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Foreword

Constrained optimization is quite well established as an area of research, and
there exist several powerful techniques that address general problems in that
area. In this book a special class of constraints is considered, called geomet-
ric constraints, which express that the solution of the optimization problem
lies on a manifold. This is a recent area of research that provides powerful
alternatives to the more general constrained optimization methods. Clas-
sical constrained optimization techniques work in an embedded space that
can be of a much larger dimension than that of the manifold. Optimization
algorithms that work on the manifold have therefore a lower complexity and
quite often also have better numerical properties (see, e.g., the numerical
integration schemes that preserve invariants such as energy). The authors
refer to this as unconstrained optimization in a constrained search space.

The idea that one can describe difference or differential equations whose
solution lies on a manifold originated in the work of Brockett, Flaschka,
and Rutishauser. They described, for example, isospectral flows that yield
time-varying matrices which are all similar to each other and eventually
converge to diagonal matrices of ordered eigenvalues. These ideas did not
get as much attention in the numerical linear algebra community as in the
area of dynamical systems because the resulting difference and differential
equations did not lead immediately to efficient algorithmic implementations.

An important book synthesizing several of these ideas is Optimization and
Dynamical Systems (Springer, 1994), by Helmke and Moore, which focuses
on dynamical systems related to gradient flows that converge exponentially
to a stationary point that is the solution of some optimization problem.
The corresponding discrete-time version of this algorithm would then have
linear convergence, which seldom compares favorably with state-of-the-art
eigenvalue solvers.

The formulation of higher-order optimization methods on manifolds grew
out of these ideas. Some of the people that applied these techniques to ba-
sic linear algebra problems include Absil, Arias, Chu, Dehaene, Edelman,
Eldén, Gallivan, Helmke, Hiiper, Lippert, Mahony, Manton, Moore, Sepul-
chre, Smith, and Van Dooren. It is interesting to see, on the other hand, that
several basic ideas in this area were also proposed by Luenberger and Gabay
in the optimization literature in the early 1980s, and this without any use
of dynamical systems.

In the present book the authors focus on higher-order methods and in-
clude Newton-type algorithms for optimization on manifolds. This requires
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a lot more machinery, which cannot currently be found in textbooks. The
main focus of this book is on optimization problems related to invariant
subspaces of matrices, but this is sufficiently general to encompass well the
two main aspects of optimization on manifolds: the conceptual algorithm
and its convergence analysis based on ideas of differential geometry, and the
efficient numerical implementation using state-of-the-art numerical linear al-
gebra techniques.

The book is quite deep in the presentation of the machinery of differen-
tial geometry needed to develop higher-order optimization techniques, but it
nevertheless succeeds in explaining complicated concepts with simple ideas.
These ideas are then used to develop Newton-type methods as well as other
superlinear methods such as trust-region methods and inexact and quasi-
Newton methods, which precisely put more emphasis on the efficient numer-
ical implementation of the conceptual algorithms.

This is a research monograph in a field that is quickly gaining momentum.
The techniques are also being applied to areas of engineering and robotics, as
indicated in the book, and it sheds new light on methods such as the Jacobi-
Davidson method, which originally came from computational chemistry. The
book makes a lot of interesting connections and can be expected to generate
several new results in the future.

Paul Van Dooren January 2007



Notation Conventions

M, N manifolds

T,y points on a manifold

&En, (G x tangent vectors or vector fields
€sy Ney Coy Xz tangent vectors at x

o, Y coordinate charts

A, B square matrices

W, X, Y, Z  matrices
W, X, ¥, 2 linear subspaces

Conventions related to the definition of functions are stated in Section A.3.



Chapter One

Introduction

This book is about the design of numerical algorithms for computational
problems posed on smooth search spaces. The work is motivated by matrix
optimization problems characterized by symmetry or invariance properties
in the cost function or constraints. Such problems abound in algorithmic
questions pertaining to linear algebra, signal processing, data mining, and
statistical analysis. The approach taken here is to exploit the special struc-
ture of these problems to develop efficient numerical procedures.

An illustrative example is the eigenvalue problem. Because of their scale in-
variance, eigenvectors are not isolated in vector spaces. Instead, each eigendi-
rection defines a linear subspace of eigenvectors. For numerical computation,
however, it is desirable that the solution set consist only of isolated points in
the search space. An obvious remedy is to impose a norm equality constraint
on iterates of the algorithm. The resulting spherical search space is an em-
bedded submanifold of the original vector space. An alternative approach is
to “factor” the vector space by the scale-invariant symmetry operation such
that any subspace becomes a single point. The resulting search space is a
quotient manifold of the original vector space. These two approaches provide
prototype structures for the problems considered in this book.

Scale invariance is just one of several symmetry properties regularly en-
countered in computational problems. In many cases, the underlying symme-
try property can be exploited to reformulate the problem as a nondegenerate
optimization problem on an embedded or quotient manifold associated with
the original matrix representation of the search space. These constraint sets
carry the structure of nonlinear matrix manifolds. This book provides the
tools to exploit such structure in order to develop efficient matrix algorithms
in the underlying total vector space.

Working with a search space that carries the structure of a nonlinear man-
ifold introduces certain challenges in the algorithm implementation. In their
classical formulation, iterative optimization algorithms rely heavily on the
Euclidean vector space structure of the search space; a new iterate is gen-
erated by adding an update increment to the previous iterate in order to
reduce the cost function. The update direction and step size are generally
computed using a local model of the cost function, typically based on (ap-
proximate) first and second derivatives of the cost function, at each step. In
order to define algorithms on manifolds, these operations must be translated
into the language of differential geometry. This process is a significant re-
search program that builds upon solid mathematical foundations. Advances
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in that direction have been dramatic over the last two decades and have led
to a solid conceptual framework. However, generalizing a given optimization
algorithm on an abstract manifold is only the first step towards the objective
of this book. Turning the algorithm into an efficient numerical procedure is a
second step that ultimately justifies or invalidates the first part of the effort.
At the time of publishing this book, the second step is more an art than a
theory.

Good algorithms result from the combination of insight from differential
geometry, optimization, and numerical analysis. A distinctive feature of this
book is that as much attention is paid to the practical implementation of
the algorithm as to its geometric formulation. In particular, the concrete
aspects of algorithm design are formalized with the help of the concepts of
retraction and vector transport, which are relaxations of the classical geomet-
ric concepts of motion along geodesics and parallel transport. The proposed
approach provides a framework to optimize the efficiency of the numerical
algorithms while retaining the convergence properties of their abstract geo-
metric counterparts.

The geometric material in the book is mostly confined to Chapters 3 and 5.
Chapter 3 presents an introduction to Riemannian manifolds and tangent
spaces that provides the necessary tools to tackle simple gradient-descent op-
timization algorithms on matrix manifolds. Chapter 5 covers the advanced
material needed to define higher-order derivatives on manifolds and to build
the analog of first- and second-order local models required in most optimiza-
tion algorithms. The development provided in these chapters ranges from
the foundations of differential geometry to advanced material relevant to
our applications. The selected material focuses on those geometric concepts
that are particular to the development of numerical algorithms on embed-
ded and quotient manifolds. Not all aspects of classical differential geometry
are covered, and some emphasis is placed on material that is nonstandard
or difficult to find in the established literature. A newcomer to the field of
differential geometry may wish to supplement this material with a classical
text. Suggestions for excellent texts are provided in the references.

A fundamental, but deliberate, omission in the book is a treatment of the
geometric structure of Lie groups and homogeneous spaces. Lie theory is
derived from the concepts of symmetry and seems to be a natural part of
a treatise such as this. However, with the purpose of reaching a community
without an extensive background in geometry, we have omitted this material
in the present book. Occasionally the Lie-theoretic approach provides an
elegant shortcut or interpretation for the problems considered. An effort
is made throughout the book to refer the reader to the relevant literature
whenever appropriate.

The algorithmic material of the book is interlaced with the geometric ma-
terial. Chapter 4 considers gradient-descent line-search algorithms. These
simple optimization algorithms provide an excellent framework within which
to study the important issues associated with the implementation of practi-
cal algorithms. The concept of retraction is introduced in Chapter 4 as a key
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step in developing efficient numerical algorithms on matrix manifolds. The
later chapters on algorithms provide the core results of the book: the devel-
opment of Newton-based methods in Chapter 6 and of trust-region methods
in Chapter 7, and a survey of other superlinear methods such as conjugate
gradients in Chapter 8. We attempt to provide a generic development of
each of these methods, building upon the material of the geometric chap-
ters. The methodology is then developed into concrete numerical algorithms
on specific examples. In the analysis of superlinear and second-order meth-
ods, the concept of vector transport (introduced in Chapter 8) is used to
provide an efficient implementation of methods such as conjugate gradient
and other quasi-Newton methods. The algorithms obtained in these sections
of the book are competitive with state-of-the-art numerical linear algebra
algorithms for certain problems.

The running example used throughout the book is the calculation of in-
variant subspaces of a matrix (and the many variants of this problem). This
example is by far, for variants of algorithms developed within the proposed
framework, the problem with the broadest scope of applications and the
highest degree of achievement to date. Numerical algorithms, based on a ge-
ometric formulation, have been developed that compete with the best avail-
able algorithms for certain classes of invariant subspace problems. These
algorithms are explicitly described in the later chapters of the book and,
in part, motivate the whole project. Because of the important role of this
class of problems within the book, the first part of Chapter 2 provides a
detailed description of the invariant subspace problem, explaining why and
how this problem leads naturally to an optimization problem on a matrix
manifold. The second part of Chapter 2 presents other applications that can
be recast as problems of the same nature. These problems are the subject
of ongoing research, and the brief exposition given is primarily an invitation
for interested researchers to join with us in investigating these problems and
expanding the range of applications considered.

The book should primarily be considered a research monograph, as it
reports on recently published results in an active research area that is ex-
pected to develop significantly beyond the material presented here. At the
same time, every possible effort has been made to make the book accessible
to the broadest audience, including applied mathematicians, engineers, and
computer scientists with little or no background in differential geometry. It
could equally well qualify as a graduate textbook for a one-semester course in
advanced optimization. More advanced sections that can be readily skipped
at a first reading are indicated with a star. Moreover, readers are encouraged
to visit the book home pag@ where supplementary material is available.

The book is an extension of the first author’s Ph.D. thesis [Abs03], itself a
project that drew heavily on the material of the second author’s Ph.D. the-
sis [Mah94]. It would not have been possible without the many contributions
of a quickly expanding research community that has been working in the area

Thttp://press.princeton.edu/titles/8586.html
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over the last decade. The Notes and References section at the end of each
chapter is an attempt to give proper credit to the many contributors, even
though this task becomes increasingly difficult for recent contributions. The
authors apologize for any omission or error in these notes. In addition, we
wish to conclude this introductory chapter with special acknowledgements
to people without whom this project would have been impossible. The 1994
monograph [HM94] by Uwe Helmke and John Moore is a milestone in the
formulation of computational problems as optimization algorithms on man-
ifolds and has had a profound influence on the authors. On the numerical
side, the constant encouragement of Paul Van Dooren and Kyle Gallivan
has provided tremendous support to our efforts to reconcile the perspectives
of differential geometry and numerical linear algebra. We are also grateful
to all our colleagues and friends over the last ten years who have crossed
paths as coauthors, reviewers, and critics of our work. Special thanks to Ben
Andrews, Chris Baker, Alan Edelman, Michiel Hochstenbach, Knut Hiiper,
Jonathan Manton, Robert Orsi, and Jochen Trumpf. Finally, we acknowl-
edge the useful feedback of many students on preliminary versions of the
book, in particular, Mariya Ishteva, Michel Journée, and Alain Sarlette.



Chapter Two

Motivation and Applications

The problem of optimizing a real-valued function on a matrix manifold ap-
pears in a wide variety of computational problems in science and engineering.
In this chapter we discuss several examples that provide motivation for the
material presented in later chapters. In the first part of the chapter, we focus
on the eigenvalue problem. This application receives special treatment be-
cause it serves as a running example throughout the book. It is a problem of
unquestionable importance that has been, and still is, extensively researched.
It falls naturally into the geometric framework proposed in this book as an
optimization problem whose natural domain is a matrix manifold—the un-
derlying symmetry is related to the fact that the notion of an eigenvector is
scale-invariant. Moreover, there are a wide range of related problems (eigen-
value decompositions, principal component analysis, generalized eigenvalue
problems, etc.) that provide a rich collection of illustrative examples that
we will use to demonstrate and compare the techniques proposed in later
chapters.

Later in this chapter, we describe several research problems exhibiting
promising symmetry to which the techniques proposed in this book have not
yet been applied in a systematic way. The list is far from exhaustive and is
very much the subject of ongoing research. It is meant as an invitation to
the reader to consider the broad scope of computational problems that can
be cast as optimization problems on manifolds.

2.1 A CASE STUDY: THE EIGENVALUE PROBLEM

The problem of computing eigenspaces and eigenvalues of matrices is ubiq-
uitous in engineering and physical sciences. The general principle of comput-
ing an eigenspace is to reduce the complexity of a problem by focusing on a
few relevant quantities and dismissing the others. Eigenspace computation
is involved in areas as diverse as structural dynamics [GR97], control the-
ory [PLV94], signal processing [CG90], and data mining [BDJ99]. Consider-
ing the importance of the eigenproblem in so many engineering applications,
it is not surprising that it has been, and still is, a very active field of research.
Let F stand for the field of real or complex numbers. Let A be an n x n
matrix with entries in F. Any nonvanishing vector v € C™ that satisfies

Av=)\v
for some A € C is called an eigenvector of A; X is the associated eigen-
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value, and the couple (A,v) is called an eigenpair. The set of eigenvalues
of A is called the spectrum of A. The eigenvalues of A are the zeros of the
characteristic polynomial of A,

Pa(z) =det(A — 2I),

and their algebraic multiplicity is their multiplicity as zeros of Py. If T
is an invertible matrix and (\,v) is an eigenpair of A, then (A, Tv) is an
eigenpair of TAT~!. The transformation A — TAT ! is called a similarity
transformation of A.

A (linear) subspace S of F™ is a subset of F™ that is closed under linear
combinations, i.e.,

Va,y € S, Va,b € F: (ax +by) € S.

A set {yi,...,yp} of elements of S such that every element of S can be
written as a linear combination of yi,...,y, is called a spanning set of S;
we say that S is the column space or simply the span of the n x p matrix
Y =[y1,...,yp) and that Y spans S. This is written as

S =span(Y) ={Yuz:2 € FP} = YF?.

The matrix Y is said to have full (column) rank when the columns of ¥ are
linearly independent, i.e., Yz = 0 implies x = 0. If Y spans & and has full
rank, then the columns of Y form a basis of S. Any two bases of S have
the same number of elements, called the dimension of S. The set of all p-
dimensional subspaces of F"*, denoted by Grass(p, n), plays an important role
in this book. We will see in Section 3.4 that Grass(p,n) admits a structure
of manifold called the Grassmann manifold.

The kernel ker(B) of a matrix B is the subspace formed by the vectors x
such that Bz = 0. A scalar A is an eigenvalue of a matrix A if and only if
the dimension of the kernel of (A — AI) is greater than zero, in which case
ker(A — AI) is called the eigenspace of A related to A.

An n x n matrix A naturally induces a mapping on Grass(p, n) defined by

S € Grass(p,n) — AS :={Ay:ye S}

A subspace S is said to be an invariant subspace or eigenspace of A if AS C
S. The restriction Als of A to an invariant subspace S is the operator
x — Az whose domain is §. An invariant subspace S of A is called spectral
if, for every eigenvalue X of Alg, the multiplicities of A as an eigenvalue of A|s
and as an eigenvalue of A are identical; equivalently, X7 AX and XTAX |
have no eigenvalue in common when [X|X ] satisfies [X|X | |T[X|X ] = I,
and span(X) = S.

In many (arguably the majority of) eigenproblems of interest, the matrix
A is real and symmetric (A = AT). The eigenvalues of an n x n symmetric
matrix A are reals \; < --- < \,, and the associated eigenvectors vy,...,v,
are real and can be chosen orthonormal, i.e.,

Lifi—
i = {110
0ifi#j.
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Equivalently, for every symmetric matrix A, there is an orthonormal matrix
V' (whose columns are eigenvectors of A) and a diagonal matrix A such that
A = VAVT. The eigenvalue \; is called the leftmost eigenvalue of A, and
an eigenpair (A, v1) is called a leftmost eigenpair. A p-dimensional leftmost
invariant subspace is an invariant subspace associated with Aq,..., A,. Sim-
ilarly, a p-dimensional rightmost invariant subspace is an invariant subspace
associated with A,_py1,...,A,. Finally, extreme eigenspaces refer collec-
tively to leftmost and rightmost eigenspaces.

Given two n x n matrices A and B, we say that (\,v) is an eigenpair of
the pencil (A, B) if

Av = A\Bu.

Finding eigenpairs of a matrix pencil is known as the generalized eigen-
value problem. The generalized eigenvalue problem is said to be symmetric /
positive-definite when A is symmetric and B is symmetric positive-definite
(i.e., T Bx > 0 for all nonvanishing x). In this case, the eigenvalues of
the pencil are all real and the eigenvectors can be chosen to form a B-
orthonormal basis. A subspace ) is called a (generalized) invariant subspace
(or a deflating subspace) of the symmetric / positive-definite pencil (A, B)
if B~'Ay € Y for all y € ), which can also be written B~'AY C Y or
AY C BY. The simplest example is when ) is spanned by a single eigen-
vector of (A, B), i.e., a nonvanishing vector y such that Ay = ABy for some
eigenvalue A\. More generally, every eigenspace of a symmetric / positive-
definite pencil is spanned by eigenvectors of (A4, B). Obviously, the general-
ized eigenvalue problem reduces to the standard eigenvalue problem when
B=1.

2.1.1 The eigenvalue problem as an optimization problem

The following result is instrumental in formulating extreme eigenspace com-
putation as an optimization problem. (Recall that tr(A), the trace of A,
denotes the sum of the diagonal elements of A.)

Proposition 2.1.1 Let A and B be symmetric n X n matrices and let B be
positive-definite. Let \y < --- < \,, be the eigenvalues of the pencil (A, B).
Consider the generalized Rayleigh quotient

fV) =tr(YTAY (YTBY)™) (2.1)

defined on the set of all n x p full-rank matrices. Then the following state-
ments are equivalent:

(i) span(Yy) is a leftmost invariant subspace of (A, B);
(ii) Yi is a global minimizer of (2.1) over all n X p full-rank matrices;
fiii) F(Y.) = S0 A

Proof. For simplicity of the development we will assume that A\, < A,i1,
but the result also holds without this hypothesis. Let V' be an n x n matrix
for which VI BV = I,, and VT AV = diag(\1,...,\,), where A} < --- < \,,.
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Such a V always exists. Let Y € R"*? and put Y = VM. Since YT BY = I,
it follows that MT M = I,. Then

tr(Y7TAY) = tr(M T diag(\1, . .., \y) M)

n P
:E:AiE:"%
i=1 j=1
p n
= Z )‘P + Z()‘l - )‘P)m127 + Z ()‘1 )‘P)mz_]
j=1 i=1 i=p+1
P p p n
=S p =) 13m0 S (v - am
i=1 i=1 J=1 Jj=li=p+1

Since the second and last terms are nonnegative, it follows that tr(Y 7 AY) >
>°P_ Ai. Equality holds if and only if the second and last terms vanish. This
happens if and only if the (n — p) X p lower part of M vanishes (and hence
the p x p upper part of M is orthogonal), which means that Y = VM spans
a p-dimensional leftmost invariant subspace of (4, B). O

For the case p = 1 and B = I, and assuming that the leftmost eigen-
value A1 of A has multiplicity 1, Proposition [2.1.1] implies that the global
minimizers of the cost function
y" Ay
y'y
are the points v1r, r € R,, where R? is R with the origin removed and v,
is an eigenvector associated with A;. The cost function (2.2) is called the
Rayleigh quotient of A. Minimizing the Rayleigh quotient can be viewed as
an optimization problem on a manifold since, as we will see in Section 3.1.1,
R” admits a natural manifold structure. However, the manifold aspect is of
little interest here, as the manifold is simply the classical linear space R™
with the origin excluded.

A less reassuring aspect of this minimization problem is that the mini-
mizers are not isolated but come up as the continuum v1R,. Consequently,
some important convergence results for optimization methods do not apply,
and several important algorithms may fail, as illustrated by the following
proposition.

R =R:y— f(y) = (2.2)

Proposition 2.1.2 Newton’s method applied to the Rayleigh quotient (2.2))
yields the iteration y v— 2y for every y such that f(y) is not an eigenvalue

of A.

Proof. Routine manipulations y1e1d grad f(y) = % (Ay — f(y)y) and
Hess f(y)[z] = D(grad f)(y)[z] = #; (A= (y)z) sz (y TAzy+yTsz_
2f(y)ytzy) = H,z, where H, = % (A~ f(y) yTy(nyA + AyyT

21 (yy")) = 51— 245)(A = F(y))(I — 2%5). Tt follows that H, is
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singular if and only if f(y) is an eigenvalue of A. When f(y) is not an eigen-
value of A, the Newton equation H,n = —grad f(y) admits one and only one
solution, and it is easy to check that this solution is 7 = y. In conclusion,
the Newton iteration maps y to y +n = 2y. O

This result is not particular to the Rayleigh quotient. It holds for any
function f homogeneous of degree zero, i.e., f(ya) = f(y) for all real « # 0.

A remedy is to restrain the domain of f to some subset M of R so that
any ray yR, contains at least one and at most finitely many points of M.
Notably, this guarantees that the minimizers are isolated. An elegant choice
for M is the unit sphere

Snli={yeR":yTy =1}

Restricting the Rayleigh quotient (2.2) to S™~! gives us a well-behaved cost
function with isolated minimizers. What we lose, however, is the linear struc-
ture of the domain of the cost function. The goal of this book is to provide
a toolbox of techniques to allow practical implementation of numerical op-
timization methods on nonlinear embedded (matrix) manifolds in order to
address problems of exactly this nature.

Instead of restraining the domain of f to some subset of R", another
approach, which seems a priori more challenging but fits better with the
geometry of the problem, is to work on a domain where all points on a ray
yR, are considered just one point. This viewpoint is especially well suited
to eigenvector computation since the useful information of an eigenvector is
fully contained in its direction. This leads us to consider the set

M= {yR, : y € R}}.

Since the Rayleigh quotient (2.2) satisfies f(ya) = f(y), it induces a well-
defined function f(yR,) := f(y) whose domain is M. Notice that whereas the
Rayleigh quotient restricted to S"~! has two minimizers +v;, the Rayleigh
quotient f has only one minimizer v1R, on M. It is shown in Chapter 3 that
the set M, called the real projective space, admits a natural structure of quo-
tient manifold. The material in later chapters provides techniques tailored
to (matrix) quotient manifold structures that lead to practical implemen-
tation of numerical optimization methods. For the simple case of a single
eigenvector, algorithms proposed on the sphere are numerically equivalent
to those on the real-projective quotient space. However, when the problem
is generalized to the computation of p-dimensional invariant subspaces, the
quotient approach, which leads to the Grassmann manifold, is seen to be the
better choice.

2.1.2 Some benefits of an optimization framework

We will illustrate throughout the book that optimization-based eigenvalue
algorithms have a number of desirable properties.

An important feature of all optimization-based algorithms is that opti-
mization theory provides a solid framework for the convergence analysis.
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Many optimization-based eigenvalue algorithms exhibit almost global con-
vergence properties. This means that convergence to a solution of the opti-
mization problem is guaranteed for almost every initial condition. The prop-
erty follows from general properties of the optimization scheme and does not
need to be established as a specific property of a particular algorithm.

The speed of convergence of the algorithm is also an intrinsic property of
optimization-based algorithms. Gradient-based algorithms converge linearly;
i.e., the contraction rate of the error between successive iterates is asymptot-
ically bounded by a constant ¢ < 1. In contrast, Newton-like algorithms have
superlinear convergence; i.e., the contraction rate asymptotically converges
to zero. (We refer the reader to Section 4.3 for details.)

Characterizing the global behavior and the (local) convergence rate of
a given algorithm is an important performance measure of the algorithm.
In most situations, this analysis is a free by-product of the optimization
framework.

Another challenge of eigenvalue algorithms is to deal efficiently with large-
scale problems. Current applications in data mining or structural analysis
easily involve matrices of dimension 10% — 10° [AHLT05]. In those applica-
tions, the matrix is typically sparse; i.e., the number of nonzero elements
is O(n) or even less, where n is the dimension of the matrix. The goal in
such applications is to compute a few eigenvectors corresponding to a small
relevant portion of the spectrum. Algorithms are needed that require a small
storage space and produce their iterates in O(n) operations. Such algorithms
permit matrix-vector products x — Az, which require O(n) operations if A
is sparse, but they forbid matrix factorizations, such as QR and LU, that
destroy the sparse structure of A. Algorithms that make use of A only in the
form of the operator x — Ax are called matriz-free.

All the algorithms in this book, designed and analyzed using a differential
geometric optimization approach, satisfy at least some of these requirements.
The trust-region approach presented in Chapter 7 satisfies all the require-
ments. Such strong convergence analysis is rarely encountered in available
eigenvalue methods.

2.2 RESEARCH PROBLEMS

This section is devoted to briefly presenting several general computational
problems that can be tackled by a manifold-based optimization approach.
Research on the problems presented is mostly at a preliminary stage and
the discussion provided here is necessarily at the level of an overview. The
interested reader is encouraged to consult the references provided.

2.2.1 Singular value problem

The singular value decomposition is one of the most useful tasks in numerical
computations [HJ85, GVLI6], in particular when it is used in dimension
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reduction problems such as principal component analysis [JW92].

Matrices U, ¥, and V form a singular value decomposition (SVD) of an
arbitrary matrix A € R™*™ (to simplify the discussion, we assume that
m >n) if

A=UxVT, (2.3)
with U € R™*™ UTU = I,,,, V e R™*" VTV =1,, ¥ € R™*" % diagonal
with diagonal entries oy > -+ > 0, > 0. Every matrix A admits an SVD.
The diagonal entries o; of ¥ are called the singular values of A, and the
corresponding columns u; and v; of U and V are called the left and right
singular vectors of A. The triplets (o;,u;,v;) are then called singular triplets
of A. Note that an SVD expresses the matrix A as a sum of rank-1 matrices,

n

T

A= E OiU;V; .
i=1

The SVD is involved in several least-squares problems. An important ex-
ample is the best low-rank approximation of an m X n matrix A in the
least-squares sense, i.e.,

arg min A — X3,

where R, denotes the set of all m x n matrices with rank p and || - ||%
denotes the Frobenius norm, i.e., the sum of the squares of the elements of
its argument. The solution of this problem is given by a truncated SVD

p

T

X = E oiU;v;
i=1

where (0, u;,v;) are singular triplets of A (ordered by decreasing value of
o). This result is known as the Eckart-Young-Mirsky theorem; see Eckart
and Young [EY36] or, e.g., Golub and Van Loan [GVL96].

The singular value problem is closely related to the eigenvalue problem. It
follows from (2.3) that AT A = VX2V7 hence the squares of the singular val-
ues of A are the eigenvalues of AT A and the corresponding right singular vec-
tors are the corresponding eigenvectors of A7 A. Similarly, AAT = UX2U7,
hence the left singular vectors of A are the eigenvectors of AA”. One ap-
proach to the singular value decomposition problem is to rely on eigenvalue
algorithms applied to the matrices A7 A and AAT. Alternatively, it is possi-
ble to compute simultaneously a few dominant singular triplets (i.e., those
corresponding to the largest singular values) by maximizing the cost function

f(U,V)=tr(UTAVN)

subject to UTU = I, and VTV = I,,, where N = diag(u1, ..., i), with pg >
-+ >, > 0 arbitrary. If (U, V) is a solution of this maximization problem,
then the columns u; of U and v; of V are the ith dominant left and right
singular vectors of A. This is an optimization problem on a manifold; indeed,
constraint sets of the form {U € R"*? : UTU = I,,} have the structure of
an embedded submanifold of R™*? called the (orthogonal) Stiefel manifold
(Section 3.3), and the constraint set for (U, V') is then a product manifold
(Section 3.1.6).
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2.2.2 Matrix approximations

In the previous section, we saw that the truncated SVD solves a particular
kind of matrix approximation problem, the best low-rank approximation
in the least-squares sense. There are several other matrix approximation
problems that can be written as minimizing a real-valued function on a
manifold.

Within the matrix nearness framework

in |A— X|?
min I [

we have, for example, the following symmetric positive-definite least-squares
problem.

Find C e R™*"
to minimize ||C' — Cp||? (2.4)
subject to rank(C) =p, C =CT, C =0,
where C' > 0 denotes that C is positive-semidefinite; i.e., 27Cxz > 0 for all
z € R™. We can rephrase this constrained problem as a problem on the set

R} P of all n x p full-rank matrices by setting C = YYT, Y € R*P. The
new search space is simpler, but the new cost function

FiRPP SRV — |[YYT — G2

has the symmetry property f(Y Q) = f(Y) for all orthonormal p x p matrices
@, hence minimizers of f are not isolated and the problems mentioned in
Section [2.1 for Rayleigh quotient minimization are likely to appear. This
again points to a quotient manifold approach, where a set {YQ : QTQ = I}
is identified as one point of the quotient manifold.

A variation on the previous problem is the best low-rank approximation
of a correlation matrix by another correlation matrix [BX05]:

Find C e R™"
to minimize ||C — Cp||? (2.5)
subject to rank(C)=p, C;y=1(¢=1,...,n), C = 0.
Again, setting C = YY7T, Y € R}*?, takes care of the rank constraint. Re-
placing this form in the constraint Cy; = 1,7 = 1,...,n, yields diag(YY7T) =

I. This constraint set can be shown to admit a manifold structure called an
oblique manifold:

OB :={Y e R™*? : diag(YYT) = I,};

see, e.g., [Tre99, TL0O2, AGO6]. This manifold-based approach is further de-
veloped in [GP07].

A more general class of matrix approximation problems is the Procrustes
problem [GDO04]

min |AX — B||%2, AecR>™ BeRX", (2.6)
XeM
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where M C R™*", Taking M = R™*" yields a standard least-squares
problem. The orthogonal case, M = O,, = {X € R"*" : XTX = [}, has a
closed-form solution in terms of the polar decomposition of BT A [GVL6].
The case M = {X € R™*" : XTX = [}, where M is a Stiefel manifold,
is known as the unbalanced orthogonal Procrustes problem; see [EP99] and
references therein. The case M = {X € R™*" : diag(X? X) = I}, where
M is an oblique manifold, is called the oblique Procrustes problem [Tre99,
TL02).

2.2.3 Independent component analysis

Independent component analysis (ICA), also known as blind source separa-
tion (BSS), is a computational problem that has received much attention in
recent years, particularly for its biomedical applications [JHO5]. A typical ap-
plication of ICA is the “cocktail party problem”, where the task is to recover
one or more signals, supposed to be statistically independent, from recordings
where they appear as linear mixtures. Specifically, assume that n measured
signals z(t) = [z1(t),...,2,(t)]T are instantaneous linear mixtures of p un-
derlying, statistically independent source signals s(t) = [s1(t),...,s,(t)]T.
In matrix notation, we have

x(t) = As(t),

where the n x p matrix A is an unknown constant mizing matriz containing
the mixture coefficients. The ICA problem is to identify the mixing matrix
A or to recover the source signals s(t) using only the observed signals z(t).

This problem is usually translated into finding an n X p separating matriz
(or demizing matriz) W such that the signals y(t) given by

y(t) = W'a(t)

are “as independent as possible”. This approach entails defining a cost func-
tion f(W) to measure the independence of the signals y(t), which brings us
to the realm of numerical optimization. This separation problem, however,
has the structural symmetry property that the measure of independence of
the components of y(t) should not vary when different scaling factors are ap-
plied to the components of y(t). In other words, the cost function f should
satisfy the invariance property f(WD) = f(W) for all nonsingular diagonal
matrices D. A possible choice for the cost function f is the log likelihood
criterion

K
FW) =" ny(log det diag(W*C, W) — log det(W*C W), (2.7)

k=1
where the Cj’s are covariance-like matrices constructed from x(t) and
diag(A) denotes the diagonal matrix whose diagonal is the diagonal of A;
see, e.g., [Yer02] for the choice of the matrices Cj, and [PhaOl] for more

information on the cost function (2.7).

The invariance property f(WD) = f(W), similarly to the homogeneity
property observed for the Rayleigh quotient (2.2), produces a continuum of
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minimizers if W is allowed to vary on the whole space of n X p matrices.
Much as in the case of the Rayleigh quotient, this can be addressed by
restraining the domain of f to a constraint set that singles out finitely many
points in each equivalence class {WD : D diagonal}; a possible choice for
the constraint set is the oblique manifold

OB = {W € R™? : diagWW?") = I,,}.

Another possibility is to identify all the matrices within an equivalence class
{WD : D diagonal} as a single point, which leads to a quotient manifold
approach.

Methods for ICA based on differential-geometric optimization have been
proposed by, among others, Amari et al. [ACCO00], Douglas [Dou00], Rah-
bar and Reilly [RR00], Pham [Pha01], Joho and Mathis [JM02], Joho and
Rahbar [JR02], Nikpour et al. [NMHO02], Afsari and Krishnaprasad [AK04],
Nishimori and Akaho [NA05], Plumbley [Plu05], Absil and Gallivan [AG06],
Shen et al. [SHS06], and Hiieper et al. [HSS06]; see also several other refer-
ences therein.

2.2.4 Pose estimation and motion recovery

In the pose estimation problem, an object is known via a set of landmarks
{mi}i=1.. ~, where m; = (z;,vi,2)T € R3 are the three coordinates of

the ith landmark in an object-centered frame. The coordinates m) of the
landmarks in a camera-centered frame obey a rigid body displacement law

m, = Rm; + t,

where R € SO3 (i.e., RTR = I and det(R) = 1) represents a rotation and
t € R3 stands for a translation. Each landmark point produces a normalized
image point in the image plane of the camera with coordinates

Rm; 4+t

U= .
el (Rm; +t)

The pose estimation problem is to estimate the pose (R,t) in the manifold
SO3 x R? from a set of point correspondences {(u;,m;)}i=1,. n. A possible
approach is to minimize the real-valued function

N
f:805 xR = R:(Rt) = Y [T = wu] )(Rm; +1)|1%,
i=1
which vanishes if and only if the points w; and m/ are collinear, i.e., u; is
indeed the coordinate vector of the projection of the ith landmark onto the
image plane of the camera. This is an optimization problem on the manifold
S03 x R3. Since rigid body motions can be composed to obtain another rigid
body motion, this manifold possesses a group structure called the special
Euclidean group SE3.
A related problem is motion and structure recovery from a sequence of im-
ages. Now the object is unknown, but two or more images are available from
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different angles. Assume that NV landmarks have been selected on the object
and, for simplicity, consider only two images of the object. The coordinates
m} and m] of the ith landmark in the first and second camera frames are
related by a rigid body motion

m; = Rm, +t.

Again without loss of generality, the coordinates of the projections of the

!
. . . m
ith landmark onto each camera image plane are given by p; = e;ﬂ;, and
3 i
1"
¢i = —mi. The motion and structure recovery problem is, from a set of
ey m/ ’

corresponding image points {(p;, ¢;) }i=1,... v, to recover the camera motion
(R,t) and the three-dimensional coordinates of the points that the images
correspond to. It is a classical result in computer vision that corresponding
coordinate vectors p and ¢ satisfy the epipolar constraint

p Rt g =0,
where t" is the 3 x 3 skew-symmetric matrix
0 —i3 12
t/\ = t3 0 —tl
—to 1 0

To recover the motion (R,t) € SOz x R? from a given set of image corre-
spondences {(pi, i) }i=1,...,N, it is thus natural to consider the cost function
N
FRE) =Y (0T Rt q:)%, pi.q; € R®,(R,t) € SO3 x R,
i=1
This function is homogeneous in ¢. As in the case of Rayleigh quotient mini-
mization, this can be addressed by restricting ¢ to the unit sphere S?, which
yields the problem of minimizing the cost function
N
f(R, 1) = Z(PiTRTtAQi)2a pis4;i € R?, (R, t) € SOz x 5.
i=1
Equivalently, this problem can be written as the minimization of the cost
function
N
f(E) :Z(p?qu)27 Pi, Qi €R37E€gl7
i=1
where &7 is the normalized essential manifold
& = {Rt" : R € SOs, t" € s03, 2tr((t")"t") =1}.

(so3 = {Q € R¥3: QT = —Q} is the Lie algebra of SOs, and the tr function
returns the sum of the diagonal elements of its argument.)

For more details on multiple-view geometry, we refer the reader to Hartley
and Zisserman [HZ03]. Applications of manifold optimization to computer
vision problems can be found in the work of Ma et al. [MKSO01], Lee and
Moore [LMO04], Liu et al. [LSGO04], and Helmke et al. [HHLMOT].
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2.3 NOTES AND REFERENCES

Each chapter of this book (excepting the introduction) has a Notes and
References section that contains pointers to the literature. In the following
chapters, all the citations will appear in these dedicated sections.

Recent textbooks and surveys on the eigenvalue problem include Golub
and van der Vorst [GvdV00], Stewart [Ste0l], and Sorensen [Sor02]. An
overview of applications can be found in Saad [Saa92]. A major reference for
the symmetric eigenvalue problem is Parlett [Par80]. The characterization of
eigenproblems as minimax problems goes back to the time of Poincaré. Early
references are Fischer [Fis05] and Courant [Cou20], and the results are often
referred to as the Courant-Fischer minimax formulation. The formulation is
heavily exploited in perturbation analysis of Hermitian eigenstructure. Good
overviews are available in Parlett [Par80, §10 and 11, especially §10.2], Horn
and Johnson [HJ91, §4.2], and Wilkinson [Wil65, §2]. See also Bhatia [Bha87]
and Golub and Van Loan [GVL96, §8.1].

Until recently, the differential-geometric approach to the eigenproblem
had been scarcely exploited because of tough competition from some highly
efficient mainstream algorithms combined with a lack of optimization al-
gorithms on manifolds geared towards computational efficiency. However,
thanks in particular to the seminal work of Helmke and Moore [HM94] and
Edelman, Arias, and Smith [Smi93, Smi94, EAS98], and more recent work by
Absil et al. [ABG04, ABGO07], manifold-based algorithms have now appeared
that are competitive with state-of-the-art methods and sometimes shed new
light on their properties. Papers that apply differential-geometric concepts
to the eigenvalue problem include those by Chen and Amari [CA01], Lund-
strom and Eldén [LE02], Simoncinin and Eldén [SE02], Brandts [Bra03],
Absil et al. [AMSV02, AMS04, ASVM04, ABGS05, ABG06b], and Baker et
al. [BAGO6]. One “mainstream” approach capable of satisfying all the
requirements in Section [2.1.2 is the Jacobi-Davidson conjugate gradient
(JDCG) method of Notay [Not02]. Interestingly, it is closely related to an al-
gorithm derived from a manifold-based trust-region approach (see Chapter 7
or [ABGO6bD]).

The proof of Proposition 2.1.1 is adapted from [Fan49]. The fact that the
classical Newton method fails for the Rayleigh quotient (Proposition [2.1.2)
was pointed out in [ABGO6b], and a proof was given in [Zho06].

Major references for Section[2.2 include Helmke and Moore [HM94], Edel-
man et al. [EAS98], and Lippert and Edelman [LE00]. The cost function sug-
gested for the SVD (Section 2.2.1) comes from Helmke and Moore [HM94,
Ch. 3]. Problems (2.4) and (2.5) are particular instances of the least-squares
covariance adjustment problem recently defined by Boyd and Xiao [BXO05];
see also Manton et al. [MMHO3], Grubisic and Pietersz [GP07], and several
references therein.



Chapter Three

Matrix Manifolds: First-Order Geometry

The constraint sets associated with the examples discussed in Chapter[2lhave
a particularly rich geometric structure that provides the motivation for this
book. The constraint sets are matriz manifolds in the sense that they are
manifolds in the meaning of classical differential geometry, for which there
is a natural representation of elements in the form of matrix arrays.

The matrix representation of the elements is a key property that allows
one to provide a natural development of differential geometry in a matrix
algebra formulation. The goal of this chapter is to introduce the fundamental
concepts in this direction: manifold structure, tangent spaces, cost functions,
differentiation, Riemannian metrics, and gradient computation.

There are two classes of matrix manifolds that we consider in detail in this
book: embedded submanifolds of R™"*P and quotient manifolds of R™**? (for
1 < p < n). Embedded submanifolds are the easiest to understand, as they
have the natural form of an explicit constraint set in matrix space R"*P,
The case we will be mostly interested in is the set of orthonormal n x p
matrices that, as will be shown, can be viewed as an embedded submanifold
of R™*P called the Stiefel manifold St(p,n). In particular, for p = 1, the
Stiefel manifold reduces to the unit sphere S"~!, and for p = n, it reduces
to the set of orthogonal matrices O(n).

Quotient spaces are more difficult to visualize, as they are not defined as
sets of matrices; rather, each point of the quotient space is an equivalence
class of n x p matrices. In practice, an example n X p matrix from a given
equivalence class is used to represent an element of matrix quotient space
in computer memory and in our numerical development. The calculations
related to the geometric structure of a matrix quotient manifold can be
expressed directly using the tools of matrix algebra on these representative
matrices.

The focus of this first geometric chapter is on the concepts from differen-
tial geometry that are required to generalize the steepest-descent method,
arguably the simplest approach to unconstrained optimization. In R", the
steepest-descent algorithm updates a current iterate = in the direction where
the first-order decrease of the cost function f is most negative. Formally, the
update direction is chosen to be the unit norm vector n that minimizes the
directional derivative

D () ] = i LEH =IO
When the domain of f is a manifold M, the argument = + tn in (3.1) does

(3.1)
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not make sense in general since M is not necessarily a vector space. This
leads to the important concept of a tangent vector (Section[3.5). In order to
define the notion of a steepest-descent direction, it will then remain to define
the length of a tangent vector, a task carried out in Section 3.6 where the
concept of a Riemannian manifold is introduced. This leads to a definition
of the gradient of a function, the generalization of steepest-descent direction
on a Riemannian manifold.

3.1 MANIFOLDS

We define the notion of a manifold in its full generality; then we consider
the simple but important case of linear manifolds, a linear vector space
interpreted as a manifold with Euclidean geometric structure. The manifold
of nxp real matrices, from which all concrete examples in this book originate,
is a linear manifold.

A d-dimensional manifold can be informally defined as a set M covered
with a “suitable” collection of coordinate patches, or charts, that identify
certain subsets of M with open subsets of R?. Such a collection of coordinate
charts can be thought of as the basic structure required to do differential
calculus on M.

It is often cumbersome or impractical to use coordinate charts to (locally)
turn computational problems on M into computational problems on RY,
The numerical algorithms developed later in this book rely on exploiting the
natural matrix structure of the manifolds associated with the examples of
interest, rather than imposing a local R? structure. Nevertheless, coordinate
charts are an essential tool for addressing fundamental notions such as the
differentiability of a function on a manifold.

3.1.1 Definitions: charts, atlases, manifolds

The abstract definition of a manifold relies on the concepts of charts and
atlases.

Let M be a set. A bijection (one-to-one correspondence) ¢ of a subset U
of M onto an open subset of R is called a d-dimensional chart of the set M,
denoted by (U, ). When there is no risk of confusion, we will simply write
¢ for (U, ). Given a chart (U, ¢) and = € U, the elements of ¢(x) € R? are
called the coordinates of x in the chart (U, ).

The interest of the notion of chart (U, ) is that it makes it possible to
study objects associated with ¢ by bringing them to the subset (i) of RY.
For example, if f is a real-valued function on U, then f o ¢! is a function
from R? to R, with domain o(U), to which methods of real analysis apply.
To take advantage of this idea, we must require that each point of the set
M be at least in one chart domain; moreover, if a point = belongs to the
domains of two charts (U1, p1) and (Us, @), then the two charts must give
compatible information: for example, if a real-valued function f is defined
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on Uy N Uy, then fo gofl and fo oy ! should have the same differentiability
properties on Uy N Us.

The following concept takes these requirements into account. A (C'*°) atlas
of M into R? is a collection of charts (U, @) of the set M such that

L U Ua =M,
2. for any pair «, 3 with U, NUg # 0, the sets @ (U NUz) and ©5(UsNU3)
are open sets in R? and the change of coordinates

psopa R - R?

(see Appendix A.3 for our conventions on functions) is smooth (class
C®, i.e., differentiable for all degrees of differentiation) on its domain
©a(Ua N Ug); see illustration in Figure[3.1] We say that the elements
of an atlas overlap smoothly.

Two atlases A; and Ay are equivalent if Ay U As is an atlas; in other
words, for every chart (U, ) in As, the set of charts Ay U {(U,p)} is still
an atlas. Given an atlas A, let AT be the set of all charts (U, ) such that
AU{(U,p)} is also an atlas. It is easy to see that AT is also an atlas,
called the maximal atlas (or complete atlas) generated by the atlas A. Two
atlases are equivalent if and only if they generate the same maximal atlas.
A maximal atlas of a set M is also called a differentiable structure on M.

In the literature, a manifold is sometimes simply defined as a set endowed
with a differentiable structure. However, this definition does not exclude
certain unconventional topologies. For example, it does not guarantee that
convergent sequences have a single limit point (an example is given in Sec-
tion 4.3.2). To avoid such counterintuitive situations, we adopt the following
classical definition. A (d-dimensional) manifold is a couple (M, A"), where
M is a set and A* is a maximal atlas of M into R?, such that the topology
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induced by A" is Hausdorff and second-countable. (These topological issues
are discussed in Section [3.1.2.)

A maximal atlas of a set M that induces a second-countable Hausdorff
topology is called a manifold structure on M. Often, when (M, AT) is a
manifold, we simply say “the manifold M” when the differentiable structure
is clear from the context, and we say “the set M” to refer to M as a plain set
without a particular differentiable structure. Note that it is not necessary to
specify the whole maximal atlas to define a manifold structure: it is enough
to provide an atlas that generates the manifold structure.

Given a manifold (M, A"), an atlas of the set M whose maximal atlas is
AT is called an atlas of the manifold (M, A"); a chart of the set M that
belongs to AT is called a chart of the manifold (M, A1), and its domain is
a coordinate domain of the manifold. By a chart around a point x € M, we
mean a chart of (M, A") whose domain U contains x. The set U is then a
coordinate neighborhood of x.

Given a chart ¢ on M, the inverse mapping ¢~ is called a local parame-
terization of M. A family of local parameterizations is equivalent to a family
of charts, and the definition of a manifold may be given in terms of either.

1

3.1.2 The topology of a manifold*

Recall that the star in the section title indicates material that can be readily
skipped at a first reading.

It can be shown that the collection of coordinate domains specified by a
maximal atlas AT of a set M forms a basis for a topology of the set M. (We
refer the reader to Section A.2 for a short introduction to topology.) We call
this topology the atlas topology of M induced by A. In the atlas topology, a
subset V of M is open if and only if, for any chart (U, ) in AT, o(V N U)
is an open subset of R?. Equivalently, a subset V of M is open if and only
if, for each & € V, there is a chart (U, ) in AT such that z € U C V. An
atlas A of a set M is said to be compatible with a topology 7 on the set M
if the atlas topology is equal to 7.

An atlas topology always satisfies separation axiom 77, i.e., given any two
distinct points x and y, there is an open set U that contains x and not y.
(Equivalently, every singleton is a closed set.) But not all atlas topologies
are Hausdorff (i.e., Tz): two distinct points do not necessarily have disjoint
neighborhoods. Non-Hausdorff spaces can display unusual and counterintu-
itive behavior. From the perspective of numerical iterative algorithms the
most worrying possibility is that a convergent sequence on a non-Hausdorff
topological space may have several distinct limit points. Our definition of
manifold rules out non-Hausdorff topologies.

A topological space is second-countable if there is a countable collection B
of open sets such that every open set is the union of some subcollection of
B. Second-countability is related to partitions of unity, a crucial tool in re-
solving certain fundamental questions such as the existence of a Riemannian
metric (Section[3.6) and the existence of an affine connection (Section[5.2).
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The existence of partitions of unity subordinate to arbitrary open cover-
ings is equivalent to the property of paracompactness. A set endowed with a
Hausdorff atlas topology is paracompact (and has countably many compo-
nents) if (and only if) it is second-countable. Since manifolds are assumed
to be Hausdorff and second-countable, they admit partitions of unity.

For a manifold (M, AT), we refer to the atlas topology of M induced by
A as the manifold topology of M. Note that several statements in this book
also hold without the Hausdorff and second-countable assumptions. These
cases, however, are of marginal importance and will not be discussed.

Given a manifold (M, A") and an open subset X of M (open is to be
understood in terms of the manifold topology of M), the collection of the
charts of (M, A1) whose domain lies in X forms an atlas of X. This defines
a differentiable structure on X of the same dimension as M. With this
structure, X’ is called an open submanifold of M.

A manifold is connected if it cannot be expressed as the disjoint union of
two nonempty open sets. Equivalently (for a manifold), any two points can
be joined by a piecewise smooth curve segment. The connected components
of a manifold are open, thus they admit a natural differentiable structure as
open submanifolds. The optimization algorithms considered in this book are
iterative and oblivious to the existence of connected components other than
the one to which the current iterate belongs. Therefore we have no interest
in considering manifolds that are not connected.

3.1.3 How to recognize a manifold

Assume that a computational problem involves a search space X. How can
we check that X' is a manifold? It should be clear from Section [3.1.1] that
this question is not well posed: by definition, a manifold is not simply a set
X but rather a couple (X, A") where X is a set and AT is a maximal atlas
of X inducing a second-countable Hausdorff topology.

A well-posed question is to ask whether a given set X' admits an atlas.
There are sets that do not admit an atlas and thus cannot be turned into a
manifold. A simple example is the set of rational numbers: this set does not
even admit charts; otherwise, it would not be denumerable. Nevertheless, sets
abound that admit an atlas. Even sets that do not “look” differentiable may
admit an atlas. For example, consider the curve v : R — R? : v(¢) = (¢, [t])
and let X be the range of 7; see Figure [3.2| Consider the chart ¢ : X —
R : (¢, ]t]) — t. It turns out that A := {(X,¢)} is an atlas of the set X;
therefore, (X, A") is a manifold. The incorrect intuition that X cannot be
a manifold because of its “corner” corresponds to the fact that X is not a
submanifold of R?; see Section[3.3]

A set X may admit more than one maximal atlas. As an example, take
the set R and consider the charts @1 : 2 + x and @5 : 2 — 3. Note that ¢
and o are not compatible since the mapping ¢ o ¢y 1is not differentiable
at the origin. However, each chart individually forms an atlas of the set R.
These two atlases are not equivalent; they do not generate the same maximal
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€2

€1
Figure 3.2 Image of the curve v : ¢t — (t,|t]).

atlas. Nevertheless, the chart x +— x is clearly more natural than the chart
x — 23. Most manifolds of interest admit a differentiable structure that is
the most “natural”; see in particular the notions of embedded and quotient
matrix manifold in Sections 3.3 and [3.4]

3.1.4 Vector spaces as manifolds

Let € be a d-dimensional vector space. Then, given a basis (€;);=1.... 4 of €,
the function

p:E—-RY:z— :
d

X

such that z = Z?:l x'e; is a chart of the set £. All charts built in this way
are compatible; thus they form an atlas of the set £, which endows £ with
a manifold structure. Hence, every vector space is a linear manifold in a
natural way.

Needless to say, the challenging case is the one where the manifold struc-
ture is nonlinear, i.e., manifolds that are not endowed with a vector space
structure. The numerical algorithms considered in this book apply equally
to linear and nonlinear manifolds and reduce to classical optimization algo-
rithms when the manifold is linear.

3.1.5 The manifolds R"*? and R}*?

Algorithms formulated on abstract manifolds are not strictly speaking nu-
merical algorithms in the sense that they involve manipulation of differential-
geometric objects instead of numerical calculations. Turning these abstract
algorithms into numerical algorithms for specific optimization problems relies
crucially on producing adequate numerical representations of the geometric
objects that arise in the abstract algorithms. A significant part of this book
is dedicated to building a toolbox of results that make it possible to perform
this “geometric-to-numerical” conversion on matrix manifolds (i.e., mani-
folds obtained by taking embedded submanifolds and quotient manifolds of
R™*P). The process derives from the manifold structure of the set R"*? of
n X p real matrices, discussed next.
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The set R™*P is a vector space with the usual sum and multiplication by
a scalar. Consequently, it has a natural linear manifold structure. A chart
of this manifold is given by ¢ : R®*? — R" : X — vec(X), where vec(X)
denotes the vector obtained by stacking the columns of X below one an-
other. We will refer to the set R™*? with its linear manifold structure as the
manifold R"*P. Its dimension is np.

The manifold R"*? can be further turned into a Euclidean space with the
inner product

(Z1,Zs) = vec(Z1) vec(Zy) = tr(Z] Zy). (3.2)
The norm induced by the inner product is the Frobenius norm defined by
1Z]% = te(Z" 2),

i.e., [|Z||% is the sum of the squares of the elements of Z. Observe that
the manifold topology of R™*P is equivalent to its canonical topology as a
Euclidean space (see Appendix A.2).

Let RY™” (p < n) denote the set of all n x p matrices whose columns are
linearly independent. This set is an open subset of R™*? since its complement
{X € RP : det(XTX) = 0} is closed. Consequently, it admits a structure
of an open submanifold of R™*?. Its differentiable structure is generated by
the chart ¢ : RY™” — R™ : X + vec(X). This manifold will be referred to
as the manifold R}*?, or the noncompact Stiefel manifold of full-rank n x p
matrices.

In the particular case p = 1, the noncompact Stiefel manifold reduces to
the Euclidean space R™ with the origin removed. When p = n, the noncom-
pact Stiefel manifold becomes the general linear group GL,, i.e., the set of
all invertible n X n matrices.

Notice that the chart vec : R"*P — R" is unwieldy, as it destroys the
matrix structure of its argument; in particular, vec(AB) cannot be written
as a simple expression of vec(A) and vec(B). In this book, the emphasis is
on preserving the matrix structure.

3.1.6 Product manifolds

Let M7 and M5 be manifolds of dimension d; and ds, respectively. The set
M x My is defined as the set of pairs (x1,xs), where z is in M; and x5
is in Mo. If (U, p1) and (Ua, p2) are charts of the manifolds M; and Ma,
respectively, then the mapping 1 x @9 : Uy X Uy — R4 x R% : (21, 29)
(p1(x1), p2(x2)) is a chart for the set My x M. All the charts thus obtained
form an atlas for the set M7 x Ms. With the differentiable structure defined
by this atlas, M1 x Maj is called the product of the manifolds My and M. Its
manifold topology is equivalent to the product topology. Product manifolds
will be useful in some later developments.
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3.2 DIFFERENTIABLE FUNCTIONS

Mappings between manifolds appear in many places in optimization algo-
rithms on manifolds. First of all, any optimization problem on a manifold
M involves a cost function, which can be viewed as a mapping from the man-
ifold M into the manifold R. Other instances of mappings between manifolds
are inclusions (in the theory of submanifolds; see Section [3.3), natural pro-
jections onto quotients (in the theory of quotient manifolds, see Section[3.4),
and retractions (a fundamental tool in numerical algorithms on manifolds;
see Section [4.1). This section introduces the notion of differentiability for
functions between manifolds. The coordinate-free definition of a differential
will come later, as it requires the concept of a tangent vector.

Let F' be a function from a manifold M7 of dimension d; into another
manifold My of dimension dy. Let « be a point of M. Choosing charts ¢
and @9 around x and F'(zx), respectively, the function F' around z can be
“read through the charts”, yielding the function

F=gpyoFopl:R" - R%, (3.3)

called a coordinate representation of F. (Note that the domain of Fis in
general a subset of R%; see Appendix|A.3 for the conventions.)

We say that F'is differentiable or smooth at x if Fis of class C* at 1(z).
It is easily verified that this definition does not depend on the choice of the
charts chosen at = and F(x). A function F' : My — M is said to be smooth
if it is smooth at every point of its domain.

A (smooth) diffeomorphism F : My — Ms is a bijection such that F' and
its inverse F'~! are both smooth. Two manifolds M; and M are said to be
diffeomorphic if there exists a diffeomorphism on M; onto M.

In this book, all functions are assumed to be smooth unless otherwise stated.

3.2.1 Immersions and submersions

The concepts of immersion and submersion will make it possible to define
submanifolds and quotient manifolds in a concise way. Let F' : M; — M,
be a differentiable function from a manifold M; of dimension d; into a
manifold My of dimension ds. Given a point z of My, the rank of F at x
is the dimension of the range of DF (¢q(z))[] : R — R% where F is a
coordinate representation (3.3) of F' around z, and DF(p1(z)) denotes the
differential of F at oy (x) (see Section[A.5). (Notice that this definition does
not depend on the charts used to obtain the coordinate representation F of
F.) The function F is called an immersion if its rank is equal to d; at each
point of its domain (hence d; < dg). If its rank is equal to ds at each point
of its domain (hence d; > ds), then it is called a submersion.

The function F' is an immersion if and only if, around each point of its do-
main, it admits a coordinate representation that is the canonical immersion
(u',...,u®) — (u',...,u®,0,...,0). The function F is a submersion if and
only if, around each point of its domain, it admits the canonical submersion



MATRIX MANIFOLDS: FIRST-ORDER GEOMETRY 25

(ut, ... u®) — (ul,... u?) as a coordinate representation. A point y € My

is called a regular value of F if the rank of F is dy at every z € F~1(y).

3.3 EMBEDDED SUBMANIFOLDS

A set X may admit several manifold structures. However, if the set X is
a subset of a manifold (M, AT), then it admits at most one submanifold
structure. This is the topic of this section.

3.3.1 General theory

Let (M, A") and (N, B") be manifolds such that A” C M. The manifold
(N, BT) is called an immersed submanifold of (M, AT) if the inclusion map
i: N — M : 2z~ xis an immersion.

Let (N, B") be a submanifold of (M, AT). Since M and N are manifolds,
they are also topological spaces with their manifold topology. If the mani-
fold topology of N coincides with its subspace topology induced from the
topological space M, then N is called an embedded submanifold, a reqular
submanifold, or simply a submanifold of the manifold M. Asking that a
subset N of a manifold M be an embedded submanifold of M removes all
freedom for the choice of a differentiable structure on N:

Proposition 3.3.1 Let N be a subset of a manifold M. Then N admits at
most one differentiable structure that makes it an embedded submanifold of

M.

As a consequence of Proposition|3.3.1, when we say in this book that a subset
of a manifold “is” a submanifold, we mean that it admits one (unique) dif-
ferentiable structure that makes it an embedded submanifold. The manifold
M in Proposition [3.3.1] is called the embedding space. When the embed-
ding space is R"*? or an open subset of R™"*? we say that N is a matriz
submanifold.

To check whether a subset N of a manifold M is an embedded submanifold
of M and to construct an atlas of that differentiable structure, one can
use the next proposition, which states that every embedded submanifold
is locally a coordinate slice. Given a chart (U, ) of a manifold M, a -
coordinate slice of U is a set of the form ¢ ~!(R™ x {0}) that corresponds to
all the points of U whose last n — m coordinates in the chart ¢ are equal to
ZEro.

Proposition 3.3.2 (submanifold property) A subset N of a manifold
M is a d-dimensional embedded submanifold of M if and only if, around
each point x € N, there exists a chart (U, o) of M such that N N U is a
w-coordinate slice of U, i.e.,

NnU={zecl: o) ecRx{0}}.
In this case, the chart (N N U, ), where @ is seen as a mapping into R,
is a chart of the embedded submanifold N .
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The next propositions provide sufficient conditions for subsets of manifolds
to be embedded submanifolds.

Proposition 3.3.3 (submersion theorem) Let F' : M; — My be a
smooth mapping between two manifolds of dimension dy and ds, di > da,
and let y be a point of My. If y is a reqular value of F (i.e., the rank of F
is equal to do at every point of F~1(y)), then F~1(y) is a closed embedded
submanifold of My, and dim(F~*(y)) = d; — da.

Proposition 3.3.4 (subimmersion theorem) Let F : M; — My be a
smooth mapping between two manifolds of dimension di and ds and let y
be a point of F(My). If F has constant rank k < dy in a neighborhood of
F=Y(y), then F~1(y) is a closed embedded submanifold of My of dimension
dy — k.

Functions on embedded submanifolds pose no particular difficulty. Let N
be an embedded submanifold of a manifold M. If f is a smooth function
on M, then f|ur, the restriction of f to A, is a smooth function on A
Conversely, any smooth function on N can be written locally as a restriction
of a smooth function defined on an open subset U C M.

3.3.2 The Stiefel manifold

The (orthogonal) Stiefel manifold is an embedded submanifold of R™*? that
will appear frequently in our practical examples.
Let St(p,n) (p < n) denote the set of all n x p orthonormal matrices; i.e.,

St(p,n) == {X e R™?: XTX =I,}, (3.4)

where I, denotes the p x p identity matrix. The set St(p,n) (endowed with
its submanifold structure as discussed below) is called an (orthogonal or
compact) Stiefel manifold. Note that the Stiefel manifold St(p, n) is distinct
from the noncompact Stiefel manifold R} *? defined in Section [3.1.5!

Clearly, St(p,n) is a subset of the set R"*P. Recall that the set R™*P
admits a linear manifold structure as described in Section 3.1.5. To show
that St(p,n) is an embedded submanifold of the manifold R™*P, consider
the function F : R"? — Sy (p) : X — XTX — I,, where Ssym(p) denotes
the set of all symmetric p x p matrices. Note that Seym(p) is a vector space.
Clearly, St(p,n) = F~1(0,). It remains to show that F' is a submersion at
each point X of St(p,n). The fact that the domain of F is a vector space
exempts us from having to read F' through a chart: we simply need to show
that for all Z in Sgym(p), there exists Z in R"*? such that DF (X) [Z] = Z.
We have (see Appendix|A.5 for details on matrix differentiation)

DF(X)[Z2)=XTZ+Z"X.
It is easy to see that DF (X) [%X?} — Z since XTX = I, and ZT = Z.

This shows that F' is full rank. It follows from Proposition 3.3.3 that the set
St(p,n) defined in (3.4) is an embedded submanifold of R™*P.
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To obtain the dimension of St(p,n), observe that the vector space Ssym(p)
has dimension £p(p + 1) since a symmetric matrix is completely determined
by its upper triangular part (including the diagonal). From Proposition[3.3.3,
we obtain

dim(St(p,n)) = np — zp(p+1).

Since St(p,n) is an embedded submanifold of R™*?  its topology is the
subset topology induced by R™*P. The manifold St(p,n) is closed: it is
the inverse image of the closed set {0,} under the continuous function
F : R"P — Sgym(p). It is bounded: each column of X € St(p,n) has norm
1, so the Frobenius norm of X is equal to /p. It then follows from the Heine-
Borel theorem (see Section A.2) that the manifold St(p,n) is compact.

For p = 1, the Stiefel manifold St(p,n) reduces to the unit sphere S"~! in
R™. Notice that the superscript n—1 indicates the dimension of the manifold.

For p = n, the Stiefel manifold St(p, n) becomes the orthogonal group O,,.

1

Its dimension is 5n(n —1).

3.4 QUOTIENT MANIFOLDS

Whereas the topic of submanifolds is covered in any introductory textbook
on manifolds, the subject of quotient manifolds is less classical. We develop
the theory in some detail because it has several applications in matrix com-
putations, most notably in algorithms that involve subspaces of R"™. Compu-
tations involving subspaces are usually carried out using matrices to repre-
sent the corresponding subspace generated by the span of its columns. The
difficulty is that for one given subspace, there are infinitely many matrices
that represent the subspace. It is then desirable to partition the set of ma-
trices into classes of “equivalent” elements that represent the same object.
This leads to the concept of quotient spaces and quotient manifolds. In this
section, we first present the general theory of quotient manifolds, then we
return to the special case of subspaces and their representations.

3.4.1 Theory of quotient manifolds

Let M be a manifold equipped with an equivalence relation ~, i.e., a relation
that is

1. reflexive: x ~ x for all z € M,
2. symmetric: x ~ y if and only if y ~ z for all x,y € M,
3. tramsitive: if x ~ y and y ~ z then x ~ z for all z,y, z € M.

The set
2] == {y € M:y ~a}

of all elements that are equivalent to a point z is called the equivalence class
containing x. The set

M) ~i={[x] : x € M}
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of all equivalence classes of ~ in M is called the quotient of M by ~. Notice
that the points of M/ ~ are subsets of M. The mapping 7 : M — M/~
defined by x +— [z] is called the natural projection or canonical projection.
Clearly, 7(x) = 7(y) if and only if x ~ y, so we have [z] = 7~ (7 (x)). We
will use 7(x) to denote [z] viewed as a point of M/~ and 7~ *(r(x)) for [z]
viewed as a subset of M. The set M is called the total space of the quotient
M/~

Let (M, A") be a manifold with an equivalence relation ~ and let B* be
a manifold structure on the set M/ ~. The manifold (M/~, B1) is called a
quotient manifold of (M, AT) if the natural projection 7 is a submersion.

Proposition 3.4.1 Let M be a manifold and let M/~ be a quotient of M.
Then M/~ admits at most one manifold structure that makes it a quotient

manifold of M.

Given a quotient M/ ~ of a manifold M, we say that the set M/ ~ is a
quotient manifold if it admits a (unique) quotient manifold structure. In this
case, we say that the equivalence relation ~ is reqular, and we refer to the
set M/~ endowed with this manifold structure as the manifold M/ ~.

The following result gives a characterization of regular equivalence rela-
tions. Note that the graph of a relation ~ is the set

graph(~) := {(z,y) e M x M : z ~ y}.

Proposition 3.4.2 An equivalence relation ~ on a manifold M is regular
(and thus M/ ~ is a quotient manifold) if and only if the following conditions
hold together:

(i) The graph of ~ is an embedded submanifold of the product manifold
M x M.
(ii) The projection 7y : graph(~) — M, mi(x,y) =  is a submersion.
(iii) The graph of ~ is a closed subset of M x M (where M is endowed
with its manifold topology).

The dimension of M/~ is given by
dim(M/~) = 2 dim(M) — dim(graph(~)). (3.5)

The next proposition distinguishes the role of the three conditions in
Proposition [3.4.2.

Proposition 3.4.3 Conditions (i) and (i1) in Proposition[3.4.2 are neces-
sary and sufficient for M/~ to admit an atlas that makes © a submersion.
Such an atlas is unique, and the atlas topology of M/ ~ is identical to its
quotient topology. Condition (i) in Proposition 3.4.2 is necessary and suf-
ficient for the quotient topology to be Hausdorff.

The following result follows from Proposition [3.3.3/by using the fact that
the natural projection to a quotient manifold is by definition a submersion.
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Proposition 3.4.4 Let M/~ be a quotient manifold of a manifold M and
let m denote the canonical projection. If dim(M/ ~) < dim(M), then each

equivalence class m—1(n(x)), © € M, is an embedded submanifold of M of
dimension dim(M) — dim(M/~).

If dim(M/~) = dim(M), then each equivalence class 7~ 1(7(x)), x € M, is
a discrete set of points. From now on we consider only the case dim(M/~) <
dim(M).

When M is R"*P or a submanifold of R"*? we call M/~ a matriz quo-
tient manifold. For ease of reference, we will use the generic name structure
space both for embedding spaces (associated with embedded submanifolds)
and for total spaces (associated with quotient manifolds). We call a matriz
manifold any manifold that is constructed from R™*? by the operations of
taking embedded submanifolds and quotient manifolds. The major matrix
manifolds that appear in this book are the noncompact Stiefel manifold (de-
fined in Section [3.1.5), the orthogonal Stiefel manifold (Section [3.3.2), and
the Grassmann manifold (Section|3.4.4). Other important matrix manifolds
are the oblique manifold

{X e R™*P : diag(XTX) = I,,},
where diag(M) denotes the matrix M with all its off-diagonal elements as-
signed to zero; the generalized Stiefel manifold
{X eR™? . XTBX =T}

where B is a symmetric positive-definite matrix; the flag manifolds, which
are quotients of R}*? where two matrices are equivalent when they are
related by a right multiplication by a block upper triangular matrix with
prescribed block size; and the manifold of symplectic matrices

{X e RV XT X = J},

where J = [f}n é:]

3.4.2 Functions on quotient manifolds

A function f on M is termed invariant under ~ if f(z) = f(y) whenever

x ~ y, in which case the function f induces a unique function f on M/~,
called the projection of f, such that f = fo.

M

M / ~ ? N
The smoothness of f can be checked using the following result.

Proposition 3.4.5 Let M/~ be a quotient manifold and let f be a function
on M/ ~. Then f is smooth if and only if f := f om is a smooth function
on M.
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3.4.3 The real projective space RP" !

The real projective space RP" ! is the set of all directions in R™, i.e., the
set of all straight lines passing through the origin of R™. Let R? := R™ — {0}
denote the Euclidean space R™ with the origin removed. Note that R is
the p = 1 particularization of the noncompact Stiefel manifold RY™? (Sec-
tion[3.1.5)); hence R” is an open submanifold of R™. The real projective space
RP"~! is naturally identified with the quotient R” / ~, where the equivalence
relation is defined by

T~y & dt e R, :y=xat,
and we write
RP"! ~ R/~

to denote the identification of the two sets.

The proof that R?/ ~ is a quotient manifold follows as a special case of
Proposition[3.4.6 (stating that the Grassmann manifold is a matrix quotient
manifold). The letters RP stand for “real projective”, while the superscript
(n — 1) is the dimension of the manifold. There are also complex projec-
tive spaces and more generally projective spaces over more abstract vector
spaces.

3.4.4 The Grassmann manifold Grass(p,n)

Let n be a positive integer and let p be a positive integer not greater than n.
Let Grass(p,n) denote the set of all p-dimensional subspaces of R™. In this
section, we produce a one-to-one correspondence between Grass(p,n) and
a quotient manifold of R™*P thereby endowing Grass(p,n) with a matrix
manifold structure.

Recall that the noncompact Stiefel manifold R} *? is the set of all n x p
matrices with full column rank. Let ~ denote the equivalence relation on
R?*P defined by

X~Y & span(X) = span(Y), (3.6)

where span(X) denotes the subspace { X« : @ € RP} spanned by the columns
of X € RY™P. Since the fibers of span(-) are the equivalence classes of ~ and
since span(-) is onto Grass(p,n), it follows that span(-) induces a one-to-one
correspondence between Grass(p,n) and R ™7/ ~.

nXxp
Ry

span

RI*P /)~ <7> Grass(p,n)

Before showing that the set RY*?/~ is a quotient manifold, we introduce
some notation and terminology. If a matrix X and a subspace X satisfy
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X GL,

Figure 3.3 Schematic illustration of the representation of Grass(p,n) as the quo-
tient space R} *? /GL,. Each point is an n-by-p matrix. Each line is an
equivalence class of the matrices that have the same span. Each line
corresponds to an element of Grass(p, n). The figure corresponds to the
casen =2, p=1.

X = span(X), we say that X is the span of X, that X spans X, or that X is a
matrixz representation of X. The set of all matrix representations of span(X)
is the equivalence class 7= 1(7(X)). We have 7= 1(7(X)) = {XM : M €
GL,} =: XGL,; indeed, the operations X — XM, M € GL,, correspond
to all possible changes of basis for span(X). We will thus use the notation
RY*P/GL,, for R}*?/~. Therefore we have

Grass(p,n) ~ R}*? /GL,,.

A schematic illustration of the quotient R} *?/ GL,, is given in Figure (3.3l

The identification of RY*?/GL, with the set of p-dimensional subspaces
(p-planes) in R™ makes this quotient particularly worth studying. Next, the
quotient R *? /GL,, is shown to be a quotient manifold.

Proposition 3.4.6 (Grassmann manifold) The quotient set R}?/GL,,
(i.e., the quotient of RY™? by the equivalence relation defined in (3.6)) admits
a (unique) structure of quotient manifold.

Proof. We show that the conditions in Proposition|3.4.2 are satisfied. We first
prove condition (ii). Let (Xo, Yy) be in graph(~). Then there exists M such
that Yo = XoM. Given any V in R"*?_ the curve t — (Xo+tV, (Xo+tV)M)
is into graph(~) and satisfies %(771(7(25)))|t:0 = V. This shows that 7 is
a submersion. For condition (iii), observe that the graph of ~ is closed as
it is the preimage of the closed set {0,x,} under the continuous function
RIP x RYP — R™ P : (X,Y) + (I — X(XTX)"'XT)Y. For condition
(i), the idea is to produce submersions F; with open domain €2; C (RY™? x
RY”P) such that graph(~) N ©; is the zero-level set of F; and that the ;’s
cover graph(~). It then follows from Proposition [3.3.3] that graph(~) is an
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embedded submanifold of R} ™? x R}*P. To this end, assume for a moment
that we have a smooth function

RIP — St(n —p,n): X — X | (3.7)
such that X7 X, =0 for all X in an open domain Q and consider
F:Q xRV o RO-Pxp (X V) - XTY.

Then F~1(0) = graph(~) N dom(F). Moreover, F is a submersion on its
domain since for any V € R(”*p)xfn,

DF(X,Y)[0,X,V]=XT(X,V)=V.

It remains to define the smooth function (3.7). Depending on n and p, it may
or may not be possible to define such a function on the whole R} *”. However,
there are always such functions, constructed as follows, whose domain Qis
open and dense in R} *?. Let E € R**("~P) he a constant matrix of the form

E=[el---lei,,],

where the ¢;’s are the canonical vectors in R™ (unit vectors with a 1 in the ith
entry), and define X | as the orthonormal matrix obtained by taking the last
n — p columns of the Gram-Schmidt orthogonalization of the matrix [X|E].
This function is smooth on the domain Q = {X € RI*? : [X|E] full rank},
which is an open dense subset of R} ?. Consequently, F(X,Y) = XTY is
smooth (and submersive) on the domain Q = Q x R}”?. This shows that
graph(~) N is an embedded submanifold of (R} ? x RY*?). Taking other
matrices F yields other domains € which together cover (R}*? x RY*P), so
graph(~) is an embedded submanifold of (RY*? x RY*?), and the proof is
complete. O

Endowed with its quotient manifold structure, the set R} *?/GL, is called
the Grassmann manifold of p-planes in R™ and denoted by Grass(p,n). The
particular case Grass(1,n) = RP" is the real projective space discussed in
Section[3.4.3] From Proposition[3.3.3, we have that dim(graph(~)) = 2np —
(n — p)p. It then follows from (3.5) that

dim(Grass(p,n)) = p(n — p).

3.5 TANGENT VECTORS AND DIFFERENTIAL MAPS

There are several possible approaches to generalizing the notion of a direc-
tional derivative

DJ () ] = i TE =T
to a real-valued function f defined on a manifold. A first possibility is to
view n as a deriwation at x, that is, an object that, when given a real-valued
function f defined on a neighborhood of x € M, returns a real nf, and that
satisfies the properties of a derivation operation: linearity and the Leibniz

(3.8)
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rule (see Section 3.5.5). This “axiomatization” of the notion of a directional
derivative is elegant and powerful, but it gives little intuition as to how a
tangent vector could possibly be represented as a matrix array in a computer.

A second, perhaps more intuitive approach to generalizing the directional
derivative (3.8) is to replace ¢t — (x+tn) by a smooth curve v on M through x

. N o o A (D)
(i.e.,7(0) = x). This yields a well-defined directional derivative +’

(Note that this is a classical derivative since the function t — f(v(t)) is a
smooth function from R to R.) Hence we have an operation, denoted by +(0),

that takes a function f, defined locally in a neighbourhood of x, and returns

the real number w .
t=0
These two approaches are reconciled by showing that every derivative
along a curve defines a pointwise derivation and that every pointwise deriva-
tion can be realized as a derivative along a curve. The first claim is direct.
The second claim can be proved using a local coordinate representation, a

third approach used to generalize the notion of a directional derivative.

3.5.1 Tangent vectors

Let M be a manifold. A smooth mapping v : R — M: t — ~(¢) is termed a
curve in M. The idea of defining a derivative v/ (t) as
t — (%
A(8) = Tim (it +7) =)

7—0 T

(3.9)

requires a vector space structure to compute the difference v(t47) —~(¢t) and
thus fails for an abstract nonlinear manifold. However, given a smooth real-
valued function f on M, the function fo~y : ¢+ f(v(t)) is a smooth function
from R to R with a well-defined classical derivative. This is exploited in the
following definition. Let « be a point on M, let v be a curve through z at
t =0, and let F,(M) denote the set of smooth real-valued functions defined
on a neighborhood of . The mapping %(0) from F,(M) to R defined by

d(f(~(®)))

dt =0

Y(O0)f = feF.(M), (3.10)
is called the tangent vector to the curve v at t = 0.

We emphasize that 4(0) is defined as a mapping from §.(M) to R and
not as the time derivative 4/(0) as in (3.9), which in general is meaningless.
However, when M is (a submanifold of) a vector space £, the mapping 5(0)
from §, (M) to R and the derivative 7/(0) := lim;_.o 7 (7(¢)—7(0)) are closely
related: for all functions f defined in a neighborhood U of v(0) in £, we have

7(0).f =D f (7(0)) [v'(0)],

where f denotes the restriction of f to U/ NM; see Sections 3.5.2 and [3.5.7 for
details. It is useful to keep this interpretation in mind because the derivative
~'(0) is a more familiar mathematical object than 4/(0).

We can now formally define the notion of a tangent vector.
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Definition 3.5.1 (tangent vector) A tangent vector &, to a manifold M
at a point x is a mapping from §.(M) to R such that there exists a curve =y
on M with v(0) = x, satisfying

d(f(v(®)))

S =A0)] = =5

t=0

for all f € F(M). Such a curve 7 is said to realize the tangent vector ;.

The point z is called the foot of the tangent vector £,. We will often omit
the subscript indicating the foot and simply write & for &, .

Given a tangent vector £ to M at x, there are infinitely many curves ~y
that realize & (i.e., ¥(0) = &). They can be characterized as follows in local
coordinates.

Proposition 3.5.2 Two curves y1 and 2 through a point x at t = 0 satisfy
41(0) = A42(0) if and only if, given a chart (U, p) with x € U, it holds that

dleMn @) | _ dle(a®))

dt —o dt

t=0
Proof. The “only if” part is straightforward since each component of the

vector-valued ¢ belongs to §,(M). For the “if” part, given any f € F.(M),
we have

41(0)f = w - d((fw_lgi(p(%(t)))) )
_ d((fogp—l(ii@(w(t)))) By O,

O

The tangent space to M at x, denoted by T,M, is the set of all tangent
vectors to M at x. This set admits a structure of vector space as follows.
Given 41 (0) and 42(0) in T, M and a,b in R, define

(a91(0) +092(0)) f == a (11(0).f) + b (42(0)f) -

To show that (a¥1(0) + b¥2(0)) is a well-defined tangent vector, we need to
show that there exists a curve v such that 4(0) = a¥1(0) + b¥2(0). Such
a curve is obtained by considering a chart (U, p) with 2 € U and defining
(t) = o (ap(y1(t) + bp(ya(t)). It is readily checked that this v satisfies
the required property.

The property that the tangent space T, M is a vector space is very impor-
tant. In the same way that the derivative of a real-valued function provides
a local linear approximation of the function, the tangent space T, M pro-
vides a local vector space approximation of the manifold. In particular, in
Section [4.1, we define mappings, called retractions, between M and T, M,
which can be used to locally transform an optimization problem on the
manifold M into an optimization problem on the more friendly vector space

T, M.
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Using a coordinate chart, it is possible to show that the dimension of
the vector space T, M is equal to d, the dimension of the manifold M:
given a chart (U, ) at x, a basis of T, M is given by (41(0),...,%4(0)),
where 7;(t) := ¢~ (p(z) + te;), with e; denoting the ith canonical vector of
R9. Notice that 4;(0)f = 9;(f o »~1)(¢(x)), where 9; denotes the partial
derivative with respect to the ith component:

() = PI% h(zx + tez) — h(m)

One has, for any tangent vector 4(0), the decomposition
$(0) = D (3(0)2:)3:(0),
where ¢; denotes the ith component of ¢. This provides a way to define the

coordinates of tangent vectors at z using the chart (U, ), by defining the
element of R?

7(0)1

Y(0)¢a
as the representation of the tangent vector 4(0) in the chart (U, p).

3.5.2 Tangent vectors to a vector space

Let £ be a vector space and let x be a point of £. As pointed out in Sec-
tion[3.1.4] £ admits a linear manifold structure. Strictly speaking, a tangent
vector £ to £ at x is a mapping

d(f(v(1)))

dt =0

§:8:(6) = R: f=&f =

where v is a curve in £ with (0) = x. Defining +/(0) € £ as in (3.9), we
have

§f =Df (z) [/ (0)].

Moreover, 4/(0) does not depend on the curve v that realizes . This defines
a canonical linear one-to-one correspondence ¢ — +/(0), which identifies T,.€
with &:

T,E ~&. (3.11)

Since tangent vectors are local objects (a tangent vector at a point = acts on
smooth real-valued functions defined in any neighborhood of ), it follows
that if £, is an open submanifold of £, then

T,E. ~ & (3.12)

for all z € &,. A schematic illustration is given in Figure[3.4.
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Figure 3.4 Tangent vectors to an open subset &, of a vector space €.

3.5.3 Tangent bundle
Given a manifold M, let T’M be the set of all tangent vectors to M:
TM:= | TuM.
reEM
Since each £ € T M is in one and only one tangent space T, M, it follows
that M is a quotient of TM with natural projection
7 TM—-M: €T, M — zx,

ie., m(&) is the foot of & The set T’M admits a natural manifold structure
as follows. Given a chart (U, ¢) of M, the mapping

EETM — (p1(2),...,0a(x),Ep1, ..., Epa)T

is a chart of the set TM with domain 7=!(U). It can be shown that the
collection of the charts thus constructed forms an atlas of the set T M,
turning it into a manifold called the tangent bundle of M.

3.5.4 Vector fields

A wector field £ on a manifold M is a smooth function from M to the tangent
bundle T'M that assigns to each point z € M a tangent vector &, € T, M.
On a submanifold of a vector space, a vector field can be pictured as a
collection of arrows, one at each point of M. Given a vector field £ on M
and a (smooth) real-valued function f € F(M), we let £f denote the real-
valued function on M defined by

EN)(@) == &(f)

for all  in M. The addition of two vector fields and the multiplication of a
vector field by a function f € F(M) are defined as follows:

E+Qr =86+ for all z € M.
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Smoothness is preserved by these operations. We let X(M) denote the set
of smooth vector fields endowed with these two operations.

Let (U, ) be a chart of the manifold M. The vector field E; on U defined
by

(Eif)(x) == 0i(f oo™ )(p(2)) =D(f o p™") (¢(2)) [es]

is called the ith coordinate vector field of (U, p). These coordinate vector
fields are smooth, and every vector field £ admits the decomposition

£= Z(&w)Ei

on U. (A pointwise version of this result was given in Section[3.5.11)
If the manifold is an n-dimensional vector space &, then, given a basis
(€)i=1,....a of &, the vector fields E;, i =1,...,n, defined by

o fle A te) —
(Baf) (o) o= tim L1

I@) _pf (@) fed]

form a basis of X(€).

3.5.5 Tangent vectors as derivations*®

Let  and 1 be elements of R™. The derivative mapping that, given a real-
valued function f on R™, returns the real D f (x) [n] can be axiomatized as
follows on manifolds. Let M be a manifold and recall that F(M) denotes
the set of all smooth real-valued functions on M. Note that F(M) C F.(M)
for all z € M. A derivation at x € M is a mapping &, from F(M) to R that
is

1. R-linear: & (af + bg) = a&.(f) + b (g), and
2. L?i\lzlraizian: E(f9) =&:(fg(x)+ f(x)€x(g), foralla, be R and f, g €
F(M).

With the operations

(aly)f = a&.(f) for all f € F(M), a eR,

the set of all derivations at x becomes a vector space. It can also be shown
that a derivation &, at x is a local notion: if two real-valued functions f and
g are equal on a neighborhood of z, then &.(f) = &.(g).

The concept of a tangent vector at x, as defined in Section 3.5.1, and the
notion of a derivation at z are equivalent in the following sense: (i) Given a
curve v on M through z at ¢t = 0, the mapping %(0) from §(M) C §.(M)
to R, defined in (3.10), is a derivation at z. (ii) Given a derivation & at =,
there exists a curve v on M through = at ¢ = 0 such that 4(0) = &. For
example, the curve v defined by v(t) = ¢~ (0(0) +t >, (£(pi)e;)) satisfies
the property.

A (global) derivation on F(M) is a mapping D : F(M) — F(M) that is
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1. R-linear: D(af + bg) = aD(f) +bD(g), (a, b € R), and
2. Leibnizian: D(fg) = D(f)g + f D(g).

Every vector field € € X(M) defines a derivation f — £f. Conversely, every
derivation on §(M) can be realized as a vector field. (Viewing vector fields as
derivations comes in handy in understanding Lie brackets; see Section 5.3.1.)

3.5.6 Differential of a mapping

Let F : M — N be a smooth mapping between two manifolds M and N.
Let &, be a tangent vector at a point z of M. It can be shown that the
mapping DF (z) [£,] from Fp(y)(N) to R defined by

(DF () [¢]) f:=&(f o F) (3.13)

is a tangent vector to A at F(z). The tangent vector DF (z) [€,] is realized
by F o~, where « is any curve that realizes £,. The mapping

DF(z): Ty M — TpN : § — DF () [€]

is a linear mapping called the differential (or differential map, derivative, or
tangent map) of F at x (see Figure[3.5).

&
M h‘ _bF@)

DF(z)[&]

Figure 3.5 Differential map of F' at x.

Note that F' is an immersion (respectively, submersion) if and only if
DF(z) : ToM — TpN is an injection (respectively, surjection) for every
xr e M.

If N is a vector space &, then the canonical identification Tpu)€ ~ &
yields

DF (z) [&] = Y (&F"es, (3.14)

K3

where F(z) = >, F'(x)e; is the decomposition of F(z) in a basis (€;)i=1,....n
of £.
If N =R, then F € §, (M), and we simply have

DF (2)[&] = & F (3.15)
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using the identification T, R ~ R. We will often use DF (z) [,] as an alter-
native notation for . F, as it better emphasizes the derivative aspect.

If M and N are linear manifolds, then, with the identification T, M ~ M
and T,N ~ N, DF(z) reduces to its classical definition

F(x+1t&,) — F(x)
; )

Given a differentiable function F : M +— A and a vector field £ on M, we
let DF'[¢] denote the mapping

DF[(]: M — TN :x— DF (z) [&].

In particular, given a real-valued function f on M and a vector field £ on
M,

DF (2)[¢,] = lim (3.16)

Df[¢] =¢f-

3.5.7 Tangent vectors to embedded submanifolds

We now investigate the case where M is an embedded submanifold of a
vector space €. Let 4 be a curve in M, with v(0) = 2. Define

t—0 t
where the subtraction is well defined since 7(t) belongs to the vector space £
for all t. (Strictly speaking, one should write i(y(t)) —i((0)), where 7 is the
natural inclusion of M in &; the inclusion is omitted to simplify the notation.)
It follows that 4/(0) thus defined is an element of T,€ ~ & (see Figure[3.6).
Since 7 is a curve in M, it also induces a tangent vector 4(0) € T, M. Not

)

Figure 3.6 Curves and tangent vectors on the sphere. Since S™ ! is an embedded
submanifold of R", the tangent vector 4(0) can be pictured as the
directional derivative v'(0).

surprisingly, 7/(0) and (0) are closely related: If f is a real-valued function
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in a neighborhood U of x in £ and f denotes the restriction of f to U N M
(which is a neighborhood of x in M since M is embedded), then we have

§Of = 5160 = $T0m)|  =PF@pO). 617

This yields a natural identification of T, M with the set
{+/(0) : v curve in M, v(0) = =}, (3.18)

which is a linear subspace of the vector space T, £ ~ £. In particular, when
M is a matrix submanifold (i.e., the embedding space is R™*?), we have
T,.E = R™ P hence the tangent vectors to M are naturally represented by
n X p matrix arrays.

Graphically, a tangent vector to a submanifold of a vector space can be
thought of as an “arrow” tangent to the manifold. It is convenient to keep
this intuition in mind when dealing with more abstract manifolds; however,
one should bear in mind that the notion of a tangent arrow cannot always
be visualized meaningfully in this manner, in which case one must return to
the definition of tangent vectors as objects that, given a real-valued function,
return a real number, as stated in Definition[3.5.1.

In view of the identification of T, M with (3.18), we now write (), v'(¢),
and %Fy(t) interchangeably. We also use the equality sign, such as in (3.19)
below, to denote the identification of T, M with (3.18).

When M is (locally or globally) defined as a level set of a constant-rank
function F': £ — R™, we have

T, M = ker(DF (z)). (3.19)
In other words, the tangent vectors to M at x correspond to those vectors
¢ that satisfy DF () [¢] = 0. Indeed, if ~ is a curve in M with v(0) = x, we
have F(y(t)) = 0 for all ¢, hence
d(F((1)))
dt
which shows that 4(0) € ker(DF(x)). By counting dimensions using Propo-

sition 3.3.4, it follows that T, M and ker(DF(z)) are two vector spaces of
the same dimension with one included in the other. This proves the equal-

ity (3.19).

Example 3.5.1 Tangent space to a sphere
Let t — x(t) be a curve in the unit sphere S~ through xo at t = 0. Since
z(t) € S"~1 for all t, we have

T (t)x(t) =1
for all t. Differentiating this equation with respect to t yields
2T () (t) + 2T ()2 (t) = 0,
hence &(0) is an element of the set

{zeR":zl2=0}. (3.20)

DF (z) [7(0)] = =0,

t=0
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Sn,—l

Figure 3.7 Tangent space on the sphere. Since S™ ! is an embedded submanifold
of R", the tangent space T, S™ ! can be pictured as the hyperplane
tangent to the sphere at z, with origin at x.

This shows that Ty, S™™ ! is a subset of (3.20). Conversely, let z belong to
the set (3.20). Then the curve t — z(t) := (zo + tz)/||zo + tz|| is on S™~!
and satisfies i:(0) = z. Hence (3.20) is a subset of T, S"~ 1. In conclusion,

T,8" ' ={zcR": 272 =0}, (3.21)

which is the set of all vectors orthogonal to = in R"; see Figure3.7.

More directly, consider the function F: R — R : x +— zT2 — 1. Since
Sl = {z € R" : F(z) = 0} and since F is full rank on S™~1, it follows
from (3.19) that

T,5" ' =ker(DF(z)) ={z € R": 272 + 272 =0} = {z e R" : 272 = 0},
as in (3.21).

Example 3.5.2 Orthogonal Stiefel manifold
We consider the orthogonal Stiefel manifold

St(p,n) = {X e R™P: XTX = I,}

as an embedded submanifold of the Euclidean space R™"*P (see Section]3.3.2).
Let Xo be an element of St(p,n) and let t — X(t) be a curve in St(p,n)
through Xo at t =0; i.e., X(t) € R"*P, X(0) = Xy, and

XT)X(t) =1, (3.22)
for all t. It follows by differentiating (3.22) that
XTH)Xx(@t)+XTt)X(t) = 0. (3.23)
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We deduce that X (0) belongs to the set
{(Z e R™P . XTZ 4+ Z7 X = 0}. (3.24)

We have thus shown that Tx, St(p,n) is a subset of (3.24). It is possible
to conclude, as in the previous example, by showing that for all Z in (3.24)
there is a curve in St(p,n) through Xo at t such that X(0) = Z. A simpler
argument is to invoke (3.19) by pointing out that (3.24) is the kernel of
DF(Xy), where F : X — XTX, so that I, is a regular value of F and
F~Y(1I,) = St(p,n). In conclusion, the set described in (3.24) is the tangent
space to St(p,n) at Xo. That is,

Tx St(p,n) ={Z e R™? . XT7 + 7T X = 0}.

We now propose an alternative characterization of T'x St(p,n). Without
loss of generality, since X (t) is an element of R™"*P and X (t) has full rank,
we can set

X(t) = X()Q(t) + XL (1)K (1), (3.25)

where X (t) is any n X (n — p) matriz such that span(X, (t)) is the or-
thogonal complement of span(X (t)). Replacing (3.25) in (3.23) yields

Q)T +Q(t) =0;
i.e., Qt) is a skew-symmetric matriz. Counting dimensions, we deduce that
Tx St(p,n) = {XQ+ X, K: Q7 = —Q, K ¢ R"=P)*P},

Observe that the two characterizations of Tx St(p,n) are facilitated by the
embedding of St(p,n) in R"*P: Tx St(p,n) is identified with a linear subspace
of R"*P,

Example 3.5.3 Orthogonal group
Since the orthogonal group O,, is St(p,n) with p = n, it follows from the
previous section that

TUOn = {Z =UQN: QT = _Q} = USskew(n)v (326)

where Sgkew(n) denotes the set of all skew-symmelric n x n matrices.

3.5.8 Tangent vectors to quotient manifolds

We have seen that tangent vectors of a submanifold embedded in a vector
space £ can be viewed as tangent vectors to £ and pictured as arrows in &
tangent to the submanifold. The situation of a quotient £/ ~ of a vector space
& is more abstract. Nevertheless, the structure space £ also offers convenient
representations of tangent vectors to the quotient.

For generality, we consider an abstract manifold M and a quotient mani-
fold M = M/ ~ with canonical projection 7. Let ¢ be an element of T, M
and let T be an element of the equivalence class 7~!(x). Any element ¢ of
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TzM that satisfies D (Z)[¢] = £ can be considered a representation of €. In-
deed, for any smooth function f: M — R, the function f := for: M — R
is smooth (Proposition[3.4.5), and one has

Df(z)[§] = Df(w(z))[Dx(z)[¢]] = Df()[¢]-
A difficulty with this approach is that there are infinitely many valid rep-
resentations & of ¢ at 7.

It is desirable to identify a unique “lifted” representation of tangent vectors
of T, M in Tz M in order that we can use the lifted tangent vector repre-
sentation unambiguously in numerical computations. Recall from Proposi-
tion [3.4.4] that the equivalence class 7—1(x) is an embedded submanifold of
M. Hence 7~ 1(x) admits a tangent space

Vr = Ti(n ' (z))

called the vertical space at T. A mapping H that assigns to each element T of
M a subspace Hz of Ty M complementary to Vi (i.e., such that Hz ® Vi =
TzM) is called a horizontal distribution on M. Given T € M, the subspace
Hz of TeM is then called the horizontal space at T; see Figure [3.8] Once
M is endowed with a horizontal distribution, there exists one and only one
element & that belongs to Hy and satisfies D7 (Z)[¢;] = & This unique
vector & is called the horizontal lift of ¢ at T.

In particular, when the structure space is (a subset of) R™*P  the hori-
zontal lift £ is an n x p matrix, which lends itself to representation in a
computer as a matrix array.

Example 3.5.4 Real projective space

Recall from Section|3.4.3 that the projective space RP" ! is the quotient
R?/~, where x ~y if and only if there is an « € R, such that y = xa. The
equivalence class of a point x of R} is

[z] = 7 Y7 (x)) = 2R, == {za: @ € R}
The vertical space at a point x € RY is
V, = 2R := {za: a € R}.
A suitable choice of horizontal distribution is
Hy = Vo)t = {z e R": 272 = 0}. (3.27)

(This horizontal distribution will play a particular role in Section!3.6.2 where
the projective space is turned into a Riemannian quotient manifold.)

A tangent vector & € T,r(w)R]P’"fl is represented by its horizontal lift £, €
H, at a point x € RY. It would be equally valid to use another representation
Ey € Hy of the same tangent vector at another pointy € R} such that x ~ y.
The two representations &, and Ey are not equal as vectors in R™ but are
related by a scaling factor, as we now show. First, note that x ~ y if and
only if there exists a nonzero scalar @ such that y = ax. Let f : RP"™! - R
be an arbitrary smooth function and define f := fom : R* — R. Consider
the function g : x +— ax, where « is an arbitrary nonzero scalar. Since
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Figure 3.8 Schematic illustration of a quotient manifold. An equivalence class
771 (7(T)) is pictured as a subset of the total space £ and corresponds
to the single point 7(T) in the quotient manifold £/ ~. At T, the tan-
gent space to the equivalence class is the vertical space Vz, and the
horizontal space Hz is chosen as a complement of the vertical space.

7(g(x)) = n(x) for all z, we have f(g(x)) = f(x) for all z, and it follows by
taking the differential of both sides that

Df(g(x))[Dg(x)[E,]] = Df(2)[,]- (3.28)

By the definition of £, we have Df(z)[€,] = Df(n(x))[£]. Moreover, we have
Dg(a)E,] = of,. Thus (328) yields Df(az)[o,]] = Df(w(az))[€]. This
result, since it is valid for any smooth function f, implies that D (ax)[af,] =
€. This, along with the fact that of, is an element of Hae, implies that o,
is the horizontal lift of & at ax, i.e.,

gomc = O‘gx'

Example 3.5.5 Grassmann manifolds
Tangent vectors to the Grassmann manifolds and their matriz representa-
tions are presented in Section|[3.6.
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3.6 RIEMANNIAN METRIC, DISTANCE, AND GRADIENTS

Tangent vectors on manifolds generalize the notion of a directional deriva-
tive. In order to characterize which direction of motion from x produces the
steepest increase in f, we further need a notion of length that applies to
tangent vectors. This is done by endowing every tangent space T, M with
an inner product (-,-),, i.e., a bilinear, symmetric positive-definite form. The
inner product (-, ), induces a norm,

H£95||30 = <§I7€x>m7

on T, M. (The subscript  may be omitted if there is no risk of confusion.)
The (normalized) direction of steepest ascent is then given by

argmax D f (z)[&].
EETL M€z ||=1
A manifold whose tangent spaces are endowed with a smoothly varying
inner product is called a Riemannian manifold. The smoothly varying inner
product is called the Riemannian metric. We will use interchangeably the
notation

to denote the inner product of two elements &, and (, of T, M. Strictly
speaking, a Riemannian manifold is thus a couple (M,g), where M is a
manifold and ¢ is a Riemannian metric on M. Nevertheless, when the Rie-
mannian metric is unimportant or clear from the context, we simply talk
about “the Riemannian manifold M”. A vector space endowed with an in-
ner product is a particular Riemannian manifold called Fuclidean space. Any
(second-countable Hausdorff) manifold admits a Riemannian structure.

Let (U, p) be a chart of a Riemannian manifold (M, g). The components
of g in the chart are given by

gij = g(E;, Ej),

where E; denotes the ith coordinate vector field (see Section [3.5.4). Thus,
for vector fields £ = Y, ¢'E; and ¢ = Y, (' E;, we have

9(6.Q) = (&) =D 9is€'¢.
0]

Note that the g;;’s are real-valued functions on & C M. One can also define
the real-valued functions gijogp_l on ¢(U) C R?; we use the same notation 9ij
for both. We also use the notation G : & +— G for the matrix-valued function
such that the (i,7) element of G is gi;],. If we let & = Do (¢71(2)) [&]
and ; = Do (¢74(&)) [¢o], with & = ¢(x), denote the representations of &,
and (, in the chart, then we have, in matrix notation,

Note that G is a symmetric, positive definite matrix at every point.
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The length of a curve 7 : [a,b] — M on a Riemannian manifold (M, g) is
defined by

b
Vg(¥(t), 7(t)) dt.
a
The Riemannian distance on a connected Riemannian manifold (M, g) is
dist : M x M — R : dist(z,y) = i¥f L(y) (3.30)

where T is the set of all curves in M joining points = and y. Assuming (as
usual) that M is Hausdorff, it can be shown that the Riemannian distance
defines a metric; i.e.,

1. dist(z,y) > 0, with dist(z,y) = 0 if and only if 2 = y (positive-
definiteness);

2. dist(x,y) = dist(y, ) (symmetry);

3. dist(z, z) + dist(z, y) > dist(z,y) (triangle inequality).

Metrics and Riemannian metrics should not be confused. A metric is an
abstraction of the notion of distance, whereas a Riemannian metric is an
inner product on tangent spaces. There is, however, a link since any Rie-
mannian metric induces a distance, the Riemannian distance.

Given a smooth scalar field f on a Riemannian manifold M, the gradient
of f at x, denoted by grad f(x), is defined as the unique element of T, M
that satisfies

(grad f(z),)e =D f (2)[§], VE€TuM. (3.31)
The coordinate expression of grad f is, in matrix notation,
grad f(2) = G; ' Grad f(2), (3.32)

where G is the matrix-valued function defined in (3.29) and Grad denotes
the Fuclidean gradient in RY,
0 f(#)
Grad f(z) :=
0af(2)
(Indeed, from (3.29) and (3.32), we have (grad f,¢) = 7G(G~! Grad f) =
€7 Grad f = Df[€] = Df[¢] for any vector field €.)

The gradient of a function has the following remarkable steepest-ascent
properties (see Figure[3.9):

® The direction of grad f(x) is the steepest-ascent direction of f at x:

_grad f(z)
= argmax Df(z)[{].
llgrad f () cem,at:e=1
® The norm of grad f(z) gives the steepest slope of f at :

lgrad f(z)|| = D f () [%] '

These two properties are important in the scope of optimization methods.
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{&:Df(2)[] =1} {¢:Df(x)[f] = -1

—grad f(z)

‘{5 :Df () [¢] = 0}

Figure 3.9 Illustration of steepest descent.

3.6.1 Riemannian submanifolds

If a manifold M is endowed with a Riemannian metric, one would expect that
manifolds generated from M (such as submanifolds and quotient manifolds)
can inherit a Riemannian metric in a natural way. This section considers
the case of embedded submanifolds; quotient manifolds are dealt with in the
next section.

Let M be an embedded submanifold of a Riemannian manifold M. Since
every tangent space T, M can be regarded as a subspace of T, M, the Rie-
mannian metric § of M induces a Riemannian metric g on M according
to

gx(S,C)Zﬁx(é,CL § CeTM,

where ¢ and ¢ on the right-hand side are viewed as elements of T, M. This
turns M into a Riemannian manifold. Endowed with this Riemannian met-
ric, M is called a Riemannian submanifold of M. The orthogonal comple-
ment of T, M in T, M is called the normal space to M at x and is denoted
by (T, M)L:

(T, M)t = {6 e T,M:5,(£,¢) =0 for all ¢ € T,M}.

Any element ¢ € T, M can be uniquely decomposed into the sum of an
element of T, M and an element of (T, M)

£ = P& +PLe,

where P, denotes the orthogonal projection onto T, M and P; denotes the
orthogonal projection onto (7, M)=.

Example 3.6.1 Sphere
On the unit sphere S?~1 considered a Riemannian submanifold of R™, the
inner product inherited from the standard inner product on R™ is given by

(&) =€, (3.33)
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The normal space is
(T,8" Y+ ={za:a R},
and the projections are given by
Pof = (I —wa®)s,  Pré&=ama’€
for x € S"L.

Example 3.6.2 Orthogonal Stiefel manifold
Recall that the tangent space to the orthogonal Stiefel manifold St(p,n) is

Tx St(p,n) = {XQ+ X, K : Q" = -Q, K e R"Pxr),
The Riemannian metric inherited from the embedding space R"*P is

(€ mx = tr(€"n). (3.34)
If € = XQ¢ + X1 K¢ and n = X, + X1 K, then (&,n)x = tr(QfQ, +
K{Ky). In view of the identity tr(STQ) = 0 for all S € Sym(p), Q €
Sskew (D), the normal space is
(Tx St(p,n))*" = {XS: S € Sym(p)}
The projections are given by
Pxé= (I - XXT)¢+ X skew(X7T¢), (3.35)
P& = Xsym(XT¢), (3.36)
where sym(A) := (A + AT) and skew(A) := (A — AT) denote the com-

ponents of the decomposition of A into the sum of a symmetric term and a
skew-symmetric term.

Let f be a cost function defined on a Riemannian manifold M and let f
denote the restriction of f to a Riemannian submanifold M. The gradient
of f is equal to the projection of the gradient of f onto T, M:

grad f(z) = P, grad f(z). (3.37)
Indeed, P, grad f(x) belongs to T, M and (3.31) is satisfied since, for all
¢ € TM, we have (P, grad f(z),() = (grad f(z) — Py grad f(z),¢) =
(grad f(z),¢) =D f (z)[¢] = Df (z)[¢].

3.6.2 Riemannian quotient manifolds

We now consider the case of a quotient manifold M = M/ ~, where the
structure space M is endowed with a Riemannian metric g. The horizontal
space Hz at T € M is canonically chosen as the orthogonal complement in
TzM of the vertical space Vi = Tfﬂ-_l(l‘), namely,

Hy = (TxVe) " = {nz € TeM : G(xz,nz) = 0 for all xz € Vz}.

Recall that the horizontal lift at Z € 7~ (x) of a tangent vector &, € T, M
is the unique tangent vector & € Hz that satisfies D7 (T)[¢5]. If, for every
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x € M and every &, (; € T, M, the expression g (&5, (5) does not depend
on T € m~!(z), then

92 &z, C2) = gf(gfv ZE) (3.38)

defines a Riemannian metric on M. Endowed with this Riemannian met-
ric, M is called a Riemannian quotient manifold of M, and the natural
projection 7 : M — M is a Riemannian submersion. (In other words, a
Riemannian submersion is a submersion of Riemannian manifolds such that
D7 preserves inner products of vectors normal to fibers.)

Riemannian quotient manifolds are interesting because several differential
objects on the quotient manifold can be represented by corresponding objects
in the structure space in a natural manner (see in particular Section[5.3.4).
Notably, if f is a function on M that induces a function f on M, then one
has

grad f- = grad f(7). (3.39)

Note that grad f(Z) belongs to the horizontal space: since f is constant on
each equivalence class, it follows that g(grad f(%),£) = Df (Z) [¢] = 0 for
all vertical vectors &, hence grad f(%) is orthogonal to the vertical space.

We use the notation PL¢; and P& for the projection of & € Ty M onto
Hz and Vz.

Example 3.6.3 Projective space

On the projective space RP"™', the definition

1 - 7_

. . . -1 - . .
turns the canonical projection w : R — RP"™ " into a Riemannian submer-
siomn.

Example 3.6.4 Grassmann manifolds

We show that the Grassmann manifold Grass(p,n) = RY*?/GL, admits
a structure of a Riemannian quotient manifold when Ry P is endowed with
the Riemannian metric

Gy (21, 25) =tx (YY) ' 2] Z,) .

The vertical space at'Y is by definition the tangent space to the equivalence
class m=H(w(Y)) = {Y M : M € RY*P}, which yields

VY:{YM:MERPXP}-

The horizontal space at'Y is then defined as the orthogonal complement of
the vertical space with respect to the metric g. This yields

Hy ={Z e RV? . YTZ =0}, (3.40)
and the orthogonal projection onto the horizontal space is given by

PLz=1-YYTY)'vy"zZ. (3.41)
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W GL,
Eow M
WME—= Y GL,
W Eow Sur
ow (span(Y))
Y
0

Figure 3.10 Grass(p,n) is shown as the quotient R} *? /GL,, for the case p = 1, n =
2. Each point, the origin excepted, is an element of R} *? = R? — {0}.
Each line is an equivalence class of elements of RZ*? that have the
same span. So each line through the origin corresponds to an element
of Grass(p,n). The affine subspace Sw is an affine cross section as
defined in (3.43). The relation (3.42) satisfied by the horizontal lift £ of
a tangent vector £ € Tyy Grass(p, n) is also illustrated. This figure can
help to provide insight into the general case, however, one nonetheless
has to be careful when drawing conclusions from it. For example, in
general there does not exist a submanifold of R™*? that is orthogonal
to the fibers Y GL, at each point, although it is obviously the case for
p =1 (any centered sphere in R™ will do).

Given § € Tyyan(y) Grass(p,n), there exists a unique horizontal lift & €
Ty RY*P satisfying
Dr(Y)[Ey] = ¢

In order to show that Grass(p,n) admits a structure of a Riemannian quo-
tient manifold of (RY*?,q), we have to show that

9y Cyar) = 9y Cy)
for all M € RE*P. This relies on the following result.

Proposition 3.6.1 Given'Y € RI™" and & € Ty,an(y) Grass(p, n), we have

Su=8& M (3.42)

for all M € RE*P, where the center dot (usually omitted) denotes matriz
multiplication.

Proof. Let W € RY™P. Let Uy = {span(Y) : WTY invertible}. Notice that
Uy is the set of all the p-dimensional subspaces Y of R™ that do not contain
any direction orthogonal to span(W). Consider the mapping

ow Uy — R™P :span(Y) — Y(WTY) " twTw,
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see Figure[3.10, One has w(ow (Y)) = span(ow (V) = Y for all Y € Uw;
i.e., ow s a right inverse of . Consequently, Dr(ow (Y)) o Dow () = id.
Moreover, the range of ow is

Sw = {Y e RP*? : WI(Y — W) = 0}, (3.43)
from which it follows that the range of Dow (V) = {Z € R™P : WTZ =
0} = Hw. In conclusion,

Daw (W)[E] = &w-
Now, owr(Y) = ow (V)M for all M € RY*P and all Y € Uy . It follows
that
&war = Down(W)[E] = D(ow - M)W)[E] = Dow (W)[¢] - M =&y - M,
where the center dot denotes the matriz multiplication. O

Using this result, we have

Gy nr Eyars Cyar) = Gy nr (Ey M, Cy M)
= tr (YM)"Y M) (& M)T ((y M)

—tr (M—l(YTY)—lM—TMTEYTZYM)
= ((VTY) e "Gy )
=0y &y, Cy)-

This shows that Grass(p,n), endowed with the Riemannian metric

YJspan(Y) (57 C) =gy (gYa ZY)? (344)

is a Riemannian quotient manifold of (RY*?,g). In other words, the canon-
ical projection m : RY™P — Grass(p,n) is a Riemannian submersion from
(RE"?,g) to (Grass(p,n), g).

3.7 NOTES AND REFERENCES

Differential geometry textbooks that we have referred to when writing
this book include Abraham et al. [AMRSS], Boothby [Boo75], Brickell
and Clark [BC70], do Carmo [dC92|, Kobayashi and Nomizu [KN63|,
O’Neill [O’N83], Sakai [Sak96], and Warner [War83]. Some material was
also borrowed from the course notes of M. De Wilde at the University of
Liege [DW92]. Do Carmo [dC92] is well suited for engineers, as it does not
assume any background in abstract topology; the prequel [dCT76] on the
differential geometry of curves and surfaces makes the introduction even
smoother. Abraham et al. [AMRSS] and Brickell and Clark [BC70] cover
global analysis questions (submanifolds, quotient manifolds) at an introduc-
tory level. Brickell and Clark [BC70] has a detailed treatment of the topology
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of manifolds. O’Neill [O’N83| is an excellent reference for Riemannian con-
nections of submanifolds and quotient manifolds (Riemannian submersions).
Boothby [Boo75] provides an excellent introduction to differential geometry
with a perspective on Lie theory, and Warner [War83] covers more advanced
material in this direction. Other references on differential geometry include
the classic works of Kobayashi and Nomizu [KN63], Helgason [Hel78], and
Spivak [Spi70]. We also mention Darling [Dar94], which introduces abstract
manifold theory only after covering Euclidean spaces and their submanifolds.

Several equivalent ways of defining a manifold can be found in the lit-
erature. The definition in do Carmo [dC92] is based on local parameter-
izations. O’Neill [O’N83, p. 22| points out that for a Hausdorff manifold
(with countably many components), being second-countable is equivalent
to being paracompact. (In abstract topology, a space X is paracompact if
every open covering of X has a locally finite open refinement that covers
X.) A differentiable manifold M admits a partition of unity if and only
if it is paracompact [BC70, Th. 3.4.4]. The material on the existence and
uniqueness of atlases has come chiefly from Brickell and Clark [BC70]. A
function with constant rank on its domain is called a subimmersion in most
textbooks. The terms “canonical immersion” and “canonical submersion”
have been borrowed from Guillemin and Pollack [GP74, p. 14]. The mani-
fold topology of an immersed submanifold is always finer than its topology
as a subspace [BC70], but they need not be the same topology. (When they
are, the submanifold is called embedded.) Examples of subsets of a mani-
fold that do not admit a submanifold structure, and examples of immersed
submanifolds that are not embedded, can be found in most textbooks on
differential geometry, such as do Carmo [dC92|. Proposition [3.3.1, on the
uniqueness of embedded submanifold structures, is proven in Brickell and
Clark [BC70] and O’Neill [O’N83]. Proposition [3.3.3 can be found in sev-
eral textbooks without the condition d; > ds. In the case where d; = ds,
F~1(y) is a discrete set of points [BC70, Prop. 6.2.1]. In several references,
embedded submanifolds are called regular submanifolds or simply submani-
folds. Proposition|3.3.2] on coordinate slices, is sometimes used to define the
notion of an embedded submanifold, such as in Abraham et al. [AMRSS].
Our definition of a regular equivalence relation follows that of Abraham et
al. [AMRSS]. The characterization of quotient manifolds in Proposition 3.4.2
can be found in Abraham et al. [AMRSS] p. 208]. A shorter proof of Proposi-
tion|3.4.6 (showing that R} *?/GL,, admits a structure of quotient manifold,
the Grassmann manifold) can be given using the theory of homogeneous
spaces, see Boothby [Boo75] or Warner [War83].

Most textbooks define tangent vectors as derivations. Do Carmo [dC92]
introduces tangent vectors to curves, as in Section [3.5.1. O’Neill [O’N83]
proposes both definitions. A tangent vector at a point x of a manifold can
also be defined as an equivalence class of all curves that realize the same
derivation: v ~ 75 if and only if, in a chart (U, ¢) around 2 = 1 (0) = 72(0),
we have (¢o071)(0) = (po~2)’(0). This notion does not depend on the chart



MATRIX MANIFOLDS: FIRST-ORDER GEOMETRY 53

since, if (V, ) is another chart around z, then

(¥ 09)(0) = (Yo ™) (p(m)) - (¢ 07)'(0).

This is the approach taken, for example, by Gallot et al. [GHL90].

The notation DF () [€] is not standard. Most textbooks use dF,¢ or Fi,€.
Our notation is slightly less compact but makes it easier to distinguish the
three elements F', x, and £ of the expression and has proved more flexible
when undertaking explicit computations involving matrix manifolds.

An alternative way to define smoothness of a vector field is to require
that the function £f be smooth for every f € F(M); see O'Neill [O’N83].
In the parlance of abstract algebra, the set §(M) of all smooth real-valued
functions on M, endowed with the usual operations of addition and multipli-
cation, is a commutative ring, and the set X(M) of vector fields is a module
over (M) [O’N83|. Formula (3.26) for the tangent space to the orthogonal
group can also be obtained by treating O,, as a Lie group: the operation of
left multiplication by U, Ly : X — UX, sends the neutral element [ to U,
and the differential of Ly at I sends T70,, = 0(n) = Sskew () 10 USskew(n);
see, e.g., Boothby [Boo75] or Warner [War83|. For a proof that the Rie-
mannian distance satisfies the three axioms of a metric, see O’Neill [O’N83,
Prop. 5.18]. The axiom that fails to hold in general for non-Hausdorfl man-
ifolds is that dist(z,y) = 0 if and only if + = y. An example can be con-
structed from the material in Section [4.3.2. Riemannian submersions are
covered in some detail in Cheeger and Ebin [CET75], do Carmo [dC92], Klin-
genberg [Kli82], O’Neill [O’N83], and Sakai [Sak96]. The term “Riemannian
quotient manifold” is new.

The Riemannian metric given in (3.44) is the essentially unique rotation-
invariant Riemannian metric on the Grassmann manifold [Lei61, AMSO04].
More information on Grassmann manifolds can be found in Ferrer et
al. [FGP94], Edelman et al. [EAS98], Absil et al. [AMS04], and references
therein.

In order to define the steepest-descent direction of a real-valued function
f on a manifold M, it is enough to endow the tangent spaces to M with a
norm. Under smoothness assumptions, this turns M into a Finsler manifold.
Finsler manifolds have received little attention in the literature in comparison
with the more restrictive notion of Riemannian manifolds. For recent work
on Finsler manifolds, see Bao et al. [BCS00].



Chapter Four

Line-Search Algorithms on Manifolds

Line-search methods in R™ are based on the update formula

Tpt1 = Tk + teni, (41)

where 7, € R" is the search direction and t;, € R is the step size. The goal
of this chapter is to develop an analogous theory for optimization problems
posed on nonlinear manifolds.

The proposed generalization of (4.1]) to a manifold M consists of selecting
7, as a tangent vector to M at zj and performing a search along a curve
in M whose tangent vector at ¢t = 0 is ;. The selection of the curve relies
on the concept of retraction, introduced in Section (4.1l The choice of a
computationally efficient retraction is an important decision in the design
of high-performance numerical algorithms on nonlinear manifolds. Several
practical examples are given for the matrix manifolds associated with the
main examples of interest considered in this book.

This chapter also provides the convergence theory of line-search algorithms
defined on Riemannian manifolds. Several example applications related to
the eigenvalue problem are presented.

4.1 RETRACTIONS

Conceptually, the simplest approach to optimizing a differentiable function
is to continuously translate a test point z(t) in the direction of steepest
descent, —grad f(z), on the constraint set until one reaches a point where
the gradient vanishes. Points x where grad f(xz) = 0 are called stationary
points or critical points of f. A numerical implementation of the continuous
gradient descent approach requires the construction of a curve 7 such that
A(t) = —grad f(y(t)) for all t. Except in very special circumstances, the con-
struction of such a curve using numerical methods is impractical. The closest
numerical analogy is the class of optimization methods that use line-search
procedures, namely, iterative algorithms that, given a point x, compute a
descent direction 1 := —grad f(z) (or some approximation of the gradient)
and move in the direction of 1 until a “reasonable” decrease in f is found.
In R”™, the concept of moving in the direction of a vector is straightforward.
On a manifold, the notion of moving in the direction of a tangent vector,
while staying on the manifold, is generalized by the notion of a retraction

mapping.
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Conceptually, a retraction R at z, denoted by R, is a mapping from
T, M to M with a local rigidity condition that preserves gradients at x; see
Figure[4.1!

M

Figure 4.1 Retraction.

Definition 4.1.1 (retraction) A retraction on a manifold M is a smooth
mapping R from the tangent bundle TM onto M with the following proper-
ties. Let R, denote the restriction of R to T, M.

(i) R.(0,) =z, where 0, denotes the zero element of T, M.
(i) With the canonical identification Ty, Ty M ~ T, M, R, satisfies

DR, (0;) = idp, pm, (4.2)
where idr, A denotes the identity mapping on Ty M.

We generally assume that the domain of R is the whole tangent bundle T'M.
This property holds for all practical retractions considered in this book.

Concerning condition (4.2), notice that, since R, is a mapping from T, M
to M sending 0, to z, it follows that DR, (0,) is a mapping from Ty, (T, M)
to T, M (see Section 3.5.6). Since T, M is a vector space, there is a nat-
ural identification Ty (T, M) ~ T, M (see Section 3.5.2). We refer to the
condition DR, (0,) = idp, A as the local rigidity condition. Equivalently, for
every tangent vector £ in T, M, the curve ¢ : t — R, (t£) satisfies 4¢(0) = .
Moving along this curve 7¢ is thought of as moving in the direction £ while
constrained to the manifold M.

Besides turning elements of T, M into points of M, a second important
purpose of a retraction R, is to transform cost functions defined in a neigh-
borhood of z € M into cost functions defined on the vector space T, M.
Specifically, given a real-valued function f on a manifold M equipped with
a retraction R, we let f = f o R denote the pullback of f through R. For
x e M, we let

fo=foR, (4.3)
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denote the restriction of fto T, M. Note that fz is a real-valued function
on a vector space. Observe that because of the local rigidity condition (4.2),
we have (with the canonical identification (3.11)) Dfx(Om) =Df(z). If M is
endowed with a Riemannian metric (and thus 7, M with an inner product),
we have

gradJ:";(Ox) = grad f(x). (4.4)

All the main examples that are considered in this book (and most ma-
trix manifolds of interest) admit a Riemannian metric. Every manifold that
admits a Riemannian metric also admits a retraction defined by the Rieman-
nian exponential mapping (see Section 5.4 for details). The domain of the
exponential mapping is not necessarily the whole T M. When it is, the Rie-
mannian manifold is called complete. The Stiefel and Grassmann manifolds,
endowed with the Riemannian metrics defined in Section 3.6, are complete.

The Riemannian exponential mapping is, in the geometric sense, the most
natural retraction to use on a Riemannian manifold and featured heavily in
the early literature on the development of numerical algorithms on Rieman-
nian manifolds. Unfortunately, the Riemannian exponential mapping is itself
defined as the solution of a nonlinear ordinary differential equation that, in
general, poses significant numerical challenges to compute cheaply. In most
cases of interest in this book, the solution of the Riemannian exponential can
be expressed in terms of classical analytic functions with matrix arguments.
However, the evaluation of matrix analytic functions is also a challenging
problem and usually computationally intensive to solve. Indeed, computing
the exponential may turn out to be more difficult than the original Rie-
mannian optimization problem under consideration (see Section 7.5.2 for an
example). These drawbacks are an invitation to consider alternatives in the
form of approximations to the exponential that are computationally cheap
without jeopardizing the convergence properties of the optimization schemes.
Retractions provide a framework for analyzing such alternatives. All the al-
gorithms in this book make use of retractions in one form or another, and
the convergence analysis is carried out for general retractions.

In the remainder of this Section 4.1, we show how several structures (em-
bedded submanifold, quotient manifold) and mathematical objects (local
coordinates, projections, factorizations) can be exploited to define retrac-
tions.

4.1.1 Retractions on embedded submanifolds

Let M be an embedded submanifold of a vector space £. Recall that T, M
can be viewed as a linear subspace of T,,€ (Section 3.5.7) which itself can be
identified with £ (Section 3.5.2). This allows us, slightly abusing notation,
to consider the sum x + £ of a point & of M, viewed as an element of £, and
a tangent vector £ € T, M, viewed as an element of T,€ ~ £. In this setting,
it is tempting to define a retraction along the following lines. Given z in M
and ¢ € T, M, compute R, (§) by
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1. moving along & to get the point x + £ in the linear embedding space;
2. “projecting” the point z 4 £ back to the manifold M.

The issue is to define a projection that (i) turns the procedure into a well-
defined retraction and (ii) is computationally efficient. In the embedded sub-
manifolds of interest in this book, as well as in several other cases, the second
step can be based on matrix decompositions. Examples of such decomposi-
tions include QR factorization and polar decomposition. The purpose of the
present section is to develop a general theory of decomposition-based re-
tractions. With this theory at hand, it will be straightforward to show that
several mappings constructed along the above lines are well-defined retrac-
tions.

Let M be an embedded manifold of a vector space £ and let N/ be an
abstract manifold such that dim(M) + dim(N) = dim(€). Assume that
there is a diffeomorphism

G MXN =& : (F,G)— ¢(F,G),
where &, is an open subset of £ (thus &, is an open submanifold of &), with
a neutral element I € N satisfying
o(F,I)=F, VYFeM.

(The letter I is chosen in anticipation that the neutral element will be the
identity matrix of a matrix manifold N in cases of interest.)

Proposition 4.1.2 Under the above assumptions on ¢, the mapping

Rx(€) = m (¢~ (X +9)),
where 11 : M XN — M : (F,G) — F is the projection onto the first
component, defines a retraction on M.

Proof. Since &, is open, it follows that X + & belongs to &, for all £ in
some neighborhood of 0x. Since ¢! is defined on the whole &,, it follows
that Rx (&) is defined for all ¢ in a neighborhood of the origin of Tx M.
Smoothness of R and the property Rx(0x) = X are direct. For the local
rigidity property, first note that for all £ € T'x M, we have

D1¢(X, I)[¢] = De(X, 1)[(&,0)] = €.
Since w1 0 ¢~ ((F, 1)) = F, it follows that, for all £ € Tx M,

¢ =D(mo¢™")(¢(X, 1)) [D1p(X, I)[g]] = D(m1 06 ~)(X)[¢] = DRx (0x)¢],

which proves the claim that Rx is a retraction. O

Example 4.1.1 Retraction on the sphere S™!
Let M =8""! let N ={x € R:x >0}, and consider the mapping
G MXN = RY: (z,7) — ar.
It is straightforward to verify that ¢ is a diffeomorphism. Proposition|4.1.2
yields the retraction
x+¢
o+l

R (€)
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defined for all ¢ € T,S"~1. Note that R,(£) is the point of S~ that mini-
mazes the distance to x + €.

Example 4.1.2 Retraction on the orthogonal group

Let M = O,, be the orthogonal group. The QR decomposition of a matriz
A € RI*™ s the decomposition of A as A = QR, where Q belongs to Oy, and
R belongs to Supp+(n), the set of all upper triangular matrices with strictly
positive diagonal elements. The inverse of QR decomposition is the mapping

¢ : Oy X Syppt(n) = RY*™ : (Q,R) — QR. (4.5)

We let f := m o ¢~ denote the mapping that sends a matriz to the Q
factor of its QR decomposition. The mapping qf can be computed using the
Gram-Schmidt orthonormalization.

We have to check that ¢ satisfies all the assumptions of Proposition 4.1.2.
The identity matriz is the neutral element: ¢(Q,I) = Q for all Q € O,,. 1t
follows from the existence and uniqueness properties of the QR decomposition
that ¢ is bijective. The mapping ¢ is smooth since it is the restriction of a
smooth map (matriz product) to a submanifold. Concerning ¢, notice that
its first matriz component @Q is obtained by a Gram-Schmidt process, which
is C'° on the set of full-rank matrices. Since the second component R is
obtained as Q' M, it follows that ! is C°. In conclusion, the assumptions

of Proposition[4.1.2  hold for (4.5), and consequently,
Rx(XQ) :=qf (X + XQ) = of (X (I +Q)) = Xqf(I + Q)
is a retraction on the orthogonal group O,,.
A second possibility is to consider the polar decomposition of a matrix

A= QP, where Q € O,, and P € Sgym+(n), the set of all symmetric positive-
definite matrices of size n. The inverse of polar decomposition is a mapping
¢ : Op X Ssym+(n) — R (Q, P) — QP.

We have ¢~ (A) = (A(ATA)~V/2 (AT A)Y/2). This shows that ¢ is a diffeo-

morphism, and thus
Rx(XQ):=X{T +Q) (X +Q)"X(I+Q))"1/?

=X(I+Q)(—-Q*~1/2 (4.6)
is a retraction on O,,. Computing this retraction requires an eigenvalue de-
composition of the n x n symmetric matriz (I — Q?). Note that it does not
make sense to use this retraction in the context of an eigenvalue algorithm
on O, since the computational cost of computing a single retraction is com-
parable to that for solving the original optimization problem.

A third possibility is to use Givens rotations. For an nxn skew-symmetric
matriz Q, let Giv(Q) = H1<i<j<n G(i,7,94;), where the order of multipli-
cation is any fized order and where G(i,7,0) is the Givens rotation of an-
gle 0 in the (i,7) plane, namely, G(i,j,0) is the identity matriz with the
substitutions el G(i,j,0)e; = efG(i,j,@)ej = cos(f) and eI G(i,j,0)e; =
—e;‘-FG(z',j, 0)e; = sin(0). Then the mapping R : TO,, — O,, defined by

Rx(XQ) =X Giv(Q)
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is a retraction on O,,.
Another retraction on O, based on the Cayley transform, is given by

Rx(XQ)=X(I-10)'(I+1q).

Anticipating the material in Chapter 5, we point out that the Riemannian
exponential mapping on O,, (viewed as a Riemannian submanifold of R™*"™)
s given by

Expy (XQ) = X exp(Q),
where exp denotes the matriz exponential defined by exp(2) := > °°  LOF.

0
Note that Riemannian exponential mappings are always Tetmctionsl (P;’bpo—
sition 5.4.1). Algorithms for accurately evaluating the exponential have a
numerical cost at best similar to those for evaluating (4.6). However, there
are several computationally efficient Lie group-based algorithms for approxi-
mating the exponential that fit the definition of a retraction (see pointers in

Notes and References).

Example 4.1.3 Retraction on the Stiefel manifold
Consider the Stiefel manifold St(p,n) = {X € R™? : XTX = I,}. The
retraction based on the polar decomposition is
Rx(§) = (X + &)L, +£76)72, (4.7)
where we have used the fact that &, as an element of Tx St(p,n), satisfies
XTe+¢TX = 0. When p is small, the numerical cost of evaluating (4.7) is
reasonable since it involves the eigenvalue decomposition of the small p X p
matriz (I, + ETE)*l/z along with matriz linear algebra operations that require
only O(np?) additions and multiplications.
Much as in the case of the orthogonal group, an alternative to choice (4.7)
is
Rx(§) = af(X +¢), (4.8)
where qf (A) denotes the Q factor of the decomposition of A € RY*P as
A = QR, where Q belongs to St(p,n) and R is an upper triangular n X p
matriz with strictly positive diagonal elements. Computing Rx(§) can be
done in a finite number of basic arithmetic operations (addition, subtraction,
multiplication, division) and square roots using, e.g., the modified Gram-
Schmidt algorithm.

4.1.2 Retractions on quotient manifolds

We now consider the case of a quotient manifold M = M/ ~. Recall the
notation 7 for the canonical projection and &z for the horizontal lift at = of
a tangent vector § € Tz M.

Proposition 4.1.3 Let M = M/~ bea quotient manifold with a prescribed
horizontal distribution. Let R be a retraction on M such that for all x € M
and & € T, M,

m(Rz,(&,)) = 7(Bz,(&,)) (4.9)
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for all T,, %, € 7~ 1(x). Then

Ry (§) = 7(Rz(&5)) (4.10)
defines a retraction on M.

Proof. Equation 674;9) guarantees that R is well defined as a mapping from
T M to M. Since R is a retraction, it also follows that the property R, (0,) =
x is satisfied. Finally, the local rigidity condition holds since, given T €

T H(z),
DR, (0,) [n] = D (T) o DRz (0z) [7lz] = D (7) [71] = n
for all n € T, M, by definition of the horizontal lift. O

From now on we consider the case where the structure space M is an
open, dense (not necessarily proper) subset of a vector space £. Assume that
a horizontal distribution H has been selected that endows every tangent
vector to M with a horizontal lift. The natural choice for R is then

Ry(¢) =y + ¢,
However, this choice does not necessarily satisfy (4.9). In other words, if =
and y satisfy 7(z) = 7(y), the property 7(z +&,) = 7(y + Ey) may fail to
hold.

As an example, take the quotient of R? for which the graphs of the curves
1 = a + a’x2 are equivalence classes, where a € R parameterizes the set
of all equivalence classes. Define the horizontal distribution as the constant
subspace e;R. Given a tangent vector £ to the quotient at the equivalence
class esR (corresponding to a = 0), we obtain that the horizontal lift E(O,mz)
is a constant (C,0) independent of x. It is clear that the equivalence class
of (0,22) + &g 4,y = (C,x2) depends on 5.

If we further require the equivalence classes to be the orbits of a Lie group
acting linearly on M, with a horizontal distribution that is invariant by the
Lie group action, then condition holds. In particular, this is the case
for the main examples considered in this book.

Example 4.1.4 Retraction on the projective space
Consider the real projective space RP" ™! = R? /R, with the horizontal
distribution defined in (3.27). A retraction can be defined as

Rw(y)£ = W(y + Ey)a
where Ey € R™ is the horizontal lift of £ € Tﬂ(y)RPn_l at y.
Example 4.1.5 Retraction on the Grassmann manifold
Consider the Grassmann manifold Grass(p,n) = RY™? /GL, with the hori-

zontal distribution defined in (3.40). It can be checked using the homogeneity
property of horizontal lifts (Proposition 3.6.1) that

Rspan(Y) (5) = span(Y + EY) (411)
is well-defined. Hence (4.11) defines a retraction on Grass(p,n).
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Note that the matriz Y + &y is in general not orthonormal. In particular,
if Y is orthonormal, then Y + &y is not orthonormal unless & = 0. In the
scope of a numerical algorithm, in order to avoid ill-conditioning, it may be
advisable to use qf (Y +EY) instead of Y + &y as a basis for the subspace

Rspan(Y) (5) .

4.1.3 Retractions and local coordinates*

In this section it is shown that every smooth manifold can be equipped
with “local” retractions derived from its coordinate charts and that every
retraction generates an atlas of the manifold. These operations, however,
may pose computational challenges.

For every point x of a smooth manifold M, there exists a smooth map
e 2 RE = M, 1, (0) = o, that is a local diffeomorphism around 0 € R%; the
map p, is called a local parameterization around x and can be thought of
as the inverse of a coordinate chart around z € M. If U is a neighborhood
of a point z, of M, and p : U x R — M is a smooth map such that
p(x,z) = pe(2) for all x € U and z € R?, then {u, }ren is called a locally
smooth family of parameterizations around x,.. Note that a locally smooth
parameterization p around x, can be constructed from a single chart around
z, by defining 1, (2) = ¢~ (z + o(z)).

If {is}rer is a locally smooth family of parameterizations around x,,
then the mappings

Ry : TuM — M : € py(Dpgt (2) [€])

define a retraction R whose domain is in general not the whole T M. (It
is readily checked that R, satisfies the requirements in Definition [4.1.1.)
Conversely, to define a smooth family of parameterizations around z., from
a retraction R, we can select smooth vector fields &1, ..., &; on M such that,
for all x in a neighborhood of x., ({1 (x),...,&:(x)) forms a basis of T, M,
and then define

P (U, ..o uq) = Re(ur&i () + -+ + uaa(x)).

Note, however, that such a basis &1, ...,&y of vector fields can in general
be defined only locally. Moreover, producing the {’s in practical cases may
be tedious. For example, on the unit sphere S®~!, the set T,S™ ! is a vector
space of dimension (n — 1) identified with z; = {y € R" : 2Ty = 0};
however, when n is large, generating and storing a basis of x, is impractical,
as this requires (n— 1) vectors of n components. In other words, even though
the (n — 1)-dimensional vector space T,S"~! is known to be isomorphic
to R"~!, creating an explicit isomorphism is computationally difficult. In
comparison, it is computationally inexpensive to generate an element of x|
(using the projection onto x, ) and to perform in x; the usual operations of
addition and multiplication by a scalar.

In view of the discussion above, one could anticipate difficulty in dealing
with pullback cost functions f, := f o R, because they are defined on vector
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spaces T, M that we may not want to explicitly represent as R?. Fortunately,
many classical optimization techniques can be defined on abstract vector
spaces, especially when the vector space has a structure of Euclidean space,
which is the case for T, M when M is Riemannian. We refer the reader to
Appendix A for elements of calculus on abstract Euclidean spaces.

4.2 LINE-SEARCH METHODS

Line-search methods on manifolds are based on the update formula

Trt1 = Ray, (tri),
where 7y is in T, M and ¢, is a scalar. Once the retraction R is chosen, the
two remaining issues are to select the search direction 7 and then the step
length t;. To obtain global convergence results, some restrictions must be
imposed on 7 and .

Definition 4.2.1 (gradient-related sequence) Given a cost function f
on a Riemannian manifold M, a sequence {ni}, m € Ty, M, is gradient-
related if, for any subsequence {xy}rexc of {xr} that converges to a non-
critical point of f, the corresponding subsequence {ny}reic is bounded and
satisfies
limsup (grad f(zx),nr) <O0.
k—o0, kEX

The next definition, related to the choice of tx, relies on Armijo’s back-

tracking procedure.

Definition 4.2.2 (Armijo point) Given a cost function f on a Rieman-
nian manifold M with retraction R, a point x € M, a tangent vector
n € TuM, and scalars @ > 0, 3,0 € (0,1), the Armijo point is n? =
tAn = pmam, where m is the smallest nonnegative integer such that

f(@) = f(Re(8™am)) = —o (grad f(z), 5" an)s.

The real t* is the Armijo step size.

We propose the accelerated Riemannian line-search framework described
in Algorithm 1]

The motivation behind Algorithm [1 is to set a framework that is suf-
ficiently general to encompass many methods of interest while being suf-
ficiently restrictive to satisfy certain fundamental convergence properties
(proven in the next sections). In particular, it is clear that the choice xyy; =
Ry, (tiny) in Step 3 of Algorithm [1] satisfies (4.12), but this choice is not
mandatory. The loose condition (4.12) leaves a lot of leeway for exploiting
problem-related information that may lead to a more efficient algorithm. In
particular, the choice z41 = Ry, (timk), where ¢; = argming f(R,, (tnx)),
satisfies (4.12) and is a reasonable choice if this exact line search can be
carried out efficiently.
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Algorithm 1 Accelerated Line Search (ALS)
Require: Riemannian manifold M; continuously differentiable scalar field
f on M; retraction R from TM to M; scalars @ > 0, ¢, 3,0 € (0,1).
Input: Initial iterate x¢g € M.
Output: Sequence of iterates {zy}.
1: for k=0,1,2,... do
2: Pick ny in T, M such that the sequence {n;},_, ,  is gradient-related
(Definition 4.2.1).
3. Select 41 such that

Flar) = f@ra) = e (f(er) = f(Ray (i), (4.12)

where t;! is the Armijo step size (Definition [4.2.2) for the given

57 67 O, k-
4: end for

If there exists a computationally efficient procedure to minimize f o R,
on a two-dimensional subspace of T,, M, then a possible choice for x; in
Step 3 is Ry, (&), with & defined by

& = arg min f(Re, (€),  Ski=span {m, Bl wen)},  (413)

where span {u,v} = {au + bv : a,b € R}. This is a minimization over a two-
dimensional subspace Sy of T,;, M. It is clear that Sy contains the Armijo
point associated with 7y, since 7 is in Sk. It follows that the bound (4.12)
on 41 holds with ¢ = 1. This “two-dimensional subspace acceleration” is
well defined on a Riemannian manifold as long as xj, is sufficiently close to
Tr_1 that R;kl (xg—1) is well defined. The approach is very efficient in the
context of eigensolvers (see Section [4.6).

4.3 CONVERGENCE ANALYSIS

In this section, we define and discuss the notions of convergence and limit
points on manifolds, then we give a global convergence result for Algorithm/1.

4.3.1 Convergence on manifolds

The notion of convergence on manifolds is a straightforward generalization
of the R™ case. An infinite sequence {zy}x=0,1,.. of points of a manifold M
is said to be convergent if there exists a chart (U, ) of M, a point z. € U,
and a K > 0 such that zj is in U/ for all £ > K and such that the sequence
{(xk) bk=rc k41, converges to t(w,). The point 1~ (limg_ . ¥(zk)) is
called the limit of the convergent sequence {y}r=0,1,... Every convergent
sequence of a (Hausdorff) manifold has one and only one limit point. (The
Hausdorff assumption is crucial here. Multiple distinct limit points are pos-
sible for non-Hausdorff topologies; see Section [4.3.2.)
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Representative element

Fibers of fiber {(0,y) : y > 0}
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= T Ty
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Representative element
of fiber {(0,y) : y < 0}

Figure 4.2 Left: A few equivalence classes of the quotient defined in Section[4.3.2.
Right: The graph G consists of all the points in H = R* that do not lie
on the dashed planes indicated.

An equivalent and more concise definition is that a sequence on a manifold
is convergent if it is convergent in the manifold topology, i.e., there is a point
x4 such that every neighborhood of z, contains all but finitely many points
of the sequence.

Given a sequence {zy}x=0,1,..., we say that x is an accumulation point or
a limit point of the sequence if there exists a subsequence {z;, }x=0,1,... that

converges to x. The set of accumulation points of a sequence is called the
limit set of the sequence.

4.3.2 A topological curiosity*

We present a non-Hausdorff quotient and a convergent sequence with two
limit points.

Consider the set M = R2, i.e., the real plane with the origin excerpted.
Consider the equivalence relation ~ on M, where (z,y) ~ (2/,4') if and only
if x = 2/ and the straight line between (z,y) and (z',’) lies wholly in R2.
In other words, the equivalence classes of ~ are the two vertical half-lines
{(0,y) : y > 0} and {(0,y) : y < 0} and all the vertical lines {(z,y) : y € R},
x # 0; see Figure[4.2.

Using Proposition 3.4.3, we show that M/~ admits a (unique) differen-
tiable structure that makes the natural projection 7 a submersion, and we
show that the topology induced by this differentiable structure is not Haus-
dorff. Consider the graph G = {((x,7), (z',¥)) : (z,y) ~ (z',y')} T M x M.
Set H = {((z,y), (2',y)) : x = 2’} and observe that G C H and H is an em-
bedded submanifold of M x M. The set H—G = {((z,y), (2/,y')) :x =2’ =
0,sign(y) # sign(y’)} is a closed subset of H. It follows that G is an open
submanifold of H and consequently an embedded submanifold of M x M.
It is straightforward to verify that 71 : G — M is a submersion. However, G
is open in H, hence G is not closed in M x M. The conclusion follows from
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Proposition 3.4.3.

To help the intuition, we produce a diffeomorphism between M/ ~ and
a subset of M. Let Xy = {(x,0) : # # 0} denote the horizontal axis of the
real plane with the origin excluded. The quotient set M/ ~ is in one-to-
one correspondence with A := Xy U {(0, 1), (0,—1)} through the mapping ®
that sends each equivalence class to its element contained in N. Let U, :=
XoU{(0,1)} and U_ := Xy U {(0,—1)}. Define charts ¢4 and 1_ of the set
N into R with domains U and U_ by 1+ ((z,0)) = x for all z # 0 and
¥+ ((0,1)) = 0, ¥—((0,—1)) = 0. These charts form an atlas of the set N
and thus define a differentiable structure on A. It is easy to check that the
mapping ®om : M — N, where 7 : M — M/~ is the natural projection, is
a submersion. In view of Proposition 3.4.3, this implies that the sets M/~
and N, endowed with their differentiable structures, are diffeomorphic.

It is easy to produce a convergent sequence on A with two limit points.
The sequence {(1/k,0)}x=1,2,.. converges to (0,1) since {¢;(1/k,0)} con-
verges to 14 (0,1). It also converges to (0, —1) since {¢_(1/k,0)} converges
to _(0,—1).

4.3.3 Convergence of line-search methods

We give a convergence result for the line-search method defined in Algo-
rithm (1. The statement and the proof are inspired by the classical theory in
R™. However, even when applied to R™, our statement is more general than
the standard results. First, the line search is not necessarily done along a
straight line. Second, points other than the Armijo point can be selected; for
example, using a minimization over a subspace containing the Armijo point.

Theorem 4.3.1 Let {x1} be an infinite sequence of iterates generated by
Algorithm[1. Then every accumulation point of {xy} is a critical point of the
cost function f.

Proof. By contradiction. Suppose that there is a subsequence {xy }rexc con-
verging to some z, with grad f(z.) # 0. Since {f(x)} is nonincreasing, it
follows that the whole sequence {f(z))} converges to f(x,). Hence f(zy) —
f(xps1) goes to zero. By construction of the algorithm,

f(zr) = f(@p41) = —coon(grad f(zx), Mk )z, -
Since {ny} is gradient-related, we must have {ay}rex — 0. The ag’s are
determined from the Armijo rule, and it follows that for all k& greater than
some k, o = (" @, where my, is an integer greater than zero. This means
that the update %nk did not satisfy the Armijo condition. Hence

f(xk) - f (ka (?U}c)) < —U%@Tadf(xk)ﬂ?k%k, Vk € IC, k> E

Denoting

= and & okl

= k — )
7 8

(4.14)
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the inequality above reads

o (0) = Fo (Gniin)
ay

< —o(grad f(zk), k)a,, V€K, k>,

where ]? is defined as in (4.3). The mean value theorem ensures that there
exists ¢t € [0, @] such that

— D foy (t) [k) < —o(grad f(zr), k)a, Yk EK, k>F,  (4.15)

where the differential is taken with respect to the Euclidean structure on
T, M. Since {ay }rex — 0 and since 7y, is gradient-related, hence bounded,
it follows that {a}trex — 0. Moreover, since 7, has unit norm, it thus
belongs to a compact set, and therefore there exists an index set KcCK
such that {7}, g — 7« for some 7, with [|7.|| = 1. We now take the limit
in (4.15) over K. Since the Riemannian metric is continuous (by definition),
and f € C', and Df,, (0)[ix] = (grad f (1), k), —see (3.31) and (4.4)—we
obtain

—(grad f(.), 1)z, < —o(grad f(2+),7:)a, -

Since o < 1, it follows that (grad f(z.), 7«)», > 0. On the other hand, from
the fact that {n;} is gradient-related, one obtains that (grad f(z.), 7«)z, <0,
a contradiction. O

More can be said under compactness assumptions using a standard argu-
ment.

Corollary 4.3.2 Let {x} be an infinite sequence of iterates generated by
Algorithm [1. Assume that the level set L = {x € M : f(z) < f(zo)}
is compact (which holds in particular when M itself is compact). Then
limy . [lgrad f(zx)| = 0.

Proof. By contradiction, assume the contrary. Then there is a subsequence
{zr}rex and € > 0 such that ||grad f(z)|| > € for all k£ € K. Because f is
nonincreasing on {xy}, it follows that x, € L for all k. Since L is compact,
{z} }rex has an accumulation point z, in £. By the continuity of grad f, one
has ||grad f(z.)|| > €; i.e., 2, is not critical, a contradiction to Theorem 4.3.1.
U

4.4 STABILITY OF FIXED POINTS

Theorem 4.3.1 states that only critical points of the cost function f can be
accumulation points of sequences {x} generated by Algorithm 1] This result
gives useful information on the behavior of Algorithm [1. Still, it falls short
of what one would expect of an optimization method. Indeed, Theorem 4.3.1
does not specify whether the accumulation points are local minimizers, local
maximizers, or saddle points (critical points that are neither local minimizers
nor local maximizers).
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Unfortunately, avoiding saddle points and local maximizers is too much to
ask of a method that makes use of only first-order information on the cost
function. We illustrate this with a very simple example. Let x, be any critical
point of a cost function f and consider the sequence {(z,nx)}, x = T,
nr = 0. This sequence satisfies the requirements of Algorithm [1, and {z}
trivially converges to x, even if z, is a saddle point or a local minimizer.

Nevertheless, it is observed in practice that unless the initial point zg is
carefully crafted, methods within the framework of Algorithm [T do produce
sequences whose accumulation points are local minima of the cost function.
This observation is supported by the following stability analysis of critical
points.

Let F' be a mapping from M to M. A point z, € M is a fized point of F
if F(x,)=x.. Let F() denote the result of n applications of F' to z, i.e.,

FO(2) = F(z), FY(z)=FFD(x), i=1,2,....

A fixed point z, of F'is a stable point of F if, for every neighborhood U of x.,
there exists a neighborhood V of x, such that, for all x € V and all positive
integer n, it holds that F() () € U. The fixed point z, is asymptotically
stable if it is stable, and, moreover, lim,, F(")(x) = z, for all x sufficiently
close to x,. The fixed point z, is unstable if it is not stable; in other words,
there exists a neighborhood U of x, such that, for all neighborhood V of z,,
there is a point = € V such that F(™)(z) ¢ U for some n. We say that F is
a descent mapping for a cost function f if

f(F(x)) < f(z) forall z € M.

Theorem 4.4.1 (unstable fixed points) Let F : M — M be a descent
mapping for a smooth cost function f and assume that for every x € M, all
the accumulation points of {F(k)(x)}k:1727m are critical points of f. Let x,
be a fized point of F' (thus x, is a critical point of f). Assume that x, is not
a local minimum of f. Further assume that there is a compact neighborhood
U of x. where, for every critical point y of f inU, f(y) = f(x). Then x,
is an unstable point for F.

Proof. Since x, is not a local minimum of f, it follows that every neighbor-
hood V of z. contains a point y with f(y) < f(z.). Consider the sequence
yr = F*)(y). Suppose for the purpose of establishing a contradiction that
yr € U for all k. Then, by compactness, {y;} has an accumulation point z in
U. By assumption, z is a critical point of f, hence f(z) = f(x.). On the other
hand, since F' is a descent mapping, it follows that f(z) < f(y) < f(z«), a
contradiction. g

The assumptions made about f and F' in Theorem [4.4.1 may seem com-
plicated, but they are satisfied in many circumstances. The conditions on F’
are satisfied by any method in the class of Algorithm[I. As for the condition
on the critical points of f, it holds for example when f is real analytic. (This
property can be recovered from Lojasiewicz’s gradient inequality: if f is real
analytic around ., then there are constants ¢ > 0 and p € [0, 1) such that

lgrad f(z)[| = ¢l f () — f ()"
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for all 2 in some neighborhood of x,.)
We now give a stability result.

Theorem 4.4.2 (capture theorem) Let F': M — M be a descent map-
ping for a smooth cost function f and assume that, for every r € M, all
the accumulation points of {F(k)(l‘)}k;zlygw. are critical points of f. Let x,
be a local minimizer and an isolated critical point of f. Assume further that
dist(F(z),x) goes to zero as x goes to x.. Then x, is an asymptotically stable
point of F'.

Proof. Let U be a neighborhood of x,. Since x, is an isolated local minimizer
of f, it follows that there exists a closed ball

B(z) = {z € M : dist(z,z,) < €}
such that B.(r,) C U and f(x) > f(z) for all z € B.(x.) — {z.}. In
view of the condition on dist(F'(z),z), there exists 6 > 0 such that, for all
T € Bs(x.), F(z) € Be(.). Let a be the minimum of f on the compact set
Be(x,) — Bs(x.). Let
V={z € B.(x.): f(x) <a}.

This set is included in Bs(z.). Hence, for every x in V), it holds that F'(z) €
B(z.), and it also holds that f(F(z)) < f(x) < « since F' is a descent
mapping. It follows that F(z) € V for all z € V, hence F(")(z) € V C U for
all x € V and all n. This is stability. Moreover, since by assumption z, is
the only critical point of f in V, it follows that lim,, o, F)(z) = z, for all
x € V, which shows asymptotic stability. (|

The additional condition on dist(F(z),z) in Theorem[4.4.2 is not satisfied
by every instance of Algorithm 1/because our accelerated line-search frame-
work does not put any restriction on the step length. The distance condition
is satisfied, for example, when 7y, is selected such that ||ng|| < c|lgrad f(zk)|
for some constant ¢ and 1 is selected as the Armijo point.

In this section, we have assumed for simplicity that the next iterate de-
pends only on the current iterate: x;41 = F(xy). It is possible to generalize
the above result to the case where x;1 depends on z; and on some “memory
variables”: (xgy1,Yk+1) = F(Tk, Yk)-

4.5 SPEED OF CONVERGENCE

We have seen that, under reasonable assumptions, if the first iterate of Al-
gorithm [T is sufficiently close to an isolated local minimizer x, of f, then
the generated sequence {xy} converges to .. In this section, we address the
issue of how fast the sequence converges to ..

4.5.1 Order of convergence

A sequence {zy }x=0,1,... of points of R™ is said to converge linearly to a point
2, if there exists a constant ¢ € (0,1) and an integer K > 0 such that, for
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all £ > K, it holds that ||xg+1 — z«|| < cf|Jzr — x4||. In order to generalize
this notion to manifolds, it is tempting to fall back to the R™ definition
using charts and state that a sequence {xy}x=0,1,... of points of a manifold
M converges linearly to a point z, € M if, given a chart (U, ) with x € U,
the sequence {¢)(xy)}k=o.1,... converges linearly to ¢ (z.). Unfortunately, the
notion is not independent of the chart used. For example, let M be the set R™
with its canonical manifold structure and consider the sequence {xy }r=0,1,...
defined by zp = 27%e; if k is even and by x, = 27%*2¢, if k is odd. In
the identity chart, this sequence is not linearly convergent because of the
requirement that the constant ¢ be smaller than 1. However, in the chart
defined by ¥ (ze; + yes) = zey + (y/4)ea, the sequence converges linearly
with constant ¢ = %

If M is a Riemannian manifold, however, then the induced Riemannian
distance makes it possible to define linear convergence as follows.

Definition 4.5.1 (linear convergence) Let M be a Riemannian mani-
fold and let dist denote the Riemannian distance on M. We say that a
sequence {xy}r=o,1,... converges linearly to a point x, € M if there ezists a
constant ¢ € (0,1) and an integer K > 0 such that, for all k > K, it holds
that

dist(xg41,24) < ¢ dist(zg, z4). (4.16)

The limit

lim sup 7di§t(xk+1, z)

koo dist(xg, )
1s called the linear convergence factor of the sequence. An iterative algorithm
on M is said to converge locally linearly to a point z. if there exists a
neighborhood U of x. and a constant ¢ € (0,1) such that, for every initial
point o € U, the sequence {x1} generated by the algorithm satisfies (4.16).

A convergent sequence {2} on a Riemannian manifold M converges linearly
to x, with constant c¢ if and only if

IR (wr41) = R (@) < ell R () — R (@)

for all k sufficiently large, where R is any retraction on M and || - || de-
notes the norm on 7Ty, M defined by the Riemannian metric. (To see this, let
Exp,, denote the exponential mapping introduced in Section 5.4, restricted
to a neighborhood U of 0, in T, M such that U := Exp,, ) is a nor-
mal neighborhood of .. We have dist(z,z,) = ||[Exp, ' (z) — Exp, ' (z.)| =
|Exp, ! (z)|| for all z € U. Moreover, since Exp is a retraction, we have
D(R; o Exp, )(0,.) = id. Hence [|R;}(x) — B;)(@.)]| = |Exp,(x) -
Exp, (2. | + o|[Exp; () — Exp, (@) = dist(z.2.) + o(dist (x, z.)).)

In contrast to linear convergence, the notions of superlinear convergence
and order of convergence can be defined on a manifold independently of any
other structure.
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Definition 4.5.2 Let M be a manifold and let {x)}r=0.1,.. be a sequence
on M converging to x.. Let (U,1)) be a chart of M with x € U. If

lim [Y(zp41) = ()] _ 0
k—oo ||(2k) — ()| 7

then {x} is said to converge superlinearly to x.. If there exist constants
p>0,c>0, and K > 0 such that, for all k > K, there holds

[ (zrr1) = (x| < ellp(ar) =P ()P, (4.17)

then {xi} is said to converge to x, with order at least p. An iterative algo-
rithm on a manifold M is said to converge locally to a point x, with order
at least p if there exists a chart (U,v) at x. and a constant ¢ > 0 such that,
for every initial point xo € U, the sequence {1} generated by the algorithm
satisfies (4.17). If p = 2, the convergence is said to be quadratic, and cubic

if p=3.

Since by definition charts overlap smoothly, it can be shown that the
definitions above do not depend on the choice of the chart (U,v). (The
multiplicative constant ¢ depends on the chart, but for any chart, there
exists such a constant.)

Theorem [4.5.3 below gives calculus-based local convergence results for
iterative methods defined by z,11 = F(x}), where the iteration mapping
F: M — M has certain smoothness properties.

Theorem 4.5.3 Let F : M — M be a C' mapping whose domain and
range include a neighborhood of a fized point x, of F.

(i) If DF(z.) = 0, then the iterative algorithm with iteration mapping F
converges locally superlinearly to x..

(ii) If DF(z,) = 0 and F is C?, then the iterative algorithm with mapping
F' converges locally quadratically to x..

Although Theorem [4.5.3 is very powerful for smooth iteration mappings,
it is rarely useful for practical line-search and trust-region methods because
of the nondifferentiability of the step selection process.

4.5.2 Rate of convergence of line-search methods*

In this section we give an asymptotic convergence bound for Algorithm [1
when 7y, is chosen as —grad f(z}), without any further assumption on how
41 1s selected.

The result invokes the smallest and largest eigenvalues of the Hessian of
f at a critical point z,. We have not yet given a definition for the Hessian
of a cost function on a Riemannian manifold. (This is done in Section 5.5.)
Nevertheless, regardless of this definition, it makes sense to talk about the
eigenvalues of the Hessian at a critical point because of the following results.
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Lemma 4.5.4 Let f : R" — R and z, € R™ such that Df(xz.) = 0. Let
F:R*" — R" and y. € R™ such that F(y.) = z. and that the Jacobian
matrix of F' at y.,

NF (ye) -+ OnF'(ya)

Jr(ys) = : : :
O™ (ys) o OnF"(ys)

is orthogonal (i.e., JE(y.)Jr(y«) = I). Let H be the Hessian matriz of f at
Ty te., Hyj = 0;0;f(xy). Let H be the Hessian matriz of fo F at y,. Then
MNH) = XNH); i.e., the spectrum of H and the spectrum of H are the same.

Proof. Since 9;(f o F)(y) = >, Oxf(F(y)) 0;F*(y), we have
Hij = 0,0,(f o F)(y)
— Zazakf () i F* (y.) 0, F* () + Zakf y.)) 00 F* (y.).

Since x, is a critical point of f, it follows that Oy f(F(y«)) = 0. Hence we
have, in matrix notation,

H = J5(y)HIp(y.) =I5 (y) HIp (y2).-

This shows that H and H have the same spectrum because they are related
by a similarity transformation. 0

Corollary 4.5.5 Let f be a cost function on a Riemannian manifold (M, g)
and let x, € M be a critical point of f, i.e., grad f(x.) = 0. Let (U, ) be
any chart such that x, € U and that the representatwn of g, in the chart is
the identity, i.e., gi;j = 0;; at x.. Then the spectrum of the Hessian matriz
of foy™1 at ¥(x.) does not depend on the choice of 1.

We can now state the main result of this section. When reading the
theorem below, it is useful to note that 0 < r, < 1 since 8,0 € (0,1).
Also, in common instances of Algorithm T, the constant ¢ in the descent
condition (4.12) is equal to 1, hence (4.18) reduces to f(xgy1) — f(ax) <

r(f(er) = f())-

Theorem 4.5.6 Let {1} be an infinite sequence of iterates generated by
Algorithm [T with ny, = —grad f(x), converging to a point x.. (By Theo-
rem[4.3.1, x. is a critical point of f.) Let A min and Ag maz be the smallest
and largest eigenvalues of the Hessian of f at x.. Assume that Ag min > 0
(hence x is a local minimizer of f). Then, given r in the interval (r.,1)

)\H min

with 7. = 1 — min (20&)\H min; 40 (1 — 0)B5 , there exists an integer

K >0 such that

faren) = floe) < (r + (L =7r)(1 =) (f(zk) — f(z4)) (4.18)
for all k > K, where ¢ is the parameter in Algorithm[1.
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Proof. Let (U, 1)) be a chart of the manifold M with z, € U. We use the no-
tation (, := —grad f(z). Coordinate expressions are denoted with a hat,
eg, & = V@), U = GU), f@) = f(2), & = Do) [G], Ral(l) =
Y(R,(€)). We also let y; denote the Euclidean gradient of f at &, i.e.,
ys = (01f(2),...,04f(2))T. We let G5 denote the matrix representation
of the Riemannian metric in the coordinates, and we let H;, denote the
Hessian matrix of f at z,. Without loss of generality, we assume that z, =0
and that G;, = I, the identity matrix.

The major work is to obtain, at a current iterate x, a suitable upper bound
on f(R,(t*¢,)), where t4 is the Armijo step (so t4(, is the Armijo point).
The Armijo condition is

F(Ro(t"G)) < f(x) = o{Co tGa)
< f(x) — at™{(Co, Ca)- (4.19)
We first give a lower bound on ((;,(,) in terms of f(x). Recall from (3.32)
that ém = G;lyi, from which it follows that
(s Go) = (T Gas = 92 G s = llyal* (1 + O(&)) (4.20)

since we have assumed that Gy is the identity. It follows from y; = Ho# +
O(2?) and f(2) = f(O) + 22T Hod 4+ O(2?) that, given € € (0, A, min),
. N 1 1
SyTHy s + 0(8%) < 5 ———— s
f(@) = f(0) = y$0y+()_2/\ pr— —lly

holds for all & sufficiently close to 0. From (4.20) and (4.21), we conclude
that, given € € (0, Az min),

(4.21)

f(.’l?) - f(l‘*) < %ﬁ<<€ﬂ)<—$>’ (4'22)

,min

which is the desired lower bound on ((;,(,). Using (4.22)) in (4.19) yields
F(Re(t7¢2)) = f(a2) < (1= 2N min — €)ot™)(f(2) = f(z0)).  (4.23)

We now turn to finding a lower bound on the Armijo step 4. We use the
notation

Yau(t) = f(Ra(tu))

and

hx(t) - f(Rac(fth))
Notice that hq(t) = ~; _¢, () and that ha(0) = —(Ca, Ca) = Ys.—¢,(0), from
which it follows that the Armijo condition (4.19) reads

e (1) < 7y (0) — ot hy(0). (4.24)
We want to find a lower bound on t“. From a Taylor expansion of h, with

the residual in Lagrange form (see Appendix A.6), it follows that the t’s at
which the left- and right-hand sides of (4.24)) are equal satisfy

201 - 0)ha(0)
hz(T>

)
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where 7 € (0,t). In view of the definition of the Armijo point, we conclude

that
#4 > min <a, —2601 = U).I.l””((())) . (4.25)

Let Bs :={& : ||Z|| < d} and

M := sup  Hau(t).
2€Bs, ||lull=1,t(0,al/Cz )
Then max,¢(g,a) he(r) < M)||Cs||2. Notice also that 4;.,(0) = u”Hou <
A max||u]|?, so that M — Agmax as § — 0. Finally, notice that hw(O) =
—CTGls = ||Ca]12(1 4+ O(&)). Using these results in (4.25) yields that, given

€>0,
26(1 —
4 > min (a, M) (4.26)
AI—I,Inax +€

holds for all z sufficiently close to x,.
We can now combine (4.26) and (4.23) to obtain a suitable upper bound

on f(Rx(tAgx))5

F(Ro(t4¢2)) = flaa) < ea(f() — f(z2)) (4.27)
with
¢y =1—omin (oz, fﬁi:i)e> 2(AH min — €).

Finally, the bound (4.27), along with the bound (4.12) imposed on the
value of f at the next iterate, yields

f@rgr) = fla) = f(@rga) — Flae) + foe) — f(0)
< —c(f(ar) = F(Ray (1 G ))) + fn) — f(z)
= (1= )(f(@r) = f(@2) + e(f(Ray (1 Car)) — f ()
< (I —cteca)(f(ar) = fz.)
= (e + (1 =) =0)(f(xr) = f(=4)),
where ¢ € (0,1) is the constant in the bound (4.12). 0

4.6 RAYLEIGH QUOTIENT MINIMIZATION ON THE
SPHERE

In this section we apply algorithms of the class described by Algorithm 1/to
the problem of finding a minimizer of

f:8" ! SRz 2T Az, (4.28)
the Rayleigh quotient on the sphere. The matrix A is assumed to be sym-

metric (A = AT) but not necessarily positive-definite. We let \; denote the
smallest eigenvalue of A and vy denote an associated unit-norm eigenvector.
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4.6.1 Cost function and gradient calculation

Consider the function
F:R" - R:zw— 2T Az,
whose restriction to the unit sphere S™~! yields (4.28).

We view S"~! as a Riemannian submanifold of the Euclidean space R™
endowed with the canonical Riemannian metric

g(&, Q) =¢"¢
Given z € S"~!, we have
Df (z)[¢] = ¢T Az + 2T A¢ = 2¢T Ax
for all ¢ € T,R™ ~ R", from which it follows, recalling the definition (3.31)
of the gradient, that
grad f(z) = 2Ax.
The tangent space to S !, viewed as a subspace of T,R" ~ R", is
T,8" ' ={¢eR": 2T¢ = 0}.
The normal space is
(T,8" M+ = {za:a c R}
The orthogonal projections onto the tangent and the normal space are
Pl =¢—aa’¢,  Pré=aza’€
It follows from the identity (3.37), relating the gradient on a submanifold to
the gradient on the embedding manifold, that
grad f(z) = 2P, (Az) = 2(Az — za” Ax). (4.29)

The formulas above are summarized in Table 4.1.

4.6.2 Critical points of the Rayleigh quotient

To analyze an algorithm based on the Rayleigh quotient cost on the sphere,
the first step is to characterize the critical points.

Proposition 4.6.1 Let A = AT be an nxn symmetric matriz. A unit-norm
vector x € R™ is an eigenvector of A if and only if it is a critical point of
the Rayleigh quotient (4.28).

Proof. Let x be a critical point of (4.28), i.e., grad f(z) = 0 with z € S"~ 1.
From the expression of grad f(z), it follows that x statisfies Az =
(2T Az)x, where 27 Az is a scalar. Conversely, if = is a unit-norm eigenvector
of A, i.e., Az = Az for some scalar A, then a left multiplication by z7 yields
A = 2T Az and thus Az = (27 Ax)x, hence grad f(z) = 0 in view of (4.29).
O

We already know from Proposition 2.1.1 that the two points +v; cor-
responding to the “leftmost” eigendirection are the global minima of the
Rayleigh quotient (4.28). Moreover, the other eigenvectors are not local min-
ima:
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Table 4.1 Rayleigh quotient on the unit sphere.

Manifold (S™1) Embedding space (R™)
cost fx)=aTAz, z € St | f(z)=2TAz, 2 e R"
metric induced metric g(¢,¢0) =¢7¢
tangent space EeR:2T¢=0 R”
normal space EeR": £ =ax 0
projection onto P& = (I —xaT)¢ identity
tangent space
gradient grad f(z) = P,grad f(x) grad f(z) = 2Ax
retraction R, (&) = df(x + &) R,(§) =x+¢&

Proposition 4.6.2 Let A = AT be an n x n symmetric matric with eigen-
values Ay < --- < A\, and associated orthonormal eigenvectors vi,...,U,.
Then

(i) +v1 are local and global minimizers of the Rayleigh quotient (4.28);
if the eigenvalue A1 is simple, then they are the only minimizers.
(i) +uv, are local and global mazimizers of (4.28); if the eigenvalue A,
1s simple, then they are the only maximizers.
(i1i) +v, corresponding to interior eigenvalues (i.e., strictly larger than
A1 and strictly smaller than A, ) are saddle points of (4.28).

Proof. Point (i) follows from Proposition 2.1.1. Point (ii) follows from the
same proposition by noticing that replacing A by — A exchanges maxima with
minima and leftmost eigenvectors with rightmost eigenvectors. For point
(iii), let v, be an eigenvector corresponding to an interior eigenvalue A\, and
consider the curve vy : ¢ — (vq + tv1)/|lvg + tv1]|. Simple calculus shows that
d2
@(f@(tmt:o = A1 —Ag <0.

Likewise, for the curve 7 : t — (v + tv,,)/||vg + tv, ]|, we have

d2
@(f@(f))h:o =An —Ag > 0.

It follows that v, is a saddle point of the Rayleigh quotient f. (]

It follows from Proposition [4.6.1 and the global convergence analysis of
line-search methods (Proposition [4.3.1) that all methods within the class
of Algorithm [T produce iterates that converge to the set of eigenvectors of
A. Furthermore, in view of Proposition 4.6.1, and since we are considering
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descent methods, it follows that, if A\; is simple, convergence is stable to +v;
and unstable to all other eigenvectors.
Hereafter we consider the instances of Algorithm [T where

n = —grad f(zp) = 2(Azy — zpx) Azy).

It is clear that this choice of search direction is gradient-related. Next we
have to pick a retraction. A reasonable choice is (see Example 4.1.1)

x+§
[l + &Il
where || - || denotes the Euclidean norm in R™, ||y|| := y/yTy. Another pos-
sibility is
£

Ry (§) = wcos [|¢]| + el sin [|€]], (4.31)

for which the curve t — R, (t£) is a big circle on the sphere. (The second
retraction corresponds to the exponential mapping defined in Section 5.4.)

4.6.3 Armijo line search

We now have all the necessary ingredients to apply a simple backtracking in-
stance of Algorithm/T to the problem of minimizing the Rayleigh quotient on
the sphere S”~!. This yields the matrix algorithm displayed in Algorithm 2.
Note that with the retraction R defined in (4.30), the function f(R., (tnx))
is a quadratic rational function in ¢. Therefore, the Armijo step size is easily
computed as an expression of the reals nf ng, nf Ang, o1 Ang, and ol Azy,.

Algorithm 2 Armijo line search for the Rayleigh quotient on S™~!

Require: Symmetric matrix A, scalars a > 0, 8,0 € (0,1).
Input: Initial iterate xg, ||xg| = 1.
Output: Sequence of iterates {xy}.

1: for k=0,1,2,... do

2. Compute n, = —2(Azy — zpx} Axy).

3:  Find the smallest integer m > 0 such that

f (Ra, @3™ ) < f(ar) — oaB™ng

with f defined in (4.28) and R defined in (4.30).
4: Set

Tpr1 = Ry (@B ny).

5. end for

Numerical results for Algorithm 2| are presented in Figure 4.3 for the
case A = diag(1,2,...,100), 0 = 0.5, @ = 1, § = 0.5. The initial point
xo is chosen from a uniform distribution on the sphere. (The point z( is
obtained by normalizing a vector whose entries are selected from a normal
distribution).
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Let us evaluate the upper bound 7, on the linear convergence factor given
by Theorem[4.5.6] The extreme eigenvalues Ag min and A g max of the Hessian
at the solution v; can be obtained as

d2 v
AH min — min M
S i R TR N
2
>‘H max — max M ’
max T St A2 |,
where
v + tu
vV1,U t = Rv t =
717 ( ) l(u) ||v1_|_tu||
This yields
d? o1 ult
POyt au )

d? t=0

and thus
)\H,min = A2 - )\la AH,max = )\n - A1-

For the considered numerical example, it follows that the upper bound on
the linear convergence factor given by Theorem 4.5.6 is 7, = 0.9949.... The
convergence factor estimated from the experimental result is below 0.97,
which is in accordance with Theorem 4.5.6. This poor convergence factor,

very close to 1, is due to the small value of the ratio
AHmin A2 — A
Mamin _ 22— 21 ~0.01.
)\H7max )\n - )\1

The convergence analysis of Algorithm 2/is summarized as follows.

Theorem 4.6.3 Let {1} be an infinite sequence of iterates generated by
Algorithm[2. Let Ay < --- <\, denote the eigenvalues of A.

(i) The sequence {1} converges to the eigenspace of A associated to
some eigenvalue.
(i) The eigenspace related to A1 is an attractor of the iteration defined
by Algorithm 2. The other eigenspaces are unstable.
(iii) Assuming that the eigenvalue A1 is simple, the linear convergence
factor to the eigenvector +v, associated with A1 is smaller or equal
to

o 206(1—
r« =1 —20(A2 — A1) min (a, f:_):))

Proof. Points (i) and (iii) follow directly from the convergence analysis of
the general Algorithm 1/ (Theorems 4.3.1 and |4.5.6). For (ii), let & := {z €
Sn=1: Axr = Az} denote the eigenspace related to A;. Any neighborhood
of &1 contains a sublevel set £ of f such that the only critical points of f in
L are the points of S1. Any sequence of Algorithm [2 starting in £ converges
to Sy. The second part follows from Theorem [4.4.1. O
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4.6.4 Exact line search
In this version of Algorithm[1, x4 is selected as Ry, (txny), where

b 1= arg min f(Ra, (t)).
t>0

We consider the case of the projected retraction (4.30), and we define again
N, = —grad f(zx). It is assumed that grad f(zx) # 0, from which it also
follows that n{ Az # 0. An analysis of the function ¢ — f(Ry, (tnx)) reveals
that it admits one and only one minimizer ¢; > 0. This minimizer is the
positive solution of a quadratic equation. In view of the particular choice of
the retraction, the points R, (txmx) can also be expressed as

arg min f(z),
zeSn—1 xespan{zy,ny }

which are also equal to
+Xw,

where X := [z, ”Z—’;H] and w is a unit-norm eigenvector associated with the

smaller eigenvalue of the interaction matrix X7 AX.

Numerical results are presented in Figure [4.3] Note that in this exam-
ple the distance to the solution as a function of the number of iterates is
slightly better with the selected Armijo method than with the exact line-
search method. This may seem to be in contradiction to the fact that the
exact line-search method chooses the optimal step size. However, the exact
minimization only implies that if the two algorithms start at the same point
x0, then the cost function will be lower at the first iterate of the exact line-
search method than at the first iterate of the Armijo method. This does
not imply that the distance to the solution will be lower with the exact line
search. Neither does it mean that the exact line search will achieve a lower
cost function at subsequent iterates. (The first step of the Armijo method
may well produce an iterate from which a larger decrease can be obtained.)

4.6.5 Accelerated line search: locally optimal conjugate gradient

In this version of Algorithm [T, n; is selected as —grad f(xy) and xgyq is
selected as R, (§x), where & is a minimizer over the two-dimensional sub-
space of T, M spanned by 7y, and R} (x_1), as described in (4.13). When
applied to the Rayleigh quotient on the sphere, this method reduces to the
locally optimal conjugate-gradient (LOCG) algorithm of A. Knyazev. Its fast
convergence (Figurel4.3) can be explained by its link with conjugate-gradient
(CG) methods (see Section 8.3).

4.6.6 Links with the power method and inverse iteration

The power method,
A:L'k
T = —
k+1 Azl
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Figure 4.3 Minimization of the Rayleigh quotient of A = diag(1,2,...,n) on ™!,
with n = 100. The distance to the solution is defined as the angle be-
tween the direction of the current iterate and the eigendirection asso-
ciated with the smallest eigenvalue of A.

is arguably the simplest method for eigenvector computation. Let A be a
symmetric matrix, assume that there is an eigenvalue A that is simple and
larger in absolute value than all the other eigenvalues, and let v denote
the corresponding eigenvector. Then the power method converges to v for
almost all initial points zq.

We mention, as a curiosity, a relation between the power method and the
steepest-descent method for the Rayleigh quotient on the sphere. Using the

projective retraction (4.30), the choice t; = m yields
k
A.’Ek
R, (trgrad f(zp)) = ———

i.e., the power method.
There is no such relation for the inverse iteration
. . A_lek
T A

In fact, inverse iteration is in general much more expensive computationally
than the power method since the former requires solving a linear system of
size n at each iteration while the latter requires only a matrix-vector mul-
tiplication. A comparison between inverse iteration and the previous direct
methods in terms of the number of iterations is not informative since an iter-
ation of inverse iteration is expected to be computationally more demanding
than an iteration of the other methods.
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4.7 REFINING EIGENVECTOR ESTIMATES

All the critical points of the Rayleigh quotient correspond to eigenvectors
of A, but only the extreme eigenvectors correspond to extrema of the cost
function. For a given cost function f, it is, however, possible to define a new
cost function that transforms all critical points of f into (local) minimizers.
The new cost function is simply defined by
f(x) = |lgrad f(=)|>.

In the particular case of the Rayleigh quotient (4.28]), one obtains

f:8" 1 SRz |PAz|? = 2T AP Az = 2T A%z — (27 Az)?,
where P, = (I — z2T) is the orthogonal projector onto the tangent space
T,5" ! = {¢ € R* : 2T¢ = 0}. Following again the development in Sec-
tion 3.6.1, we define the function

FR" SRz 2T A% — (27 Ax)?
whose restriction to $”~* is f. We obtain
grad f(z) = 2(A%z — 2Ax2™ Ax),
hence
grad f(x) = P,(grad f(z)) = 2P, (AAz — 2Azz" Ax).

Applying a line-search method to the cost function f provides a descent
algorithm that (locally) converges to any eigenvector of A.

4.8 BROCKETT COST FUNCTION ON THE STIEFEL
MANIFOLD

Following up on the study of descent algorithms for the Rayleigh quotient
on the sphere, we now consider a cost function defined as a weighted sum
Do uia:g)Aa:(i) of Rayleigh quotients on the sphere under an orthogonality

constraint, x(Ti)x(j) = 0;5.

4.8.1 Cost function and search direction

The cost function admits a more friendly expression in matrix form:
f:St(p,n) = R: X i tr(XTAXN), (4.32)

where N = diag(p1,- -+, pp), with 0 < pg < ... < p,, and St(p,n) denotes
the orthogonal Stiefel manifold

St(p,n) = {X e R"P: XTX =1I,}.
As in Section 3.3.2, we view St(p,n) as an embedded submanifold of the
Euclidean space R™*P. The tangent space is (see Section 3.5.7)

Tx St(p,n) ={Z e R™*?: X774+ 77X = 0}
={XQ+ X, K: Q"' =—-Q, K e Rm=P)xp},
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We further consider St(p,n) as a Riemannian submanifold of R™*? en-
dowed with the canonical inner product

(Z1,25) = tr (2] Z5) .
It follows that the normal space to St(p,n) at a point X is
(Tx St(p,n))*t ={XS: ST =5}
The orthogonal projection Px onto Tx St(p,n) is given by
PxZ=27—-Xsym(XTZ)=(I - XXT)Z + X skew(XT 2),
where
sym(M) = (M +M7"), skew(M) = L(M — M™)

denote the symmetric part and the skew-symmetric part of the decomposi-
tion of M into a symmetric and a skew-symmetric term.
Consider the function

FiR™P S R: X —tr(XTAXN),
so that f = ﬂSt(p ) We have

Df(X)[Z] =2tr (Z"AXN),
hence
grad f(X) = 2AXN
and
grad f(X) = Px grad f(X)
=2AXN — 2X sym(XTAXN)
=2AXN — XXTAXN - XNXTAX.

It remains to select a retraction. Choices are proposed in Section [4.1.1,
such as

Rx (&) := af (X +¢).

This is all we need to turn various versions of the general Algorithm 1]into
practical matrix algorithms for minimizing the cost fuction (4.32) on the
orthogonal Stiefel manifold.

4.8.2 Critical points

We now show that X is a critical point of f if and only if the columns of X
are eigenvectors of A.
The gradient of f admits the expression

grad f(X) =2(I — XXT)AXN + 2X skew(XTAXN) (4.33)
=2(I - XXT)AXN + X[XTAX, N],
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Table 4.2 Brockett cost function on the Stiefel manifold.

Manifold (St(p,n)) Total space (R"*?)
cost tr(XTAXN), XTX =1, tr(XTAXN), X € R™*P
metric induced metric (Z1, Z) = tr(Z7 Z2)
tangent space Z EeRVP . sym(XT2Z) =0 R™*P
normal space ZeR™P.7=XS8 8T=¢9 0
projection onto PxZ =7 Xsym(X"Z) identity
tangent space
gradient grad f(X) = Px grad f(X) grad f(X) =24AXN
retraction Rx(Z)=qof(X + 2) Rx(Z)=X+2Z

where

[A,B] := AB — BA

denotes the (matrix) commutator of A and B. Since the columns of the first
term in the expression of the gradient belong to the orthogonal complement
of span(X), while the columns of the second term belong to span(X), it
follows that grad f(X) vanishes if and only if

(I - XXTYAXN =0 (4.34)
and
[XTAX,N]=0. (4.35)
Since N is assumed to be invertible, equation (4.34) yields
(I -XXT)AX =0,
which means that
AX = XM (4.36)

for some M. In other words, span(X) is an invariant subspace of A. Next, in
view of the specific form of N, equation (4.35) implies that X7 AX is diagonal
which, used in (4.36)), implies that M is diagonal, hence the columns of X
are eigenvectors of A. Showing conversely that any such X is a critical point
of f is straightfoward.

In the case p = n, St(n,n) = O,,, and critical points of the Brockett cost
function are orthogonal matrices that diagonalize A. (Note that [ — X X7 =
0, so the first term in (4.33) trivially vanishes.) This is equivalent to saying
that the columns of X are eigenvectors of A.
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4.9 RAYLEIGH QUOTIENT MINIMIZATION ON THE
GRASSMANN MANIFOLD

Finally, we consider a generalized Rayleigh quotient cost function on the

Grassmann manifold. The Grassmann manifold is viewed as a Riemannian

quotient manifold of R}*?  which allows us to exploit the machinery for

steepest-descent methods on quotient manifolds (see, in particular, Sec-
tions 3.4, 3.5.8, 3.6.2, and 4.1.2).

4.9.1 Cost function and gradient calculation

We start with a review of the Riemannian quotient manifold structure of
the Grassmann manifold (Section 3.6.2). Let the structure space M be the
noncompact Stiefel manifold RY*? = {Y € R"*? : Y full rank}. We consider
on M the equivalence relation

X~Y & IMeRXP:Y=XM.

In other words, two elements of R} ? belong to the same equivalence class
if and only if they have the same column space. There is thus a one-to-one
correspondence between RY””/ ~ and the set of p-dimensional subspaces
of R™. The set Ry ?/ ~ has been shown (Proposition 3.4.6) to admit a
unique structure of quotient manifold, called the Grassmann manifold and
denoted by Grass(p,n) or RY*? /GL,. Moreover, R} *? /GL,, has been shown
(Section 3.6.2) to have a structure of Riemannian quotient manifold when
R?*? is endowed with the Riemannian metric

Gy (Z1, Z2) =t (YY) ' Z{ Za) .

The vertical space at Y is by definition the tangent space to the equivalence
class of 771 (7r(Y)) = {Y M : M € RY*P}, which yields

VyZ{YM:MERpo}-

The horizontal space at Y is defined as the orthogonal complement of the
vertical space with respect to the metric g, which yields

Hy ={Z e RVP . YTZ =0}.

Given £ € Typan(y) Grass(p,n), there exists a unique horizontal lift & €
Ty R P satisfying

Dn(Y)[¢y] = ¢
Since

9y Cyar) = 96y Cy)

for all M € RY*? | it follows that (Grass(p,n),g) is a Riemannian quotient
manifold of (R}*?,g) with

Yspan(Y) (§7 C) =gy (ng ZY)
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In other words, the canonical projection 7 is a Riemannian submersion from
(RY*P.g) to (Grass(p,n), g).

Let A be an n x n symmetric matrix, not necessarily positive-definite.
Consider the cost function on the total space R} ? defined by

FiRPP SR:Y et (YY) 'Y TAY). (4.37)

Since f(YM) = f(Y) whenever M € RE*P, it follows that f induces a
function f on the quotient Grass(p,n) such that f = f ow. The function f
can be described as

f : Grass(p,n) — R : span(Y) — tr ((YTY)_lYTAY) . (4.38)

This function can be thought of as a generalized Rayleigh quotient. Since f
is smooth on R} P it follows from Proposition 3.4.5 that f is a smooth cost
function on the quotient Grass(p, n).

In order to obtain an expression for the gradient of f, we will make use of
the trace identities (A.1) and of the formula (A.3) for the derivative of the
inverse of a matrix. For all Z € R"*P, we have

DfY)[Z)=tr (—-(Y"Y) N ZTY + YT Z)(YTY) 'Y T AY)
+tr (YY) 1 ZTAY) + 6 (YY) 'YTAZ) . (4.39)
For the last term, we have, using the two properties (A.1) of the trace,
tr (YTY)"'YTAZ) =t (ZTAY (YTY) ™) =t (YY) ' ZTAY).
Using the same properties, the first term can be rewritten as
-2t (YY) ' 27y (YTY) 'Y TAY) .
Replacing these results in (4.39) yields
Df(Y)[Z] =t (Y'Y) ' Z"2(4Y —Y(YTY) 'YTAY))
=Gy (Z,2(AY =Y (YTY)" YT AY)).
It follows that
grad f(Y) =2 (AY - Y(YTY) 'YTAY) = P (24Y),
where
Pl =T -YYTYy)'vyT)

is the orthogonal projection onto the horizontal space. Note that, in accor-
dance with the theory in Section 3.6.2, grad f(Y") belongs to the horizontal
space. It follows from the material in Section 3.6.2, in particular (3.39), that

grad fy = 2P AY =2 (AY —Y(YTY) 'YTAY).
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Table 4.3 Rayleigh quotient cost function on the Grassmann manifold.

Grass(p, n) Total space R} *?
cost span(Y) — f(Y) fY) =tr(YTY)"'yTAY)
metric gspan(v)(§:0) =Gy (€, Cy) | Gy (21, Z2)

=tr((YTY)" ' 2T Z5)

horizontal space ZeR™P.YTZ =0 /
projection onto | P4 Z =2 -Y(YTY)"'yTZ /
horizontal space
gradient grad fy = grad f(Y) grad f(Y) = P} (24Y)
retraction Ropan(y)(§) = span(Y + &) Ry(Z)=Y +Z

4.9.2 Line-search algorithm

In order to obtain a line-search algorithm for the Rayleigh quotient on the
Grassmann manifold, it remains to pick a retraction. According to Sec-
tion 4.1.2, a natural choice is
Rspan(Y) (6) = Spa‘n(Y + €Y) (440)
In other words, (Y +&y-)M is a matrix representation of Rypan(y) (&) for any
M € RY*P. The matrix M can be viewed as a normalization factor that
can be used to prevent the iterates from becoming ill-conditioned, the best-
conditioned form being orthonormal matrices. We now have all the necessary
elements (see the summary in Table[4.3) to write down explicitly a line-search
method for the Rayleigh quotient (4.38).
The matrix algorithm obtained by applying the Armijo line-search ver-
sion of Algorithm [T/ to the problem of minimizing the generalized Rayleigh
quotient (4.38) is stated in Algorithm [3

The following convergence results follow from the convergence analysis of
the general line-search Algorithm [T (Theorems[4.3.1 and [4.5.6).

Theorem 4.9.1 Let {Y;} be an infinite sequence of iterates generated by
Algorithm[3. Let Ay < --- <\, denote the eigenvalues of A.

(i) The sequence {span(Yy)} converges to the set of p-dimensional in-
variant subspaces of A.

(i1) Assuming that the eigenvalue A\, is simple, the (unique) invariant
subspace associated with (A1,...,\,) is asymptotically stable for the
iteration defined by Algorithm[3, and the convergence is linear with
a factor smaller than or equal to

re =1—20(App1 — Ap) min (a,

2521—):)) .
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Algorithm 3 Armijo line search for the Rayleigh quotient on Grass(p,n)

Require: Symmetric matrix A, scalars @ > 0, 8,0 € (0,1).
Input: Initial iterate Yy € R"*P_ Y] full rank.
Output: Sequence of iterates {Y}}.
1: for k=0,1,2,... do
2. Compute n, = —2(AY —Y(YTY)71AY).
3:  Find the smallest integer m > 0 such that
f (Ve +ap™m) < f(Yi) — oa™ tr(nf ),
with f defined in (4.37).
4:  Select Yiy1 := (Y + af™n,)M, with some invertible p X p matrix
M chosen to preserve good conditioning. (For example, select Yj11 as

the Q factor of the QR decomposition of Y}, + @8™ny.)
5: end for

The other invariant subspaces are unstable.

Numerical results are presented in Figure 4.4.

4.10 NOTES AND REFERENCES

Classical references on numerical optimization include Bertsekas [Ber95],
Dennis and Schnabel [DS83], Fletcher [Fle01], Luenberger [Lue73], Nash and
Sofer [NS96], Polak [Pol71], and Nocedal and Wright [NW99].

The choice of the qualification complete for Riemannian manifolds is not
accidental: it can be shown that a Riemannian manifold M is complete
(i.e., the domain of the exponential is the whole T.M) if and only if M,
endowed with the Riemannian distance, is a complete metric space; see, e.g.,
O’Neill [O’N83].

The idea of using computationally efficient alternatives to the Rieman-
nian exponential was advocated by Manton [Man02, § IX] and was also
touched on in earlier works [MMH94, Smi94, EAS9S8]. Retraction mappings
are common in the field of algebraic topology [Hir76]. The definition of
retraction used in this book comes from Shub [Shu86]; see also Adler et
al. [ADMT02]. Most of the material about retractions on the orthogonal
group comes from [ADM™02].

Selecting a computationally efficient retraction is a crucial step in devel-
oping a competitive algorithm on a manifold. This problem is linked to the
question of approximating the exponential in such a way that the approxima-
tion resides on the manifold. This is a major research topic in computational
mathematics, with important recent contributions; see, e.g., [CI01, OMO1,
1705, DNO5] and references therein.

The concept of a locally smooth family of parameterizations was intro-
duced by Hiiper and Trumpf [HT04].
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Figure 4.4 Rayleigh quotient minimization on the Grassmann manifold of p-planes
in R", with p = 5 and n = 100. Upper curve: A = diag(1,2,...,100).
Middle curve: A = diag(1,102,103,...,200). Lower curve: A =
diag(1,...,5,106,107,...,200).

Details on the QR and polar decompositions and algorithms to compute
them can be found in Golub and Van Loan [GVL96]; the differentiability
of the qf mapping is studied in Dehane [Deh95], Dieci and Eirola [DE99],
and Chern and Dieci [CDO00]. Formulas for the differential of qf and other
smooth matrix functions can be found in Dehaene [Deh95].

Definition [4.2.1, on gradient-related sequences, is adapted from [Ber95].
Armijo’s backtracking procedure was proposed in [Arm66] (or see [NW99,
Ber95] for details).

Several key ideas for line-search methods on manifolds date back to Lu-
enberger [Lue73, Ch. 11]. Luenberger proposed to use a search direction
obtained by projecting the gradient in R™ onto the tangent space of the
constraint set and mentioned the idea of performing a line search along the
geodesic, “which we would use if it were computationally feasible (which
it definitely is not)”. He also proposed an alternative to following the
geodesic that corresponds to retracting orthogonally to the tangent space.
Other early contributions to optimization on manifolds can be found in
Gabay [Gab82]. Line-search methods on manifolds are also proposed and an-
alyzed in Udrigte [Udr94]. Recently, Yang [Yan07] proposed an Armijo line-
search strategy along geodesics. Exact and approximate line-search meth-
ods were proposed for matrix manifolds in a burst of research in the early
1990s [MMH94, Mah94, Bro93, Smi94]. Algorithm T comes from [AGO5].
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Many refinements exist for choosing the step length in line-search meth-
ods. For example, the backtracking parameter § can be adapted during the
backtracking procedure. We refer to Dennis and Schnabel [DS83, §6.3.2] and
Ortega and Rheinboldt [OR70].

The non-Hausdorff example given in Section|4.3.2| was inspired by Brickell
and Clark [BC70, Ex. 3.2.1], which refers to Haefliger and Reeb [HR57].

For a local convergence analysis of classical line-search methods, see, e.g.,
Luenberger [Lue73] or Bertsekas [Ber95]. The proof of Theorem [4.3.1] (the
global convergence of line-search methods) is a generalization of the proof
of [Ber95, Prop. 1.2.1]. In Section 4.4, it is pointed out that convergence
to critical points that are not local minima cannot be ruled out. Another
undesirable behavior that cannot be ruled out in general is the existence of
several (even infinitely many) accumulation points. Details can be found in
Absil et al. [AMAO5]; see also [GDS05]. Nevertheless, such algorithms do
converge to single accumulation points, and the gap between theory and
practice should not prevent one from utilizing the most computationally
effective algorithm.

The notions of stability of fixed points have counterparts in dynam-
ical systems theory; see, e.g., Vidyasagar [Vid02] or Guckenheimer and
Holmes [GHS83|. In fact, iterations zp11 = F(z)) can be thought of as
discrete-time dynamical systems.

Further information on Lojasiewicz’s gradient inequality can be found
in Lojasiewicz [Loj93]. The concept of Theorem [4.4.2 (the capture the-
orem) is borrowed from Bertsekas [Ber95]. A coordinate-free proof of
our Theorem 4.5.6 (local convergence of line-search methods) is given by
Smith [Smi94] in the particular case where the next iterate is obtained
via an exact line search minimization along geodesics. Optimization algo-
rithms on the Grassmann manifold can be found in Smith [Smi93], Helmke
and Moore [HM94], Edelman et al. [EAS98], Lippert and Edelman [LE00],
Manton [Man02], Manton et al. [MMHO3], Absil et al. [AMS04], and Liu et
al. [LSGO4].

Gradient-descent algorithms for the Rayleigh quotient were considered as
early as 1951 by Hestenes and Karush [HK51]. A detailed account is given
in Faddeev and Faddeeva [FF63, §74, p. 430]. There has been limited inves-
tigation of line-search descent algorithms as numerical methods for linear
algebra problems since it is clear that such algorithms are not competitive
with existing numerical linear algebra algorithms. At the end of his paper
on the design of gradient systems, Brockett [Bro93] provides a discrete-time
analog, with an analytic step-size selection method, for a specific class of
problems. In independent work, Moore et al. [MMH94] (see also [HM94,
p. 68]) consider the symmetric eigenvalue problem directly. Chu [Chu92]
proposes numerical methods for the inverse singular value problem. Smith et
al. [Smi93, Smi94, EASI8] consider line-search and conjugate gradient up-
dates to eigenspace tracking problems. Mahony et al. [Mah94, MHM96] pro-
poses gradient flows and considers discrete updates for principal component



LINE-SEARCH ALGORITHMS ON MANIFOLDS 89

analysis. A related approach is to consider explicit integration of the gradi-
ent flow dynamical system with a numerical integration technique that pre-
serves the underlying matrix constraint. Moser and Veselov [MV91] use this
approach directly in building numerical algorithms for matrix factorizations.
The literature on structure-preserving integration algorithms is closely linked
to work on the integration of Hamiltonian systems. This field is too vast to
cover here, but we mention the excellent review by Iserles et al. IMKNZ00]
and an earlier review by Sanz-Serna [SS92].

The locally optimal conjugate gradient algorithm for the symmetric
eigenvalue problem is described in Knyazev [KnyOl]; see Hetmaniuk and
Lehoueq [HLO6] for recent developments. The connection between the power
method and line-search methods for the Rayleigh quotient was studied in
Mahony et al. [MHMY6].

More information on the eigenvalue problem can be found in Golub and
van der Vorst [GvdV00], Golub and Van Loan [GVL96], Parlett [Par80],
Saad [Saa92], Stewart [Ste01], Sorensen [Sor02], and Bai et al. [BDDRO0).

Linearly convergent iterative numerical methods for eigenvalue and sub-
space problems are not competitive with the classical numerical linear alge-
bra techniques for one-off matrix factorization problems. However, a domain
in which linear methods are commonly employed is in tracking the princi-
pal subspace of a covariance matrix associated with observations of a noisy
signal. Let {x1, 22, ...} be a sequence of elements of vectors in R™ and define

| kN
Ey = N Z zix; € R™™, A = |:55k+1 -TN] e R,
i=k+1
The signal subspace tracking problem is either to track a principal sub-
space of the covariance matrix E,]CV (a Hermitian eigenspace problem) or to
directly track a signal subspace of the signal array Aﬁf (a singular value
problem). Common and Golub [CG90] studied classical numerical linear al-
gebra techniques for this problem with linear update complexity. More re-
cent review material is provided in DeGroat et al. [DDL99]. Most (if not
all) high-accuracy linear complexity algorithms belong to a family of power-
based algorithms [HXC'99]. This includes the Oja algorithm [Oja89], the
PAST algorithm [Yan95], the NIC algorithm [MH98b], and the Bi-SVD al-
gorithm [Str97], as well as gradient-based updates [FD95, EAS98]. Research
in this field is extremely active at this time, with the focus on reduced-
complexity updates [OH05, BDRO05]. We also refer the reader to the Bayesian
geometric approach followed in [Sri00, SK04].

In line-search algorithms, the limit case where the step size goes to zero
corresponds to a continuous-time dynamical system of the form & = 7n,,
where 7, € T, M denotes the search direction at x € M. There is a vast
literature on continuous-time systems that solve computational problems,
spanning several areas of computational science, including, but not limited
to, linear programming [BL89a, BL89b, Bro91l, Fay91lb, Hel93b], continuous
nonlinear optimization [Fay9la, LW00], discrete optimization [Hop84, HT85,
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Vid95, AS04], signal processing [AC98, Dou00, CGO03], balanced realization
of linear systems [Hel93a, GL93], model reduction [HM94, YL99], and au-
tomatic control [HM94, MH98a, GSO01]. Applications in linear algebra, and
especially in eigenvalue and singular value problems, are particularly abun-
dant. Important advances in the area have come from the work on isospectral
flows in the early 1980s. We refer the reader to Helmke and Moore [HM94]
as the seminal monograph in this area and the thesis of Dehaene [Deh95]
for more information; see also [Chu94, DMV99, CG02, Prz03, MA03, BI04,
CDLP05, MHMO5] and the many references therein.



Chapter Five

Matrix Manifolds: Second-Order Geometry

Many optimization algorithms make use of second-order information about
the cost function. The archetypal second-order optimization algorithm is
Newton’s method. This method is an iterative method that seeks a critical
point of the cost function f (i.e., a zero of grad f) by selecting the update
vector at xj as the vector along which the directional derivative of grad f is
equal to —grad f(z). The second-order information on the cost function is
incorporated through the directional derivative of the gradient.

For a quadratic cost function in R™, Newton’s method identifies a zero
of the gradient in one step. For general cost functions, the method is not
expected to converge in one step and may not even converge at all. How-
ever, the use of second-order information ensures that algorithms based on
the Newton step display superlinear convergence (when they do converge)
compared to the linear convergence obtained for algorithms that use only
first-order information (see Section 4.5).

A Newton method on Riemannian manifolds will be defined and analyzed
in Chapter 6. However, to provide motivation for the somewhat abstract
theory that follows in this chapter, we begin by briefly recapping Newton’s
method in R™ and identify the blocks to generalizing the iteration to a man-
ifold setting. An important step in the development is to provide a meaning-
ful definition of the derivative of the gradient and, more generally, of vector
fields; this issue is addressed in Section [5.2 by introducing the notion of
an affine connection. An affine connection also makes it possible to define
parallel translation, geodesics, and exponentials (Section [5.4). These tools
are not mandatory in defining a Newton method on a manifold, but they
are fundamental objects of Riemannian geometry, and we will make use of
them in later chapters. On a Riemannian manifold, there is one preferred
affine connection, termed the Riemannian connection, that admits elegant
specialization to Riemannian submanifolds and Riemannian quotient mani-
folds (Section [5.3). The chapter concludes with a discussion of the concept
of a Hessian on a manifold (Sections 5.5 and [5.6).

5.1 NEWTON’S METHOD IN R"
In its simplest formulation, Newton’s method is an iterative method for

finding a solution of an equation in one unknown. Let F' be a smooth function
from R to R and let ., be a zero (or root) of F, i.e., F(x,) = 0. From an
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initial point xy in R, Newton’s method constructs a sequence of iterates

according to

_ F(Ik)
F’(Qﬁk) ’

where F’ denotes the derivative of F'. Graphically, z.1 corresponds to the

intersection of the tangent to the graph of F' at x; with the horizontal axis

(see Figure [5.1). In other words, xp41 is the zero of the first-order Taylor
expansion of F' around xj. This is clearly seen when (5.1) is rewritten as

F(xy) +F/($k)(1'k+1 —xp) = 0. (5.2)

Tk+1 = Tk (51)

Figure 5.1 Newton’s method in R.

Let G : R” — R™ : G(x) := « — F(x)/F'(x) be the iteration map from
(5.1) and note that z, is a fixed point of G. For a generic fixed point where
F(z,) =0 and F'(z,) # 0, the derivative
F'(zy) F(xo)F" ()
Fiz.) — (F'(x.))?
and it follows that Newton’s method is locally quadratically convergent to
x, (see Theorem 4.5.3).

Newton’s method can be generalized to functions F' from R" to R". Equa-
tion (5.2) becomes

G(x)=1— =0,

F(zp) + DF (2k) [xr+1 — 2] = 0, (5.3)
where DF (z) [z] denotes the directional derivative of F' along z, defined by

DF () [2] = lim %(F(m +2) = F(a)).

A generalization of the argument given above shows that Newton’s method
locally quadratically converges to isolated roots of F' for which DF(x,) is
full rank.

Newton’s method is readily adapted to the problem of computing a critical
point of a cost function f on R™. Simply take F' := grad f, where

grad f(z) = (01 f (). ..., 0nf ()"
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is the Euclidean gradient of f. The iterates of Newton’s method then con-
verge locally quadratically to the isolated zeros of grad f, which are the
isolated critical points of f. Newton’s equation then reads

grad f(xy) + D(grad f) (20) [ras1 — 2] = 0.

To generalize this approach to manifolds, we must find geometric analogs
to the various components of the formula that defines the Newton iter-
ate on R”. When f is a cost function an abstract Riemannian manifold,
the Euclidean gradient naturally becomes the Riemannian gradient grad f
defined in Section 3.6. The zeros of grad f are still the critical points of
f. The difference xy11 — xk, which is no longer defined since the iterates
Tr4+1 and x belong to the abstract manifold, is replaced by a tangent
vector 7)., in the tangent space at zj. The new iterate x4 is obtained
from ny, as xry1 = Ra, (1s,), where R is a retraction; see Section 4.1 for
the notion of retraction. It remains to provide a meaningful definition for
“D(grad f)(wx) [z,

More generally, for finding a zero of a tangent vector field £ on a manifold,
Newton’s method takes the form

€ar + “DE(zk)[2i]” = 0,
Tr+1 = ka (nzk)'

The only remaining task is to provide a geometric analog of the directional
derivative of a vector field.

Recall that tangent vectors are defined as derivations of real functions:
given a scalar function f and a tangent vector 7 at z, the real D f () [n] is

defined as W‘ , where ~ is a curve representing n; see Section 3.5.
t=0

If we try to apply the same concept to vector fields instead of scalar fields,
we obtain

d&yw

— lim gv(t) - 57(0) '
dt t

o t—0

t=0
The catch is that the two vectors £, (;) and £, (o) belong to two different vector
spaces T, ;)M and T’ 9y M, and there is in general no predefined correspon-
dence between the vector spaces that allows us to compute the difference.
Such a correspondence can be introduced by means of affine connections.

5.2 AFFINE CONNECTIONS

The definition of an affine connection on a manifold is one of the most
fundamental concepts in differential geometry. An affine connection is an
additional structure to the differentiable structure. Any manifold admits
infinitely many different affine connections. Certain affine connections, how-
ever, may have particular properties that single them out as being the most
appropriate for geometric analysis. In this section we introduce the concept
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of an affine connection from an abstract perspective and show how it gener-
alizes the concept of a directional derivative of a vector field.

Let X(M) denote the set of smooth vector fields on M. An affine connec-
tion V (pronounced “del” or “nabla”) on a manifold M is a mapping

V:X(M)x X(M)— X(M),
which is denoted by (7, £) v, V€ and satisfies the following properties:

DF(M)-linearity in n: Vg€ = FVRE+ gVi&,
ii)R-linearity in & V,(a& + b¢) = aV, & + bV,(,
ili)Product rule (Leibniz’ law):  V,(f&) = (nf)+ fV,E,

in which n,x,&,¢ € X(M), f,g € (M), and a,b € R. (Notice that nf
denotes the application of the vector field n to the function f, as defined in
Section 3.5.4.) The vector field V,¢ is called the covariant derivative of £
with respect to n for the affine connection V.

In R”, the classical directional derivative defines an affine connection,

(vnf)x = tlgf% w, (5.4)

called the canonical (Euclidean) connection. (This expression is well defined
in view of the canonical identification T, ~ £ discussed in Section 3.5.2,
and it is readily checked that (5.4) satisfies all the properties of affine con-
nections.) This fact, along with several properties discussed below, suggests
that the covariant derivatives are a suitable generalization of the classical
directional derivative.

Proposition 5.2.1 FEvery (second-countable Hausdorff ) manifold admits an
affine connection.

In fact, every manifold admits infinitely many affine connections, some of
which may be computationally more tractable than others.

We first characterize all the possible affine connections on the linear man-
ifold R™. Let (eq,...,e,) be the canonical basis of R™. If V is a connection
on R", we have

an - VZZ nie; Z gjej - Z nivei Z §J€‘7
=> (' Vee; +0'0:e;)
53

where 1, &, e;, V&, Ve, e; are all vector fields on R”. To define V, it suffices to
specify the n? vector fields V,e;, i =1,...,n, j = 1,...,n. By convention,
the kth component of V,e; in the basis (e1, ... , €,) is denoted by I'¥;. The n?
real-valued functions Ffj on R" are called Christoffel symbols. Each choice
of smooth functions Fi—“j defines a different affine connection on R". The
Euclidean connection corresponds to the choice Ffj =0.
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On an n-dimensional manifold M, locally around any point z, a simi-
lar development can be based on a coordinate chart (U, ). The following
coordinate-based development shows how an affine connection can be defined
on U, at least in theory (in practice, the use of coordinates to define an affine
connection can be cumbersome). The canonical vector e; is replaced by the
ith coordinate vector field F; of (U, ) which, at a point y of U, is repre-
sented by the curve t — ¢~ 1(p(y) + te;); in other words, given a real-valued
function f defined on U, E; f = 9;(fop™'). Thus, one has Dp(y)[(E;),] = e;.
We will also use the notation 9; f for E; f. A vector field £ can be decomposed
as & = Zj ijj, where ¢, i = 1,...,d, are real-valued functions on U, i.e.,
elements of F(U). Using the characteristic properties of affine connections,
we obtain

J

Vi =V e | 2 EE; | =2 n'Ve | D¢
i J
=3 (VB E; + 0L E;) . (5.5)
]
It follows that the affine connection is fully specified once the n? vector fields
Vg, E; are selected. We again use the Christoffel symbol I' Z to denote the
kth component of Vg, E; in the basis (E1,..., E,); in other words,

Vi Ej :ngEk.
k

The Christoffel symbols Ffj at a point  can be thought of as a table of n®
real numbers that depend both on the point z in M and on the choice of
the chart ¢ (for the same affine connection, different charts produce different
Christoffel symbols). We thus have

Vi€ = Z (Uifjri‘ijk + 7' 0iEE;) .
.5,k
A simple renaming of indices yields
VaE =Y (€T + 0;€") B (5.6)
.5,k
We also obtain a matrix expression as follows. Letting hat quantities de-
note the (column) vectors of components in the chart (i, ¢), we have

Vo€ =T, s + DE(@) [is], (5.7)

where I’ 2 ¢ denotes the matrix whose (4, 4) element is the real-valued function

3o (i) (5.8)

k
evaluated at x.
From the coordinate expression (5.5), one can deduce the following prop-
erties of affine connections.
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1. Dependence on 7,. The vector field V¢ at a point x depends only on
the value 7, of n at x. Thus, an affine connection at x is a mapping
T M x X(x) — X(x) : (1,§) — V4, & where X(z) denotes the set of
vector fields on M whose domain includes z.

2. Local dependence on &. In contrast, &, does not provide enough infor-
mation about the vector field £ to compute V,§ at x. However, if the
vector fields £ and ¢ agree on some neighborhood of z, then V,{ and
V¢ coincide at x. Moreover, given two affine connections V and Vv,
V& — @nf at x depends only on the value &, of ¢ at z.

3. Uniqueness at zeros. Let V and V be two affine connections on M and
let ¢ and n be vector fields on M. Then, as a corollary of the previous

property,
(vng)z = (@ng)x if 51 =0.

This final property is particularly important in the convergence analysis
of optimization algorithms around critical points of a cost function.

5.3 RIEMANNIAN CONNECTION

On an arbitrary (second-countable Hausdorff) manifold, there are infinitely
many affine connections, and a priori, no one is better than the others.
In contrast, on a vector space £ there is a preferred affine connection, the
canonical connection (5.4), which is simple to calculate and preserves the
linear structure of the vector space. On an arbitrary Riemannian manifold,
there is also a preferred affine connection, called the Riemannian or the
Levi-Civita connection. This connection satisfies two properties (symmetry,
and invariance of the Riemannian metric) that have a crucial importance,
notably in relation to the notion of Riemannian Hessian. Moreover, the Rie-
mannian connection on Riemannian submanifolds and Riemannian quotient
manifolds admits a remarkable formulation in terms of the Riemannian con-
nection in the structure space that makes it particularly suitable in the
context of numerical algorithms. Furthermore, on a Euclidean space, the
Riemannian connection reduces to the canonical connection—the classical
directional derivative.

5.3.1 Symmetric connections

An affine connection is symmetric if its Christoffel symbols satisfy the sym-
metry property Ffj = Fé“l This definition is equivalent to a more abstract
coordinate-free approach to symmetry that provides more insight into the
underlying structure of the space.

To define symmetry of an affine connection in a coordinate-free manner,
we will require the concept of a Lie bracket of two vector fields. Let £ and

¢ be vector fields on M whose domains meet on an open set /. Recall that
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F(U) denotes the set of smooth real-valued functions whose domains include
U. Let [¢,n] denote the function from F(U) into itself defined by

(£, C1f = &(Cf) = <) (5.9)
It is easy to show that [, (] is R-linear,

(€, nl(af + bg) = al§,n]f + bl&, nlg,

and satisfies the product rule (Leibniz’ law),

€, ml(f9) = f([§,mlg) + ([§,m]f)g.
Therefore, [¢,(] is a derivation and defines a tangent vector field, called the

Lie bracket of £ and (.
An affine connection V on a manifold M is said to be symmetric when

V€ = Ven = [n,¢] (5.10)

for all n,& € X(M).
Given a chart (U, ), denoting by E; the ith coordinate vector field, we
have, for a symmetric connection V,

Ve Ej — Vi, E = Ei, Ej] =0

since [E;, Ej|f = 0;0;f — 0;0;f = 0 for all f € F(M). It follows that
I‘fj = Fé‘? for every symmetric connection. Conversely, it is easy to show
that connections satisfying Ffj = Fé‘l are symmetric in the sense of (5.10
by expanding in local coordinates.

5.3.2 Definition of the Riemannian connection

The following result is sometimes referred to as the fundamental theorem of
Riemannian geometry. Let (-, ) denote the Riemannian metric.

Theorem 5.3.1 (Levi-Civita) On a Riemannian manifold M there exists
a unique affine connection V that satisfies

(i) Vn& —Ven = [n,€] (symmetry), and
(ii) x(n,§) = (Vyn, &) + (1, V&) (compatibility with the Riemannian
metric),

for all x,n,& € X(M). This affine connection V, called the Levi-Civita con-
nection or the Riemannian connection of M, is characterized by the Koszul
formula

2(Vyn, &) = x(n,€) + & x) — 06 — (G 0:€D) + (0, 1€ x]) + (&, [X(, ?7])-)
5.11

Recall that for vector fields 7,&,x € X(M), (n,€) is a real-valued function
on M and x(n,&) is the real-valued function given by the application of the
vector field (i.e., derivation) x to (n,&).)
Since the Riemannian connection is symmetric, it follows that the Christof-
ko

fel symbols of the Riemannian connection satisfy I%; Ffl Moreover, it
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follows from the Koszul formula (5.11) that the Christoffel symbols for the
Riemannian connection are related to the coefficients of the metric by the
formula

. 1
Iy = 3 > 9" (0iges + 0i96i — Degis) (5.12)
L

where g*¢ denotes the matrix inverse of gy, i.e., Do 9" g = 55. In theory,
the formula (5.12) provides a means to compute the Riemannian connection.
However, working in coordinates can be cumbersome in practice, and we will
use a variety of tricks to avoid using (5.12)) as a computational formula.

Note that on a Euclidean space, the Riemannian connection reduces to
the canonical connection (5.4). A way to see this is that, in view of (5.12),
the Christoffel symbols vanish since the metric is constant.

5.3.3 Riemannian connection on Riemannian submanifolds

Let M be a Riemannian submanifold of a Riemannian manifold M. By
definition, the Riemannian metric on the submanifold M is obtained by
restricting to M the Riemannian metric on M; therefore we use the same
notation (-, -) for both. Let V denote the Riemannian connection of M, and
V the Riemannian connection of M. Let X(M) denote the set of vector
fields on M, and X(M) the set of vector fields on M.

Given 7, € T, M and ¢ € X(M), we begin by defining the object V,¢. To
this end, since T, M is a subspace of T, M, let 77, be 1, viewed as an element
of T, M; moreover, let £ be a smooth local extension of ¢ over a coordinate
neighborhood U of z in M. Then define

Vi€ = V5. & (5.13)

This expression does not depend on the local extension of {. However, in
general, V,, ¢ does not lie in T; M, as illustrated in Figure 5.2. Hence the
restriction of V to M, as defined in (5.13), does not qualify as a connection
on M.

Figure 5.2 Riemannian connection V in a Euclidean space M applied to a tangent
vector field £ to a circle. We observe that V¢ is not tangent to the
circle.
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Recall from Section 3.6.1 that, using the Riemannian metric on M, each
tangent space T, M can be decomposed as the direct sum of T, M and its
orthogonal complement (7, M)=, called the normal space to the Rieman-
nian submanifold M at z. Every vector &, € T, M, x € M, has a unique
decomposition

Ew = Pm§m + Pigaza

where P,&, belongs to T, M and P:&, belongs to (T, M)+. We have the
following fundamental result.

Proposition 5.3.2 Let M be a Riemannian submanifold of a Riemannian
manifiold M and let V and V denote the Riemannian connections on M
and M. Then

Vi & =PV, ¢ (5.14)
for all n, € Tu,M and £ € X(M).

This result is particularly useful when M is a Riemannian submanifold of a
Fuclidean space; then (5.14)) reads

V& = Po (D€ () [02]) (5.15)
i.e., a classical directional derivative followed by an orthogonal projection.

Example 5.3.1 The sphere S"~!
On the sphere S™~! viewed as a Riemannian submanifold of the Euclidean
space R™, the projection P, is given by

Pog = (I —za’)g
and the Riemannian connection is given by
V& = (I - 22") DE () [1a] (5.16)
for allw € 8"~ 1, n, € T,S" 1, and £ € X(S™"1). A practical application of

this formula is presented in Section 6.4.1.

Example 5.3.2 The orthogonal Stiefel manifold St(p,n)
On the Stiefel manifold St(p,n) viewed as a Riemannian submanifold of
the Euclidean space R™* P, the projection Px is given by

Pxé= (I - XXT)¢+ X skew(X7T€)
and the Riemannian connection is given by
V& =Px(DE(z) nx]) (5.17)
for all X € St(p,n), nx € Tx St(p,n), and & € X(St(p,n)).
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5.3.4 Riemannian connection on quotient manifolds

Let M be a Riemannian manifold with a Riemannian metric g and let
M = M/ ~ be a Riemannian quotient manifold of M, i.e., M is endowed
with a manifold structure and a Riemannian metric g that turn the natural
projection 7 : M — M into a Riemannian submersion. As in Section 3.6.2,
the horizontal space H, at a point y € M is defined as the orthogonal com-
plement of the vertical space, and ¢ denotes the horizontal lift of a tangent
vector &.

Proposition 5.3.3 Let M = M/ ~ be a Riemannian quotient manifold
and let V and V denote the Riemannian connections on M and M. Then

V,€ =P" (V7€) (5.18)

for all vector fields & and n on M, where P" denotes the orthogonal projection
onto the horizontal space.

This is a very useful result, as it provides a practical way to compute covari-
ant derivatives in the quotient space. The result states that the horizontal
lift of the covariant derivative of £ with respect to 7 is given by the horizontal
projection of the covariant derivative of the horizontal lift of £ with respect
to the horizontal lift of 7.

If the structure space M is (an open subset of) a Euclidean space, then
formula (5.18) simply becomes

V€ =P" (DEM)) -

In some practical cases, M is a vector space endowed with a Riemannian
metric g that is not constant (hence M is not a Euclidean space) but that
is nevertheless horizontally invariant, namely,

D(g(v, N) (y) [ny] = 9(Dv () [ny]; Ay) + G(vy, DA (y) [1y])

for all y € M, all ny € Hy, and all horizontal vector fields v, A on M. In
this case, the next proposition states that the Riemannian connection on the
quotient is still a classical directional derivative followed by a projection.

Proposition 5.3.4 Let M be a Riemannian quotient manifold of a vector
space M endowed with a horizontally invariant Riemannian metric and let
V denote the Riemannian connection on M. Then

V,€ = P" (DEn])
for all vector fields & and n on M.
Proof. Let g(-,-) = (-,-) denote the Riemannian metric on M and let ¥V
denote the Riemannian connection of M. Let x, v, A be horizontal vec-
tor fields on M. Notice that since M is a vector space, one has [v, \] =

DA[v] — Dy[A], and likewise for permutations between x, v, and A. More-
over, since it is assumed that g is horizontally invariant, it follows that
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Dg(v, \)[x] = g(Dv[x], A) +7(v, DA[x]); and likewise for permutations. Using

these identities, it follows from Koszul’s formula (5.11) that

2<§XV3 A> = X<V7 >\> + V<)‘7X> - >\<Xa V> + <>\a [Xa V]> + <Va P\a X]> - <X7 [Va )‘]>
= 2g(Dv|x], A),

hence P"(V,v) = P"(Dv[x]). The result follows from Proposition 5.3.3. [

Example 5.3.3 The Grassmann manifold

We follow up on the example in Section 3.6.2. Recall that the Grass-
mann manifold Grass(p,n) was viewed as a Riemannian quotient manifold
of (RY*P.g) with

Gy (21, 2Z5) =tx (YY) ' 2] Z,) . (5.19)
The horizontal distribution is
Hy ={Z cR"? . Y17 =0} (5.20)
and the projection onto the horizontal space is given by
PLz=(1-Y(YTY)'yT)z. (5.21)

It is readily checked that, for all horizontal vectors Z € Hy, it holds that
Dg(&,¢) (V) [2] = Dy (tr((YTY) (&) ¢y)) (V) [Z]
=g(DE(Y)[Z],¢y) +3(&y, DC(Y) [Z])
sinceYTZ =0 for all Z € Hy. The Riemannian metric g is thus horizon-
tally invariant. Consequently, we can apply the formula for the Riemannian

connection on a Riemannian quotient of a manifold with a horizontally in-
variant metric (Proposition 5.3.4) and obtain

Vi& =Py (DE(Y) [Tiy]) - (5.22)
We refer the reader to Section 6.4.2 for a practical application of this
formula.

5.4 GEODESICS, EXPONENTIAL MAPPING, AND
PARALLEL TRANSLATION

Geodesics on manifolds generalize the concept of straight lines in R™. A
geometric definition of a straight line in R™ is that it is the image of a curve
v with zero acceleration; i.e.,

d2

a2 Y(t)=0
for all ¢.

On manifolds, we have already introduced the notion of a tangent vector
4(t), which can be interpreted as the velocity of the curve v at ¢. The map-
ping ¢ +— () defines the wvelocity vector field along ~. Next we define the
acceleration vector field along ~.
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Let M be a manifold equipped with an affine connection V and let v be
a curve in M with domain I C R. A wvector field on the curve ~y smoothly
assigns to each ¢t € I a tangent vector to M at (t). For example, given any
vector field § on M, the mapping ¢ — &, (4) is a vector field on . The velocity
vector field t — 4(t) is also a vector field on 7. The set of all (smooth) vector
fields on + is denoted by X (). It can be shown that there is a unique function
£ %5 from X(v) to X(y) such that

L. dt(a§+bg)=a%§+b%< (a,b € R),
2. gUO=re+rgs (fes),
3. @mo(t) =Vyen (t€l, neX(M)).

The acceleration vector field % ~ on «y is defined by
D2 D
a2 T

Note that the acceleration depends on the choice of the affine connection,

while the velocity 4 does not. Specifically, in a coordinate chart (U, ), using
the notation (x!(t),...,2"(t)) := p(y(t)), the velocity 4 simply reads % z",
which does not depend on the Christoffel symbol; on the other hand, the

A 2
acceleration E? ~ reads

d .
dt2x +Z 1] —x @ t,

5. (5.23)

where Ffj (v(t)) are the Christoffel symbols, evaluated at the point ~(¢), of
the affine connection in the chart (U, ¢).

A geodesic v on a manifold M endowed with an affine connection V is a
curve with zero acceleration:

D2

FTE) ~y(t)=0 (5.24)
for all ¢ in the domain of v. Note that different affine connections produce
different geodesics.

For every ¢ € T, M, there exists an interval I about 0 and a unique
geodesic y(t;z,£) : I — M such that v(0) = = and 4(0) = £. Moreover, we
have the homogeneity property ~(¢; z, al) = vy(at; x, ). The mapping

Exp, : TeM — M = Exp, £ = v(1;2,€)
is called the exponential map at x. When the domain of definition of Exp,
is the whole T, M for all x € M, the manifold M (endowed with the affine
connection V) is termed (geodesically) complete.

It can be shown that Exp, defines a diffeomorphism (smooth bijection) of
a neighborhood U of the origin 0, € T M onto a neighborhood U of x € M.
If, moreover, U is star- shaped (i.e., £ € u implies t§ € Uforall 0 <t < 1),
then U is called a normal nezghborhood of .

We can further define

Exp:TM — M : € — Exp,¢,
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where x is the foot of £&. The mapping Exp is differentiable, and Exp, 0, = =
for all x € M. Further, it can be shown that DExp, (0,,) [£] = £ (with the
canonical identification Ty, T, M ~ T, M). This yields the following result.

Proposition 5.4.1 Let M be a manifold endowed with an affine connection
V. The exponential map on M induced by V is a retraction, termed the
exponential retraction.

The exponential mapping is an important object in differential geometry,
and it has featured heavily in previously published geometric optimization
algorithms on manifolds. It generalizes the concept of moving “straight” in
the direction of a tangent vector and is a natural way to update an iter-
ate given a search direction in the tangent space. However, computing the
exponential is, in general, a computationally daunting task. Computing the
exponential amounts to evaluating the t = 1 point on the curve defined by
the second-order ordinary differential equation (5.24). In a coordinate chart

(U, ), (5.24) reads

? k

dt2 j

i,j

where (z'(t),...,2"(t)) := @(y(t)) and I'}; are the Christoffel symbols of
the affine connection in the chart (U, ). In general, such a differential equa-
tion does not admit a closed-form solution, and numerically computing the
geodesic involves computing an approximation to the Christoffel symbols if
they are not given in closed form and then approximating the geodesic using
a numerical integration scheme. The theory of general retractions is intro-
duced to provide an alternative to the exponential in the design of numerical
algorithms that retains the key properties that ensure convergence results.

Assume that a basis is given for the vector space T,M and let U be a
normal neighborhood of y. Then a chart can be defined that maps x €
U to the components of the vector { € T, M satisfying Exp, §{ = x. The
coordinates defined by this mapping are called normal coordinates.

We also point out the following fundamental result of differential geometry:
if M is a Riemannian manifold, a curve with minimal length between two
points of M is always a monotone reparameterization of a geodesic relative to
the Riemannian connection. These curves are called minimizing geodesics.

d ,;d
—a'—a! =0, k=1,...
(V)dtl‘dtw ’ ) 7n7

Example 5.4.1 Sphere

Consider the unit sphere S"~! endowed with the Riemannian metric (3.33)
obtained by embedding S"1 in R™ and with the associated Riemannian con-
nection (5.16). Geodesicst — x(t) are expressed as a function of x(0) € 71
and ©(0) € TI(O)Snfl as follows (using the canonical inclusion of T,,S™ !
in R™):

a(t) = (0) cos([|(0)[[t) + #(0)

||r'c(10)|| sn([#(O)|).  (5.25)

(Indeed, it is readily checked that % x(t) = (I —zt)x(t)T) % x(t) = —(I—
z(t)z(t)")]|2(0)[Px(t) = 0.)
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Example 5.4.2 Orthogonal Stiefel manifold

Consider the orthogonal Stiefel manifold St(p,n) endowed with its Rie-
mannian metric (3.34) inherited from the embedding in R™*P and with the
corresponding Riemannian connection V. Geodesics t — X (t) are expressed
as a function of X (0) € St(p,n) and X (0) € Tx(0y St(p,n) as follows (using
again the canonical inclusion of Tx o)y St(p,n) in R"*P):

X(t) = [X(0) X(0)] exp (t [A(IO) _Ab;g;)]) H exp(—A(0)t),  (5.26)

where A(t) == XT(t)X(t) and S(t) := XT(t)X(t). It can be shown that
A is an invariant of the trajectory, i.e., A(t) = A(0) for all t, and that
S(t) = eAtS(0)e AL,

Example 5.4.3 Grassmann manifold
Consider the Grassmann manifold Grass(p,n) viewed as a Riemannian
quotient manifold of RY ™" with the associated Riemannian connection (5.22).
Then
V(t) = span(Yo (YL Yo) Y2V cos(St) + U sin(Xt)) (5.27)
is the geodesic satisfying Y(0) = span(Yy) and J'J(O)YO = UXVT, where
USVT is a thin singular value decomposition, i.e., U is n x p orthonormal,

V' is p X p orthonormal, and X is p X p diagonal with nonnegative elements.
Note that choosing Yy orthonormal simplifies the expression (5.27).

Let M be a manifold endowed with an affine connection V. A vector field
& on a curve v satisfying %g = 0 is called parallel. Given a € R in the
domain of v and &4y € Ty(q) M, there is a unique parallel vector field § on
7 such that £(a) = &,(4)- The operator P~ sending &(a) to £(b) is called

parallel translation along . In other words, we have

D t—a _
D (Pi=re(a)) =0

If M is a Riemannian manifold and V is the Riemannian connection, then
the parallel translation induced by V is an isometry.

Much like the exponential mapping is a particular retraction, the parallel
translation is a particular instance of a more general concept termed vector
transport, introduced in Section 8.1. More information on vector transport
by parallel translation, including formulas for parallel translation on spe-
cial manifolds, can be found in Section 8.1.1. The machinery of retraction
(to replace geodesic interpolation) and vector transport (to replace parallel
translation) are two of the key insights in obtaining competitive numerical
algorithms based on a geometric approach.

5.5 RIEMANNIAN HESSIAN OPERATOR

We conclude this chapter with a discussion of the notion of a Hessian. The
Hessian matrix of a real-valued function f on R™ at a point x € R™ is clas-
sically defined as the matrix whose (7, ) element (ith row and jth column)
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is given by 97, f(x) = 0 5; "¢ (x). To formalize this concept on a manifold we
need to think of the Hessmn as an operator acting on geometric objects and
returning geometric objects. For a real-valued function f on an abstract

Euclidean space &, the Hessian operator at x is the (linear) operator from &
to £ defined by

Hess f(x Z )2 e, (5.28)

where (e;);=1,.., is an orthonormal basis of £, z = Zj ZJe; and f is the
function on R” defined by f(z',...,2") = f(z'ey + --- + z"e,). It is a
standard real analysis exercise to show that the definition does not depend
on the choice of the orthonormal basis. Equivalently, the Hessian operator
of f at x can be defined as the operator from £ to £ that satisfies, for all
Y,z €&,

1. (Hess f(r)lyl.y) = D2 (@)ly.y) = g S+ )] .
2. (Hess f(z)[y], z) = (y,Hess f(x)[z]) (symmetry).

On an arbitrary Riemannian manifold, the Hessian operator is generalized
as follows.

Definition 5.5.1 Given a real-valued function f on a Riemannian manifold
M, the Riemannian Hessian of f at a point x in M is the linear mapping
Hess f(x) of T, M into itself defined by

Hess f(z)[¢] = Ve, grad f

for all &, in T, M, where V is the Riemannian connection on M.

If M is a Euclidean space, this definition reduces to (5.28). (A justification
for the name “Riemannian Hessian” is that the function m,(y) := f(z) +
(grad f(z), Exp, ' (y))s+ 5 (Hess f(z)[Exp, ' ()], Exp, ' (y)) is a second-order
model of f around x; see Section 7.1.)

Proposition 5.5.2 The Riemannian Hessian satisfies the formula

(Hess f[¢],m) = &(nf) — (Ven) f (5.29)
for all &,m € X(M).

Proof. We have (Hess f[¢],n) = (Vegrad f,n). Since the Riemannian con-
nection leaves the Riemannian metric invariant, this is equal to £(grad f,n) —
(grad f, Ven). By definition of the gradient, this yields {(nf) — (Ven)f. O

Proposition 5.5.3 The Riemannian Hessian is symmetric (in the sense of
the Riemannian metric). That s,

(Hess f[¢],n) = (&, Hess f[n])
for all &,m € X(M).



106 CHAPTER 5

Proof. By the previous proposition, the left-hand side is equal to &(nf) —
(Ve¢n) f and the right-hand side is equal to (Hess f(z)[n],&) = n(£f)— (V48 f.
Using the symmetry property (5.10) of the Riemannian connection on the

latter expression, we obtain n(§f) — (V&) f = n(&f) — n,&]f — (Ven)f =
&(nf) — (Ven)f, and the result is proved. 0O

The following result shows that the Riemannian Hessian of a function f
at a point x coincides with the Euclidean Hessian of the function f o Exp,
at the origin 0, € T, M. Note that foExp, is a real-valued function on the
Euclidean space T, M.

Proposition 5.5.4 Let M be a Riemannian manifold and let f be a real-
valued function on M. Then

Hess f(x) = Hess (f o Exp,)(0,) (5.30)
for all x € M, where Hess f(z) denotes the Riemannian Hessian of f :
M — R at x and Hess (f o Exp,)(0,) denotes the Euclidean Hessian of

foExp, : TyM — R at the origin of T, M endowed with the inner product
defined by the Riemannian structure on M.

Proof. This result can be proven by working in normal coordinates and in-
voking the fact that the Christoffel symbols vanish in these coordinates. We
provide an alternative proof that does not make use of index notation. We
have to show that

(Hess f(x)[¢],m) = (Hess (f o Exp,)(0)[¢], n) (5.31)
for all ¢£,n € T, M. Since both sides of (5.31) are symmetric bilinear forms
in £ and 7, it is sufficient to show that

(Hess f(2)[¢], €) = (Hess (f o Exp,)(02)[¢], €) (5.32)

for all £ € T, M. Indeed, for any symmetric linear form B, we have the
polarization identity

2B(&§,m) = B(E +n,§+n) — B(&,£) — B(n,n),
which shows that the mapping (§,n) — B(&,n) is fully specified by the
mapping & — B(§,€). Since the right-hand side of (5.32) involves a classical
(Euclidean) Hessian, we have

2

R

(Hess (f o Exp,)(02)[¢], &) = de2

t=0
d /d d d
=< (dt f(Epr(tf))> BT (Df(Expxtf) [ Exp, th »

It follows from the deﬁnitlon of the gradient that this last expression is
equal to %(grad f(Exp, t€), 4 4 Exp,, t€) | +—o- By the invariance property of
the metric, this is equal to <E grad f(Exp, t£), &) + (grad f(z), 2 it Expz t£).

By definition of the exponential mapping, we have %Expgg t¢& = 0 and
%Expggtﬂtzo = &. Hence the right-hand side of (5.32) reduces to

(Vegrad f,€),
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and the proof is complete. (]

The result is in fact more general. It holds whenever the retraction and
the Riemannian exponential agree to the second order along all rays. This
result will not be used in the convergence analyses, but it may be useful to
know that various retractions yield the same Hessian operator.

Proposition 5.5.5 Let R be a retraction and suppose in addition that

D2
— R(t&) =0 forall{eTyM, (5.33)
de? —o
where % v denotes acceleration of the curve v as defined in (5.23). Then
Hess f(x) = Hess (f o R;)(0,). (5.34)

Proof. The proof follows the proof of Proposition |5.5.4, replacing Exp, by
R, throughout. The first-order ridigidity condition of the retraction implies
that % th§|t:0 = £. Because of this and of (5.33), we conclude as in the
proof of Proposition 5.5.4. g

Proposition 5.5.5 provides a way to compute the Riemannian Hessian as
the Hessian of a real-valued function f o R, defined on the Euclidean space
T, M. In particular, this yields a way to compute (Hess f(x)[¢],n) by taking
second derivatives along curves, as follows. Let R be any retraction satisfying
the acceleration condition (5.33). First, observe that, for all £ € T, M,

(Hess f(2)[¢],§) = (Hess (f o Rx)(02)[¢], &) = di; f(R())| - (5:35)

t=0
Second, in view of the symmetry of the linear operator Hess f(x), we have
the polarization identity

(Hess f(x)[¢],n) = 5((Hess f()[¢ +n], € +n)
— (Hess f(2)[¢],€) — (Hess f(z)[nl, ). (5.36)
Equations (5.35) and (5.36) yield the identity

(Hess f(x)[¢], )

2
_ % % (F(Ro(t(€ + ) — F(Ra(t)) — f(R(t))| , (5.37)
t=0

valid for any retraction R that satisfies the zero initial acceleration condi-
tion (5.33). This holds in particular for R = Exp, the exponential retraction.

Retractions that satisfy the zero initial acceleration condition (5.33) will
be called second-order retractions. For general retractions the equality of the
Hessians stated in (5.34) does not hold. Nevertheless, none of our quadratic
convergence results will require the retraction to be second order. The fun-
damental reason can be traced in the following property.

Proposition 5.5.6 Let R be a retraction and let v be a critical point of a
real-valued function f (i.e., grad f(v) =0). Then

Hess f(v) = Hess(f o R,)(0,).
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Proof. We show that (Hess f(v)[¢,],n,) = (Hess(f o Ry)(0,)[&0], my) for all
&, n € X(M). From Proposition5.5.2, we have (Hess f(v)[&,], nv) = &o(nf) —
(Ve,n) f. The second term is an element of T}, M applied to f; since v is a crit-
ical point of f, this term vanishes, and we are left with (Hess f(v)[¢,], n.) =
&(nf). Fix a basis (e1,...,e,) of Tz M and consider the coordinate chart
¢ defined by o~ 1(y',...,y") = Ry(yte; + - + y"e,). Let n° and & de-
note the coordinates of 1 and & in this chart. Since v is a critical point of
[, 0i(f o ¢1) vanishes at 0, and we obtain &,(nf) = >, §f;8i(2j n79;(f o
o) = 2., &md 0i05(f o p™!). Since DR, (0,) is the identity, it follows
that & and n) are the components of &, and 7, in the basis (e1,...,e,);
thus the latter expression is equal to (Hess(f o R,)(0,)[¢], 7). O

5.6 SECOND COVARIANT DERIVATIVE*

In the previous section, we assumed that the manifold M was Riemannian.
This assumption made it possible to replace the differential D f(x) of a func-
tion f at a point x by the tangent vector grad f(x), satisfying

(grad f(x),&) =Df(x)[§] for all & € T, M.

This led to the definition of Hess f(x) : {; +— V¢, grad f as a linear operator
of T, M into itself. This formulation has several advantages: eigenvalues and
eigenvectors of the Hessian are well defined and, as we will see in Chapter 6,
the definition leads to a streamlined formulation (6.4) for the Newton equa-
tion. However, on an arbitrary manifold equipped with an affine connection,
it is equally possible to define a Hessian as a second covariant derivative that
applies bilinearly to two tangent vectors and returns a scalar. This second
covariant derivative is often called “Hessian” in the literature, but we will
reserve this term for the operator &, — V¢  grad f.

To develop the theory of second covariant derivative, we will require the
concept of a covector. Let Ty M denote the dual space of T, M, i.e., the set
of linear functionals (linear maps) p, : T, M — R. The set T M is termed
the cotangent space of M at z, and its elements are called covectors. The
bundle of cotangent spaces

T*M = UgemTi M

is termed the cotangent bundle. The cotangent bundle can be given the struc-
ture of a manifold in an analogous manner to the structure of the tangent
bundle. A smooth section of the cotangent bundle is a smooth assignment
T = g € TiM. A smooth section of the cotangent bundle is termed a
covector field or a one-form on M. The name comes from the fact that a
one-form field p acts on “one” vector field £ € X(M) to generate a scalar
field on a manifold,

nlgl € (M),

defined by (u[€])|, = pa[ée]. The action of a covector field p on a vector
field ¢ is often written simply as a concatenation of the two objects, u&. A
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covector is a (0,1)-tensor. The most common covector encountered is the
differential of a smooth function f: M — R:

Note that the covector field D f is zero exactly at critical points of the func-
tion f. Thus, another way of solving for the critical points of f is to search
for zeros of Df.

Given a manifold M with an affine connection V, a real-valued function
f on M, a point x € M, and a tangent vector &, € T, M, the covariant
derivative of the covector field Df along ¢, is a covector V¢, (Df) defined
by imposing the property

DD fn])(@)[E2] = (Ve, (Df)) [n2] + Df (2)[Ve,n]
for all n € X(M). It is readily checked, using coordinate expressions, that
(Ve,(Df)) [n2] defined in this manner depends only on 7 through 7, and
that (Ve, (Df)) [n2] is a linear expression of &, and 7,. The second covariant
derivative of the real-valued function f is defined by

V2 f(@)[€s,na] = (Ve, (D)) [n].
(There is no risk of confusing [¢,,7,] with a Lie bracket since V2 f(x) is
known to apply to two vector arguments.) The notatio