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Preface to the Second Edition

Acquiring today’s systems is more sophisticated and complex than ever
before. Increasingly, systems are engineered by bringing together many
separate systems, which, as a whole, provide a capability otherwise not pos-
sible. Systems are now richly connected. They involve and evolve webs of
users, technologies, and systems-of-systems through environments that offer
cross-boundary access to a wide variety of resources and information repos-
itories. Today’s systems create value by delivering capabilities over time that
meet user needs for increased agility, robustness, and scalability. System
architectures must be open to allow the insertion of innovation that advances
the efficacies of capabilities and services to users.

Many systems no longer physically exist within well-defined boundaries.
They are increasingly ubiquitous and operate as an enterprise of technologies
and cooperating entities in a dynamic that can behave in unpredictable ways.
Pervasive with these challenges are economic and budgetary realities that
necessitate greater accuracy in the estimated life cycle costs and cost risks of
acquiring these systems.

Today, systems engineering is more than designing, developing, and
bringing together technologies to work as a whole. Designs must be adapt-
able to change, flexible to meet user needs, and resource-managed. They must
be balanced with respect to performance and affordability goals while being
continuously risk-managed throughout a system’s life cycle. Systems engi-
neers must also understand the social, political, and economic environments
within which a system operates. These factors can significantly influence risk,
affordability, design options, and investment decisions.

In systems engineering, costs are estimated to reveal the economic signif-
icance of technical and programmatic choices that guide procuring a system
that is affordable, cost-effective, and risk-managed. Identifying risks enables
decision-makers to develop, execute, and monitor management actions
based on the knowledge of potential cost consequences of inactions. Together,
cost and cost uncertainty analyses are undertaken to address the paramount
considerations of affordability, cost-effectiveness, and risk.

The mathematics of cost uncertainty analysis can be advanced utilizing the
concepts of correlation, probability distributions, and means and variances.
Today’s cost analysts must be grounded in the underlying theory of this sub-
ject and convey their analysis findings clearly and concisely to audiences
with broad backgrounds. Recognizing this, the second edition of this book
is presented in two sections. Section I is unchanged from the first edition. It
contains the original seven chapters on the underlying theory of cost uncer-
tainty analysis. Section II is focused on the application of theory to problems
encountered in practice. Section II presents the following chapters:

xiii
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Chapter 8 provides a review of elementary concepts and key terms from
Chapters 1 through 7. This includes a review on the scope of cost uncertainty
analysis (what is captured, what is not captured), what it means to present
and interpret cost as a probability distribution, and insights the analysis
brings to decision-makers.

Chapter 9 discusses the importance of correlation as a critical considera-
tion in cost uncertainty analysis. Shown throughout the preceding chapters,
correlation can have a significant effect on the measure of a program’s cost
risk. This chapter presents several approaches to capture and incorporate
correlation in cost uncertainty analyses. Guidelines on when one approach
is preferred over another are offered.

Advances in computing technologies and mathematical methods have
made regression a desirable approach for building statistical cost estimat-
ing models. These models contain features that readily incorporate into
cost uncertainty analyses. Chapter 10 focuses on cost estimating models
and the use of statistical regression methods to develop them. Chapter 10
describes classical statistical regression techniques and presents the gen-
eral error regression method (GERM)—a major advance in practice and
technique.

Chapter 11 introduces a phenomenon associated with producing an item
over and over again. The phenomenon is called cost improvement. It refers
to a lessening in the cost of an item produced in large quantities in the same
way over a period of time. This chapter presents two main topics associ-
ated with the cost improvement in an item’s recurring production cost. The
first describes the phenomenon of cost improvement and methods to mea-
sure and mitigate its effects on the uncertainty in production cost estimates.
The second illustrates how GERM can be applied to build cost estimating
relationships of an item’s recurring production costs in the presence of cost
improvement effects.

Chapter 12 presents the last formal method for cost uncertainty analysis
discussed in this book. Called the enhanced scenario-based method (eSBM),
it was developed from a need in the cost analysis community to simplify
the aspects of probability-based approaches. This chapter describes eSBM,
identifies key features that distinguish it from other methods, and provides
illustrative examples.

Chapter 13 provides recommended practices and considerations when
performing cost uncertainty analyses. They reflect the authors’ insights and
experiences in developing, refining, and applying many of the techniques
presented in this book.

Chapter 14 lists the major technical works of Dr. Stephen A. Book that
advanced cost risk analysis theory and practice. The chapter is organized into
works that were formally published in professional journals and those that
were delivered as briefings in various conferences and technical gatherings.

This second edition is a memorial to the works of Dr. Stephen A. Book
(1941–2012). Dr. Book was a mathematician and a world-renowned cost
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analyst whose innumerable contributions to this subject made it reachable
and practical to cost analysts with a variety of academic and professional
backgrounds. Dr. Book was beginning to work on this edition when he
unexpectedly passed away. Despite this loss, the authors have incorporated
Dr. Book’s major works throughout the Section II chapters and in Appendix E.
In keeping with his great witticisms, we close this preface with the following
quote:

It’s not what you don’t know that hurts you—it’s what you do know that
isn’t true.

Dr. Stephen A. Book (1995)

Paul R. Garvey
Raymond P. Covert
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Preface to the First Edition

Cost is a driving consideration in decisions that determine how systems are
developed, produced, and sustained. Critical to these decisions is under-
standing how uncertainty affects a system’s cost. The process of identifying,
measuring, and interpreting these effects is known as cost uncertainty anal-
ysis. Used early, cost uncertainty analysis can expose potentially crippling
areas of risk in systems. This provides managers time to define and imple-
ment corrective strategies. Moreover, the analysis brings realism to technical
and managerial decisions that define a system’s overall engineering strat-
egy. In Juan De Mairena (1943), Antonio Machado wrote “All uncertainty is
fruitful . . . so long as it is accompanied by the wish to understand.” In the
same way are insights gleaned from cost uncertainty analysis fruitful—
provided they, too, are accompanied by the wish to understand and the will
to take action.

Since the 1950s a substantial body of scholarship on this subject has
evolved. Published material appears in numerous industry and government
technical reports, symposia proceedings, and professional journals. Despite
this, there is a need in the systems engineering community to synthesize prior
scholarship and relate it to advances in technique and problem sophistica-
tion. This book addresses that need. It is a reference for systems engineers,
cost engineers, management scientists, and operations research analysts. It is
also a text for students of these disciplines.

As a text, this book is appropriate for an upper-level undergraduate (or
graduate-level) course on the application of probability methods to cost engi-
neering and analysis problems. It is assumed readers have a solid foundation
in differential and integral calculus. An introductory background in proba-
bility theory, as well as systems and cost engineering, is helpful; however,
the important concepts are developed as needed. A rich set of theoretical and
applied exercises accompany each chapter.

Throughout the book, detailed discussions on issues associated with cost
uncertainty analysis are given. This includes the treatment of correlation
between the cost of various system elements, how to present the analysis
to decision-makers, and the use of bivariate probability distributions to cap-
ture the joint interactions between cost and schedule. Analytical techniques
from probability theory are stressed, along with the Monte Carlo simulation
method. Numerous examples and case discussions are provided to illus-
trate the practical application of theoretical concepts. The numerical precision
shown in some of the book’s examples and case discussions is intended only
for pedagogical purposes. In practice, analysts and engineers must always
choose the level of precision appropriate to the nature of the problem being
addressed.

xvii
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Chapter 1 presents a general discussion of uncertainty and the role of prob-
ability in cost engineering and analysis problems. A perspective on the rich
history of cost uncertainty analysis is provided. Readers are introduced to
the importance of presenting the cost of a future system as a probability
distribution.

Chapter 2 is an introduction to probability theory. Topics include the fun-
damental axioms and properties of probability. These topics are essential to
understanding the terminology, technical development, and application of
cost uncertainty analysis methods.

Chapter 3 presents the theory of expectation, moments of random vari-
ables, and probability inequalities. Examples derived from systems engineer-
ing projects illustrate key concepts.

Chapter 4 discusses modeling cost uncertainty by the probability for-
malism. A family of continuous univariate probability distributions, used
frequently in cost uncertainty analysis, is fully described. A context for
applying each distribution is also presented.

Chapter 5 introduces joint probability distributions, functions of random
variables, and the central limit theorem. The application of these concepts to
cost uncertainty analysis problems is emphasized. In addition, distributions
are developed for a general form of the software cost-schedule model. The
chapter concludes with a discussion of the Mellin transform, a useful (but
little applied) method for working with cost functions that are products, or
quotients, of two or more random variables.

Chapter 6 presents specific techniques for quantifying uncertainty in the
cost of a future system. The reader is shown how methods from the preceding
chapters combine to produce a probability distribution of a system’s total
cost. This is done from a work breakdown structure perspective. Case studies
derived from systems engineering projects provide the application context.

Chapter 7 extends the discussion in Chapter 6 by presenting a family of
joint probability distributions for cost and schedule. This family consists of
the classical bivariate normal, the bivariate normal-lognormal, and the bivari-
ate lognormal distributions; the latter two distributions are rarely discussed
in the traditional literature. Examples are given to show the use of these
distributions in a cost analysis context.

The book concludes with a summary of recommended practices and mod-
eling techniques. They come from the author’s experience and many years of
collaboration with colleagues in industry, government, and academia.

The author gratefully acknowledges a number of distinguished engineers,
scientists, and professors who contributed to this book. Their encourage-
ment, enthusiasm, and insights have been instrumental in bringing about
this work.

• Stephen A. Book: Distinguished engineer, The Aerospace Corpora-
tion, Los Angeles, California. A long-time professional colleague,
Dr. Book peer-reviewed the author’s major technical papers, some of
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which became chapters in this book. In addition, he independently
reviewed and commented on many of the book’s chapters as they
evolved over the writing period.

• Philip H. Young: Director of research, Lori Associates, Los Angeles,
California, and formerly of The Aerospace Corporation, conducted
a detailed review of selected areas in this book. Also a long-time
professional colleague, Philip Young shared with the author his for-
mulas for the moments of the trapezoidal distribution (presented in
Chapters 4 and 5), as well as a derivation of the correlation func-
tion of the bivariate normal-lognormal distribution. This derivation
is provided as Theorem B.1 in Appendix B.

• Nancy E. Rallis: Associate professor of mathematics, Boston College,
led the book’s academic review. For two years, Professor Rallis stud-
ied the entire text from a theoretical and computational perspective.
Her years of experience as a statistical consultant and cost analyst at
the NASA Goddard Spaceflight Center, TRW Inc., and the Jet Propul-
sion Laboratory (California Institute of Technology) brought a wealth
of insights that greatly enhanced this book. Sarah E. Quebec, a gradu-
ate mathematics student at Boston College, assisted Professor Rallis’
review. I am grateful for her diligence in checking the many examples
and case discussions.

• Wendell P. Simpson III (Major, USAF-Ret) and Stephen A. Giuliano
(Lieutenant Colonel, USAF-Ret): Assistant professors, United States
Air Force Institute of Technology. Professors Simpson and Giuliano
developed and taught the school’s first graduate course on cost risk
analysis. The course used early drafts of the manuscript as required
reading. Their comments on the manuscript, as well as those from
their students, contributed significantly to the book’s content and
presentation style.

• Colleagues at The MITRE Corporation...
Chien-Ching Cho: Principal staff, Economic and Decision Anal-

ysis Center. A long-time professional colleague, I am grateful to
Dr. Cho for many years of technical discussions on theoretical aspects
of this subject. I particularly appreciate his independent review of
Case Discussion 6.2 and his commentary on Monte Carlo simulation,
presented in Chapter 6.

Barbara E. Wolfinger: While a group leader in the Economic and
Decision Analysis Center, Ms. Wolfinger reviewed original drafts of
Chapters 1 and 2. A creative practitioner of cost uncertainty anal-
ysis, her experiences and analytical insights were highly valued,
particularly in the early stages of this work.

Neal D. Hulkower: While a department head in the Economic and
Decision Analysis Center, Dr. Hulkower reviewed a number of the
author’s technical papers when they were early drafts. A veteran
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cost analyst, his leadership on the necessity of presenting a system’s
future cost as a probability distribution fostered the award-winning
research contained in this book.

William P. Hutzler: While director of the Economic and Deci-
sion Analysis Center, Dr. Hutzler provided the senior managerial
review and leadership needed to bring the manuscript into the pub-
lic domain. His enthusiasm and encouragement for this work will
always be gratefully appreciated.

Francis M. Dello Russo and John A. Vitkevich, Jr.: Francis Dello Russo
(department head, Economic and Decision Analysis Center) and
John Vitkevich (lead staff, Economic and Decision Analysis Center)
reviewed the book’s first case discussion (Chapter 3). From an engi-
neering economics perspective, they provided valuable commentary
on issues associated with cost-volume-profit analyses.

Hank A. Neimeier: Principal staff, Economic and Decision Analysis
Center. Hank Neimeier provided a careful review of the Mellin trans-
form method (Chapter 5) and independently checked the associated
examples. His expertise in mathematical modeling provided a valu-
able context for the application of this method to cost engineering
and analysis problems.

Albert R. Paradis: Lead staff, Airspace Management and Naviga-
tion. Dr. Paradis reviewed an early version of the manuscript. His
comments are highly valued. They helped fine-tune the explanation
of a number of important and subtle concepts in probability theory.

Raymond L. Fales: A long-time professional colleague, Dr. Fales
introduced the author to cost uncertainty analysis. He was among
the early practitioners of analytical methods at MITRE and a men-
tor to many technical staff in the Economic and Decision Analysis
Center.

Ralph C. Graves: A gifted and insightful systems engineer,
Ralph Graves and the author worked jointly on numerous cost stud-
ies for the United States Air Force. During these studies, he intro-
duced the author to Monte Carlo simulation (Chapter 6) as a practical
approach for quantifying cost uncertainty.

The author also appreciates the staff at Marcel Dekker, Inc. for their diligence,
professionalism, and enthusiasm for this work. Many thanks to Graham
Garratt (executive vice president), Maria Allegra (acquisitions editor and
manager), Joseph Stubenrauch (production editor), and Regina Efimchik
(marketing and promotions).

Paul R. Garvey (2000)



Reserved Notation

Reserved notation used in this book:

FY Fiscal year
$K Dollars Thousand
$M Dollars Million
SM Staff Months
Eff Effort for an activity (SM)
Eff SysEng Systems engineering effort (SM)
Eff SysTest System test effort (SM)
Eff SW Software development effort (SM)
I Number of delivered source instructions (DSI)
Pr Software development productivity rate (DSI/SM)
TSW Software development schedule (months)
CostPgm, Total cost of a program or system as represented by its
CostSys, CostWBS work breakdown structure (WBS)
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1
Uncertainty and the Role of Probability in
Cost Analysis

1.1 Introduction and Historical Perspective

This book presents methods for quantifying the cost impacts of uncertainty in
the engineering of systems. The term “systems” is used in this book to include
physical systems (those that occupy physical space [Blanchard and Fabrycky
1990]) and today’s globally networked systems that enable communication
and information exchanges to uncountably many users.

Systems engineering is a process that encompasses the scientific and engi-
neering efforts needed to develop, produce, and sustain systems. Systems
engineering is a highly complex technical and management undertaking.
Integrating custom equipment with commercial products, designing exter-
nal system interfaces, achieving user requirements, and meeting aggressive
schedules while keeping within cost are among the many challenges faced in
managing a systems engineering project.

When the cost of a future system∗ is considered, decision-makers often
ask, “What is the chance its cost will exceed a particular amount?” “How
much could cost overrun?” “What are the uncertainties and how do they
drive cost?” Cost uncertainty analysis provides decision-makers insight into
these and related questions. In general, cost uncertainty analysis is a process
of quantifying the cost impacts of uncertainties associated with a system’s
technical definition and cost estimation methodologies.

Throughout a system’s life-cycle, cost uncertainty analysis provides moti-
vation and structure for the vigorous management of risk. When appro-
priately communicated to decision-makers, the insights produced by the
analysis directs management’s attention to critical program risk drivers. This
enables risk mitigation strategies to be defined and implemented in a timely
and cost-effective manner.

∗ This includes existing systems planned for modernization, consolidation, or re-engineering.
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4 Probability Methods for Cost Uncertainty Analysis

Cost uncertainty analysis has its genesis in the field known as military sys-
tems analysis (Hitch 1955), founded in the 1950s at the RAND Corporation.
Shortly after World War II, military systems analysis evolved as a way to aid
defense planners with long-range decisions on force structure, force compo-
sition, and future theaters of operation. Cost became a critical consideration
in military systems analysis models and decision criteria. However, cost esti-
mates of future military systems, particularly in the early planning phases,
were often significantly lower than the actual cost or an estimate developed
at a later phase. In the book Cost Considerations in Systems Analysis, Fisher
(1971) attributes this difference to the presence of uncertainty—specifically,
cost estimation uncertainty and requirements uncertainty.

Cost estimation uncertainty can originate from inaccuracies in cost-schedule
estimation models, from the misuse (or misinterpretation) of cost-schedule
data, or from misapplied cost-schedule estimation methodologies. The eco-
nomic uncertainties that influence the cost of technology, the labor force, or
geopolitical policies further contribute to cost estimation uncertainty (Garvey
1996).

Requirements uncertainty can originate from changes in the system’s mis-
sion objectives, from changes in performance requirements necessary to meet
mission objectives, or from changes in the business or political landscapes
that affect the need for the system. Requirements uncertainty most often
results in changes to the system’s specified hardware-software configuration,
which is also known as the system’s architecture.

Uncertainty is also present in elements that define a system’s configuration
(or architecture). This is referred to as system definition uncertainty. Examples
include uncertainties in the amount of software to develop, the extent code
from another system can be reused, the number of workstations to procure,
or the delivered weight of an end-item (e.g., a satellite) (Garvey 1996).

The early literature on cost uncertainty analysis concentrated on defining
the sources, scope, and types of uncertainties that impacted the cost of future
systems. Technical papers published in the period between 1955 and 1962
were not explicitly focused on establishing and applying formal methods to
quantify cost uncertainty. However, by the mid-1960s a body of techniques
began to emerge. An objective of this book is to discuss these techniques,
present advances in methodology, and illustrate how these methods apply
from a systems engineering perspective.

1.2 Problem Space

In systems engineering, three types of uncertainties must be considered.
Described in the preceding section they are cost estimation uncertainty,
requirements uncertainty, and system definition uncertainty. Figure 1.1
(Garvey 1996) illustrates how these uncertainties are related.
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FIGURE 1.1
Types of uncertainty captured by cost-schedule probability models.

The n-system configurations shown are in response to requirements uncer-
tainty. For a given system configuration, cost-schedule probability models
(as described in this book) capture only system definition and cost estimation
uncertainties. They provide probability-based assessments of a system’s cost
and schedule for that system configuration. When requirements uncertainty
necessitates defining an entirely new configuration, a new cost-schedule
probability model is likely to be needed. The new model must be tuned to
capture the system definition and cost estimation uncertainties specific to the
new configuration.

1.3 Presenting Cost as a Probability Distribution

Cost is an uncertain quantity. It is highly sensitive to many conditions and
assumptions that change frequently across a system’s life-cycle. Examining
the change in cost subject to varying certain conditions (while holding others
constant) is known as sensitivity analysis. In a series of lectures to the United
States Air Force, Fisher (1962) emphasized the importance of sensitivity anal-
ysis as a way to isolate cost drivers. He considered sensitivity analysis to be
“…a prime characteristic or objective in the cost analysis of advanced sys-
tems and/or force structure proposals.” Although sensitivity analysis can
isolate elements of a system that drive its cost, it is a deterministic procedure
defined by a postulated set of “what-if” scenarios. Sensitivity analysis alone
does not offer decision-makers insight into the question, “What is the chance
of exceeding a particular cost in the range of possible costs?” A probability
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distribution is a way to address this question. Simply stated, a probability dis-
tribution is a mathematical rule associating a probability α to each possible
outcome, or event of interest.

There are two ways to present a probability distribution. It can be shown
as a probability density or as a cumulative probability distribution. Figure 1.2
presents an illustration of this concept from a cost perspective.

In Figure 1.2, the range of possible values for Cost is given by the interval
a ≤ x ≤ b. The probability Cost will not exceed a value x = c given by αc. In
Figure 1.2a, this probability is the area under f (x) between x = a and x = c.
In Figure 1.2b, this probability is given by F(c).

To develop a cost probability distribution, methods from probability the-
ory were needed. Some of the earliest applications of probability theory to
model cost uncertainty took place in the mid-1960s at the MITRE and RAND
Corporations. In 1965, Steven Sobel [MITRE] published A Computerized Tech-
nique to Express Uncertainty in Advanced System Cost Estimates (Sobel 1965). It
was among the earliest works on modeling cost uncertainty by the probabil-
ity formalism. Sobel pioneered using the method of moments technique to
develop a probability distribution of a system’s total cost.

Complementary to Sobel’s analytical approach, in 1966 Paul F. Dienemann
[RAND] published Estimating Cost Uncertainty Using Monte Carlo Techniques
(Dinemann 1966). The methodology applied Monte Carlo simulation, devel-
oped by operations analysts during World War II, to quantify the impacts of
uncertainty on total system cost. With the advent of high-speed computers,
Monte Carlo simulation grew in popularity and remains a primary approach
for generating cost probability distributions. A discussion of Monte Carlo
simulation is presented in Chapter 6.

An overview of the cost uncertainty analysis process is shown in Figure 1.3.
The variables X1, X2, X3, . . . , Xn are the costs of the n work breakdown

αc
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FIGURE 1.2
Illustrative probability distributions. (a) Probability density. (b) Cumulative probability distri-
bution.
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FIGURE 1.3
Cost uncertainty analysis process.

structure (WBS)∗ cost elements that comprise the system. For instance, X1
might represent the cost of the system’s prime mission hardware and soft-
ware; X2 might represent the cost of the system’s systems engineering and
program management (SEPM); X3 might represent the cost of the system’s
test and evaluation. When specific values for these variables are uncertain,
we can treat them as random variables. Probability distributions are developed
for X1, X2, X3, . . . , Xn, which associate probabilities to their possible values.
Such distributions are illustrated on the left-side of Figure 1.3. The random
variables X1, X2, X3, . . . , Xn are summed to produce an overall probability
distribution of the system’s total cost, shown on the right-side of Figure 1.3.

∗ A full discussion of the work breakdown structure is presented in Chapter 6.
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The “input” part of this process has many subjective aspects. Probability
distributions for X1, X2, X3, . . . , Xn are either specified directly or they are
generated. Direct specification relies on expert judgment to characterize a
distribution’s shape. The probability density is the usual way to make this
characterization.

Generated distributions have shapes that are produced from a mathemat-
ical process. This is illustrated in the following discussion.

Suppose X2 represents the cost of a system’s systems engineering and
program management (SEPM). Furthermore, suppose the cost of SEPM is
derived as a function of three random variables∗ Staff, PrgmSched, and
LaborRate as follows:

X2 = Staff · PrgmSched · LaborRate (1.1)

Suppose the engineering team assessed ranges of possible (feasible) values
for these variables and directly specified the shapes of their probability dis-
tributions, as shown in Figure 1.4. Combining their distributions according
to the rules of probability theory generates an overall distribution for X2,
which is the cost of SEPM. In this case, we say the probability distribution
of X2 has been generated by a mathematical process. Figure 1.4 illustrates
this discussion.

As shown in Figure 1.4, it is good practice to reserve the direct specifica-
tion of distributions to their lowest level variables in a cost equation (e.g.,
Equation 1.1). Often, expert judgment about the shapes and ranges of dis-
tributions are best at this level. Furthermore, this “specification” approach

x2

5

2.5
($M)

($K)

1.0

10 12

Generated 
Distribution

24 10 15
Persons Months

X2 = Staff . PrgmSched . LaborRate

Dollars per
Person-Month

Directly
Specified

Distributions
fX2(x2)

FIGURE 1.4
The specification of probability distributions.

∗ Staff (Persons), PrgmSched (Months), LaborRate ($/Person-Month).
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structures the overall analysis in a way that specific “cost-risk-driving” vari-
ables can be revealed. Identifying these variables and quantifying how they
affect a system’s cost are critical findings to communicate to decision-makers.

A term conventional to cost engineering and analysis is point estimate.
The point estimate of a variable whose value is uncertain is a single value for
the variable in its range of possible values. From a mathematical perspec-
tive, the point estimate is simply one value among those that are feasible. In
practice, a point estimate is established by an analyst (using appropriate cost
analysis methods) prior to an assessment of other possible values. It provides
an “anchor” (i.e., a reference point) around which other possible values are
assessed or generated. This is illustrated in Figure 1.5.

In cost uncertainty analysis it is common to see more probability density
to the right of a point estimate than to its left; this is seen in the generated
distribution in Figure 1.5. Although this is a common occurrence, the point
estimate can fall anywhere along the variable’s probability distribution; it is
just one value among those that are feasible.

Suppose a system’s total cost is given by

Cost = X1 + X2 + X3 + · · · + Xn

where the random variables X1, X2, X3, . . . , Xn are the costs of the system’s
n WBS cost elements. Suppose point estimates are developed for each Xi
(i = 1, . . . , n). Their sum is the point estimate of the cost of the system. Let this
sum be denoted by xPECost , where

1.0 2.5
Generated Distribution

5 10
Persons

12 24
Months

10 15
Dollars per

Person-Month (PM)

($K)

Directly
Specified

Distributions Suppose these values are
point estimates

established by an analyst 

The three point estimates above multiply
to generate the point estimate 1.26 ($M)

and the distribution shown here 

1.26

7 15 12

X2 = Staff · PrgmSched · Labor Rate
X2 = (7 Persons) (15 Months) (12$K/PM) = 1.26($M)

f X2 (x2)

x2
($M)

FIGURE 1.5
Point estimates: an illustration.
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xPECost = x1PEX1
+ x2PEX2

+ x3PEX3
+ · · · + xnPEXn

(1.2)

and xiPEXi
(i = 1, . . . , n) is the point estimate of Xi. Computing xPECost

according to Equation 1.2 is known among practitioners as the “roll-up”
procedure.∗

In cost engineering and analysis, it is traditional to consider xPECost a value
for Cost that contains no reserve dollars. As a point estimate, xPECost provides
the “anchor” from which to choose a value for Cost that contains reserve dollars.
Decision-makers trade-off between xPECost and the amount of reserve dollars
to add to xPECost , such that the value of Cost determined by the expression
[xPECost + (reserve dollars)] has an acceptable probability of not being exceeded.
Figure 1.6 illustrates this discussion.

In Figure 1.6, suppose the point estimate of a system’s cost is 100 ($M); that
is, xPECost = 100. This value of Cost has just over a 30% probability of not being
exceeded. A reserve of 20 ($M) added to xPECost is associated with a value of
Cost that has a 67% probability of not being exceeded. A reserve of 40 ($M)
added to xPECost is associated with a value of Cost that has just over a 90%
probability of not being exceeded.

It is possible for xPECost to fall at a high confidence level on its associated
distribution function. Such a circumstance may warrant the addition of no
reserve dollars; it suggests there is a good chance for Cost to actually be lower
than perhaps anticipated. However, it may also flag a situation where cost

0.914

FCost (x)

0.671

0.315

60 80
x

100
 xPECost 

120 140 160
($M)

Cost = X1 + X2+ X3 +…+ Xn

Pr
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t ≤

 x 

Point Estimate

FIGURE 1.6
A cumulative probability distribution of system cost.

∗ From a probability perspective there are important subtleties associated with the roll-up
procedure. These subtleties are illustrated in Case Discussion 5.1.
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reserve was built, a priori, into the point estimate of each WBS cost element.
These reserve dollars would be included in the “roll-up” of the individual
point estimates. This result can make xPECost hard to interpret, particularly if
trade-off studies are needed. In practice, it is recommended keeping xPECost
“clean” from reserve dollars. This provides analysts and decision-makers an
anchor point that is “cost reserve-neutral”—one where the trade-off between
cost reserve and a desired level of confidence can be readily understood for
various alternatives (or options) under consideration.

1.4 Benefits of Cost Uncertainty Analysis

Cost uncertainty analysis provides decision-makers many benefits and
important insights. These, including the following:

Establishing a cost and schedule risk baseline: Baseline probability distri-
butions of a system’s cost and schedule can be developed for a given
system configuration, acquisition strategy, and cost-schedule estima-
tion approach. This baseline provides decision-makers visibility into
potentially high-payoff areas for risk reduction initiatives. Baseline dis-
tributions assist in determining a system’s cost and schedule that simul-
taneously have a specified probability of not being exceeded (Chapter 7).
They can also provide decision-makers an assessment of the likelihood of
achieving a budgeted (or proposed) cost and schedule, or cost for a given
feasible schedule (Garvey 1996).

Determining cost reserve: Cost uncertainty analysis provides a basis for
determining cost reserve as a function of the uncertainties specific to a
system. The analysis provides the direct link between the amount of cost
reserve to recommend and the probability that a system’s cost will not
exceed a prescribed (or desired) magnitude. An analysis should be con-
ducted to verify the recommended cost reserve covers fortuitous events
(e.g., unplanned code growth, unplanned schedule delays) deemed pos-
sible by the system’s engineering team (Garvey 1996).

Conducting risk reduction trade-off analyses: Cost uncertainty analyses
can be conducted to study the payoff of implementing risk reduction
initiatives (e.g., rapid prototyping) on lessening a system’s cost and
schedule risks. Furthermore, families of probability distribution functions
can be generated to compare the cost and cost risk impacts of alterna-
tive system requirements, schedule uncertainties, and competing system
configurations or acquisition strategies (Garvey 1996).

The validity and meaningfulness of a cost uncertainty analysis relies on the
engineering team’s experience, judgment, and knowledge of the system’s
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uncertainties. Formulating and documenting a supporting rationale, that
summarizes the team’s collective insights into these uncertainties, is the
critical part of the process. Without a well-documented rationale, the credibility
of the analysis can be easily questioned.

The details of the analysis methodology are important and should also
be documented. The methodology must be technically sound and offer
value-added problem structure, analyses, and insights otherwise not visible.
Decisions that successfully eliminate uncertainty, or reduce it to acceptable
levels, are ultimately driven by human judgment. This at best is aided by, not
directed by, the methods presented in this book.

Exercises

1.1 State and define the three types of uncertainties that affect the cost of a
systems engineering project. Give specific examples for each type.

1.2 Define, from a cost perspective, the term point estimate. How is the point
estimate of a variable used to establish a range of other possible values?
Explain what is meant by the “roll-up” procedure.

1.3 In the following figure, suppose the point estimate of a system’s cost is
23.5 dollars million ($M) and assume the three values shown along the
vertical axis are paired with the three values shown along the horizon-
tal axis. How many reserve dollars are needed such that the value of Cost
associated with that reserve has a 70% chance of not being exceeded? Sim-
ilarly, what is the reserve needed such that the value of Cost has only a
5% chance of being exceeded?

Cumulative Probability Distribution for Exercise 1.3
43.530.5
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2
Concepts of Probability Theory

2.1 Introduction

Whether it is a storm’s intensity, an arrival time, or the success of a financial
decision, the words “probable” or “likely” have long been part of our lan-
guage. Most people have a practical appreciation for the impact of chance
on the occurrence of an event. In the last 300 years, probability theory has
evolved to explain the nature of chance and how it may be studied.

Probability theory is the formal study of random events and random pro-
cesses. Its origins trace back to seventeenth-century gambling problems.
Games that involved playing cards, roulette wheels, and dice provided math-
ematicians a host of interesting problems. The solutions to many of these
problems yielded the first principles of modern probability theory. Today,
probability theory is of fundamental importance in science, engineering, and
business.

2.2 Sample Spaces and Events

If a six-sided die∗ is tossed there are six possible outcomes for the number
that appears on the upturned face. These outcomes can be listed as elements
in the set {1, 2, 3, 4, 5, 6}. The set of all possible outcomes of an experiment is
called the sample space, which we will denote by �. The individual outcomes
of � are called sample points, which we will denote by ω.

A sample space can be finite, countably infinite, or uncountable. A finite
sample space is a set that consists of a finite number of outcomes. The sam-
ple space for the toss of a die is finite. A countably infinite sample space is a
set whose outcomes can be arranged in a one-to-one correspondence with
the set of positive integers. An uncountable sample space is one that is infinite
but not countable. For instance, suppose the sample space for the dura-
tion t (in hours) of an electronic device is �= {t : 0 ≤ t < 2500}, then � is an

∗ Unless otherwise noted, dice are assumed in this book to be six-sided.

15



16 Probability Methods for Cost Uncertainty Analysis

uncountable sample space; there are an infinite but not countable number
of possible outcomes for t. Finite and countably infinite sample spaces are
also known as discrete sample spaces. Uncountable sample spaces are known
as continuous sample spaces.

An event is any subset of the sample space. An event is simple if it con-
sists of exactly one outcome.∗ Simple events are also referred to as elementary
events or elementary outcomes. An event is compound if it consists of more
than one outcome. For instance, let B be the event an odd number appears
and C be the event an even number appears in a single toss of a die. These
are compound events, which may be expressed by the sets B = {1, 3, 5} and
C = {2, 4, 6}. Event B occurs if and only if one of the outcomes in B occurs; the
same is true for event C.

As discussed, events can be represented by sets. New events can be con-
structed from given events according to the rules of set theory. The following
presents a brief review of set theory concepts.

Union: For any two events A and B of a sample space �, the new event
A∪B (which reads A union B) consists of all outcomes either in A or in B or
in both A and B. The event A ∪ B occurs if either A or B occurs. To illustrate
the union of two events, consider the following: If A is the event an odd
number appears in the toss of a die and B is the event an even number
appears, then the event A ∪ B is the set {1, 2, 3, 4, 5, 6}, which is the sample
space for this experiment.

Intersection: For any two events A and B of a sample space �, the new
event A ∩ B (which reads A intersection B) consists of all outcomes that
are both in A and in B. The event A ∩ B occurs only if both A and B occur.
To illustrate the intersection of two events, consider the following: If A is
the event a six appears, in the toss of a die, B is the event an odd num-
ber appears, and C is the event an even number appears, then the event
A ∩ C is the simple event {6}; on the other hand, the event A ∩ B contains
no outcomes. Such an event is called a null event. The null event is tradi-
tionally denoted by Ø. In general, if A ∩ B = Ø, we say events A and B
are mutually exclusive (disjoint). The intersection of two events A and B is
sometimes written as AB, instead of A ∩ B.

Complement: The complement of event A, denoted by Ac, consists of all
outcomes in the sample space � that are not in A. The event Ac occurs if
and only if A does not occur. The following illustrates the complement of
an event. If C is the event an even number appears in the toss of a die,
then Cc is the event an odd number appears.

Subset: Event A is said to be a subset of event B if all the outcomes in A
are also contained in B. This is written as A ⊂ B.

∗ As we shall see, probabilities associated with simple events are sensitive to the nature of the
sample space. If � is a discrete sample space, the probability of an event is completely determined
by the probabilities of the simple events in �; however, if � is a continuous sample space, the
probability associated with each simple event in � is zero. This will be discussed further in
Chapter 3.
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FIGURE 2.1
Venn diagrams for various event relationships.

Figure 2.1 illustrates these concepts in the form of Venn diagrams.
Operations involving the union and intersection of events follow the rules

of set algebra. These rules are summarized below.

Identity laws A ∪ Ø = A A ∩ Ø = Ø
A ∪ � = � A ∩ � = A

De Morgan’s laws (A ∪ B)c = Ac ∩ Bc (A ∩ B)c = Ac ∪ Bc

Associative laws A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C)

A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C)

Distributive laws A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Commutative laws A ∪ B = B ∪ A A ∩ B = B ∩ A
Idempotency laws A ∪ A = A A ∩ A = A
Complementary laws A ∪ Ac = � A ∩ Ac = Ø

2.3 Interpretations and Axioms of Probability

In the preceding discussion, the sample space for the toss of a die was given
by � = {1, 2, 3, 4, 5, 6}. If we assume the die is fair (which, unless otherwise
noted, is assumed throughout this book) then any outcome in the sam-
ple space is as likely to appear as any other. Given this assumption, it is
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reasonable to conclude the proportion of time each outcome is expected to
occur is 1

6 . Thus, the probability of each simple event in the sample space is

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1
6

Similarly, suppose B is the event an odd number appears in a single toss of the
die. This compound event is given by the set B = {1, 3, 5}. Since there are three
ways event B can occur out of the six possible, we conclude the probability
of event B is

P(B) = 3
6

= 1
2

The following presents a view of probability known as the equally likely
interpretation.

2.3.1 Equally Likely Interpretation

In this view, if a sample space � consists of a finite number of outcomes n,
which are all equally likely to occur, then the probability of each simple event
is 1

n . If an event A consists of m of these n outcomes, then the probability of
event A is

P(A) = m
n

(2.1)

In this equation, it is assumed the sample space consists of a finite number
of outcomes and all outcomes are equally likely to occur. What if the sample
space is uncountable? What if the sample space is finite but the outcomes
are not equally likely?∗ In these situations, probability might be measured in
terms of how frequently a particular outcome occurs when the experiment
is repeatedly performed under identical conditions. This leads to a view of
probability known as the frequency interpretation.

2.3.2 Frequency Interpretation

In this view, the probability of an event is the limiting proportion of time the
event occurs in a set of n repetitions of the experiment. In particular, we write
this as

P(A) = lim
n→∞

n(A)

n

∗ If a die is weighted in a particular way, then the outcomes of the toss are no longer considered
fair, or equally likely.
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where n(A) is the number of times in n repetitions of the experiment the event
A occurs. In this sense P(A) is the limiting frequency of event A. Probabilities
measured by the frequency interpretation are referred to as objective proba-
bilities. There are many circumstances where it is appropriate to work with
objective probabilities. However, there are limitations with this interpretation
of probability. It restricts events to those that can be subjected to repeated tri-
als conducted under identical conditions. Furthermore, it is not clear how many
trials of an experiment are needed to obtain an event’s limiting frequency.

2.3.3 Axiomatic Definition

In 1933, Russian mathematician A. N. Kolmogorov∗ presented a definition
of probability in terms of three axioms. These axioms define probability in a
way that encompasses the equally likely and frequency interpretations of proba-
bility. It is known as the axiomatic definition of probability. It is the view of
probability adopted in this book. Under this definition it is assumed for each
event A, in the sample space �, a real number P(A) exists that denotes the
probability of A. In accordance with Kolmogorov’s axioms, a probability is
simply a numerical value (measure) that satisfies the following:

Axiom 2.1 0 ≤ P(A) ≤ 1 for any event A in �

Axiom 2.2 P(�) = 1
Axiom 2.3 For any sequence of mutually exclusive events† A1, A2, . . .

defined on �

P
( ∞∪

i=1
Ai

)
=

∞∑
i=1

P (Ai)

For any finite sequence of mutually exclusive events A1, A2, . . . ,
An defined on �

P
(

n∪
i=1

Ai

)
=

n∑
i=1

P (Ai)

Axiom 2.1 states the probability of any event is a nonnegative number in the
interval zero to unity. In Axiom 2.2, the sample space � is sometimes referred
to as the sure or certain event; therefore, we have P(�) equal to unity. Axiom
2.3 states for any sequence of mutually exclusive events, the probability of at
least one of these events occurring is the sum of the probabilities associated

∗ A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergeb. Mat. und ihrer
Grenzg., vol. 2, no. 3, 1933. Translated into English by N. Morrison, Foundations of the Theory of
Probability, New York (Chelsea), 1956 (Feller 1968).

† That is, Ai ∩ Aj = Ø for i 	= j.
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with each event Ai. In Axiom 2.3, this sequence may also be finite. From these
axioms come basic theorems of probability.

Theorem 2.1 The probability event A occurs is one minus the probability it will
not occur; that is, P(A) = 1 − P(Ac).

Proof. From the complementary law � = A ∪ Ac. From Axiom 2.3 it follows that
P(�) = P(A ∪ Ac) = P(A) + P(Ac) since A and Ac are mutually exclusive events.
From Axiom 2.2, we know that P(�) = 1; therefore, 1 = P(A) + P(Ac) and the
result P(A) = 1 − P(Ac) follows.

Theorem 2.2 The probability associated with the null event Ø is zero

P(Ø) = 0

Proof. From Theorem 2.1 and Axiom 2.2

P(Ø) = 1 − P(Øc) = 1 − P(�) = 1 − 1 = 0

Theorem 2.3 If events A1 and A2 are mutually exclusive, then

P (A1 ∩ A2) ≡ P (A1A2) = 0

Proof. Since A1 and A2 are mutually exclusive, A1 ∩A2 = Ø. Thus, P(A1 ∩A2) =
P(Ø). From Theorem 2.2, P(Ø) = 0; therefore, P(A1 ∩ A2) = 0.

Theorem 2.4 For any two events A1 and A2

P (A1 ∪ A2) = P (A1) + P (A2) − P (A1 ∩ A2)

Proof. The event A1 ∪A2, shown in Figure 2.2, is written in terms of three mutually
exclusive events, that is, A1 ∪ A2 = (

A1Ac
2

) ∪ (A1A2) ∪ (
Ac

1A2
)
. From Axiom 2.3,

P (A1 ∪ A2) = P
(
A1Ac

2

) + P (A1A2) + P
(
Ac

1A2
)
.

From Figure 2.2, A1 can be written in terms of mutually exclusive events; that
is, A1 = (

A1Ac
2

) ∪ (A1A2); similarly A2 = (
Ac

1A2
) ∪ (A1A2). From Axiom 2.3, it

follows that P (A1) = P
(
A1Ac

2

) + P (A1A2) and P (A2) = P
(
Ac

1A2
) + P (A1A2).

Therefore, P (A1 ∪ A2) can be written as

P (A1 ∪ A2) = P (A1) − P (A1A2) + P (A1A2) + P (A2) − P (A1A2)
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FIGURE 2.2
The partition of A1 ∪ A2.

It follows that∗

P (A1 ∪ A2) = P (A1) + P (A2) − P (A1A2)�

If A1 and A2 were mutually exclusive events, Theorem 2.4 simplifies to Axiom
2.3, that is, P (A1 ∪ A2) = P (A1) + P (A2) since P (A1A2) ≡ P (A1 ∩ A2) =
P(Ø) = 0.

Theorem 2.5 If event A1 is a subset of event A2 then

P (A1) ≤ P (A2)

Proof. Since A1 is a subset of A2, the event A2 may be expressed as the union of two
mutually exclusive events A1 and Ac

1A2. Refer to Figure 2.3. Since,

A2 = A1 ∪ Ac
1A2

A1

Ac
1 A2

A2

Ω

FIGURE 2.3
Event A1 as a subset of event A2.

∗ The symbol � is reserved in this book to signal the completion of a proof, an example, or a case
discussion.
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from Axiom 2.3

P (A2) = P (A1) + P
(
Ac

1A2
)

Because P
(
Ac

1A2
) ≥ 0, it follows that

P (A1) ≤ P (A2)�

Example 2.1 The sample space � for an experiment that consists of tossing two
dice is given by the 36 possible outcomes listed in Table 2.1. The outcomes in
Table 2.1 are given by the pairs (d1, d2),∗ which we assume are equally likely. Let
A, B, C, and D represent the following events:

A: The sum of the toss is odd

B: The sum of the toss is even

C: The sum of the toss is a number less than ten

D: The toss yielded the same number on each die’s upturned face

Find P(A), P(B), P(C), P(A ∩ B), P(A ∪ B), P(B ∩ C), and P(B ∩ C ∩ D).

Solution The outcomes from the sample space in Table 2.1 that make up
event A are

{(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6),

(4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5)}

The outcomes from the sample space in Table 2.1 that make up event B are

{(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5),

(4, 2), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)}

TABLE 2.1

Sample Space for the Tossing of Two Dice

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

∗ The outcomes from tossing two dice are recorded as (d1, d2), where d1 and d2 are the numbers
appearing on the upturned faces of the first and second die, respectively.
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The outcomes from the sample space in Table 2.1 that make up event C are

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3),

(2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4),

(6, 1), (6, 2), (6, 3)}

The outcomes from the sample space in Table 2.1 that make up event D are

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

Determination of P(A), P(B), and P(C): From Equation 2.1, we can
compute

P(A) = 18
36

= 1
2

P(B) = 18
36

= 1
2

P(C) = 30
36

= 15
18

Determination of P(A∩ B): Observe event A and event B are mutually
exclusive, that is, they share no elements in common. Therefore, from
Theorem 2.3

P(A ∩ B) ≡ P(AB) = 0

Determination of P(A∪ B): From Theorem 2.4.

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Since P(A ∩ B) = 0 and P(A) = P(B) = 1/2, it follows that P(A ∪ B) = 1.
Notice the event (A ∪ B) yields the sample space � for this experiment;
by Axiom 2.2 we know P(�) = 1.

Determination of P(B ∩ C): The event the sum of the toss is even and it is
a number less than 10 is given by B ∩ C. This event contains the outcomes

{(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5),

(4, 2), (4, 4), (5, 1), (5, 3), (6, 2)}

from which P(B ∩ C) = 14/36 = 7/18.

Determination of P(B ∩ C ∩ D): The event the sum of the toss is even and
it is a number less than ten and the toss yielded the same number on each
die’s upturned face is given by B∩C∩D. This event contains the outcomes

{(1, 1), (2, 2), (3, 3), (4, 4)}

from which P(B ∩ C ∩ D) = 4/36 = 1/9. Notice event B ∩ C ∩ D is a subset
of event B ∩ C. From Theorem 2.5 we expect P(B ∩ C ∩ D) ≤ P(B ∩ C).
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2.3.4 Measure of Belief Interpretation

From the axiomatic view, probability need only be a number satisfying the
three axioms stated by Kolmogorov. Given this, it is possible for probability
to reflect a “measure of belief” in an event’s occurrence. For instance, a soft-
ware engineer might assign a probability of 0.70 to the event “the radar software
for the Advanced Air Traffic Control System (AATCS) will not exceed 100K deliv-
ered source instructions.” We consider this event to be nonrepeatable. It is not
practical, or possible, to build the AATCS n-times (and under identical con-
ditions) to determine whether this probability is indeed 0.70. When an event
such as this arises, its probability may be assigned. Probabilities assigned on
the basis of personal judgment, or measure of belief, are known as subjective
probabilities.

Subjective probabilities are the most common in systems engineering
projects and cost analysis problems. Such probabilities are typically assigned
by expert technical opinion. The software engineer’s probability assessment
of 0.70 is a subjective probability. Ideally, subjective probabilities should be
based on available evidence and previous experience with similar events.
Subjective probabilities risk becoming suspect if they are premised on limited
insights or without prior experiences. Care is also needed in soliciting sub-
jective probabilities. They must certainly be plausible; but even more, they
must be consistent with Kolmogorov’s axioms and the theorems of probability
which stem from these axioms. Consider the following:

The XYZ Corporation has offers on two contracts A and B. Suppose
the proposal team made the following subjective probability assign-
ments…the chance of winning contract A is 40%, the chance of winning
contract B is 20%, the chance of winning contract A or contract B is 60%,
and the chance of winning both contract A and contract B is 10%. It turns
out this set of probability assignments is not consistent with the axioms
and theorems of probability! Why is this?∗ If the chance of winning con-
tract B was changed to 30%, then this particular set of probability assignments
would be consistent.

Kolmogorov’s axioms, and the resulting theorems of probability, do not sug-
gest how to assign probabilities to events; rather, they provide a way to verify
the probability assignments (be they objective or subjective) are consistent.

2.3.5 Risk versus Uncertainty

There is an important distinction between the terms risk and uncertainty. Risk
is the chance of loss or injury. In a situation that includes favorable and unfa-
vorable events, risk is the probability an unfavorable event occurs. Uncertainty is
the indefiniteness about the outcome of a situation. We analyze uncertainty for the

∗ The answer can be seen from Theorem 2.4; this is also Exercise 2.6.
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purpose of measuring risk. In systems engineering, the analysis might focus on
measuring the risk of failing to achieve performance objectives, overrunning
the budgeted cost, or delivering the system too late to meet user needs. Con-
ducting the analysis involves varying degrees of subjectivity. This includes
defining the events of concern, as well as specifying their subjective proba-
bilities. Given this, it is fair to ask whether it is meaningful to apply rigorous
mathematical procedures to such analyses. In a speech before the 1955 Oper-
ations Research Society of America meeting, Charles Hitch addressed this
question. He stated:

“Systems analyses provide a framework which permits the judgment of
experts in many fields to be combined to yield results that transcend any
individual judgment. The systems analyst [cost analyst] may have to be
content with better rather than optimal solutions; or with devising and
costing sensible methods of hedging; or merely with discovering criti-
cal sensitivities. We tend to be worse, in an absolute sense, in applying
analysis or scientific method to broad context problems; but unaided intu-
ition in such problems is also much worse in the absolute sense. Let’s not
deprive ourselves of any useful tools, however short of perfection they
may fail” (Hitch 1955).

2.4 Conditional Probability

In many circumstances, the probability of an event must be conditioned on
knowing another event has taken place. Such a probability is known as a con-
ditional probability. Conditional probabilities incorporate information about
the occurrence of another event. The conditional probability of event A given
an event B has occurred is denoted by P(A |B ). In Example 2.1, it was shown
if a pair of dice is tossed the probability the sum of the toss is even is 1/2; this
probability is known as a marginal or unconditional probability. How would
this unconditional probability change (i.e., be conditioned) if it was known the
sum of the toss was a number less than ten? This is discussed in the following
example.

Example 2.2 If a pair of dice is tossed and the sum of the toss is a number less
than 10, compute the probability this sum is an even number.

Solution Returning to Example 2.1, recall events B and C were given by

B : The sum of the toss is even

C : The sum of the toss is a number less than ten

The sample space � is given by the 36 outcomes in Table 2.1. In this
case, we want the subset of � containing only those outcomes whose toss
yielded a sum less than 10. This subset is shown in Table 2.2.
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TABLE 2.2

Outcomes Associated with Event C

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5)
(5, 1) (5, 2) (5, 3) (5, 4)

(6, 1) (6, 2) (6, 3)

Within Table 2.2, 14 possible outcomes are associated with the event
the sum of the toss is even, given the sum of the toss is a number less than ten.

{
(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5)

(4, 2), (4, 4), (5, 1), (5, 3), (6, 2)

}

Therefore, the probability of this event is P(B |C ) = 14
30�

In Example 2.2, observe P(B |C ) was obtained directly from a subset of the
sample space �; furthermore, P(B |C )= 14/30 < P(B)= 1/2 in Example 2.2. If
A and B are events in the same sample space �, then P(A |B ) is the probability
of event A within the subset of the sample space defined by event B. Formally,
the conditional probability of event A given event B has occurred is defined as

P(A|B) = P(A ∩ B)

P(B)
≡ P(AB)

P(B)
(2.2)

where P(B) > 0. Likewise, the conditional probability of event B given event A
has occurred is defined as

P(B|A) = P(B ∩ A)

P(A)
≡ P(BA)

P(A)
(2.3)

where P(A) > 0. In particular, relating Equation 2.3 to Example 2.2 (and
referring to the computations in Example 2.1) we have

P(B |C) = P(B ∩ C)

P(C)
=

14
36
30
36

= 14
30

Example 2.3 A proposal team from XYZ Corporation has offers on two con-
tracts A and B. The team made subjective probability assignments on the chances
of winning these contracts. They assessed a 40% chance on the event winning
contract A, a 50% chance on the event winning contract B, and a 30% chance
on the event winning both contracts. Given this, what is the probability of
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a. Winning at least one of these contracts?

b. Winning contract A and not winning contract B?

c. Winning contract A if the proposal team has won at least one contract?

Solution

a. Winning at least one contract means winning either contract A or
contract B or both contracts. This event is represented by the set
A ∪ B. From Theorem 2.4

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

therefore,

P(A ∪ B) = 0.40 + 0.50 − 0.30 = 0.60

b. The event winning contract A and not winning contract B is rep-
resented by the set A ∩ Bc. From the following Venn diagram,
observe that

P(A) = P
((

A ∩ Bc) ∪ (A ∩ B)
)

A B

ABc AB AcB

Ω

Since the events A ∩ Bc and A ∩ B are disjoint, from Theorem 2.4
we have

P(A) = P
(
A ∩ Bc) + P(A ∩ B)

This is equivalent to P
(
A ∩ Bc) = P(A) − P(A ∩ B); therefore,

P
(
A ∩ Bc) = P(A) − P(A ∩ B) = 0.40 − 0.30 = 0.10

c. If the proposal team has won one of the contracts, the proba-
bility of winning contract A must be revised (or conditioned) on
this information. This means we must compute P(A |A ∪ B ). From
Equation 2.2

P(A |A ∪ B ) = P(A ∩ (A ∪ B))

P(A ∪ B)

Since P(A) = P(A ∩ (A ∪ B)) we have

P(A |A ∪ B ) = P(A ∩ (A ∪ B))

P(A ∪ B)
= P(A)

P(A ∪ B)
= 0.40

0.60
= 2

3
≈ 0.67�
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A consequence of conditional probability is obtained if we multiply Equa-
tions 2.2 and 2.3 by P(B) and P(A), respectively. This multiplication yields∗

P(A ∩ B) = P(B)P(A|B) = P(A)P(B|A) (2.4)

Equation 2.4 is known as the multiplication rule. The multiplication rule pro-
vides a way to express the probability of the intersection of two events
in terms of their conditional probabilities. An illustration of this rule is
presented in Example 2.4.

Example 2.4 A box contains memory chips of which 3 are defective and 97
are nondefective. Two chips are drawn at random, one after the other, without
replacement. Determine the probability

a. Both chips drawn are defective.

b. The first chip is defective and the second chip is nondefective.

Solution
a. Let A and B denote the event the first and second chips drawn from

the box are defective, respectively. From the multiplication rule, we
have

P(A ∩ B) = P(AB) = P(A)P(B|A)

= P(first chip defective) P (second chip defective|
first chip defective)

= 3
100

(
2

99

)
= 6

9900

b. To determine the probability the first chip drawn is defective and
the second chip is nondefective, let C denote the event the second
chip drawn is nondefective. Thus,

P(A ∩ C) = P(AC) = P(A)P(C |A )

= P(first chip defective) P (second chip nondefective|
first chip defective)

= 3
100

(
97
99

)
= 291

9900
�

In this example, sampling was performed without replacement. Suppose the
chips sampled were replaced; that is, the first chip selected was replaced before
the second chip was selected. In that case, the probability of a defective chip
being selected on the second drawing is independent of the outcome of the
first chip drawn. Specifically,

P (2nd chip defective) = P(1st chip defective) = 3
100

∗ From the commutative law P(A ∩ B) = P(B ∩ A), which is equivalent to P(AB) = P(BA).
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So

P(A ∩ B) = 3
100

(
3

100

)
= 9

10,000

and

P(A ∩ C) = 3
100

(
97

100

)
= 291

10,000

Independent Events: Two events A and B are said to be independent if and
only if

P(A ∩ B) = P(A)P(B) (2.5)

and dependent otherwise. The events A1, A2, . . . , An are (mutually) independent
if and only if for every set of indices i1, i2, . . . , ik between 1 and n, inclusive,

P
(
Ai1 ∩ Ai2 ∩ . . . ∩ Aik

) = P
(
Ai1

)
P

(
Ai2

)
. . . P

(
Aik

)
, (k = 2, . . . , n)

For instance, events A1, A2, and A3, are independent (or mutually indepen-
dent) if the following equations are satisfied:

P (A1 ∩ A2 ∩ A3) = P (A1) P (A2) P (A3) (2.6)

P (A1 ∩ A2) = P (A1) P (A2) (2.7)

P (A1 ∩ A3) = P (A1) P (A3) (2.8)

P (A2 ∩ A3) = P (A2) P (A3) (2.9)

It is possible to have three events A1, A2, and A3 for which Equations 2.7
through 2.9 hold but Equation 2.6 does not hold. Mutual independence
implies pairwise independence, in the sense that Equations 2.7 through 2.9
hold, but the converse is not true.

There is a close relationship between independent events and conditional
probability. To see this, suppose events A and B are independent. This implies
P(AB)= P(A)P(B). From this, Equations 2.2 and 2.3 become, respectively,
P(A |B) = P(A) and P(B |A)= P(B). Thus, when two events are indepen-
dent, the occurrence of one event has no impact on the probability the other
event occurs.

To illustrate the concept of independence, suppose a fair die is tossed. Let
A be the event an odd number appears. Let B be the event one of these num-
bers {2, 3, 5, 6} appears, then P(A) = 1/2 and P(B) = 2/3. Since A ∩ B is
the event represented by the set {3, 5}, we can readily state P(A ∩ B) = 1/3.
Therefore, P(A ∩ B) = P(A)P(B) and we conclude events A and B are inde-
pendent. Dependence can be illustrated by tossing two fair dice, as described
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in Example 2.1. In that example, A was the event the sum of the toss is
odd and B was the event the sum of the toss is even. In the solution to
Example 2.1, it was shown P(A ∩ B) = 0 and P(A) and P(B) were each 1/2.
Since P(A∩B) 	= P(A)P(B) we would conclude events A and B are dependent,
in this case.

It is important not to confuse the meaning of independent events with
mutually exclusive events. If events A and B are mutually exclusive, the event
A and B is empty; that is, A ∩ B = Ø. This implies P(A ∩ B) = P(Ø) = 0. If
events A and B are independent with P(A) 	= 0 and P(B) 	= 0, then A and B
cannot be mutually exclusive since P(A ∩ B) = P(A)P(B) 	= 0.

Theorem 2.6 For any two independent events A1 and A2

P (A1 ∪ A2) = 1 − P
(
Ac

1
)

P
(
Ac

2
)

Proof. From Theorem 2.1 we can write

P (A1 ∪ A2) = 1 − P
(
(A1 ∪ A2)

c)

From De Morgan’s law (Section 2.2) (A1 ∪ A2)
c = Ac

1 ∩ Ac
2; therefore,

P (A1 ∪ A2) = 1 − P
(
Ac

1 ∩ Ac
2
) ≡ 1 − P

(
Ac

1Ac
2
)

Since events A1 and A2 are independent,

P (A1 ∪ A2) = 1 − P
(
Ac

1
)

P
(
Ac

2
)
� (2.10)

To prove this theorem, we used a result that if A1 and A2 are independent
then Ac

1 and Ac
2 are also independent. Showing this is left as an exercise for

the reader. Extending Theorem 2.6, it can be shown that if A1, A2, . . . , An are
independent, then

P (A1 ∪ A2 ∪ A3 ∪ . . . ∪ An) = 1 − P
(
Ac

1Ac
2Ac

3 . . . Ac
n
)

= 1 − P
(
Ac

1
)

P
(
Ac

2
)

P
(
Ac

3
)
. . . P

(
Ac

n
)

(2.11)

2.5 Bayes’ Rule

Suppose we have a collection of events Ai representing possible conjectures
about a topic. Furthermore, suppose we have some initial probabilities asso-
ciated with the “truth” of these conjectures. Bayes’ rule∗ provides a way

∗ Named in honor of Thomas Bayes (1702–1761), an English minister and mathematician.
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to update (revise) initial probabilities when new information about these
conjectures is evidenced.

Bayes’ rule is a consequence of conditional probability. Suppose we par-
tition a sample space � into a finite collection of three mutually exclusive
events (see Figure 2.4). Define these events as A1, A2, and A3, where A1 ∪
A2 ∪ A3 = �. Let B denote an arbitrary event contained in �. From Figure 2.4
we can write the event B as

B = (A1 ∩ B) ∪ (A2 ∩ B) ∪ (A3 ∩ B) (2.12)

Since the events (A1 ∩ B) , (A2 ∩ B), and (A3 ∩ B) are mutually exclusive, we
can apply Axiom 2.3 and write

P(B) = P (A1 ∩ B) + P (A2 ∩ B) + P (A3 ∩ B)

From the multiplication rule given in Equation 2.4, P(B) can be expressed in
terms of conditional probability as

P(B) = P (A1) P (B|A1) + P (A2) P (B|A2) + P (A3) P (B|A3) (2.13)

Equation 2.13 is known as the total probability law. Its generalization is

P(B) =
n∑

i=1

P (Ai) P (B |Ai ) (2.14)

where � = ⋃n
i=1 Ai and Ai ∩Aj = Ø and i 	= j. The conditional probability for

each event Ai given event B has occurred is

P (Ai|B) = P (Ai ∩ B)

P(B)
= P (Ai) P (B|Ai)

P(B)
(2.15)

A1 B

A1 B

A1 A2 A3  = Ω

A3 B

A2 B

A2

A3

FIGURE 2.4
Partitioning � into three mutually exclusive sets.
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When the total probability law is applied to Equation 2.15, we have

P (Ai | B) = P (Ai) P (B | Ai)∑n
i=1 P (Ai) P (B | Ai)

(2.16)

Equation 2.16 is known as Bayes’ rule.

Example 2.5 ChipyTech Corporation has three divisions D1, D2, and D3. Each
manufactures a specific type of microprocessor chip. From the total annual output
of chips produced by the corporation, D1 manufactures 35%, D2 manufactures
20%, and D3 manufactures 45%. Data collected from the quality control group
indicate 1% of the chips from D1 are defective, 2% of the chips from D2 are
defective, and 3% of the chips from D3 are defective. Suppose a chip was randomly
selected from the total annual output produced and it was found to be defective.
What is the probability it was manufactured by D1? By D2? By D3?

Solution Let Ai denote the event the selected chip was produced by divi-
sion Di for i = 1, 2, 3. Let B denote the event the selected chip is defec-
tive. To determine the probability the defective chip was manufactured
by Di we must compute the conditional probability P (Ai|B). From the
information provided, we have

P (A1) = 0.35, P (A2) = 0.20, and P (A3) = 0.45

P (B|A1) = 0.01, P (B|A2) = 0.02, and P (B|A3) = 0.03

The total probability law and Bayes’ rule will be used to determine P(Ai|B)

for each i = 1, 2, 3. Recall from Equation 2.13 P(B) can be written as

P(B) = P (A1) P (B|A1) + P (A2) P (B|A2) + P (A3) P (B|A3)

P(B) = 0.35(0.01) + 0.20(0.02) + 0.45(0.03) = 0.021

and from Bayes’ rule we can write

P (Ai|B) = P (Ai) P (B|Ai)∑n
i=1 P (Ai) P (B|Ai)

= P (Ai) P (B|Ai)

P(B)

from which

P (A1|B) = P (A1) P (B|A1)

P(B)
= 0.35(0.01)

0.021
= 0.167

P (A2|B) = P (A2) P (B|A2)

P(B)
= 0.20(0.02)

0.021
= 0.190

P (A3|B) = P (A3) P (B|A3)

P(B)
= 0.45(0.03)

0.021
= 0.643

Table 2.3 provides a comparison of P(Ai) with P(Ai|B) for each i = 1, 2, 3.
The probabilities given by P (Ai) are the probabilities the selected chip will
have been produced by division Di before it is randomly selected and before
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TABLE 2.3

Comparison of P(Ai) and P(Ai|B)

i P(Ai) P
(
Ai|B

)

1 0.35 0.167
2 0.20 0.190

3 0.45 0.643

it is known whether or not the chip is defective. Therefore, P (Ai) are the prior,
or a priori (before the fact), probabilities. The probabilities given by P (Ai|B)

are the probabilities the selected chip was produced by division Di after it
is known the selected chip is defective. Therefore, P (Ai|B) are the posterior,
or a posteriori (after the fact), probabilities. Bayes’ rule provides a means for
the computation of posterior probabilities from the known prior probabilities
P (Ai) and the conditional probabilities P (B|Ai) for a particular situation or
experiment.

Bayes’ rule established a philosophy in probability theory that became
known as Bayesian inference and Bayesian decision theory. These areas play an
important role in the application of probability theory to cost and systems
engineering problems. In Equation 2.16, we may think of Ai as representing
possible states of nature to which an analyst or systems engineer assigns sub-
jective probabilities. These subjective probabilities are the prior probabilities,
which are often premised on personal judgments based on past experience.
In general, Bayesian methods offer a powerful way to revise, or update,
probability assessments as new (or refined) information becomes available.

Exercises

2.1 State the interpretation of probability implied by the following:
a. The probability tails appears on the toss of a fair coin is 1/2.
b. After recording the outcomes of 50 tosses of a fair coin, the probabil-

ity tails appears is 0.54.
c. It is with certainty the coin is fair!
d. The probability is 60% that the stock market will close 500 points

above yesterday’s closing count.
e. The design team believes there is less than a 5% chance the new

microchip will require more than 12,000 gates.
2.2 A sack contains 20 marbles exactly alike in size but different in color.

Suppose the sack contains 5 blue marbles, 3 green marbles, 7 red
marbles, 2 yellow marbles, and 3 black marbles. Picking a single marble
from the sack and then replacing it, what is the probability of choosing
the following:
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a. Blue marble?
b. Green marble?
c. Red marble?
d. Yellow marble?
e. Black marble?
f. Non-blue marble
g. Red or non-red marble?

2.3 If a fair coin is tossed, what is the probability of not obtaining heads?
What is the probability of the event: (heads or not heads)?

2.4 Show the probability of the event: (A or A complement) is always unity.
2.5 Suppose two tetrahedrons (4-sided polygons) are randomly tossed.

Assuming the tetrahedrons are weighted fair, determine the set of all
possible outcomes �. Assume each face is numbered 1, 2, 3, and 4.

Two tetrahedrons for Exercise 2.5

1
2

1
2

Let the sets A, B, C, and D represent the following events:
A: The sum of the toss is even

B: The sum of the toss is odd

C: The sum of the toss is a number less than 6

D: The toss yielded the same number on each upturned face

a. Find P(A), P(B), P(C), P(A ∩ B), P(A ∪ B), P(B ∪ C), and P(B ∩ C ∩ D).
b. Verify P(A ∪ B)c = P(Ac ∩ Bc) (De Morgan’s Law).

2.6 The XYZ Corporation has offers on two contracts A and B. Suppose the
proposal team made the following subjective probability assessments:
the chance of winning contract A is 40%, the chance of winning contract
B is 20%, the chance of winning contract A or contract B is 60%, the
chance of winning both contracts is 10%.
a. Explain why the given set of probability assignments is inconsistent

with the axioms of probability.
b. What must P(B) equal such that it and the set of other assigned

probabilities specified are consistent with the axioms of probability?
2.7 Suppose a coin is balanced such that tails appears three times more fre-

quently than heads. Show the probability of obtaining tails with such
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a coin is 3/4. What would you expect this probability to be if the coin
was fair; that is, equally balanced?

2.8 Suppose the sample space of an experiment is given by � = A ∪ B.
Compute P(A ∩ B) if P(A) = 0.25 and P(B) = 0.80.

2.9 If A and B are disjoint subsets of � show that
a. P (Ac ∪ Bc) = 1
b. P (Ac ∩ Bc) = 1 − [P(A) + P(B)]

2.10 Two missiles are launched. Suppose there is a 75% chance missile A hits
the target and a 90% chance missile B hits the target. If the probability
missile A hits the target is independent of the probability missile B hits the
target, determine the probability missile A or missile B hits the target.
Find the probability needed for missile A such that if the probability of
missile B hitting the target remains at 90%, the probability missile A or
missile B hits the target is 0.99.

2.11 Suppose A and B are independent events. Show that
a. The events Ac and Bc are independent.
b. The events A and Bc are independent.
c. The events Ac and B are independent.

2.12 Suppose A and B are independent events with P(A) = 0.25 and P(B) =
0.55. Determine the probability
a. At least one event occurs.
b. Event B occurs but event A does not occur.

2.13 Suppose A and B are independent events with P(A) = r and the prob-
ability that “at least A or B occurs” is s. Show the only value for P(B) is
(s − r)(1 − r)−1.

2.14 In Exercise 2.5, suppose event C has occurred. Enumerate the set of
remaining possible outcomes. From this set compute P(B). Compare
this with P(B |C ) where P(B |C ) is determined from the definition of
conditional probability.

2.15 At a local sweet shop, 10% of all customers buy ice cream, 2% buy fudge,
and 1% buy both ice cream and fudge. If a customer selected at ran-
dom bought fudge, what is the probability the customer bought an ice
cream? If a customer selected at random bought ice cream, what is the
probability the customer bought fudge?

2.16 For any two events A and B, show that P(A |A ∩ (A ∩ B)) = 1 .
2.17 A production lot contains 1000 microchips of which 10% are defec-

tive. Two chips are successively drawn at random without replacement.
Determine the probability
a. Both chips selected are nondefective.
b. Both chips are defective.
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c. The first chip is defective and the second chip is nondefective.
d. The first chip is nondefective and the second chip is defective.

2.18 Suppose the sampling scheme in Exercise 2.17 was with replacement;
that is, the first chip is returned to the lot before the second chip
is drawn. Show how the probabilities computed in Exercise 2.17 are
changed.

2.19 Spare power supply units for a communications terminal are provided
to the government from three different suppliers A1, A2, and A3. Thirty
percent come from A1, 20% come from A2, and 50% come from A3.
Suppose these units occasionally fail to perform according to their spec-
ifications and the following has been observed: 2% of those supplied by
A1 fail, 5% of those supplied by A2 fail, and 3% of those supplied by
A3 fail. What is the probability any one of these units provided to the
government will perform without failure?

2.20 In a single day, ChipyTech Corporation’s manufacturing facility pro-
duces 10,000 microchips. Suppose machines A, B, and C individually
produce 3000, 2500, and 4500 chips daily. The quality control group
has determined the output from machine A has yielded 35 defective
chips, the output from machine B has yielded 26 defective chips, and
the output from machine C has yielded 47 defective chips.
a. If a chip was selected at random from the daily output, what is the

probability it is defective?
b. What is the probability a randomly selected chip was produced by

machine A? By machine B? By machine C?
c. Suppose a chip was randomly selected from the day’s production

of 10,000 microchips and it was found to be defective. What is
the probability it was produced by machine A? By machine B? By
machine C?
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3
Distributions and the Theory of Expectation

3.1 Random Variables and Probability Distributions

Consider the experiment of tossing two fair dice described in Example 2.1.
Suppose x represents the sum of the toss. Define X as a variable that takes
on only values given by x. If the sum of the toss is 2 then X = 2; if the sum
of the toss is 3 then X = 3; if the sum of the toss is 7 then X = 7. Numerical
values of X are associated with events defined from the sample space � for
this experiment, which was given in Table 2.1. In particular,

X = 2 is associated with only this simple event {(1, 1)}∗
X = 3 is associated with only these two simple events {(1, 2)}, {(2, 1)}
X = 7 is associated with only these six simple events {(1, 6)}, {(2, 5)},

{(3, 4)}, {(4, 3)}, {(5, 2)}, {(6, 1)}

Here, we say X is a random variable. This is illustrated in Figure 3.1. For-
mally, a random variable is a real-valued function defined over a sample space.
The sample space is the domain of a random variable. Traditionally, random
variables are denoted by capital letters such as X, W, and Z.

The event X = x is equivalent to

{X = x} ≡ {ω ∈ � | X(ω) = x}

This represents a subset of � consisting of all sample points ω such that
X(ω) = x. In Figure 3.1, the event {X = 3} is equivalent to

{X = 3} ≡ {(1, 2), (2, 1)}

The probability of the event {X = x} is equivalent to

P({X = x}) ≡ P({ω ∈ � | X(ω) = x} )

∗ The outcomes from tossing two dice are recorded as (d1, d2), where d1 and d2 are the numbers
appearing on the upturned faces of the first and second die, respectively. Therefore, in this
discussion, x = d1 + d2.

37
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Nine events from the sample space of
tossing two dice corresponding to

some possible values of X

Some possible
values for X

The random variable X = x, 
where x is the sum of the toss 
of two dice. In particular,

X = x

2

{(1, 6)},{(2, 5)},{(3, 4)}
{(4, 3)},{(5, 2)},{(6, 1)}

{(1, 1)} {(1, 2)}
{(2, 1)}

X({(1, 1)}) = 2
X({(1, 2), (2, 1)}) = 3
X({(1, 6), (2, 5), (3, 4),

(4, 3), (5, 2), (6, 1)}) = 7

FIGURE 3.1
Some possible values of a random variable.

In Figure 3.1, the probability of the event {X = 3} is equivalent to

P({X = 3}) ≡ P({(1, 2), (2, 1)}) = 2
36

For convenience, the notation P({X = x}) ≡ P(X = x) is adopted in this book.
Random variables can be characterized as discrete or continuous. A ran-

dom variable is discrete if its set of possible values is finite or countably
infinite. A random variable is continuous if its set of possible values is
uncountable.

3.1.1 Discrete Random Variables

Consider again the simple experiment of tossing a pair of fair dice. Let the
random variable X represent the sum of the toss. The sample space � for this
experiment consists of the 36 outcomes given in Table 2.1. The random vari-
able X is discrete since the only possible values are x = 2, 3, 4, 5, 6, . . . , 12. The
function that describes the probabilities associated with the event {X = x},
for all feasible values of x, is shown in Figure 3.2. This function is known as the
probability function of X.

The probability function of a discrete random variable X is defined as

pX(x) = P(X = x) (3.1)
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FIGURE 3.2
Probability function for the sum of two dice tossed.

The probability function is also referred to as the probability mass function or
the frequency function of X. The probability function associates probabilities to
events described by distinct (single) points of interest. Over all feasible (pos-
sible) values of x, probability functions satisfy, by the axioms of probability,
the following conditions:

a) pX(x) ≥ 0 b)
∑

x

pX(x) = 1

If x is not a feasible value of X then

pX(x) = P(X = x) = P(Ø) = 0

It is often of interest to determine probabilities associated with events of the
form {X ≤ x}. For instance, suppose we wanted the probability that the sum
of the numbers resulting from the toss of two fair dice will not exceed seven.
This is equivalent to computing P(X ≤ 7); in this instance, we have P(X ≤
7) = P({X = 2} ∪ {X = 3} ∪ . . . ∪ {X = 7}). Thus, X can take a value not
exceeding seven if and only if X takes on one of the values 2, 3, . . . , 7. Since
the events {X = 2}, {X = 3}, . . . , {X = 7} are mutually exclusive, from Axiom
2.3 and Figure 3.2 we have

P(X ≤ 7) = P(X = 2) + P(X = 3) + · · · + P(X = 7) = 21
36

The function that produces probabilities for events of the form {X ≤ x} is
known as the cumulative distribution function (CDF). Formally, if X is a
discrete random variable then its CDF is defined by

FX(x) = P(X ≤ x) =
∑
t≤x

pX(t) (−∞ < x < ∞) (3.2)
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In terms of this definition, we would write P(X ≤ 7) as

FX(7) = P(X ≤ 7) =
∑
t≤7

pX(t) = pX(2) + pX(3) + · · · + pX(7) = 21
36

where, from Equation 3.1, pX(x) = P(X = x) for x = 2, 3, . . . , 7.
The CDF for the random variable with probability function in Figure 3.2 is

pictured in Figure 3.3. Notice the CDF is a “staircase” or “step” function. This
is characteristic of CDFs for discrete random variables. The height of the “step”
along the CDF is the probability the value associated with that step occurs.
For instance, in Figure 3.3, the probability that X = 3 is the height of the step
(jump) between X = 2 and X = 3; that is, P(X = 3) = 3

36 − 1
36 = 2

36 .
If X is a discrete random variable and a is any real number that is a feasible

(or possible) value of X, then P(X = a) = pX(a) is equal to the height of the
step (jump) of FX(x) at x = a.

The following presents theorems for determining probabilities from the
CDF of a discrete random variable X. In the theorems below, a and b are real
numbers with a < b.

Theorem 3.1 The probability of {X > a} is 1 − FX(a).

Proof. Let A denote the event {X > a}; then Ac = {X ≤ a}; from Theorem 2.1 and
the definition given by Equation 3.2, it immediately follows that

P(X > a) = 1 − P(X ≤ a) = 1 − FX(a)

2 3 11 120

1

1/36

35/36

3/36
P(X = 3)

P(X = 2) x

P(X = 12)

FX(x)

FIGURE 3.3
Cumulative distribution function for the sum of two dice tossed.
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Theorem 3.2 The probability of {X ≥ a} is 1 − FX(a) + P(X = a).

Proof. We can write the event {X ≥ a} as the union of two mutually exclusive events
{X = a} and {X > a}; that is,

{X ≥ a} = {X = a}    {X > a}

{X = a} {X > a}

From Theorems 2.4 and 3.1 we have

P(X ≥ a) = P({X = a} ∪ {X > a}) = P(X = a) + P(X > a)

= P(X = a) + 1 − FX(a) ≡ 1 − FX(a) + P(X = a)

Theorem 3.3 The probability of {X < a} is FX(a) − P(X = a).

Proof. This is a direct consequence of Theorems 3.1 and 3.2. The proof is left as an
exercise for the reader.

Theorem 3.4 The probability of {a < X ≤ b} is FX(b) − FX(a).

Proof. We can write the event {X ≤ b} as the union of two mutually exclusive events
{X ≤ a} and {a < X ≤ b}; that is,

a b

{X ≤ b} = {X ≤ a}    {a < X ≤ b}

{X ≤ a} {a < X ≤ b}

From Theorem 2.4

P(X ≤ b) = P({X ≤ a} ∪ {a < X ≤ b}) = P(X ≤ a) + P(a < X ≤ b)

Thus,

FX(b) = FX(a) + P(a < X ≤ b)

Therefore

P(a < X ≤ b) = FX(b) − FX(a)
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Theorem 3.5 The probability of {a < X < b} is FX(b) − FX(a) − P(X = b).

Proof. We can write the event {X < b} as the union of two mutually exclusive events
{X ≤ a} and {a < X < b}; that is,

a b

{X < b} = {X ≤ a}   {a < X < b}

{X ≤ a} {a < X < b}

From Theorem 2.4

P(X < b) = P({X ≤ a} ∪ {a < X < b}) = P(X ≤ a) + P(a < X < b)

It follows that

P(X < b) − P(X ≤ a) = P(a < X < b)

From Theorem 3.3, P(X < b) = FX(b) − P(X = b); since P(X ≤ a) = FX(a) we
have P(a < X < b) = FX(b) − FX(a) − P(X = b), which was to be shown.

Theorem 3.6 The probability of {a ≤ X < b} is

FX(b) − FX(a) + P(X = a) − P(X = b).

Proof. We can write the event {a ≤ X < b} as the union of two mutually exclusive
events {X = a} and {a < X < b}; that is,

{a ≤ X < b} = {X = a} ∪ {a < X < b}

From Theorem 2.4

P(a ≤ X < b) = P({X = a} ∪ {a < X < b}) = P(X = a) + P(a < X < b)

From Theorem 3.5, P(a < X < b) = FX(b) − FX(a) − P(X = b); therefore,

P(a ≤ X < b) = FX(b) − FX(a) + P(X = a) − P(X = b)

Theorem 3.7 The probability of {a ≤ X ≤ b} is FX(b) − FX(a) + P(X = a).
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Proof. We can write the event {a ≤ X ≤ b} as the union of three mutually exclusive
events {X = a}, {a < X < b}, and {X = b}; that is,

{a ≤ X ≤ b} = {X = a} ∪ {a < X < b} ∪ {X = b}

From Axiom 2.3 and Theorem 3.5

P(a ≤ X ≤ b) = P({X = a} ∪ {a < X < b} ∪ {X = b})
= P(X = a) + P(a < X < b) + P(X = b)

= P(X = a) + [FX(b) − FX(a) − P(X = b)] + P(X = b)

= FX(b) − FX(a) + P(X = a) �

The following presents the first of many case discussions in this book. The
discussion addresses how a corporation might assess the chance of making a
profit on a new electronics product.

Case Discussion 3.1:∗ ChipyTech Corporation is a major producer and sup-
plier of electronics products to industry worldwide. They are planning to
bring a new product to the market. Management needs to know the product’s
potential for profit and loss during its first year on the market. In addition,
they want to know the chance of not making a profit the first year. Suppose
profit (Park and Jackson 1984) is given by Equation 3.3

Profit = (UPrice − UCost)V (3.3)

where UPrice is a discrete random variable that represents the product’s unit
price, UCost is a discrete random variable that represents the unit cost to man-
ufacture the product, and V is a discrete random variable that represents the
product’s sales volume for year 1, which is assumed to be nonzero.

A profit exists when UPrice > UCost, a loss exists when UPrice < UCost, and
no profit exists when UPrice ≤ UCost. For purposes of this case discussion, we
will assume UPrice, UCost, and V are independent random variables.

Suppose the corporation’s sales, price, and cost histories for similar
products have been analyzed. Further, suppose interviews were carefully
conducted with subject matter experts from the engineering and marketing
departments of ChipyTech. From the interviews and the historical data, pos-
sible values for the product’s unit price, unit cost, and sales volume were
established along with their respective probabilities of occurrence. Figure 3.4
presents these values for UPrice, UCost, and V.

∗ Adapted and expanded from an example in Park, W. R. and D. E. Jackson. 1984. Cost Engineer-
ing Analysis—A Guide to Economic Evaluation of Engineering Projects, 2nd edn. New York: John
Wiley & Sons, Inc.
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FIGURE 3.4
Possible values for UPrice, UCost, and V.

To find the dollar range on the product’s profit or loss potential, we first list
all possible combinations of UPrice, UCost, and V. This list is shown in Table 3.1.
Since UPrice, UCost, and V are given to be independent random variables,∗ the
probability that any combination of them will occur is

P ({UPrice = uPrice} ∩ {UCost = uCost} ∩ {V = v})
= P (UPrice = uPrice) P (UCost = uCost) P(V = v) (3.4)

where the values for P (UPrice = uPrice), P (UCost = uCost), and P(V = v) are
given in Figure 3.4. For example, the probability the new product will have
a unit price of 20 dollars and a unit cost of 10 dollars and a sales volume of
10 million (the first year) is

P ({UPrice = 20} ∩ {UCost = 10} ∩ {V = 10})
= P (UPrice = 20) P (UCost = 10) P(V = 10) = 0.020 (3.5)

Table 3.1 summarizes the possible values for Profit. Table 3.1 also shows the
probability Profit takes a value according to a specific combination of UPrice,
UCost, and V. From Table 3.1, observe there is a potential loss of as much as
300 ($M) and a potential gain of as much as 900 ($M). How probable are these
extremes? What is the chance the corporation will not make a profit the first
year? The following discussion addresses these questions.

From Table 3.1 it can be seen there is less than a 1% chance (i.e., 0.6%)
the new product will realize a loss of 300 ($M) during its first year on the

∗ When random variables are independent, their associated events are independent. This is
discussed further in Chapter 5.
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TABLE 3.1

Possible Profits and Their Probabilities

UPrice($) UCost($) V (Millions) Profit ($M) Probability

20 10 10 100 0.020
20 10 20 200 0.008

20 10 30 300 0.012
20 20 10 0 0.070

20 20 20 0 0.028

20 20 30 0 0.042

20 30 10 −100 0.010

20 30 20 −200 0.004

20 30 30 −300 0.006

30 10 10 200 0.050
30 10 20 400 0.020
30 10 30 600 0.030

30 20 10 100 0.175
30 20 20 200 0.070

30 20 30 300 0.105
30 30 10 0 0.025

30 30 20 0 0.010

30 30 30 0 0.015

40 10 10 300 0.030

40 10 20 600 0.012
40 10 30 900 0.018

40 20 10 200 0.105
40 20 20 400 0.042

40 20 30 600 0.063
40 30 10 100 0.015
40 30 20 200 0.006

40 30 30 300 0.009

Total Probability 1

market. Similarly, the maximum profit of 900 ($M) has just under a 2% chance
(i.e., 1.8%) of occurring.

The corporation will not make a profit (i.e., Profit ≤ 0) when UPrice ≤ UCost.
There are nine events in Table 3.1 (shown by the bold-faced figures) that
produce Profit ≤ 0. Let these events be represented by A1, A2, . . . , A9, where

A1 = {{UPrice = 20} ∩ {UCost = 20} ∩ {V = 10}}
A2 = {{UPrice = 20} ∩ {UCost = 20} ∩ {V = 20}}
...
A9 = {{UPrice = 30} ∩ {UCost = 30} ∩ {V = 30}}
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These events are mutually exclusive. Therefore, from Axiom 2.3 the proba-
bility that Profit ≤ 0 is

P(Profit ≤ 0) = P
(

9∪
i=1

Ai

)
=

9∑
i=1

P(Ai) = 0.210 (3.6)

where each P(Ai) is given in Table 3.1.
Table 3.1 can also be used to develop the probability function for the random

variable Profit. Since Profit is given (in this discussion) to be a discrete random
variable, its probability function is

pProfit(x) = P(Profit = x) (3.7)

where feasible values of x are given in Table 3.1. Figure 3.5 is the graph of
pProfit(x). Among the many useful aspects of the probability function is iden-
tifying the value of x associated with the highest probability of occurrence.
In Figure 3.5, a profit of 200 ($M) has the highest probability of occur-
rence. A number of other computations can be determined from pProfit(x). For
example, from Figure 3.5 we have

P(Profit ≤ 0) = pProfit(−300) + pProfit(−200)

+ pProfit(−100) + pProfit(0) = 0.210

Notice that P(Profit ≤ 0) is really the value of the cumulative distribution
function for Profit at x = 0. From Equation 3.2, the CDF of Profit is

FProfit(x) = P(Profit ≤ x) =
∑
t≤x

pProfit(t)

0

0.05

0.10

0.15

0.20

0.25

–300 –200 –100 0 100 200 300 400 600 900

0.006 0.004 0.010

0.190
0.210

0.239

0.156

0.062

0.105

0.018 ($M)

x

p P
ro

fit
(x

)

FIGURE 3.5
Probability function for profit—Case Discussion 3.1.
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Equation 3.8 presents FProfit(x) for this case discussion.

FProfit(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if − 300 < x
0.006 if − 300 ≤ x < −200
0.010 if − 200 ≤ x < −100
0.020 if − 100 ≤ x < 0
0.210 if 0 ≤ x < 100
0.420 if 100 ≤ x < 200
0.659 if 200 ≤ x < 300
0.815 if 300 ≤ x < 400
0.877 if 400 ≤ x < 600
0.982 if 600 ≤ x < 900
1 if 900 ≥ x

(3.8)

The probability that ChipyTech will not make a profit can now be read directly
from the CDF (Equation 3.8), specifically

FProfit(0) = P(Profit ≤ 0) = 0.210

A graph of FProfit(x) is presented with Example 3.3 (Figure 3.12). From Equa-
tion 3.8, the probability Profit will fall within other intervals of interest can be
determined. From Theorems 3.2 through 3.7, with reference to Figure 3.5 and
Equation 3.8, we have the following:

P(Profit ≥ 200) = 1 − FProfit(200) + P(Profit = 200)

= 1 − 0.659 + 0.239 = 0.580

P(Profit < 200) = FProfit(200) − P(Profit = 200)

= 0.659 − 0.239 = 0.420

P(200 < Profit ≤ 600) = FProfit(600) − FProfit(200)

= 0.982 − 0.659 = 0.323

P(200 < Profit < 600) = FProfit(600) − FProfit(200) − P(Profit = 600)

= 0.982 − 0.659 − 0.105 = 0.218

P(200 ≤ Profit < 600) = FProfit(600) − FProfit(200)

+ P(Profit = 200) − P(Profit = 600) = 0.457

P(200 ≤ Profit ≤ 600) = FProfit(600) − FProfit(200)

+ P(Profit = 200) = 0.562



48 Probability Methods for Cost Uncertainty Analysis

In summary, Case Discussion 3.1 illustrates how fundamental probability
concepts such as the axioms, independence, the probability function, and
the CDF can provide decision-makers insights on profits and their associated
probabilities.

3.1.2 Continuous Random Variables

Mentioned in the beginning of this chapter, a random variable is continuous if
its set of possible values is uncountable. For instance, suppose T is a random
variable representing the duration (in hours) of an electronic device. If the
possible values of T are given by {t : 0 ≤ t ≤ 2500}, then T is a continuous
random variable.

In general, we say X is a continuous random variable if there exists
a nonnegative function fX(x), defined on the real line, such that for any
interval A

P(X ∈ A) =
�
A

fX(x) dx

The function fX(x) is called the probability density function (PDF) of X. Unlike
the probability function for a discrete random variable, the PDF does not
directly produce a probability—fX(a) does not produce pX(a), defined by
Equation 3.1. Here, the probability that X is contained in any subset of the
real line is determined by integrating fX(x) over that subset. Since X must
assume some value on the real line, it will always be true that

∞�
−∞

fX(x) dx ≡ P(X ∈ (−∞, ∞)) = 1

In this case, the CDF of the random variable X is defined as

FX(x) = P(X ≤ x) = P(X ∈ (−∞, x]) =
x�

−∞
fX(t) dt (3.9)

A useful way to view Equation 3.9 is shown by Figure 3.6; if we assume
fX(x) is a PDF, then from calculus we can interpret the probabilities of the
events {X ≤ a} and {a ≤ X ≤ b} as the areas of the indicated regions in
Figure 3.6.

When X is a continuous random variable, the probability X = a is zero; this
is because

P(X = a) = P(a ≤ X ≤ a) =
a�

a

fX(x) dx = 0 (3.10)
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P(X ≤ a) =   fX(x)dx
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FIGURE 3.6
A probability density function.

From this it is seen the inclusion or exclusion of an interval’s endpoints does
not affect the probability X falls in the interval; thus, if a and b are any two
real numbers

P(a < X ≤ b) = P(a < X < b)

= P(a ≤ X < b) = P(a ≤ X ≤ b) = FX(b) − FX(a) (3.11)

when X is a continuous random variable. Referring back to Equation 3.9, note
that FX(x) is determined from fX(x) by integration. From calculus, it follows
that fX(x) is determined from FX(x) by differentiation; that is,

fX(x) = d (FX(x))

dx

provided the derivative exists at all but a finite number of points.

3.1.3 Properties of FX(x)

For any discrete or continuous random variable, the value of FX(x) at any x
must be a number in the interval 0 ≤ FX(x) ≤ 1. The function FX(x) is always
continuous from the right. It is nondecreasing as x increases; that is, if x1 ≤ x2
then FX(x1) ≤ FX(x2). Last,

lim
x→−∞ FX(x) = 0 and lim

x→∞ FX(x) = 1

Example 3.1 Let I be a continuous random variable∗ that represents the size of a
software application being developed for a data reduction task. Let I be expressed

∗ In this example, and in many that follow, software size I is treated as a continuous random
variable. In reality, the number of delivered source instructions for a software application is
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as the number of delivered source instructions (DSI). Suppose the state of the
technical information about the application’s functional and performance require-
ments is very sparse. Given this, suppose subject matter experts have assessed
the “true” size of the application will fall somewhere in the interval [1000, 5000].
Furthermore, because of the sparseness of available information, suppose their
size assessment is such that I could take any value in [1000, 5000] with constant
(uniform) probability density.

a. Compute the PDF and the CDF of I.

b. Determine a value x such that P(I ≤ x) = 0.80.

Solution

a. Figure 3.7 presents a function with the property that its value is c
(a constant) at any point in the interval [1000, 5000]. For this function
to be a probability density, it is necessary to find c such that its area is
one. It will then be true that all subintervals of [1000, 5000] that are
the same in length will occur with equal, or constant, probability
(an exercise for the reader).

c

fI (x)

1000 5000
DSI x

FIGURE 3.7
Probability density function for Example 3.1.

a positive integer—for example, it takes 4553 source instructions to pre-process the data stream
passing into the radar’s primary processor. If, for example, we treat software size as a discrete
random variable, then each distinct value (assessed by subject matter experts as “possible”)
also requires an assessment of its probability of occurrence. Although this is a valid way to
describe such a random variable, it is not clear how many distinct values (and their associated
probabilities) are needed to adequately capture the overall distribution of possible values. In
practice, a continuous distribution is often used to describe the range of possible values for
a random variable such as software size. This enables subject matter experts to focus on the
“shape” that best describes the distribution of probability, rather than assessing individual
probabilities associated to each distinct possible value. If needed, the resulting continuous
distribution could later be translated into a discrete form.
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From Figure 3.7, fI(x) can be written as

fI(x) =
{

c, if 1000 ≤ x ≤ 5000

0, otherwise
(3.12)

For fI(x) to be a PDF, we need to find c such that

∞�
−∞

fI(x)dx =
5000�

1000

c dx = 4000c = 1

Therefore c = 1
4000 . Thus, the PDF of the random variable I is

fI(x) =
⎧⎨
⎩

1
4000

, if 1000 ≤ x ≤ 5000

0, otherwise
(3.13)

To determine the CDF, we must evaluate the integral

FI(x) = P(I ≤ x) =
x�

−∞
fI(t) dt for − ∞ < x < ∞

as x moves across the interval −∞ < x < ∞. From Equation 3.9,
and the PDF in Equation 3.13, we can write the CDF as

FI(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x < 1000
x�

1000

1
4000

dt = (x − 1000)/4000, if 1000 ≤ x < 5000

1, if x ≥ 5000

(3.14)

Note that FI(x) is a straight line, as illustrated in Figure 3.8.

b. The value of x such that P(I ≤ x) = 0.80 is obtained from Equation
3.14 by solving

x − 1000
4000

= 0.80

for x. The solution is x = 4200. Therefore, there is an 80% chance
the “true” software size will be less than or equal to 4200 DSI.

Example 3.2 Suppose the PDF for I in Example 3.1 is now defined by the two
regions shown in Figure 3.9.

a. Find c such that fI(x) in Figure 3.9 is a PDF.

b. Determine FI(x).

c. Compute P(I ≤ 2000), P(2000 < I < 4000), P(2000 < I ≤ 5000).
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50004200
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FIGURE 3.8
The cumulative distribution function for Example 3.1.

1000 3000 5000
DSI

Region A

Region B

c(5000–x)/2000

x

c

fI (x)

FIGURE 3.9
Probability density function for Example 3.2.

Solution

a. From Figure 3.9 it can be determined that

fI(x) =
{

c, if 1000 ≤ x < 3000
c(5000 − x)/2000, if 3000 ≤ x ≤ 5000

(3.15)

For fI(x) to be a PDF there must exist a constant c such that

∞�
−∞

fI(x) dx = 1
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This implies c is the solution to

3000�
1000

c dx +
5000�

3000

c((5000 − x)/2000) dx = 1

from which c = 1/3000. Thus, the PDF is

fI(x) =
{

1/3000, if 1000 ≤ x < 3000
(5000 − x)

/
6(106), if 3000 ≤ x ≤ 5000

(3.16)

b. To determine the CDF FI(x), we must evaluate

FI(x) = P(I ≤ x) =
x�

−∞
fI(t) dt for − ∞ < x < ∞ (3.17)

as x moves across the interval −∞ < x < ∞. From the PDF given
in Equation 3.16, FI(x) is

FI(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < 1000
x�

1000

1
3000

dt, if 1000 ≤ x < 3000

3000�
1000

1
3000

dt +
x�

3000

(5000 − t)/6(106) dt, if 3000 ≤ x < 5000

1, if x ≥ 5000

which is equal to

FI(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x < 1000
(x − 1000)/3000, if 1000 ≤ x < 3000
2/3 − (x − 7000)(x − 3000)/12(106), if 3000 ≤ x < 5000
1, if x ≥ 5000

(3.18)

c. Probabilities can be determined from Equation 3.18. The probability
I is less than or equal to 2000 DSI is

P(I ≤ 2000) = FI(2000) = 1
3

= 0.333

The probability I will fall between 2000 and 4000 DSI is

P(2000 < I < 4000) = FI(4000) − FI(2000) = 7
12

= 0.583

The probability I will fall between 2000 and 5000 DSI is

P(2000 < I ≤ 5000) = FI(5000) − FI(2000) = 2
3

= 0.667�
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A graph of the CDF for this example is given in Figure 3.10. When examin-
ing such a CDF, it is often useful to determine the value of x associated with
FX(x) = 0.50. In Figure 3.10, this value is 2500 (an exercise for the reader).
A value of 2500 DSI for I has an equal probability of being larger or smaller.

This leads to the definition of an important measure about a distribution
function known as the median. If X is a random variable with distribution
function FX(x), a number x satisfying both

P(X ≤ x) ≥ 1
2

and P(X ≥ x) ≥ 1
2

is called the median of X. This will be denoted by Med(X). Using Theorem 3.2,
the above inequalities combine to yield the expression (Rohatgi 1976)

1
2

≤ FX(x) ≤ 1
2

+ P(X = x) (3.19)

If X is a continuous random variable, we know P(X = x) = 0 for all x;
therefore, from Expression 3.19, the median of X is the number x satisfying

FX(x) = 1
2

(3.20)

When X is a continuous random variable its distribution function FX(x) is
monotonically increasing, as seen in Figure 3.10; therefore, a unique value
of x exists such that Equation 3.20 is satisfied. When X is a discrete random

1000

0.25

0.5

0.67

1

1750 2500 3000 5000

DSI x

FI (x)

FIGURE 3.10
Cumulative distribution function for Example 3.2.
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0.167

0.333

0.5

0.667

0.833

1
FX (x)

x

FIGURE 3.11
CDF of a random variable with uncountably many medians.

variable, Med(X) may not be unique. For instance, in Figure 3.11, every point
in the interval 3 ≤ x < 4 is a median of X. From Figures 3.10 and 3.11 we see
that every distribution function has at least one median.

The median is one measure among a class of measures about a distribu-
tion known as fractiles. In general, the value xα is called the α-fractile of X if
P(X ≤ xα) = α. The median is the 0.50-fractile of X; its value is given by x0.50.
In Figure 3.10, we have x0.50 = 2500. Other α-fractiles of common interest are
x0.25 and x0.75. Fractiles are one way to express percentiles of a distribution. In
general, the α-fractile of X is the α(100)th percentile of X. For instance, the
median is the 50th percentile of X.

3.2 Expectation of a Random Variable

When looking at the possible values of a random variable, a useful value
to determine is its expectation. The expectation of a random variable is also
known as its mean. The expectation (or mean) of a discrete random variable X
is defined as

E(X) ≡ μX =
∑

x

xpX(x) (3.21)

The expectation∗ of a random variable is the summation of all its possi-
ble values weighted by the probabilities associated with these values. The

∗ The expectation E(X) for a discrete random variable X exists if and only if the summation in
Equation 3.21 is absolutely convergent; that is, if and only if

∑
x |x| pX(x) < ∞.
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terms expectation and mean (usually denoted by the Greek symbol μ) are
synonymous.

Example 3.3 Return to Case Discussion 3.1 and determine the following:

a. P(Profit ≥ E(Profit))

b. P(Profit = Med(Profit))

Solution

a. First determine E(Profit). From Case Discussion 3.1, the probability
function for Profit is given in Figure 3.5. Since Profit was defined by
a discrete random variable, from Equation 3.21 we have

E(Profit) =
10∑

i=1

xi pProfit(xi)

= −300(0.006) + (−200)(0.004) + (−100)(0.010)

+ 0(0.190) + 100(0.210) + 200(0.239) + 300(0.156)

+ 400(0.062) + 600(0.105) + 900(0.018)

= 216

Therefore, the expected profit is 216 ($M). From Theorem 3.2, the
probability Profit will be greater than or equal to its expected value is

P(Profit ≥ E(Profit)) = 1 − FProfit(E(Profit)) + P(Profit = E(Profit))

or

P(Profit ≥ 216) = 1 − FProfit(216) + P(Profit = 216)

From Equation 3.8, FProfit(216) = 0.659; however, P(Profit = 216) =
0 since the point x = 216 is not a feasible (possible) value for
Profit; so

P(Profit ≥ 216) = 1 − 0.659 + 0 = 0.341

b. First determine Med(Profit). The median of Profit can be found by
expression (3.19). Referring to Equation 3.8 and Figure 3.5, it can be
seen that x = 200 satisfies both

P(Profit ≤ x) ≥ 1
2

and P(Profit ≥ x) ≥ 1
2

From Equation 3.8

P(Profit ≤ 200) = FProfit(200) = 0.659 ≥ 1/2

Therefore, the first inequality P(Profit ≤ x) ≥ 1/2 is true when x =
200. It now remains to verify that P(Profit ≥ x) ≥ 1/2 when x = 200.
From Theorem 3.2

P(Profit ≥ 200) = 1 − FProfit(200) + P(Profit = 200)

= 1 − 0.659 + 0.239 = 0.580 ≥ 1/2
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Therefore, the second inequality is also true. It is left as an exercise
for the reader to show that x = 200 is the only median of Profit,
in this case. To complete part (b) we need to determine P(Profit =
Med(Profit)). Since it was established that Med(Profit) = 200, it can
be readily seen from Figure 3.5

P(Profit = Med(Profit)) = P(Profit = 200) = pProfit(200) = 0.239

This result could also be obtained from the CDF of Profit. Recall
P(X = a) = pX(a) is the height of the jump of FX(x) at x = a, where
a is a feasible value of X. From Equation 3.8, the height of the jump
of FProfit(x) at x = 200 is 0.659−0.420 = 0.239. Figure 3.12 illustrates
this probability and presents the CDF for Profit, as described in Case
Discussion 3.1.�

Example 3.4 Suppose the probability function of the cost to develop an
inspection system for radomes is given below.

a. What is the expected cost?

b. What is the 0.95-fractile of Cost?

Cost ($M) 40 65 80 95 105

Probability Function
for Cost

0.30 0.20 0.25 0.20 0.05

1

0.659

($M)

0.42

200 300

FProfit (x)

P (Profit = 200) = 0.239

x

FIGURE 3.12
Cumulative distribution function for profit—defined in Case Discussion 3.1 and Example 3.3.
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Solution

a. From the information in this table and Equation 3.21

E(Cost) = 40(0.30) + 65(0.20) + 80(0.25) + 95(0.20) + 105(0.05)

= 69.25

Therefore, the expected cost of the inspection system is 69.25 ($M).

b. We will use the CDF to determine the 0.95-fractile of Cost. The fol-
lowing table expresses the probability function and the distribution
function of Cost. From this table, 95 ($M) is the 0.95-fractile of Cost;
that is, P(Cost ≤ 95) = 0.95.

Cost Probability Cumulative

($M) Function Probability

40 0.30 0.30

65 0.20 0.50
80 0.25 0.75
95 0.20 0.95

105 0.05 1.00

This discussion focused on determining the expected value of a random
variable for the discrete case. If X is a continuous random variable, the
expectation∗ (or the mean) of X is defined as

E(X) ≡ μX =
∞�

−∞
xfX(x) dx (3.22)

Example 3.5 Using Equation 3.22, compute E(I) in Example 3.1.

Solution In Example 3.1, the PDF of I was

fI(x) =
⎧⎨
⎩

1
4000

, if 1000 ≤ x ≤ 5000

0, otherwise

from Equation 3.22

E(I) =
∞�

−∞
xfI(x)dx =

5000�
1000

x
1

4000
dx = 3000 DSI

∗ The expectation E(X) for a continuous random variable X exists if and only if the integral in
Equation 3.22 is absolutely convergent; that is, if and only if

� ∞
−∞ |x| fX(x)dx < ∞.
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Therefore, the expected (mean) size E(I) of the software application
described in Example 3.1 is 3000 DSI. In Figure 3.13, notice E(I) falls
exactly between the interval [1000, 5000]. In Chapter 4, we will see when
fX(x) is described by a rectangular region, within an interval [a, b], then
E(X) = (a + b)/2.

Example 3.6 Compute E(I) for the PDF in Example 3.2.

Solution In Example 3.2, the PDF of I was

fI(x) =
{

1/3000, if 1000 ≤ x < 3000

(5000 − x)
/

6(106), if 3000 ≤ x ≤ 5000

Using Equation 3.22

E(I) =
∞�

−∞
xfI(x)dx =

3000�
1000

x
1

3000
dx +

5000�
3000

x((5000 − x)
/

6(106))dx

= 2555.56 ≈ 2556 DSI

Therefore, the expected (or mean) size E(I) of the software application
described in Example 3.2 is approximately 2556 DSI. A graph illustrating
the location of E(I), in this example, is shown in Figure 3.14.

Example 3.7 Let Cost denote the unit production cost of a transmitter synthe-
sizer unit (TSU) for a communications terminal. Suppose there is uncertainty
in the fabrication, assembly, inspection, and test hours per TSU. Because of this,
suppose production engineering assessed that Cost is best described by the PDF
in Figure 3.15. Determine

a. E(Cost)

b. P(Cost > E(Cost))

c. Med(Cost)

fI (x)

1000

1/4000

3000
E (I)

5000
DSI x

FIGURE 3.13
The expectation of I for Example 3.5.
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1/3000

1000 3000

(5000 – x)/6(10)6

2556 5000
E(I)

DSI x

fI(x)

FIGURE 3.14
The expectation of I for Example 3.6.

fCost(x)

1/4000

10,000 12,000 18,000
Dollars x

FIGURE 3.15
PDF for Cost in Example 3.7.

Solution

a. To compute E(Cost), it is necessary to determine the mathematical
form of the PDF in Figure 3.15. It is left to the reader to verify
Equation 3.23 is indeed the PDF.

fCost(x) =
{
(x − 10,000)/8(106), if 10,000 ≤ x < 12,000
(18,000 − x)/24(106), if 12,000 ≤ x ≤ 18,000

(3.23)



Distributions and the Theory of Expectation 61

From Equation 3.22

E(Cost) ≡ μCost =
∞�

−∞
xfCost(x) dx

For this example

E(Cost) =
12,000�

10,000

x((x − 10,000)/8(106))dx

+
18,000�

12,000

x((18,000 − x)/24(106))dx = 13,333.3

Thus, the expected (mean) cost of the TSU is approximately 13,333
dollars.

b. To compute P(Cost > E(Cost)), recall from Theorem 2.1

P(Cost > E(Cost)) = 1 − P(Cost ≤ E(Cost))

= 1 − FCost(E(Cost)) = 1 − FCost(13,333.3)

From Equation 3.9

FCost(13,333.3) =
13,333.3�
−∞

fCost(t)dt

=
12,000�

10,000

((t − 10,000)/8(106))dt

+
13,333.3�
12,000

((18,000 − t)/24(106))dt = 0.54629

Therefore

P(Cost > E(Cost)) = 1 − 0.54629 = 0.45371

c. From Equation 3.20, the median of Cost is

Med(Cost) = P(Cost ≤ x) = 0.50

We need to find x such that

FCost(x) = P(Cost ≤ x) =
x�

−∞
fCost(t)dt = 0.50

In Figure 3.15, the area under the curve between 10,000 ≤ x <

12,000 accounts for only 25% of the total area (which must equal
unity) between 10,000 ≤ x ≤ 18,000; that is,

P(Cost ≤ 12,000) =
12,000�

10,000

((t − 10,000)/8(106))dt = 0.25



62 Probability Methods for Cost Uncertainty Analysis

Therefore, the value of x that satisfies P(Cost ≤ x) = 0.50 must be
to the right of x = 12,000. To find this value we need to solve the
equation below; specifically, we must find x such that

12,000�
10,000

((t − 10,000)/8(106))dt +
x�

12,000

((18,000 − t)/24(106))dt = 0.50

This expression simplifies to solving
x�

12,000

((18,000 − t)/24(106))dt = 0.25

for x. It turns out the only feasible value for x is 13,101; showing
this is left for the reader. Therefore, we say the median cost of the
transmitter synthesizer unit is 13,101; that is, Med(Cost) = 13,101
dollars.∗�

Thus far, we have discussed the expectation (or mean) and the median
of a random variable. Another value of interest is the mode. The mode of a
random variable X, denoted by Mode(X), is the value of X that occurs most
frequently. It is often referred to as the most likely or most probable value
of X. Formally, we say that a is the mode of X if

pX(a) = max
t

pX(t) when X is a discrete random variable

fX(a) = max
t

fX(t) when X is a continuous random variable

The mode of a random variable is not necessarily unique. The random vari-
able described by the rectangular PDF in Figure 3.7 does not have a unique
mode. However, in Example 3.7, x = 12,000 is the unique mode of the ran-
dom variable Cost. The mean, median, and mode of a random variable are
collectively known as measures of central tendency. Figure 3.16 illustrates these
measures for the PDF in Example 3.7.

The term average is often used in the same context as the expected value
(or mean) of a random variable. The following theorem explains this context.

Theorem 3.8 Let X be a random variable with mean E(X). If an experiment
is repeated n-times under identical conditions and Xi is the random variable X
associated with the ith round of the experiment, then

P

(
lim

n→∞
1
n

n∑
i=1

Xi = E(X)

)
= 1

∗ Mentioned in the preface, the numerical precision shown in this example, and elsewhere in
this book, is strictly for teaching purposes. Rounding results to a sensible level of precision is
always applied in practice, particularly in the practice of cost analysis.
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1/4000
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0.500.50

fCost(x)

x

FIGURE 3.16
Central tendency measures for the PDF in Example 3.7.

Theorem 3.8 is known as the strong law of large numbers. It states that for
sufficiently large n, it is virtually certain the average of the observed val-
ues of X1, X2, . . . , Xn will be approximately the same as the expected value
of X. For example, it can be shown the expected value associated with toss-
ing a fair six-sided die is 3.5. This does not mean we expect to obtain 3.5 on
a toss; rather, the average value of many repeated tosses is expected to be
approximately 3.5.

3.2.1 Expected Value of a Function

The need to determine the expected value of a function arises frequently
in practice. For instance, in cost analysis the effort EffSW (staff months) to
develop software of size I might be given by∗

EffSW = 2.8I1.2 (3.24)

We might ask “What is the expected software development effort?” Assuming I is a
continuous random variable, from Equation 3.22 we could write the expected
software development effort as

E(EffSW) =
∞�

−∞
ufEffSW

(u)du (3.25)

∗ Boehm, B. W. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, Inc. In
Equation 3.24, I is in thousands of DSI.
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To use Equation 3.25 we need the PDF of EffSW . As we shall see in Chapter 5,
this can be difficult for certain kinds of functions. Is there another approach
to computing E(EffSW)? Note that EffSW is a function of I.

EffSW = 2.8I1.2 = g(I) (3.26)

It follows that

E(EffSW) = E(g(I)) (3.27)

The following proposition presents a general way to determine E(EffSW) from
E(g(I)), where E(g(I)) is determined from the PDF of I.

Proposition 3.1 If X is a random variable and g(x) is a real-valued function defined
for all x that are feasible (possible) values of X, then

E(g(X)) =
{∑

x
g(x)pX(x), if X is discrete� ∞

−∞ g(x) fX(x)dx, if X is continuous
(3.28)

In this equation, the summation and integral must be absolutely convergent.
Applying Proposition 3.1 to the discussion on EffSW , we have

E(EffSW) = E(g(I)) =
∞�

−∞
g(x) fI(x)dx (3.29)

Thus, the only information needed to determine E(EffSW) is the function g(I)
and fI(x), the PDF of I. For now, further discussion of this problem is deferred
to Chapter 5. In particular, Case Discussion 5.2 presents the determination of
E(EffSW) in detail.

Theorem 3.9 If a and b are real numbers, then E(aX + b) = aE(X) + b

Proof. Let g(X) = aX+b; if X is a discrete random variable, then from Equation 3.28

E(aX + b) =
∑

x

(ax + b)pX(x) =
∑

x

axpX(x) +
∑

x

bpX(x)

= a
∑

x

xpX(x) + b
∑

x

pX(x) = aE(X) + b · 1 = aE(X) + b
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If X is a continuous random variable, then from Equation 3.28

E(aX + b) =
∞�

−∞
(ax + b)fX(x) dx = a

∞�
−∞

xfX(x) dx + b
∞�

−∞
fX(x) dx

= aE(X) + b · 1 = aE(X) + b�

Directly from this proof it can be shown the expected value of a constant is
the constant itself; that is, E(b) = b. From Theorem 3.9, it can also be seen
that E(aX) = aE(X), where a is a real number. Showing these two results is an
exercise for the reader.

Thus far, we have addressed the expectation (or mean) of a random vari-
able. A quantity known as the variance measures its spread or dispersion
(deviation) around the mean. The variance of a random variable X is

Var(X) ≡ σ2
X = E

[
(X − E(X))2

]
≡ E

[
(X − μX)2

]
(3.30)

The positive square root of Var(X) is known as the standard deviation of X,
which is denoted by σX.

σX = √
Var(X) (3.31)

Example 3.8 Let X represent the sum of the toss of a pair of fair dice.

a. Determine the expected sum.

b. Determine the variance of the sum.

Solution In this example, X is a discrete random variable.

a. From Equation 3.21 and Figure 3.2, the expected sum is

E(X) = 1
36

(2) + 2
36

(3) + 3
36

(4) + 4
36

(5) + 5
36

(6) + 6
36

(7)

+ 5
36

(8) + 4
36

(9) + 3
36

(10) + 2
36

(11) + 1
36

(12) = 252
36

= 7

b. From part (a) we can write Var(X) = E[(X − 7)2]. If we let g(X) =
(X − 7)2 then from Equation 3.28

E[g(X)] = E[(X − 7)2] =
∑

x
(x − 7)2pX(x) x = 2, . . . , 12 (3.32)

From Figure 3.2, pX(2) = 1
36 , pX(3) = 2

36 , . . . , pX(12) = 1
36 . Working

through the computation, Equation 3.32 is equal to 5.833; therefore,

Var(X) = E[g(X)] = E[(X − 7)2] =
∑

x
(x − 7)2pX(x) = 5.833
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The variance computed in Example 3.8 could be interpreted as follows:
The average value of the square of the deviations from the expected sum
(E(X) = 7) of many repeated tosses of two dice is 5.833. In this case, what is
the standard deviation of X? From the definition of Var(X) in Equation 3.30,
we can deduce the following theorems.

Theorem 3.10 Var(X) = E(X2) − (μX)2

Proof. The proof follows from the definition of Var(X) and the properties of
expectation, as presented in Theorem 3.9.

Var(X) = E[(X − E(X))2]
= E(X2 − 2XE(X) + (E(X))2) = E(X2 − 2XμX + (μX)2)

= E(X2) − E(2XμX) + E(μX)2

= E(X2) − 2μXE(X) + (μX)2

= E(X2) − 2(μX)2 + (μX)2

= E(X2) − (μX)2

Theorem 3.10 is a convenient alternative for computing the variance of a ran-
dom variable. It is left as an exercise for the reader to use this theorem to
verify Var(X) = 5.833, where X is the random variable in Example 3.8.

Theorem 3.11 If a and b are real numbers, then

Var(aX + b) = a2Var(X)

Proof. The proof follows directly from the definition of Var(X) and Theorem 3.9;
that is,

Var(X) = E[(aX + b − E(aX + b))2]
= E[(aX + b − aE(X) − b)2]
= E[(aX − aE(X))2]
= E[(a(X − E(X)))2]
= E[a2(X − E(X))2]
= a2E[(X − E(X))2]
= a2Var(X)
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This theorem demonstrates the variance of a random variable described by
the linear function aX + b is unaffected by the constant term b.

Example 3.9 For the communication terminal’s transmitter synthesizer unit
(TSU) described in Example 3.7, compute

a. Var(Cost) and σCost using Theorem 3.10

b. Determine P(|Cost − μCost| ≤ σCost)

Solution

a. From Example 3.7, the PDF for Cost is

fCost(x) =
{
(x − 10,000)/8(106) 10,000 ≤ x < 12,000
(18,000 − x)/24(106) 12,000 ≤ x ≤ 18,000

From Theorem 3.10 we have

Var(Cost) = E(Cost2) − (μCost)
2

From part (a) in Example 3.7, μCost = E(Cost) = 13,333.3; therefore,

Var(Cost) = E(Cost2) − (13,333.3)2

From Equation 3.28 we can write

E(Cost2) =
12,000�

10,000

x2((x − 10,000)/8(106))dx

+
18,000�

12,000

x2((18,000 − x)/24(106))dx

= 1.80667(108) ($)2

Therefore

Var(Cost) = σ2
Cost = 1.80667(108) − (13,333.3)2

= 2.88889(106) ($)2

from which

σCost =
√

Var(Cost) = 1699.67 ≈ 1700 ($)

The variance squares the units that define the random variable.
Since $2 is not a useful way to look at Cost, the standard deviation
σCost, which is in dollar units, is usually a better way to interpret
this deviation.
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b. Probabilities associated with intervals∗ expressed in terms of the
mean and standard deviation can be computed. For some positive
real number k

P( |Cost − μCost| ≤ kσCost)

= P(μCost − kσCost ≤ Cost ≤ μCost + kσCost)

From Equation 3.11, we can express this probability in terms of
FCost as

P( |Cost − μCost| ≤ kσCost)

= FCost(μCost + kσCost) − FCost(μCost − kσCost)

For part (b) we need k = 1; from part (a) μCost = 13,333.3 and
σCost = 1700; thus,

P( |Cost − μCost| ≤ σCost) = P(11,633.3 ≤ Cost ≤ 15,033.3)

= FCost(15,033.3) − FCost(11,633.3)

where

FCost(15,033.3) =
15,033.3�
−∞

fCost(t)dt

=
12,000�

10,000

((t − 10,000)/8(106))dt

+
15,033.3�
12,000

((18,000 − t)/24(106))dt = 0.817

and

FCost(11,633.3) =
11,633.3�
−∞

fCost(t)dt

=
11,633.3�
10,000

((t − 10,000)/8(106))dt = 0.167

So

P(|Cost − μCost| ≤ σCost) = 0.817 − 0.167 = 0.65�

∗ Probability intervals are often given in the form P(|X − a| ≤ b) or P(|X − a| > b), where a and b
are any two real numbers. In general, P(|X − a| ≤ b) = P(−b ≤ X−a ≤ b) = P(a−b ≤ X ≤ a+b);
furthermore, P(|X − a| > b) = 1 − P(|X − a| ≤ b) = 1 − P(a − b ≤ X ≤ a + b).
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The TSU cost falls within ±1 (k = 1) standard deviation (σ) around its
expected (or mean) cost with probability 65%. The range of values for x asso-
ciated with this probability is shown in Figure 3.17. This range is sometimes
referred to as the 1-sigma interval.

A random variable can be standardized when its mean and variance are
known. A standardized random variable has zero mean and unit variance.
To see this, suppose X is a random variable with mean μX and variance σ2

X.
The standard form of X is the random variable Y = (X − μX)/σX. From The-
orems 3.9 and 3.11, it can be shown Y has zero mean and unit variance;
that is,

E(Y) = E
(

X − μX

σX

)
= 1

σX
E(X − μX) = 1

σX
[E(X) − μX] = 0

Var(Y) = Var
(

X − μX

σX

)
= 1

σ2
X

Var(X − μX) = 1

σ2
X

Var(X) = σ2
X

σ2
X

= 1

Referring to Example 3.9, we have

E(Y) = E
(

(X − 13,333.3)

1700

)
= 0

Var(Y) = Var
(

(X − 13,333.3)

1700

)
= 1

fCost(x)

1/4000

10,000 11,633.3

Area = 0.65

15,033.3 18,000
Dollars x

P( Cost – 13,333.3  ≤ 1700) = 0.65

FIGURE 3.17
1-Sigma interval for the TSU cost.
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3.3 Moments of Random Variables

Moments provide important information about the distribution function of
a random variable. Such information includes the random variable’s mean
and variance, as well as the shape of its distribution function. Suppose X is a
random variable and k is any positive integer. The expectation E(Xk) is called
the kth moment of X, which is given by Equation 3.33. In general, we say the
kth moment of X is

E(Xk) =

⎧⎪⎨
⎪⎩

∑
x

xkpX(x), if X is discrete

∞�
−∞

xkfX(x) dx, if X is continuous
(3.33)

In Equation 3.33, the summation and integral must be absolutely convergent.
The mean is the first moment of X. It is the “balance point” or the “center of
gravity” of the probability mass (or density) function. This is in contrast to
the median. If the random variable is discrete, the median divides the entire
mass of the distribution function into two equal parts; each part contains the
mass 1/2. If the random variable is continuous, the median divides the entire
area under the density function into equal parts. Each part contains an area
equal to 1/2 (refer to Figure 3.16).

The second moment of the random variable (X−μX) is E[(X−μX)2]. From
Equation 3.30 this is the variance of X, which provides a measure of the dis-
persion of X about its mean. What do higher moments of a random variable
reveal about the shape of its distribution function?

Let Y be the standardized random variable of X; that is, Y = (X − μX)/σX.
The third and fourth moments of Y are known as the coefficients of skew-
ness and kurtosis. These coefficients are given by Equations 3.34 and 3.35,
respectively.

γ1 = E(Y3) = E

[(
X − μX

σX

)3
]

(3.34)

γ2 = E(Y4) = E

[(
X − μX

σX

)4
]

(3.35)

Skewness, given by γ1, is a measure of the symmetry of the distribution func-
tion of X about the mean of X. If this function has a long tail to the left, then γ1
is usually negative and we say the distribution function is negatively skewed.
If this function has a long tail to the right, then γ1 is usually positive and we
say the distribution function is positively skewed.
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In cost analysis, it is common to see distributions with γ1 > 0. In such
distributions, the probability of exceeding the mode (often associated with
the point estimate) is greater than the probability of falling below the mode.
Experience suggests this is due to a variety of reasons. These include chang-
ing requirements, understating a project’s true technical complexity, or
planning the project against unrealistic cost or schedule objectives. Positively
skewed distributions are often used to represent uncertainty in system def-
inition variables, such as weight or software size. Point estimates for these
variables, particularly in the early phases of a system’s design, typically have
a high probability of being exceeded.

If the distribution function of X is symmetric about the mean of X, then
γ1 = 0. The distribution function of X is symmetric about x = a if

P(X ≥ a + x) = P(X ≤ a − x) for all x (3.36)

From Theorem 3.2, Equation 3.36 can be written as

FX(a − x) = 1 − FX(a + x) + P(X = a + x) (3.37)

If Equation 3.37 is true for all x, we say the distribution function FX(x) is
symmetric with a as the center of symmetry. If the center of symmetry is the
origin, then a = 0 and

FX(−x) = 1 − FX(x) + P(X = x) (3.38)

If X is a continuous random variable, Equation 3.38 simplifies to

FX(−x) = 1 − FX(x) (3.39)

The distribution function of a continuous random variable X is symmetric
with center a, if and only if

fX(a − x) = fX(a + x) for all x (3.40)

If FX(x) is a symmetric distribution, the center of symmetry is always the
median. In certain symmetric distributions the mean or the mode may also
equal the median. If the distribution function of a continuous random vari-
able X is symmetric and the mean of X exists, then the median and mean of X
are equal and they both locate the center of symmetry. The Cauchy distribu-
tion∗ is a symmetric distribution whose mean does not exist (i.e., it is not well

∗ The Cauchy distribution is given by fX(x) = {πb [1 + ((x − a)/b)2]}−1. The moments of X do
not exist; however, X has a unique median and a unique mode, which both fall at x = a. In
the Cauchy distribution, the median and the mode are equal; they also locate the center of
symmetry.
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Symmetric
Mean = Median = Mode

Positively skewed 
Mean > Median > Mode

Negatively skewed 
Mean < Median  < Mode

Symmetric
Mean = Median

Symmetric
Median = Mode

Cauchy
distribution

FIGURE 3.18
Illustrative symmetric and skewed distributions.

defined). It has a unique median and a unique mode that equal each other.
In the Cauchy distribution, both the median and the mode locate the center
of symmetry. Figure 3.18 illustrates these and other cases of symmetric and
skewed distributions.

Kurtosis, given by γ2 (Equation 3.35), measures the peakedness of a ran-
dom variable’s distribution function around its mean. The kurtosis of a
distribution function is usually compared with the value γ2 = 3, which is
the kurtosis of a standardized normal probability distribution (discussed in
Chapter 4). If γ2 > 3, the distribution function of X has greater kurtosis (less
peaked) than the normal probability distribution. If γ2 < 3, the distribution
function of X has less kurtosis (more peaked) than the normal probability
distribution.

If we don’t know exactly how a random variable is distributed, but we
have knowledge about its mean, variance, skewness, and kurtosis, we can
often guess its overall shape. In some instances, only the mean and vari-
ance of a random variable are needed to uniquely specify the form of its
distribution.

3.4 Probability Inequalities Useful in Cost Analysis

Thus far, we have shown how probabilities can be computed from the dis-
tribution function of a random variable. However, circumstances frequently
exist when the underlying distribution is unknown. This section presents
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inequalities that provide bounds on the probability of an event independent
of the form of the underlying distribution function.

The Markov inequality, due to A. A. Markov (1856–1922), can be used to
compute an upper bound on the probability of an event when X is non-
negative and only its mean is known. The Chebyshev inequality, derived by
P. L. Chebyshev (1821–1894), bounds the probability that a random variable
takes a value within k standard deviations around its mean. Chebyshev’s
inequality will be shown to be a consequence of Markov’s inequality. Before
discussing the details of these inequalities, we will first discuss the expected
value of an indicator function.

The Indicator Function: For a random variable X, the indicator function
of the event A = {X ≥ a} is

IA(X) =
{

1, if event {X ≥ a} occurs
0, if event {X ≥ a} does not occur

The expected value of IA(X) is the probability the event A occurs. This can be
seen from the following argument. From Equation 3.21, we can write

E(IA(X)) = 1 · P(X ≥ a) + 0 · [1 − P(X ≥ a)] = P(A)

Markov’s Inequality: If X is a nonnegative random variable whose mean
μ is positive, then P(X ≥ cμ) ≤ c−1 for any constant c > 0.

Proof. The random variable X is given to be nonnegative with positive meanμ. Since
c > 0 it follows that cμ > 0. Let

IA(X) =
{

1, if event {X ≥ cμ} occurs
0, if event {X ≥ cμ} does not occur

where A is the event {X ≥ cμ}. From this it follows that

IA(X) ≤ X
cμ

The expected value of IA(X) is

E(IA(X)) ≤ 1
cμ

E(X)

Since E(X) = μ and E(IA(X)) = P(A) it follows immediately that

P(A) = P(X ≥ cμ) ≤ 1/c�
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Markov’s inequality states the probability X takes a value greater than
or equal to c times its mean cannot exceed 1/c. For instance, if c = 2 then
P(X ≥ 2μ) can never exceed 1/2. If c = 1 then P(X ≥ μ) is bounded by
unity, which is consistent with the first axiom of probability (Chapter 2).
Markov’s inequality is meaningless if c is less than one. Markov’s inequality
may also be written as

P(X ≥ a) ≤ 1
a

E(X)

where X is nonnegative and a > 0; this result follows immediately from the
Markov inequality proof (showing this is left as an exercise for the reader).

From a cost analysis perspective, Markov’s inequality provides decision-
makers an upper bound on the probability that Cost is greater than c times
its mean. For instance, suppose the mean cost of a system is determined to
be 100 million dollars ($M). Regardless of the underlying distribution func-
tion for Cost, Markov’s inequality guarantees the probability that Cost takes
a value greater than 200 ($M) can never exceed 1/2.

The probability bound yielded by Markov’s inequality is quite conserva-
tive. To illustrate this, suppose the random variable Cost is described by the
PDF in Figure 3.19. This is a lognormal probability distribution∗ with mean
100 ($M) and standard deviation 25 ($M); it is slightly skewed to the right.

Markov’s bound 
P(Cost ≥ 200) ≤ 0.50

Computed probability
P(Cost ≥ 200) = 0.00165

50 100 150 200
($M)

0.0172153

x

fCost(x)

FIGURE 3.19
A lognormal PDF for Cost with mean 100 ($M).

∗ The lognormal distribution is often used in cost and economic analyses. It will be fully
discussed in Chapter 4, with additional applications provided in the subsequent chapters.
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As seen in Figure 3.19, the Markov bound is substantially larger than the
computed probability of 0.00165 (shown in Example 4.8). Such a wide dis-
parity is not surprising since Markov’s inequality relies only on the mean of
a random variable. In systems engineering, decision-makers typically need
more insight into the probability that Cost is likely to be exceeded than that
provided by Markov’s inequality. If values for the mean and variance of Cost
are available, then Chebyshev’s inequality provides probability bounds that
improve on those obtained from Markov’s inequality.

Chebyshev’s Inequality: If X is a random variable with finite mean μ and
variance σ2, then for k ≥ 1

P(μ − kσ < X < μ + kσ) ≥ 1 − 1
k2 (3.41)

Proof. Recall that

P(|X − a| ≥ b) = 1 − P(|X − a| < b) = 1 − P(a − b < X < a + b) (3.42)

where a and b are real numbers. Suppose we let a = μ and b = kσ. Then

P(|X − a| ≥ b) = P(|X − μ| ≥ kσ)

Now (X − μ)2 ≥ k2σ2 if and only if |X − μ| ≥ kσ; from Markov’s inequality

P((X − μ)2 ≥ k2σ2) ≤ 1
k2σ2 E((X − μ)2) (3.43)

Since E((X − μ)2) = σ2, inequality (3.43) reduces to P((X − μ)2 ≥ k2σ2) ≤ 1
k2 ,

which is equivalent to

P(|X − μ| ≥ kσ) ≤ 1
k2 (3.44)

or

1
k2 ≥ P(|X − μ| ≥ kσ)

From Equation 3.42

1
k2 ≥ P(|X − μ| ≥ kσ) = 1 − P(μ − kσ < X < μ + kσ)
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therefore

P(μ − kσ < X < μ + kσ) ≥ 1 − 1
k2�

Chebyshev’s inequality states that for any random variable X, the prob-
ability that X will assume a value within k standard deviations of its mean
is at least 1 − 1/k2. From Equation 3.41, the probability a random variable
takes a value within 2 standard deviations of its mean will always be at least
0.75. If X is a continuous random variable, at least 95% of the area under any
probability density function will always fall within 4.5 standard deviations of
the mean.

Like Markov’s inequality, probabilities produced by Chebyshev’s inequal-
ity are also conservative, but to a lesser extent. To illustrate this, consider
once again the random variable Cost with mean 100 ($M), standard deviation
25 ($M), and the PDF given in Figure 3.19. It can be computed that the interval

[μ − 2σ,μ + 2σ] = [50, 150] ($M)

accounts for nearly 96% (refer to Example 4.8) of the total probability
(area) under fCost(x). This computed probability is in contrast to Cheby-
shev’s inequality (Equation 3.41), which indicates the interval [50, 150] ($M)
accounts for at least 75% of the total probability.

Various forms of Chebyshev’s inequality are given below; in each
form a > 0.

A. P(|X − μ| ≥ kσ) ≤ 1
k2

B. P(|X − μ| < a) ≥ 1 − σ2

a2

C. P(|X − μ| ≥ a) ≤ σ2

a2

D. P(X − μ ≥ a) ≤ P(|X − μ| ≥ a) ≤ σ2

a2

Supposeμ= 100, σ= 25, and a = 100. From Form D of Chebyshev’s inequality
we have

P(Cost − 100 > 100) ≤ (25)2

(100)2

⇒ P(Cost > 200) ≤ 1
16

= 0.0625
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50 100 150 200

0.0172153
fCost(x)

Markov’s bound 
P(Cost ≥ 200) ≤ 0.50

P(50 ≤ Cost ≤ 150) ≥ 0.75, Chebyshev’s inequality
P(50 ≤ Cost ≤ 150) = 0.96, see Chapter 4, Example 4.8

Computed probability
P(Cost ≥ 200) = 0.00165

Chebyshev’s bound (Form D)
P(Cost ≥ 200) ≤ 0.0625

($M) x

FIGURE 3.20
Some probability bounds on Cost.

Thus, the probability Cost will exceed twice its mean will not be more than
1
16 (or 0.0625). From the previous discussion, Markov’s inequality revealed
this bound could not be more than 1

2 . Although these results are consistent,
Form D of Chebyshev’s inequality provides a significant refinement on the
probability bound for this event. This is not surprising since additional infor-
mation about the random variable Cost, specifically its variance, is taken into
account. Because of this, Chebyshev’s inequality will always provide a tighter
probability bound than that produced by Markov’s inequality. Figure 3.20
summarizes this discussion and contrasts these probability bounds for the
PDF given in Figure 3.19.

The probability inequalities presented here share the common characteris-
tic that their bounds are valid for any type of distribution function. Although
these bounds are conservative, they do offer decision-makers probabilities
that are independent of the underlying distribution. When inequalities such
as Chebyshev’s are used in conjunction with an assumed or approximated
distribution, decision-makers are provided alternative ways to view the
probability associated with the same event.

3.5 Cost Analysis Perspective

In cost uncertainty analysis, two important statistical measures to determine
are the expected (mean) cost and the standard deviation of cost. A classical
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way to view the relationship between a mean and a standard deviation is
presented in Figure 3.21. Shown is a special distribution known as the normal
probability distribution (Chapter 4).

The normal distribution is symmetric about its mean. It has the property
that its mode and median equal its mean. In particular, the 1-sigma interval

[μ − σ,μ + σ]

will always account for slightly more than 68% of the total area under a normal
PDF. Similarly, the 2-sigma interval

[μ − 2σ,μ + 2σ]

will always account for slightly more than 95% of the total area under a
normal PDF.

Although the mean is an important statistical measure that contributes
many useful insights about the underlying distribution, it is just a single value
among infinitely many that define the curve. Alone, the mean provides no
direct view into the variability implicit to the distribution. For this reason,
analysts and decision-makers must consider the mean and the standard devi-
ation jointly. Figure 3.22 illustrates this point. Comparing just the difference
in the mean costs between system design alternatives A and B, it may appear
to a decision-maker alternative B is the better choice.

However, when the dispersion σ in cost is considered and the 1-sigma
interval is determined for each alternative, the decision-maker may very well
select alternative A instead. Specifically, the 1-sigma interval for alternative
A (from Figure 3.22) is

[μ − σ,μ + σ] = [81, 99] ($M)

0.1359

0.34130.3413

0.1359
0.0215

x

0.0215

–¥ μ – 3σ μ – 2σ μ – σ μ + σ μ + 2σ μ + 3σμ

fX(x)

FIGURE 3.21
Areas under the normal probability distribution.
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80 90

fCost(x)

($M) x

Alternative A
   = 90,     = 9

Alternative B
    = 80,    = 27

FIGURE 3.22
Comparing the mean costs of alternatives.

The 1-sigma interval for alternative B is

[μ − σ,μ + σ] = [53, 107] ($M)

Thus, for the same level of confidence implied by the 1-sigma interval (68%)
choosing alternative B implies accepting three times the variability in cost
(54 ($M)) than that associated with alternative A (18 ($M)). Clearly, this result
would not have been seen if comparing the mean costs was the sole criterion
for selecting an alternative.

This discussion illustrates the usefulness of another statistic known as the
coefficient of dispersion. Defined by Equation 3.45, the coefficient of dispersion
D is the ratio of the standard deviation to the mean.

D = σ

μ
(3.45)

Consider again Figure 3.22. The coefficient of dispersion for alternative A is
0.10. This implies the value of Cost at one standard deviation above the mean
will be 10% higher than the mean of Cost, which is 90 ($M) for alternative A.
Similarly, the coefficient of dispersion for alternative B is 0.3375. This implies
the value of Cost at one standard deviation above its mean will be nearly 34%
higher than the mean of Cost, which is 80 ($M) for alternative B. Clearly, a
significantly higher cost penalty exists at 1-sigma above the mean under alter-
native B than for alternative A. A decision-maker might consider this cost risk
to be unacceptable. Although the cost mean for alternative A is 10 ($M) higher
than the cost mean for alternative B, its significantly lower cost variance (i.e.,
less cost risk) may be the acceptable trade-off.
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Exercises

3.1 Let X denote the sum of the toss of two fair dice. Determine the fol-
lowing using the probability function in Figure 3.2 and the appropriate
theorems in Section 3.1.
a. P(X < 7)

b. P(X > 7)

c. P(X ≥ 7)

d. P(10 ≤ X ≤ 12)

e. P(10 ≤ X < 12)

f. P(10 < X < 12)

3.2 Suppose the probability function for the development and production
cost of a microchip is given below. Determine the following:
a. The CDF of Cost

b. P(Cost ≤ 35)

c. P(Cost > 25)

d. P(Cost ≥ 25)

e. P(20 ≤ Cost < 35)

f. P(20 < Cost < 35)

g. P(Cost < 35)

x
($K)

20 25
Probability function for Exercise 3.2

30 35 40

0.05

0.2

0.3

0.40.4

0.05

PCost (x)

3.3 For any random variable X, show that P(X < a) = FX(a) − P(X = a).
3.4 Refer to Case Discussion 3.1 and answer the following:

a. Find pProfit(x) and FProfit(x) if P(V = 5) = 0.1, P(V = 15) = 0.8, and
P(V = 20) = 0.1, where V is the sales volume (in millions).

b. With what probability does Profit = 0?
3.5 Suppose the profit function to sell 10,000 electronic widgets, with a

unit price of $10 per widget, is given by Profit = (10)4(10 − UCost),
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where UCost is a discrete random variable that represents the unit cost
(in dollars) of each widget. If UCost can take one of the values in the set
{4, 7, 10}, where uCost represents one of these values, find the constant c
such that pProfit(uCost) = c Profit is a probability function.

3.6 Suppose Cost is a continuous random variable whose possible values
are given by the interval 20 ≤ x ≤ 70, where x is in dollars million ($M).

a. Find c such that the function below is a PDF.
b. Compute P(Cost ≤ 30), P(30 < Cost < 70), P(Cost = 30).

70
($M)

3020

fCost(x)

c

x

Function for Exercise 3.6

3.7 Show that fCost(x) in Exercise 3.6 is the derivative of FCost(x), where

FCost(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < 20
1

500
(x − 20)2, if 20 ≤ x < 30

1
5

+ 1
50

[
40 − (x − 70)2

40

]
, if 30 ≤ x < 70

1, if x ≥ 70

3.8 For the PDF in Example 3.1 (Figure 3.7), show that all subintervals of
[1000, 5000] that are the same in length will occur with equal probability.

3.9 a. Given the probability function in Exercise 3.2, determine Med(Cost).
b. From the Profit probability function in Case Discussion 3.1, show that

x = 200 is the only value of x that satisfies the relationship

(1/2) ≤ FProfit(x) ≤ (1/2) + P(Profit = x)

c. In Example 3.2, show that Med(I) = 2500 DSI.
3.10 Suppose the uncertainty in the size I of a software application is

expressed by the PDF in the following figure.

a. Determine FI(x).
b. Compute P(I ≤ 50,000), P(40,000 ≤ I ≤ 60,000), P(50,000 ≤ I ≤

65,000).



82 Probability Methods for Cost Uncertainty Analysis

65,000

DSI x
50,00035,000

fI(x)

c

Function for Exercise 3.10

3.11 In Exercise 3.10, show that Med(I) = 53,750 DSI.
3.12 Find the expected number of workstations purchased per month and

the standard deviation if the probability function for the monthly
demand is given in the following table.

Workstations Purchased per Month 14 9 36 6 4

Probability 0.23 0.15 0.42 0.10 0.10

Probability Function for Exercise 3.12

3.13 From Case Discussion 3.1, the profit on a new electronics product
manufactured and sold by ChipyTech Corporation was given by

Profit = (UPrice − UCost) V

Suppose the product’s sales volume V for its first year on the mar-
ket is set at 30 million. Suppose the probability functions of UPrice
and UCost are given in the figure below. Assume UPrice and UCost are
independent.

302010

0.2
0.3

0.5
0.5

0

1
Probability

UPrice UCost

0.2

20 30 40
Dollars DollarsUPrice UCost

0.7

0.1

Probability Functions for Exercise 3.13
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Compute
a. pProfit(x) and FProfit(x)

b. E(Profit)

c. Var(Profit)

d. P(Profit = E(Profit))

e. P(Profit < E(Profit))

f. The probability of making no profit

3.14 A random variable X takes the value 1 with probability p and the value 0
with probability 1 − p. Show that E(X) = p and Var(X) = p(1 − p).

3.15 From Exercise 3.10, compute the following:
a. E(I)

b. σI

c. P(| I − E(I) | > σI)

3.16 Let Y be a random variable with the probability function given in the
following table. Compute

a. E(3Y + 1)

b. Var(3Y + 1)

y 1 2 3 4 5

P(Y = y) 1/4 1/8 1/4 1/4 1/8

Probability Function for Exercise 3.16

3.17 Suppose E(X) = 4 and Var(X) = E(X)/2. Find the expectation and
variance of the random variable (1 − 2X)/2.

3.18 a. If X has mean μX show that E(X − μX) is always zero.
b. If a and b are constants, show that E(b) = b and E(aX) = aE(X).

3.19 a. Let X represent the value of the toss of a fair six-sided die. Show that
E(X) = 3.5. Determine Var(X).

b. If X is a random variable representing the sum of the toss of a pair of
fair six-sided dice, use Theorem 3.10 to verify that Var(X) = 5.833.

3.20 Find a general formula for the kth moment of a continuous random
variable X with density function fX(x) = (b − a)−1, where a ≤ x ≤ b.

3.21 Suppose X is a continuous random variable with fX(x)= 1 in the interval
0 ≤ x ≤ 1. Show that the coefficient of skewness for fX(x) is zero.

3.22 If the PDF of X is given by

fX(x) = 1√
2πσ

e− 1
2 [(x−μ)2/σ2]

show that X is symmetric with center equal to μ.
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3.23 If a is a constant, show that Markov’s inequality can also be written in
the form P(X ≥ a) ≤ a−1E(X).

3.24 Let NW be a random variable representing the number of widgets pro-
duced in a month. Suppose the expected number of widgets produced
by a manufacturer during a month is 2000.
a. Find an upper bound on the probability this month’s production will

exceed 3200 widgets.
b. Suppose the standard deviation of a month’s production is known

to be 35 widgets. Find a and b such that the number of widgets pro-
duced this month falls in the interval a < NW < b with probability
at least 0.75.

3.25 Suppose Cost is a random variable with E(Cost) = 3 and Var(Cost) = 1.
Use Chebyshev’s inequality to compute a lower bound on

a. P(2 < Cost < 4)

b. P(|Cost − 3|< 5)
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4
Special Distributions for Cost Uncertainty
Analysis

In probability theory there is a class of distribution functions known as spe-
cial distributions. Special distributions are those that occur frequently in the
theory and application of probability. A well-known special distribution is
the Bernoulli distribution, a discrete distribution whose probability function
is given by Equation 4.1. The Bernoulli distribution can be used to study a
random variable X representing the outcome of an experiment that succeeds,
{X = 1}, with probability p or fails, {X = 0}, with probability (1 − p).

pX(x) = P(X = x) =
{

p, if x = 1
1 − p, if x = 0

(4.1)

Another well-known special distribution is the normal distribution, a contin-
uous distribution discussed later in this chapter. Special distributions have
been well-studied over the years and are fully described in a two-volume text
by Johnson and Kotz (1969). To avoid an extended exposition on the entire
class of special distributions, this chapter focuses on a subset of them that
frequently arises in cost uncertainty analysis.

4.1 Trapezoidal Distribution

The trapezoidal distribution is illustrated in Figure 4.1. It is rarely presented
in traditional, or classical, texts on probability theory. Despite this, the trape-
zoidal distribution is highly useful and flexible for many situations in cost
uncertainty analysis. Seen in Figure 4.1, it can model a random variable
whose probability density function (PDF) increases in the interval a ≤ x < m1,
remains constant across the interval m1 ≤ x < m2, then decreases to zero in
the interval m2 ≤ x ≤ b.

Mathematically, a trapezoidal distribution can arise from the sum of two
independent continuous random variables whose PDFs are constants over
different closed intervals of the real line.∗ In cost uncertainty analysis, the

∗ Independent random variables are discussed in Chapter 5.
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fX(x)

2
m2 + b – a – m1

m1 m2a b
x

FIGURE 4.1
Trapezoidal probability density function.

trapezoidal distribution is primarily used to directly specify a range of pos-
sible values for a random variable. For instance, suppose an experienced
software engineer was asked to assess the number of DSI needed to build
a particular software application. The engineer may have solid technical rea-
sons why this number would be less than x = b DSI or be greater than x = a
DSI. However, the engineer may believe it is more likely the number of DSI
will fall in an interval of constant density between m1 and m2. This can be
represented by a trapezoidal distribution, as shown in Figure 4.1.

A random variable X is said to have a trapezoidal distribution if its PDF is
given by Equation 4.2 (Young and Young 1995)

fX(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
(m2 + b − a − m1)

· 1
m1 − a

(x − a), if a ≤ x < m1

2
(m2 + b − a − m1)

, if m1 ≤ x < m2

2
(m2 + b − a − m1)

· 1
b − m2

(b − x), if m2 ≤ x ≤ b

(4.2)

where −∞ < a < m1 < m2 < b < ∞. A trapezoidal PDF is illustrated
in Figure 4.1. The numbers a and b represent the minimum and maximum
possible values of X, respectively. Note that fX(x) = 0 if x < a or x > b. The
mode of X is not unique. It is any value of x in the interval m1 ≤ x ≤ m2. For
the remainder of this book, a random variable X with PDF given by Equation
4.2 will be implied by the following expression:

X ∼ Trap(a, m1, m2, b)∗

∗ The symbol ∼ means “is distributed as.” In this case, we say X is distributed as a trapezoidal
random variable with parameters a, m1, m2, and b. We might also say X is a trapezoidal random
variable with PDF given by Equation 4.2.
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The cumulative distribution function (CDF) of X is given by Equation 4.3
(Young and Young 1995). A graph of FX(x) is shown in Figure 4.2.

FX(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < a

1
(m2 + b − a − m1)

· 1
m1 − a

(x − a)2, if a ≤ x < m1

1
(m2 + b − a − m1)

(2x − a − m1), if m1 ≤ x < m2

1 − 1
(m2 + b − a − m1)

· 1
b − m2

(b − x)2, if m2 ≤ x < b

1, if x ≥ b

(4.3)

The CDF is linear in the interval m1 ≤ x < m2, where the density function
is constant, and quadratic in the intervals a ≤ x < m1 and m2 ≤ x < b.

Theorem 4.1 If X is a trapezoidal random variable, then

E(X) = ((m2 + b)2 − m2b) − ((a + m1)
2 − am1)

3(m2 + b − a − m1)

Var(X) = (m2
2 + b2)(m2 + b) − (a2 + m2

1)(a + m1)

6(m2 + b − a − m1)
− [E(X)]2

Example 4.1 Let X represent the uncertainty in the number of delivered source
instructions (DSI) of a new software application. Suppose this uncertainty

1

m1 m2a b
x

FX(x)

FIGURE 4.2
The trapezoidal cumulative distribution function.
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is expressed as the trapezoidal density function in Figure 4.3. Determine the
following:

a. E(X)

b. Med(X)

c. P(X ≤ E(X) + σX)

Solution

a. It is given that X ∼ Trap(25,000, 28,000, 35,000, 37,500); therefore, we
have a = 25,000, m1 = 28,000, m2 = 35,000, b = 37,500. Substituting
these values into the expectation formula in Theorem 4.1 yields

E(X) = ((m2 + b)2 − m2b) − ((a + m1)
2 − am1)

3(m2 + b − a − m1)

= 31,363.24786 ≈ 31,363 DSI

Since we needσX in part (c) of this example, we will compute Var(X)

at this point; from Theorem 4.1 we have

σX = √
Var(X)

=
√

(m2
2 + b2)(m2 + b) − (a2 + m2

1)(a + m1)

6(m2 + b − a − m1)
− [31,363.24786]2

= 2925.26 ≈ 2925 DSI

DSI

0.0001026

25,000 28,000 35,000 37,500
x

fX(x)

FIGURE 4.3
Trapezoidal probability density function for Example 4.1.
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b. To compute Med(X), the median size of the software application,
we need to find x such that FX(x) = 1/2. It can be shown (left for
the reader) that

P(25,000 ≤ X ≤ 28,000) = 2
13

<
1
2

P(25,000 ≤ X ≤ 35,000) = 2
13

+ 28
39

= 34
39

>
1
2

Thus, the median of X will fall in the region of constant probability
density; this is equivalent to finding x along the CDF of X such that

1
(35,000 + 37,500 − 25,000 − 28,000)

(2x − 25,000 − 28,000) = 1
2

Solving this yields x = 31,375; thus Med(X) = 31,375 DSI.

c. To determine P(X ≤ E(X) + σX) we have from part (a) the result

E(X) + σX = 31,363 + 2,925 = 34,288 DSI

The value x = 34,288 falls in the linear region of FX(x); from Equa-
tion 4.3

P(X ≤ E(X) + σX) = P(X ≤ 34,288) = FX(34,288) = 0.798

Thus, there is nearly an 80% probability the amount of code to build
the new software application will not exceed 34,288 DSI.

4.1.1 Uniform Distribution

The uniform distribution can be considered a special case of the trapezoidal
distribution.∗ In Figure 4.1, as (m1 − a) and (b − m2) approach zero (in the
limit), the trapezoidal distribution approaches a distribution with uniform
(or constant) probability density, shown in Figure 4.4.

A random variable X is said to have a uniform distribution (or rectangular
distribution) if its PDF is constant and is given by

fX(x) = 1
b − a

, if a ≤ x ≤ b (4.4)

where −∞ < a < b < ∞. The numbers a and b are the minimum and maxi-
mum possible values of X, respectively. Note that fX(x) = 0 if x < a or x > b.
A random variable described by a uniform PDF has the following interest-
ing property. If the unit interval 0 ≤ x ≤ 1 is the range of values for X, then

∗ It is also a special case of the beta distribution, which is discussed later in this chapter.
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fX(x)

1
b – a

a b
x

FIGURE 4.4
The uniform probability density function.

fX(x) = 1 and the probability X falls in any subinterval a′ ≤ x ≤ b′ of the unit
interval is simply the length of that subinterval; specifically,

P(a′ ≤ X ≤ b′) =
b′�

a′
1 dx = b′ − a′

For the remainder of this book, a random variable X with PDF given by
Equation 4.4 will be implied by the expression

X ∼ Unif (a, b)

The CDF of X is given by Equation 4.5.

FX(x) =

⎧⎪⎨
⎪⎩

0, if x < a
1

b − a
(x − a), if a ≤ x < b

1, if x ≥ b

(4.5)

A graph of FX(x) is shown in Figure 4.5. Since the density function of X is
constant in the interval a ≤ x ≤ b, the cumulative distribution is strictly a
linear function of x in the interval a ≤ x ≤ b.

The uniform distribution has no skew and no unique mode. From a cost
analysis perspective, such random variables might be the number of DSI
required for a new software application (refer to Example 3.1), the weight of
a new electronic device, or an unknown contractor’s software productivity
rate. In practice, the uniform distribution is used when a random variable is
best described only by its extreme possible values. In cost analysis, this occurs
most often in the very early stages of a system’s design.



Special Distributions for Cost Uncertainty Analysis 91

1

a b
x

FX(x)

FIGURE 4.5
The uniform cumulative distribution function.

Theorem 4.2 If X is a uniform random variable then

E(X) = 1
2
(a + b)

Var(X) = 1
12

(b − a)2

Example 4.2 If X has a uniform distribution, show that Med(X) = E(X).

Solution Since X ∼ Unif (a, b) we know that

FX(x) = 1
b − a

(x − a) if a ≤ x < b

Since X is a continuous random variable, we know X has a unique
median. The median of X will be the value x such that

FX(x) = 1
b − a

(x − a) = 1
2

Solving the expression for x yields x = (a + b)/2, which is Med(X). From
Theorem 4.2 we see that Med(X) = (a+b)/2 = E(X), when X ∼ Unif (a, b).

4.1.2 Triangular Distribution

The Triangular distribution can also be considered a special case of the trape-
zoidal distribution. In a trapezoidal distribution, if m1 = m2 = m, then it
becomes a triangular distribution, such as the one shown in Figure 4.6.
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fX(x)
2

b – a

a m b
x

FIGURE 4.6
Triangular probability density function.

A random variable X is said to have a triangular distribution if its PDF is
given by

fX(x) =

⎧⎪⎪⎨
⎪⎪⎩

2(x − a)
(b − a)(m − a)

, if a ≤ x < m

2(b − x)

(b − a)(b − m)
, if m ≤ x ≤ b

(4.6)

where −∞< a < m < b < ∞. The numbers a, m, and b represent the minimum,
the mode (most likely), and the maximum possible values of X, respectively.
Note that fX(x) = 0 if x < a or x > b. In cost analysis, the mode m is often
regarded as the point estimate.∗

For the remainder of this book, a random variable X with PDF given by
Equation 4.6 will be implied by the expression

X ∼ Trng(a, m, b)

The CDF of X is given by Equation 4.7.

FX(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < a
(x − a)2

(b − a)(m − a)
, if a ≤ x < m

1 − (b − x)2

(b − a)(b − m)
, if m ≤ x < b

1, if x ≥ b

(4.7)

A graph is shown in Figure 4.7.

∗ Associating the point estimate (defined in Chapter 1) to the mode of a distribution is traditional
in cost analysis; however, there are no strict reasons for doing so. An analyst might judge the
point estimate is best represented by the median, or by the mean, of a distribution.
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1

ma b
x

FX(x)

FIGURE 4.7
The triangular cumulative distribution function.

The CDF is a quadratic function of x in the intervals a ≤ x < m and m ≤ x < b.
The location of m relative to a and b determines how much probability there
is on either side of m. This is illustrated by the three triangular distributions
in Figure 4.8.

As seen in Figure 4.8, the closer the mode is to the variable’s maximum
possible value b, the less likely the variable will exceed its mode. The closer
the mode is to the variable’s minimum possible value a, the more likely the
variable will exceed its mode. For this reason the triangular distribution is
often favored as a subjective probability distribution. Only three values a, m,
and b are needed to specify the distribution. From these values, subject matter
experts focus the distribution in a way that appropriately reflects the overall
subjective distribution of probability for the variable under consideration.

fX(x)

2
b – a

m1

m1 = a + (b – a)/4, P (X < m1) = 1/4
m2 = a + (b – a)/2, P (X < m2) = 1/2
m2 = a + 3 (b – a)/4, P (X < m2) = 3/4

m2 m3a b x

FIGURE 4.8
A family of triangular probability density functions. (From Evans, M. et al., Statistical Distribu-
tions, 2nd edn., John Wiley & Sons, Inc., New York, 1993.)
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Theorem 4.3 If X is a triangular random variable then

E(X) = (a + m + b)/3

Var(X) = 1
18

{
(m − a)(m − b) + (b − a)2

}

Example 4.3 In Example 3.7, the uncertainty in the unit production cost of a
transmitter synthesizer unit (TSU) for a communications terminal was given by
the PDF in Figure 3.15. Use Theorem 4.3 to show that E(Cost) = 13,333.3 $
and Var(Cost) = 2.89(106) $2.

Solution Referring to Example 3.7, we see the PDF for Cost can be writ-
ten in the form given by Equation 4.6 with a = 10,000, m = 12,000, and
b = 18,000. Substituting these values into the expected value and variance
formulas given in Theorem 4.3 yields

E(Cost) = (a + m + b)/3 = (10 + 12 + 18)103/3 = 13,333.3$

Var(Cost) = 1
18

{
(12 − 10)(12 − 18) + (18 − 10)2

}
(106) = 2.89(106)$2

4.2 Beta Distribution

The beta distribution, like the distributions discussed in Section 4.1, can
be used to describe a random variable whose range of possible values is
bounded by an interval of the real line. A random variable X is said to have
a beta distribution if its PDF is given by

fX(x) =
⎧⎨
⎩

1
b − a

· �(α + β)

�(α)�(β)

(
x − a
b − a

)α−1 (
b − x
b − a

)β−1

a < x < b

0 otherwise
(4.8)

where α and β (α > 0 and β > 0) determine the shape of the density function
and �(α) is the gamma function of the argument α.∗

Beta distributions are in standard form when they are defined over the unit
interval. A random variable Y is said to have a standard beta distribution if its
PDF is given by

fY(y) =
⎧⎨
⎩

�(α + β)

�(α)�(β)
(y)α−1(1 − y)β−1 0 < y < 1

0 otherwise
(4.9)

∗ In general, �(α) = � ∞
0 tα−1e−tdt. If α is a positive integer, then �(α) = (α − 1)!.
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For the remainder of this book, the random variables X and Y with density
functions given by Equations 4.8 and 4.9 will be implied by the expressions
X ∼ Beta(α,β, a, b) and Y ∼ Beta(α,β), respectively. The transformation∗ of
X ∼ Beta(α,β, a, b) to its standard form Y ∼ Beta(α,β) is done by letting
y = (x − a)/(b − a).

Graphs of the standard beta PDF for various α and β are illustrated in
Figures 4.9 and 4.10. Figure 4.9 illustrates several possible shapes associated
with the standard beta density function. When α = β, it is symmetric about
y = 0.5, which is the median of Y. When α = β, the median, mean, and

3.28

2.46

0 0.308 1/2 0.692 1
y

α = 5
β = 10

α = 10
β = 5

α = 5
β = 5

fY(y)

FIGURE 4.9
A family of standard beta probability density functions.

α = 1, β = 2

α = 1, β = 1
α = 0.2, β = 1

α = 2, β = 1

α = 0.5, β = 0.5

fY(y)

1

2

0 1/2 1
y

FIGURE 4.10
More standard beta probability density functions.

∗ Transformations of random variables are formally discussed in Chapter 5.
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mode of Y are equal. If α > 1 and β > 1, then the mode of Y is unique and
occurs at

y = 1 − α

2 − α − β
(4.10)

Figure 4.10 illustrates some other shapes associated with the standard beta
density. For instance, the beta density is U shaped if α < 1 and β < 1. If α = 1
and β = 1 the beta density becomes the Unif (0, 1) (uniform) density function.
A Beta(1, 2) density is a right-skewed triangular PDF, while a Beta(2, 1) is a
left-skewed triangular PDF.

As seen in Figure 4.9 and Figure 4.10, the beta density can take a wide
variety of shapes. This characteristic makes the beta density among the most
diverse of the special distributions for describing (or modeling) a random
variable whose range of possible values is bounded by an interval of the
real line.

In general, from the transformation y = (x − a)/(b − a) it can be shown the
CDF of X can be found from the CDF of Y according to

FX(x) = FY

(
x − a
b − a

)
= FY(y)

However, a closed form expression for the CDF of Y (given by Equation 4.11)
does not exist.

FY(y) =
y�

0

fY(t)dt if 0 < y < 1 (4.11)

Values for FY(y) are determined through a numerical integration procedure.
A number of software applications, such as Mathematica� (Wolfram 1991),
are available for numerically computing the integral given by Equation 4.11.
A family of graphs for FY(y) is presented in Figure 4.11. These CDFs are the
integrals of the three beta densities given in Figure 4.9.

Theorem 4.4 If Y ∼ Beta(α,β) and X ∼ Beta(α,β, a, b), then

E(Y) = α

α + β
(4.12)

E(X) = a + (b − a)E(Y) (4.13)

Var(Y) = αβ

(α + β + 1)(α + β)2 (4.14)

Var(X) = (b − a)2Var(Y) (4.15)
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0.1

0.308 0.5 0.692 1

Left CDF:        Y~Beta (5,10) 
Middle CDF:  Y~Beta (5,5) 
Right CDF:     Y~Beta (10,5) 

From left to right, these curves
are the CDFs associated with
the PDFs in Figure 4.9

0.2

0.44
0.5

0.56

0.8
0.9

1

y

fY (y)

FIGURE 4.11
A family of standard beta cumulative distribution functions.

If the mean and variance of Y are known, it can be shown from Theorem 4.4,
the shape parameters of the beta distribution are uniquely determined by

α = E(Y)

[
E(Y)(1 − E(Y))

Var(Y)
− 1

]
(4.16)

β = α

(
1 − E(Y)

E(Y)

)
(4.17)

Last, if Y ∼ Beta(α,β), then 1 − Y ∼ Beta(β,α). Discuss how this property is
seen in Figures 4.9 and 4.11.

Example 4.4 Suppose the activity time X (in minutes) to complete the assem-
bly of a microcircuit is beta distributed in the interval 4 < x < 9, with shape
parameters α = 5 and β = 10. Determine P(X ≤ Mode(X)).

Solution From Equation 4.10

Mode(Y) = 1 − α

2 − α − β
= 1 − 5

2 − 15
= 4

13
≈ 0.308

where Y is the standard beta density of X. This is in terms of the unit
interval, that is, if Y ∼ Beta(5, 10) then Mode(Y) = 0.308. From the trans-
formation y = (x − a)/(b − a), the value y = 0.308 in the unit interval is
equivalent to the value x = 5.54 in the interval 4 < x < 9 (where a = 4
and b = 9); therefore, Mode(X) = 5.54. To determine P(X ≤ Mode(X)) we
have

P(X ≤ Mode(X)) = P
(

X − a
b − a

≤ Mode(X) − a
b − a

)
= P(Y ≤ Mode(Y))
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Since Y ∼ Beta(5, 10) we have

fY(y) = �(15)

�(5)�(10)
(y)4(1 − y)9 0 < y < 1

From numerical integration it can be shown that

P(Y ≤ Mode(Y)) = FY(0.308) =
0.308�

0

�(15)

�(5)�(10)
(y)4(1 − y)9 dy ≈ 0.44

Since P(X ≤ Mode(X)) = P(Y ≤ Mode(Y)), we conclude that

P(X ≤ Mode(X)) = 0.44

Therefore, with a probability of 0.44 the assembly time of the microcircuit
will be less than or equal to 5.54 min. Discuss why this probability is also
seen in Figure 4.11.

4.3 Normal Distribution

The distributions presented in Sections 4.1 and 4.2 can be thought of as finite
distributions. Random variables described by finite distributions have values
that are restricted to a bounded interval of the real line. The trapezoidal, uni-
form, triangular, and beta distributions are examples of finite distributions.
In contrast to these, a random variable described by a normal distribution is
unbounded. Its values fall in the open interval given by the entire real line.
The normal distribution is the first of two infinite distributions we will discuss
in this chapter.

The trapezoidal, uniform, triangular, and beta PDFs are frequently used
in cost analysis to directly specify the uncertainty in the value of a variable.
Typically, such variables are inputs for deriving cost.∗ These variables might
include the number of new DSI for a software function, the weight of a
future hardware item (e.g., a satellite), or the time required to assemble a
new electronic device. The normal distribution could be used in the same way;
however, from a cost analysis perspective, the normal distribution most often
characterizes the underlying distribution function of a derived cost. In this sense,
the normal distribution can reflect the shape of an “output” distribution—
particularly one generated from a summation of “input” distributions, like
those discussed in Sections 4.1 and 4.2. For instance, suppose the random
variable Cost is derived from the sum of the cost of each work breakdown
structure cost element Xi (i = 1, . . . , n) in a system. Specifically, if

Cost = X1 + X2 + X3 + · · · + Xn (4.18)

∗ This is illustrated in the discussion associated with Figure 1.4.
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then under certain conditions (discussed in Chapters 5 and 6) the normal
distribution will characterize the underlying distribution function of Cost.

A random variable X is said to be normally distributed if its PDF is given by

fX(x) = 1√
2π σ

e− 1
2 [(x−μ)2/σ2] (4.19)

where −∞ < x < ∞ and σ > 0. Equation 4.19 is also known as the Gaussian
distribution, named after the German mathematician Karl Friedrich Gauss
(1777–1855). For the remainder of this book, a random variable X with PDF
given by Equation 4.19 will be implied by the expression X ∼ N(μ,σ2). The
normal PDF is uniquely defined by two parameters μ and σ2. Theorem 4.6 will
show these parameters are the mean and variance of X, respectively. A graph
of the normal PDF is presented in Figure 4.12.

The normal distribution is symmetric about its mean μ. It has the property
that its mode and median equal its mean. The numbers in Figure 4.12 are the
areas under the curve within the indicated intervals. Specifically,

P(μ − σ ≤ X ≤ μ + σ) =
μ+σ�
μ−σ

fX(x)dx = 0.6826 (4.20)

where fX(x) is given by Equation 4.19. Similarly,

P(μ − 2σ ≤ X ≤ μ + 2σ) = 0.9544 (4.21)

P(μ − 3σ ≤ X ≤ μ + 3σ) = 0.9973 (4.22)

0.1359

0.34130.3413

0.1359
0.0215

x

0.0215

– μ – 3σ μ – 2σ μ – σ μ + σ μ + 2σ μ + 3σμ

fX(x)

FIGURE 4.12
The normal probability density.
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Thus, when X is normally distributed, the probability X falls within ±1σ from
its mean is always 0.6826; the probability X falls within ±2σ from its mean
is always 0.9544; the probability X falls within ±3σ from its mean is always
0.9973.

The peak of the normal PDF is governed only by the variance of X.
Furthermore, Mode(X) occurs at x = μ. The PDF evaluated at x = μ is equal
to 0.399/σ. Decreasing σ increases the maximum height of the normal PDF
and the concentration of probability around the mean μ. This is illustrated in
Figure 4.13.

If X ∼ N(μ,σ2) and Z = (X−μ)/σ, the standard form of X, it can be shown
(Theorem 4.5) that Z has a normal distribution with mean 0 and variance 1.
The density function of Z is known as the standard normal density, which is
given by the following equation:

fZ(z) = 1√
2π

e−z2/2 where − ∞ < z < ∞ (4.23)

For the remainder of this book, a random variable Z with PDF given by Equa-
tion 4.23 will be implied by the expression Z ∼ N(0, 1). A graph of fZ(z) is
shown in Figure 4.14. The peak of the standard normal density occurs at z = 0,
which is Mode(Z). Since Var(Z) = 1 the standard normal PDF evaluated at
Mode(Z) is equal to 0.399.

Closed form expressions for the CDFs FX(x) and FZ(z) do not exist.
However, from the transformation z = (x − μ)/σ it can be shown that

FX(x) = FZ((x − μ)/σ) = FZ(z) (4.24)

0.04433

0.00147

x

μ = 90, σ = 9

μ = 90, σ = 27

μ

fX(x)

FIGURE 4.13
A comparison of the heights of two normal PDFs.
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0.25

E(Z) = 0
Var(Z) = 1

FZ (0) = P (Z ≤ 0) = 1/2
fZ (0) = 0.399

0.5

0.75

1

–3 –2 –1 10 2 3

FZ (z)

fZ (z)

z

FIGURE 4.14
The standard normal PDF and CDF.

where

FZ(z) = P(Z ≤ z) =
z�

−∞
fZ(y)dy

and fZ(y) is given by Equation 4.23. Thus, values for FX(x) can be obtained
from values for FZ(z) by a numerical integration of fZ(y). The results of such
an integration are summarized in Table A.1. A graph of FZ(z) is also shown
in Figure 4.14.

Since the standard normal is symmetric about z = 0, P(Z ≤ −k) = P(Z > k).
In terms of the CDF of Z, this is equivalent to FZ(−k) = 1−FZ(k). In particular,
if X ∼ N(μ,σ2), then the probability X is within ±kσ of the mean of X is

P(μ − kσ ≤ X ≤ μ + kσ) = P(−k ≤ Z ≤ k)

= FZ(k) − FZ(−k) = FZ(k) − [1 − FZ(k)] = 2FZ(k) − 1 (4.25)

Example 4.5 Using Table A.1, show that P(μ − σ ≤ X ≤ μ + σ) = 0.6826.

Solution From Equation 4.25, we see that k = 1 in this case. So,

P(μ − σ ≤ X ≤ μ + σ) = P(−1 ≤ Z ≤ 1) = 2FZ(1) − 1

From Table A.1, FZ(1) = 0.8413; therefore,

P(μ − σ ≤ X ≤ μ + σ) = P(−1 ≤ Z ≤ 1) = 2(0.8413) − 1 = 0.6826�
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If X ∼ N(μ,σ2) then the probability statements about X can be written in terms
of its standard form Z. From Equation 4.24, we have the general relationship

P(a ≤ X ≤ b) = FZ

(
b − μ

σ

)
− FZ

(
a − μ

σ

)
(4.26)

Example 4.6 In Figure 1.6, the distribution function of a system’s cost was
normal with mean 110.42 ($M) and standard deviation 21.65 ($M). Given this,
determine P(100 ≤ Cost ≤ 140).

Solution We are given Cost ∼ N(110.42, (21.65)2). In terms of Equation 4.26

P(100 ≤ X ≤ 140) = FZ

(
140 − 110.42

21.65

)
− FZ

(
100 − 110.42

21.65

)

= FZ(1.37) − FZ(−0.48)

Since FZ(−k) = 1 − FZ(k), we have FZ(−0.48) = 1 − FZ(0.48); therefore,

P(100 ≤ X ≤ 140) = FZ(1.37) − [1 − FZ(0.48)]

From Table A.1, FZ(1.37) = 0.91465 and FZ(0.48) = 0.68439. So,

P(100 ≤ X ≤ 140) = 0.599 ≈ 0.60

Thus, there is nearly a 60% chance the system’s cost will fall between
100 and 140 million dollars.

Example 4.7 Suppose the uncertainty in a system’s cost is described by the
normal PDF shown in Figure 4.15. Suppose there is a 5% chance the system’s
cost will not exceed 30.34 ($M) and an 85% chance its cost will not exceed

30.34

0.0069

0.016

70.55
x

fCost(x)
0.027

($M)

FIGURE 4.15
PDF for Example 4.7.
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70.55 ($M). From this information determine the mean and standard deviation
of the system’s cost.

Solution We are given P(Cost ≤ 30.34) = 0.05 and P(Cost ≤ 70.55) = 0.85.
Expressing the random variable Cost in standard form we have

P
(

Z ≤ 30.34 − μ

σ

)
= 0.05 and P

(
Z ≤ 70.55 − μ

σ

)
= 0.85

where μ and σ are the mean and standard deviation of Cost, respectively.
We will first work with the probability

P
(

Z ≤ 30.34 − μ

σ

)
= 0.05

From Table A.1, P(Z ≤ 1.645) = 0.95; it follows that

1 − P(Z ≤ 1.645) = 0.05

This is equivalent to P(Z > 1.645) = 0.05. Since the standard normal distri-
bution is symmetric about z = 0, P(Z > 1.645) = P(Z ≤− 1.645); therefore,
we have

30.34 − μ

σ
= −1.645 (4.27)

A similar reasoning applies to the other probability. From Table A.1

P
(

Z ≤ 70.55 − μ

σ

)
= 0.85

is true when

70.55 − μ

σ
= 1.04 (4.28)

Solving Equations 4.27 and 4.28 simultaneously for μ and σ yields

μ ≈ 55 ($M)

σ ≈ 15 ($M)

Theorem 4.5 If X ∼ N(μ,σ2), then Z ∼ N(0, 1) where Z = (X − μ)/σ.

Proof. Since X ∼ N(μ,σ2), we have

FX(x) = P(X ≤ x) =
x�

−∞

1√
2π σ

e− 1
2 [(t−μ)2/σ2] dt
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By the definition of a CDF, we also have

FZ(z) = P(Z ≤ z) = P
(

X − μ

σ
≤ z

)
= P(X ≤ zσ + μ)

=
zσ+μ�
−∞

1√
2π σ

e− 1
2 [(x−μ)2/σ2] dx (4.29)

If we let y = (x − μ)/σ, then σdy = dx; substituting this change of variable into
Equation 4.29 yields

FZ(z) =
z�

−∞

1√
2π σ

e− 1
2 y2

σdy =
z�

−∞

1√
2π

e− 1
2 y2

dy (4.30)

Equation 4.30 is the CDF of the standard normal density; thus,

fZ(z) = 1√
2π

e− 1
2 z2

Therefore, Z ∼ N(0, 1). This implies E(Z)= 0 and Var(Z) = 1.

Theorem 4.6 If X ∼ N(μ,σ2), then E(X) = μ and Var(X) = σ2.

Proof. Since X ∼ N(μ,σ2), we have

E(X) =
∞�

−∞
x · 1√

2π σ
e− 1

2 [(x−μ)2/σ2] dx

By the change of variable z = (x − μ)/σ, we have

E(X) =
∞�

−∞
(zσ + μ) · 1√

2π σ
e− 1

2 z2
σdz

which simplifies to

E(X) = σ

∞�
−∞

z · 1√
2π

e− 1
2 z2

dz + μ

∞�
−∞

1√
2π

e− 1
2 z2

dz (4.31)
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The first integral in Equation 4.31 is E(Z). This integral is equal to zero since the
integral exists and its integrand is an odd function; that is,

E(Z) =
∞�

−∞
z · 1√

2π
e− 1

2 z2
dz = 0

The second integral in Equation 4.31 is unity since it is the integral of the standard
normal density function. Therefore, Equation 4.31 simplifies to

E(X) = σE(Z) + μ · 1 = σ · 0 + μ = μ

To show that Var(X) = σ2, recall that Var(X) = E(X2) − (E(X))2. We know that

E(X2) =
∞�

−∞
x2 · 1√

2π σ
e− 1

2 [(x−μ)2/σ2] dx

From the family of integrals of exponential functions, presented in Appendix A,
note that

E(X2) =
∞�

−∞
x2 · 1√

2π σ
e− 1

2 [(x−μ)2/σ2] dx = μ2 + σ2

therefore, Var(X) = μ2 + σ2 − (μ)2 = σ2.

4.4 Lognormal Distribution

The lognormal probability distribution is the last of the infinite distributions
we will discuss in this book. It has broad applicability in engineering, eco-
nomics, and cost analysis. In engineering, the failure rates of mechanical
or electrical components often follow a lognormal distribution. In eco-
nomics, the random variation between the production cost of goods to
capital and labor costs is frequently modeled after the lognormal distribu-
tion; the classical example is the Cobb–Douglas production function, given by
Equation 4.32.

Q = aWa1
1 Wa2

2 (4.32)

In this equation, the production cost of goods Q is a function of capital cost
W1 and labor cost W2; the terms a, a1, and a2 are real numbers. Under cer-
tain conditions, Q can be shown to have a lognormal probability distribution.
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In cost analysis, Abramson and Young (1997) observed that the lognormal can
approximate the probability distribution of a system’s total cost—particularly
when the cost distribution is positively skewed. Empirical studies by Garvey
and Taub (Garvey 1996, Garvey and Taub 1997) identify circumstances
where the lognormal can approximate the combined (joint) distribution of
a program’s total cost and schedule.∗

The lognormal distribution has a close relationship with the normal dis-
tribution. If X is a nonnegative random variable where the natural logarithm of
X, denoted by ln X, follows the normal distribution, then X is said to have
a lognormal distribution. This is illustrated in Figure 4.16. On the left-side
of Figure 4.16, the random variable X has a lognormal PDF, with E(X)= 100
and Var(X) = 625. On the right-side is the representation of X in logarithmic
space. In logarithmic space, X has a normal PDF, with E(ln X) = 4.57486 and
Var(ln X) = 0.0606246. How the latter two values are determined is discussed
in Theorem 4.8.

Under certain conditions (discussed in Chapter 5), normal distribution can
arise from a summation of many random variables (as illustrated by Equation
4.18); the lognormal distribution can arise from a multiplicative combination
of many random variables, as illustrated by Equation 4.32.

A random variable X is said to be lognormally distributed if its PDF is
given by

fX(x) = 1√
2π σY

1
x

e− 1
2 [(ln x−μY)2/σ2

Y] (4.33)

where 0 < x < ∞, σY > 0, μY = E(ln X), and σ2
Y = Var(ln X). For the remain-

der of this book, a random variable X with PDF given by Equation
4.33 will be implied by the expression X ∼ LogN(μY,σ2

Y). The parameters

100 150 20050
E(X) = 100
Var(X) = 625

E(InX) = 4.57486
Var(InX) = 0.0606246

3.8 4.57486 5.3

fX(x)
1.620260.0172153

fInX(x)

x

FIGURE 4.16
PDFs of X and ln X, where X ∼ LogN(100,625) and ln X ∼ N(4.57486, 0.0606246).

∗ This is fully discussed in detail Chapter 7.
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μY and σ2
Y are the mean and variance of the normally distributed random

variable Y = ln X, which is the logarithmic representation of X (refer to Figure
4.16). Graphs of a family of lognormal PDFs are presented in Figure 4.17.
Notice the lognormal PDF is positively skewed and values for x are always
nonnegative.

Theorem 4.7 If X is a lognormal random variable, then E(X) = μX = eμY+ 1
2σ

2
Y

and Var(X) = σ2
X = e2μY+σ2

Y(eσ
2
Y − 1).

Proof. Since X has a lognormal distribution, the PDF of X is given by Equation
4.33; therefore,

E(X) =
∞�
0

xfX(x)dx =
∞�
0

x · 1√
2π σY

1
x

e− 1
2 [(ln x−μY)2/σ2

Y] dx (4.34)

Equation 4.34 simplifies to

E(X) =
∞�
0

1√
2π σY

e− 1
2 [(ln x−μY)2/σ2

Y] dx (4.35)

10 50 100 150 200

0.0391379

0.0240244

0.0172153

fX(x)

x

E(X) = 25
Var(X) = 225

E(X) = 50
Var(X) = 400

E(X) = 100
Var(X) = 625

FIGURE 4.17
A family of lognormal probability density functions.
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If we set y = ln x − μY, then −∞ < y < ∞, x = eyeμY , and dx = eyeμY dy.
Substituting this into Equation 4.35, we have

E(X) =
∞�

−∞

1√
2π σY

e− 1
2 [y2/σ2

Y] eyeμY dy (4.36)

E(X) = eμY

∞�
−∞

1√
2π σY

e− 1
2 [(y2−2σ2

Yy)/σ2
Y] dy

E(X) = eμY

∞�
−∞

1√
2π σY

e
− 1

2σ2
Y
[(y−σ2

Y)2−σ4
Y]

dy

E(X) = eμY

∞�
−∞

1√
2π σY

e
− 1

2σ2
Y
[(y−σ2

Y)2]
e

1
2σ

2
Y dy

E(X) = eμY+ 1
2σ

2
Y

∞�
−∞

1√
2π σY

e
− 1

2σ2
Y
[(y−σ2

Y)2]
dy = eμY+ 1

2σ
2
Y (4.37)

The integral in Equation 4.37 is unity since it is the PDF of a N(σ2,σ2) random
variable. This result can be generalized to the rth moment of X. It is left to the reader
to show that

E(Xr) = erμY+ 1
2σ

2
Yr2

(4.38)

To show that Var(X) = e2μY+σ2
Y(eσ

2
Y − 1), recall that

Var(X) = E(X2) − (E(X))2 (4.39)

Substituting Equations 4.37 and 4.38 (with r = 2) into Equation 4.39, it is easily
shown that Var(X) = e2μY+σ2

Y(eσ
2
Y − 1).�

This theorem can be illustrated by referring to Figure 4.16, where μY =
E(ln X) = 4.57486 and σ2

Y = Var(ln X) = 0.0606246. From Theorem 4.7

E(X) = eμY+ 1
2σ

2
Y = e4.57486+ 1

2 (0.0606246) = 100

Var(X) = e2μY+σ2
Y(eσ

2
Y − 1) = e2(4.57486)+0.0606246(e0.0606246 − 1) = 625

Thus, when X is a lognormal random variable, its mean and variance are
defined in terms of the normally distributed random variable Y = ln X. The
same is true about the mode and median of X; in particular, if X is a lognormal
random variable, then
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Mode(X) = eμY−σ2
Y (4.40)

Median(X) = eμY (4.41)

In Figure 4.16,

Mode(X) = e4.57486−0.0606246 = 91.307

Median(X) = e4.57486 = 97.014

The lognormal PDF peaks at the value

fX(Mode(X)) = 1√
2π

1
σY

(e
1
2σ

2
Y−μY) (4.42)

Showing this is left as an exercise for the reader.
In cost analysis applications of the lognormal distribution, we typically do

not have values for E(ln X) and Var(ln X) (where X might represent the cost
of a system or a particular work breakdown structure cost element). How
do we specify the distribution function of a lognormal random variable X
when only E(X) and Var(X) are known? Theorem 4.8 addresses this question.
Theorem 4.8 presents transformation formulas for determining E(ln X) and
Var(ln X) when only E(X) and Var(X) are known.

Theorem 4.8 If X is a lognormal random variable with mean E(X) = μX and
Var(X) = σ2

X, then

μY = E(ln X) = 1
2

ln

[
(μX)4

(μX)2 + σ2
X

]
(4.43)

and

σ2
Y = Var(ln X) = ln

[
(μX)2 + σ2

X

(μX)2

]
(4.44)

Proof. From Theorem 4.7 we have

μX = eμY+ 1
2σ

2
Y

lnμX = μY + 1
2
σ2

Y (4.45)

2 lnμX = 2μY + σ2
Y (4.46)
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We will first establish Equation 4.44 in Theorem 4.8 and then use that result to
establish Equation 4.43. From Theorem 4.7

Var(X) = σ2
X = e2μY+σ2

Y(eσ
2
Y − 1)

ln(eσ
2
Y − 1) = lnσ2

X − (2μY + σ2
Y)

ln(eσ
2
Y − 1) = lnσ2

X − 2 lnμX

ln(eσ
2
Y − 1) = ln

(
σ2

X

μ2
X

)

eσ
2
Y = σ2

X

μ2
X

+ 1

Therefore σ2
Y = Var(ln X) = ln

[
(μX)2 + σ2

X

(μX)2

]
. To establish Equation 4.43, write

μY = lnμX − 1
2
σ2

Y

From Equation 4.44 we have

μY = lnμX − 1
2

ln

[
(μX)2 + σ2

X

(μX)2

]

μY = 1
2

(
2 lnμX − ln

[
(μX)2 + σ2

X

(μX)2

])

μY = 1
2

(
ln(μX)2 − ln

[
(μX)2 + σ2

X

(μX)2

])

Therefore, μY = E(ln X) = 1
2

ln

[
(μX)4

(μX)2 + σ2
X

]
�

Using Theorem 4.8 the parameters μY and σ2
Y, which uniquely specify the

lognormal PDF, can be determined from E(X) and Var(X). In Figure 4.17,
the left-most PDF has E(X) = 25 and Var(X) = 225; from Theorem 4.8 this
is equivalent to a lognormal PDF with parameters μY = 3.06513 and σ2

Y =
0.307485. The middle PDF (in Figure 4.17) has E(X)= 50 and Var(X)= 400;
from Theorem 4.8 this is equivalent to a lognormal PDF with parameters
μY = 3.83781 and σ2

Y = 0.14842. The right-most PDF (in Figure 4.17) has



Special Distributions for Cost Uncertainty Analysis 111

E(X) = 100 and Var(X) = 625; from Theorem 4.8 this is equivalent to a log-
normal PDF with parameters μY = 4.57486 and σ2

Y = 0.0606246. Thus, the
equations for the three PDFs in Figure 4.17, from left to right, are as follows:

fX(x) = 1√
2π (0.554513)

1
x

e− 1
2 [(ln x−3.06513)2/0.307485]

fX(x) = 1√
2π (0.385253)

1
x

e− 1
2 [(ln x−3.83781)2/0.14842]

fX(x) = 1√
2π (0.246221)

1
x

e− 1
2 [(ln x−4.57486)2/0.0606246]

where the general form for fX(x) was given by Equation 4.33.
The CDF of a lognormal random variable is given by Equation 4.47.

FX(x) = P(X ≤ x) =
x�

0

1√
2π σY

1
t

e− 1
2 [(ln t−μY)2/σ2

Y] dt (4.47)

Figure 4.18 presents a family of lognormal CDFs associated with the PDFs
in Figure 4.17. The CDF given by Equation 4.47 does not exist in closed form.
It can be evaluated by a numerical integration procedure. An alternative to
such a procedure involves using a table of values from the standard normal
distribution. The following discusses this approach.

10 50 100 150 200
x

1

0.75

0.5

0.25

FX(x)

From left to right, these curves
are the CDFs associated with
the PDFs in Figure 4.17

Left CDF:        X~LogN (3.06513, 0.307485) 
Middle CDF:  X~LogN (3.83781, 0.14842)
Right CDF:     X~LogN (4.57486, 0.0606246)

FIGURE 4.18
A family of lognormal CDFs.
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If X ∼ LogN(μX,σ2
X), then Y = ln X ∼ N(μY,σ2

Y); therefore,

P(X ≤ x) = P(ln X ≤ ln x) = P
(

ln X − μY

σY
≤ ln x − μY

σY

)
(4.48)

Since Y = ln X ∼ N(μY,σ2
Y), from Theorem 4.5 it follows that

ln X − μY

σY
∼ N(0, 1)

which is equivalent to the standard normal random variable Z. From this
result, Equation 4.48 is equivalent to

P(X ≤ x) = P
(

Z ≤ ln x − μY

σY

)
(4.49)

If X has a lognormal distribution, then probabilities associated with various
intervals around X can be determined from a table of values of Z, the standard
normal distribution.

Example 4.8 Suppose the uncertainty in a system’s cost is described by a
lognormal PDF with E(Cost) = 100 ($M) and Var(Cost) = 625 ($M)2; this is
the right-most PDF in Figure 4.17. Determine

a. P(Cost > 2E(Cost))

b. P(50 ≤ Cost ≤ 150)

Solution

a. To determine P(Cost > 2E(Cost)) recall that

P(Cost > 2E(Cost)) = 1 − P(Cost ≤ 2E(Cost))

It is given that E(Cost) = 100; therefore,

P(Cost > 200) = 1 − P(Cost ≤ 200)

In this example, the random variable Cost is given to have a lognor-
mal distribution with E(Cost) = 100 and Var(Cost)= 625. Thus, the
random variable Y = ln Cost is normally distributed with parame-
ters (determined from Theorem 4.8)

μY = E(ln Cost) = 4.57486

σ2
Y = Var(ln Cost) = 0.0606246

From Equation 4.49

P(Cost ≤ 200) = P
(

Z ≤ ln 200 − 4.57486
0.246221

)
= P(Z ≤ 2.938)
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From Table A.1, P(Z ≤ 2.938) = 0.998348, after some interpolation.
Therefore,

P(Cost > 200) = 1 − P(Z ≤ 2.938) = 0.00165

This result is consistent with the Markov bound discussion in
Section 3.4, as illustrated in Figure 3.19.

b. To determine P(50 ≤ Cost ≤ 150) note that

P(50 ≤ Cost ≤ 150) = P(ln 50 ≤ ln(Cost) ≤ ln 150)

= P
(

ln 50 − μY

σY
≤ ln Cost − μY

σY
≤ ln 150 − μY

σY

)

= P
(

ln 50 − μY

σY
≤ Z ≤ ln 150 − μY

σY

)

= P(−2.69 ≤ Z ≤ 1.77)

where

Z = ln Cost − μY

σY

μY = E(ln Cost) = 4.57486 (from Theorem 4.8)

σ2
Y = Var(ln Cost) = 0.0606246 (from Theorem 4.8)

From Theorem 4.5 we know Z ∼ N(0, 1), thus,

P(50 ≤ Cost ≤ 150) = P(−2.69 ≤ Z ≤ 1.77)

= FZ(1.77) − FZ(−2.69)

= FZ(1.77) − [1 − FZ(2.69)]
where FZ(−2.69) = 1 − FZ(2.69). From Table A.1

P(50 ≤ Cost ≤ 150) = 0.961636 − [1 − 0.9964] = 0.958 ≈ 0.96

Thus, the system’s cost will fall between 50 and 150 million dol-
lars with probability 0.96. This result is also consistent with the
discussion presented in Section 3.4, as illustrated in Figure 3.20.

Example 4.9 In Figure 1.5, the random variable X2 represented the cost of
a system’s systems engineering and program management. Furthermore, the
point estimate of X2, denoted by x2PEX2

, was equal to 1.26 ($M). If X2 can
be approximated by a lognormal distribution, with E(X2) = 1.6875 ($M) and
Var(X2) = 0.255677 ($M)2, determine

a. P(X2 ≤ x2PEX2
)

b. P(X2 ≤ E(X2))
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Solution

a. Since the distribution function of X2 is approximated by a lognor-
mal, from Equation 4.49 we can write

P(X2 ≤ x2PEX2
) = P

(
Z ≤

ln x2PEX2
− μY

σY

)

where Z ∼ N(0, 1), μY = E(ln X2), and σ2
Y = Var(ln X2). Since

E(X2) = 1.6875 and Var(X2) = 0.255677, from Theorem 4.8 μY =
0.480258 and σ2

Y = 0.0859804. Thus,

P(X2 ≤ 1.26) = P
(

Z ≤ ln 1.26 − 0.480258
0.293224

)
= P(Z ≤ −0.85)

From Table A.1

P(Z ≤ −0.85) = P(Z ≥ 0.85) = 1 − P(Z < 0.85)

= 1 − 0.802 = 0.198

thus, P(X2 ≤ 1.26) = P(Z ≤ −0.85) = 0.198. Therefore, there is
nearly a 20% chance the cost of the system’s systems engineering
and program management will be less than or equal to 1.26 ($M).

b. We are given E(X2) = 1.6875, therefore, P(X2 ≤ E(X2)) = P(X2 ≤
1.6875). From Equation 4.49 we can write

P(X2 ≤ 1.6875) = P
(

Z ≤ ln 1.6875 − 0.480258
0.293224

)
= P(Z ≤ 0.1466)

From Table A.1, P(Z ≤ 0.1466) = 0.558; thus,

P(X2 ≤ 1.6875) = P(Z ≤ 0.1466) = 0.558

Therefore, there is nearly a 56% chance the cost of the system’s sys-
tems engineering and program management will be less than or
equal to 1.6875 ($M). For interest, the PDF and CDF of X2, for this
example, are shown in the Figure 4.19.

This concludes the discussion of the special probability distributions com-
monly used in cost uncertainty analysis. Chapters 5 through 7 provide further
examples of their application to modeling cost uncertainty from a system
work breakdown structure perspective. To prepare for that discussion, this
chapter concludes with a presentation on how to specify some of these special
distributions, when only partial information about them is available.
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0.198

0.558

1

1 1.26 1.6875 2.5 3 4
($M)
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FX2
(x2)

x2

FIGURE 4.19
The PDF and CDF of X2 in Example 4.9.

4.5 Specifying Continuous Probability Distributions

In systems engineering, probability distributions of variables whose values
are uncertain must often be specified by expert technical opinion. This is par-
ticularly true in the absence of historical data. In such circumstances, expert
opinion can be the only way to quantify a variable’s uncertainty. Even when
data exists, its quality may be so suspect as to nullify its use altogether.
This section discusses strategies for specifying probability distributions when
expert subjective assessments are required. This is illustrated in the context
of continuous probability distributions.∗ Before delving into the details of
these strategies, we discuss further the concept of subjective probabilities and
distribution functions (introduced in Chapter 2).

4.5.1 Subjective Probabilities and Distribution Functions

In systems engineering, probabilities are often used to quantify uncertain-
ties associated with a system’s design parameters (e.g., weight), as well as
uncertainties in cost and schedule. For reasons mentioned earlier, quantifying
this uncertainty is often done in terms of subjective probabilities. Discussed
in Chapter 2, subjective probabilities are those assigned to events on the
basis of personal judgment. They measure a person’s degree-of-belief that

∗ In practice, a continuous distribution is often used to describe the range of possible values for a
random variable. This enables subject matter experts to focus on the “shape” that best describes
the distribution of probability, rather than assessing individual probabilities associated to each
distinct possible value (needed for discrete distributions).
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an event will occur. Subjective probabilities are most often associated with
one-time, nonrepeatable, events—those whose probabilities cannot be objec-
tively determined from a population of outcomes developed by repeated
trials, observations, or experimentation. Subjective probabilities cannot be
arbitrary; they must adhere to the axioms of probability (refer to Chapter 2).
For instance, if an electronics engineer assigns a probability of 0.70 to the
event the number of gates for the new processor chip “will not exceed” 12,000,
it must follow that the chip will exceed 12,000 gates with probability 0.30.
Subjective probabilities are conditional on the state of the person’s knowledge,
which changes with time. To be credible, subjective probabilities should only
be assigned to events by subject experts—persons with significant experience
with events similar to the one under consideration. In addition, the rationale
supporting the assigned probability must be well documented.

Instead of assigning a single subjective probability to an event, subject
experts often find it easier to describe a function that depicts a subjective
distribution of probabilities. Such a distribution is sometimes called a subjec-
tive probability distribution. Subjective probability distributions are governed
by the properties of probability distributions associated with discrete or
continuous random variables (refer to Chapter 3). Because of their nature,
subjective probability distributions can be thought of as “belief functions”—
mathematical representations of a subject expert’s best professional judgment
in the distribution of probabilities for a particular event.

When formulating subjective probability distributions, subject experts
often prefer specifying a range that contains most, but not all, possible values.
That is, there is a small nonzero probability that values will occur outside the
expert’s specified range. One strategy for specifying a subjective probabil-
ity distribution involves the direct assessment of the distribution’s fractiles.
Another strategy involves assigning a subjective probability to a subinterval
of the range of the distribution function. The following illustrates these strate-
gies. This is done in the context of the distributions presented in this chapter.
We begin with the beta distribution.

4.5.2 Specifying a Beta Distribution

The beta distribution has long been the distribution of “choice” for subjec-
tive assessments. It can take a wide variety of forms, as seen in Figures 4.9
and 4.10. The following illustrates how the beta distribution can be specified
from subjective assessments on the shape parameters α and β and any two
fractiles.

Case 1 Specify a nonstandard beta distribution for the random variable X
given the shape parameters α and β and any two fractiles xi and xj, where
(0 ≤ i < j ≤ 1). An illustration of this case is presented in Figure 4.20.

Purposes To determine the minimum and maximum possible values for X,
where X ∼ Beta(α,β, a, b). To compute E(X) and Var(X) from the specified
distribution.
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fX(x)

X~Beta(α, β, a, b)

a bxi xj
x

FIGURE 4.20
An illustrative beta distribution—Case 1.

Required information Assessments of α and β and any two fractiles xi
and xj.

Discussion An assessment of the shape parameters α and β can be facil-
itated by having a subject expert look at a family of beta distributions, as
shown in Figures 4.9 and 4.10. From such a family, an α and β pair can be
chosen that reasonably depicts the distribution of probability (e.g., skewed,
symmetric) for the variable under consideration. With α and β and any two
fractiles xi and xj, the minimum and maximum possible values of X are given
by Equations 4.50 and 4.51 (refer to Exercise 4.25), respectively.

a = xiyj − xjyi

yj − yi
(4.50)

b = xj(1 − yi) − xi(1 − yj)

yj − yi
(4.51)

In these equations, the terms xi and xj are the assessed values of X such that
P(X ≤ xi) = i and P(X ≤ xj) = j. The terms yi and yj are fractiles com-
puted from the standard beta distribution associated with the given (as chosen
by the subject expert) α and β. Once a and b have been determined, Theorem
4.4 can be used to compute E(X) and Var(X) associated with the specified
distribution.

Example 4.10 Find the minimum and maximum possible values of X if X ∼
Beta(5, 10, a, b), x0.05 = 4.76359, and x0.95 = 6.70003. Find E(X) and Var(X).

Solution Since X ∼ Beta(5, 10, a, b), the distribution function of X has
shape parameters α = 5 and β = 10. From Equations 4.50 to 4.51 we
can write
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a = 4.76359y0.95 − 6.70003y0.05

y0.95 − y0.05
(4.52)

b = 6.70003(1 − y0.05) − 4.76359(1 − y0.95)

y0.95 − y0.05
(4.53)

Since the random variable Y must have the standard beta distribution
Y ∼ Beta(5, 10), it can be determined∗ that y0.05 = 0.152718 and y0.95 =
0.540005. Substituting these values into Equations 4.52 and 4.53, we have
a = 4 and b = 9, which are the minimum and maximum possible values
of X, respectively. The reader should note this example is directly related
to Example 4.4 (Section 4.2). Now that values for a and b are determined,
the mean and variance of X can be determined directly from Theorem 4.4.
It is left to the reader to show that E(X) = 5.67 and Var(X) = 0.347.

Example 4.11 Suppose I represents the uncertainty in the number of DSI
for a new software application. Suppose a team of software engineers judged
100,000 DSI as a reasonable assessment of the 50th percentile of I and a size
of 150,000 DSI as a reasonable assessment of the 95th percentile. Further-
more, suppose the distribution function in Figure 4.21 was considered a good
characterization of the uncertainty in the number of DSI. Given this,

a. Find the extreme possible values for I.

b. Compute the mode of I.

c. Compute E(I) and σI.

DSI

51,366 100,000 150,000 191,892
a bx0.50 x0.95

x

I~Beta (2, 3.5, a, b)

fI(x)

FIGURE 4.21
Beta distribution for Example 4.11.

∗ Determined by the Mathematica routine Quantile[BetaDistribution[5, 10], k], where k is equal
to 0.05 and 0.95.
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Solution

a. In Figure 4.21, I is given to be a beta distribution with shape param-
eters α = 2 and β = 3.5. We are also given two probability
assessments for I, specifically, P(I ≤ 100,000) = 0.50 and P(I ≤
150,000) = 0.95; this is equivalent to the fractiles x0.50 = 100,000
and x0.95 = 150,000 (refer to Figure 4.21). Since α = 2 and β = 3.5,
the standard beta distribution is Y ∼ Beta(2, 3.5). From this we can
determine the fractiles y0.50 and y0.95. Using Mathematica, y0.50 =
0.346086 and y0.95 = 0.70189 when α = 2 and β = 3.5. Sub-
stituting y0.50 = 0.346086, y0.95 = 0.70189, x0.50 = 100,000, and
x0.95 = 150,000 into Equations 4.50 and 4.51 provides the minimum
and maximum possible values for I. These values are denoted by a
and b:

a = (100,000)0.70189 − (150,000)0.346086
0.70189 − 0.346086

= 51,366

b = 150,000(1 − 0.346086) − 100,000(1 − 0.70189)

0.70189 − 0.346086
= 191,892

b. Since α > 1 and β > 1, from Equation 4.10, the mode of Y ∼
Beta(2, 3.5) is

y = 1 − α

2 − α − β
= 1 − 2

2 − 2 − 3.5
= 0.2857

By the transformation y = (x − a)/(b − a), where a and b are from
part (a), we have Mode(I) = a + 0.2857(b − a) = 91,514 DSI. Since
the beta distribution in this example has a positive skew, the mode
of I falls to the left of the 50th percentile of I.

c. From Theorem 4.4 with α = 2, β = 3.5, a = 51,366 DSI, and
b = 191,892 DSI, we have

E(I) = a + (b − a)E(Y) = a + (b − a)
α

α + β

= 51,366 + (191,892 − 51,366)
2

2 + 3.5
= 102,466 DSI

Once again, because the beta distribution in this example has a pos-
itive skew, the mean of I falls to the right of the 50th percentile of I.
Last, from Equation 4.14 it can be shown that Var(Y) = 0.0356. From
Equation 4.15 this translates to Var(I) = 7.03(10)8 DSI2; therefore,

σI = √
Var(I) = 26,514 DSI�

A nice feature of this approach is its flexibility to fully specify, for a given pair
of shape parameters, a nonstandard beta distribution from any two fractiles of
the distribution. This feature has strong practical utility. Subject experts often
make “better” judgmental assessments of fractiles that fall near the middle of
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a distribution (e.g., the x0.40 and x0.60 fractiles) than out near its tails. Select-
ing shape parameters that “best” characterize the shape of the distribution
has not been considered, in practice, too difficult. Shape parameters can be
inferred by asking the expert to visually choose a distribution from a fam-
ily of beta distributions plotted for various α and β. Representative plots of
such a family are shown in Figures 4.9 and 4.10. Visual representations of a
variable’s uncertainty by distribution functions can be an excellent way to
communicate risk to decision-makers.

4.5.3 Specifying Uniform Distributions

The following presents strategies for specifying a uniform distribution, when
a subject expert assigns a probability α to a subinterval of the distribution’s
range. In the following cases, assume the random variable X is uniformly
distributed over the range a ≤ x ≤ b.

Case 2 Specify a uniform distribution for the random variable X given the
subinterval a ≤ x ≤ b′ and α, where a is the minimum possible value of X,
b′ < b, and α = P(a ≤ X ≤ b′). An illustration of this case is presented in
Figure 4.22.

Purposes To determine the maximum possible value of X. To compute E(X)

and Var(X) from the specified distribution.
Required information Assessments of α and the endpoints of the subinterval

a ≤ x ≤ b′.
Discussion In this case, a subject expert defines the subinterval a ≤ x ≤ b′

of the range of possible values for X, given by a ≤ x ≤ b. In addition, an
assessment is made on the probability X will fall in this subinterval. If P(a ≤
X ≤ b′) = α < 1, then the maximum possible value of X is

b = a + 1
α

(b′ − a) (4.54)

fX(x)

α

a b

1 – α

x
b

FIGURE 4.22
An illustrative uniform distribution—Case 2.
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For example, if α = 0.25, a = 20, and b′ = 30, then, from Equation 4.54, the
maximum value of X must be b = 60. This is illustrated in Figure 4.23.

For an application context, the random variable X might represent the
uncertainty in the number of source instructions to develop for a new soft-
ware application, or in the weight of a new electronic device, or in the number
of labor hours to assemble a new widget.

Case 3 Specify a uniform distribution for the random variable X given the
subinterval a′ ≤ x ≤ b′ and α, where a < a′, b′ < b, and α = P(a′ ≤ X ≤ b′).
An illustration of this case is presented in Figure 4.24.

Purposes To determine the minimum and maximum possible values of X.
To compute E(X) and Var(X) from the specified distribution.

Required information Assessments of α and the endpoints of the subinterval
a′ ≤ x ≤ b′. Furthermore, assume a′ − a = b − b′ for this case.

Discussion In this case, a subject expert defines the subinterval a′ ≤ x ≤ b′
of the range of possible values for X, given by a ≤ x ≤ b. An assessment

603020

0.025

x

fX(x) α = 0.25 1 – α = 0.75

FIGURE 4.23
An illustration of Case 2.

fX(x)

α

a
x

bba

FIGURE 4.24
An illustrative uniform distribution—Case 3.
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37.5

0.04

40 60 62.5

α = 0.80

x

fX(x)

FIGURE 4.25
An illustration of Case 3.

of the probability X will fall in the subinterval a′ ≤ x ≤ b′ is also made. If
P(a′ ≤ X ≤ b′) = α < 1, then the minimum and maximum possible values of
X are

a = a′ − 1 − α

2α
(b′ − a′) (4.55)

b = b′ + 1 − α

2α
(b′ − a′) (4.56)

Note that a′ − a = b − b′. Furthermore, for this case we have

P(a ≤ X < a′) = P(b′ < X ≤ b) = 1
2
(1 − α)

For example, if α = 0.80, a′ = 40, and b′ = 60, then, from Equations 4.55
to 4.56, the minimum and maximum possible values of X are a = 37.5 and
b = 62.5. This is illustrated in Figure 4.25. An application context for this case
is similar to the previous case.

In this case, it is possible for a to become negative even when a′ is pos-
itive. In applications where it is sensible that X be nonnegative (e.g., if X is
the uncertainty in the weight of a new widget), such an occurrence signals a
reassessment of a′ and α is needed.

4.5.4 Specifying a Triangular Distribution∗

The following illustrates one strategy for specifying a triangular distribution
when a subject expert assigns a probability α to a subinterval of the distri-
bution’s range. In the following case, assume the random variable X has a
triangular distribution over the range a ≤ x ≤ b.

∗ This case was developed by Dr. Chien-Ching Cho, The MITRE Corporation, Bedford, MA.
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Case 4 Specify a triangular distribution for the random variable X given
m, the subinterval a′ ≤ x ≤ b′, and α, where a < a′, a′ < m < b′, b′ < b, and
α = P(a′ ≤ X ≤ b′). An illustration of this case is presented in Figure 4.26.

Purposes To determine the minimum and maximum possible values of X.
To compute E(X) and Var(X) from the specified distribution.

Required information Assessments of α and the endpoints of the subinterval
a′ ≤ x ≤ b′, where a′ < m < b′. Furthermore, assume for this case

P(X ≤ a′)
P(X ≥ b′)

= P(X ≤ m)

P(X ≥ m)

Discussion In this case, a subject expert defines the subinterval a′ ≤ x ≤ b′ of
the range of possible values for X, given by a ≤ x ≤ b. An assessment is made
of the probability X will fall in the subinterval a′ ≤ x ≤ b′.

If P(a′ ≤ X ≤ b′) = α < 1, then the minimum and maximum possible
values of X are respectively

a = m − m − a′

1 − √
1 − α

(4.57)

b = m + b′ − m

1 − √
1 − α

(4.58)

Equations 4.57 and 4.58 originate from the assumption (for this case) that

P(X ≤ a′)
P(X ≥ b′)

= P(X ≤ m)

P(X ≥ m)

fX(x)

fX(m)

a m
x

a b

α

b

FIGURE 4.26
An illustrative triangular distribution—Case 4.
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For example, if α = 0.75, a′ = 25, m = 35, and b′ = 60, then, from Equations
4.57 to 4.58, the minimum and maximum possible values of X are a = 15 and
b = 85. This is illustrated in Figure 4.27.

An application context for this case is similar to the previous cases. It is
also possible in this case for a to become negative, even when a′ is posi-
tive. In applications where it is sensible that X be nonnegative (e.g., if X is
the uncertainty in the weight of a new widget), such an occurrence signals a
reassessment of a′ and α is needed.

In summary, Sir Josiah Stamp∗ once said,

The government are very keen on amassing statistics. They collect them,
raise them to the n-th power, take the cube root, and prepare wonderful
diagrams. But one must never forget that every one of these figures comes
in the first instance from the village watchman, who puts down what he
damn pleases.

Several techniques have been presented for quantifying uncertainty in terms
of subjective probabilities and distributions. As discussed, the need to do so
is unavoidable on systems engineering projects. An extensive body of social
science research exists on techniques for eliciting subjective probabilities and
distributions. The book Uncertainty: A Guide to Dealing With Uncertainty in
Quantitative Risk and Policy Analysis by Morgan and Henrion (1990) provides
an excellent summary of this research.

Although the use of expert opinion is sometimes criticized, the basis of
the criticism is often traceable to (1) the subject expert was really the “vil-
lage watchman” or (2) the full scope of the problem being addressed by the
expert was poorly described. To lessen the chance of (1) or (2) occurring, it is
the prime responsibility of the project’s cost and engineering team to collec-
tively do the technical diligence needed to establish credible and defensible
assessments.

0.0285714

α = 0.75

15 25 35 60 85

fX(x)

x

FIGURE 4.27
An illustration of Case 4.

∗ President of the Bank of England during the 1920s.
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For our purposes, it must be stressed that a key product from subjective
assessment efforts must be a well-documented set of assumptions, argu-
ments, and supportive materials. Documentation enables similarly qualified
persons (or teams) to conduct independent and objective reviews of the
assessments. This alone is an important step toward objectivity and one that
would surface the presence of “village watchmen.” Credible analyses stem
from credible and defensible assessments; credible and defensible assess-
ments stem from credible expertise. Properly conducted and documented
assessments, on areas of a project that drive cost, schedule, and techni-
cal uncertainties, are among the most important products cost uncertainty
analysis drives to produce.

Exercises

4.1 Given the trapezoidal distribution in Example 4.1, show that
a. P(25,000 ≤ X ≤ 28,000) = 2

13

b. P(25,000 ≤ X ≤ 35,000) = 34
39

4.2 Suppose X ∼ Trap(a, m1, m2, b) with PDF given in Figure 4.1.
a. Show that 1−P(X ≤ m1)−P(X > m2) = 2u1/u2, where u1 = m2 −m1

and u2 = m2 + b − a − m1.
b. What region in Figure 4.1 does the probability in Exercise 4.2a

represent?
4.3 If Cost ∼ Unif (3, 8), then answer the following:

a. P(Cost < 5)

b. P(4 < Cost ≤ 7)

c. Find x such that P(Cost ≤ x) = 0.80.
4.4 If X ∼ Unif (a, b) show that

a. E(X) = 1
2 (a + b)

b. Var(X) = 1
12 (b − a)2

4.5 For the uniform distributions defined in Case 2 and Case 3, Section 4.5,
derive Equations 4.54 (in Case 2), 4.55 (in Case 3), and 4.56 (in Case 3).

4.6 If X ∼ Trng(a, m, b), then answer the following:
a. Verify fX(x) given by Equation 4.6 is a PDF.
b. Show FX(x) changes concavity at Mode(X).

c. Prove that E(X) = 1
3 (a + m + b).

4.7 Verify the probabilities in Figure 4.8 by computing the areas under the
appropriate regions of each triangle.

4.8 If X ∼ Trng(15, 35, 85), then
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a. Compute P(X ≤ 60)

b. Compute P(X ≤ 25)

c. Show that P(X ≤ 60) − P(X ≤ 25) = 0.75 (as seen in Figure 4.27)
4.9 If X ∼ Trng(0, 1, 1) compute

a. E(5X + 1)

b. Var(3X − 1)

4.10 If Y ∼ Beta(α,β), verify Equations 4.16 and 4.17 if E(Y) and Var(Y) are
known.

4.11 Suppose Y ∼ Beta(α,β) and fY(y) = 12y2(1 − y), where 0 < y < 1
a. Find α and β.
b. Compute E(Y) + σY.
c. Determine P(0.3 < Y ≤ 0.7).

4.12 In Example 4.4 (Section 4.2)
a. Determine whether the expected time (mins) to assemble the

microcircuit is greater than or less than the most probable
time

b. Compute the standard deviation of the assembly time
4.13 If the cost of a system is normally distributed with mean 20 ($M) and

standard deviation 4 ($M) determine
a. P(Cost ≤ 17)

b. P(15 ≤ Cost < 22)

c. P
(
|Cost − μ | ≥ 1

2

)
4.14 Suppose the uncertainty in a system’s cost is described by a normal dis-

tribution. Suppose there is a 5% chance the system’s cost will not exceed
100 ($M) and an 85% chance its cost will not exceed 200 ($M). From
this information determine the mean and standard deviation of the
system’s cost.

4.15 If X ∼ N(μ,σ2), then show the following is true
a. fX(x) changes concavity at the points x = μ + σ and x = μ − σ.
b. P(μ − 2σ ≤ X ≤ μ + 2σ) = 0.9544.
c. P(μ − 3σ ≤ X ≤ μ + 3σ) = 0.9973.

4.16 If X has a lognormal distribution, what does P(ln X ≤ E(ln X)) always
equal?

4.17 Compute the mean and variance of ln X for the three lognormal distri-
butions in Figure 4.17.

4.18 Suppose the uncertainty in a system’s cost is described by a lognormal
PDF with E(Cost) = 25 ($M) and Var(Cost) = 225 ($M)2; this is the
left-most PDF in Figure 4.17. Determine
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a. P(Cost > E(Cost))

b. P(Cost ≤ 50)

4.19 In Figure 1.5, the random variable X2 represented the cost of a system’s
systems engineering and program management. The point estimate of
X2, denoted by x2PEX2

, was equal to 1.26 ($M). If X2 can be approximated
by a lognormal distribution, with E(X2) = 1.6875 ($M) and Var(X2) =
0.255677 ($M)2, determine
a. P(x2PEX2

≤ X2 < E(X2))

b. P(1 ≤ X2 < 2.5)

c. P(X2 ≤ 2.5)

4.20 If X is a lognormal random variable, show that the maximum value of
its density function is given by Equation 4.42.

4.21 If X is a lognormal random variable, show that the rth moment of X is

given by E(Xr) = erμY+ 1
2σ

2
Yr2

.
4.22 Suppose I represents the uncertainty in the number of DSI for a new

application. Suppose a team of software engineers judged 35,000 DSI as
a reasonable assessment of the 50th percentile of I and a size of 60,000
DSI as a reasonable assessment of the 95th percentile. Furthermore, sup-
pose the distribution function in Figure 4.21 was considered a good
characterization of the uncertainty in the number of DSI.
a. Find the extreme possible values for I.
b. Compute the mode of I.
c. Compute E(I) and σI.

4.23 Suppose W represents the uncertainty in the weight of a new unmanned
spacecraft. Suppose a team of space systems engineers judged 1500 lbs
as a reasonable assessment of the minimum possible weight. Further-
more, suppose this team also assessed the chance that W could fall
between the minimum possible weight and 2000 lbs to be 80%. If the
distribution function for W is uniform, determine the expected weight
of the spacecraft.

4.24 Suppose I represents the uncertainty in the amount of new code for a
software application. Suppose this uncertainty is characterized by the
triangular PDF in Figure 4.26. If the probability is 0.90 that the amount
of code is between 20,000 and 30,000 DSI, with 25,000 DSI as most
probable, determine E(I).

4.25 For the beta distribution defined in Case 1, Section 4.5, show that

a = xiyj − xjyi

yj − yi
and b = xj(1 − yi) − xi(1 − yj)

yj − yi
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Hint: Solve for a and b from a simultaneous equation that involves
the transformation y = (x − a)/(b − a). Note that P(Y ≤ yi) = i =
P(X ≤ xi) and P(Y ≤ yj) = j = P(X ≤ xj), in the context of Case 1
(Section 4.5).
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5
Functions of Random Variables and Their
Application to Cost Uncertainty Analysis

This chapter presents methods for studying the behavior of functions of
random variables. Topics include joint probability distributions, linear combi-
nations of random variables, the central limit theorem, and the development
of distribution functions specific to a general class of software cost-schedule
models.

5.1 Introduction

Functions of random variables occur frequently in cost engineering and anal-
ysis problems. For example, the first unit cost UC of an unmanned spacecraft
might be derived according to (Lurie and Goldberg 1993)

UC = 5.48(SCwt)
0.94(BOLP)0.30

where SCwt is the spacecraft’s dry weight (lbs) and BOLP is the beginning-of-
life power measured in watts (W). If it is early in a new spacecraft’s design,
the precise values for SCwt and BOLP might be unknown. The engineering
team might better assess ranges of possible values for them instead of single
point values. These ranges might be described by probability distributions,
such as those presented in Chapter 4. If the first unit cost is a function of the
random variables SCwt and BOLP, a common question is “What is the proba-
bility distribution of UC given probability distributions for SCwt and BOLP?”
This chapter presents methods to answer this and related questions. First,
some mathematical preliminaries.

5.1.1 Joint and Conditional Distributions

When a function is defined by two or more random variables, its probability
distribution is called a joint probability distribution. Joint probability distribu-
tions generalize the concept of univariate distributions to functions of several
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random variables. Analogous to the univariate case, the joint cumulative
distribution function (CDF) of random variables X and Y is

FX,Y(x, y) = P(X ≤ x, Y ≤ y), −∞ < x, y < ∞ (5.1)

Discrete random variables: If X and Y are discrete random variables, their
joint probability mass function is defined as follows:

pX,Y(x, y) = P(X = x, Y = y) (5.2)

Illustrated in Figure 5.1, pX,Y(x, y) is the probability a possible pair of values
pX,Y(x, y) will occur. If R is any region in the xy-plane and X and Y are discrete
random variables, then

P((X, Y) ∈ R) =
∑

(x,y)∈R

pX,Y(x, y) (5.3)

Equation 5.3 implies the probability of a random point falling in a region R
is the sum of the heights of the vertical lines that correspond to the points
contained in R. The heights of the lines are given by px,y(x, y). Joint proba-
bilities are defined in terms of R and the joint probability mass function. For
example, the probability X is less than Y is represented by the set of all points
in the region where pX,Y(x, y). This can be written as follows:

P((X, Y) ∈ {(x, y) : x < y}) =
∑

(x,y): x<y

pX,Y(x, y) (5.4)

If X and Y have a finite number of possible values, it is sometimes convenient
to arrange the probabilities associated with these values in a contingency table.

x

y

R

pX,Y(x, y)

y1

y2

y3

y4

x1 x2 x3 x4

FIGURE 5.1
A joint probability mass function of X and Y.
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Table 5.1 illustrates a contingency table for two random variables that each
have four possible values. The sum of all pX,Y(xi, yk) in a contingency table
must equal unity. If X and Y are discrete random variables, then their marginal
probability mass functions are

pX(x) = P(X = x) =
∑

y

pX,Y(x, y) (5.5)

pY(y) = P(Y = y) =
∑

x

pX,Y(x, y) (5.6)

Equation 5.5 is the marginal probability mass function of X. Equation 5.6 is
the marginal probability mass function of Y.

Example 5.1 Suppose the effort (staff months) to modernize a management
information system is given by EffSysEng = XY, where X is the number of sys-
tems engineering staff needed for Y months. Suppose Table 5.2 is the contingency
table for X and Y. Compute

a. P(X = 15, Y = 36)

b. P(X = 15)

c. P(Y = 36)

d. P(EffSysEng < 600)

Solution

a. From Equation 5.2

P(X = 15, Y = 36) = pX,Y(15, 36) = 0.25

TABLE 5.1

A Contingency Table for X and Y

(X, Y) y1 y2 y3 y4

x1 pX,Y(x1, y1) pX,Y(x1, y2) pX,Y(x1, y3) pX,Y(x1, y4)

x2 pX,Y(x2, y1) pX,Y(x2, y2) pX,Y(x2, y3) pX,Y(x2, y4)

x3 pX,Y(x3, y1) pX,Y(x3, y2) pX,Y(x3, y3) pX,Y(x3, y4)

x4 pX,Y(x4, y1) pX,Y(x4, y2) pX,Y(x4, y3) pX,Y(x4, y4)

TABLE 5.2

Contingency Table for Example 5.1

y1 = 24 Months y2 = 36 Months Total

x1 = 15 Staff 0.15 0.25 0.40
x2 = 25 Staff 0.20 0.40 0.60

Total 0.35 0.65 1.00
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b. P(X = 15) is a marginal probability; from Equation 5.5

P(X = 15) =
2∑

k=1

pX,Y(15, yk) = 0.15 + 0.25 = 0.40

c. P(Y = 36) is a marginal probability; from Equation 5.6

P(Y = 36) =
2∑

t=1

pX,Y(xt, 36) = 0.25 + 0.40 = 0.65

d. From Table 5.2, the region R where the event {EffSysEng < 600} occurs
contains only two points; specifically,

R = {(x, y) : xy < 600} = {(x1, y1), (x1, y2)}
where (x1, y1) = (15, 24) and (x1, y2) = (15, 36). From Equation 5.3

P(EffSysEng < 600) = P(XY < 600)

= P
(
(X, Y) ∈ {

(x, y) : xy < 600
})

=
∑

(x,y): xy<600

pX,Y(x, y)

= pX,Y(x1, y1) + pX,Y(x1, y2)

= 0.15 + 0.25 = 0.40.

Continuous random variables: If X and Y are continuous random variables,
the joint probability density function (PDF) of X and Y, denoted by f (x, y),
satisfies for any set R in the two-dimensional plane

P((X, Y) ∈ R) =
�

(x,y)∈R

f (x, y)dxdy (5.7)

where f (x, y) ≥ 0 and

∞�
−∞

∞�
−∞

f (x, y)dxdy = 1

The probability associated with a univariate continuous random variable
reflects an area under the variable’s density function. The probability repre-
sented by the double integral in Equation 5.7 is the volume over the region R
between the xy-plane and the surface determined by f (x, y). In particular,

P(a ≤ X ≤ b and c ≤ Y ≤ d) =
b�

a

d�
c

f (x, y)dydx (5.8)
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With n continuous random variables, X1, X2, X3, . . . , Xn, we have

P(a1 ≤ X1 ≤ b1 . . . an ≤ Xn ≤ bn) =
b1�

a1

· · ·
bn�

an

f (x1, . . . , xn)dxn · · · dx1 (5.9)

The marginal PDFs of X and Y are given by

fX(x) =
∞�

−∞
f (x, y)dy, for − ∞ < x < ∞ (5.10)

fY(y) =
∞�

−∞
f (x, y)dx, for − ∞ < y < ∞ (5.11)

Example 5.2 Suppose the effort (staff months) to develop and implement a sys-
tem’s test plans and procedures is given by EffSysTest = XY, where X is the
number of test staff needed over Y months. Suppose X and Y are continuous
random variables with joint PDF

f (x, y) =
⎧⎨
⎩

1
240

, if 5 ≤ x ≤ 15, 12 ≤ y ≤ 36

0, otherwise

This joint PDF has the marginal PDFs in Figure 5.2. Determine

a. P(EffSysTest ≤ 120)

b. P(EffSysTest ≤ 360)

c. P(EffSysTest ≤ 120) given the test staff will not exceed 10 persons

d. The probability EffSysTest is greater than 120 staff months and the test staff
and duration will not exceed 10 persons and 24 months, respectively

0.1

5 15
x

Staff Months

0.04167

fY(y)fX(x)

12 36
y

FIGURE 5.2
Marginal distributions for X and Y.



134 Probability Methods for Cost Uncertainty Analysis

Solution

a. To determine the probability EffSysTest ≤ 120, we first sketch the
event space. This is shown in Figure 5.3. From Equation 5.8, we
have

P(EffSysTest ≤ 120) =
�

xy≤120

f (x, y)dxdy

=
24�

12

120
y�

5

1
240

dxdy =
10�
5

120
x�

12

1
240

dydx = 0.09657

b. To determine the probability EffSysTest ≤ 360, we first sketch the
event space. This is shown in Figure 5.4. From Theorem 2.1

P(EffSysTest ≤ 360) = 1 − P(EffSysTest > 360)

y
36

24

12
5 10

Staff

M
on

th
s

15

xy > 120

x
xy ≤ 120

FIGURE 5.3
Event space for EffSysTest ≤ 120.

xy ≤ 360

xy > 360

x
1510

Staff
5

12

24

M
on

th
s

36
y

FIGURE 5.4
Event space for EffSysTest ≤ 360.



Functions of Random Variables 135

It follows that

P(EffSysTest ≤ 360) = 1 −
�

xy>360

f (x, y)dxdy

= 1 −
36�

24

15�
360
y

1
240

dxdy = 1 −
15�

10

36�
360

x

1
240

dydx = 0.858

c. The probability EffSysTest ≤ 120 staff months given the test staff-level
will not exceed 10 persons is a conditional probability; specifically,
the conditional probability is P(EffSysTest ≤ 120|X ≤ 10). From
Equation 2.2, we can write

P(EffSysTest ≤ 120|X ≤ 10) = P({XY ≤ 120} ∩ {X ≤ 10})
P({X ≤ 10})

In this case,

P({XY ≤ 120} ∩ {X ≤ 10})
P({X ≤ 10}) =

10�
5

120
x�

12

1
240 dydx

10�
5

1
(15−5)

dx

= 2
10�
5

120
x�

12

1
240

dydx = 2(0.09657) = 0.193

The conditional probability, in this example, is twice its uncondi-
tional probability computed in part (a). Why is this? The uncondi-
tional probability is associated with the joint distribution function

f (x, y) = (1/240), 5 ≤ x ≤ 15, 12 ≤ y ≤ 36

If it is given that X ≤ 10, the joint distribution function essentially
becomes

f (x, y) = (1/120), 5 ≤ x ≤ 10, 12 ≤ y ≤ 36

With f (x, y) = (1/120), and 5 ≤ x ≤ 10, 12 ≤ y ≤ 36, more proba-
bility exists in the region where XY ≤ 120 than in the same region
with f (x, y) = (1/240), and 5 ≤ x ≤ 15, 12 ≤ y ≤ 36.

d. To determine the probability EffSysTest > 120 staff months and the
test staff and duration will not exceed 10 persons and 24 months,
define three events A, B, and C as

A =
{

EffSysTest > 120
}

= {XY > 120}
B = {X ≤ 10}
C = {Y ≤ 24}
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Thus, the probability we want to determine is given by

P(A ∩ B ∩ C) = P({XY > 120} ∩ {X ≤ 10} ∩ {Y ≤ 24})

= P
({

120
Y

< X
}

∩ {X ≤ 10} ∩ {Y ≤ 24}
)

= P
({

120
Y

< X ≤ 10
}

∩ {Y ≤ 24}
)

From Equation 5.8

P
({

120
Y

< X ≤ 10
}

∩ {Y ≤ 24}
)

=
24�

12

10�
120
y

1
240

dxdy = 0.1534

The probability is just over 0.15 that the effort for system test will
exceed 120 staff months, and the test staff-level and duration will
not exceed 10 persons and 24 months. This probability is shown by
the region R in Figure 5.5.

Example 5.3 Suppose the effort (staff months) to develop a new software appli-
cation is given by EffSW = X/Y, where X is the size of a software application
(number of delivered source instructions, or DSI) and Y is the development pro-
ductivity rate (number of DSI per staff month). Suppose X and Y are continuous
random variables with joint PDF

f (x, y) =
⎧⎨
⎩

1
5(106)

, 50, 000 ≤ x ≤ 100,000, 100 ≤ y ≤ 200

0, otherwise

This joint PDF has the marginal PDFs in Figure 5.6. Determine the probability
EffSW will not exceed 300 staff months.

R

xy ≤ 120
x

5 10
Staff

15
12

24

M
on

th
s

36
y

FIGURE 5.5
Region R associated with part (c) of Example 5.2.
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fX (x)

x
50,000

0.00002

100,000
Number of DSI

fY (y)

0.01

y
100 200

Productivity Rate
(DSI per Staff Month)

FIGURE 5.6
Marginal distributions for X and Y.

Solution To determine the probability EffSW will not exceed 300 staff
months, we first sketch the event space. This is shown in Figure 5.7. From
Equation 5.8, we have

P(EffSW ≤ 300) =
�

x
y ≤300

f (x, y)dxdy

=
200�

166.667

300y�
50,000

1
5(106)

dxdy

=
60,000�

50,000

200�
x

300

1
5(106)

dydx = 0.0333

x
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FIGURE 5.7
Event space for EffSW ≤ 300.
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So far, we have introduced the concept of joint probability distributions for
two random variables. Often, it is necessary to know the distribution of one
random variable when the other takes a specific value. Such a distribution is
known as a conditional probability distribution, which is discussed next in
terms of discrete and continuous random variables.

Conditional probability mass function: If two discrete random variables X
and Y have joint probability mass function pX,Y(x, y), the conditional probability
mass function of X given Y = y is

pX|Y= y(x) = pX,Y(x, y)

pY(y)
(5.12)

where pY(y) > 0. Similarly, the conditional probability mass function of Y given
X = x is

pY|X= x(y) = pX,Y(x, y)

pX(x)
(5.13)

where pX(x) > 0. To illustrate this, return to Example 5.1; suppose we want
the probability that the number of systems engineering staff X will be 15 per-
sons, given they are needed for 36 months. In this case we want pX|Y=36(15).
From Equation 5.12 and Table 5.2 this is

pX|Y= 36(15) = pX,Y(15, 36)

pY(36)
= 0.25

0.65
= 5

13
≈ 0.3846

This probability is conditioned on a fixed (or observed) value for Y. It has a
value slightly less than the unconditioned probability P(X = 15), which was
shown in Example 5.1 to be 0.40.

Conditional probability density function: If two continuous random vari-
ables X and Y have joint density function f (x, y), then the conditional PDF of X,
given Y = y, is

fX|Y(x|y) = f (x, y)

fY(y)
, fY(y) > 0 (5.14)

Similarly, the conditional PDF of Y, given X = x, is

fY|X(y|x) = f (x, y)

fX(x)
, fX(x) > 0 (5.15)
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Example 5.4 In Example 5.2, X and Y had the joint PDF

f (x, y) =
⎧⎨
⎩

1
240

, 5 ≤ x ≤ 15, 12 ≤ y ≤ 36

0, otherwise

Find the conditional PDFs of X and Y.

Solution From Equation 5.14, the conditional PDF of X is

fX|Y(x|y) = f (x, y)

fY(y)
=

1
240
1
24

= 1
10

, 5 ≤ x ≤ 15

From Equation 5.15, the conditional PDF of Y is

fY|X(y|x) = f (x, y)

fX(x)
=

1
240
1
10

= 1
24

, 12 ≤ y ≤ 36

Conditional PDFs enable determining the conditional CDF. Specifically,

FX|Y(x = a|y) ≡ P(X ≤ a|Y = y) =
a�

−∞
fX|Y(x|y)dx (5.16)

FY|X(y = b|x) ≡ P(Y ≤ b|X = x) =
b�

−∞
fY|X(y|x)dy (5.17)

5.1.2 Independent Random Variables

Two random variables X and Y are independent if for any two events {X ∈ A}
and {Y ∈ B}, where A and B are sets of real numbers, we have

P({X ∈ A} ∩ {Y ∈ B}) = P({X ∈ A})P({Y ∈ B}) (5.18)

Equation 5.18 follows if and only if, for any x and y

P({X ≤ x} ∩ {Y ≤ y}) ≡ P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) (5.19)

From Equation 5.19, it follows that

FX,Y(x, y) ≡ P(X ≤ x, Y ≤ y) = FX(x)FY(y), −∞ < x, y < ∞ (5.20)

If X and Y are independent discrete random variables, Equation 5.18 becomes

pX,Y(x, y) = pX(x)pY(y) (5.21)
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It follows that

pX|Y= y(x) = pX(x) (5.22)

pY|X= x(y) = pY(y) (5.23)

Moreover, if Equation 5.21 holds for two discrete random variables, then the
random variables are independent. Similarly, X and Y are independent con-
tinuous random variables if and only if Equation 5.24 holds for all feasible
values of X and Y.

f (x, y) = fX(x)fY(y) (5.24)

It follows that

fX|Y(x|y) = fX(x) (5.25)

fY|X(y|x) = fY(y) (5.26)

From this, what do you conclude about the random variables X and Y in
Examples 5.2 and 5.3? A discussion of this is left as an exercise for the
reader. Finally, we say that dependent random variables are those that are not
independent.

5.1.3 Expectation and Correlation

In Chapter 3, the expectation of a random variable was discussed. The
expectation of two random variables is stated in the following proposition.

Proposition 5.1 If X and Y are random variables and g(x, y) is a real-valued
function defined for all x and y that are possible values of X and Y, then

E(g(X, Y)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x

∑
y

g(x, y) · pX,Y(x, y), if X and Y are discrete

∞�
−∞

∞�
−∞

g(x, y) · f (x, y)dxdy, if X and Y are continuous

(5.27)

where the double summation and double integral must be absolutely convergent.

Example 5.5 Determine the expectation of EffSysTest in Example 5.2.

Solution We need to compute E(EffSysTest). From Example 5.2, the joint
distribution of X and Y is given as
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f (x, y) =
⎧⎨
⎩

1
240

, 5 ≤ x ≤ 15, 12 ≤ y ≤ 36

0, otherwise

In Example 5.2 EffSysTest is a function of two random variables X and Y;
that is, EffSysTest = XY = g(X, Y). Therefore, in this case, g(x, y) = xy. Since
X and Y are continuous random variables, from Equation 5.27

E(EffSysTest) = E(XY) = E(g(X, Y)) =
15�
5

36�
12

xy · 1
240

dydx

= 240 staff months

It is often of interest to determine where the expected value of a random
variable falls along the variable’s CDF. Mentioned in Chapters 3 and 4, the
expected value of a random variable is not, in general, equal to the median of
the random variable. This is again illustrated with Example 5.5. It is left as an
exercise for the reader to show

P(EffSysTest ≤ E(EffSysTest)) = P(EffSysTest ≤ 240) = 0.56

It is often necessary to know the degree to which two random variables asso-
ciate or vary with each other. In cost analysis, questions such as “How much
is the variation in a new satellite’s predicted weight attributable to the vari-
ation in its cost?” are common. Covariance is a measure of how much two
random variables covary. Let X and Y be random variables with expected
values (means) μX and μY, respectively. The covariance of X and Y, denoted
by Cov(X, Y), is defined as follows:

Cov(X, Y) ≡ σXY = E {(X − μX)(Y − μY)} (5.28)

Covariance can be positive, negative, or zero. If X and Y take values simulta-
neously larger than their respective means, the covariance will be positive. If
X and Y take values simultaneously smaller than their respective means, the
covariance will also be positive. If one random variable takes a value larger
than its mean and the other takes a value smaller than its mean, the covariance
will be negative. So, when two random variables simultaneously take values
on the same sides as their respective means, the covariance will be positive.
When two random variables simultaneously take values on opposite sides of
their means, the covariance will be negative. The following theorems present
useful properties of covariance. Theorem 5.1 presents a way to compute
covariance that is easier than using the definition given by Equation 5.28.
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Theorem 5.1 If X and Y are random variables with means μX and μY then

Cov(X, Y) = E(XY) − μXμY

Theorem 5.2 If X and Y are random variables, then

a. Cov(X, Y) = Cov(Y, X)

b. Cov(aX + b, cY + d) = ac Cov(X, Y) for any real numbers a, b, c, and d

Theorem 5.3 If X and Y are independent random variables, then Cov(X, Y) = 0.

Covariance as a measure of the degree two random variables covary
can be hard to interpret. Suppose X1 and Y1 are random variables such
that X2 = 2X1 and Y2 = 2Y1. From Theorem 5.2, Cov(X2, Y2) =
4Cov(X1, Y1). Although X1 and Y1 and X2 and Y2 behave in precisely the
same way with respect to each other, the random variables X2 and Y2 have
a covariance four times greater than the covariance of X1 and Y1. A more
convenient measure is one where the relationship between pairs of ran-
dom variables could be interpreted along a common scale. Consider the
following.

Suppose we have two standard random variables ZX and ZY, where

ZX = X − μX

σX
and ZY = Y − μY

σY

Using Theorem 5.2, the covariance of ZX and ZY reduces to

Cov(ZX, ZY) = Cov
(

X − μX

σX
,

Y − μY

σY

)

= 1
σX

· 1
σY

Cov (X − μX, Y − μY)

= 1
σX

· 1
σY

Cov(X, Y)

= ρX,Y

The term ρX,Y is known as the Pearson correlation coefficient. It is the tradi-
tional statistic to measure the degree to which two random variables linearly
correlate (or covary). Formally, the Pearson correlation coefficient between two
random variables X and Y is
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Corr(X, Y) ≡ ρX,Y = Cov(X, Y)

σXσY
(5.29)

provided σX > 0 and σY > 0. From Theorem 5.1, Equation 5.29 simplifies to

Corr(X, Y) ≡ ρX,Y = E(XY) − μXμY

σXσY
(5.30)

The correlation coefficient is dimensionless. Pearson’s correlation coefficient
measures the strength of the linear relationship between two random variables.
It is bounded by the interval −1 ≤ ρX,Y ≤ 1. If Y = aX + b, where a and b
are real numbers and a > 0, then ρX,Y = 1; if a < 0 then ρX,Y = −1. When
ρX,Y = 0, we say X and Y are uncorrelated. There is a complete absence of
linearity between them. Figure 5.8 illustrates the types of correlation that can
exist between random variables.

Example 5.6 If Y = X2 and X ∼ Unif (−1, 1), show that ρX,Y = 0.

Solution From Equation 5.30

Corr(X, Y) ≡ Corr(X, X2) ≡ ρX,X2 = E(XX2) − μXμX2

σXσX2

Since X ∼ Unif (−1, 1), we have fX(x) = 1
2 on −1 ≤ x ≤ 1; therefore,

E(XX2) = E(X3) =
1�

−1

x3fX(x) dx =
1�

−1

x3 1
2

dx = 0

μX = E(X) =
1�

−1

x fX(x) dx =
1�

−1

x
1
2

dx = 0

μX2 = E(X2) =
1�

−1

x2 1
2

dx = 1
3

X X

Y Y Y

X
Negative Correlation Positive Correlation No Correlation

FIGURE 5.8
Correlation between random variables X and Y.
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–1 1
x

y = x2

X ~ Unif(–1, 1)

fX(x)

0

FIGURE 5.9
Graph of Y = X2 and X ∼ Unif (−1, 1).

Therefore,

Corr(X, X2) ≡ ρX, X2 = 0 − 0 · 1
3

σXσX2
= 0

In this example, we conclude there is a complete absence of linearity
between X and Y. This can be seen in Figure 5.9.

Theorem 5.4 If X and Yare independent random variables, then ρX,Y = 0.

Proof. This follows from Theorem 5.3 and Equation 5.29. Since X and Y are
independent random variables, from Theorem 5.3 we have Cov(X, Y) = 0. From
Equation 5.29, if Cov(X, Y) = 0, it immediately follows that ρX,Y = 0.

The converse of Theorem 5.4 is not true. If ρX,Y = 0 then X and Y are uncor-
related. However, it does not follow that X and Y are independent. Again, if X
is uniformly distributed in −1 ≤ x ≤ 1 and Y = X2, then ρX,Y = 0; however,
Y is dependent on X in this case. Theorem 5.4 gives rise to the following:

Theorem 5.5 If X and Y are independent random variables, then

E(XY) = E(X)E(Y) (5.31)

Proof. Since X and Y are independent random variables, from Theorem 5.3 we have
Cov(X, Y) = 0. From Theorem 5.1, this is equivalent to E(XY) − μXμY = 0; thus,
E(XY) = E(X)E(Y).
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Theorem 5.6 If a1 and a2 are either both positive or both negative, and a1, a2, b1,
and b2 are real numbers, then Corr(a1X + b1, a2Y + b2) = Corr(X, Y).

Proof. Let Z = a1X + b1 and W = a2Y + b2. We need to show

Corr(Z, W) = E(ZW) − μZμW

σZσW
= Corr(X, Y) (5.32)

From Theorem 3.9

E(ZW) = E((a1X + b1)(a2Y + b2))

= E(a1a2XY + a1b2X + a2b1Y + b1b2)

= a1a2E(XY) + a1b2E(X) + a2b1E(Y) + b1b2

From Theorem 3.9

μZ ≡ E(Z) = a1E(X) + b1 and μW ≡ E(W) = a2E(Y) + b2

From Theorem 3.11

σ2
Z = a2

1σ
2
X and σ2

W = a2
2σ

2
Y

Combining these

E(ZW) − μZμW = a1a2E(XY) − a1a2E(X)E(Y) = a1a2(E(XY) − E(X)E(Y))

and

σZ = |a1|σX, σW = |a2|σY

Substituting into Equation 5.32 yields

Corr(Z, W) = a1a2(E(XY) − E(X)E(Y))

a1a2σXσY
= Corr(X, Y)

This theorem states that the correlation between two random variables is
unaffected by a linear change in either X or Y.

Example 5.7 Suppose X denotes the number of engineering staff required to
test a new rocket propulsion system. Suppose X is uniformly distributed in the
interval 5 ≤ x ≤ 15. If the number of months Y required to design, conduct,
and analyze the test is given by Y = 2X + 3, compute the expected test effort,
measured in staff months.
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Solution We are given X ∼ Unif (5, 15) and Y = 2X + 3. The test effort, in
staff months, is the product XY. To determine the expected test effort, we
need to compute E(XY). From Equation 5.30

E(XY) = ρX,YσXσY + μXμY

Since Y is a linear function of X, we have ρX,Y = 1; thus,

E(XY) = σXσY + μXμY

Since X ∼ Unif (5, 15), the mean and variance of X (Theorem 4.2) is

μX ≡ E(X) = 1
2
(5 + 15) = 10

σ2
X ≡ Var(X) = 1

12
(15 − 5)2 = 100

12
and σX = 10√

12

Since Y = 2X + 3, the mean and variance of Y (Theorems 3.9 and 3.11) is

μY ≡ E(Y) = E(2X + 3) = 2E(X) + 3 = 2 · 10 + 3 = 23

σ2
Y ≡ Var(Y) = Var(2X + 3) = 22Var(X) = 4σ2

X = 4 · 100
12

= 100
3

σY = 10√
3

Substituting these values into E(XY) we have

E(XY) = σXσY + μXμY = 10√
12

· 10√
3

+ 10 · 23 = 246.7 staff months

Thus, the expected effort to test the new rocket’s propulsion system is
nearly 247 staff months.

Example 5.8 Suppose the effort EffSW (staff months) to develop software is
given by EffSW = 2.8I1.2, where I is thousands of DSI to be developed. If
I ∼ Unif (20, 60) determine ρEffSW ,I.

Solution From Equation 5.30

Corr(EffSW , I) ≡ ρEffSW ,I = E(EffSWI) − μEffSW
μI

σEffSW
σI

(5.33)

Computation of E(EffSW I)

E(EffSWI) = E(2.8I1.2I) = E(2.8I2.2)

From Proposition 3.1,

E(2.8I2.2) =
60�

20

2.8x2.2fI(x)dx



Functions of Random Variables 147

Since I ∼ Unif (20, 60), the PDF of I is

fI(x) = 1
40

, 20 ≤ x ≤ 60

Therefore,

E(EffSWI) = E(2.8I2.2) =
60�

20

2.8x2.2 1
40

dx = 10,397.385

Computation of μEffSW

μEffSW
≡ E(EffSW) = E(2.8I1.2) =

60�
20

2.8x1.2 1
40

dx = 236.6106

Computation of σEffSW

σEffSW
=
√

Var(EffSW) =
√

E((EffSW)2) − (μEffSW
)2 = 80.8256

It is left for the reader to show E((EffSW)2) = 62,517.36251.

Computation of μI and σI
Since I ∼ Unif (20, 60), it follows immediately from Theorem 4.2

μI ≡ E(I) = 1
2
(20 + 60) = 40

σI ≡ √
Var(I) =

√
1
12

(60 − 20)2 = 11.547

Computation of ρEffSW ,I
Substituting the preceeding computations into Equation 5.33 yields

Corr(EffSW , I) ≡ ρEffSW ,I = E(EffSWI) − μEffSW
μI

σEffSW
σI

= 932.961
933.293

≈ 0.9996

Although the relationship between EffSW and I is nonlinear, a Pear-
son correlation coefficient of this magnitude suggests, in this case, the
relationship is not distinguishably different from linear.

Rank correlation: In 1904, statistician C. Spearman developed a correla-
tion coefficient that uses the ranks of values observed for n-pairs of random
variables. The coefficient is known as Spearman’s rank correlation coefficient. Let

(U1, V1), (U2, V2), (U3, V3), . . . , (Un, Vn)
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be n-pairs of random samples (a set of independent random variables from
the same PDF) from a continuous bivariate distribution. To determine the
rank correlation between the pairs of random variables

(U1, V1), (U2, V2), (U3, V3), . . . , (Un, Vn)

the values of U1, U2, U3, . . . , Un and V1, V2, V3, . . . , Vn are ranked among
themselves. For instance, the values of U1, U2, U3, . . . , Un would be ranked
in increasing order, with the smallest value receiving a rank of one. Likewise,
the values of V1, V2, V3, . . . , Vn would also be ranked in increasing order, with
the smallest value receiving a rank of one. The difference between these rank-
ings is the basis behind Spearman’s coefficient. Specifically, Spearman’s rank
correlation coefficient, denoted by rs, is given by∗

rs = 1 − 6
n3 − n

n∑
i=1

d2
i (5.34)

where di is the difference in the ranks between Ui and Vi.
Where Pearson’s correlation coefficient determines the degree of linearity

between two random variables, Spearman’s rank correlation coefficient mea-
sures their monotonicity. Like Pearson’s correlation coefficient, Spearman’s
rank correlation coefficient is bounded by the interval −1 ≤ rs ≤ 1. If rs is
close to 1, then larger values of U tend to be paired (or associated) with larger
values of V. If rs is close to −1, then larger values of U tend to be paired (or
associated) with smaller values of V. An rs near zero is seen when the ranks
reflect a random arrangement.

In Example 5.8, recall EffSW and I have a Pearson correlation of 0.9996 in
the interval 20 ≤ I ≤ 60. Mentioned in that example, this suggests the two
random variables have a strong linear relationship in the indicated interval.
Furthermore, since EffSW (given in Example 5.8) is a strictly monotonically
increasing function of I, the rank correlation between EffSW and I would be
unity (rs = 1). However, Pearson’s correlation coefficient and Spearman’s
rank correlation coefficient can be very different. This is seen in Figure 5.10.
In Figure 5.10 we have Y = X100 and X ∼ Unif (0, 1). Pearson’s correlation
coefficient between X and Y is 0.24 (showing this is left as an exercise for the
reader), while their rank correlation is unity. Looking at Figure 5.10, why (in
this case) are these correlation coefficients so different?

Correlation is not causation. A strong positive correlation between two
random variables does not necessarily imply large values for one causes
large values for the other. Correlation close to unity only means two
random variables are strongly associated and the hypothesis of a linear

∗ Keeping, E. S. 1962. Introduction to Statistical Inference. Princeton, NJ: D. Van Nostrand
Company, Inc.
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Y = X100, X~Unif(0, 1)
Pearson Correlation = 0.24

Rank Correlation = 1

y
1

0.5

0.99 10.980.970.96
x

FIGURE 5.10
Illustrative correlation coefficients.

association (for Pearson’s correlation coefficient) or a monotonic association
(for Spearman’s rank correlation coefficient) cannot be rejected.

5.2 Linear Combinations of Random Variables

It is often necessary to work with sums of random variables. Sums of ran-
dom variables arise frequently in cost analysis. For instance, in Figure 1.3,
a system’s total cost can be expressed as follows:

Cost = X1 + X2 + X3 + · · · + Xn (5.35)

where X1, X2, X3, . . . , Xn are random variables that represent the cost of
the system’s work breakdown structure (WBS) cost elements. From this,
we can often think of Cost as a linear combination of the random vari-
ables X1, X2, X3, . . . , Xn. In general, given a collection of n-random variables
X1, X2, X3, . . . , Xn and constants a1, a2, a3, . . . , an the random variable

Y = a1X1 + a2X2 + a3X3 + · · · + anXn (5.36)

is called a linear combination of X1, X2, X3, . . . , Xn.

Theorem 5.7 If Y = a1X1 + a2X2 + a3X3 + · · · + anXn then

E(Y) = a1E(X1) + a2E(X2) + a3E(X3) + · · · + anE(Xn) (5.37)
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Theorem 5.7 is an extension of Theorem 3.9. It states the expected value of a
sum of random variables is the sum of the expected values of the individual
random variables. Theorem 5.7 is valid whether or not the random variables
X1, X2, X3, . . . , Xn are independent.

Theorem 5.8 If Y = a1X1 + a2X2 + a3X3 + · · · + anXn then

Var(Y) =
n∑

i=1

a2
i Var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

aiajρXi,XjσXiσXj (5.38)

Theorem 5.8 is an extension of Theorem 3.11. It states the variance of a
sum of random variables is the sum of the variances of the individual ran-
dom variables, plus the sum of the covariances between them. If the random
variables X1, X2, X3, . . . , Xn are independent then

Var(Y) = a2
1Var(X1) + a2

2Var(X2) + a2
3Var(X3) + · · · + a2

nVar(Xn) (5.39)

Example 5.9 Suppose the total cost of a system is given by Cost = X1+X2+X3.
Let X1 denote the cost of the system’s prime mission product (PMP)∗. Let X2
denote the cost of the system’s systems engineering, program management, and
system test. Suppose X1 and X2 are dependent random variables and X2 = 1

2 X1.
Let X3 denote the cost of the system’s data, spare parts, and support equip-
ment. Suppose X1 and X3 are independent random variables with distribution
functions given in Figure 5.11. Compute E(Cost) and Var(Cost).

Solution Since X1 ∼ N(30,100), we have from Theorem 4.6

E(X1) = 30, Var(X1) = 100, σX1 = √
Var(X1) = 10

From Theorems 3.9 and 3.11 we have

E(X2) = E
(

1
2

X1

)
= 1

2
E(X1) = 15

Var(X2) = Var
(

1
2

X1

)
= 1

4
Var(X1) = 25,σX2 = √

Var(X2) = 5

Since X3 ∼ Unif (5, 8), we have from Theorem 4.2

E(X3) = 1
2
(5 + 8) = 6.5, Var(X3) = 1

12
(8 − 5)2 = 0.75

∗ In systems cost analysis, PMP cost typically refers to the total cost of the system’s hardware,
software, and hardware-software integration. Chapter 6 provides a detailed discussion.
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20 5 6.5 8 x3

($M)

0.0399

0.3333

30 40

($M)
x1

fX1
(x1) fX3

(x3)

X1 ~ N(30, 100) X3 ~ Unif(5, 8)

FIGURE 5.11
Density functions for Example 5.9.

Computation of E(Cost)
From Theorem 5.7 (for i = 1, 2, 3)

E(Cost) = E(X1) + E(X2) + E(X3) = 30 + 15 + 6.5 = 51.5 ($M)

Computation of Var(Cost)
From Theorem 5.8 (for i = 1, 2, 3)

Var(Cost) = Var(X1) + Var(X2) + Var(X3)

+ 2
[
ρX1,X2σX1σX2 + ρX1,X3σX1σX3 + ρX2,X3σX2σX3

]

Since X1 and X2 are linearly related, in this example, we know ρX1,X2 = 1.
Since X1 and X3 were given to be independent random variables, from
Theorem 5.4 we know ρX1,X3 = 0. With Theorem 5.6, this means

ρX2,X3 = ρ 1
2 X1,X3

= ρX1,X3 = 0

Substituting these values into Var(Cost) we have

Var(Cost) = 100 + 25 + 0.75

+ 2
[
1(10)(5) + 0(10)(

√
0.75) + 0(5)(

√
0.75)

]
= 225.75 ($M)2

The units of variance ($M)2 have little meaning; it is better to think of the
range of dollars in terms of the standard deviation; that is,

σCost =
√

Var(Cost) = 15.02 ($M)

5.2.1 Cost Considerations on Correlation

In Example 5.9, X1 and X2 are dependent random variables. As discussed, the
nature of their dependency was such that ρX1,X2 = 1. Suppose X1 and X2 were
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independent random variables with X1 ∼ N(30,100) and X2 ∼ N(15, 25). How
would this impact E(Cost) and Var(Cost), as computed in Example 5.9? The
value of E(Cost) would remain the same. Why? However, if X1 and X2 are
independent random variables then ρX1,X2 = 0; the value of Var(Cost) reduces
in magnitude; specifically,

Var(Cost) = Var(X1) + Var(X2) + Var(X3) = 125.75 ($M)2

In Example 5.9, the dependency between X1 and X2 results in a value for
Var(Cost) nearly 80% greater than its value would be if X1 and X2 were inde-
pendent. Seen in Example 5.9, dependencies between random variables can
significantly affect the variance of their sum. Since a system’s total cost is
essentially a sum of n-work breakdown structure cost element costs, such as,

Cost = X1 + X2 + X3 + · · · + Xn

it is critically important for cost analysts to capture dependencies among
X1, X2, X3, . . . , Xn, particularly those with nonnegative correlations. Not
doing so can significantly misstate the true variability (uncertainty) in a
system’s total cost. Figure 5.12, Theorem 5.9, and Chapter 9 address how
nonnegative correlation can affect the variance of a sum of n-random vari-
ables. Shown is how the variance increases dramatically with the number of
random variables being summed and the extent that ρ approaches unity.

Theorem 5.9 Let Cost = X1 + X2 + X3 + · · · + Xn where X1, X2, X3, . . . , Xn
are random variables that represent a system’s WBS cost element costs. If each

10
35

332.5

630

927.5

1225
Var (Cost)

Number of WBS Cost Elements n
15 20 25 30 35

ρ = 1

ρ = 0.75

ρ = 0.50

ρ = 0.25

ρ = 0

Cost =
n

Xi
i = 1

FIGURE 5.12
Theorem 5.9 with σ2 = 1.
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pair of X1, X2, X3, . . . , Xn have common variance σ2 and common nonnegative
correlation ρ, then Var(Cost) = σ2[n + n(n − 1)ρ].

Proof. From Theorem 5.8, we have

Var(Cost) =
n∑

i=1

Var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

ρXi,XjσXiσXj

Each pair of X1, X2, X3, . . . , Xn is given to have common variance σ2 and common
nonnegative correlation ρ; therefore,

Var(Cost) =
n∑

i=1

σ2 + 2
n−1∑
i=1

n∑
j=i+1

ρσ2

= nσ2 + n(n − 1)ρσ2 = σ2[n + n(n − 1)ρ]

Some interesting results follow from this theorem; in particular,

Var(Cost) =

⎧⎪⎨
⎪⎩

nσ2, ρ = 0
[n + n(n − 1)ρ]σ2, 0 < ρ < 1
n2σ2, ρ = 1

Figure 5.12 illustrates this theorem with σ2 = 1.

5.3 Central Limit Theorem and a Cost Perspective

This section describes one of the most important theorems in probability
theory, the central limit theorem. It states that, under certain conditions, the
distribution function of a sum of independent random variables approaches
the normal distribution. From a cost analysis perspective, this theorem has
great practical importance. As mentioned previously, a system’s total cost is
a summation of WBS cost element costs X1, X2, X3, . . . , Xn. Because of this,
the distribution function of a system’s total cost will often be approximately
normal. We will see many examples of this in the chapters that follow.
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Theorem 5.10: The Central Limit Theorem (CLT) Suppose X1, X2, X3, . . . , Xn
is a sequence of n independent random variables with E(Xi) = μi and Var(Xi) = σ2

i
(each finite). If

Y = X1 + X2 + X3 + · · · + Xn

then, under certain conditions,∗ as n → ∞ the random variable Z = (Y − μ)/σ

approaches the standard normal, where

μ =
n∑

i=1

μi and σ =
√√√√ n∑

i=1

σ2
i

Theorem 5.10 places no restriction on the types of distribution func-
tions that characterize the random variables X1, X2, X3, . . . , Xn. However,
for a given n, the “rate” that the distribution function of Y approaches the
normal distribution is affected by the shapes of the distribution functions
for X1, X2, X3, . . . , Xn. If these distributions are approximately “bell-shaped,”
then the distribution function of Y may approach the normal for small n. If
they are asymmetric, then n may need to be large for Y to approach the normal
distribution.

The central limit theorem is frequently cited to explain why the distribu-
tion function of a system’s total cost is often approximately normal. This is
illustrated in the following case discussion.

Case Discussion 5.1: The electronic components of a 20 W solid-state
amplifier (SSA) for a satellite communication workstation are listed in
Table 5.3. Let the total component-level cost of the SSA be given by

CostSSA = X1 + X2 + X3 + · · · + X12 (5.40)

Suppose X1, X2, X3, . . . , X12 are independent random variables representing
the costs of the SSA’s components. Suppose the distribution function of each
component is triangular, with parameters given in Table 5.3. Furthermore,
suppose the mode of Xi represents its point estimate, that is,

xiPEXi
= Mode(Xi) i = 1, 2, . . . , 12

∗ Informally, the individual random variables X1, X2, X3, . . . , Xn that constitute Y should make
only a small contribution to Y. In addition, none of the random variables X1, X2, X3, . . . , Xn
should dominate in standard deviation. For a further discussion of these conditions, as well as
other forms of the central limit theorem, refer to Feller, W. 1968. An Introduction to Probability
Theory and Its Applications, vol. 2, 3rd rev. edn. New York: John Wiley & Sons, Inc.
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TABLE 5.3

20-Watt (W) SSA Component Cost

Cost ($K) Mean Variance

Components Min Mode Max ($K) ($K)2

X1 Transmitter Synthesizer 12.8 16.9 22.4 17.37 3.87

X2 Receiver Synthesizer 12.8 16.9 22.4 17.37 3.87
X3 Reference Generator 15.5 18.3 21.1 18.30 1.31
X4 Receiver Loopback 7.4 9.2 11.1 9.23 0.57

X5 BITE Control CCA 6.4 9.1 13.6 9.70 2.21
X6 Power Supply 17.8 25.1 32.4 25.10 8.88

X7 IMPATT Modules 36.4 66.5 100.5 67.80 171.41
X8 Combiner Plate 15.2 18.7 22.7 18.87 2.35

X9 SHF upconverter 12.1 16.6 24.6 17.77 6.68
X10 Chassis 21.1 29.6 44.8 31.83 24.03
X11 Backplane 3.3 4.8 6.1 4.73 0.33

X12 Wave Guide Components 4.8 6.7 8.7 6.73 0.63

Component Cost 165.6 238.4 330.4 244.8 226.13

Note: The sum of the modes is not the mode of the distribution function of CostSSA.

From this, determine the mean and variance of CostSSA, as well as an
approximation to its underlying distribution function.

Since distribution function of each Xi is given to be triangular, Theorem 4.3
can be applied to determine the mean and variance of each component’s cost.
For instance,

E(X1) = 1
3
(a1 + m1 + b1) = 1

3
(12.8 + 16.9 + 22.4) = 17.37 ($K)

Var(X1) = 1
18

[
(m1 − a1)(m1 − b1) + (b1 − a1)

2
]

= 3.87 ($K)2

where a1 is the minimum value of X1, m1 is the mode of X1, and b1 is the
maximum value of X1. Similar notation assumptions and calculations apply
to the other components in Table 5.3. From Theorems 5.7 and 5.8, the mean
and variance of the total component-level cost of the SSA are

E(CostSSA) = μCostSSA = E

( 12∑
i=1

Xi

)
=

12∑
i=1

E(Xi) = 244.8 ($K) (5.41)

Var(CostSSA) = σ2
CostSSA

= Var

( 12∑
i=1

Xi

)
=

12∑
i=1

Var(Xi) = 226.13 ($K)2 (5.42)
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Since X1, X2, X3, . . . , X12 are independent random variables (with finite
means and variances), from the central limit theorem (Theorem 5.10)

Z = CostSSA − E(CostSSA)√
Var(CostSSA)

= CostSSA − 244.8√
226.13

(5.43)

is approximately N(0, 1). This is equivalent to saying

CostSSA ∼ N
(
μCostSSA ,σ2

CostSSA

)
(5.44)

We will next assess the applicability of this theorem that suggests the dis-
tribution function for CostSSA is approximately normal with parameters
given by (Equation 5.44). Monte Carlo simulation is one way to make this
assessment.

In the context of Case Discussion 5.1, the Monte Carlo approach involves
taking a random sample from each X1, X2, X3, . . . , X12 and summing these
sampled values according to Equation 5.40. This produces one random sam-
ple for CostSSA. This sampling process is repeated many thousands of times to
produce an empirical frequency distribution of CostSSA. From the frequency
distribution, an empirical CDF of CostSSA is established. In Figure 5.13, the
curve implied by the “points” is the empirical CDF of CostSSA. The curve
given by the solid line is an assumed normal distribution, with parameters
given by (Equation 5.44). Observe how closely the “points” fall along the solid
line. On the basis of this empirical evidence, the central limit theorem appears
applicable in this case.

0.977

0.841

0.5

0.159

0.0228
214.72 229.76 244.8 259.84 274.88

($K)
x

FCostSSA 
(x)

FIGURE 5.13
Cumulative distribution function of CostSSA.
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The analysis summarized in Figure 5.13 provides empirical evidence only
that the normal distribution is a reasonable form for the distribution func-
tion of CostSSA. It might next be asked “Could the underlying distribution
function for CostSSA be normal?” To answer this, a procedure known as the
Kolmogorov–Smirnov (K-S) test can be used. The K-S test (Law and Kelton
1991) applies only to continuous distribution functions. It is a formal statisti-
cal procedure for testing whether a sample of observations (such as samples
generated by a Monte Carlo simulation) could come from a hypothesized
theoretical distribution. The following illustrates the K-S test in the context
of Case Discussion 5.1.

The Kolmogorov-Smirnov test:

• Let F̂CostSSA(x) represent the observed CDF of CostSSA (Equation 5.40)
generated from a Monte Carlo sample of n = 5000 observations. This
CDF is shown in Table 5.4.

• Let FCostSSA(x) represent a hypothesized CDF. Suppose FCostSSA(x) is
normal with mean 244.8 ($K) and variance 226.13 ($K)2. Since the

TABLE 5.4

Kolmogorov–Smirnov Test for Case Discussion 5.1

Values in the Left-Most Column are in Dollars Thousand

x F̂CostSSA (x) FCostSSA (x) |FCostSSA (x) − F̂CostSSA (x)|
220.19 0.05 0.0509 0.0009
225.15 0.10 0.0957 0.0043
228.64 0.15 0.1413 0.0087

231.80 0.20 0.1937 0.0063
234.35 0.25 0.2436 0.0064

236.72 0.30 0.2955 0.0045
238.89 0.35 0.3472 0.0028

240.66 0.40 0.3915 0.0085
242.50 0.45 0.4392 0.0108
244.34 0.50 0.4878 0.0122

246.21 0.55 0.5374 0.0126
248.11 0.60 0.5871 0.0129

250.28 0.65 0.6422 0.0078
252.53 0.70 0.6964 0.0036

254.99 0.75 0.7510 0.0010
257.49 0.80 0.8006 0.0006
260.49 0.85 0.8516 0.0016

263.80 0.90 0.8968 0.0032
269.22 0.95 0.9478 0.0022
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hypothesized distribution for CostSSA is normal, values for FCostSSA(x)

in Table 5.4 reflect

P
(

Z ≤ x − 244.8√
226.13

)

The mean and variance of the hypothesized CDF were not derived
from the observations generated by the Monte Carlo samples.

• Compute the statistic D = Max
x

∣∣∣FCostSSA(x) − F̂CostSSA(x)

∣∣∣. From Table 5.4,

it is seen by the bold numbers that D = 0.0129.
• Suppose we wish to test the claim that the observed values summa-

rized in Table 5.4 come from the hypothesized distribution. Let α be
the probability of rejecting the claim when it is actually true. Suppose
we let α = 0.01.

• Referring to Table A.2, if

(√
n + 0.12 + 0.11√

n

)
D > c1−α

reject the claim; otherwise, accept it. Since α was chosen to be 0.01 for
this test, from Table A.2 we have c1−α = c0.99 = 1.628. With n = 5000
and D = 0.0129 we have (70.8322)(0.0129) = 0.9137 < c0.99 = 1.628;
thus, we accept the claim.

In a strict sense, accepting the claim that the distribution function for CostSSA
is normal only means it is a statistically plausible mathematical model of the
underlying distribution. Acceptance does not mean the normal is the “best”
or “unique” model form. Other hypothesized distributions might be accepted
by the K-S test. It can be shown, in this case, the test also accepts the lognor-
mal distribution as another statistically plausible model of the underlying
distribution of CostSSA. Showing this is left as an exercise for the reader.

In cost analysis, the “precise” mathematical form of distribution functions,
such as those for CostSSA, are rarely known. A credible analysis must provide
decision-makers defensible analytical evidence that the form of a distribution
function is mathematically plausible. Looking into whether central limit the-
orem applies, plotting hypothesized versus simulated distribution functions
(e.g., Figure 5.13) and conducting statistical tests (i.e., the K-S test) are among
the ways such evidence is established.

5.3.1 Further Considerations

As mentioned previously, the cost of a system can be expressed as

Cost = X1 + X2 + X3 + · · · + Xn (5.45)
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where X1, X2, X3, . . . , Xn are random variables representing the costs of n
WBS elements that constitute the system. From the preceding case discussion,
we saw a circumstance where FCost(x) could be approximated by a normal
distribution. This is sometimes viewed as a paradox. Since a system’s cost
historically exceeds the value anticipated, or planned, why is its distribution
function not positively skewed? The normal distribution is symmetric about
its mean; it has no skew.

There are many reasons why the cost of a system exceeds the value antici-
pated, or planned. A prime reason is a system’s cost is often based only on its
point estimate. From Equation 1.2 the point estimate of the cost of a system
is given by

xPECost = x1PEX1
+ x2PEX2

+ x3PEX3
+ · · · + xnPEXn

where xiPEXi
are the point estimates of each Xi (i = 1, . . . , n). Recall xPECost is

a value for Cost that traditionally contains no reserve dollars for uncertainties
in a system’s technical definition or cost estimation approaches. Because of
this, xPECost often falls below the 50th percentile of Cost; that is, xPECost can
have a high probability of being exceeded. This is illustrated by considering
further Case Discussion 5.1. In this case discussion, X1, X2, X3, . . . , X12 are
independent random variables representing the costs of the SSA’s twelve com-
ponents. Suppose the point estimates of these components are the modes of
Xi (i = 1, . . . , 12), given in Table 5.3. The point estimate of the cost of the SSA,
denoted by xPECostSSA

is

xPECostSSA
= Mode(X1) + Mode(X2) + Mode(X3) + · · · + Mode(X12). (5.46)

From Table 5.3, xPECostSSA
= 238.4 ($K). Since the distribution function of

CostSSA is approximately normal, in this case, we have

P(CostSSA > xPECostSSA
= 238.4) = P

(
Z >

238.4 − 244.8√
226.13

)
= 0.665.

The normal PDF of CostSSA is shown in Figure 5.14. Note that more prob-
ability exists to the right of xPECostSSA

than to its left. If the cost of the SSA
was anticipated, or planned, as the value given by xPECostSSA

, then there is
a high probability (nearly 67%) it will be exceeded. This is true despite the
distribution function of CostSSA being approximately normal.

What drives this probability is the degree to which the distribution func-
tions of each Xi (i = 1, . . . , 12) are skewed. The greater the positive skew,
the greater the probability that xPECostSSA

(defined by Equation 5.46) will be
exceeded. The greater the negative skew, the greater the probability that
xPECostSSA

will not be exceeded. In either circumstance, the distribution func-
tion of the sum of these Xi’s will, because of the central limit theorem,
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PDF for CostSSA.

frequently approach a normal. This may seem nonintuitive; nonetheless, the
sum of many random variables characterized by skewed distributions can
result in a distribution function that has no skew at all.

Last, since CostSSA is considered to have a normal distribution, in this case,
the mode of CostSSA is equal to its mean—244.8 ($K). The sum of the modes
of each Xi (i = 1, . . . , 12), seen in Table 5.3, is 238.4 ($K). In general, the sum
of the modes of n-random variables will not equal the mode of the distribution
function of the sum of these variables. If Cost = X1 + X2 + X3 + · · · + Xn and

xPECost = Mode(X1) + Mode(X2) + Mode(X3) + · · · + Mode(Xn)

then, xPECost = Mode(Cost). If the distribution function of each Xi is normal,
then, xPECost = Mode(Cost); in general, if the distribution function of each Xi
is normal, then, xPECost = Mode(Cost) = E(Cost) = Med(Cost).

5.4 Transformations of Random Variables

It is often necessary to determine the distribution function of a random vari-
able that is a function (or transformation) of one or more random variables.
For instance, the direct engineering hours to design a communication satellite
may be a function of the satellite’s weight W (lbs). Such a function might be
given by Equation 5.47.
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Hours = 4 + 2
√

W (5.47)

If W is a random variable, then Hours is a function (or transformation) of the
random variable W. In software cost analysis, the effort EffSW (staff months)
to develop software can be a function of the number of source instructions to
develop. A general form of this function is

EffSW = c1Ic2 (5.48)

where c1 and c2 are positive constants and I is the number of thousands of
delivered source instructions (KSDI) to be developed.∗ If I is a random vari-
able, then EffSW is a function of the random variable I. A question that might
be asked is “What is the 50th percentile of EffSW if the uncertainty in the num-
ber of delivered source instructions to develop is characterized by a uniform
distribution in the interval 30 ≤ x ≤ 80 KDSI?” To answer this question we
need the distribution function of EffSW given the distribution function for I.
In the preceding section, we discussed a possible distribution function for the
random variable Cost, where

Cost = X1 + X2 + X3 + · · · + Xn (5.49)

and the Xi’s (i = 1, . . . , n) were random variables representing the costs of a
system’s n WBS cost elements. In Equation 5.49, Cost is a function of n random
variables. From the central limit theorem, we saw the distribution function
of Cost can, under certain conditions, be approximately normal. What if the
central limit theorem does not apply? How, then, is the distribution func-
tion determined for a random variable that is a function of other random
variables? The following presents methods to address this question.

5.4.1 Functions of a Single Random Variable

This section presents how to determine the distribution function of a random
variable that is a function of another random variable. This is presented in the
context of continuous random variables.† Consider the following example.

Example 5.10 Suppose the direct engineering hours to design a new communi-
cation satellite is given by

Hours = 4 + 2
√

W (5.50)

where W is the satellite’s weight, in lbs. Suppose the uncertainty in the satellite’s
weight is captured by a uniform distribution whose range of possible values is

∗ Section 5.4.2 presents a detailed discussion of the function given by Equation 5.48.
† Refer to Case Discussion 3.1 for a view of this discussion from the perspective of discrete

random variables.
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given by 1000 ≤ w ≤ 2000. Suppose the satellite design team assessed 1500 lbs
to be the point estimate for weight; that is, wPE = 1500.∗

a. Determine the CDF of Hours.

b. Compute P(Hours ≤ hPE), where hPE = 4 + 2
√

wPE.

c. Determine the PDF of Hours.

Solution

a. We are given W ∼ Unif (1000, 2000). From Equation 4.4

fW(w) = 1
1000

1000 ≤ w ≤ 2000

The CDF of Hours is FHours(h) = P(Hours ≤ h), where h denotes
the possible values of Hours. Since Hours = 4 + 2

√
W, the interval

1000 ≤ w ≤ 2000 is mapped onto the interval 67.2456 ≤ h ≤ 93.4427.
Thus, for h this interval

FHours(h) = P(Hours ≤ h) = P(4 + 2
√

W ≤ h) = P

(
W ≤

(
h − 4

2

)2
)

=
[(h−4)/2]2�

1000

fW(w) dw = 1
1000

(
h − 4

2

)2
− 1

Thus, the CDF of Hours, presented in Figure 5.15, is

FHours(h) = P(Hours ≤ h)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if h < 67.2456

1
1000

(
h − 4

2

)2
− 1, if 67.2456 ≤ h ≤ 93.4427

1, if h > 93.4427

(5.51)

b. From Equation 5.50 we have hPE = 4 + 2
√

wPE; thus, hPE = 81.46
when wPE = 1500. Therefore, P(Hours ≤ hPE) = P(Hours ≤ 81.46).
From Equation 5.51 this probability is

P(Hours ≤ hPE) = P(Hours ≤ 81.46) = 1
1000

(
81.46 − 4

2

)2
− 1 = 0.50

c. To compute the PDF of Hours, we can differentiate FHours(h) with
respect to h. From Chapter 3, recall that

fHours(h) = d
dh

(FHours(h))

It follows that fHours(h) = 1
2000 (h − 4), for 67.2456 ≤ h ≤ 93.4427.

∗ Instead of using wPEW to denote the point estimate of the random variable W, we simplify the
notation and let wPE represent this value.
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In Example 5.10, the procedures to develop FHours(h) and fHours(h) are
generalized by the following theorem.

Theorem 5.11 Suppose X is a continuous random variable with PDF fX(x) > 0
for a ≤ x ≤ b. Consider the random variable Y = g(X) where y = g(x) is a strictly
increasing or decreasing differentiable function of x. Let the inverse of y = g(x) be
given by x = v(y), then Y = g(X) has the PDF

fY(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fX(v(y)) ·
∣∣∣∣d[v(y)]

dy

∣∣∣∣ , g(a) ≤ y ≤ g(b), if g(x) increasing

fX(v(y)) ·
∣∣∣∣d[v(y)]

dy

∣∣∣∣ , g(b) ≤ y ≤ g(a), if g(x) decreasing

(5.52)

If y = g(x) is strictly increasing

FY(y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ v(y)) = FX(v(y)) = FX(x) (5.53)

If y = g(x) is strictly decreasing

FY(y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X > v(y))

= 1 − FX(v(y)) = 1 − FX(x) (5.54)
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Discussion of Theorem 5.11: Applying Theorem 5.11 to Example 5.10 yields
the following:

fHours(h) = fW(v(h)) ·
∣∣∣∣d[v(h)]

dh

∣∣∣∣ , g(1000) ≤ h ≤ g(2000) (5.55)

where h = g(w) = 4 + 2
√

w and w = v(h) =
(

h−4
2

)2
. Since

fW(w) = 1
1000

, 1000 ≤ w ≤ 2000

we have fW(v(h)) = fW

((
h−4

2

)2
)

= 1
1000 and

∣∣∣∣d[v(h)]
dh

∣∣∣∣ = h − 4
2

. Substituting

this into Equation 5.55 yields

fHours(h) = 1
1000

· h − 4
2

, 67.2456 ≤ h ≤ 93.4427 (5.56)

which is the same as the PDF in part (c) of Example 5.10.
Theorem 5.11 also provides insight into the fractiles of a distribution func-

tion. In Example 5.10, h = g(w) = 4+2
√

w is a strictly increasing differentiable
function of w. From Theorem 5.11, this implies

FHours(h) = FW(w)

Thus, the value of h associated with the α-fractile of W will also be the
α-fractile of Hours. For example, in Figure 5.15 observe that

FW(1500) = 0.50 = FHours(81.46)

Here, the value of h associated with the 0.50-fractile of W is the 0.50-fractile
of Hours. Specifically,

w0.50 = 1500 and P(W ≤ w0.50) = 0.50

h0.50 = 81.46 = 4 + 2
√

w0.50 and P(Hours ≤ h0.50) = 0.50

Similarly, it can be shown (left as an exercise for the reader) that

FW(1750) = 0.75 = FHours(87.67)

The practical value of this aspect of Theorem 5.11 is high, because cost-related
equations (e.g., Equation 5.50) are often simple increasing or decreasing
differentiable functions of one variable. When Y = g(X) and Theorem 5.11
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applies, the CDF of Y is not needed to determine its fractiles. The α-fractiles of
Y are, in fact, completely determined from the α-fractiles of X. In practice, not
having to determine the CDF of Y, either analytically or through Monte Carlo
simulation, can save a great deal of mathematical effort. When possible, cost
analysts should readily take advantage of this aspect of Theorem 5.11.

Example 5.11 From the information in Example 5.10 compute
(a) E(Hours) (b) σHours

Solution

a. Two approaches are shown.

Approach 1: From Equation 3.22, we can write

E(Hours) =
93.4427�

67.2456

h · fHours(h)dh =
93.4427�

67.2456

h · 1
2000

(h − 4)dh = 81.09 hours

Approach 2: Since Hours = g(W) = 4 + 2
√

W, it follows from Proposi-
tion 3.1

E(Hours) = E(g(W)) =
2000�

1000

g(w) · fW(w)dw

=
2000�

1000

(4 + 2
√

w) · 1
1000

dw = 81.09 hours

b. To determine σHours, from Theorem 3.10 we have

Var(Hours) = E(Hours2) − [E(Hours)]2

Since

E(Hours2) =
2000�

1000

[g(w)]2 · fW(w)dw

=
2000�

1000

[
(4 + 2

√
w)
]2 · 1

1000
dw = 6632.75 (hours)2

we have

Var(Hours) = E(Hours2) − [E(Hours)]2 = 6632.75 − (81.09)2

= 57.1619 (hours)2

therefore

σHours = √
Var(Hours) = 7.56 hours
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The reader should also verify that E(Hours2) can be computed by

E(Hours2) =
93.4427�

67.2456

h2 · fHours(h)dh =
93.4427�

67.2456

h2 · 1
2000

(h − 4)dh

5.4.2 Applications to Software Cost-Schedule Models

This section presents a further discussion on functions of a single random
variable as they apply to software cost-schedule models. These models are
often used in cost analysis to determine the effort (staff months), cost (dol-
lars), and schedule (months) of a software development project. The general
forms of these models are as follows:

EffSW = c1Ic2 (5.57)

CostSW = �rEffSW (5.58)

TSW = k1(EffSW)k2 (5.59)

In Equation 5.57, EffSW is a random variable representing the software
project’s development effort (staff months), c1 and c2 are positive constants,
and I is a random variable representing the number of KDSI to be developed.∗
In Equation 5.58, CostSW is a random variable representing the software
project’s development cost (dollars) and �r is a constant† representing a labor
rate (dollars per staff month). Notice CostSW can also be expressed as a
function of I, that is,

CostSW = �r(c1Ic2) (5.60)

In Equation 5.59, TSW is a random variable representing the software project’s
development schedule (months) and k1 and k2 are positive constants. Notice
TSW can also be expressed as a function of I, that is,

TSW = k1(c1Ic2)k2 (5.61)

Equations 5.57 through 5.61 represent one approach (Boehm 1981) for deter-
mining a software development project’s effort, cost, and schedule; there are
others. For instance, EffSW might be determined as the ratio of two random
variables I and Pr as shown by Equation 5.62. Here, Pr is the software project’s
development productivity rate (e.g., the number of DSI per staff month).

EffSW = I
Pr

(5.62)

∗ Throughout this book, when I appears in the formula given by Equation 5.57 it is assumed that
I is always in KDSI. It is further assumed that I is always greater than zero.

† In this section, we treat �r as a constant to keep the discussion focused on functions of a single
random variable; however, in practice, �r is often treated as a random variable.
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Equation 5.62 is an example of a function of two random variables. Working
with such functions is discussed in Section 5.4.3.

Case Discussion 5.2: If the development effort EffSW for a software project
is defined by EffSW = c1Ic2 , and I ∼ Unif (a, b), determine FEffSW

(s), fEffSW
(s),

E(EffSW), and Var(EffSW).

Determination of FEffSW
(s)

We want the distribution function of EffSW given the distribution function for
I is uniform, in the interval a ≤ x ≤ b. From Equation 4.4 we know

fI(x) = 1
b − a

, a ≤ x ≤ b

where a and b represent the minimum and maximum possible values of I. By
definition

FEffSW
(s) = P(EffSW ≤ s) = P(c1Ic2 ≤ s)

= P

(
I ≤

(
s
c1

) 1
c2

)
=

(
s

c1

) 1
c2�

a

fI(x) dx = 1
b − a

[(
s
c1

) 1
c2 − a

]

where a ≤
(

s
c1

) 1
c2 ≤ b; therefore,

FEffSW
(s) = P(EffSW ≤ s) = 1

b − a

[(
s
c1

) 1
c2 − a

]
, a ≤

(
s
c1

) 1
c2 ≤ b (5.63)

Determination of fEffSW
(s)

Given EffSW = g(I) = c1Ic2 we can write s = g(x) = c1xc2 , which is a strictly
increasing differentiable function of x. Let the inverse of x be given by

x = v(s) =
(

s
c1

) 1
c2

From Theorem 5.11, we have

fEffSW
(s) = fI(v(s)) · d[v(s)]

ds
, g(a) ≤ s ≤ g(b)
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Therefore,

fEffSW
(s) = 1

b − a
· 1

c1c2
·
(

s
c1

) 1
c2

−1

, c1ac2 ≤ s ≤ c1bc2 (5.64)

which is also the derivative of FEffSW
(s) with respect to s. It is left to the reader

to verify Equation 5.64 is a probability density function.

Determination of E(EffSW)

From Proposition 3.1, the expected software development effort is

E(EffSW) = E(g(I)) =
b�

a

g(x)fI(x) dx

=
b�

a

c1xc2 · 1
b − a

dx = c1 · 1
b − a

b�
a

xc2 dx

Therefore

E(EffSW) = c1

c2 + 1
· 1

b − a

[
bc2+1 − ac2+1

]
(5.65)

Alternatively, Equation 5.65 could have been derived as follows:

E(EffSW) =
c1bc2�

c1ac2

s · fEffSW
(s) ds =

c1bc2�
c1ac2

s · 1
b − a

· 1
c1c2

·
(

s
c1

) 1
c2

−1

ds

Determination of Var(EffSW)

From Theorem 3.10, we know

Var(EffSW) = E(Eff 2
SW) − [

E(EffSW)
]2

Now

E(Eff 2
SW) = E(g(I)2) =

b�
a

g(x)2fI(x) dx

=
b�

a

(c1xc2)2 1
b − a

dx = 1
b − a

· c2
1

2c2 + 1

[
b2c2+1 − a2c2+1

]
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Therefore,

Var(EffSW) = 1
b − a

· c2
1

2c2 + 1

[
b2c2+1 − a2c2+1

]
− [

E(EffSW)
]2 (5.66)

where

E(EffSW) = c1

c2 + 1
· 1

b − a

[
bc2+1 − ac2+1

]

This concludes Case Discussion 5.2. The following illustrates how these
results can be applied to a software development project.

Example 5.12 Suppose the effort (staff months) to develop software for a new
system is given by EffSW = 2.8 I1.2. Suppose the uncertainty in the number of
KDSI is represented by the distribution I ∼ Unif (30, 80). Determine

a. P(EffSW ≤ 300)

b. P(EffSW ≤ E(EffSW))

c. σEffSW

d. P(CostSW ≤ 4, 500, 000) given �r = 15,000 dollars per staff month.

Solution

a. Given EffSW = 2.8 I1.2, we know from Equation 5.57 that c1 = 2.8,
c2 = 1.2. Since I ∼ Unif (30, 80), from Equation 5.63

P(EffSW ≤ 300) = 1
80 − 30

⎡
⎣(300

2.8

) 1
1.2 − 30

⎤
⎦ 30 ≤ 49.16 ≤ 80

= 0.383

Figure 5.16 shows this region of probability for EffSW , as well as
the PDF of EffSW . The PDF comes from Equation 5.64 (in Case
Discussion 5.2).

b. From Equation 5.65

E(EffSW) = 2.8
1.2 + 1

· 1
50

[
801.2+1 − 301.2+1

]
= 346.12 staff months

From Equation 5.63

P(EffSW ≤ E(EffSW)) = P(EffSW ≤ 346.12) = FEffSW
(346.12) = 0.508

c. From Equation 5.66

Var(EffSW) = 1
50

· (2.8)2

2(1.2) + 1

[
802(1.2)+1 − 301.2+1

]
− [346.12]2

= 11,608.65 (staff months)2

Therefore, σEffSW
= √

Var(EffSW) = 107.7 staff months.
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FIGURE 5.16
The PDF of EffSW in Example 5.12.

d. Given �r = 15,000 dollars per staff month, we have

P(CostSW ≤ 4,500,000) = P(�r · EffSW ≤ 4,500,000)

= P
(

EffSW ≤ 4, 500, 000
�r

)

= P
(

EffSW ≤ 4, 500, 000
15, 000

)

= P(EffSW ≤ 300) = 0.383

Example 5.13 Once again, suppose the effort (staff months) to develop software
for a new system is determined by EffSW = 2.8 I1.2, where I ∼ Unif (30, 80). If
the software development schedule (months) is given by TSW = 2.5(EffSW)0.32,
determine the schedule that has a 95% chance of not being exceeded.

Solution Three solution approaches are presented.

Approach 1: This approach operates from the CDF of I. From the infor-
mation given in this example, we have

TSW = 2.5(EffSW)0.32

= 2.5(2.8 I1.2)0.32 = 3.48 I0.384 (5.67)

Since TSW = g(I) = 3.48 I0.384 and I > 0, we can write t = g(x) = 3.48x0.384

where t and x are the values possible for TSW and I, respectively. Since t
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is a strictly increasing differentiable function of x, in this example, from
Theorem 5.11

FTSW (t) = FI(x) (5.68)

The value of t associated with the 0.95-fractile of I will equal the 0.95-
fractile of TSW . From Equation 4.5, we know

FI(x) = x − 30
80 − 30

= x − 30
50

, 30 ≤ x ≤ 80

The 0.95-fractile of I is x0.95 such that F(x0.95) = P(I ≤ x0.95) = 0.95; that
is, x0.95 is the solution to

x0.95 − 30
50

= 0.95 (5.69)

Solving Equation 5.69 for x0.95 yields x0.95 = 77.5 KDSI; thus

x0.95 = 77.5 and P(I ≤ x0.95) = 0.95

t0.95 = 18.5 = 3.48x0.384
0.95 and P(TSW ≤ t0.95) = 0.95

This is equivalent to

FI(77.5) = FTSW (18.5) = 0.95

Therefore, 18.5 months is the software development schedule that has a
95% chance of not being exceeded.

Approach 2: This approach operates from the CDF of EffSW . Since TSW =
g(EffSW) = 2.5(EffSW)0.32, we can write t = g(s) = 2.5s0.32 where t and s
are the values possible for TSW and EffSW , respectively. Since t is a strictly
increasing differentiable function of s, from Theorem 5.11

FTSW (t) = FEffSW
(s)

Thus, the value of t associated with the 0.95-fractile of EffSW will equal
the 0.95-fractile of TSW . From Case Discussion 5.2, the general formula for
FEffSW

(s) is given by Equation 5.63. It is left as an exercise for the reader
to show, for this example, that FEffSW

(518) = FTSW (18.5) = 0.95.

Approach 3: This approach involves explicitly determining the functional
form of FTSW (t) and then solving the expression FTSW (t0.95) = 0.95 for t0.95.
It is left as an exercise for the reader to show, for this example,
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FTSW (t) = 1
50

⎡
⎣
(

t
3.48

) 1
0.384 − 30

⎤
⎦ , 12.8 ≤ t < 18.7∗

From this expression it follows, after rounding, that FTSW (18.5) = 0.95.

Example 5.14 If TSW = 2.5(EffSW)0.32 and EffSW = 2.8 I1.2 then write a
general formula for P(TSW ≤ t), if I ∼ Trng(30, 50, 80).

Solution Notice TSW can be written as TSW = 2.5(2.8I1.2)0.32 = 3.48I0.384.
This implies t = g(x) = 3.48x0.384, where t and x are possible values of
TSW and I, respectively. Note that t is a strictly increasing differentiable
function of x; therefore, from Theorem 5.11.

FTSW (t) = P(TSW ≤ t) = P(g(I) ≤ t) = P(I ≤ v(t)) = FI(v(t)) = FI(x)

where

x = v(t) =
(

t
3.48

) 1
0.384

In this equation, x is the inverse of t = g(x) = 3.48x0.384. Since I is given
to have a triangular distribution function, from Equation 4.7

FI(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < a

(x − a)2

(b − a)(m − a)
, if a ≤ x < m

1 − (b − x)2

(b − a)(b − m)
, if m ≤ x < b

1, if x ≥ b

thus,

P(TSW ≤ t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
(

t
3.48

) 1
0.384

< 30

1
50

· 1
20

⎛
⎝( t

3.48

) 1
0.384 − 30

⎞
⎠

2

, if 30 ≤
(

t
3.48

) 1
0.384

< 50

1 − 1
50

· 1
30

⎛
⎝80 −

(
t

3.48

) 1
0.384

⎞
⎠

2

, if 50 ≤
(

t
3.48

) 1
0.384

< 80

1, if
(

t
3.48

) 1
0.384 ≥ 80

∗ These endpoints are rounded from the interval 12.8467 ≤ t < 18.7226.



Functions of Random Variables 173

Equations 5.70 through 5.85 present general probability formulas for the soft-
ware effort and software schedule models defined by Equation 5.57 and
Equation 5.59, respectively (Garvey and Powell 1989).

Given EffSW = c1Ic2 , if I ∼ Unif (a, b) then

• Cumulative Distribution Function

FEffSW (s) = P(EffSW ≤ s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
(

s
c1

) 1
c2

< a

1
b − a

[(
s
c1

) 1
c2 − a

]
, a ≤

(
s
c1

) 1
c2

< b

1,
(

s
c1

) 1
c2 ≥ b

(5.70)

• Probability Density Function

fEffSW (s) = 1
b − a

· 1
c1c2

·
(

s
c1

) 1
c2

−1

, a ≤
(

s
c1

) 1
c2 ≤ b (5.71)

• Mean (staff months)

E(EffSW) = c1

c2 + 1
· 1

b − a

[
bc2+1 − ac2+1

]
(5.72)

• Variance (staff months)2

Var(EffSW) = 1
b − a

· c2
1

2c2 + 1

[
b2c2+1 − a2c2+1

]
− [E(EffSW)]2 (5.73)
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Given EffSW = c1Ic2 , if I ∼ Trng(a, m, b) then

• Cumulative Distribution Function

FEffSW (s) = P(EffSW ≤ s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
(

s
c1

) 1
c2

< a

1
b − a

· 1
m − a

[(
s
c1

) 1
c2 − a

]2

, a ≤
(

s
c1

) 1
c2

< m

1 − 1
b − a

· 1
b − m

[
b −

(
s
c1

) 1
c2

]2

, m ≤
(

s
c1

) 1
c2

< b

1,
(

s
c1

) 1
c2 ≥ b

(5.74)

• Probability Density Function

fEffSW (s) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
b − a

· 1
m − a

· 1
c2

· 1
c1

(
s
c1

) 1
c2

−1

×
[(

s
c1

) 1
c2 − a

]
, a ≤

(
s
c1

) 1
c2

< m

2
b − a

· 1
b − m

· 1
c2

· 1
c1

(
s
c1

) 1
c2

−1

×
[
b −

(
s
c1

) 1
c2

]
, m ≤

(
s
c1

) 1
c2 ≤ b

(5.75)

• Mean (staff months)

E(EffSW) = c1
2

b − a
· 1

m − a

[
mc2+2 − ac2+2

c2 + 2
+ ac2+2 − amc2+1

c2 + 1

]

+ c1
2

b − a
· 1

m − b

[
bc2+2 − mc2+2

c2 + 2
+ bmc2+1 − bc2+2

c2 + 1

]

(5.76)
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• Variance (staff months)2

Var(EffSW) = c2
1

2
b − a

· 1
m − a

[
m2c2+2 − a2c2+2

2c2 + 2
+ a2c2+2 − am2c2+1

2c2 + 1

]

+ c2
1

2
b − a

· 1
m − b

[
b2c2+2 − m2c2+2

2c2 + 2
+ bm2c2+1 − b2c2+2

2c2 + 1

]

− [E(EffSW)]2 (5.77)

Given TSW = k1(EffSW)k2 ≡ TSW = k1(c1Ic2)k2 , if I ∼ Unif (a, b) then

• Cumulative Distribution Function

FTSW (t) = P(TSW ≤ t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(
t

k1ck2
1

) 1
c2k2

< a

1
b − a

⎡
⎣
(

t

k1ck2
1

) 1
c2k2

− a

⎤
⎦ , a ≤

(
t

k1ck2
1

) 1
c2k2

< b

1,

(
t

k1ck2
1

) 1
c2k2

≥ b

(5.78)

• Probability Density Function

fTSW (t) = 1
b − a

· 1
k1k2

· 1

c2ck2
1

·
(

t

k1ck2
1

) 1
c2k2

−1

, a ≤
(

t

k1ck2
1

) 1
c2k2

≤ b

(5.79)

• Mean (staff months)

E(TSW) = k1ck2
1

c2k2 + 1
· 1

b − a

[
bc2k2+1 − ac2k2+1

]
(5.80)
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• Variance (staff months)2

Var(TSW) = k2
1c2k2

1
2c2k2 + 1

· 1
b − a

[
b2c2k2+1 − a2c2k2+1

]
− [E(TSW)]2 (5.81)

Given TSW = k1(EffSW)k2 ≡ TSW = k1(c1Ic2)k2 , if I ∼ Trng(a, m, b) then

• Cumulative Distribution Function

FTSW (t) = P(TSW ≤ t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(
t

k1ck2
1

) 1
c2k2

< a

1
b − a

· 1
m − a

×
⎡
⎣
(

t

k1ck2
1

) 1
c2k2

− a

⎤
⎦

2

, a ≤
(

t

k1ck2
1

) 1
c2k2

< m

1 − 1
b − a

· 1
b − m

×
⎡
⎣b −

(
t

k1ck2
1

) 1
c2k2

⎤
⎦

2

, m ≤
(

t

k1ck2
1

) 1
c2k2

< b

1,

(
t

k1ck2
1

) 1
c2k2

≥ b

(5.82)

• Probability Density Function

fTSW (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
b − a

· 1
m − a

· 1
c2k2

· 1

k1ck2
1

(
t

k1ck2
1

) 1
c2k2

−1

×
⎡
⎣
(

t

k1ck2
1

) 1
c2k2

− a

⎤
⎦ , a ≤

(
t

k1ck2
1

) 1
c2k2

< m

2
b − a

· 1
b − m

· 1
c2k2

· 1

k1ck2
1

(
t

k1ck2
1

) 1
c2k2

−1

×
⎡
⎣b −

(
t

k1ck2
1

) 1
c2k2

⎤
⎦ , m ≤

(
t

k1ck2
1

) 1
c2k2

≤ b

(5.83)
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• Mean (staff months)

E(TSW) = k1ck2
1

2
b − a

· 1
m − a

[
mc2k2+2 − ac2k2+2

c2k2 + 2
+ ac2k2+2 − amc2k2+1

c2k2 + 1

]

+ k1ck2
1

2
b − a

· 1
m − b

[
bc2k2+2 − mc2k2+2

c2k2 + 2
+ bmc2k2+1 − bc2k2+2

c2k2 + 1

]

(5.84)

• Variance (staff months)2

Var(TSW) = (k1ck2
1 )2 2

b − a
· 1

m − a

×
[

m2c2k2+2 − a2c2k2+2

2c2k2 + 2
+ a2c2k2+2 − am2c2k2+1

2c2k2 + 1

]

+ (k1ck2
1 )2 2

b − a
· 1

m − b

×
[

b2c2k2+2 − m2c2k2+2

2c2k2 + 2
+ bm2c2k2+1 − b2c2k2+2

2c2k2 + 1

]

− [E(TSW)]2 (5.85)

Example 5.15 Suppose the effort and schedule of a software project are given by
EffSW = c1Ic2 and TSW = k1(EffSW)k2 .

a. Develop the correlation formula between EffSW and TSW, if I ∼ Unif (a, b).

b. Compute this correlation if c1 = 2.8, c2 = 1.2, k1 = 2.5, k2 = 0.32, and
I ∼ Unif (30, 80).

c. Discuss what the correlation implies about EffSW and TSW.

Solution

a. From Equation 5.30, the correlation between EffSW and TSW is

ρEffSW ,TSW = E(EffSWTSW) − E(EffSW)E(TSW)

σEffSW
σTSW

(5.86)

The first term in the numerator can be written as

E(EffSWTSW) = E(c1Ic2 · k1(c1Ic2)k2) = k1ck2+1
1 E(Ic2(k2+1))

Since

E(Ic2(k2+1)) =
b�

a

tc2(k2+1)fI(t) dt = 1
b − a

· 1
c2(k2 + 1) + 1

×
[
bc2(k2+1)+1 − ac2(k2+1)+1

]
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we have

E(EffSWTSW) = k1ck2+1
1

1
b − a

· 1
c2(k2 + 1) + 1

[
bc2(k2+1)+1 − ac2(k2+1)+1

]

From Equation 5.65, we have

E(EffSW) = c1

c2 + 1
· 1

b − a

[
bc2+1 − ac2+1

]
(5.87)

From Equation 5.66, we have

σEffSW
=
√

1
b − a

· c2
1

2c2 + 1

[
b2c2+1 − a2c2+1

]− [
E(EffSW)

]2 (5.88)

It is left as an exercise for the reader to show that

E(TSW) = k1ck2
1

c2k2 + 1
· 1

b − a

[
bc2k2+1 − ac2k2+1

]
(5.89)

σTSW =
√

k2
1c2k2

1
2c2k2 + 1

· 1
b − a

[
b2c2k2+1 − a2c2k2+1

]− [E(TSW)]2 (5.90)

Thus, if I ∼ Unif (a, b), then the general formula for the correlation
between EffSW and TSW is given by Equation 5.91.

ρEffSW ,TSW =
k1c

k2+1
1 · 1

b−a · 1
c2(k2+1)+1

[
bc2(k2+1)+1 − ac2(k2+1)+1

]
− E(EffSW )E(TSW )

√
c2
1

2c2+1 · 1
b−a

[
b2c2+1 − a2c2+1

]
− [

E(EffSW )
]2
√√√√ k2

1c
2k2
1

2c2k2+1 · 1
b−a

[
b2c2k2+1 − a2c2k2+1

]
− [

E(TSW )
]2

(5.91)

b. Substituting c1 = 2.8, c2 = 1.2, k1 = 2.5, k2 = 0.32, a = 30, and
b = 80 into these expressions yields

E(EffSWTSW) = 5736.2323

E(EffSW) = 346.12, Var(EffSW) = 11,610.31

E(TSW) = 16.055, Var(TSW) = 2.798

Therefore, from Equation 5.91, the correlation between EffSW and
TSW is ρEffSW ,TSW = 0.995.

c. Although the true relationship between EffSW and TSW is nonlinear,
a correlation coefficient this close to unity indicates the relationship
is not statistically significantly different from linear in the region
165.85 ≤ s ≤ 538.10. This is illustrated in Figure 5.17.

Example 5.16 Suppose a new radar system requires developing 14 software
functions listed in Table 5.5. Let the uncertainties in the amount of code to develop
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t
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12.8
165.85 346.12

TSW = 2.5 (EffSW)0.32

E(EffSW) = 346.12
(Refer to Example 5.12,
part (b))

EffSW

53.81
sStaff Months

FIGURE 5.17
A plot of TSW versus EffSW from Example 5.15.

TABLE 5.5

Radar Software Functions and Size Uncertainty Assessments

Min (KDSI) Mode (KDSI) Max (KDSI)

Post Processor

Radar Report Processor I1 3.6 4.0 4.8
Radar Control Processor I2 5.4 6.0 7.2

Seco Processor I3 1.8 2.0 2.4
Auto Monitoring I4 4.5 5.0 6.0

Network Interfacing I5 1.8 2.0 2.4
System Control Processor

Mode Control I6 10.8 12.0 14.4
Display Console I7 13.5 15.0 18.0
Missile Impact Prediction

OS and Utilities I8 12.6 14.0 16.8
Operational Program I9 27.0 30.0 36.0

Satellite Test Program I10 12.6 14.0 16.8
Library I11 10.8 12.0 14.4

Data Reduction I12 29.7 33.0 39.6
Seco Support I13 14.4 16.0 19.2
Communications I14 6.3 7.0 8.4

Total ITotal 154.8 172.0 206.4

Note: The sum of the modes is not the mode of the distribution function of ITotal.

be represented by the random variables I1, I2, I3, . . . , I14, where each I is in KDSI.
Assume each I is characterized by a triangular distribution function. Suppose
I1, I2, I3, . . . , I14 are independent random variables and

ITotal = I1 + I2 + I3 + · · · + I14.
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a. What is the mean and variance of ITotal?

b. What distribution function approximates the distribution of ITotal?

c. Determine the 0.50-fractile of EffSW = 2.8(ITotal)
1.2.

Solution

a. We are given the distribution function for each I is triangular, that is,

I1 ∼ Trng(3.6, 4.0, 4.8), I2 ∼ Trng(5.4, 6.0, 7.2),

I3 ∼ Trng(1.8, 2.0, 2.4), . . . , I14 ∼ Trng(6.3, 7.0, 8.4)

From Theorem 5.7 (Equation 5.37)

E(ITotal) = E(I1) + E(I2) + E(I3) + · · · + E(I14) (5.92)

Since each I has a triangular distribution, from Theorem 4.3

E(I1) = 1
3
(3.6 + 4.0 + 4.8) = 4.13

E(I2) = 1
3
(5.4 + 6.0 + 7.2) = 6.2

and so forth. Substituting these values into Equation 5.92 yields

E(ITotal) = 4.13 + 6.2 + 2.067 + · · · + 7.23 = 177.73 KDSI

Since I1, I2, I3, . . . , I14 are independent,∗ from Equation 5.39

Var(ITotal) = Var(I1) + Var(I2) + Var(I3) + · · · + Var(I14)

From Theorem 4.3

Var(I1) = 1
18

{
(4.0 − 3.6)(4.0 − 4.8) + (4.8 − 3.6)2

}
= 0.0622

Following a similar set of calculations for I2, I3, . . . , I14, it can be
shown that

Var(ITotal) = 12.77 KDSI2

b. Since I1, I2, I3, . . . , I14 are given to be independent random variables,
the total size of the radar software ITotal is the sum of 14 inde-
pendent random variables. By the central limit theorem (Theorem

∗ From Theorem 5.4, since I1, I2, I3, . . . , I14 are independent random variables the correlation
between each pair of I1, I2, I3, . . . , I14 is zero.
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5.10), it is reasonable to assume the distribution function of ITotal
will be approximately normal. From part (a) this means ITotal ∼
N(E(ITotal), Var(ITotal)) = N(177.73, 12.77).

c. In this example, we are given EffSW = 2.8(ITotal)
1.2. If x and s are the

values possible for ITotal and EffSW , respectively, then s = 2.8x1.2 is a
strictly increasing differentiable function of x. From Theorem 5.11,
this implies

FITotal (x) = FEffSW
(s) (5.93)

From part (b) we know that FITotal (x) = 0.50 when x = 177.73 KDSI;
therefore, x0.50 = 177.73, which is the 0.50-fractile of ITotal. From
Equation 5.93

FITotal (177.73) = 0.50 = FEffSW
(s)

Since s = 2.8x1.2, when x = x0.50 = 177.73 we have s = 1402.4;
thus

FITotal (177.73) = 0.50 = FEffSW
(1402.4)

In summary, the 0.50-fractile of EffSW is 1402.4 staff months.
This is the same as saying Med(EffSW) = 1402.4 staff months.
It is left as an exercise to determine the 0.25 and 0.75 fractiles
of EffSW .

5.4.3 Functions of Two Random Variables

Thus far, we have focused on deriving the probability distribution function
for a function of a single random variable. Functions of two or more random
variables commonly occur in cost uncertainty analysis. For instance, if the
unit cost of an unmanned spacecraft is determined by

UC = 5.48(SCwt)
0.94(BOLP)0.30

then UC is a function of two random variables—spacecraft dry weight SCwt
and beginning-of-life power BOLP. Likewise, if the software development
effort for a project is determined by

EffSW = I
Pr

(5.94)

then EffSW is a function of two random variables—the amount of code to
develop I (in DSI) and the development productivity Pr (in DSI per staff
month). The following theorem provides a set of general integral formulas for
determining the density functions of sums, differences, products, and quo-
tients of two random variables. We shall see that determining this density
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function, in closed form, can be computationally challenging. In many cases
a closed form is not even possible. In such circumstances, computer-based
methods (e.g., Monte Carlo simulation) are often used to approximate the
density function.

Theorem 5.12 (Mood et al. 1974) Let X and Y be continuous random variables
with joint density f (x, y). If U is a function of X and Y with density function g(u),
then

U = X + Y has density g(u) =
∞�

−∞
f (x, u − x) dx =

∞�
−∞

f (u − y, y) dy

U = X − Y has density g(u) =
∞�

−∞
f (x, x − u) dx =

∞�
−∞

f (u + y, y) dy

U = XY has density g(u) =
∞�

−∞

1
|x| f

(
x,

u
x

)
dx =

∞�
−∞

1
|y| f

(
u
y

, y
)

dy

U = X/Y has density g(u) =
∞�

−∞
|x| f (ux, x) dx =

∞�
−∞

|y| f (uy, y) dy

The reader is directed to Mood et al. (1974) for a proof of this theorem.
Theorem 5.12 provides a number of interesting results. For instance, sup-
pose U1, U2, and U3 are independent random variables with U1 ∼ Unif (0, 1),
U2 ∼ Unif (0, 1), and U3 ∼ Unif (0, 1). If U = U1 + U2, then the density
function for U can be shown to be triangular (Cramer 1966). Furthermore, if
U = U1 + U2 + U3, then the density function for U is “bell-shaped”—but not
yet normally distributed. Figure 5.18 (Cramer 1966) illustrates these results.

fU1(u)

fU1+U2 (u)

fU1+U2+U3 (u)=

1

0.75

0
1 1.5 2 3

1
2 u2, 0 < u < 1

1
2 (u2 – 3(u –1)2),
1
2 (u2 – 3(u – 1)2 + 3(u – 2)2),

1 < u < 2

2 < u < 3

FIGURE 5.18
Sums of independent Unif (0, 1) random variables.
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In continuation, suppose the random variable U is defined by

U = U1 + U2 + U3 + · · · + Un

where U1, U2, U3, . . . , Un are independent random variables and Ui ∼
Unif (0, 1) for i = 1, . . . , n. By the central limit theorem, as n increases the
distribution function of U will rapidly approach a normal distribution. This
remarkable result is further discussed and illustrated in Appendix A.

The following presents an application of Theorem 5.12. A PDF for software
development effort, defined by Equation 5.94, is derived.

Example 5.17 In Example 5.3, the effort EffSW to develop a new software
application was given by

EffSW = X
Y

where X = I is the amount of code to develop (in DSI) and Y = Pr is the devel-
opment productivity (in DSI per staff month). Suppose X and Y are continuous
random variables with joint PDF

f (x, y) =
⎧⎨
⎩

1
5(106)

, 50, 000 ≤ x ≤ 100, 000, 100 ≤ y ≤ 200

0, otherwise

a. Use Theorem 5.12 to find the PDF of EffSW.

b. Verify P(EffSW ≤ 300) = 0.0333 and P(EffSW ≤ 610) ≈ 0.75.

c. From part (a), determine E(EffSW).

Solution

a. Since EffSW is a ratio of two random variables, from Theorem 5.12
EffSW has the PDF g(u), where

g(u) =
∞�

−∞
|y| f (uy, y) dy

In this equation, u represents feasible values of the random variable
EffSW (staff months). To use the integral given by g(u), it is necessary
to define the regions of integration specific to this example. These
regions are shown in Figure 5.19. From Figure 5.19, we see that

g(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

200�
50,000

u

1
5(106)

y dy, 250 ≤ u ≤ 500

100,000
u�

100

1
5(106)

y dy, 500 ≤ u ≤ 1000
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50,000
u

100,000
u
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Staff Months
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u

EffSW

Y 
= 

P r

Given

EffSW = 

I~ Unif (50,000, 100,000)
Pr ~ Unif (100, 200)

–––X
Y

I
Pr

FIGURE 5.19
Regions of integration for g(u) in Example 5.17.

0.003

250 400 500 600 700
EffSW

800 900

Staff Months

1000
u

g(u)

FIGURE 5.20
Probability density function for EffSW .

The PDF of EffSW is, therefore, given by Equation 5.95.

g(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

· 1
5(106)

{
(200)2 −

(
50, 000

u

)2
}

, 250 ≤ u ≤ 500

1
2

· 1
5(106)

{(
100, 000

u

)2
− (100)2

}
, 500 ≤ u ≤ 1000

(5.95)

A plot of this PDF is shown in Figure 5.20.

b. Using Equation 5.95, probabilities associated with various values of
EffSW can be computed. For instance, the probability that EffSW ≤
300 staff months is
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P(EffSW ≤ 300) =
300�

250

1
2

· 1
5(106)

{
(200)2 −

(
50, 000

u

)2
}

du = 0.0333

This result is consistent with Example 5.3. The probability EffSW ≤
610 staff months is

P(EffSW ≤ 610) =
500�

250

1
2

· 1
5(106)

{
(200)2 −

(
50, 000

u

)2
}

du

+
610�

500

1
2

· 1
5(106)

{(
100, 000

u

)2
− (100)2

}
du

= 0.50 + 0.250656 ≈ 0.75

A family of boundary curves for EffSW is presented in Figure 5.21.
Shown are values of EffSW for various combinations of the num-
ber of DSI to develop X = I and the development productivity rate
Y = Pr (DSI per staff month).

c. Last, from Equation 5.95 the expected effort can be computed;
specifically,

E(EffSW) =
500�

250

u · 1
2

· 1
5(106)

{
(200)2 −

(
50, 000

u

)2
}

du

+
1000�
500

u · 1
2

· 1
5(106)

{(
100, 000

u

)2
− (100)2

}
du

= 519.86 staff months

200

313

410

500

610

50,000 61,000 80,000
X = I

100,000

800

159.74

Y = Pr

X
Y

121.95

100

I
Pr

P (EffSW ≤ 313) = 0.05
P (EffSW ≤ 410) = 0.25
P (EffSW ≤ 500) = 0.50
P (EffSW ≤ 610) = 0.75
P (EffSW ≤ 800) = 0.95

Staff Months

––EffSW =

FIGURE 5.21
Boundary curves for EffSW and associated probabilities.
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Theorem 5.12 provides a way to determine the PDF of sums, differences,
products, and quotients of two random variables. The integrals in The-
orem 5.12 are classically known as convolution integrals. In many applied
problems, these integrals are hard to determine. In cost uncertainty analy-
sis, conditions often prevail that enable analysts to approximate the form of
a PDF. If an approximation can be found (or theoretically claimed), then it
is unnecessary to compute a convolution integral. For instance, we know
(from the central limit theorem) the sum of a sufficiently large number of
independent random variables will approach the normal distribution. Sim-
ilarly, from the central limit theorem, we know the product of a sufficiently
large number of independent random variables will approach the lognormal
distribution.

The last topic discussed in this chapter is the Mellin transform. The Mellin
transform is a useful technique for computing the moments of products and
quotients of many random variables. The application of the Mellin transform
to cost functions comprised of two or more random variables is emphasized.

5.5 Mellin Transform and Its Application to Cost Functions

This section presents a little known technique for determining moments of
products and quotients of random variables. Known as the Mellin transform
(Epstein 1948, Giffin 1975), it works on random variables that are continu-
ous, independent, and nonnegative.∗ The Mellin transform is well suited to
cost functions since Cost is essentially a nonnegative random variable. The
following defines the Mellin transform. Examples are provided to illustrate
its use from a cost perspective.

Definition 5.1 If X is a nonnegative random variable, 0 < x < ∞, the Mellin
transform of its PDF fX(x) is

MX(s) =
∞�
0

xs−1fX(x) dx (5.96)

for all s for which the integral exists.

From Equation 5.96 it can be seen that

MX(1) =
∞�
0

fX(x) dx = 1 (5.97)

∗ An extension of the Mellin transform technique to random variables that are not everywhere
positive is discussed by Epstein (1948).
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MX(2) =
∞�
0

x fX(x) dx = E(X) (5.98)

MX(3) =
∞�
0

x2 fX(x) dx = E(X2) (5.99)

From these equations it follows from Equation 3.33 that

MX(s) = E(Xs−1) (5.100)

It also immediately follows that

Var(X) = MX(3) − [MX(2)]2 (5.101)

The Mellin transform is very useful when dealing with random variables
raised to a power. For example, if for any real a we have Y = Xa, then

MY(s) = E
(

Ys−1
)

= E
((

Xa)s−1
)

= E
((

Xas−a))

= E
((

X(as−a+1)−1
))

= MX(as − a + 1) (5.102)

As an illustration, consider the Mellin transform of EffSW = 2.8I1.2. This yields

MEffSW
(s) = E

(
Eff s−1

SW

)
= E

((
2.8I1.2

)s−1
)

= E
((

2.8s−1I1.2s−1.2
))

= 2.8s−1E((I(1.2s−1.2+1)−1)) = 2.8s−1MI(1.2s − 1.2 + 1) (5.103)

therefore,

MEffSW
(s) = 2.8s−1MI(1.2s − 1.2 + 1) (5.104)

Equation 5.104 provides a way to generate moments of the random variable
EffSW . For instance, the expected effort E(EffSW) can be written in terms of
Equation 5.104 as follows:

E(EffSW) = MEffSW
(2) = 2.8MI(2.2)

For example, if I ∼ Unif (30, 80) then from Equation 5.96

MI(s) =
∞�
0

ts−1 fI(t) dt =
80�

30

ts−1 1
50

dt = 1
50

[
80s − 30s

s

]
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where s = 0. Therefore,

E(EffSW) = MEffSW
(2) = 2.8MI(2.2)

= (2.8)
1

50

[
802.2 − 302.2

2.2

]
= 346.12 staff months (5.105)

This value agrees with the value of E(EffSW) computed by Equation 5.65 in
Example 5.12. Furthermore, note that Equation 5.105 is a specific application
of the general formula for E(EffSW) given by Equation 5.65. The following
presents an important convolution property of the Mellin transform.

Theorem 5.13 (Giffin 1975) Let X, Y, and W be independent random variables
with PDFs fX(x), fY(y), and fW(w), respectively. If α, β1, β2, β3 are constants and

Z = αXβ1 Yβ2 Wβ3

then

MZ(s) = αs−1MX(β1s − β1 + 1)MY(β2s − β2 + 1)MW(β3s − β3 + 1)�

From Theorem 5.13, if Z = XY, then

MZ(s) = MX(s)MY(s) (5.106)

Similarly, from Theorem 5.13, if Z = X/Y, then

MZ(s) = MX(s)MY(2 − s) (5.107)

Equations 5.108 through 5.111 present Mellin transforms for selected distri-
bution functions often used in cost uncertainty analysis. The distribution of
X and its Mellin transform MX(s), s = 0, −1, are given.

• X ∼ Unif (a, b)

MX(s) = 1
s(b − a)

(bs − as) (5.108)

• X ∼ Trng(a, m, b)

MX(s) = 2
s(s + 1)(b − a)

[
b (bs − ms)

b − m
− a (ms − as)

m − a

]
(5.109)
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• X ∼ Trap(a, m1, m2, b)

MX(s) = L1L3

[
ms

1 (sm1 − (s + 1)a) + as+1]
s(s + 1)

+ L1

(
ms

2 − ms
1

)
s

+ L1L2

[
ms

2 (sm2 − (s + 1)b) + bs+1]
s(s + 1)

(5.110)

where L1 = 2
(m2 + b − a − m1)

L2 = 1
(b − m2)

L3 = 2
(m1 − a)

• X ∼ LogN(μY,σ2
Y)

MX(s) = eμY(s−1)+ 1
2σ

2
Y(s−1)2

(5.111)

Example 5.18∗ Let the unit cost UC of an unmanned spacecraft be given by

UC = 5.48(SCwt)
0.94(BOLP)0.30

where UC is a function of SCwt (the spacecraft’s weight in lbs) and BOLP (the
spacecraft’s beginning-of-life power in watts). Suppose point estimates for weight
and power are 6500 lbs and 2000 watts; that is,

wPESCwt
= 6500 and jPEBOLP = 2000

where possible values for SCwt and BOLP are given by w and j, respectively.
If the uncertainties around these point estimates are described by the PDFs in
Figure 5.22, use the Mellin transform to compute the expected unit cost E(UC).

Solution To simplify notation, let X = SCwt, Y = BOLP, and Z =
UC. We then need to compute E(Z), where Z = 5.48X0.94Y0.30. From
Theorem 5.13, the Mellin transform of Z is

MZ(s) = 5.48s−1MX(0.94s − 0.94 + 1)MY(0.30s − 0.30 + 1)

fSCwt(w)
0.001

5000 6500 7000
w

fBOLP( j)
0.00286

wattslbs

1800 2000 2500
j

FIGURE 5.22
PDFs for SCwt and BOLP.

∗ This example is an adaptation from Lurie, P. M., and M. S. Goldberg. 1993. A Handbook of Cost
Risk Analysis Methods, P-2734. Alexandria, VA: The Institute for Defense Analyses.
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From Equation 5.100

E(UC) = E(Z) = MZ(2) = 5.48MX(1.94)MY(1.30)

Since the PDFs for weight and power are triangular, from Equation 5.109

MX(1.94) = 2
1.94(2.94)(2000)

×
[

7000(70001.94 − 65001.94)

7000 − 6500
− 5000(65001.94 − 50001.94)

6500 − 5000

]

= 3652.486

MY(1.30) = 2
1.30(2.30)(700)

×
[

2500(25001.30 − 20001.30)

2500 − 2000
− 1800(20001.30 − 18001.30)

2000 − 1800

]

= 9.918

Therefore

E(UC) = E(Z) = MZ(2) = 198.5 ($K)

Let us discuss this example further. If the point estimates for SCwt and
BOLP were substituted into UC, then

UCPE = 5.48(6500)0.94(2000)0.30 = 205.7 ($K)

In this example, why is E(UC) < UCPE? As seen in Figure 5.22 the skew of
SCwt is negative. There is far more probability the spacecraft’s weight will fall
to the left of 6500 lbs than to the right of 6500 lbs. Furthermore, the variance
of SCwt is significantly greater than the variance of BOLP; showing this is left
for the reader. For these reasons, we have an expected cost that is less than
the point estimate of the unit cost.

Example 5.19 A new software application is to be developed. Suppose the appli-
cation consists of a mixture of new code INew and reused code IReused. Let the
effort associated with developing the application be a function of the equivalent
size IEquiv, where (from [Conte et al. 1986])

IEquiv = INew + I0.857
Reused (5.112)

Suppose values for INew and IReused are uncertain. If INew and IReused are indepen-
dent random variables with PDFs given in Figure 5.23, use the Mellin transform
to compute E(IEquiv) and σIEquiv .

Solution We are given IEquiv = INew + I0.857
Reused. From Theorems 5.7 and 5.8

E(IEquiv) = E(INew) + E(I0.857
Reused)

Var(IEquiv) = Var(INew) + Var(I0.857
Reused)
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25,000

0.00004

DSI x

fINew
(x)

50,000 100,000

0.00004

DSI x

fIReused
(x)

150,000125,000

FIGURE 5.23
Probability density functions for INew and IReused.

Computing E(IEquiv)

We have E(IEquiv) = E(INew) + E(I0.857
Reused). From Equation 5.98 E(INew) =

MINew (2). Suppose we let Z = I0.857
Reused, then from Theorem 5.13

MZ(s) = MIReused (0.857(s − 1) + 1)

E
(

I0.857
Reused

)
= MZ(2) = MIReused (0.857(2 − 1) + 1) = MIReused (1.857)

From this, we have

E(IEquiv) = MINew (2) + MIReused (1.857)

Since INew ∼ Unif (25,000, 50,000), from Equation 5.108 MINew (2) =
37,500. Similarly, since IReused ∼ Trng(100,000, 125,000, 150,000), from
Equation 5.109 MIReused (1.857) = 23,327.8; therefore,

E(IEquiv) = 37,500 + 23,327.8 = 60,827.8 DSI ≈ 61 KDSI

Computing σIEquiv

To compute σIEquiv , we begin by computing Var(IEquiv). Since INew and
IReused are independent random variables

Var(IEquiv) = Var(INew) + Var
(

I0.857
Reused

)

From Equation 5.101

Var (INew) = MINew(3) − (
MINew (2)

)2

We can write

Var
(

I0.857
Reused

)
= E

((
I0.857
Reused

)2
)

−
(

E
(

I0.857
Reused

))2

= E
(

I1.714
Reused

)
− (

MIReused (1.857)
)2
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Suppose we let W = I1.714
Reused, then from Theorem 5.13

MW(s) = MIReused (1.714(s − 1) + 1)

E
(

I1.714
Reused

)
= MW(2) = MIReused (1.714(2 − 1) + 1) = MIReused (2.714)

Therefore, Var
(

I0.857
Reused

)
= MIReused (2.714) − (MIReused (1.857))2, from which

Var(IEquiv) = MINew (3) − (MINew (2))2 + MIReused (2.714) − (MIReused (1.857))2

From Equation 5.108, MINew (3) = 1.45833(10)9 and MINew(2) = 37,500.
From Equation 5.109, MIReused (2.714) = 5.46856(10)8 and MIReused (1.857) =
23,327.8. Substituting these values into

Var(IEquiv) = MINew (3) − (MINew (2))2 + MIReused (2.714) − (MIReused (1.857))2

produces σIEquiv =
√

Var(IEquiv) = 7,399.49 DSI ≈ 7.4 KDSI�

Case Discussion 5.3: In Example 5.2, the effort for system test was given by
the EffSysTest = XY, where X is staff-level and Y is the number of months. Sup-
pose X and Y are independent random variables with distribution functions
shown in Figure 5.24.∗

a. Use a convolution integral in Theorem 5.12 to develop a general
formula for the PDF of EffSysTest. Plot the density function.

b. Using the PDF of EffSysTest compute the mean of EffSysTest, P(EffSysTest ≤
E(EffSysTest)), and P(EffSysTest ≤ 173).

c. Use the Mellin transform to compute the mean and variance of
EffSysTest.

0.1

f X
(x
)

5 15
x

Staff

0.08333

f Y
(y
)

12 24
y

Months

FIGURE 5.24
Marginal distribution for X (staff) and Y (months).

∗ This is a slight variation from Example 5.2, where the range of possible values for Y was given
as 12–36 months. It is left to the reader to study how the problem solution presented in Case
Discussion 5.3 changes, if Y varies from 12–36 months instead of 12–24 months.
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Given
EffSysTest = XY
X ~ Unif (5, 15)
Y ~ Unif (12, 24)

24

12
60 120 180 360

Staff Months

EffSysTest

Y 
m

on
th

s

u
5

u
15

u

FIGURE 5.25
Region of integration for g(u).

Discussion:

a. Since X and Y are independent, their joint distribution function is

f (x, y) = 1
10

· 1
12

= 1
120

, 5 ≤ x ≤ 15, 12 ≤ y ≤ 24 (5.113)

Let EffSysTest = U = XY. Let g(u) represent the PDF of EffSysTest. Since
EffSysTest is a product of two random variables, from Theorem 5.12

g(u) =
∞�

−∞

1
|y| f

(
u
y

, y
)

dy (5.114)

The regions of integration for g(u) are shown in Figure 5.25.
From Figure 5.25, and Equation 5.114, the PDF of EffSysTest is given

by the three integrals over the following regions:

g(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
5�

12

1
y

· 1
120

dy = 1
120

ln
( u

60

)
, 60 ≤ u ≤ 120

24�
12

1
y

· 1
120

dy = 1
120

ln (2) , 120 ≤ u ≤ 180

24�
u
15

1
y

· 1
120

dy = 1
120

ln
(

360
u

)
, 180 ≤ u ≤ 360

(5.115)

Equation 5.115 is the PDF of EffSysTest. It is left to the reader to check
that g(u) has a unit area over the interval 60 ≤ u ≤ 360. Figure 5.26
shows a plot of this density function.
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g (u)
0.005776

60 120 180
EffSysTest

360

Staff Months u

FIGURE 5.26
PDF of EffSysTest.

b. From the density function we can compute the mean effort for sys-
tem test, as well as various probabilities. These computations are as
follows:

E(EffSysTest) =
360�
60

u g(u) du =
120�
60

u
1

120
ln
( u

60

)
du +

180�
120

u
1

120
ln(2) du

+
360�

180

u
1

120
ln
(

360
u

)
du = 180

Knowledge of the density function facilitates computing various
probabilities of interest. From Equation 5.115

P(EffSysTest ≤ E(EffSysTest)) = P(EffSysTest ≤ 180)

=
120�
60

1
120

ln
( u

60

)
du +

180�
120

1
120

ln(2) du

= 0.19315 + 0.34657 = 0.54

Similarly,

P(EffSysTest ≤ 173) =
120�
60

1
120

ln
( u

60

)
du +

173�
120

1
120

ln(2) du

= 0.19315 + 0.30613 ≈ 0.50



Functions of Random Variables 195

In this case, the median test effort is approximately 173 staff months.
Shown in Figure 5.27 are curves of constant effort for various pairs
of x (staff) and y (months). A probability associated with each effort
is also shown.

As discussed, developing a general formula for the PDF of
EffSysTest involves some tricky mathematics. A slight alteration in the
problem statement can further complicate the mathematics. If, for
instance, the distribution function of X was triangular instead of uni-
form, it would be quite difficult to develop an analytical form of g(u).

c. The following illustrates how the Mellin transform applies to this
case discussion. The first two moments, which lead to the mean and
variance of the test effort, are developed. It is given that

EffSysTest = U = XY, 0 < x < ∞, 0 < y < ∞

From Theorem 5.13

MEffSysTest
(s) = MU(s) = MX(s)MY(s) (5.116)

From Equation 5.98

E
(

EffSysTest

)
= E(U) = MU(2) = MX(2)MY(2) (5.117)

From Equation 5.101

Var
(

EffSysTest

)
= Var(U) = MU(3) − [MU(2)]2

= MX(3)MY(3) − [MX(2)MY(2)]2 (5.118)

24

18

12
5 7.5 10.8 14.4 15

90Y 
= 

M
on

th
s 

130
173

223

296

X = Staff

EffSysTest = XY
P(EffSysTest ≤90) = 0.05
P(EffSysTest ≤130) = 0.25
P(EffSysTest ≤173) = 0.50
P(EffSysTest ≤223) = 0.75
P(EffSysTest ≤296) = 0.95

Staff Months

FIGURE 5.27
Boundary curves for EffSysTest.
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Since the distribution functions for X and Y are uniform with param-
eters shown in Figure 5.24, from Equation 5.108 it follows that
MX(2) = 10, MY(2) = 18, MX(3) = 108.333, and MY(3) = 336.
Substituting these values into Equations 5.117 and 5.118 yields

E
(

EffSysTest

)
= E(U) = 180 staff months

Var
(

EffSysTest

)
= Var(U) = 4000 (staff months)2

σEffSysTest
=
√

Var
(

EffSysTest

)
= 63.25 staff months

The Mellin transform is clearly a convenient way to compute the
moments of EffSysTest without the need for its density function.

Next, a final case discussion is presented. It will show how concepts
throughout this chapter combine to produce useful results. Specifically, for-
mulas for the mean and variance of a ratio of two uniformly distributed
random variables and two beta distributed random variables are developed.
Seen in previous examples, ratios of random variables can arise frequently in
cost uncertainty analysis.

Case Discussion 5.4: Suppose I and Pr are independent random variables.
Develop general formulas for E(EffSW) and Var(EffSW) if EffSW = I/Pr and

a. I ∼ Unif (a1, b1) and Pr ∼ Unif (a2, b2)

b. I ∼ Beta(α1,β1, a1, b1) and Pr ∼ Beta(α2,β2, a2, b2)

Discussion Since I and Pr are independent, from Theorem 5.5

E
(
EffSW

) = E
(

I
Pr

)
= E(I)E

(
1
Pr

)
= μIE

(
1
Pr

)
(5.119)

By definition

Var
(
EffSW

) = E
(

Eff 2
SW

)
− [

E
(
EffSW

)]2

= E
(

I2 1
P2

r

)
− μ2

I

[
E
(

1
Pr

)]2

= E
(

I2
)

E
(

1
P2

r

)
− μ2

I

[
E
(

1
Pr

)]2

By definition Var(I) = E(I2) − [E(I)]2. This is equivalent to

E(I2) = σ2
I + μ2

I
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Substituting into Var
(
EffSW

)
yields

Var
(
EffSW

) =
(
σ2

I + μ2
I

)
E
(

1
P2

r

)
− μ2

I

[
E
(

1
Pr

)]2

(5.120)

a. We are interested in using these equations to develop general formu-
las for the mean and variance of EffSW , when I and Pr are uniformly
distributed random variables. It has just been shown that

E
(
EffSW

) = E
(

I
Pr

)
= E(I)E

(
1
Pr

)
= μIE

(
1
Pr

)

Since I ∼ Unif (a1, b1), we know μI = 1
2 (a1 + b1); therefore,

E
(
EffSW

) = 1
2

(a1 + b1) E
(

1
Pr

)

To produce a general formula for E(EffSW), it remains to determine

E
(

1
Pr

)
≡ E

(
(Pr)

−1
)

Determining E((Pr)
−1) will be accomplished from the PDF of (Pr)

−1.
Let Z = (Pr)

−1; therefore,

Z = g(Pr) ⇒ z = g(y) = 1
y

⇒ y = v(z) = 1
z

Since g(y) is a strictly decreasing differentiable function of y, from
Theorem 5.11

fZ(z) = fPr(v(z)) ·
∣∣∣∣d[v(z)]

dz

∣∣∣∣ , g(b2) ≤ z ≤ g(a2)

fZ(z) = 1
b2 − a2

· 1
z2 ,

1
b2

≤ z ≤ 1
a2

A picture of this density function is shown in Figure 5.28. From the
PDF we know that

E
(

1
Pr

)
= E(Z) =

1
a2�
1

b2

zfZ(z) dz =
1

a2�
1

b2

z · 1
b2 − a2

· 1
z2 dz = 1

b2 − a2
ln
(

b2

a2

)
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z

.

fZ(z)b2
2

b2 – a2

a2
2

b2 – a2

1 1
z2fZ(z) = b2 – a2

1
a2

1
b2

FIGURE 5.28
PDF of Z = 1/Pr.

Therefore,

E
(
EffSW

) = 1
2

· a1 + b1

b2 − a2
ln
(

b2

a2

)
(5.121)

Next, we will develop a formula for the variance of EffSW . By
definition

Var(EffSW) = E(Eff 2
SW) − [

E(EffSW)
]2

From Equation 5.121

Var(EffSW) = E(Eff 2
SW) −

[
1
2

· a1 + b1

b2 − a2
ln
(

b2

a2

)]2

It remains, then, to determine E(Eff 2
SW); this will be done by the

Mellin transform technique. Let

Q = Eff 2
SW = I2

P2
r

⇒ E(Q) = E(Eff 2
SW) = E

(
I2

P2
r

)

From Theorem 5.13

MQ(s) = MI(2s − 1)MPr(3 − 2s) (5.122)

E(Q) = MQ(2) = MI(3)MPr(−1) (5.123)
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Since I and Pr are uniformly distributed random variables, from
Equation 5.108

MI(3) = 1
3(b1 − a1)

(
b3

1 − a3
1

)
and

MPr(−1) = 1
(−1)(b2 − a2)

(
b−1

2 − a−1
2

)

Following some algebraic manipulation, we have

E(Q) = 1
3

· 1
b2a2

(
b2

1 + b1a1 + a2
1

)

Therefore,

Var(EffSW) = 1
3

· 1
b2a2

(
b2

1 + b1a1 + a2
1

)
−
[

1
2

· a1 + b1

b2 − a2
ln
(

b2

a2

)]2

(5.124)

Equations 5.121 and 5.124 are general formulas for the mean and
variance of EffSW , if I and Pr are independent uniformly distributed
random variables. Suppose we apply these formulas to Exam-
ple 5.17; this implies a1 = 50, 000, b1 = 100,000, a2 = 100, and b2 =
200. Substituting these values into Equations 5.121 and 5.124 yields

E(EffSW) = 519.86 staff months

Var(EffSW) = 21,411.8 (staff months)2

σEffSW
=
√

Var(EffSW) = 146.328 staff months

b. In this part, formulas are developed for the mean and variance of
EffSW if I and Pr are each beta-distributed. From Equation 4.8 a random
variable X is beta-distributed with shape parameters α and β (α > 0
and β > 0) if its PDF is

fX(x |α,β ) =

⎧⎪⎨
⎪⎩

1
b − a

· �(α + β)

�(α)�(β)

(
x − a
b − a

)α−1 (b − x
b − a

)β−1

, a < x < b

0, otherwise

Continuing with this case discussion, let

Z = EffSW = I
Pr

⇒ MZ(s) = MI(s)MPr(2 − s)
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Therefore,

E(Z) = E(EffSW) = MZ(2) = MI(2)MPr(0) (5.125)

The Mellin transform of X is, in this case is,

MX(s) =
b�

a

xs−1fX(x |α,β ) dx

= 1
b − a

· �(α + β)

�(α)�(β)

b�
a

xs−1
(

x − a
b − a

)α−1 (b − x
b − a

)β−1

dx

= 1
(b − a)α+β−1 · �(α + β)

�(α)�(β)

b�
a

xs−1(x − a)α−1(b − x)β−1 dx

(5.126)

We are given I ∼ Beta(α1,β1, a1, b1). From Theorem 4.4, we know that

MI(2) = E(I) = a1 + (b1 − a1)
α1

α1 + β1
(5.127)

Given Pr ∼ Beta(α2,β2, a2, b2), from Equation 5.126

MPr(0) = ξ = 1
(b2 − a2)α2+β2−1 · �(α2 + β2)

�(α2)�(β2)

×
b2�

a2

y−1 (y − a2
)α2−1 (b2 − y

)β2−1 dy (5.128)

Substituting Equations 5.127 and 5.128 into Equation 5.125, we have

E(Z) = E(EffSW) = ξ

(
a1 + (b1 − a1)

α1

α1 + β1

)
(5.129)

As an illustration, consider the case where I ∼ Beta(5, 10, 50(10)3,
100(10)3) and Pr ∼ Beta(5, 5, 100, 200). The expected effort E(EffSW) is

E(EffSW) = ξ

(
50(10)3 + (100(10)3 − 50(10)3)

5
5 + 10

)

= (66, 666.67)ξ
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where, from numerical integration

ξ = 1
(100)9 · �(10)

�(5)�(5)

200�
100

y−1(y − 100)4(200 − y)4 dy = 0.0067358

Therefore,

E(EffSW) = (66,666.67) (0.0067358) = 449.053 staff months

A determination of Var(EffSW) completes this discussion. By defi-
nition

Var(EffSW) = E(Eff 2
SW) − [

E(EffSW)
]2

From Equation 5.123

E(Eff 2
SW) = MI(3)MPr(−1)

where

MI(3) = 1
(b1 − a1)α1+β1−1 · �(α1 + β1)

�(α1)�(β1)

×
b1�

a1

t2(t − a1)
α1−1(b1 − t)β1−1 dt

MPr(−1) = 1
(b2 − a2)α2+β2−1 · �(α2 + β2)

�(α2)�(β2)

×
b2�

a2

y−2(y − a2)
α2−1(b2 − y)β2−1 dy

If I ∼ Beta(5, 10, 50(10)3, 100(10)3) and Pr ∼ Beta(5, 5, 100, 200), then
a numerical integration of the two integrals yields

MI(3) = 4.47917(10)9 and MPr(−1) = 0.000045852

therefore,

E(Eff 2
SW) = (4.47917(10)9)(0.000045852)

= 205,378.9028 (staff months)2
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so,

Var(EffSW) = 3730.3 (staff months)2

σEffSW
=
√

Var(EffSW) = 61.07 staff months

In summary, the effort mean and standard deviation (rounded) is

E(EffSW) = 449 staff months

σEffSW
= 61 staff months�

This chapter concludes with series of transformation formulas associated
with various algebraic operations on random variables. A cost analysis
context is offered for each case.

• Multiplication of a random variable X by a constant a. Denote this
operation by U = aX. There are many types of cost analysis appli-
cations. For example a could represent a labor rate (dollars per staff
month) and X could represent an effort (staff months).
Transformation Formulas

E(U) = aE(X) (5.130)

Var(U) = a2Var(X) (5.131)

• Addition of a constant a to a random variable X. Denote this opera-
tion by U = a+X. There are many types of cost analysis applications.
For example a could represent a fixed cost, while X could represent
a variable cost (whose precise value is uncertain).
Transformation Formulas

E(U) = a + E(X) (5.132)

Var(U) = Var(X) (5.133)

• Sum of two independent uniform random variables X1 and X2.
Denote this operation by U = X1 + X2, where X1 ∼ Unif (a1, b1)

and X2 ∼ Unif (a2, b2). Exercise 5.8 and the discussion pertaining to
Figure 5.18 provide a cost analysis application.
Transformation Formulas

U ∼ Trap ((a1 + a2) , (a2 + b1) , (a1 + b2) , (b1 + b2)) ,

if b1 − a1 < b2 − a2 (5.134)

U ∼ Trng ((a1 + a2) , m, (b1 + b2)) , if b1 − a1 = b2 − a2 (5.135)

where m = 1
2 [(a1 + a2) + (b1 + b2)].
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• Sum of two independent normal random variables X1 and X2.
Denote this operation by U = X1 + X2, where X1 ∼ N (a1, b1) and
X2 ∼ N (a2, b2). Refer to Section 6.2.2 for a cost analysis application.
Transformation Formula

U ∼ N (a1 + a2, b1 + b2) (5.136)

• Sum of n independent normal random variables. Denote this oper-
ation by U = X1 + X2 + · · · + Xn. The most common cost analysis
application is summing cost element costs across a system’s work
breakdown structure (WBS). In this context, Xi might represent the
cost of the ith cost element in the WBS (refer to Section 6.2.2 for a cost
analysis application).
Transformation Formulas
In accordance with Theorem 5.10 (Central Limit Theorem), as n
becomes increasingly large, the random variable U approaches a
normal probability distribution with mean and variance

E(U) = E(X1) + E(X2) + · · · + E(Xn) (5.137)

Var(U) = Var(X1) + Var(X2) + · · · + Var(Xn) (5.138)

• Ratio of a uniformly distributed random variable. Denote this oper-
ation by U = 1/X where X ∼ Unif (a, b). A cost analysis context is
provided in Case Discussion 5.4 and in Exercise 5.19.
Transformation Formulas

fU(u) = 1
b − a

· 1
u2 ,

1
b

≤ u ≤ 1
a

(5.139)

E
(

1
X

)
= 1

b − a
ln
(

b
a

)
(5.140)

Var
(

1
X

)
= 1

ba
−
(

1
b − a

ln
(

b
a

))2

(5.141)

• Product of two independent random variables. Denote this operation
by U = X1X2. Case Discussion 5.3 provides a cost analysis context.
Transformation Formulas

E(U) = μ1μ2 (5.142)

Var(U) =
(
σ2

1 + μ2
1

) (
σ2

2 + μ2
2

)
− (μ1μ2)

2 (5.143)

where E (X1) = μ1, E (X2) = μ2, Var (X1) = σ2
1, and Var (X2) = σ2

2.
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• Product of n independent random variables. Denote this operation
by U = X1X2 · · · Xn. Example 4.9 provides a cost analysis context.
Transformation Formulas
The random variable U = X1X2 · · · Xn approaches the lognormal
distribution as n → ∞.

E(U) = μ1μ2 · · ·μn−1μn (5.144)

Var(U) =
n∏

i=1

(σ2
i + μ2

i ) −
n∏

i=1

μ2
i (5.145)

where E(Xi) = μi, Var(Xi) = σ2
i .

Exercises

5.1 In Example 5.2, EffSysTest = XY and X and Y have a joint PDF.

f (x, y) =
⎧⎨
⎩

1
240

, 5 ≤ x ≤ 15, 12 ≤ y ≤ 36

0, otherwise

a. Sketch the event spaces associated with events A, B, and C where

A = {EffSysTest ≤ 240}
B = {EffSysTest ≤ 240 | X ≤ 12 }
C = {{EffSysTest ≤ 240} ∩ {X ≤ 12} ∩ {Y ≤ 20}}

b. From part (a) compute P(A), P(B), and P(C).
5.2 In Example 5.3, EffSW = X/Y and X and Y have a joint PDF

f (x, y) =
⎧⎨
⎩

1
5(106)

, 50,000 ≤ x ≤ 100,000, 100 ≤ y ≤ 200

0, otherwise

Find
a. P(EffSW ≤ 313)

b. P(EffSW ≤ 410 |X ≤ 70,000 )

c. P({EffSW ≤ 410} ∩ {X ≤ 70,000} ∩ {Y ≥ 150})
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5.3 Suppose f (x, y) =
⎧⎨
⎩

1
240

5 ≤ x ≤ 15, 12 ≤ y ≤ 36

0 otherwise
Compute
a. fX(x) using Equation 5.10
b. fY(y) using Equation 5.11
c. P(X ≤ 10 |Y = 24)

d. P(Y > 24 |X = 10)

e. Are X and Y dependent or independent random variables? Justify
your answer.

5.4 a. If X and Y are random variables with means μX and μY, show that

Cov(X, Y) = E(XY) − μXμY

b. If X and Y are random variables, show that Cov(X, Y) = Cov(Y, X).
For any real numbers a, b, c, and d show that

Cov(aX + b, cY + d) = acCov(X, Y)

c. Show that Cov(X, Y)= 0 if X and Y are independent random vari-
ables.

d. Show that Cov(X, X)= Var(X). Given this, show that Corr(X, X) = 1.
e. Show that Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).

5.5 Suppose Y, X1, and X2 are independent random variables. If Z = X1 +
X2 show that Y and Z are uncorrelated.

5.6 If Y = X100 and X ∼ Unif (0, 1) show that ρX,Y = 0.24.
5.7 Let the total cost of a system’s prime mission equipment (PME) be

denoted by CostPME. Let

CostPME = X1 + X2

where X1 is the total cost of the system’s hardware and X2 is the total
cost of the system’s software. Assume X1 and X2 are independent ran-
dom variables. Suppose the cost to integrate and assemble the system’s
hardware and software is denoted by CostI&A. If

CostI&A = 1
10

X1 + 1
5

X2

a. Determine a general formula for Corr (CostPME, CostI&A).
b. Compute Corr (CostPME, CostI&A) when σX1 = σX2 .
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5.8 Let CostPMP denote the total cost of a system’s prime mission product
(PMP). Let

CostPMP = CostPME + CostI&A

CostPME = X1 + X2

CostI&A = 1
10

X1 + 1
5

X2

Let X1 and X2 denote the total costs ($M) of the system’s hardware and
software. Suppose X1 and X2 are independent random variables with
X1 ∼ Unif (5, 10) and X2 ∼ Unif (30, 45). Compute
a. E (CostPMP)

b. Var (CostPMP)

c. FCostPME (x1 + x2)

d. From part c) determine d such that P (CostPME ≤ d) = 0.75.
5.9 Suppose X1, X2, X3 are the cost element costs of an electronic system.

Let the system’s total cost be given by

CostSys = X1 + X2 + X3

where X1, X2, X3 are given in the table below. Let X1 and W be indepen-
dent random variables.

Cost Element Name Cost Element Cost Xi ($M)

Prime mission product (PMP) X1 ∼ N(12.5, 6.6)

System eng. and prgm mgt (SEPM) X2 = 1
2 X1

System test and evaluation (STE) X3 = 1
4 X1 + 1

8 X2 + W, where W ∼ Unif (0.60, 1)

a. Write a general formula for E
(
CostSys

)
and compute its value.

b. Show that

Var
(
CostSys

) = 841
256

Var (X1) + Var(W)

from the expression

Var
(
CostSys

) = Var (X1) + Var (X2) + Var (X3)

+ 2 [Cov (X1, X2) + Cov (X1, X3) + Cov (X2, X3)]

c. Compute Var
(
CostSys

)
.
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5.10 In Case Discussion 5.1, the K-S test revealed the normal distribution as a
plausible model of the underlying distribution function for CostSSA. Use
the K-S test on the data in Table 5.4 to show the lognormal distribution
is also a plausible model.

5.11 In Example 5.7, X denoted the number of engineering staff required to
test a new rocket propulsion system. The number of months Y required
to design, conduct, and analyze the test was given by Y = 2X + 3. If X
is uniformly distributed in the interval 5 ≤ x ≤ 15, determine
a. FY(y)

b. fY(y)

5.12 In Example 5.10, verify that FW(1750) = 0.75 = FHours(87.67).
5.13 Suppose the direct engineering hours to design a new communication

satellite is given by Hours = 4+2
√

W, where W is the satellite’s weight,
in lbs. Suppose the uncertainty in the satellite’s weight is captured by
a triangular distribution; that is, W ∼ Trng(1000, 1500, 2000). Suppose
the satellite design team assessed 1500 lbs to be the point estimate for
weight; that is, wPE = 1500.

a. Determine the CDF of Hours.
b. Compute P(Hours ≤ hPE), where hPE = 4 + 2

√
wPE.

c. Determine the PDF of Hours.
5.14 Suppose the development effort EffSW for a software project is defined

by EffSW = c1Ic2 . If I ∼ Trng(a, m, b) derive FEffSW
(s), fEffSW

(s), E(EffSW),
Var(EffSW).

5.15 Suppose the development schedule for a software project is defined by
TSW = k1(EffSW)k2 , where EffSW = c1Ic2 . Answer the following:

a. If I ∼ Unif (a, b) derive FTSW (t), fTSW (t), E(TSW), Var(TSW).
b. If I ∼ Trng(a, m, b) derive FTSW (t), fTSW (t), E(TSW), Var(TSW).

5.16 In Example 5.13, the effort (staff months) to develop software for a
new system was given by EffSW = 2.8 I1.2. The development schedule
(months) was given by TSW = 2.5(EffSW)0.32. If I ∼ Unif (30, 80), use
Theorem 5.11 to show the following:

a. FEffSW
(518) = FTSW (18.5) = 0.95

b. FTSW (t) = 1
50

[(
t

3.48

) 1
0.384 − 30

]
, 12.8 ≤ t ≤ 18.7

5.17 The uncertainties in the amount of code to develop for the radar system
in Example 5.16, was represented by the independent random vari-
ables I1, I2, I3, . . . , I14. Let ITotal = I1 + I2 + I3 + · · · + I14, where each
I is in KDSI. From the information in Table 5.5, use the central limit
theorem to determine the 0.25-fractile and the 0.75-fractile of EffSW =
2.8(ITotal)

1.2.
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5.18 Refer to Example 5.2 and use Theorem 5.12 to find the general formula
for the PDF of EffSysTest.

5.19 a. Let X and Y be independent random variables with Z = (X + Y)2.
Show that E(Z) = MX(3) + MY(3) + 2MX(2)MY(2).

b. Suppose X ∼ Unif (a, b). Use Theorem 5.13 and the definition of
the Mellin transform to show that

E
(

1
X

)
= 1

b − a
ln
(

b
a

)
and Var

(
1
X

)
= 1

ba
−
(

1
b − a

ln
(

b
a

))2

5.20 In Example 5.19, a new software application was being developed that
consisted of a mixture of new code INew and reused code IReused. Sup-
pose INew and IReused are independent random variables with PDFs
given in Example 5.19. If the effort EffSW associated with developing
the application is a function of the equivalent size IEquiv, where

IEquiv = INew + I0.857
Reused

and

EffSW = 2.8
(

1
1000

IEquiv

)1.2

use the Mellin transform technique to approximate E
(
EffSW

)
. Hint: Use

the first three terms of the binomial series expansion of (IEquiv)
1.2, given by

(IEquiv)
1.2 ≈ (INew)1.2 + 1.2(INew)0.2I0.857

Reused + 0.12(INew)−0.8I1.714
Reused
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6
System Cost Uncertainty Analysis

This chapter illustrates how key concepts developed thus far combine to
produce the probability distribution of a system’s total cost. Chapter 7 will
extend this discussion to the joint and conditional distributions of a system’s
total cost and schedule. Chapter 6 begins with an introduction to the work
breakdown structure, a primary method for organizing a system’s total cost.

6.1 Work Breakdown Structures

The work breakdown structure (WBS) is a framework for identifying all ele-
ments of cost that relate to the tasks and activities of developing, producing,
deploying, sustaining, and disposing a system. Work breakdown structures
are unique to the system under consideration. They are developed accord-
ing to the specific requirements and functions the system has to perform.
WBS are defined for classes of systems. These classes include electronic sys-
tems, aircraft systems, surface vehicles, ship systems, spacecraft systems, and
information technology systems (Blanchard and Fabrycky 1990, United States
Department of Defense 2011).

Work breakdown structures are tiered by a hierarchy of cost elements. A
typical electronic system WBS is illustrated in Figure 6.1. Shown are four hier-
archies, or indenture levels. The first level represents the entire system (e.g.,
the air traffic control radar system). The second level reflects the major cost
elements of the system. In Figure 6.1, these elements include prime mission
product (PMP), system engineering, program management, and system test
and evaluation. Each level 2 cost element is defined as follows:

• Prime Mission Product (PMP): This element refers to the hardware
and software used to accomplish the primary mission of the sys-
tem. It includes the engineering effort and management activities
associated with the system’s individual hardware components and
software functions, as well as the effort to integrate, assemble, test,
and checkout the system’s hardware and software.

• Systems Engineering: This element encompasses the overall engineer-
ing effort to define and deploy the system. It includes integrating the
technical efforts of design engineering, specialty engineering (e.g.,

211



212 Probability Methods for Cost Uncertainty Analysis

Electronic System

Prime Mission
Product (PMP)

Systems
Engineering

Program
Management

System Test
and Evaluation

Hardware (HW)

Level 1

Level 2

Level 3

Air Traffic Control
Radar System

Integration and
Assembly (I&A)

Software (SW)

Level 4 Processor Unit X111
Disk Drives X112
Custom Microchip X113

Operating Sys X121
Applications X122
Custom Software X123

nth WBS
Cost Element

CostSys

X1 X2 X3 X4 Xn

X11 X12 X13

FIGURE 6.1
An illustrative electronic system WBS.

reliability engineering, security engineering), production engineer-
ing, and integrated test planning to produce an operational system.

• Program Management: This element includes all the efforts associated
with the business and administrative management of the system.
This includes cost, schedule, and performance measurement, as well
as contract administration, data management, and customer/user
liaison activities.

• System Test and Evaluation: This element includes all test engineering,
test planning, and related technical efforts (test mockups, proto-
types) to insure the deployed system has been tested against its
requirements.

In Figure 6.1, the PMP cost element is divided into its level 3 cost elements. At
this level, the radar’s hardware, software, and integration cost elements are
defined. A further division of PMP into its level 4 cost elements is also shown
in Figure 6.1. Here, the individual cost elements of the system’s hardware and
software are defined. In practice, the number of levels specified in a system’s
WBS reflects the extent the system itself is defined. In most instances, cost
elements are seldom specified below level 6 in a system’s WBS.

Certain cost elements in a WBS qualify as configuration items. A configura-
tion item is an aggregation of hardware or software that satisfies a particular
end-use function of the system. A custom-made microchip or developed
software applications are typically designated as configuration items. This
designation means the item is subject to configuration management. Config-
uration management is the process of documenting, monitoring, and con-
trolling change to the configuration item’s technical baseline. Cost elements
placed under configuration management typically begin to appear at level 4
of a WBS.
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The WBS is the definitive cost element structure of a system. It is the
basis upon which the system’s cost is determined (or modeled). From a
WBS perspective, a system’s total cost (which we will denote by CostSys) is
a summation of cost element costs, summed across the levels of the WBS.
In Figure 6.1,

CostSys = X1 + X2 + X3 + X4 + · · · + Xn (6.1)

where the first term in Equation 6.1, X1, is

X1 = X11 + X12 + X13 + · · · + X1k (6.2)

and k is the number of level 3 cost elements associated with X1. Similarly,

X11 = X111 + X112 + X113 + · · · + X11j (6.3)

where j is the number of level 4 cost elements associated with X11. The other
terms in Equation 6.1, X2, X3, X4, . . . , Xn, are defined in a similar manner. This
layered sum of cost element costs is often referred to as the “roll-up” cost.
Cost elements of a WBS are specific to the system class. Cost elements∗ of a
satellite system are illustrated in Figure 6.2.

1 Satellite System
1.1 Launch Vehicle Segment
1.2 Space Segment

1.2.1 Satellite Integration, Assembly, and Test
1.2.2 Spacecraft Bus

1.2.2.1 Spacecraft Bus Integration, Assembly, and Test
1.2.2.2 Structures and Mechanical Assembly Subsystem
1.2.2.3 Attitude Determination and Control Subsystem
1.2.2.4 Thermal Control Subsystem
1.2.2.5 Electrical Power Subsystem
1.2.2.6 Telemetry and Communication Subsystem
1.2.2.7 Propulsion Subsystem

1.2.3 Payload
1.2.3.1 Payload Hardware
1.2.3.2 Payload Software

1.3 Command, Control, and Communications Segment
1.4 Systems Engineering and Program Management
1.5 System Test and Evaluation
1.6 Peculiar Support Equipment
1.7 Common Support Equipment
1.8 Operations and Support
1.9 Flight Support Operations

1.10 Program Office

FIGURE 6.2
Illustrative spacecraft WBS.

∗ Cost element indenture levels are identified by numbering conventions that may or may not
incorporate decimals. The convention used is a matter of presentation style.
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Note the difference between these cost elements and those of the electronic
system WBS, shown in Figure 6.1. In the satellite system, its cost elements are
grouped into segments. Within segments, these elements are divided into
levels. Levels can reflect subsystems, such as the spacecraft bus (platform) in
Figure 6.2. For context, the spacecraft bus elements are defined here.

• Spacecraft Bus Integration, Assembly, and Test: This element refers to
all efforts associated with the cost of integrating, assembling, and
testing the individual subsystems that constitute the spacecraft bus.

• Structures and Mechanical Assembly Subsystem: This element (sub-
system) refers to the central frame of the spacecraft that provides
support and mounting surfaces for all equipment. It includes deploy-
ment mechanisms, the solar array boom, experimental booms,
antenna supports, and mechanical design equipment.

• Attitude Determination and Control Subsystem: This element (subsys-
tem) measures and maintains the orientation of the space vehicle
relative to an inertial or external reference. Attitude determination
components include inertial measurement devices (e.g., gyroscopes,
accelerometers), earth sensors, sun sensors, horizon sensors, and
magnetometers. Attitude control adjusts and maintains the space
vehicle’s attitude and stabilization. Attitude control components
include fuel lines, fuel tanks, thrusters, inertia wheels, and any
associated electronics.

• Thermal Control Subsystem: This element (subsystem) maintains the
temperature of the spacecraft and mission payload through heat
transfer between space vehicle elements. Thermal control tech-
niques may be passive or active. Passive techniques include special
paint, mirrors, and insulation. Active techniques include heat pipes,
louvers, and heaters.

• Electrical Power Subsystem (EPS): This element (subsystem) generates,
converts, regulates, stores, and distributes electrical power between
major space vehicle subsystems. Two common types of EPS’s are
solar and electrochemical. Typical components of the EPS include
solar array for power generation, batteries for power storage, as well
as wiring harnesses, regulators, switching electronics, converters,
and components for power conditioning and distribution.

• Telemetry and Communication Subsystem: This element (subsystem)
measures the space vehicle’s conditions (health and status), pro-
cesses health and status data and mission data, stores and transmits
data to ground receivers, as well as receives, processes, and initiates
commands from ground controllers. This subsystem also maintains
the track of the space vehicle; typical components include data
processors, transmitters, receivers, antennas, decoders, amplifiers,
and tape recorders.
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• Propulsion Subsystem: This element (subsystem), also referred to
as apogee kick motor (AKM), provides reaction force for the final
maneuver into orbit and for orbit changes. Typical components
include solid rocket motor and explosive squibs, nozzle control
mechanisms, thrust sensing and shut-down controls, as well as any
required cabling, wiring, and plumbing.

As mentioned earlier, a system’s WBS is tailored from general work
breakdown structures specific to the system’s class. The satellite system WBS
in Figure 6.2 was tailored from the general WBS for the unmanned space vehi-
cle cost model (USCM) (United States Air Force 1994). The USCM WBS is
presented in Figure 6.3.

1 Space Vehicle
1.1 Integration, Assembly, & System Test (IA&T)
1.2 Spacecraft

1.2.1 Structure, Interstage/Adapter
1.2.2 Thermal Control
1.2.3 Attitude Determination Control System (ADCS)

1.2.3.1 Attitude Determination
1.2.3.2 Reaction Control System

1.2.4 Electrical Power Supply (EPS)
1.2.4.1 Power Generation
1.2.4.2 Power Storage
1.2.4.3 Power Conditioning and Distribution (PCD)

1.2.5 Telemetry, Tracking, and Command
1.2.5.1 Transmitter
1.2.5.2 Receiver/Exciter
1.2.5.3 Transponder
1.2.5.4 Digital Electronics (Signal/Data Processor)
1.2.5.5 Analog Electronics
1.2.5.6 Antennas
1.2.5.7 RF Distribution

1.3 Communications Payload

1.4 Program-Level

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7

Transmitter
Receiver/Exciter
Transponder
Digital Electronics (Signal/Data Processor)
Analog Electronics
Antennas
RF Distribution

1.4.1
1.4.2
1.4.3

Program Management
Systems Engineering
Data

2 Aerospace Ground Equipment
3 Launch and Orbital Operations and Support

FIGURE 6.3
Unmanned spacecraft WBS. (From United States Air Force, Unmanned Spacecraft Cost Model
(USCM), 7th edn., Los Angeles, CA, 1994.)



216 Probability Methods for Cost Uncertainty Analysis

TABLE 6.1

Illustrative CERs for Spacecraft Cost Elements (Nonrecurring Development Costs)

Cost Element Input Parameters CER

Attitude Control-Attitude
Determination

Z1 = Dry Weight (kg) c1Z0.46
1

Telemetry, Tracking, and
Command

Z1 = Weight (kg) c2 + c3Z1

Structure/Thermal Z1 = Weight (kg) c4 + c5Z0.66
1

Electrical Power Z1 = EPS Weight (kg) c6 + c7(Z1Z2)0.97

Supply (EPS) Z2 = BOLP (watts)
Payload Communication
Electronics

Z1 = Weight (kg) c8Z0.70
1

Source: Larson, W.J. and Wertz, J.R. (eds.), Space Mission Analysis and Design, 2nd edn., Kluwer
Academic Press, Norwell, MA, 1995.

Work breakdown structures can be quite complex. They may involve
many segments and levels, as well as numerous cost elements. Because the
WBS is the basis for deriving a system’s cost, it also contain a variety of
mathematical relationships. These relationships are traditionally known as
cost estimating relationships (CERs).∗ Their primary purpose is to generate
point estimate costs of various WBS cost elements. Table 6.1 illustrates some
spacecraft-related CERs.

In summary, a WBS provides the framework for developing a system’s
cost. It further serves as the framework for an analysis of the system’s cost
uncertainty. The complexity of these analyses is dictated by the complexity
of the WBS and its associated CERs.

The following illustrates how probability methods are applied to the prob-
lem of quantifying a system’s cost uncertainty within the framework of the
WBS. Case discussions are presented that link theory to practice.

6.2 Analytical Framework

This section focuses on the application of probability methods for quantify-
ing the uncertainty in a system’s cost. The WBS will provide the analytical
framework for quantifying this uncertainty, which is expressed as a proba-
bility distribution. Analytical methods from probability theory are stressed.

∗ Most CERs are statistically derived from data on cost and technical characteristics. This book
uses the term CER to include those that are logically based, as well as those developed by
statistical methods.
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Analytical methods provide insight into problem structure and subtleties
not always apparent from empirically based methods, such as Monte Carlo
simulations.∗

6.2.1 Computing the System Cost Mean and Variance

From Equation 6.1, we see that system cost, denoted by CostSys, is a sum-
mation of work breakdown structure cost element costs, where each Xi (i =
1, . . . , n) is in dollars. Illustrated in Figure 6.4, we define CostSys as

CostSys = X1 + X2 + X3 + · · · + Xn (6.4)

Summation
Process

f X
1 

(x
1)

f X
2 

(x
2)

f X
3 

(x
3)

f X
n 

(x
n)

...
...

b1a1
x1

b2a2
x2

b3a3
x3

bnan
xn

Inputs: Probability distributions for each cost element cost
in a system’s work breakdown structure

Output: A cumulative probability
distribution of the system’s total cost

Dollars

FCostSys (x)

CostSys = X1 + X2 + X3 +...+ Xn

x
bc

αc

1

a
0

FIGURE 6.4
Cumulative probability distribution of CostSys.

∗ Monte Carlo simulation is an empirical method often used for quantifying cost uncertainty.
The concept underlying this method is discussed in Section 6.3.
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If X1, X2, X3, . . . , Xn are independent, then from Theorems 5.7 and 5.8

E(CostSys) = E(X1) + E(X2) + E(X3) + · · · + E(Xn) (6.5)

Var(CostSys) = Var(X1) + Var(X2) + Var(X3) + · · · + Var(Xn) (6.6)

If X1, X2, X3, . . . , Xn are not independent, then

Var(CostSys) =
n∑

i=1

Var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

ρXi,XjσXiσXj (6.7)

Equations 6.5 through 6.7 are the formal expressions for the mean and
variance of CostSys. The following case discussions illustrate how these
expressions are used.

Case Discussion 6.1: [5] Suppose the cost element costs X1, X2, X3, . . . , X10
of an electronic system are given by the WBS in Table 6.2. Let

CostSys = X1 + X2 + X3 + · · · + X10

Suppose the random variables X1, W, X5, X7, X8, X9 (defined in Table 6.2) are
independent.

a. Compute E(CostSys) and Var(CostSys).
b. What distribution function approximates the distribution of CostSys?
c. Find the value of CostSys that has a 5% chance of being exceeded.

TABLE 6.2

WBS for Case Discussion 6.1

Cost Element Distribution of Xi or the
Cost Element Name Cost Xi ($M) Applicable Functional Relationship

Prime Mission Product (PMP) X1 N(12.5, 6.6)

System Engineering and X2 X2 = 1
2 X1

Program Management (SEPM)

System Test and Evaluation (STE) X3 X3 = 1
4 X1 + 1

8 X2 + W,
where W ∼ Unif (0.6, 1.0)

Data and Technical Orders X4 X4 = 1
10 X1

Site Survey and Activation X5 Trng(5.1, 6.6, 12.1)

Initial Spares X6 X6 = 1
10 X1

System Warranty X7 Unif (0.9, 1.3)

Early Prototype Phase X8 Trng(1.0, 1.5, 2.4)

Operations Support X9 Trng(0.9, 1.2, 1.6)

System Training X10 X10 = 1
4 X1
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a. It is given that

CostSys = X1 + X2 + X3 + · · · + X10 (6.8)

Using the relationships in Table 6.2, Equation 6.8 becomes

CostSys = X1 + 1
2

X1 +
(

1
4

X1 + 1
8

X2 + W
)

+ 1
10

X1 + X5 + 1
10

X1

+ X7 + X8 + X9 + 1
4

X1

Combining these terms yields

CostSys = 181
80

X1 + W + X5 + X7 + X8 + X9 (6.9)

From Theorem 5.7 (and Equation 6.5)

E(CostSys) = 181
80

E(X1) + E(W) + E(X5) + E(X7) + E(X8) + E(X9)

(6.10)

From Theorem 5.8 (and Equation 6.6)

Var(CostSys) =
(

181
80

)2

Var(X1) + Var(W) + Var(X5)

+ Var(X7) + Var(X8) + Var(X9) (6.11)

since X1, W, X5, X7, X8, and X9 are independent random variables.
To compute the mean and variance of CostSys we need the means
and variances of X1, W, X5, X7, X8, and X9. Table 6.3 presents these
statistics.

TABLE 6.3

Cost Statistics for X1, W, X5, X7, X8, and X9

Cost Element Cost Xi ($M) E(Xi) ($M) Var(Xi) ($M)2

X1 12.500 6.6
W 0.800 0.16/12

X5 7.933 40.75/18
X7 1.100 0.16/12

X8 1.633 1.51/18
X9 1.233 0.37/18



220 Probability Methods for Cost Uncertainty Analysis

The statistics in Table 6.3 were determined by distribution-specific
formulas given in Chapter 4. For instance, since X1 ∼ N(12.5, 6.6), we
know from Theorem 4.6 that E(X1) = 12.5 and Var(X1) = 6.6. Since
W is a uniform distribution, from Theorem 4.2

E(W) = 0.6 + 1
2

= 0.8 and Var(W) = (1 − 0.6)2

12
= 0.16

12
= 0.01333

Since X5 is a triangular distribution, from Theorem 4.3

E(X5) = 1
3

(5.1 + 6.6 + 12.1) = 7.933

Var(X5) = 1
18

[
(6.6 − 5.1) (6.6 − 12.1) + (12.1 − 5.1)2

]
= 40.75/18

Substituting the data in Table 6.3 into Equations 6.10 and 6.11 we
obtain

E(CostSys) = 40.98($M) (6.12)

Var(CostSys) = 36.18($M)2 (6.13)

b. To approximate the distribution function of CostSys, observe the
following. First, the random variables X1, W, X5, X7, X8, and X9
are independent. Hence, the central limit theorem will affect the
shape of the distribution of CostSys. Second, the random variables
X2, X3, X4, X6, and X10 are highly correlated to X1, which is given in
Table 6.2 to be N(12.5, 6.6). It can be shown that

ρXv,X1 = 1(v = 2, 4, 6, 10) and ρX3,X1 = 0.9898

Thus, it is reasonable to conclude (for this case) the distribution func-
tion for CostSys is approximately normal—with mean and variance
given by Equations 6.12 and 6.13, respectively. The cumulative dis-
tribution function (CDF) for CostSys, assumed to be approximately
normal, is shown in Figure 6.5.

c. In Figure 6.5, note that P(CostSys ≤ 50.87) = 0.95. This means a value
of 50.87 ($M) for CostSys has only a 5% chance of being exceeded. To
arrive at this value, it is necessary to find x such that P(CostSys ≤ x) =
0.95. From Equation 4.24

P
(

CostSys − E(CostSys)

σ
≤ x − E(CostSys)

σ

)
= 0.95

= P
(

Z ≤ x − 40.98
6.015

)
= 0.95 (6.14)



System Cost Uncertainty Analysis 221

0.5

(a)

(b)

0.95

FCostSys (x)

25

($M)

40.98 50.87 60
x

0.5

0.95

FCostSys (x)

25

($M)

40.98 50.87 60
x

FIGURE 6.5
(a) Assumed normal CDF for CostSys (defined by the solid line) vs. (b) the simulated CDF
(defined by the points).

Since CostSys ∼ N(40.98, 36.18), from Table A.1

x − 40.98
6.015

= 1.645

and x = 50.87. Thus, a value of 50.87 ($M) for CostSys has only a 5%
chance of being exceeded. Equivalently, 50.87 ($M) is the 0.95-fractile
(i.e., x0.95 = 50.87) of CostSys. Furthermore, we can say the cost
reserve (refer to Chapter 1) needed for a 95% chance of not exceeding
50.87 ($M) is 9.9 ($M) above the expected cost of the system.

Further Considerations: In Case Discussion 6.1, it was assumed the distri-
bution function for CostSys could be approximated by a normal distribution.
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How reasonable is this assumption? A series of 20 “points” is shown in
Figure 6.5. These points reflect random statistical samples (values) of CostSys,
sampled by Monte Carlo simulation (explained in Section 6.3). The curve
implied by these “points” represents the simulated distribution function∗ for
CostSys. The curve given by the solid line in Figure 6.5 is the assumed nor-
mal distribution for CostSys. With this in mind, observe in Figure 6.5 how
closely the simulated distribution for CostSys matches the assumed normal
distribution.

The closeness with which these “points” fall along the curve given by the
solid line, in Figure 6.5, visually suggests the reasonableness of the assump-
tion that the distribution function for CostSys can be approximated by a normal.
Although this is a practical conclusion, it remains an informal one. A more
formal conclusion could be derived from the Kolmogorov–Smirnov (K-S)
test, illustrated in Case Discussion 5.1. This would reveal whether the nor-
mal distribution is a statistically plausible model for the underlying distribution
function of CostSys, in this case.

In Case Discussion 6.1, a significant amount of correlation exists between
certain pairs of cost element costs. In Table 6.2, the five cost element costs
X2, X3, X4, X6, and X10 were functionally related to X1, the system’s PMP cost.
In particular, X2, X4, X6, and X10 are linearly related to X1 by the expression

Xv = avX1 (6.15)

where v = 2, 4, 6, 10, a2 = 1/2, a4 = a6 = 1/10, and a10 = 1/4. In Table 6.2,
cost element cost X3 was a linear combination of X1, X2, and W; specifically,

X3 = 1
4

X1 + 1
8

X2 + W (6.16)

where X1 and W were given to be independent random variables and
X2 = 1

2 X1. The functional relationships given by Equations 6.15 and 6.16
imply the following correlations.

ρXv, X1 = 1 for v = 2, 4, 6, 10

ρX1, W = 0 from Theorem 5.3

ρX2, W = ρ 1
2 X1,W = ρX1,W = 0 from Theorems 5.6 and 5.3

ρX3, X1 = ρ 5
16 X1+W,X1

= 0.9898 from Theorem 6.1

ρX3, X2 = ρX3, 1
2 X1

= ρX3,X1 = 0.9898 from Theorem 5.6

ρX3, W = ρ 5
16 X1+W,W = 0.1424 from Theorem 6.1

∗ The simulated distribution is an empirically developed distribution. In establishing this
distribution, no assumption is made that the distribution function for CostSys is normal.
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Theorem 6.1 If Y = aX+Z where a is a real number and X and Z are independent
random variables, then

ρY,X = a
σX

σY
and ρY,Z = σZ

σY

A proof of this theorem can be developed from Equation 5.29.

The existence of these correlations is hard to notice when CostSys is expressed
in the form

CostSys = 181
80

X1 + W + X5 + X7 + X8 + X9

In this equation, CostSys is now written as the sum of six independent ran-
dom variables instead of the sum of ten random variables (Equation 6.8).
Capturing the combined effect of these correlations on the distribution func-
tion of CostSys is accounted for by the coefficient 181/80. This case discussion
illustrates how correlation can exist in a WBS, by virtue of the functional rela-
tionships defined among the cost element costs. Functional relationships such
as those in this WBS (Table 6.2) are very common in cost analysis. Although
these relationships are primarily defined for developing the point estimate
of CostSys, such relationships come along with implied correlations. Cost
analysts must be aware of this implication so as not to inadvertently induce
correlation (or consider it absent) when it is already present. This concludes
Case Discussion 6.1.

Many cost elements in Case Discussion 6.1 were a function of a single ran-
dom variable. Thus, computing E(CostSys) and Var(CostSys) was “relatively”
straightforward. More complex relationships are given in Case Discussion
6.2, which illustrates the computation of E(CostSys) and Var(CostSys) when
cost elements are functions of two or more random variables. In addi-
tion, it will be seen how a program’s schedule can be incorporated into
cost estimating relationships. Case Discussion 6.2 also lays the groundwork
for studying cost-schedule probability trade-offs and will be revisited in
Chapter 7.

Case Discussion 6.2: Suppose the government is acquiring a new digi-
tal information system. The system consists of 3 large screen displays for
“situation rooms,” 47 display workstations, 2 support processors, and a suite
of electronic communications equipment. Suppose the system requires new
software to be developed for the large screen display and the display work-
station. The WBS for this system is given in Figure 6.6. Cost element data for
this WBS are provided in Table 6.4. Additional information about these data
follows.
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Electronic System 

Prime Mission
Product (PMP)

System Test and
Evaluation
(STE)

Data

Hardware (HW)

Level 1

Level 2

Digital Information System

Level 3

Level 4

CostSys

X1 X2 X3 X4

X11

Large Screen Displays (3 Units) X111
Display Workstations (47 Units) X112
Support Processors (2 Units) X113
Communications Equipment X114

Display
Applications X121

Systems Eng and
Program Mgt
(SEPM)

Training

X5

Software (SW)
X12

Integration and
Assembly (I&A)

X13

FIGURE 6.6
Case Discussion 6.2 work breakdown structure.

TABLE 6.4

Cost Element Data for Case Discussion 6.2

WBS Cost

Element Functional Relationship Distribution Distributions of Random

Cost ($K) (If Applicable) (If Applicable) Variables (If Applicable)

X111 Unif (700, 750)

X112 Unif (3200, 4000)

X113 Unif (200, 250)

X114 Unif (350, 380)

X121 �rSW

(
2.8I1.2

)
�rSW ∼ Unif (10, 15)

I ∼ Trng(80, 100, 150)

X13 0.05
(

X121 + ∑4
s=1 X11s

)
X2

(
�rSEPM

) · �rSEPM ∼ Unif (20, 25)(
SLSEPM

) (
PrgmSched

)
SLSEPM ∼ Trng(12, 15, 25)

PrgmSched ∼ N(33.36, 1.94)

X3
(
�rSTE

) · �rSTE ∼ Unif (15, 20)(
SLSTE

) (
PrgmSched

)
SLSTE ∼ Unif (4, 7)

PrgmSched ∼ N(33.36, 1.94)

X4 0.05
(

X13 + X121 + ∑4
s=1 X11s

)
X5 0.02

(
X13 + X121 + ∑4

s=1 X11s

)

In Figure 6.6, the total cost of the digital information system is

CostSys = X1 + X2 + X3 + X4 + X5 (6.17)

Furthermore, assume in Table 6.4 that X111, X112, X113, X114, �rSW , I, �rSEPM ,
SLSEPM, PrgmSched, �rSTE , and SLSTE are independent random variables. In
Table 6.4, we have the following random variable definitions.
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• �rSW , �rSEPM , and �rSTE are labor rates for software (SW) development,
systems engineering and program management (SEPM), and system
test and evaluation (STE), respectively; the units are in ($K) per staff
month.

• I denotes the number of delivered source instructions (DSI) to be
developed. The units are in thousands (K); that is, I is expressed in
terms of KDSI (as discussed in Chapter 5).

• SLSEPM and SLSTE represents staff-levels (i.e., the number of persons)
for the SEPM and STE activities, respectively.

• PrgmSched denotes the total number of months to complete the
development of the digital information system.

From the information given in this case discussion, find the following:

a. Determine E(CostSys) and Var(CostSys).
b. Discuss correlations implied by the relationships in Table 6.4.
c. Identify distribution function(s) that approximate FCostSys(x).

Preliminaries: Before beginning part (a), a simplified expression for CostSys will
be developed. Recall from Equation 6.17, the system’s total cost is given by

CostSys = X1 + X2 + X3 + X4 + X5

This can be written as

CostSys = CostPMP + X2 + X3 + X4 + X5 (6.18)

where

CostPMP = X1 = X11 + X12 + X13 (6.19)

From Figure 6.6 and Equation 6.19

CostPMP = X1 = X11 + X12 + X13

= (X111 + X112 + X113 + X114) + (X121) + X13

From Table 6.4

X13 = 0.05

(
X121 +

4∑
s=1

X11s

)
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Combining these relationships

CostPMP = 1.05 (X111 + X112 + X113 + X114 + X121) (6.20)

CostPMP = 1.05(X11 + X12) (6.21)

In electronic systems, the sum (X11 +X12) is known as the prime mission equip-
ment (PME) cost, that is, the total cost of just the system’s hardware and
software. Thus, Equation 6.21 is equivalent to

CostPMP = 1.05CostPME (6.22)

Equation 6.22 will be used later in this case discussion. Returning to Equation
6.18, we have

CostSys = CostPMP + (X2 + X3) + (X4 + X5) (6.23)

From Table 6.4, X4 and X5 can be written as

X4 = 0.05

(
X13 + X121 +

4∑
s=1

X11s

)
= 0.05X1 = 0.05CostPMP

X5 = 0.02

(
X13 + X121 +

4∑
s=1

X11s

)
= 0.02X1 = 0.02CostPMP

This simplifies CostSys (Equation 6.23) to

CostSys = 1.07CostPMP + (X2 + X3)

CostSys = 1.07CostPMP + Q (6.24)

where Q = (X2 +X3). We will now work with Equation 6.24 to determine the
mean and variance of CostSys.

Part A. Mean and Variance: From Theorem 5.7, E(CostSys) is

E(CostSys) = 1.07E(CostPMP) + E(Q) (6.25)

It can be shown, in this case, that Cov(CostPMP, Q) = 0. From Theorem 5.8,
Var(CostSys) is

Var(CostSys) = (1.07)2 Var(CostPMP) + Var(Q) (6.26)
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To compute E(CostSys) and Var(CostSys), it is necessary to determine the means
and variances of CostPMP and Q. Since these computations are lengthy, part (a)
is separated into three sections. They are defined as follows: (1) computing
the mean and variance of CostPMP, (2) computing the mean and variance of Q,
and (3) Combining (1) and (2) to determine the mean and variance of CostSys.

Mean and Variance of CostPMP: To compute E(CostPMP) and Var(CostPMP),
recall from Equation 6.22

CostPMP = 1.05CostPME (6.27)

where

CostPME = X11 + X12 = (X111 + X112 + X113 + X114) + X121 (6.28)

From Equations 6.27 and 6.28

E(CostPMP) = 1.05E(CostPME)

= 1.05E((X111 + X112 + X113 + X114) + X121)

= 1.05 [E(X111) + E(X112) + E(X113) + E(X114) + E(X121)] (6.29)

Since it is assumed (refer to Figure 6.6), in this case discussion, X111, X112,
X113, X114, and X121 are independent random variables, we can write

Var (CostPMP) = 1.052 Var(CostPME)

= 1.052 Var((X111 + X112 + X113 + X114) + X121)

= 1.052 [Var(X111) + Var(X112) + Var(X113)

+ Var(X114) + Var(X121)] (6.30)

From Table 6.4, X111 ∼ Unif (700, 750); therefore, from Theorem 4.2

E(X111) = 700 + 750
2

= 725 and Var(X111) = (750 − 700)2

12
= 208.333
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Similarly, for X112, X113, and X114

E(X112) = 3200 + 4000
2

= 3600 and Var(X112) = (4000 − 3200)2

12
= 53, 333.333

E(X113) = 200 + 250
2

= 225 and Var(X113) = (250 − 200)2

12
= 208.333

E(X114) = 350 + 380
2

= 365 and Var(X114) = (380 − 350)2

12
= 75

To complete the calculation of E(CostPMP) and Var(CostPMP), it is necessary to
compute mean and variance of X121 (the cost to develop the display software).
Two methods from Chapter 5 will show ways this can be done.

Method 1—Transformation of Variables Approach: In this method,
transformation formulas developed in Chapter 5 are used. From Table 6.4,
the software cost, denoted by X121, is

X121 = �rSW

(
2.8I1.2

)
(6.31)

It was given the random variables �rSW and I are independent. From
Theorem 5.5

E(X121) = E(�rSW )E
(

2.8I1.2
)

Since �rSW ∼ Unif (10, 15), from Theorem 4.2 E(�rSW ) = 12.5. Therefore,

E(X121) = 12.5
[
E

(
2.8I1.2

)]
(6.32)

Recall if Eff SW = c1Ic2 , and I ∼ Trng(a, m, b), then from Equation 5.76

E(Eff SW) = c1
2

b − a
· 1

m − a

[
mc2+2 − ac2+2

c2 + 2
+ ac2+2 − amc2+1

c2 + 1

]

+ c1
2

b − a
· 1

m − b

[
bc2+2 − mc2+2

c2 + 2
+ bmc2+1 − bc2+2

c2 + 1

]
(6.33)

Relating Equation 6.33 to this case, c1 = 2.8, c2 = 1.2, a = 80, m = 100,
and b = 150. Substituting these values into Equation 6.33 yields E(2.8 I1.2) =
790.23. Therefore,

E(X121) = 12.5[790.23] = 9877.875 (6.34)
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We next compute Var(X121). From Theorem 3.10 and from Equation 6.34

Var(X121) = E
(

X2
121

)
− [E(X121)]2 = E

(
X2

121

)
− [9877.875]2 (6.35)

To determine Var(X121), it remains to determine E
(
X2

121

)
in Equation 6.35.

Now,

E
(

X2
121

)
= E

(
�2

rSW
·
(

2.8 I1.2
)2

)
= E

(
�2

rSW

(
7.84I2.4

))
(6.36)

Since the random variables �rSW and I are independent

E
(

X2
121

)
= E

(
�2

rSW

)
E

(
7.84I2.4

)
(6.37)

We will take the following approach to compute E
(
�2

rSW

)
. Since

Var
(
�rSW

) = E
(
�2

rSW

)
− [

E
(
�rSW

)]2

it follows that

E
(
�2

rSW

)
= Var

(
�rSW

) + [
E

(
�rSW

)]2 (6.38)

Since �rSW ∼ Unif (10, 15), from Theorem 4.2

E(�rSW ) = 12.5 and Var
(
�rSW

) = (15 − 10)2

12
= 25

12

Substituting these values into Equation 6.38 yields E
(
�2

rSW

)
= 158 1

3 .
Therefore, Equation 6.37 becomes

E
(

X2
121

)
= 158

1
3

E
(

7.84I2.4
)

(6.39)

To compute E
(
7.84I2.4), Equation 6.33 will be used again with c1 = 7.84,

c2 = 2.4, and a = 80, m = 100, and b = 150. Substituting these values into
Equation 6.33 yields E

(
7.84I2.4) = 640, 626.866. Therefore,

E
(

X2
121

)
= 158

1
3

(640, 626.866) = 101, 432, 587.1 (6.40)
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Hence, Equation 6.35 becomes

Var(X121) = 101, 432, 587.1 − [9877.875]2 = 3, 860, 172.585 (6.41)

and

σX121 = √
Var (X121) = 1964.732

Method 2—Mellin Transform Approach: In this method, the Mellin trans-
form (refer to Section 5.5) is used to illustrate an alternative approach to
computing E(X121) and Var(X121). Recall that

X121 = �rSW

(
2.8I1.2

)
(6.42)

From Theorem 5.13, the Mellin transform of X121 is

MX121(s) = M�rSW
(s)(2.8)s−1MI(1.2s − 1.2 + 1) (6.43)

From Equation 5.98

E(X121) = MX121(2) = M�rSW
(2)(2.8)2−1MI(1.2(2) − 1.2 + 1)

E(X121) = 2.8M�rSW
(2)MI(2.2)

(6.44)

Since �rSW ∼ Unif (10, 15), from Equation 5.108

M�rSW
(2) = 1

2
· 1
(15 − 10)

(
152 − 102

)
= 12.5

Since I ∼ Trng(80, 100, 150), from Equation 5.109, with s = 2.2, a = 80,
m = 100, and b = 150 we have

MI(2.2) = 282.225

therefore

E(X121) = 2.8(12.5)(282.225) = 9877.875 (6.45)

To compute Var(X121), we have

Var(X121) = E
(

X2
121

)
− [E(X121)]2 = E

(
X2

121

)
− [9877.875]2 (6.46)
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From Equation 5.99

E
(

X2
121

)
= MX121(3)

= M�rSW
(3)(2.8)3−1MI(1.2(3) − 1.2 + 1)

= (2.8)2M�rSW
(3)MI(3.4) (6.47)

where

M�rSW
(3) = 1

3
· 1
(15 − 10)

(
153 − 103

)
= 158

1
3

and

MI(3.4) = 81, 712.61045

Substituting these values into Equation 6.47 yields E
(
X2

121

) = 101, 432, 587.1.
Therefore

Var(X121) = 101, 432, 587.1 − [9877.875]2 = 3, 860, 172.585 (6.48)

and

σX121 = √
Var (X121) = 1964.732�

All the information needed to complete the computation of E (CostPMP) and
Var (CostPMP) is now available. From Equation 6.29, recall that

E(CostPMP) = 1.05E (CostPME)

= 1.05 [E(X111) + E(X112) + E(X113) + E(X114) + E(X121)] (6.49)

Substituting the expected value computations developed in the above discus-
sions into Equation 6.49 yields

E (CostPMP) = 1.05 [725 + 3600 + 225 + 365 + 9877.875]

= 15, 532.52 ($K) (6.50)

From Equation 6.30

Var (CostPMP) = 1.052 Var (CostPME)

= 1.052
[

Var(X111) + Var(X112)

+Var(X113) + Var(X114) + Var(X121)

]
(6.51)
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Substituting the variance computations developed in these discussions into
Equation 6.51 yields

Var (CostPMP) = 1.052
[

208.333 + 53, 333.333
+208.333 + 75 + 3, 860, 172.585

]

= 4, 315, 182.336 ($K)2 (6.52)

and

σCostPMP = √
Var (CostPMP) = 2077.3 ($K)

Mean and Variance of Q: The previous discussion presented the mean and
variance of the system’s prime mission product cost. To complete the compu-
tation of E(CostSys) and Var(CostSys), defined by Equations 6.25 and 6.26, the
values of E(Q) and Var(Q), where Q = X2 + X3, must be determined.

From Table 6.4, observe that X2 and X3 are not independent random vari-
ables. They are both a function of the random variable PrgmSched. From
Theorem 5.7, E(Q) is the sum of the means of X2 and X3 regardless of whether
or not the two random variables are independent. Hence,

E(Q) = E(X2 + X3) = E(X2) + E(X3) (6.53)

However, because X2 and X3 are not independent, Var(Q) is not just the sum
of their respective variances. Applying Theorem 5.8 to this particular case,

Var(Q) = Var(X2) + Var(X3) + 2ρX2,X3σX2σX3 (6.54)

The following presents the computations for the means and variances of X2
and X3, as well as ρX2,X3 , their correlation coefficient.

Mean and Variance of X2: From the WBS in Figure 6.6, recall that the cost
of SEPM is denoted by X2. From Table 6.4, X2 is a function of three random
variables, specifically,

X2 = �rSEPM (SLSEPM)
(
PrgmSched

)
(6.55)

Given �rSEPM , SLSEPM, and PrgmSched are independent random variables

E(X2) = E
(
�rSEPM

)
E (SLSEPM) E

(
PrgmSched

)
(6.56)

From the distribution functions for �rSEPM , SLSEPM, and PrgmSched in Table 6.4,
it can be shown that

E(X2) = (22.5)(17 1
3 )(33.36) = 13, 010.4 (6.57)
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The variance of X2 is

Var(X2) = E(X2
2) − [E(X2)]2

which is equivalent to

Var(X2) = E
(
�2

rSEPM
SL2

SEPM PrgmSched2
)

− [13, 010.4]2 (6.58)

To compute Var(X2), it remains to determine E
(
X2

2

)
. Again, since �rSEPM ,

SLSEPM, and PrgmSched are independent

E
(

X2
2

)
= E

(
�2

rSEPM
SL2

SEPM PrgmSched2
)

= E
(
�2

rSEPM

)
E

(
SL2

SEPM

)
E

(
PrgmSched2

)
(6.59)

Similar to the previous calculations involving �rSW , it is left to the reader to
show that

E
(
�2

rSEPM

)
= 508

1
3

(6.60)

since �rSEPM ∼ Unif (20, 25).
From Table 6.4, the distribution function for SEPM staff-level is trian-

gular, specifically SLSEPM ∼ Trng(12, 15, 25). To determine E
(
SL2

SEPM

)
, the

following relationship is used:

E
(

SL2
SEPM

)
= Var(SLSEPM) + [E(SLSEPM)]2 (6.61)

From Theorem 4.3, it can be shown that

Var(SLSEPM) = 7.7222 and E(SLSEPM) = 17
1
3

therefore,

E
(

SL2
SEPM

)
= 7.7222 +

[
17

1
3

]2

= 308.166 (6.62)

The last term in Equation 6.59 is E
(
PrgmSched2). To compute this expected

value, note that

E
(

PrgmSched2
)

= Var
(
PrgmSched

) + [
E

(
PrgmSched

)]2 (6.63)
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From Table 6.4, PrgmSched ∼ N(33.36, 1.94). Therefore

E
(

PrgmSched2
)

= 1.94 + [33.36]2 = 1114.829 (6.64)

The expected value of each term in Equation 6.59 has now been determined.
Thus,

E
(
�2

rSEPM
SL2

SEPM PrgmSched2
)

=
(

508
1
3

)
(308.166)(1114.829)

= 174, 639, 133.4 (6.65)

Combining these results, it follows that

Var(X2) = 174, 639, 133.4 − (13, 010.4)2 = 5, 368, 625.24 (6.66)

and

σX2 = √
Var(X2) = 2317.03

Mean and Variance of X3: From the WBS in Figure 6.6, recall the cost of
STE is denoted by X3. From Table 6.4, X3 is a function of three independent
random variables, specifically,

X3 = �rSTE (SLSTE)
(
PrgmSched

)
(6.67)

The same approach to determine the mean and variance of the cost of SEPM
can be used to determine the mean and variance of the cost of STE. For this
reason, it is left to the reader to verify the following:

E(X3) = 3210.9 (6.68)

Since �rSTE ∼ Unif (15, 20) and SLSTE ≈ Unif (4, 7), it follows that

E
(

X2
3

)
= E

(
�2

rSTE

)
E

(
SL2

STE

)
E

(
PrgmSched2

)

=
(

308
1
3

)
(31)(1114.829) = 10, 655, 907.19 (6.69)
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With

Var(X3) = E
(

X2
3

)
− [E(X3)]2 (6.70)

Substituting the results from Equations 6.68 and 6.69 into Equation 6.70 yields

Var(X3) = 346, 028.38 (6.71)

and

σX3 = √
Var(X3) = 588.242

Correlation Between X2 and X3: By definition (Equations 5.29 and 5.30),
the correlation between X2 and X3 is

ρX2,X3 = Cov(X2, X3)

σX2σX3

= E(X2X3) − E(X2)E(X3)

σX2σX3

(6.72)

From Table 6.4, it was given that

X2 = �rSEPMSLSEPMPrgmSched (6.73)

X3 = �rSTESLSTEPrgmSched (6.74)

All the terms in Equation 6.72, except for E(X2X3), have been determined
from the above computations. The term E(X2X3) is

E(X2X3) = E
(
�rSEPM SLSEPMPrgmSched · �rSTE SLSTEPrgmSched

)
= E

(
�rSEPM�rSTE SLSEPMSLSTEPrgmSched2

)
(6.75)

Since �rSEPM , �rSTE , SLSEPM, SLSTE, and PrgmSched were given to be indepen-
dent random variables, Equation 6.75 can be written as

E(X2X3) = E(�rSEPM)E(�rSTE)E(SLSEPM)E(SLSTE)E(PrgmSched2) (6.76)

It can be determined that

E(X2X3) = (22.5)(17.5)

(
17

1
3

)
(5.5)(1114.829) = 41, 847, 893.59 (6.77)
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In Equations 6.76 and 6.77, the term E(PrgmSched2) = 1114.829 comes from
Equation 6.64. Substituting the result from Equation 6.77 into Equation 6.72
yields

ρX2,X3 = 41, 847, 893.59 − (13, 010.4)(3210.9)

(2317.03)(588.242)
= 0.0534 (6.78)

All the terms necessary to complete the computation of E(CostSys) and
Var(CostSys) have now been determined.

Mean and Variance of CostSys: From Equation 6.25

E(CostSys) = 1.07E(CostPMP) + E(Q)

= 1.07E(CostPMP) + E(X2 + X3)

= 1.07E(CostPMP) + E(X2) + E(X3)

= 1.07(15, 532.52) + 13, 010.4 + 3210.9

= 32, 841.1 ($K) (6.79)

From Equation 6.26

Var(CostSys) = (1.07)2 Var(CostPMP) + Var(Q)

= (1.07)2 Var(CostPMP) + Var(X2 + X3)

= (1.07)2 Var(CostPMP) + Var(X2) + Var(X3)

+ 2ρX2,X3σX2σX3

= (1.07)2 (4, 315, 182.336) + 5, 368, 625.24 + 346, 028.38

+ 2(0.0534)(2317.03)(588.242)

= 10, 800, 671.5($K)2 (6.80)

which implies

σCostSys =
√

Var(CostSys) = 3286.44 (6.81)

In summary, the mean cost of the digital information system is 32.8 ($M)
and the standard deviation is 3.3 ($M). This concludes part (a) of this case
discussion.
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Part B. Some Implied Correlations: This section discusses the correla-
tions implied by some of the cost relationships in this WBS. The correlation
between cost element costs Xi, for i = 1, . . . , 5, is best explored from the
relationships given in Table 6.4. From Equation 6.22, we have

CostPMP = 1.05 CostPME

Since CostPMP is a linear function of CostPME (with positive slope), the cor-
relation between CostPMP and CostPME is unity. In Table 6.4, we are also
given that

X13 = 0.05

(
X121 +

4∑
s=1

X11s

)
= 0.05CostPME

Thus, the correlation between X13 (the integration and assembly cost) and
CostPME is unity. A perfect correlation also exists between the CostPMP and
other cost element costs in this WBS. From Table 6.4 and this case discussion,
we can write

X4 = 0.05CostPMP and X5 = 0.02CostPMP

Thus, there are implied correlations between X4 and CostPMP and X5 and
CostPMP because of these functional (mathematical) relationships. Here, the
correlation between the cost of Data, denoted by X4, and CostPMP is unity.
Similarly, the correlation between the cost of Training, denoted by X5, and
CostPMP is unity. These relationships illustrate “logical” or “factor-based” cost
relationships, which are common in electronic systems cost analyses.

Last, there is another important correlation in this case discussion. Notice
the costs of SEPM and STE, denoted by X2 and X3, are functions of
PrgmSched—the system’s development schedule. As a result, a positive cor-
relation exists between CostSys and PrgmSched. The following presents a
derivation of this correlation.

From Equation 6.24, recall that

CostSys = 1.07CostPMP + (X2 + X3) = 1.07CostPMP + Q (6.82)

To simplify the notation, let C ≡ CostSys and P ≡ PrgmSched. The correlation
between the system’s total cost C and its development schedule P will be
determined. By definition, this correlation is

ρC,P = E(CP) − E(C)E(P)

σCσP
(6.83)



238 Probability Methods for Cost Uncertainty Analysis

where

E(C) = 32, 841.1 (from Equation 6.79)

E(P) = 33.36 (seen in Table 6.4)

σC = 3286.44 (from Equation 6.81)

σP = √
1.94 = 1.39283 (seen from Table 6.4)

To determine ρC,P we need E(CP). Multiplying Equation 6.82 by P, we can
write

E(CP) = E [(1.07CostPMP + Q)P]

= 1.07E(CostPMPP) + E(QP)

It can be shown, in this case, that Cov(CostPMP, P) = 0. Therefore, from
Theorem 5.1

E(CostPMPP) − E(CostPMP)E(P) = 0 ⇒ E(CostPMPP) = E(CostPMP)E(P)

Thus,

E(CP) = 1.07E(CostPMP)E(P) + E(QP)

E(CP) = 1.07(15, 532.52)(33.36) + E(QP)
(6.84)

To complete the computation of E(CP), it remains to determine E(QP). Given
the specifics of this case discussion, the random variables Q and P are not
independent so E(QP) 	= E(Q)E(P). The computation of E(QP) proceeds as
follows:

E(QP) = E [(X2 + X3)P] = E
[
�rSEPM SLSEPMP2 + �rSTE SLSTEP2

]

= E
[
�rSEPM SLSEPMP2

]
+ E

[
�rSTE SLSTEP2

]
(6.85)

Since the random variables �rSEPM , �rSTE , SLSEPM, SLSTE, and P were given to
be independent, Equation 6.85 can be written as

E(QP) = (
E

[
�rSEPM

]
E [SLSEPM] + E

[
�rSTE

]
E [SLSTE]

)
E

(
P2

)

=
(

22.5
(

17
1
3

)
+ 17.5(5.5)

)
1114.829

= 542, 085.6013 (6.86)
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Therefore

E(CP) = 1.07(15, 532.52)(33.36) + 542, 085.6013 = 1, 096, 522.009

and

ρC,P = E(CP) − E(C)E(P)

σCσP
= 1, 096, 522.009 − (32, 841.1)(33.36)

(3286.44)(1.39283)
= 0.206

(6.87)

Part C. Distribution Function Approximation to FCostSys(x): Figure 6.7
presents distributions that approximate the CDF of the system’s total cost.
The curves defined by the two solid lines reflect two assumed theoretical
distributions. They are a normal distribution (Figure 6.7a) and a lognormal

0.5

0.95

FCostSys (x)

x
($M)

32.8
(a)

(b)

38.2

0.5

0.95

FCostSys (x)

x
($M)

32.7 38.5

FIGURE 6.7
Assumed theoretical CDFs vs simulated CDFs for CostSys. (a) Normal CDF vs the simulated CDF,
(b) Lognormal CDF vs the simulated CDF.
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distribution (Figure 6.7b), each with mean 32.8 ($M) and standard deviation
3.3 ($M).

A third distribution is shown in Figure 6.7 by a series of 20 “points.”
These points reflect random statistical samples (values) of CostSys, sampled
by Monte Carlo simulation (explained in Section 6.3). In Figure 6.7, the curve
implied by these “points” is the simulated distribution function for CostSys.
In Figure 6.7, observe how closely the simulated distribution matches the
assumed normal and lognormal distribution for CostSys. The closeness with
which these “points” fall along the two curves (each defined by the solid lines
in Figure 6.7) visually suggests the reasonableness of the assumption that the
distribution function for CostSys can be approximated by a normal or by a
lognormal. Although this is a practical conclusion, it remains an informal
one. A formal statistical conclusion could be derived from the K-S test, illus-
trated in Case Discussion 5.1. This would reveal whether the normal and
the lognormal distributions are statistically plausible models for the underlying
distribution function of CostSys, in this case.

6.2.2 Approximating the Distribution Function of System Cost

This section provides guidance for approximating the distribution function
of a system’s total cost. Some of this guidance reflects mathematical theory;
some of it reflects observations from numerous project applications.

In the examples and case discussions presented in this book, the normal
distribution often approximates the distribution function of a system’s total
cost. There are many reasons for this. Primary among them is CostSys (a sys-
tem’s total cost) is a summation of WBS cost element costs. Within the WBS, it
is typical to have a mixture of independent and correlated cost element costs.
The greater the number of independent cost element costs, the more likely it is
that the distribution function of CostSys is approximately normal. Why is this?

It is essentially the phenomenon described by the central limit theorem
(Theorem 5.10). An seen in this book, the central limit theorem is very power-
ful. It does not take many independent cost element costs for the distribution
of CostSys to move toward normality. Such a move is evidenced when (1) a
sufficient number of independent cost element costs are summed, and (2) no
cost element’s cost distribution has a much larger standard deviation than the
standard deviations of the other cost element cost distributions. When condi-
tions in the WBS result in CostSys being positively skewed (i.e., a nonnormal
distribution function), then the lognormal often (Abramson and Young 1997,
Garvey 1996)∗ analytically approximates the distribution function of CostSys.

What drives the distribution of CostSys to be normal or to be skewed?
To address this, cost relationships that frequently occur in a system’s
WBS are examined. The electronic system is used to provide a context for

∗ Many practitioners (Black and Wilder 1982, McNichols 1984, Neimeier 1994, Sobel 1965) have
empirically shown the beta distribution also approximates the distribution of CostSys well.
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the discussion. Work breakdown structures associated with other system
classes (e.g., spacecraft systems) can also exhibit properties similar to those
discussed here.

From the electronic system WBS in Figure 6.8, CostSys is defined by

CostSys = X1 + X2 + X3 + X4 + · · · + Xn (6.88)

where X1, X2, X3, X4, . . . , Xn denote the n costs of the system’s level 2 cost
elements. These elements include (but are not limited to) the system’s PMP, as
well as the system’s systems engineering, program management, and system
test. Referring to Figure 6.8, Equation 6.88 can also be written as

CostSys = CostPMP +
n∑

i=2

Xi (6.89)

where CostPMP = X1 and X1 = X11 + X12 + X13.
In the cost analysis of electronic systems, the distribution function of

CostSys is often observed to be approximately normal. Situations specific to
cost analysis contribute to this observation. The following cases describe
the most common of these situations. In each case, the distribution func-
tions for CostPMP, X2, X3, X4, . . . , Xn are assumed to be “well-behaved” (e.g.,
unimodal, continuous).

Case A If (in Equation 6.89), the distribution function of CostPMP is normal and
X2, X3, X4, . . . , Xn are linear functions of CostPMP, such as Xi = ai CostPMP where
ai ≥ 0 (i = 2, . . . , n), then the distribution function of CostSys is normal with mean

E(CostSys) = (1 + a2 + a3 + · · · + an)E (CostPMP)

and variance

Var(CostSys) = (1 + a2 + a3 + · · · + an)2Var (CostPMP)

Case A is a direct consequence of the following proposition.

Electronic System 

Prime Mission
Product (PMP)

Systems
Engineering

Program
Management

System Test
and Evaluation

Hardware (HW)

Level 1

Level 2

Level 3
Integration and
Assembly (I&A) 

Software (SW)

nth WBS
Cost Element 

CostSys

X1 X2 X3 X4 Xn

X11 X12 X13

FIGURE 6.8
An Electronic system WBS.
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Proposition 6.1 If X is a normal random variable and Y = aX, where a is a con-
stant, then the distribution function for Y is normal with mean aE(X) and variance
a2Var(X).

Case B If (in Equation 6.89) CostPMP and X2, X3, X4, . . . , Xn are independent ran-
dom variables and each are normally distributed, then the distribution function of
CostSys is normal with mean

E(CostSys) = E (CostPMP) +
n∑

i=2

E (Xi)

and variance

Var(CostSys) = Var (CostPMP) +
n∑

i=2

Var (Xi)

Case B is a direct consequence of the following proposition.

Proposition 6.2 If X1, X2, X3, . . . , Xk are independent normally distributed ran-
dom variables and Y = X1 + X2 + X3 + · · · + Xk, then, regardless of the size
of k, the distribution function of Y is normal with mean

∑k
i=1 E(Xi) and variance∑k

i=1 Var(Xi).

Case C Suppose (in Equation 6.89) CostPMP, X2, X3, X4, . . . , Xn are independent
random variables. Furthermore, suppose CostPMP, X2, X3, X4, . . . , Xn are not nec-
essarily each normally distributed. If the number of cost element costs in the sequence
CostPMP, X2, X3, X4, . . . , Xn is sufficiently large with none dominating in standard
deviation, then (by the central limit theorem) the distribution function of CostSys is
approximately normal with mean

E(CostSys) = E (CostPMP) +
n∑

i=2

E (Xi)

and variance

Var(CostSys) = Var (CostPMP) +
n∑

i=2

Var (Xi)

These three cases stem from mathematical theory. The next two cases origi-
nate from observations. They are not intended to be rigorous findings; rather,
they reflect results often seen in practice.
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Case D Suppose (in Equation 6.89) CostPMP is normal and CostPMP, X2, X3,
X4, . . . , Xn are independent random variables. Furthermore, suppose X2, X3,
X4, . . . , Xn are not necessarily each normally distributed. If the number of cost
element costs in the sequence X2, X3, X4, . . . , Xn is sufficiently large with no
Xi (i = 2, . . . , n) dominating in standard deviation, then the distribution function
of CostSys is approximately normal with mean

E(CostSys) = E (CostPMP) +
n∑

i=2

E (Xi)

and variance

Var(CostSys) = Var (CostPMP) +
n∑

i=2

Var (Xi)

Case D stems from the influences of the central limit theorem and Propo-
sition 6.2. To see this, recall from Equation 6.89 CostSys is given by

CostSys = CostPMP +
n∑

i=2

Xi

If the distribution function for CostPMP is normal and the distribution func-
tion of the sum

∑n
i=2 Xi is approximately normal (by the central limit theorem),

then CostSys is approximately the sum of two normally distributed random
variables. In Case D, CostPMP and

∑n
i=2 Xi are independent. Thus, from

Proposition 6.2, the distribution function of CostSys is approximately normal.

Case E Suppose (in Equation 6.89) CostPMP is normal. Suppose the sequence
X2, X3, X4, . . . , Xn contains some cost element costs correlated to CostPMP (with
correlation coefficient ρCostPMP,Xi ) and some that are uncorrelated to CostPMP. Sup-
pose X2, X3, X4, . . . , Xn are mutually independent random variables. If the number
of X′

is (i ≥ 2) uncorrelated to CostPMP is sufficiently large, with none of the Xi’s
(correlated or uncorrelated to CostPMP) dominating in standard deviation, then the
distribution function of CostSys is approximately normal with mean

E(CostSys) = E (CostPMP) +
n∑

i=2

E (Xi)

and variance

Var(CostSys) = Var (CostPMP) +
n∑

i=2

Var (Xi) + 2
n∑

i=2

ρCostPMP,XiσCostPMPσXi

In all but Case C, the distribution function for CostPMP was given to be
normal. This is common in electronic systems. The normality of CostPMP
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is primarily driven by the central limit theorem, where CostPMP typically
reflects the sum of many independent hardware and software costs.

Normality of CostPMP: In electronic systems, CostPMP is typically defined
as the sum of three cost element costs; specifically,

CostPMP = X1 = X11 + X12 + X13 (6.90)

Equation 6.90 can also be written as

CostPMP = CostPME + X13 (6.91)

where CostPME is the system’s prime mission equipment cost. It represents
the total cost of the system’s hardware and software; that is,

CostPME = X11 + X12 (6.92)

The normality of CostPMP will be discussed by examining the distribution
functions that frequently characterize X11, X12, and X13.

Distribution Function of Hardware Cost: Typically, a system’s total hard-
ware cost X11 is the sum of the individual hardware item costs. Referring to
Figure 6.8, suppose

X11 = X111 + X112 + X113 + · · · + X11j (6.93)

where X11i (i = 1, 2, . . . , j) are independent random variables representing
the costs of the individual hardware items. Under appropriate conditions,
the distribution function of X11 can be approximately normal by the central
limit theorem (Theorem 5.10); that is, X11 ∼ N (E(X11), Var(X11)) with

E(X11) = E(X111) + E(X112) + E(X113) + · · · + E(X11j)

Var(X11) = Var(X111) + Var(X112) + Var(X113) + · · · + Var(X11j)

If the distribution functions for X11i are well behaved, then the approxima-
tion (in most cases) is good for small j (e.g., not less than or equal to j = 5
hardware items). The more asymmetric (skewed) the distribution functions
are for X11i, the larger j must be for X11 to become approximately normal. In
practice, it is very common to see the normal distribution approximate X11,
particularly in systems designed around the use of commercial hardware items.
The uncertainty in the cost of such items tends to vary independently and
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cost analysts often describe these uncertainties by distribution functions that
are well behaved.

The cost distribution functions of hardware items that require custom devel-
opment may be asymmetric. In practice, this asymmetry typically reflects a
positive skew. The presence of asymmetry in the distribution functions for
X11i (i = 1, 2, . . . , j ) will affect how well (or how quickly) the normal distri-
bution approximates X11. If j (in Equation 6.93) is sufficiently large and the
asymmetry is isolated to just a few hardware items whose cost standard devi-
ations contribute only a small amount to the standard deviation of X11, then
the distribution of X11 may still be approximately normal. If X11 is the sum
of just a few asymmetric distributions (i.e., j is small), then the distribution
of X11 may indeed be nonnormal. In such circumstances, the lognormal (or
beta distribution) might well approximate the distribution function of X11.
It is a good exercise for the reader to study this further. After reading
Section 6.3, use the Monte Carlo simulation technique to study the reason-
ableness of certain distribution function approximations of X11. Do this using
various symmetric and asymmetric distributions for the costs of the hardware
items X11i (i = 1, 2, . . . , j).

Distribution Function of Software Cost: Can the distribution function of
software cost also be approximated by the normal distribution? The answer
depends on how software cost is determined. Cost analysts sometimes deter-
mine software cost according to the equation

X12 = �rSW

[
c1(IX121)

c2 + c1(IX122)
c2 + · · · + c1(IX12k)

c2
]

(6.94)

where IX12i(i = 1, 2, . . . , k) is the number of KDSI to be developed for the
ith software function in the system, and c1, c2, and �rSW are constants (dis-
cussed in Section 5.4.2). Equation 6.94 is traditionally applied in cases where
the individual software functions are independently developed. Such func-
tions would have minimal to no interdependencies. They would integrate
and execute in the system in a highly modular fashion. Under this formula-
tion, if �rSW is a constant, k is sufficiently large, and IX121 , IX122 , . . . , IX12k are
independent random variables, then, by the central limit theorem, the distri-
bution function of X12 will be approximately normal. This result is dependent
on the way X12 is mathematically defined. Other definitions for X12 may yield
distribution functions for X12 that are skewed. Two such definitions are given
by Equations 6.95 and 6.96.

X12 = �rSW

I
Pr

(6.95)

X12 = �rsw(Y1(I) + Y2(I)) (6.96)
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where

Y1(I) = c1
(
IX121

)c2 + c1
(
Ix122

)c2 + · · · + c1
(
Ix12m

)c2

Y2(I) = c1
(
Ix12(m+1)

+ IX12(m+2)
+ · · · + IX12(m+k)

)c2

In Equation 6.96, Y1(I) could represent software functions that have indepen-
dent development efforts while Y2(I) could represent software functions that
have dependent development efforts. Equation 6.96 is traditionally applied
when a combination of independently developed software functions, and a
set of software functions that share functionality, characterizes the system.

Equation 6.95 (refer to Chapter 5) might be used when software cost is
based on the total size I (in DSI) of the software to be developed and its devel-
opment productivity rate Pr (i.e., DSI per staff month). Here, I and Pr may or
may not be independent random variables.

In the definitions for X12 (given by Equations 6.94 through 6.96), it would
be reasonable to consider �rSW a random variable instead of a constant.
This consideration also affects whether the distribution function of X12 can
be approximated by a normal distribution. The reader is encouraged to
explore these questions further, using the Monte Carlo simulation technique
discussed in Section 6.3.

Distribution Function of Integration and Assembly (I&A): Similar to
the previous discussion, the distribution function for X13—the cost to inte-
grate, assemble, and checkout the system’s hardware and software (known
in the cost analysis community as I&A)—is also driven by how X13 is
mathematically defined. The following approaches are commonly used to
define X13.

Approach 1—Cost Factor: Cost analysts often define X13 as a scalar
multiple of CostPME, that is,

X13 = aCostPME (6.97)

where a > 0. For electronic systems, a typical value for a is 0.05. If CostPME is
normally distributed, then from Proposition 6.1

X13 ∼ N
(

aE(CostPME), a2Var(CostPME)
)

(6.98)

Under this approach, the correlation between X13 and CostPME is unity.
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Approach 2—Level of Effort: Another way cost analysts define X13 is by
a level-of-effort formulation, that is,

X13 = �rX13
SLX13 TX13 (6.99)

where �rX13
is a labor rate (e.g., dollars per staff month), SLX13 is the staff-

level (i.e., the number of persons) needed for I&A, and TX13 is the number
of months needed for I&A activities. As discussed in Chapter 5, if n is suf-
ficiently large, then the distribution function of a product of n-independent
random variables is approximately lognormal. If �rX13

, SLX13 , and TX13 are
independent, then X13 is the product of three independent random variables.
Are three independent random variables enough for the distribution function
of X13 to be well approximated by the lognormal? After reading Section 6.3,
the Monte Carlo simulation technique can be used to explore this question.

To summarize, conditions can occur in the WBS that drive the distribu-
tion functions for X11, X12, X13 to be normal (or approximately normal). Recall
CostPMP is defined by

CostPMP = X11 + X12 + X13 = CostPME + X13 (6.100)

where

CostPME = X11 + X12 (6.101)

If X11 and X12 are independent normal random variables, then the distribu-
tion function for CostPME is normal with mean

E(CostPME) = E(X11) + E(X12)

and variance

Var(CostPME) = Var(X11) + Var(X12)

Furthermore, if CostPME is normally distributed and X13 = aCostPME, with
a > 0, then CostPMP is normally distributed (by Proposition 6.1) with mean

E(CostPMP) = (1 + a) [E(X11) + E(X12)]

and variance

Var(CostPMP) = (1 + a)2 [Var(X11) + Var(X12)]

Even if X13 is not normal, the distribution function of CostPMP may still be
approximately normal. However, this depends on the extent the distribution
of CostPME influences the overall distribution of CostPMP. If CostPME is normal
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with a standard deviation significantly larger than the standard deviation
of X13 and X13 is independent of CostPME, it is possible that the normal
distribution approximates the distribution of CostPMP. Again, it is a worth-
while exercise for the reader to empirically explore cases when this is (and is
not) true.

From these discussions, it is seen how frequently the distribution func-
tion for CostSys can become approximately normal. This is not to argue that
CostSys is always normally distributed. Rather, it is to encourage cost analysts
to study the mathematical relationships they define in a work breakdown struc-
ture to see whether analytical approximations to the distribution function of
CostSys can be argued. Where possible, analytical forms of the distribution
function of CostSys are desirable. They can reveal much information about
the “cost-behavior” in a system’s work breakdown structure. They offer ana-
lysts and decision-makers insight about this behavior, so potential areas for
cost-reductions and trade-offs might be easily seen.

6.3 Monte Carlo Simulation

Throughout the many examples and case discussions presented in this book,
analytical techniques have been used to develop (or approximate) the prob-
ability distribution of a system’s cost. As previously stressed, analytical
solutions to these types of problems are recommended. However, at times
there are limitations when using analytical techniques. A system’s work
breakdown structure cost model can contain cost estimating relationships
too complex for strict analytical study. In such circumstances, a technique
known as the Monte Carlo method is frequently used. This section provides
an introduction to this method.

The Monte Carlo method falls into a class of techniques known as simu-
lation. Simulation has varying definitions among practitioners. For instance,
Winston (1994) defines simulation as a technique that imitates the operation
of a real-world system as it evolves over time. Rubinstein (1981) offers a
definition close to the context of this book:

Simulation is a numerical technique for conducting experiments on a dig-
ital computer, which involves certain types of mathematical and logical
models that describe the behavior of a business or economic system (or
some component thereof) over extended periods of real time.

With easy access to powerful computing and applications software, simula-
tion is a widely used problem-solving technique in management science and
operations research.
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The Monte Carlo method involves the generation of random variables
from known, or assumed, probability distributions. The process of gener-
ating random variables from such distributions is known as random variate
generation or Monte Carlo sampling. Simulations driven by Monte Carlo sam-
pling are known as Monte Carlo simulations. As mentioned in Chapter 1, one
of the earliest applications of Monte Carlo simulation to cost analysis prob-
lems was at the RAND Corporation (Dienemann 1966). Since then, Monte
Carlo simulation became (and remains) a popular approach for studying
cost uncertainty, as well as for evaluating the cost-effectiveness of a system’s
design alternatives.

For cost uncertainty analysis, Monte Carlo simulation can be used to
develop the empirical distribution of a system’s cost. In concert with
Rubinstein’s definition, the WBS serves as the mathematical/logical cost
model of the system within which to conduct the simulation. In this context,
the steps in a Monte Carlo simulation are as follows:

• For each random variable defined in the system’s WBS, randomly
select (sample) a value from its distribution function, which is known
(or assumed).

• Once a set of feasible values for each random variable has been
established, combine these values according to the mathematical
relationships specified across the WBS (such as the relationships
given in Case Discussions 6.1 and 6.2). This process produces a single
value for the system’s total cost.

• Repeat these two steps n-times (e.g., ten thousand times). This pro-
duces n-values each representing a possible (i.e., feasible) value for
the system’s total cost.

• Develop a frequency distribution from these n-values. This is the
simulated (i.e., empirical) distribution of the total system cost.

To illustrate the concept of Monte Carlo sampling, consider the problem of
determining the mean effort (staff months) to develop a software application.
For discussion purposes, assume effort Eff SW (see Chapter 5) is given by

Eff SW = I
Pr

(6.102)

where the distribution functions for I and Pr are as given in Figure 6.9.
In the Monte Carlo method, samples for I and Pr are randomly drawn

from their distribution functions. These samples are Monte Carlo samples.
For each sample (value) of I and Pr, a value for Eff SW is computed according
to Equation 6.102. This process of sampling I and Pr and computing the asso-
ciated Eff SW is repeated thousands of times. From the many sampled values
of Eff SW , a simulated (empirical) probability distribution of Eff SW is deter-
mined. In addition, various statistical measures such as the mean of Eff SW
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FIGURE 6.9
Monte Carlo sampling—ten random samples drawn from the distribution functions for I and Pr.

can be computed from these sampled values. In Figure 6.9, ten random sam-
ples of I and Pr are shown along with the associated values of Eff SW . From
these samples, an average value of Eff SW is computed. After only ten Monte
Carlo samples, this average is close to the computed expected value of Eff SW
(refer to Example 5.17).

A way to randomly sample values from a given distribution function is
essential to the Monte Carlo method. There are a number of well-established
techniques for randomly sampling values. One method is the inverse trans-
form method, which is presented in the following section. For a full discus-
sion of random variate generation techniques, as well as the general topic
of modeling and simulation, the reader is directed to Rubinstein (1981) and
Law and Kelton (1991).

In cost uncertainty analysis, Monte Carlo simulations are generally static
simulations. Static simulations are those used to study the behavior of a system
(or model) at a specific point in time. In contrast, dynamic simulations are those
used to study such behavior as it changes over time.

6.3.1 Inverse Transform Method

The inverse transform method (ITM) is a popular technique for generating
random variates from continuous distributions. It is a relatively straightfor-
ward method for distribution functions that exist in closed form, such as the
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uniform or triangular distributions (see Chapter 4). Alternative random vari-
ate generation techniques, such as those described in Law and Kelton (1991),
are recommended for working with distribution functions that are not in
closed form. The following illustrates the ITM.

Suppose a set of random variates for the size of a software application
must be generated, where the distribution function for size (expressed as
delivered source instructions I) is given by

I ∼ Unif (50, 000, 100, 000)

From Equation 4.5, the CDF for I is

FI(t) = t − 50, 000
50, 000

50, 000 ≤ t ≤ 100, 000 (6.103)

To apply the ITM, a random number η, where 0 ≤ η ≤ 1, is generated.
Next, a value for t that satisfies η = FI(t) is found. Repeating this process
for various η produces Monte Carlo samples that stem from the given
distribution function. In this case, Monte Carlo samples of I whose under-
lying distribution function is Equation 6.103 are generated. For example,
if a random number generator (discussed next) produces η = 0.06846,
then the value of t such that

0.06846 = t − 50, 000
50, 000

is 53,423, which is the first value of I shown in Figure 6.9. Generalizing
further, this expression can be solved for any η; this yields

t = 50, 000(η + 1) (6.104)

Equation 6.104 is known as the random variate generator for I. In particular,
note that if η = 0, η = 1

2 , and η = 1, then Equation 6.104 generates
t = 50, 000, t = 75, 000 (which is the median of I), and t = 100, 000,
respectively. Thus, for any random number η the random variate gen-
erator given by Equation 6.104 will produce Monte Carlo samples whose
underlying distribution function is precisely that given by Equation 6.103.

Essential to random variate generators is the generation of random numbers
identified in the above discussion by η. In general, random numbers are inde-
pendent random variables uniformly distributed over the unit interval. In
Monte Carlo sampling, independent random samples are drawn from the
standard uniform distribution, defined by Equation 6.105.

fX(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise (6.105)
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The statistical literature offers a number of algorithms for generating random
numbers. One such generator, commonly available in many present-day
software applications, is given by the recursive relationship

xi+1 = (axi + c)(modm), (i = 0, 1, 2, . . .) (6.106)

where a (the multiplier), c (the increment), and m (the modulus) are nonnega-
tive integers. Generators that produce random numbers by Equation 6.106
are known as linear congruential generators (Law and Kelton 1991, Rubinstein
1981). They produce a sequence of integers between 0 and m − 1. Equation
6.106 is equivalent to

xi+1 = axi + c − mκi (6.107)

where κi = [(axi + c)/m] is the largest integer less than or equal to (axi + c)/m.
For each xi (i ≥ 1), the associated random number between 0 and 1 is gen-
erated by ηi+1 = (xi+1)/m. For example, suppose a = 75, c = 50, m = 5000,
and x0 = 20. The term x0 is known as the initial value or seed. It is assigned
arbitrarily to the random number generator. Using Equation 6.107, the first
two random numbers, η1 and η2, associated with the sequence of integers
x1, x2, . . . , x4999 are

x1 = 75(20) + 50 − 5000κ0 = 1550 − 5000(0) = 1550

x2 = 75(1550) + 50 − 5000κ1 = 116, 300 − 5000(23) = 1300

where

κ0 = [(75(20) + 50)/5000] = 0

κ1 = [(75(1550) + 50)/5000] = [23.26] = 23

Thus,

η1 = 1550
5000

= 0.310 and η2 = 1300
5000

= 0.260

In a strict sense, random numbers generated by recursive relationships are
not “purely random.” Since they are produced by a deterministic procedure,
with results that can be replicated, such numbers are considered “pseudoran-
dom.” In practice, the values of a, c, m, and x0 are selected in a way to create
a sequence of xi’s such that their corresponding ηi’s appear to be statistically
independent uniformly distributed random variates in the unit interval.
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6.3.2 Sample Size for Monte Carlo Simulations

In Monte Carlo simulations, a question frequently asked is “How many trials
(the sample size) are necessary to have confidence in the outputs of the sim-
ulation?” Morgan and Henrion (1990) provide a guideline for determining
sample size as a function of the precision desired in the outputs of a Monte
Carlo simulation. Specifically, formulas are presented to address the ques-
tion: “What sample size is needed so that, with probability α, a true fractile
of the underlying distribution falls between a pair of fractiles estimated from
the Monte Carlo sample?”

Morgan–Henrion Guideline (Morgan and Henrion 1990): Define m as the
sample size and let xp be the p-fractile of X (the underlying distribution); that
is, P(X ≤ xp) = p. Let c satisfy the probability P(−c ≤ Z ≤ c) = α, where
Z ∼ N(0, 1). Then, the pair of fractiles (x̂i, x̂k) estimated from a Monte Carlo
sample with

i = mp − c
√

mp(1 − p)

m
= p − c

√
p(1 − p)

m
(6.108)

k = mp + c
√

mp(1 − p)

m
= p + c

√
p(1 − p)

m
(6.109)

contains xp with probability α. For different sample sizes m, Figure 6.10 illus-
trates, with probability 0.95 (c ≈ 2), the values of i and k such that the true
median of the distribution falls between (x̂i, x̂k). The lower and upper curves
in Figure 6.10 are generated from Equations 6.108 to 6.109. As the sample
size increases, the difference between the lower and upper curves decreases
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FIGURE 6.10
Sample size for Monte Carlo simulations.
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dramatically. With 100 samples you can be 95% confident the true median
x0.50 falls between the estimated fractiles x̂0.40 and x̂0.60. Increasing that sam-
ple size by a factor of 100 (m = 10, 000) brings the same degree of confidence
to within x̂0.49 to x̂0.51. As a guideline, 10,000 trials (Monte Carlo samples)
should be sufficient to meet the precision requirements for most Monte Carlo
simulations, particularly those conducted for cost uncertainty analyses.

Exercises

Exercises 6.1 through 6.4 refer to Case Discussion 6.1.

6.1 Review Case Discussion 6.1 and verify the computations that led to
E(CostSys) and Var(CostSys).

6.2 Prove Theorem 6.1.
6.3 Referring to Case Discussion 6.1, use Theorem 6.1 to show that

a. ρX3,X1 = 0.9898
b. ρX3,W = 0.1424

6.4 The coordinates listed here are the 20 points shown in Figure 6.5. They
are values for (x, FCostSys(x)) determined by the Monte Carlo simulation.
The simulation was run with a sample size of n = 5000.

(31.01, 0.05), (33.225, 0.10), (34.76, 0.15), (35.885, 0.20), (36.849, 0.25),

(37.785, 0.30), (38.67, 0.35), (39.563, 0.40), (40.272, 0.45), (41.069, 0.50),

(41.728, 0.55), (42.326, 0.60), (43.191, 0.65), (44.183, 0.70), (45.151, 0.75),

(46.208, 0.80), (47.368, 0.85), (48.548, 0.90), (51.028, 0.95), (59.235, 1)

Using these values for (x, FCostSys(x)), apply the K-S test (Chapter 5) to
show CostSys ∼ N(40.98, 36.18) is a statistically plausible model for the
distribution function of CostSys.

Exercises 6.5 through 6.9 refer to Case Discussion 6.2.

6.5 Review Case Discussion 6.2 and verify the computations that led to
E(CostSys) and Var(CostSys).

6.6 Referring to Table 6.4 and Equation 6.20, show that
a. Cov(CostPMP, Q) = 0, where Q = X2 + X3

b. Cov(CostPMP, P) = 0, where P = PrgmSched

6.7 Use the Mellin transform technique to verify, in Case Discussion 6.2,
the mean and variance of the cost of STE, which was denoted by X3.



System Cost Uncertainty Analysis 255

6.8 Review Case Discussion 6.2 and verify the computations that led to the
correlation between CostSys and PrgmSched.

6.9 The coordinates listed below are the 20 points shown in Figure 6.7. They
are values for (x, FCostSys(x)) determined by the Monte Carlo simulation.
The simulation was run with a sample size of n = 5000.

(27.88, 0.05), (28.72, 0.10), (29.44, 0.15), (29.97, 0.20), (30.45, 0.25),

(30.9, 0.30), (31.3, 0.35), (31.74, 0.40), (32.2, 0.45), (32.64, 0.50),

(33.07, 0.55), (33.43, 0.60), (33.87, 0.65), (34.41, 0.70), (34.99, 0.75),

(35.6, 0.80), (36.29, 0.85), (37.39, 0.90), (38.72, 0.95), (45.71, 1)

Using these values for (x, FCostSys(x)), apply the K-S test to show that a
normal distribution and a lognormal distribution, each with mean 32.8
($M) and standard deviation 3.3 ($M), are statistically plausible models
for the distribution functions of CostSys.

6.10 Use the ITM (Section 6.3) to develop a random number generator that
produces triangularly distributed random variables.
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7
Modeling Cost and Schedule Uncertainties:
An Application of Joint Probability Theory

7.1 Introduction

When cost uncertainty analyses are presented to decision-makers, questions
often asked are “What is the chance the system can be delivered within
cost and schedule?” “How likely might the point estimate cost be exceeded
for a given schedule?” “How are cost reserve recommendations affected by
schedule risk?” During the past 30 years, techniques from univariate prob-
ability theory have been widely applied to provide insight into P(Cost ≤ x1)

and P(Schedule ≤ x2). Although it has long been recognized that a system’s
cost and schedule are correlated, little has been applied from multivariate
probability theory to study joint cost-schedule distributions. A multivariate
probability model would provide analysts and decision-makers visibility into
joint and conditional cost-schedule probabilities, such as

P(Cost ≤ x1 and Schedule ≤ x2)

and

P(Cost ≤ x1 | Schedule = x2)

This chapter introduces modeling cost and schedule uncertainties by joint
probability distributions. A family of joint distributions (Garvey 1996) has
been developed for this purpose. This family consists of the classical bivariate
normal and two lesser known joint distributions, the bivariate normal–
lognormal and the bivariate lognormal. Experiences with Monte Carlo sim-
ulations suggest these distributions are plausible models for computing joint
and conditional cost-schedule probabilities. Appendixes B and C summa-
rize key statistical formulas associated with the bivariate normal–lognormal
and bivariate lognormal distributions. Formulas for the bivariate normal
distribution are well known and are summarized in this chapter.

257
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7.2 Joint Probability Models for Cost-Schedule

As mentioned, decision-makers often require understanding how uncertain-
ties between a system’s cost and schedule interact. A decision-maker might
bet on a “high-risk” schedule in the hopes of keeping the system’s cost within
requirements. On the other hand, the decision-maker may be willing to
assume “more cost” for a schedule with a small chance of being exceeded.
This is a common trade-off faced by decision-makers on systems engineering
projects. This is illustrated in Figure 7.1.

Suppose the cumulative distribution functions (CDFs) for a system’s cost
and schedule are shown in Figure 7.1. The CDF for schedule (the left-side of
Figure 7.1) indicates a 20% chance of delivering the system within 43 months.
However, there is slightly better than an 80% chance of doing so in 53 months.
Given this information, a decision-maker might ask, What is the cost tradeoff
given these two possible schedule outcomes? To answer this question, we need
the distribution function of the system’s cost conditioned on schedule. Three
CDFs for the system’s cost are shown on the right-side of Figure 7.1. The
left CDF is the cost distribution conditioned on a schedule of 43 months. The
right CDF is the cost distribution conditioned on a schedule of 53 months.
The middle CDF is the overall cost distribution conditioned across the entire
schedule distribution (i.e., not conditioned on a specific schedule outcome).
The difference between the conditional median cost (107.8 ($M)) given a
schedule of 53 months and the conditional median cost (87.4 ($M)) given a

0.206

0.5

1

43 50 15087.4 107.853
Months ($M)

0.805

1

FSched(x2) = P(Sched ≤ x2) Left CDF P(Cost ≤ x1|Sched = 43)
Middle CDF P(Cost ≤ x1)
Right CDF P(Cost ≤ x1|Sched = 53)

FSched(x2) FCost(x1)

x2 x1

FIGURE 7.1
Illustrative distributions for a system’s cost and schedule.
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“high-risk” schedule of 43 months is 20.4 ($M).∗ In the context of Figure 7.1,
this difference in cost is certainly significant for any cost-schedule trade-offs
under consideration. This discussion highlights how joint probability models
can be used to analyze cost-schedule interactions and reveal important
trade-offs between them.

The following presents a family of bivariate probability distributions for
modeling cost-schedule uncertainty. This family of distributions are candi-
date theoretical models that may be assumed by an analyst, when joint or
conditional cost-schedule probabilities are needed. These distributions have
key features desirable for cost analysis. First, they can directly incorporate
correlation between cost and schedule on a given system. Second, we will see
that their marginal distributions are either both normal, normal and lognor-
mal, or both lognormal. Shown throughout this book, marginal distributions
such as these are frequently observed in Monte Carlo simulations (Abramson
and Young 1997, Garvey and Taub 1997) of system cost and schedule.

7.2.1 Bivariate Normal

This section presents the classical bivariate normal distribution and summa-
rizes its major characteristics. An important feature of this distribution is its
marginal distributions, which are both univariate normal.

In cost analysis, normal distributions can arise when a system’s cost is
the sum of many independent work breakdown structure cost element costs.
Normal distributions can also occur in schedule analyses. For instance, a sys-
tem’s schedule is approximately normal if it is the sum of many independent
activities in a schedule network. If normal distributions characterize a sys-
tem’s cost and schedule, then the bivariate normal could serve as an assumed†

model of their joint distribution.

Mathematical Definition: Suppose X1 and X2 are two random variables
defined on −∞ < x1 < ∞ and −∞ < x2 < ∞. Let

E(X1) = μX1 = μ1 (7.1)

E(X2) = μX2 = μ2 (7.2)

Var(X1) = σ2
X1

= σ2
1 (7.3)

Var(X2) = σ2
X2

= σ2
2 (7.4)

∗ Example 7.4 will discuss Figure 7.1 further and show how these conditional median costs are
determined.

† In general, the true joint distribution of (X1, X2) cannot be uniquely determined from the
marginal distributions of X1 and X2. Only when random variables are independent can their
joint distribution be obtained from their marginal distributions. From Section 5.1.2 recall that
two random variables X1 and X2 are independent if and only if fX1,X2 (x1, x2) = fX1 (x1)fX2 (x2).
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The pair of random variables

(X1, X2) ∼ Bivariate N
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
(7.5)

has a bivariate normal distribution if

fX1,X2(x1, x2) = 1

(2π)σ1σ2

√
1 − ρ2

1,2

e− 1
2 w (7.6)

where

w = 1

1 − ρ2
1,2

{(
x1 − μ1

σ1

)2

− 2ρ1,2

(
x1 − μ1

σ1

) (
x2 − μ2

σ2

)
+

(
x2 − μ2

σ2

)2
}

for −∞ < x1 < ∞ and −∞ < x2 < ∞. The terms μi and σ2
i (i = 1, 2) in this

expression are given by Equations 7.1 through 7.4. The correlation term ρ1,2
in Equation 7.6 is

ρ1,2 = ρX1, X2 (7.7)

The admissible values for ρ1,2 are given by the interval

−1 < ρ1,2 < 1

If two continuous random variables X1 and X2 have a bivariate normal
distribution, then

P(a1 ≤ X1 ≤ b1 and a2 ≤ X2 ≤ b2) =
b2�

a2

b1�
a1

fX1,X2(x1, x2) dx1 dx2 (7.8)

where fX1,X2(x1, x2) is given by Equation 7.6.

Marginal and Conditional Distributions: A characteristic of the bivari-
ate normal distribution is the distribution of X1 and the distribution of X2
are each univariate normal. These are the marginal distributions. They are
given by

f1(x1) = 1√
2π σ1

e− 1
2 [(x1−μ1)

2/σ2
1] (7.9)

f2(x2) = 1√
2π σ2

e− 1
2 [(x2−μ2)

2/σ2
2] (7.10)
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Important trade-offs in cost analysis often involve assessing the impact a
given set of schedules has on the probability that system cost will not exceed
a required threshold. To make these assessments, the conditional probabil-
ity distribution is needed. Conditional distributions provide probabilities of
the type P(X1 ≤ a |X2 = b). If two continuous random variables X1 and X2
have a bivariate normal distribution, then the conditional probability density
function of X1 given X2 = x2, denoted by fX1|x2 (x1), is normally distributed.
That is,

X1 | x2 ∼ N
(
μ1 + σ1

σ2
ρ1,2(x2 − μ2), σ2

1

(
1 − ρ2

1,2

))
(7.11)

Similarly

X2 | x1 ∼ N
(
μ2 + σ2

σ1
ρ1,2(x1 − μ1), σ2

2

(
1 − ρ2

1,2

))
(7.12)

From Equations 7.11 and 7.12, the conditional means and variances of the
bivariate normal distribution are

E(X1 |x2 ) = μ1 + σ1

σ2
ρ1,2(x2 − μ2) (7.13)

E(X2 |x1 ) = μ2 + σ2

σ1
ρ1,2(x1 − μ1) (7.14)

Var(X1 |x2 ) = σ2
1(1 − ρ2

1,2) (7.15)

Var(X2 |x1 ) = σ2
2(1 − ρ2

1,2) (7.16)

Views of the Bivariate Normal: Figures 7.2 and 7.3 provide views of a
bivariate normal density function. These figures are plots of

(X1, X2) ∼ Bivariate N((100, 48), (625, 36, 0.5))

Figure 7.2 is a surface view of this function, which has a “hill-like” appear-
ance. The marginal distributions of X1 and X2, viewed from the sides of the
surface, are both univariate normal. The peak of the bivariate normal density
function occurs at x1 = μ1 and x2 = μ2. In particular,

fX1,X2(μ1,μ2) = 1

(2π)σ1σ2

√
1 − ρ2

1,2



262 Probability Methods for Cost Uncertainty Analysis

150

70

60

50
50

100

X1 = Cost ($M)

X2 = Schedule (Months)
40

30

FIGURE 7.2
A bivariate normal density (X1, X2) ∼ Bivariate N((100, 48), (625, 36, 0.5)).

Another way to view the bivariate normal is to look at its topography, also
known as its contours. Contours of constant probability density h are pro-
duced by finding x1 and x2 such that h = fX1,X2(x1, x2). In general, contours of
the bivariate normal are ellipses concentric at (μ1,μ2). Figure 7.3 illustrates a
set of contours for the bivariate normal density specified in Figure 7.2. The
innermost ellipse corresponds to h = 0.001, the middle ellipse corresponds
to h = 0.0005, and the outer ellipse corresponds to h = 0.0001. The contour
associated with the peak of the bivariate normal is given by the single point
(μ1,μ2).
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FIGURE 7.3
Contours of a bivariate normal density (X1, X2) ∼ Bivariate N((100, 48), (625, 36, 0.5)).
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Example 7.1 Prove that the function given by Equation 7.6 is indeed a joint
probability density function.

Solution To prove this, it is necessary to show

∞�
−∞

∞�
−∞

fX1,X2(x1, x2) dx2 dx1 = 1 (7.17)

With some algebra, the density function fX1,X2(x1, x2) (Equation 7.6) can
be factored as

fX1,X2(x1, x2) =
{

1√
2πσ1

e−(x1−μ1)2/2σ2
1

}
Q(x1, x2)

where

Q(x1, x2) =

⎧⎪⎨
⎪⎩

1
√

2π(σ2

√
1 − ρ2

1,2)
e−(x2−b)2/2σ2

2(1−ρ2
1,2)

⎫⎪⎬
⎪⎭

and b = μ2 + σ2
σ1

ρ1,2(x1 −μ1). Substituting this factorization into Equation
7.17 yields

∞�
−∞

1√
2πσ1

e−(x1−μ1)2/2σ2
1

×

⎧⎪⎨
⎪⎩

∞�
−∞

1
√

2π(σ2

√
1 − ρ2

1,2)
e−(x2−b)2/2σ2

2(1−ρ2
1,2) dx2

⎫⎪⎬
⎪⎭ dx1

The right-most integrand in this expression is the probability density
function of a N(b,σ2

2(1 − ρ2
1,2)) random variable, which by definition has

integral equal to unity. Similarly, the left-most integrand in the expression
is the probability density of a N(μ1,σ2

1) random variable. Therefore,

∞�
−∞

∞�
−∞

fX1,X2(x1, x2) dx2 dx1 =
∞�

−∞

1√
2πσ1

e−(x1−μ1)2/2σ2
1 dx1 = 1

Example 7.2 Suppose the joint probability density function of a system’s cost
and schedule is a bivariate normal given by

(X1, X2) ∼ Bivariate N((100, 48), (625, 36, 0.5))

where X1 is the random variable that denotes the system’s cost ($M) and X2 is
the random variable that denotes the system’s schedule (months). Determine the
median cost of the system conditioned on a schedule of 53 months.
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FIGURE 7.4
Cumulative conditional cost distribution (X1, X2) ∼ Bivariate N((100, 48), (625, 36, 0.5)).

Solution Following the notation specific to expression (7.5)

(X1, X2) ∼ Bivariate N((100, 48), (625, 36, 0.5))

implies μ1 = 100, μ2 = 48, σ2
1 = 625, σ2

2 = 36, and ρ1,2 = 0.5. The median
system cost conditioned on a schedule of 53 months is found by comput-
ing Med(X1 |x2 = 53) . From expression (7.11), the conditional distribu-
tion of X1 |x2 is

X1 | x2 ∼ N
(
μ1 + σ1

σ2
ρ1,2(x2 − μ2) , σ2

1

(
1 − ρ2

1,2

))

Given the parametersμ1 = 100, μ2 = 48, σ2
1 = 625, σ2

2 = 36, and ρ1,2 = 0.5

X1 | x2 ∼ N
(

100 + 2.0833(x2 − 48) , 625
(

1 − (0.5)2
))

X1 | 53 ∼ N(110.42, 468.75)

Since the conditional distribution of system cost X1 | x2 is normal,

Med(X1 | 53) = E(X1 | 53) = 110.42 ($M)

Figure 7.4 depicts the cumulative conditional cost distribution of X1 | 53 .
The “point” shown along the distribution is aligned to Med(X1 | 53) .

7.2.2 Bivariate Normal–Lognormal

This section presents the bivariate normal–lognormal distribution and sum-
marizes its major characteristics. An important feature of this distribution is
its marginal distributions. One is normal and the other is lognormal.

In cost analysis, it is common for the distribution functions of a system’s
cost and schedule to be normal and lognormal, respectively. In particular,
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a system’s schedule is often observed (from Monte Carlo simulations) to be
lognormal if it is the sum of many positively correlated schedule activities
in an overall schedule network. Thus, if normal and lognormal distributions
characterize a system’s cost and schedule (or vice versa), then the bivariate
normal–lognormal could serve as an assumed model of their joint distribution.

Mathematical Definition: Suppose Y1 = X1 and Y2 = ln X2 are two
random variables where X1 and X2 are defined on −∞ < x1 < ∞ and
0 < x2 < ∞. If Y1 and Y2 each have a normal distribution, then the mean
and variance of Yi (i = 1, 2) are

E(Y1) = μY1 = μX1 = μ1 (7.18)

Var(Y1) = σ2
Y1

= σ2
X1

= σ2
1 (7.19)

E(Y2) = μY2 = μ2 = 1
2

ln

[
(μX2)

4

(μX2)
2 + σ2

X2

]
(7.20)

Var(Y2) = σ2
Y2

= σ2
2 = ln

[
(μX2)

2 + σ2
X2

(μX2)
2

]
(7.21)

The pair of random variables

(X1, X2) ∼ Bivariate NLogN ((μ1,μ2) , (σ2
1,σ2

2, ρ1,2)) (7.22)

has a bivariate normal–lognormal distribution if

fX1,X2(x1, x2) = 1

(2π)σ1σ2

√
1 − ρ2

1,2 x2

e− 1
2 w (7.23)

where

w = 1

1 − ρ2
1,2

{(
x1 − μ1

σ1

)2

− 2ρ1,2

(
x1 − μ1

σ1

) (
ln x2 − μ2

σ2

)
+

(
ln x2 − μ2

σ2

)2
}

for −∞< x1 < ∞ and 0 < x2 < ∞. The terms μi and σ2
i (i = 1, 2) in this expres-

sion are specifically given by Equations 7.18 through 7.21. The correlation
term ρ1,2 in Equation 7.23 (derived in Appendix B) is

ρ1,2 = ρY1,Y2 = ρX1,ln X2 = ρX1,X2

(eσ
2
2 − 1)1/2

σ2
(7.24)
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The admissible values for ρ1,2 are given by the interval −1 < ρ1,2 < 1,
therefore, admissible values for ρX1,X2 (in Equation 7.24) must be restricted
to the interval

−σ2√
eσ

2
2 − 1

< ρX1,X2 <
σ2√

eσ
2
2 − 1

(7.25)

If two continuous random variables X1 and X2 have a bivariate normal–
lognormal distribution, then

P(a1 ≤ X1 ≤ b1 and a2 ≤ X2 ≤ b2) =
b2�

a2

b1�
a1

fX1,X2(x1, x2) dx1 dx2 (7.26)

where fX1,X2(x1, x2) is given by Equation 7.23.

Marginal and Conditional Distributions: For the bivariate normal–
lognormal distribution given by Equation 7.23, the distribution of X1 is
normal and the distribution of X2 is lognormal. These are the marginal
distributions. They are given by

f1(x1) = 1√
2π σ1

e− 1
2 [(x1−μ1)

2/σ2
1] (7.27)

f2(x2) = 1√
2π σ2 x2

e− 1
2 [(ln x2−μ2)

2/σ2
2] (7.28)

The conditional distributions of the bivariate normal–lognormal distribution
are normal and lognormal. In particular,

X1 |x2 ∼ N
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2), σ2

1

(
1 − ρ2

1,2

))
(7.29)

and

X2 |x1 ∼ LogN
(
μ2 + σ2

σ1
ρ1,2(x1 − μ1), σ2

2

(
1 − ρ2

1,2

))
(7.30)

From these conditional distributions, it can be readily shown (left for the
reader) that

E(X1 |x2 ) = μ1 + σ1

σ2
ρ1,2(ln x2 − μ2) (7.31)

E(X2 |x1 ) = eμ2+σ2
σ1

ρ1,2(x1−μ1)+ 1
2σ

2
2(1−ρ2

1,2) (7.32)
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and

Var(X1 |x2 ) = σ2
1(1 − ρ2

1,2) (7.33)

Var(X2 |x1 ) = e2(μ2+σ2
σ1

ρ1,2(x1−μ1))ez(ez − 1) (7.34)

where z = σ2
2

(
1 − ρ2

1,2

)
.

Views of the Bivariate Normal–Lognormal: Figures 7.5 and 7.6 provide
views of a bivariate normal–lognormal density function. These figures are
plots of

(X1, X2) ∼ Bivariate NLogN((100, 3.86345), (625, 0.0155, 0.502))

Figure 7.5 is a surface view of the function, which has a “hill-like” appear-
ance. The marginal distributions of X1 and X2, when viewed from the sides
of the surface, are univariate normal and univariate lognormal, respectively.
A topographic view of a bivariate normal–lognormal density function in
Figure 7.5 is shown in Figure 7.6. In Figure 7.6, the innermost contour cor-
responds to h = 0.001, the middle contour corresponds to h = 0.0005, and the
outer contour corresponds to h = 0.0001. The point (μX1 ,μX2) = (100, 48),
shown in Figure 7.6, stems from

(X1, X2) ∼ Bivariate NLogN((100, 3.86345), (625, 0.0155, 0.502))

This is seen in the following example.
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FIGURE 7.5
A bivariate normal–lognormal density (X1, X2) ∼ Bivariate NLogN((100, 3.86345), (625, 0.0155,
0.502)).
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FIGURE 7.6
Contours of a bivariate normal–lognormal density (X1, X2) ∼ Bivariate NLogN((100, 3.86345),
(625, 0.0155, 0.502)).

Example 7.3 Assume the joint probability density function of a system’s cost X1
and schedule X2 is bivariate normal–lognormal with density function given by
Equation 7.23. Suppose X1 has mean 100 ($M) and variance 625 ($M)2. Suppose
X2 has mean 48 (months) and variance 36 (months)2. If the correlation between
the system’s cost and schedule is

ρX1,X2 = 0.5

determine the median system cost conditioned on a schedule of 53 months.

Solution First, determine the five parameters that specify the bivariate
normal–lognormal defined by expression (7.22). Since μX1 = 100, σ2

X1
=

625, μX2 = 48, and σ2
X2

= 36, Equations 7.18 through 7.21 give

E(Y1) = μY1 = μX1 = μ1 = 100 (7.35)

Var(Y1) = σ2
Y1

= σ2
X1

= σ2
1 = 625 (7.36)

E(Y2) = μY2 = μ2 = 1
2

ln

[
(μX2)

4

(μX2)
2 + σ2

X2

]
= 3.86345 (7.37)
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Var(Y2) = σ2
Y2

= σ2
2 = ln

[
(μX2)

2 + σ2
X2

(μX2)
2

]
= 0.0155 (7.38)

ρ1,2 = ρY1,Y2 = ρX1,ln X2 = ρX1,X2

(eσ
2
2 − 1)1/2

σ2
= 0.502 (7.39)

From expression 7.25, the interval for the correlation between X1 and X2,
in this example, is restricted to

−0.996126 < ρX1,X2 < 0.996126

Thus, the correlation given between the system’s cost and schedule is
admissible, since −0.996126 < 0.5 < 0.996126. From these computations,
the parameters of the bivariate normal–lognormal distribution are

(X1, X2) ∼ Bivariate NLogN((100, 3.86345), (625, 0.0155, 0.502)) (7.40)

The median system cost conditioned on a schedule of 53 months is found
by computing Med(X1 |x2 = 53) . From expression (7.29), the conditional
distribution of X1 |x2 is

X1 |x2 ∼ N
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2) , σ2

1

(
1 − ρ2

1,2

))

From Equations 7.35 through 7.39

X1 | x2 ∼ N
(

100 + 100.8(ln x2 − 3.86345) , 625
(

1 − (0.502)2
))

Therefore,

X1 | 53 ∼ N(110.8, 467.5)

Since the conditional distribution of the system cost X1 | x2 is normal

Med(X1 | 53) = E(X1 | 53) = 110.8 ($M)

Figure 7.7 depicts the cumulative conditional cost distribution of X1 | 53 .
The “point” shown along the distribution is aligned to Med(X1 | 53) .

7.2.3 Bivariate Lognormal

This section presents the bivariate lognormal and summarizes its major char-
acteristics. From a practical perspective, if the distribution functions of a
system’s cost and schedule are lognormal, then the bivariate lognormal could
serve as an assumed model of their joint distribution. However, it again must
be emphasized that this is indeed an assumption. In general, the true joint dis-
tribution of a pair of random variables (X1, X2) cannot be uniquely determined
from the marginal distributions of X1 and X2. Only when random variables
are independent can their joint distribution be obtained from their marginal
distributions.
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FIGURE 7.7
Cumulative conditional cost distribution (X1, X2) ∼ Bivariate NLogN((100, 3.86345), (625, 0.0155,
0.502)).

Mathematical Definition: Suppose Y1 = ln X1 and Y2 = ln X2 are two
random variables where X1 and X2 are defined on 0 < x1 < ∞ and 0 < x2 <

∞. If Y1 and Y2 each have a normal distribution, then the mean and variance
of Yi (i = 1, 2) are

E(Yi) = μYi = μi = 1
2

ln

[
(μXi)

4

(μXi)
2 + σ2

Xi

]
(7.41)

Var(Yi) = σ2
Yi

= σ2
i = ln

[
(μXi)

2 + σ2
Xi

(μXi)
2

]
(7.42)

The pair of random variables

(X1, X2) ∼ Bivariate LogN((μ1,μ2), (σ2
1,σ2

2, ρ1,2)) (7.43)

has a bivariate lognormal distribution if

fX1,X2(x1, x2) = 1

(2π)σ1σ2

√
1 − ρ2

1,2x1x2

e− 1
2 w (7.44)

where

w = 1

1 − ρ2
1,2

{(
ln x1 − μ1

σ1

)2

− 2ρ1,2

(
ln x1 − μ1

σ1

)(
ln x2 − μ2

σ2

)
+

(
ln x2 − μ2

σ2

)2
}
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for 0 < x1 <∞ and 0 < x2 < ∞. The terms μi and σ2
i (i = 1, 2) in this expres-

sion are given by Equations 7.41 and 7.42. The correlation term ρ1,2 in
Equation 7.44 (derived in Appendix C) is

ρ1,2 = 1
σ1σ2

ln
[

1 + ρX1,X2

√
eσ

2
1 − 1

√
eσ

2
2 − 1

]
(7.45)

The admissible values for ρ1,2 are given by the interval −1 < ρ1,2 < 1. From
this, it can be shown that admissible values for ρX1,X2 (in Equation 7.45) are
restricted to the interval

e−σ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1

< ρX1,X2 <
eσ1σ2 − 1√

eσ
2
1 − 1

√
eσ

2
2 − 1

(7.46)

If two continuous random variables X1 and X2 have a bivariate lognormal
distribution, then

P(a1 ≤ X1 ≤ b1 and a2 ≤ X2 ≤ b2) =
b2�

a2

b1�
a1

fX1,X2(x1, x2) dx1 dx2 (7.47)

where fX1,X2(x1, x2) is given by Equation 7.44.

Marginal and Conditional Distributions: For the bivariate lognormal dis-
tribution (given by Equation 7.44), the distribution of X1 is lognormal and the
distribution of X2 is lognormal. The marginal distributions are given by

f1(x1) = 1√
2π σ1 x1

e− 1
2 [(ln x1−μ1)

2/σ2
1] (7.48)

f2(x2) = 1√
2π σ2 x2

e− 1
2 [(ln x2−μ2)

2/σ2
2] (7.49)

The conditional distributions of the bivariate lognormal distribution are both
lognormal. In particular,

X1|x2 ∼ LogN
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2)

)
, σ2

1(1 − ρ2
1,2)) (7.50)

and

X2|x1 ∼ LogN
(
μ2 + σ2

σ1
ρ1,2(ln x1 − μ1)

)
, σ2

2(1 − ρ2
1,2)) (7.51)
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From these conditional distributions it can be readily shown (left for the
reader) that

E(X1|x2) = x
σ1
σ2ρ1,2
2 eμ1−σ1

σ2
ρ1,2μ2+ 1

2σ
2
1(1−ρ2

1,2) (7.52)

E(X2|x1) = x
σ2
σ1ρ1,2
1 eμ2−σ2

σ1
ρ1,2μ1+ 1

2σ
2
2(1−ρ2

1,2) (7.53)

and

Var(X1|x2) = x
2σ1
σ2

ρ1,2

2 e2(μ1−σ1
σ2

ρ1,2μ2)ez∗
(ez∗ − 1) (7.54)

Var(X2|x2) = x
2σ2
σ1

ρ1,2

1 e2(μ2−σ2
σ1

ρ1,2μ1)ez(ez − 1) (7.55)

where

z∗ = σ2
1(1 − ρ2

1,2) and z = σ2
2

(
1 − ρ2

1,2

)
.

Views of the Bivariate Lognormal: Figures 7.8 and 7.9 provide views of a
bivariate lognormal density function. These figures are plots of

(X1, X2) ∼ Bivariate LogN((4.57486, 3.86345), (0.0606246, 0.0155, 0.505708))

Figure 7.8 is a surface view of the function, which has a “hill-like” appearance.
The marginal distributions of X1 and X2, viewed from the sides of the surface,
are both univariate lognormal.
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FIGURE 7.8
A bivariate lognormal density (X1, X2) ∼ Bivariate LogN((4.57, 3.86), (0.0606, 0.0155, 0.5057)).
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FIGURE 7.9
Contours of a bivariate lognormal density (X1, X2) ∼ Bivariate LogN((4.57486, 3.86345),
(0.0606246, 0.0155, 0.505708)).

A topographic view of a bivariate lognormal density function in Figure
7.8 is shown in Figure 7.9. In Figure 7.9, the innermost contour corresponds
to h = 0.001, the middle contour corresponds to h = 0.0005, and the outer
contour corresponds to h = 0.0001. The point (μX1 ,μX2) = (100, 48), shown
in Figure 7.9, stems from

(X1, X2) ∼ Bivariate LogN((4.57486, 3.86345), (0.0606246, 0.0155, 0.505708))

This is seen in the following example.

Example 7.4 Assume the joint probability density function of a system’s cost
X1 and schedule X2 is bivariate lognormal with density function given by
Equation 7.44. Suppose X1 has mean 100 ($M) and variance 625 ($M)2. Sup-
pose X2 has mean 48 (months) and variance 36 (months)2. Let cost and schedule
have a correlation of 0.5. Show that the difference between the median system cost
conditioned on a schedule with a 20% chance of being achieved and the median
system cost conditioned on a schedule with an 80% chance of being achieved is
20.4 ($M).

Solution It is given that μX1 = 100, σ2
X1

= 625, μX2 = 48, σ2
X2

= 36, and
ρX1,X2 = 0.5. From Equations 7.41, 7.42, and 7.45, the parameters of the
bivariate lognormal, given in expression (7.43), are
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μ1 = 1
2

ln

[
(μX1 )

4

(μX1)
2 + σ2

X1

]
= 4.57486 σ2

1 = ln

[
(μX1 )

2 + σ2
X1

(μX1)
2

]
= 0.0606246

μ2 = 1
2

ln

[
(μX2 )

4

(μX2)
2 + σ2

X2

]
= 3.86345 σ2

2 = ln

[
(μX2 )

2 + σ2
X2

(μX2)
2

]
= 0.0155

ρ1,2 = 1
σ1σ2

ln

[
1 + ρX1,X2

√
eσ

2
1 − 1

√
eσ

2
2 − 1

]
= 0.50578

From expression (7.50), the cost distribution X1 conditioned on a schedule
of x2 months is

X1 | x2 ∼ LogN
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2), σ2

1

(
1 − ρ2

1,2

))

so

X1 | x2 ∼ LogN(4.57486 + (ln x2 − 3.86345), 0.0451204) (7.56)

Figure 7.1 illustrates the CDFs associated with this example. The sched-
ule distribution is shown on the left-side of Figure 7.1. Since X2 is
lognormal with mean 48 (months) and variance 36 (months)2, X2 ∼
LogN(3.86345, 0.0155). It is left to the reader to show that the value of x2
such that P(X2 ≤ x2) = 0.20 is 43 months (rounded). Similarly, the value of
x2 such that P(X2 ≤ x2) = 0.80 is 53 months (rounded). From expression
(7.56), the conditional cost distribution given x2 = 43 months is

X1 | 43 ∼ LogN(4.47, 0.045)

Likewise, the conditional cost distribution given x2 = 53 months is

X1 | 53 ∼ LogN(4.68, 0.045)

Since X1 | x2 is lognormal, we know from Equation 4.41 that

Med(X1|43) = e4.47 = 87.4 ($M)

Med(X1|53) = e4.68 = 107.8 ($M)

Therefore, the difference between the median system cost conditioned on
a schedule with a 20% chance of being achieved and the median system
cost conditioned on a schedule with an 80% chance of being achieved is
20.4 ($M).

Case Discussion 7.1: In Case Discussion 6.2, the random variable CostSys
denoted the total cost ($K) of a digital information system, and the ran-
dom variable PrgmSched represented the duration of its development (in
months). Suppose the joint probability density function of CostSys and
PrgmSched is bivariate normal. Let b be the number of months such
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that P(PrgmSched ≤ b) = 0.95, where PrgmSched is normally distributed with
E(PrgmSched) = 33.36 (months) and Var(PrgmSched) = 1.94 (months)2. Deter-
mine a such that P(CostSys ≤ a

∣∣ PrgmSched = b ) = 0.95.
To determine a, we first find b such that P(PrgmSched ≤ b) = 0.95. This

probability can be written as P(PrgmSched ≤ b) = P(Z ≤ υ), where

υ = b − E(PrgmSched)

σPrgmSched
= b − 33.36

1.39283

From Table A.1, we have P(Z ≤ υ) = 0.95 if υ = b−33.36
1.39283 = 1.645 ⇒ b = 35.65.

Now, it remains to determine a such that

P(CostSys ≤ a
∣∣ PrgmSched = 35.65 ) = 0.95

Since the joint probability density function of CostSys and PrgmSched is given
to be bivariate normal, from expression (7.11), the distribution of CostSys
conditioned on PrgmSched is

CostSys
∣∣ PrgmSched = x2 ∼ N

(
μ1 + σ1

σ2
ρ1,2(x2 − μ2) , σ2

1

(
1 − ρ2

1,2

))

From Case Discussion 6.2

μ1 = E(CostSys) = 32, 841.1 σ2
1 = Var(CostSys) = 10, 800, 698.3

μ2 = E(PrgmSched) = 33.36 σ2
2 = Var(PrgmSched) = 1.94

and

ρ1,2 = ρCostSys,PrgmSched = 0.206

Therefore,

CostSys
∣∣ PrgmSched = x2 ∼ N(32, 841.1 + 486.06(x2 − μ2), 10, 342, 359.87)

At x2 = 35.65 we have

CostSys
∣∣ PrgmSched = 35.65 ∼ N(33, 954.18, 10, 342, 359.87)
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The density function of CostSys conditioned on a system schedule of 35.65
months is normal, with mean 33,954.18 ($K) and variance 10,342,359.87 ($K)2.
To find a such that P(CostSys ≤ a

∣∣ PrgmSched = 35.65 ) = 0.95, let

P(CostSys ≤ a
∣∣ PrgmSched = 35.65 ) = P(Z ≤ φ)

where φ = a−33,954.18√
10,342,359.87

. From Table A.1, P(Z ≤ φ) = 0.95 if

φ = a − 33, 954.18√
10, 342, 359.87

= 1.645

This implies that a = 39, 244.4. Thus, the cost of the digital information system
that has only a 5% chance of being exceeded, when conditioned on a schedule
having the same chance of being exceeded, is 39,244.4 ($K).

7.3 Summary

The family of distributions described in this chapter provides an analytical
basis for computing joint and conditional cost-schedule probabilities. They
are mathematical models that might be hypothesized for capturing the joint
interactions between a system’s cost and schedule.

Seen throughout this chapter, a parameter required by these models is
the correlation between cost and schedule.∗ This can be a difficult value
to determine. One approach is its direct computation as illustrated in Case
Discussion 6.2. However, in some instances this might not be analytically
possible or practical. Another approach is to obtain an estimate of the corre-
lation, from sample values generated by Monte Carlo simulation. This is a
reasonable method that can be used regardless of the complexity of the cost-
schedule estimation relationships. Subjective assessments might be used.
However, care must be taken to specify an admissible correlation for the par-
ticular pair of random variables. Furthermore, there may already exist an
implied correlation by virtue of how the cost-schedule estimation relation-
ships are mathematically defined (refer to Case Discussion 6.2). Subjectively
specifying a correlation when one is already present (only its magnitude
is unknown or yet to be determined) is double counting correlation. This
must be avoided to ensure the mathematical integrity of the cost uncertainty
analysis.

∗ Because these models treat cost and schedule as correlated random variables, it is important
to recognize that they do not capture causal impacts that schedule compression or extension has
on cost.
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In summary, systems engineering typically takes place in environments of
limited funds and challenging schedules. It is incumbent upon engineers and
analysts to continually assess affordability relative to the chance of jointly
meeting cost and schedule, or meeting cost for a given feasible schedule,
against specific tradeoffs in system requirements, acquisition strategies, and
post-development support. The distributions described in this chapter are
one way such assessments may be made.

Exercises

7.1 Suppose the mean cost and mean schedule of a program is 100 ($M) and
48 months, respectively. Furthermore, suppose the program’s cost and
schedule variances are 625 (months)2 and 36 (months)2, respectively. If
the correlation between the program’s cost and schedule is 0.5, find x1
such that
a. P(Cost ≤ x1 | x2 = 53 months) = 0.95 if program cost and schedule

have a bivariate normal distribution
b. P(Cost ≤ x1 | x2 = 53 months) = 0.95 if program cost and schedule

have a bivariate normal–lognormal distribution
c. P(Cost ≤ x1 | x2 = 53 months) = 0.95 if program cost and schedule

have a bivariate lognormal distribution
7.2 Suppose (X1, X2) ∼ Bivariate NLogN ((μ1,μ2), (σ2

1,σ2
2, ρ1,2)) where μ1, μ2,

σ2
1, σ2

2, and ρ1,2 are defined in Section 7.2.2. If μX2 = √
e and σ2

X2
= e(e−1),

show that − 1√
e−1

< ρX1,X2 < 1√
e−1

.

7.3 Suppose (X1, X2) ∼ Bivariate LogN ((μ1,μ2) , (σ2
1,σ2

2, ρ1,2)) where μ1, μ2,
σ2

1, σ2
2, and ρ1,2 are defined in Section 7.2.3. If μX1 = μX2 = √

e and σ2
X1

=
σ2

X2
= e(e − 1) show that − 1

e < ρX1,X2 < 1.

7.4 Assume the joint probability density function of program cost X1 and
schedule X2 is bivariate normal–lognormal with density function given
by Equation 7.23. Suppose X1 has mean 100 ($M) and variance 625 ($M)2.
Suppose X2 has mean 48 (months) and variance 36 (months)2. Let the pro-
gram cost and schedule have a correlation of 0.5. Compute the difference
between the median program cost conditioned on a schedule with a 50%
chance of being achieved, and the median program cost conditioned on
a schedule with a 95% chance of being achieved.

7.5 Show that the functions given by Equations 7.23 and 7.44 are each joint
probability density functions.

7.6 If (X1, X2)∼ Bivariate NLogN ((μ1,μ2) , (σ2
1,σ2

2, ρ1,2)), where μ1, μ2, σ2
1, σ2

2,
and ρ1,2 are defined in Section 7.2.2, show that
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a. E(X1 |x2 ) = μ1 + σ1
σ2

ρ1,2(ln x2 − μ2)

b. E(X2 |x1 ) = eμ2+σ2
σ1

ρ1,2(x1−μ1)+ 1
2σ

2
2(1−ρ2

1,2)

c. Var(X1 |x2 ) = σ2
1(1 − ρ2

1,2)

d. Var(X2 |x1 ) = e2(μ2+σ2
σ1

ρ1,2(x1−μ1))ez(ez − 1), where z = σ2
2(1 − ρ2

1,2)

7.7 If (X1, X2) ∼ Bivariate LogN ((μ1,μ2) , (σ2
1,σ2

2, ρ1,2)), where μ1, μ2, σ2
1, σ2

2,
and ρ1,2 are defined in Section 7.2.3, show that

a. E(X1|x2) = x
σ1
σ2

ρ1,2

2 eμ1−σ1
σ2

ρ1,2μ2+ 1
2σ

2
1(1−ρ2

1,2)

b. E(X2|x1) = x
σ2
σ1

ρ1,2

1 eμ2−σ2
σ1

ρ1,2μ1+ 1
2σ

2
2(1−ρ2

1,2)

c. Var(X1|x2) = x
2σ1
σ2

ρ1,2

2 e2(μ1−σ1
σ2

ρ1,2μ2)ez∗
(ez∗ − 1), z∗ = σ2

1(1 − ρ2
1,2)

d. Var(X2|x1) = x
2σ2
σ1

ρ1,2

1 e2(μ2−σ2
σ1

ρ1,2μ1)ez(ez − 1), z = σ2
2(1 − ρ2

1,2)
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8
A Review of Cost Uncertainty Analysis

It’s not what you don’t know that hurts you—it’s what you do know that
isn’t true.

Dr. Stephen A. Book (1995)

Section I of this book presented the theory and foundations of cost uncer-
tainty analysis. As mentioned in the preface, the chapters in Section II focus
on the applications of theory to problems encountered in practice. This
chapter provides readers a condensed review and summary of key elements
of cost uncertainty analysis. Materials in this chapter that were first discussed
in Section I have been brought forward in Section II for renewed emphasis
and for the convenience of the reader.

8.1 Introduction

This chapter begins with a review of core concepts and key terms. This
includes a discussion on the scope of cost uncertainty analysis (what is cap-
tured, what is not captured), what it means to present and interpret cost as a
probability distribution, and insights the analysis brings to decision-makers.

Cost uncertainty analysis methods fall into one (or a mix) of two worlds.
They are Monte Carlo simulation methods and method of moments (ana-
lytical) approaches. This chapter reviews these methods and clarifies certain
issues associated with them. These include the use of normal or lognormal
distributions to derive confidence intervals around point estimates, as well
as how best to deal with correlation between cost elements of a program.
Common mistakes, pitfalls, and guidance on conducting a cost uncertainty
analysis and ways to convey analysis findings are discussed.

In systems engineering, costs are estimated to reveal the economic signif-
icance of technical and programmatic choices that guide procuring a system
that is affordable, cost-effective, and risk-managed. Identifying risks enables
decision-makers to develop, execute, and monitor management actions
based on the knowledge of potential cost consequences of inactions. Together,
cost and cost uncertainty analysis are undertaken to address paramount
considerations of affordability, cost-effectiveness, and risk. Affordability
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addresses the question: “Can the system be procured with the funds avail-
able?” Cost-effectiveness addresses the question: “Does the system represent
the best use of funds?” Risk addresses the question: “What is the chance the
planned or budgeted cost of the system will be exceeded?” Given this, the
purpose of cost uncertainty analysis is to (1) enable the early and continu-
ous identification of cost risk driving elements and (2) produce a defensible
assessment of the level of cost to plan or budget, so there is reasonable
confidence in assuring program affordability and cost-effectiveness.

Risk analysis is an inseparable part of cost analysis. Many different ele-
ments of a program’s technical baseline and cost estimate are involved. This
includes technology maturity, supply chain integrity, quantities, schedules,
and acquisition considerations. The mathematics of risk analysis can involve
concepts of correlation, probability distributions, and means and variances.
Conveying risk analysis findings clearly and concisely to audiences with
broad backgrounds is a challenging yet crucial aspect of the process. It is
critically important to step back from the analysis to understand what the
findings really mean, whether risks have been adequately captured, and what
can be done to reduce their potential negative consequences.

Technology maturity can be a significant risk and cost growth driver. The
U.S. Government Accountability Office (GAO) reported in the past that pro-
grams working to mature technologies after the start of development while
concurrently attempting to mature a system’s design and prepare for produc-
tion are at higher risk of experiencing cost growth and schedule delays. GAO
observed that those programs tend to have higher cost growth than programs
that start system development with mature technologies. The GAO analysis
indicates the average rate of development cost growth for those programs
that started with immature technologies is 86%, while the average growth
rate for development costs is about half that amount for programs that began
with their critical technologies at least nearing maturity.∗

A recent initiative to address cost growth in defense acquisitions is the
Weapon Systems Acquisition Reform Act (WSARA), signed into law in 2009.
One aim of WSARA is to improve cost realism by requiring acquisition pro-
grams to budget at a high degree of confidence, such that it can be completed
without the need for significant cost adjustments at a later phase. The analysis
methods described in this book are ways to support this aim.

Acquiring today’s systems is more sophisticated and complex than ever
before. Increasingly, systems are engineered by bringing together many
individual systems, which, as a whole, provide a capability otherwise not
possible. Systems are now richly connected. They involve and evolve webs
of users, technologies, and systems-of-systems through environments that
offer cross-boundary access to a wide array of resources and information

∗ Paragraph excerpted from GAO-13-294SP, p. 25, March 2013.
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repositories. Today’s systems create value by delivering capabilities over time
that meet user needs for increased agility, robustness, and scalability. System
architectures must be open to allow the insertion of innovation that advances
the efficacies of capabilities and services to users.

Many systems no longer physically exist within well-defined boundaries.
They are increasingly ubiquitous and operate as an enterprise of technologies
and cooperating entities in a dynamic that can behave in unpredictable ways.
Pervasive with these challenges are economic and budgetary realities that
necessitate greater accuracy in the estimated life-cycle costs and cost risks of
acquiring these systems.

Systems engineering is more than developing and employing inventive
technologies. Designs must be adaptable to change, flexible to meet user
needs, and resource-managed. They must be balanced with respect to per-
formance and affordability goals while being continuously risk-managed
throughout a system’s life cycle. Systems engineers and managers must also
understand the social, political, and economic environments within which a
system operates. These factors can significantly influence risk, affordability,
design options, and investment decisions.

Applied early and continuously, risk analysis can expose events that, if
realized, might impede an acquisition program from achieving its required
cost, schedule, and performance goals. Risk analysis is more than identify-
ing and quantifying the consequences of unwanted events on an acquisition
program and its cost. It provides a context for bringing realism to technical
and program decisions that shape a program’s acquisition strategy and the
cost-effectiveness of its long-term performance.

Why are there risks? Pressures to meet cost, schedule, and technical perfor-
mance are the practical realities in acquiring systems. Illustrated in Figure 8.1,
risk becomes an increasing threat when stakeholder expectations push what
is technically or economically feasible. Thus, managing risk is managing the
inherent contention that exists within and across these dimensions.

For cost uncertainty analysis to shape and influence program decisions,
it must provide insights into cost estimate confidence that are otherwise
unseen. What does cost estimate confidence mean? In general, it is a state-
ment of the sureness in an estimate along with a supporting rationale. The
intent of cost uncertainty analysis is to enable statements on cost estimate
confidence to be addressed, such as “there is an 80 percent chance the pro-
gram’s actual cost will not exceed $250M.” How is cost estimate confidence
measured?

Probability theory is an ideal formalism for deriving measures of cost esti-
mate confidence. With it, a program’s cost can be treated as an uncertain
quantity—one sensitive to conditions and assumptions that change across its
acquisition life cycle. Figure 8.2 illustrates the conceptual process for using
probability theory to analyze cost uncertainty and produce measures of cost
estimate confidence.
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FIGURE 8.1
Pressures on a program manager’s decision space.
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FIGURE 8.2
Cost estimate confidence: a statistical summation of cost uncertainty.

In Figure 8.2, the uncertainty in the cost of each work breakdown struc-
ture∗ (WBS) element is expressed by a probability distribution to characterize
its range of possible cost outcomes. These distributions are combined by
probability methods to generate an overall distribution of the work break-
down structure’s total cost, hereafter denoted by the notation CostWBS. This
distribution is the range of total cost outcomes possible for the WBS, as it
represents a program or system. How does the output from this analytical
process enable confidence levels to be determined? Consider Figure 8.3.

Figure 8.3 illustrates a cumulative probability distribution of a work break-
down structure’s total cost. It derives from an analysis like that in Figure 8.2.
Cost estimate confidence is read from this distribution. For example, there is

∗ Refer to military standard MIL-STD-881C Work Breakdown Structures for Defense Material Items,
October 3, 2011, for information about work breakdown structures, how they are designed,
and their roles in the systems engineering life cycle.
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FIGURE 8.3
A distribution of cost estimate confidence.

a 25% chance the program will cost less than or equal to $100M, a 50% chance
the program will cost less than or equal to $151M, and an 80% chance the pro-
gram will cost less than or equal to $214M. These are examples of statistical
measures of cost estimate confidence.

Figure 8.3 provides decision-makers an analytical basis for trade-offs
between a program’s point estimate cost∗ and its confidence. For example, if
a program’s point estimate cost is $100M, then Figure 8.3 reveals the amount
of additional dollars needed to plan or budget the program at a desired or
specified level of confidence. Clearly, the range of possible cost outcomes in
Figure 8.3 is wide. Cost analysts can use such a finding to signal a review of the
major cost risk drivers responsible for this variance, before settling too soon on
a cost confidence level to plan or budget the program. Furthermore, the results
presented in Figure 8.3 might spark a series of design options taken to reduce
risk as measured by this variance. Figure 8.4 shows how a cost uncertainty
analysis of a set of risk-reducing design alternatives can be portrayed.

Discovering these findings and bringing them to decision-makers is a key
outcome of the analysis and how it best contributes to ensuring program
affordability and cost-effectiveness. Expressing cost estimate confidence by
a range of possible cost outcomes has high value to decision-makers. The
extent of the cost range itself is a measure of cost uncertainty, which varies
across the life cycle. One would expect uncertainty to be higher, and, there-
fore, the cost range to be wider, early in a program’s life cycle. Identifying
critical elements that drive a program’s cost range offers opportunities for
deploying risk mitigation actions in the early acquisition phases.

∗ The point estimate (PE) cost is the cost that does not include allowances for cost uncertainty.
The PE cost is the sum of the WBS element costs summed across a program’s work breakdown
structure without adjustments for uncertainty.
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FIGURE 8.4
Reductions in cost risk from competing design options.

8.2 Cost as Probability Distribution

Cost estimates are highly sensitive to many conditions and assumptions that
change frequently across a program’s life cycle. Examining the change in cost
subject to varying certain conditions, while holding others constant, is known
as sensitivity analysis. Sensitivity analysis is an excellent way to isolate cost
drivers, however, it is a deterministic procedure defined by a postulated set
of what-if scenarios. Sensitivity analysis alone does not offer decision-makers
insight into the question “What is the chance of exceeding a particular cost
in the range of possible costs?” A probability distribution is an ideal way to
address this question. In the context of cost uncertainty analysis, a probability
distribution is a mathematical rule associating a probability to each cost in a
range of possible cost outcomes.

There are two ways to present a probability distribution. It can be shown
as a probability density function (PDF) or as a cumulative probability distri-
bution,∗ as shown in Figure 8.5a and b, respectively.

In Figure 8.5, the range of possible cost outcomes for a program is given by
the interval a ≤ x ≤ b. These distributions reveal the confidence that the true
cost of a program will not exceed any cost in the range of possible outcomes.
For example, suppose the probability that the true cost of a program will be

∗ The term cumulative probability distribution means the same as the term Cumulative Distri-
bution Function (CDF).
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FIGURE 8.5
Ways to view a program’s cost probability distribution. (a) Probability Density Function. (b)
Cumulative Probability Distribution.

less than or equal to x is 25%. In Figure 8.5a, this probability is given by the
area (0.25) under the curve. In Figure 8.5b, this probability is given by
the value 0.25 along the vertical axis.

There is an important distinction between the terms risk and uncertainty
and their use in cost analysis. In general, risk is the chance of loss or injury. In
a situation that includes favorable and unfavorable events, risk is the proba-
bility an unfavorable event occurs. In systems engineering risk management,
such events might be {failing to achieve performance objectives}, {overrun-
ning the budgeted cost}, or {delivering the system too late to meet user
needs}. Uncertainty is the indefiniteness about the outcome of a situation—
it includes favorable and unfavorable events. We analyze uncertainty to
measure risk. Cost risk is a measure of the chance that, due to unfavorable
events, the planned or budgeted cost of a program will be exceeded. Cost
uncertainty analysis is the process of measuring the cost impacts of uncer-
tainties associated with a system’s technical baseline and cost estimation
methodologies.

A cost estimate is stochastic and, therefore, is merely one outcome in a
probability distribution of cost outcomes. Mentioned earlier, a cost estimate
developed without adjustments for uncertainty is called a point estimate
(PE). Thus, a point estimate is just one outcome in a probability distribution of
cost outcomes. Measuring the confidence in a point estimate is equivalent to
addressing the question “What is the chance of exceeding the point estimate
in the range of possible cost outcomes?”

Identifying and measuring confidence in a point estimate is a fundamen-
tal objective of cost uncertainty analysis, especially in the early life-cycle
phases. Evidence from the community reveals that point estimates are highly
uncertain. Recent studies continue to show that, in the early development
milestones, the confidence that the final cost of a program falls below its
point estimate is less than 50% (Garvey et al. 2012). Basing or planning a
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program’s budget on the point estimate alone is a high-risk decision. GAO
found that “budgeting programs to a risk-adjusted point estimate that reflects
a program’s risks is critical to its success in achieving objectives” (GAO 2009).
GAO further observed that overly optimistic assumptions and unrealistic
expectations are significant factors for cost growth above point estimates.

Developing a point estimate is traditionally done from a WBS. Shown in
Figure 8.6, a WBS is a hierarchical framework that depicts all elements of
cost associated with the tasks and activities needed to acquire a program or
system.

Work breakdown structures can be complex. They may involve many
segments and levels, as well as numerous cost elements. Work breakdown
structures are unique to the system under consideration and the program’s
life-cycle phase. They are developed according to the specific requirements
and functions the system has to perform.

The WBS is the cost element structure of the program, where the summa-
tion of its element costs across WBS levels forms an estimate of total program
cost. Initially, this estimate is usually the point estimate cost. In a similar way,
the WBS serves as a cost risk model of the program, where the summation of
its element cost ranges across WBS levels forms a probability distribution of
possible total cost outcomes, one of which is the point estimate.

Figure 8.7 illustrates using the WBS as a cost risk structure. Within this,
analysts develop ranges around individual cost equation parameters or cost
elements. These ranges are stochastically summed to produce a probability
distribution of CostWBS, shown on the right of Figure 8.7. The vertical axis
of the distribution provides the measures of cost estimate confidence. The
confidence level of the point estimate can be found by locating where it falls
in the range of other possible cost outcomes. In Figure 8.7, the point estimate

1000 Prime mission product
 1100 Subsystem A
  1110 Component 1
   
   
   

1000 Prime mission product
 1100 Subsystem A
  1110 Component 1
   
   
   
  1189 Component n

Subsystem (WBS 1100)
Design, develop, produce, and
verify, complete subsystem A,
defined as component 1,
component 2, and other
elements

$1,234,567
$456,890

$23,552

System specification

1000 Prime mission

1100 Subsystem A

1110 Component 1

Requirements WBS elements

Program cost estimate

Technical description

FIGURE 8.6
A WBS integrates requirements, technical, and cost perspectives. (From GAO, Cost estimating
and assessment guide: Best practices for developing and managing capital program costs, GAO-
09-3SP, March 2009.)
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has a 25% confidence level. This means there is a 75% chance the true cost
will exceed the point estimate due to risks identified and quantified in the
manner described. In Figure 8.7, values to the right of x1 are other possible
cost outcomes along with their associated confidence levels.

The PDF is the most common form of a probability distribution used to
characterize the cost uncertainties of elements that comprise a program’s
work breakdown structure. This is illustrated in Figure 8.7 by the elements
shown on the left, which is the input side of a cost uncertainty analysis. The
right side of Figure 8.7 shows the outputs of the analysis, where the CDF
or S-curve is the most common form used to express percentile levels of
confidence that the actual cost of a program is less than or equal to a value x.

The S-curve in Figure 8.7 provides decision-makers an analytical basis for
trade-offs between a program’s point estimate cost and its confidence. For
example, if a program’s point estimate cost is x1 dollars, then the S-curve
reveals the amount of additional dollars needed to plan or budget the pro-
gram at a desired or specified level of confidence. Cost analysts can use the
range of possible costs revealed by the S-curve to signal a review of the major
cost risk drivers responsible for its variance, before settling too soon on a cost
confidence level to plan or budget the program. Furthermore, the results pre-
sented by an S-curve can spark a series of design options taken to reduce risk
evident in the variance of the distribution.

In Figure 8.7, x1 denotes a program’s point estimate cost. The difference
between x1 and cost outcomes greater than x1 is the amount of risk dollars
contained in that cost. For instance, if a program is budgeted to the 50th per-
centile cost x2, then relative to x1 there are h1 risk dollars contained in x2. If
a program is budgeted to the 80th percentile cost x3, then relative to x1 there
are (h1 + h2) risk dollars contained in x3. Although there are more risk dol-
lars contained in x3 than in x2, there is less chance of a program cost overrun
at the 80th percentile confidence level than at the 50th percentile—where an
overrun has even odds of occurring. Analyzing the probability distribution
of CostWBS in this way provides an otherwise unseen trade-off between cost
risk dollars and cost estimate confidence.

Mentioned earlier, risk analysis is an inseparable part of cost analysis.
Many different elements of a system’s technical baseline and cost estimate
are involved, as well as individual experts. Recently, the cost analysis com-
munity developed steps to guide the conduct of a cost uncertainty analysis.
They are summarized below and were excerpted from the referenced report
(GAO 2009).

• Determine the program cost drivers and identify associated risks.
• Develop probability distributions to model the uncertainties affect-

ing program cost.
• Account for correlation between WBS element costs to properly

capture factors that influence cost and cost risk.
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• Perform the cost uncertainty analysis using Monte Carlo simulation,
various analytical approaches, or a combination of methods.

• Identify the probability level associated with the program’s point
estimate cost.

• Recommend a program budget sufficient to achieve targeted levels
of cost estimate confidence.

• Allocate, phase, and convert a risk-adjusted cost estimate to then-
year dollars and identify high-risk elements as candidates for tar-
geted risk mitigation efforts.

Along with these steps, the community published guidelines (GAO 2009)
to aid in the identification of potential sources of program cost estimate
uncertainty. They are presented in Figure 8.8.

8.3 Monte Carlo Simulation and Method of Moments

This section presents the two primary worlds where cost uncertainty analysis
methods fall. They are Monte Carlo simulation techniques and nonsimu-
lation approaches categorized by a class of procedures known as method
of moments. This discussion introduces these approaches, highlights dif-
ferences, and provides guidelines on their use. Popular industry tools that
execute these approaches are identified and nuances on their application are
explained.

This section also identifies and clarifies issues with certain technical top-
ics that arise in cost uncertainty analysis. These include capturing correlation
between WBS element costs, use of normal or lognormal distributions to mea-
sure confidence intervals around point estimates, and sample sizes for Monte
Carlo simulations.

8.3.1 Monte Carlo Method

The Monte Carlo method is a random sampling technique that empirically
derives numerically feasible solutions to a mathematical problem. The tech-
nique is best applied to problems not amenable to closed form, analytical
solutions derived by deterministic algebraic methods.

The Monte Carlo method falls into a class of techniques known as simu-
lation. Simulation has varying definitions among practitioners. For instance,
Winston (1994) defines simulation as a technique that imitates the operation
of a real-world system as it evolves over time. Rubinstein (1981) offers the fol-
lowing: “simulation is a numerical technique for conducting experiments on
a computer, which involves certain types of mathematical and logical models
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Uncertainty Definition Example

Business or
Economic

Variations from change
in business or economic
assumptions

Changes in labor rate assumptions—
e.g., wages, overhead, general and
administrative cost—supplier viability,
inflation indexes, multiyear savings
assumptions, market conditions, and
competitive environment for future
procurements

Cost
Estimating

Variations in the cost estimate
despite a fixed configuration
baseline

Errors in historical data and cost esti-
mating relationships, variation associ-
ated with input parameters, errors with
analogies and data limitations, data
extrapolation errors, optimistic learning
rate assumptions, using the wrong esti-
mating technique, omission or lack of
data, misinterpretation of data, incor-
rect escalation factors, overoptimism in
contractor capabilities, optimistic sav-
ings associated with new ways of doing
business, inadequate time to develop a
cost estimate

Program Risks outside the program
office control

Program decisions made at higher
levels of authority, indirect events that
adversely affect a program, directed
funding cuts, multiple contractor
teams, conflicting schedules and work-
load, lack of resources, organizational
interface issues, lack of user input when
developing requirements, personnel
management issues, organization’s
ability to accept change, other program
dependencies

Requirements Variations in the cost estimate
caused by change in the config-
uration baseline from unfore-
seen design shifts

Changes in system architecture (espe-
cially for system of systems programs),
specifications, hardware and software
requirements, deployment strategy,
critical assumptions, program threat
levels, procurement quantities, network
security, data confidentiality

Schedule Any event that changes the
schedule: stretching it out
may increase funding require-
ments, delay delivery, and
reduce mission benefits

Amount of concurrent development,
changes in configuration, delayed mile-
stone approval, testing failures requir-
ing rework, infeasible schedule with
no margin, overly optimistic task dura-
tions, unnecessary activities, omission
of critical reviews

FIGURE 8.8
Potential areas of program cost estimate uncertainty. (From GAO, Cost estimating and assess-
ment guide: Best practices for developing and managing capital program costs, GAO-09-3SP,
March 2009.) (Continued)
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Uncertainty Definition Example

Software Cost growth from overly opti-
mistic assumptions about soft-
ware development

Underestimated software sizing, overly
optimistic software productivity, opti-
mistic savings associated with using
commercial off-the-shelf software,
underestimated integration effort, lack
of commercial software documentation,
underestimating the amount of glue
code needed, configuration changes
required to support commercial soft-
ware upgrades, changes in licensing
fees, lack of support for older software
versions, lack of interface specification,
lack of software metrics, low staff capa-
bility with development language and
platform, underestimating software
defects

Technology Variations from problems
associated with technology
maturity or availability

Uncertainty associated with unproven
technology, obsolete parts, optimistic
hardware or software heritage assump-
tions, feasibility of producing large
technology leaps, relying on lower relia-
bility components, design error or omis-
sions

FIGURE 8.8 (Continued )
Potential areas of program cost estimate uncertainty. (From GAO, Cost estimating and assess-
ment guide: Best practices for developing and managing capital program costs, GAO-09-3SP,
March 2009.)

that describe the behavior of a business or economic system over extended
periods of real time.”

The Monte Carlo method involves the generation of random samples from
known or assumed probability distributions. The process of generating ran-
dom samples from distributions is known as random variate generation or
Monte Carlo sampling. Simulations driven by Monte Carlo sampling are
Monte Carlo simulations. One of the earliest applications of Monte Carlo sim-
ulation to cost analysis was at the RAND Corporation (Dienemann 1996).
Since then, Monte Carlo simulation has become (and remains) a popular
approach for modeling and measuring cost uncertainty.

For cost uncertainty analysis, Monte Carlo simulation is typically applied
to a WBS to develop an empirical distribution of program cost. The WBS
serves as the cost model of the program within which to conduct the sim-
ulation. The steps in a Monte Carlo simulation are as follows:

• For each variable in the WBS whose value is uncertain, randomly
select one value from the probability distribution that characterizes
its uncertainty (e.g., from a uniform or triangle distribution).
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• Once a set of possible values for each uncertain variable has been
randomly drawn, combine them according to the cost estimation
relationships specified in the WBS. This process produces a single
randomly generated value for CostWBS, which denotes the work
breakdown structure’s total cost.

• These steps are repeated thousands of times producing thousands of
values of CostWBS. Each value represents one of these thousands of
possible outcomes for CostWBS.

• From this step, develop a frequency distribution of the outcomes for
CostWBS. This is the empirical probability distribution of CostWBS. It is
an approximation to the true (but unknown) underlying distribution
of CostWBS, formed by the Monte Carlo simulation running through
the WBS.

In cost uncertainty analysis, Monte Carlo simulations are generally static sim-
ulations. Static simulations are used to study behavior at a discrete point
in time. To illustrate a static simulation, and Monte Carlo sampling, con-
sider the problem of determining the average effort (staff months) to develop
a software application. Assume Effort is computed by the cost estimation
relationship

Effort = Software size
Productivity rate

= S
P

(8.1)

where uncertainties in S and P are given by the uniform distributions shown
on the left side of Figure 8.9. In the Monte Carlo method, values of S and P are
randomly sampled from their distribution functions. With them, a value for
Effort is then computed according to Equation 8.1. This process is repeated
thousands of times to produce a static simulated distribution of Effort. The
simulated distribution is an empirical approximation of the exact probability
distribution∗ of Effort, shown on the right of Figure 8.9.

In Figure 8.9, ten random samples of S and P are shown. For each S and
P pair, the corresponding value for Effort is computed according to Equa-
tion 8.1. This produces ten random samples (outcomes) of Effort, listed on
the right side of Figure 8.9. The average of all ten sampled values of Effort
is 523.14 staff months. This is an empirical approximation of the exact mean
of Effort, shown in Figure 8.9 as 519.86 staff months. The percentage error
between these two values is only 0.63%. Increasing the number of random
samples of S and P would further reduce this percentage error. If 100,000 ran-
dom samples of S and P were drawn, then the percentage error between the

∗ The probability distribution of a combination of random variables can be difficult and, in some
cases, intractable to derive in an exact algebraic form (as in Equation 8.2). Monte Carlo sim-
ulation always generates an empirical approximation to the exact form of the distribution; in
practice, simulation is often the most efficacious approach.
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10 Random samples: Estimated mean 523.14 staff months
Exact mean (derived expected value)  519.86 staff months

DSI/Staff Month

FIGURE 8.9
Monte Carlo sampling: 10 random samples from the distributions of S and P.

simulated mean and the exact mean of Effort is reduced to 0.11%. Figure 8.10
shows the negligible difference between the Monte Carlo generated empiri-
cal distribution (shown by the dots) and the exact distribution (shown by the
solid line). The exact probability distribution of Effort in Figure 8.10 is given
by Equation 8.2.

P(Effort ≤ x) =

⎧⎪⎪⎨
⎪⎪⎩

(
250

x
+ x

250

)
− 2, if 250 ≤ x < 500

3 −
(

1000
x

+ x
1000

)
, if 500 ≤ x ≤ 1000

(8.2)

Figure 8.11 illustrates ways to present a probability distribution. Figure 8.11a
is the probability density function of Effort. Figure 8.11b is the cumulative dis-
tribution function for Effort, informally called the S-curve. In Figure 8.11, the
range of possible values of Effort is the interval 250 ≤ x ≤ 1000. The PDF or
CDF reveal the confidence of not exceeding any value in the range of possi-
ble values. For example, the probability that the true software development
effort will be less than or equal to x = 500 staff months is 50%. In Figure 8.11a,
this probability is given by the area under the curve. In Figure 8.11b, this
probability is given by y = 0.5 along the vertical axis.

Figure 8.11 illustrates a property about the mean, median, and mode
of a probability distribution. They are equal when the distribution is nor-
mal; however, because the distribution in Figure 8.11 is skewed, the mean,
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FIGURE 8.10
Comparing a Monte Carlo simulation to the exact distribution of Effort.
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FIGURE 8.11
The exact PDF and CDF of Effort.

median, and mode are not equal. Here, the median and the mode are
each 500 staff months but the exact mean of this distribution is 519.86 staff
months. In this case, the mean is larger than the median or the mode
because the probability distribution of Effort is skewed to the right.∗ It is

∗ The mode of a distribution is the value of x at the peak of the distribution. In Figure 8.11, this
occurs at x = 500 staff months. The median of a distribution is the value of x that occurs at
exactly the 50th percentile. In Figure 8.11, the median accounts for 1/2 the area under the PDF
or by the value y = 0.50 along the vertical axis of the CDF. In general, the mean, median, and
mode of a probability distribution are not always the same.
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an exercise for the reader to derive the exact forms of the PDF and CDF in
Figure 8.11.

In Monte Carlo simulations, a question often asked is “How many tri-
als (random samples) are needed to have confidence in the outputs of the
Monte Carlo simulation?” The statistical literature provides guidelines for
determining sample size as a function of the precision desired in the out-
puts of a simulation. Specifically, the formulas below address the question:
“What sample size is needed so that with probability α the true value of an
uncertain variable falls between a pair of values generated by the Monte Carlo
simulation?”

Morgan–Henrion Guideline (Morgan and Henrion 1990): Define m as
the sample size for the Monte Carlo simulation. Let xp be the p-fractile of
the random variable X; that is, P(X ≤ xp) = p. Let c satisfy the probability
P(−c ≤ Z ≤ c) = α, where Z ∼ N(0, 1) is the standard normal probability
distribution. Then, the pair of fractiles (x̂i, x̂k) generated by the Monte Carlo
simulation, with

i = p − c

√
p(1 − p)

m
(8.3)

k = p + c

√
p(1 − p)

m
(8.4)

contains xp with probability α. For different sample sizes, Figure 8.12 shows
with probability α = 0.95 (which means c ≈ 2) the values of i and k such that
the true median x0.50 of the distribution falls between x̂i and x̂k. The lower and
upper curves in Figure 8.12 are generated from Equations 8.3 and 8.4, respec-
tively. As the sample size m increases, the difference between these curves

0.40

p = 0.50

0.60

100 10,000 30,000 50,000 100,000
m

With probability 0.95, the true median of the random
variable X falls between the 49th and 51st fractiles generated by
a 10,000 random sample Monte Carlo simulation

i = 0.49

k = 0.51

FIGURE 8.12
Sample size for Monte Carlo simulations.
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decreases dramatically. With 100 samples, the true median value x0.50 of the
random variable X falls between the pair of fractiles x̂0.40 and x̂0.60, generated
by the Monte Carlo simulation, with probability 0.95. Increasing that sample
size by a factor of 100 brings the same degree of confidence to be within x̂0.49
to x̂0.51. In practice, 10,000 trials (or random samples) are generally sufficient
to meet the precision requirements for Monte Carlo simulations when used
for cost uncertainty analysis.

Monte Carlo simulation is commonly applied to a work breakdown struc-
ture (WBS) when it is used to derive a probability distribution of a program’s
total cost. Mentioned in Section 8.2, the WBS is the definitive cost element
structure and cost model of a program, where the summation of element costs
across WBS levels forms an estimate of a program’s total cost. In a similar
way, the WBS serves as a cost risk model of the program, where the summa-
tion of element cost ranges across WBS levels forms a probability distribution
of possible total cost outcomes, one of which is the point estimate. This was
illustrated in Figure 8.7. For convenience, this is shown in Figure 8.13. The
following illustrates a Monte Carlo simulation applied to a WBS consisting
of five cost elements.

Figure 8.14 presents a simple work breakdown structure consisting of five
cost elements X1, X2, X3, X4, and X5. A point estimate cost for each element
is shown, along with an uncertainty distribution around each estimate. For
each WBS element, a random value from its cost uncertainty distribution is
taken. These randomly selected values are then summed to form one esti-
mate of total cost. This process is repeated thousands of times (e.g., 10,000
times or more) to produce an empirically derived overall probability distri-
bution of total cost. This is the Monte Carlo simulation process, with each
circle in Figure 8.14 representing a single thread or single pass through one
of the thousands of Monte Carlo samples.

Mentioned earlier, the outcome of this process is a frequency distribu-
tion derived from these n sampled values. This distribution is the Monte
Carlo simulated distribution of total cost. Figure 8.15 presents the results of
10,000 Monte Carlo samples of the WBS in Figure 8.14. It shows the resultant
probability distribution of the WBS total cost, given by Equation 8.5.

CostWBS = X1 + X2 + X3 + X4 + X5 (8.5)

In Figure 8.15, the dots are the probability distribution CostWBS generated by
the Monte Carlo simulation of the WBS in Figure 8.14. The simulation pro-
duced a total cost mean μ of $203.3M and a standard deviation σ of $19M. In
Figure 8.15, the solid line is the probability distribution of CostWBS assuming
its possible cost outcomes fall along a normal probability distribution—with
mean and variance given by the sums of the means and variances of the WBS
cost element distributions in Figure 8.14.

Observe the closeness of the simulated and normal probability distribu-
tions in Figure 8.15. There are reasons for this result. One reason is due
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Cost Element X1 = 25 ($M)
Triangular Distribution with Parameters:
 Minimum                      20.00
 Likeliest                       25.00
 Maximum                      35.00

Cost Element X2 = 30 ($M)
Uniform Distribution with Parameters:
 Minimum                     10.00
 Maximum                     50.00

Cost Element X3 = 15 ($M)
Triangular Distribution with Parameters:
 Minimum                     15.00
 Likeliest                      15.00
 Maximum                     30.00

Cost Element X4 = 55 ($M)
Triangular Distribution with Parameters:
 Minimum                     40.00
 Likeliest                      55.00
 Maximum                     90.00

Cost Element X5 = 65 ($M)
Lognormal Distribution with Parameters:
 Location                      00.00
 Mean                      65.00
 Std. Dev.                      10.00

10 5020 30 40

15 3020 25

40 9050 60 70 80

40 9050 60 70 80

20 3525 30

FIGURE 8.14
A WBS for Monte Carlo simulation.
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Dollars Million

FIGURE 8.15
Probability distribution of CostWBS.

to the assumed mutual independence between WBS element costs X1, X2,
X3, X4, and X5 given in Figure 8.14. With this, the famous central limit
theorem (CLT) enters the picture and ensures the eventual tendency of the
simulated distribution to approach a normal distribution.∗

Correlation and Monte Carlo Simulations: For years, the cost analysis
community has addressed the topic of correlation and how to represent it in a
cost uncertainty analysis. Despite a large body of technical work on this topic,
the community needs practical guidance consistent with the subtleties of sta-
tistical theory. Given this, this section offers a practical approach for modeling
correlation and capturing its effects on program cost. The approach is pre-
sented in the context of Monte Carlo simulations, but it can easily be used
with other cost uncertainty analysis methods. Further in-depth discussions
and guidance are presented in Chapter 9; first, some background.

Discussed in Section I of this book, correlation ρ is a statistical measure of
the “co-variation” between two random variables. It measures the strength
and direction of change in one random variable with change in another
random variable. Regarding strength, correlation is a continuous measure

∗ Informally, the CLT establishes the fundamental result that the sum of independent identically
distributed random variables with finite variance approaches a normally distributed random
variable as their number increases; in particular, if enough random samples (e.g., Monte Carlo
samples) are repeatedly drawn from any distribution, the sum of the sample values can be
thought of, approximately, as an outcome from a normally distributed random variable. The
requirement for identically distributed random variables has been relaxed in modern variants
of the original CLT.
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whose magnitude ranges between negative one and positive one. Regard-
ing direction, correlation can be positive or negative. Positive correlations fall
in the interval 0 < ρ≤ 1. Negative correlations fall in the interval −1 ≤ ρ< 0.
Uncorrelated random variables have correlation ρ = 0.

From a cost analysis perspective, the strength of correlations between
WBS element costs impacts the magnitude of the program’s total cost risk—
measured by the variance or standard deviation of the program’s cost prob-
ability distribution.∗ The positive or negative direction of correlation affects
whether total cost risk increases or decreases, respectively. Thus, correlation
is a required consideration in modeling the cost uncertainty of a program.
Ignoring correlation can be equivalent to setting its value to zero, which
can significantly underestimate a program’s total cost risk. The extent of the
potential underestimation is highlighted in Figure 8.16.

Figure 8.16 shows the percent that a program’s total cost risk is underesti-
mated if correlation was assumed to be zero between all pairs of WBS element
costs, instead of a positive constant value between them. In Figure 8.16, con-
sider the curve shown for a WBS with n = 10 cost elements. Suppose ρ = 0
was assumed for all cost element pairs in this WBS. If it later became known
that the actual correlation was 0.4, then the program’s total cost risk has been
underestimated by 53%. In a 30-element WBS, the underestimation is 72%.
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n = Number of WBS Cost Elements

These curves show the percent underestimation of
total cost risk, if the actual correlation between
WBS element costs is positive instead of
assuming it is zero everywhere 

FIGURE 8.16
Potential underestimation of total cost risk. (From Book, S., Why correlation matters in cost esti-
mating, in 32nd Annual DOD Cost Analysis Symposium (DODCAS), The Aerospace Corporation,
Los Angeles, CA.)

∗ The standard deviation σ is the square root of the variance σ2 of a random variable.



A Review of Cost Uncertainty Analysis 303

As shown in Figure 8.16, if the actual ρ is greater than an assumed ρ = 0, then
the underestimation of a program’s total cost risk worsens exponentially with
each increase in the number of WBS cost elements. A detailed discussion of
this topic is presented in Chapter 9.

The cost of a program derives from a summation process when it is based
on a WBS, where a program’s total cost is the sum of its work WBS costs.
Furthermore, the statistical mean of the program’s total cost is the sum of the
statistical means of its WBS element costs. However, the statistical variance
of the program’s total cost is not the sum of the statistical variances of its
WBS element costs. To see why, we need only look at the sum of two random
variables X and Y. What is the variance of their sum? The answer is given by
Equation 8.6.

Var(X + Y) = σ2
X+Y = Var(X) + Var(Y) + 2ρX,YσXσY (8.6)

The variance of (X + Y) is not just the sum of the variance of X plus the
variance of Y. The last term in Equation 8.6 is called the covariance (or
the “co-variation”) between X and Y. In Equation 8.6, ρX,Y is the Pearson
product-moment correlation between X and Y and σXσY is the product of
their respective standard deviations. This is technically why and how corre-
lation enters the scene. The Monte Carlo simulation of the work breakdown
structure in Figure 8.14 reflected the condition that all pairs of WBS ele-
ment costs were uncorrelated—a change in the cost of one element was not
associated with a change in the cost of another element. However, this con-
dition is not the common case. In WBSs more complex than the one given in
Figure 8.14, correlation is often found between many pairs of WBS element
costs. If the presence of correlation is such that an increase in the cost of one
element is associated with an increase in the cost of another element, then
this positive correlation causes the variance of the sum of these WBS element
costs to increase. The reason for this is seen in Equation 8.7.

Var(X + Y) = σ2
X+Y =

⎧⎨
⎩

Var(X) + Var(Y), if ρX,Y = 0
Var(X) + Var(Y) + 2ρX,YσXσY,︸ ︷︷ ︸ otherwise

Covariance(X, Y)

The variance of X + Y changes by this amount, which

is the covariance between X and Y, when Pearson

product-moment correlation is present between them
(8.7)

Equation 8.7 is the variance of the sum of just two random variables X and Y
if ρX,Y = 0 (X and Y are uncorrelated) or if ρX,Y �= 0 (X and Y are correlated).
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The term 2ρX,YσXσY is the covariance of X and Y. In Equation 8.7, the covari-
ance becomes larger and larger as more and more random variables with
positive correlations are summed. An example is shown by the equation
below.

Var(X + Y + Z) = σ2
X+Y+Z

=

⎧⎪⎪⎨
⎪⎪⎩

Var(X) + Var(Y) + Var(Z), if ρX,Y, ρX,Z, ρY,Z = 0
Var(X) + Var(Y) + Var(Z), otherwise

+ 2ρX,YσXσY + 2ρX,ZσXσZ + 2ρY,ZσYσZ︸ ︷︷ ︸
Covariance(X, Y, Z)

The variance of X + Y + Z changes by this amount, which is

the covariance between X, Y, and Z, when Pearson

product-moment correlation is mutually present between them

Thus, correlation between WBS element costs in a WBS can have significant
effects on the magnitude of cost risk, given by the variance σ2 or the standard
deviation σ of the total cost probability distribution.

Pearson and Spearman Rank Correlation Measures: In Equation 8.6,
the correlation coefficient ρX,Y is the Pearson product-moment correlation.
Pearson’s correlation measures the strength and direction of the linearity
between X and Y. It is the only technically correct correlation measure for sum-
ming the variances of random variables and, in our context, when summing
the variances of a program’s WBS element costs.

There are other types of correlation measures in statistics. One is Spear-
man’s rank correlation. Rank correlation is also measured in the interval
−1 ≤ ρrank ≤ 1. It measures the strength and direction of the monotonicity
between two random variables. Monotonicity and linearity can be different
behaviors between pairs of random variables. Thus, Spearman’s rank cor-
relation and Pearson’s product-moment correlation are not guaranteed to
produce the same measures. The following illustrates this point.

In Figure 8.17, suppose Y is a random variable that is a function of X. Sup-
pose X is a random variable whose outcomes are uniformly distributed in
the interval 0 to 1. In Figure 8.17, the function at the top has a Pearson cor-
relation of ρX,Y = 0.8732 and a rank correlation equal to one (ρrank = 1).
The function at the bottom has a Pearson correlation of ρX,Y = 0.7861 and a
rank correlation equal to one (ρrank = 1). Why are the Pearson and rank cor-
relations so different? The answer is because Y is a perfectly monotonically
increasing function of X over the indicated domains. Rank correlation mea-
sures the strength and direction of monotonicity only. A function Y can have
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Y = X0.01 + X0.02

X ~ Unif (0, 1)

The Pearson Correlation between Y and X is 0.8732
The Rank Correlation between Y and X is 1
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Y = –0.00098366 (1 – e6.92521X)
X ~ Unif (0, 1)

The Pearson Correlation between Y and X is 0.7861
The Rank Correlation between Y and X is 1

FIGURE 8.17
Comparing Pearson and rank correlation measures.

a perfect rank correlation but a very different Pearson correlation. This is because
a monotonic function need not be a linear function.

Guidance on Capturing Correlation in Monte Carlo Simulations: As
mentioned earlier, correlation cannot be ignored—doing so can be equivalent
to setting it equal to zero. Pearson correlation is the technically correct corre-
lation measure for summing the variances of random variables. Caution is
needed to not double count or mix different types of correlation in the analy-
sis. It can lead to the generation of invalid measures of cost risk or measures
that are unrealistically under- or overestimated (refer to Section 9.2).

Chapter 9 presents three ways of valuing correlations between cost ele-
ments in a program’s work breakdown structure. One approach falls into a
class of subjective methods for situations where a lack of time or informa-
tion may preclude deriving correlations between WBS element costs. This is
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when correlations might be assigned. The second falls into a class of methods
where correlation is mathematically derived from the structures of cost esti-
mation relationships defined within the WBS. The third approach makes use
of Monte Carlo simulation to empirically determine any needed correlations.

8.3.2 Method of Moments

The method of moments is a procedure in classical statistics to estimate the
unknown mean and variance of a population by random samples from the
population. Inferences from the sample mean and sample variance are used
to make inferences about the population mean and population variance.
A moment is a statistical term referring to central tendency measures of a ran-
dom variable or its probability distribution. The mean is the first moment.
The variance is a function of the second moment of a random variable.

In cost uncertainty analysis, the method of moments (MOM) refers to deriv-
ing the mean and variance of the cost of a program as functions of the means
and variances of the costs of its WBS elements. From these measures, the
probability distribution of CostWBS is formed. The method of moments pro-
ducesanalyticallyderivedmeasuresofcost risk, whileMonteCarlosimulation
empirically derives them from thousands of random trials or samples.

Method of Moments: Applied to Work Breakdown Structures: The
method of moments is commonly applied to a WBS when it is used to derive
the probability distribution of CostWBS. Mentioned in Section 8.2, the WBS
is the definitive cost element structure and cost model of a program, where
the summation of WBS element costs across WBS levels forms an estimate of
total program cost. Similarly, the WBS serves as a cost risk model of the pro-
gram. Here, the summation of WBS element cost ranges across WBS levels
forms a probability distribution of possible outcomes of total program cost,
one of which is the point estimate. This is shown in Figure 8.18. The follow-
ing applies a method of moments approach to the same WBS in Figure 8.14,
which was used to illustrate the Monte Carlo simulation technique.

Figure 8.19 presents a work breakdown structure consisting of the five cost
elements X1, X2, X3, X4, and X5. A point estimate cost for each element is
shown, along with an uncertainty distribution around each estimate. The cost
mean and cost variance of each WBS element is analytically derived instead
of empirically generated from random Monte Carlo samples. The cost means
and cost variances of the WBS elements are summed and the probability dis-
tribution of CostWBS is formed. In practice, this distribution is usually well
approximated by a normal or a lognormal form.∗ Consider the following
example.

CostWBS = X1 + X2 + X3 + X4 + X5 (8.8)

∗ The following section will discuss the applicability of normal and lognormal forms in further
detail.
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Cost Element X1 = 25 ($M)
Triangular Distribution with Parameters:
  Minimum
  Likeliest
  Maximum

Triangular Distribution with Parameters:
  Minimum
  Likeliest
  Maximum

Triangular Distribution with Parameters:
  Minimum
  Likeliest
  Maximum

Lognormal Distribution with Parameters:
  Location
  Mean
  Std. Dev.

Uniform Distribution with Parameters:
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25.00
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15.00
15.00
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10.00
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Cost Element X2 = 30 ($M)

Cost Element X3 = 15 ($M)

Cost Element X4 = 55 ($M)

Cost Element X5 = 65 ($M)

Mean = 26.67, Variance = 9.72

Mean = 30, Variance = 133.33

Mean = 20, Variance = 12.5

Mean = 61.67, Variance = 109.72

Mean = 65, Variance = 100

10 5020 30 40

15 3020 25

40 9050 60 70 80

40 9050 60 70 80

20 3525 30

FIGURE 8.19
A WBS for method of moments.
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Thus, the mean and variance of CostWBS is

E(CostWBS) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) (8.9)

Var(CostWBS) = Var(X1) + Var(X2) + Var(X3)

+ Var(X4) + Var(X5) (8.10)

From the information in Figure 8.19, it follows that

E(CostWBS) = 26.67 + 30 + 20 + 61.67 + 65 (8.11)

E(CostWBS) = 203.34 ($M)

Var(CostWBS) = 9.72 + 133.33 + 12.5 + 109.72 + 100

= 365.27 ($M)2 (8.12)

σCostWBS = √
Var(CostWBS) = 19.11 ($M) (8.13)

The mean and standard deviation computed by the method of moments,
shown by Equations 8.9 through 8.13, are very close to these same statistics
derived empirically by the Monte Carlo simulation discussed in Section 8.3.1.
Mutual independence between WBS element costs X1, X2, X3, X4, and X5
has been assumed in this example. Mutual independence implies these five
WBS element costs are mutually uncorrelated (refer to Theorem 5.4). Thus,
the variance of the sum of X1, X2, X3, X4, and X5 is the sum of their individ-
ual variances. Chapter 9 extends this discussion to illustrate how correlations
between WBS element costs can be incorporated into Var(CostWBS).

Figure 8.20 presents the probability distribution of CostWBS. The dots
depict the probability distribution of CostWBS generated by a Monte Carlo
simulation of the same WBS in Figure 8.14. The simulation produced a
mean of CostWBS equal to $203.3M and a standard deviation of CostWBS
equal to $19M. In Figure 8.20, the solid line is the probability distribution of
CostWBS assuming its possible cost outcomes fall along a normal probability
distribution—with mean and variance derived by the method of moments.
The dashed line is the probability distribution of CostWBS assuming its possi-
ble cost outcomes fall along a lognormal probability distribution—with mean
and variance derived by the method of moments.

In Figure 8.20, the simulated, normal, and lognormal probability distribu-
tions are almost indistinguishable. Mentioned earlier, a reason for this is the
assumed mutual independence between WBS element costs X1, X2, X3, X4,
and X5 in this example. The central limit theorem (CLT) enters the picture and
ensures the eventual tendency of the simulated distribution to approach a
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y = P(CostWBS ≤ x)

203.3179.5 228.3

Dollars Million

Dots = The probability distribution of CostWBS derived
from a Monte Carlo simulation of the WBS in Figure 8.14

Solid line = The probability distribution of CostWBS,
given the WBS in Figure 8.14, under an assumed
normal distribution.

Dashed line = The probability distribution of CostWBS,
given the WBS in Figure 8.14, under an assumed 
lognormal distribution

FIGURE 8.20
Probability distribution of CostWBS.

normal distribution. Figure 8.20 visually reveals the lognormal distribution
also approximates the normal or simulated distributions of CostWBS. The
goodness of these approximations is often seen in cost uncertainty anal-
ysis, which greatly supports the use of method of moments approaches.
Appendix D illustrates the method of moments applied to a WBS with
correlated WBS element costs.

Extending the Method of Moments: The preceding illustrated the method
of moments applied to a WBS consisting of five cost elements. This section
extends the method of moments to a WBS of n cost elements. Let

CostWBS = X1 + X2 + X3 + · · · + Xn (8.14)

It then follows that the mean or expected value of CostWBS is

E(CostWBS) = E(X1) + E(X2) + E(X3) + · · · + E(Xn) (8.15)

If the costs of cost elements X1, X2, X3, . . . , Xn are independent, then the
variance of CostWBS is

Var(CostWBS) = Var(X1) + Var(X2) + Var(X3) + · · · + Var(Xn) (8.16)
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If the costs of cost elements X1, X2, X3, . . . , Xn are not independent, then the
variance of CostWBS is

Var(CostWBS) = Var(X1) + Var(X2) + Var(X3) + · · · + Var(Xn)

+ 2ρX1,X2σX1σX2 + 2ρX1,X3σX1σX3 + · · · + 2ρXi,XjσXiσXj

(8.17)

for all i and j such that 1 ≤ i ≤ j ≤ n. In Equation 8.17, ρXi,Xj is the
Pearson product-moment correlation between the costs of WBS element ran-
dom variables Xi and Xj. Once the values for E(CostWBS) and Var(CostWBS) are
computed, they are used in the method of moments to specify a lognormal or
normal probability distribution of CostWBS, with mean E(CostWBS) and vari-
ance Var(CostWBS). The following illustrates how to create these probability
distributions in Excel.

How to Specify a Lognormal Probability Distribution: Given the WBS
in Figure 8.19, the method of moments was used to derive the mean and
variance of CostWBS; specifically, it was shown that

E(CostWBS) = 203.34 ($M) and Var(CostWBS) = 365.27 ($M)2

Microsoft Excel can be used to specify a lognormal distribution with these
computed statistics. This is illustrated by the following steps.

Step 1. Transform E(CostWBS) and Var(CostWBS): Transform the mean and
variance of CostWBS, computed by the method of moments, into the lognor-
mal parameters μ and σ2 given by Equations 8.18 and 8.19

μ = 1
2

ln

[
a4

a2 + b

]
(8.18)

σ2 = ln

[
a2 + b

a2

]
(8.19)

where a = E(CostWBS) and b = Var(CostWBS)
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Step 2. Compute and Enter Parameters μ and σ2 into Excel: In this step, we
compute the values for μ and σ2 given by Equations 8.18 and 8.19. Define

a = E(CostWBS) = 203.34($M) (8.20)

b = Var(CostWBS) = 365.27 ($M)2 (8.21)

From Equations 8.18 and 8.19, it follows that

μ = 1
2

ln

[
a4

a2 + b

]
= 1

2
ln

[
(203.34)4

(203.34)2 + 365.27

]
= 5.31048 (8.22)

σ2 = ln

[
a2 + b

a2

]
= ln

[
(203.34)2 + 365.27

(203.34)2

]
= 0.00879543 (8.23)

σ =
√
σ2 = 0.093784 (8.24)

From these equations, the values for a, b, μ, and σ are used to form the lognor-
mal probability distribution of CostWBS. Table 8.1 is one way to use Excel with

TABLE 8.1

Excel Function to Compute Lognormal Probabilities for CostWBS

A B C D E F

1 If Then
2 Equation α = x =
3 8.20 a = 203.34 0.00 151.5
4 8.21 b = 365.27 0.10 179.5

5 8.22 μ = 5.31048 0.20 187.1
6 8.24 σ = 0.093784 0.30 192.7

0.40 197.7
Cumulative Lognormal Probability Distribution 0.50 202.4
of CostWBS 0.60 207.3

0.70 212.7
0.80 219.1

0.90 228.3
1.00 270.5

F3 = LOGNORM.INV(E3,$C$5,$C$6)
F4 = LOGNORM.INV(E4,$C$5,$C$6)
F5 = LOGNORM.INV(E5,$C$5,$C$6)

F6 = LOGNORM.INV(E6,$C$5,$C$6)
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outputs from the method of moments to derive the lognormal probability
distribution of CostWBS. Columns A, B, and C are inputs from Step 2. Col-
umn E is the probability α that CostWBS does not exceed x dollars; that is,
P(CostWBS ≤ x) = α. In Table 8.1, observe how the values computed by Excel
in Column F track to the lognormal probability distribution shown by the
dashed line in Figure 8.20.

How to Specify a Normal Probability Distribution: Excel can be used to
specify a normal probability distribution of CostWBS, with mean E(CostWBS)

and Var(CostWBS) derived from the method of moments. Table 8.2 illustrates
how to create this distribution in Excel. Columns A, B, and C are the com-
puted values of E(CostWBS) and Var(CostWBS) derived from the method of
moments. Column E is the probability α that CostWBS does not exceed x
dollars; that is P(CostWBS ≤ x) = α. In Table 8.2, observe how the values
computed by Excel in Column F track to the normal probability distribution
shown by the solid line in Figure 8.20.

In the preceding discussion, the method of moments produced an analyt-
ically derived measure of the mean and variance of CostWBS. Monte Carlo
simulation generates an empirically derived basis for these two measures, as
well as an empirically derived probability distribution of CostWBS. To pro-
duce the probability distribution of CostWBS using the method of moments,

TABLE 8.2

Excel Function to Compute Normal Probabilities for CostWBS

A B C D E F

1 If Then
2 Equation α = x =
3 8.20 a = 203.34 0.00 144.3
4 8.21 b = 365.27 0.10 178.8

5
√

b = 19.11 0.20 187.3
6 0.30 193.3

0.40 198.5
Cumulative Normal Probability Distribution 0.50 203.3
of CostWBS 0.60 208.2

0.70 213.4
0.80 219.4

0.90 227.8
1.00 262.4

F3 = NORM.INV(E3,$C$5,$C$6)
F4 = NORM.INV(E4,$C$5,$C$6)
F5 = NORM.INV(E5,$C$5,$C$6)

F6 = NORM.INV(E6,$C$5,$C$6)
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the form or shape of this distribution must be assumed. Best practice obser-
vations, published evidence, and statistical tests indicate the probability
distribution of CostWBS is often approximated by normal or lognormal forms.
This is numerically evident in Figure 8.20. Chapter 6 provides an extensive
discussion on reasons why these distributional forms are so often seen in cost
uncertainty analyses.

In Figure 8.20, the normal and lognormal distributions well approximate
the empirically derived probability distribution of CostWBS—shown by the
dots generated by the Monte Carlo simulation. There are many technical
and empirically observed reasons for this. Primary among them is that a
program’s total cost is a summation of WBS element costs, including a sum-
mation of costs derived from nonlinear cost estimation relationships. Within
the WBS, it is typical to have a mixture of independent and correlated ele-
ment costs. The greater the number of independent WBS element costs, the
more it is that the probability distribution of CostWBS is approximately nor-
mal. Why is this? As mentioned in Chapter 6, it is essentially the phenomenon
explained by the CLT.

8.4 Summary

The cost of a future system can be significantly affected by uncertainty. The
existence of uncertainty implies the existence of a range of possible costs.
How can a decision-maker be shown the chance a particular cost in the
range of possible costs will be realized? The probability distribution is a
recommended approach for providing this insight.

Probability distributions result when independent variables (e.g., weight,
power-output, schedule) used to derive a system’s cost randomly assume val-
ues across ranges of possible values. For instance, the cost of a satellite might
be derived using a range of possible weight values, with each value randomly
occurring. This approach treats cost as a random variable. It is recognized
that values for these variables (such as weight) are not typically known with
sufficient precision to predict cost perfectly, at a time when such predictions are
needed. This point is further articulated by well-respected analyst S. A. Book.∗

The mathematical vehicle for working with a range of possible costs is the
probability distribution, with cost itself viewed as a “random variable.”
Such terminology does not imply, of course, that costs are “random”
(though well they may be!) but rather that they are composed of a large
number of very small pieces, whose individual contributions to the whole

∗ Book, S. A. 1997. Cost Risk Analysis—A tutorial. In Risk Management Symposium Proceedings.
Los Angeles, CA: The Aerospace Corporation.
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we do not have the ability to investigate in a degree of detail sufficient to
calculate the total cost precisely. It is much more efficient for us to recog-
nize that virtually all components of cost are simply “uncertain” and to
find some way to assign probabilities to various possible ranges of costs.

An analogue is the situation in coin tossing where, in theory, if we
knew all the physics involved and solved all the differential equations,
we could predict with certainty whether a coin would fall “heads” or
“tails.” However, the combination of influences acting on the coin is too
complicated to understand in sufficient detail to calculate the physical
parameters of the coin’s motion. So we do the next best thing: we bet that
the uncertainties will probably average out in such a way that the coin
will fall “heads” half the time and “tails” the other half. It is much more
efficient to consider the deterministic physical process of coin tossing to
be a “random” statistical process and to assign probabilities of 0.50 to each
of the two possible outcomes, heads or tails.

In summary, cost uncertainty analysis provides decision-makers many bene-
fits and important insights. These include

Establishing a Cost and Schedule Risk Baseline: Baseline probability dis-
tributions of program cost and schedule should be developed for
a given system configuration (its technical baseline), acquisition
strategy, and cost-schedule estimation approach. The baseline pro-
vides decision-makers visibility into potentially high-payoff areas
for risk reduction initiatives. Baseline distributions assist in deter-
mining a program’s cost and schedule that simultaneously have
a specified probability of not being exceeded. They also provide
decision-makers an assessment of the chance of achieving a budgeted
(or proposed) cost and schedule, or cost for a given feasible schedule.

Measuring Cost Risk: Cost uncertainty analysis provides a basis for mea-
suring the overall cost risk inherent to a program as a function of
its specific uncertainties. This can be measured by the difference
between the program point estimate cost and the cost at a prede-
fined confidence level, as set by budgetary decisions or management
policies.

Conducting Risk Reduction Trade-off Analyses: Cost uncertainty analysis
can be conducted to study the payoff of implementing risk reduction
initiatives on lessening a program’s cost, schedule, and performance
risks. Families of probability distribution functions, as shown in
Figure 8.4, can be generated to compare the cost and cost risk impacts
of competing design options or acquisition strategies.

Documenting Program Risks and Risk Analysis Inputs: The validity and
influence of any cost uncertainty analysis relies on the engineer-
ing and cost team’s experience, judgment, and knowledge of their
program’s risks and uncertainties. Documenting the team’s insights
into these considerations is a critical part of the process. Without it,
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the veracity of the analysis is easily questioned. Details about the
analysis methodology, especially assumptions, are important to doc-
ument. The methodology must be technically sound, traceable, and
offer value-added problem structure and insights otherwise not vis-
ible. Decisions that successfully reduce or eliminate risk ultimately
rest on human judgment. At best, this is aided by, not directed by,
the methods in this book.

Exercises

8.1 Figure 8.8 identified a list of potential areas of program cost estimate
uncertainty. Think about areas not shown that should be listed given
today’s engineering systems and acquisition environment. Include a def-
inition of each new area and give examples, as shown in the second and
third columns in Figure 8.8.

8.2 From the information provided in Figure 8.9, derive the probability
equation below.

P(Effort ≤ x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
250
x

+ x
250

)
− 2, if 250 ≤ x < 500

3 −
(

1000
x

+ x
1000

)
, if 500 ≤ x ≤ 1000

8.3 a. For a 30,000 sample run of a Monte Carlo simulation, find the values
of i and k such that the true median x0.50 of the distribution of X falls
between (x̂i, x̂k) with probability 0.90, 0.95, and 0.99.

b. For a 50,000 sample run of a Monte Carlo simulation, find the values
of i and k such that the true value of the fractile x0.70 of the distribution
of X falls between (x̂i, x̂k) with probability 0.99.

c. In a Monte Carlo simulation, find the number of trials m needed to
be within p = ±0.01 of the fractile x0.70 of the distribution of X with
probability 0.95.

8.4 Build a Monte Carlo simulation in an Excel spreadsheet that gener-
ates m trials (random samples) of a lognormal random variable X with
mean 203.34 and variance 365.27. Use the number of trials m derived
in Exercise 8.3c. For this exercise, use the Excel Function: LOGNORM.
INV(RAND( ), μ, σ) and review the discussion associated with Equa-
tions 8.18 through 8.24. Do not use a commercial Monte Carlo simulation
application or add-in to Excel for this exercise.
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8.5 From the m trials of the lognormal random variable X generated from
Exercise 8.4, compare and contrast the true values of the fractiles
x0.69, x0.70, x0.71 with their estimated values x̂0.69, x̂0.70, x̂0.71 generated by
the Monte Carlo simulation.
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9
Correlation: A Critical Consideration

The importance of correlation as a critical consideration in cost uncertainty
analysis cannot be understated. Seen throughout the preceding chapters, cor-
relation can have a significant effect on the measure of a program’s cost risk.
This chapter presents several approaches to capture and incorporate cor-
relation in cost uncertainty analyses. Guidelines on when one approach is
preferred over another are offered. First, a brief refresher on correlation and
how it can influence a program’s cost uncertainty.

9.1 Introduction

Mentioned earlier, cost estimates are inherently uncertain. A cost estimate is
merely one outcome in a probability distribution of possible cost outcomes.∗
A challenge for the cost analysis community has been which cost to choose,
from the distribution of possible costs that is suitably risk-adjusted for bud-
geting or planning a program. Selecting a risk-adjusted cost also means
choosing one with an associated level of confidence it will not be exceeded.

Historically, the median cost from a program’s cost probability distribu-
tion was chosen. However, by definition, the median cost has only a 50%
chance of not being exceeded. Furthermore, it remained unclear what risks
the median cost would cover in terms of their cost impacts if they occurred.
Even if confidence levels higher than the 50th percentile were chosen, it was
becoming clear to practitioners that the spread or range of possible cost out-
comes was far too narrow. Was there too much optimism in program cost
estimates? Was there a fault somewhere in the mathematical methodology?

The answer is yes to each question. While optimistic assumptions continue
to be a factor in cost growth above initial estimates, a key methodology defi-
ciency was inadequate attention to correlations between a program’s work
breakdown structure (WBS) element costs. Why is correlation so critical?
Discussed extensively in Chapters 5 and 6, correlation affects the extent of a
program’s cost risk, when measured by the variance (or standard deviation)
of the sum of its WBS element costs. If a program’s total cost is given by

Cost = a1X1 + a2X2 + a3X3 + · · · + anXn (9.1)

∗ The same is true for schedule estimates.
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where a1, a2, a3, . . . , an are constants and X1, X2, X3, . . . , Xn are random vari-
ables that represent the uncertainties in the WBS element costs, then from
Theorems 5.7 and 5.8, the mean and variance of Cost are

E(Cost) = a1E(X1) + a2E(X2) + a3E(X3) + · · · + anE(Xn) (9.2)

Var(Cost) =
n∑

i=1

a2
i Var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

aiajρXi,XjσXiσXj (9.3)

for all i and j such that 1 ≤ i ≤ j ≤ n. In Equation 9.3, ρXi,Xj is the Pearson
product-moment correlation between the costs of WBS element random vari-
ables Xi and Xj. Seen in Equation 9.2, the mean of the program’s total cost is
the sum of the means of its WBS element costs. It is unaffected by correlation.
The variance of the program’s total cost is the sum of the variances of its WBS
element costs plus the sum over all covariation between each pair of WBS cost
elements. In Equation 9.3, the term

2
n−1∑
i=1

n∑
j=i+1

aiajρXi,XjσXiσXj (9.4)

is the covariance of Cost, denoted by Cov(Cost), where Cost is given by
Equation 9.1. It is a function of the correlation between each WBS cost ele-
ment pair. This is why and how correlation enters a cost uncertainty analysis.
From this, it follows that

σ(Cost) =
√

Var(Cost) =
√√√√√

n∑
i=1

a2
i Var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

aiajρXi,XjσXiσXj (9.5)

Thus, correlation between WBS element costs can have significant effects on
the extent of a program’s total cost risk. The positive or negative direction of
correlation affects whether it increases or decreases cost risk (Equation 9.5),
respectively. If σ(Cost) is less than it should be, then so is any confidence level
derived from this distribution. Consider Figure 9.1.

Suppose Figure 9.1 illustrates two probability distributions of a program’s
total cost, summed across its WBS cost elements. Suppose the median cost
was chosen as the risk-adjusted cost for the program. Suppose distribution
A was produced without considering correlation between any pair of WBS
element costs. This implicitly means the correlations are zero between all
pairs. Suppose distribution B captured the true impacts of correlation on
this program’s cost and it resulted in doubling the standard deviation of
distribution A.
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Median

A

A

B

B

Confidence
Level

0.50

0.80

1

115 123 133
Risk-Adjusted Costs

Shift in Cost at the 80th
Percentile

FIGURE 9.1
Potential effects of correlation on a point estimate cost.

Comparing the two distributions in Figure 9.1, the impact of correlation
produced a 10 ($M) shift in the program’s risk-adjusted cost at the 80th
percentile confidence level. The shift in risk-adjusted cost increases monoton-
ically with each unit increase in the confidence level above the 50th percentile.
Clearly, correlation can have significant effects on the probability distribution
of a program’s total cost—chiefly on the upper percentile confidence levels
where risk-adjusted costs of a program are often chosen.

From Chapter 5, recall that correlation ρ is a statistical measure of the
covariation between two random variables. It measures the strength and
direction of change in the value of one random variable with change in the
value of another random variable. Regarding strength, ρ is a continuous mea-
sure whose value ranges between negative one and positive one. Regarding
direction, correlation can be positive or negative. Positive correlations∗ fall in
the interval 0 < ρ ≤ 1. Negative correlations† fall in the interval −1 ≤ ρ < 0.
Uncorrelated random variables have correlation ρ = 0.

Finally, from Chapter 7, recall that correlation between certain types of
random variables have bounds contained within the interval −1 ≤ ρ ≤ 1.
For example, the correlation coefficient of the bivariate lognormal distribu-
tion is bounded by the interval −e−1 < ρ< 1. Thus, caution is needed when
subjectively assigning correlations to avoid potentially impermissible values.

∗ A cost increase in one area of a program is associated with a cost increase in another area.
† A cost increase in one area of a program is associated with a cost decrease in another area.
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9.2 Correlation Matters

The preceding discussion showed the importance of properly capturing
correlation between a program’s WBS element costs, especially positive cor-
relations. Illustrated in Figure 9.1, the potential effects of positive correlations
on a program’s total cost risk can be dramatic. Consider the following.

Suppose a program’s total cost is given by Cost = X1 + X2 + X3 + · · · + Xn,
where X1, X2, X3, . . . , Xn are random variables that represent the uncertain-
ties in the program’s WBS element costs. Suppose each WBS element pair has
common variance σ2 and nonnegative correlation ρ. From Theorem 5.9

σ(Cost) = √
nσ when ρ = 0

σ(Cost) = √
nσ

√
[1 + (n − 1)ρ] when 0 < ρ < 1

σ (Cost) = nσ when ρ = 1

Let σ(Cost) denote the measure of a program’s total cost risk. From this,
the percent underestimation of total cost risk when correlation was initially
assumed to be equal to 0 (ρ0 = 0) instead of a value in the interval 0 < ρ < 1 is

y = 100
√

nσ
√

1 + (n − 1)ρ − √
nσ√

nσ
√

1 + (n − 1)ρ
= 100 − 100

√
1

1 + (n − 1)ρ

Figure 9.2 is a graph of y (above) as a function of ρ and the number of WBS
cost elements n. Suppose ρ0 = 0 is the initially assumed or implied correlation
for all WBS element pairs with n = 10 cost elements. If it later became known
that the actual correlation ρ was equal to 0.4, then the program’s total cost
risk has been underestimated by 53% if each WBS element pair has a common
variance σ2.

In Figure 9.2, the underestimation worsens exponentially with each
increase in the number of WBS cost elements and where ρ > ρ0 = 0. Further-
more, if ρ0 = 0, then a change (increase or decrease) in the cost of one element
does not effect change (increase or decrease) in the cost of any other element.
This is seldom true. Wrongly assuming or unknowingly setting ρ0 = 0 is the
main reason for narrow probability distributions of a program’s total cost.

Conversely, the percent overestimation of total cost risk when correlation
was initially assumed to be equal to 1 (ρ0 = 1) instead of a value in the interval
0 < ρ < 1 is

y = 100
nσ − √

nσ
√

1 + (n − 1)ρ√
nσ

√
1 + (n − 1)ρ

= 100
√

n
1 + (n − 1)ρ

− 100
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FIGURE 9.2
Underestimation of total cost risk. (From Book, S.A., Why correlation matters in cost estimating,
in: 32nd Annual DOD Cost Analysis Symposium (DODCAS), Los Angeles, CA, 1999.)

Figure 9.3 is a graph of y (above) as a function of ρ and the number of WBS
cost elements n. For example, consider a WBS with n = 10 cost elements. Sup-
pose ρ0 = 1 was initially assumed for all WBS cost element pairs. If it later
became known that the actual correlation ρ was 0.4, then the program’s total
cost risk was overestimated by 47%. Seen in Figure 9.3, the overestimation
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FIGURE 9.3
Overestimation of total cost risk. (From Book, S.A., Why correlation matters in cost estimating,
in: 32nd Annual DOD Cost Analysis Symposium (DODCAS), Los Angeles, CA, 1999.)
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worsens exponentially with each increase in the number of WBS cost
elements and where 0 < ρ< ρ0 = 1. Furthermore, if ρ0 = 1, then an increase
in the cost of one element has a perfect linear increase in the cost of all other
elements. This is seldom true and is the main reason for overly elongated
probability distributions of a program’s total cost. For some random vari-
ables, correlations between them are limited to subintervals of −1 ≤ ρ≤ 1.
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FIGURE 9.4
Under- or overestimation of total cost risk. (From Book, S.A., Why correlation matters in cost
estimating, in: 32nd Annual DOD Cost Analysis Symposium (DODCAS), Los Angeles, CA, 1999.)
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In these cases, assuming ρ0 = 1 would be impermissible (Covert 2013, Garvey
and Taub 1992).

Figure 9.4 jointly portrays the extent of overestimating or underestimating
a program’s total cost risk if assuming an initial correlation ρ0 in the inter-
val 0 < ρ0 < 1 when the actual correlation is ρ, where 0 < ρ< 1 and ρ0 �= ρ.
If 0 < ρ< ρ0, then an overestimation of total cost risk occurs. Conversely, if
ρ> ρ0 then an underestimation of total cost risk occurs. Figure 9.4a and b
illustrate these outcomes for ρ0 = 0.3 and ρ0 = 0.5, respectively.

9.3 Valuing Correlation

This section presents three ways of valuing correlations between cost ele-
ments in a program’s WBS. One approach falls into a class of subjective
methods for situations where a lack of time or information may preclude
deriving correlations between WBS element costs. This is when correlations
are assigned. The second falls into a class of methods where correlation
is mathematically derived from the structures of cost estimation relation-
ships defined within the WBS. The third approach makes use of Monte Carlo
simulation to empirically determine any needed correlations (Gentle 2003).

9.3.1 Assigning Correlations

As mentioned, time or information may be unavailable to assess, assign,
or derive correlations between some or all pairs of WBS cost elements that
define a program. Moreover, a program with n WBS elements has n(n − 1)/2
cost element pairs. Thus, a WBS with 10 cost elements has 45 pairs, 50 cost
elements have 1225 pairs, and 100 cost elements have 4950 pairs. Clearly,
it quickly becomes unwieldy to explicitly assign correlations to all pairs of
cost elements; however, ignoring some or all is equivalent to setting them to
zero. Given this, what practical options exist such that the important effects
of correlation are captured in judicious ways?

One answer to this question is to use Figure 9.2. In Figure 9.2, observe the
“knee” in these curves all occur in the interval 0.10 ≤ ρ ≤ 0.30. In partic-
ular, for ρ> 0.30 there is little change in the percent that a program’s total
cost risk is underestimated by not capturing positive correlation when it is
present in the WBS. If the conditions stated are present, then choosing a value
for ρ within this interval is a reasonable option in lessening the underestima-
tion of total cost risk. In particular, setting ρ equal to the midpoint of this
interval (ρ = 0.20) for all WBS cost element pairs captures most of the poten-
tial underestimation of total cost risk.∗ Moreover, ρ = 0.20 is a permissible

∗ In practice, choosing ρ to lessen the underestimation of cost risk is emphasized. Historically,
underestimating the true cost risk of programs is a major reason for cost growth above initial
cost estimates.
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correlation for the pairs of continuous probability distributions most often
used to characterize uncertainties in WBS element costs.

One way to use Figure 9.2 is as follows. Consider a program whose cost is
given by

Cost = X1 + X2 + X3 + X4 + X5 (9.6)

where X1, X2, X3, X4, and X5 are independent random variables that denote
the program’s WBS element costs. If the uncertainty in each element’s cost is
given by the distribution in Figure 8.19, then it was shown that

E(Cost) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5)

= 203.34 ($M) (9.7)

Var(Cost) = Var(X1) + Var(X2) + Var(X3) + Var(X4) + Var(X5)

= 365.27 ($M)2 (9.8)

⇒ σ = σ(Cost) =
√

Var(Cost) = √
365.27

= 19.11 ($M) (9.9)

Computing Var(Cost) by Equation 9.8 implies the correlation between each
pair of WBS cost elements X1, X2, X3, X4, and X5 is zero; that is, the covari-
ance given by Equation 9.4 is zero. In practice, this can mean (1) there is
genuinely no correlation between any WBS cost element pair for this pro-
gram or (2) the analysis did not take correlation into account when it should
have been considered or (3) the cost of each WBS element was developed
separately such that correlations between them were not possible to deter-
mine. If the latter two of these three situations are true, then one option is to
adjust Var(Cost) with a correlation value from Figure 9.2. The reasoning is this
brings Var(Cost) closer to its “true” value than the value produced by wrongly
assuming ρ = 0 between all WBS cost element pairs, as implied by Equation
9.8. The following illustrates how adjusting Var(Cost) might be done.

As mentioned earlier, the “knee” in the curves in Figure 9.2 occurs in the
interval 0.10 ≤ ρ ≤ 0.30. For this case, suppose ρ is set equal to the midpoint
(ρ = 0.2) of this interval for all 10 WBS cost element pairs formed from X1,
X2, X3, X4, and X5. From Equation 9.4, the covariance of Cost is

Cov(Cost) = 2
n−1∑
i=1

n∑
j=i+1

aiajρXi,XjσXiσXj = 2
5−1∑
i=1

5∑
j=i+1

0.2 σXiσXj

= 226.102 ($M)2 (9.10)
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for 1 ≤ i ≤ j ≤ n = 5 and where aiaj = 1 (in this case, as implied by Equation
9.6). The terms in Equation 9.10 derive from the variances of X1, X2, X3, X4,
and X5 given in Figure 8.19. Thus, from Equation 9.3

Var(Cost ) =
5∑

i=1

Var(Xi) + 2
5−1∑
i=1

5∑
j=i+1

0.2 σXiσXj

= 365.278 + 226.102 = 591.38 ($M)2 (9.11)

⇒ σ(Cost) =
√

Var(Cost) = √
591.38 = 24.32 ($M) (9.12)

Consequently, incorporating a correlation of ρ = 0.2 into the analysis results
in a 27% increase in the program’s cost risk, when compared to the initial cor-
relation of ρ0 = 0 implied by Equation 9.9. A cost risk equal to 24.31 ($M) for
this program is closer to the “true” measure than that produced by Equation
9.9. Shown in Figures 9.2 and 9.4, the underestimation of a program’s total
cost risk worsens exponentially with each increase in the number of WBS cost
elements and when ρ > ρ0 ≥ 0.

Choosing a correlation from the interval 0.10 ≤ ρ≤ 0.30 is informally called
the knee-in-the-curve method. It is intended for situations where a lack of
time or information precludes empirically or analytically deriving correla-
tions between some or all pairs of a program’s WBS element costs. It is also
for situations when correlations between certain WBS element costs are not
automatically accounted for through their functional relationships in, for
example, a Monte Carlo simulation. Hence, the knee-in-the-curve method
should be considered a practical guideline in these circumstances. Mentioned
earlier, choosing a value for ρ in this interval generally assures a permissible
correlation is used and further lessens the underestimation of a program’s
total cost risk when ρ = 0 is wrongly assumed or implied.

An examination of a program’s cost sensitivity to the choice of ρ is rec-
ommended when using the knee-in-the-curve method. For example, under
an assumed normal distribution, Figure 9.5 shows the sensitivity of cost at
the 80th percentile as ρ changes across the values displayed. The shift in
the distribution at the 80th percentile level amounts to a 10 million dollar
difference between ρ= 0 (the left-most curve) and ρ= 0.5 (the right-most
curve).

In Figure 9.5, observe that the difference between the successive 80th
percentile costs is monotonically decreasing for ρ≥ 0. Moreover, for ρ> 0.5,
Table 9.1 reveals that the successive cost differences at this confidence level
are increasingly less consequential. This suggests choosing a value for ρ

greater than 0.5 is unnecessary, in this case. Furthermore, arbitrarily choosing
too large a value for ρ can lead to an impermissible choice if certain types of
random variables are being combined in the analysis.
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FIGURE 9.5
80th percentile shifts in the probability distribution of Cost for varying ρ.∗

TABLE 9.1

80th Percentile Costs in Figure 9.5

80th Percentile Successive 80th Percentile

Correlation ρ Cost ($M) Cost Difference ($M)

0 219.423 —

0.1 221.746 2.323
0.2 223.808 2.062

0.3 225.677 1.869
0.4 227.402 1.725
0.5 229.009 1.607

0.6 230.524 1.515
0.7 231.955 1.431

9.3.2 Deriving Correlations

An alternative to the knee-in-the-curve method is to derive correlations
between WBS element costs when relationships between them are specified
by mathematical functions. Deriving correlations in such situations was iden-
tified by (Garvey and Taub 1992) in their paper on bivariate distributions

∗ In this figure, the probability distribution of Cost was assumed to be normal; hence, the 50th
percentile cost (median cost) will equal the expected value of Cost—which is 203.34 ($M) by
Equation 9.7. Although this is always true for the normal distribution, it is not true in general
for all univariate probability distributions.
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to join cost and schedule uncertainties (refer to Chapter 7). Other writers
(Coleman and Gupta 1994) later coined the term functional correlation as the
correlation among functionally dependent cost estimating relationships.

Case Discussions 6.1 and 6.2 illustrated analytically derived correlations
between functionally related random variables of cost estimating relation-
ships. In particular, Theorem 6.1 showed that if Y = aX + Z where a is a real
number and X and Z are independent random variables then

ρY,X = a
σX

σY
and ρY,Z = σZ

σY

Example 9.1 Suppose the cost of WBS element Y is a function of the costs of
WBS elements X and Z where Y = 0.5X + Z. Suppose X and Z are indepen-
dent random variables with probability density functions given in Figure 9.6.
Compute ρY,X and ρY,Z.

Solution To compute ρY,X and ρY,Z it is necessary to determine σY, σX,
and σZ. Given the triangular and uniform density functions for X and Z
in Figure 9.6, it follows from Theorem 4.3 that σX = 3.118 ($M) and from
Theorem 4.2 that σZ = 11.547 ($M). Given that X and Z are independent
random variables, from Equation 9.3 (or Theorem 5.8) it follows that

Var(Y) = Var(0.5X + Z) = Var(0.5X) + Var(Z) + 2(0.5)(1)ρX,ZσXσZ

= 0.52Var(X) + 12Var(Z) + 2(0.5)(1)(0)σXσZ

= 0.25(3.118)2 + (11.547)2 = 135.763

Therefore,

ρY,X = a
σX

σY
= 0.5

3.118√
135.763

= 0.1338 and ρY,Z = σZ

σY
= 11.547√

135.763
= 0.99

20

fX(x) fZ(z)

x z
25 35

Dollars Million Dollars Million

10 50

FIGURE 9.6
Probability density functions for X and Z.
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These are the derived correlations between Y and X and Y and Z, respectively,
for this example. Theorem 6.1 was used to derive these correlations; however,
an alternative is to use the definition of correlation given by Equation 5.30.
From Equation 5.30, recall that

Corr(X, Y) ≡ ρX,Y = E(XY) − μXμY

σXσY
(9.13)

where σX > 0 and σY > 0. Applying Equation 9.13 to this example, it
follows that

Corr(X, 0.5X + Z) ≡ ρX,0.5X+Z = E(X(0.5X + Z)) − μXμY

σXσY

= 0.5E(X2) + E(X)E(Z) − μXμY

σXσY

= 0.5(Var(X) + (E(X))2) + E(X)E(Z) − μXμY

σXσY
(9.14)

where, from Theorem 3.10, E(X2) = Var(X) + (E(X))2. Thus,

ρX,Y = ρX,0.5X+Z = 0.5(Var(X) + (E(X))2) + E(X)E(Z) − μXμY

σXσY

ρX,Y = ρX,0.5X+Z

= 0.5(3.1182 + 26.666672) + (26.66667)(30) − (26.66667)(43.333335)

(3.118)(11.652)

where μY ≡ E(Y) = E(0.5X + Z) = 0.5E(X) + E(Z) = 43.333335. Substituting
this value into the previous equation

ρX,Y = ρX,0.5X+Z = 0.1338

which, as it should, agrees with the previous finding. It is easily shown that
the correlation between two random variables is symmetric; that is, ρX,Y =
0.1338 = ρY,X.

Example 9.2 Suppose data on the cost of an antenna Y was collected and a
statistical regression revealed the cost estimation relationship (CER) given by
Equation 9.15.

Y = 34.36X0.5
1 X0.8

2 ε (9.15)

where X1 is the antenna’s aperture diameter (meters), X2 is the frequency (GHz),
and ε is the statistical error associated with the regression. Compute the matrix
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of all pairwise correlations of Y with the variables X1, X2, and ε given they
are independent random variables with probability density functions shown in
Figure 9.7.

Solution In this case, the cost of the antenna Y is a product of three random
variables X1, X2, and ε; furthermore, X1 and X2 are nonlinear random
variables. Given this, the Mellin transform (Section 5.5) is a convenient
way to derive their moments. They are needed to compute the pairwise
correlations of Y with the variables X1, X2, and ε.

The correlation pairs of Y with X1, X2, and ε are, respectively

Corr(Y, X1) ≡ ρY,X1 = E(YX1) − μYμX1

σYσX1

(9.16)

Corr(Y, X2) ≡ ρY,X2 = E(YX2) − μYμX2

σYσX2

(9.17)

Corr(Y, ε) ≡ ρY,ε = E(Yε) − μYμε

σYσε
(9.18)

Since X1, X2, and ε were given to be independent random variables, it
follows from Theorem 5.4 that the correlations between all of their pairs
are zero. So, the only nonzero correlations in the expression for Y are those
given by Equations 9.16 through 9.18. The following shows the derivation
of ρY,X1 given by Equation 9.16. Deriving ρY,X2 and ρY,ε is an exercise for
the reader.

Derivation of E(YX1): Given Y = 34.36X0.5
1 X0.8

2 ε, it follows that

E(YX1) = E
((

34.36X0.5
1 X0.8

2 ε
)

X1

)
= E

(
34.36X1.5

1 X0.8
2 ε

)

= 34.36E
(

X1.5
1

)
E
(

X0.8
2

)
E(ε) (9.19)

The terms E
(
X1.5

1
)

and E
(
X0.8

2
)

are easily computed by Mellin transforms;
specifically,

E(YX1) = 34.36E
(

X1.5
1

)
E
(

X0.8
2

)
E(ε)

= 34.36MX1 (2.5)MX2(1.8)E(ε) (9.20)

x2
16 18 0 1 2

Frequency (GHz)
Regression

Error ε
2 4

x1
Aperture (m)

X1 : Unif (2, 4)

fX1
(x1)

X2 : Unif (16, 18)

fX2
(x2) f (ε) ε : Log N (μlnε, σ

2
lnε)

μlnε = –0.0430888

σ2
lnε = 0.0861777

με = 1

σ2
ε = 0.09      σε = 0.3

FIGURE 9.7
Probability density functions for X1, X2, and ε.
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where MX(s) = E(Xs−1). From Equation 5.108, the Mellin transforms
MX1 (2.5) and MX2 (1.8) can be computed by Equation 9.21

MX(s) = 1
s(b − a)

(
bs − as) (9.21)

since X1 and X2 are each uniformly distributed, as shown in Figure 9.7;
therefore, it follows that

MX1(2.5) = 1
2.5(4 − 2)

(
42.5 − 22.5

)
= 5.26862915 (9.22)

MX1(1.8) = 1
1.8(18 − 16)

(
181.8 − 161.8

)
= 9.645373367 (9.23)

Substituting these values into Equation 9.20, and recognizing that
E(ε) = 1 (why?) it follows that

E(YX1) = 34.36(5.26862915)(9.645373367)(1) = 1746.102882 (9.24)

Derivation of μY: Given Y = 34.36X0.5
1 X0.8

2 ε, it follows that

μY ≡ E(Y) = E
(

34.36X0.5
1 X0.8

2 ε
)

= 34.36E
(

X0.5
1

)
E
(

X0.8
2

)
E(ε) (9.25)

= 34.36MX1(1.5)MX2(1.8)E(ε) (9.26)

= 34.36(1.723857265)(9.645373367)(1) (9.27)

= 571.3123246 (9.28)

Thus far, we have

ρY,X1 = 1746.102882 − (571.3123246)μX1

σYσX1

= 1746.102882 − (571.3123246)(3)

σY
√

1/3
(9.29)

where μX1 = 3 and σX1 = √
1/3 are the mean and standard deviation

of X1 ∼ Unif (2,4). So, it remains to compute σY in the denominator of
Equation 9.29.

Derivation of σY: Given Y = 34.36X0.5
1 X0.8

2 ε, it follows that

Var(Y) = E
(

Y2
)

− (E(Y))2 = E
(

Y2
)

− (μY)2 = E
(

Y2
)

− (571.3123246)2

(9.30)

where σY = √
Var(Y). To determine σY, it remains to compute E

(
Y2) in

Equation 9.30. This too can be done with the aid of Mellin transforms, as
follows:
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Given Y = 34.36X0.5
1 X0.8

2 ε, it follows that Y2 = (34.36)2X1X1.6
2 ε2. From

this, we can write

E
(

Y2
)

= E
(
(34.36)2X1X1.6

2 ε2
)

= (34.36)2E (X1) E
(

X1.6
2

)
E

(
ε2

)

= (34.36)2(3)E
(

X1.6
2

)
E

(
ε2

)

= (34.36)2(3)MX2(2.6)
(

Var(ε) + (E(ε))2
)

(9.31)

since E(X1) = μX1 = 3 and by definition Var(ε) = E(ε2) − (E(ε))2 ⇒
E(ε2) = Var(ε) + (E(ε))2. From Figure 9.7, since X2 ∼ Unif (16, 18) and
ε ∼ LogN(1, 0.3), it follows that

MX2 (2.6) = 1
2.6(18 − 16)

(
182.6 − 162.6

)
= 93.10192718

E
(
ε2

)
= Var(ε) + (E(ε))2 = 0.32 + (1)2 = 1.09

E
(

Y2
)

= (34.36)2(3)(93.10192718)
(

0.32 + (1)2
)

= 359, 428.6848

We can now complete the computation of Equation 9.30:

Var(Y) = E
(

Y2
)

− (571.3123246)2 = 359, 428.6848 − (571.3123246)2

= 33, 030.91261 (9.32)

Therefore, σY = √
33, 030.91261 = 181.7440855 and it follows that

ρY,X1 = 1746.102882 − (571.3123246)(3)

(181.7440855)
√

1/3
= 0.306546357 (9.33)

As mentioned earlier, deriving ρY,X2 and ρY,ε is an exercise for the reader.
Given that, the matrix of pairwise Pearson correlations for the antenna
cost estimating relationship Y = 34.36X0.5

1 X0.8
2 ε is

Y X1 X2 ε⎛
⎜⎜⎝

1 0.3065 0.0854 0.9430
0.3065 1 0 0
0.0854 0 1 0
0.9430 0 0 1

⎞
⎟⎟⎠

Y
A = X1

X2
ε

Matrix A is called the correlation matrix of Y. The zero entries in this matrix
are due to the given independence of the random variables X1, X2, and ε

(refer to Theorem 5.4). The entries along the diagonal of this matrix will
always equal one. Why? Showing this is an exercise for the reader. This
completes the discussion and solution to Example 9.2.
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A correlation matrix has a number of important properties. One property
is that correlations contained in the matrix must be mathematically feasible;
that is, there are limits on the amount of correlation that can exist between
certain types of random variables. From Chapter 7, recall that the correlation
coefficient of the bivariate lognormal distribution is bounded by the interval
−e−1 < ρ < 1.

Another property of a correlation matrix is that all pairwise correlations
must be internally consistent. For example, suppose X, Y, and Z are random
variables with ρX,Y = 0.9 and ρY,Z = 0.9. Given this, it would be inconsistent to
specify ρX,Z = 0 since it is not possible for X and Z to be wholly uncorrelated
when ρX,Y = 0.9 and ρY,Z = 0.9. In this case, it can be shown that the smallest
possible correlation between X and Z is 0.621. Thus, the set of correlations
ρX,Y = 0.9, ρY,Z = 0.9, and ρX,Z = 0.621 are consistent. From matrix algebra, a
correlation matrix is internally consistent if it is nonnegative definite.∗

This concludes the discussion on analytically deriving correlations using
the algebra of random variables. Shown in Example 9.2, the Mellin transform
is a convenient technique when it is necessary to compute moments of ran-
dom variables raised to integer and noninteger powers. Refer to Covert (2013)
for further examples of analytically derived correlation coefficients for cost
estimating relationships and the use of Mellin transforms for this purpose.

9.3.3 Using Monte Carlo Simulation

Monte Carlo simulation is another way to tease out correlations between
random variables of interest. It is a convenient method to employ when
WBS cost element equations are too complex, or intricate, in their functional
relationships to analytically derive correlations of interest. The antenna cost
estimating relationship in Example 9.2 is used to show the application of
Monte Carlo simulation for this purpose.

Let Y = 34.36X0.5
1 X0.8

2 ε as defined by Equation 9.13. Suppose Y was pro-
grammed into an Excel spreadsheet and a Monte Carlo simulation was
run within that application. Suppose the simulation generated 10,000 sam-
ple values of Y, for each randomly drawn value of X1, X2, and ε from
their probability distributions in Figure 9.7. Figure 9.8 shows the simulation
results.

In Figure 9.8, the table on the left lists outcomes of the first 20 trials from a
10,000 trial Monte Carlo simulation. Correlations between variables can then
be derived from the 10,000 sample values of Y, X1, X2, and ε. These correla-
tions are empirically determined rather than being analytically derived, as in

∗ This is a technical concept in matrix theory. In general, any real symmetric matrix is nonnega-
tive definite if and only if all of its eigenvalues are nonnegative. Eigenvalues ci are roots to the
determinant equation |A – cI| = 0, where A is an n by n matrix, I is the identity matrix, and c is
a scalar. Refer to Gentle (2007) for a further discussion on matrix algebra and its applications.
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10,000

1 716.0635 3.8597438 16.037734 1.152138609
2 665.89094 2.1035162 16.840955 1.395672944
3 471.22698 3.1512404 16.34593 0.826434629
4 352.30958 3.0802721 17.879527 0.581690456
5 719.12834 3.2249405 17.356313 1.188300871
6 844.77407 2.1880223 16.413226 1.772174089
7 745.41913 3.7210749 17.391141 1.144855604
8 698.75886 3.4622632 16.519926 1.159278187
9 702.53114 2.4212408 17.549093 1.327974382

10 666.79891 2.79625 16.941987 1.206374776
11 566.71725 2.7154908 16.236625 1.07644663
12 400.41521 3.431783 16.664714 0.662611851
13 591.91529 3.5340655 16.386318 0.978326911
14 582.83037 2.527662 17.18258 1.096626695
15 491.23833 3.1256018 17.877357 0.80524793
16 338.61037 2.1701524 16.80498 0.69992514
17 677.73691 2.2611489 17.685819 1.317477663
18 669.83565 3.6147271 17.355055 1.045530127
19 672.19718 2.5063492 17.97116 1.225354782
20 1029.2042 3.5760607 17.343243 1.616001296

Trial X1 X2 ε
A B C D

Pearson Pearson Pearson

0.316023336 0.087242181 0.941513844

Pearson Correlations Derived from the Monte Carlo Simulation

= Corr(A1:A10000, B1:B10000)

= Corr(A1:A10000, C1:C10000)

= Corr(A1:A10000, D1:D10000)
Empirical Correlations

First 20 trials from a 10,000 trial Monte Carlo simulation of

Corr(  , X1) Corr(  , X2) Corr(  , ε)

= 34.36X 1
0.5 X 2

0.8ε

FIGURE 9.8
Monte Carlo simulation of Y = 34.36X0.5

1 X0.8
2 ε.
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the preceding section. The right half of Figure 9.8 shows the empirical corre-
lations between Y and its pairings with X1, X2, and ε. They were computed
by the Excel Correl function. Observe how the empirical correlations compare
favorably with their analytically derived values, as summarized by matrix A
in Section 9.3.2. Differences between them are due to random errors endemic
in all simulations. From a practical view, such differences are negligible.

9.4 Summary

The importance of correlation as a critical consideration in cost uncertainty
analysis cannot be understated. Seen herein, and throughout the preceding
chapters, correlation can have a significant effect on the amount of cost risk
in programs. This chapter presented several approaches for capturing and
incorporating correlation in cost uncertainty analyses. Guidelines when one
approach is preferred over another were also offered. This chapter concludes
with key practice points as they relate to this topic.

Practice Point: Do not introduce rank correlation into cost uncertainty anal-
ysis. Rank correlation is not the technically correct correlation in the variance
of the sum of WBS element cost random variables. Furthermore, Pearson
product-moment correlations will already be captured in a Monte Carlo sim-
ulation if functional relationships between WBS element costs are defined.
Mixing Pearson product-moment correlations with rank correlations leads to
(1) double counting the effects of correlation on a program’s total cost risk
and (2) a simulation that produces results whose interpretation is unknown.

Practice Point: Monte Carlo simulations will automatically capture Pear-
son product-moment correlations that may be present between WBS element
costs by virtue of the way analysts define their equations (or relationships)
in a cost model. In practice, it is recommended that analysts express associ-
ations within the WBS through functional relationships (cost equations), as
illustrated throughout this book. This allows the Pearson correlations implied
by these relationships to be routinely captured in the overall analysis. Pearson
correlations that originate from logically defined functional relationships in
a WBS are more likely to be accepted in cost reviews than debating the merits
of those assigned by subjective assessments.

Practice Point: If analysts need to assign values to correlations not auto-
matically captured in a Monte Carlo simulation, then do so in accordance
with the guidelines presented throughout this chapter. Realize that certain
types of probability distributions cannot be positively correlated at the max-
imum value of 1 or negatively correlated at the minimum value of −1 in
the correlation interval −1 ≤ ρ ≤ 1. Therefore, caution is needed to avoid
assigning an impermissible correlation between the costs of WBS elements.
For instance, recall that the correlation coefficient of the bivariate lognormal
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distribution is bounded by the interval −e−1 < ρ < 1. In addition, all pairwise
correlations in an analysis must be internally consistent. From matrix algebra,
a correlation matrix is internally consistent if it is nonnegative definite.

Exercises

9.1 In Example 9.2, the cost of an antenna Y was given by the cost estimating
relationship Y = 34.36X0.5

1 X0.8
2 ε. (a) Given that X1, X2, and ε are inde-

pendent random variables with probability density functions shown in
Figure 9.7, derive ρY,X2 and ρY,ε. (b) Compare these analytically derived
results with their values determined empirically by the Monte Carlo
simulation shown in Figure 9.8.

9.2 Section 9.3.3 demonstrated the efficacy of using Monte Carlo simula-
tion as a way to empirically determine correlations between random
variables, rather than deriving them through an analytical approach as
shown by the Mellin transform. From a practical perspective, time may
be such that empirically derived correlations will suffice in a given situa-
tion. (a) Recognizing this, build your own Monte Carlo simulation of the
problem in Example 9.2 and use it to empirically determine ρY,X1 , ρY,X2 ,
and ρY,ε. (b) Compare your results with those shown in Figure 9.8.

9.3 In Example 9.2, the correlation matrix of Y is given by matrix A as fol-
lows. Show that the entries along the diagonal of this matrix will always
equal one.

Y X1 X2 ε⎛
⎜⎜⎝

1 0.3065 0.0854 0.9430
0.3065 1 0 0
0.0854 0 1 0
0.9430 0 0 1

⎞
⎟⎟⎠

Y
A = X1

X2
ε

9.4 Given that X1, X2, and ε are independent random variables with proba-
bility density functions shown in Figure 9.7, show that the cost estimating
relationship Y = X1X2ε has the following correlation matrix A.

Y X1 X2 ε⎛
⎜⎜⎝

1 0.5303 0.0936 0.8267
0.5303 1 0 0
0.0936 0 1 0
0.8267 0 0 1

⎞
⎟⎟⎠

Y
A = X1

X2
ε

9.5 Figure 9.4 jointly portrays the extent of overestimating or underestimat-
ing a program’s total cost risk, if assuming an initial correlation ρ0 in
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the interval 0 < ρ0 < 1 when the actual correlation is ρ, where 0 < ρ< 1
and ρ0 �= ρ. Figure 9.4a and b illustrated these outcomes for ρ0 = 0.3 and
ρ0 = 0.5, respectively.
a. Build a table of numerical values associated with the curves shown in

Figure 9.4a and b.
b. Extend this table to include ρ0 = 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9.
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10
Building Statistical Cost Estimating Models

All models are wrong, but some are useful.

George E.P. Box, Statistician (1919–2013)

The cost estimating and analysis community has a variety of models and
methods for generating point estimates of a program’s cost from its work
breakdown structure (WBS) elements. They include engineering build-up
techniques,∗ cost estimation by analogy, and parametric models. This chapter
focuses on parametric models and the use of statistical regression methods to
develop them.

10.1 Introduction

Statistical regression is a process for discovering relationships between a
dependent random variable Y and one or more independent random vari-
ables X1, X2, X3, . . . , Xn. Its purpose is to statistically predict or forecast a
value of Y from data observed or collected on values of X1, X2, X3, . . . , Xn. In
the cost estimating and analysis community, models derived by this process
are considered parametric in that predictions about Y are made as a function
of one or more observations about X1, X2, X3, . . . , Xn.

Advances in computing technologies and mathematical methods have
made regression a desirable approach for building statistical cost estimating
models. They are often used to generate statistically-based point estimates of
various WBS cost elements and probability distributions around them. This
chapter describes classical statistical regression techniques and presents the
general error regression method (GERM)—a major advance in practice and
technique.

The most important aspect of a statistical cost estimation model is the his-
torical (observed) data upon which it is built. Knowing the pedigree of these
data is of paramount importance. There are many considerations in this part
of the model building process; they include the following:

Cost Data Collection: The first type of data to collect is historical cost
data, which is easier said than done. Ideally, historical costs are available

∗ Also known as “grass-roots” or “bottom-up” estimation methods.

339



340 Probability Methods for Cost Uncertainty Analysis

within government or industry cost reports such as earned value and cost
performance reports. Examples of historical cost data collected on past U.S.
Department of Defense programs are described in Section 12.4.

Once data sources are located, it must then be decided what “costs” will be
collected. The most useful data to collect are the dollars charged to a project.
Materials and hours are useful data to collect, but this type of data must also
be accompanied by material prices and billing rates. Unit cost data are very
important to collect, especially in models designed to estimate costs of more
than one item, because they provide useful resources for calculating learning,
or cost improvement effects. If unit data cannot be collected, then lot cost
or average unit cost data and the range of units (e.g., the first and last unit
numbers) to which they pertain should be collected.

Cost Data Normalization: The data used to create the cost model must
be normalized to reflect consistent WBS definitions and scope, the appropri-
ate fiscal year, and correct procurement quantity. The three broad areas of
normalization are quantity, inflation, and content.

Normalization for quantity ensures comparing the same type of cost,
whether it is at the total, lot, or unit level. The most common method of
normalizing for quantity is through the use of cost improvement or learning
curves. The classical technique is to normalize all data points to the theoretical
first unit cost using either unit theory or cumulative average theory learning
curves (Book and Burgess 1996). This is discussed in Chapter 11.

Normalization for inflation is needed to express all collected cost data in
consistent dollar terms, called base year dollars (BY$). Historical cost data
comes in many forms. Sometimes they are reported in constant fiscal year
dollars (FY$) or across differing fiscal years. Cost data can be given in terms
of the sum of expenditures. Nonetheless, they must all be transformed into
consistent dollar terms before they are used to build a statistical cost estima-
tion model. A recommended practice is to normalize cost data to constant
fiscal year (FY) dollars. For example, when each data point is normalized to
FYXX$, then results predicted by the cost model will also be in FYXX$.

Normalization for content requires a mapping of different WBS cost ele-
ment definitions into a consistent WBS dictionary for the model. This step is
required to ensure that different programs with different WBS cost element
definitions are represented correctly in the model.

Cost Driver Determination: Collecting data on technical and program-
matic independent variables (the input parameters to a model) that drive cost
is as important as collecting the cost data itself. For example, cost drivers for
a solar array might be the array material, power generating efficiency, and
the solar array area. Other examples of cost drivers are weight of a payload,
the amount of software to develop, and schedule. Care is needed when spec-
ifying or identifying too many cost drivers for a model. Doing so affects the
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number of degrees of freedom∗ for a model, which can affect the accuracy of
its forecasts or predictions.

Correlations: Plotting each cost driver (each independent variable) against
cost (the dependent or prediction variable) and computing their correlation
aids in identifying which driver (or drivers) will most influence the predicted
cost. However, a strong correlation does not alone indicate the superiority of a
cost driver. A cost driver that is strongly correlated with cost could be a proxy
for a better driver. If the dataset is small, then strong correlations could give
false positives concerning the predictive merit of the cost driver.

Correlation considerations should be investigated before decisions are
made on the choice of cost drivers for a model. An important factor to
consider is the correlation between candidate cost drivers. When modeling
cost as a dependent variable, the cost drivers are the independent vari-
ables. This ideally means the cost drivers must satisfy the rules of statistical
independence (Chapter 5).

10.2 Classical Statistical Regression

This section introduces classical regression methods and how they are used
to build cost estimating relationships (CERs).† In the cost estimating and
analysis community, CERs are expressed in various algebraic forms as
illustrated here:

• Single variable linear: f (x1) = a + bx1, f (x1) = bx1

• Single variable nonlinear: f (x1) = a + bxc
1, f (x1) = bxc

1, f (x1) = abx1

• Multivariable linear and nonlinear: f (x1, x2)= ax1 + bx2, f (x1, x2, x3) =
axb

1xc
2xd

3

These expressions use the following notation: f is the estimated cost of an
item or WBS element; x1, x2, and x3 are independent variables that drive the
estimated cost; a, b, c, and d are constants derived from a regression analysis.
CERs can be a function of multiple independent variables, as shown by the
last algebraic form. Building statistical cost estimating models with multiple
independent variables (i.e., multiple cost drivers) is also discussed herein.

∗ This term refers to the number of independent variables minus the number of coefficients used
to specify a statistical model.

† In this chapter, the terms cost estimating relationship and statistical cost estimation model are
synonymous.
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To begin, the following presents the classical ordinary least squares (OLS)
regression method.

10.2.1 Ordinary Least Squares Regression

Dating back centuries, the method of least squares was originally devel-
oped to find a function that best fits a set of observations. The phrase “best
fit” refers to the function that minimizes the sum of the squared differences
between the data observed and the data estimated by the function.

There are a variety of least squares methods that go by an assortment of
names, many of which mean the same. There are linear and nonlinear least
squares methods. Linear least squares methods find the equation of a line that
best fits a set of observations. The simplest form of this method is called ordi-
nary least squares (OLS). Nonlinear least squares methods find the equation
of a curve that best fits a set of observations.

There is a great deal of scholarship on the mathematics of least squares
methods, with numerous books on the topic available to readers.∗ Given
this, the purpose of this section is to provide a light introduction to linear
OLS and how it applies in building statistical CERs. This provides the needed
background and context for the GERM, the main theme of this chapter.

We begin with the following. Define n as the number of observations con-
tained in a dataset, with xi as the value of the ith independent variable (the
cost driver parameter) for each observation (i = 1, . . . , n) and yi as the value of
the dependent variable (its observed value) associated with each xi. OLS lin-
ear regression involves finding constants a and b such that best fits a dataset
of observations (xi, yi) for i = 1, . . . , n. OLS linear regression assumes an addi-
tive error form, where error εi is the difference between the observed value
yi and its estimated value produced by f (xi). This is given by Equation 10.1.

εi = f (xi) − yi for (i = 1, 2, . . . , n) (10.1)

where f (xi) = a+bxi. The objective is to find numerical values for a and b that
minimize the standard error of the estimate SEE given by Equation 10.2.†

SEE =
√√√√ 1

n − 2

n∑
i=1

(f (xi) − yi)
2 (10.2)

The solution to this minimization problem is given by Theorem 10.1.

∗ See Larsen and Marx (2001).
† Equation 10.2 is called the adjusted SEE. It applies when using linear OLS to fit f (x) = a + bx

to a dataset of observations.
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Theorem 10.1 If a dataset contains n points (xi, yi) for i = 1, . . . , n, then the line
f (x) = a + bx that minimizes Equation 10.2 is defined by

a =
∑

yi − b
∑

xi

n

b = n
∑

xiyi − (∑
xi

) (∑
yi

)
n

∑
x2

i − (∑
xi

)2

(10.3)

The proof of this theorem is widely available∗ and left for the reader to study.
How well the equation of the line determined from Theorem 10.1 fits a dataset
can be assessed by the following quality measures.

Standard Error: Equation 10.2 is the adjusted SEE associated with finding
a and b such that the regression model f (x) = a + bx is the optimal linear fit
to a dataset of observations. The SEE is the root-mean-square of all additive
errors when estimating the observed data with the regression model.

Bias: Bias is a measure of all positive and negative errors made in esti-
mating the observed data with the regression model. It reflects how well the
model fits the observations and whether it has a tendency to overestimate or
underestimate these data. Bias is measured by Equation 10.4. In this form, it is
called the sample bias of the regression model f (xi) with respect to the observed
values yi.

Bias = 1
n

n∑
i=1

(f (xi) − yi) (10.4)

Pearson’s Correlation Squared: R2 is a measure that expresses the good-
ness of fit between the observed values in a dataset and the estimated values
of these data from the linear regression model. R2 can be computed by
Equation 10.5

R2 = 1 −
∑n

i=1 ε
2
i∑n

i=1(yi − ȳ)2 (10.5)

where ȳ is the arithmetic average of the observed values yi. Equation 10.5 is
sometimes referred to as the coefficient of determination. As a goodness of fit
measure, it represents the proportion of the total variability in the dataset that
is explained by the linear OLS model. For linear models of the form f (x) =
a + bx, R2 is the same as the square of the correlation between the observed
values of yi and its estimated value produced by f (xi).

∗ See Larsen and Marx (2001).



344 Probability Methods for Cost Uncertainty Analysis

R2 is a measure that falls between 0 and 1, inclusively. If εi = 0 for all
i = 1, . . . , n then the OLS linear model explains 100% (R2 = 1) of the total
variability in the dataset. Here, the linear model is a perfect fit to the data. If
R2 = 0, then the observed values of yi cannot be predicted by the OLS linear
model—the model is unsuited as a statistical prediction tool. Thus, the closer
R2 is to 1, the better the linear model’s fit to the data.

Example 10.1 Use OLS to find the parameters a and b of the CER given by
f (x) = a + bx that best fits the dataset in Table 10.1.

Solution Theorem 10.1 is used to find the equation of the line f (x) = a+bx
that minimizes the sum of squared errors given by Equation 10.2. The
dataset contains i = 1, . . . , n = 7 observations from programs that tracked
cost y (in dollar units) as a function of the number of staff x on a team. In
this case, xi is the value of the ith independent variable and yi is the value
of the dependent variable associated with each xi.

From Theorem 10.1, the parameters a and b that best fit f (x) = a + bx
to these data are computed by

a =
∑

yi − b
∑

xi

n
and b = n

∑
xiyi − (∑

xi
) (∑

yi
)

n
∑

x2
i − (∑

xi
)2

Substituting the values for xi and yi from the dataset into the formulas
for a and b yields a = −3.207 and b = 0.9692. Thus, the CER given by
f (x) = a + bx that best fits the dataset is

f (x) = −3.207 + 0.9692x (10.6)

Figure 10.1 is a scatterplot of the dataset and the CER given by
Equation 10.6. The observed data is shown by the dark circles in
Figure 10.1a and b. Estimates of the observed data generated by the CER
are shown by the open circles in Figure 10.1b. The solid line is a plot of
the CER through those points.

TABLE 10.1

Example 10.1 Dataset

Program Number Number of Staff, x Observed Cost, y

1 7.9 1.380
2 8.2 3.395

3 9.8 7.201
4 11.5 10.900
5 16.4 15.434

6 19.7 16.074
7 23.6 17.274
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CER: f (x) = –3.207 + 0.9692x

FIGURE 10.1
Example 10.1 scatterplot of observations and linear model fit. (a) Observed data. (b) Linear
Model Fit.

A number of observations and statistical measures can be made about
the goodness of the linear model’s fit to this dataset. For instance, the scat-
terplot in Figure 10.1a reveals a nonlinear trend instead of a linear trend
in the data. Although the OLS linear regression found the equation of the
line that minimizes the sum of squared errors between these observations
and the model’s predicted values, from Equation 10.5, the R2 measure is
only 0.86. This means the model given by Equation 10.6 explains only 86%
of the total variability in the dataset, with the remaining 14% unexplained.
Table 10.2 summarizes these and other derived statistical measures.
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TABLE 10.2

Example 10.1 CER f (x) and its Quality Measures

Program Number of Observed Estimated Cost, Additive

Number Staff, x Cost, y Regression Model Error

1 7.9 1.380 4.449 3.069

2 8.2 3.395 4.740 1.345
3 9.8 7.201 6.291 −0.910
4 11.5 10.900 7.938 −2.962

5 16.4 15.434 12.688 −2.746
6 19.7 16.074 15.886 −0.188

7 23.6 17.274 19.666 2.392
Theorem 10.1: OLS Derived Values Model Quality Measures

a = −3.207 SEE = 2.613

b = 0.9692 Bias = 0.000
R2 = 0.861

Shown in Table 10.2, the SEE (from Equation 10.2) is equal to 2.613
(dollar units). In linear OLS, the SEE is an additive error bound on the
regression model. From Equation 10.4, the bias measure is exactly zero.
This reflects a mathematical property of linear OLS; that is, when fitting
the function f (x) = a + bx to a dataset by OLS, the sum of the additive
errors (also called the sum of the residuals) will always equal zero. This
implies the bias quality measure, when derived by the linear OLS method,
will always equal zero.

Figure 10.2 shows dotted lines above and below the solid line given
by the CER f (x). They represent one standard error (±2.613 dollar units)
above and below the values of y predicted by f (x). The diamond shown
is the coordinate (x̄, ȳ). This point is the average of the observed values of
x and y (in Table 10.1). In linear OLS, the regression model f (x) = a + bx
will always pass through this point.

This concludes the Example 10.1 solution discussion; however, the
dataset in this example will be revisited in Example 10.3. A closer look
at the nonlinear shape of the scatterplot in Figure 10.1 will be presented
and the GERM will find a nonlinear CER model of this dataset.

Some Algebraic Properties of Linear OLS: In general, the sum of the addi-
tive errors (the sum of the residuals) is equal to zero when linear OLS is used
to build models of the form f (x) = a + bx. As mentioned earlier, this means
the bias measure will equal zero as demonstrated in Table 10.2. The average
of the observed values of y will equal the average of their estimated values
produced by the linear regression model; for example, in Table 10.2 the aver-
ages of the data in columns three and four (from the left) are equal. Hence, the
linear regression model formed by OLS will always pass through the mean of



Building Statistical Cost Estimating Models 347

0

5

10

15

20

25

5 10 15 20 25

(x, y)

x

y
Co

st
 (D

ep
en

de
nt

 V
ar

ia
bl

e)

Number of Staff (Independent Variable)

FIGURE 10.2
Example 10.1 dataset and scatterplot of observations.

the dataset, indicated by the coordinate (x̄, ȳ). These are just a few of the many
interesting and useful properties of linear OLS. The reader is encouraged to
study Larsen and Marx (2001) for a further discussion about the statistical
and algebraic properties of this regression method.

10.2.2 Nonlinear Ordinary Least Squares Regression

As mentioned earlier, there are linear and nonlinear least squares methods.
The preceding discussion introduced OLS as a method for finding the equa-
tion of a line that best fits a set of observations. However, a line might not truly
characterize the trend of the observations when visualized in a graphical way.
Regression errors minimized to a line can still be large relative to regression
errors minimized to a curve. In many cases, a curve is a better choice with
which to build a regression model. To address these circumstances, nonlinear
OLS methods are available. A popular nonlinear OLS technique is logarith-
mic OLS (LOLS). The following introduces LOLS and presents considerations
when applying it to the development of statistical CERs.

The idea behind LOLS is to logarithmically transform a nonlinear equa-
tion to a linear form, from which linear OLS methods are applied to find
the parameters of the regression model. For example, consider the dataset
of observations in Table 10.1. The scatterplot of these data, shown in
Figure 10.1a, suggests fitting them with a nonlinear CER such as f (x)= axb.
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To apply LOLS, the log transform of f (x)= axb is determined. This results in
the expression

log f (x) = log(axb) = A + b log x (10.7)

where A = log a or equivalently a = 10A. Equation 10.7 is now a linear equa-
tion defined in logarithmic space or “log-space” (log x, log y) instead to being
in arithmetic space (x, y). In LOLS, the objective is to find numerical values
for A and b that minimizes the log-space standard error of the estimate LSEE,
where

LSEE =
√√√√ 1

n − 2

n∑
i=1

(log f (xi) − log yi)
2 (10.8)

The solution to this minimization problem is given by Theorem 10.2, which
is a variant of Theorem 10.1.

Theorem 10.2 Suppose a dataset contains n points (xi, yi) for i = 1, . . . , n.
The log-linear equation log f (x)= A + b log x that minimizes Equation 10.8 is
defined by

A =
∑

log yi − b
∑

log xi

n
(10.9)

b = n
∑

log xi log yi − (∑
log xi

) (∑
log yi

)
n

∑
(log xi)

2 − (∑
log xi

)2 (10.10)

When Theorem 10.2 is applied to the dataset in Table 10.1, it follows that
A = −1.218 and b = 1.901. Therefore, from Equation 10.7

log f (x) = −1.218 + (1.901) log x (10.11)

in log-space, or equivalently

f (x) = 0.0605x1.901 (10.12)

in arithmetic space. Equation 10.11 is the log-linear CER regression model.
Equation 10.12 is the nonlinear CER regression model.
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Figure 10.3 shows a scatterplot of the dataset of observations in Table 10.1,
along with the CER in log-space (Equation 10.11) and in arithmetic space
(Equation 10.12). In Figure 10.3a and b, the observed data are shown by the
dark circles. Estimates of the observed data generated by the CER are shown
by the open circles. In Figure 10.3a, the line is a graph of the estimates of
the observed data generated by the CER in log-space. In Figure 10.3b, the
curve is a graph of the estimates of the observed data generated by the CER
in arithmetic-space. The scatterplot suggests these data follow a nonlinear

0.0

0.3

0.6

0.9

1.2

1.5

0.8

(a)

(b)

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Logarithm of the Number of Staff

(Independent Variable)

Lo
ga

rit
hm

 o
f C

os
t (

D
ep

en
de

nt
 V

ar
ia

bl
e)

Log-Space

log x

log y

CER: log f (x) = –1.218 + (1.901)log x

CER: f (x) = 0.0605 x1.901

0

5

10

15

20

25

5 10 15 20 25

Co
st

 (D
ep

en
de

nt
 V

ar
ia

bl
e)

Arithmetic-Space

x

y

Number of Staff
(Independent Variable)

FIGURE 10.3
Log linear OLS regression of f (x) = axb on the Table 10.1 dataset. (a) Log space. (b) Arithmetic
space.
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model; however, the CER in Figure 10.3a or b does not appear to be a good
fit in log-space or in arithmetic space.

In Figure 10.3a, the CER is a linear model, in log-space, of observations
that follow a nonlinear trend in log-space. It can be shown that the square
of the correlation R2 between the observed values and their estimated values
produced by the CER, in log-space, is 0.756. The CER has a log-space standard
error LSEE equal to 0.2236, which, with respect to the dataset in Table 10.1, is
in logarithmic dollar units.

In Figure 10.3b, the CER is a nonlinear model, in arithmetic-space, of obser-
vations that follow a nonlinear trend in arithmetic-space. It can be shown that
the square of the correlation R2 between the observed values and their esti-
mated values produced by the CER, in arithmetic-space, is 0.776. Moreover,
in Figure 10.3b, the CER is a convex function that is opposite to the concave
trend of these data.∗ The CER has an arithmetic-space standard error SEE
equal to 4.4, which, with respect to the dataset in Table 10.1, is in dollar units.

Despite the nonlinearity of the observations in Figure 10.3, the CER f (x) =
−3.207 + 0.9692x (Equation 10.6) developed by linear OLS has better good-
ness of fit statistics than the CER developed by logarithmic OLS shown in
Figure 10.3a and b. Still, the regression errors minimized to the CER given by
the line f (x) = −3.207 + 0.9692x might be large relative to regression errors
minimized to a curve. The question is “what curve” has regression errors less
than those of a line? Unfortunately, as shown earlier, LOLS will not always
find a curve that satisfies this question. Moreover, LOLS is restricted to non-
linear forms where the properties of logarithms enables their nonlinearity to
be transformed into log-linearity.

Issues with Logarithmic Ordinary Least Squares: In general, building
statistical cost estimating models by the method of LOLS is an undesirable
approach. There are mathematical and practical considerations that make
LOLS problematic as a tool for regression analysis of cost data. The following
discusses these considerations and offers alternative approaches.

• A log-space CER developed by LOLS does not estimate cost—it esti-
mates the logarithm of cost. The LOLS process minimizes error if
the goal was to estimate log cost, but the logarithm of cost is not a
meaningful measure.

• In LOLS, the error term ε of the nonlinear model f (x) = axb must
be multiplicative and not additive; that is, it must be of the form
f (x) = axbε and not f (x) = axb + ε. In the latter, the additive error
prohibits transforming f (x) into a log-linear form where linear OLS

∗ A real-valued function f (x) that is differentiable and defined on an interval I is convex when
any line segment joining two points on its graph lies above the graph. It is concave when any
line segment joining two points on its graph lies below the graph.
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could be used to find the parameters a and b that minimizes the
log-space standard error.

Figure 10.4 is a scatterplot of observations that exhibit additive
error and multiplicative error trends. In practice, it is always best
to visually examine a dataset (when possible) for its error profile
before considering the regression approach and candidate linear or
nonlinear model forms.

• Nonlinear CERs derived by LOLS must have standard errors
expressible as a percentage of the estimate, while linear CERs derived
by OLS must have standard errors expressed as plus/minus dollar
values. Thus, LOLS cannot handle situations where a cost analyst
needs a linear CER with a multiplicative error or a nonlinear CER
with an additive error.

• Any CER developed using LOLS regression must pass through the
origin of the graph. That is, even if the data collected does not appear
to have a best fit line that passes through the point (0, 0) on a graph,
it is constrained as such by the properties of the log-linear model.
Furthermore, nonlinear CERs whose coefficients are derived by
LOLS must have fixed-cost equal to zero, while linear CERs whose
coefficients are derived by OLS are permitted to have nonzero fixed-
cost terms.∗

x

y

x

y

Additive Error
Multiplicative Error

0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8 10
0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8 10

FIGURE 10.4
Observations exhibiting additive or multiplicative error trends. (From Eskew, H.L. and Lawler,
K.S., J. Cost Anal., Spring, 105, 1994.)

∗ In a CER, a fixed cost term is a constant that captures the cost incurred regardless of the numer-
ical value of the independent variable(s) that drive cost (e.g., power, weight). Fixed cost is often
associated with the start-up cost of development or production.
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In the eighteenth and early nineteenth centuries, LOLS regression was
considered the best (and, in fact, the only) method for fitting nonlinear alge-
braic relationships to a dataset of observations. No other option was available
200 years ago. Today, advances in computing technology and statistical opti-
mization provide alternatives that are free of the shortcomings of LOLS.
The latest advance in statistical regression techniques is called the general
error regression method (GERM). GERM eliminates all the mentioned concerns
with LOLS regression. GERM derives functional relationships having opti-
mal (unbiased and minimum possible) error of estimation, while allowing the
analyst to choose to minimize additive error or multiplicative error regard-
less of whether the functional relationship is best expressed by a linear or a
nonlinear equation.

10.3 General Error Regression Method

Ordinary least squares regression, either linear or nonlinear, has been applied
in the past to historical cost data to derive CERs. A fundamental assumption
of OLS regression is that the error model upon which it is based be additive.
More precisely, each observed value of cost is assumed to be a function of
cost driving parameters (independent variables) plus a random error term
that does not depend on the parameters. Unfortunately, this assumption is
often invalid.

A case in point is where the values of observed (“actual”) costs in a dataset
change by an order of magnitude or more as a function of the cost driving
parameters. Here, the random error is more realistically considered to be pro-
portional to the magnitude of the cost, thereby effectively depending on the
parameters. In this situation, it is often more realistic to assume a multiplica-
tive error model than an additive error model. In past, this has been dealt
with by taking logarithms of both sides of the model form and then applying
additive-error linear regression. However, there are a number of difficulties
in working with logarithmic transformations, in particular, the meaning of
log-dollars when building a statistical CER.

The logarithmic transformation procedure also unnecessarily binds one
to a specific class of regression equation forms. It is far from clear that the
appropriate forecasting error is the one that is being minimized. Further-
more, use of OLS regression sometimes produces a curve fit that favors data
points with large observed values. This is because an additive error model
attempts to minimize the sum of squared deviations from all observed data
points. This can give data points with large values the opportunity to per-
haps unduly influence the determination of the “best fitting” curve. Use of



Building Statistical Cost Estimating Models 353

the multiplicative error model will reduce the influence of large data values
in a dataset.

GERM∗ is a new, general least squares approach that can treat additive and
multiplicative error models. By examining the historical data, GERM allows
the analyst to decide whether an additive or multiplicative error regression
model is best. This flexibility allows one to select an appropriate functional
form for the regression, independently of the choice of error model. In the
past, linear OLS regression involved an additive error model, while non-
linear forms (if they could be handled at all) required the assumption of a
multiplicative error model. GERM allows the functional form to be chosen
independently of the error probability distribution. Furthermore, the choice
of the functional form of a CER developed through GERM is essentially
unrestricted.

GERM derives functional relationships having optimal unbiased and min-
imum possible error of estimation, while allowing the analyst to choose to
minimize additive error or multiplicative error regardless of whether the
functional relationship is best expressed by a linear or a nonlinear equation.
Thus, previously unavailable functional relationships can now be fit to the
observed or collected data, such as f (x) = a + bxc or f (x) = a + bxc + dx

functions.
In GERM, n is defined as the number of observations contained in the

dataset, xi as the value of the ith independent variable (the cost driver param-
eter) for each observation (i = 1, . . . , n), yi as the value of the dependent
variable (its observed value) associated with each xi, and m as the number of
constants† specified in the form of the CER or regression model (with m < n).
Define the degrees of freedom for the CER or regression model as n − m.

GERM refers to the regression method where estimates of parameter
values of a functional relationship are derived through constrained opti-
mization. GERM derives these parameters without relying on assumptions
about the nature of the error distribution. There are two varieties of GERM
models—those with additive errors and those with multiplicative errors. The
following discusses each of these models.

10.3.1 Additive Error Form

This section presents the additive error form of GERM. The three measures
of CER statistical quality reported are as follows:

∗ GERM was developed during the period 1994–1998 by S.A. Book, P.H. Young, and N.Y. Lao.
The reader is directed to the following references for further information: Book and Lao 1998,
Book and Young 1997, Young 1999.

† This is the number of constant coefficients in the form of the CER plus the number of constants
that appear in any exponents.
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Standard Error: The standard error of the estimate is the root-mean-square
of all additive errors when estimating the observed data with the regression
model. This is the minimization objective in the additive form of GERM.

Bias: Bias is the algebraic sum of the errors (positive and negative values)
made in estimating the observed data with the regression model, averaged
over the number of observations. In the additive error form of GERM, the
bias is constrained to be zero.

Pearson’s Correlation Squared: In GERM, this measure is the square of
the correlation between the observed values of the dependent variable and the
estimated values of the dependent variable generated by the regression model.
In GERM, the closer this measure is to 1, the better the fit of the regression
model to these values. In GERM, Pearson’s correlation squared is computed
this way for linear or nonlinear regression model forms.

In the additive form of GERM, error εi is the difference between the
observed value yi and its estimated value f (xi) computed from the derived
regression function. This is given by Equation 10.13.

εi = f (xi) − yi for (i = 1, 2, . . . , n) (10.13)

The objective is to find values of the constants that define the algebraic form
chosen for f (x) that minimizes the standard error of the estimate SEE, given
by Equation 10.14∗ for the additive GERM,

SEE =
√√√√ 1

n − m

n∑
i=1

ε2
i =

√√√√ 1
n − m

n∑
i=1

(f (xi) − yi)
2 (10.14)

subject to the constraint that the bias is zero, as given by Equation 10.15

Bias = 1
n

n∑
i=1

(f (xi) − yi) = 0 (10.15)

In the additive error form of GERM, this procedure is called minimum-error
regression under a zero-bias constraint or the ZME (“zimmy”) technique
(Book and Lao 1998). ZME was developed to yield CERs guaranteed to
have the minimum possible error among all unbiased CERs with the cho-
sen algebraic form. ZME CERs are derived using an operations research
method known as constrained optimization, a numerical analysis method
which searches for the constants of the CER that minimizes the standard
error (Equation 10.14) under the zero bias constraint (Equation 10.15). Today’s

∗ Equation 10.14 is called the adjusted SEE for GERM in its additive error form.
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advanced computing technology∗ has greatly facilitated solutions to this
problem and the subsequent use of GERM by the cost estimating and analysis
community.

The additive error form of GERM has probabilistic structure Yi = f (Xi) +
εi where Yi and Xi are random variables and εi is a random error such
that E(εi) = 0 and Var(εi) is a constant additive-error dispersion around
E(εi). In GERM, the nature of the underlying error probability distribution
is unimportant—unlike least squares regression where the error must be
assumed to have a normal probability distribution.

Example 10.2 Consider the dataset in Table 10.3. Use the GERM ZME
technique to find a pair of values for a and b such that f (x) = a + bx has
minimum-error under a zero bias constraint.

Solution GERM ZME implies using the additive error form. Table 10.3
shows the dataset of n = 10 observations. An Excel model is built and the
Excel Solver add-in is used to run the ZME optimization (minimization in
GERM). Table 10.4 shows the setup for this analysis. Table 10.4 contains
the dataset and the degrees of freedom for this model, which was given as
f (x) = a+bx. The columns labeled “Estimated Hours, Regression Model,”
“Additive Error,” and “Model Quality Measures” are computed from the
starter values shown for a and b.

Starter values are the initial conditions chosen by the analyst to stim-
ulate the optimization routine in Excel Solver. The lower right corner of

TABLE 10.3

Example 10.2 Dataset

Program Number of Observed

Number Requirements, x Hours, y

1 73 1445
2 128 2448

3 92 2052
4 329 7121

5 217 3929
6 64 1683
7 192 3705

8 201 4226
9 256 5141

10 171 3156

Source: Larsen, R. and Marx, M. 2001. An Introduction to
Mathematical Statistics and Its Applications, 3rd edn.
Englewood Cliffs, NJ: Prentice-Hall, pp. 338–344.

∗ For example, Microsoft’s Excel Solver can be used to solve the optimization problem formu-
lated when applying GERM.
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TABLE 10.4

Example 10.2 Dataset and Analysis Setup

A B C D E

1 Number of Program Data Points n = 10 Regression Model Form

2 Number of Regression Constants m = 2
f (x) = a + bx

3 Degrees of Freedom n − m = 8
4 Program Number of Observed Estimated Hours, Additive

Number Requirements, x Hours, y Regression Model Error

5 1 73 1445 148.0 −1297.0
6 2 128 2448 258.0 −2190.0

7 3 92 2052 186.0 −1866.0
8 4 329 7121 660.0 −6461.0

9 5 217 3929 436.0 −3493.0
10 6 64 1683 130.0 −1553.0
11 7 192 3705 386.0 −3319.0

12 8 201 4226 404.0 −3822.0
13 9 256 5141 514.0 −4627.0

14 10 171 3156 344.0 −2812.0
15 Starter Values Model Quality Measures

16 a = 2 ≡ B16 SEE = 3893.2 ≡ E16
17 b = 2 ≡ B17 Bias = −3144.0 ≡ E17
18 R2 = 0.9712

Table 10.4 shows the derived statistics for the three quality measures for
the additive form of GERM. In Table 10.4, they are computed from the
starter values for a and b. Figure 10.5 shows the Excel Solver window
and the features selected to run the ZME optimization for the data in
Table 10.4. The optimization algorithm begins with the starter values
shown for a and b and iterates numerically until the search algorithm
converges to a solution. The optimization results are shown in Table 10.5.

In this example, Solver found the minimum-error under a zero bias
constraint occurs for a =−2.056 and b = 20.2708, as shown in Table 10.5.
Solver generated this by the GRG algorithm.∗ Thus, the regression model
with the statistical quality measures shown in Table 10.5 is given by
Equation 10.16.

f (x) = a + bx = −2.056 + 20.2708x (10.16)

The model derived in Example 10.2 reflects a minimum-error regression
under a zero-bias constraint. Figure 10.6 plots this regression model versus
the observed data. The observed data is shown by the dark circles. Estimates

∗ The optimization method shown is the generalized reduced gradient algorithm, developed
by Leon Lasdon of the University of Texas at Austin and Allan Waren of Cleveland State
University.
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Minimize SEE
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GRG Nonlinear

FIGURE 10.5
Example 10.2 Excel Solver setup.

of the observed data generated by the regression model are shown by the
open circles, with the solid line being a plot of f (x) = a + bx = −2.056 +
20.2708x through those points. The quality measures for this model, shown
in Table 10.5, suggest Equation 10.16 is a good fit to this dataset.

In this example, ZME produced through an optimization process, the same
results that would be obtained by a linear OLS regression of f (x) = a + bx to
the dataset in Table 10.3. Showing this is an exercise for the reader.

10.3.2 Multiplicative Error Form

This section presents the multiplicative error form of GERM. Three measures
of CER statistical quality are reported. They are as follows.

Percentage Standard Error: The multiplicative error form of GERM
expresses the standard error of the estimate in percentage terms instead of
expressing it in dollar values. This provides practical benefits to cost ana-
lysts. The first is that expressing cost estimating error in percentage terms
offers stability of meaning across a wide range of programs, time periods,
and estimating situations.

A percentage error of, say, 30%, retains its meaning whether a $10,000
component or a $10,000,000,000 program is being estimated. A standard
error expressed in dollars, say, $59,425, is a large error when estimating a
$100,000 component, but is less significant when estimating a $10,000,000,000
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TABLE 10.5

Example 10.2 Solver Solution for a and b

A B C D E

1 Number of Program Data Points n = 10 Regression Model Form

2 Number of Regression Constants m = 2
f (x) = a + bx

3 Degrees of Freedom n − m = 8
4 Program Number of Observed Estimated Hours, Additive

Number Requirements, x Hours, y Regression Model Error

5 1 73 1445 1477.7 32.7
6 2 128 2448 2592.6 144.6

7 3 92 2052 1862.9 −189.1
8 4 329 7121 6667.0 −454.0

9 5 217 3929 4396.7 467.7
10 6 64 1683 1295.3 −387.7
11 7 192 3705 3889.9 184.9

12 8 201 4226 4072.4 −153.6
13 9 256 5141 5187.3 46.3

14 10 171 3156 3464.2 308.2
15 Solver Derived Values Model Quality Measures

16 a = −2.056 SEE = 313.8
17 b = 20.2708 Bias = 0.0
18 R2 = 0.9712
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FIGURE 10.6
Example 10.2 regression model versus the observed data.
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program. Regardless, a standard error expressed in dollars can make a CER
unusable at the low end of its data range, where relative magnitudes of the
estimate and its standard error can be inconsistent. Describing a CER in
terms of percentage standard error offers the additional benefit that linear
and nonlinear forms can be compared on the basis of quality.

In the early history of CER development, nonlinear CERs were derived by
taking logarithms of both sides of the equation f (x1) = axb

1. Classical linear
regression methods were then applied to the form log f (x1) = log a + b log x1.
Cost models developed during that age typically contained a mix of CERs,
some linear and some nonlinear, whose standard errors were as incommensu-
rable as apples and oranges. Standard errors of linear CERs were universally
expressed in dollars (“apples”), while standard errors of nonlinear CERs were
reported as percentages (“oranges”). It was difficult to compare the precision
of different candidate CER forms, let alone to combine the apples and oranges
to determine the error of the cost estimate of a total program. Using percent-
age standard error to measure the precision of all CER forms resolves this
inconsistency.

Percentage Bias: Percentage bias is the algebraic sum of the percentage
errors (positive and negative values) made in estimating the observed data
with the regression model, averaged over the number of observations. Thus,
percentage bias measures the net percentage error. In the multiplicative error
form of GERM, percentage bias is constrained to be zero.

Pearson’s Correlation Squared: In GERM, this measure is the square of
the correlation between the observed values of the dependent variable and the
estimated values of the dependent variable generated by the regression model.
In GERM, the closer this measure is to 1, the better the fit of the regression
model to these values. In GERM, Pearson’s correlation squared is computed
this way for linear or nonlinear regression model forms.

In the multiplicative form of GERM, error εi is the difference between the
estimated value f (xi) and the observed value yi divided by its estimated value
f (xi), where f (xi) is computed from the derived regression function. This is
given by Equation 10.17.

εi = f (xi) − yi

f (xi)
for (i = 1, 2, ..., n) (10.17)

The objective is to find values of the constants that define the algebraic form
chosen for f (x) that minimizes the standard error of the estimate SEE, given
by the following∗ for the multiplicative GERM:

SEE =
√√√√ 1

n − m

n∑
i=1

ε2
i =

√√√√ 1
n − m

n∑
i=1

(
f (xi) − yi

f (xi)

)2

(10.18)

∗ Equation 10.18 is called the adjusted SEE for GERM in its multiplicative error form.
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which is subjected to the constraint that the bias is zero, as given by
Equation 10.19

Percent Bias = 1
n

n∑
i=1

(
f (xi) − yi

f (xi)

)
= 0 (10.19)

In the multiplicative error form of GERM, this procedure is informally
called minimum-percentage error regression under a zero percentage bias
constraint or the ZMPE (“zimpy”) technique (Book and Lao 1998). ZMPE was
developed to yield CERs guaranteed to have the minimum possible percent-
age error among all unbiased CERs with the chosen algebraic form. ZMPE
CERs are derived using an operations research method known as constrained
optimization, a numerical analysis method that searches for the constants of
the CER that minimizes the percentage standard error (Equation 10.18) under
the zero percentage bias constraint (Equation 10.19).

The multiplicative error form of GERM has a probabilistic structure Yi =
f (Xi)εi, where Yi and Xi are random variables and εi is a random error such
that E(εi) = 1 and Var(εi) is a constant multiplicative-error dispersion around
E(εi) = 1. In GERM, the nature of the underlying error probability distribu-
tion is unimportant—unlike least squares regression where the error must be
assumed to have a normal probability distribution.

Example 10.3 Consider the scatterplot in Figure 10.1. Use GERM ZMPE to
find a set of values for a, b, and c such that the nonlinear function f (x) = a+ bxc

has minimum-percentage error under a zero percentage bias constraint.

Solution This example revisits Example 10.1, where the dataset evidenced
a nonlinear trend in the observations. This example illustrates how GERM
ZMPE can be used to find a nonlinear regression model to this dataset—
one that will minimize the percentage error under a zero percentage bias
constraint.

GERM ZMPE implies using the multiplicative error form. Table 10.1
shows the dataset of n = 7 observations that correspond to the points in
Figure 10.1. An Excel model is built and its Solver feature is used to run
the ZMPE optimization (minimization in GERM). Table 10.6 shows the
setup for this analysis.

Table 10.6 contains the dataset from Example 10.1 and the degrees of
freedom for this model, which is given as f (x) = a + bxc. The columns
labeled “Estimated Cost, Regression Model,” “Multiplicative Error,” and
“Model Quality Measures” are computed from the three starter values
shown for a, b, and c. As mentioned earlier, starter values are the initial
conditions chosen by the analyst to stimulate the optimization routine in
Excel Solver.

The lower right corner of Table 10.6 shows the derived statistics for the
three quality measures for the multiplicative form of GERM. In Table 10.6,
they are computed from the starter values for a, b, and c. Thus, they do not
represent the results from the optimization, which is shown in Table 10.7.
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TABLE 10.6

Example 10.3 Dataset and Analysis Setup

A B C D E

1 Number of Program Data Points n = 7 Regression Model Form

2 Number of Regression Constants m = 3
f (x) = a + bxc

3 Degrees of Freedom n − m = 4
4 Program Number of Observed Estimated Cost, Multiplicative

Number Staff, x Cost, y Regression Model Error

5 1 7.9 1.380 381.069 0.9964
6 2 8.2 3.395 386.356 0.9912

7 3 9.8 7.201 413.050 0.9826
8 4 11.5 10.900 439.116 0.9752

9 5 16.4 15.434 504.969 0.9694
10 6 19.7 16.074 543.847 0.9704
11 7 23.6 17.274 585.798 0.9705

12 Starter Values Model Quality Measures
13 a = 100 ≡ B13 SEE = 1.2957 ≡ E13

14 b = 100 ≡ B14 Bias = 0.9794 ≡ E14
15 c = 0.50 ≡ B15 R2 = 0.9026

TABLE 10.7

Example 10.3 Solver Solution for a and b

A B C D E

1 Number of Program Data Points n = 7 Regression Model Form

2 Number of Regression Constants m = 3
f (x) = a + bxc

3 Degrees of Freedom n − m = 4
4 Program Number of Observed Estimated Cost, Multiplicative

Number Staff, x Cost, y Regression Model Error
5 1 7.9 1.380 1.4767 0.0655
6 2 8.2 3.395 2.9241 −0.1610

7 3 9.8 7.201 8.2420 0.1263
8 4 11.5 10.900 11.3528 0.0399

9 5 16.4 15.434 15.0558 −0.0251
10 6 19.7 16.074 16.0030 −0.0044

11 7 23.6 17.274 16.5926 −0.0411
12 Solver Derived Values Model Quality Measures
13 a = 17.6149 SEE = 0.1119

14 b = −2957.696 Bias = 0.0000
15 c = −2.5212 R2 = 0.9919
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Minimize SEE
$E$13

$B$13:$B$15

Zero Bias Constraint

GRG Nonlinear

$E$14 = 0

Optimization search begins
from these initial starter values

Min

FIGURE 10.7
Example 10.3 Excel Solver setup.

Figure 10.7 shows the Excel Solver window and the features selected to
run the ZMPE optimization for the data in Table 10.6. The optimization
algorithm begins with the starter values shown for a, b, and c and iterates
numerically until the search algorithm converges to a solution.

Figure 10.8 is a plot of this regression model versus the observed
data. The observed data is shown by the dark circles. Estimates of the
observed data generated by the CER f (x) = 17.6149 − (2957.696)x−2.5212

are shown by the open circles. A visual inspection suggests this nonlin-
ear CER is a markedly improved fit to the dataset than the linear model
f (x) = −3.207 + 0.9692x derived in Example 10.1.

In addition, the quality measures in Table 10.7 quantifies the goodness
of the CER’s fit to this dataset. Derived under a zero bias constraint, the
standard error of the estimate for f (x) = 17.6149 − (2957.696)x−2.5212

comes to within ±11.2% of the observed costs in Table 10.7. This is
accompanied by a very high R2 of 0.992, measured as the square
of the correlation between the observed costs and the estimated costs
(shown in Table 10.7) generated by the CER f (x) = 17.6149 −
(2957.696)x−2.5212.

This example demonstrates the flexibility of GERM over OLS and LOLS. The
model form f (x) = a + bxc is not amenable to OLS because f (x) is a nonlin-
ear function, which requires a multiplicative (not additive) error. Recall that
OLS requires an additive error model. The model form f (x) = a + bxc is not
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FIGURE 10.8
Example 10.3 regression model versus the observed data.

amenable to LOLS because the log-transform of f (x) cannot be written in a
log-linear form; that is, log f (x) = log(a + bxc) cannot be expressed as a linear
sum of logarithms—a necessary condition for LOLS. However, the method
of general error regression found a set of values for parameters a, b, and c of
the model f (x) = a + bxc that has minimum-percentage error under a zero
percentage bias constraint.

Example 10.4 Consider the antenna cost dataset in Table 10.8. Use the GERM
ZMPE technique to find a set of values for a, b, and c such that the CER
f (x1, x2) = a + bxc

1xd
2 has minimum-percentage error under a zero percentage

bias constraint.

TABLE 10.8

Example 10.4 Antenna Historical Cost Dataset

Program Observed Diameter Observed Observed

Number (meters, m) x1 Frequency (GHz) x2 Cost ($K)

1 3 2 44.68
2 3 2 85.85

3 5 2 77.55
4 15 22 11,881.17

5 20 22 15,666.08
6 4 10 1242.96

7 3 12 2088.57
8 5 10 2438.03
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Solution GERM ZMPE implies using the multiplicative error form. Table
10.8 shows the dataset of n = 8 antenna program cost histories. An Excel
model is built and the Excel Solver add-in is used to run the ZMPE opti-
mization (minimization in GERM). Table 10.9 shows the setup for this
analysis.

In Table 10.9, the optimization algorithm begins with the starter values
shown for a, b, c, and d and iterates numerically until the search algorithm
converges to a solution. Table 10.9 contains the dataset from Example 10.4
and the degrees of freedom for this model.

The columns labeled “Estimated Cost, Regression Model,” “Multi-
plicative Error,” and “Model Quality Measures” are computed from the
starter values shown for a, b, c, and d. As mentioned earlier, starter values
are the initial conditions chosen by the user to stimulate the optimization
routine in Excel Solver.

The lower right corner of Table 10.9 shows the derived statistics
for the three quality measures for the multiplicative form of GERM.
In Table 10.9, they are computed from the starter values for a and b.
Thus, they do not represent the results from the optimization, which is
shown in Table 10.10. Figure 10.9 shows a three-dimensional plot of this
nonlinear CER.

TABLE 10.9

Example 10.4 Dataset and Analysis Setup

A B C D E F

1 Number of Program Data Points n = 8 Regression Model Form

2 Number of Regression Constants m = 4
f (x1, x2) = a + bxc

1xd
23 Degrees of Freedom n − m = 4

Estimated

Observed Cost,

4 Program Observed Frequency Observed Regression Multiplicative

Number Diameter (meters, m) x1 (GHz) x2 Cost ($K) Model Error

5 1 3 2 44.68 74.00 0.3962

6 2 3 2 85.85 74.00 −0.1601

7 3 5 2 77.55 202.00 0.6161

8 4 15 22 11,881.17 217,802.00 0.9454

9 5 20 22 15,666.08 387,202.00 0.9595

10 6 4 10 1242.96 3202.00 0.6118

11 7 3 12 2088.57 2594.00 0.1948

12 8 5 10 2438.03 5002.00 0.5126

13 Starter Values Model Quality Measures

14 a = 2 SEE = 0.8735

15 b = 2 Bias = 0.5096

16 c = 2 R2 = 0.9598

17 d = 2
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TABLE 10.10

Example 10.4 Solver Solution for a, b, c, and d

A B C D E F

1 Number of Program Data Points n = 8 Regression Model Form

2 Number of Regression Constants m = 4
f (x1, x2) = a + bxc

1xd
23 Degrees of Freedom n − m = 4

Estimated
Observed Cost,

4 Program Observed Frequency Observed Regression Multiplicative
Number Diameter (meters, m) x1 (GHz) x2 Cost ($K) Model Error

5 1 3 2 44.68 65.70 0.3200
6 2 3 2 85.85 65.70 −0.3066

7 3 5 2 77.55 83.78 0.0744
8 4 15 22 11,881.17 12,618.54 0.0584
9 5 20 22 15,666.08 14,213.96 −0.1022

10 6 4 10 1242.96 1689.07 0.2641
11 7 3 12 2088.57 2103.98 0.0073

12 8 5 10 2438.03 1853.41 −0.3154
13 Solver Derived Values Model Quality Measures

14 a = −11.1490 SEE = 0.3103
15 b = 13.5340 Bias = 0.0000
16 c = 0.4135 R2 = 0.9891

17 d = 1.8501
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FIGURE 10.9
A three-dimensional plot of f (x1, x2) =−11.149 + 13.534x0.413503
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10.4 Summary

This chapter presented a light introduction to ordinary least squares as a
method for developing CERs. In keeping with the aim of Section II of this
book, the emphasis has been on practical applications of ordinary least
squares (OLS), and its variants, rather than an in-depth theoretical treatment
of statistical regression.

This chapter also introduced an advance in methodology called general
error regression. As illustrated, the general error regression method (GERM)
is a robust alternative to OLS approaches—especially logarithmic ordinary
least squares (LOLS). It is a recommended protocol for building CERs by
statistical regression. As shown, GERM separates the problem of whether
estimating error should be additive or multiplicative from the problem of
whether the form of a regression model should be linear or nonlinear. This
offers analysts the choice of minimizing additive or multiplicative errors,
regardless of the functional form of the relationship.

It is possible that constrained optimization methods, like the GRG algo-
rithm used in the GERM examples, will produce locally optimal rather than
globally optimal results. Thus, it is best to use GERM with a variety of regres-
sion constant starter values and choose those with the best-quality metrics.
At present, a statistical significance test (such as the t-statistic in OLS) has not
been established to assess a GERM ZMPE regression’s goodness of fit to a
dataset. This is an open research question that is worthy of further exploration
and study by members of the statistical sciences communities.

A well-known aphorism asserts that “a man cannot serve two masters.”
The cost analysis version of this adage is that a CER cannot be optimized
with respect to two different criteria. Because GERM requires not two but
three criteria (standard error, bias, and Pearson’s correlation squared), it fol-
lows that GERM CERs cannot be optimal with respect to all three criteria. For
example, a CER optimized with respect to standard error will not, in general,
have zero bias and maximum possible correlation. A CER optimized to have
maximum possible correlation will not have minimum possible standard
error and zero bias.

The choice of which CER to use is a trade-off that must be made by the
cost analyst. Cost should be regressed against single cost drivers and combi-
nations of multiple cost drivers. Finding the “best” statistical cost estimating
model is a judgment that can be guided by the GERM quality metrics. In the
case of ZMPE regression, the R2 value and the percent standard error are very
useful comparison tools. As a general rule, if one model form is a stronger fit
to the observed data than another model form, then it will have a higher R2

and a lower percent standard error (Anderson 2002).
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The coefficients for all cost drivers should also be analyzed. If the result-
ing relationship between cost and a cost driver is different than would be
expected from engineering judgment, then this model is most likely not one
that should be used to predict future cost. Correlations between cost drivers
should also be calculated. Often two or more cost drivers could provide very
similar relationships with cost. Including correlated drivers together in a cost
model could yield inconsistent results in a regression model. In statistics,
this is known as multicollinearity—and the cost modeler should look for this
potential problem.

GERM is a significant advance in the ability to create CERs. It allows build-
ing them for virtually any type of linear or nonlinear form, with additive or
multiplicative errors. Furthermore, measures of statistical quality for GERM-
derived CERs are free from a priori statistical requirements or assumptions
such as normally distributed error probabilities. GERM’s flexibility and ease
of use allows for the derivation of a variety of potential CERs with zero
bias and minimum additive error (ZME) or zero percent bias and minimum
percent error (ZMPE).

Another general error regression approach is iteratively reweighted least
squares (IRLS), introduced in Appendix F. IRLS is a least squares proce-
dure where the constants of a regression function are determined by iterating
through a minimization of a weighted sum of additive squared errors. Today,
the widespread availability of advanced computing technologies greatly
facilitates the ease with which general error regression methods can be used
throughout the cost and greater analytic communities.

Exercises

10.1 a. Find the linear OLS solution to the dataset given in Example 10.2
and confirm the quality measures of the linear regression model
shown in Table 10.5.

b. Verify the LOLS solution given in Section 10.2.2 to the dataset in
Table 10.1.

10.2 Consider the scatterplot in Figure 10.1. Use GERM ZMPE to find a set
of values for a and b such that
a. the nonlinear function f (x) = √

a + bx has minimum-percentage
error under a zero percentage bias constraint.

b. the nonlinear function f (x) = abln x has minimum-percentage
error under a zero percentage bias constraint. Use the starter
values a = 2 and b = 1 in both cases.
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11
Mathematics of Cost Improvement Curves

This chapter introduces a phenomenon associated with producing an item
over and over again. The phenomenon is called cost improvement (CI)∗. It
refers to a lessening in the cost of an item produced in large quantities in the
same way over a period of time. An item’s CI is often attributed to a lessening
in time for its production due to learning from the repetition of tasks in its
manufacture.

This chapter presents two main topics associated with CI in an item’s recur-
ring production cost. The first describes the phenomenon of CI and methods
to measure and mitigate its effects on the uncertainty in production cost
estimates. The second illustrates how the general error regression method
(GERM†) can be applied to build cost estimating relationships (CERs) of an
item’s recurring production costs, in the presence of CI effects.

11.1 Introduction

Cost improvement (CI) is used to describe the phenomenon of the general
improvement (reduction) of costs between two successive items, efforts, or
programs. CI can be experienced between similar successive programs or
between successive production units and repeated tasks. Cost reductions
due to CI make it an attractive and even expected phenomenon that must
be considered in cost estimates.

For the purposes of this chapter, define recurring costs as the costs associ-
ated with repeating efforts. A rule of thumb to determine whether costs of a
first production unit are recurring or nonrecurring is to examine the differ-
ences between the cost of the first production unit and the cost of the second
production unit. Costs that are repeatedly incurred for both production units
are considered recurring costs, whereas unique, nonrepeated costs incurred
for the first production unit are considered nonrecurring costs.

∗ The terms “cost progress” and “learning” are often used as synonyms to “cost improve-
ment” (Godberg and Touw 2003).

† Chapter 10 presents a discussion of the GERM.

369
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The literature on CI is focused on the recurring cost perspective,∗ but non-
recurring CI can also exist (Boehm 1981, Stump 1988). Recurring CI can occur
between successive units within a program and when the same units are suc-
cessively produced for different programs. Nonrecurring CI can occur from
reuse of existing designs, materials, equipment, effort, or products.

Nonrecurring CIs between successive programs are accomplished through
the partial (or full) reuse of designs, development articles, software, and
other nonrecurring engineering effort. Savings from nonrecurring costs (pre-
sumably at the expense of the first program) are from the subsequent pro-
gram to capitalize on reuse of artifacts from the first project. For example,
design requirements might be achieved in a less costly manner than if the
predecessor program had not existed.

An accurate measurement of CI is difficult because it is influenced by
many factors (Covert 2014). A major one is cost accounting structures, which
are often different between organizations. This affects how labor hours
and costs are accumulated and tracked, which makes comparisons across
organizations difficult. Other factors include the following:

• Learning or gained experience in value added effort.†

• Skill mix changes that increase or decrease cost.
• Process “shortcuts” that eliminate effort or expenses.
• Yield improvements that reduce cost.
• Production rate increases allowing for amortization of pooled costs

and greater cost efficiency.
• Technological advances allowing greater yield and process efficiency.
• Material price discounts based on larger quantity purchases.
• Inflation adjustments for multiyear programs to account for the time

varying costs.

The actual observation of CI implies it covers the same work content between
successive units. It should be independent of other recurring and nonrecur-
ring CIs such as skill mix changes, process shortcuts, yield improvements,
production rate increases, material discounts, and inflation adjustments.

The theories behind CI factors require them to be treated independently
from each other and modeled using different mathematical equations. As
a practical consideration, it is difficult to segregate the effects of CI due to
learning from other CI factors in historical cost data. Thus, all observed CI
between successively produced units is treated as learning and is assumed

∗ See Yelle (1979) and Covert (2014) for a comprehensive survey.
† An example of a value-added effort is the assembly of parts to produce a finished product. An

example of a non-value-added effort is financial accounting to track the labor hours to assemble
those parts.
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to follow the familiar “power” form attributable to learning curve theory,
as shown by Equation 11.1. For this reason, the word “learning” in this
chapter is meant to include all effects that result in lower (improved) costs of
successively produced units.∗ Although the computations expressed herein
are in dollar units, the original work on learning curve theory focused
on the reduction in labor hours between successive units in a production
process (Hudgins 1966).

11.2 Learning Curve Theories

Theories of learning in mass production of aircraft began to be develop in the
first half of the twentieth century, with two predominating the original lit-
erature.† One is the cumulative average learning curve theory (Wright 1936).
The other is unit learning curve theory (Crawford 1944, Crawford and Strauss
1947). Both theories state that as production quantities double, costs reduce at
a constant percentage rate called the learning rate or the learning curve slope.
In both theories, the cost Yx of successively produced units x is expressed
mathematically by the form Yx = AxB. Although they share a similar form,
the distinction between cumulative average and unit learning curve theories
is in their interpretation of Yx. The following introduces both theories and
illustrates their similarities and differences.

Cumulative Average Learning Curve Theory: The cumulative average
learning curve theory states as quantities double, the cumulative average
costs (or hours) decline by a constant percentage.‡ Cumulative average cost

∗ Other treatments of CI are described by Badiru (1992); Bierman and Dyckman (1971);
Nussbaum (1994); and Stump (1988). More general formulations are discussed by Levine
et al. (1989). These latter authors make a distinction between “learning” and a more inclusive
concept they refer to as “cost progress.”

† One of the first investigations into airframe production data, which led to the formulation of
the learning curve theory, was conducted by Major Leslie MacDill, the commanding officer
at McCook Field (nearby Wright-Patterson Air Force Base) in 1925. McCook Field was home
to airplane research, development, and production engineering. T.P. Wright, who began his
research in the early 1920s, is credited with the first publication of learning curve theory in 1936
while working for the Curtiss Aeroplane Company. In the Journal of the Aeronautical Sciences,
“Factors Affecting the Cost of Airplanes,” he showed that as the number of aircraft produced
increases, the cumulative average cost to produce the aircraft decreases at a constant rate. This
became known as the cumulative average learning curve theory or the Wright curve. After
World War II, while working for Lockheed Corporation, J.R. Crawford proposed that as the
number of aircraft produced increases, the unit cost to produce those aircraft decreases at a
constant rate. This became known as the unit learning curve theory or the Crawford curve
(This historical note is excerpted from “Fundamentals of Cost Analysis,” BCF106, U.S. Defense
Acquisition University, August 2008).

‡ From this point forward, the term cost refers to the number of dollars or hours to produce a
unit or perform an activity.
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is the sum of the costs to produce the first x units divided by the cumula-
tive number of units produced x. Equation 11.1 is the general expression for
cumulative average learning curve theory.

Yx = AxB (11.1)

where
Yx is the cumulative average unit cost (CAUC) to produce units 1 through x
A is the first unit value expressed as cost, commonly denoted by T1∗
B is the cumulative average learning exponent = ln(LRCA)/ln(2)

LRCA is the cumulative average learning rate, where 0 ≤ LRCA ≤ 1

If values for A and either B or LRCA are known, then the CAUC of the first x
units can be computed. For instance, if an item’s first unit cost is $1000 and
the cumulative average learning rate (theoretical or estimated) is 90% then,
from Equation 11.1, the CAUC of the first x = 8 units is

CAUC = Yx = AxB = 1000(8)ln(0.90)/ln(2) = 1000(8)−0.1520 = $729

Thus, the cumulative cost (CC) of all 8 units is the CAUC times the number
of units (x = 8)

CC = xAxB = AxB+1 = 1000(8)1−0.1520 = 1000(8)0.8480 = $5832

Let the theoretical unit cost of any unit x be denoted by Tx. This measure can
be found by subtracting the CAUC of all previous (x−1) units from the CAUC
of x units. Specifically,

Tx = AxB+1 − A(x − 1)B+1 = A[xB+1 − (x − 1)B+1]

Continuing from the discussion above, the theoretical unit cost of unit 8 is

T8 = 1000(8)0.8480 − 1000(8 − 1)0.8480 = 5832 − 5207.63 = $624.37

Suppose the first 8 units were built in two lots. Suppose Lot 1 consists of unit 1
through unit 4 and Lot 2 consists of unit 5 through unit 8. Given this, the cost
of Lot 1 is the cumulative cost of all 4 units; that is,

TLot1 = AxB+1 = 1000(4)0.8480 = $3240

To determine the cost of Lot 2, let F and L denote the first unit and last unit
in Lot 2, respectively. The theoretical unit cost of Lot 2 is then determined by

∗ The term A is known as the theoretical first unit cost (T1). This can be an estimated value or a
theoretical value.
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subtracting the total cost of Lot 1 (i.e., F − 1 = 5 − 1 = 4 units) from the total
cost of all 8 units. This yields the following:

TLot2 = ALB+1 − A(F − 1)B+1 = A[LB+1 − (F − 1)B+1]
= 1000(8)0.8480 − 1000(4)0.8480 = 5832 − 3240 = $2592

Unit Learning Curve Theory: Unit learning curve theory states that as
quantities double, the cost of individual units (effort or hours) decline by a
constant percentage. Equation 11.2 is the general expression for unit learning
curve theory.

Yx = AxB (11.2)

Although Equation 11.2 looks the same as Equation 11.1, the terms in Equa-
tion 11.2 mean the following:

Yx is the unit cost to produce unit number x, also denoted by Tx
A is the first unit value expressed as cost, commonly denoted by T1∗
x is the unit number
B is the unit learning exponent = ln(LRU)/ln(2)

LRU is the unit learning rate

If values for A and either B or LRU are known, then the theoretical unit cost
Tx of any unit x can be computed. For instance, if an item’s first unit cost
(theoretical or estimated) is $1000 and the unit learning rate is 90% then, from
Equation 11.2, the unit costs (dollars) of the first x = 8 units are

x = 1 ⇒ Y1 = A(1)B = A(1)−0.1520 = A = T1 = 1000

x = 2 ⇒ Y2 = A(2)B = A(2)−0.1520 = T2 = 900

x = 3 ⇒ Y3 = A(3)B = A(3)−0.1520 = T3 = 846.21

x = 4 ⇒ Y4 = A(4)B = A(4)−0.1520 = T4 = 810

x = 5 ⇒ Y5 = A(5)B = A(5)−0.1520 = T5 = 782.99

x = 6 ⇒ Y6 = A(6)B = A(6)−0.1520 = T6 = 761.59

x = 7 ⇒ Y7 = A(7)B = A(7)−0.1520 = T7 = 743.95

x = 8 ⇒ Y8 = A(8)B = A(8)−0.1520 = T8 = 729

∗ The term A is known as the theoretical first unit cost (T1). It can be an estimated or a theoretical
value.
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Thus, the cumulative unit cost (CUC) of all 8 units is∗

CUC = A
x=8∑
i=1

iB = A(1)B + A(2)B + · · · + A(8)B = T1 + T2

+ · · · + T8 = $6573.74

In unit learning curve theory, the CAUC at unit number x can also be
determined by dividing the CUC by x. Continuing from the earlier discussion

CAUC = A
x

x=8∑
i=1

iB = CUC
x

= 6573.74
8

= $821.72

As before, suppose the first eight units were built in two lots with Lot 1 con-
sisting of unit 1 through unit 4 and Lot 2 consisting of unit 5 through unit 8.
Then the cost of Lot 1 and Lot 2 are found by summing the costs of the units
contained in each lot. In this case, it follows that

TLot1 = T1 + T2 + T3 + T4 = $3556.21

TLot2 = T5 + T6 + T7 + T8 = $3017.53

11.2.1 Similarities and Differences

The unit and cumulative average learning theories given by Equations 11.1
and 11.2 share the power form Yx = AxB and the first unit cost A. However,
they each express their independent variable x and their dependent vari-
able Yx in different units. Hence, their learning exponent B and learning rates
(LRU and LRCA) are also different and cannot be interchanged. An estimate
using cumulative average learning curve theory must use the CA learning
rate LRCA to determine the AUC or the costs of different quantities (such as
the first 10 units). This same distinction applies to unit theory. The follow-
ing presents a convenient summary of the governing equations for these two
learning curve theories.

Equations 11.1 and 11.2 are versatile and can be used to compute the cost
of any particular unit (such as unit x), the cost of the first x units, the AUC
of the first x units, the cost of each unit in a lot that leads to a total lot cost,
and the AUC of units in a lot. These costs can be determined if the first unit
cost A, the learning curve slope B, and the first F and last L units in a lot
are known. The following is a summary of the equations for the cumulative
average (Equations 11.3 through 11.7) and unit learning curve (Equations 11.8
through 11.12) theories.

∗ The index i is used in the summand to represent the unit numbers 1 to x.
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Summary Equations for Cumulative Average and Unit Learning: A = T1,
i = index indicating the unit number (e.g., i = 2 is unit 2), F = first unit
number, L = last unit number.

Using Cumulative Average Learning Theory

Cost of each unit x = A
(

xB+1 − (x − 1)B+1
)

(11.3)

Cost of the first x units = AxB+1 (11.4)

Average Unit Cost of x units (AUCx) = AxB (11.5)

Lot cost∗ = A
(

LB+1 − (F − 1)B+1
)

(11.6)

Lot AUC† (AUClot) = A
L − F + 1

(
LB+1 − (F − 1)B+1

)
(11.7)

Using Unit Learning Theory

Cost of each unit x = AxB (11.8)

Cost of the first x units = A
x∑

i=1

(
iB

)
(11.9)

Average Unit Cost of x Units (AUCx) = A
x

x∑
i=1

(
iB

)
(11.10)

Lot cost‡ = A
L∑

i=F

(
iB

)
(11.11)

Lot AUC§ (AUClot) = A
L − F + 1

L∑
i=F

(
iB

)
(11.12)

Example 11.1 Find the unit cost and AUC for each of the first eight units in
a lot using the unit and cumulative average learning curve theories. Assume
A = 1000, LRU = 0.90, and LRCA = 0.90.

Solution Using unit learning theory, the unit costs of the first eight units
is computed by Equation 11.8, where B = ln(0.9)/ln(2) = −0.1520. It
follows that Y1 = AxB = 1000(1)−0.1520 = 1000, Y2 = 1000(2)−0.1520 =
900, Y3 = 1000(3)−0.1520 = 846.21. The remaining unit costs are computed
in a similar way, with the results Y4 = 810, Y5 = 782.99, Y6 = 761.59,
Y7 = 743.95, and Y8 = 729.

In unit learning theory, the AUC of each unit x is computed from Equa-
tion 11.10. In particular, AUC1 = 1000, AUC2 = (1000 + 900)/2 = 950,
AUC3 = (1000 + 900 + 846.21)/3 = 915.40. The remaining AUCs are

∗ Use Equation 11.4 if the lot begins with unit 1.
† Use Equation 11.5 if the lot begins with unit 1.
‡ Use Equation 11.9 if the lot begins with unit 1.
§ Use Equation 11.10 if the lot begins with unit 1.
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TABLE 11.1

Unit and AUCs using Unit and CA Theory

Unit Theory, LRU = 0.90 CA Theory, LRCA = 0.90
Unit

Number Unit Cost AUC Unit Cost AUC

1 1000.00 1000.00 1000.00 1000.00

2 900.00 950.00 800.00 900.00
3 846.21 815.40 738.62 846.21

4 810.00 889.05 701.38 810.00
5 782.99 867.84 674.93 782.99

6 761.59 850.13 654.58 761.59
7 743.95 834.96 638.12 743.95
8 729.00 821.72 624.37 729.00

computed in a similar way, with the results AUC4 = 889.05, AUC5 =
867.84, AUC6 = 850.13, AUC7 = 834.96, and AUC8 = 821.72.

In cumulative average theory, the unit costs of the first eight units
is computed by Equation 11.3, where B = ln(0.9)/ln(2) = −0.1520.
From this, it follows that Y1 = 1000, Y2 = 1000[(2)1−0.1520 − 1000] =
1000[(2)0.8480 − 1] = 800, Y3 = 1000[(3)0.8480 − (2)0.8480] = 738.62.
The remaining unit costs are computed in a similar way, with the results
Y4 = 701.38, Y5 = 674.93, Y6 = 654.58, Y7 = 638.12, and Y8 = 624.37.

In cumulative average theory, the AUC for each unit x is computed
using Equation 11.5. Here, AUC1 = 1000, AUC2 = 1000(2)−0.1520 = 900
and, AUC3 = 1000(3)−0.1520 = 846.21. The remaining AUCs are com-
puted in a similar way, with the results AUC4 = 810, AUC5 = 782.99,
AUC6 = 761.59, AUC7 = 743.95, and AUC8 = 729.

Table 11.1 summarizes and compares these computations. Although
the learning rates in this example were equal, the unit and AUCs in cumu-
lative average learning theory are less than their values in unit learning
theory. This will always be true.

11.2.2 Limitations and Considerations

There are limitations and considerations with the learning curve theories.
Among them are (1) the effect of learning is not endless and can come to
an abrupt stop, (2) the adoption of new processes will mean the old learning
curve will be replaced by a new one, (3) breaks in production over periods of
time sufficient to warrant a loss of learning can occur, and (4) incorrect valua-
tion of the learning rate has a significant impact on the cost model developed
and any estimates that are produced.

In addition, there is a practical limit of 50% for the cumulative average
learning curve slope LRCA. For example, if the first unit cost T1 = $1000, and
LRCA = 0.50 then, from Equation 11.5, the CAUC of two units x = 2 is equal
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to Y2 = 1000(2)B = 1000(2)−1 = $500.∗ This means that the second unit†

must be free! Thus, under cumulative average theory, the learning rate must
always be greater than 50%. In the case of unit learning theory, the learning
rate must be greater than 0%.

Another limitation in the use of learning curve theory is the lack of credible
historical data that are analogous, applicable, or consistent. This situation
makes it difficult or even impossible to determine the “correct” learning rate
for a particular cost estimating context.‡ Nevertheless, the estimator’s choice
of learning rate exerts a major, perhaps dominant, impact on the estimate of
the total spending profile of a large production program. Even if nonrecurring
and first-unit production costs are estimated precisely, small variations in the
learning rate substantially outweigh all other contributions to the uncertainty
in the estimate. This is especially true in large-quantity procurements, such
as aircraft or missile programs.

As mentioned above, learning rates are sensitive to the particular cost esti-
mating context. With this, it is advisable to understand the impact of learning
rate uncertainty upon the uncertainty in estimated costs. Therefore, in prepar-
ing an estimate of the cost of a production run of N units, the following exam-
ple illustrates comparing AUC estimates at each of two CA learning rates.

Example 11.2 Compare the AUC estimates for production run sizes N = 10,
20, 50, 100, 200, 500, 1000, 2000, and 5000 at CA learning rates LRCA = 0.90
and LRCA = 0.95.

Solution With Equation 11.5, the ratio of 95% learning to 90% learning is
as follows:

Nln(0.95)/ln(2)

Nln(0.90)/ln(2)
= N0.7024

Table 11.2 lists values of that ratio for the N production-run sizes given
here. These values can be interpreted in the following way: If we assume
a CA learning rate of 95% when estimating the cost of a production run of

TABLE 11.2

AUC Ratios for 95% CA Learning versus 90% CA Learning

Production Run AUC Production Run AUC Production Run AUC
Size N Ratio Size N Ratio Size N Ratio

10 1.20 100 1.43 1000 1.71
20 1.26 200 1.51 2000 1.81
50 1.36 500 1.62 5000 1.94

∗ In this case, B = ln(0.5)/ln 2 = −1.
† The second unit must be free because the cumulative average of the first two units is $500. This

means the cumulative cost is 2 × $500 = $1000. Given the first unit is $1000, then the second
unit’s cost must be $0.

‡ See Bierman and Dyckman (1971, pp. 88–89); and Nanda and Alder (1982, pp. 133–138).
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200 units, our cost estimate will be 51% higher than if we had assumed a
CAlearning rate of 90%. Worded another way, if we assume a CAlearning
rate of 90% for our estimate, but the actual CA learning rate turns out to be
95%, we will experience a 51% overrun in production cost. The possibility
of learning rate impacts of this magnitude on cost estimates tend to be
overlooked and are clearly important considerations in production cost
estimating.

11.2.3 Learning Rate Impacts on T1 Costs

Suppose one is interested in comparing average unit and total production
costs at learning rates x% and y%, where x > y. The ratio of AUC at x% learn-
ing (LRCA = x/100) to AUC at y% learning (LRCA = y/100) can be calculated
as follows:

AUCN at x%
AUCN at y%

= T1
(
N(ln(x/100)/ln 2)

)
T1

(
Nln(y/100)/ln 2

) = N(ln(x/y)/ln 2) (11.13)

Table 11.3 lists values of this ratio for typical production-run sizes and
learning rates:

Table 11.3 can be used to calculate other ratios. For example, the AUC ratio
for 95% to 85% CA learning for a 10-unit production run is 1.197 × 1.209 =
1.45. In Table 11.3, this is the product of the ratios for 95%–90% and 90%–85%,
respectively.

So far, differences in learning rate applied to T1 estimates and how they
affect average unit and total program cost estimates have been discussed,
but that is only half the story. Developing T1-based cost models can involve
conjecture. First, historical cost data are gathered and normalized to reflect
T1 costs in constant-year dollars. Moreover, for multiple unit programs only
total costs, lot costs, or AUCs are typically available. Given this, analysts must
assume a learning rate to derive T1 costs. Unsurprisingly, the magnitude of
a program’s cost estimate can depend heavily on the learning rate.

TABLE 11.3

AUC Ratios for Typical Production Situations

CA Learning
Rates

Number of Units Produced N

x%–y% 10 20 50 100 200 500 1000 2000 5000

100%–95% 1.186 1.248 1.336 1.406 1.480 1.584 1.667 1.755 1.878
95%–90% 1.197 1.263 1.357 1.432 1.512 1.624 1.714 1.809 1.943
90%–85% 1.209 1.280 1.381 1.462 1.548 1.669 1.768 1.872 2.018
85%–80% 1.223 1.300 1.408 1.496 1.589 1.722 1.830 1.944 2.106
80%–75% 1.239 1.322 1.439 1.535 1.638 1.784 1.903 2.029 2.210
75%–70% 1.258 1.347 1.476 1.582 1.694 1.856 1.989 2.131 2.334
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Example 11.3 Suppose the AUC of x = 10 units is $1; that is, AUC10 = 1.00.
Using CA learning theory, compute the implied T1 costs given learning rates
LRCA = 0.95 and LRCA = 0.85.

Solution Under CA learning curve theory, from Equation 11.5

AUCx = AxB = T1xB (11.14)

⇒ T1 = AUCx(x−B) (11.15)

With AUC10 = 1.00 and LRCA = 0.95

T1 = AUC10

(
10−[ln(LRCA)/ln 2]

)
= 1.00

(
10−[ln(0.95)/ln 2]

)
= 1.1857 ≈ 1.19

With AUC10 = 1.00 and LRCA = 0.85

T1 = AUC10

(
10−[ln(LRCA)/ln 2]

)
= 1.00

(
10−[ln(0.85)/ln 2]

)
= 1.7158 ≈ 1.72

Depending on the learning rate, the T1 cost increases by 45% when an 85%
CA learning rate is used instead of a 95% CA learning rate. Figure 11.1
illustrates this result.

11.2.4 Historically Derived Learning Rates and Cost Models

As discussed in Chapter 10, the most important aspect of constructing a statis-
tical cost model is the historical (observed) data upon which it is built. This
includes knowing how the data was normalized to reflect consistent WBS
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definitions and scope, the appropriate fiscal year, and, from a learning curve
perspective, the correct procurement quantity. For quantity normalization,
actual lot cost data from multiple programs must be normalized (adjusted)
to provide x and y variables that fit the forms shown in Equations 11.3 (for
CA learning theory) and 11.8 (for unit learning theory).

Normalization for quantity ensures comparing the same type of cost,
whether it is at the total, lot, or unit level. The most common method of
normalizing for quantity is through the use of CI or learning curves. The clas-
sical technique is to normalize all data points to the theoretical first unit cost
using either unit theory or cumulative average theory learning curves (Book
and Burgess 1996). For each program in a historical cost database, a T1
cost and learning rate can be derived that is characteristic of that program.
Book and Burgess (2003) demonstrated this technique using the CA learning
theory with the sample lot cost and quantity data presented in Table G.1. This
is known in the community as the two-step process. The following discusses
this process and the issues that arise.

Consider the dataset of production program cost histories in Table 11.4.
Assume these costs have been normalized to reflect consistent WBS defini-
tions and scope, inflation, and fiscal year.

First step: From these histories, the first step is to compute the AUC of each
program. This is the ratio of the program’s total cost to its total units. For
each program, the resultant ratio is shown in Table 11.4 by the entries in the
column titled Average Unit Cost (AUC, $).

Next, suppose analysts determined that cumulative average learning was
the appropriate theory for these data and a learning rate of 84% was found
by pooled regression.∗ From Equation 11.15

T1 = AUCx(x−B) (11.16)

where
B = ln(0.84)/ln(2) = −0.2515
x is each program’s production run total units, given in Table 11.3

With this, the estimated T1 cost of each program is computed by Equa-
tion 11.16, with the results (rounded) shown in the last column of Table 11.4.

Second step: The second step involves building a regression model to derive
estimates of each program’s T1 cost as a function of its observed weight. The
objective is to produce a CER for statistically generating T1 costs for programs
similar to those represented in Table 11.4. The following illustrates building
this CER by GERM ZMPE regression.† Table 11.5 is the dataset and analysis

∗ Pooled regression refers to a single regression of the data from each of the programs using
indicator or dummy variables representing the individual T1 costs of each program. See
Covert (2014) for information on pooled regression.

† ZMPE regression is fully discussed in Chapter 10.
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TABLE 11.4

Dataset: Production Program Cost Histories

Production Production Average Estimated

Program Weight Run Run Unit T1

Name (lb) Total Units Total Cost Cost (AUC, $) Cost ($)

A 985 2457 1,421,090 578 4117
B 985 2084 1,669,203 801 5474
C 510 12,458 2,245,059 180 1929

D 190 12,808 390,110 30 324
E 190 21,968 746,836 34 420

F 190 5407 215,409 40 347
G 190 8813 383,814 44 432

H 510 6451 1,172,213 182 1653

setup for this regression. The data in columns A, B, and C are from the pro-
gram cost histories in Table 11.4. The data in columns D and E are for the
setup of the GERM ZMPE regression, which will fit a model to the form
f (x) = axb.

Discussed in Chapter 10, GERM ZMPE implies using the multiplicative
error form. Table 11.5 shows the dataset of n = 8 observations that correspond

TABLE 11.5

Dataset and Analysis Setup

A B C D E

1 Number of Program Data Points n = 8 Regression Model form

2 Number of Regression Constants m = 2
f (x) = axb

3 Degrees of Freedom n − m = 6
Observed Estimated Estimated

4 Program Weight T1 T1 Cost, Multiplicative
Name (lbs), x Cost, y Regression Model Error

5 A 985 4117 985 −3.1797
6 B 985 5474 985 −4.5574
7 C 510 1929 510 −2.7824

8 D 190 324 190 −0.7053
9 E 190 420 190 −1.2105

10 F 190 347 190 −0.8263
11 G 190 432 190 −1.2737

12 H 510 1653 510 −2.2412
13 Starter Values Model Quality Measures
14 a = 1 ≡ B14 SEE = 2.8258 ≡ E14

15 b = 1 ≡ B15 Bias = −2.0970 ≡ E15
16 R2 = 0.9567
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to the program histories in Table 11.4. An Excel model is built and its Solver
feature is used to run the ZMPE optimization (minimization in GERM). The
columns labeled “Estimated T1 Cost, Regression Model,” “Multiplicative
Error,” and “Model Quality Measures” are computed from the two starter
values shown for a and b. As mentioned previously, starter values are the
initial conditions chosen by the user to stimulate the optimization routine in
Excel Solver.

Figure 11.2 shows the Excel Solver window and the features selected to
run the ZMPE optimization for the dataset in Table 11.5. The optimization
algorithm begins with the starter values shown for a and b and iterates numer-
ically until the search algorithm converges to a solution. The optimization
results are shown in columns D and E in Table 11.6, along with quality
measures about the regression model formed.

Figure 11.3a is a plot of the observed data versus the data generated
by the regression model built by GERM ZMPE. The dark circles are the

Minimize SEE
$E$14

GRG Nonlinear

$B$14:$B$15

Zero Bias Constraint

Optimization search begins
from these initial starter values

$E$15 = 0

Min

FIGURE 11.2
Excel Solver setup for the dataset in Table 11.5.
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TABLE 11.6

Solver Solution for a and b

A B C D E

1 Number of Program Data Points n = 8 Regression Model form

2 Number of Regression Constants m = 2
f (x) = axb

3 Degrees of Freedom n − m = 6
Observed Estimated Estimate

4 Program Weight T1 T1 Cost, Multiplicative

Name (lbs), x Cost, y Regression Model Error
5 A 985 4117 4859 0.1527

6 B 985 5474 4859 −0.1266
7 C 510 1929 1757 −0.0980

8 D 190 324 382 0.1517
9 E 190 420 382 −0.0996

10 F 190 347 382 0.0915

11 G 190 432 382 −0.1310
12 H 510 1653 1757 0.0591

13 Solver Values Model Quality Measures
14 a = 0.1149 SEE = 0.1360

15 b = 1.5455 Bias = 0.0000
16 R2 = 0.9640

observed weights and estimated T1 costs from columns B and C of Table 11.6.
The open circles are the estimated T1 costs generated from the regression
model

f (x) = 0.1149x1.5455 (11.17)

where x is the observed weight. Equation 11.17 is a GERM ZMPE CER for
estimating the T1 cost of a program with characteristics similar to the pro-
gram histories in Table 11.4. To conduct this analysis, it was necessary to
assume a learning theory and a learning rate for the dataset presented. In
this case, a cumulative average learning theory and a learning rate of 0.84
was assumed. Clearly, these assumptions can have significant effects on the
magnitudes of estimated T1 costs that are generated by statistically derived
CERs. An example is shown in Figure 11.3b. Figure 11.3b shows the results
of the same analysis summarized in Figure 11.3a when the assumed learning
rate in Step 1 is 0.74 instead of 0.84.

Production cost data histories have to be normalized to a specific num-
ber of units, usually the theoretical first unit by applying assumptions on
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FIGURE 11.3
T1 cost estimating relationship versus the observed data.

learning theory and learning rates—none of which are known absolutely
from the data. Uncertainties in learning rates affects production cost model
development to the same degree they affect building development CERs.
The two-step method illustrated above is prone to the effects of uncertainty.
Recognizing this, Book and Burgess (2003) and Covert and Wright (2010)
created single-step methods for developing production CERs that do not
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require learning assumptions—and the effects that uncertainty brings
on the quality of production CERs.

11.3 Production Cost Models Built by Single-Step Regression

This section presents the single-step regression approach for developing
production CERs. It avoids the problem of guessing learning rates associ-
ated with production cost data as seen in the two-step model development
process. Two forms of the single-step regression approach are described.

The first form is based on cumulative average learning curve theory, which
uses quantity as an independent variable (QAIV) in the regression of lot cost
data. The second form is based on unit learning curve theory, which uses the
unit number as an independent variable (UAIV) in the regression of lot cost
data. Production cost models built by single-step regression provides supe-
rior quality measures as compared to those obtained from their respective
two-step model development processes.

11.3.1 Quantity as an Independent Variable (QAIV)

QAIV was introduced by Book and Burgess (2003) as a single step tech-
nique to develop production CERs from lot data using cumulative average
theory. Their approach uses a multivariate CER with weight, lot size, and
prior quantity as independent variables. Single-step QAIV regression oper-
ates on dependent and independent variables based entirely on known
historical facts, no learning-rate assumption is needed for either cost data
normalization or T1 cost estimating. The following example illustrates this
characteristic of QAIV.

Example 11.4 Appendix G, Table G.1, provides a dataset of lot costs and quan-
tity histories from a collection of production programs. From these data, use
GERM ZMPE to derive a QAIV CER of the generic form y = awbxc.

Solution Table G.1 provides data on the weight of each unit w, the unit
numbers of the first F and last L units produced in a lot, and the AUC
of each lot. The generic QAIV CER form y = awbxc allows for estimat-
ing the cumulative average cost of the first x units and is versatile in its
form like the generic cumulative average learning equation, shown by
Equation 11.1. In Equations 11.3 through 11.7, the x term and exponent B
can be manipulated to allow for estimating a variety of costs, among
those is the cost of any particular lot. The lot cost variant of this equa-
tion is given by Equation 11.6, which replaces the term xB with the terms
(LB+1 − (F − 1)B+1). This allows for estimating the cost of any lot given
the unit numbers of the first F and last L units in any particular lot.
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Thus, the generic QAIV CER can be modified in a similar fashion to
estimate the cost of any particular lot. With GERM ZMPE, the modified
QAIV CER is given by Equation 11.18. This equation does the following:
(1) estimates the observed lot costs from the collected data; (2) provides
the regression constants a, b, and c; and (3) has a minimum SEE with
zero bias. To achieve these outcomes using cumulative average learning
theory, Equation 11.6 is tailored as follows:

y(w) =
{

awb(Lc+1 − (F − 1)c+1), if F > 1
awbLc+1, if F = 1

(11.18)

where
a, b, and c are constants
w is weight (lb)
F is the first unit in the lot
L is the last unit in the lot

The values of F and L are calculated from the production cost data.
Table 11.7 is the dataset and analysis setup for the GERM ZMPE regres-
sion y = awbxc.

Equation 11.18 is analogous to cumulative average learning theory.
The term awb is equivalent to the T1 cost and c is the cumulative average
learning exponent. Since c = ln(LRCA)/ln(2), once its value is determined
from the GERM ZMPE regression, one can derive a single cumulative
average learning rate LRCA = 2c that is representative of the dataset. With
this, the uncertainty in estimating the learning rate shown in the two-step
process has been removed.

Table 11.7 shows the dataset and analysis setup to execute GERM
ZMPE regression on Equation 11.18. Table 11.8 shows the Solver solu-
tion results for the constants a, b, and c. The resulting QAIV CER is
y = 0.422w1.453x−0.328 with model quality measures SEE = 0.2637,
R2 = 0.8612, and Bias = 0. The results from this regression can be used
to derive the learning rate implied by the dataset, which in this case is
LRCA = 2c = 2−0.328 = 0.79664. For the set of production program cost
histories in Table G.1, the overall learning rate under cumulative average
theory is approximately 80%. The capability to derive the learning rate
demonstrates the advantage of QAIV over the traditional two-step pro-
cess, where learning rates must be assumed along with the uncertainties
those assumptions bring.

11.3.2 Unit as an Independent Variable (UAIV)

Covert and Wright (2012) developed the unit theory equivalent of QAIV
called unit as an independent variable. UAIV is a single-step technique
using GERM ZMPE to develop CERs from lot data using unit theory (Covert
2010). Like QAIV, the UAIV approach uses a multivariate CER with weight,
lot size, and prior quantity as independent variables. The existence of the
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combination of QAIV (based on cumulative average learning theory) and
UAIV (based on unit learning curve theory) regression techniques allows
analysts to create single-step production cost estimating relationships based
entirely on known historical facts and to completely forego the learning-
rate assumptions and uncertainties required in the two-step model devel-
opment processes.∗ The following example illustrates this characteristic of
UAIV.

Example 11.5 Appendix G, Table G.1, provides a dataset of lot costs and quan-
tity histories from a collection of production programs. From these data, use
GERM ZMPE to derive a UAIV CER of the generic form y = awbxc.

Solution Table G.1 provides data on the weight w of each unit, the unit
numbers of the first F and last L units produced in a lot, and the cost of
each lot. The generic UAIV CER form y = awbxc allows for estimating
the cost of unit x and is versatile in its form like the generic unit learn-
ing equation, shown by Equation 11.2. In Equations 11.8 through 11.12,
the x term and exponent B can be manipulated to allow for estimating
a variety of costs, among those is the cost of any particular lot. The lot
cost variant of this equation is given by Equation 11.11 which replaces
the term xB with the summation

∑L
1−F(iB). This allows for estimating the

cost of any lot given the unit numbers of the first F and last L units in any
particular lot.

The generic UAIV CER can be modified in a similar fashion to estimate
the cost of any particular lot. With GERM ZMPE, the modified UAIV CER
is given by Equation 11.19. This equation does the following: (1) estimates
the observed lot costs from the collected data; (2) provides the regression
constants a, b, and c; and (3) has a minimum SEE with zero bias. To achieve
these outcomes using unit learning theory, Equation 11.11 is tailored as
follows:

y(w) = awb
L∑

i=F

(
ic
)

(11.19)

where
a, b, and c are constants
w is weight (lb)
F is the first unit in the lot
L is the last unit in the lot

The values of F and L are calculated from the production cost data.
Table 11.9 is the dataset and analysis setup for the GERM ZMPE regres-
sion y = awbxc.

Equation 11.19 is analogous to unit learning theory. The term awb

is equivalent to the T1 cost and c is the unit learning exponent. Since

∗ Covert (2014) provides a detailed examination of the assumptions and uncertainties used in
two-step model development processes using unit and cumulative average learning theories.
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c = ln(LRU)/ln(2), once its value is determined from the GERM ZMPE
regression, one can derive a single unit learning rate LRU = 2c that is
representative of the dataset. With this, the uncertainty in estimating the
learning rate shown in the two-step process has been removed.

Table 11.9 shows the dataset and analysis setup to execute GERM
ZMPE regression on Equation 11.19. Table 11.10 shows the Solver solu-
tion results for the constants a, b, and c. The resulting UAIV CER is
y = 0.302w1.447x−0.331, with model quality measures SEE = 0.2608,
R2 = 0.8603, and Bias = 0. As mentioned, the results from this regres-
sion can be used to derive the unit learning rate implied by the dataset,
which in this case is LRU = 2c = 2−0.331 = 0.79481. For the set of
production program cost histories in Table G.1, the overall learning rate
under unit theory is approximately 80%. The capability to derive the unit
learning rate demonstrates the advantage of UAIV over the traditional
two-step process, where learning rates must be assumed along with the
uncertainties those assumptions bring.

11.4 Summary

In this chapter, we introduced the phenomenon of CI. CI is the cost reduction
associated with repeated, successive effort. Learning is one form of recurring
CI and is governed by two learning curve theories, the cumulative average
and unit theories. These theories are used extensively in data normaliza-
tion process of creating cost models and in estimating the costs of multiple,
successive units.

One practical consideration of using these theories is what learning rate
to use in any particular situation. Errors in estimating the exact value of the
learning rate translate into large errors of the cost estimates of large-quantity
production scenarios. There is also an important uncertainty consideration
when using learning curve theory to produce quantity-normalized first unit
cost (i.e., T1) data in the first step of the cost model development process—
the normalized T1 cost data will have uncertainties that are not modeled
(i.e., neglected) in the second step of the cost model development process.
To overcome these issues, we introduced two types of innovative, single
step-regressions: QAIV and UAIV.

QAIV and UAIV regressions use single-step processes that produce cost
models with better SEE and Bias quality measures than traditional two-step-
derived, T1-based cost models. QAIV and UAIV do not rely on assumptions
that neglect the uncertainty in the two-step process, so their SEEs provide a
more accurate portrayal of their predictive abilities than do their equivalent
T1-based cost models developed using a two-step process.

In this chapter, we demonstrated the development of QAIV and UAIV
cost models using ZMPE regressions and further showed the flexibility and



392 Probability Methods for Cost Uncertainty Analysis

TA
B

LE
11

.1
0

E
xa

m
pl

e
11

.5
So

lv
er

So
lu

ti
on

fo
r

a,
b,

an
d

c

A
B

C
D

E
F

G

1
N

um
be

r
of

Pr
og

ra
m

D
at

a
Po

in
ts

n
=

69
R

eg
re

ss
io

n
M

od
el

Fo
rm

2
N

um
be

r
of

R
eg

re
ss

io
n

C
on

st
an

ts
m

=
3

y(
w

)
=

aw
b

L ∑ i=
F(i

c )
3

D
eg

re
es

of
Fr

ee
d

om
n

−
m

=
66

4
L

ot
L

ot
W

ei
gh

t,
Fi

rs
tU

ni
t

L
as

tU
ni

t
O

bs
er

ve
d

E
st

im
at

ed
L

os
tC

os
t,

M
ul

ti
pl

ic
at

iv
e

N
um

.,
i

ID
lb

s,
w

N
um

be
r,

F
N

um
be

r,
L

L
ot

C
os

t,
y

R
eg

re
ss

io
n

M
od

el
E

rr
or

5
1

A
1

98
5

1
37

10
8,

67
5.

81
10

3,
20

9.
03

0.
05

30

6
2

A
2

98
5

38
63

58
,5

12
.6

1
46

,2
27

.1
8

0.
26

58
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

72
68

H
9

51
0

44
08

53
07

11
4,

18
1.

30
13

5,
38

9.
10

−0
.1

56
6

73
69

H
10

51
0

53
08

64
51

12
7,

01
0.

39
16

1,
55

5.
14

−0
.2

13
8

74
So

lv
er

V
al

ue
s

M
od

el
Q

ua
lit

y
M

ea
su

re
s

75
a

=
0.

30
2

SE
E

=
0.

26
08

76
b

=
1.

44
7

B
ia

s
=

0.
00

00

77
c

=
−0

.3
31

R
2

=
0.

86
03



Mathematics of Cost Improvement Curves 393

efficiency of using GERM (Chapter 10). Without the development and use of
GERM to solve these types of regression problems, it is unlikely that inno-
vative regression forms such as QAIV or UAIV would have been discovered
or the neglected uncertainty modeling issues with the traditional two-step
methods of cost model development would have been mitigated.

Exercises

11.1 Create the unit learning curve theory equivalent of Table 11.3 using unit
learning curve slopes.

11.2 Assume a particular learning rate LR = 0.90 is used to calculate the
total cost of a production lot. Since this cost is dependent on whether
the cumulative average or unit learning theory is used, which theory
produces the greater error if the true learning curve slope LR = 0.95.

11.3 Which CER has better quality metrics, the QAIV CER developed in
Example 11.4 or the UAIV CER developed in Example 11.5? Explain
the potential sources of the differences in these metrics and discuss
circumstances when one of them is preferred over the other.
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12
Enhanced Scenario-Based Method

This chapter presents the last formal method for cost uncertainty anal-
ysis discussed in this book. Called the enhanced scenario-based method
(eSBM), it was developed from a need in the cost analysis community to sim-
plify aspects of probability-based approaches. This chapter describes eSBM,
identifies key features that distinguish it from other methods, and provides
illustrative examples.

12.1 Introduction

The enhanced scenario-based method (eSBM) was created as an alterna-
tive to the use of advanced statistical methods for generating measures of
cost risk.∗ A central feature of eSBM is its emphasis on defining and cost-
ing the impacts of scenarios as the basis for deriving a range of possible
program costs and assessing cost estimate confidence. Scenarios are written
narratives about potential risk events that, if they occur, increase program
cost beyond what was estimated or planned. The aim is to protect the pro-
gram from the realization of these scenarios to avoid the potential cost risks
they pose.

Defining scenarios that identify risk events a program may face is an ideal
practice. It builds the rationale and arguments to justify contingencies that
may be needed to protect program cost from the realization of these events.

∗ eSBM was first published in 2008 and it was called the scenario-based method (SBM). SBM
offered a simpler alternative to advanced statistical methods for generating measures of cost
risk. Since 2008, enhancements to SBM continued. They included integrating historical cost
growth data into its cost risk analysis algorithms that measure cost estimate confidence. Collec-
tively, these improvements have led to the enhanced scenario-based method—the name used
henceforth. eSBM has appeared in the following U.S. government cost risk analysis handbooks
and guides:
• United States Air Force, Air Force Cost Analysis Agency, 2007. Cost Risk and Uncertainty

Analysis Handbook (CRUH).
• NASA, 2008. Cost Estimating Handbook.
• GAO, 2009. Cost Estimating and Assessment Guide, GAO-09-3SP.
• Missile Defense Agency (MDA), 2012. Cost Estimating and Analysis Handbook.
• United States Air Force, Air Force Cost Analysis Agency, 2012. Joint Cost-Schedule Risk and

Uncertainty Handbook.

395
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The clear expression of scenarios, and the description of the risk events they
contain, is a critical part of the analysis process that is often lacking in practice.
Scenarios can lead to cost reserve decisions made with an understanding of
which risk events, if they occur, these reserves can cover.

Another feature of eSBM is the simplified analytical methods it uses to
derive a distribution of possible program costs and measures of cost estimate
confidence. Seen throughout this book, the intricacies in the mathematics of
Monte Carlo simulation and in method of moments approaches are often
very subtle. These subtleties must be understood if errors are to be avoided.
Recognizing this, eSBM arose in response to many in the community who
asked “Can a valid cost risk analysis, one that is traceable and defensible,
be conducted with minimal (to no) reliance on Monte Carlo simulation or
other advanced statistical methods?” To address this, eSBM was created and
developed for use in either a nonstatistical or statistical form.

The nonstatistical form of eSBM produces deterministic, nonprobabilis-
tic, measures of cost risk as a function of the risk events identified in one
or more scenarios (mentioned above). The statistical form of eSBM provides
the additional capability to generate probabilistic measures of cost estimate
confidence. The simplified analytics of both forms eases the mathematical
burden on analysts. It allows them time to focus instead on crafting well-
written scenarios and then analyze the cost risks they potentially pose to the
program.

12.2 Nonstatistical eSBM

Figure 12.1 illustrates the process flow of the nonstatistical implementation
of eSBM. The first step is input to the process. It is the program’s point esti-
mate cost (PE). Mentioned throughout this book, the point estimate is the cost
that does not include allowances for uncertainty. The PE is the sum of the

Input: Program’s
Point Estimate

Cost (PE)

Define Protect
Scenario (PS)

Compute PS Cost
and Cost Reserve

CR, where 
CR = PS Cost – PE

Accept PS

Start

Reject
PS

Accept CR

Iterate or Refine
PS

Reject
CR

Iterate or Refine
PS Cost

Conduct
Sensitivity
Analysis of
Results and
Report Out

FIGURE 12.1
The nonstatistical eSBM process.
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WBS element costs across the program’s work breakdown structure without
adjustments for uncertainty.

The next step in Figure 12.1 is defining and documenting the scenario
aspect of eSBM, as explained in Section 12.1. This will now be referred to
as the protect scenario. The protect scenario identifies the major known risks
to the program—those events the program must monitor and guard against
occurring. The protect scenario is not arbitrary, nor should it reflect extreme
worst-case events. It should reflect a set of possible risks that, if realized,
would cause the program’s PE to be higher than planned. In practice, it is
envisioned that management will converge on an “official” protect scenario
after deliberations on the one initially defined. The objective is to ensure all
parties reach a consensus understanding of the program’s risks and how they
are best described by the protect scenario.

Once the protect scenario is established, the program’s cost is estimated
by supposing all the risk events contained in the protect scenario occur. This
estimate is called the protect scenario cost and is denoted by PS. The amount
of cost reserve dollars (CR) needed to protect the program’s cost from the
occurrence of these risks is the cost difference between the PS and the PE. Shown
in Figure 12.1, there may be additional refinements to the cost estimated for
the protect scenario, based on management reviews and other considerations.
The process may be iterated until the reasonableness of the amount of the cost
reserve dollars to plan or budget for the program is accepted by management.

The final step in Figure 12.1, is a sensitivity analysis to identify critical cost
drivers and assumptions associated with the protect scenario cost and the
program’s point estimate cost. It is recommended that the analysis measure
the sensitivity of CR with respect to variations in the parameters associated
with these drivers and assumptions. Defining and evaluating alternative pro-
tect scenarios is encouraged since numerous variations and excursions on
them could be conjectured. Considering this, various trade-offs between a set
of proposed protect scenarios can be explored with respect to their bearing
on final cost reserve recommendations and decisions.

The nonstatistical eSBM, though simple in appearance, is arguably a form
of risk analysis. The process of defining protect scenarios is a risk activity—
one that is focused on identifying technical, management, and cost challenges
of concern to the program. Scenario definition encourages a discourse on risk
events that otherwise might not be held, thereby allowing risks to become vis-
ible, traceable, and estimative to the program’s management, stakeholders,
and decision-makers.

It is important that an eSBM analysis be continually refined, monitored,
and updated as a program matures across its development and operational
life cycle. This is true for all analyses that the methods in this book support.
Finally, the work of building scenarios for eSBM should be closely con-
nected to and be a regular part of the program’s continuous risk management
process.
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12.3 Statistical eSBM

This section presents eSBM in its statistical form. The statistical eSBM is a
closed-form method of moments approach, requiring only a few equations
and assumptions. A key feature of the statistical eSBM is its integration of
program cost histories into its algorithms.

There are many reasons to implement the statistical eSBM. These include
(1) enabling cost estimate confidence measures to be derived, (2) provid-
ing a way for management to examine changes in confidence measures as
a function of the amount of cost reserve budgeted or planned for the pro-
gram, and (3) an ability to measure where the protect scenario cost falls on
the probability distribution of the program’s total cost.

Figure 12.2 illustrates the process flow of the statistical eSBM. To apply the
statistical eSBM, three inputs shown on the left in Figure 12.2 are required.
They are the PE, the probability that PE will not be exceeded, and the coef-
ficient of variation (CV). The PE is the same as previously defined in the
nonstatistical eSBM. The probability that PE will not be exceeded is the value
α, such that

P(CostWBS ≤ PE) = α (12.1)

In Equation 12.1, CostWBS is the true cost of the program and PE is the pro-
gram’s point estimate cost. The probability α is a judged value, but one that
can be guided by historical experience. For example, historical experience

Input: Select the
probability that PE
will not be exceeded
(see guidelines and
historical data)

Derive Program’s Cumulative 
Probability Distribution From

Selected αPE and CV 

Use this Distribution to 
View the Confidence 
Level of the PS Cost

Confidence Level DeterminationsInput: Select the
Coefficient of Variation
(CV ) (see guidelines
and historical data)

Conduct 
Sensitivity 
Analysis of 
Results and 
Report Out

These steps are specific to the statistical SBM process

Input: Program’s
Point 

Estimate Cost (PE)
Define Protect 
Scenario (PS)

Compute PS Cost
and Cost Reserve CR,

where CR = PS Cost–PE

Accept PS

Start

Reject
PS

Accept CR

Iterate or Refine
PS

Reject
CR

Iterate or Refine
PS Cost

These steps are identical to the nonstatistical SBM process

These two inputs are 
required and specific to 
the statistical SBM process

FIGURE 12.2
The statistical eSBM process.
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indicates that α typically falls in the interval 0.10 ≤ α ≤ 0.50 in the early life
cycle phases of a program. This is further discussed later in this section.

The CV is the ratio of a probability distribution’s standard deviation to
its mean. This ratio is given by Equation 12.2. The CV is a way to examine
the variability of any probability distribution at plus or minus one standard
deviation around its mean.

CV = σ

μ
(12.2)

With values assessed for α and CV, the cumulative probability distribution of
CostWBS can then be derived. This distribution is used to view the confidence
level associated with the protect scenario cost PS, as well as confidence levels
associated with any other cost outcome along this distribution.

The final step in Figure 12.2 is a sensitivity analysis. Here, we can exam-
ine the kinds of sensitivities previously described in the nonstatistical eSBM
implementation, as well as uncertainties in values chosen for α and CV. This
allows a broad assessment of confidence level variability, which includes
determining a range of possible program cost outcomes for any specified
confidence level.

Figure 12.3 illustrates an output from the statistical eSBM process. In this
case, a normal probability distribution is shown with point estimate cost PE
equal to $100M, α set to 0.25, and CV set to 0.50. The range $75M to $226M is
plus or minus one standard deviation σ around the mean of $151M.

In the statistical eSBM, the uncertainty in a program’s total cost is assumed
to follow a normal or a lognormal probability distribution. The reason for
choosing them is the frequency with which these forms approximate the

0.50
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0.25

0.84

1

0.16
Dollars Million x

10075 226151
Mean

Confidence
Level

Point
Estimate

Normal Distribution
with CV = 0.50

FIGURE 12.3
An output from the statistical eSBM.
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probability distribution of a program’s total cost, when it is the sum of WBS
element costs. The following further discusses their application.

Statistical eSBM: Normal Distribution of CostWBS: The following equa-
tions derive from the observation that a program’s total cost, denoted by
CostWBS, is often normally distributed and the point (PE,α) falls along this
distribution. Given PE, α, and CV the mean and standard deviation of
CostWBS are found by the following:

μ = PE − z
(CV)PE

1 + z(CV)
(12.3)

σ = (CV)PE
1 + z(CV)

(12.4)

where CV is the coefficient of variation, PE is the program’s point esti-
mate cost, and z is the value such that P(Z ≤ z) = α, where Z is the
standard normal random variable. Values for z are available in look-
up tables for the standard normal (see Table A.1) or from the Excel function
z = NORM.S.INV(Percentile); for example, z = 0.525 = NORM.S.INV(0.70).
With the values computed from Equations 12.3 and 12.4, the normal distri-
bution function of CostWBS is fully specified, along with the probability that
CostWBS may take any particular outcome, such as the value of the protect
scenario cost PS.

Statistical eSBM: Lognormal Distribution of CostWBS: The following
equations derive from the observation that a program’s total cost, denoted
by CostWBS, is often lognormally distributed and the point (PE,α) falls along
this distribution. Given PE, α, and CV the mean and standard deviation of
CostWBS are found by the following:

μ = ea+(1/2)b2
(12.5)

σ =
√

e2a+b2
(eb2 − 1) = μ

√
(eb2 − 1) (12.6)

where

a = ln PE − z
√

ln (1 + (CV)2) (12.7)

b =
√

ln (1 + (CV)2) (12.8)

With the values computed from Equations 12.5 and 12.6, the lognormal distri-
bution function of CostWBS is fully specified, along with the probability that
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CostWBS may take any particular outcome, such as the value of the protect
scenario cost PS.

Example 12.1 Suppose the distribution function of a program’s total cost is nor-
mal. Suppose the program’s point estimate cost is $100M and this was assessed
to fall at the 25th percentile. Suppose the type and life cycle phase of the program
is such that 30% variability in cost around the mean has been historically seen.
Suppose the protect scenario was defined and determined to cost $145M.

a. Compute the mean and standard deviation of CostWBS.

b. Plot the distribution function of CostWBS.

c. Determine the confidence level of the protect scenario cost and its associated
cost reserve.

d. Determine the program cost outcome at the 80th percentile confidence
level, denoted by x0.80.

Solution

a. From Equations 12.3 and 12.4

μ = PE − z
(CV)PE

1 + z(CV)
= 100 − z

(0.30)(100)

1 + z(0.30)

σ = (CV)PE
1 + z(CV)

= (0.30)(100)

1 + z(0.30)

We need z to complete these computations. Since the distribu-
tion function of CostWBS was given to be normal, it follows that
P(CostWBS ≤ PE) = α = P(Z ≤ z), where Z is a standard normal
random variable. Values for z are available in Excel and are com-
puted as follows. Given α = 0.25 in this example, then enter this
formula into Excel: NORM.S.INV(0.25); that is,

z = NORM.S.INV(α) = NORM.S.INV(0.25) = −0.6745

Therefore,

μ = PE − z
(CV)PE

1 + z(CV)
= 100 − (−0.6745)

(0.30)(100)

1 + (−0.6745)(0.30)

= 125.4 ($M)

σ = (CV)PE
1 + z(CV)

= (0.30)(100)

1 + (−0.6745)(0.30)
= 37.6 ($M)

b. A plot of the probability distribution function of CostWBS is shown
in Figure 12.4. This is a normal distribution with mean $125.4M and
standard deviation $37.6M, as determined from part (a).

c. To determine the confidence level of the protect scenario, find αPS
such that

P(CostWBS ≤ PS = 145) = αPS
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FIGURE 12.4
Normal distribution function of CostWBS.

Finding αPS is equivalent to solving the expression μ + zPSσ = PS
for zPS. From this,

zPS = PS − μ

σ
= PS

σ
− 1

CV

Since PS = 145, μ = 125.4, and σ = 37.6 it follows that

zPS = PS − μ

σ
= PS

σ
− 1

CV
= 145

37.6
− 1

(0.30)
= 0.523

Thus, we want α such that P(Z ≤ zPS = 0.523) =α. Values for α are
available in Excel as follows. With zPS = 0.523, enter into Excel:
NORM.S.DIST(0.523, TRUE); that is,

α = NORM.S.DIST (zPS, TRUE) = NORM.S.DIST (0.523, TRUE)

= 0.70

Therefore, the $145M protect scenario cost falls at the 70th percentile
of the distribution. This implies a cost reserve CR equal to $45M.

d. To determine the 80th percentile confidence level, we need to find
z0.80 such that

P(Z ≤ z0.80) = 0.80

Givenα = 0.80 in this example, enter into Excel: NORM.S.INV(0.80);
that is,

zα = NORM.S.INV(α) = z0.80 = NORM.S.INV(0.80) = 0.8416
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Substituting μ = 125.4 and σ = 37.6 (determined in part (a)) yields
the following:

μ + z0.80σ = 125.4 + 0.8416(37.6) = x0.80 = 157

Therefore, the cost associated with the 80th percentile confidence
level is $157M. Figure 12.5 presents a summary of the results in this
example.

In Example 12.1, if a range of possible values for α and CV were used
then a range of possible program costs can be generated at any percentile
along the distribution. For instance, suppose historical cost data for a par-
ticular program indicates its CV varies in the interval 0.20 ≤ CV ≤ 0.50.
Given the conditions in Example 12.1, variability in CV affects the mean
and standard deviation of program cost. This is illustrated in Table 12.1,
given a program’s point estimate cost is equal to $100M and its α = 0.25.

Table 12.1 shows a range of possible cost outcomes for the 50th and
80th percentiles. Selecting a particular outcome can be guided by the CV
considered most representative of the program’s uncertainty at its specific
life cycle phase. This is guided by the scenario or scenarios developed at
the start of the eSBM process. Figure 12.6 graphically illustrates the results
in Table 12.1.
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1

0.70
0.80

Dollars million x

Confidence
Level

x1 x2 x3 x4

Cost Reserve CR = $45M;
Protects Program Cost at 70th Percentile

x1= 100 Point Estimate Cost 
x2 = 125.4 Mean Cost
x3 = 145 Protect Scenario Cost
x4 = 157 80th Percentile Confidence Level Cost

FIGURE 12.5
Normal distribution function of CostWBS for various confidence intervals.

TABLE 12.1

Ranges of Cost Outcomes in Confidence Levels (Normal Distribution)

Coefficient of Standard Confidence Level Confidence Level
Variation (CV) Deviation ($M) ($M) 50th Percentile ($M) 80th Percentile

0.20 23.1 115 125
0.30 37.6 125 157

0.40 54.8 127 183
0.50 75.4 151 214
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FIGURE 12.6
Range of cost outcomes and their confidence levels (normal distribution).

Example 12.2 Suppose the distribution function of a program’s total cost is
lognormal. Suppose the program’s point estimate cost is $100M and this was
assessed to fall at the 25th percentile. Suppose the type and life cycle phase of
the program is such that 30% variability in cost around the mean has been
historically seen. Suppose the protect scenario was defined and determined to
cost $145M.

a. Compute the mean and standard deviation of CostWBS.

b. Determine the confidence level of the protect scenario cost and its associated
cost reserve.
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Solution

a. From Equations 12.7 and 12.8

a = ln PE−z
√

ln(1+(CV)2)= ln(100)−(−0.6745)

√
ln(1+(0.30)2)

= 4.80317

b =
√

ln(1 + (CV)2) =
√

ln(1 + (0.30)2) = 0.29356

From Equations 12.5 and 12.6 the values for a and b are translated
into their equivalent statistics μ and σ as follows:

μ = ea+(1/2)b2 = e4.80317+(1/2)(0.29356)2 ≈ 127.3 ($M)

σ =
√

e2a+b2
(eb2 − 1) = μ

√
(eb2 − 1)

= 127.3
√

(e(0.29356)2 − 1) ≈ 38.2 ($M)

b. To determine the confidence level of the protect scenario we need
to find αPS such that

P(Cost ≤ PS = 145) = αPS

Finding αPS is equivalent to solving a + zPS(b) = ln PS for zPS.
From this,

zPS = ln PS − a
b

Since PS = 145, a = 4.80317, and b = 0.29356, it follows that

zPS = ln PS − a
b

= ln 145 − 4.80317
0.29356

= 0.59123

Thus, we want α such that P(Z ≤ zPS = 0.59123) = α. Values for
α are available in Excel as follows. With zPS = 0.59123, enter into
Excel: NORM.S.DIST(0.59123, TRUE); that is,

α = NORM.S.DIST (zPS, TRUE)

= NORM.S.DIST (0.59123, TRUE) = 0.723

⇒ P(Z ≤ zPS = 0.59123) ≈ 0.723

Therefore, the $145M protect scenario cost falls at the 72nd per-
centile of the distribution. This implies a CR equal to $45M.

The preceding illustrated the statistical eSBM with values given for α and
CV. The following shows how the statistical eSBM can be used to derive
values for α and CV, given assessments of α1 and α2, where

α1 = P(PE ≤ CostWBS ≤ PS) and α2 = P(CostWBS ≥ PS)

as shown in Figure 12.7.
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The eSBM probability α.

Example 12.3 Suppose the distribution function of a program’s total cost is
lognormal with PE = $100M and PS = $155M. In Figure 12.7, if α1 = 0.70
and α2 = 0.05 then derive the eSBM parameters α and CV. Use these results to
compute the program’s cost at the 80th percentile confidence level.

Solution Let CostWBS denote the program’s total cost. From the informa-
tion in Figure 12.7 and with α1 = 0.70 and α2 = 0.05 it follows that

α = P(Cost ≤ PE) = 1 − (α1 + α2) = 1 − (0.70 + 0.05) = 0.25

It also follows that

αPS = P(CostWBS ≤ PS) = 1 − α2 = 1 − 0.05 = 0.95

Since the probability distribution of CostWBS is given to be lognormal,
from Chapter 4 it follows that

P(CostWBS ≤ PE) = P
(

Z ≤ z = ln PE − a
b

)
= α

P(CostWBS ≤ PS) = P
(

Z ≤ zPS = ln PS − a
b

)
= αPS

This implies

a + z(b) = ln PE

a + zPS(b) = ln PS

Since Z is a standard normal random variable, from Chapter 4 it follows
that

P(Z ≤ z) = α = 0.25 when z = −0.6745

and

P(Z ≤ zPS) = αPS = 0.95 when z = 1.645
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Given that PE = $100M and PS = $155M it follows that

a + (−0.6745)(b) = ln 100

a + (1.645)(b) = ln 155

Solving these equations yields a = 4.73262 and b = 0.188956. From
Equations 12.5 and 12.6, it follows that μ = $115.64M and σ = $22.05M.
From this, it follows that

CV = σ

μ
= 22.05

115.64
= 0.19

Thus, given the distribution function of a program’s total cost is lognor-
mal with PE = $100M and PS = $155M, and α1 = 0.70 and α2 = 0.05,
then

α = P(Cost ≤ PE) = 1 − (α1 + α2) = 0.25 and CV = σ

μ
= 0.19

To find the program’s cost at the 80th percentile confidence level, from
the solution to Example 12.1 part (d) recall that P(Z ≤ z0.80 = 0.8416) =
0.80. Since the distribution function of total program cost was given to be
lognormal we have

a + (0.8416)(b) = ln x0.80

In this case

4.73262 + (0.8416)(0.188956) = 4.89165 = ln x0.80

Thus, the program cost associated with the 80th percentile confidence
level is

e4.89165 = x0.80 = $133.2M

Figure 12.8 summarizes the results in this example. It shows how eSBM
can be used when only the two probabilities α1 = 0.70 and α2 = 0.05
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0.25 0.55 0.15
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FIGURE 12.8
Resultant lognormal density and distribution functions for Example 12.3.
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are given. The following presents how program cost growth histories can
be used as a guide for choosing values of the eSBM parameters α and CV.

12.4 Historical Data for eSBM

In God we trust; all others bring data (Performance of the Defense
Acquisition System 2012).

Attributed to W. Edwards Deming

As mentioned earlier, a key feature of the statistical eSBM is its integration
of program cost growth histories into its algorithms. In recent years, studies
by RAND (Arena et al. 2006, Bolten et al. 2008, Younossi et al. 2007) and the
U.S. Naval Center for Cost Analysis (NCCA)∗ have collected historical data
on program cost growth. Their evaluations of these data produced findings
that can guide the choice of eSBM parameters α and CV. Studies such as these
are periodically updated with new data and results. The reader is directed to
the cited references and authors for new information that may be available,
subsequent to the publication of this second edition.

The RAND and NCCA studies focused on the Department of Defense
(DoD) programs; however, root causes for their cost growth are common
to many types of today’s engineering system developments. Causes for cost
growth, found in these studies, include the immaturity of technologies and
technical baselines, requirements volatility, system scale and complexity,
program definition and execution challenges, and cost-schedule estimation
errors.

The intended use of these studies is to guide valuing the eSBM parameters
α and CV for the program under consideration. Thus, historical data offers
a reference point for analogy comparisons. Sensitivity of the eSBM analy-
sis to the choice or choices of α and CV are always recommended. Another
way to look at values for α and CV is from the perspective “if my program
experiences values such as these for α and CV, then the amount of cost risk
could be x.” Addressing this question can be a motivator for focusing risk
management actions early in the program, with the aim to ameliorate poten-
tial events driving an unacceptable cost risk before going too far into the
program’s execution.

∗ The collection and analysis of historical program data for use in cost risk analysis was
under the auspices of Wendy Kunc, Deputy Assistant Secretary for Cost and Economics, Office
of the Assistant Secretary of the Navy (Financial Management and Comptroller) and execu-
tive director of the Naval Center for Cost Analysis (NCCA). The analysts who led the statistical
analysis of these data were Dr. Brian Flynn, Peter Braxton, and Richard Lee of Technomics, Inc.
The reader is directed to the NCCA official website for further information about the NCCA
historical cost growth study.
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12.4.1 RAND Historical Cost Growth Studies

The RAND Corporation conducted three major cost growth studies in 2006,
in 2007, and in 2008 (Arena et al. 2006, Bolten et al. 2008, Younossi et al. 2007).
These studies researched and assessed dozens of U.S. DoD acquisition pro-
grams to measure and identify root causes for cost growth. In these reports,
RAND defined cost growth as the ratio between the most recent Selected
Acquisition Report (SAR)∗ estimate, or the estimate reported in the program’s
final SAR, and the cost estimate baseline reported in a prior SAR issued at the
time of a given milestone (Younossi et al. 2007).

The cost growth studies referenced in this section use terminology spe-
cific to the life cycle of DoD programs. Known as milestones, they represent
major decision points with respect to whether a program has demonstrated
the maturity to advance to its next and subsequent phases. In DoD acquisi-
tions, Milestone A (MS A) is the decision that approves a program to enter
the Technology Maturation and Risk Reduction phase. Milestone B (MS B)
authorizes a program to enter the Engineering and Manufacturing Develop-
ment (EMD) phase and for the DoD components to award contracts for EMD.
Milestone B commits the required investment resources to the program. Mile-
stone C (MS C) is the point when a program is reviewed for entrance into the
procurement phase (production and deployment or for limited deployment).
Finally, milestones are typically tied to major contract actions. For example,
MS B usually corresponds to the point where DoD authorizes the program to
engage in an EMD contract.

Table 12.2 presents a summary of historical cost growth factors (CGFs) by
MS B funding category (Arena et al. 2006). The last column in Table 12.2
presents the implied coefficients of variation (CVs) for the reported means
and standard deviations in columns 3 and 5, respectively.

In Table 12.2, the CV data derives from historical observations on program
cost variability by Milestone B funding category. These data can be used to
form the justification basis for choosing a CV value in eSBM. For example,
the data in Table 12.2 suggests that programs may experience (on average)
a CV of 0.50 for development costs for the MS B point estimate and a CV of
0.26 for the overall program cost. The other values for CV in Table 12.2 can
be similarly interpreted.

The data collected in the RAND study indicated a lognormal shape to
the total cost growth factor probability distribution. Similar findings were
observed in the subsequent 2007 and 2008 RAND studies. This is illustrated

∗ SARs are documents prepared by DoD for the U.S. Congress. They cover all major defense
acquisition programs. They are submitted at least annually and are required by Public Law
10 USC 2432. The SARs establish a baseline cost estimate at the time of a program’s MS B.
Changes to that estimate (or “variances”) are made and documented as time passes to explain
increases or decreases in current and future budgets. For a more detailed discussion of SARs,
see Arena et al. (2006) (footnote excerpted from Bolten et al. [2008]).
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TABLE 12.2

RAND Study: MS B Historical Cost Growth Factors (CGFs)

Coefficient of
Funding Number of Standard Variation (Implied
Categories Observations Mean Median Deviation from Data)

Totala 46 1.46 1.44 0.38 0.26
Development 46 1.58 1.34 0.79 0.50

Procurement 44 1.44 1.40 0.42 0.29
Military Construction 10 1.33 1.11 0.82 0.62

Source: Arena, M. V. et al. 2006. Historical cost growth of completed weapon system programs,
Project Air Force, TR-343-AF, ©2006. The RAND Corporation, Santa Monica, CA.

a Total includes development, procurement (adjusted for quantity changes), and military
construction (as applicable).

in Figure 12.9. If similar lognormal assumptions are made for the develop-
ment, procurement, and military construction CGFs in Table 12.2, then Table
12.3 reports the derived 25th, 50th, and the 80th percentile confidence levels
for these MS B categories.

Table 12.4 presents a summary of historical CGF by MS C funding category
(Arena et al. 2006). The last column in Table 12.4 presents the implied CVs for
the reported means and standard deviations in columns 3 and 5, respectively.

Although the data in Tables 12.3 and 12.4 offer insights into the eSBM
parameter CV, they also provide a way to consider values for the eSBM
parameter α. Recall that α is the probability that the point estimate cost PE
will not be exceeded—it represents the baseline against which change in esti-
mated cost is measured. In these data, the point estimate cost is analogous to
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FIGURE 12.9
Lognormal distribution: MS B Total CGF in Table 12.2.
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TABLE 12.3

2006 RAND Study: Implied MS B Cost Growth Factor Percentiles

Funding CGF: 25th Percentile CGF: 50th Percentile CGF: 80th Percentile
Categories Confidence Level Confidence Level Confidence Level

Totala (Figure 12.9) 1.19 1.41 1.75
Development 1.03 1.41 2.10

Procurement 1.14 1.38 1.76
Military Construction Below 1.0 1.12 1.83

a Total includes development, procurement (adjusted for quantity changes), and military
construction (as applicable).

TABLE 12.4

RAND Study: MS C Historical Cost Growth Factors (CGFs)

Number Coefficient of
Funding of Standard Variation
Categories Observations Mean Median Deviation (Implied from Data)

Totala 68 1.16 1.12 0.26 0.22

Development 65 1.30 1.10 0.64 0.49
Procurement 68 1.19 1.17 0.33 0.28

Military Construction 26 0.81 0.77 0.51 0.63

Source: Arena, M. V. et al. 2006. Historical cost growth of completed weapon system programs,
Project Air Force, TR-343-AF, ©2006. The RAND Corporation, Santa Monica, CA.

a Total includes development, procurement (adjusted for quantity changes), and military
construction (as applicable).

a CGF = 1 in Figure 12.9. From this, the percentile of the lognormal distribu-
tion associated with CGF = 1 offers a representative measure of α. Tables 12.5
and 12.6 provide the results of this analysis.

Mentioned earlier, the eSBM parameter α is a judged value, but one that
can be guided by historical experience in ways similar to CV. The results in
Tables 12.5 and 12.6 present historical evidence that α typically falls in the
interval 0.10 ≤ α ≤ 0.50. Moreover, this evidence suggests this interval is true

TABLE 12.5

RAND Study: MS B Historical Data Implied CVs and α’s

Number of Standard
Funding Categories Observations Mean Deviation CV, α

Total 46 1.46 0.38 0.26, 0.09

Development 46 1.58 0.79 0.50, 0.23
Procurement 44 1.44 0.42 0.29, 0.13

Military Construction 10 1.33 0.82 0.62, 0.41
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TABLE 12.6

RAND Study: MS C Historical Data Implied CVs and α’s

Number of Standard
Funding Categories Observations Mean Deviation CV, α

Total 68 1.16 0.26 0.22, 0.29
Development 65 1.30 0.64 0.49, 0.37

Procurement 68 1.19 0.33 0.28, 0.31
Military Construction 26 0.81 0.51 0.63, 0.02

even as a program enters its Milestone C phase. Findings such as these offer,
for the first time, experiential insight into the α parameter that previously has
only been anecdotally understood.

12.4.2 Naval Center for Cost Analysis: Historical Cost Growth Studies

As mentioned earlier, the U.S. NCCA has been collecting historical cost
growth data on the Department of the Navy (DON) programs. Similar to the
referenced RAND studies, the NCCA analyses produced findings that can
guide the choice of eSBM parameters α and CV.

The NCCA data and analysis findings are based on 100 SARs∗ that con-
tain raw data on cost outcomes of historical DON major defense acquisition
programs (MDAPs). As numerous cost growth studies have indicated, the
SARs, while not perfect, are nevertheless a good, convenient, comprehen-
sive, official source of data on cost, schedule, and technical performance of
MDAPs. More importantly, they are tied to milestones and they present total
program acquisition costs across multiple appropriations categories and life
cycle phases.

Of the 100 programs in the NCCA study, 50 were MS B estimates of total
program acquisition cost (development, production, and, less frequently, mil-
itary construction). Platform types included aircraft, helicopters, missiles,
ships and submarines, and a few other systems. From the SAR summary
sheets, these data elements were captured: base year, baseline type, platform
type, baseline and current cost and quantity estimates, changes to date, date
of last SAR, and costs in base-year and then-year dollars. The results from the
analysis of MS B data are summarized in Table 12.7.

Similar to the RAND studies, the point estimate cost in the NCCA study
is analogous to a CGF = 1. Furthermore, the NCCA study similarly found
the probability distribution of MS B cost growth is approximately log-
normal. From this, the percentile of the lognormal distribution associated
with CGF = 1 offers a representative measure of the eSBM parameter α.

∗ The NCCAhas since collected and analyzed cost growth data on over 300 programs. The reader
is directed to the NCCA official website for further information about these findings.
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TABLE 12.7

NCCA Study: MS B Historical Cost Growth Factors and CVs

Without Quantity Adjustment Quantity-Adjusted

Statistics Base-Year $ Then-Year $ Base-Year $ Then-Year $

Mean 1.48 1.84 1.23 1.36
Standard Deviation 0.94 1.60 0.44 0.69
CV 0.63 0.87 0.36 0.51

In Figure 12.10, this is shown by x = 1. From Figure 12.10, and the data in
the last column of Table 12.7, it can be shown that x = 1 falls at the 34th per-
centile confidence level. This means α= 0.34 for the NCCA MS B program
histories in Table 12.7, with respect to quantity-adjusted then-year dollars.

Of the 100 programs in the NCCA study, 43 were MS C estimates of total
program acquisition costs. An analysis similar to that conducted for the
MS B data was done for the MS C information. Results from the analysis of
MS C data are summarized in Table 12.8.

The values in Table 12.8 show an across-the-board drop in the MS C cost
growth statistics when compared to the MS B values. Reasons for this include
the effects of near-settled development costs in these data, but also from
increased program knowledge, maturity, and stability of programs at MS C.

Similar to the RAND studies, the point estimate cost in the NCCA
study is analogous to a CGF = 1. Furthermore, the NCCA study similarly
found the probability distribution of MS C cost growth is approximately
lognormal. From this, the percentile of the lognormal distribution associ-
ated with CGF = 1 offers a representative measure of the eSBM parameter α.

1.361

Confidence
Level

α = 0.34

0.59

1

0
Cost Growth Factor (CGF) x

Lognormal (0.192959, (0.478593)2)

CV = 0.51 = –––– = ––      α = 0.340.69
1.36

σ
μ

FIGURE 12.10
NCCA study: eSBM parameter α for MS B historical programs.
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TABLE 12.8

NCCA Study: MS C Historical Cost Growth Factors and CVs

Without Quantity Adjustment Quantity-Adjusted

Statistics Base-Year $ Then-Year $ Base-Year $ Then-Year $

Mean 1.11 1.08 1.11 1.10
Standard Deviation 0.50 0.58 0.21 0.28
CV 0.45 0.53 0.19 0.26

Confidence
Level

α = 0.40

0.55

1

0 x
1.101

Cost Growth Factor (CGF)

Lognormal (0.0639198, (0.250561)2)

CV = 0.26 = –––– = ––      α = 0.400.28
1.10

σ
μ

FIGURE 12.11
NCCA study: eSBM parameter α for MS C historical programs.

In Figure 12.11, this is shown by x = 1. From Figure 12.11, and the data in the
last column of Table 12.8, it can be shown that x = 1 falls at the 40th percentile
confidence level. This means α = 0.40 for the NCCA MS C program histories
in Table 12.8, with respect to quantity-adjusted then-year dollars.

The historical data in this section is presented to illustrate how it can be
used to guide the choice of eSBM parameters α and CV. The RAND and
NCCA studies exemplify the value such data brings in building defensible,
traceable, and realistic cost uncertainty analyses. The reader is directed to
these and other cited studies (Performance of the Defense Acquisition Sys-
tem 2012) as new information is available subsequent to the publication of
this second edition.

12.5 Summary

The eSBM was created as an alternative to the use of advanced statistical met-
hods for generating measures of cost risk (Garvey 2008, Garvey et al. 2012).
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A central feature of eSBM is its emphasis on defining and costing the impacts
of scenarios as the basis for deriving a range of possible program costs and
assessing cost estimate confidence. As discussed in Section 12.1, scenarios
are written narratives about potential risk events that, if they occur, increase
program cost beyond what was estimated or planned. The aim is to protect
the program from the realization of these scenarios to avoid the potential cost
risk they pose.

Defining scenarios that identify risk events a program may face is an
ideal practice. It builds the rationale and arguments to justify contingencies
that may be needed to protect program cost from the realization of these
events. The clear expression of scenarios, and the description of the risk
events they contain, is a critical part of the analysis process that is often
lacking in practice. Scenarios can lead to cost reserve decisions made with
an understanding of which risk events, if they occur, these reserves can
cover.

Another key feature of eSBM is its simplicity, requiring only a few equa-
tions that can be easily programmed in a spreadsheet. Moreover, its emphasis
on directly integrating program cost histories into its algorithms is an ideal
practice in cost uncertainty analysis. In general, eSBM

• Provides an analytic argument for deriving the amount of cost
reserve needed to guard against well-defined “scenarios.”

• Brings the discussion of “scenarios” and their credibility to the
decision-makers; this is a more meaningful topic to focus on, instead
of statistical abstractions that advanced simulation approaches can
sometimes create.

• Does not require the use of statistical methods to develop a valid
measure of cost risk reserve—the nonstatistical eSBM form.

• Allows percentiles (confidence measures) to be designed into the
approach with a minimum set of statistical assumptions—the statis-
tical eSBM form.

• Allows percentiles and the mean, median, mode, and variance to
be calculated algebraically in near–real time within a simple spread-
sheet environment; this is because eSBM in its statistical form is a
closed form method of moments approach.

• Avoids the requirement to develop probability distribution functions
for all the uncertain variables in a WBS. In eSBM, the only deci-
sion needed is whether the total program cost uncertainty is best
represented by a normal or a lognormal probability distribution.

• Captures correlation indirectly in the analysis by the magnitude
of the coefficient of variation applied in the statistical eSBM; this
means there is no need to induce correlations in an eSBM analysis.
Furthermore, if past program histories are incorporated into the
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eSBM algorithms, then the correlations implied by those programs
are implicitly captured in the analysis.

• Supports a wide range of parameter sensitivity analyses. This facili-
tates traceability and focuses attention on key risk events identified
in the written scenarios that have the potential to drive cost higher
than expected.

In summary, eSBM emphasizes a careful and deliberative approach to cost
uncertainty analysis—one that also encourages the incorporation of program
cost growth histories into its algorithms. eSBM requires the development of
scenarios that represent the program’s “risk story” rather than debate what
type of WBS cost element distribution or correlation value to choose. Time
is best spent building the scenarios (the case arguments) for why and how a
confluence of risk events that form a scenario may increase a program’s cost.
This is where the discussions and analyses are best focused.

Exercises

12.1 Derive Equations 12.3 and 12.4 for the case where a program’s cost
follows a normal distribution.

12.2 Derive Equations 12.7 and 12.8 for the case where a program’s cost
follows a lognormal distribution.

12.3 Suppose the distribution function of a program’s total cost is nor-
mal. Suppose the program’s point estimate cost is $200M and this
was assessed to fall at the 30th percentile. Suppose the type and life
cycle phase of the program is such that 25% variability in cost around
the mean has been historically seen. Suppose the protect scenario was
defined and determined to cost $280M.
a. Compute the mean and standard deviation of CostWBS.
b. Determine the confidence level of the protect scenario cost and its

associated cost reserve.
12.4 In the statistical form of eSBM, α was defined as the probability that the

true program cost will be less than or equal to its point estimate cost PE;
that is, from Equation 12.1.

P(CostWBS ≤ PE) = α

Instead, suppose the program team has a better understanding of the
probability that the true program cost will be less than or equal to its
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FIGURE 12.12
Program cost probability distribution for Exercise 12.4b.

protect scenario cost PS, denoted by αPS; that is,

P(CostWBS ≤ PS) = αPS

a. Modify eSBM Equations 12.3 and 12.4 in terms of αPS instead of α.
b. Suppose a program team developed their protect scenario and esti-

mated its cost to be $174.2M. Suppose the point estimate cost for this
program is $120M. Suppose the program team assessed αPS = 0.70,
CV = 0.30, and that the program’s cost follows a normal distribution.
From this, derive the confidence level α for the program’s point esti-
mate cost. Refer to Figure 12.12 for this exercise.

12.5 Verify the α values in Tables 12.5 and 12.6, if the mean and stan-
dard deviation of each funding category are parameters of a lognormal
distribution.
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13
Cost Uncertainty Analysis Practice Points

The following provides recommended practices and considerations when
performing cost uncertainty analyses. They reflect the authors’ insights and
experiences in developing, refining, and applying many of the techniques
presented in this book.

13.1 Treating Cost as a Random Variable

The cost of a future system can be significantly affected by uncertainty. The
existence of uncertainty implies the existence of a range of possible costs.
How can a decision-maker be shown the chance a particular cost in the range
of possible costs will be realized? The probability distribution is a recom-
mended approach for providing this insight. Probability distributions result
when variables (e.g., weight, power-output, staff-level) used to derive a sys-
tem’s cost randomly assume values across ranges of possible values. For
instance, the cost of a satellite might be derived on the basis of a range of
possible weight values, with each value randomly occurring. This approach
treats cost as a random variable. It is recognition that values for these vari-
ables (such as weight) are not typically known with sufficient precision to
perfectly predict cost, at a time when such predictions are needed. This point
is further expressed by S.A. Book.∗

The mathematical vehicle for working with a range of possible costs is the
probability distribution, with cost itself viewed as a “random variable.”
Such terminology does not imply, of course, that costs are “random”
(though well they may be!) but rather that they are composed of a large
number of very small pieces, whose individual contributions to the whole
we do not have the ability to investigate in a degree of detail sufficient to
calculate the total cost precisely. It is much more efficient for us to recog-
nize that virtually all components of cost are simply “uncertain” and to
find some way to assign probabilities to various possible ranges of costs.
An analogue is the situation in coin tossing where, in theory, if we knew

∗ Book, S. A. 1997. Cost risk analysis—A tutorial. In Risk Management Symposium Proceedings. Los
Angeles, CA: The Aerospace Corporation.

419



420 Probability Methods for Cost Uncertainty Analysis

all the physics involved and solved all the differential equations, we could
predict with certainty whether a coin would fall “heads” or “tails.” How-
ever, the combination of influences acting on the coin is too complicated
to understand in sufficient detail to calculate the physical parameters of
the coin’s motion. So we do the next best thing: we bet that the uncertain-
ties will probably average out in such a way that the coin will fall “heads”
half the time and “tails” the other half. It is much more efficient to con-
sider the deterministic physical process of coin tossing to be a “random”
statistical process and to assign probabilities of 0.50 to each of the two
possible outcomes, heads or tails.

13.2 Risk versus Uncertainty

In this book, we make a distinction between the terms risk and uncertainty.
Risk is the chance of loss or injury. In a situation that includes favorable
and unfavorable events, risk is the probability an unfavorable event occurs.
Uncertainty is the indefiniteness about the outcome of a situation. We ana-
lyze uncertainty for the purpose of measuring risk. In systems engineering,
the analysis might focus on measuring the risk of failing to achieve perfor-
mance objectives, overrunning the budgeted cost, or delivering the system
too late to meet user needs.

13.3 Subjective Probability Assessments

Probability theory is a well-established formalism for quantifying uncer-
tainty. Introduced in Chapter 2, its application to real-world systems
engineering problems often involves the use of subjective probabilities.
Subjective probabilities are those assigned to events on the basis of per-
sonal judgment. They are measures of a person’s degree-of-belief that an
event will occur. Subjective probabilities are associated with one-time, non-
repeatable events—those whose probabilities cannot be objectively deter-
mined from a sample space of outcomes developed by repeated trials,
or experimentation. Subjective probabilities must be consistent with the
axioms of probability (refer to Chapter 2). For instance, if an engineer
assigns a probability of 0.70 to the event “the number of gates for the
new processor chip will not exceed 12,000,” then it must follow the chip
will exceed 12,000 gates with probability 0.30. Subjective probabilities are
conditional on the state of the person’s knowledge, which changes with
time.
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To be credible, subjective probabilities should only be assigned to events
by subject matter experts—persons with significant experience with events
similar to the one under consideration. Instead of assigning a single subjec-
tive probability to an event, subject experts often find it easier to describe
a function that depicts a distribution of probabilities. Such a distribution
is sometimes called a subjective probability distribution. Subjective prob-
ability distributions are governed by the same mathematical properties of
probability distributions associated with discrete or continuous random vari-
ables (described in Chapter 3). Subjective probability distributions are most
common in cost uncertainty analysis, particularly on the input-side of the
process (refer to Figure 1.3 and the case discussions in Chapter 6). Because of
their nature, subjective probability distributions can be thought of as “belief
functions.” They describe a subject expert’s belief in the distribution of prob-
abilities for an event under consideration. Probability theory provides the
mathematical formalism with which we operate (add, subtract, multiply, and
divide) on these belief functions.

13.4 Subjectivity in Systems Engineering and Analysis Problems

Systems engineering and analysis practices often necessitate the use of histor-
ical experience and expert judgments. These aspects must be recognized and
properly addressed when designing and applying the formal methods in this
book. What then is our analytic perspective in dealing with the ever-present
reality of incomplete information, knowledge, and judgments in systems
engineering and analysis problems? Consider the view by R.L. Keeney, a
renowned theoretician, practitioner, and Ramsey medalist∗ in field of risk
and decision analysis.

The final issue concerns the charge that value (utility) models are not
scientific or objective. With that, I certainly agree in the narrow sense.
Indeed values are subjective, but they are undeniably a part of deci-
sion situations. Not modeling them does not make them go away.
It is simply a question of whether these values are included implic-
itly and perhaps unknowingly in a decision process or whether there
is an attempt to make them explicit and consistent and logical. In

∗ The Frank P. Ramsey Medal is the highest award of the Decision Analysis Society of the Insti-
tute for Operations Research and Management Science (INFORMS). It is named in honor of
Frank Plumpton Ramsey, a Cambridge University mathematician who pioneered decision the-
ory in the twentieth century. His 1926 essay “Truth and Probability” anticipated many of the
developments in mathematical decision theory later made by renowned scholars John von
Neumann, Oskar Morgenstern, and Leonard J. Savage.
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a broader sense, the systematic development of a model of values
is definitely scientific and objective. It lays out the assumptions on
which the model is based, the logic supporting these assumptions, and
the basis for data (that is, specific value judgments). This makes it
possible to appraise the implications of different value judgments. All
of this is very much in the spirit of scientific analysis. It seems more
reasonable—even more scientific—to approach important decisions with
the relevant values explicit and clarified rather than implicit and vague.

Keeney, R.L. (1992)

13.5 Correlation

As shown throughout this book, correlation can have a significant effect on
the measure of a program’s cost risk. Correlations can exist across pairs of
work breakdown structure (WBS) element costs. It can also exist between
variables that define a WBS element’s cost. The importance of correlation as
a critical consideration in cost uncertainty analysis cannot be understated.
Ignoring correlation is equivalent to setting its value to zero between all cost
element pairs, which can underestimate the program’s true measure of cost
risk (refer to Figure 9.2).

Statistical theory offers a number of ways to measure correlation. Two com-
mon measures are Pearson’s product-moment correlation and Spearman’s
rank correlation. Subtleties concerning these measures must be understood
to avoid errors in a cost uncertainty analysis. Pearson’s product-moment
correlation strictly measures the linearity between two random variables.
Spearman’s rank correlation measures whether a change in the value of one
random variable is associated with a linear or nonlinear change in the value
of another. Thus, Pearson and Spearman measures of correlation can be
very different. This is illustrated in Figure 5.10 and discussed extensively in
Chapters 8 and 9. Mathematically, the variance of a sum of random variables
is a function of Pearson’s product-moment correlation, not Spearman’s rank
correlation. Thus, Pearson correlation is the only technically correct mea-
sure of correlation to use when computing the variance of a sum of WBS
element costs.

Pearson product-moment correlations are automatically captured in the
results from Monte Carlo simulations where functional relationships between
WBS element costs are present. Thus, if cost associations across and within
the WBS are specified by functional relationships, then there is no need to
create a correlation matrix. In fact, doing so can lead to a double count-
ing correlation that can lead to overestimating a program’s total cost risk
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(refer to Figures 9.3 and 9.4). Pearson correlations implied by logically
defined functional relationships, which determine a WBS element’s cost,
are more intuitive for reviewers of the analysis than debating the merits of
subjectively assigned correlations between some or all WBS cost element
pairs.

Do not introduce rank correlation into cost uncertainty analysis, whether
using Monte Carlo simulation or method of moments approaches.∗ If rank
correlations are introduced into an analysis that is already capturing Pearson
product-moment correlations (e.g., from the presence of functional relation-
ships) then this leads to (1) double counting the effects of correlation on a
program’s total cost risk and (2) an analysis with mixed types of correlation
measures leading to results whose interpretation is unknown.

Care must be taken if it is necessary to subjectively assign Pearson corre-
lations. Pearson correlations can be restricted to a subinterval of −1 ≤ ρ ≤ 1.
For example, the correlation coefficient of the bivariate lognormal distribu-
tion is bounded by the interval −e−1 < ρ< 1. Thus, the Pearson correlation
between any two random variables cannot be arbitrarily assigned a value.
Caution is needed to avoid potentially assigning impermissible values. If
analysts need to assign values to correlations not automatically captured
in a Monte Carlo simulation or a method of moments approach, then do
so in accordance with the guidelines in Chapter 9. It is better to incorpo-
rate a judged level of correlation between WBS element costs known to
co-vary than ignoring their associations altogether. The latter comes with the
implicit assignment of zero to the correlation between such pairs of WBS ele-
ment costs. Finally, sensitivity analyses should always be conducted around
assigned correlation values to assess the reasonableness of their effects on a
program’s overall measure of cost risk.

13.6 Capturing Cost-Schedule Uncertainties

Decision-makers require understanding how uncertainties between a sys-
tem’s cost and schedule interact. A decision-maker might bet on a “high-risk”
schedule in the hopes of keeping the system’s cost within requirements. On
the other hand, the decision-maker may be willing to assume “more cost” for
a schedule with a small chance of being exceeded. This is a common trade-off

∗ The Lurie–Goldberg algorithm is an alternative to using rank correlations in a Monte Carlo
simulation. Published in the late 1990s, the algorithm provides a method of generating
Pearson-correlated random numbers.
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faced by decision-makers on systems engineering projects. The family of
distributions in Chapter 7 provides an analytical basis for computing this
trade-off, using joint and conditional cost-schedule probabilities. This fam-
ily is a set of mathematical models that might be hypothesized for capturing
the joint interactions between cost and schedule.

A parameter required by these models is the correlation between cost
and schedule.∗ Direct computation is one approach for determining this
parameter, as illustrated in Case Discussion 6.2. However, in some instances
this might not be analytically possible or practical. Another approach is to
obtain an estimate of the correlation from sample values generated by Monte
Carlo simulation. This is a reasonable method that can be done regardless
of the complexity of the cost-schedule estimation relationships. Subjective
assessments might be used. However, care must again be taken to specify
an admissible correlation. Furthermore, there may already exist an implied
correlation by virtue of how the cost-schedule estimation relationships are
mathematically defined (refer to Case Discussion 6.2). Subjectively specifying
a correlation when one is already present (only its magnitude is unknown) is
double counting correlation.

13.7 Distribution Function of a System’s Total Cost

Cost analysts should study the mathematical relationships they define in
a system’s work breakdown structure, to see whether analytical approx-
imations to the distribution function of (a system’s total cost) can be
argued. Analytical approximations can reveal much information about the
“cost-behavior” in a system’s WBS. Section 6.2.2 presented five cases when
the normal distribution approximates the distribution function of a system’s
total cost. There are many reasons for this approximation. Primary among
them is a summation of WBS cost element costs.

Seen in the Chapter 6 case discussions, it is typical to have a mixture
of independent and correlated cost element costs within a system’s WBS.
Because of the central limit theorem (Theorem 5.10), the greater the num-
ber of independent cost element costs the more it is that the distribution
function of CostWBS is approximately normal. The central limit theorem is
very powerful. It does not take many independent cost element costs for the
distribution function of CostWBS to move toward normality. Such a move is

∗ Because these models treat cost and schedule as correlated random variables, it is important
to recognize that they do not capture causal impacts that schedule compression or extension has
on cost.
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evidenced when (1) a sufficient number of independent cost element costs are
summed and (2) when no cost element’s cost distribution has a much larger
standard deviation than the standard deviations of the other cost element
cost distributions. If conditions in the WBS result in cost being positively
skewed, then the lognormal often approximates the distribution function of
program cost.

Monte Carlo simulation is another approach for developing an empirical
approximation to the distribution function of program cost. The Monte Carlo
method, discussed in Section 6.3, is often needed when a system’s WBS con-
tains cost estimating relationships too complex for strict analytical studies.
In Monte Carlo simulations, a question frequently asked is “How many tri-
als are necessary to have confidence in the output of the simulation?” As a
guideline, 10,000 trials (samples) should be sufficient to meet the precision
requirements for most Monte Carlo simulations; particularly those for cost
uncertainty analyses.

This practice point provides guidance for approximating the probability
distribution of a program’s total cost CostWBS. The method of moments pro-
duces an analytically derived measure of the mean and variance of CostWBS.
Monte Carlo simulation produces an empirically derived basis for these
two measures, as well as an empirically derived probability distribution of
CostWBS. To produce the probability distribution of CostWBS using the method
of moments, the form or shape of this distribution must be assumed. Best
practice observations, published evidence, and statistical tests indicate the
probability distribution of CostWBS is often well approximated by normal
or lognormal forms. Seen throughout this book, the normal and lognormal
distributions well approximate the empirically derived probability distribu-
tion of CostWBS. There are many technical and empirically observed reasons
for this. Primary among them is that a program’s total cost is a summation
of WBS element costs, including a summation of costs derived from non-
linear cost estimation relationships. Within the WBS, it is typical to have
a mixture of independent and correlated element costs. The greater the
number of independent WBS element costs, the more it is that the proba-
bility distribution of CostWBS is approximately normal. Why is this? Men-
tioned earlier, it is essentially the phenomenon explained by the central limit
theorem.

The central limit theorem is very powerful in that it does not take many
independent WBS element costs for the probability distribution of CostWBS to
approach normality. This central tendency is evidenced when (1) a sufficient
number of independent WBS element costs are summed and (2) no WBS ele-
ment’s probability distribution has a much larger standard deviation than the
standard deviations of the other WBS element distributions. When conditions
in the WBS result in CostWBS being positively skewed (i.e., a nonnormal distri-
bution), then the lognormal often well approximates the distribution function
of CostWBS. There is an extensive theoretical and practical discussion on this
topic in Young (1995), Garvey (2000), and in Section 5.3.
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13.8 Benefits of Cost Uncertainty Analysis

Cost uncertainty analysis provides decision-makers many benefits and
important insights, discussed next.

Establishing a Cost and Schedule Risk Baseline: Baseline probability
distributions of a system’s cost and schedule can be developed for a given
system configuration, acquisition strategy, and cost-schedule estimation
approach. This baseline provides decision-makers visibility into potentially
high-payoff areas for risk reduction initiatives. Baseline distributions assist in
determining a system’s cost and schedule that simultaneously have a spec-
ified probability of not being exceeded (Chapter 7). They can also provide
decision-makers an assessment of the likelihood of achieving a budgeted (or
proposed) cost and schedule, or cost for a given feasible schedule.

Determining Cost Reserve: Cost uncertainty analysis provides a basis for
determining cost reserve as a function of the uncertainties specific to a sys-
tem. The analysis provides the direct link between the amount of cost reserve
to recommend and the probability that a system’s cost will not exceed a pre-
scribed (or desired) magnitude (refer to Figure 1.6). An analysis should be
conducted to verify the recommended cost reserve covers fortuitous events
(e.g., unplanned code growth, unplanned schedule delays) deemed possi-
ble by the system’s engineering team. Finally, it is sometimes necessary to
allocate cost reserve dollars into the cost elements of a system’s WBS. The
reader is directed to the Book Young algorithm∗ as an approach for making
this allocation.

Conducting Risk Reduction Trade-Off Analyses: Cost uncertainty anal-
yses can be conducted to study the payoff of implementing risk reduction
initiatives (e.g., rapid prototyping) on lessening a system’s cost and sched-
ule risks. Furthermore, families of probability distribution functions can be
generated to compare the cost and cost risk impacts of alternative system
requirements, schedule uncertainties, and competing system configurations
or acquisition strategies.

Documenting the Cost Uncertainty Analysis: The validity and mean-
ingfulness of a cost uncertainty analysis relies on the engineering team’s
experience, judgment, and knowledge of the system’s uncertainties. Formu-
lating and documenting a supporting rationale that summarizes the team’s
collective insights into these uncertainties is the critical part of the process.
Without a well-documented rationale, the credibility of the analysis can be
easily questioned. The details of the analysis methodology are important and
should also be documented. The methodology must be technically sound

∗ Book, S. A. 1997. Cost risk analysis—A tutorial. In Risk Management Symposium Proceedings.
Los Angeles, CA: The Aerospace Corporation.
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and offer value-added problem structure, analyses, and insights otherwise
not visible. Decisions that successfully eliminate uncertainty, or reduce it to
acceptable levels, are ultimately driven by human judgment. This at best is
aided by, not directed by, the methods presented in this book.

Management Perspectives: Cost risk analysis inputs should have a trace-
able and defensible basis in terms of their origin, pedigree, and soundness.
Inputs derived from or based on evidence, historical data, or subject opinion
should be documented and summarized in ways that support independent
reviews.

The process of defining risk scenarios or narratives is a good practice. It
builds the rationale and case arguments to justify the reserve needed to pro-
tect program cost from the realization of unwanted events. This is lacking in
Monte Carlo simulation if designed as arbitrary randomizations of possible
program costs, a practice which can lead to reserve recommendations absent
clear program context for what these funds are to protect.

Analyze the consequences of identified risk scenarios on cost. Use these
findings as a basis for identifying the amount of cost reserve needed to protect
the budget from unexpected cost increases. Read from the cost probability
distribution the percentile associated with the recommended cost reserve, to
determine its level of confidence instead of arbitrarily budgeting to a prede-
termined confidence level. Time is best spent building the analysis and case
arguments to justify how a confluence of identified risk events, that form one
or more risk scenarios, may drive the cost of a program to a particular per-
centile. This is the perspective from which to make risk-informed budget and
cost risk reserve decisions.

As a management practice, encourage and emphasize a careful and delib-
erative approach to cost risk analysis, regardless of the analysis method
employed. Require the development of realistic excursions from a system’s
technical baseline or its cost analysis requirements description document that
represents its risk scenarios.
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14
Collected Works of Dr. Stephen A. Book

This chapter lists the major technical works of Dr. Stephen A. Book that
advanced cost risk analysis theory and practice. The chapter is orga-
nized into works that were formally published in professional journals and
those that were delivered as briefings to various conferences and technical
gatherings.

14.1 Textbooks

1. Book, S. A. 1995. Essentials of Statistics. New York: Mc Graw Hill.

2. Book, S. A. and M. J. Epstein. 1982. Statistical Analysis: Resolving Decision Problems
in Business and Management. Glenview, IL: Scott, Foresman and Co.

3. Book, S. A. 1977. Statistics: Basic Techniques for Solving Applied Problems. New York:
McGraw Hill.

14.2 Journal Publications

Contact the professional organization associated with the identified journal to inquire
about the availability of these papers.

1. Book, S. 2007. Quantifying the relationship between schedule and cost. The
Measurable News, Winter 2007–2008, 11–15.

2. Book, S. and P. Young. 2006. The trouble with R2. Journal of Parametrics, 25(1),
87–114.

3. Book, S. 2006. Unbiased percentage-error CERs with smaller standard errors. The
Journal of Cost Analysis & Management, 8(1), 55–71.

4. Book, S. 2006. The mathematics of deriving factor CERs from cost data. Parametric
World, 2006, pp. 16–22.

5. Book, S. 2006 (Spring). ‘Earned schedule’ and its possible unreliability as an indi-
cator. The Measurable News, Project Management Institute College of Performance
Management, Spring 2006, 24–30 (Correction Note: Fall 2006, 22–24).

6. Book, S. 2003. Issues associated with basing decisions on schedule variance in an
earned value management system. National Estimator, Society of Cost Estimating
and Analysis, Fall 2003, 11–15.
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7. Book, S. 1999. Problems of correlation in the probabilistic approach to cost
analysis. In Proceedings of the Fifth Annual U.S. Army Conference on Applied Statis-
tics, October 19–21, U.S. Army Research Laboratory, Adelphi, MD, Report No.
ARL-SR-110, July 2001, pp. 77–86.

8. Book, S. and Lao, N. (1999, November). Minimum-percentage-error regression
under zero-bias constraints. In Proceedings of the Fourth Annual U.S. Army Confer-
ence on Applied Statistics, October 21–23, 1998, U.S. Army Research Laboratory,
Adelphi, MD, Report No. ARL-SR-84, pp. 47–56.

9. Book, S. and Young, P. 1997. General-error regression for deriving cost-estimating
relationships. The Journal of Cost Analysis, 14(2), 1–28. Later presented at 33rd
DODCAS, Williamsburg, VA, February 1–4, 2000.

10. Book, S. 1996. The learning rate’s overpowering impact on cost estimates and
how to diminish it (with E.L. Burgess). Journal of Parametrics, 16, 33–57.

11. Book, S. 1982. Least-absolute-deviations position finding. Naval Research Logistics
Quarterly, 29, 235–246.

14.3 Conference Presentations and Proceedings

Contact the professional organization associated with the identified conference to
inquire about the availability of these presentations.

1. Book, S. (June 26–29, 2012). Significant reasons to eschew log-log OLS regres-
sion when deriving estimating relationships. In 2012 SCEA/ISPA Joint Annual
Conference and Training Workshop, Orlando, FL.

2. Book, S. (June 8–11, 2010). Schedule risk analysis: Why it is important and how to
do it. In Integration Training Track, 2010 SCEA-ISPA Joint Annual Conference & Train-
ing Workshop, San Diego, CA. Also presented to six previous SCEA-ISPA Annual
Conferences.

3. Book, S. (June 8–11, 2010). Multiplicative-error regression. In Practitioner Training
Track, 2010 ISPA/SCEA Joint Annual Conference & Training Workshop, San Diego,
CA. This work was also presented to six previous ISPASCEA Annual Conferences
and the European Aerospace Working Group on Cost Engineering (EACE), Cranfield
University, Milton Keynes/Bedford, U.K., October 19–21, 2004.

4. Book, S., M. Broder, and D. Feldman. (June 2–4, 2009). Statistical Foundations of
adaptive cost-estimating relationships. In ISPA/SCEA Joint Annual Conference &
Training Workshop, St Louis, MO.

5. Book, S. (April 26–28, 2009). Quantifying the relationship between cost and
schedule. In NASA Cost Symposium, Cape Canaveral, FL. Also presented to First
Annual Department of Energy Cost Analysis and Training Symposium, Santa Clara,
CA, May 19–20, 2010 and 77th MORS Symposium, Fort Leavenworth, KS, June
16–18, 2009.

6. Book, S. 2009 (Summer). Combining probabilistic estimates to reduce uncertainty.
Journal of Cost Analysis and Parametrics, 47–54. Previously presented to NASA
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Program Management Conference, Daytona Beach, FL, February 24–25, 2009 and
NASA Cost Analysis Symposium, Portland, OR, August 26–28, 2008.

7. Book, S. 2009. Estimating using subsystem vs. box-level CERs: In-progress
report (with N.J. Menton). In 42nd Department of Defense Cost Analysis Symposium
(DODCAS), Williamsburg, VA, February 2009.

8. Book, S. and M. Broder. (June 24–27, 2008). Adaptive cost-estimating relation-
ships. In 2008 SCEA-ISPA Joint Annual Conference & Training Workshop, Industry
Hills, CA.

9. Book, S. 2008. Cost estimating initiatives at NASA (with T.J. Coonce). In 41st
DODCAS, Williamsburg, VA, February 18–22, 2008.

10. Book, S. 2008. Cost risk as a discriminator in trade studies. In Department
of the Navy Cost Analysis Symposium, Quantico, VA, September 4, 2008. Also
presented to 76th MORS Symposium, New London, CT, June 10–12, 2008; SCEA-
ISPA Joint International Conference & Workshop, New Orleans, LA, June 12–16,
2007; and NASA Project Management Conference, Galveston, TX, February 7–8,
2007.

11. Book, S. 2008. The meaning and use of S-curves in cost estimating. In NASA
Project Management Conference, Daytona Beach, FL, February 26–27, 2008 and
NASA Cost Symposium, Denver, CO, July 17–19, 2007.

12. Book, S. February 14–17, 2006. Prediction bounds for general-error-regression
CERs. In 39th Department of Defense Cost Analysis Symposium (DODCAS),
Williamsburg, VA.

13. Book, S. 2006. Unbiased percentage-error CERs with smaller standard errors. The
Journal of Cost Analysis & Management, 8(1), 55–71.

14. Book, S. 2006. Allocating risk dollars back to WBS elements. In ISPA/SCEA Joint
Conference and Training Workshop, Seattle, WA. Also presented at Department of the
Navy Cost Analysis Symposium, Quantico, VA, October 11, 2007; 40th DODCAS,
Williamsburg, VA, February 13–16, 2007; Joint Meeting of SSCAG/EACE/SCAF,
London, U.K., September 19–21, 2006; and NASA Cost Symposium, Cleveland,
OH, June 20–22, 2006.

15. Book, S. 2006. IRLS/MUPE CERs are not MPE-ZPB CERs. In ISPA International
Conference, Bellevue, WA, May 23–26, 2006.

16. Book, S. 2006. Prediction bounds for general-error-regression CERs. In SCEA
National Conference, Tysons Corner, VA, June 13–16, 2006. Also presented to
EACE, Abbey Wood, Bristol, U.K., April 26–27, 2006; 39th DODCAS, Williamsburg,
VA, February 14–17, 2006; 72nd MORS Symposium, Monterey, CA, June 22–24,
2004; and ISPA International Conference, Frascati, Italy, May 10–12, 2004.

17. Book, S. 2005. A theory of modeling correlations for use in cost-risk analysis.
In NASA Project Management Conference, Galveston, TX, March 21–22, 2006. Also
presented to 73rd MORS Symposium, West Point, NY, June 21–23, 2005 and SCEA-
ISPA Joint International Conference & Educational Workshop, Broomfield, CO, June
14–17, 2005.

18. Book, S. 2005. Risks in costing software vs. high confidence in estimates. In SCEA-
ISPA Joint International Conference & Educational Workshop, Broomfield, CO, June
14–17, 2005.
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19. Book, S. 2005. Universal risk issues in source selection. In 38th DOD-CAS,
Williamsburg, VA, February 15–18, 2005.

20. Book, S. 2005. Performance of the Interquartile Range (IQR) as a marker for the
Cost Readiness Level (CRL) quality metric. In NASA Cost Analysis Symposium,
New Orleans, LA, April 12–14, 2005.

21. Book, S. (October 19–21, 2004). Multiplicative-error regression. In European
Aerospace Working Group on Cost Engineering (EACE), Cranfield University, Milton
Keynes/Bedford, U.K. (also presented to 2010 ISPA/SCEA Joint Annual Conference
& Training Workshop (Practitioner Training Track), San Diego, CA, October 19–21,
2004; and six previous ISPA/SCEA Annual Conferences).

22. Book, S. 2004. How to make your point estimate look like a cost-risk analysis (so
it can be used for decision-making). In SCEA 2004 National Conference, Manhattan
Beach, CA, June 15–18, 2004; SCEA 2004 National Conference, Manhattan Beach,
CA, June 15–18, 2004. Also presented to EACE, Immenstadt, Germany, November
4–6, 2003.

23. Book, S., and E. Burgess. 2003. A way out of the learning-rate morass: Quantity
as an Independent Variable (QAIV). In 36th Annual DoD Cost Analysis Symposium
(Advanced Training Track), Williamsburg, VA.

24. Book, S. 2002. Issues in specifying a triangular cost distribution. In ISPA Interna-
tional Conference, San Diego, CA, May 21–24, 2002.

25. Book, S. 2001. Risk assessment and probability. In European Aerospace Working
Group on Cost Engineering, Noordwijk, the Netherlands, December 6, 2001.

26. Book, S. 2001. Effects of inflation on earned-value-based EACs (with J.E. Gayek).
In Joint ISPA/SCEA International Conference, Tysons Corner, VA, June 12–15, 2001.

27. Book, S. 2001. Estimating probable system cost. Crosslink: The Aerospace Cor-
poration’s magazine of advances in aerospace technology, Winter 2000/2001,
pp. 12–21. Also presented to EACE, Frascati, Italy, May 2–4, 2001.

28. Book, S. 2000. Do not sum earned-value-based WBS-element estimates-at-
completion. In SCEA National Conference & Training Workshop, Manhattan Beach,
CA, June 13–16, 2000.

29. Book, S. 1999. What we can and cannot learn from earned value. In EACE,
Frascati, Italy, November 17–18, 1999. Also presented at SCEA National Confer-
ence, San Antonio, TX, June 8–11, 1999.

30. Book, S. 1999. Costs of reusable launch vehicles: Should we pay up front to
build in high reliability or pay later to buy more vehicles? In AIAA Space Tech-
nology & Applications International Forum (STAIF-99), Albuquerque, NM, January
31–February 2, 1999.

31. Book, S. 1999. Why correlation matters in cost estimating. In 32nd DODCAS,
Williamsburg, VA, February 2–5, 1999.

32. Book, S. 1998. Cost risk as a figure of merit. In 31st DODCAS, Williamsburg, VA,
February 3–6, 1998.

33. Book, S. A. 1997. Cost risk analysis—A tutorial. In Risk Management Symposium
Proceedings, Los Angeles, CA, The Aerospace Corporation.
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34. Book, S. 1996. Fictions we live by. In 29th DODCAS, Leesburg, VA, February 21–
23, 1996.

35. Book, S. 1994. Do not sum most likely costs. In 1994 NASA Cost Estimating
Symposium, Houston, TX, November 7–10, 1994.

36. Book, S. 1991. System error analysis based on one-at-a-time perturbations (with
M.R. Chernick). Mathematical and Computer Modelling [sic—–U.K. Publication],
15, 77–84.

37. Book, S. 1990. Deriving cost-estimating relationships using weighted least-
squares regression. In IAA/ISPA/AIAA Space Systems Cost Methodologies and
Applications Symposium, San Diego, CA, p. 19.

38. Book, S. A. and P. H. Young. 1990. Monte Carlo generation of total-cost distri-
butions when WBS-element costs are correlated. In 24th Annual Department of
Defense Cost Analysis Symposium, Leesburg, VA, September 6–7, 1990.

39. Book, S. A. and P. H. Young. 1990. Optimality considerations related to the
USCM-6 ‘Ping factor’. In ICA/NES National Conference, Los Angeles, CA, p. 40.

40. Book, S., W. Brady, and P. Mazaika. 1980. The nonuniform GPS constellation. In
IEEE 1980 Position Location and Navigation Symposium Record, Atlantic City, NJ,
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Appendix A: Statistical Tables and
Related Integrals

A.1 Percentiles of the Standard Normal Distribution

Table A.1 presents values of the cumulative distribution function of the
standard normal distribution. These values are denoted by FZ(z), which is
given by

FZ(z) = P(Z ≤ z) =
z�

−∞

1√
2π

e−y2/2 dy (A.1)

Example: (a) What is P(Z ≤ 0.33)? (b) What is P(Z ≤ −0.33)?

a. From Equation A.1 FZ(0.33)= P(Z ≤ 0.33); from Table A.1 FZ(0.33) =
0.6293

b. Since Z ∼ N(0, 1) we have P(Z ≤ −z) = P(Z > z) = 1 − P(Z ≤
z); therefore, in this example, FZ(−0.33) = P(Z ≤ −0.33) = P(Z >

0.33) = 1 − P(Z ≤ 0.33) = 1 − 0.6293 = 0.3707

A.2 Kolmogorov–Smirnov Goodness-of-Fit Test

Table A.2 is used for the Kolmogorov–Smirnov goodness-of-fit test. The val-
ues in Table A.2 apply only when all the parameters of the hypothesized distribution
are known, that is, none of the distribution’s parameters are estimated (or
derived) from the sample data. The reader is directed to Law and Kelton
(1991) and Stephens (1974) for an expanded discussion of Table A.2. In Table
A.2, D is the Kolmogorov–Smirnov test statistic defined as

D = max
x

∣∣∣FX(x) − F̂X(x)

∣∣∣
This statistic measures the largest vertical distance between the hypothe-
sized cumulative distribution function FX(x) and the empirical (observed)
cumulative distribution function F̂X(x), developed from the sample data.
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TABLE A.1

Percentiles of the Standard Normal Distribution (the 3-Digit Columns are z, the
8-Digit Columns are FZ(z))

0.00 0.5000000 0.21 0.5831661 0.42 0.6627572 0.63 0.7356528

0.01 0.5039894 0.22 0.5870644 0.43 0.6664021 0.64 0.7389138
0.02 0.5079784 0.23 0.5909541 0.44 0.6700314 0.65 0.7421540

0.03 0.5119665 0.24 0.5948348 0.45 0.6736448 0.66 0.7453732
0.04 0.5159535 0.25 0.5987063 0.46 0.6772419 0.67 0.7485712
0.05 0.5199389 0.26 0.6025681 0.47 0.6808225 0.68 0.7517478

0.06 0.5239223 0.27 0.6064198 0.48 0.6843863 0.69 0.7549030
0.07 0.5279032 0.28 0.6102612 0.49 0.6879331 0.70 0.7580364

0.08 0.5318814 0.29 0.6140918 0.50 0.6914625 0.71 0.7611480
0.09 0.5358565 0.30 0.6179114 0.51 0.6949743 0.72 0.7642376

0.10 0.5398279 0.31 0.6217195 0.52 0.6984682 0.73 0.7673050
0.11 0.5437954 0.32 0.6255158 0.53 0.7019441 0.74 0.7703501
0.12 0.5477585 0.33 0.6293000 0.54 0.7054015 0.75 0.7733727

0.13 0.5517168 0.34 0.6330717 0.55 0.7088403 0.76 0.7763728
0.14 0.5556700 0.35 0.6368306 0.56 0.7122603 0.77 0.7793501

0.15 0.5596177 0.36 0.6405764 0.57 0.7156612 0.78 0.7823046
0.16 0.5635595 0.37 0.6443087 0.58 0.7190427 0.79 0.7852362

0.17 0.5674949 0.38 0.6480272 0.59 0.7224047 0.80 0.7881447
0.18 0.5714237 0.39 0.6517317 0.60 0.7257469 0.81 0.7910300
0.19 0.5753454 0.40 0.6554217 0.61 0.7290692 0.82 0.7938920

0.20 0.5792597 0.41 0.6590970 0.62 0.7323712 0.83 0.7967307
0.84 0.7995459 1.05 0.8531409 1.26 0.8961653 1.47 0.9292191

0.85 0.8023375 1.06 0.8554277 1.27 0.8979576 1.48 0.9305633
0.86 0.8051055 1.07 0.8576903 1.28 0.8997274 1.49 0.9318879
0.87 0.8078498 1.08 0.8599289 1.29 0.9014746 1.50 0.9331928

0.88 0.8105704 1.09 0.8621434 1.30 0.9031995 1.51 0.9344783
0.89 0.8132671 1.10 0.8643339 1.31 0.9049020 1.52 0.9357445

0.90 0.8159399 1.11 0.8665004 1.32 0.9065824 1.53 0.9369916
0.91 0.8185888 1.12 0.8686431 1.33 0.9082408 1.54 0.9382198

0.92 0.8212136 1.13 0.8707618 1.34 0.9098773 1.55 0.9394292
0.93 0.8238145 1.14 0.8728568 1.35 0.9114919 1.56 0.9406200
0.94 0.8263912 1.15 0.8749280 1.36 0.9130850 1.57 0.9417924

0.95 0.8289439 1.16 0.8769755 1.37 0.9146565 1.58 0.9429466
0.96 0.8314724 1.17 0.8789995 1.38 0.9162066 1.59 0.9440826

0.97 0.8339768 1.18 0.8809998 1.39 0.9177355 1.60 0.9452007
0.98 0.8364569 1.19 0.8829767 1.40 0.9192433 1.61 0.9463011

0.99 0.8389129 1.20 0.8849303 1.41 0.9207301 1.62 0.9473839
1.00 0.8413447 1.21 0.8868605 1.42 0.9221961 1.63 0.9484493
1.01 0.8437523 1.22 0.8887675 1.43 0.9236414 1.64 0.9494974

1.02 0.8461358 1.23 0.8906514 1.44 0.9250663 1.65 0.9505285

(Continued)
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TABLE A.1 (Continued)

Percentiles of the Standard Normal Distribution (the 3-Digit Columns are z, the
8-Digit Columns are FZ(z))

1.03 0.8484950 1.24 0.8925122 1.45 0.9264707 1.66 0.9515428
1.04 0.8508300 1.25 0.8943502 1.46 0.9278549 1.67 0.9525403

1.68 0.9535214 1.89 0.9706211 2.10 0.9821356 2.31 0.9895559
1.69 0.9544861 1.90 0.9712835 2.11 0.9825709 2.32 0.9898296

1.70 0.9554346 1.91 0.9719335 2.12 0.9829970 2.33 0.9900969
1.71 0.9563671 1.92 0.9725711 2.13 0.9834143 2.40 0.9918025

1.72 0.9572838 1.93 0.9731967 2.14 0.9838227 2.50 0.9937903
1.73 0.9581849 1.94 0.9738102 2.15 0.9842224 2.60 0.9953388
1.74 0.9590705 1.95 0.9744120 2.16 0.9846137 2.70 0.9965330

1.75 0.9599409 1.96 0.9750022 2.17 0.9849966 2.80 0.9974448
1.76 0.9607961 1.97 0.9755809 2.18 0.9853713 2.90 0.9981341

1.77 0.9616365 1.98 0.9761483 2.19 0.9857379 3.00 0.9986500
1.78 0.9624621 1.99 0.9767046 2.20 0.9860966 3.10 0.9990323

1.79 0.9632731 2.00 0.9772499 2.21 0.9864475 3.20 0.9993128
1.80 0.9640697 2.01 0.9777845 2.22 0.9867907 3.30 0.9995165
1.81 0.9648522 2.02 0.9783084 2.23 0.9871263 3.40 0.9996630

1.82 0.9656206 2.03 0.9788218 2.24 0.9874546 3.50 0.9997673
1.83 0.9663751 2.04 0.9793249 2.25 0.9877756 3.60 0.9998409

1.84 0.9671159 2.05 0.9798179 2.26 0.9880894 3.70 0.9998922
1.85 0.9678433 2.06 0.9803008 2.27 0.9883962 3.80 0.9999276

1.86 0.9685573 2.07 0.9807739 2.28 0.9886962 3.90 0.9999519
1.87 0.9692582 2.08 0.9812373 2.29 0.9889894 4.00 0.9999683
1.88 0.9699460 2.09 0.9816912 2.30 0.9892759 5.00 0.9999997

TABLE A.2

Modified Critical Values for the Kolmogorov–Smirnov Test Statistic

α 1 − α c1−α

0.010 0.990 1.628
0.025 0.975 1.480

0.050 0.950 1.358
0.100 0.900 1.224

0.150 0.850 1.138

Notes: Applicable when the parameters of the hypothesized distribution
FX(x) are known and not estimated from the sample data. Let n

denote the number of samples. If
(√

n + 0.12 + 0.11√
n

)
D > c1−α reject

the claim that the observed values come from the hypothesized
distribution; otherwise accept it.
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A.3 Integrals Related to the Normal Probability Density Function

The following integrals are often useful in proofs and computations involv-
ing the normal probability density function (PDF). In each integral, a is a real
number and b is a positive real number. The first integral is the integral of
the normal PDF. The second integral is the mean of a normally distributed
random variable. The third integral is the second moment of a normally
distributed random variable, with mean a and variance b2.

∞�
−∞

1√
2πb

e− (x−a)2

2b2 dx = 1 (A.2)

∞�
−∞

x
1√
2πb

e− (x−a)2

2b2 dx = a (A.3)

∞�
−∞

x2 1√
2πb

e− (x−a)2

2b2 dx = a2 + b2 (A.4)

A.4 Sums of Independent Uniform Random Variables

Suppose the random variable U is defined as the sum of n uniformly dis-
tributed independent random variables, that is

U = U1 + U2 + U3 + · · · + Un

where Ui ∼ Unif (0, 1) for i = 1, 2, 3, . . . , n. Let fU(u) denote the PDF of U.
From Theorem 5.12, a general expression for fU(u) can be developed.
A convenient form of this expression is given here:

fU(u) = 1
(n − 1)!

[
un−1 −

(
n
1

)
(u − 1)n−1 +

(
n
2

)
(u − 2)n−1 − · · ·

]

In this expression, 0 < u < n and the summation is continued as long as the
arguments u, (u − 1), (u − 2), . . . are positive (Cramer 1966). From the cen-
tral limit theorem, as n increases the distribution function of U will approach
a normal distribution with mean n

2 and variance n
12 . This is illustrated in

Figure A.1.
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FIGURE A.1
Probability density functions for sums of uniform independent random variables.

Figure A.1 shows pairs of PDFs plotted for n = 3, 4, 7, and 10. The left-most
pair show plots of fNormal(u) and fU(u), respectively, for n = 3; specifically,

fNormal(u) = 1√
2π

1√
3

12

e
− 1

2

⎡
⎣

(
u− 3

2

)2

3
12

⎤
⎦

fU(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

u2, 0 < u < 1

1
2
(u2 − 3(u − 1)2), 1 < u < 2

1
2
(u2 − 3(u − 1)2 + 3(u − 2)2), 2 < u < 3

The second pair of PDFs (from the left) show plots of fNormal(u) and fU(u),
respectively, for n = 4; specifically,

fNormal(u) = 1√
2π

1√
4

12

e
− 1

2

⎡
⎣

(
u− 4

2

)2

4
12

⎤
⎦

fU(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

u3, 0 < u < 1

1
6
(u3 − 4(u − 1)3), 1 < u < 2

1
6
(u3 − 4(u − 1)3 + 6(u − 2)3), 2 < u < 3

1
6
(u3 − 4(u − 1)3 + 6(u − 2)3 − 4(u − 3)3), 3 < u < 4
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A similar convention holds for the two remaining pairs of PDFs plotted
in Figure A.1. The values shown along the vertical axis, in Figure A.1,
correspond to values for fNormal(u).

Table A.3 compares the cumulative probabilities derived from each PDF
pair in Figure A.1. In Table A.3, the columns labeled FU(u) and FNormal(u) are
defined as follows:

FU(u) =
u�

0

fU(t) dt

and

FNormal(u) =
u�

−∞
fNormal(t) dt

where

fNormal(t) = 1√
2π

1√
n
12

e
− 1

2

[
(t− n

2 )
2

n
12

]

for n = 3, 4, 7, and 10.

TABLE A.3

Sums of Independent Uniform Random Variables—Cumulative Probability

U = U1 + U2 + U3 + · · · + Un

Ui ∼ Unif (0, 1) i = 1, 2, 3, · · · , n

n = 3 FU(u) FNormal(u) n = 4 FU(u) FNormal(u)

0 < u < 1 0.16666667 0.158655 0 < u < 1 0.041666667 0.0416323
0 < u < 2 0.83333334 0.841345 0 < u < 2 0.499999997 0.5

0 < u < 3 1 0.99865 0 < u < 3 0.958333327 0.958368
0 < u < 4 1 0.999734

n = 7 FU(u) FNormal(u) n = 10 FU(u) FNormal(u)

0 < u < 1 0.0001984127 0.000531557 0 < u < 1 0.00000027557 0.00000588567

0 < u < 2 0.0240079367 0.0247673 0 < u < 2 0.00027943121 0.0005075
0 < u < 3 0.2603174567 0.256345 0 < u < 3 0.01346285321 0.0142299
0 < u < 4 0.7396825367 0.743655 0 < u < 4 0.13890156321 0.136661

0 < u < 5 0.9759920567 0.975233 0 < u < 5 0.49999999321 0.5
0 < u < 6 0.9998015807 0.999468 0 < u < 6 0.86109842321 0.863339

0 < u < 7 1 0.999998 0 < u < 7 0.98653713321 0.98577
0 < u < 8 0.99972055521 0.999492

0 < u < 9 0.99999971085 0.999994
0 < u < 10 1 0.999999978398
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Appendix B: Bivariate Normal-Lognormal
Distribution

Let Y1 = X1 and Y2 = ln X2, where X1 and X2 are random variables
defined on −∞< x1 < ∞ and 0 < x2 < ∞. If Y1 and Y2 each have a normal
distribution, then

E(Y1) = μY1 = μX1 = μ1 Var(Y1) = σ2
Y1

= σ2
X1

= σ2
1

E(Y2) = μY2 = μ2 = 1
2

ln

[
(μX2)

4

(μX2)
2 + σ2

X2

]

Var(Y2) = σ2
Y2

= σ2
2 = ln

[
(μX2)

2 + σ2
X2

(μX2)
2

]

The pair of random variables

(X1, X2) ∼ Bivariate NLogN
(
(μ1,μ2) ,

(
σ2

1,σ2
2, ρ1,2

))

has a bivariate normal-lognormal distribution if

fX1,X2(x1, x2) = 1

(2π)σ1σ2

√
1 − ρ2

1,2 x2

e− 1
2 w

where

−1 < ρ1,2 = ρY1,Y2 = ρX1,ln X2 < 1

and

w = 1

1 − ρ2
1,2

{(
x1 − μ1

σ1

)2

− 2ρ1,2

(
x1 − μ1

σ1

) (
ln x2 − μ2

σ2

)
+

(
ln x2 − μ2

σ2

)2
}

Theorem B.1 If (X1, X2) ∼ Bivariate NLogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
then

ρ1,2 = ρX1,X2

(
eσ

2
2 − 1

)1/2

σ2

443
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Proof. By definition

ρX1,X2 = Cov(X1, X2)

σX1σX2

= σX1X2

σX1σX2

where

σX1X2 =
∞�
0

∞�
−∞

(x1 − μ1)(x2 − μ2) fX1,X2(x1, x2)dx1dx2

and σX1 = σ1. Since X2 is lognormal

σX2 =
(

e2μ2+σ2
2

(
eσ

2
2 − 1

))1/2 = E(X2)(eσ
2
2 − 1)1/2

Thus, ρX1,X2 = σX1X2

σX1σX2

= σX1X2

σ1 E (X2)
(

eσ
2
2 − 1

)1/2

To compute σX1X2 , let t1 = x1 − μ1

σ1
and t2 = ln x2 − μ2

σ2
; therefore,

σX1X2 = 1

2π
√

1 − ρ2
1,2

∞�
−∞

∞�
−∞

(σ1t1)(eμ2+σ2t2 −μ2)e
− 1

2(1−ρ2
1,2)

(t2
1−2ρ1,2t1t2+t2

2)

dt1dt2

= 1

2π
√

1 − ρ2
1,2

∞�
−∞

(σ1t1) [I1 −μ2I2] dt1

where

I1 =
∞�

−∞
eμ2+σ2t2 e

− 1
2(1−ρ2

1,2)
(t2

1−2ρ1,2t1t2+t2
2)

dt2

and

I2 =
∞�

−∞
e
− 1

2(1−ρ2
1,2)

(t2
1−2ρ1,2t1t2+t2

2)

dt2

To determine I1, note the integrand can be written as

I1 = eμ2

∞�
−∞

e
− 1

2(1−ρ2
1,2)

(t2
1−2

[
ρ1,2t1+(1−ρ2

1,2)σ2

]
t2+t2

2)

dt2
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Letting

A = A(t1) = ρ1,2t1 + (1 − ρ2
1,2)σ2

and noting that

t2
2 − 2At2 = (t2 − A)2 − A2

we can write

I1 = eμ2e
− 1

2(1−ρ2
1,2)

t2
1
e

1
2(1−ρ2

1,2)
A2 ∞�

−∞
e
− 1

2(1−ρ2
1,2)

(t2−A)2

dt2

I1 = eμ2e
− 1

2(1−ρ2
1,2)

t2
1
e

1
2(1−ρ2

1,2)
A2√

2π
√

(1 − ρ2
1,2)

To determine I2, note the integrand can be written as

I2 = e
− 1

2(1−ρ2
1,2)

t2
1

∞�
−∞

e
− 1

2(1−ρ2
1,2)

(t2
2−2ρ1,2t1t2)

dt2

Letting B = B(t1) = ρ1,2t1 and noting that t2
2 − 2Bt2 = (t2 − B)2 − B2 we have

I2 = e
− 1

2(1−ρ2
1,2)

t2
1
e

1
2(1−ρ2

1,2)
B2 ∞�

−∞
e
− 1

2(1−ρ2
1,2)

(t2−B)2

dt2

I2 = e
− 1

2(1−ρ2
1,2)

t2
1
e

1
2(1−ρ2

1,2)
B2√

2π
√

(1 − ρ2
1,2)

Thus,

I1 − μ2I2 = e

−t21
2(1−ρ2

1,2)
√

2π
√

(1 − ρ2
1,2)

⎡
⎣eμ2e

A2

2(1−ρ2
1,2) − μ2e

B2

2(1−ρ2
1,2)

⎤
⎦
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and

σX1X2 = 1√
2π

∞�
−∞

(σ1t1)e

−t21
2(1−ρ2

1,2)

⎡
⎣eμ2e

A2

2(1−ρ2
1,2) − μ2e

B2

2(1−ρ2
1,2)

⎤
⎦ dt1

σX1X2 = 1√
2π

⎡
⎣eμ2σ1

∞�
−∞

t1e

−(t21−A2)

2(1−ρ2
1,2) dt1 − μ2σ1

∞�
−∞

t1e

−(t21−B2)

2(1−ρ2
1,2) dt1

⎤
⎦

σX1X2 = 1√
2π

[
eμ2σ1

∞�
−∞

t1e− 1
2 (t1−ρ1,2σ2)

2+ 1
2σ

2
2dt1 − μ2σ1

∞�
−∞

t1e−t2
1/2dt1

]

σX1X2 = 1√
2π

[
eμ2σ1e

1
2σ

2
2

∞�
−∞

t1e− 1
2 (t1−ρ1,2σ2)

2
dt1 − μ2σ1 · 0

]

σX1X2 = 1√
2π

[
eμ2+σ2

2
2 σ1ρ1,2σ2

√
2π

]
= E(X2)ρ1,2σ1σ2

Hence,

ρX1,X2 = σX1X2

σX1σX2

= E(X2)ρ1,2σ1σ2

σ1

[
e2μ2+σ2

2(eσ
2
2 − 1)

]1/2 = E(X2)ρ1,2σ1σ2

σ1

[
E(X2)(eσ

2
2 − 1)1/2

]

Thus,

ρ1,2 = ρX1,X2

(eσ
2
2 − 1)1/2

σ2
(B.1)

Theorem B.2 If (X1, X2) ∼ Bivariate NLogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

f1(x1) = 1√
2π σ1

e− 1
2 [(x1−μ1)

2/σ2
1]

and

f2(x2) = 1√
2π σ2x2

e− 1
2 [(ln x2−μ2)

2/σ2
2]
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Proof. By definition

f1(x1) =
∞�
0

fX1,X2(x1, x2) dx2

f2(x2) =
∞�

−∞
fX1,X2(x1, x2) dx1

The density function fX1,X2(x1, x2) can be factored as

fX1,X2(x1, x2) =
{

1√
2πσ1

e−(x1−μ1)
2/2σ2

1

}
Q(x1, x2) (B.2)

where

Q(x1, x2) =

⎧⎪⎨
⎪⎩

1
√

2π(σ2

√
1 − ρ2

1,2)x2

e−(ln x2−b)2/2σ2
2(1−ρ2

1,2)

⎫⎪⎬
⎪⎭

and

b = μ2 + σ2

σ1
ρ1,2(x1 − μ1)

Therefore,

f1(x1) =
∞�
0

{
1√

2πσ1
e−(x1−μ1)

2/2σ2
1

}
Q(x1, x2) dx2

=
{

1√
2πσ1

e−(x1−μ1)
2/2σ2

1

} ∞�
0

Q(x1, x2) dx2

= 1√
2π σ1

e− 1
2 [(x1−μ1)

2/σ2
1]

since the integrand is the density function of a LogN
(

b,σ2
2

(
1 − ρ2

1,2

))
random

variable. To compute f2(x2), the density function fX1,X2(x1, x2) is factored as

fX1,X2(x1, x2) = Q∗(x1, x2)

{
1√

2πσ2
· 1

x2
e−(ln x2−μ2)

2/2σ2
2

}
(B.3)
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where

Q∗(x1, x2) =

⎧⎪⎨
⎪⎩

1
√

2π(σ1

√
1 − ρ2

1,2)
e−(x1−b∗)2/2σ2

1(1−ρ2
1,2)

⎫⎪⎬
⎪⎭

and

b∗ = μ1 + σ1

σ2
ρ1,2(ln x2 − μ2)

Therefore,

f2(x2) =
∞�

−∞

{
1√

2πσ2
· 1

x2
e−(ln x2−μ2)

2/2σ2
2

}
Q∗(x1, x2) dx1

=
{

1√
2πσ2

· 1
x2

e−(ln x2−μ2)
2/2σ2

2

} ∞�
−∞

Q∗(x1, x2) dx1

= 1√
2π σ2 x2

e− 1
2 [(ln x2−μ2)

2/σ2
2]

since the integrand is the density function of a N
(

b∗,σ2
1

(
1 − ρ2

1,2

))
random

variable.

Theorem B.3 If (X1, X2) ∼ Bivariate NLogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

X1 |x2 ∼ N
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2) , σ2

1

(
1 − ρ2

1,2

))

X2 |x1 ∼ LogN
(
μ2 + σ2

σ1
ρ1,2(x1 − μ1) , σ2

2

(
1 − ρ2

1,2

))

Proof. By definition,

fX1|x2 (x1) = fX1,X2(x1, x2)

f2(x2)
=

{
1√

2π σ2 x2
e− 1

2 [(ln x2−μ2)
2/σ2

2]
}

Q∗(x1, x2)

1√
2π σ2 x2

e− 1
2 [(ln x2−μ2)2/σ2

2]

fX1|x2 (x1) = Q∗(x1, x2)
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Thus, from Equation B.3

X1 | x2 ∼ N
(

b∗, σ2
1

(
1 − ρ2

1,2

))

where

b∗ = μ1 + σ1

σ2
ρ1,2(ln x2 − μ2)

Similarly,

fX2|x1 (x2) = fX1,X2(x1, x2)

f1(x1)
=

{
1√

2π σ1
e− 1

2 [(x1−μ1)
2/σ2

1]
}

Q(x1, x2)

1√
2π σ1

e− 1
2 [(x1−μ1)2/σ2

1]

fX2|x1 (x2) = Q(x1, x2)

Thus, from Equation B.2

X2 | x1 ∼ LogN
(

b, σ2
2

(
1 − ρ2

1,2

))

where

b = μ2 + σ2

σ1
ρ1,2(x1 − μ1)

Theorem B.4 If (X1, X2) ∼ Bivariate NLogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

E(X2 |x1) = eμ2+σ2
σ1

ρ1,2(x1−μ1)+ 1
2σ

2
2(1−ρ2

1,2)

Var(X2 |x1) = e2(μ2+σ2
σ1

ρ1,2(x1−μ1))ez(ez − 1)

E(X1 |x2) = μ1 + σ1

σ2
ρ1,2(ln x2 − μ2)

Var(X1 |x2) = σ2
1

(
1 − ρ2

1,2

)

where z = σ2
2

(
1 − ρ2

1,2

)
.

Proof. Theorem B.3 proved that

X2 |x1 ∼ LogN
(
μ2 + σ2

σ1
ρ1,2(x1 − μ1) , σ2

2

(
1 − ρ2

1,2

))
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Therefore,

E(X2 |x1 ) = eμ2+σ2
σ1

ρ1,2(x1−μ1)+ 1
2σ

2
2(1−ρ2

1,2)

Var(X2 |x1 ) = e2(μ2+σ2
σ1

ρ1,2(x1−μ1))ez(ez − 1)

where z = σ2
2

(
1 − ρ2

1,2

)
. Theorem B.3 also proved that

X1 |x2 ∼ N
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2) , σ2

1

(
1 − ρ2

1,2

))

Therefore, it follows immediately from the properties of the normal distribution that

E(X1 |x2 ) = μ1 + σ1

σ2
ρ1,2(ln x2 − μ2)

Var(X1 |x2 ) = σ2
1

(
1 − ρ2

1,2

)

Theorem B.5 If (X1, X2) ∼ Bivariate NLogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

Median(X2 | x1 ) = eμ2+σ2
σ1

ρ1,2(x1−μ1)

Mode(X2 | x1 ) = eμ2+σ2
σ1

ρ1,2(x1−μ1)−σ2
2(1−ρ2

1,2)

Median(X1 | x2 ) = E(X1 | x2 )

Mode(X1 | x2 ) = E(X1 | x2 )

Proof. Since X2 | x1 is lognormally distributed,

Median(X2 | x1 ) = eμ2+σ2
σ1

ρ1,2(x1−μ1)

and

Mode(X2 | x1 ) = eμ2+σ2
σ1

ρ1,2(x1−μ1)−σ2
2(1−ρ2

1,2)

Since X1 | x2 is normally distributed, it follows immediately that

Median(X1 | x2 ) = E(X1 | x2 )

Mode(X1 | x2 ) = E(X1 | x2 )



Appendix B: Bivariate Normal-Lognormal Distribution 451

Property B.1 If (X1, X2) ∼ Bivariate NLogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

E(X1 |Median(X2 |μ1 )) = μ1

Proof. From Theorem B.4, it was established that

E(X1 |x2 ) = μ1 + σ1

σ2
ρ1,2 (ln x2 − μ2)

From Theorem B.5,

Median(X2 |x1 = μ1 ) = eμ2

It follows that

E(X1 |Median(X2 |μ1 )) = E(X1
∣∣eμ2 ) = μ1 + σ1

σ2
ρ1,2(ln eμ2 − μ2)

= μ1 + σ1

σ2
ρ1,2(μ2 − μ2)

= μ1
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Appendix C: Bivariate Lognormal
Distribution

Let Y1 = ln X1 and Y2 = ln X2, where X1 and X2 are random variables defined
on 0 < x1 < ∞ and 0 < x2 < ∞. If Y1 and Y2 each have a normal distribution,
then

E(Y1) = μY1 = μ1 = 1
2

ln

[
(μX1)

4

(μX1)
2 + σ2

X1

]

Var(Y1) = σ2
Y1

= σ2
1 = ln

[
(μX1)

2 + σ2
X1

(μX1)
2

]

E(Y2) = μY2 = μ2 = 1
2

ln

[
(μX2)

4

(μX2)
2 + σ2

X2

]

Var(Y2) = σ2
Y2

= σ2
2 = ln

[
(μX2)

2 + σ2
X2

(μX2)
2

]

The pair of random variables

(X1, X2) ∼ Bivariate LogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))

has a bivariate lognormal distribution if

fX1,X2(x1, x2) = 1

(2π)σ1σ2

√
1 − ρ2

1,2 x1x2

e− 1
2 w

where

−1 < ρ1,2 = ρY1,Y2 = ρln X1,ln X2 < 1

and

w = 1

1 − ρ2
1,2

{(
ln x1 −μ1

σ1

)2

− 2ρ1,2

(
ln x1 −μ1

σ1

)(
ln x2 −μ2

σ2

)
+

(
ln x2 −μ2

σ2

)2
}

453
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Theorem C.1 If (X1, X2) ∼ Bivariate LogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
then

ρX1,X2 = eρ1,2σ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1

Proof. By definition,

ρX1,X2 = Cov(X1, X2)

σX1σX2

= E(X1X2) − E(X1)E(X2)

σX1σX2

(C.1)

Since Y1 = ln X1 and Y2 = ln X2,

E(X1X2) = E(eY1 eY2) = E(eY1+Y2)

Since Yi ∼ N
(
μi,σ2

i

)
(for i = 1, 2), the expectation E(eY1+Y2) is a special evaluation

of the moment generating function (Ross 1994) of a bivariate normal, which is

M(t1, t2) = E(et1Y1+t2Y2) =
∞�

−∞

∞�
−∞

et1y1+t2y2 f (y1, y2)dy1dy2

= e
(μ1t1+μ2t2)+ 1

2

(
σ2

1t2
1+2ρY1,Y2σ1σ2t1t2+σ2

2t2
2

)

for some real t1 and t2. Therefore,

E(X1X2) = E(eY1 eY2) = E(eY1+Y2) = e
(μ1+μ2)+ 1

2

(
σ2

1+σ2
2+2ρY1,Y2σ1σ2

)

To determine the remaining terms in Equation C.1, for r ≥ 0 the moments of X1
and X2 are

E(Xr
i ) = erμi+ 1

2 r2σ2
i (C.2)

Thus,

E(X1) = eμ1+ 1
2σ

2
1

E(X2) = eμ2+ 1
2σ

2
2
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and

σ2
X1

= Var(X1) = E(X2
1) − (E(X1))

2 = e2μ1+2σ2
1 −

(
eμ1+ 1

2σ
2
1

)2

= e2μ1+2σ2
1 − e2μ1+σ2

1

σ2
X2

= Var(X2) = E(X2
2) − (E(X2))

2 = e2μ2+2σ2
2 −

(
eμ2+ 1

2σ
2
2

)2

= e2μ2+2σ2
2 − e2μ2+σ2

2

Substituting into Equation C.1,

ρX1,X2 = E(X1X2) − E(X1)E(X2)

σX1σX2

ρX1,X2 =
e
(μ1+μ2)+ 1

2

(
σ2

1+2ρY1,Y2σ1σ2+σ2
2

)
−

(
eμ1+ 1

2σ
2
1

) (
eμ2+ 1

2σ
2
2

)
√

e2μ1+2σ2
1 − e2μ1+σ2

1

√
e2μ2+2σ2

2 − e2μ2+σ2
2

This can be factored as

ρX1,X2 = e
(μ1+μ2)+ 1

2

(
σ2

1+σ2
2

)
(eρ1,2σ1σ2 − 1)

e(μ1+μ2)+ 1
2 (σ2

1+σ2
2)

√
eσ

2
1 − 1

√
eσ

2
2 − 1

Thus,

ρX1,X2 = eρ1,2σ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1

(C.3)

Theorem C.2 If (X1, X2) ∼ Bivariate LogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

f1(x1) = 1√
2π σ1 x1

e− 1
2 [(ln x1−μ1)

2/σ2
1]

and

f2(x2) = 1√
2π σ2 x2

e− 1
2 [(ln x2−μ2)

2/σ2
2]
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Proof. By definition,

f1(x1) =
∞�
0

fX1,X2(x1, x2) dx2

f2(x2) =
∞�
0

fX1,X2(x1, x2) dx1

The density function fX1,X2(x1, x2) can be factored as

fX1,X2(x1, x2) =
{

1√
2πσ1

· 1
x1

e−(ln x1−μ1)
2/2σ2

1

}
Q(x1, x2) (C.4)

where

Q(x1, x2) =

⎧⎪⎨
⎪⎩

1
√

2π(σ2

√
1 − ρ2

1,2)x2

e
−(ln x2−b)2/2σ2

2

(
1−ρ2

1,2

)⎫⎪⎬
⎪⎭

and

b = μ2 + σ2

σ1
ρ1,2(ln x1 − μ1)

Therefore,

f1(x1) =
∞�
0

{
1√

2πσ1
· 1

x1
e−(ln x1−μ1)

2/2σ2
1

}
Q(x1, x2) dx2

=
{

1√
2πσ1

· 1
x1

e−(ln x1−μ1)
2/2σ2

1

} ∞�
0

Q(x1, x2) dx2

= 1√
2π σ1 x1

e− 1
2 [(ln x1−μ1)

2/σ2
1]

since the integrand is the density function of a LogN
(

b,σ2
2

(
1 − ρ2

1,2

))
random

variable. To compute f2(x2), the density function fX1,X2(x1, x2) is factored as

fX1,X2(x1, x2) = Q∗(x1, x2)

{
1√

2πσ2
· 1

x2
e−(ln x2−μ2)

2/2σ2
2

}
(C.5)
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where

Q∗(x1, x2) =

⎧⎪⎨
⎪⎩

1
√

2π(σ1

√
1 − ρ2

1,2)x1

e−(ln x1 − b∗)2/2σ2
1(1−ρ2

1,2)

⎫⎪⎬
⎪⎭

and

b∗ = μ1 + σ1

σ2
ρ1,2(ln x2 − μ2)

Therefore,

f2(x2) =
∞�
0

{
1√

2πσ2
· 1

x2
e−(ln x2−μ2)

2/2σ2
2

}
Q∗(x1, x2) dx1

=
{

1√
2πσ2

· 1
x2

e−(ln x2−μ2)
2/2σ2

2

} ∞�
0

Q∗(x1, x2) dx1

= 1√
2πσ2

· 1
x2

e−(ln x2−μ2)
2/2σ2

2

since the integrand is the density function of a LogN
(

b∗,σ2
1

(
1 − ρ2

1,2

) )
random

variable.

Theorem C.3 If (X1, X2) ∼ Bivariate LogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

X1 | x2 ∼ LogN
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2), σ2

1

(
1 − ρ2

1,2

))

X2 | x1 ∼ LogN
(
μ2 + σ2

σ1
ρ1,2(ln x1 − μ1), σ2

2

(
1 − ρ2

1,2

))

Proof. By definition,

fX1|x2 (x1) = fX1,X2(x1, x2)

f2(x2)
=

{
1√

2π σ2 x2
e− 1

2 [(ln x2−μ2)
2/σ2

2]
}

Q∗(x1, x2)

1√
2π σ2 x2

e− 1
2 [(ln x2−μ2)2/σ2

2]

fX1|x2 (x1) = Q∗(x1, x2)
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Thus, from Equation C.5,

X1 | x2 ∼ LogN
(

b∗, σ2
1

(
1 − ρ2

1,2

))

where

b∗ = μ1 + σ1

σ2
ρ1,2(ln x2 − μ2)

Similarly,

fX2|x1 (x2) = fX1,X2(x1, x2)

f1(x1)
=

{
1√

2π σ1 x1
e− 1

2 [(ln x1−μ1)
2/σ2

1]
}

Q(x1, x2)

1√
2π σ1 x1

e− 1
2 [(ln x1−μ1)2/σ2

1]

fX2|x1 (x2) = Q(x1, x2)

Thus, from Equation C.4,

X2 | x1 ∼ LogN
(

b, σ2
2

(
1 − ρ2

1,2

))

where

b = μ2 + σ2

σ1
ρ1,2(ln x1 − μ1)

Theorem C.4 If (X1, X2) ∼ Bivariate LogN
(
(μ1,μ2) ,

(
σ2

1,σ2
2, ρ1,2

))
, then

E(X2 |x1 ) = x
σ2
σ1

ρ1,2

1 e
μ2−σ2

σ1
ρ1,2μ1+ 1

2σ
2
2

(
1−ρ2

1,2

)

Var(X2 |x1 ) = x
2σ2
σ1

ρ1,2

1 e2(μ2−σ2
σ1

ρ1,2μ1)ez(ez − 1)

E(X1 |x2 ) = x
σ1
σ2

ρ1,2

2 e
μ1−σ1

σ2
ρ1,2μ2+ 1

2σ
2
1

(
1−ρ2

1,2

)

Var(X1 |x2 ) = x
2σ1
σ2

ρ1,2

2 e2(μ1−σ1
σ2

ρ1,2μ2)ez∗
(ez∗ − 1)

where

z = σ2
2

(
1 − ρ2

1,2

)
and z∗ = σ2

1

(
1 − ρ2

1,2

)
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Proof. Theorem C.3 proved that

X2 | x1 ∼ LogN
(
μ2 + σ2

σ1
ρ1,2(ln x1 − μ1), σ2

2

(
1 − ρ2

1,2

))

Therefore,

E(X2 |x1 ) = e
μ2+σ2

σ1
ρ1,2(ln x1−μ1)+ 1

2σ
2
2

(
1−ρ2

1,2

)

= x
σ2
σ1

ρ1,2

1 e
μ2−σ2

σ1
ρ1,2μ1+ 1

2σ
2
2

(
1−ρ2

1,2

)

and

Var(X2 |x1 ) = e2(μ2+σ2
σ1

ρ1,2(ln x1−μ1))e
σ2

2

(
1−ρ2

1,2

) (
e
σ2

2

(
1−ρ2

1,2

)
− 1

)

= x
2σ2
σ1

ρ1,2

1 e2(μ2−σ2
σ1

ρ1,2μ1)ez(ez − 1)

Theorem C.3 also proved that

X1 | x2 ∼ LogN
(
μ1 + σ1

σ2
ρ1,2(ln x2 − μ2) , σ2

1

(
1 − ρ2

1,2

))

Therefore,

E(X1 |x2 ) = e
μ1+σ1

σ2
ρ1,2(ln x2−μ2)+ 1

2σ
2
1

(
1−ρ2

1,2

)

= x
σ1
σ2

ρ1,2

2 e
μ1−σ1

σ2
ρ1,2μ2+ 1

2σ
2
1

(
1−ρ2

1,2

)

and

Var(X1 |x2 ) = e2(μ1+σ1
σ2

ρ1,2(ln x2−μ2))e
σ2

1

(
1−ρ2

1,2

) (
e
σ2

1

(
1−ρ2

1,2

)
− 1

)

= x
2σ1
σ2

ρ1,2

2 e2(μ1−σ1
σ2

ρ1,2μ2)ez∗
(ez∗ − 1)
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Theorem C.5 If (X1, X2) ∼ Bivariate LogN
(
(μ1,μ2),

(
σ2

1,σ2
2, ρ1,2

))
, then

Median(X2 | x1 ) = x
σ2
σ1

ρ1,2

1 eμ2−σ2
σ1

ρ1,2μ1

Mode(X2 | x1 ) = x
σ2
σ1

ρ1,2

1 e
μ2−σ2

σ1
ρ1,2μ1−σ2

2

(
1−ρ2

1,2

)

Median(X1 | x2 ) = x
σ1
σ2

ρ1,2

2 eμ1−σ1
σ2

ρ1,2μ2

Mode(X1 | x2 ) = x
σ1
σ2

ρ1,2

2 e
μ1−σ1

σ2
ρ1,2μ2−σ2

1

(
1−ρ2

1,2

)

Proof. From Theorem C.3, it follows that

Median(X2 | x1 ) = eμ2+σ2
σ1

ρ1,2(ln x1−μ1) = x
σ2
σ1

ρ1,2

1 eμ2−σ2
σ1

ρ1,2μ1

Mode(X2 | x1 ) = e
μ2+σ2

σ1
ρ1,2(ln x1−μ1)−σ2

2

(
1−ρ2

1,2

)

= x
σ2
σ1

ρ1,2

1 e
μ2−σ2

σ1
ρ1,2μ1−σ2

2

(
1−ρ2

1,2

)

Median(X1 | x2 ) = eμ1+σ1
σ2

ρ1,2(ln x2−μ2) = x
σ1
σ2

ρ1,2

2 eμ1−σ1
σ2

ρ1,2μ2

Mode(X1 | x2 ) = e
μ1+σ1

σ2
ρ1,2(ln x2−μ2)−σ2

1

(
1−ρ2

1,2

)

= x
σ1
σ2

ρ1,2

2 e
μ1−σ1

σ2
ρ1,2μ2−σ2

1

(
1−ρ2

1,2

)

Property C.1 If (X1, X2) ∼ Bivariate LogN
(
(μ1,μ2) ,

(
σ2

1,σ2
2, ρ1,2

))
, then the

conditional coefficients of dispersion are

DFX1|x2
= [Var(X1 |x2) ]1/2

E(X1 |x2)
=

√
(ez∗ − 1)

DFX2|x1
= [Var(X2 |x1) ]1/2

E(X2 |x1)
= √

(ez − 1)
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where FX1|x2 and FX2|x1 are the cumulative distributions of fX1|x2 and fX2|x1 , where

z = σ2
2

(
1 − ρ2

1,2

)
and z∗ = σ2

1

(
1 − ρ2

1,2

)
. This property is stated without

proof. It is a direct algebraic consequence of Theorem C.4.

Reference

Ross, S. 1994. A First Course in Probability, 4th edn. New York: Macmillan College
Publishing Company.
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Appendix D: Method of Moments WBS
Example

Suppose the cost of an electronic system is represented by the work break-
down structure (WBS) in Table D.1. This WBS consists of element costs
X1, X2, X3, . . . , X10. Suppose

CostWBS = X1 + X2 + X3 + · · · + X10 (D.1)

and the random variables X1, W, X5, X7, X8, X9 in Table D.1 are independent—
they are uncorrelated. Use the method of moments to determine the
following:

a. E(CostWBS) and Var(CostWBS)

b. A probability distribution function that approximates the distribu-
tion of CostWBS

c. The value of CostWBS that has a 95% chance of not being exceeded

Solution

a. Given Equation D.1 and the relationships in Table D.1, Equation D.1
can be written as

CostWBS = X1 + 1
2

X1 +
(

1
4

X1 + 1
8

X2 + W
)

+ 1
10

X1 + X5

+ 1
10

X1 + X7 + X8 + X9 + 1
4

X1 (D.2)

Combining and simplifying this expression yields the following:

CostWBS = 181
80

X1 + W + X5 + X7 + X8 + X9 (D.3)

E(CostWBS) = 181
80

E(X1) + E(W) + E(X5)

+ E(X7) + E(X8) + E(X9) (D.4)
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TABLE D.1

An Electronic System Work Breakdown Structure

Cost Element Distribution of Xi or the
Cost Element Name Cost Xi ($M) Applicable Functional Relationship

Prime Mission Product (PMP) X1 N(12.5, 6.6)

System Engineering and X2 X2 = 1
2 X1

Program Management (SEPM)
System Test Evaluation (STE) X3 X3 = 1

4 X1 + 1
8 X2 + W,

where W ∼ Unif (0.6, 1.0)

Data and Technical Orders X4 X4 = 1
10 X1

Site Survey and Activation X5 Trng(5.1, 6.6, 12.1)

Initial Spares X6 X6 = 1
10 X1

System Warranty X7 Unif (0.9, 1.3)

Early Prototype Phase X8 Trng(1.0, 1.5, 2.4)

Operations Support X9 Trng(0.9, 1.2, 1.6)

System Training X10 X10 = 1
4 X1

Var(CostWBS) =
(

181
80

)2

Var(X1) + Var(W) + Var(X5)

+ Var(X7) + Var(X8) + Var(X9) (D.5)

The variance of CostWBS given by Equation D.5 captures all
Pearson product-moment correlations present in the WBS from the
cost estimating functional relationships defined in Table D.1. Equation
D.5 also reflects that X1, W, X5, X7, X8, and X9 were given to be inde-
pendent random variables. To compute the mean and variance of
CostWBS given by Equations D.4 and D.5, respectively, the means and
variances of X1, W, X5, X7, X8, and X9 are needed. Table D.2 presents
these statistics. They are determined by standard formulas available
in Chapter 4.

TABLE D.2

Cost Statistics for X1, W, X5, X7, X8, and X9

Cost Element Cost Xi($M) E(Xi)($M) Var(Xi)($M)2

X1 12.500 6.6

W 0.800 0.16/12
X5 7.933 40.75/18

X7 1.100 0.16/12
X8 1.633 1.51/18

X9 1.233 0.37/18
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Substituting the values in Table D.2 into Equations D.4 and D.5
produces the mean and variance of the electronic system’s total WBS
cost, given by Equations D.6 and D.7, respectively.

E(CostWBS) = 40.98 ($M) (D.6)

Var(CostWBS) = 36.18 ($M)2 (D.7)

σCostWBS = √
Var(CostWBS) = 6.015 ($M) (D.8)

b. To approximate the distribution function of CostWBS, observe the
following. First, the random variables X1, W, X5, X7, X8, and X9 are
independent. Hence, the central limit theorem will draw the shape
of the distribution of CostWBS toward a normal distribution. Second,
the random variables X2, X3, X4, X6, and X10 are highly correlated to
X1, which is normally distributed. With this, it can be shown that
ρXv,X1 = 1 (v = 2, 4, 6, 10) and ρX3,X1 = 0.9898. Thus, it is reasonable
to conclude (for this example) the probability distribution function
of CostWBS is approximately normal—with mean and variance given
by Equations D.6 and D.7, respectively. Figure D.1 presents a graph
of the probability distribution function of CostWBS.

c. From Figure D.1, it can be seen that CostWBS = 50.87 ($M) has a 95%
chance of not being exceeded. Thus, a cost equal to 50.87 ($M) has
only a 5% chance of being exceeded. Equivalently, 50.87 ($M) is
the 0.95-fractile of CostWBS; that is, x0.95 = 50.87 ($M). If the elec-
tronic system is considering budgeting at the 95th percentile, then
a cost reserve of nearly 10 ($M) is needed above its cost at the 50th
percentile for this high level of cost estimate confidence.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
y = P(CostWBS ≤ x)

33.27 40.98 50.87 60
x

($M)

x0.10 x0.50 x0.95

FIGURE D.1
Normal probability distribution for CostWBS.
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Appendix E: Unraveling the S-Curve

One of the least addressed topics in cost risk analysis is conveying its findings
to decision-makers. The cost community’s focus has been on the front end of
the process (methods and practices) rather than on the back end, specifically,
what the analysis reveals and how best to convey its findings. This section dis-
cusses one aspect of this topic by addressing the question “I’ve generated an
S-curve—what does it reveal about my program’s cost risk and how should
I present these findings to decision-makers?”

E.1 What is the S-Curve?

The S-curve is an informal term for the probability distribution of the cost of a
program. Figure E.1 illustrates two ways to present a probability distribution.
One way is the probability density function (PDF), as shown on the left of
Figure E.1. The other way is the cumulative distribution function (CDF), as
shown on the right of Figure E.1. The CDF is informally called the S-curve.

In Figure E.1, the range of possible cost outcomes for a program is given
by the interval a ≤ x ≤ b. These distributions reveal the confidence that the
actual cost of a program will not exceed any cost in the range of possible
outcomes. In Figure E.1, if the probability that the actual cost of the program
will be less than or equal to x is 25%, then in a PDF this probability is an area
under the curve. In a CDF, this probability is the value 0.25 along the vertical
axis, as shown on the right in Figure E.1.

The PDF is the most common form of a probability distribution used to
characterize the cost uncertainties of elements that comprise a program’s
work breakdown structure (WBS). This is shown in Figure E.2 by the ele-
ments on the left, which is the input side of a cost uncertainty analysis. The
right side of Figure E.2 shows the outputs of a cost uncertainty analysis,
where the CDF, or S-curve, is the most common form used to express per-
centile levels of confidence that the actual cost of a program will be less than
or equal to a value x.
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Cost

0.25

1

0

CDF

xa b

S-Curve

x

0.25 0.75

Cost

PDF

a b

FIGURE E.1
Ways to view a program’s cost probability distribution.

E.2 Unraveling the S-Curve

The S-curve provides decision-makers a basis for examining trade-offs
between a program’s point estimate cost∗ and its confidence level. For
example, in Figure E.2, there is a 25% chance the actual program cost will
be less than or equal to x1 dollars, a 50% chance the actual program cost
will be less than or equal to x2 dollars, and an 80% chance the actual program
cost will be less than or equal to x3 dollars.

The variance of the S-curve, in Figure E.2, affects the amount of risk dol-
lars needed to budget a program at a given confidence level, relative to (say)
the program’s point estimate cost. For example, in Figure E.2, if a program
is budgeted to the 50th percentile cost x2, then relative to x1 there are h1 risk
dollars contained in x2. If a program is budgeted to the 80th percentile cost
x3, then relative to x1 there are (h1 +h2) risk dollars contained in x3. Thus, the
risk dollars between x1 and cost outcomes greater than x1 is from the accumu-
lation of cost risk from individual WBS elements that comprise a program’s
total cost. How can the S-curve be unraveled to reveal which WBS elements
drive the amount of risk dollars needed for a given confidence? The following
algorithm is used to address this question.

∗ In this book, the point estimate (PE) is taken to be the cost that does not include allowances for
cost uncertainty. The PE cost is the sum of the WBS element costs summed across a program’s
WBS without adjustments for uncertainty. The PE cost is often developed from a program’s
cost analysis requirements description (CARD).
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E.3 Book’s Cost Risk Allocation Algorithm∗

Book’s algorithm is designed to allocate the risk dollars of a program into
the individual WBS elements as a function of the cost risk of each element.
The total risk dollars of a program is the difference between its point estimate
cost and its cost at a confidence level greater than that of the point estimate,
such as the dollars given by h1 or (h1 + h2) in Figure E.2. WBS elements allo-
cated the largest fraction of risk dollars are the cost risk driving elements of
the program and signal potential priorities for risk management actions. The
following are the key terms and equations of Book’s algorithm. A numerical
example of the algorithm is then presented.

From Figure E.2, suppose a program is budgeted to the 80th percentile
cost x3. Then, relative to x1 there are (h1 + h2) risk dollars contained in x3. To
allocate (h1 + h2) to the individual WBS elements, define the need of element
k as the difference between its 80th percentile cost and its point estimate cost;
that is,

Needk = xk,0.80 − PEk (E.1)

where xk,0.80 is the 80th percentile cost of WBS element k and PEk is its point
estimate cost.

Equation E.1 is set equal to zero if xk,0.80 ≤ PEk plus any correlation effects
due the impacts of the needs of other WBS elements with which element k is
correlated. Equation E.1 is the above-average portion of σk measuring only
the possible shortfall in dollars for WBS element k, if any of the identified
risks associated with this element are realized. The fraction of risk dollars to
be allocated to WBS element k, including correlation effects, is given by

Allock = Correlated Need of WBS Element k
Total Need Base

=
(∑n

j=1 ρjkNeedjNeedk

)
∑n

k=1
∑n

j=1 ρjkNeedjNeedk

(E.2)

E.4 Numerical Example

Consider the WBS on the left in Figure E.3. Suppose the cost probability dis-
tribution of each WBS element is lognormal with the mean and standard

∗ This algorithm was created by S. A. Book, PhD. It is published in the 2008 NASA Cost Estimating
Handbook, NASA Cost Analysis Division, http://www.nasa.gov/offices/ipce/CA.html.

http://www.nasa.gov/offices/ipce/CA.html
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deviation (sigma) given in Figure E.3. Suppose a Monte Carlo simulation
was run on the WBS that generated the first 20 of 5000 trials on the right in
Figure E.3.

The next step in the algorithm is to compute Pearson correlation coeffi-
cients between each pair of WBS element costs. This can be performed by (1)
exporting the WBS element costs from all trials of the Monte Carlo simulation
(the first 20 of 5000 trials are shown in Figure E.3) then (2) computing Pear-
son correlation coefficients for each column pair of WBS element costs from
the exported values. The Excel function CORREL(array1, array2) can be used
to perform this computation, where the columns of the WBS element costs
shown in Figure E.3 are the entries for array1 and array2. The results of this
operation are provided in Figure E.4.∗

Suppose the program represented by the WBS in Figure E.3 is required
to be budgeted at the 80th percentile confidence level. Given this, Figure
E.5 presents the costs of the program and its WBS elements at this confi-
dence level. The Excel function PERCENTILE.INC(array, 0.80) can be used
to compute these costs. For example, if array is set equal to the satellite col-
umn of cost data from the Monte Carlo simulation in Figure E.3, then this

Correlation Matrix 1. Satellite 2. Launch 3. Ground 4. Data Distribution

1. Satellite 1 0.227186 0.2526355 0.3208879

2. Launch 0.227186 1 0.20326533 0.19046209

3. Ground 0.2526355 0.20326533 1 0.29252485

4. Data Distribution 0.3208879 0.19046209 0.29252485 1

FIGURE E.4
Pearson correlation coefficients computed from the simulation data in Figure E.3.

Costs ($M) Point Estimate 80th Percentile Needk

1. Satellite 200 283.56 83.56

2. Launch 80 97.15 17.15

3. Ground 100 81.21 0.00

4. Data Distribution 300 447.84 147.84

Program Cost 680 878.48 198.48

FIGURE E.5
Costs at 80th percentile.

∗ The number of significant digits in Figure E.4 is for traceability in this example; in practice, 3
or 4 significant digits is best.
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Excel function produces 283.56 ($M) as the 80th percentile cost for the satel-
lite WBS element. Equation E.1 is then applied to compute Needk as shown in
Figure E.5.

From Figure E.5, the fraction of risk dollars to be allocated to WBS element
k, including correlation effects, can now be computed from Equation E.2. For
example, for the satellite WBS element (k = 1) we have

Alloc1 = Correlated Need of WBS Element 1
Total Need Base

=
(∑4

j=1 ρj1NeedjNeed1

)
∑4

k=1
∑4

j=1 ρjkNeedjNeedk

where

∑4

j=1
ρj1NeedjNeed1 = ρ11Need1Need1 + ρ21Need2Need1

+ ρ31Need3Need1 + ρ41Need4Need1

= (1)(83.56)(83.56) + (0.227186)(17.15)(83.56)

+ (0.2526355)(0)(83.56) + (0.3208879)(147.84)(83.56)

= 11272

and

∑4

k=1

∑4

j=1
ρjkNeedjNeedk = [83.56, 17.15, 0, 147.48]

×

⎛
⎜⎜⎝

1 0.227186 0.2526355 0.3208879
0.227186 1 0.20326533 0.19046209
0.2526355 0.20326533 1 0.29252485
0.3208879 0.19046209 0.29252485 1

⎞
⎟⎟⎠

⎡
⎢⎢⎣

83.56
17.15

0
147.48

⎤
⎥⎥⎦

= 38, 678

From this, it follows that

Alloc1 =
(∑4

j=1 ρj1NeedjNeed1

)
∑4

k=1
∑4

j=1 ρjkNeedjNeedk
= 11, 272

38, 678
= 0.29

Therefore, the satellite WBS element requires 29% of the 198.48 ($M) risk
dollars—given the cost of the program is to be budgeted at the 80th percentile
confidence level. Similar computations made for the other WBS elements
reveal the results shown in Figure E.6. From this, the following additional
findings can be conveyed to the decision-maker:
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• The Ground WBS element may be overestimated since it needs no
additional risk dollars.

• The largest cost risk driver of the program is the data distribution
WBS element. This element consumes 68% of the risk dollars needed
for the program to be budgeted at the 80th percentile.

The Data Distribution WBS element is a prime candidate for further manage-
ment attention to reduce its high cost risk to the program. Its high demand for
risk dollars is a consequence of its large cost uncertainty (seen by its sigma
value in Figure E.3) and its point estimate cost, relative to the costs of the
other WBS elements. The risk dollars might be reduced simply by providing
a more complete and less uncertain system definition combined with better
cost estimating methods.

This appendix discussed a key aspect of communicating findings from a
cost uncertainty analysis to decision-makers, that is, unraveling a program’s
S-curve to identify the elements of cost that drive the greatest amount of cost
risk. In the preceding numerical example, it was shown that one WBS ele-
ment more than others is driving the program’s cost risk. Identifying cost risk
drivers, in the way presented, fosters risk-reducing management actions to
be taken as early as possible—such that program cost, schedule, and technical
goals are more likely to be achieved.
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Appendix F: Iteratively Reweighted Least
Squares

This appendix presents a brief introduction to iteratively reweighted least
squares (IRLS∗). IRLS (Bickel and Doksom 1977) is a least squares proce-
dure where the constants of a regression function are determined by iterat-
ing through a minimization of a weighted sum of additive squared errors.
Though IRLS is sometimes characterized as a multiplicative error method,
its iterative process operates from an additive error perspective (Book 2006,
Jennrich and Moore 1975).

F.1 IRLS Formulation

The IRLS minimization problem is formulated as follows:

f (xi, �vj+1) = Min
n∑

i=1

[
yi − f (xi, �v)

f (xi, �vj)

]2

(F.1)

where f
(
xi, �v

)
is a specified regression function and �v is a vector of the

regression function’s constants.
In Equation F.1, the subscript i is the number of observations in a dataset,

j represents the jth iteration in a sequence of iterations through a vector
of constants �v1, �v2, �v3, . . . , �vj, �vj+1, . . . , �vk. The IRLS procedure is stim-
ulated by guessing a starter vector of regression constants denoted by �v0.
The vector �vk is defined as the vector of regression constants that have con-
verged to a set of values that are no longer significantly changing with further
successive iterations. The decision criterion for determining convergence
between �vj and �vj+1 is a tolerance level τ established by the model builder or
its users.

In Equation F.1, only the vector �v in the numerator is subject to optimiza-
tion; the denominator f (xi, �vj) is a constant with respect to the optimization

∗ The method of IRLS is also referred to as the minimum unbiased percentage error (MUPE)
technique (Binkley 1994, Hu and Sjovold 1994, Nguyen 1994).

477
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process, having been evaluated from the prior jth iteration. The operative
element in Equation F.1 can be rewritten in the following way:

n∑
i=1

[
yi − f (xi, �v)

f (xi, �vj)

]2

=
n∑

i=1

1
f (xi, �vj)

2 [yi − f (xi, �v)]2 (F.2)

Equation F.2 demonstrates the earlier comment that IRLS is really a mini-
mization of a weighted sum of additive squared errors. Hence, IRLS is not
truly a multiplicative error approach in its iteration toward a vector of con-
vergent model parameters. This is an important consideration, as explained
in Chapter 10, when deciding whether a dataset of observations exhibits
additive or multiplicative errors.

Like the general error regression method (GERM), presented in Chapter 10,
IRLS is a regression technique that allows flexibility in specifying a regres-
sion model’s form. To illustrate this, consider the dataset of observations
in Table 10.1 and its scatterplot in Figure 10.1. The following applies IRLS
to find a set of converged values for a, b, and c such that the nonlinear
function f (x) = a + bxc minimizes the weighted sum of additive squared
errors.

Given f (x) = a + bxc, minimizing the weighted sum of additive squared
errors means finding regression constants a, b, and c such that

∣∣ f (xi, �vj+1) − f (xi, �vj)
∣∣ ≤ τ (F.3)

where �v is the vector of regression constants aj, bj, and cj determined from the
jth iteration in a sequence of iterations through Equation F.1, beginning with
a vector �v of starter values a0, b0, and c0. In Equation F.3, τ is the decision cri-
terion (the tolerance level) to determine whether convergence between �vj and
�vj+1 is achieved, or equivalently when f (xi, �vj+1)≈ f (xi, �vj) for all i at iteration
(j + 1). If convergence is achieved at the (j + 1)st iteration, then the vector �vK
contains the regression constants aj+1, bj+1, and cj+1. The parameters of the
regression model f (x) = a + bxc are then given by a = aj+1, b = bj+1, and
c = cj+1.

The IRLS procedure is stimulated by a starter vector of regression constants
denoted by �v0 = [a0, b0, c0]. Suppose a0 = 100, b0 = 100, and c0 = 0.50.
Table F.1 is the dataset of observations in Table 10.1 and the analysis setup to
begin the IRLS procedure.

In Table F.1, the values in columns D and E are computed the same way
at this stage of the IRLS procedure as shown in Table 10.6. The column titled
“Estimated Cost, Regression Model” contains values from f0(xi) = a0 + b0xc0

i .
The sum of squared errors (SSE) is shown in the lower right corner of
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TABLE F.1

Dataset and IRLS Starting Values and Setup

A B C D E

1 Number of Program Data Points n = 7 Regression Model Form

2 Number of Regression Constants m = 3
f (x) = a + bxc

3 Degrees of Freedom n − m = 4
4 Program Number of Observed Estimated Cost,

Number Staff, x Cost, y Regression Model Error

5 1 7.9 1.380 381.069 0.9964
6 2 8.2 3.395 386.356 0.9912

7 3 9.8 7.201 413.050 0.9826
8 4 11.5 10.900 439.116 0.9752

9 5 16.4 15.434 504.969 0.9694
10 6 19.7 16.074 543.847 0.9704
11 7 23.6 17.274 585.798 0.9705

12 Starter Values Sum of Squared Errors (SSE)
13 a0 = 100 SSE = 6.715141

14 b0 = 100
15 c0 = 0.50

Table F.1. In IRLS, the SSE is the minimization objective∗ subject to varying
regression constants aj, bj, and cj for each iteration j. Table F.2 presents the
results from the first three sequential IRLS iterations.

For Iteration 1, the values for a1, b1, and c1 derive from minimizing the SSE
in Table F.1 while varying a0, b0, and c0. The column titled “Estimated Cost,
Regression Model” contains values from f1(xi) = a1 +b1xc1

i . The column titled
“Error” contains values from the Equation F.4.

ei = yi − f1(xi)

f0(xi)
= yi − (

a1 + b1xc1
i

)
a0 + b0xc0

i

(F.4)

For Iteration 2, in Table F.2, the values for a2, b2, and c2 derive from minimiz-
ing the SSE from Iteration 1 while varying a1, b1, and c1. The column titled
“Estimated Cost, Regression Model” contains values from f2(xi) = a2 + b2xc2

i .
The column titled “Error” contains values from the equation

ei = yi − f2(xi)

f1(xi)
= yi − (

a2 + b2xc2
i

)
a1 + b1xc1

i

(F.5)

∗ Throughout these computations, the minimization is accomplished by the Excel Solver add-in
using the generalized reduced gradient algorithm (discussed in Chapter 10).
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TABLE F.2

IRLS Iterations 1, 2, and 3

Iteration 1 Iteration 2 Iteration 3

Estimated Cost, Estimated Cost, Estimated Cost,
Regression Model Error Regression Model Error Regression Model Error

2.26204 0.0023 1.57560 0.0865 1.49256 0.0714
3.16199 −0.0006 2.88508 −0.1613 2.89458 −0.1735
6.99286 −0.0005 7.88303 0.0975 8.11975 0.1165

9.84894 −0.0024 10.99891 0.0100 11.25036 0.0319
14.65376 −0.0015 15.05360 −0.0260 15.10337 −0.0220

16.49383 0.0008 16.20820 0.0081 16.12959 0.0034
17.97920 0.0012 16.97765 −0.0165 16.78502 −0.0288

Solver Values: Iteration 1 Solver Values: Iteration 2 Solver Values: Iteration 3

a1 = 24.77334 a2 = 18.60165 a3 = 18.00494
b1 = −216.26157 b2 = −1440.41987 b3 = −2263.23252

c1 = −1.09464 c2 = −2.14719 c3 = −2.38063
Minimize Sum of Minimize Sum of Minimize Sum of

Squared Errors Squared Errors Squared Errors

SSE 0.000016 SSE 0.044109 SSE 0.051111

Model Quality Measures Model Quality Measures Model Quality Measures

SEE 0.002009 SEE 0.105011 SEE 0.113039
Bias −0.000108 Bias −0.000218 Bias −0.000135

R2 0.986754 R2 0.995940 R2 0.993763

For Iteration 3, in Table F.2 the values for a3, b3, and c3 derive from minimiz-
ing the SSE from Iteration 2 while varying a2, b2, and c2. The column titled
“Estimated Cost, Regression Model” contains values from f3(xi) = a3 + b3xc3

i .
The column titled “Error” contains values from the equation

ei = yi − f3(xi)

f2(xi)
= yi − (

a3 + b3xc3
i

)
a2 + b2xc2

i

(F.6)

Table F.3 presents the results of nine successive iterations through the IRLS
procedure for the dataset given in Table F.1. At Iteration 7, it follows
that

∣∣f (xi, �v7) − f (xi, �v6)
∣∣ = 0. Thus, the vector �vK contains the regression

constants [17.94669, −2421.11675, −2.41455]. Therefore, the final regression
model found by IRLS for this dataset is

f (x) = 17.95 − 2421.12x−2.415 (F.7)
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TABLE F.3

IRLS Iterations to Convergence

Iteration No. 1 2 3

a = 24.77334 18.60165 18.00494
b = −216.26157 −1440.41987 −2263.23252

c = −1.09464 −2.14719 −2.38063
Iteration No. 4 5 6

a = 17.94151 17.94671 17.94669
b = −2419.38539 −2421.11440 −2421.11675

c = −2.41440 −2.41455 −2.41455
Iteration No. 7 8 9

a = 17.94669 17.94669 17.94669

b = −2421.11675 −2421.11675 −2421.11675
c = −2.41455 −2.41455 −2.41455

Figure F.1 shows the increasing improvement in the fit of regression model
as its constants are derived through the first six IRLS iterations. The open
circles are values predicted by the model. The dark circles are the dataset of
observations. Observe there is no significant change in the fit of the regres-
sion model given by Equation F.7 to the observed data from Iteration 3 and
thereafter.

In summary, IRLS can operate on any regression model form with addi-
tive or multiplicative error. It provides an unbiased solution, but its itera-
tive procedure requires a somewhat complex implementation. Using IRLS,
regression constants of models of the form y = bxcε can be algebraically
derived (an analytic solution). However, this is not true for nonlinear “triad”
models such as y = a + bxcε or models of greater complexity such as y =
(a + bxcdx)ε. In these cases, IRLS requires the use of optimization techniques,
as shown herein, to search for a vector containing a converged set of val-
ues for these constants. As in the GERM approach (Chapter 10), the use of
optimization in IRLS may also produce locally optimal rather than globally
optimal results.

Exercise

F.1 Build an Excel spreadsheet model that performs 10 iterations of IRLS
through the dataset of observations given in Table F.1. Use the spread-
sheet with its Solver add-in feature to verify the results in Table F.3, with
the starter values a0 = 100, b0 = 100, and c0 = 0.50. Note: Results may
vary somewhat depending on the Solver algorithm available in Excel.
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Appendix G: Sample Lot Cost and
Quantity Data

This appendix presents the sample lot cost and quantity data (Table G.1)
referred to in Chapter 11.

TABLE G.1

Sample Lot Cost and Quantity Data

Weight, Lot Cumulative Cumulative
Lot ID lbs. Size AUC Lot Size Program Cost

Lot A1 985 37 2937.1840 37 108, 675.81

Lot A2 985 26 2250.4850 63 167, 188.42
Lot A3 985 9 2271.1420 72 187, 628.70

Lot A4 985 69 1745.2730 141 308, 052.53
Lot A5 985 240 686.0282 381 472, 699.29
Lot A6 985 180 686.4231 561 596, 255.44

Lot A7 985 284 522.0096 845 744, 506.18
Lot A8 985 450 448.3847 1295 946, 279.28

Lot A9 985 432 410.8124 1727 1, 123, 750.23
Lot A10 985 430 398.7651 2157 1, 295, 219.23

Lot A11 985 300 419.5685 2457 1, 421, 089.79
Lot B1 985 15 1886.1080 15 28, 291.62
Lot B2 985 30 2150.4310 45 92, 804.55

Lot B3 985 60 1233.5180 105 166, 815.65
Lot B4 985 132 1220.1440 237 327, 874.69

Lot B5 985 108 943.0884 345 429, 728.24
Lot B6 985 265 948.2006 610 681, 001.39

Lot B7 985 265 788.8112 875 890, 036.37
Lot B8 985 265 785.5494 1140 1, 098, 206.96
Lot B9 985 149 811.9428 1289 1, 219, 186.44

Lot B10 985 180 747.8859 1469 1, 353, 805.91
Lot B11 985 195 686.7638 1664 1, 487, 724.86

Lot B12 985 420 432.0905 2084 1, 669, 202.88
Lot C1 510 125 336.6665 125 42, 083.31

Lot C2 510 390 355.0541 515 180, 554.40

(Continued)
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TABLE G.1 (Continued)

Sample Lot Cost and Quantity Data

Weight, Lot Cumulative Cumulative
Lot ID lbs. Size AUC Lot Size Program Cost

Lot C3 510 1490 227.8711 2005 520, 082.36
Lot C4 510 1593 195.9469 3598 832, 225.73
Lot C5 510 1560 174.4292 5158 1, 104, 335.34

Lot C6 510 2147 166.8957 7305 1, 462, 660.31
Lot C7 510 1679 164.7038 8984 1, 739, 197.93

Lot C8 510 2527 134.8004 11, 511 2, 079, 838.66
Lot C9 510 947 174.4672 12, 458 2, 245, 059.09

Lot D1 190 1200 46.1547 1200 55, 385.67
Lot D2 190 2793 30.7965 3993 141, 400.30
Lot D3 190 2603 28.2268 6596 214, 874.77

Lot D4 190 1682 27.6394 8278 261, 364.15
Lot D5 190 2542 27.3006 10, 820 330, 762.36

Lot D6 190 784 31.5043 11, 604 355, 461.69
Lot D7 190 1204 28.7777 12, 808 390, 110.04

Lot E1 190 65 336.8508 65 21, 895.30
Lot E2 190 1857 55.2581 1922 124, 509.61
Lot E3 190 1999 46.6230 3921 217, 708.88

Lot E4 190 1535 49.3162 5456 293, 409.29
Lot E5 190 2602 33.4887 8058 380, 546.90

Lot E6 190 3224 28.2329 11, 282 471, 569.77
Lot E7 190 3461 26.8077 14, 743 564, 351.37

Lot E8 190 2060 26.4079 16, 803 618, 751.64
Lot E9 190 3667 22.8784 20, 470 702, 646.75
Lot E10 190 710 27.7968 21, 180 722, 382.50

Lot E11 190 788 31.0326 21, 968 746, 836.17
Lot F1 190 920 70.7552 920 65, 094.78

Lot F2 190 900 42.3159 1820 103, 179.09
Lot F3 190 1100 40.6714 2920 147, 917.60

Lot F4 190 2487 27.1378 5407 215, 409.26
Lot G1 190 1534 70.6727 1534 108, 411.88
Lot G2 190 1020 61.7886 2554 171, 436.20

Lot G3 190 2000 38.3292 4554 248, 094.60
Lot G4 190 2245 29.6672 6799 314, 697.48

Lot G5 190 2014 34.3181 8813 383, 814.14
Lot H1 510 65 709.2363 65 46, 100.36

Lot H2 510 29 746.0290 94 67, 735.20
Lot H3 510 100 840.9082 194 151, 826.02
Lot H4 510 225 425.0159 419 247, 454.59

(Continued)
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TABLE G.1 (Continued)

Sample Lot Cost and Quantity Data

Weight, Lot Cumulative Cumulative
Lot ID lbs. Size AUC Lot Size Program Cost

Lot H5 510 600 216.0518 1019 377, 085.65
Lot H6 510 880 204.0192 1899 556, 622.58
Lot H7 510 1110 161.1088 3009 735, 453.30

Lot H8 510 1398 139.8911 4407 931, 021.03
Lot H9 510 900 126.8681 5307 1, 045, 202.33

Lot H10 510 1144 111.0231 6451 1, 172, 212.72
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