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Preface

At some point in your game development career, you might need to build a physics engine, 
modify the source code of an existing physics engine, or even just model some interaction 
using an existing physics engine. Each of these tasks is a real challenge. Knowing how a 
physics engine is implemented under the hood will make all of these scenarios a lot simpler.

Building a physics engine from scratch might seem like a large, complex and confusing 
project, but it doesn't have to be. Behind every physics engine are the same three core 
components: a solid math library, accurate intersection testing, and usually impulse-based 
collision resolution. The collision resolution does not have to use an impulse-based solver; 
other resolution strategies exist as well.

This book covers the three core components of a physics engine in great detail. By the end  
of the book you will have implemented particle-based physics, rigid body physics, and even 
soft body physics through cloth simulation. This cookbook aims to break the components  
of a physics engine down into bite-sized, independent recipes.

What this book covers
Chapter 1, Vectors, covers vector math using 2D and 3D vectors. Vectors will be heavily used 
throughout the book, so having a solid understanding of the math behind vectors is essential.

Chapter 2, Matrices, covers the basics of 2D, 3D, and 4D matrices. Operations such as matrix 
multiplication and inversion are covered. This chapter is an introduction to the implementation 
matrices in C++. 

Chapter 3, Matrix Transformations, covers applying matrices to games. This chapter builds 
upon the understanding of vectors and matrices built up in the previous chapters to explain 
how matrices and vectors can be used to represent transformations in 3D space.



Chapter 4, 2D Primitive Shapes, covers common 2D shapes games may need. This chapter 
provides practical definitions and implementations of common 2D primitives.

Chapter 5, 2D Collisions, covers testing the 2D shapes defined in the last chapter for 
intersection. This chapter covers the fundamental concepts of intersection testing in 2D, 
which later chapters will expand into 3D.

Chapter 6, 2D Optimizations, covers speeding up the intersection tests written in the last 
chapter. Once hundreds or even thousands of objects are colliding, brute force collision 
detection will no longer work in real time. The topics covered in this chapter are vital for 
keeping collision detection running in real time, even with a large number of objects.

Chapter 7, 3D Primitive Shapes, covers the common 3D shapes games may need.  
This chapter provides the definition of the geometric primitives we will later build upon  
to create a working 3D physics engine.

Chapter 8, 3D Point Tests, covers nearest point and containment tests in a 3D environment. 
This chapter covers finding the closest point on the surface of a 3D primitive to a given point 
and provides containment tests for the 3D primitives previously covered.

Chapter 9, 3D Shape Intersections, covers testing all of the 3D primitive shapes for 
intersection. This chapter expands many of the 2D intersection tests covered previously in the 
book into 3D space. The chapter also provides additional insight into optimizing intersection 
tests in 3D space.

Chapter 10, 3D Line Intersections, covers testing the intersection of a line and any 3D 
primitive, as well as raycasting against any 3D primitive. Ray casting is perhaps one of  
the most versatile intersection tests. We will use ray casting in later chapters to avoid the 
common problem of tunneling.

Chapter 11, Triangles and Meshes, covers a new primitive, the triangle, and how to use 
triangles to represent a mesh. In a 3D game world, objects are often represented by complex 
meshes rather than primitive 3D shapes. This chapter presents the most straightforward  
way of representing these complex meshes in the context of a physics engine.

Chapter 12, Models and Scenes, covers adding a transformation to a mesh, as well as  
using a hierarchy of meshes to represent a scene. Games often reuse the same mesh 
transformed into a different space. This chapter defines a model, which is a mesh with  
some transformation. The chapter also covers multiple models in a scene.

Chapter 13, Camera and Frustum, covers the frustum primitive and building a camera out  
of matrices. The focus of this chapter is to build an easy to use camera which can be used  
to view any 3D scene. Each camera will have a frustum primitive attached. The attached 
frustum primitive can optimize render times by culling unseen objects.

https://cdp.packtpub.com/beginningcppgameprogramming/wp-admin/post.php?post=158&action=edit


Chapter 14, Constraint Solving, covers a basic introduction to physics. This chapter introduces 
particle physics and world space constraints for particles. In this chapter, the word constraint 
refers to an immovable object in the physics simulation.

Chapter 15, Manifolds and Impulses, extends the particle physics engine built in the last chapter 
by defining a rigid body object, which unlike a particle has some volume. Impulse-based collision 
resolution is also covered in this chapter.

Chapter 16, Springs and Joints, creates springs and simple joint constraints for springs. Using 
springs and particles, this chapter covers the basic concept of soft body physics. The chapter 
focuses on implementing 3D cloth using springs and particles.

Appendix, Advanced Topics, covers issues this book did not have the scope to address. 
Building a physics engine is a huge undertaking. While this book built a basic physics engine, 
there are many topics that fell outside the scope of this book. This chapter provides guidance, 
references, and resources to help the reader explore these advanced topics further.

What you need for this book
Working knowledge of the C++ language is required for this book, as the book is not a tutorial 
about programming. Having a basic understanding of calculus and linear algebra will be 
useful, but is not required. You will need a Windows PC (preferably with Windows 7 or higher) 
with Microsoft Visual Studio 2015 installed on it.

Who this book is for
This book is for beginner to intermediate game developers. You don't need to have a formal 
education in games—you can be a hobbyist or indie developer who started making games  
with Unity 3D.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it…, 
How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

https://cdp.packtpub.com/beginningcppgameprogramming/wp-admin/post.php?post=158&action=edit


How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the  
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can 
include other contexts through the use of the include directive."

A block of code is set as follows:

#ifndef _H_MATH_VECTORS_
#define _H_MATH_VECTORS_

// Structure definitions
// Method declarations

#endif

New terms and important words are shown in bold. Words that you see on the screen, for 
example, in menus or dialog boxes, appear in the text like this: "Under the Application divider 
you will find the code"



Creating a Win32 window with an active OpenGL Context is outside the 
scope of this book. For a better understanding of how Win32 code works 
with OpenGL read: https://www.khronos.org/opengl/wiki/
Creating_an_OpenGL_Context_(WGL)

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us  
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box.

5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's 
webpage at the Packt Publishing website. This page can be accessed by entering the book's 
name in the Search box. Please note that you need to be logged in to your Packt account.

https://www.khronos.org/opengl/wiki/Creating_an_OpenGL_Context_(WGL)
https://www.khronos.org/opengl/wiki/Creating_an_OpenGL_Context_(WGL)
www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Once the file is downloaded, please make sure that you unzip or extract the folder using the 
latest version of:

 f WinRAR / 7-Zip for Windows

 f Zipeg / iZip / UnRarX for Mac

 f 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Game-Physics-Cookbook. We also have other code bundles from our 
rich catalog of books and videos available at https://github.com/PacktPublishing/. 
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

https://github.com/PacktPublishing/Game-Physics-Cookbook
https://github.com/PacktPublishing/Game-Physics-Cookbook
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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1
Vectors

In this chapter, we will cover the following vector operations:

 f Addition

 f Subtraction

 f Multiplication

 f Scalar Multiplication

 f Cross Product

 f Dot Product

 f Magnitude

 f Distance

 f Normalization

 f Angle

 f Projection

 f Reflection

Introduction
Throughout this book we are going to explore the mathematical concepts required to detect 
and react to intersections in a 3D environment. In order to achieve robust collision detection 
and build realistic reactions, we will need a strong understanding of the math required. The 
most important mathematical concepts in physics are Vectors and Matrices.

Physics and collisions rely heavily on Linear Algebra. The math involved may sound 
complicated at first, but it can be broken down into simple steps. The recipes in this chapter 
will explain the properties of vectors using math formulas. Each recipe will also contain a 
visual guide. Every formula will also have an accompanying code sample.
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This chapter does not assume you have any advanced math knowledge. I try 
to cover everything needed to understand the formulas presented. If you find 
yourself falling behind, Khan Academy covers the basic concepts of linear 
algebra at: www.khanacademy.org/math/linear-algebra.

Vector definition
A vector is an n-tuple of real numbers. A tuple is a finite ordered list of elements. An n-tuple is 
an ordered list of elements which has n dimensions. In the context of games n is usually 2, 3, 
or 4. An n-dimensional vector  is represented as follows:

The subscript numbers  are called the components of the vector. Components are 
expressed as a number or as a letter corresponding to the axis that component represents. 
Subscripts are indexed starting with 0. For example,  is the same as . Axis x, y, z, and w 
correspond to the numbers 0, 1, 2, and 3, respectively.

Vectors are written as a capital bold letter with or without an arrow above it.  and V are both 
valid symbols for vector V. Throughout this book we are going to be using the arrow notation.

A vector does not have a position; it has a magnitude and a direction. The components of 
a vector measure signed displacement. In a two-dimensional vector for example, the first 
component represents displacement on the X axis, while the second number represents 
displacement on the Y axis.

Visually, a vector is drawn as a displacement arrow. The two dimensional vector  
would be drawn as an arrow pointing to 3 units on the X axis and 2 units on the Y axis.

www.khanacademy.org/math/linear-algebra
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A vector consists of a direction and a magnitude. The direction is where the vector points and 
the magnitude is how far along that direction the vector is pointing. You can think of a vector 
as a series of instructions. For example, take three steps right and two steps up. Because 
a vector does not have a set position, where it is drawn does not matter as shown in the 
following diagram:

The preceding figure shows several vectors, with vector (3,2) appearing multiple times. The 
origin of a vector could be anywhere; the coordinate system of the preceding figure was 
omitted to emphasize this.

Getting ready
Video games commonly use two, three, and four-dimensional vectors. In this recipe, we are 
going to define C++ structures for two and three-dimensional vectors. These structures will 
expose each component of the vector by the name of an axis, as well as a numeric index.

How to do it…
Follow these steps to start implementing a math library with vector support:

1. Create a new C++ header file; call this file vectors.h; add standard C-style header 
guards to the file:
#ifndef _H_MATH_VECTORS_
#define _H_MATH_VECTORS_

// Structure definitions
// Method declarations

#endif

2. Replace the // Structure definitions comment with the definition of a  
two-dimensional vector:
typedef struct vec2 {
   union {
      struct {
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         float x;
         float y;
      };
      float asArray[2];
   };
 
   float& operator[](int i) {
      return asArray[i];
   }
} vec2;

3. After the definition of vec2, add the definition for a three-dimensional vector:

typedef struct vec3 {
   union {
      struct {
         float x;
         float y;
         float z;
      };
      float asArray[3];
   };

   float& operator[](int i) {
      return asArray[i];
   }
} vec3;

How it works…
We have created two new structures, vec2 and vec3. These structures represent two and 
three-dimensional vectors, respectively. The structures are similar because with every new 
dimension the vector just adds a new component.

Inside the vector structures we declare an anonymous union. This anonymous union allows 
us to access the components of the vector by name or as an index into an array of floats. 
Additionally, we overloaded the indexing operator for each structure. This will allow us to  
index the vectors directly.

With the access patterns we implemented, the components of a vector can be accessed  
in the following manner:

vec3 right = {1.0f, 0.0f, 0.0f};
std::cout<< "Component 0: " <<right.x<< "\n";
std::cout<< "Component 0: " <<right.asArray[0] << "\n";
std::cout<< "Component 0: " <<right[0] << "\n";
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There's more…
Games often use a four-dimensional vector, which adds a W component. However, this W 
component is not always treated as an axis. The W component is often used simply to store 
the result of a perspective divide, or to differentiate a vector from a point.

The W component
A vector can represent a point in space or a direction and a magnitude. A three-dimensional 
vector has no context; there is no way to tell from the x, y, and z components if the vector is 
supposed to be a point in space or a direction and a magnitude. In the context of games,  
this is what the W component of a four-dimensional vector is used for.

If the W component is 0, the vector is a direction and a magnitude. If the W component is 
anything else, usually 1, the vector is a point in space. This distinction seems arbitrary right 
now; it has to do with matrix transformations, which will be covered in Chapter 3, Matrix 
Transformations.

We did not implement a four-dimensional vector because we will not need it. Our matrix class 
will implement explicit functions for multiplying points and vectors. We will revisit this topic in 
Chapter 3, Matrix Transformations.

Component-wise operations
Given two vectors, there are several component-wise operations we can perform. These 
operations will operate on each component of the vector and yield a new vector.

You can add two vectors component wise. Given two n-dimensional vectors  and , 
addition is defined as follows:

You can also subtract two vectors component wise. Given two n-dimensional vectors and 
, subtraction is defined as follows:
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Multiplying two vectors can also be done component wise. There are other ways to multiply 
two vectors; the dot product or cross product. Both of these alternate methods will be covered 
later in this chapter. Given two n-dimensional vectors  and , multiplication is defined  
as follows:

In addition to multiplying two vectors, you can also multiply a vector by a scalar. In this 
context, a scalar is any real number. Given vector  and scalar S, scalar multiplication  
is defined as follows:

Finally, we can check for vector equality by comparing each component of the vectors being 
tested. Two vectors are the same only if all of their components are equal.

Getting ready
We're going to implement all of the preceding component-wise operations by overloading the 
appropriate C++ operators. All of the operators presented in this section can be overloaded in 
C# as well. In languages that do not support operator overloading, you will have to make these 
into regular functions.

How to do it…
Follow these steps to override common operators for the vector class. This will make working 
with vectors feel more intuitive:

1. In vectors.h, add the following function declarations:
vec2 operator+(const vec2& l, const vec2& r);
vec3 operator+(const vec3& l, const vec3& r);
vec2 operator-(const vec2& l, const vec2& r);
vec3 operator-(const vec3& l, const vec3& r);
vec2 operator*(const vec2& l, const vec2& r);
vec3 operator*(const vec3& l, const vec3& r);
vec2 operator*(const vec2& l, float r);
vec3 operator*(const vec3& l, float r);
bool operator==(const vec2& l, const vec2& r);
bool operator==(const vec3& l, const vec3& r);
bool operator!=(const vec2& l, const vec2& r);
bool operator!=(const vec3& l, const vec3& r);
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2. Create a new C++ source file, vectors.cpp. Include the following headers in the 
new file:
#include "vectors.h"
#include <cmath>
#include <cfloat>

3. Add a macro for comparing floating point numbers to vectors.cpp:
#define CMP(x, y)                    \
    (fabsf((x)–(y)) <= FLT_EPSILON * \
      fmaxf(1.0f,                    \
      fmaxf(fabsf(x), fabsf(y)))     \
   )

4. Add the implementation of vector addition to the vectors.cpp file:
vec2 operator+(const vec2& l, const vec2& r) {
   return { l.x + r.x, l.y + r.y };
}

vec3 operator+(const vec3& l, const vec3& r) {
   return { l.x + r.x, l.y + r.y, l.z + r.z };
}

5. Add the implementation of vector subtraction to the vectors.cpp file:
vec2 operator-(const vec2& l, const vec2& r) {
   return { l.x - r.x, l.y - r.y };
}

vec3 operator-(const vec3& l, const vec3& r) {
   return { l.x - r.x, l.y - r.y, l.z - r.z };
}

6. Add the implementation for vector multiplication to the vectors.cpp file:
vec2 operator*(const vec2& l, const vec2& r) {
   return { l.x * r.x, l.y * r.y };
}

vec3 operator*(const vec3& l, const vec3& r) {
   return { l.x * r.x, l.y * r.y, l.z * r.z };
}

7. Add the implementation for scalar multiplication to the vectors.cpp file:
vec2 operator*(const vec2& l, float r) {
   return { l.x * r, l.y * r };
}
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vec3 operator*(const vec3& l, float r) {
   return { l.x * r, l.y * r, l.z * r };
}

8. Finally, add the implementation for vector equality to the vectors.cpp file. This is 
where the compare macro we created in step 3 comes in:
bool operator==(const vec2& l, const vec2& r) { 
   return CMP(l.x, r.x) && CMP(l.y, r.y);
}

bool operator==(const vec3& l, const vec3& r) {
   return CMP(l.x, r.x) && CMP(l.y, r.y) && CMP(l.z, r.z);
}

bool operator!=(const vec2& l, const vec2& r) {
   return !(l == r);
}

bool operator!=(const vec3& l, const vec3& r) {
   return !(l == r);
}

How it works…
What these components-wise operations are doing might not be obvious from the definitions 
and code provided alone. Let's explore the component-wise operations of vectors visually.

Addition
Every vector describes a series of displacements. For example, the vector (2, 3) means move 
two units in the positive X direction and three units in the positive Y direction. We add vectors 
by following the series of displacements that each vector represents. To visualize this, given 
vectors  and , draw them so the head of touches the tail of  The result of the 
addition is a new vector spanning from the tail of  to the head of :
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Subtraction
Subtraction works the same way as addition. We have to follow the negative displacement of 
vector  starting from vector . To visually subtract vectors  and , draw  and  with 
their tails touching. The result of the subtraction is a vector spanning from the head of  to 
the head of :

A more intuitive way to visualize subtraction might be to think of it as adding negative  to 
 , like so; . If we represent the subtraction like this, visually we can follow the rules 
of addition:

In the above image, the vector appears multiple times. This is to emphasize that the 
position of a vector does not matter. Both of the  vectors above represent the same 
displacement!
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Multiplication (Vector and Scalar)
Multiplying a vector by a scalar will scale the vector. This is easy to see when we visualize the 
result of a multiplication. The scalar multiplication of a vector will result in a uniform scale, 
where all components of the vector are scaled by the same amount. Multiplying two vectors 
on the other hand results in a non-uniform scale. This just means that each component  
of the vector is scaled by the corresponding component of the other vector:

Comparison
Comparing vectors is a component-wise operation. If every component of each vector is the 
same, the vectors are equal. However, due to floating point error we can't compare floats 
directly. Instead, we must do an epsilon comparison. Epsilon tests commonly fall in one  
of two categories: absolute tolerance and relative tolerance:

#define ABSOLUTE(x, y) (fabsf((x)–(y)) <= FLT_EPSILON)
#define RELATIVE(x, y) \
(fabsf((x) – (y)) <= FLT_EPSILON * Max(fabsf(x), fabsf(y)))

The absolute tolerance test fails when the numbers being compared are large. The relative 
tolerance test fails when the numbers being compared are small. Because of this, we 
implemented a tolerance test with the CMP macro that combines the two. The logic behind the 
CMP macro is described by Christer Ericson at www.realtimecollisiondetection.net/
pubs/Tolerances.

There's more…
It's desirable to make vectors easy to construct in code. We can achieve this by adding default 
constructors. Each vector should have two constructors: one that takes no arguments and 
one that takes a float for each component of the vector. We do not need a copy constructor or 
assignment operator as the vec2 and vec3 structures do not contain any dynamic memory 
or complex data. The pair of constructors for the vec2 structure will look like this:

vec2() : x(0.0f), y(0.0f) { }
vec2(float _x, float _y) : x(_x), y(_y) { }

www.realtimecollisiondetection.net/pubs/Tolerances
www.realtimecollisiondetection.net/pubs/Tolerances
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The vec3 constructors will look similar, it adds an additional component. The constructors for 
the vec3 structure will look like this:

vec3() : x(0.0f), y(0.0f), z(0.0f) { }
vec3(float _x, float _y, float _z) : x(_x), y(_y), z(_z) { }

Dot product
The dot product, sometimes referred to as scalar product or inner product between two 
vectors, returns a scalar value. It's written as a dot between two vectors,  . The formula 
for the dot product is defined as follows:

The sigma symbol  means sum (add) everything up that follows. The number on top of  
the sigma is the upper limit; the variable on the bottom is the lower limit. If n and i is 0,  
the subscripts 0, 1, and 2 are processed. Without using the sigma symbol, the preceding 
equation would look like this:

The resulting scalar represents the directional relation of the vectors. That is,  
represents how much  is pointing in the direction of . Using the dot product we  
can tell if two vectors are pointing in the same direction or not following these rules:

 f If the dot product is positive, the vectors are pointing in the same direction

 f If the dot product is negative, the vectors point in opposing directions

 f If the dot product is 0, the vectors are perpendicular

How to do it…
Follow these steps to implement the dot product for two and three dimensional vectors:

1. Add the declaration for the dot product to vectors.h:
float Dot(const vec2& l, const vec2& r);
float Dot(const vec3& l, const vec3& r);
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2. Add the implementation for the dot product to vector.cpp:
float Dot(const vec2& l, const vec2& r) {
   return l.x * r.x + l.y * r.y;
}

float Dot(const vec3& l, const vec3& r) {
   return l.x * r.x + l.y * r.y + l.z * r.z;
}

How it works…
Given the formula and the code for the dot product, let's see an example of what we could use 
it for. Assume we have a spaceship S. We know its forward vector,  and a vector that points 
to its right, :

We also have an enemy ship E, and a vector that points from our ship S to the enemy ship E, 
vector :

How can we tell if the the ship S needs to turn left or right to face the enemy ship E?

We need to take the dot product of    and . If the result of the dot product is positive,  
the ship needs to turn right. If the result of the dot product is negative, the ship needs  
to turn to the left. If the result of the dot product is 0, the ship does not need to turn.
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There's more…
Our definition of the dot product is fairly abstract. We know that the dot product gives us some 
information as to the angle between the two vectors,  and . We can use the dot product 
to find the exact angle between these two vectors. The key to this is an alternate definition of 
the dot product.

Geometric definition
Given the vectors  and , the geometric definition of the dot product is the length of  
multiplied by the length of  multiplied by the cosine of the angle between them:

The || operator in the above equation means length and will be covered in the next section. We 
will cover the geometric definition and other properties of the dot product later in this chapter.

Magnitude
The magnitude or length of a vector is written as the letter of the vector surrounded by two 
bars, . The magnitude of a vector is the square root of the dot product of the vector with 
itself:

In addition to implementing the magnitude function, we're also going to implement  
a magnitude squared function. The formula is the same, but it avoids the expensive  
square root operation:

In games we often compare the magnitude of a vector to known numbers; however, doing 
a comparison between a number and the magnitude is expensive because of the square 
root operation. A simple solution to this problem is to square the number, and then compare 
against square magnitude. This means, instead of the following:

if (Magnitude(someVector) < 5.0f) {
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We could instead write the following:

if (MagnitudeSq(someVector) < 5.0f * 5.0f) {

We'd then get the same result, avoiding the expensive square root operation.

Getting ready
To find the magnitude of a vector, take the square root of the vector's dot product with  
its-self. The square root operation is a relatively expensive one that should be avoided 
whenever possible. For this reason, we are also going to implement a function to find the 
square magnitude of a vector.

How to do it…
Follow these steps to implement a function for finding the length and squared length of two 
and three dimensional vectors.

1. Add the declaration for magnitude and magnitude squared to vectors.h:
float Magnitude(const vec2& v);
float Magnitude(const vec3& v);

float MagnitudeSq(const vec2& v);
float MagnitudeSq(const vec3& v);

2. Add the implementation for these functions to vectors.cpp:
float Magnitude(const vec2& v) {
   return sqrtf(Dot(v, v));
}

float Magnitude(const vec3& v) {
   return sqrtf(Dot(v, v));
}

float MagnitudeSq(const vec2& v) {
   return Dot(v, v);
}

float MagnitudeSq(const vec3& v) {
   return Dot(v, v);
}
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How it works…
We can derive the equation for the magnitude of a vector from the geometric definition of the 
dot product that we briefly looked at in the last section:

Because we are taking the dot product of the vector with itself, we know the test vectors  
point in the same direction; they are co-directional. Because the vectors being tested are  
co-directional, the angle between them is 0. The cosine of 0 is 1, meaning the  part  
of the equation can be eliminated, leaving us with the following:

If both the test vectors are the same (which in our case they are) the equation can be written 
using only :

We can rewrite the preceding equation, taking the square root of both sides to find the length 
of vector :

There's more…
The magnitude of a vector can be used to find the distance between two points. Assuming we 
have points   and  , we can find a vector ( ) that connects them by subtracting  
from , as shown in the following diagram:
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The distance between the two points is the length of . This could be expressed in code  
as follows:

float Distance(const vec3& p1, const vec3& p2) {
   vec3 t = p1 - p2;
   return Magnitude(t);
}

Normalizing
A vector with a magnitude of 1 is a normal vector, sometimes called a unit vector. Whenever 
a vector has a length of 1, we can say that it has unit length. A normal vector is written as the 
letter of the vector with a caret symbol on top instead of an arrow, . We can normalize any 
vector by dividing each of its components by the length of the vector:

We never implemented division operators for the vector class. We can rewrite the preceding 
equation as reciprocal multiplication. This means we can obtain the normal of a vector if we 
multiply that vector by the inverse of its length:

Getting ready
We are going to implement two functions, Normalize and Normalized. The first function 
will change the input vector to have a length of 1. The second function will not change the 
input vector; rather it will return a new vector with a length of 1.

How to do it…
Follow these steps to implement functions which will make a vector unit length or return a unit 
length vector. These steps utilize reciprocal multiplication.

1. Declare the Normalize and Normalized functions in vectors.h:
void Normalize(vec2& v);
void Normalize(vec3& v);

vec2 Normalized(const vec2& v);
vec3 Normalized(const vec3& v);
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2. Add the implementation of these functions to vectors.cpp:
void Normalize(vec2& v) {
   v = v * (1.0f / Magnitude(v));
}

void Normalize(vec3& v) {
   v = v * (1.0f / Magnitude(v));
}

vec2 Normalized(const vec2& v) {
   return v * (1.0f / Magnitude(v));
}

vec3 Normalized(const vec3& v) {
   return v * (1.0f / Magnitude(v));
}

How it works…
Normalizing works by scaling the vector by the inverse of its length. This scale makes the 
vector have unit length, which is a length of 1. Unit vectors are special as any number 
multiplied by 1 stays the same number. This makes unit vectors ideal for representing a 
direction. If a direction has unit length, scaling it by some velocity becomes trivial.

Cross product
The cross product is written as a X between two vectors,  . It returns a new vector that 
is perpendicular to both vectors  and . That is, the result of the cross product points  
90 degrees from both vectors.

The cross product is defined only for three-dimensional vectors. This is because any two  
non-parallel vectors form a plane, and there will always exist a line perpendicular to that 
plane. As such, we will only be implementing the cross product for the vec3 structure.

The equation of the cross product is as follows:

Getting ready
The formula behind the cross product seems large and complicated. We're going to implement 
a pattern in code that hopefully will make remembering this formula easy.
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How to do it…
The cross product is only well defined for three dimensional vectors. Follow these steps to 
implement the cross product in an intuitive way:

1. Add the declaration for the cross product to vectors.h:
vec3 Cross(const vec3& l, const vec3& r);

2. Start the implementation in vectors.cpp:
vec3 Cross(const vec3& l, const vec3& r) {
   vec3 result;
   // We will add more code here
   return resut;
}

3. Start by listing out the x, y, and z components of the result in a column:
vec3 Cross(const vec3& l, const vec3& r) {
   vec3 result;
   result.x = /* Will finish in step 6 */
   result.y = /* Will finish in step 6 */
   result.z = /* Will finish in step 6 */
   return resut;
}

4. Flesh out the first row by multiplying l.y and r.z. Notice how the first column 
contains x, y, and z components in order and so does the first row:
vec3 Cross(const vec3& l, const vec3& r) {
   vec3 result;
   result.x = l.y * r.z /* Will finish in step 6 */
   result.y = /* Will finish in step 6 */
   result.z = /* Will finish in step 6 */
   return resut;
}

5. Follow the x, y, z pattern for the rest of the rows. Start each row with the appropriate 
letter following the letter of the first column:
vec3 Cross(const vec3& l, const vec3& r) {
   vec3 result;
   result.x = l.y * r.z /* Will finish in step 6 */
   result.y = l.z * r.x /* Will finish in step 6 */
   result.z = l.x * r.y /* Will finish in step 6 */
   return resut;
}
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6. Finally, complete the function by subtracting the mirror components of the 
multiplication from each row:
vec3 Cross(const vec3& l, const vec3& r) {
   vec3 result;
   result.x = l.y * r.z - l.z * r.y;
   result.y = l.z * r.x - l.x * r.z;
   result.z = l.x * r.y - l.y * r.x;
   return resut; // Done
}

How it works…
We're going to explore the cross product using three normal vectors that we know to be 
perpendicular. Let vector , , and  represents the basis of , three-dimensional  
space. This means we define the vectors as follows:

 f  points right; it is of unit length on the x axis: 

 f  points up; it is of unit length on the y axis: 

 f  points forward; it is of unit length on the z axis: 

Each of these vectors are orthogonal to each other, meaning they are 90 degrees apart. This 
makes all of the following statements about the cross product true:

 f Right X Up = Forward, 

 f Up X Forward = Right, 

 f Forward X Right = Up, 

The cross product is not cumulative,  is not the same as . Let's see what happens 
if we flip the operands of the preceding formulas:

 f Up X Right = Backward, 

 f Forward X Up = Left, 

 f Right X Forward = Down, 
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Matrices will be covered in the next chapter, if this section is confusing, I suggest re-reading 
it after the next chapter. One way to evaluate the cross product is to construct a 3x3 matrix. 
The top row of the matrix consists of vector , , and  . The next row comprises the 
components of the vector on the left side of the cross product, and the final row comprises the 
components of the vector on the right side of the cross product. We can then find the cross 
product by evaluating the pseudo-determinant of the matrix:

We will discuss matrices and determinants in detail in Chapter 2, Matrices. For now, the 
preceding determinant evaluates to the following:

The result of  is a scalar, which is then multiplied by the  vector. Because 
the  vector was a unit vector on the x axis, whatever the scalar is will be in the x axis of the 
resulting vector. Similarly, whatever  is multiplied by will only have a value on the y axis and 
whatever  is multiplied by will only have a value on the z axis. The preceding determinant 
simplifies to the following:

Angles
We have had a brief introduction to the angle between vectors when we discussed the dot 
product and the magnitude of a vector. In this recipe, we will discuss how to find the actual 
angle between two vectors. The formula to find angle theta between two vectors is:
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Getting ready
We have already implemented both the dot product and magnitude functions for vectors; 
this means we have everything needed to find the angle between two vectors already written. 
In general, this is a very expensive function, as it performs two square roots and an inverse 
cosine. Because it's such an expensive function, we try to avoid it whenever possible.

We can save a little bit of performance if, instead of multiplying the length of both vectors,  
we multiply the squared length of the vectors and then do just one square root operation  
on the result.

How to do it…
1. Add the declaration of the angle function to vectors.h:

float Angle(const vec2& l, const vec2& r);
float Angle(const vec3& l, const vec3& r);

2. Provide the implementation of the angle function in vectors.cpp:
float Angle(const vec2& l, const vec2& r) {
   float m = sqrtf(MagnitudeSq(l) * MagnitudeSq(r));
   return acos(Dot(l, r) / m);
}

float Angle(const vec3& l, const vec3& r) {
   float m = sqrtf(MagnitudeSq(l) * MagnitudeSq(r));
   return acos(Dot(l, r) / m);
}

How it works…
This formula relies on the geometric definition of the dot product:

This formula states that the dot product of two vectors is the cosine of the angle between 
them multiplied by both of their lengths. We can rewrite this formula with the cosine being 
isolated if we divide both sides by the product of the lengths of  and :
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We can now use the inverse of cosine, the arc cosine (acos), to find the angle theta:

There's more…
The acos function we used to find the angle between vectors comes from the standard C 
math library. This implementation of acos returns radians, not degrees. It's much more 
intuitive to think of angles in terms of degrees than radians.

Radians and degrees
Add the following macros to the top of the vectors.h header file:

#define RAD2DEG(x) ((x) * 57.295754f)
#define DEG2RAD(x) ((x) * 0.0174533f)

Using these macros you can convert between radians and degrees. For example, if you wanted 
to get the angle in degrees between vectors  and , you could use the following code:

float degrees = RAD2DEG(Angle(A, B));

If you are interested in the math used to derive these numbers, I suggest watching the 
following Khan Academy video:

https://www.khanacademy.org/math/algebra2/trig-functions/intro-to-
radians-alg2/v/introduction-to-radians

Projection
Sometimes it's useful to decompose a vector into parallel and perpendicular components with 
respect to another vector. Projecting  onto  will give us the length of  in the direction 
of . This projection decomposes  into its parallel component with respect to . Once we 
know the parallel component of , we can use it to get the perpendicular component. The 
formula for projecting  onto  is as follows:

https://www.khanacademy.org/math/algebra2/trig-functions/intro-to-radians-alg2/v/introduction-to-radians
https://www.khanacademy.org/math/algebra2/trig-functions/intro-to-radians-alg2/v/introduction-to-radians
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The perpendicular component of  with respect to  is defined as follows:

Getting ready
Implementing the projection is fairly straightforward as we already have both the dot product 
and magnitude squared defined. In the following function, the vector being projected is 
represented by the variable length, and the vector it is being projected onto is represented 
by the variable direction. If we compare it to the preceding formula, length is , and 
direction is .

How to do it…
Follow these steps to implement projection functions for two and three dimensional vectors.  
A function to get the perpendicular component of the projection is also described:

1. Declare the projection and perpendicular functions in vectors.h:
vec2 Project(const vec2& length, const vec2& direction);
vec3 Project(const vec3& length, const vec3& direction);

vec2 Perpendicular(const vec2& len, const vec2& dir);
vec3 Perpendicular(const vec3& len, const vec3& dir);

2. Add the implementation of projection to vectors.cpp:
vec2 Project(const vec2& length, const vec2& direction) {
   float dot = Dot(length, direction);
   float magSq = MagnitudeSq(direction);
   return direction * (dot / magSq);
}

vec3 Project(const vec3& length, const vec3& direction) {
   float dot = Dot(length, direction);
   float magSq = MagnitudeSq(direction);
   return direction * (dot / magSq);
}
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3. Add the implementation of perpendicular to vectors.cpp:
vec2 Perpendicular(const vec2& len, const vec2& dir) {
   return len - Project(len, dir);
}

vec3 Perpendicular(const vec3& len, const vec3& dir) {
   return len - Project(len, dir);
}

How it works…

Let's explore how projection works. Say we want to project  onto , to find . Having 
a ' character next to a vector means prime; it's a transformed version of the vector;   is 
pronounced A-Prime:

From the preceding figure we see that  can be found by subtracting some unknown vector 
from . This unknown vector is the perpendicular component of  with respect to , let's 
call it :
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We can get the perpendicular component  by subtracting the projection of  onto  from
. The projection at this point is still unknown, that's what we are trying to find:

Because  points in the same direction as , we can express  as scaling  by some 
unknown scalar s,  . Knowing this, the problem becomes, how do we find s?:

The dot product of two perpendicular vectors is 0. Because of this, the dot product of  and 
 is going to be 0:

Substitute the value of  with the equation we use to find its value,  :
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Finally, let's substitute  with the equation we use to find its value, :

Now the only unknown in the formula is s, let's try to find it. The dot product exhibits the 
distributive property, let's distribute :

Let's start to isolate s, first we add  to both sides of the equation:

Now we can isolate s if we divide both sides of the equation by . Remember, the dot 
product of a vector with itself yields the square magnitude of that vector:

Now we can solve  by substituting s with the preceding formula. The final equation 
becomes:

Reflection
One of the most important concepts in physics for games is collision response and how to 
react to a collision occurring. More often than not this involves one of the colliding objects 
bouncing off the other one. We can achieve the bounding through vector reflection. Reflection 
is also heavily used in many areas of game development, such as graphics programming, to 
find the color intensity of a fragment.
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Given vector  and normal , we want to find a vector  that is  reflected around :

The reflected vector  can be found with the following formula:

Keep in mind, in the preceding equation,  is a unit length vector. This means that the

 part of the equation actually projects  onto . If was a non-normalized 
vector, the preceding equation would be written as follows:

Getting ready
Implementing the preceding formula is going to look a little different, this is because we 
only overloaded the vector scalar multiplication with the scalar being on the right side of the 
equation. We're going to implement the function assuming  is already normalized.

How to do it…
Follow these steps to implement a function which will reflect both two and three  
dimensional vectors.

1. Add the declaration of the reflection function to vectors.h:
vec2 Reflection(const vec2& vec, const vec2& normal);
vec3 Reflection(const vec3& vec, const vec3& normal);
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2. Add the implementation of the reflection function to vectors.cpp:
vec2 Reflection(const vec2& vec,const vec2& normal) {
   float d = Dot(vec, normal);
   return sourceVector - normal * (d * 2.0f );
}

vec3 Reflection(const vec3& vec, const vec3& normal) {
   float d = Dot(vec, normal);
   return sourceVector - normal * (d * 2.0f);
}

How it works…

Given  and , we're going to find , which is the reflection of  around :

First, we project  onto , this operation will yield a vector along  that has the length  
of :
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We want to find the reflected vector . The following figure shows  in two places, 
remember it doesn't matter where you draw a vector as long as its components are the same:

Looking at the preceding figure, we can tell that subtracting  from  will result  
in :

This is how we get to the final formula, .
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Matrices

In this chapter, we will cover the basic math needed to multiply and invert matrices:

 f Definition

 f Transpose

 f Multiplication

 f Identity matrix

 f Determinant of a 2x2 matrix

 f Matrix of minors

 f Matrix of cofactors

 f Determinant of a 3x3 matrix

 f Operations of a 4x4 matrix

 f Adjugate matrix

 f Matrix inverse

Introduction
Matrices in games are used extensively. In the context of physics, matrices are used to 
represent different coordinate spaces. In games, we often combine coordinate spaces; this 
is done through matrix multiplication. In game physics, it's useful to move one object into the 
coordinate space of another object; this requires matrices to be inverted. In order to invert a 
matrix, we have to find its minor, determinant, cofactor, and adjugate. This chapter focuses on 
what is needed to multiply and invert matrices.
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Every formula in this chapter is followed by some practical examples. If you 
find yourself needing additional examples, Purplemath is a great resource; 
look under the Advanced Algebra Topic section: www.purplemath.com/
modules/

Matrix definition
A matrix is a  grid of numbers, represented by a bold capital letter. The number of rows 
in a matrix is represented by i; the number of columns is represented by j. 

For example, in a 3 X 2 matrix, i would be 3 and j would be 2. This 3 X 2 matrix looks like this:

Matrices can be of any dimension; in video games, we tend to use 2 X 2, 3 X 3, and 4 X 4 
matrices. If a matrix has the same number of rows and columns, it is called a square matrix. 
In this book, we're going to be working mostly with square matrices.

Individual elements of the matrix are indexed with subscripts. For example, refers to the 
element in row 1, column 2 of the matrix M.

Getting ready
We are going to implement a 2 X 2, 3 X 3, and 4 X 4 matrix. Internally, each matrix will be 
represented as a linear array of memory. Much like vectors, we will use an anonymous  
union to support a variety of access patterns. Pay attention to how the indexing operator  
is overridden, matrix indices in code start at 0, not 1. This can get confusing; when talking  
about matrices in a non-code context, we start subscripting them with 1, not 0. 

How to do it…
Follow these steps to add matrix support to our existing math library:

1. Create a new C++ header file, call this file matrices.h. Add basic header guards  
to the file, include vectors.h:
#ifndef _H_MATH_MATRICES_
#define _H_MATH_MATRICES_

www.purplemath.com/modules/
www.purplemath.com/modules/
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#include "vectors.h"

// Structure definitions

#endif

2. Replace the // Structure definitions comment with the definition of  
a 2 X 2 matrix:
typedef struct mat2 {
   union {
      struct {
         float _11, _12,
               _21, _22;
      };
      float asArray[4];
   };
 
   inline float* operator[](int i) {
      return &(asArray[i * 2]);
   }
} mat2; 

3. After the definition of mat2, add the definition for a 3 X 3 matrix:

typedef struct mat3 {
   union {
      struct {
         float _11, _12, _13,
               _21, _22, _23,
               _31, _32, _33;
      };
      float asArray[9];
   };

   inline float* operator[](int i) {
      return &(asArray[i * 3]);
   }
} mat3; 

4. Finally, after the definition of mat3, add the definition for a 4 X 4 matrix:

typedef struct mat4 {
   union {
      struct {
         float _11, _12, _13, _14,
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               _21, _22, _23, _24,
               _31, _32, _33, _34,
               _41, _42, _43, _44;
       };
       float asArray[16];
   };

   inline float* operator[](int i) {
      return &(asArray[i * 4]);
   }
} mat4;

How it works…
In the above code, we implemented 2 X 2, 3 X 3, and 4 X 4 matrices. We used an anonymous 
union and overloaded the indexing operator to support a variety of access patterns. The usage 
of anonymous unions is similar to how we constructed the vec2 and vec3 structures.

The underlying data for each matrix is a linear array; rows are laid out sequentially in  
this array:

This means the matrix is laid out in memory one row at a time, as follows:

float M[9] = { A, B, C, D, E, F, G, H, I };

Each matrix structure supports the following access patterns:

mat4 m4 = {1.0f, 0.0f, 0.0f, 0.0f,
           0.0f, 1.0f, 0.0f, 0.0f,
           0.0f, 0.0f, 1.0f, 5.0f,
           0.0f, 0.0f, 0.0f, 1.0f };

std::cout<< "element at index 11: " <<m4[2][3] << "\n";
std::cout<< "element at index 11: " << m4._34 << "\n";
std::cout<< "element at index 11: " <<m4.asArray[11] << "\n";

The first pattern demonstrated uses the overloaded indexing operator. This operator returns a 
float pointer to the first element of the specified row. A pointer in C++ can be accessed as an 
array; this allows us to use double brackets. This overload starts indexing a matrix at 0.
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Next, the anonymous union allows us to access elements using the _ij notation. Using this 
notation, i is the row, j is the column. These indices start at 1, not 0! This means element 
[2][3] is the same as element _34. This indexing scheme closely resembles the way we talk 
about math in text.

Finally, we can access the array using the .isArray member of the anonymous union. This 
allows us to index the matrix as the underlying linear array structure. Indexing for this array 
starts at 0. You can convert a 2D array index i,j, to a 1D array index using the formula: 
columns * i + j. Where i represents the row you are trying to access, j represents the 
column, and columns is the number of columns in the 2D representation of the array.

Transpose
The transpose of matrix M, written as  is a matrix in which every element i, j equals the 
element j, i of the original matrix. The transpose of a matrix can be acquired by reflecting the 
matrix over its main diagonal, writing the rows of M as the columns of , or by writing the 
columns of M as the rows of . We can express the transpose for each component of a 
matrix with the following equation:

The transpose operation replaces the rows of a matrix with its columns:

           

Getting ready
We're going to create a non-nested loop that serves as a generic Transpose function. This 
function will be able to transpose matrices of any dimension. We're then going to create 
Transpose functions specific to 2 X 2, 3 X 3, and 4 X 4 matrices. These more specific 
functions are going to call the generic Transpose with the appropriate arguments.
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How to do it…
Follow these steps to implement a generic transpose function and transpose functions  
for two, three and four dimensional square matrices:

1. Add the declarations for all of the Transpose function to matrices.h:
void Transpose(const float *srcMat, float *dstMat, 
   int srcRows, int srcCols);
mat2 Transpose(const mat2& matrix);
mat3 Transpose(const mat3& matrix);
mat4 Transpose(const mat4& matrix);

2. Create a new file, matrices.cpp. In this file, include the cmath, cfloat, and 
matrices.h headers. Also, include a copy of the CMP macro we used in vectors.
cpp:
#include "matrices.h"
#include <cmath>
#include <cfloat>

#define CMP(x, y)    \
   (fabsf((x) – (y)) <= FLT_EPSILON * \
   fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))))

3. Implement the generic transpose function in matrices.cpp:
void Transpose(const float *srcMat, float *dstMat, 
   int srcRows, int srcCols) {
   for (int i = 0; i < srcRows * srcCols; i++) {
      int row = i / srcRows;
      int ccl = i % srcRows;
      dstMat[i] = srcMat[srcCols * col + row];
   }
}

4. Using the generic Transpose function, implement Transpose for 2 X 2, 3 X 3, and 
4 X 4 matrices in matrices.cpp:
mat2 Transpose(const mat2& matrix) {
    mat2 result;
    Transpose(matrix.asArray, result.asArray, 2, 2);
    return result;
}

mat3 Transpose(const mat3& matrix) {
    mat3 result;
    Transpose(matrix.asArray, result.asArray, 3, 3);
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    return result;
}

mat4 Transpose(const mat4& matrix) {
    mat4 result;
    Transpose(matrix.asArray, result.asArray, 4, 4);
    return result;
}

How it works…
Let's explore how the generic version of Transpose works by examining how a single element 
is transposed. Assume we have the following 4 X 4 matrix:

             

We're going to find the transpose of the element in row 3, column 4; it has the value L. If 
we access the matrix as an array, the linear index of L is 11. Let's explore how the generic 
Transpose loop works when i == 11.

First, the values of row and col are calculated. To calculate the row of the element: row = 
i / srcRows, substitute 11 for i, this becomes row = 11 / 4. C++ integer division 
truncates the result towards 0, therefore row = 2. Remember the array is indexed starting at 
0 not 1, meaning the row at index 2 is actually the third row. The column is calculated using 
the modulo operator col = i % srcRows, substituting the variables becomes col = 11 
% 4. The result of this operation is 3. Again, the column at index 3 is actually the 4th column, 
and this is the expected behavior.

We index the source array using [srcCols * col + row], substituting the variables, this 
becomes [4 * 3 + 2]. The result is index 14. The element in the original matrix at index 
14 is element O, the transpose of L.

To index the original element, L, we would change the index calculation to [srcCols * row 
+ col]. To access the transpose of the element, all we had to do was switch the row and  
col variables.
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Multiplication
Like a vector, there are many ways to multiply a matrix. In this chapter we will cover multiplying 
matrices by a scalar or by another matrix. Scalar multiplication is component wise. Given a 

 matrix M and a scalar s, scalar multiplication is defined as follows:

We can also multiply a matrix by another matrix. Two matrices, A and B, can be multiplied 
together only if the number of columns in A matches the number of rows in B. That is, two 
matrices can only be multiplied together if their inner dimensions match.

When multiplying two matrices together, the dimension of the resulting matrix will match the 
outer dimensions of the matrices being multiplied. If A is an  matrix and B is an  
matrix, the product of AB will be an  matrix. We can find each element of the matrix AB 
with the following formula:

This operation concatenates the transformations represented by the two matrices into one 
matrix. Matrix multiplication is not cumulative. . However, matrix multiplication is 
associative, meaning .

Getting ready
Just as with the Transpose operation, we're going to write a generic matrix multiplication 
function that works on arrays representing matrices of any size. Then, we're going to call  
this generic matrix multiply function from operator overrides for mat2, mat3, and mat4.

How to do it…
Follow these steps to implement scalar multiplication for two, three and four dimensional 
square matrices:

1. We're going to start with scalar multiplication. First, add the declaration for scalar 
multiplication to matrices.h.:
mat2 operator*(const mat2& matrix, float scalar);
mat3 operator*(const mat3& matrix, float scalar);
mat4 operator*(const mat4& matrix, float scalar);
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2. Next, add the implementation for the scalar multiplication functions to  
matrices.cpp:
mat2 operator*(const mat2& matrix, float scalar) {
    mat2 result;
    for (int i = 0; i < 4; ++i) {
        result.asArray[i] = matrix.asArray[i] * scalar;
    }
    return result;
}

mat3 operator*(const mat3& matrix, float scalar) {
    mat3 result;
    for (int i = 0; i < 9; ++i) {
        result.asArray[i] = matrix.asArray[i] * scalar;
    }
    return result;
}

mat4 operator*(const mat4& matrix, float scalar) 
    mat4 result;
    for (int i = 0; i < 16; ++i) {
        result.asArray[i] = matrix.asArray[i] * scalar;
    }
    return result;
}

3. Now it's time to implement matrix-matrix multiplication. First, add the declaration 
for the generic matrix Multiply function and the overridden matrix multiplication 
operators to matrices.h. The generic Multiply function returns a Boolean value 
because the operation can fail. Matrix multiplication fails if the inner dimensions of 
the matrices being multiplied are not the same:
bool Multiply(float* out, const float* matA, int aRows, 
   int aCols, const float* matB, int bRows, int bCols);
mat2 operator*(const mat2& matA, const mat2& matB);
mat3 operator*(const mat3& matA, const mat3& matB);
mat4 operator*(const mat4& matA, const mat4& matB);

4. Implement the generic Multiply function in matrices.cpp:
bool Multiply(float* out, const float* matA, int aRows, 
   int aCols, const float* matB, int bRows, int bCols) {
   if (aCols != bRows) { 
      return false; 
   }
   for (int i = 0; i < aRows; ++i) {
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      for (int j = 0; j < bCols; ++j) {
         out[bCols * i + j] = 0.0f;
         for (int k = 0; k < bRows; ++k) {
            int a = aCols * i + k;
            int b = bCols * k + j;
            out[bCols * i + j] += matA[a] * matB[b];
         }
      }
   }
   return true;
}

5. Implement the overridden matrix multiplication operators in matrices.cpp.  
These operators are going to call the generic Multiply function with the  
proper arguments:
mat2 operator*(const mat2& matA, const mat2& matB) {
    mat2 res;
    Multiply(res.asArray, matA.asArray, 
       2, 2, matB.asArray, 2, 2);
    return res;
}

mat3 operator*(const mat3& matA, const mat3& matB) {
    mat3 res;
    Multiply(res.asArray, matA.asArray, 
       3, 3, matB.asArray, 3, 3);
    return res;
}

mat4 operator*(const mat4& matA, const mat4& matB) {
    mat4 res;
    Multiply(res.asArray, matA.asArray, 
       4, 4, matB.asArray, 4, 4);
    return res;
}

How it works…
It may not be obvious from the preceding code but, when multiplying matrices A and B, each 
element i, j of the result is the dot product of row i from matrix A and column j from matrix B:
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This figure demonstrates finding element 3,2 when multiplying matrices A and B.  
To find element 3,2 we take the dot product of row 3 from matrix A and column 2 from matrix B. 

This is why the inner dimensions of the two matrices being multiplied together must match,  
so we take the dot product of vectors that have the same size.

Identity matrix
Multiplying a scalar number by 1 will result in the original scalar number. There is a matrix 
analogue to this, the identity matrix. The identity matrix is commonly written as I. If a matrix  
is multiplied by the identity matrix, the result is the original matrix .

In the identity matrix, all non-diagonal elements are 0, while all diagonal elements are one 
. The identity matrix looks like this:

Getting ready
Because the identity matrix has no effect on multiplication, by convention it is the default 
value for all matrices. We're going to add two constructors to every matrix struct. One of 
the constructors is going to take no arguments; this will create an identity matrix. The other 
constructor will take one float for every element of the matrix and assign every element inside 
the matrix. Both constructors are going to be inline.
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How to do it…
Follow these steps to add both a default and overloaded constructors to matrices:

1. Add the default inline constructor to the mat2 struct:
inline mat2() { 
    _11 = _22 = 1.0f;
    _12 = _21 = 0.0f;
}

2. Add the default inline constructor to the mat3 struct:
inline mat3() {
    _11 = _22 = _33 = 1.0f;
    _12 = _13 = _21 = 0.0f;
    _23 = _31 = _32 = 0.0f;
}

3. Add the default inline constructor to the mat4 struct:
inline mat4() {
    _11 = _22 = _33 = _44 = 1.0f;
    _12 = _13 = _14 = _21 = 0.0f;
    _23 = _24 = _31 = _32 = 0.0f;
    _34 = _41 = _42 = _43 = 0.0f;
}

4. Add a constructor to the mat2 struct that takes four floating point numbers:
inline mat2(float f11, float f12,
            float f21, float f22) {
    _11 = f11; _12 = f12;
    _21 = f21; _22 = f22;
}

5. Add a constructor to the mat3 struct that takes nine floating point numbers:
inline mat3(float f11, float f12, float f13,
            float f21, float f22, float f23,
            float f31, float f32, float f33) {
    _11 = f11; _12 = f12; _13 = f13;
    _21 = f21; _22 = f22; _23 = f23;
    _31 = f31; _32 = f32; _33 = f33;
}
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6. Add a constructor to the mat4 struct that takes 16 floating point numbers:
inline mat4(float f11, float f12, float f13, float f14,
            float f21, float f22, float f23, float f24,
            float f31, float f32, float f33, float f34,
            float f41, float f42, float f43, float f44) {
    _11 = f11; _12 = f12; _13 = f13; _14 = f14;
    _21 = f21; _22 = f22; _23 = f23; _24 = f24;
    _31 = f31; _32 = f32; _33 = f33; _34 = f34;
    _41 = f41; _42 = f42; _43 = f43; _44 = f44;
}

How it works…
Let's explore how the identity matrix works. Suppose we want to multiply the following matrices:

Let's find the value of  by taking the dot product of row 3 of the identity matrix (0,0,1) and 
column 2 of the other matrix(7,2,6):

The result is the original value of 6! This happens because any given row or column of the 
identity matrix is going to have two 0 components and one 1 component. As seen in the 
preceding snippet, the dot product eliminated components with a value of 0.

Determinant of a 2x2 matrix
Determinants are useful for solving systems of linear equations; however, in the context 
of a 3D physics engine, we use them almost exclusively to find the inverse of a matrix. The 
determinant of a matrix M is a scalar value, it's denoted as .The determinant of a matrix  
is the same as the determinant of its transpose .
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We can use a shortcut to find the determinant of a 2 X 2 matrix; subtract the product of the 
diagonals. This is actually the manually expanded form of Laplace Expansion; we will cover 
the proper formula in detail later:

            

One interesting property of determinants is that the determinant of the inverse of a matrix is 
the same as the inverse determinant of that matrix:

Finding the determinant of a 2 X 2 matrix is fairly straightforward, as we have already 
expanded the formula. We're just going to implement this in code.

How to do it…
Follow these steps to implement a function which returns the determinant of a 2 X 2 matrix:

1. Add the declaration for the determinant function to matrices.h:
float Determinant(const mat2& matrix);

2. Add the implementation for the determinant function to matrices.cpp:
float Determinant(const mat2& matrix) {
    return matrix._11 * matrix._22 –
           matrix._12 * matrix._21;
}

How it works…
Every square matrix has a determinant. We can use the determinant to figure out whether a 
matrix has an inverse or not. If the determinant of a matrix is non-zero, then the matrix has an 
inverse. If the determinant of a matrix is zero, then the matrix has no inverse.

Matrix of minors
Each element of a matrix has a minor. The minor is the determinant of a smaller matrix  
cut from the original matrix. We can find a matrix of minors by finding the minor for each 
element of a matrix.
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To find the minor of element i, j in a 3 X 3 matrix M, remove row i and column j of the matrix. 
The determinant of the resulting 2 X 2 matrix is the minor of element .

We can find the minor of a 2 X 2 matrix in a similar fashion. To find the minor of element i, j, 
remove row i and column j. The remaining scalar is the determinant. In the case of a 2 X 2 
matrix, this determinant is the minor.

Getting ready
We're going to implement a helper function, Cut. The purpose of this function is to cut a 2 X 2 
matrix from a 3 X 3 by eliminating one row and one column. Once we have the Cut function, 
implementing the Minor for a 3 X 3 matrix is straightforward: loop through the matrix, for 
every element assign the determinant of a 2 X 2 acquired by cutting the elements row and 
column from the original matrix.

How to do it…
Follow these steps to implement the minor function for two and three dimensional square 
matrices. We also create a generic function to remove a row and column from a three 
dimensional matrix:

1. Add the declaration for both the Cut and Minor functions to matrices.h:
mat2 Cut(const mat3& mat, int row, int col);
mat2 Minor(const mat2& mat);
mat3 Minor(const mat3& mat);

2. Implement the Cut function in matrices.cpp. This function will loop over the 
provided mat3, skipping the specified row and column. Anything not skipped is  
going to be copied into a mat2:
mat2 Cut(const mat3& mat, int row, int col) {
    mat2 result;
    int index = 0;

    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < 3; ++j) {
            if (i == row || j == col) {
                continue;
            }
            int target = index++;
            int source = 3 * i + j;
            result.asArray[target] = mat.asArray[source];
        }
    }



Matrices

46

    return result;
}

3. Implement the Minor function for mat3 in matrices.cpp:
mat3 Minor(const mat3& mat) {
    mat3 result;

    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < 3; ++j) {
            result[i][j] = Determinant(Cut(mat, i, j));
        }
    }
 
    return result;
}

4. Implement the Minor function for mat2 in matrices.cpp:
mat2 Minor(const mat2& mat) {
    return mat2(
        mat._22, mat._21,
        mat._12, mat._11
    );
}

How it works…
Using row and column elimination to find the minor of a matrix makes a lot more sense if we 
can visualize what is happening. Let's take a look at two examples, one using a 2 X 2 matrix 
and one using a 3 X 3 matrix.

Minor of a 2x2 matrix

Given the above matrix, we can find the minor for element 1, 1 by eliminating the first row 
and first column of the matrix. To demonstrate the elimination of a row and column, we write 
squares instead of numbers for the eliminated matrix components. The following matrix shows 
which components we eliminated to get a 1 X 1 matrix as a result:
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We're left with the scalar D. If we think of D as a 1 X 1 matrix, its determinant is itself. We 
can now put the determinant D into element 1, 1 of the matrix of minors. If we find the 
determinant for every element we will have the matrix of minors:

Minor of a 3x3 matrix

Given the above matrix, let's find the minor for element 3,2. We begin by eliminating the third 
row and second column of the matrix:

The determinant of the resulting 2 X 2 matrix is the minor of element 3,2:

If we repeat this process for every element of the matrix, we will find the matrix of minors. For 
the preceding matrix M, the matrix of minors is as follows:
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Cofactor
To get a cofactor of matrix, you first need to find the matrix of minor for that matrix. Given 
matrix M, find the cofactor of element  and multiply the minor of that element by -1  
raised to the  power:

Getting ready
We're going to create a generic function that will find the matrix of cofactors for any sized 
matrix, given the matrix of minors. We're going to call this generic Cofactor function from 
more specific Cofactor functions for 2 X 2 and 3 X 3 matrices.

How to do it…
Follow these steps to implement a generic cofactor function which will work on matrices of any 
size. We will use this generic function to implement the specific two and three dimensional 
square matrix cofactor functions:

1. Declare all versions of the Cofactor function in matrices.h:
void Cofactor(float* out, const float* minor, 
   int rows, int cols);
mat3 Cofactor(const mat3& mat);
mat2 Cofactor(const mat2& mat);

2. Implement the generic Cofactor function in matrices.cpp:
void Cofactor(float* out, const float* minor, 
int rows, int cols) {
    for (int i = 0; i < rows; ++i) {
        for (int j = 0; j < cols; ++j) {
           int t = cols * j + i; // Target index
           int s = cols * j + i; // Source index
           float sign = powf(-1.0f, i + j); // + or –
           out[t] = minor[s] * sign;
        }
    }
}
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3. Implement the 2 X 2 and 3 X 3 Cofactor function in matrices.cpp. These 
functions just call the generic Cofactor function with the proper arguments:
mat2 Cofactor(const mat2& mat) {
    mat2 result;
    Cofactor(result.asArray, Minor(mat).asArray, 2, 2);
    return result;
}

mat3 Cofactor(const mat3& mat) {
    mat3 result;
    Cofactor(result.asArray, Minor(mat).asArray, 3, 3);
    return result;
}

How it works…

If we calculate the value of  for every element of a matrix, you will notice it creates a 
checkered pattern. This is because a negative number to an even power results in a positive 
number, where a negative number to an odd power remains negative:

                      

An easy way to remember how to calculate the cofactor matrix is to apply this checkered 
positive/negative pattern to the matrix of minors.

Determinant of a 3x3 matrix
We can find the determinant of any matrix through Laplace Expansion. We will be using this 
method to find the determinant of 3 X 3 and higher order matrices. We also used this method 
to find the determinant of 2 X 2 matrices; we just expanded the method by hand for that 
function to avoid looping:
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To follow the formula, we loop through the first row of the matrix and multiply each element 
with the respective element of the cofactor matrix. Then, we sum up the result of each 
multiplication. The resulting sum is the determinant of the matrix.

Using the first row is an arbitrary choice. You can do this equation on any row of the matrix 
and get the same result.

Getting ready
In order to implement this in code, first find the cofactor of the input matrix. Once we have a 
cofactor matrix, sum the result of looping through the first row and multiply each element by 
the same element in the cofactor matrix.

How to do it…
Follow these steps to implement a function which returns the determinant of a 3 X 3 matrix:

1. Add the declaration of the 3 X 3 determinant function to matrices.h:
float Determinant(const mat3& mat);

2. Implement the 3 X 3 determinant function in matrices.cpp:
float Determinant(const mat3& mat) {
    float result = 0.0f;
    mat3 cofactor = Cofactor(mat);
    for (int j = 0; j < 3; ++j) {
       int index = 3 * 0 + j;
       result += mat.asArray[index] * cofactor[0][j];
    }
    return result;
}

How it works…
Let's explore how Laplace Expansion works by following it through on the matrix M:
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For every element in the first row, we eliminate the row and column of the element. This will 
leave us with a 2 X 2 matrix for each element:

                      

= B

We then multiply each element by the cofactor of the resulting 2 X 2 matrix. The cofactor is 
the determinant of the 2 X 2 matrix, multiplied by , where i is the row of the element  
and j is the column of the element. Summing up the results of these multiplications yields  
the determinant of the matrix:

We can simplify the preceding equation to the final 3 X 3 determinant formula:

Operations on a 4x4 matrix
We know how to find the minor, cofactor, and determinant of 2 X 2 and 3 X 3 matrices. In this 
section, we're going to implement those functions for a 4 X 4 matrix. We begin with the matrix 
of minors. The process for finding the minor of element i, j in a 4 X 4 matrix is the same as it 
was for a 3 X 3 matrix. We eliminate row i and column j of the matrix, the determinant of the 
resulting 3 X 3 matrix is the minor for element i, j.

Next, we find the cofactor. To find the cofactor we just follow the same formula we did for  
the 3 X 3 matrix:
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To get the cofactor of element i, j, we take the minor of that element and multiply it by 
. Finally, we have to find the determinant of the matrix. Again, we do this by following the same 
formula we used for the 3 X 3 matrix:

To find the determinant, we loop through any row of the matrix and sum up the result of 
multiplying each of the elements in the row by their respective cofactor. You only need to loop 
through one row, and which row it is does not matter. By convention i will loop through the first 
row in this book.

Getting ready
In order to find the minor of a 4 X 4 matrix, we have to implement a Cut function. This 
function will cut a 3 X 3 matrix from a 4 X 4 matrix by eliminating a row and a column. This will 
work similarly to the Cut function we already implemented that cuts a 2 X 2 matrix from a 3 X 
3 matrix. Once the Cut function is created, the rest of the functions will be easy to implement; 
they will be very similar to their 3 X 3 matrix counterparts.

How to do it…
Follow these steps to write the 4 X 4 versions of the Cut, Minor, Cofactor and 
Determinant functions which we already implemented for 3 X 3 matrices:

1. Add the declaration for all the 4 X 4 matrix functions we need to implement  
to matrices.h:
mat3 Cut(const mat4& mat, int row, int col);
mat4 Minor(const mat4& mat);
mat4 Cofactor(const mat4& mat);
float Determinant(const mat4& mat);

2. Let's first implement the Cut function. This function is going to cut a 3 X 3 matrix 
from a 4 X 4 matrix by eliminating one row and one column:
mat3 Cut(const mat4& mat, int row, int col) {
    mat3 result;
    int index = 0;

    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 4; ++j) {
            if (i == row || j == col) {
                continue;
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            }
            int target = index++;
            int source = 4 * i + j;
            result.asArray[target] = mat.asArray[source];
        }
    }

    return result;
}

3. Using the newly created Cut function, implement the 4 X 4 version of the Minor 
function in matrices.cpp:
mat4 Minor(const mat4& mat) {
    mat4 result;

    for (int i = 0; i <4; ++i) {
        for (int j = 0; j <4; ++j) {
            result[i][j] = Determinant(Cut(mat, i, j));
        }
    }

    return result;
}

4. With the newly created Minor function, we can create the 4 X 4 version of the 
Cofactor function. Like its 3 X 3 counterpart, this function is going to call the 
generic Cofactor function with appropriate arguments:
mat4 Cofactor(const mat4& mat) {
    mat4 result;
    Cofactor(result.asArray, Minor(mat).asArray, 4, 4);
    return result;
}

5. Finally, implement the 4 X 4 determinant function in matrices.cpp:
float Determinant(const mat4& mat) {
    float result = 0.0f;

    mat4 cofactor = Cofactor(mat);
    for (int j = 0; j < 4; ++j) {
        result += mat.asArray[4 * 0 + j] * cofactor[0][j];
    }

    return result;
}
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How it works…
The minor, cofactor, and determinant functions of a 4 X 4 matrix follow the same formula as 
those of a 3 X 3 and 2 X 2 matrix. If the formulas are the same, why did we wait until now to 
implement the 4 X 4 versions of these functions, instead of implementing them earlier with 
the lower order versions? Because these functions are mathematically recursive.

In order to find the determinant of a 4 X 4 matrix, you need to know its cofactor. In order to 
find the cofactor of a 4 X 4 matrix, you need to know its minor. In order to find the minor of 
a 4 X 4 matrix, you need to be able to solve the determinant of a 3 X 3 matrix. This pattern 
continues until you need to be able to find the determinant of a 2 X 2 matrix! The formulas 
we've covered so far will work for any higher order matrix, so long as you know how to solve 
them for all lower order matrices.

Adjugate matrix
The adjugate of any order matrix is the transpose of its cofactor matrix. The adjugate is 
sometimes referred to as adjoint:

Getting ready
We already know how to take the cofactor of a matrix and how to transpose the matrix. 
Implementing the adjugate function is as easy as calling our existing cofactor and  
transpose functions.

How to do it…
Follow these steps to implement functions which return the adjugate matrix of two, three and 
four dimensional square matrices:

1. Add the declaration for adjugate for all three matrices to matrices.h:
mat2 Adjugate(const mat2& mat);
mat3 Adjugate(const mat3& mat);
mat4 Adjugate(const mat4& mat);

2. Implement all three of the adjugate functions in matrices.cpp:
mat2 Adjugate(const mat2& mat) {
    return Transpose(Cofactor(mat));
}
mat3 Adjugate(const mat3& mat) {
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    return Transpose(Cofactor(mat));
}
mat4 Adjugate(const mat4& mat) {
    return Transpose(Cofactor(mat));
}

How it works…
The adjugate matrix utilizes two functions, which we already covered earlier: the transpose 
function, which swaps a matrices rows with its columns, and the cofactor function. Recall  
that the cofactor of element i, j is the minor of the element multiplied by  .

Matrix inverse
The inverse of matrix M is denoted as . Multiplying a matrix by its inverse will result in 
the identity matrix. Not every matrix has an inverse. Only matrices with a non-zero determinant 
have an inverse. Finding the inverse of a matrix is one of the more expensive operations we 
are going to perform.  However, not every matrix has an inverse! Only square matrices with a 
non-zero determinant have an inverse.

To find the inverse of a matrix, first find the inverse of its determinant . If this scalar 
is zero, the matrix has no inverse. If it's non-zero, perform a component wise scalar 
multiplication of the inverse determinant and the adjugate of the matrix:

Getting ready
Having already implemented both the Determinant and Adjugate functions, all we have to 
do is make sure the matrix actually has an inverse. We do this by checking the determinant 
against 0, using the CMP macro we copied over from vectors.cpp. If the determinant is 0, 
we just return the identity matrix. Doing so prevents us from triggering a possible divide by 0 
exception.
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How to do it…
Follow these steps to implement a function which returns the inverse of two, three and four 
dimensional square matrices:

1. Add the declaration for the inverse functions to matrices.h:
mat2 Inverse(const mat2& mat);
mat3 Inverse(const mat3& mat);
mat4 Inverse(const mat4& mat);

2. Implement these functions in matrices.cpp:
mat2 Inverse(const mat2& mat) {
    float det = Determinant(mat);
    if (CMP(det, 0.0f)) { return mat2(); }
    return Adjugate(mat) * (1.0f / det);
}
mat3 Inverse(const mat3& mat) {
    float det = Determinant(mat);
    if (CMP(det, 0.0f)) { return mat3(); }
    return Adjugate(mat) * (1.0f / det);
}
mat4 Inverse(const mat4& mat) {
    float det = Determinant(mat);
    if (CMP(det, 0.0f)) { return mat4(); }
    return Adjugate(mat) * (1.0f / det);
}

How it works…
Finding the inverse of a matrix comes down to two functions we have already implemented; 
Determinant and Adjugate. The reason only matrices with a non-zero determinant have 

an inverse is this part of the inverse equation: . If the determinant of the matrix were 0,  
we would have a divide by 0 to deal with. Because division by 0 is undefined, so is the inverse 
of any matrix that has a determinant of 0.

There's more…
Loops in code are expensive! To a much lesser extent, so are function calls. Our matrix inverse 
function heavily relies on both! Inverting a 4 X 4 matrix is such a common operation; you 
should really consider expanding this function. You've already seen an expanded function,  
the determinant of a 2 X 2 matrix.



Chapter 2

57

Expanding the inverse
Expanding a function is just a fancy way of saying we're planning to unroll all loops and write 
out every operation the computer has to do in a linear fashion. For the 2 X 2 matrix, the 
expanded code looks like this:

mat2 Inverse(const mat2& mat) {
    float det = mat._11 * mat._22 - mat._12 * mat._21;
    if (CMP(det, 0.0f)) { 
        return mat2(); 
    }
    mat2 result;
    float i_det = 1.0f / det;     //To avoid excessive division
    result._11 =  mat._22 * i_det;//Do reciprocal multiplication
    result._12 = -mat._12 * i_det;
    result._21 = -mat._21 * i_det;
    result._22 =  mat._11 * i_det;
    return result;
}

Expanding 4 X 4 matrix multiplication would take almost two pages of text; instead of 
including it here, I've gone ahead and included it in the downloadable code for this book.
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3
Matrix Transformations

In the previous chapter, we covered what matrices are and how to perform some basic 
arithmetic on matrices. In this chapter, we are going to cover how to use matrices to  
represent transformations in a three-dimensional space. The topics of this chapter are:

 f Matrix majors

 f Translation

 f Scaling

 f How rotation works

 f Rotation matrices

 f Axis angle rotation

 f Vector matrix multiplication

 f Transform matrix

 f View matrix

 f Projection matrix

Introduction
From the last chapter, we know what matrices are. It's time to explore how to use matrices. 
Matrices are often used to transform objects from one space to another. In this chapter,  
we are going to look at how we can use a 3 X 3 matrix to represent three-dimensional  
rotation, as well as how we can use a 4 X 4 matrix to represent three-dimensional translation, 
rotation, and scale.
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The matrix library we are developing is going to use row major 
notation. Most math text and online videos use column major 
notation. It's very important to keep this in mind if you are 
following any additional online resources. We will discuss the 
difference between major notations in this chapter.

Matrix majors
When we talk about a 4 X 4 matrix containing translation, rotation, and scale, it's important 
to realize that all of that information lives somewhere in the matrix. The following figure 
demonstrates how data is packed into the components of a 4 X 4 matrix:

The preceding figure demonstrates how data is packed into a Row Major matrix. This is called 
a Row Major Matrix because all three of the rotation basis vectors, as well as the translation 
vecto, are stored in the rows of the matrix. There is another notation to store the same data in 
a 4 X 4 matrix: Column Major notation. The following figure demonstrates how the same data 
is stored in a Column Major matrix:
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It is important to note that the indexing of the matrix did not change between the row and 
column major notations. This is because the major of a matrix does not affect the definition 
of what a matrix is! The only thing the major of a matrix describes is in which elements the 
rotation, translation, and scaling data are stored. With a Row Major matrix the data is stored 
in rows; with a Column Major matrix the data is stored in columns.

We have to choose a major for our matrix class, it's important to define whether we are 
working with Row Major or Column Major matrices. For me, this choice comes down to 
memory layout. The rotation basis vectors: X-Rotation Axis, Y-Rotation Axis, and Z-Rotation Axis 
should be laid out linearly in memory. The easiest way to do this is to use a Row Major Matrix. 
This decision means our matrix will conceptually look like this:

The matrix will be laid out in a linear array of memory, like so:

float linear[] = { 11, 12, 13, 14, 21, 22, 23, 24, 
                   31, 32, 33, 34, 41, 42, 43, 44 };
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You may have noticed that converting between a row and column major matrix is a matter of 
transposing the matrix.

Direct X and OpenGL have caused a lot of confusion when it comes to 
matrices in video games. Conceptually, Direct X is row major, while OpenGL 
is column major. However, physically in memory both API's are laid out the 
same way. This is because Direct-X stores matrices row by row in memory, 
while OpenGL stores matrices column by column in memory. As a result, 
our matrix library is compatible with both! The .asArray accessor for the 
matrix class will work with both API's.

Translation
Translation is stored as a three-dimensional vector inside a 4 X 4 matrix. The translation 
component of the matrix describes how much to move an object on each axis. Because  
we decided to use Row Major matrices, translation is stored in elements 41, 42, and 43  
of the matrix:

Getting Ready
We're going to implement three functions: one to retrieve the translation already stored inside 
a 4 X 4 matrix, one to return a translation matrix given x, y, and z components, and one to 
return a translation matrix given the same x, y, and z components packed inside a vec3. 
When building any type of matrix, we start with the identity matrix and modify elements. We 
do this because the identity matrix has no effect on multiplication. The unused elements of 
a translation matrix should not affect rotation or scale; therefore we leave the first three rows 
the same as the identity matrix.

How to do it…
Follow these steps to set and retrieve the translation of a matrix:

1. Add the declaration for all of the translation functions to matrices.h:
mat4 Translation(float x, float y, float z);
mat4 Translation(const vec3& pos);
vec3 GetTranslation(const mat4& mat);
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2. Implement the functions that create 4 X 4 matrices in matrices.cpp. Because this 
matrix has no rotation, we start with the identity matrix and fill in only the elements 
related to translation:
mat4 Translation(float x, float y, float z) {
   return mat4(
      1.0f, 0.0f, 0.0f, 0.0f,
      0.0f, 1.0f, 0.0f, 0.0f,
      0.0f, 0.0f, 1.0f, 0.0f,
      x,    y,    z,    1.0f
   );
}

mat4 Translation(const vec3& pos) {
   return mat4(
      1.0f, 0.0f, 0.0f, 0.0f,
      0.0f, 1.0f, 0.0f, 0.0f,
      0.0f, 0.0f, 1.0f, 0.0f,
      pos.x,pos.y,pos.z,1.0f
   );
}

3. Implement the function that retrieves the translation component of a 4 X 4 matrix in 
matrices.cpp:

vec3 GetTranslation(const mat4& mat) {
   return vec3(mat._41, mat._42, mat._43);
}

How it works…
Both Translation functions return a new 4 X 4 matrix. This matrix is the identity  
matrix, with translation information stored in elements 41, 42, and 43. We start off with  
the identity matrix because we don't want the translation matrix to affect rotation or scale.  
The GetTranslation function just needs to return elements 41, 42, and 43 packed into  
a vec3 structure.
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Scaling
The scale of a matrix is stored in the main diagonal of the matrix. The scale is stored as a 
vec3. Each element of the vec3 represents the scale on the corresponding axis. Row and 
Column major matrices store scale information in the same elements:

The interesting thing with storing scale inside a matrix is that it shares some of the same 
elements as the rotation part of the matrix. Because of this, extracting the scale of a matrix 
may not always yield the numbers you would expect.

Getting ready
We're going to implement three functions. One function will retrieve the scale stored inside a 
matrix. The other two will return a new matrix, containing only the specified scale.

How to do it…
Follow these steps to set and retrieve the scale of a matrix:

1. Add the declaration for all scaling functions to matrices.h:
mat4 Scale(float x, float y, float z);
mat4 Scale(const vec3& vec);
vec3 GetScale(const mat4& mat);

2. Implement the functions that create a 4 X 4 matrix out of scaling information in 
matrices.cpp:
mat4 Scale(float x, float y, float z) {
   return mat4(
       x,    0.0f, 0.0f, 0.0f,
       0.0f,    y, 0.0f, 0.0f,
       0.0f, 0.0f,    z, 0.0f,
       0.0f, 0.0f, 0.0f, 1.0f
   );
}

mat4 Scale(const vec3&vec) {
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   return mat4(
       vec.x,  0.0f, 0.0f, 0.0f,
       0.0f, vec.y,0.0f, 0.0f,
       0.0f, 0.0f, vec.z,0.0f,
       0.0f, 0.0f, 0.0f, 1.0f
   );
}

3. Implement the function to retrieve scaling from a 4 X 4 matrix in matrices.cpp.

vec3 GetScale(const mat4& mat) {
   return vec3(mat._11, mat._22, mat._33);
}

How it works…
Both of the Scale functions create a new matrix by placing the scaling values into the main 
diagonal of the identity matrix. The GetScale function retrieves the main diagonal of the 
matrix packed into a vec3. If a matrix contains scale and rotation information, the result of 
the GetScale function might not be what you expect.

How rotations work
A three-dimensional rotation can be expressed as three individual rotations, one around the 
X Axis, one around the Y Axis, and one around the Z Axis. The smallest matrix we can use to 
store this type of rotation is a 3 X 3 matrix. When storing rotation in a larger 4 X 4 matrix, we 
store rotations in its upper 3 X 3 sub-matrix.

The 3 X 3 Rotation Matrix is composed of three vectors that represent each axis of the 
coordinate system of the matrix. These vectors are called the basis vectors. The basis vectors 
are stored row or column wise depending on the major of the matrix. We use a 3 X 3 matrix 
to store three-dimensional rotation data; it is not the only function of a 3 X 3 matrix. We will 
discuss different uses of 3 X 3 matrices later in the book:
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The orientation of this 3 X 3 matrix can be expressed by some combination of yaw, pitch, and 
roll. Yaw represents rotation around the objects, local Perpendicular Axis, the Y-Axis. Pitch is 
the rotation around the object's local Lateral Axis, the X-Axis. Roll is the rotation around the 
object's local Longitudinal Axis, the Z-Axis:

To get a complete rotation, we combine yaw, pitch, and roll into one matrix using matrix 
multiplication. With this method each axis is rotated in succession. That means each rotation 
affects the axis of the previous rotations. Because of this it is possible for two or more axes 
axis to align, causing a loss in degree of rotational freedom. This is known as Gimbal Lock:

In the preceding figure, the regular rotation rotates the object 45 degrees on its X Axis; this 
only affects the object in terms of its Pitch. Next, the object is rotated 45 degrees on its Y 
Axis. This rotation affects the plane object in terms of both its Yaw and Pitch. Finally, the 
object is rotated 45 degrees on its Z Axis. This final rotation affects the object in terms of 
Yaw, Pitch, and Roll. Each rotation affects the previous rotation.
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The same figure also demonstrated a Gimbal Lock. For the Gimbal Lock to happen, the 
object is rotated 90 degrees around its X Axis. This rotation only affects the object in terms of 
Pitch. Next, the object is rotated 90 degrees around its Y Axis. This affects the object in terms 
of Yaw and Pitch. This is where the Gimbal Lock happens. The change in Yaw aligned the 
objects Pitch and Roll to be on the same Axis! We can no longer change the Pitch or Roll of 
the object independently. At this point we have lost a degree of rotational freedom.

As long as we use Euler angles there no solution to Gimbal Lock. We can use an axis angle 
matrix representation, which does not rely on Euler angles, to avoid Gimbal Lock. Angle Axis 
matrices will be described later in this chapter.

Getting ready
We're going to implement a Rotation function that will take three Euler angles that 
represent rotation around each axis. The Rotation function will call three helper functions: 
XRotation, YRotation, and ZRotation. These helper functions will be implemented in 
the next section. Because a three-dimensional rotation can be represented in a 3 X 3 or a 4 X 
4 matrix, we need to implement separate methods to generate each.

How to do it…
Follow these steps to create a rotation matrix using Euler angles on each axis:

1. Add the rotation function declarations to matrices.h:
mat4 Rotation(float pitch, float yaw, float roll);
mat3 Rotation3x3(float pitch, float yaw, float roll);

2. Implement the rotation functions in matrices.cpp:

mat4 Rotation(float pitch, float yaw, float roll) {
   return  ZRotation(roll) * 
           XRotation(pitch) * 
           YRotation(yaw);
}
mat3 Rotation3x3(float pitch, float yaw, float roll) {
   return  ZRotation3x3(yaw) *
           XRotation3x3(pitch) * 
           YRotation3x3(yaw);
}
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How it works…
The preceding code creates a rotation matrix by combining rotations around the Z-Axis first, 
X-Axis second, and Y-Axis last. Because we are representing rotation using Euler angles 
here, Gimbal Lock is a possible problem. As mentioned earlier, the individual XRotation, 
YRotation, and ZRotation functions will be described in the next section.

This rotation order mimics the D3DX YawPitchRoll 
function. We implemented the Rotation function for both 
3 X 3 and 4 X 4 matrices because either matrix could 
represent a three-dimensional rotation.

Rotation matrices
Rotation about any axis is a linear transformation. Any linear transformation can be 
expressed using a matrix. To represent a three-dimensional rotation we need a 3 X 3 or a 4 
X 4 matrix. In this section, we are going to derive a matrix that represents rotation around 

the Z-Axis by some angle theta. This matrix will be used to transform a vector  into a 
rotated version of that vector, .The new vector will be the result of rotating the original 
vector around the Z-Axis. After we derive the matrix which rotates around the Z-Axis, rotation 
matrices for the X-Axis and Y-Axis will be discussed as well.

 is the result of rotation vector  by some angle  around the Z-Axis. We can represent 
this rotation in terms of matrix Z; this can be expressed with the following formula:
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The definition of this rotation matrix, Z, is given. We will go into detail about how to derive this 
matrix in the How it works section:

To use the rotation matrix, simply plug in the numbers for theta and evaluate. For example, if 
you want to create a matrix that represents a 45 degree rotation about the Z-Axis, this matrix 
will become:

Getting ready
The C library functions cosf and sinf take radians, not degrees. Before calling these 
functions, we have to convert the argument from degrees to radians. We can do this using  
the DEG2RAD macro we created when working with vectors. Creating the actual matrix 
becomes a matter of putting the right functions in the correct elements of the resulting matrix.

To review, one degree is 0.0174533 radians. We defined the DEG2RAD macro in  
Chapter 1, Vectors as follows.

#define DEG2RAD(x) ((x) * 0.0174533f)

How to do it…
Follow these steps below to create rotation matrices around each primary axis:

1. Add the declaration of the ZRotation and ZRotation3x3 functions to 
matrices.h:
mat4 ZRotation(float angle);
mat3 ZRotation3x3(float angle);

2. Implement the ZRotation function in matrices.cpp:
mat4 ZRotation(float angle) {
   angle = DEG2RAD(angle);
   return mat4(
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       cosf(angle), sinf(angle), 0.0f, 0.0f,
       -sinf(angle), cosf(angle), 0.0f, 0.0f,
       0.0f, 0.0f, 1.0f, 0.0f,
       0.0f, 0.0f, 0.0f, 1.0f
   );
}

3. Implement the ZRotation3x3 function in matrices.cpp:
mat3 ZRotation3x3(float angle) {
   angle = DEG2RAD(angle);
   return mat3(
       cosf(angle), sinf(angle), 0.0f,
       -sinf(angle), cosf(angle), 0.0f,
       0.0f, 0.0f, 1.0f
   );
}

4. Deriving the ZRotation function will be covered in the How it works… section.  
The There's more… section will cover how to derive rotation around the X-Axis  
and Y-Axis. However, because these functions will be used throughout this book 
we need to write the code for them first. Declare the XRotation and YRotation 
functions in matrices.h:
mat4 XRotation(float angle);
mat3 XRotation3x3(float angle);
mat4 YRotation(float angle);
mat3 YRotation3x3(float angle);

5. Implement the XRotation function in matrices.cpp:
mat4 XRotation(float angle) {
   angle = DEG2RAD(angle);
   return mat4(
       1.0f, 0.0f, 0.0f, 0.0f,
       0.0f, cosf(angle), sinf(angle), 0.0f,
       0.0f, -sinf(angle), cos(angle), 0.0f,
       0.0f, 0.0f, 0.0f, 1.0f
   );
}
mat3 XRotation3x3(float angle) {
   angle = DEG2RAD(angle);
   return mat3(
       1.0f, 0.0f, 0.0f,
       0.0f, cosf(angle), sinf(angle),
       0.0f, -sinf(angle), cos(angle)
   );
}
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6. Implement the YRotation function in matrices.cpp:

mat4 YRotation(float angle) {
   angle = DEG2RAD(angle);
   return mat4(
      cosf(angle), 0.0f, -sinf(angle), 0.0f,
      0.0f,         1.0f, 0.0f,         0.0f,
      sinf(angle), 0.0f, cosf(angle), 0.0f,
      0.0f,         0.0f, 0.0f,         1.0f
   );
}
mat3 YRotation3x3(float angle) {
   angle = DEG2RAD(angle);
   return mat3(
      cosf(angle), 0.0f, -sinf(angle),
      0.0f,         1.0f, 0.0f,
      sinf(angle), 0.0f, cosf(angle)
   );
}

How it works…
Because we are dealing with a linear transformation, if we take the identity matrix and apply 
the same rotation to each of its basis vectors, we can find the rotation matrix Z:

Let's explore how to derive the rotation matrix one basis vector at a time. Keep in mind that 
we are deriving a matrix that rotates around the Z-Axis. What we are trying to do is find the 
explicit form of each basis vector so that we end up with the following matrix:
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X-Basis vector
We are going to apply some rotation  to the identity matrix one axis at a time. We will start 
with the X-Axis, whose value is the X-Basis vector: (1,0,0). This means we are trying to find the 
first row vector in the above matrix, . We start by drawing the X-Basis vector, and 
also drawing the same X-Basis vector rotated by some angle :

Visually, we can see that this rotation will not change the Z Component of the X-Basis vector. 
But the rotation will change the vector's X Component and Y Component:

These new components form a right triangle. The hypotenuse of the triangle is the length of 
the rotated X-Basis vector. Because a basis vector has unit length, the length rotated vector is 
1. Rotating a vector does not change its length. Therefore the length of the hypotenuse is 1. 
The adjacent side of this right triangle is our rotated vector's X Component, and the opposite 
side of the triangle is the rotated vector's Y Component:
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Looking at this right angle, the hypotenuse is known. This means we can use the trigonometric 
functions Sin and Cos to find the values of the X Component and Y Component of the rotated 
vector. Looking at the definition for cosine with regard to a right triangle:

We know that the hypotenuse is 1. The preceding example can be rewritten as follows:

Of course, anything divided by 1 is itself, which leaves us with:

This means the length of the adjacent side of the triangle, the X Component of the rotated 
vector, is simply the cosine of angle theta! Similarly, we can use the sine function to find  
the Y Component:
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Substituting 1 for the hypotenuse, we're left with a similar formula: . This 
means the length of the opposite side of the triangle, the Y Component of the rotated vector, 
is the sine of angle theta.

Rotating the X-Basis vector around the Z-Axis did not change the Z Component of the  
vector. The rotated X Component is , the rotated Y component is , and the  
rotated Z component did not change, (it's 0). Knowing this, we can fill in the X-Basis vector  
of the rotation matrix:

Y-Basis vector
We can repeat the same process for the Y-Axis. We will draw the Y-Basis vector and also 
draw the Y-Basis vector rotated by some angle theta. Notice that this rotation changes the X 
Component and Y Components of the vector, but not its Z Component. Like before, we can 
find the X Component and Y Components of the rotated basis vector using the trig functions 
sin and cos:

Notice that the rotated X Component is on the negative side of the coordinate system! This 
means the rotated X Component will be negative! The rotated vector's X Component is the 
negative sine of theta, its Y Component is the cosine of theta, and the Z component does  
not change so it stays at 0. Knowing these values, we can now fill in the Y-Basis vector of  
the rotation matrix:
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Z-Basis vector
Finally, if we repeat the process around the Z-Axis.... Nothing happens. The Z-Basis vector 
points unit length in the Z Direction; rotating about the Z-Axis will yield the same vector:

Since the Z-Basis Vector does not change when rotated around the Z-Axis we can fill in the 
rotation matrix with just the normal basis vector. This completes the rotation matrix:

There's more…
The mnemonic SOH-CAH-TOA is often used to remember the trigonometric functions with 
regards to a right triangle. The first letter of each segment represents the trig functions.  
The next two letters represent a fraction with the properties of a triangle:

SOH CAH TOA
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X and Y rotation
The same method we used to derive rotation about the Z-Axis can be used to derive rotations 
around the X-Axis and Y-Axis. The matrices for each of these rotations are as follows:

Functions to generate both X and Y rotation matrices have been implemented in the  
How to do it… section.

Axis angle rotation
As discussed earlier, we can combine yaw, pitch, and roll using matrix multiplication to create 
a complete rotation matrix. Creating a rotation matrix by performing each rotation sequentially 
introduces the possibility of a Gimbal Lock.

We can avoid that Gimbal Lock if we change how a rotation is represented. Instead of using 
three Euler angles to represent a rotation, we can use an arbitrary axis, and some angle to 
rotate around that axis.

Given axis , we can define a matrix that will rotate some angle  around that axis:

 

Where  and XYZ = Arbitrary Axis (unit length). We will explore 
how this matrix is derived in the How it works… section.

Getting ready
Like before, we are going to implement two versions of this function. One version will return a 
4 X 4 matrix; the other will return a 3 X 3 matrix. To avoid having to constantly calculate sin 
and cos, we're going to create local variables for c, s, and t. The axis being passed in does 
not have to be normalized. Because of this we have to check the length of the vector, and 
possibly normalize it.
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How to do it…
Follow these steps to create a rotation matrix around an arbitrary axis:

1. Add the declaration of the AxisAngle functions to matrices.h:
mat4 AxisAngle(const vec3& axis, float angle);
mat3 AxisAngle3x3(const vec3& axis, float angle);

2. Implement the AxisAngle function in matrices.cpp:
mat4 AxisAngle(const vec3& axis, float angle) {
   angle = DEG2RAD(angle);
   float c = cosf(angle);
   float s = sinf(angle);
   float t = 1.0f - cosf(angle);

   float x = axis.x;
   float y = axis.y;
   float z = axis.z;
   if (!CMP(MagnitudeSq(axis), 1.0f)) {
      floatinv_len = 1.0f / Magnitude(axis);
      x *= inv_len; // Normalize x
      y *= inv_len; // Normalize y
      z *= inv_len; // Normalize z
   } // x, y, and z are a normalized vector

   return mat4(
      t*(x*x) + c, t*x*y + s*z, t*x*z - s*y, 0.0f,
      t*x*y - s*z, t*(y*y) + c, t*y*z + s*x, 0.0f,
      t*x*z + s*y, t*y*z - s*x, t*(z*z) + c, 0.0f,
      0.0f, 0.0f, 0.0f, 1.0f
   );
}

3. Implement the AxisAngle3x3 function in matrices.cpp:

mat3 AxisAngle3x3(const vec3& axis, float angle) {
   angle = DEG2RAD(angle);
   float c = cosf(angle);
   float s = sinf(angle);
   float t = 1.0f - cosf(angle);
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   float x = axis.x;
   float y = axis.y;
   float z =axis.z;
   if (!CMP(MagnitudeSq(axis), 1.0f)) {
      float inv_len = 1.0f / Magnitude(axis);
      x *= inv_len; 
      y *= inv_len; 
      z *= inv_len;
   }

   return mat3(
      t * (x * x) + c,t * x * y + s * z,t * x * z - s * y, 
      t * x * y - s * z,t * (y * y) + c,t * y * z + s * x, 
      t * x * z + s * y,t * y * z - s * x,t * (z * z) + c
   );
}

How it works…
Instead of rotating one axis at a time, then combining the rotation, axis angle rotation rotates 
by some angle around an arbitrary axis. This final rotation matrix is actually the sum of three 
other matrices:

 f The identity matrix

 � Multiplied by c, the cosine of theta

 f A matrix that is symmetrical about the main diagonal

 � Multiplied by t, 1 - the cosine of theta

 f A matrix that is anti-symmetrical about the main diagonal

 � Multiplied by s, the sine of theta

These matrices combine to form the final Axis-Angle rotation matrix:
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The concept of symmetrical and anti-symmetrical matrices is outside the scope of this book.  
I recommend the following resources on both topics:

https://en.wikipedia.org/wiki/Symmetric_matrix

https://en.wikipedia.org/wiki/Skew-symmetric_matrix

Vector matrix multiplication
We have now implemented translation, scaling, and rotation in terms of matrices. These 
matrices become useful when we can apply their transformations to vectors. How do we 
apply a matrix transformation to a vector? The same way we do to a matrix: using matrix 
multiplication!

To multiply a vector and a matrix, we need to think of a vector as a matrix that has only one 
row or column. This leaves us with an important question, is a vec3 a matrix with one column 
and three rows, or three columns and one row?

Row Vector Column Vector
Pre Multiplication Post Multiplication

If the vector is on the left side of the matrix, it's a 1 X 3 Row Vector. With a row vector,  
we use Pre Multiplication.

If the vector is on the right side of the matrix, it's a 3 X 1 Column Vector. With column  
vectors we use Post Multiplication.

The naming is intuitive, with pre multiplication the vector is placed before the matrix, with post 
multiplication the vector is placed after the matrix. This convention must be followed because 
the inner dimensions of matrices being multiplied have to match.

https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Skew-symmetric_matrix
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We have to decide if our vectors are row or column vectors. This decision comes down to 
whether we want to use pre or post multiplication. Multiplying two matrices using our row 
major library is already left to right. By using row vectors we can multiply vectors and matrices 
left to right as well. This should help make vector matrix multiplication feel more intuitive.

This takes care of 3 X 3 matrices, but what about a 4 X 4 matrix? We can't multiply a vec3 by 
a mat4, the inner dimensions for matrix multiplication must match! We actually need to use 
a data type we don't have, a vec4. This is where the W component we briefly discussed in 
Chapter 1, Vectors, becomes important. In our final physics engine, a vector will represent  
one of two things, a point in space, or a direction and a magnitude.

What's the difference? Multiplying a point in space by a matrix will change its position. 
Multiplying a vector can't change its position, it has none! Only the direction and magnitude  
of the vector can change.

 f A vector is a 1 X 4 matrix with a W component of 0.

 f A point is a 1 X 4 matrix with a W component of anything other than 0.

Getting ready
Because a vec3 could potentially represent a point or a vector, we're not going to overload the 
multiplication operator. Instead, we are going to make two new functions, MultiplyPoint 
and MultiplyVector. There are two ways we can implement these functions.

We could create a temp float array with four elements; filling the first three with the X, Y, and Z 
components of the vector and the W component with 0 or 1, depending on whether we have a 
point or a vector. Then, we could use the generic Multiply function on this array.

The other option is to hard-code the dot product between row i of the vector and column j 
of the matrix. This way, we can hard-code the W component within the dot product to 0 or 1. 
We're going to implement both the MultiplyPoint and MultiplyVector functions in  
this manner.

How to do it…
Follow these steps to multiply vectors and matrices:

1. Add the MultiplyPoint and MultiplyVector declarations to matrices.h:
vec3 MultiplyPoint(const vec3& vec, const mat4& mat);
vec3 MultiplyVector(const vec3& vec, const mat4& mat);
vec3 MultiplyVector(const vec3& vec, const mat3& mat);
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2. Implement the MultiplyPoint function in matrices.cpp. Hard-code 1 where the 
W component would be:
vec3 MultiplyPoint(const vec3& vec, const mat4& mat) {
   vec3 result;
   result.x = vec.x * mat._11 + vec.y * mat._21 + 
              vec.z * mat._31 + 1.0f  * mat._41;
   result.y = vec.x * mat._12 + vec.y * mat._22 + 
              vec.z * mat._32 + 1.0f  * mat._42;
   result.z = vec.x * mat._13 + vec.y * mat._23 + 
              vec.z * mat._33 + 1.0f  * mat._43;
   return result;
}

3. Implement the MultiplyVector in matrices.cpp. Hard code 0 where the W 
component should be:
vec3 MultiplyVector(const vec3& vec, const mat4& mat) {
   vec3 result;
   result.x = vec.x * mat._11 + vec.y * mat._21 + 
              vec.z * mat._31 + 0.0f  * mat._41;
   result.y = vec.x * mat._12 + vec.y * mat._22 + 
              vec.z * mat._32 + 0.0f  * mat._42;
   result.z = vec.x * mat._13 + vec.y * mat._23 + 
              vec.z * mat._33 + 0.0f  * mat._43;
   return result;
}

4. Implement the mat3 version of MultiplyVector in matrices.cpp. In this 
function, we actually use the dot product, instead of hand-coding the whole thing.
vec3 MultiplyVector(const vec3& vec, const mat3& mat) {
   vec3 result;
   result.x = Dot(vec, vec3(mat._11, mat._21, mat._31));
   result.y = Dot(vec, vec3(mat._12, mat._22, mat._32));
   result.z = Dot(vec, vec3(mat._13, mat._23, mat._33));
   return result;
}

How it works…
We have to choose between row or column vectors because we can only multiply matrices 
together if their inner dimensions match. Let's explore why a W component of 1 will turn a 
vector into a point.
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Translation is stored in elements 41, 42, and 43 of a matrix. When we take the dot product 
of a four-component vector and the column of a 4 X 4 matrix, the elements in the translation 
row of the matrix get multiplied by the W component. A W of 1 means the translation remains 
untouched. A W of 0 cancels out the translation.

Transform matrix
We've briefly touched on the fact that our math library multiplies matrices in a left to right 
order. But what exactly does this mean? When we multiply two matrices, we combine their 
linear transformations into one matrix. The first transformation applied is the one on the far 
left, then the one to its right, and so on.

For example, let's take two matrices, one that translates an object by 10 units on its X axis 
and one that rotates it by 45 degrees on its Y axis:

mat4 transform1 = Translate(10, 0, 0) * RotateY(45);
mat4 transform2 = RotateY(45) * Translate(10, 0, 0);

Because matrix multiplication is not cumulative , transform1, and 
transform2 are not the same! transform1 will move the object to (10, 0, 0),  
and then rotate the object at that position:

transform2, on the other hand, will rotate the object by 45 degrees on its Y axis, and then 
translate it by 10 units on its local X axis:
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Getting ready
The multiplication order is highly dependent on the conventions you are using and what  
makes sense to you. For the context of our physics engine we want to scale first, rotate  
second, and translate last. This order is a fairly common convention in most games. We're 
going to make a helper function that takes scale, rotation, and translation and returns a full 
transform matrix.

We have two ways to create a rotation matrix, using Euler angles or using the axis angle 
representation. We are going to implement two versions of the Transform function,  
one for each representation.

How to do it…
Follow these steps to create a composite matrix given scale, rotation, and translation:

1. Add the declaration for the Transform function to matrices.h:
mat4 Transform(const vec3& scale, const vec3& eulerRotation,
   const vec3& translate);
mat4 Transform(const vec3& scale, constvec3& rotationAxis,
   float rotationAngle, const vec3& translate);

2. Implement the Euler angle version of the Transform function in matrices.cpp:
mat4 Transform(const vec3& scale, const vec3& eulerRotation,
   const vec3& translate) {
      return Scale(scale) *
      Rotation(eulerRotation.x, 
               eulerRotation.y, 
               eulerRotation.z) *
      Translation(translate);
}

3. Implement the axis angle version of the Transform function in matrices.cpp:

mat4 Transform(const vec3& scale, const vec3& rotationAxis,
   float rotationAngle, const vec3& translate) {
      return Scale(scale) * 
      AxisAngle(rotationAxis, rotationAngle) * 
      Translation(translate);
}
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How it works…
Generally, to create a three-dimensional transform, we want to scale first, rotate second, and 
translate last. If this order of transformations seems arbitrary, that's because it absolutely is.

We scale first to avoid the scaling matrix interfering with the rotation matrix. Then, we want to 
rotate before translating. In this way, the position of the object is intuitively where we tell the 
translation to be. Also, the rotation will happen in the world axis. Because we multiply from  
left to right, we can express a transformation from left to right:

Transform = Scale(1, 2, 1)      * 
            Rotation(0, 30, 0)  * 
            Translation(10, 0, 0);

View matrix
The LookAt function is mainly used for 3D graphics. It is a convenient way to position a 3D 
camera. While graphics programming is outside the scope of this book, for our math library  
to be practical we need to implement some graphics-related functionality.

Getting a vertex (vector) to become a pixel primarily involves three matrix transformations. The 
world transform, view transform, and projection transform. All three of these transformations 
are expressed as a matrix multiplication.

 f The world transform takes the vertex from model space to world space, we've already 
implemented this as the Transform function

 f The view transform takes a vertex from world space and transforms it to eye space, 
sometimes called view space or camera space

 f The projection transform takes vertices from eye space and puts them into 
normalized device coordinates

If we multiply a vertex by the view matrix, the vertex ends up in eye space. Eye space 
transforms the vertex in the world so it's relative to a camera placed at (0, 0, 0)  
looking down the positive Z axis.

That is, when the camera moves, it doesn't really move through the world, the world moves 
around the camera. This doesn't sound very intuitive, but at least the matrix is easy enough  
to generate. We simply take the world space transform of the camera and invert it.
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Getting ready
The Transform function we wrote in the last section generates the World Transform matrix. 
In this section, we are going to write a LookAt function, which will generate the View 
Transform matrix.

To find the view matrix we could create a rotation and a translation matrix, multiply them 
together, and invert the result. However, that would be an expensive function! Instead, we  
can take advantage of the fact that the inverse of an ortho-normal matrix is that same as  
the transpose of the matrix.

An ortho-normal matrix is a matrix whose basis vector are orthogonal and of unit length. All  
of the functions we have created to make rotation matrices return ortho-normal matrices.

Because of this, we can create the rotation sub-matrix transposed. That will give us the 
inverted rotation. To get the inverted translation, we hand code what a matrix multiplication 
would be, and negate the result.

How to do it…
Follow these steps to implement a function that return the view matrix of a camera given its 
position, the target the camera is looking, and the relative up vector:

1. Add the declaration of the LookAt function to matrices.h:
mat4 LookAt(const vec3& position, const vec3& target, 
   const vec3& up);

2. Implement the LookAt function in matrices.cpp:

mat4 LookAt(const vec3& position, const vec3& target, 
   const vec3& up) {
      vec3 forward = Normalized(target - position);
      vec3 right = Normalized(Cross(up, forward));
      vec3 newUp = Cross(forward, right);

      return mat4( // Transposed rotation!
         right.x, newUp.x, forward.x, 0.0f,
         right.y, newUp.y, forward.y, 0.0f,
         right.z, newUp.z, forward.z, 0.0f,
         -Dot(right, position), 
         -Dot(newUp, position), 
         -Dot(forward, position), 1.0f
    );
}
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How it works…
We need to provide the LookAt function with enough data to build two matrices. The first 
matrix is the rotation of the camera, the second is the position. We can construct these 
matrices using three arguments:

 f The position of the camera

 f The position of whatever the camera is looking at

 f The direction up is, usually this means world up

Based on these three vectors, we can construct a rotation basis. To obtain the forward vector 
we normalize the vector pointing from the cameras position to its target. To find an orthogonal 
vector, pointing to the right of this forward vector, we take the cross-product of the up and 
forward vectors. At this point we just need to construct a new up vector we can be sure is 
orthogonal to both forward and right, we do this by taking the cross product of the forward  
and right vectors.

These three vectors make up the rotation basis for the camera. The right vector is the first row 
of the rotation matrix, the up vector is the second, and the right vector is the last row. If we 
multiply this rotation matrix with a translation matrix acquired from the position parameter,  
we can find the world matrix of the camera.

Instead of the world matrix of the camera, we want its view matrix. The view matrix is the 
inverse of the camera's world matrix. To obtain the view matrix, we transpose the rotation  
part of the matrix. We then negate the dot product of each axis with the position of the 
camera. The dot product operation produces the same result as multiplying a translation  
and a rotation matrix together.  We negate this value to get the inverse translation.

Projection matrix
There are two kinds of projection we can apply to the graphics pipeline, Perspective and 
Orthographic. Perspective projection, like the name implies, views the world in perspective, 
there is a vanishing point somewhere in the distance. Orthographic projection, on the other 
hand, has no vanishing point. If two lines are parallel in an orthographic projection, they will 
never touch. For this reason, perspective projection is generally used to render 3D elements, 
and orthographic projection is generally used to render 2D elements:
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When designing a projection matrix the most important thing is not the perspective, but the 
coordinate system. Depending on how we construct this projection matrix, the world will 
either be in a Left Handed Coordinate System or a Right Handed Coordinate System. The 
difference between these coordinate systems is the direction of the Z-Axis. In a Left Handed 
Coordinate System, +Z goes into the screen. In a Right Handed Coordinate System, +Z 
comes out of the screen. The reason we call these views Left and Right Handed is because 
you can easily memorize them using your left and right hands.

Make a fist with both your hands. Extend both thumbs. Rotate your right wrist so both your 
thumbs are facing to the right. Extend your pointer and middle fingers. Your thumb is the 
X-Axis, your pointer finger is the Y-Axis, and your middle finger is the Z-Axis. Your left hand 
matches the orientation of a Left Handed Coordinate System while your right hand matches 
the orientation of a Right Handed Coordinate System:

DirectX is often assumed to be left handed, whereas OpenGL 
is assumed to be Right Handed. Both of these assumptions are 
incorrect. Both API's can support either coordinate system. The 
key is consistency. Because positive Z pointing forward feels 
intuitive, our math library will be left handed.
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Let's explore how we can build Left Handed Perspective and Orthographic projection matrices:

Perspective Projection Orthographic Projection

To build a perspective matrix, you first have to know the Field Of View (FOV) of the camera. 
Through trial and error, most games end up using an FOV of 60. We also need the aspect ratio 
of the screen; this is the width of the view area divided by its height. Lastly, we need to know 
the near and far distances of the view area.

Deriving these matrices is difficult, and there are different versions of each matrix online. If 
you are interested in the math behind the projection, the following article covers deriving both 
perspective and orthographic projections:

http://www.codeguru.com/cpp/misc/misc/graphics/article.php/c10123/
Deriving-Projection-Matrices.htm

Getting ready
We are going to implement both of the preceding projection matrices. The perspective 
projection function will take a field of view, an aspect ratio, and the near and far plane as 
arguments. The Orthographic projection function will take each side of the projection volume 
as arguments: left, right, top, bottom, near, and far. Both functions will return the matrices  
shown previously.

The standard C math library does not have a cotangent function. You can find the cotangent 
as follows: .

http://www.codeguru.com/cpp/misc/misc/graphics/article.php/c10123/Deriving-Projection-Matrices.htm
http://www.codeguru.com/cpp/misc/misc/graphics/article.php/c10123/Deriving-Projection-Matrices.htm
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How to do it…
Follow these steps to implement orthographic and perspective projection matrices:

1. Add the declaration for the Projection and Ortho functions to matrices.h:
mat4 Projection(float fov, float aspect, 
   float zNear, float zFar);
mat4 Ortho(float left, float right, float bottom, 
   float top, float zNear, float zFar);

2. Implement the Projection function in matrices.cpp:
mat4 Projection(float fov, float aspect, 
   float zNear, float zFar) {
      float tanHalfFov = tanf(DEG2RAD((fov * 0.5f)));
      float fovY = 1.0f / tanHalfFov; // cot(fov/2)
      float fovX = fovY / aspect; // cot(fov/2) / aspect
      mat4 result;
      result._11 = fovX;
      result._22 = fovY;
      // _33 = far / range
      result._33 = zFar / (zFar - zNear); 
      result._34 = 1.0f;
      // _43 = - near * (far / range)
      result._43 = -zNear * result._33; 
      result._44 = 0.0f;
      return result;
}

3. Implement the Ortho function in matrices.cpp:
mat4 Ortho(float left, float right, float bottom, 
   float top, float zNear, float zFar) {
      float _11 = 2.0f / (right - left);
      float _22 = 2.0f / (top - bottom);
      float _33 = 1.0f / (zFar - zNear);
      float _41 = (left + right) / (left - right);
      float _42 = (top + bottom) / (bottom - top);
      float _43 = (zNear) / (zNear - zFar);

      return mat4(
         _11, 0.0f, 0.0f, 0.0f,
         0.0f,  _22, 0.0f, 0.0f,
         0.0f, 0.0f,  _33, 0.0f,
         _41,  _42,  _43, 1.0f
      ); 
}
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How it works…
The purpose of both of these projection matrices is to remap eye space into clip space, 
sometimes called projection space. In OpenGL clip space is a unit cube ranging from -1 to 1 
on all axes. In DirectX clip space is a unit cube ranging from -1 to 1 on the X and Y axes, but 
ranges from 0 to 1 on the Z axis. For the perspective projection this is important because  
the contents of the frustum created by the matrix need to be scaled non-uniformly to fit  
into a cube.

Orthographic projection is defined by a cube area. This makes creating the Orthographic 
projection matrix easier than the perspective projection matrix. All this matrix has to do is 
remap the contents of a box into a cuboid.

Perspective projection is a little more complicated than orthographic projection. Because 
we have to remap a frustum shaped area into a cuboid, non linear scale must be used. The 
perspective introduced by this projection matrix also means that a four-dimensional vertex  
will not have a W component of 1 after being multiplied by the perspective projection matrix.
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4
2D Primitive Shapes

Now that we have covered the necessary linear algebra, it is time to delve into some geometry. 
We are going to start with 2D primitive shapes. In this chapter, we are going to cover:

 f 2D points

 f 2D line segments

 f Circle

 f Rectangle

 f Oriented rectangle

 f Point containment tests

 f Line intersection tests

Introduction
Collisions play a large role in physics, determining if two objects touch is half the work. To 
determine if collisions are happening, we need to cover some basic geometry. In this chapter, 
we define what the geometry being used for collision tests will be and even implement some 
basic containment tests.

In this chapter we will implement primitive two-dimensional shapes. In the following chapters 
which follow we will combine multiple primitive shapes to create more complex shapes. After 
we have mastered two-dimensional collisions, we will create three-dimensional geometry and 
collision tests.
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2D points
A point is the simplest two-dimensional primitive we can implement. It is infinitely small; it has 
x and y coordinates. A good way to think of a 2D point is like an alternate representation of a 
2D vector. A vector points to somewhere in space; a point is where the vector points to:

Getting ready
Since this is the first geometry object we are creating, we also need to create a new header 
file, Geometry2D.h. All future 2D geometry and intersection tests will be added to this file. 
Because a point has the same definition as a 2D vector, we're not going to create a new 
structure; instead we will redefine the vec2 struct as Point2D.

How to do it…
Follow these steps to create a new header file in which we will define 2D geometry:

1. Create a new C++ header file; call this file Geometry2D.h.

2. Add standard header guards to the file, and include vectors.h.
#ifndef _H_2D_GEOMTRY_
#define _H_2D_GEOMETRY_

#include "vectors.h"

#endif
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3. Because a point is practically the same thing as a 2D vector, we are not creating a 
new struct. Instead, we will redefine the vec2 struct as Point2D:

typedef vec2 Point2D;

How it works…
The typedef specifier is a C++ language feature. It lets us create custom names for existing 
data types. When using a typedef, the compiler will be aware that a Point2D and vec2 are 
actually the same thing. This means we can use all the vector functions we've created with 
points! For example, we could find the distance between two points like this:

Point2D point1(1.0f, 3.0f);
Point2D point2(7.0f, -3.0f);

float distance = Magnitude(point1 - point2);

2D lines
A line is the shortest straight path that connects two points. A line can be defined by a point 
on the line and a slope; this is called the slope intercept form. An actual line has no ends; it 
extends infinitely in both directions. This is not what we intuitively think of as a line. Instead, 
we want to define a line using a Start Point and an End Point. This is called a Line Segment:
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Getting ready
Even though we are implementing a line segment, in code we are going to refer to it as a 
line. We rarely, if ever, use real lines to detect collisions, but we often use line segments. The 
Line2D structure we are about to create will consist of two points, where the line starts and 
where it ends.

How to do it…
Follow these steps to define a two-dimensional line, and the helper functions we will need to 
work with lines:

1. Define the Line2D structure in Geometry2D.h.
typedef struct Line2D {
   Point2D start;
   Point2D end;

   inline Line2D() { }
   inline Line2D(const Point2D& s, const Point2D& e) 
      :start(s), end(e) {}
} Line2D;

2. Declare the helper functions, Length and LengthSq in Geometry2D.h:
float Length(const Line2D& line);
float LengthSq(const Line2D& line);

3. Create a new .cpp file, Geometry2D.cpp. Include the following headers, and define 
the CMP macro for comparing floats:
#include "Geometry2D.h"
#include "matrices.h"
#include <cmath>
#include <cfloat>

#define CMP(x, y) \
   (fabsf((x)–(y)) <= FLT_EPSILON * \
   fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))))

4. Implement the Length and LengthSq functions in Geometry2D.cpp:

float Length(const Line2D& line) {
   return Magnitude(line.end - line.start);
}

float LengthSq(const Line2D& line) {
   return MagnitudeSq(line.end - line.start);
}
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How it works…
The Line2D structure has two constructors, we can create a line segment with no arguments, 
or we can specify the start and end points of the line. We also implemented two line-related 
helper functions: Length and LengthSq. These functions return the length and squared 
length of the line, respectively.

Circle
A circle is defined by a point in space and a Radius. The circle is an extremely simple shape as 
shown in the following diagram:

Getting ready
Intersection algorithms for the circle are as simple as its definition. For this reason, a circle is 
often the first choice to approximate the bounding volume of objects. Arguably, the circle is 
the most commonly used 2D primitive.

How to do it…
Follow these steps to implement a two-dimensional circle:

1. Start the declaration of the Circle structure in Geometry2D.h by creating the 
variables that make up a circle:
typedef struct Circle {
   Point2D position;
   float radius;
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2. Next, declare an inline constructor that will create a circle at origin with a radius of 1:
   inline Circle() : radius(1.0f) {}

3. Finish the declaration of the Circle structure by creating an inline constructor that 
lets us specify the position and radius of the circle being created:

   inline Circle(const Point2D& p, float r):
      position(p), radius(r) {}
} Circle;

How it works…
The Circle structure defines a circle by a center point and a radius. It has two constructors; 
one takes no arguments and will construct a unit circle at origin. The other takes a point and  
a radius to define the circle being created.

Rectangle
A rectangle has four sides; the angle between each side is 90 degrees. There are several ways 
to represent a rectangle: using a Min and Max point, using a Center and half-extents, or using 
a Position and a Size:

Getting ready
We are going to implement our rectangle structure using the origin and Size representation. 
However, having the Min and Max representation of a rectangle is often useful. For this 
reason, we are going to implement helper functions to get the Min and Max points of a 
rectangle, and we will to make a rectangle from a Min and Max pair.
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How to do it…
Follow these steps to implement a two-dimensional rectangle and all of the support functions 
we will need to work with the rectangle:

1. Add the declaration of the Rectangle2D structure to Geometry2D.h:
typedef struct Rectangle2D {
   Point2D origin;
   vec2 size;

   inline Rectangle2D() : size(1, 1) { }
   inline Rectangle2D(const Point2D& o, const vec2& s) :
      origin(o), size(s) { }
} Rectangle2D;

2. Add the declaration for the Min/Max helpers to Geometry2D.h:
vec2 GetMin(const Rectangle2D& rect);
vec2 GetMax(const Rectangle2D& rect);

3. Declare the FromMinMax helper function in Geometry2D.h:
Rectangle2D FromMinMax(const vec2& min, const vec2& max);

4. Implement the GetMin method in Geometry2D.cpp. Given a rectangle, this method 
will return the minimum point of the rectangle:
vec2 GetMin(const Rectangle2D& rect) {
   vec2 p1 = rect.origin;
   vec2 p2 = rect.origin + rect.size;

   return vec2(fminf(p1.x, p2.x), fminf(p1.y, p2.y));
}

5. Implement the GetMax method in Geometry2D.cpp. Given a rectangle, this method 
will return the maximum point of the rectangle:
vec2 GetMax(const Rectangle2D& rect) {
   vec2 p1 = rect.origin;
   vec2 p2 = rect.origin + rect.size;

   return vec2(fmaxf(p1.x, p2.x), fmaxf(p1.y, p2.y));
}
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6. Finally, implement the FromMinMax helper function in Geometry2D.h. This function 
will create a rectangle given a min and max point:

Rectangle2D FromMinMax(const vec2& min, const vec2& max) {
   return Rectangle2D(min, max - min);
}

How it works…
The Rectangle2D structure has two constructors. The default constructor will create a unit 
rectangle at origin. We also have a constructor that creates a rectangle given an origin and a 
size. The GetMin and GetMax helpers return the min and max coordinates of the rectangle. 
The FromMinMax function will return a new Rectangle2D constructed from the provided 
Min and Max points.

Oriented rectangle
An oriented rectangle is very similar to a non-oriented (Axis Aligned) rectangle. They both 
have a Position and a size, but the oriented rectangle also has a Rotation. Rotating a 
rectangle will allow us to better approximate the shape of objects as shown in the  
following diagram:

Getting ready
Unlike the Rectangle2D, we're going to represent an OrientedRectangle using a center 
point and half-extents. Additionally, we're also going to store a Rotation. It makes no sense 
for an oriented rectangle to have a min or max, so we're not going to implement these helper 
functions for the OrientedRectangle structure.



Chapter 4

99

The reason we represent the rectangle this way is because it will make rotating objects 
relative to the rectangle easier. As an added bonus, by doing this we will have covered  
all three methods described earlier to represent a rectangle.

How to do it…
Follow these steps to create an oriented rectangle:

1. Start the declaration of the OrientedRectangle structure in Geometry2D.h  
by declaring the variables that make up an oriented rectangle:
typedef struct OrientedRectangle {
   Point2D position;
   vec2 halfExtents;
   float rotation;

2. Next, implement an inline constructor for OrientedRectangle that will make  
a unit length rectangle at origin:
   inline OrientedRectangle() :
      halfExtents(1.0f, 1.0f), rotation(0.0f) { }
   inline OrientedRectangle(const Point2D& p, const vec2& e):
      position(p), halfExtents(e), rotation(0.0f) { }

3. Finally, implement an inline constructor for OrientedRectangle, which will let us 
specify the position, extents and rotation of a rectangle:

   inline OrientedRectangle(const Point2D& pos, 
      const vec2& ext, float rot) :
      position(pos), halfExtents(ext), rotation(rot) { }
} OrientedRectangle;

How it works…
As described earlier, the oriented rectangle is defined as a center point, half-extents, and a 
rotation. The structure has three constructors:

 f A constructor that takes no arguments; it creates a unit rectangle at origin with no 
rotation

 f A constructor that takes a center point and half-extents; it creates a rectangle with  
no rotation with the specified size and position

 f And a constructor that takes a center point; half-extents, and rotation in degrees
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Point containment
So far in this chapter, we have implemented the basic primitives for 2D shapes. Now we are 
going to implement the most basic primitive test for 2D shapes; point containment. It's often 
useful to know if a point is inside a shape or not.

Getting ready
We are going to implement a method to check if a point is on a line, as well as methods to 
check if a point is within a circle, rectangle, and oriented rectangle. These are the most basic 
2D intersection tests we can perform.

How to do it…
Follow these steps to test if a point is contained within any of the two-dimensional primitives 
we have created so far:

1. Declare the containment functions in Geometry2D.h:
bool PointOnLine(const Point2D& point, const Line2D& line);
bool PointInCircle(const Point2D& point, const Circle& c);
bool PointInRectangle(const Point2D& point, 
   const Rectangle& rectangle);
bool PointInOrientedRectangle(const Point2D& point,
   const OrientedRectangle& rectangle);

2. Implement the PointOnLine function in Geometry2D.cpp. This function will 
convert the line into a slope-intercept form and check whether the point matches  
the equation. The Slope intercept form will be covered in the How it works… section  
of this chapter:
bool PointOnLine(const Point2D& p, const Line2D& line) {
   // Find the slope
   float dy = (line.end.y - line.start.y);
   float dx = (line.end.x - line.start.x);
   float M = dy / dx;
   // Find the Y-Intercept
   float B = line.start.y - M * line.start.x;
   // Check line equation
   return CMP(p.y, M * p.x + B);
}
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3. Implement the PointInCircle function in Geometry2D.cpp. This function will 
create a line between a point and a circle, and compare the length of that line to the 
radius of the circle:
bool PointInCircle(const Point2D& point, const Circle& c) {
   Line2D line(point, c.position);
   if (LengthSq(line) < c.radius * c.radius) {
      return true;
   }
   return false;
}

4. Implement the PointInRectangle function in Geometry2D.cpp. This function 
should try to clip the point to the rectangle:
bool PointInRectangle(const Point2D& point, 
const Rectangle& rectangle) {
   vec2 min = GetMin(rectangle);
   vec2 max = GetMax(rectangle);

   return  min.x<= point.x&&
      min.y<= point.y&&
      point.x<= max.x&&
      point.y<= max.y;
}

5. Implement the PointInOrientedRectangle function in Geometry2D.cpp. This 
function works the same way as the PointInRectangle function did, however this 
function first translates the point into the local space of the rectangle:

bool PointInOrientedRectangle(const Point2D& point,
const OrientedRectangle& rectangle) {
   vec2 rotVector = point - rectangle.position;
   float theta = -DEG2RAD(rectangle.rotation);
   float zRotation2x2[] = {
      cosf(theta), sinf(theta),
      -sinf(theta), cosf(theta)
   };
   Multiply(rotVector.asArray, 
      vec2(rotVector.x, rotVector.y).asArray,
      1, 2, zRotation2x2, 2, 2);
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   Rectangle2D localRectangle(Point2D(),
      rectangle.halfExtents * 2.0f);
   vec2 localPoint = rotVector + rectangle.halfExtents;
   return PointInRectangle(localPoint, localRectangle);
}

How it works…
With the preceding functions, we can now test if a point is contained anywhere within  
a 2D primitive. Let's explore how each of the methods we implemented previously works  
in more detail.

Point on a line
In order to tell if a point is on a line, we must first express the line in slope-intercept form.  
The formula for slope-intercept form is . In this formula:

 f m is the slope of the line. The slope is defined as a change in y ( ) divided by a 
change in x ( ), or as 

 f b is the y intercept, in other words, it's where the x component of the line crosses the 
y axis.

 f x and y define a point along the line.

If the slope intercept form equation is satisfied, meaning y does equal , then the point 
being tested is on the line. If the equation is not satisfied, the point is not on the line.

Point in a circle
A point is inside a circle if the length of a line from the center of the circle to the point being 
tested is less than the radius of the circle. Finding the length of a line involves a square root 
operation, we can avoid this by checking the square length of the line against the square 
radius of the circle.

Point in a rectangle
To check if a point is inside a rectangle, we must check if the point falls between the two 
extreme points (min and max) of the rectangle. We have to check that the point is greater than 
the minimum point of the rectangle on all axes, and that it is smaller than the maximum point 
of the rectangle on all axes.
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Point in an oriented rectangle
To test if a point is inside an oriented rectangle, we transform the point into the oriented 
rectangles, local space. Once we have done this, the oriented rectangle in its own space  
is just a regular rectangle. Because of this, we can use the existing point in rectangle  
point-in-a-rectangle test to see if the point is inside the oriented rectangle:

Line intersection
After point containment, the line intersection the is the next logical intersection test  
to implement. Knowing if a line intersects one of the basic 2D primitives is very useful,  
and in most cases rather straightforward to implement.

Getting ready
We are going to implement functions to test if a line is intersecting any of the basic 2D 
primitives. To keep the naming of these functions a little more convenient, we are going  
to use the #define macro to create aliases for each function.

How to do it…
Follow these steps to test if a line intersects any of the two-dimensional primitives we have 
defined so far:

1. Declare the line test functions in Geometry2D.h:
bool LineCircle(const Line2D& line, const Circle& circle);
bool LineRectangle(const Line2D& l, const Rectangle2D& r);
bool LineOrientedRectangle(const Line2D& line,
   const OrientedRectangle& rectangle);
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2. Using the #define directive, add aliases for all these functions to Geometry2D.h. 
These defines do not add any new functionality, they just allow us to call the function 
with more convenient names:
#define PointLine(point, line) \
   PointOnLine(point, line)
#define LinePoint(line, point) \
   PointOnLine(point, line)
#define CircleLine(circle, line) \
   LineCircle(line, circle)
#define RectangleLine(rectangle, line) \
   LineRectangle(line, rectangle);
#define OrientedRectangleLine(rectangle, line) \
   LineOrientedRectangle(line, rectangle);

3. Implement the LineCircle function in Geometry2D.cpp. This function finds the 
closest point on the provided line to the center of the circle, then checks if that point 
is inside the circle:
bool LineCircle(const Line2D& l, const Circle& c) {
   vec2 ab = l.end - l.start;
   float t = Dot(c.position - l.start, ab) / Dot(ab, ab);
   if (t < 0.0f || t > 1.0f) {
      return false;
   }
   Point2D closestPoint = l.start + ab * t;

   Line2D circleToClosest(c.position, closestPoint);
   return LengthSq(circleToClosest) < c.radius * c.radius;
}

4. Implement the LineRectangle function in Geometry2D.cpp. This function builds 
a ray out of the line being tested, and then performs a raycast against the box. Details 
of how this works are provided in the How it works... section:
bool LineRectangle(const Line2D& l, const Rectangle2D& r) {
   if (PointInRectangle(l.start, r) ||
      PointInRectangle(l.end, r)) {
      return true;
   }

   vec2 norm = Normalized(l.end - l.start);
   norm.x = (norm.x != 0) ? 1.0f / norm.x : 0;
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   norm.y = (norm.y != 0) ? 1.0f / norm.y : 0;
   vec2 min = (GetMin(r) - l.start) * norm;
   vec2 max = (GetMax(r) - l.start) * norm;

   float tmin = fmaxf(
      fminf(min.x, max.x), 
      fminf(min.y, max.y)
   );
   float tmax = fminf(
      fmaxf(min.x, max.x), 
      fmaxf(min.y, max.y)
   );
   if (tmax< 0 || tmin>tmax) {
      return false;
   }
   float t = (tmin< 0.0f) ? tmax : tmin;
   return t > 0.0f && t * t <LengthSq(l);
}

5. Implement the LineOrientedRectangle function in Geometry2D.cpp. This 
function works the same way as the previous function (LineRectangle), except it 
first transform the line into the local space of the oriented rectangle:
bool LineOrientedRectangle(const Line2D& line, 
   const OrientedRectangle& rectangle) {
   float theta = -DEG2RAD(rectangle.rotation);
   float zRotation2x2[] = {
      cosf(theta), sinf(theta),
      -sinf(theta), cosf(theta) 
   };
   Line2D localLine;

   vec2 rotVector = line.start - rectangle.position;
   Multiply(rotVector.asArray, 
      vec2(rotVector.x, rotVector.y).asArray,
      1, 2, zRotation2x2, 2, 2);
   localLine.start = rotVector + rectangle.halfExtents;

   rotVector = line.end - rectangle.position;
   Multiply(rotVector.asArray, 
      vec2(rotVector.x, rotVector.y).asArray,
      1, 2, zRotation2x2, 2, 2);
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   localLine.end = rotVector + rectangle.halfExtents;

   Rectangle2D localRectangle(Point2D(),
      rectangle.halfExtents * 2.0f);
   return LineRectangle(localLine, localRectangle);
}

How it works…
We used #define to create alias macros for each of the collision functions. This means if we 
want to test the intersection of a circle and a line, for example, we don't have to remember 
which one comes first in the name of the function. CircleLine and LineCircle are the 
same function! Let's explore each of the collision functions in more detail.

Line circle
To check if a line is intersecting a circle, we find the closest point to the center of the circle on 
the line. Finding the closest point on a line will be discussed in depth in Chapter 8, 3D Point 
Tests. Once we have found the closest point, we make a line between the center of the circle 
and the closest point. If the squared length of that line is less than the squared radius of the 
circle, we have an intersection.

Line rectangle
To test if a line is intersecting (or is contained within) a rectangle, we first check if either the 
start or end points of the line are inside the rectangle. If one of them is inside, we know there 
is a collision or containment. If neither the start nor end point is inside the rectangle, we do a 
raycast against the rectangle, with a ray constructed out of the line. If the raycast hits, and the 
length of the ray is less than the length of the line we have a collision. Raycasting against a 
box will be discussed in detail in Chapter 10, 3D Line Intersections.

Line oriented rectangle
Checking if a line intersects an oriented rectangle is very similar to checking if a point is within 
an oriented rectangle. We create a new line that is in the local space of the oriented rectangle. 
In its local space, the oriented rectangle is just a regular rectangle; this means we can use the 
existing line rectangle collision test. 
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5
2D Collisions

With the basic primitive shapes defined, we can start testing for collisions. In this chapter,  
we are going to implement the following collision tests:

 f Circle to circle

 f Circle to rectangle

 f Circle to oriented rectangle

 f Rectangle to rectangle

 f Separating Axis Theorem

 f Rectangle to oriented rectangle

 f Oriented rectangle to oriented rectangle

Introduction
At this point, we know what the basic 2D primitive shapes are; now it's time to explore if two 
of them intersect. Some of these intersections are going to be simple to find, others will be a 
bit more challenging. For example, checking if two spheres intersect takes only a few lines of 
code, checking if two oriented boxes intersect requires much more work

We are going to cover the Separating Axis Theorem (SAT), more accurately the Hyperspace 
Separation Theorem in this chapter. The SAT is used to detect collision between arbitrary 
convex polygons. This makes the SAT algorithm an ideal generac purpose collision algorithm.

A convex polygon is one which does not fold in on its self. If you were to take every vertex of 
a polygon and stretch a rubber band around all the vertices, you would end up with a convex 
shape. In a convex polygon, a line between any two points on the polygon never goes outside 
of the polygon.
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Circle to circle
Determining if two circles intersect is extremely simple. If the length of a line going from the 
center of circle A to the center of circle B is less than the sum of the two circles, radii, they 
intersect. Of course, we want to avoid the expensive square root operation performed when 
finding the length of a line. To avoid this, we can compare the square length of the line against 
the square sum of the two circles, radii:

Getting ready
We are going to implement a function to detect the collision between two circles. To avoid the 
expensive square root operation involved in finding the distance between two circles, we're 
going to find the square distance. Because we're comparing the square distance, we also have 
to square the sum of the circles, radii.

How to do it…
Follow these steps to implement a collision detection function between two circles:

1. Declare the CircleCircle collision function in Geometry2D.h:
bool CircleCircle(const Circle& c1, const Circle& c2);

2. Implement the CircleCircle collision function in Geometry2D.cpp:
bool CircleCircle(const Circle& c1, const Circle& c2) {

3. Begin by constructing a line between the center points of the circles:
   Line2D line(c1.position, c2.position);
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4. Next, find the summed radii of the circles:
  float radiiSum = c1.radius + c2.radius;

5. Finally, check if the squared length of the line is less than the squared sum of the 
circles radii:
   return LengthSq(line) <= radiiSum * radiiSum;
}

How it works…
To find the collision between two circles, we first create a line between the two circles. Next, 
we compare this line to the sum of the radii of the two circles. To avoid the square root 
operation involved in finding the length of a line, we instead square the sum of the radii.

Circle to rectangle
We can simplify the problem of determining if a circle and rectangle intersect down to testing 
if a point is contained within a circle. We can do this by finding the Closest Point to the circle 
on the rectangle.

To find the closest point on the rectangle to the circle, if the position of the circle is outside 
the range of the rectangle on any axis, we clamp that point to the edge of the rectangle. The 
resulting point is guaranteed to be on the rectangle. If this point is inside the circle, we know  
a collision has happened.

If the center point of the circle was inside of the rectangle, it is treated as the closest point. In 
this case, the distance between the position of the circle and the closest point will be zero:
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Getting ready
In order to determine if a circle and rectangle are intersecting, we must find the Closest Point 
on the rectangle to the center of the circle. To do this we just have to clamp the center of the 
circle to the min and max values of the rectangle.

How to do it…
Follow these steps to detect collision between a circle anda non-ooriented rectangle:

1. Declare the circle rectangle collision in Geometry2D.h, we are also going to create 
an alias for this function:
bool CircleRectangle(const Circle& circle, 
   const Rectangle2D& rectangle);
#define RectangleCircle(rectangle, circle) \
   CircleRectangle(circle, rectangle)

2. Implement the circle rectangle collision function in Geometry2D.cpp:
bool CircleRectangle(const Circle& circle, 
   const Rectangle2D& rect) {

3. First, get the min and max points of the rectangle:
   vec2 min = GetMin(rect);
   vec2 max = GetMax(rect);

4. Next, find the closest point on the rectangle to the position of the circle:
   Point2D closestPoint = circle.position;
   if (closestPoint.x<min.x) {
      closestPoint.x = min.x;
   }
   else if (closestPoint.x > max.x) {
      closestPoint.x = max.x;
   }

5. The above if-else statement can also be written using the ternary operator:
   closestPoint.y = (closestPoint.y< min.y)?
      min.y :closestPoint.y;
   closestPoint.y = (closestPoint.y> max.y)?
      max.y :closestPoint.y;
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6. Finally, check if the Closest Point is inside the circle:

   Line2D line(circle.position, closestPoint);
   returnLengthSq(line) <= circle.radius * circle.radius;
}

How it works…
First we find the Closest Point on the rectangle to the circle. We achieve this by clamping the 
circle's position to the rectangle's minimum and maximum bounds. By clamping the position 
of the circle to the rectangle, we end up with the Closest Point to the circle on the surface of 
the rectangle. The code provided above shows how clamping works.

Once we know where on the rectangle the Closest Point is, we make a line between the 
Closest Point and the center of the circle. If the length of the line is less than the squared 
radius of the circle, we have a collision.

There's more…
The code above demonstrates two ways to clamp a point: using an if statement and using the 
ternary operator. We could make the clamp function easier to read with a macro that does a 
nested ternary comparison. This macro would look something like this:

#define CLAMP(number, minimum, maximum)      \
   number = (number < minimum) ? minimum : ( \
      (number > maximum) ? maximum : number  \
   )

Given this macro, we could re-factor the code from before to use it:

vec2 min = GetMin(rect);
vec2 max = GetMax(rect);

CLAMP(circle.position.x, min.x, max.x),
CLAMP(circle.position.y, min.y, max.y);
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Circle to oriented rectangle
Testing if a point intersects an oriented rectangle involves moving the point into the local 
space of the oriented rectangle. Once in the oriented rectangle's local space, we treated the 
oriented rectangle as a non-oriented rectangle. Testing for intersection between a circle and 
an oriented rectangle works the same way. We move both the circle and oriented rectangle 
into the rectangle's local space, then perform a circle rectangle intersection test:

Getting ready
We are going to implement a test to see if a circle and oriented rectangle are intersecting. For 
the sake of convenience, we are also creating a #define macro as an alias for the function. 
The code to move the circle into the local space of the oriented rectangle should look familiar 
by now.

How to do it…
Follow these steps to implement a function which tests for intersection between a circle and 
an oriented rectangle:

1. Declare the circle oriented rectangle test in Geometry2D.h, also create an alias for 
this function:
bool CircleOrientedRectangle(const Circle& circle,
   const OrientedRectangle& rect);
#define OrientedRectangleCircle(rectangle, circle) \
   CircleOrientedRectangle(circle, rectangle)
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2. Implement the circle oriented rectangle test in Geometry2D.cpp:
bool CircleOrientedRectangle(const Circle& circle, 
   const OrientedRectangle& rect) {

3. Create a line from the center of the circle to the center of the oriented rectangle:
   vec2 r = circle.position - rect.position;

4. Construct a rotation vector which rotates the opposite direction of the oriented 
rectangle:
   float theta = -DEG2RAD(rect.rotation);
   float zRotation2x2[] = { 
         cosf(theta), sinf(theta),
         -sinf(theta), cosf(theta) 
   };

5. Rotate the line by this negative rotation matrix. This will transform the line into the 
local coordinate space of the rectangle:
   Multiply(r.asArray, vec2(r.x,r.y).asArray, 
      1, 2, zRotation2x2, 2, 2);

6. Construct a new circle in the local space of the rectangle (lCircle stands for local 
circle). We can use the offset of the previously rotated line to figure out where the 
circle should be:
   Circle lCircle(r + rect.halfExtents, circle.radius);

7. Construct a non-oriented rectangle to represent the local space of the oriented 
rectangle:
   Rectangle2D lRect(Point2D(), rect.halfExtents * 2.0f);

8. Check if the local space rectangle and circle intersect:

   return CircleRectangle(lCircle, lRect);
}

How it works…
We move the circle into the local space of the oriented rectangle by translating the circles 
position relative to the center of the rectangle. Then, we rotate the translated point in the 
negative orientation of the rectangle. Finally, because the local space of the rectangle treats 
the origin as lower-left, not center, we have to offset the transfod point bythe half-size of 
the rectangle. Finally, once both the circle and oriented rectangle are in local space, we can 
perform a circle to rectangle collision test.
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Rectangle to rectangle
We can test if two rectangles intersect by checking for ovap on eaof axis of of the rectangles. 
Non-oriented rectanglesave two axes each: the X Axis (1, 0) and the Y Axis (01). All axes of the 
rectangle must overlap for there to be a collision:

Let's assume we have two rectangles, A and B. We know the min and max points of both 
rectangles. The two rectangles overlap only if both of these conditions are met:

 f B.min <= A.max

 f A.min <= B.max

Getting ready
There is no need to make the overlap test into its own function; we're going to write it inline 
with the rest of the code. This just means instead of writing an Overlap function, we are 
going to write the math and comparison out explicitly. We have two rectangles, for each we 
must check for overlap on the X-Axis and the Y-Axis.
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How to do it…
Follow these steps to implement a function which tests for intersection between two non 
oriented rectangles:

1. Declare the RectangleRectangle collision function in Geometry2D.h:
bool RectangleRectangle(const Rectangle2D& rect1, 
   const Rectangle2D& rect2);

2. Implement the RectangleRectangle function in Geometry2D.cpp:
bool RectangleRectangle(const Rectangle2D& rect1, 
   const Rectangle2D& rect2) {

3. Find the min and max points of rectangle 1:
   vec2 aMin = GetMin(rect1); 
   vec2 aMax = GetMax(rect1);

4. Find the min and max points of rectangle 2:
   vec2 bMin = GetMin(rect2); 
   vec2 bMax = GetMax(rect2);

5. Check for overlap on t X and Y axes separately
   bool overX = ((bMin.x<= aMax.x) && (aMin.x<= bMax.x));
   bool overY = ((bMin.y<= aMax.y) && (aMin.y<= bMax.y));

6. The boxes intersect only if both axis overlap:
   return overX && overY;
}

How it works…
To test if two rectangles intersect, we get the min and max points for each rectangle. We then 
use these points to check for overlap on the X axis and Y axis separately. The rectangles only 
intersect if both ranges overlap.

This overlap test could be turned into a convenient macro:

#define OVERLAP(aMin, aMax, bMin, bMax) \
   ((bMin<= aMax) && (aMin<= bMax))
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Separating Axis Theorem
The Separating Axis Theorem (SAT) can be used to determine if two arbitrary shapes 
intersect. Both shapes being tested must be convex. The SAT works by looking for at least 
one axis of separation between two objects. If no axis of separation exists, the objects are 
colliding. An axis of separation can be represented by any arbitrary plane:

The first step in the SAT is to find an axis that we want to test for separation. In the example 
image above, the two oriented bounding boxes can havewo possible axes of separation. The X 
axis (1, 0) or the Y axis (0, 1) can separate these boxes.

Once we have figured out the axis of potential separation, we project both shapes onto the 
axis being tested. This projection results in a set of points. The minimum and maximum points 
of this projection create an Interval. An interval is like a line; in the above image you can see 
four intervals, one on the X axis for both objects and one on the Y axis for both objects:
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Once we know the interval for both objects on a given axis, we check if the intervals overlap. 
This overlap test is done the same way we checked if rectangle points overlap. This means 
two intervals overlap only if both of the following conditions are true.

 f Interval2.min <= Interval1.max

 f Interval1.min <= Interval2.max

If the intervals do not overlap, we have found an axis of separation and we know the 
objects are not colliding. If the intervals do overlap, we must check the next axis of potential 
separation. If we have tested every axis, and they all overlap, the objects are intersecting.

In the example image, there is overlap on the X axis, but no overlap on the Y axis. Because at 
least one of the axis was separating (The Y axis) these shapes do not intersect.

Getting ready
To demonstrate this concept, we're going to re-implement the RectangleRectangle 
collision function. This time, we're going to implement it using the SAT, calling the new 
function, RectangleRectangleSAT. The important part of this exercise is to create all the 
support methods and structures needed for an SAT test, as well as to see the test in action. 
We need to create an interval structure, a method to get the interval of a shape given an axis, 
and a method to test if two intervals overlap.

How to do it…
Follow these steps to define an intervalstrcture and the GgetIinterval function of a non 
oriented rectangle:

1. First, we need to define what an interval is. Add the new Interval2D struct to 
Geometry2D.h:
typedef struct Interval2D {
   float min;
   float max;
} Interval2D;

2. Next, we need to declare a function that will return the interval of a Rectangle given 
an axis. Declare this function in Geometry2D.h:
Interval2D GetInterval(const Rectangle2D& rect, 
    const vec2& axis);

3. Implement the GetInterval function in Geometry2D.cpp:
Interval2D GetInterval(const Rectangle2D& rect, 
   const vec2& axis) {
   Interval2D result;
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4. Find the min and max points of the rectangle being tested:
   vec2 min = GetMin(rect); 
   vec2 max = GetMax(rect);

5. Use the min and max points to build a set of vertices:
   vec2 verts[] = { // Get all vertices of rect
      vec2(min.x, min.y), vec2(mn.x, max.y),
      vec2(max.x, max.y), vec2(max.x, min.y)
   };

6. Project each vertex onto the axis, store the smallest and largest values:
   result.min = result.max = Dot(axis, verts[0]);
   for (int i = 1; i < 4; ++i) {
      float projection = Dot(axis, verts[i]);
      if (projection < result.min) {
         result.min = projection;
      }
      if (projection > result.max) {
         result.max = projection.
      }
   }
   return result;
}

7. The OverlapOnAxis function will test if the two intervals overlap, declare this 
function in Geometry2D.h:
bool OverlapOnAxis(const Rectangle2D& rect1, 
   const Rectangle2D& rect2, const vec2& axis);

8. Implement the OverlapOnAxis function in Geometry2D.cpp:
bool OverlapOnAxis(const Rectangle2D& rect1, 
    const Rectangle2D& rect2, const vec2& axis) {
    Interval2D a = GetInterval(rect1, axis);
    Interval2D b = GetInterval(rect2, axis);
    return ((b.min <= a.max) && (a.min <= b.max));
}
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9. Now that we can determine if two shapes overlap on any given axis, we can 
implement the SAT test. Declare the RectangleRectangleSAT function in 
Geometry2D.h:
bool RectangleRectangleSAT(const Rectangle2D& rect1, 
   const Rectangle2D& rect2);

10. Finally, implement the RectangleRectangleSAT function in Geometry2D.cpp:
bool RectangleRectangleSAT(const Rectangle2D&
   rect1, const Rectangle2D& rect2) {

11. There a two potential axes of separation between two boxes, the X axis and  
the Y axis:
   vec2 axisToTest[] = { vec2(1, 0), vec2(0, 1) };

12. Now that we know the axis to test, check each axis for overlap:
   for (int i = 0; i < 2; ++i) {
      // Intervals don't overlap,seperating axis found
      if (!OverlapOnAxis(rect1, rect2, axisToTest[i])) {
         return false; // No collision has taken place
      }
   }
   // All intervals overlapped, seperating axis not found
   return true; // We have a collision
}

How it works…
The goal of the RectangleRectangleSAT function is to test if an axis of separation exists 
between two objects. If a single axis of separation exists, we do not have a collision. The 
RectangleRectangleSAT function tests two potential axes for separation. It uses the 
OverlapOnAxis function to project each shape onto each axis and see if the intervals 
overlap on said axis. The OverlapOnAxis function calls the GetInterval function to get 
the actual intervals of the shapes on each axis. The GetInterval function assumes the axis 
being passed in is of unit length!

There's more…
When testing two non oriented rectangles, figuring out which axis to test was simple. It was 
visually obvious that there were oy two potential axes of separation. But what about more 
complex shapes, like octagons? How can we determine which axis to test for such shapes?
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Determining which axis to test
A separating axis is expressed as a normal vector. It is some vector in global space that we 
project each shape onto to get an interva We generate all axes of potential separation between 
two shapes by following three steps. The axis of potential separation between two objects:

 f All of the face norma of object 1 are axes of potential separation

 f All of the face norma of object 2 are axes of potential separation

 f The normalized cross product (only defined for 3D vectors) between each edge of 
object 1 and 2 is a potential axis of separation

The above steps will give a corehensive set of axes, but they represent the worst case 
scenario. Many shes can test less axes of separation. For example, each box has four  
face normals:

 f Right face: X Axis (1, 0)

 f Left face: Negative X axis (-1, 0)

 f Top face: Y Axis (0, 1)

 f Bottom face: Negative Y axis (0, -1)

Projecting the vertices of a box onto axis (1, 0) and (-1, 0) would yield the same result. 
Therefore, we can reduce the number of face normals to two. Both boxes align to the 
same axis, so we don't even need to test the normals of the otherox. Finally, the axes are 
perpendicular, their cross products would yield only themselves. We reduced the nber of 
potential axes of separation from twenty four to two.

We can reduce the number of poteially separating axes for simple shapes, but if the shapes 
are arbitrary, and we don't knowything about them, w. When this happens we have to follow 
the three steps above to generate every axis of potential separation. We could express this  
in code, like so:

bool GenericSAT(Shape shape1, Shape shape2) {
   // 1) Test the face normals of object 1 as the separating axis
   std::vector<mathVector>normals = GetFaceNormals(shape1);
   for (int i = 0; i<normals.size(); ++i) {
      if (!OverlapOnAxis(shape1, shape2, normals[i])) {
         return true; // Seperating axis found, early out
      }
   }
   // 2) Test the face normals of object 2 as the separating axis
   normals = GetFaceNormals(shape2);
   for (int i = 0; i<normals.size(); ++i) {
      if (!OverlapOnAxis(shape1, shape2, normals[i])) {
         return true; // Seperating axis found, early out
      }
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   }
   //3) Check the normalized cross product of each shapes edges.
   std::vector<mathVector> edges1 = GetEdges(shape1);
   std::vector<mathVector> edges2 = GetEdges(shape2);
   for (int i = 0; i< edges1.size(); ++i) {
      for (int j = 0; j < edges2.size(); ++j) {
         mathVector testAxis = Cross(edges1[i], edges2[j]);
         if (!OverlapOnAxis(shape1, shape2, testAxis)) {
            return true; // Separating axis found, early out
         }
      }
   }
   // No separating axis found, the objects do not intersect
   return false;
}

Rectangle to oriented rectangle
Testing a rectangle against an oriented rectangle is not as easy as one would expect. If we 
translate the rectangle into the oriented rectangles space, we would end up with the non 
oriented rectangle being oriented, and the oriented rectangle becoming non-oriented.

We can perform an SAT test between the two rectangles. We do not have to perform the 
generic version of the SAT which should involve twenty four24 axes of potential separation.  
We can reduce rectangle to orientd rectangle to four axes of potential separation:

 f The global X Axis (1, 0)

 f The global Y Axis (0, 1)

 f The oriented rectangles X axis (rotation.X, 0)

 f The oriented rectangles Y axis (0, rotation.Y)

Getting ready
First we are going to implement the support functions needed for an SAT test between a 
Rectangle and an OrientedRectangle. We already have all the support functions for the 
Rectangle implemented from the last section, now we have to implement these functions 
for the OrientedRectangle. These functions are GetInterval and OverlapAxis. Once 
we have both of these functions implemented, we can perform the SAT test.
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How to do it…
Follow these steps to create a function which returns the interval of an oriented rectangle and 
a function that checks for the intersection of oriented and non oriented rectangles:

1. Declare the GetInterval and OverlapOnAxis functions in Geometry2D.h:
Interval2D GetInterval(const OrientedRectangle& rect, 
   const vec2& axis);
bool OverlapOnAxis(const Rectangle2D& rect1, 
   const OrientedRectangle& rect2, const vec2& axis);

2. Implement the GetInterval function in Geometry2D.h:
Interval2D GetInterval(const OrientedRectangle& rect, 
   const vec2& axis) {

3. Construct a non-oriented version of the rectangle:
   Rectangle2D r = Rectangle2D(
      Point2D(rect.position - rect.halfExtents),
      rect.halfExtents * 2.0f
   );

4. Find the vertices of this non-oriented rectangle:
   vec2 min = GetMin(r);
   vec2 max = GetMax(r);
   vec2 verts[] = { 
      min, max, 
      vec2(min.x, max.y), vec2(max.x, min.y)
   };

5. Create a rotation matrix from the orientation of the rectangle:
   float t = DEG2RAD(rect.rotation);
   float zRot[] = {
      cosf(t),sinf(t),
      -sinf(t), cosf(t)
   };

6. Rotate every vertex of the non oriented rectangle by this rotation matrix. This leaves 
us with the vertices of the oriented rectangle in world space:
   for (int i = 0; i < 4; ++i) {
      vec2 r = verts[i] - rect.position;
      Multiply(r.asArray, vec2(r.x, r.y).asArray, 
         1, 2, zRot, 2, 2);
      verts[i] = r + rect.position;
   }
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7. Store the minimum and maximum points of every projected vertex as the interval of 
the rectangle:
   Interval2D res;
   res.min = res.max = Dot(axis, verts[0]);
   for (int i = 1; i < 4; ++i) {
      float proj = Dot(axis, verts[i]);
      res.min = (proj<res.min)?proj :res.min;
      res.max = (proj>res.max)?proj :res.max;
   }
   return res;
}

8. Implement the OverlapOnAxis test between a rectangle and 
OrientedRectangle in Geometry2D.cpp:
bool OverlapOnAxis(const Rectangle2D& rect1, 
   const OrientedRectangle& rect2, const vec2& axis) {
   Interval2D a = GetInterval(rect1, axis);
   Interval2D b = GetInterval(rect2, axis);
   return ((b.min <= a.max) && (a.min <= b.max));
}

9. Declare the RectangleOrientedRectangle function in Geometry2D.h and 
provide an alias for it:
bool RectangleOrientedRectangle(const Rectangle2D& rect1,
   const OrientedRectangle& rect2);
#define OrientedRectangleRectangle(oriented, regular) \
   RectangleOrientedRectangle(regular, oriented)

10. Finally, implement the RectangleOrientedRectangle function in Geometry2D.
cpp:
bool RectangleOrientedRectangle(const Rectangle2D& rect1,
   const OrientedRectangle& rect2) {

11.  know the first two axes to test are going to be the X and Y axis. Fill in dummy da for 
the other two axes for now.
   vec2 axisToTest[]{
      vec2(1, 0),vec2(0, 1),
      vec2(),vec2()
   };

12. Construct a rotation matrix:
   float t = DEG2RAD(rect2.rotation);
   float zRot[] = {
      cosf(t), sinf(t),
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      -sinf(t), cosf(t)
   };

13. Construct separating axis number three:
   vec2 axis = Normalized(vec2(rect2.halfExtents.x, 0));
   Multiply(axisToTest[2].asArray, 
      axis.asArray, 1, 2, zRot, 2, 2);

14. Construct separating axis number four:
   axis = Normalized(vec2(0, rect2.halfExtents.y));
   Multiply(axisToTest[3].asArray,
      axis.asArray, 1, 2, zRot, 2, 2);

15. Check every axis for overlap:
   for (int i = 0; i < 4; ++i) {
      if (!OverlapOnAxis(rect1, rect2, axisToTest[i])) {
         return false; // No collision has taken place
      }
   }
   return true; // We have a collision
}

How it works…
Let's start with the GetInterval function. This function creates a non-oriented version of 
the oriented rectangle, around the oriented rectangles center point. The function then gets 
the four corners of the rectangle. All four corners are rotated using matrix multiplication, to 
match the corners of the oriented rectangle. We then add the position of the rectangle to 
move the corner points back into world space. Finally, we project each world space vertex  
onto the axis and store the resulting interval.

The OverlapOnAxis method is similar to the one we created for RectangleRectangle. It 
gets the intervals of both shapes given an axis, and then compares the intervals for overlap.

The RectangleOrientedRectangle method creates an array f potential separating axes 
to test. Initially, the last two elements are just placeholders. To find these axes, we take each 
component of the half extents of the oriented rectangle and rotate them so they match the 
rotation of the rectangle. Then, we normalize these vectors. Once the vectors are of unit 
length, we have all four axes to test. At this point we loop through all four axes to check if 
there is an overlap on each axis or not.
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Oriented rectangle to oriented rectangle
There are two ways we can check for collision between two oriented rectangles. First, we could 
extend the SAT test with two additional axis. This means we would have six axes of potential 
separation:

 f The X and Y axis of the world

 f The local X and Y axis of the first rectangle

 f The local X and Y axis of the second rectangle.

While adding two new axes of potential separation would not increase the cost of the collision 
check too much, there is an alternate, somewhat easier way we can perform an intersection 
test between two oriented rectangles.

The other way to check intersection would be to translate both rectangles into the local space 
of the first rectangle, leaving us with a non-oriented rectangle and an oriented rectangle. At 
that point we could just call our existing function from the last section. We're going to use the 
latter method, where we translate one rectangle into the local space of the other one.

Getting ready
We are going to implement a function that will transform one oriented rectangle into 
the local space of another oriented rectangle. This will leave us with an oriented and 
a non-oriented rectangle. Once we have these two rectangles, we can call the existing 
RectangleOrientedRectangle function to test for collision.
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How to do it…
Follow these steps to implement a function which checks for intersection between two 
oriented rectangles:

1. Declare the OrientedRectangleOrientedRectangle function in 
Geometry2D.h:
bool OrientedRectangleOrientedRectangle(
   const OrientedRectangle& r1, 
   const OrientedRectangle& r2);

2. Implement OrientedRectangleOrientedRectangle in Geometry2D.cpp:
bool OrientedRectangleOrientedRectangle(
   const OrientedRectangle& r1, 
   const OrientedRectangle& r2) {

3. Transform r1 ito the local space of r1 (itsself):
   Rectangle2D local1(Point2D(), r1.halfExtents * 2.0f);

4. Make a copy of r2 which will later be translated into the local space of r1:
   vec2 r = r2.position - r1.position;
   OrientedRectanglelocal2(
      r2.position, r2.halfExtents, r2.rotation
   );
   local2.rotation = r2.rotation - r1.rotation;

5. Construct a rotation matrix which represents a rotation in the opposite direction  
of r1:
   float t = -DEG2RAD(r1.rotation);
   float z[] = {
      cosf(t), sinf(t),
      -sinf(t), cosf(t) 
   };

6. Move the rectangle we created in step 4 into the local space of r1:
   Multiply(r.asArray,vec2(r.x, r.y).asArray,1,2, z,2,2);
   local2.position = r + r1.halfExtents;

7. Now that both rectangles are in the local space of r1, we can perform a 
RectangleOrientedRectangle intersection test:
   return RectangleOrientedRectangle(local1, local2);
}
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How it works…
We translate the first rectangle into its own local space by creating a non-oriented rectangle at 
origin which has the same size as the first rectangle. This moves the rectangle to the origin of 
its local space and discards any rotation. Moving the second rectangle into the local space of 
the first rectangle is a little more complicated.

We take the following steps to translate the second rectangle into the local space of the first 
rectangle:

1. Make a copy of the second rectangle, we will be modifying this copy, not the original 
rectangle

2. Store the offset between the two rectangles in vector r.

3. Create a rotation matrix that rotates in the opposite direction of the first rectangle. 
Multiplying the first rectangle by this rotation would eliminate its rotation.

4. Rotate the copy of the second rectangle by the rotation matrix, then adjust its position 
by the offset stored in vector r.

Following the steps above, we can move the second rectangle into the local space of the first 
rectangle. Once both rectangles are in the local space of the first rectangle we can perform a 
rectangle to oriented rectangle test, as the first rectangle is no longer oriented.
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6
2D Optimizations

Now that we know how to check for collisions between 2D primitives, it's time to start thinking 
about performance. Checking for collisions between a few objects is trivial. However, when 
it comes to checking for collisions between hundreds, or even thousands of objects, that's 
going to be tricky. With so many objects, performance really starts to matter. In this chapter, 
we will cover topics to improve performance when checking for collisions between objects. 
Specifically, we will cover:

 f Containing circle

 f Containing rectangle

 f Simple and complex shapes

 f Quad tree

 f Broad phase collisions

Introduction
Optimizing 2D collisions is not a trivial task. There are several strategies for improving the 
speed of complex collision detection. However, none of the available strategies are perfect. 
You have to understand the pros and cons of each strategy for your game to be able to decide 
on the best strategy for handling and optimizing collisions.
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Containing circle
One of the necessities for performing real-time collision detection is to simplify a given shape. 
For this reason, we need to make a function that, given a set of points, will return a circle 
containing all the points. This simplified bounding circle can then be used to approximate a 
collision area:

Getting ready
In order to avoid adding a dependency to std::vector in Geometry2D.h, we will 
implement this new function using an array. The ContainingCircle function will take two 
arguments, one is a Point2D array, and the other deals with the number of elements in the 
array. The ContainingCircle function will return a bounding circle that encapsulates all  
of the points.

How to do it…
Follow these steps to implement a function that will build a bounding circle from a set  
of points:

1. Declare the ContainingCircle function in Geometry2D.h:
Circle ContainingCircle(Point2D* pArray, int arrayCount);

2. Implement ContainingCircle in Geometry2D.cpp:
Circle ContainingCircle(Point2D* pArray, int arrayCount) {
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3. Sum up all of the points inside the point cloud:
   Point2D center; 
   for (int i = 0; i < arrayCount; ++i) {
      center = center + pArray[i];
   }

4. Divide by the number of points (using reciprocal multiplication):
   center = center * (1.0f / (float)arrayCount);

5. Create resulting circle. To find the radius of this circle, we have to loop through every 
point. The distance between the center point and the furthest point is the radius:

   Circle result(center, 1.0f);
   result.radius = MagnitudeSq(center - pArray[0]);
   for (int i = 1; i<arrayCount; ++i) {
      float distance = MagnitudeSq(center - pArray[i]);
      if (distance >result.radius) {
         result.radius = distance;
      }
   }
   result.radius = sqrtf(result.radius);
   return result;
}

How it works…
The ContainingCircle function first finds the center point of the provided set. This is the 
position at which the resulting circle will be put. Next, we find the point furthest from the 
center. The distance between the furthest point and the center then becomes the radius of 
the new containing circle.
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Containing rectangle
A containing rectangle is very similar to a containing circle. We will find the minimum non-
oriented rectangle that contains a set of points. Depending on the shape being contained,  
a rectangle might be a tighter fit than a circle:

Getting ready
The ContainingRectangle function is going to be very similar to the ContainingCircle 
function. Just like ContainingCircle, this function will take an array of points, and a count 
of the number of points in the array. Given this set of input points, ContainingRectangle 
will return the minimum non-oriented rectangle that encompasses every point.

How to do it…
Follow these steps to create a function that will create a bounding rectangle from a set of 
points:

1. Declare the ContainingRectangle function in Geometry2D.h:
Rectangle2D ContainingRectangle(Point2D* pointArray, 
   int arrayCount);

2. Implement the ContainingRectangle function in Geometry2D.cpp:
Rectangle2D ContainingRectangle(Point2D* pointArray, 
   int arrayCount) {
   vec2 min = pointArray[0];
   vec2 max = pointArray[0];
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3. Loop through every point in the point cloud to find the min and max points of the 
containing rectangle:

   for (int i = 1; i<arrayCount; ++i) {
      min.x = pointArray[i].x< min.x ?
         pointArray[i]. x : min.x;
      min.y = pointArray[i].y<min.y ?
         pointArray[i].y : min.y;
      max.x = pointArray[i].x>max.x ? 
         pointArray[i].x : max.x;
      max.y = pointArray[i].y>max.y ? 
         pointArray[i].y : max.y;
   }
   returnFromMinMax(min, max);
}

How it works…
The ContainingRectangle function loops through all the points in a given set. This 
function creates two new points, min and max. These points contain the minimum and 
maximum values of the points provided on a per component basis. Once the min and max 
components have been found, we return a new rectangle created from them.

Simple and complex shapes
Sometimes a containing circle or a containing rectangle alone is not accurate enough for 
collision detection. When this happens we can use several simple shapes to approximate  
a complex shape:
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Getting ready
We are going to create a new structure called BoundingShape. This new structure will hold 
an array of circles and an array of rectangles. It's assumed that the structure does not own 
the memory it is referencing. We can implement several primitive tests by looping through all 
the primitives that BoundingShape contains.

How to do it…
Follow these steps to create a class which represents a complex shape. A complex shape is 
made out of many simple shapes:

1. Declare the BoundingShape primitive in Geometry2D.h:
typedef struct BoundingShape {
   int numCircles;
   Circle* circles;
   int numRectangles;
   Rectangle2D* rectangles;

   inline BoundingShape() :
      numCircles(0), circles(0),
      numRectangles(0), rectangles(0) { }
};

2. Define a new PointInShape function in Geometry2D.h:
bool PointInShape(const BoundingShape& shape, 
   const Point2D& point);

3. Implement the PointInShape function in Geometry2D.cpp:

bool PointInShape(const BoundingShape& shape, 
const Point2D& point) {
   for (int i = 0; i<shape.numCircles; ++i) {
      if (PointInCircle(point, shape.circles[i])) {
         return true;
      }
   }
   for (int i = 0; i<shape.numRectangles; ++i) {
      if (PointInRectangle(point, shape.rectangles[i])) {
         return true;
      }
   }
   return false;
}
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How it works…
A BoundingShape is constructed of many simple shapes, in this case circles and rectangles. 
This allows us to approximate one large, complex shape using many small simple ones. In 
its current design, the BoundingShape class does not own any memory, it just references 
external memory. In order to test whether a point is within a bounding shape or not, we loop 
through every Circle and Rectangle2D contained within the BoundingShape and do a 
collision test for each one. The same method can be used to define other collisions, such as:

 f Shape to Line

 f Shape to Circle

 f Shape to Rectangle

 f Shape to Oriented Rectangle

 f Shape to Shape

Quad tree
A quad tree recursively subdivides a game world into smaller and smaller sections. It's called 
a quad tree because each non-leaf node is divided into four smaller nodes. Usually, quad 
trees are dynamic, meaning they rearrange at runtime. Every node has a maximum number  
of children, if the number of objects in a node exceeds this, the node is split:
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To build a quad tree we must start with a root node. This root node encompasses all of the 
objects in a given scene. If the root node contains more than some arbitrary number of game 
objects, it subdivides into four new leaf nodes. The same splitting process is recursively 
applied to each child. This leaves us with the edge case where some children are just too big. 
What happens if two objects happen to overlap at a point? No matter how far we subdivide, 
they will never separate:

To avoid this Infinite Subdivision, we can assign a maximum depth to the quad tree. But there 
are other edge cases to consider as well. What happens when an object is perfectly on a 
boundary, or if an object is just too big to fit into a single child node? We could:

 f Split the object into multiple smaller objects

 f Store the object in a non-leaf node that completely encompasses it

 f Store the object in multiple leaf nodes

For the sake of simplicity, we are going to go with the third option, that is potentially storing 
an object in multiple nodes. This decision creates yet another edge case! How do we know 
if an object has been processed as a part of another leaf node or not? An object in multiple 
leaf nodes could be returned multiple times, one for each leaf that it belongs to. The easiest 
solution to this issue is to implement some kind of flag for the object.

Getting ready
We are going to create a generic QuadTree class that can subdivide large regions into 
smaller ones. In order to keep the quad tree generic, it's going to hold references to a 
QuadTreeData structure. For now, I've left a void pointer in this structure. In your game 
implementation you will want to swap this for whatever your game object types are. With this 
information, the only thing we need to know to create a quad tree is how big the world is.
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How to do it…
Follow these steps to implement a quad tree:

1. Make a new header file, QuadTree.h. Add the standard header guards:
#ifndef _H_QUAD_TREE_
#define _H_QUAD_TREE_
#include "Geometry2D.h"
#include <vector>
usingstd::vector;

// Quad tree data structure will go here

#endif

2. Implement the QuadTreeData data structure in the newly created header file. This 
structure is one entry in the quad tree:
struct QuadTreeData {
   void* object;
   Rectangle2D bounds;
   bool flag;
   inline QuadTreeData(void* o, const Rectangle2D& b) :
      object(o), bounds(b), flag(false) { }
};

3. Next, begin declaring the QuadTreeNode class in QuadTree.h. We first add the 
protected variables to this structure. These variables include a list of children and 
a list of data to be stored in the current node. Static variables are used for storing 
configuration data:
class QuadTreeNode {
protected:
   std::vector<QuadTreeNode> children;
   vector<QuadTreeData*> contents;
   int currentDepth;
   static int maxDepth;
   static int maxObjectsPerNode;
   Rectangle2D nodeBounds;

4. Declare the public functions of this new structure. We need helper functions to check 
if a node is a leaf and how many objects a node contains. The actual API requires 
methods to insert, remove, and update elements into the tree:
public:
   inline QuadTreeNode(const Rectangle2D& bounds):
      nodeBounds(bounds), currentDepth(0) { }
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   bool IsLeaf();
   int NumObjects();
   void Insert(QuadTreeData& data);
   void Remove(QuadTreeData& data);
   void Update(QuadTreeData& data);
   void Shake();
   void Split();
   void Reset();
   vector<QuadTreeData*>Query(const Rectangle2D& area);
};

5. typedef this new struct as a QuadTree:
typedef QuadTreeNode QuadTree;

6. Make a new file, QuadTree.cpp. Include the appropriate headers, and implement 
the IsLeaf function. Static variables of the QuadTreeNode class also need to be 
initialized in this file:
#include "QuadTree.h"
#include <queue>
int QuadTreeNode::maxDepth = 5;
int QuadTreeNode::maxObjectsPerNode = 15;
boo lQuadTreeNode::IsLeaf() {
   return children.size() == 0;
}

7. Implement the NumObjects function in QuadTree.cpp. This function will count all 
the objects contained in each child of the current node, without using recursion:
int QuadTreeNode::NumObjects() {
   Reset();
   int objectCount = contents.size();
   for (int i = 0, size = contents.size(); i< size; ++i) {
      contents[i]->flag = true;
   }

8. Make a queue of nodes to be processed and push the initial node into this queue:
std::queue<QuadTreeNode*> process;
process.push(this);

9. Loop through the process queue:
while (process.size() > 0) {
   QuadTreeNode* processing = process.back();

10. If the node we are looking at is not a leaf, add its children to the process list:
   if (!processing->IsLeaf()) {
      for (int i = 0, size = 
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      processing->children.size(); i < size; ++i) {
         process.push(&processing->children[i]);
      }

11. Otherwise, count the child object. Once an object is counted, flip its flag to signify that 
it has been counted:
   } else {
      for (int i = 0, size = 
      processing->contents.size(); i < size; ++i) {
         if (!processing->contents[i]->flag) {
            objectCount += 1;
            processing->contents[i]->flag = true;
         }
      }
   }
   process.pop();
}
Reset();
returnobjectCount;
}

12. Implement the Insert function in QuadTree.cpp:
void QuadTreeNode::Insert(QuadTreeData& data) {
if (!RectangleRectangle(data.bounds, nodeBounds)) {

return; // The object does not fit into this node
}

13. If the node is a leaf and can be split further, attempt to do so:
if (IsLeaf()&&contents.size()+1 >maxObjectsPerNode) {

   Split(); // Try splitting!
}
if (IsLeaf()) {
   contents.push_back(&data);
   } else {

14. If the node is  not a leaf, try to insert the content into all children of the node:
      for (int i=0,size = children.size(); i<size; ++i) {
         children[i].Insert(data);
      }
   }
}

15. Implement the Remove function in QuadTree.cpp:
void QuadTreeNode::Remove(QuadTreeData& data) {
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if (IsLeaf()) {
   int removeIndex = -1;

16. If we are dealing with a leaf node, look for an object to remove:
   for (int i=0, size=contents.size(); i<size; ++i) { 
      if (contents[i]->object == data.object) {
         removeIndex = i;
         break;
      }
   }

17. If an object to be removed is found, actually remove it:
   if (removeIndex != -1) {
      contents.erase(contents.begin() + 1);
   }

18. If the node is not a leaf, call the Remove function recursively:
}else {
   for (int i=0, size=children.size(); i<size; ++i) {
      children[i].Remove(data);
   }
}
Shake();
}

19. Implement the Update functions in QuadTree.cpp:
void QuadTreeNode::Update(QuadTreeData& data) {
   Remove(data);
   Insert(data);
}

20. Implement the Reset functions in QuadTree.cpp:
void QuadTreeNode::Reset() {
 if (IsLeaf()) {
     for (int i=0, size=contents.size(); i<size; ++i) {
        contents[i]->flag = false;
       }
    }
  else {
     for (int i=0, size=children.size(); i<size; ++i) {
  children[i].Reset();
       }
    }
}
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21. Implement the Shake function in QuadTree.cpp:
void QuadTreeNode::Shake() {
   if (!IsLeaf()) {
      int numObjects = NumObjects();
      if (numObjects == 0) {
         children.clear();
      }

22. If this node contains less than the maximum number of objects, we can collapse all 
of the child nodes into this node:
      else if (numObjects < maxObjectsPerNode) {
         std::queue<QuadTreeNode*> process;
         process.push(this);
         while (process.size() > 0) {
            QuadTreeNode* processing = process.back();
            if (!processing->IsLeaf()) {
               for (int i = 0, size = 
               processing->children.size(); 
               i < size; ++i) {
                  process.push(&processing->children[i]);
               }
            }
            else {
               contents.insert(contents.end(), 
               processing->contents.begin(),
               processing->contents.end());
            }
            process.pop();
         }
         children.clear();
      }
   } 
}

23. Implement the Split function in QuadTree.cpp:
void QuadTreeNode::Split() {
   if (currentDepth + 1 >= maxDepth) {
      return;
   }

   vec2 min = GetMin(nodeBounds);
   vec2 max = GetMax(nodeBounds);
   vec2 center = min + ((max - min) * 0.5f);
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24. Use the min, max, and center variables to divide the node being processed into four 
smaller nodes:
   Rectangle2D childAreas[] = {
      Rectangle2D(
         FromMinMax(
            vec2(min.x, min.y), 
            vec2(center.x, center.y))),
      Rectangle2D(
         FromMinMax(
            vec2(center.x, min.y), 
            vec2(max.x, center.y))),
      Rectangle2D(
         FromMinMax(
            vec2(center.x, center.y), 
            vec2(max.x, max.y))),
      Rectangle2D(
         FromMinMax(
            vec2(min.x, center.y), 
            vec2(center.x, max.y))),
   };

25. Distribute the objects held in this node into its children:
   for (int i = 0; i < 4; ++i) {
      children.push_back(QuadTreeNode(childAreas[i]));
      children[i].currentDepth = currentDepth + 1;
   }
   for (int i = 0, size = contents.size(); i < size; ++i) {
      children[i].Insert(*contents[i]);
   }
   contents.clear();
}

26. Finally, implement the Query function in QuadTree.cpp:
std: vector<QuadTreeData*> QuadTreeNode::Query(
const Rectangle2D& area) {
   std::vector<QuadTreeData*> result;
   if (!RectangleRectangle(area, nodeBounds)) {
      return result;
   }

27. If we are looking at a leaf node, query the elements within this node:
   if (IsLeaf()) {
      for (int i=0, size=contents.size(); i<size; ++i) {
         if(RectangleRectangle(contents[i]->bounds,area)){



Chapter 6

143

            result.push_back(contents[i]);
         }
      }
   }

28. If the node we are searching is not a leaf node, recursively query all child nodes:
   else {
      for (int i=0, size=children.size(); i<size; ++i) {
         vector<QuadTreeData*> recurse = 
              children[i].Query(area);
         if (recurse.size() > 0) {
            result.insert(result.end(), 
                          recurse.begin(), 
                          recurse.end());
         }
      }
   }
   return result;
}

How it works…
The idea behind the quad tree is to make finding objects that potentially intersect faster. The 
most important functions within the QuadTree are Insert, Remove, and Update. Whenever 
a game object is created, it should be inserted into the tree. Anytime an object moves it 
should be updated, and whenever an object is deleted it should be removed.

The Insert function will call the Split function if the number off objects in any node 
exceeds the maximum number of allowed contents. The Split helper function splits the current 
node into four child nodes, and then inserts all the objects the current node has into its new 
children. The contents of the current node are then cleared.

The Remove function on the other hand will call the Shake function once an object has  
been removed. This function shakes the tree, causing leaves to fall off. This means if the  
total number of objects within a node (and all of its children) is less than the maximum 
number of objects permitted per node the current child nodes are eliminated, and the  
node becomes a leaf.

The Update function needs to be called whenever an object moves. This function will remove 
the object from the tree, and reinsert the object. This will potentially repartition the tree.
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Broad phase collisions
Simple video games might have hundreds or thousands of objects. More complicated games 
might even have millions. Testing collisions between all of these objects will quickly become 
computationally expensive. This is why we need broad phase collisions. Broad phase collisions 
are not accurate, they let us know if two objects are too far apart to touch.

For example, let us assume we have two rectangles. We could contain both rectangles in 
circles. If the resulting circles are not touching, there is no reason to check whether the 
rectangles are colliding or not. In this scenario we do not have to do complex intersection 
testing because we first test simple objects.

Getting ready
The QuadTree class that we have built is ideal for broad phase collision detection. It 
segments world space so that objects which are far apart don't need to be tested against 
each other. In this section, I'm going to demonstrate how the quad tree can be used in a real 
world situation using some pseudo-code.

How to do it…
Follow these steps to implement a 2D scene which supports broad phase collisions:

1. This is roughly what your initialize function for a scene using a quad tree should look 
like:
/*Most games will have some kind of a scene class 
  this scene class will have an initialize function */
protected:
   QuadTree* quadTree;
   public:
   inline void Scene::Initialize() {
      quadTree = new quadTree(
         Rectangle2D(0, 0, sceneWidth, sceneHeight);
      std::vector<CollisionData> colData;
      /* Usually the scene is read out of a text file 
         or some resource on disk. From that resource, 
         some game object array (or tree) is populated */
      for (int i = 0; i<gameObjects.Length; ++i) {
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2. As we loop through each game object, insert all of them into the quad tree:
         colData.push_back(QuadTreeData());
         QuadTreeData* collisionData =
            &colData[colData.size() - 1];
         collisionData->object = gameObjects[i];
         collisionData->bounds = gameObjects[i].bounds;
         gameObjects[i]->cData = collisionData;
         quadTree->Insert(collisionData);
      }
   }

3. The update function for a scene might look something like this:
void Update(deltaTime) {
   GameObject* player = FindObjecT("Player");
   UpdatePlayerBasedOnInput(player);
   quadTree->Update(player->cData);

4. Get a list of objects near the player:
   std::vector<QuadTreeData*>collisionObjects = 
       quadTree->Query(player->cData->bounds);

   /* Loop trough the objects the player has 
      collided with and perform actions or 
      collision resolution */
}

How it works…
This might be the most abstract section of this book, as there is no specific file to implement 
the preceding code in. This code is meant to serve as guidance to integrating the QuadTree 
of the previous chapter into your own projects.

Whenever a scene is initialized, the quad tree must be built. It's important to remember that 
the quad tree does not own any of the memory for the data it contains. It is the responsibility 
of the scene to assign and manage the memory we feed into the quad tree.

Each time the scene is updated, every object inside the quad tree must also be updated. 
Whenever you want to check if an object collides with anything, use the quad tree. Simply  
call the Query method of the tree to get a list of objects that intersect a region of space.
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7
3D Primitive Shapes

Having covered 2D intersections, we are not ready to jump into 3D! Before we get into the 
specifics of how 3D intersections work, we must define several 3D primitives that we will be 
using throughout the rest of this book. In this chapter, we are going to cover the following 3D 
primitive shapes:

 f Point

 f Line

 f Ray

 f Sphere

 f AABB (Axis Aligned Bounding Box)

 f OBB (Oriented Bounding Box )

 f Plane

 f Triangle

Introduction
The concepts in this chapter will look familiar. This is because most 3D primitives have 2D 
counterparts, which we have already covered in Chapter 4, 2D Primitive Shapes. Having a 
strong understanding of the primitives covered in this chapter will be essential in creating  
the final physics engine of this book.
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Point
A point in 3D is very similar to a point in 2D. The 3D point adds a new Z component:

Like the 2D point, the 3D point can also be expressed by a vector. The point is where the 
vector points to.

Getting ready
We are going to create a new header file for 3D geometry, Geometry3D.h. All future 3D 
geometry will be added to this file. Because a 3D point has the same definition as a 3D vector, 
we're not creating a point struct. Instead we are going to re-declare the vec3 struct as a 
point using the typedef keyword.

How to do it…
Follow these steps to redefine a 3D vector as a 3D point:

1. Create a new C++ header file, call this file Geometry3D.h.

2. Add the basic header guards to the file and include vectors.h and matrices.h:
#ifndef _H_GEOMETRY_3D_
#define _H_GEOMETRY_3D_

#include "vectors.h"
#include "matrices.h"

#endif
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3. Because a Point has the same definition as a 3D vector, we are not going to make  
a new Point structure. Instead, we will re-define vec3 as Point using a typedef:
typedef vec3 Point;

How it works…
The typedef keyword is a built-in C++ language feature. It lets us create custom names for 
data types. There is an added benefit to using a typedef, the compiler will be aware that  
a Point and a vec3 are the same structure. This means that we can use vec3 functions  
for points! 

Point point1(1.0f, 3.0f, 0.0f);
Point point2(7.0f, -3.0f, 4.0f);

For example, we can find the distance between two points like this:

float distance = Magnitude(point1 - point2);

Line segment
A line is the shortest straight path that goes through two points. A line extends infinitely in 
both directions. Like its 2D counterpart, the 3D line we are going to implement will actually  
be a Line Segment. We define this line segment using a Start point and an End point:
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Getting ready
We are going to define a Line structure that holds start and end points. This structure 
represents a line segment. We will also implement two helper functions, Length and 
LengthSq. These functions will help us find the length and squared length of the line segment.

How to do it…
Follow these steps to implement a 3D line segment:

1. Add the declaration of Line to Geometry3D.h:
typedef struct Line {
   Point start;
   Point end;

   inline Line() {}
   inline Line(const Point& s, const Point& e) :
       start(s), end(e) { }
} Line;

2. Declare the helper functions Length and LengthSq in Geometry3D.h:
float Length(const Line& line);
float LengthSq(const Line& line);

3. Create a new file, Geometry3D.cpp. Include the following headers:
#include "Geometry3D.h"
#include <cmath>
#include <cfloat>

4. Implement Length and LengthSq in Geometry3D.cpp:
float Length(const Line& line) {
   return Magnitude(line.start - line.end);
}
float LengthSq(const Line& line) {
   return MagnitudeSq(line.start - line.end);
}
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How it works…
The line structure has two constructors. The default constructor takes no arguments; it 
creates a line at origin with no length. The alternate constructor takes a start and an end 
point, which get assigned to the member variables of the line segment. We also implemented 
two helper functions, Length and LengthSq. These functions will help us find the length and 
squared length of a line.

Ray
A ray is represented by a point in space and a direction. The ray extends from the point to 
infinity in the given direction. For our purposes, the direction of a ray is always assumed  
to be normalized:

Getting ready
We are going to declare a new Ray structure. This new structure will consist of a Point 
representing the origin of the ray and a vec3 representing the direction of the ray. It is 
assumed that the direction vector will always be normalized. We will also implement a  
helper function to create a ray given two points.
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How to do it…
Follow these steps to implement a 3D ray:

1. Declare the new Ray structure in Geometry3D.h:
typedef struct Ray {
   Point origin;
   vec3 direction;
   
   inline Ray() : direction(0.0f, 0.0f, 1.0f) {}
   inline Ray(const Point& o, const vec3& d) :
       origin(o), direction(d) { 
          NormalizeDirection(); 
   }
   inline void NormalizeDirection() {
       Normalize(direction);
   }
} Ray;

2. Declare the FromPoints helper function in Geometry3D.h:
Ray FromPoints(const Point& from, const Point& to);

3. Implement the FromPoints helper function in Geometry3D.cpp:
Ray FromPoints(const Point& from, const Point& to) {
   return Ray(from, Normalized(to - from));
}

How it works…
The Ray structure has two constructors. The default constructor creates a ray at origin, 
pointing in the positive Z direction. The alternate constructor takes and assigns an origin point 
and a direction vector. The Ray structure also contains a NormalizeDirection helper 
function. This function will normalize the direction vector. 

The FromPoints helper function will create a new ray from two given points. We assume the 
ray origin is at the first point provided. To get the direction of the ray we subtract the second 
point from the first point and normalize the result.

Sphere
A sphere is the 3D version of a circle. It is defined by a 3D point in space and a radius.  
Like a circle in 2D, in 3D the sphere is considered to be one of the simplest shapes we  
can implement. The simplicity of a sphere makes it very fast for collision detection:
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Getting ready
We are going to declare a new Sphere structure in the Geometry3D.h header file. This 
structure will hold a position and a radius.

How to do it…
Follow these steps to implement a 3D sphere:

1. Declare the Sphere structure in Geometry3D.h:
typedef struct Sphere {

2. Start by declaring the position and radius variables of the Sphere structure:
   Point position;
   float radius;

3. Finish implementing the structure by adding a default constructor, and one which 
takes a point and radius to construct a sphere out of:

   inline Sphere() : radius(1.0f) { }
   inline Sphere(const Point& p, float r) :
       position(p), radius(r) { }
} Sphere;
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How it works…
The Sphere structure contains a position and a radius. It has two constructors; the default 
constructor creates a unit sphere at origin. The alternate constructor takes a position and 
radius, which will be assigned to the member variables of the sphere.

Axis Aligned Bounding Box
An Axis Aligned Bounding Box (AABB) is the 3D version of a rectangle. We will define a 3D 
AABB by a center point (position) and a half extent (size). The half extent of an Axis Aligned 
Bounding box represents half of the width, height and depth of the box. For example a box 
with half extents of (2, 3, 4) would be four units wide, six units tall and eight units deep.

Getting ready
We are going to create a new AABB structure, which will contain an origin and half extents. 
It's helpful to be able to get the minimum and maximum points of an AABB. We are going to 
implement helper functions to get both the min and max point of a given AABB. We are also 
going to implement a helper function to create an AABB given a min and a max point.

How to do it
Follow these steps to implement a 3D Axis Aligned Bounding Box:

1. Define the AABB structure in Geometry3D.h:
typedef struct AABB {
   Point origin;



Chapter 7

155

   vec3 size;

   inline AABB() : size(1, 1, 1) { }
   inline AABB(const Point& o, const vec3& s) :
       origin(o), size(s) { }
} AABB;

2. Define the helper methods of the AABB in Geometry3D.h:
vec3 GetMin(const AABB& aabb);
vec3 GetMax(const AABB& aabb);
AABB FromMinMax(const vec3& min, const vec3& max);

3. Implement the GetMin method in Geometry3D.cpp. Given an axis aligned 
bounding box, this method will return the minimum point of that box:
vec3 GetMin(const AABB& aabb) {
   vec3 p1 = aabb.position + aabb.size;
   vec3 p2 = aabb.position - aabb.size;

   return vec3(fminf(p1.x, p2.x), 
               fminf(p1.y, p2.y), 
               fminf(p1.z, p2.z));
}

4. Implement the GetMax method in Geometry3D.cpp. Given an Axis Aligned 
Bounding Box, this method will return the maximum point of the box:
vec3 GetMax(const AABB& aabb) {
   vec3 p1 = aabb.position + aabb.size;
   vec3 p2 = aabb.position - aabb.size;

   return vec3(fmaxf(p1.x, p2.x), 
               fmaxf(p1.y, p2.y), 
               fmaxf(p1.z, p2.z));
}

5. Implement the FromMinMax method in Geometry3D.cpp. Given a minimum and 
maximum point, this method will build an axis aligned bounding box:
AABB FromMinMax(const vec3& min, const vec3& max) {
   return AABB((min + max) * 0.5f, (max - min) * 0.5f);
}
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How it works
The AABB structure contains a center point and half extents. The Axis Aligned Bounding Box 
has two constructors and three helper functions:

 f The first constructor creates a unit cube at origin

 f The alternate constructor takes a position and extents, which are assigned to the 
member variables of the structure

 f The first helper function creates an AABB out of a min and max points

 f The other two helper functions get the min and max points of a given AABB

Oriented Bounding Box
An Oriented Bounding Box (OBB), is the 3D equivalent of the 2D oriented rectangle. An 
OBB is defined by a position, half-extents, and some orientation. There are several ways to 
store the orientation for a bounding box. One way would be to store a vector which has each 
component corresponding to the angle of rotation on an axis. A better way is to treat the 
orientation as a 3D matrix, using the mat3 struct:



Chapter 7

157

Getting ready
We are going to create a new structure to represent an Oriented Bounding Box. This new 
OBB structure is going to be composed of a position, half extents, and some orientation. The 
position and size will be represented by vectors, but the rotation will be stored as a matrix. 
Storing the rotation as a matrix makes sense because no matter how we store the rotation,  
to render the OBB it will need to be converted into a matrix at some point.

How to do it
Follow these steps to implement a 3D oriented bounding box:

1. Declare the new OBB structure in Geometry3D.h:
typedef struct OBB {

2. Store the position and size of the oriented bounding box using vectors:
   Point position;
   vec3 size;

3. Store the rotation of the oriented bounding box using a matrix:
   mat3 orientation;

4. Implement the constructors of the oriented bounding box:
   inline OBB() : size(1, 1, 1) { }
   inline OBB(const Point& p, const vec3& s) :
     position(p), size(s) { }
   inline OBB(const Point& p, const vec3& s, const mat3& o)
       : position(p), size(s), orientation(o) { }

} OBB;

How it works
The OBB structure has no helper functions, but it does have three constructors:

 f The default constructor creates a unit box at origin, with no rotation

 f The OBB has an alternate constructor that will make an OBB given a position and half 
extents, with no orientation

 f The final constructor creates an OBB given a position, half extents, and an orientation 
matrix
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Plane
A plane is a flat surface that extents infinitely in all directions. A plane has a direction, which 
is expressed differently based on how we represent a plane. There are three common ways to 
represent a plane:

 f Three points (not on a straight line)

 f A normal and a point on the plane

 f A normal and the distance from origin

For our plane implementation we will use the third representation, a normal, and a distance 
from origin:

Assuming the normal of the plane is of unit length, we can use the following formula to find 
the distance of any point (X) from origin along the normal of the plane:

Dot(X, plane.Normal) = PointDistance
// Not plane distance from origin! ^

By subtracting the distance of the plane from the distance of the point, we can check if a 
point is on the plane:

Dot(X, plane.Normal) - plane.Distance = 0; // Plane Equation
// ^ Will always equal 0 if point is on the plane
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This is called the plane equation. The preceding equation will return the following:

 f 0 if the point is on the plane

 f A positive number if the point is in front of the plane

 f A negative number if the point is behind the plane

Getting ready
We are going to implement a Plane structure; the plane will be represented by a normal and 
a distance from origin. We are also going to implement a helper function to return the result of 
the plane equation, given any point.

How to do it
Follow these steps to implement a 3D plane:

1. Define the Plane struct in Geometry3D.h:
typedef struct Plane {
   vec3 normal;
   float distance;

   inline Plane() : normal(1, 0, 0) { }
   inline Plane(const vec3& n, float d) :
       normal(n), distance(d) { }
} Plane;

2. Define the PlaneEquation helper function in Geometry3D.h:
float PlaneEquation(const Point& pt, const Plane& plane);

3. Implement the PlaneEquation function in Geometry3D.cpp:
float PlaneEquation(const Point& pt, const Plane& plane){
   return Dot(point, plane.normal) - plane.distance;
}

How it works
Like a Ray, we assume the direction (normal) of the Plane is always normalized. The Plane 
structure has two constructors:

 f The default constructor creates a plane at origin, facing up

 f The alternate constructor creates a plane from the specified normal and distance

We also implemented a helper function to return the result of the plane equation.
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Triangle
Triangles are one of the most important primitive shapes for 3D graphics. A triangle can be 
represented by three non linear points. Triangles are special because they are co-planar. This 
means that the three points of a triangle always lie on the same plane:

Getting ready
We are going to implement a triangle that is defined by three points. To make this structure 
more convenient to use, we can declare an anonymous union. This union will let us access the 
members of the Triangle struct in different ways.

How to do it
Follow these steps to implement a 3D triangle:

1. Declare the Triangle structure in Geometry3D.h:
typedef struct Triangle {
   union {

2. The points of a triangle should be accessible as three separate points: a, b and c:
       struct {
           Point a;
           Point b;
           Point c;
       };
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3. One of the alternate methods to access the points of a triangle is as an array of 
points:
       Point points[3];

4. The final way of accessing the points of a triangle is as a linear array of floating point 
values:
       float values[9];
   };

5. Implement the constructors of the triangle:
   inline Triangle() { }
   inline Triangle(const Point& p1, const Point& p2, 
      const Point& p3) : a(p1),bp2(p2), c(p3) { }
} Triangle;

How it works
The Triangle structure is implemented using an anonymous union. There are three different 
ways to access the points of a triangle:

 f We can access them as three named points: a, b, and c

 f We can access the properties as an array of three points

 f Or we can access them as an array of nine floating point numbers

The Triangle structure has two constructors. The default constructor creates a degenerate 
triangle. The alternate constructor creates a triangle from three given points.
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8
3D Point Tests

Now that we have some 3D primitives defined, it's time to implement some simple point tests 
for them. In this chapter, we are going to implement the following point-related test functions:

 f Point contained in sphere

 f Closest point on sphere

 f Point contained in AABB

 f Closest point on AABB

 f Point contained in OBB

 f Closest point on OBB

 f Point on surface of plane

 f Closest point on plane

 f Point on line segment

 f Closest point along line

 f Point on ray

 f Closest point along ray

Introduction
For each primitive (other than the point) we will implement two test functions. The first 
function will tell us if a point is located inside or on the surface of a primitive. The second  
test will tell us what the closest point on the primitive is to a test point.
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Point and sphere
Given a point and a sphere there are two operations we want to perform. First, we want to 
check whether a test point is inside the sphere or not. Alternately, we may want to get the 
closest point to the test point along the surface of the sphere:

Getting ready
To test whether a point is within a sphere we have to compare the distance from the center 
of the sphere and the test point to the radius of the sphere. If the distance is less than the 
radius, the sphere contains the point. We can get the point on the surface of the sphere 
closest to a test point by obtaining a vector that points from the center of the sphere to the 
test point. This vector should have the same magnitude as the radius of the sphere.

How to do it…
Perform the following steps to implement point tests for a sphere:

1. Declare PointInSphere and ClosestPoint in Geometry3D.h:
bool PointInSphere(const Point& point, 
    const Sphere& sphere);
Point ClosestPoint(const Sphere& sphere, 
    const Point& point);

2. Implement PointInSphere in Geometry3D.cpp:
bool PointInSphere(const Point& point, 
   const Sphere& sphere) {
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3. Find the square magnitude of the line between the sphere center and test point as 
well as the square radius of the sphere:
   float magSq = MagnitudeSq(point - sphere.position);
   float radSq = sphere.radius * sphere.radius;

4. Compare the square magnitude to the square radius. If the square magnitude is less, 
the point is inside the sphere:
   return magSq < radSq;
}

5. Implement ClosestPoint in Geometry3D.cpp:
Point ClosestPoint(const Sphere& sphere, 
   const Point& point) {

6. Find a normalized vector from the center of the sphere to the test point:
   vec3 sphereToPoint = point - sphere.position;
   Normalize(sphereToPoint);

7. Resize the normalized vector to the size of the radius:
   sphereToPoint = sphereToPoint * sphere.radius;

8. Return the resized vector offset by the position of the sphere:
   return sphereToPoint + sphere.position;
}

How it works…
To check if a test point is inside a sphere, we find the squared distance from the center of the 
sphere to the point being tested. If this squared distance is less than the squared radius of 
the sphere, the test point is inside the sphere.

To find the closest point on the surface of the sphere to a given test point, we subtract the test 
point from the center of the sphere. This yields a vector pointing from the center of the sphere 
to the test point. Next, we normalize this vector and multiply it by the magnitude of the sphere. 
We now have a vector that points to the test point, in the sphere's local space. To move this 
into the world space, we add the position of the sphere to the vector.
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Point and AABB
If we think of an Axis Aligned Bounding Box (AABB) as a Min and Max point, a test point is 
only inside the AABB if it is greater than Min and less than Max. Similarly, to get the closest 
point to a test point on the surface of the AABB, we just have to clamp the test point to the 
min and max points of the AABB:

Getting ready
We are going to implement a function to test if a point is contained within an Axis Aligned 
Bounding Box. This test will compare the point component-wise to the min and max points 
of the AABB. We are also going to implement a function to find the point on the Axis Aligned 
Bounding Box closest to a given test point. To find the closest point, we will clamp the test 
point to the min and max points of the AABB, component-wise.

How to do it…
Perform the following steps to implement point tests for an AABB:

1. Declare PointInAABB and ClosestPoint in Geometry3D.h:
bool PointInAABB(const Point& point, const AABB& aabb);
Point ClosestPoint(const AABB&aabb, const Point& point);

2. Implement PointInAABB in Geometry3D.cpp:
bool PointInAABB(const Point& point, const AABB& aabb) {
    Point min = GetMin(aabb);
    Point max = GetMax(aabb);

3. The shapes do not intersect if any component of the test point is smaller than the 
respective component of the min point of the AABB:
    if (point.x<min.x || point.y<min.y || point.z<min.z) {
        return false;
    }
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4. The shapes do not intersect if any component of the test point is larger than the 
respective component of the max point of the AABB:
    if (point.x>max.x || point.y>max.y || point.z>max.z) {
        return false;
    }

    return true;
}

5. Implement ClosestPoint in Geometry3D.cpp:
Point ClosestPoint(const AABB& aabb, const Point& point) {
    Point result = point;
    Point min = GetMin(aabb);
    Point max = GetMax(aabb);

6. Clamp the closest point to the min point of the AABB:
    result.x = (result.x<min.x) ? min.x : result.x;
    result.y = (result.y<min.x) ? min.y : result.y;
    result.z = (result.z<min.x) ? min.z : result.z;

7. Clamp the closest point to the max point of the AABB:
    result.x = (result.x>max.x) ? max.x : result.x;
    result.y = (result.y>max.x) ? max.y : result.y;
    result.z = (result.z>max.x) ? max.z : result.z;

    return result;
}

How it works…
To determine if a point is inside an Axis Aligned Bounding Box, we check that each of its 
components are greater than the min point of the AABB and less than the max point of the 
AABB. If the test point is between min and max, it is inside the AABB. If the test point is less 
than min or greater than max, the test point is outside the AABB.

In order to find the point on an Axis Aligned Bounding Box closest to a test point, we clamp 
the test point to the min and max points of the AABB. This clamping is done component-wise 
using the ternary operator. The purpose of clamping the point is to make sure that it will never 
be smaller than min or greater than max.
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Point and Oriented Bounding Box
To test if a point is inside an Oriented Bounding Box (OBB), we could transform the point 
into the local space of the OBB, and then perform an AABB containment test. However, 
transforming the point into the local space of the OBB is needlessly expensive.

A more efficient solution is to project the point onto each axis of the OBB, then compare the 
projected point to the length of the OBB on each axis. To get the closest point to a test point 
on the surface of the OBB, we perform the same projection. Once the point is projected, we 
clamp it to the length of the OBB on each axis:

This diagram demonstrates a test point being projected and clamped to the Y axis of the OBB.

The test point must also be projected and clamped to the X and Z axes as well.

Getting ready
We are going to implement two functions. The first function will test if a point is contained 
within an Oriented Bounding Box. The second function will find the closest point to a given  
test point on the surface of the Oriented Bounding Box. If a point is inside the OBB, it will  
not be changed.

How to do it…
Perform the following steps to implement point tests for an oriented bounding box:

1. Declare PointInOBB and ClosestPoint in Geometry3D.h:
bool PointInOBB(const Point& point, const OBB& obb);
Point ClosestPoint(const OBB& obb, const Point& point);
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2. Implement PointInOBB in Geometry3D.cpp:
bool PointInOBB(const Point& point, const OBB& obb) {

3. We are going to move the point relative to the oriented bounding box by subtracting 
the box position from the point:
    vec3 dir = point - obb.position;

4. This loop will run three times. Iteration 0 is the X axis, iteration 1 is the Y axis, and 
iteration 2 is the Z axis. We will project the point onto each of the local axes of the  
box and compare the distance to the extent of the box on that axis:
    for (int i = 0; i < 3; ++i) {

5. First, we make a vector to represent the axis being tested:
        const float* orientation = 
           &obb.orientation.asArray[i * 3];
        vec3 axis(
           orientation[0], 
           orientation[1], 
           orientation[2]);

6. Next we project the relative point onto that axis and record how far from the origin of 
the box the projection is:
        float distance = Dot(dir, axis);

7. If the distance is greater than the extent of the box, or less than the negative extent 
of the box, the point is not inside the box:
        if (distance >obb.size.asArray[i]) {
            return false;
        }
        if (distance < -obb.size.asArray[i]) {
            return false;
        }
    }

    return true;

8. Implement ClosestPoint in Geometry3D.cpp. This function works in a similar 
way to checking if a point is inside the oriented bounding box. Instead of returning 
false if the point is outside the extents of the box on any axis, we clamp the 
appropriate component of the point:
Point ClosestPoint(const OBB& obb, const Point& point) {
    Point result = obb.position;
    vec3 dir = point - obb.position;
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9. This loop executes three times, one for each primary axis of the oriented box. The first 
iteration is the X axis, the second is the Y axis, and the last iteration is the Z axis:
    for (int i = 0; i < 3; ++i) {
        const float* orientation = 
           &obb.orientation.asArray[i * 3];
        vec3 axis(
           orientation[0], 
           orientation[1], 
           orientation[2]);

10. Project the current component (x, y or z) of the point onto the appropriate axis:
        float distance = Dot(dir, axis);

11. Clamp the component on that axis if needed:
        if (distance >obb.size.asArray[i]) {
            distance = obb.size.asArray[i];
        }
        if (distance < -obb.size.asArray[i]) {
            distance = -obb.size.asArray[i];
        }

12. Adjust the final point by the axis and the current projected distance:
        result = result + (axis * distance);
    }

    return result;
}

How it works…
To see whether a point is within an Oriented Bounding Box, we create a direction vector 
pointing from the center of the OBB to the test point. We loop through all three axes of 
the OBB. The direction vector is projected onto each axis of the OBB in this loop. We then 
compare the half size of the OBB on the given axis to the projected distance.

Finding the closest point on the surface of the OBB to a given test point involves the same 
projection as the containment test did. The difference here is that we build a vector using the 
projected distance on each axis to point to the nearest point along the OBB surface.
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Point and plane
We have seen the plane equation before; a point is on a plane if the result of the plane 
equation is 0. To find the point on the plane closest to a test point, we must project the test 
point onto the normal of the plane. We then subtract this new vector from the test point to get 
the closest point:

Getting ready
We are going to implement two functions. The first function will test whether a point is on the 
surface of a plane using the plane equation. The second function will find the point on a plane 
closest to a given test point.

How to do it…
Perform the following steps to implement point tests for a plane:

1. Declare PointOnPlane and ClosestPoint in Geometry3D.h:
bool PointOnPlane(const Point& point, const Plane& plane);
Point ClosestPoint(const Plane& plane, const Point& point);

2. Implement PointOnPlane in Geometry3D.cpp:
bool PointOnPlane(const Point& point, const Plane& plane) {
    float dot = Dot(point, plane.normal);
    // To make this more robust, use an epsilon check
    // The CMP macro performs epsilon tests:
    // CMP(dot - plane.distance, 0.0f)
    return dot - plane.distance == 0.0f;
}
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3. Implement ClosestPoint in Geometry3D.cpp:
Point ClosestPoint(const Plane& plane, const Point& point){
    float dot = Dot(plane.normal, point);
    float distance = dot - plane.distance;
    return point - plane.normal * distance;
}

How it works…
The PointOnPlane test simply compares the result of the plane equation against 0. An 
epsilon test would make this function more robust. We can implement an epsilon test using 
the CMP macro defined in Chapter 1, Vectors. The ClosestPoint function finds the signed 
distance between the test point and the plane. It then subtracts the plane normal scaled by 
the signed distance from the original point.

Point and line
To test if a point is on a line, or to get the point on a line closest to a test point, we first 
have to project the point onto the line. This projection will result in a floating point value, t. 
We use this new t value to find the distance of the point along the line segment using the 
distance(t) = start + t * (end - start)function. The start point of the line is at 
t = 0, the end point is at t = 1. We have to take two edge cases into account, when t is 
less than 0 or greater than 1:

Getting ready
We are going to implement two functions, one to get the point on a line closest to a test point 
and one to determine if a test point is on a line. The ClosestPoint function is going to 
project the test point onto the line and evaluate the parametric function, distance(t) = 
start + t * (end - start).

To determine if a test point is on a line segment, we still need the point on the segment 
closest to the test point. We are then able to measure the distance between the test  
point and the closest point.
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How to do it…
Perform the following steps to implement point tests for a line:

1. Declare PointOnLine and ClosestPoint in Geometry3D.h:
bool PointOnLine(const Point& point, const Line& line);
Point ClosestPoint(const Line& line, const Point& point);

2. Implement ClosestPoint in Geometry3D.cpp:
Point ClosestPoint(const Line& line, const Point& point) {
    vec3 lVec = line.end - line.start; // Line Vector
    float t = Dot(point - line.start, lVec) / 
              Dot(lVec, lVec);
    t = fmaxf(t, 0.0f); // Clamp to 0
    t = fminf(t, 1.0f); // Clamp to 1
    return line.start + lVec * t;
}

3. Implement PointOnLine in Geometry3D.cpp:
bool PointOnLine(const Point& point, const Line& line) {
    Point closest = ClosestPoint(line, point);
    float distanceSq = MagnitudeSq(closest - point);
    // Consider using an epsilon test here!
    // CMP(distanceSq, 0.0f);
    return distanceSq == 0.0f; 
}

How it works…
To find the point on a line segment closest to a test point, we first project the point onto 
the segment to find the value t. This t value represents how far along the line the point is. 
Because t is normalized, a value of less than 0 or greater than 1 falls outside of the line 
segment. Therefore, we must clamp t into the 0 to 1 range.

To determine if a point is on a line segment, we find the closest point on the segment to the 
test point. We can get the closest point using the existing ClosestPoint function. We can 
then look at the squared distance between the closest point and the test point. If the points 
are the same, we expect the squared distance to be 0. This means that, at a distance of 0, 
the point is on the line.
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Point and ray
A ray is the same as a directed line. Unlike a line segment, which has a start and an end point, 
a ray has only a start point and a direction. The ray extends infinitely in this one direction. 
Because of the ray's similarity to a line, operations on a ray are similar to those on a line.

Because a ray's direction is a normal vector, we can use the dot product to check its direction 
against other known vectors. For example, to test whether a point is on a ray, we need to get a 
normalized vector from the origin of the ray to the test point. We can then use the dot product 
to see if this new normal vector is the same as the normal of the ray. If two vectors point in the 
same direction, the result of the dot product will be 1:

Getting ready
We are going to implement two functions: one to check if a test point is on a ray and one to 
get the closest point on a ray to a test point. Both of these functions are going to rely heavily 
on the dot product.

How to do it…
Perform the following steps to implement point tests for a ray:

1. Declare PointOnRay and ClosestPoint in Geometry3D.h:
bool PointOnRay(const Point& point, const Ray& ray);
Point ClosestPoint(const Ray& ray, const Point& point);

2. Implement PointOnRay in Geometry3D.cpp:
bool PointOnRay(const Point& point, const Ray& ray) {

3. If the point is at the origin of the ray, we can return true early:
    if (point == ray.origin) {
        return true;
    }
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4. Find a normal from the point we are testing to the origin of the ray:
    vec3 norm = point - ray.origin;
    Normalize(norm);
    // We assume the ray direction is normalized

5. If the normal from the point to the ray and the normal of the ray point in the same 
direction, the result of their dot products will be 1. A point is on a ray only if these 
vectors point in the same direction:
    float diff = Dot(norm, ray.direction);
    // If BOTH vectors point in the same direction, 
    // their dot product (diff) should be 1
    return diff == 1.0f; // Consider using epsilon!
}

6. Implement ClosestPoint in Geometry3D.cpp:
Point ClosestPoint(const Ray& ray, const Point& point) {
    float t = Dot(point - ray.origin, ray.direction);
    // We assume the direction of the ray is normalized
    // If for some reason the direction is not normalized
    // the below division is needed. So long as the ray 
    // direction is normalized, we don't need this divide
    // t /= Dot(ray.direction, ray.direction);

7. We only want to clamp t to the positive direction. A negative t value would put the 
point behind the origin of the ray. The ray extends infinitely in the positive direction:
    t = fmaxf(t, 0.0f);

    return Point(ray.origin + ray.direction * t);
}

How it works…
To determine if a point is on a ray, we first check if the point is at the origin of the ray. Next, 
we obtain a vector pointing from the origin of the ray to the test point. We normalize this new 
vector and take its dot product with the normal of the ray. If the result of this dot product is 1, 
the two vectors face in the same direction. If the two vectors face in the same direction, the 
point is on the ray.

This works because the ray extends infinitely in one direction. If a vector between the test 
point and the ray points in this same direction, the position of the point does not matter. All 
that matters is that the point is somewhere along the same vector as the ray is pointing on.

Determining the closest point on a ray is done in a similar manner. We project the test point 
onto the ray to get a value t. This t value represents how far along the ray the projected point 
is. Because the ray is a directed line, we have to clamp t to be greater than or equal to 0. 
Finally, we can return a point on the ray, t-distance from the origin of the ray.
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3D Shape Intersections

In this chapter, we are going to cover how to check whether 3D shapes are intersecting. The 
following intersection tests will be covered:

 f Sphere to sphere

 f Sphere to AABB

 f Sphere to OBB

 f Sphere to plane

 f AABB to AABB

 f AABB to OBB

 f AABB to plane

 f OBB to OBB

 f OBB to plane

 f Plane to plane

Introduction
In the last chapter, we covered how to test if a given point is intersecting any of the 3D 
primitives we have implemented so far. In this chapter, we take these intersections tests one 
step further by checking if any of the 3D primitives have intersected any other primitive. We 
will implement collision checks for all primitives.

9
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The collision tests we write in this chapter can be used later to check if two objects intersect. 
Once we know objects intersect, we can respond to that intersection. Determining if objects 
intersect is very important to any physics engine.

Sphere-to-sphere
To check if two spheres overlap, we check if the distance between them is less than the 
sum of their radii. We can avoid an expensive square root operation by checking the square 
distance between the spheres against the squared sum of their radii:

Getting ready
Checking if two 3D spheres intersect is very similar to checking if two 2D circles intersect. We 
are going to implement a new function to check if two spheres intersect. This is the simplest 
3D intersection function we are going to write.

How to do it…
Follow the given steps to implement sphere-to-sphere intersection testing:

1. Declare the SphereSphere function in Geometry3D.h:
bool SphereSphere(const Sphere& s1, const Sphere& s2);

2. Implement the SphereSphere function in Geometry3D.cpp:
bool SphereSphere(const Sphere& s1, const Sphere& s2) {



Chapter 9

179

3. First find the sum of the radius of the two spheres:
   float radiiSum = s1.radius + s2.radius;

4. Next find the squared distance between the two spheres:
   float sqDistance = 
       MagnitudeSq(s1.position - s2.position);

5. Finally, compare the squared distance to the squared sum of the radii:

   return sqDistance<radiiSum * radiiSum;
}

How it works…
To check if two spheres are intersecting, we first find the sum of their radii. Next, we get the 
squared distance between the positions of each Sphere. Finally, we compare the squared 
distance to the squared radii of the spheres. If the squared distance is less than the squared 
radii, we have an intersection.

Sphere-to-AABB
To check if a Sphere and an Axis Aligned Bounding Box (AABB) intercept, we must first find 
the closest point on the AABB to the Sphere. Once we have this point, we can figure out the 
distance between the Sphere and the closest point. Finally, we can compare this distance to 
the radius of the Sphere. If the distance between the closest point and the Sphere is less than 
the radius of the Sphere, the point is inside the Sphere:
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Getting ready
We are going to implement a function to test if a Sphere and an AABB are intersecting. We will 
also use a #define macro to implement a convenience function to see if an AABB intercepts 
a sphere. This macro just switches the function name and arguments.

How to do it…
Follow the given steps to implement sphere to AABB intersection testing:

1. Declare SphereAABB in Geometry3D.h:
bool SphereAABB(const Sphere& sphere, const AABB& aabb);

2. Declare the AABBSphere macro in Geometry3D.h:
#define AABBSphere(aabb, sphere) \
   SphereAABB(Sphere, AABB)

3. Implement SphereAABB in Geometry3D.cpp:

bool SphereAABB(const Sphere& sphere, const AABB& aabb) {
  Point closestPoint = ClosestPoint(aabb, sphere.position);
  float distSq = 
     MagnitudeSq(sphere.position - closestPoint);
  float radiusSq = sphere.radius * sphere.radius;
  return distSq < radiusSq;
}

How it works…
To check if a Sphere and an AABB intersect, we first find the closest point on the AABB to the 
center of the Sphere. Next, we find the squared distance between the closest point and the 
center of the Sphere. Finally, this squared distance is compared to the squared radius of the 
Sphere. If the squared distance is less than the squared radius, we have an intersection.

Sphere-to-OBB
Checking if a Sphere and an Oriented Bounding Box (OBB) intersect is very similar to 
checking if a Sphere and an AABB intersect. First, we find the closest point on the OBB to the 
Sphere. Next, we must find the distance between the center of the Sphere and the closest 
point. Finally, we compare the distance against the radius of the sphere. If the distance is less 
than the radius, we have an intersection:
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Getting ready
We are going to implement a function to test if a Sphere and an OBB are intersecting. We will 
also create a #define macro to test the opposite. This new macro just switches the function 
name and argument order.

How to do it…
Follow the given steps to implement sphere to OBB intersection testing:

1. Declare SphereOBB in Geometry3D.h:
bool SphereOBB(const Sphere& sphere, const OBB& obb);

2. Declare OBBSphere in Geometry3D.h:
#define OBBSphere(obb, sphere) \
SphereOBB(sphere, obb)

3. Implement SphereOBB in Geometry3D.h:

bool SphereOBB(const Sphere& sphere, const OBB& obb) {
  Point closestPoint = ClosestPoint(obb, sphere.position);
  float distSq = MagnitudeSq(sphere.position –
                             closestPoint);
  float radiusSq = sphere.radius * sphere.radius;
  return distSq<radiusSq;
}
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How it works…
To check if a Sphere and an OBB intersect, we first find the closest point on the OBB to the 
center of the sphere. Next, we find the squared distance between the center of the Sphere 
and this closest point. Finally, the squared distance is compared to the squared radius of the 
sphere. If the squared distance is less than the squared radius, we have an intersection.

Sphere-to-plane
To check if a sphere intersects anything you follow a simple formula. Find the closest point 
to the sphere on the shape and use this point to find the distance between the sphere and 
the shape. Compare the resulting distance to the radius of the sphere. If the distance is less 
than the radius, there is a collision. Checking if a sphere and plane intersect follows this same 
formula:

Getting ready
We are going to implement a function to test if a sphere and a plane are intersecting. We will 
also use a #define macro to implement convenience functions to see if a plane intersects a 
sphere. This macro just switches the function name and arguments around.

How to do it…
Follow the given steps to implement a sphere to plane intersection test:

1. Declare SpherePlane in Geometry3D.h:
bool SpherePlane(const Sphere& sphere, const Plane& plane);

2. Declare the PlaneSphere macro in Geometry3D.h:
#define PlaneSphere(plane, sphere) \
   SpherePlane(sphere, plane)
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3. Implement SpherePlane in Geometry3D.cpp:

bool SpherePlane(const Sphere& s, const Plane& p) {
  Point closestPoint = ClosestPoint(p, s.position);
  float distSq = MagnitudeSq(s.position - closestPoint);
  float radiusSq = s.radius * s.radius;
  return distSq < radiusSq;
}

How it works…
To check if a sphere and a plane intersect, we first find the closest point on the plane to 
the center of the sphere. Next, we must find the squared distance between the center of 
the sphere and the closest point. Finally, the squared distance is compared to the squared 
radius of the sphere. If the squared distance is less than the squared radius, a collision has 
occurred.

AABB-to-AABB
Testing if two AABBs overlap involves performing an interval test on each of the world axes.  
To visualize this problem, let's consider what an interval test looks like on just one axis:

Given shapes A and B, we have an overlap only if the minimum of A is less than the maximum 
of B and the maximum of A is greater than the minimum of B. The actual overlap test would 
look something like this:

A.min <= B.max && a.max >= b.min

We can determine if two AABBs overlap by performing this test on the global X, Y, and Z axes.
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Getting ready
We are going to implement a function to test if two AABBs are overlapping or not. This function 
will test for interval overlap on the global X, Y, and Z axis.

How to do it…
Follow the given steps to detect intersections between two AABBs:

1. Declare AABBAABB in Geometry3D.h:
bool AABBAABB(const AABB& aabb1, const AABB& aabb2);

2. Implement AABBAABB in Geometry3D.cpp:
bool AABBAABB(const AABB& aabb1, const AABB& aabb2) {

3. Find the min and max points of the first AABB
  Point aMin = GetMin(aabb1);
  Point aMax = GetMax(aabb1);

4. Find the min and max points of the second AABB
  Point bMin = GetMin(aabb2);
  Point bMax = GetMax(aabb2);

5. Check for overlap with the min and max points of the rectangles

  return (aMin.x <= bMax.x && aMax.x >= bMin.x) &&
         (aMin.y <= bMax.y && aMax.y >= bMin.y) &&
         (aMin.z <= bMax.z && aMax.z >= bMin.z);
}

How it works…
We use the GetMin and GetMax helper functions to find the min and max points of both 
AABBs. We then perform an interval test on each axis. If all axes overlap, that is if there is  
no axis of separation, then an intersection has occurred.

AABB-to-OBB
Testing if an AABB and an OBB overlap can be done using the Separating Axis Theorem 
(SAT). This test will require a total of 15 axes to be tested. Chapter 5, 2D Collisions, provides 
an in-depth explanation of how the SAT works. The 15 axes of potential separation are:

 f The three axes of the AABB (world X, Y, and Z)

 f The three axes of the OBB (the OBB's orientation matrix)
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 f 9 axes come from the cross-products of the three axes of the AABB and the three 
axes of the OBB. We take the cross product of every combination of these axes. Lists 
these nine combinations:

AABB.XAxis x OBB.XAxis AABB.YAxis x OBB.XAxis AABB.ZAxis x OBB.XAxis
AABB.XAxis x OBB.YAxis AABB.YAxis x OBB.YAxis AABB.ZAxis x OBB.YAxis
AABB.XAxis x OBB.ZAxis AABB.YAxis x OBB.ZAxis AABB.ZAxis x OBB.ZAxis

Remember, the two shapes only overlap if all 15 axes overlap. If there is a single axis of 
separation, no intersection can happen.

Getting ready
Because this is our first 3D SAT test, there is some groundwork to cover. We must first 
declare the 3D version of the Interval struct. Next, we need to write two GetInterval 
functions to project an AABB and an OBB onto some given axis. We also have to create an 
OverlapOnAxis function to test if the AABB and the OBB overlap on some given axis. Finally, 
we will implement the actual SAT test in the AABBOBB function.
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How to do it…
Follow the given steps to find intersections between an aligned axis and an OBB:

1. Declare all the 3D Interval structure in Geometry3D.h:
typedef struct Interval {
   float min;
   float max;
} Interval;

2. Declare all functionality related to the SAT test in Geometry3D.h. This includes a 
GetInterval method for both AABB and OBB, an OverlapOnAxis method that 
takes an AABB, an OBB as arguments, and the actual AABBOBB method. We are  
also going to declare the OBBAABB convenience macro:
Interval GetInterval(const AABB& rect, const vec3& axis);
Interval GetInterval(const OBB& rect, const vec3& axis);
bool OverlapOnAxis(const AABB& aabb, const OBB& obb, 
   const vec3& axis);
bool AABBOBB(const AABB& aabb, const OBB& obb);
#define OBBAABB(obb, aabb) \
   AABBOBB(aabb, obb)

3. Start implementing the GetInterval function for the AABB in Geometry3D.cpp by 
creating an array of vectors that will hold the eight vertices of the AABB:
Interval GetInterval(const AABB& aabb, const vec3& axis) {
   vec3 i = GetMin(aabb); 
   vec3 a = GetMax(aabb);

    vec3 vertex[8] = {
        vec3(i.x, a.y, a.z),
        vec3(i.x, a.y, i.z),
        vec3(i.x, i.y, a.z),
        vec3(i.x, i.y, i.z),
        vec3(a.x, a.y, a.z),
        vec3(a.x, a.y, i.z),
        vec3(a.x, i.y, a.z),
        vec3(a.x, i.y, i.z)
    };
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4. Finish implementing the GetInterval function by projecting each vertex onto the 
provided axes, and storing the min and max vertices in an interval structure. Return 
that interval structure:
    Interval result;
    result.min = result.max = Dot(axis, vertex[0]);

    for (int i = 1; i < 8; ++i) {
        float projection = Dot(axis, vertex[i]);
        result.min = (projection < result.min) ? 
           projection : result.min;
        result.max = (projection > result.max) ? 
           projection : result.max;
    }

    return result;
}

5. Start implementing the GetInterval function for the OBB in Geometry3D.cpp by 
finding all eight vertices of the OBB. We obtain these vertices by adding the extents of 
the OBB on each axis to the center of the OBB as a vector:
Interval GetInterval(const OBB& obb, const vec3& axis) {
    vec3 vertex[8];

6. First, find the center, extents, and axis of the OBB:
    vec3 C = obb.position;    // OBB Center
        vec3 E = obb.size;    // OBB Extents
    const float* o = obb.orientation.asArray;
    vec3 A[] = {              // OBB Axis
        vec3(o[0], o[1], o[2]),
        vec3(o[3], o[4], o[5]),
        vec3(o[6], o[7], o[8]),
    };

7. Next, use the center, extents, and local axis to find the actual vertices:
    vertex[0] = C + A[0]*E[0] + A[1]*E[1] + A[2]*E[2];
    vertex[1] = C - A[0]*E[0] + A[1]*E[1] + A[2]*E[2];
    vertex[2] = C + A[0]*E[0] - A[1]*E[1] + A[2]*E[2];
    vertex[3] = C + A[0]*E[0] + A[1]*E[1] - A[2]*E[2];
    vertex[4] = C - A[0]*E[0] - A[1]*E[1] - A[2]*E[2];
    vertex[5] = C + A[0]*E[0] - A[1]*E[1] - A[2]*E[2];
    vertex[6] = C - A[0]*E[0] + A[1]*E[1] - A[2]*E[2];
    vertex[7] = C - A[0]*E[0] - A[1]*E[1] + A[2]*E[2];
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8. Finish implementing the GetInterval function by projecting each vertex onto the 
provided axes. Store the min and max projection in an interval structure. Finally, 
return the interval structure:
    Interval result;
    result.min = result.max = Dot(axis, vertex[0]);

    for (int i = 1; i < 8; ++i) {
        float projection = Dot(axis, vertex[i]);
        result.min = (projection < result.min) ? 
           projection : result.min;
        result.max = (projection > result.max) ? 
           projection : result.max;
    }

    return result;
}

9. Implement the OverlapOnAxis function in Geometry3D.cpp:
bool OverlapOnAxis(const AABB& aabb, const OBB& obb, 
    const vec3& axis) {
    Interval a = GetInterval(aabb, axis);
    Interval b = GetInterval(obb, axis);
    return ((b.min <= a.max) && (a.min <= b.max));
}

10. We start implementing the AABBOBB function in Geometry3D.cpp by creating an 
array of the axis that each primitive is aligned to:
bool AABBOBB(const AABB& aabb, const OBB& obb) {
const float* o = obb.orientation.asArray;

vec3 test[15] = {
   vec3(1, 0, 0),          // AABB axis 1
   vec3(0, 1, 0),          // AABB axis 2
   vec3(0, 0, 1),          // AABB axis 3
   vec3(o[0], o[1], o[2]), // OBB axis 1
   vec3(o[3], o[4], o[5]), // OBB axis 2
   vec3(o[6], o[7], o[8])  // OBB axis 3
   // We will fill out the remaining axis in the next step
};

11. That takes care of the first six axes that we need to test. The next nine axes are the 
cross products of the rotation frames of the two shapes. We know what these rotation 
frames are; we stored them in the first six elements of the test array:
  for (int i = 0; i < 3; ++i) { // Fill out rest of axis
    test[6 + i * 3 + 0] = Cross(test[i], test[0]);
    test[6 + i * 3 + 1] = Cross(test[i], test[1]);
    test[6 + i * 3 + 2] = Cross(test[i], test[2]);
  }
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12. Finally, we finish up the AABBOBB function by looping through all 15 axes of 
separation to check if there is an overlap or not. All 15 axes must overlap for the two 
shapes to intersect:

  for (int i = 0; i < 15; ++i) {
    if (!OverlapOnAxis(aabb, obb, test[i])) {
      return false; // Seperating axis found
    }
  }

  return true; // Seperating axis not found
}

How it works…
First, we declare the Interval structure. This structure contains the same data as 
Interval2D, just the minimum and maximum values for the projection on an axis. We are 
making a new structure instead of using the existing one to avoid adding a dependency to 
Geometry2D.h inside Geometry3D.h.

Next, we declare the GetInerval function for both AABB and OBB shapes. This function 
projects the shape onto an axis and returns an interval. The actual projection is done the 
same way we used for 2D objects; what is different is how the vertices are obtained. The 
vertices for an AABB can be built out of its min and max points:

Finding the vertices of an OBB is a bit more challenging. We end up solving the issue using 
vector math. We add to (or subtract from) the center of the OBB a vector that is the extent of 
the OBB projected onto each axis, for each vertex.
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Once we have found the intervals of both shapes, we implement the OverlapOnAxis 
helper function. This function gets the interval of both shapes on a given axis using the 
GetInterval helper functions. The function then checks the intervals for an overlap.

Finally, we implement the actual SAT test in the AABBOBB function. We know there are 15 
potential axes of separation to test:

 f The rotation frame of the AABB makes up the first three axes

 f The rotation frame of the OBB makes up the next three axes

 f The remaining nine axes are the cross product of every rotation frame for the AABB 
and the OBB

After we have built out the axis to test into an array, we call the OverlapOnAxis function 
on each axis of potential separation. If there is any axis of separation, the objects do not 
intersect:

AABB-to-plane
An AABB does not intersect a plane if all four corners of the box are on the same side of the 
plane. A naive solution to this problem would be to get all eight corners of the plane as points, 
and then perform a half space test with every corner against the plane.

A better solution would be to use the GetInterval function we wrote in the AABB to OBB 
section of this chapter to get the interval of the box along the normal of the plane. Then, we 
just have to make sure that the min and max intervals of the AABB are both greater than 0, or 
less than 0. If the signs of the min and max are different, we have an intersection.
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We are going to take a third, more optimal approach. We will project the half extents of the 
box onto the plane. Then, we will find the distance between the box and the plane. We find the 
distance between the box and the plane by measuring how far the projected box interval is 
from the origin along the normal. If the distance of the box from the plane is less than the half 
extents of the box, we know we have an intersection:

The box in the front is intersecting the plane. If we were to project the box onto the plane normal,  
the interval would contain the origin of the plane. The box in the back is not intersecting.  

Projecting it onto the plane normal, the origin will be below the interval.

Getting ready
We are going to implement a function to test if a box and a plane intersect. We will do this 
by projecting the half extents of the box onto the plane. Then, we are going to compare this 
projection to the distance of the box in the local space of the plane. If the distance is less than 
the half extents, we have a collision.

How to do it…
Follow the given steps to find the intersection between an AABB and a plane:

1. Declare AABBPlane in Geometry3D.h:
bool AABBPlane(const AABB& aabb, const Plane& plane);

2. Declare the PlaneAABB convenience macro in Geometry3D.h:
#define PlaneAABB(plane, aabb) \
   AABBPlane(aabb, plane)

3. Implement AABBPlane in Geometry3D.cpp:
bool AABBPlane(const AABB& aabb, const Plane& plane) {
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4. Project the half extents of the AABB onto the plane normal:
    float pLen = aabb.size.x * fabsf(plane.normal.x) +
                 aabb.size.y * fabsf(plane.normal.y) +
                 aabb.size.z * fabsf(plane.normal.z);

5. Find the distance from the center of the AABB to the plane:
    float dot = Dot(plane.normal, aabb.position);
    float dist = dot - plane.distance;

6. Intersection occurs if the distance falls within the projected side:

    return fabsf(dist) <= pLen;
}

How it works…
Instead of projecting the entire AABB onto the plane, we only project its half extents. The 
projected half extents are relative to the origin of the plane. Next, we project the position of 
the AABB onto the plane. We subtract the distance of the plane from its projected position 
to find the distance of the AABB from the origin of the plane. If this distance is less than the 
length of the half extent projection, we have an intersection.

OBB-to-OBB
Like the AABB to OBB test, checking if two OBBs overlap is best done using the separating 
axis theorem. The actual SAT function will be very similar to the AABB to OBB test. Like AABB 
to OBB, there are 15 axes of potential separation to test. The 15 axes that we need to test are 
similar to AABB to OBB, except the first three axis are the orientation of the first OBB. 

If we have two OBBs, A and B, we can find the 15 axes of potential separation between them 
as follows:

The first three axes of separation are the basis vectors of the orientation of the first OBB:

AABB.XAxis AABB.YAxis AABB.ZAxis

The next three axes of separation are the basis vectors of the orientation of the second OBB:

B.XAxis B.YAxis B.ZAxis
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The last nine axes of separation are the cross products of every basis axis from both OBBs:

A.XAxis x B.XAxis A.YAxis x B.XAxis A.ZAxis x B.XAxis
A.XAxis x B.YAxis A.YAxis x B.YAxis A.ZAxis x B.YAxis
A.XAxis X B.ZAxis A.YAxis x B.ZAxis A.ZAxis x B.ZAxis

Getting ready
This test recycles the GetIntervalfunction for OBB that we built in the AABB to OBB 
section. We need to create a new OverlapOnAxis function that takes two OBB objects for 
arguments and checks if they overlap on the provided axis. Finally, we will implement the 
actual SAT test in the OBBOBB function.

How to do it…
Follow the given steps to check for intersections between two OBBs:

1. Declare the OverlapOnAxis and OBBOBB functions in Geometry3D.h:
bool OverlapOnAxis(const OBB& obb1, const OBB& obb2, 
    const vec3& axis);
bool OBBOBB(const OBB& obb1, const OBB& obb2);

2. Implement the OverlapOnAxis function in Geometry3D.cpp:
bool OverlapOnAxis(const OBB& obb1, const OBB& obb2, 
const vec3& axis) {
    Interval a = GetInterval(obb1, axis);
    Interval b = GetInterval(obb1, axis);
    return ((b.min <= a.max) && (a.min <= b.max));
}

3. Begin implementing OBBOBB in Geometry3D.cpp by constructing part of an array  
of all the axes of potential separation. The first three axes will be the rotation frame  
of obb1. The next three axes will be the rotation frame of obb2:
bool OBBOBB(const OBB& obb1, const OBB& obb2) {
    const float* o1 = obb1.orientation.asArray;
    const float* o2 = obb2.orientation.asArray;

    vec3 test[15] = {
        vec3(o1[0], o1[1], o1[2]),
        vec3(o1[3], o1[4], o1[5]),
        vec3(o1[6], o1[7], o1[8]),
        vec3(o2[0], o2[1], o2[2]),
        vec3(o2[3], o2[4], o2[5]),
        vec3(o2[6], o2[7], o2[8])
    };
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4. There are a total of 15 axes of potential separation; so far we have constructed six. 
The following nine axes are the cross product of each axis of the rotation frame of 
each OBB:
  for (int i = 0; i < 3; ++i) { // Fill out rest of axis
    test[6 + i * 3 + 0] = Cross(test[i], test[0]);
    test[6 + i * 3 + 1] = Cross(test[i], test[1]);
    test[6 + i * 3 + 2] = Cross(test[i], test[2]);
  }

5. Finally, we finish the OBBOBB function in Geometry3D.cpp by looping through all 15 
axes of potential separation and checking for separation. The two OBBs only intersect 
if all 15 axes overlap:

  for (int i = 0; i < 15; ++i) {
    if (!OverlapOnAxis(obb1, obb2, test[i])) {
      return false; // Seperating axis found
    }
  }

  return true; // Seperating axis not found
}

How it works…
The first thing we do to implement the OBB to OBB SAT test is construct the 15 axes of 
potential separation. After we know all 15 axes, we loop through each one. For each axis, we 
call the OverlapOnAxis function to test for separation. If there is separation on any axis, the 
shapes do not intersect.

The OverlapOnAxis function calls the GetInterval function that we wrote in the AABB-v 
OBB section of this chapter. It gets the interval of both OBB arguments on the given axis, and 
compares them to determine if the intervals overlap or not.

OBB-to-plane
Just like with the AABB, we know that an OBB does not intersect a plane if all of the OBB 
vertices are on the same side of the plane. The actual test to check if an OBB and plane 
intersect will be very similar to the AABB-to-Plane test:
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Getting ready
We are going to implement a function to test if an OBB and a Plane intersect. This function  
will be similar to how we checked if an AABB and Plane intersected. We will project the OBB 
onto the normal of the plane and find the interval of this projection. If the interval contains  
the origin of the plane, we know we have an intersection.

How to do it…
Follow the given steps to find intersections between an OBB and a plane:

1. Declare OBBPlane in Geometry3D.h:
bool OBBPlane(const OBB&obb, const Plane& plane);

2. Dclare the PlaneOBB macro in Geometry3D.h:
#define PlaneOBB(plane, obb) \
   OBBPlane(obb, plane)

3. Implement OBBPlane in Geometry3D.cpp:
bool OBBPlane(const OBB& obb, const Plane& plane) {
    // Local variables for readability only
    const float* o = obb.orientation.asArray;
    vec3 rot[] = { // rotation / orientation
        vec3(o[0], o[1], o[2]),
        vec3(o[3], o[4], o[5]),
        vec3(o[6], o[7], o[8]),
    };
    vec3 normal = plane.normal;
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4. Project the half extents of the AABB onto the plane normal:
    float pLen = obb.size.x * fabsf(Dot(normal, rot[0])) +
                 obb.size.y * fabsf(Dot(normal, rot[1])) +
                 obb.size.z * fabsf(Dot(normal, rot[2]));

5. Find the distance from the center of the OBB to the plane:
    float Dot(plane.normal, obb.position);
    float dist = dot - plane.distance;

6. Intersection occurs if the distance falls within the projected side:
    return fabsf(dist) <= pLen;
}

How it works…
In the preceding code, we first created some local variables. These variables are not essential 
to the function of the code; they are in-place to keep the example short and readable.

Like with the AABB v Plane test, we first project the half size of the OBB onto the Plane. At 
this point, the projected half size is relative to the origin of the plane. Next, we project the 
position of the OBB onto the plane. We have to subtract the plane distance from the projected 
position, to bring the projected position into the same space as the projected half size. Finally, 
we check if the distance of the projected position from the origin of the plane is less than the 
projected half extents. If it is less, the shapes intersect:
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Plane-to-plane
Two planes intersecting results in an infinite line between the two planes:

We don't actually care about this line. We just want a true or false Boolean to know if the 
planes intersect. Two planes intersect if they are not parallel. If the normals of the plane point 
in different directions, the planes intersect. If the normals of the plane point in the same 
direction, they do not intersect.

Getting ready
We are going to implement a function to test if two planes intersect. This function will only 
return a Boolean result, not the line of intersection.

How to do it…
Follow the given steps to determine if two planes are intersecting:

1. Declare the PlanePlane function in Geometry3D.h:
bool PlanePlane(const Plane& plane1, const Plane& plane2);

2. Implement the PlanePlane function in Geometry3D.cpp:
bool PlanePlane(const Plane& plane1, const Plane& plane2) {

3. Compute the direction of the intersection line
  // Cross product returns 0 when used on parallel lines
  vec3 d = Cross(plane1.normal, plane2.normal);

4. Check the length of this new vector; if it is 0, the planes are parallel!

  return Dot(d, d) != 0; // Consider using an epsilon!
}
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How it works…
We use the cross product to get a vector perpendicular to the normals of plane 1 and 2.  
We check the squared length of the resulting vector. If the squared length of the result of  
the cross product is 0 (or near 0), the plane normals point in the same direction and the 
planes intersect. Because both vectors are of unit length, if they point in different directions 
we expect the length of the result of the cross product to be 1 (if the vectors are not the  
same vector).

We can check if a number is near zero using an epsilon check. We implemented epsilon 
checks in Chapter 1, Vectors, using the CMP macro. The return statement as an epsilon  
check would be expressed as: return !CMP(Dot(d, d), 0);.

We could have also used the dot product to check if the vectors are pointing in the same 
direction. If the dot product of the two normals is 1 or close to 1, they are pointing in the same 
direction. If the two normals point in the same direction, the planes do not intersect. Using 
either the dot or cross product for this check comes down to personal preference. There is  
no clear advantage in using either one over the other.
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3D Line Intersections

In this chapter, we are going to cover linear intersections with 3D primitives. A linear 
intersection is a Raycast or line segment test. We will be covering the following tests:

 f Raycast Sphere

 f Raycast Axis Aligned Bounding Box

 f Raycast Oriented Bounding Box

 f Raycast plane

 f Linetest Sphere

 f Linetest Axis Aligned Bounding Box

 f Linetest Oriented Bounding Box

 f Linetest plane

Introduction
In this chapter, we are going to test if rays or line segments intersect primitives. The primitives 
that we are going to test against are Sphere, Axis Aligned Bounding Box (AABB), Oriented 
Bounding Box (OBB), and plane. Raycast intersections will return the distance along the  
ray that the intersection has happened. Line segment intersections will simply return a 
Boolean value.

Raycasting is one of the most powerful tools we have. Let's assume for example that you want 
to make sure a character always stands on the ground. You could cast a ray down on the 
negative Y axis, where the ray hits the ground you place the character. This technique is often 
referred to as ground clamping.
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Raycast Sphere
Given a ray with origin o, indirection d and a sphere with origin c and radius r; we want to 
check if the ray ever intersects the sphere:

If the ray intersects the sphere, this intersection will happen at some distance along the  
ray. Within the context of ray casting, we often assume it takes one second to travel one  
unit along the ray. Because of this, distance and time are often used interchangeably. 

Because of this ambiguity with the vocabulary, many resources might say that the ray 
intersects the sphere at some time, t. If the ray does not intersect the sphere, t is undefined.

Getting ready
We are going to implement a function to check if a ray and a sphere intersect. This function 
will return t, the time along the ray at which the intersection takes place. If there is no 
intersection, we will set t to be a negative number.

How to do it…
Follow these steps to implement raycasting against a sphere:

1. Declare the Raycast function in Geometry3D.h:
float Raycast(const Sphere& sphere, const Ray& ray);

2. Implement the Raycast function in Geometry3D.cpp:
float Raycast(const Sphere& sphere, const Ray& ray) {
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3. Construct a vector from the origin of the ray to the center of the sphere:
   vec3 e = sphere.position - ray.origin;

4. Store the squared magnitude of this new vector, as well as the squared radius of  
the sphere:
   float rSq = sphere.radius * sphere.radius;
   float eSq = MagnitudeSq(e);

5. Project the vector pointing from the origin of the ray to the sphere onto the direction 
of the ray:
   // ray.direction is assumed to be normalized
   float a = Dot(e, ray.direction); 

6. Construct the sides a triangle using the radius of the circle at the projected point  
from the last step. The sides of this triangle are radius, b and f. We work with  
squared units:
   float bSq = eSq - (a * a);
   float f = sqrt(rSq - bSq);

7. Compare the length of the squared radius against the hypotenuse of the triangle from 
the last step. This is visually explained in the How it works section:

   // No collision has happened
   if (rSq - (eSq - (a * a)) < 0.0f) {
       return -1; // -1 is invalid.
   }
   // Ray starts inside the sphere
   else if (eSq<rSq) {
       return a + f; // Just reverse direction
   }
   // else Normal intersection
   return a - f;
}
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How it works…
To find the scalar value t, we need to find two other values. The distance between o and 
the projection of c onto d, we will call this distance a. We also need to know the difference 
between t and a, we will call this difference f. Knowing the values of a and f, we can find  
t like so :

To find the value of a, we need to create a vector from the ray to the circle by subtracting  
o from c. We can call this new vector e. The length of e projected onto the direction of the  
ray (d) is the value of a:

Now that we know the value of e, we can find b. This new value b is the perpendicular 
vector of the projection of e onto a. Since we only care about the length of each vector, we 
don't need to do any vector math for this. We can perform the equation using scalar values: 

. We covered  vector projection in Chapter 1, Vectors:
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Once we know the value of b, we can finally find the value of f. We find the value of f using 
the Pythagorean Theorem, f is one side of a triangle formed by b, r, and f. We can plug these 
numbers into the Pythagorean Theorem to end up with the following equation:

We can rearrange this formula as follows:

Knowing the values of f and a makes finding the value of t trivial. The formula for t is  
as follows:

We can expand f in the preceding equation:

We can further expand b in the following formula:
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If the ray intersects the sphere, the result of the preceding equation t will be positive. What 
happens if the ray does not intersect the sphere? The expression inside the square root 

 will evaluate to a negative number. If this is the case, we have to return early.

The only edge case left is what happens when the ray origin o is inside the sphere. We can 
check for this by making sure that the length of e is greater than the radius of the sphere (r).

Raycast Axis Aligned Bounding Box
Any ray that intersects an AABB will do so twice. The first intersection is where the ray enters 
the AABB; the second is where the ray exists. If we know both intersection points, the point 
closest to the origin of the ray is the intersection point.

We can simplify finding the intersections points by visualizing the problem top down. 
Looking only at the X and Y axis. In this example, the AABB is represented by two slabs. The 
intersections of the slabs form four planes. These planes represent the faces of the AABB.  
We cast a ray and check if it's intersecting the X slab:

We found two points as a result of testing the ray intersection against the X slab. We call the 

near point  and the far point . We repeat the same intersection against the Y slab:
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We now have two more points,  and . The ray enters the Y slab, and then leaves the 
Y slab. Next, the ray enters the X slab, and then leaves the X slab. There is no intersection. 
We can prove this, the greatest minimum value  is greater than the smallest 
maximum value .

Next, let's see what the slab method looks like when the ray does intersect the AABB:

In this example, we enter the Y slab, and then enter the X slab before leaving the Y slab. This 
out of order entering means that there is an intersection. We can prove this; the greatest 
minimum value is less than the smallest maximum value. .
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We can perform this test for all three slabs of the AABB. The intersections of the three slabs 
will form six planes. The six planes are the faces of the AABB. By performing the preceding 
test for all six planes, we are essentially clipping the ray to the Bounding Box.

Getting ready
We are going to implement a function that finds the entry and exit points of a Raycast against 
an AABB. This function will return only the entry point. The function will return t, the time  
along the ray at which the intersection happened. If there is no intersection, the value of  
t will be negative.

How to do it…
Follow these steps to implement raycasting against an AABB:

1. Declare the Raycastfunction in Geometry3D.h:
float Raycast(const AABB& aabb, const Ray& ray);

2. Implement the Raycast function in Geometry3D.cpp:
float Raycast(const AABB& aabb, const Ray& ray) {
   vec3 min = GetMin(aabb);
   vec3 max = GetMax(aabb);

3. Find the both intersections of the ray against each of the three slabs which make up 
a bounding box:
   // NOTE: Any component of direction could be 0!
   // to avoid a division by 0, you need to add 
   // additional safety checks.
   float t1 = (min.x - ray.origin.x) / ray.direction.x;
   float t2 = (max.x - ray.origin.x) / ray.direction.x;
   float t3 = (min.y - ray.origin.y) / ray.direction.y;
   float t4 = (max.y - ray.origin.y) / ray.direction.y;
   float t5 = (min.z - ray.origin.z) / ray.direction.z;
   float t6 = (max.z - ray.origin.z) / ray.direction.z;

4. Find the largest minimum value:
   float tmin = fmaxf(
                   fmaxf(
                      fminf(t1, t2), 
                      fminf(t3, t4)
                   ), 
                   fminf(t5, t6)
                );
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5. Find the smallest maximum value:
   float tmax = fminf(
                   fminf(
                      fmaxf(t1, t2), 
                      fmaxf(t3, t4)
                   ), 
                   fmaxf(t5, t6)
                );

6. If tmax is less than zero, the ray is intersecting AABB in the negative direction. This 
means the entire AABB is behind the origin of the ray, this should not be treated as 
an intersection:
   if (tmax< 0) {
       return -1;
   }

7. If tmin is greater than tmax, the ray does not intersect AABB:
   if (tmin>tmax) {
       return -1;
   }

8. If tmin is less than zero, that means the ray intersects the AABB but its origin is 
inside the AABB. This means tmax is the valid collision point:
   if (tmin< 0.0f) {
       return tmax;
   }

9. Finally, if we made it this far, tmin is the intersection point:

   return tmin;
}

How it works…
We implemented the Raycast against AABB using a clipping algorithm called Cyrus-Beck 
clipping. We clip the ray against each of the six planes that make up the AABB. The actual 
steps for doing this are outlined:

The AABB is actually made up of three pairs of parallel planes (front and back, left and  
right, top and bottom). We call these plane pairs Slabs. Each side of a slab (or each plane) 
can be represented by the components of the min and max extents of the Bounding Box.  
For example:

float leftPlaneDistance  = min.x; // Direction is (-1, 0, 0)
float rightPlaneDistance = max.x; // Direction is ( 1, 0, 0)
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We can find a point along a ray, at time t with the following formula:

// The following assumes ray.direction is normalized!
Point point = ray.origin + ray.direction * t;

The preceding formula operates on vectors. We can easily expand the formula component 
wise to work with scalars:

point.x = ray.origin.x + ray.direction.x * tX;
point.y = ray.origin.y + ray.direction.y * tY;
point.z = ray.origin.z + ray.direction.z * tZ;

We can rearrange the expanded version of the formula to solve for t:

float tX = (point.x – ray.origin.x) / ray.direction.x
float tY = (point.y – ray.origin.y) / ray.direction.y
float tZ = (point.z – ray.origin.z) / ray.direction.z

Now that we are solving for t, the point variable is still unknown. The Slabs of an AABB 
are aligned to the global X, Y, and Z axis. This means we can simply plug in the min and max 
values of the AABB to find the min and max t values for each axis:

tMinX = (min.x – ray.origin.x) / ray.direction.x
tMaxX = (max.x – ray.origin.x) / ray.direction.x

In the code sample provided in the How to do it… section, the variables for tMinX and tMaxX 
are called t1 and t2, respectively. We repeat the same process to find the min and max pairs 
for the Y Slab (t3 and t4) and the Z Slab (t5 and t6).

We now have six different min and max values. All of these points are the ray clipped against 
the planes of the AABB. To find the point of entry, we need to find the largest minimum value. 
To find the point of exit, we need to find the smallest minimum value:

// Find the BIGGEST min
float tmin = fmaxf( 
   fmaxf(
      fminf(tMinX, tMaxX), 
      fminf(tMinY, tMaxY)
   ), 
   fminf(tMinZ, tMaxZ)
);
// Find the SMALLEST max
float tmax = fminf(
   fminf(
      fmaxf(tMinX, tMaxX), 
      fmaxf(tMinY, tMaxY)
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   ), 
   fmaxf(tMinZ, tMaxZ)
);

If tMax is negative, the intersection happens behind the origin of the ray. This means we don't 
really have an intersection. If tMin is greater than tMax, the ray misses the Bounding Box 
completely. In both of these cases, we want to return -1.

There is one more edge case to test. What happens if the ray origin is inside the AABB? In this 
case, tMin will be negative, but tMax will be positive. When this happens, we simply want to 
return tMax:

Raycast Oriented Bounding Box
We can extend the same slab method used for raycasting against an AABB to also work with 
an OBB. The key difference is how we find the values of  and .

Getting ready
We are going to implement a function that finds the entry and exit points of a Raycast 
against an OBB. This function will only return the entry point. The function returns a scalar 
value t. This scalar value is the time along the ray at which the intersection happened. If the 
intersection is invalid, a negative number is returned.
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How to do it…
Follow these steps to implement raycasting against an OBB:

1. Declare the Raycast function in Geometry3D.h:
float Raycast(const OBB& obb, const Ray& ray);

2. Start implementing the Raycast function in Geometry3D.cpp by declaring a few 
local variables to keep the code readable. We want to store the half extents of the  
box as a linear array, and each axis of the OBBs rotation frame as a vector:
float Raycast(const OBB& obb, const Ray& ray) {
   const float* o = obb.orientation.asArray;
   const float* size = obb.size.asArray;
   // X, Y and Z axis of OBB
   vec3 X(o[0], o[1], o[2]);
   vec3 Y(o[3], o[4], o[5]);
   vec3 Z(o[6], o[7], o[8]);

3. To test slabs, we first need to find a vector pointing from the origin of the ray to the 
OBB, this is the vector p:
   vec3 p = obb.position - ray.origin;

4. Next, we project the direction of the ray onto each of the axis of the OBB. Store the 
result in a vector named f:
   vec3 f(
       Dot(X, ray.direction),
       Dot(Y, ray.direction),
       Dot(Z, ray.direction)
   );

5. We project p into every axis of the OBBs rotation frame. The result of each of these 
projections is stored in e:
   vec3 e( 
       Dot(X, p),
       Dot(Y, p),
       Dot(Z, p)
   );

6. Next, we calculate , , , , , and . These values are called 
t[0], t[1], t[2], t[3], t[4], and t[5] in code, respectively:
   float t[6] = { 0, 0, 0, 0, 0, 0 };
   for (int i = 0; i < 3; ++i) {
       if (CMP(f[i], 0)) {
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7. If the ray is parallel to the slab being tested, and the origin of the ray is not inside the 
slab we have no hit:
           if (-e[i] - size[i]>0 || -e[i] + size[i]<0) {
               return -1;
           }
           f[i] = 0.00001f; // Avoid div by 0!
       }
       t[i * 2 + 0] = (e[i] + size[i]) / f[i]; // min
       t[i * 2 + 1] = (e[i] - size[i]) / f[i]; // max
   }

8. If the above loop finished executing, the ray hit all three slabs. To finish the Raycast 
we find the largest minimum (  ) and smallest maximum ( ). We take care  
of any edge cases, and return the point closest to the origin of the ray:
   float tmin = fmaxf(
                   fmaxf(
                      fminf(t[0], t[1]), 
                      fminf(t[2], t[3])), 
                   fminf(t[4], t[5])
                );
   float tmax = fminf(
                   fminf(
                      fmaxf(t[0], t[1]), 
                      fmaxf(t[2], t[3])), 
                   fmaxf(t[4], t[5])
                );

9. If tmax is less than 0, the ray is intersecting the OBB in the negative direction.  
This means the OBB is behind the origin of the ray, and this should not count as  
an intersection:
   if (tmax< 0) {
       return -1.0f;
   }

10. If tmin is greater than tmax, the ray does not intersect the OBB:
   if (tmin>tmax) {
       return -1.0f;
   }
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11. If tmin is less than 0, the ray started inside of the OBB. This means tmax is a valid 
intersection:
   if (tmin< 0.0f) {
       return tmax;
   }

   return tmin;
}

How it works…
We find the intersection point of a Raycast against an OBB by computing all the t values 
between the ray and the faces of the OBB. Each OBB is represented by three slabs. The ray 
must intersect all three slabs for it to hit the OBB. The intersection of these slabs creates six 
planes. The following figure demonstrates this in a top-down view. This means only two slabs 
and four planes are visible:

Each slab has a minimum and a maximum t value. These values represent where the ray 
entered and left the slab. We can refer to these as  and , where i represents one  
of the axis of the OBB. Just like with the AABB, we want to find the largest minimum and 
smallest maximum in question:
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If , the ray intersects the OBB. Otherwise, no intersection happens. The real 
challenge we face is finding the min and max values for each axis, ,  , and , 

, .

To find these values, we first need to find a vector that points from the origin of the ray to the 
center of the OBB. In the How to do it… section, this vector was called p.

We calculate a scalar, f for every axis of the OBB. This scalar is the angle between the 
direction of the ray and the axis of the OBB. We also calculate a scalar, e for every axis. This 
scalar is the distance between the origin of the ray and the center of the OBB, projected  
onto the normal of the corresponding OBB slab.

Next, we must loop through each axis of the OBB. For each axis, we check if the value of f is 
0. If f is 0, the ray is parallel to the slab and the two do not intersect. When this happens, we 
check if the ray is outside the slab or not. If the ray is outside, it's safe to early out. If the ray 
is inside the slab, we might have an intersection. If the ray is parallel to the slab, but starts 
inside the slab we set the value of f for the axis to a small number to avoid dividing by 0.

We find the min and max values for each axis (  and ). We find these values by taking 
the sum of the distance between the ray origin and OBB center with the extents of the OBB on 
that axis. We then divide this sum by the angle between the axis and the direction of the ray.

Once we have the  and  values for every axis, we find the largest min value and  
the smallest max value. As a result of this, we will know the  and  values. If  is 
less than or equal to 0, no intersection happened. If  greater than , no intersection 
has happened.

At this point, we know we have an intersection. If  is greater than or equal to 0, we simply 
return its value. If  is less than 0, the ray origin is inside the OBB. If this is the case, we 
actually want to return the value of .
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Raycast plane
To Raycast against a plane we must find a point which is on the plane being cast against and 
also along the normal of the ray. We know a point is on the surface of a plane if it satisfies  
the plane equation. If no point along the ray satisfies the plane equation, the ray and plane  
do not intersect:

Getting ready
We are going to implement a function that performs a Raycast against a plane. This function 
will return t, the time along the ray at which it intersects the plane. If there is no intersection, 
the value of t will be negative.

How to do it…
Follow these steps to implement raycasting against a plane:

1. Declare the Raycast function in Geometry3D.h:
float Raycast(const Plane& plane, const Ray& ray);

2. Implement the Raycast function in Geometry3D.cpp:
float Raycast(const Plane& plane, const Ray& ray) {
   float nd = Dot(ray.direction, plane.normal);
   float pn = Dot(ray.origin, plane.normal);

3. The nd variable must be less than zero for the ray to intersect the plane. If nd is 
positive or 0, the ray and plane normals point in the same direction and there is  
no intersection:
   if (nd>= 0.0f) {
       return -1;
   }

   float t = (plane.distance - pn) / nd;
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4. If the value of t is negative, the ray hits the plane behind its origin. This means we 
don't technically have a hit:
   if (t >= 0.0f) {
       return t;
   }

   return -1;
}

How it works…
Our goal is to find some time along the ray, t, which intersects the plane we are raycasting 
against. Any point on a ray at time t can be represented as follows:

point(t) = ray.origin + ray.direction * t
^ the (t) above means point at time t

A point is on a plane if it satisfies the plane equation. To recap, the plane equation is  
as follows:

Dot(point, plane.normal) - plane.distance = 0;

What we want to do is find a point along the ray at some time t, which satisfies the plane 
equation. To do this, we can substitute the point variable in the plane equation with the 
value of some point along the ray at time t. This expanded equation becomes:

Dot((ray.origin + ray.direction * t), plane.normal) - plane.distance = 
0;

At this point, the only unknown in the preceding equation is t. We can rearrange the equation 
to solve for t. First, we add the distance of the plane to both sides of the equation:

Dot((ray.origin + ray.direction * t), plane.normal) = plane.distance;

Next, we distribute the dot product:

Dot(ray.origin, plane.normal) + Dot(ray.direction * t, plane.normal) = 
plane.distance;

We can simply subtract one of the new dot products (the one between ray origin and plane 
normal) from both sides:

Dot(ray.direction * t, plane.normal) = plane.distance - Dot(ray.
origin, plane.normal);
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Finally, we can distribute and divide the remaining dot product into both sides:

t = (plane.distance - Dot(ray.origin, plane.normal)) / Dot(ray.
direction, plane.normal)

Now we are left with the final formula for finding t:

Now that we have the value of t, there are a few edge cases to take into account. First, t must 
be greater than or equal to 0. A negative t value is not a valid intersection.

If the ray and the plane are parallel, Dot(ray.direction, plane.normal) will return 0. 
We need to add a special case check to avoid this. If the ray and the plane are parallel,  
no intersection took place. In this scenario, we can early out with a value of -1.

A Raycast can only intersect a plane if the ray is in front of the plane. That is, if the ray and 
the plane normals point in opposite directions. A ray is in front of the plane if the result of 
Dot(ray.direction, plane.normal)is negative. If the result of this dot product is 
positive, no intersection took place.

Linetest Sphere
Unlike a Raycast, when we perform a linetest we only care about a Boolean result. To check 
if a Line and Sphere are intersecting, we need to find the closest point to the center of the 
Sphere on the Line. If the distance between the closest point and the center of the Sphere  
is less than the radius of the Sphere, the shapes intersect:
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Getting ready
We are going to implement a function to check if a Line and a Sphere intersect. This function 
will return a Boolean result. We will avoid the square root involved in finding the distance 
between the two points by checking the squared distance.

How to do it…
Follow these steps to implement line testing against a sphere:

1. Declare the Linetest function in Geometry3D.h:
bool Linetest(const Sphere& sphere, const Line& line);

2. Implement the Linetest function in Geometry3D.h:
bool Linetest(const Sphere& sphere, const Line& line) {
   Point closest = ClosestPoint(line, sphere.position);
   float distSq = MagnitudeSq(sphere.position - closest);
   return distSq<= (sphere.radius * sphere.radius);
}

How it works…
The first thing we do is find the closest point to the center of the sphere along the line 
segment. We do this using the ClosestPoint function we implemented in Chapter 8, 3D 
Point Tests. Next, we find the squared distance between the closest point and the center 
of the sphere. Finally, we compare that squared distance to the squared magnitude of the 
sphere. If the distance is less than the magnitude, we have an intersection.

Linetest Axis Aligned Bounding Box
We can use the existing Raycast against the AABB function to check if a line intersects an 
AABB. Given a line segment with end points A and B, we can create a ray out of the line:

ray.origin = A
ray.direcion = Normalized(B - A);
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With this ray, we can perform a Raycast. If the ray intersects the AABB, we check to make  
sure that the value of t is less than the length of the line. If it is, the segment intersects  
the Bounding Box:

Getting ready
We are going to implement a function to check if a Line and an AABB intersect. This function 
will return a Boolean result. We can avoid checking the length of the line segment by  
squaring it, and also squaring the value of t. That way, the actual comparison is done  
in a squared space.

How to do it…
Follow these steps to implement line testing against an AABB:

1. Declare the Linetest function in Geometry3D.h:
bool Linetest(const AABB& aabb, const Line& line);

2. Implement the Linetest function in Geometry3D.cpp:
bool Linetest(const AABB& aabb, const Line& line) {
   Ray ray;
   ray.origin = line.start;
   ray.direction = Normalized(line.end - line.start);
   float t = Raycast(aabb, ray);

   return t >= 0 && t * t <= LengthSq(line);
}
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How it works…
The first thing we do is construct a ray out of the line being tested. Next, we perform a Raycast 
against the AABB and store the result of t. We have an intersection if t is greater than or 
equal to 0 and less than or equal to the length of the line. Finding the actual length of the line 
involves an expensive square root operation. We can avoid this square root by checking the 
squared length of the line against the squared value of t.

Linetest Oriented Bounding Box
Rays and Line segments are similar. The slab test for raycasting and the slap test to see if a 
Line and OBB intersect are almost the same. The only thing a linetest does different from a 
Raycast is it normalizes the result of the t value to the length of the line segment.

Because the two tests are so similar, we are going to build the linetest using the existing 
Raycast against the OBB function. Comparing the squared value of t against the squared 
length of the line segment is more efficient than normalizing t to the length of the Line.

Getting ready
We are going to implement a function to check if a Line segment and an OBB intersect. This 
function will return a Boolean result. The linetest function is going to build a ray out of the line 
and use the existing Raycast against the OBB function.

How to do it…
Follow these steps to implement line testing against an OBB:

1. Declare the Linetest function in Geometry3D.h:
bool Linetest(const OBB& obb, const Line& line);

2. Implement the Linetest function in Geometry3D.cpp:
bool Linetest(const OBB& obb, const Line& line) {
   Ray ray;
   ray.origin = line.start;
   ray.direction = Normalized(line.end - line.start);
   float t = Raycast(obb, ray);

   return t >= 0 && t * t <= LengthSq(line);
}
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How it works…
The first thing we do is construct a ray out of the line being tested. Next, we perform a Raycast 
against the OBB, and store the resulting t value. The Line segment and OBB intersect if the 
stored t value is greater than or equal to 0, or less than or equal to the length of the line.  
Of course finding the length of the line is expensive; instead we should compare the squared 
line length against the squared value of t.

Linetest Plane
A Line segment represented by end points A and B can be parametrically expressed  
as follows:

S(t) = A + t(B-A) where 

We can check if a line segment intersects a Plane by substituting the parametric equation of 
the Line into the Plane equation. If any point along the line at time t exists that satisfies the 
Plane equation, the Line segment and Plane intersect:

Getting ready
We are going to implement a function to test if a Line segment and a Plane intersect. This 
function will return a Boolean result.

How to do it…
Follow these steps to implement line testing against a plane:

1. Declare the Linetest function in Geometry3D.h:
bool Linetest(const Plane& plane, const Line& line);
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2. Implement the Linetest function in Geometry3D.cpp:
bool Linetest(const Plane& plane, const Line& line) {
   vec3 ab = line.end - line.start;

   float nA = Dot(plane.normal, line.start);
   float nAB = Dot(plane.normal, ab);

   // If the line and plane are parallel, nAB will be 0
   // This will cause a divide by 0 exception below
   // If you plan on testing parallel lines and planes
   // it is sage to early out when nAB is 0. 

   float t = (plane.distance - nA) / nAB;
   return t >= 0.0f && t <= 1.0f;
}

How it works…
The preceding code finds the value of t, some distance along the Line Segment where it 
intersects the Plane. We start out by projecting a test point onto the normal of a plane:

Where d is the point projected onto the normal of the plane. We substitute the point value 
with the parametric equation of a line:

We can then distribute the dot product:

Next, let's move the scalar term to the right side of the equation:
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Finally, we can isolate the t value by dividing the remaining dot product into both sides:

If the dot product,  results in 0, the Plane and Line segment are 
parallel. If that is the case, we must return false. Otherwise, the Plane and Line segment 
intersect if the value of t falls within the 0 to 1 range.
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11
Triangles and Meshes

In this chapter, we are going to cover intersection tests for a triangle. We defined the triangle 
in Chapter 7, 3D Primitive Shapes. Once the collision cases for a triangle are covered,  
we will create a more complicated mesh shape out of many triangles. This chapter will  
cover the following topics:

 f Point in triangle

 f Closest point triangle

 f Triangle to sphere

 f Triangle to Axis Aligned Bounding Box (AABB)

 f Triangle to Oriented Bounding Box (OBB)

 f Triangle to plane

 f Triangle to triangle

 f Robustness of the Separating Axis Theorem

 f Raycast triangle

 f Linetest triangle

 f Mesh object

 f Mesh optimization

 f Mesh operations

Introduction
Triangles are unique as they are represented by three coplanar points. This means that a 
triangle will always be on a plane. This makes rendering triangles efficient, and it also makes 
collision detection of triangles efficient. The efficiency of triangles comes from the fact that 
many tests can assume that a triangle.
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In this chapter, we are going to use triangles to represent a 3D model. This approach  
has one major limitation; we can only test for intersection, not containment. Testing for 
containment will require a convex hull. The convex hull will be briefly covered in Appendix, 
Advanced Topics.

The triangle primitive was covered in Chapter 7, 3D Primitive Shapes. This chapter will focus 
on intersection tests for triangles and building 3D models out of triangles.

Point in triangle
We already have a definition for Triangle in Geometry3D.h, we implemented this primitive 
in Chapter 7, 3D Primitive Shapes . The first operation we want to perform on a triangle is 
testing for point containment. The containment test works by moving the triangle into the 
point's local space, then constructing a pyramid out of the triangle and the point. If the 
pyramid is flat, the point is inside the triangle. If it's not, the point is outside.

Getting ready
We are about to implement a function that will test if a point falls inside of a triangle. This 
function will return a simple boolean result.

How to do it…
Follow these steps to implement a point in triangle test:

1. Declare the PointInTriangle function in Geometry3D.h:
bool PointInTriangle(const Point& p, const Triangle& t);

2. Implement the PointInTriangle function in Geometry3D.cpp:
bool PointInTriangleNormals(const Point& p, 
const Triangle& t) {

3. Create a temporary triangle with the size of our original triangle in the local 
coordinate system of the point. This means the point will be at the origin of  
the temporary triangle:
    vec3 a = t.a - p;
    vec3 b = t.b - p;
    vec3 c = t.c - p;

    // The point should be moved too, so they are both
    // relative, but because we don't use p in the
    // equation anymore, we don't need it!
    // p -= p; This would just equal the zero vector!
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4. Given point P and triangle ABC, create the sides of a pyramid. The sides of the 
pyramid will be triangles created from the points: PBC, PCA, PAB. Then, find and  
store the normal of each side of this pyramid:
    vec3 normPBC = Cross(b, c); // Normal of PBC (u)
    vec3 normPCA = Cross(c, a); // Normal of PCA (v)
    vec3 normPAB = Cross(a, b); // Normal of PAB (w)

5. If the faces of the pyramid do not have the same normal, the point is not contained 
within the triangle:
    if (Dot(normPBC, normPCA) < 0.0f) {
        return false;
    }
    else if (Dot(normPBC, normPAB) < 0.0f) {
        return false;
    }

6. If all faces of the pyramid have the same normal, the pyramid is flat. This means the 
point is in the triangle and we have an intersection:
    return true;
}

How it works…
Given triangle ABC and point P, we have to translate ABC into the local space of P. This 
means we move both the triangle and the point so that the point is at the origin of the  
space we are looking at:

Now that P is at origin, we want to test if the translated triangle contains the point or not. P is 
inside triangle ABC if the triangles formed by PAB, PBC, and PCA all face the same direction. 
We can check if triangles face the same direction with the cross and dot products. We use  
the cross product to find the normal of a triangle, and then we use the dot product to check  
if those normals are pointing in the same direction.
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What we are doing here is creating a pyramid with P as its tip and ABC as its base. If the tip of 
the triangle is on the plane formed by the base of the pyramid, that is if the pyramid is flat; the 
point is inside the triangle:

On the other hand, if P is not within the triangle, the pyramid will have some volume. When 
the pyramid is not flat, every side will have a different normal. If the normals of the sides of 
the pyramid don't point in the same direction, point P is not within the triangle:

Closest point triangle
To find the closest point on a triangle to a test point, we must first create a plane out of the 
triangle. Three points that are not in a straight line are coplanar. This means we can create a 
plane out of any triangle. Once we have a plane, we get the closest point on the plane to the 
test point. Next, we check if this new closest point is inside the triangle. If it is, we return it as 
the closest point on the triangle.
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If the closest point was not contained within the triangle, it's going to be on one of the triangle 
edges. We must construct a line out of each triangle edge and find the closest point on each 
line to the test point. We then return the closest point to the test point of the three closest 
points from the last step:

If a test point is outside of the triangle, the closest point is going to be on one of the edge 
lines of the triangle. We can calculate this closest point using the closest point to line formula.

Getting ready
Before implementing the ClosestPoint function, we need to implement a helper function. 
This new helper function will create a plane out of a triangle. After we can find the plane of a 
triangle, we will implement a function that returns the closest point on a triangle to a given 
test point.

How to do it…
Follow these steps to create a plane from a triangle and to find the closest point to a given 
point on a triangle:

1. Declare FromTriangle and ClosestPoint functions in Geometry3D.h:
Plane FromTriangle(const Triangle& t);
Point ClosestPoint(const Triangle& t, const Point& p);

2. Implement the FromTriangle function in Geomtery3D.cpp:
Plane FromTriangle(const Triangle& t) {
    Plane result;

3. The normal of the triangle will be the normal of the plane:
    result.normal = Normalized(
        Cross(t.b - t.a, t.c - t.a)
    );
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4. Project any point onto the normal of the plane to get the distance of the plane from 
the origin:
    result.distance = Dot(result.normal, t.a);
    return result;
}

5. Implement the ClosestPoint function in Geometry3D.cpp:
Point ClosestPoint(const Triangle& t, const Point& p) {
    Plane plane = FromTriangle(t);

6. Point closest = ClosestPoint(plane, p);If the point is inside the triangle, return it as  
the closest point:
    if (PointInTriangle(closest, t)) {
        return closest;
    }

7. Construct one line for each side of the triangle. Find the closest point on the side of 
the triangle to the test point:
    Point c1 = ClosestPoint(Line(t.a, t.b), p); // Line AB
    Point c2 = ClosestPoint(Line(t.b, t.c), p); // Line BC
    Point c3 = ClosestPoint(Line(t.c, t.a), p); // Line CA

8. Measure how far each of the closest points from the previous step are from the  
test point:
    float magSq1 = MagnitudeSq(p - c1);
    float magSq2 = MagnitudeSq(p - c2);
    float magSq3 = MagnitudeSq(p - c3);

9. Return the closest one to the test point:
    if (magSq1 < magSq2 && magSq1 < magSq3) {
        return c1;
    }
    else if (magSq2 < magSq1 && magSq2 < magSq3) {
        return c2;
    }

    return c3;
}
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How it works…
We use the three non linear points that make up a triangle to construct a plane. These points 
can be used to form two vectors, AB and A. These vectors lie on the same plane; we can use 
their cross products to find the normal of the plane. Now we just have to find the distance of 
the plane. To do this, we just substitute any point in the triangle and the plane normal into the 
plane equation:

To find the closest point on a triangle to a test point, we first create a plane out of the triangle, 
as described previously. We then find the closest point to the test point on the plane. If the 
closest point on the plane is within the triangle, we can return it as the closest point. If it is 
outside the triangle, we must construct three lines out of the three edges of the triangle. Find 
the closest point to the test point along all three lines, and return the closest point out of 
these three points.

Triangle to sphere
To test if a sphere and a triangle intersect, we must first find the point on the triangle that is 
closest to the center of the sphere. If the distance between the center of the sphere and the 
closest point is less than the radius of the sphere, we have an intersection:

Getting ready
We are about to implement a function that tests if a triangle and sphere intersect. This 
function will return a Boolean result. We avoid the expensive square root operation involved  
in finding distance by checking squared distance against squared radius.
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How to do it…
Follow these steps to implement a test for checking if a triangle and sphere intersect:

1. Declare the TriangleSphere function in Geometry3D.h:
bool TriangleSphere(const Triangle& t, const Sphere& s);

2. Declare the SphereTriangle convenience macro in Geometry3D.h:
#define SphereTriangle(s, t) \
    TriangleSphere(t, s)

3. Implement the TriangleSphere function in Geometry3D.cpp:
bool TriangleSphere(const Triangle& t, const Sphere& s) {
    Point closest = ClosestPoint(t, s.position);
    float magSq = MagnitudeSq(closest - s.position);
    return magSq <= s.radius * s.radius;
}

How it works…
The triangle to sphere test first finds the closest point to the sphere position on the triangle. 
Once we have this closest point, we find the distance between the closest point and the 
position of the sphere. We have an intersection if this square distance is less than the 
squared magnitude of the sphere.

Triangle to Axis Aligned Bounding Box
We can implement a Triangle to Axis Aligned Bounding Box (AABB) intersection test using 
the Separating Axis Theorem. There will be a total of 13 axes to test. These axes are:

 f Three face normals of the AABB

 f One face normal from the Triangle

 f Nine cross products of the edges of each primitive
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Getting ready
We can use the existing GetInterval function of the AABB. We have to write a new 
GetInterval function for the triangle. We also have to write a new OverlapOnAxis 
function to test for triangle to AABB overlap. Finally, we have to implement the actual SAT test.

How to do it…
Follow these steps to check if an AABB and triangle intersect:

1. Declare all three of the new functions in Geometry3D.h:
Interval GetInterval(const Triangle& triangle, vec3& axis);
bool OverlapOnAxis(const AABB& aabb, 
   const Triangle& triangle, const vec3& axis);
bool TriangleAABB(const Triangle& t, const AABB& a);

2. Create a convenience macro in Geometry3D.h:
#define AABBTriangle(a, t) \
    TriangleAABB(t, a)

3. Implement the Getinterval function in Geometry3D.cpp:
Interval GetInterval(const Triangle& triangle, 
const vec3& axis) {
    Interval result;

4. Project the first point of the triangle onto the axis and store it as both the min and 
max of the interval:
    result.min = Dot(axis, triangle.points[0]);
    result.max = result.min;

5. Project the remaining two points of the triangle onto the axis. If the projected point is 
less than min, or greater than max store it accordingly:
    for (int i = 1; i < 3; ++i) {
        float value = Dot(axis, triangle.points[i]);
        result.min = fminf(result.min, value);
        result.max = fmaxf(result.max, value);
    }

    return result;
}
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6. Implement the OverlapOnAxis function in Geometry3D.cpp:
bool OverlapOnAxis(const AABB& aabb, const Triangle& triangle, 
const vec3& axis) {
    Interval a = GetInterval(aabb, axis);
    Interval b = GetInterval(triangle, axis);
    return ((b.min <= a.max) && (a.min <= b.max));
}

7. Implement the actual SAT test as the TriangleAABB function in Geometry3D.cpp. 
We begin the implementation by creating the edge vectors of the triangle:
bool TriangleAABB(const Triangle& t, const AABB& a) {

8. Find the edge vectors of the triangle (ABC):
    vec3 f0 = t.b - t.a; 
    vec3 f1 = t.c - t.b; 
    vec3 f2 = t.a - t.c; 

9. Find the face normals of the AABB:
    vec3 u0(1.0f, 0.0f, 0.0f);
    vec3 u1(0.0f, 1.0f, 0.0f);
    vec3 u2(0.0f, 0.0f, 1.0f);

10. Next we declare all 13 of the axes that potentially separate the shapes:
    vec3 test[13] = {

11. The first three axes are the normals of the AABB:
        u0, // AABB Axis 1
        u1, // AABB Axis 2
        u2, // AABB Axis 3

12. The next axis is the normal of the triangle:
        Cross(f0, f1),

13. The final nine axes are the cross products of every normal of the AABB with every 
edge of the triangle:
        Cross(u0, f0), Cross(u0, f1), Cross(u0, f2),
        Cross(u1, f0), Cross(u1, f1), Cross(u1, f2),
        Cross(u2, f0), Cross(u2, f1), Cross(u2, f2)
    };

14. Finally, we test every axis to check if there is an overlap or not. We loop through every 
axis of potential separation. If an axis of separation is found, we can return false:
    for (int i = 0; i < 13; ++i) {
        if (!OverlapOnAxis(a, t, test[i])) {
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            return false; // Separating axis found
        }
    }

15. If no axis of separation was found, the AABB and triangle intersect!
    return true; // Separating axis not found
}

How it works…
We test if a triangle and AABB intersect with the Separating Axis theorem. The SAT is covered 
in detail in Chapter 5, 2D Collisions. The axes of potential separation are:

 f The three face normals of the AABB

 f The face normal of the triangle

 f The cross product of every edge of each primitive

These 13 axes are the minimum number of axis which can separate a triangle and an AABB. 
Like with any other SAT test, we have to test every axis of potential separation. If any axis 
separates the objects, they do not intersect.

Triangle to Oriented Bounding Box
Like triangle to AABB, testing a triangle and an Oriented Bounding Box (OBB) is done using 
the SAT. In fact, the only difference in the actual test is the rotation frame of the bounding box.

Getting ready
We already have the GetInterval support function written for both the OBB and the 
Triangle. We just need to write the OverlapOnAxis support function and the actual SAT test.

How to do it…
Follow these steps to check if a triangle and an OBB intersect:

1. Declare OverlapOnAxis and TriangleOBB in Geometry3D.h:
bool OverlapOnAxis(const OBB& obb, 
   const Triangle& triangle, const vec3& axis);
bool TriangleOBB(const Triangle& t, const OBB& o);
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2. Add a convenience macro to Geometry3D.h:
#define OBBTriangle(o, t) \
    TriangleOBB(t, o)

3. Implement OverlapOnAxis in Geometry3D.cpp:
bool OverlapOnAxis(const OBB& obb, 
const Triangle& triangle, const vec3& axis) {
    Interval a = GetInterval(obb, axis);
    Interval b = GetInterval(triangle, axis);
    return ((b.min <= a.max) && (a.min <= b.max));
}

4. Implement TriangleOBB in Geometry3D.cpp. We begin the implementation by 
creating the edge vectors of the triangle:
bool TriangleOBB(const Triangle& t, const OBB& o) {
    // Compute the edge vectors of the triangle  (ABC)
    vec3 f0 = t.b - t.a;
    vec3 f1 = t.c - t.b;
    vec3 f2 = t.a - t.c;

5. Store the face normals of the OBB as vectors:
    const float* orientation = o.orientation.asArray;
    vec3 u0(orientation[0], 
            orientation[1], 
            orientation[2]);
    vec3 u1(orientation[3], 
            orientation[4], 
            orientation[5]);
    vec3 u2(orientation[6], 
            orientation[7], 
            orientation[8]);

6. Next we declare all 13 of the axes that potentially separate the shapes:
    vec3 test[13] = {

7. The first three axes are the normals of the OBB
        u0, // OBB Axis 1
        u1, // OBB Axis 2
        u2, // OBB Axis 3

8. The next axis is the normal of the triangle:
        Cross(f0, f1), // Normal of the Triangle 
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9. The last nine axes are the cross product of the normals of the OBB with the edges of 
the triangle:
        Cross(u0, f0), Cross(u0, f1), Cross(u0, f2),
        Cross(u1, f0), Cross(u1, f1), Cross(u1, f2),
        Cross(u2, f0), Cross(u2, f1), Cross(u2, f2)
    };

10. Finally, we test every axis to check if there is an overlap or not:
    for (int i = 0; i < 13; ++i) {

11. If any separating axis is found, the shapes do not intersect:
        if (!OverlapOnAxis(o, t, test[i])) {
            return false; // Separating axis found
        }
    }

12. If all of the axes where intersecting, the OBB and Triangle intersect:
    return true; // Separating axis not found
}

How it works…
A triangle and an OBB have a minimum 13 axes of potential separation:

 f The first three axes are the orientation of the OBB

 f The next axis is the normal of the triangle

 f The final nine axes are the cross product of every edge of both shapes against  
each other

Triangle to plane
There are two scenarios in which a triangle and plane intersect:

 f Not every point of the triangle is on the same side of the plane

 f Every point of the triangle is on the plane
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Getting ready
We are going to implement the TrianglePlane function to test for intersection between a 
triangle and a plane. This function will use our existing PlaneEquation function to classify 
which side of the plane the triangle is on.

How to do it…
Follow these steps to test if a triangle and a plane intersect:

1. Declare the new TrianglePlane function in Geometry3D.h:
bool TrianglePlane(const Triangle& t, const Plane& p);

2. Declare a convenience macro in Geometry3D.h:
#define PlaneTriangle(p, t) \
    TrianglePlane(t, p)

3. Implement the TrianglePlane function in Geometry3D.cpp:
bool TrianglePlane(const Triangle& t, const Plane& p) {

4. Check which side of the plane every point of the triangle is on:
    float side1 = PlaneEquation(t.a, p);
    float side2 = PlaneEquation(t.b, p);
    float side3 = PlaneEquation(t.c, p);

5. If all points are on the plane, that is if the triangle and plane are coplanar they 
intersect:
    if (CMP(side1, 0) && CMP(side2, 0) && CMP(side3, 0)) {
        return true;
    }

6. If all three points of the triangle are in front of the plane, the triangle and plane  
don't intersect:
    if (side1 > 0 && side2 > 0 && side3 > 0) {
        return false;
    }

7. If all three points of the triangle are behind the plane, the triangle and plane  
don't intersect:
    if (side1 < 0 && side2 < 0 && side3 < 0) {
        return false;
    }
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8. If the code makes it here, that means one vertex is on the opposite side of the 
triangle as the other two:
    return true; // Intersection
}

How it works…
The TrianglePlane function first calculates the plane equation for each point of the triangle. 
We can tell which side of the plane a point is on from the result of this plane equation:

 f  If all three points are on the plane, the triangle and plane coplanar and intersecting

 f If all three points of the triangle are in front of the plane, the triangle does not cross 
the plane. In this case, the triangle and plane don't intersect

 f If all three points of the triangle are behind the plane, the triangle does not cross the 
plane. In this case, the triangle and plane don't intersect

If the vertices of the triangle lie on opposing sides of the plan, then the shapes intersect. This 
means that two points of the triangle are on one side of the plane while one point is on the 
other side.

Triangle to triangle
Testing if two triangles intersect is done using a generic SAT test. We will have to test a total of 
11 axes. These axes are:

 f The normal of the first triangle

 f The normal of the second triangle

 f The cross product of the edges of each triangle
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Getting ready
We need to implement a new OverlapOnAxis test as well as the actual SAT test. The actual 
SAT test will be performed inside the TriangleTriangle collision function. We first covered 
the Separating Axis Theorem in Chapter 5, 2D Collisions. In this section we will check 11 axes 
of potential separation. If any axis of separation is found, the triangles do not intersect.

How to do it…
Follow these steps to check if two triangles intersect:

1. Declare the OverlapOnAxis and TriangleTriangle function in Geometry3D.h:
bool OverlapOnAxis(const Triangle& t1, 
    const Triangle& t2, const vec3& axis);
bool TriangleTriangle(const Triangle& t1, 
    const Triangle& t2);

2. Implement the OverlapOnAxis function in Geometry3D.cpp:
bool OverlapOnAxis(const Triangle& t1, 
const Triangle& t2, const vec3& axis) {
    Interval a = GetInterval(t1, axis);
    Interval b = GetInterval(t2, axis);
    return ((b.min <= a.max) && (a.min <= b.max));
}

3. Implement the TriangleTriangle function in Geometry3D.cpp:
bool TriangleTriangle(const Triangle& t1, 
const Triangle& t2) {

4. First, find the edges of triangle 1:
   vec3 t1_f0 = t1.b - t1.a; // Triangle 1, Edge 0
   vec3 t1_f1 = t1.c - t1.b; // Triangle 1, Edge 1
   vec3 t1_f2 = t1.a - t1.c; // Triangle 1, Edge 2

5. Next, find the edges of triangle 2:
   vec3 t2_f0 = t2.b - t2.a; // Triangle 2, Edge 0
   vec3 t2_f1 = t2.c - t2.b; // Triangle 2, Edge 1
   vec3 t2_f2 = t2.a - t2.c; // Triangle 2, Edge 2

6. Built an array of potentially separating axes:
   vec3 axisToTest[] = {
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7. The first axis of potential separation is the normal of triangle 1:
      Cross(t1_f0, t1_f1),

8. The next axis of potential separation is the normal of triangle 2:
      Cross(t2_f0, t2_f1),

9. The next nine axes of potential separation are the cross products of every edge of 
triangle one with every edge of triangle 2:
      Cross(t2_f0, t1_f0), Cross(t2_f0, t1_f1), 
      Cross(t2_f0, t1_f2), Cross(t2_f1, t1_f0), 
      Cross(t2_f1, t1_f1), Cross(t2_f1, t1_f2),
      Cross(t2_f2, t1_f0), Cross(t2_f2, t1_f1),
      Cross(t2_f2, t1_f2),
   };

10. Once all of the axes of potential separation are known, loop through them all checking 
for overlap. If any axis is found with no overlap, the triangles do not intersect:
   for (int i = 0; i < 11; ++i) {
      if (!OverlapOnAxis(t1, t2, axisToTest[i])) {
         return false; // Seperating axis found
      }
   }

11. If every axis has been checked and they all overlap the two triangles are intersecting:
   return true; // Seperating axis not found
}

How it works…
The preceding code should look familiar by now. The only difference between SAT tests of 
different objects is the axis of potential separation. The potential axes of separation for 
arbitrary convex shapes are:

 f The face normals of the first object

 f The face normals of the second object

 f The cross product of the edges of the first object against the edges of the  
second object

With other shapes we tried to eliminate axis of separation which where redundant. With 
triangles, such optimization is not possible. Therefore, we have to use the separating axis  
for arbitrary convex shapes listed above.
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Robustness of the Separating Axis Theorem
Currently, there is a flaw in our SAT implementation. You can see this flaw in action by testing 
two triangles that lay on the same plane. Let's assume that we run the SAT test with the 
following triangles:

 f T1: (-2, -1, 0), (-3, 0, 0), (-1, 0, 0)

 f T2: (2, 1, 0), (3, 0, 0), (1, 0, 0)

These two triangles will report a false positive. Visualizing them, they look like this:

Why does this happen? When we compute the cross products of the edges of the triangles, 
the cross product of parallel vectors is the zero vector. When edges or face normals are 
parallel, we end up with an invalid axis to test.

Getting ready
We are going to implement a new function, SatCrossEdge. This function will detect if the 
cross product of two edges is 0. If that is the case, the function will use an axis perpendicular 
to the first edge to try to get a new test axis. If no such test axis exists, then the two edges 
being tested must be on a line. If the edges are on a line, we return the zero vector.

We are going to implement a new version of the triangle to triangle test. This new version 
of the function will be called TriangleTriangleRobust. This robust test will return the 
correct intersection result when the edge case described previously happens.

We are only going to implement a robust version of the TriangleTriangle intersection  
test. However, the issue of robustness affects all of the SAT tests we have written so far.  
You may want to go back and implement robust tests for all SAT functions to get the most 
accurate collision results possible.
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How to do it…
Follow these steps to implement a more robust SAT test:

1. Declare the SatCrossEdge and TriangleTriangleRobust functions in 
Geometry3D.h. Normally we construct a side out of two sides of a triangle. We find 
the sides by subtracting points from each other. The SATCrossEdge function takes 
two pairs of points, which are normally used to construct the edges of two triangles:
// A – Edge / Triangle 0, Point 0
// B – Edge / Triangle 0, Point 1
// C – Edge / Triangle 1, Point 0
// D – Edge / Triangle 1, Point 1
vec3 SatCrossEdge(const vec3& a, const vec3& b, 
   const vec3& c, const vec3& d);
bool TriangleTriangleRobust(const Triangle& t1, 
   const Triangle& t2);

2. Implement the SatCrossEdge function in Geomtery3D.cpp. This function takes 
four arguments. Given two triangles, points A and B make up one side of the first 
triangle. Points C and D make one side of the second triangle:
vec3 SatCrossEdge(const vec3& a, const vec3& b, 
const vec3& c, const vec3& d) {

3. Create the default sides and take their cross product. These are the sides we have 
been testing so far:
   vec3 ab = a - b;
   vec3 cd = c - d;
   vec3 result = Cross(ab, cd);

4. If the magnitude of the cross product is not 0, the sides are not parallel. We can 
return the result. Most of the time, this will be the case:
   if (!CMP(MagnitudeSq(result), 0)) {        
      return result; // Not parallel!
   }

5. If the magnitude of the cross product is 0, the sides where parallel. We need  
to try a different configuration:
   else { // ab and cd are parallel

6. Construct a temporary axis perpendicular to AB and try taking the cross product 
again:
      vec3 axis = Cross(ab, c - a);
      result = Cross(ab, axis);
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7. If the magnitude of the new cross product is not zero, the perpendicular axis 
produced valid results:
        if (!CMP(MagnitudeSq(result), 0)) { 
            return result; // Not parallel
        }
    }

8. If the magnitude of the new cross product was zero, both triangles are coplanar and 
there is no way to get a proper cross product out of them:
    return vec3();
}

9. Implement the TriangleTriangleRobust function in Geometry3D.cpp. This 
function works the same way as the regular Triangle to Triangle SAT test, with the 
exception of how the axis to test are constructed:
bool TriangleTriangleRobust(const Triangle& t1, 
const Triangle& t2) {
    vec3 axisToTest[] = {

10. We don't technically need to use SatCrossEdge for the normals of the triangle 
because we assume no triangles are de-generate:
       // Triangle 1, Normal
       SatCrossEdge(t1.a, t1.b, t1.b, t1.c),
       // Triangle 2, Normal
       SatCrossEdge(t2.a, t2.b, t2.b, t2.c),

11. Instead of manually computing the cross products for every edge pair, we use the 
SatCrossEdge helper function. This function will handle the edge case of triangle 
sides being parallel and producing a cross product with zero length by testing an 
alternate perpendicular axis:
       SatCrossEdge(t2.a, t2.b, t1.a, t1.b),
       SatCrossEdge(t2.a, t2.b, t1.b, t1.c),
       SatCrossEdge(t2.a, t2.b, t1.c, t1.a),

       SatCrossEdge(t2.b, t2.c, t1.a, t1.b),
       SatCrossEdge(t2.b, t2.c, t1.b, t1.c),
       SatCrossEdge(t2.b, t2.c, t1.c, t1.a),

       SatCrossEdge(t2.c, t2.a, t1.a, t1.b),
       SatCrossEdge(t2.c, t2.a, t1.b, t1.c),
       SatCrossEdge(t2.c, t2.a, t1.c, t1.a),
    };
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12. Finally, just like with any other SAT test we have to loop through every axis of potential 
separation. The two triangles only intersect if no axis of actual separation was found:
    for (int i = 0; i < 11; ++i) {
        if (!OverlapOnAxis(t1, t2, axisToTest[i])) {
            if (!CMP(MagnitudeSq(axisToTest[i]), 0)) {
                return false; // Seperating axis found
            }
        }
    }

    return true; // Seperating axis not found
}

How it works…
If we take the cross product of parallel edges, the result is the zero vector. When vertices are 
projected onto a zero vector, the result is 0. This projection onto 0 will be falsely interpreted 
and cause an error. We fix this by making the calculation finding the axis of separation more 
robust. For example, up until now every axis of separation was calculated using the cross 
product. Like so:

vec3 t1_f0 = t1.b - t1.a; // Triangle 1, Edge 0
vec3 t2_f0 = t2.b - t2.a; // Triangle 2, Edge 0
Cross(t2_f0, t1_f0)

However, from now on axis of potential separation will be calculated with the SatCrossEdge 
helper function. The preceding code snippet using the new helper function will become:

SatCrossEdge(t2.a, t2.b, t1.a, t1.b),

The SatCrossEdge function first calculates the same two support vectors that the non 
robust version does. The function then checks the cross product result of the two support 
vectors. If the cross product is 0, we attempt to create a new axis that is perpendicular to both 
edges, and then use that for the cross product. We know a cross product resulted in zero, if 
the length of the resulting vector is zero.

This takes care of most edge cases. However, we still have one issue remaining. If the edges 
being tested are on a straight line, the SatCrossEdge function still returns a zero vector.  
This is why the following code snippet is executed when an overlap is found:

if (!CMP(MagnitudeSq(axisToTest[i]), 0)) {

The preceding line will prevent any axis with a length of zero from returning true. This is good, 
the zero vector should be considered invalid as an axis of potential separation.
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Raycast Triangle
Raycasting against a triangle is a three step process:

1. Create a plane from the three points of the triangle

2. Raycast against that plane

3. Check if the Raycast result is inside the triangle

We already have functions to implement this entire process. The FromTriangle function will 
create a plane from the triangle. We already have a Raycast function that casts a ray against 
a plane. We also have a PointInTriangle function.

We can improve the performance of the Raycast by using barycentric coordinates instead 
of the existing PointInTriangle test. Barycentric coordinates are a way to represent the 
position of a point relative to a triangle.

Getting ready
We are going to implement a new function, Barycentric. This new function will return the 
barycentric coordinates of a point with respect to a triangle. We will use this new function, 
along with the existing FromTriangle and Raycast functions created in Chapter 10, 3D 
Line Intersections to make a new Raycast against triangle function.

How to do it…
Follow these steps to check if a ray hits a triangle:

1. Declare the Barycentric and Raycast functions in Geometry3D.h:
vec3 Barycentric(const Point& p, const Triangle& t);

float Raycast(const Triangle& triangle, const Ray& ray)

2. Implement the Barycentric function in Geometry3D.cpp:
vec3 Barycentric(const Point& p, const Triangle& t) {

3. Find vectors from the test point to each point of the triangle:
    vec3 ap = p - t.a;
    vec3 bp = p - t.b;
    vec3 cp = p - t.c;

4. Find and store the edges of the triangle. We store these edges as vectors because  
we will be projecting other vectors onto them:
    vec3 ab = t.b - t.a;
    vec3 ac = t.c - t.a;
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    vec3 bc = t.c - t.b;
    vec3 cb = t.b - t.c;
    vec3 ca = t.a - t.c;

5. Here, the vector v will be perpendicular to edge AB. The test point is projected onto 
this perpendicular vector. The value of a is 0 if the projected point is on line AB. The 
value of a is 1 if the projected point is at point C of the triangle:
    vec3 v = ab - Project(ab, cb);
    float a = 1.0f - (Dot(v, ap) / Dot(v, ab));

6. Here, the vector v will be perpendicular to edge BC. The test point is projected onto 
this perpendicular vector:
    v = bc - Project(bc, ac);
    float b = 1.0f - (Dot(v, bp) / Dot(v, bc));

7. Here, the vector v will be perpendicular to edge CA. The test point is projected onto 
this perpendicular vector:
    v = ca - Project(ca, ab);
    float c = 1.0f - (Dot(v, cp) / Dot(v, ca));

    return vec3(a, b, c);
}

8. Implement the Raycast function in Geometry3D.cpp:
float Raycast(const Triangle& triangle, const Ray& ray) {

9. First, create a plane from the triangle and cast the ray against the plane. If the ray 
does not hit the plane, the ray will not hit the triangle:
    Plane plane = FromTriangle(triangle);
    float t = Raycast(plane, ray);
    if (t < 0.0f) {
        return t;
    }

10. Next, find the point on the plane where the ray hit:
    Point result = ray.origin + ray.direction * t;

11. Find the barycentric coordinates of the Raycast on the plane. If this point is within  
the triangle, the ray hit the triangle:
    vec3 barycentric = Barycentric(result, triangle);
    if (barycentric.x >= 0.0f && barycentric.x <= 1.0f &&
        barycentric.y >= 0.0f && barycentric.y <= 1.0f &&
        barycentric.z >= 0.0f && barycentric.z <= 1.0f) {
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        return t;
    }

    return -1;
}

How it works…
We have triangle ABC and some point P. Let's assume that we can access the components 
of P as either (x,y,z) or (a,b,c). The closer P is to a point on the triangle the closer its 
corresponding barycentric coordinate component is to 1. For example, the barycentric 
coordinate of A is (1, 0, 0), for B it is (0, 1, 0):

Any point on the BC line will have a barycentric a component of 0. Anything past the BC 
line will have a negative barycentric a component. If any component of a points barycentric 
coordinate is outside of the 0 to 1 range, the point is not within the triangle.

Now that we kind of know how barycentric coordinates work, let's discuss how to find them. 
We are going to go through the steps to find the a component of the barycentric coordinate for 
point P relative to triangle ABC. To do this, we first need to find a vector that is perpendicular 
to the BC line and passes through point A:
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We will call this vector  . To find the barycentric a component of point P we first need to 
project Ponto . So, how to we actually find ? It is the perpendicular component of vector 

 projected onto vector :

Notice that  sums up to . Rearranging that formula leaves us with the 
equation:  . This is saying that  is the perpendicular component 

of the projection of  onto . This can also be expressed as:  . Now 

that we have the value of  we must project  onto :

This new projection is some fraction of  being projected onto  + . We can 
express this fraction as follows:
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Evaluating this fraction at line CB will result in a value of 1. However, we want the value of 
the barycentric a component at line CB to be 0. We can modify the preceding equation to 
accommodate this:

Evaluating the preceding equation will yield the a component of the barycentric coordinate of 
P with respect to triangle ABC. We can actually simplify the preceding equation to:

We need to repeat the preceding steps to find the barycentric coordinates components b and 
c. If all three components of the barycentric coordinate are within the 0 to 1 range, the point 
is inside the triangle. Otherwise, if any of the three components is less than 0 or greater than 
1, the point is not inside the triangle. These are the formulas for each component:

              

Why didn't we implement the initial point in triangle test using barycentric coordinates? 
Because barycentric coordinates tell us if a point falls within the volume of a triangle,  
not a flat triangle. We can't tell if a point is actually on the plane of the triangle or not.  
The following figure demonstrates a potential false positive:
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Linetest Triangle
Much like testing a line and an axis aligned or OBB intersection, testing a line and triangle 
intersection utilizes the existing Raycast function. We are going to cast a ray against the 
triangle being tested. If the Raycast succeeds, we need to make sure that the t value is  
along the line segment being tested.

Getting ready
We are about to implement a new Linetest function, which will test if a line and a triangle 
intersect. This function returns a Boolean result.

How to do it…
Follow these steps to check if a line intersects a triangle:

1. Declare the new Linetest function in Geometry3D.h:
bool Linetest(const Triangle& triangle, const Line& line);

2. Implement the Linetest function in Geometry3D.cpp:
bool Linetest(const Triangle& triangle, const Line& line) {

3. Construct a ray out of the line being tested:
    Ray ray;
    ray.origin = line.start;
    ray.direction = Normalized(line.end - line.start);

4. Perform a Raycast:
    float t = Raycast(triangle, ray);

5. Check that the result of the Raycast is within the size of the line:
    return t >= 0 && t * t <= LengthSq(line);
}

How it works…
We first construct a ray out of the line being tested. Next, we do a Raycast against the triangle 
being tested. If the resulting t value of this Raycast is greater than 0 and less than the length 
of the line, the line and triangle intersect. We check the squared t value against the squared 
length of the line to avoid the square root operation involved in finding the length of a line.
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If the squared value of t is less than the squared length of the line being tested and greater 
than 0 we know we have an intersection. This happens because instead of checking the ray, 
which has infinite length in one direction, we check a segment of the ray. The segment of the 
ray we check has the same length as the line segment being tested.

Mesh object
A mesh is just a large collection of triangles:

For collision detection, a mesh should be treated as a linear list of triangles. Meshes can be 
constructed by hand, or loaded from a file. An OBJ loader sample is included with the code 
accompanying this chapter.

Getting ready
In this section, we are going to declare the Mesh structure that will be used to test for 
collisions against arbitrary 3D models.

How to do it…
Follow these steps to implement a mesh primitive:

1. Declare the Mesh structure in Geometry3D.h:
typedef struct Mesh {

2. We need to know how many triangles the mesh will have:
    int numTriangles;
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3. With this anonymous union we can access the data of the triangle in one of three 
ways. We can access it as triangle primitives, as points of a triangle or the ray float 
components:
    union {
        Triangle* triangles;//size = numTriangles
        Point* vertices;    //size = numTriangles * 3
        float* values;      //size = numTriangles * 3 * 3
    };
} Mesh;

How it works…
The preceding mesh structure contains the number of triangles that makes up the mesh and 
a pointer to an array of said triangles. The triangles are an array of size numTriangles. This 
array is declared as a union, this way we can access individual vertices or even components of 
the vertices without casting.

The code that accompanies this chapter includes sample code for loading an 
OBJ file into the Mesh structure. Loading existing model data will be much 
simpler than hand creating objects.

Mesh optimization
Every operation on a mesh will simply loop through all of the triangles that make up the mesh 
and perform the requested operation on every triangle. With medium to large size meshes this 
becomes very expensive, very fast. Because of the expensive nature of these tests, we are 
going to add an optional acceleration structure to our Mesh object.

The optimization structure we are adding is a Bounding Volume Hierarchy (BVH), an Octree 
to be specific. First we will need to find an AABB that contains the entire mesh. Next, we will 
divide the box into eight sub-boxes. We assign each triangle of the mesh to one (or more) of  
the nine boxes it belongs to. We will recursively repeat this process:
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Now that every triangle is inside an AABB, we can use this hierarchy to accelerate intersection 
testing. At the top level, we check if the intersection touches the AABB containing the box. 
Next, we check if the intersection touches any of the AABB's eight children. We recursively 
repeat this operation for every AABB node that is intersected. Once we reach a leaf node 
that has only triangles and no children, we only have to loop through the triangles that are 
contained in the leaf node. For example:

The lower left and right corners of the model BVH do not need to be considered for a Raycast, 
as they contain no triangles. When we Raycast against the BVH, we Raycast against a few 
AABB's to see that we only hit a leaf node with no triangles. This is how the BVH saves us 
performance. We don't just blindly loop over every triangle.

Getting ready
We are going to implement a new BVHNode structure. This structure will either hold eight 
children, or an array of indices into the attached models triangle list. Only leaf nodes refer 
to the triangles of the attached model. We need to add the root of the BVH tree, a single 
BVHNode into the Model structure. We will create three helper functions: AccelerateMesh, 
SplitBVHNode, and FreeBVHNode.

The AccelerateMesh function will create the root BVHNode for the provided mesh. It 
will also call the SplitBVHNode helper function. In turn the SplitBVHNode function will 
recursively split the BVHNode it is passed until a given depth is reached. This function is  
also responsible for putting the triangles into the right node. One triangle might belong to 
multiple nodes.

SplitBVHNode recursively creates new memory. The FreeBVHNode helper function will 
recursively delete all children of the provided node. The actual node that is passed in as  
an argument (the BVH tree root) still needs to be deleted manually.
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How to do it…
Follow these steps to implement a BVH. This structure will accelerate intersection tests 
against meshes:

1. Declare the new BVHNode structure in Geometry3D.h:
typedef struct BVHNode {
    AABB bounds;
    BVHNode* children;
    int numTriangles;
    int* triangles;
    BVHNode() : children(0), numTriangles(0), triangles(0) {}
} BVHNode;

2. Add a BVHNode pointer to the Mesh structure already declared in 
Geometry3D.h:
typedef struct Mesh {
    int numTriangles;
    union {
        Triangle* triangles;
        Point* vertices;
        float* values;
    };
    BVHNode* accelerator; // THIS IS NEW!
    // The constructor is also new
    Mesh() : numTriangles(0), values(0), accelerator(0) {}
} Mesh;

3. Declare the AccelerateMesh, SplitBVHNode, and FreeBVHNode helper 
functions in Geometry3D.h:
void AccelerateMesh(Mesh& mesh);
void SplitBVHNode(BVHNode* node, const Mesh& model, 
   int depth);

void FreeBVHNode(BVHNode* node);

4. Implement the AccelerateMesh function in Geometry3D.cpp:
void AccelerateMesh(Mesh& mesh) {
    if (mesh.accelerator != 0) {
        return;
    }
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5. Find the minimum and maximum points of the mesh. This can later be used to 
construct an AABB: 
    vec3 min = mesh.vertices[0];
    vec3 max = mesh.vertices[0];
    for (int i = 1; i < mesh.numTriangles * 3; ++i) {
        min.x = fminf(mesh.vertices[i].x, min.x);
        min.y = fminf(mesh.vertices[i].y, min.y);
        min.z = fminf(mesh.vertices[i].z, min.z);
        max.x = fmaxf(mesh.vertices[i].x, max.x);
        max.y = fmaxf(mesh.vertices[i].y, max.y);
        max.z = fmaxf(mesh.vertices[i].z, max.z);
    }

6. Create a new accelerator structure within the mesh, set the AABB bounds to the min 
and max points of the mash: 
    mesh.accelerator = new BVHNode();
    mesh.accelerator->bounds = FromMinMax(min, max);
    mesh.accelerator->numTriangles = mesh.numTriangles;

7. Allocate memory for the triangle indices. Instead of duplicating the mesh triangles, 
we just store indices to them: 
    mesh.accelerator->triangles = 
        new int[mesh.numTriangles];

8. Store the actual triangle indices inside the accelerator:
    for (int i = 0; i < mesh.numTriangles; ++i) {
        mesh.accelerator->triangles[i] = i;
    }

9. Recursivley split the BVH tree:
    SplitBVHNode(mesh.accelerator, mesh, 3);
}

10. Implement the SplitBVHNode function in Geometry3D.h. Begin by decrementing 
the depth pointer, and killing the function if the target depth has been reached: 
void SplitBVHNode(BVHNode* node, const Mesh& model, 
int depth) {
    if (depth-- == 0) { // Decrements depth
        return;
    }
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11. Next, if the node is a leaf (it has no children) split it into eight child nodes. This will 
require dynamic memory assignment: 
    if (node->children == 0) { // Only split if it's a leaf
        // Only split if this node contains triangles
        if (node->numTriangles > 0) {

12. Allocate memory for the children of this node:
            node->children = new BVHNode[8];

13. Set the extents of each child node. The current node is broken up into eight children. 
All children share the center point of the current node:
            vec3 c = node->bounds.position;
            vec3 e = node->bounds.size *0.5f;

            node->children[0].bounds = 
                AABB(c + vec3(-e.x, +e.y, -e.z), e);
            node->children[1].bounds = 
                AABB(c + vec3(+e.x, +e.y, -e.z), e);
            node->children[2].bounds = 
                AABB(c + vec3(-e.x, +e.y, +e.z), e);
            node->children[3].bounds = 
                AABB(c + vec3(+e.x, +e.y, +e.z), e);
            node->children[4].bounds = 
                AABB(c + vec3(-e.x, -e.y, -e.z), e);
            node->children[5].bounds = 
                AABB(c + vec3(+e.x, -e.y, -e.z), e);
            node->children[6].bounds = 
                AABB(c + vec3(-e.x, -e.y, +e.z), e);
            node->children[7].bounds = 
                AABB(c + vec3(+e.x, -e.y, +e.z), e);
        }
    }

14. If the node was just split, that is if the node has children (we just assigned them) 
and triangles, assign each child node its own list of triangles that the child node 
intersects: 
    // If this node was just split
    if (node->children != 0 && node->numTriangles > 0) {
        for (int i = 0; i < 8; ++i) { // For each child
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15. We need to figure out how many triangles each child will contain. We do this by 
looping through every triangle and checking if it intersects the bounds of the  
child node: 
            node->children[i].numTriangles = 0;
            for (int j = 0; j < node->numTriangles; ++j) {
                Triangle t = 
                    model.triangles[node->triangles[j]];

16. For every triangle that intersects the bounds of this node, increase the triangle count 
by one: 
                if (TriangleAABB(t, 
                node->children[i].bounds)) {
                    node->children[i].numTriangles += 1;
                }
            }

17. If there are no triangles in the child node being processed, do nothing:
            if (node->children[i].numTriangles == 0) {
                continue;
            }

18. Allocate new memory for the indices of the child node:
            node->children[i].triangles = 
                new int[node->children[i].numTriangles];
            int index = 0;

19. For any triangle which intersects the child node being created, add it's index to the list 
of triangle indices: 
            for (int j = 0; j < node->numTriangles; ++j) {
                Triangle t = 
                    model.triangles[node->triangles[j]];
                if (TriangleAABB(t, 
                node->children[i].bounds)) {
                    node->children[i].triangles[index++] =
                    node->triangles[j];
                }
            }
        }

20. Finally, do some cleanup by removing any triangles that this node might have been 
holding onto. Once this node is set, recursively call this same function on all child 
nodes: 
        node->numTriangles = 0;
        delete[] node->triangles;
        node->triangles = 0;
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21. The process for splitting a node is recursive. There is a chance that every child node 
we just created will need to be split as well:
        for (int i = 0; i < 8; ++i) {
            SplitBVHNode(&node->children[i], model, depth);
        }
    }
}

22. Implement the FreeBVHNode function in Geometry3D.cpp:
void FreeBVHNode(BVHNode* node) {
    if (node->children != 0) {

23. We need to recursively (depth first) clear the data of all child nodes:
        for (int i = 0; i < 8; ++i) {
            FreeBVHNode(&node->children[i]);
        }
        delete[] node->children;
        node->children = 0;
    }

24. If triangle indices are present, release the array holding them:
    if (node->numTriangles != 0 || node->triangles != 0) {
        delete[] node->triangles;
        node->triangles = 0;
        node->numTriangles = 0;
    }
}

How it works…
The AccelerateMesh function loops through every vertex of the mesh being accelerated. 
The function finds the minimum and maximum points of the mesh and creates a BVHNode 
using the min and max points as the bounding volume. Every triangle of the mesh is put 
into this root node. Next, the root node is split three times using the SplitBVHNode helper 
function. Three is an arbitrary depth that works well for most medium size meshes.

The SplitBVHNode function first makes sure that the node being processed is a leaf node, 
and that it contains at least some triangles. If both checks pass, right new child nodes are 
allocated and placed so that they fill up the parent node. Next, the SplitBVHNode function 
checks if the node was just split or not. If the node was just split and it contains triangles, 
those triangles are assigned to the children of the node. Then the nodes own list of triangles 
is cleared. This transforms the node from a leaf node to just a regular node.
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Finally, the SplitBVHNode function calls itself recursively on all of the children of the current 
node. This lets us split the hierarchy into arbitrary depths. Because the SplitBVHNode 
function assigns dynamic memory, we create the FreeBVHNode to recursively free this 
allocated memory.

Mesh operations
It's time to implement intersection tests for the mesh object. We want to test the mesh for 
intersection against all of the primitive shapes we have implemented. The only shapes that  
we will not test for intersection are points and other meshes.

Getting ready
We are about to implement seven new functions. These functions test for intersection 
between a mesh and a number of primitives. We will not be performing a mesh to mesh 
intersection test because it would require looping through the triangle list of each mesh  
in a nested fashion. This nested loop would become very expensive.

Because most of the functions we are about to implement look the exact same, I will list the 
full source of MeshRay and MeshAABB here. MeshAABB will contain comments for copy/paste 
instructions to the rest of the functions being implemented.

How to do it…
Follow these steps to implement intersection tests against meshes:

1. Declare all mesh operations in Geometry3D.h:
float MeshRay(const Mesh& mesh, const Ray& ray);
bool MeshAABB(const Mesh& mesh, const AABB& aabb);
// Additional tests included with downloadable source code

2. Implement the MeshRay function in Geometry3D.cpp:
float MeshRay(const Mesh& mesh, const Ray& ray) {

3. If a mesh has no accelerator structure, we simply check every triangle in the 
mesh in a linear fashion:
    if (mesh.accelerator == 0) {
        for (int i = 0; i < mesh.numTriangles; ++i) {
            float result = Raycast(mesh.triangles[i], ray);
            if (result >= 0) {
                return result;
            }
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        }
    }
    else {

4. If an accelerator structure is present, we walk through the BVH tree depth first: 
        std::list<BVHNode*> toProcess;
        toProcess.push_front(mesh.accelerator);
        // Recursivley walk the BVH tree
        while (!toProcess.empty()) {

5. Get the current node:
            BVHNode* iterator = *(toProcess.begin());
            toProcess.erase(toProcess.begin());

6. If the node has triangles (leaf node), iterate through every triangle:
            if (iterator->numTriangles >= 0) {
               for(int i=0; i<iterator->numTriangles; ++i){
                    // Do a raycast against the triangle
                    float r = Raycast(
                                mesh.triangles[
                                  iterator->triangles[i]
                                ], ray
                              );
                    if (r >= 0) {
                        return r;
                    }
               }
            }

7. If the node has children (non leaf node) perform a Raycast against the bounds of  
each child. If the ray hits the bounds of a child, add that node to the list of nodes  
to process: 
            if (iterator->children != 0) {
                for (int i = 8 - 1; i >= 0; --i) {
                    if (Raycast(
                         iterator->children[i].bounds,ray
                        )>=0
                    ) {
                        toProcess.push_front(
                          &iterator->children[i]);
                    }
                }
            }
        }
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    }
    return -1;
}

8. Implement the MeshAABB function in Geometry3D.cpp:
bool MeshAABB(const Mesh& mesh, const AABB& aabb) {

9. If the mesh has no accelerator structure, we linearly loop through the triangles of the 
mesh and check for intersection: 
    if (mesh.accelerator == 0) {
        for (int i = 0; i < mesh.numTriangles; ++i) {
            // The TirangleAABB test here would change
            // if we where testing a shape other than AABB
            if (TriangleAABB(mesh.triangles[i], aabb)) {
                return true;
            }
        }
    }
    else {

10. If the mesh did have an accelerator structure, we traverse the BVH tree depth first 
looking for an intersection: 
        std::list<BVHNode*> toProcess;
        toProcess.push_front(mesh.accelerator);
        while (!toProcess.empty()) {
            BVHNode* iterator = *(toProcess.begin());
            toProcess.erase(toProcess.begin());

11. If the BVH node has triangles (is a leaf node) we check every triangle of the node  
for intersection: 
            if (iterator->numTriangles >= 0) {
               for (int i=0;i<iterator->numTriangles;++i){
            // The TirangleAABB test here would change
            // if we where testing a shape other than AABB
                    if (TriangleAABB(
                           mesh.triangles[
                              iterator->triangles[i]
                           ], aabb
                        )) {
                        return true;
                    }
               }
            }
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12. If a BVH node has child nodes (is not a leaf node) we loop through each child node. If 
the bounds of the child node intersect the primitive being tested (In this case AABB) 
we add the child node to the list of nodes to process:
            if (iterator->children != 0) {
                for (int i = 8 - 1; i >= 0; --i) {
            // The AABBAABB test here would change
            // if we where testing a shape other than AABB
                    if (AABBAABB(
                           iterator->children[i].bounds, 
                           aabb
                        )) {
                        toProcess.push_front(
                            &iterator->children[i]);
                    }
                }
            }
        }
    }

13. If we have recursively visited every node and no triangles intersected the AABB being 
tested, the mesh and AABB do not intersect:
    return false;
}

The LineTest, MeshSphere, MeshOBB, MeshPlane and 
MeshTriangle functions are all mostly copy / paste of the above code. The 
only part that changes is replacing the TriangleAABB function with the 
appropriate test.  The places where these steps would change are pointed out 
in code comments. Because of this, the code for these additional tests is not 
presented here, but is available with the downloadable content of the book.

How it works…
All of the mesh operations follow the same outline. If there is no acceleration structure, simply 
loop through all of the triangles within the mesh and try to perform the requested intersection 
test. If the mesh does have an acceleration structure, traverse the BVH tree depth first. During 
traversal, if any leaf nodes contain a triangle that satisfies the requested intersection test, 
early out with a success.
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There's more…
You might have noticed that the preceding tests only check for intersection; never 
containment! In order to check for containment we would have to perform a SAT test between 
the mesh and the other primitive. Remember, a generic SAT test needs all the face normals 
and edges of each object. With a simple mesh containing only 800 triangles, this would 
become very slow.

To get around this limitation and perform a proper containment test, we have to abandon 
meshes and arrays of triangles. Instead, we need to be checking for intersection against the 
Convex Hull of the mesh. We will discuss Convex Hulls in Appendix, Advanced Topics.

Even using a Convex Hull, if the hull has a lot of faces the SAT test can get fairly slow. There  
is an alternate method for testing intersections, it is called GJK. GJK stands for the inventors 
of the algorithm, Gilbert-Johnson-Keerthi. Like the Convex Hull, we will discuss GJK in  
Appendix, Advanced Topics.
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Models and Scenes

In this chapter, we are going to develop a Model class that attaches a transformation to a 
Mesh. We will then move on to managing large sets of models in a scene. Because a Scene 
can contain a large number of models, we will add an acceleration structure to the Scene. 
This chapter will cover the following topics:

 f The Model object

 f Operations on Models

 f The Scene object

 f Operations on the Scene

 f The Octree object

 f Octree contents

 f Octree operations

 f Octree Scene integration

Introduction
In order to represent meshes in the world, we need to add some kind of a transformation 
to the mesh. We do this by wrapping both the mesh and its related transformation data in 
a Model class. Instead of managing many independent models, like we have been doing 
with primitives up to this point, we are going to develop a Scene class. The Scene class is 
a large collection of models that makes it easier to work with many models. For the sake of 
performance, we will add an Octree acceleration structure to optimize operations performed 
on the scene.

12
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The Model object
The Mesh class in its current implementation cannot be transformed. All meshes are at origin. 
We are going to solve this problem by creating a new Model class. A Model will contain a 
Mesh, a translation, and a rotation. In general, rigid body physics engines do not deal with 
scale; so we will not add a scale factor to the new Model class.

Additionally, a Model might have an optional parent, another model. When a Model has a 
parent, the position and rotation stored in the Model are relative to its parent. This forms a 
transformation hierarchy. When the parent object moves, all of its children move with it. Our 
Model implementation will also track the Axis Aligned Bounding Box (AABB) of the model in 
local space.

Getting ready
We are going to create a new Model structure. This new structure represents a Mesh with 
some transform attached. Because models can be in a transform hierarchy, we will implement 
a GetWordMatrix function that will return the world matrix of the provided Model. We are 
also implementing a GetOBB helper function, which will return an Oriented Bounding Box 
(OBB) that surrounds the model in world space.

How to do it…
Follow these steps to create a Model class. The Model class adds a hierarchy and some 
transformation to a mesh:

1. Declare the new Model class in Geometry3D.h:
class Model {

2. A model will contain a mesh, a bounding box and some transformation data. We only 
translate and rotate, physics engines doesn't handle scaling well. The model also has 
a parent object, this lets us use models in a hierarchy:
protected:
    Mesh* content;
    AABB bounds;
public:
    vec3 position;
    vec3 rotation;
    Model* parent;
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3. By default both the mesh and parent of a model should be null:
    inline Model() : parent(0), content(0) { }
    inline Mesh* GetMesh() const {
        return content;
    }
    inline AABB GetBounds() const {
        return bounds;
    }
    void SetContent(Mesh* mesh);
};

4. Implement the SetContent function of the Model class in Geometry3D.cpp:
void Model::SetContent(Mesh* mesh) {

5. Because we are not allocating memory, we don't need to worry about content having 
already been set:
    content = mesh;
    if (content != 0) {

6. If the content is a valid mesh, calculate the AABB of that mesh:
        vec3 min = mesh->vertices[0];
        vec3 max = mesh->vertices[0];

        for (int i = 1; i< mesh->numTriangles * 3; ++i) {
            min.x = fminf(mesh->vertices[i].x, min.x);
            min.y = fminf(mesh->vertices[i].y, min.y);
            min.z = fminf(mesh->vertices[i].z, min.z);
            max.x = fmaxf(mesh->vertices[i].x, max.x);
            max.y = fmaxf(mesh->vertices[i].y, max.y);
            max.z = fmaxf(mesh->vertices[i].z, max.z);
        }
        bounds = FromMinMax(min, max);
    }
}

7. Declare the GetWorldMatrix and GetOBB helper functions in Geometry3D.h:
mat4 GetWorldMatrix(const Model& model);
OBB GetOBB(const Model& model);

8. Implement the GetWorldMatrix function in Geometry3D.cpp:
mat4 GetWorldMatrix(const Model& model) {
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9. We use the translation and rotation of the model to build a local transform matrix:
    mat4 translation = Translation(model.position);
    mat4 rotation = Rotation(
                        model.rotation.x,
                        model.rotation.y,
                        model.rotation.z
                    );
    mat4 localMat = rotation * translation;

10. If the mesh has a parent, store the transform of the parent. If the mesh has no 
parent, this matrix will remain identity:
    mat4 parentMat;
    if (model.parent != 0) {
        parentMat = GetWorldMatrix(*model.parent);
    }

11. Combine the local and parent matrices to create the world transform matrix for this 
mesh:
    return localMat * parentMat;
}

12. Implement the GetOBB function in Geometry3D.cpp:
OBB GetOBB(const Model& model) {
    mat4 world = GetWorldMatrix(model);
    AABB aabb = model.GetBounds();
    OBB obb;

13. Because the mesh can have a rotation, we need an OBB, not an AABB. We take the 
internal AABB, construct an OBB out of it and apply the world transform of the model 
to this OBB:
    obb.size = aabb.size;
    obb.position = MultiplyPoint(aabb.position, world);
    obb.orientation = Cut(world, 3, 3);

    return obb;
}

How it works…
The GetWorldMatrix function calculates the translation and rotation matrices of the 
provided model. Multiplying these matrices together results in the local translation matrix. We 
can call the GetWorldMatrix function recursively on the parent of the model if one exists. 
Multiplying the local matrix by the world matrix of the parent yields the world matrix of the 
provided model.
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The SetContent function sets the mesh of a model. This function also calculates the 
AABB of the mesh being assigned. The GetOBB function uses the AABB that SetContent 
calculated and transforms it into a world space OBB.

Operations on models
We want to perform the same operations on models that we performed on Meshes. The only 
difference is that models should account for the world space of the model. The best way to 
achieve this is to transform the primitive being tested by the inverse world matrix of the model. 
When we transform anything by the inverse world space of the model, we move that thing into 
the local space of the model. The untransformed mesh happens to be in the local space of 
the model.

Getting ready
We are going to implement seven functions to test a model for intersection against rays, lines, 
spheres, AABBs, OBBs, planes, and triangles. Each of the intersection functions will transform 
the primitive by the inverse world matrix of the model, and then the transformed primitive is 
tested against the mesh contained inside the model.

How to do it…
Follow these steps to implement intersection tests against the new Model class:

1. Declare the seven intersection tests against a Model in Geometry3D.h:
float ModelRay(const Model& model, const Ray& ray);
bool Linetest(const Model& model, const Line& line);
bool ModelSphere(const Model& model, const Sphere& sphere);
bool ModelAABB(const Model& model, const AABB& aabb);
bool ModelOBB(const Model& model, const OBB& obb);
bool ModelPlane(const Model& model, const Plane& plane);
bool ModelTriangle(const Model& model, 
   const Triangle& triangle);

2. Implement the ModelRay function in Geometry3D.cpp:
float ModelRay(const Model& model, const Ray& ray) {

3. Find the inverse transform of the model:
    mat4 world = GetWorldMatrix(model);
    mat4 inv = Inverse(world);



Models and Scenes

268

4. Use the inverse transform to bring the ray into the local space of the model:
    Ray local;
    local.origin = MultiplyPoint(ray.origin, inv);
    local.direction = MultiplyVector(ray.origin, inv);
    local.NormalizeDirection();

5. Raycast between the mesh and the new ray in local space:
    if (model.GetMesh() != 0) {
        return MeshRay(*(model.GetMesh()), local);
    }
    return -1;
}

6. Implement the Linetest function in Geometry3D.cpp:
bool Linetest(const Model& model, const Line& line) {

7. Find the inverse transform of the model:
    mat4 world = GetWorldMatrix(model);
    mat4 inv = Inverse(world);

8. Use the inverse transform to bring the line into the local space of the model:
    Line local;
    local.start = MultiplyPoint(line.start, inv);
    local.end = MultiplyPoint(line.end, inv);

9. Perform a line test between the mesh contained in the model and the line in the local 
space of the model:
    if (model.GetMesh() != 0) {
        return Linetest(*(model.GetMesh()), local);
    }
    return false;
}

10. Implement the ModelSphere function in Geometry3D.cpp:
bool ModelSphere(const Model& model, const Sphere& sphere) {

11. Find the inverse transform of the model:
    mat4 world = GetWorldMatrix(model);
    mat4 inv = Inverse(world);

12. Use the inverse transform to bring the sphere into the local space of the model:
    Sphere local;
    local.position = MultiplyPoint(sphere.position, inv);
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13. Both the sphere and the mesh in the model are in the local space of the model. Do a 
standard mesh to sphere test:
    if (model.GetMesh() != 0) {
        return MeshSphere(*(model.GetMesh()), local);
    }
    return false;
}

14. Implement the ModelAABB function in Geometry3D.cpp:
bool ModelAABB(const Model& model, const AABB& aabb) {

15. Find the inverse transform of the model:
    mat4 world = GetWorldMatrix(model);
    mat4 inv = Inverse(world);

16. Use the inverse transform to bring the AABB into the local space of the model. 
Because the inverse transform can have a rotation, the AABB will turn into an OBB:
    OBB local;
    local.size = aabb.size;
    local.position = MultiplyPoint(aabb.position, inv);
    local.orientation = Cut(inv, 3, 3);

17. With the OBB in the local space of the model, test for intersection between the model 
mesh and OBB:
    if (model.GetMesh() != 0) {
        return MeshOBB(*(model.GetMesh()), local);
    }
    return false;
}

18. Implement the ModelOBB function in Geometry3D.cpp:
bool ModelOBB(const Model& model, const OBB& obb) {

19. Find the inverse transform of the model:
    mat4 world = GetWorldMatrix(model);
    mat4 inv = Inverse(world);

20. Use the inverse transform to bring the OBB into the local space of the model:
    OBB local;
    local.size = obb.size;
    local.position = MultiplyPoint(obb.position, inv);
    local.orientation = obb.orientation * Cut(inv, 3, 3);
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21. Test for intersection between the OBB and the mesh contained within the model:
    if (model.GetMesh() != 0) {
        return MeshOBB(*(model.GetMesh()), local);
    }
    return false;
}

22. Implement the ModelPlane function in Geometry3D.cpp:
bool ModelPlane(const Model& model, const Plane& plane) {

23. Find the inverse transform of the model:
    mat4 world = GetWorldMatrix(model);
    mat4 inv = Inverse(world);

24. Use the inverse transform to bring the Plane into the local space of the model:
    Plane local;
    local.normal = MultiplyVector(plane.normal, inv);
    local.distance = plane.distance;

25. With the plane transformed into the local space of the model check it for intersection 
against the mesh contained in the model:
    if (model.GetMesh() != 0) {
        return MeshPlane(*(model.GetMesh()), local);
    }
    return false;
}

26. Implement the ModelTriangle function in Geometry3D.cpp:
bool ModelTriangle(const Model& model, 
const Triangle& triangle) {

27. Find the inverse transform of the model:
    mat4 world = GetWorldMatrix(model);
    mat4 inv = Inverse(world);
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28. Use the inverse transform to bring the triangle into the local space of the mesh:
    Triangle local;
    local.a = MultiplyPoint(triangle.a, inv);
    local.b = MultiplyPoint(triangle.b, inv);
    local.c = MultiplyPoint(triangle.c, inv);

29. Test the local space triangle for intersection with the mesh contained in the model:

    if (model.GetMesh() != 0) {
        return MeshTriangle(*(model.GetMesh()), local);
    }
    return false;
}

How it works…
All of the preceding functions follow the same formula.

First, we find the inverse world matrix of the model being tested:
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Next, we transform whatever primitive is being tested by this inverse world matrix. This 
transformation puts the primitive into the local space of the model. The mesh contained 
within the model is already in the local space of the model:

Finally, we perform an intersection test against the mesh contained within the model and the 
transformed primitive.

The Scene object
A 3D scene is a collection of models and primitives. The scene can have some optional 
acceleration structure, similar to how our mesh implementation contains an optional BVH. 
This acceleration structure is commonly implemented as an Octree, the same way the BVH 
we implemented for the mesh is an Octree.

One common misconception is that the same scene graph should be used for rendering 
as the one used for physics. In practice, the two systems need to track different data for 
different purposes. It makes sense to have a Render Scene and a Physics Scene, both of 
which contain the same objects, but track the objects in different ways. In this chapter, we will 
implement a Scene object that is limited to containing Model objects, and not primitives.

Getting ready
We are about to implement a basic scene with an optional Octree acceleration structure. 
The acceleration structure will be added to the scene later in this chapter. The scene will need 
functions to add and remove models. Additionally, the scene needs a function to update any 
models it contains that may have moved since the last frame. The scene will track objects 
in a linear array, so we implement a FindChildren helper function that will return all child 
models of a given model within the scene.
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How to do it…
Follow these steps to implement a primitive 3D scene:

1. Create a new header file, Scene.h. Add a header guard to the file. Include 
Geometry3D.h and vector:
#ifndef _H_SCENE_
#define _H_SCENE_

#include "Geometry3D.h"
#include <vector>

#endif

2. Declare the Scene class in Scene.h:
class Scene {
protected:
    std::vector<Model*> objects;
public:
    void AddModel(Model* model);
    void RemoveModel(Model* model);
    void UpdateModel(Model* model);
    std::vector<Model*>FindChildren(const Model* model);
};

3. Create a new source file, Scene.cpp. Include Scene.h, stack and algorithm, 
and then implement the AddModel method of the Scene class:
#include "Scene.h"
#include <algorithm>
#include <stack>

void Scene::AddModel(Model* model) {

4. Use std::find to check if this model is already in the list or not. We are only adding 
unique models to the list:
    if (std::find(objects.begin(), objects.end(), model) 
    != objects.end()) {
        // Duplicate object, don't add
        return;
    }
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5. Add the model to the scene. Remember, multiple models can reference the same 
mesh! The model mainly serves to describe the transform information of the mesh:
    objects.push_back(model);
}

6. Implement the RemoveModel and UpdateModelmethod of the Scene class in 
Scene.cpp. For now, UpdateModel will be an empty function. This is because 
UpdateModel only makes sense if an acceleration structure is present:
void Scene::RemoveModel(Model* model) {

7. We use the built in erase function of vectors to remove a model from the scene:
    objects.erase(std::remove(objects.begin(), 
        objects.end(), model), objects.end());
}

8. For now, the UpdateModel is going to stay an empty function. We will fill this 
function in once an acceleration structure is added to the scene:
void Scene::UpdateModel(Model* model) {
    // Placeholder
}

9. Implement the FindChildren method of the Scene class in Scene.cpp:
std::vector<Model*> Scene::FindChildren(const Model* model)
{
    std::vector<Model*> result;
    for (int i = 0, size = objects.size(); i< size; ++i) {

10. Avoid cycles, null models and adding the root model:
        if (objects[i] == 0 || objects[i] == model) {
            continue;
        }

11. For every object, create an iterator which walks up on the scene graph. If any object 
above the current model is the argument to this function, that model is a child of the 
argument:

        Model* iterator = objects[i]->parent;
        if (iterator != 0) {
            if (iterator == model) {
                result.push_back(objects[i]);
                continue;
            }
            iterator = iterator->parent;
        }
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    }

    return result;
}

How it works…
The Scene object contains a vector of Model pointers. This vector contains all of the models 
considered for collision by the scene. The AddModel method only adds unique items to 
this vector. We avoid adding duplicates by using the std::find method found in the 
algorithms header. The RemoveModel method removes the specified model from the 
vector, if the model was in the vector. For now, the UpdateModel method serves as a stub  
for when we have the spatial partitioning structure in place.

The FindChildren method loops through every object and checks its parental hierarchy. If 
the model we are searching for is within this hierarchy, the model is added to the result list. 
What we have implemented searches the hierarchy of a model using brute force. This function 
is not optimal; adding a list of children to the Model class would be more efficient.

There's more
Our scene implementation contains only Model objects. To make the scene more robust 
we could add additional vectors of primitives. For example, we could have a vector of 
OBB and a vector of Sphere primitives. We could duplicate the Add / Remove / Update 
functions for each new vector of primitives. However, in the interest of focusing on practical 
implementation, we will keep our Scene class exclusive to tracking Model objects.

Operations on the scene
We now have a Scene object that keeps track of models for us. This means we no longer 
have to perform operations such as raycasts on individual models. Rather, we can perform a 
raycast against the entire scene. There are two operations that we can perform on a scene 
to speed up collision testing. They are raycasting and querying the scene. We covered ray 
casting in Chapter 10, 3D Line Intersections.

When we query the scene we ask for a small subset of objects that potentially occupy the 
provided space. This is called broad-phase collision. For example, to check for collision 
against a player we don't have to compare the player to all objects in the world. We only have 
to compare the player against a small subset of objects near the player. The Query function 
takes a space and returns all objects that intersect the space.
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Getting ready
In this section, we will implement three functions. First, the Raycast function will cast a 
ray into the scene and return the closest model that was hit. If the Raycast did not hit any 
objects, null will be returned. Next we will implement two Query functions. These functions 
will return a set of objects that occupy a region specified by a Sphere or an AABB.

How to do it…
Follow these steps to add ray cast and intersection query support to the scene:

1. In Scene.h, update the definition of the Scene class with the new Raycast and 
Query methods:
class Scene {
protected:
    std::vector<Model*> objects;
public:
    void AddModel(Model* model);
    void RemoveModel(Model* model);
    void UpdateModel(Model* model);
    std::vector<Model*>FindChildren(const Model* model);

2. These are the new functions we need to add to the scene:
    Model* Raycast(const Ray& ray);
    std::vector<Model*> Query(const Sphere& sphere);
    std::vector<Model*> Query(const AABB& aabb);
};

3. Implement the Raycast method in Scene.cpp:
Model* Scene::Raycast(const Ray& ray) {
    Model* result = 0;
    float result_t = -1;

4. Loop trough every object in the scene:
    for (int i = 0, size = objects.size(); i< size; ++i) {

5. Store only the smallest positive t value. This will ensure that we return the object 
closest to the origin of the ray:
        float t = ModelRay(*objects[i], ray);
        if (result == 0 && t >= 0) {
            result = objects[i];
            result_t = t;
        }
        else if (result != 0 && t <result_t) {
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            result = objects[i];
            result_t = t;
        }
    }

    return result;
}

6. Implement the Sphere version of the Query method in Scene.cpp:
std::vector<Model*> Scene::Query(const Sphere& sphere) {
    std::vector<Model*> result;

7. Loop trough every object in the scene:
    for (int i = 0, size = objects.size(); i< size; ++i) {

8. Get the OBB of the current object:
        OBB bounds = GetOBB(*objects[i]);

9. If the query sphere and bounding box of the object intersect, add the object to the 
result of the query:
        if (SphereOBB(sphere, bounds)) {
            result.push_back(objects[i]);
        }
    }

    return result;
}

10. Implement the AABB version of the Query method in Scene.cpp:
std::vector<Model*> Scene::Query(const AABB& aabb) {
    std::vector<Model*> result;

11. Loop trough every object in the scene:
    for (int i = 0, size = objects.size(); i< size; ++i) {

12. Get the OBB of the current object:
        OBB bounds = GetOBB(*objects[i]);

13. If the query box and bounding box of the object intersect, add the object to the result 
of this query:

        if (AABBOBB(aabb, bounds)) {
            result.push_back(objects[i]);
        }
    }

    return result;
}
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How it works…
The Raycast function loops through every single model within the scene and performs a 
raycast against each one. A pointer to the closest model along with itst value is stored.We use 
the stored t value to find the closest model. The raycast result with the smallest t value that 
is not negative is the closest object to the origin of the ray being cast. If the ray hits no objects 
within the scene, a default value of null, or 0 is returned:

Both of the Query functions work the same way. They take the area provided and check each 
model in the scene for intersection or containment within the area. If a model falls within 
the provided area it is added to a return list. The Query functions perform containment 
comparisons using the OBB of the model, they do not directly check for intersection against 
the mesh contained in the mode.

There are a few reasons to use the OBB of the model instead of its mesh in comparison 
functions. It is much faster to compare an OBB against a Sphere or AABB than to compare 
that same OBB against a mesh. The other benefit is containment. Remember, the way 
our mesh collisions are currently implemented they can only check for intersection, not 
containment. The OBB structure on the other hand checks for both intersection and 
containment.
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The Octree object
We will implement the acceleration structure of our Scene as an Octree. This acceleration 
structure will look very similar to the BVH of a model. The similarity exists because we 
implemented the BVH of the model as an Octree as well. There are other structures we  
could use, but an Octree is very common for general 3D spatial partitioning.

Getting ready
In this section, we are going to create the OctreeNode support structure. This struct 
represents a single node of an Octree. Leaf nodes can be empty, or they may contain a list of 
models that are contained within the node. Non-leaf nodes contain exactly eight child nodes. 
We are also going to implement a SplitTree helper function that will recursively subdivide 
an octree node.

How to do it…
Follow these steps to implement a simple Octree:

1. Declare the OctreeNode structure in Scene.h:
typedef struct OctreeNode {
    AABB bounds;
    OctreeNode* children;
    std::vector<Model*> models;

    inline OctreeNode() : children(0) { }
    inline ~OctreeNode() {
        if (children != 0) {
            delete[] children;
        }
    }
} OctreeNode;

2. Declare the SplitTree function in Scene.h:
void SplitTree(OctreeNode* node, int depth);

3. Start implementing the SplitTree function in Scene.h by decreasing the depth of 
the current iteration and killing the function if the depth reaches 0:
void SplitTree(OctreeNode* node, int depth) {
    if (depth-- <= 0) { // Decrements depth
        return;
    }
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4. Next, if the current node has no children, split it into eight child nodes:
    if (node->children == 0) {
        node->children = new OctreeNode[8];

        vec3 c = node->bounds.position;
        vec3 e = node->bounds.size *0.5f;

5. Split the octree bounding box into eight equal child bounding boxes. Each child 
bounding box shares one vertex, the center of the parent bounding box:
        node->children[0].bounds = 
            AABB(c + vec3(-e.x, +e.y, -e.z), e);
        node->children[1].bounds = 
            AABB(c + vec3(+e.x, +e.y, -e.z), e);
        node->children[2].bounds = 
            AABB(c + vec3(-e.x, +e.y, +e.z), e);
        node->children[3].bounds = 
            AABB(c + vec3(+e.x, +e.y, +e.z), e);
        node->children[4].bounds = 
            AABB(c + vec3(-e.x, -e.y, -e.z), e);
        node->children[5].bounds = 
            AABB(c + vec3(+e.x, -e.y, -e.z), e);
        node->children[6].bounds = 
            AABB(c + vec3(-e.x, -e.y, +e.z), e);
        node->children[7].bounds = 
            AABB(c + vec3(+e.x, -e.y, +e.z), e);
    }

6. If the node has children and still contains any Model objects, assign the objects to 
the children:
    if (node->children != 0 && node->models.size() > 0) {
        for (int i = 0; i < 8; ++i) { // For each child
            for (int j = 0, size = node->models.size(); 
            j < size; ++j) {

7. Only add models to the child bounding box if the OBB of the model intersects the 
bounds of the child node:
                OBB bounds = GetOBB(*node->models[j]);
                if (AABBOBB(node->children[i].bounds, 
                bounds)) {
                    node->children[i].models.push_back(
                        node->models[j]
                    );
                }
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            }
        }
        node->models.clear();

8. Finally, Recurse. This ensures that we split as many times as requested by the 
depth parameter:

        for (int i = 0; i < 8; ++i) { // Recurse
            SplitTree(&(node->children[i]), depth);
        }
    }
}

How it works…
The OctreeNode structure contains an AABB that defines the area of space that the node 
occupies. The node contains an array of child nodes; if it is not a leaf node, this array will 
contain eight children. If the node is a leaf, it contains a list of models that occupy the same 
space as the node.

The default constructor of OctreeNode initializes the array of children to null. This means any 
node created is a leaf node, unless its split. The destructor checks if the node is a leaf node 
or not, if not, the memory allocated for the children of the node is released. Because of the 
recursive nature of this structure, when we delete the root of a tree, the memory of the entire 
tree will be released.

We did not implement a function to create an actual tree. We only implemented a node and a 
way to split the node. This is because, later in this chapter, we will integrate the OctreeNode 
into the Scene and the root node will become the octree of the scene. It will be the 
responsibility of the Scene class to create an Octree and manage all memory associated with it.

Octree contents
Once we have built an octree, we must manage models that might occupy the same space as 
the tree. There are three operations that will help us manage models within the tree. We want 
to know when a model is added to the tree or removed from the tree. We also want to know 
when a model moves, as it may occupy different leaf nodes at its new position.

Getting ready
In this section, we are going to implement three support functions for the octree. We are going 
to create an Insert function for when something is added to the tree. We are going to create 
a Remove function for when something is removed from the tree. And finally, an Update 
function for when something within the tree moves. The update function will simply remove 
the model from the tree and reinsert it.
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How to do it…
Follow these steps to add objects to the octree or to remove objects from the octree:

1. Declare the Insert, Remove, and Update functions in Scene.h:
void Insert(OctreeNode* node, Model* model);
void Remove(OctreeNode* node, Model* model);
void Update(OctreeNode* node, Model* model);

2. Implement the Insert function in Scene.cpp:
oid Insert(OctreeNode* node, Model* model) {
    OBB bounds = GetOBB(*model);
    if (AABBOBB(node->bounds, bounds)) {

3. Only insert models into leaf nodes:
        if (node->children == 0) {
            node->models.push_back(model);
        }
        else {

4. If this is not a leaf node, recursively call Insert on all the children of this node:
            for (int i = 0; i < 8; ++i) {
                Insert(&(node->children[i]), model);
            }
        }
    }
}

5. Implement the Remove function in Scene.cpp:
void Remove(OctreeNode* node, Model* model) {
    if (node->children == 0) {

6. If this is a leaf node and it contains the model we are trying to delete, delete the 
model:
        std::vector<Model*>::iterator it = 
            std::find(node->models.begin(), 
                      node->models.end(), model
            );
        if (it != node->models.end()) {
            node->models.erase(it);
        }
    }
    else {
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7. If the current node is not a leaf node, recursively call the Remove function on all 
nodes of the current node:
        for (int i = 0; i < 8; ++i) {
            Remove(&(node->children[i]), model);
        }
    }
}

8. Implement the Update function in Scene.cpp:

void Update(OctreeNode* node, Model* model) {
    Remove(node, model);
    Insert(node, model);
}

How it works…
The Insert function first finds the OBB of the Model that we are inserting into the Octree. If 
the OBB of the model intersects the AABB of the node, we check if the node is a leaf node or 
not. If the node is a leaf, we insert the model into the list of models that the node contains. If 
the node is not a leaf, we recursively call the Insert function on each of the nodes children.

The Remove function has a more brute force approach than the Insert function. Remove 
does not check for containment, rather it walks the entire tree. We do this because when an 
object is removed, it might not occupy the same space as when it was added. Each leaf node 
of the tree tries to find the model being removed in its list of data. If the model is found, it is 
removed.

The Update function simply removes the model and reinserts it. Because our implementation 
uses a std::vector to keep track of models this can become expensive if your scene 
contains lots of dynamic models. In a dynamic scene, we could change the Model list of 
leaf nodes from a std::vector to a std::list. This would make the insert and remove 
operations faster, but slow down the iteration over the elements of the list.

Operations on the Octree
Because our Octree serves as an acceleration structure to the Scene class, we want to 
implement the same operations Scene supports in Octree. This means we need to implement 
the same Raycast and Query functions that the Scene class already supports.
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Getting ready
In this section, we are going to implement Raycast and Query functions for our new Octree. 
In order to implement the Raycast function, we will create a FindClosest helper function. 
The FindClosest function takes a set of models and a ray, and then returns the closest 
object to the origin of the ray.

How to do it…
Follow these steps to add Raycast and query functionality to the octree:

1. Declare the FindClosest, Raycast, and Query functions in Scene.h:
Model* FindClosest(conststd::vector<Model*>& set, 
    const Ray& ray);
Model* Raycast(OctreeNode* node, const Ray& ray);
std::vector<Model*> Query(OctreeNode* node, 
    const Sphere& sphere);
std::vector<Model*> Query(OctreeNode* node, 
    const AABB& aabb);

2. Implement the FindClosest function in Scene.cpp:
Model* FindClosest(conststd::vector<Model*>& set, 
const Ray& ray) {
    if (set.size() == 0) {
        return 0;
    }

3. Make variables to store the closest model along with its time, t:
    Model* closest = 0;
    float closest_t = -1;

4. Loop trough every model, and do a raycast against it:
    for (int i = 0, size = set.size(); i< size; ++i) {
        float this_t = ModelRay(*set[i], ray);

5. If the raycast did not hit, step forward in the loop:
        if (this_t< 0) {
            continue;
        }

6. If the node did hit, only store the node with the lowest t value, that is greater than 0:
        if (closest_t< 0 || this_t<closest_t) {
            closest_t = this_t;
            closest = set[i];
        }
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    }

    return closest;
}

7. Implement the Raycast function in Scene.cpp:
Model* Raycast(OctreeNode* node, const Ray& ray) {
    float t = Raycast(node->bounds, ray);

8. If the ray hit the bounds of the current node:
    if (t >= 0) {

9. For a leaf node, just return the largest object:
        if (node->children == 0) {
            return FindClosest(node->models, ray);
        }
        else {

10. If we are not at a leaf node, recursively raycast on all child nodes. Only store the 
closest one:
            std::vector<Model*> results;
            for (int i = 0; i < 8; ++i) {
                Model* result = 
                    Raycast(&(node->children[i]), ray);
                if (result != 0) {
                    eresults.push_back(result);
                }
            }

11. Out of all the models hit in the child nodes of this octree node, return the closest one:
            return FindClosest(results, ray);
        }
    }

    return 0;
}

12. Implement the Sphere version of Query in Scene.cpp:
std::vector<Model*> Query(OctreeNode* node, 
const Sphere& sphere) {
    std::vector<Model*> result;
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13. Only do things if the sphere intersects the bounds of this node:
    if (SphereAABB(sphere, node->bounds)) {
        if (node->children == 0) {
            for (int i = 0, size = node->models.size(); 
            i< size; ++i) {

14. If the sphere overlaps a model, add the model to the return list:
                OBB bounds = GetOBB(*(node->models[i]));
                if (SphereOBB(sphere, bounds)) {
                    result.push_back(node->models[i]);
                }
            }
        }
        else {

15. If the node is not a leaf node, recursively collect all objects which intersect the  
query sphere:
            for (int i = 0; i < 8; ++i) {
                std::vector<Model*> child = 
                    Query(&(node->children[i]), sphere);
                if (child.size() > 0) {
                    result.insert(result.end(),
                        child.begin(), child.end());
                }
            }
        }
    }

    return result;
}

16. Implement the AABB version of Query in Scene.cpp:
std::vector<Model*> Query(OctreeNode* node, 
const AABB& aabb) {
    std::vector<Model*> result;

17. Only do things if the query box intersects the bounding box of this node:
    if (AABBAABB(aabb, node->bounds)) {
        if (node->children == 0) {
            for (int i = 0, size = node->models.size(); i
            < size; ++i) {
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18. If this is a leaf node, return any objects which are intersecting the query box:
                OBB bounds = GetOBB(*(node->models[i]));
                if (AABBOBB(aabb, bounds)) {
                    result.push_back(node->models[i]);
                }
            }
        }
        else {

19. If this is not a leaf node, recursively collect all intersecting meshes form the child 
nodes:

            for (int i = 0; i < 8; ++i) {
                std::vector<Model*> child =
                    Query(&(node->children[i]), aabb);
                if (child.size() > 0) {
                    result.insert(result.end(),
                    child.begin(), child.end());
                }
            }
        }
    }

    return result;
}

How it works…
The FindClosest function returns the closest model to the origin of the given ray. This 
function works by comparing the t values of a raycast between the ray and each object.  
The object with the smallest t value that is not negative is the closest object to the origin  
of the ray.

The Raycast function first checks to see if the ray intersects the bounds of the current node. 
If it does, and the node is a leaf, the closest model from the list of models contained within 
the leaf is returned. If the node being raycast against was not a leaf, we recursively call the 
Raycast function until we hit a leaf. The closest object from the recursive result is returned.

Both of the Query functions behave similarly. First, they check if the area being queried is 
intersecting the area of the node being tested. If it does, and the node is a lead, we add any 
model within the node that also intersects the area being tested. If the node was not a leaf, 
we loop through all its children and recursively call the Query function on each child.
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Octree scene integration
In order to benefit from the Octree, we must integrate it with the scene as an acceleration 
structure. The OctreeNode structure and its helper functions should not be used outside  
of the Scene class.

Getting ready
First, we are going to modify the Scene class to hold an Octree. This means dealing with some 
dynamic memory, so we also need to add a destructor. The copy constructor and assignment 
operator will be disabled. If an acceleration structure is present, we should forward operations 
such as raycasting to the accelerator. Of course, the original code needs to stay in place as 
the acceleration structure is optional.

How to do it…
Follow these steps to integrate the octree into the scene:

1. Modify the Scene class declared in Scene.h. Add an OctreeNode pointer to serve 
as the root node of the Octree. Set this pointer to null in the default constructor.  
The destructor should free this memory if it is allocated. Also, we need to declare  
the Accelerate helper function:
class Scene {
protected:
    std::vector<Model*> objects;

2. The octree member variable is new:
    OctreeNode* octree; //New
private:
    Scene(const Scene&);
    Scene& operator=(const Scene&);
public:
    inline Scene() : octree(0) { } // New
    inline ~Scene() { // New
        if (octree != 0) {
            delete octree;
        }
    }

    void AddModel(Model* model);
    void RemoveModel(Model* model);
    void UpdateModel(Model* model);
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    std::vector<Model*>FindChildren(const Model* model);

    Model* Raycast(const Ray& ray);
    std::vector<Model*> Query(const Sphere& sphere);
    std::vector<Model*> Query(const AABB& aabb);

3. The public Accelerate function is new:
    bool Accelerate(const vec3& position, float size);
};

4. Implement the Accelerate helper function in Scene.cpp:
bool Scene::Accelerate(const vec3& position, float size) {
    if (octree != 0) {
        return false;
    }

5. Build a min and max point to construct a bounding box for the scene based on the 
given position and size:
    vec3 min(position.x - size, 
             position.y - size, 
             position.z - size);
    vec3 max(position.x + size, 
             position.y + size, 
             position.z + size);

6. Create the root note of our octree, add all models to this root node:
    // Construct tree root
    octree = new OctreeNode();
    octree->bounds = FromMinMax(min, max);
    octree->children = 0;
    for (int i = 0, size = objects.size(); i< size; ++i) {
        octree->models.push_back(objects[i]);
    }

7. Split the octree five times. Five is an arbitrary number that works well:
    SplitTree(octree, 5);
    return true;
}

8. Modify the Raycast method of the Scene object to call the accelerated version if an 
acceleration structure is available. This is done in Scene.cpp:
Model* Scene::Raycast(const Ray& ray) {
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9. We check if an octree is present. If it is, we raycast against the octree and return the 
result:
    if (octree != 0) {

10. The :: symbol lets the compiler know to look outside class scope:
        return ::Raycast(octree, ray);
    }

11. The rest of this function remains unchanged:
    Model* result = 0;
    float result_t = -1;

    for (int i = 0, size = objects.size(); i< size; ++i) {
        float t = ModelRay(*objects[i], ray);
        if (result == 0 && t >= 0) {
            result = objects[i];
            result_t = t;
        }
        else if (result != 0 && t <result_t) {
            result = objects[i];
            result_t = t;
        }
    }

    return result;
}

12. Modify the Sphere version of the Query function similar to how we modified the 
Raycast function. This is still done in Scene.cpp:
std::vector<Model*> Scene::Query(const Sphere& sphere) {

13. We check if an octree is present. If an octree is present, we perform the query on the 
octree and return the result:
    if (octree != 0) {
        return ::Query(octree, sphere);
    }

14. The rest of this function remains unchanged:
    std::vector<Model*> result;
    for (int i = 0, size = objects.size(); i< size; ++i) {
        OBB bounds = GetOBB(*objects[i]);
        if (SphereOBB(sphere, bounds)) {
            result.push_back(objects[i]);
        }
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    }
    return result;
}

15. In Scene.cpp, modify the AABB version of the Query function similarly to how the 
Sphere version of the same function was modified:
std::vector<Model*> Scene::Query(const AABB&aabb) {

16. We first check if an octree is present. If an octree is found we query it and return the 
result:
    if (octree != 0) {
        return ::Query(octree, aabb);
    }

17. The rest of this function remains unchanged:
    std::vector<Model*> result;
    for (int i = 0, size = objects.size(); i< size; ++i) {
        OBB bounds = GetOBB(*objects[i]);
        if (AABBOBB(aabb, bounds)) {
            result.push_back(objects[i]);
        }
    }
    return result;
}

How it works…
We added a pointer to an OctreeNode object to the Scene class. This pointer points to 
the root of the Octree of the scene. This pointer is set to null in the default constructor and 
memory is allocated for it in the Accelerate helper function. The destructor of the Scene 
object deletes the Octree if the root node was not null.

The Accelerate function creates a tree based on the given position and size. The tree will 
always be cube-shaped. Once the root node of the tree is created, we split the tree five levels 
deep. Five is an arbitrary number that should work for most medium sized scenes.

The Query and Raycast support functions now check if an acceleration structure is present. 
If so, the function calls an equivalent function on the Octree. We use the scope operator :: in 
these functions to let the compiler know that we are intending to call a global function.
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13
Camera and Frustum

In this chapter, we will explore some rendering related functionality. We are going to explore 
creating a camera and controlling that camera to help us visualize the physics demos that we 
will create in the next chapter. This chapter will cover the following topics:

 f Camera object

 f Camera controls

 f Frustum object

 f Frustum from matrix

 f Sphere in frustum

 f Bounding Box in frustum

 f Octree culling

 f Picking

Introduction
In this chapter, we are going to build a camera. This camera should let us view the 3D scene 
we created in the last chapter. A camera might not seem relevant to physics, but we need a 
way to visualize everything which we are doing. As we build up the camera, you will find that 
most of the work revolves around matrix math covered in Chapter 2, Matrices and Chapter 3, 
Matrix Transformations.

A camera consists of two matrices. The view matrix is the inverse of the camera's world 
matrix. View matrix is used to transform the world in a way that the camera is at its center 
looking down the Z axis. The projection matrix transforms vertex data from eye coordinates  
to NDC coordinates.
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Later we will use these matrices to construct a new Frustum primitive. We will finish up the 
chapter by learning how to un-project a point from pixel coordinates into world space. We will 
then use this un-projection to create a ray that allows us to pick objects in a 3D scene using 
the mouse.

Camera object
In order to build engaging physics demos, we need to be able to view a 3D scene in some 
way. This is where a camera becomes useful. A 3D camera is made up of two matrices, the 
view matrix and the projection matrix. The view matrix is the inverse of the camera's world 
transform. The projection matrix transforms vertex data from eye space to NDC space:

The view matrix of a camera should be orthogonal. An orthogonal camera is one whose 
rotation basis vectors are at right angles from each other. Two vectors that are at a right angle 
are orthogonal. Orthogonal vectors are perpendicular to each other. The result of the dot 
product between two perpendicular vectors is zero.

In general, cameras should not have any scale. Because scale is stored within the same 
components of a 4D matrix as rotation, it is a bad idea to add scale to a camera. Each of the 
rotation basis vectors we store within our camera will be of unit length. When the rotation 
basis vectors of an orthogonal matrix are of unit length, the matrix is ortho-normal.

Getting ready
In this section, we will build a Camera class. This Camera class will hold a view and a 
projection matrix. In addition to these matrices the class will also store all the data needed  
to rebuild the projection matrix. We will implement several helper functions to make sure  
the camera is easy to deal with.
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How to do it…
Follow these steps to create a generic camera class. This camera will be used to view a  
3D scene:

1. Create a new file, Camera.h. Add header guards to the file and include matrices.h:
#ifndef _H_CAMERA_
#define _H_CAMERA_
#include "matrices.h"
#endif

2. We start declaring the new Camera class by storing the variables needed to rebuild 
the projection matrix:
class Camera {
protected:
    float m_nFov;
    float m_nAspect;
    float m_nNear;
    float m_nFar;
    float m_nWidth;
    float m_nHeight;

3. Next we store the world transform matrix and the projection matrix of the camera.  
We also keep an extra variable around to indicate how the projection matrix should 
be reconstructed:
    mat4 m_matWorld; // World Transform
    // View Transform = Inverse(World Transform)
    mat4 m_matProj;
    int  m_nProjectionMode; 
    // ^ 0 - Perspective, 1 - Ortho, 2 - User

4. We need to declare a default constructor for the camera. The compiler generated 
copy constructor and assignment operator will be good enough; we don't need to 
declare those. We implement an empty virtual destructor for when the Camera  
class is extended:
public:
    Camera();

5. We don't need a copy constructor or assignment operator as the camera does not 
contain any dynamic memory:
    inline virtual ~Camera() { }
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6. We declare accessor and mutator functions for both of the matrices contained within 
the Camera class:
    mat4 GetWorldMatrix();
    mat4 GetViewMatrix(); // Inverse of world!
    mat4 GetProjectionMatrix();
    void SetProjection(const mat4& projection);
    void SetWorld(const mat4& view);

7. Next we have a few helper functions related to the projection of the camera as well as 
helper functions to keep the camera ortho-normal:
    float GetAspect();
    bool IsOrthographic();
    bool IsPerspective();
    bool IsOrthoNormal();
    void OrthoNormalize();

8. We finish the declaration of the class with a helper function to rebuild the projection 
matrix if the viewport of the camera changes. This function must be called from 
outside the camera class when a window is resized. We also declare helper functions 
to set the projection of the camera:
    void Resize(int width, int height);
    void Perspective(float fov, float aspect, 
        float zNear, float zFar);
    void Orthographic(float width, float height, 
        float zNear, float zFar);
};

9. We start implementing the Camera class by creating a new file, Camera.cpp. 
Include Camera.h and implement the default constructor:
#include "Camera.h"

Camera::Camera() {
    m_nFov = 60.0f;
    m_nAspect = 1.3f;
    m_nNear = 0.01f;
    m_nFar = 1000.0f;
    m_nWidth = 1.0;
    m_nHeight = 1.0f;
  
    m_matWorld = mat4();
    m_matProj = Projection(m_nFov, m_nAspect, 
        m_nNear, m_nFar);
    m_nProjectionMode = 0;
}
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10. Implement the GetWorldMatrix and GetViewMatrix functions in Camera.cpp:
mat4 Camera::GetWorldMatrix() {
    return m_matWorld;
}

mat4 Camera::GetViewMatrix() {
    if (!IsOrthoNormal()) {
        OrthoNormalize();
    }

11. Because the world matrix is ortho-normal we can transpose it to invert the rotation  
of the matrix:
    mat4 inverse = Transpose(m_matWorld);
    inverse._41 = inverse._14 = 0.0f;
    inverse._42 = inverse._24 = 0.0f;
    inverse._43 = inverse._34 = 0.0f;

12. Extract the right, up and forward vectors from the world matrix:
    vec3 right = vec3(m_matWorld._11, 
                      m_matWorld._12, 
                      m_matWorld._13);
    vec3 up = vec3(m_matWorld._21, 
                   m_matWorld._22, 
                   m_matWorld._23);
    vec3 forward = vec3(m_matWorld._31, 
                        m_matWorld._32, 
                        m_matWorld._33);

13. Extract the position of the world matrix:
    vec3 position = vec3(m_matWorld._41, 
                         m_matWorld._42, 
                         m_matWorld._43);

14. The dot product of the right, up and forward vectors with the position of the world 
matrix is the same as multiplying position and rotation matrices together. Of course 
we store the inverted (negative) result:
    inverse._41 = -Dot(right, position);
    inverse._42 = -Dot(up, position);
    inverse._43 = -Dot(forward, position);

    return inverse;
}
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15. Implement the GetProjectionMatrix, GetAspect, IsOrthographic, and 
IsPerspective accessor functions in Camera.cpp:
mat4 Camera::GetProjectionMatrix() {
    return m_matProj;
}

float Camera::GetAspect() {
    return m_nAspect;
}

bool Camera::IsOrthographic() {
    return m_nProjectionMode == 1;
}

bool Camera::IsPerspective() {
    return m_nProjectionMode == 0;
}

16. Implement the IsOrthoNormal function in Camera.cpp:
bool Camera::IsOrthoNormal() {

17. Extract the rotation basis axis from the world matrix:
    vec3 right = vec3(m_matWorld._11, 
                      m_matWorld._12, 
                      m_matWorld._13);
    vec3 up = vec3(m_matWorld._21, 
                   m_matWorld._22, 
                   m_matWorld._23);
    vec3 forward = vec3(m_matWorld._31, 
                        m_matWorld._32, 
                        m_matWorld._33);

18. If any of the axis are not of normal length, the matrix is not ortho normal:
    if (!CMP(Dot(right, right), 1.0f) ||
      !CMP(Dot(up, up), 1.0f) ||
      !CMP(Dot(forward, forward), 1.0f)) {
          return false; // Axis are not normal length
    }

19. If any of the axis are not perpendicular, the matrix is not ortho normal:
    if (!CMP(Dot(forward, up), 0.0f) ||
      !CMP(Dot(forward, right), 0.0f) ||
      !CMP(Dot(right, up), 0.0f)) {
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          return false; // Axis are not perpendicular
    }
    return true;
}

20. Implement the OrthoNormalize helper function in Camera.cpp:
void Camera::OrthoNormalize() {

21. Extract the rotation basis vectors from the world matrix:
    vec3 right = vec3(m_matWorld._11, 
                      m_matWorld._12, 
                      m_matWorld._13);
    vec3 up = vec3(m_matWorld._21, 
                   m_matWorld._22, 
                   m_matWorld._23);
    vec3 forward = vec3(m_matWorld._31, 
                        m_matWorld._32, 
                        m_matWorld._33);

22. Construct a new, perpendicular set of basis vectors:
    vec3 f = Normalized(forward);
    vec3 r = Normalized(Cross(up, f));
    vec3 u = Cross(f, r);

23. Rebuild the world matrix with the perpendicular basis vector:
    m_matWorld = mat4(
        r.x, r.y, r.z, 0.0f,
        u.x, u.y, u.z, 0.0f,
        f.x, f.y, f.z, 0.0f,
        m_matWorld._41, 
        m_matWorld._42, 
        m_matWorld._43, 1.0f
    );
}

24. Implement the Resize function in Camera.cpp:
void Camera::Resize(int width, int height) {
    m_nAspect = (float)width / (float)height;

25. If the camera is perspective, build a perspective projection matrix:
    if (m_nProjectionMode == 0) { // Perspective
        m_matProj = Projection(m_nFov, m_nAspect, 
        m_nNear, m_nFar);
    }
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26. If the camera is orthographic, build an orthographic projection matrix:
    else if (m_nProjectionMode == 1) { // Ortho
        m_nWidth = (float)width;
        m_nHeight = (float)height;
        float halfW = m_nWidth * 0.5f;
        float halfH = m_nHeight * 0.5f;
        m_matProj = Ortho(-halfW, halfW, 
            halfH, -halfH, m_nNear, m_nFar);
    }

27. If the camera is user defined, do nothing:
    // m_nProjectionMode == 2
        // User defined
}

28. Implement the Perspective function in Camera.cpp:
void Camera::Perspective(float fov, float aspect, 
float zNear, float zFar) {

29. Store the variables needed to re-calculate the perspective matrix on resize:
    m_nFov = fov;
    m_nAspect = aspect;
    m_nNear = zNear;
    m_nFar = zFar;

30. Build the actual projection matrix:
    m_matProj = Projection(fov, aspect, zNear, zFar);

31. Set the projection mode:
    m_nProjectionMode = 0;
}

void Camera::Orthographic(float width, float height, 
float zNear, float zFar) {

32. Set the member variables needed to re-calculate the ortho matrix on resize:
    m_nWidth = width;
    m_nHeight = height;
    m_nNear = zNear;
    m_nFar = zFar;



Chapter 13

301

33. Build the actual projection matrix:
    float halfW = width * 0.5f;
    float halfH = height * 0.5f;
    m_matProj = Ortho(-halfW, halfW, 
        halfH, -halfH, zNear, zFar);

34. Set the projection mode:
    m_nProjectionMode = 1;
}

35. We finish implementing the Camera class with the SetProjection and SetWorld 
mutator functions in Camera.cpp:
void Camera::SetProjection(const mat4& projection) {
    m_matProj = projection;

36. Set the projection mode:
    m_nProjectionMode = 2;
}

void Camera::SetWorld(const mat4& view) {
    m_matWorld = view;
}

How it works…
We might expect the GetView matrix to just call the Inverse function on the world matrix 
of the camera. However, the Inverse function is expensive, and if we can avoid calling it, we 
should. The GetView method inverts a matrix using a different method than we have used 
before.

The inverse of an orthogonal rotation matrix is the same as its transpose. This means if 
matrix M is orthogonal, then . Because our camera matrix is orthogonal, we start 
constructing the view matrix by taking the transpose of the world matrix of the camera. We 
then set the last row and column of the matrix to 0, except element (4,4), which has a value 
of 1. We then manually calculate the inverse translation of the matrix by negating the dot 
product of the appropriate row and column.

The IsOrthoNormal function first checks if the rotation vectors are of unit length. If a vector 
is of unit length, the result of the dot product with itself will be 1. Next we check if the matrix is 
orthogonal. The rotation basis vectors of the matrix must be perpendicular for the matrix to be 
orthogonal. If two vectors are perpendicular, the dot product between them will evaluate to 0.

The OrthoNormalize function uses the same logic to create the rotation basis as the 
LookAt function used.
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Camera controls
In this section, we are going to make the camera more useful. We will extend the camera 
class to create an Orbital Camera. Many 3D content creation tools such as 3DS Max or 
Unity3D use Orbital Cameras to navigate a 3D scene.

Getting ready
We are going to implement an Orbital Camera that will help us visualize what is happening 
within our physics simulations. This camera has three public functions that need to be called 
when input is received. The camera also has an update function that should be called at the 
end of every frame. The three functions that need to be called on input are Rotate, Zoom, 
and Pan. The Update function should always be the last camera function to be called during 
a frame.

How to do it…
Follow these steps to create a new Orbital Camera. Orbit cameras are used by most 3D 
Content Creation applications to view a 3D scene. Sometimes, these are referred to as  
free cameras:

1. Start declaring the OrbitCamera class in Camera.h by declaring the protected 
variables needed to keep track of the current position of the camera:
classOrbitCamera : public Camera {
protected:

2. The camera has a target it is looking at and a pan speed. The pan speed determines 
how fast the camera moves:
   vec3 target;
   vec2 panSpeed;

3. How far away the camera is from the target object is determined by the zoom 
distance. We also have variables to control zoom limits and speed:
   float zoomDistance;
   vec2 zoomDistanceLimit; // x = min, y = max;
   float zoomSpeed;

4. Finally, the camera rotates around the Y and X axis. Never around the Z axis. This is 
similar to first person camera controls:
   vec2 rotationSpeed;
   vec2 yRotationLimit; // x = min, y = max
   vec2 currentRotation;
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5. Finish the declaration of the OrbitCamera class by declaring the public interface  
of the class:
   Float ClampAngle(float angle, float min, float max);
public:
   OrbitCamera();
   inline virtual ~OrbitCamera() { }

   void Rotate(const vec2& deltaRot, float deltaTime);
   void Zoom(float deltaZoom, float deltaTime);
   void Pan(const vec2& delataPan, float deltaTime);

   void Update(float dt);
};

6. Implement the default constructor in Camera.cpp. Here we just set some sane 
default values for how the camera should behave:
OrbitCamera::OrbitCamera() {
   target = vec3(0, 0, 0);
   zoomDistance = 10.0f;
   zoomSpeed = 200.0f;
   rotationSpeed = vec2(250.0f, 120.0f);
   yRotationLimit = vec2(-20.0f, 80.0f);
   zoomDistanceLimit = vec2(3.0f, 15.0f);
   currentRotation = vec2(0, 0);
   panSpeed = vec2(180.0f, 180.0f);
}

7. Implement the Rotate function in Camera.cpp. This function will be called when 
the mouse is clicked and dragged. Dragging the mouse will cause the camera to look 
around:
void OrbitCamera::Rotate(const vec2& deltaRot, 
float deltaTime) {

8. Increate (or decrease) the current x and y rotation of the camera based on mouse 
movement stored in the deltaRot variable:
   currentRotation.x += deltaRot.x * rotationSpeed.x 
                        * zoomDistance* deltaTime;
   currentRotation.y += deltaRot.y * rotationSpeed.y 
                        * zoomDistance * deltaTime;

9. Clamp the rotation angle so the camera doesn't glitch out:
   currentRotation.x = ClampAngle(currentRotation.x, 
                                  -360, 360);
   currentRotation.y = ClampAngle(currentRotation.y, 
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                                  yRotationLimit.x, 
                                  yRotationLimit.y);
}

10. Implement the Zoom function in Camera.cpp. We will set the Zoom function up to 
move closer or further from the target as the user presses the middle button and 
moves the mouse. Hooking this up to mouse wheel rotation would work too:
void OrbitCamera::Zoom(float deltaZoom, float deltaTime) {
   zoomDistance = zoomDistance + deltaZoom  
                  * zoomSpeed * deltaTime;

11. Clamping the zoom distance is optional:
   if (zoomDistance<zoomDistanceLimit.x) {
      zoomDistance = zoomDistanceLimit.x;
   }
   if (zoomDistance>zoomDistanceLimit.y) {
      zoomDistance = zoomDistanceLimit.y;
   }
}

12. Implement the Pan function in Camera.cpp. The pan function will move the camera 
left, right up or down as the mouse is moved on the screen:
void OrbitCamera::Pan(const vec2& delataPan, 
float deltaTime) {

13. Find the right facing rotation axis of the camera:
   vec3 right(m_matWorld._11, 
              m_matWorld._12, 
              m_matWorld._13);

14. We pan on the x axis in local space. This allows the camera to move left and right 
relative to its rotation:
   float xPanMag = delataPan.x * panSpeed.x * deltaTime;
   target = target - (right * xPanMag);

15. We pan the camera on the y axis in global space. This makes up and down motion of 
the camera relative to the global up direction:
   float yPanMag = delataPan.y * panSpeed.y * deltaTime;
   target = target + (vec3(0, 1, 0) * yPanMag);
}

16. Implement the Update function in Camera.cpp. This function will update the world 
matrix of the camera based on the stored rotation, zoom and pan information:
void OrbitCamera::Update(float dt) {
   vec3 rotation = vec3(currentRotation.y, 
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                        currentRotation.x, 
                        0);
   mat3 orient = Rotation3x3(rotation.x, 
                             rotation.y, 
                             rotation.z);
   vec3 direction = MultiplyVector( 
      vec3(0.0, 0.0, -zoomDistance), orient);
   vec3 position = direction + target;

17. Rebuild the world matrix:
   m_matWorld = Inverse(
      LookAt(position, target, vec3(0, 1, 0)));
}

18. Implement the ClampAngle helper function in Camera.cpp. This function will keep 
a number between negative and positive 360 degrees:
float OrbitCamera::ClampAngle(float angle, float min, 
float max) {
   while (angle < -360) {
      angle += 360;
   }
   while (angle > 360) {
      angle -= 360;
   }
   if (angle < min) {
      angle = min;
   }
   if (angle > max) {
      angle = max;
   }
   return angle;
}

How it works…
The default constructor creates the camera at (0,0,-10) looking forward on the global Z axis 
(0,0,1). This tends to be the default position of the camera in many 3D application because it 
lets us see the origin with Z, Y and Z pointing in a positive direction.

The Rotate function adds some angle of rotation to the currentRotation variable. It then 
calls the ClampAngle helper function to make sure that the angle stays within the -360 to 
360 range.



Camera and Frustum

306

The Zoom function either increases or decreases the current zoom distance. The current zoom 
distance is stored as a scalar value. The distance gets clamped to a min and max range. You 
can remove this clamping to create a completely free moving camera.

The Pan function translates the target that the camera is looking at. This in turn moves the 
actual camera. The target is translated on its local X axis and the global Y axis.

Finally, the Update function constructs the camera's position using the stored rotation, zoom 
distance, and target. We set the world matrix to the inverse of the look at matrix constructed 
from the position of the camera looking to the target. We have to store the inverse because 
the LookAt function returns a view matrix. The inverse of this view matrix is the world matrix 
of the camera.

In the preceding code, we invert the LookAt function using the existing Inverse function. 
However, this matrix is orthogonal. You could just as well use the fast inverse method 
described earlier in this chapter, to optimize the function.

Frustum object
A camera's viewing volume can be represented by a frustum. A frustum is made up of six 
planes, visually it looks like a pyramid with its peek truncated:

The frustum is composed of the top, bottom, left, right, near, and far planes. The normal of 
each plane points inward, towards the center of the frustum:
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Having a view Frustum is very useful in graphics. We can use the frustum to render only what 
is visible to the camera. We don't need a Frustum primitive for our engine to work, but it is a 
very useful primitive to have in our toolbox.

Getting ready
We are going to create a new Frustum object that will contain six planes. We are also 
implementing an Intersection helper function, which will return the point at which three 
planes intersect. This helper function will be used to find the corner points of the frustum.  
We will also create a GetCorners function to make finding the corners of the frustum  
less verbose.

Our Frustum definition will contain variables named near and far. If <windows.h> is 
included before the Geometry3D.h header file this will cause an error. The error happens 
because <windows.h> declares near and far as #define symbols. We can fix this by 
undefining near and far before the Frustum structure is declared. We undefined these 
symbols using the #undef keyword:

#undef near
#undef far

How to do it…
Follow these steps to implement a Frustum primitive:

1. Declare the new Frustum structure in Geometry3D.h:
typedef struct Frustum {
   union {
      struct {
         Plane top;
         Plane bottom;
         Plane left;
         Plane right;
         Plane near;
         Plane far;
      };
      Plane planes[6];
   };
   inline Frustum() { }
} Frustum;
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2. Declare the Intersection and GetCorners helper functions in Geometry3D.h:
Point Intersection(Plane p1, Plane p2, Plane p3);
void GetCorners(const Frustum& f, vec3* outCorners);

3. Implement the Intersection function in Geometry3D.cpp. This function uses 
Cramer's Rule for solving where three planes intersect. Cramer's Rule will be 
discussed in detail in the How it works… section:
Point Intersection(Plane p1, Plane p2, Plane p3) {

4. First we create the coefficient matrix composed of the known quantities for the 
system of equations of the three planes: 
   mat3 D(
      p1.normal.x, p2.normal.x, p3.normal.x,
      p1.normal.y, p2.normal.y, p3.normal.y,
      p1.normal.z, p2.normal.z, p3.normal.z
   );

5. We also create a row matrix with the solution to each of the systems:
   vec3 A(-p1.distance, -p2.distance, -p3.distance);

6. Next, we create three matrices which have one row replaced by the answer row:
   mat3 Dx = D;
   mat3 Dy = D;
   mat3 Dz = D;
   Dx._11 = A.x; Dx._12 = A.y; Dx._13 = A.z;
   Dy._21 = A.x; Dy._22 = A.y; Dy._23 = A.z;
   Dz._31 = A.x; Dz._32 = A.y; Dz._33 = A.z;

7. We find the determinant of the original matrix:
   float detD = Determinant(D);
   if (CMP(detD, 0)) {
      return Point();
   }

8. We find the determinant for each of the three matrices we created:
   float detDx = Determinant(Dx);
   float detDy = Determinant(Dy);
   float detDz = Determinant(Dz);

9. The point of intersection is the determinant of each of the three matrices we created, 
divided by the determinant of the original matrix. The reasoning behind this is 
explained in the How it works… section:
   return Point(detDx / detD, detDy / detD, detDz / detD);
}
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10. Implement the GetCorners helper function in Geometry3D.cpp. This function will 
call the Intersection function eight times to find each corner of the frustum:
void GetCorners(const Frustum& f, vec3* outCorners) {
   outCorners[0] = Intersection(f.near, f.top,    f.left);
   outCorners[1] = Intersection(f.near, f.top,    f.right);
   outCorners[2] = Intersection(f.near, f.bottom, f.left);
   outCorners[3] = Intersection(f.near, f.bottom, f.right);
   outCorners[4] = Intersection(f.far,  f.top,    f.left);
   outCorners[5] = Intersection(f.far,  f.top,    f.right);
   outCorners[6] = Intersection(f.far,  f.bottom, f.left);
   outCorners[7] = Intersection(f.far,  f.bottom, f.right);
}

How it works…
We find the intersection of three planes using Cramer's Rule. Cramer's Rule can be used to 
solve for one or more variables in a system of equations which has as many equations as it 
has unknowns. For example the plane equation has three unknowns, using Cramer's Rule  
we can solve for all three unknowns if we have three planes. Let's explore how Cramer's  
Rule actually works.

For our example, we have three systems of equations that need to be solved. Each system 
is the plane formula for one of the three planes. In the following example, we will use three 
planes named P1, P2, and P3. The normal of each plane will be represented as N1, N2,  
and N3. The distance of each plane will be represented as D1, D2, and D3. The letter D  
will represent the Determinant of a matrix.

The system of equations that we need to solve are as follows:

We need to create a coefficient matrix using the known values of each equation. We store the 
determinant of this coefficient matrix in D:
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We also create a single row matrix using the answer of the system of equations:

Next we construct three new matrices. Each matrix will have one of its rows replaced by the 
answer row. We will store the determinant of each matrix in , where i is the axis that was 
replaced by the answer row (  or z):

         

Remember, D, , , and  are all determinants, scalar values. We can solve for each of 
the unknown by dividing the determinant of the axis with the determinant of the system:

         

Therefore, the given three planes intersect at point:

vec3 IntersectionPoint = vec3(Dx / D, Dy / D, Dz / D)

You can learn more about Cramer's Rule at: http://www.purplemath.
com/modules/cramers.htm.

Frustum from matrix
In the last section, we created a Frustum primitive. We know that a frustum is made up of 
six planes: near, far, top, bottom, left, and right. In this section, we will explore how to extract 
those six planes from a view-projection matrix.

Getting ready
We are going to add a new method to the Camera class. This new method will create  
a frustum from the camera. In order for the Camera class to know what a Frustum is,  
we need to include Geometry3D.h in Camera.h.

http://www.purplemath.com/modules/cramers.htm
http://www.purplemath.com/modules/cramers.htm
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How to do it…
Follow these steps to build a frustum out of the camera's view and projection matrices:

1. Add the public GetFrustum function to the Camera class in Camera.h:
class Camera {
   // Existing class implementation not listed
   // The GetFrusutm function is new
   Frustum GetFrustum();
};

2. Begin implementing the new GetFrustum function in Camera.cpp by creating a 
view-projection matrix; store each column of this matrix as a vector: 
Frustum Camera::GetFrustum() {
   Frustum result;

3. Build out the view projection matrix of the camera:
   mat4 vp = GetViewMatrix() * GetProjectionMatrix();

4. Store each column of the view projection matrix as a vector:
   vec3 col1(vp._11, vp._21, vp._31);//, vp._41 
   vec3 col2(vp._12, vp._22, vp._32);//, vp._42 
   vec3 col3(vp._13, vp._23, vp._33);//, vp._43 
   vec3 col4(vp._14, vp._24, vp._34);//, vp._44

5. Next calculate the direction vector for every plane. At this step the vectors do not 
need to be of unit length: 
   result.left.normal   = col4 + col1;
   result.right.normal  = col4 - col1;
   result.bottom.normal = col4 + col2;
   result.top.normal    = col4 - col2;
   result.near.normal   = col3;
   result.far.normal    = col4 - col3;

6. Similarly, calculate the distance from origin for each plane:
   result.left.distance   = vp._44 + vp._41;
   result.right.distance  = vp._44 - vp._41;
   result.bottom.distance = vp._44 + vp._42;
   result.top.distance    = vp._44 - vp._42;
   result.near.distance   = vp._43;
   result.far.distance    = vp._44 - vp._43;
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7. Finally, normalize all six planes and return the resulting frustum object. Normalizing  
a plane involves scaling both the plane normal and distance by the length of the 
plane normal:
   for (int i = 0; i < 6; ++i) {
      float mag = 1.0f / 
         Magnitude(result.planes[i].normal);
      result.planes[i].normal = 
         result.planes[i].normal*mag;
      result.planes[i].distance *= mag;
    }

   return result;
}

How it works…
To extract the view frustum of a camera, we first need to find the view projection matrix. We 
can obtain a view projection matrix by multiplying the view and projection matrices together.

To find the values of the actual frustum planes, we need to treat each plane as a 4D vector. 
The distance of the plane will be stored in the W component of this vector. We can find the 
values of each plane by adding or subtracting one of the columns of the view projection  
matrix from the fourth column of the view projection matrix.

The fourth column of the view projection matrix is special; it represents the Z-Axis (forward 
vector) of the camera. The first, second, and third columns represent the normals of the 
frustum planes. We add or subtract each normal from the Z-Axis to extract the frustum plane:

 f Left plane: Add Column 1 to Column 4

 f Right plane: Subtract Column 1 from Column 4

 f Bottom plane: Add Column 2 to Column 4

 f Top plane: Subtract Column 2 from Column 4

 f Near plane: The third column

 f Far plane: Subtract Column 3 from Column 4

Once we have the values for each plane, we need to normalize the planes. To normalize  
each plane, we need to find the length of the normal vector and divide both the normal  
and distance by this length.

You may have noticed that the near plane is not calculated like the rest of the planes. This is 
because the X and Y axis are clipped in the range of –W to +W, but the Z axis is clipped in the 
range of 0 < Z <= W. This is assuming that NDC space goes from -1 to +1 on the X and Y axis 
and 0 to 1 on the Z axis, Direct X style. If NDC space went from -1 to +1 on all axes, OpenGL 
style the near plane would be Column 3 added to Column 4.
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Sphere in frustum
Now that we can get the view frustum of a camera, we will explore how to check primitives for 
intersection against the frustum. We will start by checking if a point or sphere intersects the 
frustum. This intersection test will also handle containment:

Getting ready
In this section, we are going to implement two intersection functions. The first function will 
test if a point is inside of a frustum. The second function will check if a sphere intersects a 
frustum. Both functions handle containment as well as intersection.

How to do it…
Follow these steps to implement intersection tests for a point and a sphere against a Frustum:

1. Declare the functions to test a point and a sphere against a frustum in 
Geometry3D.h:
bool Intersects(const Frustum& f, const Point& p);
bool Intersects(const Frustum& f, const Sphere& s);

2. Implement the point Intersects function in Geometry3D.cpp:
bool Intersects(const Frustum& f, const Point& p) {
   for (int i = 0; i < 6; ++i) {

3. Here, we loop through all six planes of the frustum to check which side of the frustum 
plane the point is on:
      vec3 normal = f.planes[i].normal;
      float dist = f.planes[i].distance;
      float side = Dot(p, normal) + dist;
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4. If the point is behind any of the planes, there is no intersection:
      if (side < 0.0f) {
         return false;
      }
   }
   return true;
}

5. Implement the sphere Intersects function in Geometry3D.cpp:
bool Intersects(const Frustum& f, const Sphere& s) {
   for (int i = 0; i < 6; ++i) {

6. We loop through all six frustum planes to check which side of each plane the sphere  
is on:
      vec3 normal = f.planes[i].normal;
      float dist = f.planes[i].distance;
      float side = Dot(s.position, normal) + dist;

7. If the sphere is behind any of the planes, there is no intersection:
      if (side < -s.radius) {
         return false;
      }
   }
   return true;
}

How it works…
We find the distance between the point and plane with the following formula:

PointToPlaneDistance = Dot(point, plane.normal) + plane.distance);

This formula will have one of three possible results:

 f If the distance is negative, the point is behind the plane

 f If the distance is positive, the point is in front of the plane

 f If the distance is zero, the point is on the plane

For a point to be contained within a frustum, it has to be in front of all six planes. This means 
the distance between the point and all six planes of the frustum must be positive.
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To test a sphere against a frustum, the distance between the center of the sphere and every 
plane of the frustum must be greater than the radius of the sphere. If the sphere is located 
behind any of the planes, this distance will be negative. If the distance between a plane and 
the center of the sphere is negative, and that negative distance is less than the negative 
radius of the sphere; then the sphere and frustum do not intersect.

Bounding Box in frustum
To test if an Oriented Bounding Box (OBB) or an Axis Aligned Bounding Box (AABB) 
intersects a frustum, follow the same steps. First we have to be able to classify the box 
against a plane. A box and a plane can have one of three intersection states:

 f The box is in front of the plane

 f The box is behind the plane

 f The box intersects the plane

Once we are able to classify a box to a plane, we need to loop through every plane of the 
frustum and classify the box against each plane. If the box is fully behind any of the six planes, 
there is no intersection. If the box is in front of every plane, it is contained within the frustum. 
Otherwise, the box intersects the frustum:

Getting ready
In this section, we are going to implement two Classify functions. One to classify an OBB 
against a plane, and one to classify an AABB against a plane. The Classify functions will have 
the following return values:

 f If the box is behind the plane, the negative distance is returned

 f If the box is in front of the plane, the positive distance is returned

 f If the box intersects the plane, zero is returned
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After we can classify both AABB and OBB against a plane we will write the actual intersection 
functions.

How to do it…
Follow these steps to implement intersection tests for an AABB and an OBB against a 
Frustum:

1. Declare the Classify and Intersects functions in Geometry3D.h:
float Classify(const AABB& aabb, const Plane& plane);
float Classify(const OBB& obb, const Plane& plane);
bool Intersects(const Frustum& f, const AABB& aabb);
bool Intersects(const Frustum& f, const OBB& obb);

2. Implement the AABB version of the Classify function in Geometry3D.cpp:
float Classify(const AABB& aabb, const Plane& plane) {

3. We find the positive extents of the AABB projected onto the plane normal. If you look 
at how r is calculated, it is very similar to a dot product, except each element is 
guaranteed to be a positive number:
   float r = fabsf(aabb.size.x * plane.normal.x)
      + fabsf(aabb.size.y * plane.normal.y)
      + fabsf(aabb.size.z * plane.normal.z);

4. Next, we find the signed distance between the center of the AABB and the plane. We 
do this by projecting the AABB onto the plane normal and adding the plane distance:
   float d = Dot(plane.normal, aabb.position) 
      + plane.distance;

5. If the distance between the center of the box and the plane is less than the extents of 
the box, the two intersect. Because there is no space of separation, we return zero:
   if (fabsf(d) < r) {
      return 0.0f;
   }

6. Otherwise, we return a positive number if the box is in front of the plane, a negative 
number if the box is behind the plane:
   else if (d < 0.0f) {
      return d + r;
   }
   return d - r;
}
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7. Implement the OBB version of the Classify function in Geometry3D.cpp:
float Classify(const OBB& obb, const Plane& plane) {

8. To classify an OBB against a plane we first transform the normal of the plane into the 
local space of the OBB:
   vec3 normal = MultiplyVector(plane.normal, 
                                obb.orientation);

9. The rest of this function works the same way as the AABB variant:
   // maximum extent in direction of plane normal 
   float r = fabsf(obb.size.x * normal.x)
      + fabsf(obb.size.y * normal.y)
      + fabsf(obb.size.z * normal.z);

   // signed distance between box center and plane
   float d = Dot(plane.normal, obb.position)
       + plane.distance;

   // return signed distance
   if (fabsf(d) < r) {
      return 0.0f;
   }
   else if (d < 0.0f) {
      return d + r;
   }
   return d - r;
}

10. Implement both of the Intersects functions in Geometry3D.cpp:
bool Intersects(const Frustum& f, const AABB& aabb) {
   for (int i = 0; i < 6; ++i) {

11. For every plane of the frustum, we classify the AABB against that plane:
      if (Classify(aabb, f.planes[i]) < 0) {

12. If the box is behind any of the planes, no intersection occurs:
         return false;
      }
   }
   return true;
}

bool Intersects(const Frustum& f, const OBB& obb) {
   for (int i = 0; i < 6; ++i) {
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13. For every plane of the frustum, we classify the OBB against each plane:
      if (Classify(obb, f.planes[i]) < 0) {

14. If the box is behind any of the planes, no intersection occurs:
         return false;
      }
   }
   return true;
}

How it works…
The Classify function for both OBB and AABB work almost the same. The only difference is 
that the OBB first transforms the plane normal into its own rotation frame.

The first thing that the Classify function does is project the bounding box onto the normal 
of the plane. The largest component of this projection is stored as the radius of the box. Next, 
we find the distance between the center of the box and the plane. If that distance is less than 
the stored radius, the box and plane intersect. Otherwise, we return the distance between the 
center of the box and the plane:

Once we are able to classify a bounding box relative to a plane, the frustum intersection test 
becomes fairly easy. We loop through all six planes of the frustum and classify the bounding 
box against each plane. If the box is fully behind any one plane, there is no intersection.
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Octree culling
Now that we have a frustum and we can check said frustum for intersection against 
primitives, we can finally implement scene level culling. We will provide the Scene class with 
a Frustum object, the Scene class will return a list of Model objects. The OBB of each model 
within this list intersects the frustum. This way, we only need to consider objects for rendering, 
which the camera might see.

If a scene is spatially divided with an Octree, this method of culling should increase render 
time by eliminating non visible objects from being rendered. However, if a scene is not 
accelerated, and we just linearly test every object against the frustum we might actually  
make performance worse.

Getting Ready
We are going to add a new method named Cull to the existing Scene class. This new method 
will take a Frustum as an argument and will return a list of Model objects that intersect  
the frustum.

How to do it…
Follow these steps to cull the Octree of a Scene using a Frustum:

1. In Scene.h, add the new Cull function to the existing Scene class. Some of the 
existing code is not listed, instead a comment has been added to show were the 
existing code is:
class Scene {
   // Existing code
   std::vector<Model*>Cull(const Frustum& f);
};

2. Begin implementing the new Cull function in Scene.cpp by handling the edge 
case of the scene not being accelerated:
std::vector<Model*> Scene::Cull(const Frustum& f) {
   std::vector<Model*> result;

   if (octree == 0) {

3. If there is no acceleration structure, loop through every object in the scene linearly 
and compare to the frustum provided. This represents a worst case scenario:
      for (int i = 0; i < objects.size(); ++i) {
         OBB bounds = GetOBB(*(objects[i]));
         if (Intersects(f, bounds)) {
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            result.push_back(objects[i]);
         }
      }
   }

4. If the scene is accelerated, create a list of nodes to be considered for culling. Take 
one item off the list and process it until the list is empty:
   else {
      std::list<OctreeNode*> nodes;
      nodes.push_back(octree);

5. If there is an acceleration structure, we are going to walk it depth first:
      while (nodes.size() > 0) {
         OctreeNode* active = *nodes.begin();
         nodes.pop_front();

6. If the item is not a leaf node, check if any of its children intersect the Frustum. 
Children that intersect the frustum are added to the list of nodes to be considered  
for culling:
         // Has child nodes
         if (active->children != 0) {
            for (int i = 0; i < 8; ++i) {

7. Check if the bounds of any of the nodes children intersect the frustum. If they do, 
consider them for culling:
               AABB bounds = active->children[i].bounds;
               if (Intersects(f, bounds)) {
                  nodes.push_back(&active->children[i]);
               }
            }
         }

8. If the item is a leaf node, check all of the objects within the node against the 
Frustum. If an object intersects the frustum, add it to the final list of objects:
         else { // Is leaf node
            for (int i = 0; i<active->models.size(); ++i){

9. If we are looking at a leaf node, loop through all models within the node, and check 
for frustum intersection:

               OBB bounds = GetOBB(*(active->models[i]));
               if (Intersects(f, bounds)) {
                  result.push_back(active->models[i]);
               }
            }
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         }
      }
   }
 
   return result;
}

How it works…
The new Cull method takes one of two potential paths. If a scene is not accelerated (if the 
Octree is null) every object is tested against the frustum in a linear fashion. This does not  
offer any optimization and may end up making performance worse.

If the scene is accelerated, we traverse the Octree depth first. If an OctreeNode is 
considered for culling and is not a leaf node, each of its children is tested against the frustum. 
Any child that intersects the frustum is added to the list of nodes considered for culling. Any 
leaf node that is being considered for culling will test each of the Model objects contained 
within the node against the frustum. If the OBB of the node and the Frustum intersect, the 
object is added to the return list.

Picking
Picking objects in 3D space is a common problem. If you want your 3D simulation to interact 
with a mouse, we need to solve this problem. To implement picking, we need to find the pixel 
that the user has clicked relative to both the near and far planes of the camera. We can 
construct a ray from the point on the near plane to the point on the far plane. Finally, we can 
query the world using this ray.

The job of a graphics pipeline is to take a 3D point in world space and project it onto the 
screen. This transformation from world space to screen space is called Projection. To find the 
3D world space position of a point based on the 2D pixel position of that same point we need 
to do the opposite of what the graphics pipeline does. Putting a pixel through the inverse of 
the graphics pipeline is called Unprojection.

When we unproject a pixel, it has no Z coordinate. We will provide a Z component that is a 
linear depth value. That is, a Z value of 0 will result in the pixel on the near plane. A Z value 
of 1 will result in the pixel on the far plane. Any number in between 0 and 1 will linearly 
interpolate through the view volume.
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Given a 2D pixel with a linear depth Z value, we need to take the following steps to unproject 
the vector:

 f Normalize the vector to the size of the screen (viewport):

 � Divide the X component by the width of the screen

 � Divide the Y component by the height of the screen

 � Clamp Z to be within the 0 to 1 range

 f Transform the normalized vector into NDC space:

 � The NDC X axis range is from -1 to 1

 � The NDC Y axis range is from -1 to 1

 � The NDC Z axis range is from 0 to 1 (Direct X style)

 f Transform the NDC vector into eye/view space:

 � Multiply by the inverse of the projection matrix

 � This leaves the inverse perspective divide in the w component

 � Remember, eye space is the world as if the camera is at its center looking 
down the positive Z axis (Direct X style)

 f Transform the eye space vector into world space:

 � Multiply by the inverse of the view matrix

 � The resulting vector is in world space

 � This leaves the W component unchanged

 f Compensate for perspective division:

 � Divide the X, Y, and Z components of the vector by W
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Getting ready
In order to perform 3D picking, we will create two new functions. The Unproject function 
will accept a point in pixel space and return it in world space. The GetPickRay function will 
return a ray from the near to the far plane of the camera based on a point in pixel space.

In order to unproject a point, we need to work with a four component vector; we need to 
store the inverse of perspective division in the W component. We don't currently have a vec4 
structure and we will not create one just for this. Instead, we will store the vector as a single 
row matrix in a four component array. This will allow us to use the generic matrix Multiply 
function.

How to do it…
Follow these steps to implement a function which turns a screen space pixel into a world 
space vector and a function which returns a pick ray from a screen space pixel:

1. Declare the Unproject and GetPickRay functions in Geometry3D.h:
vec3 Unproject(const vec3& viewportPoint, 
   const vec2& viewportOrigin, const vec2& viewportSize,
   const mat4& view, const mat4& projection);
Ray GetPickRay(const vec2& viewportPoint, 
   const vec2& viewportOrigin, const vec2&viewportSize, 
   const mat4& view, const mat4& projection);

2. Implement the Unproject function in Geometry3D.cpp:
vec3 Unproject(const vec3& viewportPoint, 
const vec2& viewportOrigin, const vec2& viewportSize, 
const mat4& view, const mat4& projection) {

3. First, we want to normalize the input vector to the viewport. This means a pixel at (0, 
0) will have a value of (0, 0), but a pixel at (width, height) will have a value of (1, 1):
   float normalized[4] = {
      (viewportPoint.x-viewportOrigin.x)/viewportSize.x,
      (viewportPoint.y-viewportOrigin.y)/viewportSize.y,
      viewportPoint.z, 1.0f
   }; // normalized

4. Next, we want to translate the normalized vector into NDC space:
   float ndcSpace[4] = {
      normalized[0], normalized[1],
      normalized[2], normalized[3]
   };
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5. The NDC X range goes from -1 to 1. The input vector is in the range of 0 to 1, we have 
to adjust accordingly:
   ndcSpace[0] = ndcSpace[0] * 2.0f - 1.0f;

6. The NDC Y range goes from -1 to 1, the input vector is in the range of 0 to 1. We have 
to adjust this like we did with the X range, however the input Y axis is flipped, so we 
have to account for that as well: 
   ndcSpace[1] = 1.0f - ndcSpace[1] * 2.0f;

7. The NDC Z range goes from 0 to 1, DirectX style. The input is assumed to be in this 
range, so we just have to clamp it: 
   if (ndcSpace[2] < 0.0f) {
      ndcSpace[2] = 0.0f;
   }
   if (ndcSpace[2] > 1.0f) {
      ndcSpace[2] = 1.0f;
   }

8. Next, the NDC vector needs to be transformed into eye space. We will multiply the 
input vector from NDC space as if it were a row vector with four columns by the 
inverse projection matrix: 
   mat4 invProjection = Inverse(projection);
   float eyeSpace[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
   // eyeSpace = MultiplyPoint(ndcSpace, invProjection);
   Multiply(eyeSpace, ndcSpace, 1, 4, 
      invProjection.asArray, 4, 4);

9. Next, we need to translate the result of the last step from eye space into world space. 
Again, we use the generic matrix multiply function to treat the input vector as a row 
vector with four columns: 
   mat4 invView = Inverse(view);
   float worldSpace[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
   // worldSpace = MultiplyPoint(eyeSpace, invView);
   Multiply(worldSpace, eyeSpace, 1, 4, 
      invView.asArray, 4, 4);

10. Finally, we need to undo the perspective divide. The value for the inverse perspective 
divide was left in the fourth component of the world space vector from the previous 
matrix transforms: 
   if (!CMP(worldSpace[3], 0.0f)) {
      worldSpace[0] /= worldSpace[3];
      worldSpace[1] /= worldSpace[3];
      worldSpace[2] /= worldSpace[3];
   }
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11. Return the resulting point as a three dimensional vector in world space:
   return vec3(worldSpace[0], 
               worldSpace[1], 
               worldSpace[2]);
}

12. Implement the GetPickRay function in Geometry3D.cpp:
Ray GetPickRay(const vec2& viewportPoint, 
const vec2& viewportOrigin, const vec2& viewportSize, 
const mat4& view, const mat4& projection) {

13. Construct a near and far point. Both have the same pixel space position, but different 
z values: 
   vec3 nearPoint(viewportPoint.x, viewportPoint.y, 0.0f);
   vec3 farPoint(viewportPoint.x, viewportPoint.y, 1.0f);

14. Use the Unproject function we just wrote to transform the pixel space near and far 
points into world space points: 
   vec3 pNear = Unproject(nearPoint, viewportOrigin, 
      viewportSize, view, projection);
   vec3 pFar = Unproject(farPoint, viewportOrigin,
       viewportSize, view, projection);

15. Construct and return a ray out of the world space near and far points:
   vec3 normal = Normalized(pFar - pNear);
   vec3 origin = pNear;
   return Ray(origin, normal);
}

How it works…
The Unproject function takes a screen space (pixel space) vector with a linear Z component 
and returns a world space vector. The Z component at the near plane of the camera's frustum 
is 0, the Z component at the far plane is 1.

The input vector is first normalized to the size of the screen. The vector is then transformed 
into NDC space. OpenGL and DirectX have different conventions for what NDC space is, our 
library follows DirectX conventions. The NDC space vector is taken into eye space. The eye 
space vector is transformed into world space. Finally, we undo the perspective divide. After  
all of these steps we are left with a 3D point in world space.
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The GetPickRay function takes a 2D screen space vector, finds it in world space at the 
near and far planes, and returns a ray from the near to the far point. The ray returned by 
GetPickRay can be used to raycast into a scene. The ray returned by GetPickRay can  
be used to raycast into a scene from the perspective of the viewer.

There's more…
If you want to select one model out of the current scene and render that model differently 
somehow, the code for that might look something like this:

vec2 screenOrigin = vec2(0.0f, 0.0f);
vec3 screenSize = vec2(GetWidth(), GetHeight());

mat4 view = camera.GetViewMatrix();
mat4 projection = camera.GetProjectionMatrix();

Ray ray = GetPickRay(mousePosition, screenOrigin, 
   screenSize, view, projection);
std::vector<Model*> visible = scene->Cull(camera.GetFrustum());
Model* selectedModel = scene->Raycast(ray);

for (int i = 0; i<visible.size(); ++i) {
   if (visible[i] == selectedModel) {
      // TODO: Indicate that current model is selected
   }
   Render(visible[i]);
}
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14
Constraint Solving

We have finally made it to the part of the book where we can stop talking about theory and 
actually implement some physics. By the end of this chapter you will have several particles 
bouncing around the screen colliding with obstacles. In order to achieve this, we will cover  
the following topics in this chapter:

 f Introduction to the Windowing Framework

 f Modifying Raycast against sphere

 f Modifying Raycast against Bounding Boxes

 f Modifying Raycast against plane and triangle

 f Basic Physics System

 f Integrating Particles

 f Solving Constraints

 f Verlet Integration

Introduction
In this chapter, we are going to start implementing actual physics. All of the physics related 
code will be provided within the chapter. A framework for creating windows and visualizing 
our Physics System is provided with the downloadable materials for this book. Things such 
as window management and graphics are outside the scope of this book. We will, however, 
dedicate a section of this chapter to exploring the framework provided so you can build new 
physics simulations without having to rewrite the visualization layer.
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After we cover the framework provided with this book, we will start implementing our first 
physics simulation. In this chapter, we focus on particles, the laws of motion, and integrating 
the equations of motion. Particles are a logical starting point for physics as they have mass, 
but not volume. This will allow us to focus on integration without having to worry about things 
like rotation.

Framework introduction
We have arrived at a place in the book where things are about to start moving. A large part of 
writing a physics engine is making sure that the physics simulation looks accurate. We need  
a simple, intuitive way to visualize our Physics System.

In order to visualize the movement of our physics code, we need to manage windowing and 
rendering. An application framework that handles windowing and rendering is provided with 
the downloadable code for this chapter. In this section, we will explore the framework that  
will be used to create windows and visualize our physics simulation.

Getting ready
In this section, we are going to explore the framework provided with this chapter. We will 
explore which files contain what code, how physics demos are hooked up to the framework, 
and what to do to add a new demo.

How to do it…
Follow these steps to explore the framework provided with the download code of this book:

1. Navigate to the source directory of this chapter and open the included Visual Studio 
solution. This project was built with visual studio 2015. The project is located at:
$(CHAPTER_13)/Projects/VisualStudio2015.sln

2. Once the solution is open, you should see one project with the following dividers:
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3. Under the Application divider you will find the code from Chapter 4, 2D Primitive 
Shapes, through Chapter 13, Camera and Frustum. Files such as Geometry2D.h, 
Geometry3D.h, and Scene.h are included here:

4. The Demos divider contains all of the demo code for Chapter 14, Constraint Solving, 
Chapter 15, Manifolds and Impulses, and Chapter 16, Springs and Joints, along with 
additional test code:

5. The GLAD and IMGUI dividers contain third-party code used to load OpenGL 
extensions and render UI Widgets.
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6. The Math divider contains all the code from Chapter 1, Vectors, Chapter 2, Matrices, 
and Chapter 3, Matrix Transformations. There is an additional Compare.h file that 
contains several strategies for comparing floating point numbers:

7. The Physics divider contains all of the physics code that we will be writing through for 
Chapter 14, Constraint Solving, Chapter 15, Manifolds and Impulses, and Chapter 16, 
Springs and Joints:

8. The Platform divider contains platform-specific code. For this project, all of the 
Win32 code that is needed to set up an OpenGL enabled window and receive  
input is located here.
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9. Finally, the Windows divider contains the code needed to create different kinds of 
windows. All of the demos are built using the DemoWindow class:

How it works…
The provided framework uses the concept of an abstract window. The IWindow class is the 
interface for any class that is a window. All window objects must be a subclass of IWindow. 
The IWindow class is not a proper singleton, but there is code in place to ensure that only 
one window is ever created. The main-win32.cpp file contains all of the operating system 
specific code. This file forwards events such as mouse motion or rendering to the single 
instance of IWindow.

Included with the examples are two additional windowing related classes. The first is 
GLWindow, which extends IWindow. This class implements limited OpenGL functionality.  
Next we have the DemoWindow class, which extends the GLWindow class. This class is 
application-specific. It displays a UI to choose which demo to run and maintains a pointer to 
the running demo. All of the UI widgets are rendered using the third-party library: Dear IMGUI.

The FixedFunctionPrimitives.h file declares several functions to render 3D primitives 
using the fixed function pipeline. These functions are not optimized and are not intended 
for production use. They exist as a quick way to help us visualize our physics demos. This 
file defines several overloaded forms of a Render function, each primitive defined in 
Geometry3D.h or Geometry2D.h can be rendered through this file.

All physics demos will extend the DemoBase class. This class contains basic camera controls 
and mouse state information. The DemoWindow class contains a DemoBase pointer, which 
should point to the currently active demo. Included with the code for this chapter is the 
CH14Demo class, which will run the simulation we build throughout this chapter.
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The CH14Demo class actually contains the Physics System, constraints, and particles that we 
will be developing throughout this chapter. Later chapters will include similarly named classes: 
CH15Demo and CH16Demo. The code for the demo classes will not be included in the book 
in full, rather we will provide excerpts where needed. The full demo code for each chapter is 
available with the downloadable materials of this book. At the end of this chapter, we will  
have the following physics simulation running:

There's more…
The application framework dynamically links to OpenGL. All other dependencies are directly 
compiled into the framework. This framework uses the GLAD OpenGL Loader to expose the 
OpenGL 2.1 API. All of the included external code is published under the MIT License. The 
framework relies on the following external libraries:

 f Tiny OBJ Loader: https://github.com/syoyo/tinyobjloader

 f Dear IMGUI: https://github.com/ocornut/imgui

 f GLAD OpenGL Loader: https://github.com/Dav1dde/glad

Creating a Win32 window with an active OpenGL Context is outside the 
scope of this book. For a better understanding of how Win32 code works 
with OpenGL read: https://www.khronos.org/opengl/wiki/
Creating_an_OpenGL_Context_(WGL)

https://github.com/syoyo/tinyobjloader
https://github.com/ocornut/imgui
https://github.com/Dav1dde/glad
 https://www.khronos.org/opengl/wiki/Creating_an_OpenGL_Context_(WGL)
 https://www.khronos.org/opengl/wiki/Creating_an_OpenGL_Context_(WGL)


Chapter 14

333

Raycast sphere
In order to solve collisions against constraints, we will need to determine some extra 
information about rays being cast into the world. In our current implementation, each raycast 
returns a floating point t-value. From this value we can infer if the ray hit anything and if it did 
at what point the intersection happened. We still need this t-value, but we also need to know 
the normal of the surface that the ray hit.

Getting ready
In this section, we will start modifying the Raycast function to return more data. To achieve 
this, we first declare a new RaycastResult data structure. We will also implement a helper 
method to reset the new RaycastResult data structure.

How to do it…
Follow these steps to update the RaycastSphere function in a way that it returns more 
useful data:

1. Declare the RaycastResult structure and ResetRaycastResult function in 
Geometry3D.h:
typedef struct RaycastResult {
    vec3 point;
    vec3 normal;
    float t;
    bool hit;
} RaycastResult;
void ResetRaycastResult(RaycastResult* outResult);

2. Implement the ResetRaycastResult function in Geometry3D.cpp. This function 
simply sets all members of the RaycastResult structure to default values, 
indicating no hit:
void ResetRaycastResult(RaycastResult* outResult) {
    if (outResult != 0) {
        outResult->t = -1;
        outResult->hit = false;
        outResult->normal = vec3(0, 0, 1);
        outResult->point = vec3(0, 0, 0);
    }
}
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3. We are going to rewrite the existing Raycast against sphere function in 
Geometry3D.h. The new version will support a new parameter, an optional pointer:
bool Raycast(const Sphere& sphere, 
   const Ray& ray, RaycastResult* outResult);

4. Update the implementation of the Raycast against sphere function in 
Geometry3D.cpp to respect the new parameter added to the declaration:
bool Raycast(const Sphere& sphere, 
const Ray& ray, RaycastResult* outResult) {

5. Reset the provided Raycast result so that it reports no actual hit:
    ResetRaycastResult(outResult);

6. Construct a vector from the origin of the ray to the center of the sphere:
    vec3 e = sphere.position - ray.origin;

7. Store the squared magnitude of this new vector, as well as the squared radius of  
the sphere:
    float rSq = sphere.radius * sphere.radius;
    float eSq = MagnitudeSq(e);

8. Project the vector pointing from the ray to the sphere onto the direction of the ray.  
We assume the direction of the ray to be normalized:
    float a = Dot(e, ray.direction);

9. Construct the sides of a triangle using the radius of the circle at the projected point 
from the last step. The sides of this triangle are the radius, b and f. We work with 
squared units:
    float bSq = eSq - (a * a);
    float f = sqrt(rSq - bSq);

10. Store the intersection time as t:
    float t = a - f; // Assume normal intersection!

11. If the ray never hits the sphere, return false without modifying the RaycastResult 
pointer:
    if (rSq - (eSq - a * a) < 0.0f) {
        return false;
    }

12. If the ray started inside the sphere, we need to reverse the direction of the hit time:
    else if (eSq < rSq) { // Inside sphere
        t = a + f; // Reverse direction
    }
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13. If a RaycastResult structure was provided, fill out the result of the raycast:
    if (outResult != 0) {
        outResult->t = t;
        outResult->hit = true;
        outResult->point = ray.origin + ray.direction * t;
        outResult->normal = Normalized(outResult->point 
                            - sphere.position);
    }

14. The ray hit the sphere, return true:
    return true;
}

How it works…
Raycasting against a sphere was covered in detail in Chapter 10, 3D Line Intersections. The 
actual ray casting logic does not change. What does change is the added parameter and 
return value of the Raycast function.

If a ray hits a sphere, we first need to find the point of impact. We find the point of impact by 
scaling the ray normal by the t value of the collision, then adding that vector to the origin of 
the ray. The normal of the intersection is going to be a normalized vector from the center of 
the sphere to the point of impact. The RaycastResult structure also stores the t value of 
the raycast as well as a Boolean, if the raycast succeeded or not:

We modified the Raycast against sphere function to take a RaycastResult pointer.  
This new argument is optional, the end user can pass in a NULL or 0 and the function will  
still work. We could have made this new argument optional, by changing the function 
declaration to:

float Raycast(const Sphere& sphere, const Ray& ray, 
   RaycastResult* outResult = 0);
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Changing the declaration this way would not have broken anything. We would get the same 
floating point value out of the raycast, which would keep all existing code functioning and 
by default the new argument would be NULL. However, by not making this new argument 
optional, we make sure the compiler throws errors wherever the old declaration of the 
function is called. We will rely on this because we changed the return value of the Raycast 
function from a bool to a float.

Raycast Bounding Box
Any box in 3D space, OBB, or AABB has six sides. This means the normal of a Raycast 
against a box will be the normal of one of the six sides. When doing a Raycast against a 
Bounding Box, we find the point of impact the same way we did for a Raycast against a 
Sphere. The normal, however, will be the same as the normal of the side which the ray hit.

Getting ready
Several of our existing functions use Raycast against AABB or OBB internally. When we 
change the API, we must be careful to update every spot where these functions are used. We 
must update the Linetest functions and the MeshRay function. In this section we are going 
to rewrite the Raycast function for AABB and OBB.

How to do it…
Follow these steps to update the Raycast functions of boxes in a way that they provide 
additional useful data:

1. Update the declarations of Raycast against both OBB and AABB in Geometry3D.h:
bool Raycast(const AABB& aabb, const Ray& ray, 
   RaycastResult* outResult);
bool Raycast(const OBB& obb, const Ray& ray, 
   RaycastResult* outResult);

2. Update the declaration of Raycast against AABB in Geometry3D.cpp:
bool Raycast(const AABB& aabb, const Ray& ray,
 RaycastResult* outResult) {
    ResetRaycastResult(outResult);

3. Find the minimum and maximum points of the AABB:
    vec3 min = GetMin(aabb);
    vec3 max = GetMax(aabb);
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4. Find the min and max intersection points of the ray against all three slabs which 
make up the OBB. Index 0 and 1 correspond to the min and max intersections  
of slab X:
    float t[] = { 0, 0, 0, 0, 0, 0 };
    // Use CMP function to avoid division by 0!
    t[0] = (min.x - ray.origin.x) / ray.direction.x;
    t[1] = (max.x - ray.origin.x) / ray.direction.x;
    t[2] = (min.y - ray.origin.y) / ray.direction.y;
    t[3] = (max.y - ray.origin.y) / ray.direction.y;
    t[4] = (min.z - ray.origin.z) / ray.direction.z;
    t[5] = (max.z - ray.origin.z) / ray.direction.z;

5. Find the largest minimum value:
    float tmin = fmaxf(
                    fmaxf(
                       fminf(t[0], t[1]), 
                       fminf(t[2], t[3])
                    ), 
                 fminf(t[4], t[5]));

6. Find the smallest maximum value:
    float tmax = fminf(
                    fminf(
                       fmaxf(t[0], t[1]), 
                       fmaxf(t[2], t[3])), 
                 fmaxf(t[4], t[5]));

7. If tmax is less than 0, the ray intersects the AABB in the negative direction. This 
means the AABB is behind the origin of the ray and no intersection takes plane:
    if (tmax < 0) { return false; }

8. If tmin is greater than tmax, the ray does not intersect the AABB:
    if (tmin > tmax) { return false; }

9. If tmin is less than 0, the ray intersects the AABB but the origin of the ray is inside 
the AAB. Use tmax as the closest point:
    float t_result = tmin;
    if (tmin < 0.0f) { t_result = tmax; }

10. If a raycast result structure was provided, fill out the results of the raycast:
    if (outResult != 0) {
        outResult->t = t_result;
        outResult->hit = true;
        outResult->point = ray.origin + 
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                           ray.direction * t_result;
      vec3 normals[] = {
         vec3(-1, 0, 0), (1, 0, 0),
         vec3(0, -1, 0), (0, 1, 0),
         vec3(0, 0, -1), vec3(0, 0, 1)
      };
      for (int i = 0; i < 6; ++i) {
         if (CMP(t_result, t[i])) {
            outResult->normal = normals[i];
         }
      }
   }

   return true;
}

11. Update the declaration of Raycast against OBB in Geometry3D.cpp:
bool Raycast(const OBB& obb, const Ray& ray, 
RaycastResult* outResult) {
   ResetRaycastResult(outResult);

12. Store a vector from the origin of the ray to the center of the OBB:
   const float* o = obb.orientation.asArray;
   const float* size = obb.size.asArray;
   vec3 p = obb.position - ray.origin;

13. Store the orientation of the OBB as vectors. Each vector represents one of the axis  
of the OBB:
   vec3 X(o[0], o[1], o[2]);
   vec3 Y(o[3], o[4], o[5]);
   vec3 Z(o[6], o[7], o[8]);

14. Project the direction of the ray onto each axis of the OBB:
   vec3 f(
      Dot(X, ray.direction),
      Dot(Y, ray.direction),
      Dot(Z, ray.direction)
   );

15. Project p onto every axis of the OBB:
   vec3 e( Dot(X, p), Dot(Y, p), Dot(Z, p) );
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16. Calculate tmin and tmax for each axis of the OBB:
   float t[6] = { 0, 0, 0, 0, 0, 0 };
   for (int i = 0; i < 3; ++i) {
      if (CMP(f[i], 0)) {

17. If the ray is parallel to the slab being tested, and the origin of the ray is not inside the 
slab, there is no hit:
         if (-e[i] - size[i] > 0||-e.x + size[i] < 0) {
            return false;
         }

18. If there is no hit, avoid a division by zero by setting the result to a small number:
         f[i] = 0.00001f; // Avoid div by 0!
      }
      t[i * 2 + 0] = (e[i] + size[i]) / f[i]; 
      t[i * 2 + 1] = (e[i] - size[i]) / f[i]; 
   }

19. Find the largest minimum:
   float tmin = fmaxf(
                   fmaxf(
                      fminf(t[0], t[1]), 
                      fminf(t[2], t[3])
                   ), 
                   fminf(t[4], t[5]));

20. Find the smallest maximum:
   float tmax = fminf(
                   fminf(
                      fmaxf(t[0], t[1]), 
                      fmaxf(t[2], t[3])
                   ), 
                   fmaxf(t[4], t[5]));

21. If tmax is less than 0, the ray interacts the OBB in the negative direction. This means 
the OBB is behind the ray and we have no real intersection:
   if (tmax < 0) { return false; }

22. If tmin is greater than tmax, the ray and OBB do not intersect:
   if (tmin > tmax) { return false; }
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23. If tmin is less than 0, the ray starts inside of the OBB. In this case use tmax as the 
intersection time:
   float t_result = tmin;
   if (tmin < 0.0f) { t_result = tmax; }

24. If a RaycastResult argument was provided, fill it out with the result of the raycast:
   if (outResult != 0) {
      outResult->hit = true;
      outResult->t = t_result;
      outResult->point = ray.origin + ray.direction 
                         * t_result;
      vec3 normals[] = { X, X * -1.0f, 
                         Y, Y * -1.0f, 
                         Z, Z * -1.0f 
                       };
      for (int i = 0; i < 6; ++i) {
         if (CMP(t_result, t[i])) {
            outResult->normal = Normalized(normals[i]);
         }
      }
   }
   return true;
}

25. Update the implementation of the Linetest function AABB to use the new Raycast 
function:
bool Linetest(const AABB& aabb, const Line& line) {
    Ray ray;
    ray.origin = line.start;
    ray.direction = Normalized(line.end - line.start);
    RaycastResult raycast;
    if (!Raycast(aabb, ray, &raycast)) {
        return false;
    }
    float t = raycast.t;
    return t >= 0 && t * t <= LengthSq(line);
}

26. Update the implementation of the Linetest function for OBB to use the new 
Raycast function:
bool Linetest(const OBB& obb, const Line& line) {
    Ray ray;
    ray.origin = line.start;
    ray.direction = Normalized(line.end - line.start);
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    RaycastResult result;
    if (!Raycast(obb, ray, &result)) {
        return false;
    }
    float t = result.t;
    return t >= 0 && t * t <= LengthSq(line);
}

27. Update the part of the MeshRay function that performs raycasting against the 
acceleration structure bounds:
float MeshRay(const Mesh& mesh, const Ray& ray) {
    // Existing Mesh Ray Code
    // else { ...
        // while (!toProcess.empty()) { ...
            if (iterator->children != 0) {
                for (int i = 8 - 1; i >= 0; --i) {
                    RaycastResult raycast; // NEW
                    Raycast(iterator->children[i].bounds,
                       ray, &raycast);
                    if (raycast.t >= 0) {
                        toProcess.push_front(
                           &iterator->children[i]
                        );
                    }
                }
            }
        }
    }
    return -1;
}

How it works…
We covered how to raycast against boxes in Chapter 10, 3D Line Intersections. Raycasting 
against both AABB and OBB is done using slab tests. The way we test for ray intersection does 
not change. The only thing that changes is the return value and the new optional argument. If 
the optional argument is provided, the result of the raycast is written to it.

We will provide a quick review of how the slab tests work. Any box is made out of six planes. 
These six planes create three slabs. We find the two points where the ray enters and exists 
each of the three slabs that make up a box. This leaves us with six points in total.
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Out of the six points of where the ray enters and exists each slab we take the largest min and 
the smallest max values. For the ray to hit a box, the max and min points have to be greater 
than 0 and the min point has to be greater than the max point:

The resulting normal of a raycast against a box is the normal of the side of the slab that 
intersected the ray. When we modified the Raycast functions we created an array of normals. 
That is, we made one normal for each value where the ray could enter or exit a slab. Next,  
we loop through all of the points, and compare the final point. Once we know the index of  
the point that was hit, the intersection normal is at that same index in the normal array.

Raycast plane and triangle
We have two planar primitives in our geometry toolbox, the Plane and the Triangle. The 
collision normal for both primitives is the same as the normal of the primitive itself. We must 
keep in mind that if a ray hits a plane or triangle from behind, that is not actually a hit. This is 
not a bug, it's how raycasting against these primitives should work. The "forward" direction of 
a triangle is determined by counter clockwise winding.

Getting ready
When we modify the Raycast API for a plane or a triangle we break all the functions that 
internally use the old declaration. We must take care to update these broken functions 
as well. We will need to update the Linetest against triangle function and the MeshRay 
function.
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How to do it…
Follow these steps to update the Raycast function for both triangles and planes so that the 
functions return more useful data:

1. Change the declaration of Raycast against both the Plane and Triangle in 
Geometry3D.h:
bool Raycast(const Plane& plane, const Ray& ray, 
   RaycastResult* outResult);
bool Raycast(const Triangle& triangle, const Ray& ray,
    RaycastResult* outResult);

2. Update the Raycast against the Plane implementation in Geometry3D.cpp:
bool Raycast(const Plane& plane, const Ray& ray, 
RaycastResult* outResult) {
    ResetRaycastResult(outResult);

3. Store the dot products of the ray direction and plane normal, as well as the ray origin 
and plane normal:
    float nd = Dot(ray.direction, plane.normal);
    float pn = Dot(ray.origin, plane.normal);

4. If the dot product of the ray direction and plane normal is positive or zero, the ray 
normal and plane normal face in the same direction. If these normals face in the 
same direction, there is no intersection:
    if (nd >= 0.0f) { return false; }

5. Find the time along the ray where the intersection happened:
    float t = (plane.distance - pn) / nd;

6. We only have an intersection if the time along the ray is positive.
    if (t >= 0.0f) { // t must be positive

7. If a RaycastResult structure was provided, fill it out with the result of the  
raycast data:
        if (outResult != 0) {
            outResult->t = t;
            outResult->hit = true;
            outResult->point = ray.origin+ray.direction*t;
            outResult->normal = Normalized(plane.normal);
        }
        return true;
    }

    return false;
}
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8. Update the Raycast against the Triangle implementation in Geometry3D.cpp:
bool Raycast(const Triangle& triangle, const Ray& ray, 
RaycastResult* outResult) {
    ResetRaycastResult(outResult);

9. Create a plane out of the triangle and perform a raycast against that plane:
    Plane plane = FromTriangle(triangle);
    RaycastResult planeResult;

10. If the ray does not hit the triangle plane, there is no raycast hit:
    if (!Raycast(plane, ray, &planeResult)) {
        return false;
    }

11. Find the point along the ray where the plane was hit:
    float t = planeResult.t;
    Point result = ray.origin + ray.direction * t;

12. Find the barycentric coordinate of the hit point on the triangle:
    vec3 barycentric = Barycentric(result, triangle);

13. If the barycentric coordinate is within the zero to one range for all components, the 
ray hit the triangle:
    if (barycentric.x >= 0.0f && barycentric.x <= 1.0f &&
        barycentric.y >= 0.0f && barycentric.y <= 1.0f &&
        barycentric.z >= 0.0f && barycentric.z <= 1.0f) {

14. If a RaycastResult structure was provided, fill it out with the result of the  
raycast data:
        if (outResult != 0) {
            outResult->t = t;
            outResult->hit = true;
            outResult->point = ray.origin+ray.direction*t;
            outResult->normal = plane.normal;
        }

        return true;
    }

    return false;
}
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15. Update the Linetest against the Triangle implementation in Geometry3D.cpp. 
We need to update this function to take into account the new return type  
of the raycast:
bool Linetest(const Triangle& triangle, const Line& line) {
    Ray ray;
    ray.origin = line.start;
    ray.direction = Normalized(line.end - line.start);
    RaycastResult raycast;
    if (!Raycast(triangle, ray, &raycast)) {
        return false;
    }
    float t = raycast.t;

    return t >= 0 && t * t <= LengthSq(line);
}

16. The MeshRay function uses the Raycast against the Triangle function in two 
places, be sure to update both in Geometry3D.cpp:
float MeshRay(const Mesh& mesh, const Ray& ray) {
    if (mesh.accelerator == 0) {
        for (int i = 0; i < mesh.numTriangles; ++i) {
            RaycastResult raycast;

17. First, raycasting against a triangle needs to use the new updated function signature:
            Raycast(mesh.triangles[i], ray, &raycast);
            float result = raycast.t;
            if (result >= 0) {
                return result;
            }
        }
    }
    // else { ... 
        // Unchanged code not shown
        // while (!toProcess.empty()) {
            //if (iterator->numTriangles >= 0) {
                for (int i=0;i<iterator->numTriangles;++i){
                    RaycastResult raycast;

18. Again, raycasting against a triangle needs to use the updated function signature:
                    Raycast(
                       mesh.triangles[
                          iterator->triangles[i]
                       ], ray, &raycast); // End Raycast
                    float r = raycast.t;
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                    if (r >= 0) {
                        return r;
                    }
                }
            }

            // Unchanged code not shown
        //}
    //}
    //return -1;
//}

How it works…
The logic behind raycasting has not changed. Raycasting against a plane was covered in 
Chapter 10, 3D Line Intersections. Raycasting against a triangle was covered in Chapter 
11, Triangles and Meshes. The logic of both Raycast functions we modified is the same 
as described in those chapters. The only thing we have changed is the return type of the 
function, and we added an optional argument.

The new argument is an optional pointer to a RaycastResult structure. The 
RaycastResult structure was built earlier in this chapter, it contains important information 
about a raycast. Instead of simply returning the time of raycast hit, that time is now returned 
as a part of this new structure. If a Raycast hits a Plane or Triangle, the normal of the 
interaction is the same as the normal of the primitive.

Physics system
It is finally time to start implementing a basic Physics Engine. By the end of this chapter 
we will have particles flying around the screen in a physically realistic way. Before we start 
implementing our physics simulation, let's take a minute to discuss what we will be simulating, 
the rigidbody.

A rigidbody is an object that does not change its shape, the object is rigid. Think about 
dropping a ball filled with air on the ground. At the point of impact the ball would squash, and 
then it would stretch as it bounces back up. This ball is not rigid; it changes shape (but not 
volume), which allows it to bounce. Now imagine a ball of solid steel being dropped. It would 
not change in shape or volume, but it would not bounce either.

Our object can bounce around because we can model the math behind what it would be like if 
they bounced, but really they will be rigid. Our simulated objects will never change shape as a 
result of a physical reaction.
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A scene can have hundreds of thousands of rigidbodies active at the same time. Managing 
them individually quickly becomes overwhelming. For this reason we will build a system to 
manage rigidbodies for us, this system is going to be a class named PhysicsSystem.

The PhysicsSystem is a convenient way to store all of our rigidbodies. The system is 
updated on a fixed time step. During a physics update all of the forces acting on a rigidbody 
are summed together. Once each rigidbody knows the sum of the forces acting on it, the  
body will integrate its position to move. After every rigidbody has moved, we must resolve  
any collisions that may have happened as a result of the motion.

Getting ready
In this section, we are going to implement a simple Physics System. This system will track 
rigidbodies and constraints within the world that do not move. Our initial implementation will 
store both rigidbodies and constraints in a linear list. This linear list can later be replaced for  
a Bounding Volume Hierarchy acceleration structure, resulting in better performance.

How to do it…
Follow these steps to implement a basic rigidbody class and a basic Physics System:

1. Create a new file, Rigidbody.h. Add header guards and include std::vector 
along with Geometry3D.h. All rigidbody objects will extend this class:
#ifndef _H_RIGIDBODY_
#define _H_RIGIDBODY_

#include <vector>
#include "Geometry3D.h"

// Rigidbody base-class definition

#endif

2. Add the definition of the Rigidbody class to Rigidbody.h:
class Rigidbody {
  public:
      Rigidbody() { }

3. We make the destructor virtual in case any child class of Rigidbody needs to 
allocate dynamic memory:
      virtual ~Rigidbody() { }
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4. The following functions are virtual. It is up to the specific rigidbody implementations 
to provide these functions:
      virtual void Update(float deltaTime) { }
      virtual void Render() { }
      virtual void ApplyForces() { }
      virtual void SolveConstraints(
          const std::vector<OBB>& constraints) { }
  };

5. Create a new file, PhysicsSystem.h. Add header guards to the file and include 
Rigidbody.h:
#ifndef _H_PHYSICS_SYSTEM_
#define _H_PHYSICS_SYSTEM_

#include "Rigidbody.h"

// Physics system class definition

#endif

6. Declare the new PhysicsSystem class in PhysicsSystem.h:
class PhysicsSystem {
protected:

7. A basic Physics System will hold a number of rigidbodies and a set of world 
constraints or obstacles:
    std::vector<Rigidbody*> bodies;
    std::vector<OBB> constraints;
public:
    void Update(float deltaTime);
    void Render();

    void AddRigidbody(Rigidbody* body);
    void AddConstraint(const OBB& constraint);

    void ClearRigidbodys();
    void ClearConstraints();
};

8. Create a new file, PhysicsSystem.cpp. Include PhysicsSystem.h. To visualize 
the simulation, also include FixedFunctionPrimitives.h and glad.h. Both of 
the visualization files are a part of the framework provided with this chapter:
#include "PhysicsSystem.h"
#include "FixedFunctionPrimitives.h"
#include "glad/glad.h"
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9. Implement the AddRigidbody, AddConstraint, ClearRigidbodys, and 
ClearConstraints functions in Rigidbody.cpp:
void PhysicsSystem::AddRigidbody(Rigidbody* body) {
    bodies.push_back(body);
}
void PhysicsSystem::AddConstraint(const OBB& obb) {
    constraints.push_back(obb);
}
void PhysicsSystem::ClearRigidbodys() {
    bodies.clear();
}
void PhysicsSystem::ClearConstraints() {
    constraints.clear();
}

10. Implement the Render function of the PhysicsSystem in PhysicsSystem.cpp. 
Think of this function as a debug render function. It allows us to visualize the Physics 
System, but would never be seen in a production game:
void PhysicsSystem::Render() {

11. Define colors which we will use to render:
    static const float rigidbodyDiffuse[]{ 
        200.0f/255.0f, 0.0f, 0.0f, 0.0f };
    static const float rigidbodyAmbient[]{ 
        200.0f/255.0f, 50.0f/255.0f, 50.0f/255.0f, 0.0f };
    static const float constraintDiffuse[]{ 
        0.0f, 200.0f/255.0f, 0.0f, 0.0f };
    static const float constraintAmbient[]{ 
        50.0f/255.0f, 200.0f/255.0f, 50.0f/255.0f, 0.0f };
    static const float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };

12. Set the render color for rigidbodies:
    glColor3f(rigidbodyDiffuse[0], 
              rigidbodyDiffuse[1], 
              rigidbodyDiffuse[2]);
    glLightfv(GL_LIGHT0, GL_AMBIENT, rigidbodyAmbient);
    glLightfv(GL_LIGHT0, GL_DIFFUSE, rigidbodyDiffuse);
    glLightfv(GL_LIGHT0, GL_SPECULAR, zero);

13. Render all rigidbodies within the Physics System:
    for (int i = 0, size = bodies.size(); i < size; ++i) {
        bodies[i]->Render();
    }
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14. Set the render color for constraints:
    glColor3f(constraintDiffuse[0], 
              constraintDiffuse[1], 
              constraintDiffuse[2]);
    glLightfv(GL_LIGHT0, GL_AMBIENT, constraintAmbient);
    glLightfv(GL_LIGHT0, GL_DIFFUSE, constraintDiffuse);
    glLightfv(GL_LIGHT0, GL_SPECULAR, zero);

15. Render all constraints within the Physics System:
    for (int i = 0; i < constraints.size(); ++i) {
        ::Render(constraints[i]);
    }
}

16. Implement the Update function of the PhysicsSystem in PhysicsSystem.cpp. 
This function must be called on a fixed update:
void PhysicsSystem::Update(float deltaTime) {

17. Accumulate forces on the rigidbodies:
    for (int i = 0, size = bodies.size(); i < size; ++i) {
        bodies[i]->ApplyForces();
    }

18. Integrate (update) the position of every rigidbody within the Physics System:
    for (int i = 0, size = bodies.size(); i < size; ++i) {
        bodies[i]->Update(deltaTime);
    }

19. Solve world constraints (obstacles). This will keep rigidbodies from moving through 
objects which are considered solid constraints:
    for (int i = 0, size = bodies.size(); i < size; ++i) {
        bodies[i]->SolveConstraints(constraints);
    }
}

How it works…
Every physics object we create will be a subclass of Rigidbody. Each object should know 
how to render itself, how to integrate its position, and how to solve world constraints. We will 
leave the details of how each of these functions are implemented in the actual subclass.
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The PhysicsSystem class is a collection of constraints and rigidbodies. Currently we 
only support OBB constraints. Any shape could be made into a constraint so long as the 
Rigidbody class has a function to solve for the constraint type. The Physics System will 
render constraints and rigidbodies using different colors. This rendering is for our visualization 
purposes only. Normally, you would not render the contents of a Physics  
System directly.

The basic physics update loop executes each of the following steps for every Rigidbody:

 f Sum all the forces acting on the body.

 f Integrate the new position of the body.

 f Solve for any collisions. If a collision happens, update position and forces

The Update function of the PhysicsSystem performs each of the preceding tasks as a 
separate loop. This means we must iterate over every object registered three times.

Integrating particles
Particles are a great place to start any physics engine. This is because particles have mass, 
but not volume. The lack of volume means we don't have to concern ourselves with rotation. 
In this section, we will create particles and move them using Euler Integration.

Integration is a way to guess where an object will be in some amount of time. In order to 
guess the new position of an object, we need to know its position, velocity, and all of the 
forces acting on the object. We first need to integrate acceleration with respect to time; this 
will yield the velocity of the object. We next integrate velocity with respect to time; this will 
yield the updated position of the object. The preceding integrations come right from Newton's 
Laws of Motion:

 f An objects velocity will not change unless affected by an external force

 f The acceleration of an object is proportional to the magnitude of the force acting on 
the object, and inversely proportional to the mass of the object

 f Every action has an equal and opposite reaction

The second law states that force equals mass times acceleration. We can rearrange this 
equation to find the acceleration of an object given its force and mass:
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The acceleration of an object affects its velocity. The new velocity is the same as the old 
velocity plus acceleration over some period of time. The period of time we are talking about 
is the time elapsed between game frames, or delta time. We will represent delta time as . 
Velocity is expressed as:

If we know the position of an object and its velocity, we can guess where that object is going to 
be in the future (assuming no other forces act on it). Much like with velocity, the new position 
of an object is the same as its old position plus velocity scaled over some period of time:

Getting ready
In this section, we are going to create a particle class. Particles will be affected by a single 
force, gravity. In every frame we will update the position of every particle using Euler 
Integration.

How to do it…
Follow these steps to implement most of a particle class. This particle class is an extension of 
the rigidbody, this makes every particle a rigidbody:

1. Create a new file, Particle.h. Add header guards and include Rigidbody.h:
#ifndef _H_PARTICLE_
#define _H_PARTICLE_

#include "Rigidbody.h";

#endif

2. Declare a new Particle class in Particle.h. This new class will extend the 
Rigidbody class and override all public functions:
class Particle : public Rigidbody {

3. The following variables are needed to simulate the physics of a particle:
    vec3 position, oldPosition;
    vec3 forces, velocity;
    float mass, bounce;
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4. The gravity and friction variables are the same for all particles. It might make 
sense to have these values be global at some point:
    vec3 gravity; 
    float friction;
public:
    Particle();

5. The following functions are inherited from the Particle base class:
    void Update(float deltaTime);
    void Render();
    void ApplyForces();
    void SolveConstraints(
       const std::vector<OBB>& constraints);

6. The following getter and setter functions are unique to the Particle class:
    void SetPosition(const vec3& pos);
    vec3 GetPosition();
    void SetBounce(float b);
    float GetBounce();
};

7. Create a new file, Particle.cpp, include Particle.h. Include 
FixedFunctionPrimitives.h, to allow us to render the particle; this file is 
included with the source code for this chapter. Implement the trivial getter and  
setter functions of the Particle class:
#include "Particle.h"
#include "Geometry3D.h"
#include "FixedFunctionPrimitives.h"

void Particle::SetPosition(const vec3& pos) {
    position = oldPosition = pos;
}
vec3 Particle::GetPosition() {
    return position;
}
void Particle::SetBounce(float b) {
    bounce = b;
}
float Particle::GetBounce() {
    return bounce;
}
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8. Implement the constructor and Render functions of the Particle class in 
Particle.cpp. Provide an empty stub for the SolveConstraints function;  
we will implement this function in the next section:
Particle::Particle() {

9. Set the constants which are shared across multiple particles:
    friction = 0.95f;
    gravity = vec3(0.0f, -9.82f, 0.0f);

10. Give default values to the constants unique to individual particles:
    mass = 1.0f;
    bounce = 0.7f;
}

11. Render the particle. The particle is rendered as a small sphere:
void Particle::Render() {
    Sphere visual(position, 0.1f);
    ::Render(visual);
}

12. The SolveConstraints function will be implemented in the next section:
void Particle::SolveConstraints(
const std::vector<OBB>& constraints) {
    // Will be covered in next section
}

13. Implement the ApplyForces function of the Particle class in 
Particle.cpp. For now, the only force acting on particles is gravity. As our Physics 
System becomes more sophisticated, this function will get more complex:
void Particle::ApplyForces() {
    forces = gravity;
}

14. Finally, implement the Update function of the Particle class in Particle.cpp. 
This function is responsible for integrating the position of the particle over time. To 
keep the physics simulation accurate, this function needs to be called at fixed time 
intervals: 

void Particle::Update(float deltaTime) {
    oldPosition = position;
    vec3 acceleration = forces * (1.0f / mass);

    velocity = velocity * friction + acceleration * deltaTime;
    position = position + velocity * deltaTime;
}
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How it works…
Each particle contains the following information unique to the particle:

 f The current position and previous position of the particle

 f The sum of all forces acting on the particle

 f The current velocity of the particle

 f The mass of the particle

 f The bounciness of the particle

Each particle also stores the following variables, which are constant across all particles:

 f The gravity constant

 f A friction coefficient

The constant variables could be stored outside of the particle class or made to be static as 
they are shared across all particles.

The constructor of the Particle class sets default values for all member variables of the 
class. The class contains trivial accessor and mutator functions for position and bounciness. 
We did not implement the SolveConstraints function in this section as it is the topic of  
the next section. The Render function is also trivial; it renders a sphere at the position of  
the particle.

The most important methods we created in this section are the ApplyForces and Update 
methods. The ApplyForces method needs to sum all the forces acting on the particle and 
set the forces member variable to the sum. For this demo, the only force acting on each 
particle is gravity. As we introduce more forces to act on particles, this function will grow.

The Update function is responsible for moving the particle. We move the particle using Euler 
Integration. The Update method first finds the acceleration of the particle based on its mass 
(a constant of 1) and the sum of all the forces acting on the particle. Once the acceleration 
is known, the Update method integrates velocity with respect to time. This new velocity can 
then be used to integrate the position of the particle with respect to time.

Integrating at non-uniform intervals will quickly destabilize our physics simulation. Because of 
this, the Update method of the PhysicsSystem should be called at fixed intervals:
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The framework provided with this chapter updates the Physics System a constant 30 times 
per second. This means if the game is running at 60 FPS, the Physics System is updated once 
every two frames. However, if the game is running at 15 FPS the Physics System is updated 
twice every frame.

There's more…
Over extended periods of time, Euler Integration can become inaccurate. This happens 
because we are guessing where the object's position will be in a small amount of time without 
knowing if any other forces will act on the object in that time. We can reduce this error if we 
take the previous velocity of the particle into account.

Taking the old velocity into account when we integrate for the position of the particle is called 
Velocity Verlet Integration. This is not the same thing as Verlet Integration, which will be 
covered later in the chapter. In this more accurate integration model, when we integrate the 
position of a particle we do so not using the velocity, but rather the average of the current  
and previous velocity:

Integrating position according to the preceding formula will help keep our simulation more 
stable over longer periods of time. To implement Velocity Verlet Integration in code, we only 
need to change the Update function of the Particle class:

void Particle::Update(float deltaTime) {
 oldPosition = position;
 vec3 acceleration = forces * (1.0f / mass);

 vec3 oldVelocity = velocity;
 velocity = velocity * friction + acceleration * deltaTime;
 position = position + (oldVelocity + velocity) 
              * 0.5f * deltaTime;
}

Solving constraints
In the last section, Integrating Particles, we made our particle class move using Euler 
Integration. The only force affecting particles was gravity. This means if you were to run the 
simulation, every particle would fall down without interacting with anything. In this section, we 
will introduce several unmovable constraints to the world. By the end of the section, particles 
will bounce around the screen as they hit constraints while falling under the force of gravity.
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Our PhysicsSystem currently only supports OBB constraints; however, adding additional 
constraint types is a trivial task. We will use raycasting to find collision features between a 
constraint and a particle. Because we modified the raycast for all primitives to return the 
same data, implementing new constraint types will use very similar code.

Solving constraints is based on Newton's third law of motion:

Every action has an equal and opposite reaction

In this section, we will explore what to do when a particle collides with an OBB. This collision 
will need to apply some force to the particle to change the velocity of the particle in a way that 
is realistic.

Our particles have bounciness to them. Formally, this bounciness is called the Coefficient of 
Restitution. In simple terms, this value represents how much energy is kept when a particle 
bounces off a surface. The value of this variable should be within the range of 0 to 1. For 
example, with a value of 0.95f, 95% of the energy of the ball is conserved when the ball 
bounces, only 5% is lost.

Getting ready
In this section, we are going to finish the Particle class by implementing the 
SolveConstraints method. This method is responsible for reacting to collisions with 
constraints in a 3D environment. A constraint is immovable, the particles will respond  
to a collision, but the constraints will not.

How to do it…
Follow these steps to add Euler Integration to the Particle class:

1. Implement the SolveConstraint function in Particle.cpp:
void Particle::SolveConstraints(
const std::vector<OBB>& constraints) {
    int size = constraints.size();
    for (int i = 0; i < size; ++i) {

2. Create a line which represents the path our particle has travelled since the 
last frame:
        Line traveled(oldPosition, position);

3. If the particle collided with an obstacle, create a ray out of the motion of the 
particle. Use this ray to find the point of intersection:
        if (Linetest(constraints[i], traveled)) {
            vec3 direction = Normalized(velocity);
            Ray ray(oldPosition, direction);
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            RaycastResult result;
            if (Raycast(constraints[i], ray, &result)) {

4. Move the particle just a little bit above the collision point. This will allow 
particles to roll down sloped surfaces:
                position = result.point + 
                    result.normal * 0.002f;

5. Deconstruct the velocity vector into parallel and perpendicular components 
relative to the collision normal:
                vec3 vn = result.normal * 
                    Dot(result.normal, velocity);
                vec3 vt = velocity - vn;

6. Record where the particle has come from to avoid tunnelling:
                oldPosition = position;

7. Update the velocity of the particle:
                velocity = vt - vn * bounce;

8. This break statement is optional. If you leave it in place, only one constraint will be 
solved each frame:
                break;
            }
        }
    }
}

How it works…
Before discussing how we adjusted the velocity of particles, let's discuss the collision check 
that is being used. We could have used the PointInOBB function to check if a particle and 
OBB happen to intersect. That function would have been called like so:

if (PointInOBB(position, constraints[i])) {

But this approach would suffer from tunneling. Tunnelling happens when a particle is moving 
so fast that one frame is in front of an OBB and the next frame is behind the OBB. The particle 
moved too fast to ever be inside the OBB. To solve the tunnelling problem, we have to check 
every possible point of space that the particle has occupied between frames against the OBB. 
Luckily we can do this test fairly cheap using a line test.
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We keep track of the position of a particle as well as the position of the particle during the 
last frame. We can draw a line from the last known position to the current position. That line 
represents every point of space that the particle occupied between frame updates. If that 
line intersects the OBB, that means there was an intersection; even if the particle tunnelled 
through the OBB.

To resolve a collision with the OBB, we place the particle just a little bit above the point 
of contact, and modify the velocity of the particle. We modify the velocity assuming the 
constraint exerts the same force on the particle that the particle exerts on the constraint. This 
force is exerted around the normal of the collision. To modify the velocity of the particle, we 
need to break the motion of the particle down into components parallel and tangent to the 
collision normal. Assuming we have particle P, with velocity V. This particle intersects some 
object, the normal of the intersection is N:

We want to find the velocity parallel to the collision normal, we will call this . We also 
want to find the velocity tangential to the collision normal, we will call this .  is the 
perpendicular component of V being projected onto N. Finding parallel and perpendicular 
vectors through projection was covered in Chapter 1, Vectors.

Once we have the velocity broken down into parallel and perpendicular components of  
velocity with respect to the intersection normal, we can find the new velocity by subtracting 
the parallel component from the perpendicular component:
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The preceding formula will result in a perfect bounce. That is, no energy will be lost when the 
particle bounces off the surface of the OBB. In order to model a more realistic bounce, we 
need to take the Coefficient of Restitution, represented by  into account. We modify the 
preceding formula by scaling the parallel component of the projection by the bounciness.  
This makes the object not bounce up as high as it did previously. This leaves us with the  
final formula used in the code:

Verlet Integration
Earlier in this chapter, we discussed how and why Euler Integration becomes less stable over 
time. We provided a better way to integrate position, Velocity Verlet Integration. While better 
than Euler Integration, the new method provided can become unstable too. In this section,  
we will discuss in detail implementing a more stable integration method: Verlet Integration.

Getting ready
In order to move particles using Verlet Integration, we need to re-implement both the Update 
and SolveConstraints methods of the Particle class. We need to re-implement these 
functions in a way that finds the velocity of a particle using the previous and current positions 
of the particle.

How to do it…
Follow these steps to replace the Euler Integration of the Particle class with Verlet 
Integration:

1. Remove the velocity variable from the definition of the Particle class in 
Particle.h.

2. Re-implement the Update method of the Particle class in Particle.cpp. This 
new implementation will perform Verlet Integration:
void Particle::Update(float deltaTime) {

3. Find the implicit velocity of the particle:
    vec3 velocity = position - oldPosition;
    oldPosition = position;
    float deltaSquare = deltaTime * deltaTime;
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4. Integrate the position of the particle:
    position = position + 
        (velocity * friction + forces * deltaSquare);
}

5. Re-implement the SolveConstraints method of the Particle class in 
Particle.cpp. This new implementation modifies the previous position of the 
particle on impact: 
void Particle::SolveConstraints(
const std::vector<OBB>& constraints) {
    int size = constraints.size();
    for (int i = 0; i < size; ++i) {

6. Create a line which represents the path the particle has travelled since the last 
frame: 
        Line traveled(oldPosition, position);

7. If the particle hit any of the obstacles:
        if (Linetest(constraints[i], traveled)) {

8. Calculate the implicit velocity o the particle. Use this velocity to construct a ray out of 
the motion of the particle: 
            vec3 velocity = position - oldPosition;
            vec3 direction = Normalized(velocity);
            Ray ray(oldPosition, direction);
            RaycastResult result;

9. Perform a ray cast to find the exact point at which the particle and constraint collided: 
            if (Raycast(constraints[i], ray, &result)) {

10. Move the particle to just a little bit above the collision point. This allows particles to 
roll off sloped surfaces: 
                position = result.point + 
                result.normal * 0.003f;

11. Decompose velocity into parallel and perpendicular components relative to the 
collision normal. 
                vec3 vn = result.normal *
                Dot(result.normal, velocity);
                vec3 vt = velocity - vn;
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12. Finally, update the old position of the particle. We move the old position behind the 
new position in a way that the delta between the two represents the current velocity 
of the particle.
                oldPosition = position – 
                    (vt - vn * bounce);

13. This break statement is optional. Keeping the break statement here makes to so only 
one constraint is solved per frame.
                break;
            }
        }
    }
}

How it works…
Our Update method didn't change all that much. The velocity of the particle is now implied. 
We find the velocity by subtracting the old position of the particle from the new position of 
the particle. We then save the current position as the old position for the next frame. The 
integration formula has changed to:

This formula does not look like the previously implemented code. The provided code 
rearranged the following bits of the formula:

When we substitute the preceding definition into the integration formula, we get the same 
math as the code implementation. The SolveConstraints function also didn't change 
much. We find the velocity of the particle by subtracting the current position of the particle 
from the last position. Then we break the velocity down into parallel and perpendicular 
components like before.

Because velocity is implied, we can't adjust velocity. Instead, we modify the old position of the 
particle to make the particle think it is travelling from a new direction.
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Manifolds and Impulses

In this chapter, we will add volume to our rigidbodies. This means that a rigidbody will have a 
mass, position, orientation, and shape. By the end of the chapter, we will have an advanced 
physics engine to make cubes collide and react in a realistic way. This chapter will cover the 
following topics:

 f Manifold for spheres

 f Manifold for boxes

 f Rigidbody modifications

 f Linear Velocity

 f Linear Impulse

 f Physics system update

 f Angular Velocity

 f Angular Impulse

Introduction
The goal of this chapter is to build a simple rigidbody simulation. By the end of the chapter, 
we will have cubes colliding and bounding off each other on screen. This chapter provides the 
foundation of a physics system that can handle rigidbodies that have mass and orientation.

In order to respond to collisions, we must first know something about the collisions. To learn 
about the features of collisions, we begin this chapter by developing Collision Manifolds, 
which will hold information about collisions.

After we create manifolds, we will build a Linear Impulse system to learn the basics of 
collision resolution. Finally, we will add Angular Impulse to make the physics system  
more realistic.
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Manifold for spheres
In order to resolve collisions between objects that have volume, we need to learn more about 
the nature of the mentioned collisions. This additional information is known as a Collision 
Manifold. A typical collision manifold usually contains the following things:

 f The collision normal

 f The penetration distance

 f A set of contact points

Additionally, a manifold might also contain the following things:

 f Pointers to the colliding objects

 f The relative velocity of the collision

 f Nature of the collision (no collision, colliding, penetrating)

Let's assume that we have two colliding objects, A and B. The collision normal of the manifold 
between the two, tells us what direction each object needs to move in to resolve the collision. 
If A moves in the negative direction of the normal and B moves in the positive direction, the 
objects will no longer intersect.

The penetration distance of the manifold is half of the total length of penetration. Each 
object needs to move by the penetration distance to resolve the collision. Finally, the set of 
contact points in the manifold are all the points at which the two objects collide, projected 
onto a plane. The plane these points are projected onto has the normal of the collision  
normal and is located halfway between the colliding objects.

In this section, we will start building collision manifests for a pair of spheres. The nice thing 
about spheres is they only have one contact point between them. We can visualize the 
collision manifest between two spheres as follows:
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Getting ready
In this section, we will create a collision manifold structure. We will also implement code  
to find the collision manifold of sphere to sphere and sphere to OBB collision.

How to do it…
Follow the given steps to declare a collision manifold and find the manifold between  
two spheres:

1. Declare the CollisionManifold structure and the ResetCollisionManifold 
helper function in Geometry3D.h:
typedef struct CollisionManifold {
   bool colliding;
   vec3 normal;
   float depth;
   std::vector<vec3> contacts;
};
void ResetCollisionManifold(CollisionManifold* result);

2. Implement the ResetCollisionManifold function in Geometry3D.cpp. This 
function is responsible for setting the default values of a collision manifold. By 
default, the manifold contains information we expect to see if there is no collision 
taking place:
void ResetCollisionManifold(CollisionManifold* result) {
   if (result != 0) {
      result->colliding = false;
      result->normal = vec3(0, 0, 1);
      result->depth = FLT_MAX;
      result->contacts.clear();
   }
}

3. Declare the FindCollisionFeatures function for sphere to sphere and OBB  
to sphere collisions in Geometry3D.h:
CollisionManifold FindCollisionFeatures(const Sphere& A,
   const Sphere& B);
CollisionManifold FindCollisionFeatures(const OBB& A, 
   const Sphere& B);
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4. Implement the FindCollisionFeatures function for sphere to sphere collisions  
in Geometry3D.cpp:
CollisionManifold FindCollisionFeatures(const Sphere& A,
const Sphere& B) {
   CollisionManifold result; 
   ResetCollisionManifold(&result);

5. Find the combined radius of the two spheres:
   float r = A.radius + B.radius;

6. Find the distance between the two spheres:
   vec3 d = B.position - A.position;

7. If the squared distance is less than the squared sum radius, the spheres do not 
intersect:
   if (MagnitudeSq(d) - r * r > 0 
   || MagnitudeSq(d) == 0.0f) {
        return result;
   }

8. We will use the d variable as the direction from sphere B to A. As with any direction, 
we must normalize this variable:
   Normalize(d);

9. We know that the spheres intersect, so fill out the intersection data:
   result.colliding = true;
   result.normal = d;
   result.depth = fabsf(Magnitude(d) - r) * 0.5f;
   // dtp - Distance to intersection point
   float dtp = A.radius - result.depth;
   Point contact = A.position + d * dtp;
   result.contacts.push_back(contact);

   return result;
}

10. Implement the FindCollisionFeatures function for sphere to box collisions in 
Geometry3D.cpp:
CollisionManifold FindCollisionFeatures(const OBB& A, 
const Sphere& B) {
    CollisionManifold result; 
    ResetCollisionManifold(&result);
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11. Find the closest point to the center of the sphere on the oriented bounding box:
    Point closestPoint = ClosestPoint(A, B.position);

12. If the point is outside the sphere, the sphere and OBB do not intersect. Return false, 
as shown:
    float distanceSq = MagnitudeSq(
       closestPoint - B.position);
    if (distanceSq > B.radius * B.radius) {
       return result;
    }

13. Alternatively, we try to fill out the return data. If the closest point is at the center of 
the sphere, we can't easily build a collision normal. If that is the case, we try to find  
a new closest point:
    vec3 normal; 
    if (CMP(distanceSq, 0.0f)) {
        float mSq = MagnitudeSq(closestPoint - A.position);
        if (CMP(mSq, 0.0f)) {
            return result;
        }
        // Closest point is at the center of the sphere
        normal = Normalized(closestPoint - A.position);
    }
    else {
        normal = Normalized(B.position - closestPoint);
    }

14. Once we know an intersection has happened, we fill out the intersection result:

    Point outsidePoint = B.position - normal * B.radius;
    float distance = Magnitude(closestPoint – 
                               outsidePoint);
    result.colliding = true;
    result.contacts.push_back(closestPoint + 
        (outsidePoint - closestPoint) * 0.5f);
    result.normal = normal;
    result.depth = distance * 0.5f;

    return result;
}
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How it works…
To find the collision manifold for two spheres, we first find the combined radius of the spheres 
as well as a vector that points from sphere A to sphere B. We early out if the distance between 
the spheres is less than the combined radius as this indicates no collision.

If there is a collision between the spheres, the normal of the collision is a normalized vector 
that points from sphere A to B. The penetration distance is half of the distance between the 
two spheres minus the combined radius of the spheres. To find the contact point, move from  
A to B along the normal by the penetration depth:

To find the collision manifest between an oriented bounding box and a sphere, we first need to 
find the closest point on the OBB to the sphere. If the distance from the center of the sphere 
to the closest point is greater than the radius of the sphere, or if we can't find a normal vector, 
we must early out as there is no collision.
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If there is a collision, the normal of the collision is a vector that points from the center of the 
closest point on the OBB to the center of the sphere. We find the distance between the closest 
point on the surface of the sphere and the closest point on the OBB . The penetration depth 
will be half the distance between these two points. The contact point will be halfway between 
the objects along the collision normal:

Manifold for boxes
Finding the collision manifold between two OBBs is difficult. The collision normal and 
penetration distance come right from the Separating Axis Theorem. Recall that there are 
potentially 15 axes of potential separation between two OBBs. While performing the SAT 
tests, we keep track of which axis had the least penetration; that is the axis of intersection. 
The collision normal is the same as the axis of intersection. The penetration depth is the 
difference between the centers of both the OBBs projected onto this axis.



Manifolds and Impulses

370

What makes finding the manifold for OBBs difficult is determining the contact points between 
the boxes. There are several ways in which two boxes could intersect, each producing different 
types of contact points:

We will implement a less than optimal and simple solution. Given two OBBs, A and B, we will 
find the intersection points of the edges of A and the planes of B as well as the edges of B  
and planes of A. This essentially clips each box against the other. The resulting contact set  
will contain duplicates, or extra points, but it will provide a reliable manifest for this chapter.

Getting ready
In this section, we will focus on generating a valid collision manifold for the collision of two 
OBBs. To implement this, we will need several support functions. We need to implement 
functions to find the vertices, edges, and planes of an oriented bounding box. We also need 
to implement a function to clip a line against a plane and clip several lines against several 
planes. Finally, we need a helper function to determine the penetration  
depth of two oriented bounding boxes on a given axis.
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How to do it…
Follow the steps given to find the collision manifold between two boxes:

1. Declare the FindCollisionFeatures and all the helper functions in 
Geometry3D.h:
std::vector<Point> GetVertices(const OBB& obb);
std::vector<Line> GetEdges(const OBB& obb);
std::vector<Plane> GetPlanes(const OBB& obb);
bool ClipToPlane(const Plane& plane, 
   const Line& line, Point* outPoint);
std::vector<Point> ClipEdgesToOBB(
   const std::vector<Line>& edges, const OBB& obb);
float PenetrationDepth(const OBB& o1, const OBB& o2, 
   const vec3& axis, bool* outShouldFlip);
CollisionManifold FindCollisionFeatures(const OBB& A, 
   const OBB& B);

2. Implement the GetVertices support function in Geometry3D.cpp:
std::vector<Point> GetVertices(const OBB& obb) {

3. This function will always return eight vertices. You can optimize the function by taking 
an array argument and filling it out rather than returning a vector:
    std::vector<vec3> v;
    v.resize(8);

4. Store the center, extents, and orientation of the OBB as vectors:
    vec3 C = obb.position;  // OBB Center
    vec3 E = obb.size;      // OBB Extents
    const float* o = obb.orientation.asArray;
    vec3 A[] = {            // OBB Axis
        vec3(o[0], o[1], o[2]),
        vec3(o[3], o[4], o[5]),
        vec3(o[6], o[7], o[8]),
    };

5. Every vertex is the center of the OBB plus a vector that is the extents projected onto 
an axis. There is no formula for this; it's just a matter of figuring out the logic:
    v[0] = C + A[0] * E[0] + A[1] * E[1] + A[2] * E[2];
    v[1] = C - A[0] * E[0] + A[1] * E[1] + A[2] * E[2];
    v[2] = C + A[0] * E[0] - A[1] * E[1] + A[2] * E[2];
    v[3] = C + A[0] * E[0] + A[1] * E[1] - A[2] * E[2];
    v[4] = C - A[0] * E[0] - A[1] * E[1] - A[2] * E[2];



Manifolds and Impulses

372

    v[5] = C + A[0] * E[0] - A[1] * E[1] - A[2] * E[2];
    v[6] = C - A[0] * E[0] + A[1] * E[1] - A[2] * E[2];
    v[7] = C - A[0] * E[0] - A[1] * E[1] + A[2] * E[2];

6. Finally, return the vector of vertex points:
    return v;
}

7. Implement the GetEdges support function in Geometry3D.cpp:
std::vector<Line> GetEdges(const OBB& obb) {

8. An OBB will always have 12 edges. Every face has four edges and several edges are 
shared between faces:
    std::vector<Line> result;
    result.reserve(12);

9. Start by finding the vertices of the OBB:
    std::vector<Point> v = GetVertices(obb);

10. Declare an array that holds pairs of indices into the vector of vertices. Every element 
in this array is an edge between the vertices specified by index:
    int index[][2] = { // Indices of edge-vertices
        {6,1},{6,3},{6,4},{2,7},{2,5},{2,0},
        {0,1},{0,3},{7,1},{7,4},{4,5},{5,3}
    };

11. Loop through the index array and construct edges from the vertex pairs:
    for (int j = 0; j < 12; ++j) {
        result.push_back(Line(
            v[index[j][0]], v[index[j][1]]
        ));
    }

12. Finally, return the list of edges:
    return result;
}

13. Implement the GetPlanes support function in Geometry3D.cpp:
std::vector<Plane> GetPlanes(const OBB& obb) {

14. Store the center, extents, and rotation axes of the OBB as vectors:
    vec3 c = obb.position; // OBB Center
    vec3 e = obb.size;     // OBB Extents
    const float* o = obb.orientation.asArray;
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    vec3 a[] = {           // OBB Axis
        vec3(o[0], o[1], o[2]),
        vec3(o[3], o[4], o[5]),
        vec3(o[6], o[7], o[8]),
    };

15. An OBB is made up of six planes; every face of the box is one plane:
    std::vector<Plane> result;
    result.resize(6);

16. Construct a plane for every face of the OBB using a point on each face and the 
normal of each face:
    result[0] = Plane(a[0],  Dot(a[0], (c + a[0] * e.x)));
    result[1] = Plane(a[0]*-1.0f,-Dot(a[0],(c-a[0]*e.x)));
    result[2] = Plane(a[1],  Dot(a[1], (c + a[1] * e.y)));
    result[3] = Plane(a[1]*-1.0f,-Dot(a[1],(c-a[1]*e.y)));
    result[4] = Plane(a[2],  Dot(a[2], (c + a[2] * e.z)));
    result[5] = Plane(a[2]*-1.0f,-Dot(a[2],(c-a[2]*e.z)));

17. Finally, return the list of planes that make up the OBB:
    return result;
}

18. Implement the ClipToPlane support function in Geometry3D.cpp. This function 
checks if a line intersects a plane and if it does, the line is clipped to the plane:
bool ClipToPlane(const Plane& plane, 
const Line& line, Point* outPoint) {

19. To begin with, ensure that the line and plane intersect:
    vec3 ab = line.end - line.start;
    float nAB = Dot(plane.normal, ab);
    if (CMP(nAB, 0)) {
        return false;
    }

20. Find the time along the line at which it intersects the plane:
    float nA = Dot(plane.normal, line.start);
    float t = (plane.distance - nA) / nAB;

21. If the intersection time was valid, return the point at which the line and plane intersect:
    if (t >= 0.0f && t <= 1.0f) {
        if (outPoint != 0) {
            *outPoint = line.start + ab * t;



Manifolds and Impulses

374

        }
        return true;
    }

22. If the time is not within the range of zero to one, the plane and line segment do  
not intersect. The plane might intersect an infinite line, but we only care about  
the segment:
    return false;
}

23. Implement the ClipEdgesToOBB support function in Geometry3D.cpp. This 
function takes a list of edges that represent an oriented bounding box and another 
oriented bounding box. The edges provided are clipped against the planes of the 
provided bounding box:
std::vector<Point> ClipEdgesToOBB(
const std::vector<Line>& edges, const OBB& obb) {

24. We will have at most as many output points as we had input edges:
    std::vector<Point> result;
    result.reserve(edges.size());
    Point intersection;

25. Get the planes of the provided OBB:
    std::vector<Plane>& planes = GetPlanes(obb);

26. Loop through every plane of the provided OBB:
    for (int i = 0; i<planes.size(); ++i) {

27. For every plane, loop through every provided edge:
        for (int j = 0; j <edges.size(); ++j) {

28. Try to clip the current edge to the current plane:
            if (ClipToPlane(planes[i], 
            edges[j], &intersection)) {

29. If the edge and plane intersect, record the resulting point:
                if (PointInOBB(intersection, obb)) {
                    result.push_back(intersection);
                }
            }
        }
    }
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30. Finally, return a list of clipped points:
    return result;
}

31. Implement the PenetrationDepth support function in Geometry3D.cpp. This 
function uses similar logic to testing if objects separate on a single axis in the  
SAT test:
float PenetrationDepth(const OBB& o1, const OBB& o2, 
const vec3& axis, bool* outShouldFlip) {

32. Project both the OBB onto the provided axis and store their respective intervals:
    Interval i1 = GetInterval(o1, Normalized(axis));
    Interval i2 = GetInterval(o2, Normalized(axis));

33. If the intervals do not overlap, there is no penetration:
    if (!((i2.min <= i1.max) && (i1.min <= i2.max))) {
        return 0.0f; // No penerattion
    }

34. Find the length of both the intervals:
    float len1 = i1.max - i1.min;
    float len2 = i2.max - i2.min;

35. Find the smallest and largest points out of both the intervals:
    float min = fminf(i1.min, i2.min);
    float max = fmaxf(i1.max, i2.max);

36. Find the length of the combined intervals:
    float length = max - min;

37. Depending on the order of arguments, we might need to flip the collision normal 
outside this function. If the second bounding box is in front of the first one, the 
collision normal will need to be flipped:
    if (outShouldFlip != 0) {
        *outShouldFlip = (i2.min < i1.min);
    }

38. Return the length of the intersection:
    return (len1 + len2) - length;
}



Manifolds and Impulses

376

39. Finally, begin implementing the FindCollisionFeatures function in 
Geometry3D.cpp by defining the axis for the SAT test. This function will use the 
helper functions we have built up until now to extract collision features between  
two OBBs:
CollisionManifold FindCollisionFeatures(const OBB& A, 
const OBB& B) {

40. Initialize a new collision manifold:
    CollisionManifold result    
    ResetCollisionManifold(&result);

41. Store the orientation of both the bounding boxes:
    const float* o1 = A.orientation.asArray;
    const float* o2 = B.orientation.asArray;

42. Construct a SAT test. The axes of separation are built in the same way as the OBB  
to OBB test described in Chapter 9, 3D Shape Intersections:
    vec3 test[15] = { // Face axis
        vec3(o1[0], o1[1], o1[2]),
        vec3(o1[3], o1[4], o1[5]),
        vec3(o1[6], o1[7], o1[8]),
        vec3(o2[0], o2[1], o2[2]),
        vec3(o2[3], o2[4], o2[5]),
        vec3(o2[6], o2[7], o2[8])
    };
    for (inti = 0; i< 3; ++i) { // Fill out rest of axis
        test[6 + i * 3 + 0] = Cross(test[i], test[0]);
        test[6 + i * 3 + 1] = Cross(test[i], test[1]);
        test[6 + i * 3 + 2] = Cross(test[i], test[2]);
    }

43. We create a temporary variable for the direction of the collision normal:
    vec3* hitNormal = 0;
    bool shouldFlip;

44. Test all the 15 axes of potential separation for intersection:
    for (int i = 0; i< 15; ++i) {

45. You can use the more robust version of the SAT described in Chapter 11, Triangles 
and Meshes, to avoid the edge case of a malformed axis here:
        if (MagnitudeSq(test[i])< 0.001f) {
            continue;
        }
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46. Find the penetration depth of the OBBs on the separating axis:
        float depth = PenetrationDepth(A, B, 
                      test[i], &shouldFlip);

47. If the depth is less than 0, the OBBs did not intersect:
        if (depth <= 0.0f) {
            return result;
        }
        else if (depth <result.depth) {
            if (shouldFlip) {
                test[i] = test[i] * -1.0f;
            }

48. Store the depth and collision normal:
            result.depth = depth;
            hitNormal = &test[i];
        }
    }

49. If no collision normal was found, the OBBs do not intersect:
    if (hitNormal == 0) {
        return result;
    }
    vec3 axis = Normalized(*hitNormal);

50. Next, we clip each oriented bounding box against the other. This will leave us with a 
list of intersection points:
    std::vector<Point> c1 = ClipEdgesToOBB(GetEdges(B), A);
    std::vector<Point> c2 = ClipEdgesToOBB(GetEdges(A), B);
    result.contacts.reserve(c1.size() + c2.size());
    result.contacts.insert(result.contacts.end(),
                           c1.begin(), c1.end());
    result.contacts.insert(result.contacts.end(),
                           c2.begin(), c2.end());

51. Finish the function by projecting the result of the clipped points onto a shared plane. 
The shared plane is constructed out of the collision normal:
    Interval i = GetInterval(A, axis);
    float distance = (i.max - i.min)* 0.5f – 
                     result.depth * 0.5f;
    vec3 pointOnPlane = A.position + axis * distance;

    for (int i = result.contacts.size() - 1; i>= 0; --i) {
        vec3 contact = result.contacts[i];
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52. Store the result of the projection:
        result.contacts[i] = contact + (axis * 
        Dot(axis, pointOnPlane - contact));
    }

    result.colliding = true;
    result.normal = axis;

    return result;
}

How it works…
The GetVertices function returns the eight vertices of the oriented bounding box as a 
vector of Point structs. The GetEdges function constructs 12 edges from the 8 vertices  
of the box and returns them as a vector of Line structs. The GetPlanes function returns  
the six planes that make up the oriented bounding box:

The ClipToPlane function checks whether a line intersects a plane and if it does, the 
function returns the point of intersection through a pointer argument. The ClipEdgesToOBB 
function takes the edges of an oriented bounding box and clips them against another oriented 
bounding box. This function then returns a set of clipped intersection points:
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The PenetrationDepth function projects both the OBBs onto a given axis, similar to what 
the SAT (Separating Axis Theorem) test does. The function returns the length of overlap 
between the two boxes. A negative length or a length of zero means there is no intersection. 
If the interval of the second object starts before the interval of the first, the objects must be 
reversed.

On a high level, the FindCollisionFeatures function does a separating axis test between 
two bounding boxes to see if they intersect. While doing the SAT test, this function keeps track 
of the axis with the least amount of separation. If a collision has occurred, both the bounding 
boxes are clipped against each other and the clipped intersection points are projected onto a 
common plane.

There's more…
Our function to find the collision features of OBBs potentially returns too much data. For 
example, with an edge to face collision, there should only be two contact points returned; 
however, our function will return four. This might not seem like a big deal, but it will lead 
to instability within our simulation. If you need to derive a more stable way to determine 
contact points, it is discussed in an article by Randy Gaul. Refer to www.randygaul.
net/2014/05/22/deriving-obb-to-obb-intersection-sat/.

Duplicate points
After projecting the contact points onto a shared collision plane, the contact point set will 
likely contain duplicate points. We can remove these points by modifying the loop that  
projects the contact points onto the shared plane, as follows:

for (int i = result.contacts.size() - 1; i>= 0; --i) {
    vec3 contact = result.contacts[i];
    result.contacts[i] = contact + (axis * 
                         Dot(axis, pointOnPlane - contact));

    for (int j = result.contacts.size() - 1; j >i; --j) {
        if (MagnitudeSq(result.contacts[j] - result.contacts[i]) 
        < 0.0001f) {
            result.contacts.erase(result.contacts.begin() + j);
            break;
        }
    }
}

www.randygaul.net/2014/05/22/deriving-obb-to-obb-intersection-sat/
www.randygaul.net/2014/05/22/deriving-obb-to-obb-intersection-sat/
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Rigidbody Modifications
We will create a new Rigidbody subclass that has volume. This class will either be a sphere 
or a box. Before we make this subclass, we need to slightly modify the Rigidbody class so 
that we can identify the type of rigidbody we are dealing with.

As we will create a new subclass of Rigidbody, we need a way to differentiate this new class 
from a particle. We will introduce the HasVolume helper function that will let us know if a rigid 
body has volume or not.

Getting ready
This class will be a rigidbody that has a shape and some volume. We will also add a type 
identifier to the Rigidbody class. With this identifier, we will be able to tell if a rigidbody  
is a particle or if it has some volume.

How to do it…
Follow the mentioned steps to add type information to the Rigidbody class:

1. Add the following type definitions to Rigidbody.h. These constants will let us know 
what type of rigidbody each rigidbody subclass is:
#define RIGIDBODY_TYPE_BASE  0
#define RIGIDBODY_TYPE_PARTICLE 1
#define RIGIDBODY_TYPE_SPHERE 2
#define RIGIDBODY_TYPE_BOX  3

2. Next, we will add an integer identifier to the Rigidbody class. This will be a  
public integer value. Much of the unchanged code in the Rigidbody class  
is not listed here:
class Rigidbody {
public:
   int type;
   // Rest of class unchanged

3. Set the identifier in the constructor of the Rigidbody class. Since this is a base 
class, we set the type value to RIGIDBODY_TYPE_BASE:
inline Rigidbody() {
   type = RIGIDBODY_TYPE_BASE;
}
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4. Add a new inline function to the Rigidbody class, HasVolume. If the type of rigid 
body is a box or sphere, the body has volume:
inline bool HasVolume() {
   return type == RIGIDBODY_TYPE_SPHERE 
      || type == RIGIDBODY_TYPE_BOX;
}

5. Set the correct rigidbody type in the constructor of the Particle class in 
Particle.cpp. Since this is a particle, we set the type of the rigidbody to 
RIGIDBODY_TYPE_PARTICLE:
Particle::Particle() {
   /*NEW*/type = RIGIDBODY_TYPE_PARTICLE;
   friction = 0.95f;
   bounce = 0.7f;
   gravity = vec3(0.0f, -9.82f, 0.0f);
   mass = 1.0f;
}

How it works…
In this section, we added a type identifier to the Rigibody base class. This was done in 
anticipation of supporting multiple rigidbody types. The final physics engine will support three 
types of rigidbodies: particles, spheres, and OBBs. Each of these types is represented by a 
#define constant.

In addition to defining rigidbody types and adding a type member to the Rigidbody base 
class, we modified the existing Particle class. We set the type variable of Particle 
inherited from Rigidbody to RIGIDBODY_TYPE_PARTICLE. This modification will let the 
physics system know the difference between a particle and other rigidbody types.

In the next section, we will subclass the Rigidbody class into RigidbodyVolume. This new 
class will be a rigidbody with volume and shape. To prepare for this, we added a type to the 
Rigidbody class and a way to check if the rigidbody has volume or not.

Linear Velocity
The next step in making our physics engine more realistic is in creating the 
RigidbodyVolume class. This new class will have a shape and volume. The shape will be a 
sphere or a box. This new class will have Linear Velocity. Linear Velocity moves an object in 
a linear fashion, which means that there will be no rotation. Gravity pulling a sphere straight 
down is a linear motion caused by Linear Velocity.
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Ideally, we would want the collision shape (Sphere or Box) to be stored outside the 
RigidbodyVolume class. However, for the sake of keeping the code presented in this  
book easy to follow, we will include the collision shape in the RigidbodyVolume class.

The RigidbodyVolume class will perform Euler Integration. We will include the variables 
needed for Euler Integration (position, velocity, forces and mass) in the new class. All the 
new variables will be public. These variables will be directly accessable as opposed to having 
accessor and mutator functions. We do this to keep the code presented short. Having mutator 
functions will be ideal as it can prevent issues like setting the mass of a rigidbody to be 
negative.

In this section, we will also introduce a method for adding Impulse to an object. A force 
modifies velocity over time. However, an Impulse modifies velocity immediately. We will also 
introduce Friction in this section. Friction will slow down objects that are colliding against 
each other. We also revisit the Coefficient of Restitution for modelling bouncing collisions 
between objects.

Getting ready
In this section, we will create the RigidbodyVolume class. We will also add Linear Velocity  
to the class, allowing gravity to make objects fall.

How to do it...
Follow the given steps to create a new type of rigidbody--one that has volume:

1. Create a new file--RigidbodyVolume.h. Add header guards, add a #define for 
gravity, and declare the new RigidbodyVolume class, extending the Rigidbody 
class:
#ifndef _H_MASS_RIGIDBODY_
#define _H_MASS_RIGIDBODY_

#include "Rigidbody.h"
#define GRAVITY_CONST vec3(0.0f, -9.82f, 0.0f)

class RigidbodyVolume : public Rigidbody {
   // New class body
};

#endif
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2. In the new RigidbodyVolume class, add the variables we will need to move the 
object with velocity, a Sphere and an OBB. The Sphere and OBB will represent the 
volume of the rigidbody:
public:
   vec3 position;
   vec3 velocity;
   vec3 forces; // Sum of all forces
   float mass;
   float cor; // Coefficient of restitution
   float friction;

3. The next two variables represent the volume of the rigidbody:
   OBB box;
   Sphere sphere;

4. Create two constructors; both will set sane default values for the member variables:
public:

5. The first constructor creates a generic rigidbody. You will need to set the type of the 
rigidbody manually later:
   inline RigidbodyVolume() :
      cor(0.5f), mass(1.0f),
      friction(0.6f) {
      type = RIGIDBODY_TYPE_BASE;
   }

6. The alternate constructor takes a rigidbody type for an argument. This constructor will 
let you create either a box or a sphere:
   inline RigidbodyVolume(intbodyType) :
      cor(0.5f), mass(1.0f), friction(0.6f) {
      type = bodyType;
   }

7. Implement an empty destructor:
   ~RigidbodyVolume() { }

8. Declare the functions we will be overriding from the Rigidbody class:
   void Render();
   void Update(float dt); // Update Position
   void ApplyForces();

9. Declare the functions unique to the RigidbodyVolume class:
   void SynchCollisionVolumes();
   float InvMass();
   void AddLinearImpulse(const vec3& impulse);
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10. Create a new file, RididbodyVolume.cpp. Implement the ApplyForces, 
AddLinearImpulse, and InvMass helper functions in this new file. The only  
force that accumulates on the rigidbody every frame is gravity:
void RigidbodyVolume::ApplyForces() {
   forces = GRAVITY_CONST * mass;
}

11. A force affects velocity over time, but an impulse has a direct and immediate effect 
on velocity:
void RigidbodyVolume::AddLinearImpulse(const vec3& impulse) {
   velocity = velocity + impulse;
}

12. The InvMass helper function will return the inverse mass of the object, or zero if the 
object has no mass:
float RigidbodyVolume::InvMass() {
   if (mass == 0.0f) {return 0.0f;}
   return 1.0f / mass;
}

13. Implement the SynchCollisionVolumes and Render functions in 
RidigbodyVolume.cpp. The synch function will be responsible for keeping the 
position of the sphere and box objects used to represent the volume of the rigidbody 
in synch with the position of the rigidbody:
void RigidbodyVolume::SynchCollisionVolumes() {
   sphere.position = position;
   box.position = position;
}

14. The Render function just calls one of the existing render functions for a sphere or 
box, depending on the type of body we are dealing with:
void RigidbodyVolume::Render() {
   SynchCollisionVolumes();
   if (type == RIGIDBODY_TYPE_SPHERE) {
      ::Render(sphere);
   }
   else if (type == RIGIDBODY_TYPE_BOX) {
      ::Render(box);
   }
}
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15. Implement the Updatefunction in RigidbodyVolume.cpp:
void RigidbodyVolume::Update(float dt) {

16. Integrate forces into velocity and apply dampening. The dampening simulates  
air friction:
   const float damping = 0.98f;
   vec3 acceleration = forces * InvMass();
   velocity = velocity + acceleration * dt;
   velocity = velocity * damping;

17. Integrate the velocity with respect to time into position:
   position = position + velocity * dt;

18. Keep the volume of the object in synch with the new position of the rigidbody:
   SynchCollisionVolumes();
}

How it works...
The RigidbodyVolume class has a shape; it is either a sphere or a box. We can tell what 
shape the rigidbody is by checking the type member variable inherited from Rigidbody.

The InvMass function returns the inverse mass of the rigidbody if the mass is not zero.  
If the mass is zero, the InvMass function returns zero. This means objects with zero mass 
have infinite mass, therefore they are immovable.

To understand infinite mass, imagine an apple falling on the surface of the Earth. Both the 
objects exert a force on each other. The earth pushes the apple in one direction and causes it 
to bounce. The apple pushes the earth in the opposite direction, but because the mass of the 
earth is so large, the effect of the apple pushing is it immeasurably small. In this example, the 
earth would have a mass of 0 or seemingly infinite relative to the apple.

The SynchCollisionVolumes sets the position of the volume (sphere or box) to be the 
same as the position of the rigidbody. This is important because the volume will be used for 
building a collision manifest. The AddLinearImpulse method is new; this method modifies 
the velocity of the rigidbody immediately.
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Linear Impulse
In this section, we will explore resolving collisions using Impulses. Remember that an impulse 
is an instantaneous change in velocity. When two objects intersect, we will find the collision 
manifold between the objects and use this manifold to figure out what impulse will resolve  
the collision:

We will build our impulse-based collision resolution in two parts. These two parts are linear 
and angular impulse resolution. In this section, we will resolve linear impulses. This means 
that objects will not rotate; they will fall, stop falling, and rest on each other. In a later section 
of this chapter, we will add a rotational impulse to make our physics simulation more realistic.

Getting ready
In this section, we will implement two functions: FindCollisionFeatures and 
ApplyImpulse. The FindCollisionFeatures function will return the collision manifold 
between two RigidbodyVolume objects, and the ApplyImpulse function will use this 
manifold to apply an impulse to two colliding objects, which will resolve the collision.

How to do it...
Follow the given steps to resolve the linear component of intersections by applying impulse to 
intersecting objects:

1. Declare the FindCollisionFeatures and ApplyImpulse functions in 
RigidbodyVolume.cpp:
CollisionManifold FindCollisionFeatures(
   RigidbodyVolume& ra, RigidbodyVolume& rb);
void ApplyImpulse(RigidbodyVolume& A,
   RigidbodyVolume& B, const CollisionManifold& M, int c);
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2. Implement the FindCollisionFeatures function in RigidbodyVolume.cpp:
CollisionManifold FindCollisionFeatures(
RigidbodyVolume& ra, RigidbodyVolume& rb) {

3. First, create an empty collision manifold:
   CollisionManifold result;
   ResetCollisionManifold(&result);
   if (ra.type == RIGIDBODY_TYPE_SPHERE) {
      if (rb.type == RIGIDBODY_TYPE_SPHERE) {

4. If object A is a sphere and object B is a sphere, the result is the manifold of  
two spheres:
         result = FindCollisionFeatures(
            ra.sphere, rb.sphere);
      }
      else if (rb.type == RIGIDBODY_TYPE_BOX) {

5. If object A is a sphere and object B is a box, the result is the manifold between a 
sphere and a box. As our FindCollision feature takes a box and a sphere as 
arguments (the opposite of what we have), we need to invert the collision normal:
            result = FindCollisionFeatures(
               rb.box, ra.sphere);
            result.normal = result.normal * -1.0f;
      }
   }
   else if (ra.type == RIGIDBODY_TYPE_BOX) {
      if (rb.type == RIGIDBODY_TYPE_BOX) {

6. If both object A and B are boxes, the result is the collision manifold between  
two boxes:
         result = FindCollisionFeatures(
            ra.box, rb.box);
      }
      else if (rb.type == RIGIDBODY_TYPE_SPHERE) {

7. If object A is a box and object B is a sphere, the result is the manifold between  
a box and a sphere:
         result = FindCollisionFeatures(
            ra.box, rb.sphere);
      }
   }
   return result;
}
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8. Start implementing the ApplyImpulse function in RigidbodyVolume.cpp. This is 
the function that will actually resolve the penetration of two objects:
void ApplyImpulse(RigidbodyVolume& A, 
RigidbodyVolume& B, constCollisionManifold& M, int c) {
   // Linear Velocity
   float invMass1 = A.InvMass();
   float invMass2 = B.InvMass();
   float invMassSum = invMass1 + invMass2;
   if (invMassSum == 0.0f) { return; }

9. The first thing we do is find the relative velocity between the two rigidbodies. If the 
rigidbodies are moving apart from each other, we stop the function as no collision 
can occur:
   // Relative velocity
   vec3 relativeVel = B.velocity - A.velocity;
   // Relative collision normal
   vec3 relativeNorm = M.normal;
   Normalize(relativeNorm);
   // Moving away from each other? Do nothing!
   if (Dot(relativeVel, relativeNorm) > 0.0f) {
      return;
   }

10. Next, we find the value of j; this is the magnitude of the impulse needed to resolve 
the collision. As we are calculating j per contact, we divide the final j value by the 
number of contacts the intersection contains:
   float e = fminf(A.cor, B.cor);
   float numerator = (-(1.0f + e) * 
                     Dot(relativeVel, relativeNorm));
   float j = numerator / invMassSum;
   if (M.contacts.size() > 0.0f && j != 0.0f) {
      j /= (float)M.contacts.size();
   }

11. We multiply the collision normal by the magnitude of the impulse and apply the 
resulting vector to the velocity of each of the colliding bodies. This is how we apply 
Linear Impulse to the rigidbodies. We are modifying the velocity of each body directly 
to make them push apart from each other:
   vec3 impulse = relativeNorm * j;
   A.velocity = A.velocity - impulse *invMass1;
   B.velocity = B.velocity + impulse *invMass2;
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12. After linear impulse is applied, we must apply some friction. To apply friction, we first 
find a vector tangential to the collision normal:
   // Friction
   vec3 t = relativeVel - (relativeNorm * 
                           Dot(relativeVel, relativeNorm));
   if (CMP(MagnitudeSq(t), 0.0f)) {
      return;
   }
   Normalize(t);

13. Once the tangential vector is found, we have to find jt, the magnitude of the friction 
we are applying to this collision: 
   numerator = -Dot(relativeVel, t);
   float jt = numerator / invMassSum;
   if (M.contacts.size() > 0.0f &&jt != 0.0f) {
      jt /= (float)M.contacts.size();
   }
   if (CMP(jt, 0.0f)) { 
      return; 
   }

14. We need to clamp the magnitude of friction to between –j * friction and j * 
friction, as shown. This property of friction is called Coulomb's Law: 
   float friction = sqrtf(A.friction * B.friction);
   if (jt> j * friction) {
      jt = j * friction;
   } 
   else if (jt< -j * friction) {
      jt = -j * friction;
   }

15. Finally, we apply the tangential impulse (friction) to the velocity of each rigidbody 
involved in the collision:
   vec3 tangentImpuse = t * jt;

   A.velocity = A.velocity - tangentImpuse *  invMass1;
   B.velocity = B.velocity + tangentImpuse *  invMass2;
}
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How it works...
The FindCollisionFeatures function uses if statements to find the types of rigidbodies 
that intersect. Based on these types, the correct version of FindCollisionFeatures is 
called and the collision manifest from it is returned. If a sphere and box are colliding, we need 
to flip the collision normal. This is because we only have box to sphere functions to check for 
box and sphere intersections.

Once we have the features of a collision, we apply a linear impulse to colliding objects to solve 
the collision. To make the physics more realistic, we also apply some friction. Let's explore 
both these topics in detail.

Linear Impulse
In order to find the Linear Impulse needed to resolve a collision, we have to find the Relative 
Velocity of the colliding objects. The relative velocity is the difference between the velocities 
of rigidbody A and rigidbody B. Rigidbody B is considered to be resting. We can find the 
relative velocity by subtracting the velocity vectors, as illustrated:

Next, we want to know the magnitude of the relative velocity in the direction of the collision 
normal. If this magnitude is greater than zero, the objects are moving away from each other 
and we can't apply any impulse. We find this magnitude by taking the dot product of the 
Relative Velocity and the Relative Normal. The Relative Normal is just the collision normal:

The bounciness of objects is based on how elastic they are. In the last chapter, we introduced 
the Coefficient of Restitution to model bounciness. The Coefficient of Restitution will be 
represented by e in our formula. Both the objects involved in the collision have a Coefficient  
of Restitution. We will use the smaller value as the coefficient for the collision:

The magnitude of the velocity of an object after a collision is the same as the magnitude of 
the velocity before the collision , scaled by the Coefficient of Restitution:
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We use the negative Coefficient of Restitution because, after a collision,  is pointing in the 
opposite direction of V. This magnitude will be used as a part of the magnitude of the impulse 
j. Impulse is defined as mass times velocity; therefore, velocity equals impulse divided by 
mass. If the magnitude of our impulse is j and the direction is n, the updated velocity of an 
object is given as follows:

We know the mass of an object, V and n. We need to find the magnitude of the impulse, j. We 
know how to find the magnitude of , we need to divide this value by the inverse mass of 
both the objects involved in the collision. We also need to adjust the value of the Coefficient  
of Restitution because there are two objects involved in the collision:

Finally, we can update the velocities of objects A and B. These objects must move in opposite 
directions to resolve the collision. We assume that A is moving and B is resting. Therefore, we 
want to move A in the negative direction of the collision normal and B in the positive direction:

Friction
Friction is applied to rigidbodies as a separate impulse. We apply impulse friction after 
applying the constraint impulse that keeps objects from penetrating. Impulse has a magnitude 
of j moving in the direction of the collision normal n. Friction will be applied in a direction 
tangent to the normal, we will call this direction t. Similarly, the magnitude of the friction  
will be called jt. Finding a tangent vector to the collision normal is fairly simple:
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Once we have the tangent vector, we find the magnitude of friction by substituting t into the 
formula for the magnitude of the impulse:

The magnitude of friction can never be greater than or smaller than j scaled by the Coefficient 
of Friction, which is the square root of the product of the Coefficient of friction for both  
the objects:

There's more...
The first thing ApplyImpulse does is check to ensure that the rigidbodies are moving in 
opposite directions with this bit of code:

// Moving away from each other? Do nothing!
if (Dot(relativeVel, relativeNorm) > 0.0f) {
   return;
}

This check is the most important part of the function. If two objects are moving apart, 
applying impulse will cause them to stick to each other. When an impulse or tangent impulse 
is applied, we scale the impulse by the mass o the object. If the object has a mass of zero, the 
force of impulse will also be zero. This is what makes objects with infinite mass immovable.

Finding the magnitude of the impulse we need to apply to each object can get a bit confusing. 
A good definition of how this value is derived can be found online at http://physics.
info/momentum/summary.shtml.

http://physics.info/momentum/summary.shtml
http://physics.info/momentum/summary.shtml
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Physics System Update
Now that we have a way to generate collision manifolds for colliding objects and a way to apply 
impulses to rigidbodies, we must make some modifications to the physics system to actually 
use these features. Most of this work will consist of modifying our physics loop, but we also 
need to add a few class variables.

As we are applying gravity to objects resting on each other, we might experience sinking. 
Sinking simply means that objects that should rest on top of each other sink through each 
other. We can fix this using Linear Projection. To perform linear projection, when a collision 
has happened, we will move both the objects a little along the collision normal. This slight 
adjustment to position will fix sinking problems for now.

We will update our physics loop to perform the following steps:

 f Find and store pairs of colliding rigidbodies

 f Accumulate forces acting on the rigidbodies

 f Apply impulses to resolve collisions

 f Update the position of every rigidbody

 f Correct sinking using Linear Projection

 f Solve constraints, if applicable

Getting ready
In this section, we will update the Update function of the PhysicsSystem. The new Update 
function will be a little more complicated than the previous one, but it will allow us to resolve 
collisions in a more realistic way. We also need to introduce several member variables to the 
PhysicsSystem to deal with Linear Projection and store colliding variables.

How to do it...
Follow the mentioned steps to update the physics system to support impulse-based collision 
resolution:

1. Add the following member variables to the PhysicsSystem class in 
PhysicsSystem.h:
class PhysicsSystem {
protected:
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2. We do not modify the existing variables:
   std::vector<Rigidbody*> bodies;
   std::vector<OBB> constraints;

3. Variables for colliding pairs of objects:
   std::vector<Rigidbody*> colliders1;
   std::vector<Rigidbody*> colliders2;
   std::vector<CollisionManifold> results;

4. The linear projection value indicates how much positional correction to apply. A 
smaller value will allow objects to penetrate more. Try to keep the value of this 
variable between 0.2 and 0.8: 
   float LinearProjectionPercent; 

5. The PenetrationSlack determines how much to allow objects to penetrate. This 
helps avoid jitter. The larger this number, the less jitter we have in the system. Keep 
the value between 0.01 and 0.1: 
   float PenetrationSlack; 
   // [1 to 20], Larger = more accurate

6. Even though our physics solver isn't iterative, we do solve physics in several steps. 
With more iterations we achieve, more accurate our physics is. Try to keep this value 
between 1 and 20, I find that a default of 6 to 8 works well: 
   int ImpulseIteration;

7. Ensure that the constructor of the class sets sane default values for these variables: 
PhysicsSystem::PhysicsSystem() {
   LinearProjectionPercent = 0.45f;
   PenetrationSlack = 0.01f;
   ImpulseIteration = 5;

8. The number of colliding object pairs should be adjusted depending on the complexity 
of your simulation: 
   colliders1.reserve(100);
   colliders2.reserve(100);
   results.reserve(100);
}

9. We start reimplementing the Update function of the PhysicsSystem class in 
PhysicsSystem.cpp by building a list of colliding objects: 
void PhysicsSystem::Update(float deltaTime) {
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10. Clear collision pairs from the last frame:
   colliders1.clear();
   colliders2.clear();
   results.clear();

11. Loop through the list of rigidbodies in the system to find pairs of colliding bodies: 
   for (int i = 0, size = bodies.size(); i< size; ++i) {

12. Starting the inner loop at the current iteration of the outer loop avoids duplicate 
collisions with the same objects in reverse order: 
      for (int j = i; j < size; ++j) {
         if (i == j) { 
            continue; 
         }

13. Create a collision manifold to store collision information:
         CollisionManifold result;
         ResetCollisionManifold(&result);

14. Only two rigidbodies with volume can collide:
         if (bodies[i]->HasVolume() && 
         bodies[j]->HasVolume()) {

15. We store the bodies as RigidBodyVolume pointers and find the collision manifold 
between them: 
            RigidbodyVolume* m1 = 
                (RigidbodyVolume*)bodies[i];
            RigidbodyVolume* m2 = 
                (RigidbodyVolume*)bodies[j];
            result = FindCollisionFeatures(*m1, *m2);
         }

16. If the two rigidbodies are colliding, store them both in the list of colliding objects and 
store the collision manifest as well: 
         if (result.colliding) {
            colliders1.push_back(bodies[i]);
            colliders2.push_back(bodies[j]);
            results.push_back(result);
         }
      }
   }
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17. Next, we sum up all the forces acting on every rigidbody. Right now, the only constant 
force is gravity: 
   // Calculate foces acting on the object
   for (int i = 0, size = bodies.size(); i< size; ++i) {
      bodies[i]->ApplyForces();
   }

18. Then, we apply an impulse to objects that are colliding to correct these collisions. We 
apply impulses as many times as we have iterations declared: 
   for (int k = 0; k <ImpulseIteration; ++k) {

19. We apply impulses for every colliding pair of objects:
      for (int i = 0; i < results.size(); ++i) {

20. Next we loop through every contact point of the current pair of colliding objects: 
         int jSize = results[i].contacts.size();
         for (int j = 0; j <jSize; ++j) {

21. Both the objects should already have volume if they are in the colliders list, this check 
is a bit paranoid and redundant: 
            if (colliders1[i]->HasVolume() 
            && colliders2[i]->HasVolume()) {

22. Call the ApplyImpulse function to resolve the collision between the rigidbodies: 
               RigidbodyVolume* m1 =    
                   (RigidbodyVolume*)colliders1[i];
               RigidbodyVolume* m2 = 
                   (RigidbodyVolume*)colliders2[i];
               ApplyImpulse(*m1, *m2, results[i], j);
            }
         }
      }
   }

23. Integrate the forces and velocity of every rigidbody. This will update the position of 
each body: 
   for (int i = 0, size = bodies.size(); i< size; ++i) {
      bodies[i]->Update(deltaTime);
   }

24. Next, we must perform Linear Projection to fix any sinking issues that might occur in 
our simulation. It is very important to synch the collision volume any time we change 
the position of a rigidbody: 
   for (int i = 0, size = results.size(); i< size; ++i) {
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25. Anything that is in the colliders list should have volume, which makes this if check a 
bit redundant. I've chosen to keep the if check here to ensure that it is obvious that 
this code only affects rigidbodies that have volume:
      if (!colliders1[i]->HasVolume() 
      && !colliders2[i]->HasVolume()) {
         continue;
      }
      RigidbodyVolume* m1 = 
          (RigidbodyVolume*)colliders1[i];
      RigidbodyVolume* m2 = 
          (RigidbodyVolume*)colliders2[i];
      float totalMass = m1->InvMass() + m2->InvMass();

26. If both the bodies have a mass of zero, there is nothing we can do; neither body  
will move: 
      if (totalMass == 0.0f) { 
         continue; 
      }

27. Find the correction amount based on the penetration depth, slack, and the amount of 
linear projection we can apply: 
      float depth = fmaxf(results[i].depth 
                    - PenetrationSlack, 0.0f);
      float scalar = depth / totalMass;
      vec3 correction = results[i].normal * scalar 
                        * LinearProjectionPercent;

28. Apply the correction to the position of both the rigidbodies directly:
      m1->position = m1->position - correction 
                     * m1->InvMass();
      m2->position = m2->position + correction 
                     * m2->InvMass();

29. Ensure that the position of the collision volumes affected by correction are in synch 
with the position of the rigidbodies we just changed: 
      m1->SynchCollisionVolumes();
      m2->SynchCollisionVolumes();
   }

30. Finally, we solve any constraints, if applicable:

   for (int i = 0, size = bodies.size(); i< size; ++i) {
      bodies[i]->SolveConstraints(constraints);
   }
}



Manifolds and Impulses

398

How it works...
We have added a total of six new variables to the PhysicsSystem. The first three are parallel 
arrays for storing collision data. These arrays being parallel means that the  element 
of the results array stores the collision manifest between the  elements of the 
colliders1 and colliders2 arrays. The colliders1 and colliders2 arrays reference 
the rigidbodies that collided during this frame.

The LinearPenetrationPrecent and PenetrationSlack variables are used to 
perform Linear Projection. We move every rigidbody by a certain percentage of the total 
collision. This percentage is specified by the LinearPenetrationPrecent variable. The 
lower the value, the less our simulation might jitter, but it will allow objects to sink deeper. 
The PenetrationSlack variable provides some room for intersection before correction is 
applied. The smaller this number is, the more accurate our simulation.

The ImpulseIteration variable dictates how many times per frame impulses will be 
applied to contact points. The larger this number, the more accurate the simulation.  
However, having a large number will also slow down performance. I find five to eight  
to be a good default value.

The new Update function loops through all the rigidbodies in the scene; if two bodies  
both have volume, they are checked for intersection. If an intersection has occurred,  
all the relevant data is stored.

Next, the Update function accumulates all the forces acting on every rigidbody and applies 
an impulse to resolve any collisions. Once the impulse is applied, we can integrate the velocity 
and position of every rigidbody.

After the position has been updated, we perform Linear Projection to prevent sinking. Finally, 
we resolve any hard constraints the world might have. The function to resolve constraints is 
only implemented by particles.

Linear projection is a good introductory technique for dealing with object 
sinking. However, modern physics engines use more sophisticated 
mechanisms, such as iterative physics solvers. For a comprehensive overview 
of a more modern approach, watch Erin Catto's 2014 GDC presentation at 
http://www.gdcvault.com/play/1020603/Physics-for-Game-
Programmers-Understanding.

http://www.gdcvault.com/play/1020603/Physics-for-Game-Programmers-Understanding
http://www.gdcvault.com/play/1020603/Physics-for-Game-Programmers-Understanding
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Angular Velocity
With the PhysicsSystem updated, we can now simulate rigidbodies colliding in a linear 
fashion. This linear collision does not look realistic. To make our simulation more lifelike,  
we must add Linear Velocity to the rigidbodies. Every object will rotate around its center of 
mass. To keep the math simple, we assume that the center of mass for every object is at its 
world position.

In order to rotate an object, we have to store its orientation and understand the forces that 
affect this orientation. These forces are the Angular Acceleration, Angular Velocity, torque,  
and the moment of inertia. Each of these topics will be discussed in detail.

Angular Velocity and Acceleration

Angular Velocity is measured in radians per second ( ). Angular Acceleration is 

measured in radians per second squared ( ) . Angular Velocity  is the first 
derivative of orientation; Angular Acceleration  is the derivative of angular velocity:

We will store angular velocity as a vector. The direction of this vector is the direction of the 
velocity. The magnitude of this vector is the speed. Angular Acceleration is stored in the  
same way.

Tangential Acceleration
Angular acceleration actually consists of two parts: Centripetal Acceleration and Tangential 
Acceleration. Tangential Acceleration changes the magnitude of our velocity.

To find the angular acceleration of an object, we must first find its tangential acceleration. 
Consider that a radian is defined as follows:
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In this case, differentiating this equation with respect to time should yield the angular velocity 
of an object:

In the preceding equation,  is the tangential velocity of the object. Tangential 
velocity is in local coordinates. If an object is rotating around a fixed point, the speed at which 
the object rotates depends on the tangential force being applied to it:

For now, we will refer to tangential velocity as v. We can remove the  part of the preceding 
equation because the distance of the point of impact from the center of mass will be 
constant. This leaves us with:

If we differentiate tangential velocity, we get tangential acceleration:
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Tangential acceleration changes the magnitude of angular velocity, and Centripetal 
Acceleration changes the direction. We have to be able to find both.

Centripetal Acceleration
Centripetal Acceleration causes an object to turn from its straight path. This rotation 
happens around the Center of Mass. Over some time ( ), centripetal acceleration will 
change the direction of the objects velocity, but not the magnitude of the velocity.

The velocity of an object will change direction as the object rotates around a circle. The 
arcLength, or the portion of the circle that has been travelled specifies an arc through that 
the velocity will change. This means that the tangential velocity is a derivative of arcLength:

This means we can find centripetal acceleration using the delta of arc length and velocity,  
as follows:

Torque
The further a point where force is applied is from the center of mass of an object, the less 
force it takes to rotate the object. This concept is known as torque and is defined as follows:

In the preceding equation, r is the distance of the point where force is being applied from 
the center of mass and F is the force being applied. In 3D, r and F are both vectors, but if we 
assume motion on a 2D plane, we can use scalars. Using scalars, the torque always points in 
the same direction; we can define it as follows:
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In the preceding equation,  is the angle between r and F. If a force is tangential to the  
radius (like a circle rolling on a line), the value of  will be one and we can simplify  
the equation down, as shown:

Let's assume that a complex object is made up of n particles. If we want to find the torque  
of the  particle, we could do so as illustrated:

The tangential force of the particle is equal to the mass of the particle times its tangential 
acceleration. Since we know the definition of tangential acceleration, let's substitute this  
into the formula:

To find the total torque of an object, we simply sum up the torque of every particle that makes 
up the said object:

In the preceding formula, the summation in parenthesis is called the Moment of Inertia. The 
moment of inertia is commonly written as I. Using this notation, we can rewrite the preceding 
equation as follows:

Inertia Tensor
Every shape has a different moment of inertia. In 3D space, the Moment of Inertia can be 
expressed as a 3x3 matrix. The 3x3 matrix that represents a moment of inertia is called an 
Inertia Tensor.

The Inertia Tensor describes how much force it takes to rotate an object at a given point on 
the object. For example, it is much easier to close a cabinet if you apply force further away 
from the hinge than if you applied the same force right next to the hinge.
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We currently support two rigidbody shapes: sphere and box. The inertia tensors for these 
shapes are:

Sphere Box

m is the mass of the sphere, r is 
its radius

m is the mass of the box, (x, y, 
z) is its half extent

The math required to derive the inertia tensor for a shape is outside the scope of this book. 
You can find the inertia tensor for most shapes online. For example, the inertia tensor of 
a sphere can be found online at http://scienceworld.wolfram.com/physics/
MomentofInertiaSphere.html.

We use primitive shapes to approximate complex objects. The actual inertia tensor for the 
shape is a good place to start, but if you want your simulation to feel more realistic, you might 
have to play with the inertia tensor. Finding the inertia tensor of complex objects often comes 
down to many iterations of trial and error.

Getting ready
In this section, we will add angular velocity to the RigidbodyVolume class. There will 
be no constant rotational force (the equivalent of gravity). We are also implementing an 
AddAngularImpulse method to change the rotation of an object instantaneously.

How to do it...
Follow the given steps to add support for angular velocity to rigidbodies that have volume:

1. Add the variables needed for rotation to the RigidbodyVolume class in 
RigidbodyVolume.h:
   vec3 orientation;
   vec3 angVel;
   vec3 torques; // Sum torques

http://scienceworld.wolfram.com/physics/MomentofInertiaSphere.html
http://scienceworld.wolfram.com/physics/MomentofInertiaSphere.html
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2. Declare the new functions--InvTensor and AddAngularImpulse--in the 
RigidbodyVolume class:
   mat4 InvTensor();
   virtual void AddRotationalImpulse(const vec3& point, 
      const vec3& impulse);

3. Implement the InvTensor method in RigidbodyVolume.cpp:
mat4 RigidbodyVolume::InvTensor() {

4. Declare variables to be used for the main diagonal of the matrix. These values are 
calculated differently based on the shape of the rigidbody volume: 
   float ix = 0.0f;
   float iy = 0.0f;
   float iz = 0.0f;
   float iw = 0.0f;

5. If the rigidbody is a sphere and has some mass, calculate the main diagonal 
elements of the tensor matrix. The equation for this is explained in the How  
it works… section: 
   if (mass != 0 && type == RIGIDBODY_TYPE_SPHERE) {
      float r2 = sphere.radius * sphere.radius;
      float fraction = (2.0f / 5.0f);
      ix = r2 * mass * fraction;
      iy = r2 * mass * fraction;
      iz = r2 * mass * fraction;
      iw = 1.0f;
   }

6. If the rigidbody is a box and has some mass, calculate the main diagonal elements  
of the tensor matrix. The equation for this is explained in the How it works… section:
   else if (mass != 0 && type == RIGIDBODY_TYPE_BOX) {
      vec3 size = box.size * 2.0f;
      float fraction = (1.0f / 12.0f);
      float x2 = size.x * size.x;
      float y2 = size.y * size.y;
      float z2 = size.z * size.z;
      ix = (y2 + z2) * mass * fraction;
      iy = (x2 + z2) * mass * fraction;
      iz = (x2 + y2) * mass * fraction;
      iw = 1.0f;
   }
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7. Construct the tensor matrix and return it. If the rigidbody was not a box or sphere,  
or the rigidbody had no mass, a matrix with all zero elements is returned: 
   return Inverse(mat4(
      ix, 0, 0, 0,
      0, iy, 0, 0,
      0, 0, iz, 0,
      0, 0, 0, iw));
}

8. Implement the AddRotationalImpulse method in RigidbodyVolume.cpp: 
void RigidbodyVolume::AddRotationalImpulse(
const vec3& point, const vec3& impulse) {
   vec3 centerOfMass = position;
   vec3 torque = Cross(point - centerOfMass, impulse);

9. Immediately change angular velocity by some acceleration:
   vec3 angAccel = MultiplyVector(torque, InvTensor());
   angVel = angVel + angAccel;
}

10. Update the SynchCollisionVolumes function of the RigidbodyVolume class to 
account for the new rotation of the rigidbody: 
void RigidbodyVolume::SynchCollisionVolumes() {

11. Synch position the same way as we did before:
   sphere.position = position;
   box.position = position;

12. Construct a 3x3 matrix for the orientation of the box:
   box.orientation = Rotation3x3(
      RAD2DEG(orientation.x),
      RAD2DEG(orientation.y),
      RAD2DEG(orientation.z)
   );
}

13. Finally, update the Update function of the RigidbodyVolume class to integrate 
linear and angular velocity as well as position and orientation: 
void RigidbodyVolume::Update(float dt) {

14. Integrate linear forces into Linear Velocity:
   const float damping = 0.98f;
   vec3 acceleration = forces * InvMass();
   velocity = velocity + acceleration * dt;
   velocity = velocity * damping;
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15. Integrate angular forces into Angular Velocity:
   if (type == RIGIDBODY_TYPE_BOX) {
      vec3 angAccel = MultiplyVector(torques, InvTensor());
      angVel = angVel + angAccel * dt;
      angVel = angVel *  damping;
   }

16. Integrate Linear Velocity into position:
   position = position + velocity * dt;

17. Integrate Angular Velocity into orientation:
   if (type == RIGIDBODY_TYPE_BOX) {
      orientation = orientation + angVel * dt;
   }

18. Keep the volume of the rigidbody updated:
   SynchCollisionVolumes();
}

How it works...
The orientation and position of an object are integrated using separate linear and angular 
velocities. To understand how orientation is found, we should compare the angular 
components of the rigidbody to their linear analogues:

 f Orientation is the equivalent of Position

 f Angular Velocity is the equivalent of (Linear) Velocity

 f Torque is the angular equivalent of the sum of all linear forces

 f The inertia tensor is the equivalent of mass

We found the linear acceleration of a rigidbody by dividing the sum of all linear forces 
acting on the body by the mass of the body. The equivalent of the sum of all linear forces 
is the torque. The equivalent of mass is the inertia tensor. Therefore, we can find angular 
acceleration by dividing torque by the inertia tensor. Since we can't divide a vector by a matrix, 
we must rely on reciprocal multiplication. This means we multiply the vector by the inverse of 
the matrix:

linearAccel = force * (1 / mass)
angularAccel = torque * (1 / intertia)

Linear Velocity increases by product of linear acceleration and time. Rotational velocity works 
the same way:

linearVel = linearVel + learAccel * dt
angularVel = angularVel + angularAccel * dt
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Once velocity is updated, position changes by the product of velocity and time. Similarly, 
orientation changes by the product of angular velocity and time:

position = position + linearVel * dt
orientation = orientation + angularVel * dt;

The AddRotationalImpulse function finds the torque of the force being applied relative 
to the center of mass for the rigidbody. It then increases angular acceleration by this torque 
divided by the inertia tensor.

There's more...
We currently store the rotation of our rigidbody objects as Euler angles that need to be 
converted into a matrix on every frame. While storing rotation like this is valid, this method is 
also error prone. You can make your simulation more stable by implementing orientation using 
a Quaternion. Quaternions represent rotation using complex numbers. More information about 
quaternions is available online at www.3dgep.com/understanding-quaternions/.

Tensors
In this section, I provided the tensor matrices for both a box and a sphere. Different shapes 
have different tensors. For an in-depth overview of what tensors are, I suggest watching 
Dan Fleisch's video--"What's a Tensor?"--available online at https://www.youtube.com/
watch?v=f5liqUk0ZTw.

You can find more information on how the moment of inertia matrix is derived at  
http://scienceworld.wolfram.com/physics/MomentofInertia.html.

Further information about angular momentum is also available online at http://
scienceworld.wolfram.com/physics/topics/AngularMomentum.html.

Angular Impulse
Now that we have orientation, collisions require both a linear and angular response. This 
means we need an equation that gives us the impulse magnitude in terms of both linear  
and angular components.

From the previous section, Linear Impulse, we already know the linear impulse of the collision:

www.3dgep.com/understanding-quaternions/
https://www.youtube.com/watch?v=f5liqUk0ZTw
https://www.youtube.com/watch?v=f5liqUk0ZTw
http://scienceworld.wolfram.com/physics/MomentofInertia.html
http://scienceworld.wolfram.com/physics/topics/AngularMomentum.html
http://scienceworld.wolfram.com/physics/topics/AngularMomentum.html
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We need to find the angular component of this impulse. In the last section, Angular Velocity, 
we covered that the velocity of a point, P, at R distance away from the center of mass is given 
by the following equation:

We can find the total velocity (linear plus angular) by adding the rotational velocity to the 
Linear Velocity of the rigidbody at the center of mass. We also need to find the torque from  
the point of impact and collision normal divided by the inertia tensor. Knowing this, we can 
find the final equation for j:

We must also update the formula for tangential impulse to apply friction. To do so, we replace 
all instances of the collision normal n with the tangent vector t:

Getting ready
In this section, we will add angular impulse to our ApplyImpulse function. As this is such a 
major change, the entire function will be listed here again.

How to do it...
Follow the given steps to apply angular impulses when resolving collisions:

1. The first change we need to make to ApplyImpulse is to store the point of impact 
for both the rigidbodies as well as the inverse inertia tensor:
void ApplyImpulse(RigidbodyVolume& A, RigidbodyVolume& B, 
const CollisionManifold& M, int c) {
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2. Store the inverse mass of each object, if the total mass of the colliding objects is 
zero, do nothing: 
   float invMass1 = A.InvMass();
   float invMass2 = B.InvMass();
   float invMassSum = invMass1 + invMass2;
   if (invMassSum == 0.0f) {
      return; // Both objects have infinate mass!
   }

3. Store the point of contact relative to the center of mass:
   vec3 r1 = M.contacts[c] - A.position;
   vec3 r2 = M.contacts[c] - B.position;

4. Store the inverse inertia tensor for both the colliding objects:
   mat4 i1 = A.InvTensor();
   mat4 i2 = B.InvTensor();

5. Next, we must take the formula that finds relative velocity and update it to take 
rotational velocity into account. The cross product of angular velocity and the  
relative contact point will give us the magnitude of rotational velocity: 
   // Relative velocity
   vec3 relativeVel = (B.velocity + Cross(B.angVel, r2)) 
                      - (A.velocity + Cross(A.angVel, r1));

6. The collision normal being passed in should already be normalized. The following 
normalize call is only there to make it obvious that this vector needs to be 
normalized: 
   // Relative collision normal
   vec3 relativeNorm = M.normal;
   Normalize(relativeNorm);

7. If the objects are moving away from each other, we don't need to do anything:
   if (Dot(relativeVel, relativeNorm) > 0.0f) {
      return;
   }

8. We calculate the magnitude of the impulse that needs to be applied according to the 
preceding (updated) formula. Remember that we are finding the value of j for the 
current contact point: 
   float e = fminf(A.cor, B.cor);
   float numerator = (-(1.0f + e) 
                     * Dot(relativeVel, relativeNorm));
   float d1 = invMassSum;
   vec3 d2 = Cross(MultiplyVector(
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                   Cross(r1, relativeNorm), i1), r1);
   vec3 d3 = Cross(MultiplyVector(
                   Cross(r2, relativeNorm), i2), r2);
   float denominator = d1 + Dot(relativeNorm, d2 + d3);

   float j = (denominator == 0.0f) ? 0.0f : 
             numerator / denominator;
   if (M.contacts.size() > 0.0f && j != 0.0f) {
      j /= (float)M.contacts.size();
   }

9. Once we find the impulse vector, we must update both the linear and angular 
velocities of the colliding rigidbodies: 
   vec3 impulse = relativeNorm * j;
   A.velocity = A.velocity - impulse *  invMass1;
   B.velocity = B.velocity + impulse *  invMass2;
   A.angVel = A.angVel - MultiplyVector(
                         Cross(r1, impulse), i1);
   B.angVel = B.angVel + MultiplyVector(
                         Cross(r2, impulse), i2);

10. Finding the tangent vector for friction does not change:
   vec3 t = relativeVel - (relativeNorm 
            * Dot(relativeVel, relativeNorm));

11. If the magnitude of the tangent is 0, we do nothing. Otherwise, we need to ensure 
that the magnitude of this vector is 1: 
   if (CMP(MagnitudeSq(t), 0.0f)) {
      return;
   }
   Normalize(t);

12. We find the magnitude of the tangential impulse according to the (updated) formula 
mentioned earlier. This is the same process as finding the value of j, but we replace 
every instance of the collision normal with the collision tangent: 
   numerator = -Dot(relativeVel, t);
   d1 = invMassSum;
   d2 = Cross(MultiplyVector(Cross(r1, t), i1), r1);
   d3 = Cross(MultiplyVector(Cross(r2, t), i2), r2);
   denominator = d1 + Dot(t, d2 + d3);
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13. If the denominator ends up being zero, early out of the function:
   if (denominator == 0.0f) {
      return;
   }

14. Find the actual value of jt:
   float jt = numerator / denominator;
   if (M.contacts.size() > 0.0f &&jt != 0.0f) {
      jt /= (float)M.contacts.size();
   }

15. If the tangent force is 0, early out of the function:
   if (CMP(jt, 0.0f)) { 
      return; 
   }

16. Finding the friction coefficient remains unchanged:
   float friction = sqrtf(A.friction * B.friction);
   if (jt> j * friction) {
      jt = j * friction;
   }
   else if (jt< -j * friction) {
      jt = -j * friction;
   }

17. Finally, we apply tangential velocity to both the linear and angular velocities of  
the rigidbody:
   vec3 tangentImpuse = t * jt;
   A.velocity = A.velocity - tangentImpuse *  invMass1;
   B.velocity = B.velocity + tangentImpuse *  invMass2;
   A.angVel = A.angVel - MultiplyVector(
                         Cross(r1, tangentImpuse), i1);
    B.angVel = B.angVel + MultiplyVector(
                         Cross(r2, tangentImpuse), i2);
}

How it works...
In the updated ApplyImpulse function, we store the inverse inertia tensor of each rigidbody 
as well as the position of the impact relative to the center of mass. We use these new values 
to find the updated relative velocity of the colliding objects. The exact formula for finding the 
relative velocity was discussed in the introduction of this chapter.



Manifolds and Impulses

412

The new relative velocity is then used to find the magnitude of the impulse needed to resolve 
the collision. This impulse is applied to both the linear and angular velocities of both  
the objects. A similar process is repeated for the tangential force that applies friction  
to each rigidbody.

This is a bare bones rigidbody physics simulation. The simulation works, but there is room 
for improvement! The biggest problem we have is solving each intersection in the simulation 
separately. This causes jitter and other undesirable artifacts.

Fixing the negative artifacts in the current implementation of our engine is outside the scope 
of this chapter. Implementing a sequential impulse solver, baumgarte stabolization, and 
potentially warm starting will fix these issues. While these topics are outside the scope of  
this chapter, resources for each will be provided in Appendix, Advanced Topics.

There's more...
Further information about impulse based collision reaction can be found online at  
https://en.wikipedia.org/wiki/Collision_response.

Non-linear projection
If you run the physics simulation, you may find that objects crawl around on the floor. This 
happens due to linear projection. If an object settles at a slight angle, linear projection pushes 
the object up. Now, the object falls unevenly, causing a small amount of forward movement. 
This issue is solvable with non-linear projection, where the objects are not only moved, but 
also rotated:

https://en.wikipedia.org/wiki/Collision_response


413

16
Springs and Joints

This chapter focuses on springs and joints. A spring will exert some force on one or more 
objects to create a spring like motion. A joint is a constraint that limits the motion of 
rigidbodies. Throughout the chapter, we will cover the following topics:

 f Particle Modifications

 f Springs

 f Cloth

 f Physics System Modifications

 f Joints

Introduction
Springs are one of the most powerful tools in any physics engine. On the surface, it may seem 
like they are only useful for creating oscillating motions, but we can use springs to model soft 
bodies or even cloth! In this chapter, we will learn how to use the spring formula to build soft 
body objects. By the end of the chapter, we will have a full cloth simulation working!

Up until this chapter, every rigidbody enjoyed having six degrees of freedom for motion. At 
the end of this chapter, we will introduce a way to constrain that motion using joints. In this 
chapter, we will build a simple distance joint that will remove a degree of freedom from a pair 
of rigidbodies.
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Particle Modifications
In this chapter, we will attach particles to springs to create a point mass system. A point 
mass system contains a number of points that have mass, but not volume. A particle fits this 
description perfectly. However, as it is, the Particle class does not expose all the functions 
that we need to achieve this. In order to develop the point mass system, we need to make a 
few modifications to the Particle class we developed in Chapter 14, Constraint Solving.

Getting ready
In this section, we will make several modifications to the public API of the Particle class. 
We will introduce setter functions for the mass and friction of particles. We will also introduce 
getter functions for the velocity and inverse mass of particles. Finally, we will implement a 
function to add an impulse to particles.

How to do it…
Follow the given steps to prepare the particle class to be used with springs:

1. Declare the new methods that we will be adding to the Particle class in 
Particle.h:
void AddImpulse(const vec3& impulse);
float InvMass();
void SetMass(float m);
vec3 GetVelocity();
void SetFriction(float f);

2. Implement the AddImpulse method of the Particle class in Particle.cpp. This 
method will immediately change the velocity of a particle:
void Particle::AddImpulse(const vec3& impulse) {
    velocity = velocity + impulse;
}

3. Implement the InvMass method of the Particle class in Particle.cpp. This 
method will return the inverse mass of the particle, or 0 if the particle has no mass:
float Particle::InvMass() {
    if (mass == 0.0f) { 
      return 0.0f; 
    }
    return 1.0f / mass;
}
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4. Implement the SetMass method of the Particle class in Particle.cpp. This 
setter function will prevent the mass from being set to a negative number:
void Particle::SetMass(float m) {
    if (m < 0) {
      m = 0;
    }
    mass = m;
}

5. Implement the SetFriction method of the Particle class in Particle.cpp. 
This setter function will prevent the friction coefficient of the particle from being  
set to a negative number:
void Particle::SetFriction(float f) {
    if (f < 0) {
      f = 0;
    }
    friction = f;
}

6. Implement the GetVelocity method of the Particle class in Particle.cpp. 
This method simply returns the velocity of the particle:
vec3 Particle::GetVelocity() {
    return velocity;
}

7. Modify the Update method of the Particle class to use the new InvMass getter 
function instead of dividing the mass in Particle.cpp. This is important to avoid a 
potential divide by zero error:
void Particle::Update(float dt) {
    oldPosition = position;
    /* OLD: vec3 acceleration = forces * (1.0f / mass); */
    /* NEW: */ vec3 acceleration = forces * InvMass();
    velocity = velocity * friction + acceleration * dt;
    position = position + velocity * dt;
}

8. Ensure that the ApplyForces method takes the mass stored in the Particle class 
into consideration (this is new). Previously, this function assumed the mass of the 
particle to be one:
void Particle::ApplyForces() {
    forces = gravity * mass;
}
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How it works…
The SetMass and SetFriction functions set the mass and the friction of the particle 
respectively. Neither function allows a negative value to be set. The GetVelocity function 
returns the current velocity of the particle. The GetInvMass function returns the inverse 
mass of a particle, or zero if the particle has infinite mass. The AddImpulse function applies 
an instantaneous change to the velocity of a particle.

We changed the ApplyForces function to scale the force of gravity by the mass of the 
object. We did this because before we implemented the SetMass function, it was assumed 
that every particle had a mass of 1. Now that particles can have different mass, we must take 
that mass into account. Along the same lines, we changed the Update function to use the 
InvMass helper function instead of manually doing the mass division.

All these changes are necessary to add new and more advanced behavior to particles. The 
goal of this chapter is to attach springs to a particle. We will then use particles with springs 
attached to simulate soft body objects, such as cloth.

Springs
Springs are important to build realistic objects. In the real world, we use springs everywhere, 
from watches to the suspension of cars. In games, we can use springs to model these same 
interactions, or to simulate more complex systems, such as rigidbodies.

Every spring has a Resting Length, sometimes called the spring's Equilibrium. Equilibrium 
describes the length of a resting spring, that is, when the spring is not contracted or stretched. 
When a spring is contracted or stretched away from its equilibrium, the spring will try to pull 
back to its resting length with a force equivalent to the difference of its current length and 
resting length. This describes Hooke's Law. Mathematically, Hooke's Law is expressed by the 
following equation:

In this equation, F is the force exerted by the spring, k is the spring constant, and x is the 
difference between the current length and resting length of the spring. The spring constant 
represents the strength of the spring, that is, how stiff or loose the spring is. Stiff springs  
are stronger and therefore produce a stronger restoring force. The k value of a stiff spring  
is larger.
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The force created by a spring is called the restoring force. The restoring force tries to restore 
the length of a string to its equilibrium. The negative sign in front of the spring constant 
means the force exerted by the spring opposes the displacement of the spring. As this force 
is going in the negative direction, the value of k must also be negative. This means a spring 
with a k of zero will produce a stiff string, where a spring with a k of a negative value (such as 
negative five) will produce a loose string.

Implementing Hooke's Law in code produces a spring with infinite length. This spring will 
produce a harmonic motion forever. In reality, friction will eventually stop a spring at its resting 
length. We can model this friction by adding a dampening force to the spring. The formula for 
this dampening force can be expressed as follows:

In the preceding equation, b is the dampening force and v is the relative velocity between  
the two particles. As v scales the relative velocity, it should range from zero to one. The 
final force exerted by the spring is the sum of the force produced by Hooke's Law and the 
dampening force:

Getting ready
In this section, we will implement a new Spring class. This class will connect two particles 
using Hooke's Law. We will also make a few changes to the PhysicsSystem class to add 
support for springs to the physics engine.

How to do it…
Follow these steps to implement a spring class:

1. Create a new file, Spring.h. Add header guards and include Particle.h:
#ifndef _H_SPRING_
#define _H_SPRING_

#include "Particle.h"

// Spring class

#endif
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2. Start declaring the Spring class by declaring its member variables. Every spring 
needs to know the two particles it connects as well as the resting length, spring 
constant, and dampening constant of the spring:
class Spring {
protected:
    Particle* p1;
    Particle* p2;

    // higher k = stiff sprint, lower k = loose spring
    float k; // [-n to 0] 
    float b; // [0 to 1], default to 0
    float restingLength;

3. Finish declaring the Spring class by adding an inline constructor, getter and setter 
functions for the particles, and a method to apply force to the particles of the spring:
public:
    inline Spring(float _k, float _b, float len) 
    : k(_k), b(_b), restingLength(len) { }
    Particle* GetP1();
    Particle* GetP2();
    void SetParticles(Particle* _p1, Particle* _p2);
    void SetConstants(float _k, float _b);
    void ApplyForce(float dt);
};

4. Create a new file, Spring.cpp. Include Spring.h and implement the getter and 
setter functions for the particles this spring connects:
void Spring::SetParticles(Particle* _p1, Particle* _p2) {
    p1 = _p1;
    p2 = _p2;
}

5. Implement a getter function for the first particle the spring affects:
Particle* Spring::GetP1() {
    return p1;
}

6. Implement a getter function for the second particle the spring affects:
Particle* Spring::GetP2() {
    return p2;
}
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7. Implement functions to set the constants of Hooke's Law:
void Spring::SetConstants(float _k, float _b) {
  k = _k;
  b = _b;
}

8. Finish implementing the Spring class in Spring.cpp by implementing the 
ApplyForce function:
void Spring::ApplyForce(float dt) {

9. Find the relative position and velocity of the two particles this spring affects:
    vec3 relPos = p2->GetPosition() - p1->GetPosition();
    vec3 relVel = p2->GetVelocity() - p1->GetVelocity();

10. Find the x and v variables in the equation of Hooke's Law:
    float x = Magnitude(relPos) - restingLength;
    float v = Magnitude(relVel);

11. Use Hooke's Law to find the restoring force of the spring:
    float F = (-k * x) + (-b * v);

12. Turn that force into an impulse that can be applied to the particles:
    vec3 impulse = Normalized(relPos) * F;

13. Apply the impulse to both the particles that the spring connects:
    p1->AddImpulse(impulse * p1->InvMass());
    p2->AddImpulse(impulse*  -1.0f * p2->InvMass());
}

14. Next, include Spring.h in PhysicsSystem.h. Add a new vector of spring objects to 
the PhysicsSystem class. Declare functions to insert a spring into this vector and 
to clear the vector:
// First part of the header is unchanged
#include "Spring.h"

class PhysicsSystem {
protected:
    // Old member variables are unchanged
    std::vector<Spring> springs;
public:
    // Old member functions are unchanged
    void AddSpring(const Spring& spring);
    void ClearSprings();
};
// Rest of the file is unchanged
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15. Implement the AddSpring function in PhysicsSystem.cpp:
void PhysicsSystem::AddSpring(const Spring& spring) {
    springs.push_back(spring);
}

16. Implement the ClearSprings function in PhysicsSystem.cpp:
void PhysicsSystem::ClearSprings() {
    springs.clear();
}

17. Modify the Update function of the PhysicsSystem to apply spring forces right 
before solving constraints:
void PhysicsSystem::Update(float deltaTime) {
    // First part of Update remains unchanged!

    // NEW: Apply spring forces
    for (inti = 0, size = springs.size(); i< size; ++i) {
        springs[i].ApplyForce(deltaTime);
    }
    
    // The rest of the Update function remains unchanged
    // OLD, stays unchanged: Solve constraints
    for (inti = 0, size = bodies.size(); i< size; ++i) {
        bodies[i]->SolveConstraints(constraints);
    }
}

How it works…
The Spring class contains the constants we need to know to implement Hooke's Law: k, 
b, and the resting length of the spring. This Spring class also contains pointers to the two 
particles that will be connected by the spring. There are getter and setter functions for both  
of these particles. The spring constants only have setter functions. The ApplyForce function 
is like an Update function; it needs to be called once a frame and takes delta time for  
an argument.

The ApplyForces function finds the variables that we still need in order to figure out the 
force of the spring: x and v. Now that we know k, d, v, x, and the resting length of the spring, 
we can use Hooke's Law to figure out the force exerted by the spring. Once we know the force 
exerted by the spring, we apply it as an impulse to both the particles:
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To add springs to the physics engine, we added a vector of spring objects to the 
PhysicsSystem class. The AddSpring function adds a new spring to this vector.  
The ClearSprings function clears this vector. We then add a new loop to the Update 
function of the PhysicsSystem to apply spring forces to every frame.

Cloth
We can use springs to model interesting soft body objects. Unlike a rigidbody, a soft body can 
change its shape. In this section, we will use springs to simulate cloth. Cloth is implemented 
as a point mass system. In a point mass system, every vertex of a mesh is represented by a 
particle. Every particle is attached to other particles by springs to force the object to maintain 
its shape.

If we arrange all the particles representing the vertices of a cloth in a grid, we can connect 
every row and column using springs. These springs are the structural springs of the cloth:
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This, however, is not enough for an accurate simulation. If we set any one of the particles to 
have infinite mass so that it does not move, the cloth will collapse into a rope. We can improve 
the structural integrity of the cloth by adding shear springs. Shear springs connect every 
particle to its neighbors diagonally:

Having both structural and shear springs makes the cloth behave as expected in the scenario 
where one or more of the particles have infinite mass. However, the cloth is still not stable. 
When the cloth falls on the ground, it will bend over itself in unrealistic ways. We can correct 
this erroneous folding behavior by adding bend springs. Bend springs connect every other 
particle in rows or columns of cloths:

We can use all three of these spring systems at the same time to achieve a stable cloth 
simulation. Let's visualize what all three of the combined spring systems look like for a  
single particle:



Chapter 16

423

Getting ready
In this section, we will implement a Cloth class. This class will contain a set of particles and 
three sets of springs to simulate cloth. This cloth behaves like a miniature physics system. We 
will add a number of functions that will be called from the PhysicsSystem later.

How to do it…
Follow these steps to create a cloth out of springs and particles:

1. Create a new file, Cloth.h. Add header guards and include Spring.h as well as 
<vector>:
#ifndef _H_CLOTH_
#define _H_CLOTH_

#include "Spring.h"
#include <vector>

2. Start declaring the Cloth class in Cloth.h by adding member variables for the 
particles and springs the cloth will contain. We also add a variable to store the size  
of the cloth; this variable will later be used for rendering:
class Cloth {
protected:
    std::vector<Particle> verts;
    std::vector<Spring> structural;
    std::vector<Spring> shear;
    std::vector<Spring> bend;
    float clothSize;

3. Finish declaring the Cloth class by adding the public methods of the class:
public:

4. The Initialize function sets up the size and position of the cloth:
    void Initialize(int gridSize, float distance, 
    const vec3& position);

5. The following methods will set the spring constants of each spring system 
independently: 
    void SetStructuralSprings(float k, float b);
    void SetShearSprings(float k, float b);
    void SetBendSprings(float k, float b);
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6. Changing the mass of the cloth means changing the mass of every single particle:
    void SetParticleMass(float mass);

7. The physics system will need to call the following functions at the appropriate times. 
I've taken care of naming the functions in a way that makes it obvious where they 
need to be called:
    void ApplyForces();
    void Update(float dt);
    void ApplySpringForces(float dt);
    void SolveConstraints(
        conststd::vector<OBB>& constraints);

8. Debug visualization for the cloth:
    void Render();
};

9. Create a new file, Cloth.cpp. Include Cloth.h and the headers needed to  
render cloth:
#include "Cloth.h"
#include "glad/glad.h"
#include "FixedFunctionPrimitives.h"

10. Begin implementing the Initialize function of the Cloth class in Cloth.cpp by 
resetting all the member variables of the class:
void Cloth::Initialize(int gridSize, float distance, 
const vec3& position) {
    float k = -1.0f;
    float b = 0.0f;
    clothSize = gridSize;

11. In case we are recycling the cloth, clear any old values:
    verts.clear();
    structural.clear();
    shear.clear();
    bend.clear();

12. Reserve enough vertices for each particle:
    verts.resize(gridSize * gridSize);

13. Find the half size of the cloth. Our cloth will always be a square, the hs value 
represents both half width and half depth:
    float hs = (float)(gridSize - 1) * 0.5f;
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14. We need at least nine particles for a stable simulation:
    if (gridSize< 3) {
        gridSize = 3;
    }

15. Next, create the particles that will represent the vertices of the cloth mesh. Loop 
through the width and depth of the new cloth:
    for (int x = 0; x <gridSize; ++x) {
        for (int z = 0; z <gridSize; ++z) {

16. Find the index of the current particle/vertex in a one-dimensional array:
            int i = z * gridSize + x;

17. Find the world space position of the particle/vertex:
            float x_pos = ((float)x + position.x 
                          - hs) * distance;
            float z_pos = ((float)z + position.z 
                          - hs) * distance;

18. Set the particle/vertex position in world space:
            verts[i].SetPosition(
                vec3(x_pos, position.y, z_pos)
            );

19. Set the other default values for the particle. This means setting a default mass, 
coefficient of restitution, and a friction coefficient:
            verts[i].SetMass(1.0f);
            verts[i].SetBounce(0.0f);
            verts[i].SetFriction(0.9f);
        }
    }

20. Create the left to right structural springs of the Cloth class:
    for (int x = 0; x <gridSize; ++x) {
        for (int z = 0; z <gridSize - 1; ++z) {

21. Find the indices of the two particles that need to be connected by the spring:
            int i = z * gridSize + x;
            int j = (z + 1) * gridSize + x;

22. Find the resting length of the spring:
            vec3 iPos = verts[i].GetPosition();
            vec3 jPos = verts[j].GetPosition();
            float rest = Magnitude(iPos - jPos);
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23. Use this resting length to create a new spring between the two particles and add that 
spring to the structural spring list:
            Spring spring(k, b, rest);
            spring.SetParticles(&verts[i], &verts[j]);
            structural.push_back(spring);
        }
    }

24. Create the up and down structural springs for the Cloth class:
    for (int x = 0; x <gridSize - 1; ++x) {
        for (int z = 0; z <gridSize; ++z) {

25. Find the indices of the two particles that need to be connected by the spring:
            int i = z * gridSize + x;
            int j = z * gridSize + (x + 1);

26. Find the resting length of the spring:
            vec3 iPos = verts[i].GetPosition();
            vec3 jPos = verts[j].GetPosition();
            float rest = Magnitude(iPos - jPos);

27. Use the resting length to create a new spring connecting the two particles:
            Spring spring(k, b, rest);
            spring.SetParticles(&verts[i], &verts[j]);
            structural.push_back(spring);
        }
    }

28. Create the left to right shear springs of the Cloth class:
    for (int x = 0; x <gridSize - 1; ++x) {
        for (int z = 0; z <gridSize - 1; ++z) {

29. Find the indices of the particles that need to be connected:
            int i = z * gridSize + x;
            int j = (z + 1) * gridSize + (x + 1);

30. Find the resting length of the string:
            vec3 iPos = verts[i].GetPosition();
            vec3 jPos = verts[j].GetPosition();
            float rest = Magnitude(iPos - jPos);
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31. Use the resting length to create a new spring connecting the two particles:
            Spring spring(k, b, rest);
            spring.SetParticles(&verts[i], &verts[j]);
            shear.push_back(spring);
        }
    }

32. Create the up and down shear springs of the Cloth class:
    for (int x = 1; x <gridSize; ++x) {
        for (int z = 0; z <gridSize - 1; ++z) {

33. Find the indices of the particles that need to be connected:
            int i = z * gridSize + x;
            int j = (z + 1) * gridSize + (x - 1);

34. Find the resting length of the spring:
            vec3 iPos = verts[i].GetPosition();
            vec3 jPos = verts[j].GetPosition();
            float rest = Magnitude(iPos - jPos);

35. Use the resting length to create a new spring connecting the two particles:
            Spring spring(k, b, rest);
            spring.SetParticles(&verts[i], &verts[j]);
            shear.push_back(spring);
        }
    }

36. Create the left to right bend springs of the Cloth class:
    for (int x = 0; x <gridSize; ++x) {
        for (int z = 0; z <gridSize - 2; ++z) {

37. Find the indices of the particles that need to be connected:
            int i = z * gridSize + x;
            int j = (z + 2) * gridSize + x;

38. Find the resting length of the spring:
            vec3 iPos = verts[i].GetPosition();
            vec3 jPos = verts[j].GetPosition();
            float rest = Magnitude(iPos - jPos);
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39. Use the resting length to create a new spring connecting the two particles:
            Spring spring(k, b, rest);
            spring.SetParticles(&verts[i], &verts[j]);
            bend.push_back(spring);
        }
    }

40. Finish implementing the Initialize function of the Cloth class by creating the up 
and down bend springs:
    for (int x = 0; x <gridSize - 2; ++x) {
        for (int z = 0; z <gridSize; ++z) {

41. Find the indices of the particles that need to be connected:
            int i = z * gridSize + x;
            int j = z * gridSize + (x + 2);

42. Find the resting length of the spring:
            vec3 iPos = verts[i].GetPosition();
            vec3 jPos = verts[j].GetPosition();
            float rest = Magnitude(iPos - jPos);

43. Use the resting length to create a new spring connecting the two particles:
            Spring spring(k, b, rest);
            spring.SetParticles(&verts[i], &verts[j]);
            bend.push_back(spring);
        }
    }
}

44. Implement the spring setter functions in Cloth.cpp. These functions loop through 
every spring to set uniform spring:
void Cloth::SetStructuralSprings(float k, float b) {
    for (int i = 0; i < structural.size(); ++i) {
        structural[i].SetConstants(k, b);
    }
}
void Cloth::SetShearSprings(float k, float b) {
    for (int i = 0, size = shear.size(); i< size; ++i) {
        shear[i].SetConstants(k, b);
    }
}
void Cloth::SetBendSprings(float k, float b) {
    for (int i = 0, size = bend.size(); i< size; ++i) {
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        bend[i].SetConstants(k, b);
    }
}

45. Implement the mass setter function in Cloth.cpp. These functions loop through 
every particle to set the mass:
void Cloth::SetParticleMass(float mass) {
    for (int i = 0, size = verts.size(); i< size; ++i) {
        verts[i].SetMass(mass);
    }
}

46. Implement the ApplyForces function in Cloth.cpp. This function loops through 
every particle in the cloth and calls the ApplyForces function of each particle:
void Cloth::ApplyForces() {
    for (int i = 0, size = verts.size(); i< size; ++i) {
        verts[i].ApplyForces();
    }
}

47. Implement the Update function in Cloth.cpp. This function loops through every 
particle in the cloth and calls the Update function of each particle:
void Cloth::Update(float dt) {
    for (int i = 0, size = verts.size(); i< size; ++i) {
        verts[i].Update(dt);
    }
}

48. Implement the ApplySpringForces function in Cloth.cpp. This function will call 
the ApplyForce function on every spring in the cloth:
void Cloth::ApplySpringForces(float dt) {
    for (int i = 0; i < structural.size(); ++i) {
        structural[i].ApplyForce(dt);
    }
    for (int i = 0, size = shear.size(); i < size; ++i) {
        shear[i].ApplyForce(dt);
    }
    for (int i = 0, size = bend.size(); i < size; ++i) {
        bend[i].ApplyForce(dt);
    }
}
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49. Implement the SolveConstraints function in Cloth.cpp. This function will call 
the SolveConstraints function on every particle inside the cloth:
void Cloth::SolveConstraints(
const std::vector<OBB>& constraints) {
    for (int i = 0, size = verts.size(); i< size; ++i) {
        verts[i].SolveConstraints(constraints);
    }
}

50. Implement the Render function in Cloth.cpp:
void Cloth::Render() {
    for (int x = 0; x < clothSize - 1; ++x) {
        for (int z = 0; z < clothSize - 1; ++z) {

51. Here, we loop through the entire cloth, finding four particles to act as vertices. These 
particles make up the four corners of a quad: top left (tl), bottom left (bl), top right 
(tr), and bottom right (br):
            int tl = z * clothSize + x;
            int bl = (z + 1) * clothSize + x;
            int tr = z * clothSize + (x + 1);
            int br = (z + 1) * clothSize + (x + 1);

52. Construct a quad out of the four particle/vertices of the cloth mesh. A quad is made 
up of two triangles:
            Triangle t1(
                verts[tl].GetPosition(), 
                verts[br].GetPosition(), 
                verts[bl].GetPosition());
            Triangle t2(
                verts[tl].GetPosition(), 
                verts[tr].GetPosition(), 
                verts[br].GetPosition());

53. Render both the triangles that make up the current quad:
            ::Render(t1);
            ::Render(t2);
        }
    }
}
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How it works…
The Initialize function of the Cloth class is the most complicated function of the class. 
This function will create a new cloth object along the x-z plane. The number of particles, 
distance between particles, and center point of the cloth are provided as arguments to this 
function. The size of the cloth needs to be stored in a member variable for rendering later.  
The rest of the function builds the spring systems that this cloth needs so as to stay stable.

Every spring system has an associated constant setter function. This function lets us set the 
k and d values of every spring in the system. We also have a setter function for the mass of 
every particle within the cloth. Using the current interface, there is no way to single out just 
one particle and set its mass to zero. Such an interface is only needed if we want to fix parts 
of the cloth to set points in space, for example, a tapestry hanging on a wall.

There are four functions for simulating physics that need to be called in every frame. 
In order, these functions are: ApplyForces, Update, ApplySpringForces, and 
SolveConstraints. These functions must be called in the order they are listed here.  
Having these functions publicly exposed, we could run a cloth simulation without having  
an actual PhysicsSystem object by updating the cloth manually for each frame.

The render function creates two triangles between every four vertices. Creating these triangles 
allows us to render the cloth as a mesh. The downloadable code for this chapter contains 
additional debug rendering code, which lets us visualize both the particles and springs that 
make up the cloth.

Physics System Modification
In the last section of this chapter, we will build a stable Cloth class. This class contains a 
set of particles and three spring systems. For the cloth to actually work, we have to call its 
physics simulation functions every frame. In this section, we will add cloth support to the 
PhysicsSystem.

Getting ready
In this section, we will make several modifications to the PhysicsSystem class to add 
support for cloth simulation.
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How to do it…
Perform the following steps to add cloth support to our physics system:

1. Include the Cloth.h header file in PhysicsSystem.h. Add a vector of Cloth 
pointers to the PhysicsSystem class. Add a function to register a new cloth into  
the vector and a function to clear the vector:
// Start of file unchanced
#include "Cloth.h"

class PhysicsSystem {
protected:
    // Previous member variable declarations unchanged
    std::vector<Cloth*> cloths;
public:
    // Previous member functions unchanged
    void AddCloth(Cloth* cloth);
    void ClearCloths();
// Rest of file unchanged

2. Implement the AddCloth function in PhysicsSystem.cpp:
void PhysicsSystem::AddCloth(Cloth* cloth) {
    cloths.push_back(cloth);
}

3. Implement the ClearCloths function in PhysicsSystem.cpp:
void PhysicsSystem::ClearCloths() {
    cloths.clear();
}

4. Modify the Update function of the PhysicsSystem class to support updating 
Cloth objects. Only the new code is provided here, comments are in place for  
the old update loops:
void PhysicsSystem::Update(float deltaTime) {
    // Find pairs of colliding objects unchanged
    // Apply forces to all rigidbodies unchanged

    // NEW: Calculate forces acting on cloths
    for (int i = 0, size = cloths.size(); i< size; ++i) {
        cloths[i]->ApplyForces();
    }

    // ApplyImpulses to resolve collisions unchanged
    // Integrate velocity and impulse unchanged
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    // NEW: Integrate velocity and impulse of cloths
    for (int i = 0, size = cloths.size(); i< size; ++i) {
        cloths[i]->Update(deltaTime);
    }

    // Linear projection to prevent sinking unchanged
    // Apply spring forces unchanged

    // NEW: Same as above, apply spring forces for cloths
    for (int i = 0, size = cloths.size(); i< size; ++i) {
        cloths[i]->ApplySpringForces(deltaTime);
    }

    // Solve constraints unchanged

    // NEW: Same as above, solve cloth constraints
    for (int i = 0, size = cloths.size(); i< size; ++i) {
        cloths[i]->SolveConstraints(constraints);
    }
}

5. Update the Render function of the PhyscisSystem class to support rendering 
cloths:
void PhysicsSystem::Render() {
    // Start of function remains unchanged

    // NEW: Render all cloths
    for (int i = 0, size = cloths.size(); i< size; ++i) {
        cloths[i]->Render(DebugRender);
    }
}

How it works…
We added a vector of Cloth objects to the PhysicsSystem. The AddCloth function  
adds a new cloth to the end of this vector. The ClearCloths function clears all cloths  
from this vector.

We updated the Render function of PhysicsSystem to loop through every cloth and render 
it. We also modified the Update function of the PhysicsSystem to update each cloth object.

The Update function now calls the ApplyForces, Update, ApplySpringForces, and 
SolveConstraint functions of every cloth registered with the physics system. These 
functions are called in the order listed earlier at various points during the physics update loop.
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Joints
In three dimensions, an object has six degrees of freedom. Three degrees of freedom come 
from translation and an additional three come from orientation. A constraint takes away one 
or more degrees of freedom. A joint is a type of constraint that limits the degrees of freedom 
between two objects. There are several common types of joints:

 f Distance Joint: This keeps bodies a set distance apart

 f Ball Joint: This limits translation to the pivot of two objects

 f Hinge Joint: This allows for rotation around a single axis

 f Slider Joint: This limits rotation and translation to a single axis

 f Fixed Joint: This does not allow movement

 f Motor Joint: This produces some kind of force

Several simple joints can be combined to create more complex joints. We can use joints  
to model hinges for doors, ragdolls that represent characters, or to simply stick objects  
to each other.

Getting ready
In this section, we will implement the simplest joint type there is—the Distance Joint. This joint 
will keep two particles a set distance apart from each other.

How to do it…
Follow the given steps to implement a distance joint:

1. Create a new file, DistanceJoint.h. Add header guards and include Particle.h:
#ifndef _H_DISTANCE_JOINT
#define _H_DISTANCE_JOINT

#include "Particle.h"

#endif

2. Declare the DistanceJoint class as a subclass of Rigidbody:
class DistanceJoint : public Rigidbody {
protected:
    Particle* p1;
    Particle* p2;
    float length;



Chapter 16

435

public:
    void Initialize(Particle* _p1, Particle* _p2, 
        float len);
    void SolveConstraints(
        const std::vector<OBB>& constraints);
    void Render();
};

3. Create a new file, DistanceJoint.cpp. Include DistanceJoint.h and the 
header files needed to render debug geometry: 
#include "DistanceJoint.h"
#include "FixedFunctionPrimitives.h"

4. Implement the Initialize function of DistanceJoint in DistanceJoint.cpp:
void DistanceJoint::Initialize(Particle* _p1, 
Particle* _p2, float len) {
    p1 = _p1;
    p2 = _p2;
    length = len;
}

5. Implement the Render function of DistanceJoint in DistanceJoint.cpp:
void DistanceJoint::Render() {
    vec3 pos1 = p1->GetPosition();
    vec3 pos2 = p2->GetPosition();
    Line l(pos1, pos2);
    ::Render(l);
}

6. Implement the SolveConstraints function of DistanceJoint in 
DistanceJoint.cpp: 
void DistanceJoint::SolveConstraints(
const std::vector<OBB>& constraints) {

7. Find the distance between the two particles:
    vec3 delta = p2->GetPosition() - p1->GetPosition();
    float distance = Magnitude(delta);

8. Figure out what percentage of the length of the joint the distance between the 
particles is: 
    float correction = (distance - length) / distance;
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9. Apply the distance correction to each particle:
    p1->SetPosition(p1->GetPosition() + delta 
                    * 0.5f * correction);
    p2->SetPosition(p2->GetPosition() - delta 
                    * 0.5f * correction);

10. Call SolveConstraints on each particle to prevent the particles from tunneling 
through objects!:
    p1->SolveConstraints(constraints);
    p2->SolveConstraints(constraints);
}

How it works…
We created Distance Joints as a subclass of Rigidbody. This inheritance allows us to insert 
joints into the existing Physics System without any modifications to the PhysicsSystem 
class. We only need to override the Render and SolveConstraints functions inherited 
from the rigidbody.

As a joint is a constraint, we limit the motion of particles the joint connects using the 
SolveConstraints method. This SolveConstraints method changes to position  
of every particle to ensure that the particles stay a set distance away from each other.

There's more…
We can use simple joints to create more complex joints. For example, we can create two joints 
between three particles. This will force two of the particles to orbit around the middle particle. 
This creates a ball joint. If we then constrain the rotation of the ball joint to just one axis, a 
hinge will be created:
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Congratulations on making it to the final chapter! Detecting collisions and building a physics 
engine is hard work. We have covered a lot of ground, but there is still more to learn. This 
chapter will provide an overview of some advanced features you can add to your physics 
engine and provide resources on where to go from here. In this chapter, the following topics 
will be covered:

 f Generic collisions

 f Stability improvements

 f Open source physics engines

 f Books

 f Online resources

 f Summary

Introduction
We have covered a lot in this book; starting from 3D math, we worked our way up to simulating 
3D physics.

There is still much room for improvement. This chapter is dedicated to give guidance on 
advanced concepts that you can research and implement to make your physics engine  
even better.

After covering some of these advanced topics, I will provide a list of books, open source 
projects, and online resources you can use to take your physics simulation to the next level!
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Generic collisions
A large part of this book was dedicated to finding the most efficient way of determining 
whether two shapes intersect. The most robust, general purpose algorithm we have talked 
about so far has been Separating Axis Theorem (SAT). SAT has several limitations, the 
biggest one being curved surfaces. The execution time of SAT also gets out of hand when  
a complex mesh has many faces.

In this section, we will discuss a different generic algorithm--the Gilbert Johnson Keerthi or 
GJK algorithm. GJK runs in near linear time, often outperforming SAT. However, it is difficult to 
achieve the stability SAT provides using GJK. GJK should be used to find intersection data with 
complex meshes that have many faces. The GJK algorithm needs a support function to work, 
and this support function is called Minkowski Sum.

For an algorithm to run in linear time, adding an iteration increases the 
execution time of the algorithm by the same amount every time, regardless 
of the size of the dataset. More information on runtimes is available online at 
https://en.wikipedia.org/wiki/Time_complexity.

Minkowski Sum
The Minkowski Sum, also called Minkowski Addition, is an operation that we perform on two 
shapes; let's call them A and B. Given these input shapes, the result of the Minkowski Sum 
operation is a new shape that looks like shape A was swept along the surface of shape B.  
The following image demonstrates what this looks like:

We can describe this operation as every point in the Minkowski Sum is a point from shape A 
added to a point from shape B. We can express this with the following equation:

https://en.wikipedia.org/wiki/Time_complexity
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The preceding equation might be hard to read. The  symbol means element 
of and the  symbol means the direct sum of two groups. We are defining 
how to take the direct sum of two shapes that might not have the same 
number of vertices.

This means that we find the Minkowski Sum of two shapes by adding all the vertices of each 
shape together. If we take object B and reflect it around the origin, we effectively negate B:

We often refer to taking the Minkowski Sum of A + (–B) as the Minkowski Difference because 
it can be expressed as (A – B). The Minkowski Difference produces what is called  
a Configuration Space Object or CSO.

If two shapes intersect, their resulting CSO will contain the origin of the coordinate system  
(0, 0, 0). If the two objects do not intersect, the CSO will not contain the origin.

This property makes the Minkowski Sum a very useful tool for generic collision detection.  
The shape of each object does not matter; so long as the CSO of the objects contains the 
origin, we know that the objects intersect.

Gilbert Johnson Keerthi (GJK)
Taking the Minkowski Difference of two complex shapes can be rather time consuming. 
Checking whether the resulting CSO contains the origin can be time consuming as well. The 
Gilbert Johnson Keerthi, or GJK, algorithm addresses these issues. The most comprehensive 
coverage of GJK is presented by Casey Muratori, which is available on the Molly Rocket 
website at https://mollyrocket.com/849.

The GJK algorithm, like the SAT algorithm, only works with convex shapes. However, unlike the 
SAT, implementing GJK for curved shapes is fairly easy. Any shape can be used with GJK so 
long as the shape has a support function implemented. The support function for GJK finds a 
point along the CSO of two objects, given a direction. As we only need an object in a direction, 
there is no need to construct the full CSO using the Minkowski Difference.

https://mollyrocket.com/849
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GJK is a fast iterative method; in many cases, GJK will run in linear time. This means for many 
cases, GJK is faster than SAT. GJK works by creating a simplex and refining it iteratively. A 
simplex is the generalized notion of a triangle in any arbitrary dimensions. For example, in two 
dimensions, a simplex is a triangle. In three dimensions, a simplex is a tetrahedron and in four 
dimensions, a simplex is a five cell. A simplex in k-dimensions will always have k + 1 vertices:

Once the simplex produced by GJK contains the origin, we know that we have an intersection. 
If the support point used to refine the simplex is further from the origin than the previous 
closest point, no collision has happened. GJK can be implemented using the following nine 
steps:

1. Initialize the (empty) simplex.

2. Use some direction to find a support point on the CSO.

3. Add the support point to the simplex.

4. Find the closest point in the simplex to the origin.

5. If the closest point is the origin, return a collision.

6. Else, reduce the simplex so that it still contains the closest point.

7. Use the direction from the closest point to origin to find a new support point.

8. If the new support is further from origin than the closest point, return no collision.

9. Add the new support to the simplex and go to step 4.

Expanding Polytope Algorithm (EPA)
The GJK algorithm is generic and fairly fast; it will tell us if two objects intersect. The 
information provided by GJK is enough to detect when objects intersect, but not enough  
to resolve that intersection. To resolve a collision, we need to know the collision normal,  
a contact point, and a penetration depth.
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This additional data can be found using the Expanding Polytope Algorithm (EPA). A detailed 
discussion of the EPA algorithm is available on YouTube in the form of a video by Andrew at 
https://www.youtube.com/watch?v=6rgiPrzqt9w. Like the GJK, the EPA uses the 
Minkowski Difference as a support function.

The EPA algorithm takes the simplex produced by GJK as its input. The simplex is then 
expanded until a point on the edge of the CSO is hit. This point is the collision point. Half the 
distance from this point to the origin is the penetration depth. The normalized vector from 
origin to the contact point is the collision normal.

Using GJK and EPA together, we can get one point of contact for any two convex shapes. 
However, one point is not enough to resolve intersections in a stable manner. For example, 
a face to face collision between two cubes needs four contact points to be stable. We can fix 
this using an Arbiter, which will be discussed later in this chapter.

Stability improvements
We can make several improvements to the stability of our physics engine. We fixed the 
problem of sinking using linear projection in Chapter 15, Manifolds and Impulses. Linear 
projection introduces its own flaws into our engine: jitter and object crawling. We used heavy 
friction to cover these issues up. Older physics engines had similar issues; they tended to use 
aggressive sleeping to cover these issues up. When a rigid body is asleep, it has no forces 
acting on it (including gravity) and therefore does not sink.

The more modern approach to fixing these issues is called Baumgarte Stabilization. 
Baumgarte Stabilization works by adding extra energy to physics resolution. This extra energy 
causes some jitter, but fixes the issues of sinking and crawling. We can add slop to the 
system, similarly to how we added slop to linear projections to fix the jitter issue.

Baumgarte Stabilization requires us to accumulate impulses over frames. In order to 
accumulate impulses, we need to keep track of collisions over several frames. This is where 
an Arbiter comes in. An arbiter can also be used to build up a collision manifest over several 
frames from the result of the GJK algorithm.
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Arbiters
An arbiter is a data structure that keeps track of the contact points between two objects over 
several frames. It effectively contains almost the same data as a collision manifold. It needs 
to keep track of which objects are colliding, as well as the collision normal and depth of each 
collision point. They are built up over several frames, and the face-to-face collision of two 
boxes might look something like this:

To implement an arbiter system, we have to keep a list of active arbiters. For each frame we 
look for collisions between rigid bodies. If the colliding bodies do not have an arbiter in the  
list, we have to create a new arbiter for them and add it to the list. If the two objects have  
an arbiter in the list, we insert the contact point between the bodies into the list.

In each frame, we loop through every arbiter in the arbiter list. If an arbiter has more than four 
contact points, we need to take the furthest point and remove it from the arbiter. If any points 
are too far apart, we must remove those points from the arbiter. If an arbiter has no contact 
points left, we remove that arbiter from the list.

As an arbiter is built over several frames, it can be used with GJK and EPA to build a stable 
manifest over several frames. The GJK will produce a new contact in each frame, which will 
register with the arbiter system. After about four frames, any colliding objects should stabilize.

Accumulated impulse
Using accumulated impulses will solve object crawling and help eliminate some jitter. The 
major advantage of using accumulated impulses is that the impulse of any single contact 
point can be negative. We still have to ensure that the total accumulated impulse of all the 
contact points is positive.

To implement accumulated impulses, we keep track of the sum of the impulses needed to 
resolve a collision in the arbiter. Then, once the impulse has been calculated for every contact 
point and summed up in the arbiter, we apply the impulse to the rigid body. Before applying 
the impulse, we need to ensure that the total impulse is positive. We just clamp the final 
impulse to zero if it is negative.
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Springs
We briefly introduced springs in Chapter 16, Springs and Joints. We saw how we can use 
springs to create soft bodies like cloth. In this section, we will explore other uses of springs.

Collision resolution
If we know the collision point, depth, and normal, we can use springs to resolve the collision. 
This method works by placing a temporary spring at the point of contact that will push objects 
apart in the direction of the contact normal. The spring should exert just enough force to push 
the two bodies apart.

The force that the spring exerts on the rigid bodies is called a penalty force. Due to this 
terminology, using springs to resolve collisions is often called penalty based collision 
resolution; the following image demonstrates this:

While this method can be used to create stable physics, finding the right k value for the 
springs often becomes a guessing game. Using the wrong k value can lead to excessive jitter 
and bouncy objects. Due to the difficulty in finding the right k value, penalty springs are rarely 
used in modern physics engines.

Softbody objects
We created cloth using springs, and we can create other soft bodies using springs as well. 
For example, let's explore how we can use the same spring systems we used to build cloth to 
create a soft body cube. We start with eight points and the structural springs between them:
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Next, we need to add shear springs to keep the object from collapsing. These springs look like 
an x on each face. The shear springs tend to keep the object somewhat rigid:

Finally, we need to add bend springs to keep the cube from folding over in its self. These bend 
springs look like x that cuts the cube diagonally in half:

With this configuration, eight particles are connected by twenty eight springs. This creates a 
soft body cube. If the springs are rigid, the cube acts like a rigid body. If the springs are loose, 
the cube acts like jello. We can use the same three spring systems to make other shapes, 
such as pyramids, into soft bodies.

Open source physics engines
One of the best ways to learn is to examine the existing technology. There are a large number 
of open source physics engines that we can study. I'm only listing open source engines, which 
means that closed source SDKs, such as Havok or PhysX, are left out of this list. Out of all the 
physics engines listed, you really need to go through the Box2D Lite source code.

Box2D Lite
This is, by far, the must-read physics engine! The project is small and easy to nagivate.  
The entire project consists of six .cpp and six .h files. Even though this is a 2D engine,  
it can easily be extended for 3D support. To download and have a look at Box2D Lite visit 
http://box2d.org/files/GDC2006/Box2D_Lite.zip

The most important thing about this engine is the arbiter implementation. Box2D Lite provides 

http://box2d.org/files/GDC2006/Box2D_Lite.zip
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a full arbiter implementation. The engine uses a similar impulse solver to the one that we 
covered in this book; this makes the arbiter provided with Box2D Lite easy to use with our 
engine. There is a GDC presentation about the project available at http://box2d.org/
files/GDC2006/GDC2006_Catto_Erin_PhysicsTutorial.ppt

Box2D
Box2D is a 2D physics engine written in C++ that is developed by Erin Catto. Box2D powers 
some of the most popular 2D mobile games. This engine has been ported to many other 
languages, such as C#, Java, Java script, and Action script. It's worth reading through the 
source of Box2D Lite before getting into the advanced features of Box2D.

https://github.com/erincatto/Box2D

Dyn4j
The dyn4j is a 2D collision detection and physics engine written in Java. The engine is robust 
and provides a feature set comparable to Box2D. What really sets this engine apart is the 
accompanying website. The dyn4j blog (http://www.dyn4j.org) provides clear and 
concise examples and tutorials for many advanced physics topics.

Bullet
The Bullet physics engine is probably the most popular open source 3D physics engine out 
there. The engine implements many cutting-edge algorithms and techniques. Some of the 
more advanced features of the engine are hard to find documentation on; they are only 
described in academic papers. Bullet is large and feature rich, it is used in everything from 
games to robotics. http://bulletphysics.org/wordpress

ODE
The Open Dynamics Engine (ODE) is a high-performance physics library written in C++. ODE 
is an older engine, which receives infrequent updates. The source code for the engine is well 
written and easy to understand. ODE has been used to ship several AAA commercial games as 
well as robotics. http://www.ode.org

JigLib
JigLib is an experimental physics engine that has a very clean, well-organized, and easy-to-
follow source code. The engine has been ported to C#, Java, Java script, Action script, and 
other languages. The engine is stable; it runs well even on older hardware.

http://www.rowlhouse.co.uk/jiglib

 http://box2d.org/files/GDC2006/GDC2006_Catto_Erin_PhysicsTutorial.ppt
 http://box2d.org/files/GDC2006/GDC2006_Catto_Erin_PhysicsTutorial.ppt
https://github.com/erincatto/Box2D
http://www.dyn4j.org
http://www.dyn4j.org
http://www.dyn4j.org
http://bulletphysics.org/wordpress
http://www.ode.org
http://www.rowlhouse.co.uk/jiglib
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React 3D
React3D is a C++ physics engine being developed by Daniel Chappuis. The source code of the 
engine is well organized, easy to follow and extremely well commented. The comments in the 
source code of this engine are better than some of the online tutorials. The engine is feature 
rich and runs very fast. http://www.reactphysics3d.com

Qu3e
The qu3e is a simple C++ physics engine being developed by Randy Gaul. The engine aims to 
strip a modern physics engine down to its minimal code. Only the cube primitive is supported, 
but many advanced features are implemented. The engine is a great example of the minimum 
code needed for modern physics simulation. 
https://github.com/RandyGaul/qu3e

Cyclone Physics
Cyclone Physics is a 3D physics engine developed by Ian Millington for his book, Game 
Physics Engine Development. More information about the book is provided later in this 
chapter. https://github.com/idmillington/cyclone-physics

Books
In general, books on modern game physics are hard to find. The technology and methods that 
are considered modern are constantly changing and evolving. This makes writing books for 
cutting edge physics simulation challenging. I want to provide a list of useful books that might 
cover additional topics. I will not provide a review of each book.

Most of these books cover overlapping topics. The basics of an impulse-based physics engine 
are the same; because of this, the books tend to cover similar topics. However, each of these 
books provides some unique details or algorithm that makes the book worth owning:

 f Physics Modeling for Game Programmers

 � Conger, D. (2004). Physics modeling for game programmers. Boston,  
MA: Thomson/Premier.

 � By David Cogner, ISBN-13: 978-1592000937

 f Physics for Game Developers

 � Bourg, D. M., & Bywalec, B. (2013). Physics for game developers. Sebastopol, 
CA: O'Reilly Media.

 � By David M Bourg and Bryan Bywalec, ISBN-13: 978-1449392512

http://www.reactphysics3d.com
https://github.com/RandyGaul/qu3e
https://github.com/idmillington/cyclone-physics
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 f Game Physics Engine Development

 � Millington, I. (2010). Game physics engine development: how to build a 
robust commercial-grade physics engine for your game. Burlington, MA: 
Morgan Kaufmann.

 � By Ian Millington, ISBN-13: 978-0123819765

 f Game Physics

 � Eberly, D. H. (2010). Game physics. Burlington, MA: Morgan Kaufmann/
Elsevier.

 � By David H. Eberly, ISBN-13: 978-0123749031

 f Real-Time Collision Detection

 � Ericson, C. (2004). Real-time collision detection. San Francisco, CA: Elsevier.

 � By Christer Ericson, ISBN-13: 978-1558607323

 f Game Physics: A Practical Introduction

 � By Ben Kenwright, ISBN-13: 978-1471033971

Online resources
In addition to open source physics engines and books, online resources are also a great 
place to research game physics. There are several blogs and publications available. I highly 
recommend publications from valve:

 f http://valvesoftware.com/company/publications.html

 f http://allenchou.net/game-physics-series

 f http://randygaul.net/category/physics

 f http://gafferongames.com/game-physics

 f http://wildbunny.co.uk/blog/category/physics-2

 f http://chrishecker.com/Rigid_Body_Dynamics

 f http://www.xbdev.net/physics/index.php

 f http://brm.io/game-physics-for-beginners

In addition to the mentioned blogs, there are several videos and presentations on various 
physics topics available on the GDC vault:

http://www.gdcvault.com

There is also a list of relevant GDC presentations hosted on the Box2D website at  
http://box2d.org/files.

http://valvesoftware.com/company/publications.html
http://allenchou.net/game-physics-series
http://randygaul.net/category/physics
http://gafferongames.com/game-physics
http://wildbunny.co.uk/blog/category/physics-2
http://chrishecker.com/Rigid_Body_Dynamics
http://www.xbdev.net/physics/index.php
http://brm.io/game-physics-for-beginners
http://www.gdcvault.com
  http://box2d.org/files
  http://box2d.org/files
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Of course, everyone runs into issues writing code, and physics is an especially difficult topic. 
If you run into issues with your physics engine, you can always ask for help at the following 
Gamedev.net forum:

https://www.gamedev.net/forum/20-math-and-physics

Summary
We covered a lot of ground in this book. I want to take a minute and reflect on all the topics we 
covered, and the learning that is still ahead.

Chapters 1, 2, and 3 covered the basics of Linear Algebra. Having this mathematical 
foundation is central to writing a physics engine!

Chapters 4, 5, and 6 covered what two-dimensional primitives are and how to detect 
intersections between them.

Chapters 8, 9, and 10 covered what three-dimensional primitives are and the most efficient 
way to determine intersections between them.

Chapters 11, 12, and 13 covered meshes, scenes, and scene organization. These skills 
become important as you construct larger and more elaborate scenes.

Finally, chapters 14, 15, and 16 covered physics. Throughout these three chapters, we built 
a very basic physics engine. Even though the engine is basic, we did some interesting things 
with it. We implemented particle physics, rigid body physics, and soft body physics (cloth), all 
in the same engine.

In the appendix, you were given several book and open source game engine references. 
Reading the source code of open source engines is very important. Topics covered in books 
and academic papers are often easier to understand when you can go through the code 
that is executing. I highly encourage for the first resource be reading through the Box2D Lite 
source code after reading this book.

Gamedev.net
https://www.gamedev.net/forum/20-math-and-physics
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Box2D  445
Box2D Lite  444
Bullet  445
Cyclone Physics  446
dyn4j  445
JigLib  445
ODE  445
qu3e  446
react3D  446

operations
implementing, on 4x4 matrix  51-53
on models  267-272
on Octree  283-287
on scene  275-278

Orbital Camera
about  302
creating  302-306

Oriented Bounding Box (OBB)
about  156, 157, 168, 180, 199, 233, 234, 

264, 315
Collision Manifold, finding  369-379
in frustum  315-318
Linetest function, implementing  219, 220
point tests, implementing  168-170
Raycast function, updating  336-342
Raycast, implementing  209-213

Oriented Bounding Box (OBB) to Oriented 
Bounding Bob (OBB)

intersection, testing  192-194
Oriented Bounding Box (OBB) to plane

intersection, testing  194-196
oriented rectangle  98, 99
oriented rectangle to oriented rectangle

intersection, testing  125, 127
orthogonal camera  294
orthogonal vectors  294
orthographic projection  86
ortho-normal  294
ortho-normal matrix  85

P
particles

integrating  351-356
modifications  414-416

penalty based collision resolution  443
penalty force  443
penetration distance  364
Perpendicular Axis  66
perspective projection  86
Physics Scene  272
Physics System

about  327
implementing  346-351
modification, for adding cloth  

support  431-433
reference link  398
updating  393-398

picking
about  321
implementing  321-326

pitch  66
plane

about  158, 159
Linetest function, implementing  220-222
point tests, implementing  171
Raycast function, updating  343-346
Raycast function, updating for planes  342
Raycast, implementing  214-216

plane equation  159
plane to plane

intersection, testing  197
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point
about  80, 92
implementing, in triangle  224, 225

point containment
about  100, 101
point in circle  102
point in oriented rectangle  103
point in rectangle  102
point on line  102

point mass system  414, 421
point tests

implementing, for AABB  166, 167
implementing, for line  172, 173
implementing, for OBB  168-170
implementing, for plane  171
implementing, for ray  174, 175
implementing, for sphere  164, 165

Post Multiplication  79
Pre Multiplication  79
projection  22-26, 321
projection matrix

about  86-90, 293
orthographic projection  86
perspective projection  86
reference link  88

Purplemath
reference link  32

Q
qu3e

about  446
reference link  446

quad tree  135-143
Quaternion

about  407
reference link  407

querying  275

R
radians

reference link  22
radius  95
ray

about  151, 152
point tests, implementing  174, 175

Raycast function
updating, for AABB  336-342
updating, for OBB  336-342
updating, for planes  342-346
updating, for triangles  342-346

raycasting
about  268, 275
implementing, against AABB  204-208
implementing, against OBB  209-213
implementing, against plane  214-216
implementing, against sphere  200-204
triangle  244-248

RaycastSphere function
updating  333-335

react3D
about  446
reference link  446

rectangle  96, 97
rectangle to oriented rectangle

intersection, testing  121-124
rectangle to rectangle

intersection, testing  114, 115
reflection  26-29
Relative Normal  390
relative tolerance

about  10
reference link  10

Relative Velocity  390
Render Scene  272
Resting Length  416
restoring force  416
Right Handed Coordinate System  87
rigidbody

about  346
modifications  380, 381

roll  66
rotation

about  98
working  65, 66, 67

rotation matrices
about  68-71
X-Basis vector  72, 73
X rotation  76
Y-Basis vector  74
Y rotation  76
Z-Basis vector  75
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Row Major matrix  60, 61
runtimes

reference link  438

S
scalar multiplication  38
scalar product   11
scale  64
scale factor  264
scaling  64, 65
scene

Octree, integration  288-291
querying operation  275-278
raycasting operation  275-278

Scene object  272-275
Separating Axis Theorem

implementing, for robustness  240-243
Separating Axis Theorem (SAT)  107

about  116-119, 184, 379, 438
axis, determining to test  120

set of contact points  364
shear springs  422
signed displacement  2
simple shape  133, 134
sinking  393
slab tests  341
Slider Joint  434
slop

adding  441
slope intercept form  93, 100
soft body   421
soft body objects  443, 444
SOH-CAH-TOA  75
SolveConstraints method

implementing  357-359
sphere

about  152-154
Collision Manifold, finding  364-369
intersection tests, implementing against  

frustum  313, 314
Linetest function, implementing  216, 217
point tests, implementing  164, 165
Raycast, implementing  200-204

sphere to Axis Aligned Bounding Box (AABB)
intersection, testing  179, 180

sphere to Oriented Bounding Box (OBB)
intersection, testing  180-182

sphere to plane
intersection, testing  182

sphere to sphere
intersection, testing  178, 179

springs
about  416-421, 443
collision, resolving  443
soft body objects  443, 444

springs Equilibrium  416
square matrix  32
stability improvements

about  441
accumulated impulses  442
arbiter  442

Start Point  93, 149
structural springs  421
support function  438
symmetric matrix

reference link  79

T
Tangential Acceleration  399
tensors

about  407
reference link  407

Tiny OBJ Loader
reference link  332

Torque  401
transform matrix  82-84
triangle

about  160, 161
closest point, finding  226-229
point, implementing  224, 225
Raycast function, updating  343-346
Raycast function, updating for planes  342
raycasting  244-248

triangle to Axis Aligned Bounding Box (AABB)
intersection, verifying  230-232

triangle to Oriented Bounding Box (OBB)
intersection, verifying  233, 235

triangle to plane
intersection, verifying  235, 236
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triangle to sphere
intersection, verifying  229, 230

triangle to triangle
intersection, verifying  237-239

tunneling  358
tuple  2

U
unit length  16
unit vector  16
Unprojection  321

V
vector

about  1, 80
definition  2-4
direction  3
magnitude  3
W component  5

vector equality  6
vector matrix multiplication  79-81
Velocity Verlet Integration

about  356
using  360-362

Verlet Integration  360
view matrix  84, 86, 293
View Transform matrix  85

W
W component  5
world transform  294

Y
yaw  66
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