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Preface to the Second Edition

Ten years later, where are we? Why a second edition? The two next generation
muon g — 2 experiments at Fermilab in the US and at J-PARC in Japan have been
designed to reach a four times better precision of 16 x 107! (from 0.54 ppm to
0.14 ppm) and the challenge for the theory side is to keep up in precision if
possible. This has triggered a lot of new research activities which justify an update
of the first edition. The main motivation is the persisting 3 to 4 ¢ deviation between
standard theory and experiment. As Standard Model predictions almost without
exception match perfectly all experimental information, the deviation in one of the
most precisely measured quantities in particle physics remains a mystery and
inspires the imagination of model builders. A flush of speculations are aiming to
explain what beyond the Standard Model effects could fill the gap. Here very high
precision experiments are competing with searches for new physics at the high
energy frontier set by the Large Hadron Collider at CERN. Actually, the tension is
increasing day-by-day as no new states are found which could accommodate the
(gﬂ —2) discrepancy. With the new muon g — 2 experiments this discrepancy
would go up at least to 6 to 10 o, in case the central values do not move, the 10 ¢
could be reached if the present theory error could be reduced by a factor of two.
The anomalous magnetic moment of the muon is a number represented by on
overlay of a large number of individual quantum corrections, which depend on a
few fundamental parameters. An update of the latter actually changes almost all
numbers in the last digits. Besides this, there has been remarkable progress in the
calculation of the higher order corrections. Aoyama, Hayakawa, Kinoshita and Nio
managed to evaluate the five-loop QED correction, which includes about 13 000
diagrams and which account for a small 5 x 10~!!, thereby reducing the uncertainty
of the QED part which has been dominated by the missing O(o°) correction. More
recently a seminal article by Laporta the essentially exact universal 4-loop contri-
bution has been presented. The corresponding contributions to the electron g — 2
together with the extremely precise determination of (g, — 2) by Gabrielse et al.
allows one to determine a more precise value of the fine structure constant o, which
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viii Preface to the Second Edition

in turn affect the numbers predicted for (gu —2). Also more precise lepton mass
ratios recommended by the CODATA group are slightly affecting the predictions.
To the weak interaction contribution the uncertainty could be reduced mainly
because of the fact that after the discovery of the Higgs particle by ATLAS and
CMS at the Large Hadron Collider at CERN, the last relevant missing Standard
Model parameter could be determined with remarkable precision.

Still the largest uncertainties in the SM prediction come from the leading
hadronic contributions: the hadronic vacuum polarization and the hadronic
light-by-light scattering insertions. The hadronic vacuum polarization at O(o?),
evaluated in terms of e™ e~ -annihilation data via a dispersion relation has been
improved substantially mainly with new data from initial state radiation approach
that the @ factory DAFNE at Frascati with the KLOE detector and at the B factory
at SLAC with the BaBar detector. Lately also new results from BEPC-II at Beijing
with the BES-III detector and from VEPP-2000 at Novosibirsk with the CMD-3 and
SND detectors contributed to further reduce the uncertainties. On the theory side the
7-decay spectra versus et ¢ -annihilation data which should essentially agree after
an isospin rotation has been resolved by including missing v — p° mixing effects.
Besides the NLO vacuum polarization new the NNLO amounting to 12 x 107!
roughly a 1 o effects has been calculated by Kurz et al. recently. In the meantime
also non-perturbative ab initio lattice QCD calculations come closer to be com-
petitive with the e ™ e -data based approach. I therefore included an introduction to
the lattice QCD approach at the end of Chap. 5. The activity here has been dra-
matically developed. While ten years ago there has been essentially one group only
active, now there are a least six groups competing.

The most challenging problem remains the hadronic light-by-light contribution
of O(?). Unlike the hadronic vacuum polarization which is a one scale problem,
the hadronic light-by-light scattering involves three different scales and there are
many different hadronic channels contributing. The only fairly complete calcula-
tions are based on low energy effective hadronic models, which unfortunately sill
are not constrained by data to a satisfactory degree. Quite recently, a new approach
has been worked out by Colangelo, Hoferichter, Procura and Stoffer, and Pauk and
Vanderhaeghen which attempts to rely completely on hadronic light-by-light
scattering data in conjunction with dispersion relations. This sounds to implement
the successful hadronic vacuum polarization technique to the multi channel multi
scale light-by-light case. Apart from being much more elaborate the data pool is by
far not as complete as in the et e data case. In spite of the fact that data for a
complete evaluation are largely missing there is definitely progress possible with
exploiting existing data for vy — 77—, 797 in particular, where new data from
Belle are of good quality, which allows one to get more solid evaluations than
existing ones. For the singly tagged pion transition form factor there have been new
useful data from BaBar and Belle which cover a much larger energy range now.
Also in this case lattice QCD starts to be a new player in the field, and first useful
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information concerning the doubly tagged pion transition form factor has been
evaluated and provides an important new constraint.

The main focus of the book is a detailed account of the Standard Model
prediction.
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Preface to the First Edition

It seems to be a strange enterprise to attempt write a physics book about a single
number. It was not my idea to do so, but why not. In mathematics, maybe, one
would write a book about 7. Certainly, the muon’s anomalous magnetic moment is
a very special number and today reflects almost the full spectrum of effects
incorporated in today’s Standard Model (SM) of fundamental interactions,
including the electromagnetic, the weak and the strong forces. The muon g — 2,
how it is also called, is a truly fascinating theme both from an experimental and
from a theoretical point of view and it has played a crucial role in the development
of QED which finally developed into the SM by successive inclusion of the weak
and the strong interactions. The topic has fascinated a large number of particle
physicists last but not least it was always a benchmark for theory as a monitor for
effects beyond what was known at the time. As an example, nobody could believe
that a muon is just a heavy version of an electron, why should nature repeat itself, it
hardly can make sense. The first precise muon g — 2 experiment at CERN answered
that question: yes the muon is just a heavier replica of the electron! Today we know
we have a 3-fold replica world, there exist three families of leptons, neutrinos,
up-quarks and down-quarks, and we know we need them to get in a way for free a
tiny breaking at the per mill level of the fundamental symmetry of time-reversal
invariance, by a phase in the family mixing matrix. At least three families must be
there to allow for this possibility. This symmetry breaking also know as
CP-violation is mandatory for the existence of all normal matter in our universe
which clustered into galaxies, stars, planets, and after all allowed life to
develop. Actually, this observed matter-antimatter asymmetry, to our present
knowledge, cries for additional CP violating interactions, beyond what is exhibited
in the SM. And maybe it is a, which already gives us a hint how such a basic
problem could find its solution. The muon was the first replica particle found. At the
time, the existence of the muon surprised physicists so much that the Nobel laureate
Isidor I. Rabi exclaimed, “Who ordered that?”. But the muon is special in many
other respects and its unique properties allow us to play experiment and theory to
the extreme in precision.

xi
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One of the key points of the anomalous magnetic moment is its simplicity as an
observable. It has a classical static meaning while at the same time it is a highly
non-trivial quantity reflecting the quantum structure of nature in many facets. This
simplicity goes along with an unambiguous definition and a well understood quasi
classical behavior in a static perfectly homogeneous magnetic field. At the same
time the anomalous magnetic moment is tricky to calculate in particular if one
wants to know it precisely. To start with, the problem is the same as for the electron,
and how tricky it was one may anticipate if one considers the 20 years it took for the
most clever people of the time to go form Dirac’s prediction of the gyromagnetic
ratio g = 2 to the anomalous g — 2 = o/7 of Schwinger.

Today the single number a, = (g, —2)/2 in fact is an overlay of truly many
numbers, in a sense hundreds or thousands (as many as there are Feynman diagrams
contributing), of different signs and sizes and only if each of these numbers is
calculated with sufficient accuracy the correct answer can be obtained; if one single
significant contribution fails to be correct also our single number ceases to have any
meaning beyond that wrong digit. So high accuracy is the requirement and
challenge.

For the unstable short lived muon which decays after about 2 micro seconds, for
a long time nobody knew how one could measure its anomalous magnetic moment.
Only when parity violation was discovered by end of the 1950’s one immediately
realized how to polarize muons and how to study the motion of the spin in a
magnetic field and to measure the Larmor precession frequency which allows to
extract a,. The muon g — 2 is very special, it is in many respect much more
interesting than the electron g — 2, and the g — 2 of the 7, for example, we are not
even able to confirm that g ~ 2 because the 7 is by far too short lived to allow for a
measurement of its anomaly with presently available technology. So the muon is a
real lucky case as a probe for investigating physics at the frontier of our knowledge.
By now, with the advent of the recent muon g — 2 experiment, performed at
Brookhaven National Laboratory with an unprecedented precision of 0.54 parts per
million, the anomalous magnetic moment of the muon is not only one of the most
precisely measured quantities in particle physics, but theory and experiment lie
apart by three standard deviations, the biggest “discrepancy” among all well
measured and understood precision observables at present.

This promises nearby new physics, which future accelerator experiments are
certainly going to disentangle. It may indicate that we are at the beginning of a new
understanding of fundamental physics beyond or behind the SM. Note however,
that this is a small deviation and usually a 5 standard deviation is required to be
accepted as a real deviation, i.e. there is a small chance that the gap is a statistical
fluctuation only.

One would expect that it is very easy to invent new particles and/or interactions
to account for the missing contribution from the theory side. Surprisingly other
experimental constraints, in particular the absence of any other real deviation from
the SM makes it hard to find a simple explanation. Most remarkable, in spite
of these tensions between different experiments, the minimal supersymmetric
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extension of the standard model, which promised new physics to be “around the
corner”, is precisely what could fit. So the presently observed deviation in g — 2
of the muon feeds hopes that the end of the SM is in sight.

About the book: in view of the fact that there now exist a number of excellent
more or less extended reviews, rather than adding another topical report, I tried to
write a self-contained book not only about the status of the present knowledge on
the anomalous magnetic moment of the muon, but also remembering the reader
about its basic context and its role it played in developing the basic theoretical
framework of particle theory. After all, the triumph this scientific achievement
marks, for both theory and experiment, has its feedback on its roots as it ever had in
the past. I hope it makes the book more accessible for non-experts and it is the goal
to reach a broader community to learn about this interesting topic without com-
promising with respect to provide a basic understanding of what it means.

So the books is addressed to graduate students and experimenters interested in
deepening some theoretical background and to learn in some detail how it really
works. Thus, the book is not primarily addressed to the experts, but nevertheless
gives an up-to-date status report on the topic. Knowledge of special relativity and
quantum mechanics and a previous encounter with QED are expected.

While the structural background of theory is indispensable for putting into
perspective its fundamental aspects, it is in the nature of the theme that numbers and
the comparison with the experiment play a key role in this book.

The book is organized as follows: Part I presents a brief history of the subject
followed in Chap. 2 by an outline of the concepts of quantum field theory and an
introduction into QED including one-loop renormalization and a calculation of the
leading lepton anomaly as well as some tools like the renormalization group, scalar
QED for pions and a sketch of QCD. Chapter 3 first discusses the motion of leptons
in an external field in the classical limit and then overviews the profile of the
physics which comes into play and what is the status for the electron and the muon
g —2’s. The basic concept and tools for calculating higher order effects are
outlined.

In Part II the contributions to the muon g — 2 are discussed in detail. Chapter 4
reviews the QED calculations. Chapter 5 is devoted to the hadronic contributions in
particular to the problems of evaluating the leading vacuum polarization contri-
butions from electron-positron annihilation data. Also hadronic light-by-light
scattering is critically reviewed. Chapter 6 describes the principle of the experiment
in some detail as well as some other background relevant for determining g, — 2.
The final Chap. 7 gives a detailed comparison of theory with the experiment and
discusses possible impact for physics beyond the standard theory and future
perspectives.
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Basic Concepts, Introduction to QED,
g — 2 in a Nutshell, General Properties
and Tools



Chapter 1
Introduction

The book gives an introduction to the basics of the anomalous magnetic moments of
leptons and reviews the current state of our knowledge of the anomalous magnetic
moment (g — 2) of the muon and related topics. The muon usually is denoted by
w. The last g — 2 experiment E821 performed at Brookhaven National Laboratory
(BNL) in the USA has reached the impressive precision of 0.54 parts per million
(ppm) [1]. The anomalous magnetic moment of the muon is now one of the most
precisely measured quantities in particle physics and allows us to test relativistic
local Quantum Field Theory (QFT) in its depth, with unprecedented accuracy. It
puts severe limits on deviations from the standard theory of elementary particles and
at the same time opens a window to new physics. The book describes the fascinating
story of uncovering the fundamental laws of nature to the deepest by an increasingly
precise investigation of a single observable. The anomalous magnetic moment of the
muon not only encodes all the known but also the as of yet unknown non—Standard-
Model physics.! The latter, however, is still hidden and is waiting to be discovered
on the way to higher precision which allows us to see smaller and smaller effects.
In fact a persisting 3 — 40 deviation between theory and experiment, probably
the best established substantial deviation among the many successful SM predic-
tions which have been measured in a multitude of precision experiments, motivated
a next generation of muon g — 2 experiments. A new followup experiment E989
at Fermilab in the US [2-6], will operate very similar as later CERN and the BNL
experiments, working with ultrarelativistic magic-energy muons. A second exper-
iment E34 planned at J-PARC in Japan [7-10] will work with ultra-cold muons,
and thus can provide an important cross-check between very different experimen-
tal setups. While the Fermilab experiment will be able to reduce the experimental

! As a matter of principle, an experimentally determined quantity always includes all effects, known
and unknown, existing in the real world. This includes electromagnetic, strong, weak and gravita-
tional interactions, plus whatever effects we might discover in future.

© Springer International Publishing AG 2017 3
F. Jegerlehner, The Anomalous Magnetic Moment of the Muon,
Springer Tracts in Modern Physics 274, DOI 10.1007/978-3-319-63577-4_1



4 1 Introduction

uncertainty by a factor four to 0.14 ppm, the conceptually novel J-PARC experiment
is expected to reach the precision of the previous BNL experiment in a first phase.

In order to understand what is so special about the muon anomalous magnetic
moment we have to look at leptons in general. The muon (x ™), like the much lighter
electron (e™) or the much heavier tau (7 7) particle, is one of the 3 known charged
leptons: elementary spin 1/2 fermions of electric charge —1 in units of the positron
charge e, as free relativistic one particle states described by the Dirac equation. Each
of the leptons has its positively charged antiparticle, the positron e, the u* and the
T+, respectively, as required by any local relativistic quantum field theory [11].2

Of course the charged leptons are never really free, they interact electromagnet-
ically with the photon and weakly via the heavy gauge bosons W and Z, as well
as very much weaker also with the Higgs boson. Puzzling enough, the three leptons
have identical properties, except for the masses which are given by m, = 0.511 MeV,
m, = 105.658 MeV and m, = 1776.99 MeV, respectively. In reality, the lepton
masses differ by orders of magnitude and actually lead to a very different behavior
of these particles. As mass and energy are equivalent according to Einstein’s rela-
tion E = mc?, heavier particles in general decay into lighter particles plus kinetic
energy. An immediate consequence of the very different masses are the very differ-
ent lifetimes of the leptons. Within the Standard Model (SM) of elementary particle
interactions the electron is stable on time scales of the age of the universe, while the
w has a short lifetime of 7, = 2.197 x 107®s and the 7 is even more unstable with
a lifetime 7, = 2.906 x 1073 s only. Also, the decay patterns are very different: the
p decays very close to 100% into electrons plus two neutrinos (ev,v,,), however,
the T decays to about 65% into hadronic states 7~ v, , 7~ 7%, , ... while the
main leptonic decay modes only account for 17.36% p~v,,v; and 17.85% e~ v,v.,
respectively. This has a dramatic impact on the possibility to study these particles
experimentally and to measure various properties precisely. The most precisely stud-
ied lepton is the electron, but the muon can also be explored with extreme precision.
Since the muon, the much heavier partner of the electron, turns out to be much more
sensitive to hypothetical physics beyond the SM than the electron itself, the muon
is much more suitable as a “crystal ball” which could give us hints about not yet
uncovered physics. The reason is that some effects scale with powers of m%, as we
will see below. Unfortunately, the 7 is so short lived, that corresponding experiments
are not possible with present technology.

A direct consequence of the pronounced mass hierarchy is the fundamentally
different role the different leptons play in nature. While the stable electrons, besides
protons and neutrons, are everywhere in ordinary matter, in atoms, molecules, gases,
liquids, metals, other condensed matter states etc., muons seem to be very rare and
their role in our world is far from obvious. Nevertheless, even though we may not
be aware of it, muons as cosmic ray particles are also part of our everyday life. They
are continuously created when highly energetic particles from deep space, mostly
protons, collide with atoms from the Earth’s upper atmosphere. The initial collisions

2Dirac’s theory of electrons, positrons and photons was an early version of what later developed
into Quantum Electrodynamics (QED), as it is known since around 1950.
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create pions which then decay into muons. The highly energetic muons travel at
nearly the speed of light down through the atmosphere and arrive at ground level at
a rate of about 1 muon per cm? and minute. The relativistic time dilatation thereby
is responsible that the muons have time enough to reach the ground. As we will
see later the basic mechanisms observed here are the ones made use of in the muon
g — 2 experiments. Also remember that the muon was discovered in cosmic rays
by Anderson & Neddermeyer in 1936 [12], a few years after Anderson [13] had
discovered antimatter in form of the positron, a “positively charged electron” as
predicted by Dirac, in cosmic rays in 1932.

Besides charge, spin, mass and lifetime, leptons have other very interesting static
(classical) electromagnetic and weak properties like the magnetic and electric dipole
moments. Classically the dipole moments can arise from either electrical charges
or currents. A well known example is the circulating current, due to an orbiting
particle with electric charge e and mass m, which exhibits a magnetic dipole moment

= zicer X Vv given by

no=—L (1.1)
2mc

where L = mr x v is the orbital angular momentum (r position, v velocity). An elec-
trical dipole moment can exist due to relative displacements of the centers of positive
and negative electrical charge distributions. Thus both electrical and magnetic prop-
erties have their origin in the electrical charges and their currents. Magnetic charges
are not necessary to obtain magnetic moments. This aspect carries over from the
basic asymmetry between electric and magnetic phenomena in Maxwell’s equations.>
While electric charges play the fundamental role of the sources of the electromag-
netic fields, elementary magnetic charges, usually called magnetic monopoles, are
absent. A long time ago, Dirac [14] observed that the existence of magnetic charges
would allow us to naturally explain the quantization of both the electric charge ¢ and
the magnetic charge m. They would be related by

1
em = Enhc , where n is an integer.

Apparently, nature does not make use of this possibility and the question of the exis-
tence of magnetic monopoles remains a challenge for the future in particle physics.

Whatever the origin of magnetic and electric moments are, they contribute to
the electromagnetic interaction Hamiltonian (interaction energy) of the particle with
magnetic and electric fields

H=-pn, B—d, E, (1.2)

where B and E are the magnetic and electric field strengths and p,, and d, the mag-
netic and electric dipole moment operators. Usually, we measure magnetic moments

31t should be noted that a duality E <> B of Maxwell electromagnetism is not realized, because the
Hamiltonian changes sign and the dual system would be unstable.
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in units of the Bohr magneton

o = eh/2mc (1.3)
and the spin operator
ho
S=— 14
> (1.4)

is replacing the angular momentum operator L. Thus, generalizing the classical form
(1.1) of the orbital magnetic moment, one writes (see Sect.3.1)

Bn=9Qu S . de=nQuo>. (1.5)
where o; (i = 1, 2, 3) are the Pauli spin matrices, Q is the electrical charge in units
of e, Q = —1 for the leptons Q = +1 for the antileptons. The equations are defining
the gyromagnetic ratio g (g-factor) and its electric pendant n, respectively, quantities
exhibiting important dynamical information about the leptons as we will see later.

The magnetic interaction term gives rise to the well known Zeeman effect: atomic
spectra show a level splitting

e
AE:—(L+gS)~B=gj,bL0ij.
2mce

The second form gives the result evaluated in terms of the relevant quantum numbers.
m j is the 3rd component of the total angular momentum J = L + S in units of / and
takesvaluesm; = —j, —j +1,..., jwithj =1+ %.gl is Landé’s g—factor.* If spin
is involved one calls it anomalous Zeeman effect. The latter obviously is suitable
to study the magnetic moment of the electron by investigating atomic spectra in
magnetic fields.

4The Landé ¢ , may be calculated based on the “vector model” of angular momentum composition:

(L+g8)-JJ-B_(L+gS) L+S)

L+¢S)-B=
(L +gS) 7 7 7
L? 4+ ¢S+ (g+1)L-S G+DJ2=(g—1DL>+(g—1) 52
= mjhB = m;ihB
J? 2J2 J

where we have eliminated L - S using J? = L? 4 52 4 2L - S. Using J = j(j + 1) hetc. we find

JU+D =+ D +s@s+1)

=1 -1
9, +@—-1 ST,

With the Dirac value g = 2 we find the usual textbook expression.
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The anomalous magnetic moment is an observable® which can be relatively eas-
ily studied experimentally from the motion of the lepton in an external magnetic
field. The story started in 1925 soon after Kronig, Goudsmit and Uhlenbeck [15]
had postulated that an electron had an intrinsic angular momentum of %h, and that
associated with this spin angular momentum there is a magnetic dipole moment
equal to eh/2mc, which is the Bohr magneton 1¢o. The important question “is (i, ).
precisely equal to 11(”, or “is g = 1” in our language, was addressed by Back and
Landé in 1925 [16]. Their conclusion, based on a study of numerous experimental
investigations on the Zeeman effect, was that the magnetic moment of the electron
(tm)e was consistent with the Goudsmit and Uhlenbeck postulate. In fact, the analy-
sis was not conclusive, as we know, since they did not really determine g. Soon
after Pauli had formulated the quantum mechanical treatment of the electron spin in
1927 [17], where g remains a free parameter, Dirac presented his relativistic theory
in 1928 [18].

The Dirac theory predicted, unexpectedly, g = 2 for a free electron [18], twice
the value g = 1 known to be associated with orbital angular momentum. After first
experimental confirmations of Dirac’s prediction g, = 2 for the electron (Kinster and
Houston 1934) [19], which strongly supported the Dirac theory, yet within relatively
large experimental errors at that time, it took about 20 more years of experimental
efforts to establish that the electrons magnetic moment actually exceeds 2 by about
0.12%, the first clear indication of the existence of an “anomalous”® contribution

ge — 2
>

L=e 1) (1.6)

ay =
to the magnetic moment [20]. By end of the 1940’s the breakthrough in understand-
ing and handling renormalization of QED (Tomonaga, Schwinger, Feynman, and
others around 1948 [21]) had made unambiguous predictions of higher order effects

possible, and in particular of the leading (one—loop diagram) contribution to the
anomalous magnetic moment

a0 = L=y 1) (1.7)
2

by Schwinger in 1948 [22] (see Sect.2.6.3 and Chap. 3). This contribution is due to
quantum fluctuations via virtual electron photon interactions and in QED is universal
for all leptons. The history of the early period of enthusiasm and worries in the
development and first major tests of QED as arenormalizable covariant local quantum
field theory is elaborated in great detail in the fascinating book by Schweber [23]
(concerning g — 2 see Chap. 5, in particular).

5A quantity which is more or less directly accessible in an experiment. In general small correc-
tions based on well understood and established theory are necessary for the interpretation of the
experimental data.

6The anomalous magnetic moment is called anomalous for historic reasons, as a deviation from
the classical result. In QED or any QFT higher order effects, so called radiative corrections, are the
normal case, which does not make such phenomena less interesting.
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In 1947 Nafe, Nelson and Rabi [24] reported an anomalous value by about 0.26%
in the hyperfine splitting of hydrogen and deuterium, which was quickly confirmed
by Nagle et al. [25], and Breit [26] suggested a possible anomaly g # 2 of the mag-
netic moment of the electron. Soon after, Kusch and Foley [27], by a study of the
hyperfine—structure of atomic spectra in a constant magnetic field, presented the first
precision determination of the magnetic moment of the electron g, = 2.00238(10) in
1948, just before the theoretical result had been settled. Together with Schwinger’s
result ae(z) = o/(2m) =~ 0.00116 (which accounts for 99% of the anomaly) this pro-
vided one of the first tests of the virtual quantum corrections, usually called radiative
corrections, predicted by a relativistic quantum field theory. The discovery of the fine
structure of the hydrogen spectrum (Lamb—shift) by Lamb and Retherford [28] and
the corresponding calculations by Bethe, Kroll & Lamb and Weisskopf & French [29]
was the other triumph of testing the new level of theoretical understanding with pre-
cision experiments. These successes had a dramatic impact in establishing quantum
field theory as a general framework for the theory of elementary particles and for
our understanding of the fundamental interactions. It stimulated the development of
QED’ in particular and the concepts of quantum field theory in general. With the
advent of non—Abelian gauge theories, proposed by Yang and Mills (YM) [31] in
1954, and after "t Hooft and Veltman [32] found the missing clues to understanding
and handling them on the quantum level, many years later in 1971, the SM [33]
(Glashow, Weinberg, Salam 1981/1987) finally emerged as a comprehensive the-
ory of weak, electromagnetic and strong interactions. The strong interactions had
emerged as Quantum Chromodynamics (QCD) [34] (Fritzsch, Gell-Mann, Leutwyler
1973), exhibiting the property of Asymptotic Freedom (AF) [35] (Gross, Politzer and
Wilczek 1973). All this structure today is crucial for obtaining sufficiently precise
predictions for the anomalous magnetic moment of the muon as we will see.

The most important condition for the anomalous magnetic moment to be a useful
monitor for testing a theory is its unambiguous predictability within that theory. The
predictability crucially depends on the following properties of the theory:

(1) it must be a local relativistic quantum field theory and
(2) it must be renormalizable.

As a consequence g — 2 vanishes at tree level. This means that g cannot be an inde-
pendently adjustable parameter in any renormalizable QFT, which in turn implies that
g — 2 is a calculable quantity and the predicted value can be confronted with exper-
iments. As we will see g — 2 can in fact be both predicted as well as experimentally
measured with very high accuracy. By confronting precise theoretical predictions
with precisely measured experimental data it is possible to subject the theory to very
stringent tests and to find its possible limitation.

The particle—antiparticle duality [11], also called crossing or charge conjugation
property, which is a basic consequence of any relativistic local QFT, implies first
and foremost that particles and antiparticles have identical masses and spins. In

"Today we understand QED as an Abelian gauge theory. This important structural property was
discovered by Weyl [30] in 1929.
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fact, charge conjugation turned out not to be a universal symmetry of the world of
elementary particles. Since, in some sense, an antiparticle is like a particle propa-
gating backwards in time, charge conjugation C has to be considered together with
time-reversal T (time-reflection), which in a relativistic theory has to go together
with parity P (space-reflection). Besides C, T and P are the two other basic dis-
crete transformation laws in particle physics. A well known fundamental prediction
which relates C, P and T is the CPT theorem: the product of the three discrete trans-
formations, taken in any order, is a symmetry of any relativistic QFT. Actually, in
contrast to the individual transformations C, P and T, which are symmetries of the
electromagnetic— and strong—interactions only, CPT is a universal symmetry and
it is this symmetry which guarantees that particles and antiparticles have identical
masses as well as equal lifetimes.® But also the dipole moments are very interesting
quantities for the study of the discrete symmetries mentioned.

To learn about the properties of the dipole moments under such transformations
we have to look at the interaction Hamiltonian (1.2). In particular the behavior under
parity and time-reversal is of interest. Naively, one would expect that electromag-
netic (QED) and strong interactions (QCD) are giving the dominant contributions
to the dipole moments. However, both preserve P and T and thus the corresponding
contributions to (1.2) must conserve these symmetries as well. A glimpse at (1.5)
tells us that both the magnetic and the electric dipole moment are proportional to
the spin vector o which transforms as an axial vector. Thus, on the one hand, both
It,, and d, are axial vectors. On the other hand, the electromagnetic fields E and
B transform as a vector (polar vector) and an axial vector, respectively. An axial
vector changes sign under T but not under P, while a vector changes sign under P
but not under T. We observe that to the extent that P and/or T are conserved only the
magnetic term —u,, - B is allowed while an electric dipole term —d, - E is forbidden
and hence we must have n = 0 in (1.5). Since the weak interactions violate parity
maximally, weak contributions cannot be excluded by the parity argument. However,
T (by the CPT-theorem equivalent to CP) is also violated by the weak interactions,
but only via fermion family mixing in the Yukawa sector of the SM (see below). It
turns out that, at least for light particles like the known leptons, effects are much
smaller. So electric dipole moments are suppressed by approximate T invariance
at the level of second order weak interactions (for a theoretical review see [36]).

8In some cases particle and antiparticle although of different flavor (fermion species) may have the
same conserved quantum numbers and mix. Examples of such mixing phenomena are K 0_ KO-
oscillations or B® — B%—oscillations. The time evolution of the neutral Kaon system, for example,

is described by
.d (KO K° i
IE(IEO)_H(IEO ’H=M_EF

where M and I" are Hermitian 2 x 2 matrices, the mass and the decay matrices. The corresponding
eigenvalues are A s = my s — 5yL,s- CPT invariance in this case requires the diagonal elements
of M to be equal. In fact [m go — m go|/Mayerage < 6 X 10719 (90% C.L.) provides the best test
of CPT, while the mass eigenstates K and K exhibit a mass difference Am =mg, —mgg =
3.484 +0.006 x 10712 MeV.
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In fact experimental bounds tell us that they are very tiny. The previous best limit
|d,| < 1.6 x 107?7 ¢ - cm at 90% C.L. [37] has been superseded recently by [38]°

|d,| < 8.7 x107%°¢-cm at 90% C.L. (1.8)

This will also play an important role in the interpretation of the g — 2 experiments
as we will see later. The planned J-PARC muon g — 2 experiment will also provide
anew dedicated experiment for measuring the muon electric dipole moment [9, 39].

As already mentioned, the anomalous magnetic moment of a lepton is a dimen-
sionless quantity, a pure number, which may be computed order by order as a per-
turbative expansion in the fine structure constant & in QED, and beyond QED, in the
SM of elementary particles or extensions of it. As an effective interaction term an
anomalous magnetic moment is induced by the interaction of the lepton with photons
or other particles. It corresponds to a dimension 5 operator and since a renormaliz-
able theory is constrained to exhibit terms of dimension 4 or less only, such a term
must be absent for any fermion in any renormalizable theory at tree level. It is the
absence of such a possible Pauli term that leads to the prediction g = 2 + O(«). On
a formal level it is the requirement of renormalizability which forbids the presence
of a Pauli term in the Lagrangian defining the theory (see Sect.2.4.2).

In 1956 a, was already well measured by Crane et al. [40] and Berestetskii et
al. [41] pointed out that the sensitivity of a, to short distance physics scales like

2
Sar  mg (1.9)

ay A2
where A is a UV cut—off characterizing the scale of new physics. It was therefore
clear that the anomalous magnetic moment of the muon would be a much better probe
for possible deviations from QED. However, parity violation of weak interaction was
not yet known at that time and nobody had an idea how to measure a,,.

As already discussed at the beginning of this introduction, the origin of the vastly
different behavior of the three charged leptons is due to the very different masses my,
implying completely different lifetimes 7, = oo, 7y = 1/I o 1/GEm3 (£ = p, T)
and vastly different decay patterns. G is the Fermi constant, known from weak
radioactive decays. In contrast to muons, electrons exist in atoms which opens the
possibility to investigate a, directly via the spectroscopy of atoms in magnetic fields.
This possibility does not exist for muons.!® However, Crane et al. [40] already used a
different method to measure a,. They produced polarized electrons by shooting high—
energy electrons on a gold foil. The part of the electron bunch which is scattered
at right angles, is partially polarized and trapped in a magnetic field, where spin
precession takes place for some time. The bunch is then released from the trap and
allowed to strike a second gold foil, which allows one to analyze the polarization

9The unit e - cm is the dipole moment of an et e~ —pair separated by lcm. Since d = %z‘mhc‘z the

conversion factor needed is ic = 1.9733 - 107! MeVcm and e = 1.
10We discard here the possibility to form and investigate muonic atoms.
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and to determine a,. Although this technique is in principle very similar to the one
later developed to measure q,,, it is obvious that in practice handling the muons in
a similar way is not possible. One of the main questions was: how is it possible to
polarize such short lived particles like muons?

After the proposal of parity violation in weak transitions by Lee and Yang [42] in
1957, it immediately was realized that muons produced in weak decays of the pion
(7™ — w+ neutrino) should be longitudinally polarized. In addition, the decay
positron of the muon (1 — et + 2 neutrinos) could indicate the muon spin direc-
tion. This was confirmed by Garwin, Lederman and Weinrich [43] and Friedman and
Telegdi [44].'" The first of the two papers for the first time determined g, = 2.00
within 10% by applying the muon spin precession principle (see Chap.6). Now the
road was free to seriously think about the experimental investigation of a,, .

It should be mentioned that at that time the nature of the muon was quite a mystery.
While today we know that there are three lepton—quark families with identical basic
properties except for differences in masses, decay times and decay patterns, at these
times it was hard to believe that the muon is just a heavier version of the electron
(n — e—puzzle). For instance, it was expected that the p exhibited some unknown
kind of interaction, not shared by the electron, which was responsible for the much
higher mass. So there was plenty of motivation for experimental initiatives to explore
a,.

The big interest in the muon anomalous magnetic moment was motivated by
Berestetskii’s argument of dramatically enhanced short distance sensitivity. As we
will see later, one of the main features of the anomalous magnetic moment of lep-
tons is that it mediates helicity flip transitions. The helicity is the projection of the
spin vector onto the momentum vector which defines the direction of motion and the
velocity. If the spin is parallel to the direction of motion the particle is right—handed, if
it is antiparallel it is called left-handed.'? For massless particles the helicities would
be conserved by the SM interactions and helicity flips would be forbidden. For mas-
sive particles helicity flips are allowed and their transition amplitude is proportional
to the mass of the particle. Since the transition probability goes with the modulus
square of the amplitude, for the lepton’s anomalous magnetic moment this implies,
generalizing (1.9), that quantum fluctuations due to heavier particles or contributions
from higher energy scales are proportional to

2
861@ my

W S M>mo. (1.10)

where M may be

The latter reference for the first time points out that P and C are violated simultaneously, in fact
P is maximally violated while CP is to very good approximation conserved in this decay.
2Handedness is used here in a naive sense of the “right-hand rule”. Naive because the handedness
defined in this way for a massive particle is frame dependent. The proper definition of handedness
in a relativistic QFT is in terms of the chirality (see Sect.2.2). Only for massless particles the two
different definitions of handedness coincide.
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e the mass of a heavier SM particle, or
e the mass of a hypothetical heavy state beyond the SM, or
e an energy scale or an ultraviolet cut—off where the SM ceases to be valid.

On one hand, this means that the heavier the new state or scale the harder it is to see
(it decouples as M — 00). Typically, the best sensitivity we have for nearby new
physics, which has not yet been discovered by other experiments. On the other hand,
the sensitivity to “new physics” grows quadratically with the mass of the lepton,
which means that the interesting effects are magnified in a,, relative to a, by a factor
(m,./ m,)? ~ 4 x 10*. This is what makes the anomalous magnetic moment of the
muon a, the predestinated “monitor for new physics”. By far the best sensitivity
we have for a; the measurement of which however is beyond present experimental
possibilities, because of the very short lifetime of the 7.

The first measurement of the anomalous magnetic moment of the muon was
performed at Columbia in 1960 [45] with a result a,, = 0.00122(8) at a precision of
about 5%. Shortly after in 1961, the first precision determination was possible at the
CERN cyclotron (1958-1962) [46, 47]. Surprisingly, nothing special was observed
within the 0.4% level of accuracy of the experiment. It was the first real evidence
that the muon was just a heavy electron. In particular this meant that the muon was
point-like and no extra short distance effects could be seen. This latter point of course
is a matter of accuracy and the challenge to go further was evident.

The idea of a muon storage rings was put forward next. A first one was successfully
realized at CERN (1962-1968) [48-50]. It allowed one to measure a,, for both nt
and ™ at the same machine. Results agreed well within errors and provided a precise
verification of the CPT theorem for muons. An accuracy of 270 ppm was reached
and an insignificant 1.7 o (1 o = 1 Standard Deviation (SD)) deviation from theory
was found. Nevertheless the latter triggered a reconsideration of theory. It turned out
that in the estimate of the three—loop O (a*) QED contribution the leptonic light—by—
light scattering part (dominated by the electron loop) was missing. Aldins et al. [51]
then calculated this and after including it, perfect agreement between theory and
experiment was obtained.

One also should keep in mind that the first theoretical successes of QED pre-
dictions and the growing precision of the a, experiments challenged theoreticians to
tackle the much more difficult higher order calculations for a, as well as for a,,. Soon
after Schwinger’s result Karplus and Kroll 1949 [52] calculated the two—loop term for
a.. In 1957, shortly after the discovery of parity violation and a first feasibility proof
in [43], dedicated experiments to explore a,, were discussed. This also renewed the
interest in the two—loop calculation which was reconsidered, corrected and extended
to the muon by Sommerfield [53] and Petermann [54], in the same year. Vacuum
polarization insertions with fermion loops with leptons different from the external
one were calculated in [55, 56]. About 10 years later with the new generation of g — 2
experiments at the first muon storage ring at CERN O («®) calculations were started
by Kinoshita [57], Lautrup and de Rafael [58] and Mignaco and Remiddi [59]. It
then took about 30 years until Laporta and Remiddi [60] found a final analytic
result in 1996. Many of these calculations would not have been possible without
the pioneering computer algebra programs, like ASHMEDAT [61], SCHOONSHIP
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[62, 63] and REDUCE [64]. More recently Vermaseren’s FORM [65] package evolved
into a standard tool for large scale calculations. Commercial software packages like
MACSYMA or the more up—to—date ones MATEMATICA and MAPLE, too, play an
important role as advanced tools to solve difficult problems by means of computers.
Of course, the dramatic increase of computer performance and the use of more effi-
cient computing algorithms have been crucial for the progress achieved. In particular
calculations like the ones needed for g — 2 had a direct impact on the development
of these computer algebra systems.

In an attempt to overcome the systematic difficulties of the first a second muon
storage ring was built (1969—1976) [66, 67]. The precision of 7 ppm reached was
an extraordinary achievement at that time. For the first time the mi/ m?2—enhanced
hadronic contribution came into play. Again no deviations were found. With the
achieved precision the muon g — 2 remained a benchmark for beyond the SM theory
builders ever since. Only 20 years later the BNL experiment E821, again a muon stor-
age ring experiment, was able to set new standards in precision. Now, at the present
level of accuracy the complete SM is needed in order to be able to make predictions at
the appropriate level of precision. As already mentioned, at present further progress
is hampered by the difficulties to include properly the non—perturbative strong inter-
action part. At a certain level of precision hadronic effects become important and we
are confronted with the question of how to evaluate them reliably. At low energies
QCD gets strongly interacting and a perturbative calculation is not possible. For-
tunately, analyticity and unitarity allow us to express the leading hadronic vacuum
polarization (HVP) contributions via a dispersion relation (analyticity) in terms of
experimental data [68]. The key relation here is the optical theorem (unitarity) which
determines the imaginary part of the vacuum polarization amplitude through the total
cross section for electron—positron annihilation into hadrons. First estimations were
performed in [69-71] after the discovery of the p— and the w-resonances,'? and
in [74], after first e e~ cross—section measurements were performed at the colliding
beam machines VEPP-2 and ACO in Novosibirsk [75] and Orsay [76], respectively.
One drawback of this method is that now the precision of the theoretical prediction of
a,, is limited by the accuracy of experimental data. We will say more on this later on.

The success of the CERN muon anomaly experiment and the progress in the
consolidation of the SM, together with given possibilities for experimental improve-
ments, were a good motivation for Vernon Hughes and other interested colleagues
to push for a new experiment at Brookhaven. There the intense proton beam of
the Alternating Gradient Synchrotron (AGS) was available which would allow to
increase the statistical accuracy substantially [77]. The main interest was a precise
test of the electroweak contribution due to virtual W and Z exchange, which had
been calculated immediately after the renormalizability of the SM had been settled

13The p is a 7 resonance which was discovered in pion nucleon scattering 7~ + p — 7~ 7°p
and 7~ + p — w7 n [72] in 1961. The neutral po is a tall resonance in the w77~ channel
which may be directly produced in e™e~—annihilation and plays a key role in the evaluation of the
hadronic contributions to aﬂad. The p contributes about 70% to a4 which clearly demonstrates
the non—perturbative nature of the hadronic effects. Shortly after the p also the w—resonance was
discovered as a 7707~ peak in proton—antiproton annihilation pp — 7 tx %77~ [73].
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in 1972 [78]. An increase in precision by a factor of 20 was required for this goal.
On the theory side the ongoing discussion motivated, in the early 1980’s already,
Kinoshita and his collaborators to start the formidable task to calculate the O (a*)
contribution with 891 four—loop diagrams. The direct numerical evaluation was the
only promising method to get results within a reasonable time. Early results [79, 80]
could be improved continuously [81] and culminated in 2012 with the first complete
O () calculation for both the electron [82] and the muon [83] g — 2 (involving
12672 five-loop diagrams). Very recently Laporta [84] has been able to obtain a
quasi—exact 4—loop result for the 891 universal diagrams, which improves the elec-
tron g — 2 essentially. Increasing computing power was and still is a crucial factor
in this extreme project. Beyond the full analytic O (a?) calculation, only a subset
of diagrams are known analytically (see Sect.4.1 for many more details and a more
complete list of references). The size of the O (a*) contribution is about 6 ¢’s in
terms of the present experimental accuracy and thus mandatory for the interpretation
of the experimental result. The improvement achieved with the evaluation of the
O () term, which itself is about 0.07 s only, resulted in a substantial reduction
of the uncertainty of the QED contribution.

A general problem in electroweak precision physics are the higher order contri-
butions from hadrons (quark loops) at low energy scales. While leptons primarily
exhibit the fairly weak electromagnetic interaction, which can be treated in pertur-
bation theory, the quarks are strongly interacting via confined gluons where any
perturbative treatment breaks down. Considering the lepton anomalous magnetic
moments one distinguishes three types of non-perturbative corrections: (a) Hadronic
Vacuum Polarization (HVP) of order O(a?), O(c®), O(a*); (b) Hadronic Light-
by-Light (HLbL) scattering at O (*); (¢) hadronic effects at O (aG pmi) in 2-loop
electroweak (EW) corrections, in all cases quark-loops appear as hadronic “blobs”.
The hadronic contributions are limiting the precision of the predictions.

As mentioned already before, the evaluation of non-perturbative hadronic effects
is possible by using experimental data in conjunction with Dispersion Relations
(DR), by low energy effective modeling via a Resonance Lagrangian Approach
(RLA) (Vector Meson Dominance (VMD) implemented in accord with chiral struc-
ture of QCD) [85-87], like the Hidden Local Symmetry (HLS) or the Extended
Nambu Jona-Lasinio (ENJL) models, or by lattice QCD. Specifically: (a) HVP via
a dispersion integral over ete™ — hadrons data (1 independent amplitude to be
determined by one specific data channel) (see e.g. [88, 89]), by the HLS effective
Lagrangian approach [90], or by lattice QCD [91-95]; (b) hadronic Light-by-Light
(HLbL) scattering effects via a RLA together with operator product expansion (OPE)
methods [96-99], by a dispersive approach using yy — hadrons data (19 indepen-
dent amplitudes to be determined by as many independent data sets in principle)
[100, 101] or by lattice QCD [102]; (¢) EW quark-triangle diagrams are well
under control, because the possible large corrections are related to the Adler-Bell-
Jackiw (ABJ) anomaly which is perturbative and non-perturbative at the same time.
Since VVV = 0 by the Furry theorem, only VVA (of yyZ -vertex, V = vector,
A = axialvector) contributes. In fact leading effects are of short distance type
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(M7 mass scale) and cancel against lepton-triangle loops (anomaly cancellation)
[103, 104].

In the early 1980’s the hadronic contributions were known with rather limited
accuracy only. Much more accurate ete~—data from experiments at the electron
positron storage ring VEPP-2M at Novosibirsk allowed a big step forward in the
evaluation of the leading hadronic vacuum polarization effects [80, 105, 106] (see
also [107]). A more detailed analysis based on a complete up—to—date collection
of data followed about 10 years later [88]. Further improvements were possible
thanks to new hadronic cross section measurements by BES-II [108] (BEPC ring)
at Beijing and by CMD-2 [109] at Novosibirsk. A new approach of cross section
measurements via the radiative return or initial state radiation (ISR) mechanism,
pioneered by the KLOE Collaboration [110] (DA®NE ring) at Frascati, started to
provide high statistics data at about the time when Brookhaven stopped their muon
g — 2 experiment. The results are in fair agreement with the later CMD-2 and SND
data [111, 112]. In the meantime ISR data for the dominating 7wt~ channel have
been collected by KLOE [113-115] at the ¢ factory by BaBar at the B factory [116]
and a first measurement by BES-III [117] at the BEPCII collider. Still one of the
main issue in HVP are hadronic cross-sections in the region 1.2 to 2.4 GeV, which
actually has been improved dramatically by the exclusive channel measurements by
BaBar in the past decade (see [118] and references therein). The most important 20
out of more than 30 channels are measured, many known at the 10 to 15% level. The
exclusive channel therefore has a much better quality than the very old inclusive data
from Frascati. Attempts to include t spectral functions via isospin relations will be
discussed in Sect.5.1.10.

The physics of the anomalous magnetic moments of leptons has challenged the
particle physics community for more than 60 years now and experiments as well as
theory in the meantime look rather intricate. For a long time a, and a,, provided the
most precise tests of QED in particular and of relativistic local QFT as a common
framework for elementary particle theory in general.

Of course it was the hunting for deviations from theory and the theorists specu-
lations about “new physics around the corner” which challenged new experiments
again and again. The reader may find more details about historical aspects and the
experimental developments in the interesting review: “The 47 years of muon g-2”
by Farley and Semertzidis [119].

Until about 1975 searching for “new physics” via g, in fact essentially meant
looking for physics beyond QED. As we will see later, also standard model hadronic
and weak interaction effect carry the enhancement factor (m,,/m.)?, and this is good
news and bad news at the same time. Good news because of the enhanced sensitivity
to many details of SM physics like the weak gauge boson contributions, bad news
because of the enhanced sensitivity to the hadronic contributions which are very
difficult to control and in fact limit our ability to make predictions at the desired
precision. This is the reason why quite some fraction of the book will have to deal
with these hadronic effects (see Chap.5).

The pattern of lepton anomalous magnetic moment physics which emerges is
the following: a, is a quantity which is dominated by QED effects up to very high
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precision, presently at the .66 parts per billion (ppb) level! The sensitivity to hadronic
and weak effects as well as the sensitivity to physics beyond the SM is very small. This
allows for a very solid and model independent (essentially pure QED) high precision
prediction of a, [82, 84]. The very precise experimental value [120, 121] (at 0.24
ppb) and the very good control of the theory part in fact allows us to determine the fine
structure constant o with the highest accuracy [121-123] in comparison with other
methods (see Sect.3.2.2). A very precise value for « of course is needed as an input
to be able to make precise predictions for other observables like a,,, for example.
While a,, theory wise, does not attract too much attention, although it required to
push the QED calculation to O (&), a,, is a much more interesting and theoretically
challenging object, sensitive to all kinds of effects and thus probing the SM to much
deeper level (see Chap.4). Note that in spite of the fact that a, has been measured
about 2250 times more precisely than a,, the sensitivity of the latter to “new physics”
is still about 19 times larger. However, in order to use a, as a monitor for new physics
one requires the most precise a, independent determination of & which comes from
atomic interferometry [124] and is about a factor 5.3 less precise than the one based
on a,. Taking this into account a,, is about a factor 43 more sensitive to new physics
at present.

The experimental accuracy achieved in the past few years at BNL is at the level of
0.54 parts per million (ppm) and better than the accuracy of the theoretical predictions
which are still obscured by hadronic uncertainties. A discrepancy at the 2 to 3 o
level persisted [125—127] since the first new measurement in 2000 up to the one in
2004 (four independent measurements during this time), the last for the time being
(see Chap. 7). Again, the “disagreement” between theory and experiment, suggested
by the first BNL measurement, rejuvenated the interest in the subject and entailed
a reconsideration of the theory predictions. The most prominent error found this
time in previous calculations concerned the problematic hadronic light-by-light
scattering contribution which turned out to be in error by a sign [128]. The change
improved the agreement between theory and experiment by about 1 o. Problems
with the hadronic e*e™—annihilation data used to evaluate the hadronic vacuum
polarization contribution led to a similar shift in opposite direction, such that a
discrepancy persists.

Speculations about what kind of effects could be responsible for the deviation
will be presented in Sect.7.2. With the advent of the Large Hadron Collider (LHC)
the window of possibilities to explain the observed deviation by a contribution from
a new heavy particle have substantially narrowed, such that the situation is rather
puzzling at the time. No real measurement yet exists for a,. Bounds are in agreement
with SM expectations'# [129]. Advances in experimental techniques one day could
promote a, to a new “telescope” which would provide new perspectives in exploring
the short distance tail of the unknown real world, we are continuously hunting for.
The point is that the relative weights of the different contributions are quite different
for the 7 in comparison to the w.

14Theory predicts (g — 2)/2 = 117721(5) x 1078; the experimental limit from the LEP experi-
ments OPAL and L3 is —0.052 < a; < 0.013 at 95% C.L.
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In the meantime activities are expected to go on to improve the impressive level of
precision reached by the muon g — 2 experiment E821 at BNL. Since the error was
still dominated by statistical errors rather than by systematic ones, further progress
is possible in any case. But also new ideas to improve on sources of systematic errors
play an important role for future projects. Plans for an upgrade of the Brookhaven
experiment lead to a new experiment which presently is realized at Fermilab. The
muon storage ring will be the same and has been moved to the new location some time
ago, most of the other elements like production and injection of the polarized muons
as well as the detection of the muon decay electrons will be new. An alternative project
designed to work with ultra-cold muon is being buildup at J-PARC in Japan. The
new experiments are expected to be able to improve the accuracy by a factor of 5 or
s0 [2-5]. For the theory such improvement factors are a real big challenge and require
much progress in our understanding of non—perturbative strong interaction effects.
In addition, challenging higher order computations have to be pushed further within
the SM and beyond. Another important aspect: the large hadron collider LHC now
in operation at CERN will certainly provide important hints about how the SM has
to be completed by new physics. Progress in the theory of a,, will come certainly in
conjunction with projects to measure hadronic electron—positron annihilation cross—
sections with substantially improved accuracy (see Sect.7.4). These cross sections
are an important input for reducing the hadronic vacuum polarization uncertainties
which yield the dominating source of error at present. Although progress is slow,
there is evident progress in reducing the hadronic uncertainties, most directly by
progress in measuring the relevant hadronic cross-sections. Near future progress we
expect from BINP Novosibirsk/Russia and from IHEP Beijing/China. Energy scan as
well as ISR measurement of cross-sections in the region from 1.4 to 2.5 GeV are most
important to reduce the errors to a level competitive with the factor 4 improvement
achievable by the upcoming new muon g — 2 experiments at Fermilab/USA and at
J-PARC/Japan [5, 7-9]. Also BaBar data are still being analyzed and are important
for improving the results. Promising is that lattice QCD evaluations come closer to
be competitive. In any case there is good reason to expect also in future interesting
promises of physics beyond the SM from this “crystal ball” of particle physicists.

Besides providing a summary of the status of the physics of the anomalous mag-
netic moment of the muon, the aim of this book is an introduction to the theory of the
magnetic moments of leptons also emphasizing the fundamental principles behind
our present understanding of elementary particle theory. Many of the basic concepts
are discussed in details such that physicists with only some basic knowledge of quan-
tum field theory and particle physics should get the main ideas and learn about the
techniques applied to get theoretical predictions of such high accuracy, and why it is
possible to measure anomalous magnetic moments so precisely.

Once thought as a QED test, today the precision measurement of the anomalous
magnetic moment of the muon is a test of most aspects of the SM with the electromag-
netic, the strong and the weak interaction effects and beyond, maybe supersymmetry
is responsible for the observed deviation.

There are many excellent and inspiring introductions and reviews on the sub-
ject [130-148], which were very helpful in writing this book. A topical workshop
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held in 2014 at the Mainz Institute for Theoretical Physics (MITP) has been gath-
ering people with new ideas to work on the improvement of the predictions of the
hadronic contributions, in particular on the challenging hadronic light-by-light scat-
tering problem. A short account of the topics discussed the reader may find in the
“mini proceedings” [149]. It addresses the next steps required on the theory side to
compete with the experimental progress to come.

For further reading I also recommend the reviews [150, 151], which are focusing
on theory issues and the article [152], which especially reviews the experimental
aspects in much more depth than this book. For a recent brief view into the future
also see [153].
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Chapter 2
Quantum Field Theory and Quantum
Electrodynamics

One of the main reasons why quantities like the anomalous magnetic moment of
the muon attract so much attention is their prominent role in basic tests of QFT
in general and of Quantum Electrodynamics (QED) and the Standard Model (SM)
in particular. QED and the SM provide a truly basic framework for the properties
of elementary particles and allow us to make unambiguous theoretical predictions
which may be confronted with clean experiments which allows one to control sys-
tematic errors with amazing precision. In order to set up notation we first summarize
some basic concepts. The reader familiar with QED, its renormalization and leading
order radiative corrections may skip this introductory section, which is a modernized
version of material covered by classical textbooks [1, 2]. Since magnetic moments
of elementary particles are intimately related to the spin the latter plays a key role
for this book. In a second section, therefore, we will have a closer look at how the
concept of spin comes into play in quantum field theory.

2.1 Quantum Field Theory Background

2.1.1 Concepts, Conventions and Notation

We briefly sketch some basic concepts and fix the notation. A relativistic quan-
tum field theory (QFT), which combines special relativity with quantum mechan-
ics [3], is defined on the configuration space of space—time events described by points
(contravariant vector)

xH = (xo, x! X2, x3) = (xo, X) x0 = t (= time)
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in Minkowski space with metric
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o o

v

Guw =9 =
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=
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|l coco
o

The metric defines a scalar product'

X-y= xoyo —X-y = guxty’ =x"x,
invariant under Lorentz transformations, which include
1. rotations
2. special Lorentz transformations (boosts)
The set of linear transformations (A, a)
x> xt = A* xV +at 2.1

which leave invariant the distance

(x =) = gu (& — y") (& = y") (2.2)

between two events x and y from the Poincaré group #. £ includes the Lorentz
transformations and the translations in time and space.

Besides the Poincaré invariance, also space reflections (called parity) P and time
reversal T, defined by

Px=Pu"x)=u" —x), Tx =T (x°x) = (—x" %), (2.3)

play an important role. They are symmetries of the electromagnetic (QED) and
the strong interactions (QCD) but are violated by weak interactions. The proper
orthochronous transformations 7’1 do not include P and T, which requires the con-
straints on the determinant (orientation of frames) detA = 1 and the direction of
time A° 0= 0.

Finally, we will need the totally antisymmetric pseudo—tensor

+1 (uvpo) even permutation of (0123)
e’ = 3 —1 (uvpo) odd permutation of (0123)
0 otherwise ,

TAs usual we adopt the summation convention: repeated indices are summed over unless
stated otherwise. For Lorentz indices p,--- = 0,1,2,3 summation only makes sense
(i.e. respects L—invariance) between upper (contravariant) and lower (covariant) indices and is
called contraction.
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which besides g"* is the second numerically Lorentz—invariant (L—invariant) tensor.
Useful relations are

" pe = —24
Wwpo o
" pe = —606,
Qv po _ _ N8P SO P so
M ey = —26,00 + 2050,
pvpo __ _ SV SP 0 v SP SO vspP SO SVSP SO _ SV SP SO v sP SO
P s o = — 00087 + 62,80,67, + 000,67, — 64,80,87, — 6%.85,05 + 62,00,87,
2.4)

In QFT relativistic particles are described by quantum mechanical states,? like
|[£~(p, r)) for alepton £~ of momentum p and 3rd component of spin r [4] (Wigner

ZA relativistic quantum mechanical system is described by a state vector 1)) € 9H in Hilbert
space, which transforms in a specific way under Pz. We denote by [¢)) the state transformed

by (A,a) € Pl . Since the system is required to be invariant, transition probabilities must be
conserved

U 1Y) P = 1pl) ) 2.5)

Therefore, there must exist a unitary operator U (A, a) such that

[9) = |¥) =U(A,a)|9) € H
and U (A, a) must satisfy the group law:

U (A2, a2) U (Ay,a) = wU (A2 Ay, Aza +az) -

This means that U (A, a) is a representation up to a phase w (ray representation) of PL Without
loss of generality one can choose w = +1 (Wigner 1939).
The generators of PTP are the relativistic energy—momentum operator P,

U@=U(,a)=e " =1 4+iPa"+... (2.6)
and the relativistic angular momentum operator M,
i i

UA)=U(A,0) =z "Mw =1 +§w*“’Mw,+... Q.7

Since for infinitesimal transformations we have
AF =00, Wk with wyy = —wy,
the generators M, are antisymmetric:
M;w = _Mu,u .

By unitarity of U(A, a), P, and M,,,, are Hermitian operators on the Hilbert space. The generator
of the time translations Py represents the Hamiltonian H of the system (H = Pp) and determines
the time evolution. If [¢)) = |¢),, is a Heisenberg state, which coincides with the Schrodinger state
[¥(0))y att = 0, then |¢(1)), = e iH! [1(0)) ¢ represents the state of the system at time 7.



26 2 Quantum Field Theory and Quantum Electrodynamics

states). Spin will be considered in more detail in the next section. These states carry
L—invariant mass p> = m? and spin s, and may be obtained by applying correspond-
ing creation operators a™ (p, r) to the ground state |0), called vacuum:

Ip,r) =a*(p,r)10). (2.8)

The energy of the particle is p° = w » = +/p? + m?. The Hermitian adjoints of the
creation operators, the annihilation operators a(p,r) = (a*(p,r))*, annihilate a
state of momentum p and 3rd component of spin r,

a(p, Nlp’, ') = 2m)* 2w, ¥ —p’) 6, |0)
and since the vacuum is empty, in particular, they annihilate the vacuum
a(p,r)10)=0. (2.9)

The creation and annihilation operators for leptons (spin 1/2 fermions), @ and a™,
and the corresponding operators b and b* for the antileptons, satisfy the canonical
anticommutation relations (Fermi statistics)

{a.r),at@’.r} ={b@. . b* @'} =@2r) 2w, P—-p") 6. (2.10)

with all other anticommutators vanishing. Note, the powers of 27 appearing at various
places are convention dependent. Corresponding creation and annihilation operators
for photons (spin 1 bosons) satisfy the commutation relations (Bose statistics)

[c. N, T (", )] =@7m)° 2w, 6P (p—p') bv 2.11)

In configuration space particles have associated fields [5—7]. The leptons are rep-
resented by Dirac fields 1, (x), which are four—component spinors o = 1,2, 3, 4,
and the photon by the real vector potential field A* (x) from which derives the electro-
magnetic field strength tensor F#* = 9* A — 0" A*. The free fields are represented
in terms of the creation and annihilation operators

v =3 [ aup fuaer) a4 v @] @12)
r=x£1/2

for the fermion, and
Aulx) = Z / du(p) {5M(p, A) c(p, N e ipy 4 h.c.} (2.13)
A=+

for the photon (h.c. = Hermitian conjugation). The Fourier transformation has to
respect that the physical state is on the mass—shell and has positive energy (spectral
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all physical states 29 = ot

world line photon

Tachyons

m=0sap”=|"|p 7
unphysical

world line
particle m > 0

VAd E<0 ™ !
unphysical

Fig. 2.1 Left the spectral condition: p> = m?> > 0, p® = E = /p2 +m?2 > 0. Right Einstein
causality: physical signals propagate inside the light—cone x2 > 0 (time-like)

condition: p*> = m?, p® > m, m > 0 see Fig.2.1), thus p° = wp = +/m? + p* and

_ &’p _ d*p 0 2 2
/dM(P)"‘=/W"-— (ZW)BO(P)(S(P —m°)---

Note that Fourier amplitudes eFP¥ in (2.12) and (2.13), because of the on—shell con-
dition p° = w »» are plane wave (free field) solutions of the Klein-Gordon equation:
(O, +m?)eTP* = 0 or the d’ Alembert equation O, eT'P* = 0 for the photon where
m., = 0. Therefore, the fields themselves satisfy the Klein—-Gordon or the d” Alem-
bert equation, respectively. The “amplitudes” u, v and ¢, appearing in (2.12) and
(2.13) respectively, are classical one—particle wave functions (plane wave solutions)
satisfying the free field equations in momentum space.? Thus u the lepton wavefunc-
tion and v the antilepton wavefunction are four—spinors, c—number solutions of the
Dirac equations,

(#—m)u,(p,r) =0, for the lepton

(F+m)v,(p,r) =0, forthe antilepton. 2.15)

30ur convention for the four—dimensional Fourier transformation for general (off-shell) fields,
reads (all integrations from —oo to +00)

Wp) = / dx Py, AM(p) = / dhx ePT A (x) 2.14)

The inverse transforms then take the form

d4p —ipx 7 L d4p —ipx zp d4]) —ipx
v = [ G I = [ G e Re, o= [ e

and hence the derivative with respect to x* turns into multiplication by the four—-momentum —ip,,:
O (x) — —ipu(p) ete.
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As usual, we use the short notation p = v'p, = 7 p® — ~4p (repeated indices
summed over). Note that the relations (2.15) directly infer that the Dirac field is a
solution of the Dirac equation (iy*9, — m) 1 (x) = 0.

The ~y—matrices are 4 x 4 matrices which satisfy the Dirac algebra*:

VA=A A =29 (2.16)
The L-invariant parity odd matrix s (under parity v° — 1%, v/ — —+/i =1,2,3)

, i
vs =iy Yy = 21 SV B=1; =77 (2.17)

satisfies the anticommutation relation
(57" =57+ =0 (2.18)
and is required for the formulation of parity violating theories like the weak inter-

action part of the Standard Model (SM) and for the projection of Dirac fields to
left-handed (L) and right-handed (R) chiral fields

Yr=1I; Yy =T_1 (2.19)

4Dirac’s y-matrices are composed from Pauli matrices. In quantum mechanics spacial rotations are
described by the group of unitary, unimodular (detU = 1) complex 2 x 2 matrix transformations
SU (2) rather than by classical O (3) rotations. The structure constants are given by €jx; (i, &k, =
1,2, 3) the fully antisymmetric permutation tensor. The generators of SU(2) are given by 7; =
o; (i = 1,2, 3)in terms of the 3 Hermitian and traceless Pauli matrices

01 0 —i 10
7= (Vo) = (10) 2= ()

one of which (03) is diagonal. The properties of the Pauli matrices are

gi .
2

loi, ox] = 2iejor . {oi, ok} = 26k

O'l-+=O',‘, O'i2=1, Tro; =0

1 .
oiox = = {oi, ok} + 3 [oi, okl = 0ik + i€irion

2
Asusual we denote by [A, B] = AB — B A the commutator, by {A, B} = AB+ BA the anticommu-
tator. Dirac’s y—matrices in standard representation (as an alternative to the helicity representation,

considered below) are
0 _ 1 0 i 0 g _ 01
T 0-1) T T\~ 0) P 10)
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where
1
I, = 5(1 +95) (2.20)

are Hermitian chiral projection matrices®

Oo+M0-=1, 0.0 =M00,=0, 1>=1_ and I1; =11, .

Note that v+ or u*u, which might look like the natural analog of |+)|* = 1)*1
of the lepton wave function in quantum mechanics, are not scalars (invariants) under
Lorentz transformations. In order to obtain an invariant we have to sandwich the
matrix A which implements Hermitian conjugation of the Dirac matrices Ay, A~ =
'y:[. One easily checks that we may identify A = ~4°. Thus defining the adjoint spinor
by ¥ = 12" we may write 1) Ay = ) etc.

The standard basis of 4 x 4 matrices in four—spinor space is given by the 16
elements

=1, v,~", v#vs and o" = % [’7”, ’7"] . (2.22)

The corresponding products 1) are scalars in spinor space and transform as ordi-
nary scalar (S), pseudo—scalar (P), vector (V), axial—vector (A) and tensor (T), respec-
tively, under Lorentz transformations.

SUsually, the quantization of a massive particle with spin is defined relative to the z—axis as a
standard frame. In general, the direction of polarization £, £ = 1 in the rest frame may be chosen
arbitrary. For a massive fermion of momentum p

1
My = 5 (1 £9s1)

define the general from of covariant spin projection operators, where n is a space like unit vector
orthogonal to p

The general form of n is obtained by applying Lorentz—boost L to the polarization vector in the
rest frame ¢ ¢
p- P-
=L, (0, ={—. —_— . 2.21
=106 = (25 e Bt ) @21
When studying polarization phenomena the polarization vectors n enter as independent additional
vectors in covariant decompositions of amplitudes, besides the momentum vectors.
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Products of Dirac matrices may be expressed in terms of the basis, as

1 .
v =S {0+ [ =g e

v

YAy = (9" 9" + 9" 9" — g""9") Yo — 1" s

i
v vpo
oM s =~ g,

2

The Dirac spinors satisfy the normalization conditions

u(p, ) up,r'y =2 p"é,p . v(p,r)v*v(p,r’) = 2 p'é,y
u(p,rv(p,r) = 0 , u(p,ru(p,ry = 2m,y (2.23)
v(p,ulp,ry = 0 ., v(p,rv(p,r) = —2m0d,

and completeness relations
2 ulp,nu(p,ry=pg+m ., > v(p,nv(p,r)=pg—m. (2.24)
For the photon the polarization vector €,,(p, \) satisfies the normalization

eu(p, N (p, N) = —dan (2.25)

the completeness relation

Z eun(p, )\)E;(p, A) =~ + pufv + Pufu (2.26)
A=%

and the absence of a scalar mode requires
pue(p, N) =0. (2.27)

The “four—vectors” f in the completeness relation are arbitrary gauge dependent
quantities, which must drop out from physical quantities. Gauge invariance, i.e.
invariance under Abelian gauge transformations A, — A, — O,a(x), a(x) an
arbitrary scalar function, amounts to the invariance under the substitutions

€y —> €4+ A pu; A anarbitrary constant (2.28)
of the polarization vectors. One can prove that the polarization “vectors” for massless
spin 1 fields can not be covariant. The non—covariant terms are always proportional
to p,, however.

Besides a definite relativistic transformation property, like

U(A, a)pa(x)U (A, a) = Dos(A™Ys(Ax +a) ,
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for a Dirac field, where D(A) is a four—dimensional (non—unitary) representation of
the group SL(2, C) which, in contrast to Ll itself, exhibits true spinor representations
(see Sect.2.2). The fields are required to satisfy Einstein causality: “no physical
signal may travel faster than light”, which means that commutators for bosons and
anticommutators for fermions must vanish outside the light cone (see Fig.2.1)

[A,(0), A, D] =0, {ta@),p(x)} =0 for (x—x)><0

This is only possible if all fields exhibit two terms, a creation and an annihilation
part, and for charged particles this means that to each particle an antiparticle of the
same mass and spin but of opposite charge must exist [8]. In addition, and equally
important, causality requires spin 1/2, 3/2, --- particles to be fermions quantized
with anticommutation rules and hence necessarily have to fulfill the Pauli exclu-
sion principle [9], while spin 0, 1, - - - must be bosons to be quantized by normal
commutation relations [10]. Note that neutral particles only, like the photon, may be
their own antiparticle, the field then has to be real. The main consequences of the
requirements of locality and causality of a relativistic field theory may be cast into
the two theorems: — the spin-statistics theorem —

Theorem 2.1 Bosons quantized with commutation relations must have integer spin.
Fermions quantized with anticommutation relations must have half odd—integer spin.

— the particle-antiparticle crossing theorem —

Theorem 2.2 Each particle of mass m and spin j must have associated an antiparti-
cle with the same mass and spin, and which transforms under the same representation
of Pl. A particle may be its own antiparticle. If charged, particle and antiparticle
have opposite charge.

For rigorous proofs of the theorems I refer to [11].

2.1.2 C, P TandCPT

In QED as well as in QCD, not however in weak interactions, interchanging particles
with antiparticles defines a symmetry, charge conjugation C. It is mapping particle
into antiparticle creation and annihilation operators and vice versa:

a(p.r) S bp.r) . at(p.r) S brp.r) .

up to a phase. For the Dirac field charge conjugation reads (see 2.36)

Ya(®) S Captl () (2.29)
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with (X7 = transposition of the matrix or vector X)

C=i("*") =—i ( 0 "2) : (2.30)

o, 0
Properties of C are:
c'=-C, Cy'c'=-(y"" ,
and for the spinors charge conjugation takes the form
Cw) =9 and Cv)' =u , (2.31)

which may be verified by direct calculation.
As under charge conjugation the charge changes sign, also the electromagnetic
current must change sign

U(C) jim(x) UTH(C) = —jem(x) . (2.32)

Notice that for any contravariant four—vector j* we may write the parity transformed
vector (O, —j) = j . as a covariant vector. We will use this notation in the following.

Since the electromagnetic interaction LS::D =ejin(x)A 1 (x) respects C—, P—and
T-invariance® separately, we immediately get the following transformation properties
for the photon field:

UQC) A x)UT(C) =  —AM"(x)
U(P) A*(x) U"Y(P) = (PA)(Px) = A,(Px) (2.35)
U(T) AMx) UN(T) = —(TA"(Tx) = A, (Tx) .

Notice that the charge parity for the photon is 77&’ =-1.

6 Any transformation which involves time-reversal T must be implemented as an anti—unitary trans-
formation U (T'), because the Hamiltonian cannot be allowed to change sign by the requirement of
positivity of the energy (Wigner 1939). Anti—unitarity is defined by the properties

U(ale) + Blo)) = «*UlY) + B*U|¢) = o*|[¢) + 5*|¢) (2.33)
and

W'y = (le)* . (2.34)

The complex conjugation of matrix elements is admitted by the fact that it also preserves the probabil-
ity |(1]¢}|?. Because of the complex conjugation of matrix elements an anti—unitary transformation
implies a Hermitian transposition of states and operators.
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For the Dirac fields C, P and T take the form

U(C) o) UHC) = i (v%°) ;05 (x)
UP) ) UTN(P) = (3°),, 5(P) (236)
U(T) %a(x) UNT) =i (v*75) 505 (Tx)

where the phases have been chosen conveniently. We observe that, in contrast to
the boson fields, the transformation properties of the Dirac fields are by no means
obvious; they follow from applying C, P and T to the Dirac equation.

A very important consequence of relativistic local quantum field theory is the
validity of the CPT-theorem:

Theorem 2.3 Any Poincaré (731 ) [special Lorentz transformations, rotations plus
translations | invariant field theory with normal commutation relations [bosons satis-
fying commutation relations, fermions anticommutation relations] is CPT invariant.

Let ©® = CPT where C, P and T may be applied in any order. There exists an
anti—unitary operator U(®) which (with an appropriate choice of the phases) is
transforming scalar, Dirac and vector fields according to

0(©) ¢(x) U7(©@) = ¢*(~x)
0(©) vx) U71(O) = insty(~x) (2.37)
0(©) Au(x) U71(O) = —Au(—x) .

and which leaves the vacuum invariant: U()|0) = |0) up to a phase. The CPT-
theorem asserts that the transformation U(®) under very general conditions is a
symmetry of the theory (Liiders 1954, Pauli 1955, Jost 1957) [12].

The basic reason for the validity of the CPT-theorem is the following: If we
consider a Lorentz transformation A € Ll represented by a unitary operator
U(x,w = n ) (x parametrizing a Lorentz—boost, w parametrizing a rotation),
then the operator U(x,n (6 + 27)) = —U(x, n 0) is representing the same L—
transformation. In a local quantum field theory the mapping A — —A for A € L!,
which is equivalent to the requirement that & : x — —x must be a symmetry: the
invariance under four—dimensional reflections.

Consequences of CPT are that modulus of the charges, masses, g—factors and
lifetimes of particles and antiparticles must be equal. Consider a one particle state
|1)) = le, p,s) where e is the charge, p the momentum and s the spin. The CPT
conjugate state is given by |1L) = |—e, p, —s). The state |1} is an eigenstate of the
Hamiltonian which is describing the time evolution of the free particle:

Hlp) = E[y) (2.38)

and the CPT conjugate relation reads H |’lZJ> =FE |z~b). Since H = H by the CPT
theorem, we thus have
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HlY) = EY) . (2.39)

At p = 0 the eigenvalue E reduces to the mass and therefore the two eigenvalue
equations say that the mass of particle and antiparticle must be the same:

m=m. (2.40)

The equality of the g—factors may be shown in the same way, but with a Hamiltonian
which describes the interaction of the particle with a magnetic field B. Then (2.38)
holds with eigenvalue

eh
E=m-—yg o s-B. (2.41)

The CPT conjugate state (¢ —> —e, s > —s, m — m, g — g, B — B) according
to (2.39) will have the same eigenvalue

h
E:rﬁ—g(%)s-B. (2.42)
2mc
and since m = m we must have
g=g (2.43)

For the proof of the equality of the lifetimes

T (2.44)

7_.

we refer to the textbook [13]. Some examples of experimental tests of CPT, relevant
in our context, are (see [14])

Iger + qe-1/e <4 x1078
(Me+ — Me-) [ Mayerage <8x 107 90% CL
(ge+ — ge’)/gaverage (—=0.5+2.1) x 1012

(g;ﬁ - gﬂ’)/gaverage (—0.11 £0.12) x 1078
(T/ﬁ - T/r)/Taverage (2 + 8) X 1075 .

The best test of CPT comes from the neural Kaon mass difference

K
ngo

< 0.6 x 107'% at CL = 90% .

'mq) — mgo

The existence of a possible electric dipole moment we have discussed earlier on
p. 9 of the Introduction. An electric dipole moment requires a T violating theory
and the CPT theorem implies that equivalently CP must be violated. In fact, CP
invariance alone (independently of CPT and T) gives important predictions relating
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decay properties of particles and antiparticles. We are interested here particularly in

p—decay, which plays a crucial role in the muon g — 2 experiment. Consider a matrix

element for a particle a with spin s, at rest decaying into a bunch of particles b, c,
- with spins sp, S, - - - and momenta pj, P, - - -

M= (Pb, Sp; Pes Sey v |ﬂint|07 Sa> . (245)

Under CP we have to substitute s, — sz, p. — —Pa, etc. such that, provided Hi,
is CP symmetric we obtain

M = (—p;, S5 —Pé S&; -+ |Hint|O, sa) = M. (2.46)

The modulus square of these matrix—elements gives the transition probability for the
respective decays, and (2.46) tells us that the decay rate of a particle into a particular
configuration of final particles is identical to the decay rate of the antiparticle into
the same configuration of antiparticles with all momenta reversed.

For the muon decay u~ — e~ v,v,, after integrating out the unobserved neutrino
variables, the decay electron distribution is of the form

dN-

— =A B(x)S, - p,_ , 247
Trdeosd (x) + B(x)s, - P, (2.47)

where x = 2p,- /m,, with p.- the electron momentum in the muon rest frame and
cosf =8, -P,_, S, and p,_ the unit vectors in direction of s, and p,_.
The corresponding expression for the antiparticle decay ™ — e*v,1, reads

dN,+

— ¢ —A B(x)§,-P.. , 2.48
dx dcosf () + B Sy Per (2.48)

and therefore for all angles and all electron momenta
A(x) + B(x) cos@ = A(x) — B(x) cosf
or
Ax) = A(x), B(x)=-B(). (2.49)

It means that the decay asymmetry is equal in magnitude but opposite in sign for p~
and p". This follows directly from CP and independent of the type of interaction
(V—=A, V+A, S, P or T) and whether P is violated or not. In spite of the fact that
the SM exhibits CP violation (see the Introduction to Sect.4.2), as implied by a CP
violating phase in the quark family mixing matrix in the charged weak current, in
p—decay CP violation is a very small higher order effect and by far too small to have
any detectable trace in the decay distributions, i.e., CP symmetry is perfectly realized
in this case. The strong correlation between the muon polarization and charge on the
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one side (see Chap. 6) and the decay electron/positron momentum is a key element
of tracing spin polarization information in the muon g — 2 experiments.

CP violation, and the associated T violation plays an important role in determining
the electric dipole moment of electrons and muons. In principle it is possible to test
T invariance in u—decay by searching for T odd matrix elements like

Se - (S X Pe) - (2.50)

This is very difficult and has not been performed. A method which works is the study
of the effect of an electric dipole moment on the spin precession in the muon g — 2
experiment. This will be studied in Sect.6.3.1 on p. 584.

Until recently, the best limit for the electron (1.8) has been obtained by inves-
tigating T violation in Thallium (*®Tl) where the EDM is enhanced by the ratio
R = dyom/d., which in the atomic Thallium ground state studied is R = —585.
Investigated are v x E terms in high electrical fields E in an atomic beam magnetic—
resonance device [15]. A new experiment [16], using the polar molecule Thorium
monoxide (ThO), finds

d, = (2.1 £3.7stat +2.5syst) x 107 ¢ -cm .

This corresponds to an upper limit of |d,| < 8.7 x 1072° - cm with 90% confidence,
an order of magnitude improvement in sensitivity compared to the previous best
limits.

2.2 The Origin of Spin

As promised at the beginning of the chapter the intimate relation of the anomalous
magnetic moment to spin is a good reason to have a closer look at how spin comes
into play in particle physics. The spin and the magnetic moment of the electron did
become evident from the deflection of atoms in an inhomogeneous magnetic field
and the observation of the fine structure by optical spectroscopy [17-19].7 Spin is
the intrinsic “self—angular momentum” of a point—particle and when it was observed
by Goudsmit and Uhlenbeck it was completely unexpected. The question about
the origin of spin is interesting because it is not obvious how a point-like object
can possess its own angular momentum. A first theoretical formulation of spin in
quantum mechanics was given by Pauli in 1927 [20], where spin was introduced as
a new degree of freedom saying that there are two species of electrons in a doublet.

In modern relativistic terms, in the SM, particles and in particular leptons and
quarks are considered to be massless originally, as required by chiral symmetry. All
particles acquire their mass due to symmetry breaking via the Higgs mechanism: a

7Particle spin has been discovered by Ralph Kronig (well known for the Kramers Kronig relation)
in 1925 before the Uhlenbeck and Goudsmit publication.
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Fig. 2.2 Massless

“electrons” have fixed é @ wl i} 77bl’*’» é €
helicities 3 P Pg

scalar neutral Higgs field® H develops a non—vanishing vacuum expectation value
v and particles moving in the corresponding Bose condensate develop an effective
mass. In the SM, in the physical unitary gauge a Yukawa interaction term upon a
shift H - H +v

Lukava = ; % by H — ; (mydrvr + =L H) @5

induces a fermion mass term withmass m ; = % v where G  is the Yukawa coupling.

In the massless state there are actually two independent electrons characterized by
positive and negative helicities (chiralities) corresponding to right-handed (R) and
left-handed (L) electrons, respectively, which do not “talk” to each other. Helicity
h is defined as the projection of the spin vector onto the direction of the momentum
vector

hes P (2.52)
Ipl

as illustrated in Fig. 2.2 and transform into each other by space-reflections P (parity).
Only after a fermion has acquired a mass, helicity flip transitions as effectively medi-
ated by an anomalous magnetic moment (see below) are possible. In a renormalizable
QFT an anomalous magnetic moment term is not allowed in the Lagrangian. It can
only be a term induced by radiative corrections and in order not to vanish requires
chiral symmetry to be broken by a corresponding mass term.

Angular momentum has to do with rotations, which form the rotation group
O (3). Ordinary 3—space rotations are described by orthogonal 3 x 3 matrices R
(RRT = RTR = I where I is the unit matrix and R” denotes the transposed matrix)
acting as X' = RX on vectors x of three—dimensional Euclidean position space R°>.
Rotations are preserving scalar products between vectors and hence the length of
vectors as well as the angles between them. Multiplication of the rotation matrices
is the group operation and of course the successive multiplication of two rotations is
non—commutative [R;, R;] # 0 in general. The rotation group is characterized by
the Lie algebra [;, J ;] = €;jxJr, where the J;’s are normalized skew symmetric
3 x 3 matrices which generate the infinitesimal rotations around the x, y and z axes,
labeled by i, j, k = 1,2, 3. By ¢;x we denoted the totally antisymmetric Levi-Civita

8The existence of the Higgs boson has been postulated in 1964 by Englert, Brout and Higgs
[21, 22] to be a necessary ingredient of minimal renormalizable theory of electroweak interactions,
and has been discovered with a mass about 125 GeV 48 years later in 2012 by the ATLAS [23] and
the CMS [24] collaborations at the LHC at CERN in Switzerland.
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tensor. The Lie algebra may be written in the form of the angular momentum algebra
[Ji, Jj] =1ieiji Jk (2.53)

by setting J; = —iJ;, with Hermitian generators J; = J;*. The latter form is well
known from quantum mechanics (QM). In quantum mechanics rotations have to be
implemented by unitary representations U(R) (UUT = UtU = I and U™ is the
Hermitian conjugate of U) which implement transformations of the state vectors in
physical Hilbert space |1))" = U(R)|y) for systems rotated relative to each other.
Let J; be the generators of the infinitesimal transformations of the group O(3),
the angular momentum operators, such that a finite rotation of magnitude |w| = 6
about the direction of n = w/f# may be represented by U(R(w)) = exp —iw]J (w;,
i =1, 2, 3 areal rotation vector). While for ordinary rotations the J;’s are again 3 x 3
matrices, in fact the lowest dimensional matrices which satisfy (2.53) in a non—trivial
manner are 2 x 2 matrices. The corresponding Lie algebra is the one of the group
SU(2) of unitary 2 x 2 matrices U with determinant unity: det U = 1. It is a simply
connected group and in fact it is the universal covering group of O(3), the latter
being doubly connected. Going to SU(2) makes rotations a single valued mapping
in parameter space which is crucial to get the right phases in the context of QM.
Thus SU(2) is lifting the two—fold degeneracy of O(3). As a basic fact in quantum
mechanics rotations are implemented as unitary representations of SU(2) and not
by O(3) in spite of the fact that the two groups share the same abstract Lie algebra,
characterized by the structure constants ¢; . Like O (3), the group SU(2) is of order
r = 3 (number of generators) and rank / = 1 (number of diagonal generators). The
generators of a unitary group are Hermitian and the special unitary transformations
of determinant unity requires the generators to be traceless. The canonical choice is
Ji = % o; the Pauli matrices

o = (‘1) (1)) o) = ((I _(;), o3 = (é _(1)) (2.54)

There is one diagonal operator S3 = 5 the 374 component of spin. The eigenvectors

of S5 are
1 1 1 0
E’_E)z (O)’ (1) . (2.55)

characterized by the eigenvalues of 1, —% of S3 called spin up [1] and spin down
[{], respectively. The eigenvectors represent the possible independent states of the
system: two in our case. They thus span a two—dimensional space of complex vectors
which are called two—spinors. Thus SU(2) is acting on the space of spinors, like
O (3) is acting on ordinary configuration space vectors. From the two non—diagonal
matrices we may form the two ladder operators: Sy; = % (o1 £1i07)

U(r =
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01 00
= (00) 51-(10)

which map the eigenvectors into each other and hence change spin by one unit. The
following figure shows the simplest case of a so called root diagram: the full dots
represent the two states labeled by the eigenvalues S3 = :I:% of the diagonal operator.
The arrows, labeled with Sy, denote the transitions between the different states, as
implied by the Lie algebra:

The simplest non—trivial representation of SU(2) is the so called fundamental
representation, the one which defines SU(2) itself and hence has dimension two. It
is the one we just have been looking at. There is only one fundamental represen-
tation for SU(2), because the complex conjugate U* of a representation U which
is also a representation, and generally a new one, is equivalent to the original one.
The fundamental representation describes intrinsic angular momentum % with two
possible states characterized by the eigenvalues of the diagonal generator i%. The
Sfundamental representations are basic because all others may be constructed by tak-
ing tensor products of fundamental representations. In the simplest case of a product
of two spin % vectors, which are called (two component) spinors u; v; may describe
a spin zero (anti—parallel spins [1]) or a spin 1 (parallel spins [11]).

In a relativistic theory, described in more detail in the previous section, one has to
consider the Lorentz group Li of proper (preserving orientation of space—time [+])
orthochronous (preserving the direction of time [1]) Lorentz transformations A, in
place of the rotation group. They include besides the rotations R(w) the Lorentz
boosts (special Lorentz transformations) L(x)° by velocity x. Now rotations do not
play any independent role as they are not a Lorentz invariant concept. Correspond-
ingly, purely spatial 3—vectors like the spin vector S = 3 do not have an invariant
meaning. However, the three—vector of Pauli matrices o may be promoted to a four—
vector of 2 x 2 matrices:

o,=(1,0)and 6, = (1, —0) (2.57)

9The special L—transformation L(p) which transforms from a state in the rest frame (m,0) to a
state of momentum p# may be written as

Lij = 6ij +ﬁiﬁj(cosh[3— 1)
L"0 = Lol- = p;sinh 3

L% = cosh 3 (2.56)

with p = p/Ipl, cosh 3 = wp,/m, sinh 3 = |p|/m and tanh 3 = |p|/w), = v the velocity of the
state.
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which will play a key role in what follows. Again, the L-transformations A € Ll
on the classical level in (relativistic) quantum mechanics have to be replaced by
the simply connected universal covering group with identical Lie algebra, which is
SL(2, C),the group of unimodular (det U = 1) complex 2 x 2 matrix transformations
U, with matrix multiplication as the group operation. The group SL(2, C) is related to
Ll much in the same way as SU(2) to O (3), namely, the mapping U, € SL(2, C) —
A€ Ll is two—to—one and the two—fold degeneracy of elements in Ll is lifted in
SL(2,C).

The key mapping establishing a linear one—to—one correspondence between real
four—vectors and Hermitian 2 x 2 matrices is the following: with any real four—vector
x" in Minkowski space we may associate a Hermitian 2 x 2 matrix

X X = xlo, = (;‘f:fz fcl(,__‘;‘j) (2.58)
with
det X = x* = x"x, , (2.59)
while every Hermitian 2 x 2 matrix X determines a real four vector by
X - xt = %Tr (Xo"y . (2.60)
An element U € SL(2, C) provides a mapping
X —> X =UXU" ie. x"o,=x"Uo,U" (2.61)
between Hermitian matrices, which preserves the determinant
detX'=detUdetXdetU" =detX , (2.62)
and corresponds to the real linear transformation
= XM= At xY (2.63)

which satisfies x""x’ u = x"x,, and therefore is a Lorentz transformation.

The Lie algebra of SL(2, C) is the one of Ll and thus given by 6 generators: J
for the rotations and K for the Lorentz boosts, satisfying

[Ji, Sl = i€ dr, (Ui, Kl = i Ky, [Ki, K] = —i€iud; (2.64)
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as a coupled algebraof the J;’s and K;’s. Since these generators are Hermitian J = J +
and K = K* the group elements e 7Y and e’X¥ are unitary.'” This algebra can be
decoupled by the linear transformation

1 1
A=5J+iK), B=-(J-iK) (2.65)
under which the Lie algebra takes the form
AxA=iA, BxB=iB, [4;,B;]=0 (2.66)

of two decoupled angular momentum algebras. Since AT = Band BT = A, the new
generators are not Hermitian any more and hence give rise to non—unitary irreducible
representations. These are finite dimensional and evidently characterized by a pair
(A, B), with 2A and 2B integers. The dimension of the representation (A, B) is
(2A+1)-(2B+1). The angular momentum of the representation (A, B) decomposes
intoJ =A+B,A+ B —1,---]|A — B|. Massive particle states are constructed
starting from the rest frame where J is the spin and the state corresponds to a multiplet
of 2J + 1 degrees of freedom.

The crucial point is that in relativistic QM besides the mass of a state also the
spin has an invariant (reference—frame independent) meaning. There exist exactly
two Casimir operators, invariant operators commuting with all generators (2.6)
and (2.7) of the Poincaré group 5"1. One is the mass operator

M? = p? = GuwP"'P” (2.67)
the other is

1
L= guwL'LY ; L' = Es‘“’/”P,,MM , (2.68)

where L is the Pauli-Lubansky operator. These operators characterize mass m
and spin j of the states in an invariant way: M?|p, j, j3; o) = p*|p, j, ja; @) and
L2|p. j. jss o) = —m?j(j + DIp. j. j3: ).

The classification by (A,B) together with (2.65) shows that for SL(2, C) we have
two inequivalent fundamental two—dimensional representations: (%, 0) and (0, %).
The transformations may be written as a unitary rotation times a Hermitian boost as

1010 SL(2, C) the Lie algebra obviously has the 2 x 2 matrix representation J; = 0;/2, K; = +io; /2
in terms of the Pauli matrices, however, K™ = —K is non-Hermitian and the corresponding finite
dimensional representation non—unitary. Unitary representations of the Lorentz group, required to
implement relativistic covariance on the Hilbert space of physical states, are necessarily infinite
dimensional. Actually, the two possible signs of K; indicated exhibits that there are two different
inequivalent representations.
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follows!!:

Us=Ux,w)=DE)(A)=exs e s for (1,
Uy = Ujl',, = l_)(%)(A) =e XTI e"WI for (0,

(=}

) (2.69)

)

=

While o, (2.57) is a covariant vector
UAU#UX = A”# oy (2.70)

with respect to the representation U, = D(%)(A), the vector 6, (2.57) is covariant
with respect to U, = D) (A)

Ua6, Uy = A, 6, . (2.71)
Note that
U(x,nf) and U(x,n (6 +27)) = —U(x, nb) (2.72)

represent the same Lorentz transformation. U, is therefore a double—valued repre-
sentation of Ljr.
An important theorem [25] says that

Theorem 2.4 A massless particle of helicity A may be only in the representations
satisfying (A, B) = (A, A — X\), where 2A and 2(A — \) are non—negative integer
numbers.

Thus the simplest representations for massless fields are the spin 1/2 states
A=+3:(3,0) right —handed (R)

273
:(0,4)  left — handed (L) @73

B—= N|—

of helicity —i—% and —%, respectively.

The finite dimensional irreducible representations of SL(2, C) to mass 0 and spin
J are one—dimensional and characterized by the helicity A = =£j. To a given spin
Jj > 0 there exist exactly two helicity states. Each of the two possible states is
invariant by itself under Li, however, the two states get interchanged under parity
transformations:

UphUp'=—h . (2.74)

Besides the crucial fact of the validity of the spin—statistics theorem (valid in any
relativistic QFT), here we notice another important difference between spin in

llAgajn, these finite dimensional representations U,, Up (below), etc. should not be confused
with the corresponding infinite dimensional unitary representations U (A), U (P), etc. acting on the
Hilbert space of physical states considered in the preceding section.
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non-relativistic QM and spin in QFT. In QM spin 1/2 is a system of two degrees of
freedom as introduced by Pauli, while in QFT where we may consider the massless
case we have two independent singlet states. Parity P, as we know, acts on four—
vectors like Px = (x°, —x ) and satisfies'> P? = 1. With respect to the rotation
group O3, P? is just a rotation by the angle 27 and thus in the context of the rotation
group P has no special meaning. This is different for the Lorentz group. While

UpJ =JUp (2.75)
commutes
UpK = —KUp (2.76)
does not. As a consequence, we learn that
UpU(x,n0) =U(—x,nUp (2.77)
and hence
UpUp =UaUp . (2.78)

Thus under parity a left-handed massless fermion is transformed into a right-handed
one and vice versa, which of course is also evident from Fig.2.2, if we take into
account that a change of frame by a Lorentz transformation (velocity v < c¢) cannot
flip the spin of a massless particle.

The necessity to work with SL(2, C') becomes obvious once we deal with spinors.
On a classical level, two—spinors or Weyl spinors w are elements of a vector space V
of two complex entries, which transform under SL(2, C) by matrix multiplication:
w=Uw,weV,UeSLQ2,C)

w:(Z); a,beC. (2.79)

Corresponding to the two representations there exist two local Weyl spinor fields
(see (2.12))

Pal) = D, / du(p) {ua(p.r) a(p,r) e + v, (p, 1) b (p, 1) €7}

r=+1/2

Yol = 2, / du(p) {ia(p.r) ap, 1) &7 + du(p. 1) b (B, 1) €7}

r=£1/2
(2.80)

12Note that while P2 = 1 the phase 7p of its unitary representation Up is constrained by U2 = +1
only, i.e. np = £1 or +i.
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with two components a = 1, 2, which satisfy the Weyl equations

i(&ﬂap,)ab wp(x) = mxq(x)
i (o“ﬁu)ab Xp(X) = mp,(x) . (2.81)

The appropriate one—particle wave functions u(p, r) etc. may be easily constructed
as follows: for a massive particle states are constructed by starting in the rest frame
where rotations act as (w = |w|, @ = w/w)

1 . o w N
DY) (R(w)) = D% (R(w)) =e 7 =1 cos 5 —io & sins . (2.82)

Notice that this SU(2) rotation is a rotation by half of the angle, only, of the corre-
sponding classical O3 rotation. Here the non—relativistic construction of the states
applies and the spinors at rest are given by (2.55). The propagating particles car-
rying momentum p are then obtained by performing a Lorentz—boost to the states
at rest. A boost L(p) (2.56) of momentum p is given by D) (L(p)) = eX? =
N1 (p“aﬂ + m) and D (L(p)) =e X3 = N~! (p“&,l + m), respectively, in
the two basic representations. N = (2m ( po + m))’% is the normalization factor.
The one—particle wave functions (two—spinors) of a Weyl particle and its antiparticle
are thus given by

u(p,ry=N"" (p"’au—i—m) U(r) and v(p,r)=N"" (p"’au—i—m) V),

respectively, where U (r) and V(r) = —io,U (r) are the rest frame spinors (2.55).
The last relation one has to require for implementing the charge conjugation property
for the spinors (2.31) in terms of the matrix (2.30). For the adjoint representation,
similarly,

i(p,r)= N~' (p"6,+m) U(r) and d(p,r)=—-N""' (p'6,+m) V(r).

The — sign in the last equation, (—1)%/ for spin j, is similar to the —io, in the
relation between U and V, both are required to make the fields local and with proper
transformation properties. We can easily derive (2.81) now. We may write 6, p* =

wy1—op = 2|p| (%" 1—h) whereh = 7 IpLI is the helicity operator, and for massless

states, where w, = |p|, we have &, p" = 2|p| (% — h) a projection operator on states
with helicity —%, while o, p" = 2|p | (% + h) a projection operator on states with
helicity +3. Furthermore, we observe that p* p”6,0, = p"p”c,6, = p*> = m* and
one easily verifies the Weyl equations using the given representations of the wave
functions.

In the massless limit m — 0 : p° = w, = |p | we obtain two decoupled
equations
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i (&”’8#){”) wp(x) =0
i(a”@u)ub xp(x) =0 .

In momentum space the fields are just multiplied by the helicity projector and the
equations say that the massless fields have fixed helicities:

1 1
(E, 0) P wR (0, 5) X ’l/)L (283)

which suggests to rewrite the transformations as

Ya, o 6) = U, () = (A, ) Vb, o (AX) (2.84)
with '
(AL R) = (eix%e"‘*’%) (AT =A71. (2.85)
B a db R L
Using 020,07 = —o; one can show that 0, Ay 02 = A%. Thus, ¥j = 027} (up to an

arbitrary phase) is defining a charge conjugate spinor which transforms as ©)] ~ 1.
Indeed Agy)$ = Agoatht = A5t = oppf = ¢¢ and thus ¥ = o)} =
@ ~ 1g. Similarly, Y5 = 029k = x ~ 1. We thus learn, that for massless fields,
counting particles and antiparticles separately, we may consider all fields to be left—
handed. The second term in the field, the antiparticle creation part, in each case
automatically includes the right-handed partners.

The Dirac field is the bispinor field obtained by combining the irreducible fields
(4 (x) and x,(x) into one reducible field (%, 0) & (0, %). It is the natural field to be
used to describe fermions participating parity conserving interactions like QED and
QCD. Explicitly, the Dirac field is given by

Yax) = (f) @ =3 [ dnp) {ua(por) a@.r) P 4 v o) 7 o) 7

g\ . [ va
ua:(ﬁa) ; va—(ﬁa) . (2.86)

1, (x) satisfies the Dirac equation:

where

(i’y”@u — m)aﬂ Ya(x) =0

0 o
wo
A= (&u 0) (2.87)

are the Dirac matrices in the helicity representation (Weyl basis).

where
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The Dirac equation is nothing but the Weyl equations written in terms of the
bispinor . Note that a Dirac spinor combines a right-handed Weyl spinor of a
particle with a right-handed Weyl spinor of its antiparticle. For m = 0, the Dirac
operator iy*d,, in momentum space is = " p,,. Thus the Dirac equation just is the
helicity eigenvalue equation:

1

)(p>=2|p| (;h) (2;‘h) (g)(m:o.

~ . 0 otp
H = 12
Ypup(p) = (OA_NPH 0 ) (

=G

Under parity ¥, (x) transforms into itself

Va(x) = 1p(Y)apths(Px)

where +° just interchanges ¢ <> x and hence takes the form

0. (01
7 _(10

The irreducible components ¢ and y are eigenvectors of the matrix

. (1 0
V5 = 0 -1

and the projection operators (2.20) projecting back to the Weyl fields according to
(2.19).13

The kinetic term of the Dirac Lagrangian decomposes into a L and a R part
LDirac = 1/_17“8#1# = &RW’LG#@/JR +1h, V0,1, (4 degrees of freedom). A Dirac mass
term my) = m (g +Yr1pr) breaks chiral symmetry as it is non—diagonal in the
Weyl fields and induces helicity flip transitions as required by the anomalous mag-
netic moment in a renormalizable QFT. A remark concerning hadrons. It might look

somewhat surprising that hadrons, which are composite particles made of colored

13The standard representation of the Dirac field/algebra, described in Sect.2.1.1, is adapted to a
simple interpretation in the rest frame (requires m # 0). It may be obtained from the ones in the
Weyl basis (“helicity” representation) by a similarity transformation S

1
’[/)(X) — S’Ll)hel“'ny(x) . = S,y/k:ellulys—l , S = S—l = ﬁ (} _i)

such that
u(0,r) = @(U(()’)) , v(0,r) = M(V?r))

in the standard basis.
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quarks and gluons, in many respects look like “elementary particles” which are well
described as Wigner particles (if one switches off the electromagnetic interaction
which cause a serious IR problem which spoils the naive Wigner state picture as
we will describe below), particles of definite mass and spin and charge quantized
in units of e and have associated electromagnetic form factors and in particular a
definite magnetic moment. However, for the proton for example, the gyromagnetic
ratio gp from the relation pp = gp eh/(2mp c) s turns out to be gp ~ 2.8 or
ap = (gp — 2)/2 ~ 0.4 showing that the proton is not really a Dirac particle and
its anomalous magnetic moment indicates that the proton is not a point particle but
has internal structure. This was first shown long time ago by atomic beam magnetic
deflection experiments [26], before the nature of the muon was clarified. For the
latter it was the measurement at CERN which yielded a,, = 0.00119(10) [27] and
revealed the muon to be just a heavy electron. Within errors at that time the muon
turned out to have the same value of the anomalous magnetic moment as the electron,
which is known to be due to virtual radiative corrections.

The analysis of the spin structure on a formal level, discussing the quantum
mechanical implementation of relativistic symmetry principles, fits very naturally
with the observed spin phenomena. In particular the existence of the fundamental
spin % particles which must satisfy Pauli’s exclusion principle has dramatic conse-
quences for real life. Without the existence of spin as an extra fundamental quantum
number in general and the spin % fermions in particular, stability of nuclei against
Coulomb collapse and of stars against gravitational collapse would be missing and
the universe would not be ours.

2.3 Quantum Electrodynamics

The lepton—photon interaction is described by QED, which is structured by local
U(1) gauge invariance'*

PY(x) — e We(x)
A (x) = Au(x) — Oa(x) (2.89)

with an arbitrary scalar function a(x), implying lepton—photon interaction according
to minimal coupling, which means that we have to perform the substitution 9, —

14The known elementary particle interactions, the strong, electromagnetic and weak forces, all
derive from a local gauge symmetry principle. This was first observed by Weyl [28] for the Abelian
QED and later extended to non—Abelian gauge theories by Yang and Mills [29]. The gauge symmetry
group governing the Standard Model of particle physics is SU(3), ® SU2)r @ U(1)y.
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D, = 8, —ieA,(x) in the Dirac equation (iy"d,, — m)y(x) = 0 of a free lepton.'?
This implies that the electromagnetic interaction is described by the bare Lagrangian

1 1 B}
LOP = =2 F P = 267 (0uA")” + 4 (" Dy = m) ¥
= L5, + Loy + €jlh () A, (x) (2.90)

and the corresponding field equations read'®

(i7", — m) (x) = —e : A, (0)7"V(x) :

y . . - (2.91)
(Bg" — (1 =€) 8"9") Ay(x) = —e 1 P)Y*P(x)
The interaction part of the Lagrangian is
Lin = €jl ()AL (x) (2.92)

while the bilinear free field parts .LS 4 and Lo, define the propagators of the photon
and the leptons, respectively (given below). As in classical electrodynamics the gauge
potential A* is an auxiliary field which exhibits unphysical degrees of freedom, and is
notuniquely determined by Maxwell’s equations. In order to get a well defined photon
propagator a gauge fixing condition is required. We adopt the linear covariant Lorentz
gauge : J,A* = 0, which is implemented via the Lagrange multiplier method, with
Lagrange multiplier A = 1/&, ¢ is called gauge parameter.'” The gauge invariance
of physical quantities infers that they do not depend on the gauge parameter.

Above we have denoted by e the charge of the electron, which by convention is
taken to be negative. In the following we will explicitly account for the sign of the
charge and use e to denote the positive value of the charge of the positron. The charge
of a fermion f is then given by Q re, with Q¢ the charge of a fermion in units of
the positron charge e. A collection of charged fermions f enters the electromagnetic
current as

in=2, Qri" Yy (2.93)

15The modified derivative D, = 0,,—ieA,(x)is called covariant derivative. e is the gauge coupling.
The minimal substitution promotes the global gauge symmetry of the free Dirac Lagrangian to a
local gauge symmetry of the electron—photon system, i.e., the interacting system has more symmetry
than the free electron.

16The prescription : - - - : means Wick ordering of products of fields: write the fields in terms of
creation and annihilation operators and order them such that all annihilation operators are to the
right of all creation operators, assuming the operators to commute (bosons) or to anticommute
(fermions). This makes the vacuum expectation value of the field product vanish.

17The parametrization of the gauge dependence by the inverse of the Lagrange multiplier £ = 1/\
is just a commonly accepted convention.
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for the leptons alone jin™® = — 37, 1yt (€ = e, . 7). If not specified otherwise
1(x) in the following will denote a lepton field carrying negative charge —e.

The electric charge is a conserved quantity as a consequence of Noether’s
theorem:

Theorem 2.5 If the Lagrangian L(1), 0,1 ---) of a system is invariant under a
r—parametric group of global field transformations ¥ (x) — (x) + dp(x), - - -
then there exist r conserved currents 8le»“ (x)=0,1i=1,---,r which imply the
existence of r conserved charges

B I S N
0= | &xj2t.%); =0,i=1,-,r. (2.94)

The global symmetry in our QED case is the global U (1), gauge symmetry (i.e.
transformations (2.89) with gauge function o = constant).

One important object we need for our purpose is the unitary scattering matrix S
which encodes the perturbative lepton—photon interaction processes and is given by

S—T (ei Jd'x L‘!;?(x)) )@ ‘ (2.95)

The prescription ® says that all graphs (see below) which include vacuum diagrams
(disconnected subdiagrams with no external legs) as factors have to be omitted. This
corresponds to the proper normalization of the S—operator. Unitarity requires

§st=87s=1 & St=5" (2.96)

and infers the conservation of quantum mechanical transition probabilities. The pre-
scription 7 means time ordering of all operators, like

T {p(x)p(»)} = O(° — y)p(x)p(y) £ O’ — x)p(y)B(x) (2.97)

where the 4 sign holds for boson fields and the — sign for fermion fields. Under the
T prescription all fields are commuting (bosons) or anticommuting (fermions). All
fields in (2.95) may be taken to be free fields. With the help of S we may calculate
the basic objects of a QFT, the Green functions. These are the vacuum expectation
values of time ordered or chronological products of fields like the electromagnetic
correlator

Guap(x,y,3) = (01T {A,()0a (b3} 10) . (2.98)
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2.3.1 Perturbation Expansion, Feynman Rules

The full Green functions of the interacting fields like A*(x), 1 (x), etc. can be
expressed completely in terms of corresponding free fields via the Gell-Mann Low
formula [30] (interaction picture)

OIT {4, B} 10) = OIT {AL 0w )G S} 10)s =

N .,
O {AL 0P WP ) e T4 £ o) = > o[ dtad,
O AP v 0P 3 L @) L] 10)e +0E)  299)

with Li(r?t) (x) the interaction part of the Lagrangian. On the right hand side all fields are
free fields and the vacuum expectation values can be computed by applying the known
properties of free fields. Expanding the exponential as done in (2.99) yields the pertur-
bation expansion. The evaluation of the formal perturbation series is not well defined
and requires regularization and renormalization, which we will discuss briefly below.
In a way the evaluation is simple: one writes all free fields in terms of the creation and
annihilation operators and applies the canonical anticommutation (fermions) and the
canonical commutation (bosons) relations to bring all annihilation operators to the
right, where they annihilate the vacuum - - - a(p, r)|0) = 0 and the creation operators
to the left where again they annihilate the vacuum 0 = (0|b™* (p, r) - - -, until no oper-
ator is left over (Wick ordering) [31]. The only non—vanishing contribution comes
from the complete contraction of all fields in pairs, where a pairing corresponds to a
propagator as a factor. The rules for the evaluation of all possible contributions are
known as

The Feynman Rules:

(1) draw all vertices as points in a plane: external ones with the corresponding external
fields ¥ (y:), 1 (y;) or A*(x;) attached to the point, and the internal interaction vertices
—ieyy, 1 A*(z,) with three fields attached to the point z,,.

(2) contract all fields in pairs represented by a line connecting the two vertices,
thereby fields of different particles are to be characterized by different types of lines.
As aresult one obtains a Feynman diagram.

The field pairings define the free propagators

—

V(Y)Y & iSe(y—y) and  At(zy) - A(z2) & DM (1 — a2)

given by the vacuum expectation values of the pair of time—ordered free fields,

iSrap(y — ¥) = (OIT {¥(3)a0(3)5} 10)
DM (x; — x2) = (O|T {A"(x1) A”(x2)} |0) .
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(1) Lepton propagator
o_.p_o : iSF(p)aﬂ = <m>
! 1654 «
(2) Photon propagator
3 LV M v Hp”
onndhg DG =i (¢ - (-9 ot

(3) Lepton—photon vertex
&, P3

8

—le(Y")qp =1 Qe (v")
H, P1 s ef

B7p2

Fig. 2.3 Feynman rules for QED (I)

The latter may easily be calculated using the free field properties.

Feynman diagrams translate into Feynman integrals via the famous Feynman rules
given by Fig.2.3 in momentum space.

In configuration space all interaction vertices in (2.99) are integrated over. The
result thus is a Feynman integral. In fact the perturbation expansion is not yet well
defined. In order to have a well defined starting point, the theory has to be regular-
ized [32] and parameter and fields have to be renormalized in order to obtain a well
defined set of renormalized Green functions. The problems arise because propagators
are singular functions (so called distributions) the products of them are not defined at
coinciding space—time arguments (short—distance [coordinate space] or ultra—violet
[momentum space] singularities). An example of such an ill-defined product is the
Fermion loop contribution to the photon propagator:

iSp(x — y)aﬂ (_ie'}/u)ﬂ'y iSr(y — x)'y(i (—iev)sa -

The ambiguity in general can be shown to be a local distribution, which for a renor-
malizable theory is of the form [33]

ad(x —y)+b"0,0(x —y) +cO0(x —y) +d"0,0,60(x — y)

with derivatives up to second order at most, which, in momentum space, is a second
order polynomial in the momenta.'® The regularization we will adopt is dimensional

18The mathematical problems with the point-like structure of elementary particles and with covari-
ant quantization of the photons hindered the development of QFT for a long time until the break
through at the end of the 1940s [34]. In 1965 Tomonaga, Schwinger and Feynman were honored with
the Nobel Prize “for their fundamental work in quantum electrodynamics, with deep—ploughing con-
sequences for the physics of elementary particles”. For non—Abelian gauge theories like the modern
strong interaction theory Quantum Chromodynamics (QCD) [35, 36] and the electroweak Standard
Model [37], the proper quantization, regularization and renormalization was another obstacle which
was solved only at the beginning of the 1970s by’t Hooft and Veltman [38]. They were awarded the
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regularization [39], where the space—time dimension is taken to be d arbitrary to start
with (see below).

In momentum space each line has associated a d—-momentum p; and at each vertex
momentum conservation holds. Because of the momentum conservation é—functions
many d—-momentum integrations become trivial. Each loop, however, has associated
an independent momentum (the loop—momentum) /; which has to be integrated over

(2;) y / der; - - (2.100)

in d space-time dimensions. For each closed fermion loop a factor —1 has to be
applied because of Fermi statistics. There is an overall —momentum conservation
factor (2m)? 6@ (3. Pi externar)- Note that the lepton propagators as well as the vertex
insertion ievy, are matrices in spinor space, at each vertex the vertex insertion is
sandwiched between the two adjacent propagators:

T iSF(p)a”,’ (—i‘?%)qé ISF(p,)(SS o

Since any renormalizable theory exhibits fermion fields not more than bilinear, as a
conjugate pair ¢ - - - ¢, fermion lines form open strings

[Hinzl(sy)i]S:c § gg $ o

(2.101)
of matrices in spinor space
[SF(Pl) Yo SE(P2) Vo -+ Vi SF(le—l)]aﬂ
or closed strings (fermion loops),
Tr [17,(Sv)i] =
(2.102)

(Footnote 18 continued)

Nobel Prize in 1999 “for elucidating the quantum structure of electroweak interactions in physics”.
They have placed particle physics theory on a firmer mathematical foundation. They have in particu-
lar shown how the theory, beyond QED, may be used for precise calculations of physical quantities.
Needless to say that these developments were crucial for putting precision physics, like the one
with the anomalous magnetic moments, on a fundamental basis.
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which correspond to a trace of a product of matrices in spinor space:

Tr [Se(P1) Y SE(P2) Yo+ SE(Pn) Y] -

Closed fermion loops actually contribute with two different orientations. If the num-
ber of vertices is odd the two orientations yield traces in spinor space of opposite
sign such that they cancel provided the two contributions have equal weight. If the
number of vertices is even the corresponding traces in spinor space contribute with
equal sign, i.e. it just makes a factor of two in the equal weight case. In QED in fact
the two orientations have equal weight due to the charge conjugation invariance of
QED. An important consequence of C invariance is Furry’s theorem [40]:

Theorem 2.6 Fermion loops with an odd number of vector-vertices (i.e. ¥ type)
are vanishing.

As already mentioned, each Fermion loop carries a factor — 1 due the Fermi statistics.
All this is easy to check using the known properties of the Dirac fields."”

For a given set of external vertices and a given order n of perturbation theory (n
internal vertices) one obtains a sum over all possible complete contractions, where
each one may be represented by a Feynman diagram I". The Fourier transform (FT)
thus, for each connected component of a diagram, is given by expressions of the
form

FT (0|7 {A,(x1) - ©a1) - (1) -+ } 0)connected =

| d’l;
= (—i)F (zﬁ)d(s(d)(z DPext) (Hi]il ) )

X > Mier,ier, iSe(p) (—ie) [ Myer,iSe(pp) | Mjer, iD"7(q5)
r

where L, is the set of lepton lines, L, the set of photon lines and L s the set of lines
starting with an external ¢ field, N' the number of independent closed loops and F
the number of closed fermion loops. Of course, spinor indices and Lorentz indices
must contract appropriately, and momentum conservation must be respected at each
vertex and over all. The basic object of our interest is the Green function associated
with the electromagnetic vertex dressed by external propagators:

Grap(x, y,2) = (01T {A, () 0a(MY3(2) } 0) =
J A¥dyde’ iD], (x" = x) iSpo (v = ) (i (¥, 2)) 185, = 2)

19Note that in QCD the corresponding closed quark loops with quark—gluon vertices behave dif-
ferently because of the color matrices at each vertex. The trace of the product of color matrices in
general has an even as well as an odd part.
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which graphically may be represented as follows

with one particle irreducible® (1PI) dressed vertex

Tt
TR EEEEC
(o

whereiD),, (x’—x) is a full photon propagator, a photon line dressed with all radiative
corrections:

Dl ~5) = on@mro = onmanre + onCOwn +
o OO0 + O/\@/\/O+ m@m—k @@w—&-

and iSg,, (y" — y) is the full lepton propagator, a lepton line dressed by all possible
radiative corrections

ISFaa( _y) = O—’_@"_O: O o + o (‘/\\ o +

oM o 4 o SR 5 4 o £y o+ o Q o+ -

The tools and techniques of calculating these objects as a perturbation series in lowest
non-trivial order will be developed in the next section.

The perturbation series are an iterative solution of the non-perturbative Dyson—
Schwinger Equations (DSE) [41], which read: for the full electron propagator S(p)

d*k
S(p) = So(p) + So(p) - (62/ W% D" (p — k) S(k) F,,(p,k)) INIR

20Djagrams which cannot be cut into two disconnected diagrams by cutting a single line. 1PI
diagrams are the building blocks from which any diagram may be obtained as a tree of 1PI “blobs”.
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Fig. 2.4 The Dyson-Schwinger integral equations
for the full photon propagator D" (p)

. i % ov
D (p) = D" (p) + Dy’ (p) ~(—e2 Tr [/ amt WSO Lok kot p) S(k+p>D - D7(p).

and for the full electron—photon vertex function I',,(p’, p)

4

k ’ / /
S+ Lu(p +k, p+k)S(p+k)K(p+k, p"+k k)

FA ,a :Fj ,a
uw(p', p) no(p p)+/(27r)4

1

where S is the free electron propagator, D, (p) the free photon propagator and
Tuo(p’, p) the free e.m. vertex (see Fig.2.3). K (p +k, p' +k, k) is the four-electron
T—matrix (vanishing at lowest order). The expansion in the free vertex yields the
perturbation series. Graphically the SDE are represented in Fig. 2.4.

2.3.2 Transition Matrix-Elements, Particle-Antiparticle
Crossing

The Green functions from the point of view of a QFT are building blocks of the
theory. However, they are not directly observable objects. The physics is described
by quantum mechanical transition matrix elements, which for scattering processes are
encoded in the scattering matrix. For QED the latter is given formally by (2.95). The
existence of a S—matrix requires that for very early and for very late times ( — FF00)
particles behave as free scattering states. For massless QED, the electromagnetic
interaction does not have finite range (Coulomb’s law) and the scattering matrix
does not exist in the naive sense. In an order by order perturbative approach the
problems manifest themselves as an infrared (IR) problem. As we will see below,
nevertheless a suitable redefinition of the transition amplitudes is possible, which
allows one a perturbative treatment under appropriate conditions. Usually, one is not
directly interested in the S—matrix as the latter includes the identity operator / which
describes through—going particles which do not get scattered at all. It is customary
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to split off the identity from the S—matrix and to define the 7T-matrix by
S=1+i@m* 6(4)(Pf -P) T, (2.103)

with the overall four-momentum conservation factored out. In spite of the fact, that
Green functions are not observables they are very useful to understand important
properties of the theory. One of the outstanding features of a QFT is the particle—
antiparticle crossing property which states that in a scattering amplitude an incom-
ing particle [antiparticle] is equivalent to an outgoing antiparticle [particle] and vice
versa. It means that the same function, namely an appropriate time—ordered Green
function, at the same time describes several processes. For example, muon pair
production in electron positron annihilation ete™ — u* ™ is described by ampli-
tudes which at the same time describe electron—-muon scattering ey~ — e pu~
or whatever process we can obtain by bringing particles from one side of the reac-
tion balance to the other side as an antiparticle etc. Another example is muon decay
pwt — etw,, and neutrino scattering v,e~ — 11~ v,. For the electromagnetic vertex
it relates properties of the electrons [leptons, quarks] to properties of the positron
[antileptons, antiquarks].

Since each external free field on the right hand side of (2.99) exhibits an anni-
hilation part and a creation part, each external field has two interpretations, either
as an incoming particle or as an outgoing antiparticle. For the adjoint field incom-
ing and outgoing get interchanged. This becomes most obvious if we invert the
field decomposition (2.12) for the Dirac field which yields the corresponding cre-
ation/annihilation operators

a@.r) = ap.r)° / Ex P P L bt por) = 5. / Ex eI () |

Similarly, inverting (2.13) yields
c(p, \) = — " (p, ) 1/d3x eP* 5o A, (x)

and its Hermitian conjugate for the photon, with f(x) 5# g(x) = f(x) Oug9(x) —
(0, f (x)) g(x). Since these operators create or annihilate scattering states, the above
relations provide the bridge between the Green functions, the vacuum expectation val-
ues of time—ordered fields, and the scattering matrix elements. This is how the cross-
ing property between different physical matrix elements comes about. The S—matrix
elements are obtained from the Green functions by the Lehmann, Symanzik, Zim-
mermann [42] (LSZ) reduction formula: the external full propagators of the Green
functions are omitted (multiplication by the inverse full propagator, i.e. no radia-
tive corrections on external amputated legs) and replaced by an external classical
one particle wave function and the external momentum is put on the mass shell.
Note that the on—shell limit only exists after the amputation of the external one
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Table 2.1 Rules for the treatment of external legs in the evaluation of 7—matrix elements

Scattering state ‘ Graphical representation ‘ Wave function

Dirac particles:

_>_</g

Incoming particle u(p,r)
+€

Incoming antiparticle & v(p,r)
—

Outgoing particle 7 u(p,r)
—

. . . V.

Outgoing antiparticle v(p,r)

Photon:
mé

Incoming photon e'(p,r)

Outgoing ph % por

going photon e (p,r)

particle poles. Graphically, at lowest order, the transition from a Green function to a
T matrix—element for a lepton line translates into

ﬁlir?nfi(ﬁfm)o_F@ - % — up,r)---

and a corresponding operation has to be done for all the external lines of the Green
function.

The set of relations for QED processes is given in Table 2.1.

We are mainly interested in the electromagnetic vertex here, where the crossing
relations are particularly simple, but not less important. From the 1PI vertex function
I'*(py, p2) we obtain
the electron form factor for e (p1) + v(qg) — e~ (p2)

T =u(p2, r2) I (p1, pu(pi,r1) .

the positron form factor for e™(—p,) + v(q) — et (—p1)
T" = v(p2, )T (—p2, —p)v(p1, 11)

and the e’ e~ —annihilation amplitude of e~ (p;) + e (—p2) — ¥(—q)
T" = v(p2, r) I (p1, pu(pr,r1) .

For the more interesting case of a two—to—two process like electron—positron
(Bhabha) scattering we have three channels:
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\ / e (m) e (ps) e (p) e (ps)

et (p2) e*(ps) €*(p2) e*(ps)

e (m) e (ps) e (m) e (ps)

e (=pa) e (=p2) e (=pa) e (=p2)

e*(=ps) et (=p1) e*(=ps) e (=p)

et (p2) e*(ps) e*(p2) e*(ps)

Fig. 2.5 The Mandelstam plane s + ¢ + u = Z?=1 pi2 = ZL 1 ml2 Physical regions are shaded

and represent different processes for the appropriate ranges of the Mandelstam variables (s, 7, u).
The Feynman diagrams shown to be read from left (in—state) to right (out—state). Light-by-light
scattering vy — <7y is a crossing symmetric process where the different channels represent the
same process

e (p1)+eT(p2) = e (p3) +et(ps): s —channel; s = (p1+ p2)?,
e (p1)+e (—ps) > e (—p2) + e (p3) : t —channel; 1= (p; — ps)?,
et (p2) + et (—p3) = e (—p1) + " (ps) : u — channel; u = (p, — p3)*.

Note that s + ¢ + u = 4m? which is the height in a isosceles triangle and gives rise
to the Mandelstam plane [43] (see Fig.2.5).

Given the 7" matrix—elements, the bridge to the experimental numbers is given by
the cross sections and decay rates, which we present for completeness here.

2.3.3 Cross Sections and Decay Rates

The differential cross section for a two particle collision

A(p1) +B(p2) — C(p) +D(p) -
is given by

_ o' (p-P)

do = 220 Ty Pdu(p)dp(ph) - - -
D) | Tyi|"dp(py)du(py)
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s = (p1 + p2)? is the square of the total CM energy and \(x, y,z) = x> + y> +
72 — 2xy — 2xz — 2yz is a two body phase—space function. In the CM frame (see

the figure):
VA=A (s, m}, m3) = 2[pl/s (2.104)

where p = p; is the three-momentum of the initial state particle A.
C

A 1=D ‘/ B
/15'22—17

X

The total cross section follows by integration over all phase space

cr:/da.

Finally, we consider the decay of unstable particles. The differential decay rate for
A — B+ C+--- isgiven by

_ ent(ry

7PI'
dr = ) 7 Rdpupdudpy) -

By “summing” over all possible decay channels we find the total width

1
r =§de =, (2.105)

T

where 7 is the lifetime of the particle, which decays via the exponential decay law
N(@t) = Nye /™. (2.106)

Cross sections are measured typically by colliding beams of stable particles and
their antiparticles like electrons (e™), positrons (e™), protons (p) or antiprotons ().
The beam strength of an accelerator or storage ring required for accelerating and
collimating the beam particles is determined by the particle flux or luminosity L, the
number of particles per cm? and seconds. The energy of the machine determines the
resolution

hc 1.2GeV s

A\ = ~ x 107 m
Ecm.  Eem(GeV)
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while the luminosity determines the collision rate

AN
— =L.o,
At
and the cross section o is thus given by dividing the observed event rate by the

luminosity L AN

-2 2.107
TTT At (2.107)

2.4 Regularization and Renormalization

The vertex and self—energy functions, as well as all other Green functions, on the
level of the bare theory are well defined order by order in perturbation theory only
after smoothing the short distance or ultraviolet (UV) divergences by appropriate
regularization. Here we assume QED or the SM to be regularized by dimensional
regularization [39]. By going to lower dimensional space—times the features of the
theory, in particular the symmetries, remain the same, however, the convergence of
the Feynman integrals gets improved. For a renormalizable theory, in principle, one
can always choose the dimension low enough, d < 2, such that the integrals converge.
By one or two partial integrations one can analytically continue the integrals in steps
from d to d + 1, such that the perturbation expansion is well defined ford =4 — €
with € a small positive number. For e — 0 (d — 4) the perturbative series in the
fine structure constant o = e? /4 exhibits poles in €:

N n
A= Z o Zanm(l/e)"*m
n=0

m=0

and the limit d — 4 to the real physical space—time does not exist, at first. The
problems turn out to be related to the fact that the bare objects are not physical
ones, they are not directly accessible to observation and require some adjustments.
This in particular is the case for the bare parameters, the bare fine structure constant
(electric charge) which is modified by vacuum polarization (quantum fluctuations),
and the bare masses. Also the bare fields are not the ones which interpolate suitably
to the physical states they are assumed to describe. The appropriate entities are in
fact obtained by a simple reparametrization in terms of new parameters and fields,
which is called renormalization.

2.4.1 The Structure of the Renormalization Procedure

Renormalization may be performed in three steps:

(i) Shift of the mass parameters or mass renormalization: replace the bare mass
parameters of the bare Lagrangian by renormalized ones
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m o = M pren + 0my  for fermions (2.108)

M2y = M3, + M7  for bosons '

(i) Multiplicative renormalization of the bare fields or wave function renormaliza-
tion: replace the bare fields in the bare Lagrangian by renormalized ones

bro = Z Usen s Al =7, Al (2.109)

and correspondingly for the other fields of the SM. To leading order Z; = 1 and
hence

1
Zi=140Z; , w/zi=1+552,»+--- (2.110)

(iii) Vertex renormalization or coupling constant renormalization: substitute the bare
coupling constant by the renormalized one

€y = e + de . (2.111)

The renormalization theorem (see e.g. [1, 33, 38]) states that

Theorem 2.7 Order by order in the perturbation expansion all UV divergences
showing up in physical quantities (S—matrix elements) get eliminated by an appro-
priate choice of the counter terms dmy, SM?, Se and 6Z; = Z; — 1. Physical
amplitudes parametrized in terms of physical parameters thus are finite and free of
cutoff effects in the large cutoff limit.

In other words, suitably normalized physical amplitudes expressed in terms of mea-
surable physical parameters are finite in the limit e — 0, i.e., they allow us to take
away the regularization (cut—off A — oo if a UV cut—off was used to regularize
the bare theory). Note that for Green functions, which are not gauge invariant in
general, also the fictitious gauge parameter has to be renormalized in order to obtain
finite Green functions. Unitarity requires the counter terms to be real. Therefore the
counter terms are determined by the real parts of the location and residues of the
one particle poles. Also note: the Z-factors are gauge dependent and in order to get
gauge invariant S-matrix elements there is no freedom in the choice of the wave
function renormalization factors. Only the Z-factors fixed by the LSZ-conditions for
the individual fields lead to the physical S-matrix [38, 44]. In fact bare on—shell
matrix—elements are not gauge invariant, they become gauge invariant only after
wave-function renormalization normalized by the L.SZ conditions.

The reparametrization of the bare Lagrangian (2.90) in terms of renormalized
quantities reads
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1 v 1 - | n -
LD — -1 w0 () FYY (x) — o (8,A5x0)) + Do) (i4"8), — mo) Yo(x)

—eotho(x) Y40 (x) A, 0(x)
= L3P + £

1 1z 1. 2
L = = Fren () Flin (1) = Sy (9, Alin ()

+ iren (x) (l"}ﬂuau - mren) Yren ()

'51?1];:]) = ~€ren 1Lren () ¥ ren (x) Aren ()
1 -
_Z (Zw - l) F#Vren(x)Frl;ryl(x) + (Ze - 1) 'l/}ren(x) ilyﬂa;ﬂ/}ren

—(moZ, — Myep) ﬁrenfpren(x)
_(eO\/ZZe — €ren) Yren(X) ’V“"/}ren(x) A,u ren (X) (2.112)

with &en = Z,&o the gauge fixing term remains unrenormalized (no corresponding
counter term). The counter terms are now showing up in LSED and may be written in
terms of 6Z, = Z,—1,0Z, = Z.—1,6m = moZ, — Mren and de = €g\/Z Zo — eren.
They are of next higher order in e2, either O (e?) for propagator insertions or O (e?)
for the vertex insertion, in leading order. The counter terms have to be adjusted order
by order in perturbation theory by the renormalization conditions which define the
precise physical meaning of the parameters (see below).

The Feynman rules Fig. 2.3 have to be supplemented by the rules of including the
counter terms as given in Fig. 2.6 in momentum space.

Obviously the propagators (two—point functions) of the photon and of the electron
get renormalized according to

Do = ZDren 2.113)
SFO = ZeSFren .
Fig. 2.6 Feynman rules for (1) Lepton propagator insertions
QED (II): the counter terms D
e—@%—ﬁ D i(0Ze (p—m) _5m)a[3
«Q
(2) Photon propagator insertion
p .
ANNBDNAN, - T 6Z7 (p2g;w - p“py)
I v
(3) Lepton-photon vertex insertion

&, P3

= —ide (’Y“)aﬁ
s P1
67p2
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The renormalized electromagnetic vertex function may be obtained according to the
above rules as

11
Ze

GH

ren

Gl (2.114)

5

v

. 1
renSFrenFrlenSFren = ﬁZDOSFOFOHSFO

1
W Ze

!

>

ZA,/ Z? Dren SF ren F()/l SF ren

-

and consequently

I_'rgn :‘/Z’YZE F'u = /ZZE {eoly/l+r(;u}
eg—e+de, my—>m—+om, ...
6@ ’ u
=1+4+0Z,(1+6Z.) €(1+?)’Y"+F0

I 5 ,
=(1+§627+5Ze+—e)e'y”+1"0“+--- 2.115)
e

where now the bare parameters have to be considered as functions of the renormalized
ones:

ep = egle,m), mg=mo(m,e) etc. (2.116)

and e, m etc. denote the renormalized parameters. The last line of (2.115) gives the
perturbatively expanded form suitable for one—loop renormalization. It may also be
considered as the leading n—th order renormalization if F(;“ has been renormalized
to n — 1-st order for all sub—divergences. More precisely, if we expand the exact
relation of (2.115) (second last line) and include all counter terms, including the ones
which follow from (2.116), up to order n — 1 in I (;“', such that all sub—divergences

of F(;“ are renormalized away, only the overall divergence of order n will be there.
After including the wavefunction renormalization factors of order n as well (by
calculating the corresponding propagators) the remaining overall divergence gets
renormalized away by fixing de™, according to the last line of (2.115), by the charge
renormalization condition:

u(pa, r2)Lh (1, p2)u(pr, 1) = erenit(p2, r2)Y u(pi, r1)

at zero photon momentum g = p, — p; = 0 (classical limit, Thomson limit).
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2.4.2 Dimensional Regularization

Starting with the Feynman rules of the classical quantized Lagrangian, called bare
Lagrangian, the formal perturbation expansion is given in terms of ultraviolet (U V)
divergent Feynman integrals if we try to do that in d = 4 dimensions without a UV
cut—off. As an example consider the scalar one—loop self-energy diagram and the
corresponding Feynman integral

k+p

e

1 1 |k|>|p|,m / d%k

- /1dk
- (2m)d, ‘ k2 —m2+ie (k+p)2 —m?2 +ic k4

which is logarithmically divergent for the physical space—time dimension d = 4
because the integral does not fall-off sufficiently fast at large k. In order to get
a well—defined perturbation expansion the theory must be regularized.”! The reg-
ularization should respect as much as possible the symmetries of the initial bare
form of the Lagrangian and of the related Ward—Takahashi (WT) identities of the
“classical theory”. For gauge theories like QED, QCD or the SM dimensional reg-
ularization [39] (DR) is the most suitable regularization scheme as a starting point
for the perturbative approach, because it respects as much as possible the classical
symmetries of a Lagrangian.?? The idea behind DR is the following:

(1) Feynman rules formally look the same in different space—time dimensions d =
n(integer)

(i1) Inthe UV region Feynman integrals converge the better the lower d is.

The example given above demonstrates this, in d = 4 — € (¢ > 0) dimensions (just

below d = 4) the integral is convergent. Before we specify the rules of DR in more
detail, let us have a look at convergence properties of Feynman integrals.

210ften one simply chooses a cut—off (upper integration limit in momentum space) to make the
integrals converge by “brute force”. A cut—off may be considered to parametrize our ignorance about
physics at very high momentum or energy. If the cut—off A is large with respect to the energy scale
E of a phenomenon considered, £ < A, the cut—off dependence may be removed by considering
only relations between low—energy quantities (renormalization). Alternatively, a cut—off may be
interpreted as the scale where one expects new physics to enter and it may serve to investigate how
a quantity (or the theory) behaves under changes of the cut—off (renormalization group). In most
cases simple cut—off regularization violates symmetries badly and it becomes a difficult task to
make sure that one obtains the right theory when the cut—off is removed by taking the limit A — oo
after renormalization.

22 An inconsistency problem, concerning the definition of s for d # 4, implies that the chiral
WT identities associated with the parity violating weak fermion currents in the SM are violated in
general (see e.g. [45]).
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Dyson Power Counting

The action
Sz{/ﬂxzﬂ (2.117)

measured in units of 2~ = 1 is dimensionless and therefore dim L. = d in mass
units. The inspection of the individual terms yields the following dimensions for the
fields:

Py Oy Ldim ¢ = 451
(0A, —--+)? : dim A, = &2 (2.118)
é(ﬂ[f’}/ﬂ’l/)AH : dim é() = A% = EO = 6‘0#6/2

where € = 4 — d, ey denotes the dimensionless bare coupling constant (dim ey = 0)
and p is an arbitrary mass scale. The dimension of time ordered Green functions in
momentum space is then given by (the Fourier transformation | dig e ax ... gives
—d for each field):

d—2 d—1
dimG 52" = 5 + 2np 5 — (ng +2np)d

where

ng : #of boson fields : G;, - - .
2np : #of Dirac fields (in pairs) : ¢« -1 .

It is convenient to split off factors which correspond to external propagators (see p.
52) and four—-momentum conservation and to work with 1PI amplitudes, which are
the objects relevant for calculating 7 matrix elements. The corresponding proper
amputated vertex functions are of dimension

d—2 d—1
—21’117 3

dimG*™ = d — ng (2.119)

A generic Feynman diagram represents a Feynman integral

d d
= o) = [ b IR

The convergence of the integral can be inspected by looking at the behavior of the
integrand for large momenta: For k; = A\k; and A — oo we find

Mid'ki I (p. k) — X0
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where

d—2 d—1 "
d(I') =d—ng > —2np 5 +g¥¢—m

is called the superficial divergence of the 1PI diagram I". The sum extends over
all (n) vertices of the diagram and d; denotes the dimension of the vertex i. The —d
at each vertex accounts for d—momentum conservation. For a vertex exhibiting n; j
Bose fields, n; y Fermi fields and /; derivatives of fields we have

d—2 d—1
i i (2.120)

di =n;y

Here it is important to mention one of the most important conditions for a QFT to
develop its full predictive power: renormalizability. In order that d(I") in (2.120) is
bounded in physical space-time d = 4 all interaction vertices must have dimension
not more than d; < 4. An anomalous magnetic moment effective interaction term
(Pauli term)

L™ = %J}m o Y (x) F(x) 2.121)

has dimension 5 (in d = 4) and thus would spoil the renormalizability of the the-
ory.?3 Such a term is thus forbidden in any renormalizable QFT. In contrast, in any
renormalizable QFT the anomalous magnetic moment of a fermion is a quantity
unambiguously predicted by the theory.

The relation (2.120) may be written in the alternative form

d(F):4—nB—2np§+L(d—4) .
The result can be easily understood: the loop expansion of an amplitude has the form
AP = A N4 aga+a®+ - 4a,aF +---] (2.122)
where o = e?/47 is the conventional expansion parameter. A is the tree level
amplitude which coincides with the result in d = 4.

We are ready now to formulate the convergence criterion which reads:

I convergent < d(y) <0 V 1PI subdiagrams v C I
I divergent < 3 v C " withd(y) >0 .

23The dimension of F*¥ is 2, 1 for the photon field plus 1 for the derivative.
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In d < 4 dimensions, a renormalizable theory has the following types of primi-
tively divergent diagrams (i.e., diagrams with d(I") > 0 which may have divergent
sub—integrals)>*:

R D

d—2 2] d—3[1] d—410]

+(Lp —1)(d — 4) for adiagram with L (> 1) loops. The list shows the non—trivial
leading one—loop d(I") to which per additional loop a contribution (d — 4) has to be
added (see (2.122)), in square brackets the values for d = 4. Thus the dimensional
analysis tells us that convergence improves for d < 4. For a renormalizable theory
we have

e d(I"') <2ford =4.

In lower dimensions

e d(I') <2ford <4

a renormalizable theory becomes super—renormalizable, while in higher dimensions
e d(I') unbounded! d > 4

and the theory is non-renormalizable.

Dimensional Regularization

Dimensional regularization of theories with spin is defined in three steps.

1. Start with Feynman rules formally derived in d = 4.

2. Generalize to d = 2n > 4. This intermediate step is necessary in order to treat the
vector and spinor indices appropriately. Of course it means that the UV behavior of
Feynman integrals at first gets worse.

24 According to (2.122) there are two more potentially divergent structures

-

d—311]  d—4]0]

with superficial degree of divergence as indicated. However, the triple photon vertex is identically
zero by Furry’s theorem, C odd amplitudes are zero in the C preserving QED. The four photon
light-by-light scattering amplitude, due the transversality of the external physical photons, has an
effective dimension d(I")eff = —4, instead of 0, and is thus very well convergent. For the same
reason, transversality of the photon self—energy, actually the photon propagator has d(I")eff = 0
instead of 2. In both cases it is the Abelian gauge symmetry which makes integrals better convergent
than they look like by naive power counting.
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(1) For fermions we need the d = 2n—dimensional Dirac algebra:
(V7" =2¢"1; {¥, v} =0 (2.123)

where s must satisfy 42 = 1 and v = s such that (1 £ ~s) are the chiral
projection matrices. The metric has dimension d

0-—1
gupgy,y = g}tj =d ; uv =

—1

By 1 we denote the unit matrix in spinor space. In order to have the usual relation
for the adjoint spinors we furthermore require

,yu-‘r — ’YO')/N'YO ) (2124)

Simple consequences of this d—dimensional algebra are:

Ya¥" =d1

Yyt =2 =)

Y'Yt =4 1+ (d —4) Y
VoYY = 2Py (4 = d)yi P ete.

(2.125)

Traces of strings of y—matrices are very similar to the ones in 4-dimensions. In
d = 2n dimensions one can easily write down 2¢/2—dimensional representations of
the Dirac algebra [46]. Then

Trl = f(d) =27
T 2n—l i () =0
rlli=im e (2.126)
Troyty” = f(d) g"
Tryiy"yPy = f(d) ("9 = g""g"" + g"7g"") etc.

One can show that for renormalized quantities the only relevant property of f(d) is
f(d) — 4 ford — 4. Very often the convention f(d) = 4 (for any d) is adopted.
Bare quantities and the related minimally subtracted MS or modified minimally
subtracted MS quantities (see below for the precise definition) depend upon this
convention (by terms proportional to In 2).

In anomaly free theories we can assume <5 to be fully anticommuting! But then

Try"~y"7*77ys = 0 forall d # 4! (2.127)
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The 4-dimensional object
4igh?P? = TryHy"~P~7~s for d =4

cannot be obtained by dimensional continuation if we use an anticommuting s [46].

Since fermions do not have self interactions they only appear as closed fermion
loops, which yield a trace of y—matrices, or as a fermion string connecting an external
P 1/_) pair of fermion fields. In a transition amplitude IT]? = Tr(---) we again
get a trace. Consequently, in principle, we have eliminated all 4’s! Commonly one
writes a covariant tensor decomposition into invariant amplitudes, like, for example,

Y f qu
=1I"" = —ie {'y“Al + 1ot =— Ay + yHy5A3 + - }
7 2m

where 4 is an external index, g/ the photon momentum and A, (g?) are scalar form
factors.

(2) External momenta (and external indices) must be taken d = 4 dimensional,
because the number of independent “form factors” in covariant decompositions
depends on the dimension, with a fewer number of independent functions in lower
dimensions. Since four functions cannot be analytic continuation of three etc. we
have to keep the external structure of the theory in d = 4. The reason for possible
problems here is the non—trivial spin structure of the theory of interest. The following
rules apply:

External momenta : p* = (p°, p', p?, p*,0,---,0) 4 — dimensional
Loop momenta : k= &, - k4 d — dimensional

k2 — (kO)Z _ (kl)Z L (kdfl)Z

pk=p%k° —p -k 4 — dimensional etc.

3. Interpolation in d to complex values and extrapolation to d < 4.
Loop integrals now read
47(1 ddk DR
@my?

1 (2.128)

with p an arbitrary scale parameter. The crucial properties valid in DR independent
of d are: (F.P. = finite part)
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(@) [dikk, f(k*) =0
) [dkfk+ p) = [d'kf (k)
which is not true with UV cut — off’s
(© If f(k) = f(k]:
Jalkf o) = F Jy7 drrt= £ ()
(d) For divergent integrals, by analytic subtraction:

F.P. [ drr¢='® =0 for arbitrary o
so called minimal subtraction (MS). Consequently

F.P. [dkf (k) = F.P. [d'kf(k + p) = FP. [d? k) f(\k) .

This implies that dimensionally regularized integrals behave like convergent
integrals and formal manipulations are justified. Starting with d sufficiently small,
by partial integration, one can always find a representation for the integral which
converges ford =4 — e, € > 0 small.

In order to elaborate in more detail how DR works in practice, let us consider a
generic one—loop Feynman integral

[T}, &
' ((k+ p)? —mi +ie)

IR (prs -+, pa) =/ddkl_[
which has superficial degree of divergence
d(I')=d+m—-2n<d -2

where the bound holds for two— or more—point functions in renormalizable theories
and for d < 4. Since the physical tensor and spin structure has to be kept in d = 4,
by contraction with external momenta or with the metric tensor gy, it is always
possible to write the above integral as a sum of integrals of the form

I}, &
" (k4 pi)? —m? +ie)

Iﬁl"'ﬁm/(ﬁl’ e ﬁn’) — /ddk
[1
where now /i; and p; are d = 4-dimensional objects and
dk = d*k d¥ "k = d*k W' dw d24 g

In the d — 4—dimensional complement the integrand depends on w only! The angular
integration over d£2,_4 yields

27re/2
=——; e=d—4,
I'(e/2)

/d-Qd—4 = Si-4
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which is the surface of the d — 4-dimensional sphere. Using this result we get
(discarding the four—dimensional tensor indices)

I (A = / &R, po )
where

Jrd, o) = Su_s / oS f(p R, w) .
0

Now this integral can be analytically continued to complex values of d. For the
w—integration we have

d°(I'y=d —4—2n
i.e. the w—integral converges if
d<442n .

In order to avoid infrared singularities in the w—integration one has to analytically
continue by appropriate partial integration. After p—fold partial integration we have

27T o 2\’
Irp) = —— d412/ dwwd=3+2p (——) pk, w
D = r / 0 =) fokw

where the integral is convergentin4 —2p <Re d <2n—m =4 —d¥(I") > 2.
For a renormalizable theory at most 2 partial integrations are necessary to define the
theory.

2.5 Tools for the Evaluation of Feynman Integrals

2.5.1 € =4-d Expansion, € - +0

For the expansion of integrals near d = 4 we need some asymptotic expansions of
I'-functions:

'l +x) =exp |:—fyx + Z =D ((n)x”:| lx] <1

n
n=2

=7+ D (=D ¢!

n=2

_d _ A4 x) <
w(1+x)—dx1nF(l+x)—F(1+x) =
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where ((n) denotes Riemann’s Zeta function. The defining functional relation is
r 1
I'(x) = M ,
x

whichforn =0, 1,2, --- yields I'(n+1) = n!with I'(1) = "' (2) = 1. Furthermore
we have

'x)I'l —x) = —

sin 7x

rGaord —on=_"
2T 2 7T Gosmx

Important special constants are

1
rG) =

') = —v; ~=0.577215--- Euler’s constant

7.(.2

'y =+"+¢2; <2 = o= 164493

As a typical result of an e—expansion, which we should keep in mind for later pur-
poses, we have

ri+S)=1- S+ (5) S0P Hc@) +-

2.5.2 Bogolubov-Schwinger Parametrization

Suppose we choose for each propagator an independent momentum and take into
account momentum conservation at the vertices by d—functions. Then, for d = n
integer, we use

(@
i * —ia(m?—p?—ic)
m = A dae (2129)
(ii)
+00 )
5@ (k) = Gy / d’x e (2.130)
—0o0

and find that all momentum integrations are of Gaussian type. The Gaussian integrals
yield
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. .
/ " alkp (e — p (10 (i)d/ze*ibz/wz (2.131)
. 2b dp) \ia

for any polynomial P. The resulting form of the Feynman integral is the so called
Bogolubov—Schwinger representation, also known as a-representation (see e.g. [47]).

2.5.3 Feynman Parametric Representation

Transforming pairs of a—variables in the above Bogolubov—Schwinger parametriza-
tion according to (I is denoting the pair (i, k))

(o, ap) = (&, ) = (i, o) = Gy, (1 = EHay) (2.132)

o] e8] oo 1
/ / daidak - / dal O[// df[ s, (2133)
0 0 0 0

the integrals are successively transformed into fol d¢ - - - integrals and at the end there
remains one a—integration only which can be performed using

/ daa®e™ =I'(a+ DHx~@D | (2.134)
0

The result is the Feynman parametric representation. If L is the number of lines of
a diagram, the Feynman integral is (L — 1)—dimensional.

2.5.4 Euclidean Region, Wick—Rotations

The basic property which allows us to perform a Wick rotation is analyticity which
derives from the causality of a relativistic QFT. In momentum space the Feynman
propagator

1 1 1
qz_m2+ig_qo_\/q2+m2_i5 O +V/q2+m?—ic
1 1 1
=_[ 5 —— = . } (2.135)
2wy, | ¢ —w,+ic ¢'+w,—ic
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Fig. 2.7 Wick rotation in the

complex g"—plane. The poles Im ¢°

of the Feynman propagator .

are indicated by ®’s. C is an ¢

integration contour, R is the ® \ ®

radius of the arcs ; ' bl bbb
\ ® Re qO ...:.....>..... ® R

W

is an analytic function in ¢° with poles at ¢° = (w, —ig)? where wp =+/q2 +m?.
This allows us to rotate by 7 the integration path in q°, going from —oo to 400,
without crossing any singularity. In doing so, we rotate from Minkowski space to
Euclidean space

CIO—>—iqd:>q=(qqu1,~--,qd727!]d71)—>C_]=(ql,q2,--~,qd71,qd)
and thus ¢> — —c_]z. This rotation to the Euclidean region is called Wick rotation.

More precisely: analyticity of a function f (¢°, q) in ¢° implies that the contour
integral

74 d¢° f(¢°,q) =0 (2.136)
C(R)

for the closed path C(R) in Fig.2.7 vanishes. If the function f (¢°, q) falls off
sufficiently fast at infinity, then the contribution from the two “arcs” goes to zero
when the radius of the contour R — oo. In this case we obtain

/dqof(qoaq)Jr/qu f@’ q)=0 (2.137)
-0 Fico
or
o0 +ico +o0
/dqo f@.q)= / dg° f(qo,q)z—i/dqd f(—ig%,q) , (2.138)

which is the Wick rotation. At least in perturbation theory, one can prove that the
conditions required to allow us to perform a Wick rotation are fulfilled.

25 Note that because of the positivity of q 2 + m? for any non-vacuum state, we have wp —ie =

V/q?% + m? — ic in the limit lim._, ¢, which is always understood. The symbolic parameter ¢ of the
ie prescription, may be scaled by any fixed positive number.
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We notice that the Euclidean Feynman propagator obtained by the Wick rotation

1 1
ﬁ_
q2_m2+i€ g2_*_’,'12

has no singularities (poles) and an ie—prescription is not needed any longer.
In configuration space a Wick rotation implies going to imaginary time x
= x? such that gx — —gx and hence

0

ix?

X —ix! = x> —f , O = -4y, i/ddxu-—)/ddg-u
While in Minkowski space x> = 0 defines the light—cone x° = %|x|, in the Euclidean
region x> = 0 implies x = 0. Note that possible singularities on the light—cone like
1/x2, §(x?) etc. turn into singularities at the point x = 0. This simplification of the
singularity structure is the merit of the positive definite metric in Euclidean space.

In momentum space the Euclidean propagators are positive (discarding the overall
sign) and any Feynman amplitude in Minkowski space may be obtained via

Ly (p) = (=)™ (=) Te(P) | picipd s m2—sm—ic

from its Euclidean version. Here, Nj,; denotes the number of internal lines (propaga-
tors) and V the number of vertices if we use the substitutions (convention dependent)

1
—
pr—m?+ic  pi4+m

55 igi > 1(ig) = —gi ; /ddk—>/dd@

to define the Euclidean Feynman amplitudes. By g; we denote the gauge couplings.

For the dimensionally regularized amplitudes, where potentially divergent inte-
grals are defined via analytic continuation from regions in the complex d—plane
where integrals are manifestly convergent, the terms from the arc segments can
always be dropped. Also note that dimensional regularization and the power count-
ing rules (superficial degree of divergence etc.) hold irrespective of whether we work
in d—dimensional Minkowski space—time or in d—dimensional Euclidean space. The
metric is obviously not important for the UV-behavior of the integrals.

The relationship between Euclidean and Minkowski quantum field theory is not
only a very basic and surprising general feature of any local relativistic field theory
but is a property of central practical importance for the non—perturbative approach
to QFT via the Euclidean path—integral (e.g., lattice QCD). In a QFT satisfying
the Wightman axioms the continuation of the vacuum—expectation values of time—
ordered products of local fields (the time—ordered Green functions) from Minkowski
space to four—dimensional Euclidean space is always possible [11]. Conversely, the
Osterwalder—Schrader theorem [48] ascertains that
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Theorem 2.8 In a local relativistic QFT the time—ordered Green functions exhibit
an analytic continuation to Euclidean space. Vice versa, the Euclidean correlation
functions of an Euclidean QFT can be analytically continued to Minkowski space,
provided we have a local action which satisfies the so—called reflection positivity
condition.

Accordingly, the full Minkowski QFT including its S—matrix, if it exists, can be
reconstructed from the knowledge of the Euclidean correlation functions and from a
mathematical point of view the Minkowski and the Euclidean version of a QFT are
completely equivalent.

2.5.5 The Origin of Analyticity

At the heart of analyticity is the causality. The time ordered Green functions which
encode all information of the theory in perturbation theory are given by integrals
over products of causal propagators (z = x — y)

iSr(z) = (OIT {¥ () ()} 10)
= O — )0l (x)P()]0) — O — x°) (0] ()b (x)|0)
=0 isT (@) +0(-")iS (2) (2.139)

exhibiting a positive frequency part propagating forward in time and a negative
frequency part propagating backward in time. The ® function of time ordering makes
the Fourier—transform to be analytic in a half—plane in momentum space. For K (7 =
7% = ©(%)iS*(z), for example, we have

+oo +oo
K(w) = / drK (1) e“™ = / drK (1) e els" (2.140)
—00 0

such that K (w = £ + in) is a regular analytic function in the upper half w—plane
7 > 0. This of course only works because 7 is restricted to be positive.

In a relativistically covariant world, in fact, we always need two terms (see
(2.139)), a positive frequency part © (z° = 1 —1') ST (z), corresponding to the particle
propagating forward in time, and a negative frequency part @ (—z° = ¢’ —t) S (z),
corresponding to the antiparticle propagating backward in time. The two terms cor-
respond in momentum space to the two terms of (2.135).

Of course, for a free Dirac field we know what the Stiickelberg-Feynman propa-
gator in momentum space looks like

~ qd+m
N =
F(@) q*> —m? +ie
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and its analytic properties are manifest. It is an analytic function in ¢° with poles at
q° = £(w, — i) where w, = /q2 + m2.

Analyticity is an extremely important basic property of a QFT and a powerful
instrument which helps to solve seemingly purely “technical” problems as we will
see. For example it allows us to perform a Wick rotation to Euclidean space and in
Euclidean space a QFT looks like a classical statistical system and one can apply
the methods of statistical physics to QFT [49]. In particular the numerical approach
to the intrinsically non—perturbative QCD via lattice QCD is based on analyticity.
The objects which manifestly exhibit the analyticity properties and are providing the
bridge to the Euclidean world are the time ordered Green functions.

Note that by far not all objects of interest in a QFT are analytic. For example, any
solution of the homogeneous (no source) Klein—-Gordon equation

(O, +m*) Ax —y;m*) =0,

like the so called positive frequency part A™ or the causal commutator A of a free
scalar field (x), defined by

< 0lp(x), p(MI0 > =i AT (x — y; m?)
[p(x), o] =1 A(x — y; m?) ,

which, given the properties of the free field, may easily be evaluated to have a
representation

Atz m?) = —i@em~ / d*p OP°) 6(p® —m?) e
A(z;m?) = —i (27r)*3/d4p e(p®) 6(p* —m?) e 7.
Thus, in momentum space, as solutions of

(p* —m» A(p) =0,

only singular ones exist. For the positive frequency part and the causal commutator
they read

O(p°) s(p* —m*) and €(p°) 5(p* —m?),

respectively. The Feynman propagator, in contrast, satisfies an inhomogeneous (with
point source) Klein—Gordon equation

(O +m?) Ap(x —y;m?) = =W (x —y) .
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The ¢ function comes from differentiating the ® function factors of the 7' product.
Now we have

(OIT {p(x), p(N}10) =i Ap(x — y; m?)

with

1 .
A ’ 2 — 2 74/d4 —1pz
F(zm?) = (2m) P

and in momentum space
(p* —m*) Ar(p) =1,

obviously has analytic solutions, a particular one being the scalar Feynman propa-
gator

—1 1 . 2 2
pz_m2+i5:P T —imd(p* —m?). (2.141)

The ie prescription used here precisely correspond to the boundary condition imposed
by the time ordering prescription 7 in configuration space. The symbol £ denotes
the principal value; the right hand side exhibits the splitting into real and imaginary
part.

Analyticity will play a crucial role later on and is the basic property from which
dispersion relations derive (see Sect.3.7).

Digression on the configuration space representation of Lorentz invariant distribu-
tions

Usually particle physics is practiced in momentum space, perturbative calculations
are performed using momentum space Feynman rules and one calculates Feynman
integrals and cross sections etc. as functions of energies and momenta (see below).
This is in contrast to non- perturbative lattice field theory, where calculations have
to be performed on a discretized finite Euclidean space—imaginary-time lattice in
configuration space, by numerically evaluating (2.99), reformulated as a path integral,
without expanding the exponential (see Sect. 5.3 below). It is therefore instructive to
do a short excursion considering the properties of free fields in configuration space.
For later reference we consider here the singularity structure of the solutions of the
Klein—Gordon equation in configuration space. We first list some one—dimensional
Fourier transforms of distributions as boundary values lim._,( of analytic functions:


http://dx.doi.org/10.1007/978-3-319-63577-4_3
http://dx.doi.org/10.1007/978-3-319-63577-4_5
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1 +00 ) )
o(x) = — / dpe ™, 1= /dx 0(x)e'’”*
27 J_

o0
- 1 400 e—ipx i - i
erOMx)=—— dp — — = [ dxO(x)e Fe'P*
2T J_ oo p+ie p+ie
1 +00 efipx —i )
T OM) = — / ap . __ / dx O (—x) e et
21 J_so p —ie p+ie

where lim._, is understood. The solutions of the Klein—Gordon equation:

(D + m2) G(x) = —d(x) ; inhomogeneous case

(O+m?) F(x) =0 ; homogeneous case
exhibit several special solutions:
F(x)=A%Y, A=, Aand A,

the positive frequency part A™, the negative frequency part A~, the causal commu-
tator A = AT+ A~ and AD = AT — A~ and

G(x)=Ag, As, Apand Ap,
the retarded (future time) Ax = O () A, the advanced (past time) Ay =

—©(—x") A, the principal value A » and the Feynman propagator Ay = @ (x°) At —
©(—x") A~. The general homogeneous solution is

F(x) = aA™(x) + A7 (x)

and the general inhomogeneous one
1
Glr)=Ap(x) + Fx); Ap(x) =—5(x0) Alx) ,

where Ap(x) is the particular principle value solution. All these solutions are Ll
invariant, where the invariant pieces in configuration space are:

L, : >0 , x2>0 ;. future cone

L_ :x0<0, x2>0; past cone

Ly: x2 <0; space — like region
C,: x>0, x>=0; forward light cone
C_:x"<0 , x2=0 ;  backward light cone
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This implies that a general invariant Green function must be of the form
Qi = O O(P) f(x*) + O(=x") O(?) g(x?) + O (=x%) h(—x?)
+ 06 a+6(=x"sxHb

and applying the Klein—Gordon operator 83 — A+m? one obtains a set of differential
equations of the form

d>w® dw*
2 a2 +Z¥:|:Z wt — Pwt=0

Z

with 12 = 1, z = m+/[\] and A = x2. The functions f(x?) and g(x?) are of type
w™(z), which represents a Bessel function J.,, (z), a Neumann function N, (z) or one
of the Hankel functions HV(z) = J,,(z) +i N, (z) or H?(z) = J,(z) —i N,(z) (see
[50]). The function i (—x?) is of type w™(z), which represents a modified Bessel
functions I, (z) or K, (z). As > = 1, only index v = 1 functions play a role here.
With the appropriate boundary condition, which fixes the right species of solution
one finds

AT (x) = i e(xo) SO\ —

O {g(x") Ty (mvN) :|:1N1(m\/_)}

W'

+i 4772«/_@( A) Ki(mv/ =)

L ! m_2 mVIAL _m? o
_47Tg(x)6()\):l:1 — Fig In 3 o e(x”) O(N)

+ O/ A AN, (A= 0),

which reveals the light cone singularities §(x?), @ (x?), 1/x? and In |x?|. Interesting
is also the causal commutator function A(x) which is vanishing for x2<0:

A(x) = AT(x) + A (x) % e(x®) s\ — # O\ e(x°) Ji(my/|\))

1 e(x® o) — n ONexD)+00N), \A—0).
2 87

1

For the Feynman propagator we have

1
Ap(x) = 72800 = {Jl(m\/_)—lNl(m\/_)}

f

. m
+1 m O(=X) Ki(mv =)
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1 2
i —#llﬁiﬁfiom
a8 2 16r

+ o0/ IAIInAD, (A — 0)

1
~ Eé()\) -

It is instructive to evaluate

o0

d*p i . i S,

A x) = e—lpx : — dae—l(y[m —p~—ie]
F(x) 2m)* p? —m? +ie p? —m?+ic /
0

directly, using the Bogolubov—Schwinger representation (2.129):

o0
d* . )
Ap(x) =/ da/#eﬂ(l’x+almzfpzﬂsl)
0

together with (2.131)

/ d4p ei(apzfpx): 1 (1)2 efix2/4a
2m)* 2m* \ia

such that

o0

—1 da 2 s 2 _
AF()C) — 167(2/ ?e ix /4ae fam® o—ae
0

which upon a change of the integration variable « — w = 1/4« takes the form
Ap(x) = 1 / dw e i(wr?+m?/4w) g—e/dw
472

always understood that lim._,( is to be taken. Now, using the integral representa-
tion [51] of the Hankel function (for properties see [50])

0 v/2
/ Loy eitastb/in — o (3) iZ ™2 HOWab) and (HP @) = B @),

w 4a

we obtain

H(z)(m\/_) 5
x° >

AF()—18 m«/ﬁ
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If x> < 0 we may continue

. H(l) . Kl/
Va2 — —iv/—x2, H®(z) = H"(~2) and %T (” )(iZ) = (2)
1Z zv

in order to find

2K 2
AF(X):;H_ZI(’"— V:); 2 <0,
™ ma/—Xx

It is interesting to see what happens upon a Wick rotation p,x — p,,x, to
the Euclidean region. The Euclidean version will be central for the non-perturbative
lattice QCD approach considered in Sect. 5.3 later. Which of the light-cone sectors in
configuration space will take over? The Euclidean correlation function of the scalar
field is the Wick rotated Feynman propagator as mentioned above. Again we may
use the representation

oo
4
d*p, 1 et 1 =/ dae—owetm?)

AF(-X)E = (2’/T)4 p2 +m2 p2 +m2

to obtain

[e.¢]
d* )
0

and a quadratic completion achieved by the shift p, — p! = p, —ix,/2a leads to
a simple Gaussian p,, integration. The integration measure being invariant under the
translation, with ff;o dp; e P = \/g (of each of the components) we arrive at

oo

oo
1 da . -1 ,
A = / e e 1672 / duw e (et /)
0

T 16m2 o
0

Again this is related to a Bessel type integral, namely

dw —(aw—+b/4w) b\
—w'e W =2 e K,(Vab) ,
a

w


http://dx.doi.org/10.1007/978-3-319-63577-4_5
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c Cr
cy
—Wwp +wp —Wp +wp
Cr
Ca

Fig. 2.8 Analytic plane contours and solutions of the Klein-Gordon equation. The two simple
poles lie on the real axis at £w). Left homogeneous cases C' — A’ (i = +, — and (1)) and
C — A. Right inhomogeneous cases C; — A; (i = R, A, P and F)

which defines the spherical Bessel function K, (z). This leads to

m2 Ki(m /xZ)
4z T2
E

in agreement with the result for the x> < 0 sector in Minkowski space.
In momentum space a free scalar field L—invariant two point function

Ap(x), = (2.142)

Bin(p) = [ e d (o).
satisfies
(m2 - pz) G(p) =—lor (m2 - pz) F(p) =0,
and the corresponding Green functions are the possible distribution valued singular
function of p. The possibilities may be characterized by contours (path) Cj,y in

the complex p°—plane as illustrated in Fig.2.8. In fact a general representation
of Ay (x) s

. 1
Ay (x) = (27T)74/ d*peir* — -
Cinv m=—=p

Key behind is the residue theorem

1
. 75 F(2)dz = Res[ £(2); 2] = lim (z —20) F(2)
71 C z—>20

in case the oriented path C encloses simple poles of f(z).
Asm? — p? = (w, — pPO)(w, + p°) ; w, = /m? + p? has two simple zeros, the
inverse
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1 1 _—1( 1 1 )
m2—p2  (wp—pO(w,+pY 2w, \p'—w, P'+uw,

has two simple poles. For the evaluation of the contour integrals on uses the fact that
the contour can be closed in one of the half planes at infinity, depending on whether
x% > 0orx? < 0, as discussed before.

In Euclidean space a more direct calculation shows how Bessel functions emerge
from a Fourier transform of a radial function on R”

f(P)= / "X f(X)e X

with X, P €R" and r = |X|. We first remember that the area of the unit sphere
S,—1 CR"is
S,_1 =27"2/(n)2) .

Let f(X) = F(r), then, in polar coordinates we can choose axes such that PX =
srcos @. Then

™

F(P) = Fy(s) = / / e T F(r) S, (sin0)" 2 dO " dr
0 0

The angular integral is related to a Bessel function by

n—2 m

t 2z .

Ju2(t) = - Sn, e—UCOSﬂ sin@ n—2d9
T( ) (271.)5 2 / ( )

0

such that the Fourier transformation of a radial function takes the form

o0
Fn(s) = (271')% s_% /J%(sr) F@) s rldr .
0

Thus the n dimensional Fourier transform of a radial function is a radial function
too. These results will be useful later when discussing the lattice QCD evaluation of
the hadronic light-by-light scattering in n = 4 Euclidean space, where

F(s = |P)) :/d“x Fr=|XD)e X = @2mn)?s! /Jl(sr)F(r)rzdr.

0
(2.143)

End of the Digression.
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2.5.6 Scalar One-Loop Integrals

Here we apply our tools to the simplest scalar one—loop integrals (p.i. = partial
integration).”®

m

Q-

p

B [ A gy = )2 [ daa /e

m?

convergent for d < 2 % % 20

2 _ _ _ _ 2
_%ﬂ4 d(4ﬂ_) d/2 fOOO da ot al/2C am
convergent for d < 4

—om?(am) -2 D22 () V2
2(1n47r ln m2 5 )

]

= —2m?(4m)2A0(1 + §)5 L
~  —m2(4m)2 {—7'~/+1+h14ﬂ'71n m? }+O(f)

mi

4-d
_ I d 1 1
» ) - (2m)d fd k E4m?  (k+p)2+m3

mao a1 172)

_ M4 d(47‘r —d/2 fg daldaz(al +()Q) /2 —(a1m?+agm? SR eI
ap =T\ 0(2:(17.2?)/\
pAd(4m)~920 (2 fo da(zm? 4+ (1 — z)m3 4+ z(1 — 2)p 2))d/2 2

convergent for d <4
am?+(1—z)mZ+a(1-2)p?

(47)220(1 + §)es 7 1 qge 2™

Tm2 - 7712 r(l—x 2
(4m)~2 {% — 7y +Indm — [ dzln%} +O(e)

m /‘ 1}ddk 2 12 2 ! 2 2
D3 2 5 +m1 (ktp )2 +m3 (k+p, +p,)%+m3

> convergent for d = 4

. 2 2 a2
(471')_2 fooo d()qd(lzd()zgme_(ulml+u2m2+a3m3)

ayagp?tagagpitagarps
xe ajtagtag

ag=xzyr; ag=z(l—y)A; as=(1—-2)\; ag+as+ag=2A
(47m)~2 101 dyd.?::n%

N:xzy(l—y)ﬁ—&-x(1—1)(1—y)£§+z(1—x)yg§+zym%+x(1—y)m§+(1—r)mg

20 A direct integration here yields
d/2—-2

m?@m) =PI - dj2) (m—z)
I

which by virtue of I'(1 —d/2) = —2I"'(2 — d/2)/(d — 2) is the same analytic function as the one
obtained via the partial integration method.



86 2 Quantum Field Theory and Quantum Electrodynamics

Standard Scalar One-Loop Integrals (m” =m? — ic).

s k1
p—Q— =#6f( = Ao(m) ,

204 k2 —m2 1672

defines the standard tadpole type integral, where
Ao(m) = —m*(Reg + 1 — Inm?) (2.144)
with
Reg:%—’y+ln47r+lnu(2)zln/¢2. (2.145)
The last identification defines the MS scheme of (modified) minimal subtraction.

d’k 1 .
Q! (12 —m2)((k+p) —m2)) 167r2

m,
Tcm)— = U Bo(my,ma; p?),
2

defines the standard propagator type integral, where

1
By(my, my; s) = Reg —/ dzIn(—sz(1 — z) + mi(1 — 2) + m3z —ie) . (2.146)
0

(L _ fddk 1
1) @t @ =) ek pr? =) (e pr+ p22 -

= 16 5 Co(ml,mz,mypppz,h)

defines the standard form factor type integral, where

1
Co(my, my, m3; 81, 52, 53) = d
0(123123)/)6/ Y i byl texy tdr eyt f
(2.147)
with
a = s, d:m%—m%—sz,
b=y, e:m%—m%+sz—S3,

c=253— 5 — 52, f=m5—ie .
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Py
i
m2 = @DO(””],m2’m3»m4ap%,p%,l7§’p421),
Y
dk 1

~J @7 @) (e pr2—m2) (et pr+ 27 —m) (4 pu + pa+ pa)? -

defines the standard box type integral, where

Do(my1, my, m3, my; s, 52,53, 54) = (2.148)
1 X y 1

/ dx/ dy/ dz 5

0 0 0 [ax2+by2+gz2+cxy+hxz+jyz+dx+ey+kz+f]

with
a:m:p%, b:sz:p%, g:slszZ,
¢=2(p2p3), h =2(p1p3), J=2(p1p2),

d=m3—m}—s3, e=m}—m}—sy—2(pap3). k=m}—m3—s1—2(p1p2) — 2(p1p3).

f=mj—ie

Remark: the regulator term Reg in (2.145) denotes the UV regulated pole term %
supplemented with O (1) terms which always accompany the pole term and result
from the e—expansion of the d—dimensional integrals. While in the MS scheme just the
poles % are subtracted, in the modified MS scheme MS also the finite terms included
in (2.145) are subtracted. The dependence on the UV cut—off % in the MS scheme
defined by Reg = In 142 is reflected in a dependence on the MS renormalization scale
H.

The U V—singularities (poles in € at d = 4) give rise to finite extra contributions
when they are multiplied with d (or functions of d) which arise from contractions
like g}y =d , ~"v, = d etc. Ford — 4 we obtain:

dAo(m) = 4A¢(m) +2m?, dBy=4By—2. (2.149)
The explicit evaluation of the scalar integrals (up to the scalar four—point function) is

discussed in Ref. [52] (see also [53, 54]). The analytic structure of scalar functions
is analyzed in [52, 55].
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2.5.7 Tensor Integrals

In dimensional regularization also the calculation of tensor integrals is rather straight-
forward. Sign conventions are chosen in accordance with the Passarino—Veltman
convention [56] (see also [57]). Invariant amplitudes are defined by performing
covariant decompositions of the tensor integrals, which then are contracted with
external vectors or with the metric tensor. A factor i/167 is taken out for simplicity

of notation, i.e.
/ _ l67? d%k (2.150)
i 2m)d ' ’

(1) One point integrals:

By eventually performing a shift k — k + p of the integration variable we easily
find the following results:

Ji @ = —Aom)
Ji T = P Ao(m) (2.151)
IA (k+];,ﬂ)]§’ — = —pl'pYAy + g"Axn
Az = Ao(m)
A = = aoom) 20— pomy (2.152)
d 4 8

(2) Two point integrals: the defining equations here are

IA ﬁ = Bo(m, my; p*)
\ @ = P'Bi(mi, ma; p?) (2.153)
k (kl/;,((;) = p!'p" By — 9" By,
where we denoted scalar propagators by (1) = k*> — m? and (2) = (k + p)* — m3.
The simplest non—trivial example is B;. Multiplying the defining equation with 2p,,

we have
2pk 1
217231=/ p2 . R
k k> —m7+ic (p+k)? —m5+ie

and we may write the numerator as a difference of the two denominators plus a
remainder which does not depend on the integration variable:

2pk = (p+ k) =k — p* =[(p+K)?* —m3] — [k — m}] — (p* + m} —m))
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After canceling the square brackets against the appropriate denominator we obtain

1
B (my, my; p*) = oy {Ao(ma) — Ag(my) — (p* + m] — m3) Bo(my, my; p*)}
(2.154)

A further useful relation is
2 1 2
Bi(m,m; p) = —EBo(m,m; P .

In a similar way, by contracting the defining relation with p, and g,, we find for
arbitrary dimension d

By = m {(1 —=d/2)Ag(m2) — d/2(p* + m} — m3) By — miBy}
By = m {Ao(m2) — (p* +mi — m3)By — 2miBo}

Expansionind = 4 — ¢, ¢ — 0 yields

By = 55 {Ao(m2) + 2(p* +mi — m3) By +mi By + 1/2(m7 +m3 — p*/3)}
By = ¢ {Ao(ma) — (p* + m} — m3) By — 2m}By — (m} + m3 — p*/3)}

where the arguments of the B—functions are obvious.

Note the appearance of 1/p? terms, which represent a kinematical singularity.
Kinematical singularities unavoidably show up when working with covariant decom-
positions of tensor amplitudes. Observables are always scalars and are obtained
from tensor structures via contractions with numerical tensors and the external
momenta in our simplest case with p,,. Factors p? arising from the contraction elimi-
nate/compensate the kinematic singularity of the scalar amplitudes in the contracted
object. The higher the tensor the higher the singularity: in general B; exhibita 1/ p?,
By a (1/p?)? etc.

(3) Three point integrals: for the simplest cases we define the following invariant
amplitudes

1 )
IA aoe = —Colmi, my, ms; pi. p3. p3)
kﬂ
kOB — _P?Cn - chlz (2.155)
HEY v v v
cThoE = —PipiCa — P p5Con — (pi'py + pypY)Cas + g" Cay
where p3 = —(p1 + p2), (1) = k* —m?, 2) = (k+ p1))> —m3 and 3) =

(k+ p1 + p2)* —m3.
The Cy;’s can be found using all possible independent contractions with py,, ,,
D2y, and g,,,,. This leads to the equations
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P pip2 Ci _ R,
pPip2 P% Cy R;
———
X
with

Ry = 3(Bo(ma, m3; p3) — Bo(my, m3; p3)
— (i +mi —m3)C)

Ry = 1 (Bo(my, m3; p) — Bo(my, my; p})
+ (pt — p3 — m3 +m3)Co)

The inverse of the kinematic matrix of the equation to be solved is

y-1 1 ( 3  —pip2

—P1D2 P%

=% ) , detX = pip; — (p1p2)°

and the solution reads

Ci = L {P3R — (P1P2) R}
detx 72

Ci —(pip) R+ piRa} (2.156)

- det X {

The same procedure applies to the more elaborate case of the Cy;’s where the solution
may be written in the form

2
M

2

Cou i (R, (Cn) _ -1 Ra
@)@ () e

1 1 1
Cy = — CQ+ZBO(2, 3)—Z(f1C11 +f2C12)+Z (2.157)

with
Ry = Co — L (fiCii + Bi(1,3) + By(2,3))
Rs = —3 (f2C11 + Bi(1,2) — By(1,3))
Ry =—1(fiCi+ Bi(1,3) — B1(2,3))
R6 = C24 — % (f2C12 - Bl(lv 3))
and

2 2 2. _ 2 2 2 2
fi=pi+mi—m5; fo=p3—pi+m;—m3 .
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The notation used for the B—functions is as follows: By(1, 2) denotes the two point
function obtained by dropping propagator % from the form factor i.e. fk ﬁ and
correspondingly for the other cases.

As we mentioned at the end of the paragraph on the two point tensor integrals
above, the tensor decomposition leads to kinematical singularities. In the case of
the three point tensor integrals they show up in form of powers of the factors ﬁ
(in place of the simple 1/p? in case of the two point integrals). The determinant
det X = p% p% — (p1p2)? is called Gram determinant and exhibits a zero at points
of degenerate momenta i.e. p, o p;. After contracting the tensor integral with
an external tensor structure in the two independent moments py, and p,, and the
possible numerical tensors when forming an observable the singularities cancel.

In the following sections we present an introduction to the calculation of the per-
turbative higher order corrections, also called radiative corrections, for the simplest
QED processes. For extensions to electroweak SM processes I refer to my TASI
lectures [58].

2.6 One-Loop Renormalization

2.6.1 The Photon Propagator and the Photon Self-Energy

We first consider the full photon propagator
iDI™'(x — y) = (O|T {A"(x) A" ()} |0) .

which includes all electromagnetic interactions, in momentum space. It is given by
repeated insertion of the one—particle irreducible (1PI) self—energy function

14

—il4" (q) = = (OO F

also called the vacuum polarization tensor. Since the external photon couples to
the electromagnetic current via the vertex iejly (x)A,(x), the latter may also be
represented as a correlator of two electromagnetic currents (2.93):

— i (q) = (ie)? / dhx 01T { ik, (0) Jin () }10) - (2.159)

Because the electromagnetic current is conserved 9, jém = 0 the non—trivial part of
the self—energy function is transversal

v = — (ququ _ qz g/“’) H’(qz) (2.160)

which implies ¢, [T*" = 0 automatically. Note however, that the free propagator,
because of the required gauge fixing does not satisfy the transversality condition.
The left over terms are gauge fixing artifacts and will drop out from physical matrix
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elements. An external real photon, for example, is represented by a polarization vector
e"(g, A) which satisty g,e" (g, A) = 0 and thus nullifies all terms proportional to g*.

In any case, we will need to consider the transverse part only in the following.
In order to see how the splitting into transverse and longitudinal parts works, we
introduce the projection tensors

v v

q"q

m
T = g — 4 —— (longitudinal projector)
q

—Z (transverse projector) , L =
q

which satisfy

T+ Ly=9,, T)T)=T

v

LOL) =Ly, TyL)=LYT)=0.

v

Then writing
na _ 2 2\) 2 2
11"(q) = (T 1@ + Ly L@D) = (90 M@ +auar T@D)  (2.161)

we have L = ¢*IT, + I, and IT = I1,. Thus the transverse amplitude I7 is uniquely
given by the g,,—term in the propagator and the longitudinal amplitude L does not
mix with the transverse part.

This allows us to calculate the full or dressed photon propagator by simply con-
sidering it in the Feynman gauge £=1, for which the free propagator takes the simple
form iD!¥= —ig"/ (g% +1ie). The so called Dyson series of self-energy insertions
then takes the form (we omit the metric tensor g" which acts as a unit matrix)

Y Y Y
=00 +OAVERDIMNO + OMERINNERINMNO +--
O e T P —i —i
i1D,(q7) = ra + 7 (—ifT,) el + el (=ifly) — (=il — +
—i 1 —11,\?
EIRCONCoR
q? { q> q>
e B S (2.162)
@1+ %) @@ '

The fact that the series of self—energy insertions represents a geometrical progression
allows one for a closed resummation and is called a Dyson summation. The result
is very important. It shows that the full propagator indeed has a simple pole in g2
only, as the free propagator, and no multi—poles as it might look like before the
resummation has been performed.

In a more general form the dressed propagator, including an auxiliary photon mass
term for a moment, reads
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- —i q"q” q'"q"
iD' " (q) = (gw — ) + (2.163)
i g% —mg, + I1,(¢*) q? 7

and we observe that in general the position of the pole of the propagator, at the tree
level given by the mass of the particle, gets modified or renormalized by higher order
corrections encoded in the self-energy function 1. The condition for the position

g* = sp of the pole is

sp —mg, + I, (sp) = 0. (2.164)

By U(1)em gauge invariance the photon necessarily is massless and must remain
massless after including radiative corrections. Besides mo, = 0 this requires
,(¢%) = I1,(0) + ¢ IT/(g*) with IT,(0) = 0, in agreement with the transver-
sality condition (2.160). As a result we obtain

—ighv

— F — + gauge terms
A+

. / _ . 7 2 _
i D" (q) = —ig"” D.(q°) + gauge terms =

(2.165)
The inverse full bare photon propagator is of the form
. 1
—ID‘;V = e R VAV AV aVAVAVERES '\/\/\O\/\m +
N 1 vl
=i {g" (qz—méy)—(l - E) ¢'q }—117§” :
(2.166)

After these structural considerations about the photon propagator we are ready to
calculate the one—loop self—energy and to discuss the renormalization of the photon
propagator. We have to calculate®’

k
. 12 v
=i (@)= Apn A
4q
k+q

d
=(—1)Fi4e2f LN v fem Y pr Fem
2m)d k2—m?2+ie’ (g+k)?-m?+ie

o [T RGBT
¢ () C )

27Fermion propagators are represented either as an inverse matrix P Orasa matrix k’ﬁz;fw

with a scalar denominator. This second form is obtained from the first one by multiplying numerator
and denominator from the left or from the right with ¥+ m — ie. In the denominator we then have
K+m—ie)(l/—m +ic) =K/ — (m — ie)? = k2 — m? +ie + O(?) where the O (c2) order term
as well as the O (¢) in the numerator in € may be dropped as the limit ¢ — 0 is always understood.
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We have used already the property that the trace of an odd number of y—matrices is
zero. F is the number of closed fermion loops, ' = 1 in our case. As a convention
the string of y—matrices is read against the direction of the arrows. We again use the
short notation

)=k —m>+ic, Q) =(q+k?*—m*+ic

and

/ _/ d%
= o

Gauge invariance or transversality of the photon field requires
q, 1" =0

where IT" is the symmetric vacuum polarization tensor. We may check transversality
directly as follows

1 1 1 1

v n
v i -m ym T —m

1 1
=Tr’7‘k/_—m[(ﬂ+k/—m)}—(k/—m)]m

:TI‘V"’( ! — ! )
KF—m  (4+k) —m

which upon integration should be zero. Indeed, in dimensional regularization, we may
shift the integration variable in the second integral ¢ + k = k’, and by integrating
we find

q, Try"

1 1
Try/—— —/Tmﬂ— =0
/k KF—m  Ji (4+ k) —m

It is understood that d is chosen such that the integrals converge to start with. The
result is then analytically continued to arbitrary d. This then explicitly proves the
transversality (2.160). We may exploit transversality and contract the vacuum polar-
ization tensor with the metric tensor and consider the resulting scalar quantity

ig,, 1" = —ig,, (¢"q" — ¢* ¢") IT'(¢*) = iq” (d — 1) IT'(¢%)
2 Tr (v* o (d+ K) ) Tr (v*7Ya)
= ée —_— .
k

O "L T

Using the d—dimensional Dirac algebra relations (2.125) or, directly the trace rela-
tions (2.126), we have v* kv, = (2 — d) k and thus the trace in the first
integral is (2 — d) Tr Mg+ ¥) = (2 — d) k(q + k) Tr1. The scalar products
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k* + kq in the numerator may be written as a difference of the two denomina-
tors (1) and (2) plus a term with does not depend on the integration variable k:
k* = (1) +m? and 2kq = (g +k)* —m?> —k* +m? —¢*> = (2) — (1) — ¢* and hence
k> + gk = 1[(2) 4+ (1) — g* 4+ 2m?]. The terms proportional to (1) and (2) each
cancel against one of the denominators and give a momentum independent tadpole
integral.

The point of these manipulations is that we got rid of the polynomial in & in the
numerator and thus were able to reduce the integrals to a set of basic integrals of a
scalar theory. In our example, with the definitions (2.151) and (2.153), we get

k2 k . 1
/k (J(g) - ﬁ 5 (@m® = %) Bo(m, m: g*) =2 Ag(m)) .

For the one—loop vacuum polarization as a result we then have”®

2

1672 (d — 1)

2
> I'(q* = [4 (2 —d) (m*— %) Bo(m, m; q*%)

—4 (2 —d) Ao(m) + 4dm* Bo(m, m; qz)] .

Now we have to expand the result in d = 4 — €. At the one—loop level at most simple
poles in € are expected, thus a bare one—loop amplitude in the vicinity of d = 4 is of
the form

1
A:a_lz+a0+ale+~-~

The expansions for the standard scalar integrals Ay and By are given in (2.144) and
(2.146), respectively, and the singular terms read

2 2
Ao(m) = —m? ~+0(), Bo(my, m3; q°) = ~+o

which leads to (2.149). In addition, we have to expand

L e e
d—1 3-¢ 3(1-%5 3 9 7"

28We adopt the scheme setting the trace of the unit matrix in spinor space Tr1 = 4; it is of course
mandatory to keep this convention consistently everywhere. While bare quantities obviously depend
on this convention, one can prove that quantities finite in the limit d — 4, like the renormalized
ones, are unambiguous.



96 2 Quantum Field Theory and Quantum Electrodynamics

As aresult for the bare amplitude we obtain

20, 2 2 8|, 42 s 2
q H(q):l(ng m —F—l—Ao(m)—l— m —l—? Bo(m,m; g°) (2.167)

an expression which exhibits regularized UV singularities, represented by the poles
in € present in Ay and By.

‘We now have to discuss the renormalization of the photon propagator. Concerning
mass renormalization, we first go back to the general form (2.161) of the vacuum
polarization tensor and identify IT, = —I1" and IT) = —q°IT, = ¢°I1'(¢?) due
to transversality. As we have shown earlier in this section, electromagnetic gauge
invariance requires:

lim I7,(¢%) =0 (2.168)
q*—0
and we may check now explicitly whether the calculated amplitude satisfies this

condition. For ¢ = 0 we have

A()(m
m2

Bo(m,m;0) = —1 — = Reg — Inm? (2.169)

and hence, as it should be,

ez 8
1672 3

ql}inoqzﬂ’(qz) = {m* + Ag(m) +m* Bo(m, m;0)} = 0.
This proves the absence of a photon mass renormalization at this order as a conse-
quence of U (1) gauge invariance.

Next we consider the wavefunction renormalization. The renormalized photon
propagatoris D;,, = Z 5 ! D], where the renormalized physical propagator is required
to have residue unity of the pole at g> = 0. This infers that the interacting photon
propagator in the vicinity of the pole behaves like a free photon (asymptotically free
scattering state). From (2.165) we learn that the residue of the pole g> = 0 in the bare
propagator is given by 1/(1 + IT A’, (0)) such that the wave function renormalization
condition for the photon reads Z. (1 + 17”’/ ) =1or

Z,=[1+mO] " ~1-m10). (2.170)

We thus have to calculate

2 2 2 2
. 8 m< —gq q
lim 11,(g%) = —— > A 2409 ) Bo(m, m; ¢
Jim D) = qesr g+ Ao+ m® T ) Botmmi )

q2—>0

2
_ e 8 1 24 ’O 1 '0
= 1623 —64"" Bo(m, m; )+5 Bo(m, m; 0)
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where we have used the expansion
Bo(m, m; ¢*) = Bo(m, m; 0) +¢* Bo(m, m: 0) + 0(¢*) .

Using the integral representation (2.146) it is easy to find
. 11
Bo(m,m;0) = ——, (2.171)
6 m?

and together with (2.169) we obtain the simple result

2

e
Z,\/ —1= Tﬂi B()(m, m; 0)

2
=2 2.172)

3r m?

where the last expression in given in the MS scheme with Reg = In 2. We finally
may write down the renormalized photon vacuum polarization which takes the form

H;ren(qz) = Hq/(qz) - H:/(O)

21 , e 5 e , e
:@? [m —Z—}-Ao(m)—f-(m +7) Bo(m,m; g )_TBO(m’m;O)] .

Evaluating the integrals one obtains

Bo(m,m; g*) =Reg+2—Inm?> +2(y — 1) G(y) (2.173)
where
4m?
y = 7
and
1 1
———arctan — (y > 1)
Gyn=1 77 " ! (2.174)
In Y22t <)
/1=y Tyl

For 0 < y < 1, which means ¢? > 4m?, the self-energy function is complex, given
by

G@y) =

1+V1_y—i7r) . (2.175)

1
In
2«/1—y( 1-J1—y
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The imaginary part in the time—like region q*> > 0 for \/672 > 2m is a consequence of
the fact that an electron—positron pair can be actually produced as real particles when
the available energy exceeds the sum of the rest masses of the produced particles. The
vacuum polarization function is thus an analytic function in the complex g>—plane
with a cut along the positive real axis starting at g> = 4m?, which is the threshold
for pair—creation.?’

The final result for the renormalized vacuum polarization then reads

/ a [3 y

(@) == {5 +y =20+ 1=y G@) (2.176)
! 3m |3 2

which in fact is a function of ¢? /m?. This renormalized vacuum polarization function

will play a crucial role in different places later. For later purposes it is useful to note

that it may be written in compact form as the following integral®

2 As arule, a cut diagram
q {12

mi

contributes to the imaginary part if the cut diagram kinematically allows physical intermediate
states: g> > (m 4+ m»)?. In place of the virtual photon (a real photon requires g2 = 0 and does not
decay) let us consider the massive charged weak gauge boson W. The W is an unstable particle and
decays predominantly as W~ — £~ 1y (£ = e, u, 7) leptonically, and W~ — du, bc hadronically.
Looking at the transversal self—energy function ITy (g2) of the W on the mass shell g2 = M %V we
have

Im [Ty (q° = M) = Mw T'y #0

defining the finite width 'y of the W—particle. Note that W~ — bf is not allowed kinematically

because the top quark ¢ is heavier than the W (My = 80.385 £+ 0.015GeV,m, = 173.21 &+

0.87GeV, mp = 4.18 £ 0.03 GeV) for an on—shell W and hence does not contribute to the width.
Cutting lines means applying the substitution (see (2.141))

1
P i —iTd(p? —m?)
for the corresponding propagators. In general the imaginary part is given by cutting sets of lines
of a diagram in all possible ways such that the diagram is cut into two disconnected parts. A cut
contributes if the cut lines can be viewed as external lines of a real physical subprocess. Note that
the imaginary part of an n—loop amplitude is given by cut diagrams exhibiting n — 1 closed loops
at most. The imaginary part therefore is less UV divergent in general. In particular, the imaginary
part of a one—loop diagram is always finite.

30Which derives from

1
Bo(m, m; q2) = Reg — lnm2 —/ dzIn(l—z(1—-2) q2/m2)
0
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1

1, @ /) = =2 / 4222 (1= 2) In(1 =z (1 — 2) ¢>/m?)
0
1

E/dt 2 (1—1%/3)
™

0

1
(=) (2.177)

The result (2.176) may be easily extended to include the other fermion contri-
butions. In the MS scheme, defined by setting Reg = In z? in the bare form, we
have

2
rea2y & Z 2 H A

where f labels the different fermion flavors (fermion species), Q ; is the charge in
units of e and N,y the color factor, N.y = 3 for quarks and N.; = 1 for the leptons.
We have introduced the auxiliary function

G=0, ¢*=0

Reé:—ln%jLs g% > m’

~ 5
G:§+y—2(1+%)(1—y)G(y)2< s
31

which vanishes at g = 0. The imaginary part is given by the simple formula
o
Im 1% = 5 > ANy ((1 + %),/1 — y) . (2.179)
f

Using the given low and high energy limits we get

2
/ _ o 2 K
(0) = e Z Q% NesIn m—2 (2.180)
f f
and
) « 2 1 % 5Y . 2 2 7181
Renw(q>=§;Qchf nEty) s > mi . 218D

(Footnote 30 continued)
(see (2.146)). The second form is obtained from the first one by a transformation of variables

z — t = 2z — 1, noting that jol dz --- =2 jll dz ---, and performing a partial integration with
2

respect to the factor z (1 — z) = (1 — %)/4 = & t (1 — £?/3)/4 in front of the logarithm.
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) _Res
T production
unphysical

scattering

Fig. 2.9 Conformal mapping of the upper half s—plane into a half unit-circle

This concludes our derivation of the one—loop photon vacuum polarization, which
will play an important role also in the calculation of the anomalous magnetic moment
of the muon.

Conformal Mapping

For numerical evaluations and for working with asymptotic expansions, it is often a
big advantage to map the physical upper half s = ¢’—plane into a bounded region as,
for example, the interior of a half unit—circle as shown in Fig. 2.9. Such a conformal
mapping is realized by the transformation of variables (¢ should not be confused
with the gauge parameter &)

or

m = E S

If we move along the real s axis from —oo to +00 we move on the half unit—circle
from O to +1, then on the arc segment counter clockwise and from —1 back to 0. We
distinguish the following regions:

scattering s <0 :0<¢ =< 1, Ing&
unphysical 0 <s <4m?>: E=¢e¥ |, In&=ip
production dm> <s 1 —-1<&E<0, In&=Ihl|E +ir

where

(p = 2 arctan
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On the arc holds 1/y = sin® % The function G(y) has now the representation

—%%ln&,, 0>ys
G(y) = —%gpta%, 4m* > 5 >0
—%;a(n|£|+17r) s > 4m? .

As an application we may write the photon vacuum polarization amplitude (2.176)
in the form

H’yren(s) = qzn'/yren( )
& [_%—2+§(al+a) (E'+E-4) Tg k., s <0
2

37 23°s1n 2—4+42(1+2sin’£) pcotf, 0<s <d4m?.

For s > 4m? the first form holds with In & = In || + im. Corresponding representa-
tions are used for the vertex function as well as for the kernel function of the vacuum
polarization integral contributing to g — 2 (see Sect.5.1.7).

2.6.2 The Electron Self-Energy

Next we study the full propagator of a Dirac fermion f

18 (x = y) = (OIT {1, ()% s (1)} 10)

in momentum space. Again, the propagator has the structure of a repeated insertion
of the 1PI self—energy —iX ;(p)

f f f
o+C )»0= 00 + 00+ &0+~

S (p) = ——— 4 (-iZ) ——
' p—my pP—my -

i (iZJ) i i i
F—m; T F—m;

| ) G

i 1 i
= = . (2.183)
_ i _ =Y
p—my |1 = P —my !
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The Dyson series here is a geometric progression of matrix insertions which again
can be summed in closed form and the inverse full fermion propagator reads

co’—1
-is'7! = S = I i VR

=—i{p-mp-Zs(p)} .
(2.184)
The self—energy is given by an expansion in a series of 1PI diagrams

—iZf(p)E = _,_Q_,_ 4+ e

The covariant decomposition of X' (p) for a massive fermion takes the form
Z(p)=# (Ap* mp,--)) +my (B(p*,mp,--)) (2.185)

where A and B are Lorentz scalar functions which depend on p? and on all parameters
(indicated by the dots) of a given theory. In vector-like theories, like QED and
QCD, no parity violating -5 terms are present, and the pole of the propagator, or,
equivalently, the zero of the inverse propagator, is given by a multiple of the unit
matrix in spinor space:

g =i, where m>=sp (2.186)
defines the “pole mass” of the fermion in the p>—plane
,/—mf—):f(p)b:m:o. (2.187)

Among the charged leptons only the electron is stable, and hence 1, = m, is real and
given by the physical electron mass. For the unstable fermions sp = m? = m? —imI"
is the complex pole mass, where the real part defines the physical mass m and the
imaginary part the width I", which is the inverse of the life time. Looking at the full
propagator

1 P A=A +my; (1+B)

S (p) = = . (2.188)
! F—my—2p(p)  p* (1—A)P?—m> (1+B)
the pole condition may written in a form (2.164)
sp—my— Q2(sp,md,---)=0, (2.189)

where

Q(p*,md,--)=p* (24— A*) +m} (2B + B?) .
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One easily checks that the numerator matrix is non—singular at the zero of the denom-
inator of the full Dirac propagator. Thus the solution may be obtained by iteration of
(2.189) to a wanted order in perturbation theory.

Now the fermion wave function renormalization has to be considered. The renor-
malized propagator is obtained from the bare one by applying the appropriate wave
function renormalization factor S}ren = Zj?l S}O (see (2.109)), where the renormal-
ized physical propagator is required to have residue unity at the pole p = m. The
interacting fermion propagator in the vicinity of the pole is supposed to behave like a
free fermion (asymptotically free scattering state). In fact, this naive requirement can-
not be satisfied in massless QED due to the long range nature of the electromagnetic
interaction. Charged particles never become truly free isolated particles, they rather
carry along a cloud of soft photons and this phenomenon is known as the infrared
problem of QED. Strictly speaking the standard perturbation theory breaks down if
we attempt to work with one—electron states. While the off—shell Green functions are
well defined, their on—shell limit and hence the S—matrix does not exist. A way out
is the so called Bloch—Nordsieck construction [59] which will be discussed below.

At intermediate stages of a calculation we may introduce an IR regulator like a
tiny photon mass, which truncates the range of the electromagnetic interaction and
thus allows one for a perturbative treatment to start with.

In vector-like theories the fermion wave function renormalization factor \/Z =
1 4+ 6Z; is just a number, i.e., it is proportional to the unit matrix in spinor space.’'
Working now with a finite photon mass we may work out the on—shell wave function
renormalization condition (LSZ asymptotic condition). For this purpose, we have to
perform an expansion of the inverse bare propagator (2.184) about the pole yf = m.

]f—mo—Z‘:n~1—|—(p’—n~1)—mg—n~1A(n~12,m0,~-~)—moB(n~12,m0,~-~)

AP? mo,-)

2 _ =2\ 9B(p .mg.)
op? m )

ap?

— i (p* —i?) —mo (p

pr=m?

where m is the pole solution (2.187):

P —mo— Zly_z =1 —mo — mA@*, m, ---) —moB@*, mo,---) =0

31In the unbroken phase of the SM the left-handed and the right-handed fermion fields get renor-
malized independently by c—number renormalization factors /Z; and +/Zg, respectively. In the
broken phase, a Dirac field is renormalized by \/T =VZ O _+ZgI where [y = %(1 +5)
are the chiral projectors. Hence, the wave function renormalization factor, becomes a matrix
\/Z = 14+ 375 and the bare fields are related to the renormalized one’s by 1o (x) = /Tf U (x),
which for the adjoint field reads 1710 x) = '17), ()c)'y0 \/Z 70.
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and thus using p> — m? = (f + m) (f — m) ~ 2w (Jf — m) we have

cmg— =i (1- 22 + 0¥ —m)*)
7 —mg =W —m 34|, p—m
= —m) Z;'+ 0((f —m)*)

with

0x
z7l=1- 2=
! ( o Ié=r7l)

7A(p? 2
1— (A(mz,mo,---)+ 0 AP~ mo. ) + moB(p~, mo. - )]

op?

[72=Y712)

(2.190)

such that the renormalized inverse full propagator formally satisfies
P—m— T = (§ =) + O((f — 11)*)

with residue unity of the pole.
We are ready now to calculate the lepton self—energy in the one—loop approxima-
tion. We have to calculate®”

k
_12(17): APD—ké_'_p}—b—
d
_ 2 dkyp p+ k+m Y Dy (K)

@i ek -ntrie
o [k PR o]
) efkkz—m%+is(p+k)2—m2+is+e(] 9w FprEm b
(2.192)

32We consider the photon to have a tiny mass and thus work with a photon propagator of the form

koko 1
Do (k) = _(gpa (-9 5 £ ) . (2.191)

—fm%/ kz—mgf—i-i&
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We consider the first term, applying relations (2.125) we find

/ 1 md + (2 — d) (J+ ¥)
T, =

kkz—m%+ie (p+k)?—m?+ie

1éﬂ“Md+Q—d>¢>%mumufw+@—d>¢3umwwp%}

where B is defined in (2.153) and may be expressed in terms of By via (2.154).
The limit of vanishing photon mass is regular and we may set m., = 0. Furthermore,
expanding d about 4 using (2.149) we find

2 2
= {m @B =2+ p ( Aom) _pZtm BO)] (2.193)

p? p?

with

2_ .2 2 4
By = BO(O,m;pz) =Reg+2—lnm2+¥ln(l _P —Z ) .
p m
We note that the first term 7 is gauge independent. In contrast, the second term
of (2.192) is gauge dependent. In the Feynman gauge ¢ = 1 the term vanishes. In
general,

T_/ (1-6) vy
T @ —m(k2—Em2) T gt W —m

where we may rewrite

1 1
Yoy V== m) = = m)l [ = m) = (f = m)]

1
:If/—(ﬂ—m)‘*'(lf—m)m(ﬂ—m)-

The first term being odd in the integration variable yields a vanishing result upon
integration, while the remaining one’s vanish on the mass shell p = m and hence
will not contribute to the mass renormalization. We obtain

o (1-9
h=-u mlw-mwh&@

(1-9 P +m
“”_mllﬂ—mwﬁ—@@)@+mtﬂﬁ+m

#—m),

aresult which affects the residue of the pole and thus contributes to the wave function
renormalization. To proceed, we may use the pole decomposition
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a—8 1 1 _1( 1 1 )
kK2 —m2k?—&m2 m2\k*—m2 k*—Em?

Then all integrals are of the type we already know and the result may be worked out
easily. Since these terms must cancel in physical amplitudes, we will not work them
out in full detail here. Note that the second term is of order O ((#¥ — m)?) near the
mass shell and hence does not contribute to the residue of the pole and hence to the
wave function renormalization. The first term is very simple and given by

T = (f — m) {—(1 —9 @ Bo(m., /€m.; o>} + O —m)).

(2.194)
We now consider the mass renormalization. The latter is gauge invariant and we
may start from ¥ = —ie?T; + ie?T, in the Feynman gauge
2 = i’y = A(p?) P+ B m
e? Ao(m)  p*+m?
= 1-— - B 4By —2)¢ .
l6r? V( p? p? °)+m( ’ )]

The physical on—shell mass renormalization counter term is determined by

p—my— X, =p—m—om—X|,_,=0 or om=—X|,_,

and hence
%” == (AP +BP)| e
where we have used
Bo(0,m;m?*) =1— A(;ET) =Reg+2 —Inm?.

As a result the mass renormalization counter term is gauge invariant and infrared
finite for m, = 0. The gauge dependent amplitude 7, does not contribute. Using
(2.144) we may write

(2.195)
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The wave function renormalization at one—loop order is given by

Z,—1= (A(pz) + 2m2—"’(Ag§§(”2))

prom?

= 16% [1 + 2990 4m? By(my, m; m?) + (1 — &) Bo(m.,, /Em.; 0)] .

A calculation of By in the limit of a small photon mass yields

. 2 my—0 1 1 m,%,
Bo(m~, m;m”) =~ 3 1+§1nW

aresult which exhibits an IR singularity and shows that in massless QED the residue
of the pole does not exist. An asymptotically small photon mass m., is used as an IR
regulator here. In IR regularized QED we may write the result in the form

all, m? m 1 m% 1
Zf—1=—[zln?—Z—i—Zln——kz(l—f)(l—ln?)—i—iglng .

2T m,y
(2.197)

The important message here is that the residue of the pole of the bare fermion
propagator is gauge dependent and infrared singular. What it means is that the LSZ
asymptotic condition for a charged particle cannot be satisfied. The cloud of soft
photons accompanying any charged state would have to be included appropriately.
However, usually in calculating cross sections the Bloch—Nordsieck construction is
applied. This will be elaborated on below.

3 Note that with 7> from (2.194) we have
I — i1y = (f — m) ASF!

where
A1 e
AF = (1—¢) e Bo(m, /€m.; 0)

and BS#! = —AS#1 guch that AS#! + B$#1 = (. This leads to a contribution

2
52%1 = 127 (1 = &) Bo(ms, v/€my; 0)
; (2.196)
= 767 {1 =9 (Reg+ 1 —tnm) + in]

to the wave function renormalization.
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The renormalized fermion self—energy is given by

Efren = Ef+5mf —(Zf— 1) (ﬂ—m]r)
= Aren (F—mys) + Crenmy (2.198)

with

Apen = A — (Zf -1

om
Con=A+ B+ — .
m

In the context of g — 2 the fermion self—energy plays a role as an insertion into higher
order diagrams starting at two loops.

2.6.3 Charge Renormalization

Besides mass and wave function renormalization as a last step we have to perform
a renormalization of the coupling constant, which in QED is the electric charge, or
equivalently, the fine structure constant. The charge is defined via the electromagnetic
vertex. The general structure of the vertex renormalization has been sketched in
Sect.2.4.1, already. Up to one—loop the diagrams to be considered are

Let us first consider the impact of current conservation and the resulting Ward—
Takahashi identity. Current conservation, o% jéin (x) = 0 translates into a considera-
tion of

d’k
s Do (k)Y Sp(p2 — k) o Se(p1 — k)77 + -+

ig, M = —ie ¢ — i663/ 2

with ¢ = p, — p;. First we note that
4 =th— th == W—ml—[ph—¥—ml= 5" (po— k) = S (p1 — k)
and thus

Se(p2 — k) 4Se(p1 —k) = Sp(pa — k) (S5 (p2 — k) — Szt (p1 — k)) Se(p1 — k)
= Se(p1 — k) — Sp(p2 — k) ,
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which means that contracted with g,, the tree—point function reduces to a difference
of two two—point functions (self—energies). Therefore, for the non—trivial one—loop
part, using (2.192) we obtain

ig, " = +e3/Dpa(k)7” Se(p1 — k)77 — 63/ng(k)v” Sk(pa — k)7
k k
=ie {2V (p2) — 2V (pn)}

which yields the electromagnetic Ward—Takahashi (WT) identity

qu " (p2, p1) = —e ([o —m — X (p)] — [ —m — X (p1)])
—e (Si:_l(pz) - S{;"(p])) (2.199)

which is the difference of the full inverse electron propagators. This relation can be
shown easily to be true to all orders of perturbation theory. It has an important conse-
quence for the renormalization of QED since it relates the vertex renormalization to
the one of the charge (factor e) and the multiplicative wave function renormalization
of the electron propagator. Combining the general form of the vertex renormaliza-
tion (2.115) and Sgy = Z. Sy, ., With the bare form of the WT identity we obtain the
relationship

ren

VZ, 20, T (P2 p1) = —e0y/Z: 7. (S5 (2) = Si5' (1)

= qul (P2 1) = —e0v/Z; (S ka(P2) = S n(P)

= —en (Sitn(P2) = S a(P) -

‘We note that Z, dropped out from the renormalized relation and we obtain the Ward—
Takahashi identity

de 1
VZ, = 14+ —=——=_/1+1I'(0) . 2.200
€o v €ren OF + B T (SZA/ + 7( ) ( )

The WT identity thus has the important consequence that the charge gets renor-
malized only by the photon vacuum polarization! This fact will play a crucial role
later, when we are going to evaluate the hadronic contributions to the effective fine
structure constant.

Another important consequence of the WT identity (2.199) we obtain by taking
the limit g, — O:



110 2 Quantum Field Theory and Quantum Electrodynamics

(5! ) = 557 o)

I'(p,p) =—e lim
P pi=p (P2 = P1)y
a8 (p) . ( az)
=—Cc—F— =¢eY 1— —
pu v,

For on—shell leptons pf = m (see (2.187)) we arrive at the electromagnetic WT iden-
tity in the form

Iz I ox no7z—1
I'"(p, Plon—shen = =¥ |1 — 7~ =—ey'Z, .
0 lj p=i ’

Alternatively, we may write Z; I'*(p, p)lon_shenn = —€7¥" or

—ey"5Zs + T'(p, p) =0 (2.201)

on—shell

where the prime denotes the non—trivial part of the vertex function. This relation tells
us that some of the diagrams directly cancel. For example, we have (V = 7)

5 \4
V}«/\A/\A+% EWVW{»%V}\/WW—O

The diagrams with the loops sitting on the external legs are contributions to the
wave function renormalization and the factor % has its origin in Eq. (2.110). This
cancellation is the reason why the charge renormalization in QED is given by the
simple relation (2.200).

We are now ready to calculate the vertex function at one—loop order. The Feynman
diagram shown above translates into the Feynman integral

(2.202)

V(= K+ m) " (p— K+ m)”
((p2 = k)2 =m?)(p1 —k)* —m?) ~
(2.203)

) ) dk
ir*(p,, p1) = —16e3/Wng(k)

Actually, we are only interested here in the physical on—shell matrix element

I'"(pa, p1) — u(pa2, r2) I'"(pa, p1) u(py,ry) ,

p? = m?, p3 = m?, the photon being still off-shell, however. For notational simplic-
ity we omit writing down the spinors explicitly in most cases, however, always take
advantage of simplifications possible if I'#(p,, p1) would be sandwiched between
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spinors. The first term of D, (k) (see (2.191)) produces a term proportional to

V(o= W+ m) V" (=K +m) 7,

and applying the Dirac algebra (2.123) and (2.125) in arbitrary dimension d together
with the Dirac equation we can bring this string of y—matrices to standard form.
We anticommute p, to the left and p; to the right such that the Dirac equation
u(pa, ra) (Ppo —m)--- = 0 at the left end of the string of Dirac matrices may be
used and - - - (g — m) u(py, r;) = 0 at the right end. We denote ¢ = p, — p; and
P = p; + p,. Furthermore we may write scalar products like 2k P = 2 k1 —[(p1 —
k)? —m?] —[(pr — k)?> —m?] in terms of the inverse scalar propagators which cancel
against corresponding terms in the denominators. We thus obtain

Y = 6) kK> +2 ([(p1 — k)* —m*] + [(p2 — k)* — m*]) + 4p1 p2)
+ 4k® (P, — mgh ) +2 (2 — d) kKM, .

In order to stick to the definitions (2.155) we have to replace the momentum
assignments as k - —k, p;y — p; and p, — p, — pi, and we obtain

T/ : [w{(d—@ Bo(m, m, q*) + 4Bo(0, m; m?)

T
+2(q> = 2m*) Colmy,m,m) +2 (2 — d) Cau}
pH
+-—m? {4C;;1 =22 —d) Co)} | .
2m

An unphysical amplitude proportional to g* also shows up at intermediate stages of
the calculation. After reduction of the tensor integrals to scalar integrals this term
vanishes. On the mass shell pf = p% = m? and for m, = 0 the three point tensor
integrals in fact are completely expressible in terms of two point functions. Evaluating
the C—integrals using (2.156), (2.157) and (2.158)) we find

Cii(my, m,m) =2Cyp
Cio(my, m,m) = —1/(sz) (Bo(m, m; s) — Bo(0, m; m*))
Ca1(my, m,m) = —1/(sz) (Bo(0, m; m*) — Bo(m, m; 5))

2
Cn(m,,m,m) = —1/(sz)[mT (14 Ag(m)/m* + Bo(m, m; s))
1
=5 (Ag(m)/m? + Bo(m, m; 9))]
Coz(my, m,m) = —1/(sz) %(30(0, m; m*) — Bo(m, m; s))

1
Cos(my, m,m) = Z(l + Bo(m, m; s))
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with z = 1 — y where
2,2
y =4m”/q
is the kinematic variable we have encountered earlier in connection with the photon
vacuum polarization.

Given the above relations we arrive at fairly simple expressions for the one—loop
form factors in the Feynman gauge ¢ = 1:

pr
irre=t@ — 3 Tlﬂ = —ie [’Y#Al + _AZ]
2m
with

2

A = 1‘657{ 2 (s — 2m?) Co(m,. m, m)

—3Bamnms)+43a0nmnﬂ>—2]
e? -y 5
Ay = —— 1 —— (Bo(m,m;s) — Bo(0,m;m)) ¢ . (2.204)
l6m2 | 1—y
The only true vertex structure is the scalar three—point function Cy in A}, which may
be calculated from (2.147) (see [52] Appendix E) with the result

2 —q? 1
Colme, m,ms m?, g, m?) = == I~ Gy + — FGy)  (2.205)
q*>  m? q

with

1
G(y) = _NT_)’ In§
2 14+ &

o _ 2
3 +4Sp(=&) +1In a+41n(:1nl_a

F(y) =

1
2yl =y [
The variable

vi—y-1 (2.206)

E'Z«/l—y—l—l’
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used in this representation, was introduced in Sect.2.6.1. The Spence function®* or
dilogarithm Sp(x) is defined by

1

Sp(x) = Li(x) = —/% In(1 —x1) . (2.208)
0

Looking at the standard form factor integral (2.205) for on—shell electrons, once
more, we are confronted with an IR singular object. In massless QED the off—shell
vertex function is regular, however, the on—shell limit does not exist. We thus again
have to resort to an IR regularization by taking a small photon mass if we insist in
calculating the on—shell amplitude.

Together with (2.173) the bare amplitudes may be written in a more explicit
manner as in the MS scheme

o« 1. m? y —q2 y
Al—g{—iln?—z(l—E)G()’) IUT%+3(1—Y)G(y)+(1—5)F(y)
A —3{ G( )}

2_271- yoely)g -

The second term of the photon propagator in (2.203) yields a contribution

n=-d 6)/klﬂ_m?ykz—fmg, k/lfz—k/—mvuﬂl—k/—mk/

34The Spence function is an analytic function with the same cut as the logarithm. Useful relations

are
2

Sp(x) = — Sp(l — x) + % —InxIn(l —x)
2
Sp(x) =— Sp (l) T llnz(—x) (2.207)
X 6 2

1
Sp(x) = — Sp(—x) + ESp(xz) .

For |x| < 1 it has a series expansion

(o] xk
k=1
Special values are:
w2 w2 1 2 1
= H=— -)=—-— —)=— — —(In2)%.
Sp0) =0, Sp(l) = -~ Sp(=1) 5 SPG) =15 —50n2)



114 2 Quantum Field Theory and Quantum Electrodynamics

and for the on—shell vertex, applying the Dirac equation, one easily verifies that

_ 1 1 _
iy K " Kuy =it y" uy

h—WH—m p—k—m

and hence this gauge dependent and UV divergent but ¢> independent term only
contributes to the amplitude A; and is given by

2

igrrsFl () = _ g3 TZM = —iey" A?’él = —iey (_122 (I =&) Bo(m, \/Em,y; 0.
T

(2.209)

This term exactly cancels against the gauge parameter dependent lepton part of the
wave function renormalization (2.196):

2
>/\/\/\ + }/\/\N = 7i€7“52€ = 7i6’y“ (1271’2 (1 - é) Bo(m’y7 \/Em'w 0)) .

In view of the discussion after (2.201), this cancellation is again a consequence of
the WT identity. As it should be the gauge dependent term does not contribute to
any physical amplitude after the appropriate wave function renormalization has been
applied, i.e., the terms do not appear in the renormalized Dirac form factor A;. The
Pauli form factor in any case is not affected, it is gauge invariant and UV finite and
is not subject to renormalization.

In order to discuss charge renormalization, we have to write the form factors in
terms of the Dirac (electric) plus a Pauli (magnetic) term. This we may do with the
help of the Gordon identity

ictq,

2m

P
u(p2) u(py) = u(p2) (v“ - —) u(py) .

2m

Starting from our form factor decomposition, which is more convenient from a cal-
culational point of view, we obtain

el : n 2 pr 2
ir*(ps, p1) = —ie (7" A10(g”) + %Azo(q )

. N .y 9o
—ie {’Y‘ (Ao + Ay) (¢7) — io? yﬁAzo(qz)}
= —ie {’Y#5FE(42) + ia“o‘zq—;FM(Clz)} .

Charge renormalization, according to (2.115), is fixed by the condition that e;., = e
at ¢ = 0 (classical charge). We therefore have to require
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3P a0) = A100) + Ax(0) 07, + 307, + %€ = 0.
The complete Dirac form factor, including the tree level value is given by
Firen(q®) = 1+ 0Fgren(g?) (2.210)
and satisfies the charge renormalization condition
Feren(0) =1. (2.211)
However, the electromagnetic Ward—Takahashi identity (2.201) infers
A+ Ay +0Z,=0

such that, in agreement with (2.200), the charge renormalization condition fixes the
charge counter term to the wave function renormalization constant of the photon

de 1 1, m?
—_— = —E(SZAY == EH,),(O) == —2

e

In (2.212)

«
273

with the explicit result given in the MS scheme Reg = In 12
As a result the renormalized one—loop virtual photon contributions to the lepton
electric (E) and magnetic (M) form factors read

OFg = (A0 + Ao +0Z,)

_alam o Gyl -’ _, 3-2y)G 1-2)F
=3 |z~ @O~ 24 G=2y) 0+ (1-3) Fo
Pt = —A = 53— (=Y GO)) - (2.213)

In the scattering region q2 <0 (y < 0)with0 < & < 1 the form factors are real;
in the production region g> > 4m? (0 < y < 1) with —1 < & < 0 we have an
imaginary part (using In(§) = In(—&) + im, ln(—qz/m2 —ie) = ln(qz/m2) —1im)

b=t tooymf= 5,

T . 4 JT—y Y m? y

1 « y

—Im Fy = — (2.214)
0 4 /1T —y

The Dirac form factor for g # 0 (on—shell electron, off-shell photon) at this stage is
still IR singular in the limit of vanishing photon mass and cannot be physical. Before
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we continue the discussion of the result we have to elaborate on the infrared problem
in massless QED and the difficulties to define scattering states for charged particles.

However, the Pauli form factor, of primary interest to us turns out to be IR save. Itis
a perturbatively calculable quantity, which seems not to suffer from any of the usual
problems of gauge dependence, UV divergences and the related renormalization
scheme dependence. We thus are able to calculate the leading contribution to the
anomalous magnetic moment without problems. The anomalous magnetic moment
of a lepton is given by Fy(0) where Fy (qz) is given in (2.213). We hence have to
calculate —y G(y) for 0> = —g*> > 0and Q> — Oory < O and |y| — oo. Let
z = —y = |y| and z be large; the expansion yields

JI—y=vitix f(1+i+ )

«/1—y—l I vi+l1l-1 2 n
«/1— +1 ViFl+1l 2

and therefore

_y GOl _ z ln\/z+1—1
e N R S

=140 ()

We thus arrive at

Fv(0) = — ~0.0011614 - (2.215)

which is Schwinger’s classic result for the anomalous magnetic moment of the elec-
tron and which is universal for all charged leptons.

An important cross check of our calculation of Fg is also possible at this stage.
Namely, we may check directly the WT identity (2.201), which now reads § Fg(0) =
0. Taking the limit g> — 0 for space-like momentum transfer g> < 0, we may
use the expansion just presented for calculating Fyy(0) = «/27. For y < 0 and
|y| — oo we have & ~ 1 — 2/4/]y| and the somewhat involved expansion of F(y)
in (2.213) yields that y F(y) — 0 in this limit. Since —yG(y) — 1 we get precisely
the cancellations needed to prove § Fe(g?) — 0 for g> — 0. The leading term for
|g?| <« 4m? reads

350ne also may check this directly on the level of the standard scalar integrals Ag, By and Cy.
Denoting by AA(m) = Ao(m)/m2 we have

6FE(q ) : x ([ 4m2C0 —3Bo(m,m; 0) +4By(0, m; m )—2]A]
+[Bo(m, m; 0) — Bo(0, m; m*)1a, + [1 + AA(m) + 4m> Bo(m, m; m*)1sz,) -
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a g? m 3
SFa(q?) = s (ln — - —) +0(g"/m")
3mm m, 8
and is IR singular and hence non—physical without including soft real photon emis-
sion. The leading behavior of the form factors for large |g?| > m? reads

&l m g 3 19% L
SFe(@) ~ ——( 1>~ +2In—In—-— —2lIn— — —In— +2— —
24" 27r(2 2 T m, m? mA/ 2 2 + 6

2 2 3

0P —dm) ) v o —amd)iS(m L -2

2 2\"m2 2

2 2
Fu@® ~ 2" @ +O(q> —4m?) i .
™ q* q
As in the examples discussed so far, often we will need to know the behavior of
Feynman amplitudes for large momenta or equivalently for small masses. The tools
for estimating the asymptotic behavior of amplitudes are discussed next.

2.6.4 Dyson— and Weinberg—Power-Counting Theorems

Since, in momentum space, any amplitude may be obtained as a product of 1PI
building blocks, the vertex functions I'(py, --- , p,), it is sufficient to know the
asymptotic behavior of the latter. This behavior may be obtained by considering
the contributions form individual Feynman integrals I'c(py, - - , pn), the index G
denoting the corresponding Feynman graph. As we know already from Sect.2.4.2,
power counting theorems play an important role for evaluating

1. the convergence of Feynman integrals (UV divergences),
2. the behavior of Feynman amplitudes for large momenta.

Weinberg’s power-counting theorem is an extension of Dyson’s power—counting
theorem, and describes the off—shell behavior of vertex functions (amputated n—
point functions with n > 2)

(Footnote 35 continued)
Using the relations

Co(my, m, m; m2,0,m?) = ﬁ (BQ(O, m;m?) — 1 — AA(m) + 2AA(mA,))

By(m, m; 0) =—1—AA(m)
By (0, m; m?) =1-— AA(m)
m? Bo(m.,, m; m?) = —1—1aA0n,) + LaAm)

250
one easily finds that indeed 6 Fg (¢%) 7 0. This kind of approach is usually utilized when working
with computer algebra methods.
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F(plv"'7pn)=ZGFG(plv"'7pn)

for large p; (i = 1, ..., m) in a subspace of the momenta
A—
F()\Pla"',)\Pmapm+1,"',l7n)—o>o ?
where (pi,---, pn) is a fixed set of momenta, 2 < m < n and A a real positive

stretching (dilatation) factor, which we are taking to go to infinity. The sum is over
all possible Feynman graphs G which can contribute.

We first introduce some notions and notation. A set of external momenta (py, - - - ,
pm) 1s called non-exceptional if no subsum of momenta vanishes, i.e., the set is
generic. The set of external lines which carry momenta going to infinity is denoted
by Ex. By appropriate relabeling of the momenta we may always achieve that the
first m of the momenta are the ones which go to infinity. Primarily the power count-
ing theorems hold in the Euclidean region (after Wick-rotation) or in the Minkowski
region for space-like momenta, which will be sufficient for our purpose. Also for
massless theories there may be additional complications [60].

Dyson’s power-counting theorem [61] states that

Theorem 2.9 For all non-exceptional sets of momenta when all momenta are going
to infinity a vertex function behaves as

FOpi,-, Apn) =0 In Ny A > o0,

where ap = r(r;lag d(G) with d(G) the superficial degree of divergence of a diagram
€
G, and G the set of diagrams which contribute to I' (p1, -+ , pn).

d(G) has been introduced in Sect.2.4.2. The asymptotic coefficient G giving the
leading power of the logarithm may also be characterized in terms of diagrams [62],
but will not be discussed here as we will need the asymptotic behavior modulo loga-
rithms only. For an individual 1Pl diagram G the Dyson power-counting theorem says
that provided all momenta go to infinity, and the set of momenta is non-exceptional
the behavior is determined by the superficial degree of divergence d(G) of the cor-
responding diagram. The crucial point is that in a renormalizable theory d(G) is
independent of the particular graph G and given by the dimension of the vertex func-
tion dim /™ which only depends on type and number of external legs as discussed
before in Sect.2.4.2. In fact, in d = 4 dimensions,

TOp1. -+ Apn) = 073 (In )b .

with b = n g the number of boson lines and f = nr the number of fermion lines. £ is
a non-negative integer depending on the order of perturbation theory. Its maximum
possible value ¢ < L is given by the number L of loops.
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Weinberg’s power-counting theorem [63] generalizes Dyson’s theorem and
answers the question what happens when a subset only of all momenta is scaled
to infinity. We first consider an individual Feynman integral G and 1PI subdiagrams
H D & which include all lines £, tending to infinity. A subset H C G here is a
set of lines from G (external and internal) such that at each vertex there is either no
line or two or more lines.*® Then

TrOPL - s APy Pmtts -+ s pn) = ONIHD (1n \)PHo))

where Hj has maximal superficial degree of divergence d (H ). For a characterization
of the logarithmic coefficient S(H) see [62]. The result simplifies considerably if
we consider the complete vertex function. When a non-exceptional set E,, of exter-
nal lines have momenta tending to infinity, then the total vertex function has as its
asymptotic power a quantity a(Exo)

F(Apls T Apm» Pm+1s° pn) = O()\”(SM) (ln )\)Z)

which depends only on the numbers and type of lines in 4, and is given by
3 3 /
(Eo0) =4 = 2 f(Ee0) = b(Eco) —min| (&) +b(E) | . (2.216)

Here b(&), f (&) are the number of bosons or fermions in the set & The minimum in
(2.216) is taken over all sets & of lines such that the virtual transition E,, <> &' is not
forbidden by selection rules (charge, fermion number etc.). &' is the set of external
lines of H which are not in E,. Again, £ < L.

Besides the high energy expansion (UV behavior) equally important is the low
momentum expansion (IR behavior), which in a theory with massive particle fields
is equivalent to a large mass expansion. Interestingly, in QED as well as in QCD
(see below) masses are independent parameters of the theory, not related with the
coupling constants. It means that on the level of the bare theory, masses only appear
in propagators, which behave like 1/M? for a heavy boson of mass M > p and

36The following example (electrons = full lines and photons = wavy lines) may illustrate this: fat
lines carry the flow of large momentum (subgraph H)

G: ; H: ) ; not

d(H) = -1 d(H)=-2 d(H)=-5

The first graph in the set H determines the leading behavior O(A~! In* \). Note that all subgraphs H
are connected and have no dead end lines (like the last diagram above, which is not a subgraph in the
sense the term is used here). Thin lines attached to vertices of a subgraph H figure as external lines
&', suchthat &y = Ey + & is the set of all external lines of H and d(H) = 4 — %f(SH) —b(ER).
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like 1/M for a heavy Dirac fermion of mass M >> p. However, in loop integrals we
cannot simply interchange limits M — oo with p — oo as the O (1/p?) behavior of
a boson propagator or a O (1/p) behavior of a fermion propagator are crucial for the
convergence of the loop integrals. Indeed masses in general affect renormalization
counterterms as we have seen in our one—loop renormalization calculations above.
However, these residual mass effects drop out after renormalization (subtraction of
the potential UV singularities). The property that very heavy particles do not affect the
physics at much lower scales is called “decoupling” (of the heavy states), which looks
to be a natural property of physics in general. Surprisingly, in the weak interaction
sector of the electroweak SM decoupling is no longer true as masses and couplings
are interrelated (mass generation via the Higgs mechanism, see below). Thus in the
broken phase of the SM decoupling only holds in the QCD and QED sectors, and
there is controlled by the Appelquist-Carazzone decoupling theorem [64].

Theorem 2.10 [f all external momenta of a process or in the corresponding ampli-
tude are small relative to the mass M of a heavy state, then the “light fields only”
Green functions of the full theory differ from the theory which has no heavy fields at
all, only by finite renormalizations of couplings, masses and fields of the light theory,
up to terms which are suppressed by inverse powers of the heavy mass. Thus further
corrections are of the form () M)* with x > 1.

It means that only the renormalization subtraction constants are dependent on M
(logarithms) and this M—dependence gets renormalized away by physical subtraction
conditions. The decoupling theorem is the root of the famous da, o« m?/M? behavior
(1.9) of the lepton anomalies, and plays an important role in the classification of the
various types of contributions to a, and a,,, as we will see.

For useful refinements of asymptotic expansion theorems in momenta and masses
see e.g. [65] and references therein. Another tool to study the asymptotic behavior
of Green- or vertex-functions is the renormalization group which we will consider
next and in particular allows us to control effects due to the large UV logarithms.

2.6.5 The Running Charge and the Renormalization Group

Charge renormalization is governed by a renormalization group [66] (RG), which
controls the response of the theory with respect to a change of the renormalization
scale parameter ;. in the MS scheme, like for example in the charge renormaliza-
tion according to (2.212). It gives rise to the definition of an effective or running
charge a(yt) and running mass m () as a function of the renormalization scale .
However, the RG not only governs the dependence of a renormalized QFT on the
renormalization scale, it yields the behavior of the theory with respect to dilata-
tions, the simultaneous stretching of all momenta, and hence allows one to discuss
the asymptotic behavior for small and large momenta. The RG serves as a tool to
systematically include large logarithmic radiative corrections, in fact, it permits the
resummation to all orders of the perturbation expansion, of leading logarithms (LL),
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next to leading logarithms (NLL) etc. It thus allows us to estimate leading radiative
corrections of higher order without the need to actually perform elaborate calcula-
tions, under the condition that large scale changes are involved. Besides the all orders
Dyson summation of self—energy corrections and the soft photon exponentiation to
be discussed in the next section, the RG is a third method which allows us to predict
leading higher order corrections from low order calculations. The RG generalizes the
classical concept of dimensional analysis to QFT, where renormalization anomalies
of the dilatation current [67] lead to a breaking of dilatation invariance by quantum
effects (see Sect.5.1.6 footnote on p. 375).

The RG may be obtained by starting from the bare vertex functions (the amputated
Green functions) mentioned already briefly in Sect.2.4.2. Note that the renormal-
ization scale parameter p is entering in DR by the fact that in the d—dimensional
QFT the bare coupling constant ¢y must have a dimension 4d e, ey = ey /f/ 2 with
eo dimensionless (see (2.118)). This gives rise to the factors 1~ in the definitions
of the standard integrals in Sect.2.5.6 when working with the dimensionless bare
coupling ey. As a result the ;1 dependence formally comes in via the UV regulator
term (2.145). Since p only enters via the bare coupling e all bare quantities, like the
vertex function Iy, at fixed e( are independent of p:

dry
p—2 =o0. (2.217)
die |z,
The bare vertex functions in d = 4 — ¢ dimensions

(na,2ny)

F() ({p}; E()’m07 SO)g

are homogeneous under simultaneous dilatation of all momenta and all dimensionful
parameters including the scale u. According to (2.119) we have

na,2ny e i na,2ny c
Fo( & ({kp}; €0 (5%, kmg, &) = ™™ Fo( ) ({p}: eo (W7, mo, &)

(2.218)

with

d—2 d—1

dimI™ =d —ny — 2ny, 3

The renormalized vertex functions are obtained by renormalizing parameters and
fields: Ao = v/ ZAA,, Yo =/ Zyy, eo = Zge, and mg = Z,,m, and thus

.
ol

2ny)

na,2ny - - —ny na,
Iy ({pY; @0, mo, €0). = (Za)-= * (Zy) "™ L™ (pY; eromr, &, o).
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where the wave function renormalization factors have the property to make the limit
lim. ¢ Iten ({p}); €r, m;, &, 1), exist. The trivially looking bare RG (2.217) becomes
highly non—trivial if rewritten as an equation for I5., as a function of the renormalized
parameters. By applying the chain rule of differentiation we find the RG equation

0 0 0 0
- + + + YmMy— — _2); nenzo
“c’m ﬂae, wa& Yy G = ATYA an/}
(2.219)
where the coefficient functions are given by
e ¢ 0
ﬂ = Duqser = e, (—5 + 5608—60 In Zq)
€
TYm My = DM.S m, = Emo 608_6() InZ,
D,.InZ o027z
= ceInZy=—-¢g— In
YA 1€ A ] 0860 A
D,.InZ Ce0-L 1z
y=Dy.InZ,=——e nZy
Vo e Y 2 0860 Y
Dyt = —Segd ¢ = ¢ (2.220)
w = c&=—zeg—& =28 4 . .
1€ ) ()660 YA
We have used
0 . 0 ¢ 0
- on — /2 — =z, -
'u('f)u F(eg = ey b )|é(J = (,uaﬂ 5 60860) F(eo, 1) = D, F(eo, 1)

and  F'D,.F(ey, 1) = D, In F(eo, p)

and the relation § = Z, &, i.e., Z¢ = Z,4, which is a consequence of a WT
identity, and implies w = —2¢, 4. Note that 3 = [(e,) and v, = Y (e,) are
gauge invariant. In the Landau gauge £, = 0 the coefficient function w = 0 and
vi = 7ile,) (i = A, ). The right hand sides of (2.220) have to be rewritten in
terms of the renormalized parameters by inversion of the formal power series. The
renormalization factors Z; are of the form

- Zin rs Sr
Zi=1 +Z%€> (2.221)
n=1

and applying the chain rule, we observe that the coefficient functions are uniquely
determined by Z; ; (e,, &) alone:
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e 0 ae
Ble) = Zg1(e) =;§+"'

2 86
@=L 2,0 =22+
(€)= g male) =Tt
1 0 a?
Yale, &) = ZE%ZAI(e § = ;§+
1 0 a
Yple, §) = 4 a Zyi(e, &) = ;E—f‘ (2.222)

These are the residues of the simple e—poles of the renormalization counter terms. The
one-loop contributions we calculated above: Z, = Z, (2.172), Zy, = Z; (2.197),
Zy=1+ %e 2212)and Z,, = 1 + %” (2.195) with Reg = In pi> — % (see (2.145)).
Note that in QED the WT identity (2.200) implies Z, = 1/ \/T, which is very
important because it says that charge renormalization is governed by photon vacuum
polarization effects. The latter will play a crucial role in calculations of g — 2. The
UV singular parts of the counter terms read

2
2

Nlm N

Ze=1+
ZA:1+4

,zm=1—;
, Zy =14 5

IS

wIN wl'—
M) = 0 =
@ = o=

from which the leading terms of the RG coefficient functions given in (2.222) may
be easily read off. The RG equation is a partial differential equation which is homo-
geneous and therefore can be solved easily along so called characteristic curves. Let
s parametrize such a curve, such that all quantities become functions of a the single
parameter s: e = e(s), m = m(s), p = p(s) and

dr
e ({p}; e(s), m(s), p(s)) =ny I’
with

du de dm

E_M’ E—ﬁ(@), E_m%"(e)’

which is a set of ordinary differential equations the solution of which is solving the
RG equation (2.220). For simplicity of notation and interpretation we have assumed
the Landau gauge £ = 0 and we abbreviated nsy4 + nyyy = nvy. The successive
integration then yields

ey

d
d—l::u > Inpu=s+constant > pu=pge’ =gk
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where x = €' is a scale dilatation parameter

@
_ Ge . _du
PO ==y,
e(k)
In(u1/p10) = Ink = de”. (2.223)
Hiko Ae) '

which is the implicit definition of the running coupling e(x) with e = e(1) the
coupling at reference scale 1y and e(k) = e(u/ o) the coupling at scale .

(3
dm dm de
E:”’Wm > szym(e)ds:vm(e)% >

e(k)
m(Kk) = m exp /

e

y(e) de’

2.224
5 (2224

“

c(li_f =nvy(e) ds = nvy(e) dju = nvy(e) % >

e(k)

I'(k)=1T expin /

e

v(e') de’
Ble’)

=T zale, k)™ zyle, K)™  (2.225)

with I' = I'(1), and

e e(

P yue) de
By

(k)
va(e') de/
B(e")

e e

za(e, k) = exp , zy(e, K) = exp

Altogether, we may write this as an equation which describes the response of the
theory with respect to a change of the scale parameter y:

T ({p;e,m, p/r) = zale, k)™ zy(e, ©) 7" I ({p}; e(r), m(k), p)
(2.226)
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Thus a change of the scale parameter 1 is equivalent to a finite renormalization
of the parameters and fields and together with the homogeneity relation we have
for the vertex functions with scaled momenta

I ({kpY;e,m, ) = & ({p}; e(k), m(k) /K, 1/ k)
= k9 z(e, K) T zy (e, K) T T ({p); e(k), m(K) /K, 1)
(2.227)

which is the basic relation for a discussion of the asymptotic behavior.
Asymptotic Behavior

Two regimes are of interest, the high energy (ultraviolet) behavior and the low energy
(infrared) behavior. For the general discussion we consider a generic gauge coupling
g (in place of e in QED).

(1) UV behavior

The ultraviolet behavior, which determines the short distance properties, is obtained
by choosing x|p| > m, u thus

9(K)

However, the integral can only become divergent for finite g(x) if 3(g) has a zero at
lim,_, » g(k) = g*: more precisely, in the limit K — oo the effective coupling has to
moveto afixed point g(k) — ¢* if finite, and the fixed point coupling is characterized
by B(g*) =0, 5'(¢g*) < 0. Thus ¢g* is an ultraviolet fixed point coupling. Note that
by dilatation of the momenta at fixed m and p, the effective coupling is automatically
driven into a fixed point, a zero of the S—function with negative slope, if it exists.
If g* = 0 we have asymptotic freedom. This is how QCD behaves, which has a
[—function

g2 gz 2
Bacp(gs) = —gs (50 (1671'2) + 61 (@) + - ) (2.228)

with Gy > 0 (see Fig.2.10a). QCD will be considered in more detail later on.

A possible fixed point is accessible in perturbation theory provided g* is suffi-
ciently small, such that perturbation theory is sufficiently “convergent” as an asymp-
totic series. One may then expand about g*:

B@)=@—g) B G+ -
Y@ =7"+@—-9g)V @)+
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Fig. 2.10 RG fixed points (a) (b)
are zeros of the S—function: 3
a UV fixed points, bIR fixed ~ (9) B qep
points
— [
93 g
and provided 3'(¢g*) # 0 we have
9(r) @) 9(r) )
749 / 9= /
a(g, k) = exp dg = exp —dg - r(g,K)
B9 B9
g g
=x" r(g, K)
where
@)=
7g) =7 /
r(g, k) = exp / - dg
B9
g

in the limit of large  yields a finite scale independent wave function renormalization
lim r(g, k) =r(g,00) .
K—> 00

We thus find the asymptotic from

—ny —2ny,

I'({p}; 9.0, 1
(2.229)

C({xpY; gom, 1) ~ &% (k% ra(g, 00)) ™ (K% ry(g, 00))

which exhibits asymptotic scaling. As naively expected it is given by the vertex func-
tions of amassless theory. Indeed, at high energies masses may be neglected, however
on the expense that another mass scale remains in the game, the scale parameter .
The first factor x¢ is trivial and is due to the d—momentum conservation which was
factored out. Then each field exhibits a homogeneous (power—like) behavior in the
dilatation factor «, the exponent of which exhibits an anomalous dimension as a
consequence of the dynamics of the theory:

d—2 * d_l *
dy="—F—+%, dp=""F—+7. (2.230)
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The first term is the naive or engineers dimension the second part is the anomalous
part which is a quantum effect, a relict of the breaking of scale invariance, when
g # g*. While naively we would expect that in d = 4 dimensions the massless
theory has scaling: for example a scalar two—point function, the only dimensionful
physical quantity being the momentum, one would expect G (p; g) ~ 1/p* as G has
dimension 2. However, if there would be a non—trivial UV fixed point one would have
G(p, g, )~ (7 /(pH)'*7 (v* > 0) which shows the role and unavoidability of
the scale parameter u, which has to eat up the extra dimension v* induced by the
dynamics of the theory. Otherwise only truly free theories could have scaling, called
canonical scaling in this case. The discovery of asymptotic freedom of QCD [36] is
the prime example of a dynamical theory, nota bene of the theory of strong interac-
tions, exhibiting asymptotic canonical scaling (Bjorken scaling) of liberated quarks
(quark parton model) [68]. The latter was discovered before in the pioneering investi-
gations concerning Deep Inelastic Scattering (DIS) [69] of electrons on protons and
bound neutrons by Friedman, Kendall and Taylor (Nobel prize 1990). These exper-
iments have been of essential importance for the development of the quark model
and to the discovery of QCD as the theory of the strong interactions.

(2) IR behavior

The infrared behavior corresponds to the long distance properties of a system. Here
the regime of interest is x|p| <« m, p and the discussion proceeds essentially as
before: now as x — 0 the effective g(x) — g7 where g7 is a zero of the S—function
with positive slope, see Fig.2.10b, 3(g%) = 0 and #'(g%) > 0. This is the typical
situation in the construction of low energy effective theories, particularly in the
discussion of critical phenomena of statistical systems (keywords: critical behavior,
critical exponents, scaling laws, universality). If g7 = O the effective theory is
infrared free (the opposite of asymptotic freedom), also called Gaussian (Gaussian
fixed point). Here the well known examples are QED

e3
Boen(e) = 55 D NepQF + -+ (2.231)
f

or the self-interacting scalar field ¢*~theory

2

3\
BOY = —eA+ -2

in d = 4 dimensions. For QED the running coupling to leading order thus follows
from

e(K) e(r)
| / L 1272 / L 2472 (1 1 )
nK = — de = e = — | — —

B TS Ng0 ) @ T N0\ e

e
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where the sum extends over all light flavors f : m s < p.*’ The running fine structure
constant thus at leading order is given by

(8%
1= 223 Nep Q2 Inpu/pg

a(p) = (2.232)

where i is the scale where the lightest particle starts to contribute, which is the
electron 9 = m,. We then may identify a(19) = « the classical low energy value
of the fine structure constant, with the proviso that only logarithmic accuracy is taken
into account (see below). The running « is equivalent to the Dyson summation of
the transversal part of the photon self—energy to the extent that only the logs are
kept. The RG running takes into account the leading radiative corrections in the case
the logs are dominating over constant terms, i.e., provided large scale changes are
involved.

In the calculation of the contributions from electron loops in photon propagators
to the muon anomaly a,,, such large scale changes from m, to m,, are involved and
indeed one may calculate such two—loop contributions starting from the lowest order
result

afllz) = 23 via the substitution o — a(m,) (2.233)
7
where 5
« a  m
37 m, ¢

such that we find

1 . 2
’ 3 . \T

which indeed agrees with the leading log result obtained in [70] long time ago by a
direct calculation. The method has been further developed and refined by Lautrup and
de Rafael [71]. In the calculation of a, only the electron VP insertions are governed
by the RG and the corresponding one—flavor QED (—function has been calculated

to three loops , \
-3 @)@ ) e em

37This latter restriction takes into account the decoupling of heavy flavors, valid in QED and QCD.
Since in the MS scheme, i.e., renormalization by the substitution Reg — In uz, which we are
considering here, decoupling is not automatic, one has to impose it by hand. At a given scale one
is thus considering an effective theory, which includes only those particles with masses below the
scale .
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long time ago by [72], which thus allows us to calculate leading " (Inm,/m.)",
next—to-leading o (Inm,,/ m.)"~! and next—to—next—to-leading " (Inm ul mg)" 2
log corrections. At present 3(«) is known to five loops [73, 74] which allows one to
calculate leading log a,, contributions to six loops [75].

As a(p) is increasing with p, at some point this resummed effective coupling
(2.232) exhibits a pole, the so called Landau pole at which the coupling becomes
infinite: hm,@m a(u) = oo . The “fixed point” very likely is an artifact of per-
turbation theory, which of course ceases to be valid when the one—loop correction
approaches 1. What this tells us is that we actually do not know what the high energy
asymptotic behavior of QED is. This is in contrast to QCD, which exhibits the high
energy asymptotic behavior of a free (non-interacting) field theory, which means that
perturbation theory gets the better the higher the energy,

« in the on—shell versus « in the MS scheme

In our discussion of renormalizing QED we were considering originally the on—shell
renormalization scheme, while the RG provides « in the MS scheme. Here we briefly
discuss the relationship between the OS and the MS fine structure constants aips = o
and oy, respectively. Since the bare fine structure constant

da
=aps |1+ —
MS. «

is independent of the renormalization scheme. The one—loop calculation in the SM
yields (including the charged W contribution for completeness)

fyel
Q) = Oy 1+E

) (2.236)
0OS

S a ) w2 oa2l 42
E 7: §ZQchfln—2 — 3—1111?
MS my n w

5 M?
2 —mo+SnEr
@ los L

. oo «

a « MS or

and thus
-1 - 1
am(O) =a  + — (2.237)

s

as a low energy matching condition. The a—shift in the MS scheme is very simple,
just the UV logs,

2 2
«a 5 W a 21 I
Aoys() = 3— > Q5 Ne In w3 d In 37z (2.238)
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such that

a s
Aays (1) = Aaos() + 33 > OFNey (2.239)

where the sum goes over all fermions f with N, = 1 for leptons and N.s = 3 for
quarks.

In perturbation theory, the leading light fermion (m ; < My, /s) contribution
in the OS scheme is given by

« K 5
Aa(s) = e Z Q% Ny (ln 3 ) . (2.240)
f !

We distinguish the contributions from the leptons, for which the perturbative expres-
sion is appropriate, the five light quarks (u, d, s, c, b) and the top

Aa = Adgep + Adhag + Ay - (2.241)

Since the top quark is heavy we cannot use the light fermion approximation for it. A
very heavy top in fact decouples like

A . a4
Yor = 73075 m?

when m, > s. Since pQCD does not apply at low energies, Aap,g has to be evaluated

via dispersion relations from e*e~—annihilation data.

Note that in d = 4 dimensions both for QCD and QED very likely there is no RG
fixed point at finite value of g except g = 0, which always is a fixed point, either a
UV one (QCD) or an IR one (QED). In QCD this could mean that o, (1) — oo for
1 — 0 (infrared slavery, confinement). In perturbation theory a Landau pole shows
up at finite scale Agcp when coming from higher energy scales, where oy, — oo for
1 = Agep. In QED likely a() — oo for 1 — oo.

It is important to emphasize that the RG only accounts for the UV logarithms,
which in DR are related to the UV poles in d = 4 — ¢ dimensions. Large logs may
also be due to IR singular behavior, like the terms proportional to Inm., which we
have regulated with an infinitesimally small photon mass in the on—shell lepton wave
function renormalization factor Zy, = Z (2.197). In spite of the fact that this term
appears in the UV renormalization counter term, it has nothing to do with a UV sin-
gularity and does not contribute in the RG coefficients. In DR also IR singularities
may be regularized by analytic continuation in d, however, by dimensional contin-
uation to d = 4 + R, and corresponding IR poles at negative cyy. Also the terms
proportional to In ;ﬂ—qzz showing up in the electric form factor (2.213) is not covered

by the RG analysis.JAs will be explained in the next section, the IR singularities
have their origin in the attempt to define free charged particle states as simple iso-
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lated poles in the spectrum (by trying to impose an on—shell condition). In reality,
the Coulomb potential mediated by the massless photon has infinite range and the
charged states feel the interaction whatever the spatial separation in corresponding
scattering states is.

2.6.6 Bremsstrahlung and the Bloch—Nordsieck Prescription

As we have seen the on—shell form factor A is IR singular in the limit of physical zero
mass photons at the one—loop level and beyond. As already mentioned, the problem is
that we try to work with scattering states with a fixed number of free particles, while in
QED due to the masslessness of the photon and the related infinite interaction range of
the electromagnetic forces soft photons are emitted and eventually reabsorbed at any
distance from the “interaction region”, i.e. the latter extends to co. The basic problem
in this case is the proper definition of a charged particle state as obviously the order
by order treatment of a given scattering amplitude breaks down. Fortunately, as Bloch
and Nordsieck [59] have observed, a simple prescription bring us back to a quasi
perturbative treatment. The basic observation was that virtual and soft real photons are
not distinguishable beyond the resolution of the measuring apparatus. Thus besides
the virtual photons we have to include the soft real photons of energies below the
resolution threshold. For a given tree level process, the Bloch—Nordsieck prescription
requires to include photonic corrections ata given order O (e") irrespective of whether
the photons are virtual or real (soft). We thus are led back to a perturbative order by
order scheme, on the expense that, at the given order, all possible final states which
only differ by (soft) photons have to be summed over.

Thus in order to obtain a physics—wise meaningful observable quantity, in the
case of the electromagnetic form factor

e (p1) +7(q) — e (p2)

at one—loop order O (e?), we have to include the corresponding process

e~ (p1) +7(q) — € (p2) ++ (k)

with one additional real (soft) photon attached in all possible ways to the tree diagram
as shown in Fig.2.11. The second photon is assumed to be soft, i.e. having energy
E, = k| < w, where w is the threshold of detectability of the real photon. Since
the photon cannot be seen, the event looks like an “elastic” event, i.e. like one of

Fig. 2.11 Bremsstrahlung in
e(p) +7(q) — €(p2)
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the same final state as the tree level process. The soft photons thus factorize into
the Born term of the original process times a soft photon correction, with the soft
photons integrated out up to energy w. The correction given by the bremsstrahlung
cross section is proportional to the square | Ty|* of the sum of the matrix elements
of the two diagrams which reads

Htk+m o =K +m
ptkr—m ! T =k —m?

Tore = i°€%ii(p2) lv"( Y rulp) ek, A

(2.242)

In the soft photon approximation ¥ ~ 0 and hence p) +¢q = p» +k ~ p
we may neglect the £ terms in the numerator. Using the Dirac—algebra and the
Dirac equation we may write, in the first term, u(py) & (pfo + m) = u(p;) [2e* p2 +
(= p2+m) £*] = u(p2)2e”ps, in the second term, (p1 + m) £u(py) =
[2e*pi+ & (— P1 + m)]u(p;) = 2€* piu(p;). Furthermore, in the bremsstrahlung
integral the scalar propagators take a very special form, which comes about due to
the on—shellness of the electrons and of the bremsstrahlung photon: (p; +k)?> —m?* =
P34 2(kpa) + k* —m?* = 2(kpy) and (py — k)* —m?* = p{ —2(kpy) + k> —m? =
—2(kpy) as p? = p3 = m? and k* = 0. Therefore, the soft bremsstrahlung matrix
element factorizes into the Born term times a radiation factor

Tl ~ —ieii(p2) v u(pr) {—Ze (5 P _ ﬂ)}
kpi kp>

and one obtains

2 Bk

Zwk

4?2
(2m)3

Ep1 EP2

kpi  kp>

do = doy

where doy denotes the lowest order cross section for the absorption of a virtual
photon by an electron. If we sum over the two photon polarizations A indexing the
polarization vector and use the completeness relation (2.26) we find

4 > &k
do = —doy —— (2L _P2) ZX (2.243)
@m)? \kpi  kpa) 2wy

Actually, the integral for massless photons does not exist as it is logarithmically IR

singular
/ &k
ki<w Kl

Again an IR regularization is required and we introduce a tiny photon mass such that
wp = Jk2+ m?/ As a correction to the cross section, we may write the inclusive

cross section for
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e (p1) +7(q) = € (p2), € (p2) + 7 (k, soft)
as
dUinc = d(70 (1 + Cbre)

which, for the vertex on the amplitude level reads

1
lrlgc = _ieryu (1 + §Cbre + - ) = _ieryﬂ + i(srb;ﬁe

where
013 = —ier* 3 Co (2244)
with
2 &Ck [ 2 2 2
Core = %k/ 2 [ (k;f?(i;; - <é'f.>z - (k’;)z (2:24)
o

is the O(«) contribution to the Dirac form factor due to bremsstrahlung. The first
term is the interference from the two diagrams, the second and third correspond to
the squares of the first and the second diagram, respectively. For a finite photon mass
the integral is finite and may be worked out (see e.g. [52] Sect. 7). The result may be
written in the form

2 2
Core = — [(1 pS (4G’<y> In =" — F’(y)) —2m = 4 2G’<y>]
T 2 m m-

Y ki

with (§ = (V1 —y —1)/(+/1 — y + 1) as defined in (2.182))

/ — ; 2

Gy = 4mln(a)

Fy) 1 [271'2 ASp(—£) + In?(—&) — 41n(—£) 1 l—i—E,)]
)’_24/1—yT' p(=&) +1In"(=¢) n(=¢) In(

where, for simplicity, F’ is given for the production channel

Y(q) = e (=p) + e (p2), e (—p1)+e~(p2) +~/(k, soft)

where 0 < y < 1 (—1 < & < 0). In spite of the fact that the soft bremsstrahlung
factor (2.245) looks universal, the result of the evaluation of the integrals is process
dependent: apart from the universal terms, which in particular include the IR singular
ones, the function F’(y) depends on the channel considered. Note that, in contrast to



134 2 Quantum Field Theory and Quantum Electrodynamics

the form factors, like A g en, Which are analytic in qz, Chre 1s not analytic in the same
variable, because it is the integral over the absolute square |T'|? of a transition matrix
element. It must be real and positive. Above, we have chosen to present F’(y) for the
production channel as it allows us to discuss the main points of the Bloch—Nordsieck
prescription, keeping the notation substantially simpler.*® The leading behavior in
this case reads

2 2w 1 2w 2
Cbrezg[ZInq—zln—w——l 2q——21n—+ln—+ }
™ m?> m, 2 m? mey m?

Now, we are able to calculate the form factor for soft photon dressed electrons. The
real part of the Dirac form factor gets modified to

1 2 2
ReAEren-l-—Cbre=i 2= 44 (1——) G'(y) In 2
2 m 2

2m Va2
24+ (5-29)G () + (1 - —) (Re F — F )(y)]
(2.246)

2

y T
i2(1-2) A
27 21—y

where

2

AT 8Sp(—£) +4In(—&) 2In(1 + &) — In(l — a))} .

_/ j— 1
(Re F F)(y)—zm{ 3

381n the scattering region the result is more complicated, because, there is one more kinematic
variable, the scattering angle ©, or equivalently, the electron velocity [3,. Considering, elastic
scattering |p;| = |p2|, E1 = E3 the finite function F’(y), now for y < 0 (0 < & < 1), reads

L 21 21
F(”_w—y{_Sp(”ual—@) Sp(1+1+£1+ﬁe)
28 1 2& 1
+ Sp 1+7l+£l—ﬁ + Sp +7l+£1+ﬁc

where 3, = /1 —4m?2/s is the velocity of the electron. s and Q> = —g?> > 0 are related
by 0% =5 # The asymptotic behavior Q% > m? at fixed angle requires s > m? with
r=0? /s = (1—cos ®)/2 fixed. The aIguments of the Spence functions behave like 1+ ]f 7 ] 1 % =

55— *1+-~ 1+$1+1/, ~2——+ N B e n _1+r*1—(1+3r*1)

m

and 1 4 1 T a i + o = 1+ ’gz + - Utlhzmg the relations (2.207), one may work out the leading

behavior
scatterin; Q2 2w 1 2 S 2w Q2
Cpalerine = {21 n=lIn——-In*— —2In— +In = +- ]
b m>  my, 2 m?2 m m?
which, with In%s/m? = —1n? Q2/m? + 21n Q%/m? Ins/m? + In? s/ Q? and after neglecting the
last (sub leading) term, is in agreement with [2]. In the production channel with g> = —Q? > 0,

in the center of mass frame of the produced lepton pair, the leptons are back—to—back and hence
® = m, or cos ® = —1, such that s may be identified as s = qz.
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This is the result for the time-like region (production or annihilation) where —1 <
& < 0. Here the photon mass has dropped out and we have an IR finite result,
at the expense that the form factor is dependent on the experimental resolution w,
the threshold detection energy for soft photons. This is the Bloch—Nordsieck [59]
solution of the IR problem. The Pauli form factor is not affected by real photon
radiation. In general, as a rule, soft and collinear real photon radiation is always
integral part of the radiative corrections.

When combining virtual and soft photon effects one typically observes the can-
cellations of large or potentially large radiative correction and the range of validity
of the perturbative results must be addressed. To be more specific, the calculation
has revealed terms of different type and size: typically IR sensitive soft photons
logarithms of the type In(m/2w), or collinear logarithms In(g?/m?) show up. The
latter come from photons traveling in the direction of a lepton, which again cannot
be resolved in an experiment with arbitrary precision. This is the reason why the
limit m — 0, in which photon and lepton would travel in the same direction at the
same speed (the speed of light) is singular. These logarithms can be very large (high
resolution, high energy) and if the corrections % ln(q2 / m?) tend to be of O(1) one
cannot trust the perturbative expansion any longer. Even more dangerous are the
double logarithmic corrections like the so called Sudakov logarithms & In?(q*/m?)
or the mixed IR sensitive times collinear terms = In(m/2w) In(g%/m?). There are
several possibilities to deal with the large logs:

(a) the leading large terms are known also in higher orders and may thus be
resummed. The resummation leads to more reliable results. A typical example here
is the soft photon exponentiation according to Yennie—Frautschi—Suura [76].

(b) UV sensitive large logs may by resummed by the renormalization group, as
discussed above.

(c) Some observable quantities may have much better convergence properties in
a perturbative approach than others. A typical example is the attempt of an exclusive
measurement of a lepton, which because of the soft photon problematic per se is not a
good object to look for. In fact, increasing the exclusivity by choosing the IR cut—off
w smaller and smaller, the correction becomes arbitrary large and the perturbative
result becomes meaningless. Somehow the experimental question in such a situation
is not well posed. In contrast, by choosing w larger the correction gets smaller. The
possibility to increase w in the formula given above is kinematically constraint by
the requirement of soft radiation factorization. Of course photons may be included
beyond that approximation. Indeed, there is a famous theorem, the Kinoshita—Lee-
Nauenberg theorem (KLN) [77] which infers the cancellations of mass singularities
and infrared divergences for observables which are defined to include summation over
all degenerate or quasi degenerate states:

Theorem 2.11 After a summation over all possible degenerate states has been per-
formed for the initial (i) and the final ( f) states, the squared transition amplitude

>, Tl (2.247)
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and the corresponding cross section is free of all infrared singularities in the limit
of all masses vanishing.

Such observables typically are “all inclusive” cross—sections averaged over the initial
spin.

In our example, the inclusive cross section is obtained by adding the hard photons
of energy E, > w up to the kinematic limit £, nax = /¢> — 4m?/2. To illustrate the
point, let us consider the lepton pair creation channel v*(g) — £~ (p_) + £ (pL) +
~v(k), where the * denote that the corresponding state is virtual, i.e. off—shell, with
an additional real bremsstrahlung photon (k) emitted from one of the final state
leptons. We thus include the so called final state radiation (FSR). The “heavy”
virtual photon v* of momentum ¢ = p_ + p+ + k, we may think to have been
created previously in e*e~—annihilation, for example.?® The center of mass energy
SEm=E_+E +E, = \/617 Let A\ = 2w/E., and 1 — A > y such that we
may work in the approximation up to terms of order O (« ';’—22), i.e., neglecting power
corrections in m?/q>. Relaxing from the soft photon approximation which defined
Chre in Eq. (2.245), the hard bremsstrahlung integral of interest is

ECH\/2
[

with the spectral density (integrand)

1 &I (v — )
= = P(u,v)
IH(y* — £L) dudv
« u 1 1 a 1 1
=—1(2 1— -4 )=+ ——) -2
271'[( —u ' ”) (v+1—u—v)2(v2+(1—u—v)2) ]

(2.248)
where a = 4m?/q*, u = (p— + p1)?/q*> and v = (g — p_)?/q>. In the rest

frame of the heavy photon we have u = 1 — 2E,/M,, v = 1 —2E_/M,, and
I —u—v=1-2E,/M,. In the center of mass frame of the lepton pair

1 1
v:i(l—u)(l—\/l—ycos@+); l—u—vzi(l—u)(l—\/l—ycos(-),)

39The factorization into e*e~ — ~* production and subsequent decay v* — £1¢~ only makes
sense at relatively low g2, when the one—photon exchange approximation can be used. In the SM the
~* may also be a “heavy light” particle Z of mass about Mz ~ 91 GeV which is unstable and thus
is described well by a Breit—Wigner resonance. Near the resonance energy again factorization is an
excellent approximation and the following discussion applies. In e™e~—annihilation, the radiation
of additional photons from the initial state electron or positron (Fig.2.11 with ¢’ an incoming e™)
is called initial state radiation (ISR). In the soft approximation (2.243) still holds. For details see
(5.11) in Sect.5.1.3.
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with y = a/u and @ the angle between the final state photon and the lepton with
momentum py (©_ = m— &, ). We have to integrate the distribution over the angles
0 < ®+ < m/2 and over the hard photon £, > w = A (M, /2) with1 —a > A >0
yields [78] up to O (ay) precision

o 1 q° 1
ACsy = —1(4ln—-— (11— - In— —4In—
C 27‘(’( n 3 1-n@a /\)) nm2 n 3

+4Sp(\) — %7‘(’2 —1-)C—-MNIn(1-MN+ %(1 - )11 - 3/\)]

or forw K Ecn/2

Jz P J& 2., 1
AC, =~ Ham¥XL _3)m ——41 A . (2.249)
2m 2w 2w )

3 2
In this approximation the complementary soft plus virtual part (see (2.246))

virtual soft
Cew=Corp +6C5

2 2 2 2
=2 (a3 )L pam XLy 2224l (2250
2 m? w 3 _

2 w 2

The total inclusive sum is

~1.74 x 1073 (2.251)

NSRS

«
ClO[al C<\,L) + AC>W -
27

atruly small perturbative correction. No scale and no log involved, just a pure number.
This is the KLN theorem at work. It will play a crucial role later on in this book.

The two separate contributions become large when the cut energy w is chosen
very small and in fact we get a negative cross section, which physics wise makes
no sense. The reason is that the correction gets large and one has to include other
relevant higher order terms. Fortunately, the multi soft v emission can be calculated
to all orders. One can prove [76] that the IR sensitive soft photon exponentiates:
Thus,

1
L4 O+ 5, Cg 4o = e
N e ’ z (in 1)
—exp 1 4 YL ln 44 YL dl
27 2w 2w \/6?

and the result is

14+Cop+ =4 ACVT 4 ... (2.252)
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with

2
ACY =Cy— Cr = %[3 lnf7 + ng —4]

a correction which is small if g2 /m? is not too large. Otherwise higher order collinear
logs have to be considered as well. They do not simply exponentiate. By the resum-
mation of the leading IR sensitive terms we have obtained a result which is valid
much beyond the order by order perturbative result. Even the limit w — 0 may be
taken now, with the correct result that the probability of finding a naked lepton of
mass m tends to zero. In contrast 1 + C_, — —o0 as w — 0, a nonsensical result.

For our consideration of soft photon dressed states the inspection of the com-
plementary hard photon part is important as far as the expression (2.249) tells us
which are the logs which have to be canceled for getting the log free inclusive result.
Namely, the IR sensitive log terms appear with the center of mass energy scale \/c?2
not with the lepton mass m. This observation allows us to write the virtual plus soft
result in a slightly different form than just adding up the results.

Another consideration may be instructive about the collinear mass singularities
(terms o In(g?/m?)), which are a result of integrating the propagators 2|Kk|(E; —
|pi| cos ©;))~! in the distribution (2.243) or (2.248). If we integrate the angular
distribution over a cone ®, ®, < § only, instead of over the full angular range and
add up the contributions

C<w, —= Célétl%al + Czoft + AChard ,collinear (2253)

>w, <0

the collinear singularities exactly cancel in the limit m — 0, provided § > 0. The
result reads

cr=0  — At - nG-n)mi=P3 A2)
= o ) 1+p2° 7"

with p = cosd, A = =% and we have assumed 52 > M2 Thus, in addition to the

virtual plus soft photons we have included now the hard collinear photons traveling
with the leptons within a cone of opening angel §. Here the collinear cone has been
defined in the c.m. frame of the lepton pair, where the two cones are directed back
to back and non overlapping for arbitrary cuts § < /2. In an experiment one would
rather define the collinear cones in the c.m. frame of the incoming virtual photon.
In this case a slightly more complicated formula Eq. 14 of Ref. [78] is valid, which
simplifies for small angles 6y and A = 2¢ = 2w/M,, < 1 to

2
m0 « 1) s 5

= 0
Clieny =~ @In2e+3)In = + = — (2.254)
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which is the QED analog of the famous Sterman-Weinberg (SW) formula [79]

4 oy 0o 72 5
Csw——g?[(41H26+3)1n5+?_§] (2255)

for the two—jet event rate in QCD. The extra factor % is an SU (3) Casimir coefficient
and q is the SU (3) strong interaction coupling constant. The physical interpretation
of this formula will be considered in Sect.5.1.5.

Some final remarks are in order here: the IR problem of QED is a nice example
of how the “theory reacts” if one is not asking the right physical questions. The
degeneracy in the energy spectrum which manifests itself in particular kinematic
regions (soft and/or collinear photons), at first leads to ill-defined results in a naive
scattering picture approach, misleadingly assuming forces to be of finite range. At the
end one learns that in QED the S—matrix as defined by the Gell-Mann Low formula
does not exist, because the physical state spectrum is modified by the dynamics and
is not the one suggested by the free part of the Lagrangian. Fortunately, a perturbative
calculation of cross sections is still possible, by modifications of the naive approach
by accounting appropriately for the possible degeneracy of states.

As we have observed in the above discussion, the radiatively induced Pauli form
factor is not affected by the IR problem. The Pauli form factor is an example of a so
called infrared save quantity, which does not suffer from IR singularities in the naive
scattering picture approach. As the anomalous magnetic moment is measured with
extremely high accuracy, it nevertheless looks pretty much like a miracle how it is
possible to calculate the anomalous magnetic moment in the naive approach to high
orders (five loops at the moment) and confront it with an experimental result which
is also measured assuming such a picture to be valid. But the states with which one
formally is operating do not exist in nature. For a careful investigation of the problem
we refer to the article by Steinmann [80].

We have discussed the IR problem for the simplest case, the electromagnetic
form factor. In general the problem is more complicated, but the Bloch—Nordsieck
prescription works and provides an order by order rule to overcome infrared singu-
larities. The principle behind the “Bloch—Nordsieck solution” is the focus on “truly
observable quantities”, which take into account detection problems in the measuring
process, when state degeneracies in phase space come into play. One should ask the
right questions in order to get useful and testable answers. In contrast, over-idealized
formal quantities may be plagued by singularities. Let me sketch the procedure for
the simplest case of a two-to-two fermion reaction, the process eTe™ — utpu™,
which exhibits the radiative corrections depicted in Fig.2.12. The amplitudes are
considered to be the renormalized on—shell ones, which exist only after IR regular-
ization. Since off-shell amplitudes are IR finite, the off-shellness uf, = m* — p?, p
the four-momentum of an external particle of mass m, can be used as an IR regula-
tor, in principle. Actually such a regularization may be the most physical choice.*

40The limits m%,, — 0 for p?> = m? and p? = m? — p?> — 0 for m% = 0 coincide upon identifying
W2=m m., at least in one-loop calculations.
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A

Fig. 2.12 Diagrams for muon pair production in electron-positron annihilation at lowest order
O (@) (LO), next-to-leading order 0(a?) (NLO) and next-to-next-to-leading order 0(c?) (NNLO)
together with the relevant real photon corrections. For the O(c?) case only a sample of typi-
cal diagrams is shown. Corresponding amplitudes are denoted by Ag at LO, A1, By at NLO and
Ay, By, Cy at NNLO, where A;, B; and C; (i = 0, 1, 2) refer to zero, one and two emitted real
photons, respectively

Practical aspects usually let it look easier to use a small photon mass as a regulator
or to apply dimensional regularization by going to d = 4 4 ¢ dimensions with an
associated scale parameter jr, which should be distinguished from the MS scale
parameter u, standing for uyy, related to the d = 4 — € expansion.

Ay denotes the tree level amplitude, A is the corresponding 1-loop virtual photon
correction, which is IR singular unless we apply a soft photon infrared cutoff pg,
which may be chosen to be a tiny photon mass. Tiny means smaller than any other
relevant physics scale, like the electron mass, for example. The crucial point is that
the pr—dependent IR sensitive part of the IR regularized amplitude is proportional
to Ap: Aj = Ag 0V (uur) + 6™ Ay, i.e. the IR dangerous part is factorizable, while
the non-factorizable part is finite, independent of the IR regulator. The radiative
amplitude splits into B; = B{*"(E, < w) + § BM*Y(E, > w) corresponding to the
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pp(y) and ppy final states. The soft part includes the unresolved hidden photon
[(7)] part, from photons too soft to be detectable, which indeed look like pip “elastic
event”,*! and hence is factorizable Bt = A, p*°"(k) with a soft photon radiation
density p*t(k) (k the photon momentum), which has to be integrated over and
yields the bremsstrahlung correction C,gie) (tr, w), where R K w K Eymax (see
(2.245) for the initial state part). The soft photon integral again only exists after IR
regularization, by a, relative to the virtual part, commensurate cutoff yr. Again a
tiny photon mass provides such a cutoff. The soft photon integral should include the
soft photons of energy £, < w < E,max, where w has to be chosen such that the
factorization is within the numerical accuracy of the attempted calculation, ideally
it can be identified with the photon detection threshold of the detector utilized to

measure the cross section of the process.
In order to get the NLO correction, we have to evaluate

[Ao+ A11> = Ao + Ag AT + AL AS +- - = | Ao - (1 +2Re 65”(um)) + Ag AT +5A) A .

The omitted higher order terms are to be included in the NNLO correction. These
also exhibit further IR sensitive contributions, which will cancel against other NNLO
IR sensitive terms. Altogether, we then get the physical “soft photon dressed” Born
transition probability amplitude at NLO

Ao P = 140 - (14 2Re 0 () + CiR e, ) )

in which the IR cutoff pr cancels and the result depends on w only. The w dependence
disappears if we include the hard photon part from |B; (E, > w) | as well. The total
inclusive cross section, which includes non-factorizable terms as well as hard photon
contributions, is a sum of a 2 to 2 and a 2 to 3 cross section, the explicit form of
which is beyond the scope of this discussion (see, however, the corresponding results
for the process ee™ — w7~ presented in Chap. 5, Sect.5.1.3).

AtNNLO, including the 2—loop correction A, the procedure follows the same line.
We have to collect all Q(a?) contributions by including real photon radiation up to
two photons now. Starting from the IR regularized amplitude A = Ag+ A + A,, we
have to include the 1-loop virtual correction to B = Bj+ B, as well as the double real
photon contribution ete™ — ut vy from “undetectable” soft photons C = C,.
Beyond up: factorizable soft photon effects in addition ppy factorizable soft photon
effects come into play etc.

The w—dependent virtual plus soft photon corrected Born cross section, gets neg-
ative if w is taken too small and the order-by-order treatment breaks down as the
correction blows up. The limit w — 0 only can be taken after infinite resummation
of the leading soft photon effects, the w — 0 limit is then vanishing. The probability
to find just two naked muons in the final state is zero as a charged particle con-
stantly radiates soft photons. Here another point comes into consideration: we never
measure perturbative quantities, and whether a perturbatively calculated quantity

41j e. particle number conserving, when looked at from the crossed -channel e~y — e~ pt.
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approximates a measured object well depends on the experimental conditions. For a
certain range of w’s the prediction may well be perfect within experimental precision,
while going to smaller w’s convergence of the perturbative series breaks down. Quan-
tities sharing such behavior are called infrared unsafe. Good observables preferably
should be defined such that they are infrared save and collinear save. Infrared safe
means that the quantity, in order to be a true observable, should not change discon-
tinuously if one adds a soft particle to the final state. Similarly, collinear safe means
that the quantity should not change abruptly if one splits one final state particle into
two particles with equal momentum. A more concrete account will be presented in
Chap. 5, Sect. 5.1.3 for the process ete™ — w77~ which plays an important role in
evaluation the leading hadronic contribution to a,,.

On more aspect has to be mentioned here: what is “detectable” is device dependent
and therefore not what is of primary theoretical interest. It is therefore common
practice to unfold experimental data from radiative effects. In our case, this amounts
to “undress” the physical cross section, by comparison with the theoretical prediction,
in order to recover the “bare” cross section as the quantity of interest. This in any case
allows to extract the relevant parameters like couplings and masses which enter the
undressed cross section. In many cases undressing attempts to separate for example
strong interaction effects from electromagnetic ones.

Concluding remarks: we note that the problem with the non-existence of elec-
trically charged one-particle states imply that the S-matrix in the naive LSZ sense
in QED does not exist. In perturbation theory the Bloch—Nordsieck approximation
and its Yennie—Frautschi—Suura improvement provides an acceptable perturbatively
improvable framework for making well defined predictions which can be confronted
with experimental data of a given precision. Interestingly, such infrared type problem
is absent for charged particles in atoms or molecules, because radiation in bound sys-
tems is subject to quantum mechanics with a discrete spectrum and soft or collinear
degeneracies of states are not an issue. For what concerns the non-Abelian part of the
SM: the physical state space exhibits no other massless particle besides the photon.
The weak SU(2) gauge bosons get masses via the Higgs mechanism and are actually
very heavy and therefore very unstable such that they never can show up as true LSZ
Wigner states, because the track they leave in a real world detector is by far too short
to ever be resolved as a particle track. Nevertheless the neutral Z boson shows up
as a very pronounced resonance as I'z/Mz =~ 0.0274, such that its quasi on—shell
properties can be investigated very precisely, and as performed at the LEP ring at
CERN at the beginning of the 90ies. This information, however is only accessible
via the decay products which are seen in the detector. Similarly for the W boson,
except that the W as a charged state in addition exhibits the same types of prob-
lems as the charged leptons in QED. In principle one could integrate out the W and
the Z fields, which however would result in a very complicated non-local effective
Lagrangian. Certainly one better sticks to the standard SM approach, treating the
weak gauge bosons as quasi LSZ states, in a production and decay chain, which can
be implemented order by order in perturbation theory. The strong interaction sector
solves its problems with the massless gluons in its own way: by confinement. All
fields in the QCD Lagrangian have no asymptotic states themselves but form color
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singlet hadrons of short ranged effective interactions. For the hadrons a S-matrix is
well defined, besides the issues connected with unstable particles (often due to weak
and electromagnetic decays) and the problem of the electrically charged states as
elaborated above.

2.7 Pions in Scalar QED and Vacuum Polarization
by Vector Mesons

The strong interaction effects in (g — 2) are dominated by the lightest hadrons, the
isospin SU(2) triplet (7, 7°, 77) of pions, pseudoscalar spin 0 mesons of masses:
my= = 139.75018(35) MeV, mo = 134.9766(6) MeV. Pions are quark—antiquark
color singlet bound states (ud, Lz[uzi — dd], dit) and their electromagnetic inter-
action proceeds via the charged quarks. This is particularly pronounced in the case
of the neutral 7 which decays electromagnetically via 7° — ~v and has a much
shorter life time 7,0 = 8.4(6) x 10~!7 s than the charged partners which can decay by
weak interaction only according to 77 — p1*v, and hence live longer by almost 10
orders of magnitude 7,+ = 2.6033(5) x 10~%s. However, at low energies, in many
respects the pions behave like point particles especially what concerns soft photon
emission and the Bloch—Nordsieck prescription. The effective Lagrangian for the
electromagnetic interaction of a charged point-like pion described by a complex
scalar field ¢ follows from the free Lagrangian

LY = (9,0)(0" )" — m2pp*

via minimal substitution 0,0 — D, = (8ﬂ + ieAu(x)) o (also called covariant
derivative), which implies the scalar QED (sQED) Lagrangian

LI = LY —ie(¢" 0up — 90up") A" + g™ AVA” . (2.256)

Thus gauge invariance implies that the pions must couple via two different vertices to
the electromagnetic field, and the corresponding Feynman rules are given in Fig. 2.13.

(1) Pion propagator

(2) Pion-photon vertices

Pt An At
Ao D= —ie(p+p), S =20t g
[) s AV o

Fig. 2.13 Feynman rules for sQED. p is incoming, p’ outgoing



144 2 Quantum Field Theory and Quantum Electrodynamics

The bound state nature of the charged pion is taken care off by introducing a pion
form factore — e Fﬂ(qz), e — ¢? |F7r(q2)|2.
In sQED the contribution of a pion loop to the photon VP is given by
- ('—_\\I

—i ng (ﬂ)(q) = MN\,(:’ ‘:)’VV\/\/ +

The bare result for the transversal part defined by (2.160) reads

2
2
™2 — _€ L2y (2 2 2 2
I (q") = ) Bo(m,m; q*) (q°> —4m®>) —4 Ag(m) — 4m +§q
(2.257)
with I1,(0) = 0. We again calculate the renormalized transversal self—energy

T,(q%) = I1,(¢%)/q* which is given by IT,
traction term

(¢ = IT(¢*) — IT,(0). The sub-

ren

, —e? [ Ag(m)
m™o) = — {20 1
v O 487r2[ mt

is the 7 contribution to the photon wavefunction renormalization and the renormal-
ized transversal photon self—energy reads

/ 1
.1 q*) = % [5 + (A —y)—(1—y)? G(y)} (2.258)

where y = 4m?/q* and G(y) given by (2.174). For g> > 4m? there is an imaginary
or absorptive part given by substituting

v
G Im G = ——
) - ImG(y) TS
according to (2.175)
ImI7 ™) = 2 1=y 2259
m I1.""(q") 12( y) ( )

and for large g is 1/4 of the corresponding value for a lepton (2.179). According
to the optical theorem the absorptive part may be written in terms of the ete™ —
~* — 7w~ production cross section o+ .- (s) as

Im [T, (s) = 4L Thad(5) (2.260)
T
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which hence we can read off to be

2

Opin (5) = oo 3 (2.261)
3s
with B; = /(1 —4m2/s) the pion velocity in the CM frame. Often, one writes
hadronic cross sections as a ratio
4ra’?

R(s) = onaa(s)/

2.262
s ( )

in units of the high energy asymptotic form of the cross section o(ete™ — v* —
pp~) for muon pair production in e*e”—annihilation. Given the cross section or
imaginary part, conversely, the real part of the renormalized vacuum polarization
function may be obtained by integrating the appropriate dispersion relation (see
Sect.3.7), which reads

, o / o 11
Re [70(5) = —~ ?( d/—ah“"(s)=i?[ ds’ — 1 r@s).
€ Il gen (5) Arla Jy, s s’ —s 37 /s, s s'—s 8 ()
(2.263)

This is another way, the dispersive approach, to get the result (2.258) via the easier
to calculate imaginary part, which here is just given by the tree level cross section
for v* — nta™.

As already mentioned, sometimes one has to resort to sQED in particular in
connection with the soft photon radiation problem of charged particles, where sSQED
provides a good description of the problem. However, the photon vacuum polarization
due to an elementary charged spin O pion, we just have been calculating, includes
hard photons in the region of interest above the 7+ 7~ production threshold to about
1GeV, say. As we will see sQED in this case gives a rather bad approximation.
In reality ete™ — ~* — w7~ is non—perturbative and exhibits a pronounced
resonance, the neutral spin 1 meson p°, and the hadron production cross section is
much better parametrized by a Breit—-Wigner (BW) resonance shape. The relevant
parameters are Mg the mass, I" the width and I,+.-/I" the branching fraction for
p — eTe”. We briefly present the different possible parametrizations and how a
BW resonance contributes to the renormalized photon vacuum polarization when
integrated over a range (s;, sp) with 4m72T <5 <85 <00 [81]:

o Narrow width resonance

The contribution from a zero width resonance

1272
" Fove-0(s — My) (2.264)
R

onw (s) =
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is given by
’ =3 40 N
NW, o\ _ ete
e ) = = 52 (2.265)
which in the limit |s| 3> M3 becomes
) =30,
V() ~ —2° . 2.266
) = == (2.266)
e Breit—Wigner resonance
The contribution from a classical Breit—Wigner resonance
()= & TTere (2.267)
opw(s) = — .
T oM+ I
is given by
/ —3T Fyie-
2V (s) = Y {1(0) — (W)} (2.268)
where
1 1 W, — W Wy — Mg —1i
(W) = —— _(m 2" g2 CRT T
2ic W—MR—IC W]-W Wl—MR—IC
1 W + W W, — Mg —ic
— — {In —In - —h.c.
W+ Mp +ic W+ W W, — Mg —ic

withc = I'/2. For W) <« Mp < W, and I' <« Mp, this may be approximated by

1Y (5) ~ —3 4, s(s — M3 +3¢?)
aMgr (s — M3+ c2)2 + M2

~ren

(2.269)

which agrees with (2.265) and (2.266) in the limits I"? < |s — M1%|, MI% and |s| >
M3, respectively.

e Breit—Wigner resonance: field theory version

Finally, we consider a field theoretic form of a Breit—Wigner resonance obtained
by the Dyson summation of a massive spin 1 transversal part of the propagator in
the approximation that the imaginary part of the self—energy yields the width by
ImITy (M%) = My I'y near resonance.

127 Tyt p- sT?

— 2.270
My T (s— M3+ MiI? ( )

opw(s) =
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which yields
3., s(s—M32—T? M
HZYEX\](S) = e’e ( 5 R 2) = arctaniR2 (2.271)
TaMR (s — Mg)? + M{I'? s — Mj
I'Mpg r s 5p— 8 52— M% —iMgl’
—arctan ——— | = —— S In| |—In|——& — =
My — s MR(s—MR—Fz) s]—S 51— Mg —iMRI’

and reduces to

=3+~ s(s — M12e —-I?
aMp (s — Mz)? + M3I™?

1BV (s) ~

~ren

(2.272)

for 51 < M,z-‘, < sy and I' <« Mg. Again we have the known limits for small I" and
for large |s].

For broad resonances the different parametrizations of the resonance in general
yield very different results. Therefore, it is important to know how a resonance was
parametrized to get the resonance parameters like Mg and I". For narrow resonances,
which we will have to deal with later, results are not affected in a relevant way by
using different parametrizations. A finite width BW resonance is related to the NW
resonance via identity

1 Y
56 —M)H)==lim—
(s ) 0 (s — M?)?2 + 2

(2.273)
with v = I'M. Note that for the broad non-relativistic p meson only the classical
BW parametrization works. In fact, due to isospin breaking of the strong interactions
(mg — m, mass difference as well as electromagnetic effects Q, = 2/3 # Qq =
—1/3) the p and w mix and more sophisticated parametrizations must be applied,
like the Gounaris-Sakurai (GS) parametrization [82] based on the vector meson
dominance (VMD) model (see Sect.5.2). Actually, the GS model is missing to take
into account p° — ~ mixing and it is not electromagnetically gauge invariant and
therefore should be replaced by a manifestly gauge invariant VMD (so called type
ID) plus sQED Lagrangian approach [83]. For the strong interaction part (undressed
from electromagnetic effects) most appropriate is a parametrization which relies on
first principle concepts only, the description by unitarity, analyticity and constrained
by chiral perturbation theory (CHPT), which is the low energy effective form of QCD
(see [84] and references therein).

We will use the results presented here later for the evaluation of the contributions
to g—2 from hadron—resonances. In et e~ —annihilation a large number of resonances,
like p, w, ¢, J /v series and the 7" series, show up and will have to be taken into
account.
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2.8 Note on QCD: The Feynman Rules
and the Renormalization Group

Quantum Chromodynamics, the modern theory of the strong interactions, is a non—
Abelian gauge theory with gauge group SU (3). consisting of unitary 3 x 3 matrices
of determinant unity. The corresponding internal degrees of freedom are called color.
The generators are given by the basis of Hermitian traceless 3 x 3 matrices 7;, i =
1, ---8. Quarks transform under the fundamental 3—dimensional representation 3
(quark triplets) antiquarks under the complex conjugate 3* (antiquark anti—triplets).
The requirement of local gauge invariance with respect to SU(3), transformations
implies that quark fields v; (x) must couple to an octet of gauge fields, the gluon
fields G,;, j = 1,---, 8, and together with the requirement of renormalizability
this fixes the form of the interactions of the quarks completely: in the free quark
Dirac-Lagrangian we have to replace the derivative by the covariant derivative

5’;¢¢(X) - Duw(x) ) (Dp)ik = 8}L5ik - lgs Z(Tj)ikGu_j (x) (2274)

J

where g; is the SU(3). gauge coupling constant. The dynamics of the gluon fields is
controlled by the non—Abelian field strength tensor

Guyi = auGz/i - aI/G[,Li + gscijkG;LjGVk (2.275)

where ¢;j; are the SU(3) structure constants obtained from the commutator of the
generators [Ti, TJ-] = icjjx Tx. The locally gauge invariant Lagrangian density is
then given by

1 na T o
Liny = =3 2 Giw GI" +9 ("D —m) . (2.276)

We split L,y into a free part Ly and an interaction part Li,, which is taken into
account as a formal power series expansion in the gauge coupling g. The perturbation
expansion is an expansion in terms of the free fields described by L. The basic
problem of quantizing massless spin 1 fields is familiar from QED. Since Lyy; is
gauge invariant, the gauge potentials G;,, cannot be uniquely determined from the
gauge invariant field equations. Again one has to break the gauge invariance, now,
for a SU(n) gauge group, by a sum of r = n> — 1 gauge fixing conditions

Ci(G)=0, i=1,---,r .

It is known from QED that the only relativistically invariant condition linear in the
gauge potential which we can write is the Lorentz condition. Correspondingly we
require

Ci(G)=-90,G'(x) =0, i=1,---,r . (2.277)
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It should be stressed that a covariant formulation is mandatory for calculations beyond
the tree level. We are thus lead to break the gauge invariance of the Lagrangian by
adding the gauge fixing term

Lor=—5-> (8, G )’ (2.278)

with £ a free gauge parameter. Together with the term Lg from L,y we obtain for
the bilinear gauge field part

2

1

2 |
which now uniquely determines a free gauge field propagator. Unlike in QED, how-
ever, Lgp breaks local gauge invariance explicitly and one has to restore gauge
invariance by a compensating Faddeev-Popov term (Faddeev and Popov 1967).
The Faddeev-Popov trick consists in adding further charged ghost fields 7; (x) and
7; (x), the so called Faddeev-Popov ghosts, which conspire with the other ghosts
in such a way that physical matrix elements remain gauge invariant. Unitarity and
renormalizability are then restored. The FP—ghosts must be massless spin 0 fermi-
ons. For the unphysical ghosts this wrong spin—statistics assignment is no obstacle.
The Faddeev-Popov term must be of the form

Lrp = 7; () Mgy (x)

where

_0Gi(G)
an#()C)
= —06ix + geix; G ju(x) 0" + geigj ("G j,u(x))

M,-k (Du)jk = —8“’ (8u5ik — gc,-k_,vG_,-H(x))
By partial integration of Spp = [ d*x Lgp(x) we may write
Lrp = 0,m;0"n; — geirj (0"n;) Cjumi (2.280)

which describes massless scalar fermions in interaction with the gauge fields. The
complete Lagrangian for a quantized Yang-Mills theory is

Letr = Linv + Lor + Lrp - (2.281)
The free (bilinear) part

Lo = Lo(G) + Lo(¥) + Lo(n)
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LO(G) = %Giu |:(|:|glw - (1 - é) 6“8”) (5,’]{| Gku

Lo() = Yaa [((7")0p O — mbap) San] Vs
Lo(m) = n; [(=00) dix] mx

with

determines the free propagators, the differential operators in the square brackets
being the inverses of the propagators. By Fourier transformation the free propagators
are obtained in algebraic form (i.e. the differential operators are represented by c—
numbers) in momentum space. Inverting these c—number matrices we obtain the
results depicted in Fig.2.14.

The interaction part of the Lagrangian is given by

_ 1 :
Line = g V' TGy — 5 9sCik (0"GY — 9"GY) GG

1 2 1yalZ YT
- ngciklcik/l’GkGl GGy — gscikj (0"1) G jumk (2.282)

with a single coupling constant g for the four different types of vertices.

While the formal argumentation which leads to the construction of local gauge
theories looks not too different for Abelian and non—Abelian gauge groups, the
physical consequences are very different and could not be more dramatic: in contrast
to Abelian theories where the gauge field is neutral and exhibits no self-interaction,
non—Abelian gauge fields necessarily carry non—Abelian charge and must be self-
interacting. These Yang-Mills self—interactions are responsible for the anti—screening
of the non—Abelian charge, known as asymptotic freedom (AF) (see end of section).
It implies that the strong interaction force gets weaker the higher the energy, or
equivalently, the shorter the distance. While it appears most natural to us that particles
interact the less the farther apart they are, non—Abelian forces share the opposite
property, the forces get the stronger the farther away we try to separate the quarks. In
QCBD this leads to the confinement of the constituents within hadrons. The latter being
quark bound states which can never be broken up into free constituents. This makes
QCD an intrinsically non—perturbative theory, the fields in the Lagrangian, quarks
and gluons, never appear in scattering states, which define the physical state space
and the S—matrix. QED is very different, it has a perturbative S-matrix, its proper
definition being complicated by the existence of the long range Coulomb forces (see
Sect.2.6.6 above). Nevertheless, the fields in the QED Lagrangian as interpolating
fields are closely related to the physical states, the photons and leptons. This extends
to the electroweak SM, where the weak non-Abelian gauge bosons, the W* and
the Z particles, become massive as a consequence of the breakdown of the SU(2),
gauge symmetry by the Higgs mechanism. Also the weak gauge bosons cannot be
seen as scattering states in a detector, but this time because of their very short lifetime.
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a). Quark propagator

o——p—o : A;{i(p)(y[f, ab = (m) 6{1,1)
aa  Bb o
b). Massless gluon propagator
) ~ v
Oreeetsg e R R L
Kt v, r

¢). Massless FP—ghost propagator

Oo.r{).oo : Agr(p)zk = [12—}%1562"
1 k
d). Quark-gluon coupling

@, @, p3

2 iapl
AM< = 9s (Fyy‘)aﬁ (Ti)a,b
ﬂa b7 p2

e). Triple gluon coupling

M i i p7k7p3
;@{i: = —igscije {g" (p2 —p1)” + g"* (p1 — p3)” + ¢"° (p3 — p2)"}
V7j7p2

f).  Quartic gluon coupling

07[ Ps k CnijCnkl (g”pg"o - g‘“’g””)
%i = _93 +C7Lik:c'n,jl (gltl/g,’)o' - g”ag'/p)

Z/,j +Cnilcnj/€ (guygpa - gupgua)

g). FP-—ghost gluon coupling
. /' k7 b3
Rld? = —igscijr (p3)”

" j7p2

Fig. 2.14 Feynman rules for QCD. Momenta at vertices are chosen ingoing

Due to its non—perturbative nature, precise predictions in strong interaction physics
are often difficult, if not impossible. Fortunately, besides perturbative QCD which
applies to hard subprocesses, non—perturbative methods have been developed to a
high level of sophistication, like Chiral Perturbation Theory (CHPT) [85] and QCD
on a Euclidean space-time lattice (lattice QCD) [86].

The low lying QCD hadron spectrum

It is well-established that the theory of the strong interactions is QCD, a non-Abelian
gauge theory of quarks and gluons, which have never been seen in an experiment
as they are expected to be confined permanently inside hadrons. The latter are color
singlets made of colored quarks ¢ = u, d, s glued together by a gluon cloud. Mesons
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are symmetric quark — antiquark states

M= 5% qidi) (2.283)

ik

and have baryon number B = 0. Baryons (like proton (uud) and neutron (ddu)) are
antisymmetric three quark states

8= " qiqa) (2.284)
ikl

and have baryon number B = 1. Sums are over color indices. The quarks (u, d, s)
are in the fundamental representation 3, the antiquarks (i, d,s ) in the representation
3* of the color SU(3).. First principles calculations of the spectrum and properties
of hadrons are possible only by non-perturbative methods as lattice QCD because
the theory is strongly coupled at low energies. Here we are interested primarily in
the spectrum of light hadrons, which is accessible to a different non-perturbative
approach: chiral perturbation theory, which exploits the symmetries of the QCD
Lagrangian. As the three light flavors the u, d and s quarks are much lighter than the c,
b and t quarks the chiral limit of vanishing light quark masses m,, = my; = m; = Oisa
good approximation for setting up a perturbative chiral expansion, with momenta and
light quark masses as expansion parameters. The QCD Hamiltonian then commutes
with the global chiral flavor group

UB)L®UB)r ~ SU(3)L®SU(3)R®U(1)V®1X1)A

of the left and right handed massless quark fields, i.e. QCD exhibits chiral symmetry
broken softly by small quark masses. The chiral group SU (3) . ® SU (3)  is equivalent
to SU3)y ® SU(3)4 of which the axial SU(Ny) 4 subgroup turns out to be broken
spontaneously in nature. In the isospin limit Ny = 2, m,, = my = 0, this implies the
existence of a triplet of massless pions (Nambu-Goldstone bosons) and in the SU (3)
limit m, = my = my; = 0, the existence of an octet of massless pseudoscalars,
the pions, Kaons and the 7 meson [87]. The U(1)y symmetry is exact beyond the
chiral approximation and is responsible for baryon number conservation, which in
particular guarantees the stability of the proton, whereas in contrast U (1) 4 is always
broken by quantum corrections, the Adler-Bell-Jackiw anomaly (see p. 299 below).

A second approach to learn about the hadron spectrum is to consider QCD from
the point of view of the large—N, limit, i.e. SU(N,) non-Abelian gauge theory where
the number of colors goes to infinity as a starting point and use 1/ N, as an expansion
parameter. The 1/N, expansion provides counting rules for hadronic processes. In
large—N. QCD [88-90] all hadrons become infinitely narrow, since all widths are
suppressed by powers of 1/N,., and the VMD model becomes exact with an infinite
number of narrow vector meson states, the lowest states corresponding to p, w, ¢ . . .
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According to 't Hooft 1974 a SU(N,) generalization of QCD exhibits amplitudes

_ 2-2H M=glN, fixed
Ao (ggN)" [(goN) ™" Ne] AN

Ao N>2H

where xg = 2—2H — B is the Euler characteristic and depends only on the topology
of the graph, with H the number of handles and B the number of boundaries (or holes).
A trick allows to visualize the topological genus of SU(N,) Yang-Mills theory by
replacing a gluon line by a pair of quark anti-quark lines as illustrated in the figure:

SN2 o gdN3 = \3

0 &

The first planar graph grows with N2, the second non-planar one remains constant.
A closed quark loop is a boundary and brings a 1/N,.. Each vertex has a factor N,
each propagator a factor 1/N, and each color index loop gives an extra factor N, as
it represents a sum over N, colored copies.

For finite and large N, planar diagrams dominate the dynamics. Each quark loop
is suppressed by one factor of 1/N, and non-planar gluon exchange is suppressed
by two factors of 1/N,.

Some consequences of the large—N, counting rules:

Only planar diagrams (H = 0) dominate in the large—N, limit.

Quark loop effects are suppressed by 1/N,

e Phenomenology: theory of stable non-interacting mesons, the " meson mass, OZI
rule, etc. find simpler explanations

e Factorization for correlators of gauge invariant operators

(O1---0,) = (04)---(0,) + O(1/N?)

follows from large—N, counting rules order by order in perturbation theory:

O @08
OO = C=O

The planar approximation contains no quark—anti-quark pair creation and anni-
hilation and thus has the symmetry U(1), ® U(1)z, which allows to transform
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— 0 _
trow w— atr 70

OZI suppressed OZI favored

¢ —T

Fig. 2.15 Quark flavor disconnected processes are suppressed relative to quark flavor connected
processes. As ¢ is essentially a pure s5 state and the final states is made of u# and d quarks only the
process can only be mediated by gluon exchange. For the w quark flavors are preserved. The gray
shading indicates gluonic dressing

locally each quark and each anti-quark separately, which implies the conservation
of each quark flavor and each anti-quark flavor light or heavy. Another important
consequence of the planar flavor symmetry include the Okubo-Zweig-lizuka (OZI)
rule [91]* (see Fig.2.15 and the formation of ideally mixed meson nonets (in the
SU(3) flavor limit) at leading order in 1/N,. The 7’ is then the ninth pseudoscalar
which would be massless in the chiral limit. Planar flavor symmetry is often called
nonet symmetry.

The combined use of chiral perturbation theory and the 1/N, expansion can
constrain the low—energy interactions of hadrons with the pion nonet 7, K, 7 and 7’
more effectively than either method alone. For later reference we remind the meson
composition here. They are the gg’ bound states, differing by flavor composition and
spin. A gq’ state with orbital angular momentum L has Parity P = (—1):*!. For
q' = q we have a gq bound state which is also an eigenstate of charge conjugation C
with C = (=1)2*5, where § is the spin O or 1. The L = O states are the pseudoscalar
mesons, J© = 0™, and the vectors mesons, J© = 1.

In the limit of exact SU (3) the pure states would read

70 = (iu —dd)/N2; m = (iu+dd +5s5)/3; ng = (iiu +dd — 255) /6,
(2.285)

P = (au —dd)/V2 ; wi = (iu+dd +55)/v3 ; ws = (au 4+ dd — 255) /6 .
(2.286)

In fact SU(2)qayor breaking by the quark mass difference m,; — m,, leads to p — w—
mixing [mixing angle ~ 10°] (Glashow 1961) [92]:

42This basically says that diagrams that destroy the initial quark and antiquark are strongly sup-
pressed with respect to those that do not. As an example, while ¢ — 77~ is “Zweig” forbidden,
0 — 77 is allowed.
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P’ = cosfp +sinfu’
w=—sinfp +cosfu (2.287)

Similarly, the substantially larger SU(3)gayvor breaking by the quark masses, leads
to large w — ¢—mixing [mixing angle ~ 36° close to so called ideal mixing where
¢ ~ is a pure §s state] (Okubo 1963) [93]:

¢ = cosBwg+ sinb w
w = —sinf wg + cos f w; (2.288)

The angle in case of ideal mixing is given by tan @ = 1/+/2 or 6 = 35.3°.

In the isospin limit and in absence of e.m. interaction the pion triplet (7*, 70, 77)
exhibits G—parity as a symmetry. It represents a generalization of charge conjugation
(C—parity) to strong interactions. The strong interaction does not distinguish the
charges of the pions, therefore a rotation by 180° about the 3rd axis in isospin space
G = expim I3, which rotates 7= <> 7T up to a phase, does not change the triplet
field modulo a phase g = +£1. For particles (u,d mesons) of isospin I, the G—parity
number is given by G = (—1)’ C, where C is the charge conjugation number of
the neutral member of the multiplet. As 7° has charge conjugation parity C = +1
the e.m. decay 7 — ~v requires G, = —1 and thus also G|7*) = —|7*) while
C|n*) = —|nT). Therefore, non-electromagnetic decays of flavor SU (2) resonances
in the isospin limit can decay either into an even or an odd number of pions only:
p°(I = 1) = 27, w(I = 0) — 3. As isospin is broken by the small quark mass
difference my # m, actually 7= and 7° have different masses and G—parity is broken
accordingly, and w — 27 is allowed with a small branching fraction.

The RG of QCD in Short

The renormalization group, introduced in Sect.2.6.5, for QCD plays a particularly
important role for a quantitative understanding of AF as well as a tool for improving
the convergence of the perturbative expansion [36, 94]. For QCD the RG is given
by

d
p—gs(p) = B (gs(1)

dp
d
Nd_mi(ﬂ) = —y (gs(p) m; () (2.289)
s
with
_ g 9 7
Bl9) = ~Poge—s — P (16722 + 0(g")

92 94 6
— ) 2 __ 10 2.290
1@ = Y 5 +m @y + 0(9”) ( )
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where, in the MS scheme (Sect. 2.5.6),

Bo= 11-32N; ;= 2
101

Bar . 5
1 =102 - 2Ny ;v = 35 — 5Ny

(2.291)

and Ny is the number of quark flavors. The RG for QCD is known to 5 loops
[95-97]. It allows one to define effective parameters in QCD, which incorporate the
summation of leading logarithmic (1-loop), next—to—leading logarithmic (2-loop),

- corrections (RG improved perturbation theory). The solution of (2.289) for the
running coupling constant oy (1) = gf (p)/(4m) yields (see (2.223))

47 3 @ ( 41 N ﬂl)
BO Qg (/J/) ﬁ() 60 Qg (/J/) ﬁo
A el ln( ar B 1) = In 2/ A2 (2.292)

P S R A
n Bocs (o) 33 Bocxs (110) 50

with reference scale (integration constant)

47 (1) 51 ﬁoas(ﬂ)
A _ A( f _ " 11 — 1
oo = ‘“”‘p{ Zﬂoas(u)( P b Ml aw))]

(2.293)

which can be shown easily to be independent of the reference scale p. It is RG
invariant

d
— A =0,
Mdﬂ QCD

and thus QCD has its own intrinsic scale Agcp which is related directly to the
coupling strength (dimensional transmutation). This is most obvious at the one—loop
level where we have the simple relation

1

- (2.294)

Qg (M) =

Thus Aqcp incorporates the reference coupling o (1o) measured at scale y in a
scale invariant manner, i.e., each experiment measures the same Aqcp irrespective
of the reference energy iy at which the measurement of «; (119) is performed.

The solution of (2.289) for the effective masses m; (i) reads (see (2.224))

()
r(20)

mi(p) = m;(fio) = m;r(p) (2.295)
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with

Y0 4w Yo 471) Br o (1)
= 21—In—— — — — ) In(l + ——— . (2.296
riu) = exp [50 ! Boaxs (1) * (50 B n(+ Bo 4m ) ( )

Note that also the m; are RG invariant masses (integration constants) and for the
masses play a role similar to Aqcp for the coupling. The solution of the RG equation
may be expanded in the large log L = In 45

L which of course only makes sense if L
is large (1 > A),

Ar g, In(L +5)
o) = —— (1= 2L A
ﬁO L 5() L
20
_ L\ % 251’)/0 InL+1 8’}/1
m; () = m; (—) (1 - + =+ ). (2297)
2 gL BL

If L is not large one should solve (2.292) or its higher order version numerically
by iteration for a;(x). For the experimental proof of the running of the strong cou-
pling constant [98] see Fig.3.3 in Sect.3.2.1 and the most actual update presented in
Fig.9.3 in [99]. The non-perturbative calculations in lattice QCD are able to demon-
strate a surprisingly good agreement with perturbative results (see [100-103] and
references therein). Most interestingly the non-perturbative strong coupling persists
being monotonically increasing at very low scales, in clear contrast to speculations
about a possible IR freezing lim,,_, o, () — const.

Note on the RG of the SM

The electroweak sector of the SM will be introduced in Sect.4.2. But a comment
on the RG of the full SM is in order here. After the discovery of the Higgs boson
all SM couplings are known via the mass—coupling relations (4.46) and so are the
[—functions. The main couplings are the gauge couplings of the SM local gauge
group SU(3). ®@SU2)L. ®U(1)y : g1, g2 and g3 and the top quark Yukawa coupling
y, and the Higgs boson self-coupling \. The SM renormalization group in the MS
scheme is known to three loops. The key point concerning the behavior of the effective
parameters we may understand when we look at the leading terms of the §-functions.
At the Z boson mass scale the couplings are given by g; =~ 0.350, g» =~ 0.653,
g3 ~ 1.220, y, ~ 0.935 and A ~ 0.807. While the gauge couplings behave as
expected, g; is infrared (IR) free, g, and g3 are asymptotically (ultraviolet) free
(AF), with leading coefficients exhibiting the related coupling only,

41 19
b= g3 ¢ =0.00185; (= < g3 ¢~ —0.00558; (3 =—7g3c =~ —0.08049,

1

with ¢ = Tk

the leading top Yukawa [3-function given by


http://dx.doi.org/10.1007/978-3-319-63577-4_3
http://dx.doi.org/10.1007/978-3-319-63577-4_4
http://dx.doi.org/10.1007/978-3-319-63577-4_4
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ﬂy: = (5)’: - ngyr - ZQ%M —89§yf) c
~ 0.02327 — 0.00103 — 0.00568 — 0.07048
~ —0.05391

not only depends on y,, but also on mixed terms with the gauge couplings which have
anegative sign. In fact the QCD correction is the leading contribution and determines
the behavior. Notice the critical balance between the dominant strong and the top
Yukawa couplings: QCD dominance requires g3 > % v, in the “gaugeless” limit

91=92=0.
Similarly, the 3-function of the Higgs self-coupling, given by

9, 9 27
A= (N =3gIA—9AgG +12)7 A+ g1+ 59103+ 702 =36y e

2~ 0.01650 — 0.00187 — 0.01961 + 0.05358 4 0.00021 + 0.00149 + 0.00777
—0.17401 ~ —0.11595

is dominated by the top Yukawa contribution and not by the A coupling itself. At

leading order it is not subject to QCD corrections. Here, the y, dominance condition

reads A\ < @ y? in the gaugeless limit. The top Yukawa coupling is turned

from an intrinsically IR free to an AF coupling by the QCD term and similarly the
Higgs self—coupling is transmuted from IR free to AF by the dominating top Yukawa
term. Including known higher order terms, except from /35, which exhibits a zero at
about 1y ~ 10'7 GeV, all other 3-functions do not exhibit a zero in the range from
W= Mz to i = Mpjack- So, apart form the U (1)y coupling g;, which increases
moderately only, all other couplings decrease and perturbation theory works well
up to the Planck scale. Actually, at 4 = Mpanck gauge couplings are all close to
gi ~ 0.5, while y; ~ 0.35 and VA~ 036 (see [104] and references therein).
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Chapter 3
Lepton Magnetic Moments: Basics

3.1 Equation of Motion for a Lepton in an External Field

For the measurement of the anomalous magnetic moment of a lepton we have to
investigate the motion of a relativistic point—particle of charge Qy e (e the positron
charge) and mass my in an external electromagnetic field AZ’“ (x). The equation of
motion of a charged Dirac particle in an external field is given by (see (2.91))

(i7" O + Qer" (Ay + AT (X)) — mic) Pr(x) =0 G.0)
(Og" — (1 =€71) 910") Ay(x) = = Quethe(x)Y"he (x) . '
What we are looking for is the solution of the Dirac equation with an external field
as a relativistic one—particle problem, neglecting the radiation field in a first step. We
thus are interested in a solution of the first of the above equations, which we may
write as

ih% = (—c a (ihV _ QZEA) —Qred + ﬁmecz)w : (3.2)
with 3 = 7%, & = 4%y and A*®' = (P, A). For the interpretation of the solution
the non-relativistic limit plays an important role, because many relativistic problems
in QED may be most easily understood in terms of the non—relativistic problem as a
starting point, which usually is easier to solve. We will consider a lepton e~, u~ or
7~ with O, = —1 in the following and drop the index £.

1. Non-relativistic limit

For studying the non—relativistic limit of the motion of a Dirac particle in an external
field it is helpful and more transparent to work in natural units.! In order to get from

I'The general rules of translation read: p* — p#, du(p) — h*3du(p), m — mc, e —
e/(Fc), P — ¢i'f | spinors: u, v — u/Jc, v/ /c.
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the Dirac spinor ) the two component Pauli spinors in the non-relativistic limit,

one has to perform an appropriate unitary transformation, called Foldy—Wouthuysen
transformation. Looking at the Dirac equation (3.2)

iha—w:Hw, H=ca (p—EA)—i-ﬁmcz—f-ecD
ot c

0 _ 1 0 0 _ 0o
ﬁ‘”‘(0—1 AT \e0)

we note that H has the form

with

H=3m*+cO+ed

where [3, @] = 0 is commuting and {3, O} = 0 anti—commuting. In the absence of
an external field spin is a conserved quantity in the rest frame, i.e. the Dirac equation
must be equivalent to the Pauli equation. This fixes the unitary transformation to be

performed in the case Ai’“ =0

W =Uy, H= U(H— ih%) U'=UHU"' (3.3)

where the time—independence of U has been used, and we obtain

w0~ Hy s v = (f)) , (3.4)
where ¢’ is the Pauli spinor. In fact U is a Lorentz boost matrix
U = 1coshf +n~ sinh § = "™ (3.5)
with
n= % , 0= %arccosh}i—i = arcsinh%

and we obtain, with p° = \/p? + m2c2,

H =c¢3; [H,2]=0, ¥ =C¥75=(32) (3.6)
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where ¥ is the spin operator. Actually, there exist two projection operators U one
to the upper and one to the lower components:

(7). e-().

U, - rmoltey o @' 4mol-opy

V2P me T 2p0 POt me

For the spinors we have

2p° 2p°
Unip.n =22 (U97) 0o = 222 (0,)

with U(r) and V (r) = io,U (r) the two component spinors in the rest system.
‘We now look at the lepton propagator. The Feynman propagator reads

given by

iSap(x — ) = (0T {a (X)P3(3)}0)
d*p P+ mc

= e iP(x—y)
Q2m)* p?2 —m2c? +ie

where?
Skap(z: m?) = (ily"0, 4+ mc) Ap(z;m?) = ©(°) $*(2) + ©(=2°) $™(2)
with retarded positive frequency part represented by
4

Ep ¢ 2 uap. )i r) iy

e St(z) =
@S = | G20 T P —w, +10

2The positive frequency part is given by
iS7500 = ¥) = (01 () Y3(10)
=c Z/du(p) uq(p,r)ug(p,r) e~ POy — /du(p) (f + mc) e IPE=Y
r
and the negative frequency part by
—iS_5(x = ») = (01P5(y)a(x)10)

=c> / dp(p) va(p.r) Dp(p.r) P = / du(p) (f —me) P57V
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and the advanced negative frequency part by

d*p ¢ X, va(p,r) vs(p, 1) .

0V () — z
)@ Q) 2w, P —w,+i0 -
Using
- 2w,
2 talp, ) ig(p,r) = =LU®P) 7 Up)
2

> vulpar) B5(pr) = =LU®) 1- Up)

with

1 0 0
Ye=5 (1£7) 5 Ve =Fre, - =774 =0
the projection matrices for the upper and lower components, respectively. We thus
arrive at our final representation which allows one to perform a systematic expansion
in1/c:

_ d4[) —ip(x—y) T+ -
SE(x —y) —/ a7 e Up) (po oy 10 - T —iO) Up). 37

The 1/c—expansion simply follows by expanding the matrix U:

P Py — (=D" ( p*\"
Up) =exp 0—~ =exp —1: 0= LA
(p) eXp |p|’Y exXp 2me ;2}’[4—1 (m2C2

The non-relativistic limit thus reads:

&*p e T+ -
SF(x —Y)\g = / ﬁ e PY) p2 T p? .
@2m) pO—(mc2+ 2y +i0  pO+ (me? + 2-) —i0

i.e.
Sp(x —y) = Sp(x —y)e + O(1/0) .

2. Non-relativistic lepton with AZ’“ #0

Again we start from the Dirac equation (3.2). In order to get the non-relativistic
representation for small velocities we have to split off the phase of the Dirac field,
which is due to the rest energy of the lepton:
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Consequently, the Dirac equation takes the form

SO
1h5—(H mc?)

and describes the coupled system of equations

(ih%—e@) p=co (p—SA) X
(ih%—e@—i—chz) X=co (p—gA) Q.

For ¢ — o0 we obtain
R 1 e n )
{~— ¢ (p— —A) 6+ 0(1/?)
2mc c

and hence

(ih%—e@) g&:ﬁ(a (p—SA))ng.

As p does not commute with A, we may use the relation
(ca)(ocb) = ab+io (a x b)

to obtain

(0’ (p—SA))zz(p—gA)z—?a-B; B =rotA .

This leads us to the Pauli equation (W. Pauli 1927)

op - 1 e \2 eh

il =Ho=(-(p-°A) +eo -0 B 3.8
o 7 (Zm L te 2me 7 7 38)
which up to the spin term is nothing but the non-relativistic Schrodinger equation.
The last term is the one this book is about: it has the form of a potential energy of a
magnetic dipole in an external field. In leading order in 1/c the lepton behaves as a
particle which has besides a charge also a magnetic moment

h
p=-26-5s. s=ns=rZ (3.9)
2mc mc 2
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with S the angular momentum. For comparison: the orbital angular momentum reads

0 .
HorbitalzwL:ngL§ L=rxp=—-ihrxV =An

and thus the total magnetic moment is

0 m
Prowl = 537 (gL+gsS) = TR (g 1+ gs9) (3.10)
where
eh
pp = (3.11)
2m,c
is Bohr’s magneton. As a result for the electron: Q = —e, M = m,, g = —1 and
gs = —2. The last remarkable result is due to Dirac (1928) and tells us that the

gyromagnetic ratio (;=) is twice as large as the one from the orbital motion.

The Foldy—Wouthuysen transformation for arbitrary A, cannot be performed in
closed analytic form. However, the expansion in 1/c can be done in a systematic way
(see e.g. [1]) and yields the effective Hamiltonian

P—-£A)? pt eh
H = 2 < — ®—-3—0c-B
p (mc + 2m 8m3c? te s 2mc 7
ehr eh i
—W leE—WU‘ |:(EXp+§f0tE):|
+0(/c%) . (3.12)

The additional terms are Smp_;cz originating from the relativistic kinematics, Jn—’;iz divE
is the Darwin term as a result of the fluctuations of the electrons position and
% o - [(E Xp+ %rotE)] is the spin—orbit interaction energy. The latter plays
an important role in setting up a muon storage ring in the g — 2 experiment (magic
energy tuning). As we will see, however, in such an experiment the muons are required
to be highly relativistic such that relativistic kinematics is required. The appropri-
ate modifications, the Bargmann—Michel-Telegdi equation [2], will be discussed in

Chap. 6.

3.2 Magnetic Moments and Electromagnetic Form Factors

3.2.1 Main Features: An Overview

Our particular interest is the motion of a lepton in an external field under consideration
of the full relativistic quantum behavior. It is controlled by the QED equations of
motion (3.1) with an external field added (3.2), specifically a constant magnetic field.


http://dx.doi.org/10.1007/978-3-319-63577-4_6
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For slowly varying fields the motion is essentially determined by the generalized
Pauli equation (3.12), which also serves as a basis for understanding the role of the
magnetic moment of a lepton on the classical level. As we will see, in the absence of
electrical fields E the quantum correction miraculously may be subsumed in a single
number the anomalous magnetic moment, which is the result of relativistic quantum
fluctuations, usually simply called radiative corrections (RC).

To study radiative corrections we have to extend the discussion of the preceding
section and consider the full QED interaction Lagrangian

LI = —eipyiap A, (3.13)

in the case the photon field is part of the dynamics but has an external classical
component A%

m
Ay — Ay + A (3.14)

We are thus dealing with QED exhibiting an additional external field insertion “ver-
@( = —ley" AS .

tex’:
Gauge invariance (2.89) requires that a gauge transformation of the external field
AT (x) = AT (x) — Dualx) (3.15)

for an arbitrary scalar classical field a(x), leaves physics invariant. The motion of
the lepton in the external field is described by a simultaneous expansion in the fine

2 . .
structure constant v = - and in the external field AZ’“ assuming the latter to be
weak

—>—®(-]>—+ —ﬁ»——k .,.@,_+_._®_._®,_+...

p1 P2
In the following we will use the more customary graphic representation

<~

of the external vertex, just as an amputated photon line at zero momentum.


http://dx.doi.org/10.1007/978-3-319-63577-4_2
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The gyromagnetic ratio of the muon is defined by the ratio of the magnetic moment
which couples to the magnetic field in the Hamiltonian and the spin operator in units
of pip = eh/2m,c

B=gu T s; gu=20+4a,) (3.16)

and as indicated has a tree level part, the Dirac moment g/(LO) = 2 [3], and a higher

order part the muon anomaly or anomalous magnetic moment

1
ap = 5(gu=2). (3.17)

In general, the anomalous magnetic moment of a lepton is related to the gyromagnetic
ratio by

1
ac = pe/un = 1= 3(9 = 2) (3.18)
where the precise value of the Bohr magneton is given by

eh

mec

= 5.788381804(39) x 107" MeVT!. (3.19)

HuB =

Here T as a unit stands for 1 Tesla = 10* Gauss. It is the unit in which the magnetic
field B usually is given. In QED a, may be calculated in perturbation theory by
considering the matrix element

M(x; p) = (1 (p2, 1) jim O™ (p1, r1))

of the electromagnetic current for the scattering of an incoming muon p~ (py, r1) of
momentum p; and 3rd component of spin 7 to a muon p~(p3, r2) of momentum
p» and 3rd component of spin r;, in the classical limit of zero momentum transfer
q> = (p2 — p1)> — 0. In momentum space, by virtue of space—time translational
invariance ji, (x) = '~ j&,(0)e 7P~ and the fact that the lepton states are eigenstates
of four-momentum e~ \7*| = (p;, r;)) = e P ¥ | (p;, 1)) (@ = 1,2), we find

M(g; p) = / d*x e (U (pa, P17, O™ (P, 71)
= / d*x e/ PP DY (4 (g, 1) [ (O) | (p1, 1))
= 2m* 6W (g — p2+ p1) (W (P2, P)1JLO) ™ (pr, 1)),

proportional to the d—function of four-momentum conservation. The 7—matrix ele-
ment is then given by

(W™ (P O™ (p1)) -
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In QED it has a relativistic covariant decomposition of the form

= (—ie) u(pz) |V Fi(q®) +102Wq”FM(q2) u(pr)

mu

1(p1) (3.20)

where ¢ = p» — p; and u(p) denote the Dirac spinors. Fg(g?) is the electric charge
or Dirac form factor and Fy(¢?) is the magnetic or Pauli form factor. Note that the
matrix o"’ = %[fy", ~"] represents the spin 1/2 angular momentum tensor. In the
static (classical) limit we have (see (2.210))

FEO)=1, F0)=a,, (3.21)

where the first relation is the charge renormalization condition (in units of the phys-
ical positron charge e, which by definition is taken out as a factor in (3.20)), while
the second relation is the finite prediction for a,,, in terms of the form factor Fy the
calculation of which will be described below. The leading order (LO) contribution
(2.215) we have been calculating already in Sect.2.6.3.

Note that in higher orders the form factors in general acquire an imaginary part.
One may write therefore an effective dipole moment Lagrangian with complex “cou-

pling”

L 1475 1 —7s
o=y Iwﬂ [DN Rt (1 PR CE2
with ¢ the muon field and
e Nu €
Re D# = au M N Im DH = d'u = ?}M , (323)

(see (3.84) and (3.85) below). Thus the imaginary part of Fy;(0) corresponds to an
electric dipole moment. The latter is non—vanishing only if we have T violation. For
some more details we refer to Sect.3.3.

As illustrated in Fig.3.1, when polarized muons travel on a circular orbit in a
constant magnetic field, then a, is responsible for the Larmor precession of the
direction of the spin of the muon, characterized by the angular frequency w,. At the
magic energy of about ~3.1 GeV, the latter is directly proportional to a,,:

E~3.1GeV

1
w, = i [aMB — (au — ﬁ) ﬂ X E:| ~ % [ClHB] . (324)

m at “magic 7"

Electric quadrupole fields E are needed for focusing the beam and they affect the
precession frequency in general. v = E/m, = 1//1 — [3* is the relativistic Lorentz
factor with 3 = v/c the velocity of the muon in units of the speed of light c. The magic


http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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Fig. 3.1 Spin precession in
the g — 2 ring (~12°/circle)

Storage
Ring

_ eB
Wa = Qu oo

actual precession x 2

energy Emag = Ymagh,, is the energy E for which -

/mag71

solution is due to the fact that a,, is a positive constant in competition with an energy
dependent factor of opposite sign (as v > 1). The second miracle, which is crucial
for the feasibility of the experiment, is the fact that vy, = /(1 +a,)/a, =~ 29.378
is large enough to provide the time dilatation factor for the unstable muon boosting
the life time 7, >~ 2.197 x 10=° s to 7y flight = Y T =2 6.454 x 1073 s, which allows
the muons, traveling at v/c = 0.99942 .. ., to be stored in a ring of reasonable size
(diameter ~14 m).

This provided the basic setup for the g —2 experiments at the Muon Storage Rings
at CERN and at BNL as well as for the upcoming new experiment at Fermilab. The
oscillation frequency w, can be measured very precisely. Also the precise tuning
to the magic energy is not the major problem. The most serious challenge is to
manufacture a precisely known constant magnetic field B (magnetic flux density), as
the latter directly enters the experimental extraction of a, via (3.24). Of course one
also needs high enough statistics to get sharp values for the oscillation frequency.
The basic principle of the measurement of a,, is a measurement of the “anomalous”
frequency difference w, = |w,| = w; — w., where wy = g, (eh/2m,) B/h =
9u/2 x e/m, B is the muon spin—flip precession frequency in the applied magnetic
field and w. = e/m,, B is the muon cyclotron frequency. Instead of eliminating the
magnetic field by measuring w., B is determined from proton Nuclear Magnetic
Resonance (NMR) measurements. This procedure requires the value of p,/p, to
extract a,, from the data. Fortunately, a high precision value for this ratio is available
from the measurement of the hyperfine splitting (HFS) in muonium. One obtains®

= a,,. The existence of a

R
a? = —— (3.25)

" |Nu/ﬂp| - R’

3E-821 has measured R = wa/@p = 0.003 707 206 4(20) while using A = p,/pp, =
3.18334539(10) from muonium HFS. The new CODATA 2011 recommended value is A
3.183345107(84), such that the updated a,,* = (11 659 208.9 & 5.4 +3.3[6.3]) x 10710,
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where R = w, /& p and w, = (e/m,c)(B) is the free—proton NMR frequency corre-
sponding to the average magnetic field seen by the muons in their orbits in the storage
ring. We mention that for the electron a Penning trap is employed to measure a, rather
than a storage ring. The B field in this case can be eliminated via a measurement of
the cyclotron frequency. The CODATA group [4] recommends to use

exp _ Je Wa My llp

H 2 &, me e

a (3.26)

as arepresentation in terms of precisely measured ratios which multiply the extremely
precisely measured electron g, value.* Both representations derive from a, = =B,

hw h . _eh :
B = ﬁ”,’ and p, = (1 +ay) 2:1:0 and p, = ”7 ﬁ:t used in the second form.

On the theory side, the crucial point is that a, is dimensionless, just a number, and
must vanish at tree level in any renormalizable theory. As an effective interaction it

would look like

0 - -
BLIM = == 2 {BL.00) 07 Fu () Y (6) + D) 0 F () ()
(3.27)

where 1 and ¢y are Dirac fields of negative (left-handed L) and positive (right—
handed R) chirality and F,, = d,A, — 0,A, is the electromagnetic field strength
tensor. This Pauli term has dimension 5 (=2 x 3/2 for the two Dirac fields plus 1 for
the photon plus 1 for the derivative included in F) and thus would spoil renormal-
izability. In a renormalizable theory, however, a,, is a finite unambiguous prediction
of that theory. It is testing the rate of helicity flip transition and is one of the most
precisely measured electroweak observables. Of course the theoretical prediction
only may agree with the experimental result to the extend that we know the complete
theory of nature, within the experimental accuracy.

Before we start discussing the theoretical prediction for the magnetic moment
anomaly, we will specify the parameters which we will use for the numerical evalu-
ations below.

Since the lowest order result for a, is proportional to «, obviously, the most
important basic parameter for calculating a,, is the fine structure constant c. It is
best determined now from the very recent extraordinary precise measurement of the
electron anomalous magnetic moment [4—7]

aZ® = 0.001 159 652 18076(27) [0.24 ppb] (3.28)

4_The values are from the electron g — 2: g, = —2.002 319 304 361 53(53) [0.26 ppt], from E821
R = wy/®p = 0.003 707 206 4(20) [0.54 ppm], from Muonium HFS experiments m,/m, =
206.768 2843(52) [25 ppb] and p1p /e = —0.001519270384(12) [8 ppb].
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which, confronted with its theoretical prediction as a series in « (see Sect.3.2.2
below) determines [6, 8—11]

o "(a,) = 137.035999 1657(342) [0.25 ppb] .

This new value has an uncertainty 20 times smaller than any preceding independent
determination of ov. We will use the updated value

o (a,) = 137.035999 139(31) [0.25 ppb] , (3.29)

recommended by [4, 12], throughout in the calculation of a,,.

All QED contributions associated with diagrams with lepton—loops, where the
“internal” lepton has mass different from the mass of the external one, depend on
the corresponding mass ratio. These mass—dependent contributions differ for a,, a,,
and a, such that lepton universality is broken: a, # a,, # a,. Lepton universality is
broken in any case by the difference in the masses and whatever depends on them.
Such mass—ratio dependent contributions start at two loops. For the evaluation of
these contributions precise values for the lepton masses are needed. We will use
the following values for the muon—electron and muon—tau mass ratios, and lepton
masses [4, 7, 12-14]

m,/m, = 206.768 2826 (46) , m,/m, = 0.059 4649 (54)
me = 0.5109989461(31) MeV , m,, = 105.658 3745 (24) MeV  (3.30)
m, = 1776.82 (16) MeV .

Note that the primary determination of the electron and muon masses come from
measuring the ratio with respect to the mass of a nucleus and the masses are obtained
in atomic mass units (amu). The conversion factor to MeV is more uncertain than
the mass of the electron and muon in amu. The ratio of course does not suffer from
the uncertainty of the conversion factor.

Other physical constants which we will need later for evaluating the weak contri-
butions are the Fermi constant

G, = 1.1663787(6) x 107> GeV?, (3.31)
the weak mixing parameter’ (here defined by sin’> @y =1 — M %V / M%)
sin? Oy = 0.22290(29) (3.32)
and the masses of the intermediate gauge bosons Z and W

Mz =91.1876 £0.0021 GeV, My = 80.385 £ 0.015 GeV . (3.33)

5The effective value sin? O = 0.23155(5) is determined from the vector to axialvector Zf f
coupling ratios in ete™ — ff.
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For the Standard Model (SM) Higgs boson, recently discovered [15] by ATLAS [16]
and CMS [17] at the LHC at CERN, the mass has been measured to be [12]

my = 125.09 + 0.21 (syst) £ 0.11 (stat) GeV . (3.34)

We also mention here that virtual pion—pair production is an important contribution to
the photon vacuum polarization and actually yields the leading hadronic contribution
to the anomalous magnetic moment. For the dominating 7+ 7~ channel, the threshold
is at 2m, with the pion mass given by

my+ = 139.570 18 (35) MeV . (3.35)

There is also a small contribution from 7% with threshold at m .0 which has the value

mqo = 134.976 6 (6) MeV . (3.36)
Later we will also need the pion decay constant
Fr ~92.21(14) MeV . (3.37)

For the quark masses needed in some cases we use running current quark masses
in the MSscheme [12, 13] with renormalization scale parameter y. For the light
quarks ¢ = u,d, s we give my; = m,(uu = 2 GeV), for the heavier g = c, b the
values at the mass as a scale m, = m,(u = m,) and for g = ¢ the pole mass:

my = 23%0TMev  my= 48T0TMev  mg = 95+£5Mev (3.38)
me = 1.275+0.025GeV  myp = 4.18£0.03 GeV  M; = 173.21 £0.87 GeV .
Within the SM the MSmass of the top quark m, (m,) essentially agrees with the pole
mass: m,(m,) ~ M, [18, 19].
This completes the list of the most relevant parameters and we may discuss the
various contributions in turn now. This also can be read as an update of [20].
The profile of the most important contributions may be outlined as follows:

(1) QED universal part:
The by far largest QED/SM contribution comes from the one—loop QED diagram [21]
Y

a® =a® =@ = a (Schwinger 1948)
" 2
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which we have calculated in Sect.2.6.3, and which is universal for all charged lep-
tons. As it is customary we indicate the perturbative order in powers of e, i.e., a™
denotes an O (e") term, in spite of the fact that the perturbation expansion is usually
represented as an expansion in « = e?/4n. Typically, analytic results for higher
order terms may be expressed in terms of the Riemann zeta function

1
C(n) = Z o (3.39)
k=1

and of the polylogarithmic integrals®

1

_1\yn—1 n—2 _ 00 k
Lin(x)z( D /m () In(1 tx)dtzzx_ (3.40)

(n—2)! ) t P

where Liy(x) is often referred to as the Spence function Sp(x) (see (2.208) in
Sect.2.6.3 and [23] and references therein). Special {(n) values we will need are

2 4

Q) = %, ¢(3) =1.202056903..., ((4) = ;T—O, C(5) =1.036927755....
(3.41)
Also the constants
Li,(1) = (), Li,(=1) = —[1 —=2""1¢(n)
1 o0
as = Liy (E) = Z 1/(2"n*) = 0.517479 061 674 ...,  (3.42)

n=1

related to polylogarithms, will be needed later for the evaluation of analytical results.
Since a,, is a number all QED contributions calculated in “one flavor QED”, with
just one species of lepton, which exhibits one physical mass scale only, equal to the
mass of the external lepton, are universal. The following universal contributions (one
flavor QED) are known:

e 2-loop diagrams [7 diagrams] with one type of fermion lines yield

@ _[17 ™
144 12 2

2 3 a2
{ T T oy Zg(a)] (;) . (3.43)

The first calculation performed by Karplus and Kroll (1950) [24] later was recalcu-
lated and corrected by Petermann (1957) [25] and, independently, by Sommerfield

The appearance of transcendental numbers like ¢ () and higher order polylogarithms Li, (x) or so
called harmonic sums is directly connected to the number of loops of a Feynman diagram. Typically,
2-loop results exhibit ((3) 3—loop ones ((5) etc. of increasing transcendentality [22].
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(1957) [26]. An instructive compact calculation based on the dispersion theoretic
approach is due to Terentev (1962) [27].
e 3—loop diagrams [72 diagrams] with common fermion lines

28259 17101 , 298 139
(6) 2 2
I e _ 2+ 23
¢ [5184+8107T g ™ N2+ 7gee)
100 1y 1 1
— Ly =)+ =In*2— —7*1n%2
T3 [1“(2)+24n 2™ " ]
239 , 83, 215 ays
2 P eEy - 25| (2 3.44
2160" T 72" ¢ T < )] (w) (344)

This is the famous analytical result of Laporta and Remiddi (1996) [28], which
largely confirmed an earlier numerical result of Kinoshita [29]. For the evaluation of
(3.44) one needs the constants given in (3.41) and (3.42) before.

e 4-loop diagrams [891 diagrams] with common fermion lines so far have been
calculated by numerical methods mainly by Kinoshita and collaborators. The sta-
tus had been summarized by Kinoshita and Marciano (1990) [30] some time ago.
Since then, the result has been further improved by Kinoshita and his collaborators
(2002/2005/2007/2012/2014) [9, 10, 31-33]. They find

— 1.91298(84) (%)4 :

by improving earlier results. In a seminal paper Laporta [11] obtained the high
precision (quasi—exact) result

—1.9122457649 . . (%)4

which agrees to 0.90 with the previous result from [10] and we will use in the
following.

Recently, for the first time, the universal 5—loop result has been worked out in [10,
33-35]. An evaluation of all 12672 diagrams with the help of an automated code
generator yields the result

7.795(336) (%)5

The error is due to the statistical fluctuation in the Monte-Carlo integration of the
Feynman amplitudes by the VEGAS routine. With the new result for the universal
5-loop term the largest uncertainty in the prediction of @, has reduced by a factor of
4.5 from the previous one.
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Collecting the universal terms we have

a =05 (2) - 0.32847896557919378 .. (%)2

3 4 5
11.181241456587 ... (9) —1.9122457649 . .. (3) +17.795(336) (g)
s s Vi
= 0.001 159652 176 42(26)(4)[26] - - - (3.45)

for the one—flavor QED contribution. The three errors are from the error of « given
in (3.29) and from the numerical uncertainties of the o coefficients, respectively.

It is interesting to note that the first term aéz) 2~ 0.00116141 - - - contributes the
first three significant digits. Thus the anomalous magnetic moment of a lepton is an
effect of about 0.12%, g¢/2 >~ 1.00116 - - -, but in spite of the fact that it is so small
we know a, and a,, more precisely than most other precision observables.

(2) QED mass dependent part:

Since fermions, as demanded by the SM, only interact via photons or other spin one
gauge bosons, mass dependent corrections only may show up at the two—loop level
via photon vacuum polarization effects. There are two different regimes for the mass
dependent effects [36, 37]:

e LIGHT internal masses give rise to potentially large logarithms of mass ratios
which get singular in the limit my;gp — 0

gl

1. m 25 Me a\?
i3 -0(3) 0

Here we have a typical result for a light field which produces a large logarithm
In ':ni 2~ 5.3, such that the first term ~2.095 is large relative to a typical constant

secoend term —0.6944. Here® the exact two—loop result is
a2
a® (vap, ) = 1.094258 3092(72) (—) — 5.90406006(4) x 1076 .
s

The error is due to the uncertainty in the mass ratio (m./m,).

The kind of leading short distance log contribution just discussed, which is related
to the UV behavior,” in fact may be obtained from a renormalization group type
argument. In Sect.2.6.5 (2.233) we have shown that if we replace in the one—loop
result « — «(m,) we obtain

7Interactions are known to derive from a local gauge symmetry principle, which implies the structure
of gauge couplings, which must be of vector (V) or axial-vector (A) type.

8The leading terms shown yield 5.84199477 x 107,

9The muon mass m u here serves as a UV cut—off, the electron mass as an IR cut—off, and the
relevant integral reads


http://dx.doi.org/10.1007/978-3-319-63577-4_2
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1o 20 my
a, = 5; 1+ g; In m s (346)

which reproduces precisely the leading term of the two—loop result. RG type argu-
ments, based on the related Callan—Symanzik (CS) equation approach, were further
developed and refined in [38, 39]. The CS equation is a differential equation which
quantifies the response of a quantity to a change of a physical mass like m, rel-
ative to the renormalization scale which is m,, if we consider a,. For the leading
m.—dependence of a,,, neglecting all terms which behave like powers of m,/m, for
m, — 0 at fixed m,,, the CS equation takes the simple homogeneous form

0 0 m
(c0) M —
(mg B + B(a) a@a) a, ( = a) 0, (3.47)

where a(oo) denotes the contribution to a,, from powers of logarithms ln £ and con-
stant terms and ((a) is the QED [—function. The latter governs the charge screening
of the electromagnetic charge, which will be discussed below. The charge is running
according to (resummed one-loop approximation)

a(p) = (3.48)

1-— In

SR

Wi
=

which in linear approximation yields (3.46).
We continue with the consideration of the other contributions. For comparison
we also give the result for the

e EQUAL internal masses case which yields a pure number and has been included

in the af) universal part (3.43) already:

v

119 72 a2
ay” (vap. p) = [%‘ﬂ (5) -

This no scale result shows another typical aspect of perturbative answers. There is
a rational term of size 3.3055... and a transcendental 72 term of very similar size
3.2899... but of opposite sign which yields as a sum a result which is only 0.5% of
the individual terms:

(Footnote 9 continued)
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2
a'®) (vap, ;1) ~ 0.015 6874219 (3) — 8.464 13319 x 1078 . (3.49)

s

e HEAVY internal masses decouple'”

small power corrections

in the limit #peqayy — 00 and thus only yield

v

Note that “heavy physics” contributions, from mass scales M > m,,, typically are
proportional to mﬁ /M?. This means that besides the order in « there is an extra

suppression factor, e.g. O(a?) — Q(az%) in our case. To unveil new heavy states
thus requires a corresponding high precision in theory and experiment. For the 7 the
contribution is relatively tiny

2
a¥ (vap, 7) = 0.000078079(14) (=) =42127(8) x 107,
m

with error from the mass ratio (m,/m;). However, at the level of accuracy reached
by the Brookhaven experiment (63 x 10~!!), the contribution is non—negligible.

At the next higher order, in a‘® up to two internal closed fermion loops show
up. The photon vacuum polarization (VP) insertions into photon lines again yield
mass dependent effects if one or two of the y loops of the universal contributions are
replaced by an electron or a 7. These contributions will be discussed in more detail in

Chap. 4. Here we just give the numerical results for the coefficients of (%)3 [40—42]:

g A®(vape) = 1.920455123(28),
A (vap,7) = —0.00178261(27),
w TG A (vap,e,r) = 0.00052776(10).

Besides these photon self-energy corrections, a new kind of contributions are the
so called light-by—light scattering (LbL) insertions: closed fermion loops with four
photons attached. Light—by-light scattering vy — 7 is a fermion—loop induced
process between real on—shell photons. There are 6 diagrams which follow from the
first one below, by permutation of the photon vertices on the external muon line:

10The decoupling—theorem 2.10 infers that in theories like QED or QCD, where couplings and
masses are independent parameters of the Lagrangian, a heavy particle of mass M decouples from
physics at lower scales Eg as Eo/M for M — oo.
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~ AN 4 X

plus the ones obtained by reversing the direction of the fermion loop. Remember that
closed fermion loops with three photons vanish by Furry’s theorem. Again, besides
the equal mass case my,0p = m,, there are two different regimes [43, 44]:

e LIGHT internal masses also in this case give rise to potentially large logarithms of
mass ratios which get singular in the limit my;gh — 0

2 2 m, 59
al® (Ible) = {?21 : —|—%7r —3¢(3)
] 10 2 m m a\3
~’s I ey M aNt
K 3W+3+O<m#nme)] (’]T)

This again is a light loop which yields an unexpectedly large contribution

3
a® (Ibl, e) = 20947924 85(14) (9) —2.62535101(2) x 107,
s

with error from the (m,/m,,) mass ratio. Historically, it was calculated first numeri-
cally by Aldins et al. [45], after a 1.7 o discrepancy with the CERN measurement [46]
in 1968 showed up.'!

For comparison we also present the

e EQUAL internal masses case which yields a pure number which is included in the
(6)
universal part (3.44) already:

2C(5)_%7‘—2C(3)—4—1W4——ﬂ' In%2

J al®) (IbL, ) =

7 P 4 931 , 5 3
U5+ S'2416a - 5 ()~ Un 2+ — 2+9} (3> :

1The result of [45] was 2.3040.14 x 107 pretty close to the “exact” answer above. The occurrence
of such large terms of course has a physical interpretation [47]. Firstly, the large logs In(m,,/m.)
are due to a logarithmic UV divergence in the limit m;, — oo, i.e., m, serves as a UV cut-
off, in conjunction with an IR singularity in the limit m, — 0, i.e., m, serves as an IR cut—off:
fy:? ndE —1p m‘: The integral is large because of the large range [m,, m,] and an integrand with
the property that it is contrlbutmg equally at all scales. Secondly, and this is the new point here,
there is an unusual 72 ~ 10 factor in the coefficient of the large log. This enhancement arises
from the LbL scattering sub-diagram where the electron is moving in the field of an almost static
non-relativistic muon. A non-relativistic spin—flip interaction (required to contribute to a,) gets
dressed by Coulomb interactions between muon and electron, which produces the large 72 factor.
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where a4 is the constant defined in (3.42). The single scale QED contribution is much
smaller
«

3
a'®(Ibl, p) ~ 0.371005292 ( ) = 4.64971650 x 10~° (3.50)

™

but is still a substantial contributions at the required level of accuracy.
e HEAVY internal masses again decouple in the limit #peayy — 00 and thus only

yield small power correction
2
3 19] (m,
o5 ()

) 4
v’s my, = o my a\3
z o (mln m )] (7)

T H

)

ald (bl 1) =

As expected this heavy contribution is power suppressed yielding
a®(Ibl, 7) ~ 0.002 143 24(38) (g)3 = 2.68607(48) x 10~
» ,T7) = 0. —) =2 ,

and therefore would play a significant role at a next level of precision experiments
only. Again the error is from the (m,/m,) mass ratio.

We mention that except for the mixed term A;f’) (vap, e, T), which has been worked
out as a series expansion in the mass ratios [41, 42], all contributions are known
analytically in exact form [40, 43]'> up to 3 loops. At 4 loops only a few terms
are known analytically [49, 50]. Again the relevant 4—loop contributions have been
evaluated by numerical integration methods by Kinoshita and Nio [31, 51]. The
universal partis now superseded by Laporta’s high—precision result [11]. After earlier
estimates of the 5-loop term in [52-54], finally the pioneering complete S-loop
calculation by Aoyama, Hayakawa, Kinoshita and Nio [51] has been completed
to contribute with A;lo) (m,/m,) = 663(20). A number of partial results based on
asymptotic expansion techniques have been obtained in [55]. More recent result have
been presented in [39, 50, 56—-58]. Results largely confirm the numerical calculations.

Combining the universal and the mass dependent terms discussed so far we arrive
at the following QED result for a,,

2
a®®° = = 10.765857423(16) ()
27 m

I

+24.050 509 82(28) (%)% + 130.8734(60) (%)4 +751.917(932) (%)5 .
(3.51)

12Explicitly, the papers present expansions in the mass ratios; some result have been extended in [44]
and cross checked against the full analytic result in [48].
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Growing coefficients in the /7 expansion reflect the presence of large In "% ~
5.3 terms coming from electron loops. In spite of the strongly growing expansion
coefficients the convergence of the perturbation series is excellent

# n of loops C; [(a/m)"] a/?ED x 1011
1 +0.5 116140973.242 (26)
2 + 0.765 857423 (16) 413217.627 (9)
3 +24.050509 82 (28) 30141.9022 (4)
4 + 130.8734 (60) 380.990 (17)
5 + 751.917 (932) 5.0845 (63)
tot 116584718.859 (0.034)

because o/ is a truly small expansion parameter.

Now we have to address the question what happens beyond QED. What is mea-
sured in an experiment includes effects from the real world and we have to include
the contributions from all known particles and interactions such that from a possible
deviation between theory and experiment we may get a hint of the yet unknown
physics.

Going from QED of leptons to the SM the most important step is to include the
hadronic effects mediated by the quarks, which in the SM sit in families together
with the leptons and neutrinos. The latter being electrically neutral do not play any
role, in contrast to the charged quarks. The strong interaction effects are showing up
in particular through the hadronic structure of the photon via vacuum polarization
starting at O (a?) or light-by—light scattering starting at O (o).

(3) Hadronic VP effects:

Formally, these are the contributions obtained by replacing lepton—loops by quark—
loops (see Fig.3.2), however, the quarks are strongly interacting via gluons as
described by the SU(3).010r gauge theory QCD [59] (see Sect.2.8). While electro-
magnetic and weak interactions are weak in the sense that they allow us to perform
perturbation expansions in the coupling constants, strong interactions are weak only
at high energies as inferred by the property of asymptotic freedom (anti-screening).'?
Atenergies above about 2 GeV perturbative QCD (pQCD) may be applied as well. In
the regime of interest to us here, however, perturbative QCD fails. The strength of the
strong coupling “constant” increases dramatically as we approach lower energies.
This is firmly illustrated by Fig. 3.3, which shows a compilation of measured strong
coupling constants as a function of energy in comparison to perturbative QCD. The
latter seems to describes very well the running of «; down to 2 GeV. Fortunately the
leading order hadronic effects are vacuum polarization type corrections, which can

13Asymptotic freedom, discovered in 1973 by Politzer, Gross and Wilczek [60] (Nobel Prize 2004),
is one of the key properties of QCD and explains why at high enough energies one observes quasi—
free quarks, as in deep inelastic scattering (DIS) of electrons on protons. Thus, while quarks remain
imprisoned inside color neutral hadrons (quark confinement), at high enough energies (so called hard
subprocesses) the quark parton model (QPM) of free quarks may be a reasonable approximation,
which may be systematically improved by including the perturbative corrections.
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be safely evaluated by exploiting causality (analyticity) and unitarity (optical theo-
rem) together with experimental low energy data. The imaginary part of the photon
self-energy function H;(s) (see Sect.2.6.1) is determined via the optical theorem
by the total cross section of hadron production in electron—positron annihilation:

4r2a 1 ,
Ta —Im [1"(s) . (3.52)

U(S)e*'e‘»'y*ahadrons =

The leading Hadronic Vacuum Polarization (HVP) contribution is represented by the
diagram Fig. 3.4, which has a representation as a dispersion integral

/1 dxM . (3.53)
o X+ -x)

[0¢] d 1 ,
a, =2 / S m ™) K5y, K(s)
™ Jo s ™
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ha

As aresult the leading non—perturbative hadronic contributions a"® can be obtained

u
in terms of R, (s) = 0@ (ete™ — 4* — hadrons)/ 42;‘2 data via the dispersion inte-
gral:

a2 RE () K(s) [ RP(s) R(s)
azad = (—3 #) /ds - > + / ds ——~ 2 5 . (3.54)
T s s
mfr() Egul

where the rescaled kernel function K (s) =3s/ m,z, K (s) is a smooth bounded func-
tion, increasing from 0.63... at s = 4m?2 to 1 as s — oo. The 1/s* enhancement
at low energy implies that the p — 77~ resonance is dominating the dispersion
integral (~75%). Data can be used up to energies where 7 — Z mixing comes into
play at about E, = 40 GeV. However, by the virtue of asymptotic freedom, per-
turbative Quantum Chromodynamics (see p. 145) (pQCD) gets the more reliable the
higher the energy and, in fact, it may be used safely in regions away from the flavor
thresholds, where resonances show up: p, w, ¢, the J /v series and the T series. We
thus use perturbative QCD [61, 62] from 5.2 to 9.6 GeV and for the high energy tail
above 13 GeV, as recommended in [61-63].

Hadronic cross section measurements ete™ — hadrons at electron—positron stor-
age rings started in the early 1960’s and continued up to date. Since our analysis [64]
in 1995 data from MD1 [65], BES-II [66] and from CMD-2 [67] have lead to a sub-
stantial reduction in the hadronic uncertainties on a/}}ad. More recently, KLOE [68],
SND [69] and CMD-2 [70] published new measurements in the region below
1.4 GeV. My up-to—date evaluation of the leading order HVP yields [71-74]

ap i = (688.77 + 3.38[688.07 + 4.14]) x 1077 (3.55)

The result also includes 7-decay spectral data (the I=1 part corrected for isospin
breaking) in the range [0.63-0.96] GeV as estimated in [72] (see Chap. 5, Sect. 5.1.10).
Table 3.1 gives more details about the origin of contributions and errors from differ-
ent regions. A recent analysis [75] (also see [76, 77]) using the precise 77 scattering
data to constrain the low energy tail below 0.63 GeV (see (5.100) in Chap.5) allows
one to improve the estimate to

apiV = (689.46 £3.25) x 1071 (3.56)

A list of data based evaluations by different groups is presented in Table 3.2. The list
documents the big efforts made by experiments within the past decade to provide
more and more accurate data, which are the indispensable input for controlling non-
perturbative strong interaction effects. Differences in errors come about mainly by
utilizing more “theory—driven” concepts: use of selected data sets only, extended use
of perturbative QCD in place of data [assuming local duality], sum rule methods, low
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Table 3.1 Contributions and errors from different energy ranges

Energy range a}}“‘d x 1010 [in %) (error) x 100 rel. err. (%) abs. err. (%)
pyw (E <2Mg) 541.25 [78.7%] (2.84) 0.5 47.6
2Mg < E <2 GeV 95.63 [13.9%] 2.77) 3.1 45.2
2GeV < E <My 21.63 [3.1%)] (0.93) 4.3 5.1
My <E < 20.34 [3.0%] (0.59) 29 2.1
5.2 GeV

52GeV < E < My 6.27 [0.9%] (0.01) 0.1 0.0
pQCD

My < E < Eqy 0.98 [0.1%] (0.05) 5.2 0.0
E.t < E pQCD 1.96 [0.3%] (0.00) 0.0 0.0
E < E¢y data 679.84 [98.8%] 4.11) 0.6 100
Total 688.07 [100%] 4.11) 0.6 100

energy effective methods [78]. Progress is essentially correlated with the availability
of new data from Novosibirsk (NSK) [69, 70, 79], Frascati (KLOE) [80-82], SLAC
(BaBar) [83] and Beijing (BES-III) [84].# In the last 15 years e*e™ cross—section
measurements have dramatically improved, from energy scans [69, 70, 79] (SCAN)
at Novosibirsk (NSK) and later, using the radiative return mechanism, measurements
via initial state radiation (ISR) at meson factories [80-84]. Still the most precise
ISR measurements from KLOE and BaBar are in conflict and the new, although
still somewhat less precise, ISR data from BES-III help to clarify this tension. The
BES-III result for a;“’LO (0.6 — 0.9 GeV) is found to be in good agreement with
all KLOE values, while a 1.7 o lower value is observed with respect to the BaBar
result. Other data recently collected, and published up to the end of 2014, include the
ete™ — 3(nt7) data from CMD-3 [90], the ete™ — wn® — 7%7% from SND
[91] and several data sets collected by BaBar in the ISR mode'> [92-94]. These
data samples highly increase the available statistics for the annihilation channels
opening above 1 GeV and lead to significant improvements. Recent/preliminary
results also included are ete™ — 7wT7 7° from Belle, ete- — K+tK~ from
CMD-3, ete™ — K™K~ from SND. The BES-III data sample is included in the
last four entries of the table.

Besides the true eTe™ data measured by energy scans and the ISR method, the
I = 1 isovector part of ete™ — hadrons can be obtained in an alternative way
by using the precise vector spectral functions from hadronic 7—decays 7 — v, +
hadrons via an isospin rotation [95]. For the dominating 77 channel 7 decay spectra

14The analysis [85] does not include exclusive data in a range from 1.43 to 2 GeV; therefore also the
important exclusive channels BaBar data are not included in that range. In [86—-89] pQCD is used in
the extended ranges 1.8-3.7 GeV and above 5.0 GeV and in [87] KLOE data are not included. More
recently a reanalysis of the KLOEOS8 data were released as KLOE12 set, which was first included
in the evaluation [73].

BIncluding the pp, K¥K—, K1 Kg, K Ksntn~, KsKsntn~, KsKsK+ K~ final states.
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Table 3.2 Some recent evaluations of aﬂad(l) (in units 1019). The Table illustrates the progress
since 2003, when precise data from Novosibirsk became available. Further progress has been possi-
ble with the data obtained by the ISR method at the ¢-factory Daphne at Frascati (KLOE detector)
and the B-factory PEP-II at SLAC (BaBar detector) and with the BEPC storage ring at Beijing
(BES detector)

L
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have been measured by the ALEPH, OPAL, CLEO and Belle experiments [96—100].
After isospin violating corrections, due to photon radiation and the mass splitting
mg — my, # 0, have been applied, there remains an unexpectedly large discrepancy
between the eTe™- and the 7-based determinations of a, [86-89], as may be seen
in Table 3.2. This 7 versus e*e™ data puzzle has been persisting for several years.
Possible explanations are so far unaccounted isospin breaking [101] or experimental
problems with the data. Since the e™e™-data are more directly related to what is
required in the dispersion integral, one usually advocates to use the ete™ data only.
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The puzzle at the end disappeared, after isospin breaking by -y — p° mixing, missing in
the charged 7 channel, has been accounted for [72]. The point is the correct modeling
of the Vector Meson Dominance (VMD) mechanism, which, by including p, w, ¢
as well results in the Hidden Local Symmetry (HLS) model parametrization of the
low energy data [73, 102] [up to including the ¢ resonance]. This a low effective
Lagrangian field theory approach, which includes the VMD model in accord with
low energy structure of QCD. A “HLS best fit” is obtained for the data configuration
NSK+KLOE10+KLOE12+BES-III+7. The “HLS global fit” includes the BaBar 7
spectrum as well. In Table 3.2 results including 7 corrected for the -y — p° mixing are
marked by the asterisk *. A comprehensive analysis of the hadronic effects will be
presented in Chap. 5, Sect. 5.1. See also the comments to Fig.7.1.

At next-to-leading order (NLO), O (o®), diagrams of the type shown in Fig. 3.5a—c
have to be calculated, where the first diagram stands for a class of higher order
hadronic contributions obtained if one replaces in any of the first 6 two—loop dia-
grams of Fig.4.2, one internal photon line by a dressed one. The relevant kernels
for the corresponding dispersion integrals have been calculated analytically in [103]
and appropriate series expansions were given in [104] (for earlier estimates see
[105, 106]). Based on my recent compilation of the ete™ data [74] I obtain

a® (vap, had) = —99.27(0.87) x 107" ,

in accord with previous evaluations [95, 104, 106, 107] (see Table5.7). The
errors include statistical and systematic errors added in quadrature. Very recently
the relevant next-to-next-to-leading order (NNLO), O (o), hadronic contributions,

represented by diagrams of the type also shown in Fig.3.5a-h, have been estimated
[108, 109]

=

(a) 3a (b) 3b (c) 3b (d) 3¢
(e) 3¢ (f) 3¢ (2) 3b,Ibl (h) 3d

Fig. 3.5 Higher order (HO) vacuum polarization contributions
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Fig. 3.6 The spectrum of invariant 7y masses obtained with the Crystal Ball detector [110].
The three rather pronounced spikes seen are the vy — pseudoscalar (PS) — 7 excitations:
PS=7%n, 1

a'¥ (vap, had) = 12.21(0.10) x 107",

which amounts to a 10% reduction of the NLO HVP result.
(4) Hadronic LbL effects:

A much more problematic set of hadronic corrections are those related to hadronic
light-by—light scattering, which sets in only at order O(a?), fortunately. However,
we already know from the leptonic counterpart that this contribution could be dra-
matically enhanced. It was estimated for the first time in [105]. Even for real-photon
light-by-light scattering, perturbation theory is far from being able to describe real-
ity, as the reader may convince himself by a glance at Fig. 3.6, showing sharp spikes
of 7, n and 7 production, while pQCD predicts a smooth continuum.'® As a con-
tribution to the anomalous magnetic moment three of the four photons are virtual
and to be integrated over all four-momentum space, such that a direct experimen-
tal input for the non—perturbative dressed four—photon correlator is not available.
In this case one has to resort to the low energy effective descriptions of QCD like
Chiral Perturbation Theory (CHPT) extended to include vector—mesons. This Res-
onance Lagrangian Approach (RLA) is realizing vector-meson dominance ideas in
accord with the low energy structure of QCD [111]. Other effective theories are
the Extended Nambu-Jona-Lasinio (ENJL) model [112] (see also [113]) or the very

16The pion which gives the by far largest contribution is a quasi Goldstone boson. In the chiral
limit of vanishing light quark masses m, = my = my; = 0 pions and Kaons are true Goldstone
bosons which exist due to the spontaneous breakdown of the chiral U(Ny)y @ Ua(Ny) (Ny = 3)
symmetry, which is a non—perturbative phenomenon, absent in pQCD.
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similar HLS model [114, 115]; approaches more or less accepted as a framework for
the evaluation of the hadronic LbL effects. The amazing fact is that the interactions
involved in the hadronic LbL scattering process are the parity conserving QED and
QCD interactions while the process is dominated by the parity odd pseudoscalar
meson—exchanges. This means that the effective 7%~ interaction vertex exhibits
the parity violating s coupling, which of course in vy — 7° — ~+ must appear
twice (an even number of times). The process indeed is associated with the parity
odd Wess-Zumino-Witten (WZW) effective interaction term

N,
L9 = ey P AR (357)

which reproduces the Adler-Bell-Jackiw (ABJ) anomaly and which plays akey role in
estimating the leading hadronic LbL contribution. F denotes the pion decay constant
F; in the chiral limit of massless light quarks (F; >~ 92.4 MeV). The constant WZW
form factor yields a divergent result, applying a cut—off A one obtains the leading
term

N2 m? A a3
6)(1pl. 70) = | e m o2 2y (_)
@ (bl ) 4872 F? " my, * T

with a universal coefficient C = mei/(487r2 F2) [116]; in the VMD dressed cases
My represents the cut—off A — My."”

Based on refined effective field theory (EFT) models, two major efforts in eval-
uating the full abbL contribution were made by Hayakawa, Kinoshita and Sanda
(HKS 1995) [114], Bijnens, Pallante and Prades (BPP 1995) [112] and Hayakawa
and Kinoshita (HK 1998) [115] (see also Kinoshita, Nizic and Okamoto (KNO
1985) [106]). Although the details of the calculations are quite different, which
results in a different splitting of various contributions, the results are in good agree-
ment and essentially given by the 7%-pole contribution, which was taken with the
wrong sign, however. In order to eliminate the cut—off dependence in separating long
distance (L.D.) and short distance (S.D.) physics, more recently it became favorable
to use quark—hadron duality, as it holds in the large—N, limit of QCD [117, 118], for
modeling of the hadronic amplitudes [113]. The infinite series of narrow vector states
known to show up in the large N, limit is then approximated by a suitable lowest
meson dominance (LMD+V) ansatz [119], assumed to be saturated by known low
lying physical states of appropriate quantum numbers. This approach was adopted
in a reanalysis by Knecht and Nyfteler (KN 2001) [116, 120-122] in 2001, in which
they discovered a sign mistake in the dominant 7°, 1), / exchange contribution, which

17Since the leading term is divergent and requires UV subtraction, we expect this term to drop
from the physical result, unless a physical cut—off tames the integral, like the physical p in effective
theories which implement the VMD mechanism.
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changed the central value by +167 x 10~!!, a 2.8 ¢ shift, and which reduces a larger
discrepancy between theory and experiment. More recently Melnikov and Vainshtein
(MV 2004) [123] found additional problems in previous calculations, this time in the
short distance constraints (QCD/OPE) used in matching the high energy behavior of
the effective models used for the 7, 1, 1’ exchange contribution. Another important
change concerns the contributions from the axialvector exchanges which have been
modeled in [123] violating the Landau—Yang theorem. We will elaborate on this in
much more detail in Sect.5.2.

We advocate to use consistently dressed form factors as inferred from the res-
onance Lagrangian approach. However, other effects which were first considered
in [123] must be taken into account: (i) the constraint on the twist four (1/¢%)-term
in the OPE requires i, = —10 GeV? in the Knecht-Nyffeler form factor [120]:
da,, >~ +5 £ O relative to 1, = 0, (ii) the contributions from the f; and f isoscalar
axial-vector mesons: éa, >~ +6 £ 2 (using dressed photons, and implementing
the Landau—Yang condition), (iii) for the remaining effects, scalars ( fy) + dressed
7%, K* loops + dressed quark loops: da,, >~ —5 £ 13. Note that this last group of
terms have been evaluated in [112, 114] only. The splitting into the different terms
is model dependent and only the sum should be considered; the results read —5 4 13
(BPP) and 5.2 & 13.7 (HKS) and hence the contribution remains unclear.'® As an
estimate based on [112, 114, 120, 123, 124] we adopt 70, 7,1 [95 £ 12] + axial-
vector [8 & 3] + scalar [-6 £ 1]+ 7, K loops [—20 =+ 5] + quark loops [22 &+ 4] +
tensor [1 & 0] + NLO [3 & 2] which yields

a'®(Ibl, had) = (103 £29) x 107'" .

The result differs little from the “agreed” value (105426) x 10~ 1 presented in [125]
and (116+39) x 10~ ! estimated in [20]. Both included a wrong, too large, Landau—
Yang theorem violating axial-vector contribution from [123], correcting for this we
obtain our reduced value relative to [20].

(5) Weak interaction corrections:

The last set of corrections are due to the weak interaction as described by the elec-
troweak SM. The weak corrections are those mediated by the weak currents which
couple to the heavy spin 1 gauge bosons, the charged W¥ or the neutral “heavy
light” particle Z or by exchange of a Higgs particle H (see Fig. 3.7; masses are given
in (3.33), (3.34)). What is most interesting is the occurrence of the first diagram of
Fig.3.7, which exhibits a non—Abelian triple gauge vertex and the corresponding
contribution provides a test of the Yang—Mills structure involved. It is of course not
surprising that the photon couples to the charged W boson the way it is dictated
by electromagnetic gauge invariance. In spite of the fact that the contribution is of
leading one—loop order, it is vastly suppressed by the fact that the corrections are
mediated by the exchange of very heavy states which makes them suppressed by

18yWe adopt the result of [112] as the sign has to be negative in any case (see [121]).
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Fig. 3.7 The leading weak
contributions to ay; diagrams
in the physical unitary gauge

(b) (c)

Z H

0Q2%+5 my ) ~ 5 x 107 for M of about 100 GeV. The gauge boson contributions

;1

negligible) [126]

«/EG m?
aP PV =[5+ (=1 +4 sin’ Oy)?] —“ ~ (194.82 £ 0.02) x 107" .
’R’

(3.58)

The error comes from the uncertainty in sin? Oy [see (3.32)].

Electroweak two-loop calculations started 1992 with Kukhto et al [127], who
observed potentially large terms proportional to ~G pm2 a ln Z enhanced by a large
logarithm. The most important diagrams are triangle fermlon—loops

\/—Gum o [2
= — —QTngCfo 31n—f+Cf

where T3 is the 3rd component of the weak isospin, Q ; the charge and N, the
color factor, 1 for leptons, 3 for quarks. The mass m s is m, if my < m, and m
ifmy > m,, and C, = 5/2, C, = 11/6 — 8/9 7%, C. = —6 [127]. Note that
triangle fermion—loops cannot contribute in QED due to Furry’s theorem. However,
the weak interactions are parity violating and if one of the three vector vertices
V# = ~# is replaced by an axial vertex A* = ~"vs one gets a non—vanishing
contribution. This is what happens if we replace one of the photons by a “heavy
light” particle Z. However, these diagrams are responsible for the Adler-Bell-Jackiw
anomaly [128] which is leading to a violation of axial current conservation and
would spoil renormalizability. The anomalous terms must cancel and in the SM this
happens by lepton quark duality: leptons and quarks have to live in families and for
each family > » Ny sz T3y = 0, which is the anomaly cancellation condition in the
SUB).®@SU2), @ U (1)y gauge theory. This is again one of the amazing facts, that
at the present level of precision one starts to be sensitive to the anomaly cancellation
mechanism. This anomaly cancellation leads to substantial cancellations between
the individual fermion contributions. The original results therefore get rectified by
taking into account the family structure of SM fermions [129-131].
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For more sophisticated analyses we refer to [129, 130, 132] which was corrected
and refined in [131, 133]. Including subleading effects yields —5.0 x 10~!! for the
first two families. The 3rd family of fermions including the heavy top quark can
be treated in perturbation theory and was worked out to be —8.2 x 107! in [134].
Subleading fermion loops contribute —5.3 x 10~!!. There are many more diagrams
contributing, in particular the calculation of the bosonic contributions (1678 dia-
grams) is a formidable task and has been performed 1996 by Czarnecki, Krause
and Marciano as an expansion in (mﬂ/MV)2 and (MV/mH)2 [135]. Later complete
calculations, valid also for lighter Higgs masses, were performed [136, 137], which
confirmed the previous result —22.3 x 10!, The 2-loop result reads'”

aPPW = —41(1) x 107"

The complete weak contribution may be summarized by [133]

\/EG m2 (5 1 «
EW __ L in2 @) -
Clu = W § + g (1 — 4sin Ow) 7_(_[1555(4)(2)]
= (154 + 1[had] & 0.4[my, m, 3 — loop]) x 107! (3.59)

with errors from triangle quark—loops. For the Higgs we use the recent LHC observa-
tionmy =~ 125.1 £ 0.3 GeV. The 3-loop effect has been estimated tobe small [131,
133] (see (4.124)).

This closes our overview of the various contributions to the anomalous magnetic
moment of the muon. More details about the higher order QED corrections as well
as the weak and strong interaction corrections will be discussed in detail in the next
Chap. 4. First we give a brief account of the status of the theory in comparison to the
experiments. We will consider the electron and the muon in turn.

3.2.2 The Anomalous Magnetic Moment of the Electron

The electron magnetic moment anomaly likely is the experimentally most precisely
known quantity. For almost 20 years the value was based on the extraordinary precise
measurements of electron and positron anomalous magnetic moments

19The authors of [127] reported
aPPV = —42 x 107"

for what they thought was the leading correction, which is very close to the complete weak two—loop
corrections, however, this coincidence looks to be a mere accident. Nevertheless, the sign and the
order of magnitude turned out to be correct.
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a? = 0.001 159652 188 4(43),
a;? = 0.001 159652 1879(43), (3.60)

by Van Dyck et al. (1987) [138]. The experiment used the ion trap technique, which
has made it possible to study a single electron with extreme precision.”’ The result
impressively confirms the conservation of CPT: a.+ = a.-. Being a basic prediction
of any QFT, CPT symmetry will be assumed to hold in the following. This allows
us to average the electron and positron values with the result [14]

ao = 1o/t — 1 = (ge — 2)/2 = 1.159652 1883(42) x 1072 . (3.61)

The relative standard uncertainty is 3.62 ppb. A big step forward has been achieved
more recently by Gabrielse et al. [5, 6, 139] in an experiment at Harvard University
using a one—electron quantum cyclotron. The new result is

a. = 1.159652 180 73(28)[0.24 ppb] x 1073 , (3.62)

with an accuracy nearly 15 times better than (3.61) and shifting down the central
value of a, by 1.8 standard deviations.

The measurements of a, not only played a key role in the history of precision
tests of QED in particular, and of QFT concepts in general, today we may use
the anomalous magnetic moment of the electron to get the most precise indirect
measurement of the fine structure constant «v. This possibility of course hangs on our
ability to pin down the theoretical prediction with very high accuracy. Indeed a, is
much saver to predict reliably than a,,. The reason is that non—perturbative hadronic
effects as well as the sensitivity to unknown physics beyond the SM are suppressed
by the large factor mi /m?2 >~ 42753 in comparison to a,.. This suppression has to be
put into perspective with the 2250 times higher precision with which we know a,.
We thus can say that effectively a, is a factor 19 less sensitive to model dependent
physics than a,,.

The reason why it is so interesting to have such a precise measurement of a, of
course is that it can be calculated with comparable accuracy in theory. The prediction
is given by a perturbation expansion of the form

N
ac =) Cyla/m)", (3.63)

n=1

20The jon trap technique was introduced and developed by Paul and Dehmelt, whom was awarded
the Nobel Prize in 1989. The ion traps utilize electrical quadrupole fields obtained with hyperboloid
shaped electrodes. The Paul trap works with dynamical trapping using r.f. voltage, the Penning trap
used by Dehmelt works with d.c. voltage and a magnetic field in z-direction.
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with terms up to five loops, N = 5, under consideration. The experimental precision
of a, requires the knowledge of the coefficients with accuracies C, ~ 5 x 1078,
5C; ~2x 1072, 5C4 ~ 1 x 1072 and 6C5 ~ 4. Actually, Aoyama, Hayakawa,
Kinoshita and Nio [10, 33] not long ago achieved remarkable progress in calculat-
ing missing four— and five—loop QED contributions. Besides the leading universal
Cs term, which we already included in (3.45), also so far missing mass—dependent
1 and 7 lepton contributions have been evaluated. Concerning the mass—dependent
contributions, the situation for the electron is quite different from the muon. Since
the electron is the lightest of the leptons a potentially large “light internal loop”
contribution is absent. For a, the muon is a heavy particle m, > m, and its contri-
bution is of the type “heavy internal loops” which is suppressed by an extra power of
mz / mi In fact the p—loops tend to decouple and therefore only yield small terms.
We may evaluate them by just replacing m, — m, and m, — m,, in the formula for
the 7—loop contributions to a,,. Corrections due to internal p—loops are suppressed
as OQa/m mg/m?) =~ 1.1 x 107" relative to the leading term and the 7—loops
practically play no role at all.
Collecting the results we have?!

CZSED = (l;mi + de (,u) + de (7_) + de (,u" 7_) (364)
with universal term given by (3.45) and
2 3
a,(11) = 5.19738676(26) x 10”7 (9) —7.37394170(27) x 10—6(3)
T s

« oS

4
+9.1619707o3(373)><10-4( ) — 0.00382(39) x 10—6( )
™ T
2 3
a.(r) = 1.83798(33) x 10°() —6.5830(11) x 107*(%)
4
+7.42924(118) x 10—6(9)
e

3 4
ae(p, 7) = 0.190982(34) x 10—12(%) + 7.4687(28) x 10—7(ﬁ)
™ ™

2 The order o terms are given by two parts which cancel partly

A (me/my) = =7.3739417027) x 107°

—2.17684018(10) x 10—5‘ T 1.439446007(72) x 10—5‘

p—vap p—Ibl

A9 (ne/my) = —6.5830(11) x 107

—1.16744(20) x 1077

+ 0.50914(9) x 1077
p

T—Vaj

r—Ibl

The errors are due to the errors in the mass ratios. They are completely negligible in comparison to
the other errors.
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Altogether the perturbative expansion for the QED prediction of a, is given by

2
a0 = % 0308478444002 54(33) (9)
2 s

¢ T

+1.181234016816(11) (%)3
—1.91134(182) (9)4
o
+7.791(580) (;) . (3.65)

The improvement of the coefficient C4 and knowing Cs now are important for the
. . . exp

precise determination of « from a, below. For our accurate value for the fine

structure constant (3.29), which has been determined by matching the SM prediction

of a, below with a.?, we obtain

aZtb = a?"i + 0.00000000000268 = 0.00115965217910(26)(0)(4)[26], (3.66)

which shows that the QED part of the SM prediction of a, is overwhelmingly dom-
inated by the universal part (3.45).

What still is missing are the hadronic and weak contributions, which both are
substantially reduced relative to a,. One should note that these contributions do
not scale by the (m./m N)z factor as one could naively guess. Estimates yield ai‘ad =
1.697(12) x 10~ 2 and a;"“k =0.030x10712, respectively [74]1.2*> With the improved
experimental result for a, and the improved QED calculations available, the hadronic
contribution now start to be significant, however, unlike in aﬂad for the muon, a?ad
is known with sufficient accuracy and is not the limiting factor here. As a result a,
essentially only depends on perturbative QED, while hadronic, weak and new physics
(NP) contributions are suppressed by (m,/ M )2, where M is a weak, hadronic or new
physics scale. As a consequence a, at this level of accuracy is theoretically well
under control (almost a pure QED object) and therefore is an excellent observable

for extracting aigep based on the SM prediction

aM = aQ*P[Eq. (3.65)] + 1.721(12) x 107'? (hadronic & weak). (3.67)

22The precise procedure of evaluating the hadronic contributions will be discussed extensively
in Chap. 5 for the muon, for which the effects are much more sizable. As expected, corresponding
calculations for the electron give small contributions only. We find al;ad‘ Lo _ 1.8465(121) x 10~12
for the leading HVP contribution, a?ad’ NLO _ —0.2210(14) x 10~!2 for the next to leading and
a?ad‘ NNLO _ 0.0279(2) x 10712 for the next-to-next leading order [108]. For the hadronic light—
by-light scattering contribution we estimate a?ad’LbL = 0.037(5) x 107!2. An early relatively
accurate evaluation a§4)(vap, had) = 1.884(41) x 10~!2 for the leading term has been obtained in

1995 [64] and illustrates the progress since.
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We now compare this result with the very recent extraordinary precise measure-
ment of the electron anomalous magnetic moment [6]

aZ® = 0.001 159 652 180 73(28) (3.68)
which yields
a~(a,) = 137.035999 1547(331)(0)(27)(14)[333] ,

which is close [55 — 39 in 107°] to the value (3.29) [10] given earlier. If one adopts
the CODATA recommended value ;" = 0.001 159 652 180 76(27) as an input one
obtains

a (a,) = 137.035999 1512(320)(0)(27)(14)[321] . (3.69)

The first error is the experimental one of as™®, the second and third are the numer-
ical uncertainties of the a* and o” terms, respectively. The last one is the hadronic
uncertainty, which is completely negligible. This is now the by far most precise
determination of v and we will use the recommended variant (3.29) throughout in
the calculation of a,,, below.

A different strategy is to use a, for a precision test of QED. For a theoretical
prediction of a, we then need the best determinations of o which do not depend on
a.. They are [140-142]%3

a~1(Cs06) = 137.03600000(110)[8.0 ppb] , (3.70)
a”'(Rb11) = 137.035999037(91)[0.66 ppb] , (3.71)

and have been determined by atomic interferometry. The new much improved value
(3.71) is obtained from the measurement of /1 / myy,, combined with the very precisely
known Rydberg constant and the new value for mgy,/m, [10, 142].

In terms of a(Cs06) one gets a, = 0.00115965217359(929) which agrees well
with the experimental value al® — ag‘e = 7.14(9.30) x 10~'2; With the new value
a(Rbl11) the prediction is @, = 0.00115965218172(77), again in good agreement
with experiment: a;'7 — a™ = —0.99(0.82) x 10~!2. The error is completely dom-
inated by the error of the input value of « used. The precision reached is close
to become interesting for testing new physics scenarios [150, 151]. The following
Table 3.3 collects the typical contributions to a, evaluated in terms of Egs. (3.70)
and (3.71). The new results [10] imply that the theory error is reduced by almost a
factor 5. In spite of the fact that the best non—a, determinations of « also improved by

23The results rely upon a number of other experimental quantities. One is the measured Rydberg con-
stant [143], others are the Cesium (Cs) and Rubidium (Rb) masses in atomic mass units (amu) [144]
and the electron mass in amu [145-147]. The i/ Mcs needed comes from an optical measurement
of the Cs D1 line [140, 148] and the preliminary recoil shift in an atom interferometer [149], while
h/ MRy comes from a measurement of an atom recoil of a Rb atom in an optical lattice [140].
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Table 3.3 Contributions to a,(h/M) in units 10, The three errors given in the universal con-
tribution come from the experimental uncertainty in «, from the o* term and from the o term,

respectively

Contribution a(h/Mcsoe) a(h/Mrp11)

Universal 1159.652 169 15(929)(0)(4) 1159.652 177 28(77)(0)(4)
p—loops 0.000 002738 (0) 0.000002738 (0)
7—loops 0.000 000009 (0) 0.000 000009 (0)
Hadronic 0.000001 690 (13) 0.000001 690 (13)
Weak 0.000 000 030 (0) 0.000 000030 (0)
Theory 1159.652 173 59(929) 1159.652 18172(77)
Experiment 1159.652 18073 (28) 1159.652 18073 (28)

ag® — athe 7.14(9.30) x 1012 —0.99(0.82) x 10~12

a factor 10 the error is still dominated by the uncertainty of o' (Rb11). An improve-
ment by a factor 10 would allow a much more stringent test of QED, and therefore
~ m?/A? where
A approximates the scale of “New Physics”, the agreement between o' (a,) and
a~!(Rb11) probes the scale A < O (400 GeV). To access the much more interesting
range of A ~ O(1 TeV) would require primarily a substantially more precise «.
The tenth order QED calculations by Aoyama, Hayakawa, Kinoshita and Nio mark
anew milestone in accuracy and in complexity of theoretical predictions in quantum
field theory. They put g-2 calculations on a much safer basis for what concerns the
perturbative part. Still, independent cross checks of both the O (a*) and the O (o)
QED calculations are highly desirable, even though we have no doubts that the new
results are reliable. Important semi-analytic cross checks so far confirm the numer-
ical calculations [50, 57]. The new quasi—analytic O(a*) result by Laporta [11] is
certainly a milestone in consolidating the QED part aQFP.
As a summary, we note that with

would be very important. At present, assuming that ’Aay ew Physics

a®™ —a™ = —0.99(0.82) x 1072, (3.72)

theory and experiment are in excellent agreement. We know that the sensitivity to new
physics is reduced by (m,,/m,)* - da; ¥ /5a;”® ~ 19 relative to a,,. Nevertheless, one
has to keep in mind that a, is suffering less from hadronic uncertainties and thus may
provide a safer test. One should also keep in mind that experiments determining a, on
the one hand and a,, on the other hand are very different with different systematics.
While a, is determined in a ultra cold environment a,, has been determined with ultra
relativistic (magic «y) muons so far. Presently, the a, prediction is limited by the, by a
factor a(Rb11)/da(a,) =~ 5.3 less precise, a available. Combining all uncertainties
a, is about a factor 43 more sensitive to new physics at present.
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Table 3.4 QED contributions to a,, in units 1079

199

Term Universal e—loops T—loops e x T7-loops
a® —1.77230506 (0) | 5.904 060 07 (4) 0.00042128 (8)| —

a® 0.014 804 20 (0) | 0.286 603 69 (0) 0.000004 52 (0)| 0.000 006 61 (0)
a® —0.000 05567 (0)| 0.003 86264 (18) | 0.000001 23 (0)| 0.000 001 83 (0)
a9 0.000 000 62 (4)| 0.000050 19 (6) | —0.000 00001 (0)| 0.000 000 14 (0)

Recently, the possible non-perturbative QED effect of order o’ of the positronium
exchange v* — [e*e™ Jpound stae = 7> in the virtual photon line of the LO diagram
of the electron g — 2, was pointed out in [152, 153], but has been shown to be absent
as an additional contribution [153—156], in accord with earlier studies [157, 158].

3.2.3 The Anomalous Magnetic Moment of the Muon

The muon magnetic moment anomaly is defined by

_ Hu
eh/2m,

1
a, = E(gu -2) -1, (3.73)

where g, = 2u,/(eh/2m,) is the g—factor and p, the magnetic moment of the
muon. The different higher order QED contributions are collected in Table 3.4. We
thus arrive at a QED prediction of a,, given by

a ™" =116 584 718.859(0.026)(0.009)(0.017)(0.006)[0.034] x 10~""  (3.74)
where the first error is the uncertainty of « in (3.29), the second one combines in
quadrature the uncertainties due to the errors in the mass ratios (3.30), the third and
fourth are the numerical uncertainties of the O (a*) and O () terms, respectively.
With the spectacular progress achieved with the calculation of the complete O (o)
term [10, 51] the error is essentially given by the input error of a[a.] in spite of the
fact that this error has been reduced as well due to the O (a°) result on a,.

The following Table 3.5 collects the typical contributions to a,, evaluated in terms
of a (3.29) determined via a,.

The world average experimental muon magnetic anomaly, dominated by the very
precise BNL result, is now [7, 159]

aﬁ"P = 1.16592091(63) x 1073 (3.75)
(relative uncertainty 5.4 x 10~7), which confronts the SM prediction
a)f® = 1.16591783(35) x 1077 . (3.76)
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Table 3.5 The various types of contributions to a,, in units 1079, ordered according to their size
(L.O. lowest order, H.O. higher order, LbL light-by-light). The gray band shows the present exper-
imental result with its uncertainty. The hatched overlay illustrates the expected uncertainty (for
the same central value) which will be reached in the coming years.“Theory 7 shows the result
from [88] where T—data have been taken into account, before taking into care of p° — v mixing.
This result is outdated. The LbL result’s history is also shown. Results are from: 1995 [112, 114,
115], 2001 [KN] [120], 2003 [MV] [123], and 2015 [JN] [20, 74, 125]

L.O. universal 1161.409732 (0)

‘World Ave
e—loops 6.194571 (1) Theory (e*e-) 130 I
H.O. universal —1.757557 (0) X Theory (r) 180
L.O. hadronic 0.068946 (325) S S TR T AT A AR A
L.O. weak 0.001948 (0) =75 0 100 200
NLO hadronic —-0.000993 (7) . QED
NNLO hadronic 0.000122 (1) EW 1-oop
LbL hadronic 0.001034 (288) |/ 0 21"
7-loops 0.000426 (0) H.O. had
H.O. weak -0.000411 (8) LbL 1995
e X t-loops 0.000008 (0) LbL 2001 [KN]

LbL 2004 [MV]
theory 1165.91783 (35) LbL 2017 [JN] in units 101
experiment 1165.92091 (63) a, x 1010 — 11659000

Figure 3.8 illustrates the sensitivity to various contributions and how it developed
in history. The high sensitivity of a,, to physics from not too high scales M above
m,,, which is scaling like (m/,,/M)z, and the more than one order of magnitude
improvement of the experimental accuracy has brought many SM effects into the
focus of the interest. Not only are we testing now the 4—loop QED contribution,
higher order HVP effects, the infamous hadronic LbL contribution and the weak
loops, we are reaching or limiting possible New Physics at a level of sensitivity
which caused and still causes a lot of excitement. “New Physics” is displayed in the
figure as the ppm deviation of

at® —al* = (306 +72) x 107", (3.77)
which is 4.3 o. We note that the theory error is now smaller than the experimental
one. It is fully dominated by the uncertainty of the hadronic low energy cross section
data, which determine the hadronic vacuum polarization and, partially, from the
uncertainty of the hadronic light-by-light scattering contribution.

As we notice, the enhanced sensitivity to “heavy” physics is somehow good news
and bad news at the same time: the sensitivity to “New Physics” we are always
hunting for at the end is enhanced due to

m 2

P 4

a? ~ (_)
1L4NP
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Fig. 3.8 History of the muon g — 2 experiments and the sensitivity to various contributions. The

increase in precision with the BNL g — 2 experiment is shown as a blue vertical band. New Physics

is illustrated by the deviation (affp - a/‘f‘e) / a,ixP. The left orange vertical band shows the sensitivity

band which will be reached with the upcoming muon g — 2 experiment at Fermilab [160]. Arrows
point to what is limiting theory precision presently: the Hadronic Vacuum Polarization (HVP) and
Hadronic Light-by-Light (HLbL) contributions

by the mentioned mass ratio square, but at the same time also scale dependent SM
effects are dramatically enhanced, and the hadronic ones are not easy to estimate
with the desired precision.

The perspectives for future developments will be discussed at the end of Chap. 7.

After this summary of the current status of @, and a., we will now go on and
present basic techniques and tools used in calculating the various effects, before we
are going to present a more detailed account of the individual contributions in the
next chapter.

3.3 Structure of the Electromagnetic Vertex in the SM

Here we want to discuss the lepton moments beyond QED in the more general context
of the SM, in which parity P as well as CP are broken by the weak interactions. We
again start from the relevant matrix element of the electromagnetic current between
lepton states
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ifﬂg(pl, pas 11, 12) = (€ (p2, 1) 5, (O)€™ (pr, 1)) = i (pa, r) T, u(py, 11)

(3.78)
and look for the additional form factors showing up if P and C are violated. Again
q = p» — pi is the momentum transfer. u(p;, r;) is the Dirac spinor, the wave
function of the incoming lepton, with momentum p; and 3rd component of spin
ri(= :t%), and i = u*4? is the adjoint spinor representing the wave function of
the outgoing lepton. /T fy‘ ¢¢ 1s a Hermitian 4 x 4 matrix in spinor space and a Lorentz
four—vector.

Besides the Dirac matrix v* we have two further independent four—vectors, the
momenta p; and p; or linear combinations of them. It is convenient to choose the
orthogonal vectors P = p; + p, and g = p, — p; (with Pg = 0). The general
covariant decomposition for on—shell leptons in the SM then may be written in the
form

P“’A +q
2m 2 2m

n " PH

A3+l ysAy + 1 vsAs +1
2m

Iy, =" A + vs4s  (3.79)

2m

where the scalar amplitudes A;(p;, p») are functions of the scalar products plz, p%

and p; p,. Since the lepton is on the mass shell p7 = p3 = m? and using ¢*> =

2m? — 2 p| p>, the dimensionless amplitudes depend on the single kinematic variable

¢? and on all the parameters of the theory: the fine structure constant o = e /47 and

all physical particle masses. We will simply write A; = A, (¢g?) in the following.
When writing (3.79) we already have made use of the Gordon identities

ic*q, = —PF+2m~y*, icVP, = —qg",

: : 3.80
i0"q, s = —Plys 101 Pyys = —q"ys + 2mytys G-80

which hold if sandwiched between the spinors like u#(p;) - - - u(p1). In QED due to
parity conservation the terms proportional to -5 are absent.
The electromagnetic current still is conserved:

Oujly=0. (3.81)
On a formal level, this may be considered as a trivial consequence of the inhomoge-
neous Maxwell equation (see [161] for a manifestly gauge invariant formulation in

the SM)

8, F" = —e ju. with F,, =0,A, —d,A,

since 0,0, F" = —e 0,j%, = 0 as 0,0, is symmetric in ;4 <> v while F* is
antisymmetric. As a consequence we must have g,ii»[1",,u; = 0. By the Dirac
equations p;u; = mu; (i = 1,2) we have u, gu; = 0, while up, gysu; =

—2miisrysu,, furthermore, ¢ P = 0 while keeping g> # O at first. Hence current
conservation requires A3 = 0 and As = —4m?/q> A, such that we remain with four
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physical form factors?*

_ . _ pP* 2mg" . PH
i [T ppuy = i (’7“141 + %Az + (’Y“ - )’YSA4 + 12—75146) ui .
q m

This shows that the two amplitudes A3 and Ag are redundant for physics, however,
they show up in actual calculations at intermediate steps and/or for contributions
from individual Feynman diagrams. By virtue of the Gordon decomposition

_ Py, ~ , ] O.;qu
u(pz)z—u(pl) = u(p2) (’y‘ —1i ) u(pr)
m 2m

we finally obtain for the form factor

2mgq" . wd q
Yy, = 7" Fe(g®) + (7” TP )WSFA + 10W2—VFM(612) + U‘tuz—V’YsFD(qz)

m m
(3.82)

With Fg = A; 4 A, the electric charge form factor, normalized by charge renor-
malization to Fg(0) = 1, Fo = Ay the anapole moment [162—-166] which is P
violating and vanishing at g> = 0: F5(0) = 0. The magnetic form factor is
Fm = —A, which yields the anomalous magnetic moment as a;, = Fy(0). The
last term with Fp = Ag represents the CP violating electric dipole moment (EDM)

_ Fp(0)

d, =
¢ 2m

(3.83)

Note that (3.82) is the most general Lorentz covariant answer, which takes into
account current conservation (3.8 1) and the on—shell conditions for the leptons (Dirac
equation for the spinors).
In the SM at the tree level Fr(g?) = 1, while Fi(g?) =0for i =M, A, D).
The anomalous magnetic moment a; is a dimensionless quantity, just a number,
and corresponds to an effective interaction term

SL™ = —Zﬂ D) o™ P(x) Fp(x) , (3.84)
my

with classical low energy limit

€edy

241n the SM the proper definition of the form factors is highly non—trivial. The conventional definition
of the photon field has to be replaced by one which satisfies Maxwell’s equations to all orders. This
has been investigated extensively in [161]. Since we are interested only in the form factors in the
classical limit here, we need not go further into this discussion.
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written as a Hamiltonian in 2—spinor space a la Pauli. Note that a term (3.84), if
present in the fundamental Lagrangian, would spoil renormalizability of the theory
and contribute to F;(g?) (i=M,D) at the tree level. In addition it is not SU(2); gauge
invariant, because gauge invariance only allows minimal couplings via the covariant
derivative: vector and/or axial-vector terms. The emergence of an anomalous mag-
netic moment term in the SM is a consequence of the symmetry breaking by the
Higgs mechanism,? which provides the mass to the physical particles and allows
for helicity flip processes like the anomalous magnetic moment transitions. In any
renormalizable theory the anomalous magnetic moment term must vanish at tree
level, which also means that there is no free parameter associated with it. It is thus a
finite prediction of the theory to all orders of the perturbation expansion.

The EDM term only can be non—vanishing if both parity P and time-reversal T
are violated [167, 168]. It corresponds to an effective interaction

de - . .
SLM = =5 D) 075 () Fu() . (3.85)
which in the non-relativistic limit becomes
—oLEM = H, ~ —d, oF (3.86)

again written as a Hamiltonian in 2—spinor space. Again a term (3.85) is non—
renormalizable and it is not SU(2), gauge invariant and thus can be there only
because the symmetry is broken in the Higgs phase. In the framework of a QFT
where CPT is conserved T violation directly corresponds to CP violation, which
is small (0.3 %) in the light particle sector and can come in at second order at
best [169].2° This is the reason why the EDM is so much smaller than its magnetic
counter part. The experimental limit for the electron is |d,| < 1.6 x 107?7 ¢ - cm at
90% C.L. [171]. The direct test for the muon gave d,, = 3.7 3.4 x 107%¢ - cm at
90% C.L. [172]. New much more precise experiments for d,, are under discus-

250ften the jargon spontaneously broken gauge symmetry (or the like) is used for the Higgs mech-
anism. The formal similarity to true spontaneous symmetry breaking, like in the Goldstone model,
which requires the existence of physical zero mass Goldstone bosons, only shows up on an unphys-
ical state space which is including the Higgs ghosts (would be Goldstone bosons). In fact it is
the discrete Z, symmetry H <> —H of the physical Higgs field (in the unitary gauge) which is
spontaneously broken. This also explains the absence of physical Goldstone bosons.
26CP-violation in the SM arises from the complex phase § in the CKM matrix, which enters the
interactions of the quarks with the W* gauge bosons. The magnitude in the 3 family SM is given
by the Jarlskog invariant [170]

J = cos 0 cos 0 cos 05 sin® 8] sin 6 sin 05 sin § = (2.88 & 0.33) x 107 (3.87)

where the ¢; are the 3 mixing angles and ¢ is the phase in the CKM matrix. Note that J is very
small. In addition, only diagrams with at least one quark—loop with at least four CC vertices can
give a contribution. This requires 3—loop diagrams exhibiting four virtual W-boson lines inside.
Such contributions are highly suppressed. Expected CP violation in the neutrino mixing matrix are
expected to yield even much smaller effects.



3.3 Structure of the Electromagnetic Vertex in the SM 205

sion [173]. Theory expects d™ ~ 1072 ¢ - ¢cm [169], 10 times smaller than the
present limit. For a theoretical review I refer to [174] or [35]. If we assume that
My ~ (m,,,/me)2 7. (see (1.5)), i.e., n scales like heavy particle (X) effects in
dag(X) o (my/Mx)?, as they do in many new physics scenarios, we expect that
d, ~ (m,/m,)d,, and thus d, ~ 3.2 x 107% ¢ - cm. This is too small to affect the
extraction of a,,, for example, as we will see.

3.4 Dipole Moments in the Non-Relativistic Limit

Here we are interested in the non-relativistic limits of the effective dipole moment
interaction terms (3.84)

el ¢ n

BLA™ = =3 @) 0 U (0) ().
and (3.85)

5 EEDM dl n s v

—31/1()6) 10775 P(x) F/w(x) ,

when the electron is moving in a classical external field described by F'. The
relevant expansion may be easily worked out as follows: since the antisymmetric
electromagnetic field strength tensor £, exhibits the magnetic field in the spatial

components Fy: B! = 1€ Fy; and the electric field in the mixed time-space part:
E' = Fy,;, we have to work out o/ for the corresponding components:

ok — 5 (77 =+~
_i 0 o 0 ok B 0 ok 0 o
) - 0 —ak 0 —ak 0 - 0
_ _iflo'0"] 0 a0
=73 0 [0.65)7° \od
. i .

0%s = 5 (47 = 7"7") 7

2
_if(10 0 o (0 o 10
“2W0o-1)\-¢ o —i0)\o-1))"

0 ol 01 o 0

a0 10 0o _
Note that the 5 here is crucial to make the matrix block diagonal, because, only block

diagonal terms contribute to the leading order in the non-relativistic expansion, as
we will see now.

—
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In the rest frame of the electron the spinors have the form

u(p,r) = P +m)u@©,r) ~u,r)

1
VPl +m

0= (). 0()-)- () -0)

We first work out the magnetic dipole term

with

2
ik

0™, Fy = (U (r2), 0) 0" (U ”))
— U7 (r), 0) o'* (

U(h))

0
= MU (). 0)( f) (UE)”)) Fi

=2U"(r) o U(r)) B=2(0),,,B

The other non—diagonal terms do not contribute in this static limit. Similarly, for the
electric dipole term

- v U(r
MZO"u FYSMIF/W jad (UT(FZ)a 0) ot s ( E)l)) Ew

=27 (). 0) 0" s (U(”)) Fo

=200 (5 ) (V") o

= 2iUT(r2) ocU(r)E = 2i(a)r2,rlE

In the low energy expansion matrix elements of the form v, I;u; or i, ;v pick out
off—diagonal 2 x 2 sub—matrices mediating electron—positron creation or annihilation
processes, which have thresholds /s > 2m and thus are genuinely relativistic effects.
The leading terms are the known classical low energy effective terms

AMM Cedy
_5£eff = Hm =~ Z_W G'B

and
—0LEM = H, ~ —d, oF ,

written as 2 x 2 matrix Hamiltonian, as given before.
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3.5 Projection Technique

Especially the calculations of the anomalous magnetic moment in higher orders
require most efficient techniques to perform such calculations. As we have seen in
Chap. 2 the straightforward calculation of the electromagnetic form factors turns out
to be quite non—trivial at the one—loop level already. In particular the occurrence
of higher order tensor integrals (up to second rank) makes such calculations rather
tedious. Here we outline a projection operator technique which appears to be a
much more clever set up for such calculations. Calculations turn out to simplify
considerably as we will see.

The tensor integrals showing up in the direct evaluation of the Feynman integrals
may be handled in a different way, which allows us to deal directly with the individual
amplitudes appearing in the covariant decomposition (3.79). With the matrix element
of the form (3.78) we may construct projection operators P,; such that the amplitudes
A; are given by the trace

A= Pttt} . (3.88)

Since we assume parity P and CP symmetry here (QED) and we have to form a
scalar amplitude, a projection operator has to be of a form like (3.79) but with
different coefficients which have to be chosen such that the individual amplitudes
are obtained. An additional point we have to take into account is the following: since
we are working on the physical mass shell (off-shell there would be many more
amplitudes), we have to enforce that contributions to IT/,, of the form 81T/, = - --
(p1 —m) + (po — m) - - - give vanishing contribution as ﬁzéﬂffuul = 0. This is
enforced by applying the projection matrices pf; + m from the right and p; + m from
the left, respectively, such that the general form of the projector of interest reads

PH g" g* pH
P =(p1+m) (7“61 Rl YHyseq + S—75¢5 — 17’Y556) (Fr+m) .
m 2m 2m 2m
(3.89)
It indeed yields

Tr {Puortt,,} =0

for arbitrary values of the constants ¢;, because (pr +m)(po —m) = p3 —m* =0
if we set p% = m? and making use of the cyclicity of the trace, similarly, (p; — m)
(p1 +m) = p? —m? = 0if we set p7 = m>. In order to find the appropriate
sets of constants which allow us to project to the individual amplitudes we compute
Tr P, 11}, and obtain
6
Tr {Pﬂnja} =S g A (3.90)

i=1
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>0 gi Ai = Ay [c1(2ds — 4s + 8m?) + c2 (=25 + 8m?)]
+ A, [e1 (=25 + 8m?) + co(—4s + 1/2s2m_2 + 8m2)]
+ Az 325 — 1/25?m™)]
+ A4 [ca(2ds — 8dm? — 4s + 8m?) + c5(29)]
+ As [ca(=25) + c5(1/25°m™2)]
+ A [c6(2s — 1/25?m™)]

where s = qz. We observe, firstly, that each of the amplitudes A3 and Ag does
not mix with any other amplitude and hence may be projected out in a trivial way
setting ¢ = 1 or ¢¢ = 1, respectively, with all others zero in (3.89). Secondly,
the parity violating amplitudes A; i = 4,5, 6 do not interfere of course with the
parity conserving ones A; i = 1,2, 3 which are the only ones present in QED. To
disentangle A; and A, we have to choose c;/c; such that the coefficient of A, or
the one of A, is vanishing, and correspondingly for A4 and As. The coefficient of
the projected amplitude A; has to be normalized to unity, such that the requested
projector yields (3.88).

Thus, P; is obtained by choosing ¢; such that g; =1 and g; =0 for all j #i. The
following table lists the non—zero coefficients required for the corresponding projec-
tor:

s —4m? | 2m?
Prier=e—ps— 2= TDR@ 55 — dm?)
d —2)s + 4m? 1 2m?
Prre= AT "am? VT TR (5 — am?)
2
P = @
' s | 2m?
Paiea=csy 5 ST @R 5(5 — am?)
d —2)(s — 4m?) — 4m? | 2m?
Ps i s = —c4 s 4T @R 5(5 — am?)
Ps : co = —i— —2m

fl (d) s(s—4m?)

with f1(d) we denote f(d)/f(d = 4) where f(d) =Tr1 =292 (limy_4 f(d) =
4). As discussed in Sect. 2.4.2, p. 68 physics is not affected by the way f(d =4) =4
is extrapolated to d # 4, provided one sticks to a given convention, like setting
f(d) = 4 for arbitrary d which means we may take fi(d) = 1 everywhere as a
convention. For the amplitudes we are interested in the following we have

Pl = s 0+ )(“+—4m2 P—H) (# +m)
VT 2h@d—2) T\ TS —dmyam ) 2T
‘o 2m’/s ( wP_)

Pz - fl(d)(d—Z)(S—4m2)(‘¢1 +m) ’7“—{— (s_4m2) Zm (¢2+m),
a1 2m? /s ( ) (q_M) ( ) (3.91)
37 f(d) (s — 4m2) p+m o P+ m). )
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All projectors are of the form

Pl = (# +m) Af(p2, p1) (B +m) (3.92)

for example, in the projector for A, taking fi(d) = 1 we have

2m? (d—2) s+ 4m> p*
Apa. pr) = (w @=2)s+4m>

—). 393
(d—2)s(s —4m?) (s —4m?) Zm) G99
This projector we will need later for calculating higher order contributions to the
anomalous magnetic moment in an efficient manner.

The amplitudes A; at one—loop are now given by the integrals

a2 [ 4 fi®) (3.94)
l Q2m) ((p2 —k)? —m)((p1 — k)? — m?)(k?) )
with
2 2
A = (4m? — 25) — AP + (d — 4y k2 4 2 K" 2(kP)
(s —4m?)
2 (kP)? (kq)?
_ 2 g _
F0) = s — 4m? (kP+k t@-0 (s — 4m?) s )
8m? kP
fy(k) = % kq (1 —d-2) m) . (3.95)

Again we use the relations 2k P = 2 [k*] — [(p1 — k)?> —m?] — [(p2 —k)?> —m?] and
2kq = [(p1 —k)?> —m?*] — [(pa — k)> — m?] when it is possible to cancel against the
scalar propagators &, é and é where (1) = (p; —k)>—m?, (2) = (p, —k)> —m?,
3) = k%

filk) = (4m* =2s) +(d —8) 3) +2 (1) +2(2)

(kq) (kP)
+ T[(l) - 2)] - m[z 3)—-1) - @2)]

2

fa(k) = S —am (4 BA-1-©2
kP k
+@-n— pey-m-o- 20 - (2)])
(s —4m?) s
4m? kP
o =2 1) - @) (1 —@-2 —2) | (3.96)
s (s —4m?)

We observe that besides the first term in f; which yields a true vertex correction
(three point function) all other terms have at least one scalar propagator (1), (2)
or (3) in the numerator which cancels against one of the denominators and hence
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only yields a much simpler two point function. In particular f; i = 2, 3 are com-
pletely given by two point functions and the remaining k dependence in the numer-
ator is at most linear (first rank tensor) and only in combination of two point func-
tions. This is a dramatic simplification in comparison to the most frequently applied
: : L L .
direct method presented before. With [, oos = —Co IA D = Bolm,m;s),

1 _ 1 _ ) k' Ag(m) k' Ag(m)
fk ne — fk o3 = Bo(0,m;m?), fk e = Pl o = P2

k" 1 1 1 .
Lo =0 A o= IA @ = —Ao(m) and A @ = 0 we easily find

2
A =2 [(2S—4m2)C0(m~/,m,m)

1672

— 3 Bo(m, m; s) + 4 By(0, m; m?) — 2]

Ay =

&2 —4m?
1672 | s — 4m?
Ay =0 (3.97)

(Bo(m,m; s) — Bo(0, m; mz))}

in agreement with (2.204).

For our main goal of calculating the muon anomaly a, = Fm(0) = —A2(0) we
may work out the classical limit s = g> — 0

a, = lim Tr {(# +m) A5(p2, p1) (o +m) [1,(P, q)} (3.98)
q2—0

explicitly. Because of the singular factor 1/¢? in front of the projector A, (3.93) we
are required to expand the amplitude I7"(P, g) to first order for small ¢,

0
Hu(Pv Q) s H;L(Pa 0) + q’/aqy

M,(P.q)|,_y=Vup) +¢" Tu(p), (399

where for ¢ = 0 we have p = P/2 = p;. Other factors of g come from expanding
the other factors in the trace by setting p» = (P + ¢)/2 and p; = (P — ¢q)/2 and
performing an expansion in ¢ = p, — p; for fixed P = p, + p;. We note that due
to the on-shell condition p? = p? = m? we have Pq = 2pq + g = 0. The only
relevant g* dependence left are the terms linear and quadratic in g, proportional to g*
and g*q". Since the trace under consideration projects to a scalar, we may average
the residual ¢ dependence over all spatial directions without changing the result.
Since P and g are two independent and orthogonal vectors, averaging is relative to
the direction of P. For the linear term we have

_ [de(p
7 = / % g" =0 (3.100)
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because the integrand is an odd function, while

q'q” =

d2(P, q) iy prpv
/ 1. 94 =ag + 5 P2

must be a second rank tensor in P. Since Pg = 0, the contraction with P, is
vanishing, which requires

8=—a.

The other possible contraction with g,,,, yields %

/dfz(P,q)qzzqz/M —¢=ad+f=Wd-Da
4 4

and hence

q2

o =
d—-1

or

@ o PP (3.101)
q"q" = g o) - -

Using these averages we may work out the limit which yields

4= ea @ —Tm A Em AT+ m) )}y (3.102)

1

t T D Tr {[m* 4" =@ —=VDmp" —d §p" |V} _,

as a master formula for the calculation of a, [103]. The form of the first term is
obtained upon anti-symmetrization in the indices [pv’]. The amplitudes V,,(p) and
T,,,(p) depend on one on-shell momentum p, only, and thus the problem reduces to
the calculation of on—shell self-energy type diagrams shown in Fig.3.9.

In T, the extra vertex is generated by taking the derivative of the internal muon
propagators

0 i 1 i

0 =Wl 2 h—m

i
p—-m
Usually, writing the fermion propagators in terms of scalar propagators

i _ i ktm
pi—k—m  (pi—k?—m?
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Fig.3.9 To calculate a;, one only needs the on—shell vertex V,,(p) = I1,(P, q)|4=0 and its y <> v
anti-symmetrized derivative T, = %H (P, q)|g=0 at zero momentum transfer. [llustrated here
for the lowest order diagram; the dotted line may be a photon or a heavy “photon” as needed in the
dispersive approach to be discussed below

as done in (2.203), only the expansion of the numerators contributes to 7,,,, while
expanding the product of the two scalar propagators

1 1 _ 1 ,
r— kP = (=K —m? — (p—kp =y T 2

gives no contribution linear in g, as the linear terms coming from the individual prop-
agators cancel in the product. Looking at (2.203), for the lowest order contribution
we thus have to calculate the trace (3.102) with

‘//l_) U/J,Z’Yp (ﬂ_k/'i_m)FY/l (ﬂ_k/+m)r7/ﬂ

1
Ty — ty, = ) 0 ('Yt/ Y (P— K+ m) — (P— K+ m) 'V/fYV) Vo -

The trace yields

1 (2kp)? 1
22 (———1) —4 -1 —
k (d—l ) e (d d—l)

which is to be integrated as in (2.203). The result is (see Sect.2.6.3 p. 116)

)

_ a 1
= Ten? 3

{Bo(0, m; m*) — By(m,m;0) + 1} = — —

T2
as it should be. Note that the result differs in structure from (3.97) because inte-
gration and taking the limit is interchanged. Since we are working throughout with
dimensional regularization, it is crucial to take the dimension d generic until after
integration. In particular setting d = 4 in the master formula (3.102) would lead to
a wrong constant term in the above calculation. In fact, the constant term would just
be absent.
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The projection technique just outlined provides an efficient tool for calculat-
ing individual on—shell amplitudes directly. One question may be addressed here,
however. The muon is an unstable particle and mass and width are defined via the
resonance pole in the complex p?—plane. In this case the projection technique as
presented above has its limitation. However, the muon width is so many orders of
magnitude smaller than the muon mass, that at the level of accuracy which is of any
practical interest, this is not a matter of worry, i.e. the muon as a quasi stable particle
may be safely approximated to be stable in calculations of a,,.

3.6 Properties of the Form Factors

We again consider the interaction of a lepton in an external field: the relevant 7T—
matrix element is 3
Tri = eJr AT (q) (3.103)

with
Tp =izl Muy = (f1 7 0)]i) = (€7 (p2)jk 0) 1€~ (p1)) - (3.104)

By the crossing property we have the following channels:

e Elastic £~ scattering: s = ¢> = (p, — p1)> <0
e Elastic £+ scattering: s = ¢> = (p; — p2)> <0
e Annihilation (or pair—creation) channel: s = ¢ = (p; + p2)* > 4m%

The domain 0 < s < 4m% is unphysical. A look at the unitarity condition
T - Ty} = i(zm“ 5 (P — P T, Th (3.105)

which derives from (2.96), (2.103), taking ( f|S™S|i) and using (3.128) below, tells
us that for s < 4m% there is no physical state |n) allowed by energy and momentum
conservation and thus

Tri =T for s <4mj, (3.106)

which means that the current matrix element is Hermitian. As the electromagnetic
potential Aext (x) is real its Fourier transform satisfies

A (=q) = A;™(q) (3.107)

and hence
Jh=J4  for s <d4mj. (3.108)
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If we interchange initial and final state the four—vectors p; and p, are inter-
changed such that g changes sign q — —q. The unitarity relation for the form
factor decomposition of i, IT, zzz u (3.82) thus reads (u; = u(p;, r;))

_ 2mq* q v
it (VMFE(QZ) + " = —5—TsFa+ 10‘“'2]/ Fu(g®) + O"LWT'YSFD Ui

.
[ﬁl(w“FE(qz)Jr[v“Jr —io“”;%FM(qz) ’“’zq ’YSFD) ]

2mq* : q v _
=u; (v“Fg(q% L L 0 S Ri(g®) =3 o D F i

= 4 4 B v qv n qv
= it (7‘ Fi@) + " - " %Fﬁ(qz) + 0! %’YSFS) ui -
The last equality follows using u; = iy, ”1 = 7Ou, 75 =75, V57" =
—7s5, Y90 = 4 and 40040 = . Unitarity thus implies that the form
factors are real
ImF(s); =0 for s <d4m? (3.109)

below the threshold of pair production s = 4m?2. For s > 4m? the form factors are
complex; they are analytic in the complex s—plane with a cut along the positive axis
starting at s = 4m? (see Fig.3.10). In the annihilation channel (p_ = p,, p+ = —p1)

017 O)lp-, py) = i(olj” O)[n)(nlp-, py) (3.110)

n

where the lowest state |n) contributing to the sum is an ete™ state at threshold:
E. = E_ = m, and p;y = p_ = 0 such that s = 4m>. Because of the causal ie—
prescription in the time—ordered Green functions the imaginary parts of the analytic
amplitudes change sign when s — s* and hence

Fi(s*) = F(s) , (3.111)

which is the Schwarz reflection principle.

3.7 Dispersion Relations

Causality together with unitarity imply analyticity of the form factors in the complex
s—plane except for the cut along the positive real axis starting at s > 4m%. Cauchy’s
integral theorem tells us that the contour integral, for the contour C shown in Fig. 3.10,
satisfies
1 ds’ F(s')
Fi(s) = _—. (3.112)
2mi c §'—s



3.7 Dispersion Relations 215

Fig. 3.10 Analyticity Im s
domain and Cauchy contour

C for the lepton form factor C
(vacuum polarization). C is a R

circle of radius R with a cut
along the positive real axis
for s > so = 4m? where m is Re s
the mass of the lightest 50

particles which can be
pair—produced

Since F*(s) = F(s*) the contribution along the cut may be written as

lin?)(F(s—l—ig)—F(s—ig))=2iImF(s); s real, s >0
and hence for R — o0

o
‘ N , Im F(s)
FG)=1lmF(s+ic)= —lim [ ds' ————— 4+ Cx .
e—0 T e—0 s —§ —1ie
4m?

In all cases where F'(s) falls off sufficiently rapidly as |s| — oo the boundary term
Co vanishes and the integral converges. This may be checked order by order in
perturbation theory. In this case the “un—subtracted” dispersion relation (DR)

o0
1 Im F(s'
Fes) = Ltim [ ay 2mFGD (3.113)
T e—0 s’ =5 —1ie
4m?

uniquely determines the function by its imaginary part. A technique based on DRs
is frequently used for the calculation of Feynman integrals, because the calculation
of the imaginary part is simpler in general. The real part which actually is the object
to be calculated is given by the principal value (P) integral

s’ —s

Re F(s) = lf ds’ w , (3.114)
s

4m?

which is also known under the name Hilbert transform.

For our form factors the fall off condition is satisfied for the Pauli form factor
Fy\ but not for the Dirac form factor Fg. In the latter case the fall off condition is
not satisfied because Fg(0) = 1 (charge renormalization condition = subtraction
condition). However, performing a subtraction of Fg(0) in (3.113), one finds that
(Fe(s) — Fg(0))/s satisfies the “subtracted” dispersion relations
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[o¢]

F(s)— F 1 Im F(s’

FO-FO _ 1y, [ s 6 (3.115)
s T e—>0 s'(s" — s —ig)

4m?

which exhibits one additional power of s’ in the denominator and hence improves
the damping of the integrand at large s’ by one additional power. Order by order in
perturbation theory the integral (3.115) is convergent for the Dirac form factor. A
very similar relation is satisfied by the vacuum polarization amplitude which we will
discuss in the following section.

3.7.1 Dispersion Relations and the Vacuum Polarization

Dispersion relations play an important role for taking into account the photon propa-
gator contributions. The related photon self—energy, obtained from the photon prop-
agator by the amputation of the external photon lines, is given by the correlator of
two electromagnetic currents and may be interpreted as vacuum polarization for the
following reason: as we have seen in Sect.2.6.3 charge renormalization in QED,
according to (2.212), is caused solely by the photon self—energy correction; the fun-
damental electromagnetic fine structure constant « in fact is a function of the energy
scale @« — «(E) of a process due to charge screening. The latter is a result of the
fact that a naked charge is surrounded by a cloud of virtual particle—antiparticle pairs
(dipoles mostly) which line up in the field of the central charge and such lead to a
vacuum polarization which screens the central charge. This is illustrated in Fig. 3.11.
From long distances (classical charge) one thus sees less charge than if one comes
closer, such that one sees an increasing charge with increasing energy. Figure 3.12
shows the usual diagrammatic representation of a vacuum polarization effect.

Fig. 3.11 Vacuum
polarization causing charge
screening by virtual pair
creation and re—annihilation.
The effective charge seen by
a test charge at distance

r = h/E (E the collision
energy) is given by the
charge inside the ball of
radius r
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Fig. 3.12 Feynman diagram

L o virtual - K
describing the vacuum ‘ ‘
polarization in muon
scattering f pairs L

v ete T, T un,dd, - —

As discussed in Sect.2.6.1 the vacuum polarization affects the photon propagator
in that the full or dressed propagator is given by the geometrical progression of self—
energy insertions —ifT, (g%). The corresponding Dyson summation implies that the
free propagator is replaced by the dressed one

—ighv —igh

D" (q) = — DM (g) = s
@ q* +ie @ q> +11,(¢*) + ie

(3.116)

modulo unphysical gauge dependent terms. By U (1), gauge invariance the photon
remains massless and hence we have I, (¢*) = I1,(0) +¢* IT, (¢*) with I1,(0) = 0.
As a result we obtain

—igh

iDilW - 4
D= mar ey

+ gauge terms (3.117)
where the “gauge terms” will not contribute to gauge invariant physical quantities,
and need not be considered further.

Including a factor ¢? and considering the renormalized propagator (wave function
renormalization factor Z.,) we have

—igh 2 Z,

s 2
ieeDM"(q) = —"————
7 g (1+1(g%)

+ gauge terms (3.118)

which in effect means that the charge has to be replaced by a running charge

2
e“Z,

1+ 1T/(q%)

2

et — (g = (3.119)

The wave function renormalization factor Z,, is fixed by the condition that at g>—0
one obtains the classical charge (charge renormalization in the Thomson limit; see
also (2.170)). Thus the renormalized charge is

62

1+ () — IT,(0))

2

e — e2(q2) = (3.120)
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where the lowest order diagram in perturbation theory which contributes to /7 ; (g?)is

v f v
W\Q/V = — (¢’ " —q"q") IT,(¢°)

S

and describes the virtual creation and re—absorption of fermion pairs v*—eTe™,

wrp, T un, dd, - -— ~*, In terms of the fine structure constant o = %
(3.120) reads®’
alg?) = i Aa=—Re (I1(g») - I,0) . (3.121)

1— Aa

The various contributions to the shift in the fine structure constant come from the
leptons (lep = e, i and 7) the 5 light quarks (i, d, s, ¢, and b and the corresponding
hadrons = had) and from the top quark:

Aa = Acjep + A g + Acviop + -+ (3.122)

Also W—pairs contribute atg> > M %, While the other contributions can be calculated
order by order in perturbation theory the hadronic contribution A® ay,,q exhibits low
energy strong interaction effects and hence cannot be calculated by perturbative
means. Here the dispersion relations play a key role. This will be discussed in detail
in Sect.5.1.7.

The leptonic contributions are calculable in perturbation theory. Using our result
(2.176) for the renormalized photon self-energy, at leading order the free lepton
loops yield

Aep(q?) =

-z % [=3 = v+ A+ 5 vT=o n (1224)]

= = #[-t+arim0-sn ()] (3.123)
=2 % [n (1g*I/m?) = 3 + 0 (m3/q?)] for | > m}

~ 0.03142 for g% = M2

where y, = 4m% /q* and B, = /T — y; are the lepton velocities. The two—loop QED
contribution

27 Later, in particular when discussing hadronic resonance contributions, we will also use a complex
definition of the effective fine structure constant by including the imaginary part on the r.h.s of
(3.121) as well.
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NE D TR =0 YRRV < W)

has been calculated long time ago [175, 176]. Defining the conformal variable (2.182)
(see Sect.2.6.1)

) JI—y—1 4m? 4¢

¢ - €= T

ST+l YT T a—or

we may write the single fermion contribution to two loops for spacelike ¢g> < 0
(0 < ¢ < 1) as (in this from provided by M. Kalmykov)

M2y af 20 16 ¢ _‘_1(14‘5)(1—454-52) ]
A a(q)—4ﬁ[ 9+3(1_£)2 3 TG Ing&|,
@2 _ o 104§ (_ &
A a(q)—(47r)2[ 3 + 3 (1_5)24—16(3 1 4(1_5)4
16 1 — 4¢ + &2
—?(1_;545 [(n(l — & +2In(1 +OIE[+EHIné —2(1 — &3]
8 2476 —2262 468 I+ -1 — 8+ &)
+3¢ a—e In¢—4 T_er In¢

32 (1 —4&+ &2

?ﬁ [Lis (&) + 2Lix (—O1[1 — € 2 (1 + €) In¢]

_ 2

+32%(1 + €%) [Li3 (¢) + 2Lis (—g)]] : (3.124)

The analytical continuation to g2 > 4m? (=1 < £ < 0) can be obtained using

m? > m? —ig,ie.

[1—4 e —1
€= =¢+4ic; mé=n|{|+in.

14 tie+1

In the unphysical region 0 < ¢ < 4m? (¢ = e'¥) one may use the parametrization
(setting = 27):

2

€ =exp(i2r), < —sin®r, Infé=i2r,
4m?
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to obtain

A (1)() « 20+4TCOST (1+2 .2 ) 4 1
= —1——+= sin - = ,
@y 47 9  3sindr T 3sin?r

2
@y~ @ _ _ 1
Aa'? (s) 7(471_)2 [16|:2C13 27) +4Cl3 (7 — 27) + C3] [1 yyene: Ti|

16

+? [Clz 21) —2Clp (7 — 27):| [87 [1 -

1 ] cos 7(1 + 2 sin? 7'):|

4sin* 7 sin3 7
1 ] Tc057(1+2sin27)j|

4sin* 7

32
+— [ln (2sinT) 4+ 21n (2 cos T)j| [272 [1 -
3 sin® 7
10+4TCOST(3+25in2‘r) 26 1 14 72 16 72

3 sin3 7 3sin27 3 sin*7r 3 sin?7

_3272] . (3.125)

gluonic perturbative QCD correction is given by the same formulasimultiplied by
the color factor N. = 3 and the SU(3) Casimir coefficient Cr = 4/3 [177].
For o = 137.036, m, = 0.510998902, m,105.658357, m, = 1776.99 we get

The Clausen function is defined by Cl, (¢) = Im Li, (¢¥) = > S"‘r(,;ﬂ The

Aa(Mz) x 10* e m T e+u+T1
1-loop 174.34669  91.78436  48.05954  314.19059
2-loop 0.379829  0.235999  0.160339 0.7761677

Thus the leading contribution is affected by small electromagnetic corrections
only in the next to leading order. For large ¢ the leptonic contribution is actually
known to three loops [178] at which it takes the value

Aceptons(M3) =~ 314.98 x 107 (3.126)

As already mentioned, in contrast, the corresponding free quark loop contribution
gets substantially modified by low energy strong interaction effects, which cannot be
calculated reliably by perturbative QCD. The evaluation of the hadronic contribution
will be discussed later.

Vacuum polarization effects are large when large scale changes are involved (large
logarithms) and because of the large number of light fermionic degrees of freedom
(see (2.181)) as we infer from the asymptotic form in perturbation theory

o lg°l 5
Aapert(qZ) ~ g Z Q?ch (ln m_if — 5 ; |q2| > m? . (3.127)
f
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Fig. 3.13 Shift of the
effective fine structure
constant A« as a function of
the energy scale in the
space-like region ¢ < 0

(E = —/—q?). The vertical
bars at selected points
indicate the uncertainty

—=— |eptons+hadrons T T~
0.017 - leptons ~.

—-- had (5) N

300 200  -10.0 5.0 0.0
E (GeV)

Figure 3.13 illustrates the running of the effective charges at lower energies in the
space-like region.”® Typical values are Aa(5GeV) ~ 3% and Aa(Mz) ~ 6%,
where about ~50% of the contribution comes from leptons and about ~50% from
hadrons. Note the sharp increase of the screening correction at relatively low energies.

The vacuum polarization may be described alternatively as the vacuum expecta-
tion value of the time ordered product of two electromagnetic currents, which follows
by amputation of the external photon lines of the photon propagator: at one loop order

MO = D

One may represent the current correlator as a Killen—Lehmann representation [181]
in terms of spectral densities. To this end, let us consider first the Fourier transform
of the vacuum expectation value of the product of two currents. Using translation
invariance and inserting a complete set of states n of momentum p,,,>’ satisfying the

completeness relation
( )3 n

28 A direct measurement is difficult because of the normalizing process involved in any measurement
which itself depends on the effective charge. Measurements of the evolution of the electromagnetic
coupling are possible in any case with an offset energy scale and results have been presented in [179]
(see also [180]).

29Note that the intermediate states are multi—particle states, in general, and the completeness integral
includes an integration over p?, since p, is not on the mass shell p? # /m2 + p2. In general, in
addition to a possible discrete part of the spectrum we are dealing with a continuum of states.
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where 3, includes, for fixed total momentum p,, integration over the phase space
available to particles of all possible intermediate physical states |n), we have

. 4 .
i / dx 7010y o)) =i [ L2 / d4x ei@—pnx i<0|j*‘<0>|n><n|j”<0>|0>

@m)3 ~
=i (2”)'2 i(z )* 6@ (g = pu) (01" (0)|n) (n ¥ (010)

=127 Z (01j*(0)|n) (n] j* (0)]0)|

n

Pn=q °

Key ingredient of the representation we are looking for is the spectral function
tensor p”(g) defined by

P (q) = i (01" (O)In)(nlj” (O)O) )= - (3.129)

n

Taking into account that ¢ is the momentum of a physical state (spectral condition
q2 > 0, qo > 0), the relativistic covariant decomposition may be written as

(@) = 0" {[¢"q" —a* 9" p1(@> + d"qd"po(g>}  (3.130)

and current conservation d,j* = 0 & ¢,p" = 0 implies py = 0, which is
the transversality condition. For non—conserved currents, like the ones of the weak
interactions, a longitudinal component pg exists in addition to the transversal one p;.
Note that @ (p?) may be represented as

0 = [an*sq - )
0
and therefore we may write
i/d4x e (0] j*(x) j*(0)]0) (3.131)
= / dm? {[m*g"" — g"q"] p1(m®) — q"q" po(m*)} (—%@(q")é(qz—mz)),
0

which is the Kéllen—Lehmann representation for the positive frequency part of the
current correlator. The latter, according to (2.141), is twice the imaginary part of the
corresponding time—ordered current correlation function
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i / d*x €% (0|Tj*(x) j¥(0)|0) (3.132)

1
- /d’"z {[m*a" — 4"q"] pr(m*) — q"q" po(m*)} (—)

g% —m? +ie
0

constrained to positive ¢°.

In our case, for the conserved electromagnetic current, only the transversal ampli-
tude is present: thus py = 0 and we denote p; by p, simply.’* Thus, formally, in
Fourier space we have

[o.¢]
i 1
. 4 1gx . v _ 2 ) 2 y Y
1/d x (0| T jL (x) ji,(0)]0) _/dm p(m )(m " — gq'q ) m
0
= —(¢*9" — q"¢") 1T,(¢" (3.133)

where ﬁ; (¢®) up to a factor ¢? is the photon vacuum polarization function intro-
duced before (see (2.159) and (2.160)):

m(g*) = I1(q%) . (3.134)

With this bridge to the photon self—-energy function 1717 we can get its imaginary part
by substituting
1

cs0 2 2
Fomitie o T
in (3.133), which if constrained to positive qO yields back half of (3.131) with py = 0.
Thus contracting (3.131) with 20 (¢°)g,,, and dividing by g,.,(¢* ¢"* — q"q") = 3¢>
we obtain

20(¢°) Im IT(¢*) = ©(q°) 27 p(g”) (3.135)
1
=32 " In (014 O ) (1] juem @IO)] , -

Again causality implies analyticity and the validity of a dispersion relation. In
fact the electromagnetic current correlator exhibits a logarithmic UV singularity and
thus requires one subtraction such that from (3.133) we find

301n the case of a conserved current, where po = 0, we may formally derive that p; (s) is real and
positive py(s) > 0. To this end we consider the element p%

p°°(q>:i <0|j°(0>|n><n|j°<0)\0>\q:p = Z|<0u°<0)\n>|§:,,n >0=0(q") 0> ¢ pi(g*)
n " n

from which the statement follows.
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2 7 Im IT/ (s)
4 /ds—v

/ 2y _ / _ 1
@) - m,0 = s s(s—q%—ie)

(3.136)

Unitarity (3.105) implies the optical theorem, which is obtained from this relation
in the limit of elastic forward scattering | f) — |i) where

2Im 7}; = i(zw)“ SY(P, — P) | Tul* . (3.137)
n

which tells us that the imaginary part of the photon propagator is proportional to the
total cross section oy (ete™ — ~* — anything) (“anything” means any possible
state). The precise relationship reads (see Sect.5.1.5)

. 1
Im A7](s) = —-R() (3.138)
I I7(s) = & Im A(s) = S R(s) = — > gu(e*e” — 7* — anything)

v v 3 4rla(s)?
where
4r)a(s)|?
R(s) = Utot/—3 . (3.139)
S

The normalization factor is the point cross section (tree level) a/,,l,,(e*e* e
wtp7) in the limit s > 4mi. Taking into account the mass effects the R(s) which
corresponds to the production of a lepton pair reads

4m§ 2m§
Ri(s) = 1_T 1+T , W=e,pu,1) (3.140)

which may be read of from the imaginary part givenin (2.179). This result provides an
alternative way to calculate the renormalized vacuum polarization function (2.176),
namely, via the DR (3.136) which now takes the form

, 2 oo Ry(s)
mt (g =%/ ds — 3.141
'yren(q ) 31 o s sG —q2 —ie) ( )

yielding the vacuum polarization due to a lepton—loop.

In contrast to the leptonic part, the hadronic contribution cannot be calculated
analytically as a perturbative series, but it can be expressed in terms of the cross
section of the reaction e™e~ — hadrons, which is known from experiments. Via

4 2
Rihaa(s) = o(eTe™ — hadrons)/w . (3.142)
s
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we obtain the relevant hadronic vacuum polarization

2 oo
, Rhpaa(s)
1 g2y = ol ds ———2=2 | 3.143
A/ren(q ) 3 a2 S (s — CIZ — o) ( )

Thus, including the five quarks u, d, s, ¢ and b subject to non-perturbative QCD
effects, we may evaluate

04_612 *© Ruaa ()

AVana(g?) =~ @) = —=— | =15
4mZ - -

~ren

(3.144)

by utilizing experimental e*e~—data up to energies where v — Z mixing comes into
play, at about 20 GeV, and for the high energy tail we may use perturbative QCD by
the virtue of asymptotic freedom. Note that real and imaginary parts are obtained by

the identity
1 P .
= —— +ird— )
s—q*—ic s—g¢q

where P denotes the finite part prescription

%0 R - R © R
7{ ds hadz(s) _ _lim / ds had (8) n / ds had (5)
4m2 s(s —g* —i¢) =0 4m2 s(s — 6]2) q>+e s(s — qz)

and the imaginary part is indeed given by Im H;hfe‘fj (¢> = 3 Rhaa (g%), with the low
energy « as a factor, as claimed before. Corresponding relations hold for the leptonic
and as well as other contributions.

At low energies, where the final state necessarily consists of two pions, the
cross section is given by the square of the electromagnetic form factor of the pion

(undressed from VP effects),

3
1 Am2\ 2
Rhad(s)zz( —%) IFO®PR .  s<9m? , (3.145)

which directly follows from the corresponding imaginary part (2.259) of the photon
vacuum polarization. There are three differences between the pionic loop integral
and those belonging to the lepton loops:

e the masses are different
e the spins are different
e the pion is composite — the Standard Model leptons are elementary

The compositeness manifests itself in the occurrence of the form factor F.(s), which
generates an enhancement: at the p peak, | F,;(s)|? reaches values about 45, while the
quark parton model would give about 7. The remaining difference in the expressions
for the quantities Ry(s) and R, (s) in (3.140) and (3.145), respectively, originates
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in the fact that the leptons carry spin 1, while the spin of the pion vanishes. Near
threshold, the angular momentum barrier suppresses the function Rj(s) by three
powers of momentum, while R, (s) is proportional to the first power. The suppression
largely compensates the enhancement by the form factor — by far the most important
property is the mass.

3.8 Dispersive Calculation of Feynman Diagrams

Dispersion relations (DR) may be used to calculate Feynman integrals in a way
different from the Feynman parametric approach described in Sect.2.5. The reason
is simply because the imaginary part of an amplitude in general is much easier to
calculate than the amplitude itself, which then follows from the imaginary part by a
one—fold integral. The imaginary part in principle may be obtained by the unitarity
relation of the form (3.105) which translate into Cutkosky rules [182], which may be
obtained using Veltman’s [183] largest time equation in coordinate space. The latter
make use of the splitting of the Feynman propagator into real and imaginary part
(2.141) and contributes to the imaginary part of a Feynman integral if the substitution

m — —mid(p? —m?)
replacing a virtual particle (un—cut line) by a physical state (cut line) is made for an
odd number of propagators, and provided the corresponding state is physical, i.e.,
is admissible by energy—momentum conservation and all other physical conserva-
tion laws (charge, lepton number etc.). With a diagram we may associate a specific
physical channel by specifying which external lines are in—coming and which are
out—going. For a given channel then the imaginary part of the diagram is given by
cutting internal lines of the diagram between the in—coming and the out—going lines
in all possible ways into two disconnected parts. A cut contributes if the cut lines
can be viewed as external lines of a real physical subprocess. On the right hand side
of the cut the amplitude has to be taken complex conjugate, since the out—going
state produced by the cut on the left hand side becomes the in—coming state on the
right hand side. Due to the many extra j—functions (on—shell conditions) part of the
integrations become phase space integrations, which in general are easier to do. As a
rule, the complexity is reduced from n—loop to a n — 1-loop problem, on the expense
that the last integration, a dispersion integral, still has to be done. A very instructive
non—trivial example has been presented by Terentev [27] for the complete two—loop
calculation of g — 2 in QED.

Cut diagrams in conjunction with DRs play a fundamental role also beyond being
just a technical trick for calculating Feynman integrals. They not only play a key role
for the evaluation of non—perturbative hadronic effects but allows one to calculate
numerically or sometimes analytically all kinds of VP effects in higher order diagrams
as we will see. Before we discuss this in more detail, let us summarize the key
ingredients of the method, which we have considered before, once more:


http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2

3.8 Dispersive Calculation of Feynman Diagrams 227

Fig. 3.14 Optical theorem

for scattering and B, ps B, p2
propagation 2 Tm _
A, 1 A

2 Im 1?—(1 22}9—4 = a @a;@

L Optical theorem implied by unitarity: maybe most familiar is its application
to scattering processes: the imaginary part of the forward scattering amplitude of an
elastic process A + B — A + B is proportional to the sum over all possible final
states A + B — “anything” (see Fig.3.14)

Im Trorward (A+ B —> A+ B) = vV A (S, m%’ m%) 0ror (A + B — anything)

for the photon propagator it implies

ImIT.(s) = _¥ (ete” — anything)
"= a2 tot ything

which we have been proving in the last section already.
(A Analyticity, implied by causality, may be expressed in form of a so—called
(subtracted) dispersion relation

k2 K ImIT! (s)
! L2y / - = e
IT (k°) — IT,(0) - /ds oo (3.146)
0

The latter, together with the optical theorem, directly implies the validity of (3.143).
Note that its validity is based on general principles and holds beyond perturbation
theory. It is the basis of all non—perturbative evaluations of hadronic vacuum polar-
ization effects in terms of experimental data. But more than that.

Within the context of calculating ¢ — 2 in the SM the maybe most important
application of DRs concerns the vacuum polarization contribution related to diagrams
of the type

T ox 7
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where the “blob” is the full photon propagator, including all kinds of contributions as
predicted by the SM and maybe additional yet unknown contributions from physics
beyond the SM. The vacuum polarization amplitude satisfies a dispersion relation
(3.136) and the spectral function is given by (3.139).

The contribution to the anomalous magnetic moment from graphs of the photon
vacuum polarization type shown above can be obtained in a straightforward way as
follows: The physics wise relevant g/”—term of the full photon propagator, carrying
loop momentum k, reads

—igh _ —ighv
RO+ LE) 8

2
(1= M+ (me)’ =) (3147
and the renormalized photon self—energy may be written as

oo
M ®) _ s 1, T (s) — (3.148)
————= [ — —Im s) —— . .
k2 s T Tk —s

0
Note that the only k£ dependence under the convolution integral shows up in the last
factor. Thus, the free photon propagator in the one—loop vertex graph discussed in
Sect.2.6.3 in the next higher order is replaced by

_ig,uu/kz - _ig;u//(kz - S)

which is the exchange of a photon of mass square s. The result afterward has to
be convoluted with the imaginary part of the photon vacuum polarization. In a first
step we have to calculate the contribution from the massive photon which may be
calculated exactly as in the massless case. As discussed above Fy;(0) most simply
may be calculated using the projection method directly at g> = 0. The result is [ 184,
185]%!

1

2(1—x)
KD (5) = g@heavyy _ g/ d x"( , 3.149
p &) =a, 7r ey (s/m7)(1 = x) ( )

which is the second order contribution to a, from an exchange of a photon with
square mass s. Note that for s = 0 we get the known Schwinger result.

31Replacing the heavy vector exchange by a heavy scalar exchange leads to the substitution
%2 (I —x) (vector) — %2 (1 —x/2) (scalar)

in the numerator of (3.149).
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Utilizing this result and (3.148), the contribution from the “blob” to g — 2 reads

o0

1fds
- / = m %) KO(s) . (3.150)
™ N

0

(X) _
a’ =

If we exchange integrations and evaluating the DR we arrive at

1 00
ds 1 , 2
<LX>=9/dx(1—x)/—s = Im 1% (s) =
% ™ s v xz—i—(s/mﬁ)(l—x)
0 0
1
_“ '(X)
=2 axad-x) [-A®y (3.151)
7T s
0
where
2
Sy = — T2
1—x #

The last simple representation in terms of H;(X )(s,) follows using

x? 1

= —5 — .
x2+(s/mz)(1 —X) S — Sy

In this context a convenient one—fold integral representation of the VP func-
tion is (2.177)

1
2 2 2
"¢ 2 e _ Li _
H“/ren(l_xm#)_ W/dzZz 1-2) ln(1+ T— e z( z)) (3.152)

0

which together with (3.151) leads to a two—fold integral representation of the VP
contribution by lepton loops at two—loop order.

This kind of dispersion integral representation can be generalized to higher order
and sequential VP insertions corresponding to the powers of IT (k%) in (3.147).

Denoting p(s)=Im IT/ . (s)/7 we may write (3.148) in the form 17 ren (k*)= f ds

y ren

p(s) &£ k2 - such that the n—th term of the propagator expansion (3.147) is given by

K2

(17} ren @) /K2 = k2 H / B o i)

llo

d
Z/i/’(%

ds, S
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where we have been applying the partial fraction decomposition

Il P - s
pl:!:kz—si_;kz—SjHSj—S,’.
i= = i#]

We observe that the integration over the loop momentum k of the one—loop muon
vertex proceeds exactly as before, with the photon replaced by a single heavy photon
of mass s;. Thus, the contribution to a,, reads

a®

1 n ood
_Ot S]
al —;/dx(l—x)Z/sj
0 J=17

1 1
o - dsy 1 S
=— [ dx(1-— il . /
2 [ara-x H/ oo | s ZSX_S,HS,._S,.
0 -0

j=1 Ly

— p(sz

i

Under the integral, to the last factor, we may apply the above partial fraction decom-
position backward

n n
ot | ol e
Sy — 8j S;j— S Sx Sx — 8

i=1

which proves that the s;—integrals factorize and we find [186]

1 ood n

« ) —Sx
f,,">=—/dx(1—x) /—p(s)

m N S — Sy

0 0

1
« / n
== dx (1 = x) (1T} e (52)) (3.153)

0

We are thus able to write formally the result for the one—loop muon vertex when we
replace the free photon propagator by the full transverse propagator as [187]

1
1
a9 =2 [aca-9 (17—
T 1+ 1] (52)

0
1

= %/ dx (1 —x) alsy) , (3.154)

0
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which according to (3.120) is equivalent to the contribution of a free photon interact-
ing with dressed charge (effective fine structure constant). However, since I1 k%)
is negative and grows logarithmically with k? the full photon propagator develops a so
called Landau pole where the effective fine structure constant becomes infinite. Thus
resumming the perturbation expansion under integrals may produce a problem and
one better resorts to the order by order approach, by expanding the full propagator
into its geometrical progression. Nevertheless (3.154) is a very useful bookkeep-
ing device, collecting effects from different contributions and different orders. In
particular if we expand the 1PI photon self-energy into order by order contributions

ol ren(

wren(kz) =11 (Ee)n(kz) + Hw(fgn(kz) + -
and also write p = p® + p™® + ... for the spectral densities.
Coming back to the single VP insertion formula (3.151) we may use (3.152) as
well as the second form given in (2.177) which reads

—_

a g? IO

et i 3.155
vy ren (C] /m T m2 _ _4/(1 —t2) ( )
0
with3? 5 5
t* (1 —1t7/3)
p2(t) = —2/ , (3.156)
1—1¢
and we may write
) 1 1 ®
x) _ (& _ P2t
a® = (ﬁ) / dx (1 —x) / s (3.157)
0 0
where
2 1
1/ Wi (x) —
e vl PR I |
w2 1-x g2
and hence )
4 1—
W) =1+ —1 al (3.158)

32We adopt the notation of Kinoshita [186] and mention that the densities p(¢) used here are not to
be confused with the p(s) used just before, although they are corresponding to each other.
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If n equal loops are inserted we have

1 1 n

X _ @ _ @ p(1)
a,;’ = 7r/ dx (1 —x) - dr W00 (3.159)

0 0

according to the factorization theorem demonstrated before. This formula is suitable
for calculating the contribution to the lepton anomalous magnetic moment once the
spectral function p(¢) is known. For the one—loop 1PI self-energy we have p,(t)
given by (3.156) and the corresponding density for the two—loop case reads [175,
176, 188]

1) =
p4(t) 3 > —;

) (Liz (i—;) FLip (%) —Liy (%)) —4Lis () + Lia (tz))

11 ) s 1y 3 2 1+1
— 03—t 1 t -t —=t(3—1t In ——
+(16( YA+t =213

2t G-+ (.. l+1 141
(1—f2)I > (le(l)—l—ln— In ——

+13—12) (31n%—21nt)+§t(5—3t2)} ) (3.160)

The corresponding result for the three—loop photon self—energy has been calculated
in [189]. For four—loops an approximate result is available [190]. Generally, the
contribution to a,, which follow from the lowest order lepton (£) vertex diagram by
modifying the photon propagator with / electron loops of order 2i, m muon loops of
order 2j and n tau loops of order 2k is given by

l
1 1

(1+il+jm+kn) i (t
ae=(%) i /dx(l—x) /dtl p2i (1)
4

2
0 0 ke ()
1 m n
NG ¢
/dlz p2j(t2) - /dt3 P2 (13) i
4 1=x (my 4 1= !
0 1+ l—zzzx_zx (m_lg) 0 I+ l—zSZx_ZX (%)

(3.161)

The same kind of approach works for the calculation of diagrams with VP inser-
tions not only for the lowest order vertex. For any group of diagrams we may calculate
in place of the true QED contribution the one obtained in massive QED with a photon
of mass /s, and then convolute the result with the desired density of the photon VP
analogous to (3.150) where (3.149) gets replaced by a different more complicated
kernel function (see e.g. [103, 191] and below). It also should be noted that the rep-
resentation presented here only involve integration over finite intervals ([0,1]) and
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hence are particularly suited for numerical integration of higher order contributions
when analytic results are not available.

The formalism developed here also is the key tool to evaluate the hadronic con-
tributions, for which perturbation theory fails because of the strong interactions. In
this case we represent Im H;had (s) via (3.139) in terms of

Ohad(s) = o(eTe™ — hadrons)

where )
4
%(s)—L(”| Im 17, (s) (3.162)

as

or in terms of the cross section ratio R(s) defined by (3.139) where both opaq(s) or
equivalently Ry,q(s) will be taken from experiment, since they are not yet calculable
reliably from first principles at present.

Starting point is the basic integral representation (from (3.150) using (3.139))

00 1
d 21—
e ﬁ/i/dx G N YR (3.163)
s s x24+1=x) s/mlzt 3r
0 0

If we first integrate over x we find the well known standard representation

(o]

d
a"d = 3/ = KD (s) R(s) (3.164)
T S

as an integral along the cut of the vacuum polarization amplitude in the time-like
region, while an interchange of the order of integrations yields the analog of (3.151):
an integral over the hadronic shift of the fine structure constant (3.121) in the space—
like domain [192]:

1

™ = %/dx (1 —x) Aol (-Q%(x)) (3.165)
0
where Q?(x) = —m is the space-like square momentum-—transfer or
2 Am?2
=2 (i +—r -1
Zmﬁ 0?

In Fig.3.15 we display the integrand of the representation (3.165) Alternatively, by

writing (1 —x) = —5 a (1 — x)? and performing a partial integration in (3.165) one
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h

*10° *10°
7.0 Q2x%/ (1-x) ml, 7.0
6.0 — (1-X) Aty (-02(x)) 6.0 — (1" A (-0%)
x 5.0 & 5.0
? 4.0 % 4.0
<
3 30 = 30
x <
2.0 < 2.0
= z-Q%/m?
1.0 1OV =22 (b2 21
0.0 0.0
0.2 0.4 0.6 0.8 1.0 0.0 1.0 2.0 3.0 40 5.0
X Q (GeV)

Fig. 3.15 The integrand of the vacuum polarization representation (3.165) as a function of x and
as a function of the energy scale Q. As we see the integrand is strongly peaked as a function of Q
at about 330 MeV. IT(Q?) data come from [197]. The dashed lines mark the error band from the
experimental data

finds
1

2
ah = a—mi/dxx (2 —x) (D(Q*(x)/Q%(x)) (3.166)

62
0

where D(Q?) is the Adler—function [193] defined as a derivative of the shift of the
fine structure constant

AT’ (s) 37 d
— " = s — Aapa(s) - (3.167)

D(—s) = —(127°
(=s) (125 s ds a ds

The Adler—function is represented by

e R
D(Q?) = Q° (/4m ﬁds) (3.168)

in terms of R(s), i.e., in the case of hadrons it can be evaluated in terms of experimen-
tal e™e~—data. The Adler—function is discussed in [194] and in Fig. 5.18 a comparison
between theory and experiment is shown. The Adler—function is an excellent monitor
for checking where pQCD works in the Euclidean region (see also [71]), and, in prin-
ciple, it allows one to calculate a" relying more on pQCD and less on e*e~—data,
in a well controllable manner. The advantage of this method at present is limited by
the inaccuracies of the quark masses, in particular of the charm mass [195, 196]. The
integrand of the representation (3.166) is displayed in Fig.3.16.

It is interesting to note that the representation (3.165) as well as (3.166) requires
the hadronic vacuum polarization function in the spacelike region, which is the
appropriate representation for ab initio calculations in the non-perturbative lattice
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12.0 Q%=x%/ (1-x) m2, 12.0 — x(2-x) D@)/Q?
= . _ 2 2
Z 0.0 x(2-x) D(Q2(x))/Q%(x) L 100
o (=]
~ ~
= 8.0 < 8.0
x <4
G 6.0 O 6.0
2 40 3 4.0
; ' % ' z=O2/mi
< 2.0 2.0 x=2/2 ((1+k/z)"?-1)
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 1.0 2.0 3.0 4.0 5.0
X Q (GeV)

Fig. 3.16 The integrand of the Adler function representation (3.166) as a function of x and as a
function of the energy scale Q. The right—hand panel shows that the integrand is sharply peaked
as a function of Q at a rather low scale (~150 MeV). Adler function data come from [198]. The
dashed lines mark the error band from the experimental data

QCD approach.*® The lattice QCD approach and results will be discussed in Sect. 5.3
of Chap.5.

The Adler-function D(Q?) is bounded asymptotically by perturbative QCD:
D(Qz) — N, Zf Q?c, with Q, the quark charges and N. = 3 the color factor,
up to perturbative corrections, which asymptotically vanish because of asymptotic
freedom which implies o, (Q?) — 0 as Q> — oo (see [194]). Obviously, then
D(Q?)/Q? is a positive monotonically decreasing function®* bounded by

D(Q%) [  R(s) = [®RG), DY
S0 = arort <h=), e =T, 01

the slope of the vacuum polarization function at zero momentum square. Obviously
the slope D(Q?)/Q? is finite for Q> — 0, which shows that the integrand of the
representation (3.166) is well behaved as x — 0.

33 A new approach to evaluate the leading hadronic corrections to the muon g-2 attempts to evaluate
Adpad (t) directly in the spacelike region from Bhabha scattering data [199] or from the simpler
process of " e~ — p e~ scattering (a high energy muon beam on a low Z nuclear target) [200].
Direct experimental Acapag(f) data would also provide a direct comparison with corresponding

LQCD results.
5 2\ _ ©  R(s)
(pe/0?) = Z(ng (S+Q2)3ds)<0,

34Note that while
the Adler function itself is not monotonic as

’ St (s — Q%) R(s)
(D(Qz)cut) = (Amz (S+Q2)3ds) s

which always has a zero if s¢y is finite, and for s¢y = 00 it has zero because R(s) is increasing
with s. The “experimental” Adler function has a maximum in the 30 GeV region.
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Note that alternatively, using (3.167) we may write

_ 37 d
Pl = _EaAahad(S)LY:*QZ,QZ*)O . (3‘170)

Therefore, (3.168) together with (3.166) yields a bound (see also [113])

a?

2 -
ap < @ml{ 3 P . (3.171)
The integral over a compilation of R(s)—data, discussed in detail later in Chap.5,
yields P; = 11.83(8) GeV~? and hence

apd < 791(5) x 1071 (3.172)

had ~

As we will see an evaluation of (3.164) yields a value substantially lower: a,

688.1 4.1 x 1071,
Actually, we may write (3.164) in the form

had _ (@mp\? [ ds
a, = (?) /s_zK(S) R(s) (3.173)
0
where
- 3s @
K(s) =5 KP(s), (3.174)
1

in which K (s) is a bounded monotonically increasing function, with K (4m727) ~ (.63
increasing to 1 at s — 00. Setting K (s) = 1 we obtain the bound presented above.
A lower bound then is obtained by setting K (s) = K (4mfr) ~ (.63, which implies
a/hﬁd > 498(3) x 10710 again a very rough bound only, but a true bound.

The bound (3.171) can be improved by a moment expansion of the kernel as
advocated in Ref. [201] and analyzed in detail in [202].

The best checks is to compare lattice results in terms of the Adler function as
it enters in the representation (3.166) as advocated in [195] and actually performed
in [203, 204] recently. An up-to-date evaluation of the “experimental” Adler function
is available via the link [198].

3.9 (-Values, Polylogarithms and Related Special
Functions

For later reference we list some transcendental constants and definitions of special
functions which are encountered in higher order Feynman graph calculations. Typi-
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cally analytic results for the mass independent universal lepton g — 2 contributions
are of the form of sums of terms exhibiting rational numbers as coefficients of tran-
scendental objects. The most frequent such object are the Riemann zeta function

1
Cmy=>" o (3.175)

and the polylogarithmic integrals

N G e A e ) O B
Li,(x) = (n—2)!/0 t dt_;—, (3.176)

where the dilogarithm Li, (x) is often referred to as the Spence function which we
encountered in Sect.2.6.3 (2.208). The series representation holds for |x| < 1. The
dilogarithm is an analytic function with the same cut as the logarithm. Useful relations
are

2
Sp(x) = —Sp(1 — x) + % “InxIn(l - x),

1 2 1 2
Sp(x) = —Sp (;) -% 3 In?(—x),

1
Sp(x) = —Sp(—x) + ESp(xz) : (3.177)

Special values are:

2 2 1 72 1 )
Sp(0) =0, Sp(l) = ra Sp(—=1) =——, Sp (—) == - 5(1112) .

12 2 12

(3.178)

Special ((n) values we will need are

2 774

) = < ((3) =1.202056903..., (4) = 50 C(5) =1.036927755....
(3.179)

Also the constants

Li,(1) = ¢() , Liy(=1) = =[1 =2"""]¢(n),
1 o0
as = Li4(§) = Z 1/(2"n*) = 0.517 479 061 674 . . ., (3.180)

n=1

related to polylogarithms, will be needed for the evaluation of analytical results. A
generalization are the Nielsen integrals
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—Dmre=t () In? (1 — xt
%m:() /n @7 = x1) (3.181)
(n—1)!p! t
which have representations as sums of the type
S12(x) = ; ZSik=1; S50 = ; FSik=1),
where
£
&m=27
is a harmonic sum. And higher sums are obtained by the recurrences
Sup () = = S0, (6) /XS”(”dt Sut1.p ()
—— On,pX) = — Ip— X); - = On X) .
dx " X hp 0 t e
The general harmonic series are defined by [205]
S
Sm 3 O-m 3.182
m=2 = (n) = (3.182)

i=1 i=1
in which m > 0. Higher harmonic series are defined by the recurrences
S-<®=ZLS-®'& (n) = Zi&-mn@w)
M, J1seees Jp “— im Jseees Jp ’ My iy Jp ~ im J1seees Jp ’

where again m > 0. The m and the j; are referred to as the indices of the harmonic
series. Hence, for example

U
ZE‘ (3.184)

—s53(n) = Z:—

Basic transcendental constants of increasing transcendental weight are (examples
we will find in Chap. 4)

[ [S1(00), In(2)]; G G Lia(1/2); (G, Lis(1/2))5 [Lis(1/2), S—s-1(00)];

[¢7. Liz(1/2), S_s.1.1(00), Ss51.-1(c0)]; ... ] (3.185)
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where S = S (c0). The numerical values have been calculated in [205]:

Lis(1/2) = 0.51747906167389938633
Lis(1/2) = 0.50840057924226870746
Lie(1/2) = 0.50409539780398855069
Liz(1/2) = 0.50201456332470849457
S5-1(00) = 0.98744142640329971377
—85.1,1(00) = 0.95296007575629860341
Ss5_1-1(00) = 1.02912126296432453422 . (3.186)

The harmonic polylogarithms (HPL) H (a, ..., ai; x) are functions of one vari-
able x labeled by a vectora = (ay, . . ., a;). The dimension k of the vector a is called
the weight of the HPL [206]. Given the functions

1 1 1
fl(x) = m N fO(X) = ; 5 f_l()C) = m s (3187)

the HPLs are defined recursively through integration of these functions. For weight
one we have

H(l;x)=/f1(t)dt=/%dt=—log(l—x)
0 0
H(0; x) = log(x)

H(—l;x)=/f,1(t)dt=/l;+tdt=10g(l+x), (3.188)
0 0

and for higher weights

k=day,...,d .

.....

where we used the notations *i =i,...,i, and a
——

n
Examples are,

dz
1+z

HO,0,1,15%) = $12(x) ; H(—l,o,o,l;x>=/ Lis(2) .
0
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The formula for the derivative of the HPLs follows directly from their definition
d
L @a X)) = fa)H (@ i x). (3.190)

An elliptic integral is defined as any function f which can be expressed in the
form [207]

f(x)=/:R(r,M) dr

where R is a rational function of its two arguments, P is a polynomial of degree 3 or
4 with no repeated roots, and c is a constant. In general, integrals in this form cannot
be expressed in terms of elementary functions. Exceptions to this general rule are
when P has repeated roots, or when R(x, y) contains no odd powers of y. However,
with the appropriate reduction formula, every elliptic integral can be brought into a
form that involves integrals over rational functions and the three canonical forms, the
elliptic integrals of the first, second and third kind. The incomplete elliptic integral
of the first kind F is defined as

dr

/W do /x=sin<,c
—Jo \/l—msinzé’_ 0 \/(1—t2)(l—mt2).

F(p;m)

The incomplete elliptic integral of the second kind E may be defined as

[ x=sin ¢ /1_ £2
E(gp;m):/ df+v1 — msin® :/ YoM g
0 0 1 =12

The incomplete elliptic integral of the third kind IT is defined by

T o |m) /w 1 do /X=SW 1 dr
n, (p m) = N = ,
0 1—nsin?0 /1 msin20 0 1 —nt? (1=22) (1 —me?)

where m = sin’ o is a parameter. For ¢ = 7/2 and x = 1 we obtain the complete
elliptic integrals.
The simplest diagram leading to an elliptic integral is the scalar massive triple line

graph (sunrise diagram) —@—, which plays a role in the self—energy of the w
vector meson which decays predominantly viaw — 7+ 7~ 70 (see also [208]). In the
context of dimensional regularization and e—expansion various types of generalized
and Appell hypergeometric functions show up [209-213]. For further reading see
e.g. [214-217] and references therein.
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Part I

A Detailed Account of the Theory, Outline
of Concepts of the Experiment, Status and
Perspectives



Chapter 4
Electromagnetic and Weak Radiative
Corrections

4.1 g — 2 in Quantum Electrodynamics

The by far largest contribution to the anomalous magnetic moment is of pure QED
origin. This is of course the reason why the measurements of a, and a, until not
so long time ago may have been considered as precision tests of QED. The clear
dominance to more than 99.99% of just one type of interaction, the interaction of
the charged leptons e, 1 and 7 with the photon, historically, was very important
for the development of QFT and QED, since it allowed us to test QED as a model
theory under very simple, clean and unambiguous conditions. This was very crucial
in strengthening our confidence in QFT as a basic theoretical framework. We should
remember that it took about 20 years from the invention of QED (Dirac 1928 [g, = 2])
until the first reliable results could be established (Schwinger 1948 [a{! = «/27])
after a covariant formulation and renormalization was understood and settled in its
main aspects. As precision of experiments improved, the QED part by itself became
a big challenge for theorists, because higher order corrections are sizable, and as
the order of perturbation theory increases, the complexity of the calculations grow
dramatically. Thus experimental tests were able to check QED up to 7 digits in
the prediction which requires to evaluate the perturbation expansion up to 5 loops
(5 terms in the expansion). The anomalous magnetic moment as a dimensionless
quantity exhibits contributions which are just numbers expanded in powers of «,
what one would get in QED with just one species of leptons, and contributions
depending on the mass ratios if different leptons come into play. Thus taking into
account all three leptons we obtain functions of the ratios of the lepton masses m,,
m,, and m,. Considering a,, we can cast it into the following form [1, 2]

ad®P = Ay 4+ Ay(my/me) + Ay(my/my) + As(my/me, my/m.) (4.1)

The term A; in QED is universal for all leptons. It represents all diagrams including
those with closed lepton loops that have the same mass as the external lepton. The
contribution A, has one scale and only shows up if an additional lepton loop of a
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lepton different from the external one is involved. This requires at least one more
loop, thus two at least: for the muon as external lepton we have two possibilities:
an additional electron—loop (light—in-heavy) A,(m,/m,.) or an additional T—loop
(heavy—in-light) Ay(m,/m;) two contributions of quite different character. The first
produces large logarithms o< In(m,/m,)* and accordingly large effects while the
second, because of the decoupling of heavy particles in QED like theories, produces
only small effects of order o< (m,,/ m.)?. The two—scale contribution requires a light
as well as a heavy extra loop and hence starts at three loop order. We will discuss
the different types of contributions in the following. Each of the terms is given in
renormalized perturbation theory by an appropriate expansion in «:

A= A (2) 4 A () A () A () A ()
- AP (0 + A0 )1+ aD G A (074
= AP () + AD )+ Al () 4

and later we will write

wmar (@) e (2 o (2) e (@) ves () -

where
Cr =AY + APY my/m) + ASY (me/m)y, my/m)) 4.2)

denote the total L—loop coefficient of the (a/7)* term. While AEZL) is the mass-
independent (universal) contributions in one-flavor QED, A?L)(m ¢/m}) and Ag“)
(mg/m}y, m¢/my) are the mass-dependent (non-universal) contributions in three-
flavor QED. For a, the ASY (m./m,), ASY (mo/m,, m,/m.) and ASY (m,/m.,)
are subleading as suppressed according to the decoupling-theorem. For a,, in con-
trast A?L)(m «/m,) is leading since it is enhanced by the large logarithms, while
A§4L) (my/me, m,/m;) and A?L)(m#/mT) are suppressed by decoupling again.

In collecting various contributions we should always keep in mind the precision
of the present experimental result [3]

a™® = 116592080(63) x 10™"

and the future prospects of possible improvements [4] which could reach an ultimate
precision
day" ~15x 107" (4.3)

For the n—loop coefficients multiplying (/)" this translates into the required accu-
racies given in Table4.1. To match the current accuracy one has to multiply each
entry with a factor 6, which is the experimental error in units of 1071°,
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Table 4.1 Numerical precision of coefficients up to five loops
0Cy 0Cy 0C3 o 0Cs
6.5x 1078 3% 1073 1x 1072 5 2 x 10°

As we will see many contributions are enhancement by large short—distance loga-
rithms of the type Inm,, /m,. These terms are controlled by the RG equation of QED
or equivalently by the homogeneous Callan—Symanzik (CS) equation [5]

0 0 ooy [ My
(’"ea—me + B(a) aa) al >(m—'€,a) =0

where ((«) is the QED [—function associated with charge renormalization.
a5k, @) is the leading form of a,, in the sense that it includes powers of logs of
mass ratios and constant terms but powers of m,/m,, are dropped.' The solution of
the CS equation amounts to replace « by the running fine structure constant a(m,,)
in a?” (7, o), which implies taking into account the leading logs of higher orders.
Since 3 is known to three loops and also a,, is known analytically at three loops, it is
possible to obtain the important higher leading logs quite easily. The basic RG con-
cepts have been discussed in Sect.2.6.5. For the evaluation of the mass dependent
contributions the knowledge of precise mass ratios is mandatory. We will use the
most recent compilation by the CODATA group [6]. Our updated results presented
in the following supersede results of the 2009 review of the muon g — 2 [7].

4.1.1 One-Loop QED Contribution

For completeness we mention this contribution represented by Fig.4.1 here once
more. According to (3.154) the leading order contribution may be written in the
form

1

a® QED _ g/ dx(1—x) = & (4.4)
T ™

"

| =

0

which is trivial to evaluate.

1a,L itself satisfies an exact CS equation which is inhomogeneous, the inhomogeneity being a mass

insertion (m.) on a,,; this inhomogeneous part is O (m./m,,) and thus drops from the CS equation

for the asymptotic approximation a,(fo)
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Fig. 4.1 The universal
lowest order QED
contribution to ay

Fig. 4.2 Diagrams /-7
represent the universal
second order contribution to
ay, diagram 8 yields the
“light”, diagram 9 the
1y 2)

“heavy” mass dependent 3)
corrections
4) 5) 6)
/ 7 i N\ / i N\
w/y w7 € T
7 8) 9)

4.1.2 Two-Loop QED Contribution

At two loops in QED the 9 diagrams shown in Fig. 4.2 are contributing to g — 2. The
(within QED) universal contribution comes from the first 6 diagrams, which besides
the external muon string of lines have attached two virtual photons. They form a
gauge invariant subset of diagrams and yield the result

279 57

+ 7r212+3<(3)
144 " 12 T M)

) —
Alfig = —
The last 3 diagrams include photon vacuum polarization (vap) due to the lep-
ton loops. The one with the muon loop is also universal in the above sense (one
flavor = single scale QED) and contributes the mass independent correction

(] b 119 =2
m my = = - - — .
ui T 36 3

“4)
A 1 vap
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The complete “universal” part yields the coefficient A§4) calculated first by Peter-
mann [8] and by Sommerfield [9] in 1957:

197 72 «#? 3

“4)

=—+———In24-¢(3) = —-0.328 478 965 579 193 78... (4.5
1 uni 144 + 12 2 n + 4(( ) ( )

where ((n) is the Riemann zeta function of argument n. The mass dependent non—
universal contribution is due to the last two diagrams of Fig.4.2. The coefficient is
now a function of the mass m, of the lepton forming the closed loop. Using the
representation (3.151) together with (2.177) we see that the coefficient of (ar/7)>
may be written as double integral [10]

1 1 2 2 2
o _ u”(1—u)yv (1 —v7/3)
AP (1) —/0 d”/o s s SR

where xy = my/m, and m, is the mass of the virtual lepton in the vacuum polar-
ization sub-graph.2 It was computed in the late 1950s [11] for m; = m, and
neglecting terms of O(m./m,). Its exact expression was calculated in 1966 [12].
The first integration yields logarithms, the second one double logarithms (products
of logarithms) and a new type of integrals, the dilogarithms or Spence functions
Lir(x) = — fol df In(1 — xr)/t defined earlier in (2.208) and Sect. 3.8.1. Actually, by
taking advantage of the properties of the dilogarithm (2.207), the full analytic result
of [12] can be simplified to [13]

25 1 2 1
A (/) = =2 — BX 24+ 3Inx) 4+t [% —2lnxIn (; fx) fLig(xz)]

36 3
4T (1 - 5x2) [”—2 —Inx 1n(1 _x) — Lis(x) +Lig(—x):|
2 2 1+x
__ 2 _Inx +x*(@4+3Inx) +x* [21n2(x) —2Inx In (x - l) +L12(1/x2)]
36 3 x
+§ (1 - 5x2) [— Inx In (%) +Lis(1/x) — Liz(—l/x)i| x>1). (4.8)

2We remind that the above integral representation is obtained by applying the method presented
in Sect.3.8. To start with, a,(f ) (vap, £) is given by a dispersion integral of the form (3.164) with

R(s) — Ry(s) given by (3.140). Thus
7d
@ s
a(P (vap, ) = e / ~ KP(s) Re(s) .7

2
4my

where K ,(,,2) (s) represents the contribution to a,, from the one-loop diagram Fig.4.1, where the
photon has been replaced by a “heavy photon” of mass 4/s. The convolution with R, accomplishes
the insertion of the corresponding lepton loop into the photon line of the one—loop vertex.
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http://dx.doi.org/10.1007/978-3-319-63577-4_3
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The first version of the formula is valid for arbitrary x. However, for x > 1 some
of the logs as well as Liy(x) develop a cut and a corresponding imaginary part
like the one of In(1 — x). Therefore, for the numerical evaluation in terms of a
series expansion,? it is an advantage to rewrite the Li,(x)’s in terms of Liy(1/x)’s,
according to (2.207), which leads to the second form. For x = 1 (muon loop), using
Lix(1) = ((2) = T and Li»(—1) = —1¢(2) = —Z the evaluation of (4.8) yields
A5, (1) = 119/36 — 72 /3 the contribution already included in A{") ; given by (4.5).
For numerical calculations it is often convenient to work with asymptotic expan-
sions. For a 7-loop an expansion for large arguments x gives formula (12) of [14]:

416
315

A§4)a (l/xTElzﬂ)=£+l4lnl+ 9 4 131
vap m. 45 70 19600 99225
o (8n + 28n? — 45)[21+2 nl?n+?
_ Z:; [

e E T P e Terrs TerEs e

°+ In/

For the electron—loop an expansion for small x leads to formula (11) of [14]:

“ _ my, 25  x? 1 5
Azgap(l/xe=1/’<=m—:)=—%+7k—glnk+(3+41nk)k2—z7r2k3
w2 44 14 8 109
— 4+ — — —Ink+2In’k [ k* + —kSInk — —Kk°
[3 A R } T T s

i 2(n +3) Ik 8n +44n” +48n +9 (ontd
nKk — .
n2n+1)(2n +3) n?(2n + 1)2(2n + 3)?

n=2

Evaluations of (4.8) or of the appropriate series expansions yields

AS)my/m) = 1.0942583092 (72)
A (m,/my) = 0.000078079 (14),

where the errors are solely due to the experimental uncertainties of the mass ratios.
According to Table 4.1 the 7 yields a non—negligible contribution. At the two—loop
level a e—7 mixed contribution is not possible, and hence A§4) (my/me,my/my) = 0.

3A frequently used rapidly converging series expansion is

0 n+1

u
Lix() = D By ——
> n+ 1!

where u = — In(1 — x) and By, are the Bernoulli numbers.
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The complete two—loop QED contribution from the diagrams displayed in Fig. 4.2
is given by

Cy= A" + AP (mu/me) + A (m,/m;) = 0.765 857423 (16) .

1 uni 2 vap 2 vap

and we have

2
a® P — 0,765 857423 (16) (9) ~ 413217.627(9) x 10" (4.9)
iy

for the complete 2-loop QED contribution to a,. The errors of Ag‘) (m,/m,.) and
Af) (m,/m;) have been added in quadrature as the errors of the different measure-
ments of the lepton masses may be treated as independent. The combined error
dCy = 1.6 x 1073 is negligible by the standards 1 x 107> of Table4.1.

4.1.3 Three-Loop QED Contribution

At three loops in QED there are the 72 diagrams shown in Fig.4.3 contributing to
g — 2 of the muon. In closed fermion loops any of the SM fermions may circulate.
The gauge invariant subset of 72 diagrams where all closed fermion loops are muon—
loops yield the universal one—flavor QED contribution. This set has been calculated
analytically mainly by Remiddi and his collaborators [15], and Laporta and Remiddi
obtained the final resultin 1996 after finding a trick to calculate the non—planar “triple
cross” topology diagram (diagram 25 of Fig.4.3) [16] (see also [17]). The result,

© 28259 17101 , 298 , 139 100 1
o8 e R oy P Li “n*2
tuni = 572 T g0 7 9 ¢ M2H g @+ 57 LiaG )+24n
1 5 5 239 4 83,
——2m22l - 22 3)— Z2¢(5) = 1.181241456587 ... (4.10
2" " } 260" T C() (4.10)

turned out to be surprisingly compact. All other corrections follow from Fig.4.3 by
replacing at least one muon in a loop by another lepton or quark. The such obtained
mass dependent corrections are of particular interest because the light electron loops
typically yield contributions, enhanced by large logarithms. Results for A(;) have
been obtained in [18-22], for A;ﬁ) in [14, 23-25]. The leading terms of the expan-
sion in the appropriate mass ratios have been discussed in Sect.3.2.1 before. For
the light-by-light contribution, graphs (1)—-(6) of Fig. 4.3, the exact analytic result is
known [21], but because of its length has not been published. The following asymp-
totic expansions are simple enough and match the requirement of the precision needed
at the time:


http://dx.doi.org/10.1007/978-3-319-63577-4_3
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Fig. 4.3 The universal third order contribution to a,. All fermion loops here are muon—loops.
Graphs (1)—(6) are the light-by-light scattering diagrams. Graphs (7)—(22) include photon vacuum
polarization insertions. All non—universal contributions follow by replacing at least one muon in a
closed loop by some other fermion
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2 59 4 O 2 2
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4 196 424
+ (&) |:77r2 In M _ — 22+ 771'2:|
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4
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+(ﬁ) |:7ln3@+—12mﬂ+( 2+—)1n@

my, 9 Me 18 Me 9 108 Me
191 , 13283 5
+- g(3)+ ™t 2592} + 0((me/mu) ) :
= 20.94792485(14) “4.11)

where here and in the following we use m./m, as given in (3.30). The leading
term in the (m./m,) expansion turns out to be surprisingly large. It has been cal-
culated first in [26]. Prior to the exact calculation in [21] good numerical estimates
20.9471(29) [27] and 20.9469(18) [28] have been available.

2 m 2 1 31 m
Agﬁjap(m#/me) =g’k -+ (4(3) — 37 24 g+ —) n—£

o T27) ",
no,_ 2, 8 5, 25 , 1075
LI AT Y —71 2-3¢3) + 22— 2t 4 2
toe™ Tt M zmm g (@ + 37 In2 -2 216
m, 135 16, 3199
+ (m# [ 87 T N2t g™
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10 m 11 m 14 49 131
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BT T e R T L 7Y

M4 . 35 16 5771
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+

13 me 12 3 1080

25 4 (m,\ 1369 ,(m 269
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48 864 54000
= 1.920455123(28) (4.12)
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The leading and finite terms were first given in [29], the correct (m./m ) terms have
been given in [23]. In contrast to the LbL contribution the leading logs of the VP
contribution may be obtained relatively easy by renormalization group considerations
using the running fine structure constant [5, 30]. In place of the known but lengthy
exact result only the expansion shown was presented in [20]. Despite the existence

of large leading logs the VP contribution is an order of magnitude smaller than the
one from the LbL graphs.

m, 19
A;61)bl(mu/m7') |: G- *:|

L (Lo, @_ﬂLz_@L]
m* | 162077 972000 3240 97200
6117 13 1840256147 4381 , 24761
m8 _%@ T 224 7 3556224000  120960° 317520 ]
+mﬁ (7., 2047 | ASMI07782U1 5207, 41940853 }
m3 12077 540007 1200225600000 189000 952560000
mloT 5 1187 86251554753071 328337 , 640572781
0 [ﬁ 37 345502 287550049248000 14968800 23051952000 ]
0 (mﬂ/mT)lz) = 0.002 143 239(385) (4.13)

where L = In(m?/m2), (; = ((2) = 7*/6 and (3 = ((3). The expansion given
in [21] in place of the exact formula has been extended in [22] with the result pre-
sented here.

2
©) my 23 mgr 2 2 10117
A =\ — ——In— — — —_—
2vap(m/t/m7) (mT) |: 135 n my 45 + 24300

4
19 14233 11 2976691
() [ B -t 20

mr 2520 my 132300 m 768 296352000
6
47 805489 119 128
() [T g SO0 e 11O 108
mr 3150 my, 11907000  my, 1920 14175

102108163 0
+M] +o ((mﬂ/mT) ) — —0.001782611(270)  (4.14)

Again, in place of exact result obtained in [20] only the expansion shown was pre-
sented in the paper. All the expansions presented are sufficient for numerical evalu-
ations at the present level of accuracy. This has been cross checked recently against
the exact results in [13].

At three loops for the first time a contribution to A3 (m,/m., m,/m;), depending
on two mass ratios, shows up. It is represented by diagram (22) of Fig.4.3 with
one fermion loop an electron—loop and the other a 7—loop. In view of the general
discussion of VP contributions in Sect. 3.8 it is obvious to write


http://dx.doi.org/10.1007/978-3-319-63577-4_3
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(6) a —x2 )
vap, e, )00 = — dx(l—x)2 I\ 7=

T _x2 2
H’yren :m# ) (415)

which together with (3.155) or (2. 177) leads to a three—fold integral representation,
which we may try to integrate. Since H wen given by (2.176) is analytically known, in
fact (4.15) is a one—fold integral representatlon Ithas been calculated as an expansion
in the two mass ratios in [23, 24] and was extended to O ((mi / mi)5 ) recently in [25].
The result reads

2 2
(6) _ m, 2 m, 1
A vap (M Mes /) _( ) [1351 m2 135

m2\’ 1 2 mim; 37 2 1 om, g?
+(—“ [——mﬂm#— 2y e T

m?2 420 m/% m# 22050  m? 504  mZ 630
229213 i|
12348000
+(m/21')3|:—ilnm—3 nm%mi — 199 lnm—z— ;lnmi +4—7r2
m2 945 mi m# 297675 m2 4725 m2 @ 2835
1102961 ]
75014100

4
m;, 1 m2 mim, 391 m2 19 mp o g?
L) |- —Zn — In—= — ——In—& 4 —
m? 504 m2 mi 2058210 m2 31185 m2 = 891
161030983
14263395300

J2m o4 omd LY W | (i
15m2 45 m2m, m?2 m? m# m2 m?

T m

= 0.00052776(10) . (4.16)

The result is in agreement with the numerical evaluation [20]. The error in the result is
due to the 7—lepton mass uncertainty. The leading—logarithmic term of this expansion
corresponds to simply replacing a(g> = 0) by a(mﬁ) in the two—loop diagram with
a 7 loop. We have included the last term, with odd powers of m, and m,, even
though it is not relevant numerically. It illustrates typical contributions of the eikonal
expansion, the only source of terms non—analytical in masses squared.

In [13] an additional term in the heavy mass expansion has been worked out.
Expanding the exact Laporta—Remiddi expression for the sum of light-by-light and
vacuum polarization contributions, for r = m;/m; < 1, one finds


http://dx.doi.org/10.1007/978-3-319-63577-4_3
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
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4

AP () =D ¥ fi(r) + O (r'°In?r)
i=1
23Inr  3C(3) 27% 74957
falr) = -
135 2 45 97200
£0) 43371In*r L 20989Linr  1811¢(3)
r)=—
! 22680 476280 2304
191972 451205689
68040 533433600
2807 In%r  665641Inr  3077((3)
fo(r) = — +
21600 2976750 5760
169677 246800849221
907200 480090240000
1) 551631n%r  240635099891Inr  9289((3)
g(r) = —

594000 + 172889640000 23040
3400197%  896194260575549

24948000  2396250410400000

The functions f>(r) and f4(r) coincide with the expansions provided in [21], and
f6(r) agrees with the combination of parts from [20] (for the vacuum polarization
contribution) and [22] (heavy-mass expansions for the light-by-light diagrams). The
coefficient f3(r) is new. The extra contributions are very small da, ~ 1.3 x 10726
for pi~loops and da, ~ —2.3 x 10~ for the 7—loops. Nevertheless, this provides
an important crosscheck of previous results.

With (4.10) and (4.11)—(4.16) the complete three-loop QED contribution to a,,
is now known analytically, either in form of a series expansion or exact. The mass
dependent terms may be summarized as follows:

AP (m,,/m,) — 22.86838000(17),
A (my,/m;) — 0.00036063(12), (4.17)
AL (my/me,my/my) = 0.00052776(10).

As already mentioned above, the Aéﬁ) (m,/m,) contribution is surprisingly large and
predominantly from light-by-light scattering via an electron loop. The importance
of this term was discovered in [31], improved by numerical calculation in [2] and
calculated analytically in [21]. Adding up the relevant terms we have

C; = 24.050 509 82 (28)

or

3
af? QED — 24.050509 82 (28) (5) ~30141.9022(4) x 107" (4.18)
™
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as a result for the complete 3—loop QED contribution to a,,. We have combined the
first two errors of (4.17) in quadrature and the last linearly, as the latter depends on
the same errors in the mass ratios.

4.1.4 Four-Loop QED Contribution

The calculation of the four—loop contribution to a,, is a formidable task, as there are
of the order of thousand diagrams to be calculated. Since the individual diagrams are
much more complicated than the three—loop ones, only a few have been calculated
analytically until recently [32-35]. In most cases one has to resort to numerical cal-
culations. This approach has been developed and perfected over the past 35 years by
Kinoshita and his collaborators [1, 2, 36—40] with the recalculations and improve-
ments [41-46]. The O(c*) contribution is sizable, about 6 standard deviations at
current experimental accuracy, and a precise knowledge of this term is absolutely
crucial for the comparison between theory and experiment. All the more, the pio-
neering essentially exact calculation by Laporta [47], which is leading in the electron
g — 2, represents a new quality of the QED result.

The universal mass independent term A(lg) (assuming single lepton flavor QED)
is the sum of contributions from 891 diagrams, where samples are shown in Fig. 4.4.
In a different classifications Figs. 4.6, 4.7, 4.8, 4.9 and 4.10 below, the vertex graphs
can be obtained by inserting an external photon in each possible lepton line of 104
4-loop self-mass diagrams, excluding the vertex diagrams with closed lepton loops
exhibiting an odd number of vertices, since they do not contribute as a consequence
of Furry’s theorem. This term represents the leading four—loop contribution to the
electron anomaly a,.. As a result of the enduring heroic effort by Kinoshita a final
answer has been obtained by Aoyama, Hayakawa, Kinoshita and Nio [43-46, 48],
whom find*

“This challenging project has been initiated in the early 1980s by Kinoshita and Lindquist and lead
to a first result in 1990 [37, 38]. As the subsequent ones, this result was obtained by numerical
integration of the appropriately prepared Feynman integrals using the Monte Carlo integration
routine VEGAS [49]. Since then a number of improved preliminary results have been published,
which are collected in the following tabular form

Agg) year Ref
—1.434 (138) 1983-1990 [38],
—1.557 (70) 1995  [50],
—1.4092 (384) 1997  [51],
—1.5098 (384) 2001  [52],
—1.7366 (60) 1999 [53],
—1.7260 (50) 2004 [42],
—1.7283 (35) 2005 [43],
—1.9144 (35) 2007 [44],
—1.9106 (20) 2012 [46],
—1.91298 (84) 2014  [48],
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Fig.4.4 Characteristic sample diagrams of the 25 gauge-invariant subsets of the 891 universal eight
order contributions to a;. For the sets 1-16, 24, 25 each class is obtained by permuting separately
the vertices attached to the left and right side of the main lepton vertex lines and also taking into
account the mirror images of the diagrams. For the sets containing vacuum polarization £—loops,
the latter have to be permuted as an insertion into each internal photon line. The sets 21, 22 and 23
containing a light-by-light scattering subdiagram one has to include the permutations of the internal
vertices of the corresponding ¢{—loop
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A® = —1.91298(84) (4.19)

where the error is due to the Monte Carlo integration.

As already mentioned, a major breakthrough is the quasi—exact calculation of this
universal 4—loop contribution which has been achieved by Laporta [47], after an epic
20 years effort [56—62]. The very high precision result obtained reads’

Aig) = —1.912245764926445574152647167439830054060873390658725345 . ..

(4.20)
A semi—analytical expression is also given and will be reproduced below as Eq. (4.31).
The result agrees to 0.90 with (4.19). The 891 diagrams consist of 25 gauge—invariant
subsets characterized by sample diagrams in Fig.4.4. The results for the subsets are
listed in Table4.2. Adding respectively the contributions to a, of diagrams with and
without closed electron loops one finds

A ig) (no closed electron loops) = —2.176866027739540077443259355895893938670 ,
4.21)

AES) (closed electron loops only) = 0.264620262813094503290612188456063884609 .
(4.22)

The contributions of the sets 17 and 18, the sum of contributions of the sets 11 and 12,
and the sum of the contributions of the sets 15 and 16 are in perfect agreement with
the analytical results of [63]. In the following we adopt the grouping of diagrams as
in [45] where diagrams of Fig. 4.4 are rearranged as in Fig.4.5: Ta = (17), Ib = (18),
Ic=(19),Id=(20),llTa=(15+16),Ib= (134 14),llc= (11 + 12), I = (7 + 8
+ 9+ 10), IVa = (22), IVb = (23), [Vc = (21),IVd=(24 +25),V=(1+2+3
+ 4 + 5 + 6). Exact results regrouped from Table 4.2 are included to Table4.3. The
agreement between [45] and [47] is remarkable.

In contrast to a,, again the by far largest contribution to a,, is due to A(28) (my/m.),
which collects the effects by the light internal electron loops in the muon vertex.
Here 469 diagrams contribute which may be divided into four gauge invariant (g-i)
groups:

Group I: 49 diagrams obtained from the 1-loop muon vertex by inserting 1—, 2— and
3—loop lepton VP sub-diagrams, i.e., the internal photon line of Fig.4.1 is replaced

(Footnote 4 continued)

which illustrates the stability and continuous progress of the project. Such evaluations take typically
three to six month of intense runs on high performance computers. To a large extend progress was
driven by the growing computing power which became available. More recent results have been
obtained utilizing the code-generating algorithm GENCODEN which carries out all steps of the
calculation automatically, including subtraction of ultraviolet and infrared divergences [54, 55].
SLaporta calculated the result numerically to 1100 digits. This high precision is required to find
a semi—analytical expression (see (4.31) below) for the result, by means of the PSLQ technique.
The expression contains harmonic polylogarithms of arguments e?, e%, ¢ 7, one-dimensional
integrals of products of complete elliptic integrals and six finite parts of master integrals, evaluated
up to 4800 digits.
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Table 4.2 Contribution to A(S) of the 25 gauge-invariant sets of Fig.4.4

1 —1.971075616835818943645699655337264406980
2 —0.142487379799872157235945291684857370994
3 —0.621921063535072522104091223479317643540
4 1.086698394475818687601961404690600972373
5 —1.040542410012582012539438620994249955094
6 0.512462047967986870479954030909194465565
7 0.690448347591261501528101600354802517732
8 —0.056336090170533315910959439910250595939
9 0.409217028479188586590553833614638435425
10 0.374357934811899949081953855414943578759
11 —0.091305840068696773426479566945788826481
12 0.017853686549808578110691748056565649168
13 —0.034179376078562729210191880996726218580
14 0.006504148381814640990365761897425802288
15 —0.572471862194781916152750849945181037311
16 0.151989599685819639625280516106513042070
17 0.000876865858889990697913748939713726165
18 0.015325282902013380844497471345160318673
19 0.011130913987517388830956500920570148123
20 0.049513202559526235110472234651204851710
21 —1.138822876459974505563154431181111707424
22 0.598842072031421820464649513201747727836
23 0.822284485811034346719894048799598422606
24 —0.872657392077131517978401982381415610384
25 —0.117949868787420797062780493486346339829

5 oo fOA L B e oo

I(a) 1(b) I(c) 1(d) II(a) 1I(b) II(c)
1V(a) IV(b) IV(C) 1V(d)

Fig. 4.5 Typical vertex diagrams representing 13 gauge-invariant subsets contributing to the eight-
order lepton g — 2. [Reprinted with permission from [45]. Copyright ©(2012) by the American
Physical Society]
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Fig. 4.6 Typical diagrams of subgroups I(a) (7 diagrams), I(b) (18 diagrams), I(c) (9 diagrams)
and I(d) (15 diagrams). The lepton lines represent fermions propagating in an external magnetic
field. ¢; denote VP insertions

by the full propagator at 3—loops. The group is subdivided into four g-i subclasses
I(a), I(b), I(c) and I(d) as shown in Fig. 4.6. Results for this group have been obtained
by numerical and analytic methods [32-34, 41]. The numerical result [41]

AS) =16.721967 (905) ,

has been obtained by using simple integral representations.®

Group II: 90 diagrams generated from the 2-loop muon vertex by inserting 1-loop
and/or 2-loop lepton VP sub-diagrams as shown in Fig.4.7. Again results for this
group have been obtained by numerical and analytic methods [32-34, 41]. The result
here is [46]

AS) = —16.673450 (961) .

5Subgroup I(a) has the integral representation

1 1
® _ p2(t)
Aiw = ./dx“ ») (/d’ 1+[4/<1—r2>](1—x>/x2)
0

0

3

where po(¢) is given by (3.156). Carrying out the ¢ integral one obtains

1
2 3 3
® 8 a a a a—+1
At = /‘”“‘*“[*6*?*(5*?) ‘“aq}
0

with @ = 2/(1 — x). In this case also the last integration may be carried out analytically [64, 65].
Similarly, subgroup I(b) has the representation

1 1
A® 5 /d |- /d p2(t1)
I e R Y

0
1 ()
p4(f2
X (O/ Ty T x)/x2>

with py given by (3.156) and p4 by (3.160), respectively.
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http://dx.doi.org/10.1007/978-3-319-63577-4_3
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N

Fig. 4.7 Typical diagrams of group II (90 diagrams). The lepton lines as in Fig.4.6. 2 and 4,
respectively, indicate second (1-loop sub-diagrams) and fourth (2-loop sub-diagrams) order lepton—
loops

Group III: 150 diagrams generated from the 3—loop muon vertex Fig. 4.3 by inserting
one 1-loop electron VP sub-diagrams in each internal photon line in all possible ways.
Examples are depicted in Fig.4.8. This group has been calculated numerically only,
with the result [46]

AS) = 10.793 40 (270) .
Group 1V: 180 diagrams with muon vertex containing LbL sub-graphs decorated

with additional radiative corrections. This group is subdivided into g-i subsets IV(a),
IV(b), IV(c) and IV(d) as illustrated in Fig.4.9.

Fig. 4.8 Typical diagrams of group III (150 diagrams). The lepton lines as in Fig.4.6

ot

IV(a) K 1v(b) IV(c) i\Mﬁré IV(d)

Fig. 4.9 Some typical diagrams of subgroups IVa (54 diagrams), IVb (60 diagrams), IVc
(48 diagrams) and IVd (18 diagrams). The lepton lines as in Fig. 4.6
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Fig. 4.10 4-loop Group V diagrams. 47 self-energy-like diagrams of Mp; — My7 represent 518
vertex diagrams (by inserting the external photon vertex on the virtual muon lines in all possible
ways). They are represented by sets 1-6 in Fig. 4.4. [Reprinted with permission from [68]. Copyright
©(2007) by the American Physical Society]

The result of this calculation, which until recently was at the limit of the possi-
bilities, was obtained by two independent methods in [41, 46] and reads’

AP =121.8433 (58) .

Group V: 518 vertex diagrams which may be grouped into 47 lepton self-energy type
diagrams as shown in Fig.4.10. The result is [41, 46, 68]

A®) = —2.1755 (20) .

This resultis superseded now by (4.21) with which itis in excellent agreement. Before
Laporta’s result the contribution of the 518 diagrams without fermion loops has been
responsible for the largest part of the uncertainty of the QED O (a*) term. Note that
the universal part of the O (a*) contribution is leading for the electron g — 2, about
6 standard deviations at current experimental accuracy, and a precise knowledge of
this term for the electron is absolutely crucial for the comparison between theory
and experiment. So, big progress here.

7In fact the first result (111.1+8.1) x (« /7r)4 was obtained by Calmet and Petermann [66] in 1975
and was confirmed with (117.4 +0.5) x (cy/7r)4 by Samuel and Chlouber [67] in 1977.
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Adding up the results from the different groups the new value for A;g) (m,/m.)
reads
AP (m,,/m,) = 132.6852(60)[127.50(41)] (4.23)

in brackets an old value which was presented in [40]. In order to get some impression
about the techniques and difficulties which have to be mastered we recommend the
reader to study more carefully the original work like the recent articles [41, 43, 44].

There is also a small contribution from the term Ags), which depends on 3 masses,
and which arises from 102 diagrams containing two or three closed loops of VP
and/or LbL type. The contributions come from the classes I (30 diagrams), II (36
diagrams) and I'V (36 diagrams) defined above and the results calculated in [41] read

ADm,/me.mufmy) = 0.007 627 (0)
A (myfme, m,/m;) = —0.028 650 (2) (4.24)
AR, (m/me.m,/my) = 0.083739 (36)

which sum up to the value
AP myfme, my,/m;) = 0.06272(4) . (4.25)

Improved estimates for the 7—loops contribution obtained in [46] yield the sub-
class results 0.00139(0) [I], —0.01461(1) [II], 0.04504(14) [II] and 0.01052(12)
[IV], which sum to

AP (m,,/m.) = 0.04234(12) . (4.26)

In summary: all mass dependent as well as the mass independent O () QED contri-
butions to a,, have been recalculated by different methods by Kinoshita’s group [41,
43, 44]. There is also substantial progress in analytic calculations [69-75]. The
eighth-order light-by-light QED contributions from leptons with heavier masses have
been reconsidered based on analytic results which are largely supporting and confirm-
ing the recent results [45, 46]. Contributions from specified sub-groups of diagrams
shown in Fig. 4.5 are listed in Table 4.3 for the electron, including the universal part,
and in Table 4.4 for the muon.
Collecting the A® terms for the muon discussed above we obtain

Cs = 130.8734(60)

or
4
aff) QED — 130.873 4 (60) (g) ~ 380.990(17) x 1071 4.27)
T

as a result for the complete 4-loop QED contribution to a,,.
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Table 4.4 The eighth-order mass-dependent QED contribution from 11 gauge-invariant groups to

muon g — 2 [46], whose representatives are shown in Fig.4.5. The mass-dependence of A(S) is

3/L (m/t/me, my/mz)

Group A my/me) AR Gy fmr) A

I(a) 7.74547 (42) 0.000032 (0) 0.003209 (0)

1(b) 7.58201 (71) 0.000252 (0) 0.002611 (0)

I(c) 1.624307 (40) 0.000737 (0) 0.001811 (0)

1(d) —0.22982 (37) 0.000368 (0) 0.000000 (0)

1l(a) —2.77888 (38) —0.007329 (1) 0.000000 (0)

1I(b) —4.55277 (30) —0.002036 (0) —0.009008 (1)

II(c) —9.34180 (83) —0.005246 (1) —0.019642 (2)

it 10.7934 (27) 0.04504 (14) 0

IV(a) 123.78551 (44) 0.038513 (11) 0.083739 (36)

IV(b) —0.4170 (37) 0.006106 (31) 0

IV(c) 2.9072 (44) —0.01823 (11) 0

vV(d) —4.43243 (58) —0.015868 (37) 0

Sum 132.6852 (65) 0.04234 (10) 0.06272 (4)
(18) (18) (2072) (120) (18)

Fig. 4.11 Some typical tenth order contributions to a, including fermion loops. In brackets the
number of diagrams of the given type

4.1.5 Five-Loop QED Contribution

Here the number of diagrams (see Fig.4.11) is in the 10 000. Alone the universal A?O)
term has contributions from 12 672 diagrams. The latter are grouped into six gauge-
invariant sets I-VI, which are further subdivided into 32 gauge-invariant subsets
depending on the type of lepton loops involved. Set V is the set without closed
lepton loops. It is the largest and most difficult set to evaluate consisting of 6354
diagrams, and has been accurately evaluated only recently by Aoyama et al. [48].
The 31 sets with closed lepton loops consist of 6318 vertex diagrams and have
been presented in Refs. [76—-85]. The results of all ten subsets of Set I have been
confirmed by Ref. [86, 87] by analytic and/or semi-analytic methods (see Table 4.10).
The five-loop contribution originally was evaluated using renormalization group
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(RG) arguments in [2, 88]. An earlier estimate by Kinoshita and Nio [42, 76] was®
Aglo) (m,/m,) = 663(20), which was subsequently crosschecked by Kataev [89]
using renormalization group arguments. Some five—loop graphs were first calculated
by Laporta [90]. The estimates of the leading contribution is superseded now by the
first complete tenth-order calculation by Aoyama et al. [46]. They find

Agm) (m,/m.) =742.18 (87),
AN G fm) = —0.068 (5),
AL myJme.my/my) = 2.011 (10)

by numerically evaluating all Feynman diagrams. The error represents the statistical
fluctuation of the Monte-Carlo integration. The contributions are tabulated in detail
Table4.5 from [45, 46]. The universal part has been calculated recently to be [45]

A =7.795(336) . (4.28)
Thus we arrive at
Cs ~ 751.917(932)

or
a9 QED _ 751 917(932) (9)5 ~ 5.0845(63) x 10~ (4.29)
¢ . %) =s. .

as a result of the 5-loop QED contribution [46].

Results from individual sub-groups of diagrams are reproduced for the electron
and the muon in Table4.10.

In Table4.6 we summarize the results of the QED calculations. The expansion
coefficients C; which multiply (c/7)" are given for a, and for a,, for comparison. The
coefficients for a, remain small and are alternating while for a,, they grow rapidly
with the order. Nevertheless, because of the smallness of the expansion parameter
a/m, the convergence of the perturbative expansion of aSED is good. We conclude
that the perturbative truncation error looks to be well under control at the present level
of accuracy. It is interesting to compare the QED contributions to a, with the ones
dominating/determining a,. For the electron the universal A; part is dominating,
for the muon the mass dependent A;(m,,/m,) part. For the muon the light electron
loops produce the large logarithms Inm ,/m, which make the corresponding mass
dependent terms the leading ones. These grow with increasing order and are all
positive. Beyond the lowest order a, and a,, are testing different groups of diagrams.

8The first estimate A;lo) (my,/me) ~ 930(170) has been given by Karshenboim [88].
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Table4.5 Summary of contributions to the tenth-order lepton g —2 from 32 gauge-invariant subsets

from [45, 48]. nF is the number of vertex diagrams contributing to AglO) . The 3 entries to the right
are the mass-dependent contribution to the muon g — 2 from 32 gauge-invariant subsets shown in

Fig.4.12. The mass-dependence of AgLO) is AgLO) (my/me,my/m:)

Group |np Lepton Electron Muon

A0 ALY (e fmy) ASD onyufme) | A nfmey | ALY

I(a) 1 0.00047094(6),  0.000 000 28 (1) 22.566 973 (3) 0.000 038 (0) 0.017 312 (1)
1I(b) 9 0.007 0108 (7)| 0.000 001 88 (1) 30.667 091 (3) 0.000 269 (0) 0.020 179 (1)
I(c) 9 0.023468 (2) | 0.000002 67 (1) 5.141395(1) | 0.000397(0) | 0.002 330 (0)
1(d) 6 0.003 8017 (5)| 0.000 005 46 (1) 8.8921 (11) 0.000 388 (0) 0.024 487 (2)
I(e) 30 0.010 296 (4) 0.000 001 60 (1) —0.9312 (24) 0.000 232 (0) 0.002 370 (0)
1(H) 3 0.0075684(20),  0.000 047 54 (1) 3.685 049 (90) | 0.002 162 (0) 0.023 390 (2)
I(g) 9 0.028 569 (6) 0.000 024 45 (1) 2.607 87 (72) 0.001 698 (0) 0.002 729 (1)
I(h) 30 0.001 696 (13) | —0.000 010 14 (3) | —0.5686 (11) 0.000 163 (1) | 0.001976 (3)
1) 105 0.017 47 (11) 0.000 001 67 (2) 0.0871 (59) 0.000 024 (0) 0

1G) 6 0.0003975(18),  0.000 002 41 (6) —1.263 72 (14) 0.000 168 (1) 0.000 110 (5)
(@) |24 —0.109 495 (23) | —0.000 737 69 (95) -70.4717 (38) —0.018 882 (8) | —0.290 853 (85)
1I(b) 108 —0.473 559 (84) | —0.000 645 62 (95) +34.7715 (26) —0.035 615 (20) | —0.127 369 (60)
II(c) 36 —0.116 489 (32) | —0.000 380 25 (46) | —5.38575(99) | —0.016 348 (14) | —0.040 800 (51)
I | 180 —0.24300 (29) | —0.000098 17 (41) | 0.4972(65) | —0.007 673 (14) | 0

M) | 180 —1.3449 (10) | —0.000 465 0 (40) 3.265 (12) —~0.03806(13) | 0

1I(f) 72 —2.433 6 (15) —0.005 868 (39) 77.465 (12) —0.267 23 (73) | —0.502 95 (68)
M) | 300 2.12733(17) | 0.007511 (11) 109.116 (33) 0.283 000 (32) | 0.891 40 (44)
I11(b) 450 3.327 12 (45) 0.002 794 (1) 11.9367 (45) 0.143 600 (10) | O

1II(c) 390 4.921 (11) 0.003 70 (36) 7.37 (15) 0.1999 (28) 0

v 2072 | —7.7296 (48) | —0.011 36 (7) 138.79 (17) —0. 0.4357(25)| 0

\% 6354 8.762 (336) 0 0

VI(a) 36 1.041 32 (19) 0.006 152 (11) 629.141 (12) 0.246 10 (18) 2.3590 (18)
VI(b) | 54 134699 (28) | 0.0017789(35) |181.1285 (51) 0.096 522 (93) |  0.194 76 (26)
VI(c) 144 —2.5289 (28) —0.005 953 (59) ~36.58 (12) —0.2601 (28) —0.5018 (89)
VI(d) 492 1.8467 (70) 0.001 276 (76) —7.92 (60) 0.0818 (17) 0

Vi) |48 —0.4312 (7) —0.000 750 (8) —4.32(14) —0.03594 (32) | —0.1122 (24)
VI(f) 180 0.7703 (22) 0.000 033 (7) —38.16 (15) 0.043 47 (85) 0.0659 (31)
VI(g) | 480 —1.5904 (63) —0.000 497 (29) 6.96 (48) —0.044 51 (96) 0

VI(h) | 630 0.1792 (39) 0.000 045 (9) ~8.55 (23) 0.00485(46) | 0

VI() 60 —0.0438 (12) —0.000 326 (1) —27.34 (12) —0.003 45 (33) | —0.0027 (11)
VIG) 54 —0.2288 (18) —0.000 127 (13) —25.505 (20) —0.01149 (33) | —0.016 03 (58)
VI(k) | 120 0.6802 (38) 0.000 015 6 (40) | 97.123 (62) 0.00217(16) | 0

Sum 12672 7.793 (336) —0.003 824(144) 742.18 (87) —0.068 (5) 2.011 (10)
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Table 4.6 Summary of QED contributions to a,, including a comparison of the QED coefficients
for a, and a,, respectively

C; t=e L= a/(,Zi)QED x 10!

C 0.5 0.5 a™® 116140973.242(26)
C —0.32847844400. .. 0.765857423 (16) a®  413217.627(9)
Cs 1.181234017 ... 24.050509 82 (28) a©  30141.9022(4)
o —1.9113(18) 130.8734(60) a® 380.990(17)
Cs 9.16(58) 751.92(93) a0 5.0845(63)

The universal QED terms have been summarized in (3.45) and adding up the mass
dependent QED terms of the 3 flavors (e, i, 7) we finally obtain

agED = 116584 718.859(.026)(.009)(.017)(.006)[.034] x 10~'" . (4.30)

The errors are given by the uncertainties in oippy: and in the mass ratios, and the numer-
ical errors of the a* and o’ terms, respectively. Note that the missing 6-loop contri-
butions are expected to be larger than the tenth-order uncertainty now. First results
based on asymptotic expansion techniques have been obtained by the Karlsruhe
group in [71]. More recent result have been presented in [70, 72, 73, 75, 91]. They
will be briefly discussed in the following subsection.

4.1.6 Four- and Five—Loop Analytic Results and Crosschecks

The big advantage of the analytic result is that it allows a numerical evaluation at any
desired precision. The direct numerical evaluation of the multidimensional Feynman
integrals by Monte Carlo methods is always of limited precision and an improve-
ment is always very expensive in computing power. Thus working out analytic or
semi-analytic results is important where possible. In fact analytic evaluations have
been very important for finding bugs in numerical codes and for improvements in
the numerical uncertainties. Vice versa, numerical results provide benchmarks for
developing reliable analytic codes.

Most analytic results available in the literature have been obtained with the help
of the dispersive approach discussed in Sect.3.8. Also the - and/or Feynman-
parametric approach introduced in Sect.2.5, in conjunction with a power series
expansion in the mass ratios, sometimes combined with Padé approximants, is a
reliable tool in calculating the complicated higher loop diagrams.

For early attempts to perform four—loop g —2 calculations for subsets of diagrams
analytically we refer to [32-34]. More recently substantial progress has been possi-
ble by more automatized calculations, improved algorithms and last but not least by
the increasing computing power which has become available. Among the standard
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Fig. 4.12 Typical self-energy-like diagrams representing 32 gauge-invariant subsets contributing
to the tenth-order lepton g — 2. Solid lines represent lepton lines propagating in a weak magnetic
field. [Reprinted with permission from [45]. Copyright ©)(2012) by the American Physical Society]

tools we mention the automatic Feynman graph generation program ggraf [92] for
which there exist interfaces, like g2e2, which translate ggraf output into input for
the computer algebra package FORM [93, 94] and TFORM [95, 96]. The latter are
used for the reduction of the tensor structure and the traces of Dirac matrices. Com-
puter algebra systems like FERMAT [97] may be helpful for simplifying multivariable
polynomials and rational functions in the kinematic variables. The MATHEMATICA
package ASY [98, 99] is available for performing power series expansion in masses
and/or momenta. It is based on the strategy of expansion by regions [96, 100-102]
which provides an asymptotic expansion of a given Feynman integral in a given limit
represented as a finite sum of contributions corresponding to so-called regions (i.e.,
scaling of components of loop momenta or Feynman parameters). Each term of such
contributions is manifestly homogeneous with respect to the expansion parameter.
The programs FIRE [103] and crusher [91, 104] allow to reduce integrals to a
set of known master integrals. Both programs implement Laporta’s difference equa-
tions algorithm [33, 56] for the solution of integration-by-parts identities [ 105, 106].
Master integrals have been largely classified and the simpler ones are known ana-
Iytically or are known as one or two dimensional integrals over analytically known
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functions. The more complicated ones may be evaluated using Mellin—Barnes tech-
niques [107, 108], which has been implemented in the MATHEMATICA program
MB [109]. Also the e = 4 — d expansion, ¢ — +0 introduced in Sect.2.5 has been
implemented in a computer code. The e expansion of the remaining master integrals
may be computed numerically with the help of FIESTA [110]. In many cases the
PSLQ approach [111], an integer relation finding algorithm, allows one to find exact
analytic results form very high precision numerical ones, as one in general knows
what type of transcendental elements (7", {(n), log’s, polylogs etc.) could show up
in the results.

In the following we review the status of the four- and five-loop results at the level
of anumerical comparison. The analytic results, often available as a series expansion,
typically are lengthy and will not be reproduced here. We refer the interested reader
to the original literature, where also the technical details of the calculations may be
found.

Four-Loop Analytic Results and Crosschecks

We remind that loop calculations require regularization and renormalization. Apply-
ing dimensional regularization always requires the appropriate e—expansion, before
taking the limit ¢ — 0. In higher—loop calculations this by itself is a formidable
task and a mater of efficient computer algebra codes. Most remarkably the 4—loop
universal contribution A% (4.20) can be considered to be known analytically after
two decennials of efforts by Laporta [47]. The contributions from all 891 diagrams
are expressed algebraically by means of 334 master integrals (it corresponds to the
generalization of the reduction of the tensor integral in terms of scalar integrals (so
called master integrals) disentangled form the particle spin complications, which we
outlined in Sect. 2.5.7) belonging to 220 topologies. The method used for the compu-
tation of the master integrals with a precision up to 9600 digits is largely based on the
difference equation method [56, 57] and the differential equation method [112-114].
Thereby large systems of difference and differential equations are solved numerically
on high performance computers. Most master integrals are related the polylogarith-
mic and harmonic polylogarithmic integrals which have been well investigated in the
literature. The most complicated master integrals are of elliptical type (see Fig.4.13).
One obtains a family of one—dimensional integrals of products of elliptic integrals
(itself defined by one—dimensional integrals see Sect.3.8.1). Laporta then has fitted
the analytical expressions to high precision numerical values of all master integrals
and diagram contributions using the PSLQ algorithm.’

°Let me explain this in case of the universal 3-loop result (4.10). Suppose you have a very high
precision numerical value for Agf’u)ni on the Lh.s. and you know which transcendental objects from
the list (3.185) could show up (knowing the types of master integrals and the transcendentals which
are associated with them) one can find the rational coefficients on the r.h.s. of (4.10) by fitting the
r.h.s. to the value on the 1.h.s. Since one can multiply the equation with the common divisor of
the rational coefficients the general problem requires to find integers a;, not all zero, which fit an
equation of the form ajx; +azxy + - - - +a,x, = 0 where (xy, x2, - - - , x,) is a given vector of real
or complex numbers (from a basis of transcendentals). Often this method is the only known way to
find a closed analytic expression of an integral.
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Fig. 4.13 Minimal set of master integrals which contain the elliptical constants. Full lines repre-
sent scalar propagators, wiggly lines massless (photons). The double dot in (a’) indicate that the
propagator represented by the line is to be raised to the third power. (f,f’,f”) and (g,g’,g”) have
numerators (1, p - k, (p - k)?), respectively

No doubt, Laporta’s result is a milestone for the books. I reproduce his semi—
analytic result, which in view of the complexity of the problem looks fairly compact.
The result of the PSLQ analytical fit can be written as follows:

A®

1 uni

—T0+T2+T3+T4+T5+T()+T7+\/§(V4a+V6a)+V6b+V7b+W6b+W7b
+ V3 (E4q + Esq + E¢a + E70) + Egp + E7p + U . 4.31)

The terms have been arranged in blocks with equal transcendental weight (see
(3.185)). The index number is the weight. The terms containing the “usual” tran-
scendental constants (3.186) are:
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The term containing the €Y coefficients of the e—expansion of six master integrals
(see f, f', f", 9, ¢, g" of Fig.4.13):

U — 541C 629C +49C 327C +49C +37C
= 7300 8 T o 81 T g O8I T g C83a T3 Cenn T Csae

The numerical values of entries in (4.31) may be found in Table3 of [47]. In the
above expressions ((n) = >0 i ™", ay = >0 27 i be = Hy00.1,1(3)

,,,,,
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b7 = Ho 00,0011 (3):d7 = Ho000,1,-1,-1(1), Cl, (§) = ImLi,("’). H;, ;... (x) are
the harmonic polylogarithms. The integrals f; are defined as follows:

9
fil, j, k) = / ds D3(s) (s — 2) In' (9 —s)In’ (s — 1) In* (s) ,
1

9
foli, j, k) :/ ds D (s)Re (ﬁDz(s)) (s — g) In (9 —s)In’ (s — 1) In* (s) ,
1

Dits) — 2 K((ﬁ_3)(ﬁ+l)3),
VE+3)W5—17 \Ws+3)(/s = 1)3

Dats) — 2 ( ~ (f—3)<ﬁ+1>3) ;
V5 +3)5 - 1)3 W5+ —1)3

K (x) is the complete elliptic integral of the first kind. Note that D, (s) = 2J2(1’9) (s),
with J{""” defined in Eq. (A.12) of Ref. [ 115]. The integrals f; (0, 0, 0) and f5(0, 0, 0)
were studied in Ref. [61]. The constants A3, B; and C3, defined in Ref. [61], admit

the hypergeometric representations'”:
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10For relations between Gauss hypergeometric functions and Feynman diagrams see e.g. [116] and
references therein.
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Aj; appears only in the coefficients of the e-expansion of master integrals, and cancels
out in the diagram contributions. Figure4.13 shows the fundamental elliptic master
integrals which contains irreducible combinations of Bz, C3 and f,, (i, j, k).

The analytical fits of Vg, Ve,, Vs, V7; and the master integrals involved needed
PSLQ runs with basis of about 500 elements calculated with 9600 digits of precision.

So much concerning the universal part which is dominating the electron anomaly
but is subleading only for the muon case on which we continue now.

High-precision numerical results have been obtained by recently in [91] for the
electron—loop contributions to the muon anomalous magnetic moment at four loops
A(ZS) (m,/m,). These concern contributions from graphs with one, two or three closed
electron loops. The results, including those from the light-by-light-type corrections
presented in [75], are collected in Table 4.7 (compare Table 4.4). Contributions which
exhibit two or three closed lepton loops are listed separately, depending on the type
of leptons circulating. This concerns the classes I(a) and I(b) in Fig. 4.6, classes II(b)
and II(c) in Fig.4.7 and class IV(a) in Fig.4.9. Correspondingly, one denotes

1(a0) : (€1, €2, €3) = (e, e, e) ‘ I(bc0) : (41, £2) = (e, e)

@) : (61,62, 63) = (ee,p) | Ibel) @ (€1, €2) = (e, 1)

1@2) : (€1, 62, 63) = (e, pi, ) | 1(be2) = (61, £2) = (1, €)

M(bcO): (L1, 62) = (e,e) | IV(a0): (£1,€) = (e, e)

be): (01, &) = (e.p) | IV@l): (01, &) = (e, )
IV(a2): (€1,6,) = (u, e).

Also one denotes by I(bc) = I(b) + I(c) etc. The gauge invariant groups of diagrams
are labeled according to Fig.4.14 and the list just given. It is worth noting that the
leading result for the most challenging class I'V(a0) diagrams was obtained by Calmet
and Petermann [66] in 1975 who estimated (111.1 £ 8.1) x (a/7)*. The result was
confirmed with (117.440.5) x (a/ )t by Samuel and Chlouber [67] in 1977, which
agrees well with the more precise value (116.76 4= 0.02) x (a/7r)4 from the Table,
which was provided by the Karlsruhe-Moscow—Zeuthen collaboration. For the ana-
Iytic results the one standard deviation uncertainties originating from the numerical
integration, were multiplied by a factor five, in order to present conservative results.
In case no uncertainty is displayed the corresponding result is either known ana-
Iytically or with high numerical precision. The analytically evaluated results are in
perfect agreement with the ones in the literature, although in some cases the uncer-
tainty is far below the per mill level. The analytic approach utilized in [91] yields
relatively large uncertainties of about 10 and 7% for the classes IV(c) and IV(d),
respectively. For class III the uncertainty amounts to 0.2% and for I(d) 1%.

Table 4.8 collects contributions to the anomalous magnetic moment with heavy
virtual leptons calculated by analytic methods in [74] in comparison with results
obtained previously by means of numerical evaluations (see Table4.4). The corre-

sponding virtual heavy lepton contributions A(z? (me/my), A(zi)(mg/mT) and
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Table 4.7 Results for Agj (my,/m,.) obtained in [91] for the different groups of diagrams and the
comparison with the numerical results from [33, 34, 41, 46]. Note that the uncertainties in the
second column are multiplied by a factor five in order to take into account possible correlations
not always kept trace of by the numerical programs. The results for IV(a)-IV(c) have been taken
from [75]

Group Kurz et al. [91] Various Refs. [33, 34, 41, 46]
1(a0) 7.223076 7.223077 £ 0.000029 [41]
7.223076 [33]
I(al) 0.494072 0.494075 £ 0.000006 [41]
0.494072 [33]
I(a2) 0.027988 0.027988 =+ 0.000001 [41]
0.027988 [33]
I(a) 7.745136 7.74547 + 0.00042 [46]
1(bc0) 8.56876 4+ 0.00001 8.56874 £ 0.00005 [41]
I(bcl) 0.1411 £ 0.0060 0.141184 =+ 0.000003 [41]
I(bc2) 0.4956 + 0.0004 0.49565 + 0.00001 [41]
I(bc) 9.2054 4+ 0.0060 9.20632 + 0.00071 [46]
1(d) —0.2303 £+ 0.0024 —0.22982 4+ 0.00037 [46]
—0.230362 + 0.000005 [34]
II(a) —2.77885 —2.77888 £+ 0.00038 [46]
—2.77885 [33]
1I(bc0) —12.212631 —12.21247 + 0.00045 [41]
II(bcl) —1.683165 £ 0.000013 —1.68319 £+ 0.00014 [41]
II(bc) —13.895796 + 0.000013 —13.89457 + 0.00088 [46]
1 10.800 £ 0.022 10.7934 + 0.0027 [46]
IV(a0) 116.76 £ 0.02 116.759183 4+ 0.000292 [41]
IV(al) 2.69 +0.14 2.697443 £ 0.000142 [41]
IV(a2) 4.33+0.17 4.328885 £ 0.000293 [41]
IV(a) 123.78 £0.22 123.78551 4 0.00044 [46]
IV(b) —0.38 £0.08 —0.4170 £ 0.0037 [46]
IV(c) 2.94 £ 0.30 2.9072 £+ 0.0044 [46]
IvV(d) —4.32+0.30 —4.43243 4+ 0.00058 [46]

Agge) (m,/m,, m./m;) to the electron anomaly the reader may find in [74] (see
Table4.3). Also these results based on expansions in the mass ratios agree well
with the numerical results in [45].

Although the contribution Agi) is quite small it is nevertheless instructive to com-
pare in Table 4.9 (again to be compared with Table 4.4) the results presented in [91]
with the ones [46] obtained by means of purely numerical methods. Good agreement
within the uncertainties is found for the diagram classes I(a) and IV (a). For II(b) +
II(c) one observes a discrepancy of about three standard deviations. Also the results
for I(b) 4+ I(c) do not agree within the assigned uncertainty. Note, however, that



4.1 g — 2 in Quantum Electrodynamics

WA O LN

283

I(a)

1(b)

I(c) 1(d)

5@%%@%%

1I(a)

1(b)

1I(c)

ﬁaﬂé\ﬁ\%

1V(a)

IV(b)

IV(c) IV(d)

Fig. 4.14 Sample four-loop QED diagrams exhibiting at least one electron loop accessible to
analytic and semi-analytic methods. External fermion lines are muons, internal Fermion loops
represent electrons, muons or taus

Table 4.8 Comparison of analytic results for the A;s) (my/mz) x 102 contribution to the muon
g — 2 from 7-loops at four loop order from [74] with results from [46] (see Table4.4)

Group Kurz et al. [74] Aoyama et al. [46]
I(a) 0.00324281(2) 0.0032(0)

I(b) + I(c) + 1I(b) + II(c) —0.6292808(6) —0.6293(1)

1(d) 0.0367796(4) 0.0368(0)

1 4.5208986(6) 4.504(14)

I(a) + IV(d) —2.316756(5) —2.3197(37)
IV(a) 3.851967(3) 3.8513(11)
IV(b) 0.612661(5) 0.6106(31)
IV(c) —1.83010(1) —1.823(11)

in [46] an older value for m,/m  has been used which is about 0.01% smaller and
thus can explain most of the discrepancy.
Replacing the numerical results included in (4.23)—(4.26) by the ones accessible

analytically one obtains

AP (m,/m.)
AP (my/my)

= 126.34(38) + 6.53(30) = 132.86(48) [132.6852(60)],

= 0.0424941(2)(53)
A (my/m,, m,/my) = 0.0627220(1)(100)

[0.04234(12)],
[0.06272(4)],
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Table 4.9 Comparison of the results for Agi) (my/me, my,/m;) obtained in [91] with results of

Ref. [46] for the individual diagram classes. Note that the error in m, /m is not included. In most
cases it induces an uncertainty in fifth significant digit in the displayed numbers, in the class of
IV(a) even in the fourth. In the second row an updated result for I(c) has been used

Group Kurz et al. [91] Aoyama et al. [46]
I(a) 0.00320905(1) 0.003209(0)
I(b) + I(c) 0.00442289(2) 0.004422(0)
I(b) + II(c) —0.02865753(1) —0.028650(2)
IV(a) 0.08374757(9) 0.083739(36)

in brackets the results of [46]. Note that the uncertainty of the analytic result is larger
than the uncertainty in Ref. [46].
The four-loop results of Refs. [74, 75, 91] can be summarized as

Cy— AY = AP (my/me) + A (m,Jmy) + A (myfme, m,/m.)
= 132.86(48) + 0.0424941(53) + 0.062722(10)
= 132.965(480)[132.790(6)] . (4.32)

In the bracket the corresponding result [46]. The agreement is perfect within errors,
but the error of the analytic result at present is almost two orders of magnitude larger.

What is important is the fact that the crosschecks have reached a precision 0.5 x
(a/m)* &~ 1.5 x 1071, well below the experimental precision 15 x 107! expected
from the next generation experiments. Note that, in view of the fact that a2EP (3.66)
is completely dominated by the universal contribution, Laporta’s semi-analytical
results consolidates impressively the four—loop QED contribution to a,

Five-Loop Analytic Results and Crosschecks

A number of five-loop diagrams, displayed in Fig. 4.15, exhibiting photon self-energy
insertions can be calculated analytically, either by series expansion in mass ratios or
by integrating known lower order leptonic vacuum polarization functions IT,(g?).
In[72, 90] some five-loop corrections have been calculated by using the leading term
in the high-energy expansion of the leptonic vacuum polarization function of the pho-
ton. Since this approach leads to unexpectedly large deviation from the numerical
result, the method had to be improved. In [86] a substantial improvement has been
achieved by replacing the above mentioned high-energy expansion by an approxi-
mation based on a Padé improved!' expansions in the low- and high-energy and the
threshold region. The results are listed in Table 4.10 together with a comparison with
other published results. For the classes I(a) I(c) results are exact since they result

11padé approximants [117] are very useful in cases when a function, f(x) say, is known
only by its series expansion f(x) = Zj’v:o cj x/. A Padé approximant for f(x) is a ratio-
nal function of x [m,n]f(x) = Pu(x)/Q0n(x), where Py, (x) and Q,(x) are polynomials in
x of degree m and n, respectively, which are determined such that [m, n]s(x) has the same
known Taylor expansion as f(x). By convention Q,(0) = 1. The number of coefficients of a Padé
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Fig. 4.15 Some typical five loop order contributions to a; including fermion loops tractable by
analytic methods

from numerically integrating the known analytic one- and two-loop results for the
vacuum polarization function. Classes I(d) and I(e) are calculated using the highly
constrained Padé approximants, which have been constructed using 30 terms in the
low- and high-energy expansion. Due to the vast amount of information, the results
for g — 2 using different approximants have very little spread and the final result
is therefore very precise. The situation is quite different for classes I(f)-1(j) which
require the knowledge of I7,(¢?) at four-loop order. Since there is only a limited
number of terms in the relevant expansions, the Padé approximation is less precise
and the precision of the result is limited (see Fig. 1 of Ref. [86]). In general, good
agreement is found with the results from [76-78, 81], but for some classes a certain
tension remains. The numbers shown are obtained by numerically integrating over
the best available approximation. In case there are several equivalent approximations

(Footnote 11 continued)

approximant [m,n]= ;(":O akxk/(l + ZZ:I bkxk) is n +m + 1 unless ap = 0 as in case of the
H(qz), where it is n +m. Given N, [m,n] is determined up todegreen +m+1 < Norn+m < N
if ap = 0. To illustrate the benefit of a Padé approximant over the Taylor series lets suppose
f(x) ~ constant as x — oo is a bounded function, then the series of [n, n] Padés can represent the
function f globally much better than the Taylor series, which completely fails when x gets larger.
Under appropriate conditions (Stieltjes function) one can proof that the appropriately chosen Padé
series converges to f(x) for all x.
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Table4.10 Results for Ag?) (m,/ m.) with pure electronic insertions. The errors listed in the second
column are estimated from the spread between different Padé approximants, which is negligible
for classes I(a)-I(e). Note that Ref. [72] only used the high energy asymptotic form of IT;(¢?) and
does not provide an error estimate

Group Ref. [86] Ref. [72] Refs. [76-78, 81] Ref.
I(a) 20.142 813 20.183 2 20.142 93(23) [76]
1I(b) 27.690 061 27.718 8 27.690 38(30) [76]
I(c) 4.742 149 4.817 59 4.742 12(14) [76]
I(d)+I(e) 6.241 470 6.11777 6.243 32(101)(70) [76]
I(e) —1.211 249 —1.33141 —1.208 41(70) [76]
I(f) + I(g) + I(h) 4.446 ng 4.391 31 4.446 68(9)(23)(59) [76, 78]
1(i) 0.074 6 _+189 0.252 37 0.087 1(59) [81]
1() —1.2469 fg —1.21429 —1.247 26(12) [77]

Table 4.11 Results for A;i?) (my,/m.) including electronic and muonic contributions

Group Baikov et al. [86] Aoyama et al. [46]
I(a) 22.566 976 22.566 973 (3)
I(b) 30.667 093 30.667 091 (3)
I(c) 5.141 395 5.141 395 (1)

I(e) —0.931 839 —0.9312 (24)
Table 4.12 Results for the universal contributions A%IO)

Group Baikov et al. [86] Aoyama et al. [45]
I(a) 0.000 471 0.000 470 94 (6)
1(b) 0.007 010 0.007 010 8 (7)
I(c) 0.023 467 0.023 468 (2)

I(d) + I(e) 0.014 094 0.014 098(5)(4)
I(e) 0.010 291 0.010 296 (4)

I(f) + I(g) + I(h) 0.037 85 fg 0.037 833(20)(6)(13)
1(1) 0.017 21 _+283 0.017 47 (11)

1) 0.000 420 " 0.000 397 5 (18)

the result is obtained by taking the mean of all values obtained. The errors are then
calculated by taking the difference between the mean and the smallest and largest
values obtained, respectively.

For classes I(a)-I(c) and I(e) we can obtain the full result for A%‘O) (m,/m,) includ-
ing muonic contributions. These results are presented in Table4.11. In Table4.12 we
present our results for the universal corrections and compare with the results given
in [45] (see Table 4.5). In both cases the discussion as for the purely electronic contri-
butions can essentially be repeated and also here overall good agreement with results



4.1 ¢ — 2 in Quantum Electrodynamics 287

available in the literature is observed. Nevertheless it should be noted that for single
diagram classes a certain tension remains.

So far five—loop contributions to the muon g — 2 could be calculated by analytic
means for diagrams from class I which are including known photon vacuum polariza-
tion insertions. Results largely confirm the previous numerical results by Kinoshita’s
group. While corresponding four—loop results cover a large fraction of the complete
contribution, at five loops the calculations are rather partial yet.

4.2 Weak Contributions

The weak interaction contribution to g — 2 attracted attention of theoreticians long
time before it started to play a relevant role in the comparison with the experimental
result. Actually the “weak contribution sensitivity”” was reached only with the recent
BNL experiment. With the emergence of the SM [118] and establishing its renormal-
izability [119] for the first time it was possible to make real predictions for a,, beyond
QED. Before, in non-renormalizable low energy effective theories, corresponding
attempts were not convincing, since, as we discussed earlier only in a renormalizable
theory a,, is a finite unambiguously predictable quantity and hence an unambiguous
monitor for testing the theory. Soon after a unified electroweak theory seemed estab-
lished a number of groups presented the one—loop result for a,, in 1972 [120]. At that
time, the weak term turned out to be almost two orders of magnitude smaller then
the experimental accuracy of the CERN g — 2 experiment. At present the weak term
is an effect of almost three standard deviations.

Weak interaction effects are mediated by exchange of the heavy weak gauge
bosons W, which mediate charged current (CC) processes, and Z, which medi-
ates the neutral current (NC) processes. Beyond the electroweak SU(2); ® U(1)y
Yang-Mills gauge theory, a Higgs sector is required which allows to generate the
masses of the gauge bosons W and Z, as well as the masses of the fermions,
without spoiling renormalizability.'> Thereby the gauge symmetry is broken down
SUR)L @ U(l)y — U(1)em to the Abelian subgroup of QED, and an additional
physical particle has to be taken into account, the famous Higgs particle, predicted
by Brout, Englert and Higgs in 1964 [121], discovered 48 years later by the ATLAS
and CMS Collaborations [122—-124] at the Large Hadron Collider (LHC) at CERN.

121n different terms: renormalizability of a massive non-Abelian gauge theory requires the existence
of a scalar boson, which interacts with all massive particles with a coupling proportional to the mass
of the particle to which it couples. The corresponding Higgs boson exchange contributions precisely
cancel the non-renormalizable terms (exhibiting bad high energy behavior) which one would obtain
in S—matrix elements in absence of the Higgs. The pattern of the 15 required SM Higgs boson
couplings, which directly manifests in its decay pattern is actually what identifies the scalar boson
as the Higgs boson.
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In the SM the fermions are organized in three lepton—quark families, with the
left-handed fields in SU(2); doublets and the right-handed fields in singlets:

: Ve u _
1st family: (e_)L , (d~) s Vegs €go UR, dR
L
2nd family: (V”> ,(S) s Vugs Mgs CRs SR
B \S/L

. 7 t _
3rd family: (T_)L, (I;)L s Vrgs TR IRs DR

The family structure is required by renormalizability, which in turn requires the
absence of an Adler—Bell-Jackiw (ABJ) [VVA triangle anomaly] (see Sect.4.2.2
below). Each individual non-singlet chiral fermion produces a mass independent
VVA anomaly, which only depends on the gauge coupling quantum numbers
(charges). The latter are such that the anomaly produced by the leptons is canceled
by the anomaly produced by the quarks within each family. The Abelian subgroup
U (1)y is associated with the weak hypercharge, related to the charge and the 3rd
component of weak isospin by the Gell-Mann—Nishijima relation ¥ = 2(Q — T3)."?
Denoting by vy = (Ve, vy, v2), £ = (e, 4, T), qu = (u,c,t) and g4 = (d, 5, b) the
four horizontal vectors in “family space” of fermion fields with identical electroweak
quantum numbers, the charged current (CC) has the form

J = = idun =0y, (1= 5) Upmns €+ Guyu (1 = 75) Uckm qa (4.33)

and exhibits quark family flavor changing, through mixing by the unitary 3 x 3
Cabibbo—Kobayashi—Maskawa matrix Ucgym [125] as well as neutrino flavor mixing
by the corresponding Pontecorvo—Maki—Nakagawa—Sakata matrix Upyns [126]. The
SU(2)y, currents have strict V-A (V = vector [v,], A = axial-vector [v,ys5]) form,
which in particular implies that the CC is maximally parity (P) violating (Lee and
Yang 1957). The mixing matrices predict a CP violating phase, which has been
confirmed by observation. This kind of CP violation mechanism via quark flavor

Bsu@), @ Uy quantum numbers of fermions read

Doublets Singlets

oL |(€) |, e, )L |(d, 5, D)L ||(v)r|U)R|(u,c,)r|(d, 5, b)R
0 0 | =t 23 | <13 | 0 | =t 23 | -i/3
5012 =12 12 | —=12 | 0 | 0 0 0
Y| —1| 1| 173 1/3 0 —2| 43 | —2/3

Quarks in addition carry SU(3). color. The color factor N,y is 3 for quarks and 1 for leptons, which
are color singlets. Note that in the SM all matter fields are in the fundamental (SU(2) . —doublets,
SU (3).—triplets[antitriplets]) or trivial (singlet) representations. The simplest ones possible.
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mixing requires a minimum of three fermion families. Indeed what we see to be
realized in nature. CP violation also implies the existence of a very tiny electrical
dipole moment (EDM). In a local QFT a non—vanishing EDM is possible only if CP
is violated, as we noted earlier. For the magnetic moments CP has no special impact
and the CP violating effects are too small to play any role. For our purpose the 3 x 3
family mixing matrices may be taken to be unit matrices. The neutral current (NC)
is strictly flavor conserving

JE = 03— 2sin® Oy " = by vy — apys)y (4.34)
f

with

B =" 0y (4.35)
f

the P conserving electromagnetic current.'* The weak mixing parameter sin> @y

is responsible for the v — Z mixing. The sums extend over the individual fermion
flavors f (and color). In our convention the NC vector and axial-vector neutral
current coefficients are given by

Uf=T3f—2QfSiI'12@W, le=T3f (436)

where T3 is the weak isospin (j:%) of the fermion f. The matter field Lagrangian
thus takes the form

Lonatier = D& pin Oy + —292 U WE™ hee) + QCOZ JZZV 4 ejim Al (4.37)

[C)
G V2 W

where ¢ is the SU(2), gauge coupling constant and e = g sin @y is the charge of
the positron (unification condition).

We should mention that before symmetry breaking the theory has the two gauge
couplings g and ¢’ as free parameters, after the breaking we have in addition the
vacuum expectation value (VEV) of the Higgs field v, thus three parameters in total,
if we disregard the fermion masses and their mixing parameters for the moment. The
most precisely known parameters are the fine structure constant « (electromagnetic
coupling strength), the Fermi constant G, (weak interaction strength) and the Z mass
M. Apart from the unification relation

&2

a=—, e=gsin@y , tanBOy =g'/g
4T

14 An important property of the weak currents is the absence of Flavor Changing Neutral Currents
(FCNCO), as a consequence of the GIM mechanism [127], i.e., in the SM neutral currents are
automatically diagonal in the Fermi fields.
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we have the mass generation by the Higgs mechanism which yields

My = My, ="
YT YT Dcosoy

while lowest order CC Fermi decay defines the Fermi or muon decay constant

g 1
G, = = :
SERNGTVERNG I

The defining equation for G, in terms of the experimental y life-time reads
[128-130]

P 142 i [ 00 (251 +a2(m“)C2
P 192 \m 5 M3, T 8§ 2 2 ’

(4.38)
where
F(x)=1—8x+8x> —x*—12x2Inx,
156815 518 , 895 67 , 53,
=~ T - () + — 22,
2= S1gs sl 3Pt T
and ) .
a(m#)_lza_l——l Py

The neutral to charged current ratio, called p—parameter, follows from

g p

T 4V2IME cos? Oy 202

Gne

with po = 1 at the tree level. These relations are subject to radiative corrections.
Given «, G, and M as input parameters, all further parameters like My, sin’ Oy,
g, etc. are dependent parameters. Typically, when calculating versions of the weak
mixing parameter sin? @; in terms of the input parameters one obtains

sin? ©; cos’ ®; = e ! (4.39)
V2G, ML 11— Ar

where

Ari = Ari(as Glu,s MZsmHa mf;ﬁtv ml)
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includes the higher order corrections which can be calculated in the SM or in alter-
native models. For example,

m2 4 m2 — b m? =20 4.40
1672 TP 2 m?m? 1672 " T 3272 (+40)

_NvﬁGu( 2, o 2mim | ’"tz)%\@Gu3 2 3y
which measures the weak-isospin breaking by the Yukawa couplings y  of the heavy
fermions at zero momentum. It is a large correction proportional to m? due to the
heavy top [131]. After the discovery of the Higgs, we also know the Higgs mass
within a rather narrow error band: my = 125.1 & 0.3 GeV. Thus, for the first
time, all relevant parameters of the SM are known with impressive accuracy. Before
the Higgs has been observed mpy was the only relevant unknown parameter and
by confronting the calculated with the experimentally determined value of sin? ©;
one obtained important indirect constraints on the Higgs mass. Ar; depends on the
definition of sin®> @;. The various definitions coincide at tree level and hence only
differ by quantum effects. From the weak gauge boson masses, the electroweak gauge
couplings and the neutral current couplings of the charged fermions we obtain

M2
sin?> @y = __v;/
M7
.2 2,2 o
sin“ @y = e°/g° = ——— (4.41)
V2G, M3,
1 v)
22 S
sinf@;=— (1-L), F#v,
! 4|Qf|( ay

for the most important cases and the general form of Ar; (i = W, g, f) reads
Ar; = Ao — fi(sin® ©;) Ap + AF;rem
with fy (sin? @) = cos? Ow/sin? Oy; f,(sin? @) = fr(sin?@;) = 1 and a

universal term A« which affects the predictions of My via sin? @y, etc. For My,
we have [132]

e, = PMZ ([ A L 414 (4.42)
- <~ - Frem s .
Y2 pM2 \1 = Aa

Ao = \/7a/v2G, = 37.2802(3) GeV .

with
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Fig. 4.16 Plot of the LEP ol
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The leading dependence on the Higgs mass m g is logarithmic with

2 2 2
Artliess _ E In M _ é ) Arties —1 +9sin” O, In Mh o _ é
v 3 M; 6 7 3cos? Oy

provided my >> My . For the now established my /My ~ 1.56 more complicated
formulas apply (see e.g. [133, 134] for more details). Actually, the Higgs mass
determined by ATLAS and CMS agrees perfectly with the indirect bounds obtained
from combined LEP, SLD and Tevatron precision measurements of the weak mixing
parameter (see Fig.4.16).

The weak contributions depend on SM parameters like the precisely known Fermi
constant G, the weak gauge boson masses Mz, My and in addition the top mass m;
as well as the Higgs mass m i . Correspondingly, we will adopt the G, renormalization
scheme [136]. In this scheme the weak mixing angle is defined via the gauge boson
masses as sin’ Oy = 1 — M3,/ M2, which for the given masses yields

sin” @ = 0.22290 + 0.00029 . (4.43)
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Fig. 4.17 The running sin Oy (Q3?) = a(—0%)/az(—Q?) + - - - as a function of Q in the space-
like region. Hadronic uncertainties are included but barely visible. Uncertainties from the input
parameter sin® Oy (0) = 0.23822(100) or sin® Oy (M%) = 0.23156(21) are not shown. Future ILC
measurements at 1 TeV would be sensitive to Z’, H~~ etc. For complete analytic expressions for
electroweak parameter shifts at one-loop see [133, 134, 141]. Another interesting version of running
sin? Oy (Q?) one finds in polarized Moeller scattering asymmetries as advocated by Czarnecki and
Marciano [142] (see also [143])

The top mass dependence is due to the lack of decoupling of heavy states in the
spontaneously broken weak interaction sector of the SM. One should keep in mind
that weak contributions are quite sensible to the weak mixing angel sin® 6y which
like the fine structure constant is a running parameter and which is most precisely
known at the Z mass scale:

sin® 0P (M ;) = 0.23153 £ 0.00016 . (4.44)

We will need this parameter at low energies, and will adopt the recent calcula-

tion [137] which includes non-perturbative strong interaction effects estimated via

dispersion relations in terms of experimental ete~ — hadrons cross section data

(see Fig.4.17). The flavor separation (see Sect.5.1.9 below) of e™e™ data needed to

determine the SU(2), running coupling Aab®(s) has been crosschecked in by lattice

QCD simulations in [138]. For a recent lattice QCD calculation see [139, 140].
The resulting value is given by

sin? 617'(0) = 0.237855 + 0.00016 = 0.00010 . (4.45)

It is important that at low energy the scale dependence is small, and hence this
parameter is quite well defined.

Last but not least one should keep in mind that masses in the SM are generated
by spontaneous symmetry breaking of the Z, symmetry H(x) <> —H(x) in the
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Fig. 4.18 The leading weak
contributions to ay; diagrams
in the physical unitary gauge

(b)

physical Higgs potential by a non—vanishing VEV H — H +v (v # 0) of the Higgs
field. The upshot of this Higgs mechanism are the mass—coupling relations

1 1
M‘Z,V:Zgzvz, M%:Z(gz+g'2)v2, mi,:,y}%UZ, m%_,:§/\v2, (4.46)

DO |

between physical parameters. Note that the Higgs boson mass itself is of the form
“mass « coupling x vacuum expectation value” in the broken phase. Only in the
symmetric phase the Higgs potential mass m? is an unconstrained free parameter,
independent of \. Since v as a physical parameter is determined by the Fermi constant,
whenever we renormalize a mass by matching it with the observed value, we are
actually tuning a coupling constant (in case of the Higgs boson mass the Higgs
self—coupling) and not the mass itself.

4.2.1 Weak One-Loop Effects

The relevant diagrams are shown in the following Fig.4.18 in the unitary gauge.
For the Feynman rules of the SM we refer to SM textbooks or to my TASI lecture
notes [133] for a short overview. In spite of the fact that the unitary gauge is not
renormalizable, the relevant gauge invariant S—matrix element, may be calculated
directly in the unitary gauge. The advantage is that in this gauge only physical par-
ticles are present and diagrams exhibiting Higgs ghosts and Faddeev—Popov ghosts
are absent. What is most interesting is the occurrence of the first diagram of Fig.4.18
which exhibits a non—Abelian triple gauge vertex and the corresponding contribution
provides a test of the Yang-Mills structure involved. It is of course not surprising that
the photon couples to the charged W boson the way it is dictated by gauge invariance.
The gauge boson contributions are given by

V2G,m? 10
QBW py = Y 1Y 1 107"
al? ™ (w) T +388.71(0) x 10
V2G,m? (=144 sin® Op)> —5
a2 (z) = Y CLASSCOWT TS 93901y x 1071 (4.47)

1672 3
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while the diagram with the Higgs exchange yields'?

1
2
a@EV (p) = V2G,m;, /dy 2-»y
. 82 ) v 4+ = y)my/m,)?

m? m

N ﬁGﬂ,mi o lnm—% for my > m,

- 2

8 % for my < my
~21.64 x 1075 for my ~ 125 GeV . (4.48)

We remind that the Higgs mass now is known within a rather narrow error band.
Employing the SM parameters given in (3.31) and (3.32) we obtain

aP™ = (194.81£0.01) x 107" (4.49)

The error comes from the uncertainty in sin?> @y, given above.

4.2.2 Weak Two-Loop Effects

Typical electroweak 2-loop corrections are the electromagnetic corrections of the
1-loop diagrams Fig. 3.7 (part of the bosonic corrections) or fermionic loop insertions
as shown in Fig.4.19. All these corrections are proportional to

ﬁG m?
Ky =~ T & L5 70868284 x 10712 (4.50)
1672 =«

Part of the electroweak two—loop corrections were calculated first in 1992 by Kukhto,
Kuraev, Schiller and Silagadze [ 144] with an unexpected result, the corrections turned
out to be enhanced by very large logarithms In Mz /m ¢, which mainly come from
fermion triangular—loops like in Fig. 4.19a. In QED loops with three photons attached
do not contribute due to Furry’s theorem and the yy~—amplitude vanishes. In pres-
ence of weak interactions, because of parity violation, contributions from the two
orientations of the closed fermion loops do not cancel such that the vyZ, vZZ and

15The exact analytic result for the Higgs reads

ﬁG ,mz 3
a? BV ) = =5 lf A= MO +E2A =90 - -+ 11 -9 + 5]
V2GmE N 3. 4 201 )
> e [z (lnz—g)—t-z (3lnz—7)+4 (9lnz—%)+0(z lnz)}

in which z = m3,/m?, and § = (T—y = 1)/(VT=y+ 1) with y = 4/z.
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(b) (c)
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Fig. 4.19 Some of the relevant electroweak two-loop diagrams exhibiting closed fermion loops
in the unitary gauge, f = (Ve, vy, vr,) e, 1, T, U, c, t,d, s, b with weak doublet partners f =
(e, b, 7)) Ve, Vy, V7, d, 5, b, u, c, t of course the neutrinos (in brackets) do not couple directly to
the photon and hence are absent in the triangular subgraphs

YW W amplitudes do not vanish. In fact for the YW W triangle charge conservation
only allows one orientation of the fermion loop.

Diagrams (a) and (b), with an internal photon, appear enhanced by a large loga-
rithm. In fact the lepton loops contributing to the yyZ vertex lead to corrections

aPPV((f]) ~

V2G, m? M2
) [3 In ] 4.51)

L LTy Ny Q2 ZZ 4y
2 - C. f 2 Y
167 T my,

inwhichmp =m,ifmy <m,andmp =myifms > m, and

5/2 for my <m,,
Cr= 11/6 — 8/9 «* for my=my,
—6 for my >my .

For an individual fermion f the contribution is proportional to N.s Q?a 7+ In [144]
only lepton loops were taken into account, and it is well known that the triangular
subdiagram has an Adler—Bell-Jackiw (ABJ) or VVA anomaly [145], which cancels
if all fermions are included. The anomaly cancellation is mandatory in a renormal-
izable theory and it forces the fermions in the SM to come in families of leptons
and quarks [146]. The latter compensate the anomaly of the former. The cancellation
condition of the SM reads

Zfzvcf Q%a; =0, (4.52)

and such a cancellation is expected also for the leading short distance logarithms
proportional to In Mz and in fact this has been checked to happen on the level of the
quark parton model (QPM) for the 1st and 2nd fermion family [147, 148].

Assuming dressed constituent quarks masses M,,, My > m,,, the QPM result for
the first family reads [148]
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(4 EW
A

V2G,, m? M3 17
(le.u, dDgpm ~ ——— it 2 -

— |~ —4.00 x 10711, 4.53
62 n "mgM‘frz} x (4.53)

while for the second family, with My, M. > m,,, we have

(4 EW
au

2
([ps ¢, sDoPM =~ —ﬁGM M |:ln M§ 41 _ 8r?

+— -2 | ~—465x 1071 (4.54
lor 7w | mGMF 6 9} (4.54)

For the numerical evaluation we had to insert some quark masses and we resorted to
the not very well defined constituent quark masses used in [148]:

M, =M;=300MeV, M;=500MeV, M.=15GeV and M, =45GeV. (4.55)

It should be noted that such large effective light quark masses violate basic Ward—
Takahashi identities of low energy QCD. The latter requires values like (3.38) for the
so called current quark masses to properly account for the pattern of chiral symmetry
breaking.'® The ambiguity in the choice of the quark masses reflects the fact that we
are not in the perturbative regime. If one uses the above constituent quark masses to
calculate the hadronic photon VP one does not get an answer which is close to what
is obtained non—perturbatively from the dispersion integral of eTe~—data [149].

Concerning the third family, D’Hoker in [150] pointed out that a super—heavy
fermion like the top, which usually is expected to decouple, generates a large log,
because the heavy fermion does not participate in the cancellation of the large logs,
while it still participates in the cancellation of the mass independent ABJ anomaly
(see also [151]). The origin of the effect is the large weak isospin breaking in the
top—bottom doublet, which is manifest in the large mass splitting m, > Mz > my,.
Consequently, one has to expect that the large logs from the leptons cancel against
the ones from the quarks, with only partial cancellation in the 3rd family ([, ¢, b]).

It should be stressed that results from individual fermions are gauge dependent and
only sums of contributions for complete fermion families are physically meaningful.
Nevertheless, we will give at intermediate steps partial result either in the Feynman
gauge or in the unitary gauge.

16 Adopting the values (3.38) one would have to replace the masses satisfying my <my(q=u,d,s)
by m, (SU(3) chiral limit), such that [147]

aP™ (e, u, dl)gpm ~ 0

and

(4) EW
a,

V26, m}, o m2 32 8r .
(Ips cosDopm >~ ————+= — |4ln—% + = — — [ ~ —5.87 x 107!,

672 7 mﬁ 3 9

However, this free current quarks result cannot be a reasonable approximation, as it completely
ignores the non—perturbative QCD effects.
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The leading contributions Fig.4.19a were investigated first by Peris, Perrottet
and de Rafael [147], by evaluating the hadronic effects in a low energy effective
approach. The full set of diagrams of Fig.4.19 was calculated by Czarnecki, Krause
and Marciano [148], using the QPM. The results were later refined and extended in
the leading log approximation by renormalization group methods at the two— as well
as at the three—loop level by Degrassi and Giudice in [152]. Thereby also smaller
effects, like the ones from diagram (b), were included. The latter does not give a large
effect because the v — Z mixing propagator is of type VV with coupling strength
QrvyrQuv, which is suppressed like (1 — 4sin® @w) ~ 0.1 for quarks and like
(1 — 4sin® @y)? ~ 0.01 for leptons. Diagrams (c) to (e) have an additional heavy
propagator and thus yield sub—leading terms only. In the enhanced contributions
proportional to the large logs In Mz /m f or (m, /M w)? the exact sin?> @y dependence
has been worked out. Results may be summarized as follows.

Summary of Perturbative Leading Log Results

Two loop corrections to a“* naturally divide into leading logs (LL), i.e., terms

enhanced by a factor of In(Mz/m ;) where m  is a fermion mass scale much smaller
than M, and everything else, which we call non-leading logs (NLL). The 2-loop
leading logs are!” [147, 148, 152-154]

SOEW _ _Y2Gumj, o [[215 230 a2y | M2
WLL 1602 = 9 9 w my,

_ Z NesQy [12 T} Qp — g (T} —20;s3,) (1 - 4s$v)} In Z—j] . (4.56)
feF

in the notation introduced above. Electron and muon loops as well as non—fermionic
loops produce the In(Mz/m,,) terms in this expression (the first line) while the sum

7The LL contributions may be grouped into photonic corrections related to the first two one~loop
diagrams of Fig.4.18

4) EW ﬁGﬂmi a [@] 1 Mz
a; N n ,

(W,no f—loops)LL = — 62 e

my

V2G, m? o T13 23 M
4) EW _ B & N2 12 VA
a, (Z,no f—loops)LL = el x [*9 (94) ) (g9y) } In Tz,,, ,

these are part of the 2—loop bosonic corrections discussed below, and

\/EG m2 6% . 4 . M
(4) EW _ (o} WS w o f Z
a, (Z, f—loops)LL = 162 7 Ef NegQyf |:—6 9494 Qr + §9v9v] In mif/ ;

where the first term comes from the triangular loop (only VVA, VVV vanishing by Furry’s theorem)
(diagram a) of Fig.4.19), the second from the v — Z mixing propagator muon loop (only VV can
contribute) (diagram b) of Fig.4.19), with m ; = max[m 7, m,]. Here g}y = 2v; and g/ = 2a;
are the neutral current coefficients (4.36).
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runs over F' = 7,u,d, s, c,b. The logarithm In(Mz/m ;) in the sum implies that
the fermion mass m ; is larger than m,,. For the light quarks, such as u and d, whose
current masses are very small, m ; has a meaning of some effective hadronic mass
scale.

In this approximation

all P ~ 3672 x 107, (4.57)

which is to be compared with the full estimate Eq. (4.124), below. Note that the
(1—4s},) suppressed LL terms from photonic corrections to diagram Fig. 3.7b [23/9
of the 31/9] and Fig.4.19b [for e and 1« 2 x 4/9 and corresponding terms (2nd term)
in the sum over f € F] only account a negligible contribution —31.15 x 10~'3. The
un-suppressed LL terms from Fig.4.19a [2x 54/9 of the 215/9 for e and p plus the
corresponding terms (1st term) in the sum f € F]in the above expression cancel for
the 1st and 2nd fermion family. What survives are the terms due to the virtual photon
corrections (bosonic) of the 1-loop diagrams Fig.3.7a, b [120/9(W) - 13/9(Z) of
the 215/9] and the incomplete cancellation in the 3rd fermion family resulting as a
consequence of the mass separation pattern m,, M, < Mz < m;,, relative to the
effective cut—off M .

The hadronic effects required a much more careful study which takes into account
the true structure of low energy QCD and as leading logs largely cancel a careful
study of the full 2-loop corrections was necessary.

The issue about how to treat the light quarks appropriately was reconsidered and
discussed somewhat controversial in [153, 155, 156]. Corresponding problems and
results will be considered next.

Hadronic Effects via Quark Triangle Graphs

Since leptons and quarks can be treated family—wise only, we have to think about
how to include the quarks and hadrons, which are subject to non-perturbative strong
interaction effects. For the heavy quarks integrals producing a large log In(Mz/m,)
are dominated by contributions above the heavy scale m, and by virtue of asymptotic
freedom of QCD are calculable in pQCD. This seems to justified to work with the
QPM in a first step. In doing so we will be confronted again with the question about
the meaning of the quark masses to be used in the case of the light quarks. As already
mentioned, the crucial constraint is the ABJ anomaly cancellation.'® The nature of
the ABJ triangle anomaly is controlled by the Adler—Bardeen non-renormalization
theorem [157], which says that the one—loop anomaly is exact to all orders, by the
Wess—Zumino integrability condition and the Wess—Zumino effective action [158]
(see below), by Witten’s algebraic/geometrical interpretation, which requires the
axial current to be normalized to an integer [159]. It means that higher order correc-
tions are all proportional to the one—loop result and get removed by normalization

18Renormalizability, gauge invariance and current conservation is intimately related. Axial anom-
alies showing up in the weak interaction currents for individual fermions must cancel in order not
to spoil gauge invariance and hence renormalizability.
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to unity [160, 161]. Phenomenologically, it plays a key role in the prediction of
7% — ~7, and in the solution of the 7/ mass problem. Last but not least, renormaliz-
ability of the electroweak Standard Model requires the anomaly cancellation which

dictates the lepton—quark family structure.

Digression on the Anomaly

The axial anomaly is a quantum phenomenon which doesn’t get renormalized by
higher order effects. In QED the axial current anomaly is given by

2
Ot (x) = 5 Fu (@) F" (x) #0 (4.58)

where F'" = 9'AY — 0" A* is the electromagnetic field strength tensor and F/w =
%s wpo 77 its dual parity odd pseudotensor. The pseudoscalar density is a divergence
of a gauge dependent pseudovector

Fu F" = 0"K, ; K, =2€,,,,A’0"A°.

In general, in perturbation theory the axial anomaly shows up in closed fermion loops
with an odd number of axial-vector couplings if a non—vanishing ys—odd trace of
~—matrices like!°

Tr (WA ~vs) = 4ietP? (4.59)

(in d = 4 dimensions) is involved and if the corresponding Feynman integral is
not ultraviolet convergent such that it requires regularization. The basic diagram
exhibiting the axial anomaly is the linearly divergent triangle diagram Fig. 4.20 which
leads to the amplitude (1st diagram)

2
%(mmﬁ-(lnTwGTnhzy/ﬁ%

1 1 1
x Tr —~Y —yH A )
(H—m+m7k+ka+m+m7%

If we include the Bose symmetric contribution (second diagram)
2N
Tl;k (p1, p2) = T,j‘k (p1,p2)+T ],k Mp2s 1)
and impose vector current conservation

A A
Tl (P p2) = p2 T (p1, p2) = 0

19Notice that Tr (H?:l yHi 75) = 0 for n < 4 and for all n = odd.
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Fig. 4.20 Fermion triangle
diagrams exhibiting the axial
anomaly

+
we obtain the unambiguous regularization independent result
A g
v : v
—(p1 + p2)a T,»/;k (p1,p2) =1 @Di,jk 4" py,prg # 0

with D = Tr ({T;, T;} Tx) .

This result is independent of the masses of the fermion lines and is not changed by
higher order corrections. Therefore the result is exact beyond perturbation theory!
All anomalous fermion loops may be traced back to the basic triangular fermion
loop, and in fact all other possible anomalous matrix—elements of the axial current
are summarized in the general form of the anomaly equation

2

Orjh(x) = ﬁa,k G ()G jy (x) (4.60)

where G, (x) is the non—Abelian field strength tensor and G its dual pseudotensor.
Equation (4.60) is the non—Abelian generalization of (4.58) in the Abelian case. As
a result the condition for the absence of an anomaly reads

Dij=Tr ({T..T;} Tx) =0 V (ijk) .

In fact the contributions to the anomaly being independent of the mass may be
represented in terms of fixed helicity fields, and opposite helicities contribute with
opposite signs

Dijr = Tr ({Tyi, Toj}Ti) — Tr ({Tri, Trj}Tre) (4.61)

which tells us that left-handed and right-handed fields give independent contribu-
tions to the anomaly. Only theories which are democratic with respect to helicities
in the axial anomaly coefficient are anomaly free. Since SU(2) has only real repre-
sentations R* ~ R (in particular 2 ~ 2*) it cannot produce any anomaly. In contrast
SU (3) is not anomaly safe, because the fundamental representations 3 and the com-
plex conjugate 3* are inequivalent. However, as quarks in the triplet representation
3 and antiquarks in the anti—triplet representation 3* enter symmetrically in QCD (a
pure vector theory), SU(3), cannot give rise to anomalies. Only the Abelian hyper-
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charge group U (1)y produces anomalies, which must cancel as required by the above
condition.

End of the Digression

Due to the fact that perturbative QCD breaks down at low energies the handling
of the quark loops or the related hadronic fluctuations pose a particular problem
as the anomaly cancellation originally works on the level of quarks. Here another
important theorem comes into play, however, namely’t Hooft’s anomaly matching
condition [162], which states that the anomaly on the level of the hadrons must be
the same as the one on the level of the quarks, as a consequence of the anomaly
non-renormalization theorem. An improved treatment of the hadronic contributions
using an effective field theory approach has been elaborated in [155].

Structure of Contributions from Quark Triangles

Following [153], in order to discuss the contribution from VVA triangle fermions
loops one has to consider the Z*~~* amplitude

T, = i/ d*x €901 T {j, (x) jsx(0)} |y (k) (4.62)

which by the LSZ reduction formula is equivalent to

T =ee'(k) Ty Ty =— / d*x d*y e NOIT (i, (x) ji (y) js2(0)}0)

in which ¢, (k) is the polarization vector for the external photon. We need T, 1(g, k)
for small k up to quadratic terms. The corresponding covariant decomposition

T\ = —% [wr(qz) (=% for + a@va® far — 4" faw) + wi () q,\q“ﬁw] (4.63)

~ 1 }
f;w = Eglu,uaﬁfwg s f,u,u = kuf‘:l/ - kyf‘:ﬂ

exhibits two terms, a transversal amplitude wy and a longitudinal one w;, with
respect to the axial current index A. The second rank tensor —i f},, corresponds to
the external electromagnetic field strength tensor F),, with 8u — —ik,and A, — ¢,.

The contribution a(” *¥ ([ f1)vya of a fermion f via the Z*~~y* amplitude, in the
unitary gauge, where the Z propagator has the form i (—g,, +g,4,/M32)/(¢> — M2),
is given by’

20Since the result does not depend on the direction of the external muon momentum p we may
average over the 4-dimensional Euclidean sphere which yields the exact 1-dimensional integral
representation given.
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2 . 2
(4) EW V26ump o / 4 1 [1 2(gp)
= [ atqg — |5 1+
i 1/ Dvva 1672 w ' 4 g% +2qp |3 qzmﬁ

M2 M2
__Mz _Mz
* (wL M2 - g2 “’T)+ M2 -2 wT]

V2Gumi o AT 1 Q2 2 2, 2
:W;/o do g;%(wL(Q)((Q /m,L—Z)(l—R,,,)_g_z)

2

N 2, 2
—wr(Q%) TERE (Q¥/ml+4) (1= Ru) +2)} . (4.64)

in terms of the two scalar amplitudes w; 7 (¢?). A is a cutoff to be taken to oo at the
end, after summing over a family. We have performed a Wick rotation to Euclidean

space with Q> = —g?and R,, = /1 + 4m?/ Q2. For leading estimates we may

expand in mi /Q? « 1. For contributions from the heavier states it is sufficient to set
p = 0 except in the phase space where it would produce an IR singularity. Including
the leading corrections the result takes the much simpler form

V2G, m? a? 4
AaPV (v =~ 5 % / dQ? [wL<Q2> (1 =m0+ )

2

4z
M3+ 0

wr(Q) (1 - §'ﬂi/Q2+~-~)] - (463

For a perturbative fermion loop to leading order [163]

dxx (1 —x)
x(1—=x) Q2~|—m§£

1
w, Q) = 2wy QY = 4TiN Q) /
7 0
m} < Q2 1 2m; 2 1
=5 arng 0} [—2 ~—i In Q—z +0 (_6) :
- 0 0" Tm 0
Vainshtein [164] has shown that in the chiral limit the relation

2 1 2
wr (Q*)pacn |,y = 3 wr(0)],_o (4.66)

is valid actually to all orders of perturbative QCD in the kinematic limit relevant for
the g — 2 contribution. Thus the non-renormalization theorem valid beyond pQCD
for the anomalous amplitude w; (considering the quarks ¢ = u, d, s, c, b, t only):

2N,
. 4.67)

wL(QY)],y = wy Q| = er,0) 5
q
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carries over to the perturbative part of the transversal amplitude. Thus in the chi-
ral limit the perturbative QPM result for wr is exact in pQCD. This may be
somewhat puzzling, since in low energy effective QCD, which encodes the non—
perturbative strong interaction effects, this kind of term seems to be absent. The non—
renormalization theorem has been proven independently in [165] and was extended
to the full off—shell triangle amplitude to 2 loops in [160], to 3 loops in [161].

One knows that there are non—perturbative corrections to Vainshtein’s relation
(4.66) but no ones of perturbative origin. A simple heuristic proof of Vainshtein’s
theorem proceeds by first looking at the imaginary part of (4.62) and the covariant
decomposition (4.63). In accordance with the Cutkosky rules (see footnote 29 on
p. 97 in Chap. 2) the imaginary part of an amplitude is always more convergent than
the amplitude itself. The imaginary part of the one—loop result is finite and one does
not need a regularization to calculate it unambiguously. In particular, it allows us to
use anti—-commuting s to move it from the axial vertex ~,vs to the vector vertex
vy In the limit m ; = 0, this involves anti-commuting -ys with an even number of
~y—matrices, no matter how many gluons are attached to the quark line joining the
two vertices. As a result Im 7;,, must be symmetric under v <> A\, g <> —gq:

Im [wr(qz) (=% for + 40 far — 41q" fow) + wi.(g%) qw“ﬂw} % quq” for + 4" fav

which, on the l.h.s., requires that q2 = 0, to get rid of the antisymmetric term
proportional to f,, and that wy is proportional to wy: w; = ¢ wr; the symmetry
follows when ¢ = 2. Thus the absence of an antisymmetric part is possible only if

2Im wT(qz) =Im wL(qz) = constant X 5(q2) , (4.68)

where the constant is fixed to be 27 - 2137 N.f Q? by the exact form of w;. Both

w; and wr are analytic functions which fall off sufficiently fast at large g2 such that
they satisfy convergent DRs

1 [ Imwr(s)
wrL(q%) = ;/ ds#
0 _

which together with (4.68) implies (4.66). While w; as given by (4.67) is exact
beyond perturbation theory, according to the Adler—-Bardeen non-renormalization
theorem and by the topological nature of the anomaly [159], as a consequence of
Vainshtein’s non-renormalization theorem for wr we have

Q2

wr (qz) = + non — perturbative corrections . (4.69)

Coming back to the calculation of (4.65), we observe that the contributions from
wy for individual fermions is logarithmically divergent, but it completely drops
for a complete family due to the vanishing anomaly cancellation coefficient. The
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contribution from wr is convergent for individual fermions due to the damping by
the Z propagator. In fact it is the leading 1/Q? term of the wy amplitude which
produces the In % terms. However, the coefficient is the same as the one for the
anomalous term and thus for each complete family also the In M terms must drop
out. Due to the non-renormalization theorem (4.66) the perturbative leading 1/ Q?
term of w7 has to carry over to a low energy effective approach of QCD (see below).

Results for Contributions from Fermion Loops

For the third family the calculation is perturbative and thus straight forward with the
result [147, 148, 155]

aP PV ([, b, 1])

_V2Gumia 8 mi 2Mj( mp S
lor2  w |3 M2 9 m?

M? M 8
+1n—§+31n—22—§+~-]

mj, m?
ﬁG# mlzt a 11
~——— P~ %30.2(3) ~ —8.19(10) x 107" . (4.70)
1672 =«

Small terms of order m?/m?2, mj /M7, M3, /m; and smaller mass ratios have been
neglected.

While the QPM results presented above, indeed confirmed the complete cancel-
lation of the In Mz terms for the 1st and 2nd family, in the third family the corre-
sponding terms In Mz /m and In Mz /m,;, remain unbalanced by a corresponding top
contribution.

Since in the perturbative regime QCD corrections are of O (i (1%)/7), where
is in the range from m s to Mz, pQCD is applicable for ¢, b and ¢ quarks, only (see
Fig.3.3). For the lighter quarks u, d and s, however, the QPM estimate certainly
is not appropriate because strong interaction corrections are expected to contribute
beyond perturbation theory and assuming that non—perturbative effects just lead to
a dressing of the quark masses into constituent quarks masses certainly is an over
simplification of reality. Most importantly, pQCD does not account for the fact that
the chiral symmetry is spontaneously broken the mechanism responsible for the
emergence of the pions as quasi Nambu—Goldstone bosons. The failure of the QPM
we have illustrated in the discussion following p. 183 for the much simpler case of
the hadronic vacuum polarization, already. We thus have to think about other means
to take into account properly the low energy hadronic effects, if possible.

Digression on the Chiral Structure of Low Energy Effective QCD

Fortunately, a firm low energy effective theory of QCD exists and is very well devel-
oped: Chiral Perturbation Theory (CHPT) [166], an expansion for low momenta
p and in the light current quark masses as chiral symmetry breaking parame-
ters. CHPT is based on the chiral flavor structure SU(3); ® SU(3)r of the low
lying hadron spectrum (u, d, s quark bound states). The SU(3)y vector currents
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Fo= > Vi (To)ij v"4; as well as the SU(3), axial currents j& = > i
(T)ij 7*‘751/}1-2' are partially conserved in the SU (3) sector of the (u, d, s) quark fla-
vors, and strictly conserved in the chiral limit of vanishing quark masses
my, my, ny; — 0, modulo the axial anomaly in the axial singlet current. The partial
conservation of the chiral currents®? derives from Oy (wlfy“wz) =i(m; — ma) P11y
(CVC in the isospin limit m, = mgy) and 0, (1/)17“751/12) = i(my + m») 1/)1’751/]2
(PCAC) and the setup of a perturbative scheme is based on the phenomenologically
observed smallness of the current quark masses (3.38).

The chiral expansion of the effective Lagrangian is an expansion in 7

Lest = Lo+ RLy+ Lo+ - @.71)

which is equivalent to an expansion in powers of derivatives and quark masses. In
standard chiral counting one power of quark mass counts as two powers of deriv-
atives, or momentum p in momentum space. In chiral SU(3) there exists an octet
of massless pseudoscalar particles (7, K, 1), the Nambu—Goldstone bosons in the
chiral limit. The leading term of the expansion is the non—linear c—model, where the
pseudoscalars are encoded in a unitary 3 x 3 matrix field

U(¢) = exp (—iﬁ @) (4.72)

with (7; the SU(3) generators)

V2 V6 o 0 1 n
P(x) = Z Tigi=| = & _+O 7= K [+ 7 " (4.73)
K~ K 2 U

where the second term is the diagonal singlet contribution by the 7 meson. The latter
is not a Nambu—Goldstone boson, however it is of leading order in 1/N,.. The leading
order Lagrangian at O(p?) is then given by

F? . ]
Ly = TTr{D“UDuU' +M> (U + U (4.74)

where, in absence of external fields, the covariant derivative D,U = 0,U coincides
with the normal derivative. Furthermore, M?> = 2B, where B is proportional to
the quark condensate (0|iu|0) and m = %(mu + my). In the chiral limit of exact
SU(3)g ® SU(3), symmetry we have

21 T (k=1,..., 8) are the generators of the global SU (3) transformations and i, j = u, d, s flavor
indices.

22Especially in the SU(2) isospin subspace, the small mass splitting [m; — my| < my + ma
motivates the terminology: conserved vector current (CVC) and partially conserved axial vector
current (PCAC) (see next page).
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(0]iiu|0) = (0|dd|0) = (0|55]0) .

The parameters M and F are the leading order versions of the pion mass and the
pion decay constant, respectively:

my=M"[1+00)], Fr=F[l14+0@m)].

The low energy effective currents again are nonlinear in the pion fields and in CHPT
again appear expanded in the derivatives of U and the quark masses. For vector and
axial-vector current one obtains

2

Vi = %(a’(U*D,,,U +UDLUN) +0(p") = [0/ 9,¢" + 0(6N] + 0 (")
i iF? icrrt T 3 i 3 3
A= @' U'DU —UDUN) + 0(p") = [=F9,¢" + 0(@)] + 0(p)) ,

which implies the conserved vector current (CVC) and the partially conserved
axial vector current (PCAC) relations. Despite the fact that this Lagrangian is non—
renormalizable, one can use it to calculate matrix elements like in standard pertur-
bation theory. However, unlike in renormalizable theories where only terms already
present in the original bare Lagrangian get reshuffled by renormalization, in non—
renormalizable theories order by order in the expansion new vertices of increasing
dimensions and associated new free couplings called low energy constants show up
and limit the predictive power of the effective theory.

At physical quark masses the value of the condensate is estimated to be (m,gq) ~
—(0.098 GeV)* for ¢ = u,d. The key relation to identify the quark conden-
sates in terms of physical quantities is the Gell-Mann, Oakes and Renner (GMOR)
[167, 168] relation. In the chiral limit the mass operators gguy, or g, ug transform
under (3%, 3) of the chiral group SU(3); ® SU(3)x. Hence the quark condensates
would have to vanish identically in the case of an exact chirally symmetric world.
In fact the symmetry is spontaneously broken and the vacuum of the real world is
not chirally symmetric. Therefore the quark condensates do not have to vanish. In
order to determine the quark condensates, consider the charged axial currents and
the related pseudoscalar density

A, = d_'Y;fYS“
P =divsu

and the OPE of the product
A P =€l — y) O/ (F2
X (y - lz m X =Yy ( b .

In QCD we may inspect the short distance expansion and study its consequences.
One observation is that taking the VEV only the scalar operators contribute and one
obtains the exact relation
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(.X B y)u

272 (x — y) (Olitu + dd|0) . (4.75)

(0]A,(x) PT(»)]0) =
The spectral representation (see (3.131)) for the two—point function on the Lh.s. is

of the form p,, p(p?) and current conservation requires p* p(p*) = 0 such that only
the Nambu—Goldstone modes, the massless pions, contribute, such that with

(01A,0)|7") =i Fx py,
OIPTO)7") = gx

we get
Frg, = —(0litu + dd|0) .

For non-vanishing quark masses the PCAC relation 0*A, = (m, + m;) P then
implies the exact relation

Fﬂmi-*- = (mu + Wld) 9n
and the famous GMOR relation
F*m?, = —(m, + mg) (Olitu + dd|0) (4.76)

follows from the last two relations. Note that the quark condensates must be negative!
They are a measure for the asymmetry of the vacuum in the chiral limit, and thus are
true order parameters. If both F, and (0|izu + dd|0) have finite limits as my — 0
the pion mass square must go to zero linear with the quark masses

m%, = B (m, +my); B=—— (Oliu+dd|0); B>0.

F?
The deviation from the chiral limit is controlled by CHPT. The quark masses as
well as the quark condensates depend on the renormalization scale i, however, the
product (0|m,qq|0) is RG invariant as is inferred by the GMOR relation.

For later reference we are interested in the momentum space version of (4.75). We
look at the time-ordered vacuum expectation value and using translational invariance
we may choose y = 0 and thus consider

Dy
+ie

/ d*xe'” (0T {A,(x) PT(0)}|0) = pe (Olitu + dd|0) . 4.77)

Since the Fourier transform of the singular r.h.s of (4.75) is not trivial to perform
directly, we can derive the result as follows: first the result obviously is proportional to
the quark condensate, which we may denote by (gg). We note that A, P and (gq) all
have dimension dim = 3. Furthermore the result is a function of the four momentum
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p only and a covariant vector thereof. The dimension then requires another factor
1/(p? + ie) with the usual ie prescription for Feynman type propagators. Indeed the
1/p? factor is nothing but the propagator of the pion (in the chiral limit) to which P

is the interpolating field:
P
O

End of the Digression

In [147] the light quark contribution to Fig. 4.19a were evaluated using the low energy
effective form of QCD which is CHPT. To lowest order in the chiral expansion, the
hadronic Z~+~ interaction is dominated by the pseudoscalar meson (the quasi Nambu—
Goldstone bosons) exchange. The corresponding effective couplings are given by

1 1
P P — Y P U 478
2sin Oy cos Oy ! e \/§778 \/6770 (4.78)

which is the relevant part of the O (p?) chiral effective Lagrangian, and the effective
O (p*) coupling

a N, 1 2 ~
L = 04 — 2\/j F.,F", 4.79
wzw = — 12F. (7T + NG ng + 3 770) u ( )

which is the Wess—Zumino—Witten Lagrangian. The latter reproduces the ABJ anom-
aly on the level of the hadrons. 7° is the neutral pion field, F;, the pion decay constant
(Fr = 92.4MeV). The pseudoscalars g, 1o are mixing into the physical states 1, 7.
The [u, d, s] contribution with long distance (L.D.) part (E < p) evaluated in CHPT
and a short distance (S.D.) part (E > p) to be evaluated in the QPM. The cut—off for
matching L.D. and S.D. part typicallyis My =mp ~ 1GeVtoMy = M, ~ 2GeV.
The corresponding diagrams are shown in Fig.4.21, which together with its crossed
version in the unitary gauge and in the chiral limit, up to terms suppressed by m’, / M7,
yields??

23The simplest way to implement the lower cut—off M, to the low energy effective field theory
(EFT) is to write in (4.65)

1 1 1 1
= + —
My +Q M3+0Q% M;+Q> M;+Q?
——
EFT oPM

by using the QPM for the second term. In the first term M is replaced by M 4, in the second term
constant terms drop out in the difference as the quark masses in any case have values far below the
cut—offs.
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(a) [L.D.] (b) [L.D] (¢) [S.D]

Fig. 4.21 The two leading CHPT diagrams (L.D.) and the QPM diagram (S.D.). The charged pion
loop is sub—leading and will be discarded

V2G6,m2 o 4 M2 2
4) EW . _ T A
@, (. d. sk p < Ma)ener = C16rr Elnm_g *3
~210x 1071,
V2G,m? o [ M2
4) EW . _ [ VA
a, ([u,d,sl; p > Ma)gpm = 162 7 _2111 M—ii|
~4.45x 1071,

Note that the last diagram of Fig.4.21 in fact takes into account the leading term of
(4.69) which is protected by Vainshtein’s relation (4.66).

Above a divergent term has been dropped, as it cancels against corresponding
terms from the complementary contributions from e, p and ¢ fermion—loops. Includ-
ing the finite contributions from e, © and c:

\/_GLm a M M2 37 8
(4)EW([€ ,U/’C])QPM 16;‘2 7'(' —61n m—+41 M2 —?4—571'2
I
\/_GLm
YT & 5183~ —14.04 x 107!
o ler? 7w

the complete answer for the 1st plus 2nd family reads [147]

wew ([e.u.d V2Gumj o [ 14 M} M3 35 8 ,
a =— P B DA pam A -4 2y
! ¢, 1) cupr 62 7 m?2 M?

V2G m2
_W & % 27.58(46) ~ —7.47(13) x 10~'1 . (4.80)
T s

In (4.80) the error comes from varying the cut—off M, between 1 and 2 GeV. Below
1 GeV CHPT can be trusted above 2 GeV we can trust pQCD. Fortunately the result
is not very sensitive to the choice of the cut—off.>*

241f no cut—off is applied to the validity of the effective theory as in [147] one gets —8.58 x 10~ 11,
in which case an unphysical residual In Mz dependence persists. The QPM result taking the rather
arbitrary constituent quark masses (4.55) is —8.65 x 10~'!. The QPM result taking current quark
masses (3.38) is —5.87 x 107!, In [153] the leading logarithmic estimate is —6.72 x 10~
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On the other hands results depend quite strongly on the quark masses utilized.
This result was refined by a more elaborate analysis in which sub—leading terms were
calculated using the operator product expansion (OPE).

Digression on the Operator Product Expansion

The operator product expansion (Wilson short distance expansion) [169] is a formal
expansion of the product of two local field operators A(x) B(y) in powers of the
distance (x —y) — Ointerms of singular coefficient functions and regular composite
operators:

+
AW) BG) = 3 Cilx =) O, (x . y)

where the operators Oi(’%) represent a complete system of local operators of

increasing dimensions. The coefficients may be calculated formally by normal per-
turbation theory by looking at the Green functions

N
OIT AGx) BG) X10) = > Citx = y) (OITO; (%) X10) + Ry(x, y)
i=0

constructed such that

Ry —0as (x—y%;: x—y)?*<0

ay <ay+1 VN

(asymptotic expansion). By X we denoted any product of fields suitable to define a
physical state | X) via the LSZ reduction formula (see Table?2.1).

The OPE is a very important tool in particular in the intrinsically non—perturbative
strong interaction dynamics, which is perturbative at short distances only, by virtue
of asymptotic freedom. It serves to separate soft non—perturbative low energy effects
from hard perturbative high energy effects in the case a hadronic process involves a
highly energetic sub process. Typically, the short distance singular coefficient func-
tions are often accessible to pQCD while the soft effects are factored out into a
non—perturbative matrix elements of appropriate composite operators. The latter in
many cases may be determined by experiment or by non—perturbative methods like
QCD on a lattice. One of the most prominent examples of the application of the
OPE is deep inelastic electron—nucleon scattering (DIS), which uncovered the quark
structure of hadrons at short wave lengths. The factorization into coefficients and
matrix elements in the OPE is renormalization scheme dependent and in particular
depends on the renormalization scale p. The factorization into hard and soft physics

(Footnote 24 continued)
(Egs. (26) plus (28) of [153]), while a refined estimate yields —6.65 x 10~ (Egs. (60) plus (65)
of [153]) fairly close to our estimate (4.80).
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requires the condition my <« pu <« @, which we will assume to be satisfied in
the following. For a more comprehensive elaboration of the subject I recommend
Shifman’s lectures [170].

At the heart of the OPE is the following basic problem: Local products of quantum
fields in general are singular, for two scalar fields in scalar ¢*—theory for example

r oy =y
T{o(x) 2¥) X Himay ~ H = &
X X

creates a loop which in general is UV singular, the obtained composite field
©*(x = y) is defined after subtraction of a UV singular term only, i.e., it requires
renormalization. In fact a series of new divergences shows up: all superficially diver-
gent sub—diagrams, which contain the generated vertex:

The dots represent derivatives in configuration space or multiplication of the line
with the corresponding momentum in momentum space. The dashed circles enclose
arenormalization part which corresponds to a constant, and graphically contracts into
a point. The superficial divergence of the corresponding sub—diagrams ~; in d = 4
dimensions is given by dim 7; = 4 — N; — L; + dim ¢?%; dim ¢? = 2, where N; is
the number of ¢-lines and L; the number of derivatives on ¢-lines. The subtraction
factors multiply Green functions or matrix elements with insertions of operators of
increasing dimensions. The Wilson expansion isolates the subtraction terms related
to sub—diagrams ; which translate into ~y; by identifying x = y:

(S-S S

The first factor of each term represents the coefficient C;(x — y) the second the
operator matrix element (0|7 O; (’%) | X).

For a product of two currents the procedure is similar. The object of interest in
our case is

+

T{j,(x) jsx(0)} = T{: ()7 Y(x) 2 : (0)7,375%(0) :}
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where the Wick ordering : --- : is the prescription that only fields from different
vertices are to be contracted (see p. 47). A contraction of two free Fermi fields under
the T—product represents a Dirac propagator

T {%aci (¥) Ygerj (D ree = 1 Srag(X — ¥ M) Seer0ij— 1 Do i (9) Yaei (x)

for a free field. In our example the currents are diagonal in color and flavor and we
hence suppress color and flavor indices. We thus obtain in the case of free fields

T{jy(x) jsaO}ree = T Wa(X)¥)ap¥p(x) 2 For (0)yays)wp v (0) 3}
(=DiS pga(=x3myp) (¥y)ap 1S Fpar (X;mp) (Y2¥5)a'pr
i Wa(0)(¥y)ap S Far (smp) (Yays)ap s (0) :

i o 0 YaYs)arp S Fpra(=xsmp) (1 )ap Yp(x)
(%) jsa0) :

+ o+ o+

0 X 0 X 0 X 0 X
= (-1
(0 o e e o

The first term in fact is zero. A two point correlator of VA—type vanishes identically,?’
however, for VV—or AA—type of products of currents such a term in general is present.
For the second and third term we may proceed as follows: the Dirac propagators have
the form

SF(yﬂ(x - m;) = (i 7“6;! +mi)aﬂ Ap(x — Vs m;)

where Ap(x — y, m;) is the scalar Feynman propagator (see (2.3)) i/(p? — ml2 +ie)
in momentum space, and the Dirac algebra may be easily worked out by using the
Chisholm identity

’YV’YQ'}/)\ — (guag/\[} + g)\agu(i _ gu)\gozﬁ) v5 — i 61/(1/\/}7675 )

The two terms correspond to the symmetric and the antisymmetric part. In the chiral
limit then only terms exhibiting one  matrix are left which enter bilocal vector or
axial vector currents of the form

T (x,0) = : P(x)y1(0) :
J4(x,0) = 1 P(x)y575%(0) © . (4.82)

25Tn momentum space the ~s—odd trace yields terms proportional to &,\,3 where the two indices
and g have to be contracted with momenta or with g®?, yielding a vanishing result. In a propagator

there is only one momentum p available, but p®p? is symmetric and contracts to zero with the
anti-symmetric e—tensor.
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In the presence of interactions and a set of other fields X characterizing a state
| X) we graphically may write

T{jy(x) jsa (0) X}

The Wilson OPE is obtained know by expanding the bilocal current : D(x) - 1p(0) :
in X. In the free field case these Wick monomials are regular for x — 0 as the singular
term, the first term of (4.81), has been split off. It is therefore possible to perform a
Taylor series expansion in x

(4.83)

o]

- 1 - <« <«
FP0) e p(0) = 3 aB0) Dy e Dy e (0)
n=0 "
and
- 1 - . -
PP ) = D a B0) e Dy D, (O
n=0

The bilocal operators thus take the form

o0

1
J¥(x,0) = Z;x“" xt O L (0).

n=0

In momentum space factors x* are represented by a derivative with respect to momen-
tum —i%. In gauge theories, like QED and QCD, of course derivatives in x—space
have to be replaced by covariant derivatives in order to keep track of gauge invariance.
In general it is not too difficult to guess the form of the possible leading, sub—leading
etc. operators from the tensor structure and the other symmetries. For the second
term above, as an example, diagrammatically we have

0

v

o
+

(4.84)
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where the first coefficient diagram in leading order is the VVA triangle diagram,
the second coefficient diagram in leading order is a Compton scattering like tree
diagram. The second line shows the leading perturbative terms in the case the “final
state” X is a photon . The other terms of (4.83) may be worked out along the same
lines.

We now turn back to the Marseille group application of the OPE in calculating
hadronic effects in the weak contributions to g—2. For this purpose the state | X) is the
external one—photon state |y(k)) in the classical limit, where it describes an external
magnetic field. The first term of (4.83) in this case does not contribute. The diagram-
matic representation of the OPE allows us an easy transition from configuration to
momentum space.

End of the digression
Non-perturbative Effects via the OPE

For the purpose of the anomalous magnetic moment (see (4.62)) one need consider
two currents only

A

fin =i [ @ e T 3 0) = 3 e, @ O

where the operators O are local operators constructed from the light fields, the photon,
light quarks and gluon fields. The axial current in the u and d light quarks sector
reads jsy = uyrysu — czv,wsd, and correspondingly for the heavier quarks. The
Wilson coefficients ¢! encode the short distance properties while the operator matrix
elements describe the non—perturbative long range strong interaction features. The
matrix element of our concern is

Ton = OT,a () = D chra, o (@) 01Oy (k)) (4.85)

in the classical limit &k — 0, where the leading contribution becomes linear in fm«;
the dual of f.3 = k.e3 — kge,. Hence, only those operators contribute which have
the structure of an antisymmetric tensor

af . 1 a3
010 Iy (k) = —i Tl (4.86)

with constants x; which depend on the renormalization scale p. The operators con-
tributing to 7, in the OPE, in view of the tensor structure (4.63), are of the form

Ton =2 b @ (~4%0\ +avg° 0\ —4ra® Ok, ) + ¢, @D 02a“Oh, | (4.87)

i
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such that

wr.L(q”) = D ¢ (@7 1) k(i) . (4.88)

The OPE is an expansion for large Q> = —¢g? and the relevance of the terms are
determined by the dimension of the operator, the low dimensional ones being the
most relevant, unless they are nullified or suppressed by small coefficients due to
exact or approximate symmetries, like chiral symmetry. Note that the functions we
expand are analytic in the g>—plane and an asymptotic expansion for large Q2 is a
formal power series in 1/Q? up to logarithms. Therefore operators of odd dimension
must give contributions proportional to the mass m ; of the light fermion field from
which the operator is constructed. In the chiral limit the operators must be of even
dimension and antisymmetric.

In the following we include the factors 73, at the Z A Jsa(0) vertex (axial current
coefficient) and Q  at the A” j, (x) vertex (vector current coefficient) as well as the
color multiplicity factor N.; where appropriate. A further factor Q ¢ (coupling to the
external photon) comes in via the matrix elements r; of fermion operators f - - - f.
In the case of helicity flip operators fg - - - f or fi - - f& the corresponding x; will
be proportional to m s.

The first non—vanishing term of the OPE is the 1st term on the r.h.s. of (4.84),
which requires a parity odd operator linear in the photon field. In fact, the leading
operator has dimension dp = 2 given by the parity odd dual electromagnetic field

strength tensor

1 - 1
—FY = —r9.A, (4.89)

)
O(Y‘ —
F 472 472

The normalization is chosen such that k = 1 and hence w; ; = c] ;. The cor-
responding coefficient for this leading term is given by the perturbative one—loop
triangle diagram and yields

AT5¢N.s Q3 2m?> 2 4
FLf) =25 f] = 3fQ2fo [1— i ln%+0(%)i| (4.90)

where the leading 1/Q? term cancels family—wise due to quark—lepton duality. In
the chiral limit we know that this is the only contribution to w; .

Next higher term, which can contribute to the amplitudes under consideration, is
the 2nd term on the r.h.s. of (4.84). The dp = 3 operators are given by

_ 1 _
0} = —ifo"lysf = Esaﬁﬂ" fo f. (4.91)

These helicity flip operators only may contribute if chiral symmetry is broken and
the corresponding coefficients must be of the form ¢/ o« m y/ Q*. However, it should
be remembered that we are looking at a soft matrix element where the mass in not to
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be identified with a current quark mass, rather a constituent mass is adequate which
does not vanish in the chiral limit (see (5.155) in Sect.5.2.2). These coefficients are
determined by tree level diagrams of Compton scattering type and again contribute
equally to both amplitudes

8T37Qymy
o* ’

Misusing the spirit of the OPE for the moment and neglecting the soft strong inter-
action effects, we may calculate the soft photon quark matrix element in the QPM
from the one—loop diagram shown in (4.84) (last diagram) which is UV divergent
and in the MS scheme yields

cf1=2c01f1=

2
/ifz—Qchfmf ln'u—z (492)
my
Inserting this in

B _ 8
Ado=3)y,  — 2 A=)y, o Z Ty Qpmy kg

one recovers precisely the 1/Q* term of (4.90). So far we have reproduced the known
perturbative result. Nevertheless the calculation illustrates the use of the OPE. While
the leading 1/ Q? term is not modified by soft gluon interactions, i.e., k. = 1 is exact
as the state |y) represents a physical on—shell photon, undressed from possible self—
energy corrections, the physical ¢ cannot be obtained from pQCD. So far it is an
unknown constant. Here again, the spontaneous breakdown of the chiral symmetry
and the existence of, in the chiral limit, non—vanishing quark condensates (V1Yo # 0
plays a central role. Now, unlike in perturbation theory,  r need not be proportional
to m ¢. In fact it is proportional to (11))o. As the condensate is of dimensionality 3,
another quantity must enter carrying dimension of a mass and which is finite in the
chiral limit. In the u, d quark sector this is either the pion decay constant Fj or the
p mass M. As it is given by the matrix element (4.86) (see also the last graph of
Eq. (4.84)) ky must be proportional to N.s Q ¢ such that

(Wpiby)
Ky = chQf%

and hence [155, 164]

_ _ 8 (7)o
(do=3) _ (do=3) _ 2 fYs
ATV = 2AYCTV wr = _Q4 Ef NCfT3f Qf myg —F02 . (4.93)

An overall constant, in fact is not yet fixed, however, it was chosen such that it repro-
duces the expansion of non—perturbative modification of w; as a pion propagator
beyond the chiral limit:
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2 2 2m?
wL[mu,d#0]=m=@— 0 +

as we will see below. Identifying the 1/Q* correction with the one of (4.93) is the
pion dominance hypothesis used as a constraint to fix the normalization in [164]. In
the isospin sector (4.93) gives

(inh__lnm)<¢f¢ﬂ0
9 9 F?

and for m,, ~ my ~ w and using the GMOR relation (m, + my) (1/_1f1/)f)0 =
—F?m? and with Fy ~ F, we indeed have Aw; = — 255 . Note that the quark mass
difference m, — my is small relative to m, + my, and is not important here. It leads
to a small mixing with heavier pseudoscalar states.

For later use we mention that x; can be represented in terms of the magnetic

susceptibility x introduced by Ioffe and Smilga [171]

Kp=—412 Qs (YpihrloX (4.94)

In our case, under the pion pole dominance assumption (see [164] for a more detailed
discussion), one obtains

Ne 1
4m2 F2  (335MeV)?

x=— (4.95)

All operators of dp = 4 may be reduced via the equation of motion to dp = 3
operators carrying a factor of mass in front:

F (DY =D ysf = —my foPysf .

They thus do not yield new type of corrections and will not be considered further, as
they are suppressed by the light quark masses as m? /0%
Similarly the dimension dp = 5 operators

ffﬁ'(tﬂ’ f_"ySfFa/jv

which are contributing to the 1/Q° coefficient, require a factor m and thus again
are suppressed by nearby chiral symmetry.

More important are the dimension dp = 6 operators, which yield 1/Q° terms
and give non—vanishing contributions in the chiral limit. Here again the specific low
energy structure of QCD comes into play, namely the spontaneous symmetry break-
ing of the chiral symmetry (in the symmetry limit). The latter is characterized by the
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qq
2 A 2 Z
9

Fig. 4.22 Non—perturbative quark condensate contributions due to spontaneous breaking of chiral
symmetry. The scalars gg couple to the vacuum (Gg) # 0. Two other diagrams are obtained by
attaching the gluons to the quark lines by other permutations

existence of an orderparameter,®® which in QCD are the color singlet quark con-

densates (1/_)(,@[)(,) of the light quarks ¢ = u, d, s, where we have implicitly summed
over color. The point is that the condensates are non—vanishing in the chiral limit
m, = 0, typically they take values (ql;q ¥,) >~ — (240 MeV)?. Note that in pQCD
chiral symmetry (in the symmetry limit) remains unbroken, (ﬁq 1)4) vanishes identi-
cally. Higher order color singlet contributions are possible which include hard gluon
exchange represented by the Feynman diagrams of Fig.4.22. They are of the type
as represented by the last diagram of (4.83). The operators responsible derive from
: Ju(x) jsx(0) : corrected by second order QCD (two quark gluon interaction vertices
as given in Fig.2.14 in Sect. 2.8) with the gluon and two quark pairs contacted, like

D) $(2) BOP(0) oy (TaarbarGis (21) : 9 (T Gy () :

where T7; are the SU(3) generators satisfying

&

1 1
Tiaa’Ti == 541 ’5a’ __5(1(1’6 ') -
ij)(M 5 GarBary = < daarOp)
The terms have been worked out in detail in [155] and are of the form

05(0)
o5

A . a“‘
T(@) = lg520ma” — docira’) (~27°7)
with
afl 2 - aff — 1 - aff 37 1 - _af =
0% = | 3 (a0*"u) (@) + 3 (do"’d) (dd) + 5 (50"7s) G9) | (0) -

These terms yield the leading non—perturbative (NP) contributions and persist in the
chiral limit. They only contribute to the transversal amplitude, and using estimates
presented in [172] one obtains

26Spontaneous symmetry breaking is best known from ferromagnets, where rotational invariance
is spontaneously broken, leading to spontaneous magnetization (S;) = M # 0 in a frame where M
is directed along the z—axis.
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16 , 2 o (Yih)?
wr(Qxe = =g = 0‘?% (4.96)

for large enough Q2, the p mass being the typical scale. This NP contribution breaks
the degeneracy wr(Q?) = %w £(Q?) which is valid in perturbation theory.?” Taking
into account the quark condensates together with explicit chiral symmetry breaking,
according to (4.93), also a term

1 4 3 4 u— —m,
Awr(Qne = 5 A (e = 5 5 (4m mz) —m) )
0

, 497

yields an NP contribution, but this time to both wy and w;. The consequences of
the OPE for the light quarks u, d and s in the chiral limit may be summarized as
follows [153]:

2

wrlu, dly, =0 = =3 wr[sln,—0 = R (4.98)
1 327a, ()} _
wrlu, dln, =0 = =3 wrlsln,=0 = Y C+007%.

The condensates are fixed essentially by the Gell-Mann-Oakes-Renner (GMOR)
relations (4.76)

(mu +ma) ()o = —Fym?
m()o = —Fg M .

and the last term of (4.98) numerically estimates to
wr (Q)ne ~ —a; (0.772 GeV)*/Q°

i.e., the scale is essentially the p mass. Our estimates are rough leading order estimates
in the sense of CHPT. The index ( denotes quantities in the chiral limit. Except from
the masses of the pseudoscalars, which vanish in the chiral limit, we do not distinguish
between quantities like the pseudoscalar decay constants Fy, F; and Fk. Similarly,
we assume the light quark condensates (1) to be approximately equal for u, d and
s quarks. Furthermore, we use mfl ~ %m% and Mﬁ, ~ M2 with My ~ 950 MeV
(for CHPT refinements we refer to [166]). Also isospin symmetry will be assumed
where appropriate.

In fact the non—perturbative refinements of the leading 7°, 7, i’ exchange contri-
butions in w; requires the inclusion of vector—meson exchanges which contribute to
wr. More precisely, for the transversal function the intermediate states have to be

2’ The OPE only provides information on wr for Q2 large. At low Q2 we only know that w7 (0) =
12872 CZV; where szg is one of the unknown CHPT constants in the O (p®) parity odd part of the
chiral Lagrangian [173].
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1" mesons with isospin 1 and 0 or 1~ mesons with isospin 1. The lightest ones are
p, w and a;. They are massive also in the chiral limit.

In principle, the incorporation of vector-mesons, like the p, in accordance with
the basic symmetries is possible using the Resonance Lagrangian Approach (RLA)
[174, 175], an extended form of CHPT. The more recent analyses are based on quark—
hadron duality, as it holds in the large N, limit of QCD [176, 177], for modeling
the hadronic amplitudes [178]. The infinite series of narrow vector states known
to show up in the large N, limit is then approximated by a suitable lowest meson
dominance, i.e., amplitudes are assumed to be saturated by known low lying physical
states of appropriate quantum numbers. This approach was adopted in an analysis
by the Marseille group [155].2% An analysis which takes into account the complete
structure (4.98) was finalized in [153]. In the narrow width approximation one may
write

Im wr = WZ' gi 0(s — ml-z)

where the weight factors g; satisfy

Zi9i=1, ZigimizZO

in order to reproduce (4.98) in the chiral limit. Beyond the chiral limit the corrections
(4.97) should be implemented by modifying the second constraint to match the
coefficient of the second terms in the OPE.

While for the leptons we have

wL[E] = - (E =e,u, T)

2
E )

281n this analysis, the leading 1/Q? term of wr in (4.98) got lost, which produces a fake In M
term in the leading hadronic contribution. This was rectified in [153, 164] and confirmed by the
authors of [155] in [165]. The 1/Q° correction was estimated using “large N, limit of QCD” type
of arguments and taking into account the three lowest lying hadrons with appropriate quantum
numbers as poles: the p, p’ and a, yields

2
HA3poles G My« _
Aay|" " =7‘;ﬁ;x(0.04i0.02):(0.011iO.OOS)x10 '

Thus, these interesting NP corrections at the present level of precision turn out to be completely
negligible. However also the longitudinal amplitude is modified by mass effects. While for the
first family quarks the effects are very small, for the strange quark the contribution turns out to be
relevant. The estimate here yields

ﬁGu m2

Aayl, = 2 L 45TH117+137) ~ (12403 +04) x 107
7T T

Still the effect is small, however, one has to estimate such possible effects in order to reduce as
much as possible the hadronic uncertainties.
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the hadronic amplitudes get modified by strong interaction effects as mentioned: a
sufficient number of states with appropriate weight factors has to be included in order
to be able to satisfy the S.D. constraints, obtained via the OPE. Since the Z does not
have fixed parity both vector and axial vector states couple (see Fig. 4.21a). For the

1st family 7%, p(770) and a,(1260) are taken into account?
[u, d] 2 2 L _my +
wilu,d]l= ——— ~2 { — — —Z ...
L 02 + m2 0r 04

™ ™

)= [ M) (L)
wrlu,d| = — XN+,
MZ —MZ| Q*+M; Q>+ M? 0 o

for the 2nd family 7’ (960), 1(550), ¢(1020) and f;(1420) are included

5] = 2 2 1 2( 1 M5+
wr[s] = —= — ~_Zf = 14
- 3L+ M2 Q2 m? 3\ o2 ¢

5] 11 [M}l—mf, Mg—m,z]] 1{1 m%_’_
wrls| = —— —_ ~ —— _—— .
d 3ME M2 QP+ M2 QP+ M 3\ 02 0

with M2 = 2M2 — m?2. The expansion shows how it fits to what we got from the
OPE. Numerically the differences are not crucial, however, and we adopt the specific
forms given above.

While the contributions to a, from the heavier states may be calculated using
the simplified integral (4.65), for the leading 7 contribution we have to use (4.64),
which also works for m, ~ m,,. The results obtained for the 1st family reads [153]%°

291t should be noted that the “pole” in wy [€] = 2/¢? has nothing to do with a massless one—particle
exchange, it is just a kinematic singularity which follows from the tensor decomposition (4.63).
Therefore the hadronic counterpart wy [u, d] = —2/(¢% — m% + ie) is not just a chiral symmetry
breaking shift of the Nambu—Goldstone pole, which is the result of the spontaneous chiral symmetry
breaking. What matters is that in physical quantities the residue of the “pole” must be checked in
order to know, whether there is a true pole or not. The pion—pole in wy [u, d] certainly has a different
origin than the spurious one of wy [£].

3OUp to the common factor /C; for pseudoscalar exchanges like wy, ( 0% = 1/(Q2 + m%) - l/(Q2 +
M%) (Pauli—Villars regulated) one obtains the exact result

1 , 5 m?
Fr(x) = 6(x(x+2)f(x)fx lnx+2x+3)f In

L.
z
where
. —J4/x =1 (arcsin (1 — %) + %) for x <4 (x =x5),
X) =
J1—4/x In (—2/(xa/1 —4/x —x +2)) for x >4 (x =xy) ,
with x; = m%l/m/z, Xy = m%/m,% etc. and Mz as a cut-off. For vector exchanges like

wr(Q%) =1/(0* + Mﬁ) one obtains
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(4) EW
au

2G, m?
(el = Y20 a {1

o2 Lo (-5)

M? M? M2 5
+r72rlnrﬂ—2r7r—3)+ln—§—27p21n “ f}
my Mg, —Mp Mp 2

2
_ﬁGM my,

= x 8.49(74) = —2.30(20) x 101 . (4.99)
T

31e

with r; = m2 =/ m . This may be compared with the QPM result (4.53), which is
about a factor two larger and again illustrates the problem of perturbative calculation
in the light quark sector. For the 2nd family adding the i and the perturbative charm
contribution one obtains

2 2 2
DEW ([, S])N_ﬁG#mu a2z My 2 nM
' T 1672 7w |3 M2 3 m}

| Mj—m; M} M2 M sr 59

3az —m2 Mz AN m o T
h ® @ qb o

\/EG# mlzt o 11
~ e x 17.25(1.10) =~ —4.67(30) x 107" , (4.100)
T ™

which yields a result close to the one obtained in the QPM (4.54). Here the QPM
works better because the non—perturbative light s—quark contribution is suppressed
by a factor of four relative to the ¢ due to the different charge.

Note that this large N, QCD (LNC) inspired result

\/§G ,mz
alPEV ([“”’d]) S & %2574~ -6.97020)30) x 10~ (4.101)
LNC

¢, s 167 m

obtained here for the Ist plus 2nd family, is close to the very simple estimate (4.80)
based on separating L.D. and S.D. by a cut—off in the range 1 to 2 GeV.

(Footnote 30 continued)
Mz 7 m? M2 2
2 g2 K P 2 g2
Fr(my/M;) = —In W_gﬁln W+l +0((m#/Mp) ) .
i

Up to terms O(mi /M %) the result reads

1 1
FT(X—) = gI(xg —6x,) Inx, —2x,—6Ina+9—x,r, In(=2/(r, — x, +2))
14

—rp In((xy — 7, (x3 —6x7 +10x, —4) —8x> +20x; — 16, +2)/2)} ,

with x, = M/%/mi, rp = /x[% —4x,anda = mi/M% .
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Perturbative Residual Fermion-loop Effects

So far unaccounted are sub-leading contributions which come from diagrams
(c), (d), (e) and (f) in Fig.4.19. They have been calculated in [148] and we distin-
guish the non-Higgs dependent ones with the result®!

sz Mz 3
—4.12(3) x 10711 | (4.102)

;f-rem,no H 1671’2 st

12

and the Higgs dependent ones

V2G,m
wew __ V20umy @ o (4.103)

pit-rem,Hy = 1 67T2 T

where AC'# is the coefficient from diagram ( f)

2
%6111,%;4'120744' (4lnm’+égg) my <K mg
ACtH — 332 (1 v (n/3)) , my = my

) 2
8—|—97r—|—3( ’”—51—1) —’”—;Q(l ”’H+1) my > my
mH my H

with typical values AC' = (7.74,4.42, 4.19) contributing to (4.109) by (—2.10,
—1.20, —1.13) x 107!, respectively, for my = (60, m,, 300) GeV. Given the Higgs
mass of about 125 GeV the middle option should be a reasonable approximation.

The result is improvable. In the calculation [148] the approximation sy, ~ 1/4
has been used for terms suppressed by a factor (1 — 4s3,), in particular the Higgs—Z
diagram (f) and the Z—y diagram (b) of Fig.4.19 were neglected. Some improve-
ments have been discussed in [153]. Only recently, in [179], the exact Higgs mass
dependent contribution AC'# has been worked out. There are two Higgs-dependent
diagrams represented by Fig.4.19f, with either a photon or a Z-boson in the outer
loop. Accordingly, we may write

AHEW (4EW (4)EW
a,u;f—rem,H = Z [ i f-rem, HA/(f) + au f—rem,HZ(f)] : (4104)
f

31This is the sum of contributions Egs. (13)-(15), (21) and (27) from diagrams (a)—(c) and (e) of
Fig.1 of [148], corresponding to diagrams (d), (e) and (c) of our Fig.4.19. Interestingly, the Z
vacuum polarization diagram (c) is the only place where a small neutrino fluctuation contribution
comes in. Note that the Higgs-ghost contribution Eq. (22) of [148] accompanying their diagram (d)
(our diagram (a)) is absent in our bookkeeping, as we treated diagram (a) in the unitary gauge [153,
155, 165] where ghosts are absent.
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where the sum extends over the SM fermions; the relevant ones are f =t, b, ¢, T.
Contributions from f =e, y, u, d, s are below 104 and thus negligible. Figure 4.19f
type diagrams have been calculated by Barr and Zee [180]. One calculates the inner
loop first and then inserts the result into the outer loop. As a result one finds [179]

2G,, m?
HEW _ V2Gumj o >
au;f—rem,Hy(-f) - 1672 ; ch Qf Z.fH'y(foL
2
@ew o V2Gumi a Vo
4 toremuz () = T Ne¢ Qf4C%VS%V(1 Asw) fHz(XrH XF7),

(4.105)

with x;; = m3/Mj; and xyz = m% /M. vy the weak vector current coefficient
(4.36). The loop functions can be written in terms of one-dimensional integral rep-
resentations or in terms of dilogarithms:

! 2w? -2 1 1—
J‘hh,()c)z/0 dwx w2 Wt log wi w)

w-—w+x X
=x [fulx) —4], (4.106)
! 2uw? — 2w+ 1| logdi=®)  JogZ
,7) = d x z
faz(x,2) /0 wxz e — wz—w+x+x—z
Xz
=T [fu(2) = fu()]. (4.107)

The dilogarithms are contained in the function f(x), defined as

4x —2 11— I+y
fux) = * |:Li2(1—J)—Liz(l—%)]—ﬂogx; x<1/4, y=+~1—-4x
y X

2x
= Al (- ) S (- ) S tegx s x4, y= VAR ST
y 2x 2x
(4.108)

The fist version applies for the lighter fermions 4m3£ < m%i, M% the second for
the top quark where 4m? > m32,, M2 and the dilogarithm is complex of the com-

plex arguments. Note that the real part of the difference Re [Liz (1 - %) —Li,

Table4.13 illustrates the relative size of the contributions from the top quark loop
solely and including b, ¢ and 7 as well, the H — Z contribution is suppressed by an
order of magnitude for not too light Higgs boson masses. The approximation (4.104)
is more than poor for m g = 300 GeV, and apparently is valid only for much heavier
Higgs bosons. For mpy = 125 + 1 GeV the exact result from the Higgs—dependent
fermion loops we obtain

] = 0 vanishes, obviously the integrals above are real for real x, z > 0.

«/EG m2 « .
(4)EW H _
pitremi = T g3 EZACTH = —1.504(12) x 1071, (4.109)

™
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Table 4.13 Higgs—dependent contributions AC'" with closed fermion loops Fig. 4.19f

Fermion mpy = 60 GeV my =my mpy =300 GeV

H~ HZ sum (4.104)| Hv HZ sum (4.104)| Hy HZ sum (4.104)
t 7.75 1.27 774 | 442 0.08 4.42 2.99 0.06 4.19
t,b,c, T 7.99 1.29 8.12 | 7.67 447 0.09 |4.56 |4.42 3.01 0.06 3.08 |4.19

2.0
D_O.* — S
© -2.01
’ — tH exact
x 1 § /
ot 4.0 1 i/ -~ tH high
< ] | —-= tH(m,)
-6.0 I — - fHy
| —-- fHZ
1 i —— fHy+fHZ
-8.0 — . . .
100 200 300 400 500

my (GeV)

Fig. 4.23 Comparison of the Higgs boson mass dependence of the contribution from Fig.4.19f in
various approximations: the first four curves show the top quark only contribution exact, low Higgs
mass expansion, high Higgs mass expansion and the value for mg = m;,. Curves five and six show
the results including all relevant fermions for fHvy and fHZ. The last curve represents the sum of
the previous two. The vertical band shown the mass range mpg = 125 & 1 GeV

in agreement with [179]. Figure 4.23 shows the numerical result as a function of the
Higgs boson mass and compares it with the numerical approximations from [148]
supplemented by one more term in the expansions as given by (4.104). The tH~y
contribution, as expected, is clearly dominant.

Other subleading two—loop effects from the Z —~ mixing diagram Fig.4.19b have
been estimated by RG methods first in [152] and confirmed in [153]. The result is
part of the LL result (4.56) most terms of which are included in results of the refined
analysis. The Z — ~ mixing yields

V2G, m? o 4 M
(4)EW _ I no T on f zZ
a;b;f—rem,Z - 1672 T zf, NCf Qf [9ngV] In m ’

withm y = max[m ¢, m,] and g{; = 2vy the neutral vector current coefficient (4.36).
Quarks here are taken in the quark parton model. Using the low energy effective weak
mixing parameter sin? g (0) = 0.237855 we obtain

V2G, m?
@WEW MR T & 0.4361 = —0.1181 x 107!

i f-rem,Z 1672 T
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Actually, this includes a substantial contribution (0.4178 out of 0.4361) from the
strongly interacting quarks and the result has been obtained by adopting effective
quark masses m, = my = my = 0.1 GeV as an educated guess. The sensitivity
to such a choice is quite dramatic in view of the range of light quark masses from
their current quark mass values (chiral symmetry breaking), about 5 MeV for u and
d quark, to the constituent quark masses of about 1/3 of the proton mass (about
300 MeV). The sensitivity come form the large logarithms o In Mz /m,, and pertur-
bative calculations loose their sense when low scale quark masses come into play. Itis
therefore necessary to evaluate the hadronic part by non-perturbative methods using
et e —data in a dispersion relation for a reliable evaluation. The approach introduced
in Sect. 3.8 and will be discussed in detail in the next Chap. 5.

Digression on the Hadronic v — Z Mixing

Hadronic effects from the Z — v mixing diagram Fig.4.19b enter via the renor-
malized vZ vacuum polarization amplitude. The latter may be written (one of the
electromagnetic currents j;” in the definition of /1 ! (qz) has to be replaced by the
current J IIZ (4.34) which couples to the Z boson ﬁeld with neutral current coupling
coefficients (4.36)) as

ETV: '@ = Aa(g?) — Aay(g?) (4.110)

where Aa(g?) is the shift of the fine structure constant @ = €?/4m and A (g?)
the corresponding shift of the weak SU(2) coupling a; = g*/4m, between g> = 0
and any non-zero ¢>. For what is required in our case, in perturbation theory at large
space-like ¢ = —M%, we have in leading log approximation

2a M
Ao(—M32) ~ - > Ny Q% In m—z ,
f
« M
Ao, (—M2) ~ ﬁ > NgT3;Q; In m—j , 4.111)
7

such that we may write

7Z(M) Aa(M) Aa(M)

~ Nes (T, Q=2 Q% s%) In Mz i
~ 37” of \TrQy 7 Sw Py :

This is by the way precisely the vacuum polarization contribution to the shift of
the effective weak mixing parameter in the running from the zero momentum trans-
fer to ¢*:


http://dx.doi.org/10.1007/978-3-319-63577-4_3
http://dx.doi.org/10.1007/978-3-319-63577-4_5
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1 - Aaz (qZ)

)
Ouit (0) .
[~ da@d) ]Sm n©

sin? O (¢%) = [

The ellipses stand for additional radiative corrections not of interest here. For the
hadronic shift we thus may use the results provided in [133, 137, 181]. Using an
up-to-date compilation of data we obtain

A (=M2) — A, (—M2) = 2.695(20)(5)[21] x 1072,

where the low energy effective value sin? O (0) = 0.237855(230) has been used
toset o, = o/ sin? @1 (0). It corresponds to the LEP/SLD value sin? (»*)eff(Mé) =
0.23153(16) by taking into account its running to low energies [137]. In the on—shell
renormalization scheme with G, My and M7 as input parameters, one is using
sin? O =1 - M 2 /M2% = 0.22290(29) as the weak mixing parameter. Our result
may be adapted to any value of this parameter using the reference values

Aad) = 0.02749(16) and Aal),, = 0.05444(35) (4.113)
with the errors 100% correlated. Adapted to a different sin? # one may use
A0y = Adyya/ sin’ 0,
where (now independent of sin” §) we have
AGS) = 0.05444(35) x 0.23153 = 1.2605(82) x 1072 . (4.114)

One should be aware that when evaluated via a dispersion relation of e*e™—data
the correct o or «, in front of the dispersion integral like (3.144) is the zero
momentum value. However, in deriving (4.112) from (4.111) one is using the rela-
tion @ = s3, «,. So one should take properly care of this. The main uncertainties
from the ete~—data. The errors of A and Ac, are 100% correlated and thus can-
cels largely in the difference. Relative to the hadronic uncertainty, the one of Aa,
coming from the uncertainty of sin> @y is a factor of four smaller. In [153] an
estimate of —% zq:u,d,s,c,b N, (Tq 04 — 2Q2 s%v) X In }’Z—j — —6.88(50) has been
used. The relative normalization factor is ﬁ, such that our result corresponds to
—5.87(4) in place of —6.88(50), the latter has been adopted in the recent electroweak
update [179].

V2G, m? oln 8
(HEW H (©) ~(5)
4:5hadz = 1672 : ;[a Saf 3 (Aahad - Aazhad/sa/) (- 4S$«/)]
(4.115)


http://dx.doi.org/10.1007/978-3-319-63577-4_3
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End of the Digression
The non-perturbatively improved result now reads
2
wew __N2Gumiaf (8, Mz 4 Mz oo
w;f-rem,Z 1672 T 9 m, 9 m, w
4 2 \/EGM mi (0%
+= x5.87(4) (1 —4sy) | = ———=— — x 0.9402(121)(59)
3 1672 =«
= —0.2547(33)(16)[37] x 107" . (4.116)

Of the 0.9402 only 0.0912 comes from the leptons, 0.8490 is the hadronic part. The
result is extremely sensitive to the value of sin’ 6 utilized. Our result is for the on—
shell scheme with 53, = sin? Oy For s3, = sin” O (0) this contribution would be
reduced to —0.1018(21) x 107! i.e., 2 6.3% change in sin% @ (scheme dependence)
causes the result to change by a factor 2.5, essentially the change in the overall factor
1-4 s%v. Needles to say that all the contributions from the different diagrams have
to be calculated consistently in the same renormalization scheme.

Finally, the renormalization of the weak mixing parameter (see e.g. [133] for more
details)

2
sin® O = (1 + Cf)szﬂAp) sin @y = sin® Oy + Ap cos? Oy
sin” Oy

in the one—loop result (4.47) entering via diagram Fig. 4.18 (b) contributes a substan-
tial correction here because of the dominating m? contribution to Ap (4.40) yields*

V2G,m? o cos? @ m?
SaPEV(7) = — Pt = "V (1 -4 sin’ Oy) —L
H 1672 7 2sin® Oy My,
V26, mlzi a 1
= _T — x 0.877(11)(8) = —0.238(4) x 107", “4.117)
T ™
2With ,
dOEV (7 _ V2G,m? (1 -4 sin® Ow)* -5
# 1672 3
and sin2 Oy — sin? Oy + d sin? Oy we have
V2G,m? 2
5aPEV () = 16“2 £ 5 (1= 4 sin® Ow) x —4dsin’ O
b
V2G,m? 8
= — 16;2 £ 3 (1—4 sin? Ow) cos? Ow Ap
. ﬁGﬂmz, 2 . . 1
with Ap = o2 £ 3my. Using the tree level relation ﬁGH = F(lm (see (4.42)) and
w
hence Y26y _ a

1 1
162 = 7 16 32 sin Oy the result follows.
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Fig. 4.24 Sample bosonic () ’Y
electroweak two—loop

diagrams in the unitary

gauge. Among the bosonic

corrections are the photonic M

corrections to the weak
one-loop diagrams

Fig. (4.18). Furthermore,
important are diagrams
exhibiting virtual Higgs
boson exchange with heavy
W and Z bosons

again in agreement with [179]. The first error reflects the uncertainty of My, the
second the one of m;.

As a summary Egs. (4.102), (4.116) and (4.117) represent our reminder (usually
called NLL) estimate

aWEV — _4613) x 1071, (4.118)

s frem,all —

Results for the Bosonic Contributions

Full electroweak bosonic corrections have been calculated in [154]. At the two—loop
level there are 1678 diagrams (fermion loops included) in the linear’t Hooft gauge,
and the many mass scales involved complicate the exact calculation considerably. A
sample of diagrams showing purely bosonic decorations of the muon line are depicted
in Fig.4.24. Besides, photonic corrections of the weak one-loop diagrams, we have
a class of diagrams with Higgs boson exchange interactions between the W and Z
bosons and the muon. The latter bring in the leading Higgs boson contribution to the
muon g —2, which was dramatically suppressed (very tiny coupling to light fermions)
at the one-loop level. However, the heavy masses My, Mz and m g, which appear
in the corresponding propagators, reveal these particles to be essentially static, and
one may perform asymptotic expansions in (m,/M v)? and (My/my)?, such that
the calculation simplifies considerably. A further approximation is possible taking
advantage of the smallness of the NC vector couplings, which are suppressed like
(1—4sin?> @) ~ 0.1 for quarks and (1—4 sin> @y )? ~ 0.01 for leptons, i.e., in view
of the experimental value sin?> @y ~ 0.23 we may take sin’> @y = 1/4 as a good
approximation. This remarkable calculation was performed by Czarnecki, Krause
and Marciano in 1995 [154]. Altogether, they find for the two—loop electroweak
corrections

\/EG m2 [6% 2 . ]W2 .
HEW _ K 2i w 2i 6
Gvos = "lemd 7 > [aziSw + pren bzisw] + OGsy)

i=—1

~ —21.4H0 x 107! (4.119)
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for My = 80.392 GeV (sin’ Oy = 1 — M, /M2) and my = 250 GeV ranging
between my = 100 GeV and mpy = 500 GeV. The expansion coefficients may
be found in [154]. The result from this expansion is displayed in Fig.4.25 together
with the known exact bosonic two—loop result. Since my =~ 125 GeV, the large
mpy > My expansion still provides a good crosscheck for the exact result, but
is not expected to yield a good approximation at the physical Higgs mass. The on
mass—shell renormalization prescription has been used. Part of the two—loop bosonic
corrections have been absorbed into the lowest order result, by expressing the one—
loop contributions in (4.47) in terms of the muon decay constant G,.>* For the
lower Higgs masses the heavy Higgs mass expansion is not accurate and an exact
calculation has been performed by Heinemeyer, Stockinger and Weiglein [183] and
by Gribouk and Czarnecki [184]. The result has the form

2 2
gWEW _ _ﬁclf m, a (Cbos,ZL In My cbos,2L) (4.120)
puibos T b L — 0 s .
16w s my,

where the coefficient of the large logarithm In Z—‘Z’ ~ 13.27 is given by the simple
expression

1
CEos,2L — §[107 +23(1 — 45%{/)2] ~5.96.

In contrast to the leading term the Higgs mass dependent function cBOS’ZL in its exact

analytic form is rather unwieldy and therefore has not been published. It has been
calculated numerically first in [183]. The result was confirmed in [184] which also
presents a number of semi—analytic intermediate results which give more insight
into the calculation. After knowing the Higgs mass to have a value mpy ~ My
rather than My /mpy < 1 in was important to work out the exact Higgs mass depen-
dence of CSOS’ZL. An updated result has been presented by Gnendiger, Stockinger and
Stockinger-Kim [179] recently.

In the range of interest, my = 50 GeV to my = 350 GeV, say, one may expand
the result as a function of the Higgs mass in terms of Tschebycheff polynomials
defined on the interval [-1,1], for example. With

x = (2my — 400 GeV)/(300 GeV)

33In [182] using asymptotic expansions and setting my ~ My and sin> @y ~ 0 an approximate
form for the bosonic corrections

V2G,m? o [65 M2 M2
AHEW _ ey} w 22 o w
Qpbos = T Al In m;% + O(sin” Oy In m;% )

was given, which is not too far from the result (4.119).
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o] — exact
_ -18.0] ) S
Tg o - — LL term
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$3 -21.04
]
-22.01 '
-23.01 ' <- Higgs mass range from LHC
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Fig.4.25 Exactresult for the bosonic correction [ 183, 184] versus the asymptotic expansion (4.119)
and the LL approximation (first term of (4.120))

and the polynomials
h=1, h=x, tip=2xti.1—4;, i=1---,4

we may approximate (4.120) in the given range by>*

«/iG m2 fe% 6
(4)EW __ 1z
Qbos = —Tzﬂ = Z a; t;(x) (4.121)

with the coefficients a; = 75.3204, a, = 8.12415, a3z = —2.79504, a4 = 0.940354,
as = —0.336949 and a¢ = 0.132004. The result is plotted in Fig.4.25 and using the
recent value obtained for the Higgs mass (3.34) one gets [179]

(4 EW
14;bos

= (—19.97+03) x 107" . (4.122)

Note that
cg"szL ~ 5.34(12) (4.123)

has the same value for the electron. The uncertainty is obtained by varying m g by
+1.5 GeV and My by £15 MeV. The exact result exhibits a much more moderate
Higgs mass dependence at lower Higgs masses. The previous uncertainty caused
by the unknown Higgs mass with the discovery of the Higgs by ATLAS [123] and
CMS [124] has essentially disappeared. Recent results yield my = 125.1£0.3 GeV
for the Higgs mass, with a surprisingly narrow error band.

34n the previous calculations [183, 184] of the bosonic part an overall electroweak coupling
G, a(m,) had been used. A recent careful reanalysis by Gnendiger, Stéckinger and Stéckinger-
Kim [179] finds that the correct overall coupling must read G, i.e., the previous results have to
be rescaled by the factor o/ a(m,,) 2= 0.992934 as included in the coefficients of Eq. (4.121).
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Table 4.14 Summary of weak 2-loop effects in units 10~!!. Fermion triangle loops: 1st, 2nd and
3rd family LO, fermion loops NLO without Higgs boson, fermion loops NLO involving the Higgs
boson, and bosonic loops (with equation numbers). The first line collects the results discussed in
the text, the second shows the results [179] for comparison

(4)EW (4EW (4EW (4)EW (4HEW
au (e, M U, €, d,s) A (7,1,b) ; f-rem,H ay,;f-rem,no H 1;bos
Eq. (4.101) Eq. (4.70) Eq. (4.109) Eq. (4.118) Eq. (4.122)
—6.96 % 0.36 8194008 | —150+£001 | —4.61+0.0370% | _19.97+0.03
—6.91+0.36 —821+0.10 | —1.50+0.01 | —4.64%0.10 —19.97 +0.03

Summary of the Results for the Weak Contributions

‘We finally compare our results with the very recent reanalysis of [ 185]: combining the
results of the full EW 2-loop calculation, updated in [179], with the results involving
the hadronic effects from Refs. [148, 153, 155, 165]. The various weak contributions
are collected in Table4.14 and add up to the total weak 2—loop contribution

aPPV ~ (=41.23 +0.22[mp, m,] £ 0.72[had]) x 107" . (4.124)

The previous dominating Higgs mass uncertainty now appears reduced by an order
of magnitude due to the now known Higgs mass value (3.34).

Three—loop effects have been estimated by RG methods first in [152] and con-
firmed in [153] with the result®

©ew _  @ew () a . My
a;LLL - a,uLL (T - 1) (—08 ; In m#

~ (HEW « 2 m MZ
_a#LL ; (gln—u—08 In ),

me my,

where we used a(im,) to leading order given by (3.48). Then using (4.57) one obtains
a’t ~ (0.16+£0.2) x 107" (4.125)

where the error stands for uncalculated 3—loop contributions.
By adding up (4.49), (4.124) and (4.125) we find the result

ai™ = (153.42 £ 0.72[had] 4 0.22[my, m,, 3 — loop]) x 10~'" . (4.126)

31n [152] affl)fw is represented by our Eq. (4.56) but with prefactor G, a(m,,) in place of our
G, . The extra 3—loop correction coming from the replacement o — «(m,,) largely cancels the

correction factor —0.8 % In %, which alone would yield a(()])fw ~ 0.46 x 10711, By accident, in
m M

our parametrization the two contributions essentially compensate each other.
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based on [153, 155, 179, 183, 184].3° The electroweak error is dominated by the
missing 3-loop contribution. The results also agrees well with the recent reevaluation
aﬁjw = (153.6 = 1.0) x 10~ in [179], from which we also took the Higgs boson
mass dependent results (4.109) and (4.122).

We note that after the discovery of the Higgs [122] and given its mass (3.34),
the uncertainty of the weak contribution has been substantially reduced. While the
one-loop Higgs boson contribution is completely negligible (tiny Higgs to Muon
Yukawa coupling y,), at the two—loop level the Higgs interaction with the heavy
states W, Z and the top quark ¢ reveal a much higher sensitivity of a,, to the virtual
Higgs exchange. Results are within uncertainties with most of the ones presented
in [7].

4.2.3 Two-Loop Electroweak Contributions to a,

The dominant electroweak 1-loop contributions Eq. (4.47) scale with high precision
with an overall factor x¢,y = (m./m l,)z, up to terms which are suppressed with
higher powers up to logarithms, like the contribution from the Higgs Eq. (4.48).
Thus

aP ™ = x(y aP PV =45.50(0) x 1077 (4.127)

At two loops various contributions do not scale in this simple way [144, 148, 154].
We therefore present a set of modified formulas, which allow us to calculate %(4) EW
Apart from the overall factor

V2G . mg « «/EGN mi «

S = Xy ——— 1 — > 6.33563742 x 10717, 4.128

16m2 7 e qgr2 g x ( )

the logarithmically enhanced as well as some constant terms change according to

Eq. (4.52), adapted for the electron. We only present those terms which do not scale
trivially. The QPM results Egs. (4.53) and (4.54) are modified to

a 54) EW

2G,, m2 M8 47 8
(le, u, d))gpm =~ _Y20ume @ [l . -

o [~ —236x1071,
tor2 7 | mem? 6 9} X

(4.129)

36The result is essentially the same as
ap" = (154 + 1[had] =+ 2[my, m;, 3 — loop]) x 10~
of Czarnecki, Marciano and Vainshtein [153], which also agrees numerically with the one
ay" = (152« 1[had]) x 107"

obtained by Knecht, Peris, Perrottet and de Rafael [155].
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alEV ([, ¢, sDopm = —

\/EG# m? « M3
1672 &

} ~-115x 107, (4.130)

for the 1st and 2nd family, respectively. The EFT/QPM estimates used in Eq. (4.80)
now read

«/EGH m?

4 Mi 2
af" ™ (lu.d. s} p < Ma)grr = =22 [- In—4 4 g] ~139% 107",

3 m?

e

(07
T
«/ZG m? « M?2
GEV (1, d, s]:; M ="# e 2In—2|~1.04x 1075
a,” " ([u,d,sl; p > Ma)gem T ﬁ[ nM% X ;

and together with

3G m2 M2 M2 MZ 23 8
aP BV (e, p, D opy = _Y2Gume o |:31n§+31n Z 74lnM—§+—777r2
T ¢

1672 mg m/ZL 6 9
2G, m2
~ ,% & %7532~ 477 x 10715,
7T ™

yield the complete estimate for the 1st plus 2nd family

2G,, m? 5 M2 M? M% 19 8
a£4)EW e u,d =77f e @ A 43m 4 —4m 44 =252
T |3 2 MC2 9

B €S 1672 m? m?, 6
2G,, m?
~ YETuMe & 3685 (46) ~ —2.33(3) x 1015 .
‘[16“2“’ 36.85 (46 233(3) x 10715 4.131
T i

The large N, QCD inspired LMD result Eq. (4.99) for the 1st family translates into

2G,m? o (1 4 -2
alP ¥ (e, u, d1) _ Y26, m; ple £ [§ (—r,r e +2) [1—— | In ———
lor> m L8 [ (R R

M2 M2 M2 ) 11
2 4 P aj ™

+rilnrg =2rp =3)4+In—% — ————=1n - + —
) ”l% lugl “43 M;% 9 }

ks

2
~ _% & %29.41(2.56) = —1.86 (16) x 1015, (4.132)
T s

with 7, = m2/m?. For the 2nd family Eq. (4.100) reads

2 2
a(4)EW([ c,s]) ~ —*ﬁG“ me a2 In il 22 In M",
¢ fo 630 = 1672w |3 MTZI, 3 m%
2 2 2 2
1 M“ —m M M2 M
g2‘977’21n—f2’+41n—”2+31n—§’+2
My — My Mg Mg M
2G, m2
o _V2Gumg a 18.19(1.16) ~ —1.15(7) x 10715 . (4.133)
1672 T
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The LL approximation Eq. (4.56) for a, is given by

2G, m? 161 27 M
agfw = _M Sl iy Z(1—4s3)*|In z
1672 =« 9 9 B
8 M
— > N0y [12 T} Qs — 5 (17 —20ss3) (1 - 4s$V)] In —Z}
feF mg
~ —14.64 x 10715, (4.134)
where the sum extends over F = u, 7,u,d, s, c, b.
Also (4.116) does not simply scale with the prefactor. Instead we have
(4)EW o ﬁG# mg (6] 4 MZ 4 MZ 4 MZ 2.2
errenz =~ g | \g M, g g g T ) (=)
4 2 ﬁG;L mi «
= —0.0613(9) x 1071 . (4.135)

Note that the contributions Eqgs. (4.70), (4.109), (4.102) and (4.117) scale with
X(epy- The bosonic contributions only depend on the external fermion mass and we
may use the full 2-loop result Eq. (4.122) together with Eq. (4.120). Denoting the
prefactors (4.50) and (4.128) by X5, and K., respectively, we have

M2
bos,2L __ bos,2L w (4EW
CO = CL In W =+ a#;bos /ICQM
m
such that
2
WEW _ e bosaL My, bos,2L ) _ WEW _ o bos2L | ™M (4.136)
Aobos — M2\ €L n m2 ) = X(ep) “#;bos —R2eCp nm2 ’ .
e e
which evaluates to ag?)fsw = (—8.70 £ 0.01) x 10" . Results are collected in

Table4.15.

Table 4.15 Summary of weak 2-loop effects contributing to @, in units 10~'3. Fermion triangle
loops: Ist, 2nd and 3rd family LO, fermion loops NLO without Higgs boson, fermion loops NLO
involving the Higgs boson, and bosonic loops (with equation numbers)

4)EW 4)EW 4)EW 4EW 4EW
aé ’ (e’ M U, €y d’ S) a‘(’ ' (T’ L b) a;;z-rem,H é:;-rem,no H atg:l)ms
Egs. (4.132) + (4.133) Eq. (4.70) Eq. (4.109) Eq. (4.118) Eq. (4.122)

—3.01£0.17 —1.91+£0.02 —0.35£0.00 —1.06 £0.01 | —-8.70£0.01
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As a result we obtain the total weak 2—loop contribution

aPEV ~ (—15.04 +0.02[my, m;] &+ 0.23[had]) x 1075 . (4.137)

The total weak contribution thus is given by

aV ~ (30.53 £ 0.02[my, m,] & 0.23[had]) x 107" . (4.138)

This is very close to a,(weak) = 29.73(52) x 1075 used in [6, 45]. The value
corrects the result estimated in [7].

Note that the leading log approximation in Eq. (4.134) utilizing constituent quarks
in this case is very close to the result in Eq. (4.137). Using this approximation we
would get the value a®V =~ 30.95 x 10715, which often has been adopted in the past.
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Chapter 5
Hadronic Effects

The basic problems we are confronted with when we have to include the non—
perturbative hadronic contributions to g — 2, we have outlined in Sect. 3.2.1 p. 183ff
and in Sect.4.2.2 p. 298ff, already. We will distinguish three types of contributions,
which will be analyzed in different subsections below:

(i) The most sizable hadronic effect is the O(a?) hadronic vacuum polarization
(HVP) insertion in the internal photon line of the leading one—loop muon vertex
diagram Fig.5.1.

The hadronic “blob” can be calculated with help of the method discussed in
Sect.3.7.1. While perturbation theory fails and ab initio non—perturbative lattice
QCD calculations are not yet ready at the required precision, it may be obtained via a
DR from the measured cross section e”e~ — hadrons via (3.143) and (3.142). Here
1 independent amplitude is to be determined by one specific data channel. Global fits
based on the Resonance Lagrangian Approach (RLA), specifically, the Hidden Local
Symmetry (HLS) phenomenological Lagrangian, allow to improve the data-driven
evaluations.

(ii) An order of magnitude smaller but still sizable are the HVP insertions contributing
at order O(a?). They are represented by diagrams exhibiting one additional VP
insertion, leptonic or hadronic, in the photon line or by diagrams with an additional
virtual photon attached in all possible ways in Fig.5.1. As long as hadronic effects
enter via photon vacuum polarization only, they can be safely evaluated in terms
of experimental data via the basic DR (3.143). The errors of the data here appear
suppressed by one power in « relative to the leading hadronic contribution and
therefore are not problematic concerning the required precision. Also the order O (a*)
effect involving HVP insertions is known with sufficient accuracy.

(iii) More involved and problematic is the hadronic light-by-light (HLbL) contribu-
tion, represented by the diagram Fig. 5.2, and entering at O (o). Here, a low energy
Effective Field Theory (EFT) approach beyond Chiral Perturbation Theory (CHPT)
(see p. 305) is needed and some model assumptions are unavoidable. Unfortunately,
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Fig. 5.1 Leading hadronic ~
contribution to g — 2 !

[T v fu!
Fig. 5.2 Leading hadronic -

light-by-light scattering
contribution to g — 2

M K

as we will see, corresponding predictions depend on these model assumptions and
give raise to non—negligible uncertainties. What saves the day at present is the fact
that the size of the unsureness is smaller than the size of the uncertainty of the lead-
ing HVP contribution. Therefore, a rough estimate only cannot spoil the otherwise
reliable prediction. For the future it remains a real challenge for theory since further
progress in g — 2 precision physics depends on progress in putting this calculation on
a safer theoretical basis. Attempts to evaluate the HLbL effects in terms of dispersion
relation and vy — hadrons data (as well as data from crossed channels) have been
considered more recently. About 19 independent amplitudes are to be determined by
as many independent data sets, fortunately not all are equally important numerically.
Lattice QCD calculations of the HLbL contribution are expected to be possible at
the 10% level in not too far future.

(iv) Less a problem are the hadronic electroweak (HEW) contribution, represented by
the diagrams Fig. 5.3, and entering at O (o G mﬁ). Since the leading HEW correc-
tions Fig.5.3a are due to quark triangle diagrams and since triple vector amplitudes
vanish by Furry’s theorem only the axial part of the f f Z -vertex contributes. There-
fore the HEW contribution is given by the ABJ anomaly, which is perturbative and
non-perturbative at the same time, i.e. the leading effects are calculable. The anom-
aly cancellation condition intimately relates quark and lepton contributions and the
potentially large leading corrections cancel, such that hadronic corrections are well
under control. The VP type EW corrections Fig.5.3b are suppressed by a factor
m,Z, /M % The hadronic electroweak effects have been discussed in detail in Sect.4.2.

Fig. 5.3 Leading hadronic
electroweak contribution to
g—2
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Since the HVP and HLbL type of contributions are confronted with different kinds
of problems, which require a detailed discussion in each case, we will consider them
in turn in the following two sections.

5.1 Hadronic Vacuum Polarization

5.1.1 Vacuum Polarization Effects and e*e™ Data

Fortunately vacuum polarization effects may be handled via dispersion relations
together with available ete™ — hadrons data (see p. 13 for remarks on the early
history). The tools which we need to overcome the main difficulties we have devel-
oped in Sect.3.7.1 and at the end of Sect. 3.8. For the evaluation of the leading order
contribution the main problem is the handling of the experimental e ™ e~ —annihilation
data and in particular of their systematic errors. The latter turn out to be the limiting
factor for the precision of the theoretical prediction of a,,.

To leading order in « the hadronic “blob” in Fig. 5.1 has to be identified with the
photon self-energy function /7, had () which we relate to the cross section e*e™ —
hadrons by means of the DR (3.164) based on the correspondence:

2
Y g Y
=
had
I (g?) ~ oot (%)

The interrelationship is based on unitarity (optical theorem) and causality (ana-
Iyticity), as elaborated before. Remember that I7/"%(¢?) is a one particle irre-
ducible (1PI) object, represented by diagrams which cannot be cut into two dis-
connected parts by cutting a single photon line. At low energies the imaginary
part is related to intermediate hadronic states like 7707, Py W, @, ..., w3, 4T, ...,
mny,...,KK,...7nZ,..., 7w H, ... (atleast one hadron plus any strong, electro-
magnetic or weak interaction contribution), which in the DR correspond to the states
produced in e*e~—annihilation via a virtual photon (at energies sufficiently below
the point where v — Z interference comes into play).

At low energies, near flavor thresholds and in domains exhibiting resonances
o (42) cannot be calculated from first principles, because at present we lack appro-
priate non—perturbative methods to perform calculations in the time-like region.'

Fortunately, the cross sections required are available in form of existing exper-
imental data. Since the leading hadronic contribution is rather large, an elaborate

Tt is important to remember that there exist alternatives to the representation (3.163), which is
based on the s—channel hadronic cross section, per se a time-like quantity. Exploiting analytic-
ity, we get the representations (3.165) in terms of the space-like photon vacuum polarization function
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handling of the experimental data is mandatory because the experimental errors are
substantial and of course limit the precision of the “theoretical” prediction of a,,. Like
the deep inelastic electron—nucleon scattering experiments, the e e~ —annihilation
experiments played an eminent role in establishing QCD as the underlying theory
of the strong interaction and they have a long history. Touschek initiated the con-
struction of an eTe™ storage ring accelerator in the early 1960s at Frascati near
Rome. Improved e"e™ storage ring facilities and first cross section measurements
followed at Orsay, Novosibirsk and Frascati. The observed rise in the total hadronic
cross section at these times looked very puzzling, as actually a drop as 1/E? was
expected at high energies from unitarity arguments. The CEA experiment [1], how-
ever, which operated at slightly higher energy, left no room for doubts that the cross
section was far higher than theoretical expectations at these times. Apart from its
role in explaining Bjorken scaling in deep inelastic ep—scattering [2], QCD, for
the first time, predicted a cross section enhanced by the color multiplicity factor
N, = 3, which was clearly favored by experiment and as we know in the sequel
revolutionized strong interaction physics [3—5]. SLAC and DESY, reaching higher
energies, followed and unexpectedly new states were discovered at SLAC, the 7
lepton, the charm quark ¢ and the bottom quark . The highest energies so far were
reached with LEP at CERN going up to 200 GeV. Important for the evaluation of
the hadronic contributions to g — 2 are recent and ongoing hadronic cross section
measurements at Novosibirsk, Frascati, Stanford and Beijing which provided much
more accurate ete™ data. Table5.1 gives a more complete overview of the history
of ete™ machines and experiments and the maximum center of mass energy they
reached. Unfortunately, some of the energy ranges have been covered only by old
experiments with typically 20% systematic errors. The situation though, could be
improved substantially by exclusive channel measurement with BaBar as well as
with inclusive measurements with BES-II and KEDR. For a precise evaluation of the
hadronic effects we need to combine data sets from many experiments of very differ-
ent quality and performed in different energy intervals. The key problem here is the
proper handling of the systematic errors, which are of different origin and depend on
the experiment (machine and detector) as well as on theory input like radiative cor-
rections. The statistical errors commonly are assumed to be Gaussian and hence may
be added in quadrature. A problem here may be the low statistics of many of the older
experiments which may not always justify this treatment. In the low energy region
particularly important for g — 2, however, data have improved dramatically in recent
years (CMD-2, CMD-3 SND/Novosibirsk, BES-II, BES-III/Beijing, CLEO/Cornell,
KLOE/Frascati, BaBar/SLAC) and the statistical errors are a minor problem now.

(Footnote 1 continued)

Hl/had(—Q2) and (3.166) in terms of the space-like Adler—function D(Q?), which at low energies
are accessible to non—perturbative lattice QCD simulations. At higher energies pQCD is applicable
(see Sect. 2.8). Lattice QCD for the non-perturbative part together with perturbation theory will allow
us to calculate ahf‘d from the QCD Lagrangian. Several lattice QCD groups have made impressive
progress in the past decade and LQCD results are expected to get competitive with the data-driven
approach in the near future.


http://dx.doi.org/10.1007/978-3-319-63577-4_3
http://dx.doi.org/10.1007/978-3-319-63577-4_2

5.1 Hadronic Vacuum Polarization

Table 5.1 Chronology of e*e™ facilities

347

Year Accelerator Emax (GeV) Experiments Laboratory
1961-1962 AdA 0.250 LNF Frascati (Italy)
1965-1973 ACO 0.6-1.1 DM1 Orsay (France)
1967-1970 VEPP-2 1.02-1.4 ’spark chamber’ Novosibirsk (Russia)
1967-1993 ADONE 3.0 BCF, v7, vy2, MEA, | LNF Frascati (Italy)
pm, FENICE
1971-1973 CEA 4,5 Cambridge (USA)
1972-1990 SPEAR 2.4-8 MARK, CB, SLAC Stanford
MARK 2 (USA)
1974-1992 DORIS -11 ARGUS, CB, DESY Hamburg (D)
DASP 2, LENA,
PLUTO
1975-1984 DCI 3.7 DM1,DM2,M3N,BB | Orsay (France)
1975-2000 VEPP-2M 04-14 OLYA, CMD, Novosibirsk (Russia)
CMD-2, ND, SND
1978-1986 PETRA 12-47 PLUTO, CELLO, DESY Hamburg (D)
JADE, MARK-J,
TASSO
1979-1985 VEPP-4 -11 MD1 Novosibirsk (Russia)
1979-2008 CESR/CESR-C 9-12 CLEO, CUSB Cornell (USA)
1980-1990 PEP -29 MAC, MARK-2 SLAC Stanford
(USA)
1987-1995 TRISTAN 50-64 AMY, TOPAZ, KEK Tsukuba
VENUS (Japan)
1989 SLC 90 GeV SLD SLAC Stanford
(USA)
1989-2005 BEPC 2.0-4.8 BES, BES-II THEP Beijing (China)
1989-2000 LEP /11 110/210 ALEPH, DELPHI, CERN Geneva (CH)
L3, OPAL
1994— VEPP-4M 12 KEDR Novosibirsk (Russia)
1999-2007 DA®NE @ factory KLOE LNF Frascati (Italy)
1999-2008 PEP-II B factory BABAR SLAC Stanford
(USA)
1999-2010 KEKB B factory Belle KEK Tsukuba
(Japan)
2008- BEPC-II BES-III THEP Beijing (China)
2010- VEPP-2000 2 SND, CMD-3 Novosibirsk (Russia)
2015- SuperKEKB B factory KEK Tsukuba

(Japan)
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The main uncertainty, related to the systematic errors of the experimental data,
is evaluated via a certain common sense type error handling, which often cannot be
justified unambiguously. This “freedom” of choice has lead to a large number of
estimates by different groups which mainly differ by individual taste and the level
of effort which is made in the analysis of the data. Issues here are: the completeness
of the data utilized, interpolation and modeling procedures, e.g. direct integration
of the data by applying the trapezoidal rule versus fitting the data to some smooth
functional form before integration, separation of energy ranges where data or theory
(pQCD and/or hadronic models) are considered to be more reliable, combining the
data before or after integration etc.

A reliable combination of the data requires to know more or less precisely what
experiments have actually measured and what they have published. As mentioned
earlier, hadronic cross section data are represented usually by the cross section ratio”

o(ete” — ~v* — hadrons)

RM(s) = (5.1)

olete” = v — ptp™)
which measures the hadronic cross section in units of the leptonic point cross—section.
One of the key questions here is: what is the precise definition of R (s) as a “measured”
quantity? In theory we would consider (5.1), which also may be written in terms of
lowest order cross sections, with respect to QED effects. In short notation

Ohaa() _ a(s)
Opup (s) Ugﬂ (s)

RM(s) =

which reveals R (s) defined in this way as an undressed R (s) quantity, since in the ratio
common effects, like dressing by VP effects (iterated VP insertions), normalization?
(luminosity measurement) and the like, cancel from the ratio automatically. While the

Definitions of R ratios like (3.142) may differ slightly modulo subleading corrections. Often
we simply denote it as R(s). In fact the standard definition (5.1) has to be corrected for the
og(ete™ — v* — ptp™) specific effects like phase space and final state radiation. One has always
to keep in mind that it is the undressed hadronic cross section o(ete™ — ~v* — hadrons) |a/a(s)|?
which matters in the DR for the hadronic contribution to the photon vacuum polarization. So in
fact (3.142) is more precisely what is meant when we write the basic DR (3.136) in the form
(3.143). We also should be aware that it is the pseudo—observable o(eTe™ — ~* — hadrons)
which is required for the DR, which has to be extracted from what is actually measurable, namely
o(eTe™ — hadrons). But also this total hadronic cross section is the result of a complicated “inter-
pretation” of what has been seen in the detector, by disentangling the raw data from detector specific
features. Practically, in the most relevant low energy regime, the one photon exchange approxima-
tion o(ete™ — hadrons) ~ g(e*e~ — 7* — hadrons) is an excellent approximation before at
about 40 GeV Z boson exchange mixes in. As included in Fig.5.8, box diagram contributions
exhibiting two photon exchange are taken into account as radiative corrections. The latter are not
really understood when photons couple to hadrons composed of quarks.

3Note that the initial state radiation (ISR) bremsstrahlung only cancels if the same cuts are applied
to hadro—production and to p* 1~ pair production, a condition, which usually is not satisfied. We
should keep in mind that experimentally it is not possible to distinguish an initial state photon from
a final state photon.
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dressed* physical cross sections oy,,q(s) and 0,,,(s) are proportional to the modulus
square of the effective running fine structure constant a(s) (see (3.121 and Fig. 3.13)
the “bare” or “undressed” ones O’Sad (s) and 02 " (s) are proportional to the square of
the classical fine structure constant v determined at zero momentum transfer. The
ratio obviously is insensitive to dressing by vacuum polarization. For the leading
diagram Fig.5.1 “dressed” would mean that the full photon propagator is inserted,
“undressed” means that just the 1PI photon self—energy is inserted.

In principle, one could attempt to treat self—energy insertions in terms of the full
photon propagator according to (3.154), however, vertices cannot be resummed in a
similar way such that working consistently with full propagators and full vertices as
building blocks, known as the “skeleton expansion”, is technically not feasible. One
should avoid as much as possible treating part of the contributions in a different way
than others. One has to remind that many fundamental properties of a QFT like gauge
invariance, unitarity or locality, only can be controlled systematically order by order
in perturbation theory. We therefore advocate to stick as much as possible to an order
by order approach for what concerns the expansion in the electromagnetic coupling
a, i.e. we will use (3.154) only in expanded form, which allows one to perform a
systematic order by order treatment in «. In contrast, the strong interaction effects
are non-perturbative and appear as hadronic “blobs”, which, with respect to the
perturbative electroweak sector, follow the counting in orders of : HVP insertions
are O () and HLbL insertions are O (a?), as they represent electromagnetic current
correlators of two and four currents, respectively.

It turns out that at the level of accuracy we are aiming at, the quantity R(s) we
need is not really the ratio (5.1). We have seen that some unwanted effects cancel
but others do not. In particular all kinds of electromagnetic radiation effects do not
cancel in the ratio. This is obvious if we consider the low energy region, particularly
important for the "™ evaluation, where 7+ 7~ —production dominates and according
to (5.1) should be compared with p™ i~ —production. Neither the final state radiation
(FSR) bremsstrahlung contributions nor the phase spaces are commensurate and
drop out, and the u*p~—production phase space in the threshold region of w7 —
pair production is certainly in the wrong place here. What we need is the hadronic
contribution to Im /T, j/ (s), which is what enters in the DR for Hq’,(s). Thus, what one
has to extract from the measurements for the use in the DR is

RY(s) = 127lmIT™(s) (5.2)

as accurately as possible, where 1T q’,h“d (s) is the hadronic component of the 1PI photon
self—energy.

“4The terminus “dressed” refers to the inclusion of higher order effects which are always included
in measured quantities.
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In fact the high energy asymptotic form of o, (s) is the quantity appropriate for
the normalization:

Rf‘/“d(s) = o(eTe” — hadrons)/

2
dmla@)l” (5.3)
3s

This is equivalent to
RY(s) = o(e*e” — hadrons)/o(ete™ — p ) |m,—o
or
Rﬁ;ad(s) = o(e*e” — hadrons)/o(ete” — ptuT) - R,(s),

where R, (s) to lowest order is given by (3.140). At first, the cross section here must
have been corrected for bremsstrahlung effects, because the latter are process and
detector dependent and are of higher order in a. The detector dependence is due
to finite detector resolution and other so called cuts which we have discussed in
Sect.2.6.6. Cuts are unavoidable as real detectors by construction have some blind
zones, e.g. the beam tube, and detection thresholds where events get lost. This requires
acceptance and efficiency corrections. As a matter of fact a total cross section can be
obtained only by extrapolations and theory or some modeling assumptions may be
required to extract the quantity of interest.

There are two types of total cross section “measurements”. At low energies, in
practice up to 1.4-2.1 GeV, one has to identify individual final states, because there
is no typical characteristic “stamp”, which allows the experimenter to discriminate
between hadronic and non—hadronic events unambiguously. One has to identify indi-
vidual states by mass, charge, multiplicity, the number of final state particles. At high
energies the primary quark pair produced hadronizes into two or more bunches, called
jets, of hadrons of multiplicity increasing with energy. With increasing energy one
passes more and more multi-hadron thresholds, like the ones of the n pion channels:
atn -, atr a0, ata, 7% and so on, and the energy available distrib-
utes preferably into many—particle states if the corresponding phase space is available
(see Fig.5.4). The non—perturbative nature of the strong interaction is clearly mani-
fest here since a perturbative order by order hierarchy is obviously absent on the level
of the hadrons produced. In contrast, created lepton pairs can be easily identified in
a detector as a two—body state and other non—hadronic states are down in the rate at
least by one order in «. Therefore, at high enough energy one may easily separate
leptons from hadrons because they have clearly distinguishable signatures, first and
foremost the multiplicity. This allows one to carry out an inclusive measurement of
the total cross section, all hadronic states count and there is no need for identifica-
tion of individual channels. Such measurements are available® above about 1.4 GeV

SIdentifying the many channel (see Fig.5.4) is difficult in particular when neutrals are involved.
There is plenty of problems both with missing events or double counting states.
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Fig. 5.4 Thresholds for exclusive multi particle channels below 2 GeV

(MEA, vv2). Above 2.1 GeV inclusive measurements are standard. The amazing
fact is that at the level of the inclusive cross section, for high enough energies when
the effective strong coupling constant «; is small enough (see Fig. 3.3), perturbative
QCD starts to work well away from threshold regions, where resonances show up,
in the sense of hadron—quark duality:

o(ete™ — hadrons)(s) = ZU(eJre’ — X)) (s) = Za(e*e’ — qq)(s) ,
Xn q

where the sums go over all states which are possible by conservation laws and phase
space. The sum over quarks ¢ is subject to the constraint 4mf] <« 5. The quark—pair
production cross section is calculable in pQCD. Here the asymptotic freedom of
QCD (see p. 155) comes into play in a way similar to what is familiar from deep
inelastic ep—scattering and Bjorken scaling.

At low energies an inclusive measurement of the total hadronic cross sections
is not possible and pQCD completely fails. Experimentally, it becomes a highly
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Fig. 5.5 VP dressed tree
level Bhabha scattering in
QED

non-—trivial task to separate muon—pairs from pion—pairs, neutral pions from photons,
7tr~n® from 7t 7~ etc. Here only exclusive measurements are possible, each
channel has to be identified individually and the cross section is obtained by adding
up all possible channels. Many channels, e.g. those with 7°°s are not easy to identify
and often one uses isospin relations or other kind of theory input to estimate the total
cross section.

Experimentally, what is determined is of the form (see (2.107))

Nhad (1 4+ 0rC) Tnorm (5)
Nnorm € O-ILL;L,O(S) '

RSad exp (S) —

where Np,q is the number of observed hadronic events, Nyom 1S the number of
observed normalizing events, € is the detector efficiency—acceptance product of
hadronic events while dgc are radiative corrections to hadron production. oy, (s) is
the physical cross section for normalizing events (including all radiative corrections
integrated over the acceptance used for the luminosity measurement) and o, o(s)
= 47a?/3s is the normalization. In particular this shows that a precise measurement
of R requires precise knowledge of the relevant radiative corrections.

For the normalization mostly the Bhabha scattering process is utilized [or pp itself
in some cases]. In general, it is important to be aware of the fact that the effective
fine structure constant a(u) enters radiative correction calculations with different
scales 4 in “had” and “norm” and thus must be taken into account carefully.® Care

%Bhabha scattering et (py) e (p_) — eT (p’+) e~ (p") has two tree level diagrams Fig. 5.5 the r—
and the s—channel. With the positive c.m. energy square s = (p* + p~)? and the negative momen-
tum transfer square t = (p_— — pL)2 = —% (s — 4m§) (1 — cos 8), 6 the e~ scattering angle, there
are two very different scales involved. The VP dressed lowest order cross section is

do s

=— > lAul
dcos ® 481 ik

in terms of the tree level helicity amplitudes A, i, kK =L,R denoting left— and right—handed elec-
trons. The dressed transition amplitudes, in the approximation of vanishing electron mass, read

2

2 2
e“(s) e (1)
|ALL.rR I 5 +

3
2 0)*
8(—|—cos) ;

2

2
|ALR.RLI

26 | 20
N

3
3 (1 —c0s6)2 ;
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Fig. 5.6 The dominating low energy tail is given by the channel e~ — 777~ which forms the
p-resonance. The p — w mixing caused by isospin breaking (m, — my4 # 0) is distorting the ideal
Breit—Wigner resonance shape of the p

also is needed concerning the ISR corrections because cuts for the Bhabha process
(ete™ — eTe™) typically are different from the ones applied to eTe™ — hadrons.
Usually, experiments have included corresponding uncertainties in their systematic
errors, if they not have explicitly accounted for all appropriate radiative corrections.

The most important contribution for calculating a/hfd comes from the low energy
region below about 1 GeV. In Fig. 5.6 we show a compilation of the measurements of
the square of the pion form factor | F(s)|> = 4 R, (s)/( with 3, = (1 — 4m?2 /s)'/?
the pion velocity.

A collection of ete~—data above 1 GeV is shown in Fig. 5.7 [6] (see also [7]), an
up—to—date version of earlier compilations [8§—16] by different groups. For detailed
references and comments on the data we refer to [8] and the more recent experimental
R(s) measurements by MD-1 [17], BES-II [18] and KEDR [19]. Data for the very
important 77 channel include the measurements from Novosibirsk (NSK) [20-22],
Frascati (KLOE) [23-25], SLAC (BaBar) [26] and Beijing (BES-III) [27].

A lot of effort went into the perturbative QCD calculation of R(s). The leading
term is given by the Quark Parton Model (QPM) result

R()¥M ~ N, Zq 0%, (5.4)

(Footnote 6 continued)

Preferably one uses small angle Bhabha scattering (small |¢|) as a normalizing process which is
dominated by the f—channel ~1/¢, however, detecting electrons and positrons along the beam axis
often has its practical limitations.
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Fig. 5.7 Experimental results for Rgad (s) in the range 1 GeV < E = /s < 13 GeV, obtained

at the e*e™ storage rings listed in Table5.1. The perturbative quark—antiquark pair—production
cross section is also displayed (pQCD). Parameters: az(Mz) = 0.1185 £ 0.0006, m. = 1.275 £

0.025 GeV, mp =4.18 £0.03 GeV and p € (ﬁ, 2./s)

where the sum extends over quarks g with 4m§ <« 5. Thus depending on the number
of quark thresholds passed R =2, 10/3 and 11/3 for N, = 3,4 and 5, respectively. In
Fig.5.7 one may nicely observe the jumps in R when a new threshold is passed. The
higher order corrections are very important for a precise calculation of the contri-
butions from the perturbative regions. Fortunately they are moderate sufficiently far
above the thresholds. In pQCD the MS scheme (see Sect.2.6.5) is generally adopted
and normal order by order calculations are always improved by RG resummations.
Corrections are known to O(af) [4, 28-30]. The O(Ozf) term was first obtained by
Gorishnii, Kataev, Larin and Surguladze, Samuel [29] in the massless limit, and then
extended to include the mass effect and O (a?) contributions by Baikov, Chetyrkin,
Kiihn et al. [30]. The state of the art was implemented in the program RHAD by
Harlander and Steinhauser [31] (see also [32]). Away from the resonance regions the
agreement between theory and experiment looks fairly convincing, however, one has
to keep in mind that the systematic errors, which vary widely between a few % up to
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10% are not shown in the plot. Typically, the theory result is much more accurate
than the experimental one, in regions where it applies. This is possible, because, the
QCD parameters «; and the charm and bottom quark masses relevant here are known
from plenty of all kinds of experiments rather accurately now. Nevertheless, it is not
obvious that applying pQCD in place of the data, as frequently done, is not missing
some non—perturbative contributions. The non—perturbative quark condensate terms
(1/Q* power corrections) which enter the OPE are not a real problem in our context
as they are small at energies where pQCD applies [33]. There are other kinds of NP
phenomena like bound states, resonances, instantons and in particular the hadroniza-
tion of the quarks. In applying pQCD to describe real physical cross sections of
hadro—production one needs a “rule” which bridges the asymptotic freedom regime
with the confinement regime, since the hadronization of the colored partons produced
in the hard kicks into color singlet hadrons eludes a quantitative understanding. The
rule is referred to as quark hadron duality’ [35, 36], which states that for large s the
average non—perturbative hadron cross section equals the perturbative quark cross
section:

o(ete— — hadrons)(s) ~ Zq olete” = qq)(s) , (5.5)

where the averaging extends from threshold up to the given s value which must lie
far enough above a threshold (global duality). Approximately, such duality relations
then would hold for energy intervals which start just below the last threshold passed
up to s. Qualitatively, such a behavior is visible in the data, however, for precise
reliable predictions it has not yet been possible to quantify the accuracy of the duality
conjecture. A quantitative check would require much more precise cross section
measurements than the ones available today. Ideally, one should attempt to reach the
accuracy of pQCD predictions. In addition, in dispersion integrals the cross sections
are weighted by different s—dependent kernels, while the duality statement is claimed
to hold for weight unity. One procedure definitely is contradicting duality reasonings:
to “take pQCD plus resonances” or to “take pQCD where R(s) is smooth and data in
the complementary ranges”. Also adjusting the normalization of experimental data
to conform with pQCD within energy intervals (assuming local duality) has no solid
foundation.

In view of the problematic quality of the data in some regions a “theory—driven”
approach replacing data by pQCD results in smaller or larger intervals [37-39] may
well be adequate to reduce the hadronic uncertainties. However, the uncertainty of the
pQCD results evaluated by varying just the QCD parameters o (14), the quark masses
mg4(p) and the renormalization scale y, conventionally, in a range p € (%, 2./5),
generally does not account for possible non—perturbative uncertainties, related to the
hadronization process. Thus the problem of the theory driven approach is a reliable
error estimate, and not the shift in the central value, which may well be shifted in
the right direction. In the following we generally present a conservative approach of

7Quark-hadron duality was first observed phenomenologically for the structure function in deep
inelastic electron—proton scattering [34].
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the evaluation of the hadronic effects, taking the data and directly integrating them
in all regions where pQCD cannot be trusted in the sense as advocated in [31].

The following data integration procedure has been used for the evaluation of the
dispersion integral:

1. Take data as they are and apply the trapezoidal rule (connecting data points by
straight lines) for integration.

2. To combine results from different experiments: (i) integrate data for individual
experiments and combine the results, (ii) combine data from different experiments
before integration and integrate the combined “integrand”. Check consistency of
the two possible procedures to estimate the reliability of the results.

3. Error analysis: (1) statistical errors are added in quadrature, (2) systematic errors
are added linearly for different experiments, (3) combined results are obtained by
taking weighted averages. (4) all errors are added in quadrature for “independent”
data sets. We assume this to be allowed in particular for different energy regions
and/or different accelerators. (5) best: apply the true covariance matrix if available,
this is the case for the ISR measurements from meson factories.

4. The p-resonance region is integrated using the Gounaris—Sakurai (GS)
parametrization of the pion form factor [40]. Other pronounced resonances have
been parametrized by Breit—Wigner shapes with parameters taken from the Par-
ticle Data Tables [41, 42].

5.1.2 Integrating the Experimental Data and Estimating
the Error

Here we briefly elaborate on procedures and problems related to the integration
of the function R(s) given in terms of experimental data sets with statistical and
systematic errors. Obviously one needs some interpolation procedure between the
data points. The simplest is to use the trapezoidal rule in which data points are
joined by straight lines. This procedure is problematic if data points are sparse in
relation to the functional shape of R(s). Note that in pQCD R(s) is close to piece-
wise constant away from thresholds and resonances (where pQCD fails) and the
trapezoidal rule should work reliably. For resonances the trapezoidal rule is not
very suitable and therefor one uses Breit—Wigner type parametrizations in terms
of resonance parameters given in the particle data table. Here it is important to
check which type of BW parametrization has been used to determine the resonance
parameters (see [8] for a detailed discussion). Some analyses use other smoothing
procedures, by fitting the data to some guessed functional form (see e.g. [43, 44]).
While statistical errors commonly are added in quadrature (Gaussian error prop-
agation), the systematic errors of an experiment have to be added linearly, because
they encode overall errors like normalization or acceptance errors. Usually the exper-
iments give systematic errors as a relative systematic uncertainty and the systematic
error to be added linearly is given by the central value times the relative uncertainty.
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For data from different experiments the combination of the systematic errors is more
problematic. If one would add systematic errors linearly everywhere, the error would
be obviously overestimated since one would not take into account the fact that inde-
pendent experiments have been performed. However, often experiments use common
simulation techniques for acceptance and luminosity determinations and the same
state—of—the—art calculations for radiative corrections such that correlations between
different experiments cannot be excluded. Since we are interested in the integral over
the data only, a natural procedure seems to be the following: for a given energy range
(scan region) we integrate the data points for each individual experiment and then
take a weighted mean, based on the quadratically combined statistical and systematic
error, of the experiments which have been performed in this energy range. By doing
so we have assumed that different experiments have independent systematic errors,
which of course often is only partially true.® The problem with this method is that
there exist regions where data are sparse yet the cross section varies rapidly. The
applicability of the trapezoidal rule is then not reliable, but taking other models for
the extrapolation introduces another source of systematic errors. It was noticed some
time ago in [45] that fitting data to some function by minimizing x> may lead to
misleading results. The problem may be circumvented by the appropriate definition
of the x? to be minimized (see below). Fortunately, in the dominating p—resonance
region the data base has been improving a lot during the past decade.

In order to start from a better defined integrand we do better to combine all
available data points into a single dataset. If we would take just the collection of
points as if they were from one experiment we not only would get a too pessimistic
error estimate but a serious problem could be that scarcely distributed precise data
points do not get the appropriate weight relative to densely spaced data point with
larger errors. What seems to be more adequate is to take for each point of the combined
set the weighted average of the given point and the linearly interpolated points of the
other experiments:

with total error 0, = 1/4/w, where w = >, w; and w; = 1/6? By 0ot =

itot *
62

2+ 07 we denote the combined error of the individual measurements. In

i sys
addition, to each point a statistical and a systematic error is assigned by taking
weighted averages of the squared errors:

[ 1
5sta = ; Z wi 5i25ta 4 55}’5 = E Z wi (Sizs)'s .

81f there are known common errors, like the normalization errors for experiments performed at
the same facility, one has to add the common error after averaging. In some cases we correct for
possible common errors by scaling up the systematic error appropriately.
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There is of course an ambiguity in separating the well-defined combined error into a
statistical and a systematic one. We may also calculate separately the total error and
the statistical one and obtain a systematic error Ssys = v/ 0% — 02, Both procedures
give very similar results. We also calculate x> = >, w; (R; — R)? and compare it
with N — 1, where N is the number of experiments. Whenever § =/ x%/(N — 1)>1,
we scale the errors by the factor S, unless there are plausible arguments which allow
one to discard inconsistent data points.

In order to extract the maximum of information, weighted averages of different
experiments at a given energy are calculated. The solution of the averaging problem
may be found by minimizing x? as defined by

N n
ZZ(R" R) (€)™ (RT = R)),

where R} is the R measurement of the nth experiment at energy ,/s;, Nexp the number
of experiments, C; is the covariance matrix between the ith and jth data point of
the nth experiment, and R is the average to be determined. The covariance matrix is
given by

Ch — [ (6tnstd)2 + ((5lngys)2 for j=1i
67sys 57 sys for 7] ;él
where 6, and ¢} (¢ denote the statistical and systematic error, respectively, of R}'.

2
The minimum condition d# = 0, for all i yields the system of linear equations

dR;
expN
DD CHT (R =R) =0, i=1,....N,.
n=1 j=1

The inverse covariance matrix C, i;l between the calculated averages R; and R; is the
sum over the inverse covariances of every experiment

Nexp

=> (!
n=1

This procedure, if taken literally, would yield reliable fits only if the errors would be
small enough, which would require in particular sufficiently high statistics. In fact,
many of the older experiments suffer from low statistics and uncertain normalization
and the fits obtained in this manner are biased towards too low values (compare [43]
with [44], for example). The correct x> minimization requires to replace the experi-
mental covariance matrices C Z”J by the ones of the fit result C; ; [45]. This is possible
by iteration with the experimental covariance as a start value.
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Often one attempts to model a number Ny, of given different measurements R" =
{(R!',i=1,... Ny, n=1,... N} by theoretical expectation M(a) = {M;,i =
1,... N} welghted by the error covariance matrix C” provided together with the
data. The vector a denoting the unknown internal model parameter list, is deter-
mined by minimizing

Newp N,

=D D R - M@ (C) R~ M@, (5.6)

n=11i,j=1

with respect to a which is providing the optimum value ay. This approach has been
exercised for the case of low energy ete™ — hadrons data in [44] using some phe-
nomenologically inspired shape functions and more recently in [46] adopting the
HLS phenomenological Lagrangian model, for example.

The notorious normalization uncertainties of data sets may pose a serious problem
and therefore should be analyzed carefully too. This has been done in [47] again
within the framework of the HLS model. A constant global scale uncertainty can
be written § = 1 + A, where ) is a random variable with range on ] — 1, 4-00[. As
the expectation values are E(A) =0 and E (M%) = o2 with ¢ << 1, the Gaussian
approximation for A is safe [48]. A data sample subject to a global scale uncertainty
provides an individual contribution to an effective global Xglob’ which is of the form

2

(5.7)

Nexp
5
— o?

NIX
Z [R" — M(a) — AAY] (C})™' [R" — M(a) — MA]; +
i,j=1

where R, M, C and a have the same meaning as before, while A and o are the new
elements. As for A, even if intuitively one may prefer A = R, the choice A = M(a)
has been shown to drop out any biasing issue’ [45, 48]. As M (a) is unknown at
the start of the fitting, A = R is the initial setting and A ~ M (a) is achieved by
iteration. Assuming that the unknown scale factor A is solely of experimental origin
— and, then, independent of the model parameters a — the solution to 9x?/O\ = 0
provides its most probable value \g. After substituting the solution into (5.7) the
latter becomes

=

exp

N,
Z —M@] (€)' [R"—M@)]; with C=C+0’AAT,

IIM

(5.8)

which exhibits a modified error covariance matrix C and only depends on the
(physics) model parameters. More precisely, the single recollection of the scale
uncertainties A shows up in its variance o in the modified covariance matrix C.
A detailed analysis of the low energy e*e™ data has been performed recently in [47]
where also more details on the implementation of the method may be found.

9This does not mean that the choice A = R necessarily leads to a significantly biased solution.
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5.1.3 The Cross—Section ete~ — Hadrons

The total cross section for hadron production in ete —annihilation (a typical
s—channel process) may be written in the form

« 4 2m?
Ohad (5) = _% (1 + 6) Im I7."(s)
N 1— % S
Ao
~ ——Im H;had(s) , since s > 4mi > mﬁ ,
s

where H;,had (s) is the hadronic part of the photon vacuum polarization with (see
(3.139) and Sect.3.7.1)

2
/had, \ _ € phad
Il’l’l]Y,y A (S) = ER,‘,& (S) .
From (2.179) we easily get the lowest order quark/antiquark pair—production cross
section encoded in

4m?2 2m?
QCD, .\ _ 2 | q q
RV (s) = Eq Neg Qo1 — T (1 + T) , (5.9

which however is a reasonable approximation to hadro—production only at high ener-
gies away from thresholds and resonances (see below) and to the extent that quark—
hadron duality (5.5) holds. At low energies 4m2 < s < 9m?2 the wm—production
channel is the dominant hadro—production process. The pion—pair production is
commonly parametrized in terms of a non—perturbative amplitude, the pion form
factor F(s),

3
| 4m2\ 2
Rgad(s)zz( _ﬂ) IFO@) . s <9m?. (5.10)
S

For point-like pions we would have F;.(s) = F,(0) = 1. At this point it is important
to remind the reader that we have been deriving a set of relations and formulas to
leading order O(a?) in QED in Sect.2.7. For a precise analysis of the hadronic
effects higher order QED corrections are important as well. Furthermore, we have
assumed that the center of mass energy E = /s is small enough, typically, E <
12 GeV say, such that virtual Z exchange contributions ete™ — Z* — hadrons or
ete™ — Z* — ptu~ are sufficiently suppressed relative to virtual v* exchange at
the precision we are aiming at. Since aﬁad is rather insensitive to the high energy tail
such a condition is not a problem.

In order to obtain the observed cross section, we have to include the QED cor-
rections, the virtual, soft and hard photon effects. The basic problems have been
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Fig. 5.8 One-loop sQED radiative corrections to pion—pair production assuming point-like pions.
Ay is the ete™ — w77~ Born amplitude, A; is the 1-loop virtual photon correction and B; the
real photon emission e*e~ — 77~ amplitude

discussed in Sect.2.6.6. For the important 77 channel, assuming scalar QED for the
pions (see Fig.2.13 for the Feynman rules) the one—loop diagrams are depicted in
Fig.5.8. In calculating the corrected cross section one starts with point-like pions
and replaces the point form—factor F2*™(s) = 1 (strong interaction switched off)
by the strong interaction dressed one with F;(s) a generic function of s. At least to
0(c?) this is possible due to the simple structure (see (5.11) below) of the observed
cross section [49-51].

Particularly important is the Initial State Radiation (ISR), which may lead to huge
corrections in the shape of the cross section. The most dramatic effects are of kinemat-
ical nature and may be used for cross section measurements by the radiative return
(RR) mechanism shown in Fig. 5.9: in the radiative process ete™ — 77, photon
radiation from the initial state reduces the invariant mass from s to s’ = s (1 — k) of
the produced final state, where k is the fraction of energy carried away by the photon
radiated from the initial state. This may be used to measure oyp,q(s”) at all energies Js'
lower than the fixed energy /s at which the accelerator is running [52]. This is par-
ticularly interesting for machines running on—resonance like the ¢— and B—factories,
which typically have huge event rates as they are running on top of a peak [53-55].
A radiative return measurement is a next to leading order approach. On the theory
side one expects that the handling of the photon radiation requires one order in «
more than the scan method for obtaining the same accuracy. The precise calculation
of radiative corrections is mandatory for unfolding the experimental information of
interest from raw data. In particular the development and continuous improvement
of the Monte Carlo generator program PHOKHARA [55], together with improved
tools for luminosity measurements like the BABAYAGA [56], BH-WIDE [57] and
MCGP]J [58], allowed to preform ISR cross section measurements at the half percent


http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2

362 5 Hadronic Effects

(a) ~v hard (b)

%% o
(’ZS 77, po M hadrons
e

s=M3; s =s(1—k), k= Ey/Eicam

Fig. 5.9 a Radiative return measurement of the 777~ cross—section by KLOE at the ¢—factory
DA®NE. At the B—factory at SLAC, using the same principle, BABAR has measured many other
channels at higher energies. Recently also BES-III at BEPC-II has applied the ISR mechanism to
measure the 77~ cross—section; b Standard measurement of 0,4 in an energy scan as performed
at Novosibirsk (CMD-2, CMD-3, SND, KEDR) and Beijing (BES-II) by tuning the beam energy
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Fig. 5.10 Comparison of ISR 77 data: ratio | F (E) |2 in units of a GS fit from BES-IIL Left panel
all sets. Right panel BaBar versus KLOE10, which exhibits the largest relative deviations

level [59, 60] at the end. The first dedicated radiative return experiment has been per-
formed by KLOE at DA@NE/Frascati, by measuring the 7+7~ cross—section [23]
(see Fig.5.6). Based on the ISR method, meson factories have been able to improve
the low energy 7 cross—sections database dramatically. Measurements from KLOE,
BABAR and lately also from BES-III allowed to reduce errors by almost a factor
ten. The measurements are very challenging and unfortunately there is quite some
tension between the different data set as shown in Fig.5.10. KLOE data lie higher
below the p° and lower above the po, with deviations at the few % level at the bound-
aries of the measured energy range. For a recent review of hadron production via
eTe™ collisions with initial state radiation see [61] or the earlier [62].

The “observed” cross section at O (o®) may be written in the form

o (s) = 00(s) [1 + Gini (W) + Spin(W)]

s—2w./s s—2w./s
+ / ds’ 00(s") pini (s 8') + 00 (s) ds’ punls.s’) . (5.11)
4

m2 4m?

which also illustrates the unfolding problem one is confronted with in determining
the cross section of interest oy(s). This “bare” cross section, undressed from elec-
tromagnetic effects, is formally given by the point cross—section (2.261) times the
absolute square of the pion form factor which encodes the strong interaction effects
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2
G0(s) = | Fr(s)2 P (s) = % B E () . (5.12)

The parameter w is an IR cut-off as introduced in Sect.2.6.6 and by ;=
(1-— 4mi /s)'/? we denote the pion velocity. It drops out in the sum (5.11). The
initial state corrections, in the approximation neglecting O(am?/m?) terms, are
given by the following virtual4-soft (V+S) and hard (H) parts:

s =1n (22) B+ &2+ T 422
lﬂlw_n ﬁ es T 3 28 £

where L, = In (L) and B, (s) = 2” [L. — 1]. The hard ISR radiator function reads

7
mL

pini(s, 8') = [B e(s) —g(1+z)(Le—1)i| ,
S T

1—z

with z = s’/s. The final state corrections again we separate into a virtual+soft part
and a hard part:

zw , o 3 41’)17T 1+57T
5ﬁn(w)=1n (7) BW(S,S)‘F;[ Sﬂw in (1_6ﬂ>_2
62) 3 Ky 1+ﬁ72r 1+ﬁ7T
__1 ~In{—=)-—" [In| ——5
2 ( 4 2 (m%) 26x [ (1—57r)
[ (F57) #mesa [ o (557 (557
(26 (=120 2
+2L12(1+ﬁﬁ)+2hz(_ 203 )_ gﬂ“ ’

where Li; (x) is the dilogarithm (Spence function) and

/ / 2 (o ,
B, (s, s) = 2250 [1+6ﬂ<s>ln(1+ﬂﬂ<s)) _1] |

T sOx(s) L 2Bx(s") 1= fBr(s")

The hard FSR radiator function is given by

N1 Bw(s,S) 2a o Br(sH
pﬁn(s,S)—S[ — ( )53()]

At the level of precision of interest also higher order corrections should be included.
The O(a?) corrections are partially known only and we refer to [51] and references
therein for more details.

The crucial point is that the radiator functions p;y; (s, s') and to some extent also
pan(s, s7) are calculable in QED. Pion pair production is C-invariant and it is very
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important that experimental angular cuts, which always have to be applied, are sym-
metric such that C invariance is respected. Then, as in (5.11) for the total cross
section, at the one—loop level initial-final state (IFS) interference terms are vanish-
ing, also for the cut cross—sections. Generally, the IFS interference derives from the
box diagrams of Fig. 5.8 and the cross terms

(=) ()

which are obtained in calculating the transition probability |7'|?. Under this condition
the cross section factorizes into initial state and final state radiation as in (5.11). Still
we have a problem, the FSR is not calculable from first principles [63, 64, 173].
Hence pg, (s, s”) is model-dependent, only the soft photon part of it is well modeled
by sQED.'” Our Fig. 5.38 below provides a pretty reliable appraisal concerning the
range of validity up to about 1 GeV of sQED in our context.

One other important point should be added here. A look at Fig.5.11 tells us that
there are two factors of e in the related matrix element, the absolute square of which
determines the hadronic cross section. One from the initial e*e~y*—vertex the other
from the hadronic vertex, connected by the full photon propagator. Since the object
of interest is the 1PI hadronic “blob” we have to subtract the VP—effects included in
the full photon propagator.

5.1.4 Photon Vacuum Polarization and the Complex oQgp (s)

Since the full photon propagator is complex in the time-like region, it is convenient to
work with a complex a(s) to represent the complex full photon propagator and define

101y radiative return measurements at low energy one looks at the 7+ 7~ invariant mass distribution
(%) plus any photon. Once s’ is fixed the missing energy s — s’ is fixed and an “automatic”
unfolding is obtained. Using the pion form factor ansatz:

do do point do point
(;) = |Fr(sHP? (d—) +Fr(s)? (d—) :
s sym—cut S°/ ini, sym—cut S/ fin, sym—cut

we may directly resolve for the pion form factor as

| d d point
e () ()]
(dﬁ) ds sym—cut ds fin, sym—cut

ds”/ini, sym—cut

This is a remarkable equation since it tells us that the inclusive pion—pair invariant mass spectrum
allows us to get the pion form factor unfolded from photon radiation directly as for fixed s and
a given s’ the photon energy is determined. The point cross—sections are assumed to be given by
theory and do/ds’ is the observed experimental pion—pair spectral function.
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hadrons

Fig. 5.11 Structure of hadroproduction in e+ e~ —annihilation. The hadronic current at the hadro—
production vertex is connected to the ete~—vertex by ¢? times the full photon propagator, rep-
resented by a(k?)/k? (see Eq. (3.120)). Thus o(ete™ — v* — hadrons ) o |a(k?) T (v* —
hadrons )(k?)|2, where T (v* — hadrons ) denotes the hadronic matrix-element associated with
the hadronic current (i.e. without factor e). k* is the four-momentum carried by the photon and
s = k? the c.m. energy square of the hadron production process. The irreducible hadronic “blob”
is obtained by dividing out the full photon propagator and replacing it with the lowest order one

a(s) = ﬁ A= —(IT(s) — I1(0)) . (5.13)

The imaginary part of A« is given by —Im 1'[1/ (s) = —% R(s) (see Eq. (3.139)) and is
relevant in particular near narrow resonances. The physical hadronic cross section is
proportional to |a(s) T (7* — hadrons )(s) |2, because in the physical cross section
the full photon propagator including all radiative corrections contributes in the mea-
surement, as discussed in Sect.3.7.1. In order to obtain the 1PI photon self—energy,
which is our building—block for systematic order by order (in ) calculations, we
have to undress the physical cross section from multiple 1PI insertions, which make
up the dressed propagator. This requires to replace the running «.(s) by the classical
Thomson limit «(0) = «. Usually it is sufficient to work with the approximation
la(s)|? | T (y* — hadrons )(s)|?> such that the dressed (physical) cross section ¢ is
related to its undressed version @ by

2

o W(e*te™ — hadrons) = oy (¢* e~ — hadrons) | — (5.14)
Using this together with (3.146), we obtain
©) - ’
sy — 77 (0) — s /ds’ O (ete™ — ha(.irons)(s ) ’ (5.15)
Y " 4m2qy (s" —s —ig)

0

as a basic relation for the evaluation of the HVP effects in terms of e™e~—data.

Note that using the physical cross section in the DR gives a nonsensical result,
since in order to get the photon propagator we have to subtract in any case the external
charge at the right scale. Thus while

s /ood , Oor(eTe™ — hadrons)(s’)
s

4mlc (s’ — s —ie)
0
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is double counting the VP effects, and therefore does not represent something mean-
ingful, the linearly |a/a(s)|-rescaled cross section

oo

L/ K 1  owi(ete™ — hadrons)(s)
472 la(s”)] (s’ —s —1ie)

’

yields the hadronic shift in the full photon propagator. Only at least once VP-
subtracted physical cross sections are useful in DRs! However, this amounts to
resumming electromagnetic effects to all orders in «, and is not useful in a sys-
tematic order by order approach. Hence we stick to the basic DR (5.15) in all what
follows.

In general we know the experimental physical cross section o (e "¢~ — hadrons)
as well as the complex a(s), such that we can extract the required undressed
a{f,? (eTe™ — hadrons) via (5.14). However, a.(s) we only know after we know opygq,
so usually we can determine 01(1231 (s) only by iteration, provided this iteration con-
verges. In most cases experiments do not directly extract the R—ratio (5.1) as a ratio
of measured cross sections. The reason is that luminosity is usually monitored by
Bhabha-scattering and because o, (s) is much smaller than op,q(s) and has much
lower statistics especially in resonance regions. In case (5.1) is available we have

Im H:/had(s) — %Rhad(s) — O-hL(S) (516)

O (S)
experimentally, which allows us the obtain

s 00 Im H;(s’)

Re IT, . (s) =Re IT/(s) — IT,(0) = —Re/ ds' —————
7 7 v T s s'(s/ — s — i)

directly, such that IT’ ., is determined. However, what is measured when looking

at op,q in isolation (via normalization to Bhabha events) is opaq(s) = 4%“ Im IT ;,h“d
() [1/(1 + IT, o ()| and thus

/ha s f
Im H’)’hdd(s) = 4_ il + H’)ren(s)|2 Uhad(s) P (517)
yye’

where IT'(s) = IT''" + [1'" is the full irreducible photon self-energy including
the leptonic contributions, which is well known in perturbation theory. In terms of
data alone to determine the two quantities Im I7'(s) and Re IT'(s) we need two
measurements besides op,q ideally also o, as performed recently in [65]. This
works locally point by point for each energy. If only op,q(s) is known, the standard
procedure is to expand (5.17) in IT’, which then allows to solve iteratively for IT'(s)
with the real part determined by the DR (5.15). This requires to know op,q(s) for all
s > so and is thus not a local procedure. This works well when |IT'(s)| <« 1, which
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is what we usually expect for an e.m. correction. Unfortunately, in the vicinity of
some resonances the convergence condition |I7'(s)| < 1 in badly violated.

HVP Subtraction of Rgad (s): a Problem of the DR Method?

So far we have not addressed the question what happens if |ﬁ f, (s)| = 1. The problem
has been addressed recently in [6] and we include the discussion here. The full
photon propagator (2.165) is usually obtained by Dyson resummation (2.162) of
the 1PI part x = [T’ (s). As we know this is a geometric series 1 + x + x4 =
1/(1 — x) which only converges iff |x| < 1. Including the external e.m. couplings
and renormalization we have

i D (¢ —i e
ie )= — ———.
! q* 1+ 1T ., (q?)

The complex effective charge thus is given by the well-known expression

e? e’

1+ _(s) 1—Aa(s)

yren

ez(s) .

Usually, Aa(s) is a correction i.e. |[Aa(s)] < 1 and the Dyson series converges
well. Indeed for any type of perturbative effects no problem is encountered (besides
possible Landau poles). For non-perturbative strong interaction physics there are
exceptions. One would expect that, if there are problems, one would encounter them
at low energy, but for the p, the w and the ¢, in spite of huge resonance enhancements,
the HVP contributions to the running charge are small relative to unity, as the effect is
suppressed by the e.m. coupling 2. The exception, surprisingly, we find at pretty high
energies, at the very narrow Okubo—Zweig—Tizuka (OZI) suppressed resonances, !
which are extremely sharp, because they lie below corresponding ¢gg-thresholds. For
these Extremely Narrow Resonances (ENR) the strong interaction appears heavily
suppressed (3 gluons exchange) and the electromagnetic channel (1 photon exchange)
appears almost as strong as the strong one (see Fig.5.12). Actually, I, is not much
smaller than Igcp (i.e. strong decays). This phenomenon shows up for the resonances
J /W, a2, T1, T, and 73. The imaginary parts from the narrow resonances read

, o 3 I
Im HA,(S)) = § RV(S) = a T

; s:MIZe

"' The OZI rule formulated in 1963 independently by Okubo, Zweig and Tizuka [66], explains why
certain hadron decay channels appear substantially suppressed. Later it turned out to be a simple
consequence of QCD. Diagrams representing OZI suppressed processes can be cut into an initial
and a final state part by cutting gluon lines solely (see Fig.5.12). An example is ¢ decay: since
¢ is essentially a 5s state, the decay into strange meson states ¢ — KK ~, K%K is dominating
(83%), while the decay into non-strange mesons ¢ — w+ 7~ 70 is suppressed (15%)), in spite of
the much larger phase space available.
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Fig. 5.12 OZI suppressed strong decays let e.m. interaction look to be almost of equal strength

at peak, causing the sharp spikes, which are seen only by appropriate high resolution
scans, as we know. Let a(s) denotes the real a(s) = /(1 + Re 171/ ren(8)), We note
that,

1+ [T, () = (a/a(5))* = (Am [T, (5))* ,

and at /s = Mg values for the different resonances are given by 1.23 x 1073
(p), 2.76 x 1073 (w), 1.56 x 1072 (¢), 594.81 (J /1), 9.58 (1), 2.66 x 10~*
(¥3), 104.26 (77), 30.51 (7> ) and 55.58 (73 ). This shows that near OZI sup-
pressed resonances the Dyson series cannot converge. So we have a problem with
the dispersive approach, which requires R, (s) o< Im 171, (s) as an input. What is
measured by an experiment is the full propagator, the summed up Dyson series,
Z =|1/(1 + x +iy)|?, but we cannot extract y from that since for |x +iy| > 1 the
observable Z has no representation in terms of x and y. Remember that the object
required in the DR is the undressed R, (s) in (5.3), which cannot be measured itself,
rather we have to extract
R:are — Rghys 1+ Hq/'ren(s)lz )

Locally, near OZI suppressed resonances, the usual iterative procedure of getting

le‘“e does not converge! The way out usually practiced is to utilize the smooth space-

like charge, i.e. E:m = RM™ 1 4 IT), ., (—$)|*, expected to do the undressing “in

average”. This actually does not look too wrong as we see in Fig. 5.13. Nevertheless,
I see a problem her, not only for the interpretation of resonance data, where one
would wish to be able to disentangle electromagnetic from strong interaction effects.

For what concerns the proper extraction of the hadronic effects contributing
to the running of aqgep and to g/, I see no proof that this cannot produce non-
negligible shifts! In the ENR regions, it is therefore indispensable to measure R(s)
via the experimental ratio (5.1) corrected for the difference in the phase spaces and
in final state radiation, in order to get the proper undressed cross section needed
in the DR approach. Cross—sections measured by normalizing to Bhabha events
(which is what most experiments have been doing except from the more recent
BaBar and KLOEI12 ones) have the problem that one has to perform corrections
which are not under control perturbatively. Note that from measuring (5.17) with
(1411 + IT*) =1+ 2Re IT' + (Re IT))?> + (Im IT")? in the denominator, we
cannot determine Im /7'(s) and Re J1’(s) locally unless we measure o, (s) as well.
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Fig.5.13 Time-like versus space-like effective fine-structure constant « as a function of the energy
E: a(s) in the mean follows a(t = —s) (s = EZ). Note that the smooth space-like effective charge
agrees rather well with the non-resonant “background” above the ¢ (kind of duality)

The measurement of the pu—pair production cross section normalized to the Monte
Carlo event generation where the VP has been switched off yields

a|* 1

1+ Héren(s)

Udala(e+e_ g M+M_)(S) _

= 5.18
oyclete — utum)(s) 19

(67

From this measurement together with Im I7"*(s) from (5.16) we have a com-
pletely non-perturbative determination of the complex «(s). Fortunately, experi-
mental progress is in sight here: KLOE 2015 [65] has a first direct measurements of
the time-like complex running agep (s) (more further below)! Similar measurements
for the J /v and other ultra-narrow resonances should be possible with BES-III. It is
a fundamental problem! An interesting possibility in this respect is a novel approach
to determine a/*! from a direct space-like measurement of au(—Q?) as proposed in
[67, 68] (see also [69]), recently. This novel approach would completely avoid the
problem we have addressed here, as in the spacelike region corrections are perturba-
tive everywhere.

5.1.5 R(s) in Perturbative QCD

Due to the property of asymptotic freedom, which infers that the effective strong
interaction constant c (s) becomes weaker the higher the energy scale E = /s, we
may calculate the hadronic current correlators in perturbation theory as a power series
in o /7. According to the general analysis presented above, the object of interest is

1 4
p(s) = —ImI(s) 3 11,(q): : (5.19)
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The QCD perturbation expansion diagrammatically is given by

4

= +  Aeann
+v®w+m@m
# o ot oo

LY

Lines show external photons, propagating quarks/antiquarks and
~sooo> propagating gluons. See Fig. 2.14 for the Feynman rules of QCD. The ver-
tices ® are marking renormalization counter term insertions. They correspond to
subtraction terms which render the divergent integrals finite.

In QED (the above diagrams with gluons replaced by photons) the phenomenon
of vacuum polarization was discussed first by Dirac [70] and finalized at the one—
loop level by Schwinger [71] and Feynman [72]. Soon later Jost and Luttinger [73]
presented the first two—loop calculation.

In Oth order in the strong coupling o, we have

|

which is proportional to the free quark—antiquark production cross section [5] in the
so called Quark Parton Model (QPM), which is describing quarks with the strong
interaction turned off. The QPM provides an approximation which gets the better
the higher the energy. As it is common practice, rather than considering the total
hadronic production cross section oy (ete™ — v* — hadrons) itself, we again use

owi(ete”™ — ~v* — hadrons)

R(s) = = 127%p(s) , (5.20)

4mra?
3s

which for sufficiently large s can be calculated in QCD perturbation theory. The
result is given by [4, 28, 29, 74]

RE™ = N, > 03 2L (3-v}) O —4m)
f

X {1 +acl(vf)+a202+a303+a464+-~} (5.21)
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where a = o, (s)/7 and, assuming 4m§- < s, 1.e. in the massless approximation

C1 =1
C1(R) ) C1(R) 3/6’ ¢3) >3 + 123N
) = —== - = - 5 Ve
2= 322 470 48" T 3
365 11
=22 N;— ByC(3) ~ 1.9857 — 0.1152N
= 1NV BoC¢(3) f

2

—6.63694 — 1.20013N; — 0.00518N7 —1.2395 | > 0| /(3D 03
f f

c3
¢4 = —156.61 + 18.77N; — 0.7974N% + 0.0215N3

in the MS scheme. Ny =Y fran<s 1 is the number of active flavors. The mass
dependent threshold factor in front of the curly brackets is a function of the velocity

2 172
vy = (1 - 471) and the exact mass dependence of the first correction term
272 7 1
== _3 L _Z
c()=——--0C+v) ( ; 4)

is singular (Coulomb singularity due to soft gluon final state interaction) at threshold.
The singular terms of the n—gluon ladder diagrams

exponentiate and thereby remove the singularity [75]:

m 2x 2o
x — ;X =
1—e2x 3v

Qg oy  2mag\ 4mag 1
(1+c1(v)?+---)—> e = -

3v 3v 1—exp{—4§%} '

Applying renormalization group improvement, the coupling «, and the masses m,
have to be understood as running parameters

2 2 2
R(ms_(:«’ax(so)): R(mfiu )’as(uz)) s p=+/s.
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Im s

«—— asymptotic freedom (pQCD) SIO Re s

Fig. 5.14 Analyticity domain for the photon vacuum polarization function. In the complex s—
plane there is a cut along the positive real axis for s > so = 4m? where m is the mass of the lightest

particles which can be pair—produced. If we include internal e.m. effects, we have 707 as a channel
2
70

with the lowest threshold so = m

Tt

Fig. 5.15 Hadron production in low energy et e~ —annihilation: the primarily created quarks must
hadronize. The shaded zone indicates strong interactions via gluons which confine the quarks inside
hadrons

where /5o is a reference energy. Mass effects are important once one approaches
a threshold from the perturbatively save region sufficiently far above the thresholds
where mass effects may be safely neglected. They have been calculated up to three
loops by Chetyrkin, Kiihn and collaborators [30] and have been implemented in the
FORTRAN routine RHAD by Harlander and Steinhauser [31].

Where can we trust the perturbative result? Perturbative QCD is supposed to work
best in the deep Euclidean region away from the physical region characterized by
the cut in the analyticity plane Fig.5.14. Fortunately, the physical region to a large
extent is accessible to pQCD as well provided the energy scale is sufficiently large
and one looks for the appropriate observable.

The imaginary part (total cross section) corresponds to the jump of the vacuum
polarization function I7(g?) across the cut. On the cut we have the thresholds of the
physical states, with lowest lying channels: 77—, 7%+ 7~, ... and resonances p,
w, o, J /Y-, T ---,---.QCDis confining the quarks (a final proof of confinement
is yet missing) in hadrons. In any case the quarks hadronize (see Fig.5.15), a highly
non—perturbative phenomenon which is poorly understood in detail. Neither the
physical thresholds nor the resonances are obtained with perturbation theory! In
particular, the perturbative quark—pair thresholds in (5.21) do not nearly approximate
the physical thresholds for the low energy region below about 2 GeV, say. At higher
energies pQCD works sufficiently far away from thresholds and resonances, i.e. in
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Fig.5.16 Fermion pair production in e™e~—annihilation. The lowest order Feynman diagram (left)
and the same process in the c.m. frame (right). The arrows represent the spacial momentum vectors
and 6 is the production angle of the quark relative to the electron in the c.m. frame

regions where R(s) is a slowly varying monotonically decreasing function. This
may be learned from Fig.5.7 where the e*e —data are shown together with the
perturbative QCD prediction. Less problematic is the space—like (Euclidean) region
—g%> — 00, since it is away from thresholds and resonances. The best monitor for
a comparison between theory and experiment has been proposed by Adler [76] long
time ago: the so called Adler—function, up to a normalization factor, the derivative
of the vacuum polarization function in the space-like region, introduced in (3.167)
(see Fig.5.18). In any case on has to ask the e*e~—annihilation data and to proceed
in a semi—phenomenological way.

At higher energies highly energetic partons, quarks and/or gluons, are produced
and due to asymptotic freedom perturbative QCD should somehow be applicable.
As we will see this in fact manifests itself, for example, in the correct prediction of
owi(ete” — ~* — hadrons) in non-resonant regions at high enough energies, in
the sense of quark—hadron duality (5.5). However, the consequences of the validity
of pQCD are more far-reaching. According to perturbation theory the production of
hadrons in e* e~ —annihilation proceeds via the primary creation of a quark—antiquark
pair (see Figs. 5.15, 5.16) where the quarks hadronize. The elementary process tells us
that in a high energy collision of positrons and electrons (in the center of mass frame)
q and g are produced with high momentum in opposite directions (back—to—back).

The differential cross section, up to a color factor the same as forete™ — putpu~,
reads

do 3a?

E(e*e‘ — qq) = ZTS Z Q?c (1 +cos?6) ,

typical for an angular distribution of a spin 1/2 particle. Indeed, the quark and the anti-
quark seemingly hadronize individually in that they form jets [77]. Jets are bunches
of hadrons which concentrate in a relatively narrow angular cone. This in spite of the
fact that the quarks have unphysical charge and color, true physical states only can
have integer charge and must be color singlets. Apparently, while charge and color
have enough time to recombine into color singlets of integer charge, the momen-
tum apparently has not sufficient time to distribute isotropically. The extra quarks
needed to form physical states are virtual pairs created from the vacuum and carried


http://dx.doi.org/10.1007/978-3-319-63577-4_3

374 5 Hadronic Effects

Fig. 5.17 Two and three jet event first seen by TASSO at DESY in 1979 [Resource DESY]

along by the primary quarks. As a rule pQCD is applicable to the extent that “hard
partons”, quarks or gluons, may be interpreted as jets. Fig.5.17 illustrates such ggq
(two—jet event) and ggg (three—jet event) jets. Three jet events produced with the
electron positron storage ring PETRA at DESY in 1979 revealed the existence of the
gluon. The higher the energy the narrower the jets, quite opposite to expectations
at pre-QCD times when most people believed events with increasing energy will be
more and more isotropic multi—-hadron states.

5.1.6 Non-Perturbative Effects, Operator Product Expansion

The non—perturbative (NP) effects are parametrized as prescribed by the operator
product expansion of the electromagnetic current correlator [78]

4o 1 11 LGG
H:’,NP(Qz) — ara Z Q;Ncq . |:E (1 ) <7T )

- —a
3 187) ¢
a (11 3 (mydq)
e (105 (5 - ) @) 622
4 4 257 1 (myq'q’)
_ —G—"——=1,)d? R M
* (27“ * (3<3 486 3 ‘“) . )q;{ ot |7

where a = ozs(pz)/w and I, = ln(Qz/uz). (%GG} and (m,qq) are the scale—
invariantly defined condensates. Sum rule estimates of the condensates yield typically
(large uncertainties) (2GG)~ (0.389 GeV)*, (m,qq) ~ —(0.098 GeV)* for
qg=u,d,and (myqq) ~ —(0.218 GeV)* for ¢ = s . Note that the above expan-
sion is just a parametrization of the high energy tail of NP effects associated with the
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existence of non—vanishing condensates. The dilemma with the OPE in our context
is that it works for large enough Q2 only and in this form fails do describe NP physics
at lower Q2. Once it starts to be numerically relevant pQCD starts to fail because of
the growth of the strong coupling constant. In R(s) NP effects as parametrized by
(5.22) have been shown to be small in [33, 38, 79]. Note that the quark condensate,
the vacuum expectation value (VEV) (O, ) of the dimension 3 operator O, = gq,is a
well defined non—vanishing order parameter in the chiral limit of QCD. In pQCD it is
vanishing to all orders. In contrast the VEV of the dimension 4 operator Og = GG
is non—vanishing in pQCD but ill-defined at first as it diverges like A* in the UV
cut—off. Og contributes to the trace of the energy momentum tensor!? [80-82]

B (gs

Ok = GG + (14 7(gy)) {my itu +mgdd + - - -} (5.23)

where 3(gy) and v(g;) are the RG coefficients (2.290) and in the chiral limit

Bo
Evac = [32 + O(ay)] (Oc)
represents the vacuum energy density which is not a bona fide observable in a contin-
uum QFT."3 In the Shifman—Vainshtein—Zakharov (SVZ) approach [78] it is treated
to represent the soft part with respect to the renormalization scale p, while the cor-
responding OPE coefficient comprises the hard physics from scales above p. Note
that in the chiral limit m, — O the trace (5.23) does not vanish as expected on the
classical level. Thus scale invariance (more generally conformal invariance) is bro-
ken in any QFT unless the S—function has a zero. This is another renormalization
anomaly, which is a quantum effect not existing in a classical field theory. The renor-
malization group is another form of encoding the broken dilatation Ward identity.

121n a QFT a symmetric energy momentum tensor ©,.v(x) should exist such that the generators of
the Poincaré group are represented by (see (2.6), (2.7))

P, :/d3x Oop(x) . My :/d3x (X/L BOoy — Xy @Ou) (x) .

This corresponds to Noether’s theorem for the Poincaré group (see (2.94)). In a strictly renormal-
izable massless QFT which exhibits only dimensionless couplings classically one would expect
the theory to be conformally invariant. The energy momentum tensor then would also implement
infinitesimal dilatations and special conformal transformations. That is, the currents

Dy(x) =x" Oy Kuy =2x" x, Oy — 1760

ought to be conserved, which requires the trace of the energy momentum tensor to vanish @‘;,, =0.
This only can be if the coupling gy has a particular value g} at which 3(g}) = 0.

13Usually, questions about non-perturbative features can be answered by lattice QCD. The problem
in this case is that the continuum limit does not exits after the renormalization of the parameters
and fields, but requires an extra subtraction specific to the quantity we want to determine itself. So
it remains ill defined as a matter of principle. In contrast, the quark condensates are well defined by
PCAC and GMOR type relations as (4.75) and fixed by the low lying hadron masses [83].


http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_2
http://dx.doi.org/10.1007/978-3-319-63577-4_4

376 5 Hadronic Effects

It’s role for the description of the asymptotic behavior of the theory under dilatations
(scale transformations) has been discussed in Sect.2.6.5, where it was shown that
under dilatations the effective coupling is driven into a zero of the S—function. For
an asymptotically free theory like QCD we reach the scaling limit in the high energy
limit. At finite energies we always have scaling violations, as they are well known
from deep inelastic electron nucleon scattering. In e*e~—annihilation the scaling
violation are responsible for the energy dependence (via the running coupling) on
R(s) in regions where mass effects are negligible.

As mentioned earlier the Adler—function is a good monitor to compare the pQCD
as well as the NP results with experimental data, Fig.5.18 shows that pQCD in the
Euclidean region works very well for \/@ = 2.5 GeV [79]. The NP effects just start
to be numerically significant where pQCD starts to fail. Thus, no significant NP
effects can be established based on e*e~—data. This also has been confirmed in a
recent analysis [85].

4.0 o F
3.5] L
3.0 L
2.5] L
<
& 2.0 L
o — — —  pQCD N5 GPM
151 —-—  paCD ne5 2-loop n
1.0 — pQCD n=5 3-loop APT o
----- pQCD ng=5 3-loop + NP
0.5 @ data incl. BESI/II, CMD-2/3, SND, KLOE, BABAR 2016 2
0.0 a
" 4.0 120 -10.0  -8.0  -6.0  -4.0  -2.0 0.0
Q (GeV)

Fig. 5.18 “Experimental” Adler—function versus theory (pQCD + NP) in the low energy region
(as discussed in [79]). Note that the error includes both statistical and systematic ones, in contrast
to Fig.5.7 where only statistical errors are shown. The massive 3-loop pQCD prediction includes
4- and 5-loop effects in the massless limit as well, which improves result where mass effects get
small (long-dash dot dot dot). In the perturbative region the curvature is largely a result of the mass
effects only. This is also illustrated by the QPM result (dashed). Below about 2 GeV pQCD fails,
even if one attempts to remove the Landau pole by freezing the strong coupling as e.g. advocated
by Analytic Perturbation Theory (APT) [84]. Including Non-Perturbative (NP) effects represented
by power corrections as derived by OPE, these start to diverge as soon as they get numerically
significant towards lower energies (dotted). The 2-loop massive QCD result shown large deviations
from the data over the whole range displayed (long-dash dot long-dash)
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5.1.7 Leading Hadronic Contribution to (g — 2) of the Muon

‘We now are going to evaluate the hadronic vacuum polarization effects coming from
the 5 “light” quarks g = u, d, s, c, b interms of the experimental e e~ data.'* Quarks
contribute to the electromagnetic current according to their charge

.11 had 2_ 1- 1_ 2_ 1- 2_

Jelrln ¢ = ZC: (guc'YMMc - gdc"yﬂdc - gsc'Yusc + chVHCc - gbc’yubc + gfc'YMlc .
The hadronic electromagnetic current je‘,’nhad is a color singlet and hence includes a
sum over colors indexed by c. Its contribution to the electromagnetic current cor-
relator (3.133) defines H;had(s), which enters the calculation of the leading order

hadronic contribution to a/'l“d, diagrammatically given by Fig.5.1. The representa-
tion as a dispersion integral has been developed in Sect. 3.8 on p. 233 (see also p. 224).
Using (3.164) azad may be directly evaluated in terms of R, (s) defined in (5.3). More
precisely we may write

2
ut

o (amn? ([ REORG TR R ()
at Z(ﬁ) ds —————+[ds——3——) . (524
m20 E?

o cut

with a cut E in the energy, separating the non—perturbative part to be evaluated
from the data and the perturbative high energy tail to be calculated using pQCD.
The kernel K (s) is represented by (3.149) discarding the factor /7. This integral
can be performed analytically. Written in terms of the variable

1-p
X = 1+BZ, ﬂuz‘/l—4mﬁ/s

14The heavy top quark of mass m; ~ 173.21(0.87) GeV we certainly may treat perturbatively, as
at the scale m; the strong interaction coupling is weak (see Fig.3.3). Actually, the top quark ¢
is irrelevant here since, as we know, heavy particles decouple in QED in the limit m; — oo and
contribute like a VP 7—loop with an extra factor N, Qt2 = 4/3, thus

2

’7/5\ aif)(vap,tap) = % {41—5 (:7—:) +-- } (%)2 ~5.9x 107,

15 Actually, azad, and therefore q,, itself, is only a safely predictable quantity by virtue of asymptotic
freedom of QCD. Otherwise the high energy tail would remain in the dark. In spite of the 1/s2 kernel
we would be confronted with the question of a Landau pole, which in the “whatever non-QCD strong
interaction world” could show up elsewhere. It may be interesting to note that within the SM from
the SU(3). ® SU(2)L ® U(1)y gauge couplings only the weak hypercharge coupling ¢’ is not
asymptotically free, what then shows up in the QED sector as well. The corresponding growth of
the coupling with energy is however very moderate even up to the Planck scale. Surprisingly, within
the SM also the top quark Yukawa coupling y; as well as the Higgs boson self-coupling A show AF
behavior, i.e. they get weaker the higher the energy (see e.g. [86]).
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Fig. 5.19 Graph of weight
function K (s) of the g — 2
dispersion integral

4m? S
the result reads [87]
2 1 2y(1 2 2 1
K(s) = % Q-x>)+ (—i—xx)g—l-x)(]n(] +Xx)—x+ xz)+ 21 tg x?In(x) .
(5.25)

The representation (5.25) of K (s) is valid for the muon (or electron) where we have
s > 4m?, in the domain of integration s > 4m2,and x isreal,and 0 < x < 1.Forthe T
(5.25) applies fors > 4m?2.Intheregiond4m? < s < 4m?,where0 < r = s/m? < 4,
we may use the form

K(s) = % —r+ %r (r —2) In(r) — (1 —2r+ %r2) p/w (5.26)

with w = /4/r — 1 and ¢ = 2 arctan(w). Note that the 777~ channel exhibiting
the threshold 4m?, although the by far dominating one contributing to (5.24), is not
the channel with the lowest threshold. Since also the e.m. 7%y channel contributes
to R(s) the lowest threshold is mio < 4mﬁ and between mio <5< 4m}21, the kernel
there is given by (5.26) with r = s/m?. < 4.

We have written the integral (5.24) in terms of the rescaled function

N 3s
K(s) = —2K(s)

14

which is slowly varying only in the range of integration. It increases monotonically
from 0.63...[0.39...] at 77[77] threshold s = 4m2[m?,] to 1 at s = oo. The graph is
shown in Fig.5.19.

It should be noted that for small x the calculation of the function K (s), in the form
given above, is numerically unstable and we instead use the asymptotic expansion
(used typically for x < 0.0006)

ki (L (T (o3 PR
S)=1\|= - - —— — X X)) X)) X)X X7 m(x) .
37 \12 " \30 10 70 1—x
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Other representations of K (s), like the simpler—looking form
1 1 1,
K(s):i—r—l—ir r—2) In(r) + 1—2r—|—§r In(x)/Bu

with r =5/ mi, are much less suitable for numerical evaluation because of much
more severe numerical cancellations.

Note the 1/s’~enhancement of contributions from low energies in a,,. Thus the
g — 2 kernel gives very high weight to the low energy range, in particular to the lowest
lying resonance, the p°. Thus, this 1/E* magnification of the low energy region by
the a,, kernel-function together with the existence of the pronounced p° resonance
in the 7+~ cross—section are responsible for the fact that pion pair production
ete™ — whw~ gives the by far largest contribution to aﬂ"‘d.m The p is the lowest
lying vector-meson resonance and shows up in 77~ — p’at M » ~ 1770 MeV (see
Fig.5.6). This dominance of the low energy hadronic cross section by a single simple
two-body channel is good luck for a precise determination of a,,, although a very
precise determination of the 77~ cross—section is a rather difficult task. Below
about 810 MeV UPO“[d(s) >~ o, (s) to a good approximation but at increasing energies
more and more channels open (see Fig.5.4) and “measurements of R” get more
difficult, before above about 2 GeV inclusive R measurements become reliable. In
the light sector of ¢ = u, d, s quarks, besides the p there is the w, which is mixing
with the p, and the ¢ resonance, essentially a §s bound system. In the charm region
we have the pronounced cc—resonances, the J /s, U»s, - - - resonance series and in

16 As we need the VP—undressed hadronic cross section in the DR, the physical form factor F(s)
which includes VP effects has to be corrected accordingly:

LD ()12 = [Fr () |a/als)? . (5.27)

Figure 5.25 shows Re Aa(s) = 1 — Re a/a(s) in the time-like region. The resonances lead to
pronounced variations of the effective charge (shown in the p — w, ¢ and J /1) region).

For an order by order in « procedure of including corrections in a systematic manner, final
state radiation should be subtracted as suggested in Sect.5.1.3. The initial state radiation must and
can be subtracted in any case, the final state radiation should be subtracted if possible. Note that
measurements unavoidably include all virtual plus the unobserved soft photons. However, the hard
virtual part for hadronic final states cannot be calculated in a model-independent manner, such that
the subtraction seems not possible. It is therefore better to include as much as possible all photons in
an inclusive measurement. The KLN theorem (see Sect. 2.6.6) infers that the inclusive cross section
of virtual, soft plus hard real photons is O () without any logarithmic enhancement. Which also
means a moderate model-dependence of the FSR correction, as a consequence of the absence of
potentially large logs. We thus include the FSR (including full photon phase space) as

EP@P = 1O (1406)7) (5.28)
™
to order O (), where 7(s) (5.1.12) is a known correction factor in SQED [203] (see p. 425 below).

Here F" (s) is obtained from the measured cross section by subtracting photonic effects using
sQED under consideration of the applied experimental cuts on the real photons.
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the bottom region the bb-resonances Tis, 13s, - . .. Many of the resonances are very
narrow as indicated in Fig.5.7.

For the evaluation of the basic leading order (LO) integral (5.24) we take R(s)—
dataup to /s = E.,; = 5.2 GeV and for the 7" resonance-region between 9.46 and
11.5 GeV and apply perturbative QCD from 5.2 to 9.46 GeV and for the high energy
tail above 11.5 GeV. The available data which are included we have discussed in
Sect.3.2.1 p.185 already (see also Figs. 5.6, 5.7). The result of the evaluation is [6]

ap iV = (688.07 £ 4.14)[688.77 £ 3.38] x 107'° (5.29)

based on e e —data [incl. T-decay spectra [88]]. For the electron anomaly the LO
contribution evaluates to a?) = 1.846(12) x 102,

The contributions and errors from different energy regions is shown in Table 5.2.
Most noticeable about this result are three features (see also Table 3.1)

e the experimental errors of the data lead to a substantial theoretical uncertainty,
which is about 2/3 of the present experimental error of the BNL g — 2 experiment;
as the upcoming Fermilab muon g — 2 experiment will reduce the present exper-
imental error by a factor four the error of the HVP needs to be reduced further as
much as possible;

e the low energy region is dominated by the mm—channel and the p—resonance con-
tributions is dramatically enhanced: ~74% [~79% including the w] of the con-

Table 5.2 Results for a/}f“d x 1019 from different energy ranges. Given are statistical, systematic
and the total error, the relative precision in % [rel] and the contribution to the final error? in % [abs]

Final Range (GeV) Result (Stat) (Syst) [Tot] Rel (%) | Abs (%)
state

p (0.28, 1.05) 506.02 0.77) (2.52) [2.64] 0.5 40.6
w (0.42,0.81) 35.23 (0.42) (0.95) [1.04] 3.0 6.3
10) (1.00, 1.04) 34.31 (0.48) 0.79) [0.92] 2.7 5.0
J/ 8.94 0.42) 0.41) [0.59] 6.6 2.0
T 0.11 (0.00) (0.01) [0.01] 6.8 0.0
had (1.05, 2.00) 61.32 (0.20) (2.65) [2.65] 43 41.0
had (2.00, 3.20) 21.63 0.12) (0.92) [0.93] 4.3 5.0
had (3.20, 3.60) 3.81 (0.02) (0.03) [0.04] 1.9 0.0
had (3.60, 5.20) 7.59 (0.04) (0.05) [0.07] 0.0 0.0
pQCD (5.20, 9.46) 6.27 (0.04) (0.06) [0.07] 0.1 0.0
had (9.46, 11.50) 0.87 (0.00) (0.05) [0.05] 5.7 0.0
pQCD (11.50, c0) 1.96 (0.00) (0.00) [0.00] 0.0 0.0
Data (0.28, 11.50) 679.84 (1.11) (3.99) [4.14] 0.6 98.8
Total 688.07 (1.11) (3.99) [4.14] 0.6 100.0
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tribution and ~41% [~47% including the w] of error of a
2my < /s < M.

e the “intermediate” energy region, between 1 and 2 GeV, still gives a substantial
contribution of about 9% [14% including the ¢]. Unfortunately, because of the
lower quality of the R—data in the region, it contributes 41% [46% including the
@] of the total error, i.e. errors come in equal parts from below 1 GeV and from
1 to 2 GeV, and together are the main source of uncertainty in the theoretical
determination of a,,.

w4 comes from region

Integration of various exclusive channels yields the results of Table 5.3, which illus-
trates the relative weight of different channels in the region of exclusive chan-
nel measurements. Inclusive measurements are available above 1.2 GeV, however,
recent progress in this problematic range comes from measurements based on the
radiative return mechanism by BABAR [7, 89-92] for the exclusive channels
ete” >t 2 wtrntn—, KtK~-, K. Ks, KK ntn~, K, KswTn~,
KsKemtn™, 2(KTK™), KsKsKTK~, 3 (xTn7), 2(ztn 7%, KT K 2(xt7™)
and p p. These data cover a much broader energy interval and extend to much higher
energies than previous experiments. Together with recent scan data from VEPP-2000
[93-97] remarkable progress has been achieved in this difficult range.

The sum of the exclusive channels from Table 5.3 is 637.73(3.69) which together
with the sum of contributions from energies £ > 2 GeV 51.08(1.10) from Table 5.2
yields a slightly higher value 688.81(3.85) than the 687.04(4.21) we get by including
also the inclusive data below 2 GeV. Results are well within errors and this is a
good consistency test. Note that resonances like w and p contribute to the exclusive
channels according to their branching fractions. When parametrized as relativistic
Breit—Wigner shapes with a s—dependent width we have (see e.g. [98])

I,(s) = F(w—)37r,s)+1"(w—>7r07,s)+1"(w—>27r,s)

F
= %Fw { Br(w — 37) 37((5;
M F37(M5)

w

Fﬂv(s)

0
+ Br(w — 77) 5
Fr ,\/(M )

+ Br(w — 2m)

F27T(S) }
For(M2) ]’

Iy(s) = ['(@— KTK™,5) + (¢ — KsKp, )+ (¢ — 3m,5) + (¢ — 7, 5) + (&~ 17, 5)
s , + -
= pley Bre— KK

o)

Fgrx-(s)

Fggk, (5)
Fyig-(M2)

+ Br(¢ — KsKp)
Fik, (M3)

Fir(s)
F3r(M})

Fry(s)

Fyn (s
s e~ ) n® 1 (5.30)

+Br(®— 1)
Fypy (M)

+Br(¢p — 3m)

The factors Br(V — X) denote the branching fraction for the channel X and
Fx(s) is the phase space function for the corresponding channel normalized such
that Fx(s) — const for s — oo. For the two-body decays V — P; P, we have
Fp,p,(s) = (1 — (my +my)?/s)*%. The channel V — 37 is dominated by V —
pm — 37 and this fact is used when calculating F3,(s).
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Table 5.4 Some evaluations of a, )(vap, had) since 2003

a“ (vap, had) x | Data Year Group Ref.
1010
696.3[7.2] ete” 2003 DEHZ03 [113]
711.0[5.8] ete™ 47 2003 DEHZ03 [113]
694.8[8.6] ete” 2003 GJo3 [114]
690.9[4.4] ete” 2006 DEHZ06 [119]
689.4[4.6] ete” 2006 HMNTO06 [128]
692.1[5.6] ete” 2006 FI06 [15]
705.3[4.5] ete” + 7 2009 DHea09 [129]
692.3[4.2] ete** 2010 DHMZ10 [26, 130]
691.0[4.6] ete™ 4 %% 2011 IS11 [88]
694.4[3.7] ete ** 2011 HLMNTI11 [131]
687.7[4.6] HLS global fit 2012 BDDJ12 [132]
691.0[4.7] ete ™" 2012 FI12 [88]
693.2[3.7] ete™ 4 1% 2012 DHMZ10/JS11 | [88, 130]
692.3[4.2] ete” 2016 DHMZ16 [71
701.5[4.6] ete” +1 2016 DHMZ16 [7]
681.9[3.2] ete™ + THLS fit | 2016 BDDJ15 [47]
689.5[3.2] ete” + 7+ |2017 Our estimate (5.100)
phases

Some of the most recent evaluations are collected in Table 5.4. Figure 5.20 illus-
trates how estimates developed as data have been improving over time. Differences
in errors come about mainly by utilizing more “theory—driven” concepts: use of
selected data sets only, extended use of perturbative QCD in place of data [assuming
local duality], sum rule methods, low energy effective methods [120—122]. In some
analyses (as indicated) 7 data from ALEPH, OPAL, CLEO and Belle [123—-127] have
been combined with the e™e™ data (see below). There have been many independent
evaluations of ah“d in the past17 [12, 15, 16, 88, 113—-119] and some of the more
recent ones are shown in Fig.7.2. For more detailed explanations of the differences
see the comments to Fig.7.1.

The compilation of the et e~ —data is shown in Fig. 5.6 in the most important low
energy region and in Fig.5.7 for the higher energies. The relative importance of
various regions is illustrated in Fig.5.21. The possibility of using hadronic T—decay
data was briefly discussed in Sect.3.2.1 on p. 187 (see Fig.5.22). More details are
given as an Addendum Sect.5.1.10 to this section. After applying the appropriate

17The method how to calculate hadronic vacuum polarization effects in terms of hadronic cross
sections was developed long time ago by Cabibbo and Gatto [ 133]. First estimations were performed
in [99-101]. As cross section measurements made further progress much more precise estimates
became possible in the mid 80s [107—111]. A more detailed analysis based on a complete up—to—date
collection of data followed about 10 years later [8].
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Fig. 5.20 History of evaluations before 2000 (left) [8—11, 99-112], and some more recent ones
(right) [15, 113-119]; open squares = e*e~—data based, cross marked (e*e~+7) = in addition
include data from 7 spectral functions but without taking into account v — p® mixing, these are
obsolete now; filled circles (e*e™+7) including y — po mixing (see text)
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Fig. 5.21 The distribution of contributions (left) and errors? (right) in % for a}}ad from different
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statistical and systematic errors in quadrature
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(a) ¥ (¢)

1
TP u,d

Fig. 5.23 Low energy effective graphs (a) and (b) and high energy graph (c)

Table 5.5 Low energy effective estimates of the leading vacuum polarization effects aff) (vap). For
comparison: 5.8420 x 10~3 for u—loop, 5.9041 x 10~° for e—loop

Data [280, 810] | p—exchange 7t —loop [u, d] quark loops

MeV
Constituent Current quarks
quarks

4.2666 x 1078 14.2099 x 1078 | 1.4154 x 1078 |2.2511 x 1078 | 4.4925 x 10~

isospin breaking corrections, hadronic T—decay spectra may be used to improve the
data sample. The 7 versus eTe™ discrepancy which has been persisting for some
time found its resolution in the missing p — v mixing correction of the 7—data [88,
132]. Results which include 7—data are indicated in Table 5.4 (see also Table 3.2) and
Fig.7.2.

Digression: Exercises on the Low Energy Contribution

One important question we may ask here is to what extent are we able to understand
and model the low energy hadronic piece theoretically? This excursion is manly
thought to shed light on what has a chance to work and what not in modeling low—
energy hadronic effects. It is a kind of preparation for the discussion of the hadronic
light-by-light scattering. As a starting point for understanding strong interaction
physics at the muon mass scale one could attempt to use chiral perturbation theory,
the low energy effective description of QCD, where quarks and gluons are replaced
by hadrons, primarily the pions, the quasi Nambu—Goldstone bosons of spontaneous
chiral symmetry breaking. One would then calculate 7*—loops as shown in Fig. 5.23,
and as discussed earlier in Sect.2.7.

The charged spin 0 pions 7+ are assumed to couple to photons via minimal coupling,
assuming the pions to be point-like as a leading approximation (see Sect.2.7). How-
ever, the result given in Table 5.5 is underestimating the effect by about a factor 3.
The main parameter for the size of the contribution is the mass and the coefficient
N¢i Ql-z, for color and charge of a particle species i (see (2.178)). If we would treat
the quarks like leptons, switching off strong interactions and hence using the quark
parton model (which is a good approximation only at sufficiently high energies) we
would get for the sum of u and d quarks the result given in last entry which is similar
in size to the contribution from an electron, about a factor 100 too large! The large
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difference between the 7 result and the (u, d) doublet result illustrates the dilemma
with naive perturbative approaches. The huge contribution on the quark level was
obtained using the current quark masses m, ~ 3MeV, my; ~ 8 MeV, which appear
in the QCD Lagrangian as chiral symmetry breaking parameters. Strong interac-
tions lead to dressed quarks with effective “constituent quark masses”, a concept
which is not very well-defined e.g. if we choose m, ~ my ~ 300 MeV (about 1/3
of the proton mass) one gets now a result which, this time, is a factor of two too
small. In any case it is much closer to reality. This illustrates how sensitive these
perturbative results are to the precise choice of the values of the quark masses. The
failure of these trials is that one main non—perturbative effect is missing, namely, the
pP—resonance: a neutral spin 1 vector—meson, produced in ete™ — p® — 77,
Spin 1 vector-mesons can be incorporated in the framework of CHPT (see p. 305)
which leads to the RLA [134, 135]. The result obtained by integrating the corre-
sponding non—relativistic Breit-Wigner p° resonance in the range (280, 810) MeV
gives a remarkably good result if we compare it with what we get using experimental
data (see the first entry in Table 5.5). This also shows that adding up the p—exchange
and the m*—loop as independent effects would lead to a wrong answer. This is not so
surprising since working with pions and vector—-mesons as independent fields nec-
essarily at some point produces a double counting problem, because the p may be
understood as a w7~ resonance. A much more reasonable approach would be to
apply the low energy effective theory up to an energy scale A (long distance (L.D.)
part) and pQCD above the same cut off A (short distance (S.D.) part). For more edu-
cated estimations of @™ in low energy effective theory see [136] (see also [137]).
We have been discussing the various possibilities in order to get some feeling about
the reliability of such estimates, because in higher orders in general we will not be
able to resort to experimental data to estimate the non—perturbative effect.

Fortunately, firm theoretical predictions are not only possible for the perturbative
high energy tail. Also the low energy tail is strongly constrained, by the low energy
effective CHPT briefly introduced on p. 305 in Sect.4.2.2. The quantity of interest
here is the vector form factor, defined by the hadronic pion pair production matrix
element

fout T (p )T (PIIV,u(0)|0) = —i (py — p-), Fy(s) , (5.31)

where V,,(x) is the isovector current and s = (p4 + p_)z. Fy (s) has been calculated
in CHPT in [138, 139] (one-loop), [140] (two—loop numerical) and [141] (two—loop
analytical). The last reference gives a compact analytical result

Fo(s) =1+ =y s +cp s+ 70 (=5 (5:32)
v(s) = 6F7TVS cy s v m% , .

and a fit to the space—like NA7 data [142] with the expression (5.32) leaving the square
pion charge radius (r2)y and ¢, as free parameters, and including the theoretical error,
leads to
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(r})y = 0.431 £ 0.020 + 0.016 fm?,
¢y =32£0.5 £09GeV ™, (5.33)

where the first and second errors indicate the statistical and theoretical uncertainties,
respectively. The central value of c7; is rather close to the value obtained by resonance
saturation, cj, = 4.1 GeV~* [140]. Since, on one hand experimental 77 production
data below 300 MeV are sparse and of low statistics and on the other hand the key
integral (5.24) exhibits a 1/ E* enhancement of the low energy tail, special attention
is necessary for this threshold region. In this context (5.32) provides an important
and firm parametrization of the low energy region and makes possible a reliable
evaluation of the contribution to aﬂ"‘d, as has been shown in [8] or [113]. A simple
phenomenological fit of low energy m7 data, using a third order polynomial in s,
yields
F.(s)~1+cs +6‘2S2+C3S3

(structurally  consistent with CHPT) yields ¢ =6.35046 GeV 2,
¢y = —22.5567GeV~* and ¢; = 140.482 GeV~° with a fractional error of 0.012358.

The crucial point here is that the threshold behavior is severely constrained by
the chiral structure of QCD via the rather precise data for the pion form factor in the
space-like region. The space-like fit provides a good description of the data in the
time-like region. Pure chiral perturbation theory is able to make predictions only for
the low energy tail of the form factor.

The electromagnetic form factor of the pion F; (s) usually is defined in an idealized
world of strong interactions with two quark flavors (¢ and d) only, and electroweak
interactions switched off. F;.(s) has an isovector part I = 1 as well as an isoscalar
part I = 0. The latter is due to isospin breaking by the mass difference of the u and
d quarks: m,, — my # 0, which leads to p — w mixing:

lp) = |po) — glwo) , lw) = |wo) + €lpo) ,
where |wp) and |pg) are the pure isoscalar and isovector states, respectively, and €

is the p — w mixing parameter. Then, in the energy region close to the p(770) and
w(782) meson masses, the form factor can be written as

-1
F F, F F,
; ;e —— p2+5 wz

s — M7 s — Mz —-M; —M:

2 2 2
M? [1 FW(M,W,—MP)S:|

Fr(s)

12

by P (5.34)
s — M2 F,M2(s — M2)

where we only keep the terms linear in €. The quantities M, and M, are complex
and contain the corresponding s—dependent widths. Including the higher resonances
o and p”, (5.34) can be cast into the standard form
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BW ,(770) (s) - (1 + 5ﬁ3BWw (S)) + BBW 51450y () + v BW 5(1700) (5)
1+8+7y

Fr(s) = ,
(5.35)

in terms of Breit—Wigner (BW) amplitudes (2.270) with s—dependent widths (5.30)
and complex mixing parameters «, (3, v and §. The ¥ 7 isovector form factor in
the charged channels is obtained by setting § = 0 (switching off the w) and with the
parameters and pion velocities appropriate for the CC case.

The mixing is responsible for the typical distortion of the p-resonance (see
Fig.5.6), which originally would be a pure isospin I = 1 Breit—-Wigner type res-
onance. The pion form factor (5.34) is the basic ansatz for the Gounaris—Sakurai
formula [40] which is often used to represent experimental data by a phenomeno-
logical fit (see e.g. [20]).

However, theory in this case can do much more by exploiting systematically
analyticity, unitarity and the properties of the chiral limit. A key point is that the
phase of the pion form factor is determined by the m7w—scattering phase shifts [143].
Known experimental mr—scattering data [144—146] together with progress in theory
(combining two—loop CHPT and dispersion theory) lead to much more precise pion
scattering lengths af and a} [147, 148]. As a consequence, combining space-like
data, mm—scattering phase shifts and time-like data one obtains severe theoretical
constraints on the pion form factor F(s) fors < 2Mg [120, 121]. A similar approach
has been used previously in [109, 118, 149]. Recently, this approach has been applied
in order to get a better control of the low energy tail, where cross sections tend to be
rather small and therefore difficult to be measured precisely. The large uncertainty
of the w7 contribution to a, from energies below 0.63 GeV motivated [122] to
investigate it theoretically in a framework based on the analyticity and unitarity
properties of the pion form factor. The main idea was to use, instead of the poorly
known modulus, the phase of the form factor, which is equal by the Fermi-Watson
theorem [150, 151] to the 7m scattering P-wave phase shift, and which has been
calculated with high precision from Chiral Perturbation Theory (ChPT) and Roy
equations [147, 152—154]. Above the inelastic threshold s;,, where the Fermi-Watson
theorem is no longer valid and the phase of the form factor is not known, the analysis
uses an integral condition

1 /OO 2
- ds p)|F ()" <1
T Jsin

on the form-factor modulus, derived using the measurements of the the 77 cross
section by the BaBar experiment [26] up to 3 GeV and the asymptotic behavior of the
form factor predicted by perturbative QCD [155-157] above that energy. Adopting
the high energy asymptotic weight function p(s) = 1/s a value I = 0.578 £ 0.022
has been estimated in [122] and the contribution to g, from below 0.63 GeV
obtained is

ai™ " O2m,, 0.63 GeV] = (133.258 +0.723) x 1077, (5.36)
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a 40% reduction of the error estimated in a standard calculation in terms of ete™
data which yields 132.57(055)(0.93)[1.19] x 10717,

To be more specific, the corresponding electromagnetic vector current form factor
F;(s) has the following properties:

(1) F,(s) is an analytic function of s in the whole complex s—plane, except for
a cut on the positive real axis for 4m? < s < oo. If we approach the cut from above
s — s +1ie, € > 0, ¢ — 0the form factor remains complex and is characterized by
two real functions, the modulus and the phase

Fo(s) = |Fr(s)] %% ; Arg[F(s +ie)] = 6(s) (5.37)

(2) analyticity relates Re F;;(s) and Im F; (s) by a DR, which may be expressed
as a relation between modulus and phase §(s) = arctan(Im F; (s)/Re F,(s)), known
as the Omnes representation [143]

s [, )
Fr(s) = Gi(s) P(s) , Gi(s) =expy— ds" ———¢,  (5.38)
TSz 86— )
where P(s) is a polynomial, which determines the behavior at infinity, or, equiva-
lently, the number and position of the zeros;

(3) charge conservation F,(0) = 1, which fixes P(0) = 1; also [%] . =
§ v

(4) F,(s) is real below the 2 pion threshold (—oo0 < § < 4m72r), which implies
that P (s) must be a polynomial with real coefficients;

(5) the inelastic threshold is s;, = 16m72r, since for I = 1 the next threshold is the
47 one;

(6) finally, we have to take into account the isospin breaking by another factor
which accounts for the / = 0 contribution:

P(s) = Gu(s) - Ga(s) , (5.39)

where G, (s) accounts for the w—pole contribution due to p — w—mixing with ampli-
tude e:

s 1. 5
+... so=WM,— 511}) . (5.40)
S

S —

Go(s)=1+e

In order to get it real below the physical thresholds we use an energy dependent width

Fx (s)
Fx(M32)

L= M) = > Fw— X.5) = #ru > Brw — X)
X w X

}, (5.41)
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Fig. 5.24 Final state 4 4
interaction due to 7w — 7w
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where Br(V — X) denotes the branching fraction for the channel X = 3, 71'0"/, 2T
and F (s) is the phase space function for the corresponding channel normalized such
that Fx(s) — const for s — oo [98].

The representation (5.38) tells us that once we know the phase on the cut and the
location of the zeros of G;(s) the form factor is calculable in the entire s—plane. In
the elastic region s < s;, Watson’s theorem,'® exploiting unitarity, relates the phase
of the form factor to the P wave phase shift of the w7 scattering amplitude with the
same quantum numbers, I =1, J = 1:

5(s) = 61 (s)

ms) =1 for s <sin=16m, (5.43)
1 =

where n; = | F,(s)]| is the elasticity parameter. However, it is an experimental fact
that the inelasticity is negligible until the quasi two—body channels wm, a7, are
open, thus in practice one can take (5.43) as an excellent approximation up to about
1 GeV (while /sin 2 0.56 GeV). Actually, the phase difference (5.43) satisfies the
bound [158]

I1=1

1
sin(0(9) = 61s) = 3 1 =VI=P®)1 . r(s) = _Thonam (5,44
ete-—mtn—
andn; < (1 —r)/(1 +r),providedr < 1, which holds true below 1.13 GeV (below
1 GeV r < 0.143 +0.024, or 6 — 6! < 6°, strongly decreasing towards lower ener-
gies).

18The pion isovector form factor is defined by the matrix element (5.31). The 77~ state in this
matrix element, in order not to vanish, mustbeina I =1, J =1 (P wave) state, J the angular
momentum. If we look at the charge density jo, time-reversal (7) invariance tells us that

(out 771 jo(0)|0) = (in 7 7 [ jo(0)[0)* , (5.42)

as for fixed J only “in” and “out” get interchanged. The complex conjugation follows from the fact

that 7 must be implemented by an anti—unitary transformation. Now, with S the unitary scattering

operator, which transforms in and out scattering states according to |X out) = S*|X in) (X the
label of the state) we have (using (5.42))

{out 77| jo(0)10) = (in 7F 7|80 (0)|0) = e*° (out 77| jo(0)[0)*

which implies Fr(s) = 2i0rx F}(s). As two pions below the inelastic thresholds may scatter elas-
tically only, by unitarity the S—matrix must be a pure phase in this case. The factor 2 is a convention,
Oxr(s) is the mm—scattering phase shift.
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The 77 scattering phase shift is due to elastic re—scattering of the pions in the final
state (final state interaction) as illustrated by Fig.5.24. The n7 scattering P-wave
phase shift J] (s) (data are displayed in Fig.5.40) has been studied some time ago
in the framework of the Roy equations, also exploiting chiral symmetry [147]. As
a result it turns out that d] (s) is constrained to a remarkable degree of accuracy up
to about Ey = 0.8 GeV (matching point). The behavior of (511 (s) in the region below
the matching point is controlled by three parameters: two S—wave scattering lengths
ag , aé and by the boundary value ¢ = § f (Ep). One may treat ¢ as a free parameter
and rely on the very accurate predictions for aJ, aj from chiral perturbation theory.
This information may be used to improve the accuracy of the pion form factor and
thus to reduce the uncertainty of the hadronic contribution to the muon g — 2.

The remaining function G,(s) represents the smooth background that contains
the curvature generated by the remaining singularities. The 47 channel opens at
s = 16 m? but phase space strongly suppresses the strength of the corresponding
branch point singularity of the form (1 — s;,/5)%/> — a significant inelasticity only
manifests itself for s > si, = (M, + m)?. The conformal mapping

= V/Sin — 51— A/Sin — S
V/Sin — 81+ A/Sin — §

(5.45)

maps the plane cut along s > sj, onto the unit disk in the z—plane. It contains a
free parameter s; - the value of s which gets maps into the origin. G,(s) may be
approximated by a polynomial in z:

np

Gas) =1+ ci (@ =7, (5.46)

i=l1

where z is the image of s = 0. The shift of z by z - z — z¢ is required to pre-
serves the charge normalization condition G,(0) = 1. The form of the branch point
singularity (1 — s;,/5)/? imposes four constraints on the polynomial; a non—trivial
contribution from G, (s) thus requires a polynomial of fifth order at least. An impor-
tant issue is the need for a normalization point at the upper end of the energy range
under consideration (M, - - - 2M ). In fact, the present dispersion in the mr—data (see
Fig.5.6) makes it difficult to fully exploit this approach as it seems not possible to
get a convincing simultaneous fit to the different data sets. Details have been worked
outin [120, 121].

For mm — 77 scattering amplitudes of definite isospin / in the s-channel, one
writes a partial wave decomposition

FD(s, 1) = 8 > (2L + 1) Py(cos )1, (s), (5.47)
™
4

i (s)e20 ) — 1
2i

g (s) = ;/—,fﬂ“ks), ) =

)
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where 5?) (s) and né” (s) are the phase shift and inelasticity of the I, £ partial wave,
respectively, £ is the angular momentum, and k is the center of mass momentum. In
the elastic case, n = 1 and

FD(s) = sin 6 (s) € (5.48)

Given I = 0, 1, 2 we note that whenever I is even (odd) then £ is even (odd). The
scattering lengths and slope parameters aél) and bél) are defined by the threshold
parameters, which are the coefficients of the amplitude expansion in powers of center
of mass (CM) momenta around threshold:

$1/2

gl @ =a” + 50K+ 06 . (5.49)

The Roy equations are DRs for the 77 scattering amplitudes. Roy’s representa-
tion [152] for the partial wave amplitudes #/ of elastic 7 scattering reads

2 o 00
() =k () + > 2/ ds’ K (s, sHImtl (s, (5.50)
4AM?2

I'=0¢'=0

where I and ¢ denote isospin and angular momentum, respectively and k/ (s) is
the partial wave projection of the subtraction term. It shows up only in the S- and
P-waves,

s —4M? 1 1 1
kl(s)a = aal 60 + oz (248 — 5a2) (5 5609 + = 518 — g 5 52) .

The kernels K/ (s, s") are explicitly known functions [147, 152].

5.1.8 Addendum I: The Hadronic Contribution
to the Running Fine Structure Constant

By the same procedure, we have evaluated azad, the renormalized VP function can

be calculated. The latter is identical to the shift in the fine structure constant, which
encodes the charge screening:

Aa(s) = —Re [T (s) — IT,(0)] . (5.51)
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For the evaluation of the hadronic contribution we apply the DR (3.143). The integral
to be evaluated is

E2, Rdata g/ 00 RPQCD ’
Aagzi(s) = _ % Re (/ lds/wi() -‘r/ dslwim) . (5.52)
3T

2 (! __ —_1 2 (! o
m?, s'(s! — s —1i¢) E2, S (s —s —ie)

Since, in this case the kernel behaves like 1/s (as compared to 1/s* for a,) data
from higher energies are much more important here. The hadronic contribution due
to the 5 light quarks Aa}%(s) supplemented by the leptonic contribution is pre-
sented in Fig.5.25. A particularly important parameter for precision physics at the
Z-resonance (LEP/SLD experiments) is the precise value of the effective fine struc-
ture constant at the Z mass scale /s = Mz = 91.1876 GeV a(M%). The hadronic
contribution to the shift is

A a(5)

hadrons

(M2) = 0.027738 + 0.000190 (5.53)
which together with the leptonic contribution (3.123) and using (3.121) yields
a~' (M%) = 128.929 £ 0.026 . (5.54)

With more theory input, based on the Adler—function method [15, 79, 112], we obtain
(see Fig.5.18)

0.064 3

—S— lepfons+quarks
0.05 -
.- leptons

0.044 r

0.034

Ao

0.02

0.014

0.00

time-like

space-like

-0.014 3

4.0 2.0 0.0 2.0 4.0
E (GeV)

Fig. 5.25 Shift of the effective fine structure constant A« as a function of the energy scale in the
time-like region s > 0 (E = \/s) versus the space-like region —s > 0 (E = —+/—s). The band
indicates the uncertainties
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Aad)  (M2) = 0.027555 £ 0.000127 (5.55)

a~'(M2) =128.965+0.017 .

The leptonic shift has been calculated analytically to three loops in [159] and to four
loops in [160]. At the Z mass the numerical result reads

Adiey(M2) = (%) 13.52631(8) + (%)2 14.38553(6) + (a)3 84.8285(7)

T
n (%)4 [810.65(1)ns — 39.8893(5)s1] + O(0°)

where NS comes from non-singlet and SI from singlet diagrams, respectively. For
the CODATA value o = 7.2973525698(24) x 1073 one obtains

Adep(M%) = 0.0314192.... + 0.00007762... + 0.00000106... 4 0.00000002...
= 3.14979(2) x 1072

Comment on the experimental determination of a(s) as a complex analytic function:
As noted earlier the effective fine structure constant shown in Fig. 5.25 is very impor-
tant also for removing the VP effects from the physical cross section in order to get
the undressed one which is needed in the DR (5.55). The dressed (physical) cross
section measures the full photon self—energy the undressed (bare) extracts the one—
particle irreducible self-energy. The precise relationship (3.117) between the full
photon propagator and the 1PI self—energy IT’ (s), discussed earlier in Sects.2.6.1
and 3.7, is given by the Dyson summation formula (2.162). Here it is important to
keep in mind that the photon vacuum polarization function is a complex analytic
function. It is real on the negative real axis (space-like region) and has an imaginary
part above the production threshold on the positive real axis (time-like region). This
suggests to generalize the definition of the real effective e.m. fine structure constant to
a complex analytic function. The complex effective fine structure constant is defined
by (5.51) and (5.52) by omitting the “Re” prescription. What can be measured is

olete™ — ptup)

= |a(s)/a(0)|?

olete” = ptu)p

where o(eTe™ — putp™) is the experimental muon pair production cross section

and o(ete™ — pt ™)y the Monte Carlo cross section provided by theory with the

VP effects switched off. The result of the KLOE measurement is shown in Fig. 5.26.
Then, using a(s) = «(0)/(1 — Aa) we have

Z =1a0)/as))? = (1 — Aa)(1 — Aa)* = 1 — 2Re Aa + (Re Aa)? + (Im Aa)? .

Furthermore, separating the leptonic and the hadronic part Ao = Aayep + Aaiag, the
leptonic part Aayep(s) is well known from perturbative QED, given by (3.123) at one
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loop and (3.124) at two loops. The analytic three loop result for Acvep(s) has been
implemented in the alphaQED package [161]. The four loop leptonic corrections
turn out to be negligible for our purpose. Using this information, the experiment
allows one to determine Aap,q. The second experimental input is Im Aay,g Which is
determined by opaq(s). Given Z = (1 — x)? + y>and y weextract 1 —x = /Z — y2
and hence

ReAa=x=1-yZ—-y?; ImAa=y, (5.56)

the latter obtained from the R measurement. Then a(s) = a(0)/(1 — x —1iy) is
the complex electromagnetic fine structure constant. The non—perturbative hadronic
shifts, displayed in Fig.5.27, follow as

Re Aang = Re Aa — Re Aagep ; Im Acpg = Im Aa — Im Aqyep. (5.57)

This measurement has been performed recently with the KLOE detector at the @
factory DA®NE at Frascati [65]. The experiment has measured the running of the
effective QED coupling constant a(s) in the time-like region 0.6 < /s < 0.975
GeV using the Initial State Radiation process ete™ — ptu~+. It represents the first
measurement of the running of «(s) in this energy region. The results show a more
than 5o significance of the hadronic contribution to the running of a.(s), which is the
strongest direct evidence both in time- and space-like regions achieved in a single
measurement. By using the ete™ — 77~ cross section previously measured at
KLOE the real and imaginary parts of the shift Aa(s) has been extracted and is
found to agree very well with the dispersive evaluation (5.52) based on the weighted

SR S Ny
§ 1.08 E
Sk %
@106 \éﬁé .
3 = 0652 ®
1.04 — éééi ’ 'Q'Q'Q‘..
1.02 }
1= o?o+iu~§
0.98 [—
E @® Expdata
0.96 [— @® Th.pred. for o(s)=0/(0)
0.94 } Th.pred. for oa(s):o((s)‘ep
0.92 ; —— Th.pred. for oc(s):oc(s)‘emhad
I e I I S N I T I S

06 065 07 075 08 08 09 095 1
Energy (GeV)

Fig. 5.26 A first direct measurement of the modulus square of the effective fine structure constant
|a(s)/c(0) |2 in the time-like region around the p resonance with the KLOE detector confirms the
typical strong energy dependence on the vacuum polarization screening in the vicinity of a hadronic
resonance. Courtesy of the KLOE-2 Collaboration. Reprinted from [65], http://dx.doi.org/10.1016/
j-physletb.2016.12.016, (License: CC-BY-4.0)
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Fig. 5.27 Combining cross section measurements of o(ete™ — p*p~) and o(ete™ — mr717)
and subtracting the leptonic contributions obtained by QED calculations (see (3.123) and (3.124))
one is able to extract the real and the imaginary parts of the hadronic shift Aapag(s) =1 —
a(0)/a(s) — Acuep(s) separately. Courtesy of the KLOE-2 Collaboration. Reprinted from [65],
http://dx.doi.org/10.1016/j.physletb.2016.12.016 (License: CC-BY-4.0)

Fig. 5.28 Including the

missing 37 channel changes -0.0101
Im Aap,g substantially at the
t.u resonar.lce, .WhICh is not -0.020-
included in Fig.5.27 —
1]
T -0.0304
<
E
-0.0401
-0. 0501

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
V(s) (GeV)

average of the shown in Fig.5.25. We mention that in the imaginary part is only
included the 77 part measured in the same experiment (KLOE). The 37 channel
could have been added from other experiments which have measured that channel.
The effect is illustrated in Fig. 5.28. In contrast Fig. 5.26 includes the effects from all
channels.

5.1.9 Addendum II: The Hadronic Contribution
to the Running SU (2); Gauge Coupling

Within the SM hadronic vacuum polarization effects not only appear in the photon
self energy but also in other gauge boson self—energies (see e.g. [33]), in particular in
v — Z mixing as discussed following p. 327, where it appears as a weak interaction
contribution (see Sect.4.2). It amounts to evaluate the running gauge coupling o, =
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% which together with the running o = % determines the running of the effective
weak mixing parameter sin O = sin?] = ¢? /g? defined in (4.42).

According to the SM gauge structure and factoring out the gauge couplings, the
non-perturbative hadronic correction in the vy, yZ and Z Z self—energies, decompose

as

2
' A eg ~3, €78y ~.
177 = 62 177 : UZV — nvr _ g n"\}"l :

Cy Cg
2 2 2.2
e’s
zz _ 9 33 €" ~3y 9 5y
I7 _EHV_A—2C—217V +C—2HV , (558)
g g g

where s, = sing = e/g, ¢, = (1 — 52)'/2, and with I1(s) = I1(0) + s IT'(5)

Aapa(s) = = [Re 17 (6) = 77 O] .
2
Atiznaa(s) = —j—z [Re ) — ﬁ/“(O)] , (5.59)
g
which exhibit the leading hadronic non-perturbative parts, i.e. the ones involving the
photon field including its mixing with the weak neutral current.'”

Unlike the photon VP, which is directly related to to ete™ — ~* — hadrons
process, other relevant combinations are not related in a similar simple direct way
to a physical process. However, such HVP effects obey simple approximate rela-
tionships as they differ mainly by the different flavor weighting given by overall
charge assignments. In the large—N, terminology (see p. 152) in the planar approx-
imation the relation would be given by the valence quark charges/couplings ratios.
As flavor reweighting will play a role in some places below we briefly consider the
interrelations between the electromagnetic and the weak neural current here.

On Hadronic Currents and Correlators:

In QCD the hadronic currents in terms of the quark field (current are color singlets i.e.
color diagonal in the quark fields and color is summed over) are the electromagnetic
current:

- 1
d~"d — 3 SYHs 4 (5.60)

- 1
d~"d — > SyHts 4 - (5.61)

19The leading hadronic contributions are available from the FORTRAN package alphaQED [161]
Adpag is named der and Aaopyq is given by deg.
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In current correlators, one has to distinguish valence quark connected and discon-
nected contributions, where the latter need not be diagonal in flavor space and give
rise to OZI suppressed transitions. In case the latter would be small relative to the
flavor diagonal ones one would obtain a flavor weighting as in pQCD. The sepa-
ration of the ud part based on isospin considerations not assuming OZI violating
terms to be small leads to a different reweighting, however, and which actually turns
out to be a much better approximation, as has been checked against lattice QCD
simulations [162, 163].

In the SU (3)gavor limit of the light quarks we have IT°° ~ T dd ~ yun and 795 ~
7" ~ 1" (my ~ m4 ~ m,), which implies

,\,2 uu udy . 3y 1 uu udy . 33 3 uu ud 1 ud
1) ~5 (n - ) B IREE (17 - ) DI = (17 - )+En
These assumptions imply

N 1 3 3
3 Y
1 = S Wy + S 00+ 5 115 (5.62)
and further assuming |[7*¢| <« 3 (IT"* — I1"%) we have
A 9 9 9
33 7 7y 7y
A A+ o A0+ 1 110 (5.63)

Y]

An attempt to proceed similarly in the SU (2)ayor limit of the light quarks with 799 ~
7" (myg ~ m,), wefindno simple relation unless one assumes OZI suppressed terms
to be negligible (see below). This leads to the reweighting as in perturbation theory,
and leads to a 5% mismatch when compared with lattice simulations.

At low energy the VP effects are related to hadrons and a corresponding note
the reader may find on page p. 152 in Sect.2.8. For energies where exclusive
hadro—production channels are available i.e. below 2 GeV one may perform flavor
separation by hand.:

since final state e.m. interactions violate isospin, we skip all final states involving
photons like: 7%, 1, ' etc. (see Table 5.3)

e as ud, I = 0 we include states with odd number of pions, incl. the w meson
e asud, I = 1 we include states with even number of pions, incl. the p meson
e as §s we count all states with Kaons, incl. the ¢ meson

States nX with X some other hadrons are collected separately, and then split into
q = u, d and s components by appropriate mixing.

For the resonance contributions in the spirit of the large—N, vector meson
dominance picture we proceed as follows: in terms of single quark currents j 7,

where jI = gvuq, we may define currents associated with the resonances j” =

% (j” —jd) ,JY = (J +J )andj‘/)=—%j‘v,Whichcorrespondstotheide-

ally mixed J¥€ = 17~ states pg, wo and ¢y, we may write
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= AT
j3=%jp+§j¢+%j“w+§jf (5.64)
Denoting the diagonal amplitudes by IT(") we obtain
A7 ~ 09 4 0@ 4 q@ 4 oo 4 g
A~ gy Zm«» n g v 4 %1‘[‘“

2
N 1 9 9 ; 9
I3 ~-—gw 4+ Z @ 2 gu/i o 2 g™ 5.65
4 + 16 + 64 + 16 ( )
provided mixing is small. For the combination 3 I73% — [T = —3 017 + 311 —

33—21'1 (J /1) + - - - the (ud) contribution is solely due to p — w mixing, as an example.
In any case we apply the resonance reweighting for corresponding contributions of
Table 5.2.

Besides the flavor SU (3) inspired weighting

3y _ | Q——
Huds - E uds

the p dominance (exact in the isospin limit) assignment

1 3
H3/ o, U3, 5
u;_i L’t)d/’ s’y_z S’y

which agrees well with lattice data.
Note that the “wrong” perturbative weighting

3 9 . 3y _ 3 Y
Hud_%nud’ Hs/_Z s
has been proven to clearly mismatch lattice results, while the correction % = % is

in good agreement. This also means the OZI suppressed contributions should be at
the 5% level and not negligibly small.

Note that in the 1985 SU (3) flavor separation scheme [33] we assigned to non-¢
(non-resonant) s component the weight 1/2, while in the updated scheme we assign
the weight 3/4 as for resonant ¢. We take the difference as a systematic uncertainty.

SM gauge boson self-energy contributions are expressed in terms of Jj' = % i

A 3y A 3y ~ 33 A 33

such that 77 (s) — 1" (0) & LM and 1" (s) — [ (0) « 1 [T%. That we
are using the proper recipe has been checked in lattice QCD calculations [162, 163].
The running weak mixing parameter has been displayed in Fig.4.17 in Sect.4.2.
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5.1.10 Addendum III: T Spectral Functions versus ete™
Annihilation Data

In 1997 precise T—spectral functions became available [123—127] which, to the extent
that flavor SU (2) in the light hadron sector is a good symmetry, allows one to obtain
the isovector part of the eTe™ cross—section [164]. The idea to use the 7 spectral
data to improve the evaluation of the hadronic contributions a" was realized by
Alemany, Davier and Hocker [11]. The 1sovector part of o(ete™ — hadrons) may
be calculated by an isospin rotation, like 77~ — 777, from 7—decay spectra,
to the extent that the so—called conserved vector current (CVC) would be exactly
conserved (which it is not, see below). In the following we will explicitly consider
the dominating 27 channel only. The relation we are looking for may be derived
by comparing the relevant lowest order diagrams Fig.5.29, which for the ete™ case
translates into

2
0(0) =og(ete” — 7t = @ vo(s) (5.66)
and for the 7 case into
1dr  _ _ 0 6|Vua? Sew B(T— — vre” )
—— (T > Ty =
I ds m? B(t— = v, 70

s \? 2s
(1 — W) (1 + W) v_(s) (5.67)

where |V,4] = 0.97425 + 0.00022 [41] denotes the CKM weak mixing matrix
element and Sgw = 1.01907 4 0.0003 accounts for electroweak radiative correc-
tions [113, 165-169]. The spectral functions are obtained from the corresponding
invariant mass distributions. The B(i)’s are branching ratios. SU (2) symmetry (CVC)
would imply

Fig. 5.29 7-decay data may
be combined with I=1 part of
ete™ annihilation data after
isospin rotation

[7~7% < [x~7t] and
applying isospin breaking
(IB) corrections (e.m.
effects, phase space, isospin
breaking in masses, widths,
po — w mixing etc.)
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v_(s) = vo(s) . (5.68)

The indices i = 0, — denote the neural 7~ 7" and the charged 7~ 7° channel, respec-
tively. The spectral functions v; (s) are related to the pion form factors F(s) by

B3(s)

5 1@ (=0,-) (5.69)

vi(s) =
where [3; (s) is the pion velocity: 5y = Br-r+, - = Br-n0. The difference in phase
space of the pion pairs gives rise to the relative factor 3° //33.

Before a precise comparison via (5.68) is possible the various sources of isospin
breaking effects have to be taken into account. An example of isospin breaking
are the different final state radiation effect as illustrated in Fig.5.30. As mentioned
earlier, this has been investigated in [ 169, 170] for the most relevant w7 channel. The
corrected version of (5.68) (see [169, 170] for details) may be written in the form

K, Al R
o) _[ (S)} ol 15 (5)

= 5.70
i Kr(s) ds SEw ©70)

with

G2 |V, m? s \? s ra?
K = % "7 (- = 142 —); K = —
ris) 384m3 ( mz) ( + m%) > Kols) 3s '

T

the prefactor of the final state wm-system of Fig.5.29, and the isospin breaking cor-
rection

1 5| F%s) ?
Rip(s) = | (5.71)
Gem(s) B o [F7(s)
+ +
’ . 'M‘
v v wd e wd  n
/ / Y ’ / R ’
~ IV ARG
+ + +
T 6= S, ~ AT = T AR
. ™/ ) Y :M\
i MW e M wf M
W +‘ ’ v W +‘ ’ V W +‘ ’ %
~n—'ﬂ.0 ~n—'ﬂ.0 ~n—'ﬂ.O

Fig. 5.30 Sample photonic correction which differ between the neural and the charged channel.
The cut diagrams represent the 27 states incl. FSR
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includes the QED corrections to 7~ — v,7~ 7 decay with virtual plus real soft and
hard photon radiation, integrated over all phase space.

However, photon radiation by hadrons is poorly understood theoretically. The
commonly accepted recipe is to treat radiative corrections of the pions by scalar QED,
except for the short distance (SD) logarithm proportional the In My /m, which is
replaced by the quark parton model result and included in Sgw by convention. This
SD log is present only in the weak charged current transition W** — 7+ 7% (),
while in the charge neutral electromagnetic current transition v* — 77~ () this
type of leading log is absent. In any case there is an uncertainty in the correction of
the isospin violations by virtual and real photon radiation which is hard to quantify.
However, the vy — 7~ 7+, 7970 data strongly suggest that sSQED applies quite well
below about 1 GeV.

Originating from (5.69), ﬂ;,ﬂ+ / ﬂi,ﬂo is a phase space correction due to the 7+ —
79 mass difference. FfT) (s) is the NC vector current form factor, which exhibits besides
the I = 1 part an I = 0 contribution. The latter represents the p — w mixing term
which originates from the SU (2) breaking (m4 — m,, mass difference). Finally, F~
is the CC I =1 vector form factor. One of the leading isospin breaking effects
is the p — w mixing correction included in |F%(s)|?. The form factor corrections,
in principle, also should include the electromagnetic shifts in the masses and the
widths of the p’s.20 Up to this last mentioned effect, discussed in [114], which was
considered to be small, all the corrections were applied in [113] (see Fig.5.34) but
were not able to eliminate the observed discrepancy between v_(s) and vy(s). The
deviation is starting at the peak of the p and is increasing with energy to about
10-20%. The origin of this difference is p° — v mixing, which occurs in the neutral
e*e™ channel, but obviously is absent in the charged T—decay. This will be discussed
next.

5.1.11 A Minimal Model: VMD + sQED Resolving
the T versus et e~ Puzzle

To come to the point, the “model” we apply here is a widely accepted model, with the
difference that previous models of the pion form factor in the neutral channel, known
as the Gounaris—Sakurai model, have been missing to take into account the one-loop
diagrams in the p° — v mixing amplitude. When modeling the pion form factor as
a strong interaction object, photon radiation by the pions is usually not accounted
for. The latter is considered as an isospin breaking correction. Recently, in [88] an

20Because of the strong resonance enhancement, especially in the p region, a small isospin breaking
shift in mass and width between p° and p¥, typically AM p =My —Mp~25MeVand AT, =
Iyt — Ty ~ 1.5 MeV and similar for the higher resonances p’, p”, ... and the mixings of these
states, causes a large effect in the tails by the kinematic shift this implies. Such large parameter
shifts can mimic to some extent a v — p° mixing effect (see Fig.5.33) and is included by Davier
etal. [129, 171] as part of the “normal” IB, as an alternative to v — p° mixing. Theory arguments

yield a small AM, ~ 0.8 MeV only.
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attempt has been made to take into account more systematically the effect of the
electromagnetic interaction of the pions. This requires an effective model specifying
the electromagnetic interaction of the pions. As we know in the SM photons couple
to quarks and the radiation of bound systems like pions is a complicated problem of
non-perturbative nature. As in the case of FSR at lower energies scalar QED treating
the pions as point-like objects should be a good starting point. Thus the manifestly
electromagnetically gauge invariant version of the VMD model is to be combined
with scalar QED. The effective Lagrangian then reads

L=L,+ L.,
-Efr = D/LW+D+'LL7T7 — m,,zr’/TJr’/Ti s D’u = ({9# — ie A/,, — igpﬂ-ﬂ- p’u s
1 Hv 1 UV M/% 4 € v
LW:_Z w F —prp “FTPMP +2—gppw,F . (5.72)

We then are able to calculate self-energy (SE) effects which have to be included
mandatory in order to get the p — w77~ decay correctly. In fact, the self-energy
corrections to ete~ — w77~ in particular account for the energy dependent width
of the p in the Gounaris—Sakurai parametrization of F,(s). As the p° mixes with the
~ one has to take into account SE effects consistently in the p — - coupled system as
represented in Fig. 5.31. The missing effect so far (above) was the energy dependent
self-energy effects, the pion loops, in the p — ~ mixing propagator.”! The barey — p
transverse self-energy functions are given by

2 2
_ ¢ 2 _ €9pnn 2 _ o
- 487T2 f(q ) ’ n’y/) - 487T2 f(q ) and pr - @

, @,  (673)

Explicitly, in the MS scheme (z the MS renormalization scale)

2
hg® = f@/g* =2/34+20—y) —2(1 = »)>G() +1n % , (5.74)

™

where y = 4m? /s and G(y) = ﬁ (In % —im), for g> > 4m? (see (2.257).

Mass eigenstates are obtained by diagonalization and renormalization. Renor-
malization conditions are such that the matrix is diagonal and of residue unity at the
photon pole g> = 0 and at the p resonance s = Ml%:

21In The GS model the approximation —i]_[‘w”l”,m (g) = ~w~O=—= is adopted. Furthermore, the
naive VMD Lagrangian

M
Lyp=——"puA".
9p

is used, which is not manifestly e.m. gauge invariant.
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Fig. 5.31 Irreducible B (“\'
self-energy contributions at I () (Q) = ol haan A
one-loop v e

SO0 = =0 = + =
Mg = I, (¢ — ¢* I (0) = ¢° IT*"(g°) (5.75)
2
(g% = I,,(q%) — M —~—ReI1,,(M) (5.76)
P

dr1
M;7(@%) = M,(q%) = Re [T, (M7) — (q* = Mp)Re ——2=(M])  (5.77)

where we have used I7..(0) = 0, IT/ (¢*) = I1,,(¢%)/q*, which is inferred by elec-
tromagnetic gauge invariance.
The propagators are given by the inverse of the 2 x 2 self-energy matrix

2 2 2
A1 _ [ 4 +I1,,(q7) H’yp(q ) )
b= ( M@ q* = M2+ 10,0 (>78)

and read
DW”V = ! 2 (2
(¢ — %
D’W _ - Wp(qz)
(¢ + TT,(¢*)(q> = M} + I, (¢%) — IT5,(4°)
D, = 1 T (5.79)

9 = M3+ 10,)(9%) = i
Resonance parameters derive from the location sp of the pole of the propagator

nipo(sP)

—— =0, (5.80)
sp + H’y'y(sP)

sp — MZO + Hpopo(Sp) -

with sp = M;n complex:

M) =(4%),0 =M, —iM, T, . (5.81)
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By diagonalization the physical p acquires a direct coupling to the electron

Loep = ey (0 — iep Ap) Ve
= ¢e7”(3u —ie Au+i gpeepy) e (5.82)

with gpe. = e (A, + Ap), where

m,© Rell,,(M}) — IT,,(0)

AOZ =
2 p 2
Mp Mﬂ

For our model Ag = 0 and A, = ¢/g, to leading order.
F.(s) with p — v Mixing at One-Loop

The ete™ — ntn™ matrix element in sSQED is given by

M= —ie® 5(p) v u(p) (p1 — p2)y Fr(q?) (5.83)

with F;(g%) = 1. In our extended VMD model we have four terms Fig.5.32 and
hence

Fr(s) « e’ D~m + egprr Dw’p - gpeeeD/w — GpeeYprr Dpp s

and properly normalized (VP subtraction: e (s) — ) the undressed pion form factor
is given by:

Fr(s) = [62 qu +e (gpmr - gpee) D'yp — YpeeYprr Dpp] / [62 D’y"/] . (5.84)

Phenomenological constraints (see below) typically yield couplings
Gprrbare = 3.8935, gprrren = 6.1559, gpee = 0.018149, x = gyrr/g, = 1.15128.

We note that the precise s-dependence of the effective p-width is obtained by
evaluating the imaginary part of the p self-energy:

2
Im 1, = i‘é”; Bs =M, T(s) . (5.85)

which yields

2
9o q
Ty(s)/ My = 2~ 3#; To/My =25 5 gomn = 487 T/ M) . (5.86)
P

O

Fig.5.32 Diagrams contributing to the process e™e™ — 77 ~. One-loop self-energies of Fig. 5.31
are to be included
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In our model, in the given approximation, the p on—shell form factor reads

. YpeeGprrm Mp 2012 36 I,
Fr(M?) =1—i2 2\ F(MH)PP =1+ = , 5.87
(M) L T, |Fr(M))] + 2FT, (5.87)
1 Gee
Tpee = 3 ar M, Gpee =127 Typee/M,, . (5.88)

Note that there is no new parameter involved in this model, the only parameter which
affects the p — v mixing is 9pee>» Which is entirely fixed by the electronic width I,
of the p°.
Compared with the Gounaris—Sakurai (GS) formula
2 2 @32
—M; + I157(0) as _ 20 B,M;

2
; =—2> L (1+drI,/M,)", (5.89
s — M2+ I (s) pee 9T, (L+dT,/M,)" . (589)

F&5(s) =

we observe that the GS formula does not involve g, resp. I, in a direct
way, as the normalization is fixed by applying an overall factor 1 +d I',/M, =
1 —11,7(0)/ M/% =~ 1.089 to enforce F(0) = 1, which in our approach is automatic
by manifest gauge invariance.?

In order to compare our “theory” with experimental ete™ — 77~ data we have
to subtract from the data effects not included in our model. What we are interested in
isthe I = 1 component of the form factor, which is the part which can be confronted
with results from 7-decay spectra. Our simple model does not include the isospin
breaking I = O part, i.e. the w — 77 contribution, and hence we have to perform
comparisons with the I = 1 isovector part only. In standard parametrization based on
the GS formula also higher resonances p’ and p” and even a p™ (e.g. in [26]) are taken
into account, to represent the data by a fit and for extracting resonance parameters
and their mixings [21, 26, 172]. By setting w and higher p mixing amplitudes to zero
in a fit, we obtain the parameters: M, = 775.5 MeV, I', = 143.85 MeV, B[(p —
ee)/(p — mm)] = 4.67 x 107>, e = 0.302822, g,rr = 5.92, gpee = 0.01826 from a
fit to our model. For a detailed comparison the ratio:

| Fr(s)I?

_ 5.90
), 420

T (8) =

is the precise measure for the so far unaccounted energy dependence of the p — v
mixing. We have plotted it in Fig. 5.33. If mixing is not included in F;(s) already (as
was standard in the past) the total correction formula to the spectral functions reads

Vo(s) = 7, (s) R(s) v_(s) (5.91)

22Note that electromagnetic gauge invariance is more than charge conservation Fy(0) = 1, and
in fact the self-energy correction used in the standard GS formula does not respect gauge invari-
ance [88].
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Fig. 5.33 a Ratio of | F;(E)|? with mixing normalized to the no mixing case. The same ratio based
on ete™ versus 7 GS fits is also shown. |F,$e(E)|2 I=1 part only, i.e. w subtracted, no FSR and
|FT(E) |2 after IB corrections, but without p — v mixing correction. b The same mechanism scaled
up by the branching fraction I'y /I"(V — 7m) for V = w and ¢. In the 77 channel the effects for
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Fig. 5.34 Isospin breaking corrections. Left The final state radiation (FSR) contributing to F£°(s),

T-decay related photon radiation GE,\I,[, phase space correction [13 /3 (s) related to the pion mass
difference, and the product of them rig. Right effects related to the shift in the p parameters, and
from p — w mixing, which contributes to the I = 0 part of F¢(s) (see also [171])

with

2

L B3(@s) | Fols)
Gem(s) B2(s) | F—(s)

Ri(s) = (5.92)

given by (5.71). As discussed earlier Ggpm(s) is the electromagnetic radiative cor-
rections, 33 (s)/3 (s) the phase space modification by the pion mass difference
mao # my= and | Fo(s)/F_(s)|? includes shifts in masses, widths and correction due
to p — w mixing (Figs.5.34, 5.35 and 5.36).

After subtracting final state radiation correction 7(s) (16), vacuum polarization
effects |a/a(s)|?> (16) and the I = 0 component represented by the p — w mixing
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(5.34) from the e*e™-data, we can compare isospin breaking corrected 7 data with
the eTe™ data. In Fig.5.37 we show the “data” normalized relative to a CMD-2
Gounaris—Sakurai fit.”}

Including the missing p° — v mixing effect clearly brings 7 spectra into good
agreement with the eTe™ data. As illustrated in Fig.5.33, in the vicinity of the p
mass 7,,(s) can by mimicked by taking larger shifts of mass and width of the p as
they are obtained by comparing the GS fits of the I=1 part of F?°(s) with the GS
fit of F (s) [114]. This however, is missing the true reason for the difference of the
corresponding spectra, which resulted in the 7 vs ete™ discrepancy.

Applications: a, and BEYS = T' (1 — v.7nn®)/I;

How does the new correction affect the evaluation of the hadronic contribution to
a,? To lowest order in terms of ete™-data, represented by R(s), we have

2

o > ds
azad,LO(T(ﬂ_) =13 = R,(r(;)(s) K(s), (5.93)
4mZ

23The choice of the normalizing function is arbitrary, in particular at higher energies as there are
no CMD-2 data above about 1 GeV.
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Fig.5.37 |F(E)|? inunitsof ee™ I = 1 (CMD-2 GS fit): a 7 data uncorrected for p —  mixing,
and b after correcting for mixing

with the well-known kernel K (s) and
RO (s) = (3s070)/ (410 (5)) = 3ug(s) -

Note that the p — -y interference is included in the measured eTe™-data, and so it
is part of the contribution to azad, as it has to be. In fact aﬁad is an intrinsically
ete™-based “observable” i.e. a neutral current channel quantity.

How to utilize 7 data as an enhancement of the ete™ data set? In addition to
applying the standard CVC violating corrections v_(s) — vo(s) = Rig(s) v_(s) we

now have to include the new p —  correction
V_(8) = vo(s) = rpy(s) Rip(s) v—(s) (5.94)

As a result for the I=1 part of azad[ww] we find
day[py] ~ (=5.1£0.5) x 10717 (5.95)

as a correction applied for the range [0.63, 0.96] GeV. The correction is not too large,
but at the level of 1 o and thus non-negligible. Indeed the discrepancy between T
based and eTe~ based evaluations is removed, as [88]:

a[ee — mm] = 353.82(0.88)(2.17)[2.34] x 107"
ap [t — wrv] = 354.25(1.24)(0.61)[1.38] x 107"
aplee + 7] = 354.14(0.82)(0.86)[1.19] x 1077,

which improves the LO HVP as given in (5.29).

An important independent cross-check is provided by the 7 — 7mv, branch-
ing fraction By = I' (1 — v,7w")/ I, another key quantity which can be directly
measured. This “7-observable”, a genuine charged channel quantity, can be evalu-
ated in terms of the I = 1 part of the ete™ — 77~ cross section, after taking into
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account the IB correction

vo(s) = v-(5) = vo(s)/ (R () 7 (5)) - (5.96)

i.e. here we have to “undo” the p° — v mixing in the e*e~ data, which is absent in
the charged isovector channel. The branching fraction is thus given by

2 2
2Sew BelVugl? (™7 ) 2 2 !
Bcvcziu/ ds R s) (1- 1+ —, (597
0 . 2 S ﬂ+7T_(Y) m2 m2 rp",(s) RIB(S) ( )

g 2
mz dmz T T

The shift we find is

SBENC[py] = 40.62 + 0.06 % (5.98)

w0

aremarkable shift, which again eliminates the former clash: 7 data combined B0 =

25.3 £ 0.1 versus ete”+CVC ee data combined Bg;ﬁc =246+0323252+03
in good agreement. Altogether we can say that the p — v mixing at one-loop perfectly
matches the pattern of the 7 versus ete™ puzzle, and thus removes it.

One question remains though: is our model, assuming point-like pions, realis-
tic? There is no doubt it works at low energies when photons are relatively soft.
Scalar QED in fact has been utilized to account for radiative corrections involving
the charged pions in the final state, like the FSR correction (5.128), (5.129). Direct
experimental studies of the FSR spectrum at intermediate energies are poorly avail-
able [173—-175], and as far as studies exist they seem to support SQED [60, 176],
which however, obviously has to break down in the hard photon regime. Here, di-pion
production in v~y fusion is able to shed more light on that problem. Di-pion production
cross sections are available from Crystal Ball, Mark II, JADE, PLUTO, CELLO and
Belle [177-184]. The processes vy — n+7~ and vy — 7’7 provide an excellent
laboratory to study scalar excitations ag, f;, fo, - - - and their properties [185-189].
They also play a role in the context of hadronic light-by-light scattering as we will
see later. In Fig.5.38 we see that at low energies photons see the pions. The 7+7~
cross section is large at threshold while the 7%7° one is tiny. Photons do not see the
composite structure if they are not hard enough. The 77 final state is then available
via strong rescattering only (see Fig.5.39). As the energy of the 77 system increases
the strong tensor meson resonance f>(1270) shows up in both the charged and the
neutral channels. Rates only differ by the isospin weight factor 2. Apparently now
photons directly probe the quarks. Figure 5.38 also illustrated that utilizing isospin
relations to evaluate missing contributions to aﬂad‘w from unseen channels may be
rather misleading, since we are dealing with hadron production mediated by one
photon exchange and electromagnetic interaction obviously can violate isospin by
close to 100%.

What do we learn? (i) photons seem to see pions below 1 GeV; (ii) photons
definitely look at the quarks in and above the f,(1270) resonance region. Above we
applied sSQED up to 0.975 GeV, the most relevant region for determining a,,. Therefore
our model should be pretty reliable. Nevertheless, to be on the conservative side we
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Fig. 5.38 How do photons couple to pions? This is obviously probed in reactions like vy —
atr~, 70979, Data infer that below about 1 GeV photons couple to pions as point-like objects (i.e.
to the charged ones overwhelmingly), at higher energies the photos see the quarks exclusively and
form the prominent tensor resonance f>(1270). The 707 cross section in this figure is enhanced

by the isospin symmetry factor 2, by which it is reduced in the true data

L AT A N

T

VJFF ..... ™ Jrl------wf,ﬂ' E+u,d

Fig. 5.39 Di-pion production in vy fusion. At low energy we have direct 777~ production and
by strong rescattering 777~ — 7%7%, however with very much suppressed rate. With increasing
energy, above about 1 GeV, the strong gq resonance f> (1270 appears produced equally at expected
isospin ratio ¢(7%7%) /o (rTn™) = % This demonstrates convincingly that we may safely work
with point-like pions below 1 GeV

assume a 10% model uncertainty of the correction. One thing should be clear, not
taking into account properly the electromagnetic interaction of pions, is definitely
not a realistic approximation in trying to describe what we see in ete™ — 7tn™.
There is another important check of our result, namely, a comparison of the 77
rescattering as obtained in our model with the one obtained by Colangelo, Leutwyler
in their “from first principles approach” which we described at the end of the previous
subsection. One of the key ingredients in this approach is the strong interaction phase
shift 5% (s) of w7 (re)scattering in the final state. We compare the phase of F;(s) in
our model with the one obtained by solving the Roy equation with 7wr-scattering
data as input. We notice that the agreement is surprisingly good up to about 1 GeV
as shown in Fig.5.40. It is not difficult to replace our phase by the more precise
exact one. As a main conclusion we can say that using properly corrected 7 spectral
data yield the same result as the e*e™ data and we can actually combine and hence
improve the results: in view of the observed discrepancies in the ete™ — 77 data
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Fig. 5.40 The phase of F;(E) as a function of the c.m. energy E. We compare the result of the
elaborate Roy equation analysis of [120, 121, 147] with the one due to the SQED pion-loop. The
solution of the Roy equation depends on the normalization at a high energy point (typically 1 GeV).
In our calculation we could adjust it by varying the coupling g,. Data from [144-146]

from BaBar and KLOE it is certainly a good idea to take 7 — m7rv; data information
into account, and we will take our best estimate

ap iV = (688.77 +3.38) x 1077, (5.99)

which is based on a direct integration of all available ete™ — hadrons, as well as
the IB and y — p mixing corrected 75 — 7791, —data in the range 0.63-0.96 GeV
plus pQCD for the perturbatively save region between 5.2 and 9.46 GeV and for
the high energy tail above 11.5 GeV. Taking into account the improvement obtained
in [122], by using the precise 77 scattering phase shift data [144—146] to constrain
| F)? below 0.63 GeV (see (5.36)) one obtains

ap M = (689.46 +3.25) x 1077, (5.100)

as a best estimate.

The recent analysis [92] reports 516.2 & 3.5 for ete™ + 7 in comparison to
506.9 £ 2.6 for ete™ for the range from threshold to 1.8 GeV. As below about 1
GeV the v — p mixing correction can be evaluated reliably via (5.95), it is deter-
mined by the electronic width of the p solely, we get 511.1 + 3.5 and a1 =
692.6 +3.3 x 10710 for ete™ [92] becomes azad/'LO =696.8 £ 4.0 x 10719 for
ete™ + 7 after the v — p mixing correction.

We understand the EFT “VMD+sQED” as the low energy tail of the more appro-
priate resonance Lagrangian approach [134] or alternatives like the HLS model,
which attempts to treat the spin 1 resonances p*, p°, w and ¢ in a similar way as
the massive gauge bosons W* and Z in the electroweak SM (see below). Once
more a systematic Lagrangian quantum field theory approach turns out to provide a
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Table 5.6 Results for aﬂ“d x 1010 obtained by combining information from 7 — 77w, decays in

order to improve the evaluation of a}}ad(l) . Uncertainties given are the statistical, systematic and the
total ones

aﬂad contribution Energy range | Result (Stat) (Syst) [Tot]

mm-dataeTe” I=1 |(0.63,0.96) |353.82 (0.88) (2.17) [2.34]
GeV

mm-data T (0.63,0.96) | 354.25 (1.24) 0.61) [1.38]
GeV

am (I =1)ee+7 |(0.63,0.96) |354.14 (0.82) (0.86) [1.19]
GeV

Total ete™ (my, 00) 687.04 (1.12) (4.006) [4.21]

Total ete™ + 7 (my, 00) 687.74 (0.83) (3.34) [3.44]

more reliable framework for understanding particle physics processes, while the rel-
atively ad hoc phenomenological models, like the Gounaris—Sakurai ansatz, easily
can miss some important effects.?* Taking into account one-loop self-energy cor-
rections systematically is mandatory and leads to substantial quantum interference
effects. Equally important is the proper energy dependence of amplitudes off the
resonances, which automatically implies decoupling of heavier states and a better
match to a high energy behavior in accord with QCD.

Furthermore, we note that the p — «y correction function r,, (s) entirely fixed from
neutral channel, which means that the 7 data indeed provide independent additional
information on the pion form factor. We now have a fairly reliable model to include
7 data to improve a/* and there is no 7 versus e* e~ alternative of a*. Result given
in [88] are included in Fig.7.2.

Extended Models: Resonance Lagrangian Approach and Global Fit Strategies

Including w, ¢, o/, p”, - - - requires to go to low-energy effective chiral Lagrangians
with vector mesons [134, 135]. The resonance Lagrangian approach (RLA) provides
an extension of low energy effective QCD as represented by chiral perturbation
theory (CHPT) to energies up to about 1 GeV. Principles to be included are the chiral
structure of QCD, the vector-meson dominance (VMD) model and electromagnetic
gauge invariance. Specifically, we will consider the hidden local symmetry (HLS)
version [190, 191], which is considered to be equivalent to alternative variants after
implementing appropriate high energy asymptotic conditions [135, 192]. CHPT is
the systematic and unambiguous approach to low energy effective QCD given by
spontaneously broken chiral symmetry SU(3) ® SU (3), with the pseudoscalars as
Nambu-Goldstone bosons, together with a systematic expansion in low momenta and
chiral symmetry breaking (SB) effects by the light quark masses, m,, g = u, d, s.
The limitation of CHPT is the fact that it ceases to converge for energies above about

24We note that so far PDG parameters, masses, widths, branching fractions etc. of resonances like
the p° are all extracted from data assuming G$ like form factors or just some form of Breit-Wigner
shapes and thus in general are model dependent!.
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400 MeV, in particular it lacks to describe physics involving the vector resonances
p, w and ¢.

The VMD is the effective theory implementing the direct coupling of the neu-
tral spin 1 vector resonances p, w, ¢ etc. to the photon. Such direct couplings are
a consequence of the fact that the neutral spin 1 resonances like the p° are com-

posed of charged quarks. The effect is well modeled by the VMD Lagrangian

eM? . . .
L,= i puwFH or = —T)p puA¥, which has to be implement in low energy

effective QCD in a way which is consistent with the chiral structure of QCD.

The construction of the HLS model may be outlined as follows: like in CHPT the
basic fields are the unitary matrix fields £, g = exp [£i P/f;], where P = Pg + Py
is the SU (3) matrix of pseudoscalar fields, with Py and Pg the basic singlet and octet
fields, respectively. The pseudoscalar field matrix P is represented by

1 N 1 N e
—=Tr — T
1 NV 1 1
Py= — T ——T 4 — K° |, 5.101
8 72 > 3 \/6778 ( )
2
K~ ?0 —1/ =718
3
P _Ld 0 0 0 . 0 / 5102
0—\/6121%(77,77,77), (3, M8, M0) & (7,1, 1) . (5.102)

The HLS ansatz is an extension of the CHPT non-linear sigma model to a non-linear
chiral Lagrangian [Tr 0,£* 0"&] based on the symmetry pattern G giobai / Hiocal, Where
G = SU(3)L ® SU (3) is the chiral group of QCD and H = SU (3)y the vector sub-
group. The hidden local SU (3)y requires the spin 1 vector meson fields, represented
by the SU (3) matrix field V,, to be gauge fields. The needed covariant derivative
reads D, = 0, — i g V},, and allows to include the couplings to the electroweak gauge
fields A,,, Z,, and Wj in a natural way. The vector field matrix is usually written as

1 (pl 4 WI)/\/E p+ K*+
V=— o~ (=p" +wh/V2 K . (5.103)
V2 K K o

The unbroken HLS Lagrangian is then given by
f2
Lus =La+Ly s Layy=—7Tr LRI, (5.104)

where L = [D,,,f L] fzr and R = [D/,,f R] 5}'. The covariant derivatives read

[ Du&L = 0,6 —igVué +iéL.L, (5.105)

DuéR = 8;L£R - lgvugR + igRR/L ’
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with known couplings to the Standard Model (SM) gauge bosons

92 ) 92 + _
=e¢QA — (T, — OWZ, + =W T, +W T_
fn =0t osg, T s zut T+ W, )(5106)
92 .2 :
R, =eQA, — cos O sin“OwZ, |

Like in the electroweak SM, masses of the spin 1 bosons may be generated by the
Higgs-Kibble mechanism if one starts in place of the non-linear o-model with the
Gell-Mann-Levy linear o-model by a shift of the o-field.

In fact the global chiral symmetry Ggopal is Well known not to be realized as an
exact symmetry in nature, which implies that the ideal HLS symmetry evidently is
not a symmetry of nature either. It evidently has to be broken appropriately in order
to provide a realistic low energy effective theory mimicking low energy effective
QCD. Corresponding to the strength of the breaking, usually, this is done in two
steps, breaking of SU (3) in a first step and breaking the isospin SU(2) subgroup
in a second step. Unlike in CHPT (perturbed non-linear c—-model) where one is
performing a systematic low energy expansion, expanding in low momenta and the
quark masses, here we introduce symmetry breaking as a phenomenological pattern
with parameters to be fixed from appropriate data, since a systematic low energy
expansion a 14 CHPT ceases to converge at energies above about 400 MeV, while we
attempt to model phenomenology up to including the ¢ resonance.

The broken HLS Lagrangian (BHLS) is then given by (see [132])

2
Louis = Ly + Ly + Lo 5 L)y = —Tﬂ Tr {[L £ R] XA/V}2 ,  (5.107)

with 6 phenomenological chiral SB parameters. The phenomenological SB pattern
suggests X; = diag(q;, y1,z1), lgr — 1, ly1 — 1| < |z; — 1|, I =V, A.Thereis
also the parity odd anomalous sector, which is needed to account for reactions like
v* — 1y and v* — 77~ 71" among others.

We note that this BHLS model would be a reliable low energy effective theory
if the QCD scale Agcp would be large relative to the scale of about 1 GeV up to
which we want to apply the model, which in reality is not the case. Nevertheless, as
a phenomenological model applied to low multiplicity hadronic processes (specified
below) it seems to work pretty well, as we have demonstrated by a global fit of the
available data in [132]. The major achievement is a simultaneous consistent fit of
the eTe™ — 7t 7~ data from CMD-2 [21], SND [22], KLOE [23-25], BaBar [26]
and BES-III [27], and the 7 — 7~ 7%v, decay spectral functions by ALEPH [123],
OPAL [125], CLEO [126] and Belle [127]. The ete™ — w7+ channel gives the
dominant hadronic contribution to the muon g — 2. Isospin symmetry 7~ 7% < 7~ 7"
allows one to include existing high quality 7-data as advocated long time ago in [11].

We note that as long as higher order corrections are restricted to the mandatory
pion- and Kaon-loop effects in the vector boson self-energies, renormalizability is
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not an issue. These contributions behave as in a strictly renormalizable theory and
correspond to a reparametrization only.

A suitable extension of the HLS model which covers most channels in the range
up to just above the ¢ resonance has been worked out and has been applied for an
evaluation of @™ in [132, 193, 194]. The idea is to constrain the effective Lagrangian
by fitting available data from all possible channels. Thereby uncertainties may be
reduced by consistency with effective field theory concepts. In [132] 45 different data
sets in the range up to Ey = 1.05 GeV (6 annihilation channels and 10 partial width
decays) are used to constrain the effective Lagrangian couplings. The phenomeno-
logically constrained effective theory then is applied to predict the cross sections for
the channels 7t7~, 7%, ny, 'y, m%7t7~, KTK~, K°K°, which account for
83.4% of aﬂ“d. The missing part, the channels 4, 57, 67, nww, wm and the energy
range E > E| is evaluated using data directly and pQCD for perturbative regions
and the tail. As we know, including self-energy effects is mandatory. They affect the
neutral channel mixing between ~, p°, w and ¢ as dynamical effects and provide the
proper decay widths with proper phase space and energy dependence etc.

In the region covered by the HLS model the leading order HVP is obtained by
summing over the channels:

ah™[HLS] = Y, a,(H;)

aH) =5 [ K@) . (5.108)
7 Jsy,

which relates the hadronic intermediate state contributions {H;, i = 1 ---n} to the
annihilation cross sections o(eTe™ — H;) = oy, (s). K (s) is the known kernel which
is enhancing the weight of the threshold region between sy, and s.,,; = (1.05 GeV)?2.
The full LO @ is obtained by adding to a*[HLS] the missing channels below
1.05 GeV, plus the remainder from energies above the model breakpoint, obtained
by the standard approach (see [47] for details).

According to [132] the method indeed works in reducing uncertainties by using
indirect constraints. This approach is able to reveal inconsistencies in the data. A
key point is that no inconsistencies between 7 data and eTe~ data show up. In
contrary 7 data, which are not subject to complicated mixing effects, help to fix
more precisely the Lagrangian couplings and thus allow to reduce uncertainties of
the predictions. We have included the result of this global fit in Fig.7.2. Typically,
some data sets get low weight as they conflict with the HLS global fit. This in
particular concerns the BaBar di-pion data which after taking into account standard
IB corrections seem to agree well with the Belle 7—spectra, while not accounted for
neutral channel mixing effects, like ¥ — p° mixing, predict a substantial difference.
As BaBar data treated with equal weight enhance the contribution to aﬁad by about
da® ~ 6 x 107" the HLS fit reduces this enhancement and yields a lower central
value at reduced uncertainty, which enhances the significance of da, = a;* — ag‘e
to a 4-5 o deviation.
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Important points to notice from the global HLS fit: one obtains very accurate fits
up to 1.05 GeV without including any higher resonances. A possible shift between
the masses of the p* and the p° is consistent with zero as well as with a shift
OM = 0.814 GeV, which one obtains by assuming the leading electromagnetic shift
of the mass squares (Cottingham formula) to be spin independent, i.e.,

2 2 o o2 2
Mpi_MpO ’\ll’l’l,,ri—l’f’lfr

0 - (5.109)

In any case singling out phenomenologically a viable effective resonance
Lagrangian by global fits is expected to help in improving EFT calculations of
hadronic light-by-light scattering (see Sect.5.2 below).

Concluding remark: it should be mentioned here that the 7 vs eTe™ problem,
which lead to inconsistent results between the charged channel isovector T—decay
spectral functions and the ete™ cross sections [113, 129, 171], has been solved [6,
88, 132]. The origin of the problem has been unaccounted mixing effects between
the p° and the y mainly, an effect which is absent in the charged channel but has to
be corrected for. If done properly 7 data may be included and are consistent with the
ete™ data. The quality of the consistency is illustrated in Fig. 5.41, which displays the
fit of the T—spectral functions only, supplemented by the isospin breaking effects (with
the latter provided by the review of particle properties (RPP) [42]) in comparison
with the ete™ — 777~ spectra. There exist a number of other analyses [195-198],
(see [199, 200] for an early outline of the method) which we have not discussed.
One should keep in mind that the following schemes have no justification:

a 50
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30 E

25 E ¢+ CMD2 98
20

E o SND 98 3 E
12 E cMD24+SND O¢/Nou=1.2) E o KLOE 08 (X/N.=4.9) E ¢ BaBar (trunc x*/N,,=4.8)

56 E ‘ ‘ 3 ‘ 3 ‘ ‘ :
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:<> KLOE 10 (}*/Nm=1.4) :n KLOE 12 (}*/Nm=1.2) 7n BESS Il (6¢/Nm=0.7)

Fig.5.41 Comparing the 7+PDG prediction (red curve) of the pion form factor in e*e ™ annihilation
in the p — w interference region. Reprinted from [47], http://dx.doi.org/10.1140/epjc/s10052-015-
3830-x (License: CC-BY-4.0)
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Fig. 5.42 Integral contour Im s

R

Re s

S0

® Ohad = OpQCD ~+ Oresonances
e local duality: i.e., duality (5.5) applied to relatively narrow energy intervals (res-
onance regions).

There are also some pitfalls in the use of dispersion relations. Often one encoun-
ters arguments of the following type: consider a function, like I7], (s) = AIT'(s) =
IT'(s) — IT'(0) in our case, which is an analytic function order by order in pertur-
bation theory. Analyticity then infers that the contour integral along a path shown
in Fig.5.42 vanishes. Considering f(s) = K (s)AIT'(s), where K (s) is an analytic
kernel function, such the f(s) is analytic, then by Cauchy’s theorem on the one hand
we have

17 ds | ds
f(0)=—/—.1mf(s)+—. ]f b . (5.110)

e s — le 27 s

4m3 Is =43

and by the optical theorem on the other hand, with (s = uge’p) and

1. p . / .
R(s) = Eg& [1'[ (s +ie) —IT'(s —16)] ,

we have
H% 2
(0)—L/d—SK(s)R(s)+i/d9f(0) (5.111)
FO = 1272 s 27 ' '
4m2 0

Therefore, for the renormalized VP function f(s) = AIT'(s), in particular, with
f(0) =0 we get

ds , ds ,
Z AT (s) = — Z AT (Gs), (5.112)
cut § circle §
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and for a large enough circle one is tempted to apply pQCD on the right hand side and
thus obtain the integral of our interest, which exhibits the non-perturbative physics.
What is usually forgotten is that the uncertainty is of the order of 6 = 2w Re with £
being the small error expected from the truncation of the perturbative series. § easily
can turn out to be large (due to R large) such that we are not able to make a safe
estimate for the wanted integral. Since analyticity is true order by order in perturbation
theory, we precisely reproduce the perturbative answer for the left hand side if we
use perturbation theory on the right hand side. Taking into account /7 ;NP (s)in(5.22),
known as an asymptotic OPE only, based on not too well constrained condensates
does not make the estimate much more reliable (see Sect.5.1.6). Also, it is not
true that from the asymptotic expansion of a function one can get back the original
function via this approach. While analyticity is a very powerful theoretical concept
it is difficult to be applied in numerical problems, because, small perturbations in
one place typically cause large variations at remoter locations. In any case, non-
perturbative physics cannot be accessed in this way in terms of the perturbative QCD
expansion.

In this context, exploiting analyticity, other tricks have been advocated in [196]:
splitting off the most problematic low energy part of the dispersion integral (the
remainder estimated by standard means)

a0 () = / R($)R(s)ds , (5.113)
0

and noting (see Sect. 3.7) that R(s) = 127 Im ﬁ;(s) and2iIm I1(s) = I1(s + ie) —
I1(s — ie) on the cut yields [1(s) away from the cut. By Cauchy’s theorem

1
/ p(s)R(s)ds — 67Ti7{ p(s)]'[f/ (s)ds =0, (5.114)
0 [s|=s1
where p(s) is an arbitrary analytic function. Therefore,

azad'Lo(Sl) — /51 [[E’(_g) — p(s)]R(s) ds + 67r1% p(S)ﬁW/(S) ds . (5.115)
0

[s|=s1

We know that in the region between 1 and 2 GeV R(s) extracted from the available
ete™ data still carries large uncertainties, which limits an accurate evaluation of
(5.113). Reference [196] advocates to fix p(s) such that the contribution from this
region gets minimized by minimizing

K(s) — p(s)

Max =
K(s)

, /sel=[1GeV,1.8GeV] (5.116)
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on the expense of an extra contribution from the circle. In [196] p(s) is chosen to be
of the form p(s) = a + b s and on the circle IAYQ (8)|j5|=s, 1s approximated by ITopg(s)
which is proportional to (5.22) (see Sect.5.1.6): e* op(s) = I (s = —Q0?). By
this the available information on R(s) in the interval I gets erased (suppressed by a
factor 2.5) and gets transported onto the circle as a weight factor which multiplies
ITopg, a quantity which is not well determined as we learn from Fig.5.18 and the
discussion there. Even so the information on R(s) in the interval [ is unsatisfactory,
it is hard to belief that suppressing the available true information at the end should
provide a more reliable estimate of azad*LO (s1).

5.1.12 Hadronic Higher Order Contributions

At next-to-leading (NLO) order, 0 (c?), there are several classes of hadronic con-
tributions with typical diagrams shown in Fig.5.43. They have been estimated first
in [105]. Classes (a) to (c¢) involve leading HVP insertions and may be treated using
DRs together with experimental et e~ —annihilation data. Class (d) involves lead-
ing QED corrections of the charged hadrons and related problems were discussed
at the end of Sect.5.1.7 on p. 379, already. The last class (e) is a new class of
non—perturbative contributions, the hadronic light—by-light scattering which is con-
strained by experimental data only for one exceptional line of phase space. The
evaluation of this contribution is particularly difficult and it will be discussed in the
next section.

The O (c?) hadronic contributions from classes (a), () and (¢) may be evaluated
without particular problems as described in the following.

At the three—loop level all diagrams of Fig. 4.3 which involve closed muon-loops
are contributing to the hadronic corrections when at least one muon—loop is replaced
by a quark—loop dressed by strong interactions mediated by virtual gluons.

@ 7 (b) (0

(d)

Fig. 5.43 Hadronic higher order contributions: a—c involving LO vacuum polarization, d involving
HO vacuum polarization and e involving light-by-light scattering
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Class (a) consists of a subset of 12 diagrams of Fig.4.3: diagrams (7)—-(18) plus 2
diagrams obtained from diagram (22) by replacing one muon—loop by a hadronic
“bubble”, and yields a contribution of the type

[e¢]

O hadiy _ (X2 [ ds (@] 2
al (@] — (;) 3 / ~ R(s) K (s/mH) , (5.117)

4m2

where K'@I(s/m?) is a QED function which was obtained analytically by Barbieri
and Remiddi [201]. The kernel function is the contribution to a,, of the 14 two-loop
diagrams obtained from diagrams (1)—(7) of Fig.4.2 by replacing one of the two
photons by a “heavy photon” of mass 1/s. The convolution (5.117) then provides
the insertion of a photon self—energy part into the photon line represented by the
“heavy photon” according to the method outlined in Sect. 3.8. Explicitly, the kernel
is given by

139 115 19 7 23 1
K@Olpy=-———Z 4 pt|—=———b+—b*+——) Inb
O =@t \ 2 %m0
4 127 115 23 Iny
Sy Ty Iy = pd) L
+( 37 36 727 T 1, )

Vbbb —4)
9 5 1 2 5
S —bh—=b =) Q)+ = bIn*D
+(4+z4 2 b)C()+96 "
1 17 7 1
by = - Lp) 22 p
27 24 48 b(b —4)
19 53 29 1 2
—+b——bP——+——)1In?
+(2 1877 % 3b+b—4) Y
17 7 D, (b)
+{-2b —bz——b3)p—
( 6 12 Vb(b —4)
13 7 1 1 4 D,,(b)
— ——b+-b—-b —
+(3 6”13 6 b—4) Vb(b —4)
+ ! 7b+1b2 T (b) (5.118)
2 6 2 ’ '

where

_Vb—Jb=4
YT bt vb-a’
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and

1
Dy(b) = Liz(y) +Iny In(1 —y) = 7 In®y — (),
1 1
Dp(b) = Lio(=y) + 7 In®y + 7¢@,
T (b) = —6 Li3(y) — 3 Lis(—y) + lnzy In(1 —y)
1
+3 (In2y + 6 ¢(2)) In(1 4 y) +2Iny (Liz(=y) + 2Lir(y)) -

AgainLip(y) = — fo} dr In(1 — y) is the dilogarithm and Lis (y) = foy % Liy(¢) the

t
trilogarithm defined earlier in (3.40). Limiting cases are

K[(a)](()) 491471 +=¢2)—-3¢(Q2) n2+ - C(3)
K@) "2 (— Inb+2¢Q2) — &)

For the subclass which corresponds to the leading HVP graph Fig.5.1 decorated in
all possible ways with an additional virtual photon the result reads

35 8 4 1 5
AK[(“”(b):S —|——b+( 9b——b2)1nb

6 9 3 18
4 19 4 15 Iny
=+ —=b+-b0"— =P ) ——
( 39 9 8 ) Jb(b —4)
Y PR C()+1+b Lp_ 1)
-b— - — n
30767 6" 127 3) "7
16 4 4 1 D,,(b)
+ ———b——b2+—b3)—. 5.119
( 3 3 3 3 JVb(b —4) ( )
Krause [202] has given an expansion up to fourth order, which reads
223
KL @)(s/m?) = m (223 20(2) — ln 2 (5.120)
s 54 m?
m? [8785 37 367 s 19 s
- | == _ == T n = + —Z 1n?
+ s |:1152 ‘@ 216 m? 2+ 144 m2:|
+m 13072841 883C( 2 10079 . s . 1411 , S
— — — —— —_— —— n —
432000 3600  m? 80 m?

m6 2034703 3903 6517 s %1 _ , s
_ — C(z) — 4+ —1n"— .
53 16000 1800 m2 80 2
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Here m is the mass of the external lepton m = m,, in our case. The expanded approx-
imation is more practical for the evaluation of the dispersion integral, because it is
numerically more stable in general.

Class (b) consists of 2 diagrams only, obtained from diagram (22) of Fig.4.3, and
one may write this contribution in the form

o0

a(® o — (9)3§ / b Res) K'®\(s/m?), (5.121)
™ N

2
4mZ

with

1
2 2 2
(b)) 2 x“(1—x) Aty x= my,
K (S/m“')_/dxxz—i-(l—x)s/mi -1, _l—xm_g )
0

where we have set [T = %ﬁ'. Using (2.178) with z = —1"—2 m—Lz one obtains

1

"o _ _8 /@2 1 52 ﬂ
y (Z)—*Z/dyy(lfy) ln(lfzy(lfy))—57?+(§f—)ﬁl 7/5
0

with 3 = /1 + 41 me

Here the kernel functlon is the contribution to a, of the 2 two-loop diagrams
obtained from diagrams (8) of Fig.4.2 by replacing one of the two photons by a
“heavy photon” of mass /s.

In diagram (b) m? /m? = (m./m N)z is very small and one may expand /3 in terms
of this small parameter. The x—integration afterwards may be performed analytically.

’:lf) the result reads [202]

5 1, m] 1
K®l(s) = _(5 + gln —;) X [E — (X1 + x2) (5.122)
m

1 _
() ()]
i —1 201 Li l 11 o B
_12+ (x1+xz)+ 30 — 1) xy (1 —xp) 12()61 —2n (l—xl)
. 1 1 -
~ao—a e (g) -3 (75)]]
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withx|, = %(b + /b2 — 4b) and b = s/m>. The expansion to fifth order is given by

2 2
m 1 1. m
KOl === [(_18 T 2)
m
f

+m2 55+7r2+51 S5 m 112s+112m2
mof_ >, T, 9 am S oo
N 8 18 9 m2 36 m2 6 m2 6 m2
f f f
+m4 11299+7r2 0, s 1, m? 02 2 2 m?
- l-—+t+h——-—Ih—-In"— +1In" —
52 1800 3 ' 3 m% 10 m? m%c m§
_mO (6419 14, 76, m? 14 omP 140, s 14, s
s 25 9 45 m%, 3 m% 9 mzf 3 m§
md (53350 20 , 592 m? ,m? 200 s
+’”3€ m? 2m* m® 21 K n 25 m8 121 s N 97
m K 3 52 s3 nm2 6 s4 nm2 5

m!0 K 416
-5 (—56ln ) + ?> . (5.123)

Class (c) includes the double HVP insertion, which is given by

3 1 ds d
a®mdien — (2 / —S—SR( ) R(s") K'©)(s, ') , (5.124)
4m2
where
1 il
K[(C)](S,S/) _ /dx x* (1 —x) .
[x2+ (1 —x) s/mi][x2 + (1 —x) s//mft]
0

This integral may be performed analytically. Setting b = s/m? and ¢ = s’/m? one
obtains for b # ¢

b2 (2 —4b + b?) In(L G0
KOs sy = L _p (2 —b) b In(h) b—=GB)F
$,8)=s—b0—C— —
2 20-0 2(-0)J=@E=Db)b
2(2—4c+?) In(&/=0=9c)
(=2 +¢) ¢? In(c) P

2 (b —c) + 2(bh—c)J=@G=0) ¢ ’ (5.125)
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and forb = ¢

c (—2+4c—cz)

. 1
KOs, s) =5 =2¢+ g (—2+c—41n() +3¢ In(e) +

2(—4+¢)
c(12—42c+22c% - 3% ln(CJ“/E jjgg)
+ (5.126)

2(=4+4+c¢) /(=4 +0¢) c

In fact we may utilize (3.153) together with (3.165) in order to get the much simpler
expression

1

2
a® hadion = % / dx (1 — x) (Aafgd (—Q2(x))) , (5.127)
0
where Q%(x) = ﬁm is the space-like square momentum—transfer. An accurate

numerical evaluation of this integral is much simpler as it involves the integration
over R(s) once only.

Class (d) exhibits 3 diagrams (diagrams 19)—(21) of Fig.4.3) and corresponds to the
leading hadronic contribution with R(s) corrected for final state radiation. We thus
may write this correction by replacing

R(s) — R(s) 1(s) % (5.128)

in the basic integral (5.24). This correction is particularly important for the dominat-
ing two pion channel® for which 7(s) may be calculated in scalar QED (treating the
pions as point-like particles) [203, 204] and the result reads

+52 l_ﬂw . 1_677
"= [4L‘2(1+m)+2”2(_1+5)
2 1+ 3, 1+ 5,
_3log(l+/677) log(l _677) _ZIOg(ﬁﬂ) log(l _577)]

—3log( _452) — 41log(Br)

1 1+ 6, 31432
63[(1+62)2 } (lfgw)jtz ;;”, (5.129)

and provides a good measure for the dependence of the observables on the pion mass.
Neglecting the pion mass is obviously equivalent to taking the high energy limit

ZNote that R(s) &~ R™ (s) up to about 0.81 GeV. Figure5.38 suggests that sSQED should work
reliably up to not far below 1 GeV.
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Fig. 5.44 The FSR 6
correction factor 7(s) as a
function of the center of
mass energy 51
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In Fig. 5.44 the correction 7(s) is plotted as a function of the center of mass energy. It
can be realized that for energies below 1 GeV the pion mass leads to a considerable
enhancement of the FSR corrections. Regarding the desired precision, ignoring the
pion mass would therefore lead to wrong results. Close to threshold for pion pair
production (s =~ 4m?) the Coulomb forces between the two final state pions play an
important role. In this limit the factor n(s) becomes singular [n(s) — w2 /23] which
means that the O («) result for the FSR correction cannot be trusted anymore. Since
these singularities are known to all orders of perturbation theory one can resum these
contributions, which leads to an exponentiation [203] (see Sect.5.1.5 p. 371):

-1
ROT™) (5) = R™7(s) (1 +n(s)% - %) % x [1 —exp (—%)] . (5.130)

Above a center of mass energy of /s = 0.3 GeV the exponentiated correction to
the Born cross section deviates from the non—exponentiated correction less than 1 %.
The corresponding O («) sQED contribution to the anomalous magnetic moment of
the muon is

§af* = (38.6 £1.0) x 107", (5.131)

where we added a guesstimated error which of course is not the true model error,
the latter remaining unknown.?¢ In the inclusive region above typically 2 GeV, the
FSR corrections are well represented by the inclusive photon emission from quarks.
However, since in inclusive measurements experiments commonly do not subtract

260ne could expect that due to v — p° mixing (VMD type models [205], see below) the SQED
contribution gets substantially reduced. However, due to the low scales ~m,,, m; involved, here,
in relation to M, the photons essentially behave classically in this case. Also, the bulk of the VP
contribution at these low scales comes from the neutral p’—exchange Fig.5.23, which does not
directly produce FSR, the latter thus being due to the dissociated charged 7+ 7~ intermediate state
as assumed in sQED. In fact the main contribution comes from very low energies (Fig. 5.44).



5.1 Hadronic Vacuum Polarization 427

Table 5.7 Higher order contributions from diagrams (a)—(c) (in units 10~11)

P pe e e Ref.
-199 4) 107 3) 23 (0.6) -90 5) [108]
=211 %) 107 2) 2.7 0.1 -101 (6) [202]
209 @) 106 |2 2.7 (1.0) ~100 |(5) [11]
-207.3 | (1.9) 106.0 |(0.9) 34 (0.1) -98 @))] [117]
-207.5 |(2.0) 104.2 |(0.9) 3.0 0.1) -100.3 | (2.2) [15]
-206.13 | (1.30) 103.49 | (0.63) 3.37 (0.05) -99.27 | (0.67) [6, 88]

(a) 3a (b) 3b (c) 3b (d) 3¢

(e) 3¢ (f) 3¢ (g) 3b,lbl (h) 3d

Fig. 5.45 A sample of leading NNLO hadronic vacuum polarization diagrams

FSR, the latter is included already in the data and no additional contribution has to
be taken into account. In more recent analyses this contribution is usually included
in the leading hadronic contribution (5.29) as the 77~ channel (see Table 5.3).
Results obtained by different groups, for so far unaccounted higher order vacuum
polarization effects, are collected in Table5.7. We will adopt the estimate

ap® = (=99.27 +£0.67) x 107" (5.132)

obtained with the compilation [16]. For the electron only group (2a) yields a signif-
icant contribution [202]: a®* = —0.2210(12) x 10!,

5.1.13 Next-to-Next Leading Order Hadronic Contributions

Recently the next-to-next-to-leading order (NNLO), O (o), HVP contributions have
been evaluated for the first time by [206-208] (see also [209]). The relevant kernels
have been calculated by appropriate asymptotic expansion methods. The kernels
have been calculated for the following groups of diagrams displayed in Fig.5.45:

e K(3a): one hadronic insertion; up to two additional photons to the LO Feynman
diagram; contains also the contributions with one or two closed muon loops and
the light-by-light-type diagram with a closed muon loop.
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Table 5.8 NNLO contributions diagrams (a)—(h) (in units 10~
P ls3a) u 1(1317) a /(t%’lbl) a I(L3L) a /(t3d) azad@) Ref.
8.0 —4.1 9.1 —0.6 0.005 12.4 (1) [206]

7.834 (61) | —4.033 (28) | 9.005 (63) | —0.569 (5) 0.00518 (12) | 12.24 (10) [6]

K(3b): one hadronic insertion and one or two closed electron loops and additional

photonic corrections; the external photon couples to the muon.

K(3b, 1bl): light-by-light-type contribution with closed electron loop and one

hadronic insertion; the external photon couples to the electron.

e K(3c): two hadronic insertions and additional photonic corrections and/or closed
electron or muon loops.

e K(3d): three hadronic insertions.

Class (3d) includes the leading triple HVP insertion, which is given by

41 d ds’ ds”
a® M — (%) = Ss SS 5 " KIGDI s ¢ 5"y (5.133)
m2
where
/ 6(1-x)
(B (g o 7y — rooe
B, s )_/dx (22 + (1 —x) s/m2)x2 + (1 —x) s'/m2][x2 + (1 — x) s /m2]

Again we may utilize (3.153) and (3.165) in order to get the much simpler expression

1

3
a® o — % / dx (1 — x) (Aa;?d (—Qz(x))) , (5.134)
0
where Q%(x) = —m is the space-like square momentum-—transfer. An accurate

numerical evaluatlon of this integral is much simpler as it involves the integration
over R(s) once only, which also allows for a standard error estimate.

Table 5.8 lists the different NNLO contributions obtained by Kurz et al. [206]
together with my own evaluations based on my compilation of data discussed above
evaluated with kernels from [206].

For the electron only group (3a) yields a significant contribution [206]: af“) =
0.0279(2) x 107'2.
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5.2 Hadronic Light-by-Light Scattering

In perturbation theory hadronic light-by—light scattering diagrams are like leptonic
ones with leptons replaced by quarks which, however, exhibit strong interactions via
gluons, which at low energies lead to a breakdown of perturbation theory.

q = <2L7 d'ﬁ 87 "')

LN
Fan

Nevertheless, it is instructive to ask what quark—loop contributions would look
like, if strong interactions would be weak or turned off. Quark loops, of course, play
a role in estimating the S.D. effects above a certain energy scale. We may check
which energy scales contribute relevant to the LbL integrals in the case of a muon
loop and cutting off high energy contributions by a cut—off A. Typically, one obtains

I

A[GeV] 0.50.7 1.0 2.0
a, x 1010 24 26 38 45

which illustrates that even for the muon the LbL contribution is rather sensitive to
contributions from unexpectedly high scales. Only when the cut—off exceeds about
2 GeV the correct result al(f) (Ibl, z) ~ 46.50 x 107'% is well approximated. A con-
stituent quark loop would yield the results summarized in Table5.9. For the light
quarks the numerical results are certainly more trustable while for the heavier quarks,
like the c, the asymptotic expansion (4.13) becomes more reliable (see [108]; results
taken from TABLE 1).%’

Certainly, quark loops are far from accounting for the bulk of the HLbL effects.
Actually, it is the spontaneous breakdown of the nearby chiral symmetry of QCD,
an intrinsically non—perturbative phenomenon, which shapes the leading hadronic
effects to be evaluated. While the non—perturbative effects which show up in the
hadronic vacuum polarization may be reliably evaluated in terms of measured

27In the free quark model (parton model) with current quark masses given in (3.38) one would get
a'? (Ibl, u + d) = 8229.34 x 1071 and a® (Ibl, s) = 17.22 x 107! by adapting color, charge
and mass in (4.11) and (3.50), respectively. Apart from the fact that pQCD makes no sense here,
one should note that results are very sensitive to the precise definition of the quark masses used.
Also note that the chiral limit my, — 0 of (4.11) [withm, — m, (g = u, d, s5)]is IR singular. This
also demonstrates the IR sensitivity of the LbL scattering contribution.
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Table 5.9 CQM estimates of a " (Ibl, ¢) x 10'!

0.3GeV lepton | [ud] s c [uds] [udsc] Reference/method
79.0 49.7 1.1 2.1 50.8 52.9 [108] numerical
81.0 51.0 1.2 2.2 52.1 544 Eq. (4.13)

62 (3) [210]

hadronic cross sections o (ete™ — v* — hadrons), which allows us to obtain
the full photon propagator (0|7 {A*(x;)A"(x2)}|0), for the light-by-light scatter-
ing Green function

(OIT{A"(x1) A" (x2) A (x3) A% (x4)}10)

we have little direct experimental information when photons are off—shell. The pertur-
bative QCD and QED corrections to the fermion—loop contributions to light-by-light
scattering, vy — -7y, are available from [211] in the ultrarelativistic limit where the
kinematic invariants are much larger than the masses of the charged fermions. For
the contribution to g — 2 we need the light—by-light scattering amplitude with one
photon real (k* = 0), or more precisely, its first derivative 9/0k" evaluated at k* = 0,
equivalent to £, — 0. But, the other three momenta are off—shell and to be integrated
over the full phase space of the two remaining independent four—vectors. Unfortu-
nately, the object in question cannot be calculated from first principles at present.
Perturbation theory fails and CHPT is limited to the very low energy tail only. Lat-
tice QCD in principle allows for an ab initio numerical calculation, which however
is very challenging. Recent progress looks very promising [212-216] and a 10%
evaluation should be possible within a few years. A very different approach, based
on numerically solving the truncated tower of Dyson—Schwinger equations (DSE)
in conjunction with the Bethe-Salpeter equations of QCD (see the end of Sect.2.3.1
and Fig. 2.4 for the much simpler case of QED [no gauge self-interactions]), attempts
a first principle prediction in a very different way [217-220]. While the data—driven
dispersive approach is standard for evaluating HVP, dispersive methods have not
been considered to be very constructive until recently. The machinery to exploit HLbL
specific experimental data in a model independent way has now been developed by
Colangelo, Hoferichter, Passera and Stoffer [CHPS] in [221, 222] for light-by-light
scattering in general and by Pauk and Vanderhaeghen [PV] in [223] (also see [224,
225]) more specifically tailored to the muon g — 2. These approaches require experi-
mental input which is largely missing at present. In any case much more experimental
input is mandatory to make substantial progress in determining HLbL in the future.

At present one has to resort to models which are inspired by known
properties of QCD as well as known phenomenological facts. One fact we
already know from the HVP discussion, the p meson is expected to play an important
role in the game. It looks natural to apply a vector—-meson dominance (VMD) like
model. Electromagnetic interactions of pions treated as point—particles would be
described by scalar QED, as a first step in the sense of a low energy
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expansion. Note that in photon—hadron interactions the photon mixes with hadronic
vector—mesons like the p°. The naive VMD model attempts to take into account this
hadronic dressing by replacing the photon propagator as

. . ; a"q” : 2
lgm/ lg/lI/ l(gﬂy -7 lg#l’ Mp

RN R = <o, (5135
q2 + q2 + qZ _ Mg qZ Mg _ q2 + ( )

where the ellipses stand for the gauge terms. Of course real photons g> — 0 in any
case remain undressed and the dressing would go away for Mp2 — 00. The main
effect is that it provides a damping at high energies with the p mass as an effective
cut—off (physical version of a Pauli-Villars cut—off). However, the naive VMD model
does not respect chiral symmetry properties.

More precisely, the hypothesis of vector-meson dominance [205] relates the
matrix element of the hadronic part of the electromagnetic current j}j"‘d (x) to the

matrix element of the source density J ) (x) of the neutral vector meson p° by

2

(B|j™(0)|A) = M1 (B|J”(0)|A), (5.136)
Iz 2’7/; qz _ M/% I

where ¢ = pgp — pa, pa and pp the four momenta of the hadronic states A and B,
respectively, M), is the mass of the p meson. So far our VMD ansatz only accounts
for the isovector part, but the isoscalar contributions mediated by the w and the ¢
mesons may be included in exactly the same manner, as shown in Fig.5.46. The
key idea is to treat the vector meson resonances like the p as elementary fields in
a first approximation. Free massive spin 1 vector bosons are described by a Proca
field V,,(x) satisfying the Proca equation (LJ + M‘z,) V.(x) =0, (8,V") =0, which
is designed such that it satisfies the Klein-Gordon equation and at the same time
eliminates the unwanted spin O component: 9, V¥ = 0. In the interacting case this
equation is replaced by a current—field identity (CFI) [205]

O+ M) Vu(x) =8, 0, V") = gv IV (x), (5.137)

where the r.h.s. is the source mediating the interaction of the vector meson and gy the
coupling strength. The current should be conserved 9"J("(x) = 0. The CFI then
implies

gv

(B|V,(0)|A) = —m

(B|JV)(0)|A),
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B B
v V=plw, g Ty
A A
Mz _ -1
(VAN I 27‘/ 5 —— = q2 —M‘Q/ .

Fig. 5.46 The vector meson dominance model. A and B denote hadronic states

where terms proportional to g* have dropped due to current conservation. The VMD
assumes that the hadronic electromagnetic current is saturated by vector meson res-

onances?® )
M
-had _ \4
M= > e V,(x), (5.138)
V:pq w, ¢,
such that, e.g.
MZ
(P 0)10) = e(p. M), # . =M.
P

The mass—dependent factor M2 must be there for dimensional reasons, 7y is a cou-
pling constant introduced in this form by convention. The VMD relation (5.136) thus
derives from the CFI and ansatz (5.138). The VMD model is known to describe the
gross features of the electromagnetic properties of hadrons quite well, most promi-
nent example are the nucleon form factors. For recent phenomenological applications
see [230].

A way to incorporate vector—mesons p, w, ¢, ... in accordance with the basic
symmetries of QCD is the Resonance Lagrangian Approach (RLA) [134, 135]. The
latter implements an extended version of CHPT (see p. 305) which incorporates VMD
modeling in accord with the chiral structure of QCD. Alternative versions of the RLA

281n large— N, QCD [226-228] all hadrons become infinitely narrow, since all widths are suppressed
by powers of 1/N,, and the VMD model becomes exact with an infinite number of narrow vector
meson states. The large—N, expansion attempts to approach QCD (N, = 3) by an expansion in
1/N¢. In leading approximation in the SU (co) theory R(s) would have the form [229]

I & ,
R(s) = = DM 5(s — MP) .
i=0
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Fig. 5.47 Multi—scale strong Two scale problem: “open regions”
interaction problems. For
two and more scales some
regions are neither modeled
by low energy effective nor
by perturbative QCD

One scale problem: “no problem”

RLA 'pQCD

are the HLS?® [190] or massive YM [191] models and the ENJL [231] model. They
are basically equivalent [135, 191, 192] in the context of our application.

A new quality of the problem encountered here is the fact that the integrand
depends on 3 invariants g7, g3, ¢35, where g3 = —(q1 + ¢2). In contrast, the HVP
correlator or the VVA triangle with an external zero momentum vertex only depend
on a single invariant 2. In the latter case, the invariant amplitudes (form factors) may
be separated into a low energy part g2 < A? (soft) where the low energy effective
description applies and a high energy part ¢g> > A? (hard) where pQCD works. In
multi-scale problems, however, there are mixed soft-hard regions (see Fig.5.47),
where no answer is available in general, unless we have data to constrain the ampli-
tudes in such regions. In our case, only the soft region g7, g3, g3 < A* and the hard
region g7, g3, g3 > A* are under control of either the low energy EFT and of pQCD,

291n this approach the vector part SU (2)y of the global chiral group SU (2);, ® SU (2)g, realized
as a non-linear o model for the pions (see (4.73)), is promoted to a local symmetry and the p—
mesons become the corresponding gauge vector bosons, as they do in the massive Yang—Mills (YM)
approach. Together with the electromagnetic U (1) g local group one obtains the symmetry pattern:
[SUR)L @ SU@2)r/SU2)v]giobat ® [SU2)v Ihiaden ® U (1), where the local group is broken
by the Higgs mechanism to U (1)em, with Qem = O + T3hidde", essentially as in the electroweak SM.
Unlike in the massive YM ansatz the gauge bosons here are considered as collective fields (V# =
gv"q etc.) as in the Extended Nambu-Jona-Lasinio (ENJL) model. The generalization to SU (3) is
obvious. Similar to the pseudoscalar field ¢(x) (4.72), the SU (3) gauge bosons conveniently may
be written as a 3 x 3 matrix field

2oL ow + ot
it f K
Vi) =2 TV = | o7 T K
i k=  KY @

6/
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respectively. In the other domains operator product expansions and/or soft versus
hard factorization “theorems” a la Brodsky-Farrar [232] may be applied.

Another problem of the RLA is that the low energy effective theory is non—
renormalizable and thus has unphysical UV behavior, while QCD is renormalizable
and has the correct UV behavior (but in pQCD fails to encompass the IR behavior).
As a consequence of the mismatch of the functional dependence on the cut—off,
one cannot match the two pieces in a satisfactory manner and one obtains a cut—off
dependent prediction. Unfortunately, the cut—off dependence of the sum is not small
even if one varies the cut—off only within “reasonable” boundaries around about 1 or
2 GeV, say. Of course the resulting uncertainty just reflects the model dependence and
S0 to say parametrizes our ignorance. An estimate of the real model dependence is
difficult as long as we are not knowing the true solution of the problem. In CHPT and
its extensions, the low energy constants parametrizing the effective Lagrangian are
accounting for the appropriate S.D. behavior, usually. Some groups however prefer
an alternative approach based on the fact that the weakly coupled large-N,. QCD, i.e.,
SU (N,.) for N. — oo under the constraint o,y N, = constant, is theoretically better
known than true QCD with N, = 3. It is thus tempting to approximate QCD as an
expansion in 1/N, [226-228]. Of course, also when applying a large—N, expansion
one has to respect the low energy properties of QCD as encoded by CHPT [233].
In CHPT the effective Lagrangian has an overall factor N., while the U matrix,
exhibiting the pseudoscalar fields, is N, independent. Each additional meson field
hasa 1/F, o 1/+/N..In the context of CHPT the 1/N, expansion thus is equivalent
to a semiclassical expansion. The chiral Lagrangian can be used at tree level, and
loop effects are suppressed by powers of 1/N..

5.2.1 Calculating the Hadronic LbL Contribution

Let us start now with a setup of what one has to calculate actually. The hadronic
light-by-light scattering contribution to the electromagnetic vertex is represented
by the diagram Fig.5.48. According to the diagram, a complete discussion of the

Fig. 5.48 Setup for the
calculation of the hadronic
contribution of the
light-by-light scattering to
the muon electromagnetic
vertex
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hadronic light-by-light contributions involves the full rank—four hadronic vacuum
polarization tensor>”

H;u/)\p(quq2aq3) — /d4x1 d4x2 d4)C3 ei((IIXl+¢]2X2+(i3x3)

X (O T{ju(x1) ju(x2) ja(x3) jp(0)} [0) . (5.139)

Momentum k of the external photon is incoming, while the g;’s of the virtual photons
are outgoing from the hadronic “blob”. Here j,(x) denotes the light quark part of
the electromagnetic current

2 1 - 1 A
Jux) = @) (x) = F(dyd)(x) = F(s)(x) =g Qg (x) . (5.140)

It includes a summation over color of the color and flavor diagonal quark bilinears.
Since the electromagnetic current j,(x) is conserved, the tensor I1,,,,(q1, g2, q3)
satisfies the Ward-Takahashi identities

(@) a3s a3 kP T (g1, g2, q3) = 0, (5.141)

with k = (¢1 + ¢» + ¢g3). Taking the derivative % of k°IT,,\,(q1, 92,k — q1 —
q>) = 0implies

I (q1, g2, k — g1 — q2) = —k7(9/Ok”) MMr0(q1, G2, k — q1 — q2) ,  (5.142)

and thus tells us that the object of interest is linear in X when we go to the static limit
k" — 0 in which the anomalous magnetic moment is defined.

Up to one—loop the electromagnetic £¢y—vertex has been discussed in Sect. 2.6.3,
its general structure in Sect.3.3. Here we adopt the notation of Knecht and Nyf-
feler [234] (¢ — k, py — p and p, — p’). From the diagram we easily read off the
contribution of I7,,,,+(¢1, g2, q3) to the electromagnetic vertex which is given by

(= (pHIGe) j(0) | (p)) = (—ie) u(p") I, (p', p) u(p)

[ dq d'g (—i)? i i
et et @@+ —k)2 (p—q)?—m? (p—q1 —q2)* —m?
x (—ie) a(p )" (p'— dh +m) 7 (p— dh— do+m) ¥ u(p)

x (ie)* Muwro(qr. g2, k — q1 — q2) (5.143)

30We remind that the light-by-light scattering Green function is overall convergent due to the Abelian
gauge symmetry. The latter implies that integrals converge better than they look like by naive power
counting (see the Footnote p. 66).
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with k, = (p’ — p),. For the contribution to the form factors

k™
u(p") ,(p', p)u(p) = u(p") [%Fﬁ(kz) 42 2m

FM(kZ)] u(p), (5.144)
i

Equation (5.142) implies that IT,(p’, p) = k°I1,,(p’, p) with

iW(p') M, (p', p) u(p) = —ie®x

d*q1 d*qr 1 1 1
@m)* 2m)* 1 43 (g1 + g2 — k) (p' —q)?> —m? (p — q1 — q2)> — m?
x a(pY" (p'— dh +m) Y (p— di— do+m) 7 u(p)

0
%HWAU(QLCDJC—CH —q2). (5.145)
The WT-identity takes the form k?ki(p ') I, (p’, p) u(p) = 0, which implies
™ Fz(0) = 0 and, in the terminology introduced at the end of Sect.3.5, we have
Vo(p) = ,(p’, p)lk=o = 0 and T);(p) = s (p’, p)lk=o- Thus, using the projec-
tion technique outlined in Sect. 3.5, the hadronic light—by-light contribution to the
muon anomalous magnetic moment is equal to

Fu(0) = KTr {(B+m)Y, 1P +m) T (p, p)} - (5.146)

The basic trace of Dirac matrices to be evaluated thus is

T {(p+m)y AN +m)V (p'— dh +m) Y (b= di— do +m) 7'}
(5.147)
such that finally

Fu(0) —ie® d4q1 d4q2 1 1 1
M(0) =
Bm ) 2m* @m* g2 q3 (q1 +q2)? (p—qD? —m? (p—q1 — q2)* —m?

X T {(p+m0P A7NB+m) A (b= i +m)" (= di— d2+m) 7]

0
o ( k—q1 — )) . 5.148
x (akf’ @1 a k= =) ( )

This is what we actually need to calculate. The integral to be performed is 8 dimen-
sional. Thereof 3 integrations can be done analytically. In general, one has to deal
with a 5 dimensional non-trivial integration over 3 angles and 2 moduli.

As mentioned before, the hadronic tensor 17,0, (q1, g2, k — g1 — ¢q2) we have to
deal with, is a problematic object, because it has an unexpectedly complex structure
as we will see, in no way comparable with the leptonic counterpart. The general
covariant decomposition involves 138 Lorentz structures [235, 236]:
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/m v

"% (py, pa. p3) = I (p1. pa. p3) 99" + IT*(p1. p2. p3) g
+ IT(p1. 2. p3) 979"
+ 1Y% (p1, pa. p3) 9" P i + T (1. p2. p3) " Pl P
+ IT*(p1, p2, p3) gudl’]yl’f + 1Y% (p1. pa. m)g’“p”p,f

+ T (py, p2, p3) " P pit + T (pi, pa2. p3) 9°7 Pl Y
ik 3
+ 7" (p1, pa, p3) P,Mpljjpzi P (5.149)

where i, j,k,m = 1, 2 or 3 and repeated indices are summed. The functions are
scalar functions of all possible invariant products p; - p;. By the WT identities
and the kinematical constraint k& — O the number of amplitudes contributing to
g — 2 reduces to 32. In four dimensions two of the structures are linearly dependent
on the others [220]. In fact as shown recently in [237] the number of amplitudes con-
tributing to g — 2 can be reduced to 19 independent ones, if one takes into account
the symmetry of the integral under permutations of the three virtual photons.

Fortunately, this tensor is dominated by the pseudoscalar exchanges 7°, n, 77/, ...
(see Figs.3.6 and 5.49), described by the Wess—Zumino—Witten (WZW) effective
Lagrangian [238, 239]

L aNe o, 1 +2\/§ £, F1 . (5.150)
WZW = 7 12F, ™ ﬁns 3 i .

This fact rises hope that a half—way reliable estimate should be possible. Generally,
the perturbative QCD expansion only is useful to evaluate the short distance tail,

+ W+ %%+

e N e
L\___f u,d

} < ;}--\ - oo

L.D. S.D.

Q000000
+

Fig. 5.49 Hadronic light-by-light scattering is dominated by 7%—exchange in the odd parity chan-
nel, pion loops etc. at long distances (L.D.) and quark loops including hard gluonic corrections at
short distances (S.D.). The photons in the effective theory couple to hadrons via v — p° mixing
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Fig. 5.50 Hadronic degrees

of freedom (effective 0

theories) versus quark gluon 7_T — ~ 4 0A 4
picture (QCD); example 7° A

exchange V 0 V

while the dominant long distance part must be evaluated using some low energy
effective model which includes the pseudoscalar Nambu—Goldstone bosons as well
as the vector mesons as shown in Fig.5.49.

Note that, in spite of the fact that in pQCD our hadronic tensor I, ), (g1, g2, kK — g1 —
g») only involves parity conserving vector interactions (y"—type), in full QCD the
parity violating axial-vector interactions (v/*vs—type) are ruling the game. Thereby
the existence of the Adler-Bell-Jackiw (ABJ) anomaly [240] related via PCAC to
the pseudoscalar states plays the key role. This connection may be illustrated as
in?! Fig.5.50.

5.2.2 Sketch on Hadronic Models

One way to “derive” the low energy structure of QCD starting from the QCD
Lagrangian is to integrate out the S.D. part of the gluonic degrees of freedom,

! /!

1997 ¢ dq
39 = >< =z
qTq q q

which implies effective four quark interactions and a model very similar to the
Nambu—Jona—Lasinio (NJL) model [241] (compare also the linear c—model [242]),
however, with nucleons replaced by constituent quarks. Practically, this is done via
the regulator replacement,

1 1/4? >
@ﬁ/ dr e 79, (5.151)
0

in the gluon propagator and an expansion in 1/A2. In the leading 1/N, limit this
leads to the Lagrangian

31 Formally, a 'yg = 1 appears inserted at one of the vertices and one of the ~5’s then anticommuted
to one of the other vertices. The “quark—loop picture” is not kind of resummed pQCD, which does
not know pions, rather an ENJL type diagram.
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LeNIL = qi {i o (8” - iU;L - i“/t"/S) - M+s—ip 'YS)} (Ii
+295 > (akal ) (@hai) —ov D [(a27"a]) (@ wap) + @ > B] . (5.152)
ij i,j

with ¢ = (u, d, s), defining the so called ENJL model (see [243] for a compre-
hensive review). v,, a,, s, p are the usual external vector, axial-vector, scalar and
pseudoscalar matrix sources as used in CHPT. M is the quark mass-matrix. Sum-
mation over colors between brackets in (5.152) is understood, i, j are flavor indices,
qr.. = (1/2) (1 £ s) g are the chiral quark fields and

_ 8T Gy (A) 472 Gg(A)

- , = 5.153
gv N.A2 gs N.A2 ( )

are Fermi type coupling parameters. The couplings Gg(A) and Gy (A) are dimen-
sionless and O(1) in the 1/N, expansion and to leading order the constraint

Gs=4Gy = =N, . ie. a, = O(1/N,) (5.154)
Y

should be satisfied at scales where pQCD applies. The ENJL model exhibits the
same symmetry pattern, the spontaneously broken chiral symmetry which is inferring
the existence of non—vanishing quark condensates ({iiu), (dd), (5s) # 0) and of the
Nambu—Goldstone modes, the pions (7°, 7%), the 7 and the Kaons in the SU(3)
(u, d, s) quark sector. The Lagrangian LSCD includes only low frequency (less than
A) modes of quark and gluon fields.

In the ENJL model quarks get dressed to constituent quarks in place of the much
lighter current quarks which appear in the QCD Lagrangian. The constituent quark
masses are obtained as a solution of the gap equation®” Fig.5.51 and typically take
values (4.54) for A >~ 1.16 GeV, depending on the cut—off (phenomenological adjust-
ment).

Constituent quark—antiquark pair correlators ((713¢) (x) (GI7;q") (»))* via iter-
ated four—fermion interactions as illustrated in Fig.5.52 form meson propagators

32The quark propagator in the ENJL model to leading order in 1/ N, is obtained by Dyson—Schwinger
resummation according to Fig. 5.51. There is no wave function renormalization to this orderin 1/ N,
and the mass can be self-consistently determined from the Dyson—Schwinger equation. To leading
order in N, this leads to the condition

Mi =m; —gs{qq)i ; {(qq)i ={01: giqi :10), (5.155)
d*p i
qq)i = —4 N. M; B T a—— 1
(9q)i N, l/A 2t I)Z—Ml-z (5.156)

Here i denotes the quark flavor. The constituent quark mass M; is independent of the momentum
and only a function of Gg, A and the current mass m; .

33The I7’s denote a 4 x 4 matrix in spinor space (see Eq. (2.22)) times a 2 x 2 matrix in isospin
space (Pauli matrices), which specifies the channel: spin, parity, isospin, charge etc.
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O]

Fig. 5.51 Dyson—Schwinger equation for the inverse quark propagator (see Sect.2.6.2 (2.184)),
which at zero momentum leads to the gap equation (5.155). Free lines without endpoints denote
inverse propagators; thick line dressed or constituent quark; thin line free current quark

eeeee—

resummed - p
>< - XX = >ooo-cX — e OT ——
Fig. 5.52 ENIJL meson propagators

= A

Fig. 5.53 ENJL model graphs: n%—exchange, pion—loop and quark-loop dressed by p— -~
transitions

such that one obtains the Fig.5.53 type of ENJL diagrams which implies a VMD
like dressing between mesons, quarks and the virtual photons. It should be clear that
the ENJL model does not allow us to make predictions from first principles, since
although it is “derived” from QCD by “integrating out the gluons” in the functional
integral such a derivation is not possible on a quantitative level, because the non—
perturbative aspects are not under control with presently available methods. What
emerges is a particular structure of an effective theory, sharing the correct low energy
properties of QCD, with effective couplings and masses of particles to be taken from
phenomenology.

In fact, in order to work with the model one has to go one step further and introduce
the collective fields describing the hadrons, like the pseudo—scalars and the vector—
mesons and this leads back to the RLA or HLS type of approaches where the meson
fields are put in by hand from the very beginning, just using the symmetries and
the symmetry breaking patterns to constrain the effective Lagrangian. However, this
does not fix the Lagrangian completely. For example, a special feature of the HLS
Lagrangian [190] is the absence of a p° p®7r* 7~ term, which is present in the extended
chiral Lagrangian as well as in the VMD ansatz.

The spectrum of states, which eventually should be taken into account, together
with the quantum numbers are given in the following Table5.10. Nonet symmetry
would correspond to states

I
NG

g = — (uit +dd — 255) ; 1) = %(nﬁ+d&+s§), (5.157)
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Table 5.10 Low lying mesons (hadrons) in the quark model [42]. 6 is the phenomenological flavor
mixing angle (see the text)

J2+g, | gPC ) _I]=1_ ) _1_:%_ ) 1=0 1=0 0
ud, di, ﬁ(dd —uit) | us, sii,ds, sd f f [°]

115, 0~+ ot a7l KT, Kk, K0, KO |y 17/ (958) | -24.5

135, 1—- p(770) K*(892) $(1020) | w(782) 36.4

13py ot+ ag(1450) K (1430) fo(1710) | fo(1370)

135 1+ a1 (1260) K1(1270) £1(1420) | f1(1285)

13p, 2+ a3 (1320) K3 (1430) f>(1525) | f>(1270) | 30.5

Table 5.11 Decay amplitudes A(A1, A2) in units of ¢; and two-photon decay width (reduced with
I, for 17) in units of d; (see text for the definition of ¢;, d;). Table from [244]

JP A | AG) A(+0) A(00) r,
0~ 0 VX 0 0 4
+ 2(X+r W?) =2 a2 g2
0 0 W 0 = Vi \/ZW 144
1" 0 =7 @ —a3) V2 /a3 v —aqd) 0 2
v (q3+4 Tq5
2+ 2wy |3 le)Rds V2@ w+q?) NN 192/5

where v; is the ideal flavor singlet state. This symmetry is broken and the physical
states are mixed through a rotation

f =1pgcos@ — P sinf; f =)gsin@ + 1P cosb (5.158)

and the mixing angle has to be determined by experiment. For tan § = 1/+/2 ~ 35.3°
the state f’ would be a pure s§ state. This is realized to good accuracy for w — ¢
mixing where ¢ is almost pure ss.

A key quantity in the production of resonances in vy — hadron reactions is
the two—photon width I',,. The decay of a C = +1 resonance R into two photons
R(p) — v*(q1) 7" (q2) has a decay width [244]

Lld7) =

AL ) 5.159
27 +1327M 2. 1A M) ©-159)
A, =%1

in terms of appropriately normalized helicity amplitudes A(\;, \2), which are
listed in Table5.11 in units of ¢; = </3/M e2Q 167« R;?(O) Yi0(0, 0)/D'*! where
Y (6, ¢) are the spherical harmonics, D = w? /4 — m? — v. Here, R,(lll) (0) is the /-th
derivative of the radial wave function R,; (r) = ¥, (v)/ Y1, (6, @) of the bound state
atr = 0. W = /p? denotes the two—photon energy, v = q; - g2 and X = v — ¢iq;3.
The photon helicities can take on the values A; = £1, 0. The remaining helicity
amplitudes can be obtained using the relations
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AL, A2) = nr A(—A1, —A2)
AN X)) = (=1 A, Ay oq, -

where ng =1 (—1) for mesons of the “normal” (“abnormal”) J¥
series JP =0%,17,2%,... (JP =0",1%,27,...). Here we have defined d; =
3 e4Q a2 |R,511) 0)]? /M 204D In the case of the 1T meson the entry defines the reduced
width I, - This is the transverse—transverse two-photon width divided by a factor
[(ql — g5 2)/(2 v)]?, which shows that I, [17]is zero, in agreement with the Landau—
Yang theorem.

At low energies, the interaction of a neutral pion with photons is described by the
WZW Lagrangian (5.150). Since this is a non—renormalizable interaction, employing
it in loop calculations generally results in ultraviolet divergences, which have to be
eliminated by renormalization.

A simple and commonly adopted option is to introduce a Form Factor (FF) at
the 70+ interaction vertex, which tames the contributions of highly virtual photons.
This is not just a model: the VMD mechanism is a physical process, well established
phenomenologically. This results in the following 7%+ interaction vertex:

VI (@1, ) = s Froyee (m2, g1, 43) 1 €10 g, (5.160)

3nF;
with Fro., (m2,0,0) =1 and where ¢ » denote the momenta of the two outgoing
photons, and Fro- -(m2, g3, q3) falling off like 1/g? in general (see below).

The part of the RLA Lagrangian (see [46, 132] for the complete effective HLS
Lagrangian) relevant for us here includes the terms containing the neutral vector—
meson p°(770), and the charged axial-vector mesons ali(1260) and 7t, as well as
the photon:

<> <>
LE‘II[‘S eg,OA 'ON ig/)ﬂ‘/l’pg (Tr+ 8” 7T7) - ig’)ﬂ'/rAN (7'(-+ 8” 77)

_ — g
+(1—a)e? A”A,ﬂr T +2€ngﬂA“p27T+7T - Fp AF (VaTu = VT )

4o (5.161)
where masses and couplings are related by

M2 —angﬂ . gy = angﬂz,
Gprm = ;Clgv , g’\/ﬂ'ﬂ':(l_%) e.

The parameter a is not fixed by the symmetry itself. A good choice is a = 2 which
conforms with the phenomenological facts (i) universality of the p coupling g,-» =
gv, (ii) gy=r = 0, which is the p meson dominance of the pion form factor, and (iii)
the KSRF relation [245] M} = 2g>  F?. The corresponding Feynman rules are listed
in Fig.5.54 and supplement the sSQED ones in Fig.2.13. Also included we have the
WZW term (5.150) and the vector—boson propagators read
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Fig. 5.54 Feynman rules for (1)

R A all Propagators and mixing transitions

incoming with y(k), 7+ (p’) 0
and 7~ (p). These rules ke p v = AHY (q M )
O——0 . 0 sy Vlp)
supplement the sQED rules
Fig.2.13
a
u v ,
O o ooaooQ = Agij(Q7 Mal) ’
Y=P
K v e 2
VY ————— = —1€gp g7 ,

(2) Pion-photon vertices

AP
2
- = e £ oy kg
7r A
(3) Vector—meson—pion/photon vertices
/, 7T+
’ .
%‘ = 19pnn (' _p)u« )
\
P SO
A+ ’ 7T+
’
X4
= 2eYprn g1,
\
N
v
ay
= T eg_pguu
AH S . F ‘
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—i [g‘”’ _q"q" ]
(q* — M3) q?

A (g, My) = (5.162)

where My is the mass.

As mentioned at the beginning of this section already, for the models presented
so far one is confronted with the problem that one has to complement a non—
renormalizable effective theory with renormalizable perturbative QCD above a cer-
tain cut—off. This generally results in a substantial cut—off dependence of the results.
In order to avoid this matching problem, the most recent estimations attempt to
resort to quark—hadron duality for matching L.D. and S.D. physics. This duality can
be proven to hold in the large—N,. limit of QCD and this may be exploited in an 1 /N,
expansion approach to QCD. However, once more the N, — oo limit, in which the
hadrons turn out to be an infinite series of vector resonances, is not under quantitative
control [226, 227]. Hence, a further approximation must be made by replacing the
infinite series of narrow resonances by a few low lying states which are identified
with existing hadronic states. As a result one obtains a modeling of the hadronic
amplitudes, the simplest one being the lowest meson dominance (LMD) or minimal
hadronic ansatz (MHA) approximation to large—N, QCD [246, 247]. An examples
of this type of ansatz has been discussed on p. 321 in Sect.4.2.2. For a detailed
discussion the reader should consult the articles [246-248].

The various HLbL contributions in the effective theory are shown in Fig. 5.55 and
the corresponding 1/N, and chiral O (p) counting is given in Table5.12.

Based on effective hadronic models, major efforts in estimating aLLbL were made
by Hayakawa, Kinoshita and Sanda (HKS 1995) [210], Bijnens, Pallante and Prades
(BPP 1995) [235] (see [249] for a recent update) and Hayakawa and Kinoshita
(HK 1998) [250]. In 2001 Knecht and Nyffeler (KN 2001) [234, 251] presented a
consequent large—N, QCD inspired approach which implemented the proper QCD
large momentum asymptotics such that cut-off matching is avoided as a matter of
principle. They thereby also discovered a sign mistake in the 7°, 7, 7 exchange

(a) [L.D.] (b) [L.D.] (c) [S.D.]

Fig. 5.55 Hadronic light-by-light scattering diagrams in a low energy effective model description.
Diagrams a and b represent the long distance (L.D.) contributions at momenta p < A, diagram ¢
involving a quark loop which yields the leading short distance (S.D.) part at momenta p > A with
A ~ 1-2GeV as UV cut—off. Internal photon lines are dressed by p — v mixing. Note that, in view
of multiple scale nature of the problem (see Fig. 5.47), the classification into L.D. and S.D. as used
here is very sloppy
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Table 5.12 Orders with respect to 1/ N, and chiral small p expansion of typical leading contribu-
tions shown in Fig.5.55

Diagram 1/N. expansion p expansion Type

Figure5.55a N po 7m0 exchange
Figure 5.55a N, e at, f1, f{ exchange
Figure 5.55b 1 p* Meson loops (7, K¥)
Figure5.55¢ Ne¢ ps Quark loops

contribution (see also [252, 253]), which changed the central value by +167 x
10~ More recently Melnikov and Vainshtein (MV 2004) [254] found additional
inconsistencies in previous calculations, this time in the short distance constraints
(QCD/OPE) used in matching the high energy behavior of the effective models used
for the 7°, 1, 7’ exchange contribution. Knecht and Nyffeler restrict their analysis to
pion—pole approximation. At least one vector state (V) has to be included in addition
to the leading one in order to be able to match the correct high energy behavior.
The resulting “LMD+V” parametrization has been worked out for the calculation
of the LbL 7%—pole contribution in [234] and was used later in [254] with modified
parameter /i, (see below) at the internal vertex and with a constant pion—pole form
factor at the external vertex. Explicit models of form factors will be considered later.

As we will see a lot of effort is required to tune models such that they satisfy
QCD large momentum asymptotics, which should ease the matching of models with
true QCD. However, if a model is providing a good description of all available data
up to 1 GeV say, but fails to have the correct high energy behavior, it does not mean
that the model is obsolete in estimating the contribution for the range of its validity,
provided it is parametrizing physics well there.

In the following we will discuss the various contributions classified in Table 5.12
in some detail. Special attention will we given to the leading pion—exchange. After
a summary of the results the novel multi channel dispersive approach will be
overviewed. The chapter will end with an account of the lattice QCD method and
results (HVP and HLbL). Needless to say that only the original literature can provide
full details on the various aspects and attempts to provide reliable results for these
challenging calculations.

5.2.3 Pion-Exchange Contribution

Here we discuss the dominating hadronic contribution which is due to the neutral
pion-exchange diagrams shown in Fig.5.56. The key object here is the 7%y~ form
factor Fro.+(m2, g}, g3) which is defined by the matrix element

s
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(b) (c)

Fig. 5.56 Leading hadronic light-by-light scattering diagrams. Internal photons lines are dressed
by p — v mixing

i / dhx (01T () j ONA(P) = e a° P Fropep Mz, 4% (p =P . (5.163)

It is Bose symmetric Froes (S, g7, g3) = Froeyers (s, g3, 1) of course, as the two
photons are indistinguishable. This holds for off—shell pions as well. An important
point we should notice is that in the Feynman integral corresponding to one of
the diagrams of Fig.5.56 the pion is not necessarily near the pole, although pole—
dominance might be expected to give a reasonable approximation. For clarity we
therefore define the form factor not by the matrix element (5.163), but by the vertex
function

i/d“x e (0|T {j,(x) ju(0) $ro(p)}|0) =
i
Ewap 4" D" Frveers (P2 @, (p — @)% X P (5.164)

with @(p) = [ d*y e!P*p(y) the Fourier transformed %field.
The ﬂo—exchange contributions to I1,,,5,(q1, g2, q3), according to Fig.5.56 takes
the form

i H,Ez(i\),)(CIhélzsCB) =
Frinyeye (q;’ qlz’ q32) F ronryers (51,227 ‘Izzv k?)
q;’ —m?
F ey q2, 43,43 y - @GP g2, k)
g —m?2
L T @ g1 43) Fmoere 057, 65 K7)
g —m?

a B o T
EuraB 4193 Evpor 429>

B
+ Eupaf 61?611‘ EvdoT ng:;—

a B o 't
EuwaB 419y Expor 9393
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L

.0
WP = Fa(0) |LpLiro, we need

with ¢/ = ¢; + k. To compute a

0 0
! % Hﬁ(;)\)d(ql’ q2, k — q1 — qz) —

F ey (qu ‘1127 432) F ey (‘122’ ‘1227 0)
g5 —m?

L Fare @t 43, 63) Fro (a1 01 0)
qi —m?

L Frvyrr @301 43) Frrren (43,65, 0)
q; —m?

+ 0. (5.165)

a B T
Eurap g1 9y Evapr qr

T a B
Euorpq1 Evras 91 93

8
Ewap 41 Qs Exapr 43

Here, we may set k" = 0 such that g3 = —(q; + ¢2). Inserting this last expression
into (5.145) and computing the corresponding Dirac traces, one obtains [234]

LT _ _66/ d'q) d'qy 1
" Qm* 2m* qiq3(q1 + ¢)*[(p + q)> — m21[(p — 2)> — m?]
[T @ 4t 43) Frnres (43, 43, 0)
q3 —m?

T1(q1. q2; p)

Frveyins (G5, 1 3) Frvener (G5, 43, 0)
+ = 1q22 mz” 22 To(qrqas p) | (5.166)
3 T

with

16 16
Tiq1, 42 P) = = (a0 (P 42) (@1 - 42) = ?(17'42)26112

8 ) , 5, 16 5
—§(p~q1)(q1 ‘@) gy + 8(p-q)qgi g5 — ?(p-qz) (g1 - q2)
16 16
+—mqiqr — —m’(q1-@)*, (5.167)

3 3

16 16 5
Ty(q1,q2; p) = ?(P’Cll)(P’QZ) (q1-q2) — ?(pm) q

§ 2 § 2 2
+3(p~q1)(q1 “q2)q; + 3(p-q1)q1 q;

+ 2 m’qi g3 — gmz @1 q2)° - (5.168)
Two of the three diagrams give equal contributions and 7, has been symmetrized
with respect to the exchange q; <> —¢g». At this stage everything is known besides
the 7%~ off-shell form factors.

For later reference it is interesting to note that the imaginary part obtained by
applying (2.141) to the pion propagator (unitarity cut) is given by
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.0 )
Im (i %n,,,,Ag(Ch,qz,k_ql_qz) _

2 2 2 2 2 2 2 B
-n 5(‘]2 - mﬂ') 7 O* Ak (m7(7 q1» 43) Vj WO*'y*fy(mTw me, 0) Epraf qiyqz Evopr Qér
2 2 2 2 2 2 2 ¢
—m3(qy — mz) Froepens (M7, @35 q3) Froeyun (M, mz, 0) €porp q1 Evrap 41 5

2 2 2 2 2 2 2 a, B T
) 5(‘]3 —my) 7—}0*7*7* (mz, 47, 495) '7:710*7/*7(”"7.—’ my, 0) EpvaB 419y EXopr 43

row. (5.169)

in terms of the on—shell 7 transition form factors.
The result in (5.166) does not depend on the direction of the muon momentum
vector p such that we may average in Euclidean space over the directions P:

(-+) L/dg(ﬁ) (5.170)

)

using the technique of Gegenbauer polynomials (hyperspherical approach), see [255].
Since all p dependent terms are independent of the pseudoscalar form factors one
may perform the integrations in general. After reducing numerators of the amplitudes
T; against the denominators of the propagators one is left with the following integrals
((4) = (P4 Q)*+m}, and (5) = (P — Q2)> +m?, with P? = —m?)

1— le
2m?
1 — Rm2

2
2m i

)

) (5.171)

< 1 1 > 1 ( 7X )
—— ) = —— arctan s
4) (5) mi R 1 —z7
» 1\ (1 — Rp)?
<( 'Q1)6>——(Q1'Q2)Ti,
. 1\ (1= R’
<( 'Q2)@>— (Ql‘Qz)W,

where R,,; = ,/1 +4mﬁ/Qi2 and (Q1 - 0;) = Q1 Q» 7 with 7 = cos 0, 0 the angle
between the two Euclidean four—vectors O and Q,. Note that f d.Q(Ql) d.Q(Qz) =
47*. Denoting x = /1 — 72, we have Rj» = 0, Q> x and

010
4m?

(1 - le) (1 - RmZ) .

We have thus eliminated all momentum dependences up to the three which also show
up in the hadronic form factors Q2, Q%, and Q% or equivalently on (Q; - Q;) =
Q10> cosf and end up with a 3—dimensional integral over Q; = |Q1], Q2 = |Q>]
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and 7 = cos 6:

o 2a3 00 +1 3
ar = -2 [T a0u0: [ ar Vi 0} 08 x

[F1 Ps [1(Q1, Q2,7) + F2 P, (Q1, Q2,7)], (5.172)
where Py = 1/(Q% + m%), and P; = 1/(Q§ + m72T) denote the Euclidean single par-
ticle exchange propagators. The integration kernels /; and I, which factorize from
the dependence on the hadronic form factors in F; and F,, are given by

L(Q1, 02, 7) = X(Q1, 02, 7) (8 Pr Py (01 02)
—2 Py P35 (Q3/m), —203) — 2P (2— Q3/m> +2(Q1 - Q) /m)
+4 Py Py QF —4 P, — 2Py (4+ Q7/m), —203/m}) + 2/mi)

—2Py Py(1+ (1= Rp1) (Q1 - Q2) /m})
+Py P32 — (1= Ry1) Q3/my) + P (1 = Ry))/m,
+Py P32+ (1= Ry1)* (Q1 - Q2) /m2) + 3 Py (1 = Ry1)/m.,

L(Q1, 2, 7) = X(Q1, 02,7) (41’1 P (Q1-02)

+2 P P3Q§—2P1+2P2P3Q%—2P2—4P3—4/mﬁ)

~2Py Py =3 Py (1 = Ry2)/@m};) =3 Py (1 = Ry1)/2m})

+P1 P32+ 3 (1 = Rup) 03/2m) + (1 = Ru2)* (Q1 - Q2) /2m}})
+Py P32+ 3 (1= Ry1) Q1/Q2m?) + (1= Ry1)* (Q1 - Q2) /(2m1)))
—P3 2= Ryt — Ru2)/(2m}), (5.173)

where we used the notation P;=1/03, P,=1/Q3,and P; = 1/ Q§ for the Euclidean
propagators and introduced the auxiliary function

X(01. Op7) = — arctan( “ ) (5.174)
a 2’T_QIQNC l—zr) "’ ’

which has the following asymptotic expansion for small x, near the forward and
backward points:

éz((zfn xz) + 0 (x*) for 7>0
%Z(Z+3)x2) + 0 (x3) for 7 <0

| I%Z(l—i-
X(Q1, 02, 7) = 0,0, L( N
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Equation (5.172) provides the general set up for studying any type of single particle
exchange contribution as a 3—dimensional integral representation. The non-pertur-
bative factors according to (5.166) are given by

Fi = Froerp (— 03, — 07, —03) Froerer (— 03, — 03, 0)
Fy = Froepirs (— 03, — 01, — Q3) Froerer (— 03, — 03, 0), (5.175)

and will be considered next. Note that F, is symmetric under the exchange Q; <> Q5.
We used this property to write I,(Q1, @, 7) in (5.173) in a symmetric way.

5.2.4 The w~~ Transition Form Factor

Experimental Constraints

Above we have formally reduced the problem of calculating the 7’—exchange con-
tribution diagrams Fig.5.56 to the problem of calculating the integral (5.172). The
non—perturbative aspectis now confined in the form factor function Foe«+ (s, 51, 52),
which is not known as well as it would be desirable. For the time being we have to
use one of the hadronic models introduced above together with pQCD as a constraint
on the high energy asymptotic behavior. Fortunately some experimental data are also
available. The constant 0., (mfr, 0, 0) is well determined as

1

2
7:7T0v'y(mﬂ-a 0,0) = m s

(5.176)

by the 7° — 7~ decay rate. The invariant matrix element reads

M[7(q) = v(p1. M) Y(p2, )] =
e "™ (p1, A1) €7 (p2, A2) Epvap p(lypg 7:770*7*“/* (qZ’ p%! p%) - (5.177)

The on-shell transition amplitude in the chiral limit follows from the WZW
Lagrangian (5.150) and is given by

2N,

= ~ 0.025GeV~!,
1272F, «F,

Mo, = e’ Fro4,(0,0,0) =

and with F; >~ 92.4 MeV and quark color number N, = 3, rather accurately predicts
the experimental result

IMEP | = \J64n T, /m3 = 0.025 £ 0.001 GeV ™" .
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(a) e (pe)

Fig. 5.57 a Measurement of the 7° form factor F 0y (m72r, —02,0) at high space-like 02,

b needed at external vertex is Fox.+, (—Q%, — 02, 0)

At leading order QED the 70 — ~+ decay width is given by

2,3
TOTm;,

oy = |Fr05,(m2, 0,0)| (5.178)

and its experimental measurement is
oy =7.73(16) eV . (5.179)

Additional experimental information is available for F0.,(m2, —Q?, 0) coming
from experiments eTe” — ete 79 (see Fig.5.57) where the electron (positron) gets
tagged, i.e., selected according to appropriate kinematic criteria, such that Q* =
—(p» — p1)? = 2ELE; (1 — cos ©,) is large. p,, is the beam electron (positron) four—
momentum, p, the one of the tagged electron (positron) and @, is the angle between
p: and p,. The differential cross section

do
dgQ?

(ete” — ete 7%
is then strongly peaked towards zero momentum transfer of the untagged positron
(electron) which allows experiments to extract the form factor.

Note that the production of an on—shell pion at large —ql2 = Q7 is only pos-
sible if the real photon is highly energetic, i.e., qg = |q| large. This is different
from the g — 2 kinematical situation at the external photon vertex, where the exter-
nal photon has zero four-momentum. By four-momentum conservation thus only
Frnien (— 02, —0?, 0) and not Fro.«, (m2, —Q?, 0) can enter at the external ver-
tex. However, for a “far off—shell pion” the effective theory breaks down altogether.
Indeed, Tﬂoww(—QZ, —Q?,0) is not an observable quantity away from the pion—
pole and in particular not for large Q2 > m?2.

For the internal vertex both photons are virtual, and luckily, experimental data on
Froir (M2, —Q2, 0) is available from CELLO [256] and CLEO [257]. This is one of
the “question marks region” of Fig. 5.47 which is actually controlled by experimental
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data. Experiments fairly well confirm the Brodsky-Lepage [258] evaluation of the
large Q2 behavior

li 2 2 0) ~ 2F7T
Q21£>noo 7__7r0'y*7(m71-a —-0°,0) Q2 .

(5.180)

In this approach the transition form factor is represented as a convolution of a hard
scattering amplitude (HSA) and the soft non—perturbative meson wave function and
the asymptotic behavior follows from a pQCD calculation of the HSA. Together with
the constraint from 7° decay

1
: 2 2 0y —
QI%r—I}O Tﬂow,*,y(mﬂ, -0, 0) = m (5.181)
an interpolating formula
1

Froen (M2, — 02, 0) (5.182)

4T2F, 1+ (Q2/8m2F2)

was proposed, which in fact gives an acceptable fit to the data shown in Fig.5.58.
Refinements of form factor calculations/models were discussed and compared with
the data in [257] (see also [259-267]). Recently new experiments have determined
this form factor. The results from BaBar [268] and Belle [269] are included in
Fig.5.59. While BaBar data seem to indicate a “violation” of the Brodsky-Lepage
bound (at least at the high end of the explored energy range), newer Belle data suggest
a perfect matching with this behavior.

Fig. 5.58 F0.x, (m2, 0.30 e T8
—02,0) data from CLEO

and CELLO. Shown is the | O CELLO

Brodsky-Lepage prediction
(5.182) (solid curve) and the
phenomenological fit by
CLEO (dashed curve)
[Reprinted with permission
from [257]. Copyright
(2007) by the American
Physical Society]

= ¢ CLEO R

0.20 —
2f

Q? |F(@?)] (GeV)

oS

o

=)
T
|

P T T I T ST T NS SO ST S AT SO S

0 2.5 5.0 7.5 10.0
Q?(Gev?))




5.2 Hadronic Light-by-Light Scattering 453

Q2F (%) |

0.004 ! —=— LMD+V fit
o s 1 B 2 25 30 3%
@* (GeV)

Fig. 5.59 An update of Fig.5.58 including the new data from BaBar and Belle, which reach much
higher energy transfers. The BaBar data seem to suggest a violation of the Brodsky-Lepage (BL)
bound, but could be fitted by a CQM fit with a quark mass of 130 MeV. Actually, a best LMD+-V fit
(aquaband) of the weighted average yields a perfect compatibility wit the BL behavior. The LMD+V
form factor (5.218) best fit we obtain with h5 = —7.66(50) GeV* adopting the VMD inspired values
My = M, = 0.77526(25) GeV and M> = M, = 1.455(25) GeV. The terms proportional to m72.
are negligible in the fit and we take h3, h4, he = 0. Note that the LMDV fit is not a free fit as the
general form is theory (QCD+OPE) driven and as the corresponding constrained fit is required to
satisfy additional conditions (see text below)

Transition form factor measurements have also been performed for 1 and 7’ [256,
257, 268, 270-272]. They provide important constraints for the evaluation of the
corresponding g — 2 contributions below.

It is important to note here that the L.D. term %o, (mfr, 0, 0), which is unam-
biguously determined by the anomaly, gets screened at large Q7 in spite of the fact
that in the chiral limit

Frtei (@3 41+ @3) lmy=0 = Fro4(0, 0, 0], =0 = (5.183)

4’/T2F()

The 1/Q? behavior is in common with the one of the quark loops when my # 0, as
we will discuss next. A seemingly plausible approximation which helps to simplify
the calculation is to assume pion—pole dominance in the sense that one takes the form
factor on the pion mass shell and uses 70.+,+ everywhere. This pole approximation
apparently has been used by all authors (HKS, BPP, KN) in the past, but has been
criticized in [273]. The first analyses taking the off—shellness into account has been
presented in [274, 275].

Here an important point comes into play: modeling of the non-perturbative effects
one has to distinguish carefully whether one is considering the soft—soft regime
where a low energy effective theory like ENJL or HLS is adequate or whether one
is attempting to model the soft—hard ranges of Fig.5.47, which is what Knecht—
Nyffeler [234] and Melnikov—Vainshtein [254] are considering. It makes a difference
since the RLA type models predict a VMD dressing of all off—shell photon lines,
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Fig. 5.60 The OPE for the photon—photon scattering Green function, for ¢ & —¢2 >> ¢q3 =
—(q1 + g2) the triangle “blob” is dominated by pseudoscalar exchanges but also accounts for
whatever QCD permits. In the sum of all hadronic states it is given by the perturbatively calculable
triangle anomaly. Upper panel Melnikov—Vainshtein considering the vy — 7~ amplitude (see
p. 480 below). Lower panel Knecht-Nyffeler considering the vy — 70 form factor (see p. 459
below). The subsequent 7¥ — ~y transition is taken into account in a second step

while QCD asymptotics predicts that the form factor at the external vertex has to
be constant. This is also the case in the large—N, inspired approach if consequently
applied, as in [274]. It also seems not to be a surprise that (MV) and (JN) get a
different asymptotic constant, the first given by the triangle anomaly, the second by
the magnetic susceptibility. MV consider the full v*v* — ~*v (k# = 0) amplitude
Fig.5.60, while KN/JN consider the Green function of two currents with a pion field
as a starting point. The “discrepancy” is actually a matter of splitting the problem into
sub-problems/sub-processes as suggested by Fig.5.55 where different effects may
be taken into account in different ways. We also should keep in mind that the MV
approach is focusing on a specific kinematic constraint where OPE can be applied
(Fig.5.47). One also should note that in the low energy regime the spontaneous
breaking of the chiral symmetry implies the existence of quark condensates, which
have no trace in pQCD and in the hard—hard range the true short distance behavior
should be that of the unbroken phase i.e. by pQCD.

The point is that the form factor sitting at the external photon vertex in the pole
approximation [read Fo., (m%, —Q?, 0)] for —Q? # m? violates four-momentum
conservation k* = 0. The latter requires 0. (— 0%, —07?, 0) as discussed before.
In the chiral limit the only consistent choice for the form factor in the pole approx-
imation is ¥0.,(0, 0, 0) which is a constant given by (5.181); this model is advo-
cated by Melnikov and Vainshtein, and leads to a substantially larger contribution,
due to the lack of damping of the high energy modes. But, what we really need is
F s (— Q?, —Q?, 0) and the question is how it behaves at high energies. Definitely,
no direct experimental information is available here. In principle a fully dispersive
approach as advocated in [222] would avoid such problems, but the approach requires
more experimental data from y*+* — hadron processes than what is presently
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available. Although very challenging, lattice QCD is expected to give unambigu-
ous answers here in future.

Theoretical Considerations

Apart from these experimental constraints, any satisfactory model for the off—shell
form factor Froe+. ((q1 + ¢2)°, 7, ¢3) should match at large momentum with short-
distance constraints from QCD that can be calculated using the OPE. In [234, 247]
the short-distance properties for the three-point function (V VP) in (5.164) in the
chiral limit and assuming octet symmetry have been worked out in detail (see also
[246] for earlier partial results). At least for the pion the chiral limit should be a not
too bad approximation,34 however, for the ) and, in particular, for the non—Nambu-
Goldstone boson 7/’ further analysis will be necessary.

(1) Lessons from CQM:

Let us consider first the behavior of F0-+.+ in the CQM, where it is given by a quark
triangular loop (see (2.147) and [250])%

FeQM

W43, 47, 43) = 2m] Colmy, mg,my: 43,47, 43)

2m3
= /[da] 3 3 , (5.184)
mq — Oéz()t3q1 — Oé3Oélq2 — a1a2q3

where [da] = dajdasdas 6(1 — oy — az — a3) andm,isaquarkmass(g = u, d, s).
o*W 7 = Froeyes /F 020, here, such that

7(0971\:[7* = 127’3& FSSM For q1 = q2 = q3 = 0 we obtain FCO?“f ,(0,0,0) = 1.
Note the symmetry of C under permutations of the arguments (q3, qi,q3). Cois a
known function in terms of logs and dilogs for arbitrary values of the arguments. For
our purpose it is sufficient to calculate it at one of the square momenta set to zero.

One finds

—m2 1/4m 2 -
C M m qg — 41 — q
0.7, 6]2)— - - — @} = >
,/4mq qi ++—4

We are adopting the normalization FR

Ll NS

F

(5.185)

—N

34As pointed out in [276], the integrals (5.166) are infrared safe for m, — 0. This can also be seen
within the EFT approach to light-by-light scattering proposed in [251, 253] to be discussed later in
Sect.5.2.4.

35We actually first consider a current quark loop which is related via PCAC to the triangle anomaly
(see below). Non—perturbative strong interactions effects transmute it into a constituent quark loop
(mgy — My, the latter being non-vanishing in the chiral limit). See also the recent advocation of the
constituent chiral quark model (CxQM) for evaluating hadronic contributions to a,, in [277, 278].
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For large g7 at g3 ~ 0, g3 ~ 0 the asymptotic behavior is given by

m2 —g?
Fo2.(0,47,0) ~ m?( =) (5.186)
_41 m2
For large g7 ~ ¢3 at q32 ~ 0 we have
2 _qg
FS2(0.q7. g1 ~2 % Y =4 (5.187)
Frolpys —¢? mé

and the same behavior follows for g7 ~ g7 at g3 ~ 0. Note that in all cases we have
the same power behavior ~ mg / q12 modulo logarithms. It is important to note that

in the chiral limit Fﬂ(,?i\fw* "0 0 if (43, 4%, q3) # (0,0, 0). Thus our consideration
seems to be not quite relevant, as it says that the chiral corrections at high energies
are damped by a 1/ Q? behavior in all the possible directions. The dominant terms
come from the chiral limit, but, surprisingly, the CQM calculation also sheds light
on the leading contribution, as we are going to discuss now. The singular behavior

of F E,in[ - under exchange of limits:

lim  FL2l . (45.47.3) =0 forall (¢5.47.43) # (0.0,0)

mq~>

: CQM _
g m on T (g3.q}.q3) =1 forall my #0 (5.188)

implies that the chiral limit is either zero or unity,

lim lim Fa¥ (a3 41.43) =1, (5.189)
mq=0 (43 ,47,43)—(0,0,0)

depending on whether (¢, g7, ¢3) # (0,0, 0) or (g3, 97, q3) = (0,0, 0), respec-
tively. This singular behavior is an alternative form of expressing the ABJ anomaly
and the non-renormalization theorem. For the pseudoscalar vertex the latter just
means that the last identity (5.189) to all orders of perturbation theory yields a con-
stant, which always may be renormalized to unity by an appropriate renormalization
of the axial current. The divergence of the latter being the interpolating field of the
pseudoscalar Nambu—Goldstone mode involved.*® Amazingly, the pseudoscalar ver-
tex (at one loop, in the real world of non—vanishing quark masses) is UV finite and
regularization independent; the two vector currents are trivially conserved, because
of the 5,,,,(,{;:]?61? tensor structure in (5.177), and we obtain the ABJ anomaly as a IR
phenomenon (see also [279]) and not as a UV renormalization effect as it appears
if one looks at the VVA matrix element. Since the anomaly is exact to all orders

36The anomaly cancellation required by renormalizability of a gauge theory here just would mean
the absence of a non—smooth chiral limit.
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and at all energy scales, it is not surprising that it may be obtained from the IR
region as well. Note that with the exception of the WZW point form—factor, all other
models considered (see e.g. (5.211) or (5.214), below) share the property of the
CQM that they yield the anomaly at (0, 0, 0) while dropping for large p? like 1/ p?
if (g7, ¢3, p3) # (0,0, 0). But likely only the CQM may be a half-way reasonable
model for the configuration (— 02, — 072, 0) needed at the external vertex.

(2) Lessons from QCD:

The key object which enters the Feynman diagrams is the off-shell 7%y~ form
factor Froee+((q1 + q2)%, 47, q3) which is defined, up to small mixing effects with
the states 1 and 1)/, via the Green’s function (V VP) in QCD

/ d*xdty @ e (0T (), (x) i, (y) P*(0)}]0)

BN 1) i
et 992 T T gy + ) — m2

Frorere (@1 + 427, 47, 43) ,  (5.190)

where P3 = 1)irs ;w = (itivsu — diysd) /2. By (11)) we denoted the single flavor
bilinear quark condensate. By (1)1))q we will denote the same quantity in the chiral
limit. Here again the low energy effective structure of QCD as encoded in CHPT is
relevant. The vacuum condensates are a consequence of the spontaneous breakdown
of chiral symmetry. A first example where quark condensates entered the game we
encountered in (4.76) on p. 309. The existence of an order parameter like the quark
condensate makes the high energy behavior different from naive pQCD expectations.
Itis important to notice that the Green function (V VP) is an order parameter of chiral
symmetry. It vanishes to all orders in perturbative QCD in the chiral limit as the d
quark and the u quark contributions making up P> cancel. As a consequence the
behavior at short distances is smoother than expected from naive power counting
arguments. Several limits are of interest. In the first case, the two momenta become
simultaneously large, which in position space describes the situation where the space-
time arguments of all the three operators tend towards the same point at the same
rate. To leading order and up to corrections of order O () one obtains the following
behavior for the form factor [234]

Fo 1 qf 443+ (q1 + q2)* 1
: 2 2 2y Fo 1 gy Tq; g1 Tq2
/\ll)ngo77w‘]*v*7*(()\fll +Aq2)%, (Aq1)”, (A\q2)7) = BV ‘112‘]22 +0 (F) .

The factor Fy in the chiral limit accounts for the factor 1/F;; in the definition of
Froeysae (5.190) above.

In order to discuss the other limits of interest let us introduce the QCD octet of
vector and axial currents and the