiffiffiffiffiffiffiffiffi
t0/r

p
v

y (12-60)

The average velocity in the turbulent core for flow in a tube of radius R can be evaluated

from equation (12-63) as follows:

vavg ¼
R A
0 v dA

A

¼
ffiffiffiffiffiffiffiffiffi
t0/r

p Z R

0

2:5 ln

ffiffiffiffiffiffiffiffiffiffiffi
t0/ry

p
v

	 

þ 5:5

� �
2pr dr

pR2

Letting y ¼ R� r, we obtain

vavg ¼ 2:5
ffiffiffiffiffiffiffiffiffi
t0/r

p
ln

ffiffiffiffiffiffiffiffiffi
t0/r

p
R

v

	 

þ 1:75

ffiffiffiffiffiffiffiffiffi
t0/r

p
(13-8)

The functions
ffiffiffiffiffiffiffiffiffi
t0/r

p
and Cf are related according to equation (12-2). As Cf and ff are

equivalent, we may write

vavgffiffiffiffiffiffiffiffiffi
t0/r

p ¼ 1ffiffiffiffiffiffiffiffiffi
ff /2

p (13-9)

The substitution of equation (13-9) into equation (13-8) yields

1ffiffiffiffiffiffiffiffiffi
ff /2

p ¼ 2:5 ln
R

v
vavg

ffiffiffiffiffiffiffiffiffi
ff /2

p	 

þ 1:75 (13-10)

Rearranging the argument of the logarithm into Reynolds number form, and changing to

log10, we see that equation (13-10) reduces to

1ffiffiffiffiffi
ff

p ¼ 4:06 log10 Re
ffiffiffiffiffi
ff

p� �� 0:60 (13-11)

This expression gives the relation for the friction factor as a function of Reynolds number

for turbulent flow in smooth circular tubes. The preceding development was first

performed by von Kármán.1 Nikuradse,2 from experimental data, obtained the equation

1ffiffiffiffiffi
ff

p ¼ 4:0 log10 Re
ffiffiffiffiffi
ff

p� �� 0:40 (13-12)

which is very similar to equation (13-11).

1 T. von Kármán, NACATM 611, 1931.
2 J. Nikuradse, VDI-Forschungsheft, 356, 1932.
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Rough Tubes. By an analysis similar to that used for smooth tubes, von Kármán

developed equation (13-13) for turbulent flow in rough tubes

1ffiffiffiffiffi
ff

p ¼ 4:06 log10
D

e
þ 2:16 (13-13)

which compares very well with the equation obtained by Nikuradse from experimental data

1ffiffiffiffiffi
ff

p ¼ 4:0 log10
D

e
þ 2:28 (13-14)

Nikuradse’s results for fully developed pipe flow indicated that the surface condition, that

is, roughness, had nothing to do with the transition from laminar to turbulent flow. Once

the Reynolds number becomes large enough so that flow is fully turbulent, then either

equation (13-12) or (13-14) must be used to obtain the proper value for ff. These two

equations are quite different in that equation (13-12) expresses ff as a function of Re only

and equation (13-14) gives ff as a function only of the relative roughness. The difference

is, of course, that the former equation is for smooth tubes and the latter for rough tubes.

The question that naturally arises at this point is ‘‘what is ‘rough’?’’

It has been observed from experiment that equation (13-12) describes the variation in ff
for a range in Re, even for rough tubes. Beyond some value of Re, this variation deviates

from the smooth-tube equation and achieves a constant value dictated by the tube roughness

as expressed by equation (13-14). The regionwherein ff varies bothwith Re and e/D is called

the transition region. An empirical equation describing the variation of ff in the transition

region has been proposed by Colebrook.3

1ffiffiffiffiffi
ff

p ¼ 4 log10
D

e
þ 2:28� 4 log10

�
4:67

D/e

Re
ffiffiffiffiffi
ff

p þ 1

�
(13-15)

Equation (13-15) is applicable to the transition region above a value of (D/e)/

(Re
ffiffiffiffiffi
ff

p
) ¼ 0:01. Below this value, the friction factor is independent of the Reynolds

number, and the flow is said to be fully turbulent.

To summarize the development of this section, the following equations express the

friction-factor variation for the surface and flow conditions specified:

For laminar flow (Re< 2300)

ff ¼ 16

Re
(13-7)

For turbulent flow (smooth pipe, Re> 3000)

1ffiffiffiffiffi
ff

p ¼ 4:0 log10 Re
ffiffiffiffiffi
ff

p� �� 0:40 (13-12)

For turbulent flow (rough pipe, (Re> 3000; D/e)/(Re
ffiffiffiffiffi
ff

p
)< 0:01)

1ffiffiffiffiffi
ff

p ¼ 4:0 log10
D

e
þ 2:28 (13-14)

And for transition flow

1ffiffiffiffiffi
ff

p ¼ 4 log10
D

e
þ 2:28� 4 log10 4:67

D/e

Re
ffiffiffiffiffi
ff

p þ 1

 !
(13-15)

3 C. F. Colebrook, J. Inst. Civil Engr. (London) II, 133 (1938–39).
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13.3 FRICTION FACTOR AND HEAD-LOSS DETERMINATION
FOR PIPE FLOW

Friction Factor

Asingle friction-factor plot based upon equations (13-7), (13-13), (13-14), and (13-15) has been

presented by Moody.4 Figure 13.1 is a plot of the Fanning friction factor vs. the Reynolds

number for a range of values of the roughness parameter e/D.

4 L. F. Moody, Trans. ASME, 66, 671 (1944).
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Figure 13.1 The Fanning friction factor as a function of Re and D/e.
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When using the friction-factor plot, Figure 13.1, it is necessary to know the value

of the roughness parameter that applies to a pipe of given size and material. After a pipe

or tube has been in service for some time, its roughness may change considerably,

making the determination of e/D quite difficult. Moody has presented a chart, reproduced

in Figure 13.2, by which a value of e/D can be determined for a given size tube or pipe

constructed of a particular material.

The combination of these two plots enables the frictional head loss for a length, L, of

pipe having diameter D to be evaluated, using the relation

hL ¼ 2 ff
L

D

v2

g
(13-3)
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Recently Haaland5 has shown that over the range 108�Re� 4� 104, 0:05� e/D� 0, the

friction factor may be expressed (within �1.5%) as

1ffiffiffiffiffi
ff

p ¼ �3:6 log10
6:9

Re
þ e

3:7D

� �10/9� �
(13-15a)

This expression allows explicit calculation of the friction factor.

Head Losses Due to Fittings

The frictional head loss calculated from equation (13-3) is only a part of the total head loss

thatmust be overcome in pipe lines and other fluid-flow circuits. Other lossesmay occur due

to the presence of valves, elbows, and any other fittings that involve a change in the direction

of flow or in the size of the flow passage. The head losses resulting from such fittings are

functions of the geometry of the fitting, the Reynolds number, and the roughness. As the

losses in fittings, to a first approximation, have been found to be independent of theReynolds

number, the head loss may be evaluated as

hL ¼ DP

r
¼ K

v2

2g
(13-16)

where K is a coefficient depending upon the fitting.

An equivalent method of determining the head loss in fittings is to introduce an

equivalent length, Leq, such that

hL ¼ 2 ff
Leq

D

v2

g
(13-17)

where Leq is the length of pipe that produces a head loss equivalent to the head loss in a

particular fitting. Equation (13-17) is seen to be in the same form as equation (13-3), and thus

the total head loss for a piping system may be determined by adding the equivalent lengths

for the fittings to the pipe length to obtain the total effective length of the pipe.

5 S. E. Haaland, Trans. ASME, JFE, 105, 89 (1983).

Table 13.1 Friction loss factors for various pipe fittings

Fitting K Leq/D

Globe valve, wide open 7.5 350

Angle valve, wide open 3.8 170

Gate valve, wide open 0.15 7

Gate valve, 34 open 0.85 40

Gate valve, 12 open 4.4 200

Gate valve, 14 open 20 900

Standard 908 elbow 0.7 32

Short-radius 908 elbow 0.9 41

Long-radius 908 elbow 0.4 20

Standard 458 elbow 0.35 15

Tee, through side outlet 1.5 67

Tee, straight through 0.4 20

1808 Bend 1.6 75
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Comparison of equations (13-16) and (13-17) shows that the constantKmust be equal to

4 ff Leq/D. Although equation (13-17) appears to be dependent upon the Reynolds number

because of the appearanceof theFanning friction factor, it is not.The assumptionmade inboth

equations (13-16) and (13-17) is that the Reynolds number is large enough so that the flow is

fully turbulent. The friction coefficient for a given fitting, then, is dependent only upon the

roughness of the fitting. Typical values for K and Leq/D are given in Table 13.1.

Recall that the head loss due to a sudden expansion is calculated in Chapter 6, with the

result given in equation (6-13).

Equivalent Diameter

Equations (13-16) and (13-17) are based upon a circular flow passage. These equations may be

used toestimate thehead loss inaclosedconduitofanyconfiguration ifan‘‘equivalentdiameter’’

for a noncircular flow passage is used. An equivalent diameter is calculated according to

Deq ¼ 4
cross-sectional area of flow

wetted perimeter
(13-18)

The ratio of the cross-sectional area of flow to the wetted perimeter is called the hydraulic

radius.

The reader may verify thatDeq corresponds toD for a circular flow passage. One type of

noncircular flow passage often encountered in transfer processes is the annular area between

twoconcentric pipes.The equivalent diameter for this configuration is determined as follows:

Cross-sectional area ¼ p

4
D2
0 � D2

i

� 
Wetted perimeter ¼ pðD0 þ DiÞ

yielding

Deq ¼ 4
p/4

p

ðD2
0 � D2

i Þ
ðD0 þ DiÞ ¼ D0 � Di (13-19)

This value of Deq may now be used to evaluate the Reynolds number, the friction factor,

and the frictional head loss, using the relations and methods developed previously for

circular conduits.

13.4 PIPE-FLOWANALYSIS

Application of the equations and methods developed in the previous sections is common in

engineering systems involving pipe networks. Such analyses are always straightforward but

may vary as to the complexity of calculation. The following three example problems are

typical, but by nomeans all-inclusive, of the types of problems found in engineering practice.

EXAMPLE 1 Water at 598F flows through a straight section of a 6-in.-ID cast-iron pipe with an average velocity

of 4 fps. The pipe is 120 ft long, and there is an increase in elevation of 2 ft from the inlet of the pipe

to its exit.

Find the power required to produce this flow rate for the specified conditions.

The control volume in this case is the pipe and the water it encloses. Applying the energy

equation to this control volume, we obtain

dQ

dt
� dWs

dt
� dWm

dt
¼
Z Z

c:s:
r e þ P

r

� �
ðv : nÞ dAþ @

@t

Z Z Z
c:v:

re dV (6-10)
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An evaluation of each term yields

dQ

dt
¼ 0

dWs

dt
¼ _W

Z Z
c:s:

r eþ P

r

� �
ðv:nÞ dA ¼ rAvavg

v22
2
þ gy2 þ P2

r
þ u2 � v21

2
� gy1 � P1

r
� u1

� �

@

@t

Z Z Z
c:v:

re dV ¼ 0

and

dWm

dt
¼ 0

The applicable form of the energy equation written on a unit mass basis is now

_W/ _m ¼ v21 � v22
2

þ gðy1 � y2Þ þ P1 � P2

r
þ u1 � u2

and with the internal energy change written as ghL, the frictional head loss, the expression for w

becomes

_W/ _m ¼ v21 � v22
2

þ gðy1 � y2Þ þ P1 � P2

r
� ghL

Assuming the fluid at both ends of the control volume to be at atmospheric pressure,

(P1 � P2)/r ¼ 0, and for a pipe of constant cross section (v21 � v22)/2 ¼ 0, giving for _W/ _m

_W/ _m ¼ g(y1 � y2)� ghL

Evaluating hL, we have

Re ¼ ð12Þð4Þ
1:22� 10�5

¼ 164; 000

e

D
¼ 0:0017 (from Figure 14:2)

f f ¼ 0:0059 (from equation (14-15a))

yielding

hL ¼ 2ð0:0059Þð120 ftÞð16 ft2/s2Þ
ð0:5 ftÞð32:2 ft/s2Þ ¼ 1:401 ft

The power required to produce the specified flow conditions thus becomes

_W ¼ �gðð�2 ftÞ � 1:401 ftÞ
550 ft lbf /hp-s

62:3 lbm/ft
3

32:2 lbm ft/s2 lbf

p

4

� � 1

2
ft

� �2
4
ft

s

� �" #

¼ 0:300 hp
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EXAMPLE 2 A heat exchanger is required, which will be able to handle 0.0567 m3/s of water through a smooth

pipe with an equivalent length of 122 m. The total pressure drop is 103,000 Pa. What size pipe is

required for this application?

Once again, applying equation (6-10), we see that a term by term evaluation gives

dQ

dt
¼ 0

dWs

dt
¼ 0

dWm

dt
¼ 0

Z Z
c:s:

r eþ P

r

� �
ðv: nÞ dA ¼ rAvavg

v22
2

þ gy2 þ P2

r
þ u2 � v21

2
�gy1 � P1

r
� u1

� �

@

@t

Z Z Z
c:v:

re dV ¼ 0

and the applicable equation for the present problem is

0 ¼ P2 � P1

r
þ ghL

The quantity desired, the diameter, is included in the head-loss term but cannot be solved for directly,

as the friction factor also depends on D. Inserting numerical values into the above equation and

solving, we obtain

0 ¼ � 103 000 Pa

1000 kg/m3
þ 2 ff

0:0567

pD2/4

� �2 m2

s2
� 122
D

m

m

g

g

or

0 ¼ �103þ 1:27
ff

D5

The solution to this problem must now be obtained by trial and error. A possible procedure is the

following:

1. Assume a value for ff.

2. Using this ff, solve the above equation for D.

3. Calculate Re with this D.

4. Using e/D and the calculated Re, check the assumed value of ff.

5. Repeat this procedure until the assumed and calculated friction factor values agree.

Carrying out these steps for the present problem, the required pipe diameter is 0.132 m

(5.2 in.).

EXAMPLE 3 An existing heat exchanger has a cross section as shown in Figure 13.3 with nine 1-in.-OD tubes

inside a 5-in.-ID pipe. For a 5-ft length of heat exchanger, what flow rate of water at 608F can be

achieved in the shell side of this unit for a pressure drop of 3 psi?

An energy-equation analysis using equation (6-10) will follow the same steps as in example 13.2,

yielding, as the governing equation

0 ¼ P2 � P1

r
þ ghL
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The equivalent diameter for the shell is evaluated as follows:

Flow area ¼ p

4
ð25� 9Þ ¼ 4p in:2

Wetted perimeter ¼ pð5þ 9Þ ¼ 14p in:

thus

Deq ¼ 4
4p

14p
¼ 1:142 in:

Substituting the proper numerical values into the energy equation for this problem reduces it to

0 ¼ � 3 lbf /in:
2ð144 in:2/ft2Þ

1:94 slugs/ft3
þ 2 ff v

2
avg ft

2/s2
5 ft

ð1:142/12Þ ft
g

g

or

0 ¼ �223þ 105 ff v
2
avg

As ff cannot be determinedwithout a value of Re, which is a function of vavg, a simple trial-and-error

procedure such as the following might be employed:

1. Assume a value for ff.

2. Calculate vavg from the above expression.

3. Evaluate Re from this value of vavg.

4. Check the assumed value of ff using equation (13-15a).

5. If the assumed and calculated values for ff do not agree, repeat this procedure until they do.

Employing thismethod, we find the velocity to be 23.6 fps, giving a flow rate for this problem of

2:06 ft3/min ð0:058m3/sÞ:
Notice that in each of the last two examples in which a trial-and-error approach was used,

the assumption of ff was made initially. This was not, of course, the only way to approach these

problems; however, in both cases a value for ff could be assumed within a much closer range than

either D or vavg.

13.5 FRICTION FACTORS FOR FLOW IN THE ENTRANCE
TO A CIRCULAR CONDUIT

The development and problems in the preceding section have involved flow conditions that

did not change along the axis of flow. This condition is often met, and the methods just

described will be adequate to evaluate and predict the significant flow parameters.

5 ft

5 in.

1 in.

Figure 13.3 Shell-and-tube head-exchanger configuration.
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In many real flow systems this condition is never realized. A boundary layer forms on

the surface of a pipe, and its thickness increases in a similar manner to that of the boundary

layer on a flat plate as described in Chapter 12. The buildup of the boundary layer in pipe

flow is depicted in Figure 13.4.

A boundary layer forms on the inside surface and occupies a larger amount of the flow

area for increasing values of x, the distance downstream from the pipe entrance. At some

value of x, the boundary layer fills the flow area. The velocity profile will not change the

downstream from this point, and the flow is said to be fully developed. The dis-

tance downstream from the pipe entrance to where flow becomes fully developed is called

the entrance length, symbolized as Le. Observe that the fluid velocity outside the boundary

layer increases with x, as is required to satisfy continuity. The velocity at the center of the

pipe finally reaches a value of 2v1 for fully developed laminar flow.

The entrance length required for a fully developed velocity profile to form in laminar

flow has been expressed by Langhaar6 according to

Le

D
¼ 0:0575Re (13-20)

where D represents the inside diameter of the pipe. This relation, derived analytically, has

been found to agree well with experiment.

There is no relation available to predict the entrance length for a fully developed

turbulent velocity profile. An additional factor that affects the entrance length in turbulent

flow is the nature of the entrance itself. The reader is referred to the work of Deissler7 for

experimentally obtained turbulent velocity profiles in the entrance region of the circular

pipes. A general conclusion of the results of Deissler and others is that the turbulent velocity

profile becomes fully developed after a minimum distance of 50 diameters downstream

from the entrance.

The reader should realize that the entrance length for the velocity profile differs

considerably from the entrance length for the velocity gradient at the wall. As the friction

factor is a function of dv/dy at the pipe surface, we are also interested in this starting length.
Two conditions exist in the entrance region, which cause the friction factor to be greater

than in fully developed flow. The first of these is the extremely large wall velocity gradient

right at the entrance. The gradient decreases in the downstream direction, becoming

constant before the velocity profile becomes fully developed. The other factor is the

existence of a ‘‘core’’ of fluid outside the viscous layer whose velocity must increase as

x

v
�

Figure 13.4 Boundary-layer buildup in a pipe.

6 H. L. Langhaar, Trans. ASME, 64, A-55 (1942).
7 R. G. Deissler, NACA TN 2138 (1950).
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dictated by continuity. The fluid in the core is thus being accelerated, thereby producing an

additional drag force whose effect is incorporated in the friction factor.

The friction factor for laminar flow in the entrance to a pipe has been studied by

Langhaar.8 His results indicated the friction factor to be highest in the vicinity of the

entrance, then to decrease smoothly to the fully developed flow value. Figure 13.5 is a

qualitative representation of this variation. Table 13.2 gives the results of Langhaar for the

average friction factor between the entrance and a location, a distance x from the entrance.

For turbulent flow in the entrance region, the friction factor as well as the velocity

profile is difficult to express. Deissler9 has analyzed this situation and presented his results

graphically.

Even for very high free-stream velocities, there will be some portion of the entrance

over which the boundary layer is laminar. The entrance configuration, as well as the

Reynolds number, affects the length of the pipe overwhich the laminar boundary layer exists

before becoming turbulent. A plot similar to Figure 13.5 is presented in Figure 13.6 for

turbulent-flow friction factors in the entrance region.

8 Op cit.
9 R. G. Deissler, NACA TN 3016 (1953).
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0

Figure 13.5 Velocity profile

and friction-factor variation for

laminar flow in the region near

a pipe entrance.

Table 13.2 Average friction factor for laminar

flow in the entrance to a circular pipe

x/D

Re
ff

x

D

� �
0.000205 0.0530

0.000830 0.0965

0.001805 0.1413

0.003575 0.2075

0.00535 0.2605

0.00838 0.340

0.01373 0.461

0.01788 0.547

0.02368 0.659

0.0341 0.845

0.0449 1.028

0.0620 1.308

0.0760 1.538
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The foregoing description of the entrance region has been qualitative. For an accurate

analytical consideration of a system involving entrance-length phenomena, Deissler’s

results portrayed in Figure 13.7 may be utilized.

It is important to realize that in many situations flow is never fully developed; thus the

friction factor will be higher than that predicted from the equations for fully developed flow

or the friction-factor plot.

13.6 CLOSURE

The information and techniques presented in this chapter have included applications of the

theory developed in earlier chapters supported by correlations of experimental data.

The chapters to follow will be devoted to heat and mass transfer. One specific type of

transfer, momentum transfer, has been considered up to this point. The student will find that

he is able to applymuch of the information learned inmomentum transfer to counterparts in

the areas of heat and mass transfer.

Turbulent
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Laminar
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1

Figure 13.6 Velocity profile and

friction-factor variation in

turbulent flow in the region near a

pipe entrance.
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Figure 13.7 Static pressure drop due to friction and momentum change in the entrance to a

smooth, horizontal, circular tube (Deissler).
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PROBLEMS

13.1 An oil with kinematic viscosity of 0:08� 10�3 ft2/s and a

density of 57 lbm/ft
3 flows through a horizontal tube 0.24 in.

in diameter at the rate of 10 gal/h. Determine the pressure drop

in 50 ft of tube.

13.2 A lubricating line has an inside diameter of 0.1 in. and is

30 in. long. If the pressure drop is 15 psi, determine the flow rate

of the oil. Use the properties given in Problem 13.1.

13.3 The pressure drop in a section of a pipe is determined

from tests with water. A pressure drop of 13 psi is obtained at a

flow rate of 28:3 lbm/s. If the flow is fully turbulent, what will be

the pressure drop when liquid oxygen (r ¼ 70 lbm/ft
3) flows

through the pipe at the rate of 35 lbm/s?

13.4 A 280-km-long pipeline connects two pumping stations.

If 0:56m3/s are to be pumped through a 0.62-m-diameter line,

the discharge station is 250m lower in elevation than the

upstream station, and the discharge pressure is to be maintained

at 300,000 Pa, determine the power required to pump the oil. The

oil has a kinematic viscosity of 4:5� 10�6 m2/s and a density of

810 kg/m3. The pipe is constructed of commercial steel. The

inlet pressure may be taken as atmospheric.

13.5 In the previous problem, a 10-km-long section of the

pipeline is replaced during a repair process with a pipe with

internal diameter of 0.42 m. Determine the total pumping power

required when using the modified pipeline. The total pipeline

length remains 280 km.

13.6 Oil having a kinematic viscosity of 6:7� 10�6 m2/s and

density of 801 kg/m3 is pumped through a pipe of 0.71m

diameter at an average velocity of 1.1 m/s. The roughness of

the pipe is equivalent to that of a commercial steel pipe. If pump-

ing stations are 320 km apart, find the head loss (in meters of oil)

between the pumping stations and the power required.

13.7 The cold-water faucet in a house is fed from awater main

through the following simplified piping system:

a. A 160 ft length of 3/4-in.-ID copper pipe leading from the

main line to the base of the faucet.

b. Six 908 standard elbows.

c. One wide-open angle valve (with no obstruction).

d. The faucet. Consider the faucet to be made up of two parts:

(1) a conventional globe valve and (2) a nozzle having a

cross-sectional area of 0.10 in.2.

The pressure in the main line is 60 psig (virtually independent of

flow), and thevelocity there is negligible. Find themaximum rate

of discharge from the faucet. As a first try, assume for the pipe

ff ¼ 0:007.Neglect changes in elevation throughout the system.

13.8 Water at the rate of 118 ft3/min flows through a smooth

horizontal tube 250 ft long. The pressure drop is 4.55 psi.

Determine the tube diameter.

13.9 Calculate the inlet pressure to a pump 3 ft above the level

of a sump. The pipe is 6 in. in diameter, 6 ft long, and made of

commercial steel. The flow rate through the pump is 500 gal/min.

Use the (incorrect) assumption that the flow is fully developed.

13.10 The pipe in Problem 6.33 is 35m long and made of

commercial steel. Determine the flow rate.

13.11 The siphon of Problem 6.31 is made of smooth rubber

hose and is 23 ft long. Determine the flow rate and the pressure at

point B.

13.12 A galvanized rectangular duct 8 in. square is 25 ft long

and carries 600 ft3/min of standard air. Determine the pressure

drop in inches of water.

13.13 A cast-iron pipeline 2 m long is required to carry 3

million gal of water per day. The outlet is 175 ft higher than

the inlet. The costs of three sizes of pipe when in place are as

follows:

Power costs are estimated at $0.07 per kilowatt hour over the

20-year life of the pipeline. If the line can be bonded with 6.0%

annual interest, what is the most economical pipe diameter? The

pump efficiency is 80%, and the water inlet temperature is

expected to be constant at 428F.

13.14 Estimate the flow rate of water through 50 ft of garden

hose from a 40-psig source for

a. A 1/2-in.-ID hose;

b. A 3/4-in.-ID hose.

13.15 Two water reservoirs of height h1 ¼ 60 m and h2 ¼
30m are connected by a pipe that is 0.35 m in diameter. The exit

of the pipe is submerged at distance h3 ¼ 8m from the reservoir

surface.

a. Determine the flow rate through the pipe if the pipe is 80 m

long and the friction factor ff ¼ 0:004. The pipe inlet is set
flush with the wall.

b. If the relative roughness e/D ¼ 0:004, determine the friction

factor and flow rate.

10-in. diameter $11.40 per ft

12-in. diameter $14.70 per ft

14-in. diameter $16.80 per ft

L = 80 m

h2

h1

h3
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13.16 An 8-km-long, 5-m-diameter headrace tunnel at the Paute

river hydroelectric project inEcuador supplies a power station 668m

below the entrance of the tunnel. If the tunnel surface is concrete,

find the pressure at the end of the tunnel if the flow rate is 90m3/s.

13.17 Determine the flow rate through a 0.2-m gate valve with

upstream pressure of 236 kPa when the valve is

a. open;

b. 1/4 closed;

c. 1/2 closed;

d. 3/4 closed.

13.18 Water at 208Cflows through a cast-iron pipe at a velocity

of 34 m/s. The pipe is 400 m long and has a diameter of 0.18 m.

Determine the head loss due to friction.

13.19 A 2.20-m diameter pipe carries water at 158C. The head
loss due to friction is 0.500 m per 300 m of pipe. Determine the

volumetric flow rate of the water leaving the pipe.

13.20 Water at 208C is being drained from an open tank

through a cast-iron pipe 0.6 m diameter and 30 m long. The

surface of the water in the pipe is at atmospheric pressure and at

an elevation of 46.9m, and the pipe discharges to the atmosphere

at an elevation 30 m. Neglecting minor losses due to configura-

tion, bends, valves, and fittings, determine the volumetric flow

rate of the water leaving the pipe.

13.21 A 15-cm diameter wrought-iron pipe is to carry water at

208C. Assuming a level pipe, determine the volumetric flow rate

at the discharge if the pressure loss is not permitted to exceed

30.0 kPa per 100 m.

13.22 A level 10-m-long water pipe has a manometer at both

the inlet and the outlet. The manometers indicate pressure head

of 1.5 and 0.2m, respectively. The pipe diameter is 0.2m and the

pipe roughness is 0.0004 m. Determine the mass flow rate in the

pipe in kg/s.

13.23 Determine the depth of water behind the dam in the

figure that will provide a flow rate of 5:675� 10�4 m3/s through

a 20-m-long, 1.30 cm commercial steel pipe.

L

1.30 cm

h

13.24 Water flows at a volumetric flow rate of 0.25 m3/s

from reservoir 1 to reservoir 2 through three concrete pipes

connected in series. Pipe 1 is 900 m long and has a diameter

of 0.16 m. Pipe 2 has a length of 1500 m and a diameter of

0.18 m. Pipe 3 is 800 m long and the diameter is 0.20 m.

Neglecting minor losses, determine the difference in surface

elevations.

13.25 A system consists of three pipes in series. The total

pressure drop is 180 kPa, and the decrease in elevation is 5 m.

Data for the three pipes are as follows:

13.26 Twoconcrete pipes are connected in series. Theflow rate

of water at 208C through the pipes is 0.18 m3/s, with a total head

loss of 18m for both pipes. Each pipe has a length of 312.5m and

a relative roughness of 0.0035m.Neglectingminor losses, if one

pipe has a diameter of 0.30 m, determine the diameter of the

other.

13.27 A 0.2-m-diameter cast-iron pipe and a 67-mm-

diameter commercial steel pipe are parallel, and both run

from the same pump to a reservoir. The pressure drop is

210 kPa and the lines are 150 m long. Determine the flow

rate of water in each line.

13.28 A system consists of three pipes in parallel with a

total head loss of 24 m. Data for the three pipes are as

follows:

For water at 208C, neglect minor losses and determine the

volumetric flow rate in the system.

Pipe Length, m Diameter, cm Roughness, mm

1 125 8 0.240

2 150 6 0.120

3 100 4 0.200

Pipe Length, m Diameter, cm Roughness, mm

1 100 8 0.240

2 150 6 0.120

3 80 4 0.200
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Chapter 14

Fluid Machinery

In this chapter we will examine the operating principles of mechanical devices that

exchange fluid energy and mechanical work. A pump is a machine whose purpose is to

apply mechanical energy to a fluid, thereby generating flow, or producing a higher

pressure, or both. A turbine does just the opposite—producing work through the

application of fluid energy.

There are two principal types of fluid machines—positive displacement machines

and turbomachines. In positive displacement machines, a fluid is confined in a chamber

whose volume is varied. Examples of positive-displacement-type machines are shown

in Figure 14.1.

Suction Discharge

Aorta To body Pulmonary artery

To lungs

Oxygenated
blood from lungs

Left atrium

Right
atrium

Left ventricle

Right
ventricle

Venous
blood

Figure 14.1 Some examples of positive-displacement configurations.
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Turbomachines, as the name implies, involve rotary motion. Window fans and

aircraft propellers are examples of unshrouded turbomachines. Pumps used with liquids

generally have shrouds that confine and direct the flow. The two general types of pumps

in this category are shown in Figure 14.2. The designations radial flow and axial flow

refer to the direction of fluid flow relative to the axis of rotation of the rotating element.

The term pump is generally used when the working fluid is a liquid. If the fluid is a

gas or vapor, the following terms are used:

� Fans are associated with relatively small pressure changes, on the order of DP

35 cm of H2O (0:5 psi):

� Blowers are of both positive and variable displacement types, with DP up to

2:8 m of H2O (40 psi):

� Compressors are of both positive and variable configurations having delivery

pressures as high as 69MPa (103 psi):

Turbines, as previously stated, extract energy from high-pressure fluids. They are of

two primary types, impulse and reaction, which convert fluid energy into mechanical

work in different ways. In the impulse turbine, the high-energy fluid is converted, by

means of a nozzle, into a high-velocity jet. This jet then strikes the turbine blades as

they pass. In this configuration, the jet flow is essentially at a constant pressure. The

basic analysis of these devices is examined in Chapter 5.

In reaction turbines the fluid fills the blade passages and a pressure decrease occurs

as it flows through the impeller. The energy transfer in such devices involves some

thermodynamic considerations beyond simple momentum analysis.

The remainder of this chapter will be devoted entirly to pumps and fans.

Consideration will be given to general pump and fan performances, scaling laws, and

their compatibility with piping systems.

14.1 CENTRIFUGAL PUMPS

Figure 14.3 shows two cutaway views of a typical centrifugal pump. In this configuration,

fluid enters the pump casing axially. It then encounters the impeller blades that direct the

flow tangentially and radially outward into the outer part of the casing and is then

discharged. The fluid experiences an increase in velocity and pressure as it passes through

RotorRotor

Stator

InletInlet

Outlet

Outlet

Housing
or casing

Housing or casing

Radial or centrifugal flow Axial flow

w

Figure 14.2 Turbomachines.
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the impeller. The discharge section, which is doughnut shaped, causes the flow to decelerate

and the pressure to increase further.

The impeller blades shown have a backward-curved shape, which is the most common

configuration.

Pump Performance Parameters

We now focus on the control volume designated in Figure 14.3 by dashed lines. Note that

flow enters at section one and leaves at two.

Applying the first law of thermodynamics to this control volume we have

dQ

dt
� dWs

dt
¼
Z Z

c:s:
eþ P

r

� �
r(v : n) dAþ @

@t

Z Z Z
c:v:

er dv þ dWm

dt
(6-10)

which for steady, adiabatic flow with no viscous work, becomes

� dWs

dt
¼ _m h2 � h1 þ v 2

2 � v 2
1

2
þ g(y2 � y1)

� �
It is customary to neglect the small differences in velocity and elevation between sections

one and two, thus

v22 � v21	 0 and y2 � y1	 0

and the remaining expression is

� dWs

dt
¼ _mðh2 � h1Þ ¼ _m u2 � u1 þ P2 � P1

r

� �
Recalling that the term u2 � u1 represents the loss due to friction and other

irreversible effects, we write

u2 � u1 ¼ hL

The net pressure head produced in the pump is

P2 � P1

r
¼ 1

_m

dWs

dt
� hL (14-1)

An important performance parameter, the efficiency, can now be expressed in broad

terms as the ratio of actual output to required input. For a centrifugal pump the efficiency,

designated h, is

h ¼ power added to the fluid

shaft power to the impeller

1

2

Control
volume

Casing

Expanding
area scroll

Impellerw

Figure 14.3 Cutaway

views of a centrifugal

pump.
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The power added to the fluid is given by equation (14-1)

dW

dt

����
fluid

¼ _m
P2 � P1

r

� �
(14-2)

and the efficiency can be expressed as

h ¼ _m(P2 � P1)

r(dWs/dt)c:v:
(14-3)

The difference between dWs/dtjc:v: and dWs/dtjliquid is clearly the head loss, hL.

Equations (14-1), (14-2), and (14-3) provide general relationships for important pump

performance parameters. To develop actual performance information for centrifugal pumps,

wemust examine our control volume once again from amoment of momentum perspective.

The governing equation for this analysis is

�Mz ¼
Z Z

c:s:
(r� v)z r(v � n) dAþ @

@t

Z Z Z
c:v:

(r� v)zr dv (5-10c)

The axis of rotation of the rotor depicted in Figure 14.3 has been chosen as the z

direction, hence our choice of equation (5-10c).

We now wish to solve for Mz by applying equation (5-10c) to the control volume in

Figure 14.3 for one-dimensional steady flow. The coordinate systemwill be fixed with the z

direction along the axis of rotation. Recall that the rotor contains backward-curved blades.

In Figure 14.4, we show a detailed view of a single rotor blade. The blade is attached to the

rotor hub at distance r1 from the z axis; the outer dimension of the blade has the value r2.

In this figure

vb1, vb2 represent velocities along the blade at r1 and r2, respectively

vn2 is the normal velocity of the flow at r2

vt2 is the tangential velocity of the flow at r2

b1; b2 are the angles made between the blade and tangent directions at r1 and r2,

respectively.

υb2

b1

υt2 r2w=

υt1 r1w=

υn2

B2

υb1

r2

r1
Figure 14.4 Velocity

diagram for flow exiting a

centrifugal pump impeller.
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Equation (5-10c) can now be written as

Mz ¼ _m
er eu ez
r 0 0

vr vu vz

������
������
2

�
er eu ez
r 0 0

vr vu vz

������
������
1

2
4

3
5
z

which becomes

Mz ¼ _m[(rvu)2 � 0]

¼ r _Vr2vu2
(14-4)

The velocity, vu2, is the tangential component of the fluid stream exiting the rotor relative

to the fixed coordinate system. The quantities shown in Figure 14.4 will be useful in

evaluating vu2.
The absolute velocity of the existing flow, v2, is the vector sumof the velocity relative to

the impeller blade and the velocity of the blade tip relative to our coordinate system. For

blade length, L, normal to the plane of Figure 14.4, we evaluate the following:

� the normal velocity of flow at r2

vn2 ¼
_V

2pr2L
(14-5)

� the velocity of flow along the blade at r2

vb2 ¼ vn2
sinb2

(14-6)

� the blade tip velocity

vt2 ¼ r2v (14-7)

The velocity we want, vu2, can now be evaluated as

vu2 ¼ vt2 � vb2 cosb2

Substitution from equations (14-6) and (14-7) yields

vu2 ¼ r2v� vn2
sinb2

cosb2

¼ r2v� vn 2 cotb2

Finally, introducing the expression for vn2 from equation (14-5) we have

vu ¼ r2v�
_V

2pr2L
cotb2 (14-8)

and the desired moment is

Mz ¼ r _Vr2 r2v�
_V

2pr2L
cotb2

� �
(14-9)
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The power delivered to the fluid is, by definition, Mzv, thus

_W ¼ dWs

dt
¼ Mzv ¼ r _Vr2v r2v�

_V

2prL
cotb2

� �
(14-10)

Equation (14-10) expresses the power imparted to the fluid for an impeller with

dimensions r2,b2, and L, operating at angular velocity, v, with mass flow rate r _V:
This expression may be related to equations (14-2) and (14-3) to evaluate the imparted

pressure head and the pump efficiency.

It is a standard practice to minimize friction loss at r1, the radial location at which flow

enters the impeller. This is accomplished by configuring the angle, b1, such that inlet flow is

along the blade surface. Referring to Figure 14.4, the design point for minimum losses is

achieved when

vb1 cosb1 ¼ r1v

or, equivalently, when

vr1 ¼ vb1 sinb1 ¼ r1v
sinb1
cosb1

and, finally, when

vr1 ¼ r1v tanb1 (14-11)

Typical performance curves, for a centrifugal pump, are shown in Figure 14.5.

Pressure head, brake horsepower, and efficiency are all shown as functions of volumetric

flow rate. It is reasonable to choose operating conditions at or near the flow rate where

maximum efficiency is achieved.

Example 1 illustrates how the analysis presented above relates to centrifugal pump

performance.

EXAMPLE 1 Water flow is produced by a centrifugal pump with the following dimensions:

r1 ¼ 6 cm

r2 ¼ 10:5 cm
L ¼ 4:75 cm

b1 ¼ 33�
b2 ¼ 21�

Shutoff head

Head

Efficiency

Brake
horsepower

Normal or
design flow rate

Flow rate, V
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h a

B
ra
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 h
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er
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E
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0 ·
Figure 14.5 Centrifugal pump

performance curves.
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at a rotational speed of 1200 rpm determine

(a) the design flow rate;

(b) the power added to the flow;

(c) the maximum pressure head at the pump discharge.

To experience minimum losses, equation (14-11) must be satisfied, thus

vr1 ¼ r1v tanb1

¼ (0:06m)

�
1200

rev

min

�
2p rad

rev

� �
min

60 s

� �
(tan 33�)

¼ 4:896m/s

(14-11)

The corresponding flow rate is
_V ¼ 2pr1Lvr1

¼ 2p(0:06m)(0:0475m)(4:896m/s)

¼ 0:0877m3/s (1390 gpm) (a)

The power imparted to the flow is expressed by equation (14-10):

_W ¼ r _Vr2v r2v�
_V

2prL
cotb2

� �

Evaluating the following:

v ¼
�
1200

rev

min

�
2p

rad

rev

� �
min

60 s

� �
¼ 125:7 rad/s

r _Vr2v ¼ (1000 kg/m3)(0:0877m3/s)(0:105m)(125:7 rad/s)

¼ 1157 kg �m/s

_V

2pr2L
¼ 0:0877m3/s

2p(0:105m)(0:0475m)

¼ 2:80m/s

we obtain
_W ¼ (1157 kg �m/s)[ð0:105m)(125:7 rad/s)� (2:80m/s)(cot 21)]

¼ 6830W ¼ 6:83 kW (b)

Equation (14.1) expresses the net pressure head as

P2 � P1

rg
¼ �

_W

_mg
� hL (14-1)

The maximum value, with negligible loses, will be

P2 � P1

rg
¼ 6830W

(1000 kg/m3)(0:0877m3/s)(9:81m/s2)

¼ 7:94mH2Ogage

For P1 ¼ 1 atm ¼ 14:7 psi ¼ 10:33mH2O

P2 ¼ (7:94þ 10:33)mH2O ¼ 18:3mH2O (26 psi) (c)

The actual discharge pressure will be less than this owing to friction and other irreversible

losses.
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Net Positive Suction Head

Amajor concern in pump operation is the presence of cavitation. Cavitation occurs when a

liquid being pumped vaporizes or boils. If this occurs, the vapor bubbles that have been

formed cause a decrease in efficiency and, often, structural damage to the pump that may

lead to catastrophic failure. The parameter designated net positive suction head (NPSH)

characterizes the likelihood for cavitation to occur.

At the suction side of the impeller, where pressure is lowest thus the location where

cavitation will first occur, the NPSH can be expressed as

NPSHþ Pv

rg
¼ v2i

2g
þ Pi

rg
(14-12)

where vi and Pi are evaluated at pump inlet and Pv is the liquid vapor pressure. Values of

NPSH are, in general, determined experimentally over a range in flow rates, for a given

pump. A typical variation of NPSH vs. _V is shown in Figure 14.6.

In Figure 14.7, a representative pump installation is shown with the liquid being drawn

from a reservoir located a distance, y, below the pump inlet. An energy balance between the

pump inlet and the reservoir level yields

Patm

rg
¼ y2 þ P2

rg
þ v22
2g

þ �hL (14-13)

where the term �hL represents head losses between locations 1 and 2 as discussed in

Chapter 13.

Combining this relationship with equation (14-12) we get

NPSH ¼ v22
2g

þP2

rg
�Pv

rg

¼ Patm

rg
� y2 � Pv

rg
��hL

(14-14)

For proper pump installation, the value of NPSH evaluated using equation (14-14) should

be greater than the value obtained from a pump performance plot at the same flow rate.

The principal use of these ideas is to establish a maximum value for the height, y2.

Example 2 illustrates the use of NPSH.

(m3/s, 9 gpm)V

N
PS

H
 (

m
 o

r 
ft

)

·

Figure 14.6 Typical variation of NPSH

with V
˙
.

1

2

y2 P1 =

Reference
plane

Patm

Figure 14.7 Pump installation at a level y above a

supply reservoir.
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EXAMPLE 2 A system like the one shown in Figure 14.7 is to be assembled to pumpwater. The inlet pipe to the

centrifugal pump is 12 cm in diameter and the desired flow rate is 0.025 m3/s. At this flow rate,

the specifications for this pump show a value of NPSH of 4.2 m. Theminor loss coefficient for the

system may be taken as K ¼ 12: Water properties are to be evaluated at 300 K. Determine the

maximum value of y, the distance between pump inlet and reservoir level.

The quantity desired, y, is given by

y ¼ Patm � Pv

rg
� �hL � NPSH (14-14)

Water properties required, at 300 K, are

r ¼ 997 kg/m3

Pv ¼ 3598 Pa

and we have

v ¼
_V

A
¼ 0:0025M3/s

p

4
(0:12m)2

¼ 2:21m/s

�hL ¼ KL
v2

2g
¼ 12(2:21m/s2)2

2(9:81m/s2)
¼ 2:99m

We can now complete the solution

y ¼ (101360� 3598)Pa

(997 kg/m3)(9:81m/s2)
�2:99m� 4:2m

¼ 2:805m (9:2 ft)

Combined Pump and System Performance

As depicted in Figure 14.5, a pump has

the capability of operating over a range

in flow rates with its delivered head,

operating efficiency, and NPSH values,

all being flow-rate-dependent. An

important task of the engineer is to

match a given pump, with its known

operating characteristics, to the perfor-

mance of the system in which the pump

produces flow. Piping system perfor-

mance is discussed in Chapter 13.

A simple flow system is illustrated in Figure 14.8 where a pump is used to produce flow

between two reservoirs at different elevations.

With the two reservoir surfaces designated 11 and 12 as shown in the figure, an energy

balance between these two locations yields

�
_W

_m
¼ g( y2 � y1)þ P2 � P1

r
þ (u2 � u1) (14-15)

Pump

y2

y1

1

2

Figure 14.8 Pumping system configuration.
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Observing that P1 ¼ P2 ¼ Patm and expressing u2 � u1 ¼ �hL, we have

�
_W

_mg
¼ y2 � y1 þ �hL (14-16)

From Chapter 13, we can write for the head loss

�hL ¼ �K
v 2

2g

where the quantity�K accounts for frictional pipe loss as well as minor losses due to valves,

elbows, and fittings.

The operating line for system performance is now expressed by

�
_W

_mg
¼ y2 � y1 þ �K

v 2

2g
(14-17)

Plotting the system operating line together with the plot of pump performance yields the

combined performance diagram as shown in Figure 14.9.

We note that the two operating lines intersect at a flow rate where the required head for

system operation matches that which the particular pump can produce. At this operating

flow rate, one can read the corresponding efficiency from the chart. A system designer

would, naturally, want the system to operate at, or as near as possible to, the flow rate of

maximum pump efficiency. If the operating point corresponds to an undesirable efficiency

value, changesmust bemade either to the system,which is generally a difficult process, or to

pump operating conditions.

14.2 SCALING LAWS FOR PUMPS AND FANS

The concepts of similarity and scaling are introduced in Chapter 11. The requirements of

geometric, kinematic, and dynamic similarity find important applications in the scaling of

rotating fluid mechanics. In this section we will develop the ‘‘fan laws’’ that are used to

predict the effect of changing the fluid, size, or speed of rotating machines, which are in a

geometrically similar family.

Dimensional Analysis of Rotating Machines

The Buckingham method of dimensional analysis, which is introduced in Chapter 11, is a

useful tool in generating the dimensionless parameters that apply to rotating fluidmachines.
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Figure 14.9 Combined pump and

system performance.

194 Chapter 14 Fluid Machinery



As discussed earlier, the first step to be undertaken is to develop a table of variables that are

important to our application. Table 14.1 lists the variables of interest along with their

symbols and dimensional representation in the MLt system.

Without repeating all details regarding the Buckingham method, we can establish the

following:

� i ¼ n� r ¼ 7� 3 ¼ 4

� with a core group including the variablesD; v; r, the dimensionless pi groups become

p1 ¼ gh/D2v2

p2 ¼ _V/vD 3

p3 ¼ _W/rv3D5

p4 ¼ m/D2vr

The groupp4 ¼ m/D2vr is a form of Reynolds number. The other three groups here are

designated, by the pump community, as

p1 ¼ gh/D2v2 ¼ CH ��the head coefficient (14-18)

p2 ¼ _V/vD3 ¼ CQ ��the flow coefficient (14-19)

p3 ¼ _W/rv3D5 ¼ CP ��the power coefficient (14-20)

Figure 14.10 is a plot of the dimensionless parametersCH andCP

vs. the flow coefficient, CQ, for a representative centrifugal pump

family.

There is, of course, one additional dimensionless perfor-

mance parameter, the efficiency. The efficiency is related to the

other parameters defined above according to

h ¼ CHCQ

CP
(14-21)

As the parameters on the right-hand-side of the equation are

functionally related to CQ, the efficiency, h, is also a function of

CQ, and is included as one of the dependent variables in

Figure 14.10.

Table 14.1 Pump performance variables

Variable Symbol Dimensions

Total head gh L2/t2

Flow rate _V L3/t

Impeller diameter D L

Shaft speed v 1/t

Fluid density r M/L3

Fluid viscosity m M/Lt

Power _W ML2/t3
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Figure 14.10 Dimensionless performance

curves for a typical centrifugal pump.
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The three coefficients CH ; CQ; andCP provide the basis for the fan laws. For similar

pumps, designated 1 and 2, we may write, for CH

CH1 ¼ CH2

or

gh1

v2
1D

2
1

¼ gh2

v2
2D

2
2

thus

h2

h1
¼ v2

v1

� �2 D2

D1

� �2

(14-22)

Performing the same equations on CQ and CP, we obtain

_V2

_V1

¼ v2

v1

D2

D1

� �3

(14-23)

P2

P1
¼ r2

r1

v2

v1

� �3 D2

D1

� �5

(14-24)

These three equations comprise the ‘‘fan laws’’ or ‘‘pump laws’’ that are used extensively for

scaling rotating machines as well as predicting their performance.

Example 3 illustrates the use of these expressions.

EXAMPLE 3 A centrifugal pump, operating at 1100 rpm against a head of 120 m H2O produces a flow of

0.85 m3/s.

(a) For a geometrically similar pump, operating at the same speed but with an impeller

diameter 30% greater than the original, what flow rate will be achieved?

(b) If the new larger pump described in part (a) is also operated at 1300 rpm, what will be the

new values of flow rate and total head?

Specifying for pump 1,D ¼ D1; then for the larger pump,D2 ¼ 1:3D1; thus the new flow rate

will be, using equation (14-23)

_V2

_V1

¼ v2

v1

D2

D1

� �3

(14-23)

_V2 ¼ 0:85m3/s
1:3D1

D1

� �3

¼ 1:867m3/s (a)

For the case with D2 ¼ 1:3D1 and v2 ¼ 1300 rpm, we have, from equation (14-23)

_V2 ¼ 0:85m3/s
1300 rpm

1100 rpm

� �
1:3D1

D1

� �3

¼ 2:207m3/s (b)

The new head is determined using equation (14-22).

h2

h1
¼ v2

v1

� �2 D2

D1

� �2

(14-22)

¼ 120mH2O
1300 rpm

1100 rpm

� �2 1:3D1

D1

� �2

¼ 283mH2O
(c)
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14.3 AXIAL AND MIXED FLOW PUMP CONFIGURATIONS

Our examination of pumps, thus far, has focused on centrifugal pumps. The other basic

configuration is axialflow.Thedesignation centrifugal floworaxial flow relates to thedirection

of fluid flow in the pump. In the centrifugal case, flow is turned 90� to the axis of rotation; in the
axial flow case, flow is in the direction of the axis of rotation. There is an intermediate case,

designated mixed flow, where the flow has both normal and axial components.

The choice of centrifugal, axial, or mixed flow configurations depends on the desired

values of flow rate and head needed in a specific application. The single parameter that

includes both head and flow rate effects is designated NS, the specific speed. It is defined as

NS ¼
C1/2
Q

C3/4
H

(14-25)

Figure 14.11 is a plot of optimumefficiencies of the three pump types as functions ofNS.

The values of NS shown in this plot correspond to the somewhat unusual units shown.

The basicmessage conveyed byFigure 14.11 is that higher delivery head and lower flow

rate combinations dictate the use of centrifugal pumps, whereas lower heads and higher flow

rates require mixed flow or axial flow pumps.

14.4 TURBINES

Analysis of turbines follows the same general steps as has been done for pumps. The reader

is referred to Section 5.4 in Chapter 5 for a review of the analysis of an impulse turbine.

Turbine operation uses the energy of a fluid, emanating from a nozzle, to interact with

blades attached to the rotating unit, designated the rotor. The momentum exchange

produced as the fluid changes direction generates power at the rotor shaft.

A detailed discussion of turbine operation, other than that presented in Chapter 5, is

beyond the scope of this book. Numerous treatises are available to the interested reader. A

good introductory discussion, along with extensive references, is included in the text by

Munson et al. (1998).

14.5 CLOSURE

This chapter has been devoted to the examination of rotating fluidmachines. External power

applied to pumps and fans produces higher pressure, increased flow, or both. Turbines

operate in the reverse, producing power from a high-energy fluid.
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Types of pumps or fans are characterized by the direction of flow through the rotor. In

centrifugal pumps, the flow is turned 90� to the flow axis; flow is parallel to the flow axis in

axial flowpumps.Machineswith both centrifugal and axial flow components are designated

mixed-flow pumps.

Standard performance plots for a family of geometrically similar pumps or fans show the

head, power, efficiency, andNPSHas functions of flow rate for a designated speedof rotation.

Scaling laws were developed using parameters generated from dimensional analysis.

The resulting ‘‘fan laws’’ that relate two similar systems are

h2

h1
¼ v2

v1

� �2
D2

D1

� �2

(14-22)

_V2

_V1

¼ v2

v1

D2

D1

� �3

(14-23)

P2

P1
¼ r2

r1

v2

v1

� �3 D2

D1

� �5

(14-24)

PROBLEMS

14.1 A centrifugal pump delivers 0.2 m3/s of water when

operating at 850 rpm. Relevant impeller dimensions are as

follows: outside diameter ¼ 0.45 m, blade length ¼ 50 cm,

and blade exit angle ¼ 24�. Determine (a) the torque and power

required to drive the pump and (b) the maximum pressure

increase across the pump.

14.2 Acentrifugal pump is usedwith gasoline ðr ¼ 680 kg/m3Þ:
Relevant dimensions are as follows: d1 ¼ 15 cm; d2 ¼ 28 cm;
L ¼ 9 cm; b1 ¼ 25�; and b2 ¼ 40�: The gasoline enters the

pump parallel to the pump shaft when the pump operates at

1200 rpm. Determine (a) the flow rate; (b) the power delivered

to the gasoline; and (c) the head in meters.

14.3 A centrifugal pump has the following dimensions: d2 ¼
42 cm; L ¼ 5 cm; and b2 ¼ 33�: It rotates at 1200 rpm, and the

head generated is 52m of water. Assuming radial entry flow, deter-

mine the theoretical values for (a) the flow rate and (b) the power.

14.4 A centrifugal pump has the configuration and dimensions

shown below. For water flowing at a rate of 0.0071 m3/s and an

impeller speed of 1020 rpm, determine the power required to drive

thepump.The inletflowisdirected radiallyoutward, and theexiting

velocitymaybeassumed tobe tangent to thevaneat its trailingedge.

55°

1020 rpm
28 cm

V = 0.0071 m3/s

8 cm

1.85 cm

V1

14.5 A centrifugal pump is being used to pump water at a flow

rate of 0.018 m3/s and the required power is measured to be

4.5 kW. If the pump efficiency is 63%, determine the head

generated by the pump.

14.6 A centrifugal pump having the dimensions shown develops

aflowrateof 0.032m3/swhenpumpinggasoline ðr ¼ 680 kg/m3Þ:
The inlet flow may be assumed to be radial. Estimate (a) the

theoretical horsepower; (b) the head increase; and (c) the proper

blade angle at the impeller inlet.

5 cm

10 cm

35°

1650 rpm

6.5 cm

14.7 A centrifugal water pump operates at 1500 rpm. The

dimensions are as the following:

r1 ¼ 12 cm b1 ¼ 32�
r2 ¼ 20 cm b2 ¼ 20�
L ¼ 4:2 cm

Determine (a) the design point discharge rate; (b) the water

horsepower; and (c) the discharge head.
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Problems 199

14.8 The figure below represents performance, in nondi-

mensional form, for a family of centrifugal pumps. For a pump

from this family with a characteristic diameter of 0.45 m

operating at maximum efficiency and pumping water at 15�C
with a rotational speed of 1600 rpm, estimate (a) the head;

(b) the discharge rate; (c) the pressure rise; and (d) the brake

horsepower.
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14.9 A pump having the characteristics described in the pre-

vious problem is to be built that will deliver water at a rate of

0.2 m3/s when operating at best efficiency and a rotational speed

of 1400 rpm. Estimate (a) the impeller diameter and (b) the

maximum pressure rise.

14.10 Rework Problem 14.8 for a pump diameter of 0.40 m

operating at 2200 rpm.

14.11 Rework Problem 14.8 for a pump diameter of 0.35 m

operating at 2400 rpm.

14.12 Rework Problem14.9 for a desired flow rate of 0.30m3/s

at 1800 rpm.

14.13 Rework Problem 14.9 for a desired flow rate of

0.201 m3/s at 1800 rpm.

14.14 Performance curves for an operating centrifugal pump

are shown below in both conventional units and in dimension-

less form. The pump is used to pump water at maximum

efficiency at a head of 90 m. Determine, at these new condi-

tions, (a) the pump speed required and (b) the rate of dis-

charge.
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14.15 The pump having the characteristics shown in Problem

14.14 was used as a model for a prototype that is to be six times

larger. If this prototype operates at 400 rpm, what (a) power;

(b) head; and (c) discharge flow rate should be expected at

maximum efficiency?

14.16 For the pump having the characteristics shown in Pro-

blem 14.14, operating at maximum efficiency with the speed

increased to 1000 rpm, what will be (a) the new discharge flow

rate and (b) the power required at this new speed?

14.17 The pump having the characteristics shown in Problem

14.14 is to be operated at 800 rpm. What discharge rate is to be

expected if the head developed is 410 m?

14.18 If the pump having the characteristics shown in Problem

14.14 is tripled in size but halved in rotational speed, what will be

the discharge rate and head when operating at maximum effi-

ciency?

14.19 The pump having the characteristics shown in Problem

14.14 is used to pump water from one reservoir to another that is

95m higher in elevation. Thewater will flow through a steel pipe



that is 0.28 m in diameter and 550 m long. Determine the

discharge rate.

14.20 Apumpwhose operating characteristics are described in

Problem 14.14 is to be used in the system depicted below.

Determine (a) the discharge rate and (b) power required.

Diameter = 0.36 m

Steel pipe

0.5 m
Elevation

Elevation

Water

= 24 m

= 18 m

 3 m

0.90 m

14.21 For the same pump and system operation described in

Problem determine (a) the discharge rate and (b) power required

when the pump operates at 900 rpm.

14.22 Water at 20�C is to be pumped through the system

shown. The operating data for this motor-driven pump data

are as follows:

The inlet pipe to the pump is 0.06 m diameter commercial steel,

8.5 m in length. The discharge line consists of 60 m of 0.06 m

diameter steel pipe. All valves are fully open globe valves.

Determine the flow rate through the system.

22 m

3 m

14.23 A 0.25 m pump delivers 20�C water ðPv ¼ 2:34 kPaÞ
at 0:065m3/s and 2000 rpm: The pump begins to cavitate when

the inlet pressure is 82.7 kPa and the inlet velocity is 6.1 m/s.

Determine the corresponding NPSH.

14.24 For the pumping systemdescribed in Problem14.23, how

will the maximum elevation above the surface of the reservoir

change if the water temperature is 80�CðPv ¼ 47:35 kPaÞ?
14.25 A centrifugal pump with an impeller diameter of

0.18 m is to be used to pump water ðr ¼ 1000 kg/m3Þ with

the pump inlet located 3.8 m above the surface of the supply

reservoir. At a flow rate of 0.760m3/s, the head loss between the

reservoir surface and the pump inlet is 1.80 m of water. The

performance curves are shown below. Would you expect cavi-

tation to occur?
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14.26 Pumps used in an aqueduct operate at 400 rpm and

deliver a flow of 220m3/s against a head of 420m.What types of

pumps are they?

14.27 Apump is required to deliver 60,000 gpm against a head

of 300mwhen operating at 2000 rpm.What type of pump should

be specified?

14.28 An axial flow pump has a specified specific speed of 6.0.

The pump must deliver 2400 gpm against a head of 18 m.

Determine the required operating rpm of the pump.

14.29 A pump operating at 520 rpm has the capability of

producing 3.3 m3/s of water flow against a head of 16 m.

What type of pump is this?

14.30 Apump operating at 2400 rpm delivers 3.2m3/s of water

against a head of 21 m. Is this pump an axial flow, mixed flow, or

radial flow machine?

Capacity, m3/s� 104 Developed head, m Efficiency, %

00 36.6 00

10 35.9 19.1

20 34.1 32.9

30 31.2 41.6

40 27.5 42.2

50 23.3 39.7
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Chapter 15

Fundamentals of Heat Transfer

The next nine chapters deal with the transfer of energy. Gross quantities of heat

added to or rejected from a system may be evaluated by applying the control-

volume expression for the first law of thermodynamics as discussed in Chapter 6.

The result of a first-law analysis is only a part of the required information

necessary for the complete evaluation of a process or situation that involves energy

transfer. The overriding consideration is, in many instances, the rate at which

energy transfer takes place. Certainly, in designing a plant in which heat must be

exchanged with the surroundings, the size of heat-transfer equipment, the materials

of which it is to be constructed, and the auxiliary equipment required for its

utilization are all important considerations for the engineer. Not only must the

equipment accomplish its required mission but it must also be economical to

purchase and to operate.

Considerations of an engineering nature such as these require both a familiarity

with the basic mechanisms of energy transfer and an ability to evaluate quantitatively

these rates as well as the important associated quantities. Our immediate goal is to

examine the basic mechanisms of energy transfer and to consider the fundamental

equations for evaluating the rate of energy transfer.

There are three modes of energy transfer: conduction, convection, and radiation.

All heat-transfer processes involve one or more of these modes. The remainder of this

chapter will be devoted to an introductory description and discussion of these types of

transfer.

15.1 CONDUCTION

Energy transfer by conduction is accomplished in two ways. The first mechanism is that of

molecular interaction, in which the greater motion of a molecule at a higher energy level

(temperature) imparts energy to adjacent molecules at lower energy levels. This type of

transfer is present, to some degree, in all systems in which a temperature gradient exists and

in which molecules of a solid, liquid, or gas are present.

The second mechanism of conduction heat transfer is by ‘‘free’’ electrons. The free-

electronmechanism is significant primarily in pure-metallic solids; the concentration of free

electrons varies considerably for alloys and becomes very low for nonmetallic solids. The

ability of solids to conduct heat varies directly with the concentration of free electrons, thus

it is not surprising that pure metals are the best heat conductors, as our experience has

indicated.

As heat conduction is primarily a molecular phenomenon, we might expect the basic

equation used to describe this process to be similar to the expression used in the molecular
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transfer of momentum, equation (7-4). Such an equation was first stated in 1822 by Fourier

in the form
qx

A
¼ �k

dT

dx
(15-1)

where qx is the heat-transfer rate in the x direction, in Watts or Btu/h; A is the area normal

to the direction of heat flow, in m2 or ft2; dT/dx is the temperature gradient in the x

direction, in K/m or �F/ft; and k is the thermal conductivity, in W/ðmKÞ or Btu/h ft� F. The

ratio qx/A, having the dimensions of W/m2 or Btu/h ft2, is referred to as the heat flux in the

x direction. A more general relation for the heat flux is equation (15-2)

q

A
¼ �k=T (15-2)

which expresses the heat flux as proportional to the temperature gradient. The proportionality

constant is seen to be the thermal conductivity, which plays a role similar to that of the

viscosity in momentum transfer. The negative sign in equation (15-2) indicates that heat flow

is in the direction of a negative temperature gradient. equation (15-2) is the vector form of the

Fourier rate equation, often referred to as Fourier’s first law of heat conduction.

The thermal conductivity, k, which is defined by equation (15-1), is assumed inde-

pendent of direction in equation (15-2); thus, this expression applies to an isotropicmedium

only. Most materials of engineering interest are isotropic. Wood is a good example of an

anisotropicmaterial where the thermal conductivity parallel to the grainmay be greater than

that normal to the grain by a factor of 2 or more. The thermal conductivity is a property of a

conducting medium and, like the viscosity, is primarily a function of temperature, varying

significantly with pressure only in the case of gases subjected to high pressures.

15.2 THERMAL CONDUCTIVITY

As the mechanism of conduction heat transfer is one of the molecular interaction, it will be

illustrative to examine the motion of gas molecules from a standpoint similar to that in

Section 7.3.

Considering the control volume shown in Figure 15.1, in which energy transfer in the y

direction is on a molecular scale only, we may utilize the first-law analysis of Chapter 6 as

follows. Mass transfer across the top of this control volume is considered to occur only on

the molecular scale. This criterion is met for a gas in laminar flow.

Applying equation (6-10) and considering transfer only across the top face of the

element considered

dQ

dt
� dWs

dt
� dWm

dt
¼
Z Z

c:s:
eþ P

r

� �
r(v � n) dAþ @

@t

Z Z Z
c:v:

er dV (6-10)

�x

�y
T = T (y)

y

x

Figure 15.1 Molecular motion at the surface of a control volume.
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For Z molecules crossing the plane Dx Dz per unit time, this equation reduces to

qy ¼ XZ
n¼1

mncp(Tjy� � Tjyþ)DxDz (15-3)

wheremn is themass permolecule; cp is themolecular heat capacity of thegas;Z is the frequency

with which molecules will cross area DxDz; and T jy�,� Tjyþ are the temperatures of the gas

slightly below and slightly above the plane considered, respectively. The right-hand term is the

summation of the energyflux associatedwith themolecules crossing the control surface.Noting

now that T jy� ¼ T � T /yjy0 d, where y� ¼ y0 � d, and that a similar expression may be

written for Tjyþ, we may rewrite equation (15-3) in the form

qy

A
¼ �2

XZ
n¼1

mncpd
T

y

����
y0

(15-4)

where d represents the y component of the distance between collisions. We note, as

previously in Chapter 7, that d ¼ ( �̃̄ )l , where l is the mean free path of a molecule.

Using this relation and summing over Z molecules, we have

qy

A
¼ � 4

3
rcpZl

T

y

����
y0

(15-5)

Comparing equation (15-5) with the y component of equation (15-6)

qy

A
¼ �k

T

y

it is apparent that the thermal conductivity, k, becomes

k ¼ 4

3
rcpZl

Utilizing further the results of the kinetic theory of gases, we may make the following

substitutions:

Z ¼ NC

4

whereC is the average randommolecular velocity, C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT /pm

p
(k being the Boltzmann

constant);

l ¼ 1ffiffiffi
2

p
pNd 2

where d is the molecular diameter; and

cp ¼ 3

2

k

N

giving, finally

k ¼ 1

p3/2d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3T /m

p
(15-6)

This development, applying specifically to monatomic gases, is significant in that it

shows the thermal conductivity of a gas to be independent of pressure, and to vary as the

1/2 power of the absolute temperature. The significance of this result should not be

overlooked, even though some oversimplifications were used in its development. Some
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relations for thermal conductivity of gases, based upon more sophisticated molecular

models, may be found in Bird, Stewart, and Lightfoot.1

TheChapman–Enskog theoryused inChapter 7 to predict gas viscosities at lowpressures

has a heat-transfer counterpart. For a monatomic gas, the recommended equation is

k ¼ 0:0829
ffiffiffiffiffiffiffiffiffiffiffiffi
(T /M)

p
/s2Vk (15-7)

where k is in W/m � K, s is in Angstroms, M is the molecular weight, and Vk is the

Lennard–Jones collision integral, identical with V as discussed in Section 7.3. Both s and

Vk may be evaluated from Appendices J and K.

The thermal conductivity of a liquid is not amenable to any simplified kinetic-theory

development, as the molecular behavior of the liquid phase is not clearly understood and no

universally accurate mathematical model presently exists. Some empirical correlations

have met with reasonable success, but these are so specialized that they will not be included

in this book. For a discussion of molecular theories related to the liquid phase and some

empirical correlations of thermal conductivities of liquids, the reader is referred to Reid and

Sherwood.2 A general observation about liquid thermal conductivities is that they vary only

slightly with temperature and are relatively independent of pressure. One problem in

experimentally determining values of the thermal conductivity in a liquid ismaking sure the

liquid is free of convection currents.

In the solid phase, thermal conductivity is attributed both tomolecular interaction, as in

other phases, and to free electrons, which are present primarily in pure metals. The solid

phase is amenable to quite precise measurements of thermal conductivity, as there is no

problem with convection currents. The thermal properties of most solids of engineering

interest have been evaluated, and extensive tables and charts of these properties, including

thermal conductivity, are available.

The free-electron mechanism of heat conduction is directly analogous to the mechan-

ism of electrical conduction. This realization led Wiedemann and Franz, in 1853, to relate

the two conductivities in a crudeway; and in 1872, Lorenz3 presented the following relation,

known as the Wiedemann, Franz, Lorenz equation:

L ¼ k

keT
¼ constant (15-8)

where k is the thermal conductivity, ke is the electrical conductivity, T is the absolute

temperature, and L is the Lorenz number.

The numerical values of the quantities in equation (15-8) are of secondary importance

at this time. The significant point to note here is the simple relation between electrical and

thermal conductivities and, specifically, that those materials that are good conductors of

electricity are likewise good heat conductors, and vice versa.

Figure 15.2 illustrates the thermal conductivity variation with temperature of several

important materials in gas, liquid, and solid phases. A more complete tabulation of thermal

conductivity may be found in Appendices H and I.

The following two examples illustrate the use of the Fourier rate equation in solving

simple heat-conduction problems.

1 R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960, chap. 8.
2 Reid and Sherwood, The Properties of Gases and Liquids, McGraw-Hill Book Company, New York, 1958,

chap. 7.
3 L. Lorenz, Ann. Physik und Chemie (Poggendorffs), 147, 429 (1872).
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Figure 15.2 Thermal conductivity of several materials at various temperatures.
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EXAMPLE 1 A steel pipe having an inside diameter of 1.88 cm and a wall thickness of 0.391 cm is subjected to

inside and outside surface temperature of 367 and 344 K, respectively (see Figure 15.3). Find the

heat flow rate per meter of pipe length, and also the heat flux based on both the inside and outside

surface areas.

The first law of thermodynamics applied to

this problem will reduce to the form dQ/dt ¼ 0,

indicating that the rate of heat transfer into the control

volume is equal to the rate leaving, that is Q ¼ q ¼
constant:

As the heat flow will be in the radial direction,

the independent variable is r, and the proper form for

the Fourier rate equation is

qr ¼ �kA
dT

dr

Writing A ¼ 2pL, we see that the equation becomes

qr ¼ �k(2prL)
dT

dr

where qr, is constant, which may be separated and solved as follows:

qr

Z ro

ri

dr

r
¼ �2pkL

Z To

Ti

dT ¼ 2pkL

Z Ti

To

dT

qr ln
ro

ri
¼ 2pkL(Ti � To)

qr ¼ 2pkL

ln ro/ri
(Ti � To)

(15-9)

Substituting the given numerical values, we obtain

qr ¼ 2p(42:90W/m � K)(367� 344)K

ln(2:66/1:88)

¼ 17 860W/m(18 600Btu/hr � ft)

The inside and outside surface areas per unit length of pipe are giving

Ai ¼ p(1:88)(10�2)(1) ¼ 0:059m2/m(0:194 ft2/ft)

Ao ¼ p(2:662)(10�2)(1) ¼ 0:084m2/m(0:275 ft2/ft)

qr

Ai
¼ 17 860

0:059
¼ 302:7 kW/m2(95 900Btu/hr � ft2)

qo

Ai
¼ 17 860

0:084
¼ 212:6 kW/m2(67 400Btu/hr � ft2)

One extremely important point to be noted from the results of this example is the

requirement of specifying the area upon which a heat-flux value is based. Note that for

the same amount of heat flow, the fluxes based upon the inside and outside surface areas

differ by approximately 42%.

Ti
ri

r
ro

To

Figure 15.3 Heat conduction in a

radial direction with uniform

surface temperatures.
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EXAMPLE 2 Consider a hollow cylindrical heat-transfer medium having inside and outside radii of ri and rowith

the corresponding surface temperatures Ti and To. If the thermal-conductivity variation may be

described as a linear function of temperature according to

k ¼ k0(1þ bT)

calculate the steady-state heat-transfer rate in the radial direction, using the above relation for the

thermal conductivity, and compare the result with that using a k value calculated at the arithmetic

mean temperature.

Figure 15.3 applies. The equation to be solved is now

qr ¼ �[ko(1þ bT)](2prL)
dT

dr

which, upon separation and integration, becomes

qr

Z ro

ri

dr

r
¼ �2pkoL

Z ro

ri

(1þ bT)dT

¼ 2pkoL

Z Ti

To

(1þ bT)dT

qr ¼ 2pkoL

ln ro/ri
T þ bT2

2

� �Ti

To

qr ¼ 2pkoL

ln ro/ri
1þ b

2
(Ti þ To)

� �
(Ti � To)

(15-10)

Noting that the arithmetic average value of k would be

kavg ¼ ko 1þ b

2
(Ti þ To)

� �

we see that equation (15-10) could also be written as

qr ¼ 2pkavgL

ln ro/ri
(Ti � To)

Thus, the two methods give identical results.

The student may find it instructive to determine what part of the problem statement of this

example is responsible for this interesting result; that is, whether a different geometrical config-

uration or a different thermal-conductivity expression would make the results of the two types of

solutions different.

15.3 CONVECTION

Heat transfer due to convection involves the energy exchange between a surface and an

adjacent fluid. A distinction must be made between forced convection, wherein a fluid is

made to flow past a solid surface by an external agent such as a fan or pump, and free or

natural convection wherein warmer (or cooler) fluid next to the solid boundary causes

circulation because of the density difference resulting from the temperature variation

throughout a region of the fluid.
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The rate equation for convective heat transfer was first expressed by Newton in 1701,

and is referred to as the Newton rate equation or Newton’s ‘‘law’’ of cooling. This

equation is

q/A ¼ hDT (15-11)

where q is the rate of convective heat transfer, in W or Btu/h; A is the area normal to

direction of heat flow, in m2 or ft2; DT is the temperature difference between surface and

fluid, in K or 8F; and h is the convective heat transfer coefficient, in W/m2 � K or

Btu/h ft2 �F. Equation (15-11) is not a law but a definition of the coefficient h. A

substantial portion of our work in the chapters to follow will involve the determination of

this coefficient. It is, in general, a function of system geometry, fluid and flow properties,

and the magnitude of DT.
As flow properties are so important in the evaluation of the convective heat transfer

coefficient, we may expect many of the concepts and methods of analysis introduced in the

preceding chapters to be of continuing importance in convective heat transfer analysis; this

is indeed the case.

Fromour previous experiencewe should also recall that evenwhen a fluid is flowing in a

turbulent manner past a surface, there is still a layer, sometimes extremely thin, close to the

surface where flow is laminar; also, the fluid particles next to the solid boundary are at rest.

As this is always true, the mechanism of heat transfer between a solid surface and a fluid

must involve conduction through the fluid layers close to the surface. This ‘‘film’’ of fluid

often presents the controlling resistance to convective heat transfer, and the coefficient h is

often referred to as the film coefficient.

Two types of heat transfer that differ somewhat from free or forced convection but are

still treated quantitatively by equation (15-11) are the phenomena of boiling and con-

densation. The film coefficients associated with these two kinds of transfer are quite high.

Table 15.1 represents some order-of-magnitude values of h for different convective

mechanisms.

It will also be necessary to distinguish between local heat transfer coefficients, that is,

those that apply at a point, and total or average values of h that apply over a given surface

area. We will designate the local coefficient hx, according to equation (15-11)

dq ¼ hx DT dA

Thus the average coefficient, h, is related to hx according to the relation

q ¼
Z
A

hx DT dA ¼ hADT (15-12)

The values given in Table 15.1 are average convective heat-transfer coefficients.

Table 15.1 Approximate values of the convective heat-transfer coefficient

Mechanism h; Btu/h ft2 �F h; W/(m2 � K)
Free convection, air 0001–10 0005–50

Forced convection, air 0005–50 0025–250

Forced convection, water 0050–3000 0250–15,000

Boiling water 0500–5000 2500–25,000

Condensing water vapor 1000–20,000 5000–100,000
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15.4 RADIATION

Radiant heat transfer between surfaces differs from conduction and convection in that no

medium is required for its propagation; indeed energy transfer by radiation is maximum

when the two surfaces that are exchanging energy are separated by a perfect vacuum.

The rate of energy emission from a perfect radiator or blackbody is given by

q

A
¼ sT4 (15-13)

where q is the rate of radiant energy emission, in W or Btu/h; A is the area of the emitting

surface, in m2 or ft2; T is the absolute temperature, in K or 8R; and s is the Stefan–Boltzmann

constant, which is equal to 5:676� 10�8 W/m2 � K4 or 0:1714� 10�8 Btu/h ft2 �R4. The

proportionally constant relating radiant-energy flux to the fourth power of the absolute

temperature is named after Stefan who, from experimental observations, proposed equation

(15-13) in 1879, and Boltzmann, who derived this relation theoretically in 1884. Equation

(15-13) is most often referred to as the Stefan–Boltzmann law of thermal radiation.

Certain modifications will be made in equation (15-13) to account for the net energy

transfer between two surfaces, the degree of deviation of the emitting and receiving surfaces

from blackbody behavior, and geometrical factors associatedwith radiant exchange between

a surface and its surroundings. These considerations are discussed at length in Chapter 23.

15.5 COMBINED MECHANISMS OF HEAT TRANSFER

The three modes of heat transfer have been considered separately in Section 15.4. It is rare,

in actual situations, for only onemechanism to be involved in the transfer of energy. Itwill be

instructive to look at some situations in which heat transfer is accomplished by a

combination of these mechanisms.

Consider the case depicted in Figure 15.4, that of steady-state conduction through a

plane wall with its surfaces held at constant temperatures T1 and T2.

Writing the Fourier rate equation for the x direction, we have

qx

A
¼ �k

dT

dx
(15-1)

Solving this equation for qx subject to the boundary conditions T ¼ T1 at x ¼ 0 and

T ¼ T2 at x ¼ L, we obtain

qx

A

Z L

0

dx ¼ �k

Z T2

T1

dT ¼ k

Z T1

T2

dT

or

qx ¼ kA

L
(T1 � T2) (15-14)

Equation (15-14) bears an obvious resemblance to the Newton rate equation

qx ¼ hADT (15-11)

We may utilize this similarity in form in a problem in which both types of energy transfer

are involved.

Consider the composite plane wall constructed of three materials in layers with

dimensions as shown in Figure 15.5. We wish to express the steady-state heat-transfer

rate per unit area between a hot gas at temperatureTh on one side of this wall and a cool gas at

T2

T1

x

L

Figure 15.4 Steady-state

conduction through a

plane wall.
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Tc on the other side. Temperature designations and dimensions are as shown in the figure.

The following relations for qx arise from the application of equations (15-11) and (15-14):

qx ¼ hhA(Th � T1) ¼ k1A

L1
(T1 � T2) ¼ k2A

L2
(T2 � T3)

¼ k3A

L3
(T3 � T4) ¼ hcA(T4 � Tc)

Each temperature difference is expressed in terms of qx as follows:

Th � T1 ¼ qx(1/hhA)

T1 � T2 ¼ qx(L1/k1A)

T2 � T3 ¼ qx(L2/k2A)

T3 � T4 ¼ qx(L3/k3A)

T4 � Tc ¼ qx(1/hcA)

Adding these equations, we obtain

Th � Tc ¼ qx
1

hhA
þ L1

k1A
þ L2

k2A
þ L3

k3A
þ 1

hcA

� �
and finally, solving for qx, we have

qx ¼ Th � Tc

1/hhAþ L1/k1Aþ L2/k2Aþ L3/k3Aþ 1/hcA
(15-15)

Th

Tc

T4T3

k1 k2 k3

T2T1

L1 L2 L3

Figure 15.5 Steady-state heat transfer

through a composite wall.

Note that the heat-transfer rate is expressed in terms of the overall temperature difference.

If a series electrical circuit

R1 R2 R3 R4 R5

V2V1

is considered, we may write

I ¼ DV

R1 þ R2 þ R3 þ R4 þ R5
¼ DVP

Ri
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The analogous quantities in the expressions for heat flow and electrical current are apparent,

DV !DT

I! qx

Ri! 1/hA,L/kA

and each term in the denominator of equation (15-15) may be thought of as a thermal

resistance due to convection or conduction. Equation (15-15) thus becomes a heat-transfer

analog to Ohm’s law, relating heat flow to the overall temperature difference divided by the

total thermal resistance between the points of known temperature. Equation (15-15) may

now be written simply as

q ¼ DTP
Rthermal

(15-16)

This relation applies to steady-state heat transfer in systems of other geometries as well.

The thermal-resistance terms will change in form for cylindrical or spherical systems, but

once evaluated, they can be utilized in the form indicated by equation (15-16). With

specific reference to equation (15-9), it may be noted that the thermal resistance of a

cylindrical conductor is
ln(ro/ri)

2pkL

Another common way of expressing the heat-transfer rate for a situation involving a

composite material or combination of mechanisms is with the overall heat-transfer

coefficient defined as

U� qx

ADT
(15-17)

where U is the overall heat-transfer coefficient having the same units as h, in W/m2 � K or

Btu/h ft2 �F.

EXAMPLE 3 Saturated steam at 0.276 MPa flows inside a steel pipe having an inside diameter of 2.09 cm and an

outside diameter of 2.67 cm. The convective coefficients on the inner and outer pipe surfaces may be

taken as 5680 and 22:7W/m2 �K, respectively. The surrounding air is at 294 K. Find the heat loss per
meter of bare pipe and for a pipe having a 3.8 cm thickness of 85% magnesia insulation on its outer

surface.

In the case of the bare pipe there are three thermal resistances to evaluate:

R1 ¼ Rconvection inside ¼ 1/hiAi

R2 ¼ Rconvection outside ¼ 1/hoAo

R3 ¼ Rconduction ¼ ln(ro=ri)/2pkL

For conditions of this problem, these resistances have the values

R1 ¼ 1/[(5680W/m2 �K)(p)(0:0209m)(1m)]

¼ 0:00268K/W 0:00141
h �R
Btu

� �
R2 ¼ 1/[(22:7W/m2 �K)(p)(0:0267m)(1m)]

¼ 0:525K/W 0:277
h �R
Btu

� �
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and

R3 ¼ ln(2:67/2:09)

2p(42:9W/m � K)(1m)

¼ 0:00091K/W 0:00048
h �R
Btu

� �

The inside temperature is that of 0.276 MPa saturated steam, 404 K or 2678F. The heat transfer rate
per meter of pipe may now be calculated as

q ¼ DTP
R
¼ 404� 294K

0:528K/W

¼ 208W 710
Btu

h

� �

In the case of an insulated pipe, the total thermal resistancewould includeR1 andR3 evaluated above,

plus additional resistances to account for the insulation. For the insulation

R4 ¼ ln(10:27/2:67)

2p(0:0675W/m � K)(1m)

¼ 3:176K/W 1:675
h �R
Btu

� �

and for the outside surface of the insulation

R5 ¼ 1/[(22:7W/m2 � K)(p)(0:1027m)(1m)]

¼ 0:1365K/W 0:0720
h �R
Btu

� �

Thus, the heat loss for the insulated pipe becomes

q ¼ DTP
R
¼ DT

R1 þ R2 þ R4 þ R5
¼ 404� 294K

3:316K/W

¼ 33:2W 113
Btu

h

� �

A reduction of approximately 85%!

It is apparent from this example that certain parts of the heat-transfer path offer a

negligible resistance. If, for instance, in the case of the bare pipe, an increased rate of heat

transfer were desired, the obvious approach would be to alter the outside convective

resistance, which is almost 200 times the magnitude of the next-highest thermal-

resistance value.

Example 3 could also have been worked by using an overall heat-transfer coefficient,

which would be, in general

U ¼ qx

ADT
¼ DT /

P
R

ADT
¼ 1

A
P
R

or, for the specific case considered

U ¼ 1

Af1/Aihi þ [ln(ro/ri)]/2pkLþ 1/Aohog (15-18)
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Equation (15-18) indicates that the overall heat-transfer coefficient, U, may have a

different numerical value, depending on which area it is based upon. If, for instance, U is

based upon the outside surface area of the pipe, Ao, we have

Uo ¼ 1

Ao/Aihi þ [Ao ln(ro/ri)]/2pkLþ 1/ho

Thus, it is necessary, when specifying an overall coefficient, to relate it to a specific area.

One other means of evaluating heat-transfer rates is by means of the shape factor,

symbolized as S. Considering the steady-state relations developed for plane and cylindrical

shapes

q ¼ kA

L
DT (15-14)

and

q ¼ 2pkL

ln(ro/ri)
DT (15-9)

if that part of each expression having to do with the geometry is separated from the

remaining terms, we have, for a plane wall,

q ¼ k
A

L

� �
DT

and for a cylinder

q ¼ k
2pL

ln(ro/ri)

� �
DT

Each of the bracketed terms is the shape factor for the applicable geometry. A general

relation utilizing this form is

q ¼ kSDT (15-19)

Equation (15-19) offers some advantageswhen a given geometry is required because of

space and configuration limitations. If this is the case, then the shape factor may be

calculated and q determined for various materials displaying a range of values of k.

15.6 CLOSURE

In this chapter, the basic modes of energy transfer—conduction, convection, and

radiation—have been introduced, along with the simple relations expressing the rates

of energy transfer associated therewith. The transport property, thermal conductivity, has

been discussed and some consideration given to energy transfer in a monatomic gas at

low pressure.

The rate equations for heat transfer are as follows:

Conduction: the Fourier rate equation

q

A
¼ �k =T

Convection: the Newton rate equation

q

A
¼ hDT
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Radiation: the Stefan–Boltzmann law for energy emitted from a black surface

q

A
¼ sT 4

Combined modes of heat transfer were considered, specifically with respect to the

means of calculating heat-transfer rates when several transfer modes were involved. The

three ways of calculating steady-state heat-transfer rates are represented by the equations

q ¼ DTP
RT

(15-16)

where
P
RT is the total thermal resistance along the transfer path;

q ¼ UADT (15-17)

where U is the overall heat transfer coefficient; and

q ¼ kSDT (15-19)

where S is the shape factor.

The equations presented will be used throughout the remaining chapters dealing with

energy transfer. A primary object of the chapters to followwill be the evaluation of the heat-

transfer rates for special geometries or conditions of flow, or both.

Note: Effects of thermal radiation are included, along with convection, in values of

surface coefficients specified in the following problems.

PROBLEMS

15.1 An asbestos pad is square in cross section, measuring

5 cm on a side at its small end increasing linearly to 10 cm on a

side at the large end. The pad is 15 cm high. If the small end is

held at 600 K and the large end at 300 K, what heat-flow rate

will be obtained if the four sides are insulated? Assume one-

dimensional heat conduction. The thermal conductivity of

asbestos may be taken as 0:173W/m�K:
15.2 SolveProblem forthecaseofthelargercrosssectionexposed

to the higher temperature and the smaller end held at 300 K.

15.3 Solve Problem 15.1 if, in addition to a varying cross-

sectional area, the thermal conductivity varies according to k ¼
k0(1þ bT);where k0 ¼ 0:138, b ¼ 1:95� 10�4, T ¼ tempera-

ture in Kelvin, and k is in W/m � K. Compare this result to that

using a k value evaluated at the arithmetic mean temperature.

15.4 Solve Problem 15.1 if the asbestos pad has a 1.905-cm

steel bolt running through its center.

15.5 A sheet of insulating material, with thermal conductivity

of 0:22W/m � K is 2 cm thick and has a surface area of 2.97 m2.

If 4 kW of heat are conducted through this sheet and the outer

(cooler) surface temperature is measured at 55�C(328K), what
will be the temperature on the inner (hot) surface?

15.6 For the sheet of insulation specified in Problem 15.5, with

a heat rate of 4 kW, evaluate the temperature at both surfaces if

the cool side is exposed to air at 308Cwith a surface coefficient of

28:4W/m2 � K:
15.7 Plate glass, k ¼ 1:35W/m � K; initially at 850 K, is cooled
by blowing air past both surfaces with an effective surface coeffi-

cient of 5W/m2 � K: It is necessary, in order that the glass does not
crack, to limit the maximum temperature gradient in the glass to

15K/mmduring the cooling process. At the start of the cooling pro-

cess,whatisthelowesttemperatureofthecoolingairthatcanbeused?

15.8 Solve Problem 15.7 if all specified conditions remain the

same but radiant energy exchange from glass to the surroundings

at the air temperature is also considered.

15.9 The heat loss from a boiler is to be held at a maximum of

900 Btu/h ft2 of wall area. What thickness of asbestos (k ¼
0:10Btu/h ft �F) is required if the inner and outer surfaces of the
insulation are to be 1600 and 5008F, respectively?

15.10 If, in the previous problem, a 3-in.-thick layer of kaolin

brick (k ¼ 0:07Btu/h ft �F) is added to the outside of the asbes-
tos, what heat fluxwill result if the outside surface of the kaolin is

2508F?What will be the temperature at the interface between the

asbestos and kaolin for this condition?

15.11 A compositewall is to be constructed of 1/4-in. stainless

steel (k ¼ 10Btu/h ft �F), 3 in. of corkboard (k ¼ 0:025Btu/
h ft �F) and 1/2 in. of plastic (k ¼ 1:5Btu/h ft �F):
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a. Draw the thermal circuit for the steady-state conduction

through this wall.

b. Evaluate the individual thermal resistance of each material

layer.

c. Determine the heat flux if the steel surface is maintained at

2508F and the plastic surface held at 808F.

d. What are the temperatures on each surface of the corkboard

under these conditions?

15.12 If, in the previous problem, the convective heat-transfer

coefficients at the inner (steel) and outer surfaces are 40 and

5Btu/h ft �F, respectively, determine

a. the heat flux if the gases are at 250 and 708F, adjacent to the
inner and outer surfaces;

b. the maximum temperature reached within the plastic;

c. which of the individual resistances is controlling.

15.13 A 1-in.-thick steel plate measuring 10 in. in diameter is

heated from below by a hot plate, its upper surface exposed to air

at 808F. The heat-transfer coefficient on the upper surface is

5Btu/h ft �F and k for steel is 25 Btu/h ft �F:
a. How much heat must be supplied to the lower surface of the

steel if its upper surface remains at 1608F? (Include radiation.)

b. What are the relative amounts of energy dissipated from the

upper surface of the steel by convection and radiation?

15.14 If, in Problem 15.13, the plate is made of asbestos, k ¼
0:10Btu/h ft �F; what will be the temperature of the top of the

asbestos if the hot plate is rated at 800 W?

15.15 A 0.20-m-thick brick wall (k ¼ 1:3W/m � K) separates
the combustion zone of a furnace from its surroundings at 258C.
For an outside wall surface temperature of 1008C, with a

convective heat transfer coefficient of 18W/m2 � K; what will
be the insidewall surface temperature at steady-state conditions?

15.16 Solve for the inside surface temperature of the brick

wall described in Problem 15.15, but with the additional

consideration of radiation from the outside surface to sur-

roundings at 258C.

15.17 The solar radiation incident on a steel plate 2 ft square is

400 Btu/h. The plate is 1.4 in. thick and lying horizontally on an

insulating surface, its upper surface being exposed to air at 908F.
If the convective heat-transfer coefficient between the top sur-

face and the surrounding air is 4 Btu/h ft�F; what will be the

steady-state temperature of the plate?

15.18 If in Problem 15.17, the lower surface of the plate is

exposed to air with a convective heat transfer coefficient of

3Btu/h ft �F, what steady-state temperature will be reached

a. if radiant emission from the plate is neglected;

b. if radiant emission from the top surface of the plate is

accounted for?

15.19 The freezer compartment in a conventional refrigerator

can be modeled as a rectangular cavity 0.3 m high and 0.25 m

widewith a depth of 0.5m.Determine the thickness of styrofoam

insulation (k ¼ 0:30W/m � K) needed to limit the heat loss to

400 W if the inner and outer surface temperatures are �10 and

338C, respectively.

15.20 Evaluate the required thickness of styrofoam for the

freezer compartment in the previous problem when the inside

wall is exposed to air at �108C through a surface coefficient of

16W/m2 � K and the outer wall is exposed to 338C air with a

surface coefficient of 32W/m2 � K: Determine the surface tem-

peratures for this situation.

15.21 The cross section of a storm window is shown in the

sketch. Howmuch heat will be lost through awindowmeasuring

1.83 m by 3.66 m on a cold day when the inside and outside air

temperatures are, respectively, 295 and 250 K? Convective

coefficients on the inside and outside surfaces of the window

are 20 and 15W/m2 � K, respectively. What temperature drop

will exist across each of the glass panes? What will be the

average temperature of the air between the glass panes?

Window glass 0.32 cm thick

Air
space
0.8 cm
wide

15.22 Compare the heat loss through the storm window

described in Problem 15.21 with the same conditions existing

except that the window is a single pane of glass 0.32 cm thick.

15.23 The outsidewalls of a house are constructed of a 4-in. layer

of brick, 1/2 in. of celotex, an air space 3 5=8 in. thick, and 1/4 in. of

wood panelling. If the outside surface of the brick is at 308F and the
inner surface of the panelling at 758F, what is the heat flux if

a. the air space is assumed to transfer heat by conduction

only?

b. the equivalent conductance of the air space is 1:8Btu/
h ft2 �F?

c. the air space is filled with glass wool?

kbrick ¼ 0:38Btu/h ft �F
kcelotex ¼ 0:028Btu/h ft �F

kair ¼ 0:015Btu/h ft �F
kwood ¼ 0:12Btu/h ft �F
kwool ¼ 0:025Btu/h ft �F:

15.24 Solve Problem 15.23 if instead of the surface tempera-

tures being known, the air temperatures outside and inside are 30

and 758F, and the convective heat-transfer coefficients are 7 and
2Btu/h ft2 �F; respectively.
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15.25 Determine the heat-transfer rate per squaremeter of wall

area for the case of a furnace with inside air at 1340 K. The

furnacewall is composed of a 0.106-m layer of fireclay brick and

a 0.635-cm thickness of mild steel on its outside surface. Heat

transfer coefficients on inside and outsidewall surfaces are 5110

and 45W/m2 � K, respectively; outside air is at 295K.What will

be the temperatures at each surface and at the brick-steel inter-

face?

15.26 Given the furnace wall and other conditions as specified

in Problem 15.25, what thickness of celotex (k ¼ 0:065W/

m � K) must be added to the furnace wall in order that the

outside surface temperature of the insulation not exceed 340 K?

15.27 A 4-in.-OD pipe is to be used to transport liquid metals

and will have an outside surface temperature of 14008F under

operating conditions. Insulation is 6 in. thick and has a thermal

conductivity expressed as

k ¼ 0:08(1� 0:003 T)

where k is in Btu/h ft 8F and T is in 8F, is applied to the outside

surface of the pipe.

a. What thickness of insulation would be required for the

outside insulation temperature to be no higher than 3008F?

b. What heat-flow rate will occur under these conditions?

15.28 Waterat408F is toflow througha11=2-in. schedule40steel

pipe. The outside surface of the pipe is to be insulatedwith a 1-in.-

thick layerof 85%magnesia anda 1-in.-thick layerof packedglass

wool, k ¼ 0:022Btu/h ft �F: The surrounding air is at 1008F.
a. Which material should be placed next to the pipe surface to

produce the maximum insulating effect?

b. What will be the heat flux on the basis of the outside pipe

surface area? The convective heat-transfer coefficients for

the inner and outer surfaces are 100 and 5Btu/h ft �F:
respectively.

15.29 A 1-in.-nominal-diameter steel pipe with its outside

surface at 4008F is located in air at 908F with the convective

heat-transfer coefficient between the surface of the pipe and the

air equal to 1:5Btu/h ft �F: It is proposed to add insulation having
a thermal conductivity of 0:06Btu/h ft �F to the pipe to reduce

the heat loss to one half that for the bare pipe. What thickness of

insulation is necessary if the surface temperature of the steel pipe

and ho remain constant?

15.30 If, for the conditions of Problem 15.29, ho in Btu/h ft
�F

varies according to ho ¼ 0:575/D1/4
o , where Do is the outside

diameter of the insulation in feet, determine the thickness of

insulation that will reduce the heat flux to one half that of the

value for the bare pipe.

15.31 Liquid nitrogen at 77 K is stored in a cylindrical con-

tainer having an inside diameter of 25 cm. The cylinder is made

of stainless steel and has a wall thickness of 1.2 cm. Insulation

is to be added to the outside surface of the cylinder to reduce

the nitrogen boil-off rate to 25% of its value without insulation.

The insulation to be used has a thermal conductivity of

0:13W/m � K: Energy loss through the top and bottom ends

of the cylinder may be presumed negligible.

Neglecting radiation effects, determine the thickness of

insulation when the inner surface of the cylinder is at 77 K, the

convective heat-transfer coefficient at the insulation surface

has a value of 12W/m2 � K, and the surrounding air is at

258C.
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Chapter 16

Differential Equations

of Heat Transfer

Paralleling the treatment of momentum transfer undertaken in Chapter 9, we shall now

generate the fundamental equations for a differential control volume from a first-law-of-

thermodynamics approach. The control-volume expression for the first law will provide

our basic analytical tool. Additionally, certain differential equations already developed

in previous sections will be applicable.

16.1 THE GENERAL DIFFERENTIAL EQUATION FOR ENERGY TRANSFER

Consider the control volume having dimensions Dx, Dy, and Dz as depicted in Figure 16.1.
Refer to the control-volume expression for the first law of thermodynamics

dQ

dt
� dWs

dt
� dWm

dt
¼
ZZ

c:s:
eþ P

r

� �
r(v: n)dAþ @

@t

ZZZ
c:v:

er dV (6-10)

The individual terms are evaluated and their mean-

ings are discussed below.

The net rate of heat added to the control volume

will include all conduction effects, the net release

of thermal energy within the control volume due to

volumetric effects such as a chemical reaction or

induction heating, and the dissipation of electrical

or nuclear energy. The generation effects will be

included in the single term, q̇, which is the volu-

metric rate of thermal energy generation having units

W/m3 or Btu/h ft3. Thus, the first term may be

expressed as

dQ

dt
¼ k

@T

@x xþDx
� k

@T

@x

����
����
x

� �
DyDzþ

�
k
@T

@y yþDy
� k

@T

@y

����
����
y

�
DxDz

þ k
@T

@z zþDz
� k

@T

@z

����
����
z

� �
DxDyþ _q DxDyDz ð16-1Þ

The shaft work rate or power term will be taken as zero for our present pur-

poses. This term is specifically related to work done by some effect within the

y

x

z

�y

�x
�z

Figure 16.1 A differential control

volume.
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control volume that, for the differential case, is not present. The power term is thus

evaluated as

dWs

dt
¼ 0 (16-2)

The viscous work rate, occurring at the control surface, is formally evaluated by

integrating the dot product of the viscous stress and the velocity over the control surface.

As this operation is tedious, we shall express the viscous work rate as LDx Dy Dz, where
L is the viscous work rate per unit volume. The third term in equation (6-10) is thus

written as

dWm

dt
¼ LDx Dy Dz (16-3)

The surface integral includes all energy transfer across the control surface due to fluid

flow. All terms associated with the surface integral have been defined previously. The

surface integral is ZZ
c:s:

eþ P

r

� �
r(v: n)dA

¼ rvx
v2

2
þ gyþ uþ P

r

� �
xþDx

� rvx
v2

2
þ gyþ uþ P

r

� �����
����
x

� �
Dy Dz

þ rvy
v2

2
þ gyþ uþ P

r

� �
yþDy

� rvy
v2

2
þ gyþ uþ P

r

� �����
����
y

" #
Dx Dz

þ rvz
v2

2
þ gyþ uþ P

r

� �
zþDz

� rvz
v2

2
þ gyþ uþ P

r

� �����
����
z

� �
Dx Dy ð16-4Þ

The energy accumulation term, relating the variation in total energy within the control

volume as a function of time, is

@

@t

ZZZ
c:v:

er dV ¼ @

@t

v2

2
þ gyþ u

� �
rDx Dy Dz (16-5)

Equations (16-1) through (16-5)may nowbe combined as indicated by the general first-

law expression, equation (6-10). Performing this combination and dividing through by the

volume of the element, we have

k(@T/@x)jxþDx � k(@T /@x)jx
Dx

þ k(@T /@y)jyþDy � k(@T /@y)jy
Dy

þ k(@T /@z)jzþDz � k(@T /@z)jz
Dz

þ _qþ L

¼ frvx (v2/2)þ gyþ uþ (P/r)
� �jxþDx � rvx (v2/2)þ gyþ uþ (P/r)

� �jxg
Dx

þ frvy (v2/2)þ gyþ uþ (P/r)
� �jyþDy � rvy (v2/2)þ gyþ uþ (P/r)

� �jyg
Dy

þ frvz (v2/2)þ gyþ uþ (P/r)
� �jzþDz � rvz (v2/2)þ gyþ uþ (P/r)

� �jzg
Dz

þ @

@t
r

v2

2
þ gyþ u

� �
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Evaluated in the limit as Dx, Dy, and Dz approach zero, this equation becomes

@

@x
k
@T

@x

� �
þ @

@y
k
@T

@y

� �
þ @

@z
k
@T

@z

� �
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r
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2
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r
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þ @
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r

v2

2
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Equation (16-6) is completely general in application. Introducing the substantial

derivative, we may write equation (16-6) as

@

@x
k
@T

@x

� �
þ @

@y
k
@T

@y

� �
þ @

@z
k
@T

@z

� �
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¼ =: (Pv)þ v2

2
þ u þ gy
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� �
þ r

2
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Du

Dt
þ r

D(gy)

Dt

Utilizing the continuity equation, equation (9-2), we reduce this to

@

@x
k
@T

@x

� �
þ @

@y
k
@T

@y

� �
þ @

@z
k
@T
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� �
þ _qþ L

¼ =:Pvþ r

2

Dv2

Dt
þ r
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Dt
þ r
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ð16-7Þ

With the aid of equation (9-19), which is valid for incompressible flow of a fluid with

constant m, the second term on the right-hand side of equation (16-7) becomes

r

2

Dv2

Dt
¼ �v:=Pþ v: rgþ v:m=2v (16-8)

Also, for incompressible flow, the first term on the right-hand side of equation (16-7)

becomes

=:Pv ¼ v:=P (16-9)

Substituting equations (16-8) and (16-9) into equation (16-7), and writing the conduction

terms as =: k=T , we have

=: k=T þ _qþ L ¼ r
Du

Dt
þ r

D(gy)

Dt
þ v: rgþ v:m=2v (16-10)

It will be left as an exercise for the reader to verify that equation (16-10) reduces further

to the form

=: k=T þ _qþ L ¼ rcv
DT

Dt
þ v:m=2v (16-11)

The function L may be expressed in terms of the viscous portion of the normal- and

shear-stress terms in equations (7-13) and (7-14). For the case of incompressible flow, it is

written as

L ¼ v:m=2 vþF (16-12)
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where the ‘‘dissipation function,’’ F, is given by

F ¼ 2m
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� �2
" #

Substituting for L in equation (16-11), we see that the energy equation becomes

=: k=T þ _qþF ¼ rcv
DT

Dt
(16-13)

From equation (16-12),F is seen to be a function of fluid viscosity and shear-strain rates, and

is positive-definite. The effect of viscous dissipation is always to increase internal energy at

the expenseofpotential energyor stagnation pressure. Thedissipation function is negligible in

all cases that we will consider; its effect becomes significant in supersonic boundary layers.

16.2 SPECIAL FORMS OF THE DIFFERENTIAL ENERGY EQUATION

The applicable forms of the energy equation for some commonly encountered situations

follow. In every case the dissipation term is considered negligibly small.

I. For an incompressible fluid without energy sources and with constant k

rcv
DT

Dt
¼ k=2T (16-14)

II. For isobaric flow without energy sources and with constant k, the energy equation is

rcv
DT

Dt
¼ k=2T (16-15)

Note that equations (16-14) and (16-15) are identical yet apply to completely

different physical situations. The student may wish to satisfy himself at this point

as to the reasons behind the unexpected result.

III. In a situation where there is no fluid motion, all heat transfer is by conduction. If

this situation exists, as it most certainly does in solids where cv ’ cp, the energy

equation becomes

rcp
@T

@t
¼ =: k=T þ _q (16-16)

Equation (16-16) applies in general to heat conduction. No assumption has been made

concerning constant k. If the thermal conductivity is constant, the energy equation is

@T

@t
¼ a=2T þ _q

rcp
(16-17)

where the ratio k/rcp has been symbolized by a and is designated the thermal diffusivity. It is

easily seen that a has the units, L2/t; in the SI system a is expressed in m2/s, and as ft2/h in the

English system.

If the conducting medium contains no heat sources, equation (16-17) reduces to the

Fourier field equation
@T

@t
¼ a=2T (16-18)

which is occasionally referred to as Fourier’s second law of heat conduction.
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For a system in which heat sources are present but there is no time variation, equation

(16-17) reduces to the Poisson equation

=2T þ _q

k
¼ 0 (16-19)

The final form of the heat-conduction equation to be presented applies to a steady-state

situation without heat sources. For this case, the temperature distribution must satisfy the

Laplace equation

=2T ¼ 0 (16-20)

Each of equations (16-17) through (16-20) has been written in general form, thus each

applies to any orthogonal coordinate system. Writing the Laplacian operator, =2, in the

appropriate form will accomplish the transformation to the desired coordinate system. The

Fourier field equation written in rectangular coordinates is

@T

@t
¼ a

@2T

@x2
þ @2T

@y2
þ @2T

@z2

� �
(16-21)

in cylindrical coordinates

@T

@t
¼ a

@2T

@r2
þ 1

r

@T

@r
þ 1

r2
@2T

@u2
þ @2T

@z2

� �
(16-22)

and in spherical coordinates

@T

@t
¼ a

1

r2
@

@r
r2

@T

@r

� �
þ 1

r2 sin u

@

@u
sin u

@T

@u

� �
þ 1

r2 sin2u

@2T

@f2

� �
(16-23)

The reader is referred to Appendix B for an illustration of the variables in cylindrical and

spherical coordinate systems.

16.3 COMMONLY ENCOUNTERED BOUNDARY CONDITIONS

In solving one of the differential equations developed thus far, the existing physical situation

will dictate the appropriate initial or boundary conditions, or both, which the final solutions

must satisfy.

Initial conditions refer specifically to thevalues ofTand v at the start of the time interval

of interest. Initial conditions may be as simply specified as stating that Tjt¼0 ¼ T0
(a constant), or more complex if the temperature distribution at the start of time measure-

ment is some function of the space variables.

Boundary conditions refer to the values of T and v existing at specific positions on the

boundaries of a system, that is, for givenvalues of the significant space variables. Frequently

encountered boundary conditions for temperature are the case of isothermal boundaries,

along which the temperature is constant, and insulated boundaries, across which no heat

conduction occurs where, according to the Fourier rate equation, the temperature derivative

normal to the boundary is zero. More complicated temperature functions often exist at

system boundaries, and the surface temperature may also vary with time. Combinations of

heat-transfer mechanisms may dictate boundary conditions as well. One situation often

existing at a solid boundary is the equality between heat transfer to the surface by conduction
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and that leaving the surface by convection. This condition is illustrated in Figure 16.2. At the

left-hand surface, the boundary condition is

hk(Tk � T jx¼0) ¼ �k
@T

@x

����
x¼0

(16-24)

and at the right-hand surface,

hc(T jx¼L � Tc) ¼ �k
@T

@x

����
x¼L

(16-25)

It is impossible at this time to foresee all the initial and boundary conditions that will be

needed. The student should be aware, however, that these conditions are dictated by the

physical situation. The differential equations of energy transfer are not numerous, and a

specific form applying to a given situation may be found easily. It remains for the user of

these equations to choose the appropriate initial and boundary conditions to make the

solution meaningful.

16.4 CLOSURE

The general differential equations of energy transfer have been developed in this chapter,

and some forms applying to more specific situations were presented. Some remarks

concerning initial and boundary conditions have been made as well.

In the chapters to follow, analyses of energy transfer will start with the applicable

differential equation. Numerous solutions will be presented and still more assigned as

student exercises. The tools for heat-transfer analysis have now been developed and

examined. Our remaining task is to develop a familiarity with and facility in their use.

qx = hc (T2 – Tc)

qx = – k
dT
dx

qx = hh (Th – T1)

Tc

Th

T2

T1

x

L

Figure 16.2 Conduction and

convention at a system boundary.

PROBLEMS

16.1 The Fourier field equation in cylindrical coordinates is

@T

@t
¼ a

@2T

@r2
þ 1

r

@T

@r
þ 1

r2
@2T

@u2
� @2T

@z2

� �
:

a. What form does this equation reduce to for the case of

steady-state, radial heat transfer?

b. Given the boundary conditions

T ¼ Ti at r ¼ ri
T ¼ To at r ¼ ro

c. Generate an expression for the heat flow rate, qr , using the

result from part (b).

16.2 Perform the same operations as in parts (a), (b), and (c) of

Problem 16.1 with respect to a spherical system.

16.3 Starting with the Fourier field equation in cylindrical

coordinates,

a. Reduce this equation to the applicable form for steady-state

heat transfer in the u direction.
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b. For the conditions depicted in the figure, that is, T ¼ To at

u ¼ 0, T ¼ Tz at u ¼ p, the radial surfaces insulated, solve

for the temperature profile.

c. Generate an expression for the heat flow rate, qu, using the

result of part (b).

d. What is the shape factor for this configuration?

q

ro

r1

To

Tp

16.4 Show that equation (16-10) reduces to the form

=: k=T þ _qþ L ¼ rcv
DT

Dt
þ v:m=2v

16.5 Starting with equation (16-7), show that, for a fluid with

constant thermal conductivity and no energy sources, equations

(16-14) and (16-15) are obtained for incompressible and isobaric

conditions, respectively. (Neglect viscous dissipation.)

16.6 Solve equation (16-19) for the temperature distribution in

a planewall if the internal heat generation per unit volume varies

according to _q ¼ _q0e
�bx/L. The boundary conditions that apply

are T ¼ T0 at x ¼ 0 and T ¼ TL at x ¼ L.

16.7 Solve Problem 16.6 for the same conditions, except that

the boundary condition at x ¼ L is dT /dx ¼ 0.

16.8 Solve Problem 16.6 for the same conditions, except that

at x ¼ L, dT /dx ¼ j (a constant).

16.9 Use the relation T ds ¼ dh� dP/r to show that the effect

of the dissipation function, F, is to increase the entropy, S. Is the

effect of heat transfer the same as the dissipation function?

16.10 In a boundary layer where the velocity profile is given by

vx
v1

¼ 3

2

y

d
� 1

2

y

d

� �3
where d is the velocity boundary layer thickness, plot the

dimensionless dissipation function, F d2/mv21, vs. y/d.

16.11 A spherical shell with inner and outer dimensions of ri
and ro, respectively, has surface temperatures Ti(ri) and To(ro).

Assuming constant properties and one-dimensional (radial)

conduction, sketch the temperature distribution, T(r). Give

reasons for the shape you have sketched.

16.12 Heat is transferred by conduction (assumed to be one-

dimensional) along the axial direction through the truncated

conical section shown in the figure. The two base surfaces are

maintained at constant temperatures: T1 at the top, and T2, at the

bottom, where T1 > T2: Evaluate the heat transfer rate, qx, when

a. the thermal conductivity is constant.

b. the thermal conductivity varies with temperature according

to k ¼ ko � aT , where a is a constant.

T2, A2

T1, A1

x

L

16.13 Heat is generated in a radioactive plane wall according

to the relationship

_q ¼ _qmax 1� X

L

� �
where _q is the volumetric heat generation rate, kW/m3, L is the half

thickness of the plate, and x is measured from the plate center line.

X

L

Develop the equation that expresses the temperature difference

between the plate center line and its surface.

16.14 Heat is generated in a cylindrical fuel rod in a nuclear

reactor according to the relationship

_q ¼ _qmax 1� r

ro

� �2
" #

where _q is the volumetric heat generation rate, kW/m3, and ro is

theoutside cylinder radius.Develop theequation thatexpresses the

temperature difference between the rod center line and its surface.

16.15 Heat is generated in a spherical fuel element according

to the relationship

_q ¼ _qmax 1� r

ro

� �3
" #

where _q is the volumetric heat generation rate, kW/m3, and ro is the

radius of the sphere. Develop the equation that expresses the tem-

perature difference between the center of the sphere and its surface.
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Chapter 17

Steady-State Conduction

In most equipment used in transferring heat, energy flows from one fluid to another

through a solid wall. As the energy transfer through each medium is one step in the

overall process, a clear understanding of the conduction mechanism of energy

transfer through homogeneous solids is essential to the solutions of most heat-transfer

problems.

In this chapter, we shall direct our attention to steady-state heat conduction. Steady

state implies that the conditions, temperature, density, and the like at all points in the

conduction region are independent of time. Our analyses will parallel the approaches

used for analyzing a differential fluid element in laminar flow and those that will be

used in analyzing steady-state molecular diffusion. During our discussions, two types of

presentations will be used: (1) The governing differential equation will be generated by

means of the control-volume concept and (2) the governing differential equation will be

obtained by eliminating all irrelevant terms in the general differential equation for

energy transfer.

17.1 ONE-DIMENSIONAL CONDUCTION

For steady-state conduction independent of any internal generation of energy, the general

differential equation reduces to the Laplace equation

=2T ¼ 0 (16-20)

Although this equation implies that more than one space coordinate is necessary to

describe the temperature field, many problems are simpler because of the geometry of

the conduction region or because of symmetries in the temperature distribution.

One-dimensional cases often arise.

The one-dimensional, steady-state transfer of energy by conduction is the simplest

process to describe as the condition imposed upon the temperature field is an ordinary

differential equation. For one-dimensional conduction, equation (16-20) reduces to

d

dx
xi
dT

dx

� �
¼ 0 (17-1)

where i ¼ 0 for rectangular coordinates, i ¼ 1 for cylindrical coordinates, and i ¼ 2 for

spherical coordinates.

One-dimensional processes occur in flat planes, such as furnace walls; in cylindri-

cal elements, such as steam pipes; and in spherical elements, such as nuclear-reactor

pressure vessels. In this section, we shall consider steady-state conduction through

simple systems in which the temperature and the energy flux are functions of a single

space coordinate.
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Plane Wall. Consider the conduction of energy through a plane wall as illustrated in

Figure 17.1. The one-dimensional Laplace equation is easily solved, yielding

T ¼ C1xþ C2 (17-2)

The two constants are obtained by applying the boundary conditions

at x ¼ 0 T ¼ T1
and

at x ¼ L T ¼ T2

These constants are

C2 ¼ T1
and

C1 ¼ T2 � T1

L
The temperature profile becomes

T ¼ T2 � T1

L
xþ T1

or

T ¼ T1 � T1 � T2

L
x (17-3)

and is linear, as illustrated in Figure 17.1.

The energy flux is evaluated, using the Fourier rate equation

qx

A
¼ �k

dT

dx
(15-1)

The temperature gradient, dT/dx, is obtained by differentiating equation (17-3) yielding

dT

dx
¼ � T1 � T2

L

Substituting this term into the rate equation, we obtain for a flat wall with constant thermal

conductivity

qx ¼ kA

L
(T1 � T2) (17-4)

The quantity kA/L is characteristic of a flat wall or a flat plate and is designated the thermal

conductance. The reciprocal of the thermal conductance, L/kA, is the thermal resistance.

Composite Walls. The steady flow of energy

through several walls in series is often encoun-

tered. A typical furnace design might include

one wall for strength, an intermediate wall for

insulation, and the third outer wall for appear-

ance. This composite plane wall is illustrated in

Figure 17.2.

For a solution to the system shown in this

figure, the reader is referred to Section 5.

The following example illustrates the use of

the composite-wall energy-rate equation for pre-

dicting the temperature distribution in walls.

T2

T1

L

x

T

Figure 17.1 Plane wall

with a one-dimensional

temperature distribution.

qx

T4

x

T3

T2T1

L1 L2 L3

qx

Figure 17.2 Temperature distribution for

steady-state conduction of energy through a

composite plane wall.
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EXAMPLE 1 A furnacewall is composed of three layers, 10 cmof firebrick (k ¼ 1:560W/m�K), followed by 23 cm
of kaolin insulating brick (k ¼ 0:073W/m�K), and finally 5 cm of masonry brick (k ¼ 1:0W/m�K).
The temperature of the inner wall surface is 1370 K and the outer surface is at 360 K. What are the

temperatures at the contacting surfaces?

The individual material thermal resistances per m2 of area are

R1; firebrick ¼ L1

k1A1
¼ 0:10m

(1:560W/m:K)(1m2)
¼ 0:0641K/W

R2; kaolin ¼ L2

k2A2
¼ 0:23

(0:073)(1)
¼ 3:15K/W

R3; masonry ¼ L3

k3A3
¼ 0:05

(1:0)(1)
¼ 0:05K/W

The total resistance of the composite wall is equal to 0:0641þ 3:15þ 0:05 ¼ 3:26K/W. The total

temperature drop is equal to (T1 � T4) ¼ 1370� 360 ¼ 1010K.

Using equation (15-16), the energy transfer rate is

q ¼ T1 � T4

�R
¼ 1010K

3:26K/W
¼ 309:8W

As this is a steady-state situation, the energy transfer rate is the same for each part of the transfer path

(i.e., through each wall section). The temperature at the firebrick–kaolin interface, T2, is given by

T1 � T2 ¼ q(R1)

¼ (309:8W)(0:0641K/W) ¼ 19:9K

giving

T2 ¼ 1350:1

Similarly,

T3 � T4 ¼ q(R3)

¼ (309:8W)(0:05K/W) ¼ 15:5K
giving

T3 ¼ 375:5K

There are numerous situations in which a composite

wall involves a combination of series and parallel

energy-flow paths. An example of such a wall is illu-

strated in Figure 17.3, where steel is used as reinforce-

ment for a concrete wall. The composite wall can be

divided into three sections of length L1, L2, and L3, and

the thermal resistance for each of these lengths may be

evaluated.

The intermediate layer between planes 2 and 3

consists of two separate thermal paths in parallel; the

effective thermal conductance is the sum of the con-

ductances for the two materials. For the section of the

wall of height y1 þ y2 and unit depth, the resistance is

R2 ¼ 1

k1y1

L2
þ k2y2

L2

¼ L2
1

k1y1 þ k2y2

� � L3

k1 y1

y2

L2L1

k2

k2

Figure 17.3 A series-parallel

composite wall.
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The total resistance for this wall is

�RT ¼ R1 þ R2 þ R3

or

�RT ¼ L1

k1(y1 þ y2)
þ L2

1

k1y1 þ k2y2

� �
þ L3

k1(y1 þ y2)

The electrical circuit
R1

R2

R3
is an analog to the compositewall.

The rate of energy transferred from plane 1 to plane 4 is obtained by a modified form of

equation (15-16).

q ¼ T1 � T4

�RT
¼ T1 � T4

L1

k1(y1 þ y2)
þ L2

1

k1y1 þ k2y2

� �
þ L3

k1(y1 þ y2)

(17-5)

It important to recognize that this equation is only an approximation.Actually, there is a

significant temperature distribution in the y direction close to thematerial that has the higher

thermal conductivity.

In our discussions of composite walls, no allowance was made for a temperature drop

at the contact face between two different solids. This assumption is not always valid, has

therewill often bevapor spaces caused by rough surfaces, or even oxide films on the surfaces

of metals. These additional contact resistances must be accounted for in a precise energy-

transfer equation.

Long, Hollow Cylinder. Radial energy flow by conduction through a long, hollow

cylinder is another example of one-dimensional conduction. The radial heat flow for this

configuration is evaluated in Example 1 of chapter 15 as

qr

L
¼ 2pk

ln(ro/ri)
(Ti � To) (17-6)

where ri is the inside radius, ro is the outside radius, Ti is the temperature on the inside

surface, and To is the temperature on the outside surface. The resistance concept may

again be used; the thermal resistance of the hollow cylinder is

R ¼ ln(ro/ri)

2pkL
(17-7)

The radial temperature distribution in a long, hollow cylinder may be evaluated by

using equation (17-1) in cylindrical form

d

dr
r
dT

dr

� �
¼ 0 (17-8)

Solving this equation subject to the boundary conditions

at r ¼ ri T ¼ Ti

and

at r ¼ ro T ¼ To

we see that temperature profile is

T(r) ¼ Ti � Ti � To

ln(ro/ri)
ln

r

ri
(17-9)
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Thus, the temperature in a long, hollow cylinder is a logarithmic function of radius r,

whereas for the plane wall the temperature distribution is linear.

The following example illustrates the analysis of radial energy conduction through a

long, hollow cylinder.

EXAMPLE 2 A long steam pipe of outside radius r2 is covered with thermal

insulation having an outside radius of r3. The temperature

of the outer surface of the pipe, T2, and the temperature of

the surrounding air, T1, are fixed. The energy loss per unit

area of outside surface of the insulation is described by the

Newton rate equation

qr

A
¼ h(T3 � T1) (15-11)

Can the energy loss increase with an increase in the thick-

ness of insulation? If possible, under what conditions will

this situation arise? Figure 17.4 may be used to illustrate

this composite cylinder.

In Example 3 of Chapter 15, the thermal resistance of a hollow cylindrical element was

shown to be

R ¼ ln(ro/ri)

2pkL
(17-10)

In the present example, the total difference in temperature is T2 � T1 and the two resistances, due to

the insulation and the surrounding air film, are

R2 ¼ ln(r3/r2)

2pk2L

for the insulation, and

R3 ¼ 1

hA
¼ 1

h2pr3L

for the air film.

Substituting these terms into the radial heat flow equation and rearranging, we obtain

qr ¼ 2pL(T2 � T1)

½ln(r3/r2)�/k2 þ 1/hr3
(17-11)

The dual effect of increasing the resistance to energy transfer by conduction and simultaneously

increasing the surface area as r3 is increased suggests that, for a pipe of given size, a particular outer

radius exists for which the heat loss is maximum. As the ratio r3/r2 increases logarithmically, and the

term 1/r3 decreases as r3 increases, the relative importance of each resistance termwill change as the

insulation thickness is varied. In this example, L,T2,T1,k2h and r2 are considered constant.

Differentiating equation (17-11) with respect to r3, we obtain

dqr

dr3
¼ �

2pL(T2 � T1)
� 1

k2r3
� 1

hr23

�
"
1

k2
ln

r3

r2

� �
þ 1

hr3

#2 (17-12)

r2

r3

r1

Figure 17.4 A series composite

hollow cylinder.
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The radius of insulation associatedwith themaximumenergy transfer, the critical radius, found

by setting dqr/dr3 ¼ 0; equation (17-12) reduces to

(r3)critical ¼
k2

h
(17-13)

In the case of 85%magnesia insulation (k ¼ 0:0692W/m�K) and a typical value for the
heat transfer coefficient in natural convection (h ¼ 34W/m2 �K), the critical radius is

calculated as

rcrit ¼ k

h
¼ 0:0692W/m�K

34W/m2 �K ¼ 0:0020m (0:0067 ft)

¼ 0:20 cm (0:0787 in:)

These very small numbers indicate that the critical radius will be exceeded in any practical

problem. The question then is whether the critical radius given by equation (17-13)

represents a maximum or a minimum condition for q. The evaluation of the second

derivative, d2qr/dr
2
3, when r3 ¼ k/h yields a negative result, thus rcrit is a maximum

condition. It now follows that qr will be decreased for any value of r3 greater than

0.0020 m.

Hollow Sphere. Radial heat flow through a hollow sphere is another example of

one-dimensional conduction. For constant thermal conductivity, the modified Fourier rate

equation

qr ¼ �k
dT

dr
A

applies, where A ¼ area of a sphere ¼ 4pr2, giving

qr ¼ �4pkr2
dT

dr
(17-14)

This relation, when integrated between the boundary conditions

at T ¼ Ti r ¼ ri

and

at T ¼ To r ¼ ro

yields

q ¼ 4pk(Ti � To)

1

ri
� 1

r0

(17-15)

The hyperbolic temperature distribution

T ¼ Ti � Ti � To

1/ri � 1/ro

� �
1

ri
� 1

r

� �
(17-16)

is obtained by using the same procedure that was followed to obtain equation (17-9).

17.1 One-Dimensional Conduction 229



Variable Thermal Conductivity. If the thermal conductivity of the medium through

which the energy is transferred varies significantly, the preceding equations in this section

do not apply. As Laplace’s equation involves the assumption of constant thermal con-

ductivity, a new differential equation must be determined from the general equation for heat

transfer. For steady-state conduction in the x directionwithout internal generation of energy,

the equation that applies is

d

dx
k
dT

dx

� �
¼ 0 (17-17)

where k may be a function of T.

In many cases the thermal conductivity may be a linear function of temperature

over a considerable range. The equation of such a straight-line function may be

expressed by

k ¼ ko(1þ bT)

where ko and b are constants for a particular material. In general, for materials satisfying

this relation, b is negative for good conductors and positive for good insulators. Other

relations for varying k have been experimentally determined for specific materials. The

evaluation of the rate of energy transfer when the material has a varying thermal

conductivity is illustrated in Example 2 of chapter 15.

17.2 ONE-DIMENSIONAL CONDUCTION WITH INTERNAL
GENERATION OF ENERGY

In certain systems, such as electric resistance heaters and nuclear fuel rods, heat is

generated within the conducting medium. As one might expect, the generation of energy

within the conducting medium produces temperature profiles different than those for

simple conduction.

In this section, we shall consider two simple example cases: steady-state

conduction in a circular cylinder with uniform or homogeneous energy generation,

and steady-state conduction in a plane wall with variable energy generation. Carslaw

and Jaeger1 and Jakob2 have written excellent treatises dealing with more compli-

cated problems.

Cylindrical Solid with Homogeneous
Energy Generation. Consider a cylind-

rical solid with internal energy generation

as shown in Figure 17.5. The cylinder

will be considered long enough so that

only radial conduction occurs. The den-

sity, r, the heat capacity, cp, and the

thermal conductivity of the material will

�r

rr

Figure 17.5 Annular element in a long, circular

cylinder with internal heat generation.

1 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Edition, Oxford Univ. Press, New York,

1959.
2 M. Jakob, Heat Transfer, Vol. I, Wiley, New York, 1949.
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be considered constant. The energy balance for the element shown is

rate of energy

conduction into

the element

8><
>:

9>=
>;þ

rate of energy

generation within

the element

8><
>:

9>=
>;�

rate of energy

conduction out

of the element

8><
>:

9>=
>;

¼
rate of accumulation

of energy

within the element

8><
>:

9>=
>;

(17-18)

Applying the Fourier rate equation and letting _q represent the rate of energy generated per
unit volume, we may express equation (17-18) by the algebraic expression

�k(2prL)
@T

@r

����
r

þ _q(2prLDr)� �k(2prL)
@T

@r

����
rþDr

� �
¼ rcp

@T

@t
(2prLDr)

Dividing each term by 2prLDr, we obtain

_qþ k½r(@T/@r)jrþDr � r(@T/@r)jr�
rDr

¼ rcp
@T

@t

In the limit as Dr approaches zero, the following differential equation is generated:

_qþ k

r

@

@r
r
@T

@r

� �
¼ rcp

@T

@t
(17-19)

For steady-state conditions, the accumulation term is zero; when we eliminate this term

from the above expression, the differential equation for a solid cylinder with homogeneous

energy generation becomes

_qþ k

r

d

dr
r
dT

dr

� �
¼ 0 (17-20)

The variables in this equation may be separated and integrated to yield

rk
dT

dr
þ _q

r2

2
¼ C1

or

k
dT

dr
þ _q

r

2
¼ C1

r

Because of the symmetry of the solid cylinder, a boundary condition that must be satisfied

stipulates that the temperature gradient must be finite at the center of the cylinder, where

r ¼ 0. This can be true only if C1 ¼ 0. Accordingly, the above relation reduces to

k
dT

dr
þ _q

r

2
¼ 0 (17-21)

A second integration will now yield

T ¼ � _qr2

4k
þ C2 (17-22)

If the temperature T is known at any radial value, such as a surface, the second

constant, C2, may be evaluated. This, of course, provides the completed expression

for the temperature profile. The energy flux in the radial direction may be obtained
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from

qr

A
¼ �k

dT

dr

by substituting equation (17-21), yielding

qr

A
¼ _q

r

2

or

qr ¼ (2prL) _q
r

2
¼ pr2L _q (17-23)

Plane Wall with Variable Energy Generation. The second case associated with energy

generation involves a temperature-dependent, energy-generating process. This situation

develops when an electric current is passed through a conducting medium possessing an

electrical resistivity that varies with temperature. In our discussion, we shall assume that

the energy-generation term varies linearly with temperature, and that the conducting

medium is a flat plate with temperature TL at both surfaces. The internal energy generation

is described by

_q ¼ _qL½1þ b(T � TL)� (17-24)

where _qL is the generation rate at the surface and b is a constant.

With this model for the generation function, and as both surfaces have the same

temperature, the temperature distribution within the flat plate is symmetric about the

midplane. The plane wall and its coordinate system are illustrated in Figure 17.6. The

symmetry of the temperature distribution requires a zero temperature gradient at x ¼ 0.

With steady-state conditions, the differential equation may be obtained by eliminating the

irrelevant terms in the general differential equation for heat transfer. Equation (16-19) for

the case of steady-state conduction in the x direction in a stationary solid with constant

thermal conductivity becomes

d2T

dx2
þ _qL

k
½1þ b(T � TL)� ¼ 0

The boundary conditions are

at x ¼ 0
dT

dx
¼ 0

and

at x ¼ �L T ¼ TL

These relations may be expressed in terms of a new variable, u ¼ T � TL, by

d2u

dx2
þ _qL

k
(1þ bu) ¼ 0

or

d2u

dx2
þ C þ su ¼ 0

where C ¼ _qL/k and s ¼ b _qL/k. The boundary conditions are

at x ¼ 0
du

dx
¼ 0

2L

+L–L

x

Figure 17.6 Flat plate

with temperature-

dependent energy

generation.
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and

at x ¼ �L u ¼ 0

The integration of this differential equation is simplified by a second change in variables;

inserting f for C þ su into the differential equation and the boundary conditions, we obtain

d2f

dx2
þ sf ¼ 0

for

x ¼ 0
df

dx
¼ 0

and

x ¼ �L f ¼ C

The solution is

f ¼ C þ su ¼ A cos(x
ffiffi
s

p
)þ B sin(x

ffiffi
s

p
)

or

u ¼ A1 cos(x
ffiffi
s

p
)þ A2 sin(x

ffiffi
s

p
)� C

s

The temperature distribution becomes

T � TL ¼ 1

b

cos(x
ffiffi
s

p
)

cos(L
ffiffi
s

p
)
� 1

� �
(17-25)

where s ¼ b _qL/k is obtained by applying the two boundary conditions.

The cylindrical and spherical examples of one-dimensional temperature-dependent

generation are more complex; solutions to these may be found in the technical literature.

17.3 HEAT TRANSFER FROM EXTENDED SURFACES

Avery useful application of one-dimensional heat-conduction analysis is that of describing

the effect of extended surfaces. It is possible to increase the energy transfer between a

surface and an adjacent fluid by increasing the amount of surface area in contact with the

fluid. This increase in area is accomplished by adding extended surfaces that may be in the

forms of fins or spines of various cross sections.

The one-dimensional analysis of exten-

ded surfaces may be formulated in general

terms by considering the situation depicted

in Figure 17.7.

The shaded area represents a portion of

the extended surface that has variable cross-

sectional area, A(x), and surface area, S(x),

which are functions of x alone. For steady-

state conditions, the first law of thermody-

namics, equation (6-10), reduces to the simple

expression

dQ

dt
¼ 0

�x

x

q1 q2

q3

A(x)

S(x)

Figure 17.7 An extended surface of general

configuration.
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Thus, in terms of the heat flow rates designated in the figure, we may write

q1 ¼ q2 þ q3 (17-26)

The quantities q1 and q2 are conduction terms, while q3 is a convective heat-flow rate.

Evaluating each of these in the appropriate way and substituting into equation (17-26), we

obtain

kA
dT

dx
xþDx

� kA
dT

dx

�����
�����
x

� hS(T � T1) ¼ 0 (17-27)

where T1 is the fluid temperature. Expressing the surface area, S(x), in terms of the width,

Dx, times the perimeter, P(x), and dividing through by Dx, we obtain

kA(dT /dx)jxþDx � kA(dT /dx)jx
Dx

� hP(T � T1) ¼ 0

Evaluating this equation in the limit as Dx! 0, we obtain the differential equation

d

dx
kA

dT

dx

� �
� hPðT � T1Þ ¼ 0 (17-28)

One should note, at this point, that the temperature gradient, dT/dx, and the surface

temperature,T, are expressed such thatT is a function of x only. This treatment assumes the

temperature to be ‘‘lumped’’ in the transverse direction. This is physically realistic when

the cross section is thin or when the material thermal conductivity is large. Both of these

conditions apply in the case of fins. More will be said about the ‘‘lumped parameter’’

approach in Chapter 18. This approximation in the present case leads to equation (17-28),

an ordinary differential equation. If we did not make this simplifying analysis, we would

have a distributed parameter problem that would require solving a partial differential

equation.

A wide range of possible forms exist when equation (17-28) is applied to specific

geometries. Three possible applications and the resulting equations are described in the

following paragraphs.

(1) Fins or Spines of UniformCross Section. For either of the cases shown in Figure 17.8,

the following are true: A(x) ¼ A, andP(x) ¼ P, both constants. If, additionally, both k and h

are taken to be constant, equation (17-28) reduces to

d2T

dx2
� hP

kA
(T � T1) ¼ 0 (17-29)

x

x

Figure 17.8 Two examples of extended surfaces with constant cross section.
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(2) Straight Surfaces with Linearly Varying Cross Section. Two configurations for

which A and P are not constant are shown in Figure 17.9. If the area and perimeter both vary

in a linear manner from the primary surface, x ¼ 0, to some lesser value at the end, x ¼ L,

both A and P may be expressed as

A ¼ A0 � (A0 � AL)
x

L
(17-30)

and

P ¼ P0 � (P0 � PL)
x

L
(17-31)

In the case of the rectangular fin shown in Figure 17.9(b), the appropriate values of A and

P are

A0 ¼ 2t0W AL ¼ 2tLW

P0 ¼ 2½2t0 þW � PL ¼ 2½2tL þW �
where t0 and tL represent the semithickness of the fin evaluated at x ¼ 0 and x ¼ L,

respectively, and W is the total depth of the fin.

For constant h and k, equation (17-28) applied to extended surfaceswith cross-sectional

area varying linearly becomes

A0 � (A0 � AL)
x

L

h i d2T
dx2

� A0 � AL

L

dT

dx
� h

k
P0 � (P0 � PL)

x

L

h i
(T � T1) ¼ 0 (17-32)

(3) Curved Surfaces of Uniform Thickness. A com-

mon type of extended surface is that of the circular fin

of constant thickness as depicted in Figure 17.10. The

appropriate expressions for A and P, in this case, are

and
A ¼ 4prt

P ¼ 4pr

)
r0 � r � rL

When these expressions are substituted into equation

(17-28), the applicable differential equation, consider-

ing k and h constant, is

d2T

dr2
þ 1

r

dT

dr
� h

kt
(T � T1) ¼ 0 (17-33)

2tL

(b)(a)

x

L

x

L

t0
t0

Figure 17.9 Two examples of straight extended surfaces with variable cross section.

rL

2tr0

r

Figure 17.10 A curved fin of

constant thickness.
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Equation (17-33) is a form of Bessel’s equation of zero order. The solution is in terms of

Bessel functions of the first kind. The description and use of these functions are beyond the

mathematical scope of this text. The interested reader may consult the work of Kraus et al.3

for a complete discussion of Bessel functions and their use.

In each of the cases considered, the thermal conductivity and convective heat-transfer

coefficient were assumed constant. When the variable nature of these quantities is considered,

the resulting differential equations become still more complex than those developed thus far.

Solutions for the temperature profile in the case of the straight fin of constant cross

section will now be considered; equation (17-29) applies.

The general solution to equation (17-29) may be written

u ¼ c1e
mx þ c2e

�mx (17-34)

or

u ¼ A coshmxþ B sinhmx (17-35)

wherem2 ¼ hP/kA and u ¼ T � T1. The evaluation of the constants of integration requires

that two boundary conditions be known. The three sets of boundary conditions that we shall

consider are as follows:

(a) T ¼ T0 at x ¼ 0

T ¼ TL at x ¼ L

(b) T ¼ T0 at x ¼ 0

dT

dx
¼ 0 at x ¼ L

and

(c) T ¼ T0 at x ¼ 0

�k
dT

dx
¼ h(T � T1) at x ¼ L

The first boundary condition of each set is the same and stipulates that the temperature at the

base of the extended surface is equal to that of the primary surface. The second boundary

condition relates the situation at a distance L from the base. In set (a) the condition is that of a

known temperature at x ¼ L. In set (b) the temperature gradient is zero at x ¼ L. In set (c) the

requirement is that heat flow to the end of an extended surface by conduction be equal to that

leaving this position by convection.

The temperature profile, associated with the first set of boundary conditions, is

u

u0
¼ T � T1

T0 � T1
¼ uL

u0
� e�mL

� �
emx � e�mx

emL � e�mL

� �
þ e�mx (17-36)

A special case of this solution applies when L becomes very large, that is, L!1, for

which equation (17-36) reduces to

u

u0
¼ T � T1

T0 � T1
¼ e�mx (17-37)

The constants, c1 and c2, obtained by applying set (b), yield, for the temperature profile,

u

u0
¼ T � T1

T0 � T1
¼ emx

1þ e2mL
þ e�mx

1þ e�2mL
(17-38)

3 A. D. Kraus, A. Aziz, and J. R. Welty, Extended Surface Heat Transfer, Wiley-Interscience, New York,

2001.
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An equivalent expression to equation (17-38) but in a more compact form is

u

u0
¼ T � T1

T0 � T1
¼ cosh½m(L� x)�

coshmL
(17-39)

Note that, in either equation (17-38) or (17-39), as L!1 the temperature profile

approaches that expressed in equation (17-37).

The application of set (c) of the boundary conditions yields, for the temperature profile,

u

u0
¼ T � T1

T0 � T1
¼ cosh½m(L� x)� þ (h/mk)sinh½m(L� x)�

coshmLþ (h/mk)sinhmL
(17-40)

It may be noted that this expression reduces to equation (17-39) if du/dx ¼ 0 at x ¼ L and

to equation (17-37) if T ¼ T1 at L ¼ 1:
The expressions for T(x) that have been obtained are particularly useful in evaluating

the total heat transfer from an extended surface. This total heat transfer may be determined

by either of two approaches. The first is to integrate the convective heat-transfer expression

over the surface according to

q ¼
Z
S

h½T(x)� T1�dS ¼
Z
S

hu dS (17-41)

The second method involves evaluating the energy conducted into the extended surface at

the base as expressed by

q ¼ �kA
dT

dx

����
x¼0

(17-42)

The latter of these two expressions is easier to evaluate; accordingly, we will use this

equation in the following development.

Using equation (17-36), we find that the heat transfer rate, when set (a) of the boundary

conditions applies, is

q ¼ kAmu0 1� 2
uL/u0 � e�mL

emL � e�mL

� �
(17-43)

If the length L is very long, this expression becomes

q ¼ kAmu0 ¼ kAm(T0 � T1) (17-44)

Substituting equation (17-39) [obtained by using set (b) of the boundary conditions]

into equation (17-42), we obtain

q ¼ kAmu0 tanhmL (17-45)

Equation (17-40), utilized in equation (17-42), yields for q the expression

q ¼ kAmu0
sinhmLþ (h/mk)coshmL

coshmLþ (h/mk)sinhmL
(17-46)

The equations for the temperature profile and total heat transfer for extended surfaces of

more involved configuration have not been considered. Certain of these cases will be left as

exercises for the reader.

Aquestion that is logically asked at this point is, ‘‘What benefit is accruedby the addition of

extended surfaces?’’ A term that aids in answering this question is the fin efficiency, symbolized

as hf , defined as the ratio of the actual heat transfer from an extended surface to the maximum

possible heat transfer from the surface. The maximum heat transfer would occur if the

temperature of the extended surface were equal to the base temperature, T0, at all points.
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Figure 17.11 is a plot of hf as a function of a significant parameter for both straight and

circular fins of constant thickness (when fin thickness is small, t� rL � r0).

The total heat transfer from a finned surface is

qtotal ¼ qprimary surface þ qfin

¼ A0h(T0 � T1)þ Af h(T � T1)
(17-47)

The second term in equation (17-47) is the actual heat transfer from the fin surface in

terms of the variable surface temperature. This may be written in terms of the fin

efficiency, yielding

qtotal ¼ A0h(T0 � T1)þ Af hhf (T0 � T1)

or

qtotal ¼ h(A0 þ Af hf )(T0 � T1) (17-48)

In this expression A0 represents the exposed area of the primary surface, Af is the total fin

surface area, and the heat transfer coefficient, h, is assumed constant.

The application of equation (17-48) as well as an idea of the effectiveness of fins is

illustrated in Example 3.

EXAMPLE 3 Water and air are separated by amild-steel planewall. It is proposed to increase the heat-transfer rate

between these fluids by adding straight rectangular fins of 1.27-mm thickness and 2.5-cm length,

spaced 1.27 cm apart. The air-side andwater-side heat-transfer coefficientsmay be assumed constant

with values of 11.4 and 256W/m2 �K respectively. Determine the percent change in total heat transfer

when fins are placed on (a) the water side, (b) the air side, and (c) both sides.

1.8

1.6

4.0

nf

(rL /r0) h /kt

0 1.0 2.0 3.0 4.0 5.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2trL

r0

3.0

rL /r0 = 1.0 (straight fin)

For a straight fin rL – r0 = L

2.0

1.4

Figure 17.11 Fin efficiency for straight and circular fins of constant thickness.
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For a 1 m2 section of the wall, the areas of the primary surface and of the fins are

Ao ¼ 1m2 � 79 fins (1m)
0:00127m

fin

� �
¼ 0:90m2

A f ¼ 79 fins (1m)½(2)(0:025m)� þ 0:10m2

¼ 4:05m2

Values of fin efficiency can now be determined from Figure 17.11. For the air side

L
ffiffiffiffiffiffiffiffi
h/kt

p
¼ 0:025m

11:4W/m2 �K
(42:9W/m�K)(0:00127m)

� �1=2
¼ 0:362

and for the water side

L
ffiffiffiffiffiffiffiffiffi
h/kT

p
¼ 0:025m

256W/m2 �K
(42:9W/m�K)(0:00127m)

� �1=2
¼ 1:71

The fin efficiencies are then read from the figure as

hair ffi 0:95

hwater ffi 0:55

The total heat transfer rates can now be evaluated. For fins on the air side

q ¼ haD Ta½Ao þ hfa Af �
¼ 11:4DTa½0:90þ 0:95(4:05)�
¼ 54:1DTa

and on the water side

q ¼ hw DTw ½Ao þ hfw Af �
¼ 256DTw½0:90þ 0:55(4:05)�
¼ 801DTw

The quantities DTa andDTw represent the temperature differences between the steel surface at

temperature To and the fluids.

The reciprocals of the coefficients are the thermal resistances of the finned surfaces.

Without fins the heat-transfer rate in terms of the overall temperature difference,

DT ¼ Tw � Ta, neglecting the conductive resistance of the steel wall, is

q ¼ DT

1

11:4
þ 1

256

¼ 10:91DT

With fins on the air side alone

q ¼ DT

1

54:1
þ 1

256

¼ 44:67DT

an increase of 310% compared with the bare-wall case.

With fins on the water side alone

q ¼ DT

1

11:4
þ 1

801

¼ 11:24DT

an increase of 3.0%.
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With fins on both sides the heat-flow rate is

q ¼ DT

1

54:1
þ 1

801

¼ 50:68DT

an increase of 365%.

This result indicates that adding fins is particularly beneficial where the convection coefficient

has a relatively small value.

17.4 TWO- AND THREE-DIMENSIONAL SYSTEMS

In Sections 17.2 and 17.3, we discussed systems in which the temperature and the energy

transfer were functions of a single-space variable. Although many problems fall into this

category, there are many other systems involving complicated geometry or temperature

boundary conditions, or both, for which two or even three spatial coordinates are necessary

to describe the temperature field.

In this section, we shall review some of the methods for analyzing heat transfer by

conduction in two- and three-dimensional systems. The problems will mainly involve two-

dimensional systems, as they are less cumbersome to solve yet illustrate the techniques of

analysis.

Analytical Solution. An analytical solution to any transfer problem must satisfy the

differential equation describing the process as well as the prescribed boundary condi-

tions. Many mathematical techniques have been used to obtain solutions for particular

energy conduction situations in which a partial differential equation describes the

temperature field. Carslaw and Jaeger4 and Boelter et al.5 havewritten excellent treatises

that deal with the mathematical solutions for many of the more complex conduction

problems. As most of this material is too specialized for an introductory course, a

solution will be obtained to one of the first cases analyzed by Fourier6 in the classical

treatise that established the theory of energy transfer by conduction. This solution of a

two-dimensional conductionmedium employs themathematical method of separation of

variables.

Consider a thin, infinitely long rectangular plate that is free of heat sources, as illustrated

in Figure 17.12. For a thin plate @T /@z is negligible, and the temperature is a function of x

and y only. The solution will be obtained for the case in which the two edges of the plate

aremaintained at zero temperature and the bottom is maintained at T1 as shown. The steady-

state temperature distribution in the plate of constant thermal conductivity must satisfy the

differential equation

@2T

@x2
þ @2T

@y2
¼ 0 (17-49)

T = 0 T = 0

T = T1

y

x

L

Figure 17.12 Model for

two-dimensional conduction

analysis.

4 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Edition, Oxford Univ. Press, New York,

1959.
5 L. M. K. Boelter, V. H. Cherry, H. A. Johnson, and R. C. Martinelli, Heat Transfer Notes, McGraw-Hill

Book Company, New York, 1965.
6 J. B. J. Fourier, Theorie Analytique de la Chaleur, Gauthier-Villars, Paris, 1822.
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and the boundary conditions

T ¼ 0 at x ¼ 0 for all values of y

T ¼ 0 at x ¼ L for all values of y

T ¼ T1 at y ¼ 0 for 0 � x � L

and

T ¼ 0 at y ¼ 1 for 0 � x � L

Equation (17-49) is a linear, homogeneous partial differential equation. This type of

equation usually can be integrated by assuming that the temperature distribution, T(x, y), is

of the form

T(x; y) ¼ X(x)Y(y) (17-50)

where X(x) is a function of x only and Y(y) is a function of y only. Substituting this equation

into equation (17-49), we obtain an expression in which the variables are separated

� 1

X

d2X

dx2
¼ 1

Y

d2Y

dy2
(17-51)

As the left-hand side of equation (17-51) is independent of y and the equivalent right-

hand side is independent of x, it follows that both must be independent of x and y, and hence

must be equal to a constant. If we designate this constant l2, two ordinary differential

equations result

d2X

dx2
þ l2X ¼ 0 (17-52)

and

d2Y

dy2
� l2Y ¼ 0 (17-53)

These differential equations may be integrated, yielding

X ¼ A cos lxþ B sin lx

and

Y ¼ Cely þ De�ly

According to equation (17-50), the temperature distribution is defined by the relation

T(x, y) ¼ XY ¼ (A cos lxþ B sin lx)(Cely þ De�ly) (17-54)

where A, B, C, and D are constants to be evaluated from the four boundary conditions.

The condition that T ¼ 0 at x ¼ 0 requires that A ¼ 0: Similarly, sin lx must be zero at

x ¼ L; accordingly, lL must be an integral multiple of p or l ¼ np/L: Equation (17-54) is

now reduced to

T(x, y) ¼ B sin
npx

L

� �
Cenpy/L þ De�npy/L
� �

(17-55)

The requirement that T ¼ 0 at y ¼ 1 stipulates that C must be zero. A combination of B

and D into the single constant E reduces equation (17-55) to

T(x, y) ¼ Ee�npy/L sin
npx

L

� �
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This expression satisfies the differential equation for any integer n greater than or equal to

zero. The general solution is obtained by summing all possible solutions, giving

T ¼ �
1

n¼1
Ene

�npy/L sin
npx

L

� �
(17-56)

The last boundary condition, T ¼ T1 at y ¼ 0; is used to evaluate En according to the

expression

T1 ¼ �
1

n¼1
En sin

npx

L

� �
for 0 � x � L

The constants En are the Fourier coefficients for such an expansion and are given by

En ¼ 4T1

np
for n ¼ 1, 3, 5, . . .

and

En ¼ 0 for n ¼ 2, 4, 6, . . .

The solution to this two-dimensional conduction problem is

T ¼ 4T1

p
�
1

n¼0

e½�(2nþ1)py�/L

2nþ 1
sin

(2nþ 1)px

L
(17-57)

The isotherms and energy flow lines are plotted in Figure 17.13. The isotherms are shown

in the figure as solid lines, and the dotted lines, which are orthogonal to the isotherms, are

energy-flow lines. Note the similarity to the lines of constant velocity potential and

stream function as discussed in momentum transfer.

The separation of variables method can be extended to three-dimensional cases by

assuming T to be equal to the product X(x)Y(y)Z(z) and substituting this expression for T

into the applicable differential equation. When the variables are separated, three second-

order ordinary differential equations are obtained, which may be integrated subject to the

given boundary conditions.

Analytical solutions are usefulwhen they can be obtained. There are, however, practical

problems with complicated geometry and boundary conditions, which cannot be solved

analytically. As an alternative approach, one must turn to numerical methods.

Shape Factors for Common Configurations

The shape factor, S, is defined and discussed briefly in Chapter 15.When a geometric case

of interest involves conduction between a source and a sink, both with isothermal

boundaries, a knowledge of the shape factor makes the determination of heat flow a

simple calculation.

Table 17.1 lists expressions for shape factors of five configurations. In every case

depicted, it is presumed that the heat transfer problem is two dimensional, that is, the

dimension normal to the plane shown in very large.

Numerical Solutions

Each of the solution techniques discussed thus far for multidimensional conduction has

considerable utility when conditions permit its use. Analytical solutions require

relatively simple functions and geometries; the use of shape factors requires isothermal

boundaries. When the situation of interest becomes sufficiently complex or when

T = 0T = 0

T = T1

Figure 17.13 Isotherms

and energy flow lines for

the rectangular plate in

Figure 17.12.
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boundary conditions preclude the use of

simple solution techniques, one must turn

to numerical solutions.

With the presence of digital computers

to accomplish the large number of manip-

ulations inherent in numerical solutions

rapidly and accurately, this approach is

now very common. In this section we shall

introduce the concepts of numerical problem

formulation and solution. A more complete

and detailed discussion of numerical solu-

tions to heat conduction problems may be

found in Carnahan et al.7 and in Welty.8

Shown in Figure 17.14 is a two-

dimensional representation of an element

within a conducting medium. The element

Table 17.1 Conduction shape factors.

Shape

Shape factor, S

q/L ¼ kS(Ti � To)

rb

ri

Ti
Tb

Concentric circular cylinders

2p

ln(ro/ri)

rb

e

ri

Ti

Tb

Eccentric circular cylinders

2p

cosh�1 1þ r2 � e2

2r

� �
r� ri/ro; e� e/ro

rb
ri

Ti

Tb

Circular cylinder in a hexagonal cylinder

2p

ln(ro/ri)� 0:10669

rb

ri
Ti

Tb

Circular cylinder in a square cylinder

2p

ln(ro/ri)� 0:27079

r

Ti

Tb
r

Infinite cylinder buried in semi-infinite medium

2p

cosh�1(r/r)

 �y

 �x

i + 1, ji – 1, j

i, j + 1

i, j – 1

i, j

Figure 17.14 Two-dimensional volume

element in a conducting medium.

7 B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, Wiley, New York, 1969.
8 J. R. Welty, Engineering Heat Transfer, Wiley, New York, 1974.
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or ‘‘node’’ i, j is centered in the figure along with its adjacent nodes. The designation, i, j,

implies a general location in a two-dimensional system where i is a general index in the x

direction and j is the y index. Adjacent node indices are shown in Figure 17.14. The grid is set

up with constant node width, Dx; and constant height, Dy: It may be convenient to make the

grid ‘‘square,’’ that is, Dx ¼ Dy; but for now we will allow these dimensions to be different.

A direct application of equation (6-10) to node i, j yields

dQ

dt
¼ @

@t

ZZZ
c:v:

er dV (17-58)

The heat input term, dQ/dt, may be evaluated allowing for conduction into node i, j from the

adjacent nodes and by energy generation within the medium. Evaluating dQ/dt in this

manner, we obtain

dQ

dt
¼ k

Dy

Dx
(Ti�1, j � Ti, j)þ k

Dy

Dx
(Tiþ1, j � Ti, j)

þ k
Dx

Dy
(Ti,j�1 � Ti, j)þ k

Dx

Dy
(Ti, jþ1 � Ti, j)þ _qDxDy ð17-59Þ

The first two terms in this expression relate conduction in the x direction, the third and fourth

express y-directional conduction, and the last is the generation term. All of these terms are

positive; heat transfer is assumed positive.

The rate of energy increase within node i, j may be written simply as

@

@t

ZZZ
c:v:

er dV ¼ rcT jtþDt � rcT jt
Dt

� �
DxDy (17-60)

Equation (17-58) indicates that the expressions given by equations (17-59) and (17-60)

may be equated. Setting these expressions equal to each other and simplifying, we have

k
Dy

Dx
½Ti�1, j þ Tiþ1, j � 2Ti, j� þ k

Dx

Dy
½Ti, j�1 þ Ti, jþ1 � 2Ti, j�

þ _qDxDy ¼ rcTi, jjtþDt � rcTi, jjt
Dt

� �
DxDy ð17-61Þ

This expression has been considered in a more complete form in the next chapter. For the

present we will not consider time-variant terms; moreover, we will consider the nodes to

be square, that is, Dx ¼ Dy: With these simplifications equation (17-61) becomes

Ti�1, j þ Tiþ1, j þ Ti, j�1 þ Ti, jþ1 � 4Ti, j þ _q
Dx2

k
¼ 0 (17-62)

In the absence of internal generation, equation, (17-62) may be solved for Tij to yield

Ti, j ¼ Ti�1, j þ Tiþ1, j þ Ti, j�1 þ Ti, jþ1

4
(17-63)

or, the temperature of node i, j is the arithmetic mean of the temperatures of its adjacent

nodes. A simple example showing the use of equation (17-63) in solving a two-dimensional

heat conduction problem follows.

EXAMPLE 4 A hollow square duct of the configuration shown (left) has its surfaces maintained at 200

and 100 K, respectively. Determine the steady-state heat transfer rate between the hot and

cold surfaces of this duct. The wall material has a thermal conductivity of 1:21W/m�K:
We may take advantage of the eightfold symmetry of this figure to lay out the simple

square grid shown below (right).
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3 m

3 m

1 m

1 m

100200

200
100

100
1' 2' 3

2

1

100

The grid chosen is squarewithDx ¼ Dy ¼ 1/2m: Three interior node points are thus identified;
their temperatures may be determined by proper application of equation (17-63). Writing the proper

expressions for T1, T2, and T3 using equation (17-68) as a guide, we have

T1 ¼ 200þ 100þ 2T2

4

T2 ¼ 200þ 100þ T1 þ T3

4

T3 ¼ 100þ 100þ 2T2

4
This set of three equations and three unknowns may be solved quite easily to yield the following:

T1 ¼ 145:83K, T2 ¼ 141:67K, T3 ¼ 120:83K:
The temperatures just obtained may now be used to find heat transfer. Implicit in the procedure

of laying out a grid of the sort, we have specified is the assumption that heat flows in the x and y

directions between nodes.On this basis heat transfer occurs from the hot surface to the interior only to

nodes 1 and 2; heat transfer occurs to the cooler surface from nodes 1, 2, and 3.We should also recall

that the section of duct that has been analyzed is one-eighth of the total thus, of the heat transfer to and

from node 1, only one half should be properly considered as part of the element analyzed.

We now solve for the heat transfer rate from the hotter surface, and write

q ¼ k(200� T1)

2
þ k(200� T2)

¼ k
200� 145:83

2

� �
þ (200� 141:67)

� �
¼ 85:415k (q inW/m, k inW/m�K)

A similar accounting for the heat flow from nodes 1, 2, and 3 to the cooler surface is written as

q ¼ k(T1 � 100)

2
þ k(T2 � 100) þ k(T3 � 100)

¼ k
145:83� 100

2

� �
þ (141:67� 100)þ (120:83� 100)

� �
¼ 85:415k (q inW/m, k inW/m�K)

Observe that these two different means of solving for q yield identical results. This is obviously a

requirement of the analysis and serves as a check on the formulation and numerical work.

The example may now be concluded. The total heat transfer per meter of duct is calculated as

q ¼ 8(8:415K)(1:21W/m�K)
¼ 826:8W/m
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Example 4 has illustrated, in simple fashion, the numerical approach to solving

two-dimensional steady-state conduction problems. It is apparent that any added complex-

ity in the form of more involved geometry, other types of boundary conditions such as

convection, radiation, specified heat flux, among others, or simply a greater number of

interior nodes, will render a problem too complex for hand calculation. Techniques for

formulating such problems and some solution techniques are described by Welty.

In this section, we have considered techniques for solving two- and three-dimensional

steady-state conduction problems. Each of these approaches has certain requirements that

limit their use. The analytical solution is recommended for problems of simple geometrical

shapes and simple boundary conditions. Numerical techniques may be used to solve

complex problems involving nonuniform boundary conditions and variable physical

properties.

17.5 CLOSURE

In this chapter, we have considered solutions to steady-state conduction problems. The

defining differential equations were frequently established by generating the equation

through the use of the control-volume expression for the conservation of energy aswell as by

using the general differential equation for energy transfer. It is hoped that this approach will

provide the student with an insight into the various terms contained in the general

differential equation and thus enable one to decide, for each solution, which terms are

relevant.

One-dimensional systems with and without internal generation of energy were

considered.

PROBLEMS

17.1 One-dimensional steady-state conduction, with no internal

heatgeneration,occursacrossaplanewallhavingaconstant thermal

conductivity of 30W/m�K: The material is 30 cm thick. For each

case listed in the table below, determine the unknown quantities.

Show a sketch of the temperature distribution for each case.

17.2 The steady-state expression for heat conduction through a

plane wall is q ¼ (kA/L)DT as given by equation (17-4). For

steady-state heat conduction through a hollow cylinder, an

expression similar to equation (17-4) is

q ¼ kA

ro � ri
DT

where A is the ‘‘log-mean’’ area defined as

A ¼ 2p
ro � ri

ln(ro/ri)

a. Show that A as defined above satisfies the equations for

steady-state radial heat transfer in a hollow cylindrical

element.

b. If the arithmetic mean area, p(ro � ri), is used rather than

the logarithmic mean, calculate the resulting percent error

for values of ro/ri of 1.5, 3, and 5.

17.3 Evaluate the appropriate ‘‘mean’’ area for steady-state

heat conduction in a hollow sphere that satisfies an equation of

the form

q ¼ kA

ro � ri
DT

Repeat part (b) of Problem 17.2 for the spherical case.

17.4 It is desired to transport liquid metal through a pipe

embedded in a wall at a point where the temperature is

650 K. A 1.2-m-thick wall constructed of a material having a

thermal conductivity varying with temperature according to

dT/dx qx

Case T1 T2 (K/m) (W/m2)

1 350 K 275 K

2 300 K �2000

3 350 K �300

4 250 K �200
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k¼ 0:0073(1þ 0:0054 T), where T is in K and k is in W/m�K,
has its inside surface maintained at 925 K. The outside surface is

exposed to air at 300 K with a convective heat-transfer coeffi-

cient of 23W/m2 �K: How far from the hot surface should the

pipe be located? What is the heat flux for the wall?

17.5 The temperature at the inner and outer surfaces of a plane

wall of thickness L are held at the constant values T0 and TL,

respectively, where T0 > TL: The wall material has a thermal

conductivity that varies linearly according to k ¼ k0(1þ bT),

k0 and b being constants.Atwhatpointwill the actual temperature

profile differ most from that which would exist in the case of

constant thermal conductivity?

17.6 Solve Problem 17.5 for the case of a hollow cylinder with

boundary conditionsT ¼ T0 at r ¼ R0 and T ¼ TL at r ¼ R0 þ L:

17.7 A double-pane insulated window unit consists of two 1-

cm-thick pieces of glass separated by a 1.8-cm layer of air. The

unit measures 4 m in width and is 3 m wide. Under conditions

where the extreme outside temperature of the glass is at �10�C
and air, at 27�C, is adjacent to the inside glass surface, with

hi ¼ 12W/m2 �K determine

a. the inside glass surface temperature.

b. the rate of heat transfer through the window unit.

The air gap between glass panes may be treated as a purely

conductive layer with k ¼ 0:0262W/m�K: Thermal radiation is

to be neglected.

17.8 A furnace wall is to be designed to transmit a maximum

heat flux of 200Btu/h ft2 ofwall area. The inside and outsidewall

temperatures are to be 2000 and 3008F, respectively. Determine

the most economical arrangement of bricks measuring 9 by 4 1/2
by 3 in. if they are made from two materials, one with a k of

0.44 Btu/h ft 8F and a maximum usable temperature of 15008F
and other with a k of 0.94 Btu/h ft 8F and a maximum usable

temperature of 2200 8F. Bricks made of each material cost the

same amount and may be laid in any manner.

17.9 A furnace wall consisting of 0.25 m of fire clay brick,

0.20 m of kaolin, and a 0.10-m outer layer of masonry brick is

exposed to furnace gas at 1370 K with air at 300 K adjacent to

the outside wall. The inside and outside convective heat transfer

coefficients are 115 and 23W/m2 �K, respectively. Determine

the heat loss per square foot of wall and the temperature of the

outside wall surface under these conditions.

17.10 Given the conditions of Problem 17.9, except that the

outside temperature of the masonry brick cannot exceed 325 K,

by how much must the thickness of kaolin be adjusted to satisfy

this requirement?

17.11 A heater composed of Nichrome wire wound back and

forth and closely spaced is covered on both sides with 1/8-in.

thickness of asbestos (k ¼ 0:15Btu/h ft �F) and then with a
1/8-in. thickness of stainless steel (k ¼ 10 Btu/h ft �F): If the

center temperature of this sandwich construction is considered

constant at 10008F and the outside convective heat-transfer

coefficient is 3 Btu/h ft2 �F, howmuch energy must be supplied

in W/ft2 to the heater? What will be the outside temperature of

the stainless steel?

17.12 Determine the percent in heat flux if, in addition to the

conditions specified in Problem 17.8, there are two 3/4-in.-

diameter steel bolts extending through the wall per square

foot of wall area (k for steel ¼ 22But/h ft �F):
17.13 A 2.5-cm-thick sheet of plastic (k ¼ 2:42W/m�K) is to
be bonded to a 5-cm-thick aluminum plate. The glue that will

accomplish the bonding is to be held at a temperature of 325K to

achieve the best adherence, and the heat to accomplish this

bonding is to be provided by a radiant source. The convective

heat-transfer coefficient on the outside surfaces of both the

plastic and aluminum is 12W/m2 �K, and the surrounding air

is at 295 K. What is the required heat flux if it is applied to the

surface of (a) the plastic? (b) the aluminum?

17.14 A composite wall is to be constructed of 1/4 in. of

stainless steel (k ¼ 10Btu/h ft �F), 3 in. of corkboard (k ¼
0:025Btu/h ft �F), and 1/2 in. of plastic (k ¼ 1:5Btu/h ft �F):
Determine the thermal resistance of this wall if it is bolted

together by 1/2-in.-diameter bolts on 6-in. centers made of

a. stainless steel;

b. aluminum (k ¼ 120Btu/h ft �F):
17.15 A cross section of a typical home ceiling is depicted

below. Given the properties listed for the materials of construc-

tion, determine howmuch heat is transferred through the insula-

tion and through the studs.

Toutside ¼ �10�C
ho ¼ 20W/m2 �K
Tinside ¼ 25�C
hi ¼ 10W/m2 �K
kfiberglass ¼ 0:035W/m2 �K
kplaster ¼ 0:814W/m2 �K
kwood ¼ 0:15W/m2 �K

Loose fiberglass
insulation

Pine studs

Plaster

6 cm 30 cm

2 cm

15 cm

17.16 A copper bus bar measuring 5 cm by 10 cm by 2.5 m

long is in a room in which the air is maintained at 300 K. The

bus bar is supported by two plastic pedestals to which it is

attached by an adhesive. The pedestals are square in cross

section, measuring 8 cm on a side. The pedestals are mounted

on a wall whose temperature is 300 K. If 1 kW of energy is

dissipated in the copper bar, what will be its equilibrium
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temperature? The convective heat-transfer coefficient for all

surfaces may be taken as 23W/m2 �K: The thermal conductivity

of the plastic is 2:6W/m�K: Neglect thermal radiation.

15
cm

17.17 Solve Problem17.16 if each plastic pedestal has a 1.9-cm

steel bolt running through the center.

17.18 A 2-in. schedule-40 steel pipe carries saturated steam at

60 psi through a laboratory that is 60 ft long. The pipe is insulated

with 1.5 in. of 85%magnesia that costs $0.75 per foot. How long

must the steam line be in service to justify the insulation cost if

the heating cost for the steam is $0:68 per 105 Btu? The outside-
surface convective heat-transfer coefficient may be taken as

5 Btu/h ft2 �F:
17.19 Saturated steam at 40 psia flows at 5 fps through a

schedule-40, 11/2-in. steel pipe. The convective heat-transfer

coefficient by condensing steam on the inside surface may be

taken as 1500Btu/h ft2 �F: The surrounding air is at 80�F, and
the outside surface coefficient is 3 Btu/ft2 �F: Determine the

following:

a. The heat loss per 10 ft of bare pipe.

b. The heat loss per 10 ft of pipe insulated with 2 in. of 85%

magnesia.

c. The mass of steam condensed in 10 ft of bare pipe.

17.20 A 10-kW heater using Nichrome wire is to be

designed. The surface of the Nichrome is to be limited to a

maximum temperature of 1650 K. Other design criteria for the

heater are

minimum convective heat-transfer coefficient: 850 W/m2 �K
minimum temperature of the surrounding medium (air): 370 K

The resistivity of Nichrome is 110mV-cm and the power to the

heater is available at 12 V.

a. What size wire is required if the heater is to be in one piece

0.6 m long?

b. What length of 14-gage wire is necessary to satisfy these

design criteria?

c. How will the answers to parts (a) and (b) change if

h ¼ 1150W/m2 �K?

17.21 Copper wire having a diameter of 3/16 in. is insulated

with a 4-in. layer of material having a thermal conductivity of

0:14Btu/h ft �F:The outer surface of the insulation ismaintained

at 70�F: How much current may pass through the wire if the

insulation temperature is limited to a maximum of 120�F? The
resistivity of copper is 1:72� 10�6 ohm-cm.

17.22 What would be the result of Problem 17.21 if the fluid

surrounding the insulated wire was maintained at 70�F with a

convective heat-transfer coefficient between the insulation and

the fluid of 4Btu/h ft2 �F? What would be the surface tempera-

ture of the insulation under these conditions?

17.23 Work Problem 17.21 for the case of aluminum

rather than copper. The resistivity of aluminum is 2:83�
10�6 ohm-cm.

17.24 A thin slab of material is subjected to microwave

radiation that causes volumetric heating to vary according to

_q(x) ¼ _qo½1� (x/L)�
where _qo has a constant value of 180 kW/m3 and the slab

thickness, L, is 0.06 m. The thermal conductivity of the slab

material is 0.6 W/m �K.
The boundary at x ¼ L is perfectly insulated, while the sur-

face at x ¼ 0 is maintained at a constant temperature of 320 K.

a. Determine an expression for T(x) in terms of X; L; k;
_qo, and To:

b. Where, in the slab, will the maximum temperature occur?

c. What is the value of Tmax?

17.25 Radioactivewaste (k ¼ 20W/m�K) is stored in a cylind-
rical stainless steel (k ¼ 15W/m�K) container with inner and

outer diameters of 1.0 and 1.2 m, respectively. Thermal energy

is generated uniformly within the waste material at a volumetric

rate of 2� 105 W/m3: The outer container surface is exposed

to water at 25�C, with a surface coefficient of 1000W/m2 �K:
The ends of the cylindrical assembly are insulated so that all

heat transfer occurs in the radial direction. For this situation

determine

a. the steady-state temperatures at the inner and outer surfaces

of the stainless steel.

b. the steady-state temperature at the center of the waste

material.

17.26 A cylindrical nuclear fuel element is 10.16 cm long and

10.77 cm in diameter. The fuel generates heat uniformly at a rate

of 51:7� 103 kJ/s�m3: The fuel is placed in an environment

having a temperature of 360 K with a surface coefficient of

4540W/m2 �K. The fuel material has k ¼ 33:9W/m�K. For the
situation described evaluate the following at steady state:

a. The temperature profile as a function of radial position;

b. The maximum fuel temperature;

c. The surface temperature.

End effects may be neglected.
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17.27 Liquid nitrogen at 77K is stored in an insulated spherical

container that is vented to the atmosphere. The container is made

of a thin-walled material with an outside diameter of 0.5 m; 25

mm of insulation (k ¼ 0:002W/m�K) covers its outside surface.
The latent heat of nitrogen is 200 kJ/kg; its density, in the liquid

phase, is 804 kg/m3. For surroundings at 25�C and with a

convective coefficient of 18W/m2 �K at the outside surface of

the insulation, what will be the rate of liquid nitrogen boil-off?

17.28 What additional thickness of insulation will be neces-

sary to reduce the boil-off rate of liquid nitrogen to one-half of

the rate corresponding to Problem 17.27? All values and dimen-

sions in Problem 17.27 apply.

17.29 A 1-in.-OD steel tube has its outside wall surface

maintained at 250�F. It is proposed to increase the rate of

heat transfer by adding fins of 3/32-in. thickness and 3/4 in.

long to the outside tube surface. Compare the increase in heat

transfer achieved by adding 12 longitudinal straight fins or

circular fins with the same total surface area as the 12 long-

itudinal fins. The surrounding air is at 80�F, and the convective

heat-transfer coefficient is 6Btu/h ft2 �F.
17.30 Solve Problem 17.29 if the convective heat-transfer

coefficient is increased to 60Btu/h ft2 �F by forcing air past

the tube surface.

17.31 A cylindrical rod 3 cm in diameter is partially inserted

into a furnacewith one end exposed to the surrounding air, which

is at 300 K. The temperatures measured at two points 7.6 cm

apart are 399 and 365 K, respectively. If the convective heat-

transfer coefficient is 17W/m2 �K, determine the thermal con-

ductivity of the rod material.

17.32 Heat is to be transferred from water to air through an

aluminum wall. It is proposed to add rectangular fins 0.05 in.

thick and 3/4 in. long spaced 0.08 in. apart to the aluminum

surface to aid in transferring heat. The heat-transfer coefficients

on the air and water sides are 3 and 25Btu/h ft2 �F, respectively.
Evaluate the percent increase in heat transfer if these fins are

added to (a) the air side, (b) the water side, (c) and both sides.

What conclusions may be reached regarding this result?

17.33 A semiconductor material with k ¼ 2W/m�K and elec-

trical resistivity, r ¼ 2� 10�5 V-m, is used to fabricate a

cylindrical rod 40 mm long with a diameter of 10 mm. The

longitudinal surface of the rod is well insulated and may be

considered adiabatic while the ends are maintained at tempera-

tures of 100 and 0�C, respectively. If the rod carries a current of
10 amps, whatwill be itsmidpoint temperature?Whatwill be the

rate of heat transfer through both ends?

17.34 An iron bar used for a chimney support is exposed to hot

gases at 625 K with the associated convective heat-transfer

coefficient of 740W/m2 �K. The bar is attached to two opposing
chimneywalls, which are at 480 K. The bar is 1.9 cm in diameter

and 45 cm long. Determine themaximum temperature in the bar.

17.35 A copper rod 1/4 in. in diameter and 3 ft long runs

between two bus bars, which are at 60�F. The surrounding air is

at 60�F, and the convective heat-transfer coefficient is

Btu/h ft2
�
F. Assuming the electrical resistivity of copper to

be constant at 1:72� 10�6 ohm-cm, determine the maximum

current the coppermay carry if its temperature is to remain below

150 �F.
17.36 A13 cmby 13 cm steel anglewith the dimensions shown

is attached to a wall with a surface temperature of 600 K. The

surrounding air is at 300 K, and the convective heat-transfer

coefficient between the angle surface and the air is 45W/m2 �K.
a. Plot the temperature profile in the angle, assuming a neg-

ligible temperature drop through the side of the angle

attached to the wall.

b. Determine the heat loss from the sides of the angle project-

ing out from the wall.

13 cm

Thickness = 1.59 cm

17.37 A steel I-beam with a cross-sectional area as shown has

its lower and upper surfaces maintained at 700 and 370 K,

respectively.

a. Assuming a negligible temperature change through both

flanges, develop an expression for the temperature variation

in the web as a function of the distance from the upper

flange.

b. Plot the temperature profile in the web if the convective heat-

transfer coefficient between the steel surface and the sur-

rounding air is 57W/m2 �K. The air temperature is 300 K.

c. What is the net heat transfer at the upper and lower ends of

the web?

0.76 cm

y

28 cm

17.38 Repeat Problem 17.37 for the case of an aluminum

beam.
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17.39 Circular fins are employed around the cylinder of

a lawn mower engine to dissipate heat. The fins are made

of aluminum, they are 0.3 m thick, and extend 2 cm from

base to tip. The outside diameter of the engine cylinder is

0.3 m. Design operating conditions are T1 ¼ 30�C and h ¼
12W/m2 �K: The maximum allowable cylinder temperature is

300�C:
Estimate the amount of heat transfer from a single fin.

Howmany fins are required to cool a 3-kWengine, operating at

30% thermal efficiency, if 50% of the total heat given off is

transferred by the fins?

17.40 Heat from a flat wall is to be enhanced by adding straight

fins, of constant thickness, made of stainless steel. The following

specifications apply:

h ¼ 60W/m2 K

Tb(base) ¼ 120�C
T1(air) ¼ 20�C
Fin base thickness; t ¼ 6mm

Fin length; L ¼ 20mm

Determine the fin efficiency and heat loss per unit width for the

finned surface.

17.41 A 2-in.-OD stainless-steel tube has 16 longitudinal

fins spaced around its outside surface as shown. The fins are

1/16 in. thick and extend 1 in. from the outside surface of the

tube.

a. If the outside surface of the tube wall is at 250�F, the
surrounding air is at 80�F, and the convective heat-transfer

coefficient is 8 Btu/h ft2 �F, determine the percent increase

in heat transfer for the finned pipe over that for the unfinned

pipe.

b. Determine the same information as in part (a) for values of

h of 2, 5, 15, 50, and 100Btu/h ft2 �F: Plot the percent

increase in q vs. h. What conclusions can be reached

concerning this plot?

17.42 Repeat Problem 17.41 for the case of an aluminum pipe-

and-fin arrangement.

17.43 Water flows in the channels between two aluminum

plates as shown in the sketch. The ribs that form the channels

are also made of aluminum and are 8 mm thick. The effective

surface coefficient between all surfaces and water is

300W/m2 �K. For these conditions, how much heat is trans-

ferred at each end of each rib? How far from the lower plate

is the rib temperature a minimum? What is this minimum

value?

100 cm
8 mm

T = 160°C

T = 400°C

T∞ = 25°C

17.44 Find the rate of heat transfer from a 3-in.-OD pipe

placed eccentrically inside a 6-in.-ID cylinder with the axis of

the smaller pipe displaced 1 in. from the axis of the large

cylinder. The space between the cylindrical surfaces is filled

with rock wool (k ¼ 0:023 Btu/h ft �F). The surface tempera-

tures at the inside and outside surfaces are 400 and 100 �F,
respectively.

17.45 A cylindrical tunnel with a diameter of 2 m is dug in

permafrost (k ¼ �0:341W/m2 �K) with its axis parallel to the

permafrost surface at the depth of 2.5m.

Determine the rate of heat loss from the cylinder walls, at

280 K, to the permafrost surface at 220 K.

17.46 Determine the heat flow per foot for the configuration

shown, using the numerical procedure for a grid size of 1 1/2 ft.

The material has a thermal conductivity of 0:15Btu/h ft �F: The
inside and outside temperatures are at the uniform values of 200

and 0 �F; respectively.

9 ft

9 ft
3 ft

3 ft

17.47 Repeat the previous problem, using a grid size of

1 ft.

17.48 A 5-in. standard-steel angle is attached to a wall with a

surface temperature of 600 �F: The angle supports a 4.375-in. by
4.375-in. section of building bring whose mean thermal con-

ductivity may be taken as 0:38Btu/h ft �F: The convective heat-
transfer coefficient between all surfaces and the surrounding air

is 8 Btu/h ft2 �F: The air temperature is 808F. Using numerical

methods, determine

a. the total heat loss to the surrounding air;
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b. the location and value of the minimum temperature in the

brick.

5 in.

5 in.

17.49 Saturated steam at 400 �F is transported through the 1-ft

pipe shown in the figure, which may be assumed to be at the

steam temperature. The pipe is centered in the 2-ft-square duct,

whose surface is at 100 �F: If the space between the pipe and duct

is filled with powdered 85% magnesia insulation, how much

steam will condense in a 50-ft length of pipe?

2 ft

2 ft1 ft

17.50 A 32.4-cm-OD pipe, 145 cm long, is buried with its

centerline 1.2 m below the surface of the ground. The ground

surface is at 280 K and the mean thermal conductivity of the soil

is 0:66W/m�K. If the pipe surface is at 370 K, what is the heat

loss per day from the pipe?
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Chapter 18

Unsteady-State Conduction

Transient processes, in which the temperature at a given point varies with time, will

be considered in this chapter. As the transfer of energy is directly related to the

temperature gradient, these processes involve an unsteady-state flux of energy.

Transient conduction processes are commonly encountered in engineering design.

These design problems generally fall into two categories: the process that ultimately

reaches steady-state conditions, and the process that is operated a relatively short time

in a continually changing temperature environment. Examples of this second category

would include metal stock or ingots undergoing heat treatment, missile components

during reentry into Earth’s atmosphere, or the thermal response of a thin laminate being

bonded using a laser source.

In this chapter, we shall consider problems and their solutions that deal with

unsteady-state heat transfer within systems both with and without internal energy

sources.

18.1 ANALYTICAL SOLUTIONS

The solution of an unsteady-state conduction problem is, in general, more difficult than that

for a steady-state problem because of the dependence of temperature on both time and

position. The solution is approached by establishing the defining differential equation and

the boundary conditions. In addition, the initial temperature distribution in the conducting

medium must be known. By finding the solution to the partial differential equation that

satisfies the initial and boundary conditions, the variation in the temperature distribution

with time is established, and the flux of energy at a specific time can then be evaluated.

In heating or cooling a conducting medium, the rate of energy transfer is dependent

upon both the internal and surface resistances, the limiting cases being represented either by

negligible internal resistance or by negligible surface resistance. Both of these cases will be

considered, as well as the more general case in which both resistances are important.

Lumped Parameter Analysis—Systems with Negligible
Internal Resistance

Equation (16-17) will be the starting point for transient conduction analysis. It is repeated

below for reference.

@T

@t
¼ a=2T þ _q

rcp
(16-17)

Recall that, in the derivation of this expression, thermal properties were taken to be

independent of position and time; however, the rate of internal generation, _q, canvary in both.
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It is frequently the case that temperature within a medium varies significantly in fewer

than all three space variables. A circular cylinder, heated at one end with a fixed boundary

condition, will show a temperature variation in the axial and radial directions aswell as time.

If the cylinder has a length that is large compared to its diameter or, if it is composed of a

material with high thermal conductivity, temperature will vary with axial position and time

only. If a metallic specimen, initially with uniform temperature, is suddenly exposed to

surroundings at a different temperature, it may be that size, shape, and thermal conductivity

may combine in such a way that the temperature within the material varies with time only,

that is, is not a significant function of position. These

conditions are characteristic of a ‘‘lumped’’ system,

where the temperature of a body varies only with time;

this case is the easiest of all to analyze. Because of this

we will consider, as our first transient conduction case,

that of a completely lumped-parameter system.

Shown in Figure 18.1, we have a spherical metallic

specimen, initially at uniform temperature T0 after it

has been immersed in a hot oil bath at temperature T1
for a period of time t. It is presumed that the temperature

of the metallic sphere is uniform at any given time. A

first-law analysis using equation (6-10), applied to a

spherical control volume coincidingwith the specimen

in question will reduce to

dQ

dt
¼ @

@t

ZZZ
c:v:

er dV (18-1)

The rate of heat addition to the control volume, dQ/dt, is due to convection from the oil and is

written as
dQ

dt
¼ hA(T1 � T) (18-2)

The rate of energy increase within the specimen, @/@t
RRR

c:v: er dV , with constant properties,

may be expressed as

@

@t

ZZZ
c:v:

er dV ¼ rVcp
dT

dt
(18-3)

Equating these expressions as indicated by equation (18-1) we have, with slight

rearrangement
dT

dt
¼ hA(T1 � T)

rVcp
(18-4)

We may now obtain a solution for the temperature variation with time by solving equation

(18-4) subject to the initial condition, T(0) ¼ T0, and obtain

T � T1
T0 � T1

¼ e�hAt/rcpV (18-5)

The exponent is observed to be dimensionless. A rearrangement of terms in the exponent

may be accomplished as follows:

hAt

rcpV
¼ hV

kA

� �
A2k

rV2cp
t

� �
¼ hV /A

k

� ��
at

(V/A)2

�
(18-6)

Each of the bracketed terms in equation (18-6) is dimensionless. The ratio, V /A, having

units of length, is also seen to be a part of each of these new parametric forms. The first of

Spherical
specimen

T(0) = T0 (uniform)
T(t) = T

T∞

Figure 18.1
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the new nondimensional parameters formed is the Biot modulus, abbreviated Bi

Bi ¼ hV /A

k
(18-7)

By analogy with the concepts of thermal resistance, discussed at length earlier, the Biot

modulus is seen tobe the ratio of (V/A)/k, the conductive (internal) resistance toheat transfer, to

1/h, the convective (external) resistance to heat transfer. The magnitude of Bi thus has some

physical significance in relating where the greater resistance to heat transfer occurs. A large

value of Bi indicates that the conductive resistance controls, that is, there is more capacity for

heat to leave the surface by convection than to reach it by conduction. A small value for Bi

represents the case where internal resistance is negligibly small and there is more capacity to

transfer heat by conduction than there is by convection. In this latter case, the controlling heat

transfer phenomenon is convection, and temperature gradients within the medium are quite

small. An extremely small internal temperature gradient is the basic assumption in a lumped-

parameter analysis.

A natural conclusion to the foregoing discussion is that the magnitude of the Biot

modulus is a reasonable measure of the likely accuracy of a lumped-parameter analysis. A

commonly used rule of thumb is that the error inherent in a lumped-parameter analysis will

be less than 5% for avalue ofBi less than 0.1. The evaluation of theBiotmodulus should thus

be the first thing done when analyzing an unsteady-state conduction situation.

The other bracketed term in equation (18-6) is the Fourier modulus, abbreviated Fo,

where

Fo ¼ at

(V/A)2
(18-8)

The Fourier modulus is frequently used as a nondimensional time parameter.

The lumped-parameter solution for transient conduction may now be written as

T � T1
T0 � T1

¼ e�BiFo (18-9)

Equation (18-9) is portrayed graphically in Figure 18.2. The use of equation (18-9) is

illustrated in the following example.

BiFo
0 1 2 3 4 5 6 7

0.001

0.002

0.004
0.006
0.008
0.01

0.02

0.04
0.06
0.08

T
 –

 T
∞

T
0 

– 
T

∞

0.1

0.2

0.4
0.6
0.8
1.0

Figure 18.2 Time-temperature

history of a body at initial

temperature, T0, exposed to an

environment at T1; lumped-

parameter case.
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EXAMPLE 1 A long copper wire, 0.635 cm in diameter, is exposed to an air stream at a temperature, T1, of 310K.

After 30 s the average temperature of the wire increased from 280 to 297 K. Using this information,

estimate the average surface conductance, h.

In order to determine if equation () is valid for this problem, the value of Bimust be determined.

The Biot number is expressed as

Bi ¼ hV/A

k
¼

h
pD2L

4pDL
386W/m �K ¼

h
0:00635m

4
386W/m �K

¼ 4:11� 10�6h

Setting Bi ¼ 0.1, which is the limiting value of Bi for a lumped-parameter analysis to be valid, and

solving for h, we obtain

h ¼ 0:1/4:11� 10�6 ¼ 24300 W/m2 �K

Wemay conclude that a lumped-parameter solution is valid if h < 24; 300W/m2 �K, which is a near
certainty.

Proceeding, we can apply equation () to yield

h ¼ rcpV

tA
ln

T0 � T1
T � T1

¼
(8890 kg/m3)(385 J/kg �K) pD2L

4pDL

� �
(30 s)

ln
280� 310

297� 310

¼ 51W/m2 �K
This result is much less than the limiting value of h indicating that a lumped-parameter solution is

probably very accurate.

Heating a Body Under Conditions of Negligible Surface Resistance. A second class of

time-dependent energy-transfer processes is encountered when the surface resistance is

small relative to the overall resistance, that is, Bi is� 0:1. For this limiting case, the

temperature of the surface, Ts is constant for all time, t> 0, and its value is essentially equal

to the ambient temperature, T1.

To illustrate the analytical method of solving this class of transient heat-conduction

problems, consider a large flat plate of uniform thickness L. The initial temperature

distribution through the plate will be assumed to be an arbitrary function of x. The solution

for the temperature history must satisfy the Fourier field equation

@T

@t
¼ a=2T (16-18)

For one-directional energy flow

@T

@t
¼ a

@2T

@x2
(18-10)

with initial and boundary conditions

T ¼ T0(x) at t ¼ 0 for 0 � x � L

T ¼ Ts at x ¼ 0 for t> 0
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and

T ¼ Ts at x ¼ L for t> 0

For convenience, let Y ¼ (T � Ts)/(T0 � Ts), where T0 is an arbitrarily chosen reference

temperature; the partial differential equation may be rewritten in terms of the new

temperature variable as

@Y

@t
¼ a

@2Y

@x2
(18-11)

and the initial and boundary conditions become

Y ¼ Y0(x) at t ¼ 0 for 0 � x � L

Y ¼ 0 at x ¼ 0 for t> 0

and

Y ¼ 0 at x ¼ L for t> 0

Solving equation (18-11) by the method of separation of variables leads to product

solutions of the form

Y ¼ (C1 cos lxþ C2 sin lx)e
�al2t

The constants C1 and C2 and the parameter l are obtained by applying the initial and

boundary conditions. The complete solution is

Y ¼ 2

L
�
1

n¼1
sin

np

L

� �
e�(np=2)

2
Fo

Z L

0

Y0(x) sin
np

L
x dx (18-12)

where Fo ¼ at/(L/2)2. Equation (18-12) points out the necessity for knowing the initial

temperature distribution in the conducting medium, Y0(x), before the complete temperature

history may be evaluated. Consider the special case in which the conducting body has a

uniform initial temperature, Y0(x) ¼ Y0. With this temperature distribution, equation

(18-12) reduces to

T � Ts

T0 � Ts
¼ 4

p
�
1

n¼1

1

n
sin

np

L
x

� �
e�ðnp/2Þ2Fo n ¼ 1, 3, 5, . . . (18-13)

The temperature history at the center of the infinite plane, as well as the central

temperature history in other solids, is illustrated in Figure 18.3. The central temperature

history for the plane wall, infinite cylinder, and sphere is presented in Appendix F, in

‘‘Heissler charts.’’ These charts cover a much greater range in the Fourier modulus than

Figure 18.3.

The heat rate, q, at any plane in the conducting medium may be evaluated by

qx ¼ �kA
@T

@x
(18-14)

In the case of the infinite flat plate with an initial uniform temperature distribution of T0,

the heat rate at any time t is

qx ¼ 4
kA

L

� �
(Ts � T0) �

1

n¼1
cos

np

L
x

� �
e�(np/2)

2
Fo n ¼ 1, 3, 5, . . . (18-15)
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In the following example, the use of the central temperature-history figure will be illustrated.

EXAMPLE 2 A concrete cylinder, 0.1 m in length and 0.1 m in diameter, is initially at room temperature, 292 K. It

is suspended in a steam environment where water vapor at 373 K condenses on all surfaces with an

effective film coefficient, h, of 8500W/m2 � K. Determine the time required for the center of this

stubby cylinder to reach 310 K. If the cylinder were sufficiently long so that it could be considered

infinite, how long would it take?

For the first case, the finite cylinder, the Biot number is evaluated as

Bi ¼ h(V/A)

k
¼

h
pD2L

4

� �

k pDLþ pD2

2

� � ¼ h(DL/4)

k(Lþ D/2)

¼ (8500W/m2 �K)(0:1m)(0:1m)/4

1:21W/m �K(0:1þ 0:1/2)m

¼ 117

at/x2
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.001

0.01

0.1

1.0

(T
–

T
s)

/(
T

0 
– 

T
s)

1

x1

x1

x1

x1

2x1

x1

x1

Figure 18.3 Central temperature history of various solids with initial uniform temperature, T0,

and constant surface temperature, Ts (From P. J. Schneider, Conduction Heat Transfer, Addison-

Wesley Publishing Co., Inc., Reading Mass., 1955, p. 249. By permission of the publishers.)
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For this largevalue, Figure 18.3may be used. The second line from the bottom in this figure applies to

a cylinder with height equal to diameter, as in this case. The ordinate is

T � Ts

T0 � Ts
¼ 310� 373

292� 373
¼ 0:778

and the corresponding abscissa value is approximately 0.11. The time required may now be

determined as

at

x21
¼ 0:11

Thus,

t ¼ 0:11
(0:05m)2

5:95� 10�7 m2/s
¼ 462 s

¼ 7:7min

In the case of an infinitely long cylinder, the fourth line from the bottom applies. The Biot number in

this case is

Bi ¼ h(V/A)

k
¼

h
pD2L

4

� �
k(pDL)

¼
h
D

4
k

¼ (8500W/m2 �K)(0:1m)/4

1:21W/m �K ¼ 176

which is even larger than the finite cylinder case. Figure 18.3will again be used. The ordinate value of

0.778 yields, for the abscissa, a value of approximately 0.13. The required time, in this case, is

t ¼ 0:13(0:05m)2

5:95� 10�7 m2/s
¼ 546 s

¼ 9:1min

Heating a Body with Finite Surface and Internal Resistances. The most general cases

of transient heat-conduction processes involve significant values of internal and surface

resistances. The solution for the temperature history without internal generation must

satisfy the Fourier field equation, whichmay be expressed for one-dimensional heat flow by

@T

@t
¼ a

@2T

@x2
(18-7)

A case of considerable practical interest is one in which a body having a uniform tem-

perature is placed in a new fluid environment with its surfaces suddenly and simultaneously

exposed to the fluid at temperature T1. In this case, the temperature history must satisfy the

initial, symmetry, and convective boundary conditions

T ¼ T0 at t ¼ 0

@T

@x
¼ 0 at the centerline of the body

and

� @T

@x
¼ h

k
(T � T1) at the surface
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One method of solution for this class of problems involves separation of variables, which

results in product solutions as previously encountered when only the internal resistance was

involved.

Solutions to this case of time-dependent energy-transfer processes have been obtained

for many geometries. Excellent treatises discussing these solutions have been written by

Carslaw and Jaeger1 and by Ingersoll, Zobel, and Ingersoll2. If we reconsider the infinite flat

plate of thickness, 2x1, when inserted into a medium at constant temperature, T1, but now

include a constant surface conductance, h, the following solution is obtained

T � T1
T0 � T1

¼ 2 �
1

n¼1

sin dn cos (dnx/x1)

dn þ sin dn cos dn
e�d2nFo (18-16)

where dn is defined by the relation

dn tan dn ¼ hx1

k
(18-17)

The temperature history for this relatively simple geometrical shape is a function of three

dimensionless quantities: at/x21, hx1/k, and the relative distance, x/x1.

The complex nature of equation (18-17) has led to a number of graphical solutions for

the case of one-dimensional transient conduction. The resulting plots, with dimensionless

temperature as a function of other dimensionless parameters as listed above, are discussed in

Section 18.2.

Heat Transfer to a Semi-Infinite Wall. An

analytical solution to the one-dimensional

heat-conduction equation for the case of the

semi-infinite wall has some utility as a limit-

ing case in engineering computations. Con-

sider the situation illustrated in Figure 18.4. A

large plane wall initially at a constant tem-

perature T0 is subjected to a surface tempera-

ture Ts, where Ts > T0. The differential

equation to be solved is

@T

@t
¼ a

@2T

@x2
(18-10)

and the initial and boundary conditions are

T ¼ T0 at t ¼ 0 for all x

T ¼ Ts at x ¼ 0 for all t

and

T ! T0 as x!1 for all t

The solution to this problemmay be accomplished in a variety ofways, amongwhich are the

Laplace transformation and the Fourier transformation. We shall use an alternative

procedure, which is less involved mathematically. The variables in equation (18-10)

Ts

T0

x

Figure 18.4 Temperature distribution in a

semi-infinite wall at time t.

1 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 1947.
2 L. R. Ingersoll, O. J. Zobel, and A. C. Ingersoll, Heat Conduction (With Engineering and Geological

Applications), McGraw-Hill Book Company, New York, 1948.
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may be expressed in dimensionless form by analogy with the previous case. Thus, we may

write

T � T0

Ts � T0
¼ f

�
x

x1
,
at

x21

�
However, in this problem there is no finite characteristic dimension, x1, and thus (T � T0)/

(Ts � T0) ¼ f (at/x2), or with equal validity, (T � T0)/(Ts � T0) ¼ f (x/
ffiffiffiffiffi
at

p
). If h ¼

x/2
ffiffiffiffiffi
at

p
is selected as the independent variable and the dependent variable Y ¼

(T � T0)/ (Ts � T0) is used, substitution into equation (18-10) yields the ordinary differ-

ential equation

d2Y/dh2 þ 2h dY /dh ¼ 0 (18-18)

with the transformed boundary and initial conditions

Y! 0 as h!1
and

Y ¼ 1 at h ¼ 0

The first condition above is the same as the initial condition T ¼ T0 at t ¼ 0, and the

boundary condition T ! T0 as x!1. Equation (18-18) may be integrated once to yield

ln
dY

dh
¼ c1 � h2

or

dY

dh
¼ c2e

�h2

and integrated once more to yield

Y ¼ c3 þ c2

Z
e�h2 dh (18-19)

The integral is related to a frequently encountered form, the error function, designated

‘‘erf,’’ where

erf f� 2ffiffiffi
p

p
Z f

0

e�h2 dh

and erf (0) ¼ 0, erf (1) ¼ 1, A short table of erf f is given in Appendix L. Applying the

boundary conditions to equation (18-19), we obtain

Y ¼ 1� erf
x

2
ffiffiffiffiffi
at

p
� �

or

T � T0

Ts � T0
¼ 1� erf

x

2
ffiffiffiffiffi
at

p
� �

or

Ts � T

Ts � T0
¼ erf

x

2
ffiffiffiffiffi
at

p
� �

(18-20)
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This equation is extremely simple to use and quite valuable.

Consider a finite wall of thickness L subject to the surface temperature Ts. Until the

temperature change at x ¼ L exceeds some nominal amount, say (T � T0)/(Ts � T0) equal to

0.5%, the solution for the finite and infinite walls will be the same. The value of L/(2
ffiffiffiffiffi
at

p
)

corresponding to a 0.5% change in (T � T0)/(Ts � T0) is L/(2
ffiffiffiffiffi
at

p
)’ 2, so for L/(2

ffiffiffiffiffi
at

p
)> 2,

equation (18-20) may be used for finite geometry with little or no error.

For the case of finite surface resistance, the solution to equation (18-10) for a semi-

infinite wall is

T1 � T

T1 � T0
¼ erf

x

2
ffiffiffiffiffi
at

p þ exp
hx

k
þ h2at

k2

� �
1� erf

h
ffiffiffiffiffi
at

p
k

þ x

2
ffiffiffiffiffi
at

p
� �� �

(18-21)

This equation may be used to determine the temperature distribution in finite bodies for

small times in the same manner as equation (18-20). The surface temperature is

particularly easy to obtain from the above equation, if we let x ¼ 0, and the heat transfer

rate may be determined from

q

A
¼ h(Ts � T1)

18.2 TEMPERATURE–TIME CHARTS FOR SIMPLE GEOMETRIC SHAPES

For unsteady-state energy transfer in several simple shapeswith certain restrictive boundary

conditions, the equations describing temperature profiles have been solved3 and the results

have been presented in a wide variety of charts to facilitate their use. Two forms of these

charts are available in Appendix F.

Solutions are presented in Appendix F for the flat plate, sphere, and long cylinder in

terms of four dimensionless ratios:

Y , unaccomplished temperature change ¼ T1 � T

T1 � T0

X, relative time ¼ at

x21

n, relative position ¼ x

x1and

m, relative resistance ¼ k

hx1

where x1 is the radius or semithickness of the conductingmedium. These charts may be used

to evaluate temperature profiles for cases involving transport of energy into or out of the

conducting medium if the following conditions are met:

(a) Fourier’s field equation describes the process; i.e., constant thermal diffusivity and

no internal heat source.

(b) The conducting medium has a uniform initial temperature, T0.

(c) The temperature of the boundary or the adjacent fluid is changed to a new value,

T1 , for t � 0.

3 Equation (18-16) pertains to a plane wall of thickness, L, and boundary conditions T(x, 0) ¼ T0 and dT/dx(0, t) ¼ 0.
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For flat plates where the transport takes place from only one of the faces, the relative

time, position, and resistance are evaluated as if the thickness were twice the true value.

Although the charts were drawn for one-dimensional transport, they may be combined

to yield solutions for two- and three-dimensional problems. The following is a summary of

these combined solutions:

1. For transport in a rectangular bar with insulated ends

Ybar ¼ YaYb (18-22)

where Ya is evaluated with width x1 ¼ a, and Yb is evaluated with thickness x1 ¼ b.

2. For transport in a rectangular parallelepiped

Yparallelepiped ¼ YaYbYc (18-23)

where Ya is evaluated with width x1 ¼ a, Yb is evaluated with thickness x1 ¼ b,

and Yc is evaluated with depth x1 ¼ c.

3. For transport in a cylinder, including both ends

Y cylinder
plus ends

¼ YcylinderYa (18-24)

where Ya is evaluated by using the flat-plate chart, and thickness x1 ¼ a.

The use of temperature–time charts is demonstrated in the following examples.

EXAMPLE 3 Aflat wall of fire-clay brick, 0.5m thick and originally at 200K, has one of its faces suddenly exposed

to a hot gas at 1200K. If the heat-transfer coefficient on the hot side is 7:38W/m2 �Kand the other face

of thewall is insulated so that no heat passes out of that face, determine (a) the time necessary to raise

the center of thewall to 600K; (b) the temperature of the insulatedwall face at the time evaluated in (a).

From the table of physical properties given in Appendix H, the following values are listed:

k ¼ 1:125W/m �K
cp ¼ 919 J/kg �K
r ¼ 2310 kg/m3

and

a ¼ 5:30� 10�7 m2/s

The insulated face limits the energy transfer into the conducting medium to only one direction. This

is equivalent to heat transfer from a 1-m-thick wall, where x is then measured from the line of

symmetry, the insulated face. The relative position, x/x1, is 1/2. The relative resistance, k/hx1, is

1.125/[(7.38)(0.5)] or 0.305. The dimensionless temperature, Y ¼ (T1 � T)/(T1 � T0), is equal to

(1200� 600)/(1200� 200), or 0.6. FromFigure F.7, in Appendix F, the abscissa, at/x21, is 0.35 under

these conditions. The time required to raise the centerline to 6008F is

t ¼ 0:35x21
a

¼ 0:35(0:5)2

5:30� 10�7
¼ 1:651� 105 s or 45:9 h

The relative resistance and the relative time for (b) will be the same as in part (a). The relative

position, x/x1, will be 0. Using these values and Figure F.1 in Appendix F, we find the dimensionless

temperature, Y, to be 0.74. Using this value, the desired temperature can be evaluated by

Ts � T

Ts � T0
¼ 1200� T

1200� 200
¼ 0:74

or
T ¼ 460K (368�F)
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EXAMPLE 4 A billet of steel 30.5 cm in diameter, 61 cm long, initially at 645 K, is immersed in an oil bath that is

maintained at 310 K. if the surface conductance is 34W/m2 �K determine the center temperature of

the billet after 1 h.

From Appendix H, the following average physical properties will be used:

k ¼ 49:2W/m �K
c p ¼ 473 J/kg �K
r ¼ 7820 kg/m3

a ¼ 1:16� 10�5 m2/s

Equation (18-22) applies. To evaluate Ya the following dimensionless parameters apply

X ¼ at

x21
¼ (1:16� 10�5 m2/s)(3600 s)

(0:305m)2
¼ 0:449

n ¼ x/x1 ¼ 0

m ¼ k/hx1 ¼ 42:9W/m �K
(34W/m2 �K)(0:305m)

¼ 4:14

Using these values with Figure F.7 in Appendix F, the corresponding values of dimensionless

temperature, Ya, is approximately 0.95.

For the cylindrical surface the appropriate values are

X ¼ at

x21
¼ (1:16� 10�5 m2/s)(3600 s)

(0:1525m)2

¼ 1:80

n ¼ x

x1
¼ 0

m ¼ k/hx1 ¼ 42:9/(34)(0:1525) ¼ 8:27

and, from Figure F.8 in Appendix F, we obtain

YCL ¼ T � T1
T0 � T1

����
cyl

ffi 0:7

Now, for heat transfer across the cylindrical surface and both ends

Yjtotal ¼
TCL � T1
T0 � T1

¼ YaYCL ¼ (0:95)(0:7) ¼ 0:665

The desired center temperature is now calculated as

TCL ¼ T1 þ 0:665(T0 � T1)

¼ 310Kþ 0:665(645� 310) K

¼ 533K (499 F)

18.3 NUMERICAL METHODS FOR TRANSIENT CONDUCTION ANALYSIS

In many time-dependent or unsteady-state conduction processes, actual initial and/or

boundary conditions do not correspond to those mentioned earlier with regard to analytical

solutions. An initial temperature distribution may be nonuniform in nature; ambient

temperature, surface conductance, or system geometry may be variable or quite irregular.

For such complex cases, numerical techniques offer the best means to achieve solutions.
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More recently, with sophisticated computing codes available, numerical solutions are being

obtained for heat transfer problems of all types, and this trendwill doubtlessly continue. It is

likely that many users of this book will be involved in code development for such analysis.

Some numerical work is introduced in Chapter 17, dealing with two-dimensional,

steady-state conduction. In this section, we will consider variation in time as well as

position.

To begin our discussion, the reader is referred to equation (17-61) and the development

leading up to it. For the case of no internal generation of energy, equation (17-61) reduces

to

k
Dy

Dx
(Ti�1, j þ Tiþ1, j � 2Ti, j)þ k

Dx

Dy
(Ti, j�1 þ Ti, jþ1 � 2Ti, j)

¼ rcpTi, jjtþDt � rcpTi, jjt
Dt

� �
DxDy

(18-25)

This expression applies to two dimensions; however, it can be extended easily to three

dimensions.

The time-dependent term on the right of equation (18-25) is written such that the

temperature at node i, j is presumed known at time t; this equation can then be solved to find

Tij at the end of time interval Dt. As Ti jjtþDt appears only once in this equation, it can be

evaluated quite easily. This means of evaluating Tij at the end of a time increment is

designated an ‘‘explicit’’ technique. A more thorough discussion of explicit solutions is

given by Carnahan.4

Equation (18-25) may be solved to evaluate the temperature at node i, j for all values of

i, j that comprise the region of interest. For large numbers of nodes, it is clear that a great

number of calculations are needed and that much information must be stored for use in

subsequent computation. Digital computers obviously provide the only feasible way to

accomplish solutions.

We will next consider the one-dimensional form of equation (18-25). For a space

increment Dx, the simplified expression becomes

k

Dx
(Ti�1jt þ Tiþ1jt � 2Tijt) ¼

rcpTijtþDt � rcpTijt
Dt

� �
Dx (18-26)

where the j notation has been dropped. The absence of variation in the y direction allows

several terms to be deleted. We next consider properties to be constant and represent the

ratio k=rcp as a. Solving for Ti jtþDt, we obtain

TijtþDt ¼
aDt

(Dx)2
(Tiþ1jt þ Ti�1jt)þ 1� 2aDt

ðDxÞ2
 !

Tijt (18-27)

The ratio, aDt/(Dx)2, a form resembling the Fourier modulus, is seen to arise naturally in

this development. This grouping relates the time step, Dt, to the space increment, Dx. The
magnitude of this grouping will, quite obviously, have an effect on the solution. It has

been determined that equation (18-27) is numerically ‘‘stable’’ when

aDt

(Dx)2
� 1

2
(18-28)

For a discussion of numerical stability the reader is referred to Carnahan et al.4

4 B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, Wiley, New York, 1969.
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The choice of a time step involves a trade-off between solution accuracy-a smaller time

step will produce greater accuracy, and computation time-a solution will be achieved more

rapidly for larger values of Dt. When computing is done by machine, a small time step will

likely be used without major difficulty.

An examination of equation (18-27) indicates considerable simplification to be

achieved if the equality in equation (18-28) is used. For the case with aDt/(Dx2) ¼ 1/2,

equation (18-27) becomes

TijtþDt ¼
Tiþ1jt þ Ti�1jt

2
(18-29)

EXAMPLE 5 Abrickwall (a ¼ 4:72� 10�7 m2/s) with a thickness of 0.5m is initially at a uniform temperature of

300 K. Determine the length of time required for its center temperature to reach 425 K if its surfaces

are raised to, and maintained at 425 and 600 K, respectively.

Although relatively simple, this one-dimensional problem is not amenable to a solution using

the charts because there is no axis of symmetry. Either analytical or numerical methods must

therefore be employed.

An analytical solution using Laplace transform or separation-of-variables methodology is

relatively straightforward. However, the solution is in terms of infinite series involving eigenvalues

and the determination of a final answer is cumbersome. The simplest approach is thus numerical and

we will proceed with the ideas introduced in this section.

The illustration below depicts thewall divided into 10 increments. Each of the nodes within the

wall is at the center of a subvolume, having a width, Dx. The shaded subvolume at node 4 is

considered to have uniform properties averaged at its center, i.e., the location of node 4. This same

idea prevails for all 11 nodes; this includes the surface nodes, 0 and 10.

0 1 2 3 4 5 6 7 8 9 10

∆x

An energy balance for any internal node, having width Dx, will yield equation (18-27) as a

result. This relationship includes the dimensionless ratio,aDt/Dx2, which relates the time increment,

Dt, to the space increment Dx. In this example we have specified Dx ¼ 0.05 m.

The quantity,aDt/Dx2, can have any value equal to or less than 0.5, which is the limit for a stable

solution. If the limiting value is chosen, equation (18-27) reduces to a simple algorithmic form

Ti,tþ1 ¼ Ti�1,t þ Tiþ1,t

2
(18-29)

This expression is valid for i ¼ 1 to 9; however, as nodes 0 and 10 are at constant temperature for all

time, the algorithms for nodes 1 and 9 can be written as

T1,tþ1 ¼ T0,t þ T2,t

2
¼ 425þ T2,t

2

T9,tþ1 ¼ T8,t þ T10,t

2
¼ T8,t þ 600

2

(18-30)

The problem solution now proceeds as equations (18-29) and (18-30) and are solved at

succeeding times to update nodal temperatures until the desired result, Ts ¼ 425K, is achieved.
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Equations (18-29) and (18-30) are quite simple and easily programed to achieve a solution. In

this case, a spreadsheet approach could also be used. The table below summarizes the form of the

results for Ti;t.

The desired center temperature is reached between time increments 22 and 23; an interpolated value

is n ¼ 22.6 time increments.

As discussed earlier, the increment Dt is related to a and Dx according to the ratio

aDt

Dx2
¼ 1/2

or

Dt ¼ 1

2

Dx2

a
¼ 1

2

(0:05m)2

4:72� 10�7 m2/s

¼ 2648 s

¼ 0:736 h

The answer for total time elapsed is thus

t ¼ 22:6(0:736) ¼ 16:6 h

18.4 AN INTEGRAL METHOD FOR ONE-DIMENSIONAL
UNSTEADY CONDUCTION

The von Kármán momentum integral approach to the hydrodynamic boundary layer has a

counterpart in conduction. Figure 18.5 shows a portion of a semi-infinite wall, originally at

uniform temperature T0, exposed to a fluid at temperature T1 , with the surface of thewall at

any time at temperature Ts.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

t ¼ 0 425 300 300 300 300 300 300 300 300 300 600

..

.

t ¼ 10 425 394.8 372.1 349.4 347.9 346.4 367.1 405.7 466.1 526.4 600

..

.

t ¼ 20 425 411.4 403.3 395.3 402.3 409.4 436.2 463.1 506.5 550.0 600

..

.

t ¼ 22 425 414.2 408.5 402.8 411.0 419.3 445.3 471.4 512.3 553.3 600

t ¼ 23 425 416.8 408.5 409.8 411.0 428.2 445.3 478.8 512.3 556.2 600

Ts

L

d

T∞

T0

x
Figure 18.5 A portion of a semi-infinite

wall used in integral analysis.
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At any time t, heat transfer from thefluid to thewall affects the temperature profilewithin

thewall. The ‘‘penetrationdistance,’’designated as d, is the distance from the surfacewherein

this effect is manifested. At distance d, the temperature gradient, @T /@x, is taken as zero.

Applying the first lawof thermodynamics, equation (6-10), to a control volume extending

from x ¼ 0 to x ¼ L, where L > d, we have

dQ

dt
� dWs

dt
� dWm

dt
¼
ZZ

c:s:
eþ P

r

� �
r(v � n) dAþ @

@t

ZZZ
c:v:

er dV (6-10)

with

dWs

dt
¼ dWm

dt
¼
ZZ

c:s:
eþ P

r

� �
r(v � n) dA ¼ 0

The applicable form of the first law is now

dQ

dt
¼ @

@t

ZZZ
c:v:

er dV

Considering all variables to be functions of x alone, we may express the heat flux as

qx

A
¼ d

dt

Z L

0

ru dx ¼ d

dt

Z L

0

rcpT dx (18-32)

The interval from 0 to L will now be divided into two increments, giving

qx

A
¼ d

dt

Z d

0

rcpT dxþ
Z L

d
rcpT0 dx

� �
and, since T0 is constant, this becomes

qx

A
¼ d

dt

Z d

0

rcpT dxþ rcpT0(L� d)

� �

The integral equation to be solved is now

qx

A
¼ d

dt

Z d

0

rcpT dx� rcpT0
dd

dt
(18-33)

If a temperature profile of the form T ¼ T(x; d) is assumed, equation (18-33) will produce a

differential equation in d(t), which may be solved, and one may use this result to express the

temperature profile as T(x, t).

The solution of equation (18-33) is subject to three different boundary conditions at the

wall, x ¼ 0, in the sections to follow.

Case 1. Constant wall temperature

Thewall, initially at uniform temperatureT0, has its surfacemaintained at temperatureTs for

t> 0. The temperature profile at two different times is illustrated in Figure 18.6. Assuming

the temperature profile to be parabolic of the form

T ¼ Aþ Bxþ Cx2

and requiring that the following boundary conditions:

T ¼ Ts at x ¼ 0

T ¼ T0 at x ¼ d
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and

@T

@x
¼ 0 at x ¼ d

be satisfied, we see that the expression for T(x) becomes

T � T0

Ts � T0
¼ 1� x

d

� �2
(18-34)

The heat flux at the wall may now be evaluated as

qx

A
¼ �k

@T

@x x¼0
¼ 2

k

d
(Ts � T0)

���� (18-35)

which may be substituted into the integral expression along with equation (18-33),

yielding

2
k

d
(Ts � T0) ¼ d

dt

Z d

0

rcp T0 þ (Ts � T0) 1� x

d

� �2� �
dx� rcp T0

dd

dt

and, after dividing through by rcp, both quantities being considered constant, we have

2
a

d
(Ts � T0) ¼ d

dt

Z d

0

T0 þ (Ts � T0) 1� x

d

� �2� �
dx� T0

dd

dt
(18-36)

After integration, equation (18-36) becomes

2a

d
(Ts � T0) ¼ d

dt
(Ts � T0)

d

3

� �
and cancelling (Ts � T0), we obtain

6a ¼ d
dd

dt
(18-37)

and thus the penetration depth becomes

d ¼
ffiffiffiffiffiffiffiffiffi
12at

p
(18-38)

The corresponding temperature profile may be obtained from equation (18-34) as

T � T0

Ts � T0
¼ 1� xffiffiffi

3
p

(2
ffiffiffiffiffi
at

p
)

� �2
(18-39)

x

Ts

T

t2

t1

d (t1)

d (t2)

Figure 18.6 Temperature

profiles at two times after the

surface temperature is raised to

Ts.
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which compares reasonably well with the exact result

T � T0

Ts � T0
¼ 1� erf

x

2
ffiffiffiffiffi
at

p (18-40)

Figure 18.7 shows a comparison of these two results.

Case 2. A specified heat flux at the wall

In this case the appropriate boundary conditions are

T ¼ T0 at x ¼ d

@T

@x
¼ 0 at x ¼ d

and
@T

@x
¼ �F(t)

k
at x ¼ 0

where the heat flux at the wall is expressed as the general function F(t).

If the parabolic temperature profile is used, the above boundary conditions yield

T � T0 ¼ ½F(t)�(d� x)2

2kd
(18-41)

which, when substituted into equation (18-38), yields

d

dt

F(t)d2

6k

� �
¼ aF(t)

k
(18-42)

and

d(t) ¼
ffiffiffiffiffiffi
6a

p 1

F(t)

Z t

0

F(t) dt

� �1/2
(18-43)

For a constant heat flux of magnitude q0/A the resulting expression for Ts is

Ts � T0 ¼ q0

Ak

ffiffiffiffiffiffiffiffi
3

2
at

r
(18-44)

which differs by approximately 8% from the exact expression

Ts � T0 ¼ 1:13q0
Ak

ffiffiffiffiffi
at

p
(18-45)

(T
 –

 T
0)

/(
T

s –
 T

0)

0 0.5 1.0 1.5
x/2 at

2.0 2.5
0

0.2
Exact

0.4

0.6

0.8

Approximate

Figure 18.7 A comparison

of exact and approximate

results for one-dimensional

conduction with a constant

wall temperature.
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Case 3. Convection at the surface

The wall temperature is a variable in this case; however, it may be easily determined. If the

temperature variation within the medium is expressed generally as

T � T0

Ts � T0
¼ f

x

d

� �
(18-46)

we note that the temperature gradient at the surface becomes

@T

@x x¼0
¼ � Ts � T0

d
N

���� (18-47)

where N is a constant depending upon the form of f(x/d).

At the surface we may write

q

A x¼0
¼ �k

@T

@x

����
����
x¼0

¼ h(T1 � Ts)

which becomes, upon substituting equation (18-47)

Ts � T0 ¼ hd

Nk
(T1 � T0) (18-48)

or

Ts ¼ T0 þ (hd/Nk)T1
1þ hd/Nk

(18-49)

We may now write

Ts � T0

T1 � T0
¼ hd/Nk

1þ hd/Nk
(18-50)

and

T1 � Ts

T1 � T0
¼ 1

1þ hd/Nk
(18-51)

The appropriate substitutions into the integral equation and subsequent solution follow

the same procedures as in cases (a) and (b); the details of this solution are left as a student

exercise.

The student should recognize the marked utility of the integral solution for solving one-

dimensional unsteady-state conduction problems. Temperature profile expressions more

complex than a parabolic form may be assumed. However, additional boundary conditions

are needed in such cases to evaluate the constants. The similarity between thepenetration depth

and the boundary-layer thickness from the integral analysis ofChapter 12 should also be noted.

18.5 CLOSURE

In this chapter, some of the techniques for solving transient or unsteady-state heat-

conduction problems have been presented and discussed. Situations considered included

cases of negligible internal resistance, negligible surface resistance, and those for which

both resistances were significant.

For flat slabs, cylinders, and spheres, with a uniform initial temperature, whose surfaces

are suddenly exposed to surroundings at a different temperature, charts are available for

evaluating the temperature at any position and time. Numerical and integral methods were

also introduced.
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PROBLEMS

18.1 A household iron has a stainless-steel sole plate that

weights 3 lb and has a surface area of 0.5 ft2. The iron is rated

at 500W. If the surroundings are at a temperature of 808F, and the
convective heat-transfer coefficient between the sole plate and

surroundings is 3 Btu/h ft2 8F, how long will it take for the iron to

reach 2408F after it is plugged in?

18.2 An electrical system employs fuses that are cylindrical in

shape and have lengths of 0.5 cm and diameters of 0.1mm.Air, at

308C, surrounds a fuse with a surface coefficient of 10W/m2 �K.
The fuse material melts at 9008C.

Assuming all heat transfer to be from the fuse surface,

estimate the time it will take for the fuse to blow after a current of

3 A flows through it.

Pertinent properties of the fuse material are

Resistance ¼ 0:2V

k ¼ 20W/m �K
a ¼ 5� 10�5 m2/s

18.3 Aluminum wire, having a diameter of 0.794 mm, is

immersed in an oil bath that is at 258C. Aluminum wire of this

size has an electrical resistance of 0.0572V/m. For conditions

where an electric current of 100A is flowing through thewire and

the surface coefficient between the wire and oil bath is 550 W/

m2 �K, determine the steady state temperature of the wire.

How long, after the current is supplied, will it take for the

wire to reach a temperature within 58C of its steady-state value?

18.4 If a rectangular block of rubber (see Problem 18.12 for

properties) is set out in air at 297 K to cool after being heated to a

uniform temperature of 420 K, how long will it take for the

rubber surface to reach 320 K? The dimensions of the block are

0.6mhigh by 0.3m long by 0.45mwide. The block sits on one of

the 0.3-m by 0.45-m bases; the adjacent surface may be con-

sidered an insulator. The effective heat-transfer coefficient at all

exposed surface is 6.0 W/m2 �K. What will the maximum

temperature within the rubber block be at this time?

18.5 Cast-iron cannonballs used in the War of 1812 were

occasionally heated for some extended time so that, when fired

at houses or ships, theywould set themafire. If oneof these the so-

called ‘‘hot shot’’ were at a uniform temperature of 20008F, how
long after being exposed to air at 08F with an outside convective

heat-transfer coefficient of 16 But/h ft2 8F, would be required for
the surface temperature to drop to 6008F? What would be the

center temperature at this time? The ball diameter is 6 in. The

following properties of cast iron may be used:

k ¼ 23Btu/h ft �F
c p ¼ 0:10Btu/lbm

�F

r ¼ 460 lbm/ft
3:

18.6 It is known that oranges can be exposed to freezing

temperatures for short periods of timewithout sustaining serious

damage. As a representative case, consider a 0.10-m-diameter

orange, originally at a uniform temperature of 58C, suddenly
exposed to surrounding air at �58C. For a surface coefficient,

between the air and orange surface, of 15 W/m2 �K, how long

will it take for the surface of the orange to reach 08C? Properties
of the orange are the following:

r ¼ 940 kg/m3

k ¼ 0:47W/m �K
c p ¼ 3:8 kJ/kg �K:

18.7 A copper cylinder with a diameter of 3 in. is initially at a

uniform temperature of 708F. How long after being placed in a

medium at 10008F with an associated convective heat-transfer

coefficient of 4 Btu/h ft2 8F will the temperature at the center of

the cylinder reach 5008F, if the height of the cylinder is (a) 3 in.?
(b) 6 in.? (c) 12 in.? (d) 24 in.? (e) 5 ft?

18.8 A cylinder 2 ft high with a diameter of 3 in. is initially at

the uniform temperature of 708F. How long after the cylinder is

placed in a medium at 10008F, with associated convective heat-
transfer coefficient of 4 Btu/h ft2 8F, will the center temperature

reach 5008F if the cylinder is made from

a. copper, k ¼ 212Btu/h ft �F?
b. aluminum, k ¼ 130Btu/h ft �F?
c. zinc, k ¼ 60Btu/h ft �F?
d. mild steel, k ¼ 25Btu/h ft �F?
e. stainless steel, k ¼ 10:5Btu/h ft �F?
f. asbestos, k ¼ 0:087Btu/h ft �F?
18.9 Water, initially at 408F, is contained within a thin-

walled cylindrical vessel having a diameter of 18 in. Plot

the temperature of the water vs. time up to 1 h if the water and

container are immersed in an oil bath at a constant temperature

of 3008F. Assume that the water is well stirred and that the

convective heat-transfer coefficient between the oil and cylind-

rical surface is 40 Btu/h ft2 8F. The cylinder is immersed to a

depth of 2 ft.

18.10 A short aluminum cylinder 0.6 m in diameter and 0.6 m

long is initially at 475 K. It is suddenly exposed to a convective

environment at 345 K with h ¼ 85 W/m2 �K. Determine the

temperature in the cylinder at a radial position of 10 cm and a

distance of 10 cm from one end of the cylinder after being

exposed to this environment for 1 h.

18.11 A type-304 stainless-steel billet, 6 in. in diameter, is

passing through a 20-ft-long heat-treating furnace. The initial

billet temperature is 2008F, and it must be raised to a minimum

temperature of 15008F before working. The heat-transfer coeffi-

cient between the furnace gases and the billet surface is 15 Btu/h

ft2 8F, and the furnace gases are at 23008F. At what minimum

velocity must the billet travel through the furnace to satisfy these

conditions?

18.12 In the curing of rubber tires, the ‘‘vulcanization’’

process requires that a tire carcass, originally at 295 K, be
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heated so that its central layer reaches a minimum tempera-

ture of 410 K. This heating is accomplished by introducing steam

at 435 K to both sides. Determine the time required, after

introducing steam, for a 3-cm-thick tire carcass to reach the

specified central temperature condition. Properties of rubber

that may be used are the following: k ¼ 0:151W/m �K, cp ¼
200 J/kg �K, r ¼ 1201 kg/m3, a ¼ 6:19� 10�8 m2/s.

18.13 Buckshot, 0.2 in. in diameter, is quenched in 908F oil

from an initial temperature of 4008F. The buckshot is made of

lead and takes 15 s to fall from the oil surface to the bottom of the

quenching bath. If the convective heat-transfer coefficient

between the lead and oil is 40 Btu/h ft2 8F, what will be the

temperature of the shot as it reaches the bottom of the bath?

18.14 It is common practice to treat wooden telephone poles

with tar-like materials to prevent damage by water and insects.

These tars are cured into the wood at elevated temperatures and

pressures.

Consider the case of a 0.3-m-diameter pole, originally at

258C,placed in apressurizedoven. Itwill be removedwhen the tar

has penetrated to a depth of 10 cm. It is known that a 10-cm depth

ofpenetrationwilloccurwhena temperatureof1008Cisachieved.

For an oven temperature of 3808C and h ¼ 140 W/m2 �K, deter-
mine the time required for the pole to remain in the oven.

Properties of the wooden pole are

k ¼ 0:20W/m �K
a ¼ 1:1� 10�7 m2/s

18.15 For an asbestos cylinder with both height and diameter

of 13 cm initially at a uniform temperature of 295 K placed in a

medium at 810 K with an associated convective heat-transfer

coefficient of 22.8W/m2 �K, determine the time required for the

center of the cylinder to reach 530 K if end effects are neglected.

18.16 A copper bus bar is initially at 4008F. The bar measures

0.2 ft by 0.5 ft and is 10 ft long. If the edges are suddenly all

reduced to 1008F, how long will it take for the center to reach a

temperature of 2508F?

18.17 Rework Problem 18.4 for the case when air is blown by

the surfaces of the rubber block with an effective surface

coefficient of 230 W/m2 �K.
18.18 Consider a hot dog to have the following dimensions

and properties: diameter ¼ 20mm, cp ¼ 3:35 kJ/kg �K, r ¼
880 kg/m3, and k ¼ 0:5W/m �K. For the hot dog initially at

58C, exposed to boilingwater at 1008C,with a surface coefficient
of 90 W/m2 �K, what will be the cooking time if the required

condition is for the center temperature to reach 808C?

18.19 This problem involves using heat transfer principles as a

guide for cooking a pork roast.

The roast is to be modeled as a cylinder, having its length

and diameter equal to each other, with properties being those of

water. The roast weights 2.25 kg.

Properly cooked, every portion of the meat should attain a

minimum temperature of 958C. If the meat is initially at 58C and

the oven temperature is 1908C, with a surface coefficient of

15 W/m2 �K, what is the minimum cooking time required?

18.20 Given the cylinder in Problem 18.15, construct a plot of

the time for the midpoint temperature to reach 530 K as a

function of H/D, where H and D are the height and diameter

of the cylinder, respectively.

18.21 A rocket-engine nozzle is coated with a ceramic

material having the following properties: k ¼ 1:73Btu/h ft �F,
a ¼ 0:35 ft2/h. The convective heat-transfer coefficient between

the nozzle and the gases, which are at 30008F, is 200 Btu/h ft2 8F.
How long after startupwill it take for the temperature at the ceramic

surface to reach27008F?Whatwill be the temperature at a point 1/2

in. from the surface at this time? The nozzle is initially at 08F.

18.22 One estimate of the original temperature of Earth is

70008F. Using this value and the following properties for Earth’s
crust, Lord Kelvin obtained an estimate of 9.8�107 years for the

Earth’s age:

a ¼ 0:0456 ft2/h

T2 ¼ 0�F

@T

@y

����
y¼0

¼ 0:02�F/ft, (measured)

Comment on Lord Kelvin’s result by considering the exact

expression for unsteady-state conduction in one dimension

T � Ts

T0 � Ts
¼ erf

x

2
ffiffiffiffiffi
at

p

18.23 After a fire starts in a room the walls are exposed to

combustion products at 9508C. If the interior wall surface is

made of oak, how long after exposure to the fire will the wood

surface reach its combustion temperature of 4008C? Pertinent

data are the following:

h ¼ 30W/m2 �K
Ti(initial) ¼ 21�C

For oak: r ¼ 545 kg/m3

k ¼ 0:17W/m �K
cp ¼ 2:385 kJ/kg �K

18.24 Determine an expression for the depth below the surface

of a semi-infinite solid at which the rate of cooling is maximum.

Substitute the information given in Problem 18.22 to estimate

how far below Earth’s surface this maximum cooling rate is

achieved.

18.25 Soil, having a thermal diffusivity of 5:16� 10�7 m2/s,

has its surface temperature suddenly raised and maintained at

1100 K from its initial uniform value of 280 K. Determine the

temperature at a depth of 0.25 m after a period of 5 h has elapsed

at this surface condition.

18.26 The convective heat-transfer coefficient between a

large brick wall and air at 1008F is expressed as h ¼ 0:44
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(T � T1)1/3 Btu/h ft2 �F. If the wall is initially at a uniform

temperature of 10008F, estimate the temperature of the surface

after 1, 6, and 24 h.

18.27 A thick wall of oak, initially at a uniform temperature of

258C, is suddenly exposed to combustion exhaust at 8008C.
Determine the time of exposure required for the surface to reach

its ignition temperature of 4008C, when the surface coefficient

between the wall and combustion gas is 20 W/m2 �K.
18.28 Air at 658F is blown against a pane of glass 1/8 in. thick.
If the glass is initially at 308F, and has frost on the outside,

estimate the length of time required for the frost to begin to melt.

18.29 How long will a 1-ft-thick concrete wall subject to a

surface temperature of 15008F on one side maintain the other

side below 1308F? The wall is initially at 708F.

18.30 A stainless-steel bar is initially at a temperature of 258C.
Its upper surface is suddenly exposed to an air stream at 2008C,
with a corresponding convective coefficient of 22W/m2 �K. If the
bar is considered semi-infinite, how longwill it take for the tempe-

rature at a distance of 50 mm from the surface to reach 1008C?

18.31 A thick plate made of stainless steel is initially at a

uniform temperature of 3008C. The surface is suddenly exposed
to a coolant at 208C with a convective surface coefficient of 110

W/m2 �K.Evaluate the temperature after 3minof elapsed time at

a. the surface;

b. a depth of 50 mm.

Work this problem both analytically and numerically.

18.32 If the heat flux into a solid is given as F(t), show that the

penetration depth d for a semi-infinite solid is of the form

d ¼ (constant)
ffiffiffi
a

p R t
0 F(t)dt

F(t)

" #1/2

18.33 If the temperature profile through the ground is linear,

increasing from 358F at the surface by 0.58F per foot of depth,

how long will it take for a pipe buried 10 ft below the surface to

reach 328F if the outside air temperature is suddenly dropped to

08F. The thermal diffusivity of soil may be taken as 0.02 ft2/h, its

thermal conductivity is 0.8 Btu/h ft 8F, and the convective heat-
transfer coefficient between the soil and the surrounding air is

1.5 Btu/h ft2 8F.

18.34 A brick wall (a ¼ 0.016 ft2/h) with a thickness of 1½ ft

is initially at a uniform temperature of 808F. How long, after

the wall surfaces are raised to 300 and 6008F, respectively, will
it take for the temperature at the center of the wall to reach

3008F?

18.35 A masonry brick wall 0.45 m thick has a temperature

distribution at time, t ¼ 0 which may be approximated by the

expression T(K) ¼ 520þ 330 sinp(x/L) where L is the wall

width and x is the distance from either surface. How long after

bothsurfacesof thiswall areexposed toair at280Kwill thecenter

temperature of the wall be 360 K? The convective coefficient at

both surface of the wall may be taken as 14W/m2 �K.What will

the surface temperature be at this time?

Problems 273



Chapter 19

Convective Heat Transfer

Heat transfer by convection is associated with energy exchange between a surface and

an adjacent fluid. There are very few energy-transfer situations of practical importance

in which fluid motion is not in some way involved. This effect has been eliminated as

much as possible in the preceding chapters, but will now be considered in some depth.

The rate equation for convection has been expressed previously as

q

A
¼ hDT (15-11)

where the heat flux, q/A, occurs by virtue of a temperature difference. This simple

equation is the defining relation for h, the convective heat-transfer coefficient. The

determination of the coefficient h is, however, not at all a simple undertaking. It is

related to the mechanism of fluid flow, the properties of the fluid, and the geometry of

the specific system of interest.

In light of the intimate involvement between the convective heat-transfer

coefficient and fluid motion, we may expect many of the considerations from the

momentum transfer to be of interest. In the analyses to follow, much use will be made

of the developments and concepts of Chapters 4 through 14.

19.1 FUNDAMENTAL CONSIDERATIONS
IN CONVECTIVE HEAT TRANSFER

Asmentioned in Chapter 12, the fluid particles immediately adjacent to a solid boundary are

stationary, and a thin layer of fluid close to the surface will be in laminar flow regardless of

the nature of the free stream. Thus, molecular energy exchange or conduction effects will

always be present, and play a major role in any convection process. If fluid flow is laminar,

then all energy transfer between a surface and contacting fluid or between adjacent fluid

layers is by molecular means. If, on the contrary, flow is turbulent, then there is bulk mixing

of fluid particles between regions at different temperatures, and the heat transfer rate is

increased. The distinction between laminar and turbulent flow will thus be a major

consideration in any convective situation.

There are two main classifications of convective heat transfer. These have to do with

the driving force causing fluid to flow. Natural or free convection designates the type of

process wherein fluidmotion results from the heat transfer.When a fluid is heated or cooled,

the associated density change and buoyant effect produce a natural circulation in which

the affected fluid moves of its own accord past the solid surface, the fluid that replaces it

is similarly affected by the energy transfer, and the process is repeated. Forced con-

vection is the classification used to describe those convection situations in which fluid

circulation is produced by an external agency such as a fan or a pump.
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The hydrodynamic boundary layer, analyzed in Chapter 12, plays a major role in

convective heat transfer, as one would expect. Additionally, we shall define and analyze the

thermal boundary layer, which will also be vital to the analysis of a convective energy-

transfer process.

There are four methods of evaluating the convective heat-transfer coefficient that will

be discussed in this book. These are as follows:

(a) dimensional analysis, which to be useful requires experimental results;

(b) exact analysis of the boundary layer;

(c) approximate integral analysis of the boundary layer; and

(d) analogy between energy and momentum transfer.

19.2 SIGNIFICANT PARAMETERS
IN CONVECTIVE HEAT TRANSFER

Certain parameters will be found useful in the correlation of convective data and in the

functional relations for the convective heat-transfer coefficients. Some parameters of this

type have been encountered earlier; these include the Reynolds and the Euler numbers.

Several of the new parameters to be encountered in energy transfer will arise in such a

manner that their physicalmeaning is unclear. For this reason,we shall devote a short section

to the physical interpretation of two such terms.

The molecular diffusivities of momentum and energy have been defined previously as

momentum diffusivity : n � m

r
and

thermal diffusivity : a � k

rcp

That these two are designated similarly would indicate that theymust also play similar roles

in their specific transfer modes. This is indeed the case, as we shall see several times in the

developments to follow. For themomentwe should note that both have the samedimensions,

those of L2/t; thus their ratio must be dimensionless. This ratio, that of the molecular

diffusivity of momentum to the molecular diffusivity of heat, is designated the Prandtl

number.

Pr � n

a
¼ mcp

k
(19-1)

The Prandtl number is observed to be a combination of fluid properties; thus Pr itself may

be thought of as a property. The Prandtl number is primarily a function of temperature

and is tabulated in Appendix I, at various temperatures for each fluid listed.

The temperature profile for a fluid flowing past a surface is depicted in Figure 19.1. In

the figure, the surface is at a higher temperature than the fluid. The temperature profile that

exists is due to the energy exchange resulting from this temperature difference. For such a

case the heat-transfer rate between the surface and the fluid may be written as

qy ¼ hA(Ts � T1) (19-2)

and, because heat transfer at the surface is by conduction

qy ¼ �kA
@

@y
(T � Ts)jy¼0 (19-3)
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These two terms must be equal; thus

h(Ts � T1) ¼ �k
@

@y
(T � Ts)jy¼0

which may be rearranged to give

h

k
¼ @(Ts � T)/@yjy¼0

Ts � T1
(19-4)

Equation (19-4) may be made dimensionless if a length parameter is introduced.

Multiplying both sides by a representative length, L, we have

hL

k
¼ @(Ts � T)/@yjy¼0

(Ts � T1)/L
(19-5)

The right-hand side of equation (19-5) is now the ratio of the temperature gradient at the

surface to an overall or reference temperature gradient. The left-hand side of this equation

is written in a manner similar to that for the Biot modulus encountered in Chapter 18. It

may be considered a ratio of conductive thermal resistance to the convective thermal

resistance of the fluid. This ratio is referred to as the Nusselt number

Nu� hL

k
(19-6)

where the thermal conductivity is that of the fluid as opposed to that of the solid, which

was the case in the evaluation of the Biot modulus.

These two parameters, Pr and Nu, will be encountered many times in the work to

follow.

19.3 DIMENSIONAL ANALYSIS OF CONVECTIVE
ENERGY TRANSFER

Forced Convection. The specific forced-convection situation, which we shall now consi-

der, is that of fluid flowing in a closed conduit at some averagevelocity, v, with a temperature

difference existing between the fluid and the tube wall.

The important variables, their symbols, and dimensional representations are listed

below. It is necessary to include twomore dimensions—Q, heat, and T, temperature—to the

fundamental group considered in Chapter 11; thus all variables must be expressed

dimensionally as some combination of M, L, t, Q, and T. The above variables include

terms descriptive of the system geometry, thermal and flow properties of the fluid, and the

quantity of primary interest, h.

Ts

Ts – T∞

Ts – T

v∞

vx

y

Figure 19.1 Temperature and velocity

profiles for a fluid flowing past a

heated plate.
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Utilizing the Buckingham method of grouping the variables as presented in Chapter

11, the required number of dimensionless groups is found to be 3. Note that the rank of

the dimensional matrix is 4, one more than the total number of fundamental dimensions.

ChoosingD, k,m, and v as the four variables comprising the core, we find that the three

p groups to be formed are

p1 ¼ Dakbmcvdr

p2 ¼ Dekfmgvhcp

and

p3 ¼ Dik jmkvlh

Writing p1 in dimensional form

1 ¼ ðLÞa Q

LtT

� �b M

Lt

� �c L

t

� �dM
L3

and equating the exponents of the fundamental dimensions on both sides of this equation,we

have for

L : 0 ¼ a� b� cþ d � 3

Q : 0 ¼ b

t : 0 ¼ �b� c� d

T: 0 ¼ �b

and

M : 0 ¼ cþ 1

Solving these equations for the four unknowns yields

a ¼ 1 c ¼ �1

b ¼ 0 d ¼ 1

and p1 becomes

p1 ¼ Dvr

m

which is the Reynolds number. Solving for p2 and p3 in the same way will give

p2 ¼ mc p

k
¼ Pr and p3 ¼ hD

k
¼ Nu

Variable Symbol Dimensions

Tube diameter D L

Fluid density r M/L3

Fluid viscosity m M/Lt

Fluid heat capacity cp Q/MT

Fluid thermal conductivity k Q/tLT

Velocity v L/t

Heat-transfer coefficient h Q/tL2T
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The result of a dimensional analysis of forced-convection heat transfer in a circular conduit

indicates that a possible relation correlating the important variables is of the form

Nu ¼ f1(Re, Pr) (19-7)

If, in the preceding case, the core group had been chosen to include r,m, cp, and v, the
analysis would have yielded the groups Dvr/m,mc p/k, and h/rvc p: The first two of these

we recognize as Re and Pr. The third is the Stanton number.

St� h

rvcp
(19-8)

This parameter could also have been formed by taking the ratio Nu/ðRe PrÞ. An

alternative correlating relation for forced convection in a closed conduit is thus

St ¼ f2(Re, Pr) (19-9)

Natural Convection. In the case of natural-convection heat transfer from a vertical plane

wall to an adjacent fluid, the variables will differ significantly from those used in the

preceding case. The velocity no longer belongs in the group of variables, as it is a result of

other effects associatedwith the energy transfer. Newvariables to be included in the analysis

are those accounting for fluid circulation. Theymay be found by considering the relation for

buoyant force in terms of the density difference due to the energy exchange.

The coefficient of thermal expansion, b, is given by

r ¼ r0(1� bDT ) (19-10)

where r0 is the bulk fluid density, r is the fluid density inside the heated layer, and DT is

the temperature difference between the heated fluid and the bulk value. The buoyant force

per unit volume, Fbuoyant, is

Fbuoyant ¼ (r0 � r)g

which becomes, upon substituting equation (19-10)

Fbuoyant ¼ bgr0 DT (19-11)

Equation (19-11) suggests the inclusion of the variables b, g, andDT into the list of those

important to the natural convection situation.

The list of variables for the problem under consideration is given below.

Variable Symbol Dimensions

Significant length L L

Fluid density r M/L3

Fluid viscosity m M/Lt

Fluid heat capacity cp Q/MT

Fluid thermal conductivity k Q/LtT

Fluid coefficient of thermal expansion b 1/T

Gravitational acceleration g L/t2

Temperature difference DT T

Heat-transfer coefficient h Q/L2tT
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The Buckingham p theorem indicates that the number of independent dimensionless

parameters applicable to this problem is 9� 5 ¼ 4. Choosing L,m, k, g, and b as the core

group, we see that the p groups to be formed are

p1 ¼ Lambkcb dgecp

p2 ¼ Lfmgkhbig jr

p3 ¼ Lkmlkmbngo DT

and

p4 ¼ Lpmqkrbsgth

Solving for the exponents in the usual way, we obtain

p1 ¼ mc p

k
¼ Pr p3 ¼ bDT

p2 ¼ L3gr2

m2
and p4 ¼ hL

k
¼ Nu

The product of p2 andp3, which must be dimensionless, is (bgr2L3 DT )/m2. This para-

meter, used in correlating natural-convection data, is the Grashof number.

Gr� bgr2L3 DT

m2
(19-12)

From the preceding brief dimensional-analyses considerations, we have obtained the

following possible forms for correlating convection data:

(a) Forced convection

Nu ¼ f1(Re, Pr) (19-7)

or

St ¼ f2(Re, Pr) (19-9)

(b) Natural convection

Nu ¼ f3(Gr, Pr) (19-13)

The similarity between the correlations of equations (19-7) and (19-13) is apparent. In

equation (19-13), Gr has replacedRe in the correlation indicated by equation (19-7). It should

be noted that the Stanton number can be used only in correlating forced-convection data. This

becomes obvious when we observe the velocity, v, contained in the expression for St.

19.4 EXACT ANALYSIS OF THE LAMINAR BOUNDARY LAYER

An exact solution for a special case of the hydrodynamic boundary layer is discussed in

Section 12.5. Blasius’s solution for the laminar boundary layer on a flat platemay be extended

to include the convective heat-transfer problem for the same geometry and laminar flow.

The boundary-layer equations considered previously include the two-dimensional,

incompressible continuity equation

@vx
@x

þ @vy
@y

¼ 0 (12-10)
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and the equation of motion in the x direction

@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

¼ v1
dv1
dx

þ n
@2vx
@y2

(12-9)

Recall that the y-directional equation of motion gave the result of constant pressure

through the boundary layer. The proper form of the energy equation will thus be equation

(16-14), for isobaric flow, written in two-dimensional form as

@T

@t
þ vx

@T

@x
þ vy

@T

@y
¼ a

@2T

@x2
þ @2T

@y2

� �
(19-14)

With respect to the thermal boundary layer depicted in Figure 19.2, @2T /@x2 is much

smaller in magnitude than @2T /@y2:

In steady, incompressible, two-dimensional, isobaric flow the energy equation that

applies is now

vx
@T

@x
þ vy

@T

@y
¼ a

@2T

@y2
(19-15)

From Chapter 12, the applicable equation of motion with uniform free-stream velocity is

vx
@vx
@x

þ vy
@vx
@y

¼ n
@2vx
@y2

(12-11a)

and the continuity equation

@vx
@x

þ @vy
@y

¼ 0 (12-11b)

The latter two of the above equations were originally solved by Blasius to give the results

discussed in Chapter 12. The solution was based upon the boundary conditions

vx
v1

¼ vy
v1

¼ 0 at y ¼ 0

and

vx
v1

¼ 1 at y ¼ 1

T∞

T = T(y)
y

x

Ts

Edge of thermal
boundary layer

Figure 19.2 The thermal boundary

layer for laminar flow past a flat

surface.
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The similarity in form between equations (19-15) and (12-11a) is obvious. This

situation suggests the possibility of applying the Blasius solution to the energy equation.

In order that this be possible, the following conditions must be satisfied:

(1) The coefficients of the second-order terms must be equal. This requires that n ¼ a

or that Pr ¼ 1.

(2) The boundary conditions for temperature must be compatible with those for the

velocity. This may be accomplished by changing the dependent variable from T to

(T � Ts)/(T1 � Ts). The boundary conditions now are

vx
v1

¼ vy
v1

¼ T � Ts

T1 � Ts
¼ 0 at y ¼ 0

vx
v1

¼ T � Ts

T1 � Ts
¼ 1 at y ¼ 1

Imposing these conditions upon the set of equations (19-15) and (12-11a), we may now

write the results obtained byBlasius for the energy-transfer case. Using the nomenclature of

Chapter 12,

f 0 ¼ 2
vx
v1

¼ 2
T � Ts

T1 � Ts
(19-16)

h ¼ y

2

ffiffiffiffiffiffiffi
v1
nx

r
¼ y

2x

ffiffiffiffiffiffiffiffiffi
xv1
n

r
¼ y

2x

ffiffiffiffiffiffiffiffi
Rex

p
(19-17)

and applying the Blasius result, we obtain

df 0

dh

����
y¼0

¼ f 00(0) ¼ d½2(vx/v1)�
d½(y/2x) ffiffiffiffiffiffiffiffi

Rex
p �

�����
y¼0

¼ df2½(T � Ts)/(T1 � Ts)�g
d½(y/2x) ffiffiffiffiffiffiffiffi

Rex
p �

�����
y¼0

¼ 1:328 ð19-18Þ

It should be noted that according to equation (19-16), the dimensionless velocity

profile in the laminar boundary layer is identical with the dimensionless temperature pro-

file. This is a consequence of having Pr ¼ 1: A logical consequence of this situation is

that the hydrodynamic and thermal boundary layers are of equal thickness. It is significant

that the Prandtl numbers for most gases are sufficiently close to unity that the hydro-

dynamic and thermal boundary layers are of similar extent.

We may now obtain the temperature gradient at the surface

@T

@y
y¼0 ¼ (T1 � Ts)

0:332

x
Re1/2x

� ����� (19-19)

Application of the Newton and Fourier rate equations now yields

qy

A
¼ hx(Ts � T1) ¼ �k

@T

@y

����
y¼0

from which

hx ¼ � k

Ts � T1
@T

@y

�����
y¼0

¼ 0:332k

x
Re1/2x (19-20)
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or

hxx

k
¼ Nux ¼ 0:332Re1/2x (19-21)

Pohlhausen1 considered the same problem with the additional effect of a Prandtl

number other than unity. He was able to show the relation between the thermal and

hydrodynamic boundary layers in laminar flow to be approximately given by

d

dt
¼ Pr1/3 (19-22)

The additional factor of Pr1/3 multiplied by h allows the solution to the thermal boundary

layer to be extended to Pr values other than unity. A plot of the dimensionless temperature

vs. h Pr1/3 is shown in Figure 19.3. The temperature variation given in this form leads to

an expression for the convective heat-transfer coefficient similar to equation (19-20). At

y ¼ 0, the gradient is

@T

@y y¼0
¼ (T1 � Ts)

0:332

x
Re1/2x Pr1/3

� ����� (19-23)

which, when used with the Fourier and Newton rate equations, yields

hx ¼ 0:332
k

x
Re1/2x Pr1/3 (19-24)

or

hxx

k
¼ Nux ¼ 0:332Re1/2x Pr1/3 (19-25)

The inclusion of the factor Pr1/3 in these equations extends the range of application of

equations (19-20) and (19-21) to situations in which the Prandtl number differs

considerably from 1.

Slope = 1.328

f' 
=

 2
 (T

 –
 T

s)
 / (

T
∞
 –

 T
s)

(y/2x) Rex Pr1/3

Figure 19.3 Temperature variation for

laminar flow over a flat plate.

1 E. Pohlhausen, ZAMM, 1, 115 (1921).
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Themean heat-transfer coefficient applying over a plate of widthw and lengthLmay be

obtained by integration. For a plate of these dimensions

qy ¼ hA(Ts � T1) ¼
Z
A

hx(Ts � T1) dA

h(wL)(Ts � T1) ¼ 0:332kw Pr1/3(Ts � T1)

Z L

0

Re1/2x

x
dx

hL ¼ 0:332k Pr1/3
�
v1r

m

�1/2 Z L

0

x�1/2dx

¼ 0:664k Pr1/3
v1r

m

� �1/2
L1/2

¼ 0:664k Pr1/3 Re1/2L

The mean Nusselt number becomes

NuL ¼ hL

k
¼ 0:664 Pr1/3 Re1/2L (19-26)

and it is seen that

NuL ¼ 2Nux at x ¼ L (19-27)

In applying the results of the foregoing analysis it is customary to evaluate all fluid

properties at the film temperature, which is defined as

Tf ¼ Ts þ T1
2

(19-28)

the arithmetic mean between the wall and bulk fluid temperatures.

19.5 APPROXIMATE INTEGRAL ANALYSIS OF THE
THERMAL BOUNDARY LAYER

The application of the Blasius solution to the thermal boundary layer in Section 19.4 was

convenient although very limited in scope. For flow other than laminar or for a configuration

other than a flat surface, another method must be utilized to estimate the convective heat-

transfer coefficient. An approximate method for analysis of the thermal boundary layer

employs the integral analysis as used by von Kármán for the hydrodynamic boundary layer.

This approach is discussed in Chapter 12.

Consider the control volume designated by the dashed lines in Figure 19.4, applying to

flowparallel to a flat surfacewith no pressure gradient, havingwidthDx; a height equal to the

q3

q1 q2

q4

y

x

∆x δth

Figure 19.4 Control volume

for integral energy analysis.
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thickness of the thermal boundary layer, dt, and a unit depth.An application of the first law of

thermodynamics in integral form

dQ

dt
� dWs

dt
� dWm

dt
¼
Z Z

c:s:
(eþ P/r)r(v: n) dAþ @

@t

Z Z Z
c:v:

er dV (6-10)

yields the following under steady-state conditions:

dQ

dt
¼ �kDx

@T

@y

����
y¼0

dWs

dt
¼ dWm

dt
¼ 0

Z Z
c:s:

(eþ P/r)r(v: n) dA ¼
Z dt

0

v2x
2

þ gyþ uþ P

r

� �
rvx dy

����
xþDx

�
Z dt

0

v2x
2

þ gyþ uþ P

r

� �
rvx dy

����
x

� d

dx

Z dt

0

�
rvx

v2x
2

þ gyþ uþ P

r

� �����
dt

�
dy Dx

and

@

@t

Z Z Z
c:v:

er dV ¼ 0

In the absence of significant gravitational effects, the convective-energy-flux terms become

v2x
2
þ uþ P

r
¼ h0 ’ cpT0

where h0 is the stagnation enthalpy and cp is the constant-pressure heat capacity. The

stagnation temperature will now be written merely as T (without subscript) to avoid

confusion. The complete energy expression is now

�k Dx
@T

@y

����
y¼0

¼
Z dt

0

rvx cpT dy

����
xþDx

�
Z dt

0

rvx cpT dy

����
x

� rcp Dx
d

dx

Z dt

0

vxT1 dy

ð19-29Þ
Equation (19-29) can also be written as q4 ¼ q2 � q1 � q3 where these quantities are

shown in Figure 19.4. In equation (19-29), T1 represents the free-stream stagnation

temperature. If flow is incompressible, and an average value of cp is used, the product

rcp may be taken outside the integral terms in this equation. Dividing both sides of

equation (19-29) by Dx and evaluating the result in the limit as by Dx approaches zero,
we obtain

k

rcp

@T

@y

�����
y¼0

¼ d

dx

Z dt

0

vx(T1 � T) dy (19-30)

Equation (19-30) is analogous to themomentum integral relation, equation (12-37), with the

momentum terms replaced by their appropriate energy counterparts. This equation may be

solved if both velocity and temperature profile are known. Thus, for the energy equation

both the variation in vx and in Twith y must be assumed. This contrasts slightly with the

momentum integral solution in which the velocity profile alone was assumed.

284 Chapter 19 Convective Heat Transfer



An assumed temperature profile must satisfy the boundary conditions

(1) T � Ts ¼ 0 at y ¼ 0

(2) T � Ts ¼ T1 � Ts at y ¼ dt

(3)
@

@y
(T � Ts) ¼ 0 at y ¼ dt

(4)
@2

@y2
(T � Ts) ¼ 0 at y ¼ 0 ½see equation (19-15)�

If a power-series expression for the temperature variation is assumed in the form

T � Ts ¼ aþ byþ cy2 þ dy3

the application of the boundary conditions will result in the expression for T � Ts

T � Ts

T1 � Ts
¼ 3

2

y

dt

� �
� 1

2

y

dt

� �3

(19-31)

If the velocity profile is assumed in the same form, then the resulting expression, as

obtained in Chapter 12, is

v

v1
¼ 3

2

y

d
� 1

2

y

d

� �3
(12-40)

Substituting equations (19-31) and (12-40) into the integral expression and solving, we

obtain the result

Nux ¼ 0:36Re1/2x Pr1/3 (19-32)

which is approximately 8% larger than the exact result expressed in equation (19-25).

This result, although inexact, is sufficiently close to the knownvalue to indicate that the

integral method may be used with confidence in situations in which an exact solution is not

known. It is interesting to note that equation (19-32) again involves the parameters predicted

from dimensional analysis.

A condition of considerable importance is that of an unheated starting length. Problem

19.17at the endof the chapter dealswith this situationwhere thewall temperature,Ts, is related

to the distance from the leading edge, x, and the unheated starting, length X, according to

Ts ¼ T1 for 0 < x < X

and Ts> T1 for X < x

The integral technique, as presented in this section, has proved effective in generating a

modified solution for this situation. The result for Ts ¼ constant, and assuming both the

hydrodynamic and temperature profiles to be cubic, is

Nuxffi 0:33
Pr

1� (X/x)3/4

" #1
3

Rex (19-33)

Note that this expression reduces to equations (19-25) for X = 0

19.6 ENERGY- AND MOMENTUM-TRANSFER ANALOGIES

Many times in our consideration of heat transfer thus far we have noted the similarities to

momentum transfer both in the transfer mechanism itself and in the manner of its

quantitative description. This section will deal with these analogies and use them to

develop relations to describe energy transfer.
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Osborne Reynolds first noted the similarities in mechanism between energy and

momentum transfer in 1874.2 In 1883, he presented3 the results of his work on frictional

resistance to fluid flow in conduits, thus making possible the quantitative analogy between

the two transport phenomena.

As we have noted in the previous sections, for flow past a solid surface with a Prandtl

number of unity, the dimensionless velocity and temperature gradients are related as follows:

d

dy

vx
v1 y¼0

¼ d

dy

T � Ts

T1 � Ts

� �����
����
y¼0

(19-34)

For Pr ¼ mcp/k ¼ 1; we have mcp/k and we may write equation (19-34) as

mc p
d

dy

vx
v1

� �����
y¼0

¼ k
d

dy

T � Ts

T1 � Ts

� �����
y¼0

which may be transformed to the form

mcp

v1
dvx
dy

����
y¼0

¼ � k

Ts � T1
d

dy
(T � Ts)

����
y¼0

(19-35)

Recalling a previous relation for the convective heat-transfer coefficient

h

k
¼ d

dy

(Ts � T)

(Ts � T1)

� �����
y¼0

(19-4)

it is seen that the entire right-hand side of equation (19-34) may be replaced by h, giving

h ¼ mcp

v1
dvx
dy

�����
y¼0

(19-36)

Introducing next the coefficient of skin friction

Cf ffi t0

rv21/2
¼ 2m

rv21

dvx
dy

����
y¼0

we may write equation (19-36) as

h ¼ Cf

2
(rv1cp)

which, in dimensionless form, becomes

h

rv1cp
� St ¼ Cf

2
(19-37)

Equation (19-37) is the Reynolds analogy and is an excellent example of the similar

nature of energy and momentum transfer. For those situations satisfying the basis for the

development of equation (19-37), a knowledge of the coefficient of frictional drag will

enable the convective heat-transfer coefficient to be readily evaluated.

The restrictions on the use of the Reynolds analogy should be kept in mind; they are

(1) Pr ¼ 1 and (2) no form drag. The former of these was the starting point in the preceding

development and obviouslymust be satisfied. The latter is sensiblewhen one considers that,

in relating two transfer mechanisms, the manner of expressing them quantitatively must

2 O. Reynolds, Proc. Manchester Lit. Phil. Soc., 14:7 (1874).
3 O. Reynolds, Trans. Roy. Soc. (London, 174A, 935 (1883).
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remain consistent. Obviously the description of drag in terms of the coefficient of skin

friction requires that the drag be wholly viscous in nature. Thus, equation (19-37) is

applicable only for those situations inwhich form drag is not present. Some possible areas of

application would be flow parallel to plane surfaces or flow in conduits. The coefficient of

skin friction for conduit flow has already been shown to be equivalent to the Fanning fiction

factor, which may be evaluated by using Figure 14.1.

The restriction that Pr ¼ 1 makes the Reynolds analogy of limited use. Colburn4 has

suggested a simple variation of the Reynolds analogy form that allows its application to

situations where the Prandtl number is other than unity. The Colburn analogy expression is

St Pr2/3 ¼ Cf

2
(19-38)

which obviously reduces to the Reynolds analogy when Pr ¼ 1.

Colburn applied this expression to a wide range of data for flow and geometries of

different types and found it to be quite accurate for conditions where (1) no form drag exists,

and (2) 0:5 < Pr < 50. The Prandtl number range is extended to include gases, water, and

several other liquids of interest. The Colburn analogy is particularly helpful for evaluating

heat transfer in internal forced flows. It can be easily shown that the exact expression for a

laminar boundary layer on a flat plate reduces to equation (19-38).

The Colburn analogy is often written as

jH ¼ C f

2
(19-39)

where

jH ¼ St Pr2/3 (19-40)

is designated the Colburn j factor for heat transfer. A mass-transfer j factor, is discussed in

Chapter 28.

Note that for Pr ¼ 1, theColburn andReynolds analogies are the same.Equation (19-38)

is thus an extension of the Reynolds analogy for fluids having Prandtl numbers other than

unity,within the range 0.5 – 50 as specified above.High and lowPrandtl number fluids falling

outside this range would be heavy oils at one extreme and liquid metals at the other.

19.7 TURBULENT FLOW CONSIDERATIONS

The effect of the turbulent flow on energy transfer is directly analogous to the similar effects

on momentum transfer as discussed in Chapter 12. Consider the temperature profile

variation in Figure 19.5 to exist in turbulent flow. The distance moved by a fluid ‘‘packet’’

in the y direction, which is normal to the direction of bulk flow, is denoted by L, the Prandtl

mixing length. The packet of fluid moving through the distance L retains the mean

temperature from its point of origin, and upon reaching its destination, the packet will

differ in temperature from that of the adjacent fluid by an amount T jy�L � T jy: The mixing

length is assumed small enough to permit the temperature difference to be written as

T jy�L � T jy ¼ �L
dt

dy

����
y

(19-41)

We now define the quantity T 0 as the fluctuating temperature, synonymous with

the fluctuating velocity component, v0x, described in Chapter 12. The instantaneous

4 A. P. Colburn, Trans. A.I.Ch.E., 29, 174 (1933).
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temperature is the sum of themean and fluctuating values, as indicated in Figure 19.5(b), or,

in equation form

T ¼ T þ T 0 (19-42)

Any significant amount of energy transfer in the y direction, for bulk flow occurring in the

x direction, is accomplished because of the fluctuating temperature, T 0; thus, it is apparent
from equations (19-41) and (19-42) that

T 0 ¼ �L
dT

dy
(19-43)

The energy flux in the y direction may now be written as

qy

A y
¼ rc pTv

0
y

��� (19-44)

where v0y may be either positive or negative. Substituting for T its equivalent, according to

equation (19-42)

qy

A y
¼ rcpv

0
y(T þ T 0)

���
and taking the time average, we obtain, for the y-directional energy flux due to turbulent

effects
qy

A turb
¼ rcp(v0yT 0)

��� (19-45)

or, with T 0 in terms of the mixing length

qy

A turb
¼ rcpv0yL

dT

dy

����� (19-46)

The total energy flux due to both microscopic and turbulent contributions may be

written as

qy

A
¼ �rc p½aþ jv0yLj�

dT

dy
(19-47)

As a is the molecular diffusivity of heat, the quantity jv0yLj is the eddy diffusivity of heat,
designated as eH . This quantity is exactly analogous to the eddy diffusivity of

momentum, eM ; as defined in equation (12-52). In a region of turbulent flow, eH � a for

all fluids except liquid metals.

T

T

y

(a)

L

t

T

(b)

T
T'

Figure 19.5 Turbulent-flow temperature variation.
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As the Prandtl number is the ratio of the molecular diffusivities of momentum and heat,

an analogous term, the turbulent Prandtl number, can be formed by the ratio eM/ e H .

Utilizing equations (19-47) and (12-55), we have

Prturb ¼ eM

eH
¼ L2jdvx/dyj

jLv0yj
¼ L2jdvx/dyj

L2jdvx/dyj ¼ 1 (19-48)

Thus, in a region of fully turbulent flow the effective Prandtl number is unity, and the

Reynolds analogy applies in the absence of form drag.

In terms of the eddy diffusivity of heat, the heat flux can be expressed as

qy

A turb
¼ �rc p eH

DT

dy

���� (19-49)

The total heat flux, including both molecular and turbulent contributions, thus becomes

qy

A
¼ �rc p(aþ eH)

dT

dy
(19-50)

Equation (19-50) applies both to the region wherein flow is laminar, for which

a� e H , and to that for which flow is turbulent and eH �a. It is in this latter region that

the Reynolds analogy applies. Prandtl5 achieved a solution that includes the influences of

both the laminar sublayer and the turbulent core. In his analysis solutions were obtained

in each region and then joined at y ¼ j, the hypothetical distance from the wall that is

assumed to be the boundary separating the two regions.

Within the laminar sublayer the momentum and heat flux equations reduce to

t ¼ rv
dvx
dy

(a constant)

and

qy

A
¼ �rcpa

dT

dy

Separating variables and integrating between y ¼ 0 and y ¼ j, we have, for the momentum

expression Z vxjj

0

dvx ¼ t

rv

Z j

0

dy

and for the heat flux Z Tj

Ts

dT ¼ � qy

Arc pa

Z j

0

dy

Solving for the velocity and temperature profiles in the laminar sublayer yields

vxjj ¼
tj

rv
(19-51)

and

Ts � Tj ¼ qyj

Arc pa
(19-52)

5 L. Prandtl, Zeit. Physik., 11, 1072 (1910).
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Eliminating the distance j between these two expressions gives

rvvxjj
t

¼ rAcpa

qy
(Ts � Tj) (19-53)

Directing our attention now to the turbulent core where the Reynolds analogy

applies, we may write equation (19-37)

h

rcp(v1 � vxjj)
¼ Cf

2
(19-37)

and, expressing h and Cf in terms of their defining relations, we obtain

qy/A

rcp(v1 � vxjj)(Tj � T1)
¼ t

r(v1 � vxjj)2

Simplifying and rearranging this expression, we have

r(v1 � vxjj)
t

¼ rAcp
(Tj � T1)

qy
(19-54)

which is a modified form of the Reynolds analogy applying from y ¼ j to y ¼ ymax:
Eliminating Tj between equations (19-53) and (19-54), we have

r

t
v1 þ vxjj

v

a
� 1

� �h i
¼ rAcp

qy
(Ts � T1) (19-55)

Introducing the coefficient of skin friction

Cf ¼ t

rv21/2

and the convective heat-transfer coefficient

h ¼ qy

A(Ts � T1)

we may reduce equation (19-54) to

v1 þ vxjj(v/a� 1)

v21Cf /2
¼ rcp

h

Inverting both sides of this expression and making it dimensionless, we obtain

h

rcpv1
� St ¼ Cf /2

1þ (vxjj/v1)½(v/a)� 1� (19-56)

This equation involves the ratio v/a, which has been defined previously as the Prandtl

number. For a value of Pr ¼ 1, equation (19-56) reduces to the Reynolds analogy. For

Pr ¼ 1, the Stanton number is a function of Cf, Pr, and the ratio vxjj/v1. It would be

convenient to eliminate the velocity ratio; this may be accomplished by recalling some

results from Chapter 12.

At the edge of the laminar sublayer

vþ ¼ yþ ¼ 5

and by definition vþ ¼ vx/(
ffiffiffiffiffiffiffi
t/r

p
). Thus for the case at hand

vþ ¼ vxjj/(
ffiffiffiffiffiffiffi
t/r

p
) ¼ 5
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Again introducing the coefficient of skin friction in the form

Cf ¼ t

rv21/2

we may write ffiffiffi
t

r

r
¼ v1

ffiffiffiffiffi
Cf

2

r
which, when combined with the previous expression given for the velocity ratio, gives

vxjj
v1

¼ 5

ffiffiffiffiffi
Cf

2

r
(19-57)

Substitution of equation (19-57) into (19-56) gives

St ¼ Cf /2

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p
(Pr� 1)

(19-58)

which is known as the Prandtl analogy. This equation is written entirely in terms of

measurable quantities.

von Kármán6 extended Prandtl’s work to include the effect of the transition or buffer

layer in addition to the laminar sublayer and turbulent core. His result, the von Kármán

analogy, is expressed as

St ¼ Cf /2

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p fPr� 1þ ln½1þ 5
6(Pr� 1)�g (19-59)

Note that, just as for the Prandtl analogy, equation (19-59) reduces to the Reynolds

analogy for a Prandtl number of unity.

The application of the Prandtl and vonKármán analogies is, quite logically, restricted to

those cases in which there is negligible form drag. These equations yield the most accurate

results for Prandtl numbers greater than unity.

An illustration of the use of the four relations developed in this section is given in the

example below.

EXAMPLE 1 Water at 50�F enters a heat-exchanger tube having an inside diameter of 1 in. and a length of 10 ft.

The water flows at 20 gal/min. For a constant wall temperature of 210�F, estimate the exit

temperature of the water using (a) the Reynolds analogy, (b) the Colburn analogy, (c) the Prandtl

analogy, and (d) the von Kármán analogy. Entrance effects are to be neglected, and the properties of

water may be evaluated at the arithmetic-mean bulk temperature.

Considering a portion of the heat-exchanger tube shown in Figure 19.6, we see that an

application of the first law of thermodynamics to the control volume indicated will yield the result

that

rate of heat

transfer into c:v:
by fluid flow

8<
:

9=
;þ

rate of heat

transfer into c:v:
by convection

8<
:

9=
; ¼

rate of heat

transfer out of c:v:
by fluid flow

8<
:

9=
;

6 T. von Kármán, Trans. ASME, 61, 705 (1939).
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If these heat-transfer rates are designated as q1, q2, and q3, they may be evaluated as follows:

q1 ¼ r
pD2

4
vxcpT jx

q2 ¼ hpDDx(Ts � T)

and

q3 ¼ r
pD2

4
vxc pTjxþDx

The substitution of these quantities into the energy balance expression gives

r
pD2

4
vxc p½TjxþDx � Tjx� � hpDDx(Ts � T) ¼ 0

which may be simplified and rearranged into the form

D

4

TjxþDx � Tjx
Dx

þ h

rvxcp
(T � Ts) ¼ 0 (19-60)

Evaluated in the limit as Dx! 0, equation (19-59) reduces to

dT

dx
þ h

rvxcp

4

D
(T � Ts) ¼ 0 (19-61)

Separating the variables, we have
dT

T � Ts
þ h

rvxcp

4

D
dx ¼ 0

and integrating between the limits indicated, we obtainZ TL

T0

dT

T � Ts
þ h

rvxc p

4

D

Z L

0

dx ¼ 0

ln
TL � Ts

T0 � Ts
þ h

rvxcp

4L

D
¼ 0

(19-62)

Equation (19-62) may now be solved for the exit temperature TL. Observe that the coefficient of the

right-hand term, h/rvxc p, is the Stanton number. This parameter has been achieved quite naturally

from our analysis.

The coefficient of skin friction may be evaluated with the aid of Figure 14.1. The velocity is

calculated as

vx ¼ 20 gal/min (ft3/7:48 gal)½144/(p/4)(12)�ft2(min/60 s) ¼ 8:17 fps

Initially, we will assume the mean bulk temperature to be 908F. The film temperature will then

be 1508F, at which n ¼ 0:474� 10�5 ft2/s. The Reynolds number is

Re ¼ Dvx
v

¼ (1/12 ft)(8:17 ft/s)

0:474� 10�5 ft2/s
¼ 144,000

At this value of Re, the friction factor, ff, assuming smooth tubing, is 0.0042. For each of the four

analogies, the Stanton number is evaluated as follows:

D q1
q2 q3

Ts

Flow

∆x Figure 19.6 Analog analysis of

water flowing in a circular tube.
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(a) Reynolds analogy

St ¼ Cf

2
¼ 0:0021

(b) Colburn analogy

St ¼ Cf

2
Pr�2/3 ¼ 0:0021(2:72)�2/3 ¼ 0:00108

(c) Prandtl analogy

St ¼ Cf /2

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p
(Pr� 1)

¼ 0:0021

1þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0021

p
(1:72)

¼ 0:00151

(d) von Kármán analogy

St ¼ Cf /2

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p
Pr� 1þ ln 1þ 5

6 (Pr� 1)
� �� �

¼ 0:0021

1þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0021

p
2:72� 1þ ln 1þ 5

6 (2:72� 1)
� �� �

¼ 0:00131

Substituting these results into equation (19-62), we obtain, for TL, the following results:

(a) TL ¼ 152�F
(b) TL ¼ 115�F
(c) TL ¼ 132�F
(d) TL ¼ 125�F

Some fine tuning of these results may be necessary to adjust the physical property values for

the calculated film temperatures. In none of these cases is the assumed film temperature

different than the calculated one by more than 68F, so the results are not going to change

much.

The Reynolds analogy value is much different from the other results obtained. This is not

surprising, as the Prandtl number was considerably above a value of one. The last three analogies

yielded quite consistent results. TheColburn analogy is the simplest to use and is preferable from that

standpoint.

19.8 CLOSURE

The fundamental concepts of convection heat transfer have been introduced in this chapter.

New parameters pertinent to convection are the Prandtl, Nusselt, Stanton, and Grashof

numbers.
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Four methods of analyzing a convection heat-transfer process have been discussed.

These are as follows:

(1) dimensional analysis coupled with experiment;

(2) exact analysis of the boundary layer;

(3) integral analysis of the boundary layer; and

(4) analogy between momentum and energy transfer.

Several empirical equations for the prediction of convective heat-transfer coefficients

will be given in the chapters to follow.

PROBLEMS

19.1 Using dimensional analysis, demonstrate that the para-

meters

T � T1
T0 � T1

x

L

at

L2
and

hL

k

are possible combinations of the appropriate variables in describ-

ing unsteady-state conduction in a plane wall.

19.2 Dimensional analysis has shown the following para-

meters to be significant for forced convection:

xv1r

m

mc p

k

hx

k

h

rcpv1

Evaluate each of these parameters at 340 K, for air, water,

benzene, mercury, and glycerin. The distance xmay be taken as

0.3 m, v1 ¼ 15m/s, and h ¼ 34W/m2 � K.
19.3 Plot the parameters xv1r/m,mcp/k, hx/k, and h/rcpv1
vs. temperature for air, water, and glycerin, using the values for x,

h, and v from Problem 19.2.

19.4 Using the relations from Problem 19.19, determine, for

the case of air at 310K adjacent to a vertical wall with its surface

at 420 K,

a. the thickness of the boundary layer at x ¼ 15 cm, 30 cm,

1.5 m,

b. the magnitude of hx at 15 cm, 30 cm, 1.5 m.

19.5 Given the conditions specified in Problem 19.16,

construct a plot of local heat-transfer coefficient vs. position

along the plate for glycerin temperatures of 308, 508, and
808F.

19.6 The fuel plates in a nuclear reactor are 4 ft long and

stacked with a 1/2-in. gap between them. The heat flux along the

plate surfaces varies sinusoidally according to the equation

q

A
¼ aþ b sin

px

L

where a ¼ 250Btu/h ft2,b ¼ 1500Btu/h ft2, x is the distance

from the leading edge of the plates, and L is the total plate

length. If air at 120�F; 80 psi, flowing at a mass velocity of

6000 lbm/h ft
2, is used to cool the plates, prepare plots showing

a. the heat flux vs. x;

b. the mean air temperature vs. x.

19.7 Given the information in Problem 19.6, determine the

total heat transferred for a stack of plates with a combined

surface area of 640 ft2, each plate being 4 ft wide.

19.8 In a thermal heat sink the heat flux variation along the axis

of a cooling passage is approximated as

q

A
¼ aþ b sin

px

L

� �
where x is measured along the passage axis and L is its total

length.

A large installation involves a stack of plates with a 3-mm

air space between them. The flow passages are 1.22 m long, and

the heat flux in the plates varies according to the above equation

where a ¼ 900W/m2 and v ¼ 2500W/m2: Air enters at 100�C
with a mass velocity (the product of rV) of 7:5 kg/s �m2: The
surface coefficient along the flow passage can be considered

constant with a value of 56W/m2 � K:
Generate a plot of heat flux, mean air temperature,

and plate surface temperature as functions of x. Where

does the maximum surface temperature occur and what is

its value?

19.9 Determine the total heat transfer from the vertical wall

described in Problem 19.4 to the surrounding air per meter of

width if the wall is 2.5 m high.

19.10 Repeat Problem 19.21 for velocity and temperature

profiles of the form

v ¼ aþ byþ cy2 T � Ts ¼ aþ byþ gy2

19.11 Solve Problem 19.26 for the case of a wall heat flux

varying according to

q

A
¼ aþ b sin

px

L
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where a ¼ 250Btu/h ft2,b ¼ 1500Btu/h ft2, x is the distance

from the entrance, and L is the tube length.

19.12 Work Problem 19.25 for the case in which the flowing

fluid is air at 15 fps.

19.13 Nitrogen at 100�F and 1 atm flows at a velocity of

100 fps. A flat plate 6 in. wide, at a temperature of 200�F;
is aligned parallel to the direction of flow. At a position 4 ft

from the leading edge, determine the following (a) d; (b) dt;
(c) Cfx; (d) Cfl; (e) hx; (f ) h; (g) total drag force; (h) total heat

transfer.

19.14 A plane surface, 25 cm wide, has its temperature

maintained at 80�C. Atmospheric air, at 25�C; flows parallel

to the surface with a velocity of 2.8 m/s. Using the results of

boundary-layer analysis, determine the following for a 1-m long

plate:

a. the mean coefficient of skin friction, CfL;

b. the total drag force exerted on the plate by the air flow;

c. the total heat transfer rate from the plate to the air stream.

19.15 Show that, for the case of natural convection adja-

cent to a plane vertical wall, the appropriate integral equa-

tions for the hydrodynamic and thermal boundary layers

are

a
@T

@y

�����
y¼0

¼ d

dx

Z d1

0

vxðT1 � T Þdy

and

�v
dvx
@y

����
y¼0

þ bg

Z d1

0

ðT � T1Þ dy ¼ d

dx

Z d

0

v2x dy

19.16 Glycerin flows parallel to a flat plate measuring 2 ft

by 2 ft with a velocity of 10 fps. Determine values for the

mean convective heat-transfer coefficient and the associa-

ted drag force imposed on the plate for glycerin temperatures

of 3508, 508, and 1808F. What heat flux will result, in each

case, if the plate temperature is 508F above that of the

glycerin?

19.17 Shown in the figure is the case of a fluid flowing

parallel to a flat plate, where for a distance X from the

leading edge, the plate and fluid are at the same temperature.

For values of x>X, the plate is maintained at a constant

temperature, Ts, where Ts> T1. Assuming a cubic profile

for both the hydrodynamic and the thermal boundary layers,

show that the ratio of the thickness, j, is expressed as

j ¼ dt

d
ffi 1

Pr1/3
1� X

x

� �3/4
" #

1/3

Also show that the localNusselt number can be expressed as

Nux ffi 0:33
Pr

1� (X/x)3/4

 !1/3

Re1/2x

dt

dx

X

19.18 Simplified relations for natural convection in air are of

the form

h ¼ aðDT /LÞb

where a,b are constants; L is a significant length, in ft;

DT is Ts � T1, in 8F; and h is the convective heat-transfer

coefficient, Btu/h ft2 �F: Determine the values for a and b for

the plane vertical wall, using the equation from Problem 19.14.

19.19 Using the integral relations from Problem 19.8, and

assuming the velocity and temperature profiles of the form

v

vx
¼ y

d

� �
1� y

d

� �2
and

T � T1
Ts � T1

¼ 1� y

d

� �2
where d is the thickness of both the hydrodynamic and thermal

boundary layers, show that the solution in terms of d and vx from
each integral equation reduce to

2a

d
¼ d

dx

dvx
30

� �
and

� vvx
d

þ bgDT
d

3
¼ d

dt

dv2x
105

� �
Next, assuming that both d and vx vary with x according to

d ¼ Axa and vx ¼ Bxb

show that the resulting expression for d becomes

d/x ¼ 3:94 Pr�1/2ðPrþ 0:953Þ1/4Gr�1/4
x

and that the local Nusselt number is

Nux ¼ 0:508 Pr�1=2ðPrþ 0:953Þ�1=4Gr1=4x

19.20 Use the results of Problem along with those of Chap-

ter 12 to determine d,C fx, d1, and hx at a distance of 40 cm

from the leading edge of a flat plane. Air with a free stream
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velocity of 5 m/s and T1 ¼ 300 K flows parallel to the plate

surface. The first 20 cm of the plate is unheated; the surface

temperature is maintained at 400 K beyond that point.

19.21 Using the appropriate integral formulas for flow parallel

to a flat surface with a constant free-stream velocity, develop

expressions for the local Nusselt number in terms of Rex and Pr

for velocity and temperature profiles of the form

v ¼ aþ by, T � Ts ¼ aþ by

19.22 Repeat Problem 19.21 for velocity and temperature

profiles of the form

v ¼ a sin by, T � Ts ¼ a sinbu

19.23 For the case of a turbulent boundary layer on a flat plate,

the velocity profile has been shown to follow closely the form

v

v1
¼ y

d

� �1/7
Assuming a temperature profile of the same form, that is

T � Ts

T1 � Ts
¼ y

d1

� �1/7

and assuming that d ¼ d1, use the integral relation for the

boundary layer to solve for hx andNux. The temperature gradient

at the surface may be considered similar to the velocity gradient

at y ¼ 0 given by equation (13-26).

19.24 A blacktop road surface 18.3m wide receives

solar radiation at the rate of 284 W/m2 at noon and 95 W/m2

are lost by reradiation to the atmosphere. Awind, at 300K, flows

across the road. Determine the wind velocity that will cause the

road surface to be at 308 K if all energy not reradiated to the sky

is removed by convection.

19.25 Water, at 608F, enters a 1-in.-ID tube that is used to cool

a nuclear reactor. The water flow rate is 30 gal/min. Determine

the total heat transfer and the exiting water temperature for a

15-ft-long tube if the tube surface temperature is a constant value

of 3008F. Compare the answer obtained, using the Reynolds and

Colburn analogies.

19.26 Water at 608F enters a 1-in.-ID tube that is used to

cool a nuclear reactor. The water flow rate is 30 gal/min.

Determine the total heat transfer, the exiting water tempe-

rature, and the wall temperature at the exit of a 15-ft long

tube if the tube wall condition is one of uniform heat flux of

500 Btu/hr ft2.

19.27 Work Problem 19.26 for the case in which the flowing

fluid is air at 15 fps.

19.28 Work Problem 19.25 for the case in which the flowing

fluid is sodium entering the tube at 2008F

19.29 Work Problem 19.26 for the case in which the flowing

fluid is sodium entering the tube at 2008F.
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Chapter 20

Convective Heat-Transfer

Correlations

Convective heat transfer was treated from an analytical point of view in Chapter 19.

Although the analytic approach is very meaningful, it may not offer a practical solution

to every problem. There are many situations for which no mathematical models have as

yet been successfully applied. Even in those cases for which an analytical solution is

possible, it is necessary to verify the results by experiment. In this chapter, we shall

present some of the most useful correlations of experimental heat-transfer data

available. Most correlations are in the forms indicated by dimensional analysis.

The sections to follow include discussion and correlations for natural convection,

forced convection for internal flow, and forced convection for external flow, respectively.

In each case, those analytical relations that are available are presented along with the

most satisfactory empirical correlations for a particular geometry and flow condition.

20.1 NATURAL CONVECTION

Themechanism of energy transfer by natural convection involves themotion of a fluid past a

solid boundary, which is the result of the density differences resulting from the energy

exchange. Because of this, it is quite natural that the heat-transfer coefficients and their

correlating equations will vary with the geometry of a given system.

Vertical Plates. The natural convection system most amenable to analytical treatment is

that of a fluid adjacent to a vertical wall.

Standard nomenclature for a two-dimensional consideration of natural convection

adjacent to a vertical plane surface is indicated in Figure 20.1. The x direction is commonly

taken along the wall, with y measured normal to the plane surface.

Schmidt and Beckmann1 measured the temperature and velocity of air at different

locations near a vertical plate and found a significant variation in both quantities along the

direction parallel to the plate. The variations of velocity and temperature for a 12.5-cm-high

vertical plate are shown in Figures 20.2 and 20.3 for the conditions Ts ¼ 65�C, T1 ¼ 15�C:
The two limiting cases for vertical plane walls are those with constant surface

temperature and with constant wall heat flux. The former of these cases have been solved

by Ostrach2 and the latter by Sparrow and Gregg.3

1 E. Schmidt and W. Beckmann, Tech. Mech. U. Thermodynamik, 1, 341 and 391 (1930).
2 S. Ostrach, NACA Report 1111, 1953.
3 E. M. Sparrow and J. L. Gregg, Trans. A.S.M.E., 78, 435 (1956).
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Ostrach, employing a similarity transformation with governing equations of mass

conservation, motion, and energy in a free-convection boundary layer, obtained an

expression for local Nusselt number of the form

Nux ¼ f (Pr)
Grx

4

� �1/4
(20-1)

The coefficient, f(Pr), varies with Prandtl number, with values given in Table 20.1.

We usually find the mean Nusselt number, NuL, to be of more value than Nux. Using

an integration procedure, as discussed earlier, an expression for NuL may be determined

Fluid
T∞

Heated
wall

y

x

Ts

Figure 20.1 Coordinate system for the analysis of natural convection

adjacent to a heated vertical wall.
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Figure 20.2 Velocity distribution in the vicinity of a vertical
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vertical heated plate in air.
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using equation (20-1). Themeanheat transfer coefficient for a vertical surface of height,L, is

related to the local value according to

hL ¼ 1

L

Z L

0

hx dx

Inserting equation (20-1) appropriately, we proceed to

hL ¼ k

L
f (Pr)

bgDT

4v2

� �1/4Z L

0

x�1/4dx

¼ 4

3

� �
k

L

� �
f (Pr)

bgL3DT

4v2

� �
1/4

and, in dimensionless form, we have

NuL ¼ 4

3
f (Pr)

GrL

4

� �1/4
(20-2)

Sparrow and Gregg’s4 results for the constant wall heat flux case compared within 5%

to those of Ostrach for like values of Pr. Equations (20-1) and (20-2), along with coefficients

from Table 20.1, may thus be used, with reasonable accuracy, to evaluate any vertical plane

surface regardless of wall conditions, provided boundary layer flow is laminar.

Fluid properties, being temperature dependent, will have some effect on calculated

results. It is important, therefore, that properties involved in equations (20-1) and (20-2) be

evaluated at the film temperature.

Tf ¼ Ts þ T1
2

As with forced convection, turbulent flow will also occur in free convection boundary

layers. When turbulence is present, an analytical approach is quite difficult, and we must

rely heavily on correlations of experimental data.

Transition from laminar to turbulent flow in natural convection boundary layers

adjacent to vertical plane surfaces has been determined to occur at, or near

Grt Pr ¼ Rat ffi 109 (20-3)

where the subscript, t, indicates transition. The product, Gr Pr, is often referred to as Ra,

the Rayleigh number.

Churchill and Chu5 have correlated a large amount of experimental data for natural

convection adjacent to vertical planes over 13 orders of magnitude of Ra. They propose a

single equation for NuL that applies to all fluids. This powerful equation is

NuL ¼ 0:825þ 0:387Ra1/6L

1þ (0:492/Pr)9/16
h i8/27

8>><
>>:

9>>=
>>;

2

(20-4)

Table 20.1 Values of the coefficient f(Pr) for use in equation (20-1)

Pr 0.01 0.072 1 2 10 100 1000

f (Pr) 0.081 0.505 0.567 0.716 1.169 2.191 3.966

4 E. M. Sparrow and J. L. Gregg, Trans. A.S.M.E., 78, 435 (1956).
5 S. W. Churchill and H. H. S. Chu, Int. J. Heat & Mass Tr., 18, 1323 (1975).
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Churchill and Chu show this expression to provide accurate results for both laminar and

turbulent flows. Some improvement was found for the laminar range RaL< 109
� 

by

using the following equation:

NuL ¼ 0:68þ 0:670Ra1/4L

1þ (0:492/Pr)9/16
h i4/9 (20-5)

Vertical Cylinders. For the case of cylinders with their axes vertical, the expressions

presented for plane surfaces can be used provided the curvature effect is not too great. The

criterion for this is expressed in equation (20-6); specifically, a vertical cylinder can be

evaluated using correlations for vertical plane walls when

D

L
� 35

Gr1/4L

(20-6)

Physically, this represents the limit where boundary layer thickness is small relative to

cylinder diameter, D.

Horizontal Plates. The correlations suggested by McAdams6 are well accepted for this

geometry. A distinction is made regarding whether the fluid is hot or cool, relative to the

adjacent surface, and whether the surface faces up or down. It is clear that the induced

buoyancy will be much different for a hot surface facing up than down. McAdams’s

correlations are, for a hot surface facing up or cold surface facing down

105<RaL< 2� 107 NuL ¼ 0:54Ra1/4L (20-7)

2� 107<RaL< 3� 1010 NuL ¼ 0:14Ra1/3L (20-8)

and for a hot surface facing down or cold surface facing up

3� 105<RaL< 1010 NuL ¼ 0:27Ra1/4L (20-9)

In each of these correlating equations, the film temperature, Tf , should be used for fluid

property evaluation. The length scale, L, is the ratio of the plate-surface area to perimeter.

For plane surfaces inclined at an angle, u, with the vertical, equations (20-4) and (20-5)

may be used, with modification, for values of u up to 608. Churchill and Chu7 suggest

replacingg by g cos u in equation (20-5)when boundary layer flow is laminar.With turbulent

flow, equation (20-4) may be used without modification.

Horizontal Cylinders. With cylinders of sufficient length that end effects are insignificant,

two correlations are recommended. Churchill and Chu8 suggest the following correlation

NuD ¼ 0:60þ 0:387Ra1/6D

1þ (0:559/Pr)9/16
h i8/27

8>><
>>:

9>>=
>>;

2

(20-10)

over the Rayleigh number range 10�5<RaD< 1012:

6 W. H. McAdams, Heat Transmission, Third Edition, Chapter 7, McGraw-Hill Book Company, New York,

1957.
7 S. W. Churchill and H. H. S. Chu, Int. J. Heat & Mass Tr., 18, 1323 (1975).
8 S. W. Churchill and H. H. S. Chu, Int. J. Heat & Mass Tr., 18, 1049 (1975).
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A simpler equation has been suggested by Morgan,9 in terms of variable coefficients

NuD ¼ CRanD (20-11)

where values of c and n are specified as functions of RaD in Table 20.2.

The film temperature should be used in evaluating fluid properties in the above equations.

Spheres. The correlation suggested by Yuge10 is recommended for the case with

Pr’ 1, and 1<RaD < 105:

NuD ¼ 2þ 0:43Ra1/4D (20-12)

We may notice that, for the sphere, as Ra approaches zero, heat transfer from the

surface to the surrounding medium is by conduction. This problem may be solved to yield a

limiting value for NuD equal to 2. This result is obviously compatible with equation (20-12).

Rectangular Enclosures. Shown in Figure 20.4 is the configuration and nomenclature

pertinent to rectangular enclosures. These cases have become much more important in

recent years due to their application in solar collectors. Clearly, heat transfer will be affected

Table 20.2 Values of constants C and n in equation (20-11)

C n

10�10 <RaD< 10�2 0.675 0.058

10�2 <RaD< 102 1.02 0.148

102 <RaD < 104 0.850 0.188

104 <RaD < 107 0.480 0.250

107 <RaD < 1012 0.125 0.333

H
H

g

L

W

L

Heated
surface

q

Figure 20.4 The rectangle enclosure.

9 V. T. Morgan, Advances in Heat Transfer, Vol. II, T. F. Irvine and J. P. Hartnett, Eds., Academic Press,

New York, 1975, pp. 199–264.
10 T. Yuge, J. Heat Transfer, 82, 214 (1960).
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by the angle of tilt, u; by the aspect ratio,H/L; and by the usual dimensionless parameters, Pr

and RaL.

In each of the correlations to follow, the temperature of the hotter of the two large

surfaces is designated as T1, and the cooler surface is at temperature T2. Fluid properties are

evaluated at the film temperature, Tf ¼ (T1/T2)/2: Convective heat flux is expressed as

q

A
¼ h(T1 � T2) (20-13)

Case 1. Horizontal enclosures, u = 0

With the bottom surface heated, a critical Rayleigh member has been determined by several

investigators to exist. For cases where

RaL ¼ bgL3(T1 � T2)

av
> 1700

conditions within an enclosure are thermally unstable and natural convection will occur. A

correlation for this case has been proposed by Globe and Dropkin11 in the form

NuL ¼ 0:069Ra1/3L Pr0:074 (20-14)

for the range 3� 105<RaL< 7� 109:
When u ¼ 180�, that is, the upper surface is heated, or when RaL< 1700, heat transfer

is by conduction; thus, NuL ¼ 1:

Case 2. Vertical enclosures, u = 90�

For aspect ratios less than 10, Catton12 suggests the use of the following correlations:

NuL ¼ 0:18
Pr

0:2þ Pr
RaL

� �0:29

(20-15)

when

1<H/L< 2, 10�3< Pr< 105, 103<RaLPr/(0:2þ Pr)

and

NuL ¼ 0:22
Pr

0:22þ Pr
RaL

� �0:28
H

L

� ��1/4
(20-16)

when 2<H/L< 10, Pr< 105, RaL< 1010.

For higher values of H/L, the correlations of MacGregor and Emery13 are recom-

mended. These are

NuL ¼ 0:42Ra1/4L Pr0:012(H/L)�0:3 (20-17)

for

10<H/L< 40, 1< Pr < 2� 104, 104<RaL< 107

and

NuL ¼ 0:046Ra1/3L (20-18)

11 S. Globe and D. Dropkin, J. Heat Transfer, 81C, 24 (1959).
12 I. Catton, Proc. 6th Int. Heat Tr. Conference, Toronto, Canada, 6, 13 (1978).
13 P. K. MacGregor and A. P. Emery, J. Heat Transfer, 91, 391 (1969).
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for

10<H/L< 40, 1< Pr< 20, 106<RaL< 109

Case 3. Tilted vertical enclosures, 0 < u < 90�

Numerous publications have dealt with this configuration. Correlations for this case, when

the aspect ratio is large ðH/L> 12Þ, are the following:

NuL ¼ 1þ 1:44

�
1� 1708

RaL cos u

��
1� 1708(sin1:8u)1:6

RaL cos u

�

þ
��

RaL cos u

5830

�1/3
� 1

� (20-19)

when H/L� 12, 0< u< 70�: In applying this relationship any bracketed term with a

negative value should be set equal to zero. Equation (20-19) was suggested by Hollands

et al.14 With enclosures nearing the vertical, Ayyaswamy and Catton15 suggest the

relationship

NuL ¼ NuLVðsinuÞ1/4 (20-20)

for all aspect ratios, and 70�< u< 90�. The value u ¼ 70� is termed the ‘‘critical’’ tilt

angle for vertical enclosures with H/L> 12. For smaller aspect ratios the critical angle of

tilt is also smaller. A recommended review article on the subject of inclined rectangular

cavities is that of Buchberg, Catton, and Edwards.16

EXAMPLE 1 Determine the surface temperature of a cylindrical tank measuring 0.75 m in diameter and 1.2 m

high. The tank contains a transformer immersed in an oil bath that produces a uniform surface

temperature condition. All heat loss from the surface may be assumed due to natural convection to

surrounding air at 295 K. The heat dissipation rate from the transformer is constant at 1.5 KW.

Surface areas that apply are

Atop ¼ Abottom ¼ p

4
(0:75m)2 ¼ 0:442m2

Aside ¼ p(1:2m)(0:75m) ¼ 2:83m2

The total heat transfer is the sum of the contributions from the three surfaces. This may bewritten as

qtotal ¼ ht(0:442)þ hb(0:442)þ hs(2:83)�(T � 295)½
where subscripts t (top), b (bottom), and s (sides) apply to the surfaces in question.

Rewriting this expression in terms of Nu, we have

qtotal ¼ Nut
k

0:75
(0:442)þ Nub

k

0:75
(0:442)þ Nus

k

1:2
(2:83)

� �
(T � 295)

14 K. G. T. Hollands, S. E. Unny, G. D. Raithby, and L. Konicek, J. Heat Transfer, 98, 189 (1976).
15 P. S. Ayyaswamy and I. Catton, J. Heat Transfer, 95, 543 (1973).
16 H. Buchberg, I. Catton and D. K. Edwards, J. Heat Transfer, 98, 182 (1976).
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or

qtotal ¼ 0:589Nut þ 0:589Nub þ 2:36 Nus½ �k(T � 295)

A complication exists in solving this equation because the unknown quantity is surface

temperature. The procedure to be used is trial and error where, initially, a surface temperature

value is assumed for property evaluation, and then solved for T. This new value for surface

temperature will then be used and the procedure continued until the resulting temperature agrees

with the value used in finding fluid properties.

To begin the problem, we assume that Tsurface ¼ 38:5K. Properties will thus be evaluated at

Tf ¼ 340K: For air at 340 K, v ¼ 1:955� 10�5 m2/s, k ¼ 0:0293W/m�K, a ¼ 2:80� 10�5 m2/s,

Pr ¼ 0:699, and bg/v2 ¼ 0:750� 108 1/K �m3.

For the vertical surface

Gr ¼ bg

v2
L3DT

¼ (0:750� 108 1/K �m3)(1:2m)3(90K)

¼ 11:7� 109

According to equation (20-6), the effect of curvature may be neglected if

D

L
� 35

(11:7� 109)1/4
¼ 0:106

In the present caseD/L ¼ 0:75/1:2 ¼ 0:625; thus the vertical surface will be treated using equations
for a plane wall.

Valuesmust now be determined for Nut, Nub, andNus. Equations (20-8), (20-9), and (20-4) will

be employed. The three values for Nu are determined as follows:

Nut:

L ¼ A/ p ¼ pD2/4

pD
¼ D

4
¼ 0:1875m

Nut ¼ 0:14½(0:750� 108)(0:1875)3(90)(0:699)�1/3
¼ 44:0

Nub:

Nub ¼ 0:27½(0:750� 108)(0:1875)3(90)(0:699)�1/4
¼ 20:2

Nus:

Nus ¼ 0:825þ 0:387½(0:750� 108)(1:2)3(90)(0:699)�1/6

1þ 0:492

0:699

� �9/16
" #8/27

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2

¼ 236

The solution for T is now

T ¼ 295þ 1500W

0:589(44)þ 0:589(20:2)þ 2:36(236)½ �(0:0293)

¼ 381:1K
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Using this as the new estimate for Tsurface, we have a film temperature, Tf ffi 338K. Air

properties at this temperature are

v ¼ 1:936� 10�5 m2/s k ¼ 0:0291W/m�K
a ¼ 2:77� 10�5 m2/s Pr ¼ 0:699 bg/v2 ¼ 0:775� 108 1/K �m3

The new values for Nu become

Nut ¼ 0:14 (0:775� 108)(0:1875)3(86)(0:699)
� �1/3¼ 43:8

Nut ¼ 0:27 (0:775� 108)(0:1875)3(86)(0:699)
� �1/4¼ 20:10

Nus ¼ 0:825þ 0:387 0:775� 108(1:2)3(86)(0:699)
� �1/6
1þ (0:492/0:699)9/16
h i8/27

8>><
>>:

9>>=
>>;

2

¼ 235

The revised value for Ts is now

Ts ¼ 295þ 1500/0:0293

0:589(43:8)þ 0:589(20:1)þ 2:36(235)½ �
¼ 381:4K

This result is obviously close enough and the desired result for surface temperature is

Tsurface ffi 381K

20.2 FORCED CONVECTION FOR INTERNAL FLOW

Undoubtedly the most important convective heat-transfer process from an industrial point of

view is that ofheatingor coolingafluid that isflowing inside a closed conduit.Themomentum

transfer associated with this type of flow is studied in Chapter 13. Many of the concepts and

terminology of that chapter will be used in this section without further discussion.

Energy transfer associated with forced convection inside closed conduits will be

considered separately for laminar and turbulent flow. The reader will recall that the critical

Reynolds number for conduit flow is approximately 2300.

Laminar Flow. Thefirst analytical solution for laminarflow forced convection inside tubes

was formulated by Graetz17 in 1885. The assumptions basic to the Graetz solution are as

follows:

1. The velocity profile is parabolic and fully developed before any energy exchange

between the tube wall and the fluid occurs.

2. All properties of the fluid are constant.

3. The surface temperature of the tube is constant at a value Ts during the energy

transfer.

Considering the system as depicted in Figure 20.5, we may write the velocity profile as

vx ¼ vmax 1� r

R

� �2� �
(8-7)

17 L. Graetz, Ann. Phys. u. Chem., 25, 337 (1885).
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or, recalling that vmax ¼ 2vavg, we may write

vx ¼ 2vavg 1� r

R

� �2� �
(20-21)

The applicable formof the energy equationwritten in cylindrical coordinates, assuming

radial symmetry, and neglecting @2T /@x2 (axial conduction) in comparison to the radial

variation in temperature is

vx
@T

@x
¼ a

1

r

@

@r
r
@T

@r

� �� �
(20-22)

Substituting equation (20-21) for yx into equation (20-22) gives

2vavg 1� r

R

� �2� �
@T

@x
¼ a

1

r

@

@r
r
@T

@r

� �� �
(20-23)

which is the equation to be solved subject to the boundary conditions

T ¼ Te at x ¼ 0 for 0 � r � R

T ¼ Ts at x> 0, r ¼ R

and

@T

@r
¼ 0 at x> 0, r ¼ 0

The solution to equation (20-23) takes the form

T � Te

Ts � Te
¼
X1
n¼0

cn f
r

R

� �
exp �b2n

a

Rvavg

x

R

� �
(20-24)

The terms cn, f(r/R), and bn are all coefficients to be evaluated by using appropriate

boundary conditions.

The argument of the exponential, exclusive of bn, that is, (a/Rvavg)(x/R), may be

rewritten as

4

(2Rvavg/a)(2R/x)
¼ 4

(Dvavgr/m)(c pm/k)(D/x)

or, in terms of dimensionless parameters already introduced, this becomes

4

Re PrD/x
¼ 4x/D

Pe

Temperature Te

T = Te for x < 0 T = Ts for x > 0

Fully developed
velocity profile

x

Figure 20.5 Boundary and flow

conditions for the Graetz solution.

306 Chapter 20 Convective Heat-Transfer Correlations



The product of Re and Pr is often referred to as the Peclet number, Pe. Another parameter

encountered in laminar forced convection is the Graetz number, Gz, defined as

Gz� p

4

D

x
Pe

Detailed solutions of equation (20-24) are found in the literature, and Knudsen and

Katz18 summarize these quite well. Figure 20.6 presents the results of the Graetz solution

graphically for two different boundary conditions at thewall, these being (1) a constant wall

temperature and (2) uniform heat input at the wall.

Note that, in Figure 20.6, the analytical results approach constant limiting values for

large values of x. These limits are

Nux ¼ 3:658 for Twall ¼ constant (20-25)

Nux ¼ 4:364 for q/Awall ¼ constant (20-26)

Experimental data for laminar flow in tubes have been correlated by Sieder and Tate19

by the equation

NuD ¼ 1:86 Pe
D

L

� �1/3 mb

mw

� �0:14

(20-27)

The Sieder–Tate relation is also shown in Figure 20.6 along with the two Graetz results.

These results cannot be compared directly because the Graetz results yield local values of

hx and the Sieder–Tate equation gives mean values of the heat-transfer coefficient. The

last part of equation (20-27), the ratio of the fluid viscosity at the arithmetic-mean bulk

temperature to that at the temperature of the wall, takes into account the significant effect

that variable fluid viscosity has on the heat-transfer rate. All properties other than mw are

evaluated at the bulk fluid temperature.

Turbulent Flow. When considering energy exchange between a conduit surface and a

fluid in turbulent flow, we must resort to correlations of experimental data as suggested by

N
u x

=
hD k

x

Pe (D/x)
10 102 103 104

10

102

Sieder and Tate

Graetz Constant wall temperature

Constant wall heat flux

Figure 20.6 Variation in the local Nusselt number for laminar flow in tubes.

18 J. G. Knudsen and D. L. Katz, Fluid Dynamics and Heat Transfer, McGraw-Hill Book Company, New York,

1958, p. 370.
19 F. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28, 1429 (1936).
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dimensional analysis. The three most-used equations of this nature and the restrictions on

their use are as follows.

Dittus and Boelter20 proposed the following equation of the type suggested earlier by

dimensional analysis, equation (19-7):

NuD ¼ 0:023Re0:8D Pr n (20-28)

where

1. n ¼ 0:4 if the fluid is being heated, n ¼ 0:3 if the fluid is being cooled;

2. all fluid properties are evaluated at the arithmetic-mean bulk temperature;

3. the value of ReD should be > 104;

4. Pr is in the range 0:7< Pr< 100; and

5. L/D> 60.

Colburn21 proposed an equation using the Stanton number, St, in place of NuD as

related in equation (19-9). His equation is

St ¼ 0:023Re�0:2
D Pr�2/3 (20-29)

where

1. ReD and Pr are evaluated at the film temperature, and St is evaluated at the bulk

temperature;

2. ReD, Pr, and L/D should have values within the following limits:

ReD> 104 0:7< Pr< 160 and L/D> 60

To account for high Prandtl number fluids, such as oils, Sieder and Tate22 proposed the

equation

St ¼ 0:023Re�0:2
D Pr�2/3 mb

mw

� �0:14

(20-30)

where

1. All fluid properties except mw are evaluated at bulk temperature;

2. ReD > 104;

3. 0:7< Pr< 17 000;

and

4. L/D> 60.

Of the three equations presented, the first two aremost often used for those fluids whose

Prandtl numbers are within the specified range. The Dittus–Boelter equation is simpler to

use than the Colburn equation because of the fluid property evaluation at the bulk

temperature.

20 F. W. Dittus and L. M. K. Boelter, University of California, Publ. Eng., 2, 443 (1930).
21 A. P. Colburn, Trans. A.I.Ch.E., 29, 174 (1933).
22 E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28, 1429 (1936).
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The following examples illustrate the use of some of the expressions presented in this

section.

EXAMPLE 2 Hydraulic fluid (MIL-M-5606), in fully developed flow, flows through a 2.5 cmdiameter copper tube

that is 0.61m long, with amean velocity of 0.05m/s. The oil enters at 295 K. steam condenses on the

outside tube surface with an effective heat-transfer coefficient of 11; 400W/m2 �K. find the rate of

heat transfer to the oil.

To evaluate oil properties at either the film temperature or the mean bulk temperature, we need

to know the exiting oil temperature. Equation (19-61) applies in this case

ln
TL � Ts

To � Ts
þ 4

L

D

h

rvc p
¼ 0 (19-62)

If the thermal resistance of the copper tube wall is negligible, the heat transfer rate can be

expressed as

q ¼ Asurf (Tstm � Toil)

1/hi þ 1/ho
¼ rAvc p(TL � To)

To get an indication of whether the flow is laminar or turbulent, we will assume a bulk oil

temperature of 300 K. The Reynolds number, at this temperature, is

ReD ¼ (0:025m)(0:05m/s)

9:94� 10�6 m2/s
¼ 126

and the flow is clearly laminar. The heat-transfer coefficient on the oil side can then be determined

using equation (20-27)

hi ¼ k

D
NuD ¼ k

D
1:86 Pe

D

L

� �0:33 mb

mw

� �0:14

Initially, the bulk temperature of the oil and thewall temperature will be assumed to be 300 and

372 K, respectively. Using fluid properties at these temperatures, we have

hi ¼ (0:123W/m�K)(1:86)
0:025m

(126)(155)
0:025

0:61

� �0:33 1:036� 10�4

3:72� 10�3

� �0:14

¼ 98:1W/m2 � K
Substituting into equation (19-61), we get

ln
Ts � TL

Ts � To
¼ �4

0:61m

0:025m

� �
98:1W/m2 � K

(843 kg/m3)(0:05m/s)(1897 J/kg � K)
¼ �0:120

Ts � TL

Ts � To
¼ e�0:120 ¼ 0:887

TL ¼ 372� 0:887(372� 295)

¼ 304K

With this value of TL, the mean bulk temperature of the oil is

Tb ¼ 295þ 304

2
¼ 299:5K

which is sufficiently close to the initial assumption that there is no need to iterate further.
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With an exiting temperature of 304 K the heat-transfer rate to the oil is

q ¼ rAvc p(TL � To)

¼ (843 kg/m3)
p

4

� �
(0:025m)2(0:05m/s)(1897 J/kg�K)(9K)

¼ 353W

EXAMPLE 3 Air at 1 atmosphere and a temperature of 290 K enters a 1.27-cm-ID tube at a velocity of 24m/s. The

wall temperature is maintained at 372 K by condensing steam. Evaluate the convective heat-transfer

coefficient for this situation if the tube is 1.52 m long.

As in the previous example, it will be necessary to evaluate the exiting air temperature by

ln
TL � Ts

To � Ts
þ 4

L

D

h

rvc p
¼ 0 (19-62)

To determine the type of flow, we first evaluate the Reynolds number at the tube entrance.

Re ¼ Dv

v
¼ (0:0127m)(24m/s)

1:478� 10�5 Pa� s ¼ 20 600

Flow is clearly turbulent andRe is sufficiently large that equation (20-28), (20-29), or (20-30)may be

used.

Equation (20-29)will be used. An exit temperature of 360Kwill be assumed; the corresponding

mean bulk temperature is 325 K and Tf ¼ 349. We now have

St ¼ h

rvc p
¼ 0:023Re�0:2 Pr�2/3

¼ 0:023
(0:0127)(24)

2:05� 10�5

� ��0:2

(0:697)�2/3

¼ 0:00428

Substituting into equation (19-61) we have

TL � Ts

To � Ts
¼ exp �4

1:52m

0:0127m

� �
(0:00428)

� �
¼ 0:129

and the calculated value of TL is

TL ¼ 372� (0:129)(372� 290)

¼ 361K

This value agrees closely with the initially assumed value for TL, so there is no need to perform a

second calculation. The heat-transfer coefficient is now evaluated as

h ¼ rvc p St

¼ (1:012 kg/m3)(24m/s)(1009 J/kg�K)(0:00428)
¼ 105W/m2 �K

For flow in short passages the correlations presented thus far must be modified to

account for variable velocity and temperature profiles along the axis of flow. Deissler23 has

23 R. G. Deissler, Trans. A.S.M.E., 77, 1221 (1955).

310 Chapter 20 Convective Heat-Transfer Correlations



analyzed this region extensively for the case of turbulent flow. The following equationsmay

be used to modify the heat-transfer coefficients in passages for which L/D< 60:

for 2< L/D< 20

hL

h1
¼ 1þ (D/L)0:7 (20-31)

and for 20< L/D< 60
hL

h1
¼ 1þ 6D/L (20-32)

Both of these expressions are approximations relating the appropriate coefficient, hL, in

terms of h1, where h1 is the value calculated for L/D> 60.

20.3 FORCED CONVECTION FOR EXTERNAL FLOW

Numerous situations exist in practice in which one is interested in analyzing or describing

heat transfer associatedwith the flowof a fluid past the exterior surface of a solid. The sphere

and cylinder are the shapes of greatest engineering interest, with heat transfer between these

surfaces and a fluid in crossflow frequently encountered.

The reader will recall the nature of momentum-transfer phenomena discussed in

Chapter 12 relative to external flow. The analysis of such flow and of heat transfer in these

situations is complicated when the phenomenon of boundary-layer separation is encoun-

tered. Separationwill occur in those cases in which an adverse pressure gradient exists; such

a condition will exist for most situations of engineering interest.

Flow Parallel to Plane Surfaces. This condition is amenable to analysis and has already

been discussed in Chapter 19. The significant results are repeated here for completeness.

We recall that, in this case, the boundary layer flow regimes are laminar for Rex< 2�
105 and turbulent for 3� 106<Rex. For the laminar range

Nux ¼ 0:332Re1/2x Pr1/3 (19-25)

and
NuL ¼ 0:664Re1/2L Pr1/3 (19-26)

With turbulent flow in the boundary layer, an application of the Colburn analogy

StxPr
2/3 ¼ Cfx

2
(19-37)

along with equation (12-73) yields

Nux ¼ 0:0288Re4=5x Pr1/3 (20-33)

A mean Nusselt number can be calculated using this expression for Nux. The resulting

expression is
NuL ¼ 0:036Re

4=5
L Pr1/3 (20-34)

Fluid properties should be evaluated at the film temperature when using these equations.

Cylinders in Crossflow. Eckert and Soehngen24 evaluated local Nusselt numbers at

various positions on a cylindrical surface past which flowed an air stream with a range

24 E. R. G. Eckert and E. Soehngen, Trans. A.S.M.E., 74, 343 (1952).
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in Reynolds numbers from 20 to 600. Their results are shown in Figure 20.7. A much

higher Reynolds number range was investigated by Giedt25 whose results are shown in

Figure 20.8.

Figures 20.7 and 20.8 show a smooth variation in the Nusselt number near the

stagnation point. At low Reynolds numbers, the film coefficient decreases almost con-

tinuously from the stagnation point, the only departure being a slight rise in the separated-

wake region of the cylinder. At higher Reynolds numbers, as illustrated in Figure 20.7, the

film coefficient reaches a second maximum, which is greater than the stagnation-point

value. The second peak in the Nusselt number at high Reynolds numbers is due to the fact

that the boundary layer undergoes transition from laminar to turbulent flow. In the bottom

curves of Figure 20.7, the laminar boundary layer separates from the cylinder near 808 from
the stagnation point, and no large change in the Nusselt number occurs. The effect of higher

Reynolds number is twofold. First, the separation pointmoves past 908 as the boundary layer
becomes turbulent; thus less of the cylinder is engulfed in the wake. A second effect is that

the Nusselt number reaches a value that is higher than the stagnation-point value. The

increase is due to the greater conductance of the turbulent boundary layer.

It is quite apparent from the figures that the convective heat-transfer coefficient varies in

an irregular, complexmanner in external flow about a cylinder. It is likely, in practice, that an

average h for the entire cylinder is desired. McAdams26 has plotted the data of 13 separate
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Figure 20.7 Local numbers for crossflow about a circular cylinder at low Reynolds numbers.

(From E. R. G. Eckert and E. Soehngen, Trans. A.S.M.E., 74, 346 (1952). By permission of the

publishers.)

25 W. H. Giedt, Trans. A.S.M.E., 71, 378 (1949).
26 W. H. McAdams, Heat Transmission, Third Edition, McGraw-Hill Book Company, New York, 1949.
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investigations for the flow of air normal to single cylinders and found excellent agreement

whenplottedasNuDvs.ReD.His plot is reproduced inFigure20.9.Note thatvaluesofNuDare

for Pr ¼ 1. For other fluids a correction factor, Pr1/3, should be employed, that is,

NuD ¼ NuD(figure)Pr
1/3.

A widely used correlation for these data is of the form

NuD ¼ BRenPr1/3 (20-35)

where the constants B and n are functions of the Reynolds number. Values for these

constants are given in Table 20.3. The film temperature is appropriate for physical

property evaluation.

Churchill and Bernstein27 have recommended a single correlating equation covering

conditions for which ReDPr> 0:2. This correlation is expressed in equation (20-36).

NuD ¼ 0:3þ 0:62Re1/2D Pr1/3

1þ (0:4/Pr)2/3
h i1/4 1þ ReD

282; 000

� �5/8
" #4/5

(20-36)
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Figure 20.8 Local Nusselt numbers for

crossflow about a circular cylinder at

high Reynolds numbers.

(From W.H. Giedt, Trans. A.S.M.E., 71,

378 (1949). By permission of the

publishers.)

27 S. W. Churchill and M. Bernstein, J. Heat Transfer, 99, 300 (1977).
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Single Spheres. Local convective heat-transfer coefficients at various positions relative to

the forward stagnation point for flow past a sphere are plotted in Figure 20.10, following the

work of Cary.28

McAdams29 has plotted the data of several investigators relating NuD vs. ReD for air

flowing past spheres. His plot is duplicated in Figure 20.11.

A recent correlation proposed by Whitaker30 is recommended for the following con-

ditions: 0:71< Pr< 380, 3:5<ReD< 7:6� 104, 1:0<m1/ms< 3:2. All properties are

Table 20.3 Values of B and n for use in equation (20-35)

ReD B n

0.4/–4 0.989 0.330

4–40 0.911 0.385

40–4000 0.683 0.466

4000–40,000 0.193 0.618

40,000–400,000 0.027 0.805

ReD

0.1

NuD
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Figure 20.9 Nu vs. Re for flow normal to single cylinders.

Note: These values are strictly valid when Prffi1.

(From W. H. McAdams, Heat Transmission, Third Edition, McGraw-Hill Book Company, New York, 1954, p. 259.)

28 J. R. Cary, Trans. A.S.M.E., 75, 483 (1953).
29 W. H. McAdams, op. cit.
30 S. Whitaker, A.I.Ch.E.J., 18, 361 (1972).
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evaluated at T1 except for ms, which is the value at the surface temperature. Whitaker’s

correlation is

NuD ¼ 2þ (0:4Re1/2D þ 0:06Re2/3D )Pr0:4(m1/ms)
1/4 (20-37)

An important case is that of falling liquid drops, modeled as spheres. The correlation of

Ranz and Marshall,31 for this case, is

NuD ¼ 2þ 0:6Re1/2D Re1/3 (20-38)

Tube Banks in Crossflow. When a number of tubes are placed together in a bank or

bundle, asmight be encountered in a heat exchanger, the effective heat-transfer coefficient is

affected by the tube arrangement and spacing, in addition to those factors already considered

for flow past single cylinders. Several investigators have made significant contributions to

the analysis of these configurations.

As fluid flow through and past tube bundles involves an irregular flow path, some

investigators have chosen significant lengths other than D, the tube diameter, to use in

calculating Reynolds numbers. One such term is the equivalent diameter of a tube bundle

Deq, defined as

Deq ¼ 4(SLST � pD2/4)

pD
(20-39)

where SL is the center-to-center distance between tubes along the direction of flow, ST is

the center-to-center distance between tubes normal to the flow direction, and D is the OD

of a tube.

Bergelin, Colburn, and Hull32 studied the flow of liquids past tube bundles in the region

of laminar flow with 1<Re< 1000: Their results, plotted as St Pr2/3(mw/mb)
0:14 vs. Re for

various configurations, are presented in Figure 20.12. In that figure all fluid properties

except mw are evaluated at the average bulk temperature.

For liquids in transition flow across tube bundles, Bergelin, Brown, and Doberstein33

extended the work just mentioned for five of the tube arrangements to include values of Re

up to 104. Their results are presented both for energy transfer and friction factor vs. Re in

Figure 20.13.

In addition to the greater Reynolds number range, Figure 20.13 involves Re calculated

by using the tube diameter,D, as opposed to Figure 20.12, in whichDeq, defined by equation

(20-37), was used.

Wind–Chill Equivalent Temperature. The reader is undoubtedly familiar with weather

reports where, in addition to measured air temperatures, an indication of how cold one

actually feels is expressed as the wind–chill equivalent temperature. This temperature

indicates how cold thewind actually makes one feel; the stronger thewind blows, the colder

the air feels to the human body.

The determination of wind–chill equivalent temperature is an interesting example of

the combined effects of convective and conductive heat transfer between the body and the

adjacent air. For a complete explanation of the modeling used in determining this quantity,

31 W. Ranz and W. Marshall, Chem. Engr. Progr., 48, 141 (1952).
32 O. P. Bergelin, A. P. Colburn, and H. L. Hull, Univ. Delaware, Eng. Expt. Sta. Bulletin No. 2 (1950).
33 O. P. Bergelin, G. A. Brown, and S. C. Doberstein, Trans. A.S.M.E., 74, 953 (1952).
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the reader is referred to a 1971 paper by Steadman.34 Tables 20.4 and 20.5, provide values

of the wind–chill equivalent temperature as a function of air temperature and wind speed,

in English and SI units, respectively.

20.4 CLOSURE

Many of the more useful experimentally developed correlations for predicting convective

heat-transfer coefficients have been presented in this chapter. Those graphs and equations

presented are a small part of the information of this type available in the literature. The

information included should, in any case, allowmost of the more common convection heat-

transfer coefficients to be predicted with some confidence.

The convection phenomena considered have included the following:

1. Natural convection past vertical and horizontal surfaces, plus some useful sim-

plified expressions for air;

2. Forced convection for internal flow, including laminar and turbulent flow correla-

tions; and

3. Forced convection for external flowwith cylinders, spheres, and tube bundles being

the types of surfaces so considered.

Table 20.4 Wind–chill equivalent temperature—english units

Air temperature (8F)
35 30 25 20 15 10 5 0 �5 �10 �15 �20 �25

W
in
d
sp
ee
d
(m

i/
h
r) 5 32 27 22 16 11 6 0 �5 �10 �15 �21 �26 �31

10 22 16 10 3 �3 �9 �15 �22 �27 �34 �40 �46 �52

15 16 9 2 �5 �11 �18 �25 �31 �38 �45 �51 �58 �65

20 12 4 �3 �10 �17 �24 �31 �39 �46 �53 �60 �67 �74

25 8 1 �7 �15 �22 �29 �36 �44 �51 �59 �66 �74 �81

30 6 �2 �10 �18 �25 �33 �41 �49 �56 �64 �71 �79 �86

35 4 �4 �12 �20 �27 �35 �43 �52 �58 �67 �74 �82 �89

40 3 �5 �13 �21 �29 �37 �45 �53 �60 �69 �76 �84 �92

Table 20.5 Wind–chill equivalent temperature—SI units

Air temperature (8C)
8 4 0 �4 �8 �12 �16 �20 �24 �28 �32 �36 �40

W
in
d
sp
ee
d
(k
m
/h
r) 0 8 4 0 �4 �8 �12 �16 �20 �24 �28 �32 �36 �40

10 5 0 �4 �8 �13 �17 �22 �26 �31 �35 �40 �44 �49

20 0 �5 �10 �15 �21 �26 �31 �36 �42 �47 �52 �57 �63

30 �3 �8 �14 �20 �25 �31 �37 �43 �48 �54 �60 �65 �71

40 �5 �11 �17 �23 �29 �35 �41 �47 �53 �59 �65 �71 �77

50 �6 �12 �18 �25 �31 �37 �43 �49 �56 �62 �68 �74 �80

60 �7 �13 �19 �26 �32 �39 �45 �51 �58 �64 �70 �77 �83

34 R. G. Steadman, Indices of windchill of clothed persons, J. App. Meteorol, 10, 674–683 (1971).
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The reader is reminded to observe any special considerations relative to the equations

and plots in this chapter. Such considerations include whether to evaluate fluid properties at

the bulk or film temperature, what significant length is used in a given correlation, and what

is the allowable Prandtl and Reynolds number range for a given set of data.

PROBLEMS

20.1 A 750-W immersion heater in the form of a cylinder with

3/4-in. diameter and 6 in. in length is placed in 958F stagnant

water. Calculate the surface temperature of the heater if it is

oriented with its axis

a. vertical;

b. horizontal.

20.2 Repeat Problem 20.1 if the stagnant liquid is

a. bismuth at 7008F;

b. hydraulic fluid at 08F.

20.3 An immersion heater, rated at 1000 W, is in the form of a

rectangular solid with dimensions 16 cm by 10 cm by 1 cm.

Determine the surface temperature of the heater if it is oriented in

295 K water with

a. the 16-cm dimension vertical,

b. the 10-cm dimension vertical.

20.4 A 2-in. copper cylinder, 6 in. in length, at a uniform

temperature of 2008F, is plunged vertically into a large tank of

water at 508F.

a. How long will it take for the outside surface of the cylinder

to reach 1008F?

b. How long will it take for the center of the cylinder to reach

1008F?

c. What is the surface temperature when the center tempera-

ture is 1008F? Heat transfer from ends of the cylinder may

be neglected.

20.5 A fluorescent light bulb, rated at 100 W, is illuminated in

air at 258C and atmospheric pressure. Under these conditions the

surface temperature of the glass is 1408C.
Determine the rate of heat transfer from the bulb by natural

convection. The bulb is cylindrical, having a diameter of 35 mm

and a length of 0.8 m, and is oriented horizontally.

Note that your result is not equal to 100W.Where does the

remaining energy go?

20.6 Determine the steady-state surface temperature of an

electric cable, 25 cm in diameter, which is suspended horizon-

tally in still air in which heat is dissipated by the cable at a rate of

27 W per meter of length. The air temperature is 308C.

20.7 A copper cylinder 20.3 cm long with a diameter of 2.54

cm is being used to evaluate the surface coefficient in a labora-

tory experiment. When heated to a uniform temperature of

32.58C and then plunged into a �18C liquid bath, the center

temperature of the cylinder reaches a value of 4.88C in 3 min.

Assuming the heat exchange between the cylinder and water

bath to be purely by convection, what value for the surface

coefficient is indicated?

20.8 Rubber balls are molded into spheres and cured at 360 K.

Following this operation they are allowed to cool in room air.

What will be the elapsed time for the surface temperature of

a solid rubber ball to reach 320 K when the surrounding air

temperature is 295K? Consider balls with diameters of 7.5,

5, and 1.5 cm. Properties of rubber that may be used are k ¼
0:24W/m � K, r ¼ 1120 kg/m3, cp ¼ 1020 J/kg�K:
20.9 Determine the required time for the rubber balls described

in Problem 20.8 to reach the condition such that the center

temperature is 320K.Whatwill be the surface temperaturewhen

the center temperature reaches 320 K?

20.10 A 1-in., 16-BWG copper tube has its outside surface

maintained at 2408F. If this tube is located in still air at 608F,what
heat flux will be achieved if the tube is oriented

a. horizontally?

b. vertically?

The tube length is 10 ft.

20.11 SolveProblem20.10 if themedium surrounding the tube

is stagnant water at 608F.

20.12 A 0.6-m-diameter spherical tank contains liquid oxygen

at 78 K. This tank is covered with 5 cm of glass wool. Determine

the rate of heat gain if the tank is surrounded by air at 278 K. The

tank is constructed of stainless steel 0.32 cm thick.

20.13 A ‘‘swimming-pool’’ nuclear reactor, consisting of 30

rectangular plates measuring 1 ft in width and 3 ft in height,

spaced 21/2 in. apart, is immersed inwater at 808F. If 2008F is the
maximum allowable plate temperature, what is the maximum

power level at which the reactor may operate?

20.14 A solar energy collector measuring 20� 20 ft is

installed on a roof in a horizontal position. The incident solar

energy flux is 200Btu/h ft2; and the collector surface tempera-

ture is 1508F. What fraction of incident solar energy is lost

by convection to the stagnant surrounding air at a temperature

of 508F? What effect on the convective losses would result

if the collector were crisscrossed with ridges spaced 1 ft

apart?

20.15 Given the conditions for Problem 20.14, determine the

fraction of incident solar energy lost by convection to the

surrounding air at 283 K flowing parallel to the collector surface

at a velocity of 6.1 m/s.
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20.16 Cast-iron cannonballs used in the War of 1812 were

occasionally heated for some extended time so that, when fired at

houses and ships, theywould set them afire. If one of these the so-

called ‘‘hot shot’’ with a 15-cm diameter were at a uniform

temperature of 1300K,what heat flux valuewould exist if it were

suddenly placed in still air at 270 K? The following properties of

cast iron may be used:

k ¼ 39:8W/m�K
cp ¼ 4:8 J/kg�K
r ¼ 7370 kg/m3

20.17 Given the information in Problem 20.16, construct a plot

of convective heat-transfer coefficient vs. temperature for values

of Tsurface between 420 and 1300 K. How long would it take for

the surface temperature of a cannonball to reach 600 K? What

would be its center temperature at this time?

20.18 Copper wire with a diameter of 0.5 cm is covered with a

0.65-cm layer of insulating material having a thermal conduc-

tivity of 0:242W/m�K:The air adjacent to the insulation is at 290
K. If the wire carries a current of 400 A, determine

a. the convective heat-transfer coefficient between the insula-

tion surface and the surrounding air;

b. the temperatures at the insulation-copper interface and at the

outside surface of the insulation.

20.19 Work Problem for an aluminum conductor of the same

size ðresistivity of aluminum ¼ 2:83� 10�6 ohm-cmÞ:
20.20 If the steam line described in Problem 20.40 is bare

and surrounded by still air at 708F, what total heat transfer would
be predicted from a 20-ft length of bare pipe? Consider the

bare pipe to be a black surface and the surroundings black at

708F.

20.21 Solve Problem 20.20 if the bare pipe is located so that

295 K air flows normal to the pipe axis at a velocity of 6.5 m/s.

20.22 Solve Problem 20.20 if 3 in. of insulation having a

thermal conductivity of 0:060Btu/h ft �F is applied to the outside
of the pipe. Neglect radiation from the insulation. What will be

the outside surface temperature of the insulation?

20.23 What thickness of insulation having a thermal conduc-

tivity as given in Problem 20.22 must be added to the steam pipe

of Problem 20.40 in order that the outside temperature of the

insulation does not exceed 2508F?

20.24 If insulation having a thermal conductivity of

0:060Btu/h ft �F is added to the outside of the steam pipe

described in Problem 20.40, what thickness will be necessary

if radiation losses from the outside surface of the insulation

account for no more than 15% of the total? The surroundings

may be considered black at 708F. What is the temperature at the

outside surface of the insulation under these conditions?

20.25 A cooking oven has a top surface temperature of 458C
when exposed to still air. At this condition the inside oven

temperature and room air temperature are 180 and 208C, respec-
tively, and heat is transferred from the top surface at 40 W.

To reduce the surface temperature, as required by safety

regulations, room air is blown across the topwith a velocity of 20

m/s. Conditions inside the oven may be considered unchanged.

a. What will be the rate of heat loss under this new operating

condition?

b. What will be the top surface temperature?

20.26 Saturated steam at 0.1 bar condenses on the outside of a

copper tube having inner and outer diameters of 16.5 and 19mm,

respectively. The surface coefficients on the inner (water) sur-

face and outer (steam) surface are 5200 and 6800W/m2 �K;
respectively.

When themeanwater temperature is 28 K, estimate the rate

of steam condensed per meter of tube length. The latent heat of

condensation of steam may be taken as 2:390 kJ/kg:

20.27 Solve Problem 20.41 if, instead of six tubes, three tubes

each 5 m in length are used to heat the oil.

20.28 Air at 608F and atmospheric pressure flows inside a

1-in., 16-BWGcopper tubewhose surface ismaintained at 2408F
by condensing steam. Find the temperature of the air after

passing through 20 ft of tubing if its entering velocity is 40 fps.

20.29 A 1-in., 16-BWG copper tube, 10 ft long, has its outside

surface maintained at 2408F. Air at 608F and atmospheric pres-

sure is forced past this tube with a velocity of 40 fps. Determine

the heat flux from the tube to the air if the flow of air is

a. parallel to the tube;

b. normal to the tube axis.

20.30 SolveProblem20.29 if themediumflowing past the tube

in forced convection is water at 608F.

20.31 SolveProblem20.29 if themediumflowing past the tube

in forced convection is MIL-M-5606 hydraulic fluid.

20.32 An industrial heater is composed of a tube bundle

consisting of horizontal 3/8-in.-OD tubes in a staggered array

with tubes arranged in equilateral triangle fashion having a pitch-

to-diameter ratio of 1.5. If water at 1608F flows at 20 ft/s past the
tubes with constant surface temperature of 2128F, what will be
the effective heat-transfer coefficient?

20.33 For the heater consisting of the tube bank described in

Problem 20.32, evaluate the heat transferred to the water if the

tube array consists of six rows of tubes in the flow direction with

eight tubes per row. The tubes are 5 ft long.

20.34 Heat transfer between an electrically heated circular

cylinder and water is to be examined for three different condi-

tions. The heater has a diameter of 1.26 cm and is 7.5 cm long.

The surface of the heater is at 380K and thewater is at 295K.All

heat transfer is from the lateral surface.

Evaluate the heat transfer, in W, under conditions where

a. energy exchange is by natural convection with the heater

axis oriented horizontally;

b. energy exchange is by natural convection with heater axis

oriented vertically;

320 Chapter 20 Convective Heat-Transfer Correlations



c. energy exchange is by forced convection with water flowing

across the lateral surface at 1:5m/s:

20.35 Solve Problem 20.16 with all conditions as given except

that the ‘‘hot shot’’ is traveling through the air at 270 K with a

velocity of 150 m/s.

20.36 What would be the results of Problem 20.18 if a fan

provided an air flow normal to the conductor axis at a velocity of

9 m/s?

20.37 An electric light bulb, rated at 60 W, has a surface

temperature of 1458C when cooled by atmospheric air at

258C. The air flows past the bulb with a velocity of 0.5 m/s.

The bulb can be modeled as a sphere with a diameter of 7.5 cm.

Determine the heat transfer from the bulb by the mechanism of

forced convection.

20.38 A valve on a hot-water line is opened just enough to

allowaflowof 0.06 fps. Thewater ismaintained at 1808F, and the
inside wall of the 1/2-in. schedule-r0 water line is at 808F. What

is the total heat loss through 5 ft of water line under these

conditions? What is the exit water temperature?

20.39 When the valve on the water line in Problem 20.38 is

opened wide, the water velocity is 35 fps. What is the heat loss

per 5 ft of water line in this case if the water and pipe tempera-

tures are the same as specified in Problem 20.38?

20.40 Steam at 400 psi, 8008F flows through a 1-in. schedule-

140 steel pipe at a rate of 10; 000 lbm/h: Estimate the value of h

that applies at the inside pipe surface.

20.41 Oil at 300 K is heated by steam condensing at 372 K on

the outside of steel pipes with ID ¼ 2:09 cm; OD ¼ 2:67 cm:
The oil flow rate is 1.47 kg/s; six tubes, each 2.5m long, are used.

The properties of oil to be used are as follows:

Determine the rate of heat transfer to the oil.

20.42 Engine oil with properties given below flows at a rate of

136 kg per hour through a 7.5-cm-ID pipewhose inside surface is

maintained at 1008C. If the oil enters at 1608C, what will its
temperature be at the exit of a 15-m-long pipe?

20.43 An apparatus, used in an operating room to cool blood,

consists of a coiled tube that is immersed in an ice bath.Using this

apparatus, blood, flowing at 0:006m3/h; is to be cooled from40 to

308C. The inside diameter of the tube is 2.5 mm, and the surface

coefficient between the ice bath and outer tube surface is

500W/m2 �K: The thermal resistance of the tube wall may be

neglected.

Determine the required length of tubing to accomplish the

desired cooling. Properties of blood are the following:

r ¼ 1000 kg/m2

k ¼ 0:5W/m�K
cp ¼ 4:0 kJ/kg�K
v ¼ 7� 10�7 m2/s

Determine the total heat transfer to the oil and its temperature at

the heater exit.

20.44 A 1.905-cm-diameter brass tube is used to condense

steam on its outer surface at 10.13 kPa pressure. Water at 290

K is circulated through the tube. Inside and outside surface

coefficients are 1700 and 8500W/m2 �K; respectively. Find

the rate of steam condensed per hour per meter of the tube

length under these conditions. The following information is

pertinent:

tube OD ¼ 1:905 cm
tube ID ¼ 1:656 cm
steam saturation temperature ¼ 319:5K
steam latent heat, hfg ¼ 2393 kJ=kg:

20.45 A system for heating water with an inlet temperature of

258C to an exiting temperature of 708C involves passing the

water through a thick-walled tubewith inner and outer diameters

of 25 and 45 mm, respectively. The outer tube surface is well

insulated, and the electrical heatingwithin the tubewall provides

for a uniform generation of q̇ ¼ 1:5� 106 W/m3:

a. For a mass flow rate of water, ṁ ¼ 0:12 kg/s; how long must

the tube be to achieve the desired outlet temperature?

b. If the inner surface of the tube at the outlet is Ts ¼ 110�C;
what is the local convective coefficient at this location?

20.46 Air at 25 psia is to be heated from 60 to 1008F in a

smooth, 3/4-in.-ID tube whose surface is held at a constant

temperature of 1208F. What is the length of the tube required for

an air velocity of 25 fps? At 15 fps?

20.47 Air is transported through a rectangular duct measur-

ing 2 ft by 4 ft. The air enters at 1208F and flows with a mass

velocity of 6 lbm/s�ft2: If the duct walls are at a temperature of

808F, how much heat is lost by the air per foot of duct length?

What is the corresponding temperature decrease of the air per

foot?

20.48 Cooling water flows through thin-walled tubes in a

condenser with a velocity of 1.5 m/s. The tubes are 25.4 mm

in diameter. The tube-wall temperature is maintained constant at

370 K by condensing steam on the outer surface. The tubes are 5

m long and the water enters at 290 K.

T, K r, kg/m3 c p, J/kg�K k,W/m�K m, Pa�s

300 910 1:84� 103 0.133 0.0414

310 897 1:92� 103 0.131 0.0228

340 870 2:00� 103 0.130 7:89� 10�3

370 865 2:13� 103 0.128 3:72� 10�3

T, K
r ,

kg/m3

c p,

J/kg�K
k,

W/m�K
v,

m2/s� 103 Pr

373 842 2.219 0.137 0.0203 276

393 831 2.306 0.135 0.0124 175

413 817 2.394 0.133 0.0080 116

433 808 2.482 0.132 0.0056 84
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Estimate the exiting water temperature and the heat-

transfer rate per tube.

20.49 Air, at 322 K, enters a rectangular duct with a mass

velocity of 29:4 kg/s�m2: The duct measures 0.61 m by 1.22 m

and its walls are at 300 K.

Determine the rate of heat loss by the air per meter of duct

length and the corresponding decrease in air temperature per

meter.

20.50 Air at atmospheric pressure and 108C enters a rectan-

gular duct that is 6 m long having dimensions of 7.5 and 15 cm in

cross section. The surfaces are maintained at 708C by solar

irradiation. If the exiting air temperature is to be 308C,what is the
required flow rate of the air?

20.51 A tube bank employs an in-line arrangement with ST ¼
SL ¼ 3:2 cm and tubes that are 1.8 cm in outside diameter. There

are 10 rows of tubes, which are held at a surface temperature of

858C. Air at atmospheric pressure and 208C flows normal to the

tubes with a free stream velocity of 6 m/s. The tube bank is 10

rows deep, and the tubes are 1.8m long.Determine the amount of

heat transferred.

20.52 Rework Problem 20.51 for a staggered arrangement.

20.53 A tube bank employs tubes that are 1.30 cm in outside

diameter at ST ¼ SL ¼ 1:625 cm. There are eight rows of tubes,

which are held at a surface temperature of 908C. Air, at atmo-

spheric pressure and a bulk temperature 278C, flows normal to

the tubeswith a free streamvelocity of 1.25m/s. The tube bank is

eight rows deep, and the tubes are 1.8 m long. Estimate the heat-

transfer coefficient.

20.54 Rework Problem 20.53 for a staggered arrangement. All

other conditions remain the same.
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Chapter 21

Boiling and Condensation

Energy-transfer processes associated with the phenomena of boiling and condensation

may achieve relatively high heat-transfer rates, whereas the accompanying temperature

differences may be quite small. These phenomena, associated with the change in phase

between a liquid and a vapor, are more involved and thus more difficult to describe

than the convective heat-transfer processes discussed in the preceding chapters. This is

due to the additional considerations of surface tension, latent heat of vaporization,

surface characteristics, and other properties of two-phase systems that were not

involved in the earlier considerations. The processes of boiling and condensation deal

with opposite effects relative to the change in phase between a liquid and its vapor.

These phenomena will be considered separately in the following sections.

21.1 BOILING

Boiling heat transfer is associated with a change in phase from liquid to vapor. Extremely

high heat fluxes may be achieved in conjunction with boiling phenomena, making the

application particularly valuable where a small amount of space is available to accom-

plish a relatively large energy transfer. One such application is the cooling of nuclear

reactors. Another is the cooling of electronic devices where space is very critical. The

advent of these applications has spurred the interest in boiling, and concentrated research

in this area in recent years has shed much light on the mechanism and behavior of the

boiling phenomenon

There are two basic types of boiling: pool boiling and flow boiling. Pool boiling

occurs on a heated surface submerged in a liquid pool that is not agitated. Flow boiling

occurs in a flowing stream, and the boiling surface may itself be a portion of the flow

passage. The flow of liquid and vapor associated with flow boiling is an important type of

two-phase flow.

Regimes of Boiling. An electrically heated horizontal wire submerged in a pool of water

at its saturation temperature is a convenient system to illustrate the regimes of boiling heat

transfer. A plot of the heat flux associated with such a system as the ordinate vs. the

temperature difference between the heated surface and saturated water is depicted in

Figure 21.1. There are six different regimes of boiling associated with the behavior

exhibited in this figure.

In regime I, the wire surface temperature is only a few degrees higher than that of the

surrounding saturated liquid. Natural convection currents circulate the superheated liquid,

and evaporation occurs at the free liquid surface as the superheated liquid reaches it.

An increase in wire temperature is accompanied by the formation of vapor bubbles on

the wire surface. These bubbles form at certain surface sites, where vapor bubble nuclei are
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present, break off, rise, and condense before reaching the free liquid surface. This is the

process occurring in regime II.

At a still higher wire surface temperature, as in regime III, larger and more numerous

bubbles form, break away from thewire surface, rise, and reach the free surface. Regimes II

and III are associated with nucleate boiling.

Beyond the peak of this curve, the transition boiling regime is entered. This is region IV

on the curve. In this regime, a vapor film forms around the wire, and portions of this film

break off and rise, briefly exposing a portion of the wire surface. This film collapse and

reformation and this unstable nature of the film is characteristic of the transition regime.

When present, the vapor film provides a considerable resistance to heat transfer; thus, the

heat flux decreases.

When the surface temperature reaches a value of approximately 4008F above the

saturated liquid, the vapor film around the wire becomes stable. This is region V, the stable

film-boiling regime.

For surface temperatures of 10008F or greater above that of the saturated liquid, radiant
energy transfer comes into play, and the heat flux curve rises once more. This is designated

as region VI in Figure 21.1

The curve in Figure 21.1 can be achieved if the energy source is a condensing vapor. If,

however, electrical heating is used, then regime IVwill probably not be obtained because of

wire ‘‘burnout.’’ As the energy flux is increased, DT increases through regions I, II, and III.
When the peak value of q/A is exceeded slightly, the required amount of energy cannot be

transferred by boiling. The result is an increase in DT accompanied by a further decrease in

the possible q/A. This condition continues until point b is reached. As DT at point b is

extremely high, the wire will long since have reached its melting point. Point a on the curve

is often referred to as the ‘‘burnout point’’ for these reasons.

As the mechanism of energy removal is intimately associated with buoyant forces, the

magnitude of the body-force intensity will affect both the mechanism and the magnitude of

boiling heat transfer. Other than normal gravitational effects are encountered in space

vehicles.

Note the somewhat anomalous behavior exhibited by the heat flux associated with

boiling. One normally considers a flux to be proportional to the driving force; thus, the heat

flux might be expected to increase continuously as the temperature difference between the
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Figure 21.1 Pool boiling in water on a horizontal wire at atmospheric pressure.
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heated surface and the saturated liquid increases. This, of course, is not the case; the very

high heat fluxes associated with moderate temperature differences in the nucleate-boiling

regime are much higher than the heat fluxes resulting from much higher temperature

differences in the film-boiling regime. The reason for this is the presence of the vapor film,

which covers and insulates the heating surface in the latter case

Correlations of Boiling Heat-Transfer Data. As the fluid behavior in a boiling situation

is very difficult to describe, there is no adequate analytical solution available for boiling

transfer. Various correlations of experimental data have been achieved for the different

boiling regimes; the most useful of these follow.

In the natural convection regime, regime I of Figure 21.1, the correlations presented in

Chapter 20 for natural convection may be used.

Regime II, the regime of partial nucleate boiling and partial natural convection, is a

combination of regimes I and III, and the results for each of these two regimes may be

superposed to describe a process in regime II.

The nucleate-boiling regime, regime III, is of great engineering importance because of

the very high heat fluxes possible with moderate temperature differences. That data for this

regime are correlated by equations of the form

Nub ¼ f(Reb, PrL) (21-1)

The parameter Nub in equation (21-1) is a Nusselt number defined as

Nub� (q/A)Db

(Ts � Tsat)kL
(21-2)

where q/A is the total heat flux,Db is the maximum bubble diameter as it leaves the surface,

Ts � Tsat is the excess temperature or the difference between the surface and saturated-

liquid temperatures, and kL is the thermal conductivity of the liquid. The quantity, PrL, is the

Prandtl number for the liquid. The bubble Reynolds number, Reb, is defined as

Reb� DbGb

mL

(21-3)

where Gb is the average mass velocity of the vapor leaving the surface and mL is the

liquid viscosity

The mass velocity, Gb, may be determined from

Gb ¼ q/A

hfg
(21-4)

where hfg is the latent heat of vaporization

Rohsenow1 has used equation (21-1) to correlate Addoms’s2 pool-boiling data for

a 0.024-in.-diameter platinum wire immersed in water. This correlation is shown in

Figure 21.2 and is expressed in equation form as

q

A
¼ mLhfg

�
g(rL � rv)

s

�
1/2
�
cpL(Ts � Tsat)

Csf hfg Pr
1:7
L

�
3

(21-5)

where cpL is the heat capacity for the liquid and the other terms have their usual meanings.

1 W. M. Rohsenow, A.S.M.E. Trans., 74, 969 (1952).
2 J. N. Addoms, D.Sc. Thesis, Chemical Engineering Department, Massachusetts Institute of Technology,

June 1948.
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The coefficients Csf in equation (21-5) vary with the surface–fluid combination. The

curve drawn in Figure 21.2 is for Csf ¼ 0:013. A table of Csf for various combinations of

fluid and surface is presented by Rohsenow and Choi3 and duplicated here as Table 21.1.

From earlier discussion it is clear that the burnout point has considerable impor-

tance. The ‘‘critical heat flux’’ is the value of q/A represented by point a in Figure 21.1.
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Figure 21.2 Correlation of pool-

boiling data.

(From W. M. Rohsenow and H.

Choi, Heat, Mass, and Momentum

Transfer, Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1961,

p. 224. By permission of the

publishers.)

3 W. M. Rohsenow and H. Y. Choi, Heat, Mass, and Momentum Transfer, Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1961.

Table 21.1 Values of Csf for equation (21-5)

Surface/fluid combination Csf

Water/nickel 0.006

Water/platinum 0.013

Water/copper 0.013

Water/brass 0.006

CCl4/copper 0.013

Benzene/chromium 0.010

n-Pentane/chromium 0.015

Ethyl alcohol/chromium 0.0027

Isopropyl alcohol/copper 0.0025

35% K2CO3/copper 0.0054

50% K2CO3/copper 0.0027

n-Butyl alcohol/copper 0.0030
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An analysis of conditions at burnout modified by experimental results is expressed in

equation 21-6 as

q/Ajcritical ¼ 0:18hfgrv
sg(rL � rv)

r2v

� �
1/4

(21-6)

The interested reader is referred to the work of Zuber4 for a discussion of this subject.

Regime IV, that of unstable film boiling, is not of great engineering interest, and no

satisfactory correlation has been found for this region as yet.

The stable-film-boiling region, regime V, requires high surface temperatures; thus, few

experimental data have been reported for this region.

Stable film boiling on the surface of horizontal tubes and vertical plates has been

studied both analytically and experimentally by Bromley.5,6 Considering conduction alone

through the film on a horizontal tube, Bromley obtained the expression

h ¼ 0:62
k3vrv(rL � rv)g(hfg þ 0:4 c pLDT)

Domv(Ts � Tsat)

� �
1/4

(21-7)

where all terms are self-explanatory except Do, which is the outside diameter of the tube.

A modification in equation (21-7) was proposed by Berenson7 to provide a similar

correlation for stable film boiling on a horizontal surface. In Berenson’s correlation, the

tube diameter, Do, is replaced by the term s/g(rL � rv)½ �1/2, and the recommended

expression is

h ¼ 0:425
k3v f rvf (rL � rv)g(hfg þ 0:4c pLDT)

mvf (Ts � Tsat)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s/g(rL � rv)

p
" #

1/4
(21-8)

where kvf, rvf, and mvf are to be evaluated at the film temperature as indicated.

Hsu and Westwater8 considered film boiling for the case of a vertical tube. Their test

results were correlated by the equation

h
m2
v

grv(rL � rv)k
3
v

� �
1/3

¼ 0:0020Re0:6 (21-9)

where

Re ¼ 4m_

pDvmv
(21-10)

m_ being the flow rate of vapor in lbm/h at the upper end of the tube and the other terms being

identical to those in equation (21-7). Hsu9 states that heat-transfer rates for film boiling are

higher for vertical tubes than for horizontal tubes when all other conditions remain the same.

In regime VI, the correlations for film boiling still apply; however, the superimposed

contribution of radiation is appreciable, becoming dominant at extremely high values ofDT.
Without any appreciable flowof liquid, the two contributionsmay be combined, as indicated

by equation (21-11).

4 N. Zuber, Trans. A.S.M.E., 80, 711 (1958).
5 L. A. Bromley, Chem. Eng Prog., 46, (5), 221 (1950).
6 L. A. Bromley, et al., Ind. Eng Chem., 45, 2639 (1953).
7 P. Berenson, A.I.Ch.E. Paper No. 18, Heat Transfer Conference, Buffalo, N.Y., August 14–17, 960.
8 Y. Y. Hsu and J. W. Westwater, A.I.Ch.E. J., 4, 59 (1958).
9 S. T. Hsu, Engineering Heat Transfer, Van Nostrand, Princeton, N.J., 1963.
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The contribution of radiation to the total heat-transfer coefficient may be expressed as

h ¼ hc
hc

h

� �
1/3

þ hr (21-11)

where h is the total heat-transfer coefficient, hc is the coefficient for the boiling

phenomenon, and hr is an effective radiant heat-transfer coefficient considering exchange

between two parallel planes with the liquid between assigned a value of unity for its

emissivity. This term is discussed in Chapter 23.

When there is appreciableflowof either the liquid or thevapor, the foregoing correlations

are unsatisfactory. The description of flow boiling or two-phase flow will not be discussed

here. The interested reader is referred to the recent literature for pertinent discussion of these

phenomena. It is evident that for vertical surfaces or large-diameter horizontal tubes the

density difference between liquid and vapor will produce significant local velocities. Any

correlation that neglects flow contributions should, therefore, be used with caution.

21.2 CONDENSATION

Condensation occurs when a vapor contacts a surface that is at a temperature below the

saturation temperature of the vapor.When the liquid condensate forms on the surface, it will

flow under the influence of gravity.

Normally the liquid wets the surface, spreads out, and forms a film. Such a process is

called film condensation. If the surface is not wetted by the liquid, then droplets form and run

down the surface, coalescing as they contact other condensate droplets. This process is

designated dropwise condensation. After a condensate film has been developed in filmwise

condensation, additional condensation will occur at the liquid–vapor interface, and the asso-

ciated energy transfer must occur by conduction through the condensate film. Dropwise

condensation, on the contrary, always has some surface present as the condensate drop forms

and runs off. Dropwise condensation is, therefore, associated with the higher heat-transfer

rates of the two types of condensation phenomena. Dropwise condensation is very difficult to

achieve or maintain commercially; therefore, all equipment is designed on the basis of

filmwise condensation.

Film Condensation: The Nusselt Model. In 1916, Nusselt10 achieved an analytical result

for the problem of filmwise condensation of a pure vapor on a vertical wall. Themeanings of

the various terms in this analysiswill bemade clear by referring to Figure 21.3. In this figure,

10 W. Nusselt, Zeitschr. d. Ver. deutsch. Ing., 60, 514 (1916).

z

x

y

1

d

∆x
Figure 21.3 Filmwise condensation on a vertical

plane wall.
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the film thickness, d, is seen to be zero at the top of the vertical wall, x ¼ 0, and to increase

with increasing values of x.

The initial assumption made by Nusselt was that of wholly laminar flow in the

condensate film. Under these conditions, the velocity profile may be easily obtained from

equation 8-12

vx ¼ rgL2 sin u

m

y

L
� 1

2

y

L

� �2� �
(8-12)

For the present application, sin u ¼ 1 and L ¼ d. It is also necessary to modify the density

for the present case. In the derivation of equation (8-12), the density of the gas or vapor at the

liquid surface was neglected. This may be true in many cases of a condensation process;

however, the process may occur at a sufficiently high pressure that the vapor density, rv , is

significant in comparison to that of the liquid, rL. To account for this possibility, the density

function to be used in the present case is rL � rv instead of simply rL. The resulting

expression for the velocity profile in the condensate film at a particular distance x from the

top of the wall becomes

vx ¼ (rL � rv)gd
2

m

y

d
� 1

2

y

d

� �2� �
(21-12)

The flow rate per unit width, G, at any value x > 0 is

G ¼
Z d

0

vx dy

¼ (rL � rv)gd
3

3m

(21-13)

A differential change, dG, in the flow rate is evaluated from this expression to be

dG ¼ (rL � rv)gd
2dd

d
(21-14)

This result has been obtained from momentum considerations alone. We shall now, as

Nusselt did originally, look at the related energy transfer.

As the flow of condensate is assumed to be laminar, it is not unreasonable to consider

energy transfer through the film from the temperature at the vapor–liquid interface, Tsat, to

the wall–liquid boundary at temperature, Tw, to be purely by conduction. On this basis, the

temperature profile is linear and the heat flux to the wall is

qy

A
¼ k

(Tsat � Tw)

d
(21-15)

This same amount of energy must be transferred from the vapor as it condenses and then

cools to the average liquid temperature. Relating these two effects, we may write

qy

A
¼ k

(Tsat � Tw)

d
¼ rL hfg þ 1

rLG

Z d

0

rLvxcpL(Tsat � T) dy

� �
dG

dx

which, if a linear temperature variation in y is utilized, becomes

qy

A
¼ k(Tsat � Tw)

d
¼ rL[hfg þ 3

8cpL(Tsat � Tw)]
dG

dx
(21-16)
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Solving equation () for dG, we have

dG ¼ k(Tsat � Tw) dx

rLd½hfg þ 3
8 cpL(Tsat � Tw)�

(21-17)

which may now be equated to the result in equation (21-20), giving

(rL � rv)g

m
d2 dd ¼ k(Tsat � Tw)

rLd½hfg þ 3
8 cpL(Tsat � Tw)�

dx

Simplifying this result and solving for d, we obtain

d ¼ 4km(Tsat � Tw)x

rLg(rL � rv)½hfg þ 3
8 cpL(Tsat � Tw)�

" #
1/4

(21-18)

We may now solve for the heat-transfer coefficient, h, from the expression

h ¼ qy/A

Tsat � Tw
¼ k

d

The substitution of equation (21-18) into this expression yields

hx ¼
rLgk

3(rL � rv)½hfg þ 3
8 c pL(Tsat � Tw)�

4m(Tsat � Tw)x

( )
1/4

(21-19)

The average heat-transfer coefficient for a surface of length L is determined from

h ¼ 1

L

Z L

0

hx dx

which, when equation (21-19) is substituted, becomes

h ¼ 0:943
rLgk

3(rL � rv)½hfg þ 3
8 c pL(Tsat � Tw)�

Lm(Tsat � Tw)

( )
1/4

(21-20)

The latent heat term, hfg, in equation (21-20) and those preceding it, should be evaluated

at the saturation temperature. Liquid properties should all be taken at the film temperature.

An expression similar to equation (21-20) may be achieved for a surface inclined at an

angle u from the horizontal if sin u is introduced into the bracketed term. This extension

obviously has a limit and should not be usedwhen u is small, that is, when the surface is near

horizontal. For such a condition, the analysis is quite simple; Example 1 illustrates such a

case.

Rohsenow11 performed a modified integral analysis of this same problem, obtaining

a result that differs only in that the term ½hfg þ 3
8 cpL(Tsat � Tw)� is replaced by

[hfg þ 0:68cpL(Tsat � Tw)]. Rohsenow’s results agree well with experimental data achieved

for values of Pr> 0:5 and c pL(Tsat � Tw)/hfg < 1:0:

EXAMPLE A square pan with its bottom surfacemaintained at 350 K is exposed towater vapor at 1 atm pressure

and 373K. The pan has a lip all around, so the condensate that forms cannot flowaway.Howdeepwill

the condensate film be after 10 min have elapsed at this condition?

11 W. M. Rohsenow, A.S.M.E. Trans., 78, 1645 (1956).
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Wewill employ a ‘‘pseudo-steady-state’’ approach to solve this problem. An energy balance at

the vapor–liquid interface will indicate that the heat flux and rate of mass condensed, _mcond, are

related as

q

A

����
in

¼ ṁcond hfg

A

The condensation rate, _mcond, may be expressed as follows:

ṁcond ¼ rV̇cond ¼ rA
dd

dt

where dd/dt is the rate at which the condensate film thickness, d, grows. The heat flux at the interface

may now be expressed as

q

A

����
in

¼ rhfg
dd

dt

This heat flux is now equated to that which must be conducted through the film to the cool pan

surface. The heat flux expression that applies is

q

A

����
out

¼ kL

d
(Tsat � Ts)

This is a steady-state expression; that is, we are assuming d to be constant. If d is not rapidly varying,

this ‘‘pseudo-steady-state’’ approximation will give satisfactory results. Now, equating the two heat

fluxes, we have

rhfg ¼ dd

dt
¼ kL

d
(Tsat � Ts)

and, progressing, the condensate film thickness is seen to vary with time according to

d
dd

dt
¼ kL

rhfg
(Tsat � Ts)Z d

0

d dd ¼ kL

rhfg
(Tsat � Ts)

Z t

0

dt

d ¼ 2kL

rhfg
(Tsat � Ts)

� �1/2
t1/2

A quantitative answer to our example problem now yields the result

d ¼ 2(0:674W/m �K)(23K)(600 s)
(966 kg/m3)(2250 kJ/kg)

� �1/2
¼ 2:93mm

Film Condensation: Turbulent-Flow Analysis. It is logical to expect the flow of the

condensate film to become turbulent for relatively long surfaces or for high condensation

rates. The criterion for turbulent flow is, as we should expect, a Reynolds number for the

condensate film. In terms of an equivalent diameter, the applicable Reynolds number is

Re ¼ 4A

P

rLv

mf

(21-21)
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where A is the condensate flow area, P is the wetted perimeter, and v is the velocity of

condensate. The critical value of Re in this case is approximately 2000.

The first attempt to analyze the case of turbulent flow of a condensate film was that of

Colburn,12 who used the same j factor determined for internal pipe flow. On the basis partly

of analysis and partly of experiment, Colburn formulated the plot shown in Figure 21.4. The

data points shown are those of Kirkbride.13 The correlating equations for the two regions

shown are for 4Gc/mf < 2000

havg ¼ 1:51

�
k3r2g

m2

�1/3
f

�
4Gc

mf

��1/3
(21-22)

and for 4Gc/mf > 2000

havg ¼ 0:045
(k3r2g/m2)1/3f (4Gc/mf )Pr

1/3

(4Gc/mf )
4/5 � 364

h i
þ 576 Pr1/3

(21-23)

In these expressions, Gc is the mass flow rate per unit width of surface; that is, Gc ¼
rLvavgd, d being film thickness and vavg the average velocity. The term 4Gc/mf is thus a

Reynolds number for a condensate film on a plane vertical wall. McAdams14 recommends a

simpler expression for the turbulent range, Red> 2000, as

h ¼ 0:0077
rLg(rL � rv)k

3
L

m2
L

� �
1/3

Re0:4d (21-24)

Film Condensation: Analysis of the Horizontal Cylinder. An analysis by Nusselt15

produced the following expression for the mean heat-transfer coefficient for a horizontal

cylinder:

havg ¼ 0:725
rLg(rL � rv)k

3 hfg þ 3
8 c pL(Tsat � Tw)

� �
mD(Tsat � Tw)

( )
1/4

(21-25)

12 A. P. Colburn, Ind. Eng. Chem., 26, 432 (1934).
13 C. G. Kirkbride, Ind. Eng. Chem., 26, 4 (1930).
14 W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill Book Company, New York, 1954.
15 W. Nusselt, Zeitschr. d. Ver. deutsch. Ing., 60, 569 (1916).
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Figure 21.4 Film condensation including the regions of both laminar and turbulent flows.
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The similarity between equation (21-25) for a horizontal tube and equation (21-20) for a

vertical tube is marked. Combining these expressions and canceling similar terms, we

obtain the result that

hvert

hhoriz
¼ 0:943

0:725

D

L

� �
1/4

¼ 1:3
D

L

� �
1/4

(21-26)

For the case of equal heat-transfer coefficients, the relation between D and L is

L

D
¼ 2:86 (21-27)

or, equal amounts of energy can be transferred from the same tube in either the vertical or

the horizontal position if the ratio L/D is 2.86. For L/D values greater than 2.86, the

horizontal position has the greater heat-transfer capability.

Film Condensation: Banks of Horizontal Tubes. For a bank of horizontal tubes there is,

naturally, a different value of h for each tube, as the condensate film from one tubewill drop

on the next tube below it in the line. This process is depicted in Figure 21.5.

Nusselt also considered this situation analytically and achieved, for a vertical bank of n

tubes in line, the expression

havg ¼ 0:725
rLg(rL � rv)k

3 hfg þ 3
8 cpL(Tsat � Tw)

� �
nDm(Tsat � Tw)

( )
1/4

(21-28)

This equation yields a mean heat-transfer coefficient averaged over all n tubes.

Observing thatexperimentaldataexceeded thosevaluespredicted fromequation (21-28),

Chen16 modified this expression to include the effect of condensation on the liquid layer

between the tubes. His resulting equation is

havg ¼ 0:725 1þ 0:02
cpL(Tsat � Tw)

hfg
(n� 1)

� �

� rLg(rL � rv)k
3 hfg þ 3

8 cpL(Tsat � Tw)
� �

nDm(Tsat � Tw)

( )
1/4

(21-29)

which is valid for values of cpL(Tsat � Tw)(n� 1)/hfg> 2. Chen’s equation agrees reason-

ably well with experimental data for condensation on vertical banks of horizontal tubes.

Condensate
film

Figure 21.5 Condensation on a horizontal tube bank.

16 M. M. Chen, A.S.M.E. (Trans.) Series C, 83, 48 (1961).
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Drop Condensation. Dropwise condensation, as mentioned earlier, is associated with

higher heat-transfer coefficients than the filmwise condensation phenomenon. For dropwise

condensation to occur, the surface must not be ‘‘wetted’’ by the condensate. Normally this

requires that metal surfaces be specially treated.

Dropwise condensation is an attractive phenomenon for applications where extremely

large heat-transfer rates are desired. At present, it is difficult to maintain this condition for

several reasons. Because of its uncertain nature and the conservative approach of a design

based on lower heat-transfer coefficients, filmwise condensation is the type predominantly

used in design.

21.3 CLOSURE

The phenomena of boiling and condensation have been examined in this chapter. Each

condition has a prominent place in engineering practice and both are difficult to describe

analytically. Several empirical correlations for these phenomena for various surfaces

oriented in different ways have been presented.

Boiling is normally described as nucleate type, film type, or a combination of the two.

Very high heat-transfer rates are possible in the nucleate-boiling regimewith relatively low

temperature differences between the primary surface and the saturation temperature of the

liquid. Film boiling is associated with a higher temperature difference yet a lower rate of

heat transfer. This anomalous behavior is peculiar to the boiling phenomenon.

Condensation is categorized as either filmwise or dropwise. Dropwise condensation is

associated with much higher heat-transfer coefficients than filmwise; however, it is difficult

both to achieve and to maintain. Thus, filmwise condensation is of primary interest.

Analytical solutions have been presented, along with empirical results, for filmwise

condensation on vertical and horizontal plates and cylinders and for banks of horizontal

cylinders.

PROBLEMS

The surface tension of water, a needed quantity in several of the

following problems, is related to temperature according to the

expression s ¼ 0:1232[1� 0:00146 T], where s is in N/m and T

is in K. In the English system with s given in lbf /ft and T in 8F,
the surface tension may be calculated from s ¼ (8:44�
10�3)[1� 0:00082T]:

21.1 An electrically heated square plate measuring 20 cm on a

side is immersed vertically in water at atmospheric pressure. As

the electrical energy supplied to the plate is increased, its surface

temperature rises above that of the adjacent saturated water. At

low power levels the heat-transfer mechanism is natural

convection, then becoming a nucleate-boiling phenomenon

at higher DTs. At what value of DT are the heat fluxes due to

boiling and natural convection the same? Plot q/Ajconvection,
q/Ajboiling, and q/Ajtotal versus DT values from 250 to 300 K.

21.2 Plot values of the heat-transfer coefficient for the case of

pool boiling of water on horizontal metal surfaces at 1 atm total

pressure and surface temperatures varying from 390 to 450 K.

Consider the following metals: (a) nickel; (b) copper; (c) pla-

tinum; (d) brass.

21.3 A cylindrical copper heating element 2 ft long and 1
2 in. in

diameter is immersed in water. The system pressure is main-

tained at 1 atm and the tube surface is held at 2808F. Determine

the nucleate-boiling heat-transfer coefficient and the rate of heat

dissipation for this system.

21.4 If the cylinder described in Problem 21.3 were initially

heated to 5008F, how long would it take for the center of the

cylinder to cool to 2408F if it were constructed of

a. copper?

b. brass?

c. nickel?

21.5 Four immersion heaters in the shape of cylinders 15 cm

long and 2 cm in diameter are immersed in a water bath at 1 atm

total pressure. Each heater is rated at 500 W. If the heaters

operate at rated capacity, estimate the temperature of the heater
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surface. What is the convective heat-transfer coefficient in this

case?

21.6 A horizontal circular cylinder 1 in. in diameter has its

outside surface at a temperature of 12008F.This tube is immersed

in saturated water at a pressure of 40 psi. Estimate the heat flux

due to film boiling that may be achieved with this configuration.

At 40 psi, the temperature of saturated water is 2678F.

21.7 Estimate the heat-transfer rate per foot of length from a

0.02-in. diameter nichrome wire immersed in water at 2408F.
The wire temperature is 22008F.

21.8 Two thousand watts of electrical energy are to be dis-

sipated through copper plates measuring 5 cm by 10 cm by 0.6

cm immersed in water at 390 K. How many plates would you

recommend? Substantiate all of the design criteria used.

21.9 A steel plate is removed from a heat-treating operation at

600 K and is immediately immersed into a water bath at 373 K.

a. Construct a plot of heat flux vs. plate temperature for this

system.

b. Construct a plot of convective heat-transfer coefficient vs.

plate temperature.

c. For a mild-steel plate 3 cm thick and 30 cm square plot the

plate temperature vs. time.

21.10 Water, flowing in a pipe, is to receive heat at a rate of

3� 104 Btu/h�ft2 of pipe surface. The pipe has an inside dia-

meter of 3
4 in. and is 4 ft long. If the water is to be at 2128F

throughout its residence in the pipe, what rate of water flow

would you suggest for safe operation? Support your results with

all design criteria used.

21.11 Saturated steam at atmospheric pressure is enclosed

within a vertical 1
2-in.-diameter pipe whose surface is at

1608F. Construct a plot for the thickness of condensate film

vs. distance from the top of the pipe.

21.12 Saturated steam at atmospheric pressure condenses on

the outside surface of a 1-m-long tube with 150 mm diameter.

The surface temperature is maintained at 918C. Evaluate the

condensation rate if the pipe is oriented

a. vertically;

b. horizontally.

21.13 Water flowing at a rate of 4000 kg/h through a 16.5-mm-

ID tube enters at 208C. The tube outside diameter is 19 mm.

Saturated atmospheric steam condenses on the outside of the

tube. For a horizontal brass tube 2 m long, evaluate

a. the convective coefficient on the water side;

b. the convective coefficient on the condensate side;

c. the exit water temperature;

d. the condensation rate.

21.14 Saturated steam at atmospheric pressure flows at a rate

of 0.042 kg/s/m between two vertical surfaces maintained at 340

K that are separated by a distance of 1 cm. How tall may this

configuration be if the steam velocity is not to exceed 15 m/s?

21.15 A circular pan has its bottom surface maintained at

2008F and is situated in saturated steam at 2128F. Construct a
plot of condensate depth in the pan vs. time up to 1 h for this

situation. The sides of the panmay be considered nonconducting.

21.16 Saturated steam at 365 K condenses on a 2-cm tube

whose surface is maintained at 340 K. Determine the rate of

condensation and the heat transfer coefficient for the case of a

1.5-m-long tube oriented

a. vertically;

b. horizontally.

21.17 If eight tubes of the size designated in Problem 21.14 are

oriented horizontally in a vertical bank, what heat-transfer rate

will occur?

21.18 Determine the heat-transfer coefficient for a horizontal
5
8-in.-OD tubewith its surfacemaintained at 1008F surrounded by
steam at 2008F.

21.19 If eight tubes of the size designated in Problem 21.16 are

arranged in a vertical bank and the flow is assumed laminar,

determine

a. the average heat-transfer coefficient for the bank;

b. the heat-transfer coefficient for the first, third, and eighth

tubes.

21.20 Given the conditions of Problem 21.16, what height of

vertical wall will cause the film at the bottom of the tube to be

turbulent?

21.21 Avertical flat surface 2 ft high is maintained at 608F. If
saturated ammonia at 858F is adjacent to the surface, what heat-

transfer coefficient will apply to the condensation process?What

total heat transfer will occur?

21.22 A square pan measuring 40 cm on a side and having a

2-cm-high lip on all sides has its surface maintained at 350 K. If

this pan is situated in saturated steamat 372K, how longwill it be

before condensate spills over the lip if the pan is

a. horizontal?

b. inclined at 108 to the horizontal?

c. inclined at 308 to the horizontal?

21.23 A square pan with sides measuring 1 ft and a per-

pendicular lip extending 1 in. above the base is oriented with

its base at an angle of 208 from the horizontal. The pan surface

is kept at 1808F and it is situated in an atmosphere of 2108F
steam. How long will it be before condensate spills over the lip

of the pan?
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Chapter 22

Heat-Transfer Equipment

A device whose primary purpose is the transfer of energy between two fluids is called

a heat exchanger. Heat exchangers are usually classified into three categories:

1. regenerators;

2. open-type exchangers; and

3. closed-type exchangers or recuperators.

Regenerators are exchangers in which the hot and cold fluids flow alternately

through the same space with as little physical mixing between the two streams as

possible. The amount of energy transfer is dependent upon the fluid and flow properties

of the fluid stream as well as the geometry and thermal properties of the surface. The

required analytical tools for handling this type of heat exchanger have been developed

in the preceding chapters.

Open-type heat exchangers are, as implied in their designation, devices wherein

physical mixing of the two fluid streams actually occurs. Hot and cold fluids enter

open-type heat exchangers and leave as a single stream. The nature of the exit stream is

predicted by continuity and the first law of thermodynamics. No rate equations are

necessary for the analysis of this type of exchanger.

The third type of heat exchanger, the recuperator, is the one of primary importance

and the one to which we shall direct most of our attention. In the recuperator, the hot

and cold fluid streams do not come into direct contact with each other but are separated

by a tube wall or a surface that may be flat or curved in some manner. Energy exchange

is thus accomplished from one fluid to an intermediate surface by convection, through

the wall or plate by conduction, and then by convection from the surface to the second

fluid. Each of these energy-transfer processes has been considered separately in the

preceding chapters. We shall, in the following sections, investigate the conditions under

which these three energy-transfer processes act in series with one another, resulting in a

continuous change in the temperature of at least one of the fluid streams involved.

We shall be concerned with a thermal analysis of these exchangers. A complete

design of such equipment involves an analysis of pressure drop, using techniques from

Chapter 13, as well as material and structural considerations that are not within the

scope of this text.

22.1 TYPES OF HEAT EXCHANGERS

In addition to being considered a closed-type exchanger, a recuperator is classified

according to its configuration and the number of passes made by each fluid stream as it

traverses the heat exchanger.

336



A single-pass heat exchanger is one in which each fluid flows through the exchanger

only once. An additional descriptive term identifies the relative directions of the two

streams, the terms used being parallel flow or cocurrent flow if the fluids flow in the same

direction, countercurrent flow or simply counterflow if the fluids flow in opposite directions,

and crossflow if the two fluids flow at right angles to one another. A common single-pass

configuration is the double-pipe arrangement shown in Figure 22.1. A crossflow arrange-

ment is shown in Figure 22.2.

Variations on the crossflow configuration occur when one or the other, or both fluids are

mixed. The arrangement shown in Figure 22.2 is one in which neither fluid is mixed. If the

baffles or corrugationswere not present, the fluid streamswould be unseparated ormixed. In

a condition such as that depicted in the figure, the fluid leaving at one end of the sandwich

arrangement will have a nonuniform temperature variation from one side to the other, as

each section contacts an adjacent fluid stream at a different temperature. It is normally

desirable to have one or both fluids unmixed.

In order to accomplish as much transfer of energy in as little space as possible, it is

desirable to utilizemultiple passes of one or both fluids. A popular configuration is the shell-

and-tube arrangement shown in Figure 22.3. In this figure, the tube-side fluid makes two

passes, whereas the shell-side fluid makes one pass. Good mixing of the shell-side fluid is

accomplished with the baffles shown. Without these baffles the fluid becomes stagnant in

certain parts of the shell, the flow is partially channeled past these stagnant or ‘‘dead’’

regions, and less-than-optimum performance is achieved. Variations on the number of tube-

and-shell passes are encountered in numerous applications; seldom aremore than two shell-

side passes used.

Tc out

TH in

TH out

Tc in

Figure 22.1 A double-pipe heat exchanger.

Figure 22.2 A crossflow heat exchanger.
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A number of more recent heat-transfer applications require more compact configura-

tions than that afforded by the shell-and-tube arrangement. The subject of ‘‘compact heat

exchangers’’ has been investigated and reported both carefully and quite thoroughly by

Kays and London.1 Typical compact arrangements are shown in Figure 22.4.

The analysis of shell-and-tube, compact, or any multiple-pass heat exchanger is quite

involved. As each is a composite of several single-pass arrangements, we shall initially

focus our attention on the single-pass heat exchanger.

Figure 22.3 Shell-and-tube heat exchanger.

(a) (b)

(c) (d)

Figure 22.4 Compact heat-exchanger configurations.

1 W. M. Kays and A. L. London, Compact Heat Exchangers, 2nd edition, McGraw-Hill Book Company,

1964.
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22.2 SINGLE-PASS HEAT-EXCHANGER ANALYSIS: THE LOG-MEAN
TEMPERATURE DIFFERENCE

It is useful, when considering parallel or counterflow single-pass heat exchangers, to draw

a simple sketch depicting the general temperature variation experienced by each fluid

stream. There are four such profiles in this category, all of which are shown and labeled in

Figure 22.5. Each of these may be found in a double-pipe arrangement.

In Figure 22.5(c) and (d), one of the two fluids remains at constant temperature while

exchanging heat with the other fluid whose temperature is changing. This situation occurs

when energy transfer results in a change of phase rather than of temperature as in the cases of

evaporation and condensation shown. The direction of flow of the fluid undergoing a change

in phase is not depicted in the figure, as it is of no consequence to the analysis. If the situation

occurs where the complete phase change such as condensation occurs within the exchanger

along with some subcooling, then the diagram will appear as in Figure 22.6. In such a case,

the direction of flow of the condensate stream is important. For purposes of analysis, this

processmay be considered the superposition of a condenser and a counterflow exchanger, as

depicted in the diagram.

Also quite noticeable from Figure 22.5(a) and (b) is the significant difference in

temperature profile exhibited by the parallel and counterflow arrangements. It is apparent

that the exit temperatures of the hot and cold fluids in the parallel-flow case approach the

samevalue. It is a simple exercise to show that this temperature is the one resulting if the two

fluids are mixed in an open-type heat exchanger.

In the counterflow arrangement, it is possible for the hot fluid to leave the exchanger at a

temperature below that at which the cold fluid leaves. This situation obviously corresponds

TH in

Tc in

(a) Parallel flow

Tc out

TH out

TH in

Tc out

(b) Counterflow
Tc in

TH out

TH in

Tc

(c) Evaporator

Tc

TH out

TH

Tc in

(d) Condenser

Tc out

TH

Figure 22.5 Temperature profiles for single-pass, double-pipe heat exchangers.

TH in

Tc out

Composite Condenser Counterflow
exchanger

= +

Tc in

TH out

Tc in

TH out
TH in

Tc out
Tc

TH

Figure 22.6 Temperature profile in a condenser with subcooling.
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to a case of greater total energy transfer per unit area of heat exchanger surface thanwould be

obtained if the same fluids entered a parallel-flow configuration. The obvious conclusion to

this discussion is that the counterflow configuration is the most desirable of the single-pass

arrangements. It is thus the single-pass counterflowarrangement towhichwe shall direct our

primary attention.

The detailed analysis of a single-pass counterflow heat exchanger that follows is

referred to the diagram and nomenclature of Figure 22.7.

The abscissa of this figure is area. For a double-pipe arrangement, the heat-transfer area

varies linearly with distance from one end of the exchanger; in the case shown, the zero

reference is the end of the exchanger at which the cold fluid enters.

With reference to a general increment of area,DA, between the ends of this unit, a first-
law-of-thermodynamics analysis of the two fluid streams will yield

Dq ¼ ( _mcp)c DTc

and

Dq ¼ ( _mcp)H DTH

As the incremental area approaches differential size, we may write

dq ¼ ( _mcp)c dTc ¼ Cc dTc (22-1)

and

dq ¼ ( _mcp)H dTH ¼ CH dTH (22-2)

where the capacity coefficient, C, is introduced in place of the more cumbersome product,

_mcp.
Writing equation (15-17) for the energy transfer between the two fluids at this location,

we have

dq ¼ U dA(TH � Tc) (22-3)

which utilizes the overall heat-transfer coefficient, U, introduced in Chapter 15.

Designating TH � Tc as DT, we have

d(DT) ¼ dTH � dTc (22-4)

TH 1

TH 2

Tc 2

Tc 1

∆T1

∆T2

∆A

A

1 2

Figure 22.7 Diagram of temperature vs. contact area for single-pass counterflow analysis.
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and substituting for dTH and dTc from equations (22-1) and (22-2), we obtain

d(DT ) ¼ dq
1

CH
� 1

Cc

� �
¼ dq

CH
1� CH

Cc

� �
(22-5)

We should also note that dq is the same in each of these expressions; thus, equations

(22-1) and (22-2) may be equated and integrated from one end of the exchanger to the

other, yielding, for the ratio CH/Cc

CH

Cc
¼ Tc2 � Tc1

TH2 � TH1
(22-6)

which may be substituted into equation (22-5) and rearranged as follows:

d(DTÞ ¼ dq

CH
1� Tc2 � Tc1

TH2 � TH1

� �
¼ dq

CH

TH2 � TH1 � Tc2 þ Tc1

TH2 � TH1

� �

¼ dq

CH

DT2 � DT1
TH2 � TH1

� � (22-7)

Combining equations (22-3) and (22-7), and noting that CH(TH2 � TH1) ¼ q, we have,

for constant U, Z DT2

DT1

d(DT )

DT
¼ U

q
(DT2 � DT1)

Z A

0

dA (22-8)

which, upon integration, becomes

ln
DT2
DT1

¼ UA

q
(DT2 � DT1)

This result is normally written as

q ¼ UA
DT2 � DT1

ln
DT2
DT1

(22-9)

The driving force, on the right-hand side of equation (22-9), is seen to be a particular

sort of mean temperature difference between the two fluid streams. This ratio,

(DT2 � DT1)/ln (DT2/DT1), is designated DTlm, the logarithmic-mean temperature

difference, and the expression for q is written simply as

q ¼ UADTlm (22-10)

Even though equation (22-10) was developed for the specific case of counterflow, it

is equally valid for any of the single-pass operations depicted in Figure 22.5.

It was mentioned earlier, but bears repeating, that equation (22-10) is based upon a

constant value of the overall heat-transfer coefficient,U. This coefficientwill not, in general,

remain constant; however, calculations based upon a value ofU taken midway between the

ends of the exchanger are usually accurate enough. If there is considerable variation in U

from one end of the exchanger to the other, then a step-by-step numerical integration is

necessary, equations (22-1)–(22-3) being evaluated repeatedly over a number of small-area

increments.
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It is also possible that the temperature differences in equation (22-9), evaluated at either

end of a counterflow exchanger, are equal. In such a case, the log-mean temperature

difference is indeterminate; that is,

DT2 � DT1
ln(DT2/DT1)

¼ 0

0
, if DT1 ¼ DT2

In such a case, L’Hôpital’s rule may be applied as follows:

lim
DT2!DT1

DT2 � DT1
ln(DT2/DT1)

¼ lim
DT2/DT1!1

DT1f(DT2/DT1)� 1g
ln (DT2/DT1)

� �

when the ratio DT2/DT1 is designated by the symbol F, we may write

¼ lim
F!1

DT
F � 1

ln F

� �
Differentiating numerator and denominator with respect to F yields the result that

lim
DT2!DT1

DT2 � DT1
ln(DT2/DT1)

¼ DT

or that equation (22-10) may be used in the simple form

q ¼ UADT (22-11)

From the foregoing simple analysis, it should be apparent that equation (22-11) may

be used and achieve reasonable accuracy so long as DT1 and DT2 are not vastly different.

It turns out that a simple arithmetic mean is within 1% of the logarithmic-mean

temperature difference for values of (DT2/DT1)< 1:5.

EXAMPLE 1 Light lubricating oil (cp ¼ 2090 J/kg � K) is cooled by allowing it to exchange energy with water in a
small heat exchanger. The oil enters and leaves the heat exchanger at 375 and 350K, respectively, and

flows at a rate of 0.5 kg/s. Water at 280 K is available in sufficient quantity to allow 0.201 kg/s to be

used for cooling purposes. Determine the required heat-transfer area for (a) counterflow and

(b) parallel-flow operations (see Figure 22.8). The overall heat-transfer coefficient may be taken

as 250W/m2 � K.
The outlet water temperature is determined by applying equations (22-1) and (22-2)

q ¼ (0:5 kg/s)(2090 J/kg � K)(25K) ¼ 26 125W

¼ (0:201 kg/s)(4177 J/kg � K)(Tw out � 280K)

280 K

350 K

375 K

Tw out

(a) Counterflow

280 K

375 K
350 K

Tw out

(b) Parallel flow

Figure 22.8 Single-pass temperature profiles for counterflow and parallel flow.
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from which we obtain

Tw out ¼ 280þ (0:5)(2090)(25)

(0:201)(4177)
¼ 311:1K (100�F)

This result applies to both parallel flow and counterflow. For the counterflow configuration, DTlm is

calculated as

DTlm ¼ 70� 63:9

ln
70

63:9

¼ 66:9K (120:4�F)

and applying equation (22-10), we see that the area required to accomplish this energy transfer is

A ¼ 26 125W

(250W/m2 �K)(66:9K)
¼ 1:562m2 (16:81 ft2)

Performing similar calculations for the parallel-flow situation, we obtain

DTlm ¼ 95� 38:9

ln
95

38:9

¼ 62:8K (113�F)

A ¼ 26 125W

(250W/m2 �K)(62:8K)
¼ 1:66m2 (17:9 ft2)

The area required to transfer 26,125 W is seen to be lower for the counterflow arrangement by

approximately 7%.

22.3 CROSSFLOWAND SHELL-AND-TUBE HEAT-EXCHANGER ANALYSIS

More complicated flow arrangements than the ones considered in the previous sections are

muchmore difficult to treat analytically. Correction factors to be usedwith equation (22-10)

have been presented in chart form by Bowman, Mueller, and Nagle2 and by the Tubular

Exchanger Manufacturers Association.3 Figures 22.9 and 22.10 present correction factors

for six types of heat-exchanger configurations. The first three are for different shell-and-tube

configurations and the latter three are for different crossflow conditions.

The parameters in Figures 22.9 and 22.10 are evaluated as follows:

Y ¼ Tt out � Tt in

Ts in � Tt in
(22-12)

Z ¼ ( _mcp)tube
( _mcp)shell

¼ Ct

Cs
¼ Ts in � Ts out

Tt out � Tt in
(22-13)

where the subscripts s and t refer to the shell-side and tube-side fluids, respectively. The

quantity read on the ordinate of each plot, for given values of Y and Z, is F, the correction

factor to be applied to equation (22-10), and thus these more complicated configurations

2 R. A. Bowman, A. C. Mueller, and W. M. Nagle, Trans. A.S.M.E. 62, 283 (1940).
3 Tubular Exchanger Manufacturers Association, Standards, 3rd edition, TEMA, New York, 1952.
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Figure 22.10 Correction factors for three crossflow heat-exchanger configurations. (a) Crossflow,

single-pass, both fluids unmixed. (b) Crossflow, single-pass, one fluid unmixed. (c) Crossflow,

tube passes mixed; fluid flows over first and second passes in series.

(From R. A. Bowman, A. C. Mueller, and W. M. Nagle, Trans. A.S.M.E., 62, 288–289 (1940). By

permission of the publishers.)
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may be treated in much the same way as the single-pass double-pipe case. The reader is

cautioned to apply equation (22-10), using the factor F as in equation (22-14).

q ¼ UA(F DTlm) (22-14)

with the logarithmic-mean temperature difference calculated on the basis of counterflow.

The manner of using Figures 22.9 and 22.10 may be illustrated by referring to the

following example.

EXAMPLE 2 In the oil–water energy transfer described in Example 1, compare the result obtained with the result

that would be obtained if the heat exchanger were

(a) crossflow, water-mixed;

(b) shell-and-tube with four tube-side passes, oil being the tube-side fluid.

For part (a), Figure 22.10(b) must be used. The parameters needed to use this figure are

Y ¼ Tt out � Tt in

Ts in � Tt in
¼ 25

95
¼ 0:263

Y
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Figure 22.10 Continued
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and

Z ¼ Ts in � Ts out

Tt out � Tt in
¼ 31:1

25
¼ 1:244

and from the figure we read F ¼ 0:96. The required area for part (a) is thus equal to

(1:562)/(0:96) ¼ 1:63m2.

The values of Yand Z determined above are the same in part (b), yielding a value of F equal to

0.97. The area for part (b) becomes (1:562)/(0:97) ¼ 1:61m2.

22.4 THE NUMBER-OF-TRANSFER-UNITS (NTU) METHOD
OF HEAT-EXCHANGER ANALYSIS AND DESIGN

Earlier mention was made of the work of Kays and London1 with particular reference to

compact heat exchangers. The book ‘‘Compact Heat Exchangers,’’ by Kays and London,

also presents charts useful for heat-exchanger design on a different basis than discussed thus

far.

Nusselt,4 in 1930, proposed the method of analysis based upon the heat-exchanger

effectiveness E. This term is defined as the ratio of the actual heat transfer in a heat

exchanger to the maximum possible heat transfer that would take place if infinite surface

areawere available. By referring to a temperature profile diagram for counterflowoperation,

as in Figure 22.11, it is seen that, in general, one fluid undergoes a greater total temperature

change than the other. It is apparent that the fluid experiencing the larger change in

temperature is the one having the smaller capacity coefficient, which we designate Cmin. If

Cc ¼ Cmin, as in Figure 22.11(a), and if there is infinite area available for energy transfer, the

exit temperature of the cold fluid will equal the inlet temperature of the hot fluid.

According to the definition of effectiveness, we may write

E ¼ CH(TH in � TH out)

Cc(Tc out � Tc in)max

¼ Cmax(TH in � TH out)

Cmin(TH in � Tc in)
(22-15)

If the hot fluid is the minimum fluid, as in Figure 22.11(b), the expression for E
becomes

E ¼ Cc(Tc out � Tc in)

CH(TH in � TH out)max

¼ Cmax(Tc out � Tc in)

Cmin(TH in � Tc in)
(22-16)

TH in

TC out

(a) CH > CC, CC = Cmin

TC in

TH out

TH in

TC out

(b) CC > CH, CH = Cmin

TC in

TH out

Figure 22.11 Temperature profiles for counterflow heat exchangers.

4 W. Nusselt, Tech. Mechan. Thermodyn., 12 (1930).
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Notice that the denominators in both equations (22-15) and (22-16) are the same and that,

in each case, the numerator represents the actual heat transfer. It is thus possible to write a

fifth expression for q as

q ¼ ECmin(TH in � Tc in) (22-17)

which, along with the integrated forms of equations (22-1) and (22-2), as well as equa-

tions (22-10) and (22-14), expresses q, the rate of heat transfer, in all of its useful forms as

far as heat-exchanger analysis and design are concerned. Equation (22-17) is conspicuous

among these others, as the temperature difference appearing is that between the inlet

streams alone. This is a definite advantage when a given heat exchanger is to be used

under conditions other than those for which it was designed. The exit temperatures of the

two streams are then needed quantities, and equation (22-17) is obviously the easiest

means of attaining this knowledge if one can determine the value of E.
To determine E for a single-pass case, we initially write equation (22-17) in the

form

E ¼ CH(TH in � TH out)

Cmin(TH in � Tc in)
¼ Cc(Tc out � Tc in)

Cmin(TH in � Tc in)
(22-18)

The appropriate form for equation (22-18) depends on which of the two fluids has the

smaller value of C. We shall consider the cold fluid to be the minimum fluid and consider

the case of counterflow. For these conditions, equation (22-10) may be written as follows

(numerical subscripts correspond to the situation shown in Figure 22.7):

q ¼ Cc(Tc2 � Tc1) ¼ UA
(TH1 � Tc1)� (TH2 � Tc2)

ln½(TH1 � Tc1)/(TH2 � Tc2)� (22-19)

The entering temperature of the hot fluid, TH2, may be written in terms of E by use of

equation (22-18), yielding

TH2 ¼ Tc1 þ 1

E
(Tc2 � Tc1) (22-20)

and also

TH2 � Tc2 ¼ Tc1 � Tc2 þ 1

E
(Tc2 � Tc1)

¼ 1

E
�1

� �
(Tc2 � Tc1)

(22-21)

From the integrated forms of equations (22-1) and (22-2), we have

Cc

CH
¼ TH2 � TH1

Tc2 � Tc1

which may be rearranged to the form

TH1 ¼ TH2 � Cmin

Cmax
(Tc2 � Tc1)

or

TH1 � Tc1 ¼ TH2 � Tc1 � Cmin

Cmax
(Tc2 � Tc1) (22-22)

348 Chapter 22 Heat-Transfer Equipment



Combining this expression with equation (22-20), we obtain

TH1 � Tc1 ¼ 1

E
(Tc2 � Tc1)� Cmin

Cmax
(Tc2 � Tc1)

¼ 1

E
� Cmin

Cmax

� �
ðTc2 � Tc1) (22-23)

Now substituting equations (22-21) and (22-23) into equation (22-19) and rearranging, we

have

ln
1/E� Cmin/Cmax

1/E� 1
¼ UA

Cmin
1� Cmin

Cmax

� �

Taking the antilog of both sides of this expression and solving for j, we have, finally,

E ¼
1� exp � UA

Cmin
1� Cmin

Cmax

� �� �
1� ðCmin/CmaxÞ exp � UA

Cmin
1� Cmin

Cmax

� �� � (22-24)

The ratio UA/Cmin is designated the number of transfer units, abbreviated NTU.

Equation (22-24) was derived on the basis that Cc ¼ Cmin; if we had initially considered

the hot fluid to be minimum, the same result would have been achieved. Thus, equation

(22-25)

E ¼
1� exp �NTU 1� Cmin

Cmax

� �� �
1� (Cmin/Cmax)exp �NTU 1� Cmin

Cmax

� �� � (22-25)

is valid for counterflow operation in general. For parallel flow, an analogous development

to the preceding will yield

E ¼
1� exp �NTU 1þ Cmin

Cmax

� �� �
1þ Cmin/Cmax

(22-26)

Kays and London1 have put equations (22-25) and (22-26) into chart form, along with

comparable expressions for the effectiveness of several shell-and-tube and crossflow

arrangements. Figures 22.12 and 22.13 are charts for E as functions of NTU for various

values of the parameter Cmin/Cmax.

With the aid of these figures, equation (22-17) may be used both as an original design

equation and as a means of evaluating existing equipment when it operates at other than

design conditions.

The utility of the NTU approach is illustrated in the following example.
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Figure 22.12 Heat-exchanger effectiveness for three shell-and-tube configurations.

(a) Counterflow. (b) Parallel flow. (c) One shell pass and two or a multiple of two tube passes.
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Figure 22.12 Continued
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Figure 22.13 Heat-exchanger effectiveness for three crossflow configurations. (a) Crossflow, both

fluids unmixed. (b) Crossflow, one fluid mixed. (c) Crossflow, multiple pass.
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EXAMPLE 3 Repeat the calculations for Examples 1 and 2 to determine the required heat-transfer area for the

specified conditions if the configurations are

(a) counterflow;

(b) parallel flow;

(c) crossflow, water-mixed; and

(d) shell-and-tube with four tube-side passes.

It is first necessary to determine the capacity coefficients for the oil and water

Coil ¼ ( _mcp)oil ¼ (0:5 kg/s)(2090 J/kg �K) ¼ 1045 J/s � K
and

Cwater ¼ ( _mcp)w ¼ (0:201 kg/s)(4177 J/kg � K) ¼ 841:2 J/s � K

thus the water is the minimum fluid. From equation (22-16), the effectiveness is evaluated as

E ¼ 26 125W

(841:2 J/kg � s)(95K) ¼ 0:327

By using the appropriate chart in Figures 22.12 and 22.13, the appropriate NTU values and, in turn,

the required area may be evaluated for each heat-exchanger configuration.

(a) Counterflow

NTU ¼ 0:47

A ¼ (0:47)(841:2)

250
¼ 1:581m2

(b) Parallel flow

NTU ¼ 0:50

A ¼ (0:50)(841:2)

250
¼ 1:682m2

(c) Crossflow, water-mixed

NTU ¼ 0:48

A ¼ (0:48)(841:2)

250
¼ 1:615m2

(d) Shell-and-tube, four tube-side passes

NTU ¼ 0:49

A ¼ (0:49)(841:2)

250
¼ 1:649m2

These results are comparable to those obtained earlier, with some possible inaccuracies

involved in reading the chart.
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The NTU method offers no distinct advantage over the procedure introduced earlier,

using the log-mean temperature difference, when performing calculations of the type

involved in the preceding examples. In Example 4, however, the NTU approach is clearly

superior.

EXAMPLE 4 In the energy exchange between water and lubricating oil as considered in the preceding examples, a

crossflow heat exchanger with the shell-side fluid (water) mixed is constructed with a heat-transfer

area of 1:53m2. A new pump is attached to the water supply line enabling the water flow rate to be

increased to 1000 kg/h. What will be the exit temperatures of the water and oil for the new operating

conditions?

If the DTlm method were used in this problem, a trial-and-error method would be necessary as

DTlm, Y, andF are all dependent on one or both exit stream temperatures. The NTUmethod is, thus, a

bit simpler. Using the NTU method, it is first necessary to calculate the capacity coefficients

Coil ¼ (0:5 kg/s)(2090 J/kg � K) ¼ 1045 J/s � K
Cw ¼ (1000 kg/h)(h/3600 s)(4177 J/kg � K)

¼ 1160 J/kg � K

Oil is now the ‘‘minimum’’ fluid. With Coil ¼ Cmin we have

NTU ¼ UA

Cmin
¼ (250W/m2 � K)(1:53m2)

1045 J/s � K
¼ 0:366

and, from Figure 22.13, the effectiveness is

E ffi 0:29

Using equation (22-17) we may evaluate the heat-transfer rate as

q ¼ (0:29)(1045 J/s � K)(95K)
¼ 28:8K

an increase of over 10%. This value may now be used in equations (22-1) and (22-2) to yield the

required answers.

Toil out ¼ 375� 28:8 kW/(1045W/K)

¼ 347:4K

Twout ¼ 280þ 28:8 kW/(1160W/K)

¼ 304:8K

22.5 ADDITIONAL CONSIDERATIONS IN HEAT-EXCHANGER DESIGN

After a heat exchanger has been in service for some time, its performance may change as a

result of the buildup of scale on a heat-transfer surface or of the deterioration of the surface

by a corrosive fluid. When the nature of the surface is altered in some way as to affect the

heat-transfer capability, the surface is said to be ‘‘fouled.’’

When a fouling resistance exists, the thermal resistance is increased and a heat

exchanger will transfer less energy than the design value. It is extremely difficult to predict

the rate of scale buildup or the effect such buildup will have upon heat transfer. Some
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evaluation can be done after a heat exchanger has been in service for some time by

comparing its performance with that when the surfaces were clean. The thermal resistance

of the scale is determined by

Rsc ¼ 1

Uf
� 1

U0
(22-27)

whereU0 is the overall heat-transfer coefficient of the clean exchanger,Uf is the overall heat-

transfer coefficient of the fouled exchanger, and Rsc is the thermal resistance of the scale.

Fouling resistances that have been obtained from experiments may be used to roughly

predict the overall heat-transfer coefficient by incorporation into an expression similar to

equation (15-19). The following equation includes the fouling resistances, Ri on the inside

tube surface and Ro on the outside tube surface:

U0 ¼ 1

A0/Aihi þ Ri þ ½A0 ln(ro/ri)�=2pk=Lþ Ro þ 1=ho
(22-28)

Fouling resistances to be used in equation (22-28) have been compiled by the Tubular

Exchanger Manufacturers Association.5 Some useful values are given in Table 22.1.

It is often useful to have ‘‘ball-park’’ figures on heat-exchanger size, flow rates, and the

like. The most difficult quantity to estimate quickly is the overall heat-transfer coefficient,

U. Mueller6 has prepared the very useful table of approximateU values which is reproduced

here as Table 22.2.

Table 22.1 Heat-exchanger fouling resistances

Fluid Fouling resistances

(m2 �K/W� 105)

Distilled water 8.8

Sea water, below 325 K 8.8

above 325 K 17.6

Boiler feed water, treated 17.6

City or well water, below 325 K 17.6

above 325 K 35.2

Refrigerating liquids 17.6

Refrigerating vapors 35.2

Liquid gasoline, organic vapors 8.8

Fuel oil 88.1

Quenching oil 70.5

Steam, non-oil-bearing 8.8

Industrial air 35.2

5 Tubular Exchanger Manufacturers Association, TEMA Standards, 3rd edition, New York, 1952.
6 A. C. Mueller, Purdue Univ. Eng. Exp. Sta. Eng. Bull. Res. Ser. 121 (1954).
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22.6 CLOSURE

The basic equations and procedures for heat-exchanger design are presented and developed

in this chapter. All heat-exchanger design and analysis involve one or more of the following

equations:

dq ¼ Cc dTc (22-1)

dq ¼ CH dTH (22-2)

dq ¼ U dAðTH � Tc) (22-3)

q ¼ UADTlm (22-10)

and

q ¼ ECmin(TH in � Tc in) (22-17)

Charts were presented by which single-pass techniques could be extended to include the

design and analysis of crossflow and shell-and-tube configurations.

The two methods for heat-exchanger design utilize either equation (22-10) or (22-17).

Either is reasonably rapid and straightforward for designing an exchanger. Equation (22-17)

is a simpler and more direct approach when analyzing an exchanger that operates at other

than design conditions.

Table 22.2 Approximate values for overall heat-transfer

coefficients

Fluid combination U(W/m2 �K)
Water to compressed air 55–165

Water to water, jacket water coolers 850–1560

Water to brine 570–1140

Water to gasoline 340–480

Water to gas oil or distillate 200–340

Water to organic solvents, alcohol 280–850

Water to condensing alcohol 250–680

Water to lubricating oil 110–340

Water to condensing oil vapors 220–570

Water to condensing or boiling Freon-12 280–850

Water to condensing ammonia 850–1350

Steam to water, instantaneous heater 2280–3400

storage-tank heater 990–1700

Steam to oil, heavy fuel 55–165

light fuel 165–340

light petroleum distillate 280–1140

Steam to aqueous solutions 570–3400

Steam to gases 28–280

Light organics to light organics 220–425

Medium organics to medium organics 110–340

Heavy organics to heavy organics 55–220

Heavy organics to light organics 55–340

Crude oil to gas oil 165–310
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PROBLEMS

22.1 A single tube-pass heat exchanger is to be designed to

heat water by condensing steam in the shell. The water is to pass

through the smooth horizontal tubes in turbulent flow, and the

steam is to be condensed dropwise in the shell. The water flow

rate, the initial and final water temperatures, the condensation

temperature of the steam, and the available tube-side pressure

drop (neglecting entrance and exit losses) are all specified. In

order to determine the optimum exchanger design, it is desirable

to know how the total required area of the exchanger varies with

the tube diameter selected. Assuming that thewater flow remains

turbulent and that the thermal resistance of the tube wall and the

steam–condensate film is negligible, determine the effect of tube

diameter on the total area required in the exchanger.

22.2 Onehundred thousandpounds per hour ofwater are to pass

through a heat exchanger, which is to raise the water temperature

from140 to 2008F. Combustion products having a specific heat of

0.24 Btu/lbm 8F are available at 8008F. The overall heat-transfer
coefficient is 12 Btu/h ft2 8F. If 100,000 lbm/h of the combustion

products are available, determine

a. the exit temperature of the flue gas;

b. the required heat-transfer area for a counterflow exchanger.

22.3 An oil having a specific heat of 1880 J/kg � K enters a

single-pass counterflow heat exchanger at a rate of 2 kg/s and a

temperature of 400 K. It is to be cooled to 350 K. Water is

available to cool the oil at a rate of 2 kg/s and a temperature of

280 K. Determine the surface area required if the overall heat-

transfer coefficient is 230W/m2 � K.
22.4 Air at 203 kPa and 290 K flows in a long rectangular duct

with dimensions 10 cm by 20 cm. A 2.5-m length of this duct is

maintained at 395 K, and the average exit air temperature from

this section is 300 K. Calculate the air flow rate and the total heat

transfer.

22.5 Water enters a counterflow, double-pipe heat exchanger at

a rate of 150 lbm/min and is heated from 60 to 1408F by an oil

with a specific heat of 0.45 Btu/lbm 8F. The oil enters at 2408F
and leaves at 808F. The overall heat-transfer coefficient is 150

Btu/h ft2 8F.

a. What heat-transfer area is required?

b. What area is required if all conditions remain the same

except that a shell-and-tube heat exchanger is used with the

water making one shell pass and the oil making two tube

passes?

c. What exit water temperature would result if, for the exchan-

ger of part (a), the water flow rate were decreased to 120

lbm/min?

22.6 A water-to-oil heat exchanger has entering and exiting

temperatures of 255 and 340 K, respectively, for the water and

305 and 350K, respectively, for the oil.What is the effectiveness

of this heat exchanger?

22.7 Water at 508F is available for cooling at a rate of 400 lbm/h.
It enters a double-pipe heat exchanger with a total area of 18 ft2.

Oil, with cp ¼ 0.45 Btu/lbm 8F, enters the exchanger at 2508F.
The exiting water temperature is limited at 2128F, and the oil

must leave the exchanger at nomore than 1608F. Given the value
ofU ¼ 60 Btu/h ft2 8F, find the maximum flow of oil that may be

cooled with this unit.

22.8 A shell-and-tube heat exchanger is used for the heating of

oil from 20 to 308C; the oil flow rate is 12 kg/s (Cc ¼
2:2 kJ/kg �K). The heat exchanger has one shell pass and two

tube passes. Hot water (CH ¼ 4:18 kJ/kg � K) enters the shell at
758C and leaves the shell at 558C. The overall heat-transfer

coefficient based on the outside surface of the tubes is estimated

to be 1080W/m2 � K. Determine

a. the corrected logarithmic-mean temperature difference;

b. the required surface area in the exchanger.

22.9 Consider the exchanger in Problem 22.8. After 4 years of

operation, the outlet of the oil reaches 308C instead of 388Cwith

all other conditions remaining the same. Determine the fouling

resistance on the oil side of the exchanger.

22.10 A finned-tube crossflow heat exchanger with both fluids

unmixed is used to heat water (Cc ¼ 4:2 kJ/kg � K) from 20 to

758C. The mass flow rate of the water is 2.7 kg/s. The hot stream

(CH ¼ 1:2 kJ/kg � K) enters the heat exchanger at 2808C and

leaves at 1208C. The overall heat-transfer coefficient is

160W/m2 � K. Determine

a. the mass flow rate of the heat stream;

b. the exchanger surface area.

22.11 A shell-and-tube heat exchanger is used to cool oil

(CH ¼ 2:2 kJ/kg � K) from 110 to 658C. The heat exchanger

has two shell passes and four tube passes. The coolant (Cc ¼
4:20 kJ/kg � K) enters the shell at 208C and leaves the shell at

428C. For an overall tube-side heat-transfer coefficient of

1200W/m2 � K and an oil flow of 11 kg/s, determine

a. the coolant mass flow rate;

b. the required surface area in the exchanger.

22.12 A shell-and-tube exchanger having one shell pass and

eight tube passes is to heat kerosene from 80 to 1308F. The
kerosene enters at a rate of 2500 lbm/h. Water entering at 2008F
and at a rate of 900 lbm/h is to flow on the shell side. The overall

heat-transfer coefficient if 260 Btu/h ft2 8F. Determine the

required heat-transfer area.

22.13 If the overall heat-transfer coefficient, initial fluid tem-

perature, and total heat-transfer area determined in Problem 22.4

remain the same, find the exit oil temperature if the configuration

is changed to

a. crossflow, both fluids unmixed;

b. shell-and-tube with two tube passes and one shell pass.
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22.14 A condenser unit is of a shell-and-tube configuration

with steam condensing at 858C in the shell. The coefficient on

the condensate side is 10,600W/m2 �K.Water at 208C enters the

tubes, which make two passes through the single-shell unit. The

water leaves the unit at a temperature of 388C. An overall heat-
transfer coefficient of 4600W/m2 �K may be assumed to apply.

The heat transfer rate is 0:2� 106 kW. What must be the

required length of tubes for this case?

22.15 Determine the required heat-transfer surface area for a

heat exchanger constructed from 10-cm OD tubes. A 95%

ethanol solution (cp ¼ 3:810 kJ/kg �K), flowing at 6.93 kg/s is

cooled from340 to 312Kby 6.30 kg/s ofwater that is available at

283 K. The overall heat-transfer coefficient based on outside

tube area is 568W/m2 �K. Three different exchanger configura-
tions are of interest:

a. counterflow, single pass;

b. parallel flow, single pass;

c. crossflow with one tube pass and one shell pass, shell-side

fluid mixed.

22.16 Compressed air is used in a heat-pump system to heat

water, which is subsequently used to warm a house. The house

demand is 95,000 Btu/h. Air enters the exchanger at 2008F and

leaves at 1208F, and water enters and leaves the exchanger at 90
and 1258F, respectively. Choose from the following alternative

units the one that is most compact.

a. A counterflow surface with U ¼ 30 Btu/h ft2 8F and a

surface-to-volume ratio of 130 ft2/ft3.

b. A crossflow configuration with the water unmixed and air

mixed having U ¼ 40 Btu/h ft2 8F and a surface-to-volume

ratio of 100 ft2/ft3.

c. A crossflow unit with both fluids unmixed withU ¼ 50 Btu/

h ft2 8F and surface-to-volume ratio of 90 ft2/ft3.

22.17 A shell-and-tube heat exchanger with two shell passes

and four tube passes is used to exchange energy between two

pressurized water streams. One stream flowing at 5000 lbm/h is

heated from 75 to 2208F. The hot stream flows at 2400 lbm/h and

enters at 4008F. If the overall heat-transfer coefficient is

300W/m2 �K, determine the required surface area.

22.18 For the heat exchanger described in Problem 22.17 it is

observed, after a long period of operation, that the cold stream

leaves at 1848F instead of at the design value of 2208F. This is
for the sameflow rates and entering temperatures of both streams.

Evaluate the fouling factor that exists at the new conditions.

22.19 Water flowing at a rate of 10 kg/s through 50 tubes in a

double-pass shell-and-tube heat exchanger heats air that flows on

the shell side. The tubes aremade of brasswith outside diameters

of 2.6 cm and are 6.7 m long. Surface coefficients on the inside

and outside tube surfaces are 470 and 210W/m2 �K, respec-
tively. Air enters the unit at 158Cwith a flow rate of 16 kg/s. The

entering water temperature is 350 K. Determine the following:

a. heat-exchanger effectiveness;

b. heat-transfer rate to the air;

c. exiting temperatures of the water and air streams.

If, after a long period of operation, a scale has been built

up inside the tubes resulting in an added fouling resistance of

0:0021m2 �K/W, determine the new results for parts (a), (b), and

(c), above.

22.20 Water flowing at a rate of 3.8 kg/s is heated from 38 to

558C in the tubes of a shell-and-tube heat exchanger. The shell

side is one-pass with water, flowing at 1.9 kg/s entering at 948C.
The overall heat-transfer coefficient is 1420W/m2 �K. The

average water velocity in the 1.905-cm-ID tubes is 0.366 m/s.

Because of space limitations, the tubesmay not exceed 2.44m in

length. Determine the required number of tube passes, the

number of tubes per pass, and the length of tubes consistent

with this restriction.

22.21 Saturated steam at 373 K is to be condensed in a shell-

and-tube exchanger; it is to enter as steam at 373 K and leave as

condensate at approximately 373 K. If the NTU rating for the

condenser is given by the manufacturer as 1.25 in this service for

a circulating water flow of 0.07 kg/s, and circulating water is

available at 280 K, what will be the approximate maximum flow

rate of steam in kg/s that can be condensed? What will be the

leaving temperature of the circulating water under these condi-

tions?Under these conditions, the heat vaporization is 2257 kJ/kg

and cp is 4:18 kJ/kg �K.
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Chapter 23

Radiation Heat Transfer

The mechanism of radiation heat transfer has no analogy in either momentum or mass

transfer. Radiation heat transfer is extremely important in many phases of engineering

design such as boilers, home heating, and spacecraft. In this chapter, we will concern

ourselves first with understanding the nature of thermal radiation. Next, we will discuss

properties of surfaces and consider how system geometry influences radiant heat

transfer. Finally, we will illustrate some techniques for solving relatively simple

problems where surfaces and some gases participate in radiant energy exchange.

23.1 NATURE OF RADIATION

The transfer of energy by radiation has several unique characteristics when contrasted with

conduction or convection. First, matter is not required for radiant heat transfer; indeed the

presence of a medium will impede radiation transfer between surfaces. Cloud cover is

observed to reduce maximum daytime temperatures and to increase minimum evening

temperatures, both of which are dependent upon radiant energy transfer between earth and

space. A second unique aspect of radiation is that both the amount of radiation and the

quality of the radiation depend upon temperature. In conduction and convection, the amount

of heat transfer was found to depend upon the temperature difference; in radiation, the

amount of heat transfer depends upon both the temperature difference between two bodies

and their absolute temperatures. In addition, radiation from a hot object will be different in

quality than radiation from a body at a lower temperature. The color of incandescent objects

is observed to change as the temperature is changed. The changing optical properties of

radiation with temperature are of paramount importance in determining the radiant-energy

exchange between bodies.

Radiation travels at the speed of light, having both wave properties and particle-like

properties. The electromagnetic spectrum shown in Figure 23.1 illustrates the tremendous

range of frequency and wavelength over which radiation occurs.

The unit of wavelength which we shall use in discussing radiation is the micron,

symbolized m. One micron is 10�6 m or 3:94(10)�5 in: The frequency, v, of radiation is

related to the wavelength l, by lv ¼ c, where c is the speed of light. Short-wavelength

radiation such as gamma rays and x-rays is associated with very high energies. To produce

radiation of this type we must disturb the nucleus or the inner-shell electrons of an atom.

Gamma rays and x-rays also have great penetrating ability; surfaces that are opaque to

visible radiation are easily traversed by gamma and x-rays.Very-long-wavelength radiation,

such as radiowaves, alsomay pass through solids; however, the energy associatedwith these

waves is much less than that for short-wavelength radiation. In the range from l ¼ 0:38 to
0.76 microns, radiation is sensed by the optical nerve of the eye and is what we call light.

Radiation in the visible range is observed to have little penetrating power except in some

liquids, plastics, and glasses. The radiation between wavelengths of 0.1 and 100 microns is
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termed as thermal radiation. The thermal band of the spectrum includes a portion of the

ultraviolet and all of the infrared regions.

23.2 THERMAL RADIATION

Thermal radiation incident upon a surface as shown in Figure 23.2 may be either absorbed,

reflected, or transmitted.

If r, a, and t are the fractions of the incident radiation that are reflected, absorbed and

transmitted, respectively, then

rþ aþ t ¼ 1 (23-1)

where r is called the reflectivity, a is called the absorptivity, and t is called

transmissivity.

There are two types of reflection that can occur, specular reflection and diffuse

reflection. In specular reflection, the angle of incidence of the radiation is equal to the

angle of reflection. The reflection shown in Figure 23.2 is specular reflection. Most bodies

do not reflect in a specular manner, they reflect radiation in all directions.Diffuse reflection

is sometimes likened to a situation in which the incident thermal radiation is absorbed and

then reemitted from the surface, still retaining its initial wavelength.

Absorption of thermal radiation in solids takes place in a very short distance, on the

order of 1mm in electrical conductors and about 0.05 in. in electrical nonconductors, the

difference being caused by the different population of energy states in electrical conductors,

which can absorb energy at thermal radiation frequencies.

λ 10–6 10–5 10–4 10–3 10–2 10–1 100 101 102 103 104 105 106

Cosmic
rays

Gamma
rays x-rays Infrared

Blue, green Yellow Red

Ultra-
violet

Visible spectrum

0.3 0.4 0.5 0.6
Wavelength, in microns

0.7 0.8

Radio waves

Figure 23.1 The electromagnetic spectrum.

Reflected
radiation

Incident
radiation

Absorbed radiation

Transmitted radiation

Figure 23.2 Fate of

radiation incident upon a

surface.
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For most solids, the transmissivity is zero, and thus they may be called opaque to

thermal radiation. equation (23-1) becomes, for an opaque body, rþ a ¼ 1:
The ideally absorbing body, for which a ¼ 1, is called a black body. A black body

neither reflects nor transmits any thermal radiation. As we see reflected light (radiation), a

so-called black body will appear black, no light being reflected from it. A small hole in a

large cavity closely approaches a black body, regardless of the nature of the interior surface.

Radiation incident to the hole has very little opportunity to be reflected back out of the hole.

Black bodies may also be made of bright objects, as can be shown by looking at a stack of

razor blades, sharp edge forward.

The total emissive power, E, of a surface is defined as the total rate of thermal energy

emitted via radiation from a surface in all directions and at all wavelengths per unit surface

area. The total emissive power is also referred to elsewhere as the emittance or the total

hemispheric intensity. Closely related to the total emissive power is the emissivity. The

emissivity, e, is defined as the ratio of the total emissive power of a surface to the total

emissive power of an ideally radiating surface at the same temperature. The ideal radiating

surface is also called a black body, so we may write

e ¼ E

Eb
(23-2)

where Eb is the total emissive power of a black body. As the total emissive power

includes radiant-energy contributions from all wavelengths, the monochromatic emissive

power, El, may also be defined. The radiant energy El contained between wavelengths l
and lþ dl is the monochromatic emissive power; thus

dE ¼ El dl, or E ¼
Z 1

0

El dl

Themonochromatic emissivity, el, is simply el ¼ El/El,b, whereEl,b is themonochromatic

emissive power of a black body at wavelength l at the same temperature. A monochromatic

absorptivity, al, may be defined in the same manner as the monochromatic emissivity. The

monochromatic absorptivity is defined as the ratio of the incident radiation of wavelength

l that is absorbed by a surface to the incident radiation absorbed by a black surface.

A relation between the absorptivity and the emissivity is given by Kirchhoff’s law.

Kirchhoff’s law states that, for a system in thermodynamic equilibrium, the following

equality holds for each surface:

el ¼ al (23-3)

Thermodynamic equilibrium requires that all surfaces be at the same temperature so that

there is no net heat transfer. The utility of Kirchhoff’s law lies in its use for situations in

which the departure from equilibrium is small. In such situations the emissivity and the

absorptivity may be assumed to be equal. For radiation between bodies at greatly

different temperatures, such as between Earth and the sun, Kirchhoff’s law does not

apply. A frequent error in using Kirchhoff’s law arises from confusing thermal

equilibrium with steady-state conditions. Steady state means that time derivatives are

zero, whereas equilibrium refers to the equality of temperatures.

23.3 THE INTENSITY OF RADIATION

In order to characterize the quantity of radiation that travels from a surface along a specified

path, the concept of a single ray is not adequate. The amount of energy traveling in a given

direction is determined from I, the intensity of radiation. With reference to Figure 23.3, we
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are interested in knowing the rate at

which radiant energy is emitted from a

representative portion, dA, of the surface

shown in a prescribed direction. Our per-

spective will be that of an observer at

point P looking at dA. Standard spherical

coordinates will be used, these being r,

the radial coordinate; u, the zenith angle

shown in Figure 23.3; and f, the azi-

muthal angle, which will be discussed

shortly. If a unit area of surface, dA, emits

a total energy dq, then the intensity of

radiation is given by

I� d2q

dA dV cos u
(23-4)

where dV is a differential solid angle,

that is, a portion of space. Note that with

the eye located at point P, in Figure 23.3,

the apparent size of the emitting area is dA cos u. It is important to remember that the

intensity of radiation is independent of direction for a diffusely radiating surface. Rearran-

ging equation (23-4), we see that the relation between the total emissive power, E ¼ dq/dA,

and the intensity, I, is

dq

dA
¼ E ¼

Z
I cos u dV ¼ I

Z
cos u dV (23-5)

The relation is seen to be purely geometric for

a diffusely radiating (I 6¼ I(u)) surface. Consi-
der an imaginary hemisphere of radius r cover-

ing the plane surface on which dA is located.

The solid angle dV intersects the shaded area

on the hemisphere as shown in Figure 23.4. A

solid angle is defined by V ¼ A/r2 or dV ¼
dA/r2, and thus

dV ¼ (r sin u df)(r du)

r2
¼ sin u du df

The total emissive power per unit area becomes

E ¼ I

Z
cos u dV

¼ I

Z 2p

0

Z p/2

0

cos u sin u du df

or simply

E ¼ pI (23-6)

If the surface does not radiate diffusely, then

E ¼
Z 2p

0

Z p/2

0

I cos u sin u du df

dΩ

dA

P

I

q

Figure 23.3 The intensity of radiation.

dA

r0 sin q

r0

q

df

dq

f

Figure 23.4 Integration of intensity over

solid angles.
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The relation between the intensity of radiation, I, and the total emissive power is an

important step in determining the total emissive power.

Radiation intensity is fundamental in formulating a quantitative description of radiant

heat transfer but its definition, as already discussed, is cumbersome. Equation (23-6) relates

intensity to emissive power that, potentially, is much easier to describe. We will now

consider the means of such a description.

23.4 PLANCK’S LAW OF RADIATION

Planck1 introduced the quantum concept in 1900 andwith it the idea that radiation is emitted

not in a continuous energy state but in discrete amounts or quanta. The intensity of radiation

emitted by a black body, derived by Planck, is

Ib,l ¼ 2c2hl�5

exp
ch

klT

� �
� 1

where Ib,l is the intensity of radiation from a black body between wavelengths l and lþ
dl, c is the speed of light, h is Planck’s constant, k is the Boltzmann constant, and T is the

temperature. The total emissive power between wavelengths l and lþ dl is then

Eb,l ¼ 2pc2hl�5

exp
ch

klT

� �
� 1

(23-7)

Figure 23.5 illustrates the spectral energy distribution of energy of a black body as given

by equation (23-7).

In Figure 23.5 the area under the curve of Eb,l vs. l (the total emitted energy) is seen to

increase rapidly with temperature. The peak energy is also observed to occur at shorter and

shorter wavelengths as the temperature is increased. For a black body at 5800 K (the

effective temperature of solar radiation), a large part of the emitted energy is in the visible

region. Equation (23-7) expresses, functionally, Eb,l as a function of wavelength and

temperature. Dividing both sides of this equation by T5, we get

Ebl

T5
¼ 2p2h(lT)�5

exp
ch

klT

� �
� 1

(23-8)

where the quantity Ebl/T
5 is expressed as a function of the lT product, which can be

treated as a single independent variable. This functional relationship is plotted in Figure

23.6, and discrete values of Ebl/sT
5 are given in Table 23.1. The constant, s, will be

discussed in the next section.

The peak energy is observed to be emitted at lT¼2897:6mmK(5215:6mm�R), as can be
determined by maximizing equation (23-8). The relation, lmaxT ¼ 2897mK, is called Wien’s

displacement law. Wien obtained this result in 1893, 7 years prior to Planck’s development.

Weareofteninterestedinknowinghowmuchemissionoccursinaspecificportionofthetotal

wavelengthspectrum.This isconvenientlyexpressedasafractionof thetotalemissivepower.The

fraction between wavelengths l1 and l2 is designated Fl1�l2 and may be expressed as

Fl1�l2
¼
R l2

l1
Ebl dlR1

0 Ebl dl
¼
R l2

l1
Ebl dl

sT4
(23-9)

1 M. Planck, Verh. d. deut. physik. Gesell., 2, 237 (1900).
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Equation (23-9) is conveniently broken into two integrals as follows:

Fl1�l2
¼ 1

sT4

Z l2

0

Ebl dl�
Z l1

0

Ebl dl

� �
¼ F0�l2 � F0�l1

(23-10)

So, at a given temperature, the fraction of emission between any two wavelengths can be

determined by subtraction.

This process can be simplified if the temperature is eliminated as a separate variable.

This may be accomplished by using the fraction Ebl/sT
5, as discussed. Equation (23-10)

H
em

is
ph

er
ic

al
 s

pe
ct

ra
l e

m
is

si
ve

 p
ow

er
 E

λb
(l

,T
),

 W
/(

m
2

• µ
m

)

Wavelength l, mm
0

Violet Red
Visible region
(0.4–0.7mm)

2 4 5 8 10 12
100

101

102

103

H
em

is
ph

er
ic

al
 s

pe
ct

ra
l e

m
is

si
ve

 p
ow

er
 E

lb
(λ

,T
),

 W
/m

 2
• m

m
)

101

102

103

104

105

106

107

108

104

105

106

107

108

Blackbody
temperature, T, °R; K

10 , 000; 5555

3000; 1667

1500; 833

1000; 555
Locus of maximum

Values, elb( lmax, T )

5000; 2778

Figure 23.5 Spectral emissive power for a black body for several temperatures.

(From R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, Third Edition, Hemisphere

Publishers, Washington, 1992. By permission of the publishers.)

364 Chapter 23 Radiation Heat Transfer



may be modified in this manner to yield

Fl1T�l2T ¼
Z l2T

0

Ebl

sT5
d(lT)�

Z l1T

0

Ebl

sT5
d(lT)

¼ F0�l2T � F0�l1T

(23-11)

Values of F0�lT are given as functions of the product, lT, in Table 23.1.

23.5 STEFAN–BOLTZMANN LAW

Planck’s law of radiation may be integrated over wavelengths from zero to infinity to

determine the total emissive power. The result is

Eb ¼
Z 1

0

Eb,l dl ¼ 2p5k4T4

15c2h3
¼ sT4 (23-12)

where s is called the Stefan–Boltzmann constant and has the value s ¼ 5:676�
10�8 W/m2 � K4(0:1714� 10�8 Btu/h ft2 �R4). This constant is observed to be a combina-

tion of other physical constants. The Stefan–Boltzmann relation, Eb ¼ sT4, was obtained

prior to Planck’s law, via experiment by Stefan in 1879 and via a thermodynamic

derivation by Boltzmann in 1884. The exact value of the Stefan–Boltzmann constant, s,

and its relation to other physical constants were obtained after the presentation of

Planck’s law in 1900.
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Figure 23.6 Spectral energy distribution for a black body as a function of lT.

(From R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, Third Edition, Hemisphere

Publishers, Washington, 1992. By permission of the publishers.)
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Table 23.1 Planck radiation functions

lT(mm K) F0�lT

Eb

sT5

1

cm K

� �

1000 0.0003 0.0372

1100 0.0009 0.0855

1200 0.0021 0.1646

1300 0.0043 0.2774

1400 0.0078 0.4222

1500 0.0128 0.5933

1600 0.0197 0.7825

1700 0.0285 0.9809

1800 0.0393 1.1797

1900 0.0521 1.3713

2000 0.0667 1.5499

2100 0.0830 1.7111

2200 0.1009 1.8521

2300 0.1200 1.9717

2400 0.1402 2.0695

2500 0.1613 2.1462

2600 0.1831 2.2028

2700 0.2053 2.2409

2800 0.2279 2.2623

2900 0.2505 2.2688

3000 0.2732 2.2624

3100 0.2958 2.2447

3200 0.3181 2.2175

3300 0.3401 2.1824

3400 0.3617 2.1408

3500 0.3829 2.0939

3600 0.4036 2.0429

3700 0.4238 1.9888

3800 0.4434 1.9324

3900 0.4624 1.8745

4000 0.4809 1.8157

4100 0.4987 1.7565

4200 0.5160 1.6974

4300 0.5327 1.6387

4400 0.5488 1.5807

4500 0.5643 1.5238

4600 0.5793 1.4679

4700 0.5937 1.4135

4800 0.6075 1.3604

4900 0.6209 1.3089

5000 0.6337 1.2590

5100 0.6461 1.2107

5200 0.6579 1.1640

5300 0.6694 1.1190

5400 0.6803 1.0756

lT(mm K) F0�lT

Eb

sT5

1

cm K

� �

5500 0.6909 1.0339

5600 0.7010 0.9938

5700 0.7108 0.9552

5800 0.7201 0.9181

5900 0.7291 0.8826

6000 0.7378 0.8485

6100 0.7461 0.8158

6200 0.7541 0.7844

6300 0.7618 0.7543

6400 0.7692 0.7255

6500 0.7763 0.6979

6600 0.7832 0.6715

6700 0.7897 0.6462

6800 0.7961 0.6220

6900 0.8022 0.5987

7000 0.8081 0.5765

7100 0.8137 0.5552

7200 0.8192 0.5348

7300 0.8244 0.5152

7400 0.8295 0.4965

7500 0.8344 0.4786

7600 0.8391 0.4614

7700 0.8436 0.4449

7800 0.8480 0.4291

7900 0.8522 0.4140

8000 0.8562 0.3995

8100 0.8602 0.3856

8200 0.8640 0.3722

8300 0.8676 0.3594

8400 0.8712 0.3472

8500 0.8746 0.3354

8600 0.8779 0.3241

8700 0.8810 0.3132

8800 0.8841 0.3028

8900 0.8871 0.2928

9000 0.8900 0.2832

9100 0.8928 0.2739

9200 0.8955 0.2650

9300 0.8981 0.2565

9400 0.9006 0.2483

9500 0.9030 0.2404

9600 0.9054 0.2328

9700 0.9077 0.2255

9800 0.9099 0.2185

9900 0.9121 0.2117
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23.6 EMISSIVITY AND ABSORPTIVITY OF SOLID SURFACES

Whereas thermal conductivity, specific heat, density, and viscosity are the important

physical properties ofmatter in heat conduction and convection, emissivity and absorptivity

are the controlling properties in heat exchange by radiation.

From preceding sections it is seen that, for black-body radiation, Eb ¼ sT4. For actual

surfaces, E ¼ eEb, following the definition of emissivity. The emissivity of the surface, so

defined, is a gross factor, as radiant energy is being sent out from a body not only in all

directions but also over various wavelengths. For actual surfaces, the emissivity may vary

with wavelength as well as the direction of emission. Consequently, we have to differentiate

themonochromatic emissivity el and the directional emissivity eu from the total emissivity e.

Monochromatic Emissivity. By definition, the monochromatic emissivity of an actual

surface is the ratio of itsmonochromatic emissive power to that of a black surface at the same

temperature. Figure 23.7 represents a typical distribution of the intensity of radiation of two

lT(mm K) F0�lT

Eb

sT5

1

cm K

� �

10,000 0.9142 0.2052

11,000 0.9318 0.1518

12,000 0.9451 0.1145

13,000 0.9551 0.0878

14,000 0.9628 0.0684

15,000 0.9689 0.0540

16,000 0.9738 0.0432

17,000 0.9777 0.0349

18,000 0.9808 0.0285

19,000 0.9834 0.0235

20,000 0.9856 0.0196

21,000 0.9873 0.0164

22,000 0.9889 0.0139

23,000 0.9901 0.0118

24,000 0.9912 0.0101

25,000 0.9922 0.0087

26,000 0.9930 0.0075

27,000 0.9937 0.0065

28,000 0.9943 0.0057

29,000 0.9948 0.0050

lT(mm K) F0�lT

Eb

sT5

1

cm K

� �

30,000 0.9953 0.0044

31,000 0.9957 0.0039

32,000 0.9961 0.0035

33,000 0.9964 0.0031

34,000 0.9967 0.0028

35,000 0.9970 0.0025

36,000 0.9972 0.0022

37,000 0.9974 0.0020

38,000 0.9976 0.0018

39,000 0.9978 0.0016

40,000 0.9979 0.0015

41,000 0.9981 0.0014

42,000 0.9982 0.0012

43,000 0.9983 0.0011

44,000 0.9984 0.0010

45,000 0.9985 0.0009

46,000 0.9986 0.0009

47,000 0.9987 0.0008

48,000 0.9988 0.0007

49,000 0.9988 0.0007

(From M. Q. Brewster, Thermal Radiative Transfer and Properties, John Wiley & Sons, New York, 1992. By permission of the publishers).
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Figure 23.7 Emissivity at

various wavelengths.
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such surfaces at the same temperature over various wavelengths. The monochromatic

emissivity at a certainwavelength, l1, is seen to be the ratio of two ordinates such asOQ and

OP. That is

el1
¼ OQ

OP

which is equal to the monochromatic absorptivity al1 from radiation of a body at the same

temperature. This is the direct consequence of Kirchhoff’s law. The total emissivity of the

surface is given by the ratio of the shaded area shown in Figure 23.7 to that under the curve

for the black-body radiation.

Directional Emissivity. The cosine variation discussed previously, equation (23-5), is

strictly applicable to radiation from a black surface but fulfilled only approximately by

materials present in nature. This is due to the fact that the emissivity (averaged over all

wavelengths) of actual surfaces is not a constant in all directions. The variation of emissivity

of materials with the direction of emission can be conveniently represented by polar

diagrams.

If the cosine law is fulfilled, the distribution curves should take the form of semicircles.

Most nonconductors have much smaller emissivities for emission angles in the neighbor-

hood of 908 (see Figure 23.8).

Deviation from the cosine law is even greater for many conductors (see Figure 23.9).

The emissivity stays fairly constant in the neighborhood of the normal direction of emission;

as the emission angle is increased, it first increases and then decreases as the former

approaches 908.
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Figure 23.9 Emissivity variation with direction for conductors.
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The average total emissivity may be determined by using the following expression:

e ¼
Z p/2

0

eu sin 2u du

The emissivity, e, is, in general, different from the normal emissivity, en (emissivity in the

normal direction). It has been found that for most bright metallic surfaces, the total

emissivity is approximately 20% higher than en. Table 23.2 lists the ratio of e/en for a

few representative bright metallic surfaces. For nonmetallic or other surfaces, the ratio e/en
is slightly less than unity. Because of the inconsistency that can often be found among

various sources, the normal emissivity values can be used, without appreciable error, for

total emissivity (see Table 23.3).

A few generalizations may be made concerning the emissivity of surfaces:

(a) In general, emissivity depends on surface conditions.

(b) The emissivity of highly polished metallic surfaces is very low.

(c) The emissivity of all metallic surfaces increases with temperature.

(d) The formation of a thick oxide layer and roughening of the surface increase the

emissivity appreciably.

(e) The ratio e/en is always greater than unity for bright metallic surfaces. The value

1.2 can be taken as a good average.

(f) The emissivities of nonmetallic surfaces are much higher than for metallic surfaces

and show a decrease as temperature increases.

Table 23.2 The ratio e/en for bright metallic surfaces

Aluminum, bright rolled (443 K) 0:049

0:039
¼ 1:25

Nickel, bright matte (373 K) 0:046

0:041
¼ 1:12

Nickel, polished (373 K) 0:053

0:045
¼ 1:18

Manganin, bright rolled (392 K) 0:057

0:048
¼ 1:19

Chromium, polished (423 K) 0:071

0:058
¼ 1:22

Iron, bright etched (423 K) 0:158

0:128
¼ 1:23

Bismuth, bright (353 K) 0:340

0:336
¼ 1:08

Table 23.3 The ratio e/en for nonmetallic

and other surfaces

Copper oxide (3008F) 0.96

Fire clay (1838F) 0.99

Paper (2008F) 0.97

Plywood (1588F) 0.97

Glass (2008F) 0.93

Ice (328F) 0.95
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(g) The emissivities of colored oxides of heavy metals like Zn, Fe, and Cr are much

larger than emissivities of white oxides of light metals like Ca, Mg, and Al.

Absorptivity. The absorptivity of a surface depends on the factors affecting the emissivity

and, in addition, on the quality of the incident radiation. It may be remarked once again that

Kirchhoff’s law holds strictly true under thermal equilibrium. That is, if a body at

temperature T1 is receiving radiation from a black body also at temperature T1, then

a ¼ e. For most materials, in the usual range of temperature encountered in practice (from

room temperature up to about 1370 K) the simple relationship a ¼ e holds with good

accuracy. However, if the incident radiation is that from avery-high-temperature source, say

solar radiation (
 5800K), the emissivity and absorptivity of ordinary surfaces may differ

widely. White metal oxides usually exhibit an emissivity (and absorptivity) value of about

0.95 at ordinary temperature, but their absorptivity drops sharply to 0.15 if these oxides are

exposed to solar radiation. Contrary to the above, freshly polishedmetallic surfaces have an

emissivity value (and absorptivity under equilibrium conditions) of about 0.05. When

exposed to solar radiation, their absorptivity increases to 0.2 or even 0.4.

Under these latter circumstances a double-subscript notation, a1,2, may be employed,

the first subscript referring to the temperature of the receiving surface and the second

subscript to the temperature of the incident radiation.

Gray surfaces. Like emissivity, the monochromatic absorptivity, al, of a surface may

vary with wavelength. If al is a constant and thus independent of l, the surface is called

gray. For a gray surface, the total average absorptivity will be independent of the spectral-

energy distribution of the incident radiation. Consequently, the emissivity, e, may be used in

place of a, even though the temperatures of the incident radiation and the receiver are not

the same. Good approximations of a gray surface are slate, tar board, and dark linoleum.

Table 23.4 lists emissivities, at various temperatures, for several materials.

23.7 RADIANT HEAT TRANSFER BETWEEN BLACK BODIES

The exchange of energy between black bodies is dependent upon the temperature difference

and the geometrywith the geometry, in particular, playing a dominant role. Consider the two

surfaces illustrated in Figure 23.10. The radiant energy emitted from a black surface at dA1

and received at dA2 is

dq1!2 ¼ Ib1 cos u1 dV1�2 dA1

q1

q2

A1

A2
r

dA1

dA2

Figure 23.10 Radiant heat transfer between two surfaces.
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Table 23.4 Normal total emissivity of various surfaces (Compiled by H. C. Hottel)y
Surface T, 8Fz Emissivity

A. Metals and their oxides

Aluminum:

Highly polished plate, 98.3% pure 440–1070 0.039–0.057

Commercial sheet 212 0.09

Oxidized at 11108F 390–1110 0.11–0.19

Heavily oxidized 200–940 0.20–0.31

Brass:

Polished 100–600 0.10

Oxidized by heating at 11108F 390–1110 0.61–0.59

Chromium (see nickel alloys for Ni–Cr steels):

Polished 100–2000 0.08–0.36

Copper

Polished 212 0.052

Plate heated at 11108F 390–1110 0.57

Cuprous oxide 1470–2010 0.66–0.54

Molten copper 1970–2330 0.16–0.13

Gold:

Pure, highly polished 440–1160 0.018–0.035

Iron and steel (not including stainless):

Metallic surfaces (or very thin oxide layer)

Iron, polished 800–1880 0.14–0.38

Cast iron, polished 392 0.21

Wrought iron, highly polished 100–480 0.28

Oxidized surfaces

Iron plate, completely rusted 67 0.69

Steel plate, rough 100–700 0.94–0.97

Molten surfaces

Cast iron 2370–2550 0.29

Mild steel 2910–3270 0.28

Lead:

Pure (99.96%), unoxidized 260–440 0.057–0.075

Gray oxidized 75 0.28

Nickel alloys:

Chromnickel 125–1894 0.64–0.76

Copper–nickel, polished 212 0.059

Nichrome wire, bright 120–1830 0.65–0.79

Nichrome wire, oxidized 120–930 0.95–0.98

Platinum:

Pure, polished plate 440–1160 0.054–0.104

Strip 1700–2960 0.12–0.17

Filament 80–2240 0.036–0.192

Wire 440–2510 0.073–0.182

Silver:

Polished, pure 440–1160 0.020–0.032

Polished 100–700 0.022–0.031

(Continued )
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Stainless steels:

Polished 212 0.074

Type 310 (25 Cr; 20 Ni)

Brown, splotched, oxidized from furnace service 420–980 0.90–0.97

Tin:

Bright tinned iron 76 0.043 and 0.064

Bright 122 0.06

Commercial tin-plated sheet iron 212 0.07, 0.08

Tungsten:

Filament, aged 80–6000 0.032–0.35

Filament 6000 0.39

Polished coat 212 0.066

Zinc:

Commercial 99.1% pure, polished 440–620 0.045–0.053

Oxidized by heating at 7508F 750 0.11

B. Refractories, building materials, paints, and miscellaneous

Asbestos:

Board 74 0.96

Paper 100–700 0.93–0.94

Brick

Red, rough, but no gross irregularities 70 0.93

Brick, glazed 2012 0.75

Building 1832 0.45

Fireclay 1832 0.75

Carbon:

Filament 1900–2560 0.526

Lampblack-waterglass coating 209–440 0.96–0.95

Thin layer of same on iron plate 69 0.927

Glass:

Smooth 72 0.94

Pyrex, lead, and soda 500–1000 0.95–0.85

Gypsum, 0.02 in. thick on smooth or blackened plate 70 0.903

Magnesite refractory brick 1832 0.38

Marble, light gray, polished 72 0.93

Oak, planed 70 0.90

Paints, lacquers, varnishes:

Snow-white enamel varnish on rough iron plate 73 0.906

Black shiny lacquer, sprayed on iron 76 0.875

Black shiny shellac on tinned iron sheet 70 0.821

Black matte shellac 170–295 0.91

Black or white lacquer 100–200 0.80–0.95

Flat black lacquer 100–200 0.96–0.98

Oil paints, 16 different, all colors 212 0.92–0.96

A1 paint, after heating to 6208F 300–600 0.35

Table 23.4 Normal total emissivity of various surfaces (Compiled by H. C. Hottel)y
Surface T, 8Fz Emissivity

A. Metals and their oxides
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where dV1�2 is the solid angle subtended by dA2 as seen from dA1. Thus

dV1�2 ¼ cos u2
dA2

r2

and as Ib1 ¼ Eb1 /p, the heat transfer from 1 to 2 is

dq1!2 ¼ Eb1 dA1

n cos u1 cos u2 dA2

pr2

o
The bracketed term is seen to depend solely upon geometry. In exactly the same manner the

energy emitted by dA2 and captured by dA1, may be determined. This is

dq2!1 ¼ Eb2 dA2

n cos u2 cos u1 dA1

pr2

o
The net heat transfer between surfaces dA1 and dA2 is then simply

dq1�2 net ¼ dq1Ð2 ¼ dq1!2 � dq2!1

or

dq1Ð2 ¼ (Eb1 � Eb2 )
cos u1 cos u2 dA1 dA2

pr2

Integrating over surfaces 1 and 2, we obtain

q1Ð2 ¼ (Eb1 � Eb2 )

Z
A1

Z
A2

cos u1 cos u2 dA2 dA1

pr2

the insertion of A1/A1 yields

q1Ð2 ¼ (Eb1 � Eb2 )A1
1

A1

Z
A1

Z
A2

cos u1 cos u2 dA2 dA1

pr2

� �
(23-13)

Table 23.4 (Continued)

Surface T, 8Fz Emissivity

B. Refractories, building materials, paints, and miscellaneous

Plaster, rough lime 50–190 0.91

Roofing paper 69 0.91

Rubber:

Hard, glossy plate 74 0.94

Soft, gray, rough (reclaimed) 76 0.86

Water 32–212 0.95–0.963

y By permission from W. H. McAdams (ed.), Heat Transmission, Third Edition, McGraw-Hill Book Company,

1954. Table of normal total emissivity compiled by H. C. Hottel.

zWhen temperatures and emissivities appear in pairs separated by dashes, they correspond and linear interpolation

is permissible.

The reader should note that the units of temperatures in Table 23.4 are �F, in contrast to K, as has been used

throughout the text thus far. Table 23.4 is presented as originally published by McAdams.
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The bracketed term in the above equation is called the view factor F1�2. If we had used

A2 as a reference, then the view factor would be F21. Clearly, the net heat transfer is not

affected by these operations, and thus A1F12 ¼ A2F21. This simple but extremely import-

ant expression is called the reciprocity relationship.

A physical interpretation of the view factor may be obtained from the following

argument. As the total energy leaving surface A1 is EbA1, the amount of heat that sur-

face A2 receives is Eb1A1F12. The amount of heat lost by surface A2 is Eb2A2, whereas

the amount that reachesA1 isEb2A2F21. The net rate of heat transfer betweenA1 andA2 is the

difference orEb1A1F12 � Eb2A2F21. Thismay be arranged to yield (Eb1 � Eb2 )A1F12. Thus,

the view factor F12 can be interpreted as the fraction of black-body energy leavingA1 which

reaches A2. Clearly the view factor cannot exceed unity.

Before some specific view factors are examined, there are several generalizations

worthy of note concerning view factors.

1. The reciprocity relation, A1F12 ¼ A2F21, is always valid.

2. The view factor is independent of temperature. It is purely geometric.

3. For an enclosure, F11 þ F12 þ F13 þ � � � ¼ 1.

In many cases the view factor may be determined without integration. An example of

such a case follows.

EXAMPLE 1 Consider the view factor between a hemisphere and a plane as shown in the figure. Determine the

view factors F11, F12, and F21.

The view factor F21 is unity, as surface 2 sees only surface 1. For surface 1 we may write

F11 þ F12 ¼ 1 and A1F12 ¼ A2F21. As F21 ¼ 1,A2 ¼ pr20, and A1 ¼ 2pr20, the above relations

give

F12 ¼ F21
A2

A1
¼ (1)

pr20
2pr20

 !
¼ 1

2

and

F11 ¼ 1� F12 ¼ 1

2

The view factor F12 can, in general, be determined by integration. As

F12� 1

A1

Z
A1

Z
A2

cos u1 cos u2 dA2 dA1

pr2
(23-14)

this integration process becomes quite tedious, and the view factor for a complex geometry

is seen to require numerical methods. In order to illustrate the analytical evaluation of view

factors, consider the view factor between the differential area dA1 and the parallel plane A2

shown in Figure 23.11. The view factor FdA1A2 is given by

FdA1A2
¼ 1

dA1

Z
dA1

Z
A2

cos u1 cos u2 dA2 dA1

pr2

Surface 1

Surface 2

r0

374 Chapter 23 Radiation Heat Transfer



and as A2� dA1 the view of dA2 from dA1 is independent of the position on dA1, hence

FdA1A2
¼ 1

p

Z
A2

cos u1cos u2

r2
dA2

Also, itmay be noted that u1 ¼ u2 and cos u ¼ D/r, where r2 ¼ D2 þ x2 þ y2. The resulting

integral becomes

FdA1A2
¼ 1

p

Z L1

0

Z L2

0

D2 dx dy

(D2 þ x2 þ y2)2

or

FdA1A2
¼ 1

2p

(
L1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ L21

q tan�1 L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ L21

q þ L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ L22

q tan�1 L1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ L22

q
)

(23-15)

The view factor given by equation (23-15) is shown graphically in Figure 23.12. Figures

23.13–23.15 also illustrate some view factors for simple geometries.
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EXAMPLE 2 Determine theview factor froma1m square to a parallel rectangular plane 10mby12mcentered 8m

above the 1 m square.

The smaller areamay be considered a differential area, and Figure 23.12may be used. The 10m

by 12m area may be divided into four 5m by 6m rectangles directly over the smaller area. Thus, the

total view factor is the sum of the view factors to each subdivided rectangle. Using

D ¼ 8, L1 ¼ 6, L2 ¼ 5, we find that the view factor from Figure 23.12 is 0.09. The total view

factor is the sum of the view factors or 0.36.

View-Factor Algebra

View factors between combinations of differential- and finite-size areas have been ex-

pressed in equation form thus far. Some generalizations can be made that will be useful in

evaluating radiant energy exchange in cases that, at first glance, seem quite difficult.

In an enclosure all energy leaving one surface, designated i, will be incident on the other

surfaces that it can ‘‘see.’’ If there are n surfaces in total, with j designating any surface that

receives energy from i, we may write

�
n

j¼1
Fij ¼ 1 (23-16)

A general form of the reciprocity relationship may be written as

AiFij ¼ AjFji (23-17)

these two expressions form the basis of a technique designated view-factor algebra.

A simplified notation will be introduced, using the symbol Gij, defined as

Gij �AiFij
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Figure 23.15 View factors for parallel opposed circular disks of unequal size.
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Equations (23-16) and (23-17) may now be written as

�Gij ¼ Ai (23-18)

Gij ¼ Gji (23-19)

The quantity Gij is designated the geometric flux. Relations involving geometric fluxes

are dictated by energy conservation principles.

Some special symbolism will now be explained. If surface 1 ‘‘sees’’ two surfaces,

designated 2 and 3, we may write

G1�(2þ3) ¼ G1�2 þ G1�3 (23-20)

This relation says simply that the energy leaving surface 1 and striking both surfaces

2 and 3 is the total of that striking each separately. Equation (23-20) can be reduced

further to

A1F1�(2þ3) ¼ A1F12 þ A1F13

or

F1�(2þ3) ¼ F12 þ F13

A second expression, involving four surfaces, is reduced to

G(1þ2)�(3þ4) ¼ G1�(3þ4) þ G2�(3þ4)

which decomposes further to the form

G(1þ2)�(3þ4) ¼ G1�3 þ G1�4 þ G2�3 þ G2�4

Examples of how view-factor algebra can be used follow.

EXAMPLE 3 Determine the view factors, F1�2, for the finite areas shown.

3

3 m

2

1

3

3 m

3 m

2 m

2 m
5 m

2 m

2

4

1
2 m

2 m

Inspection indicates that, in case (a), view factors F2�3 and F2�ð1þ3Þ can be read directly from
Figure 23.13. The desired view factor, F1�2, can be obtained using view-factor algebra in the

following steps.

G2�(1þ3) ¼ G2�1 þ G2�3

Thus,

G2�1 ¼ G2�(1þ3) � G2�3
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Finally, by reciprocity, we may solve for F1�2 according to

G1�2 ¼ G2�1 ¼ G2�(1þ3) � G2�3

A1F1�2 ¼ A2F2�(1þ3)�A2F2�3

F1�2 ¼ A2

A1
½F2�(1þ3) � F2�3�

From Figure 23.13 we read

F2�(1þ3) ¼ 0:15 F2�3 ¼ 0:10

Thus, for configuration (a), we obtain

F1�2 ¼ 5

2
(0:15� 0:10) ¼ 0:125

Now, for case (b), the solution steps are

G1�2 ¼ G1�(2þ4) � G1�4

which may be written as

F1�2 ¼ F1�(2þ4) � F1�4

The result from part (a) can now be utilized to write

F1�(2þ4) ¼
A2 þ A4

A1
½F(2þ4)�(1þ3) � F(2þ4)�3�

F1�4 ¼ A4

A1
½F4�(1þ3) � F4�3�

Each of the view factors on the right side of these two expressions may be evaluated from

Figure 23.13; the appropriate values are

F(2þ4)�(1þ3) ¼ 0:15 F4�(1þ3) ¼ 0:22

F(2þ4)�3 ¼ 0:10 F4�3 ¼ 0:165

Making these substitutions, we have

F1�(2þ4) ¼
5

2
(0:15� 0:10) ¼ 0:125

F1�4 ¼ 3

2
(0:22� 0:165) ¼ 0:0825

The solution to case (b) now becomes

F1�2 ¼ 0:125� 0:0825 ¼ 0:0425

23.8 RADIANT EXCHANGE IN BLACK ENCLOSURES

As pointed out earlier, a surface that views n other surfaces may be described according to

F11 þ F12 þ � � � þ F1i þ � � � þ F1n ¼ 1

or

�
n

i¼1
F1i ¼ 1 (23-21)
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Obviously, the inclusion of A1 with equation (23-12) yields

�
n

i¼1
A1F1i ¼ A1 (23-22)

Between any two black surfaces the radiant heat exchange rate is given by

q12 ¼ A1F12(Eb1 � Eb2 ) ¼ A2F21(Eb1 � Eb2 ) (23-23)

For surface 1 and any other surface, designated i, in a black enclosure the radiant

exchange is given as

q1i ¼ A1F1i(Eb1 � Ebi ) (23-24)

For an enclosure where surface 1 views n other surfaces, we may write for the net heat

transfer with 1,

q1�others ¼ �
n

i¼1
q1i ¼ �

n

i¼1
A1F1i(Eb1 � Ebi) (23-25)

Equation (23-25) can be thought of as an analog to Ohm’s law where the quantity of

transfer, q; the potential driving force, Eb1 � Ebi ; and the thermal resistance, 1/A1F1i; have

electrical counterparts I, DV, and R, respectively.

Figure 23.16 depicts the analogous electrical circuits for enclosures with three and four

surfaces, respectively.

The solution to a three-surface problem, that is, to find q12, q13, q23, although somewhat

tedious, can be accomplished in reasonable time. When analyzing enclosures with four or

more surfaces, an analytical solution becomes impractical. In such situations one would

resort to numerical methods.

23.9 RADIANT EXCHANGE WITH RERADIATING SURFACES PRESENT

The circuit diagrams shown in Figure 23.16 show a path to ground at each of the junctions.

The thermal analog is a surface that has some external influence whereby its temperature

is maintained at a certain level by the addition or rejection of energy. Such a surface is in

contact with its surroundings and will conduct heat by virtue of an imposed temperature

difference across it.

1
A2F2 – 3

Eb3
Eb3

Eb2Eb1
Eb2

Eb4

Eb1

1
A2F2 – 3

1
A1F1 – 3

1
A1F1 – 2

1
A1F1 – 4

1
A1F1 – 3

1
A2F2 – 4

1
A1F1 – 2

1
A3F3 – 4

Figure 23.16 Radiation analogs.
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In radiation applications, we encounter surfaces that

effectively are insulated from the surroundings. Such a

surface will reemit all radiant energy that is absorbed—

usually in a diffuse fashion. These surfaces thus act as

reflectors and their temperatures ‘‘float’’ at some value that

is required for the system to be in equilibrium. Figure 23.17

shows a physical situation and the corresponding electric

analog for a three-surface enclosure with one being a

nonabsorbing reradiating surface.

Evaluating the net heat transfer between the two black

surfaces, q1�2, we have

q12 ¼ Eb1 � Eb2

Requiv

¼ A1F12 þ 1

1/A1F13 þ 1/A2F23

� �
(Eb1 � Eb2 )

¼ A1 F12 þ 1

1/F13 þ A1/A2F23

� �
(Eb1 � Eb2 )

¼ A1F12(Eb1 � Eb2 )

(23-26)

The resulting expression, equation (23-62), contains a new term, F12, the reradiating

view factor. This new factor, F12, is seen equivalent to the square-bracketed term in the

previous expression,which includes direct exchange between surfaces 1 and 2,F12, plus terms

that account for the energy that is exchanged between these surfaces via the intervening

reradiating surface. It is apparent thatF12 will always be greater thanF12. Figure 23.14 allows

reradiating view factors to be read directly for some simple geometries. In other situations

where curves such as in this figure are not available, the electrical analog may be used by the

simple modification that no path to ground exists at the reradiating surface.

23.10 RADIANT HEAT TRANSFER BETWEEN GRAY SURFACES

In the case of surfaces that are not black,

determination of heat transfer becomes

more involved. For gray bodies, that is,

surfaces for which the absorptivity and

emissivity are independent of wavelength,

considerable simplifications can be made.

The net heat transfer from the surface

shown in Figure 23.18 is determined by

the difference between the radiation leav-

ing the surface and the radiation incident

upon the surface. The radiosity, J, is

defined as the rate at which radiation leaves

a given surface per unit area. The irradia-

tion, G, is defined as the rate at which

radiation is incident on a surface per unit area. For a gray body, the radiosity, irradiation,

and the total emissive power are related by

J ¼ rGþ eEb (23-27)

Eb2Eb1

1
A2F2 – 3

1
A1F1 – 3

1
A1F1 – 2

3

Figure 23.17

Incident
radiation, G

Radiation leaving
surface, J

Figure 23.18 Heat transfer at a surface.
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where r is the reflectivity and e is the emissivity. The net heat transfer from a surface

is

qnet

A
¼ J � G ¼ eEb þ rG� G ¼ eEb � (1� r)G (23-28)

In most cases it is useful to eliminate G from equation (23-28). This yields

qnet

A
¼ eEb � (1� r)

(J � eEb)

r

As aþ r ¼ 1 for an opaque surface

qnet

A
¼ eEb

r
� aJ

r
(23-29)

When the emissivity and absorptivity can be considered equal, an important simpli-

fication may be made in equation (23-29). Setting a ¼ e, we obtain

qnet ¼ Ae

r
(Eb � J) (23-30)

which suggests an analogy with Ohm’s law,

V ¼ IR, where the net heat leaving a surface can

be thought of in terms of a current, the difference

Eb � J may be likened to a potential difference,

and the quotient r/eA may be termed a

resistance. Figure 23.19 illustrates this analogy.

Now the net exchange of heat via radiation between two surfaces will depend upon

their radiosities and their relative ‘‘views’’ of each other. From equation (23-17) we may

write

q1Ð2 ¼ A1F12(J1 � J2) ¼ A2F21(J1 � J2)

We may now write the net heat exchange in terms of the different ‘‘resistances’’ offered by

each part of the heat transfer path as follows:

If surfaces 1 and 2 view each other and no others then each of the qs in the previous equations

is equivalent. In such a case an additional expression for q can be written in terms of the

overall driving force, Eb1 � Eb2 . Such an expression is

q ¼ Eb1 � Eb2

r1/A1e1 þ 1/A1F12 þ r2/A2e2
(23-31)

where the terms in the denominator are the equivalent resistances due to the characteristics

of surface 1, geometry, and the characteristics of surface 2, respectively. The electrical

analog to this equation is portrayed in Figure 23.20.

Eb J (Eb – J)

r /εA
qnet =

r/εA

Figure 23.19 Electrical analogy for

radiation from a surface.

Rate of heat leaving surface 1: q ¼ A1e1

r1
(Eb1 � J1)

Rate of heat exchange between surfaces 1 and 2: q ¼ A1F12(J1 � J2)

Rate of heat received at surface 2: q ¼ A2e2

r2
(J2 � Eb2 )
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The assumptions required to use the electrical analog approach to solve radiation

problems are the following:

1. Each surface must be gray,

2. Each surface must be isothermal,

3. Kirchhoff’s law must apply, that is, a ¼ e,

4. There is no heat absorbing medium between the participating surfaces.

Examples 4 and 5, which follow, illustrate features of gray-body problem solutions.

EXAMPLE 4 Two parallel gray surfaces maintained at temperatures T1 and T2 view each other. Each surface is

sufficiently large that theymay be considered infinite. Generate an expression for the net heat transfer

between these surfaces.

A simple series electrical circuit is useful in solving this problem. The circuit and important

quantities are shown here.

J1 J2Eb1 = sT 1
4

R1 = r1/A1e1 R3 = r2/A2e2R2 = 1/A1F12 Eb2 = sT2
4

Utilizing Ohm’s law, we obtain the expression

q12 ¼ Eb1 � Eb2

�R
¼ s

�
T 4
1 � T 4

2


r1
A1e1

þ 1

A1F12
þ r2
A2e2

Now, noting that for infinite parallel planes A1 ¼ A2 ¼ A and F12 ¼ F21 ¼ 1 and writing r1 ¼
1� e1 and r2 ¼ 1� e2, we obtain the result

q12 ¼ AsðT4
1 � T4

2 Þ
1� e1

e1
þ 1 þ 1� e2

e2

¼ AsðT4
1 � T4

2 Þ
1

e1
þ 1

e2
�1

EXAMPLE 5 Two parallel planes measuring 2m by 2m are situated 2m apart. Plate 1 is maintained at a

temperature of 1100 K and plate 2 is maintained at 550 K. Determine the net heat transfer from the

high temperature surface under the following conditions:

(a) the plates are black and the surroundings are at 0K and totally absorbing;

(b) the plates are black and the walls connecting the plates are reradiating;

Eb2
Eb1 J1 J2

r2

e2A2
R =

r2

A1F12
R =

r1

e1A1
R =

Figure 23.20 Equivalent network for gray-body relations between two surfaces.
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(c) the plates are gray with emissivities of 0.4 and 0.8, respectively, with black surroundings at

0K.

Analog electrical circuits for parts (a), (b), and (c) are shown in Figure 23.21.

Heat flux evaluations will require evaluating the quantities F12; F1R, and F12. The appropriate

values are

F12 ¼ 0:20 from Figure 23.14

F12 ¼ 0:54 from Figure 23.14

and

F1R ¼ 1� F12 ¼ 0:80

Part (a). The net rate of heat leaving plate 1 is

q1 net ¼ q12 þ q1R

¼ A1F12(Eb1 � Eb2)þ A1F1REb1

¼ (4m2)(0:2)(5:676� 10�8 W/m2 : K4)(11004 � 5504)K4

þ (4m2)(0:8)(5:676� 10�8 W=m2 : K4)(1100K)4

¼ 62; 300Wþ 266; 000W

¼ 328:3 kW

J1 J1

Eb2Eb1

1
A2F2R

(a)

Eb2

Eb2Eb1

ER

Eb1

F1R = 1 – F12 = 0.80

EbR = 0

R =1
A1F1R

R = 1
ARFR2

R =1
A1F1R

R = 1
ARFR1

= 1
A2F2R

=

1
A1F12

R = 1
A2F21

=

1
A2F2R

r2

A2e2

(c)

R =1
A1F1R

R =

1
A1F12

R =

R =
r1

A1e1
R =

1
A2F21

=

(b)

1
A1F12

R = 1
A2F21

=

Figure 23.21 Equivalent circuits for example 3.
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Part (b). When reradiating walls are present the heat flux becomes

q12 ¼ (Eb1 � Eb2) A1F12 þ 1

1

A1F1R
þ 1

A2F2R

2
664

3
775

and, since A1 ¼ A2 and F1R = F2R

q12 ¼ (Eb1 � Eb2)A1 F12 þ F1R

2

� �

Since F12þF1R ¼ 1, the bracketed term is evaluated as

F12 þ F1R

2
¼ 0:2þ 0:8

2
¼ 0:6

and, finally, the heat flux is

q12 ¼ (4m4)(5:678� 10�4 W/m2 : K4)(11004 � 5504)K4(0:6)

¼ 187 kW

We should note that an equivalent expression for the heat flux is

q12 ¼ A1F12(Eb1 � Eb2)

and, using the value F12 ¼ 0:54, from Figure 23.14, the result would be

q12 ¼ 168:3 kW

This alternate result is the more accurate in that the values of F12 plotted in Figure 23.14

allow for the temperatures along the reradiating walls to vary from T1 to T2. The use of the analog

circuit considers the radiating surface to be a constant temperature. Such an assumption, in this

example, leads to an error of approximately 11%.

Part (c). An evaluation of the circuit shown in Figure 23.2(C) yields q1;out ¼ 131:3 kW.

The concepts related to the quantities, radiosity, and irradiation are particularly useful

in generalizing the analysis of radiant heat exchange in an enclosure containing any number

of surfaces. The formalism to be developed in this section is directly applicable for solution

by numerical methods.

For a representative surface having area, Ai, in an enclosure bounded by n surfaces,

equations (20–28) and (20–30) can be written as

qi ¼ Ebi � Ji

ri/Aiei
¼ Ai(Ji � Gi) (23-32)

where qi is the net rate of heat transfer leaving surface i.

The irradiation, Gi, can be expressed as

AiGi ¼ �
n

j¼1
JjAjFji (23-33)

or, using reciprocity, as

AiGi ¼ Ai �
n

j¼1
JjFij (23-34)
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Combining equations (23-32) and (23-34) we obtain

qi ¼ Ai Ji � �
n

j¼1
FijJj

� �
(23-35)

¼ Aiei
ri

Ebi � Aiei
ri

Ji (23-36)

We can now write the two basic expressions for a general surface in an enclosure.

If the surface heat flux is known, equation (23-35) can be expressed in the form

Ji � �
n

j¼1
FijJj ¼ qi

Ai

or

Ji(1� Fii)� �
n

j¼1
j 6¼ i

FijJj ¼ qi

Ai
(23-37)

and, if the temperature at surface i is known, equations (23-35) and (23-36) yield

Aiei
ri

(Ebi � Ji) ¼ Ai Ji � �
n

j¼1
FijJj

� �

¼ Ai Ji(1� Fii)� �
n

j¼1
j 6¼ i

FijJj

2
4

3
5

and, finally

1� Fii þ ei

ri

� �
Ji � �

n

j¼1
j 6¼ i

FijJj ¼ ei
ri
Ebi (23-38)

Equations (23-37) and (23-38) comprise the algorithm for evaluating quantities of

interest in a many-surface enclosure. The former applies to a surface of known heat flux;

the latter is written when the surface temperature is specified.

In these two equations the terms involving the view factor, Fii, have been separated out

of the summation. This quantity, Fii will have a nonzero value in those cases when surface i

‘‘sees’’; itself, i.e., it is concave. In most cases Fii will be 0.

When writing equation (23-37) or (23-38) for each surface in an enclosure a series of n

simultaneous equations is generated, involving the unknowns Ji. This set of equations can be

represented in matrix form as

[A][J] ¼ [B] (23-39)

where [A] is the coefficient matrix, [B] is a column matrix involving the right-hand sides

of equations (23-37) and (23-38), and [J] is a column matrix of the unknowns, Ji. The

solution for the Ji then proceeds according to

[J] ¼ [C][B] (23-40)

where

[C] ¼ [A]�1 (23-41)

is the inverse of the coefficient matrix.

Example 6 illustrates the application of this approach.
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EXAMPLE 6 Solve the problem posed in example 5 using the methods developed in this section.

For this case n ¼ 3 and the problem formulation will involve 3 equations—one for each

surface.

Part (a). Each of the surfaces is at a known temperature in this case, thus equation (23-38)

applies. The following conditions are known:

T1 ¼ 1100K T2 ¼ 550K T3 ¼ 0K

F11 ¼ 0 F21 ¼ 0:2 F31 ¼ 0:2

F12 ¼ 0:2 F23 ¼ 0 F32 ¼ 0:2

F13 ¼ 0:8 F23 ¼ 0:8 F33 ¼ 0:6

e1 ¼ 1 e2 ¼ 1 e3 ¼ 1

We can write the following:

1þ e1

r1

� �
J1 � ½F12J2 þ F13J3� ¼ e1

r1
Eb1

1þ e2

r2

� �
J2 � ½F21J1 þ F23J3� ¼ e2

r2
Eb2

1� F33 þ e3

r3

� �
J3 � ½F31J1 þ F32J2� ¼ e3

r3
Eb3

which, for the given conditions, reduce to

J1 ¼ Eb1 ¼ sT4
1

J2 ¼ Eb2 ¼ sT4
2

J3 ¼ 0

The net heat leaving plate 1 is thus, according to equation (23-37), equal to

q1 ¼ A1[J1 � F12J2]

¼ A1[sT
4
1 � 0:2sT4

2 ]

¼ 4m2(5:676� 10�8 W/m �K4)[11004 � 0:2(550)4]K4

¼ 328:3 kW

Part (b). Values of Ti and Fij remain the same. The only change from part (a) is that e3 ¼ 0.

The set of equations, applying to the three surfaces are again

1þ e1

r1

� �
J1 � ½F12J2 þ F13J3� ¼ e1

r1
Eb1

1þ e2

r2

� �
J2 � ½F21J1 þ F23J3� ¼ e2

r2
Eb2

1� F33 þ e3

r3

� �
J3 � ½F31J1 þ F32J2� ¼ e3

r3
Eb3

as before. Substituting values for Ti, Fij, and ei, we have

J1 ¼ Eb1 ¼ sT4
1

J2 ¼ Eb2 ¼ sT4
2

(1� F33)J3 � F31J1 � F32J2 ¼ 0
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The expression for qi is

q1 ¼ A1[J1 � F12J2 � F13J3] ¼ A1 J1 � F12J2 � F13

1� F33
(F31J1 þ F32J2)

� �

¼ A1 J1 1� F13F31

1� F33

� �
� J2 F12 þ F13F32

1� F33

� �� �
and, with numerical values inserted, we obtain

q1 ¼ 4(5:676� 10�8) (1100)4 1� (0:8)(0:2)

1� 0:6

� �
� (550)4 0:2þ (0:8)(0:2)

1� 0:6

� �	 

¼ 187:0 kW

Part (c). Values of Ti and Fij remain the same. Emissivities are

e1 ¼ 0:4 e2 ¼ 0:8 e3 ¼ 1

Equations for the three surfaces are, again

1þ e1

r1

� �
J1 � [F12J2 þ F13J3] ¼ e1

r1
Eb1

1þ e2

r2

� �
J2 � [F21J1 þ F23J3] ¼ e2

r2
Eb2

1� F33 þ e3

r3

� �
J3 � [F31J1 þ F32J2] ¼ e3

r3
Eb3

which become

1þ 0:4

0:6

� �
J1 � (F12J2 þ F13J3) ¼ 0:4

0:6
Eb1

1þ 0:8

0:2

� �
J2 � (F21J1 þ F23J3) ¼ 0:8

0:2
Eb2

J3 ¼ 0

We now have

1:67J1 � 0:2J2 ¼ 0:67Eb1

5J2 � 0:2J1 ¼ 4Eb2

Solving these two equations simultaneously for J1 and J2 we get

J1 ¼ 33 900W/m2

J2 ¼ 5510W/m2

and the value for qi is evaluated as

q1 ¼ 33 900� 5510

5

� �
4

¼ 131:2 kW

23.11 RADIATION FROM GASES

So far, the interaction of radiation with gases has been neglected. Gases emit and absorb

radiation in discrete energy bands dictated by the allowed energy states within themolecule. As

the energy associatedwith, say, thevibrational or rotationalmotionof amoleculemayhaveonly

certainvalues, it follows that the amount of energyemitted or absorbedbyamoleculewill have a
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frequency, n ¼ DE/h, corresponding to the difference in energy DE between allowed states.

Thus, while the energy emitted by a solid will comprise a continuous spectrum, the radiation

emitted and absorbed by a gas will be restricted to bands. Figure 23.22 illustrates the emission

bands of carbon dioxide and water vapor relative to black-body radiation at 15008F.
The emission of radiation for these gases is seen to occur in the infrared region of the

spectrum.

For nonluminous gases, the inert gases and diatomic gases of symmetrical composition

such as O2, N2, and H2 may be considered transparent to thermal radiation. Important types

of media that absorb and emit radiations are polyatomic gases such as CO2 and H2O and

unsymmetrical molecules such as CO. These gases are also associated with the products of

combustion of hydrocarbons. The determination of the absorption and emission of radiation

is very difficult, as it involves the temperature, composition, density, and geometry of the

gas. There are several simplifications that allow estimation of radiation in gases to be made

in a straightforward manner. These idealizations are as follows:

1. The gas is in thermodynamic equilibrium. The state of the gas may therefore be

characterized locally by a single temperature.

2. The gas may be considered gray. This simplification allows the absorption and

emission of radiation to be characterized by one parameter as a ¼ e for a gray body.

In the range of temperatures associated with the products of hydrocarbon combustion,

the gray gas emissivities of H2O and CO2 may be obtained from the results of Hottel. A

hemispherical mass of gas at 1 atm pressure was used by Hottel to evaluate the emissivity.

While the graphs apply strictly only to a hemispherical gas mass of radius L, other shapes

can be treated by consideration of a mean beam length L as given in Table 23.5. For

geometries not covered in the table, the mean beam length may be approximated by the

relation L ¼ 3:4 (volume)/(surface area).

Figure 23.23 gives the emissivity of a hemispherical mass of water vapor at 1 atm total

pressure and near-zero partial pressure as a function of temperature and the product pwL,

where pw is the partial pressure of the water vapor. For pressures other than atmospheric,

Figure 23.24 gives the correction factor, Cw, which is the ratio of the emissivity at total

pressure P to the emissivity at a total pressure of 1 atm. Figures 23.25 and 23.26 give the

corresponding data for CO2.

From Figure 23.22, it may be seen that the emission bands of CO2 and H2O overlap.

When both carbon dioxide and water vapor are present, the total emissivity may be

determined from the relation

etotal ¼ eH2O þ eCO2
� De

where De is given in Figure 23.27.

In
te

ns
ity

Wavelength, in microns
0 2 4 6 8 10 14 16 18

Carbon dioxide

Water vapor
2000 °R

12

Figure 23.22 Emission bands of CO2 and H2O.
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Table 23.5 Mean beam length, L, for various geometriesy

Shape L

Sphere 2
3 � diameter

Infinite cylinder 1� diameter

Space between infinite parallel planes 1:8� distance

between planes

Cube 2
3 � side

Space outside infinite bank of tubes

with centers on equilateral triangles;

tube diameter equals clearance 2:8� clearance

Same as preceding except tube

diameter equals one-half clearance 3:8� clearance

yFrom H. C. Hottel, ‘‘Radiation,’’ Chap. IV in W. H. McAdams (ed.),

Heat Transmission, Third Edition, McGraw-Hill Book Company, New

York, 1964. By permission of the publishers.
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Figure 23.23 Emissivity of water vapor at one atmosphere total pressure and near-zero partial

pressure.
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Figure 23.24 Correction factor for converting emissivity of H2O at one atmosphere total pressure

to emissivity at P atmospheres total pressure.

Absolute temperature, in °R
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.003

0.004

0.005
0.006
0.007

  0.008
0.009
0.010

0.015

0.02

0.03

0.04

0.05
0.06
0.07
0.08

0.10

0.15

0.2

0.3

0.09

0.001 0.002

0.003

0.004

0.006

0.010

0.015

0.03

0.06

0.10

0.2

0.4

0.8

1.5

3.0

0.005

0.008

0.02

0.04

0.08

0.15

0.3

0.6

1.0

2.0

pCL = 5.0 atm ft

Figure 23.25 Emissivity of CO2 at one atmosphere total pressure and near-zero partial pressure.
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The results presented here for the gray gas are gross simplifications. For a more

complete treatment, textbooks by Siegel and Howell,2 Modest,3 and Brewster4 present the

fundamentals of nongray-gas radiation, along with extensive bibliographies.

23.12 THE RADIATION HEAT-TRANSFER COEFFICIENT

Frequently in engineering analysis, convection and radiation occur simultaneously rather

than as isolated phenomena. An important approximation in such cases is the linearization

of the radiation contribution so that

htotal ¼ hconvection þ hradiation (23-42)

pw

pc + pw

0 0.2 0.4 0.6 0.8 1.0
pw

pc + pw
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Figure 23.27 Correction to gas emissivity due to spectral overlap of H2O and CO2.
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Figure 23.26 Correction factor for converting emissivity of CO2 at one atmosphere total pressure

to emissivity at P atmospheres total pressure.

2 R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd Edition, Hemisphere Publishing Corp.,

Washington, 1992.
3 M. F. Modest, Radiative Heat Transfer, McGraw-Hill, New York, 1993.
4 M. Q. Brewster, Thermal Radiative Transfer and Properties, J. Wiley and Sons, New York, 1992.
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where

hr � qr/A1

(T � TR)

¼ F1�2
s(T4 � T4

2 )

T � TR

� �
(23-43)

Here TR is a reference temperature,

and T1 and T2 are the respective sur-

face temperatures. In effect, equation

(23-43) represents a straight-line

approximation to the radiant heat

transfer as illustrated in Figure 23.28.

The factor, F, accounts for geometry

and surface condition of the radiating

and absorbing surface.

By constructing a tangent to the

relation curve at T ¼ T1, the following

relations are obtained for hr and TR:

hr ¼ 4sT3
1F1�2 (23-44)

and

TR ¼ T1 � T4
1 � T4

2

4T3
1

(23-45)

23.13 CLOSURE

Radiation heat transfer has been considered in this chapter. Radiant energy transfer is

associatedwith the portion of the electromagnetic spectrumbetween 0.1 and 100mm,which

is generally referred to as the thermal band.

The fundamental rate equation for thermal radiation, introduced in Chapter 15, is

designated the Stefan–Boltzmann equation; it is expressed as

Eb ¼ sT4 (23-12)

where Eb is the black body emissive power, T is the absolute temperature, and s is the

Stefan–Boltzmann constant, having units of W/m2 �K4 in the SI system.

Modifications to this relationship were made for nonblack surfaces and for geometric

relationships between multiple surfaces in view of each other.

The presence of absorbing and emitting gases between surfaceswas also examined. The

gases of principle interest in this regard are water vapor and carbon dioxide.

T – T2

hr(T – TR)

12s (T 4 – T 2
4)

T1 – T2

qr

A1

�

Figure 23.28 Tangent approximation for hr .

PROBLEMS

23.1 The sun is approximately 93 million miles distant from

Earth, and its diameter is 860,000 miles. On a clear day solar

irradiation at Earth’s surface has been measured at 360 Btu/h ft2

and an additional 90 Btu/h ft2 are absorbed by Earth’s atmo-

sphere. With this information, estimate the sun’s effective sur-

face temperature.

23.2 A greenhouse is constructed of silica glass that is known

to transmit 92% of incident radiant energy between wavelengths

of 0.35 and 2.7 mm. The glass may be considered opaque for

wavelengths above and below these limits.

Considering the sun to emit as a black body at 5800 K, deter-

mine the percent of solar radiation that will pass through the glass.
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If the plants on the inside of the greenhouse have an average

temperature of 300 K, and emit as a black body, what fraction of

their emitted energy will be transmitted through the glass?

23.3 A tungsten filament, radiating as a gray body, is heated to

a temperature of 40008R. At what wavelength is the emissive

power maximum?What portion of the total emission lies within

the visible-light range, 0.3 to 0.75 mm?

23.4 A radiation detector, oriented as shown in the sketch, is

used to estimate heat loss through an opening in a furnace wall.

The opening in this case is circular with a diameter of 2.5 cm.

The detector has a surface area of 0.10 cm2 and is located 1 m

from the furnace opening. Determine the amount of radiant

energy reaching the detector under two conditions:

a. the detector has a clear view of the opening;

b. the opening is covered by a semitransparent material with

spectral transmissivity given by

tl ¼ 0:8 for 0 � l � 2mm
tl ¼ 0 for 2mm< l<1

Furnace

30°

Detector

Opening diameter = 25 cm

T = 1500 K

23.5 The distribution of solar energy, incident on Earth, can be

approximated as being from a black body at 5800 K.

Two kinds of glass, plain and tinted, are being considered

for use in windows. The spectral transmissivity for these two

glasses is approximated as

plain glass : tl ¼ 0 for 0< l< 0:3mm
0:9 for 0:3< l< 2:5m
0 for 2:5mm< l

tinted glass : tl ¼ 0 for 0< l< 0:5mm
0:9 for 0:5< l< 1:5m
0 for 1:5mm < l

Compare the fraction of incident solar energy transmitted

through each material.
Compare the fraction of visible radiant energy transmitted

through each.

23.6 Determine the fraction of total energy emitted by a black

body, which lies in thewavelength band between 0.8 and 5.0mm
for surface temperatures of 500, 2000, 3000, and 4500 K.

23.7 The sun’s temperature is approximately 5800 K and the

visible light range is taken to be between 0.4 and 0.7 mm.

What fraction of solar emission is visible? What fraction of

solar emission lies in the ultraviolet range? The infrared

range? At what wavelength is solar emissive power a max-

imum?

23.8 A satellite may be considered spherical with its surface

properties roughly those of aluminum. Its orbit may be con-

sidered circular at a height of 500 miles above Earth. Taking the

satellite diameter as 50 in., estimate the temperature of the

satellite skin. Earth may be considered to be at a uniform

temperature of 508F, and the emissivity of Earth may be taken

as 0.95. Solar irradiation may be taken as 450 Btu/h ft2 of

satellite disc area.

23.9 An opaque gray surface with e ¼ 0:3 is irradiated with

1000W/cm. For an effective convective heat-transfer coefficient

of 12W/m2 � K applying, and air at 208C adjacent to the plate,

what will be the net heat flux to or from a 308C surface?

23.10 A black solar collector, with a surface area of 60m2, is

placed on the roof of a house. Incident solar energy reaches the

collector with a flux of 800W/m2. The surroundings are con-

sidered black with an effective temperature of 308C. The con-
vective heat-transfer coefficient between the collector and the

surrounding air, at 308C, is 35W/m2 � K. Neglecting any con-

ductive loss from the collector, determine:

a. the net radiant exchange between the collector and its

surroundings;

b. the equilibrium temperature of the collector.

23.11 A 7.5-cm-diameter hole is drilled in a 10-cm-thick iron

plate. If the plate temperature is 700 K and the surroundings are

at 310 K, determine the energy loss through the hole. The hole

sides may be considered to be black.

23.12 If the 7.5-cm-diameter hole in Problem 23.11 were

drilled to a depth of 5 cm, what heat loss would result?

23.13 A sheet-metal box in the shape of a 0.70-m cube has a

surface emissivity of 0.7. The box encloses electronic equipment

that dissipates 1200 Wof energy. If the surroundings are taken to

beblack at 280K, and the top and sidesof the boxare considered to

radiate uniformly,whatwill be the temperature of the box surface?

23.14 Two very large black plane surfaces are maintained at

900 and 580 K, respectively. A third large plane surface, having

e ¼ 0:8, is placed between these two. Determine the fractional

change in radiant exchange between the two plane surfaces due

to the intervening plane and evaluate the temperature of this

intervening plane.

23.15 The filament of an ordinary 100 W light bulb is at 2910

K and it is presumed to be a black body. Determine (a) the

wavelength of maximum emission and (b) the fraction of

emission in the visible region of the spectrum.

23.16 A small circular hole is to be drilled in the surface of a

large, hollow, spherical enclosure maintained at 2000 K. If

100 W of radiant energy exits through the hole, determine (a)

the hole diameter, (b) the number of watts emitted in the visible

range from 0.4 and 0.7 mm, (c) the ultraviolet range between 0

and 0.4 mm, and (d) the infrared range from 0.7 to 100 mm.

23.17 A large cavity with a small opening, 0.0025 m2 in area,

emits 8 W. Determine the wall temperature of the cavity.
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23.18 Determine thewavelength ofmaximumemission for (a)

the sun with an assumed temperature of 5790 K, (b) a light bulk

filament at 2910K, (c) a surface at 1550K, and (d) human skin at

308 K.

23.19 A furnace that has black interior walls maintained at

1500 K contains a peephole with a diameter of 10 cm. The glass

in the peephole has a transmissivity of 0.78 between 0 and

3.2mmand 0.08 between 3.2mmand1. Determine the heat lost

through the peephole.

23.20 A cryogenic fluid flows in a 20-mm-diameter tube with

an outer surface temperature of 75 K and an emissivity of 0.2.

A larger tube, having a diameter of 50mm, is concentric with the

smaller one. This larger tube is gray, with e ¼ 0:05 and its

surface temperature is 300K. The intervening space between the

two tubes is evacuated.

Determine the heat gain by the cryogenic fluid, in watts per

meter of tube length.

Evaluate the heat gain per meter of length if there is a thin

walled radiation shield placed midway between the two tubes.

The shield surfaces may be considered gray and diffuse with an

emissivity of 0.04 on both sides.

23.21 A circular duct 2 ft long with a diameter of 3 in. has a

thermocouple in its center with a surface area of 0.3 in.2. The

duct walls are at 2008F, and the thermocouple indicates 3108F.
Assuming the convective heat-transfer coefficient between the

thermocouple and gas in the duct to be 30 Btu/h ft2 8F, estimate

the actual temperature of the gas. The emissivity of the duct

walls may be taken as 0.8 and that of the thermocouple as 0.6.

23.22 A heating element in the shape of a cylinder is main-

tained at 20008F and placed at the center of a half-cylindrical

reflector as shown. The rod diameter is 2 in. and that of the

reflector is 18 in. The emissivity of the heater surface is 0.8, and

the entire assembly is placed in a roommaintained at 708F.What

is the radiant energy loss from the heater per foot of length?How

does this compare to the loss from the heater without the

reflector present?

23.23 A 12-ft-long, 3-in.-OD iron pipe e ¼ 0:7, passes hori-
zontally through a 12� 14� 9 ft room whose walls are main-

tained at 708F and have an emissivity of 0.8. The pipe surface is at

a temperature of 2058F. Compare the radiant energy loss from the

pipe with that due to convection to the surrounding air at 708F.

23.24 The circular base of the cylindrical enclosure shown

may be considered a reradiating surface. The cylindrical walls

have an effective emissivity of 0.80 and aremaintained at 5408F.
The top of the enclosure is open to the surroundings, which are

maintained at 408F.What is the net rate of radiant transfer to the

surroundings?

6 ft

12 ft

23.25 The hemispherical cavity shown in the figure has an in-

side surface temperature of 700 K. A plate of refractory material

is placed over the cavity with a circular hole of 5 cm diameter

in the center. How much energy will be lost through the hole if

the cavity is

a. black?

b. gray with an emissivity of 0.7?

What will be the temperature of the refractory under each

condition?

15-cm
radius

23.26 A roommeasuring 12 ft by 20 ft by 8 ft high has its floor

and ceiling temperatures maintained at 85 and 658F, respec-
tively. Assuming the walls to be reradiating and all surfaces to

have an emissivity of 0.8, determine the net energy exchange

between the floor and ceiling.

23.27 A dewar flask, used to contain liquid nitrogen, is made

of two concentric spheres separated by an evacuated space. The

inner sphere has an outside diameter of 1 m and the outer sphere

has an inside diameter of 1.3 m. These surfaces are both gray-

diffuse with e ¼ 0:2. Nitrogen, at 1 atmosphere, has a saturation

temperature of 78K and a latent heat of vaporization of 200 kJ/kg.

Under conditions when the inner sphere is full of liquid

nitrogen and the outer sphere is at a temperature of 300 K,

estimate the boil-off rate of nitrogen.

23.28 A cylindrical cavity is closed at the bottom and has an

opening centered in the top surface. A cross section of this

configuration is shown in the sketch. For the conditions stated

below, determine the rate of radiant energy passing through the



5-mm-diameter cavity opening. What will be effective emissiv-

ity of the opening?

a. All interior surfaces are black at 600 K.

b. The bottom surface is diffuse-gray with e ¼ 0:6, and has a

temperature of 600 K. All other surfaces are reradiating.

c. All interior surfaces are diffuse-gray with e ¼ 0:6 and are at
a uniform temperature of 600 K.

40 mm

30 mm

2

3

1

23.29 A circular heater, measuring 20 cm in diameter, has its

surface temperature maintained at 10008C. The bottom of a

tank, having the same diameter, is oriented parallel to the heater

with a separation distance of 10 cm. The heater surface is gray

(e ¼ 0:6) and the tank surface is also gray (e ¼ 0:7).

Determine the radiant energy reaching the bottom of the

tank if

a. the surroundings are black at 278C;

b. the space between the two cylindrical surfaces is enclosed

by an adiabatic surface.

23.30 Two parallel black rectangular surfaces, whose back

sides are insulated, are oriented parallel to each other with a

spacing of 5m. Theymeasure 5mby 10m.The surroundings are

black at 0 K. The two surfaces are maintained at 200 and 100 K,

respectively. Determine the following:

a. the net radiant heat transfer between the two surfaces;

b. the net heat supplied to each surface;

c. the net heat transfer between each surface and the

surroundings.

23.31 Two parallel rectangles have emissivities of 0.6 and 0.9,

respectively. These rectangles are 1.2mwide and 2.4m high and

are 0.6mapart. The plate having e ¼ 0:6 ismaintained at 1000K

and the other is at 420K. The surroundingsmay be considered to

absorb all energy that escapes the two-plate system. Determine

a. the total energy lost from the hot plate;

b. the radiant energy interchange between the two plates.

23.32 If a third rectangular plate, with both surfaces having an

emissivity of 0.8 is placed between the two plates described in

Problem 23.31, howwill the answer to part (a) of Problem 23.31

be affected? Draw the thermal circuit for this case.

23.33 Two disks are oriented on parallel planes separated by

a distance of 10 in., as shown in the accompanying figure. The

disk to the right is 4 in. in diameter and is at a temperature of

5008F. The disk to the left has an inner ring cut out such that it is
annular in shape with inner and outer diameters of 2.5 and 4 in.,

respectively. The disk surface temperature is 2108F. Find the

heat exchange between these disks if

a. they are black;

b. they are gray e1 ¼ 0:6, e2 ¼ 0:3.

10 in

2.5 in 4 in

12

23.34 Evaluate the net heat transfer between the disks

described in Problem 23.33 if they are bases of a cylinder

with the side wall considered a nonconducting, reradiating

surface. How much energy will be lost through the hole?

23.35 Evaluate the heat transfer leaving disk 1 for the geometry

shown in Problem 23.33. In this case the two disks comprise the

bases of a cylinder with side wall at constant temperature of

3508F. Evaluate for the case where:

a. the side wall is black;

b. the side wall is gray with e ¼ 0:2:

Determine the rate of heat loss through the hole in each case.

23.36 A heavily oxidized aluminum surface at 755 K is the

source of energy in an enclosure, which radiantly heats the

side walls of a circular cylinder surface as shown, to 395 K.

The side wall is made of polished stainless steel. The top of the

enclosure ismade of fire clay brick and is adiabatic. For purposes

of calculation, assume that all three surfaces have uniform

temperatures and that they are diffuse and gray. Evaluate the

heat transfer to the stainless steel surface.

Aluminum

Stainless steel

Fire clay brick

2 m

2 m

23.37 A gray, diffuse circular heater with a diameter of 15 cm

is placed parallel to a second gray, diffuse receiverwith a spacing

of 7.5 between them. The backs of both surfaces are insulated

and convective effects are to be neglected. This heater–receiver

assembly is placed in a large roomat a temperature of 275K.The

surroundings (the room) can be considered black and the heater

surface emissivity is 0.8. When the power input to the heater is

300 W, determine

a. the heater surface temperature;

b. the receiver surface temperature;
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c. the net radiant exchange to the surroundings;

d. the net radiant exchange between the heater and receiver.

23.38 A small (1/4 in. diameter � 1 in. long) metal test

specimen is suspended by very fine wires in a large evacuated

tube. The metal is maintained at a temperature of 25008F, at
which temperature it has an emissivity of approximately 0.2.

The water-cooled walls and ends of the tube are maintained at

508F. In the upper end is a small (1/4-in.-diameter) silica glass

viewing port. The inside surfaces of the steel tube are newly

galvanized. Room temperature is 708F. Estimate

a. the view factor from the specimen to the window;

b. the total net heat-transfer rate by radiation from the test

specimen;

c. the energy radiated through the viewing port.

12 in

4 in

Test
specimen

Viewing port

23.39 A duct with square cross section measuring 20 cm by

20 cm has water vapor at 1 atmosphere and 600 K flowing

through it. One wall of the duct is held at 420 K and has an

emissivity of 0.8. The other three walls may be considered

refractory surfaces. Determine the rate of radiant energy transfer

to the cold wall from the water vapor.

23.40 A gas of mixture at 1000 K and a pressure of 5 atm is

introduced into an evacuated spherical cavity with a diameter of

3 m. The cavity walls are black and initially at a temperature of

600 K. What initial rate of heat transfer will occur between the

gas and spherical walls if the gas contains 15% CO2 with the

remainder of the gas being nonradiating?

23.41 A gas consisting of 20% CO2 and 80% oxygen and

nitrogen leaves a lime kiln at 20008F and enters a square duct

measuring 6 in. by 6 in. in cross section. The specific heat of the

gas is 0:28Btu/lbm
�F, and it is to be cooled to 10008F in the

duct, whose inside surface is maintained at 8008F, and whose

walls have an emissivity of 0.9. Themass velocity of the kiln gas

is 0:4 lbm/ft
2: s and the convective heat-transfer coefficient

between the gas and duct walls is 1:5Btu/h ft2 �F.
a. Determine the required length of duct to cool the gas to

10008F.

b. Determine the ratio of radiant energy transfer to that by

convection.

c. At what temperature would the gas leave the duct if the

length of the duct were twice the value determined in part

(a)?

(Courtesy of the American Institute of Chemical Engineers.)

Hint. As the response of the gas to emission and absorp-

tion of radiant energy differs, an approximation for the radiant

energy exchange between the enclosure and gas contained

within an arbitrary control volume is given by AwFw�gsew
(egT

4
g � agT

4
w):
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Chapter 24

Fundamentals of Mass Transfer

The previous chapters dealing with the transport phenomena of momentum and heat

transfer have dealt with one-component phases that possessed a natural tendency to

reach equilibrium conditions. When a system contains two or more components whose

concentrations vary from point to point, there is a natural tendency for mass to be

transferred, minimizing the concentration differences within the system. The transport

of one constituent from a region of higher concentration to that of a lower concentration

is called mass transfer.

Many of our day-to-day experiences involve mass transfer. A lump of sugar added

to a cup of black coffee eventually dissolves and then diffuses uniformly throughout the

coffee. Water evaporates from ponds to increase the humidity of the passing air stream.

Perfume presents a pleasant fragrance that is imparted throughout the surrounding

atmosphere.

Mass transfer is the basis for many biological and chemical processes. Biological

processes include the oxygenation of blood and the transport of ions across membranes

within the kidney. Chemical processes include the chemical vapor deposition (CVD) of

silane (SiH4) onto a silicon wafer, the doping of a silicon wafer to form a

semiconducting thin film, the aeration of wastewater, and the purification of ores and

isotopes. Mass transfer underlies the various chemical separation processes where one

or more components migrate from one phase to the interface between the two phases in

contact. For example, in adsorption or crystallization processes, the components remain

at the interface, whereas in gas absorption and liquid–liquid extraction processes, the

components penetrate the interface and then transfer into the bulk of the second phase.

If we consider the lump of sugar added to the cup of black coffee, experience

teaches us that the length of time required to distribute the sugar will depend upon

whether the liquid is quiescent or whether it is mechanically agitated by a spoon. The

mechanism of mass transfer, as we have also observed in heat transfer, depends upon

the dynamics of the system in which it occurs. Mass can be transferred by random

molecular motion in quiescent fluids, or it can be transferred from a surface into

a moving fluid, aided by the dynamic characteristics of the flow. These two distinct

modes of transport, molecular mass transfer and convective mass transfer, are

analogous to conduction heat transfer and convective heat transfer. Each of these modes

of mass transfer will be described and analyzed. As in the case of heat transfer, we

should immediately realize that the two mechanisms often act simultaneously. However,

in the confluence of the two modes of mass transfer, one mechanism can dominate

quantitatively so that approximate solutions involving only the dominant mode need be

used.
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24.1 MOLECULAR MASS TRANSFER

As early as 1815, Parrot observed qualitatively that whenever a gas mixture contains two or

more molecular species, whose relative concentrations vary from point to point, an

apparently natural process results, which tends to diminish any inequalities of composition.

This macroscopic transport of mass, independent of any convection within the system, is

defined as molecular diffusion.

In the specific case of gaseous mixtures, a logical explanation of this transport

phenomenon can be deduced from the kinetic theory of gases. At temperatures above

absolute zero, individual molecules are in a state of continual yet random motion. Within

dilute gas mixtures, each solute molecule behaves independently of the other solute

molecules, as it seldom encounters them. Collisions between the solute and the solvent

molecules are continually occurring. As a result of the collisions, the solutemoleculesmove

along a zigzag path, sometimes toward a region of higher concentration, sometimes toward a

lower concentration.

Let us consider a hypothetical section passing normal to the concentration gradient

within an isothermal, isobaric gaseous mixture containing solute and solvent molecules.

The two thin, equal elements of volume above and below the section will contain the same

number of molecules, as stipulated by Avogadro’s law. Although it is not possible to state

which way any particular molecule will travel in a given interval of time, a definite number

of the molecules in the lower element of the volumewill cross the hypothetical section from

below, and the same number of molecules will leave the upper element and cross the section

from above.With the existence of a concentration gradient, there are more solute molecules

in one of the elements of volume than in the other; accordingly, an overall net transfer from a

region of higher concentration to one of lower concentrationwill result. The net flowof each

molecular species occurs in the direction of a negative concentration gradient.

As pointed out in Chapters 7 and 15, the molecular transport of momentum and the

transport of energy by conduction are also due to random molecular motion. Accordingly,

one should expect that the three transport phenomena will depend upon many of the same

characteristic properties, such asmean free path, and that the theoretical analyses of all three

phenomena will have much in common.

The Fick Rate Equation

The laws of mass transfer show the relation between the flux of the diffusing substance and

the concentration gradient responsible for this mass transfer. Unfortunately, the quantitative

description of molecular diffusion is considerably more complex than the analogous

descriptions for the molecular transfer of momentum and energy that occur in a one-

component phase. Asmass transfer, or diffusion, as it is also called, occurs only in mixtures,

its evaluationmust involve an examination of the effect of each component. For example,we

will often desire to know the diffusion rate of a specific component relative to the velocity of

the mixture in which it is moving. As each component may possess a different mobility, the

mixture velocity must be evaluated by averaging the velocities of all of the components

present.

In order to establish a common basis for future discussions, let us first consider definitions

and relations that are often used to explain the role of components within a mixture.

Concentrations. In a multicomponent mixture, the concentration of a molecular species

can be expressed in many ways. Figure 24.1 shows an elemental volume dV that contains a

Molecule of
species A

Figure 24.1 Elemental

volume containing a

multicomponent mixture.
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mixture of components, including speciesA. As eachmolecule of each species has amass, a

mass concentration for each species, as well as for the mixture, can be defined. For species

A, mass concentration, rA, is defined as the mass of A per unit volume of the mixture. The

total mass concentration or density, r, is the total mass of the mixture contained in the unit

volume; that is,

r ¼ �
n

i¼1
ri (24-1)

where n is the number of species in the mixture. The mass fraction, vA, is the mass

concentration of species A divided by the total mass density

vA ¼ rA

�
n

i
ri

¼ rA
r

(24-2)

The sum of the mass fractions, by definition, must be 1:

�
n

i¼1
vi ¼ 1 (24-3)

The molecular concentration of species A, cA, is defined as the number of moles of A

present per unit volume of the mixture. By definition, one mole of any species contains a

mass equivalent to its molecular weight; the mass concentration and molar concentration

terms are related by the following relation:

cA ¼ rA
MA

(24-4)

where MA is the molecular weight of species A. When dealing with a gas phase,

concentrations are often expressed in terms of partial pressures. Under conditions in which

the ideal gas law, pAV ¼ nART , applies, the molar concentration is

cA ¼ nA

V
¼ pA

RT
(24-5)

where pA is the partial pressure of the species A in the mixture, nA is the number of moles of

species A, V is the gas volume, T is the absolute temperature, and R is the gas constant. The

total molar concentration, c, is the total moles of the mixture contained in the unit volume;

that is,

c ¼ �
n

i¼1
ci (24-6)

or for a gaseous mixture that obeys the ideal gas law, c ¼ ntotal/V ¼ P/RT , where P is the

total pressure. The mole fraction for liquid or solid mixtures, xA, and for gaseous mixtures,

yA, are the molar concentrations of species A divided by the total molar density

xA ¼ cA

c
(liquids and solids)

yA ¼ cA

c
(gases)

(24-7)

For a gaseous mixture that obeys the ideal gas law, the mole fraction, yA, can be written in

terms of pressures

yA ¼ cA

c
¼ pA/RT

P/RT
¼ pA

P
(24-8)
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Equation (24-8) is an algebraic representation of Dalton’s law for gas mixtures. The sum

of the mole fractions, by definition, must be 1:

�
n

i¼1
xi ¼ 1

�
n

i¼1
yi ¼ 1

(24-9)

A summary of the various concentration terms and of the interrelations for a binary

system containing species A and B is given in Table 24.1.

EXAMPLE 1 The composition of air is often given in terms of only the two principal species in the gas mixture

oxygen, O2, yo2 ¼ 0:21
nitrogen, N2, yN2

¼ 0:79

Determine the mass fraction of both oxygen and nitrogen and the mean molecular weight of the air

when it ismaintained at 258C (298K) and 1 atm (1.013� 105 Pa). Themolecular weight of oxygen is

0.032 kg/mol and of nitrogen is 0.028 kg/mol.

Table 24.1 Concentrations in a binary mixture of A and B

Mass concentrations

r ¼ total mass density of the mixture

rA ¼ mass density of species A

rB ¼ mass density of species B

vA ¼ mass fraction of species A ¼ rA/r

vB ¼ mass fraction of species B ¼ rB/r

r ¼ rA þ rB
1 ¼ vA þ vB

Molar concentrations

Liquid or solid mixture Gas mixture

c ¼ molar density of mixture ¼ n=V c ¼ n/V ¼ P/RT

cA ¼ molar density of species A ¼ nA/V cA ¼ nA/V ¼ pA/RT

cB ¼ molar density of species B ¼ nB/V cB ¼ nB/V ¼ pB/RT

xA ¼ mole fraction of species A ¼ cA/c ¼ nA/n yA ¼ cA/c ¼ nA/n ¼ pA/p

xB ¼ mole fraction of species B ¼ cB/c ¼ nB/n yB ¼ cB/c ¼ nB/n ¼ pB/p

c ¼ cA þ cB c ¼ cA þ cB ¼ pA

RT
þ pB

RT
¼ P

RT
1 ¼ xA þ xB 1 ¼ yA þ yB

Interrelations

rA ¼ cAMA

xA or yA ¼ vA/MA

vA/MA þ vB/MB

(24-10)

vA ¼ xAMA

xAMA þ xAMA
or

yAMA

yAMA þ yBMB
(24-11)
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As a basis for our calculations, consider 1 mol of the gas mixture

oxygen present ¼ (1mol)(0:21) ¼ 0:21mol

¼ (0:21mol)
(0:032 kg)

mol
¼ 0:00672 kg

nitrogen present ¼ (1mol)(0:79) ¼ 0:79mol

¼ (0:79mol)
(0:028 kg)

mol
¼ 0:0221 kg

totalmass present ¼ 0:00672þ 0:0221 ¼ 0:0288 kg

vO2
¼ 0:00672 kg

0:0288 kg
¼ 0:23

vN2
¼ 0:0221 kg

0:0288 kg
¼ 0:77

As 1 mol of the gas mixture has a mass of 0.0288 kg, the mean molecular weight of the air must be

0.0288. When one takes into account the other constituents that are present in air, the mean

molecular weight of air is often rounded off to 0.029 kg/mol.

This problem could also be solved using the ideal gas law, PV ¼ nRT . At ideal conditions, 0�C
or 273 K and 1 atm of 1:013� 105 Pa pressure, the gas constant is evaluated to be

R ¼ PV

nT
¼ (1:013� 105 Pa)(22:4m3)

(1 kgmol)(273K)
¼ 8:314

Pa �m3

mol � K (24-12)

The volume of the gas mixture, at 298 K, is

V ¼ nRT

P
¼

(1mol) 8:314
Pa �m3

mol � K
� �

(298K)

1:013� 105 Pa

¼ 0:0245m3

The concentrations are

cO2
¼ 0:21mol

0:0245m3
¼ 8:57

molO2

m3

cN2
¼ 0:79mol

0:0245m3
¼ 32:3

molN2

m3

c ¼ �
n

i¼1
ci ¼ 8:57þ 32:3 ¼ 40:9mol/m3

The total density, r, is

r ¼ 0:0288 kg

0:0245m3
¼ 1:180 kg/m3

and the mean molecular weight of the mixture is

M ¼ r

c
¼ 1:180 kg/m3

40:9mol/m3
¼ 0:0288 kg/mol

Velocities. In a multicomponent system the various species will normally move at

different velocities; accordingly, an evaluation of a velocity for the gas mixture requires

the averaging of the velocities of each species present.
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The mass-average velocity for a multicomponent mixture is defined in terms of the

mass densities and velocities of all components by

v ¼
�
n

i¼1
rivi

�
n

i¼1
ri

¼
�
n

i¼1
rivi

r
(24-13)

where vi denotes the absolute velocity of species i relative to stationary coordinate axes. This

is the velocity that would be measured by a pitot tube and is the velocity that was previously

encountered in the equations of momentum transfer. The molar-average velocity for a

multicomponent mixture is defined in terms of the molar concentrations of all components by

V ¼
�
n

i¼1
civi

�
n

i¼1
ci

¼
�
n

i¼1
civi

c
(24-14)

The velocity of a particular species relative to the mass-average or molar-average

velocity is termed a diffusion velocity. We can define two different diffusion velocities

vi � v; the diffusion velocity of species i relative to themass-average velocity
and

vi � V, the diffusion velocity of species i relative to themolar-velocity average

According to Fick’s law, a species can have a velocity relative to themass- or molar-average

velocity only if gradients in the concentration exist.

Fluxes. The mass (or molar) flux of a given species is a vector quantity denoting the

amount of the particular species, in either mass or molar units, that passes per given

increment of time through a unit area normal to the vector. The flux may be defined with

reference to coordinates that are fixed in space, coordinates that are moving with the mass-

average velocity, or coordinates that are moving with the molar-average velocity.

The basic relation for molecular diffusion defines the molar flux relative to the molar-

average velocity, JA. An empirical relation for this molar flux, first postulated by Fick1 and,

accordingly, often referred to as Fick’s first law, defines the diffusion of component A in an

isothermal, isobaric system:

JA ¼ �DABrcA

For diffusion in only the z direction, the Fick rate equation is

JA,z ¼ �DAB
dcA

dz
(24-15)

where JA,z is the molar flux in the z direction relative to the molar-average velocity, dcA/dz

is the concentration gradient in the z direction, and DAB, the proportionality factor, is the

mass diffusivity or diffusion coefficient for component A diffusing through component B.

A more general flux relation that is not restricted to isothermal, isobaric systems was

proposed by de Groot2 who chose to write

flux ¼ � overall

density

� �
diffusion

coefficient

� �
concentration

gradient

� �

1 A. Fick, Ann. Physik., 94, 59 (1855).
2 S. R. de Groot, Thermodynamics of Irreversible Processes, North-Holland, Amsterdam, 1951.
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or

JA,z ¼ �cDAB
dyA

dz
(24-16)

As the total concentration c is constant under isothermal, isobaric conditions, equation

(24-15) is a special form of themore general relation (24-16). An equivalent expression for

jA,z, the mass flux in the z direction relative to the mass-average velocity, is

jA,z ¼ �rDAB
dvA

dz
(24-17)

where dvA/dz is the concentration gradient in terms of the mass fraction. When the

density is constant, this relation simplifies to

jA,z ¼ �DAB
drA
dz

Initial experimental investigations of molecular diffusion were unable to verify Fick’s

law of diffusion. This was apparently due to the fact that mass is often transferred

simultaneously by two possible means: (1) as a result of the concentration differences

as postulated by Fick and (2) by convection differences induced by the density differences

that resulted from the concentrationvariation. Steffan (1872) andMaxwell (1877), using the

kinetic theory of gases, proved that themass flux relative to a fixed coordinatewas a result of

two contributions: the concentration gradient contribution and the bulkmotion contribution.

For a binary systemwith a constant average velocity in the z direction, the molar flux in

the z direction relative to the molar-average velocity may also be expressed by

JA,z ¼ cA(vA,z � Vz) (24-18)

Equating expressions (24-16) and (24-18), we obtain

JA,z ¼ cA(vA,z � Vz) ¼ �cDAB
dyA

dz

which, upon rearrangement, yields

cAvA,z ¼ �cDAB
dyA

dz
þ cAVz

For this binary system, Vz can be evaluated by equation (24-14) as

Vz ¼ 1

c
(cAvA,z þ cBvA,z)

or

cAVz ¼ yA(cAvA,z þ cBvB,z)

Substituting this expression into our relation, we obtain

cAvA,z ¼ �cDAB
dyB

dz
þ yA(cAvA,z þ cBvB,z) (24-19)

As the component velocities, vA,z and vB,z, are velocities relative to the fixed z axis, the

quantities cAvA,z and cBvB,z are fluxes of componentsA andB relative to a fixed z coordinate;

accordingly, we symbolize this new type of flux that is relative to a set of stationary axes by

NA ¼ cAvA
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and

NB ¼ cBvB

Substituting these symbols into equation (24-19), we obtain a relation for the flux of

component A relative to the z axis

NA,z ¼ �cDAB
dyA

dz
þ yA(NA,z þ NB,z) (24-20)

This relation may be generalized and written in vector form as

NA ¼ �cDAB= yA þ yA(NA þ NB) (24-21)

It is important to note that the molar flux, NA, is a resultant of the two vector quantities:

�cDAB=yA themolar flux, JA, resulting from the concentration gradient:This
term is referred to as the concentration gradient contribution;

and

yA(NA þ NB) ¼ cAV themolar flux resulting as componentA is carried in the bulk flow of

the fluid:This flux term is designated the bulk motion contribution:

Either or both quantities can be a significant part of the total molar flux, NA. Whenever

equation (24-21) is applied to describe molar diffusion, the vector nature of the individual

fluxes,NA and NB, must be considered and then, in turn, the direction of each of two vector

quantities must be evaluated.

If species Awere diffusing in a multicomponent mixture, the expression equivalent to

equation (24-21) would be

NA ¼ �cDAM=yA þ yA �
n

i¼1
Ni

where DAM is the diffusion coefficient of A in the mixture.

The mass flux, nA, relative to a fixed spatial coordinate system, is defined for a binary

system in terms of mass density and mass fraction by

nA ¼ �rDAB=vA þ vA(nA þ nB) (24-22)

where

nA ¼ rAvA

and

nB ¼ rBvB

Under isothermal, isobaric conditions, this relation simplifies to

nA ¼ �DAB=rA þ vA(nA þ nB)

As previously noted, the flux is a resultant of two vector quantities:

�DAB=rA, themass flux, jA, resulting from a concentration gradient; the

concentration gradient contribution:

vA(nA þ nB) ¼ rAv; themass flux resulting as componentA is carried in the bulk

flow of the fluid; the bulk motion contribution:
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If a balloon, filled with a color dye, is dropped into a large lake, the dye will diffuse radially

as a concentration gradient contribution. When a stick is dropped into a moving stream, it

will float downstream by the bulk motion contribution. If the dye-filled balloon were

dropped into the moving stream, the dye would diffuse radially while being carried

downstream; thus both contributions participate simultaneously in the mass transfer.

The four equations defining the fluxes, JA, jA, NA, and nA are equivalent statements of

the Fick rate equation. The diffusion coefficient,DAB, is identical in all four equations. Any

one of these equations is adequate to describe molecular diffusion; however, certain fluxes

are easier to use for specific cases. The mass fluxes, nA and jA, are used when the Navier–

Stokes equations are also required to describe the process. Since chemical reactions are

described in terms of moles of the participating reactants, the molar fluxes, JA and NA, are

used to describe mass-transfer operations in which chemical reactions are involved. The

fluxes relative to coordinates fixes in space, nA and NA, are often used to describe

engineering operations within process equipment. The fluxes JA and jA are used to describe
the mass transfer in diffusion cells used for measuring the diffusion coefficient. Table 24.2

summarizes the equivalent forms of the Fick rate equation.

Related Types of Molecular Mass Transfer

According to the second law of thermodynamics, systems not in equilibrium will tend to

move toward equilibrium with time. A generalized driving force in chemical thermo-

dynamic terms is�dmc/dzwheremc is the chemical potential. Themolar diffusion velocity

of component A is defined in terms of the chemical potential by

vA,z � Vz ¼ uA
dmc

dz
¼ �DAB

RT

dmc

dz
(24-23)

where uA is the ‘‘mobility’’ of component A, or the resultant velocity of the molecule

while under the influence of a unit driving force. Equation (24-23) is known as the

Nernst–Einstein relation. The molar flux of A becomes

JA,z ¼ cA(vA,z � Vz) ¼ �cA
DAB

RT

dmc

dz
(24-24)

Equation (24-24) may be used to define all molecular mass-transfer phenomena. As an

example, consider the conditions specified for equation (24-15); the chemical potential of a

component in a homogeneous ideal solution at constant temperature andpressure is definedby

mc ¼ m0 þ RT ln cA (24-25)

Table 24.2 Equivalent forms of the mass flux equation for binary system A and B

Flux Gradient Fick rate equation Restrictions

nA =vA nA ¼ �rDAB=vA þ vA(nA þ nB)

=rA nA ¼ �DAB=rA þ vA(nA þ nB) Constant r

NA =yA NA ¼ �cDAB=yA þ yA(NA þ NB)

=cA NA ¼ �DAB=cA þ yA(NA þ NB) Constant c

jA =vA jA ¼ �rDAB=vA

=rA jA ¼ �DAB=rA Constant r

jA =yA JA ¼ �cDAB=yA
=cA JA ¼ �DAB=cA Constant c
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where m0 is a constant, the chemical potential of the standard state. When we substitute this

relation into equation (24-24), the Fick rate equation for a homogeneous phase is obtained

JA,z ¼ �DAB
dcA

dz
(24-15)

There are a number of other physical conditions, in addition to differences in con-

centration, which will produce a chemical potential gradient: temperature differences,

pressure differences, and differences in the forces created by external fields, such as gravity,

magnetic, and electrical fields. We can, for example, obtain mass transfer by applying a

temperature gradient to a multicomponent system. This transport phenomenon, the Soret

effect or thermal diffusion, although normally small relative to other diffusion effects, is used

successfully in the separation of isotopes. Components in a liquid mixture can be separated

with a centrifuge by pressure diffusion.There aremanywell-known examples ofmass fluxes

being induced in a mixture subjected to an external force field: separation by sedimentation

under the influence of gravity, electrolytic precipitation due to an electrostatic force field, and

magnetic separation of mineral mixtures through the action of a magnetic force field.

Although these mass-transfer phenomena are important, they are very specific processes.

Themolecularmass transfer, resulting from concentration differences and described by

Fick’s law, results from the random molecular motion over small mean free paths,

independent of any containment walls. The diffusion of fast neutrons and molecules in

extremely small pores or at very low gas density cannot be described by this relationship.

Neutrons, produced in a nuclear fission process, initially possess high kinetic energies

and are termed fast neutrons because of their high velocities; that is, up to 15 million meters

per second. At these high velocities, neutrons pass through the electronic shells of other

atomsormoleculeswith little hindrance. To bedeflected, the fast neutronsmust collidewith a

nucleus, which is a very small target compared to the volume of most atoms and molecules.

The mean free path of fast neutrons is approximately one million times greater than the free

paths of gases at ordinary pressures. After the fast neutrons are slowed down through elastic-

scattering collisions between the neutrons and the nuclei of the reactor’s moderator, these

slowermoving neutrons, thermal neutrons,migrate frompositions of higher concentration to

positions of lower concentration, and their migration is described by Fick’s law of diffusion.

24.2 THE DIFFUSION COEFFICIENT

Fick’s law of proportionality, DAB, is known as the diffusion coefficient. Its fundamental

dimensions, which may be obtained from equation (24-15)

DAB ¼ �JA,z

dcA/dz
¼ M

L2t

� �
1

M/L3 � 1/L
� �

¼ L2

t

are identical to the fundamental dimensions of the other transport properties: kinematic

viscosity, n, and thermal diffusivity,a, or its equivalent ratio, k/rc p. Themass diffusivity has

been reported in cm2/s; the SI units are m2/s, which is a factor 10�4 smaller. In the English

system ft2/h is commonly used. Conversion between these systems involves the simple

relations

DAB(cm
2/s)

DAB(m2/s)
¼ 104

DAB(ft
2/h)

DAB(cm2/s)
¼ 3:87

(24-26)
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The diffusion coefficient depends upon the pressure, temperature, and composition of the

system. Experimental values for the diffusivities of gases, liquids, and solids are tabulated in

Appendix Tables J.1, J.2, and J.3, respectively. As one might expect from the consideration of

the mobility of the molecules, the diffusion coefficients are generally higher for gases (in the

range of 5� 10�6 to 1� 10�5 m2/s), than for liquids (in the range of 10�10 to 10�9 m2/s),

which are higher than the values reported for solids (in the range of 10�14 to 10�10 m2/s).

In the absence of experimental data, semitheoretical expressions have been developed

which give approximations, sometimes as valid as experimental values due to the difficulties

encountered in their measurement.

Gas Mass Diffusivity

Theoretical expressions for the diffusion coefficient in low-density gaseous mixtures as a

function of the system’s molecular properties were derived by Sutherland,3 Jeans,4 and

Chapman andCowling,5 based upon the kinetic theory of gases. In the simplestmodel of gas

dynamics, the molecules are regarded as rigid spheres that exert no intermolecular forces.

Collisions between these rigidmolecules are considered to be completely elastic.With these

assumptions, a simplified model for an ideal gas mixture of species A diffusing through its

isotope A yields an equation for the self-diffusion coefficient, defined as

DAA ¼ 1

3
lu (24-27)

and l is the mean free path of length of species A, given by

l ¼ kTffiffiffi
2

p
ps2AP

(24-28)

where u is the mean speed of species A with respect to the molar-average velocity

u ¼
ffiffiffiffiffiffiffiffiffiffiffi
8kNT

pMA

r
(24-29)

Insertion of equations (24-28) and (24-29) into equation (24-27) results in

DAA ¼ 2T3/2

3p3/2s2AP

k3N

MA

� �1=2

(24-30)

where MA is the molecular weight of the diffusing species A, (g/mol), N is Avogadro’s

number (6:022� 1023 molecules/mol), P is the system pressure, T is the absolute

temperature (K), K is the Boltzmann constant (1:38� 10�16 ergs/K), and sAB is the

Lennard–Jones diameter of the spherical molecules.

Using a similar kinetic theory of gases approach for a binarymixture of species A andB

composed of rigid spheres of unequal diameters, the gas-phase diffusion coefficient is

shown to be

DAB ¼ 2

3

K

p

� �3/2
N1/2T3/2

1

2MA
þ 1

2MB

� �1/2

P
sA þ sB

2

� �2 (24-31)

3 W. Sutherland, Phil. Mag., 36, 507; 38, 1 (1894).
4 J. Jeans, Dynamical Theory of Gases, Cambridge University Press, London, 1921.
5 S. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform Gases, Cambridge University Press,

London, 1959.
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Unlike the other two molecular transport coefficients for gases, the viscosity and thermal

conductivity, the gas-phase diffusion coefficient is dependent on the pressure and the

temperature. Specifically, the gas-phase diffusion coefficient is

� an inverse function of total system pressure

DAB / 1

P

� a 3/2 power-law function of the absolute temperature

DAB/T3/2

As equation (24-31) reveals, and as one of the problems at the end of this chapter points out,

the diffusion coefficients for gases DAB ¼ DBA. This is not the case for liquid diffusion

coefficients.

Modern versions of the kinetic theory have been attempted to account for forces of

attraction and repulsion between the molecules. Hirschfelder et al. (1949),6 using the

Lennard–Jones potential to evaluate the influence of the molecular forces, presented an

equation for the diffusion coefficient for gas pairs of nonpolar, nonreacting molecules:

DAB ¼
0:001858T3=2 1

MA
þ 1

MB

� �1/2
Ps2ABVD

(24-33)

where DAB is the mass diffusivity of A through B, in cm2/s; T is the absolute temperature,

in K; MA, MB are the molecular weights of A and B, respectively; P is the absolute

pressure, in atmospheres; sAB is the ‘‘collision diameter,’’ a Lennard–Jones parameter, in

Å; and VD is the ‘‘collision integral’’ for molecular diffusion, a dimensionless function of

the temperature and of the intermolecular potential field for one molecule of A and one

molecule of B. Appendix Table K.1 lists VD as a function of kT/eAB, k is the Boltzmann

constant, which is 1:38� 10�16 ergs/K, and eAB is the energy of molecular interaction for

the binary system A and B, a Lennard–Jones parameter, in ergs, see equation (24-31).

Unlike the other two molecular transport coefficients, viscosity and thermal conductivity,

the diffusion coefficient is dependent on pressure as well as on a higher order of the

absolute temperature. When the transport process in a single component phase was

examined, we did not find any composition dependency in equation (24-30) or in the

similar equations for viscosity and thermal conductivity. Figure 24.2 presents the graphical

dependency of the ‘‘collision integral,’’ VD, on the dimensionless temperature, kT /eAB.
The Lennard–Jones parameters, r and eD, are usually obtained from viscosity data.

Unfortunately, this information is available for only a very few pure gases. Appendix Table

K.2 tabulates these values. In the absence of experimental data, the values for pure

components may be estimated from the following empirical relations:

s ¼ 1:18V1/3
b (24-34)

s ¼ 0:841V1/3
c (24-35)

s ¼ 2:44
Tc

Pc

� �1/3
(24-36)

eA/k ¼ 0:77 Tc (24-37)

6 J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, Chem. Rev.,44, 205 (1949).
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and

eA/k ¼ 1:15 Tb (24-38)

where Vb is the molecular volume at the normal boiling point, in (cm)3/g mol (this is

evaluated by using Table 24.3); Vc is the critical molecular volume, in (cm)3/g mol; Tc is

the critical temperature, in K; Tb is the normal boiling temperature, in K; and Pc is the

critical pressure, in atmospheres.

For a binary system composed of nonpolar molecular pairs, the Lennard–Jones

parameters of the pure component may be combined empirically by the following relations:

sAB ¼ sA þ sB

2
(24-39)

and

eAB ¼ ffiffiffiffiffiffiffiffiffi
eAeB

p
(24-40)
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Figure 24.2 Binary gas-

phase Lennard–Jones

‘‘collision integral.’’

Table 24.3 Atomic diffusion volumes for use in estimating DAB by method of

Fuller, Schettler, and Giddings

Atomic and structure diffusion-volume increments, v

C 16.5 Cl 19.5

H 1.98 S 17.0

O 5.48 Aromatic ring �20.2

N 5.69 Heterocyclic ring �20.2

Diffusion volumes for simple molecules, v

H2 7.07 Ar 16.1 H2O 12.7

D2 6.70 Kr 22.8 CCIF2 114.8

He 2.88 CO 18.9 SF6 69.7

N2 17.9 CO2 26.9 Cl2 37.7

O2 16.6 N2O 35.9 Br2 67.2

Air 20.1 NH3 14.9 SO2 41.1
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These relations must be modified for polar–polar and polar–nonpolar molecular pairs; the

proposed modifications are discussed by Hirschfelder, Curtiss, and Bird.7

The Hirschfelder equation (24-33) is often used to extrapolate experimental data. For

moderate ranges of pressure, up to 25 atm, the diffusion coefficient varies inversely with the

pressure. Higher pressures apparently require dense gas corrections; unfortunately, no

satisfactory correlation is available for high pressures. Equation (24-33) also states that the

diffusion coefficient varies with the temperature as T3/2/VD varies. Simplifying equation

(24-33), we can predict the diffusion coefficient at any temperature and at any pressure

below 25 atm from a known experimental value by

DABT2,P1 ¼ DABT1,P1
P1

P2

� �
T2

T1

� �3/2VDjT1

VDjT2

(24-41)

In Appendix Table J.1, experimental values of the product DABP are listed for several gas

pairs at a particular temperature. Using equation (24-41), we may extend these values to

other temperatures.

EXAMPLE 2 Evaluate the diffusion coefficient of carbon dioxide in air at 20�C and atmospheric pressure.

Compare this value with the experimental value reported in appendix table J.1.

From Appendix Table K.2, the values of s and e/k are obtained

s; inA8 eA/k; inK
Carbon dioxide 3:996 190

Air 3:617 97

The various parameters for equation (24-33) may be evaluated as follows:

sAB ¼ sA þ sB

2
¼ 3:996þ 3:617

2
¼ 3:806A8

eAB/k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eA/k)(eB/k)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(190)(97)

p
¼ 136

T ¼ 20þ 273 ¼ 293K

P ¼ 1 atm

eAB
kT

¼ 136

293
¼ 0:463

kT

eAB
¼ 2:16

VD (TableK:1) ¼ 1:047

MCO2
¼ 44

and

MAir ¼ 29

Substituting these values into equation (24-33), we obtain

DAB ¼ 0:001858 T3/2(1/MA þ 1/MB)
1/2

Ps2ABVD

¼ (0:001858)(293)3/2(1/44þ 1/29)1/2

(1)(3:806)2(1:047)
¼ 0:147 cm2/s

7 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley &

Sons, Inc., New York, 1954.
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From Appendix Table J.1 for CO2 in air at 273 K, 1 atm, we have

DAB ¼ 0:136 cm2/s

Equation (24-41) will be used to correct for the differences in temperature

DAB,T1

DAB,T2

¼ T1

T2

� �3/2 VDjT2
VDjT1

� �

Values for VD may be evaluated as follows:

at T2 ¼ 273 eAB/kT ¼ 136

273
¼ 0:498 VDjT2

¼ 1:074

at T1 ¼ 293 VDjT1
¼ 1:074 (previous calculations)

The corrected value for the diffusion coefficient at 208C is

DAB,T1 ¼
293

273

� �3/2 1:074

1:047

� �
(0:136) ¼ 0:155 cm2/s (1:55� 10�5 m2/s)

We readily see that the temperature dependency of the ‘‘collision integral’’ is very small.

Accordingly, most scaling of diffusivities relative to temperature include only the ratio

ðT1/T2Þ3/2.
Equation (24-33) was developed for dilute gases consisting of nonpolar, spherical

monatomic molecules. However, this equation gives good results for most nonpolar,

binary gas systems over a wide range of temperatures.8 Other empirical equations have

been proposed9 for estimating the diffusion coefficient for nonpolar, binary gas systems

at low pressures. The empirical correlation recommended by Fuller, Schettler, and

Giddings permits the evaluation of the diffusivity when reliable Lennard–Jones para-

meters, si and ei, are unavailable. The Fuller correlation is

DAB ¼
10�3T1:75 1

MA
þ 1

MB

� �1/2
P
�
(Sv)1/3A þ (Sv)1/3B

�2 (24-42)

where DAB is in cm2/s, T is in K, and P is in atmospheres. To determine the v terms, the

authors recommend the addition of the atomic and structural diffusion-volume increments

v reported in Table 24.3.

Danner and Daubert10 have recommended the atomic and structure diffusion-volume

increments for C to be corrected to 15.9 and for H to 2.31 and the diffusionvolumes for H2 to

be corrected to 6.12 and for air to 19.7.

8 R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, Third Edition,

McGraw-Hill Book Company, New York, 1977, Chapter 11.
9 J. H. Arnold, J. Am. Chem. Soc., 52, 3937 (1930). E. R. Gilliland, Ind. Eng. Chem., 26, 681 (1934). J. C.

Slattery and R. B. Bird, A.I.Ch.E. J., 4, 137 (1958). D. F. Othmer and H. T. Chen, Ind. Eng. Chem. Process

Des. Dev., 1, 249 (1962). R. G. Bailey, Chem. Engr., 82(6), 86, (1975). E. N. Fuller, P. D. Schettler, and J. C.

Giddings, Ind. Eng. Chem., 58(5), 18 (1966).
10 R. P. Danner, and T. E. Daubert, Manual for Predicting Chemical Process Design Data, A.I.Ch.E. (1983).
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EXAMPLE 3 Reevaluate the diffusion coefficient of carbon dioxide in air at 208C and atmospheric pressure using

the Fuller, Schettler, and Giddings equation and compare the new value with the one reported in

example 2.

DAB ¼
10�3T1:75 1

MA
þ 1

MB

� �1/2
P (�v)1/3A þ (�v)1=3B

h i2

¼
10�3(293)1:75

1

44
þ 1

29

� �1/2
(1)[(26:9)1/3 þ (20:1)1/3]2

¼ 0:152 cm2/s

This value compares very favorably to the value evaluated with Hirschfelder equation, 0.155 cm2/s,

and its determination was easily accomplished.

Brokaw11 has suggested a method for estimating diffusion coefficient for binary gas

mixtures containing polar compounds. The Hirschfelder equation () is still used; however,

the collision integral is evaluated by

VD ¼ VD0
þ 0:196d2AB

T (24-43)

where

dAB ¼ (dAdB)
1/2

d ¼ 1:94� 103m2
p

VDTD

(24-44)

m p ¼ dipolemoment, Debye

Vb ¼ liquidmolar volume of the specific compound at its boiling point, cm3/gmol

Tb ¼ normal boiling point, K

and

T ¼ kT/eAB

where

eAB
k

¼ eA
k

eB
k

� �1/2
e/k ¼ 1:18(1þ 1:3 d2)Tb

(24-45)

d is evaluated with (24–44). And

VD0
¼ A

(T)B
þ C

exp(DT)
þ E

exp(FT)
þ G

exp(HT)
(24-46)

11 R. S. Brokaw, Ind. Engr. Chem. Process Des. Dev., 8, 240 (1969).
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with

A ¼ 1:060,36 E ¼ 1:035,87
B ¼ 0:156,10 F ¼ 1:529,96
C ¼ 0:193,00 G ¼ 1:764,74
D ¼ 0:476,35 H ¼ 3:894,11

The collision diameter, sAB, is evaluated with

sAB ¼ (sAsB)
1/2 (24-47)

with each component’s characteristic length evaluated by

s ¼ 1:585VD

1þ 1:3 d2

� �1/3
(24-48)

Reid, Prausnitz, and Sherwood12 noted that the Brokaw equation is fairly reliable,

permitting the evaluation of the diffusion coefficients for gases involving polar compounds

with errors less than 15%.

Mass transfer in gas mixtures of several components can be described by theoretical

equations involving the diffusion coefficients for the various binary pairs involved in the

mixture. Hirschfelder, Curtiss, and Bird13 present an expression in its most general form.

Wilke14 has simplified the theory and has shown that a close approximation to the correct

form is given by the relation

D1�mixture ¼ 1

y02/D1�2 þ y03/D1�3 þ � � � þ y0n/D1�n
(24-49)

where D1�mixture is the mass diffusivity for component 1 in the gas mixture; D1�n is the

mass diffusivity for the binary pair, component 1 diffusing through component n; and y0n
is the mole fraction of component n in the gas mixture evaluated on a component-1-free

basis, that is

y02 ¼
y2

y2 þ y3 þ � � � yn ¼
y2

1� y1

In Problem 24.7 at the end of this chapter, equation (24-49) is developed by using

Wilke’s approach for extending the Stefan and Maxwell theory in order to explain the

diffusion of species A through a gas mixture of several components.

EXAMPLE 4 In the chemical vapor deposition of silane (SiH4) on a silicon wafer, a process gas stream rich in an

inert nitrogen (N2) carrier gas has the following composition:

ySIH4
¼ 0:0075, yH2

¼ 0:015, yN2
¼ 0:9775

The gas mixture is maintained at 900 K and 100 Pa total system pressure. Determine the diffusivity of

silane through the gas mixture. The Lennard–Jones constants for silane are eA/k ¼ 207:6K and

sA ¼ 4:08 Å.

12 R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, Third Edition,

McGraw-Hill Book Company, New York, 1977, Chapter 11.
13 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York,

p. 718.
14 C. R. Wilke, Chem. Engr. Prog., 46, 95–104 (1950).
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The binary diffusion coefficients at 900 K and 100 Pa total system pressure estimated by the

Hirschfelder equation (24-33) are

DSiH4�N2
¼ 1:09� 103cm2/s and DSiH4�H2

¼ 4:06� 103cm2/s

The binary diffusion coefficients are relatively high because the temperature is high and the total

system pressure is low. The composition of nitrogen and hydrogen on a silane-free basis are

y0N2
¼ 0:9775

1� 0:0075
¼ 0:9849 and y0H2

¼ 0:015

1� 0:0075
¼ 0:0151

Upon substituting these values into the Wilke equation (24-49), we obtain

DSiH4�mixture ¼ 1

y0N2

DSiH4�N2

þ y0H2

DSiH4�H2

¼ 1

0:9849

1:09� 103
þ 0:0151

4:06� 103

¼ 1:10� 103
cm2

s

This example verifies that for a dilute multicomponent gas mixture, the diffusion coefficient of the

diffusing species in the gas mixture is approximated by the binary diffusion coefficient of the

diffusing species in the carrier gas.

Liquid-Mass Diffusivity

In contrast to the case for gases, where we have available an advanced kinetic theory for

explaining molecular motion, theories of the structure of liquids and their transport

characteristics are still inadequate to permit a rigorous treatment. Inspection of published

experimental values for liquid diffusion coefficients in Appendix J.2 reveals that they are

several orders of magnitude smaller than gas diffusion coefficients and that they depend on

concentration due to the changes in viscosity with concentration and changes in the degree

of ideality of the solution.

Certain molecules diffuse as molecules, while others that are designated as electrolytes

ionize in solutions and diffuse as ions. For example, sodium chloride, NaCl, diffuses in

water as the ions Naþ and Cl�. Though each ion has a different mobility, the electrical

neutrality of the solution indicates that the ions must diffuse at the same rate; accordingly, it

is possible to speak of a diffusion coefficient for molecular electrolytes such as NaCl.

However, if several ions are present, the diffusion rates of the individual cations and anions

must be considered, and molecular diffusion coefficients have nomeaning. Needless to say,

separate correlations for predicting the relation between the liquidmass diffusivities and the

properties of the liquid solution will be required for electrolytes and nonelectrolytes.

Two theories, the Eyring ‘‘hole’’ theory and the hydrodynamical theory, have been

postulated as possible explanations for diffusion of nonelectrolyte solutes in low-

concentration solutions. In the Eyring concept, the ideal liquid is treated as a quasi-

crystalline lattice model interspersed with holes. The transport phenomenon is then

described by a unimolecular rate process involving the jumping of solute molecules into

the holes within the lattice model. These jumps are empirically related to Eyring’s theory

of reaction rate.15 The hydrodynamical theory states that the liquid diffusion coefficient

is related to the solute molecule’s mobility; that is, to the net velocity of the molecule

while under the influence of a unit driving force. The laws of hydrodynamics provide

15 S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes, McGraw-Hill Book Company, New

York, 1941, Chap. IX.
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relations between the force and the velocity. An equation that has been developed from

the hydrodynamical theory is the Stokes–Einstein equation

DAB ¼ kT

6prmB

(24-50)

where DAB is the diffusivity of A in dilute solution in D, k is the Boltzmann constant, T is

the absolute temperature, r is the solute particle radius, and mB is the solvent viscosity.

This equation has been fairly successful in describing the diffusion of colloidal particles

or large round molecules through a solvent that behaves as a continuum relative to the

diffusing species.

The results of the two theories can be rearranged into the general form

DABmB

kT
¼ f(V) (24-51)

in which f(V) is a function of the molecular volume of the diffusing solute. Empirical

correlations, using the general form of equation (24-51), have been developed, which

attempt to predict the liquid diffusion coefficient in terms of the solute and solvent

properties. Wilke and Chang16 have proposed the following correlation for none-

lectrolytes in an infinitely dilute solution:

DABmB

T
¼ 7:4� 10�8(FBMB)

1/2

V0:6
A

(24-52)

where DAB is the mass diffusivity of A diffusing through liquid solvent B, in cm2/s; mB is

the viscosity of the solution, in centipoises; T is absolute temperature, in K; MB is the

molecular weight of the solvent; VA is the molal volume of solute at normal boiling point,

in cm3/gmol; and FB is the ‘‘association’’ parameter for solvent B.

Molecular volumes at normal boiling points, VA, for some commonly encountered

compounds, are tabulated in Table 24.4. For other compounds, the atomic volumes of each

element present are added together as per the molecular formulas. Table 24.5 lists the

contributions for each of the constituent atoms. When certain ring structures are involved,

corrections must be made to account for the specific ring configuration; the following

Table 24.4 Molecular volumes at normal boiling point for some commonly encountered

compounds

Compound

Molecular volume,

in cm3/gmol Compound

Molecular volume,

in cm3/gmol

Hydrogen, H2 14.3 Nitric oxide, NO 23.6

Oxygen, O2 25.6 Nitrous oxide, N2O 36.4

Nitrogen, N2 31.2 Ammonia, NH3 25.8

Air 29.9 Water, H2O 18.9

Carbon monoxide, CO 30.7 Hydrogen sulfide, H2S 32.9

Carbon dioxide, CO2 34.0 Bromine, Br2 53.2

Carbonyl sulfide, COS 51.5 Chlorine, Cl2 48.4

Sulfur dioxide, SO2 44.8 Iodine, I2 71.5

16 C. R. Wilke and P. Chang, A.I.Ch.E.J., 1, 264 (1955).
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corrections are recommended:

for three-membered ring, as ethylene oxide deduct 6

for four-membered ring, as cyclobutane deduct 8.5

for five-membered ring, as furan deduct 11.5

for pyridine deduct 15

for benzene ring deduct 15

for naphthalene ring deduct 30

for anthracene ring deduct 47.5

Recommended values of the association parameter, FB, are given below for a few

common solvents.

Solvent FB

Water 2.2617

Methanol 1.9

Ethanol 1.5

Benzene, ether, heptane,

and other unassociated solvents 1.0

If data for computing the molar volume of solute at its normal boiling point, VA, are not

available, Tyn and Calus18 recommend the correlation

VA ¼ 0:285V1:048
c

where Vc is the critical volume of species A in cm3/g. mol. Values of Vc are tabulated in

Reid, Prausnitz, and Sherwood.19

Table 24.5 Atomic volumes for complex molecular volumes for simple substancesy

Element

Atomic volume,

in cm3/gmol Element

Atomic volume,

in cm3/gmol

Bromine 27.0 Oxygen, except as noted below 7.4

Carbon 14.8 Oxygen, in methyl esters 9.1

Chlorine 21.6 Oxygen, in methyl ethers 9.9

Hydrogen 3.7 Oxygen, in higher ethers

Iodine 37.0 and other esters 11.0

Nitrogen, double bond 15.6 Oxygen, in acids 12.0

Nitrogen, in primary amines 10.5 Sulfur 25.6

Nitrogen, in secondary amines 12.0

yG. Le Bas, The Molecular Volumes of Liquid Chemical Compounds, Longmans, Green & Company, Ltd.,

London, 1915.

17 The correction of FB is recommended by R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties

of Gases and Liquids, Third Edition, McGraw-Hill Book Company, New York, 1977, p. 578.
18 Tyn, M.T. and W.F. Calus, Processing, 21, (4): 16 (1975).
19 R.C. Reid, J.M. Prausnitz and, T.K. Sherwood, The Properties of Gases and Liquids, Third Edition,

McGraw-Hill Book Company, New York, 1977, Appendix A.
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EXAMPLE 5 Estimate the liquid diffusion coefficient of ethanol, C2H5OH, in a dilute solution of water at 108C.
The molecular volume of ethanol may be evaluated by using values from Table 24.5 as follows:

VC2H5OH ¼ 2VC þ 6VH þ VO

VC2H5OH ¼ 2(14:8)þ 6(3:7)þ 7:4 ¼ 59:2 cm3/mol

At 10�C, the viscosity of a solution containing 0.05 mol of alcohol/liter of water is 1.45

centipoises; the remaining parameters to be used are

T ¼ 283K

FB forwater ¼ 2:26

and

MB for water ¼ 18

Substituting these values into equation (24-52), we obtain

DC2H5OH�H2O ¼ 7:4� 10�8(2:26� 18)1/2

(59:2)0:6

 !
283

1:45

� �
¼ 7:96� 10�6 cm2/s (7:96� 10�10 m2/s)

This value is in good agreement with the experimental value of 8:3� 10�10m2/s reported in

Appendix J.

Let us compare this value of the liquid diffusivity of ethanol in a dilute solution ofwater at 10�C,
7:96� 10�6cm2/s, with the value of the gas diffusivity of ethanol in air at 10�C and 1 atm pressure,

0:118 cm2/s. This emphasizes the order of magnitude difference between the values of the liquid and

gas diffusivities.

Performing a similar calculation, the liquid diffusion coefficient of water in an infinite dilute

solution of ethanol at the same 10�C temperature predicts that the diffusion coefficientDBA is equal

to 1:18� 10�5 cm2/s. It is important to note that liquid diffusivitiesDABL andDBAL are not equal as

were the gas diffusivities at the same temperature and pressure.

Hayduk andLaudie20 have proposed amuch simpler equation for evaluating infinite dilution

diffusion coefficients of nonelectrolytes in water

DAB ¼ 13:26� 10�5m�1:14
B V�0:589

A (24-53)

whereDAB is themass diffusivity ofA through liquidB, in cm2/s;mB is theviscosity ofwater, in

centipoises; and VA is the molal volume of the solute at normal boiling point, in cm3/g �mol.

This relation is much simpler to use and gives similar results to the Wilke–Chang equation. If

we substitute the values used in example 4 into the Hayduk and Laudie relationship, wewould

obtain a diffusion coefficient for ethanol in a dilute water solution of 7:85� 10�6cm2/s; this

value is essentially the same value obtained using the Wilke–Chang equation.

Scheibel21 has proposed that the Wilke–Chang relation be modified to eliminate the

association factor, FB, yielding

DABmB

T
¼ K

V1/3
A

(24-54)

20 W. Hayduk and H. Laudie, A.I.Ch.E. J., 20, 611 (1974).
21 E. G. Scheibel, Ind. Eng. Chem., 46, 2007 (1954).
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where K is determined by

K ¼ (8:2� 10�8) 1þ 3VB

VA

� �2/3
" #

except

1. For benzene as a solvent, if VA < 2VB, use K ¼ 18:9� 10�8.

2. For other organic solvents, if VA < 2:5VB, use K ¼ 17:5� 10�8.

Reid, Prausnitz, and Sherwood22 recommend this equation for solutes diffusing into

organic solvents; however, they noted that this equation might evaluate values that had

errors up to 20%.

Most methods for predicting the liquid diffusion coefficients in concentration solutions

have combined the infinite dilution coefficients, DAB and DBA, in a simple function of

composition. Vignes23 recommended the following relationship:

DAB ¼ (DAB)
xB (DBA)

xA

where DAB is the infinitely dilute diffusion coefficient of A in solvent B, DBA is the

infinitely dilute diffusion coefficient of B in solvent A, and xA and xB are the molar

fraction composition of A and B. This Vignes equation has been less successful for

mixtures containing an associating compound, such as an alcohol. Amodification for this

type of concentrated solution has been proposed by Leffler and Cullinan24

DABm ¼ (DABmB)
xB (DBAmA)

xA

As the values of liquid diffusion coefficients reported in the literature were obtained in

the neighborhood of the ambient temperature, Tyne25 recommended the following equation

for extrapolating to higher temperatures

(DABT1
)

(DABT2
)
¼ Tc � T2

Tc� T1

� �n

(24-55)

where T1 and T2 are in K, Tc is the critical temperature of solvent B in K, and n is the

exponent related to the latent heat of vaporization of solvent, DHv , at its normal boiling

point temperature. This exponent may be evaluated from the following table:

The properties of electrically conducting solutions have been studied intensively

for more than 75 years. Even so, the known relations between electrical conductance

and the liquid diffusion coefficient are valid only for dilute solutions of salts in water.

DHv , (kJ/kmol) 7,900–30,000 30,000–39,000 39,000–46,000 46,000–50,000 >50,000

n 3 4 6 8 10

25 M. J. Tyne, Trans. I. Chem. E., 9, 112 (1981).
22 R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, Third Edition,

McGraw-Hill Book Company, New York, 1977, Chapter 11.
23 A. Vignes, Ind. Eng. Chem. Fundam., 5, 189 (1966).
24 J. Leffler and H. T. Cullinan, Ind. Eng. Chem., 9, 84 (1970).
25 M. J. Tyne, Trans. I. Chem. E., 9, 112 (1981).
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The diffusion coefficient of a univalent salt in dilute solution is given by the Nernst

equation

DAB ¼ 2RT

(1/l0þ þ 1/l0�)F
(24-56)

where DAB is the diffusion coefficient based on the molecular concentration of A, in

cm2/s; R is the gas constant, 8.316 joules/(K)(g mol); T is absolute temperature, in K, l0þ,
l0� are the limiting (zero concentration) ionic conductances in (amp/cm2) (volt/cm) (g

equivalent/cm3), and F is Faraday’s constant, 96,500 coulombs/g equivalent. This

equation has been extended to polyvalent ions by replacing the numerical constant 2 by

(1/nþ þ 1/n�), where nþ and n� are the valences of the cation and anion, respectively.

Pore Diffusivity

There are many instances where molecular diffusion occurs inside the pores of porous

solids. For example, many catalysts are porous solid pellets containing catalytically active

sites on the pore walls. The porous catalyst possesses a high internal surface area to

promote chemical reactions at the catalytic surface. The separation of solutes from dilute

solution by the process of adsorption is another example. In an adsorption process, the

solute sticks to a feature on the solid surface that is attractive to the solute.Many adsorbent

materials are porous to provide a high internal surface area for solute adsorption. In both

examples, the molecules must diffuse through a gas or liquid phase residing inside the

pores. As the pore diameter approaches the diameter of the diffusing molecule, the

diffusing molecule can interact with the wall of the pore. Below, we describe two types of

pore diffusion: the Knudsen diffusion of gases in cylindrical pores and the hindered

diffusion of solutes in solvent-filled cylindrical pores.

Knudsen diffusion. Consider the diffusion of gas molecules through very small capillary

pores. If the pore diameter is smaller than the mean free path of the diffusing gas molecules

and the density of the gas is low, the gas molecules will collide with the pore walls more

frequently than with each other. This process is known as Knudsen flow or Knudsen

diffusion. The gas flux is reduced by the wall collisions.

The Knudsen number, Kn, given by

Kn ¼ l

dpore
¼ mean free path length of the diffusing species

pore diameter

is a goodmeasure of the relative importance of Knudsen diffusion. If theKn number ismuch

greater than one, then Knudsen diffusion can be important. At a given pore diameter, theKn

number goes up as the total system pressure P decreases and absolute temperature T

increases. In practice, Knudsen diffusion applies only to gases because the mean free path

for molecules in the liquid state is very small, typically near the molecular diameter of the

molecule itself. Consequently, Kn for liquids is very small. The diffusivity for Knudsen

diffusion is obtained from the self-diffusion coefficient derived from the kinetic theory of

gases

DAA ¼ lu

3
¼ l

3

ffiffiffiffiffiffiffiffiffiffiffi
8kNT

pMA

r
(24-57)

For Knudsen diffusion, we replace path length l with pore diameter dpore, as species A is

now more likely to collide with the pore wall as opposed to another molecule. In this
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instance, the Knudsen diffusivity for diffusing species A, DKA, is

DKA ¼ dpore

3
u ¼ dpore

3

ffiffiffiffiffiffiffiffiffiffiffi
8kNT

pMA

r
(24-58)

DKA ¼ dpore

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

p
1:38 � 10�16

g � cm
s2K

� �
6:023 � 1023 molecules

mol

� �s ffiffiffiffiffiffiffi
T

MA

r

¼ 4850dpore

ffiffiffiffiffiffiffi
T

MA

r
This simplified equation requires that dpore has units of cm, MA has units of g/mol, and

temperature T has units of K. The Knudsen diffusivity, DKA, is dependent on the pore

diameter, species A molecular weight, and temperature. We can make two comparisons of

DKA to the binary gas phase diffusivity, DAB. First, it is not a function of absolute pressure

P, or the presence of species B in the binary gas mixture. Second, the temperature

dependence for the Knudsen diffusivity is DKA/ T1=2, vs. DAB/ T3=2 for the binary

gas phase diffusivity.

Generally, theKnudsen process is significant only at low pressure and small pore diameter.

However, there are instances where both Knudsen diffusion andmolecular diffusion (DAB) can

be important. If we consider that Knudsen diffusion and molecular diffusion compete with one

another by a ‘‘resistances in series’’ approach, then the effective diffusivity of species A in a

binary mixture of A and B, DAe, is determined by

1

DAe
¼ 1� ayA

DAB
þ 1

DKA
(24-59)

with

a ¼ 1þ NB

NA

For cases where a ¼ 0 (NA ¼ �NB), or where yA is close to zero, equation (24-59) reduces

to

1

DAe
¼ 1

DAB
þ 1

DKA
(24-60)

The above relationships for the effective diffusion coefficient are based on diffusion

within straight, cylindrical pores aligned in a parallel array. However, in most porous

materials, pores of various diameters are twisted and interconnected with one another,

and the path for diffusion of the gas molecule within the pores is ‘‘tortuous.’’ For these

materials, if an average pore diameter is assumed, a reasonable approximation for the

effective diffusion coefficient in random pores is

D0
Ae ¼ e2DAe (24-61)

where e ¼ the volume occupied by pores within the porous solid

total volume of porous solid ðsolidþ poresÞ
e is the volume void fraction of the porous volume within the porous material. This ‘‘void

fraction’’ is usually experimentally determined for a specific material.

The four possible types of pore diffusion are illustrated in Figure 24.3, each with their

respective diffusivity correlation. The first three, pure molecular diffusion, pure Knudsen
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diffusion, and Knudsen and molecular combined diffusion, are based on diffusion within

straight, cylindrical pores that are aligned in parallel array. The fourth involves diffusion via

‘‘tortuous paths’’ that exist within the compacted solid.

EXAMPLE 6 One step in the manufacture of optical fibers is the chemical vapor deposition of silane (SiH4) on the

inside surface of a hollow glass fiber to form a very thin cladding of solid silicon by the reaction

SiH4(g)!Si(s)þ 2H2(g)

as shown in Figure 24.4. Typically, the pro-

cess is carried out at high temperature and

very low total systempressure.Optical fibers

for high bandwidth data transmission have

very small inner pore diameters, typically

less than 20mm (1mm ¼ 1� 10�6 m). If

the inner diameter of the Si-coated hollow

glass fiber is 10mm, assess the importance of

Knudsen diffusion for SiH4 inside the fiber

lumen at 900 K and 100 Pa (0.1 kPa) total

system pressure. Silane is diluted to 1.0 mol

% in the inert carrier gas helium (He). The binary gas phase diffusivity of silane in helium at 25�C
(298 K) and 1.0 atm (101.3 kPa) total system pressure is 0:571 cm2/s, with sSiH4

¼ 4:08 Åand
eSiH4

/k ¼ 207:6K. The molecular weight of silane is 32 g/mol.

The gas-phase molecular diffusivity of SiH4–He, Knudsen diffusivity for SiH4, and effective

diffusivity for SiH4 at 900 K and 100 Pa total system pressure must be calculated. The gas-phase

Pure molecular
diffusion

Pore wall

A
B

D AB P s2
AB WD

0.001858T3/2 1

M A

1

M B
+

=

1/2

Pure knudsen
diffusion

Pore wall

dpore

d pore

A

D KA
=

8 k N T
p M A

Random porous
material

D' Ae = e 2 D Ae

Pore wall

A

B

Knudsen + molecular
diffusion

1

D Ae

1
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1
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+@

3

Figure 24.3 Types of porous diffusion. Shaded areas represent nonporous solids.

SiH4 gas

H2 gas

dpore = 10 µm

900 K, 100 Pa

Optical fiber

Si thin film

Hollow glass fiber

Figure 24.4 Optical fiber.
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molecular diffusivity of silane in helium is scaled to process temperature and pressure using the

Hirschfelder extrapolation, equation (24-41)

DSiH4�He

900K

0:1 kPa
¼ 0:571

cm2

s

900K

298K

� �1:5 101:3 kPa

0:1 kPa

� �
0:802

0:668

� �
¼ 3:32� 103

cm2

s

�����
It is left to the reader to show that the collision integralVD is equal to 0.802 at 298K and 0.668 at 900

K for gaseous SiH4–He mixtures. Note that the gas phase molecular diffusivity is high due to high

temperature and very low system pressure. TheKnudsen diffusivity of SiH4 inside the optical fiber is

calculated using equation (24-58), with dpore ¼ 1� 10�3 cm (10mm)

DK,SiH4
¼ 4850 dpore

ffiffiffiffiffiffiffiffiffiffiffiffi
T

MSiH4

s
¼ 4850(1� 10�3)

ffiffiffiffiffiffiffiffi
900

32

r
¼ 25:7

cm2

s

As the SiH4 is significantly diluted in He, the process is dilute with respect to SiH4 and so equation

(24-60) can be used to estimate the effective diffusivity

DSiH4,e ¼
1

1

DSiH4�He
þ 1

DK;SiH4

¼ 1

1
3:32� 103

þ 1
25:7

¼ 25:5
cm2

s

The effective diffusivity for SiH4 is smaller than its Knudsen diffusivity, reflecting the resistance in

series approach. Finally, we calculate the Knudsen number for SiH4

l ¼ kTffiffiffi
2

p
ps2A P

¼
1:38� 10�16 erg

K
1Nm
107 erg

900K

ffiffiffi
2

p
p 0:408 nm

1m

109 nm

� �2

100
N

m2

¼ 1:68� 10�4 m ¼ 168mm

Kn ¼ l

dpore
¼ 168mm

10mm
¼ 16:8

As Kn� 1 and the effective diffusivity is close to the Knudsen diffusivity, then Knudsen diffusion

controls the silane transport inside the optical fiber if no external bulk transport is supplied.

Hindered solute diffusion in solvent-filled pores. Consider the diffusion of a solute

molecule through a tiny capillary pore filled with liquid solvent. As the molecular diameter

of the solute approaches the diameter of the pore, the diffusive transport of the solute

through the solvent is hindered by the presence of the pore and the porewall. Generalmodels

for diffusion coefficients describing the ‘‘hindered diffusion’’ of solutes in solvent-filled

pores assume the form of

DAe ¼ D
�
ABF1(w)F2(w) (24-62)

The molecular diffusion coefficient of solute A in the solvent B at infinite dilution, D
A
�
e
, is

reduced by two correction factors, F1(w), and F2(w), both of which are theoretically

bounded by 0 and 1. Furthermore, both correction factors are functions of the reduced

pore diameter w

w ¼ ds

dpore
¼ solutemolecular diameter

pore diameter
(24-63)

If w> 1, then the solute is too large to enter the pore. This phenomena is known as solute

exclusion, and is used to separate large biomolecules such as proteins from dilute aqueous
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mixtures containing solutes of much smaller diameter. As w approaches 1, both F1(w) and

F2(w) decrease asymptotically toward zero so at w ¼ 1, the effective diffusion coefficient

is zero.

The correction factor F1(w), the stearic partition coefficient, is based on simple

geometric arguments for stearic exclusion, that is,

F1(w) ¼ flux area available to solute

total flux area
¼ p(dpore � ds)

2

pd 2
pore

¼ (1� w)2 (24-64)

and holds for 0 � F1(w) � 1:0
The correction factor F2ðwÞ, the hydrodynamic hindrance factor, is based on the compli-

cated hydrodynamic calculations involving the hindered Brownian motion of the solute

within the solvent-filled pore. Equations for F2(w), assuming diffusion of a rigid spherical

solute in a straight cylindrical pore, have been developed. The analytical models are

generally asymptotic solutions over a limited range of w, and ignore electrostatic or other

energetic solute–solvent-pore wall intereactions, polydisperity of solute diameters, and

noncircular pore cross sections. The most common equation, developed by Renkin,26 is

reasonable for 0 � w � 0:6

F2(w) ¼ 1� 2:104wþ 2:09w3 � 0:95w5 (24-65)

EXAMPLE 7 It is desired to separate a mixture of two industrial enzymes, lysozyme and catalase, in a dilute,

aqueous solution by a gel filtration membrane. A mesoporous membrane with cylindrical pores of

30 nm diameter is available (Figure 24.5). The following separation factor (a) for the process is

proposed

a ¼ DAe

DBe

Determine the separation factor for this process. The properties of each enzyme as reported by

Tanford27 are given below.

ds,B = 10.44 nm

ds,A = 4.12 nm dpore = 30 nm

Bulk solvent

Figure 24.5 Hindered diffusion

of solutes in solvent-filled

pores.

26 E. M. Renkin, J. Gen. Physiol., 38, 225 (1954).
27 C. Tanford, Physical Chemistry of Macromolecules, John Wiley & Sons, New York, 1961.
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The transport of large enzymemolecules through pores filled with liquid water represents a hindered

diffusion process. The reduced pore diameters for lysozyme and catalase are

wA ¼ ds,A

dpore
¼ 4:12 nm

30:0 nm
¼ 0:137 and wB ¼ ds;B

dpore
¼ 10:44 nm

30:0 nm
¼ 0:348

For lysozyme, F1ðwAÞ by equation (24-64) and F2ðwAÞ by the Renkin equation (24-65) are

F1(wA) ¼ (1� wA)
2 ¼ (1� 0:137)2 ¼ 0:744

F2(wA) ¼ 1� 2:104wA þ 2:09w3A � 0:95w5A

¼ 1� 2:104(0:137)þ 2:09(0:137)3 � 0:95(0:137)5 ¼ 0:716

The effective diffusivity of lysozyme in the pore, DAe is estimated by equation (24-62)

DAe ¼ D�
A�H2O

F1(wA)F2(wA) ¼ 1:04� 10�6 cm
2

s
(0:744)(0:716) ¼ 5:54� 10�7 cm

2

s

Likewise, for catalaseF1(wB) ¼ 0:425; F2(wB) ¼ 0:351, andDBe ¼ 6:12� 10�8 cm2/s:Finally, the
separation factor is

a ¼ DAe

DBe
¼ 5:54� 10�7 cm2/s

6:12� 10�8 cm2/s
¼ 9:06

It is interesting to compare the value above with a0, the ratio of molecular diffusivities at infinite

dilution

a0 ¼ D�
A�H2O

D�
B�H2O

¼ 1:04� 10�6 cm2/s

4:1� 10�7 cm2/s
¼ 1:75

The small pore diameter enhances the value fora because the diffusion of the large catalasemolecule

is significantly hindered inside the pore relative to the smaller lysozyme molecule.

Solid Mass Diffusivity

The diffusion of atoms within solids underlies the synthesis of many engineering materials.

In semiconductor manufacturing processes, ‘‘impurity atoms,’’ commonly called dopants,

are introduced into solid silicon to control the conductivity in a semiconductor device. The

hardening of steel results from the diffusion of carbon and other elements through iron.

Vacancy diffusion and interstitial diffusion are the two most frequently encountered solid

diffusion mechanisms.

In vacancy diffusion, the transported atom ‘‘jumps’’ from a lattice position of the solid

into a neighboring unoccupied lattice site or vacancy, as illustrated in Figure 24.6. The atom

continues to diffuse through the solid by a series of jumps into other neighboring vacancies

that appear to it from time to time. This normally requires a distortion of the lattice. This

mechanism has been mathematically described by assuming a unimolecular rate process

and applying Eyring’s ‘‘activated state’’ concept, as discussed in the ‘‘hole’’ theory for

liquid diffusion. The resulting equation is a complex equation relating the diffusivity in

terms of the geometric relations between the lattice positions, the length of the jump path,

and the energy of activation associated with the jump.

Lysozyme (species A) Catalase (species B)

MA ¼ 14 100 g/gmol MB ¼ 250 000 g/gmol

ds;A ¼ 4:12 nm ds;B ¼ 10:44 nm

Do
A�H2O

¼ 1:04� 10�6 cm2/s Do
B�H2O

¼ 4:10� 10�7 cm2/s
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An atom moves in interstitial diffusion by jumping from one interstitial site to a

neighboring one, as illustrated in Figure 24.7. This normally involves a dilation or distortion

of the lattice. This mechanism is also mathematically described by Eyring’s unimolecular

rate theory. Excellent references are available for amore detailed discussion on the diffusion

characteristics of atoms in solids (Barrer; Shewmon; Middleman and Hochberg; Kou.28

Appendix Table J.3 lists a few values of binary diffusivities in solids. Figure 24.8

illustrates the dependence of solid-phase diffusion coefficients on temperature, specifically

for the diffusion of common dopants in solid silicon. The solid-phase diffusion coefficient

has been observed to increase with increasing temperature according to an Arrhenius

equation of the form

DAB ¼ Doe
�Q/RT (24-66)

or

ln(DAB) ¼ �Q

R

1

T
þ ln(Do) (24-67)

where DAB is solid diffusion coefficient for the diffusing species Awithin solid B, Do is a

proportionality constant of units consistent with DAB, Q is the activation energy (J/mol),

R is the thermodynamic constant (8.314 J/mol � K), and T is the absolute temperature (K).
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Figure 24.7 Solid-state

interstitial diffusion.
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Figure 24.6 Solid-state

vacancy diffusion.

28 R. M. Barrer, Diffusion In and Through Solids, Cambridge University Press, London, 1941; P. G.

Shewmon, Diffusion of Solids, McGraw-Hill Inc., New York, 1963; S. Middleman and A. K. Hochberg,

Process Engineering Analysis in Semiconductor Device Fabrication, McGraw-Hill Inc., New York, 1993;

S. Kou, Transport Phenomena and Materials Processing, John Wiley & Sons Inc., New York, 1996.
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Data from Figure 24.8 can be used to estimate Q for a given dopant in silicon using

equation (24-67). Tables 24.6 and 24.7 provide the diffusion data needed to evaluate DAB

by equation (24-66) for self-diffusion in pure metals and interstitial solutes in iron. These

tables point out the significant energy barrier that must be surpassed when an atom jumps

between two lattice sites by vacancy diffusion (Table 24.6) and a significantly smaller

energy barrier encountered in interstitial diffusion (Table 24.7).

Diffusion coefficients and solubilities of solutes in polymers are reported by Rogers,29

and by Crank and Park.30 Diffusivities of solutes in dilute biological gels are reported by

Friedman and Kramer31 and by Spalding.32
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Figure 24.8 Diffusion coefficients of

substitutional dopants in crystalline

silicon.

Table 24.6 Data for self-diffusion in pure metals

Do Q

Structure Metal (mm2/s) (kJ/mole)

fcc Au 10.7 176.9

fcc Cu 31 200.3

fcc Ni 190 279.7

fcc FeðgÞ 49 284.1

bcc FeðaÞ 200 239.7

bcc FeðdÞ 1980 238.5

29 C. E. Rogers, Engineering Design for Plastics, Reinhold Press, New York, 1964.
30 J. Crank and G. S. Park, Diffusion in Polymers, Academic Press, New York, 1968.
31 L. Friedman and E. O. Kramer, J. Am. Chem. Soc., 52, 1311 (1930).
32 G. E. Spalding, J. Phys. Chem., 3380 (1969).
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24.3 CONVECTIVE MASS TRANSFER

Mass transfer between a moving fluid and a surface or between immiscible moving fluids

separated by a mobile interface (as in a gas/liquid or liquid/liquid contactor) is often aided

by the dynamic characteristics of themovingfluid. Thismode of transfer is called convective

mass transfer, with the transfer always going from a higher to a lower concentration of the

species being transferred. Convective transfer depends on both the transport properties and

the dynamic characteristics of the flowing fluid.

As in the case of convective heat transfer, a distinction must be made between two

types of flow.When an external pump or similar device causes the fluidmotion, the process

is called forced convection. If the fluid motion is due to a density difference, the process is

called free or natural convection.

The rate equation for convective mass transfer, generalized in a manner analogous to

Newton’s ‘‘law’’ of cooling, equation 15.11 is

NA ¼ kc DcA (24-68)

where NA is the molar mass transfer of species A measured relative to fixed spatial

coordinates, DcA is the concentration difference between the boundary surface

concentration and the average concentration of the fluid stream of the diffusing species

A, and kc is the convective mass-transfer coefficient.

As in the case of molecular mass transfer, convective mass transfer occurs in the

direction of a decreasing concentration. Equation (24-68) defines the coefficient kc in terms

of the mass flux and the concentration difference from the beginning to the end of the mass-

transfer path. The reciprocal of the coefficient, 1/kc, represents the resistance to the transfer

through the moving fluid. Chapters 28 and 30 consider the methods of determining this

coefficient. It is, in general, a function of system geometry, fluid and flow properties, and the

concentration difference DcA:
From our experiences in dealing with a fluid flowing past a surface, we can recall that

there is always a layer, sometimes extremely thin, close to the surface where the fluid is

laminar, and that fluid particles next to the solid boundary are at rest. As this is always true,

the mechanism of mass transfer between a surface and a fluid must involve molecular mass

transfer through the stagnant and laminar flowing fluid layers. The controlling resistance to

convective mass transfer is often the result of this ‘‘film’’ of fluid and the coefficient, kc, is

accordingly referred to as the film mass-transfer coefficient.

It is important for the student to recognize the close similarity between the convective

mass-transfer coefficient and the convective heat-transfer coefficient. This immediately

suggests that the techniques developed for evaluating the convective heat-transfer coeffi-

cient may be repeated for convective mass transfer. A complete discussion of convective

mass-transfer coefficients and their evaluation is given in Chapters 28 and 30.

Table 24.7 Diffusion parameters for interstitial solutes in iron

Do Q

Structure Solute (mm2/s) (kJ/mole)

bcc C 2.0 84.1

bcc N 0.3 76.1

bcc H 0.1 13.4

fcc C 2.5 144.2
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EXAMPLE 8 Apure nitrogen carrier gas flows parallel to the 0:6m2 surface of a liquid acetone in an open tank. The

acetone temperature is maintained at 290 K. If the average mass-transfer coefficient, kc, for the mass

transfer of acetone into the nitrogen stream is 0.0324 m/s, determine the total rate of acetone release

in units of kg.mol/s.

The total molar rate of acetone transfer from the liquid to the gas phase can be evaluated by

WA ¼ NAA ¼ kcA(cAs � cA1)

Themass transfer area is specified as 0:6m2:At 290K, acetone exerts a vapor pressure of 161mmHg

or 2:148� 104 Pa: Therefore, the concentration of acetone in the gas phase at the acetone surface is

cAs ¼ PA

RT
¼ 2:148� 104 Pa

8:314
Pa�m3

kgmol� K

� �
(290K)

¼ 8:91
kgmol

m3

and the concentration of acetone in the nitrogen carrier gas is near zero because themolar flowrate of

the carrier gas is in a large excess relative to the rate of acetone transfer. Thus

WA ¼ kcA(cAs � cA1) ¼ 0:0324
m

s

� �
(0:6m2) 8:91

kg:mol

m3
� 0

� �
¼ 0:1732

kg:mol

s

24.4 CLOSURE

In this chapter, the two modes of mass transport, molecular and convective mass transfer,

have been introduced. As diffusion of mass involves a multicomponent mixture, funda-

mental relations were presented for concentrations and velocities of the individual species

aswell as for themixture. Themolecular transport property,DAB, the diffusion coefficient or

mass diffusivity in gas, liquid, and solid systems, has been discussed and correlating

equations presented.

The rate equations for the mass transfer of species A in a binary mixture are as follows:

molecular mass transfer:

JA ¼ �cDAB =yA molar flux relative to the molar-average velocity

jA ¼ �rDAB =vA mass flux relative to the mass-average velocity

NA ¼ �cDAB =yA þ yA(NA þ NB) molar flux relative to fixed spatial coordinates

nA ¼ �rDAB =vA þ vA(nA þ nB) mass flux relative to fixed spatial coordinates

convective mass transfer:
NA ¼ kc DcA

PROBLEMS

24.1 Liquified natural gas, LNG, is to be shipped from the

Alaskan Kenai Peninsula by an ocean carrier to processing plant

on Yaquina Bay, Oregon. The molar composition of the com-

mercial LNG is

determine

a. the weight fraction of ethane;

b. the average molecular weight of the LNG mixture;

c. the density of the gas mixture when heated to 207 K and at

1.4 �105 Pa;

d. the partial pressure of methane when the total pressure is

1:4� 105 Pa;

e. the mass fraction of carbon dioxide in parts per million by

weight.

methane, CH4 93.5 mol %

ethane, C2H6 4.6%

Propane, C5H8 1.2%

Carbon dioxide, CO2 0.7%
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24.2 In themanufacture ofmicroelectronic devices, a thin film

of solid silicon (Si) is uniformly deposited on a wafer surface by

the chemical decomposition of silane (SiH4) in the presence of

H2 gas. If the gas composition is maintained at 40 mol % SiH4

and 60 mol % H2, determine

a. the weight fraction of these species;

b. the average molecular weight of the gas mixture;

c. the molar concentration, cA, of SiH4 if the feed gas is

maintained at 900 K and a system pressure of 60 torr.

24.3 Air is contained in a 30m3 container at 400K and 1:013�
105 Pa: Determine the following properties of the gas mixture:

a. mole fraction of O2;

b. volume fraction of O2;

c. weight of the mixture;

d. mass density of O2;

e. mass density of N2;

f. mass density of the air;

g. mass density of the air;

h. average molecular weight of the gas mixture.

24.4 Starting with Fick’s equation for the diffusion of A

through a binary mixture of species A and B as given by NAz ¼
�cDAB

dyA
dz þyAðNAz þ NBzÞ and Fick’s equation for the diffu-

sion of B through the same binary mixture given by NBz ¼
�cDBA

dyB
dz þyB(NBz þ NAz), prove the two gas diffusivities,

DAB and DBA, are equal. Does the Hirshfelder equation for

gas evaluating gas diffusivities verify this same equality?

24.5 Starting with the Fick’s equation for the diffusion of A

through a binary mixture of components A and B

NA ¼ �cDAB=yA þ yA(NA þ NB)

derive the following relations, stating the assumptions made in

the derivations:
a. nA ¼ �DAB=rA þ wAðnA þ nBÞ
b. JA ¼ �DAB=cA

24.6 Starting with Fick’s equation for the diffusion of A

through a binary mixture of A and B, prove

a. NA þ NB ¼ cV;

b. nA þ nB ¼ rv

c. jA þ jB ¼ 0:

24.7 Stefan andMaxwell explained the diffusion of A through

B in terms of the driving force dcA, the resistances that must

overcome the molecular mass transfer, and a proportionality

constant, b. The following equation expresses mathematically

the resistances for an isothermal, isobaric gaseous system:

�dcA ¼ b
rA
MA

rB
MB

ðvAz � vBzÞdz

Wilke33 extended this theory to a multicomponent gas mixture.

The appropriate form of the Maxwell-type equation was

assumed to be

� dcA

dz
¼ bAB

rA
MA

rB
MB

ðvAz � vBzÞ þ bAC
rA
MA

rC
MC

ðvAz � vCzÞ
þbAD

rA
MA

rD
MD

ðvAz � v0zÞ þ � � �

Using this relation, verify equation (24-49).

24.8 Determine the value of the following gas diffusivites

using the Hirschfelder equation:

a. carbon dioxide/air at 310 K and 1:5� 105 Pa

b. ethanol/air at 325 K and 2:0� 105 Pa

c. carbon monoxide/air at 310 K and 1:5� 105 Pa

d. carbon tetrachloride/air at 298 K and 1:913� 105 Pa

24.9 The isomerization of n-butane to iso-butane is carried out

on a catalyst surface at 2.0 atm and 4008C.What is the gas-phase

molecular diffusion coefficient of n-butane in iso-butane? Com-

pare values obtained from both the Hirschfelder and Fuller–

Schettler–Giddings equations.

24.10 Determine the diffusivity of methane in air using (a) the

Hirschfelder equation and (b) the Wilke equation for a gas

mixture. The air is at 373 K and 1:5� 105 Pa.

24.11 An absorption tower is proposed to remove selectively

ammonia from an exhaust gas stream. Estimate the diffusivity of

ammonia in air at 1:013� 105 Pa and 373 K using the Brokaw

equation (24-43). The dipole moment for ammonia is 1.46

debye. Compare the evaluated valuewith the experimental value

reported in Appendix Table J.1.

24.12 Highly purified tetrachlorosilane (SiCl4) gas is reacted

with hydrogen gas (H2) to produce electronic-grade polycrys-

talline silicon at 8008C and 1:5� 105 Pa according to the

equction:

SiCl4ðgÞ þ 2H2ðgÞ! SiðsÞ þ 4HClðgÞ:
There are concerns that the reaction experiences diffusional

limitations at the growing Si solid surface. Estimate the mole-

cular diffusion coefficient for (a) SiCl4 in H2 and (b) SiCl4 in a

gas phasemixture containing 40mol%SiCl4, 40mol%H2, and

20 mol % HCl. The Lennard–Jones parameters for SiCl4
(species A) are eA/k ¼ 358K; sA ¼ 5:08 Å.

24.13 An absorption tower has been proposed to remove

selectively two pollutants, hydrogen sulfide (H2S) and sulfur

dioxide (SO2), from an exhaust gas stream containing

Estimate the diffusivity of hydrogen sulfide in the gas mixture

at 350 K and 1:013� 105 Pa: The critical temperature (TC)

of H2S is 373.2 K and the critical volume (VC) of H2S is 98.5

cm3/mol.

H2S 3 vol %

SO2 5 vol %

N2 92 vol %

33 C. Wilke, Chem. Eng. Prog., 46, 95 (1950).
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24.14 The Stokes–Einstein equation is often used to estimate

the molecular diameter of large spherical molecules from the

molecular diffusion coefficient. The measured molecular diffu-

sion coefficient of the serum albumin (an important blood

protein) in water at infinite dilution is 5:94� 10�7 cm2=s at

293 K. Estimate the mean diameter of a serum albumin mole-

cule. The known value is 7.22 nm.

24.15 Estimate the liquid diffusivity of the following solutes

that are transferred through dilute solutions:

a. oxygen in ethanol at 293 K;

b. methanol in water at 283 K;

c. water in methanol at 288 K;

d. n-butanol in water at 288 K.

Compare this value with experimental value reported in

Appendix J.2.

24.16 Water supplies are often treated with chlorine as one of

the processing steps in treatingwastewater. Determine the liquid

diffusion coefficient of chlorine in an infinitely dilute solution of

water at 289 K using (a) the Wilke–Chang equation and (b) the

Hayduk–Laudie equation. Compare the results with the experi-

mental value reported in Appendix J.2.

24.17 Benzene (species A) is often added to ethanol to dena-

ture the ethanol (species B). Estimate the liquid-phase diffusion

of benzene in ethanol and ethanol in benzene at 288 K by (a) the

Wilke–Chang equation and (b) the Scheibel equation. Does

DAB ¼ DBA?

24.18 The aeration of water is an important industrial opera-

tion. Determine the liquid diffusion coefficient of oxygen in an

infinitely dilute solution of water at 288 K using (a) the Wilke–

Chang equation and (b) the Hayduk–Laudie equation.

24.19 A silicon wafer is doped with phosphorus. From Figure

24.8, the nominal value of the diffusion coefficient for phos-

phorus in silicon at 1316 K is 1� 10�13 cm2/s and at 1408 K is

1� 10�12 cm2/s: Determine the value of the diffusion coeffi-

cient at 1373 K.

24.20 The case-hardening of mild steel involves the diffu-

sion of carbon into iron. Estimate the diffusion coefficient for

carbon diffusing into fcc iron and bcc iron at 1000 K. Learn

about the structures of fcc and bcc iron in a materials science

textbook, and then explain why the diffusion coefficients are

different.

24.21 Determine the effective diffusion coefficient for hydro-

gen gas (H2, species A) diffusing into nitrogen gas (N2,

species B) at 1008C and 1.0 atm within the following materials:

a. Straight 100 Å pores in parallel array;

b. Random pores 100 Å in diameter with void fraction

of 0.4;

c. Random pores 1000 Å in diameter with void fraction

of 0.4;

d. Straight 20,000 Å pores in parallel array.

24.22 Researchers are proposing the development of a ‘‘nano-

channel reactor’’ for steam reforming of methane (CH4) to fuel-

cell hydrogen gas to power microscale devices.

Gas phase diffusion in nanochannel

NanochannelA = CH4, B= H2O

20 mol% CH 4
 300°C, 0.5 atm 200 nm

NA/NB = 0.25
A+B

As each channel diameter is so small, the gas flow is likely to be

very small within a given channel. Hence, gas diffusion pro-

cessesmayplay a role in the operation of this device, particularly

during the mixing and heating steps. We are specifically inter-

ested in evaluating the effective diffusion coefficient of methane

gas (species A, MA ¼ 16g/g:mol) in water vapor (species B,

MB ¼ 18 g/g:mol) at 3008C and 0.5 atm total system pressure.

The diameter of the channel is 200 nm ð1� 109 nm ¼ 10mÞ:A
feed gas containing 20 mol % CH4 in water vapor is fed to the

nanochannel with a flux ratio NA/NB ¼ 0:25. What is effective

diffusion coefficient of CH4 in the nanochannel at the feed gas

conditions? Is Knudsen diffusion important?

24.23 Diffusion experiments were conducted with a binary

mixture of synthesistic gas containingH2 (speciesA) diluted in a

large excess of CO (species B) at 2.0 atm total system pressure

and 808C in a porous material of monodispersed pore size

distribution and void volume fraction of 0.3. From the measure-

ments, the measured effective diffusion coefficient of hydrogen

was 0.036 cm2/s. What is the mean pore size ðdporeÞ of this

material?

24.24 Amixture 1.0 mol % O2 (species A) in a helium carrler

gas (species B) enters the microscale chamber. The chamber

consists of a channel that is 5:0mm (microns) in diameter. The

total systempressurewithin the chamber is 300 Pa,which is very

small. The chamber temperature is maintained at 1008C. The
molecular weight of oxygen is 32 g/g. mol and helium is 4.0 g/g.

mol.

a. What is the molar concentration of oxygen gas at the

entrance to the microchamber?

b. What is the effective diffusion coefficent of O2 (DAez ) within

the microchamber?

24.25 Consider a single, porous, spherical, inert mineral par-

ticle. The pores inside the particle are filled with liquid water

(species B). We are interested in analyzing the molecular

diffusion of the contaminant benzene C6H6, species A within

thewater-filled pores of the particle. The average diameter of the

pores is 150 nm and the void fraction is 0.40. The benzene solute

does not adsorb onto the intersurfaces of the pores. Benzene is

very sparingly soluble in water and has a molecular diameter of

0.15 nm. The process is isothermal at 298 K. The concentration

of dissolved benzene in the water surrounding the particle, CAc ,
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is constant with time. Initially, there is no dissolved benzene

inside thewater-filled pores. The critical volume (Vc) of benzene

is 259 cm3/g:mol:
What is the effective diffusion coefficient of benzene inside

the porous particle? Is pore diffusion important?

24.26 Steam reforming of hydrocarbons is one way to make

hydrogen gas (H2) for fuel cells. However, the product gas

contains H2 contaminated with carbon monoxide (CO), which

must be further enriched in H2 in order for the fuel cell to work

better. It is desired to separate a mixture of CO and H2 using a

microporous ceramic membrane. The average pore diameter of

the porous membrane material is 15 nm, and the void fraction

e ¼ 0:10. The system operates at 5.0 atm total system pressure

and 4008C.
Determine the effective diffusion coefficient of CO in the

gas mixture within the microporous membrane. Is Knudsen

diffusion important? You may assume that the CO is dilute in

the gas mixture.

24.27 As part of a bioseparation process, glucose (solute A) in

aqueous solution is diffusing across a microporous membrane,

as shown in the following figure.

Diffusion of glucose across a microporus polymer membrane 

ds,A = 0.86 nm
Glucose solution (30°C)

Glucose solution (30°C)
3.0 nm

Microporous
membrane
(2 mm thick)

The thickness of themembrane is 2.0mm, and the pores running

through the membrane consists of parallel channels of 3.0 nm

diameter. The temperature is 308C. The mean diameter of a

single glucose molecule is 0.86 nm (nanometers). Assume that

the molecular diffusion coefficient of glucose in water is

described by Stokes–Einstein relationship. What is the effective

diffusion coefficient, DAz , of glucose through the membrane?

24.28 Protein mixtures in aqueous solution are commonly

separated by molecular sieve chromatography. An important

aspect of this separation process is the diffusion of the protein

into the porous matrix of the chromatography support used to

affect the separation. Estimate the effective diffusion coefficient

of the enzyme urease in a silica gel support with 100 nm

diameter pores. The molecular diffusion coefficient of urease

in water at infinite dilution is 3:46� 10�7 cm2/s at 2988 K, and
the diameter of the molecule is 12.38 nm.

24.29 The diffusion rate of the enzyme ribonuclease into a

porous chromatography support was measured at 298 K, and an

effective diffusion coefficient of 5:0� 10�7 cm2/s was backed

out of the data. Estimate the mean pore diameter of the support.

The molecular diffusion coefficient of ribonuclease in water is

1:19� 10�6 cm2/s at 298 K, and the diameter of the molecule is

3.6 nm.
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Chapter 25

Differential Equations

of Mass Transfer

In Chapter 9, the general differential equations for momentum transfer are derived by

the use of a differential control volume concept. By an analogous treatment, the general

differential equations for heat transfer are generated in Chapter 16. Once again, we

shall use this approach to develop the differential equations for mass transfer. By

making a mass balance over a differential control volume, we shall establish the

equation of continuity for a given species.

Additional differential equations will be obtained when we insert, into the

continuity equation, mass flux relationships developed in the previous chapter.

25.1 THE DIFFERENTIAL EQUATION FOR MASS TRANSFER

Consider the control volume, Dx Dy Dz, through which a mixture including component A is

flowing, as shown in Figure 25.1. The control-volume expression for the conservation of

mass is

Z Z
c:s:

rðv : nÞdAþ @

@t

Z Z Z
c:v:

r dV ¼ 0 (4-1)

which may be stated in words as

net rate of mass

efflux from

control volume

8<
:

9=
;þ

net rate of accumulation

of masswithin control

volume

8<
:

9=
; ¼ 0

If we consider the conservation of a given species A,

this relation should also include a term that accounts for

the production or disappearance of A by chemical

reaction within the volume. The general relation for

amass balance of speciesA for our control volumemay

be stated as

net rate of mass

efflux of A from

control volume

8<
:

9=
;þ

net rate of accum

ulation of Awithin

control volume

8<
:

9=
;�

rate of chemical

production of A

within the control

volume

8>><
>>:

9>>=
>>; ¼ 0 (25-1)

y

x

z

∆y

∆x

∆z

Figure 25.1 A differential control

volume.
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The individual terms will be evaluated for constituent A, and a discussion of their

meanings will be given below.

The net rate ofmass efflux from the control volumemay be evaluated by considering the

mass transferred across control surfaces. For example, the mass of A transferred across the

area Dy Dz at xwill be rAvAx DyDzjx, or in terms of the flux vector, nA ¼ rAvA, it would be

nA; x DyDzjx. The net rate of mass efflux of constituent A will be

in the x direction: nA,x DyDzjxþDx � nA,x DyDzjx
in the y direction: nA,y DxDzjyþDy � nA,y DxDzjy

and

in the z direction: nA,z DxDyjzþDz � nA,z DxDyjz

The rate of accumulation of A in the control volume is

@rA
@t

DxDyDz

If A is produced within the control volume by a chemical reaction at a rate rA, where rA has

the units (mass of A produced)/(volume)(time), the rate of production of A is

rA DxDyDz

This production term is analogous to the energy generation term that appeared in the

differential equation for energy transfer, as discussed in Chapter 16.

Substituting each term in equation (25-1), we obtain

nA,x DyDzjxþDx � nA,x DyDzjx þ nA,y DxDzjyþDy

� nA,y DxDzjy þ nA,z DxDyjzþDz � nA,z DxDyjz
þ @rA

@t
DxDyDz� rA DxDyDz ¼ 0

(25-2)

Dividing through by the volume, Dx Dy Dz, and canceling terms, we have

nA,xjxþDx � nA,xjx
Dx

þ nA,yjyþDy � nA,yjy
Dy

þ nA,zjzþDz � nA,zjz
Dz

þ @rA
@t

� rA ¼ 0 (25-3)

Evaluated in the limit as Dx, Dy, and Dz approach zero, this yields

@

@x
nA,x þ @

@y
nA,y þ @

@z
nA,z þ @rA

@t
�rA ¼ 0 (25-4)

Equation (25-4) is the equation of continuity for component A. As nA,x; nA,y; and nA,z
are the rectangular components of the mass flux vector, nA, equation (25-4) may be

written

=: nA þ @rA
@t

�rA ¼ 0 (25-5)

A similar equation of continuity may be developed for a second constituent B in the

same manner. The differential equations are

@

@x
nB; x þ @

@y
nB; y þ @

@z
nB; z þ @rB

@t
�rB ¼ 0 (25-6)
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and

=: nB þ @rB
@t

�rB ¼ 0 (25-7)

where rB is the rate at which B will be produced within the control volume by a chemical

reaction. Adding equations (25-5) and (25-7), we obtain

=: (nA þ nB)þ @(rA þ rB)

@t
�ðrA þ rBÞ ¼ 0 (25-8)

For a binary mixture of A and B, we have

nA þ nB ¼ rAvA þ rBvB ¼ rv

rA þ rB ¼ r

and
rA ¼ �rB

by the law of conservation of mass. Substituting these relations into (25-8), we obtain

=: rvþ @r

@t
¼ 0 (25-9)

This is the equation of continuity for the mixture. Equation (25-9) is identical to the

equation of continuity (9-2) for a homogeneous fluid.

The equation of continuity for the mixture and for a given species can be written in

terms of the substantial derivative. As shown in Chapter 9, the continuity equation for the

mixture can be rearranged and written

Dr

Dt
þr=: v ¼ 0 (9-5)

Through similar mathematical manipulations, the equation of continuity for species A in

terms of the substantial derivative may be derived. This equation is

rDvA

Dt
þ=: jA � rA ¼ 0 (25-10)

We could follow the same development in terms ofmolar units. IfRA represents the rate

ofmolar production ofA per unit volume, andRB represents the rate ofmolar production ofB

per unit volume, the molar-equivalent equations are

for component A

=:NA þ @cA
@t

� RA ¼ 0 (25-11)

for component B

=:NB þ @cB
@t

� RB ¼ 0 (25-12)

and for the mixture

=: ðNA þ NBÞ þ @ðcA þ cBÞ
@t

� ðRA þ RBÞ ¼ 0 (25-13)
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For the binary mixture of A and B, we have

NA þ NB ¼ cAvA þ cBvB ¼ cV

and

cA þ cB ¼ c

However, only when the stoichiometry of the reaction is

A fi B

which stipulates that onemolecule ofB is produced for eachmole ofA disappearing, can we

stipulate that RA ¼ �RB. In general, the equation of continuity for the mixture in molar

units is

=: cVþ @c

@t
� ðRA þ RBÞ ¼ 0 (25-14)

25.2 SPECIAL FORMS OF THE DIFFERENTIAL MASS-TRANSFER EQUATION

Special forms of the equation of continuity applicable to commonly encountered situations

follow. In order to use the equations for evaluating the concentration profiles, we replace the

fluxes, nA andNA, by the appropriate expressions developed in Chapter 24. These expres-

sions are

NA ¼ �cDAB=yA þ yA(NA þ NB) (24-21)

or its equivalent

NA ¼ �cDAB=yA þ cAV

and

nA ¼ �rDAB=vA þ vA(nA þ nB) (24-22)

or its equivalent

nA ¼ �rDAB=vA þ rAv

Substituting equation (24-22) into equation (25-5), we obtain

�=: rDAB=vA þ =: rAvþ
@rA
@t

�rA ¼ 0 (25-15)

and substituting equation (24-21) into equation (25-11), we obtain

�=: cDAB=yA þ =: cAVþ @cA
@t

�RA ¼ 0 (25-16)

Either equation (25-15) or (25-16) may be used to describe concentration profiles within

a diffusing system. Both equations are completely general; however, they are relatively

unwieldy. These equations can be simplified by making restrictive assumptions.

Important forms of the equation of continuity, with their qualifying assumptions, include:

(i) If the density, r, and the diffusion coefficient, DAB can be assumed constant,

equation (25-15) becomes

�DAB=
2rA þ rA=: v

0

þ v:=rA þ @rA
@t

�rA ¼ 0!
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Dividing each term by the molecular weight of A and rearranging, we obtain

v: =cA þ @cA
@t

¼ DAB=
2cA þ RA (25-17)

(ii) If there is no production term, RA ¼ 0, and if the density and diffusion coefficient

are assumed constant, equation (25-17) reduces to

@cA
@t

þv:=cA ¼ DAB=
2cA (25-18)

We recognize that ð@cA=@tÞ þ v:=cA is the substantial derivative of cA; rewriting the

left-hand side of equation (25-18), we obtain

DcA

Dt
¼ DAB=

2cA (25-19)

which is analogous to equation (16-14) from heat transfer

DT

Dt
¼ k

rcP
=2T (16-14)

or

DT

Dt
¼ a=2T

wherea is the thermal diffusivity. The similarity between these two equations is the basis for

the analogies drawn between heat and mass transfer.

(iii) In a situation in which there is no fluid motion, v ¼ 0, no production term, RA ¼ 0,

and no variation in the diffusivity or density, equation (25-18) reduces to

@cA
@t

¼ DAB=
2cA (25-20)

Equation (25-20) is commonly referred to as Fick’s second ‘‘law’’ of diffusion. The

assumption of no fluid motion restricts its applicability to diffusion in solids, or stationary

liquids, and for binary systems of gases or liquids, where NA is equal in magnitude, but

acting in the opposite direction to N; that is, the case of equimolar counterdiffusion.

Equation (25-20) is analogous to Fourier’s second ‘‘law’’ of heat conduction

@T

@t
¼ a=2T (16-18)

(iv) Equations (25-17), (25-18), and (25-20) may be simplified further when the

process to be defined is a steady-state process; that is, @cA=@t ¼ 0. For constant density

and a constant-diffusion coefficient, the equation becomes

v:=cA ¼ DAB=
2cA þ RA (25-21)

For constant density, constant diffusivity, and no chemical production, RA ¼ 0, we

obtain

v:=cA ¼ DABr2cA (25-22)

If additionally, v ¼ 0 the equation reduces to

=2cA ¼ 0 (25-23)

Equation (25-23) is the Laplace equation in terms of molar concentration.
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Each of the equations (25-15) through (25-23) has been written in vector form, thus

each applies to any orthogonal coordinate system. By writing the Laplacian operator,=2, in

the appropriate form, the transformation of the equation to the desired coordinate system is

accomplished. Fick’s second ‘‘law’’ of diffusion written in rectangular coordinates is

@cA
@t

¼ DAB
@2cA
@x2

þ @2cA
@y2

þ @2cA
@z2

� �
(25-24)

in cylindrical coordinates is

@cA
@t

¼ DAB
@2cA
@r2

þ 1

r

@cA
@r

þ 1

r2
@2cA

@u2
þ @2cA

@z2

� �
(25-25)

and in spherical coordinates is

@cA
@t

¼ DAB
1

r2
@

@r
r2

@cA
@r

� �
þ 1

r2 sin u

@

@u
sin u

@cA
@u

� �
þ 1

r2 sin2 u

@2cA

@f2

� �
(25-26)

The general differential equation for mass transfer of component A, or the equation of

continuity of A, written in rectangular coordinates is

@cA
@t

þ @NA;x

@x
þ @NA;y

@y
þ @NA;z

@z

� �
¼ RA (25-27)

in cylindrical coordinates is

@cA
@t

þ 1

r

@

@r
(rNA;r)þ 1

r

@NA;u

@u
þ @NA;z

@z

� �
¼ RA (25-28)

and in spherical coordinates is

@cA
@t

þ 1

r2
@

@r
(r2NA;r)þ 1

r sin u

u

@u
(NA;u sin u)þ 1

r sin u

@NA;f

@f

� �
¼ RA (25-29)

25.3 COMMONLY ENCOUNTERED BOUNDARY CONDITIONS

Amass-transfer process is fully described by the differential equations ofmass transfer only

if the initial boundary and initial conditions are specified. Typically, initial and boundary

conditions are used to specify limits of integration or to determine integration constants

associated with the mathematical solution of the differential equations for mass transfer.

The initial and boundary conditions used for mass transfer are very similar to those used in

Section 16.3 for energy transfer. The reader may wish to refer to that section for further

discussion of initial and boundary conditions.

The initial condition in mass transfer processes is the concentration of the diffusing

species at the start of the time interval of interest expressed in either mass or molar

concentration units. The concentration may be simply equal to a constant, for example

at t ¼ 0; cA ¼ cAo ðmolar unitsÞ
at t ¼ 0; rA ¼ rAo ðmass unitsÞ

or may be more complex if the initial concentration distribution within the control volume

for diffusion is specified. Initial conditions are associated only with unsteady-state or

pseudo-steady-state processes.

438 Chapter 25 Differential Equations of Mass Transfer



Four types of boundary conditions are commonly encountered in mass transfer.

(1) The concentration of the transferring species A at a boundary surface is specified.

Surface concentration can assume a variety of units, for example, molar concentration cAs,

mass concentration rAs, gas mole fraction yAs, liquid mole fraction xAs, etc. When the

boundary surface is defined by a pure component in one phase and a mixture in the second

phase, then the concentration of transferring species A in the mixture at the interface is

usually at thermodynamic saturation conditions. Specifically, for a gas mixture in contact

with a pure volatile liquid A or pure volatile solid A, the partial pressure of species A in the

gas at the surface is saturation vapor pressure, PA, so that pAs ¼ PA. For a liquid mixture in

contact with a pure solid A, the concentration of species A in the liquid at the surface is the

solubility limit of A in the liquid, cA so that cAs ¼ cA.
For a contacting gas and liquid where transferring species A is present in both phases,

there are two ways to specify the concentration at the gas–liquid interface. First, if both of

the species in the liquid phase are volatile, then the boundary condition at the gas–liquid

surface is defined for an ideal liquid mixture by Raoult’s law

pAs ¼ xAPA

where xA is the mole fraction in the liquid, PA is the vapor pressure of species A evaluated at

the temperature of the liquid, and PAs is the partial pressure of species A in the gas. The

partial pressure of species A at the interface is related to surface mole fraction yAs by

Dalton’s law

yAs ¼ pAs

P

or to surface concentration cAs by the Ideal Gas law

cAs ¼ pAs

RT

Second, for solutions where species A is only weakly soluble in the liquid, Henry’s law

may be used to relate the mole fraction of A in the liquid to the partial pressure of A in

the gas

pA ¼ H � xA
where coefficient H is known as Henry’s constant. Values of H in pressure units for

selected gaseous solutes dissolved in aqueous solution are listed in Table 25.1. A similar

equation may also be used to determine the boundary conditions at a gas–solid

interface

cA;solid ¼ S � pA

Table 25.1 Henry’s constant for various gases in aqueous solutions (H in bars)

T (K) NH3 Cl2 H2S SO2 CO2 CH4 O2 H2

273 21 265 260 165 710 22,800 25,500 58,000

280 23 365 335 210 960 27,800 30,500 61,500

290 26 480 450 315 1300 35,200 37,600 66,500

300 30 615 570 440 1730 42,800 45,700 71,600

310 755 700 600 2175 50,000 52,500 76,000

320 860 835 800 2650 56,300 56,800 78,600
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where cA; solid is the molar concentration of A within the solid at the interface in units of

kgmol/m3 and pA is the partial pressure of gas phase species A over the solid in units of Pa.

The partition coefficient S, also known as the solubility constant, has units of kgmol/m3:Pa.
Values of S for several gas–solid pairs reported by Barrer1 are listed in Table 25.2.

(2) A reacting surface boundary is specified. There are three common situations, all

dealing with heterogeneous surface reactions. First, the flux of one species may be related

to the flux of another species by chemical reaction stoichiometry. For example, consider the

generic chemical reaction at the boundary surface Aþ 2B! 3C, where reactants A and B

diffuse to the surface, and product C diffuses away from the surface. The fluxes for A and B

move in the opposite direction to the flux for C. Consequently, the flux NA is related to the

flux of the other species by NB ¼ þ2NA orNC ¼ �3NA. Second, a finite rate of chemical

reaction might exist at the surface, which in turn sets the flux at the surface. For example, if

component A is consumed by a first-order on a surface at z = 0, and the positive z direction

is opposite to the direction of flux of A along z, then

NA

���
z¼0

¼ �kccAs

where ks is a surface reaction rate constant with units of m/s. Third, the reaction may be so

rapid that cAs ¼ 0 if species A is the limiting reagent in the chemical reaction.

(3) The flux of the transferring species is zero at a boundary or at a centerline of

symmetry. This situation can arise at an impermeable boundary, or at the centerline of

symmetry of the control volume, where the net flux is equal to zero. In either case, for a

one-dimensional flux along z

NA

���
z¼0

¼ �DAB
@cA
@z

���
z¼0

¼ 0 or
@cA
@z

���
z¼0

¼ 0

where the impermeable boundary or the centerline of symmetry is located at z = 0.

(4) The convective mass transfer flux at the boundary surface is specified. When a

fluid flows over the boundary, the flux can be defined by convection. For example, at some

surface located at z = 0, the convective mass transfer flux across the fluid boundary layer is

NA

���
z¼0

¼ kcðcAs � cA1Þ

where cA1 is the bulk concentration ofA the flowing fluid, cAs is the surface concentration of

A at z = 0 and kc is the convection mass-transfer coefficient defined in Section 24.3.

Table 25.2 Solubility constants for selected gas–solid combinations (1 bar ¼ 105 Pa)

S ¼ cA;solid/PA

Gas Solid T (K) (kgmol/m3 bar)

O2 Natural rubber 298 3:12� 10�3

N2 Natural rubber 298 1:56� 10�3

CO2 Natural rubber 298 40:15� 10�3

He Silicon 293 0:45� 10�3

H2 Ni 358 9:01� 10�3

1 R. M. Barrer, Diffusion In and Through Solids, Macmillan Press, New York, 1941.
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25.4 STEPS FOR MODELING PROCESSES INVOLVING
MOLECULAR DIFFUSION

Processes involving molecular diffusion can be modeled by the appropriate simplifications

to Fick’s equation and the general differential equation for mass transfer. In general, most

molecular diffusion problems involve working through the following five steps:

Step 1: Draw a picture of the physical system. Label the important features, including

the system boundaries. Decide where the source and the sink of mass transfer are

located.

Step 2: Make a ‘‘list of assumptions’’ based on your consideration of the physical

system. As appropriate, make a ‘‘list of nomenclature’’ and update the list as you

add more terms to the model development.

Step 3: Pick the coordinate system that best describes the geometry of the physical

system: rectilinear (x, y, z), cylindrical (r, z, u), or spherical (r, u, f). Then
formulate differential material balances to describe the mass transfer within a

volume element of the process based on the geometry of the physical system and

the assumptions proposed, making use of Fick’s law and the general differential

equation for mass transfer. Two approaches may be used to simplify the general

differential equation for mass transfer. In the first approach, simply reduce or

eliminate the terms that do not apply to the physical system. For example:

(a) If the process is steady state, then
@cA
@t

¼ 0.

(b) If no chemical reaction occurs uniformly within the control volume for

diffusion, then RA ¼ 0.

(c) If the molecular mass transfer process of species A is one-dimensional in

the z direction,

= � NA ¼ @NAz

@z

by cylindrical geometry in the r and z directions,

= � NA ¼ @NAz

@z
þ 1

r

@(rNAr)

@r

for radial symmetry in spherical coordinates,

= � NA ¼ 1

r2
@(r2NAr)

@r

In the second approach, perform a ‘‘shell balance’’ for the component of interest

on a differential volume element of the process. Both of these approaches are

discussed and illustrated in Chapter 26. Next, Fick’s law is simplified by

establishing the relationship between the fluxes in the bulk-contribution

term. For example, recall the one-dimensional flux of a binary mixture of

components A and B

NAz ¼ �cDAB
dyA

dz
þ yA(NAz þ NBz)

IfNAz ¼ �NBz, then yA(NAz þ NBz) ¼ 0. If yA(NAz þ NBz) does not equal 0, then

NA is always equal to cAVz and reduces to cAvz for low concentrations of A in the
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mixture. If a differential equation for the concentration profile is desired, then the

simplified form of Fick’s law must be substituted into the simplified form of the

general differential equation for mass transfer. Figure 25.2 illustrates this

process.

Step 4: Recognize and specify the boundary conditions and initial conditions. For

example

(a) Known concentration of species A at a surface or interface at z ¼ 0 e.g.,

cA ¼ cAo. This concentration can be specified or known by equilibrium

relationships such as Henry’s law.

(b) Symmetry condition at a centerline of the control volume for diffusion,

or no net diffusive flux of species A at a surface or interface at z ¼ 0;

NAzjz¼0 ¼ 0 ¼ dcA=dz.

(c) Convective flux of species A at a surface or interface, e.g., NA ¼
kc(cAs � cA1).

(d) Known flux of species A at a surface or interface, e.g., at z ¼ 0,

NAzjz¼0 ¼ NAo.

(e) Known chemical reaction at a surface or interface. For the rapid disappearance

of species A at the surface or interface, e.g., at z ¼ 0; cAs ¼ 0. For a slower

chemical reaction at the surface or interface with finite cAs at z ¼ 0, e.g.,

NAz ¼ k0cAs, where k0 is a first-order chemical reaction rate constant.

Step 5: Solve the differential equations resulting from the differential material balances

and the boundary/initial conditions described to get the concentration profile,

the flux, or other parameters of engineering interest. If appropriate, consider

asymptotic solutions or limiting cases to more difficult problems first.

The following examples illustrate how physical and chemical processes involving

molecular diffusion can be modeled by the appropriate simplifications of Fick’s equation

and the general differential equation for mass transfer. The examples cover many of

Fick's equation

Boundary
conditions

Analytical
integration

Boundary
conditions

Analytical
integration

Differentiation

Fick's equation
differential from (NA)

Integral form
flux (NA) or

transfer rate (wA)

Integral form
flux (NA) or

transfer rate (wA)

AssumptionsAssumptions

More
assumptions

Simplified differential
equation for

mass transfer (NA)

Simplified differential
equation for

mass transfer (cA)

Concentration
profile (cA)

Differential
equation for

mass transfer

Figure 25.2 Model

development pathways for

processes involving

molecular diffusion.
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typically encountered boundary conditions in both rectilinear and cylindrical geometry. The

examples emphasize the first four steps of model development outlined, and the final model

equations are generally left in differential-equation form. Chapters 26 and 27 provide

analytical solution techniques for steady-state and unsteady-state diffusion processes.

We have taken extra time at the beginning of each example to describe the interesting

technology behind the process.

EXAMPLE 1 Microelectronic devices are fabricated by forming many layers of thin films onto a silicon wafer.

Each film has unique chemical and electrical properties. For example, a thin film of solid silicon

(Si) serves as a semiconductor. Silicon thin films are commonly formed by the chemical

vapor deposition, or CVD, of silane vapor (SiH4) onto the surface of the wafer. The chemical

reaction is

SiH4ðgÞ! SiðsÞ þ 2H2ðgÞ
This surface reaction is usually carried out at very low pressure (100 Pa) and high temperature

(900 K). In many CVD reactors, the gas phase over the Si film is not mixed. Furthermore, at high

temperatures, the surface reaction is very rapid. Consequently, the molecular diffusion of the

SiH4 vapor to the surface often controls the rate of Si film formation. Consider the very simplified

CVD reactor shown in Figure 25.3. A mixture of silane and hydrogen gas flows into the reactor. A

diffuser provides a quiescent gas space over the growing Si film. Develop a differential model for

this process, including statements of assumptions and boundary conditions.

Diffuser

Quiescent
gas

Heated plate

Si thin
film

To vacuumSiH4 vapor
+ H2 gas

H2SiH4

z = δ

z = 0

SiH4(g) Si(s) + 2 H2(g)

Figure 25.3 Chemical

vapor deposition of silicon

hydride.

The silane in the feed gas serves as the source for mass transfer, whereas the Si film serves as

the sink for silane mass transfer. In contrast, the formation of H2 at the Si film surface serves as the

source forH2mass transfer, whereas the feed gas serves as the sink for H2mass transfer. The physical

system possesses rectilinear geometry, and the major assumptions for model development are listed

here.

(1) The reaction occurs only at the surface of growing Si thin film. Consequently, there is no

homogeneous reaction of silane within the diffusion zone, so that RA ¼ 0. In this context, the

surface reaction is the sink for silane mass transfer. (2) The gas space in the ‘‘diffusion zone’’ is

not externally mixed, so that molecular diffusion dominates. (3) The feed gas provides silane in

high excess relative to that consumed by reaction, so the silane concentration in the gas space at

the diffusion-zone boundary is constant. (4) The flux of silane is one-dimensional along z, as

the source and sink for silane mass transfer are aligned at the boundaries along the z direction.

(5) The thickness of the Si film is very thin relative to d, the diffusion path length along the

z direction. Therefore, d is essentially constant. (6) The mass transfer process within the diffusion

zone is at steady state.

The assumptions are used to reduce the general forms of the differential equation for mass

transfer andFick’s equation. The general differential equation formass transfer in terms of rectilinear

coordinates is

� @NAx

@x
þ @NAy

@y
þ @NAz

@z

� �
þ RA ¼ @cA

@t
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For steady-state one-dimensional flux along the z direction with no homogeneous chemical reaction

ðRA ¼ 0Þ, the general differential equation for mass transfer reduces to

dNAz

dz
¼ 0

which shows that the flux is constant along the z direction. As the diffusion flux iswith respect to only

one dimension, the partial derivative becomes an ordinary derivative. Fick’s equation for the one-

dimensional flux silane through a binary mixture in the gas phase is

NAz ¼ �cDAB
dyAz

dz
þ yAðNAz þ NBzÞ

where species A represents silane vapor (SiH4) reactant and species B represents the hydro-

gen gas (H2) product. The flux of the gaseous reactant is opposite in direction to the flux of the

gaseous product. From the reaction stoichiometry and Figure 25.3, NAz is related to NBz as

follows:

NAz

NBz
¼ �1mol SiH4 reacted

þ2molH2 formed
¼ � 1

2

Therefore, NBz ¼ �2NAz and Fick’s equation further reduces to

NAz ¼ �cDAB
dyA

dz
þ yAðNAz � 2NAzÞ ¼ � cDAB

1þ yA

dyA

dz

It is interesting to note that increasing yA decreases the flux. Two boundary conditions must be

specified. At the surface of the Si film, the reaction is so rapid that the concentration of silane vapor is

zero. Furthermore, the concentration of silane in the feed gas is constant.

At the Si film surface, z ¼ d; yA ¼ yAs, and yBs ¼ 1 (yA þ yB ¼ 1 for binary mixture).

At the diffusion screen, z ¼ 0; yA ¼ yAo; and yB ¼ yBo ¼ 1� yAo.

The differential model is now specified. Although the analytical solution was not asked for in

the problem statement, it is easy to obtain. We first recognize that for this particular system, NAz is a

constant along z. If NAz is a constant, then Fick’s equation can be integrated by separation of

dependent variable yA from independent variable z, with integration limits defined by the boundary

conditions

NAz

Zd
0

dz ¼
ZyAs
yAo

�cDAB

1þ yA

dyA

dz

If the system temperature T and total system pressure P are constant, then the total molar

concentration of the gas, c ¼ P=RT , is also constant. Likewise, the binary gas phase diffusion

coefficient of silane vapor in hydrogen gas, DAB, is also constant. The final integrated equation is

NAz ¼ cDAB

d
ln

1 þ yAo

1 þ yAs

� �

If yAs is specified, then NAz can be determined. With the silane flux NAz known, parameters of

engineering interest, such as the Si film formation rate, can be easily determined. These questions are

considered in a problem exercise at the end of Chapter 26.

EXAMPLE 2 The formation of a tungsten thin film on unmasked surfaces of a silicon wafer is an important step in

the fabrication of solid-state microelectronic devices. The tungsten metal serves as conductor for

current flow between devices on thewafer. In one typical process, the tungsten thin film is formed by
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the chemical vapor deposition of tungsten hexafluoride (WF6) onto the surface of the wafer in the

presence of hydrogen (H2) gas and an inert helium carrier gas

3H2ðgÞ þWF6ðgÞ!WðsÞ þ 6HFðgÞ
as shown in Figure 25.4. What is the differential form of Fick’s law for the flux of WF6 gas onto the

surface?

The assumptions for analysis are similar to those made in example 1. The flux of WF6
(species A) is one dimensional in the z direction. As there are four components in the gas phase

mixture, Fick’s equation is

NAz ¼ �cDA�mixture
dyA

dz
þ yA(NAz þ NBz þ NCz þ NDz)

where DA�mixture is the diffusion coefficient of WF6 in the mixture of H2 gas (species B), HF gas

(species C), and inert He gas (species D). The flux of the gaseous reactants (WF6, H2) is opposite in

direction to the flux of the gaseous product (HF). The reaction stoichiometry at the surface of the

tungsten film relate the fluxes of all diffusing species to WF6

NAz

NBz
¼ �1molWF6 reacted

�3molH2 reacted
¼ 1

3
or NBz ¼ þ3NAz

NAz

NCz
¼ �1molWF6 reacted

þ6molHF formed
¼ � 1

6
or NCz ¼ �6NAz

The net flux of He,NDz, is zero because it has no sink for mass transfer. Accordingly, Fick’s equation

for WF6 reduces to

NAz ¼ �cDA�mixture
dyA

dz
þ yAðNAz þ 3NAz � 6NAz þ 0Þ

or

NAz ¼ �cDA�mixture

1þ 2yA

dyA

dz

The flux ofWF6 to the surface is hindered by the flux of theHF product gas from the surface since the

denominator term (1þ 2yA) is greater than one. The differential form of Fick’s equation cannot be

integrated analytically unless a mean value for the mixture-based diffusion coefficient is taken.

EXAMPLE 3 An emerging area of biotechnology called ‘‘tissue engineering’’ develops new processes to grow

organized living tissues of human or animal origin. A typical configuration is the engineered tissue

bundle. Engineered tissue bundles have several potential biomedical applications, including the

production of replacement body tissue (skin, bone marrow, etc.) for transplantation into the human

body, or in the future, may serve as artificial organs for direct implantation into the human body.

Silicon substrate

Tungsten
thin film

z = δ

z = 0
WF6(g) H2(g)

Tungsten thin film formation

HF(g)

Figure 25.4 Chemical vapor

deposition of tungsten

hexafluoride.

25.4 Steps for Modeling Processes Involving Molecular Diffusion 445



Living tissues require oxygen to stay alive. The mass transport of oxygen (O2) to the tissue is an

important design consideration. One potential system is schematically illustrated in Figure 25.5. Thin

tubes arranged on a triangular pitch pass longitudinally through the tissue bundle. The tubes serve as

a ‘‘scaffold’’ for supporting the living tissue matrix and supply oxygen and nutrients to the tissue at

the same time. Let us focus on a single O2 delivery tube with tissue surrounding it, as illustrated in

Figure 25.5. Pure oxygen (O2) gas flows through the tube. The tube wall is extremely permeable

to O2, and the O2 partial pressure through the porous tube wall can be taken as the O2 partial

pressure inside the tube. Oxygen is only sparingly soluble in the tissue, which is mostly water. The

concentration of dissolved O2 at r ¼ R1, is

cAs ¼ pA

H

where H is the Henry’s law constant for the dissolution of O2 in living tissue at the process

temperature, and pA is the partial pressure of O2 in the tube. The dissolved O2 diffuses through the

tissue and is metabolically consumed. The metabolic consumption of dissolved O2 is described by a

kinetic rate equation of the form

RA ¼ �RA;max cA

KA þ cA

Akey parameter in the design of the engineered tissue bundle is the spacing between the tubes. If the

tube spacing is too wide, the dissolved O2 concentration will go to near zero and starve the tissue.

Therefore, it is important to know the radial concentration profile, cAðrÞ of dissolved O2. Develop a

differential model to predict cAðrÞ.
The physical system possesses cylindrical geometry, and the following assumptions for model

development are listed here. (1) The source forO2mass transfer is the pureO2 gas inside the tube, and

the sink for mass transfer is the metabolic consumption of dissolved oxygen by the tissue. If the O2

partial pressure pA is maintained constant inside the tube along longitudinal coordinate z, then the

flux of oxygen through the tissue is one dimensional along the radial (r) direction. (2) Tissue remains

viable and maintains constant physical properties. (3) The O2 transfer process is at steady state. (4)

The tissue is stationary, and the dissolved O2 concentration is dilute. (5) At r ¼ R1, the tubematerial

Tissue

Cross section

Simplified cross section

Tissue bundle

Nutrient

100% O2 gas

Tube
(100% O2 gas)

r = R1, cA = cAs

NAr
r = R2, dcA/dr = 0

Tissue

Tube

Figure 25.5 Oxygen transport within an engineered tissue bundle.
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is thin and highly permeable to O2 so that the dissolved O2 concentration in the tissue is in

equilibrium with the O2 partial pressure in the tube. (6) At r ¼ R2, there is no net flux of O2.

The general differential equation for mass transfer in cylindrical coordinates is

� 1

r

@

@r
ðrNArÞ þ 1

r

@NAu

@u
þ @NAz

@z

� �
þ RA ¼ @cA

@t

For steady-state one-dimensional flux along the r direction, the general equation for mass transfer

reduces to

� 1

r

@

@r
ðrNArÞ þ RA ¼ 0

For a one-dimensional system, the partial derivatives can be replaced with ordinary derivatives.

Alternatively, we can perform amaterial balance for dissolvedO2 on the differential element of

volume 2pLrDr shown in Figure 25.5 and get the same result. Specifically, for steady-state one-

dimensional flux along the r directionwith a homogeneous reactionRAwithin the differential volume

element, we have

2pLr NAr

��
r¼r �2pLr NAr

��
r¼rþDr

þ RA: 2pLr:Dr ¼ 0

Diving through by 2pLDr, and rearranging, we get

� rNAr

��
r¼rþDr

� rNAr

��
r¼r

Dr

 !
þ RA r ¼ 0

Finally, taking the limits as Dr! 0 yields

� 1

r

d

dr
ðrNArÞ þ RA ¼ 0

For one-dimensional flux of dissolved O2 through the stagnant tissue in cylindrical coordinates

along the r direction, Fick’s equation reduces to

NAr ¼ �DAB
dcA

dr
þ cA

c
ðNArÞffi � DAB

dcA

dr

because O2 is only sparingly soluble in the tissue so that cA � c, where c is the total molar

concentration of the tissue, which approximates the molar concentration of water. In cylindrical

geometry, NAr is not constant along diffusion path r, because (a) cross-sectional area for flux is

increasing along r and (b) theRA term is present. As a result, the flux equation cannot be integrated, as

was the case in example 1. It is now necessary to combine Fick’s equation and the differential

equation for mass transfer in order to get the concentration profile

� 1

r

d

dr
�rDAB

dcA

dr

� �
þ RA ¼ 0

or

DAB
d2cA

dr2
þ 1

r

dcA

dr

� �
� RA;max cA

KA þ cA
¼ 0

The concentration profile cAðrÞ is now expressed as a second-order differential equation. Therefore,

two boundary conditions on cAðrÞ must be specified:

r ¼ R1;
dcA

dr
¼ 0 ðnet fluxNA ¼ 0 at r ¼ R1Þ

r ¼ R2; cA ¼ cAs ¼ pA

H

The analytical solution for cAðrÞ and its extension to predicting the overall rate of oxygen

consumption in the tissue bundle has been left as a problem exercise in Chapter 26.
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25.5 CLOSURE

The general differential equation for mass transfer was developed to describe the mass

balances associated with a diffusing component in a mixture. Special forms of the general

differential equation for mass transfer that apply to specific situations were presented.

Commonly encountered boundary conditions for molecular diffusion processes were also

listed. From this theoretical framework, a five-step method for mathematically modeling

processes involving molecular diffusion was proposed. Three examples illustrated how the

differential form of Fick’s equation presented in Chapter 24, and the general differential

equation for mass transfer presented in this chapter, are reduced to simple differential

equations that describe themolecular diffusion aspects of a specific process. The approaches

presented in this chapter serve as the basis for problem solving in Chapters 26 and 27.

PROBLEMS

25.1 Derive equation (25-11) for component A in terms of

molar units, starting with the control-volume expression for the

conservation of mass.

25.2 Show that the (25-11) may be written in the form

@rA
@t

þð= � rAvÞ � DABr2rA ¼ rA

25.3 The following sketch illustrates the gas diffusion in the

neighborhood of a catalytic surface. Hot gases of heavy hydro-

carbons diffuse to the catalytic surface where they are cracked

into lighter compounds by the reaction: H! 2L, the light

products diffuse back into the gas stream.

H L
z = 0

z = δ

a. Reduce the general differential equation for mass transfer to

write the specific differential equation that will describe this

steady-state transfer process if the catalyst is considered a

flat surface. List all of the assumptions you have made in

simplifying the general differential equation.

b. Determine the Fick’s law relationship in terms of only

compound H and insert it into the differential equation

you obtained in part (a).

25.4 A hemispherical droplet of liquid water, lying on a flat

surface, evaporates by molecular diffusion through still air

surrounding the droplet. The droplet initially has a radius R.

As the liquid water slowly evaporates, the droplet shrinks slowly

with time, but the flux of the water vapor is at a nominal steady

state. The temperature of the droplet and the surrounding still air

are kept constant. The air contains water vapor at an infinitely

long distance from the droplet’s surface.

a. After drawing a picture of the physical process, select a

coordinate system that will best describe this diffusion

process, list at least five reasonable assumptions for the

mass-transfer aspects of the water-evaporation process and

simplify the general differential equation for mass transfer

in terms of the flux NA.

b. What is the simplified differential form of Fick’s equation

for water vapor (species A)?

25.5 A large deep lake, which initially had a uniform oxygen

concentration of 1kg/m3, has its surface concentration suddenly

raised and maintained at 9 kg/m3 concentration level.

Reduce the general differential equation for mass transfer to

write the specific differential equation for

a. the transfer of oxygen into the lake without the presence of a

chemical reaction;

b. the transfer of oxygen into the lake that occurs with the

simultaneous disappearance of oxygen by a first-order

biological reaction.

25.6 The moisture in hot, humid, stagnant air surrounding a

cold-water pipeline continually diffuses to the cold surface

where it condenses. The condensed water forms a liquid film

around the pipe, and then continuously drops off the pipe to the

ground below.At a distance of 10 cm from the surface of the pipe,

the moisture content of the air is constant. Close to the pipe, the

moisture content approaches the vapor pressure of water eval-

uated at the temperature of the pipe.

a. Draw a picture of the physical system, select the coordinate

system that best describes the transfer process and state at

least five reasonable assumptions of the mass-transfer

aspects of the water condensation process.

b. What is the simplified form of the general differential

equation for mass transfer in terms of the flux of water

vapor, NA?

c. What is the simplified differential form of Fick’s equation

for water vapor, NA?

d. What is the simplified form of the general differential

equation for mass transfer in terms of the concentration

of water vapor, cA?
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25.7 A liquid flows over a thin, flat sheet of a slightly soluble

solid. Over the region in which diffusion is occurring, the liquid

velocity may be assumed to be parallel to the plate and to be

given by v ¼ ay, where y is the vertical distance from the plate

and a is a constant. Show that the equation governing the mass

transfer, with certain simplifying assumptions, is

DAB
@2cA
@x2

þ @2cA
@y2

� �
¼ ay

@cA
@x

List the simplifying assumptions, and propose reasonable

boundary conditions.

25.8 Consider one of the cylindrical channels that run through

an isomerization catalyst as shown below. A catalyst coats the

inner walls of each channel. This catalyst promotes the isomer-

ization of n-butane ðn� C4H10Þ species A to isobutene ði�
C4H10Þ species B.

n� C4H10ðgÞ! i� C4H10ðgÞ

The gas phase above the channels contains mixture of A and B

maintained at a constant composition of 60mol % n� C4H10

(A) and 40mol% i� C4H10 (B). Gas phase species A diffuses

down a straight channel of diameter d ¼ 0:1 cm and length

L ¼ 2:0 cm. The base of each channel is sealed. This is rapid

reaction so that the production rate of B is diffusion limited.

The quiescent gas space in the channel consists of only species A

and B.

a. State three relevant assumptions for the mass transfer

process.

b. Based on your assumptions, simplify the general differential

equation for the mass transfer of species A, leaving the

equation in terms of the flux NA.

c. Using equations for the flux of A in your determined

equation, express the general differential equation in terms

of the concentration cA.

d. Specify relevant boundary conditions for the gas phase

concentration cA.

25.9 An early mass-transfer study of oxygen transport in

human tissue won a Nobel prize for August Krough. By con-

sidering a tissue cylinder surrounding each blood vessel, he

proposed the diffusion of oxygen away from the bloodvessel into

the annular tissuewas accompanied by a zero-order reaction, that

is,RA ¼ �m, wherem is a constant. This reaction was necessary

to explain the metabolic consumption of the oxygen to produce

carbon dioxide.

Use thegeneraldifferential equation formass transferofoxygen

to write the specific differential equation that will describe the

diffusionofoxygen in thehuman tissue.Whatwouldbe theformof

Flicks relationship written in terms of only the diffusing oxygen?

25.10 A fluidized coal reactor has been proposed for a new

power plant. If the coal can be assumed to be spherical, reduce

the general differential equation for mass transfer to obtain a

specific differential equation for describing the steady-state

diffusion of oxygen to the surface of the coal particle.

Determine the Fick’s law relationship for the flux of oxygen

from the surrounding air environment if

a. only carbon monoxide, CO, is produced at the surface of the

carbon particle;

b. only carbon dioxide, CO2, is produced at the surface of the

carbon particle.

If the reaction at the surface of the carbon particle is instan-

tenous, give two boundary conditions that might be used in

solving the differential equation.

25.11 In the manufacture of semiconducting thin films, a thin

film of solid arsenic laid down on the surface of a siliconwater by

the diffusion-limited chemical vapor deposition of arsine, AsH3.

2AsH3ðgÞ! 2AsðsÞ þ 3H2ðgÞ
The gas head space, 5 cm above the surface of the wafer, is

stagnant. Arsenic atoms deposited on the surface then diffuse

into the solid silicon to ‘‘dope’’ the wafer and impart semicon-

ducting properties to the silicon, as shown in the figure below.-

Well mixed feed gas (constant composition).

AsH3 (g)

NA

H2 (g)

Well-mixed feed gas (constant composition).

Diffuser screen

As, thin film

Si wafer

The process temperature is 1050�C. The diffusion coefficient of
aresenic in silicon is 5� 10�13 cm/s at this temperature and the

maximum solubility of aresenic in silicon is 2� 1021

atoms/cm3. The density of solid silicon is 5� 1022 atoms=
cm3. As the diffusion coefficient is so small, the aresenic atoms

do not ‘‘penetrate’’ very far into the silicon solid, usually less

than a fewmicrons. Consequently, a relatively thin silicon water

can be considered as a ‘‘semi-infinite’’ medium for diffusion.

a. State at least five reasonable assumptions for the mass

transfer of aresenic in this doping process.

b. What is the simplified form of the general differential

equation for the mass transfer of the aresenic concentration
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within the silicon? Purpose reasonable boundary and initial

conditions.

25.12 A device has been proposed that will serve as a ‘‘blood

oxygenator’’ for a heart–lung bypass machine. In this process,

blood (which is mostlywater, species B) containing no dissolved

oxygen (O2 species A) enters the top of the chamber and then

falls vertically down as a liquid filmof uniform thickness, along a

surface designed to appropriately wet blood. Contacting the

liquid surface is a 100% O2 gas phase.

Inlet blood containing
no dissolved oxygen, 40°C

Inert
solid surface

exiting oxygenated
blood, 40 °C

x = 0x = d

Falling
liquid
film

z = 0

z = L

100% O2 gas

Vm

Oxygen is soluble in blood, with the equilibrium solubility

described by Henry’s law, cA ¼ pA=H, where pA is the partial

pressure of oxygen (atm),H is theHenry’s lawconstant, and cA is

the solubility concentration limit of oxygen dissolved in blood

(mmol/L) at pA.

In analyzing the mass transport of dissolved oxygen into the

falling film, you may assume the following: (1) the process is

dilutewith respect to dissolved oxygen in the fluid; (2) the falling

liquid film has a flat velocity profile with velocity vmax; (3) the

gas space always contains 100% oxygen; (5) the width of the

liquid film,W, is much larger than the length of the liquid film, L.

a. Simplify the general differential equation for O2 transfer. If

your analysis suggests more than one dimension for flux,

provide a simplified flux equation for each coordinate of

interest.

b. Provide one simplified differential equation in terms of the

fluxes and another simplified differential equation in terms

of the oxygen concentration cA.

c. List boundary conditions associated with the oxygen mass

transfer process.

25.13 One way to deliver a timed dosage within the human

body is to ingest a capsule and allow it to settle in the gastro-

intestinal system. Once inside the body, the capsule slowly

releases the drug to the body by a diffusion-limited process.

A suitable drug carrier is a spherical bead of a nontoxic gela-

tinous material that can pass through the gastrointestinal system

without disintegrating. A water-soluble drug (solute A) is uni-

formly dissolved within the gel, has an initial concentration,

cAo of 50mg/cm3. The drug loaded within the spherical gel

capsule is the sink for mass transfer. Consider a limiting case

where the drug is immediately consumed or swept away once it

reaches the surface, i.e., @ R, cA ¼ 0.

a. In analyzing the process, choose a coordinate system and

simplify the general differential equation for the mass

transfer of the drug in terms of the flux.

b. What reasonable assumptions were used in your simplifying

of the general differential equation.

c. Simplify Fick’s equation for the drug species and obtain a

differential equation in terms of concentration, cA.

25.14 Consider a single, porous, spherical, inert mineral par-

ticle. The pores inside the particle are filled with liquid water

(species B). We are interested in analyzing the molecular diffu-

sion of the contaminant benzene C6H6 species A within the

water-filled pores of the particle. The average diameter of

the pores is 150 nm and the void fraction (porosity) is 0.40.

The benzene solute does not adsorb onto the inter surfaces of the

pores. Benzene is very sparingly soluble in water, and has a

molecular diameter of 0.15 nm. The process is isothermal at 298

K. The concentration of dissolved benzene in the water sur-

rounding the particle, cAo, is constant with time. The critical

volume (Vc) of benzene is 259 cm3=gmol. The effective diffu-

sion coefficient of benzene inside the porous particle was to be

calculated in Problem 24.25.

Starting with the general differential equation for mass trans-

fer of benzene, develop a differential model to describe the

concentration profile of benzene, species A within the single,

porous, spherical, inert mineral particle. State reasonable

assumptions and boundary/initial conditions for the process.

25.15 A large tank truck overturns and spills a herbicide over a

field. Thefluid remains on the soil 30min before evaporating into

the atmosphere. Simplify the general differential equation for the

mass transfer of the herbicide to write the following:

a. the steady-state differential equation that will describe the

evaporation of the herbicide into the air;

b. the differential equation that will describe the diffusion of

the herbicide into the soil.

25.16 Consider the drug treatment system shown below.

A hemisphere cluster of unhealthy cells is surrounded by a

larger hemisphere of stagnant dead dead tissue (species B),

which is in turn surrounded by a flowing fluid. The bulk, well-

mixed fluid contains a drug compound (species A) of constant

but dilute concentration cAo. Drug A is also soluble in the

unhealthy tissue but does not preferentially partition into it

relative to the fluid. The drug (species A) enters the dead tissue

and homes in on the unhealthy cells. At the unhealthy cell

boundary ðr ¼ R1Þ the flux of A to the unhealthy cells is

diffusion limited. All metabolites of drug A produced by
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the unhealthy cells stay within the unhealthy cells. However,

drug A can also degrade to inert metabolite D by the first-order

reaction on cA, i.e., A!D, that occurs only within the stagnant

dead tissue.

Simplify the general differential equation in terms for mass

transfer for drug A. Specify the final differential equation in

terms of NA and again in terms of cA. State all assumptions as

necessary.

clump of
unhealthy

cells

Inert surface

Dead
tissue (B)

Well-mixed flowing bulk fluid (CAO)

R1

A

A

A

D

D

R2
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Chapter 26

Steady-State Molecular Diffusion

In this chapter, we will direct our attention to describing the steady-state transfer of

mass from a differential point of view. To accomplish this task, the differential equation

and the boundary conditions that describe the physical situation must be established.

The approach will parallel those previously used in Chapter 8 for the analysis of a

differential fluid element in laminar flow and in Chapter 17 for the analysis of a

differential volume element of a quiescent material for steady-state heat conduction.

During our discussion of steady-state diffusion, two approaches will be used to

simplify the differential equations of mass transfer as recommended in Section 24.4.

First, Fick’s equation and the general differential equation for mass transfer can be

simplified by eliminating the terms that do not apply to the physical situation. Second,

a material balance can be performed on a differential volume element of the control

volume for mass transfer. In using both approaches, the student will become more

familiar with the various terms in the general differential equation for mass transfer

=:NA þ @cA
@t

� RA ¼ 0 (25-11)

To gain confidence in treating mass-transfer processes, we will initially treat the sim-

plest case, steady-state diffusion in only one direction, which is free of any chemical

production occurring uniformly throughout the process (i.e., RA ¼ 0). We will then

obtain solutions for increasingly more complex mass-transfer operations.

26.1 ONE-DIMENSIONAL MASS TRANSFER
INDEPENDENT OF CHEMICAL REACTION

In this section, steady-state molecular mass transfer through simple systems in which the

concentration and the mass flux are functions of a single space coordinate will be consi-

dered. Although all four fluxes, NA, nA, JA, and jA, may be used to describe mass-transfer

operations, only the molar flux relative to a set of axes fixed in space,NA, will be used in the

following discussions. In a binary system, the z component of this flux is expressed by

equation (24-20)

NA;z ¼ �cDAB
dyA

dz
þ yA(NA;z þ NB;z) (24-20)

Unimolecular Diffusion

The diffusion coefficient ormass diffusivity for a gasmay be experimentallymeasured in an

Arnold diffusion cell. This cell is illustrated schematically in Figure 26.1. The narrow tube,
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which is partially filled with pure liquid A, is maintained at a constant tem-

perature and pressure. Gas B, which flows across the open end of the tube, has a

negligible solubility in liquid A and is also chemically inert to A. Component A

vaporizes and diffuses into the gas phase; the rate of vaporization may be

physically measured and may also be mathematically expressed in terms of the

molar mass flux.

Recall that the general differential equation for mass transfer is given by

=:NA þ @cA
@t

� RA ¼ 0 (25-11)

In rectilinear coordinates, this equation is

@NAx

@x
þ @NAy

@y
þ @NAz

@z
þ @cA

@t
� RA ¼ 0 (25-27)

Assume that (1) the mass-transfer process is at steady state with @cA/@t ¼ 0; (2) there is no

chemical production of A in the diffusion path so that RA ¼ 0; and (3) the diffusion is only

in the z direction, so that we are only concerned with the z component of the mass flux

vector, NA. For this physical situation, equation (25-11) reduces to

dNAz

dz
¼ 0 (26-1)

We can also generate this governing differential equation by considering the mass transfer

occurring in the differential control volume of S Dz, where S is the uniform cross-sectional

area of the control volume and Dz is the depth of the control volume. A mass balance over

this control volume for a steady-state operation, free of any chemical production of A, yields

SNAzjzþDz � SNAzjz ¼ 0

Dividing through by the control volume, S Dz, and taking limit as Dz approaches zero, we
once again obtain equation (26-1).

A similar differential equation could also be generated for component B

d

dz
NB;z ¼ 0 (26-2)

and, accordingly, the molar flux of B is also constant over the entire diffusion path from z1
to z2. Considering only the plane at z1 and the restriction that gas B is insoluble in liquid

A, we realize that NBz at plane z1 is zero and conclude that NBz, the net flux of B, is zero

throughout the diffusion path; accordingly, component B is a stagnant gas.

The constant molar flux of A was described in Chapter 24 by the equation

NA;z ¼ �cDAB
dyA

dz
þ yA(NA;z þ NB;z) (24-20)

this equation reduces, when NB;z ¼ 0, to

NA;z ¼ � cDAB

1� yA

dyA

dz
(26-3)

This equation may be integrated between the two boundary conditions:

at z ¼ z1 yA ¼ yA1

and

at z ¼ z2 yA ¼ yA2

∆z

z = z1

z = z2

NAz|z+∆z

NAz|z

Pure liquid A

Flow of gas B

Figure 26.1 Arnold diffusion cell.
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Assuming the diffusion coefficient to be independent of concentration, and realizing from

equation (26-1) that NA;z is constant along the diffusion path, we obtain, by integrating,

NA;z

Z z2

z1

dz ¼ cDAB

Z yA2

yA1

� dyA

1� yA
(26-4)

Solving for NA;z, we obtain

NA;z ¼ cDAB

(z2 � z1)
ln
(1� yA2

)

(1� yA1
)

(26-5)

The log-mean average concentration of component B is defined as

yB;lm ¼ yB2
� yB1

ln(yB2
/yB1

)

or, in the case of a binary mixture, this equation may be expressed in terms of component

A as follows:

yB;lm ¼ (1� yA2
)� (1� yA1

)

ln½(1� yA2
)/(1� yA1

)� ¼
yA1

� yA2

ln½(1� yA2
)/(1� yA1

)� (26-6)

Inserting equation (26-6) into equation (26-5), we obtain

NA;z ¼ cDAB

z2 � z1

(yA1
� yA2

)

yB;lm
(26-7)

Equation (26-7) may also be written in terms of pressures. For an ideal gas

c ¼ n

V
¼ P

RT

and

yA ¼ pA

P

The equation equivalent to equation (26-7) is

NA;z ¼ DABP

RT(z2 � z1)

( pA1
� pA2

)

pB;lm
(26-8)

Equations (26-7) and (26-8) are commonly referred to as equations for steady-state

diffusion of one gas through a second stagnant gas. Many mass-transfer operations

involve the diffusion of one gas component through another nondiffusing component;

absorption and humidification are typical operations defined by these two equations.

Equation (26-8) has also been used to describe the convectivemass-transfer coefficients

by the ‘‘film concept’’ or film theory. In Figure 26.2, the flow of gas over a liquid surface is

z = d
z = 0 NAz

Liquid A

  Slowly moving
gas film

Main gas stream
Flow of

gas B
Liquid A

Figure 26.2 Film model for mass transfer of component A into a moving gas stream.
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illustrated. The ‘‘film concept’’ is based upon a model in which the entire resistance to

diffusion from the liquid surface to the main gas stream is assumed to occur in a stagnant or

laminar film of constant thickness d. In other words, for this model, d is a fictitious length

which represents the thickness of a fluid layer offering the same resistance to molecular

diffusion as is encountered in the combined process ofmolecular diffusion and diffusion due

to the mixing by the moving fluid. If this model is accurate, the convective mass-transfer

coefficient may be expressed in terms of the gas diffusion coefficient. If z2 � z1 is set equal

to d, equation (26-8) becomes

NA,z ¼ DABP

RTpB,lmd
( pA1

� pA2
)

and from equation (25-30), we have

NA;z ¼ kc(cA1
� cA2

)

and

NA;z ¼ kc

RT
( pA1

� pA2
)

Comparison reveals that the film coefficient is expressed as

kc ¼ DABP

pB;lmd
(26-9)

when the diffusing component is transported through a nondiffusing gas. Although this

model is physically unrealistic, the ‘‘film concept’’ has had educational value in supply-

ing a simple picture of a complicated process. The film concept has proved frequently

misleading in suggesting that the convective mass-transfer coefficient is always directly

proportional to the mass diffusivity. Other models for the convective coefficient will be

discussed in this chapter and in Chapter 28. At that time we will find that kc is a function

of the diffusion coefficient raised to an exponent varying from 0.5 to 1.0.

Frequently, in order to complete the description of the physical operation in which

mass is being transported, it is necessary to express the concentration profile. Recalling

equation (26-1)

d

dz
NA,z ¼ 0 (26-1)

and equation (26-3)

NA,z ¼ � cDAB

1� yA

dyA

dz
(26-3)

we can obtain the differential equation that describes the variation in concentration along

the diffusing path. This equation is

d

dz
� cDAB

1� yA

dyA

dz

� �
¼ 0 (26-10)

As c and DAB are constant under isothermal and isobaric conditions, the equation

reduces to

d

dz

1

1� yA

dyA

dz

� �
¼ 0 (26-11)
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This second-order equation may be integrated twice with respect to z to yield

�ln(1� yA) ¼ c1zþ c2 (26-12)

The two constants of integration are evaluated, using the boundary conditions

at z ¼ z1 yA ¼ yA1

and

at z ¼ z2 yA ¼ yA2

Substituting the resulting constants into equation (26-12), we obtain the following expres-

sion for the concentration profile of component A:

1� yA

1� yA1

� �
¼ 1� yA2

1� yA1

� �(z�z1)/(z2�z1)
(26-13)

or, as yA þ yB ¼ 1

yB

yB1

� �
¼ yB2

yB1

� �(z�z1)/(z2�z1)
(26-14)

Equations (26-13) and (26-14) describe logarithmic concentration profiles for both

species. The average concentration of one of the species along the diffusion path may be

evaluated, as an example for species B, by

yB ¼

Z z2

z1

yB dzZ z2

z1

dz

(26-15)

Upon substitution of equation (26-14) into equation (26-15), we obtain

yB ¼ yB1

Z z2

z1

yB2

yB1

� �(z�z1)/(z2�z1)
dz

z2 � z1

¼ (yB2
� yB1

)(z2 � z1)

ln(yB2
/yB1

)(z2 � z1)
¼ yB2

� yB1

ln(yB2
/yB1

)

¼ yB,lm ð26-6Þ
The following example problem illustrates the application of the foregoing analysis to a

mass-transfer situation.

EXAMPLE 1 Vapor degreasers like the one shown in Figure 26.3 are widely used for cleaning metal parts. Liquid

solvent rests at the bottom of the degreaser tank. A heating coil immersed in the solvent vaporizes a

small portion of the solvent andmaintains a constant temperature, so that the solvent exerts a constant

vapor pressure. The cold parts to be cleaned are suspended in the solvent vapor zone where the

concentration of solvent vapors is highest. The solvent condenses on the part, dissolves the grease,

and then drips back down into the tank, thereby cleaning the part. Vapor degreasers are often left open

to the atmosphere for ease of dipping and removing parts and because covering themmight release an

explosivemixture.When the degreaser is not in use,molecular diffusion of the solvent vapor through

the stagnant air inside the headspace can result in significant solvent emissions, because the

surrounding atmosphere serves as an infinite sink for the mass-transfer process. As the amount
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of solvent in the degreaser tank is large relative to the amount of vapor

emitted, a steady-state diffusion process with a constant diffusion path

length takes place.

At present, a cylindrical degreaser tank with a diameter of 2 m

and total height of 5 m is in operation, and the solvent level height is

kept constant at 0.2 m. The temperatures of the solvent and headspace

of the degreaser are both constant at 358C. The solvent used for vapor
degreasing is trichloroethylene (TCE). Current regulations require that

the degreaser cannot emit more than 1.0 kg TCE per day. Does the

estimated emission rate of the degreaser exceed this limit? TCE has a

molecular weight of 131.4 g/mol and a vapor pressure of 115.5 mmHg

at 358C. The binary-diffusion coefficient TCE in air is 0.088 cm2/s at

358C, as determined by the Fuller–Schettler–Giddings correlation.

The source of TCE mass transfer is the liquid solvent at the

bottom of the tank, and the sink for mass transfer is the surrounding

atmosphere outside the tank. The steady-state molecular diffusion flux

of TCE vapor through the stagnant gas headspace of the degreaser in

the z direction is described by

NAz ¼ cDAB

z2 � z1
ln

1� yA2

1� yA1

� �
with species A representing TCE vapor and species B representing air. The total molar concentration

of the gas, c, is determined from the ideal gas law.

c ¼ P

RT
¼ 1:0 atm

0:08206m3 atm

kgmol :K (273þ 35)K

¼ 0:0396
kgmol

m3

Themole fraction of TCE vapor at the solvent surface (yA1 ) is determined from the vapor pressure of

the solvent at 358C.

yA1
¼ PA

P
¼ 115:1mmHg

1:0 atm

1:0 atm

760mmHg
¼ 0:152

The mole fraction of TCE vapor at the exit of the degreaser tank is taken as zero (yA2 ¼ 0), as

the surrounding atmosphere serves as an infinite sink for mass transfer. The path length for diffu-

sion is simply the difference between the solvent level height and the top of the degreaser tank

z2 � z1 ¼ 5:0m� 0:2m ¼ 4:8m

From these input values, the flux of TCE vapor from the degreaser is

NAz ¼
0:0396

kgmol

m3

� �
0:088

cm2

s

1m2

ð100 cmÞ2
 !
4:8m

ln
1� 0

1� 0:152

� �

¼ 1:197� 10�8 kgmol TCE

m2: s
The TCE emissions rate (WA) is the product of the flux and the cross-sectional area of the degreaser

tank of diameter D

WA ¼ NAz
pD2

4
¼ 1:197� 10�8 kgmol TCE

m2: s
p(2:0m)2

4

131:4 kgTCE

kgmol TCE

� �
3600 s

1 h

24 h

day

� �
¼ 0:423

kgTCE

day

Atmosphere
z = z2 = 5 m
yA2 = 0

z = z1 = 0.2 m

yA1 = PA
* /P = 0.152

Still
air

TCE
vapors

Heater

Vapor zone

Vapor degreaser tank
2 m diameter

Metal
part

Still air

TCE liq. 35°C

TCE vapors

Figure 26.3 TCE emissions from a vapor degreaser.
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The estimated TCE vapor emission rate is below the current regulatory limit of 1.0 kg TCE per day.

In a real degreaser, it may be difficult to ensure a completely still gas space, as local air currents

induced from a variety of sources may occur. The air currents would increase the mass-transfer flux

by convection. Consequently, this analysis considers only the limiting case for the minimum vapor

emissions from a diffusion-limited process.

Pseudo-Steady-State Diffusion

In many mass-transfer operations, one of the

boundaries may move with time. If the length

of the diffusion path changes a small amount

over a long period of time, a pseudo-steady-

state diffusion model may be used. When this

condition exists, equation (26-7) describes

themass flux in the stagnant gas film. Reconsider

Figure 26.1, with a moving liquid surface as

illustrated in Figure 26.4. Two surface levels

are shown, one at time t0 and the other at time

t1. If the difference in the level of liquid A over

the time interval considered is only a small

fraction of the total diffusion path, and t1 � t0
is a relatively long period of time, at any instant

in that period the molar flux in the gas phase may

be evaluated by

NA,z ¼ cDAB(yA1
� yA2

)

zyB,lm
(26-7)

where z is the length of the diffusion path at time t.

The molar flux NA,Z is related to the amount of A leaving the liquid by

NA,z ¼
rA,L

MA

dz

dt
(26-16)

where rA,L/MA is the molar density of A in the liquid phase. Under pseudo-steady-state

conditions, equations (26-7) and (26-16) may be combined to give

rA,L

MA

dz

dt
¼ cDAB(yA1

� yA2
)

zyB,lm
(26-17)

Equation (26-17) may be integrated from t ¼ 0 to t ¼ t from z ¼ zto to z ¼ zt as follows:Z t

t¼0

dt ¼ rA,LyB,lm/MA

cDAB(yA1
� yA2

)

Z zt

zt0

z dz

This yields

t ¼ rA,LyB,lm/MA

cDA,B(yA1
� yA2

)

z2t � z2t0
2

 !
(26-18)

∆z

z = z1 at t0
z = z1 at t1

z = z2

NAz|z + ∆z

NAz|z

Pure liquid A

Flow of gas B

Figure 26.4 Arnold diffusion cell with

moving liquid surface.
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Therefore, for the pseudo-steady-state diffusion process, a plot of z2t � z2t0 vs. time t should

be linear. Rearranging this expression, we obtain the equation commonly used to evaluate

the gas-diffusion coefficient from Arnold cell experimental data. This equation is

DAB ¼ rA,LyB,lm/MA

c(yA1
� yA2

)t

z2t � z2t0
2

 !
(26-19)

As illustrated by the Arnold diffusion cell above, pseudo-steady-state diffusion

processes usually involve the slow depletion of the source or sink for the mass-transfer

process with time. Below, we consider another process that is modeled by pseudo-steady-

state diffusion, the thermal oxidation of a silicon wafer.

EXAMPLE 2 The formation of a silicon oxide (SiO2) thin film on a silicon (Si) wafer surface is an important step

in the fabrication of solid-state microelectronic devices. A thin film of SiO2 serves as a barrier to

dopant diffusion or as a dielectric insulator to isolate various devices being formed on the wafer.

In one common process, silicon is oxidized by exposure to oxygen (O2) gas at temperatures

above 7008C

Si(s)þ O2(g)!SiO2(s)

Molecular O2 dissolves into the SiO2 solid, diffuses through the SiO2 film, and then reacts with Si

at the Si/SiO2 interface, as shown in Figure 26.5. Assuming that the diffusion of O2 through the

SiO2 film limits the oxidation process, develop a model to predict the thickness of the SiO2 layer (d)

as a function of time at 10008C. The density of solid SiO2 (rB) is 2.27 g/cm3, and the molecular

weight of SiO2 (MB) is 60 g/mol. The molecular diffusion coefficient of O2 in SiO2 (DAB) is 2:7�
10�9 cm2/s at 10008C, and the maximum solubility of O2 in SiO2 (cAs) is 9:6� 10�8 molO2/cm

3

solid at 10008C and 1 atm O2 partial pressure, using data provided by Norton.1

The physical system is represented in the rectilinear coordinate system. The model develop-

ment follows the approach outlined earlier in Section 25.4. The assumptions for model development

are listed here. (1) The oxidation of Si to SiO2 occurs only at the Si/SiO2 interface. The unreacted Si at

the interface serves as the sink for molecular mass transfer of O2 through the film. (2) The O2 in the

gas phase above thewafer represents an infinite source for O2 transfer. The O2molecules ‘‘dissolve’’

into the nonporous SiO2 solid at the gas/solid interface. (3) The rate of SiO2 formation is controlled

by the rate of molecular diffusion of O2 (species A) through the solid SiO2 layer (species B)

to the unreacted Si layer. The reaction is very rapid, so that the concentration of molecular

O2 at the interface is zero, that is, cA,d ¼ 0. Furthermore, there are no mass-transfer resistances

O2(g)

O2 SiO2 (nonporous)

Si (crystalline)

cA = cAs

cAd = 0

z = 0

z = δ

z = L
SiO2(s)Si(s) + O2

Figure 26.5 Thermal oxidation

of a silicon wafer.

1 F. J. Norton, Nature, 191, 701 (1961).
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in the gas film above thewafer surface, as O2 is a pure component in the gas phase. (4) The flux of O2

through the SiO2 layer is one dimensional along coordinate z. (5) The rate of SiO2 film formation is

slow enough so that at a given film thickness d, there is no accumulation of reactants or products

within the SiO2 film. However, the thickness of the film will still increase with time. Consequently,

this is a ‘‘pseudo-steady-state’’ process. (6) The overall thickness of thewafer does not change as the

result of the formation of the SiO2 layer. (7) The process is isothermal.

Based on the previous assumptions, the general differential equation for mass transfer

reduces to

dNAz

dz
¼ 0

and Fick’s equation for one-dimensional diffusion of O2 (species A) through crystalline solid SiO2

(species B) is

NAz ¼ �DAB
dcA

dz
þ cA

c
(NAz þ NBz) ¼ �DAB

dcA

dz
þ cA

c
NAz

Usually, the concentration ofmolecular O2 in the SiO2 layer is dilute enough so that cA/c term is very

small in magnitude relative to the other terms. Therefore, Fick’s equation reduces to

NAz ¼ �DAB
dcA

dz

It is interesting to note here that unimolecular diffusion (UMD) flux mathematically simplifies to

the equimolar counter diffusion (EMCD) flux at dilute concentration of the diffusing species. As

NA is constant along z, the differential flux equation can be integrated directly following separation of

dependent variable cA from independent variable z

Zd
0

NAz dz ¼ �DAB

Z0
cAs

dcA

or simply

NAz ¼ DABcAs

d

which describes the flux of O2 through the SiO2 layer of thickness d. The surface concentration cAs
refers to the concentration of O2 dissolved in solid phase SiO2 (mol O2/cm

3 solid).

We know that d increases slowly with time, even though there is no accumulation term for O2

in the SiO2 layer. In other words, the process operates under the pseudo-steady-state assumption.

In order to discover how d increases with time, consider an unsteady-state material balance for SiO2

within the wafer

(molar rate of SiO2 formation) ¼ (molar rate of accumulation of SiO2)

or

(molar rate of accumulation of SiO2) ¼
d

rBSd

MB

� �
dt

where rB is the density of solid SiO2 (2.27 g/cm3), MB is the molecular weight of the SiO2 layer

(60 g/mol), and S is the surface area of thewafer. Given the stoichiometry of the reaction, onemole of

SiO2 is formed for every mole of O2 consumed. Therefore,

ðrate of SiO2 formationÞ ¼ NAzS ¼ DABcAs

d
S
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or

rB
MB

dd

dt
¼ DABcAs

d

Separation of dependent variable d from the independent variable t, followed by integration at t ¼ 0,

d ¼ 0 to t ¼ t, d ¼ d gives

Zd
0

d dd ¼ MBDABcAs

rB

Zt
0

dt

or

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBDABcAs

rB
t

s

The above equation predicts that the thickness of the SiO2 thin film is proportional to the square root

of time. Recall that the molecular diffusion coefficient of O2 in SiO2 (DAB) is 2:7� 10�9 cm2/s at

10008C, and the solubility of O2 in SiO2 (cAs) is 9:6� 10�8 molO2/cm
3 solid at 10008C. Figure 26.6

compares the predicted film thickness d vs. time to process data provided by Hess2 for 1 atm O2

at 10008C. As one can see, the model adequately predicts the data trend. The film is very thin, less

than 0.5 mm, in part because the value for DABcAs is so small.

This example illustrates how a chemical reaction at a boundary surface can serve as the driving

force for molecular diffusion. This concept is formally presented in Section 26.2.
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Figure 26.6 SiO2 film

thickness vs. time at

10008C.

2 D. W. Hess, Chem. Eng. Educ., 24, 34 (1990).
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Equimolar Counterdiffusion

A physical situation that is encountered in the distillation of two constituents whose molar

latent heats of vaporization are essentially equal stipulates that the flux of one gaseous

component is equal to but acting in the opposite direction from the other gaseous compo-

nent; that is, NA;z ¼ �NB;z. Equation (25-11)

=:NA þ @cA
@t

�RA ¼ 0 (25-11)

for the case of steady-state mass transfer without chemical reaction may be reduced to

=:NA ¼ 0

For the transfer in the z direction, this equation reduces to

d

dz
NA,z ¼ 0

This relation stipulates that NA,z is constant along the path of transfer. The molar flux,NA, z,

for a binary system at constant temperature and pressure is described by

NA,z ¼ �DAB
dcA

dz
þ yA(NA,z þ NB,z) (24-20)

The substitution of the restriction, NA,z ¼ �NB,z, into the above equation gives an equa-

tion describing the flux of A when equimolar-counterdiffusion conditions exist

NA,z ¼ �DAB
dcA

dz
(26-20)

Equation (26-20) may be integrated, using the boundary conditions

at z ¼ z1 cA ¼ cA1

and

at z ¼ z2 cA ¼ cA2

giving

NA,z

Z z2

z1

dz ¼ �DAB

Z cA2

cA1

dcA

from which we obtain

NA,z ¼ DAB

(z2 � z1)
(cA1

� cA2
) (26-21)

When the ideal gas law is obeyed, the molar concentration of A is related to the partial

pressure of A by

cA ¼ nA

V
¼ pA

RT

Substituting this expression for cA into equation (26-21), we obtain

NA,z ¼ DAB

RT(z2 � z1)
( pA1

� pA2
) (26-22)

Equations (26-21) and (26-22) are commonly referred to as the equations for steady-state

equimolar counterdiffusion.
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The concentration profile for equimolar-counterdiffusion processes may be obtained

by substituting equation (26-20) into the differential equationwhich describes transfer in the

z direction

d

dz
NA,z ¼ 0

or

d2cA

dz2
¼ 0

This second-order equation may be integrated twice with respect to z to yield

cA ¼ C1zþ C2

The two constants of integration are evaluated, using the boundary conditions

at z ¼ z1 cA ¼ cA1

at z ¼ z2 cA ¼ cA2

to obtain the linear concentration profile

cA � cA1

cA1
� cA2

¼ z� z1

z1 � z2
(26-23)

Equations (26-21) and (26-23) may be used to describe any process where the bulk-

contribution term is zero. Besides the equimolar-counterdiffusion phenomenon, a neglig-

ible bulk-contribution term is also encountered when a solute diffuses into or through a solid

as both the mole fraction, xA, and the flux of the diffusing species, NAz, are very small.

Accordingly, their resulting product is therefore negligible.

It is interesting to note that when we consider the ‘‘film concept’’ for mass transfer with

equimolar counterdiffusion, the definition of the convective mass-transfer coefficient is differ-

ent from that for diffusion in a stagnant gas film. In the case of equimolar counterdiffusion

k0 ¼ DAB

d
(26-24)

The superscript on the mass-transfer coefficient is used to designate that there is no net

molar transfer into the film due to the equimolar counterdiffusion. Comparing equation

(26-24) with equation (26–9), we realize that these two defining equations yield the same

results only when the concentration of A is very small and pB;lm is essentially equal to P.

26.2 ONE-DIMENSIONAL SYSTEMS ASSOCIATED
WITH CHEMICAL REACTION

Many diffusional operations involve the simultaneous diffusion of a molecular species and

the disappearance or appearance of the species through a chemical reaction either within or

at the boundary of the phase of interest. We distinguish between the two types of chemical

reactions, defining the reaction that occurs uniformly throughout a given phase as a

homogeneous reaction and the reaction that takes place in a restricted region within or

at a boundary of the phase as a heterogeneous reaction.

The rate of appearance of species A by a homogeneous reaction appears in the general

differential equation of mass transfer as the source term, RA

=:NA þ @cA
@t

� RA ¼ 0 (25-11)
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Examples of the source term, RA, include the first-order conversion of reactant A to product

P, thus RA ¼ �k1cA, where k1 is the first-order rate constant in 1/s, and the second-order

reaction of reactants A and B to form the product P with RA ¼ k2cAcB, where k2 is the

second-order rate constant in units cm2/mol � s.
The rate of disappearance of A by a heterogeneous reaction on a surface or at an

interface does not appear in the general differential equation as RA involves only reactions

within the control volume. A heterogeneous reaction enters the analysis as a boundary

condition and provides information on the fluxes of the species involved in the reaction; for

example, if the surface reaction is O2(g)þ C(s)!CO2(g), the flux of CO2(g) will be the

same as the flux of O2(g), leaving in the opposite direction.

In this section, we shall consider two simple cases involving both types of chemical

reactions. For a treatment of more complicated problems, the student is referred to the two

excellent treatises by Crank3 and Jost.4

Simultaneous Diffusion and Heterogeneous, First-Order
Chemical Reaction: Diffusion with Varying Area

Many industrial processes involve the diffusion of a reactant to a surface where a chemical

reaction occurs. As both diffusion and reaction steps are involved in the overall process, the

relative rates of each step are important. When the reaction rate is instantaneous relative to

the rate of diffusion, then the process is diffusion controlled. In contrast, when the reaction

rate of the transferring species at the surface limits themass-transfer rate, then the process is

reaction controlled.

In many power plants, pulverized coal particles are fluidized within a hot combustion

chamber, where oxygen in the air reacts with coal to produce carbon monoxide and/or carbon

dioxidegas. This process,which produces energy by the heat of combustion, is an example of a

simultaneous diffusion and a heterogeneous reaction process that is diffusion controlled.

Let us consider the steady-state, one-dimensional diffusion of oxygen to the surface of a

spherical particle of coal along the r coordinate. At the surface of the particle, oxygen gas

(O2) reacts with solid carbon (C) in the

coal to form carbon monoxide gas

(CO) and carbon dioxide (CO2) gas

according to the heterogeneous reac-

tion equation

3C(s)þ 2:5O2(g)! 2CO2(g)þ CO(g)

as illustrated in Figure 26.7. No homo-

geneous chemical reaction occurs

along the diffusion path so that Ro2 ¼
0. As the coal particle is oxidized, the

particle shrinks with time as the carbon

is converted to carbon monoxide and

carbon dioxide. It is desired to predict

the size of the particle with time.

Based on the above physical

situation, the general differential

3 J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1957.
4 W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press, New York, 1952.

∆r
r

R

NCO2,r

NO2,r

NCO, r

Carbon sphere

Surrounding still air

Figure 26.7 Diffusion through a spherical film.
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equation for mass transfer (25-29) reduces from

@cA
@t

þ 1

r2
@(r2NAr)

@r
þ 1

r sin u

@(NAu sin u)

@u
þ 1

r sin u

@NAf

@f
�RA ¼ 0 (25-29)

to

1

r2
d(r2NAr)

dr
¼ 0

or

d(r2NAr)

dr
¼ 0 (26-25)

where A represents O2, the transferring species.

As this is the first time we have encountered diffusion through a varying area, let us

also derive equation (26-25) by making a mass balance in terms of moles of oxygen per

time over the control volume bounded by the spherical surfaces at r and r þ Dr

NO2r 4pr r
2jr � NO2r 4pr

2jrþDr ¼ 0 (26-26)

Dividing equation (26-26) by 4pDr and evaluating the limit as Dr approaches zero, we
obtain

d(r2NO2r)

dr
¼ 0 (26-25)

This equation specifies that r2NO2r is constant over the diffusion path in the r direction,

so that

r2NO2rjr ¼ R2NO2 rjR (26-27)

When we compare equation (26-25) with equation (26-1), we observe that for spherical

coordinates, r2NAr is constant along the r direction, whereas for rectilinear coordinates,

NAz is constant along the z direction.

Fick’s equation (24-21) can be simplified once we recognize the relationship

among the fluxes of the involved species. From the stoichiometry of the surface reaction,

we recognize that 2.5 moles of oxygen are transferred to the surface, whereas 2 moles of

carbon dioxide per 1 mole of carbon monoxide are transferred away from the surface.

Therefore,

NO2r ¼ �2:5NCOr and NO2r ¼ �1:25NCO2r

There is no net transfer of the nitrogen in the air, as it is an inert. Therefore, NN2
¼ 0.

Fick’s equation can now be written in terms of only oxygen

NO2r ¼ �cDO2-mix
dyO2

dr
þ yO2

(NO2r þ NCOr þ NCO2r þ NN2
)

or

NO2r ¼ �cDO2-mix
dyO2

dr
þ yO2

NO2r �
1

2:5
NO2r �

1

1:25
NO2r þ 0

� �
Consequently, Fick’s equation reduces to

NO2r ¼ � cDO2-mix
dyO2

dr
� 0:2yO2

NO2r
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or

NO2r ¼ � cDO2-mix

1þ 0:2 yO2

dyO2

dr
(26-28)

Both sides of equation (26-28) must be multiplied by r2 to obtain the constant r2NO2r

term. The diffusivity, DO2-mix, and the total molar concentration, c, can be treated as con-

stants if evaluated at an average temperature and an average composition. Two boundary

conditions are also needed. At the surface of the sphere, the reaction is instantaneous so

that the oxygen concentration is zero

r ¼ R, yO2
¼ 0

However, a long r-distance away from the sphere

r ¼ 1, yO2
¼ 0:21

Finally, equation (26-28) becomes

(r2NO2r)

Z 1

R

dr

r2
¼ � cDO2-mix

0:2

Z 0:21

0

0:2 dyO2

1þ 0:2 yO2

which upon integration yields

(r2NO2r)
1

R

� �
¼ cDO2-mix

0:2
ln

1

1:042

� �
The moles of oxygen transferred per time is the product of the oxygen flux and the cross-

sectional area 4pr2

WO2
¼ 4pr2NO2r ¼ �4pR

cDO2-mix

0:2
ln(1:042) (26-29)

It is important to recognize that this equation predicts a negative value for the rate

of oxygen being transferred. The reason is that the direction of oxygen flux from the

bulk gas to the particle surface is opposite to the increasing r direction from r ¼ R to

r ¼ 1.

The pure carbon particle is the source for the CO2 flux and the sink for O2 flux. As the

coal particle is oxidized, there will be an output of carbon as stipulated by the stoichiometry

of the reaction. Although the spherical particle will decrease in size with time, the diffusion

path from r ¼ R to r ¼ 1 will be essentially constant with time. This allows us to use a

pseudo-steady-state approach for describing the material balance on the carbon particle.

The material balance for carbon stipulates that

(input carbon rate)� (output carbon rate) ¼ (rate of carbon accumulation)

The output rate of carbon from the spherical particle inmol C/time is related to output rate of

CO2 that is in turn related to the input mass transfer rate of O2

WC ¼ 3

2
WCO2

¼ � 3

2:5
WO2

¼ þ 3

2:5
4pR

cDO2-mix

0:2
ln(1:042) (26-30)

The carbon accumulation rate in the spherical particle in mol C/time is

rC
MC

dV

dt
¼ rC

MC
4pR2 dR

dt
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where rC is the density of solid carbon,MC is the molecular weight of carbon, and V is the

total volume of the solid carbon sphere. By substituting these terms into the carbon balance,

we obtain

0� 3

2:5
4pR

cDO2-mix

0:2
ln(1:042) ¼ rC

MC
4pR2 dR

dt

Rearrangement of this equation followed by separation of variables R and t gives

�6 cDO2-mixln(1:042)

Zu
0

dt ¼ rC
MC

ZR f

Ri

R dR

whereRf is the final radius of the spherical particle,Ri is the initial radius of the particle, and

u is the time required for the particle to shrink from the initial to the final radius. Following

integration, we obtain the final expression for estimating u

u ¼
rC
MC

(R2
i � R2

f )

12 cDO2-mixln(1:042)
(26-31)

Alternative reaction equations may be proposed for the combustion process. For

example, if only carbon dioxide were produced by the reaction

C(s)þ O2(g)!CO2(g) (26-32)

then bulk contribution term to Fick’s equation is zero as NO2r ¼ �NCO2r . Therefore,

Fick’s equation reduces to

NO2r ¼ �cDO2-mix
dyO2

dr

where the gas mixture consists of CO2, O2, and N2. It is not difficult to show that the moles

of oxygen transferred per time is

WO2
¼ �4pRcDO2-mix yO21 (26-33)

For heterogeneous reactions, information on the rate of the chemical reaction can also

provide an important boundary condition

NAjr¼R ¼ �kscAs

where ks is the first-order reaction-rate constant for a surface reaction, in units of m/s. The

negative sign indicates that species A is disappearing at the surface. If the chemical reaction

is instantaneous relative to the diffusion step, then the concentration of the reacting species

A at the surface is essentially zero; that is, cAs ¼ 0, as we assumed above. However, if the

reaction is not instantaneous at the surface, then cAs will be finite.

Consider now that the reaction described by equation (26-32) is not instantaneous, and

its heterogeneous rate equation can be expressed as a first-order surface reaction with

respect to O2. Consequently, the O2 concentration at the surface is not equal to zero. In this

context, it is easy to show that equation (26-33) becomes

WO2
¼ �4pRcDO2-mix(yO21 � yO2s) (26-34)

where yO21 is the mole fraction of O2 in the bulk gas and yO2s is the mole fraction of O2

at the surface (r ¼ R). For a first-order surface reaction NAsjR ¼ �kscAs, the mole
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fraction of O2 at the surface can be expressed as

yO2s ¼
cO2s

c
¼ �NO2R

ksc
(26-35)

The minus sign indicates that the direction of O2 flux is opposite to increasing r. Substi-

tution of equation (26-35) into equation (26-34) yields

WO2
¼ �4pRcDO2-mix yO21 þ NO2R

ksc

� �
(26-36)

Now recall

WO2
¼ 4pR2NO2R ¼ 4pR2NO2r (26-27)

Combination of equations (26-36) and (26-27) to eliminate NO2R results in

r2NO2r 1þ DO2-mix

ksR

� �
¼ �RcDO2-mix yO21

Finally, the oxygen-transfer rate for the combined diffusion and reaction process is

WO2
¼ � 4pRcDO2-mix yO21

1þ DO2-mix

ksR

(26-37)

Note that as ks gets very large, equation (26-37) is approximated by equation (26-33).

EXAMPLE 3 A fluidized coal reactor has been proposed for a new power plant. If operated at 1145 K, the process

will be limited by the diffusion of oxygen countercurrent to the carbon dioxide, CO2, formed at

the particle surface. Assume that the coal is pure solid carbonwith a density of 1:28� 103 kg/m3 and

that the particle is spherical with an initial diameter of 1:5� 10�4 m (150mm). Air (21% O2 and

79% N2) exists several diameters away from the sphere. Under the conditions of the combustion

process, the diffusivity of oxygen in the gas mixture at 1145 K is 1:3� 10�4 m2/s. If a steady-state

process is assumed, calculate the time necessary to reduce the diameter of the carbon particle to

5� 10�5 m (50mm).

The surrounding air serves as an infinite source for O2 transfer, whereas the oxidation of the carbon at

the surface of the particle is the sink for O2 mass transfer. The reaction at the surface is

C(s)þ O2(g)!CO2(g)

Note that the reaction establishes a EMCD process where the flux of O2 to the particle is equal to

but opposite in the direction of the CO2 flux away from the particle, that is,

NO2r ¼ �NCO2r

At the surface of the coal particle, the reaction is so rapid that the concentration of oxygen is

zero. Under this assumption, the instantaneous mass transfer of oxygen to the surface of the coal

particle is

WO2
¼ �4pRcDO2-mix yO21 (26-33)

The stoichiometry of the surface reaction stipulates that 1 atom of carbon will disappear per each

mole of oxygen reacting at the surface. Therefore,

WC ¼ WCO2
¼ �WO2

¼ þ4pRcDO2-mix yO21
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The total carbon balance can be written as

0� 4pRcDO2-mix yO21 ¼ rC
MC

4pR2 dR

dt

which simplifies to

dt ¼ � rC
MC

RdR

cDO2-mix yO21

This equation can be integrated between the following limits

t ¼ 0, R ¼ Ri ¼ 7:5� 10�5 m(75mm)

t ¼ u, R ¼ Rf ¼ 2:5� 10�5 m(25mm)

to give

u ¼ rC(R
2
i � R2

f )

2MCcDO2-mix yO21

The total gas molar concentration, c, is obtained by the ideal gas law

c ¼ P

RT
¼ 1:0 atm

0:08206m3 atm

kgmolK
1145K

¼ 0:0106
kgmol

m3

Finally,

u ¼
1:28� 103

kg

m3

� �
((7:5� 10�5 m)2 � (2:5� 10�5 m)2)

2
12 kg

kgmol

� �
0:0106

kgmol

m3

� �
1:3� 10�4

m2

s

� �
(0:21)

¼ 0:92 s

Diffusion with a Homogeneous, First-Order Chemical Reaction

In the unit operation of absorption, one of the constituents of a gas mixture is preferentially

dissolved in a contacting liquid. Depending upon the chemical nature of the involved

molecules, the absorption may or may not involve chemical

reactions. When there is a production or disappearance of the

diffusing component, equation (25-11) may be used to analyze the

mass transfer within the liquid phase. The following analysis

illustrates mass transfer that is accompanied by a homogeneous

chemical reaction.

Consider a layer of the absorbing medium as illustrated in

Figure 26.8. At the liquid surface, the composition of A is cA0 . The

thickness of the film, d, is defined so that beyond this film the

concentration of A is always zero; that is, cAd ¼ 0. If there is very

little fluid motion within the film, and if the concentration of A in

the film is assumed small, the molar flux within the film is des-

cribed by

NA;z ¼ �DAB
dcA

dz
(26-38)

z

z = 0

z = δ

∆z

Gas mixture
( A and inert gas)

Liquid
surface

Liquid B

NAz|z

NAz|z +∆z

Figure 26.8 Absorption with homogeneous

chemical reaction.
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For one-directional steady-state mass transfer, the general differential equation of mass

transfer reduces to

d

dz
NA;z � RA ¼ 0 (26-39)

The disappearance of component A by a first-order reaction is defined by

�RA ¼ k1cA (26-40)

where k1 is the chemical reaction rate constant. Substitution of equations (26-38) and (26-

40) into equation (26-39) gives a second-order differential equation that describes simul-

taneous mass transfer accompanied by a first-order chemical reaction

� d

dz
DAB

dcA

dz

� �
þ k1cA ¼ 0 (26-41)

or with a constant diffusion coefficient, this reduces to

�DAB
d2cA

dz2
þ k1cA ¼ 0 (26-42)

The general solution to equation (26-42) is

cA ¼ c1 cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
zþ c2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
z (26-43)

The boundary conditions

at z ¼ 0 cA ¼ cA0

and

at z ¼ d cA ¼ 0

permit the evaluation of the two constants of integration. The constant c1 is equal to cA0 , and

c2 is equal to �(cA0 )/ðtanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d), where d is the thickness of the liquid film.

Substituting these constants into equation (26-43), we obtain an equation for the concen-

tration profile

cA ¼ cA0
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
z� cA0

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
z

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d

(26-44)

The molar mass flux at the liquid surface can be determined by differentiating equa-

tion (26-44) and evaluating the derivative, (dcA/dz)jz¼0. The derivative of cA with res-

pect to z is

dcA

dz
¼ þ cA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
z� cA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
z

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d

which, when z equals zero, becomes

dcA

dz

����
z¼0

¼ 0� cA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d
¼ � cA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d

(26-45)

Substituting equation (26-45) into equation (26-38) and multiplying by d/d, we obtain

NA,zjz¼0 ¼
DABcA0

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d

� �
(26-46)
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It is interesting to consider the simpler mass-transfer operation involving the absorp-

tion of A into liquid B without an accompanying chemical reaction. The molar flux of A is

easily determined by integrating equation (26-38) between the two boundary conditions,

giving

NA,z ¼ DABcA0

d
(26-47)

It is apparent by comparing the two equations that the term ½( ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d)/(tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d)�

shows the influence of the chemical reaction. This term is a dimensionless quantity, often

called the Hatta number.5

As the rate of the chemical reaction increases, the reaction rate constant, k1, increases

and the hyperbolic tangent term, tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
d, approaches the value of 1.0. Accordingly,

equation (26-46) reduces to

NA,zjz¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DABk1

p
(cA0

� 0)

A comparison of this equation with equation (25-30)

NA;z ¼ kc(cA1
� cA2

) (25-30)

reveals that the film coefficient, kc, is proportional to the diffusion coefficient raised to

the 1
2 power. With a relatively rapid chemical reaction, component A will disappear after

penetrating only a short distance into the absorbing medium; thus, a second model for

convective mass transfer has been proposed, the penetration theory model, in which kc is

considered a function of DAB raised to the 1
2 power. In our earlier discussion of another

model for convective mass transfer, the film theory model, the mass-transfer coefficient

was a function of the diffusion coefficient raised to the first power. We shall reconsider

the penetration model in Section 26.4 and also in Chapter 28, when we discuss convective

mass-transfer coefficients.

The following example considers diffusion with a homogeneous first-order chemical

reaction under a different set of boundary conditions.

EXAMPLE 4 Dilute concentrations of toxic organic solutes can often be degraded by a ‘‘biofilm’’ attached to an

inert, nonporous solid surface. A biofilm consists of living cells immobilized in a gelatinous matrix.

Biofilms are not very thick, usually less than a few millimeters. A toxic organic solute (species A)

diffuses into the biofilm and is degraded to harmless products, hopefully CO2 and water, by the cells

within the biofilm. For engineering applications, the biofilm can be approximated as a homogeneous

substance (i.e., speciesB). The rate of degradation of the toxic solute per unit volume of the biofilm is

described by a kinetic rate equation of the form

RA ¼ �RA, maxcA

KA þ cA

whereRA, max is themaximumpossible degradation rate of speciesA in the biofilmandKA (mol/cm3) is

the half-saturation constant for the degradation of species Awithin the biofilm at hand.

Consider the simple ‘‘rotating disk’’ process unit shown in Figure 26.9 for the treatment of

phenol (species A) in wastewater. The biofilm contains a microorganism rich in the enzyme

peroxidase that oxidatively degrades phenol. The concentration of species A in the bulk-fluid phase

over the biofilm is constant if the fluid phase is well mixed. However, the concentration of Awithin

the biofilm will decrease along the depth of the biofilm z as species A is degraded. There are no

5 S. Hatta, Technol. Rep. Tohoku Imp. Univ., 10, 199 (1932).
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resistances to convective mass transfer across the fluid boundary layer between the bulk fluid and

the biofilm surface. Furthermore, phenol is equally soluble in both water and the biofilm, and the

density difference between the biofilm and water can be neglected, so that the surface concentration

of phenol in the aqueous phase equals the surface concentration of phenol in the gel phase just inside

the biofilm, that is, at z ¼ 0, cAs ¼ cA0 .

It is desired to treat 0.1 m3 per hour of wastewater containing 0:1mol/m3 of the toxic sub-

stance phenol. If the biofilm thickness is 2.0 mm (0.002 m), what is the required surface area of

the biofilm necessary to achieve the desired outlet concentration of 0:02mol/m3? The kinetic

and mass-transport properties for the biofilm at hand are KA ¼ 0:3mol/m3, RA;max ¼ 5:7�
10�3 mol/m3 � s, and DAB ¼ 2:0� 10�10 m2/s at the process temperature of 258C.

The source for phenol mass transfer is the inlet wastewater stream, whereas the sink for mass

transfer is the steady-state consumption of phenol within the biofilm. First, a steady-state process

material balance is performed on the contactor to determine the required rate of phenol degradation.

A material balance on species A on the process unit is

(rate of phenol degraded) ¼ (rate of phenol added to process)� (rate of phenol exiting process)

or

WA ¼ nicAi � nocAo ffi no(cAi � cAo) ¼ 0:1m3

h
(0:1� 0:02)

mol

m3
¼ 8:0� 10�3 mol

h

where the subscript ‘‘i’’ represents the inlet stream and subscript ‘‘o’’ represents the outlet stream.

Note that cAo is the bulk concentration of phenol inside the contactor. The biofilm possesses slab

geometry best described by rectilinear coordinates. The rate of degradationWA is proportional to the

flux of species A into the biofilm at z ¼ 0

WA ¼ S:NAz ¼ S: �DAB
dcA

dz

����
z¼0

� �

where S is the required surface area of the biofilm. At low concentrations where KA � cA, the above

rate equation approximates a first-order process with respect to cA

RA ¼ �RA,maxcA

KA þ cA
ffi � RA,max

KA
cA ¼ �k1cA

cA(z)

cAo

z = 0

= 0

z = d

Biofilm

Well-mixed contactor

Inert solid
surface

Biofilm

Biofilm cross sectionWastewater
feed stream

cAi = 0.1 mol/m3

Treated
wastewater

cAo

dcA

dz

Figure 26.9 Biofilm for wastewater treatment.

472 Chapter 26 Steady-State Molecular Diffusion



with k1 equal to

k1 ¼ RA;max

KA
¼

5:7� 10�3 mol

m3 � s
0:3

mol

m3

¼ 1:9� 10�2s�1

The flux can be obtained from the concentration profile. Recall equation (26-42) for one-

dimensional, steady-state diffusion with a homogeneous first-order chemical reaction

DAB
d2cA

dz2
� k1cA ¼ 0 (26-42)

Recall also that this homogeneous second-order differential equation has a general solution of the

form

cA(z) ¼ c1cosh(z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
)þ c2sinh(z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
) (26-43)

where c1 and c2 are integration constants to be determined by application of the boundary conditions.

The biofilm is immobilized onto a nonporous solid surface. Therefore, the flux at z ¼ d is zero.

Consequently, the boundary conditions are

z ¼ d,
dcA

dz
¼ 0

z ¼ 0, cA ¼ cAs ¼ cAo

Note that the boundary conditions previously discussed are different from the ones described

earlier to develop equations (26-44) and (26-46). With a little math and a few handy identities for

hyperbolic functions that can be found in any calculus text, the concentration profile is

cA(z) ¼ cAocosh((d� z)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
)

cosh(d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
)

(26-48)

and

dcA

dz

����
z¼0

¼ �cAo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
tanh(d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
)

From this, the flux of phenol into the biofilm is

NAjz¼0 ¼
DAB cAo

d
(d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
) tanh(d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1/DAB

p
) (26-49)

It is useful first to calculate the dimensionless parameter, F, the Thiele modulus:

F ¼ d

ffiffiffiffiffiffiffiffiffi
k1

DAB

r
¼ 0:002m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:9� 10�2

1
s

2� 10�10
m2

s

vuuuut ¼ 19:49

This parameter represents the ratio of reaction rate to diffusion rate.WhenF is less than 0.1, tanh (F)

essentially equals zero and

NAjz¼0 ¼
DABcAo

d

�
d
ffiffiffiffiffi
k1

p
DAB

2
the reaction rate is very rapid (controlling) relative to the rate of diffusion. When F is greater than

5, tanh (F) 	 1.0 and

NAzjz¼0 ¼
DABcAo

d

�
d
ffiffiffiffiffi
k1

p
DAB
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The rate of diffusion is said to control. In our example, themolecular diffusion flux of phenol through

the biofilm very strongly influences the overall phenol degeneration rate. The flux of phenol into the

biofilm is

NAz ¼
2� 10�10 m

2

s

� �
0:02

mol

m3

� �
0:002m

(19:49)tanh (19:49) ¼ 3:9� 10�8 mol

m2: s
Finally, the required surface area of the biofilm is backed out from the required degradation rate and

the flux

S ¼ WA

NAz
¼

8:0� 10�3 mol

h

1 h

3600 s

3:9� 10�8
mol

m2: s

¼ 57:0m2

The steady-state concentration profile cAðzÞ within the biofilm is shown in Figure 26.10. It is

interesting to note that concentration profile rapidly goes to zero within the first millimeter of the

biofilm, again illustrating a strong diffusional resistance to the phenol degradation reaction.

26.3 TWO- AND THREE-DIMENSIONAL SYSTEMS

In Sections 26.1 and 26.2, we have discussed problems in which the concentration and the

mass transfer were functions of a single-space variable. Although many problems fall into

this category, there are systems involving irregular boundaries or nonuniform concentra-

tions along the boundary for which the one-dimensional treatment may not apply. In such

cases, the concentration profile may be a function of two or even three spatial coordinates.

In this section, we shall review some of the methods for analyzing molecular mass

transfer in two- and three-dimensional systems. As the transfer of heat by conduction is

analogous tomolecularmass transfer, we shall find the analytical, analogical, and numerical

techniques described in Chapter 17 to be directly applicable.

An analytical solution to any transfer problem must satisfy the general differ-

ential equation describing the transfer as well as the boundary conditions specified by

the physical situation. A complete treatment of the analytical solutions for two- and
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Figure 26.10 Phenol concentration profile in biofilm.
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three-dimensional systems requires a prior knowledge of partial differential equation and

complex variable theory.Asmost of thismaterial is too advanced for an introductory course,

we shall limit our discussions to a relatively simple two-dimensional example. Crank6 has

written an excellent treatise dealing exclusively with mathematical solutions for more

complex diffusion problems.

The classical approach to the exact solution of the Laplace equation is the

separation of variables technique.Wewill illustrate this approach by considering the

steady-state diffusion in a two-dimensional cloth strip that is used to deliver an

insecticide to the surrounding atmosphere. There is no chemical reaction within the

strip.

Consider a thin rectangular cloth strip,Wunits wide and L units long. The top of

the strip is immersed in an insecticide source at y ¼ L. Component A diffuses from

this source down the strip to the three surfaces where it leaves by convective mass

transfer. Figure 26.11 illustrates the strip and the assumed boundary conditions. The

concentration at the surface, y ¼ L, will be expressed functionally as cA(x), although

it physically is often a constant concentration, cAo. The convective mass transfer

from the three surfaces maintains zero surface concentrations. Due to the low

concentration and low flux of Awithin the solid strip, the bulk contribution term in

the Fick’s equation is negligible.

The general differential equation for mass transfer (25-27) can be simplified to produce

the describing partial differential equation.

or

@NAx

@x
þ @NAy

@y
¼ 0 (26-50)

With negligible bulk contribution terms, the two Fick’s equations are

NAx ¼ �DAB
dcA

dx

and

NAy ¼ �DAB
dcA

dy

Upon substitution of these fluxes into the partial differential equation and with the

assumption of constant diffusivity, one obtains

@2cA
@x2

þ @2cA
@y2

¼ 0 (26-51)

Equation (26-51) is a linear, homogeneous partial differential equation. This type of

equation can often be integrated by assuming a product solution of the form

cA(x; y) ¼ X(x)Y(y) (26-52)

6 J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1957.

0

y

x

cA = cA(x)

cA = 0cA = 0

cA = 0 W

L

Figure 26.11 Two-dimensional

model for insecticide transport.
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where X(x) is a function of x only and Y(y) is a function of y only. Upon substituting

equation (26-52) into equation (25-51), we obtain an expression in which the variables are

separated

� 1

X

d2X

dx2
¼ 1

Y

d2Y

dy2
(26-53)

The left-hand side of this equation is a function of x only, whereas the right-hand side is a

function of y only. As neither side can change as x and y vary, both must be equal to a

constant, say l2. We have, therefore, two ordinary differential equations

d2X

dx2
þl2X ¼ 0 (26-54)

and

d2Y

dy2
�l2Y ¼ 0 (26-55)

The general solution to equation (26-54) is

X ¼ A coslxþ B sin lx (26-56)

and the general solution to equation (26-55) is

Y ¼ De�ly þ Eely (26-57)

According to the equation (26-48), the concentration is defined in terms of the product

XY; consequently,

cA ¼ (A cos lxþ B sin lx)(De�ly þ Eely) (26-58)

where A, B, D, and E are constants to be evaluated from the four boundary conditions

at x ¼ 0 cA ¼ 0

at x ¼ W cA ¼ 0

at y ¼ 0 cA ¼ 0

and

at y ¼ L cA ¼ cA(x)

The constants in equation (26-58) may be evaluated by the following substitutions: for the

first condition at x ¼ 0

A(De�ly þ Eely) ¼ 0

for the second condition at x ¼ W

(A cos lW þ B sinlW)(De�ly þ Eely) ¼ 0

and for the third condition, at y ¼ 0

(A cos lxþ B sin lx)(Dþ E) ¼ 0

The third condition can be satisfied only if D ¼ �E, and the first condition only if A ¼ 0.

Using these results, the second condition simplifies to

DB sin lW(e�ly � ely) ¼ 2DB sin lW sinh ly ¼ 0 (26-59)

Neither B nor D can be zero if a solution other than the trivial solution cA ¼ 0 throughout

the passage is desired. As this expression is true for all y values, the condition specified
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by equation (26-59) can only be satisfied if sin lW is zero; that is, l ¼ np/W ,

where n ¼ 1; 2; 3; . . . . There exists a different solution for each integer n and each

solution has a separate integration constant An. Summing these solutions, we obtain

cA ¼ �
1

n¼1
An sin

npx

W
sinh

npy

W
(26-60)

The last boundary condition, at y ¼ L, stipulates

cA ¼ cA(x) ¼ �
1

n¼1
An sin

npx

W
sinh

npL

W
(26-61)

The constant An can be evaluated from equation (26-61), once the profile of cA(x) is given

at the surface, y ¼ L. An equation describing the variation of cA with x and y can be

obtained, after substituting the value of An into equation (26-56).

The separation-of-variables method can be extended to three-dimensional cases by

assuming that cA is equal to the product X(x)Y(y)Z(z), and substituting this expression for

cA into the differential equation. If the variables can be separated, three second-order

ordinary differential equations are obtained which may be integrated by using the given

boundary conditions.

Another example of a two-dimensional steady-state diffusion process is encountered

in the deposition of a silicon dioxide (SiO2) thin film onto a wafer surface. One

manufacturer uses the decomposition of tetraethoxysliane (TEOS) vapor by the follow-

ing reaction:

Si(OC2H5)4(g)! 4C2H4(g)þ 2H2O(g)þ SiO2(s)

In this process, TEOS is carried to the diffusion furnace in a dilute (1 mol% TEOS) helium

carrier gas from which the TEOS diffuses to vertically stacked silicon wafers, circular in

shape, which are held in place by a thin support. The region between the two nonporous

silicon wafers is shown in the following figure.

TEOS

Silicon
wafer
disk

Stagnant
gas

cAO

cAO

z

R

L

r

Feed gas 

The concentration of TEOS in the gas space just outside of the vertically stacked

wafer, cAo, is assumed to be constant. The gas space between thewafers is stagnant. TEOS

vapors diffuse down into the gas space and then react on the wafer surface. As the

temperature of the diffusion is maintained very high, the surface reaction is extremely

rapid and the overall rate of SiO2 formation is limited by the diffusion of the TEOS to the

wafer surface.

Our analysis will focus on this ‘‘interwafer’’ region. The system is described in

cylindrical coordinates, where the r-direction transfer is parallel to the wafer surface
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and the z-direction transfer is normal to the wafer surface. The general differential equation

for the mass transfer of TEOS (species A) is

@cA
@t

þ 1

r

@(rNAr)

@r
þ 1

r

@NAu

@u
þ @NAz

@z

� �
¼ RA

Due to the slow growth of the silicon dioxide film, this is a pseudo-steady-state process,

@cA=@t ¼ 0; there is no homogeneous reaction within the diffusion path, RA ¼ 0; and the

diffusion occurs only in the r and z directions. The equation simplifies to

1

r

@(rNAr)

@r
þ @NAz

@z
¼ 0

Recognizing that the gas space between the wafers is stagnant and that the gas is very

dilute in TEOS, we will assume that there is negligible contribution to either of the two

Fick’s equations:

NAr ¼ �cDAB
dyA

dr
and NAz ¼ �cDAB

dyA

dz

These two equations can be further simplified upon the assumption that at the furnace’s

temperature and pressure, both c and DAB are constant. By using these assumptions, the

general differential equation for the mass transfer of TEOS can be simplified in terms of

the concentration of TEOS, cA.

DAB
@2cA
@r2

þ 1

r

@cA
@r

þ @2cA
@z2

� �
¼ 0

To solve this differential equation, we need four boundary conditions:

@ r ¼ R cA(R, z) ¼ cAo

@ r ¼ 0
@cA(0; z)

@r
¼ 0

@ z ¼ 0 cA(r; 0) ¼ 0 due to the rapid reaction onwafer surface

and

@ z ¼ L

2

@cA r,
L

2

� �
@r

¼ 0 midpoint between twowafers

A sample solution evaluated on the OSU FEMLAB, using a partial differential equation

solver, is illustrated in the figure below.

Sample predictions
on FEMLAB

Si
nk

Source

Linearlines of
concentration, c

A

Arrows, diffusion
flux, n

A

r = 0

z = 0

r = 0

z = L/2

r = R

z = L/2

r = R

z = 0
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26.4 SIMULTANEOUS MOMENTUM, HEAT, AND MASS TRANSFER

In previous sections, we have considered steady-statemass transfer independent of the other

transport phenomena. Many physical situations involve the simultaneous transfer of mass

and either energy or momentum, and in a few cases, the simultaneous transfer of mass,

energy, andmomentum.The drying of awet surface by a hot, dry gas is an excellent example

in which all three transport phenomena are involved. Energy is transferred to the cooler

surface by convection and radiation; mass and its associated enthalpy are transferred back

into the moving gas stream. The simultaneous transport processes are more complex,

requiring the simultaneous treatment of each transport phenomenon involved.

In this section, we consider two examples involving the simultaneous transfer of mass

and a second transport phenomenon.

Simultaneous Heat and Mass Transfer

Generally, a diffusion process is accompanied by the transport of energy, even within an

isothermal system. As each diffusing species carries its own individual enthalpy, a heat flux

at a given plane is described by

qD
A

¼ �
n

i¼1
NiHi (26-62)

where qD/A is the heat flux due to the diffusion of mass past the given plane and Hi is the

partial molar enthalpy of species i in the mixture. When a temperature difference exists,

energy will also be transported by one of the three heat-transfer mechanisms. For example,

the equation for total energy transport by conduction and molecular diffusion becomes

q

A
¼ �k=T þ �

n

i¼1
NiHi (26-63)

If the heat transfer is by convection, the first energy-transport term in equation (26-63)

would be replaced by the product of the convective heat-transfer coefficient and a DT
driving force.

A process important in many engineering processes as well as in day-to-day

events involves the condensation of a vapor upon a cold surface. Examples of this

process include the ‘‘sweating’’ on cold water pipes and the condensation of moist

vapor on a cold window pane. Figure 26.12 illustrates the process that involves a

film of condensed liquid flowing down a cold surface and a film of gas through

which the condensate is transferred by molecular diffusion. This process involves

the simultaneous transfer of heat and mass.

The following conditions will be stipulated for this particular steady-state

physical situation. Pure component Awill condense from a binary gas mixture. By

psychrometry, the composition, yA, and the temperature, T1, are known at the plane

z1. The temperature of the condensing surface, T3, is also known. By heat-transfer

considerations, the convective heat-transfer coefficients for the condensate liquid

film and the gas film can be calculated from equations given in Chapter 20. For

example, in the gas phase, when the carrier gas is air and the vapor content of the

diffusing species is relatively low, the heat-transfer coefficient for natural con-

vection can be estimated by equation (20-5)

NuL ¼ 0:68þ 0:670Ra1/4L

½1þ (0:492/Pr)9/16�4/9
(20-5)

T1

T2

z3 z2 z1

T3

yA1

yA2

yA = yA(z)

T = T(z)

Condensate
liquid film

Boundary of
gas film

Figure 26.12 Vapor condensation

on a cold surface.
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Using the general differential equation for mass transfer, equation (25-11), we see that

the differential equation that describes the mass transfer in the gas phase is

d

dz
NA, z ¼ 0 (26-64)

Equation (26-64) stipulates that the mass flux in the z direction is constant over the

diffusion path. To complete the description of the process, the proper form of Fick’s law

must be chosen. If component A is diffusing through a stagnant gas, the flux is defined by

equation (26-3)

NA, z ¼ �cDAB

1� yA

dyA

dz
(26-3)

As a temperature profile exists within the film, and the diffusion coefficient and total gas

concentration vary with temperature, this variation with z must often be considered.

Needless to say, this complicates the problem and requires additional information before

equation (26-3) can be integrated.

When the temperature profile is known or can be approximated, the variation in

the diffusion coefficient can be treated. For example, if the temperature profile is of the

form

T

T1
¼ z

z1

� �n

(26-65)

the relation between the diffusion coefficient and the length parameter may be deter-

mined by using equation (24-41) as follows:

DAB ¼ DABjT1

T

T1

� �3/2
¼ DABjT1

z

z1

� �3n/2
(26-66)

The variation in the total concentration due to the temperature variation can be evaluated

by

c ¼ P

RT
¼ P

RT1(z/z1)
n

The flux equation now becomes

NA, z ¼
�PDABjT1

RT1(1� yA)

z

z1

� �n/2dyA

dz
(26-67)

This is the same approach used in Example 15.2, which discussed heat transfer by con-

duction when the thermal conductivity was a variable.

Over a small temperature range, an average diffusion coefficient and the total molar

concentration may be used. With this assumption, equation (26-3) simplifies to

NA; z ¼ � (cDAB)avg

(1� yA)

dyA

dz
(26-68)

Integrating this equation between the boundary conditions

at z ¼ z1 yA ¼ yA1

and

at z ¼ z2 yA ¼ yA2
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we obtain the relation

NA, z ¼
(cDAB)avg(yA1

� yA2
)

(z2 � z1)yB, lm
(26-69)

The temperature, T2, is needed for evaluating (cDAB)avg, the temperature difference

between the liquid surface and the adjacent vapor, and the vapor pressure of species A at

the liquid surface. This temperature may be evaluated from heat-transfer considerations.

The total energy flux through the liquid surface also passes through the liquid film. This

can be expressed by

qz

A
¼ hliquid(T2 � T3) ¼ hc(T1 � T2)þ NA, zMA(H1 � H2) (26-70)

where hliquid is the convective heat-transfer coefficient in the liquid film, hc is the natural

convective heat-transfer coefficient in the gas film, MA is the molecular weight of A, and

H1 and H2 are the enthalpies of the vapor at plane 1 and the liquid at plane 2, respectively,

for species A per unit mass. It is important to realize that there are two contributions to the

energy flux entering the liquid surface from the gas film, convective heat transfer and the

energy carried by the condensing species.

To solve equation (26-70), a trial-and-error solution is required. If a value for the

temperature of the liquid surface is assumed, T2, hc, and ðcDABÞavg may be calculated. The

equilibrium composition, yA2 , can be determined from thermodynamic relations. For

example, if Raoult’s law holds

pA2
¼ xAPA

where xA for a pure liquid is 1.0, and the partial pressure ofA above the liquid surface is equal

to the vapor pressure PA. By Dalton’s law, the mole fraction of A in the gas immediately

above the liquid is

yA2
¼ pA2

P
or

PA

P

where P is the total pressure of the system and PA is the vapor pressure of A at the assumed

temperature T2. Knowing (cDAB)avg and yA2 , we can evaluate NAz by equation (26-69).

The liquid-film heat-transfer coefficients can be evaluated, using equations presented in

Chapter 20. A value is now known for each term in equation (26-70). When the left- and

right-hand sides of the equation are equal, the correct temperature of the liquid surface has

been assumed. If the initially assumed temperature does not yield an equality, additional

values must be assumed until equation (26-70) is satisfied.

There are several industrial-unit operations inwhich heat andmass transfer between gas

and liquid phases occur simultaneously. Distillation, humidification or dehumidification of

air, and water cooling are such operations. In early space exploration, the cooling of the

reentry vehicles by sublimation of ablativematerial is another examplewhere simultaneous

transfer played an important engineering role.

In the following example, consideration of the simultaneous transfer ofmass and heat is

required to predict the flux relations described by Fick’s law.

EXAMPLE 5 An ethanol/water vapor mixture is being distilled by contact with an ethanol/water liquid solution.

The ethanol is transferred from the liquid to the vapor phase and the water is transferred in the

opposite direction. The condensation of water vapor provides the energy for vaporization of ethanol.

Both components are diffusing through a gas film 0.1 mm thick. The temperature is 368 K and the
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pressure is 1:013� 105 Pa. At these con-

ditions, the pure component enthalpie of

vaporization of the ethanol and water are

840 and 2300 kJ/kg, respectively. Develop

the flux equation for ethanol vapor. Then

develop the flux equation assuming that

the components have equimolar heats of

vaporization.

We will assume a one-dimensional,

adiabatic molecular mass-transfer process

across a gas film of thickness d, as illustra-

ted in Figure 26.13. For one-dimensional,

steady-state mass transfer, the general dif-

ferential equation for mass transfer of

ethanol simplifies to

dNEtOH, z

dz
¼ 0

For a binary gas-phase mixture, Fick’s

equation is

NEtOH, z ¼ �cDEtOH�H2O
dyEtOH

dz
þ yEtOH(NEtOH, z þ NH2O, z)

We perform an energy balance to relate the flux of ethanol vapor to the flux of water vapor. If the

distillation operation is adiabatic, then all of the energy released when the water condenses must

equal the energy used to produce the alcohol vapor. The energy balance is

NEtOH, z DHy, EtOH ¼ �NH2O, z DHy, H2O

or

�NEtOH, z 840
kJ

kg

� �
46

kg

kgmol

� �
¼ NH2O, z 2300

kJ

kg

� �
18

kg

kgmol

� �

NEtOH, z ¼ �1:071NH2O, z

We recognize that flux is a vector quantity, and that according to Figure 26.13, the flux of ethanol is

opposite in direction to the flux ofwater. Substituting this relationship into Fick’s equation,we obtain

NEtOH, z ¼ � cDEtOH�H2O

1þ 0:071yEtOH

dyEtOH

dz

As the flux is constant along the z direction, this equation can be integrated directly to obtain

NEtOH, z

Z d

0

dz ¼ �cDEtOH�H2O

Z yEtOH; 2

yEtOH; 1

dyEtOH

1þ 0:071yEtOH

or

NEtOH, z ¼ cDEtOH�H2O

0:071d
ln

�
1þ 0:071yEtOH;1
1þ 0:071yEtOH;2

�
Now consider a simplified case where the molar heats of vaporization are essentially equal, i.e.,

DHy,EtOH ffiDHy, H2O. Then from the adiabatic energy balance, it is easy to show that

�NEtOH ¼ NH2O. Then

NEtOH, z ¼ �cDEtOH�H2O
dyEtOH

dz
þ yEtOH(NEtOH, z þ NH2O, z)

Adiabatic
wall

NH2O
condensation

NEtOH
vaporization

Ethanol/water
bulk vapor

Gas
film
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Figure 26.13 Adiabatic rectification of an ethanol/

water mixture.
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reduces to

NEtOH, z ¼ �cDEtOH�H2O
dyEtOH

dz

which upon integration yields

NEtOH, z ¼ cDEtOH�H2O

d
(yEtOH, 1 � yEtOH, 2)

So we see that equimolar heats of vaporization result in an equimolar-counterdiffusion flux for an

adiabatic-distillation process.

Simultaneous Momentum and Mass Transfer

In several mass-transfer operations, mass is exchanged between two phases. An important

example that we have previously encountered is absorption, the selective dissolution of one

of the components of a gas mixture by a liquid. A wetted-wall column, as illustrated in

Figure 26.14, is commonly used to study themechanismof thismass-transfer operation, as it

provides a well-defined area of contact between the two phases. In this operation, a thin

liquid film flows along the wall of the column while in contact with a gas mixture. The time

of contact between the two phases is relatively short during normal operation. As only a

small quantity of mass is absorbed, the properties of the liquid are assumed to be unaltered.

The velocity of the falling film will thus be virtually unaffected by the diffusion process.

∆y

∆y
∆x ∆x

x = 0

LW

W

y

x

x = L

Figure 26. Absorption into a falling-liquid film.
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The process involves both momentum and mass transfer. In Chapter 8, the laminar

flow of a fluid down an inclined plane was discussed. When the angle of inclination is

908, the results obtained in Section 8.2 can be used to describe the falling-film velo-

city profile. With this substitution, the differential equation for momentum transfer

becomes

dtyx

dy
þ rg ¼ 0

and the boundary conditions that must be satisfied are

at y ¼ 0 vx ¼ 0

and

at y ¼ d
@vx
@y

¼ 0

The final expression for the velocity profile is given by

vx ¼ rgd2

m

y

d
� 1

2

y

d

� �2� �
The maximum velocity will be at the edge of the film where y ¼ d; its value is

vmax ¼ rgd2

2m

Substituting this result into the velocity profile, we obtain another form of the expression

for vx

vx ¼ 2vmax

h y
d
� 1

2

� y
d

�2i
(26-71)

The differential equation for mass transfer can be obtained by using the general

differential equation of mass transfer and eliminating the irrelevant terms or by making a

balance over the control volume, DxDyW , as shown in Figure 26.14. It is important to note

that the y component of the mass flux, NA; y, is associated with the negative y direction,

according to the axes previously established in our fluid-flow considerations. The mass

balance over the control volume is

NA, xjxþDxW Dy� NA, xjxW Dyþ NA, yjyþDyW Dx� NA, yjyW Dx ¼ 0

Dividing by W DxDy and letting Dx and Dy approach zero, we obtain the differential

equation

@NA, x

@x
þ @NA, y

@y
¼ 0 (26-72)

The one-directional molar fluxes are defined by

NA; x ¼ �DAB
@cA
@x

þ xA(NA, x þ NB; x) (26-73)

and

NA, y ¼ �DAB
@cA
@y

þ xA(NA, y þ NB; y) (26-74)
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As previously mentioned, the time of contact between the vapor and liquid is relatively

short; thus, a negligible concentration gradient will develop in the x direction, and

equation (26-73) will reduce to

NA, x ¼ xA(NA, x þ NB, x) ¼ cAvx (26-75)

The convective transport term in the negative y direction, xA(NA, y þ NB, y), involves

multiplying two extremely small values and is negligible; thus, equation (26-74) becomes

NA, y ¼ �DAB
@cA
@y

(26-76)

Substituting equations (26-75) and (26-76) into equation (26-72), we obtain

@(cAvx)

@x
� DAB

@2cA
@y2

¼ 0 (26-77)

or, as vx is dependent upon y only

vx
@cA
@x

� DAB
@2cA
@y2

¼ 0 (26-78)

The velocity profile, as defined by equation (26-71), may be substituted into equation

(26-78) yielding

2vmax

h y
d
� 1

2

� y
d

�2i @cA
@x

¼ DAB
@2cA
@y2

(26-79)

The boundary conditions for mass transfer into the falling film are

at x ¼ 0 cA ¼ 0

at y ¼ 0
@cA
@y

¼ 0

and

at y ¼ d cA ¼ cA0

Johnstone and Pigford7 solved equation (26-79) and obtained, for the dimensionless

concentration profile, the expression

cAjx¼L � cAjy¼d

cAjx¼0 � cAjy¼d

¼ 0:7857e�5:1213n þ 0:1001e�39:318n

þ 0:03500e�105:64n

þ 0:01811e�204:75n

þ . . .

(26-80)

where cAjx¼L is the concentration of solute at the bottom of the column, cAjy¼d is the

concentration of the solute at the gas–liquid interface, cAjx¼0 is the concentration of the

solute at the top of the column, n is the ratio DAB L/d
2vmax, L is the height of the column,

d is the film thickness, vmax is the maximum velocity in the film, located at the film

surface, and DAB is the diffusion coefficient of the solute in the liquid.

The specific case in which solute A penetrates only a short distance into the liquid film

because of a slow rate of diffusion or a short time of exposure can be treated by the

7 H. F. Johnstone and R. L. Pigford, Trans. AIChE, 38, 25 (1942).
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penetration theory model developed by Higbie.8 As solute A is transferred into the film at

y ¼ d, the effect of the falling film on the diffusing species is such that the fluid may be

considered to be flowing at the uniform velocity, vmax. Figure 26.15 illustrates the

penetration depth. Solute Awill not be affected by the presence of the wall; thus, the fluid

may be considered to be of infinite depth. With these simplifications, equation (26-79)

reduces to

vmax
@cA
@x

¼ DAB
@2cA
@y2

(26-81)

with the boundary conditions

at x ¼ 0 cA ¼ 0

at y ¼ d cA ¼ cA0

and

at y ¼ �1 cA ¼ 0

Equation (26-81) can be transformed into a form commonly encountered in unsteady-

state mass transfer. If j is set equal to d� y, the transformed equation and boundary

conditions become

vmax
@cA
@x

¼ DAB
@2cA

@j2
(26-82)

and

at x ¼ 0 cA ¼ 0

at j ¼ 0 cA ¼ cA0

and

at j ¼ 1 cA ¼ 0

This partial differential equation can be solved by using Laplace transforms. On applying

the transforms in the x direction, we obtain an ordinary differential equation in the s

domain

vmaxscA � 0 ¼ DAB
d2cA(j, s)

dj2

or

d2cA

dj2
� vmaxscA

DAB
¼ 0 (26-83)

This ordinary equation is readily solved to give

cA ¼ A1 exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vmaxs

DAB
j

r� �
þ B1 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vmaxs

DAB
j

r� �
(26-84)

Penetration
depth

Figure 26.15

Penetration depth in

a falling film.

8 R. Higbie, Trans. AIChE, 31, 368–389 (1935).

486 Chapter 26 Steady-State Molecular Diffusion



The constants A1 and B1 are evaluated, using the two transformed boundary conditions

at j ¼ 0 cA(0, s) ¼ cA0
s

at j ¼ 1 cA(1, s) ¼ 0

yielding the solution

cA ¼ cA0

s
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vmaxs

DAB
j

r� �
(26-85)

Equation (26-85) can be transformed back to the x domain by taking the inverse

Laplacian, yielding

cA(x, j) ¼ cA0 1� erf
jffiffiffiffiffiffiffiffiffiffiffiffiffi

4DABx

vmax

r
0
BB@

1
CCA

2
664

3
775

cA(x, j) ¼ cA0 1� erf
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4DABtexp
p
 !" # (26-86)

where the time of exposure is defined by texp ¼ x/vmax.

The error function, a mathematical form that is commonly encountered in transient

problems,was discussed inChapter 18. Similar to othermathematical functions, tables have

been prepared of the error function and one of these tables is presented in Appendix L.

The local mass flux at the surface, where j ¼ 0 or y ¼ d, is obtained by differ-

entiating equation (26-86) with respect to j and then inserting the derivative into equa-

tion (26-76).

NA, yjj¼0 ¼ NA, yjy¼d ¼ �DAB
@cA
@y

����
y¼d

The unidirectional flux becomes

NA, yjy¼d ¼ cA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DABvmax

px

r
(26-87)

or

NAyjy¼d ¼ cAo

ffiffiffiffiffiffiffiffiffiffi
DAB

ptexp

s
(26-88)

As the concentration driving force in the falling-liquid film

DcA ¼ cA1 � cA2 ¼ cAo � 0

equation (26-88) can be written

NAyjy¼d ¼
ffiffiffiffiffiffiffiffiffiffi
DAB

ptexp

s
(cA1 � cA2)

A comparison of this equation with the convective mass-transfer equation

NAy ¼ kc(cA1 � cA2) (26-68)
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reveals that

kc ¼
ffiffiffiffiffiffiffiffiffiffi
DAB

ptexp

s
(26-89)

In equation (26-89), we see that the convective mass-transfer coefficient, kc, is propor-

tional to the diffusion coefficient raised to the 1
2 power. This dependency was also

shown earlier in Section 26.2 for the diffusion of a solute into a liquid accompanied

by a rapid chemical reaction. Penetration theory considers that the solute only

penetrates a short distance into the liquid phase due to a short residence time of

exposure of the solute with the liquid, or because the solute rapidly disappears by a

chemical reaction within the liquid. Consequently, penetration theory proposes that

liquid-phase mass-transfer coefficient for transferring species Awill assume the form of

equation (26-89).

26.5 CLOSURE

In this chapter, we have considered solutions to steady-state molecular mass-transfer

problems. The defining differential equations were established by simplifying the general

differential equation for mass transfer or through the use of a control volume expression for

the conservation of mass. It is hoped that this two-pronged attack will provide the student

with an insight into the various terms contained in the general differential equation, and thus

enable the reader to decide whether the terms are relevant or irrelevant to any specific

situation.

One-directional systems both with and without chemical production were consid-

ered. Two models of convective mass transfer, film theory and penetration theory, were

introduced. These models will be used in Chapter 28 to evaluate and explain convective

mass-transfer coefficients.

PROBLEMS

26.1 An Arnold cell is to be operated as a pseudo-steady-state

cell to determine the gas diffusivity of benzene in air at 308 K

and 1.0 atm. The 20-cm-long tube, with an inner diameter of

1.0 cm, is initially loaded with liquid benzene to a depth of

1.0 cm from the bottom of the tube. The tube and the liquid are

maintained at a constant temperature of 308 K. At this tem-

perature, benzene exerts a vapor pressure of 0.195 atm. Air is

continually blown over the top of the tube, removing any of

the vaporized benzene vapor; the gas space within the tube

is essentially stagnant. At 308 K, liquid benzene’s density is

0:85 g/cm3.

a. It was determined that 72.0 h were required to completely

evaporate the benzene initially loaded into the tube. Esti-

mate the binary gas-phase diffusion coefficient for benzene

in air using these data.

b. Compare your evaluated diffusivity with the value reported

in Appendix J.1. What is a possible reason for any differ-

ence in these values?

26.2 Helium gas is seperated from other components of a gas

mixture by its selective diffusion through the wall of a Pyrex

glass tube. Under steady-state conditions, the partial pressures

of helium at the inner and outer surfaces of the Pyrex tube are

1.5 and 1.0 bar, respectively. If the wall thickness of the Pyrex

tubing is 3 mm, determine

a. the flux of He through a tube having an inside diameter of

1.0 cm;

b. the concentration profile, cA(r), of helium within the wall.

26.3 A tankwith its top open to the atmosphere contains liquid

methanol (MeOH, molecular weight 32g/mol) at the bottom of

the tank. The tank is maintained at 308C. The diameter of the

cylindrical tank is 1.0m, the total height of the tank is 3.0m, and

the liquid level at the bottom of the tank is maintained at 0.5 m.

The gas space inside the tank is stagnant and the MeOH vapors

are immediately dispersed once they exit the tank. At 308C, the
vapor pressure exerted by liquid MeOH is 163 mmHg and at

408C theMeOHvapor pressure is 265mmHg.We are concerned
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that this open tank may be emitting a considerable amount of

MeOH vapor.

a. What is the emission rate of MeOH vapor from the tank in

units of kg MeOH/day when the tank is at a temperature of

308C? State all assumptions and boundary conditions.

b. If the temperature of the tank is raised to 408C, what is the
new methanol emission rate?

26.4 Ethanol is diffusing through a 4-mm stagnant film of

water. The ethanol concentrations of the entrance and the

existing planes are maintained at 0.1 and 0:02mol/m3, respec-

tively. If the water film temperature is 283 K, determine the

steady-state molar flux of the ethanol and the concentration

profile as a function of the position z within the liquid film.

Compare these results with a 4-mm stagnant film of air at 283 K

and 1 atm at the same entrance and exit ethanol concentrations.

26.5 Consider the process shown in the figure below. A slab

contains parallel linear channels running through a nonporous

slab of thickness 2.0 cm. The gas space over the slab contains a

mixture of A and B maintained at a constant composition. Gas-

phase species A diffuses down a straight, 1.0-mm-diameter

channel. At the base of the slab is a catalytic surface that

promotes the isomerization reaction A(g)!B(g). This reaction

occurs very rapidly so that the production of B is diffusion

limited. The quiescent gas space in the channel consists of only

species A andB. The process is isothermal at 1008C and isobaric

at 2.0 atm total system pressure. The bulk composition over

the slab is maintained at 40 mol% A and 60 mol% B. The

molecular weight of species A and its isomer B is 58 g/mol.

Monolith catalyst

Bulk gas phase
40 mol% A, 60 mol% B

z = L = 2.0 cm

1-mm-diameter
channels
(cylindrical pores)

z = 0

Catalytic surface
A(g) B(g)

a. Listing all of your assumptions, simplify the general mass-

transfer equation for species A.

b. Develop a final integrated equation for the flux of product B.

Be sure to specify your boundary conditions.

c. The binary gas-phase molecular diffusion coefficient of

species A in species B is 0:1 cm2/s at 258C and 1.0 atm.

What is a reasonable estimate for the molecular flux of

species B in species A under the conditions of the operation?

d. If the total production rate, WA, is 0.01 mol B/min, what is

the required number of 1.0-mm-diameter channels neces-

sary to accomplish this production rate?

26.6 The following illustrated spherical capsule is used for

long-term, sustained drug release. A saturated liquid solution

containing the dissolved drug (soluteA) is encapsulatedwithin a

rigid gel-like shell. The saturated solution contains a lump of

solid A, which keeps the dissolved concentration of A saturated

within the liquid core of the capsule. Solute A then diffuses

through the gel-like shell (the gel phase) to the surroundings.

Eventually, the source forA is depleted, and the amount of solute

Awithin the liquid core goes down with time. However, as long

as the lump of solid A exists within the core, the source solution

is saturated in A and the concentration cA is constant. The

diffusion coefficient of solute A in the gel phase B is DAB ¼
1:5� 10�5 cm2/s. The concentrations of solute A in the gel

phase at the boundaries of the shell are

@ r ¼ R1 ¼ 0:2 cm, cA ¼ cAs ¼ cA ¼ 0:01 gmol/cm3 ,

the solubility limit of A in the gel.

@ r ¼ R0 ¼ 0:35 cm; cA ¼ cAo:

Sustained drug-release spherical capsule

Drug (solute A)
dissolved in liquid

(at saturation)

Lump of
solid species A

Gel capsule
shell r = Rf r = Ro

cA = cAs cA = cAo

a. State the differential forms of the flux equation and the

differential equation for mass transfer for this diffusion

process.

b. Develop the final analytical, integrated equation to deter-

mine the total rate of drug release, WA, from the capsule

under the condition where the concentration of Awithin the

liquid core of the capsule remains constant.

c. What is the maximum possible rate of drug release from the

capsule, in units of gram moles of A per hour?

26.7 A spherical ball of solid, nonporous naphthalene, a

‘‘moth ball’’, is suspended in still air. The naphthalene ball

slowly sublimes, releasing the naphthalene into the surrounding

air by molecular diffusion-limited process. Estimate the time

required to reduce the diameter from 2 to 0.5 cm when the

surrounding air is at 347K and 1:013� 105 Pa. Naphthalene has

amolecular weight of 128 g/mol, a solid density of 1:145 g/cm3,
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a diffusivity in air of 8:19� 10�6 m2/s, and exerts a vapor pres-

sure of 5 Torr (666 Pa) at 347 K.

26.8 Consider the low-pressure chemical vapor deposition

(LPCVD) diffusion reactor as shown below. It is desired to

lay a thin film of the semiconductor gallium, Ga, onto a silicon

wafer surface. Gallium metal is not volatile, but trimethyl

gallium (TMG; GaðCH3Þ3, 114.72 g/g mol) is volatile. In the

presence of an H2 gas, at high temperature, TMG will decom-

pose to solid Ga on a surface by the following reaction:

700°C, 0.2 ATM
(uniform concentration)

Diffuser
Quiescent

gas
Ga thin

film

Ga(CH3)3 vapor
+ H2 gas

Ga(CH3)3
H2 CH4

z = δ

z = 0

Heated plate

Ga(CH3)3(g)þ 3
2H2(g)!Ga(s)þ 3CH4(g)

At 7008C, this surface reaction is diffusion limited. Let gas-

phase species A ¼ TMG; B ¼ H2 andC ¼ CH4.

a. Develop an integral model to predict the flux of TMG to

the wafer surface. Keep your final model in algebraic

form. Provide appropriate assumptions and boundary con-

ditions. At this point, you may not assume that the process

is dilute.

For parts (b) and (c), consider a process where the feed

gas consists of 99.98 mol% H2 and 0.02 mol% TMG. The

temperature and total system pressure are 7008C and

0.20 atm, respectively. The binary diffusion coefficient of

TMG in H2 at 7508C and 1.0 atm is known to be 2:0 cm2/s.

b. What is the simplified form of the model previously devel-

oped in part (a)?

c. What is the value of an appropriate diffusion coefficient for

this process?

26.9 Microelectronic devices are fabricated by forming many

layers of thin films onto a silicon wafer. For example, thin films

of arsenic as a common dopant for silicon are commonly

deposited onto silicon by chemical vapor deposition, or CVD,

of arsine (AsH3) vapor onto the surface of the wafer. The

chemical reaction for this CVD process is

AsH3(g)!As(s)þ 3
2H2(g)

It is proposed to allow this process to take place at a pressure

of 303.9 Pa and a temperature of 6008C. In many CVD reactors,

the gas phase over the thin film is not mixed. Furthermore,

at high temperatures, the surface reaction is very rapid. Con-

sequently, the molecular diffusion of AsH3 vapor to the

surface often controls the rate of As(s) formation. Consider

the very simplified CVD reactor illustrated in Chapter 25,

Problem 25.11.

A mixture of arsine and hydrogen gas continuously flows

into the reactor. Themixture contains 20mol%arsine.A diffuser

provides a quiescent gas space over the growing As film. The

distance from the diffuser to the film surface is 6.0 cm. The gas

mixture may be assumed to behave as an ideal gas. The

molecular weight of arsenic, As, is 75 g/g mol. The Lennard–

Jones parameters for SiH4 are sA ¼ 4:08A8 and eA/k ¼ 207:6.

a. What is the molecular diffusion coefficient of arsine vapor

in hydrogen gas at 6008C and 303.9 Pa?

b. Develop a model to predict the diffusion-limited flux of

arsine to the surface of the wafer. State at least three

assumptions relevant to this process.

c. The diameter of the wafer is 15 cm. Estimate the initial

deposition rate of arsenic onto the surface of the wafer, in

units of grams of As per minute.

26.10 Consider a hemispherical droplet of liquid water resid-

ing on a flat surface. Still air surrounds the droplet. At an

infinitely long distance from the gas film, the concentration

of water vapor is effectively zero. At a constant temperature of

308C and 1.0 atm total pressure, the evaporation rate of the

droplet is controlled by the rate of the molecular diffusion

through the still air. Determine the time it will take for the

water droplet to completely evaporate at 308C and 1.0 atm total

system pressure if the initial droplet radius is 5 mm. The vapor

pressure of water at 308C can be found in the steam tables.

26.11 Consider themetallurgical refining process illustrated in

the following figure.

100% H2 gas
(Constant concentration along outer surface)

z = 0

z = d

Porous Fe layer

Nonporous FeO layer

2.0 cm

Iron oxide, FeO, ore is being reduced to iron, Fe, by hydrogen

gas according to the reaction

FeO(s)þ H2(g)!Fe(s)þ H2O(g)

The FeO layer is nonporous, but the Fe layer is porous. Pure

hydrogen gas flows over the surface of the slab. As FeO is

reduced to Fe, the path length for diffusion of H2 gas through the

porous slab from the surface to the FeO/Fe boundary increases

with time. In making your model, you may assume that (1) the

process operates under constant conditions of 400Kand 1.0 atm;

(2) the reaction is very rapid so that the reduction of FeO is

limited by the diffusion of H2 to the FeO/Fe boundary; (3) the

diffusion process is pseudo-steady state along the path length;

and (4) the effective gas-phase diffusion coefficient of water in

hydrogen is 1:7 cm2/s within the porous solid under the condi-

tions of the process. The bulk density of the FeO solid is

2:5 g/cm3, and the molecular weight of FeO is 71.85 g/g mol.
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a. Reduce the general differential equation for mass transfer to

describe the diffusion of H2.

b. Determine the molar flux of H2 to the FeO/Fe boundary

when d ¼ 1 cm.

c. Determine the minimum time necessary for FeO to be

converted to Fe from d ¼ 1 to d ¼ 2:0 cm.

26.12 Condsider the timed drug-release pill illustrated below.

(Essentially water)
cA,∞ ≈ 0

cA,∞ ≈ 0

Initially

Cross-sectional
view of pill

At a 
later time

0.36cm

Solid
drug A

z

r

0.4 mm

NA

Lo =
1.2 mm

Lt =
2.0 mm

Thepill is ingested into the stomach. The pill is a slab, 0.36 cmper

side, that has an array of 16 cylindrical pores in it. Each pore is 0.4

mm indiameter and 2.0mmdeep. Pure solid drugA is loaded into

each pore to a depth of 1.2mm,which provides a total initial drug

loading of 2.65mg in all of the pores. The density of the solid drug

A is 1:10 g/cm3. The drug dissolves into the fluid inside the

stomach, which approximates the properties ofwater (component

B). The maximum solubility of drug A in water is 2:0�
10�4gmol/cm3 (i.e., not very soluble) and the diffusion coeffi-

cient of the drug is 2:0� 10�5 cm2/s at body temperature of

378C. The molecular weight of the drug is 120 g/mol.

a. Starting with the general differential equation for mass

transfer and Fick’s flux equation, develop a simple model,

in final integrated form, for predicting the flux of the drug

from one pore. You may assume that the diffusion process

is pseudo-steady state, the stomach fluid serves as an infinite

sink for the drug so that cA ¼ 0, and the drug does not chemi-

cally degrade inside the pore.

b. From your model, determine the total transfer rate of the

drug from the whole pill,WA, to the body when each 0.2 cm

pore is filled to a depth of 0.12 cm with solid drug.

c. Howmany hours will it take for all of the drug to be released?

26.13 Hydrogen (H2) gas is commonly used to reduce iron

oxide ores to metallic ores. Consider the following heteroge-

neous reduction reactions on a nonporous flat surface of the

following ores:

FeO(s)þ H2(g)!Fe(s)þ H2O(g)

TiO2(s)þ 2H2(g)!Ti(s)þ 2H2O(g)

Fe2O3(s)þ 3H2(g)! 2Fe(s)þ 3H2O(g)

Mn3O4(s)þ 4H2(g)! 3Mn(s)þ 4H2O(g)

Write the integrated form of the flux equation, assuming

(1) steady-state one-dimensional flux through a gas film of

thickness d along the coordinate z; (2) constant gas composition

at the edge of the gas film; (3) instantaneous reaction at the

surface; and (4) constant temperature and pressure. Which

reactions result in an equimolar-diffusion flux of the gas-phase

species? Hint: Carefully consider the stoichiometry associated

with each reaction.

26.14 As part of the manufacturing process for the fabrication

of titanium-oxide-based solar panels, a layer of nonporous

titanium oxide must be reduced to metallic titanium, Ti, by

hydrogen gas as shown in the following figure.

Nanoporous solid Ti layer

Nanoporous TiO2 layer

0.1 CM

100% H2 gas at z = 0
yH2

 =1.0, yH2O ≈ 0

Z = 0

Z = d

The reaction at the Ti/TiO2 boundary is given by

TiO2(s)þ 2H2(g)!Ti(s)þ 2H2O(g)

Pure H2 gas flows rapidly over the surface of the nanoporous

TiO2 slab. As TiO2(s) is reduced to Ti (molecualr weight

Ti ¼ 47:9 g/gmol), the path length for mass transfer of H2

and H2O gas through the porous slab from the surface to the

Ti/TiO2 boundary increases with time. You may assume that

(1) the process operates at 1.0 atm and 900 K; (2) the reaction is

very fast so that the concentration of H2 gas at the Ti/TiO2

boundary is zero and the reduction of TiO2(s) is limited by the

diffusion of TiO2(g) away from the Ti(s)/TiO2 boundary; (3) the

diffusion process is pseudo-steady state along the diffusion path;

and (4) the effective gas-phase diffusion coefficient of H2 within

the porous Ti(s) containing a mixture of H2(g) and H2O(g) is

0:031 cm2/s at the temperature and pressure of the process,

whereas the effective diffusion coefficient of H2O(g) within the

nanoporous Ti(s) containing a mixture of H2(g) and H2O(g) is

0:01 cm2/s at the temperature and pressure of the process. The

density of the nanoporous Ti(s) is 2:6 g/cm3.

a. Determine the flux of H2 to the Ti/TiO2 boundary when

d ¼ 0:05 cm, assuming yAo ¼ 1:0.

b. Determine the number of hours necessary for all the TiO2 to

be converted to Ti(s).

c. At z ¼ d ¼ 0:05 cm, determine the concentration profile for

H2(g).

26.15 Two very large tanks, maintained at 323 K and 1 atm

total system pressure, are connected by a 0.1-m-diameter

circular duct which is 5 m in length. Tank 1 contains a uniform

gas of 60 mol% acetone and 40 mol% air, whereas tank

2 contains a uniform gas of 10 mol% acetone and 90 mol%

air. Determine the initial rate of acetone transfer between the

two tanks. The gas diffusivity of acetone in air at 298 K and

1 atm is 0:093 cm2/s.
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26.16 Consider the novel ‘‘nanostructured’’ catalyst shown in

the following figure.

Detail for one “nanowell”
Nonostructured ordered catalyst support

Ordered catalyst support

Bulk gas (473 K, 1.25 atm)
H2(g), O2(g), H2O(g)

z

z = 0

Z = L = 200 nm 

r

Catalytic
surface

50m nm
Still
gas

H2 O2 H2 O

The catalyst support consists of an ordered array of cylindrical

‘‘nanowells’’ of 50nm diameter and 200 nm depth (1 nm ¼
10�9 m). A catalytic surface coats of the bottom of each well.

Although gas flows over the catalyst surface, the gas space

within each ‘‘well’’ is stagnant, that is, not well mixed. In the

present application, the catalyst surface is used to convert

unreacted H2 gas (species A) and O2 gas (species B) from a

fuel cell into water vapor (species C) according to the reaction

2H2(g)þ O2(g)! 2H2O(g)

For our first approximation, consider the reaction diffusion

limited within the catalyst well. The process is isothermal at

473 K and isobaric at 1.25 atm total system pressure.

a. State reasonable assumptions for this process. What is the

simplified form of the general differential equation for the

mass transfer of hydrogen? What is the simplified form of

Fick’s equation for hydrogen? Consider O2 is the dominant

species and both H2 and H2O are dilute.

b. What is the effective diffusion coefficient of H2 gas inside

each nanowell if we have a dilute system with bulk gas

mole fraction compositions for yH2
¼ 0:01 and yH2O ¼

0:01. What is the flux of H2?

26.17 ‘‘Microvia’’ are microscopic passages between two thin

films on a microelectronic device. Often, microvia are filled

with a conductive metal to make a microscopic conductor for

the flowof electrons between the two thin films. In one particular

process, tungsten is deposited onto the base of the microvia by

the following chemical vapor deposition reaction:

WF6(g)þ 3H2(g)!W(s)þ 6HF(g)

As the tungsten metal forms, it fills the microvia (2:0mm depth,

0:5mm diameter) as illustrated in the following figure:

z

z = δ

L = 2.0 µm  

z = L
SiO2

SiW(S)

Gas phase
WF6 + H2 + HF + He

0.5 µm
microvia

The tungstenmetal does not coat the sidewalls of themicrovia; it

only grows upward from the base of the microvia where the

tungsten was initially seeded. The reactants are significantly

diluted in inert Helium (He) gas to lower the deposition rate.

The temperature is 700 K, the total system pressure is 75 Pa, and

the concentrations of WF6 and H2 in the bulk gas space over the

microvia are each 0.001 mol. Assume that the tungsten deposi-

tion is limited by molecular diffusion. The molecular weight of

tungsten, W, is 184 g/mol, the molecular weight of fluorine is

19 g/mol, and the density of solid tungsten is 19:4 g/cm3.

a. Develop a pseudo-steady-state model to predict the depth of

tungsten metal within the microvia as a function of time.

b. Estimate the time required to completely fill the microvia

assuming Knudsen diffusion for WF6 vapor.

26.18 In the distillation of a benzene/toluene mixture, a

vapor richer in benzene is produced from a benzene/toluene

liquid solution. Benzene is transferred from the liquid to the

vapor phase and the less-volatile toluene is transferred in the

opposite direction. At the system temperature and pressure,

the latent heats of vaporization of benzene and toluene are

30 and 33 kJ/mol, respectively. Both components are diffusing

through a gas film of thickness d. Develop an equation to

predict the steady-state flux of benzene through the gas film.

The equation must include terms for the bulk gas-phase

mole fraction of benzene, the gas-phase mole fraction of

benzene in equilibrium with the liquid solution, the diffusion

coefficient of benzene/toluene, the diffusion path d, and the

total molar gas concentration. Assume the distillation is an

adiabatic process.

26.19 An important step in the purification of uranium iso-

topes involves the conversion of uranium to uranium hexa-

fluoride, UF6. In the present process, UF6 is prepared by

exposing uranium pellets, spherical in shape, to fluorine gas

at 1000 K and 1 atm pressure. The molecular diffusion of the

fluorine gas to the pellet surface is thought to be the controlling

step. If the reaction

U(s)þ 3F2(g)!UF6(g)

occurs irreversibly and instantaneously on the pellet surface, and

the diffusivity of fluorine gas through uranium hexafluoride gas

is 0:273 cm2/s at 1000 K and 1 atm, determine the production

rate of UF6 when the pellet diameter is 0.4 cm.

26.20 Consider the ‘‘drug patch’’shownbelow. The drugpatch

looks like a sandwich consisting of a pure drug source mounted

on top of a gel diffusion barrier. The gel diffusion barrier has a

thickness of 2.0 mm. The gel barrier is in direct contact with the

skin. The drug release vs. time profile for a 3.0-cm square patch

at 208C is also shown below. Other experiments showed that the

drug was immediately taken up into the body after exiting the

patch. The maximum solubility of the drug in the gel diffusion

barrier is 0:5mmol/cm3. The drug is only slightly soluble in the

gelmaterial. The solubility of the drug in the gel diffusion barrier

is not affected by the temperature.
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a. From the data in the drug release vs. time profile, estimate

the effective diffusion coefficient of the drug in the diffusion

barrier.

b. When used on the body, heat transfer raises the temperature

of the drug patch to about 358C. What is the new drug

delivery rate,WA, at this temperature in units of mmol/day?

You may assume that the gel-like diffusion barrier material

approximates the properties of water. The viscosity of liquid

water is 0.00993 g/cm s at 208C and 0.00742 g/cm s at 358C.

26.21 The permeability of solids by gases is experimentally

determined by steady-state diffusion measurements. The diffus-

ing solute is introduced at one side of the membrane and

removed from the other side as a gas.

For a diatomic gas, A2, which dissociates upon dissolving

into a solid, Sievert’s law relates the concentration of A atoms in

the surface layer of the membrane, cA1 , in equilibrium with the

applied pressure, p1, of the diatomic gas by the relation

cA1
¼ k( p1)

1/2

This same equation also holds at the other surface of the

membrane for the off-gas pressure, p2. Sievert’s law is a variant

of Henry’s law for gases that dissociate upon dissolving.

a. Prove that the rate of diffusion of a diatomic gas from a

high-pressure reservoir, p1, through a membrane of thick-

ness z, into a low-pressure reservoir, p2, is

JA2
¼ DA2k( p

1/2
1 � p1/22 )

z

where DA2 is the diffusivity of A2 through the membrane.

When standard pressures are employed with a membrane of

standard thickness, JA2 is called the permeability of A2.

b. A piece of laboratory equipment operating at 7008C con-

tains hydrogen gas at 8 atm that is separated from a continu-

ously evacuated space by an 8 cm2 nickel disk, 2 mm thick.

The solubility of hydrogen in nickel at 1 atm pressure

and 7008C is approximately 7:0 cm3/100 g of nickel. The

diffusivity of hydrogen through nickel at 7008C is

6� 10�5 cm2/s, and the density of nickel at 7008C is

9:0 g/cm3. Calculate the number of cubic centimeters of

hydrogen per hour that diffuses through the nickel.

26.22 Living cells homogeneously distributed (immobilized)

with an agarose gel require glucose to survive. An important

aspect of the biochemical systemdesign is the effective diffusion

coefficient of glucose (species A) into the cell-immobilized gel.

Consider the experiment shown below where a slab of the

cell-immobilized gel of 1.0 cm thickness is placed within a

Well-mixed
glucose solution

constant
concentration
(50 mmol/L)

Well-mixed
glucose solution

constant
concentration
(50 mmol/L)

Living cells in
agarose gel

RA= –0.05 mmol/cm3 min
(1.0 cm thick)

Sampling
syringe

(center of gel)

well-mixed aqueous solution of glucose maintained at a con-

centration of 50 mmol/L. The glucose consumption within the

cell-immobilized gel proceeds by a zero-order process given by

RA ¼ �m ¼ �0:05mmol/Lmin (26-70)

The solubilities of the glucose in both water and the gel are the

same; that is, the concentration of glucose on the water side of

the water–gel interface is equal to the concentration of glucose

on the gel side of the water–gel interface. A syringe mounted at

the center of the gel carefully excises a tiny sample of the gel for

glucose analysis.

Develop a model in final integrated form to predict the

concentration profile of glucose within the gel. Be careful with

specification of boundary conditions, so that your model is truly

predictive and is based only on process input parameters, not

measured parameters.

26.23 Acylindrical graphite (pure carbon) rod of length 25 cm

and initial diameter of 2 cm is inserted into a flowing air streamat

1100 K and 2 atm total pressure. The flowing gas creates a

stagnant gas boundary layer 5 mm thick around the external

surface of the rod. At this high temperature, the solid carbon
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oxidizes to carbon dioxide, CO2, gas

C(s)þ O2(g)!CO2(g)

The oxidation reaction is limited by the molecular diffusion of

O2 through the stagnant gas film surrounding the surface of the

rod. Outside of the gas film, the bulk composition of the air

stream prevails.

a. Estimate the initial rate of CO2 production from the rod,

assuming that the surface reaction is diffusion limited.

b. How long will it take for the rod to disappear? The density

of solid graphite is 2:25 g/cm3.

26.24 Ammonia, NH3, is selectively removed from an

air–NH3 mixture by absorption into water. In this steady-

state process, ammonia is transferred by molecular

diffusion through a stagnant gas layer 2 cm thick, and then

through a stagnant water layer 1 cm thick as shown in the

figure. The concentration of ammonia at the upper boundary

of the

Liquid film

Gas film

Gas–liquid interface

Sink for NH3

Source for NH3

NA

CA = 0

z = 0 cm

z = 2 cm

z = 3 cm

yA∞ = 0.0342

gas layer is 3.42 mol%, and the concentration at the lower

boundary of the water layer is essentially zero. The tempera-

ture of the system is 158C and the total pressure on the system

is 1 atm. The concentration of ammonia (species A) at the

interface between the gas and the liquid phase is given by the

following equilibrium data:

Determine the flux of ammonia across both the gas and liquid

films. At 158C, the diffusivity of ammonia in air is 0:215 cm2/s,

and the diffusivity of ammonia in liquid water is 1:77�
10�5 cm2/s.

26.25 In a combustion chamber, oxygen diffuses through air

to the carbon surface where it reacts to make CO and/or CO2.

The mole fraction of oxygen at z= 0 is 0.21. The reaction at the

surface may be assumed to be instantaneous. No reaction occurs

in the gas film.

Carbon

Oxygen CO and/or CO2

Z = 0

Z = d

Determine the rate of oxygen diffusion per hour through one

square meter of area if

a. only carbon monoxide, CO, is produced at the carbon

surface;

b. only carbon dioxide, CO2, is produced at the carbon surface;

c. the following instantaneous reaction occurs at the carbon

surface:

4C(s)þ 3O2(g)! 2CO(g)þ 2CO2(g):

26.26 The data provided in Figure 26.5 are based on the

diffusion of O2 into SiO2 formed from the oxidation of (100)

crystalline silicon at 10008C. Estimate the diffusion coefficient

of O2 in SiO2 formed from the oxidation of (111) crystalline

silicon at 10008C, using the following data provided by Hess9:

The maximum solubility of O2 in the SiO2 is 9:6�
10�8 mol O2=cm

3 solid at 10008C and 1 atm O2 gas partial

pressure.

26.27 A 20-cm-long, cylindrical graphite (pure carbon) rod is

inserted into an oxidizing atmosphere at 1145 K and 1:013�
105 Pa pressure. The oxidizing process is limited by the diffu-

sion of oxygen counterflow to the carbon monoxide that is

formed on the cylindrical surface. Under the conditions of

the combustion process, the diffusivity of oxygen in the gas

mixture may be assumed to be 1:0� 10�5 m2/s.

a. Determine the moles of CO that are produced at the surface

of the rod per second at the time when the diameter of the

rod is 1.0 cm and the oxygen concentration that is 1.0 cm

radial distance from the rod is 40 mol%. Assume a steady-

state process.

b. What would be the composition of oxygen 1.0 cm from the

center of the rod.

PA(mmHg) 5.0 10.0 15.0 20.0 25.0 30.0

cA(mol/m3) 6.1 11.9 20.0 32.1 53.6 84.8

Time (h)

Measured SiO
2

(100) Si

film thickness (mm)

(111) Si

1 0.049 0.070

2 0.078 0.105

4 0.124 0.154

7 0.180 0.212

16 0.298 0.339

9D. W. Hess, Chem. Eng. Educ., 24, 34 (1990).
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26.28 Please refer to Example 4. Consider now that the

biofilm is a homogeneous sphere of 2.0 mm diameter. First,

verify that the concentration profile of phenol within the sphere

is

cA ¼ cAo
R sinh(r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1DAB

p
)

r sinh(R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1DAB

p
)

for 0 � r � R. From this expression, derive an appropriate

expression for the flux NA at the surface of the sphere (r =

R). Then calculateNA using the values for cAo; k1, andDAB given

in Example 4. Compare your results to the flux obtained in

Example 4 and discuss any differences.

Hint: Define a new lumped parameter y ¼ cAr to reduce the

second-order differential equation for cA(r) from a ‘‘variable

coefficients’’ form to a ‘‘constant coefficients’’ form.

26.29 The following problem illustrates the gas-phase diffu-

sion in the neighborhood of a flat catalytic surface. Component

A diffuses through a stagnant film containing only A and B.

Upon reaching the catalytic surface, it is instantaneously con-

verted into speciesBby the reactionA!B.WhenBdiffusesback

into the stagnant film, it begins to decompose by the first-order

reaction B!A. The rate of formation of component Awith the

film is equal to RA ¼ k1yB, moles A produced/(time) (volume),

where yA is the concentration of B expressed in mole fraction.

Determine the rate at which A enters the gas film if this is a

steady-state process.

26.30 Reconsider Problem 26.29 and determine the concen-

tration profile of compoundA in the stagnant film if in the filmB

decomposes to form A and if A reacts to form B, both by first-

order reactions

A!k
0
1

k1
B; RA ¼ k1yB � k01yA

Simultaneously, A is instantaneously reacting to form B on the

flat catalytic surface.

Problems 495



Chapter 27

Unsteady-State Molecular

Diffusion

In Chapter 26, we restricted our attention to describing the steady-state molecular

diffusion where the concentration at a given point was constant with time. In this chapter,

we shall consider problems and their solutions that involve the concentration varying with

time, thus resulting in unsteady-state molecular diffusion or transient diffusion. Many

common examples of unsteady-state transfer will be cited. These generally fall into two

categories: a process that is in an unsteady state only during its initial startup, and a

process in which the concentration is continually changing throughout its duration.

The time-dependent differential equations are simple to derive from the general

differential equation of mass transfer. The equation of continuity for component A in

terms of mass

=:nA þ @rA
@t

� rA ¼ 0 (25-5)

or in terms of moles

=:NA þ @cA
@t

� RA ¼ 0 (25-11)

contains the concentration time-dependent of the unsteady-state accumulation term. It

also contains the net rate of mass efflux of species A, which accounts for the variation of

the concentration with spatial directions. The solution to the resulting partial differential

equations is generally difficult, involving relatively advanced mathematical techniques.

We will consider the solutions to some of the less complex mass-transfer processes. A

detailed discussion of the mathematics of diffusion is beyond the scope of this book. An

excellent reference on the subject is a treatise by Crank.1

27.1 UNSTEADY-STATE DIFFUSION AND FICK’S SECOND LAW

Although the differential equations for unsteady-state diffusion are easy to establish, most

solutions to these equations have been limited to situations involving simple geometries and

boundary conditions, and a constant diffusion coefficient. Many solutions are for one-

directional mass transfer as defined by Fick’s second ‘‘law’’ of diffusion

@cA
@t

¼ DAB
@2cA
@z2

(27-1)

1 J. Crank, The Mathematics of Diffusion, 2nd edition, Oxford University Press, 1975.
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This partial differential equation describes a physical situation in which there is no bulk

motion contribution, that is, v ¼ 0, and no chemical reaction, that is,RA ¼ 0. This situation is

encountered when the diffusion takes place in solids, in stationary liquids, or in systems

having equimolar counterdiffusion. Due to the extremely slow rate of diffusionwithin liquids,

the bulk motion contribution of Fick’s first law (i.e., yA
P

Ni) approaches the value of zero

for dilute solutions; accordingly, this system also satisfies Fick’s second law of diffusion.

Itmay be advantageous to express equation (27-1) in terms of other concentration units.

For example, the mass density of species A, rA, is equal toMAcA; by multiplying both sides

of equation (27-1) by the constant molecular weight of A, we obtain

@rA
@t

¼ DAB
@2rA
@z2

(27-2)

If the density of the given phase remains essentially constant during the mass-transfer

period, the density of species A can be divided by the total density, rA/r; this ratio is the

weight fraction of A, wA, and our equation becomes

@wA

@t
¼ DAB

@2wA

@z2
(27-3)

However, when the phase loses a considerable amount of the solute, the total density, r,
will not be constant and equation (27-3) cannot be used to explain the transient mass

transfer. Under these circumstances, it is preferable to divide by the density of the given

phase on a solute-free basis (as an example, during the drying of a piece of wood, the

density of the moisture-free solid will be constant). On dividing equation (27-2) by the

constant rA-free, we obtain

@
rA

rA-free

� �
@t

¼ DAB

@2
rA

rA-free

� �
@z2

or

@w0
A

@t
¼ DAB

@2w0
A

@z2
(27-4)

where w0
A is the weight fraction of A divided by one minus the weight fraction of A.

Equations (27-1)–(27-4) are similar in form to Fourier’s second ‘‘law’’ of heat conduction

@T

@t
¼ a

@2T

@z2
(27-5)

thereby establishing an analogy between transient molecular diffusion and heat conduction.

The solution to Fick’s second law usually has one of two standard forms. It may involve

error functions or related special integrals that are suitable for small values of time, or it may

appear in the form of trigonometric series that converges at large values of time. Analytical

solutions are commonly obtained by Laplace transform techniques or by the separation of

variables. The analytical solution to Fick’s second law is described for transient diffusion

into a semi-infinite medium and for transient diffusion into a finite-dimensional medium.

27.2 TRANSIENT DIFFUSION IN A SEMI-INFINITE MEDIUM

An important case of transient mass diffusion amenable to analytical solution is the one-

dimensional mass transfer of a solute into a semi-infinite stationary liquid or solid medium
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where surface concentration of the solute is fixed. For example, wemight like to describe the

absorption of oxygen gas into a deep tank of still water, the ‘‘doping’’ of phosphorous into a

silicon wafer, or the solid-phase diffusion process involved in the case-hardening of mild

steel within a carburizing atmosphere. Figure 27.1 depicts the concentration profiles as the

time increases for a semi-infinite medium that has a uniform initial concentration of cAo and

a constant surface concentration of cAs. The differential equation to be solved is

@cA
@t

¼ DAB
@2cA
@z2

(27-1)
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diffusion in a semi-infinite

medium.

Equation () is subject to the initial condition

t ¼ 0, cA(z, 0) ¼ cAo for all z

Two boundary conditions are required. The first boundary condition at the surface is

at z ¼ 0, cA(0; t) ¼ cAs for t> 0

A second boundary condition in the z direction must be specified. It is obtained by assuming

that the diffusing solute penetrates only a very small distance during the finite time of

exposure in comparison to the depth of the medium; this assumption provides the boundary

condition

at z ¼ 1, cA(1, t) ¼ cAo for all t

The analytical solution of equation () under the stated boundary and initial conditions

can be obtained by Laplace transform techniques. The analytical solution is facilitated by

making the boundary conditions homogeneous using the simple transformation

u ¼ cA � cAo

The partial differential equation and its initial and boundary conditions become

@u

@t
¼ DAB

@2u

@z2
(27-6)

with

u(z, 0) ¼ 0

u(0, t) ¼ cAs � cAo

u(1, t) ¼ 0

498 Chapter 27 Unsteady-State Molecular Diffusion



The Laplace transformation of equation (27-6) with respect to time yields

su � 0 ¼ DAB
d2u

dz2

which readily transforms into the ordinary differential equation

d2u

dz2
� s

DAB
u ¼ 0 (27-7)

with the transformed boundary conditions of

u(z ¼ 0) ¼ cAs � cAo

s

and

u(z ¼ 1) ¼ 0

The general analytical solution of this differential equation is

u ¼ A1e
þ
ffiffiffiffiffiffiffiffiffiffiffi
s/DABz

p
þ B1e

�
ffiffiffiffiffiffiffiffiffiffiffi
s/DABz

p

The boundary condition at z ¼ 1 requires integration constant A1 to be zero. The boundary

condition at z ¼ 0 requires

B1 ¼ (cAs � cAo)

s

Therefore, the general analytical solution reduces to

u ¼ (cAs � cAo)

s
e�

ffiffiffiffiffiffiffiffiffiffiffi
s/DABz

p
(27-8)

The inverse Laplace transform of equation (27-8) can be found in any appropriate

Laplace transform table. The result is

u ¼ (cAs � cAo)erfc
z

2
ffiffiffiffiffiffiffiffiffiffi
DABt

p
� �

which can be expressed as the dimensionless concentration change with respect to the

initial concentration of species A, cAo, as

cA � cAo

cAs � cAo
¼ erf c

z

2
ffiffiffiffiffiffiffiffiffiffi
DABt

p
� �

¼ 1� erf
z

2
ffiffiffiffiffiffiffiffiffiffi
DABt

p
� �

(27-9)

or with respect to the surface concentration of species A, cAs, as

cAs � cA

cAs � cAo
¼ erf

z

2
ffiffiffiffiffiffiffiffiffiffi
DABt

p
� �

¼ erf(f) (27-10)

Equation (27-10) is analogous to heat conduction in a semi-infinite wall given by equation

(18-20). The argument of the error function, given by the dimensionless quantity

f ¼ z

2
ffiffiffiffiffiffiffiffiffiffi
DABt

p

contains the independent variables of position (z) and time (t).
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In general, the error function is defined by

erf(f) ¼ 2ffiffiffi
p

p
Z f

0

e�j2dj

Where f is the argument of the error function and j is the dummy variable for f. The error
function has the following properties: erf(0) ¼ 0 and erf(1) ¼ 1:0. The error function is

approximated by

erf (f) ¼ 2ffiffiffi
p

p f� f3

3

� �
if f � 0:5

and

erf (f) ¼ 1� 1

f
ffiffiffi
p

p e�f2

if f> 1:0

A short table of the values of erf (f) is presented in Appendix L.

The one-dimensional diffusion flux of species A into the semi-infinite medium at the

surface of the medium (z ¼ 0) is

NA z¼0 ¼ �DAB
dcA

dz

����
����
z¼0

To obtain the diffusive flux of speciesA into the semi-infinitemedium, we need to obtain the

derivative of cA with respect to z. By applying the chain rule of differentiation of the error

function to equation (27-10), we obtain

dcA

dz

����
z¼0

¼ � (cAs � cAo)ffiffiffiffiffiffiffiffiffiffiffiffi
pDAB

p

which is inserted into the flux equation to obtain

NA,zjz¼0 ¼
ffiffiffiffiffiffiffiffiffi
DAB

pt

r
(cAs � cAo) (27-11)

The total amount of species A transferred with time t can be determined by integrating

the flux with time.

WAt �WAo ¼ S

Zt
0

NA;zjz¼0 dt ¼ S

Zt
0

ffiffiffiffiffiffiffiffiffi
DAB

pt

r
(cAs � cAo) dt ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4DABt

p

r
(cAs � cAo)

27.3 TRANSIENT DIFFUSION IN A FINITE-DIMENSIONAL MEDIUM UNDER
CONDITIONS OF NEGLIGIBLE SURFACE RESISTANCE

Solutions for time-dependent mass-transfer processes have been obtained for simple

geometrical shapes using the separation-of-variables technique. These bodies, initially

possessing a concentration of cAo, are subjected to a sudden change in the surrounding

environment that brings the surface concentration to cAs.

To illustrate the analytical technique of separation of variables, consider the molecular

diffusion of a solute through a solid slab of uniform thickness L. Due to the slow rate of mole-

cular diffusionwithin solids, the bulk contribution term of Fick’s first law approaches zero, and

so our solution for the concentration profile will satisfy the partial differential equation

@cA
@t

¼ DAB
@2cA
@z2

(27-1)
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with initial and boundary conditions

cA ¼ cAo at t ¼ 0 for 0 � z � L

cA ¼ cAs at z ¼ 0 for t> 0

cA ¼ cAs at t ¼ L for t> 0

This transport process is analogous to the heating of a body under conditions of negligible

surface resistance as discussed in Chapter 18. The boundary conditions above are simplified

by expressing the concentrations in terms of the dimensionless concentration change Y,

given by

Y ¼ cA � cAs

cAo � cAs

The partial differential equation becomes

@Y

@t
¼ DAB

@2Y

@z2
(27-12)

with the initial and boundary conditions

Y ¼ Yo at t ¼ 0 for 0 � z � L

Y ¼ 0 at z ¼ 0 for t> 0

Y ¼ 0 at t ¼ L for t> 0

Let us assume that there is a product solution to the partial differential equation of the

form

Y(z, t) ¼ T(t)Z(z)

where the function T(t) depends only on the time t and the function Z(z) depends only on the

coordinate z. The partial derivatives will be

@Y

@t
¼ Z

@T

@t

and

@2Y

@z2
¼ T

@2Z

@z2

Substitution into equation (27-12) yields

Z
@T

@t
¼ DABT

@2Z

@z2

which may be divided by DAB:T: Z to give

1

DABT

@T

@t
¼ 1

Z

@2Z

@z2
(27-13)

The left-hand side of this equation depends only on time t and the right-hand side depends

only on position z. If t varies, the right-hand side of the equation remains constant, and if

z varies, the left-hand side remains constant. Accordingly, both sides must be independent

of z and t and are equal to an arbitrary constant, �l2. This produces two separate ordinary
differential equations, one for time t

1

DABT

dT

dt
¼ �l2
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with a general solution of

T(t) ¼ C1e
�DABl

2t

and one for position z

� 1

Z

d2Z

dz2
¼ �l2

with the general solution of

Z(z) ¼ C2cos(lz)þ C3 sin(lz)

Substituting these two solutions into our product solution, we obtain

Y ¼ T(t)Z(z) ¼ ½C0
1cos(lz)þ C0

2sin(lz)�e�DABl
2t (27-14)

The constants C0
1 and C0

2 and the parameter l are obtained by applying the boundary and

initial conditions to the general solution. The first boundary condition, Y ¼ 0 at z ¼ 0,

requires C0
1 to be zero. The second boundary condition, Y ¼ 0 at z ¼ L, stipulates that

sin(lL) ¼ 0, because C0
2 cannot be equal to zero. Otherwise, if C0

2 were equal to zero, the

entire equation would be zero, yielding a trivial solution. In this context, sin (lL) will be

equal to zero only when

l ¼ np

L
for n ¼ 1, 2, 3, : : :

To obtain C0
2, the property of orthogonality must be applied, yielding the complete solution

Y ¼ cA � cAs

cAo � cAs
¼ 2

L

X1
n¼1

sin
npz

L

� �
e�(np/2)

2
XD

ZL
0

Yo sin
npz

L

� �
dz (27-15)

where L is the thickness of the sheet and XD is the relative time ratio, given by

XD ¼ DABt

x21

with x1 being the characteristic length of L/2. If the sheet has a uniform initial concentration

along z, the final solution is

cA � cAs

cAo � cAs
¼ 4

p

X1
n¼1

sin
npz

L

� �
e�(np/2)

2
XD , n ¼ 1, 3, 5, : : : (27-16)

which is analogous to the heat conduction equation (18-13) obtained for the heating of a

body under conditions of negligible surface resistance.

The flux at any position z is

NAz ¼ �DAB
@cA
@z

For the concentration profile given by equation (27-16), the flux at any position z and time t

within the slab is

NAz ¼ 4DAB

L
(cAs � cAo)

X1
n¼1

cos
npz

L

� �
e�(np/2)

2
XD , n ¼ 1, 3, 5, : : : (27-17)

At the center of the slab (z ¼ L/2),NA is equal to 0. Mathematically, it is equal to zero

because the cosine term in equation (27-17) vanishes at intervals of p/2; physically, it is
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equal to zero because the net flux is equal to zero at the centerline. Consequently, the

following boundary condition at z ¼ L/2 also holds:

@cA
@z

¼ 0

Recall fromSection25.3 that themathematical boundaryconditionalso ariseswhen theflux at

a boundary is equal to zero because of the presence of barrier that is impermeable to the

transfer of diffusing species A. Consequently, equation (27-16) can also be used for the

physical situation where a slab of corresponding to a thickness x1 of has an imperme-

able barrier at the boundary z ¼ x1.

The following examples illustrate processes that are governed by one-dimensional

unsteady-state diffusion of a dilute solute into semi-infinite or finite-dimensional media.

The phosphorous doping of siliconwafers illustratesmolecular diffusion into a semi-infinite

medium, whereas the timed drug release from a spherical capsule illustrates molecular

diffusion from a finite-dimensional medium. We take a little extra time at the beginning of

each example to describe the interesting technology behind the process.

EXAMPLE 1 In the fabrication of solid-state microelectronic devices, semiconducting thin films can be made by

impregnating eitherphosphorous or boron into a siliconwafer. This process is called doping.Thedoping

of phosphorous atoms into crystalline silicon makes an n-type semiconductor, whereas the doping of

boron atoms into crystalline siliconmakesap-type semiconductor.The formation of the semiconducting

thin film is controlled by themolecular diffusion of the dopant atoms through crystalline-siliconmatrix.

Methods to deliver phosphorous atoms to the silicon wafer surface include chemical vapor

deposition and ion implantation. In one typical process, phosphorous oxychloride, POCl3, which

has a normal boiling point of 105.38C, is vaporized. The POCl3 vapors are fed into a chemical vapor

deposition (CVD) reactor at elevated temperature and reduced system pressure (e.g., 0.1 atm), where

POCl3 decomposes on the silicon surface according to the reaction

Si(s)þ 2POCl3(g)! SiO2(s)þ 3Cl2 þ 2P(s)

A SiO2 coating rich inmolecular phosphorous (P) is formed over the crystalline-silicon surface. The

molecular phosphorous then diffuses through the crystalline silicon to form the Si–P thin film. So

the coating is the source for mass transfer of phosphorous, and the silicon wafer is the sink for mass

transfer of phosphorous.

As one can see in Figure 27.2, the process for making Si–P thin films can be quite complex with

many species diffusing and reacting simultaneously. But consider a simplified casewhere the P-atom

P

P-rich layer (source)

z = 0

Si wafer

SiO2 + P(s) CVD coating

Si(s) + 2 POCl3(g) SiO2(s) + 3 Cl2 + 2 P(s)

POCl3 vaporPOCl3 Cl2

P

CAs

Si (sink)
Figure 27.2 Phosphorous doping of

a silicon wafer.
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concentration is constant at the interface. As the diffusion coefficient of P atoms in crystalline silicon

is very low, and only a thin film of Si–P is desired, phosphorous atoms do not penetrate very far into

the silicon. Therefore, the phosphorous atoms cannot ‘‘see’’ through the entire thickness of thewafer,

and the Si solid serves as a semi-infinite sink for the diffusion process. It is desirable to predict

the properties of the Si–P thin filmas a function of doping conditions. The concentration profile of the

doped phosphorous atoms is particularly important for controlling the electrical conductivity of the

semiconducting thin film.

Consider the phosphorous doping of crystalline silicon at 11008C, a temperature high enough

to promote phosphorous diffusion. The surface concentration of phosphorous (cAs) in the silicon

is 2:5� 1020 atoms P/cm3 solid Si, which is relatively dilute, as pure solid silicon is 5�
1022 atoms Si/cm3 solid. Furthermore, the phosphorous-rich coating is considered as an infinite

source relative to the amount of P atoms transferred, so that cAs is constant. Predict the depth of the

Si–P thin film after 1 h, if the target concentration is 1%of the surface value (2:5� 1018 atoms P/cm3

solid Si), and the concentration profile of P atoms after 1 h.

Based on the assumptions given in the problem statement, the partial differential equation

describing the one-dimensional, unsteady-state concentration profile cA(z, t) of phosphorous

(species A) in solid silicon (species B) is

@cA
@t

¼ DAB
@2cA
@z2

(27-1)

For a semi-infinite medium, the initial and boundary conditions are

t ¼ 0; cA(z, 0) ¼ cAo ¼ 0 for all z

z ¼ 0; cA(0; t) ¼ cAs ¼ 2:5� 1020 atoms P/cm3 solid Si; for t> 0

z ¼ 1, cA(1, t) ¼ cAo ¼ 0 for all t

If the diffusion coefficient DAB is a constant, then the analytical solution is

cAs � cA

cAs � cAo
¼ erf

z

2
ffiffiffiffiffiffiffiffiffiffi
DABt

p
� �

¼ erf(f)

Note that the depth z is imbedded in f, the argument of the error function. The value for erf(f) is

calculated from the dimensionless concentration change

cAs � cA

cAs � cAo
¼ 2:5� 1020 atoms P/cm3 � 2:5� 1018 atoms P/cm3

2:5� 1020 atoms P/cm3 � 0
¼ 0:990 ¼ erf(f)

From the table inAppendixL, the argument of the error function at erf(f) ¼ 0:990 isf ¼ 1:82. From
Figure 24.6, the solid-diffusion coefficient of P atoms (species A) in crystalline silicon (species B) is

6:5� 10�13 cm2/s at 1100�C (1373 K). The depth z can be backed out from f by

z ¼ f: 2
ffiffiffiffiffiffiffiffiffiffi
DABt

p ¼ 1:82: 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:5� 10�13

cm2

s
: 10

8 mm2

1 cm2

� �
1 h: 3600 s

1 h

� �s
¼ 1:76mm

Prediction of the concentration profile after 1 h requires the calculation of f at different values of z,

followed by the calculation of erf(f) and finally cA(z, t). Repetitive calculation of erf(f) is best
carried out with the help of a mathematics software package such as Mathcad (MathSoft Inc.,

Cambridge, MA.). The predicted phosphorous concentration profile is compared with the data of

Errana and Kakati2 obtained under similar process conditions, as shown in Figure 27.3. It is known

that the molecular-diffusion coefficient of phosphorous in crystalline silicon is a function of

phosphorous concentration. The concentration-dependent diffusion coefficient creates a ‘‘dip’’ in

2 G. Errana and D. Kakati, Solid State Technol., 27 (12), 17 (1984).
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the observed phosphorous concentration profile.A detailedmodel of this phenomenon is providedby

Middleman and Hochberg.3

EXAMPLE 2 Oneway to deliver a timed dosage of a drug within the human body is to ingest a capsule and allow it

to settle in the gastrointestinal system.Once inside the body, the capsule slowly releases the drug by a

diffusion-limited process. A suitable drug carrier is a spherical bead of a nontoxic gelatinousmaterial

that can pass through the gastrointestinal system without disintegrating. A water-soluble drug

(soluteA) is uniformly dissolvedwithin the gel and has an initial concentrationCAo . The drug loaded

within the bead is the source for mass transfer, whereas the fluid surrounding the bead is the sink for

mass transfer. This is an unsteady-state process, as the source formass transfer is containedwithin the

diffusion control volume itself.

Consider a limiting case where the resistance to film mass transfer of the drug through the liquid

boundary layer surrounding the capsule surface to the bulk surrounding the fluid is negligible.

Furthermore, assume that the drug is immediately consumed or swept away once it reaches the bulk

solution so that in essence the surrounding fluid is an infinite sink. In this particular limiting case, cAs
is equal to zero, so at a long time the entire amount of drug initially loaded into the bead will be

depleted. If radial symmetry is assumed, then the concentration profile is only a function of the r

direction (Figure 27.4).

It is desired to design a spherical capsule for the timed release of the drug dimenhydrinate,

commonly calledDramamine, which is used to treatmotion sickness. A conservative total dosage for

one capsule is 10 mg, where 50% of the drug must be released to the body within 3 h. Determine the

size of the bead and the initial concentration of Dramamine in the bead necessary to achieve this

dosage. The diffusion coefficient of Dramamine (species A) in the gel matrix (species B) is 3�
10�7 cm2/s at a body temperature of 378C. The solubility limit of Dramamine in the gel is

100mg/cm3, whereas the solubility of Dramamine in water is only 3mg/cm3.

The model must predict the amount of drug released vs. time, bead diameter, initial concentra-

tion of the drug within the bead, and the diffusion coefficient of the drug within the gel matrix. The

physical system possesses spherical geometry. The development of the differential material balance

model and the assumptions associated with it follow the approach presented in Section 25.4.
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Figure 27.3 Phosphorous doping profile in silicon wafer after 1 h at 11008C.

3 S. Middleman and A. K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication,

McGraw-Hill, New York, 1993.
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The general differential equation for mass transfer reduces to the following partial differential

equation for the one-dimensional unsteady-state concentration profile cA(r; t):

@cA
@t

¼ DAB
@2cA
@r2

þ 2

r

@cA
@r

� �
(27-18)

Key assumptions include radial symmetry, dilute solution of the drug dissolved in the gelmatrix, and

no degradation of the drug inside the bead (RA ¼ 0). The boundary conditions at the center (r ¼ 0)

and the surface (r ¼ R) of the bead are

r ¼ 0;
@cA
@r

¼ 0; t� 0

r ¼ R; cA ¼ cAs ¼ 0; t> 0

At the center of the bead, we note the condition of symmetry where the fluxNA(0; t) is equal to zero.
The initial condition is

t ¼ 0; cA ¼ cAo; 0 � r � R

The analytical solution for the unsteady-state concentration profile cA(r; t) is obtained by separation-
of-variables technique described earlier. The details of the analytical solution in spherical coordi-

nates are provided by Crank. The result is

Y ¼ cA � cAo

cAs � cAo
¼ 1þ 2R

pr

X1
n¼1

ð�1Þn
n

sin
npr

R

� �
e�DABn

2p2t=R2

; r 6¼ 0; n ¼ 1; 2; 3; : : : (27-19)

At the center of the spherical bead (r ¼ 0), the concentration is

Y ¼ cA � cAo

cAs � cAo
¼ 1þ 2

X1
n¼1

(� 1)ne�DABn
2p2t=R2

; r ¼ 0; n ¼ 1; 2; 3; : : : (27-20)

Once the analytical solution for the concentration profile is known, calculations of engineering

interest can be performed, including the rate of drug release and the cumulative amount of drug

release over time. The rate of drug release, WA, is the product of the flux at the surface of the bead

(r ¼ R) and the surface area of the spherical bead

WA(t) ¼ 4pR2NAr ¼ 4pR2 �DAB
@cA(R, t)

@r

� �
(27-21)

It is not so difficult to differentiate the concentration profile, cA(r; t), with respect to radial coordinate
r, set r ¼ R, and then insert back into the above expression for WA(t) to ultimately obtain

WA(t) ¼ 8pRcAoDAB

X1
n¼1

e�DABn
2p2t=R2

(27-22)

r = 0

r

cA(r, 0) = cAo

∂cA

∂r

Bulk
fluid

cA      = 0

NA(R, t)

t = 0

= 0

Drug in
gel bead

r = R
cA⎯ = 0

r

cA(r, 0) cAo

Bulk
fluid

cA      = 0

t > 0

∞∞

Figure 27.4 Drug release from a spherical gel bead.
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The above equation shows that the rate of drug release will decrease as time increases until all of the

drug initially loaded into the bead is depleted, at which pointWA will go to zero. Initially, the drug is

uniformly loaded into the bead. The initial amount of drug loaded in the bead is the product of the

initial concentration and the volume of the spherical bead

mAo ¼ cAoV ¼ cAo
4

3
pR3

The cumulative amount of drug release from the bead over time is the integral of the drug release rate

over time

mAo � mAðtÞ ¼
Zt
0

WA(t) dt

After some effort, the result is

mA(t)

mAo
¼ 6

p2

X1
n¼1

1

n2
e�DABn

2p2t=R2

(27-23)

The analytical solution is expressed as an infinite series summation that converges as ‘‘n’’ goes

to infinity. In practice, convergence to a single numerical value can be attained by carrying the series

summation out to only a few terms, especially if the dimensionless parameter DAB t/R
2 is relatively

large. It is a straightforward task to implement the infinite series summation on a spreadsheet

program such as Excel (Microsoft Corporation).

Table 27.1 Excel spreadsheet for drug�release profile, Example 2

mAo ¼ 10mg

DAB ¼ 3:00E� 07 cm2/s

R ¼ 0:326 cm

CAo ¼ 68:9mg/cm3

Time, t (s) 0.0 18 180 1800 3600 7200 10800 14400 18000 21600

Time, t (h) 0.0 0.005 0.05 0.50 1.00 2.00 3.00 4.00 5.00 6.00

mA(t)/mAo

1� mA(t)/mAo

1.0 0.964 0.925 0.774 0.689 0.578 0.500 0.439 0.389 0.347

0.0 0.036 0.075 0.226 0.311 0.422 0.500 0.561 0.611 0.653

Series term n ¼ 1 9.99E�01 9.95E�01 9.51E�01 9.05E�01 8.18E�01 7.40E�01 6.70E�01 6.06E�01 5.48E�01

2 2.49E�01 2.45E�01 2.05E�01 1.67E�01 1.12E�01 7.50E�02 5.02E�02 3.36E�02 2.25E�02

3 1.11E�01 1.06E�01 7.08E�02 4.51E�02 1.83E�02 7.41E�03 3.00E�03 1.22E�03 4.94E�04

4 6.20E�02 5.77E�02 2.80E�02 1.26E�02 2.52E�03 5.07E�04 1.02E�04 2.05E�05 4.11E�06

5 3.95E�02 3.53E�02 1.14E�02 3.26E�03 2.66E�04 2.16E�05 1.76E�06 1.44E�07 1.17E�08

6 2.73E�02 2.32E�02 4.57E�03 7.51E�04 2.03E�05 5.49E�07 1.48E�08 4.01E�10 1.08E�11

7 1.99E�02 1.60E�02 1.75E�03 1.50E�04 1.10E�06 8.07E�09 5.92E�11 4.34E�13 3.19E�15

8 1.51E�02 1.13E�02 6.31E�04 2.55E�05 4.15E�08 6.77E�11 1.10E�13 1.80E�16 2.93E�19

9 1.19E�02 8.22E�03 2.13E�04 3.66E�06 1.08E�09 3.21E�13 9.52E�17 2.82E�20 8.36E�24

10 9.51E�03 6.06E�03 6.64E�05 4.41E�07 1.94E�11 8.56E�16 3.77E�20 1.66E�24 7.33E�29

11 7.78E�03 4.50E�03 1.91E�05 4.43E�08 2.38E�13 1.27E�18 6.84E�24 3.67E�29 1.97E�34

12 6.46E�03 3.37E�03 5.07E�06 3.71E�09 1.98E�15 1.06E�21 5.65E�28 3.02E�34 1.61E�40

13 5.44E�03 2.54E�03 1.23E�06 2.57E�10 1.12E�17 4.87E�25 2.12E�32 9.23E�40 4.02E�47

14 4.62E�03 1.91E�03 2.75E�07 1.48E�11 4.29E�20 1.25E�28 3.61E�37 1.05E�45 3.04E�54

15 3.97E�03 1.44E�03 5.59E�08 7.03E�13 1.11E�22 1.76E�32 2.79E�42 4.41E�52 6.98E�62

16 3.44E�03 1.08E�03 1.04E�08 2.76E�14 1.95E�25 1.38E�36 9.72E�48 6.87E�59 4.85E�70

17 2.99E�03 8.12E�04 1.76E�09 8.93E�16 2.30E�28 5.94E�41 1.53E�53 3.95E�66 1.02E�78

18 2.62E�03 6.08E�04 2.71E�10 2.38E�17 1.83E�31 1.41E�45 1.09E�59 8.41E�74 6.48E�88

19 2.31E�03 4.53E�04 3.80E�11 5.22E�19 9.85E�35 1.86E�50 3.50E�66 6.60E�82 1.24E�97

20 2.05E�03 3.36E�04 4.86E�12 9.43E�21 3.56E�38 1.34E�55 5.06E�73 1.91E�90 7.20E�108
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A representative spreadsheet solution is provided in Table 27.1. Note that in Table 27.1 the terms

within the series summation rapidly decay to zero after a few terms. The cumulative drug release vs.

time profile is shown in Figure 27.5. The drug-release profile is affected by the dimensionless

parameterDAB t=R
2. If the diffusion coefficientDAB is fixed for a given drug and gel matrix, then the

critical engineering-design parameter we canmanipulate is the bead radiusR. AsR increases, the rate

of drug release decreases; if it is desired to release 50% of Dramamine from a gel bead within 3 h, a

bead radius of 0.326 cm (3.26 mm) is required, as shown in Figure 27.5. Once the bead radius R is

specified, the initial concentration of Dramamine required in the bead can be backed out

cAo ¼ mAo

V
¼ 3mAo

4pR3
¼ 3ð10mgÞ

4p(0:326 cm)3
¼ 68:9mg

cm3

In summary, a 6.52-mm-diameter bead with an initial concentration of 68:9mg=cm3 will dose

out the required 5 mg of Dramamine within 3 h. The concentration profile along the r direction

at different points in time is provided in Figure 27.6. The concentration profile was calculated by

spreadsheet similar to the format given in Table 27.1. The concentration profile decreases as time

increases and then flattens out to zero after the drug is completely released from the bead.
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27.4 CONCENTRATION–TIME CHARTS FOR SIMPLE GEOMETRIC SHAPES

In our analytical solutions, the unaccomplished change, Y, was found to be a function of the

relative time,XD. Themathematical solutions, for the unsteady-statemass transfer in several

simple shapes with certain restrictive boundary conditions, have been presented in a wide

varietyof charts to facilitate their use.Twoformsof thesecharts areavailable in theappendix.

The ‘‘Gurney–Lurie’’ charts present solutions for the flat plate, sphere, and long

cylinder. As the defining partial differential equations for heat conduction and molecular

diffusion are analogous, these charts may be used to solve either transport phenomenon. For

molecular diffusion, the charts are in terms of four dimensionless ratios:

Y ¼ unaccomplished concentration change ¼ cAs � cA

cAs � cA0

XD ¼ relative time ¼ DABt

x21

n ¼ relative position ¼ x

x1

m ¼ relative resistance ¼ DAB

kcx1

The characteristic length, x1, is the distance from the point of symmetry. For shapes

where the transport takes place from two opposite faces, x1 is the distance from themidpoint

to the surfaces from which the transfer occurs. For shapes where the transport takes place

from only one of the faces, the x1 value in the dimensionless ratios is calculated as if the

thickness were twice the true value; that is, for a slab of thickness 2a, the relative time,XD, is

considered to be DAB t/4a
2.

The relative resistance,m, is the ratio of the convectivemass-transfer resistance to the

internal molecular mass-transfer resistance. For a process with negative convective mass-

transfer resistance, the convective mass-transfer coefficient, kc, will be very large relative

to DAB, so m will be assumed to be zero in processes where molecular diffusion controls

the flux of the diffusing species. For this case of no convection resistance, the concentra-

tion of the diffusing species at the surface, cAs, will be equal to the concentration in the

bulk fluid, cA1. Ifm is much greater than zero, then the surface concentration of species A

differs from its concentration in the bulk fluid phase.

These charts may be used to evaluate concentration profiles for cases involving

molecular mass transfer into as well as out of bodies of the specific shapes if the following

conditions are satisfied:

(a) Fick’s second law of diffusion is assumed; that is, there is no fluid motion, v ¼ 0,

no production term, RA ¼ 0, and constant mass diffusivity.

(b) The body has an initial uniform concentration, cAo.

(c) The boundary is subjected to a new condition that remains constant with time t.

Although the charts were drawn for one-dimensional transport, they may be combined

to yield solutions for two- and three-dimensional transfer. In two dimensions, Ya evaluated

with the width, x1 ¼ a and Yb evaluated with the depth, x1 ¼ b, are combined to give

Y ¼ YaYb (27-24)

A summary of these combined solutions follows:

(1) For transport from a rectangular bar with sealed ends

Ybar ¼ YaYb (27-25)

where Ya is evaluated with width x1 ¼ a and Yb is evaluated with thickness x1 ¼ b.
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(2) For transport from a rectangular parallelepiped

Yparallelepiped ¼ YaYbYc (27-26)

where Ya is evaluated with width x1 ¼ a; Yb is evaluated with thickness x1 ¼
b, and Yc is evaluated with depth x1 ¼ c.

(3) For transport from a cylinder, including both ends

Ycylinder plus ends ¼ YcylinderYa (27-27)

The use of these charts will be shown in the following example.

EXAMPLE 3 Recall the drug capsule described in Example 2. The present drug capsule consists of a 0.652-cm-

diameter spherical bead (radius of 0.326 cm) containing a uniform initial concentration of 68.9 mg/

cm3 dramamine. (a) what is the residual concentration of dramamine at the center of the spherical

bead after 48 h? (b) the capsule is now a cube 0.652 cm on a side. Recalculate part (a) above. (c) the

capsule is now a cylindrical tablet of diameter 0.652 cm and thickness 0.3 cm. Recalculate part (a)

above. The diffusion coefficient of dramamine (species A) in the gel matrix (species B) is 3�
10�7 cm2/s at a body temperature of 378C. The three capsules are presented in Figure 27.7.

This problem is readily solved using the charts given in Appendix F.

(a) Spherical capsule: First, calculate the relative time ðXDÞ, relative position (n), and

relative resistance (m) based on the spherical coordinate system

XD ¼ DABt

R2
¼

3� 10�7 cm2

s

� �
48 h 3600 s

1 h

� 
(0:326 cm)2

¼ 0:488

n ¼ r

R
¼ 0 cm

0:326 cm
¼ 0 (center of sphere)

m ¼ DAB

kcR
	 0

From Figure F.1 or Figure 18.3, the value for Y, which in this case is the unaccomplished

concentration change at the center of the spherical bead, is about 0.018. We can now

calculate cA

Y ¼ 0:018 ¼ cAs � cA

cAs � cAo
¼ 0� cA

0� 68:9mg/cm3

The residual Dramamine concentration at the center of the bead after 48 h (cA) is

1.24 mg/cm3.

R
R

x1
x1

x1 = 0.15 cm
Cylinder

R = 0.326 cm

x1 = 0.326 cm
Cube

R = 0.326 cm
Sphere

Figure 27.7 Three

capsule configurations.

510 Chapter 27 Unsteady-State Molecular Diffusion



(b) For the cube-shaped capsule the distance from the midpoint of the cube to any of the six

faces is 0.652 cm/2. The relative time XD is now defined as

XD ¼ DABt

x21
¼

3� 10�7 cm
2

s

� �
48 h

3600 s

1 h

� �
ð0:326 cmÞ2 ¼ 0:488

Values for n andm are unchanged, with n ¼ 0 andm ¼ 0. As all of the faces of the cube are

of equal dimension, let

Y ¼ YaYbYc ¼ Y3
a

From the appendix Figure F.4, givenXD ¼ 0:488,m ¼ 0 and n ¼ 0, Ya is 0.4 for a flat plate

of semi-thickness x1 ¼ a ¼ 0:326 cm. Extending this value to a three-dimensional cube

using the above relationship, we have

Y ¼ Y3
a ¼ (0:4)3 ¼ 0:064

Finally,

Y ¼ 0:064 ¼ cAs � cA

cAs � cAo
¼ 0� cA

0� 68:9mg/cm3

with cA ¼ 4:41mg/cm3 after 48 h.

(c) For a cylindrical capsule with exposed ends, R ¼ 0:652 cm/2 for the radial coordinate, and

x1 ¼ a ¼ 0:3 cm/2 for the axial coordinate. The relative times are

XD ¼ DABt

R2
¼

3:0� 10�7 cm
2

s

� �
48 h

3600 s

1 h

� �
(0:326 cm)2

¼ 0:488

for the cylindrical dimension and

XD ¼ DABt

x21
¼

3:0� 10�7 cm
2

s

� �
48 h

3600 s

1 h

� �
ð0:15 cmÞ2 ¼ 2:30

for the axial dimension. Values for n and m are unchanged, with n ¼ 0 and m ¼ 0. From

Figures F.1 and F.2, respectively, Ycylinder ¼ 0:1 for the cylindrical dimension and Ya ¼
0:006 for the axial dimension. Therefore,

Y ¼ Ycylinder Ya ¼ (0:1)(0:006) ¼ 0:0006

and finally

Y ¼ 0:006 ¼ cAs � cA

cAs � cAo
¼ 0� cA

0� 68:9mg/cm3

with cA ¼ 0:413mg/cm3 after 48 h. As Ya � Ycylinder, the flux directed out of the exposed

ends of the cylindrical tablet along the axial dimension dominates.

The above calculations assume that convective mass-transfer resistances associated

with external fluid flow over the surface of the capsule are negligible. Problems in Chapter

30 will reconsider the drug release for unsteady-state diffusion and convection in series.

When a phase loses a considerable amount of the solute during a transientmass-transfer

process, the total density of the phase will not be constant. This is the case where Fick’s

second ‘‘law’’ of diffusion must be expressed in terms of a constant solute-free basis as

developed in equation (27–4)
@w0

A

@t
¼ DAB

@2w0
A

@z2

wherew0
A is theweight fraction of the soluteAdivided by 1.0minus theweight fraction ofA.

Our next example illustrates the use of the solute-free basis in explaining a transient mass-

transfer drying process.
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zEXAMPLE 4 An oak pole having an initial uniformmoisture content of 45 wt% is placed in a drying kiln where its

surface moisture is maintained at 15 wt%. Under the specified drying conditions, the drying was

controlled by the internal diffusion of liquidwater to the surface. If themaximummoisture content of

the pole is set at 25 wt%, how longmust the 10-cm-diameter by 45-cm-length pole be dried when the

ends of the pole are sealed with a vapor barrier? In comparison, how long must the same cylinder be

dried if the cylinder surface is sealed with a vapor barrier and the ends are exposed?

The diffusivity of moisture through the oak is 1:04� 10�5 cm2/s under the specified drying

conditions.

This problem is readly solved using the charts given in Appendix F. The initial uniform moisture

content is 45wt%, the surfacemoisture content is 15wt%, and themaximummoisture content is 25wt%.

Y ¼ w0
A � w0

As

wAo � wAs
¼

0:25

1:0� :25
� 0:15

1:0� 0:15
0:45

1:0� 0:45
� 0:15

1:0� 0:15

¼ 0:244

(a) When the ends of the cylinder are sealed, the moisture (species A) will diffuse to the

cylindrical surface, transferring in the r direction only. As the drying was controlled by

the internal diffusion of the water, m ¼ 0. The 25 wt% moisture content will be at the

center of the cylinder.

n ¼ r

R
¼ 0 cm

5 cm
¼ 0

For n ¼ 0, m ¼ 0, and Y ¼ 0:244, X ¼ 0:32, or

X ¼ DABt

R2
¼ 0:32

and

t ¼ 0:32R2

DAB
¼ 0:32(5:0 cm)2

1� 10�5 cm2/s
¼ 7:81� 104 s ð21:7hÞ

(b) When the cylinder surface is sealed and the ends are exposed, the transfer will be from the

two flat ends. With the specified moisture contents, Y ¼ 0:244, m will still be 0, and

n ¼ 0; X ¼ 0:68, or

X ¼ DABt

R2
¼ 0:68

and

t ¼ 0:68x21
DAB

¼ 0:68(22:5 cm)2

1� 10�5 cm2/s
¼ 3:44� 107 s ð398 daysÞ

27.5 CLOSURE

In this chapter, we have considered unsteady-state molecular diffusion. The partial

differential equations that described the transient processes were obtained from the

combination of Fick’s equation with the general differential equation for mass transfer.

Two approaches for the analytical solution to Fick’s second law of diffusionwere presented.

Charts for solving unsteady-state mass transfer problems were also introduced.
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PROBLEMS

27.1 A large tank, filled with water with an initially uniform

oxygen concentration of 2 kg/m3, has its surface concentration

suddenly raised andmaintained at a 9 kg/m3 concentration level.

Sketch a concentration level, cA, as a function of depth z, for a

period of

a. 3600 s,

b. 36,000 s,

c. 360,000 s,

if the water is at a temperature of 283 K.

27.2 A silicone polymer film of 4 mm thickness coats a flat,

nonporous, inert surface. The polymer film is exposed to stag-

nant 100%O2 gasmaintained at 1.5 atm.Oxygen gas is sparingly

soluble in the silicone polymer film, with the solubility relation-

ship given by

cA ¼ S � pA
with S ¼ 3:16 gmolO2/m

3 silicone atm O2 at 298 K. Initially,

there is 0.39 g mol O2/m
3 uniformly dissolved in the film. The

diffusion coefficient of O2 in silicone is 1� 10�11 m2/s at 298K.

a. At a very short time of 10 s, O2 does not penetrate very far

into the silicone polymer film. Under this physical situation,

what is the flux of O2 into the surface of the silicone polymer

film at this time?

b. At a much longer time, the dissolved O2 concentration in the

silicone polymer film at the polymer/inert interface is now 3.0

gmol/m3. How longwill it take to achieve this concentration?

27.3 We are interested in measuring the effective diffusion

coefficient of blue dextran dye into an agarose gel. An aqueous,

well-mixed solution containing 1.0 g/L of the dye rests over the

rigid gel of 2.0 cm thickness, as shown below. The solubilities

of the dye in both water and the gel are the same; that is, the

concentration of the dye on the water side of the water–gel

interface is equal to the concentration of dye on the gel side of

the water–gel interface. There is no dye initially in the gel.

After 24 h, a tiny section of the gel 2 mm from the surface is very

carefully excised with a syringe needle, and the concentration of

the dye within the gel, as measured by a spectrophotometer is

0.203 g dye/L. An aqueous ‘‘gel’’ is generally considered a

water-hydrated polymer,where solutemolecules diffuse through

the hydrated regions.

a. What is the effective diffusion coefficient of blue dextran

dye into the gel based on the experimental measurements?

b. State at least three assumptions you had to make to arrive at

your answer in part (a).

c. If the system temperature is increased from 20 to 408C and

the experiment is repeated exactly as described above, what

would you expect the new measured diffusion coefficient to

be? The viscosity of water is 9:93� 10�4 kg/m � s at 208C
and 6:58� 10�4 kg/m � s at 408C.

27.4 Liquid benzene, C6H6, a common industrial solvent with

a density of 0.88 g/cm3, leaked from a storage tank and seeped

into the ground below. As the density of benzene is less than the

density of water, the liquid benzene formed a light nonaqueous-

phase liquid layer on top of the water-saturated soil, as shown

below. At a depth of 1 m below thewater-saturated soil layer is a

nonporous, impermeable rock layer. There is no groundwater

flow through the water-saturated soil layer, it is completely

stagnant.

Dissolved benzene
diffusion

 Nonporous rock layer

Liquid benzene storage tank
(slow leak)

Liquid benzene
spill (on top of soil)

Water
saturated

soil

1 m

We are interested in the transport of benzene into the

water-saturated soil layer, so that we may identify how much

soil must be dug up and treated. Although the water-saturated

soil is complex mixture, as a medium for benzene diffusion you

may assume that it approximates the properties of a homoge-

neous substance.

At relatively short times or relatively small penetration

depths, a finite-dimensional diffusion medium can be approxi-

mated by a semi-infinite diffusion medium. Calculate the con-

centration of the dissolved benzene at a position of 5 cm into the

water-saturated soil layer after 72 h of benzene spill. Liquid

benzene is sparingly soluble in water, and its solubility limit is

24 mol/m3 at 293 K. The effective diffusion coefficient of

benzene in the water-saturated soil is 1� 10�9 m2/s at 293 K.

Initially, there is no benzene dissolved in thewater-saturated soil

layer. The pure liquid benzene layer resting on top of the soil is

essentially a constant source due to the low solubility of benzene

Rigid gel
(water+polymer)

(1.0 g dye/L)
Well-mixed solution

Sample point
(2 mm from gel surface)

2 cm
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in water. Finally, you may assume that benzene does not diffuse

into the nonporous rock layer.

27.5 Hydrogen embrittlement weakens the mechanical

strength of cast iron. This phenomenon frequently occurs in

cast-iron pressure vessels containing 100% hydrogen gas. The

H2 gas dissolves into the iron metal and diffuses into the solid

nonporous iron by an interstitial diffusion mechanism. The H2

gas does not have to penetrate very far into the iron to have a

negative effect on the mechanical strength of iron. In the present

situation, 100%H2 gas at 1.0 atm and 1008C is contained within

a cylindrical iron vessel of 1.0 m inner diameter and wall

thickness of 2.0 cm. The solubility of hydrogen in iron at

1008C is 2:2� 10�7 molH atoms/g Fe. The diffusion coefficient

of hydrogen atoms in solid iron is 124:0� 10�9 cm2/s at 1008C.
Initially, there are no H atoms in the solid iron. Howmany hours

will it take for the hydrogen level within the iron metal to reach

1:76� 10�7 mol H atoms/g Fe at a depth of 0.1 cm from the

surface exposed to the hydrogen gas?

27.6 A large tanker truck overturns and spills a herbicide over a

field. If themassdiffusivityof thefluid in the soil is 1� 10�3 m2/s

and the fluid remains on the soil for 1800 s before evaporating

into the air, determine the depth at which plant and insect life is

likely to be destroyed if a concentration of 0.1% by weight will

destroy most of the life.

27.7 In the fabrication of a p-type semiconductor, elemental

boron is diffused a small distance into a solid crystalline silicon

wafer. The boron concentration within the solid silicon deter-

mines semiconducting properties of the material. A physical

deposition process keeps the concentration of elemental boron at

the surface of the water equal to 5:0� 1020 atoms boron/cm3

silicon. In themanufacture of a transistor, it is desired to produce

a thin film of silicon doped to a boron concentration of at least

1:7� 1019 atoms boron/cm3 silicon at a depth of 0:2mm from

the surface of the silicon wafer. It is desired to achieve this target

within a 30-min processing time. The density of solid silicon is

5:0� 1022 atoms Si/cm3 solid. At what temperature must the

boron doping process be operated? It is known that the tem-

perature dependence of the diffusion coefficient of boron (A) in

silicon (B) is given by

DAB ¼ D0e
�Q0=RT

where D0 ¼ 0:019 cm2/s and Q0 ¼ 2:74� 105 J/g mol for ele-

mental boron in solid silicon. The thermodynamic constant R ¼
8:314 J/g mol/K.

27.8 A preheated piece of mild steel, having an initial con-

centration of 0.20% by weight of carbon, is exposed to a

carbonizing atmosphere for 1 h. Under the processing condi-

tions, the surface concentration of carbon is 0.70% by weight. If

the diffusivity of carbon through steel is 1:0� 10�11 m2/s at the

process temperature, determine the carbon composition at 0.01

cm, 0.02 cm, and 0.04 cm below the surface.

27.9 In the manufacture of semiconducting thin films, a thin

film of solid arsenic is laid down onto the surface of a silicon

wafer by the chemical vapor deposition of arsine, AsH3, as

2AsH3(g)! 2As(s)þ 3H2(g)

The arsenic atoms then diffuse into the solid silicon to dope the

wafer as shown below:

AsH3 (g)

As(s) thin flim

Si wafer

H2 (g)

AS

What is the flux of arsenic atoms into the silicon wafer after 1 h,

in units of atoms/cm2 s?What is arsenic concentration 2mm into

the silicon wafer after 1 h, in units of atoms/cm3? The initial

concentration of residual arsenic in the silicon wafer is 1012

atoms/cm3. The process temperature is 10508C. The average

diffusivity of arsenic in silicon is 5� 10�13 cm2/s at this

temperature, and the maximum solubility of arsenic in silicon

is 2� 1021 atoms/cm3.

27.10 Please refer to Problem 27.9. The ‘‘junction depth’’ is a

critical parameter for establishing the semiconducting properties

of doped silicon films. For a particular semiconductor, the

junction depth is established when the arsenic concentration

in the silicon reaches 2� 1017 atoms/cm3.

a. Plot out the junction depth with time t during the first 6 h of

doping.

b. Now plot the junction depth vs. t1=2. Why is the plot linear?

27.11 It is extremely difficult to ‘‘aerate’’ stagnant water.

Consider the process shown in the figure below. A sealed

tank consists of still, deep liquid water with pure oxygen gas

in the headspace. The temperature and pressure of the 100% O2

gas are 298 K and 2.0 atm, respectively. Initially, the dissolved

oxygen concentration of the water within the tank is uniform at

10.0 g/m3, the diffusion coefficient of dissolved O2 in water is

2:1� 10�5 cm2/s at 298 K, and the Henry’s law constant for

dissolvedO2 gas in liquidwater is 0.800 atm �m3/gmol at 298K.

How longwill it take for dissolved oxygen concentration to reach

20 g/m3 at a depth of 0.3 cm from the water surface?

100% O2 gas
298 K 2.0 atm

deep liquid water
intial dissolved O2

100 g O2/m3

Sealed tank

27.12 A ‘‘drug patch’’ is designed to slowly deliver a drug

(species A) through the body tissue to an infected zone of tissue

beneath the skin. The drug patch consists of a sealed reservoir
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containing the drug encapsulated within a porous polymer

matrix. The patch is implanted just below the skin. A diffusion

barrier attached to the bottom surface of the patch sets the surface

concentration of the drug in the body tissue at 2mol/m3, which is

below the solubility limit. Themean distance from the drug patch

to the infected area of tissue is 5 mm. To be effective, the drug

concentration must be at least 0.2 mol/m3 at the top edge of the

infected zone. Determine the time it will take in hours for the

drug to begin to be effective for treatment. The effective mole-

cular diffusion coefficient of the drug through the body tissue is

1� 10�6 cm2/s.

27.13 Please refer to Problem 27.4. How long will it take

for the concentration of benzene at the clay barrier (depth of 1m)

to reach 1 g/m3, the toxicity limit? You might find that the

concentration charts are difficult to read accurately at this

concentration. Therefore, consider the analytical solution and

implement the calculations on a computer spreadsheet. Be aware

that the diffusion process may take a long time.

27.14 Please refer to Problem 27.4. Consider a 1mby 1m cross

section of the water-saturated soil. Howmany grams of dissolved

benzene remain in this 1 m3 water-saturated soil 2 years after the

spill? You may need to analytically integrate the flux given by

equation (27–17) at the surface (z ¼ 0) over time, and then

implement the series solution on a computer spreadsheet.

27.15 The concentration profile resulting from transient diffu-

sion in a slab under conditions of negligible surface resistance is

described by equation (27–16). Use this equation to develop an

equation for predicting the average concentration, cA. Evaluate

and plot the dimensionless average profile (cA � cAs)/(cAo �
cAs) as a function of the dimensionless relative time ratio, XD.

Use a computer spreadsheet to perform the calculations.

27.16 Living cells immobilized within an agarose gel requires

glucose to survive. An important aspect of the biochemical

system design is the effective diffusion coefficient of glucose

into the agarose gel itself, which you may consider as a homo-

geneous material that is mostly liquid water. Consider the

experiment that is shown below, where a slab of the agarose

gel of 1.0 cm thickness is placed within a well-mixed aqueous

Effective diffusion coefficient measurement experiment

Well-mixed
glucose solution

constant concentration
(50 mmol/L)

Well-mixed
glucose solution

constant concentration
(50 mmol/L)

Sampling
syringe

(center of gel)

Agarose gel
(no cells)

(1.0 cm thick)

solution of glucose maintained at a concentration of 50 mmol/L,

which is relatively dilute. The solubility of the glucose inwater is

equal to the solubility of glucose in the gel.

A syringe mounted at the center of the gel carefully

excises a tiny sample of the gel for glucose analysis. Initially,

there is no glucose in the gel. However, after 42 h, the measured

concentration of glucose in the gel at the sampling point is

48.5 mmol/L.

a. What is the general differential equation for mass transfer

for this process in terms of concentration cA? Propose

reasonable boundary/initial conditions for this equation.

List three assumptions made in obtaining this equation.

b. Based on the measurements provided above, what is the

effective diffusion coefficient of glucose into the gel?

27.17 Consider cylindrical-shaped absorbent material designed

to selectively remove solute A from a solution. The uptake of

solute A through the homogeneous material is limited by

molecular diffusion. Furthermore, the absorbent has a higher

affinity for solute A relative to the surrounding solution as

described by the linear equilibrium relationship

cA ¼ Kc0A
where cA is the molar concentration of A in the absorbent, c0A is

the molar concentration of A in the surrounding fluid, and K is a

partition coefficient for solute A between the fluid and the

absorbent material. Assume that (1) the surrounding fluid is

very well mixed and has a constant concentration of c0A ¼ 2:00 g
mol/m3; (2) the diffusion coefficient of A in the homogeneous

absorbentmaterial is 4� 10�7 cm2/s andK ¼ 1:5 cm3 fluid/cm3

absorbent; (3) the cylindrical absorbent pellet is 1.0 cm in

diameter and 5.0 cm long; and (4) there is no solute A initially

in the absorbent material.

If the ‘‘edge effects’’ associated with the ends of the cylin-

der can be neglected, how long will take for the solute A

concentration to reach 2.94 g mol/m3 at a depth of 0.4 cm

from the surface of the cylinder?

27.18 A small spherical bead is used as a controlled drug-

release capsule in the gastrointestinal system. In the particular

case, a 0.1-cm-diameter bead has a uniform initial concen-

tration of 0.2 mmol/L of the drug griseofulvin (species A).

Determine the time it will take for the concentration of the

griseofulvin at the center of the bead to reach 10% of its initial

value. The diffusivity of griseofulvin within the bead material

is 1:5� 10�7 cm2/s. Upon release from the bead, the drug

is immediately consumed so that the surface concentration is

essentially zero.

27.19 Determine the time necessary to reduce the center

moisture content to 10 wt% if a 5-cm-thick slab of clay is placed

on a belt passing through a continuous drier, thus restricting the

drying to only one of the flat surfaces. The initial moisture con-

tent is 15 wt% and the surface moisture content under the

constant drying conditions is to be maintained at 4 wt%. The

effective diffusivity of water through clay is 1:3� 10�4 cm2/s.
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27.20 Aluminum is the primary conductor material for fabri-

cation of microelectronic devices. Consider the composite

thin film shown in the figure below.A thin filmof solid aluminum

is sputter-coated onto awafer surface. Then, a 0.5mmthin filmof

silicon is added on top of the aluminum film by chemical vapor

deposition of silane. This Si thin film serves as an electrically

insulating layer. However, if a high temperature is maintained

during processing, the aluminum can diffuse into the Si thin film

and change the characteristics of the microelectronic device.

Estimate the concentration of Al halfway into the Si thin film if

the temperature is maintained at 1250 K for 10 h. Carefully

consider whether or not the process represents diffusion within

a semi-infinite medium or a finite-dimensional medium. At

1250 K, the maximum solubility of Al in Si is about 1 wt%.

Diffusivity data are provided in Figure 24.7.

Aluminum thin flim (species A)

Silicon thin flim (0.5 mm)

Wafer surface

NA

27.21 A novel material based on the biopolymer polygluco-

samine is cast into a homogeneous gel bead. The amine group on

the biopolymer has a high affinity for transition metal ions at

parts-per-million concentrations. When water containing metal

ions contacts the gel, the metal ions selectively partition into the

gel at the surface, and then diffuse through the gel. In essence,

the gel acts as a second phase that extracts the metal ions from

solution and concentrates them within the bead. Consequently,

this material can be used to selectively remove toxic transition

metal ions fromwastewater. Although the real situation is some-

whatmore complicated, assume as a limiting case that the uptake

rate of the metal ions is limited by the passive molecular

diffusion of the metal ions through the gel. At relatively low

metal ion concentrations inwater below1.0mol/m3, the partition

constant is defined by the relationship

c0A ¼ KcAs

where c0A is the molar concentration of the metal ion within the

gel phase at the surface, cAs is the molar concentration of the

metal in the aqueous phase at the surface, and K is a dimension-

less partition constant, which is dependent on the concentration

of biopolymer within the gel. In the present process, the bead

diameter is 0.5 cm, and the biopolymer concentration within the

gel sets K equal to 150. How long will it take for the cadmium

concentration at the center of the gel bead to reach 12 mol/m3 if

wastewater containing a constant concentration of 0.1 mol/m3

cadmium (11.2 ppm) rapidly flows over the gel bead? The

diffusion coefficient of cadmiumwithin the gel is approximately

2� 10�6 cm2=s.

27.22 Consider a rectangular-shaped gel tablet of thickness

0.652 cmandwidth 1.0 cm. The edges of the gel tablet are sealed.

The initial concentration of the drug Dramamine (solute A)

in the gel (B) is 64.0 mg/cm3, to provide a total drug dosage of

41.7 mg. The diffusion coefficient of the drug in the gel is

3:0� 10�7 cm2/s. What is the residual concentration of drug at

the center of the tablet after 96 h? The concentration of the drug

at the exposed surface of the tablet is maintained at zero.

27.23 Aporous cylinder, 2.5 cm in diameter and 80 cm long, is

saturated with an alcohol. The void space in the solid contains

sufficient pores so that molecular diffusion can take place

through the liquid in the passage. The cylinder is dropped

into a large, well-agitated reservoir of pure water. The agitation

maintains a concentration of 1 wt% alcohol at the surface of the

cylinder.

If the concentration at the center of the cylinder drops from

30wt%alcohol to 18wt% in 10 h, determine the concentration in

weight percent at the center after 15 h.

27.24 A common procedure for increasing the moisture con-

tent of air is to bubble it through a column of water. The air

bubbles are assumed to be spheres having radii of 1 mm and are

in thermal equilibriumwith water at 298 K. Determine how long

the bubble should remain in the water to achieve a vapor

concentration at the center that is 90% of the maximum possible

(saturation) concentration. Assume that the air is dry when it

enters the column ofwater and that the air inside the small bubble

is stagnant. The vapor pressure of water is available from many

sources, including the stream tables.

27.25 A rectangular oak pole, 10cm by 10 cm in width and

45 cm in length, having an initial uniform moisture content of

45 wt%, is placed in a drying kiln where its surface moisture is

maintained at 15 wt%. The drying rate is controlled by the

internal diffusion of the liquid water to the surface. If the

maximum moisture content of the dried pole is set at 25 wt%,

how long must the pole be dried when the ends of the pole are

sealed with a vapor barrier? In comparison, how long must the

same pole be dried if the side surfaces are sealed with a vapor

barrier and the ends are exposed?

Youmay assume for the purposes of this problem that wood

is an isotropic material. The diffusivity of moisture through the

oak is 1:04� 10�5 cm2=s under the specified drying conditions.
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Chapter 28

Convective Mass Transfer

Convective mass transfer, initially introduced in Section 24.3, involves the transport of

material between a boundary surface and a moving fluid or between two immiscible

moving fluids separated by a mobile interface. In this chapter, we will discuss the

transfer within a single phase where the mass is exchanged between a boundary surface

and a moving fluid, and the flux is related to an individual mass-transfer convective

coefficient. In Chapter 29, we will consider the mass transfer between two contacting

phases where the flux is related to an overall mass-transfer convective coefficient.

The rate equation for convective mass transfer, generalized in a manner analogous

to Newton’s law of cooling, is

NA ¼ kc DcA (24-57)

where the mass flux, NA, is the molar-mass flux of species A, measured relative to fixed

spatial coordinates, DcA is the concentration difference between the boundary surface

concentration and the average concentration of the diffusing species in the moving fluid

stream, and kc is the convective mass-transfer coefficient. Recalling the discussions of the

convective heat-transfer coefficient, as defined by Newton’s law of cooling, we should

realize that the determination of the analogous convective mass-transfer coefficient is not

a simple undertaking. Both the heat- and the mass-transfer coefficients are related to the

properties of the fluid, the dynamic characteristics of the flowing fluid, and the geometry

of the specific system of interest.

In light of the close similarity between the convective heat- and mass-transfer

equations used to define these two convective coefficients, we may expect that the

analytical treatment of the heat-transfer coefficient in Chapter 19 might be applied to

analyze the mass-transfer coefficient. Considerable use will also be made of

developments and concepts of Chapters 9–13.

28.1 FUNDAMENTAL CONSIDERATIONS IN CONVECTIVE MASS TRANSFER

When the mass transfer involves a solute dissolving into a moving fluid, the convective

mass-transfer coefficient is defined by

NA ¼ kc(cAs � cA) (28-1)

In this equation, the flux NA represents the moles of solute A leaving the interface per unit

time and unit interfacial area. The composition of the solute in the fluid at the interface,

cAS, is the composition of the fluid if it were in equilibrium with the solid solute at the

temperature and pressure of the system. The quantity cA represents the composition at

some point within the fluid phase. For example, if a concentration boundary layer is

defined, cA can be chosen as the concentration of component A at the edge of the
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boundary layer and be expressed as cA1. If the flow were in a closed conduit, the

composition c would be the bulk composition or the mixing-cup concentration, that is, an

average composition of the bulk flow.

Mass transfer at a steady rate from a solid to a gas stream is described by an equation

identical to (28-1), with the compositions of the solute in terms of gas-phase concentrations.

Equation (28-1)will be used in the following example to evaluate amass-transfer coefficient.

EXAMPLE 1 Air flows over a solid slab of frozen carbon dioxide (dry ice) with an exposed cross-sectional surface

area of 1� 10�3 m2. The carbon dioxide sublimes into the 2m/s flowing stream at a total release rate

of 2:29� 10�4 mol/s. The air is at 293 K and 1:013� 105 Pa pressure. At that temperature, the

diffusivity of carbon dioxide in air is 1:5� 10�5 m2/s and the kinematic viscosity of the air is

1:55� 10�5 m2/s.

Determine thevalue of themass-transfer coefficient of CO2 subliming into the flowing air under

the conditions of the experiment.

By equation (28-1), NA ¼ kc(cAs � cA); accordingly,

kc ¼ NA

(cAs � cA1)
¼ WA

Ax(cAs � cA1)

At 293 K and 1:013� 105 Pa,

cAs ¼ PA

RT
¼ 4:74� 103 Pa

8:314
Pa �m3

mol � K
� �

(293K)

¼ 1:946mol/m3

If we assume cA1 ¼ 0,

kc ¼ 2:29� 10�4 mol/s

(1� 10�3 m2)(1:946mol/m3)
¼ 0:118m/s

From our early discussions dealing with a fluid flowing past a surface, we may recall

that the fluid particles immediately adjacent to the solid boundary are stationary, and a thin

layer of fluid close to the surface will be in laminar flow regardless of the nature of the free

stream.Themass transfer through this filmwill involvemolecular transport and it will play a

role in any convection process. If the fluid flow is laminar, all of the transport between the

surface and the moving fluid will be by molecular means. If the flow is turbulent, the mass

will be transported by the eddies present within the turbulent core of the stream. As in the

case of heat transfer, highermass-transfer rates are associatedwith turbulent conditions. The

distinction between laminar and turbulent flow will be an important consideration in any

convective situation.

The hydrodynamic boundary layer, analyzed in Chapter 12, plays a major role in

convective mass transfer. Additionally, we shall define and analyze the concentration

boundary layer, which will be vital to the analysis of the convective mass-transfer process.

This layer is similar, but not necessary equal in thickness to the thermal boundary layer that

was discussed in Chapter 19.

There are four methods of evaluating convective mass-transfer coefficients that will be

discussed in this chapter. They are

1. dimensional analysis coupled with experiment;

2. exact laminar boundary-layer analysis;
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3. approximate boundary-layer analysis;

4. analogy between momentum, energy, and mass transfer.

Each of these methods will be considered in the following sections.

28.2 SIGNIFICANT PARAMETERS IN CONVECTIVE MASS TRANSFER

Dimensionless parameters are often used to correlate convective transport data. In

momentum transfer, we encountered the Reynolds and the Euler numbers. In the correlation

of convective heat-transfer data, the Prandtl and the Nusselt numbers were important. Some

of the same parameters, along with some newly defined dimensionless ratios, will be useful

in the correlation of convective mass-transfer data. In this section, we shall consider the

physical interpretation of three such ratios.

The molecular diffusivities of the three transport phenomena have been defined as

momentum diffusivity, n ¼ m/r

thermal diffusivity,a ¼ k

rc p

and

mass diffusivity,DAB

As we have noted earlier, each of the diffusivities has the dimensions L2/t; thus, a ratio of

any two of thesemust be dimensionless. The ratio of themolecular diffusivity ofmomentum

to the molecular diffusivity of mass is designated the Schmidt number

momentum diffusivity

mass diffusivity
¼ Sc� n

DAB
¼ m

rDAB
(28-2)

The Schmidt number plays a role in convective mass transfer analogous to that of the

Prandtl number in convective heat transfer. The ratio of the thermal diffusivity to the

molecular diffusivity of mass is designated the Lewis number

thermal diffusivity

mass diffusivity
¼ Le� k

rc pDAB
(28-3)

The Lewis number is encountered when a process involves the simultaneous convective

transfer of mass and energy. The Schmidt and the Lewis numbers are observed to be

combinations of fluid properties; thus, each number may be treated as a property of the

diffusing system.

Consider the mass transfer of solute A from a solid to a fluid flowing past the surface of

the solid. The concentration profile is depicted in Figure 28.1. For such a case, the mass

transfer between the surface and the fluid may be written as

NA ¼ kc(cA,s � cA,1) (28-4)

cAS
= cA�

cAS
– cA = [cAS

– cA] (y)v = v(y)

v�

y

x

Figure 28.1 Concentration and velocity profiles for a fluid flowing past a solid surface.
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Since the mass transfer at the surface is by molecular diffusion, the mass transfer may

also be described by

NA ¼ �DAB
dcA

dy

����
y¼0

When the boundary concentration, CA,s, is constant, this equation simplifies to

NA ¼ �DAB
d(cA � cA,s)

dy

����
y¼0

(28-5)

Equations (28-4) and (28-5) may be equated, as they define the same flux of component A

leaving the surface and entering the fluid. This gives the relation

kc(cA,s � cA,1) ¼ �DAB
d

dy
(cA � cA,s)

����
y¼0

which may be rearranged into the following form:

kc

DAB
¼ �d(cA � cA,s)/dyjy¼0

(cA,s � cA,1)
(28-6)

Multiplying both sides of equation (28-6) by a significant length, L, we obtain the

following dimensionless expression:

kcL

DAB
¼ �d(cA � cA,s)/dyjy¼0

(cA,s � cA,1)/L
(28-7)

The right-hand side of equation (28-7) is the ratio of the concentration gradient at the

surface to an overall- or reference-concentration gradient. Accordingly, it may be

considered a ratio of the molecular mass-transport resistance to the convective mass-

transfer resistance of the fluid. This ratio is referred to as the Sherwood number, Sh. Since

the development of equation (28-7) parallels the development of equation (19-5) for the

Nusselt number encountered in convective heat transfer, the ratio kcL/DAB has also been

referred to as the mass-transfer Nusselt number, NuAB.

These three parameters—Sc, Sh, and Le—will be encountered in the analyses of

convective mass transfer in the following sections. The Schmidt number is evaluated in the

following example to reveal the relative magnitude of its value in the gas and liquid phases.

EXAMPLE 2 Determine the Schmidt number for methanol in air at 298 K and 1:013� 105 Pa and in liquid water

at 298 K.

At 298 K, the diffusivity of methanol in air can be evaluated from the value reported in

Appendix J.1
Dmethanol�airP ¼ 1:641m2 Pa/s

Dmethanol�air ¼ 1:641m2 Pa/s

1:013� 105 Pa
¼ 1:62� 10�5 m2/s

and the kinematic viscosity of air from Appendix I

v ¼ 1:569� 10�5 m2/s:

Accordingly, the Schmidt number of methanol in air is

Sc ¼ v

DAB
¼ 1:569� 10�5 m2/s

1:62� 10�5 m2/s
¼ 0:968
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The liquid-phase diffusivity of methanol at 288 K is reported in Appendix J.2 to be 1:28�
10�9 m2/s: This value can be used to find the liquid-phase diffusivity at 298 K by

DAB mH2O

T

� �
298

¼ DAB mH2O

T

� �
288

DAB 909 Pa � s
298K

� �
298

¼ (1:28� 10�9 m2/s)(1193 Pa � s)
288K

� �
288

DAB ¼ 1:738 10�9 m2/s

The viscosity values were obtained in Appendix I. The kinematic viscosity value of liquid water at

298K is also found inAppendix I to be 0:912� 10�6 m2/s; thus, the Schmidt number formethanol in

liquid water is

Sc ¼ v

DAB
¼ 0:912� 10�6 m2/s

1:738� 10�9 m2/s
¼ 525

28.3 DIMENSIONAL ANALYSIS OF CONVECTIVE MASS TRANSFER

Dimensionless analysis predicts the various dimensionless parameters that are helpful in

correlating experimental data. There are two important mass-transfer processes that we

shall consider, mass transfer into a stream flowing under forced convection and mass

transfer into a phase that is moving under natural-convection conditions.

Transfer into a Stream Flowing Under Forced Convection

Consider the transfer of mass from the walls of a circular conduit to a fluid flowing through

the conduit. The transfer is a result of the concentration driving force, cA,s � cA: The
important variables, their symbols, and their dimensional representations are listed here.

Variable Symbol Dimensions

Tube diameter D L

Fluid density r M/L3

Fluid viscosity m M/Lt

Fluid velocity v L/t

Fluid diffusivity DAB L2/t

Mass-transfer coefficient kc L/t

The above variables include terms descriptive of the system of geometry, the fluid velocity,

the fluid properties, and the quantity that is of primary interest, kc.

By the Buckingham method of grouping the variables as presented in Chapter 11, we

can determine that there will be three dimensionless groups. WithDAB, r, andD as the core

variables, the three pi groups to be formed are

p1 ¼ Da
ABr

bDckc

p2 ¼ Dd
ABr

eD f v
and

p3 ¼ D
g
ABr

hDim
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Writing p1 in dimensional form

p1 ¼ Da
ABr

bDckc

1 ¼ L2

t

� �a
M

L3

� �b

(LÞc L

t

� �
equating the exponents of the fundamental dimensions on both sides of the equation, we

have for

L : 0 ¼ 2a� 3bþ cþ 1

t : 0 ¼ �a� 1

and

M : 0 ¼ b

The solution of these equations for the three unknown exponents yields

a ¼ �1

b ¼ 0

and

c ¼ 1

thus p1 ¼ kcL/DAB, which is the Sherwood number, Sh, or its equivalent, the mass-transfer

Nusselt number, NuAB. The two other pi groups could be determined in the same manner,

yielding

p2 ¼ Dv

DAB

and

p3 ¼ m

rDAB
¼ Sc

the Schmidt number. Dividing p2 by p3, we obtain

p2

p3
¼ Dv

DAB

� �
DABr

m

� �
¼ Dvr

m
¼ Re

the Reynolds number. The result of the dimensional analysis of forced-convection mass

transfer in a circular conduit indicates that a correlating relation could be of the form

Sh ¼ NuAB ¼ f (Re, Sc) (28-8)

which is analogous to the heat-transfer correlation

Nu ¼ f (Re, Pr ) (19-7)

Transfer into a Phase Whose Motion is Due to Natural Convection

Natural convection currents will develop if there exists any variation in density within a

liquid or gas phase. The density variationmay be due to temperature differences or relatively

large concentration differences.

In the case of natural convection involving mass transfer from a vertical plane wall

to an adjacent fluid, the variables will differ from those used in the forced-convection
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analysis. The important variables, their symbols, and dimensional representations are

listed below.

By the Buckingham theorem, there will be three dimensionless groups. WithDAB, L, and m

as the core variables, the three pi groups to be formed are

p1 ¼ Da
ABL

bmckc

p2 ¼ Dd
ABL

emfr

p3 ¼ D
g
ABL

hmiDrA

Solving for the three pi groups, we obtain

p1 ¼ kcL

DAB
¼ Sh

the Sherwood number

p2 ¼ rDAB

m
¼ 1

Sc

the reciprocal of the Schmidt number and

p3 ¼ L3gDrA
mDAB

Multiplying p2 and p3, we obtain a parameter that is analogous to the Grashof number in

natural-convection heat transfer

p2p3 ¼ rDAB

m

� �
L3gDrA
mDAB

� �

¼ L3rgDrA
m2

¼ L3gDrA
rv2

¼ GrAB

The result of the dimensional analysis of natural-convection mass transfer suggests a

correlating relation of the form

Sh ¼ f (GrAB, Sc) (28-9)

For both forced and natural convection, relations have been obtained by dimensional

analysis that suggest that a correlation of experimental data may be in terms of three

variables instead of the original six. This reduction in variables has aided investigators

who have suggested correlations of these forms to provide many of the empirical

equations reported in Chapter 30.

Variable Symbol Dimensions

Characteristic length L L

Fluid diffusivity DAB L2/t

Fluid density r M/L3

Fluid viscosity m M/LT

Buoyant force gDrA M/L2t2

Mass-transfer coefficient kc L/t

28.3 Dimensional Analysis of Convective Mass Transfer 523



28.4 EXACT ANALYSIS OF THE LAMINAR CONCENTRATION
BOUNDARY LAYER

Blasius developed an exact solution for the hydrodynamic boundary layer for laminar flow

parallel to a flat surface. This solution was discussed in Section 12.5. An extension of the

Blasius solution was made in Section 19.4 to explain convective heat transfer. In an exactly

analogous manner, we shall also extend the Blasius solution to include convective mass

transfer for the same geometry and laminar flow.

The boundary-layer equations considered in the steady-state momentum transfer

included the two-dimensional, incompressible continuity equation

@vx
@x

þ @vy
@y

¼ 0 (12-11b)

and the equation of motion in the x direction, for constant v and pressure

vx
@vx
@x

þ vy
@vx
@y

¼ n
@2vx
@y2

(12-11a)

For the thermal boundary layer, the equation describing the energy transfer in a steady,

incompressible, two-dimensional, isobaric flow with constant thermal diffusivity was

vx
@T

@x
þ vy

@T

@y
¼ a

@2T

@y2
(19-15)

An analogous differential equation applies to mass transfer within a concentration

boundary layer if no production of the diffusing component occurs and if the second

derivative cA of with respect to x, @2cA/@x
2, is much smaller in magnitude than the second

derivative of cA with respect to y. This equation written for steady, incompressible two-

dimensional flow with constant mass diffusivity is

vx
@cA
@x

þ vy
@cA
@y

¼ DAB
@2cA
@y2

(28-10)

The concentration boundary layer is shown schematically in Figure 28.2. The following

are the boundary conditions for the three boundary layers:

momentum :
vx
v1

¼ 0 at y ¼ 0 and
vx
v1

¼ 1 at y ¼ 1

or, as the velocity in the x direction at the wall, vx,s, is zero

vx � vx,s
v1 � vx,s

¼ 0 at y ¼ 0 and
vx � vx,s
v1 � vx,s

¼ 1 at y ¼ 1

thermal :
T � Ts

T1 � Ts
¼ 0 at y ¼ 0 and

T � Ts

T1 � Ts
¼ 1 at y ¼ 1

Edge of concentration
boundary layer

cA = cA (y)

x

y
cAS

cA�

Figure 28.2 The concentration

boundary layer for laminar flow

past a flat surface.
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and

concentration :
cA � cA,s

cA,1 � cA,s
¼ 0 at y ¼ 0 and

cA � cA,s

cA,1 � cA,s
¼ 1 at y ¼ 1

Equations (28-11), (28-12), and () can be written in terms of the following dimension-

less velocity, temperature, and concentration ratios:

vx

@
vx � vx,s
v1 � vx,s

� �
@x

þ vy

@
vx � vx,s
v1 � vx,s

� �
@y

¼ v

@2
vx � vx,s
v1 � vx,s

� �
@y2

or if

V ¼ vx � vx,s
v1 � vx,s

� �

vx
@V

@x
þvy

@V

@y
¼ v

@2V

@2y

with the boundary conditions: V ¼ 0 at y ¼ 0 and V ¼ 1 at y ¼ 1 and similarly if

u ¼ T � Ts

T1 � Ts

vx
@u

@x
þvy

@u

@y
¼ a

@2u

@y2

(19-15c)

with the boundary conditions: u ¼ 0 at y ¼ 0 and u ¼ 1 at y ¼ 1 and if

C ¼ cA � cAs

cA1 � cAs

vx
@C

@x
þ vy

@C

@y
¼ DAB

@2C

@y2

(28-10c)

with the boundary conditions: C ¼ 0 at y ¼ 0 and C ¼ 1 at y ¼ 1.

The similarity in the three differential equations, (12-11c), (19-15c), and (28-10c), and

the boundary conditions suggests that similar solutions should be obtained for the three

transfer phenomena. In Chapter 19, the Blasius solution for equation (28-11) was modified

and successfully applied to explain convective heat transferwhen the ratio of themomentum

to thermal diffusivity v/a ¼ Pr ¼ 1. The same type of solution should also describe

convective mass transfer when the ratio of the momentum to mass diffusivity

n/DAB ¼ Sc ¼ 1. Using the nomenclature defined in Chapter 12,

f 0 ¼ 2
vx
v1

¼ 2
vx � vx,s
v1 � vx,s

¼ 2
cA � cA,s

cA,1 � cA,s
(28-11)

and

h ¼ y

2

ffiffiffiffiffiffiffi
v1
nx

r
¼ y

2x

ffiffiffiffiffiffiffiffiffi
xv1
n

r
¼ y

2x

ffiffiffiffiffiffiffiffi
Rex

p
(28-12)

the Blasius solution to the momentum boundary layer

df 0

dh
¼ f 00(0Þ ¼ d½2(vx/v1)�

d½(y/2x) ffiffiffiffiffiffiffi
Rex

p �

����
y¼0

¼ 1:328

28.4 Exact Analysis of the Laminar Concentration Boundary Layer 525



suggests an analogous solution for the concentration boundary layer

df 0

dh
¼ f 00(0Þ ¼ d½2(cA � cA,s)/(cA,1 � cA,s)�

d½(y/2xÞ ffiffiffiffiffiffiffiffi
Rex

p �

����
y¼0

¼ 1:328 (28-13)

Equation (28-13) may be rearranged to obtain an expression for the concentration

gradient at the surface

dcA

dy

����
y¼0

¼ (cA,1 � cA,s)
0:332

x
Re1/2x

� �
(28-14)

It is important to recall that the Blasius solution for equation (12–11a) did not involve a

velocity in the y direction at the surface. Accordingly, equation (28-14) involves the

important assumption that the rate at which mass enters or leaves the boundary layer at

the surface is so small that it does not alter the velocity profile predicted by the Blasius

solution.

When the velocity in the y direction at the surface, vy,s, is essentially zero, the bulk

contribution term in Fick’s equation for themass flux in the y direction is also zero. Themass

transfer from the flat surface into the laminar boundary layer is described by

NA,y ¼ �DAB
@cA
@y

����
y¼0

(28-15)

Upon substituting equation (28-14) into equation (28-15), we obtain

NA,y ¼ �DAB
0:332Re1/2x

x

" #
(cA,1 � cA,s)

or

NA,y ¼ DAB
0:332Re1/2x

x

" #
(cA,s � cA,1) (28-16)

The mass flux of the diffusing component was defined in terms of the mass-transfer

coefficient by

NA,y ¼ kc(cA,s � cA,1) (28-4)

The right-hand sides of equations (28-16) and (28–4) may be equated to give

kc ¼ DAB

x
½0:332Re1/2x �

or

kcx

DAB
¼ Shx ¼ 0:332Re1/2x (28-17)

Equation (28-17) is restricted to systems having a Schmidt number, Sc, of 1 and low

mass-transfer rates between the flat plate and the boundary layer.

A graphical presentation of the solution to the concentration boundary-layer equation

(28-10) by Hartnett and Eckert1 is depicted in Figure 28.3. Curves representing positive

and negative values of the surface boundary parameter, ðvy,s/v1Þ(Rex)1/2, are shown.

1 J. P. Hartnett and E. R. G. Eckert, Trans. ASME, 13, 247 (1957).
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The positive values apply when the mass transfer from the flat plate is into the boundary

layer, and the negative values describe mass transfer from the fluid to the plate. As this

surface boundary parameter approaches a zero value, themass-transfer rate diminishes until

it is considered to have no effect upon the velocity profile. The slope of the zero line,

evaluated at y ¼ 0, is 0.332 as predicted by equation (28-13).

In most physical operations involving mass transfer, the surface boundary parameter is

negligible, and the low-mass-transfer Blasius type of solution is used to define the transfer

into the laminar boundary layer. The vaporization of a volatile material into a gas stream

flowing at low pressures is a case in which the low-mass-transfer assumption cannot be

made.

For a fluid with a Schmidt number other than unity, similar curves to those shown in

Figure 28.3 can be defined. The similarity in differential equations and boundary conditions

suggests a treatment for convective mass transfer analogous to Pohlhausen’s solution for

convective heat transfer. The concentration boundary layer is related to the hydrodynamic

boundary layer by

d

dc
¼ Sc1/3 (28-18)

where d is the thickness of the hydrodynamic boundary layer and dc is the thickness of

the concentration boundary layer; thus, the Blasius h term must be multiplied by Sc1/3.

A plot of the dimensionless concentration vs. hSc1/3 for vy;s ¼ 0 is shown in Figure 28.4.

The concentration variation given in this form leads to an expression for the convective

mass-transfer coefficient similar to equation (28-17). At y ¼ 0, the concentration

cAS
– cA

vyS

cAS
– cA�

y
x

v�

(Rex)
1/2h =

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1.0

(Rex)
1/2

0.6

–2.5

0

0 0.25
0.5

Figure 28.3 Concentration profiles for mass transfer in a laminar boundary layer on a flat plate.

Slope = 0.332

0

1.0

cAS
– cA

vyS
= 0

cAS
– c

�

y
x Re1/2 Sc1/3

Figure 28.4 Concentration

variation for laminar flow

over a flat plate.
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gradient is

@cA
@y

����
y¼0

¼ (cA,1 � cA,s)
0:332

x
Re1/2x Sc1/3

� �
(28-19)

which, when used with equation (28-15), yields

kcx

DAB
¼ Shx ¼ 0:332Re1/2x Sc1/3 (28-20)

Themeanmass-transfer coefficient, kc, which applies over a plate ofwidthWand length

L, may be obtained by integration. For a plate of these dimensions, the total mass transfer

rate, WA, may be evaluated by

WA ¼ kcA(cA,s � cA,1) ¼
Z
A

kc(cA,s � cA,1)dA

¼ kcWL(cA,s � cA,1)

¼ (cA,s � cA,1)

Z
A

0:332DAB Re
1/2
x Sc1/3 dA

x

Accordingly,

kcWL ¼ 0:332WDABSc
1/3
Z L

0

Re1/2x

x
dx

kcL ¼ 0:332DABSc
1/3 v1r

m

� �1/2 Z L

0

x�1/2 dx

¼ 0:664DABSc
1/3 v1r

m

� �1/2
L1/2

and

kcx

DAB
¼ ShL ¼ 0:664Re1/2L Sc1/3 (28-21)

The local Sherwood number at a distance x downstream is related to the mean Sherwood

number for the plate by the relation

ShL ¼ 2 Shxjx¼L (28-22)

Equations (28-20) and (28-21) have been experimentally verified.2 It is interesting to note

that this entirely different analysis has produced results of the same form predicted in

Section 28.3 by dimensional analysis for forced-convection mass transfer

Sh ¼ f (Re, Sc) (28-8)

Reconsidering the dimensionless concentration profiles of Harnett and Eckert as

presented in Figure 28.3, we can observe that the slope of each curve, when evaluated at

y ¼ 0, decreases as the positive surface boundary parameter, (vys/v1)(Re)1/2, increases.

As the magnitude of the transfer coefficient is directly related to the slope by the relation

kc ¼ DAB
d½(cA,s � cA)/(cA,s � cA,1)�

dy

����
y¼0

(28-23)

2 W. J. Christian and S. P. Kezios, AIChEJ. 5, 61 (1959).
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the decrease in slope indicates that the systems having higher values of the surface

boundary parameter will have lower mass-transfer coefficients.

When both energy and mass are transferred through the laminar boundary layer, the

dimensionless profiles in Figure 28.3 may also represent the dimensionless temperature

profiles if the Prandtl and Schmidt numbers for the system are both unity. In the previous

paragraph, it was pointed out that the mass-transfer coefficient diminishes in magnitude as

mass is transferred into the boundary layer from the surface. Accordingly, we should also

expect the heat-transfer coefficient to diminish asmass is transferred into the boundary layer.

This may be accomplished by forcing a fluid through a porous plate out into the boundary

layer or by sublimating the plate material itself. These simultaneous heat and mass transfer

processes, often referred to as transpiration cooling and ablation, respectively, were used to

help reduce the large heat effects during the reentry of a missile into Earth’s atmosphere.

EXAMPLE 3 The mass-transfer coefficient for a turbulent boundary layer formed over a flat plate has been

correlated in terms of a local Sherwood number by

Shx ¼ 0:0292Re4/5x Sc1/3 (28-24)

where x is the distance downstream from the leading edge of the flat plate. The transition from

laminar to turbulent flow occurs at Rex ¼ 2� 105.

(a) Develop an expression for the mean mass-transfer coefficient for a flat plate of length L.

By definition

kc ¼
R L
0 kc dxR L
0 dx

¼
R Lt
0 kc,lam dxþ R LLt

kc,turb dx

L
(28-25)

where Lt is the measured distance from leading edge to the transition point. kc;lam is defined by

equation (28-20)

kc;lam ¼ 0:332
DAB

x
(Rex)

1/2(Sc)1/3

kc;turb is defined by equation (28-24)

kc;turb ¼ 0:0292
DAB

x
(Rex)

4/5(Sc)1/3

Upon substitution of these two equations in our equation for the mean mass-transfer coefficient, we

obtain

kc ¼

Z Lt

0

0:332DAB(Rex)
1/2

x
(Sc)1/3dxþ

Z L

Lt

0:0292DAB(Rex)
4/5

x
(Sc)1/3dx

L

where Lt is the distance from the leading edge of the plane to the transition point where the

Rex ¼ 2� 105.

kc ¼
0:332DAB

v

n

� �1/2
(Sc)1/3

Z Lt

0

x�1/2dxþ 0:0292DAB
v

n

� �4/5
(Sc)1/3

Z L

Lt

x�1/5dx

L

kc ¼
0:664DAB

v

n

� �1/2
(Sc)1/3L1/2t þ 0:0365DAB

v

n

� �4/5
(Sc)1/3½(L)4/5 � (Lt)

4/5�
L

kc ¼ 0:664DAB(Ret)
1/2(Sc)1/3 þ 0:0365DAB(Sc)

1/3½(ReL)4/5 � (Ret)
4/5�

L

(28-26)

28.4 Exact Analysis of the Laminar Concentration Boundary Layer 529



The solution to Problem 28-9, at the end of this chapter, points out the dominating contri-

bution that the turbulent zone has in evaluating the mean mass-transfer coefficient for flow over a

flat plate. This ismore obvious as theReynolds number for the plate exceeds its value at the transition

point.

(b) In a manufacturing process, an organic solvent (methyl ethyl ketone, MEK) is used to

dissolve a thin coating of a polymer away from a nonporous flat surface of length 2.0 m and width

10 cm. The thickness of the polymer film is initially uniform at 0.2 mm. In the process, at the MEK

solvent flows a flow rate of 15 cm/s over the open flat plate. You may assume that the concentration

of the dissolved polymer in the bulk solvent is essentially zero, cA1 ¼ 0, even though in reality the

concentration of dissolved polymer in the solvent increases very slightly as it flows over the pan.

At the temperature and pressure of the process, the following data area available:

� Diffusion coefficient of dissolved polymer (solute) in the MEK solvent DAB ¼
3� 10�6 cm2/s.

� Kinematic viscosity of liquid MEK nB ¼ 6:0� 10�3 cm2/s.

� Density of solid polymer film material rA ¼ 1:05 g/cm3.

� Density of liquid MEK rB ¼ 0:80 g/cm3.

� Maximum solubility of dissolved polymer in MEK solvent rA ¼ 0:04 g/cm3.

1. Determine the average flux, WA, from the surface.

2. Determine the mass-transfer coefficient 50 cm downstream from the leading edge.

The Reynolds number for the MEK flow for the pan is evaluated by

ReL ¼ v1L

n
¼ (15 cm)(200 cm)

6:0� 10�3 cm2/s
¼ 5� 105

As this is greater than 2� 105, we recognize that there is a transition point where the boundary layer

changes from laminar to turbulent. This transition point can be evaluated from the transition

Reynolds number, Ret ¼ 2� 105.

L ¼ Retv

v1
¼ (2� 105)(6:0� 10�3 cm2/s)

15 cm/s
¼ 80 cm

We can evaluate the mean mass-transfer coefficient by using equation (28-26) derived in part (a):

kc ¼ 0:664DABRe
1/2
t Sc1/3 þ 0:0365DABSc

1/3½Re4/5L � Re4/5t �
L

The Schmidt number is evaluated by

Sc ¼ n

DAB
¼ 6:0� 10�3 cm2/s

3� 10�6 cm2/s
¼ 2� 103 and Sc1/3 ¼ 12:567

TheReynolds number at transition, Ret ¼ 2:0� 105, and the Reynolds number at the end of the pan,

ReL ¼ 5:0� 105, permit evaluating

Re1/2t ¼ (2:0� 105)1/2 ¼ 447:2

Re4/5t ¼ (2:0� 105)4/5 ¼ 17,411

Re4/5L ¼ (5:0� 105)4/5 ¼ 36,239

Then ½Re4/5L � Re4/5t � ¼ 18,828, and we have

kc ¼ 0:664(3:0� 10�6 cm2/s) (447:2) (12.567)þ 0:0365(3:0� 10�6 cm2/s)(12:567)(18,828)

200 cm

¼ 1:854� 10�4 cm/s
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The average flux of species A leaving the surface will be

wA ¼ kc(r

A � rA1) ¼ ð1:855� 10�4 cm/sÞ (0:04 g/cm3 � 0) ¼ 7:42� 10�6 g/cm2s

2. At x ¼ 50 cm the flow will be laminar and

Rex ¼ v1x

n
¼ (15 cm/s)(50 cm)

6:0� 10�3cm2/s
¼ 1:25� 105

kcx ¼ 0:332DAB(Rex)
1/2(Sc)1/3

x
¼ 0:332(3:0� 10�6 cm2/s)(1:25� 105)1/2(12:567Þ

50 cm

kcx ¼ 8:85� 10�5 cm/s

28.5 APPROXIMATE ANALYSIS OF THE CONCENTRATION
BOUNDARY LAYER

When the flow is other than laminar or the configuration is other than a flat plate, few exact

solutions presently exist for mass transport in a boundary layer. The approximate method

developed by von Kármán to describe the hydrodynamic boundary layer can be used for

analyzing the concentration boundary layer. The use of this approach was discussed in

Chapters 12 and 19.

Consider acontrol volume that is located

in the concentration boundary layer as illu-

strated in Figure 28.5. This volume, desig-

nated by the dashed line, has a width ofDx, a

height equal to the thickness of the concen-

tration boundary layer, dc, and a unit depth.A
steady-state molar mass balance over the

control volume produces the relation

WA1 þWA3 þWA4 ¼ WA2 (28-27)

where WA is the molar rate of mass

transfer of component A. At each surface,

the molar rate is expressed as

WA1 ¼
Z dc

0

cAvxdy

����
x

WA2 ¼
Z dc

0

cAvxdy

����
xþDx

WA3 ¼ cA;1 @

@x

Z dc

0

vx dy

� �
Dx

and

WA4 ¼ kc(cA,s � cA,1)Dx

In terms of these molar rates, equation (28-27) may be rewritten asZ dc

0

cAvxdyjx þ cA,1 @

@x

Z dc

0

vx dy

� �
Dx ¼ kc(cA,s � cA,1)Dx

¼
Z dc

0

cAvxdy

����
xþDx

(28-28)

∆x
WA2

WA4

WA3

WA1

x

δc

Figure 28.5 The concentration boundary-layer

control volume.
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Rearranging, dividing each term by Dx, and evaluating the results in the limit as Dx
approaches zero, we obtain

d

dx

Z dc

0

cAvxdy ¼ cA;1 d

dx

Z dc

0

vxdy

� �
þ kc(cA,s � cA;1)

or
d

dx

Z dc

0

(cA � cA;1)vxdy ¼ kc(cA,s � cA;1) (28-29)

Equation (28-29) is analogous to equations (12-38) and (19-30). In order to solve

equation (28-29), the velocity and the concentration profiles must be known; normally

these profiles are unknown and must be assumed. Some of the boundary conditions that

must be satisfied by the assumed boundary conditions are

(1) vx ¼ 0 at y ¼ 0

(2) vx ¼ v1 at y ¼ d

(3)
@vx
@y

¼ 0 at y ¼ d

and, according to equation (12-33)

(4)
@2vx
@y2

¼ 0 at y ¼ 0

The assumed concentration profile must satisfy the corresponding boundary conditions in

terms of concentrations

(1) cA � cA,s ¼ 0 at y ¼ 0 (28-30)

(2) cA � cA,s ¼ cA, 1 � cA,s at y ¼ dc (28-31)

(3)
@

@y
(cA � cA,s) ¼ 0 at y ¼ dc (28-32)

and

(4)
@2

@y2
(cA � cA,s) ¼ 0 at y ¼ 0 (28-33)

If we reconsider the laminar flow parallel to a flat surface, we can use the von Kármán

integral equation (28-29) to obtain an approximate solution. The results can be compared to

the exact solution, equation (28-20), and thus indicate how well we have approximated the

velocity and the concentration profiles. As our first approximation, let us consider a power-

series expression for the concentration variation with y

cA � cA,s ¼ aþ byþ cy2 þ dy3

Application of the boundary conditions will result in the following expression:

cA � cA,s

cA,1 � cA,s
¼ 3

2

y

dc

� �
� 1

2

y

dc

� �3

(28-34)

If the velocity profile is assumed in the same power-series form, then the resulting

expression, as obtained in Chapter 12, is

vx
v1

¼ 3

2

� y
d

�
� 1

2

� y
d

�3
(12-40)
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Upon substituting equations (28-34) and (12-40) into the integral expression (28-29) and

solving, we obtain

Shx ¼ 0:36Re1/2x Sc1/3 (28-35)

which is close to the exact solution expressed in equation (28-20).

Although this result is not exact, it is sufficiently close to the exact solution

to indicate that the integral method may be used with some degree of con-

fidence in other situations in which an exact solution is unknown. The accuracy of

the method depends entirely on the ability to assume good velocity and concentration

profiles.

The von Kármán integral equation (28-29) has been used to obtain an approximate

solution for the turbulent boundary layer over a flat plate. With the velocity profile

approximated by

vx ¼ aþ by1/7

and the concentration profile approximated by

cA � cA,1 ¼ hþ jy1/7

the local Nusselt number in the turbulent layer is found to be

Shx ¼ 0:0292Re4/5x (28-24)

28.6 MASS, ENERGY, AND MOMENTUM-TRANSFER ANALOGIES

In the previous analyses of convective mass transfer, we have recognized the similari-

ties in the differential equations for momentum, energy, and mass transfer and in the

boundary conditions when the transport gradients were expressed in terms of dimension-

less variables. These similarities have permitted us to predict solutions for the similar

transfer processes. In this section, we shall consider several analogies among transfer

phenomena that have been proposed because of the similarity in their mechanisms.

The analogies are useful in understanding the transfer phenomena and as a satis-

factory means for predicting behavior of systems for which limited quantitative data

are available.

The similarity among the transfer phenomena and, accordingly, the existence of the

analogies require that the following five conditions exist within the system:

1. There is no energy or mass produced within the system. This, of course, infers that

no homogeneous reaction occurs.

2. There is no emission or absorption of radiant energy.

3. There is no viscous dissipation.

4. The velocity profile is not affected by the mass transfer; thus, there is only a low

rate of mass transfer.

5. The physical properties are constant. As there may be slight changes in the

physical properties due to variations in temperature or concentration, this con-

dition can be approximated by using average concentration and film temperature

properties.
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Reynolds Analogy

The first recognition of the analogous behavior of momentum and energy transfer was

reported by Reynolds.3 Although this analogy is limited in application, it has served as the

catalyst for seeking better analogies, and it has been useful in analyzing complex boundary-

layer phenomena of aerodynamics.

Reynolds postulated that the mechanisms for transfer of momentum and energy were

identical.We have observed in our earlier discussions on laminar boundary layers that this is

true if the Prandtl number, Pr, is unity. From our previous consideration in Section 28.4, we

can extend the Reynolds postulation to include themechanism for the transfer of mass if the

Schmidt number, Sc, is also unity. For example, if we consider the laminar flow over a flat

plate where Sc ¼ 1, the concentration and velocity profiles within the boundary layers are

related by

@

@y

cA � cA,s

cA,1 � cA,s

� �
y¼0

¼ @

@y

vx
v1

� �����
����
y¼0

(28-36)

Recalling that at the boundary next to the plate, where y ¼ 0, we may express the mass

flux in terms of either the mass-diffusivity or the mass-transfer coefficient by

NA,y ¼ �DAB
@

@y
(cA � cA,s)

����
y¼0

¼ kc(cA,s � cA,1) (28-37)

We can combine equations (28-36) and (28-37) and as DAB ¼ m/r when Sc ¼ 1, achieve

an expression that relates the mass-transfer coefficient to the velocity gradient at the

surface

kc ¼ m

rv1
@vx
@y

����
y¼0

(28-38)

The coefficient of skin friction was related in Chapter 21 to this same velocity gradient

by

Cf ¼ t0

rv21/2
¼ 2m(@vx/@y)jy¼0

rv21
(12-2)

Using this definition, we can rearrange equation (28-38) to obtain the mass-transfer

Reynolds analogy for systems with a Schmidt number of 1

kc

v1
¼ Cf

2
(28-39)

Equation (28-39) is analogous to the energy-transfer Reynolds’s analogy for systems with

a Prandtl number of 1. This analogy was discussed in Chapter 19 and may be expressed by

h

rv1c p
¼ Cf

2
(19-36)

The Reynolds analogy, equation (28-39), was obtained by using the ‘‘exact solution’’

for the laminar flow over a flat plate equation (28-36), the mass flux equation written at the

boundary next to the plate resulting in equation (28-38), and the defining equation for the

coefficient of skin friction (12-2). Thus, the Reynolds analogy satisfies the ‘‘exact solution’’

3 O. Reynolds, Proc. Manchester Lit. Phil. Soc., 8 (1874).
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if and only if the Schmidt number equals 1 and the resistance to flow is that due to skin

friction (i.e., no form drag is involved). This was experimentally verified by vonKármán for

a fully turbulent flow with Sc ¼ Pr ¼ 1.

Turbulent-Flow Considerations

In a majority of practical applications, the flow in the main stream is turbulent rather than

laminar. Although many investigators have contributed considerably to the understanding

of turbulent flow, so far no one has succeeded in predicting convective transfer coefficients

or friction factors by direct analysis. This is not too surprising when we recall from our

earlier discussions on turbulent flow, in Section 13.1, that the flow at any point is subject to

irregular fluctuations in direction and velocity. Accordingly, any particle of the fluid

undergoes a series of random movements, superimposed on the main flow. These eddy

movements bring about mixing throughout the turbulent core. This process is often referred

to as ‘‘eddy diffusion.’’ The value of the eddy-mass diffusivity will be verymuch larger than

the molecular diffusivity in the turbulent core.

In an effort to characterize this type of motion, Prandtl proposed the mixing-length

hypothesis as discussed in Chapter 12. In this hypothesis, any velocity fluctuation v0x is due
to the y-directional motion of an eddy through a distance equal to the mixing length L. The

fluid eddy, possessing a mean velocity, vx jy, is displaced into a stream where the adjacent

fluid has a mean velocity, vx jyþL. The velocity fluctuation is related to the mean-velocity

gradient by

v0x ¼ vx jyþL � vxjy ¼ �L
d vx
dy

(12-52)

The total shear stress in a fluid was defined by the expression

t ¼ m
d vx
dy

� rv0xv0y (12-51)

The substitution of equation (13-10) into (12-51) gives

t ¼ r½nþ Lv0y�
d vx
dy

(28-40)

or

t ¼ r½nþ eM�d vx
dy

(28-41)

where eM ¼ Lv0y is designated at the eddy

momentum diffusivity. It is analogous to the

molecular momentum diffusivity, v.

We may now similarly analyze mass

transfer in turbulent flow, as this transport

mechanism is also due to the presence of

the fluctuations or eddies. In Figure 28.6,

the curve represents a portion of the turbulent

concentration profile with mean flow in the x

direction. The instantaneous rate of transfer

of component A in the y direction is

NA;y ¼ c0Av
0
y (28-42)

where cA ¼ cA þ c0A, the temporal average

L

L

y

dcA

dy

cA

ϕA

cA y +L

y

Figure 28.6 Portion of turbulent

concentration profile curve, showing the

Prandtl mixing length.
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plus the instantaneous fluctuation in the concentration of component A. We can again use

the concept of the mixing length to define the concentration fluctuation by the following

relation:

c0A ¼ cAjyþL � cAjy ¼ L
d cA

dy
(28-43)

Inserting equation (28-43) into equation (28-42), we obtain an expression for the

turbulent transfer of mass by eddy transport. The total mass transfer normal to the

direction of flow is

NA,y ¼ �DAB
d cA

dy
� v0yL

¯ d cA

dy

or

NA;y ¼ �(DAB þ eD)
d cA

dy
(28-44)

where eD ¼ Lv0y is designated as the eddy mass diffusivity.

By similar reasoning, an expression was derived in Chapter 19 for convective heat

transfer

qy

A
¼ �rcp(aþ eH)

dT

dy
(19-49)

where a is the molecular thermal diffusivity and eH is the eddy thermal diffusivity.

Eddy diffusion plays an important role in a number of mass-transfer processes. For

instance, there ismass transfer between a fluid flowing past solids in heterogeneous catalytic

reactors, blast furnaces, driers, and so on. As a result of eddy diffusion, transport in the

turbulent region is rapid, reducing any gradient in composition. As the wall is approached,

the turbulence is progressively damped until it essentially disappears in the immediate

neighborhood of the solid surface, and the transport is almost entirely by molecular

diffusion. The majority of the resistance to transfer occurs in the boundary layer near

the surface where the gradient of the composition is greatest.

The Prandtl and von Kármán Analogies

In Chapter 19, the Prandtl analogy for heat and momentum transfer was developed when

considerationwas given to the effect of both the turbulent core and the laminar sublayer. The

same reasoningwith regard tomass andmomentum transfer can be used to develop a similar

analogy. For the laminar sublayer, the eddy diffusivities of momentum and mass are

negligible, and at the surface the shear stress, ts, and the mass flux, NA;y;s, are constant.

Equation (28-41) may be integrated over the thickness of the sublayer, givingZ vxjj

0

dvx ¼ ts

rn

Z j

0

dy

or

vxjj ¼ tsj

rn
(28-45)

Equation (28-44) may also be integrated over the thickness of the sublayer, yielding

Z cAjj

cA,s
d cA ¼ �NA;y;s

DAB

Z j

0

dy
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or

(cA,s � cAjj) ¼
NA;y;s

DAB
j (28-46)

Eliminating j from these two equations, we obtain

rnvxjj
ts

¼ DAB

NA;y;s
(cA,s � cAjj) (28-47)

The Reynolds analogy, kc/v1 ¼ Cf /2 ¼ ts/rv
21, may be used in the turbulent region,

from y ¼ j to y under bulk conditions. The mass flux in the turbulent region becomes

NA,y ¼ kc(cAjj � cA,1) ¼ ts

r(v1 � vxjj)
(cAjj � cA,1) (28-48)

Eliminating cAjj between equations (28-47) and (28-48), we obtain

cA,s � cA,1
NA,y

¼ r

ts
v1 þ vxjj

n

DAB
� 1

� �� �
(28-49)

Substituting the defining equations

Cf � ts

r(v21/2)

kc� NA

(cA,s � cA; 1)

and

Sc� n

DAB

into equation (28-49), we may simplify the relation to

1

kc
¼ 2

Cf v21
½v1 þ vxjj(Sc� 1)�

or in slightly different form

kc

v1
¼ Cf /2

1þ (vxjj/v1)(Sc� 1)
(28-50)

Note that equation (28-50) simplifies to the Reynolds analogy with the restriction Sc ¼ 1.

In Chapter 12, the laminar sublayer was defined by vþ ¼ yþ ¼ 5, where

vþ ¼ vxjj/(v1
ffiffiffiffiffiffiffiffi
cf /2

p
); thus,

vþ ¼ vxjj
v1

ffiffiffiffiffiffiffiffiffi
Cf /2

p ¼ 5

or

vxjj
v1

¼ 5

ffiffiffiffiffi
Cf

2

r
(28-51)

Substituting for vxjj=v1 in equation (28-50), we obtain an analogy for convective mass

transfer similar to the Prandtl analogy for convective heat transfer

kc

v1
¼ Cf /2

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p
(Sc� 1)

(28-52)
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Rearranging and multiplying both sides of equation (28-52) v1L/DAB, where L is a

characteristic length, we obtain

kc

v1
v1L

DAB
¼ (Cf /2)(v1L/DAB)(rm/rm)

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p
(Sc� 1)

or

Sh ¼ (Cf /2)ReSc

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p
(Sc� 1)

(28-53)

If the equivalent mass-transfer Nusselt number, NuAB, were used in place of the

Sherwood number, equation (28-53) would be analogous to the Prandtl momentum–

energy-transfer analogy, equation (19-57).

von Kármán extended the Prandtl analogy by considering the so-called ‘‘buffer layer’’

in addition to the laminar sublayer and the turbulent core. This led to the development of the

von Kármán analogy

Nu ¼ (Cf /2)RePr

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p fPr� 1þ ln½(1þ 5Pr)/6�g (19-58)

for momentum and energy transfer. The von Kármán analysis for mass transfer yields

Sh ¼ ðCf /2ÞReSc
1þ 5

ffiffiffiffiffiffiffiffiffi
Cf /2

p fSc� 1þ ln½(1þ 5Sc)/6�g (28-54)

or

Sh

ReSc
¼ kc

v1
¼ Cf /2

1þ 5
ffiffiffiffiffiffiffiffiffi
Cf /2

p
Sc� 1þ ln 1þ 5

6
(Sc� 1)

� �	 
 (28-55)

Equation (28-55) is analogous to equation (19-58).

The results of most analogies can be put in a general form, as illustrated in equations

(28–52) and (28-55) in which the denominator of the right-hand side is a complex group of

terms that serve as a correction to the simple Reynolds analogy.

Chilton–Colburn Analogy

Chilton and Colburn,4 using experimental data, sought modifications to Reynolds’s analogy

that would not have the restrictions that Pr and Sc numbers must be equal to 1. They defined

the j factor for mass transfer,

jD � kc

v1
(Sc)2/3

This factor is analogous to the j factor for heat transfer that is defined by equation (19-39).

Based on the data collected in both laminar and turbulent flow regimes, they found

jD � kc

v1
(Sc)2/3 ¼ Cf

2
(28-56)

4 A. P. Colburn, Trans. AIChE, 29, 174–210 (1933); T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26,

1183 (1934).
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The analogy is valid for gases and liquids within the range 0:6 < Sc < 2500.

Equation (28-56) can be shown to satisfy the ‘‘exact solution’’ for laminar flow over

the flat plate

Shx ¼ 0:332Re1/2x Sc1/3 (28-20)

If both sides of this equation are divided by RexSc
1/3, we obtain

Shx

RexSc
1/3

¼ 0:332

Re1/2x

(28-57)

This equation reduces to the Chilton–Colburn analogy when we substitute into the above

expression the Blasius solution for the laminar boundary layer

Shx

RexSc
1/3

¼ Shx

RexSc
Sc2/3 ¼ kc

v1
¼ Cf

2

or

kcx

DAB

� �
m

xv1r

� �
rDAB

m

� �
(Sc)2/3 ¼ kcSc

2/3

v1
¼ Cf

2
(28-58)

The complete Chilton–Colburn analogy is

jH ¼ jD ¼ Cf

2
(28-59)

which relates all three types of transport in one expression. Equation (28-59) is exact for

flat plates and is satisfactory for systems of other geometry provided no form drag is

present. For systems where form drag is present, it has been found that neither jH or jD is

equal to Cf /2; however, when form drag is present

jH ¼ jD (28-60)

or

h

rv1c p
( Pr )2/3 ¼ kc

v1
(Sc)2/3 (28-61)

Equation (28-61) relates convective heat and mass transfer. It permits the evaluation of

one unknown transfer coefficient through information obtained for another transfer

phenomenon. It is valid for gases and liquids within the ranges 0:6 < Sc < 2500 and

0:6 < Pr < 100.

As previously stated, one of the five conditions that should exist if the analogies are to

be used requires the physical properties of the fluid stream to be constant. If there are only

slight variations in the properties due to the variations in the overall film temperature, one

may minimize this restrictive condition by evaluating the physical properties at the mean

film temperature.

The Chilton–Colburn analogy for heat and mass transfer has been observed to hold for

many different geometries; for example, flow over flat plate, flow in circular pipe and

annulus, and flow around cylinders. In the following three examples, we will apply the

Chilton–Colburn analogy (1) to determine an unknown convective-transfer coefficient,

(2) to predict a correlating equation formass transfer, and (3) to derive and use the important

psychrometry wet-bulb equation.

28.6 Mass, Energy, and Momentum-Transfer Analogies 539



EXAMPLE 4 Using the statement presented in Example 1 and the mass-transfer coefficient determined in

example 1, determine the value of the heat-transfer coefficient, h, for the stated air stream.

In the solution to Example 1, the mass-transfer coefficient was found to be kc ¼ 0:118m/s and

the mass diffusivity of carbon dioxide in air is 1:5� 10�5 m2/s and the kinematic viscosity of the air

is 1:55� 10�5 m2/s. From equation (28-59), we know

jD ¼ jH

kc

v1
Sc2/3 ¼ h

rv1c p
Pr2/3

h ¼ rc pkc
Sc

Pr

� �2/3

The following properties of air at 293 K can be found in Appendix I:

rair ¼ 1:206 kg/m3

c p air ¼ 1:0061 J/kg � K
Pr ¼ 0:710

The Schmidt number is

Sc ¼ n

DAB
¼ 1:55� 10�5 m2/s

1:5� 10�5 m2/s
¼ 1:033

Substituting into our equation, we obtain

h ¼ 1:206
kg

m3

� �
1:0061

J

kgK

� ��
0:118

m

s

�
1:033

0:710

� �2/3
¼ 0:184

J

m2 K s

EXAMPLE 5 Dittus and Boelter proposed the following equation for correlating the heat-transfer coefficient for

turbulent flow in a pipe

Nu ¼ hD

k
¼ 0:023Re0:8Pr1/3

What should be the corresponding equation for the mass-transfer coefficient when the transfer is to a

turbulent fluid flowing in a pipe?

According to the Chilton–Colburn relationship (28-61)

h

rv1c p
(Pr)2/3 ¼ kc

v1
(Sc)2/3

or

h ¼ kcrcp
Sc

Pr

� �2/3

Upon substituting this into the Dittus–Boelter equation, we obtain

kcrcp
Sc

Pr

� �2/3D

k
¼ 0:023Re0:8Pr1/3
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or

kcD

DAB

DABr

m

mc p

k

Sc

Pr

� �2/3
¼ 0:023Re0:8Pr1/3

kcD

DAB
� 1
Sc

�Pr Sc

Pr

� �2/3
¼ 0:023Re0:8Pr1/3

This simplifies to

Sh ¼ kcD

DAB
¼ 0:023Re0:8Sc1/3

Linton and Sherwood,5 considering mass transfer into turbulent streams flowing through pipes,

correlated their data by

kcD

DAB
¼ 0:023Re0:8Sc1/3

for

2000 < Re < 70; 000
1000 < Sc < 2260

EXAMPLE 6 Dry air at 1:013� 105 Pa pressure blows across a thermometer whose bulb has been covered with a

dampened wick. The classical ‘‘wet bulb’’ thermometer indicates that a steady-state temperature

is reached by a small amount of liquid water evaporating into a large reservoir of unsaturated vapor–

gas mixture. The thermometer reads 290 K. At this temperature, the following properties were

evaluated:

PA, vapor pressure of water 1:94� 103 Pa

r, density of air 1:219 kg/m3

lTs, latent heat of vaporization of water 2461 kJ/kg

Pr, Prandtl number 0:71
Sc, Schmidt number 0:61
c p, specific heat of air 1:006 J/kgK

What is the temperature of the dry air?

Equation (28-1) defines the molar flux of water evaporating

NH2O ¼ kc(cH2O;s � cH2O1)

The energy required to evaporate this water is supplied by convective heat transfer; thus,

q

A
¼ h(T1 � Ts) ¼ lTsMH2ONH2O

where lTs is the latent heat of vaporization of water at the surface temperature. This equationmay be

solved for the bulk temperature

T1 ¼ lTsMH2ONH2O

h
þ Ts

5 W. H. Linton and T. K. Sherwood, Chem. Eng. Prog., 46, 258 (1950).
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If we substitute equation (28-1) into this equation, we obtain

T1 ¼ lTs MH2O
kc

h
(cH2O;s � cH2O;1)þ Ts

Chilton–Colburn j factors give us a relationship for the kc/h ratio

h

rv1c p
Pr2/3 ¼ kc

v1
Sc2/3

kc

h
¼ 1

rc p

Pr

Sc

� �2/3

When this expression is substituted into our equation for the bulk temperature, we obtain an equation

for the psychromatic wet-bulb line

T1 ¼ lTsMH2O

rc p
Pr
Sc

� �2/3
(cH2O;s � cH2O1)þ Ts

The concentrations are

cH2O,s ¼
PA

RT
¼ 1:94� 103 Pa

8:314
Pam3

molK

� �
(290K)

¼ 0:804
mol

m3

cH2O,1 ¼ 0
mol

m3

Upon substitution of known values, we obtain

T1 ¼
2461

kJ

kg

� �
18 kg

kmol

� �

1:219
kg

m3

� �
1:006

J

kgK

� � 0:71

0:61

� �2/3
0:804

mol

m3

� �
þ 290K

¼ 322:1K

28.7 MODELS FOR CONVECTIVE MASS-TRANSFER COEFFICIENTS

Convective mass-transfer coefficients have been used in the design of mass-transfer

equipment for many years. However, in most cases, they have been empirical coefficients

that were determined from experimental investigations. A theoretical explanation of the

coefficients will require a better understanding of the mechanism of turbulence, as they are

directly related to the dynamic characteristics of the flow. In Chapter 26, two possible

models for explaining convective mass transfer were introduced. Both the film theory and

the penetration theory have been widely applied.

The film theory is based upon the presence of a fictitious film of fluid in laminar flow

next to the boundary that offers the same resistance to mass transfer as actually exists in the

entire flowing fluid. In other words, all resistance to transfer is assumed to exist in a fictitious

film in which the transport is entirely by molecular diffusion. The film thickness, d, must

extend beyond the laminar sublayer to include an equivalent resistance encountered as the

concentration changes within the buffer layer and the turbulent core. For diffusion through a

nondiffusing layer or stagnant fluid, this theory predicts the mass-transfer coefficient to be

kc ¼ DAB

d

P

pB; 1m
(26-9)
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as developed in Chapter 26. For equimolar counterdiffusion, the mass-transfer coefficient

was expressed as

k0c ¼ DAB

d
(26-24)

In both cases, the convective mass-transfer coefficient is directly related to the molecular

mass diffusivity. Obviously, the fictitious film thickness, d, can never be measured, as it

does not exist. Because of this and because of its apparent inadequacy in physically

explaining convective mass transfer, other theories and models have been postulated to

describe this phenomenon.

The penetration theorywas originally proposed byHigbie6 to explain the mass transfer

in the liquid phase during gas absorption. It has been applied to turbulent flow by

Danckwerts7 and many other investigators when the diffusing component penetrates

only a short distance into the phase of interest because of its rapid disappearance through

chemical reaction or its relatively short time of contact.

Higbie considered mass to be transferred into the liquid phase by unsteady-state

molecular transport. With this concept, the mass flux at the interface between the liquid and

the gas phases was expressed as

NA ¼
ffiffiffiffiffiffiffiffiffiffi
DAB

ptexp

s
(cA,s � cA,1) (26-88)

Danckwerts applied this unsteady-state concept to the absorption of component A in a

turbulent liquid stream. His model assumes that the motion of the liquid is constantly

bringing fresh liquid eddies from the interior up to the surface, where they displace the

liquid elements previously on the surface. While on the surface, each element of the

liquid becomes exposed to the second phase and mass is transferred into the liquid as

though it were stagnant and infinitely deep; the rate of transfer is dependent upon the

exposure time. Many different assumptions can be made relative to the surface renewal.

For instance, each element of the surface may have the same exposure time before being

replaced; this infers that the instantaneous mass transfer will occur according to equation

(26-88). The total solute penetrating the eddy in an exposure time, texp, isZ texp

0

NAdt ¼ (cA,s � cA,1)

ffiffiffiffiffiffiffiffiffi
DAB

p

r Z texp

0

t�1/2dt

¼ 2(cA,s � cA,1)
DABtexp

p

� �1/2

and the average rate of transfer during the exposure is obtained by dividing this equation by

the time of exposure

NA ¼ 2(cA,s � cA,1)
DAB

ptexp

� �1/2
(28-62)

Danckwerts modified the assumption of constant exposure period by proposing an

‘‘infinite’’ range of ages for the elements at the surface. Surface age distribution functions

were introduced to predict the probability of an element of surface being replaced by a

fresh eddy. The rate of surface renewal was believed to be constant for a given degree of

6 R. Higbie, Trans. AIChE, 31, 368–389 (1935).
7 P. V. Danckwerts, Ind. Eng. Chem., 43, 1460–1467 (1951).
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turbulence and equal to a surface-renewal factor s. The rate of mass transfer with random

surface renewal is

NA ¼ ffiffiffiffiffiffiffiffiffiffiffi
DABs

p
(cA,s � cA,1) (28-63)

The values of s are currently obtained by experimental investigations. The surface-

renewal concept has been very successful in the explanation and analysis of convective

mass transfer, particularly when the mass transport is accompanied by chemical reactions

in the liquid phase.8,9 Considerable development and experimental verification are

needed to define this model clearly.

A detailed discussion of mass-transfer coefficients for chemically reacting systems is

not treated in this text. In our earlier discussions ofmolecularmass transfer associatedwith a

chemical reaction, in Section 26.2, mass transfer was shown to depend upon the rate

constant of the chemical reaction.We should expect a similar dependency for the convective

mass-transfer coefficient. Excellent discussions on this subject are available.8,9

Toor and Marchello10 have pointed out that the penetration concept of Danckwerts is

valid onlywhen the surface renewal is relatively rapid, thus providing young elements at the

surface on a continuous basis. For older elements at the surface, a steady-state concentration

gradient is established as predicted by the film theory; accordingly, the rate of mass transfer

should be directly proportional to themolecularmass diffusivity.At lowSchmidt numbers, a

steady concentration gradient is set up very rapidly in any new surface element so that unless

the rate of surface renewal is high enough to remove amajor fraction of the surface elements

before they are penetrated, most of the surface behaves as older elements. As the Schmidt

number increases, the time necessary to set up the steady gradient increases rapidly, and

accordingly, relatively low surface renewal rates are sufficient to keep most of the elements

from being penetrated. When conditions are such that the surface contains both young and

older elements, the transfer characteristics are intermediate between the film and penetra-

tionmodels. The convectivemass-transfer coefficients will be proportional to a power of the

molecular mass diffusivity between 0.5 and 1.0. These conclusions have been supported by

experimental data.

In both the film and penetrationmodels, themass transfer involves an interface between

twomoving fluids.When one of the phases is a solid, the fluid velocity parallel to the surface

at the interface must be zero; accordingly, we should expect the need of a third model, the

boundary-layer model, for correlating the data involving a solid subliming into a gas or a

solid dissolving into a liquid. For diffusion through a laminar boundary layer, the average

mass-transfer coefficient was found to be

kc ¼ 0:664
DAB

L
Re1/2L Sc1/3 (28-21)

This shows the mass-transfer coefficient varies as D2/3
AB , which is typical of boundary-

layer calculations.

Table 28.1 provides a brief summary of the three models proposed for mass-transfer

coefficients. Each model has its own specific diffusion coefficient dependency; this

dependency is sometimes used to scale mass-transfer coefficients from one solute to

another that are exposed to the same hydrodynamic flows.

8 P. V. Danckwerts, Gas–Liquid Reactions, McGraw-Hill, New York, 1970.
9 G. Astarita, Mass Transfer with Chemical Reaction, Elsevier, Amsterdam, 1967.

10 H. L. Toor and J. M. Marchello, AIChE J., 1, 97 (1958).
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28.8 CLOSURE

In this chapter, we have discussed the principles of mass transfer by forced convection, the

significant parameters that help describe convectivemass transfer, and themodels proposed

to explain the mechanism of convective transport. We have seen that the transfer of mass by

convection is intimately related to the dynamic characteristics of the flowing fluid,

particularly to the fluid in the vicinity of the boundary. Because of the close similarities

in the mechanisms of momentum, energy, and mass transfer, we were able to use the same

four methods for evaluating convective mass-transfer coefficients that were originally

developed to analyze convective heat-transfer coefficients. In all four analyses, the mass-

transfer coefficient was correlated by the general equation

NuAB ¼ f (Re, Sc)

Mass transfer into turbulent streams was discussed, and the eddy mass diffusivity was

defined. Analogies were presented for convective mass transfer into turbulent streams.

Table 28.1 Models for convective mass-transfer coefficients (dilute systems)

Model Basic form f(DAB) Notes

Film theory
kc ¼ DAB

d

kc /DAB d unknown, may be found

when solute has high Sc

Penetration

theory kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DABv1
pd

r
kc /D1/2

AB
d unknown, good model

when homogeneous reaction

within boundary layer or when

solute has low Sc

Boundary-

layer theory
kc ¼ 0:664

DAB

L
(Re)1/2(Sc)1/3 kc /D2/3

AB
Best way to scale kc from one

solute to another exposed to

same hydrodynamic flow

PROBLEMS

28.1 Determine the Schmidt number for

(a) oxygen in air at 300 K and 1.0 atm; and

(b) oxygen in liquid water at 300 K.

At 300 K, the diffusion coefficient of oxygen in liquid water is

1:5� 10�9 m2/s.

28.2 One step in the manufacture of optical fibers is the

chemical vapor deposition of silane, SiH4, on the inside surface

of a hollowglass fiber to form avery thin cladding of solid silicon

by the reaction

SiH4(g)!Si(s)þ 2H2(g)

The process is carried out at temperature of 900 K and a system

pressure of 100 Pa. Silane (A) is diluted to 1.0 mol% in the inert

helium (B) carrier gas. The binary gas diffusivity of silane

in helium at 298 K and 101.3 kPa is 0.518 cm2/s and the

kinematic viscosity of the helium gas at 900 K is 5.6 cm2/s.

Determine the Schmidt number of silane (g) in the helium (g)

carrier gas.

28.3 Silicon tetrachloride, SiCl4, is a key chemical in the silicon

chemical vapor deposition. It is used in the production of silane,

SiH4, which is used as described in Problem 28.2. The purity of

SiCl4 is essential to the production of high-quality silicon films.

To eliminate trichlorosilane, SiHCl3, within the high-purity sili-

con tetrachloride, chlorine gas is bubbled through the liquid SiCl4
at 298 K to promote the following reaction:

SiHCl3 þ Cl2 !SiCl4 þ HCl

The HCl is then easily removed in a stripper, using nitrogen as

the stripping gas.

To determine the mass-transfer coefficient of chlorine in

liquid SiCl4, a Schmidt number is needed. Evaluate the Schmidt

number for chlorine in liquid silicon tetrachloride at 298 K. The
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following information is available for SiCl4 at 298 K:

rL ¼ 1:47 g/cm3 and mL ¼ 5:2� 10�4 kg/m � s
The diffusivity for chlorine in silicon tetrachloride can be

evaluated using the Wilke–Chang equation.

28.4 What are the Stanton and Peclet numbers and how are

they related to other convective mass-transfer dimensionless

numbers?

28.5 In applying dimensional analysis to explainmass-transfer

coefficient, one must consider the geometry involved, a variable

to explain the flow characteristics of the moving stream, and the

properties of the moving stream. Predict the variables that are

necessary to explain the mass-transfer coefficient for a gas

stream flowing over a flat plate and arrange these variables

into dimensionless groups.

28.6 In a mass-transfer spray column, a liquid is sprayed into a

gas stream, and mass is transferred between the liquid and gas

phases. The mass of the drops that are formed from a spray

nozzle is considered a function of the nozzle diameter, accel-

eration of gravity, surface tension of the liquid against the gas,

fluid density, fluid viscosity, fluid velocity, and the viscosity and

density of the gas medium. Arrange these variables in dimen-

sionless groups. Should any other variables have been included?

28.7 Mass-transfer data were obtained for the vaporization of

naphthalene into a turbulent gas stream flowing in an annulus.

Both the inside rod and the outer pipe of the annular conduit were

made of naphthalene. To correlate the data, the investigator

predicted that the mass-transfer coefficient would depend on the

velocity of the flowing stream, v1, the diameter of the rod, D0,

the inside diameter of the outer pipe,D0 the density and viscosity

of the gas medium, and the diffusivity of naphthalene in the gas

medium. Arrange these variables into dimensionless groups that

the investigators might elect to use to correlate their data.

28.8 A long cylinder of porous clay, initially having a uniform

concentration of cAo, is suddenly inserted into an air stream that

has a water content of cA1. If the radius of the cylinder is ro and

the average mass-transfer coefficient from the cylinder into the

air stream is kc, show by means of dimensional analysis that the

concentration profile within the cylinder can be expressed in

terms of the parameters.

cA(r)� cA1
cAo � cA1

r

ro

DAB

kcro
and

DABt

r2o

28.9 The boundary layer solution for a flat plate predicts the

following equations:

for laminar flow :
kcx

DAB
¼ 0:332Re1/2x Sc1/3

for turbulent flow :
kcx

DAB
¼ 0:0292Re4/5x Sc1/3

with the transition occurring at Rex ¼ 2� 105.

Determine what percentage of the mass transfer occurs in the

laminar zone of the flow over the flat plate if the Reynolds

number at the end of the plate is ReL ¼ 3� 106.

28.10 Consider the chemical vapor deposition (CVD) process

for the manufacture of solid silicon thin films as illustrated

Horizontal CVD reactor
(cross section)

Feed gas
H2 + SiH4 (0.1 mole%)

900 K, 100 Pa
V∞ = 50 cm/s

15-cm square silicon wafer

x = L = 15 cmx = 0 cm

Feed gas

G
as

 d
is

tr
ib

ut
or

above. A dilute mixture of 0.1 mol% silane, SiH4 (species A), in

H2 gas (species B) enters the chamber and flows over a square Si

wafer of 15 cm per side at a bulk velocity of 50 cm/s. At the

surface of the Si wafer, the following reaction takes place:

SiH4(g)!Si (s)þ 2H2 (g)

This reaction is very rapid; accordingly, mass transfer controls

the Si film formation. Furthermore, the consumption of SiH4

by the reaction is very small relative to the rate of SiH4 delivered

by the feed gas, so that the bulk gas composition is constant at 0.1

mol% SiH4 in H2. The process temperature is maintained at 900

K, and the total system pressure is maintained at 100 Pa. Under

these conditions, the mass diffusivity, DAB, equals 4035.5 cm
2/s

(due to the low system pressure), the viscosity of the hydrogen

gas is 1:8� 10�4 g/cm � s, and the density of the hydrogen gas is
2:67� 10�8 g/cm3.

(a) What are the Schmidt and Sherwood numbers for this process?

(b) What is the total rate of Si formation on the whole wafer in

g mol/min?

(c) Where (at what position x) on the surface would you expect

the Si film to be thickest?

28.11 A thin film, 1.0 mm thick, coat of fresh paint has just

been sprayed over a 1.5m by 1.5m square steel body part, which

G
as

 d
is

tr
ib

ut
or

L = 1.5 m

Painted
steel plate

H = 1.0 m
(W = 1.5 m)

60 m3/min air
27°C, 1.0 atm

Drying chamber
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approximates a flat surface. The paint contains benzene as the

solvent. The paint surface exerts a partial pressure of 0.137 atm at

the process temperature of 278C. Sixty cubic meters per minute

of air are blown into the rectangular drying chamber as shown

above; the chamber measures 1.5 m in length, 1.0 m in height,

and 1.5 m in width. The temperature of the air is 278C and the

total system pressure is 1.0 atm.

Determine the averagemass-transfer convective coefficient

and the solvent evaporation rate from the surface in g/min,

assuming that the concentration of the solvent vapor in the

bulk gas is very small.

28.12 A thin polymer film contains some residual liquid

solvent. It is desired to evaporate the solvent (n-hexane, solute

A) from the polymer using the process shown below. Both sides

of the polymer film

Wet polymer film (solvent + polymer)
(width = 0.5 m, length = 2.5 m)

NA

Dried polymer film
wrapped into bundle
(exits drying process)

exit
drying

process

Entrance
drying

process

Cross flow of air
v∞ = 1.50 m/s

??g solvent
1.0 g dry polymer

=XAf
0.1 g solvent

1.0 g dry polymer
=XAo

50.0 g polymer (dry basis)
s=mS

are exposed to the cross flow of air. The evaporation rate of the

solvent from the polymer film is limited by external convection.

The dried polymer film is then rolled up into a bundle. During the

drying process, thewidth of the thin polymer film is 0.5mand the

length of the polymer film is 2.5 m. The flowing air has a bulk

velocity of 1.5 m/s, a temperature of 208C, and the total system
pressure of 1.0 atm. The wet polymer film is also maintained at

208C. The vapor pressure of the solvent at 208C is 0.16 atm, the

diffusion coefficient of the solvent in air is 0.080 cm2/s at 208C
and 1.0 atm, and the molecular weight of the solvent is 86 g/g

mol. The partial pressure of the solvent in the bulk air flow can be

assumed to be near zero. The kinematic viscosity of air is 1:5�
10�5 m2/s at 208C.

(a) Evaluate the Sc number and the average Sh number for the

solvent evaporation process.

(b) What is the total evaportion rate of the solvent from the 0.5

m by 2.5 m polymer film, recognizing that both sides of the

film are exposed to the following air?

(c) The solvent loading in the polymer film at the entrance of

the drying process is 0.1 g solvent per gram of dry polymer

(XAo ¼ 0.1 g solvent/g dry polymer). The total mass flow

rate of the polymer film on a solvent-free dry polymer basis

ismo ¼ 50:0 g dry polymer/s. What is the solvent loading in

the polymer film exiting the drying process (XAf in g

solvent/g dry polymer)?

28.13 A container of acetone was accidently spilled, covering

the top, smooth surface of a laboratory bench located in a

semiconductor-fabrication building. The exhaust fan for the

fabrication building produced a 6 m/s air flow parallel to the

1-m-wide bench surface. The air was maintained at 298 and

1:013� 105 Pa. The vapor pressure of acetone at 298 K 3:066�
104 Pa and the diffusivity of acetone in air at 298 K and 1:013�
105 Pa is 0:93� 10�5 m2/s.

(a) Determine the mass-transfer coefficient at 0.4 m down-

stream from the leading edge of the laboratory bench.

(b) Determine the amount of acetone evaporating per 1 m2 of

surface area each second.

28.14 A bulk gas stream containing 0.9 mol% of CO gas, 0.1

mol% of O2 gas, and 99.0 mol% of CO2 gas flows over a flat

catalytic surface of length 3.0 m at a bulk velocity of 12.0 m/s.

The catalytic surface promotes the reaction.

CO(g)þ 1

2
O2 (g)!CO2(g)

The surface reaction is extremely fast so that the production CO2

of is limited by themass transfer of the gaseous reactants CO and

O2 to the catalytic surface. Let A ¼ Co, B ¼ O2, andC ¼ CO2.

At 278C and 1.0 atm total system pressure, the following data are

available:

� Diffusion coefficients:DAB¼0:213 cm2/s; DAC¼ 0:155 cm2/s

DBC ¼ 0:166 cm2/s.

� Kinematic viscosities: vA ¼ 0:158 cm2/s, vB ¼ 0:159 cm2/s,

vC ¼ 0:0832 cm2/s.

(a) What is the Schmidt number associatedwith O2mass transfer?

(b) The mass-transfer process is dominated by which of the

following: (1) molecular diffusion; (2) convective mass

transfer in the laminar region; or (3) convective mass

transfer in the turbulent region?

(c) What is the average mass-transfer coefficient, kc, for the flat

surface?

28.15 In a manufacturing process, an organic solvent (methyl

ethyl ketone,MEK) is used to dissolve a thin coating of a polymer

film away from a nonporous flat surface of length 20 cm and

width 10 cm as shown in the figure below. The thickness of the

polymer film is initially uniform at 0.2 mm. In the process, MEK

solvent is added at a flow rate of 30 cm3/s to an open flat pan of

length 30 cm and width 10 cm. The depth of the liquid MEK

solvent in the pan is maintained at 2.0 cm. You may assume

2 cm

x = 0 x = 20 cm x = 30 cm
Exiting MEK

Length of pan = 30 cm, width of pan = 10 cm

Polymer film
(initially 0.2 mm thick)

30 cm3/s liquid MEK
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that the concentration of the dissolved polymer in the bulk

solvent is essentially zero, cA1 ¼ 0, even though in reality the

concentration of dissolved polymer in the solvent increases

very slightly as it flows from the entrance to the exit of the pan.

At the temperature and pressure of the process, the following

data area available:

� Diffusion coefficient of dissolved polymer (solute A) in the

MEK solvent (B) DAB ¼ 3� 10�6 cm2/s.

� Kinematic viscosity of liquid MEK nB ¼ 6:0� 10�3 cm2/s.

� Density of solid polymer film material rA ¼ 1:05 g/cm3.

� Density of liquid MEK rB ¼ 0:80 g/cm3.

� Maximum solubility of dissolved polymer in the MEK

solvent rA ¼ 0:04 g/cm3.

(a) Determine the average flux, g A/cm2� s, from the surface.

(b) How long will it take for the polymer film to completely

disappear?

28.16 A well-mixed open pond contains wastewater that is

contaminatedwith a dilute concentration of dissolvedmethylene

Air flow

Pond
surface

v∞ = 7.5 m/s

L 2 =
 100 m

L1 = 500 m 

chloride. The pool is rectangular with dimensions of 500 m by

100m.Air 278Cat and 1.0 atmblows parallel to the surface of the

pond as shown in the figure with a velocity of 7.5 m/s. At 208C
and 1.0 atm, the diffusion coefficient of methylene chloride

in air DAB ¼ 0:085 cm2/s and the kinematic viscosity of the air

nB ¼ 0:15 cm2/s.

(a) At what position across the pond is the air no longer

laminar?

(b) Determine the mean gas-film mass-transfer coefficient

associated with the transfer of methylene chloride.

(c) What is the Schmidt number for methylene cholride in the

liquid phase if at 208C the diffusion coefficient of methy-

lene chloride in water is 1:07� 10�5 cm2/s and the kine-

matic viscosity of water is 0.010 cm2/s?

28.17 Aflat steel plate is 2.0m length and 2.0mwidth initially

contains a very thin coating of lubricating oil used in a manu-

facturing process. An engineer is considering the feasibility

of using hot forced air convection to remove the lubricating

oil from the surface as an alternative to using harmful solvents to

rinse the lubricating oil off the surface. In the present process, air

at 386 K and 1.0 atm is blown parallel to the surface at a velocity

of 50 m/s. At this velocity, the location on the plate where

laminar flow ends is 0.097 m from the leading edge. The initial

thickness of the liquid lubricating oil coating the surface is

10:0mm (1� 10�5 m). AT 386 K, the viscosity of air is 2:23 �
10�5kg/m � s, and the mass density of air is 0.917 kg/m3. At

386 K, the lubricating oil is slightly volatile with a vapor pres-

sure of 0.20 Pa, and the liquid density of the lubricating oil is

1900 kg/m3. At 386 K and 1.0 atm, the molecular diffusion

coefficient of the lubricating oil vapor in air,DAB, is 0.040 cm
2/s.

(a) What is the Schmidt number for the mass transfer of lubricat-

ing oil vapor in air?

(b) What is the average mass-transfer coefficient over the entire

length of the plate?

(c) Determine the mass-transfer coefficient at 1.2 m down-

stream from the leading edge of the plate.

28.18 If the local Sherwood number for the laminar layer that

is formed over a flat plate is

Shx ¼ 0:332Re1/2x Sc1/3

and for the turbulent layer is

Shx ¼ 0:0292Re4/5x Sc1/3

evaluate

(a) The value of the mass-transfer coefficient at a point where

the Reynolds number is 70,000.

(b) The average film-transfer coefficient, kc, for the flat plate

from the leading edge to the point where the Reynolds

number is 70,000.

(c) The value of the mass-transfer coefficient at a point where

the Reynolds number is 700,000.

28.19 In using the von Kármán approximate method for

analyzing the turbulent boundary layer over a flat plate, the

following velocity and concentration profile were assumed:

nx ¼ aþ by1/7

and

cA � cAs ¼ hþ jy1/7

where the four constants a,b, h, and j were determined by the

appropriate boundary conditions at the surface and at the outer

edge of the two boundary layers.

(a) Find the four constants and the resulting velocity and con-

centration profiles.

(b) Upon the application of the von Kármán momentum inte-

gral equation, the following equation for the thickness of the

turbulent boundary layer has been determined:

d ¼ 0:371x

Re1/3x

Use this relationship and the solution to von Kármán concentra-

tion integral equation when the Schmidt number equals 1 to

obtain the following equation for the local mass-transfer coeffi-

cient:

kc ¼ 0:0289v1(Rex)
�1/5
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28.20 Assume a linear velocity distribution and a linear con-

centration profile in the laminar boundary layer over a flat plate.

Apply the boundary conditions for a laminar boundary layer and

evaluate the velocity and concentration profiles. Are these linear

profiles acceptable profiles? Give reasons for your decision.

28.21 A 1� 10�2 m spherical pellet is sprayed with a very thin

coat of paint. Thepaint contains avolatile solvent.Todry the pellet,

a 300 K and 1:013� 105 Pa air stream flows around it with a bulk

velocity of 1 m/s. The estimated loading of the solvent in the wet

paint is 0.12 g solvent/cm3. Physical properties are

vapor pressure of the solvent ¼ 1:27� 104 Pa

mass diffusivity of solvent in air ¼ 9:62� 10�6 m2/s

kinematic viscosity of air ¼ 1:569� 10�5 m2/s

density of air ¼ 1:177 kg/m3

thermal conductivity of air ¼ 2:624� 10�2 J/m � s �K
thermal diffusivity of air ¼ 2:216� 10�5 m2/s

heat capacity of air ¼ 1:006 J/g �K
molecular weight of the solvent ¼ 78 g/gmole

Use the McAdam’s11 equation

Nu ¼ 0:37(Redp)
0:6(Pr)1/3, where Redp ¼ dpv1

n

to evaluate

(a) the heat-transfer coefficient, h;

(b) the mass-transfer coefficient, kc;

(c) the molar flux of the solvent into the air stream.

28.22 Davis12 investigated heat transfer to fluids flowing in the

annular section between concentric tubes. He proposed the

following correlation for the heat-transfer coefficient when

considering the film on the inner tube:

hdp

k
¼ 0:031(Red1 )

0:8(Pr)1/3
m

ms

� �0:14 d2

d1

� �0:15

where d1 and d2 are the outer diameter of the inner tube and the

inner diameter of the outer tube, respectively,m is the viscosity of

thefluid at the bulk temperature of the fluid, andmS is theviscosity

of the fluid at the heating surface temperature. Use this equation to

predict the mass-transfer coefficient from a naphthalene rod used

to form the inner tube of an annular duct.

28.23 McAdams presented the heat-transfer equation for the

turbulent flowofgases past a single sphere as used inProblem28.21

Nu ¼ hdp

k
¼ 0:37(Redp)

0:6(Pr)1/3, where Redp ¼ dpv1
n

where dp is the diameter of the sphere.

Predict the equation you might use to correlate the mass-transfer

coefficient from a single sphere into a turbulent gas stream. How

would you modify your equation to cover the very low Reynolds

number range?

28.24 Several thin sheets of naphthalene, 0.25 cm thick and 10

cm square, are arranged parallel to each other with their centers

at 1-cm intervals. Air at 273 K and 1:013� 105 Pa enters this

sandwich arrangement with a bulk velocity of 15 m/s. At 273 K,

the mass diffusivity for naphthalene in air is 5:14� 10�6 m2/s,

the Schmidt number is 2.57, and the vapor pressure of naphtha-

lene is 1.0 Pa. Determine the concentration of naphthalene in the

air as it leaves the arrangement, evaluating the mass-transfer

coefficient using the

(a) Reynolds analogy;

(b) von Kármán analogy;

(c) Chilton–Colburn analogy.

Determine the length of time the sheets must be expos-

ed until half of their mass will be sublimed under these

conditions.

28.25 A small droplet of liquid detergent, falling through air in a

spray drying tower, has its diameter reduced as water evaporates

from the surface. If we assume that the temperature of the liquid

within the drop remains at 290 K and the dry air is at 310 K,

determine the moisture composition of the drying medium.

The following properties are available at the average temperature

of the air, 300 K:

kinematic viscosity of air ¼ 1:5689� 10�5 m2/s

thermal diffusivity of air ¼ 2:2156� 10�5 m2/s

mass diffusivity of water in air ¼ 2:63� 10�5 m2/s

density of air ¼ 1:177 kg/m3

thermal conductivity of air ¼ 2:624� 10�2 J/m � s �K
heat capacity of air ¼ 1006 J/g �K
surface temperature of drop; Ts ¼ 290K

latent heat of vaporization atTs ¼ 2461 J/g

vapor pressure of water at Ts ¼ 1:94� 103 Pa

28.26 A ‘‘cooling bag,’’ commonly used for storingwater in hot,

arid environments is made of a thin porous fabric. A small amount

ofwater diffuses through the fabric andevaporates from the surface

of the bag. The rate of evaporation is controlledby convectivemass

transfer from the outer surface of the fabric to the surrounding dry

air. The energy for evaporation is supplied by the surrounding hot

air. The evaporation of the water cools the remaining liquid water

within the bag and a temperature driving force is established.

Determine the temperature of the ambient air using mass-transfer

considerations, if the following values hold:

surface temperature of the bag ¼ 298K

heat capacity of air ¼ 1 J/gK

viscosity of air ¼ 1:84� 10�4 g/cm � s
density of air ¼ 1:17� 10�3 g/cm3

thermal conductivity of air ¼ 2:62� 10�4 J/cm � s �K
mass diffusivity of water in air ¼ 3� 10�5 m2/s

latent heat of vaporization of ¼ 2:45 kJ/g

water at 293K

vapor pressure of water at 293K ¼ 1:3� 103 Pa

bulk velocity of air stream ¼ 2:2� 10�1 m/s

11 W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill,

New York, 1949.
12 E. S. Davis, Trans. Am. Soc. Mech. Eng., 65, 755 (1943).
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28.27 Dry air, flowing at a velocity of 1.5 m/s, enters a 6-m-

long, 0.15-m-diameter tube at 310 K and 1:013� 105 Pa. The

inner surface of the tube is linedwith a feltmaterial (diameter-to-

roughness ratio, D/e, of 10,000) that is continuously saturated

with water at 290 K. Assuming constant temperature of the air

and the pipe wall, determine the rate at which water must be

added to keep the felt continuously saturated. It is important to

realize that the bulk composition of the gas stream will be

continuously increasing with the length.

28.28 Air passes through a naphthalene tube, that has an

inside diameter of 2.5 cm, flowing at a bulk velocity of 15 m/s.

The air is at 283 K and an average pressure of 1:013� 105 Pa.

Assuming that the change in pressure along the tube is neg-

ligible and that the naphthalene surface is at 283 K, determine

the length of tube that is necessary to produce a naphthalene

concentration in the exiting gas stream of 4:75� 10�4 mol/m3.

At 283 K, naphthalene has a vapor pressure of 3 Pa and a

diffusivity in air of 5:4� 10�6 m2/s.
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Chapter 29

Convective Mass Transfer

Between Phases

In Chapter 28, convective mass transfer within a single phase was considered; in this

case, mass is exchanged between a boundary surface and a moving fluid and the flux is

related to an individual mass-transfer convective coefficient. Many mass-transfer

operations, however, involve the transfer of material between two contacting phases

where the flux may be related to an overall mass-transfer convective coefficient. These

phases may be a gas stream contacting a liquid stream or two liquid streams if they are

immiscible. In this chapter, we shall consider the mechanism of steady-state mass

transfer between the phases and the interrelations between the individual convective

coefficients for each phase and the overall convective coefficient.

Chapter 30 presents empirical equations for the individual mass-transfer convective

coefficients involved in the interphase transfer. These equations have been established

from experimental investigations. Chapter 31 presents methods of applying interphase

concepts to the design of mass-transfer equipment.

29.1 EQUILIBRIUM

The transport of mass within a phase, by either molecular or convective transport

mechanisms, has been shown to be directly dependent upon the concentration gradient

responsible for themass transfer.When equilibriumwithin the system is established, the

concentration gradient and, in turn, the net diffusion rate of the diffusing species

becomes zero. Transfer between two phases also requires a departure from equilibrium

that might exist between the average or bulk concentrations within each phase. As the

deviations from equilibrium provides the concentration driving forcewithin a phase, it is

necessary to consider interphase equilibrium in order to describe mass transfer between

the phases.

Initially, let us consider the equilibrium characteristics of a particular system and then

we will generalize the results for other systems. Consider a two-phase system involving a

gas contacting a liquid; for example, let the initial system composition include air and

ammonia in the gas phase and onlywater in the liquid phase.When first brought into contact,

some of the ammoniawill be transferred into thewater phase in which it is soluble and some

of the water will be vaporized into the gas phase. If the gas–liquid mixture is contained

within an isothermal, isobaric container, a dynamic equilibriumbetween the two phaseswill

eventually be established. A portion of themolecules entering the liquid phase returns to the

gas phase at a rate dependent upon the concentration of the ammonia in the liquid phase and

the vapor pressure exerted by the ammonia in the aqueous solution. Similarly, a portion of

thewater vaporizing into the gas phase condenses into the solution. Dynamic equilibrium is
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indicated by a constant concentration of ammonia in the liquid phase and a constant

concentration or partial pressure of ammonia in the gas phase.

This equilibrium condition can be altered by adding more ammonia to the isothermal,

isobaric container. After a period of time, a new dynamic equilibrium will be established

with a different concentration of ammonia in the liquid and a different partial pressure of

ammonia in the gas. Obviously, one could continue to add more ammonia to the system;

each time a new equilibrium will be reached. Figure 29.1 (a) and (b) illustrates the equ-

ilibrium distribution of ammonia in the gas and liquid phases at 308C.
Figure 29.1(a) presents the concentrations in terms of the partial pressure of the solute

in the gas phase and the mole fraction of the dissolved solute in the liquid phase. Figure

29.1(b) presents the equilibrium distribution as the concentration of ammonia approaches

zero, in terms of the partial pressure in the gas phase and the molar concentration in the

liquid phase; in this dilute concentration range, the equilibrium distribution is linear and the

two concentrations are related by Henry’s law, equation (29-4). There are many graphical

forms of equilibrium data due to the many ways of expressing concentrations in each of the

phases. We will find use for many types of equilibrium plots in Chapter 31.

Equations relating the equilibrium concentrations in the two phases have been

developed and are presented in physical chemistry and thermodynamic textbooks. For

the case of nonideal gas and liquid phases, the relations are generally complex. However, in

cases involving ideal gas and liquid phases, some fairly simple yet useful relations are

known. For example, when the liquid phase is ideal, Raoult’s law applies

pA ¼ xAPA (29-1)

where pA is the equilibrium partial pressure of component A in the vapor phase above the

liquid phase, xA is the mole fraction of A in the liquid phase, and PA is the vapor pressure of

pure A at the equilibrium temperature. When the gas phase is ideal, Dalton’s law is obeyed

pA ¼ yAP (29-2)

where yA is the mole fraction of A in the gas phase and P is the total pressure of the

system. When both phases are ideal, the two equations may be combined to obtain a

relation between the concentration terms, xA and yA, at constant pressure and temperature,

the combined Raoult–Dalton equilibrium law stipulates

yAP ¼ xAPA (29-3)

Another equilibrium relation for gas and liquid phases where dilute solutions are involved

is Henry’s law. This law is expressed by

pA ¼ HcA (29-4)

where H is the Henry’s law constant and cA is the equilibrium composition of A in the

dilute liquid phase. Table 25.1 lists Henry’s constant for selected aqueous solutions.

Concentration of dissolved NH3, CAL(kg.mol/m3)XA (mole fraction dissolved NH3 in water)

(a) (b)
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Figure 29.1 Ammonia solubility in water vs. partial pressure of ammonia at 308C.
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An equation similar to Henry’s law relation describes the partition of a solute between

two immiscible liquids. This equation, the ‘‘distribution-law’’ equation is

cA; liquid 1 ¼ KcA; liquid 2 (29-5)

where cA is the concentration of solute A in the specified liquid phase and K is the

partition or distribution coefficient.

A complete discussion of equilibrium relations must be left to physical chemistry and

thermodynamic textbooks. However, the following basic concepts common to all systems

involving the distribution of a component between two phases are descriptive of interphase

mass transfer:

1. At a fixed set of conditions, such as temperature and pressure, Gibbs’s phase rule

stipulates that a set of equilibrium relations exists, which may be shown in the

form of an equilibrium distribution curve.

2. When the system is in equilibrium, there is no net mass transfer between the

phases.

3. When a system is not in equilibrium, components or a component of the system

will be transported in such a manner as to cause the system composition to shift

toward equilibrium. If sufficient time is permitted, the system will eventually

reach equilibrium.

The following examples illustrate the application of equilibrium relations for determin-

ing equilibrium compositions.

EXAMPLE 1 An exhaust stream froma semiconductor fabrication unit contains 3mol% acetone and 97mol% air.

In order to eliminate any possible environmental pollution, this acetone-air stream is to be fed to a

mass-transfer column in which the acetone will be stripped by a countercurrent, falling 293 K water

stream. The tower is to be operated at a total pressure of 1:013� 105 Pa. If the combined Raoult–

Dalton equilibrium relationmay be used to determine the distribution of acetone between the air and

the aqueous phases, determine

(a) the mole fraction of acetonewithin the aqueous phase, which would be in equilibriumwith

the 3 mol % acetone gas mixture.

(b) the mole fraction of acetone in the gas phase, which would be in equilibrium with 20 ppm

acetone in the aqueous phase.

At 293 K, the vapor pressure of acetone is 5:64� 104 Pa.

(a) By Raoult–Dalton law when yA ¼ 0:03

YAP ¼ xAPA

(0:03)(1:013� 105 Pa) ¼ xA(5:64� 104 Pa)

or xA ¼ 0:0539mole fraction acetone

(b) 20 ppm acetone in solution

¼ 20 g acetone

999; 980 gwater

¼ 20 g/(58 g/mol)

999; 980 g(18 g/mol)

¼ 6:207� 10�6 mol acetone

molwater
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For the dilute solution, th mole fraction of acetone will be

xA ¼ 86:027� 10�6 mol acetone

1:0molwaterþ 6:027� 10�6 mol acetone
¼ 6:207� 10�6

By Raoult-Dalton law

yAP ¼ xAPA

yA(1:013� 105 Pa) ¼ (6:207� 10�6)(5:64� 104 Pa)

or yA ¼ 3:45� 10�6 mole fraction acetone

EXAMPLE 2 The Henry’s law constant for oxygen dissolved in water is 4:06� 109 Pa/(mol of O2 per total mol of

solution) at 293K. Determine the solution concentration of oxygen inwater that is exposed to dry air

at 1:013� 105 Pa and 293 K.

Henry’s law can be expressed in terms of the mole fraction units by

pA ¼ H0xA

where H0 is 4:06� 109 Pa/(mol of O2/total mol of solution).

From example 24.1, we recognize that dry air contains 21 mol% oxygen. By Dalton’s law

pA ¼ yAP ¼ (0:21)(1:013� 105 Pa) ¼ 2:13� 104 Pa:

The equilibrium mole fraction of the liquid at the interface is computed by Henry’s law

xA ¼ PA

H
¼ 2:13� 104 Pa

4:06� 109 Pa/(mol O2/mol soln)

¼ 5:25� 10�6(molO2/mol soln)

For one cubic meter of very dilute solution, the moles of water in the solution will be approximately

nwater ¼ (1m3)(1� 103 kg/m3)
1

0:018 kg=mol

� �
¼ 5:56� 104 mol

The total moles in the solution is essentially the moles of water because the concentration of oxygen

is quite low. Accordingly, the moles of oxygen in one cubic meter of solution is

noxygen ¼ (5:25� 10�6 molO2/mol soln)(5:56� 104 mol soln)

¼ 0:292mol of O2

The saturation concentration is

(0:292mol/m3)(0:032 kg/mol) ¼ 9:34� 10�3 kgO2/m
2 (9:34mg/L)

29.2 TWO-RESISTANCE THEORY

Many mass-transfer operations involve the transfer of material between two contacting

phases. For example, in gas absorption, as illustrated in Figure 29.2, a solute is transferred

from the gas phase into a liquid phase. The interphase transfer involves three transfer steps:

(1) the transfer of mass from the bulk conditions of one phase to the interfacial surface,

(2) the transfer across the interface into the second phase, and (3) the transfer to the bulk

conditions of the second phase.
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A two-resistance theory, initially suggested

byWhitman,1 is often used to explain this process.

The theory has two principal assumptions: (1) the

rate of mass transfer between the two phases is

controlled by the rates of diffusion through the

phases on each side of the interface and (2) no

resistance is offered to the transfer of the diffusing

component across the interface. The concentra-

tion gradient driving force required to produce the

mass transfer of component A from the gas phase

to the liquid phase, as illustrated in Figure 29.2, is

graphically presented in Figure 29.3 with a partial

pressure gradient from the bulk gas composition,

pA;G, to the interfacial gas composition, pA; i, and

a concentration gradient in the liquid from, cA; i, at

the interface to the bulk liquid concentration, cA; L.

On the basis of Whitman’s second assumption of

no resistance to mass transfer at the interfacial

surface, pA; i and cA; i, are equilibrium concentra-

tions and are related by thermodynamic relations

as discussed in Section 29.1. The interfacial par-

tial pressure, pA; i, can be less than, equal to or greater than the value of cA; i, according to the

equilibrium conditions of the temperature and pressure of the system.

When the transfer is from the liquid phase, as in liquid stripping as shown in

Figure 29.4, cAL, will be greater than cAi and pAi
will be greater than pAG. The concentration

gradients for this case are graphically presented in Figure 29.5.

Individual Mass-Transfer Coefficients

Restricting our discussion to the steady-state transfer of component A from the gas phase to

the liquid phase (for the transfer in the opposite direction, the concentration driving forces

NA

Gas–liquid
interface

Liquid filmGas film

Figure 29.2 Gas absorption with

solute A transferred from gas phase to

liquid phase.

Bulk gas Gas flim
(stagnant)

Gas/liquid
interface

Liquid flim
(stagnant)

 Bulk liquid
(well mixed)

SINK
(well mixed)
SOURCE

pAG

pAi

cAi
cAi

NA

pAi = H cAi * Figure 29.3 Concentration

gradients between two contacting

phases where solute is transferred

from gas to liquid.

1 W. G. Whitman, Chem. Met. Engr., 29 (4), 197 (1923).
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would be reversed; i.e., pA; i �
pA;G instead of pA;G � pA; i), we

can describe the rates of diffusion

in the z direction by the equations:

NA; z ¼ kG( pA;G � pA; i): (29-6)

and

NA; z ¼ kL(cA; i � cA;L) (29-7)

where kG is the convective mass-

transfer coefficient in the gas

phase, in [moles of A transferred/

(time)(interfacial area) (D pA units

of concentration)]; and kL is the

convective mass-transfer coeffi-

cient in the liquid phase, in [moles

of A transferred/(time)(interfacial

area) (DcA units of concentration)].
The partial pressure difference, pA;G � pA; i, is the driving force necessary to transfer

component A from the bulk gas conditions to the interface separating the two phases. The

concentration difference, cA; i � cA; L, is the driving force necessary to continue the

transfer of A into the liquid phase.

Under steady-state conditions, the flux ofmass in one phasemust equal the flux ofmass

in the second phase. Combining equations (29-6) and (29-7), we obtain

NA; z ¼ kG( pA;G � pA; i) ¼ �kL(cA;L � cA; i) (29-8)

The ratio of the two convective mass-transfer coefficients may be obtained from equation

(29-8) by rearrangement, giving

� kL

kG
¼ pA;G � pA; i

cA;L � cA; i
(29-9)

In Figure 29.6, the application of equation (29-9) for the evaluation of the interfacial

compositions for a specific set of bulk compositions as represented by point O is illustrated.

The point O, located above the equilibrium line, represents conditions found at one plane in a

gas absorber where the transfer is from the gas phase to the liquid phase. The bulk conditions

NA

Gas–liquid
interface

Liquid filmGas film

Figure 29.4 Liquid stripping with solute A

transferred from liquid to gas.

Bulk gas
(well-mixed)

SINK

Gas/liquid
interface

pAG

pAi

cAi NA

cAL

pAi = H cAi *

Bulk liquid
(well-mixed)
SOURCE

Gas film
(stagnant)

Liquid film
(stagnant)

Figure 29.5 Concentration

gradients between two contacting

phases where solute is transferred

from liquid to gas.
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at another plane in the gas absorber could be quite different. A similar point representing the

bulk conditions found in a liquid stripping tower (where transfer of the solutewould be from

the liquid phase to the gas phase) would be located below the equlibrium line.

In Table 29.1, the most often encountered individual-phase mass-transfer coefficients

are listed and the interrelations between them are noted. A zero superscript on the mass-

transfer coefficient for equimolar counterdiffusion is used to designate no net mass transfer

into the phase, according to equation (26-24). It is important to realize that there are many

other different mass-transfer coefficients for other specific mass-transfer situations; for

example, when NA ¼ �2NB, etc. This table may be helpful in explaining why there are so

many different units given for individual coefficients.

Overall Mass-Transfer Coefficients

It is quite difficult to physically measure the partial pressure and the concentration at the

interface. It is therefore convenient to employ overall coefficients based on an overall

driving force between the bulk compositions, pA;G and cA;L. This treatment is similar to the

one used in Chapter 15 when the overall heat-transfer coefficient, U, was defined.

Obviously, one cannot express the overall driving force as pA;G � cA; L due to the difference

in concentration units. In Figure 29.7, one observes the bulk liquid composition cA; L is in

O
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Figure 29.6 Interfacial compositions

as predicted by the two-resistance

theory.
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equilibrium with the partial pressure pA. This is an unique partial pressure at the pressure

and temperature of the system; pA is as good ameasure of cA; L as cA;L itself, and it has units

consistent with pA;G. Accordingly, an overall mass-transfer coefficient, KGwhich includes

the resistance to diffusion in both phases in terms of partial pressure driving force, is

defined by

NA ¼ KG ( pA;G � pA) (29-10)

Table 29.1 Individual mass-transfer coefficients

Gas phase

Rate equation Units of coefficient

Diffusion of A

through nondiffusing B

Equimolar

counterdiffusion

NA ¼ kGD pA NA ¼ k0GD pA moles of A transferred

(time)(area)(pressure)

NA ¼ kcDcA NA ¼ k0cDcA moles of A transferred

(time)(area)(mol/volume)

NA ¼ kyDyA NA ¼ k0yDyA moles of A transferred

(time)(area)(mole fraction)

NA ¼ kYDYA moles of A transferred

(time)(area)(moleA/molB)

nA ¼ kH DH A mass of A transferred

(time)(area)(massA/massB)

Gas phase

kG ¼ ky

P
¼ kc

RT
k0G ¼ kG pB; lm

P

k0G ¼ k0y

P
¼ k0c

RT

k0y ¼ ky
pB; lm

P

H ¼ the specific humidity k0c ¼ kc
pB; lm

P
¼ kc

cB; lm

c
:

Liquid phase

Rate equation Units of coefficient

Diffusion of A

through nondiffusing B

Equimolar

counterdiffusion

NA ¼ kLDcA NA ¼ k0LDcA
moles of A transferred

(time)(area)(mole/volume)

NA ¼ kxDxA NA ¼ k0xDxA moles of A transferred

(time)(area)(mole fraction)

kL ¼ kx

c
k0L ¼ kL

cB; lm

c
¼ kLxB; lm

k0L ¼ k0x
c

k0x ¼ kxxB; lm
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where pA;G is the bulk composition in the gas phase, pA is the partial pressure of A in

equilibrium with the bulk composition in the liquid phase, cA; L, and KG is the overall

mass-transfer coefficient based on the partial pressure driving force, in mole of A

transferred per (time)(interfacial area)(pressure).

Similarly, the overall bulk gas composition, pA;G, is in equilibrium with the con-

centration cA. This is also an unique concentration at the pressure and temperature of the

system and cA is as good a measure of pA;G as pA;G itself. An overall mass transfer

coefficient,KLwhich involves the resistance to diffusion in both phases and is in terms of the

liquid phase concentration driving force, is defined by

NA ¼ KL(c

A � cA; L) (29-11)

where cA is the concentration of A in equilibrium with pA;G, cA; L is the bulk composition

in the liquid phase, and KL is the overall mass-transfer coefficient based on a liquid

driving force, in moles of A transferred per (time)(interfacial area)(mole A/volume).

Figure 29.7 illustrates the driving forces associated with each phase and the overall

driving forces. The ratio of the resistances in an individual phase to the total resistance may

be determined by

resistance in the gas phase

total resistance in both phases
¼ D pA; gas film

D pA; total
¼ 1/kG

1/KG
(29-12)

and

resistance in the liquid phase

total resistance in both phases
¼ DcA; liquid film

DcA; total
¼ 1/kL

1/KL
(29-13)

A relation between these overall coefficients and the individual phase coefficients can

be obtained when the equilibrium relation is linear as expressed by

pA; i ¼ mcA; i (29-14)

This condition is always encountered at low concentrations, where Henry’s law is obeyed;

the proportionality constant is then the Henry’s law constant, H. Utilizing equation

(29-14), we may relate the gas- and liquid-phase concentrations by

pA;G ¼ mcA
pA ¼ mcA;L

and

pA; i ¼ mcA; i

Rearranging equation (29-10), we obtain

1

KG
¼ pA;G � pA

NA; z
¼ pA;G � pA; i

NA; z
þ pA; i � pA

NA; z

or in terms of m

1

KG
¼ ( pA;G � pA; i)

NA; z
þ m(cA; i � cA;L)

NA; z
(29-15)

The substitution of equations (29-6) and (29-7) into the above relation relates KG to the

individual phase coefficients by

1

KG
¼ 1

kG
þ m

kL
(29-16)
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A similar expression for KL may be derived as follows:

1

KL
¼ cA � cA; L

NA; z
¼ ( pA;G � pA; i)

mNA; z
þ (cA; i � cA;L)

NA; z

or

1

KL
¼ 1

mkG
þ 1

kL
(29-17)

Equations (29-16) and (29-17) stipulate that the relative magnitudes of the individual

phase resistances depend on the solubility of the gas, as indicated by the magnitude of the

proportionality constant. For a system involving a soluble gas, such as ammonia in water,m

is very small. From equation (29-16), we may conclude that the gas-phase resistance is

essentially equal to the overall resistance in such a system. When this is true, the major

resistance to mass transfer lies in the gas phase, and such a system is said to be gas-phase

controlled. Systems involving gases of low solubility, such as carbon dioxide in water,

have such a large value of m that equation (29-17) stipulates that the gas-phase resistance

may be neglected, and the overall coefficient,KL is essentially equal to the individual liquid-

phase coefficient, kL. This type of system is designated liquid-phase controlled. In many

systems, both phase resistances are important and must be considered when evaluating the

total resistance.

In Chapter 28, the individual phase convective coefficients, kL and kGwere shown to be

dependent on the nature of the diffusing component, on the nature of the phase through

which the component is diffusing, and also on the flow conditions of the phase. Even when

the individual coefficient, kG is essentially independent of the concentration, the overall

coefficient,KG, may vary with the concentration unless the equilibrium line is straight. This

is also true for the overall coefficient, KL Accordingly, the overall coefficients should be

employed only at conditions similar to those under which they were measured and should

not be employed for other concentration ranges unless the equilibrium curve for the system

is straight over the entire range of interest.

The two-resistance theory, including the addition of resistances, was proposed by

Lewis andWhitman2 in 1924 as the two-film theory. Although originally proposed in terms

of the filmmodel for convectivemass transfer, it is equally applicable to the individual phase

coefficients evaluated by either the film or the penetration theory. The assumption of

negligible interfacial resistance has not been adequately verified; in fact, many investigators

have shown that a resistance does exist if dust particles or other foreign particles are carried

by the liquid. Nevertheless, most industrial data have been interpreted in terms of the two-

resistance theory.

The application of the two-resistance theory for both absorption and stripping of a

component will be illustrated in the following two examples.

EXAMPLE 3 In an experimental study of the absorption of ammonia by water in a wetted-wall column, the overall

mass-transfer coefficient, KG was found to be 2:74� 10�9 kgmol/m2 � s � Pa. At one point in the

column, the gas phase contained 8 mol ammonia and the liquid-phase concentration was 0.064 kg

mol ammonia/m3 of solution. The tower operated at 293 K and 1:013� 105 Pa. At that temperature,

the Henry’s law constant is 1:358� 103 Pa/ðkgmol/m3Þ. If 85% of the total resistance to mass

transfer is encountered in the gas phase, determine the individual filmmass-transfer coefficients and

the interfacial compositions.

2 W. K. Lewis and W. G. Whitman, Ind. Eng. Chem., 16, 1215 (1924).
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The total resistance in both phases, according to equation (29-12), is

1

KG
¼ 1

2:74� 10�9
kgmol

m2 � s � Pa
¼ 3:65� 108

m2 � s � Pa
kgmol

As the resistance in the gas phase, 1=kG, is 85%of the total resistance, wemay evaluate the individual

gas-phase coefficient by

1

kG
¼ 0:85 3:65� 108

m2 � s � Pa
kgmol

� �
¼ 3:10� 108

m2 � s � Pa
kgmol

and

kG ¼ 1

3:10� 108
¼ 3:226� 10�9 kgmol

m2 � s � Pa :

The liquid-phase coefficient, kL is evaluated using equation (29-16)

1

KG
¼ 1

kG
þ H

kL

3:65� 108 ¼ 3:10� 108 þ 1:358� 103 Pa/(kgmol/m3)

kL

kL ¼ 2:47� 10�5 kgmol/m2 � s � (kgmol/m3)
At the stated point in the column

pA;G ¼ yAP ¼ (0:08)(1:013� 105 Pa) ¼ 8:104� 103 Pa

cA; L ¼ 0:064 kgmol=m3

Upon introducingHenry’s law constant, we find the partial pressure, pA, in equilibriumwith the bulk

liquid concentration

pA ¼ HcA; L ¼ 1:358� 103
Pa

kgmol/m3

� �
0:064

kgmol

m3

� �
¼ 87:1 Pa

The mass flux, as expressed by equation (29-10), becomes

NA ¼ KG( pA;G � pA)

¼ 2:74� 10�9 kgmol

m2 � s � Pa
� �

(8:104� 103 Pa� 87:1 Pa)

¼ 2:20� 10�5 kgmol

m2 � s
The interfacial composition can be determined using equation (29-6)

NA ¼ kG( pA;G � pA; i)

2:20� 10�5 kgmol

m2 � s ¼ 3:226� 10�9 kgmol

m2 � s � Pa
� �

(8:104� 103 Pa� pA; i)

pA; i ¼ 1284 Pa

and using Henry’s law

pA; i ¼ HcA; i

(1284 Pa) ¼ 1:358� 103
Pa

kgmol/m3

� �
cA; i

cA; i ¼ 0:946 kgmol/m3
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EXAMPLE 4 Awastewater stream is introduced to the top of amass-transfer towerwhere it flows countercurrent to

an air stream.At one point in the tower, thewastewater stream contains 1� 10�3 gmolA/m3 and the

air is essentially free of any A. At the operating conditions within the tower, the film mass-transfer

coefficients are kL ¼ 5� 10�4 kg/mol/m2 � s � (kgmol/m3) and kG ¼ 0:01 kgmol/m2 � s � atm. The

concentrations are in the Henry’s law region where pA; i ¼ HcA; i with H ¼ 10 atm/(kgmol/m3).

Determine

(a) the overall mass flux of A.

(b) the overall mass-transfer coefficients,

KL and KG.

At the specified plane,

cA; L ¼ 1:0� 10�6 kgmolA

m3

and

pA;G ¼ 0

A sketch of the partial pressure of A vs. concentration of A reveals this is a stripping operation.

By equation (29-17)

1

KL
¼ 1

HkG
þ 1

kL

¼ 1

10
atm

kgmol/m3

� �
0:01

kgmol

m2 � s � atm
� �þ 1

5� 10�4
kgmol

m2 � s � kgmol/m3

KL ¼ 4:97� 10�4 kgmol

m2 � s � kgmol/m3

The equilibrium concentrations are

cA ¼ pA;G

H
¼ 0 atm

10
atm

kgmol/m3

¼ 0
kgmol

m3

pA ¼ HcA; L ¼ 10
atm

kgmol/m3

� �
1� 10�6 kgmol

m3

� �

¼ 1� 10�5 atm

The flux of A for this stripping operation is

NA ¼ KL(cA; L � cA) ¼ 4:97� 10�4 m

s

� �
1:0� 10�6 kgmol

m3

� �

¼ 4:97� 10�10 kgmol

m2 � s
The overall mass-transfer coefficient, KG can be determined in two ways.

KG ¼ NA

pA � pA;G
¼

4:97� 10�10 kgmol

m2 � s
1� 10�5 atm� 0

¼ 4:97� 10�5 kgmol

m2 � s � atm

cA

pA
*

cAL

1 × 10–6

pAG
= 0

pA
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If we multiply both sides of equation (29-17) by Henry’s law constant, H, and relate the results to

equation (29-16), we obtain
H

KL
¼ 1

kG
þ H

kL
¼ 1

KG
then

KG ¼ KL

H
¼

4:97� 10�4 kgmol

m2 � s � (kgmol/m3)

10 atm/(kgmol/m3)

¼ 4:97� 10�5 kgmol

m2 � s � atm :

29.3 CLOSURE

In this chapter, we have considered the mechanism of steady-state mass transfer between

phases. The two-resistance theory was presented. This theory defines the mass transfer in

each phase as a function of the concentration driving force and the individual mass-transfer

coefficient according to the equations

NA; z ¼ kG( pA;G � pA; i)

and

NA; z ¼ kL(cA; i � cA; L)

The overall mass-transfer coefficients were defined by

NA; z ¼ KG( pA;G � pA)
NA; z ¼ KL(c


A � cA;L)

and related to the individual coefficients by the relations

1

KG
¼ 1

kG
þ m

kL
and

1

KL
¼ 1

mkG
þ 1

kL

PROBLEMS

29.1 Determine the value of Henry’s law constant, in

Pa/(kg/m3) of chlorine for the chlorine–water system. The

following equilibrium data at 293 K were reported in the

Chemical Engineering Handbook.3

29.2 Plot the following experimental equilibrium values for

trichloroethylene, TCE, in water at 208C. Determine the Henry’s

lawconstant for thisTCE–water system,withH inatm/ðgmol/m3Þ.

29.3 A liquid solution containing 49 moles of benzene and 21

moles of toluene is slowly heated to 363 K and a pressure of

1:013� 105 Pa in a closed container.

a. What would be the composition of the liquid phase and the

gas phase in equilibrium at 363 K and 1:013� 105 Pa? At

363 K, the vapor pressure of benzene is 1:344� 105 Pa and

the vapor pressure of toluene is 5:38� 105 Pa.

partial pressure

of Cl2, in Pa

666 1330 4000 6660 13,200

solubility,

kg Cl2/m
3

0.438 0.575 0.937 1.210 1.773

partial pressure of TCE, atm 0.000 0.050 0.150 0.200

solubility, gmol/m3 0.00 5.00 15.00 20.00

3 J. H. Perry, Chemical Engineering Handbookas, Fifth Edition,

McGraw-Hil Book Company, New York, 1973.
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b. Determine the amount of liquid that would be present after

this mixture is heated to 363 K.

29.4 In the aeration of wastewater, liquid-gas contact systems

are designed to raise the concentration toward equilibrium

levels. This goal is accomplished by dispersing air bubbles

into the water. An aqueous solution, initially containing 2�
10�3 kgO2/100 kgH2O is brought into contact with a large

volume of ordinary air at 293 K and a total pressure of 1:013�
105 Pa. At 293K, theHenry’s law constant for the oxygen–water

system equals 4:06� 109 Pa/mol fraction of oxygen in the

liquid.

a. Will the solution gain or lose oxygen?

b. What will be the concentration of oxygen in the final

equilibrium solution in kg O2 per 100 kg H2O?

29.5 To raise the oxygen concentration level in wastewater, air

is injected through spargers located near the bottom of a water-

holding, aeration tank. Oxygen is transferred from the released

air bubbles into the surrounding aqueous phase. Determine the

overall liquid mass-transfer coefficient, KL, and the percent

resistance encountered in the liquid phase if the individual

mass-transfer coefficients of oxygen transferring from air into

293 K water are kL ¼ 2:15� 10�5 kgmol=m2 � s � ðkgmol/m3Þ
and kG ¼ 9:28� 10�8 kgmol/m2 � s � Pa. The Henry’s law

coefficient for oxygen in water at 293 K is 4:06� 109 Pa/(moles

of oxygen/total moles of solution).

29.6 Consider the interphasemass-transfer process for the chlor-

ine dioxide, ClO2–air–water system. ClO2 gas (solute A) is spar-

ingly soluble in water. The Henry’s law constant for the dilute

solution ofClO2 inwater is 7:7� 10�4 atm/(gmol/m3).At the cur-

rent conditions of operation, the mole fraction of ClO2 in the bulk

gas phase is yA ¼ 0:040 and the mole fraction of ClO2 in the

bulk liquid phase is xA ¼ 0:00040. The mass density of the liquid

phase is 992.3kg/m3 and is not dependent on thevery small amount

of ClO2, dissolved in it. The total system pressure is 1.5 atm.

a. Is the process gas absorption or liquid stripping?

b. If the ClO2 partial pressure in the bulk gas phase is main-

tained at 0.06 atm, what is the maximum possible dissolved

ClO2 concentration, g mol/m3, in the liquid phase that could

possibly exit the process?

c. If kx ¼ 1:0 gmol/m2 � s and kG ¼ 0:010 gmol/m2 � s � atm,

what is Ky, the overall mass-transfer coefficient based upon

the overall gas phase driving force?

d. Based upon the bulk gas and liquid phase compositions,

what is the mass transfer flux for ClO2 in units gmol/m2 � s?
29.7 In the absorption of component A from an air stream

into an aqueous stream, the composition of the two adjacent

streams were analyzed to be cA; L ¼ 4:0 kgmol/m3 and pA;G ¼
1:013� 104 Pa. The Henry’s law constant for this system is

1:674� 103 Pa/(kgmol/m3). The overall liquid coefficient, KL,

was equal to 1:26� 10�6 kgmol/m2 � s � (kgmol/m3). If 53%of

the total resistance of mass transfer is encountered in the liquid

film, determine

a. the liquid-film coefficient, kL;

b. the gas-film coefficient, kG;

c. the concentration on the liquid side of the interface, cA; L;

d. the mass flux of A.

29.8 In a stripping process for the removal of TCA from

wastewater (very dilute, 50 mg TCA/L), air is bubbled into

the water to transfer the TCA from the liquid phase to the gas

phase. This process is carried out at 208C and 1.25 atm. At 208C,
H0 ¼ 400 atm when Henry’s law is defined by pA ¼ H0 xA for

the TCA–water system.

a. What would be the Henry’s constant based on the mole

fractions of TCA in gas and liquid?

b. What is the Henry’s constant based on the partial pressure of

TCA in the gas phase and the molar concentration of TCA

(k mol/m3) in the liquid phase?

c. If kL in the gas film is 0.01 m/s, what is kG? What is ky?

d. If kL in the liquid film is 0.01 m/s, what is kx?

29.9 At a particular location in a countercurrent stripper for the

removal of soluteA froma liquid stream, themole fraction of the

transferring species A in the bulk gas phase is 0.01, and themole

fraction of solute A in the bulk liquid phase is 0.035. The total

system pressure is 2.0 atm, and the temperature is 300 K. Eighty

percent of the resistance to mass transfer is in the liquid phase.

The equilibrium concentrations are given in the following x–y

diagram:

a. Determine the interfacial compositions, xA; i and yA; i.

b. If ky ¼ 1:25 gmol/m2 � s � (mole fraction), calculate the

overall coefficient, Ky, for the gas phase at the operating

point of the process.

c. Calculate the overall gas phase coefficient KG and Kc.
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29.10 At a particular location in a countercurrent absorber

used to remove solute A from a gas stream, the mole fraction of

the transferring species A in the bulk gas stream is 0.035 and the
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mole fraction of solute A in the bulk liquid phase is 0.01. The

total system pressure is 2.0 atm and the temperature is 300 K. If

60% of the resistance is in the gas phase

a. Determine the interfacial compositions, xA; i and yA; i. The

gas–liquid equilibrium relationship is linear, as given by

yA ¼ 0:3 xA.

b. If ky ¼ 1:25 gmole/m2 � s � (mole fraction), calculate the

overall coefficient, Ky for the gas phase at the operating

point of the process.

c. Calculate the overall coefficient Kx for the liquid phase at

the operating point of the process.

29.11 Awetted-wall tower is used to ‘‘aerate’’ water using

air at 2.0 atm total system pressure and 208C. The molar

composition of air is 21%O2, 78%N2, and 1% other gases. At

208C, the Henry’s law constant for dissolution of oxygen in

water is 40,100 atm, and the mass density of liquid water is

1000 kg=m3

a. What is the maximummole fraction of oxygen that could be

dissolved in the water?

b. What is the maximum molar concentration of oxygen that

could be dissolved in the water?

c. If the total system pressure increases, will the dissolved

oxygen concentration in the water (1) increase; (2)

decrease; or (3) stay the same?

29.12 An interphase convective mass-transfer process

involves the transfer of the industrial contaminant, methylene

chloride (species A), between air andwater at 208C and 2.20 atm

total system pressure. Air is the inert carrier gas, and water is the

inert solvent. The equilibrium mole fraction of methylene

chloride dissolved in water vs. the mole fraction of methylene

chloride in air at 208C and 2.2 atm total pressure is shown

below.

Mole fraction of methylene chloride dissolved in water, xA

yA

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.000            0.001            0.002            0.003            0.004            0.005            0.006

At the present operating conditions, the bulk phase mole

fraction of methylene chloride is 0.10 in the gas phase and

0.0040 in the liquid phase. The fluid flow rate associated with

each case predicts a gas film mass transfer coefficient, ky, to be

0:010 gmol/m2 � s and a liquid film convective mass transfer

coefficient, kx, to be 0:125 gmol/m2 � s. At 208C, the density of
liquid water is 992:3 kg/m3.

a. Is the process (1) a liquid stripping process or (2) a gas

absorption process?

b. Determine the Henry’s law constant for methylene chloride

dissolved in water, according to the definition pA ¼ H cA.

c. Determine the overall coefficient KL.

d. What is the flux of species A across the gas and liquid

phases?

e. Determine the interface mole fractions xA; i and yA; i.

29.13 It is desired to recover hexane vapor from air using an

absorption process. The absorption solvent is a nonvolatile

mineral oil, which has a mass density of 0:80 g/cm3 and a

molecular weight of 180 g/g mole. In the dilute concentration

range, the equilibrium relationship for the dissolution of hexane

vapor in the mineral oil is described by

pA ¼ 0:15 xA where pA has the units of atm:

At thepresent conditions of operation, thehexane partial pressure

in the bulk gas stream is 0.015 atm, and the dissolved hexane in

the bulk absorption solvent is 5.0 mol%. The total system

pressure is 1.5 atm and the temperature is 208C. The liquid

film mass transfer coefficient, kx, is 0:01 kgmol/m2 � s, and the

gas film mass transfer coefficient, ky, is 0:02 kgmol/m2 � s.
a. What is the overall mass-transfer coefficient based on the

liquid phase, KL?

b. What is the composition of hexane at the gas–liquid inter-

face, in terms of pA; i and xA; i?

29.14 An absorption tower, operating at 208C and 1.0 atm, is

used to absorb sulfur dioxide from an air mixture into water. At

one point in the absorber, the partial pressure of the SO2 in the gas

stream is 4� 103 Pa and the concentration of the contacting

liquid stream is 0:55 kgmol/m3. The individual gas film mass-

transfer coefficient is kG ¼ 3:95� 10�9 kgmol/m2 � s � Pa and

the individual liquid film mass-transfer coefficient is

kL ¼ 1:1� 10�4 kgmol/m2 � s � ðkgmol/m3Þ. Equilibrium data

at 208C are follows:

a. Evaluate the interfacial concentrations, cA; i and pA; i.

b. Determine the values for the following quantities

c. Determine the percentage of the overall mass-transfer

resistance in the gas film.

Coefficient Driving Force

kG ¼ _________________ pAG � pAi ¼___________

kL ¼ _________________ cAi � cAL ¼___________

KG ¼ _________________ pAG � pA ¼___________

KL ¼ _________________ cA � cAL ¼___________

partial pressure SO2, Pa 67 426 1132 3466 7864

concentration, SO2

kg mol/m3
0.306 1.458 2.780 6.208 10.896
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29.15 An engineer at a pulp plant is considering the feasi-

bility of sparging a waste gas stream containing a small

concentration of chlorine gas into a chlorine-bleaching unit

in order to augment the chlorine requirements for the unit. In

this processing unit, the waste gas stream at 1:013� 105 Pa

containing 0.2 mol% chlorines at the flow rate of the streams

is bubbled countercurrent to the absorbing water stream. The

gas film coefficient, ky, is 1 kgmol/m2 � h � ðDymole fractionÞ
and the liquid-film coefficient, kx, is 10 kgmol/m2 � h� (Dxmole

fraction). The Henry’s law constant, H, is 6:13� 104 Pa/

(kgmol/m3). The gas stream, containing 0.2 mol% chlorine

gas, is in contact with the aqueous stream containing 2:6�
10�3 kgmol Cl2/m

3. Determine

a. the overall coefficient, Kx;

b. the chlorine molar flux;

c. the interfacial compositions;

d. the percent resistance to mass transfer in the liquid phase.

29.16 A packed tower has been designed to strip component

A from an aqueous stream into a counter-flowing air stream.At

a given plane in the tower, the concentrations of the two

adjacent streams are pA,G ¼ 4� 103 Pa and cA,L ¼
4 kgmol/m3 of solution. Under the given flow conditions,

the overall gas mass-transfer coefficient,KG is equal to 2:46�
10�8 kgmol/m2 � s � Pa and 60% of the resistance to mass

transfer is encountered in the gas phase. At the tower’s

operating condition of 290 K and 1:013� 105 Pa, the system

satisfies Henry’s law with a Henry’s law constant of

1400 Pa/(kgmol/m3). Determine

a. the individual gas-film coefficient, kG;

b. the individual liquid-film coefficient, kL;

c. the interfacial gas concentration, pAL;

d. the overall liquid mass-transfer coefficient, KL.

29.17 Chlorinated water for pulp bleaching is being prepared

by absorbing chlorine gas into water within a packed tower

operating at 293 K and 1:013� 105 Pa pressure. At one point in

the tower, the partial pressure of chlorine in the gas is 4:0�
104 Pa and the concentration of chlorine in the aqueous stream is

1 kg/m3. Data on the solubility of chlorine in water at 293 K are

given in Problem 29.1. If 75% of the resistance to mass transfer

lies in the liquid phase, determine the interfacial concentrations.

29.18 Wastewater containing solute A at a concentration of

1:0� 10�3 gmol=m3 enters an open tank at a volumetric flow

rate of 0:2m3=min, and exits at the same rate. Solute A

transfers from the wastewater in the open tank to the sur-

rounding air which is essentially free of the solute. The total

system pressure is 1.0 atm. The diameter of the cylindrical

tank is 4 m, and the depth of the liquid in the tank is 1.0 m. At

these conditions the individual liquid-film mass-transfer

coefficient, kL, is 5� 10�4 kgmol/m2 � s � (kgmol/m3) and

the individual gas-film mass-transfer coefficient, kG is

0:01 kgmol/m2 � s � atm. The concentrations are in the

Henry’s law region where pAi ¼ HcAi with H equal to

10 atm/ (kgmol/m3). What is the percent resistance to mass

transfer in the liquid film?

CAL well
mixed

Treated waste water

Open tank
pA ~ 0 atm, P = 1.0 atm

Waste water
vo = 0.2 m3/min vo = 0.2 m3/min

CAL = ?CAL,o = 0.001 g mol/m3

~

29.19 Jasmone, C11H16O, a valuable intermediate in the

fine chemical industry, is obtained from the jasmine plant. A

common method of manufacture is to extract the plant

material in water, and then use benzene to concentrate the

jasmone in a simple liquid–liquid extraction process. Jas-

mone (species A) is 170 times more soluble in benzene than

in water; thus,

c0A(benzene phase) ¼ 170 c00A(aqueous phase)

In a proposed extraction unit, the benzene phase is well

mixed, with the film mass-transfer coefficient, k0L ¼ 3:5�
10�6 kgmol/ m2 � s � (kgmol/m3) and the aqueous phase is

also well mixed with its film mass-transfer coefficient, k00L ¼
2:5� 10�5 kg mol/m2 � s � (kgmol/m3). Determine

a. the overall liquid coefficient, K0
L, based on the benzene

side;

b. the overall liquid coefficient, K00
L , based on the aqueous

side;

c. the percent resistance to mass transfer encountered in the

aqueous liquid film.

29.20 Consider the waste treatment operation proposed in the

figure below. In this process, wastewater conraining a TCE

concentration of 50 g mol/m3 enters a clarifier, which is essen-

tially a shallow, well-mixed tank with an exposed liquid surface.

The overall diameter is 20.0 m and the maximum depth of the

liquid in the tank is 4.0m. The clarifier is enclosed to contain the

gases (often quite odorous) that are emitted from thewastewater.

Fresh air is blown into this enclosure to sweep away the gases

emitted from the clarifier and is then sent to an incinerator. The

TCE content in the effluent gas is 4.0 mol%, whereas the TCE

content in the effluent liquid phase is 10 gmol TCE=m3 liquid.

The clarifier operates at 1.0 atm and a constant temperature of

208C. In independent pilot

D = 20 m

Fresh air

CAL,o = 50 g mole TCE/m3 CAL,o = 10 gmol TCE/m3

CAL,o = 10 g mol TCE/m3

4.0 mol% TCE Effluent air +
4.0 mol% TCE

Effluent liquid

vo = ? m3/hr

plant studies for TCE, the liquid film mass-transfer coefficient

for the clarifier was, kx ¼ 200 gmol/m2 � s, whereas the gas film
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mass-transfer coefficient for the clarifier was ky ¼ 0:1 gmol/

m2 � s. Equilibrium data for the air–TCE–water system at 208C
are represented by Henry’s law in the form pA ¼ H0 xA with

H0 ¼ 550 atm. The molar density of the effluent liquid is

66 gmol/m3.

a. What is the overall mass-transfer coefficient based on the

liquid phase, KL?

b. What is the flux of TCE from the clarifier liquid surface?

c. What is the inlet volumetric flow rate of wastewater, in units

of m3/h, needed to ensure that the liquid effluent TCE

concentration is 10 gmol TCE/m3?

29.21 Ammonia, NH3, and hydrogen sulfide, H2S, must both

be stripped from wastewater before it can be treated for reuse.

Individual mass-transfer coefficients for ammonia transfer

within a packed tower are

kG ¼ 3:20� 10�9 kgmol/m2 � s � Pa
and

kL ¼ 1:73� 10�5 kgmol/m2 � s � (kgmol/m3):

As the molecular weight of ammonia and hydrogen sulfide are

approximately the same, the value of the individual mass-

transfer coefficients for hydrogen sulfide will be similar. With

this assumption, evaluate and compare the overall mass-transfer

coefficient for each gas, recognizing that Henry’s law constant

for ammonia is 1:36� 103 Pa/(kgmol/m3) and for hydrogen

sulfide is 8:81� 105 Pa/(kgmol/m3):

29.22 In awetted-wall towerwhere ammonia, NH3, is stripped

from an ammonia-water solution into an air stream, the overall

gas coefficient, KL is 3:12� 10�9 kgmol/m2 � s � Pa. At a plane
in the tower, the bulk concentration of the falling aqueous stream

is 4 kgmol/m3 of solution and the partial pressure of ammonia in

the rising gas stream is 3:04� 103 Pa. For dilute solutions of

ammonia in water the equilibrium partial pressure may be

evaluated by Henry’s law:

pA i ¼ 1360 Pa/(kgmol/m3)cA i

If the gas phase comprises 75% of the total resistance to mass

transfer, calculate

a. the individual gas-film coefficient, kG;

b. the individual liquid-film coefficient, kL;

c. the overall liquid-film coefficient, KL;

d. the interfacial concentrations, pAi and cAi.

29.23 A mass-transfer process is used to remove ammonia,

NH3, solute A, from amixture of NH3 and air, using water as the

solvent. The partial pressure of ammonia in the bulk gas phase is

0.2 atm, and themole fraction of dissolved ammonia in thewater

is 0.04. The total system pressure is 2.0 atm, and the temperature

is 308C. The equilibrium distribution at 308C is shown in the

figure:

0.250

0.200

0.150

.100

0.050

0.000

pA

0.00                               0.05                               0.10                               0.15

xA (mode fraction dissolved NH3 in water)

(atm NH3)

At 308C, the molar solution density is 55:6 kgmol/m3. The film

mass-transfer coefficient are kG ¼ 1:0 kgmol/m2 � s � atm and

kL ¼ 0:045m/s.

a. Evaluate kx.

b. Determine the interfacial concentrations, cAi and pAi, What

are xAi and yAi?

c. Evaluate the overall mass-transfer coefficient, KG

d. What is the flux, NA, for this process?

29.24 A packed absorption tower was used to absorb com-

pound A from a gas mixture into solvent B. At one point in the

tower, the partial pressure of A in the gas stream was 1:519�
104 Pa and the concentration of A in the contacting liquid stream

was 1:0� 10�3 kgmol/m3. The mass transfer between the gas

stream and the liquid stream at that point in the tower was

4� 10�5 kgmol/m2 � s.
The individual gas-film transfer coefficient, kG was found to

be 3:95� 10�9 kgmol/m2 � s � Pa. A laboratory experiment

verified that the system satisfied Henry’s law and that the liquid

composition, 1� 10�3 kgmol=m3 was in equilibrium with a

partial pressure of 3:04� 103 Pa.

a. Determine values for the following table:

b. Determine the percentage of the overall mass-transfer

resistance in the gas film.

29.25 Ammonia, NH3, in air is being absorbed into water

within the enclosed tank shown in the figure below. The liquid

and gas phases are both well mixed, and mass transfer occurs

only at the exposed gas–liquid interface. The diameter of the

cylindrical tank is 4 m, total liquid volume inside the tank is

Coefficient Driving Force

kG ¼ _________________ pAG � pAi ¼___________

kL ¼ _________________ cAi � cAL ¼___________

KG ¼ _________________ pAG � pA ¼___________

KL ¼ _________________ cA � cAL ¼___________
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Air + NH3 (g)
Air + NH3 (g)

Water + NH3 (liq)

if dilute, νO = ν

Water

νO = 200 L/h ν = 200 L/h

PA = 0.02 atmpA = 0.02 atm, p = 1.0 atm

CAL,O = 0 CAL = ?

CAL Well
mixed

constant. The bulk gas pressure of ammonia is maintained at

0.02 atm, and the total gas pressure is constant at 1.0 atm. The

system is isothermal at 208C. The inlet volumetric flow rate of

water is 200 L/h and enters NH3 free. You may assume that

Henry’s law, pAi ¼ HcAi describes the equilibrium distribution

of NH3 between the gas and the liquid phases where

H ¼ 0:02 atm/(kgmol/m3). The film mass-transfer coefficients

are kG ¼ 1:25 kgmol/m2 � h � atm and kL ¼ 0:05 kgmol/m2 � h�
(kgmol/m3).

a. Determine the overall mass transfer coefficient, KG.

b. Determine the partial pressure of NH3 at the gas–liquid

interface, pAi.

c. Determine WA the total molar rate of ammonia transfer.

d. Develop a material balance for NH3; then determine cAi the

concentration of NH3 in the outlet liquid stream.

568 Chapter 29 Convective Mass Transfer Between Phases



Chapter 30

Convective Mass-Transfer

Correlations

Thus far, we have considered convective mass transfer from an analytical viewpoint,

and from relations developed for the analogous transport of momentum or convective

heat. Although these considerations have given an insight into the mechanisms of

convective mass transport, the validity of the analysis must be proven by comparison

with experimental data. In this chapter, we will present dimensionless correlations for

mass-transfer coefficients based upon experimental results. There will be no attempt to

review all of the mass-transfer investigations, as reviews are available in several

excellent references.1 However, correlations will be presented to show that the forms of

many of these equations are indeed predicted by the analytical expressions derived in

Chapter 28. Additional correlations will be given for those situations that have not been

successfully treated analytically.

In Chapter 28, several dimensionless numbers are introduced as important

parameters used in correlating convective-transport data. Before presenting the

convective mass-transfer correlations, let us summarize in Table 30.1 the dimensionless

variables that have been used frequently in reported correlations. The Sherwood and

Stanton numbers are dimensionless parameters involving the mass-transfer coefficient.

The Schmidt, Lewis, and Prandtl numbers are required when two separate convective-

transport processes are simultaneously involved, and the Reynolds, Peclet, and Grashof

numbers are used to describe flow. The two j-factors are included in Table 30.1 because

they are often used to develop a new correlation for mass transfer based on a previously

established heat-transfer coefficient as discussed in Chapter 28.

30.1 MASS TRANSFER TO PLATES, SPHERES, AND CYLINDERS

Extensive data have been obtained for the transfer of mass between a moving fluid and

certain shapes, such as flat plates, spheres, and cylinders. The techniques employed include

sublimation of a solid, vaporization of a liquid into air, and the dissolution of a solid into

1 W. S. Norman, Absorption, Distillation and Cooling Towers, John Wiley & Sons, New York, 1961; C. J.

Geankoplis, Mass Transfer Phenomena, Holt, Rinehart, and Winston, New York, 1972; A. H. P. Skelland,

Diffusional Mass Transfer, John Wiley & Sons, New York, 1974; T. K. Sherwood, R. L. Pigford, and C. R.

Wilke, Mass Transfer, McGraw-Hill Inc., New York, 1975; L. J. Thibodeaux, Chemodynamics—Environmental

Movement of Chemicals in Air, Water and Soil, John Wiley & Sons, New York, 1979; R. E. Treybal, Mass

Transfer Operations, McGraw-Hill Book Company, New York, 1980; E. L. Cussler, Diffusion-Mass Transfer

in Fluid Systems, Second Edition, Cambridge University Press, 1997; S. Middleman, An Introduction to Heat

and Mass Transfer, John Wiley & Sons, New York, 1998.
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water. By correlating the data in terms of dimensionless parameters, these empirical

equations can be extended to other moving fluids and geometrically similar surfaces.

Flat Plate

Several investigators have measured the evaporation from a free liquid surface or sub-

limation from a flat, volatile solid surface into a controlled air stream. Mass-transfer

coefficients obtained from these experiments compare favorably with the mass-transfer

coefficients theoretically predicted for laminar and turbulent boundary layers. The appro-

priate correlations are

ShL ¼ kcL

DAB
¼ 0:664Re1/2L Sc1/3 (laminar) ReL< 2� 105 (28-21)

ShL ¼ kcL

DAB
¼ 0:0365Re0:8L Sc1/3 (turbulent) ReL> 2� 105 (28-26)

with ReL defind as

ReL ¼ rv1L

m

where L is the characteristic length of the flat plate in the direction of flow. At a distance x

from the leading edge of the flat plate, the exact solution to the laminar boundary layer

problem resulting in the theoretical prediction for the local Sherwood number, given by

Shx ¼ kcx

DAB
¼ 0:332Re1/2x Sc1/3 (28-20)

Table 30.1 Dimensionless numbers used in correlating mass-transfer data

(L ¼ Characteristic Length)

Name Symbol Dimensionless Group

Reynolds number Re v1rL

m
¼ v1L

n

Sherwood number Sh kcL

DAB

Schmidt number Sc m

rDAB
¼ n

DAB

Lewis number Le a

DAB
¼ k

rcpDAB

Prandtl number Pr n

a
¼ mcp

k

Peclet number PeAB v1L

DAB
¼ ReSc

Stanton number StAB kc

v1
Grashof number Gr L3rgDr

m2

Mass transfer j-factor jD kc

v1
(Sc)2/3

Heat transfer j-factor jH h

rcpv1
(Pr)2/3
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also agrees with experimental data, where the local Reynolds number, Rex, is defined

as

Rex ¼ rv1x

m

The above equations may also be expressed in terms of the j-factor by recalling

jD ¼ kc

v1
Sc2/3 ¼ kcL

DAB
� m

Lv1r
� DABr

m
� m

rDAB

� �2/3
¼ ShL

ReL Sc
1/3

(30-1)

Upon rearranging equations (28-21) and (28-26) into the form of equation (30-1), we

obtain

jD ¼ 0:664Re�1/2
L (laminar) ReL< 2� 105 (30-2)

and

jD ¼ 0:0365Re�0:2
L (turbulent) ReL> 2� 105 (30-3)

These equations may be used if the Schmidt number is in the range 0:6< Sc< 2500. The

j-factor for mass transfer is also equal to the j-factor for heat transfer in the Prandtl

number range of 0:6< Pr< 100 and is equal to Cf /2.

Example 28.3 illustrates the use of the boundary-layer equations for evaluating the

point value and the average valuemass-transfer convective coefficients for a flowover a flat

plate. In most situations, the hydrodynamic and concentration boundary layers both start at

the same position along x, the direction of fluid flow. However, there are some situations

where the hydrodynamic and the concentration boundary layers have different starting

points, as illustrated in Figure 30.1. The fluid flows over a portion of an inert surface before

flowing over a surface that can also serve as a source or sink for mass transfer. Conse-

quently, the hydrodynamic boundary layer begins to develop before the concentration

boundary layer, so that the boundary condition for the concentration of transferring species

A becomes

0 � x<X, cA ¼ cA1
X � x<1, cA ¼ cAs

Also, consider a situation for flow over a flat plate where there is an unheated starting length

prior to the heated zone. In this case, the temperatures at the wall surface are

0 � x<X, Twall ¼ T1
X � x<1, Twall ¼ Ts

dcy

x

x = 0 x = X x = x

NA

cAscA = 0 at wall

cA�

v�

Wall (inert) Wall (source for A)

d
Figure 30.1 Laminar flow

over a flat plate with the

initiation of the

hydrodynamic boundary layer

before the concentration

boundary layer.
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and the hydrodynamic and thermal boundary layers have different starting points. The local

Nusselt number for heat transfer is

Nux ¼ 0:332Re1/2x

Pr

1� X

x

� �3/4

0
BBB@

1
CCCA

1/3

(30-4)

using the analytical approach outlined in Problem 19.7. From this result, the local

Sherwood number for the analogous mass-transfer phenomenon is

Shx ¼ 0:332Re1/2x

Sc

1� X

x

� �3/4

0
BBB@

1
CCCA

1/3

(30-5)

The following example illustrates the application of boundary-layer analysis to evaluate

the mass-transfer coefficient for laminar flow over a flat plate, where the transport zone

occurs at a short distance downstream from the leading edge of the flat plate.

EXAMPLE 1 A horizontal chemical vapor deposition (CVD) reactor for growth of gallium arsenide (GaAs) thin

films is shown in Figure 30.2. In this process, arsine (AsH3), trimethyl gallium (Ga(CH3)3), and H2

gases are fed into the reactor. Inside the reactor, the silicon wafer rests on a heated plate called a

susceptor. The reactant gases flow parallel to the surface of the wafer and deposit a GaAs thin film

according to the simplified CVD reactions

2AsH3(g)! 2As(s)þ 3H2(g) and 2Ga(CH3)3(g)þ 3H2(g)! 2Ga(s)þ 6CH4(g)

If the process is considerably diluted inH2 gas, then themass transfer of each species in theH2 carrier

gas can be treated separately. The surface reaction is very rapid, and so the mass transfer of the

gaseous reactants to the surface of the wafer limits the rate of GaAs thin film formation.

In the present process, the edge of a 10-cm silicon wafer is positioned 4 cm downstream of the

leading edge of the susceptor plate. The wafer is inset within this plate so that a contiguous flat

surface is maintained. The process temperature is 800 K, and the total system pressure 101.3 kPa

(1 atm). Consider a limiting casewhere the flow rate of the H2-rich feed gas to the reactor results in a

bulk linear velocity of 100 cm/s, where trimethylgallium is present in dilute concentration.

Determine the local mass-transfer coefficient (kc) for trimethylgallium in H2 gas at the center of

the wafer using (a) boundary-layer theory and (b) film theory. The binary gas phase diffusion

coefficient of trimethylgallium in H2 is 1:55 cm2/s at 800 K and 1 atm.

At sufficiently high flowrate within the reactor, the physical system represents convective mass

transfer over a flat plate, where the hydrodynamic boundary layer develops before the concentration

x = 0 cm x = 4 cm x = 9 cm
 Heated plate (susceptor)

10 cm silicon wafer

Horizontal CVD reactor
(cross section)

Feed gas

G
as

 d
is

tr
ib

ut
or

Feed gas
H2 + Ga(CH3)3 + AsH3

Figure 30.2 Horizontal CVD

reactor.
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boundary layer. Trimethylgallium diluted in H2 gas serves as the source for mass transfer, and the

reaction at the boundary surface is the sink for trimethylgallium gas.

(a) First, the local Reynolds number is evaluated at x ¼ 9 cm, the distance from the edge of the

susceptor (4 cm) to the middle of the wafer (5 cm). The kinematic viscosity of the feed gas is

approximated by the properties of the H2 gas, as trimethylgallium is present in only dilute

concentration; from Appendix I, n ¼ 5:686 cm2/s at 800 K and 1 atm for H2 gas. Therefore

Rex ¼ v1x

n
¼ (100 cm/s)(9 cm)

5:686 cm2/s
¼ 158:3

and so the flow is laminar. The Schmidt number is

Sc ¼ n

DAB
¼ 5:686 cm2/s

1:55 cm2/s
¼ 3:67

For the present system where the hydrodynamic boundary layer starts to develop before the

concentration boundary layer, the local Sherwood number for laminar flow is

Shx ¼ 0:332Re1/2x

Sc

1� X

x

� �3/4

0
BBB@

1
CCCA

1/3

¼ 0:332(158:3)1/2
3:67

1� 4 cm

9 cm

� �3/4

0
BBB@

1
CCCA

1/3

¼ 8:375

Finally, the local mass-transfer coefficient predicted by boundary-layer theory is

kc ¼ Shx

x
DAB ¼ 8:375

9 cm

� �
1:55

cm2

s

� �
¼ 1:44

cm

s

(b) For film theory, recall that the local mass-transfer coefficient is defined as

kc ¼ DAB

dc

For laminar flow, the hydrodynamic boundary-layer thickness is

d ¼ 5xffiffiffiffiffiffiffiffi
Rex

p ¼ 5(9 cm)ffiffiffiffiffiffiffiffiffiffiffi
158:3

p ¼ 3:58 cm

Now recall that the relationship between the hydrodynamic boundary-layer thickness and the

concentration boundary-layer thickness is

d

dc
¼ Sc1/3 (28-18)

for laminar flow over a flat plate where the hydrodynamic and concentration boundary layers have the

same starting point. For laminar flowover a flat platewhere the hydrodynamic boundary layer is initiated

before the concentration boundary layer, the combination of equations (28-21), (28-26), and (30-5) yields

d

dc
¼ Sc

1� X

x

� �3/4

0
BBB@

1
CCCA

1/3

(30-6)

Substituting in the appropriate values, we obtain

d

dc
¼ Sc

1� X

x

� �3/4

0
BBB@

1
CCCA

1/3

¼ 3:67

1� 4 cm

9 cm

� �3/4

0
BBB@

1
CCCA

1/3

¼ 2:004
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and so

dc ¼ 3:58 cm

2:004
¼ 1:79 cm

Finally

kc ¼ DAB

dc
¼ 1:55 cm2/s

1:79 cm
¼ 0:868

cm

s

We note that kc predicted by film theory is 37% lower than kc predicted by boundary-layer theory.

The preceding analysis is valid only in the limiting case where the thickness of the hydro-

dynamic boundary layer is significantly less than the height of the enclosure housing the susceptor

plate. However, if the Reynolds number is sufficiently low, then the hydrodynamic boundary-layer

thickness approaches the height of the enclosure. In this situation, the CVD reactor housing itself

becomes the conduit for flow, and the analyses provided by Middleman and Hochberg2 and

Middleman3 are recommended.

Single Sphere

The Sherwood number (Sh) and Reynolds number (Re) for a sphere are defined as

Sh ¼ kcD

DAB

and

Re ¼ rv1D

m

where D is the diameter of the sphere, DAB is the diffusion coefficient of the transferring

speciesA in gaseous or liquid speciesB, v1 is the bulk fluid velocity flowing over the sphere,

and r and m are the density and viscosity of the fluid mixture, respectively, usually

approximated as species B at dilute concentration of A. Mass-transfer correlations for single

spheres consider the sum of the molecular diffusion and forced convection contributions

Sh ¼ Sho þ CRem Sc1/3

whereC andm are correlating constants. If there is no forced convection, then the Sherwood

number is 2. This value can be derived theoretically by considering the molecular diffusion

flux of species A from a sphere into an infinite sink of stagnant fluid B. Accordingly, the

generalized equation becomes

Sh ¼ 2þ CRem Sc1/3

For mass transfer into liquid streams, the equation of Brian and Hales4

Sh ¼ kLD

DAB
¼ �4þ 1:21 Pe2/3AB

1/2
(30-7)

2 S. Middleman and A. K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication,

McGraw-Hill Inc., New York, 1993.
3 S. Middleman, An Introduction to Heat and Mass Transfer, John Wiley & Sons, New York, 1998.
4 P. L. T. Brian and H. B. Hales, A.I.Ch.E. J., 15, 419 (1969).
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correlates data where the mass-transfer Peclet number, PeAB, is less than 10,000.

From Table 30.1, recall PeAB is the product of the Reynolds and Schmidt numbers, Re :Sc.
For Peclet numbers greater than 10,000, Levich5 recommends the simpler relationship

Sh ¼ kLD

DAB
¼ 1:01 Pe1/3AB (30-8)

For mass transfer into gas streams, the Fröessling equation6

Sh ¼ kcD

DAB
¼ 2þ 0:552Re1/2 Sc1/3 (30-9)

correlates the data at Reynolds numbers ranging from 2 to 800 and Schmidt numbers

ranging from 0.6 to 2.7. Data of Evnochides and Thodos7 have extended the Fröessling

equation to a Reynolds number range of 1500 to 12 000 under a Schmidt number range of

0.6 to 1.85.

Equations (30-7)–(30-9) can be used to describe forced convection mass-transfer

coefficients only when the effects of free or natural convection are negligible; that is

Re� 0:4Gr1/2 Sc�1/6 (30-10)

The following correlation of Steinberger and Treybal8 is recommended when the transfer

occurs in the presence of natural convection

Sh ¼ Sho þ 0:347(Re Sc1/2)0:62 (30-11)

where Sho is dependent on Gr Sc

Sho ¼ 2þ 0:569(GrSc)0:25 Gr Sc� 108 (30-12)

Sho ¼ 2þ 0:0254(GrSc)1/3 (Sc)0:244 Gr Sc� 108 (30-13)

From Table 30.1, the Grashof number is defined as

Gr ¼ D3rgDr

m2

where density, r, and viscosity, m, are taken at the bulk conditions of the flowing fluid, and

Dr is the positive density difference between the two phases in contact. The prediction for

Sh is valid when 2 � Re � 3� 104 and 0:6 � Sc � 3200.

EXAMPLE 2 Estimate the distance a spherical drop of liquid water, originally 1mm in diameter, must fall in quiet,

dry air at 323 K in order to reduce its volume by 50%. Assume that the velocity of the drop is its

terminal velocity evaluated at its mean diameter and that the water temperature remains at 293 K.

Evaluate all gas properties at the average gas film temperature of 308 K.

The physical system requires a combined analysis ofmomentum andmass transport. The liquid

water droplet is the source for mass transfer, the surrounding air serves as an infinite sink, and water

vapor (species A) is the transferring species. The rate of evaporation is sufficiently small so that the

water droplet is considered isothermal at 293K; otherwise, a combined analysis ofmomentum,mass,

5 V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1962.
6 N. Fröessling, Gerlands Beitr. Geophys., 52, 170 (1939).
7 S. Evnochides and G. Thodos, A.I.Ch.E. J., 5, 178 (1960).
8 R. L. Steinberger and R. E. Treybal, A.I.Ch.E. J., 6, 227 (1960).
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and heat transport would be required! By considering a force balance on a spherical particle falling in

a fluid medium, we can show that the terminal velocity of the particle is

vo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4dp(rw � pair)g

3CDrair

s

where dp is the diameter of the particle, rw is the density of thewater droplet, rair is the density of the

surrounding fluid (air), g is the acceleration due to gravity, and CD is the drag coefficient, which is a

function of the Reynolds number of the spherical particle as illustrated in Figure 12.4. The arithmetic

mean droplet diameter is evaluated by

d p ¼ dpjt1 þ dpjt2
2

¼
dpjt1 þ

1

2

� �1/3
: dpjt1

2

¼ 0:897dpjt1 ¼ (0:897)(1� 10�3 m) ¼ 8:97� 10�4 m

Hence, the arithmetic mean radius is equal to 4:48� 10�4 m. At 293 K, the density of the water

droplet ðrwÞ is 9:95� 102 kg=m3. At 308 K, the density of the air is 1.14 kg/m3 and the viscosity of

air is 1:91� 10�5 Pa : s. Substitution of these values into the terminal velocity equation yields

vo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4)(8:97� 10�4 m)(9:95� 102 kg/m3 � 1:14 kg/m3)(9:8m/s2)

(3)(1:14 kg/m3)CD

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:22m2/s2

CD

s

By trial and error, guess a value for no, calculate a Reynolds number, and read CD from Figure 12.4.

Then, check the guessed value of no by the above equation. Guess no ¼ 3:62 m/s. The Reynolds

number is

Re ¼ dpvorair
nair

¼ (8:97� 10�4 m)(3:62m/s)(1:14 kg/m3)

1:19� 10�5 Pa : s kg/m : s
Pa : s

� � ¼ 194

and Figure 12.4, CD ¼ 0:78. Now recalculate no

vo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:22m2/s2

CD

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:22m2/s2

0:78

r
¼ 3:62m/s

Therefore, the guessed value for no is correct. The Schmidt number must now be calculated. From

Appendix J.1, the gas diffusivity (DAB) for water vapor in air at 298 K is 2:60� 10�5 m2/s, which is

corrected to the desired temperature by

DAB ¼ (2:60� 10�5 m2/s)
308K

298 K

� �3/2
¼ 2:73� 10�5 m2/s

The Schmidt number is

Sc ¼ mair

rairDAB
¼

(1:91� 10�5 Pa : s) kg/m : s
Pa : s

� �
(1:14 kg/m3)(0:273� 10�4 m2/s)

¼ 0:61

The Fröessling equation (30-9) can now be used to evaluate themass-transfer coefficient for transfer

of water vapor from the surface of the droplet to the surrounding air

kcdp

DAB
¼ 2þ 0:552Re1/2Sc1/3
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or

kc ¼ DAB

dp
(2þ 0:552Re1/2Sc1/3)

¼ (0:273� 10�4 m2/s)

8:97� 10�4 m
(2:0þ 0:552(194)1/2(0:61)1/3) ¼ 0:276m/s

The average rate of water evaporation from the droplet is

WA ¼ 4p r2p NA ¼ 4p r2pkc(cAs � cA1)

The dry-air concentration, cA1, is zero, and the surrounding is assumed to be an infinite sink formass

transfer. The surface concentration is evaluated from the vapor pressure of water at 293 K

cAs ¼ PA

RT
¼ 2:33� 103 Pa

8:314
Pa :m3

mol :K

� �
(293K)

¼ 0:956
mol

m3

When we substitute the known values into the rate of evaporation equation, we obtain

WA ¼ 4p(4:48� 10�4 m)2(0:276m/s)(0:956mol/m3 � 0) ¼ 6:65� 10�7 mol/s

or 1:2� 10�8 kg/s on a mass basis. The amount of water evaporated is

mA ¼ rwDV ¼ rw(Vt,1 � Vt;2) ¼ rw(Vt,1 � 0:5Vt,1) ¼ rwVt,1

2

¼ rw
2

4p

3
r�3
p ¼ 4p

6
(9:95� 102 kg/m3)(4:48� 10�4 m)3 ¼ 1:87� 10�7 kg

The time necessary to reduce the volume by 50% is

t ¼ mA

WA
¼ 1:87� 10�7 kg

1:20� 10�8 kg/s
¼ 15:6 s

and the distance of the fall is equal to vot or 56.5 m.

Spherical Bubble Swarms

Consider a process where a gas is bubbled

into a column of liquid. Usually the sphe-

rical gas bubbles are produced in swarms

or clusters by the orifice that introduces the

gas into the liquid.

Unlike the single, rigid sphere pre-

viously described, viscous circulation

also occurs within the deformable bub-

ble as it rises through the liquid. Conse-

quently, a single-sphere correlation fails

to describe the mass transport accurately

in the vicinity of the gas–liquid interface

of a rising bubble. Calderbank and Moo-

Young9 recommend the following two-

Liquid in
Liquid

Single
bubble

Liquid out

Gas out

Gas

Sparger

Gas in
(carrier + A)

Figure 30.3 Gas dispersed in liquid column.

9 P. H. Calderbank and M. Moo-Young, Chem. Eng. Sci., 16, 39 (1961).
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point correlation for the mass-transfer coefficient associated with the transfer of a

sparingly soluble gaseous solute A into solvent B by a swarm of gas bubbles in a natural

convection process.

For gas bubble diameters ðdbÞ less than 2.5 mm, use

Sh ¼ kLdb

DAB
¼ 0:31Gr1/3 Sc1/3 (30-14a)

For bubble diameters greater or equal to 2.5 mm, use

Sh ¼ kLdb

DAB
¼ 0:42Gr1/3 Sc1/2 (30-14b)

In the above correlations, the Grashof number is defined as

Gr ¼ d3brLgDr

m2
L

where Dr is the difference of the density of the liquid and the density of the gas inside the

bubble, with density (rL) and viscosity (mL) determined at the bulk average properties of the

liquid mixture. For dilute solutions, the fluid properties of the solvent approximate the fluid

properties of the liquid mixture. The diffusion coefficient DAB is with respect to dissolved

gaseous solute A in solvent B.

In order to relate fluxNA to transfer rateWA using the above correlations, the gas holdup

ratio must be known. The gas holdup ratio, fg, is defined as the volume of gas bubbles ðVgÞ
per unit volume of liquid. Consequently, the interphase mass-transfer area per unit volume

for bubbles of average diameter db is

Ai

V
¼ Vg

V
� bubble area

bubble volume
¼ 6fg

db
(30-15)

For gas-sparged vessels with no mechanical agitation, the gas holdup is proportional to

the ratio of the superficial gas velocity and the terminal velocity of the rising bubble in

the liquid, where the superficial gas velocity is volumetric gas flow rate per cross-

sectional area of the empty vessel. The gas holdup is typically less than 0.2 for most

sparging operations. Correlations for gas holdup are beyond the scope of this text, and the

reader is encouraged to consult Treybal10 for further information.

Single Cylinder

Several investigators have studied the sublimation from a solid cylinder into air flowing

normal to its axis. Additional results on the dissolution of solid cylinders into a turbulent

water stream have been reported. Bedingfield and Drew11 correlated the available data to

obtain

kGP(Sc)
0:56

GM
¼ kc(Sc)

0:56

v1
¼ 0:281(ReD)

�0:4 (30-16)

which is valid for 400<ReD< 25,000 and 0:6< Sc< 2:6. In this correlation, P is the

system total pressure and GM is the superficial molar velocity of the gas flowing normal

to the cylinder in units of kgmol/m2 � s. The Reynolds number for flow normal to a solid

10 R. E. Treybal, Mass Transfer Operations, McGraw-Hill Book Company, New York, 1980.
11 C. H. Bedingfield and T. B. Drew, Ind. Eng. Chem., 42, 1164 (1950).
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cylinder, ReD, is defined as

ReD ¼ rv1D

m

whereD is cylinder diameter, v1 is the fluid velocity normal to the solid cylinder, and r and

m for the gas stream evaluated at the film average temperature.

The full analogy amongmomentum, heat, andmass transfer breaks downwhen the flow

is around bluff bodies, such as spheres and cylinders. The total drag force includes the form

drag in addition to the skin friction and so the j-factor will not equal cf /2. However, the

analogy between heat and mass transfer, jH ¼ jD, still holds. Accordingly, the mass-

transfer coefficient for a single cylinder that does not satisfy the specified ranges for

equation (30-16) can be evaluated by using the Chilton–Colburn analogy and the appro-

priate heat-transfer relations described in Section 20.3.

EXAMPLE 3 In a humidification apparatus, liquid water flows in a thin film down the outside of a vertical, circular

cylinder. Dry air at 310 K and 1:013� 105 Pa (1 atm) flows at right angles to the 0.076-m diameter,

1.22-m-long vertically aligned cylinder at a velocity of 4.6m/s. The liquid film temperature is 290K.

Calculate the rate at which liquidmust be supplied to the top of the cylinder if the entire surface of the

cylinder is to be used for the evaporating process and no water may drip off from the bottom of the

cylinder.

The liquid film on the outside of the cylinder represents the source for mass transfer, and the air

stream flowing normal to the cylinder represents an infinite sink. The properties of the air stream are

evaluated at the film-average temperature of 300 K. The properties of air may be obtained from

Appendix I, with r ¼ 1:1769 kg/m3 and n ¼ 1:5689� 10�5 m2/s at 300 K and 1 atm. The Reynolds

number is

ReD ¼ Dv1
nair

¼ (0:076m)(4:6m/s)

1:5689� 10�5 m2/s
¼ 22283

From Appendix Table J.1, the diffusivity of water in air at 298 K and 1 atm is 2:60� 10�5 m2/s,

which corrected for temperature becomes

DAB ¼ (2:60� 10�5 m2/s)
300K

298K

� �3/2
¼ 2:63� 10�5 m2/s

The Schmidt number is

Sc ¼ nair
DAB

¼ 1:5689� 10�5 m2/s

2:63� 10�5 m2/s
¼ 0:6

The superficial molar velocity of the air normal to the cylinder is

GM ¼ v1rair
Mair

¼ (4:6m/s)(1:1769 kg/m3)

29 kg/kgmol
¼ 0:187

kgmol

m2 : s
Upon substitution of the known values into equation (30-16), we can solve for the gas-phase film

mass-transfer coefficient

kGP Sc0:56

GM
¼ 0:281(ReD)

�0:4

or

kG(1:013� 105 Pa)(0:60)0:56

0:187
kg mol

m2 : s

¼ 0:281

(22283)0:4
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Finally

kG ¼ 1:26� 10�8 kgmol

m2 : s : Pa
The flux of water can be evaluated by

NA ¼ kG( pA, i � pA1)

The vapor pressure of water at 290 K is 1:73� 103 Pa, and the partial pressure of the dry air ( pA1) is

zero, as the surrounding air stream is assumed to be an infinite sink for mass transfer. Consequently,

NA ¼ 1:26� 10�8 kgmol

m2 : s : Pa

� �
(1:73� 103 Pa� 0) ¼ 2:18� 10�5 kgmol

m2 : s

Finally, the mass-feed rate of water for a single cylinder is the product of the flux and the external

surface area of the cylinder is

WA ¼ NAMA(pDL) ¼ 2:18� 10�5 kgmol

m2 : s

� �
18

kg

kgmol

� �
(p) (0:076m : 1:22m)

¼ 1:14� 10�4 kg/s

30.2 MASS TRANSFER INVOLVING FLOW THROUGH PIPES

Mass transfer from the inner walls of a tube to a moving fluid has been studied extensively.

Most of the data have been obtained for vaporization of liquids into air, although some data

have also been obtained for mass transfer of a soluble solid into a moving liquid, where the

solid coats the inner surface of the tube.Gilliland andSherwood12 studied thevaporization of

nine different liquids into air flowing through the inside of a tube and obtained the correlation

kcD

DAB

pB,lm

P
¼ 0:023Re0:83Sc0:44 (30-17)

where

Re ¼ rv1D

m

andD is now the inner diameter of the pipe, pB;lm is the log mean composition of the carrier

gasB,P is the total systempressure,DAB is themass diffusivity of the diffusing componentA

in the flowing carrier gas B. The Reynolds and Schmidt numbers are evaluated at the bulk

conditions of the gas inside the pipe; for dilute solutions, the density and viscosity of the

carrier gas can be assumed. The correlation is valid for gases where 2000<Re< 35,000

and 0:6< Sc< 2:5.
In a subsequent study, Linton and Sherwood13 extended the range of the Schmidt

number when they investigated the dissolution of benzoic acid, cinnamic acid, and

b-naphthol in various solvents flowing through a tube. The combined experimental results

of Gilliland and Sherwood and Linton and Sherwood were correlated by the relation

Sh ¼ kLD

DAB
¼ 0:023Re0:83Sc1/3 (30-18)

which is valid for liquids where 2000<Re< 35000 and 1000< Sc< 2260. The Reynolds

and Schmidt numbers are evaluated at the bulk conditions of the liquid inside the pipe.

12 E. R. Gilliland and T. K. Sherwood, Ind. Eng. Chem., 26, 516 (1934).
13 W. H. Linton and T. K. Sherwood, Chem. Eng. Prog., 46, 258 (1950).
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Again, for dilute solutions, the density and viscosity of the fluid approximates those

properties of the solvent carrier B.

We note here that the Sherwood number for mass transfer (Sh) is analogous to the

Nusselt number for heat transfer (Nu). The similarity between equation (30-18) and the

Dittus–Boelter equation for energy transfer (20-26) illustrates the analogous behavior of

these two transport phenomena.

For laminar flow of a fluid through a tube, with a Reynolds number range of

10<Re< 2000, the appropriate mass-transfer correlation is

Sh ¼ 1:86
v1D2

LDAB

� �1=3

¼ 1:86
D

L

v1D

n
� n

DAB

� �1/3
¼ 1:86

D

L
Re Sc

� �1/3
(30-19)

where L the length of the pipe and v1 is the bulk average velocity. Equation (30-19) is

analogous to the Sieder–Tate equation (20-25) for laminar flow heat transfer inside a

tube. Furthermore, the Graetz solution for mass transfer inside a tube with laminar fluid

flow is analogous to the Graetz solution for heat transfer provided in Section 20.2.

30.3 MASS TRANSFER IN WETTED-WALL COLUMNS

Much of the data for interphase mass transfer of a solute

between gas and liquid carrier streams have been obtained

using wetted-wall columns. In a wetted-wall column, gas

flowsinto thebottomof the tubeandmovesupward,asshown

inFigure30.4.Liquid is loadedinto the topof thecolumn,and

a weir evenly distributes the flow of liquid around the inner

perimeter of the tube, forminga falling liquidfilm that evenly

wets the inner surface of the tube down its length. The liquid

film is often somewhat thin, often less thana fewmillimeters,

and the liquid velocity is relatively high due to gravitational

acceleration. There are two principal reasons for using

wetted-wall columns in interphase mass-transfer investiga-

tions.First, thecontactingareabetween the twophasescanbe

accuratelymeasured. Second, the experiments canbe readily

set up for steady-state operation.

kLz

DAB
¼ 0:433(Sc)1/2

r2Lgz
3

m2
L

� �1/6

(ReL)
0:4 (30-20)

The convective mass-transfer coefficient for the gas film

based on either turbulent or laminar flow is defined by the

correlating equaions (30-18) and (30-19), respectively, with

the Reynolds number of the gas flowing through the tube is

Ret ¼ rv1D

m

where v1 and m/r refer to the gas stream. However, for interphase mass-transfer analysis,

the liquid film mass-transfer coefficient is also needed. A suitable correlation proposed by

Vivian and Peaceman14 for convectivemass transfer of a gaseous solute into a falling liquid

14 L. E. Scriven and R. L. Pigford, A.I.Ch.E. J.,4, 439 (1958).

NA

Z

Liquid
flow in

Liquid
flow out

Column wall

Liquid film

Gas
flow in

Figure 30.4 Wetted-wall

column for interphase mass

transfer of gas and liquid.
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film evenly wetting the inner surface of a tube is where z is the length of contact down the

falling film, DAB is the mass diffusivity of the diffusing component A into liquid solvent B,

rL is the density of the liquid,mL is theviscosity of liquid, g is the acceleration due to gravity,

and Sc is the Schmidt number for the solute dissolved in the liquid evaluated at the liquid

film temperature. The Reynolds number of the liquid flowing down the tube is defined as

ReL ¼ 4G

mL

¼ 4w

pDmL

wherew is themass flow rate of liquid,D is the inner diameter of the cylindrical column, and

G is the mass flow rate of liquid per unit wetted perimeter of the column.

The liquid-film mass-transfer coefficients predicted by equation (30-20) were found to

be 10–20% lower than the theoretical equation for absorption of a gaseous solute into a

laminar falling liquid film, as discussed in Section 26.4. This may have been due to ripples

along the liquid surface or to disturbances in the liquid flow at the two ends of thewetted-wall

column. These discrepancies between the theoretical and measured rates of mass transfer

have often led to the suggestion that a resistance to the mass transfer exists at the gas–liquid

interface. However, investigations by Scriven and Pigford and others have substantiated that

the interfacial resistance is negligible in normal interphase mass-transfer operations.

EXAMPLE 4 Trichloroethylene (TCE), a common industrial solvent, is often found at low concentrations in

industrial waste waters. Stripping is a common process for removing sparingly soluble, volatile

organic solutes such as TCE from aqueous solution. A wetted-wall column is used to study the

stripping of TCE from water to air at a constant temperature of 293 K and total system pressure of 1

atm. The column inner diameter is 4 cm and the height is 2 m. In the present process, the volumetric

air flow rate into the column is 2000 cm3/s (2:0� 10�3 m3/s) and the volumetric flow rate of water is

50 cm3/s(5� 10�5 m3/s). Estimate KL, the overall liquid phase mass transfer coefficient for TCE

across the liquid and gas film. Assume that water loss by evaporation is negligible.

Relevant physical property data are provided below. The process is very dilute so that the bulk

gas has the properties of air and the bulk liquid has the properties of water. The equilibrium solubility

of TCE in water is described by Henry’s law of the form

pA ¼ H : xA
whereH is 550 atm at 293K. The binary gas phase diffusivity of TCE in air is 8:08� 10�6 m2/s at 1 atm

and293K,asdeterminedby theFuller–Shettler–Giddings correlation.Thebinary liquid-phasediffusivity

of TCE in water at 293 K is 8:9� 10�10 m2/s, as determined by the Hayduk–Laudie correlation.

With this physical property information in hand, our strategy is to estimate the gas film

coefficient kG, the liquid film coefficient kL, and then the overall mass-transfer coefficient KL. First,

the bulk velocity of the gas is

v1 ¼ 4Qg

pD2
¼

4 : 2:0� 10�3 m
3

s

� �
p(0:04m)2

¼ 1:59
m

s

The Reynolds number for air flow through the inside of the wetted wall column is

Re ¼ rairv1D

mair

¼
1:19

kg

m3

� �
1:59

m

s

� �
(0:04m)

1:84� 10�5
kg

m : s

¼ 4113

and the Schmidt number for TCE in air is

Sc ¼ mair

rairDTCE�air
¼

1:84� 10�5 kg

m : s
1:19

kg

m3

� �
8:08� 10�6

m2

s

� � ¼ 1:91
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where the properties of air are found from Appendix I. As the gas flow is not laminar ðRe> 2000Þ,
equation (30-17) is appropriate for estimation of kc. Therefore

kc ¼ DAB

D
0:023Re0:83Sc0:44 ¼ 8:08� 10�6 m2/s

0:04m

� �
(0:023)(4113)0:83(1:91)0:44 ¼ 6:17� 10�3 m=s

for a dilute solution where pB,lm/P is essentially 1. The conversion to kG is

kG ¼ kc

RT
¼

6:17� 10�3 m

s

0:08206
m3 : atm
kgmol :K

� �
(293K)

¼ 2:57� 10�4 kgmol

m2 : s : atm

The liquid-film coefficient is now estimated. The Reynolds number for the falling liquid film is

ReL ¼ 4rL _VL

pDmL

¼
4 : 998:2

kg

m3

� �
5� 10�5 m

3

s

� �
p : (0:04m) 9:93� 104

kg

m : s

� � ¼ 1600

and the Schmidt number is

Sc ¼ mL

rLDTCE�H2O
¼

9:93� 10�4 kg

m : s

� �

998:2
kg

m3

� �
8:90� 10�10

m2

s

� � ¼ 1118

where the properties of liquidwater at 293Kare found inAppendix I. Equation (30-20) is appropriate

for estimation of kL:

kL ¼ DAB

z
0:433(Sc)1/2

r2Lgz
3

m2
L

 !1/6

(ReL)
0:4

¼
8:9� 10�10 m

2

s
2m

0:433 : (1118)1/2

998:2
kg

m3

� �2 9:8m

s2

� �
(2m)3

9:93� 10�4
kg

m : s

� �2

0
BBB@

1
CCCA
1/6

(1600)0:4 ¼ 2:55� 10�5m=s

Since the process is dilute, Henry’s law constant in units consistent with kL and kG is

H ¼ 550 atm
MH2O

rL;H2O

¼ (550 atm)
18 kg

kg mol

� �
1

993:2 kg/m3

� �
¼ 9:968

atm :m3

kgmol

The overall liquid mass-transfer coefficient, kL, is

1

KL
¼ 1

kL
þ 1

HkG
¼ 1

2:55� 10�5
m

s

þ 1

9:96
atm :m3

kgmol

� �
2:57� 10�4

kgmol

m2 : s : atm

� �
or kL ¼ 2:52� 10�5 m/s. As KLffi kL, the process is liquid film mass-transfer controlling, which is

characteristic of interphasemass-transfer processes involving a large value for Henry’s law constant.
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30.4 MASS TRANSFER IN PACKED AND FLUIDIZED BEDS

Packed and fluidized beds are commonly used in industrial mass-transfer operations,

including adsorption, ion exchange, chromatography, and gaseous reactions that are

catalyzed by solid surfaces. Numerous investigations have been conducted for measur-

ing mass-transfer coefficients in packed beds and correlating the results. In general, the

agreement among the investigators is poor, which is to be expected when one realizes

the experimental difficulties. Sherwood, Pigford, and Wilke15 presented a graphical

representation of most of the data for mass transfer in packed beds with single-phase

fluid and gas flows. They found that a single straight line through the experimental

points did a fair job of representing all the data; this line is represented by a fairly simple

equation

jD ¼ 1:17Re�0:415 10<Re< 2500 (30-21)

where

Re ¼ dpuaver

m

uave ¼ superficial fluid velocity

dp ¼ diameter of sphere having the same surface or volume as the particle

This equation may be employed for engineering estimates.

Most of the earlier correlations for packed beds failed to account for variations in the

void fraction of the beds, e, which in beds of spheres and pellets can range from 0.3 to 0.5.

Mass transfer between liquids and beds of spheres was investigated by Wilson and

Geankoplis16 who correlated their data by

e jD ¼ 1:09

Re000
(30-22)

for 0:0016<Re000< 55, 165< Sc< 70 600 and 0:35< e < 0:75, and by

e jD ¼ 0:25

(Re000)0:31
(30-23)

for 55<Re000< 1500 and 165< Sc< 10 690. The Reynolds number, Re000, is defined in

terms of the diameter of the spheres, dp, and the superficial mass velocity of the fluid,

G, in mass per unit time per unit cross section of the tower without packing. The void

fraction in the packed bed is designated as e, the volume void space between the solid

particles divided by the total volume of void space plus the solid particles. These

values range from about 0.3 to 0.5 in most packed beds. The correlation of Gupta and

Thodos17

e jD ¼ 2:06

(Re000)0:575
(30-24)

15 T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill Book Company, New York,

1975.
16 E. J. Wilson and C. J. Geankoplis, Ind. Eng. Chem. Fund., 5, 9 (1966).
17 A. S. Gupta and G. Thodos, A.I.Ch.E. J., 9, 751 (1963).
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is recommended for mass transfer between gases and beds of spheres in the Reynolds

number range 90<Re000 <4000. Data above this range indicate a transitional behavior

and are reported in a graphical form by Gupta and Thodos.18

Mass transfer in both gas and liquid fluidized beds of spheres has been correlated by

Gupta and Thodos19 with the equation

e jD ¼ 0:010þ 0:863

(Re000)0:58 � 0:483
(30-25)

A detailed discussion of heat and mass transfer in fluidized beds is provided in the book

by Kunii and Levenspiel.20

30.5 GAS–LIQUID MASS TRANSFER IN STIRRED TANKS

An important industrial process is the aeration of water, which is used in wastewater

treatment and aerobic fermentation operations. Air is bubbled into the bottom of a vessel

containing liquid water. Oxygen gas inside the air bubble absorbs into the water, where it is

sparingly soluble. Usually, the air bubbles are produced in swarms or clusters by the gas

sparger. In many gas–liquidmass-transfer operations of this type, a gas is sparged into a tank

filled with liquid that is mixed with a rotating impeller. The stirred tank promotes gas–liquid

contact bybreaking up the rising gas bubbles released at the bottomof the tank anddispersing

them throughout the liquid volume.Due to the continual collision of thegas bubbles resulting

from gas sparging and mechanical agitation of the submerged impeller, the interfacial area

for mass transfer is impossible to measure. Consequently, measured mass-transfer coeffi-

cients for aerated stirred tanks are reported as capacity coefficients, for example, kLa, where

the mass-transfer coefficient is lumped together with the parameter a, which is defined as

a ¼ Ai

V
¼ area available for interphase mass transfer (m2)

liquid volume (m3)
(30-26)

Capacity coefficients based on a ‘‘concentration driving force’’ mass-transfer coefficient

(e.g., kL) have units of reciprocal time, with a typical units conversion of the following:

kLa ¼ kL
Ai

V
¼ m

s

� � m2

m3

� �
¼ s�1

Consequently, capacity coefficients cannot be used to calculate flux NA directly. Instead,

they are used to compute the total rate of interphase transfer WA by

WA ¼ NA :
Ai

V
:V ¼ kLa �V(cA � cA) (30-27)

Van’t Riet21 reviewed many studies of gas–liquid mass-transfer processes associated

with oxygen transfer to low-viscosity liquids in agitated vessels. The following correlations

for the liquid-film capacity coefficients are valid for the interphase mass transfer of oxygen

into liquid water. For a stirred vessel of coalescing air bubbles, a suitable correlation is

(kLa)O2
¼ 2:6� 10�2 Pg

V

� �0:4

(ugs)
0:5 (30-28)

18 A. S. Gupta and G. Thodos, Ind. Eng. Chem. Fund., 3, 218 (1964).
19 A. S. Gupta and G. Thodos, A.I.Ch.E. J., 8, 608 (1962).
20 D. Kunii and O. Levenspiel, Fluidization Engineering, Wiley, New York (1969).
21 K. Van’t Riet, Ind. Eng. Chem. Proc. Des. Dev., 18, 357 (1979).
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valid for V < 2:6m3 of liquid and 500<Pg/V < 10,000W/m3. For a stirred vessel of

noncoalescing air bubbles, a suitable correlation is

(kLa)O2
¼ 2� 10�3 Pg

V

� �0:7

(ugs)
0:2 (30-29)

valid for V < 4:4m3 of liquid and 500<Pg/V <10,000W/m3. In both correlations, the

following units must be strictly followed: (kLa)O2
is the liquid-phase film-capacity

coefficient for O2 in water in units of s�1, Pg/V is the power consumption of the aerated

vessel per unit liquid volume in units of W/m3, and ugs is the superficial velocity of the

gas flowing through the empty vessel in units of m/s, which can be obtained by dividing

the volumetric flow rate of the gas by the cross-sectional area of the vessel. These

correlations agree with experimental data at �20 to 40% accuracy for equations (30-28)

and (30-29), respectively, regardless of the type of impeller used (e.g., paddle, marine, or

flat-blade disk turbine impeller).

The power input per unit liquid volume (P/V) is a complex function of impeller

diameter (di), impeller rotation rate (N, revolutions per time), impeller geometry, liquid

viscosity, liquid density, and aeration rate. A correlation shown in Figure 30.5 for the

nonaerated, nonvortexing agitation of a Newtonian fluid provides a reasonable approxima-

tion for estimating the nonaerated power input P. In Figure 30.5, the impeller Reynolds

number is defined as

Rei ¼ d2i NrL
mL

(30-30)

and the Power number Po is defined as

Po ¼ Pgc

rN3d5i
(30-31)

P  g
c

m L
N

3 d i
5

P o
=

di
2NmL

mL
Rei =

0 10 102 103 104 105 106

102

10

1

0.1

Laminar

Transient

Turbulent

Flat-blade turbine

Paddle

Marine propeller

Figure 30.5 Power number vs. Reynolds number for impellers immersed in single-phase

liquids.22

22 J. H. Ruston, E. W. Costich, and H. J. Everett, Chem. Eng. Prog.,46, 467 (1950).
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Aerating a stirred tank of liquid lowers the impeller power input. Nagata23 suggests the

following correlation for estimation of gased power input (Pg) as a function of gas

volumetric flow rate (Qg) for a flat-blade disk turbine impeller:

log10
Pg

P

� �
¼ �192

di

dT

� �4:38
d2i NrL
mL

� �0:115
diN

2

g

� �1:96ð di
dT
Þ

Qg

d3i N

 !
(30-32)

where dT is the diameter of the vessel. An alternative means to obtain Pg/V is to measure

the power input into the stirred tank, but this is often not practical for equipment-design

purposes.

30.6 CAPACITY COEFFICIENTS FOR PACKED TOWERS

Although the wetted-wall column has a definite interfacial surface area, the corresponding

area in other types of equipment, which is described in Chapter 31, is virtually impossible to

measure. For this reason, an engineering factor a must be introduced to represent the

interfacial surface area per unit volume of the mass-transfer equipment. Both a and the

mass-transfer coefficient depend on the physical geometry of the equipment and on the flow

rates of the two contacting, immiscible streams; accordingly, they are normally correlated

together as the capacity coefficient, kca. The units of kca are moles of A transferred/

(h)(volume)(moles of A/volume). The capacity coefficient is encountered in the basic

design equations of Chapter 31.

Empirical equations for capacity coefficients must be experimentally obtained for each

type of mass-transfer operation. Such a correlation was obtained by Sherwood and

Holloway24 in the first comprehensive investigation of liquid-filmmass-transfer coefficients

in packed absorption towers. The experimental results for a variety of packings were

represented by

kLa

DAB
¼ a

L

m

� �1�n m

rDAB

� �0:5

(30-33)

where kLa is the mass-transfer capacity coefficient, in lb mol/h ft3 (lb mol/ft3); L is the

liquid rate, in lb/h ft3; m is the viscosity of the liquid, in lb/h ft; r is the density of the

liquid, in lb/ft3; and DAB is the liquid mass diffusivity of component A in liquid B, in

ft2/h. The values of the constant a and the exponent n for various packing are given in

Table 30.2.

Further correlations for capacity coefficients can be found in treatises on mass-

transfer operations in the discussion of each specific operation and each specific type of

tower.25
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24 T. K. Sherwood and F. A. Holloway, Trans. A.I.Ch.E., 36, 21, 39 (1940).
25 T. K. Sherwood, R. L. Pigford and C. R. Wilke, Mass Transfer, McGraw-Hill Book Company, New York,

1975; R. E. Treybal, Mass Transfer Operations, McGraw-Hill Book Company, New York, 1980; C. J. King,

Separation Processes, McGraw-Hill Book Company, New York, 1971; W. S. Norman, Absorption, Distillation

and Cooling Towers, Wiley, 1961; A. H. P. Skelland, Diffusional Mass Transfer, Wiley, New York, 1974.



30.7 STEPS FOR MODELING MASS-TRANSFER PROCESSES
INVOLVING CONVECTION

Inmany real processes, the flux is coupled to amaterial balance on the control volume of the

physical system. Processes of this type are modeled similarly to the five-step procedure

described earlier in Section 25.4.

Step 1: Draw a picture of the physical system. Label the important features, including

the boundary surface where convective mass transfer occurs. Decide where the

source and the sink for mass transfer are located.

Step 2: Make a ‘‘list of assumptions’’ based on your consideration of the physical

system. Assumptions can be added as the model develops.

Step 3: Formulate material balances on the species undergoing mass transfer, and then

incorporate the appropriate mass-transfer correlation(s) into the material bal-

ance. Processes dominated by convective mass transfer generally fall into two

types: (1) the well-mixed control volume of uniform concentration of the

transferring species, i.e., a stirred tank or (2) the differential control volume

with a one-dimensional variation in concentration of the transferring species,

i.e., flow through a conduit.

Once the material balance is set up, substitute the convective mass-transfer

relationship, NA ¼ kcDcA, into the material-balance model, and carefully define

DcA, taking into consideration the concentrations of the transferring species in

the fluid at the boundary surface and in the bulk phase. Finally, specify the

appropriate correlation for kc, keeping in mind restrictions on Re, Sc, geometry,

and the phase of the transferring species.

Step 4: Recognize and specify the process boundary and initial conditions. These are

distinct from the concentration values at the boundary surface for convective

mass transfer, which should be specified in Step 3.

Step 5: Solve the algebraic or differential equation(s) resulting from the material

balance(s) to obtain the concentration profile, flux, or other parameters of

engineering interest. In many cases, kc can be estimated beforehand.

The following examples illustrate how convective mass-transfer relationships are

integrated into process-material balances.

Table 30.2 Packing coefficients for equation (30-33)

Packing a n

2-in. rings 80 0.22

1 1
2-in. rings 90 0.22

1-in. rings 100 0.22
1
2
-in. rings 280 0.35

3
8-in. rings 550 0.46

1 1
2-in. saddles 160 0.28

1-in. saddles 170 0.28
3
8
-in. saddles 150 0.28

3-in. spiral tiles 110 0.28
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EXAMPLE 5 One step in the manufacture of microelectronic devices is microlithography, which traces a

microscopic-circuit pattern on the silicon wafer. In one typical process, a thin polymer film,

typically less than a thickness 2mm, is coated over the surface of the silicon wafer. Amicroscopic

template, called a mask, is placed over the surface, and irradiated. Radiation that passes through

the very tiny holes in the mask hits the photoresist. For a negative photoresist, the radiation

initiates reactions that greatly increase themolecular weight of polymer, rendering the photoresist

insoluble in an organic solvent. The unreacted photoresist is then dissolved away from the silicon

wafer with an organic solvent, and the circuit pattern is revealed by the reacted, insoluble

photoresist.

We are interested in using a ‘‘spinning disk’’ mass-transfer device shown in Figure 30.6 to

study the photoresist-dissolution process within a closed tank of organic solvent. Consider a

limiting case where all of the photoresist on surface of the wafer is soluble in the organic

solvent. The negative photoresist is polystyrene (species A), and the organic solvent is methyl

ethyl ketone (MEK, species B). The initial thickness of the photoresist coating (lo) is 2mm,

the diameter of the wafer (d) is 10 cm, and the volume of the solvent in the tank (V) is

500 cm3. If the dissolution process is controlled by the convective mass-transfer rate at the

polymer-solvent interface, determine the time required to completely dissolve the photoresist

if the disk rotates at 0.5 rev/s (30 rpm). The solubility limit of the developed photoresist in the

solvent (cA) is 0:04 g/cm
3, and diffusivity of the photoresist in the solvent at infinite dilution

(DAB) is 2:93� 10�7 cm2/s at a molecular weight of 7� 105 g/mol, as reported by Tu and

Ouano.26 The viscosity of the solvent (m) is 5� 10�3 g/cm : s, the density of the solvent (r) is

0:805 g/cm3, and the density of the solid polymer ðrA,solidÞ is 1:05 g/cm3. All physical

properties are valid at the process temperature of 298 K. The mass-transfer correlation

for a spinning disk is given by

kcd

DAB
¼ 0:62Re1/2Sc1/3

with

Re ¼ d2v

n
(30-34)

where v is the angular rotation rate (radians/time) of the disk.

The strategy for solving this problem is to develop a material-balance model for the process,

and then incorporate the appropriate mass-transfer correlation(s) into the material-balance

calculations.

cA
NA

cAs = cA

Close-up boundary surface

w = 0.5 rev/s

500 cm3 MEK (liquid)

Si wafer

Boundary layer

Bulk solvent

Photoresist (2 mm)
d = 10 cm

Figure 30.6 Dissolution of photoresist coating on spinning silicon wafer disk into methyl ethyl ketone (MEK) solvent.

26 Y. O. Tu and A. C. Ouano, IBM J. Res. Dev.,21, 131 (1977).
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The physical system represents a closed process where the polymer coating on the surface of the disk

is the source formass transfer, and the surroundingwell-mixed organic solvent of constant volume is

the sink for mass transfer. Under these assumptions, the unsteady-state material balance on the

dissolved photoresist in the solvent phase of the well-mixed tank is

rate of photoresist

added to solvent

� �
þ rate of photoresist

exiting solvent tank

� �
¼ rate of accumulation of

photoresist within solvent

� �
or

NA
p d2

4
� 0 ¼ d(cAV)

dt

where cA represents the concentration of dissolved photoresist in the solvent at time t. The only

input term is convective mass-transfer flux from the surface of the spinning disk (cAs) to the solvent

(cA)

NA ¼ kc(cAs � cA)

At the polymer-solvent interface, the dissolved concentration of the photoresist is at its solubility

limit. Furthermore, as the source is a pure component, cA ¼ cAs remains constant. The material

balance reduces to

kc(cAs � cA)
p d2

4
¼ V

dcA

dt

Separation of the dependent variable cA from the independent variable t, followed by integration

from the initial condition, t ¼ to, cA ¼ cAo, to the final condition where all the photoresist is

dissolved, t ¼ tf , cA ¼ cAf , yields

�
ZcAf
cAo

�dcA

cAs � cA
¼ kcp d2

4V

Zt f
to

dt

and finally

tf � to ¼ 4V

p d2kc
ln

cAs � cAo

cAs � cAf

� �
The final concentration cAf and convective mass-transfer coefficient, kc, must now be determined.

First, cAf is estimated by an overall material balance for the photoresist on the solid wafer and

dissolved in the solution, i.e.,

cAf V � cAoV ¼ mAo � mAf

where mA is the remaining mass of solid photoresist on the wafer, and mAo is the initial mass,

given by

mAo ¼ rA,solid
p d2

4
lo

When all the photoresist is dissolved, mAf ¼ 0. If there is initially no photoresist dissolved in the

solvent, then cAo ¼ 0 and cAf is

cAf ¼ mAo

V
¼ rA,solidp d2lo

4V
¼

1:05
g

cm2

� �
p(cm)2 2:0mm

1 cm

104 mm

� �
4 : (500 cm3)

¼ 3:3� 10�5 g

cm3
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The final concentration is well below the solubility limit of 0:04 g/cm3, and so all of the photoresist

will dissolve. In order to calculate kc, Sc, and Re are needed. For a dilute system, the fluid properties

are essentially the properties of the solvent, and so Sc and Re are

Sc ¼ m

rDAB
¼

5� 10�5 g

cm � s
0:805

g

cm3

� �
2:93� 10�7

cm2

s

� � ¼ 21 199

Re ¼ d2vr

m
¼

(10 cm)2
0:5 rev

s

2p rad

rev

� �
0:805

g

cm3

� �
5� 10�3

g

cm � s
¼ 50,580

Consequently

kcd

DAB
¼ 0:62Re1/2Sc1/3 ¼ 0:62(50 580)1/2(21 199)1/3 ¼ 3859

or

kc ¼
3859 � 2:93� 10�7 cm

2

s

� �
10 cm

¼ 1:13� 10�4cm=s

Finally, the time required to completely dissolve the photoresist is

tf ¼ (4)(500 cm3)

p(10 cm)2 1:13� 10�4
cm

s

� � ln
0:04� 0

0:04� 3:3� 10�5

� �
¼ 46 s

Notice that the concentration difference cAs � cA is relatively constant because cA is very small.

It is left to the reader to show that

WA ¼ kccAs
pd2

4

and

tf ¼ 4mAo

kccAs pd2

for the limiting casewhere cAs >> cA, i.e., the surrounding solvent represents an infinite sink for mass

transfer.

EXAMPLE 6 Consider the remediation trench shown in Figure 30.7, a very simple process to treat contaminated

wastewater before discharge to a lake or river. The remediation trench consists of a narrow outdoor

open channel with an air sparger aligned along the bottom of the trench. Wastewater containing a

volatile contaminant dissolved in the water enters one end of the trench. As the wastewater flows

down the trench, the aeration gas strips out the dissolved volatile solute and transfers it to the

surrounding atmosphere by an interphase mass-transfer process. Consequently, the concentration of

the solute in the wastewater decreases down the length of the trench. Remediation trenches can be

long, and may extend from a holding pond to the discharge point.

We wish to design an aerated remediation trench to treat wastewater contaminated with trichloro-

ethylene (TCE) at a concentration of 50 mg/L (50 g TCE/m3 wastewater). The trench is open

duct of width (W) 1 m and depth (H) 2 m, and the volumetric flow rate of wastewater added to the
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trench is 0:1m3/s. Air is sparged into the bottom of the duct at a rate that provides a gas holdup of

0:02m3 of gas per 1m3 of water, and the average bubble diameter is 1 cm (0.01 m). Determine the

length of the trench necessary to reduce the effluent TCE concentration to 0.05 mg/L. The process

temperature is 293 K and the total system pressure is 1 atm.

Again, the strategy is to develop amaterial-balance model for the process, and then incorporate

the appropriate mass-transfer correlation(s) into the material-balance calculations. The physical

system represents a steady-state, continuous flow process where TCE is transferred from the

wastewater to the aeration gas. As the aeration gas locally mixes the liquid, assume that the

concentration profile is one-dimensional along axial coordinate z. Referring to Figure 30.7, a steady-

state material balance for TCE (species A) in the liquid phase of the trench within the differential

volume element W :H Dz for RA ¼ 0 is

rate of TCE into

volume element

carried by water

0
@

1
A�

rate of TCE exiting

volume element

carried by water

0
@

1
A�

rate of TCE transferred

from water to air by

interphase mass transfer

0
@

1
A ¼ 0

or

W �H(v1cA)jz �W �H(v1cA)jzþDz � NA � Ai

V
W �H Dz ¼ 0

where n1 is the bulk average velocity of the wastewater andW :H is the cross-sectional area of the

trench for fluid flow. Dividing by W :H Dz and taking the limit as Dz goes to zero yields

v1
dcA

dz
þ NA

Ai

V
¼ 0

For interphase mass transfer of TCE from water to the gas bubble, NA must be

NA ¼ KL(cA � cA)

whereKL is the overall interphase mass-transfer coefficient based on the overall liquid phase driving

force and cA is the concentration of TCE in the liquid that is in equilibriumwith the partial pressure of

TCE vapor in the air bubble. This equilibrium relationship is described by Henry’s law

cA ¼ pA

H

whereH is Henry’s law constant for TCE in water, which is equal to 9:97 atm :m3/kgmol at 293 K.

As the rate of TCE transfer will be very small relative to the air flow rate bubbled into the trench, pA
for TCE inside the air bubble is essentially zero, and so cA will be essentially zero. Furthermore, as

the value of H for TCE in water is very high, TCE is only sparingly soluble in water, and so the

z z + �z

W = 1 m

H = 2 mcA

NAAi

v�

Waste water
+ TCE

Atmosphere

Air

Liner
Soil

Figure 30.7 Aerated remediation trench for stripping TCE from

wastewater.
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interphase mass-transfer process will be liquid-phase controlling. Consequently, the liquid-film

mass-transfer coefficient, kL, will suffice for the overall mass-transfer coefficient kL. Therefore, the

flux equation reduces to

NA ¼ kLcA

The material balance is now

v1
dcA

dz
þ kLcA

Ai

V
¼ 0

Separation of dependent variable cA from independent variable z followed by integration from the

entrance of the trench, z ¼ 0, cA ¼ cAo, to the exit of the trench, cA ¼ cAL, z ¼ L yields

�
ZcAL
cAo

dcA

cA
¼ kL

v1
: Ai

V

ZL
o

dz

The final design equation is

L ¼
ln

cAo

cAL

� �
kL

v1
: Ai

V

The bulk average velocity of water through the open channel is

v1 ¼
0:1

m3

s
W :H ¼

0:1
m3

s
1m : 2m ¼ 0:05

m

s

As the bulk velocity is relatively slow, we assume that the natural convection of the rapidly rising

bubbles will dominate the convective mass-transfer process. The term kLAi/V must now be

evaluated. For a nonagitated bubble swarm of average bubble diameter db, the interphase mass-

transfer area per unit liquid volume is

Ai

V
¼ Vg

V
: 6

db
¼ 0:02m3 air

1m3 water

� �
6

0:01m
¼ 12

m2

m3

where Vg/V is the aeration gas volume per unit volume of liquid, commonly called the gas holdup

ratio. This value for Ai/V is much higher than the open surface area per unit volume, which is

0:5m2/m3 of liquid. Equation (30-14a) for mass transfer of gas bubble swarms into a nonagitated

liquid is appropriate

Sh ¼ kLdb

DAB
¼ 0:42Gr1/3 Sc1/2 for db > 2:5mm (30-15)

with

Gr ¼ d3brLgDr

m2
L

¼
(0:01m)3 998:2

kg

m3

� �
9:8

m

s2

� �
(998:2� 1:19)

kg

m3

9:93� 10�4
kg

m : s

� �2
¼ 9:89� 106

and

Sc ¼ mL

rLDAB
¼

9:93� 10�4 kg

m : s
998:2

kg

m3

� �
8:9� 10�10

m2

s

� � ¼ 1118
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where values for rL andmL for water and r for air at 1 atm and 293Kwere obtained fromAppendix I.

Themolecular diffusion coefficient of TCE in water (DAB) at 293 Kwas determined by the Hayduk–

Laudie correlation. Finally

kL ¼ DAB

db
0:42Gr1/3 Sc1/2 ¼

8:9� 10�10 m
2

s
0:01m

0:42(9:89� 106)1/3(1118)1/2

¼ 2:683� 10�4 m

s

The channel length necessary to reduce the dissolved TCE concentration from cAo ¼ 50mg/L

to cAL ¼ 0:05mg/L is

L ¼
ln

cAo

cAL

� �
kL

n1
: Ai

V

¼
ln

50mg/L

0:05mg/L

� �

2:683� 10�4 m

s

� �
12

m2

m3

� �
0:05

m

s

¼ 107:3m

EXAMPLE 7 The dissolution of lead from lead-soldered joints in household piping is a possible health problem. If

thewater flowing through the pipe is mildly acidic, then some of the lead will dissolve from the inner

surface of the lead-soldered pipe section into the water. New drinking water requirements stipulate

that soluble lead (Pb) concentration levels should not exceed 0:015 g/m3. At present, water flows

through a 0.025-m I.D. pipe at a bulk velocity of 0.2m/s. Thewater chemistry results in a soluble lead

concentration of 10 g=m3 at the surface of the soldered pipe section. Determine the soluble lead

concentration in the water after it passes across three lead-soldered joints that are each 0.05 m in

length. The diffusivity of soluble lead inwater is 1� 10�9 m2/s, and the kinematic viscosity of water

is 1� 10�6 m2/s.

It is important to realize that the concentration of soluble lead will be continuously increasing as

water flows past the lead-soldered sections of pipe. A steady-state mass balance for soluble lead

(species A) on a differential volume element of pipe along axial coordinate z is

Input (moles Pb/time) ¼ Output(moles Pb/time)

cAv1
pD2

4

����
z

þ kL(cAs � cA)pDDz ¼ cAv1
pD2

4

����
zþDz

where cA represents the bulk concentration of soluble lead in thewater stream. Upon rearrangement,

we obtain

v1D

4

cAjzþDz � cAjz
Dz

� �
¼ kL(cAs � cA)

At the limit of Dz! 0, the resulting differential equation is

v1D

4

dcA

dz
¼ kL(cAs � cA1)

Separation of variables gives ZcAL
cAo

dcA

cAs � cA
¼ 4kL

Dv1

ZL
0

dz
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As cAs is constant, the integral is

ln
cAs � cAo

cAs � cAL

� �
¼ 4L

D

kL

v1

The mass-transfer coefficient (kL) will be determined by both correlation and by analogy. Both

approaches require the Reynolds and Schmidt numbers. For flow through a pipe, the Reynolds

number is

Re ¼ v1D

n
¼ (0:2m/s)(0:025m)

1� 10�6 m2/s
¼ 5000

The Schmidt number is

Sc ¼ n

DAB
¼ 1� 10�6m2/s

1� 10�9m2/s
¼ 1000

If Re> 2000, for liquids, the Linton–Sherwood correlation is appropriate for estimation of kL

Sh ¼ kLD

DAB
¼ 0:023Re0:83 Sc1/3 ¼ 0:023(5000)0:83(1000)1/3 ¼ 270

or

kL ¼ Sh
DAB

D
¼ 270

1� 10�9 m/s

0:025m
¼ 1:08� 10�5 m

s

The Chilton–Colburn analogy can also be used to obtain kL. From Figure 14.1, the friction factor is

0.0095 for flow through a smooth pipe at Re equal to 5000. From the Chilton–Colburn analogy, we

obtain

kL

v1
¼ Cf

2

1

Sc2/3
¼ 0:0095

2

1

(1000)2/3
¼ 4:75� 10�5

From this result, kL ¼ 9:5� 10�6 m/s at v1 equal to 0.2 m/s, which agrees with the Linton–

Sherwood correlation to within 12%.

As there is no transfer of soluble lead into the flowing water stream between the lead-soldered

pipe sections, the total transfer length (L) for the three 0.05-m sections (L) is 0.15 m. The outlet

concentration of soluble lead, cAL, is

cAL ¼ cAs � (cAs � cAo)exp � 4L

D

kL

v1

� �

¼ 10
g

m3
�(10� 0)

g

m3
exp � 4 : 0:15m

0:025m

1:08� 10�5 m

s

0:2
m

s

0
B@

1
CA

or cAL ¼ 0:013 g/m3, using kL obtained by the Linton–Sherwood correlation. Based on this

calculation, the soluble-lead concentration is just below drinking water standards.

30.8 CLOSURE

In this chapter, we have presented correlating equations for convective mass-transfer co-

efficients obtained from experimental investigations. The correlations have verified the

validity of the analysis of convective transport as presented in Chapter 23. In Chapter 31,

methods have been developed for applying the capacity coefficient correlations to the design

of mass-transfer equipment.
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PROBLEMS

30.1 A very thin polymeric coating of thickness 0.1 mm

uniformly coats a rectangular surface. The rectangular surface

has a length of 20 cm and awidth of 10 cm. the coating contains a

solvent thatmust be evaporated away from the coating in order to

cure the coating. Initially, there is 0.001 mole of solvent per cm3

of coating loaded in the coating. A heated plate just beneath the

surface maintains the coating at a uniform temperature of 408C,
and the vapor pressure exerted by the solvent is 0.05 atm at 408C.
Air gently flows parallel to the surface at a velocity of 5.0 cm/s.

The surrounding air at 1.0 atm total system pressure and 208C
represents an ‘‘infinite sink’’ for mass transfer. You may neglect

any molecular diffusion of the solvent through the very thin

polymeric film and focus only on the convection aspects of the

problem. The diffusion coefficient of species in air at 208C is

0:1 cm2=s.

a. Determine the Reynolds, Schmidt, and Sherwood numbers

associated with this process.

b. What is the film mass-transfer coefficient, ky, (mole fraction

based driving force) associated with this process?

c. How long will it take for the solvent to completely evaporate

from the coating?

30.2 A 1-m square thin plate of solid naphthalene is oriented

parallel to a stream of air flowing at 20 m/s. The air is at 310 K

and 1:013� 105 Pa. The naphthalene remains at 290 K; at this

temperature, the diffusivity of naphthalene in air is 5:61�
10�6 m2/s and its vapor pressure is 26 Pa. Determine

a. the value of the mass-transfer coefficient at a point 0.3 m

downstream from the leading edge.

b. the moles of naphthalene per hour lost from the section of

the plate 0.5–0.75 m downstream from the leading edge.

30.3 Ethanol, C2H5OH, flows in a thin film down the outside

surface of an inclined plane, 2 m wide and 4 m long. The liquid

temperature is 289 K. Ethanol-free air at 303 K and 1 atm flows

across thewidth of the plate parallel to the surface.At the average

temperature of the gas film, the diffusivity of ethanol vapor in air

is 1:32� 10�5 m2/s, The vapor pressure of ethanol is 6:45�
10�2 atm at 289 K. If the air velocity is 3 m/s, determine the rate

at which the ethanol should be supplied to the top of the plate so

that evaporation will prevent it from reaching the very bottom of

the plate.

30.4 (Please refer to Problem 27.1) Gasoline from an under-

storage storage tank leaked down onto an impermeable clay

barrier and collected into a liquid pool 2 cm deep. Directly over

this underground pool of liquid gasoline (n-octane) is a layer of

gravel 1 m thickness (L) and width (W) of 10 m. The volatile n-

octane vapors diffuse through the highly porous gravel layer of

void fraction 0.4, through a gas film formed by flow of air over

the flat surface, and then out to the bulk atmosphere where the n-

octane is instantaneously diluted to below detectable levels. A

simplified picture of the situation was provided in Problem 27.1.

There is no adsorption of n-octane vapor onto the porous gravel

layer, and n-octane vapor concentration inside the porous gravel

layer is dilute. Assume that the mass-transfer process is allowed

to achieve a steady state. The temperature is constant at 158C. At
this temperature, liquid n-octane exerts a vapor pressure of 1039

Pa. The void spaces between the rocks are large enough so that

themolecular-diffusion coefficient can be used for the gas phase.

The system is at atmospheric pressure.

a. What is the average mole fraction of n-octane vapor at the

surface (z ¼ L) of the rock layer if the air velocity is only 2

cm/s? What is the flux of n-octane vapor across both the

porous gravel layer and the concentration boundary layer at

the surface?

b. What would be the average mole fraction of n-octane vapor

at the surface of the rock layer if the air velocity is 50 cm/s?

What would the new flux be?

c. The Biot number associated with a mass-transfer process

involving diffusion and convection in series is defined as

BiAB ¼ kcL

DAB

where L refers to the path length for molecular diffusion within

the porous gravel layer andDAB refers to the diffusion coefficient

of species A within medium B for molecular diffusion. Deter-

mine the Biot number for parts (a) and (b) and then assess the

relative importance of convective mass transfer in determining

the n-octane vapor emissions rate.

30.5 (Please refer to example 1, this chapter) In the presence

process, arsine and trimethylgallium vapors are diluted in

hydrogen gas and fed to the horizontal CVD reactor shown

in Figure 30.2. The composition of arsine and trimethylgallium

in the feed gas are both 0.1 mol %, which is very dilute. Youmay

assume that the amount of arsine and trimethylgallium delivered

with the feed gas is much higher than the amount of arsine and

trimethylgallium consumed by the reaction, so that the concen-

tration of these reactants in the bulk gas phase is essentially

constant down the length of the reactor. You may also assume

that the surface-reaction rates are instantaneous relative to the

rates of mass transfer, so that the gas-phase concentrations of

both arsinevapor and trimethylgalliumvapor at the surface of the

wafer are equal to zero.

a. What are the local molar fluxes of arsine and trimethylgal-

lium along the surface of the 10-cm Si wafer at x ¼ 4 cm

(left edge), x ¼ 9 cm (center), and x ¼ 14 cm (right edge),

assuming that the surface reactions are controlled by the rate

of convective mass transfer? From this result, what is the

composition of theGaAs composite thin film; e.g., the molar

composition of gallium (Ga) and arsenic (As) in the solid?

b. How could the feed-gas composition be adjusted so that the

molar ratio of Ga to As within the solid thin film is 1:1?
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c. Based on your results in part (a), calculate the thickness of

the GaAs thin film (in units of mm) after 2 min at each

position x, assuming that the density of the GaAs composite

thin film is 5:8 g/cm3.

30.6 Spherical pellets of 1.0 cm diameter are spray painted

with a very thin coat of paint. The paint contains a volatile

solvent. The vapor pressure of the solvent at 298 K is 1:17�
104 Pa, and the diffusivity of the solvent vapor in air at 296 K is

0.0962 cm2/s. The amount of solvent in the wet paint on the

pellet is 0.12 g solvent per cm2 of pellet surface area. The

molecular weight of the solvent is 78 kg/kg mol.

a. Determine the minimum time to dry the painted pellet if still

air at 298 K and 1.0 atm surrounds the pellet.

b. Determine the minimum time to dry the painted pellet if air

at 298 K and 1.0 atm pressure flows around the pellet at a

bulk velocity of 1.0 m/s.

30.7 Investigators studying the mass transfer from single

spheres recommended the generalized equation

Sh ¼ 2:0þ CRemSc1/3

As discussed in section 30.1, the value of 2 can be derived

theoretically by considering the molecular diffusion from a

sphere into a large volume of stagnant fluid. Prove this is the

correct value and state what assumptions must be made to

obtain it.

30.8 A spherical pellet containing pure solid A is suspended in

a flowing liquid stream at 208C. The initial diameter of the pellet

is 1.0 cm, and the bulk liquid velocity is 5 cm/s. Component A is

soluble in the liquid, and as time progresses, the diameter of the

pellet decreases. The flowing liquid effectively serves as an

‘‘infinite sink’’ for the solute, so that the dissolved solute

concentration in the bulk liquid is essentially zero. This process

represents a ‘‘pseudo steady state’’ convective mass transfer

system. All relevant physical properties of the system are

provided below

rA, the density of solid A, ¼ 2:0 g/cm3;

MA, the molecular weight of solute A;¼ 110 g/gmol;

cA, the equilibrium solubility of solute A, at liquid-solid

interface, ¼ 7� 10�4 gmole/cm3;

n, the kinematic viscosity of the bulk fluid at 20�C ¼
9:95� 10�3 cm2/s;

DAB, the diffusion coefficient of solute A in the liquid at

20�C ¼ 1:2� 10�5 cm2/s.

a. Estimate the film transfer coefficient at the initial pellet 1.0

cm diameter.

b. Estimate the rate of pellet shrinkage, dR/dt, in cm/h, when

the pellet diameter is 1.0 cm.

c. If the pellet diameter decreases from 1.0 to 0.5 cm, the total

mass transfer rate, WA, will change by what factor?

30.9 Determine the mass transfer coefficient, kc, for the trans-

fer from a glucose sphere, 0.3 cm in diameter, which is sub-

merged in a 258C aqueous stream flowing at a bulk velocity of

0.15m/s. Themass diffusivity of glucose in water at 258C equals

6:9� 10�10 m2/s.

a. Estimate the mass transfer coefficient, kL.

b. Determine whether increasing the diameter of the glucose

sphere or increasing the velocity of the water stream effects

the magnitude of the mass transfer coefficient, kc. Which of

these variables has the larger effect on the coefficient?

30.10 Silicon tetrachloride, SiCl4, is an important chemical used

in the manufacture of microelectronic devices. A common impur-

ity in silicon tetrachloride is trichlorosilane, SiHCl3. High purity

SiCl4 is manufactured by bubbling chlorine Cl2, gas into unpur-

ified liquid SiCl4. In the presence of ultraviolet light, the dissolved

Cl2 reacts with residual trichlorosilane in the unpurified liquid to

form silicon tetrachloride according to the homogeneous reaction;

SiHCl3 þ Cl2 !SiCl4 þ HCl

Estimate the liquid-filmmass-transfer coefficient for the transfer of

Cl2 (species A) into liquid SiCl4, assuming pure Cl2 gas at 298 K

and 1.0 atm is bubbled into the liquid SiCl4 with a mean bubble

diameter of 2 mm. At 298 K, the density of liquid SiCl4 is

1:47 g/cm3, the viscosity of liquid SiCl4 is 0.52 cp, and the liquid

diffusivity of Cl2 in SiCl4 is 5:6� 10�5 cm2/s. The dissolution of

Cl2 gas in SiCl4 liquid is defined by pA ¼ H xA where H is 6.76

atm at 298 K.

What is the flux of Cl2, assuming that the Cl2 is instanta-

neously consumed once it reaches the bulk liquid phase? Youmay

assume that the total molar concentration of the mixture approx-

imates the molar concentration of pure liquid SiCl4.

30.11 An open trench containing 200m3 of wastewater is

contaminated with a small concentration of trichloroethylene,

TCE, a common industrial solvent. The trench is 2.0 m deep and

1.0 m in width. The figure below illustrates the open trench.

W = 1 m

H = 2 m

Atmosphere
Air

waste water

Liner

Soil

+ TCE

There is no inflow or out of flow of water to or from the

trench. Air is sparged into the bottom of the trench to strip out the

dissolved TCE. The inlet air flow rate is 0:15m3 per 1:0m3 of

water per minute. At this air flow rate, the gas holdup is

calculated to be 0.015 m3 air per 1:0m3 aerated water. The

air sparger provides an average bubble diameter of 5.0 mm.

The temperatures of the air and water are 293 K, with a

liquid viscosity, mL ¼ 9:93� 10�4 kg/m � s and a liquid den-

sity, rL ¼ 998:2 kg/m3 and a gas density. rG ¼ 1:19 kg/m3.
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TCE is only sparingly soluble in water, and the Henry’s law

constant for TCE in liquid water is 9:97 atm/ðkgmol/m3Þ. The
molecular weight for TCE is 131.4 g/g mol. Assume that the air

stream serves as an infinite sink for TCE transfer, so that the

partial pressure of TCE in the gas bubble is essentially zero.

Furthermore, assume that the interphase mass transfer process is

liquid film controlling. The mass diffusivity of TCE in water at

293 K is DAB ¼ 8:9� 10�10 m2/s.

a. Develop a well-mixed, unsteady state material balance

model for dissolved TCE in the liquid phase of the trench.

b. Determine the required time to reduce the dissolved TCE

concentration from 50 to 0:005 gTCE/m3.

30.12 Consider now the open trench illustrated below where

wastewater containing a volatile contaminate dissolved in thewater

enters one end of the trench. As the wastewater flows down the

NA Ai

Atmosphere

Waste water

Air
Liner

Soil
W = 1 m

H = 2 m

z + D z

+ TCE
v•

cA

trench, the aeration gas strips out the dissolved volatile solute, TCE,

and transfers it to the surrounding atmosphere by an interphase

mass-transferprocess.Consequently, theconcentrationof the solute

in thewastewater changes down the length of the trench. Remedia-

tion trenches can be long, and may extend from a holding pond to

the discharge point.

a. Develop a material balance model for the dissolved TCE

profile in the liquid phase of the trench.

b. Determine the length required to reduce the dissolved TCE

concentration from 50 to 0:005 gTCE/m3 if the volumetric

flow rate of liquid into the trench is 0:1m3/s.

30.13 A stent is used to ‘‘prop up’’ a clogged artery to allow

blood to pass through it. But stents can also be loaded with drugs

to facilitate the timed release of the drug into the body, especially

if the drug is not very soluble in body fluids. Consider the very

simple stent design as illustrated below. The pole of the stent,

which is 0.2 cm in diameter and 1.0 cm in length, is coated with

the anticancer drugTaxol. The thickness of the coating is 0.01 cm

and 5.0 mg total Taxol is loaded. Blood flows through the 1.0 cm

diameter cylindrical blood vessel at a volumetric flow rate of

10:0 cm3/s. Taxol is not very soluble in aqueous environments;

themaximum solubility of Taxol in blood is 2:5� 10�4 mg/cm3.

The viscosity of blood is 0:040 g/cm � s and its density is

1:05 g/cm3. Blood is a complex fluid but you may assume

that its average molecular weight is close to that of liquid water.

The molecular diffusion coefficient of Taxol in fluid blood is

DAB ¼ 1:0� 10�6 cm2/s.

Vo = 10 cm3/s

“ Blood ” fluid

Support ring

Drug (taxol)
Loaded on Surface

of Stent

D = 0.2 cm

1.0 cm

1.0 cm

Stent

Blood vessel

Stent detail

a. What is the convective mass transfer coefficient, kc around

the outer surface of the cylindrical portion of the stent, for

the solute Taxol?

b. What is the minimum time it will take for all the Taxol to be

completely discharged from the stent?

30.14 The air freshener shown in the figure below is used to

deliver a pleasant vanilla fragrance in a room. The device

consists of a rod 1 cm in diameter and 5 cm in length. The

rod is composed of a solidmixture containing a volatile aromatic

substance that smells likevanilla. A heating element in the center

of the rod, 0.5 cm in diameter, maintains a constant surface

temperature of 408C to evaporate the aromatic substance. Air at

258C flows perpendicular to the rod at a velocity of 0.2 m/s, and

the aroma vapors are immediately diluted to a very low con-

centration. The density of the gel is 1:1 g/cm3, and the initial

loading of the aromatic compound in the solid is 40 mol%. The

diffusion coefficient of the volatile substance generating the

aroma, which approximates the properties of benzaldehyde, is

0:08 cm2/s in air at 408C. The vapor pressure of this substance is

Wall
socket

Air flow (25°C)
0.2 m/s

Heated rod (40°C)

1 cm

Solid fragrance

5 cm

Air duct
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428 Pa at 408C, and its molecular weight is 106 g/gmol. Assume

that the release of the aromatic compound is controlled by the

convective transport across the gas film surrounding the rod, and

that the diameter of the rod remains constant. Neglect internal

diffusion of the aroma substance within the rod itself.

a. What is the initial rate of aroma delivery to the surrounding

in grams/hour?

b. How long can the air freshener provide fragrance?

30.15 An entrance section of process piping is fouled with

calcium carbonate scale. Specifically, the inner surface of the

pipe is coated with 0.1 cm film of solid calcium carbonate

(species A) that is sparingly soluble in water. The length of

the pipe containing the calcium carbonate is 1 m, and the inner

diameter of the pipe is 2 cm. In an attempt to dissolve the scale

from the pipe surface, ‘‘clean’’ water containing no soluble

calcium carbonate flows through the pipe at a volumetric flow

rate of 314 cm3/s and a temperature of 293K.Determine the time

in hours that it will take for the calcium carbonate coating to

completely dissolve from the inner surface of the tube, assuming

that bulk concentration of solute A in the liquid stream is

essentially zero throughout the 1 m length of the scaled section.

The following potentially useful data are available:

MA, themolecular weight of soluteA ¼ 100 kg/kgmol:
rA, the density of solidA¼ 2:7� 103 kg/m3:
DAB, the diffusivity of soluteA inwater ¼ 1:2� 10�9 m2/s:
cA, the solubility of soluteA in water ¼ 0:14mol/m3:

30.16 The ‘‘bubbleless’’ shell-and-tube membrane aeration sys-

tem shown below is used to transfer oxygen gas to liquid water.

Water completely free of dissolvedoxygen is added to the tube side

at the entrance. Pure oxygen gas, maintained at a constant pressure

of 1.0 atm, flows through the annular space. The inner diameter of

the tube is 1.0 cm.The tubewall ismade of silicone, a polymer that

is highly permeable to O2 gas but not to water vapor. The O2

transfer properties associatedwith the thin tubewall are neglected,

so that the concentration of dissolved O2 in the water at the inner

surface of the wall is established by the O2 partial pressure on the

inside of the tube. The tube length is 500 cm, and the bulk velocity

of liquid through the tube is 50 cm/s. The process is maintained at

258C,where theHenry’s lawconstant forO2 gasdissolved inwater

is 0.78 atm (mol/m3) and the diffusion coefficient for dissolvedO2

in water is 2:1� 10�5 cm2/s, and the kinematic viscosity of water

is 9:12� 10�3 cm2/s.

Oxygenated water

z = L

z = 0

O2(g)

water

100 % O2gas, 1.0 atm 

D = 1.0 cmcAK,o = 0
v∝  = 50 cm/sec

NA

a. What are the Sherwood and Schmidt numbers inside the

tube?

b. What is the predicted exit concentration of dissolved oxy-

gen? It will be wise to develop a material balance model on

O2 for the shell-and-tube mass exchanger.

c. What would be the required length of tubing to achieve 60%

of dissolved O2 saturation?

30.17 The experiment shown below is used to estimate mass

transfer coefficients. In the present experiment, two portions of

the inside of the tube are coated with naphthalene, a volatile

solid. The tube is maintained at 1008C and 1.0 atm total system

pressure. At 1008C, the sublimation vapor pressure of solid

naphthalene is 1.0 mmHg. The inner diameter of the tube is

2.0 cm. The total length of the tube is 100 cm, and each section of

the tube bearing the naphthalene is 2.0 cm.Air enters the tube at a

Air + naphthalene vapor

20 cm

20 cm

100 cm

Solid
naphthalene

d = 2 cm

Air flow
4.5 g/min

mass flow rate of 4.5 g/min. The measured outlet mole fraction

of naphthalene vapor in the exit of the tube is 0.0066, as

determined by gas chromatography. The diffusion coefficient

of naphthalene in air is 0:086 cm2/sat 1008C and 1.0 atm total

systempressure.At this temperature and pressure, the kinematic

viscosity of air is 0:25 cm2/s and the density of air is

9:5� 10�4 g/cm3.

a. Develop a material balance model to predict the mole

fraction of naphthalene vapor exiting the tube.

b. Based on your model and the data given in the problem

statement, estimate kc.

c. Now, evaluate the mass-transfer coefficient using the appro-

priate established correlation and compare your results to

part (b)

30.18 Fatty deposits in blood vessels pose a health risk.

Chemical agents added to the blood can increase the solubility

of the fatty deposits in blood, thereby providing a means to

dissolve the fatty deposits in situ. To explore the mass-transfer

characteristics of this phenomenon, a biological engineer set up

the experiment shown in the figure. The inner walls of a smooth,

0.8 cm inner diameter tube are uniformly coatedwith a thin layer,

0.01 cm, of lipophilic material called fatty compound A (FA for
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short). The length of the tubing containing the FA layer is 50 cm.

A synthetic solution is pumped through the tube at a volumetric

flow rate of 35:0 cm3/s. The maximum solubility of FA in this

synthetic solution is 20mgFA/cm3 solution.At the conditions of

the experiment, the kinematic viscosity of the synthetic solution

is 0:02 cm3/s and the density of the synthetic solution is

1:04 g/cm3. The density of the solid FA is 1:10 g/cm3.

CAL = 0.1 mg FA/cm3

0.01 cm thick coating
of solid FA

50 cm

0.8 cm

70 cm

35 cm3/s
solution
(no FA)

a. Develop a material balance to predict the concentration of

FA in the solution exiting the tube.

b. Experiments were conducted with the test unit shown above,

with a measured dissolved concentration of FA in the

synthetic solution exiting the tube of 0.1 mg FA/cm3. This

concentration was constant over time. From this data, using

your model, back out the molecular diffusion coefficient of

FA in the solution.

30.19 Consider the device shown below that will be used to

humidity an air stream. In the current process, air containing 1.0

mol%water vapor (speciesA) at 408Cand 1.0 atm enters the tube

of 3.0 cm inner diameter at a velocity of 300 cm/s. A water-

adsorbent material saturated with liquid water lines the inner

surface of the tube. Water evaporates from this liner material as

air passes over it. There is no diffusion resistance of water vapor

Water adsorbent liner
(1.0 mm thick, 0.6 g H2O/cm3 liner initially)

D = 3.0 cm (tube) 1.0 atm, 40°C

L = 8.0 m

Gas stream
v∞=300 cm/sec
CA,1

CA,2

through the liner material itself. The process is maintained at

408C. The saturation vapor pressure of water is 55.4 mmHg

at 408C, At this temperature and 1.0 atm, the viscosity of

air is 1:91� 10�4 g/cm � s and the density of air is 1:13�
10�3 g/cm3.

a. What is the Schmidt number for this process?

b. Develop a model, in final integrated form, to predict the

concentration of water vapor exiting the tube.

c. The thickness of the adsorbent material lining the inner

surface of the tube is 1.0 mm and it initially contains 0.6 g of

water per cm3. If the tube is 8.0 m long and the humidifica-

tion occurs at 408C and 1.0 atm system pressure, determine

how long this process can operate before the liquid water is

depleted. You will need to determine the outlet concentra-

tion of water vapor and then perform an overall material

balance to estimate the net overall rate of water vapor

transferred.

30.20 Fatty deposits in blood vessels pose a health risk.

Chemical agents added to the blood can increase the solubility

of the fatty deposits in blood, thereby providing a means to

dissolve the fatty deposits in situ. To explore the mass-transfer

characteristics of this phenomenon, a biological engineer set up

the experiment shownbelow. The innerwalls of a smooth, 0.8 cm

inner diameter tube are uniformly coated with a thin layer, 0.01

cm, of lipophilic material called fatty compound A (FA for

short). A synthetic solution (B) is pumped through the tube at a

3.0 cm3/s
solution
(no A,
CAL,o = 0)

D = 0.8 cm

L

CAL = 0.01 mg A/cm3

0.01 cm thick coating
of solid A

volumetric flow rate of 3:0 cm3/s. Themaximum solubility of FA

in this synthetic solution is 20 mg FA/cm3 solution ðcAÞ. At the
conditions of the experiment, the kinematic viscosity of the

synthetic solution is 0:02 cm2/s, the density of the synthetic

solution is 1:04 g/cm3 and the diffusion coefficient is

4:0� 10�5 cm2/s. The density of the solid FA is 1:10 g/cm3.

As the solution flows down the length of the tube, the concen-

tration of FA changes with axial position, z, according to the

material balance model:

ln
cA � cAL,o

cA � cAL,z

� �
¼ 4kLz

v1D

How long should the tubing be if the desired outlet concentration

of FA is 0:010mg/cm3?

30.21 Thewetted-well column shown in Figure 30.4 is used to

humidify a pressurized air stream. Bone-dry air (containing no

water vapor) at 2.0 atm and 278C is introduced to the bottom of

the column at a volumetric flow rate of 4000 cm3/s. Liquid water

is added to the top of the column. The liquid water uniformly

coats the inner surface of the tube as a thin liquid film flowing

downward. The falling liquid filmofwater evaporates into the air

flowing upward. The wetted-wall column has an inner diameter

of 5.0 cm and a length of 6.0 m. The column temperature is

maintained at 278C, and the total system pressure is maintained

at 2.0 atm. At 278C, the kinematic viscosity of air is 0:157 cm2/s

and the vapor pressure of liquid water is 0.035 atm. The gas is

ideal with R ¼ 82:06 cm3: atm/gmol :K.
a. What is the diffusion coefficient of water vapor in air at 2.0

atm and 278C?

b. Determine the Sherwood number for the gas phase.

c. Evaluate the gas film coefficient, kcG, based on the partial

pressure driving force.

d. What is the maximum possible concentration of water vapor

in the air?

e. Evaluate the concentration of water vapor in the air stream

exiting the wetted-wall column. You will need to do a
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material balance on water vapor within a differential volume

element of the column.

30.22 A process is being developed to produce carbonated

beverages. As part of this process, a wetted-wall absorption

column of 2.0 m length will be used to dissolve carbon dioxide,

CO2, gas into water. Pure mountain spring water, containing no

dissolved CO2 enters the top of the column at a flow rate of 2.0 g

mol/s. Pure 100%CO2 gas at 2.54 atm is fed to the bottom of the

column at a flow rate of 0.5 g mol/s. As the liquid flows down the

wetted-wall column, CO2 gas dissolves into the water. The

carbonated water exits the bottom of the column, and the unused

CO2 gas leaves the top of the column. The inner columndiameter

is 6.0 cm. The temperature is maintained at 208C. At this

temperature, the Henry’s law constant for the dissolution of

CO2 gas in water is 25:4 atm/ðkgmol/m3Þ. At 20�C, the molar

density of liquid water is 55:5 kgmol/m3, the mass density of

liquid water is 998:2 kg=m3, and the viscosity of liquid water is

993� 10�6 kg/m � s.
Water has a finite vapor pressure at 208C. However, for this

problem you may assume that the water solvent is essentially

nonvolatile, so that 100% CO2 gas composition is always

maintained down the length of the column.

a. What is the maximum possible concentration of dissolved

CO2 in water at 2.54 atm CO2 partial pressure?

b. What is the liquid-phase mass-transfer coefficient for this

process?

c. What is the exit concentration of dissolved CO2 in the

carbonated water if the wetted-wall column is 2.0 m in

length?

30.23 Tetraethoxysilane, also called TEOS or SiðOC2H5Þ4, is
a liquid chemical used in the semiconductor industry to produce

thin films of silicon dioxide by chemical vapor deposition

(CVD). In order to deliver the TEOS vapor to the CVD reactor,

liquid TEOS is fed to a wetted-wall column. The TEOS liquid

uniformly coats the inner surface of the tube as a thin liquid film

as it flows downward. The falling liquid film of TEOS evaporates

into an inert helium carrier gas flowing upwards at a volumetric

flow rate of 2000 cm3/s. The wetted-wall column has an inner

diameter of 5 cm and a length of 2m. The column temperature is

maintained at 333 K, and the total system pressure is 1 atm. At

333 K, the kinematic viscosity of helium gas is 1:47 cm2/s, the

diffusion coefficient of TEOS vapor in helium gas is

1:315 cm2/s, and the vapor pressure of liquid TEOS is 2,133 Pa.

a. What is the gas mass-transfer coefficient, kG?

b. What is the mole fraction of TEOS vapor exiting the

column?

c. What is the required mass flow rate of liquid TEOS flowing

into the column if all of the liquid TEOS evaporates by the

time it reaches the bottom of the column?

30.24 A wetted-wall column, as illustrated in Figure 30.4, is

used as a mass-transfer device for transferring ethyl acetate

liquid to an air stream by a mass-transfer limited evaporation

process. At the current conditions of operation, the inlet air

stream bulk velocity is 0.2 m/s, the temperatures of the gas and

the liquid are maintained at 278C, the total system pressure is 1.0

atm, the column diameter is 0.05 m, the column length is 10 m,

and the vapor pressure of ethyl acetate is 0.080 atm.

a. Determine the mass-transfer coefficient for the process at

the current conditions of operation. Youmay assume that the

gas phase represents a dilute system.

b. As the gas moves up the tube, it picks up ethyl acetate vapor.

Develop a mathematical expression to predict the ethyl

acetate vapor concentration in the gas stream exiting the

top of the tube. Then, calculate the ethyl acetate concentra-

tion in the gas stream exiting the tube. At the specified

conditions of operation, what is the overall evaporation rate

of ethyl acetate vapor in g mol/h if the inlet air stream

contains no ethyl acetate vapor?

30.25 Ozone, O3, dissolved in water is used inmanywastewater

treatment applications. Pure 100%ozonegasat 1.0atmand208C is

continuouslybubbled into a tankof liquidwater.The risingbubbles

keeps the liquidwellmixed. There is no inflowor outflow ofwater.

Initially, there is no dissolved O3 in thewater, but as time goes on,

the dissolved O3 concentration increases. The total volume of

liquid in the tank is 2:0m3. The Henry’s law constant, H, for O3–

water system is 6:67� 10�2 atm/ ðgmol/m3Þ.
It is desired to achieve a dissolved O3 concentration of

4:0 gmol/m3 within 10.0 min. What is the required capacity

coefficient, kLa for O3 needed to meet this constraint?

30.26 Wilke and Hougan27 studied the mass-transfer charac-

teristics of packed beds containing granular solids. In their

experimental investigations, hot air was blown through a packed

bed of porous celite pellets saturatedwith liquidwater. Thewater

evaporated under adiabatic conditions, and the rate of water

transfer was determined by material balance using humidity

measurements. From this data, they calculated the gas-film

mass-transfer coefficient at a given flow rate. In one run, the

following data were reported:

Gas film coefficient, kG 4:42�10�3 kgmol/m2: s: atm
Effective particle diameter 0:571 cm
Packed bed void fraction 0:75
Gas streammass velocity 0:816 kg/m2: s
Temperature at particle surface 311K

Total system pressure 9:77� 104 Pa

Estimate the gas-film mass-transfer coefficient by two appro-

priate correlations, one that includes the packed bed void frac-

tion, and a simpler correlation that does not account for the void

fraction. Compare these estimates to the measured gas-film

coefficient above.

30.27 Often aerobatic fermentations give off CO2 gas because

the respiring cells produce CO2 as glucose nutrient is converted

27 C.R. Wilke and O.A. Hougan. Trans., A.I.Ch.E., 41, 445 (1945).
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to chemical energy. The conditions used to set kLa forO2 transfer

in the fermenter also establish the same hydrodynamic condi-

tions for CO2 transfer. Consequently, the transfer rate of CO2

from the liquid to the aeration gas is also described by this

volumetric mass-transfer coefficient, kLa. Consider that the kLa

for O2 in the fermenter is 300 h�1. Scale the kLa for O2 to kLa for

CO2 transfer using film theory, boundary layer theory, and

penetration theory.

30.28 A process is being developed to produce carbonated

beverages. As part of this process, a packed-bed absorption

tower will be used to dissolve carbon dioxide, CO2, gas into

water. Pure mountain spring water, containing no dissolved CO2

enters the top of the column at a flow rate of 5 kg mol/min. Pure

CO2 gas at 2 atm is also fed to the top of the tower at a flow rate of

1 kg mol/min. As the liquid flows down the tower, CO2 gas

absorbs into the water, and the dissolved CO2 concentration

increases down the length of the bed. The carbonated water and

the unused CO2 gas exit the bottom of the tower. The absorption

process is liquid-film controlling because only pure CO2 is

present in the gas phase. The tower is packed with 1 in. ceramic

rings and the inner tower diameter is 0.25 m. The temperature is

maintained at 208C. At this temperature, the Henry’s law

constant for the dissolution of CO2 gas in water is 25:4 atm/

ðkgmol/m3Þ. At 208C, the molar density of liquid water is

55:5 kgmol/m3, the mass density of liquid water is 998:2
kg/m3, and the viscosity of liquid water is 993� 10�6 kg/m : s.
a. What is the liquid phase mass transfer coefficient, kLa, for

CO2 in water flowing through the packed bed?

b. Estimate the depth of packing if the desired concentration of

dissolved CO2 in the outlet liquid is 95% of the saturation

value for dissolved CO2 in water under CO2 partial pressure

of 2 atm and 208C.

30.29 The ‘‘soil venting’’ shown in the figure below is used to

treat soil contaminated with volatile, toxic liquids. In the present

situation, the porous soil particles are saturated with liquid TCE,

a common industrial solvent. The contaminated soil is dug up at

the waste site and loaded into a rectangular trough. The soil

consists of coarse, porous mineral particles with an average

diameter of 3 mm, loosely compacted into a packed bed with a

void fraction 0.5. Air is introduced at the bottom of the trough

through a distributor and flows upward around the soil particles.

Liquid TCE satiating the pores of the soil particle evaporate into

the air stream. Consequently, the TCE concentration in the air

stream increases from the bottom to the top of the trough.

Usually, the rate of TCE evaporation is slow enough so that

the liquid TCE within the soil particle is a constant source for

mass transfer, at least until 80% of the volatile TCE soaked

within the soil is removed.Under these conditions, the transfer of

TCE from the soil particle to the air stream is limited by

convective mass transfer across the gas film surrounding the

soil particles. The mass flow rate of air per unit cross section of

the emptybed is 0:1 kg=m3: s. Theprocess is carried out at 293K.
At this temperature, the vapor pressure of TCE is 58 mmHg. The

molecular diffusion coefficient of TCE vapor in air is given in

example 4 of this chapter.

Air + TCE vapors
diluited to atmosphere

Raised trough
for soil venting

z = L

z = 0

(0.1 kg air/m2 ⋅ s)
Air flow distributor

Air
blower

TCE
contaiminated

packed soil bed

a. What is the gas-filmmass-transfer coefficient for TCE vapor

in air?

b. At what position in the bed will the TCE vapor in the air

stream reach 90% of its saturated vapor pressure? In your

solution, you may want to consider a material balance on

TCE in the gas phasewithin a differential volume element of

the bed. Assume the convective mass-transfer resistances

associated with air flowing over the top surface of the bed

are negligible and that there is no pressure drop of the gas

stream through the bed so that the total system pressure

remains constant at 1 atm.
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Chapter 31

Mass-Transfer Equipment

In earlier chapters, the theory currently used to explain the mechanism of convective

mass transfer between phases was introduced, and correlations for the interphase

convective mass-transfer coefficients were listed. In this chapter, we will develop

methods for applying the transport equations to the design of commercial mass-transfer

equipment. It is important to realize that design procedures are not restricted to the

design of new equipment, for they may also be applied in analyzing existing equipment

for possible improvement in performance.

The presentation or development of mass transfer from the defining equations to

the final design equations, which is presented in this chapter, is completely analogous

to our earlier treatment of energy transfer. Convective mass-transfer coefficients are

defined in Chapter 28. These definitions and the methods of analysis are similar to

those presented in Chapter 19 for convective heat-transfer coefficients. An overall

driving force and an overall transfer coefficient expressed in terms of the individual

coefficients were developed to explain the transfer mechanisms of both mass- and

energy-transport processes. By integrating the appropriate energy-transfer relation in

Chapter 23, we were able to evaluate the area of a heat exchanger. Accordingly, we

should expect to find similar mass-transfer relations that can be integrated to yield the

total transfer contact area within a mass exchanger.

31.1 TYPES OF MASS-TRANSFER EQUIPMENT

A substantial number of industrial operations in which the compositions of solutions and/

or mixtures are changed involve interphase mass transfer. Typical examples of such

operations could include (1) the transfer of a solute from the gas phase into a liquid phase,

as encountered in absorption, dehumidification, and distillation; (2) the transfer of a solute

from the liquid phase into a gas phase, as encountered in desorption or stripping and

humidification; (3) the transfer of a solute from one liquid phase into a second immiscible

liquid phase (such as the transfer from an aqueous phase to a hydrocarbon phase), as

encountered in liquid–liquid extraction; (4) the transfer of a solute from a solid into a fluid

phase as encountered in drying and leaching; and (5) the transfer of a solute from a fluid onto

the surface of a solid as encountered in adsorption and ion exchange.

Mass-transfer operations are commonly encountered in towers or tanks that are design-

ed to provide intimate contact of the two phases. This equipment may be classified into one

of the four general types according to the method used to produce the interphase contact.

Many varieties and combinations of these types exist or are possible; we will restrict our

discussion to the major classifications.

Bubble towers consist of large open chambers throughwhich the liquid phase flows and

intowhich the gas is dispersed into the liquid phase in the form of fine bubbles. The small gas
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bubbles provide the desired contact area. Mass transfer takes place both during the bubble

formation and as the bubbles rise up through the liquid. The rising bubbles create mixing

action within the liquid phase, thus reducing the liquid-phase resistance to mass transfer.

Bubble towers are used with systems in which the liquid phase normally controls the rate of

mass transfer; for example, it is used for the absorption of relatively insoluble gases, as in the

air oxidation of water. Figure 31.1 illustrates the contact time and the direction of phase flow

in a bubble tower. As onewould expect, the contact time, as well as the contact area, plays an

important role in determining the amount of mass transferred between the two phases. The

basic mass-transfer mechanism involved in bubble towers is also encountered in batch

bubble tanks or pondswhere the gas is dispersed at the bottom of the tanks. Such equipment

is commonly encountered in biological oxidation and in wastewater-treatment operations.

Exactly opposite in principle to the bubble tower is the spray tower. In the spray tower,

the gas phase flows up through a large open chamber and the liquid phase is introduced by

spray nozzles or other atomizing devices. The liquid, introduced as fine droplets, falls

countercurrent to the rising gas stream. The spray nozzle is designed to subdivide the liquid

into a large number of small drops; for a given liquid flow rate, smaller drops provide a

greater interphase contact area across which mass is transferred. However, as also

encountered in bubble towers, care in design must be exercised to avoid producing drops

so fine that they become entrained in the exiting, countercurrent stream. Figure 31.2

illustrates the contact time and the direction of phase flow in the spray tower. Resistance to

transfer within the gas phase is reduced by the swirlingmotion of the falling liquid droplets.

Gas in

Z

Liquid out

Liquid in

Gas out

Figure 31.1 Bubble tower.

Gas in

Gas in

Z

Liquid out

Liquid in

Figure 31.2 Spray tower.

Gas in

Gas out

Z

Liquid out

Liquid in

Figure 31.3 Countercurrent packed tower.
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Spray towers are used for the mass transfer of highly soluble gases where the gas-phase

resistance normally controls the rate of mass transfer.

Packed towers are the third general type of mass-transfer equipment, which involves a

continuous countercurrent contact of two immiscible phases. These towers are vertical

columns that have been filled with packing as illustrated in Figure 31.3. Avariety of packing

materials is used, ranging from specially designed ceramic and plastic packing,as illustrated

in Figure 31.4, to crushed rock. The chief purpose of the packing is to provide a large contact

area between the two immiscible phases. The liquid is distributed over the packing and flows

down the packing surface as thin films or subdivided streams. The gas generally flows

upward, countercurrent to the falling liquid. Both phases arewell agitated. Thus, this type of

equipment may be used for gas–liquid systems in which either of the phase resistances

controls or in which both resistances are important.

Special types of packed towers are used to cool water so that it can be recirculated as a

heat-transfer medium. These structures are made of wood-slat decks, having louver

construction so that air can flow across each deck. The water is sprayed above the top

deck and then trickles down through the various decks to a bottom collection basin. Cooling

towers may be classified as natural draft when sufficient natural wind is available to carry

away the humid air or as forced or induced draft when a fan is used. In the forced-draft

towers, air is pulled into louvers at the bottom of the structure and then flows up through the

decks countercurrent to the water flow.

Bubble-plate and sieve-plate towers are commonly used in industry. They represent the

combined transfer mechanisms observed in the spray and the bubble towers. At each plate,

bubbles of gas are formed at the bottom of a liquid pool by forcing the gas through small

holes drilled in the plate or under slotted caps immersed in the liquid. Interphase mass

transfer occurs during the bubble formation, and as the bubbles rise up through the agitated

liquid pool. Additional masstransfer takes place above the liquid pool because of spray

carryover produced by the active mixing of the liquid and gas on the plate. Such plates are

arranged one above the other in a cylindrical shell as schematically illustrated in Figure 31.5.

The liquid flows downward, crossing first the upper plate and then the plate below. Thevapor

rises through each plate. As Figure 31.5 illustrates, the contact of the two phases is stepwise.

Such towers cannot be designed by equations that are obtained by integrating over a

continuous area of interphase contact. Instead, they are designed by stagewise calculations

that are developed and used in design courses of stagewise operations.We shall not consider

the design of plate towers in this book; our discussions will be limited to continuous-contact

equipment.

31.2 GAS–LIQUID MASS-TRANSFER OPERATIONS IN WELL-MIXED TANKS

Aeration is a common gas–liquid contacting operation where compressed air is intro-

duced to the bottom of a tank of liquid water through small-orifice dispersers, such as

Raschig ring Lessing ring Pall ringBerl saddle
Figure 31.4 Common industrial

tower packing.
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perforated pipes, porous sparger tubes, or porous plates. These dispersers produce small

bubbles of gas that rise through the liquid. Often, rotating impellers break up the bubble

swarms and disperse the bubbles throughout the liquid volume. Gas–liquid mass-transfer

processes induced by aeration include absorption and stripping. In gas absorption, a

solute in the aeration gas is transferred from the gas to the liquid. Often, the solute is the

oxygen gas in air, which is sparingly soluble in water. The absorption of oxygen into

water underlies many processes important to biochemical engineering. In liquid strip-

ping, the volatile dissolved solute is transferred from the liquid to the aeration gas.

Stripping underlies many wastewater-treatment processes important to environmental

engineering.

The gas–liquid contacting pattern in aeration processes is gas dispersed, meaning that

the gas is dispersed within a continuous liquid phase. Consequently, the material balances

for solute mass transfer are based on the liquid phase. Recall from Section 29.2 that the

interphasemass-transfer flux for soluteA across the gas- and liquid-phase films, based on the

overall liquid phase driving force, is

NA ¼ KL(c

A � cA) (29-11)

and the transfer rate for solute A is

WA ¼ KL
Ai

V
V(cA � cA) ¼ KLa :V(cA � cA) (30-27)

with

cA ¼ pA

H

where PA is the partial pressure of solute A in the bulk gas phase. Recall from Section 30.5

that the interphase mass-transfer area per unit volume is hard to measure, and so capacity

coefficients, e.g., KLa, are used.

Well-mixed gas–liquid contacting processes can be either continuous or batch with

respect to the liquid phase. A continuous process is shown in Figure 31.6. For a batch

Gas out

Liquid out

Liquid in

Gas in

Gas

Sieve plate

Bubble plate

Figure 31.5 Plate towers.
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process, the liquid flow is turned off, but the gas flow remains on. In this case, the unsteady-

state material balance on solute A in the liquid phase is

0� 0þ NA : Ai þ RA : V ¼ d(cAV)

dt

which is subject to the initial condition t ¼ 0, cA ¼ cAa. If the liquid volumeV is constant, then

KLa :VðcA � cAÞ þ RA :V ¼ V
dcA

dt

Furthermore, if (1) the partial pressure of soluteA is constant so thatC
A is constant and (2) there

is no homogeneous reaction of dissolved solute A in the liquid phase so that RA ¼ 0, then

ZcA
cA0

�dcA

cA � cA
¼ �KLa

Z t
0

dt

which upon integration yields

ln
cA � cAa

cA � ciA

� �
¼ KLa : t

or

cA ¼ cA � (cA � cAo)e
�kLa : t (31-1)

In equation (31-1), the concentration ofA in the liquid (cA) exponentially approaches c

A

as time t goes to infinity.

For a continuous process with one liquid inflow stream and one liquid outflow stream,

the steady-state material balance is

cAo _Vo þ NAAi � cA _V þ RA :V ¼ 0

Impeller
drive

Gas sparger

Liquid
out   , cA

Liquid, V

Gas outGas in
Qg , pA

Liquid
in o, cAo

Figure 31.6 Aerated stirred tank.
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where cAo is now the inlet concentration of solute A. For a dilute process, the inlet liquid

volumetric flow rate v0 approaches outlet volumetric flow rate v. Consequently

_VoðcAo � cAÞ þ KLa : VðcA � cAÞ þ RA : V ¼ 0 (31-2)

If RA¼ 0, then the predicted outlet concentration is

cA ¼
_Vo

V
cAo þ KLa : cA
_Vo

V
þ KLa

(31-3)

An application of well-mixed gas–liquid contacting operations to the design of an aerobic

fermenter is provided in example 1.

EXAMPLE 1 The design of aeration systems for aerobic-fermentation processes is based on gas–liquid mass

transfer.Microorganisms grow in a liquid suspension and feed on dissolved nutrients such as glucose

and mineral salts. Aerobic microorganisms in liquid suspension also require dissolved oxygen for

growth. If oxygen is not supplied at a rate sufficient to support cell growth, the cells will die.

In the present process, Aerobacter aerogenes is being cultivated within a continuous flow

fermenter of 3 m3 liquid volume (V) and tank diameter (dT ) of 1.5 m. Fresh nutrient medium

containing a trace amount of dissolvedO2 at concentration 0.01moleO2/m
3 enters the fermenter at a

flow rate of 1.8 m3/h. At steady-state conditions, the aerobic fermenter operates at a cell

concentration (cX) of 5 kg dry mass m3 of liquid culture. The cell concentration is determined

by the specific growth rate of the organism and the nutrient composition of the liquidmedium, details

of which will not be presented here. The liquid cell suspension consumes oxygen proportional to the

cell concentration according to the rate equation

RA ¼ �qo : cX
where qo is the specific oxygen consumption rate of the cells, equal to 20moleO2/kg cells : h, which
is assumed to be constant. Determine the KLa value necessary to ensure that the dissolved oxygen

concentration in the liquid culture (cA) is at least 0.05 mol/m3. Also, determine the power input

into a 3 m3 fermenter if the gas flow rate into the fermenter is 1 m3 of air per minute at the process

conditions of 298 K and 1 atm. Assume that the bubbles are noncoalescing. At 298 K, Henry’s law

constant for dissolution of O2 in the liquid nutrient medium is 0.826 atm:m3/mol.

The requiredKLa is backed out from amaterial balance on dissolved oxygen (species A) within

the well-mixed liquid phase of the fermenter. Recall equation (31-2)

_Vo(cAo � cA)þ KLa : V(cA � cA)þ RA : V ¼ 0

Inserting RA ¼ �qocX and solving for the required KLa yields

KLa ¼
qo : cX �

_Vo

V
ðcAo � cAÞ

cA � cA
(31-4)

The saturation concentration of dissolved oxygen is determined by Henry’s law

cA ¼ pA

H
¼ 0:21 atm

0:826
atm : m3

mol

¼ 0:254
mol O2

m3

The partial pressure of oxygen (pA) is presumed constant, as the rate ofO2 transferred to the sparingly

soluble liquid is very small in comparison to the molar flow rate of O2 in the aeration gas. Finally

KLa ¼
20

mol O2

kg cells : h
: 5 kg cells

m3
� 1:8m3=h

3:0m3
(0:01� 0:05)

mol O2

m3

� �
: 1 h

3600 s

(0:254� 0:05)
mol O2

m3

¼ 0:136 s�1
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In the limiting case of cA¼ 0 and cAo¼ 0, the minimum KLa for O2 transfer is defined as

(KLa)min ¼
qo : cX
cA

¼

mol O2

kg cells : h
: 5 kg cells

m3

� �
1 h

3600 s

0:254
mol O2

m3

¼ 0:109 s�1

From the above equation, it is evident that the biological oxygen consumption most strongly

determines the required KLa.

The power input to the aerated tank is backed out from the correlation

(kLa)O2
¼ 2� 10�3

�
Pg

V

�0:7

(ugs)
0:2 (30-29)

whereKLa has units of s
�1, Pg/V has units ofW/m3, and ugs has units of m/s. The superficial velocity

of the gas through the empty tank is

ugs ¼ 4Qg

pd2T
¼

(4) 1
m3

min
: 1min

60 s

� �
p(1:5m)2

¼ 0:0094
m

s

If the gas is sparingly soluble in the liquid, the interphase mass-transfer process is liquid-phase

controlling so that KLaffi kLa. Therefore

0:136 ¼ 2� 10�3 Pg

V

� �0:7

(0:0094)0:2

or
Pg

V
¼ 1572

W

m3

The total required power input (Pg) for the 3 m3 aerated fermenter is 4716 W.

Eckenfelder1 developed a general correlation for the transfer of oxygen from air

bubbles rising in a column of still water

KL
A

V
¼ ugQ

1þn
g h0:78

V
(31-5)

where ug is a correlating constant dependent on the type of disperser,Qg is the gas flow rate in

standard cubic feet per minute, n is a correlating constant that is dependent on the size of the

small orificesin the disperser, and h is the depth below the liquid surface at which the air is

introduced to the aeration tank. Typical data for a sparger-aeration unit, correlated according to

equation (31-5), are presented in Figure 31.7.

K
L

V
ft

3 /
h

A V

Qg-SCFM
4 1086 15 3020

250

500

1000

2000

= qgQ1.33

h0.78

KL          V
A
V

Depth-ft

10.5

8

10.5

15

g

Figure 31.7 Oxygen transfer factor of a single

sparger unit in an aeration tank.

1W. W. Eckenfelder, Jr., J. Sanit. Engr. Div., Amer. Soc. Civ. Engr., 85, SA4, 89 (1959).
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EXAMPLE 2 A20,000-ft3(566m3) aeration pond is aeratedwith 15 spargers, each using compressed air at a rate of

15 standard cubic feet per minute (7:08� 10�3 m3/s). The spargers will be located 15 ft (4.57 m)

belowthe surface of the pond. Find the time required to raise the dissolved oxygen from2 to 5mg/L if

the water temperature is 293 K.

From Figure 3.16, the transfer factor, KLðA/VÞV , for a single sparger is 1200 ft3/h ð9:44�
10�3 m3/sÞ and for the system

KL

�
A

V

�
¼ (9:44� 10�3 m3/s)(15 spargers)

566 m3
¼ 2:50� 10�4s�1:

The average hydrostatic pressure of the rising air bubble is equal to the arithmetic mean of the

pressure at the top and the bottom of the pond.

Pbottom ¼ 1 atmþ (15 ft H2O)(0:0295 atm/ft H2O)

¼ 1:44 atm (1:459� 105 Pa)

Pmean ¼ 1 atmþ 1:44 atm

2
¼ 1:22 atm(1:236� 105 Pa)

As the mole fraction of oxygen in air is 0.21, the partial pressure of oxygen within the bubble

will equal yo2P ¼ (0:21)(1:236� 105 Pa) ¼ 2:60� 104 Pa. The equilibrium concentration of a

slightly soluble gas is related to its partial pressure by Henry’s law. At 293 K, this law stipulates for

oxygen

pO2
¼ (4:06� 109 Pa/mole fraction) : xO2

Accordingly

xO2
¼ 2:60� 104 Pa

4:06� 109 Pa/mol fraction
¼ 6:40� 10�6

For 1 L of solution, which is essentially purewater, the equilibrium concentration inmilligrams

per liter can be calculated

moles of water ¼ (1000 cm3 of water)(1 g/cm3 water)

18 g water/mol

¼ 55:6mol:

In the liter of water, the moles of oxygen equal

xO2
: (moles of solution) ¼ (6:4� 10�6)(55:6mol) ¼ 3:56� 10�4 mol

The grams of oxygen per liter equal

(3:56� 10�4 mol)(32g/mol) ¼ 1:139� 10�2 g/L ¼ 11:39 mg/L:

Using equation (31-1), we can solve for the required time

t ¼ ln

�
cA � cAo

cA � cAt

� 1

KL

�
A

V

�
0
B@

1
CA ¼ ln

�
11:39� 2

11:39� 5

��
1

2:50� 10�4/s

�

t ¼ 1540 s:
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31.3 MASS BALANCES FOR CONTINUOUS CONTACT TOWERS:
OPERATING-LINE EQUATIONS

There are four important fundamentals that constitute the basis for continuous-contact

equipment design:

1. Material and enthalpy balances, involving the equations of conservation of mass

and energy;

2. Interphase equilibrium;

3. Mass-transfer equations;

4. Momentum-transfer equations.

Interphase-equilibrium relations are defined by laws of thermodynamics as discussed in

Section 729.1.Momentum-transfer equations, as presented in Section 9.3, are used to define

the pressure drop within the equipment. We shall not treat this subject in this chapter, as it

was previously discussed. The material and enthalpy balances are important, as they

provide expressions for evaluating the bulk compositions of the two contacting phases at any

plane in the tower as well as the change in bulk compositions between two planes in the

tower. The mass-transfer equations will be developed in differential form, combined with a

differential material balance, and then integrated over the area of interfacial contact to

provide the length of contact required in the mass exchanger.

Countercurrent Flow

Consider any steady-state mass-transfer operation that involves the countercurrent contact

of two insoluble phases as schematically shown in Figure 31.8. The two insoluble phases

will be identified as phase G and phase L.

At the bottom of the mass-transfer tower, the flow rates and concentrations are defined

as follows:

G1 is the total moles of phaseG entering the tower per hour per cross-sectional area of

the tower;

L1 is the total moles of phase L leaving the tower per hour per cross-sectional area of

the tower;

yA1
is the mole fraction of component A inG1, expressed as moles of A per total moles

in phase G;

z = z1

z

G1, yA1
, YA1

L1, xA1
, XA1

L2, xA2
, XA2

G2, yA2
, YA2

Gz, yAz, YAzLz, xAz
, XAz

z = z2

Figure 31.8 Steady-state countercurrent process.
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xA1
is the mole fraction of component A in L1, expressed as moles of A per total moles

in phase L.

Similarly at the top of the tower, or plane z2, the total moles of each phase will beG2 and L2,

and the compositions of each stream will be yA2 and xA2. An overall, macroscopic mass

balance for component A around the steady-state mass exchanger, in which there is no

chemical production or disappearance of A, requires�
moles of A entering

the tower

�
¼
�
moles of A leaving

the tower

�
or

G1yA1
þ L2xA2

¼ G2yA2
þ L1xA1

(31-6)

A mass balance for component A around plane z ¼ z1 and the arbitrary plane z stipulates

G1yA1
þ LzxAz

¼ GzyAz
þ L1xA1

(31-7)

Simpler relations, and certainly easier equations to use, may be expressed in terms of

solute-free concentration units. The concentration of each phase will be defined as follows:

YA is the moles of A in G per mole of A-free G; that is,

YA ¼ yA

1� yA
(31-8)

and XA is the moles of A in L per mole of A-free L; that is

XA ¼ xA

1� xA
(31-9)

The flow rates to be used with the solute-free concentration units are LS and GS, where

LS is the moles of phase L on a solute-free basis, that is, the moles of carrier solvent in

phase L per hour per cross-sectional area of the tower, and is equal to L(1� xA) where both

L and xA are evaluated at the same plane in the tower, that is, L1(1� xA1
) or L2(1� xA2

). GS

is the moles of phase G on a solute-free basis; that is, the moles of carrier solvent
in phase G per hour per cross-sectional area of the tower and is equal to Gð1� xAÞ
where both G and yA are evaluated at the same plane in the tower. The overall balance
on component A may be written using the solute-free terms as

GSYA1
þ LSXA2

¼ GSYA2
þ LSXA1

or

GS(YA1
� YA2

) ¼ LS(XA1
� XA2

) (31-10)

Rearranging we obtain

LS

GS
¼ YA1

� YA2

XA1
� XA2

Equation (31-10) is an equation of a straight line that passes through points (xA1
, yA1

) and

(xA2
,yA2

) with a slope of LS/GS. A mass balance of component A around plane z1 and an

arbitrary plane z¼ z in solute-free terms is

GSYA1
þ LSXAz ¼ GSYAz þ LSXA1

or

GS(YA1
� YAz) ¼ LS(XA1

� XAz) (31-11)
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Rearranging, we obtain

LS

GS
¼ YA1

� YAz

XA1
� XAz

Equation (31-11) is an equation of a straight line, one which passes through the points

(XA1
,YA1

) and (XA2
,YA2

) with a slope of LS/GS. Two straight lines having the same slope and a

point in common lie on the same straight line. Equation 31.40, is therefore, a general

expression relating the bulk compositions of the two phases at any plane in the mass

exchanger. As it defines operating conditions within the equipment, it is designated

the operating line for countercurrent operations. In our earlier discussions on interphase

transfer in Section 29.2, pointO of Figure 29.6 is one ofmany points that lie on the operating

line.

It is important that the student recognizes the difference between equations (31-7) and

(31-11). Although both equations describe themass balance for componentA, only equation

(31-11) is an equation of a straight line. When written in the solute-free units, X and Y,

the operating line is straight because the mole-ratio concentrations are based on both the

constant quantities,Ls andGs.Whenwritten inmole-fraction units, x and y, the totalmoles in

a phase, L or G, change as the solute is transferred into or out of the phase; this produces a

curved operating line on the x–y coordinates.

Figure 31.9 illustrates the location of the operating line relative to the equilibrium line

when the transfer of the solute is from phase G to phase L as in the case of absorption.

The bulk equilibrium, located on the operating line, must be greater than the equilibrium

concentration in order to provide the driving forces, YAG � YAi or its equivalentor pAG� pAi
or YAG � Y

A or the equivalent pAG � pA, needed for transfer from G phase to L phase.

Figure 31.10 illustrates the location of the operating line relative to the equilibrium

line when the transfer of the solute is from phase L to phase G as in desorption or stripping.

The location of theoperating line below the equilibrium line assures correct driving forces,

xAi � xAL or its equivalent cAi � cAL or xA � xAL or its equivalent cA � cAL.

A mass balance for component A over the differential length, dz, is easily obtained by

differentiating equation (31-11). This differential equation

LS dXA ¼ GS dYA

relates the moles transferred in countercurrent operations per time per cross-sectional area

available in the length dz.

Equilibrium curve
YA, i vs. XA, i

Operating
line

Slope =
Ls

Gs

XA2
XA1

YA2

YA1

YA

XA

Figure 31.9 Steady-state countercurrent

process, transfer from phase G to L.
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In the design of mass-transfer equipment, the flow rate of at least one phase and three of

the four entering and exiting compositions must be fixed by the process requirements. The

necessary flow rate of the second phase is often a design variable. For example, consider the

case inwhich phaseG,with a knownGS, changes in composition fromYA1
toYA2

by transferring

solute to a second phase that enters the tower with composition XA2
. According to equation

(31-10), the operating linemust pass through point (XA2
,YA2

) andmust end at the ordinate YA1
.

Three possible operating lines are shown inFigure 31.11.Each linehasadifferent slope,LS /GS,

and sinceGS is fixed by the process requirement, each line represents a different quantity, LS, of

the second phase. In fact, as the slope decreases, LS decreases. Theminimum, LSwhichmay be

used, corresponds to the operating line ending at point P3. This quantity of the second phase

corresponds to an operating line that touches the equilibrium line. If we recall fromChapter 29

the definition of driving forces, we should immediately recognize that the closer the operating

line is to the equilibrium curve, the smaller will be the driving force for overcoming anymass-

transfer resistance. At the point of tangency, the diffusional driving force is zero; thus, mass

transfer between the two phases cannot occur. This then represents a limiting condition, the

minimum LS /GS ratio for mass transfer. In the case of equilibrium curves that are concave

upward, the minimum LS /GS ratio corresponds to the second phase L1 leaving in equilibrium

with the entering phase G1; that is, point (X1,Y1) lies on the equilibrium curve.

EXAMPLE 3 Ammonia is to be absorbed from an airmixture at 293K and 1.013�105 Pa pressure in a countercurrent

packed tower, using water at 293 K as the absorbent. An inlet gas rate of 1.21� 10�2m3/s and an

ammonia-free water rate of 9.46� 10�3 kg/s will be used. If the ammonia, NH3, concentration is

Equilibrium curve
YA, i vs. XA, i

Operating
line

Slope =
Ls

Gs

XA1
XA2

YA2

YA1

YA

XA

Figure 31.10 Steady-state

countercurrent process,

transfer from phase L to

phase G.

(L
S

/G
S
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(L
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/G
S
) 2

(L S
/G S

) 3

Equilibrium
curve

Slopes

XA2

YA2

YA1

YA

XA

P1 P2 P3

Figure 31.11 Operating-line locations.
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reduced from 3.52 to 1.29%by volume, determine the ratio of (LS/GS)actual/(LS/GS)min. Equilibriumdata

for the system at 293 K and 1.013� 105. Pa are as follows:

The total moles of gas entering the tower per hour may be evaluated using the ideal gas law.

G1A ¼ moles entering gas/s ¼ P _V

RT
¼ (1:013� 105Pa)(1:21� 102 m2/s)�

8:314
Pa : m3

mol : K

�
ð293KÞ

¼ 0:503 mol=s

The gas enters the tower with a mole fraction of ammonia, YA1
, equal to 0.0352. Choosing a cross-

sectional area for the tower of A m2, we may evaluate the moles of G on a solute-free basis as

GS ¼ G1(1� yA1) ¼
�
0:503

mol

s

��
0:9648

A m2

�
¼ 0:483

A

mol

s : m2

The moles of phase L on a solute-free basis are

LS ¼
�
9:46� 10�3 kg

s

��
kg mol

18 kg

��
1

A m2

�
¼ 5:26� 10�4

A

kg mol

s : m2
¼ 0:526

A

mol

s : m2

The ratio of the actual LS to GS is evaluated as�
LS

GS

�
actual

¼ 0:526

A

A

0:483
¼ 1:09

mole NH3-freeL phase

mole NH3-freeG phase

The composition of the known streams,G1,G2, and L2 on a solute-free basis, are evaluated from the

known mole fraction as

YNH3,1 ¼
yNH3,1

1� yNH3,1
¼ 0:0352

0:9648
¼ 0:0365

YNH3,2 ¼
yNH3,2

1� yNH3,2
¼ 0:0129

0:9871
¼ 0:0131

XNH3,2 ¼
xNH3,2

1� xNH3,2
¼ 0

The exiting composition, XNH3
,1, can be evaluated by

GS(YA1
� YA2

) ¼ LS(XA1
� XA2

)

0:483

A
(0:0365� 0:0131) ¼ 0:526

A
(XA1

� 0)

XA1
¼ 0:0215

The actual and minimum operating lines are shown in Figure 31.12. The composition of the solution

in equilibrium with YNH3,1
¼ 0.0365 is obtained from the equilibrium curve as XNH3, equll.

¼ 0.0296.

The slope of the minimum operating line is

�
LS

GS

�
minimum

¼ DY

DX
¼ 0:0365� 0:0131

0:0296� 0
¼ 0:79

mole NH3-free liquid phase

mole NH3-free gas phase

The desired ratio, (LS/GS)actual/(LS/GS)minimum is then a ratio of the two values, 1.09/0.79 or 1.38.
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kg mol NH3

kg mol H2O
0.0164 0.0252 0.0349 0.0455 0.0722

Y
kg mol NH3

kg mol H2O
0.021 0.032 0.042 0.053 0.08



EXAMPLE 4 In Problem 30.10, the production of ultra pure silicon tetrachloride for the chemical vapor deposition

of siliconwas described.Hydrogen chloride, HCl,was produced in the elimination of trichlorosilane,

SiHCl3, and the HCl was stripped from the liquid silicon tetrachloride into an N2 carrier gas stream.

(a) If the HCl concentration was reduced from 1.8 to 0.2 mol% by its transfer into the 298 K

and 1.013�105 Pa nitrogen gas carrier stream, determine the (Ls/Gs)min ratio. At the involved low

concentration levels, the HCl–H2 system obeys Henry’s law with the Henry’s constant, H’, equal to

47.5 atm/mol fraction HCl in the liquid.

(b) Determine the HCl concentration in the exiting N2 stream when 40 times the minimum

Gs is used in the stripper.

Y
A
, i

n 
m

ol
es

 o
f N

H
3/

m
ol

e 
of

 a
ir

XA, in moles of NH3/mole of water
0 0.01 0.02 0.03 0.04

0

0.01

0.02

0.03

0.0365

0.04

0.02960.0216

(L s
/G s)

 m
in

(L s
/G

s)
 a

ct
ua

l

Figure 31.12 Solution to example 3.

The compositions of the known streams,L2,L1, andG1, on a solute-free basis are evaluated from

the known mole fractions as

XHCl,2 ¼ xHCl,2

1� xHCl,2
¼ 0:018

0:982
¼ 0:0183

XHCl,1 ¼
xHCl,1

1� xHCl,1
¼ 0:002

0:998
¼ 0:002

YHCl,1 ¼
yHCl,1

1� yHCl,1
¼ 0

Note that the solute-free compositions are essentially equal to the mole-fraction compositions for

low concentrations.

The equilibrium concentration is evaluated with Henry’s law

pHCl(atm) ¼
�
47:5

atm

mole fraction

�
(xHCl)
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At end 2 of the tower

pHCl,2 ¼
�
47:5

atm

mole fraction

�
(0:018) ¼ 0:855 atm

and

Y
HCl,2 ¼

pHCl,2

P� pHCl,2
¼ 0:855

0:145
¼ 5:90

Figure 31.13 illustrates the operating lines for both GS,min and GS,actual for this example. As one

notes, the operating lines for the stripping process are below the equilibrium line.�
LS

GS

�
min

¼ Y
2 � Y1

X2 � X1
¼ 5:90� 9

0:0183� 0:002
¼ 362

and �
LS

GS

�
actual

¼ LS

(Gs)(40)
¼ 362

40
¼ 9:05

�
LS

GS

�
actual

¼ 9:05 ¼ Y2 � Y1

X2 � X1
¼ Y2 � 0

0:0183� 0:002

Y2 ¼ 0:147

The mole fraction of the exiting gas stream is

yHCl,2 ¼ Y2

1þ Y2
¼ 0:147

1:147
¼ 0:128:

Cocurrent Flow

For steady-state mass-transfer operations involving cocurrent contact of two immiscible

phases as shown in Figure 31.14, the overall mass balance for component A is

LSXA2
þ GSYA2

¼ LSXA1
þ GSYA1

or

LS(XA2
� XA1

) ¼ GS(YA1
� YA2

) (31-12)

LS/GS actual

L S
/G

S
m

in

0.002 0.0182

0.1470.0

5.90

Y

X Figure 31.13 Solution to example 4.
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The mass balance on component A around planes 1 and an arbitrary plane z stipulates that

LSXA,z þ GSYA,z ¼ LSXA1
þ GSYA1

or

LS(XA,z � XA1
) ¼ GS(YA1

� YA,z) (31-13)

Equations (31-12) and (31-13) are both straight lines that pass through a common point

(XA1 ,YA1 ) and have the same slope, �LS/GS, Equation (31-13) is the general expression

that relates to the composition of the two contacting phases at any plane in the equipment.

It is designated as the operating-line equation for cocurrent operations. Figures 31.15 and

31.16 illustrate the location of the operating line relative to the equilibrium line. A mass

balance for component A over the differential length, dz, for cocurrent flow:

LS dXA ¼ �GS dYA

verifies the slope of the operating line for cocurrent operation is –Ls/Gs.

z = z1

G1, Gs, yA1
, YA1

L1, Ls, xA1
, XA1

L2, Ls, xA2
, XA2

G2, Gs, yA2
, YA2

Gz, Gs, yA,z, YA,zLz, Ls, xA,z, XA,z

z = z2

Figure 31.14 Steady-state cocurrent process.
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Operating
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Equilibrium curve
YAi

, versus XAi

Slope = –
Ls

Gs

Figure 31.15 Steady-state cocurrent process, transfer

from phase G to phase L.
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YAi

, vs. XAi

Slope = –
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Figure 31.16 Steady-state cocurrent process transfer

from phase L to phase G.
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As in the case of countercurrent flow, there is aminimumLs/Gs ratio for cocurrentmass-

transfer operations established from the fixed process variables: GS1 ,YA1
,YA2 , and XA1

. Its

evaluation involves the same procedure as discussed for countercurrent flow.

EXAMPLE 5 The ammonia–air feed streamdescribed in example 3 is fed cocurrentlywith an ammonia–freewater

stream. The ammonia concentration is to be reduced from 3.52 to 1.29% by volume, using a water

stream1.37 times theminimum.Determine (a) theminimumLs/Gs ratio, (b) the actualwater rate, and

(c) the concentration in the exiting aqueous stream.

In example 3, the following compositions were evaluated:

entering YNH3,1 ¼ 0:0365
exiting YNH3,2 ¼ 0:0131
entering XNH3,1 ¼ 0:0

The moles of G on a solute-free basis were evaluated to be 0:483
A

mol
m2 : s. In Figure 31.17, the mini-

mum and actual operating lines are shown. For these operating lines

Ls

Gs

� �
min

¼ YNH3,1 � YNH3,2

XNH3,2 � XNH3,2
¼ 0:0365� 0:0131

0:01� 0

¼ 2:34
moles NH3-free L phase

moles NH3-free G phase

and

LS

GS

� �
actual

¼ 1:37
LS

GS

� �
min

¼ 1:37(2:34) ¼ 3:21
moles NH3-free L phase

molesNH3-free G phase

The composition of the exiting stream can be evaluated with the slope of the actual operating line by

LS

GS

� �
actual

¼ 3:21 ¼ YNH3,1 � YNH3,2

XNH3,2 � XNH3,1
¼ 0:0365� 0:0131

XNH3,2 � 0

min

0.0072

Equilibrium
curve

XA, in moles of NH3/mole of water
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GS

actual
LS

GS
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Figure 31.17 Solution to

example 5.
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or

XNH3,2 ¼
0:0234

3:21
¼ 0:0073 ¼ mol NH3

mol NH3-free water

The moles of NH3-free water fed to the tower, Ls, is also evaluated using the value of

LS

GS

� �
actual

¼ 3:21
mol NH3 free L phase

mol NH3 free G phase

Then

LS ¼ 3:21GS ¼ 3:21
0:481

A

� �
¼ 1:55

A

mol

m2 : s

31.4 ENTHALPY BALANCES FOR CONTINUOUS-CONTACTS TOWERS

Many mass-transfer operations are

isothermal. This is especially true

whenwe are dealingwith dilutemix-

tures. However, when large quanti-

ties of solute are transferred, the heat

of mixing can produce a tempera-

ture rise in the receiving phase.

If the temperature of the phase

changes, the equilibrium solubility

of the solute will be altered, and in

turn, the diffusion driving forces

will be altered.

Consider the steady-state coun-

tercurrent process illustrated in

Figure 31.18. An enthalpy balance

around the planes z ¼ z2 and z is

L2HL2 þ GHG ¼ G2HG2
þ LHL (31-14)

where H is the molal enthalpy of the stream at its particular temperature, pressure, and

concentration. The enthalpies are normally based upon a reference of pure solute-free

carrier solvent and puresolute at a chosen base temperature, T0. The normal enthalpy of

a liquid mixture is evaluated above this base temperature by the relation

HL ¼ cpL(TL � T0)Mavg þ DHS (31-15)

where HL is the enthalpy of the liquid stream, in kJ/mol of L; cpL is the heat capacity of the

mixture on a mass basis, kJ/kg: K; TL is the temperature of the mixture in K; Mavg is the

averagemolecular weight of the mixture; andDHS is the integral heat of solution, evaluated

at the base temperature, T0, and at the concentration of the mixture in kJ/mol.

Themolal enthalpy of a gas mixture, with the same base temperature and standard state

of the solute is expressed as

HG ¼ [ysolutecp,G soluteMsolute þ (1� ysolute)(cp,G solute-free G-phase)

(Msolute-free G-phase)](TG � T0)þ ysolutehf, g soluteMsolute

(31-16)

z = z1

z

G1, yA1
, YA1

L1, xA1
, XA1

L2, xA2
, XA2

G2, yA2
, YA2

Gz, yAz
, YAz

Lz, xAz
, XAz

z = z2

Figure 31.18 Steady-state countercurrent process.
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where HG is the enthalpy of the gas stream, in kJ/mol of G; cp, g is the heat capacity in the

gas phase in kJ/kg:K; TG is the temperature of the gas mixture in K; M is the molecular

weight; and hf,g solute is the heat of vaporization of the solute in kJ/kg. The integral heat of

solution, DHS, is zero for ideal solutions and essentially zero for gas mixtures. For

nonideal solutions, it is a negative quantity if heat is evolved on mixing and a positive

quantity if heat is absorbed on mixing.

Equation (31-14) may be used to compute the temperature of a given phase at any plane

within the mass-transfer equipment. The calculations involve the simultaneous application

of themass balance in order to know the flow rate of the stream associatedwith the particular

enthalpy term.

31.5 MASS-TRANSFER CAPACITY COEFFICIENTS

The individual mass-transfer coefficient, kG, was defined by the expression

NA ¼ kG( pA,G � pA,i) (29-6)

and the overall mass-transfer coefficient was defined by a similar equation in terms of the

overall driving force in partial pressure units

NA ¼ KG( pA,G � pA) (29-10)

In both expressions, the interphase mass transfer was expressed as moles of A transferred

per unit time per unit area per unit driving force in terms of partial pressure. In order to

use these equations in the design of mass exchangers, the interphase contact area must be

known. Although the wetted-wall column, as described in Chapter 26, has a definite

interfacial surface area, the corresponding area in other types of equipment is virtually

impossible to measure. For this reason the factor a must be introduced to represent the

interfacial surface area per unit volume of the mass-transfer equipment. The mass transfer

within a differential height, dz, per unit cross-sectional area of the mass exchanger is

NA
moles of A transferred

(time)(interfacial area)

� �
a

interfacial area

volume

� �� �
dz(length)

¼ moles of A transferred

(time)(cross-sectional area)

or, in terms of the mass-transfer coefficients

NAa dz ¼ kGa( pA,G � pA,i) dz (31-17)

and

NAa dz ¼ KGa( pA,G � pA) dz (31-18)

As both the factor a and the mass-transfer coefficients depend on the geometry of the

mass-transfer equipment and on the flow rates of the two contacting, immiscible streams,

they are commonly combined as a product. The individual capacity coefficient, kGa, and the

overall capacity coefficient, kGa, are each experimentally evaluated as a combined process

variable. The units of the gas phase capacity coefficient are

kGa
moles of A transferred

(time) (interfacial area)(pressure)

� �
interfacial area

volume

� �
¼ moles of A transferred

(time)(volume)(pressure)
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the most often encountered units are g moles of A/s : m3 : Pa. The capacity coefficients

in terms of liquid concentration driving forces are similarly defined by

NAa dz ¼ kLa(cA,i � cA,L) dz (31-19)

and

NAa dz ¼ KLa(c

A � cA,L) dz (31-20)

The most common units for the liquid-phase capacity coefficients are g moles of

A/s : m3 : g moles of A/m3 of solution. Mass-transfer capacity equations in terms of

kya, kxa, kYa, and kXa are similarly defined.

31.6 CONTINUOUS-CONTACT EQUIPMENT ANALYSIS

The moles of the diffusing component A transferred per time per cross-sectional area have

been defined by two entirely different concepts, the material balance and the mass-transfer

equations. For equipment involving the continuous-contact between the two immiscible

phases, these two equations may be combined and the resulting expression integrated to

provide a defining relation for the unknown height of the mass exchanger.

Constant Overall Capacity Coefficient

Consider an isothermal, countercurrent mass exchanger used to achieve a separation in a

system that has a constant overall mass-transfer coefficient KYa through the concentration

range involved in the mass-transfer operations. The mass balance for component A over the

differential length dz is described by

moles of A transferred

(time)(cross-sectional area)
¼ LS dXA ¼ GS dYA (31-11)

The mass transfer of component A in the differential length dz is defined by

moles of A transferred

(time)(cross-sectional area)
¼ NAa dz ¼ KYa(YA � Y

A) dz (31-21)

As equation (31-21) involves the mass flux of component A, NA, it is a vectorial equation

that not only defines the quantity of A transferred per time and cross-sectional area but it

also indicates the direction of mass transfer. If the driving force, YA�YA, is positive, the
transfer of A must be from the bulk composition in the G phase to the bulk composition in

the L phase. The two differential quantities in equation (31-11), LsdXA and GsdYA, stipulate

only the quantity of A transferred per time and cross-sectional area; each term must have

either a positive or a negative sign assigned to it to indicate the direction of the A transfer.

Let us consider the transfer ofA from theG phase to the L phase;�Gs dYA indicates that

the G phase is losing A. The mass transfer of component A in the differential length dzmay

be defined by combining equation (31-21) and the modified component of equation (31-11)

�GS dYA ¼ KYa(YA � Y
A) dz

or

dz ¼ �GS

KYa
: dYA

YA � Y
A

(31-22)

622 Chapter 31 Mass-Transfer Equipment



This equation may be integrated over the length of the mass exchanger, with the

assumption of a constant overall capacity coefficient

Z z2

z1

dz ¼ �GS

KYa
:
ZYA1

YA2

dYA

YA � Y
A

z ¼ (z2 � z1) ¼ GS

KYa
:
ZYA1

YA2

dYA

YA � Y
A

(31-23)

The evaluation of the right-hand side

of this equation often requires a

numerical or a graphical integration.

As discussed in Section 31.3, we may

evaluate YA � Y
A from the plot of YA

vs. XA as illustrated in Figure 31.19.

The vertical distance between

the operating line and the equili-

brium line represents the overall

driving force in Y-units. It may be

determined for each value of the bulk

concentration, YA, and its reciprocal,

1/(YA � Y
A), may then be plotted vs.

YA, as illustrated in Figure 31.20.

After obtaining the area under

the curve in Figure 31.19, we may

evaluate the length of the mass

exchanger by Equation (31-23).

When the transfer is from the L

phase to theG phase, as in the case of

desorption or stripping,G, dyA will be

positive; the mass transfer of compo-

nentA in the differential length dzwill

be

GS dYA ¼ KYa(Y

A � YA) dz

or

dz ¼ GS

KYa
: dYA

Y
A � YA

¼ �GS

KYa
: dYA

YA � Y
A

and the same design equation (31-23) will be obtained.

A similar but more complex equation can be derived in terms of the constant overall

capacity coefficient, KGa

z ¼ GS

KGa
:
ZYA1

YA2

dYA

pAG � pA
(31-24)

As two different units for gas concentrations are involved, this equation is a little more

difficult to evaluate.

Equilibrium
line

Operating
line

XAz
XA1

YA1

YA2

YA

YA

YA*

XA

Figure 31.19 Evaluation of YA � Y
A the overall

driving force.

�Area =
dYA

(YA – YA*)

1
Y

A
–

Y
A*

YA2
YA1 YA

YA1

YA2

Figure 31.20 Evaluation of the integral
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The length of the mass exchanger can also be determined by an equation written in

terms of the overall liquid capacity coefficient, KXa. For the transfer of A from the G phase

into the L phase,

�LS dXA ¼ KXa(X

A � XA) dz

or

dz ¼ �LS

KXa
: dXA

X
A � XA

If the capacity coefficient is constant over the concentration range involved in the mass

transfer operation

Zz2
z1

dz ¼ �LS

KXa
:
ZXA2

XA1

dXA

X
A � XA

or

Z ¼ LS

KXa
:
ZXA1

XA2

dXA

X
A � XA

The overall driving force, X
A � XA, is the horizontal difference between the operating

line and the equilibrium line values on a plot similar to Figure 31.19.

Variable Overall Capacity Coefficient: Allowance
for Resistance in Both Gas and Liquid Phase

In Chapter 29, the overall coefficient was found to vary with concentration unless the

equilibrium line was straight. Accordingly, we should expect that the overall capacity

coefficient will also vary when the slope of the equilibrium line varies within the region that

includes the bulk and interfacial concentrations.With slightly curved equilibrium lines, one

may safely use the design equations (31-23)–(31-25). However, in the case of equilibrium

lines with more pronounced curvature, the exact calculations should be based on one of the

individual capacity coefficients.

The mass balance for component A over the differential length dz is

LS dXA ¼ GS dYA (31-11)

Differentiating Equation (31-8), we obtain

dYA ¼ dyA

(1� yA)
2

This relation may be substituted into equation (31-11) to give

LS dXA ¼ GS
dyA

(1� yA)
2

(31-26)

The mass transfer of component A in the differential length, dz, is defined in terms of the

individual gas-phase capacity coefficient by

NAa dz ¼ kGa( pAG � pAi) dz (31-27)

(31-25)
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Combining equation (31-27) and a modified equation (31-26) that accounts for the

transfer from the G phase, we obtain upon rearranging

dz ¼ �GS dyAG

kGa( pAG � pAi)(1� yAG)
2

or

dz ¼ �GS dyAG

kGaP(yAG � yAi)(1� yAG)
2

(31-28)

As discussed in Chapter 29, the interfacial compositions, yAi and xAi may be found for

each point on the operating line by drawing a line from the point toward the equilibrium line.

The slope of this line is�kL/kG on a pAvs. cA plot, or is�ckL/kGP on a yAvs. xA plot, where c

is the molar concentration in the liquid phase. In Figure 31.21, the location of the interfacial

compositions on both phase plots are illustrated. It is important to recall from the discussion

in Section 31.3 that the operating line is not straight on plots of yAvs. xA and pAvs. cA, except

when we are dealing with relatively dilute gas and liquid mixtures. Knowing the interfacial

composition, yAi, for every bulk composition yAG in the gas stream, we may numerically or

graphically integrate equation (31-28) to obtain the length of the mass exchanger.

Logarithmic-Mean Driving Force

Although the graphical integration procedure must be employed in most practical design

calculations, it is sometimespossible to use amuch simpler equationbased upon a logarithmic-

mean driving force. When the two contacting streams are relatively dilute, the equilibrium

curve and the operating linemay both be linear in terms of themole fractions over the range of

concentration involved in the mass-transfer operation. Under these conditions, G1	G2	G

and L1	 L2	 L. The mass balance for component A may be approximated by

L(xA1
� xA) ¼ G(yA1

� yA) (31-29)

or

L dxA ¼ G dyA (31-30)

The rate of interphase transfer may be expressed in terms of the overall gas-phase

capacity coefficient by

NAa dz ¼ KGa( pA,G � pA) dz

kL

kG
Slope = –

Operating
line

xA2

xAi

yA*

yAi

xA1

yA2

yA

yA1

xA

ckL

kGp

Equilibrium lineEquilibrium line

Slope = –

Operating
line

cA2

cAi

pAG

pAi

cA1

pA2

pA

pA1

cA

Figure 31.21 Determination of interfacial composition for transfer from phase G to phase L.
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or

NAa dz ¼ KGaP(yA � yA) dz (31-31)

As the operating and equilibrium lines are straight, the difference in the ordinates of the

two lines must vary linearly in composition. Designating the difference yA � yA by D, we
see that this linearity stipulates

dD

dyA
¼ Dend1 � Dend2

yA1
� yA2

¼ D1 � D2

yA1
� yA2

(31-32)

For the transfer of A from the G phase into the L phase, we can combine the rate of mass

transfer from equation (31-31) and the mass balance for A using a modified component

of equation (31-30) to obtain

dz ¼ �G

KGaP
: dyA

yA � yA
¼ �G

KGaP
: dyA

D

dz ¼ �G

KGaP
: (yA1

� yA2
)

D1 � D2

: dD

D

(31-33)

Integrating over the length of the mass exchanger, we obtain

z ¼ G

KGaP
: (yA1

� yA2
)

D1 � D2

: ln D1

D2

or

z ¼ G

KGaP

yA1
� yA2

(yA � yA)lm
(31-34)

where

Dlm ¼ D1 � D2

ln D1/D2
¼ (yA � yA)lm

¼ (yA � yA)1 � (yA � yA)2
ln½(yA � yA)1/(yA � yA)2�

(31-35)

A similar expression in terms of the overall liquid-phase capacity coefficient is

z ¼ L(xA1
� xA2

)

KLac(x

A � xA)lm

(31-36)

where

(xA � xA)lm ¼ (xA � xA)1 � (xA � xA)2

ln ½(xA � xA)1/(x

A � xA)2�

(31-37)

EXAMPLE 6 Ammonia is to be absorbed from air at 293 K and 1.013�105 Pa pressure in a countercurrent,

packed tower, 0.5 m in diameter, using ammonia-free water as the absorbent. The inlet gas rate

will be 0:2 m3/s and the inlet water rate will be 203 kg/s. Under these conditions, the overall

capacity coefficient, KY, may be assumed to be 80
mole

m3 : s : DYA
. The ammonia concentration

will be reduced from 0.0825 to 0.003 mol fraction. The tower will be cooled, the operation thus

taking place essentially at 293 K; the equilibrium data of example 3 may be used. Determine

the length of the mass exchanger.
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The concentrations of three of the streams were given; these may be expressed on a NH3-free

basis by

YNH3,1 ¼
yNH3,1

1� yNH3,1
¼ 0:0825

0:9175
¼ 0:09

YNH3,2 ¼
yNH3,2

1� yNH3,2
¼ 0:003

0:997
¼ 0:003

and

XNH3,2 ¼ 0:0

The cross-sectional area of the tower is equal to
pD2

4
¼ p(0:5 m)2

4
¼ 0:196 m2. The gas enters the

exchanger at plane 1, and its flow

G ¼ VP

RT
: 1

A
¼ (0:20 m3/s)(1:013� 105 Pa)

8:314
Pa : m3

mol : K

� �
(293 K)

: 1

(0:196 m2)
¼ 42:4

mol

m2 : s

The NH3-free gas flow rate is

Gs ¼ G1(1� yNH3,1) ¼ 42:4
mol

m2 : s (0:9175) ¼ 38:9
mol

m2 : s
The NH3-free water flow rate is evaluated using the flow into the exchanger at plane 2.

Ls ¼ (203 g/s)
mol

18 g

� �
1

0:196m2

� �
¼ 57:5

mol

m2 : s

The liquid leaves the exchanger at plane 1; its concentration is evaluated, using the countercurrent

material balance equation

Gs(YNH3,1 � YNH3,2) ¼ Ls(XNH3,1 � XNH3,2)

38:9(0:09� 0:003) ¼ 57:5(XNH3,1 � 0)

XNH3,1 ¼ 0:059

The operating and equilibrium lines are shown in Figure 31.22.

YNH3

XNH3

XNH3,2 = 0

YNH3,2 = 0.003

YNH3,1 = 0.09

YNH3,1 = 0.059

YNH3
= 0.0425

YNH3
= 0.055

*

Figure 31.22 The operating line for example 6.
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As this is not a case inwhich the gas and liquid concentrations are dilute enough for us to assume

straight equilibrium and operating lines on the plot of y vs. x, the height of the tower must be

evaluated by the graphical integration procedure, using

z ¼ GS

KYa

ZYA1
YA2

dYA

YA � Y
A

z ¼
38:9

mol

m2 : s
80

mol

m3 : s : DYA

ZYNH3 ;1
YNH3 ;2

dYNH3

YNH3
� Y

NH3

In Table 31.1, YNH3
is the composition at a point on the operating line, and Y

NH3
is the composition on

the equilibrium line directly below the YNH3
value. An example of these compositions is illustrated in

Figure 31.21. The integral

ZYNH3 ;1
YNH3 ;2

dYNH3

YNH3
� Y

NH3

is graphically evaluated in Figure 31.23.

Table 31.1 Example 3 gas compositions

YA YA
 YA � Y

A 1/(YA � Y
A)

0.003 0 0.003 333.3

0.01 0.0065 0.0035 296

0.02 0.0153 0.0047 212.5

0.035 0.0275 0.0075 133.3

0.055 0.0425 0.0125 80.0

0.065 0.0503 0.0147 68.0

0.075 0.058 0.017 58.9

0.09 0.0683 0.0217 47.6

0.003

1
Y

N
H

3
–

Y
N

H
3

YNH3

0.09

100

200

300

*

Figure 31.23 Graphical evaluation

of the integral.
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The area under the curve is the numerical value of the integral. The resulting length of the mass

exchanger is

Z ¼
38:9

mol

m2 : s
80

mol

m3 : s : DYA

(10:95) ¼ 5:32 m

The integral
R YNH3 ;1
YNH3 ;2

dYNH3
YNH3�Y

NH3

can also be evaluated numerically using either a spreadsheet or a

mathematical software program.With the values forGs, Ls, yNH31
and XNH31

already determined, the

operating line equation becomes

GS(YNH3,1 � YNH3,z) ¼ LS(XNH3,1 � XNH3,z)

38:9
mol

m2 : s (0:09� YNH3,z) ¼ 57:7
mol

m2 : s (0:059� XNH3,z)

which upon rearrangement yields

XNH3;z ¼ 0:6765 YNH3;z � 0:0020

The equilibrium data for example 3, when fitted to a polynomial of the second order, can be represented

by

Y
NH3

¼ �2:6903 X2
NH3

þ 1:2953 XNH3
þ 0:0003

These two equations are used to develop the following table:

The integral
R YNH3,1
YNH3,2

dYNH3
YNH3�Y

NH3

equals 11.02 and the height of the mass exchanger is

Z ¼ GS

KYa

Z YNH3,1

YNH3,2

dYNH3

YNH3
� Y

NH3

Z ¼
38:9

mol

m2 : s
80

mol

m3 : s

(11:02) ¼ 5:36 m

YNH3
XNH3

Y
NH3

Y � Y
1

Y � Y
1

Y � Y

� �
avg

DYNH3

1

Y � Y

� �
avg

DYNH3

0.003 0 0 0.003 333.3

305.95 0.007 2.14

0.01 0.00476 0.06411 0.003589 278.6

236.95 0.01 2.37

0.02 0.01153 0.01488 0.00512 195.3

170.15 0.01 1.70

0.03 0.01830 0.02310 0.006897 145.0

128.5 0.01 1.28

0.04 0.02506 0.03107 0.008929 112.0

100.6 0.01 1.01

0.05 0.03182 0.03879 0.01121 89.2

81.03 0.01 0.81

0.06 0.03859 0.04628 0.01372 72.9

66.78 0.01 0.67

0.07 0.04536 0.05351 0.01648 60.66

55.98 0.01 0.56

0.08 0.05212 0.06050 0.01950 51.29

47.62 0.01 0.48

0.09 0.05889 0.06725 0.02275 43.96
Total area ¼ 11.02
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EXAMPLE 6 Recently enacted legislation requires that the effectiveness of the absorption system, currently

employed to reduce the level of a pollutant in a process off-gas, must be improved to meet new state

requirements. Under current operating conditions, 13.6 mol/s:m2 of off-gas flows countercurrent to

27.2 mol/s :m2 of water in the 12-m tall absorber. The concentration of A is reduced from 2 to

0.5 mol%.

It has been suggested that the required concentration level in the off-gas may be obtained by

doubling the water rate in the existing tower. Its diameter is large enough to permit this higher flow

rate. If it is assumed that the process is gas-film controlled and that the overall gas capacity

coefficient,KGa, is proportional to themass velocity of the solvent raised to the 0.4 power, determine

the concentration of A in the effluent gas when the same 12-m tower and the same gas mass velocity

are used with the doubled liquid flow rate.

Equilibrium for the system is defined by a modified Henry’s law; yA ¼ 1:5xA .
As the concentrations are in the dilute range where the equilibrium curve is a straight line, the

height of the tower may be evaluated by equation (31-34)

Z ¼ G(yA1
� yA2

)

KGaP(yA � yA)lm

An overall material balance on the existing system (system I) establishes the composition of its

exiting liquid stream.

G(yA1
� yA2

) ¼ L(xA1
� xA2

)

(13:6mol/s : m2)(0:02� 0:005) ¼ (27:2mol/s : m2)(xA1
� 0)

xA1
¼ 0:0075

The compositions at each end of the tower for the existing system are

Bottom : yA1
¼ 0:02

xA1
¼ 0:0075

yA1
¼ 1:5xA1

¼ 1:5(0:0075) ¼ 0:0113

Top : yA2
¼ 0:005

xA2
¼ 0:0

yA2
¼ 1:5xA2 ¼ 0:0

For the existing tower, (yA � yA)lm is evaluated by equation (31-35)

(yA � yA)lm ¼ (yA � yA)end1 � (yA � yA)end2

ln
(yA � yA)end1
(yA � yA)end2

� �

¼ (0:02� 0:0113)� (0:005� 0)

ln
(0:02� 0:0113)

(0:005� 0:0)

¼ 0:0067

Upon substituting the known values into equation (31-34), we obtain

12m ¼ (13:6mol/s : m2)(0:02� 0:005)

KGaIP(0:0067)

12m ¼ (13:6mol/s : m2)(2:24)

KGaIP

(31-38)

When we consider the proposed system (system II), we obtain the following relationship with

equation (31-34)

12 ¼ (13:6mol/s : m2)(0:02� yA2
)

KGaIIP(yA � yA)lm
(31-39)
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Upon equating and simplifying equations (31-38) and (31-39), we obtain

2:24

KGa I
¼ (0:02� yA2

)

KGa II(yA � yA)lm

����
II

or

KGa II(2:24)

KGa I
¼ (0:02� yA2

)

(yA � yA)lm

����
II

(31-40)

As the capacity coefficient is proportional to the mass velocity of the solvent raised to the 0.4 power,

the ratio of the capacity coefficients is

KGaII

KGaI
¼ LII

LI

� �0:4
¼ (54:4 mol/s : m2)(0:018 kg/mol)

(27:2 mol/s : m2)(0:018 kg/mol)

� �0:4
¼ 1:32

Accordingly, equation (31-40) becomes

0:02� yA2

(yA � yA)lm

����
II

¼ (1:32)(2:24) ¼ 2:95 (31-41)

This equation requires a trial-and-error solution. With a guess of yA2 ¼ 0:0021, we can make an

overall balance to establish xA1 for the proposed system.

G(yA1
� yA2

) ¼ L(xA1
� xA2

)

(13:6mol/s : m2)(0:02� 0:0021) ¼ (54:4mol/s : m2)(xA1
� 0:0)

xA1
¼ 0:0045

The compositions at each end of the proposed tower (system II) are

Bottom: yA1
¼ 0:02

xA1
¼ 0:0045

yA1
¼ 1:5xA1

¼ 1:5(0:0045) ¼ 0:0067

Top: yA2
¼ 0:0021 (estimated value)

xA2
¼ 0:0

yA2
¼ 1:5xA2 ¼ 1:5(0:0) ¼ 0:0

The (yA � yA)lm for the proposed tower is evaluated by equation (31-35)

(yA � yA)lm ¼ (yA � yA)end1 � (yA � yA)end2

ln

�
(yA � yA)end1
(yA � yA)end2

�

(yA � yA)lm ¼ (0:02� 0:0067)� (0:0021� 0:0)

ln
(0:02� 0:0067)

(0:0021� 0:0)

� � ¼ 0:00607

0:02� yA2

(yA � yA)lm
¼ 0:02� 0:0021

0:00607
¼ 2:95

This satisfies equation (31-41); as a result of the trial-and-error solution, the concentration ofA in the

effluent gas is 0.21%.
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Packed-Tower Diameter

The packed tower is the most commonly encountered continuous-contacting equipment in

gas–liquid operations. A variety of packing material is used, ranging from specially

designed ceramic or plastic packing, as illustrated in Figure 31.4, to crushed rock. The

packing is chosen to promote a large area of contact between the phases, with a minimum

resistance to the flow of the two phases. Table 31.2 lists some of the properties of packing

frequently used in the industry.

Table 31.2 Tower Packing Characteristicsy

Nominal size, in. (mm)

Packing 1
4 ð6Þ 1

2 ð13Þ 3
4 ð19Þ 1 (25) 1 1

2 ð38Þ 2 (50)

Raschig rings

Ceramic

e 0.73 0.63 0.73 0.73 0.71 0.74

cf 1600 909 255 155 95 65

ap ft
2/ft3 240 111 80 58 38 28

Metal

e 0.69 0.84 0.88 0.92

cf 700 300 155 115

ap ft
2/ft3 236 128 83.5 62.7

Berl saddles

Ceramic

e 0.60 0.63 0.66 0.69 0.75 0.72

cf 900 240 170 110 65 45

ap ft
2/ft3 274 142 82 76 44 32

Intalox saddles

Ceramic

e 0.75 0.78 0.77 0.775 0.81 0.79

cf 725 200 145 98 52 40

ap ft
2/ft3 300 190 102 78 59.5 36

Plastic

e 0.91 0.93

cf 33 56.5

ap ft
2/ft3 63 33

Pall rings

Plastic

e 0.90 0.91 0.92

cf 52 40 25

ap ft
2/ft3 63 39 31

Metal

e 0.94 0.95 0.96

cf 48 28 20

ap ft
2/ft3 63 39 31

yR. E. Treybal, Mass-Transfer Operations, McGraw-Hill Book Company, New York, 1980.
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We have previously established that the height of a continuous-contact tower is

determined by the rate of mass transfer. The diameter of the tower is established to handle

the flow rates of the two phases to be treated.

As illustrated in Figure 31.24, the pressure drop encountered by the gas phase as it flows

through the packing is influenced by the flow rates of both phases. This is to be expected

because both phases will be competing for the free cross section that is available for the

streams to flow through. Let us consider a tower operating with a fixed liquid flow rate, L0;
below the region marked A, the quantity of liquid retained in the packed bed will remain
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reasonably constant with changing gas velocities. As the gas flow rate increases, the

interphase friction increases and a greater quantity of liquid is held up in the packing. This is

known as loading.Finally, at a certain value of the gas flow rate,G0, the holdup is so high that
the tower starts to fill with liquid. The tower cannot be operated above this flooding velocity,

which is a function of the liquid velocity, the fluid properties, and the characteristics of the

packing.

In Figure 31.25, a correlation is given for the flooding velocity in a random packed

tower. Absorbers and desorbers are designed to operate well below the pressure drop that

is associated with flooding. Typically, they are designed for gas pressure drops of

200–400 N/m2 per meter of packed depth. The abscissa on this figure involves a ratio of

the superficial liquid and gas-mass flow rates and the densities of thegas and liquid phases. The

ordinate involves the superficial gas-mass flow rate, the liquid-phase viscosity, the liquid

and gas densities, a packing characteristic, cf, which can be obtained fromTable 31.2, and two

constants. For SI units, gc equals 1, and J equals 1; for U.S. English units,mL is in centipoise,

densities are in lbm/ft
3, mass flow rates are in lbm/(ft

2)(h), gc equals 4.18� 108, and

J equals 1.502.

Example 8 will illustrate howwemay evaluate the diameter of a packed tower by using

Figure 31.25.

EXAMPLE 8 A packed tower is to be used to reduce the ammonia concentration in the gas stream from 4 to 0.3%

by volume. A water stream is fed to the top of the tower at a rate of 231 g/s and the gas is fed

countercurrently at a rate of 0.2 m3/s. The tower, which is packed with 2.54-cm (1-inch) Raschig

rings, is operated isothermally at 293 K and 1.013� 105 Pa.

Determine (a) the composition of the exiting liquid stream; (b) the diameter of the absorption

tower if the gas pressure drop is limited to 200 N/m2 per meter of packing.

The concentration of the three known streams may be expressed on a NH3-free basis

YNH3,1 ¼
yNH3,1

1� yNH3,1
¼ 0:04

0:96
¼ 0:0417

YNH3,2 ¼
yNH3,2

1� yNH3,2
¼ 0:003

0:997
¼ 0:003

XNH3,2 ¼ 0:0

The gas enters the tower at plane 1, and its molar flow rate is

G1 ¼
_VP

RT
: 1

A
¼

0:20
m3

s

� �
(1:013� 105 Pa)

8:314
Pa : m3

mol : K

� �
(293K)

: 1

A
¼ 8:317

mol

s
: 1

A

GS ¼ G1(1� yNH3,1) ¼ 8:317
mol

s
: 1

A
(0:96) ¼ 7:98

mol

s
: 1

A

The NH3-free water flow rate is

LS ¼ L2(1� xNH3;2) ¼ 231
g

s
: mol

18 g
: 1

A
¼ 12:83

mol

s
: 1

A

By an overall balance for ammonia, the concentration of the exiting liquid stream can be established.

LS(XNH3,1 � XNH3,2) ¼ GS(YNH3,1 � YNH3,2)

12:83
mol

s
: 1

A
(XNH3,1 � 0) ¼ 7:98

mol

s
: 1

A
(0:0417� 0:003)

XNH3,1 ¼ 0:024
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or

xNH3,1 ¼
XNH3,1

1þ XNH3,1
¼ 0:024

1:024
¼ 0:0234

The liquid flow rate at end 1 is

L1 ¼ LS

1� xNH3,1
¼

12:83
mol

s
: 1

A
1� 0:0234

¼ 13:13
mol

s
: 1

A

The maximum mass flow rates for both phases will occur at end 1. Accordingly, we will use these

flow rates to determine the diameter of the tower.

On a unit-area basis, the liquid stream at end 1 will contain 12.83 mol/s and H2O 13:13�
12:83 ¼ 0:3 mol/s NH3. The total mass flow rate is

12:83
mol H2O

s
: 1

A
: 18 g

mol

� �
þ 0:3

mol NH3

s
: 1

A
: 17 g

mol

� �
¼ 236:1

g

s
: 1

A

The average molecular weight of the gas is

0:04
molNH3

mol

� �
17 g

mol

� �
þ 0:96

mol air

mol

� �
29 g

mol

� �
¼ 28:5

g

mol

The total gas-mass flow rate is

8:317
mol

s
: 1

A

� �
28:5

g

mol

� �
¼ 237

g
s
: 1

A

The ratio of the two mass flow rates is

L0

G0 ¼
236:1

g
s

� � 1

A

� �
237

g
s

� �� 1
A

 ¼ 0:996

Note that this ratio can be evaluated without knowing either the diameter or the cross-sectional area.

The density of the gas stream entering the tower is

rG ¼ n

V
MW ¼ P

RT
MW ¼ 1:013� 105 Pa

8:314
Pa : m3

mol : K

� �
(293K)

: 28:5 g

mol

¼ 1185 g/m3 ¼ 1:185 kg/m3

The density of the dilute aqueous streamwill be essentially that of water at 293K that is 998.2 kg/m3.

The abscissa for Figure 31.25 becomes

L0

G0
rG

rL � rG

� �1=2

¼ 0:996
1:185

998:2� 1:185

� �1/2
¼ 0:034

At a pressure drop of 200N/m2 permeter of packing, this abscissa value indicates an ordinatevalue of

0.049; consequently

0:049 ¼ (G0)2cf (mL)
0:1J

rG(rL � rG)gc

Upon rearrangement

(G0)2 ¼ 0:049rG(rL � rG)gc

cf (mL)
0:1J
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From Table 31.2, we evaluate the cf for 1-in. Raschig rings to be 155. The viscosity of the

aqueous stream at 293 K is given in Appendix Table I to be 993�10�6 Pa: s.

(G0)2 ¼
0:049 1:185

kg

m3

� �
998:2� 1:185

kg

m3

� �
(1:0)

(155)(993� 10�6 Pa : s)(1:0) ¼ 0:745

G0 ¼ 0:863
kg

m2 : s ¼ 863
g

m2 : s

As the gas feed rate,G0, to the tower is equal to 237
g

s
: 1

A
and 863

g

m2: s, the cross-sectional area of
the tower is

A ¼
237

g
s

863
g

m2 : s
¼ 0:275 m2

The area is
pD2

4
; accordingly, the diameter is

D ¼ (0:275m2)(4)

p

� �1/2
¼ 0:59m

31.7 CLOSURE

Continuous-contact mass exchangers are designed by integrating an equation that relates

the mass balance and themass-transfer relations for a differential area of interfacial contact.

In this chapter, we have described the four major types of mass-transfer equipment.

The fundamental equations for the design of continuous-contact equipment have been

developed. A mass balance for the diffusing component A in terms of solute-free con-

centration units produced the following important operating line equations:

steady-state countercurrent operations

GS(YA1
� YA2

) ¼ LS(XA1
� XA2

)

and

GS dYA ¼ LS dXA

steady-state cocurrent operations

GS(YA1
� YA2

) ¼ LS(XA2
� XA1

)

and

GS dYA ¼ �LS dXA

Because of the difficulty inmeasuring the interphase contact areawithinmostmass-transfer

equipment, the factor a, the interphase surface area per unit volume of the mass exchanger,

was introduced. The product of themass-transfer convective coefficient and the factor awas

designated the mass-transfer capacity coefficient. The mass transferred in a differential

length per cross-sectional area was expressed in empirical equations, one of which was

NAa dz ¼ KGa( pA,G � pA) dz
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For equipment involving the continuous-contact between two immiscible phases, the

differential mass balance and the differential mass-transfer equations were combined to

produce the following design equations:

Constant overall capacity coefficient KYa

z ¼ GS

KYa

ZYA1

YA2

dYA

(YA � Y
A)

The integral evaluation must be accomplished graphically.

Variable overall capacity coefficient-allowance for resistance in both gas and liquid phases

z ¼
ZYA1
YA2

GS dyA

kG a P(yA � yAi)(1� yA)
2

This integral is also evaluated graphically.

Straight equilibrium and operating lines on the x–y coordinates—the logmean driving force

z ¼ G(yA1
� yA2

)

kGaP(yA � yA)lm

where

(yA � yA)lm ¼ (yA � yA)1 � (yA � yA)2
ln½(yA � yA)1/(yA � yA)2�

The similarity between mass and energy transfer was further emphasized in this

chapter. Using a combined term representing the total resistance, kGa as compared to UA,

and a total resistance, (pA,G -- p
A
) as compared to DToverall, we have obtained design

equations for mass exchangers by integrating over the area of contact.

PROBLEMS

31.1 A 283-m3(10,000 ft3) basin is to be aerated with six

spargers, each sparger using air at the rate of 7:08� 10�3 m2/s.

If 283 K wastewater, initially containing a dissolved oxygen

level of 5�10�3 mmol/L and filling the basin to a depth of

4.55 m, is aerated for 9000 s, evaluate the final dissolved oxygen

level. The dissolved solids content will be low enough so that

Henry’s law will be obeyed, with a Henry’s law constant of

3:27� 104 atm/mole fraction.

31.2 An ozone, O3, sparger system has been proposed for a

water-treatment plant. The incoming water in a 80m3 pond has

been stripped of all ozone-demanding substances, and the pH

is sufficiently low such that the ozone decomposition will be

insignificant. The ozone bubbler will have eight spargers, each

using a compressed gas feed containing 4 mol % ozone. The

spargers will be located 3.2 m below the surface of the pond and

each sparger’s gas rate will be 17.8 m3/h. Henry’s law constant

for the ozone–water system will be 0.0677 atm/(mol/m3)

a. Use the Eckenfelder plot for oxygen transfer factor,

kLðA/VÞ, and evaluate the kLðA/VÞ for ozone, recalling that

the penetration theory predicts, for mass transfer from gas

bubbles into liquids, that kLðA/VÞ will be proportional to the
liquid diffusivity raised to the power of 1/2. The diffusivity

of oxygen in water is 2:14� 10�5 cm2/s and the diffusivity

of ozone into water is 1:7� 10�5 cm2/s.

b. Determine the time required to raise the initially ozone-free

water in the pond to a concentration level of 0.15 mol/m3.

31.3 A 425-m3ð15,000 ft3Þ basin filled with wastewater is to be
aerated with 10 spargers, each sparger using air at the rate of

7:08� 10�3 m2/s. Find the time that is necessary to raise the

dissolved oxygen level in the wastewater from 8� 10�2 to

2� 10�1 mmol/L if the temperature of the water is 283 K and

the depth of the water above the spargers is 3.2 m. The dissolved

solids content will be low enough so that Henry’s law will be

obeyed,withaHenry’slawconstantof3.27�104atm/molefraction.

31.4 A 425-m3(15,000 ft3) basin, equipped with 10 gas dis-

persers of a new design, is to be installed for stripping

hydrogen sulfide, H2S, from wastewater. The dispensers, each

to use air at a rate of 7:08� 10�3 m3/s, will be located at a depth
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of 3.2 m (10.5 ft) below the liquid surface. A preliminary

analysis of the 283 K wastewater indicates an initial H2S

concentration of 0.3 mmol/L.

In a pilot investigation of the proposed new dispenser, the

designated flow rate of 7:08� 10�3 m3/s was discharged from a

single dispenser located at 3.2 m below the surface of the water

held in a 28.3-m3 (1000-ft3) tank. This water was maintained at

283 K. After 4 h of aeration, the dissolved oxygen concentration

increased from 0.04 to 0.25 mmol/L. Based upon this pilot

investigation, determine

a. the KLa for oxygen for this new dispenser when it is

operated 3.2 m below the liquid surface with the air flow

rate of 7:08� 10�3 m3/s. At 283 K, Henry’s law constant

for the oxygen–water system is 3.27�104 atm/mole fraction.

b. the KLa for H2S for this new dispenser when it is operated

3.2 m below the liquid surface with the air flow rate of

7:08� 10�3 m3/s. If the penetration-theory model holds,

the capacity coefficient, KLa, is proportional to the liquid

mass diffusivity raised to the power of 1/2. The liquid diffu-

sivity of oxygen in water at 283 K is 2.14� 10�5 cm2/s and of

H2S in water at 283 K is 1.4� 10�5 cm2/s.

c. the concentration of H2S in the 425-m3 basin after 4h of

operation if the wastewater’s initial H2S concentration is

0.3 mmole/L. Henry’s law constant forH2S–water system at

283 K is 0.0367�104 atm/mole fraction.

31.5 An exhaust stream leaving a semiconductor fabrication

plant contains 4 mol % volatile organic chemical, VOC, pollu-

tant. Twenty-five cubic meters per minute enter the bottom of a

packed absorption tower and flows countercurrent to an initially

VOC-free solvent stream that was fed to the top of the tower.

At the given temperature and pressure of the system, the equi-

librium of the system will obey Henry’s law as represented by

YVOC ¼ 0:236XVOC

a. Determine the moles of solvent required per mole of VOC-

free carrier gas if the exiting gas stream is to contain only

0.2 mol %VOC and if 1.5 times the minimum solvent is used.

b. Determine the mole fraction composition of the exiting liquid.

31.6 It is desired to strip trichloroethylene, O2HCl3, from a

contaminated groundwater stream. The groundwater, which can

be treated as a dilute water stream, will be fed to the top of the

tower operating at 288 K and 1.013�105 Pa. An air stream,

flowing countercurrent to the aqueous stream, is to reduce the

TCE concentration from 40 to 5mg=L. At 288 K, the Henry’s

law constant for TCE–air system is 11.7�10�3 atm/(mol/m3).

a. Determine the moles of wastewater per mole of air if three

times the minimum air stream is used.

b. Determine the concentration of the exiting air stream.

31.7 The absorber for Problem 31.5 would have been exces-

sively tall; accordingly, various schemes are being considered

for using two shorter absorbers side by side. Make freehand

sketches of operating diagrams, showing the operating line for

each tower and the equilibrium line relative to the operating

lines, for each scheme. Indicate, in general, where the concen-

trations of each stream will be with respect to each other, but do

not compute the actual concentration.

X2,a
X2,b

X2,a

X2,a

Y2,a

Y2,b

Y2,b

Y2,a

X2,b

X2,b

Y1,bY1,a

Y1,a

X1,a Y1,b
X1,b

Scheme (II)

Scheme (I)

Scheme (III)

X1,a

Y2,a

Y2,b

X2,b

X1,b

Y1,b

X1,a

Y1,a

(b)(a)

(b)(a)

(b)(a)
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31.8 Another designer was asked to propose a design for the

stripping of a pollutant from a liquid solution. He decided to use

the same schemes of two towers side by side as shown in Prob-

lem 31.7. Make freehand sketches of operating diagrams, show-

ing the operating line for each tower and the equilibrium line

relative to the operating lines, for each scheme. Indicate, in gene-

ral, where the concentrations of each stream will be with respect

to each other, but do not compute the actual concentration.

31.9 An absorber is being used by an industrial company as a gas

scrubber.Adilute air–ammoniamixture, containing5.0mol%NH3

is drawn through the tower countercurrent to an initially ammonia-

freewater stream.The inlet gas stream rate is 136mol/m2: s and the
inlet NH3 -free water rate is 3.4 kg/m2: s. At the temperature and

pressureoftheabsorber,theequilibriumconcentrationsarerelatedby

yNH3
¼ 1:075 xNH3

If the exiting gas stream is to contain only 0.2 mol % ammonia,

determine

a. the composition of the exiting liquid stream;

b. the ratio of the actual Ls/Gs is larger than the minimum Ls/Gs.

c. the composition of the liquid stream flowing by the gas

stream when the gas mixture contains 2.0 mol % ammonia.

31.10 The absorber used in Problem 31.9 is now going to be

used by the same industrial company to reduce a dilute air–

ammonia mixture from 4.93 mol % NH3 to the desired 0.2

mol%NH3. The inlet gas rate will be 136mol/m2: s and the inlet
NH3 -free water rate will flow countercurrent to the rising gas

stream, flowing at an actual Ls/Gs ratio that is 1.4 times the

minimum Ls/Gs ratio. At that flow rate, the overall mass-transfer

capacity coefficient,KYa, is estimated tobeequal to107 mol/m2:
s : DYA. At the temperature and pressure of the absorber, the

equilibrium concentrations are related by

yNH3
¼ 1:075 xNH3

Determine

a. the kg of ammonia absorbed per second per square meters of

cross-sectional area;

b. the height of packing required for the absorption process.

31.11 A scheme for the removal of H2S from a gas stream by

scrubbing with water at 293 K and 1.013�105 Pa is being

considered. The liquid will initially contain 3.7 mol % H2S. It

is desired that the exiting gas stream contains only 0.2 mol %

H2S. The absorbing water will enter at the top of the tower that is

H2S free. At the given temperature and pressure of the system,

the equilibriumofH2S–waterwill obeyHenry’s lawaccording to

the following relationship:

YH2S ¼ 48:3XH2S

a. For a countercurrent absorber, determine the moles of water

that are required per mole of H2S-free carrier gas if 1.5 times

the minimum ratio will be used.

b. Determine the composition of the exiting liquid.

31.12 Benzene freed from coal gas in a scrubber is recovered

by passing the benzene–wash oil solution through a tower in con-

tact with steam. The entering liquid stream contains 7mol%ben-

zene and the steam is benzene free. It is desired to recover 85% of

the benzene by using a steam rate 1.4 times the minimum steam

rate. A wash-oil (liquid solvent-benzene free) flow rate of 6.94

mol/s will be used. Determine the required moles of steam if

a. a countercurrent tower is used;

b. a cocurrent tower is used.

Equilibrium data for the benzene–wash oil–steam system are as

follows

31.13 An absorber is to be designed to remove a VOC pollutant

from an exhaust gas stream. Fifteen cubic meters per minute of

gas at 289 K and 1.013�105 Pa containing 5.0 mol % VOC is

fed to the bottom of the absorption tower. By feeding a VOC-free

solvent stream to the top of the tower, the VOC concentration

is reduced to 0.3 mol %. The solvent stream leaves the tower con-

taining 3.65 mol %VOC.With the specified stream flow rates, the

overall mass-transfer capacity coefficient, KYa, equals 52.0 mol/

s :m2 :DYA. The cross-sectional area of the tower is 0.2 m2.

At 298 K, the equilibrium for the VOC-solvent systemmay

be represented by

YA ¼ 0:8XA

Determine the hight of the tower.

31.14 A tower, 15 cm in diameter, is to be used to lower the

ammonia, NH3, concentration in a gas stream from 3.6 to

0.3 mol %. Water is fed to the top of the tower at a rate of

14.5 mol/s and the gas stream is fed to the bottom at a rate of

8 mol/s. The tower operates isothermally at 293 K and 1.013�
105 Pa. The overall mass-transfer capacity coefficient,KYa, may

be assumed to equal 71 mol/m2: s :DYA. The equilibrium data

at 293 K are as follows:

Evaluate

a. the ratio (LS/GS)actual to (LS/GS)minimum;

b. the height of tower required, by graphical integration.

31.15 A tower, 15 cm in diameter, is to be used to lower the

ammonia, NH3, concentration in a gas stream from 3.6 to

X
mole benzene

mole wash oil
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Y
mole benzene

mole steam
0.00 0.07 0.14 0.22 0.31 0.405 0.515 0.65

X
mole NH3

mole NH3-free water
0.00 0.0164 0.0252 0.0349 0.0445 0.0722

Y
mole NH3

mole NH3-free air
0.00 0.021 0.032 0.042 0.053 0.080
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0.3 mol %. Water is fed to the top of the tower at a rate of

14.5 mol/s and the gas stream is fed to the bottom at a rate of

8 mol/s. The tower operates isothermally at 293 K and

1.013�105 Pa. The overall mass-transfer capacity coefficient,

KYa, may be assumed to equal 71 mol/m2 : s :DYA. The equili-
brium data at 293 K are as follows:

Determine the height of the tower using a modified Equa-

tion (31-34).

31.16 A mass-transfer tower is to be designed for reducing a

VOC concentration from 0.0394 to 0.0131 mg mol/L. Five

thousand gallons per hour of wastewater will be fed to the

0.6 m diameter tower, countercurrent to a stripping air stream

that will enter the tower free of any VOC. If a volumetric flow

rate QL(m
3/h) to a gas flow rate G(mol/h) of 1.5 is used, the

overallmass-transfer capacity coefficient,KLa, will equal 0:01/s.
The equilibriumdata at the pressure and temperature of the tower

are

Determine

a. the minimum gas flow rate that might be used;

b. the height of the tower.

31.17 The absorption of water in sulfuric acid is an exothermic

process. Describe the effect this would have on the required

height of amass-transfer column as compared to the height that is

evaluated if isothermal conditions are assumed.

31.18 An absorber is to be designed to reduce the concentra-

tion level of a mercaptan pollutant in an exhaust stream from 5.0

to 0.3 mol %. A nonvolatile, mercaptan-free solvent stream will

be fed to the top of the tower and will flow countercurrent to

0.236 m3/s of exhaust gas stream. The tower is to operate at

293 K and 1.013�105 Pa; at these conditions, the equilibrium

data for the mercaptan-solvent system are as follows:

Determine the height of packing required if the solvent

leaves the bottom of the tower containing 3.05 mol % mer-

captan, the overall mass-transfer capacity coefficient, KYa,

equals 40.0 mol/m2.s.DYA, and the cross-sectional area of the

tower is 0.2 m2.

31.19 An absorber packed to the height of 4.5 m with 1.0-in.

Raschig rings has been designed to reduce the concentration

level of a mercaptan pollutant in an exhaust stream from 5.0 to

0.3 mol %. A nonvolatile, mercaptan-free solvent stream will be

fed to the top of the tower and will flow countercurrent to

0.236 m3/s of the exhaust gas stream. The solvent leaves the

bottom of the tower containing 3.05 mol % mercaptan. At the

pressure and temperature of the tower, 293 K and 1.013�105 Pa,

the equilibrium data for the mercaptan-solvent system are as

follows:

Determine the diameter of the tower if the gas pressure drop

within the packing is limited to 300 N/m3 of packing. The gas

enters the tower with an average molecular weight of 30.1 and

the liquid stream, leaving the bottom of the tower, has an average

molecular weight of 180, a specific gravity of 0.81 and a

viscosity of 3.9�10�3 Pa: s.
31.20 An absorber is to be designed for reducing a process off-

gas, initially containing 12.5% to 0.4%HCl by volume.HCl-free

water at 293 K and 1.013�105 Pa pressure will be fed to the top

of a packed, 0.6-m-diameter column, flowing countercurrent to

the rising gas stream. Preliminary design calculations indicate

that an operating Ls/Gs ratio should be 1.64 times the minimum

Ls/Gs ratio. With these flow rates, the overall mass-transfer

capacity coefficient, KGa, may be taken as 8.8 kg mol/m3: s: Pa.
The equilibrium relation for solutions of HCl in water at 293K is

given by the following data:

Determine

a. the percentage of HCl to be removed by the absorption

process;

b. the exit concentration of the acid stream;

c. If 5 m3/min of process off-gas, measured at 293 K and

1.013�105 Pa pressure, are blown into the tower, determine

the height of ceramic packing required in the absorber.

cA, moles VOC/m3 0.014 0.0240 0.0349 0.0498

yA,VOC 0.018 0.030 0.042 0.053

X
moles mercaptan

mole mercaptan-free solvent
0.00 0.01 0.02 0.03 0.04

X
moles mercaptan

mole mercaptan-free air
0.00 0.0045 0.0145 0.0310 0.0545

X
mole NH3

mole NH3-free water

0.00 0.0164 0.0252 0.0349 0.0445 0.0722

Y mole NH3

mole NH3-free air
0.00 0.021 0.032 0.042 0.053 0.080

X
moles mercaptan

mole mercaptan-free solvent
0.00 0.01 0.02 0.03 0.04

Y
moles mercaptan

mole mercaptan-free air

0.00 0.0045 0.0145 0.0310 0.0545

XHCl 0.210 0.243 0.287 0.330 0.353 0.375 0.400 0.425

YHCl 0.0023 0.00956 0.0215 0.0523 0.0852 0.135 0.203 0.322
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Nomenclature

a interphase mass-transfer area per unit volume; ft2/ft3, m2/m3.

a acceleration; ft/s2, m/s2.

ap packing characteristic; ft2/ft3, m2/m3.

A area; ft2, m2.

Ai interphase mass-transfer area; ft2, m2.

Ap projected area of surface; ft2, m2; equation (12-3).

c total molar concentration; lb mol/ft3; mol/m3.

cA concentration of A in equilibrium with the bulk composition of gas phase,

PA:G; lb mol/ft3; mol/m3.

cAo concentration of A at time t ¼ 0; lb mol/ft3; mol/m3.

cA,i liquidmolar concentration ofA at the interface; lbmol/ft3, mol/m3; Section 29.2.

cA,L liquid molar concentration of A in the bulk stream; lb mol/ft3, mol/m3;

Section 29.2.

cA,s concentration of A at the surface; lb mol/ft3, mol/m3.

cA;1 concentration of A in the bulk stream; lb mol/ft3, mol/m3.

ci molar concentration of species i; lb mol/ft3, mol/m3; equation (24-4).

cp heat capacity; Btu/lb 8F, J/kg K.

C dimensionless concentration; dimensionless.

C
�

average random molecular velocity; m/s; Sections 7.3 and 15.2.

CC capacity rate of cold fluid stream; Btu/h 8F, kW/K; equation (22-1).

CD drag coefficient; dimensionless; equation (12-3).

Cf coefficient of skin friction; dimensionless; equation (12-2).

Cf packing characteristic; dimensionless.

CH capacity rate of hot fluid stream; Btu/h 8F, kW/K; equation (22-1)

Csf correlating coefficient for nucleate boiling; dimensionless; Table 21.1.

dc diameter of cylinder; ft, m.

dp diameter of spherical particle; ft, m.

D tube diameter; ft, m.

DAB mass diffusivity or diffusion coefficient for component A diffusing through

component B; ft2/h, m2/s; equation (24-15).

DAe effective diffusion coefficient of species A within straight pores; ft2/s, m2/s.

D0
Ae effective diffusion coefficient of species A within random pores; ft2/s, m2/s.

DA,mix diffusion coefficient of species A in a multicomponent mixture; ft2/s, m2/s.

Deq, equivalent diameter; ft, m; equation (13-18).

DKA Knudsen diffusion coefficient of species A; ft2/s, m2/s.

Do
AB diffusion coefficient of solute A in solvent B at infinite dilution; ft2/s, m2/s.

dpore pore diameter; A
�
, nm.

ds molecular diameter; A
�
, nm.

e pipe roughness; in., mm; Section 13.1.
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e specific energy or energy per unit mass; Btu/lbm, J/kg; Section 6.1.

E total energy of system; Btu, J; Section 6.1.

E total emissive power; Btu/h ft2, W/m2; equation (23-2).

E electrical potential; V; Section 15.5.

Eb blackbody emissive power; Btu/h ft2, W/m2; equation (23-12).

f dependent variable used in the Blasius solution of boundary layer; dimension-

less; equation (12-13).

f0 similarity parameter for convective analysis of boundary layer, prime denotes

derivative with respect to h; dimensionless; equation (19-16).

fD Darcy friction factor; dimensionless; equation (13-4).

ff Fanning friction factor; dimensionless; equation (13-3).

F force; lbf, N; Section 1.2.

F correction factor for compact heat-exchanger configurations; dimensionless;

equation (22-14).

Fii view factor for radiant heat transfer; dimensionless; Section 23.7.

Fij reradiating view factor; dimensionless; Section 23.9.

g acceleration due to gravity; ft/s2, m/s2.

gc dimensional conversion factor; 32.2 ft lbm/lbf s
2, 1 kg �m/s2 � N.

G irradiation; Btu/h ft2, W/m2; Section 23.7.

G mass velocity; lbm/ft
2 h, g/m2 � s.

G total moles of the gas phase per time per cross-sectional area; lb mol/ft2 h,

g mol/m2 � s:
G0 superficial gas-mass flow rate; lbm/h ft2; Section 31.6.

Gb mass velocity of bubbles; lbm/ft
2 s, kg/m2 � s; equation (21-4).

GM molar velocity; lb mol/ft2 h, g mol=m2 � s.
Gs moles of gas stream on a solute-free basis per time per cross-sectional area; lb

mol/ft2 h, g mol/m2 � s.
h convective heat-transfer coefficient; Btu/h ft2 8F, W/m2 � K; equation (15-11).

h fg; solute heat of vaporization of solute; Btu/lbm, kJ/kg.

hL head loss, DP/r; ft lbf/lbm, Pa/(kg/m3); Section 13.1.

hr radiation heat-transfer coefficient; Btu/h ft2 8F, W/m2 � K; Section 23.12.

H Henry’s law constant; concentration of gas phase/concentration of liquid phase.

H moment of momentum; lbm ft2/s, kg �m2/s; equation (5-7).

Hi enthalpy of species i; Btu, J.

DHs integral heat of solution; Btu/lb mol of solute; J/g mol of solute.

DHv,A enthalpy of vaporization for species A; Btu/lb mol, J/g mol.

H
¯
i partial molar enthalpy of species i; Btu/lb mol, J/mol.

I intensity of radiation; Btu/h ft2, W/m2; Section 23.3.

j0 j factor for heat transfer with tube bundles; dimensionless; Figures 20.12

and 20.13.

jD j factor for mass transfer, Chilton-Colburn analogy; dimensionless.

jH j factor for heat transfer, Colburn analogy; dimensionless; equation (19-38).

ji mass flux relative to the mass-average velocity; lbm/ft
2 h, kg/m2 � s;

equation (24-17).

J radiosity; Btu/h ft2, W/m2; Section 23.10.

Ji molar flux relative to the molar-average velocity; lb mol/h ft2, mol/m2 � s;
equation (24-15).

k thermal conductivity; Btu/h ft 8F, W/m � K; equation (15-1).

k rate constant for chemical reaction, used to define rA and RA; Section 25.1.
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k0 mass-transfer coefficient with no net mass transfer into film; lb mol/ft2 s DcA ;

mol/m2 � s � DcA.
kc convective mass-transfer coefficient; lb mol/ft2 h DcA; mol/m2 � s �mol/m3.

kc mean convective mass-transfer coefficient; lb mol/ft2 h DcA ; mol/m2 � s �
mol/m3.

kG convective mass-transfer coefficient in the gas phase; lb mol/ft2 h atm,

mol/m2 � s � Pa.
kL convective mass-transfer coefficient in the liquid phase; lb mol/ft2 h lb mol/ft3,

mol/m2 � s �mol/m3.

kGa individual gas-capacity coefficient; lb mol/h ft3 atm, mol/s �m3 � Pa.
kLa individual liquid-capacity coefficient; lb mol/h ft3DcA; mol/s �m3 �mol/m3.

KG overall mass-transfer coefficient in the gas phase; lb mol/h ft2 atm,

mol/s �m2 � Pa.
KL overall mass-transfer coefficient in the liquid phase; lb mol/h ft2DcA; mol/s �

m2 �mol/m3.

KGa overall gas-capacity coefficient; lb mol/h ft3 atm, mol/s �m3 � Pa.
KLa overall liquid-capacity coefficient; lb mol/h ft3DcA;mol/s �m3 �mol/m3.

KXa overall liquid-capacity coefficient based on DXA driving force; lb mol/h

ft3DXA, mol/s �m3 � DXA.

KYa overall gas-capacity coefficient based on DYA driving force; lb mol/h

ft3DYA, mol/s �m3 � DYA.
L mixing length; equations (12-52), (19-41), and (28-43).

L characteristic length; ft, m.

L total moles of liquid phase per time per cross-sectional area; lb mol/h ft2,

mol/s �m2.

Leq equivalent length; ft, m; equation (13-17).

Lm molar liquid-mass velocity; lb mol/h ft2, mol/s �m2.

Ls moles of liquid phase on a solute-free basis per time per cross-sectional area;

lb mol/h ft2, mol/s �m2.

m mass of molecule; Section 7.3.

m relative resistance ¼ DAB/kcx1; dimensionless; Section 27.4.

m slope of the equilibrium line; units of gas concentration per units of liquid

concentration.

M moment; lbm ft2/s2, kg �m2/s2.
Mi molecular weight of species i; lb/lb mol, kg/kg mol.

n packed bed constant; dimensionless; equation (30-33).

n number of species in a mixture; equations (24-1), (24-3), and (24-6).

n relative position ¼ x/x1; dimensionless; Section 27.4.

N molecules per unit volume; Section 7.3.

n outward directed unit normal vector; Sections 4.1, 5.1, 6.1.

ni number moles of species i.

ni mass flux relative to a set of stationary axes; lbm/h ft2, kg/s �m2.

Ni molar flux relative to a set of stationary axes; lb mol/h ft2, mol/s �m2.

NTU number of transfer units; dimensionless; Section 22.4.

pA partial pressure of A in equilibrium with bulk composition in liquid phase,

cA,L; atm, Pa.

pA,G partial pressure of component A in the bulk gas stream; atm, Pa; Section 29.2.

pA,i partial pressure of component A at the interface; atm, Pa; Section 29.2.

pi partial pressure of species i; atm, Pa.

pB,lm log mean of partial pressure of the nondiffusing gas; atm, Pa.
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P total pressure; atm, Pa.

P power input for stirred tank of liquid; N �m/s.W.

PA vapor pressure of pure volatile liquid species A; lbf /in:
2, Pa.

P total linear momentum of system; lbm ft/s, kg �m/s; equation (5-1).

Pc critical pressure; atm, Pa.

Pi vapor pressure of species i; atm, Pa.

Pg power input for aerated stirred tank of liquid; N �m/s., W.

q heat flow rate; Btu/h, W; equation (15-1).

q̇ volumetric energy generation rate; Btu/h ft3, W/m3; equation (16-1).

Q heat transfer; Btu, J; Section 6.1.

Q activation energy for solid diffusion coefficient; J/g mol.

r radial distance in both cylindrical and spherical coordinates; ft, m.

r radius; ft, m.

rcrit critical radius of insulation; ft, m; equation (17-13).

R radius of sphere, ft, m.

R gas constant; 0.73 atm ft3/lb mol 8F, 8:314 Pa �m3/mol � K.
Rt thermal resistance; h �F/Btu, K/W; equation (15-16).

rA rate of the production of mass Awithin the control volume; lbm/ft
3 h; kg/m3 � s.

RA rate of production of moles A within control volume; lb mol/ft3 h; mol/m3 � s.
s surface renewal factor.

S shape factor; ft or m; equation (15-19).

S partition coefficient for dissolution of a gas into a solid; kg mol/m3 � Pa.
t time; h, s.

texp time of exposure; s.

T absolute temperature; 8R, K.
T dimensionless temperature; dimensionless.

Tb normal boiling temperature; K.

Tc critical temperature; K.

Tf film temperature; 8F, K; equation (19-28).

Tsat temperature of saturated liquid-vapor mixtures; 8F, K; Figure 21.1.

u mean molecular speed; ft/s, m/s.

U overall heat-transfer coefficient; Btu/h ft2 8F, W/m2 � K; equation (15-17).
_V volumetric flow rate of fluid; ft3/s, m3/s.

vx x component of velocity, v; ft/s, m/s.

vy y component of velocity, v; ft/s, m/s.

vz z component of velocity, v; ft/s, m/s.

v1 free stream velocity of flowing fluid; ft/s, m/s.

vþ dimensionless velocity.

v velocity, ft/s, m/s.

v mass-average velocity for multicomponent mixture; ft/s, m/s equation (24-13).

vi velocity of species i; ft/s, m/s.

vi � v diffusion velocity of species i relative to mass-average velocity; ft/s, m/s;

Section 24.1.

vi � V diffusion velocity of species i relative to the molar-average velocity; ft/s, m/s;

Section 24.1.

V volume; ft3, m3.

Vb molecular volume at the normal boiling point, cm3/g mol.

Vc critical molecular volume; cm3/g mol.

V molar-average velocity; ft/s, m/s equation (24-14).

W work done; Btu, J; Section 6.1.
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wA mass rate of flow of species A; lbm/h, g/s.

Ws shaft work; Btu, J; Section 6.1.

Wd normal stress work; Btu, J; Section 6.1.

Wt shear work; Btu, J; Section 6.1.

x rectangular coordinate.

xA mole fraction in either liquid or solid phase; dimensionless; equation (24-7).

XA mole of A/mole of A-free liquid.

XD relative time, DABt/x
2
1; dimensionless; Section 27.3.

y rectangular coordinate.

yþ dimensionless distance; equation (12-60).

yA mole fraction in the gas phase.

yB,lm log-mean mole fraction of the carrier gas.

y0n log fraction of component n in a gas mixture on species i-free basis;

equation (24-49).

Y parameter in heat exchanger analysis; dimensionless; equation (22-12).

Y unaccomplished change; dimensionless; Section 27.4.

YA mole of A/mole of A-free gas.

z distance in the z direction; ft, m.

z rectangular coordinate.

Z wall collision frequency; equation (7-8).

Z parameter in heat-exchanger analysis; dimensionless; equation (22-13).

a absorptivity; dimensionless; Section 23.2.

a thermal diffusivity; ft2/h, m2/s; equation (16-17).

a ratio of fluxes, NB/NA; dimensionless.

a packed-bed constant.

b bulk modulus of elasticity; lbf/ft, N/m equation (1-11a).

b coefficient of thermal expansion; 1/ 8F, 1/K; equation (19-10).

d boundary layer thickness; ft, m; equation (12-28).

d thickness of stagnant or laminar layer; ft, m.

dc concentration boundary layer thickness; ft, m.

di thermal boundary layer thickness; ft, m; equation (19-22).

Dlm log-mean concentration difference, ðyA � yAÞlm; dimensionless;

equation (31-35).

e emissivity; dimensionless; equation (23-2).

e volume void.

e packing characteristic; dimensionless.

eAB a Lennard-Jones parameter; erg.

eD eddy mass diffusivity, ft2/h, m2/s.

eH eddy thermal diffusivity; ft2/h, m2/s; Section 19.7.

ei a Lennard-Jones parameter; erg.

eM eddy momentum diffusivity or eddy viscosity; ft2/h, m2/s; equation (12-52).

h dependent variable used byBlasius in solution of boundary layer; dimensionless;

equation (12-12).

h similarity parameter for convection analysis; dimensionless; equation (19-17).

hF fin efficiency; dimensionless; Section 17.3, Figure 17.11.

u temperature parameter ¼ T � T1; 8F, K; Section 17.3.

u fractional void space of a catalyst.

u angle in cylindrical or spherical coordinates; rad.

ug correlating constant.

w reduced pore diameter; dimensionless.
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k Boltzmann constant; 1:38� 10�16 erg/K.

l molecular mean free path; Sections 7.3, 15.2, and 24.2.

l wave length of thermal radiation; mm; Section 23.4.

l ionic conductance; (A/cm2)(V/cm)(g equivalent/cm3).

lTs latent heat of vaporization; Btu/lb mol, J/g mol.

m viscosity; lbm/ft s, Pa � s; equation (7-4).

mB viscosity of solvent B; cp.

mc chemical potential of given species; Btu/mol, J/mol.

n frequency; Hz; Section 23.1.

n kinematic viscosity, m/r; ft2/s, m2/s.

p pi groups in dimensional analysis; Sections 11.3, 13.1, 19.3, and 28.3.

r density of a fluid; lbm/ft
3, kg/m3; Section 1.2.

r mass density of mixture; lbm/ft
3, kg/m3.

r reflectivity; dimensionless; Section 23.2.

ri mass concentration of species i, lbm/ft
3, kg/m3.

s surface tension; lbf/ft, N/m.

s Stefan-Boltzmann constant; 0:1714� 10�8 Btu/h ft2 �F4, 5:672� 10�8 W/m2�
K4; equation (15-13).

sA Lennard-Jones molecular diameter of species A; A
�
, nm.

sAB Lennard-Jones parameter; A
�
.

si a Lennard-Jones parameter; A
�
.

sii normal stress; lbf/in.
2, N/m2; Section 1.2.

t transmissivity; dimensionless; Section 23.2.

ti j shear stress; lbf/in.
2, N/m2; Section 1.2.

t0 shear stress at the surface; lbf/in.
2, N/m2; equation (12-30).

f velocity potential; Section 10.4.

f angle in spherical coordinates; rad.

f argument of error function; dimensionless.

v angular velocity; 1/s.

vi mass fraction of species i; dimensionless.

v/2 vorticity; equation (10-4).

G flow rate of condensate film per width; lbm/ft s, kg/m � s; equation (21-13).

D yA � yA dimensionless; equation (31-31).

DTlm logarithmic-mean temperature difference; 8F, K; equation (22-9).

E heat-exchanger effectiveness; dimensionless; equation (22-17).

FB association parameter.

C stream function; Section 10.2.

V solid angle; rad; Section 23.3.

VD collision integral: Appendix K.

Vk Lennard-Jones collision integral; equation (15-7) and Appendix K.

Vm Lennard-Jones collision integral; equation (7-10) and Appendix K.

DIMENSIONLESS PARAMETERS

Bi Biot number, (hV/A)/k; equation (18-7).

Eu Euler number, P/rv2; equation (11-5).

Fo Fourier number, at/(V/A)2; equation (18-8).

Fr Froude number, v2/gL; equation (11-4).

Gr Grashof number, bgr2L3DT/m2; equation (19-12).

GrAB mass-transfer Grashof number, L3gDrA/rn
3; equation (28-9).
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Gz Graetz number, ðp/4ÞðD/xÞ Re Pr; Section 20.2.

Le Lewis number, k/rc pDAB; equation (28-3).

Nu Nusselt number, hL/k; equation (19-6).

NuAB mass-transfer Nusselt number, kcL/DAB; equation (28-7).

Pe Peclet number, Dvrcp/k ¼ Re Pr; Section 20.2.

PeAB mass-transfer Peclet number, Dv/DAB ¼ Re Sc; Table 30.1.

Pr Prandtl number, n/a ¼ mcp/k; equation (19-1).

Re Reynolds number, Lvr/m ¼ Lv/n; equation (11-7).

Sc Schmidt number, m/rDAB; equation (28-2).

Sh Sherwood number, kcL/DAB; Section 28.3.

St Stanton number, h/rvcp; equation (19-8).

StAB mass-transfer Stanton number, kc/v1.

MATHEMATICAL OPERATIONS

D/Dt substantial derivative; equation (9-4).

div A or = � A, divergence of a vector.

erf f the error function of f; Appendix L.

exp x or ex, exponential function of x.

ln x logarithm of x to the base e.

log10x logarithm of x to base 10.

= ¼ @

@x
ex þ @

@y
ey þ @

@z
ez.
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AppendixA

Transformations of the

Operators = and =2 to

Cylindrical Coordinates

THE OPERATOR = IN CYLINDRICAL COORDINATES

In Cartesian coordinates, = is written as

= ¼ ex
@

@x
þ ey

@

@y
þ ez

@

@z
(A-1)

When transforming this operator into cylindrical coordinates, both the unit vectors and

the partial derivatives must be transformed.

A cylindrical coordinate system and a Cartesian coordinate system are shown in

Figure A.1. The following relations are observed to exist between the Cartesian and

cylindrical coordinates:

z ¼ z; x2 þ y2 ¼ r2; tan u ¼ y

x
(A-2)

Thus,

@

@z

� �
cyl

¼ @

@z

� �
cart

(A-3)

whereas, from the chain rule

@

@x

� �
¼ @

@r

@r

@x
þ @

@u

@u

@x

As

Figure A.1 Cylindrical and

Cartesian coordinates.
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thus

@

@x

� �
¼ cos u

@

@r

� �
� sin u

r

@

@u

� �
(A-4)

In a similar manner,

@

@y
¼ @

@r

@r

@y
þ @

@u

@u

@y

where

@r

@y
¼ y

r
¼ sin u and

@u

@y
¼ 1

x sec2 u
¼ cos u

r

Thus, ð@=@yÞ becomes

@

@y

� �
¼ sin u

@

@r

� �
þ cos u

r

@

@u

� �
(A-5)

The unit vectors must also be transformed. Resolving the unit vectors into their x-, y-, and

z-direction components, we obtain

ez ¼ ez ðA-6Þ
ex ¼ er cos u � eu sin u ðA-7Þ
ey ¼ er sin u þ eu cos u ðA-8Þ

Substituting the above relations into equation (A-1), we obtain

ex
@

@x
¼ er cos

2 u
@

@r
� er

sin u cos u

r

@

@u
� eu sin u cos u

@

@r
þ eu

sin2 u

r

@

@u

ey
@

@y
¼ er sin

2 u
@

@r
þ er

sin u cos u

r

@

@u
þ eu sin u cos u

@

@r
þ eu

cos2 u

r

@

@u

and

ez
@

@z
¼ ez

@

@z

Adding the above relations, we obtain, after noting that sin2 u þ cos2 u ¼ 1,

= ¼ er
@

@r

� �
þ eu

r

@

@u

� �
þ ez

@

@z

� �
(A-9)
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THE OPERATOR =2 IN CYLINDRICAL COORDINATES

A unit vector may not change magnitude; however, its direction may change. Cartesian unit

vectors do not change their absolute directions, but in cylindrical coordinates both er and eu
depend upon the angle u. As these vectors change direction, they have derivatives with

respect to u. As er ¼ ex cos u þ ey sin u and eu ¼ �ex sin u þ ey cos u it may be seen that

@

@r
er ¼ 0;

@

@r
eu ¼ 0

whereas

@

@u
er¼ eu (A-10)

and

@

@u
eu ¼ �er (A-11)

Now the operator =2 ¼ = � = and thus

= � = ¼ =2 ¼ er
@

@r
þ eu

r

@

@u
þ ez

@

@z

� �
� er

@

@r
þ eu

r

@

@u
þ ez

@

@z

� �
Performing the indicated operations, we obtain

er
@

@r
� = ¼ @2

@u
eu

r

@

@u
� = ¼ eu

r
�

@

@u
er

@

@r

� �
þ eu

r
�

@

@u

eu

r

@

@u

� �

or

eu

r

@

@u
� = ¼ 1

r

@

@r
þ 1

r2
@2

@u2

and

ez
@

@z
� = ¼ @2

@z2

Thus, the operator =2 becomes

=2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@u2
þ @2

@z2
(A-12)

or

=2 ¼ 1

r

@

@r
r
@

@r

� �
þ 1

r2
@2

@u2
þ @2

@z2
(A-13)
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Appendix B

Summary of Differential

Vector Operations in Various

Coordinate Systems

CARTESIAN COORDINATES

Coordinate system

Gradient

=P ¼ @P

@x
ex þ @P

@y
ey þ @P

@z
ez (B-1)

Divergence

= � v ¼ @vx
@x

þ @vy
@y

þ @vz
@z

(B-2)

Curl

=� v ¼

@vz
@y

� @vy
@z

� �
ex

@vx
@z

� @vz
@x

� �
ey

@vy
@x

� @vx
@y

� �
ez

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(B-3)

Laplacian of a scalar

=2T ¼ @2T

@x2
þ @2T

@y2
þ @2T

@z2
(B-4)

Figure B.1 Unit vectors at the point (x, y, z).
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CYLINDRICAL COORDINATES

Coordinate system

Gradient

=P ¼ @P

@r
er þ 1

r

@P

@u
eu þ @P

@z
ez (B-5)

Divergence

= � v ¼ 1

r

@

@r
ðrvrÞ þ 1

r

@vu
@u

þ @vz
@z

(B-6)

Curl

=� v ¼

1

r

@vz
@u

� @vu
@z

� �
er

@vr
@z

� @vz
@r

� �
eu

1

r

@

@r
ðrvuÞ � @vr

@u

� �	 

ez

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(B-7)

Laplacian of a scalar

=2T ¼ 1

r

@

@r
r
@T

@r

� �
þ 1

r2
@2T

@u2
þ @2T

@z2
(B-8)

SPHERICAL COORDINATES

Coordinate system

Figure B.3 Unit vectors at the point (r, u, f).

Figure B.2 Unit vectors at the point (r, u, z).
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Gradient

=P ¼ @P

@r
er þ 1

r

@P

@u
eu þ 1

r sin u

@P

@f
ef (B-9)

Divergence

= � v ¼ 1

r2
@

@r
ðr2vrÞ þ 1

r sin u

@

@u
ðvu sin uÞ þ 1

r sin u

@vf
@f

(B-10)

Curl

=� v ¼

1

r sin u

@

@u
ðvf sin uÞ � @vu

@f

� �
er

1

r sin u

@vr
@f

� 1

r

@

@r
ðrvfÞ

� �
eu

1

r

@

@r
ðrvuÞ � @vr

@u

� �
ef

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(B-11)

Laplacian of a scalar

=2T ¼ 1

r2
@

@r
r2

@T

@r

� �
þ 1

r2 sin u

@

@u
sin u

@T

@u

� �
þ 1

r2 sin2 u

@2T

@f2
(B-12)
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AppendixC

Symmetry of the Stress Tensor

The shear stress ti j can be shown to be equal to t j;i by the following simple argument.

Consider the element of fluid shown in Figure C.1. The sum of the moments on the element

will be related to the angular acceleration by

X
M ¼ Iv̇ (C-1)

where I is the mass moment of inertia of the element. Substituting into equation (C-1)

�ðtyx DxDzÞDyþ ðtxy DyDzÞDx ¼ rDxDyDz
ðDx2 þ Dy2Þ

12
v̇z

where the moment of inertia of a rectangular prism has been used for the element.

The volume of the element DxDyDz may be canceled to yield

r
Dx2 þ Dy2

12

� �
v̇z ¼ txy � tyx (C-2)

Now the difference in shear stress is seen to depend upon the size of the element. As the

element shrinks to a point. Dx and Dy approach zero independently, and we obtain, in the

limit,

txy ¼ tyx

or, as this can be done about any axis,

ti j ¼ t ji

Another way to look at equation (C-2) is to determine the angular accelerationvz as the

element shrinks to a point. The angular acceleration at a point must be finite; hence, tyx
and txy must be equal.

Figure C.1 Free body of element
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AppendixD

The Viscous Contribution

to the Normal Stress

The normal stress, s, may be divided into two parts: the pressure contribution, �P, and a

viscous contribution, sv . The viscous contribution to the normal stress is obtained by

analogy with Hooke’s law for an elastic solid. In Hooke’s law for three-dimensional stress,

the normal stress, sx,x in the x direction is related to the strains in the x, y, and z directions by
1

sx,x ¼ 2Gex þ 2Gh

1� 2h
(ex þ ey þ ez) (D-1)

where G is the share modulus, h is Poisson’s ratio, and e is the axial strain.

When Newton’s viscosity relation was discussed, the shear strain in a solid was seen to

be analogous to the rate of shear strain in a fluid. Accordingly, the axial strain in a solid, e x,

is taken to be analogous to the axial strain rate in a fluid, @vx/@x.
When the velocity derivatives are substituted for the strains in equation (D-1), and the

viscosity is used in place of the shear modulus, we obtain

(sx,x)viscous ¼ 2m
@vx
@x

þ l= � v (D-2)

Here the sum of the strain-rate derivatives is observed to be equal to = � v, and the second

coefficient has been designated l and is called the bulk viscosity or second viscosity

coefficient. The total normal stress in the x direction becomes

sx,x ¼ �Pþ 2m
@vx
@x

þ l= � v (D-3)

If the corresponding normal stress components in the y and z directions are added

together, we obtain

sx,x þ sy,y þ sz,z ¼ �3Pþ ð2mþ 3lÞ= � v

so that the average normal stress s is given by

s ¼ �Pþ 2mþ 3l

3

� �
= � v

1 A more familiar form is

sx,x ¼ E

(1þ h)(1� 2h)
½(1� h) ex þ h(ey þ ez)�

The shear modulus G has been replaced with its equivalent, E/2(1þ h).
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Thus, unless l ¼ �2

3
m, the average stress will depend upon the flow properties rather

than the fluid property, P. Stokes assumed that l ¼ �2

3
m, and experiments have indicated

that l is of the same order of magnitude asm of air. As= � v ¼ 0 in an incompressible flow,

the value of l is of no concern except for compressible fluids.

The resulting expressions for normal stress in a Newtonian fluid are

sx, x ¼ �Pþ 2m
@vx
@x

� 2

3
m= � v (D-4)

sy, y ¼ �Pþ 2m
@vy
@y

� 2

3
m= � v (D-5)

sz, z ¼ �Pþ 2m
@vz
@z

� 2

3
m= � v (D-6)
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Appendix E

The Navier–Stokes Equations

for Constant r and m in

Cartesian, Cylindrical, and

Spherical Coordinates

CARTESIAN COORDINATES

x direction

r
@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

þ vz
@vx
@z

� �
¼ � @P

@x
þ rgx þ m

@2vx
@x2

þ @2vx
@y2

þ @2vx
@z2

� �
(E-1)

y direction

r
@vy
@t

þ vx
@vy
@x

þ vy
@vy
@y

þ vz
@vy
@z

� �
¼ � @P

@y
þ rgy þ m

@2vy
@x2

þ @2vy
@y2

þ @2vy
@z2

� �
(E-2)

z direction

r
@vz
@t

þ vx
@vz
@x

þ vy
@vz
@y

þ vz
@vz
@z

� �
¼ � @P

@z
þ rgz þ m

@2vz
@x2

þ @2vz
@y2

þ @2vz
@z2

� �
(E-3)

CYLINDRICAL COORDINATES

r direction

r
@vr
@t

þ vr
@vr
@r

þ vu
r

@vr
@u

� v2u
r

þ vz
@vr
@z

� �

¼ � @P

@r
þ rgr þ m

@

@r

1

r

@

@r
ðrvrÞ

� �
þ 1

r2
@2vr

@u2
� 2

r2
@vu
@u

þ @2vr
@z2

� � (E-4)

u direction

r
@vu
@t

þ vr
@vu
@r

þ vu
r

@vu
@u

þ vrvu
r

þ vz
@vu
@z

� �
¼ � 1

r

@P

@u
þ rgu

þ m
@

@r

1

r

@

@r
ðrvuÞ

� �
þ 1

r2
@2vu

@u2
þ 2

r2
@vr
@u

þ @2vu
@z2

� � (E-5)
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z direction

r
@vz
@t

þ vr
@vz
@r

þ vu
r

@vz
@u

þ vz
@vz
@z

� �

¼ � @P

@z
þ rgz þ m

1

r

@

@r
r
@vz
@r

� �
þ 1

r2
@2vz

@u2
þ @2vz

@z2

� � (E-6)

SPHERICAL COORDINATES1

r direction

r
@vr
@t

þ vr
@vr
@r

þ vu
r

@vr
@u

þ vf
r sin u

@vr
@f

� v2f
r

� v2u
r

 !

¼ � @P

@r
þ rgr þ m =2vr � 2

r2
vr � 2

r2
@vu
@u

� 2

r2
vu cot u � 2

r2 sin u

@vf
@f

� �
(E-7)

u direction

r
@vu
@t

þ vr
@vu
@r

þ vu
r

@vu
@u

þ vf
r sin u

@vu
@f

þ vrvu
r

� @v2f cot u

r

" #

¼ � 1

r

@P

@u
þ rgu þ m =2vu þ 2

r2
@vr
@u

� vu

r2 sin2 u
� 2 cos u

r2 sin2 u

@vf
@f

� �
(E-7)

f direction

r
@vf
@t

þ vr
@vf
@r

þ vu
r

@vf
@u

þ vf
r sin u

@vf
@f

þ vfvr
r

þ vuvf
r

cot u

� �

¼ � 1

r sinu

@P

@f
þ rgf þ m r2vf � vf

r2 sin2 u
þ 2

r2 sin u

@vr
@f

þ 2 cos u

r2 sin2 u

@vu
@f

� �
(E-7)

1 In the above equations,

r2 ¼ 1

r2
@

@r
r
@

@r

� �
þ 1

r2 sin u

@

@u
sin u

@

@u

� �
þ 1

r2 sin u

@2

@f2
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Appendix F

Charts for Solution

of Unsteady

Transport Problems

Table F.9 Symbols for unsteady-state charts

Parameter

symbol

Molecular

mass transfer

Heat

conduction

Unaccomplished change, a dimensionless ratio Y cA1
� cA

cA1
� cA0

T1 � T

T1 � T0

Relative time X DABt

x21

at

x21

Relative position n x

x1

x

x1

Relative resistance m DAB

kcx1

k

hx1

T ¼ temperature

cA ¼ concentration of componentA

x ¼ distance from center to any point

t ¼ time

k ¼ thermal conductivity

h; kc ¼ convective-transfer coefficients

a ¼ thermal diffusivity

DAB ¼ mass diffusivity

Subscripts :
0 ¼ initial condition at time t ¼ 0

1 ¼ boundary

A ¼ componentA

1 ¼ reference condition for temperature
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Figure F.1 Unsteady-state transport in a large flat slab.
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Figure F.2 Unsteady-state transport in a long cylinder.
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Figure F.3 Unsteady-state transport in a sphere.
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Figure F.7 Charts for solution of unsteady transport problems: flat plate.
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Figure F.7 Continued.
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Figure F.8 Charts for solution of unsteady transport problems: cylinder.
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Figure F.8 Continued.
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Figure F.9 Charts for solution of unsteady transport problems: sphere.
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Figure F.9 Continued.
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AppendixG

Properties of the

Standard Atmosphere1

Table G.1 English units

h

(ft)

T

(8F)
a

(fps)

P

(lb/ft2)

P

(slug/ft3)
m� 107

(slug/ft s)

0 59.00 1117 2116.2 0.002378 3.719

1,000 57.44 1113 2040.9 0.002310 3.699

2,000 51.87 1109 1967.7 0.002242 3.679

3,000 48.31 1105 1896.7 0.002177 3.659

4,000 44.74 1102 1827.7 0.002112 3.639

5,000 41.18 1098 1760.8 0.002049 3.618

6,000 37.62 1094 1696.0 0.001988 3.598

7,000 34.05 1090 1633.0 0.001928 3.577

8,000 30.49 1086 1571.9 0.001869 3.557

9,000 26.92 1082 1512.8 0.001812 3.536

10,000 23.36 1078 1455.4 0.001756 3.515

11,000 19.80 1074 1399.8 0.001702 3.495

12,000 16.23 1070 1345.9 0.001649 3.474

13,000 12.67 1066 1293.7 0.001597 3.453

14,000 9.10 1062 1243.2 0.001546 3.432

15,000 5.54 1058 1194.3 0.001497 3.411

16,000 1.98 1054 1147.0 0.001448 3.390

17,000 �1.59 1050 1101.1 0.001401 3.369

18,000 �5.15 1046 1056.9 0.001355 3.347

19,000 �8.72 1041 1014.0 0.001311 3.326

20,000 �12.28 1037 972.6 0.001267 3.305

21,000 �15.84 1033 932.5 0.001225 3.283

22,000 �19.41 1029 893.8 0.001183 3.262

23,000 �22.97 1025 856.4 0.001143 3.240

24,000 �26.54 1021 820.3 0.001104 3.218

25,000 �30.10 1017 785.3 0.001066 3.196

26,000 �33.66 1012 751.7 0.001029 3.174

27,000 �37.23 1008 719.2 0.000993 3.153

28,000 �40.79 1004 687.9 0.000957 3.130

29,000 �44.36 999 657.6 0.000923 3.108

ðContinuedÞ
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Table G.1 Continued

h

(ft)

T

(8F)
a

(fps)

P

(lb/ft2)

P

(slug/ft3)
m� 107

(slug/ft s)

30,000 �47.92 995 628.5 0.000890 3.086

31,000 �51.48 991 600.4 0.000858 3.064

32,000 �55.05 987 573.3 0.000826 3.041

33,000 �58.61 982 547.3 0.000796 3.019

34,000 �62.18 978 522.2 0.000766 2.997

35,000 �65.74 973 498.0 0.000737 2.974

40,000 �67.6 971 391.8 0.0005857 2.961

45,000 �67.6 971 308.0 0.0004605 2.961

50,000 �67.6 971 242.2 0.0003622 2.961

60,000 �67.6 971 150.9 0.0002240 2.961

70,000 �67.6 971 93.5 0.0001389 2.961

80,000 �67.6 971 58.0 0.0000861 2.961

90,000 �67.6 971 36.0 0.0000535 2.961

100,000 �67.6 971 22.4 0.0000331 2.961

150,000 113.5 1174 3.003 0.00000305 4.032

200,000 159.4 1220 0.6645 0.00000062 4.277

250,000 �8.2 1042 0.1139 0.00000015 3.333
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Table G.2 SI units—Properties of the standard atmosphere

h

(m)

T

(K)

a

(m/s)

P

(Pa)

r

(kg/m3)
m� 105

(Pa � s)
0 288.2 340.3 1.0133 � 105 1.225 1.789

500 284.9 338.4 0.95461 1.167 1.774

1,000 281.7 336.4 0.89876 1.111 1.758

1,500 278.4 334.5 0.84560 1.058 1.742

2,000 275.2 332.5 0.79501 1.007 1.726

2,500 271.9 330.6 0.74692 0.9570 1.710

3,000 268.7 328.6 0.70121 0.9093 1.694

3,500 265.4 326.6 0.65780 0.8634 1.678

4,000 262.2 324.6 0.61660 0.8194 1.661

4,500 258.9 322.6 0.57753 0.7770 1.645

5,000 255.7 320.5 0.54048 0.7364 1.628

5,500 252.4 318.5 0.50539 0.6975 1.612

6,000 249.2 316.5 0.47218 0.6601 1.595

6,500 245.9 314.4 0.44075 0.6243 1.578

7,000 242.7 312.3 0.41105 0.5900 1.561

7,500 239.5 310.2 0.38300 0.5572 1.544

8,000 236.2 308.1 0.35652 0.5258 1.527

8,500 233.0 306.0 0.33154 0.4958 1.510

9,000 229.7 303.8 0.30801 0.4671 1.493

9,500 226.5 301.7 0.28585 0.4397 1.475

10,000 223.3 299.5 0.26500 0.4135 1.458

11,000 216.8 295.2 0.22700 0.3648 1.422

12,000 216.7 295.1 0.19399 0.3119 1.422

13,000 216.7 295.1 0.16580 0.2666 1.422

14,000 216.7 295.1 0.14170 0.2279 1.422

15,000 216.7 295.1 0.12112 0.1948 1.422

16,000 216.7 295.1 0.10353 0.1665 1.422

17,000 216.7 295.1 8.8497 � 103 0.1423 1.422

18,000 216.7 295.1 7.5652 0.1217 1.422

19,000 216.7 295.1 6.4675 0.1040 1.422

20,000 216.7 295.1 5.5293 0.08891 1.422

25,000 221.5 298.4 2.5492 0.04008 1.448

30,000 226.5 301.7 1.1970 0.01841 1.475

35,000 236.5 308.3 0.57459 0.008463 1.529

40,000 250.4 317.2 0.28714 0.003996 1.601

45,000 264.2 325.8 0.14910 0.001966 1.671

50,000 270.7 329.8 7.9779 � 101 0.001027 1.704

55,000 265.6 326.7 4.27516 0.0005608 1.678

60,000 255.8 320.6 2.2461 0.0003059 1.629

65,000 239.3 310.1 1.1446 0.0001667 1.543

70,000 219.7 297.1 5.5205 � 100 0.00008754 1.438

75,000 200.2 283.6 2.4904 0.00004335 1.329

80,000 180.7 269.4 1.0366 0.00001999 1.216
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k

r c p a (Btu/h ft �F) (W/m�K)
Material (lbm/ft

3)

(688F)
(kg/m3)

(293 K)

(Btu/lb�mF)
(293 K)

(J/kg � 1K)
�10�2 (293K)

(ft2/h)

(688F)
(m2/s) � 105
ð293kÞ (68)

8F
(212) (572) (293)

K

(373) (573)

Metals

Aluminum 168.6 2,701.1 0.224 9.383 3.55 9.16 132 133 133 229 229 230

Copper 555 8,890 0.092 3.854 3.98 10.27 223 219 213 386 379 369

Gold 1206 19,320 0.031 1.299 4.52 11.66 169 170 172 293 294 298

Iron 492 7,880 0.122 5.110 0.83 2.14 42.3 39 31.6 73.2 68 54

Lead 708 11,300 0.030 1.257 0.80 2.06 20.3 19.3 17.2 35.1 33.4 29.8

Magnesium 109 1,750 0.248 10.39 3.68 9.50 99.5 96.8 91.4 172 168 158

Nickel 556 8,910 0.111 4.560 0.87 2.24 53.7 47.7 36.9 93.0 82.6 63.9

Platinum 1340 21,500 0.032 1.340 0.09 0.23 40.5 41.9 43.5 70.1 72.5 75.3

Silver 656 10,500 0.057 2.388 6.42 16.57 240 237 209 415 410 362

Tin 450 7,210 0.051 2.136 1.57 4.05 36 34 — 62 59 —

Tungsten 1206 19,320 0.032 1.340 2.44 6.30 94 87 77 160 150 130

Uranium a 1167 18,700 0.027 1.131 0.53 1.37 16.9 17.2 19.6 29.3 29.8 33.9

Zinc 446 7,150 0.094 3.937 1.55 4.00 65 63 58 110 110 100

Alloys

Aluminum 2024 173 2,770 0.230 9.634 1.76 4.54 70.2 122

Brass

(70% Cu, 30% Ni)

532 8,520 0.091 3.812 1.27 3.28 61.8 73.9 85.3 107 128 148

Constantan

(60% Cu, 40% Ni)

557 8,920 0.098 4.105 0.24 0.62 13.1 15.4 22.7 26.7

Iron, cast 455 7,920 0.100 4.189 0.65 1.68 29.6 26.8 51.2 46.4

Nichrome V 530 8,490 0.106 4.440 0.12 0.31 7.06 7.99 9.94 12.2 13.8 17.2

Stainless steel 488 7,820 0.110 4.608 0.17 0.44 9.4 10.0 13 16 17.3 23

Steel, mild

(1% C)

488 7,820 0.113 4.733 0.45 1.16 24.8 24.8 22.9 42.9 42.9 39.0

6
7
6



Nonmetals

Asbestos 36 580 0.25 10.5 0.092 0.11 0.125 0.159 0.190 0.21

Brick (fire clay) 144 2,310 0.22 9.22 0.65 1.13

Brick (masonry) 106 1,670 0.20 8.38 0.38 0.66

Brick (chrome) 188 3,010 0.20 8.38 0.67 1.16

Concrete 144 2,310 0.21 8.80 0.70 1.21

Corkboard 10 160 0.4 17 0.025 0.043

Diatomaceous

earth, powdered

14 220 0.2 8.4 0.03 0.05

Glass, window 170 2,720 0.2 8.4 0.45 0.78

Glass, Pyrex 140 2,240 0.2 8.4 0.63 0.67 0.84 1.09 1.16 1.45

Kaolin firebrick 19 300 0.052 0.09

85% Magnesia 17 270 0.038 0.041 0.066 0.071

Sandy loam,

4% H2O

104 1,670 0.4 17 0.54 0.94

Sandy loam,

10% H2O

121 1,940 1.08 1.87

Rock wool 10 160 0.2 8.4 0.023 0.033 0.040 0.057

Wood, oak ?
to grain

51 820 0.57 23.9 0.12 0.21

Wood, oak ||

to grain

51 820 0.57 23.9 0.23 0.40

6
7
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Gases and Liquids1

1 All gas properties are for atmospheric pressure.
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T

(K)

r

(kg/m3)
cp � 10�3

(J/kg� K)

m� 105

(Pa� s)

n� 105

(m2/s)

k � 102

(W/m� K)

a� 105

(m2/s) Pr
gbr2/m2

(1/K �m3)

Air

250 1.4133 1.0054 1.5991 1.1315 2.2269 1.5672 0.722 4.638 � 108

260 1.3587 1.0054 1.6503 1.2146 2.3080 1.6896 0.719 2.573

280 1.2614 1.0057 1.7503 1.3876 2.4671 1.9448 0.713 1.815

300 1.1769 1.0063 1.8464 1.5689 2.6240 2.2156 0.708 1.327

320 1.1032 1.0073 1.9391 1.7577 2.7785 2.5003 0.703 0.9942

340 1.0382 1.0085 2.0300 1.9553 2.9282 2.7967 0.699 0.7502

360 0.9805 1.0100 2.1175 2.1596 3.0779 3.1080 0.695 0.5828

400 0.8822 1.0142 2.2857 2.5909 3.3651 3.7610 0.689 0.3656

440 0.8021 1.0197 2.4453 3.0486 3.6427 4.4537 0.684 0.2394

480 0.7351 1.0263 2.5963 3.5319 3.9107 5.1836 0.681 0.1627

520 0.6786 1.0339 2.7422 4.0410 4.1690 5.9421 0.680 0.1156

580 0.6084 1.0468 2.9515 4.8512 4.5407 7.1297 0.680 7.193 � 106

700 0.5040 1.0751 3.3325 6.6121 5.2360 9.6632 0.684 3.210

800 0.4411 1.0988 3.6242 8.2163 5.7743 11.9136 0.689 1.804

1000 0.3529 1.1421 4.1527 11.1767 6.7544 16.7583 0.702 0.803

Gases

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/8F)
gbr2/m2

(1/�F � ft3)
Air

0 0.0862 0.240 1.09 0.126 0.0132 0.639 0.721 2.18 4.39 � 106

30 0.0810 0.240 1.15 0.142 0.0139 0.714 0.716 2.04 3.28

60 0.0764 0.240 1.21 0.159 0.0146 0.798 0.711 1.92 2.48

80 0.0735 0.240 1.24 0.169 0.0152 0.855 0.708 1.85 2.09

100 0.0710 0.240 1.28 0.181 0.0156 0.919 0.703 1.79 1.76

150 0.0651 0.241 1.36 0.209 0.0167 1.06 0.698 1.64 1.22

200 0.0602 0.241 1.45 0.241 0.0179 1.24 0.694 1.52 0.840

250 0.0559 0.242 1.53 0.274 0.0191 1.42 0.690 1.41 0.607

300 0.0523 0.243 1.60 0.306 0.0203 1.60 0.686 1.32 0.454

400 0.0462 0.245 1.74 0.377 0.0225 2.00 0.681 1.16 0.264

500 0.0413 0.247 1.87 0.453 0.0246 2.41 0.680 1.04 0.163

600 0.0374 0.251 2.00 0.535 0.0270 2.88 0.680 0.944 79.4 � 103

800 0.0315 0.257 2.24 0.711 0.0303 3.75 0.684 0.794 50.6

1000 0.0272 0.263 2.46 0.906 0.0337 4.72 0.689 0.685 27.0

1500 0.0203 0.277 2.92 1.44 0.0408 7.27 0.705 0.510 7.96
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T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Nitrogen

0 0.0837 0.249 1.06 0.127 0.0132 0.633 0.719 2.18 4.38 � 106

30 0.0786 0.249 1.12 0.142 0.0139 0.710 0.719 2.04 3.29

60 0.0740 0.249 1.17 0.158 0.0146 0.800 0.716 1.92 2.51

80 0.0711 0.249 1.20 0.169 0.0151 0.853 0.712 1.85 2.10

100 0.0685 0.249 1.23 0.180 0.0154 0.915 0.708 1.79 1.79

150 0.0630 0.249 1.32 0.209 0.0168 1.07 0.702 1.64 1.22

200 0.0580 0.249 1.39 0.240 0.0174 1.25 0.690 1.52 0.854

250 0.0540 0.249 1.47 0.271 0.0192 1.42 0.687 1.41 0.616

300 0.0502 0.250 1.53 0.305 0.0202 1.62 0.685 1.32 0.457

400 0.0443 0.250 1.67 0.377 0.0212 2.02 0.684 1.16 0.263

500 0.0397 0.253 1.80 0.453 0.0244 2.43 0.683 1.04 0.163

600 0.0363 0.256 1.93 0.532 0.0252 2.81 0.686 0.944 0.108

800 0.0304 0.262 2.16 0.710 0.0291 3.71 0.691 0.794 0.0507

1000 0.0263 0.269 2.37 0.901 0.0336 4.64 0.700 0.685 0.0272

1500 0.0195 0.283 2.82 1.45 0.0423 7.14 0.732 0.510 0.00785

T

(8F)
r

(lbm/ft
3)

c p
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Steam

212 0.0372 0.493 0.870 0.234 0.0145 0.794 1.06 1.49 0.873 � 106

250 0.0350 0.483 0.890 0.254 0.0155 0.920 0.994 1.41 0.698

300 0.0327 0.476 0.960 0.294 0.0171 1.10 0.963 1.32 0.493

400 0.0289 0.472 1.09 0.377 0.0200 1.47 0.924 1.16 0.262

500 0.0259 0.477 1.23 0.474 0.0228 1.85 0.922 1.04 0.148

600 0.0234 0.483 1.37 0.585 0.0258 2.29 0.920 0.944 88.9 � 103

800 0.0197 0.498 1.63 0.828 0.0321 3.27 0.912 0.794 37.8

1000 0.0170 0.517 1.90 1.12 0.0390 4.44 0.911 0.685 17.2

1500 0.0126 0.564 2.57 2.05 0.0580 8.17 0.906 0.510 3.97

T

(K)

r
(kg/m3)

c p � 10�3

(J/kg �K)
m� 105

(Pa � s)
n� 105

(m2/s)

k � 102

(W/m �K)
a� 105

(m2/s) Pr
gbr2/m2

(1/K �m3)

Steam

380 0.5860 2.0592 12.70 2.1672 2.4520 2.0320 1.067 5.5210 � 107

400 0.5549 2.0098 13.42 2.4185 2.6010 2.3322 1.037 4.1951

450 0.4911 1.9771 15.23 3.1012 2.9877 3.0771 1.008 2.2558

500 0.4410 1.9817 17.03 3.8617 3.3903 3.8794 0.995 1.3139

550 0.4004 2.0006 18.84 4.7053 3.8008 4.7448 0.992 0.8069

600 0.3667 2.0264 20.64 5.6286 4.2161 5.6738 0.992 0.5154

650 0.3383 2.0555 22.45 6.6361 4.6361 6.6670 0.995 0.3415

700 0.3140 2.0869 24.25 7.7229 5.0593 7.7207 1.000 0.2277

750 0.2930 2.1192 26.06 8.8942 5.4841 8.8321 1.007 0.1651

800 0.2746 2.1529 27.86 10.1457 5.9089 9.9950 1.015 0.1183

680 Appendix I



T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Oxygen

0 0.0955 0.219 1.22 0.128 0.0134 0.641 0.718 2.18 4.29 � 106

30 0.0897 0.219 1.28 0.143 0.0141 0.718 0.716 2.04 3.22

60 0.0845 0.219 1.35 0.160 0.0149 0.806 0.713 1.92 2.43

80 0.0814 0.220 1.40 0.172 0.0155 0.866 0.713 1.85 2.02

100 0.0785 0.220 1.43 0.182 0.0160 0.925 0.708 1.79 1.74

150 0.0720 0.221 1.52 0.211 0.0172 1.08 0.703 1.64 1.19

200 0.0665 0.223 1.62 0.244 0.0185 1.25 0.703 1.52 0.825

250 0.0168 0.225 1.70 0.276 0.0197 1.42 0.700 1.41 0.600

300 0.0578 0.227 1.79 0.310 0.0209 1.60 0.700 1.32 0.442

400 0.0511 0.230 1.95 0.381 0.0233 1.97 0.698 1.16 0.257

500 0.0458 0.234 2.10 0.458 0.0254 2.37 0.696 1.04 0.160

600 0.0414 0.239 2.25 0.543 0.0281 2.84 0.688 0.944 0.103

800 0.0349 0.246 2.52 0.723 0.0324 3.77 0.680 0.794 49.4 � 103

1000 0.0300 0.252 2.79 0.930 0.0366 4.85 0.691 0.685 25.6

1500 0.0224 0.264 3.39 1.52 0.0465 7.86 0.696 0.510 7.22

T

(K)

r

(kg/m3)
c p � 10�3

(J/kg �K)
m� 105

(Pa � s)
n� 105

(m2/s)

k � 102

(W/m �K)
a� 105

(m2/s) Pr
gbr2/m2

(1/K �m3)

Oxygen

250 1.5620 0.9150 1.7887 1.1451 2.2586 1.5803 0.725 2.9885 � 108

300 1.3007 0.9199 2.0633 1.5863 2.6760 2.2365 0.709 1.2978

350 1.1144 0.9291 2.3176 2.0797 3.0688 2.9639 0.702 0.6469

400 0.9749 0.9417 2.5556 2.6214 3.4616 3.7705 0.695 0.3571

450 0.8665 0.9564 2.7798 3.2081 3.8298 4.6216 0.694 0.2108

500 0.7798 0.9721 2.9930 3.8382 4.1735 5.5056 0.697 0.1330

550 0.7089 0.9879 3.1966 4.5092 4.5172 6.4502 0.700 8.786 � 106

600 0.6498 1.0032 3.3931 5.2218 4.8364 7.4192 0.704 5.988

T

(K)

r

(kg/m3)
cp � 10�3

(J/kg �K)
m� 105

(Pa � s)
n� 105

(m2/s)

k � 102

(W/m �K)
a� 105

(m2/s) Pr
gbr2/m2

(1/K �m3)

Nitrogen

250 1.3668 1.0415 1.5528 1.1361 2.2268 1.5643 0.729 3.0362 � 108

300 1.1383 1.0412 1.7855 1.5686 2.6052 2.1981 0.713 1.3273

350 0.9754 1.0421 2.0000 2.0504 2.9691 2.9210 0.701 0.6655

400 0.8533 1.0449 2.1995 2.5776 3.3186 3.7220 0.691 0.3697

450 0.7584 1.0495 2.3890 3.1501 3.6463 4.5811 0.688 0.2187

500 0.6826 1.0564 2.5702 3.7653 3.9645 5.4979 0.684 0.1382

600 0.5688 1.0751 2.9127 5.1208 4.5549 7.4485 0.686 6.237 � 106

700 0.4875 1.0980 3.2120 6.5887 5.0947 9.5179 0.691 3.233

800 0.4266 1.1222 3.4896 8.1800 5.5864 11.6692 0.700 1.820

1000 0.3413 1.1672 4.0000 11.7199 6.4419 16.1708 0.724 0.810
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T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Carbon dioxide

0 0.132 0.193 0.865 0.0655 0.00760 0.298 0.792 2.18 16.3 � 106

30 0.124 0.198 0.915 0.0739 0.00830 0.339 0.787 2.04 12.0

60 0.117 0.202 0.965 0.0829 0.00910 0.387 0.773 1.92 9.00

80 0.112 0.204 1.00 0.0891 0.00960 0.421 0.760 1.85 7.45

100 0.108 0.207 1.03 0.0953 0.0102 0.455 0.758 1.79 6.33

150 0.100 0.213 1.12 0.113 0.0115 0.539 0.755 1.64 4.16

200 0.092 0.219 1.20 0.131 0.0130 0.646 0.730 1.52 2.86

250 0.0850 0.225 1.32 0.155 0.0148 0.777 0.717 1.41 2.04

300 0.0800 0.230 1.36 0.171 0.0160 0.878 0.704 1.32 1.45

400 0.0740 0.239 1.45 0.196 0.0180 1.02 0.695 1.16 1.11

500 0.0630 0.248 1.65 0.263 0.0210 1.36 0.700 1.04 0.485

600 0.0570 0.256 1.78 0.312 0.0235 1.61 0.700 0.944 0.310

800 0.0480 0.269 2.02 0.420 0.0278 2.15 0.702 0.794 0.143

1000 0.0416 0.280 2.25 0.540 0.0324 2.78 0.703 0.685 75.3 � 103

1500 0.0306 0.301 2.80 0.913 0.0340 4.67 0.704 0.510 19.6

T

(K)

r

(kg/m3)
c p � 10�3

(J/kg �K)
m� 105

(Pa � s)
n� 105

(m2/s)

k � 102

(W/m �K)
a� 105

(m2/s) Pr
gbr2/m2

(1/K �m3)

Carbon dioxide

250 2.1652 0.8052 1.2590 0.5815 1.2891 0.7394 0.793 1.1591 � 109

300 1.7967 0.8526 1.4948 0.8320 1.6572 1.0818 0.770 0.4178

350 1.5369 0.8989 1.7208 1.1197 2.0457 1.4808 0.755 0.2232

400 1.3432 0.9416 1.9318 1.4382 2.4604 1.9454 0.738 0.1186

450 1.1931 0.9803 2.1332 1.7879 2.8955 2.4756 0.721 6.786 � 107

500 1.0733 1.0153 2.3251 2.1663 3.3523 3.0763 0.702 4.176

550 0.9756 1.0470 2.5073 2.5700 3.8208 3.7406 0.685 2.705

600 0.8941 1.0761 2.6827 3.0004 4.3097 4.4793 0.668 1.814
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T

(K)

r

(kg/m3)

cp
(J/kg �K)

m� 106

(Pa � s)
n� 106

(m2/s)

k � 102

(W/m �K)
a� 104

(m2/s) Pr
gbr2/m2 � 10�6

(1/K �m3)

Hydrogen

50 0.5095 10.501 2.516 4.938 0.0362 0.0633 0.78

100 0.2457 11.229 4.212 17.143 0.0665 0.2410 0.711 333.8

150 0.1637 12.602 5.595 34.178 0.0981 0.4755 0.719 55.99

200 0.1227 13.504 6.813 55.526 0.1282 0.7717 0.719 15.90

250 0.0982 14.059 7.919 80.641 0.1561 1.131 0.713 6.03

300 0.0818 14.314 8.963 109.57 0.182 1.554 0.705 2.72

350 0.0702 14.436 9.954 141.79 0.206 2.033 0.697 1.39

400 0.0613 14.491 10.864 177.23 0.228 2.567 0.690 0.782

450 0.0546 14.499 11.779 215.73 0.251 3.171 0.680 0.468

500 0.0492 14.507 12.636 256.83 0.272 3.811 0.674 0.297

600 0.0408 14.537 14.285 350.12 0.315 5.311 0.659 0.134

700 0.0349 14.574 15.890 455.30 0.351 6.901 0.660 0.0677

800 0.0306 14.675 17.40 568.63 0.384 8.551 0.665 0.0379

1000 0.0245 14.968 20.160 822.86 0.440 11.998 0.686 0.0145

1200 0.0205 15.366 22.75 1109.80 0.488 15.492 0.716 0.00667

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Hydrogen

0 0.00597 3.37 0.537 0.900 0.092 4.59 0.713 2.18 87,000

30 0.00562 3.39 0.562 1.00 0.097 5.09 0.709 2.04 65,700

60 0.00530 3.41 0.587 1.11 0.102 5.65 0.707 1.92 50,500

80 0.00510 3.42 0.602 1.18 0.105 6.04 0.705 1.85 42,700

100 0.00492 3.42 0.617 1.25 0.108 6.42 0.700 1.79 36,700

150 0.00450 3.44 0.653 1.45 0.116 7.50 0.696 1.64 25,000

200 0.00412 3.45 0.688 1.67 0.123 8.64 0.696 1.52 17,500

250 0.00382 3.46 0.723 1.89 0.130 9.85 0.690 1.41 12,700

300 0.00357 3.46 0.756 2.12 0.137 11.1 0.687 1.32 9,440

400 0.00315 3.47 0.822 2.61 0.151 13.8 0.681 1.16 5,470

500 0.00285 3.47 0.890 3.12 0.165 16.7 0.675 1.04 3,430

600 0.00260 3.47 0.952 3.66 0.179 19.8 0.667 0.944 2,270

800 0.00219 3.49 1.07 4.87 0.205 26.8 0.654 0.794 1,080

1000 0.00189 3.52 1.18 6.21 0.224 33.7 0.664 0.685 571

1500 0.00141 3.62 1.44 10.2 0.265 51.9 0.708 0.510 158
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T

(8F)
r

(lbm/ft
3)

c p
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Carbon monoxide

0 0.0832 0.249 1.05 0.126 0.0128 0.620 0.749 2.18 4.40 � 106

30 0.0780 0.249 1.11 0.142 0.0134 0.691 0.744 2.04 3.32

60 0.0736 0.249 1.16 0.157 0.0142 0.775 0.740 1.92 2.48

80 0.0709 0.249 1.20 0.169 0.0146 0.828 0.737 1.85 2.09

100 0.0684 0.249 1.23 0.180 0.0150 0.884 0.735 1.79 1.79

150 0.0628 0.249 1.32 0.210 0.0163 1.04 0.730 1.64 1.19

200 0.0580 0.250 1.40 0.241 0.0174 1.20 0.726 1.52 0.842

250 0.0539 0.250 1.48 0.275 0.0183 1.36 0.722 1.41 0.604

300 0.0503 0.251 1.56 0.310 0.0196 1.56 0.720 1.32 0.442

400 0.0445 0.253 1.73 0.389 0.0217 1.92 0.718 1.16 0.248

500 0.0399 0.256 1.85 0.463 0.0234 2.30 0.725 1.04 0.156

600 0.0361 0.259 1.97 0.545 0.0253 2.71 0.723 0.944 0.101

800 0.0304 0.266 2.21 0.728 0.0288 3.57 0.730 0.794 48.2 � 103

1000 0.0262 0.273 2.43 0.929 0.0324 4.54 0.740 0.685 25.6

1500 0.0195 0.286 3.00 1.54 0.0410 7.35 0.756 0.510 6.93

T

(K)

r

(kg/m3)
cp � 10�3

(J/kg �K)
m� 105

(Pa � s)
n� 105

(m2/s)

k � 102

(W/m �K)
a� 105

(m2/s) Pr
gbr2/m2

(1/K �m3)

Carbon monoxide

250 1.3669 1.0425 1.5408 1.1272 2.1432 1.5040 0.749 3.0841 � 108

300 1.1382 1.0422 1.7854 1.5686 2.5240 2.1277 0.737 1.3273

350 0.9753 1.0440 2.0097 2.0606 2.8839 2.8323 0.727 0.6590

400 0.8532 1.0484 2.2201 2.6021 3.2253 3.6057 0.722 0.3623

450 0.7583 1.0550 2.4189 3.1899 3.5527 4.4408 0.718 0.2133

500 0.6824 1.0642 2.6078 3.8215 3.8638 5.3205 0.718 0.1342

550 0.6204 1.0751 2.7884 4.4945 4.1587 6.2350 0.721 8.843 � 106

600 0.5687 1.0870 2.9607 5.2061 4.4443 7.1894 0.724 6.025

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 106

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2 � 10�6

(1/�F � ft3)
Chlorine

0 0.211 0.113 8.06 0.0381 0.00418 0.175 0.785 2.18 48.3

30 0.197 0.114 8.40 0.0426 0.00450 0.201 0.769 2.04 36.6

60 0.187 0.114 8.80 0.0470 0.00480 0.225 0.753 1.92 28.1

80 0.180 0.115 9.07 0.0504 0.00500 0.242 0.753 1.85 24.3

100 0.173 0.115 9.34 0.0540 0.00520 0.261 0.748 1.79 19.9

150 0.159 0.117 10.0 0.0629 0.00570 0.306 0.739 1.64 13.4
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T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 107

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Helium

0 0.0119 1.24 122 1.03 0.0784 5.30 0.698 2.18 66,800

30 0.0112 1.24 127 1.14 0.0818 5.89 0.699 2.04 51,100

60 0.0106 1.24 132 1.25 0.0852 6.46 0.700 1.92 40,000

80 0.0102 1.24 135 1.32 0.0872 6.88 0.701 1.85 33,900

100 0.00980 1.24 138 1.41 0.0892 7.37 0.701 1.79 29,000

150 0.00900 1.24 146 1.63 0.0937 8.36 0.703 1.64 20,100

200 0.00829 1.24 155 1.87 0.0977 9.48 0.705 1.52 14,000

250 0.00772 1.24 162 2.09 0.102 10.7 0.707 1.41 10,400

300 0.00722 1.24 170 2.36 0.106 11.8 0.709 1.32 7,650

400 0.00637 1.24 185 2.91 0.114 14.4 0.714 1.16 4,410

500 0.00572 1.24 198 3.46 0.122 17.1 0.719 1.04 2,800

600 0.00517 1.24 209 4.04 0.130 20.6 0.720 0.994 1,850

800 0.00439 1.24 232 5.28 0.145 27.6 0.722 0.794 915

1000 0.00376 1.24 255 6.78 0.159 35.5 0.725 0.685 480

1500 0.00280 1.24 309 11.1 0.189 59.7 0.730 0.510 135

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 103

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Sulfur dioxide

0 0.195 0.142 0.700 3.59 0.00460 0.166 0.778 2.03 50.6 � 106

100 0.161 0.149 0.890 5.52 0.00560 0.233 0.854 1.79 19.0

200 0.136 0.157 1.05 7.74 0.00670 0.313 0.883 1.52 8.25

300 0.118 0.164 1.20 10.2 0.00790 0.407 0.898 1.32 4.12

400 0.104 0.170 1.35 13.0 0.00920 0.520 0.898 1.16 2.24

500 0.0935 0.176 1.50 16.0 0.00990 0.601 0.958 1.04 1.30

600 0.0846 0.180 1.65 19.5 0.0108 0.711 0.987 0.994 0.795

Liquids

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 103

(lbm/ft s)

n� 105

(ft2/s)

k

(Btu/h ft �F)
a� 103

(ft2/h) Pr
b� 104

(1/�F)
gbr2/m2 � 10�6

(1/�F � ft3)
Water

32 62.4 1.01 1.20 1.93 0.319 5.06 13.7 �0.350

60 62.3 1.00 0.760 1.22 0.340 5.45 8.07 0.800 17.2

80 62.2 0.999 0.578 0.929 0.353 5.67 5.89 1.30 48.3

100 62.1 0.999 0.458 0.736 0.364 5.87 4.51 1.80 107

150 61.3 1.00 0.290 0.474 0.383 6.26 2.72 2.80 403

200 60.1 1.01 0.206 0.342 0.392 6.46 1.91 3.70 1,010

250 58.9 1.02 0.160 0.272 0.395 6.60 1.49 4.70 2,045

300 57.3 1.03 0.130 0.227 0.395 6.70 1.22 5.60 3,510

400 53.6 1.08 0.0930 0.174 0.382 6.58 0.950 7.80 8,350

500 49.0 1.19 0.0700 0.143 0.349 5.98 0.859 11.0 17,350

600 42.4 1.51 0.0579 0.137 0.293 4.58 1.07 17.5 30,300
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T

(K)

r

(kg/m3)

c p
(J/kg� K)

m� 106

(Pa� s)

n� 106

(m2/s)

k

(W/m� K)
a� 106

(m2/s) Pr
gbr2/m2 � 10�9

(1/K �m3)

Water

273 999.3 4226 1794 1.795 0.558 0.132 13.6

293 998.2 4182 993 0.995 0.597 0.143 6.96 2.035

313 992.2 4175 658 0.663 0.633 0.153 4.33 8.833

333 983.2 4181 472 0.480 0.658 0.160 3.00 22.75

353 971.8 4194 352 0.362 0.673 0.165 2.57 46.68

373 958.4 4211 278 0.290 0.682 0.169 1.72 85.09

473 862.8 4501 139 0.161 0.665 0.171 0.94 517.2

573 712.5 5694 92.2 0.129 0.564 0.139 0.93 1766.0

T

(8F)
r

(lbm/ft
3)

c p
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 105

(ft2/s)

k

(Btu/h ft �F)
a� 103

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2 � 10�6

(1/�F � ft3)
Aniline

60 64.0 0.480 305 4.77 0.101 3.29 52.3

80 63.5 0.485 240 3.78 0.100 3.25 41.8

100 63.0 0.490 180 2.86 0.100 3.24 31.8 0.45 17.7

150 61.6 0.503 100 1.62 0.0980 3.16 18.4

200 60.2 0.515 62 1.03 0.0962 3.10 12.0

250 58.9 0.527 42 0.714 0.0947 3.05 8.44

300 57.5 0.540 30 0.522 0.0931 2.99 6.28

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 105

(ft2/s)

k

(Btu/h ft �F)
a� 103

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2 � 10�7

(1/�F � ft3)
Ammonia

�60 43.9 1.07 20.6 0.471 0.316 6.74 2.52 0.94 132

�30 42.7 1.07 18.2 0.426 0.317 6.93 2.22 1.02 265

0 41.3 1.08 16.9 0.409 0.315 7.06 2.08 1.1 467

30 40.0 1.11 16.2 0.402 0.312 7.05 2.05 1.19 757

60 38.5 1.14 15.0 0.391 0.304 6.92 2.03 1.3 1130

80 37.5 1.16 14.2 0.379 0.296 6.79 2.01 1.4 1650

100 36.4 1.19 13.5 0.368 0.287 6.62 2.00 1.5 2200

120 35.3 1.22 12.6 0.356 0.275 6.43 2.00 1.68 3180
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T

(8F)
r

ðlbm/ft3Þ
cp

ðBtu/lbm�FÞ
m� 105

ðlbm/ft sÞ
n� 105

ðft2/sÞ
k

ðBtu/h ft �FÞ
a� 103

ðft2/hÞ Pr
b� 103

ð1/�FÞ
gbr2/m2 � 10�6

(1/�F � ft3)
n-Butyl Alcohol

60 50.5 0.55 225 4.46 0.100 3.59 44.6

80 50.0 0.58 180 3.60 0.099 3.41 38.0 0.25 6.23

100 49.6 0.61 130 2.62 0.098 3.25 29.1 0.43 2.02

150 48.5 0.68 68 1.41 0.098 2.97 17.1

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 105

(ft2/s)

k

(Btu/h ft �F)
a� 103

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2 � 10�6

(1/�F � ft3)
Freon-12

�40 94.5 0.202 125 1.32 0.0650 3.40 14.0 9.10 168

�30 93.5 0.204 123 1.32 0.0640 3.35 14.1 9.60 179

0 90.9 0.212 116 1.28 0.0578 3.00 15.4 11.4 225

30 87.4 0.221 108 1.24 0.0564 2.92 15.3 13.1 277

60 84.0 0.230 99.6 1.19 0.0528 2.74 15.6 14.9 341

80 81.3 0.238 94.0 1.16 0.0504 2.60 16.0 16.0 384

100 78.7 0.246 88.4 1.12 0.0480 2.48 16.3 17.2 439

150 71.0 0.271 74.8 1.05 0.0420 2.18 17.4 19.5 625

T

(8F)
r

ðlbm/ft3Þ
cp

ðBtu/lbm�FÞ
m�105

ðlbm/ft sÞ
n�105

ðft2/sÞ
k

ðBtu/h ft �FÞ
a� 103

ðft2/hÞ Pr� 10�2
b�104

ð1/�FÞ
gbr2/m2�10�6

(1/�F � ft3)
Benzene

60 55.2 0.395 44.5 0.806 0.0856 3.93 7.39

80 54.6 0.410 38 0.695 0.0836 3.73 6.70 7.5 498

100 53.6 0.420 33 0.615 0.0814 3.61 6.13 7.2 609

150 51.8 0.450 24.5 0.473 0.0762 3.27 5.21 6.8 980

200 49.9 0.480 19.4 0.390 0.0711 2.97 4.73
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T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m

(lbm/ft s)
n� 102

(ft2/s)

k

(Btu/h ft �F)
a� 103

(ft2/h) Pr� 10�2
b�103

(1/�F)
gbr2/m2

(1/�F � ft3)
Glycerin

30 79.7 0.540 7.2 9.03 0.168 3.91 832

60 79.1 0.563 1.4 1.77 0.167 3.75 170

80 78.7 0.580 0.6 0.762 0.166 3.64 75.3 0.30 166

100 78.2 0.598 0.1 0.128 0.165 3.53 13.1

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m�105

(lbm/ft s)

n� 105

(ft2/s)

k

(Btu/h ft �F)
a� 103

(ft2/h) Pr
b�103

(1/�F)
gbr2/m2�10�4

(1/�F � ft3)
Liquid hydrogen

�435 4.84 1.69 1.63 0.337 0.0595 7.28 1.67

�433 4.77 1.78 1.52 0.319 0.0610 7.20 1.59

�431 4.71 1.87 1.40 0.297 0.0625 7.09 1.51 7.1 2.59

�429 4.64 1.96 1.28 0.276 0.0640 7.03 1.41

�427 4.58 2.05 1.17 0.256 0.0655 6.97 1.32

�425 4.51 2.15 1.05 0.233 0.0670 6.90 1.21

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 105

(lbm/ft s)

n� 105

(ft2/s)

k

(Btu/h ft �F)
a� 103

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2

(1/�F � ft3)
Kerosene

30 48.8 0.456 800 16.4 0.0809 3.63 163

60 48.1 0.474 600 12.5 0.0805 3.53 127 0.58 120

80 47.6 0.491 490 10.3 0.0800 3.42 108 0.48 146

100 47.2 0.505 420 8.90 0.0797 3.35 95.7 0.47 192

150 46.1 0.540 320 6.83 0.0788 3.16 77.9

T

(8F)
r

ðlbm/ft3Þ
cp

ðBtu/lbm�FÞ
m�105

ðlbm/ft sÞ
n�105

ðft2/sÞ
k

ðBtu/h ft �FÞ
a� 103

ðft2/hÞ Pr
b�103

ð1/�FÞ
gbr2/m2�10�4

(1/�F � ft3)
Hydraulic fluid (MIL-M-5606)

0 55.0 0.400 5550 101 0.0780 3.54 1030 0.76 2.39

30 54.0 0.420 2220 41.1 0.0755 3.32 446 0.68 13.0

60 53.0 0.439 1110 20.9 0.0732 3.14 239 0.60 44.1

80 52.5 0.453 695 13.3 0.0710 3.07 155 0.52 95.7

100 52.0 0.467 556 10.7 0.0690 2.84 136 0.47 132

150 51.0 0.499 278 5.45 0.0645 2.44 80.5 0.32 346

200 50.0 0.530 250 5.00 0.0600 2.27 79.4 0.20 258
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T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m�103

(lbm/ft s)

n�106

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b�103

(1/�F)
gbr2/m2�10�9

(1/�F � ft3)
Bismuth

600 625 0.0345 1.09 1.75 8.58 0.397 0.0159

700 622 0.0353 0.990 1.59 8.87 0.405 0.0141 0.062 0.786

800 618 0.0361 0.900 1.46 9.16 0.408 0.0129 0.065 0.985

900 613 0.0368 0.830 1.35 9.44 0.418 0.0116 0.068 1.19

1000 608 0.0375 0.765 1.26 9.74 0.427 0.0106 0.071 1.45

1100 604 0.0381 0.710 1.17 10.0 0.435 0.00970 0.074 1.72

1200 599 0.0386 0.660 1.10 10.3 0.446 0.00895 0.077 2.04

1300 595 0.0391 0.620 1.04 10.6 0.456 0.00820

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 103

(lbm/ft s)

n� 106

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b�103

(1/�F)
gbr2/m2�10�9

(1/�F � ft3)
Mercury

40 848 0.0334 1.11 1.31 4.55 0.161 0.0292 1.57

60 847 0.0333 1.05 1.24 4.64 0.165 0.0270 1.76

80 845 0.0332 1.00 1.18 4.72 0.169 0.0252 1.94

100 843 0.0331 0.960 1.14 4.80 0.172 0.0239 2.09

150 839 0.0330 0.893 1.06 5.03 0.182 0.0210 2.38

200 835 0.0328 0.850 1.02 5.25 0.192 0.0191 2.62

250 831 0.0328 0.806 0.970 5.45 0.200 0.0175 2.87

300 827 0.0328 0.766 0.928 5.65 0.209 0.0160 3.16

400 819 0.0328 0.700 0.856 6.05 0.225 0.0137 0.084 3.70

500 811 0.0328 0.650 0.803 6.43 0.243 0.0119 4.12

600 804 0.0328 0.606 0.754 6.80 0.259 0.0105 4.80

800 789 0.0329 0.550 0.698 7.45 0.289 0.0087 5.54

T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m�105

(lbm/ft s)

n�105

(ft2/s)

k � 103

(Btu/h ft �F)
a� 105

(ft2/h) Pr
b�103

(1/�F)
gbr2/m2�10�8

(1/�F � ft3)
Liquid oxygen

�350 80.1 0.400 38.0 0.474 3.1 9.67 172

�340 78.5 0.401 28.0 0.356 3.4 10.8 109

�330 76.8 0.402 21.8 0.284 3.7 12.0 85.0

�320 75.1 0.404 17.4 0.232 4.0 12.2 63.5 3.19 186

�310 73.4 0.405 14.8 0.202 4.3 14.5 50.1

�300 71.7 0.406 13.0 0.181 4.6 15.8 41.2
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T

(8F)
r

(lbm/ft
3)

cp
(Btu/lbm

�F)
m� 103

(lbm/ft s)

n� 106

(ft2/s)

k

(Btu/h ft �F)
a

(ft2/h) Pr
b� 103

(1/�F)
gbr2/m2 � 10�6

(1/�F � ft3)
Sodium

200 58.1 0.332 0.489 8.43 49.8 2.58 0.0118 68.0

250 57.6 0.328 0.428 7.43 49.3 2.60 0.0103 87.4

300 57.2 0.324 0.378 6.61 48.8 2.64 0.00903 110

400 56.3 0.317 0.302 5.36 47.3 2.66 0.00725 168

500 55.5 0.309 0.258 4.64 45.5 2.64 0.00633 0.15 224

600 54.6 0.305 0.224 4.11 43.1 2.58 0.00574 287

800 52.9 0.304 0.180 3.40 38.8 2.41 0.00510 418

1000 51.2 0.304 0.152 2.97 36.0 2.31 0.00463 548

1300 48.7 0.305 0.120 2.47 34.2 2.31 0.00385 795
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Appendix J

Mass-Transfer Diffusion

Coefficients in Binary Systems

Table J.1 Binary mass diffusivities in gasesy

System T (K) DABP(cm
2 atm/s) DABP(m

2 Pa/s)

Air

Ammonia 273 0.198 2.006

Aniline 298 0.0726 0.735

Benzene 298 0.0962 0.974

Bromine 293 0.091 0.923

Carbon dioxide 273 0.136 1.378

Carbon disulfide 273 0.0883 0.894

Chlorine 273 0.124 1.256

Diphenyl 491 0.160 1.621

Ethyl acetate 273 0.0709 0.718

Ethanol 298 0.132 1.337

Ethyl ether 293 0.0896 0.908

Iodine 298 0.0834 0.845

Methanol 298 0.162 1.641

Mercury 614 0.473 4.791

Naphthalene 298 0.0611 0.619

Nitrobenzene 298 0.0868 0.879

n-Octane 298 0.0602 0.610

Oxygen 273 0.175 1.773

Propyl acetate 315 0.092 0.932

Sulfur dioxide 273 0.122 1.236

Toluene 298 0.0844 0.855

Water 298 0.260 2.634

Ammonia

Ethylene 293 0.177 1.793

Argon

Neon 293 0.329 3.333

Carbon dioxide

Benzene 318 0.0715 0.724

Carbon disulfide 318 0.0715 0.724

Ethyl acetate 319 0.0666 0.675

(continued)
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Ethanol 273 0.0693 0.702

Ethyl ether 273 0.0541 0.548

Hydrogen 273 0.550 5.572

Methane 273 0.153 1.550

Methanol 298.6 0.105 1.064

Nitrogen 298 0.165 1.672

Nitrous oxide 298 0.117 1.185

Propane 298 0.0863 0.874

Water 298 0.164 1.661

Carbon monoxide

Ethylene 273 0.151 1.530

Hydrogen 273 0.651 6.595

Nitrogen 288 0.192 1.945

Oxygen 273 0.185 1.874

Helium

Argon 273 0.641 6.493

Benzene 298 0.384 3.890

Ethanol 298 0.494 5.004

Hydrogen 293 1.64 16.613

Neon 293 1.23 12.460

Water 298 0.908 9.198

Hydrogen

Ammonia 293 0.849 8.600

Argon 293 0.770 7.800

Benzene 273 0.317 3.211

Ethane 273 0.439 4.447

Methane 273 0.625 6.331

Oxygen 273 0.697 7.061

Water 293 0.850 8.611

Nitrogen

Ammonia 293 0.241 2.441

Ethylene 298 0.163 1.651

Hydrogen 288 0.743 7.527

Iodine 273 0.070 0.709

Oxygen 273 0.181 1.834

Oxygen

Ammonia 293 0.253 2.563

Benzene 296 0.0939 0.951

Ethylene 293 0.182 1.844

Table J.1 (Continued)

System T (K) DABP(cm
2 atm/s) DABP(m

2 Pa/s)

yR. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958,

Chapter. 8.
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Table J.2 Binary mass diffusivities in liquidsy

Solute A Solvent B

Temperature

(K)

Solute concentration

(g mol/L or kg mol/m3)

Diffusivity (cm2/s �
105 or m2/s� 109)

Chlorine Water 289 0.12 1.26

Hydrogen Water 273 9 2.7

chloride 2 1.8

283 9 3.3

2.5 2.5

289 0.5 2.44

Ammonia Water 278 3.5 1.24

288 1.0 1.77

Carbon dioxide Water 283 0 1.46

293 0 1.77

Sodium Water 291 0.05 1.26

chloride 0.2 1.21

1.0 1.24

3.0 1.36

5.4 1.54

Methanol Water 288 0 1.28

Acetic acid Water 285.5 1.0 0.82

0.01 0.91

291 1.0 0.96

Ethanol Water 283 3.75 0.50

0.05 0.83

289 2.0 0.90

n-Butanol Water 288 0 0.77

Carbon dioxide Ethanol 290 0 3.2

Chloroform Ethanol 293 2.0 1.25

yR. E. Treybal, Mass Transfer Operations, McGraw-Hill, New York, 1955, p. 25.

Table J.3 Binary diffusivities in solidsy

Solute Solid

Temperature

(K)

Diffusivity

(cm2/s or m2/s �104)

Diffusivity

(ft2/h)

Helium Pyrex 293 4:49� 10�11 1:74� 10�10

773 2:00� 10�8 7:76� 10�8

Hydrogen Nickel 358 1:16� 10�8 4:5� 10�8

438 1:05� 10�7 4:07� 10�7

Bismuth Lead 293 1:10� 10�16 4:27� 10�16

Mercury Lead 293 2:50� 10�15 9:7� 10�15

Antimony Silver 293 3:51� 10�21 1:36� 10�20

Aluminum Copper 293 1:30� 10�30 5:04� 10�30

Cadmium Copper 293 2:71� 10�15 1:05� 10�14

yR. M. Barrer, Diffusion In and Through Solids, Macmillan, New York, 1941.
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AppendixK

Lennard–Jones Constants

Table K.1 The collision integrals, Vm and VD based on the Lennard–Jones potentialy

kT/ e

Vm ¼ Vk

(for viscosity

and thermal

conductivity)

VD (for mass

diffusivity) kT/ e

Vm ¼ Vk

(for viscosity

and thermal

conductivity)

VD

(for mass

diffusivity)

1.75 1.234 1.128

0.30 2.785 2.662 1.80 1.221 1.116

0.35 2.628 2.476 1.85 1.209 1.105

0.40 2.492 2.318 1.90 1.197 1.094

0.45 2.368 2.184 1.95 1.186 1.084

0.50 2.257 2.066 2.00 1.175 1.075

0.55 2.156 1.966 2.10 1.156 1.057

0.60 2.065 1.877 2.20 1.138 1.041

0.65 1.982 1.798 2.30 1.122 1.026

0.70 1.908 1.729 2.40 1.107 1.012

0.75 1.841 1.667 2.50 1.093 0.9996

0.80 1.780 1.612 2.60 1.081 0.9878

0.85 1.725 1.562 2.70 1.069 0.9770

0.90 1.675 1.517 2.80 1.058 0.9672

0.95 1.629 1.476 2.90 1.048 0.9576

1.00 1.587 1.439 3.00 1.039 0.9490

1.05 1.549 1.406 3.10 1.030 0.9406

1.10 1.514 1.375 3.20 1.022 0.9328

1.15 1.482 1.346 3.30 1.014 0.9256

1.20 1.452 1.320 3.40 1.007 0.9186

1.25 1.424 1.296 3.50 0.9999 0.9120

1.30 1.399 1.273 3.60 0.9932 0.9058

1.35 1.375 1.253 3.70 0.9870 0.8998

1.40 1.353 1.233 3.80 0.9811 0.8942

1.45 1.333 1.215 3.90 0.9755 0.8888

1.50 1.314 1.198 4.00 0.9700 0.8836

1.55 1.296 1.182 4.10 0.9649 0.8788

1.60 1.279 1.167 4.20 0.9600 0.8740

1.65 1.264 1.153 4.30 0.9553 0.8694

(continued)
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1.70 1.248 1.140 4.40 0.9507 0.8652

4.50 0.9464 0.8610 10.0 0.8242 0.7424

4.60 0.9422 0.8568 20.0 0.7432 0.6640

4.70 0.9382 0.8530 30.0 0.7005 0.6232

4.80 0.9343 0.8492 40.0 0.6718 0.5960

4.90 0.9305 0.8456 50.0 0.6504 0.5756

5.0 0.9269 0.8422 60.0 0.6335 0.5596

6.0 0.8963 0.8124 70.0 0.6194 0.5464

7.0 0.8727 0.7896 80.0 0.6076 0.5352

8.0 0.8538 0.7712 90.0 0.5973 0.5256

Table K.1 (continued)

kT/ e

Vm ¼ Vk

(for viscosity

and thermal

conductivity)

VD (for mass

diffusivity) kT/ e

Vm ¼ Vk

(for viscosity

and thermal

conductivity)

VD

(for mass

diffusivity)

Table K.2 Lennard–Jones force constants calculated from viscosity datay

Compound Formula e A=k, in (K) s, in
�
A

Acetylene C2H2 185 4.221

Air 97 3.617

Argon A 124 3.418

Arsine AsH3 281 4.06

Benzene C6H6 440 5.270

Bromine Br2 520 4.268

i-Butane C4H10 313 5.341

n-Butane C4H10 410 4.997

Carbon dioxide CO2 190 3.996

Carbon disulfide CS2 488 4.438

Carbon monoxide CO 110 3.590

Carbon tetrachloride CCl4 327 5.881

Carbonyl sulfide COS 335 4.13

Chlorine Cl2 357 4.115

Chloroform CHCl3 327 5.430

Cyanogen C2N2 339 4.38

Cyclohexane C6H12 324 6.093

Ethane C2H6 230 4.418

Ethanol C2H5OH 391 4.455

Ethylene C2H6 205 4.232

Fluroine F2 112 3.653

Helium He 10.22 2.576

n-Heptane C7H16 282z 8.883

n-Hexane C6H14 413 5.909

Hydrogen H2 33.3 2.968

Hydrogen chloride HCl 360 3.305

y R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958.
z Calculated from virial coefficients.1
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Hydrogen iodide HI 324 4.123

Iodine I2 550 4.982

Krypton Kr 190 3.60

Methane CH4 136.5 3.822

Methanol CH3OH 507 3.585

Methylene chloride CH2Cl2 406 4.759

Methyl chloride CH3Cl 855 3.375

Mercuric iodide HgI2 691 5.625

Mercury Hg 851 2.898

Neon Ne 35.7 2.789

Nitric oxide NO 119 3.470

Nitrogen N2 91.5 3.681

Nitrous oxide N2O 220 3.879

n-Nonane C9H20 240 8.448

n-Octane C8H18 320 7.451

Oxygen O2 113 3.433

n-Pentane C5H12 345 5.769

Propane C3H8 254 5.061

Silane SiH4 207.6 4.08

Silicon tetrachloride SiCl4 358 5.08

Sulfur dioxide SO2 252 4.290

Water H2O 356 2.649

Xenon Xe 229 4.055

Table K.2 (continued)

Compound Formula e A=k, in (K) s, in
�
A
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Appendix L

The Error Function1

f erf f f erf f

0 0.0 0.85 0.7707

0.025 0.0282 0.90 0.7970

0.05 0.0564 0.95 0.8209

0.10 0.1125 1.0 0.8427

0.15 0.1680 1.1 0.8802

0.20 0.2227 1.2 0.9103

0.25 0.2763 1.3 0.9340

0.30 0.3286 1.4 0.9523

0.35 0.3794 1.5 0.9661

0.40 0.4284 1.6 0.9763

0.45 0.4755 1.7 0.9838

0.50 0.5205 1.8 0.9891

0.55 0.5633 1.9 0.9928

0.60 0.6039 2.0 0.9953

0.65 0.6420 2.2 0.9981

0.70 0.6778 2.4 0.9993

0.75 0.7112 2.6 0.9998

0.80 0.7421 2.8 0.9999

1 J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1958.
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AppendixM

Standard Pipe Sizes

Nominal

pipe

size (in.)

Outside

diameter

(in.)

Schedule

no.

Wall

thickness

(in.)

Inside

diameter

(in.)

Cross-

sectional

area of

metal (in:2)

Inside

sectional

area (ft2)

1

3

0.405 40 0.068 0.269 0.072 0.00040

80 0.095 0.215 0.093 0.00025

1

4

0.540 40 0.088 0.364 0.125 0.00072

80 0.119 0.302 0.157 0.00050

3

8

0.675 40 0.091 0.493 0.167 0.00133

80 0.126 0.423 0.217 0.00098

1

2

0.840 40 0.109 0.622 0.250 0.00211

80 0.147 0.546 0.320 0.00163

160 0.187 0.466 0.384 0.00118

3

4

1.050 40 0.113 0.824 0.333 0.00371

80 0.154 0.742 0.433 0.00300

160 0.218 0.614 0.570 0.00206

1 1.315 40 0.133 1.049 0.494 0.00600

80 0.179 0.957 0.639 0.00499

160 0.250 0.815 0.837 0.00362

1
1

2

1.900 40 0.145 1.610 0.799 0.01414

80 0.200 1.500 1.068 0.01225

160 0.281 1.338 1.429 0.00976

2 2.375 40 0.154 2.067 1.075 0.02330

80 0.218 1.939 1.477 0.02050

160 0.343 1.689 2.190 0.01556

2
1

2

2.875 40 0.203 2.469 1.704 0.03322

80 0.276 2.323 2.254 0.02942

160 0.375 2.125 2.945 0.02463

3 3.500 40 0.216 3.068 2.228 0.05130

80 0.300 2.900 3.016 0.04587

160 0.437 2.626 4.205 0.03761

(continued)
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4 4.500 40 0.237 4.026 3.173 0.08840

80 0.337 3.826 4.407 0.07986

120 0.437 3.626 5.578 0.07170

160 0.531 3.438 6.621 0.06447

5 5.563 40 0.258 5.047 4.304 0.1390

80 0.375 4.813 6.112 0.1263

120 0.500 4.563 7.963 0.1136

160 0.625 4.313 9.696 0.1015

6 6.625 40 0.280 6.065 5.584 0.2006

80 0.432 5.761 8.405 0.1810

120 0.562 5.501 10.71 0.1650

160 0.718 5.189 13.32 0.1469

8 8.625 20 0.250 8.125 6.570 0.3601

30 0.277 8.071 7.260 0.3553

40 0.322 7.981 8.396 0.3474

60 0.406 7.813 10.48 0.3329

80 0.500 7.625 12.76 0.3171

100 0.593 7.439 14.96 0.3018

120 0.718 7.189 17.84 0.2819

140 0.812 7.001 19.93 0.2673

160 0.906 6.813 21.97 0.2532

10 10.75 20 0.250 10.250 8.24 0.5731

30 0.307 10.136 10.07 0.5603

40 0.365 10.020 11.90 0.5475

60 0.500 9.750 16.10 0.5158

80 0.593 9.564 18.92 0.4989

100 0.718 9.314 22.63 0.4732

120 0.843 9.064 26.34 0.4481

140 1.000 8.750 30.63 0.4176

160 1.125 8.500 34.02 0.3941

12 12.75 20 0.250 12.250 9.82 0.8185

30 0.330 12.090 12.87 0.7972

40 0.406 11.938 15.77 0.7773

60 0.562 11.626 21.52 0.7372

80 0.687 11.376 26.03 0.7058

100 0.843 11.064 31.53 0.6677

120 1.000 10.750 36.91 0.6303

140 1.125 10.500 41.08 0.6013

160 1.312 10.126 47.14 0.5592

Nominal

pipe

size (in.)

Outside

diameter

(in.)

Schedule

no.

Wall

thickness

(in.)

Inside

diameter

(in.)

Cross-

sectional

area of

metal (in:2)

Inside

sectional

area (ft2)
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AppendixN

Standard Tubing Gages

Wall thickness

Outside

diameter

(in.)

B.W.G. and

Stubs’s gage (in.)

Inside

diameter

(in.)

Cross-

sectional

area (in.2)

Inside

sectional

area (ft2)

1
2

12 0.109 0.282 0.1338 0.000433

14 0.083 0.334 0.1087 0.000608

16 0.065 0.370 0.0888 0.000747

18 0.049 0.402 0.0694 0.000882

20 0.035 0.430 0.0511 0.001009
3
4 12 0.109 0.532 0.2195 0.00154

13 0.095 0.560 0.1955 0.00171

14 0.083 0.584 0.1739 0.00186

15 0.072 0.606 0.1534 0.00200

16 0.065 0.620 0.1398 0.00210

17 0.058 0.634 0.1261 0.00219

18 0.049 0.652 0.1079 0.00232

1 12 0.109 0.782 0.3051 0.00334

13 0.095 0.810 0.2701 0.00358

14 0.083 0.834 0.2391 0.00379

15 0.072 0.856 0.2099 0.00400

16 0.065 0.870 0.1909 0.00413

17 0.058 0.884 0.1716 0.00426

18 0.049 0.902 0.1463 0.00444

114 12 0.109 1.032 0.3907 0.00581

13 0.095 1.060 0.3447 0.00613

14 0.083 1.084 0.3042 0.00641

15 0.072 1.106 0.2665 0.00677

16 0.065 1.120 0.2419 0.00684

17 0.058 1.134 0.2172 0.00701

18 0.049 1.152 0.1848 0.00724

112 12 0.109 1.282 0.4763 0.00896

13 0.095 1.310 0.4193 0.00936

14 0.083 1.334 0.3694 0.00971

(continued)
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15 0.072 1.358 0.3187 0.0100

16 0.065 1.370 0.2930 0.0102

17 0.058 1.384 0.2627 0.0107

18 0.049 1.402 0.2234 0.0109

134 10 0.134 1.482 0.6803 0.0120

11 0.120 1.510 0.6145 0.0124

12 0.109 1.532 0.5620 0.0128

13 0.095 1.560 0.4939 0.0133

14 0.083 1.584 0.4346 0.0137

15 0.072 1.606 0.3796 0.0141

16 0.065 1.620 0.3441 0.0143

2 10 0.134 1.732 0.7855 0.0164

11 0.120 1.760 0.7084 0.0169

12 0.109 1.782 0.6475 0.0173

13 0.095 1.810 0.5686 0.0179

14 0.083 1.834 0.4998 0.0183

15 0.072 1.856 0.4359 0.0188

16 0.065 1.870 0.3951 0.0191

Wall thickness

Outside

diameter

(in.)

B.W.G. and

Stubs’s gage (in.)

Inside

diameter

(in.)

Cross-

sectional

area (in.2)

Inside

sectional

area (ft2)
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simple plane flow cases, 120–121

superposition, 121–123

Prandtl analogy, 291, 293, 536

Prandtl number, 275, 519, 569

turbulent, 289

Pressure diffusion, 408

Pressure drag, 139

Pressure gradient:

adverse, 152

flow with, 150–152

Pressure variation in static fluid, 16–19

Properties at a point, 2–5

Pseudo-steady-state diffusion, 458–462

P-type semiconductor, 503

Pumps and fans, 53, 185–197

centrifugal, analysis of, 86–194

classification, 186

combined pump/system performance,

193

net positive suction head, 192

performance parameters, 187–191

scaling laws, 194–196

Radiant exchange:

in black enclosures, 379–380

with reradiating surfaces present,

380–381

Radiant heat transfer:

between black bodies, 370–379

between gray surfaces, 381–388

Radiation, 209

from gases, 388–392

intensity of, 361–363

nature of, 359–360

Planck’s law of, 363–365

thermal, 363–365

Radiation heat transfer, 359–397

emissivity and absorptivity of solid

surfaces, 367–370

from gases, 388–392

intensity of, 361–363

nature of, 359–360

Planck’s law of, 363–365

radiant exchange

between black bodies, 370–379

between gray surfaces,

381–388

radiant exchange in black enclosures,

379–380

radiant exchange with reradiating

surfaces present, 380–381

Stefan-Boltzmann law, 365

thermal, 360–361

Radiation heat-transfer coefficient,

392–393

Radiosity, 381

Raoult’s law, 439

Rayleigh number, 299

Reaction controlled process, 464

Reciprocity relationship, 374

Rectangular enclosures, 301–305

Recuperators, 336

Reflection, specular, 360

Reflectivity, 360

Regenerators, 336

Reradiating surfaces, radiant exchange

with, 380–381

Reradiating view factor, 381

Resistance, thermal, 225

Reynolds analogy, 286, 534–535

Reynolds number, 128

Reynolds stress, 158

Schmidt number, 519, 522, 569

Self-diffusion coefficient, 408

Semi-infinite wall, heat transfer to,

259–261

Shear strain, rate of, 88–89

Shear stress, 88, 90

in laminar flow, 81–91

in multidimensional laminar flow of

Newtonian fluid, 88–90

Sherwood number, 520, 522

Sieder-Tate relation, 307

Sieve-plate towers, 605

Simultaneous heat and mass transfer,

479–483

Simultaneous momentum and mass

transfer, 483–487

Single cylinder, convective mass-

transfer, 578–579

Single-pass heat exchanger analysis,

log-mean temperature

difference, 339–343
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Single spheres, 314–316

convective mass-transfer to, 574–577

Slug, 8

Solid mass-diffusivity, 425–429

Solids, physical properties of, 676–677

Solvent-filled pores, hindered solute

diffusion in, 423–425

Soret effect, 407

Specular reflection, 360

Spherical bubble swarms, convective

mass transfer to, 577–578

Spherical coordinates, 652–653, 658

Spray tower, 604–605

Stable film boiling regime, 324

Stagnation points, 117

Standard atmosphere, properties of

672–673

Static fluid:

pressure at a point in, 4–5

pressure variation in, 16–19

Steady flows, 30–31

Steady-state conduction, 224–251

heat transfer from extended surfaces,

233–240

one-dimensional, 224–240

with internal generation of energy,

230–233

two-and three-dimensional systems,

240–246

Steady-state molecular diffusion,

452–495

one-dimensional mass transfer

independent of chemical

reaction, 452–463

one-dimensional systems associated

with chemical reaction,

463–474

simultaneous heat and mass transfer,

479–483

simultaneous momentum and mass

transfer, 483–488

two- and three-dimensional systems,

474–478

Stefan- Boltzmann constant, 209, 365

Stefan-Boltzmann law, 365

Stirred tanks, gas-liquidmass transfer in,

585–587

Stoke’s viscosity relation, 90

Stream function, 125–127

Streamlines, 31–32

Stress at a point, 3–4

Stress tensor, symmetry of, 654

Submerged surfaces, forces on, 20–23

Substantial derivative, 101

Surface resistance, transition diffusion

in finite-dimensional medium

under conditions of, 500–509

Symmetry of stress tensor, 654

Temperature-time charts for simple

geometric shapes, 261

Thermal boundary layer, 279–287

approximate integral analysis of,

283–285

Thermal conductance, 225

Thermal conductivity, 202–207

Thermal diffusion, 407

Thermal diffusivity, 220, 519

Thermal neutrons, 407

Thermal radiation, 360–361

Thermal resistance, 225

Thermodynamic equilibrium, 361

Thixotropic substances, 83–84

Time, 8

rate of change of momentum within

control volume, 104–105

Tissue engineering, 446

Total emissive power, 361

Total head in irrotational flow, 119

Transient conduction analysis,

numerical analysis for, 263–266

Transient conduction processes, 252

Transient diffusion:

in finite-dimensional medium under

conditions of negligible surface

resistance, 500–508

in semi-infinite medium, 497–500

Transition region, 172

Transmissivity, 360

Transpirational cooling, 529

Tube banks in cross-flow, 316

Tubing gages, standard, 700–701

Turbo machines, 185

Turbulence:

description of, 155–165

effect of, on momentum transfer,

155–165

Turbulent boundary layer on flat plate,

163–165

Turbulent flow, 307–311

analysis, 331

considerations, 287–291, 534–536

empirical relations for, 160–163

factors affecting transition from

laminar flow to, 165

Turbulent Prandtl number, 289

Turbulent shear stresses, 157–158

Two-phase flow, 328

Two-resistance theory, 554–563

Uniform cross-section, fins or spines of,

234–235

Uniform rectilinear acceleration, 19–20

Units, 8–9

Universal velocity distribution, 161–162

Unsteady flows, 30–31

Unsteady-state conduction, 252–273

analytical solutions, 252–261

integral method for one-dimensional

unsteady conduction,

266–270

numerical methods for transient

conduction analysis, 263–266

temperature-time charts for simple

geometric shapes, 261–263

Unsteady-state molecular diffusion,

496–516

concentration-time charts for simple

geometric shapes, 509–512

and Fick’s second law, 496–497

transient

in finite-dimensional medium under

conditions of negligible surface

resistance, 500–508

in semi-infinite medium, 497–500

Unsteady transport problems, charts for

solution of, 659–671

Vacancy diffusion, 426

Variable energy generation, plane wall

with, 232–233

Variable overall capacity coefficient,

624–625

Variable thermal conductivity, 230

Velocity,

diffusion, 403

distribution from mixing-length

theory, 161–162

mass-average, 403

molar-average, 403

Velocity potential, 117–118

View-factor algebra, 377–379

Viscosity, 83–87

Viscous contribution, to normal stress,

655–656

Viscous flow, 137–167

Blasius’s solution for laminar

boundary layer on flat plate,

146–150

boundary-layer concept, 144

boundary-layer equations, 145–146

drag, 138–143

with pressure gradient, 150–152
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Reynold’s experiment, 137–138

von Karman momentum integral

analysis, 152–155

von Karman analogy, 291, 538

von Karman integral relation, 154

Well-mixed tanks, gas-liquid mass-

transfer and operations in, 605–

611

Wetted-wall columns, mass transfer in,

581–583

Wiedemann, Franz, Lorenz equation,

204

Wind-chill equivalent temperature,

316
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