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Preface

This book has originated from a compendium of lecture notes prepared by
the author to a graduate course in Rheology and Non-Newtonian Fluids at the
Norwegian University of Science and Technology. The compendium was pre-
sented in Norwegian from 1993 and in English from 2003. The aim of the course
and of this book has been to give an introduction to the subject.

Fluid is the common name for liquids and gases. Typical non-Newtonian fluids
are polymer solutions, thermoplastics, drilling fluids, granular materials, paints,
fresh concrete and biological fluids, e.g., blood.

Matter in the solid state may often be modeled as a fluid. For example, creep
and stress relaxation of steel at temperature above ca. 400 �C, well below the
melting temperature, are fluid-like behaviors, and fluid models are used to describe
steel in creep and relaxation.

The author has had great pleasure demonstrating non-Newtonian behavior using
toy materials that can be obtained from science museum stores under different
brand names like Silly Putty, Wonderplast, Science Putty, and Thinking Putty.
These materials exhibit many interesting features that are characteristic of non-
Newtonian fluids. The materials flow, but very slowly, are highly viscous, may be
formed to a ball that bounces elastically, tear if subjected to rapidly applied tensile
stress, and break like glass if hit by a hammer.

The author has been involved in a variety of projects in which fluids and fluid-
like materials have been modeled as non-Newtonian fluids: avalanching snow,
granular materials in landslides, extrusion of aluminium, modeling of biomaterials
as blood and bone, modeling of viscoelastic plastic materials, and drilling mud
used when drilling for oil.

Rheology consists of Rheometry, i.e., the study of materials in simple flows,
Kinetic Theory of Macromaterials, and Continuum Mechanics.

After a brief introduction of what characterizes non-Newtonian fluids in
Chap. 1 some phenomenal characteristic of non-Newtonian fluids are presented in
Chap. 2. The basic equations in fluid mechanics are discussed in Chap. 3.
Deformation Kinematics, the kinematics of shear flows, viscometric flows, and
extensional flows are the topics in Chap. 4. Material Functions characterizing the
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behavior of fluids in special flows are defined in Chap. 5. Generalized Newtonian
Fluids are the most common types of non-Newtonian fluids and are the subject in
Chap. 6. Some linearly viscoelastic fluid models are presented in Chap. 7. In
Chap. 8 the concept of tensors is utilized and advanced fluid models are intro-
duced. The book is concluded with a variety of 26 problems.

Trondheim, July 2013 Fridtjov Irgens
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Chapter 1
Classification of Fluids

1.1 The Continuum Hypothesis

Matter may take three aggregate forms or phases: solid, liquid, and gaseous.
A body of solid matter has a definite volume and a definite form, both dependent
on the temperature and the forces that the body is subjected to. A body of liquid
matter, called a liquid, has a definite volume, but not a definite form. A liquid in a
container is formed by the container but does not necessarily fill it. A body of
gaseous matter, called a gas, fills any container it is poured into.

Matter is made of atoms and molecules. A molecule usually contains many
atoms, bound together by interatomic forces. The molecules interact through
intermolecular forces, which in the liquid and gaseous phases are considerably
weaker than the interatomic forces.

In the liquid phase the molecular forces are too weak to bind the molecules to
definite equilibrium positions in space, but the forces will keep the molecules from
departing too far from each other. This explains why volume changes are relatively
small for a liquid.

In the gaseous phase the distances between the molecules have become so large
that the intermolecular forces play a minor role. The molecules move about each
other with high velocities and interact through elastic impacts. The molecules will
disperse throughout the vessel containing the gas. The pressure against the vessel
walls is a consequence of molecular impacts.

In the solid phase there is no longer a clear distinction between molecules and
atoms. In the equilibrium state the atoms vibrate about fixed positions in space.
The solid phase is realized in either of two ways: In the amorphous state the
molecules are not arranged in any definite pattern. In the crystalline state the
molecules are arranged in rows and planes within certain subspaces called crystals.
A crystal may have different physical properties in different directions, and we say
that the crystal has macroscopic structure and that it has anisotropic mechanical
properties. Solid matter in crystalline state usually consists of a disordered col-
lection of crystals, denoted grains. The solid matter is then polycrystalline. From a
macroscopic point of view polycrystalline materials may have isotropic
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mechanical properties, which mean that the mechanical properties are the same in
all directions, or may have structure and anisotropic mechanical properties.

Continuum mechanics is a special branch of Physics in which matter, regardless
of phase or structure, is treated by the same theory. Special macroscopic properties
for solids, liquids and gases are described through material or constitutive equa-
tions. The constitutive equations represent macromechanical models for the real
materials. The simplest constitutive equation for a solid material is given by
Hooke’s law: r ¼ Ee; used to describe the relationship between the axial force
N in a cylindrical test specimen in tension or compression and the elongation DL
of the specimen of length L and cross-sectional area A. The force per unit area of
the cross-section is given by the normal stress r ¼ N=A. The change of length per
unit length is represented by the longitudinal strain e ¼ DL=L. The material
parameter E is the modulus of elasticity of the material.

Continuum Mechanics is based on the continuum hypothesis:

Matter is continuously distributed throughout the space occupied by the matter.
Regardless of how small volume elements the matter is subdivided into, every element will
contain matter. The matter may have a finite number of discontinuity surfaces, for instance
fracture surfaces or yield surfaces in solids, but material curves that do not intersect such
surfaces, retain their continuity during the motion and deformation of the matter.

The basis for the hypothesis is how we macroscopically experience matter and
its macroscopic properties, and furthermore how the physical quantities we use, as
for example pressure, temperature, and velocity, are measured macroscopically.
Such measurements are performed with instruments that give average values on
small volume elements of the material. The probe of the instrument may be small
enough to give a local value, i.e., an intensive value, of the property, but always so
extensive that it registers the action of a very large number of atoms or molecules.

1.2 Definition of a Fluid

A common property of liquids and gases is that they at rest only can transmit a
pressure normal to solid or liquid surfaces bounding the liquid or gas. Tangential
forces on such surfaces will first occur when there is relative motion between the
liquid or gas and the solid or liquid surface. Such forces are experienced as
frictional forces on the surface of bodies moving through air or water. When we
study the flow in a river we see that the flow velocity is greatest in the middle of
the river and is reduced to zero at the riverbank. The phenomenon is explained by
the notion of tangential forces, shear stresses, between the water layers that try to
slow down the flow.

The volume of an element of flowing liquid is nearly constant. This means that
the density: mass per unit volume, of a liquid is almost constant. Liquids are
therefore usually considered to be incompressible. The compressibility of a liquid,
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i.e., change in volume and density, comes into play when convection and acoustic
phenomena are considered.

Gases are easily compressible, but in many practical applications the com-
pressibility of a gas may be neglected, and we may treat the gas as an incom-
pressible medium. In elementary aerodynamics, for instance, it is customary to
treat air as an incompressible matter. The condition for doing that is that the
characteristic speed in the flow is less than 1/3 of the speed of sound in air.

Due to the fact that liquids and gases macroscopically behave similarly, the
equations of motion and the energy equation for these materials have the same
form, and the simplest constitutive models applied are in principle the same for
liquids and gases. A common name for these models is therefore of practical
interest, and the models are called fluids. A fluid is thus a model for a liquid or a
gas. Fluid Mechanics is the macromechanical theory for the mechanical behavior
of liquids and gases. Solid materials may also show fluid-like behavior. Plastic
deformation and creep, which is characterized by increasing deformation at con-
stant stress, are both fluid-like behavior. Creep is experienced in steel at high
temperatures ([400 �C), but far below the melting temperature. Stones, e.g.,
granite, may obtain large deformations due to gravity during a long geological
time interval. All thermoplastics are, even in solid state, behaving like liquids, and
therefore modeled as fluids. In continuum mechanics it is natural to define a fluid
on the basis of what is the most characteristic feature for a liquid or a gas. We
choose the following definition:

A fluid is a material that deforms continuously when it is subjected to aniso-
tropic states of stress.

Figure 1.1 shows the difference between an isotropic state of stress and aniso-
tropic states of stress. At an isotropic state of stress in a material point all material
surfaces through the point are subjected to the same normal stress, tension or
compression, while the shear stresses on the surfaces are zero. At an anisotropic state
of stress in a material point most material surfaces will experience shear stresses.

As mentioned above, solid material behaves as fluids in certain situations.
Constitutive models that do not imply fluid-like behavior will in this book be called
solids. Continuum mechanics also introduces a third category of constitutive models
called liquid crystals. However these materials will not be discussed in this book.

2σ

3 1σ σ≠

0σ

p

Anisotropic stress statesIsotropic stress state

0σ

0σ

1σ

p

τ
τ

p

Fig. 1.1 Isotropic state of stress and anisotropic states of stress
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1.3 What is Rheology?

The term rheology was invented in 1920 by Professor Eugene Bingham at Lafayette
College in Indiana USA. He was inspired by a colleague, Martin Reiner, a professor
in Classical Languages and History. Bingham, a professor of Chemistry, studied
new materials with strange flow behavior, in particular paints. The syllable Rheo is
from the Greek word ‘‘rhein’’, meaning flow, so the name rheology was taken to
mean the theory of deformation and flow of matter. Rheology has also come to
include the constitutive theory of highly viscous fluids and solids exhibiting vis-
coelastic and viscoplastic properties. The term Rheo was inspired by the quotation
‘‘ta panta rhei’’, everything flows, mistakenly attributed to Heraclitus [ca. 500–475
BCE], but actually coming from the writings of Simplicius [490–560 CE].

Newtonian fluids are fluids that obey Newton’s linear law of friction, Eq. (1.4.5)
below. Fluids that do not follow the linear law are called non-Newtonian. These
fluids are usually highly viscous fluids and their elastic properties are also of
importance. The theory of non-Newtonian fluids is a part of rheology. Typical non-
Newtonian fluids are polymer solutions, thermo plastics, drilling fluids, paints,
fresh concrete and biological fluids.

1.4 Non-Newtonian Fluids

We shall classify different real fluids in categories according to their most
important material properties. In later chapters we shall present fluid models
within the different categories. In order to define some simple mechanical prop-
erties to be used in the classification, we shall consider the following experiment
with different real liquids.

Figure 1.2 shows a cylinder viscometer. A cylinder can rotate in a cylindrical
container about a vertical axis. The annular space between the two concentric
cylindrical surfaces is filled with a liquid. The cylinder is subjected to a torque
M and comes in rotation with a constant angular velocity x. The distance
h between the two cylindrical surfaces is so small compared to the radius r of the
cylinder that the motion of the liquid may be considered to be like the flow
between two parallel plane surfaces, see Fig. 1.3. It may be shown that for
moderate x-values the velocity field is given by:

vx ¼
v

h
y; vy ¼ vz ¼ 0; v ¼ xr ð1:4:1Þ

vx; vy; and vz are velocity components in the directions of the axes in a local
Cartesian coordinate system Oxyz. The term v ¼ xr is the velocity of the fluid
particle at the wall of the rotating cylinder.
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A volume element having edges dx; dy; and dz; see Fig. 1.4, will during a
short time interval dt change its form. The change in form is given by the shear
strain dc :

dc ¼ _cdt ¼ dvx dt

dy
¼ dvx

dy
dt ¼ v

h
dt ¼ xr

h
dt

fluid

see fig. 1.3

fluid

, ,M ω φ

H

h

r

M

ω

container

rotating cylinder

container

Fig. 1.2 Cylinder viscometer

v rω=

h

( )v x
y

x

y

τ
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yp

wall of rotating cylinder
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Fig. 1.3 Simple shear flow
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Fig. 1.4 Fluid element from
Fig. 1.3
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The quantity:

_c ¼ dvx

dy
¼ v

h
¼ r

h
x ð1:4:2Þ

is called the rate of shear strain, or for short the shear rate. The flow described by
the velocity field (1.4.1) and illustrated in Fig. 1.3, is called simple shear flow.

The fluid element in Fig. 1.4 is subjected to normal stresses on all sides and a
shear stress s on four sides, see Fig. 1.3. The shear stress may be determined from
the balance law of angular momentum applied to the rotating cylinder. For the case
of steady flow at constant angular velocity x the torque M is balanced by the shear
stresses s on the cylindrical wall with area 2prH: Thus:

srð Þ 2prHð Þ ¼ M ) s ¼ M

2pr2H
ð1:4:3Þ

The viscometer records the relationship between the torque M and the angular
velocity x. Using formulas (1.4.2) for the shear rate _c and (1.4.3) for the shear
stress s, we obtain a relationship between the shear stress s and the shear rate _c.
We shall now discuss such relationships.

A fluid is said to be purely viscous if the shear stress s is a function only of the
shear rate:

s ¼ s _cð Þ ð1:4:4Þ

An incompressible Newtonian fluid is a purely viscous fluid with a linear
constitutive equation:

s ¼ l _c ð1:4:5Þ

The coefficient l is called the viscosity of the fluid and has the unit Ns/m2 ¼
Pa � s, pascal-second. Alternative units for viscosity are poise (P) and centipoise
(cP):

10 P ¼ 1000 cP ¼ 1 Pa � s: ð1:4:6Þ

The unit poise is named after Jean Lois Marie Poiseuille [1797–1869].
The viscosity varies strongly with the temperature and to a certain extent

also with the pressure in the fluid. For water l ¼ 1:8� 10�3Ns/m2 at 0 �C and
l ¼ 1:0� 10�3Ns/m2 at 20 �C Usually a highly viscous fluid does not obey the
linear law (1.4.5) and belongs to the non-Newtonian fluids. However, some highly
viscous fluids are Newtonian. Mixing glycerin and water gives a Newtonian fluid
with viscosity varying from 1:0� 10�3 to 1:5Ns/m2 at 20 �C, depending upon the
concentration of glycerin. This fluid is often used in tests comparing the behavior
of a Newtonian fluid with that of a non-Newtonian fluid.

For non-Newtonian fluids in simple shear flow a viscosity function g _cð Þ is
introduced:
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g _cð Þ ¼ s
_c

ð1:4:7Þ

The viscosity function is also called the apparent viscosity. The constitutive
equation (1.4.4) may now be rewritten to:

s ¼ g _cð Þ _c ð1:4:8Þ

The most commonly used model for the viscosity function is given by the
power law:

g _cð Þ ¼ K _cj jn�1 ð1:4:9Þ

The consistency parameter K and the power law index n are both functions of
the temperature. Note that the power law function (1.4.9) gives:

g0 � gð0Þ ¼ 1 for n\1; and ¼ 0 for n [ 1

g1 � gð1Þ ¼ 0 for n\1; and ¼ 1 for n [ 1
ð1:4:10Þ

This is contrary to what is found in experiments with non-Newtonian fluids,
which always give:

g0 � gð0Þ ¼ finite value [ 0; g1 � gð1Þ ¼ finite value [ 0 ð1:4:11Þ

The parameters g0 and g1are called zero-shear-rate-viscosity and infinite
shear-rate- viscosity respectively. The power law is the basic constitutive equation
for the power law fluid model presented in Sect. 6.1. Table 1.1 presents some
examples of K- and n-values.

In order to include elastic properties in the description of mechanical behavior
of real fluids we may first imagine that the test fluid in the container solidifies. The
torque M will not manage to maintain a constant angular velocity x, but the
cylinder will rotate an angle /. Material particles at the rotating cylindrical wall
will approximately obtain a rectilinear displacement u ¼ /r. The volume element
in Fig. 1.4 will be sheared and get a shear strain:

c ¼ u

h
¼ r

h
/ ð1:4:12Þ

Table 1.1 Consistency parameter K and power law index n for some fluids

Fluid Region for _c [s-1] K [Nsn/m2] n

54.3 % cement rock in water, 300 �K 10–200 2.51 0.153
23.3 % Illinois clay in water, 300 �K 1800–6000 5.55 0.229
Polystyrene, 422 �K 0.03–3 1:6� 105 0.4

Tomato Concentrate, 90 �F 30 % solids 18.7 0.4
Applesauce, 80 �F 11,6 % solids 12.7 0.4
Banana puree, 68 �F 6.89 0.28
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A material is said to be purely elastic if the shear stress is only a function of the
shear strain and independent of the shear strain rate, i.e.:

s ¼ sðcÞ ð1:4:13Þ

For a linearly elastic material:

s ¼ Gc ð1:4:14Þ

where G is the shear modulus.
For many real materials, both liquids and solids, the shear stress may be

dependent both upon the shear strain and the shear strain rate. These materials are
called viscoelastic. The relevant constitutive equation may take the simple form:

s ¼ sðc; _cÞ ð1:4:15Þ

But usually we have to apply more complex functional relationships, which
take into consideration the deformation:history of the material. We shall see
examples of such relationships below.

Fluid models may be classified into three main groups:

A. Time independent fluids
B. Time dependent fluids
C. Viscoelastic fluids

We shall briefly discuss some important features of the different groups. In the
Chaps. 6–8 general constitutive equations for some of these materials will be
presented.

1.4.1 Time Independent Fluids

This group may further be divided into two subgroups

A1. Viscoplastic fluids
A2. Purely viscous fluids

Figure 1.5 shows characteristic graphs of the function sð _cÞ for viscoplastic
materials. The material models are solids when the shear stress is less than the
yield shear stress sy, and the behavior is elastic. For s [ sy the material models are
fluids. When the material is treated as a fluid, it is generally assumed that the fluid
is incompressible and that the material is rigid, without any deformations, when
s\sy. The simplest viscoplastic fluid model is the Bingham fluid, named after
Professor Bingham, the inventor of the name Rheology. The model behaves like a
Newtonian fluid when it flows, and the constitutive equation in simple shear is:
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sð _cÞ ¼ lþ sy

_cj j

� �
_c when _c 6¼ 0; sð _cÞ� sy when _c ¼ 0 ð1:4:16Þ

Examples of fluids exhibiting a yield shear stress are: drilling fluids, sand in
water, granular materials, margarine, toothpaste, some paints, some polymer melts,
and fresh concrete. General constitutive equations for the Bingham fluid model are
presented in Sect. 6.1.

The velocity profile of the flow of a viscoplastic fluid in a tube is shown in
Fig. 1.6. The flow is driven by a pressure gradient. The central part of the flowing
fluid has a uniform velocity and flows like a plug. When toothpaste is squeezed
from a toothpaste tube, a plug-flow is clearly observed.

Purely viscous fluids have the constitutive equation (1.4.4) or (1.4.8) in simple
shear flow. A purely viscous fluid is said to be shear-thinning or pseudoplastic if the
viscosity expressed by the viscosity function (1.4.7) decreases with increasing shear
rate, see Figs. 1.7 and 1.8. Most real non-Newtonian fluids are shear-thinning
fluids. Examples: nearly all polymer melts, polymer solutions, biological fluids, and
mayonnaise. The word ‘‘pseudoplastic’’ relates to the fact the viscosity function of a
shear-thinning fluid has somewhat the same character as for the viscoplastic fluid
models, compare Figs. 1.5 and 1.7. The power-law (1.4.9) describes the shear-
thinning fluid when n\1:

For a relatively small group of real liquids ‘‘the apparent viscosity’’ s= _c
increases with increasing shear rate. These fluids are called shear-thickening fluids
or dilatant fluids (expanding fluids). The last name reflects that these fluids often
increase their volume when they are subjected to shear stresses. While the two
effects are phenomenological quite different, a fluid with one of the effects also
usually has the other. The power law (1.4.9) represents a shear-thickening fluid for
n [ 1.

yτ

yτ

yτ

τ

γ

Fig. 1.5 Viscoplastic fluids

A
p

B A
p p<

L

plug-flow
R pr

( )v R

Fig. 1.6 Plug-flow in a tube

1.4 Non-Newtonian Fluids 9

http://dx.doi.org/10.1007/978-3-319-01053-3_6


1.4.2 Time Dependent Fluids

These fluids are very difficult to model. Their behavior is such that for a constant
shear rate _c and at constant temperature the shear stress s either increases or
decreases monotonically with respect to time, towards an asymptotic value s _cð Þ,
see Fig. 1.9. The fluids regain their initial properties some time after the shear rate
has returned to zero. The time dependent fluids are divided into two subgroups:

B1. Thixotropic fluids: At a constant shear rate the shear stress decreases
monotonically.

B2. Rheopectic fluids: At a constant shear rate the shear stress increases mono-
tonically. These fluids are also called antithixotropic fluids.

There is another fascinating feature with these fluids. When a thixotropic fluid
is subjected to a shear rate history from _c ¼ 0 to a value _c0 and back to _c ¼ 0, the
graph for the shear stress s as a function of _c shows a hysteresis loop, see Fig. 1.10.

shear-thinning fluid

τ

γ

Newtonian fluid

shear-thickening fluid
Fig. 1.7 Purely viscous
fluids

oη

η∞

η

γ

Newtonian fluid

shear-thinning fluid

shear-thickening fluid

Bingham fluid

Fig. 1.8 Constant shear rate
test

( )oτ γ

( )oτ γ

τ

t

rheopectic fluid

thixotropic fluid

Fig. 1.9 The viscosity
function gð _cÞ
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For repeated shear rate histories the hysteresis loops get less steep and slimmer,
and they eventually approach the graph for so _cð Þ. Examples of thixotropic fluids
are: drilling fluids, grease, printing ink, margarine, and some polymer melts. Some
paints exhibit both viscoplastic and thixotropic response. They have gel consis-
tency and become liquefied by stirring, but they regain their gel consistency after
some time at rest. Also for rheopectic fluids we will see hysteresis loops when the
fluids are exposed to shear rate histories, see Fig. 1.10. Relatively few real fluids
are rheopectic. Gypsum paste gives an example.

1.4.3 Viscoelastic Fluids

When an undeformed material, solid or fluid, is suddenly subjected to a state of
stress history, it deforms. An instantaneous deformation is either elastic, or elastic
and plastic. The initial elastic deformation disappears when the stress is removed,
while the plastic deformation remains as a permanent deformation. If the material
is kept in a state of constant stress, it may continue to deform, indefinitely if it is a
fluid, or asymptotically towards a finite configuration if it is a solid. This phe-
nomenon is called creep. When a material is suddenly deformed and kept in a fixed
deformed state, the stresses may be constant if the material behaves elastically, but
the stress may also decrease with respect to time either toward an isotropic state of
stress if the material is fluid-like or toward an asymptotic limit anisotropic state of
stress if the material is solid-like, This phenomenon is called stress relaxation.
Creep and stress relaxation are due to a combination of an elastic response and
internal friction or viscous response in the material, and are therefore called vis-
coelastic phenomena. If the material exhibits creep and stress relaxation, it is said
to behave viscoelastically. When the material is subjected to dynamic loading,
viscoelastic properties are responsible for damping and energy dissipation.

Propagation of sound in liquids and gases is an elastic response. Fluids are
therefore in general both viscous and elastic, and the response is viscoelastic.
However, the elastic deformations are very small compared to the viscous
deformations.

( )oτ γ
rheopectic fluid

τ

γ

thixotropic fluid

oγ

Fig. 1.10 Shear rate
histories
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Many solid materials that under ‘‘normal’’ temperatures may be considered
purely elastic, will at higher temperatures respond viscoelastically. It is customary
to introduce a critical temperature Hc for these materials, such that the material is
considered to be viscoelastic at temperatures H [ Hc. For example, for common
structural steel the critical temperature Hcis approximately 400 �C. For plastics a
glass transition temperature Hc is introduced. At temperatures below the glass
transition temperature the materials behave elastically, more or less like brittle
glass. Established plastic materials have Hc-values from -120 to +120 �C. Some
plastics behave viscoelastically within a certain temperature interval: Hg\H\H0.
For temperatures H\Hg and H [ H0 these materials are purely elastic. Vulca-
nized rubber is an example of such a material.

In order to expose the most characteristic properties of real viscoelastic
materials, we shall now discuss typical results from tests in which the material,
liquid or solid, is subjected to simple shear. The test may be performed with the
cylinder viscometer presented in Fig. 1.2.

In a creep test a constant torque M0 is introduced, and the angle of rotation as a
function of the torque and of the time t, i.e., / ¼ / M0; tð Þ, is recorded. The
resulting shear stresss0 is found from equation (1.4.3) as:

s0 ¼
M0

2pr2H
ð1:4:17Þ

The shear straincðs0; tÞis found from equation (1.4.12) as:

c s0; tð Þ ¼ r

h
/ M0; tð Þ ð1:4:18Þ

Figure 1.11 shows the result of a creep test. The diagram may be divided into
the following regions (Fig. 1.12):
I: Initial shear strain cin ¼ cin;e þ cin;p. Almost instantaneously the material

gets an initial shear strain which may be purely elastic or contain an elastic
part cin;eand a plastic part cin;p:

P: Primary creep. The time rate of shear strain _c ¼ dc=dt is at first relatively
high, but decreases towards a stationary value.

S: Secondary creep. The rate of strain _c ¼ dc=dt is constant.
T: Tertiary creep. If the material is under constant shear stress for a long period

of time, the rate of shear strain _c ¼ dc=dt may start to increase.

γ

t
1t

T

P
S

in,eγ

pγ

eR
tR

inγ restitution

creep test

Fig. 1.11 Creep test in shear
c s0; tð Þ and restitution after
unloading
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The diagram in Fig. 1.11 also shows a restitution of the material after the torque
M0 has been removed at the time t1 :
Re: Elastic restitution. At sudden unloading by removing the torque M0; the

initial elastic shear strain cin;e disappears momentarily
Rt: Time dependent restitution also called elastic after-effect

After the restitution is completed, in principle it may take infinitely long time,
the material has got a permanent or plastic shear strain cp. The different regions
described above are more or less prominent for different materials. Tests show that
an increase in the stress level or of the temperature will lead to increasing shear
strain rates in all the creep regions.

In a stress relaxation experiment with the cylinder viscometer a constant angle
of rotation /0 is introduced, and the resulting torque M as a function of the
constant angle /0 and of the time t is recorded, i.e., M ¼ M /0; tð Þ: The angle of
rotation results in a constant shear strain c0, and the torque gives a shear stress as a
function of the shear strain c0 and of time:s ¼ s c0; tð Þ, with an initial value sin. The
shear stress s ¼ s c0; tð Þ decreases with time asymptotically towards a value, which
for a fluid is zero.

A viscoelastic material may be classified as a solid or a fluid, see Fig. 1.13. The
creep diagram for a viscoelastic solid will exhibit elastic initial strain, primary
creep, and complete restitution without plastic strain. The primary creep will after
sufficiently long time reach an ‘‘elastic ceiling’’, which is given by the equilibrium
shear strain ce r0ð Þ. In a relaxation test of a viscoelastic solid the stress decreases
towards an equilibrium shear stress se c0ð Þ. The creep diagram for a viscoelastic
liquid may exhibit all the regions mentioned in connection with Fig. 1.11. The
relaxation graph of a viscoelastic fluid approaches the zero stress level asymp-
totically. For comparison Fig. 1.13 also presents the response curves for an elastic
material and a purely viscous material, for example a Newtonian fluid.

In a creep test the constant shear stress s0 may be described by the function:

sðtÞ ¼ s0HðtÞ ð1:4:19Þ

where H(t) is the Heaviside unit step function, Oliver Heaviside [1850–1925]:

inτ

t

τFig. 1.12 Relaxation test in
shear s c0; tð Þ
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HðtÞ ¼ 0 for t� 0
1 for t [ 0

�
ð1:4:20Þ

The result of the creep test may be described by a creep function in shear
aðs0; tÞ, such that the shear strain becomes:

cðs0; tÞ ¼ aðs0; tÞ s0 HðtÞ ð1:4:21Þ

In a relaxation test the material is subjected to a sudden shear strain c0 such
that:

cðtÞ ¼ c0 HðtÞ ð1:4:22Þ

The shear strain results in a shear stress:

sðc0; tÞ ¼ bðc0; tÞ c0 HðtÞ ð1:4:23Þ

bðc0; tÞ is called the relaxation function in shear. The functions
aðs0; tÞ and bðc0; tÞare temperature dependent, but for convenience the tempera-
ture dependence is not indicated here.

If the creep test and the relaxation test of a material indicate that it is reasonably
to present the creep function and the relaxation function as independent of the
shear strain:

a ¼ aðtÞ; b ¼ bðtÞ ð1:4:24Þ

we say that the material shows linearly viscoelastic response. A linearly visco-
elastic material model may be used as a first approximation in many cases.

The instantaneous response of a linearly viscoelastic material is given by the
glass compliance ag ¼ að0Þand the glass modulus, also called the short time
modulus, bg ¼ bð0Þ:

The parameters ae � að1Þ and be � bð1Þ are called respectively the equi-
librium compliance and the equilibrium modulus or the long time modulus. For a
viscoelastic fluid ae � 1 and be � 0:

γ
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a
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a) viscoelastic solid

b) viscoelastic fluid
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d) viscous fluid
d
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Fig. 1.13 Solid and fluid response in creep and relaxation
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The parameters ag; ae; bg; and be are all temperature dependent. Because it is
the same whether we set rð0þÞ ¼ bg e0 or eð0þÞ ¼ ag r0 and rð1Þ¼be

e0 or eð1Þ ¼ ae r0;we have the result:

agbg ¼ 1; aebe ¼ 1 ð1:4:25Þ

Tests with multiaxial states of stress show that viscoelastic response is primary
a shear stress-shear strain effect. Very often materials subjected to isotropic stress
will deform elastically. This fact agrees well with common conception that there is
a close micro-mechanical correspondence between viscous and plastic deforma-
tion, and that plastic deformation is approximately volume preserving. Thus,
general stress–strain relationships may be obtained by combining shear stress tests
and tests with isotropic states of stress.

It will be demonstrated in Chap. 7 that the response of a linearly viscoelastic
fluid in simple shear flow may be represented by the constitutive equation:

sðtÞ ¼
Z t

�1

b t ��tð Þ _c �tð Þd�t ð1:4:26Þ

The function _cð�tÞ for �1\�t� t is the rate of shear strain history that the
fluid has experienced up to the present time t.

The Maxwell fluid, James Clerk Maxwell [1813–1879], is a constitutive model
of a linearly viscoelastic fluid. The response equation for simple shear flow is:

s
l
þ _s

G
¼ _c ð1:4:27Þ

l is a viscosity and G is a shear modulus. The response equation is obtained by
assuming that the total rate of shear strain rate _c is a sum of a viscous contribution
_cv ¼ s=l and an elastic part _ce ¼ _s=G: The Eq. (1.4.27) may be rewritten to:

sþ k _s ¼ l_c ð1:4:28Þ

The parameter k ¼ l=G is called the relaxation time. It will be shown in
Chap. 7 that the creep function and the relaxation function for the Maxwell fluid
are:

aðtÞ ¼ 1
G

1þ t

k

h i
; bðtÞ ¼ G exp �t=kð Þ ð1:4:29Þ

The functions aðtÞ and bðt) are derived from the response equation (1.4.28).
Figure 1.14 shows the results of a creep test and a relaxation test on a Maxwell
fluid. The relaxation time k is illustrated in the figure.
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1.4.4 The Deborah Number

In order to characterize the intrinsic fluidity of a material or how ‘‘fluid-like’’ the
material is, a number De called the Deborah number has been introduced. The
number is defined as:

De ¼ tc

tp

tc ¼ stress relaxation time; e:g: k in Fig. 1:14

tp ¼ characteristic time scale in a flow; an experiment; or a computer simulation

ð1:4:30Þ

A small Deborah number characterizes a material with fluid-like behavior,
while a large Deborah number indicates a material with solid-like behavior.

Professor Markus Reiner coined the name for Deborah number. Deborah was a
judge and prophetess mentioned in the Old Testament of the Bible (Judges 5:5).
The following line appears in a song attributed to Deborah: ‘‘The mountain flowed
before the Lord’’.

1.4.5 Closure

In general any equation relating stresses to different measures of deformation is
called a constitutive equation. Both Eq. (1.4.26) and Eq. (1.4.28) are constitutive
equations. However, it is convenient to call the special differential form that relates
stresses and stress rates to strains, strain rates, and other deformation measures a
response equation. Equation (1.4.28) is an example of a response equation.

In this chapter we have classified real liquids in fluid categories according to
their response in simple shear flow. Furthermore, we have for simplicity only
discussed the relationship between shear stress, shear strain, and shear strain rate.
In the Chaps. 5–8 we shall also discuss normal stress response and the effect of
other measures of deformation.

γ

t
1t

o

G

τ

τ

o

G

τ

1o t

G

τ

oGγ

λ
t

Fig. 1.14 Creep and relaxation in simple shear of a Maxwell fluid
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Chapter 2
Flow Phenomena

The purpose of this chapter is to present some examples of flows in which there are
significant differences between the behavior of Newtonian fluids and non-New-
tonian fluids. In the figures to follow the Newtonian fluid is indicated with an ‘‘N’’
and the non-Newtonian fluid is marked with ‘‘nN’’. These examples and some
others are discussed in greater details in the book ‘‘Dynamics of Polymeric
Liquids’’, vol 1. Fluid Mechanics, by Bird, Armstrong and Hassager [3].

2.1 The Effect of Shear Thinning in Tube Flow

Figure 2.1 shows two vertical tubes, one filled with a Newtonian fluid (N) of
viscosity l, and the other filled with a shear-thinning fluid (nN) with a viscosity
function g _cð Þ. The tubes are open at the top but closed with a plate at the bottom.
The two fluids are chosen to have the same density and such that they have
approximately the same viscosity at low shear rates: g _cð Þ � l for small _c. For
example, the situation may be realized by using a glycerin-water solution as the
Newtonian fluid and then adjust the viscosity by changing the glycerin content
until two small identical spherical balls fall with the same velocity through the
tubes, Fig. 2.1a.

Figure 2.1b indicates what happens after the plate has been removed. The tubes
are emptied, but the shear-thinning fluid accelerates to higher velocities than the
Newtonian fluid. At the relatively high shear rates _c that develop near the tube
wall, the apparent viscosity g _cð Þ is smaller than the constant viscosity l of the
Newtonian fluid, i.e., g _cð Þ\l. The shear stress from the wall that counteracts the
driving force of gravity is therefore smaller in the shear thinning fluid, leading to
higher accelerations. The shear-thinning fluid leaves the tube faster than the
Newtonian fluid.

F. Irgens, Rheology and Non-Newtonian Fluids,
DOI: 10.1007/978-3-319-01053-3_2, � Springer International Publishing Switzerland 2014
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2.2 Rod Climbing

Figure 2.2 illustrates two containers with fluids and with a vertical rod rotating at a
constant angular velocity. The container in Fig. 2.2a is filled with a Newtonian
fluid (N). The fluid sticks to the container wall and to the surface of the rod, and
the fluid particles obtain a circular motion about the rod. Due to centrifugal effects
the free surface of the fluid shows a depression near the rod. The container in
Fig. 2.2b is filled with a non-Newtonian viscoelastic fluid (nN). This fluid will start
to climb the rod until an equilibrium condition has been established. The phe-
nomenon is explained as a consequence of tensile stresses in the circumferential
direction that develop due to the shear strains in the fluid. The tensile stresses
counteract the centrifugal forces and squeeze the fluid towards the rod and up the
rod. Long, thread-like molecular structures are stretched in the directions of the
circular stream lines and thus create the tensile stresses. The phenomenon may be
observed in a food processor when mixing waffle dough.

ω ω

nNN

(a) (b)Fig. 2.2 Rod climbing

N
N

nN

nNplate

(a) (b)

Fig. 2.1 a Falling spheres in
a Newtonian fluid (N) and a
shear-thinning fluid (nN).
b Tube flow of the two fluids
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2.3 Axial Annular Flow

We investigate the axial laminar flow of fluid in the annular space between two
concentric circular cylindrical surfaces, Fig. 2.3. The pressure is measured at a
point A at the inner surface and at a point B at the outer surface in the same cross
section of the container. Measurements then show that the two pressures are the
same when the fluid in Newtonian, while for a non-Newtonian fluid a small
pressure difference is observed. The general result of this experiment is:

pA ¼ pB for Newtonian fluids; pA [ pB for non - Newtonian fluids ð2:1Þ

The measured pressure in this experiment is the difference between the
thermodynamic pressure p in a compressible fluid, or any undetermined isotropic
pressure p in an incompressible fluid, and the viscous normal stress sRR in the
radial direction. In Chap. 3 the difference between the pressure p and the pressure
p� sRRð Þ will be discussed in detail.

2.4 Extrudate Swell

A highly viscous fluid flows under pressure from a large reservoir and is extruded
through a tube of diameter d and length L (Fig. 2.4). The extruded fluid exiting the
tube swells and obtains a diameter de that is larger than the inner diameter d of the
tube. A 200 % increase in diameter is reported in tests. The ratio de=d is
decreasing with increasing length L of the tube. A comparable Newtonian fluid,
with viscosity l and density q, will under similar conditions not exhibit any
immediate change in diameter, i.e.: de=d ¼ 1: For high Reynolds numbers,
Re ¼ qvd=l, where v is the mean velocity in the tube, it may be shown that de is
somewhat less then d. This latter effect is of course is due to gravity.

A B

Fig. 2.3 Axial annular flow
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The swelling phenomenon may be explained based on two effects:

(1) The non-Newtonian fluid is compressed elastically in the radial direction upon
entering the relative narrow tube. In the tube the fluid is responding by
expanding in the axial direction, while after leaving the tube the fluid is
restituting by expanding radially. The fluid has a kind of memory of the
deformation history it has experienced in passing into the tube, but this
memory is fading with time. The longer back in time a deformation was
introduced, the less of it is remembered. The fluid is said to possess a fading
memory. The longer the tube is, the lesser will the restitution effect have for
the swelling phenomenon.

(2) The shear strains introduced during the tube flow introduce elastic tensile
stresses in the axial direction. We may imagine that these tensile stresses are
due to long molecular structures in the fluid that are stretched elastically in the
direction of the flow. Upon leaving the tube the fluid seeks to restitute itself in
the axial direction. Due to the near incompressibility of the fluid, it will then
swell in the radial direction.

2.5 Secondary Flow in a Plate/Cylinder System

Figure 2.5 illustrates a circular plate rotating on the surface of a fluid in a cylin-
drical container. The motion of the plate introduces a primary flow in the fluid in
which the fluid particles move in circular paths. The particles closer to the plate
move faster than the particles nearer the bottom of the cylinder. The effect of
centrifugal forces therefore increases with the distance from the bottom. In a
Newtonian fluid this effect introduces a secondary flow normal to the primary flow,
as shown in Fig. 2.5a.
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(a) (b)Fig. 2.5 Secondary flow in a
plate/cylinder system.
a Newtonain fluid.
b non-Newtonain fluid
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In a non-Newtonian fluid the secondary flow may be opposite of that in the
Newtonian fluid, as shown in Fig. 2.5b. This phenomenon is a consequence of the
tangential tensile stresses introduced by the primary flow, and related to the rod
climbing phenomenon. The tensile stresses increase with the distance from the
bottom of the container and counteract the centrifugal forces.

2.6 Restitution

Figure 2.6 shows a tube with a visco- elastic fluid. In Fig. 2.6a the fluid is at rest,
the pressures at the ends of the tube are the same: pB = pA. Using a colored fluid
(black) a material diametrical line is marked in the fluid. The pressure pA is
increased and flow starts. The black material line deforms as shown in Fig. 2.6b.
The pressure pA is then reduced to pB. The flow is retarded, the fluid comes to rest,
and then starts to move for a short while in the opposite direction. The black
material line is seen to retract as the fluid is somewhat restituted, Fig. 2.6c.

The same phenomenon may be observed when a fluid is set in rotation in a
container at rest. The fluid sticks to the container wall and bottom, and the flow of the
fluid is slowed down. Eventually the fluid comes to rest and then starts to rotate
slightly in the opposite direction. In this case the fluid motion and the restitution may
be observed by introducing air bubbles into the fluid and study their motion. The
bubbles will move in circles, stop, and then start to move in the reverse direction.

2.7 Tubeless Siphon

Figure 2.7a illustrates a vessel with fluid and a tube bent into a siphon. If the fluid
is Newtonian the flow through the tube will stop as soon has the siphon has been
lifted up such that the end of the tube stuck into fluid in the container has left the
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B A
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B Ap p<A
p

material line

A
p

B Ap p=

restitutionmaterial line

(a)

(b)

(c)

Fig. 2.6 Restitution in a
viscoelastic fluid
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surface of the fluid. A highly viscoelastic fluid, however, will continue to flow
even after the tube end has left the fluid surface. It is also possible to empty the
container without the siphon if the container is tilted to let the fluid start to flow
over the edge. The elasticity of the fluid will then continue to lift the fluid up to the
edge and over it. This is illustrated in Fig. 2.7b. Another way of starting the flow is
to use a finger to draw the fluid up and over the edge.

2.8 Flow Through a Contraction

A low Reynolds number flow of a Newtonian fluid through a tube contraction, as
illustrated in Fig. 2.8a, will have stream lines that all go from the region with the
larger diameter to the region with smaller diameter. A non-Newtonian fluid may
have stream lines as shown in Fig. 2.8b. Large eddies are formed and instabilities
may occur, with the result that the main flow starts to oscillate back and forth
across the axis of the tube.

2.9 Reduction of Drag in Turbulent Flow

Small amounts of polymer resolved in a Newtonian fluid in turbulent flow may
reduce the shear stress at solid boundary surfaces dramatically. Figure 2.9 shows
results from tests with pipe flow of water. The parameter f is called the Fanning
friction number and is defined by:

f ¼ 1
4

D

L

Dp

qv2=2
ð2:2Þ

D = pipe diameter, Dp ¼ the pressure difference over a pipe length L, and
v = the mean velocity in the pipe. The amounts of polymer, given in parts per
million [ppm] by weight, are added to the water. The curves show that the drag
reduction occurs in the turbulent regime. For the Reynolds number Re ¼ qvD=l
¼ 105, where q is the density and l is the viscosity of water, and a polymer
concentration of 5 ppm, the Fanning number f is reduced by 40 %. The viscosity in

(a) (b)Fig. 2.7 Tubeless siphon.
Non-Newtonian fluid
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the fluid mixture is changed only slightly. For the present example the viscosity l is
only increased by 1 % relative to that of water. The reason why very small amounts
of polymer additives to a Newtonian fluid like water have such a large effect on drag,
is not completely understood. What is known is that the effects of different types of
polymers are very different. Polymers having long unbranched molecules and low
molecular weight give the greatest drag reduction.

The applications of drag reduction using polymer additives are many. One
example is in long distance transport of oil in pipes.

Figure 2.9 is adapted from Fig. 3.11-1 in Bird et al. [3]. The curves are based
on original data from P.S.Virk, Sc.D. Thesis. Massachusetts Institute of
Technology, 1961.
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Chapter 3
Basic Equations in Fluid Mechanics

3.1 Kinematics

A portion of fluid is called a body. The body has at any time t a volume V and a
surface A. A material point in the body is called a particle. In order to localize
particles and be able to describe their motions, we introduce a reference frame, for
short called a reference Rf, and a Cartesian coordinate system Ox, fixed in the
reference. See Fig. 3.1. The point O is the origin of the coordinate system and
x indicates the axes x1; x2; and x3, which alternatively will be denoted x, y, and
z. While the notation xi for i ¼ 1; 2; or 3 will be used in the general presentation
and development of the theory, the notation x, y, and z will be more convenient in
applications to special examples.

A place in the three-dimension physical space is localized by three coordinate
values xi for i = 1, 2, and 3. We introduce the conventions:

place ¼ x1; x2; x3ð Þ � xi � x �
x1

x2

x3

0
@

1
A � x1 x2 x3f g ð3:1:1Þ

In the last two representations x is a vector matrix. By the representations (3.1.1)
we mean that xi and x may represent all three coordinates collectively. However,
the symbol xi may also indicate anyone of the three coordinates x1; x2; or x3: We
shall use the expression ‘‘the place x’’.

At an arbitrarily chosen reference time t0 the place of a particle in the fluid
body is given by set of coordinates Xi. We choose to attach the coordinate set X to
the particle and use it as an identification of the particle. Thus:

particle ¼ X1; X2; X3ð Þ � Xi � X �
X1

X2

X3

0
@

1
A � X1 X2 X3f g ð3:1:2Þ

We shall use the expression ‘‘the particle X’’. The set of places X that represents the
body at the reference time to, is called the reference configuration K0 of the body.

F. Irgens, Rheology and Non-Newtonian Fluids,
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The fluid is observed or investigated at the present time t. At that time the particle
X has moved to the place x. The set of places x that represents the body at the present
time t, is called the present configuration K of the body. Every particle X, i.e. a place
in K0; has a place x in K, and to every place in x at the time t corresponds one and only
one particle X in K0: Thus the following relationships exist:

xi ¼ xi X1;X2;X3; tð Þ � xi X; tð Þ , Xi ¼ Xi x1; x2; x3; tð Þ � Xi x; tð Þ ð3:1:3Þ

These relationships represent a one-to-one mapping between the particles Xi in K0

and the places x in K. The functions xi ðX; tÞ represent the motion of the fluid.
The motion of the fluid body from K0 to K will in general lead to a deformation

of the body. Material lines, surfaces and volume elements may change form and
size during the motion. The deformation is illustrated in Fig. 3.1 by material lines,
which in K0 are parallel to the coordinate axes.

In the motion of fluids the deformations are usually very large and it is only
possible to compare the present configuration K with neighbor configurations a
short time before or after the present timer t. It is therefore convenient to choose
K as reference configuration. Since the reference configuration K changes with
time, it is now called a relative reference configuration. A current configuration �K
at time �t, where �1\�t� t; is then used to describe the deformation process of the
fluid before the present time t. See Fig. 3.1. The place of the particle X at the
current time �t is given by the coordinates �xi:

The particle X and the places x and �x are also represented by the position or
place vectors r0; r; and �r: The unit vectors ei in the direction of the xi � axes are
called the base vectors of the coordinate system Ox, Fig. 3.1. Then:

r0 ¼ X1 e1 þ X2 e2 þ X3 e3 ¼
X3

i¼1

Xi ei; r ¼
X3

i¼1

xi ei; �r ¼
X3

i¼1

�xi ei ð3:1:4Þ

We introduce the Einstein summation convention, Albert Einstein [1879–1955]:
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2x

,K t

3x

r

Rf

or

,K t

0 0,K t
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2e
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3e
O

Fig. 3.1 Reference Rf, coordinate system Ox, configurations Ko; �K; and K; and base vectors
e1; e2; and e3
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A letter index repeated once and only once in a term, implies summation over
the number range of the index.
Thus we may write:

r0 ¼ Xi ei; r ¼ xi ei; �r ¼ �xi ei ð3:1:5Þ

In continuum mechanics we work with fields, which are functions of place and
time:

f ¼ f x1; x2; x3; tð Þ � f x; tð Þ ð3:1:6Þ

The fields are intensive quantities, and examples are pressure p, temperature H,
density q = mass per unit volume, and velocity v. An intensive quantity defined
per unit mass is called a specific quantity. The velocity vector v may be considered
to be a specific linear momentum. An intensive quantity defined per unit volume is
called a density. The quantity q, which for short is called the density, is then really
the mass density.

Intensive quantities are either expressed as functions of the particle coordinates
Xi and the present time t or by the place coordinates xi and the present time t. The
four coordinate (X,t) are called Lagrangian coordinates, named after Joseph Louis
Lagrange [1736–1813], while the four coordinates (x,t) are called Eulerian
coordinates, named after Leonhard Euler [1707–1783]. A function of Lagrangian
coordinates f ðX; tÞ is called a particle function. Confer the notation in Eq. (3.1.3).
A function of Eulerian coordinates f ðx; tÞ is called a place function. Confer the
notation in Eq. (3.1.6).

For a particular choice of coordinate set X, an intensive quantity f ðX; tÞ is
related to the particle X. The time rate of change of f when related to X, is called
the material derivative of f and is denoted by f supplied by a ‘‘superdot’’:

_f ¼ of ðX; tÞ
ot

� ot f ðX; tÞ ð3:1:7Þ

Other names for _f , used in the literature, is the substantial derivative, the particle
derivative, and the individual derivative.

The velocity of a fluid particle is defined by:

v ¼ _r ¼ or X; tð Þ
ot

� ot r X; tð Þ ¼ vi ei , vi ¼ _xi ¼
oxi X; tð Þ

ot
� otxi X; tð Þ

ð3:1:8Þ

vi are the velocity components in the directions of the coordinate axes.
In fluid mechanics it is usually most convenient to work with Eulerian coor-

dinates (x,t). For a particular choice of place x a place function f x; tð Þ is related to
the place x. The particle velocity v(x,t) then represents the velocity of the particle
X passing through the place x at time t.
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To find the material derivative of an intensive quantity represented by a place
function f ðx; tÞ; we replace the place coordinates x by the functions x X; tð Þ to
obtain a particle function:

f ¼ f xðX; tÞ; tð Þ ð3:1:9Þ

Using the chain rule of differentiation, we may write:

_f ¼ of ðx; tÞ
ot

þ of ðx; tÞ
ox1

ox1

ot
þ of ðx; tÞ

ox2

ox2

ot
þ of ðx; tÞ

ox3

ox3

ot
ð3:1:10Þ

We introduce the notations:

of x; tð Þ
ot

� otf ;
of x; tð Þ

oxi
� f ;i ;

o2f x; tð Þ
oxjoxi

� f ;ij� f ;ji ð3:1:11Þ

Furthermore we recognize the terms qxi/qt in Eq. (3.1.10) as the velocity com-
ponents vi in the Eq. (3.1.8). Hence we may express the material derivative of an
intensive quantity f(x,t) as:

_f ¼ otf þ f ;i vi ð3:1:12Þ

The del-operator r is a vector operator defined by:

r � ei
o

oxi
� e1

o

ox1
þ e2

o

ox2
þ e3

o

ox3
ð3:1:13Þ

The scalar product of the velocity vector v and the del-operator is the scalar
operator:

v � r � vi
o

oxi
ð3:1:14Þ

The expression for the material derivative of the place function f ðx; tÞ may now be
presented by the formula:

_f ¼ otf þ v � rf � otf þ v � rð Þf ð3:1:15Þ

Acceleration is defined as the time rate of change of velocity. The acceleration
a of a fluid particle X passing through the place x at the present time t is then:

a ¼ _v ¼ otvþ v � rð Þv , ai ¼ _v ¼ otvi þ vkvi;k ð3:1:16Þ

The quantities vi;k are called velocity gradients. The first term on the right-hand
side of the Eq. (3.1.16), otv , otvi; is called the local acceleration, while the
last term, v � rð Þv , vkvi;k, is called the convective acceleration.

The concept of streamlines is introduced to illustrate fluid flow. The streamlines
are vector lines to the velocity field vðx; tÞ, i.e. lines that have the velocity vector
as a tangent in every point in the space of the fluid. The stream line pattern of a
non-steady flow v ¼ vðx; tÞ will in general change with time, see Problem 2. In a
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steady flow v ¼ vðxÞ the streamlines coincide with the particle trajectories, called
the pathlines. For a given velocity field the streamlines are determined from the
differential equations:

dr� vðx; tÞ ¼ 0 , dx1

v1
¼ dx2

v2
¼ dx3

v3
at constant time t ð3:1:17Þ

The vorticity vector or for short the vorticity cðx; tÞ of the velocity field is
defined as:

c ¼ r� v � rot v � curl v ð3:1:18Þ

The significance of this concept will be discussed in Sect. 4.1. Some important
flows are vorticity free, i.e. cðx; tÞ ¼ 0; in a region of the flow. A vorticity free flow
is also called an irrotational flow, and it may be shown that the velocity field in
such a case may be developed from a velocity potential /ðx; tÞ :

v ¼ r/; / ¼ /ðx; tÞ ð3:1:19Þ

This fact provides a third name potential flow for this type of flow. See Problem 6.

3.2 Continuity Equation: Incompressibility

In classical mechanics mass of a body is conserved. This conservation principle is
applied in continuum mechanics by the statement that the mass of any body of a
continuous medium is constant. According to the continuum hypothesis the mass
of a fluid body of volume V is continuously distributed in the volume such that it is
possible to express the mass as a volume integral:

m ¼
Z
V

q dV ð3:2:1Þ

q ¼ qðx; tÞ is the density, i.e. mass per unit volume, and dV is a volume element,
i.e. a small part of the body with the volume dV. At the present time t the volume
element is chosen as the element marked with t and shown in two-dimensions in
Fig. 3.2, and with the volume dV ¼ dx1 dx2 dx3: By increasing the time by a short
time increment dt the volume element is deformed, and Fig. 3.2 shows the element
at the time (t ? dt). The angles of rotation v1;2 dt etc. of the edges are very small,
and we may to the first order state that the lengths of the edges of the element are
changed from dx1 to dx1 � 1þ v1;1 dtð Þ etc: The volume of the element at the time
(t ? dt) becomes:

dV þ DdV ¼ dx1 � 1þ v1;1 dtð Þ½ � dx2 � 1þ v2;2 dtð Þ½ � dx3 � 1þ v3;3 dtð Þ½ � )
dV þ DdV ¼ dV 1þ v1;1 dt þ v2;2 dt þ v3;3 dt þ higher order terms½ � ¼ dV 1þ vi;i dt½ � )
DdV ¼ vi;i dV dt
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The result implies that the time rate of change of the element volume dV is:

d _V ¼ DdV

dt
¼ vi;i dV ¼ div vð ÞdV � r � vð ÞdV ð3:2:2Þ

The divergence, div v; of the velocity field v is seen to represent the change of
volume per unit volume and per unit time. Since the mass qdV of the fluid element
is constant, we may write:

d

dt
qdV½ � ¼ _qdV þ qd _V ¼ _qþ qr � v½ �dV ¼ 0 )

_qþ qr � v ¼ 0 , _qþ qvi;i¼ 0 ð3:2:3Þ

This is the continuity equation. The expression (3.1.15) for the material derivative
applied to the density q; provides an alternative expression of the continuity
equation:

otqþ r � qvð Þ ¼ 0 , otqþ qvið Þ;i¼ 0 ð3:2:4Þ

For an incompressible fluid the equation of continuity is replaced by the incom-
pressibility condition:

div v � r � v ¼ 0 , vi;i¼ 0 ð3:2:5Þ

This is a statement of no time rate of change of volume of a volume element. Eq.
(3.2.5) is also called the continuity equation for an incompressible fluid.

1x

2x 2dx

r

Rf

2v dt

2 1 1,v dx dt

O

( )2 2 1 1,v v dx dt+

( )1 1 1 1,v v dx dt+

( )1 1 2 2,v v dx dt+
1 2 2,v dx dt

1 2,v dt

2 1,v dt

[ ]2 2 21 ,dx v dt+

[ ]1 1 11 ,dx v dt+
1v dt

1dx

t

t dt+

Fig. 3.2 Deformation of a fluid element
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3.3 Equations of Motion

A fluid body is subjected to two kinds of forces, see Fig. 3.3:

(1) Body forces, given as force b per unit mass,
(2) Contact forces on the surface of the body, given as force t per unit area. The

vector t is called the stress vector or the traction.

The most common body force is the constant gravitational force g ¼ 9:81 N/kg,
representing a homogeneous gravity field. Other examples of body forces are
electrostatic forces, magnetic forces, and centrifugal forces.

The resultant force F and the resultant moment MO about a point O of the
forces on a fluid body of volume V and surface A are expressed by:

F ¼
Z
V

bqdVþ
Z
A

tdA ð3:3:1Þ

MO ¼
Z
V

r� bqdVþ
Z
A

r� tdA ð3:3:2Þ

The fluid body has a linear momentum p and an angular momentum LO about the
point O:

p ¼
Z
V

vqdV ; LO ¼
Z
V

r� vqdV ð3:3:3Þ

The fundamental laws of motion for a body of continuous matter or a system of
particles are the following Euler’s axioms:

1x

2x

3x r

Rf

,K t

r

b
n

t

A

V

dA

O

dVρ

Fig. 3.3 Fluid body subjected to body force b and contact force t
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F ¼ _p 1: axiom; MO ¼ _LO 2: axiom ð3:3:4Þ

The first axiom, which states that the resultant force on a body is equal to the time
rate of change of the linear momentum of the body, includes Newton’s 2. law of
motion for a mass particle, i.e. a body with finite mass but with negligible extent.
The second axiom, which states that the resultant moment of forces about O is
equal to the time rate of change of the angular momentum about O of the body,
may, for a system of mass particles, be derived from Newton’s 2. law of motion.

The stress vectors ti on three orthogonal material coordinate planes through a
particle have components given by the coordinate stresses rik; see Fig. 3.4:

tk ¼ rikei ð3:3:5Þ

r11; r22; and r33 are normal stresses, and rik for i 6¼ k are shear stresses.
It will be shown in Sect. 3.3.6 that Euler’s 2. axiom implies that:

rik ¼ rki ð3:3:6Þ

Thus only three of the six coordinate shear stresses may be different. The symbol T
is used to denote the stress matrix whose elements are the coordinate stresses. Thus
we write:

T � rikð Þ �
r11 r12 r13

r21 r22 r23

r31 r32 r33

0
@

1
A ¼

rxx rxy rxz

ryx ryy ryz

rzx rzy rzz

0
@

1
A ð3:3:7Þ

Equation (3.3.6) shows that the stress matrix T ¼ rikð Þ is symmetric.
It follows from the axioms of Euler that the stress vectors on the two sides of a

material surface are of equal magnitude but of opposite direction, see Fig. 3.5.
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Fig. 3.4 Stress vectors ti and coordinate stresses rik on material coordinate planes and
coordinate stresses

surface elementdA =

stress vector=t

−t

unit normal vector=n

−n

material surface elementFig. 3.5 Stress vectors on
both sides of a material
surface
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3.3.1 Cauchy’s Stress Theorem

The stress vector t on a surface with unit normal n through a particle may be
determined from the coordinate stresses rik for the particle. The components ti of
the stress vector t ¼ ti ei are given by:

ti ¼ riknk Cauchy’s stress theorem ð3:3:8Þ

nk are the components of the unit normal vector n : n ¼ nk ek: This result is
called Cauchy’s stress theorem, Augustin Louis Cauchy [1789–1857], and will be
derived below. Equation (3.3.8) is a relationship between the components of two
coordinate invariant quantities: the stress vector t and the unit normal n. This fact
implies that the coordinate stresses rik also represent a coordinate invariant
quantity. We say that rik are the components of the stress tensor T, also called
Cauchy’s stress tensor. The stress tensor T is in the coordinate system Ox rep-
resented by the stress matrix T ¼ ðrikÞ: In general a tensor is a coordinate
invariant quantity represented in any Cartesian coordinate system by a matrix.

Fig. 3.6 shows a small body in the shape of a tetrahedron. Of the four triangular
planes of the surface three are planes through the particle P and parallel to
coordinate planes, while the fourth plane has the unit normal n and has a distance
h from the particle P. The tetrahedron is called the Cauchy tetrahedron. The body
is subjected to the body force b, stress vectors ð�tiÞ on three material planes,
and the stress vector t on the fourth material plane. The velocity of the particle is
v and the density at the particle is q: Referring to Fig. 3.6 we may express the
volume of the body alternatively by:

dV ¼ 1
3

dA � h ¼ 1
3

dA1 � h1 ¼
1
3

dA2 � h2 ¼
1
3

dA3 � h3 ð3:3:9Þ
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Fig. 3.6 The Cauchy tetrahedron
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Since the body is small we may take v as the velocity of the body, q d V as the
mass of the body, and vqd V as the linear momentum of the body.

Since n is a unit vector, we may write:

nk ¼ n � ek ¼ cos hk ¼
h

hk
ð3:3:10Þ

hk is the angle between n and the xk � direction: From the Eqs. (3.3.9) and
(3.3.10) we obtain the relation:

dAk ¼ dA nk ð3:3:11Þ

Euler’s 1. axiom for the tetrahedron implies that:

bq dV þ �tk � dAkð Þ þ t dA ¼ d vq dVð Þ
dt

¼ d vð Þ
dt

q dV þ v
d q dVð Þ

dt
¼ _vq dV

ð3:3:12Þ

Here we have used result that since the mass qV of the body is constant, then
dðqdVÞ=dt ¼ 0: Substitution into equation (3.3.12) dV from equation (3.3.9) and
dAk from equation (3.3.11), followed by a division by dA, leads to the result:

bq
h

3
� tk nk þ t ¼ _vq

h

3
ð3:3:13Þ

If we let h ? 0 such that t becomes the stress vector on a plane dA through the
particle P and with unit normal vector n, the result (3.3.13) is reduced to:

t ¼ tk nk ð3:3:14Þ

Now the relations (3.3.5) are applied and Eq. (3.3.14) yields:

t ¼ rikei nk ¼ tiei ) ti ¼ rik nk ð3:3:15Þ

Cauchy’s stress theorem (3.3.8) is thus proved.

3.3.2 Cauchy’s Equations of Motion

We are now ready to derive the equations of motion for a particle X at the place
x. Euler’s 1. axiom (3.3.4) implies for the fluid element of volume dV shown in
Fig. 3.7 that:

bqdV þ t1;1 dx1ð Þdx2dx3 þ t2;2 dx2ð Þdx3dx1 þ t3;3 dx3ð Þdx1dx2

¼ d vqdVð Þ
dt

¼ _vqdV ) qbþ tk;k¼ q _v
ð3:3:16Þ

The stress vectors tk are introduced from Eq. (3.3.5), and the component form of
Eq. (3.3.16) becomes (after a trivial change of indices):
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q _vi ¼ rik;k þqbi ð3:3:17Þ

These three equations are Cauchy’s equations of motion for a continuum.
For fluids it is convenient to express the coordinate stresses as a sum of an

isotropic pressure p and extra stresses sik:

rik ¼ �pdik þ sik ð3:3:18Þ

The symbol dik is called a Kronecker delta, named after Leopold Kronecker
[1823–1891], and is defined by:

dik ¼
1 for i ¼ k
0 for i 6¼ k

�
, dikð Þ ¼

1 0 0
0 1 0
0 0 1

0
@

1
A � 1 ð3:3:19Þ

Thus dik represent the elements of a 3 9 3 unit matrix 1, which in the coordinate
system Ox represents the unit tensor 1. The extra stresses sik are elements in the
extra stress matrix T 0:

T 0 ¼ sikð Þ ¼
s11 s12 s13

s21 s22 s23

s31 s32 s33

0
@

1
A ¼

sxx sxy sxz

syx syy syz

szx szy szz

0
@

1
A ð3:3:20Þ

The extra stress matrix T 0 and the extra stresses sik represent in the coordinate
system Ox a coordinate invariant quantity called the extra stress tensor T0. The
relationship (3.3.18) may now be written alternatively as:

rik ¼ �pdik þ sik , T ¼ �p1þ T 0 ð3:3:21Þ

T ¼ �p1þ T0 ð3:3:22Þ

The matrix equation (3.3.21) is the representation in the Cartesian coordinate sys-
tem Ox of the tensor equation (3.3.22). In another Cartesian coordinate system �O�x

1
−t
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−t

P

2
e

3
e

1
e

1 1 1 1
, dx+ ⋅t t

2 2 2 2
, dx+ ⋅t t

3 3 3 3
, dx+ ⋅t t

v

b

3
−t

Fig. 3.7 Fluid body with body forces and contact forces
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the tensors T; 1; and T0 are represented by matrices �T ; �1 ¼ 1; and �T 0: The tensor
concept and tensor algebra will only sparsely be used in this book before Chap. 8

For a compressible fluid the pressure p is the thermodynamic pressure and is in
general a function of the density q and the temperature H of the fluid particle:

p ¼ p q;Hð Þ ð3:3:23Þ

For an incompressible fluid the isotropic pressure is constitutively undetermined
and must be found from the equations of motion and the boundary conditions of
the flow problem. In a fluid that has been at rest for some period of time, the state
of stress is solely given by the pressure. The extra stresses sik are due to the
deformation process of the fluid.

Using the expressions (3.3.18) for the coordinate stresses rik and Eq. (3.1.16)
for the accelerations _vi; we obtain from the Cauchy’s equations of motion (3.3.17)
the general equations of motion for a fluid:

q otvi þ vkvi;kð Þ ¼ �p;iþsik;k þqbi ð3:3:24Þ

In applications it is often convenient to use the equations of motion in other
coordinate systems than the Cartesian system. First we recognize the Eq. (3.3.24)
as the three component equations of a vector equation. The coordinate invariant,
vector form is written as:

q otvþ v � rð Þv½ � ¼ �rpþr � T0 þ qb ð3:3:25Þ

The symbol rp is the gradient of the pressure p. The vector r � T0 is called the
divergence of the stress tensor T and is a vector with components sik;k in the
Cartesian coordinate system Ox. The component form of the vector equation
(3.3.25) in Cartesian coordinate (x,y,z), cylindrical coordinates ðR; h; zÞ, and
spherical coordinates ðr; h;/Þ are now listed for future reference.

3.3.3 Cauchy’s Equations in Cartesian Coordinates (X,Y,Z)

q
ovx

ot
þ vx

ovx

ox
þ vy

ovx

oy
þ vz

ovx

oz

� �
¼ � op

ox
þ osxx

ox
þ osxy

oy
þ osxz

oz
þ qbx etc:

ð3:3:26Þ
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3.3.4 Extra Stress Matrix, Extra Coordinate Stresses,
and Cauchy’s Equations in Cylindrical Coordinates
(R, h, Z)

T 0 ¼
sRR sRh sRz

shR shh shz

szR szh szz

0
@

1
A ð3:3:27Þ

q
ovR

ot
þ vR

ovR

oR
þ vh

R

ovR

oh
þ vz

ovR

oz
� v2

h

R

� �
¼ � op

oR

þ 1
R

o

oR
RsRRð Þ þ 1

R

osRh

oh
þ osRz

oz
� shh

R
þ qbR

ð3:3:28Þ

q
ovh

ot
þ vR

ovh

oR
þ vh

R

ovh

oh
þ vz

ovh

oz
þ vRvh

R

� �
¼ � 1

R

op

oh

þ 1
R2

o

oR
R2sRh
� �

þ 1
R

oshh

oh
þ oshz

oz
þ qbR

ð3:3:29Þ

q
ovz

ot
þ vR

ovz

oR
þ vh

R

ovz

oh
þ vz

ovR

oz

� �
¼ � op

oz

þ 1
R

o

oR
RszRð Þ þ 1

R

oshz

oh
þ oszz

oz
þ qbz

ð3:3:30Þ
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3.3.5 Extra Stress Matrix, Extra Coordinate Stresses,
and Cauchy’s Equations in Spherical Coordinates
(r, h, /)

T 0 ¼
srr srh sr/

shr shh sh/

s/r s/h s//

0
@

1
A ð3:3:31Þ

q
ovr

ot
þ vr

ovr

or
þ vh

r

ovr

oh
þ v/

r sin h
ovr

o/
�

v2
h þ v2

/

r

" #
¼ � op

or

þ 1
r2

o

or
r2srr

� �
þ 1

r sin h
o sin hsrhð Þ

oh
þ 1

r sin h
os/r

o/
� shh þ s//

r
þ qbr

ð3:3:32Þ

q
ovh

ot
þ vr

ovh

or
þ vh

r

ovh

oh
þ v/

r sin h
ovh

o/
þ vrvh

r
�

v2
/

r2
cot h

" #
¼ � 1

r

op

oh

þ 1
r3

o

or
r3srh
� �

þ 1
r sin h

o sin hshhð Þ
oh

þ 1
r sin h

osh/

o/
þ s//

r
cot hþ qbh

ð3:3:33Þ

q
ov/

ot
þ vr

ov/

or
þ vh

r

ov/

oh
þ v/

r sin h
ov/

o/
þ vrv/

r
þ vhv/

r
cot h

� �

¼ � 1
r sin h

op

o/
þ 1

r3

o

or
r3s/r

� �
þ 1

r sin2 h

o sin2 hsh/
� �

oh
þ 1

r sin h
os//

o/
þ qb/

ð3:3:34Þ
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r
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3.3.6 Proof of the Statement

Let T ¼ rikð Þ represent the state of stress at a particle X. In the neighborhood of
X the state of stress may then be denoted T þ DT ¼ rik þ Drikð Þ: Since T ¼ rikð Þ
now represents a homogeneous state of stress in the neighborhood of the particle
X, only the stress increment DT ¼ Drikð Þ must satisfy the Cauchy equation
(3.3.17):

q _vi ¼ Drik;k þqbi

A fluid element subjected to the homogeneous stress field T is in equilibrium, but
we must insure that this stress field satisfies Euler’s 2. axiom. For the fluid ele-
ment, dV ¼ dx1 dx2 dx3; shown in Fig. 3.8 the axiom requires moment equilibrium
about any axis. For any axis parallel to the x3 � axis this equilibrium equation is:

r12 dx1 dx3ð Þ � dx2½ � � r21 dx2 dx3ð Þ � dx1½ � ¼ 0 ) r12 ¼ r21

In general rik ¼ rki , Equationð3:3:6Þ

3.4 Navier–Stokes Equations

In order to show how the equations of motion appear for a particular fluid model,
we need constitutive equations defining the fluid model. The constitutive equations
for a linearly viscous fluid, also called a Newtonian fluid are given by the Eqs.
(3.3.18), (3.3.23), and:

sik ¼ l vi;k þvk;ið Þ þ j� 2l
3

� �
r � vð Þdik ð3:4:1Þ

l is the (shear or dynamic) viscosity and j is the bulk viscosity.
The bulk viscosity is difficult to measure and is hard to find values for in the

literature. For monatomic gases it is reasonable to set j ¼ 0; while for other gases
and for all liquids j is larger than and often much larger than l: However, the
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Fig. 3.8 Fluid element dV ¼
dx1 dx2 dx3 subjected to a
homogeneous state of stress r
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divergence of the velocity vector, r � v; is for most flows so small that the term
ðj� 2l=3Þr � v in the Eq. (3.4.1) may be neglected. The bulk viscosity has
dominating importance for dissipation and absorption of sound energy. For an
incompressible fluid or an isochoric flow, i.e. is a volume preserving flow, the
divergence of the velocity vector vanishes, r � v = 0. The Newtonian fluid model
will be further discussed in the Sects. 4.3 and 6.1.

For simple steady shear flow between two parallel plates the velocity field may
be expressed by: v1 ¼ _cx2; v2 ¼ v3 ¼ 0; where _c is a constant shear strain rate.
From the constitutive Eqs. (3.3.18) and (3.4.1) the state of stress for simply steady
shear flow becomes:

r11 ¼ r22 ¼ r22 ¼ �p; s12 ¼ l _c; s23 ¼ s31 ¼ 0 ð3:4:2Þ

For an isotropic state of stress, see Fig. 1.1:

rik ¼ ro dik ¼ �pdik þ sik; sik ¼ ro þ pð Þ dik ð3:4:3Þ

the Eq. (3.4.1) give:

skk ¼ ro þ pð Þdkk ¼ l vk;k þvk;kð Þ þ j� 2l
3

� �
r � vð Þdkk ð3:4:4Þ

Because dkk ¼ d11 þ d11 þ d11 ¼ 3 and vk;k¼ r � v; we obtain:

ro þ p ¼ jr � v ð3:4:5Þ

Thus we see that the bulk viscosity j expresses the resistance of the fluid toward
rapid changes of volume. It is fairly difficult to measure j for a real fluid, and little
information about bulk viscosities is found in the literature. For incompressible
fluids r � v = 0, and the bulk viscosity j has no meaning.

The equations of motion for a Newtonian fluid are called the Navier–Stokes
equations, Claude L. M. H. Navier [1785–1836], George Gabriel Stokes
[1819–1903]. These equations are obtained by substituting the constitutive equa-
tion (3.4.1) into the general equations of motion (3.3.24). The resulting equations
are:

q otvi þ vkvi;kð Þ ¼ �p;iþl vi;kk þ jþ l
3

	 

vk;kiþq bi ð3:4:6Þ

The coordinate invariant form of the Navier–Stokes equations is:

q otvþ v � rð Þvð Þ ¼ �rpþ lr2vþ jþ l
3

	 

r r � vð Þ þ q b ð3:4:7Þ
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3.5 Modified Pressure

It is often convenient to combine the pressure term rp and the body force qb in
the general equations of motion (3.3.25) by introducing the modified pressure P.
This is done by solving the equations of motion for the fluid at rest, i.e. to solve for
the static pressure ps determined from the equilibrium equation (no extra stresses
due to deformation and no acceleration):

0 ¼ �rps þ qb ð3:5:1Þ

The modified pressure P is defined by the expression:

P ¼ p� ps ð3:5:2Þ

For example, let the body force b be the gravitational force �gez; where z is the
vertical height above a reference level at which the pressure is po. The Eq. (3.5.1)
then yields:

ps ¼ po � qgz ð3:5:3Þ

When the pressure p in Eq. (3.3.25) is replaced by P ? ps and Eq. (3.5.1) is
applied, we get a new and simplified set of equations of motion:

q otvþ v � rð Þvð Þ ¼ �rPþr � T0 , q otvi þ vk vi;kð Þ ¼ P;iþsik;k ð3:5:4Þ

As will be shown in Sect. 3.9, it is not always practical to introduce the modified
pressure into a problem.

3.6 Flows with Straight, Parallel Streamlines

This type of flow is very simple to analyze and occurs, sometimes only approxi-
mately, in many practical applications. In the Sects.3.7, 3.8, and 3.9 special cases
of such flows will be discussed.

It will now be assumed that the fluid is incompressible and that the velocity
field takes the form:

vx ¼ vx x; y; z; tð Þ; vy ¼ vz ¼ 0 ð3:6:1Þ

The streamlines are then straight lines parallel to the x-axis. The incompressibility
condition (3.2.5) applied to the velocity field (3.6.1) provides the result:

ovx x; y; z; tð Þ
ox

¼ 0 ) vx ¼ vx y; z; tð Þ ð3:6:2Þ

Thus the velocity field is independent of the x� coordinate:
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It is reasonable to assume that the extra stresses sik; which are due to the
deformations of the fluid resulting from the velocity field in Eqs. (3.6.1) and
(3.6.2), are independent of the x� coordinate: The equations of motion (3.5.4) are
then reduced to:

q
ovx

ot
¼ � oP

ox
þ osxy

oy
þ osxz

oz
ð3:6:3Þ

0 ¼ � oP

oy
þ osyy

oy
þ osyz

oz
; 0 ¼ � oP

oz
þ oszy

oy
þ oszz

oz
ð3:6:4Þ

Because the stresses sik are independent of x, the equations (3.6.4) imply that:

o2P

oxoy
¼ o2P

oxoz
¼ 0 ð3:6:5Þ

which by application of the Eqs. (3.6.3) and (3.6.2), shows that:

oP

ox
¼ c a constantð Þ or a function of time cðtÞ ð3:6:6Þ

For steady flows the pressure gradient (3.6.6) is a constant. This result may be
stated as follows:

In flows with straight, parallel streamlines the gradient in the streamwise
direction of the modified pressure P is constant for steady flow and a function of
time for unsteady flows.

3.7 Flows Between Parallel Planes

Figure 3.9 illustrates a flow of a fluid between two parallel plates a distance
h apart. One of the plates is at rest while the other moves with a constant velocity
v1. The flow is driven by the motion of the plate, by a pressure gradient in the
x� direction, and by the gravitational force g. The constitutive equations of the
fluid will be specified below.

A steady laminar flow is assumed with the velocity field:

vx ¼ vðyÞ; vy ¼ vz ¼ 0 ð3:7:1Þ

This is a special case of the flow presented in the previous section. It is further
assumed that the fluid sticks to both plates, which provides the boundary
conditions:

vð0Þ ¼ 0; vðhÞ ¼ v1 ð3:7:2Þ

The acceleration is zero and it follows from Eq. (3.6.6) that the modified pressure
gradient qP/qx is constant:
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oP

ox
¼ c ða constant) ð3:7:3Þ

Due to the assumed velocity field (3.7.1) the extra stresses sik are only functions of
y, and due to symmetry sxz and syz are zero:

sik ¼ sikðyÞ; sxz ¼ syz ¼ 0 ð3:7:4Þ

The equations of motion (3.6.3, 3.6.4) are now reduced to three equations of
equilibrium:

0 ¼ �cþ dsxy

dy
; 0 ¼ � oP

oy
þ dsyy

dy
; 0 ¼ � oP

oz
ð3:7:5Þ

The first equation is integrated to:

sxyðyÞ ¼ cyþ s0 ð3:7:6Þ

s0 is the unknown shear stress at the fixed boundary surface y ¼ 0: For the
modified pressure P the last two of the equations (3.7.5) and equation (3.7.3) yield:

P ¼ Pðx; yÞ ¼ cxþ syyðyÞ þ P0 ð3:7:7Þ

P0 is an unknown constant pressure.
From this point in the analysis we need to specify a fluid model by introducing

constitutive equations. Three fluid models will be considered: the Newtonian fluid,
a power law fluid, and the Bingham fluid.

( )xv y

1v
h

y

y

x

α

α
g

1v

O

Fig. 3.9 Flow between parallel planes
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Newtonian Fluid. The constitutive equation. (3.4.1) give:

sxy ¼ l
dv

dy
; syy ¼ 0 ð3:7:8Þ

From the last of these equations and Eq. (3.7.7) it follows that:

P ¼ PðxÞ ¼ cxþ P0 ð3:7:9Þ

The result implies that the total pressure p ¼ Pþ ps varies linearly over any cross
section x ¼ constant of the flow, as in a fluid at rest. The first of the equations
(3.7.8) and equation (3.7.6) are combined, and the result is integrated:

dv

dy
¼ c

l
yþ s0

l
) vðyÞ ¼ c

2l
y2 þ s0

l
yþ C1 ð3:7:10Þ

The constant shear stress s0 at the fixed boundary surface and the constant of
integration C1 are determined from the boundary conditions (3.7.2):

vð0Þ ¼ 0 ) C1 ¼ 0; vðhÞ ¼ v1 ) s0 ¼ �
ch

2
þ lv1

h
ð3:7:11Þ

The velocity field (3.7.10) is now found as:

vðyÞ ¼ � ch2

2l
y

h
� y

h

	 
2
� �

þ v1
y

h
ð3:7:12Þ

The volumetric flow through a cross section x = constant is per unit width of the
flow:

Q ¼
Zh

0

vðyÞ dy ¼ � ch3

12l
þ v1

h

2
ð3:7:13Þ

Figure 3.10 shows the velocity profiles for some characteristic special cases:

(a) Zero modified pressure gradient: c = 0 )

vðyÞ ¼ v1
y

h
; Q ¼ v1 h

2
ð3:7:14Þ

(b) Positive modified pressure gradient: c [ 0 )

Q ¼ 0 for v1 ¼
c h2

6l
ð3:7:15Þ

(c) Negative modified pressure gradient: c \ 0 )

Q ¼ cj jh3

12l
þ v1 h

2
ð3:7:16Þ
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(d) Negative modified pressure gradient and two fixed plates: c \ 0 and v1 = 0)

vðyÞ ¼ cj jh2

2l
y

h
� y

h

	 
2
� �

; Q ¼ cj jh3

12l
ð3:7:17Þ

Power Law Fluid. This fluid model is a special generalized Newtonian fluid and
the general presentation of the constitutive equations for the fluid model will be
given in Sect. 6.1. For the special flow defined in Eq. (3.7.1), the constitutive
equations are reduced to:

sxy ¼ g
dv

dy
; syy ¼ 0; g ¼ g _cð Þ ¼ K _cj jn�1; _c ¼ dv

dy
ð3:7:18Þ

The consistency parameter K and the power law index n are two material
parameters.

The general result (3.7.7) and the Eq. (3.7.18) yield the modified pressure
function (3.7.9). The result implies that the total pressure p ¼ Pþ ps varies lin-
early over any the cross section x = constant of the flow, as in a fluid at rest.

The Eqs. (3.7.6) and (3.7.18) may combine to give:

K
dv

dy

����
����
n�1dv

dy
¼ cyþ s0 ð3:7:19Þ

When this equation is integrated, it is convenient to distinguish between the fol-
lowing two situations that may occur:

(a) The velocity gradient dv/dy has the same sign in the interval 0 B y B h.
(b) The velocity gradient dv/dy changes sign in the interval 0 B y B h.

However, we shall for simplicity choose the conditions: v1 ¼ 0 and c \ 0. Then
the velocity gradient dv=dy is � 0 in the region 0� y� h=2 and dv=dy� 0 in the

1

0c
v

>
1

0c
v

<
1

0
0

c
v

<
=1
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v

=
(a) (b) (c) (d)

Fig. 3.10 Velocity profiles for a Newtonian fluid
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region h=2� y� h: The flow is now symmetric about the plane y = h/2. The
boundary conditions (3.7.2) for v(y) are replaced by:

vð0Þ ¼ 0;
dv

dy

����
y¼h=2

¼ 0 ð3:7:20Þ

The latter of these conditions implies together with Eq. (3.7.19) the condition:

s0 ¼
cj jh
2

ð3:7:21Þ

This condition also follows from (3.7.6) and the symmetry condition: sxy ¼
0 at h=2: In the interval 0� y� h=2 the Eq. (3.7.19) may be written as:

dv

dy
¼ cj j

K

h

2
� y

� �� �1=n

ð3:7:22Þ

Integration of Eq. (3.7.22) followed by application of the condition v(0) = 0 and
symmetry in the interval 0� y� h yields:

vðyÞ ¼ cj jh
2K

� �1=n nh

2ð1þ nÞ 1� 1� 2y

h

����
����
1þ1=n

( )
ð3:7:23Þ

The volumetric flow is:

Q ¼ 2
Zh=2

0

vðyÞ dy ¼ cj jh
2K

� �1=n nh2

2ð1þ 2nÞ ð3:7:24Þ

Figure 3.11 shows the velocity profile for a power law fluid with the power law
index n = 0.2. If we choose K ¼ l and n = 1, the solutions (3.7.23) and (3.7.24)
are reduced to the solution (3.7.17) for a Newtonian fluid.

Bingham fluid

plug flow

power law fluid n = 0.2

( )v y

py

py

y y
( )v y

Fig. 3.11 Velocity profile for a power law fluid and for a Bingham fluid
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Bingham Fluid. As we shall see in Sect. 6.1, this fluid model may be considered to
be a special kind of a generalized Newtonian fluid. The relevant constitutive
equations for the flow assumed by the velocity field (3.7.1) are:

sxy ¼ lþ sy

dy=dyj j

� �
dv

dy
when

dv

dy
6¼ 0; sxy

�� ��� sy , dv

dy
¼ 0

syy ¼ 0

ð3:7:25Þ

The yield shear stress sy and the viscosity l are material parameters.
As in the previous example we choose for simplicity the special case v1 ¼ 0

and c\0: The flow is symmetric about the plane y ¼ h=2, and we obtain from
Eq. (3.7.6):

sxyðhÞ ¼ �sxyð0Þ ) chþ s0 ¼ �s0 )

s0 ¼
cj jh
2

ð3:7:26Þ

The shear stress formula (3.7.6) is rewritten to:

sxyðyÞ ¼ cj j h

2
� y

� �
ð3:7:27Þ

The shear stress is equal to the yield shear stress sy for two values of y: yp and
h� yp; where yp is determined from:

sxyðypÞ ¼ sy ¼ cj j h

2
� yp

� �
)

yp ¼
h

2
� sy

cj j ð3:7:28Þ

The fluid layer in the region yp� y� h� yp flows as solid, undeformed material.
The flow in the region is called a plug flow, see Fig. 3.11.

In the region 0� y� yp the velocity gradient dv=dy is positive, and the Eqs.
(3.7.25) and (3.7.27) give:

dv

dy
¼ cj j

l
h

2
� y

� �
� sy

l
; y� yp ð3:7:29Þ

Integration of Eq. (3.7.29), followed by the boundary condition vð0Þ ¼ 0; gives:

vðyÞ ¼ cj jh2

2l
y

h
� y

h

	 
2
� �

� sy

l
y; y� yp ð3:7:30Þ

The velocity of the plug vp ¼ v yp

� �
becomes:

vp ¼
cj jh2

8l
� h

2l
sy þ

1
2l cj j s

2
y ð3:7:31Þ
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The volumetric flow becomes:

Q ¼ vp h� 2yp

� �
þ 2

Zyp

0

vðyÞ dy ) Q ¼ cj jh3

12l
� h2

4l
sy þ

1
2l c2

s3
y ð3:7:32Þ

3.8 Pipe Flow

Laminar flow of fluid in a pipe may be treated as a flow with straight, parallel
stream lines. A condition for this is that the diameter of the pipe does not vary too
much and that the radius of curvature of the pipe is very large compared to the
diameter of the pipe.

In this section we shall determine the velocity profile over a cross section of the
pipe and derive a formula for the volumetric flow Q through the pipe, when it is
assumed that the fluid may be modeled as a Newtonian fluid, a power law fluid,
and a Bingham fluid. The flow is driven by a pressure gradient.

We assume steady laminar flow with the velocity profile in cylindrical coor-
dinates ðR; h; zÞ:

vz ¼ vðRÞ; vðd=2Þ ¼ 0; vR ¼ vh ¼ 0 ð3:8:1Þ

When the velocity profile v(R) has been found, the volumetric flow is determined
as follows. The volume of fluid flowing through a ring element dA, see Fig. 3.12, is
per unit time: dQ ¼ vðRÞ � dA ¼ vðRÞ � ð2pR � dRÞ: Then:

Q ¼ 2p
Zd=2

0

R vðRÞ dR ð3:8:2Þ

dz

zRτ

zzP τ−

dtγ

d

v dt⋅ dv
dR dt

dR
⋅

t t dt+dR

( )v R
R R

z

plane fluid element

θ

dRR

zz

P
P dz

z
τ∂+ −

∂ 2dA R dRπ= ⋅

cylindrical fluid body

Fig. 3.12 Pipe flow
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Due to the symmetry of the flow szh ¼ sRh ¼ 0: Because the velocity field is a
function of R only, the stresses are also functions of R alone. Thus:

sRRðRÞ; shhðRÞ; szzðRÞ; szRðRÞ; szh ¼ sRh ¼ 0 ð3:8:3Þ

We use modified pressure P and apply the general result from Sect. 3.6 that the
gradient of the modified pressure is constant in the flow direction, see Eq. (3.6.6):

oP

oz
¼ c ða constant) ð3:8:4Þ

Figure 3.12 shows a cylindrical fluid body with radius R and length dz, and sub-
jected to stresses. The velocity field (3.8.1) gives zero acceleration. Because the
extra stress szz is only dependent on R, Euler’s 1 axiom provides the following
equilibrium equation for the cylindrical fluid body:

szR � 2pR � dzð Þ � oP

oz
dz � pR2

� �
¼ 0 )

szR ¼ szRðRÞ ¼
c

2
R ð3:8:5Þ

We assume the flow to be in the positive z-direction. That implies that the pressure
gradient c must be negative. The shear stress from the pipe wall is therefore:

s0 ¼ szR d=2ð Þj j ¼ cj jd
4

ð3:8:6Þ

The result (3.8.5) may also be obtained from the equations of motion (3.3.28–
3.3.30) in cylindrical coordinates, which in the present case are reduced to:

0 ¼ � oP

oR
þ 1

R

d

dR
RsRRð Þ � 1

R
shh; 0 ¼ � 1

R

oP

oh
; 0 ¼ � oP

oz
þ 1

R

d

dR
RszRð Þ

ð3:8:7Þ

To obtain these equations we have taken the following into consideration:

(1) The velocity field is independent of the coordinates z and h; i.e. the equation
(3.8.1).

(2) The extra stresses, being the result of the velocity field, are also independent of
z and h; i.e. the equation (3.8.3).

(3) The shear stresses shz and sRh on planes through the axis of the pipe are zero
due to symmetry, i.e. the equation (3.8.3).

The equations of motion (3.8.7) imply the result (3.8.4) and that P = P(R,z).
The third of the equation (3.8.7) then gives:

d

dR
RszRð Þ ¼ cR ) RszR ¼

c

2
R2 þ C1 ð3:8:8Þ
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The constant of integration C1 is determined from the symmetry condition:
szRð0Þ ¼ 0: This gives C1 ¼ 0; and szR is given by the expression in Eq. (3.8.5).

The equilibrium equation (3.8.5) will now be used to determine the velocity
profile v(R) and the volumetric flow Q through the pipe for three fluid models: the
Newtonian fluid, the power law fluid, and the Bingham fluid.

Newtonian Fluid. Figure 3.12 shows the deformation during a time increment
dt of a small, plane fluid element. From the figure we derive the shear rate _c �
_czR ¼ dv=dR; which is the only non-zero deformation rate in the Rhz�
coordinate system : In order to use the constitutive equation (3.4.1) we may
imagine a local Cartesian coordinate system with axes coinciding with the edges of
the small plane element in Fig. 3.12. Then the following extra stresses are
obtained:

szR ¼ sRz ¼ l
dv

dR
; sRR ¼ shh ¼ szz ¼ sRh ¼ shR ¼ shz ¼ szh ¼ 0 ð3:8:9Þ

Compare with equation (3.7.8). The general set of constitutive equations of a
Newtonian fluid in a cylindrical coordinate system can be found in Sect. 4.3.

The Eqs. (3.8.5) and (3.8.9) are combined to give:

dv

dR
¼ cR

2l
ð3:8:10Þ

With the sticking condition v(d/2) = 0, the equation is integrated to give:

vðRÞ ¼ v0 1� 2R

d

� �2
" #

; v0 ¼
cj jd2

16l
ð3:8:11Þ

Figure 3.13a shows the velocity profile for a Newtonian fluid. The volumetric flow
Q is determined from Eq. (3.8.2):

plug flow pv
0v 0v

pr
pr

(a) (b) (c)

Fig. 3.13 Velocity profiles in pipe flow. a Newtonian fluid, b power law fluid n = 0.2, c Bingham
fluid
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Q ¼2pv0

Zd=2

0

R� 4R3

d2

� �
dR )

Q ¼ v0

2
A; A ¼ pd2

4
) Q ¼ pd4

128l
cj j the Hagen� Poiseuille formula

ð3:8:12Þ

The formula was developed independently by Gotthilf Heinrich Ludwig Hagen
[1797–1884] and Jean Louis Marie Poiseuille [1797–1869].

Power Law Fluid. The general constitutive equations for this fluid are presented
in Chap. 6. For the flow (3.8.1) the extra stresses are:

sRz ¼ szR ¼ g
dv

dR
; g ¼ K

dv

dR

����
����
n�1

; sRR ¼ shh ¼ szz ¼ sRh ¼ shR ¼ 0 ð3:8:13Þ

The Eqs. (3.8.5) and (3.8.13) are now combined to give:

dv

dR
¼ � cj jR

2K

� � 1=n

ð3:8:14Þ

Here we have used the assumption that the pressure gradient c is negative. Inte-
gration and use of the boundary condition v(d/2) = 0 yield:

vðRÞ ¼ v0 1� 2R

d

� �1=nþ1
" #

; v0 ¼
cj jd
4K

� �1=n nd

2ð1þ nÞ ð3:8:15Þ

Figure 3.13b shows the velocity profile for the power law index n = 0.2.
The volumetric flow Q is determined from the Eq. (3.8.2):

Q ¼2p
Zd=2

0

R vðRÞ dR ¼ 2pvo

Zd=2

0

R� 2
d

� �1þ1=n

Rð Þ2þ1=n

" #
dR ¼ vo

1þ n

1þ 3n

pd2

4
)

Q ¼vo
1þ n

1þ 3n

pd2

4
¼ cj jd

4K

� �1=n n

1þ 3n

pd3

8

ð3:8:16Þ

For a Newtonian fluid n = 1 and K is replaced by l, and we see that Eq. (3.8.15)
gives Eq. (3.8.11) and Eq. (3.8.16) gives Eq. (3.8.12).

Bingham Fluid. The general form of the constitutive equations for this fluid model
is presented in Sect. 6.1. The relevant constitutive equations for the flow given by
Eq. (3.8.1) are:
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sRz ¼szR ¼ lþ sy

dv=dRj j

� �
dv

dR
when

dv

dR
6¼ 0 ; sRzj j ¼ szRj j � sy when

dv

dR
¼ 0

sRR ¼shh ¼ szz ¼ sRh ¼ shR ¼ 0

ð3:8:17Þ

sy is a yield shear stress. From the equilibrium equation (3.8.5) it follows that:

szRj j � sy when R� rp ¼
2sy

cj j ð3:8:18Þ

The Eqs. (3.8.18) and (3.8.17) show that inside a cylindrical surface of radius rp

the material flows like solid plug.
In order to determine the velocity profile v(R) we combine the constitutive

equations (3.8.17) and the equilibrium equation (3.8.5). Because c\0 and
dv=dR� 0; we obtain:

dv

dR
¼ � cj j

2l
Rþ sy

l
ð3:8:19Þ

Integration and the boundary condition v(d/2) = 0 yield:

vðRÞ ¼ cj jd2

16l
1� 2R

d

� �2
" #

� sy d

2l
1� 2R

d

� �
; rp�R� d

2
ð3:8:20Þ

The velocity of the solid plug is:

vp ¼ vðrpÞ ¼
cj jd2

16l
1� 4sy

cj jd

� �2

ð3:8:21Þ

It follows from this result that no flow results if cj j\4sy=d :

cj j � 4sy

d
) vp ¼ 0 and rp ¼

d

2
, no flow ð3:8:22Þ

Figure 3.13c shows the velocity profile for a Bingham fluid.
The volumetric flow Q is determined from Eq. (3.8.2).

Q ¼vp � pr2
p þ 2p

Zd=2

rp

vðRÞRdR )

Q ¼ cj jpd4

128l
1� 16

3
sy

cj jd þ
256

3
sy

cj jd

� �4
" # ð3:8:23Þ

For the special sy ¼ 0 the Eqs. (3.8.20) and (3.8.23) correspond with the Eqs.
(3.8.11) and (3.8.12) for a Newtonian fluid.

52 3 Basic Equations in Fluid Mechanics



3.9 Film Flow

Figure 3.14 is illustrating the transport of fluid as a film with constant thickness
h on a wide conveyor belt. The width of the belt is b. The belt is inclined an angle
a with respect to the horizontal plane and moves with constant velocity v0. The
fluid density is q:

We assume the velocity field:

vx ¼ vðyÞ; vy ¼ vz ¼ 0 ð3:9:1Þ

and want to determine the velocity profile v(y) and the volumetric flow Q. It is
assumed that the fluid sticks to the belt. The atmospheric pressure on the free
surface is pa. The boundary conditions for the flow are then:

vxð0Þ ¼ v0; ryy ¼ �pþ syy ¼ �pa and sxy ¼ 0 at y ¼ h ð3:9:2Þ

Due to the presence of the free surface at y = h, which does not exist when the
fluid is at rest, it is not practical in this case to introduce the modified pressure P in
the equations of motion (3.3.24). The velocity field (3.9.2) implies no acceleration
and the body force is:

b ¼ �g sin a ex � g cos aey ð3:9:3Þ

Because of the assumption (3.9.2) we may assume that the extra stresses sik are
functions of y only, and that szy and szx vanish due to symmetry.

sik ¼ sikðyÞ; szy ¼ szx ¼ 0 ð3:9:4Þ

( )xv y

hρ

y

y

x

α

α
g

O

ov

0v

ap

conveyor belt

1v

Fig. 3.14 Film flow on a conveyor belt
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The equations of motion (3.3.24) provide the following three equations of
equilibrium:

0 ¼ � op

ox
þ dsxy

dy
� qg sin a; 0 ¼ � op

oy
þ dsyy

dy
� qg cos a; 0 ¼ � op

oz
ð3:9:5Þ

From these equations we shall first derive a general expression for the pressure
p. The Eqs. (3.9.5) imply that p = p(x,y) and that:

o

ox

op

ox

� �
¼ 0;

o

ox

op

oy

� �
¼ o

oy

op

ox

� �
¼ 0 )

op

ox
¼ constant ¼ c

ð3:9:6Þ

Integrations of Eq. (3.9.6) and the second of the Eqs. (3.9.5) yield:

p ¼ pðx; yÞ ¼ syyðyÞ � ðqg cos aÞyþ cxþ C1 ð3:9:7Þ

From the boundary conditions (3.9.2) and the results (3.9.4) and (3.9.7) we obtain:

� pðx; hÞ þ syyðhÞ ¼ �pa )

c ¼ op

ox
¼ 0; C1 ¼ pa þ ðqg cos aÞhÞ � syyðhÞ

ð3:9:8Þ

The general expression for the pressure is therefore:

p ¼ pðyÞ ¼ pa þ syyðyÞ � syyðhÞ þ ðh� yÞqg cos a ð3:9:9Þ

The pressure is thus only a function of y.
With this expression for the pressure and sxyðhÞ ¼ 0; from the boundary con-

ditions (3.9.2), the first of the equilibrium equations (3.9.5) is integrated to give:

sxyðyÞ ¼ �ðh� yÞqg sin a ð3:9:10Þ

Next, we shall investigate the flow of three different fluid models: the New-
tonian fluid, the power law fluid, and the Bingham fluid.

Newtonian Fluid and Power Law Fluid. For the flow (3.9.1) the constitutive
equations for a power law fluid are given by the Eq. (3.7.18). The Newtonian fluid
model is obtained by setting K = l and n = 1.

The Eqs. (3.9.10) and (3.7.18) are combined to give:

K
dv

dy

����
����
n�1dv

dy
¼ �ðh� yÞqg sin a ð3:9:11Þ

Because the shear stress sxy according to Eq. (3.9.10) is negative, the velocity
gradient is negative. Thus Eq. (3.9.11) may be rewritten to:

54 3 Basic Equations in Fluid Mechanics



dv

dy
¼ � qg sin a

K

� �1=n

ðh� yÞ1=n ð3:9:12Þ

The equation is integrated and the boundary condition vx ¼ vð0Þ ¼ vo is used. The
result is:

vðyÞ ¼ v0 �
qg sin a

K

� �1=nnh1þ1=n

1þ n
1� 1� y

h

	 
1þ1=n
� �

ð3:9:13Þ

Figure 3.15 shows the velocity profile for the Newtonian fluid and for the power
law fluid. The velocity of the free surface of the fluid is:

v1 ¼ vðhÞ ¼ vo �
qg sin a

K

� �1=nnh1þ1=n

1þ n
ð3:9:14Þ

The volumetric flow Q becomes:

Q ¼ b

Zh

0

vðyÞ dy ¼ vo bh� qg sin a
K

� �1=n n

1þ 2n
bh2þ1=n ð3:9:15Þ

The flow of the Newtonian fluid ; K ¼ l and n ¼ 1; is represented by:

vðyÞ ¼ vo �
qgh2 sin a

2l
2

y

h
� y

h

	 
2
� �

v1 ¼ vo �
qgh2 sin a

2l
; Q ¼ vo bh� qg sin a

3l
bh3

ð3:9:16Þ

Bingham Fluid. The relevant constitutive equations for the flow (3.9.1) are given
by the Eq. (3.7.25).

1v 1 pv v=1v

0v

power law fluid, 0.2n = Bingham fluidNewtonian fluid

0v 0v

h

ph h−

pv

ph plug flow

Fig. 3.15 Velocity profiles for film flow
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The equilibrium equation (3.9.10) and the constitutive equation (3.7.25) imply
that a top layer of the fluid film flows as a solid plug. The thickness hp of the plug
is determined from Eq. (3.9.10) for y ¼ h� hp:

sxyðh� hpÞ
�� �� ¼ qg sin a hp ¼ sy ) hp ¼

sy

qg sin a
ð3:9:17Þ

The equilibrium equation (3.9.10) and the constitutive equation (3.7.25) are now
combined. Because dv=dy is negative, we write the result of the combination as:

dv

dy
¼ � qg sin a

l
ðh� yÞ þ sy

l
; y� h� hp ð3:9:18Þ

Integration, followed by application of the boundary condition vð0Þ ¼ v0, gives:

vðyÞ ¼v0 þ
sy

l
y� qg sin a h2

2l
2y

h
� y

h

	 
2
� �

; y� h� hp

v1 ¼vp ¼ v hp

� �
¼ v0 þ

syh

l
�

s2
y

2lqg sin a
� qg sin a h2

2l

ð3:9:19Þ

vp is the plug velocity. Figure 3.15 shows the velocity profile, which consists of a
rectangular part and a parabolic part. The volumetric flow Q may be therefore be
computed as:

Q ¼ vp bhþ 1
3

v0 � vp

� �
b h� hp

� �
)

Q ¼ v0 bh� qg sin a bh3

3l
þ sybh2

2l
�

s3
y b

6l qg sin að Þ2
ð3:9:20Þ

3.10 Energy Equation

A fluid body of volume V, Fig. 3.16, has the internal energy:

E ¼
Z
V

eq dV ð3:10:1Þ

e ¼ eðx; tÞ is the specific internal energy e(x,t) and represents the internal energy
per unit mass.

Heat is supplied to the fluid body by:

1. Heat conduction through the surface area A of the body, and
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2. Heat generated from heat sources in the body and/or by radiation into the body
from external distant radiating bodies.

We shall include only the first kind of heat supply. The heat conducted through
the surface per unit time and per unit area is given by the heat flux q. Then the total
heat supplied per unit time to the body is:

_Q ¼
Z
A

qdA ð3:10:2Þ

The quantity Q� is called the heat power supplied to the body.
The work done on the body per unit time, is expressed by the mechanical

power:

P ¼
Z
V

b � v q dV þ
Z
A

t � v dA ð3:10:3Þ

The mechanical power may change the kinetic energy K of the body:

K ¼
Z
V

1
2

v2 q dV ð3:10:4Þ

The first law of thermodynamics may be expressed by the equation:

Pþ _Q ¼ _E þ _K ð3:10:5Þ

The sum of the mechanical power and the heat power supplied to the body per unit
time is equal to the time rate of change of the internal energy and the kinetic
energy of the body.

By writing the first law of thermodynamics for the Cauchy tetrahedron in Fig. 3.6,
we can show that the heat flux per unit area q may be expressed by a heat flux
vector q(x,t) such that, see Fig. 3.16:

q ¼ � h � n ð3:10:6Þ

1x

2x

3x

Rf

,K t

b
n

t

A

V

dA

dVρ
v

v

h
q

O

Fig. 3.16 Fluid body
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The negative sign on the left-hand side is introduced so that the vector gives the
direction of the heat flow.

The first law (3.10.5) will now be applied to the fluid element illustrated in
Fig. 3.17. The element has volume dV ¼ dx1 dx2 dx3 and mass qdV : For simplicity
the figure is only supplied with the relevant quantities on two surfaces of the
element in addition to the body force b and the velocity v. The net mechanical
power supplied to the element is now:

dP ¼b � v q dV þ �t2 � vdx3 dx1 þ t2 þ t2;2 dx2ð Þ vþ v;2 dx2ð Þ dx3 dx1ð Þ½ �
þ �t1 � vdx2 dx3 þ t1 þ t1;1 dx1ð Þ vþ v;1 dx1ð Þ dx2 dx3ð Þ½ �
þ �t3 � vdx1 dx2 þ t3 þ t3;3 dx3ð Þ vþ v;3 dx3ð Þ dx1 dx2ð Þ½ �

Removing higher order terms, we obtain:

dP ¼ bqþ tk;kð Þ � v þ tk � v;k½ � dV ð3:10:7Þ

The heat power supplied to the element is:

d _Q ¼� q;2 dx2ð Þ � e2 dx3 dx1ð Þ � q;1 dx1ð Þ � e1 dx2 dx3ð Þ � q;3 dx3ð Þ � e3 dx1 dx2ð Þ )
d _Q ¼� qk;k dV ¼ �r � q dV

ð3:10:8Þ

The time rate of change of internal energy and the time rate of change of kinetic
energy for the element are:

d _E ¼ _eqdV ; d _K ¼ d

dt

v2

2
qdV

� �
¼ d

dt

v2

2

� �
qdV ¼ v � _vqdV ð3:10:9Þ

The first law of thermodynamics (3.10.5) yields: dPþ d _Q ¼ d _E þ d _K )

bqþ tk;kð Þ � vþ tk � v;k½ � dV �r � q dV ¼ _eqdV þ v � _vq dV )
bqþ tk;k � _vq½ � � vþ tk � v;k �r � q ¼ _eq

ð3:10:10Þ

1dx
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Fig. 3.17 Fluid element subjected to forces and heat flux
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The term x ¼ tk � v;k is called the stress power per unit volume, or the defor-
mation power per unit volume, and represents the work done by the stresses on the
fluid per unit time and per unit volume. Using Eq. (3.3.5), we may express the
stress power by coordinate stresses, and using the expressions (3.3.18) for the
coordinate stresses in a fluid, we obtain:

x ¼tk � v;k ¼ rik vi;k ¼ �pdik þ sikð Þvi;k ¼ �p dikvi;k þsik vi;k ¼ �p vk;kþsik vi;k )
x ¼tk � v;k ¼ rik vi;k ¼ �p vk;k þsik vi;k ¼ �pr � vþ sik vi;k

ð3:10:11Þ

The physical interpretation of the stress power will be presented in Sect. 4.1.3.
The terms in the brackets in Eq. (3.10.10) vanish due to the equation of motion

(3.3.16), and we are left with the thermal energy balance equation for a fluid
particle:

q _e ¼ �r � qþ x ð3:10:12Þ

The result may also be called the thermal energy balance equation at a place.
For thermal isotropic fluids Fourier’s heat conduction equation applies,

Jean Baptiste Joseph Fourier [1768–1830]:

q ¼ �krH ð3:10:13Þ

H ¼ Hðx; tÞ is the temperature. k is the thermal conductivity and is a function of
the temperature, but is often taken to be a constant parameter. In the following
k will be treated as a constant.

For an incompressible fluid we may assume that the specific internal energy is a
function of the temperature alone:

e ¼ eðHÞ ð3:10:14Þ

Specific heat c is defined as the change in internal energy per unit mass and per
unit temperature:

c ¼ de

dH
ð3:10:15Þ

The specific heat c varies only slightly with temperature. By the definitions
(3.10.14) and (3.10.15) the thermal energy balance equation (3.10.12) may be
rewritten to:

qc _H ¼ kr2Hþ x ð3:10:16Þ

For an incompressible Newtonian fluid the extra stresses sik are presented by the
constitutive equation (3.4.1) with r � v ¼ 0: Hence the stress power per unit
volume, equation (3.10.11) becomes:
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x ¼� pr � vþ sikvi;k ¼ sikvi;k¼ l vi;k þvk;ið Þ

vi;k ¼
l
2

vi;kþvk;ið Þ vi;k þvk;ið Þ½ � )

x ¼ l
2

vi;kþvk;ið Þ vi;k þvk;ið Þ½ �

ð3:10:17Þ

The expression in the brackets is a sum of squares. Thus the stress power per unit
volume is always positive and represents a dissipation of mechanical energy into
thermal energy.

3.10.1 Energy Equation in Cartesian Coordiantes x; y; zð Þ

qc
oH
ot
þ vx

oH
ox
þ vy

oH
oy
þ vz

oH
oz

� �

¼ k
o2H
ox2
þ o2H

oy2
þ o2H

oz2

� �
þ sxx

ovx

ox
þ sxy

ovx

oy
þ ovy

ox

� �
þ syy

ovy

oy

þ syz
ovy

oz
þ ovz

oy

� �
þ szx

ovz

ox
þ ovx

oz

� �
þ szz

ovz

oz
ð3:10:18Þ

3.10.2 Energy Equation in Cylindrical Coordinates ðR; h; zÞ

qc
oH
ot
þ vR

oH
oR
þ vh

R

oH
oh
þ vz

oH
oz

� �

¼ k
1
R

o

oR
R

oH
oR

� �
þ 1

R2

o2H

oh2 þ
o2H
oz2

� �
þ sRR

ovR

oR
þ sRh

1
R

ovR

oh
þ R

o

oR

vh

R

	 
� �

þ szR
ovz

oR
þ ovR

oz

� �
þ shh

1
R

ovH

oh
þ vR

R

� �
þ shz

ovh

oz
þ 1

R

ovz

oh

� �
þ szz

ovz

oz

ð3:10:19Þ

3.10.3 Temperature Field in Steady Simple Shear Flow

A Newtonian fluid flows between two parallel plates, Fig. 3.18. The bottom plate
is at rest, while the top plate moves with a constant velocity v1. Both plates are
kept at a constant temperature H0. The modified pressure gradient c is zero, and
the viscosity l and the thermal conductivity k are assumed to be constants. Steady
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laminar flow is assumed. We want to derive the expression for the temperature
field, which we assume to be of the form HðyÞ:

From Sect. 3.7 we obtain the velocity field, Fig. 3.10a:

vxðyÞ ¼
v1

h
y; vy ¼ vz ¼ 0 ð3:10:20Þ

and the extra stresses sik of which only one is different from zero, equation (3.7.8):

sxy ¼ l
dvx

dy
¼ lv1

h
ð3:10:21Þ

The energy equation (3.10.18) is by the Eqs. (3.10.20) and (3.10.21), and the
assumption H ¼ HðyÞ; reduced to:

k
d2H
dy2
¼ � lv1

h

	 
 v1

h

	 

ð3:10:22Þ

Two integrations yield:

HðyÞ ¼ � l
k

v1

h

	 
2y2

2
þ C1 yþ C2

The constants of integration C1 and C2 are determined from the boundary
conditions:

Hð0Þ ¼ H0 ) C2 ¼ H0; HðhÞ ¼ H0 ) C1 ¼
lv2

1

2hk

Hence the temperature field is found to be:

HðyÞ ¼ H0 þ
lv2

1

2k

y

h
� y

h

	 
2
� �

; Hmax ¼ H0 þ
lv2

1

8k
at y ¼ h

2

( )xv y( )xvx y

1v0Θ

0Θ

h

, ,K n k

Fig. 3.18 Steady shear flow
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Chapter 4
Deformation Kinematics

The surface of a fluid body that has been at rest for a long time, is only subjected to
the isotropic pressure p. Motion and deformation of the fluid result in extra stresses
normal to and tangential to the surface of the fluid body, and are due to the
deformation history of the fluid. The constitutive equations defining the fluid
models express the relationship between the stresses in a fluid and the deformation
history of the fluid, which in turn is given by the history of the velocity field. In the
present chapter we shall first analyze the properties of a general velocity field.
Then some standard types of laminar flows will be presented. These flows occur in
many practical problems and are also characteristic of flows in experiments used to
determine material parameters for a particular fluid.

4.1 Rates of Deformation and Rates of Rotation

Figure 4.1 illustrates a fluid particle P at the place r ¼ xiei at the time t. The
particle has the velocity v(x,t) and gets during a short time increment dt the
displacement vdt. A neighbor particle �P at the place rþ dr ¼ xi þ dxið Þei gets
the displacement vþ dvð Þdt. The differential dv has the components:

dvi ¼
ovi

oxk
dxk ¼ vi;k dxk ð4:1:1Þ

The quantities vi;k are called the velocity gradients and the matrix:

L ¼ Likð Þ � vi;kð Þ ð4:1:2Þ

is the velocity gradient matrix.
We shall now investigate the deformation of a small fluid element due to the

displacement field:

vþ dvð Þdt ¼ vi þ vi;k dxkð Þdt ei ð4:1:3Þ

F. Irgens, Rheology and Non-Newtonian Fluids,
DOI: 10.1007/978-3-319-01053-3_4, � Springer International Publishing Switzerland 2014
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As shown in Fig. 4.2 the element is at the time t extended from three material line
elements dx1, dx2, and dx3 from the particle P. For simplicity, Fig. 4.2 illustrates
the situation in two dimensions, and the element is shown at the time t and the time
t ? dt.

The change in length per unit length and per unit time of a material line element
extended from particle P is called the rate of longitudinal strain at P in the

d dtvd dtv v

P

dtvdr

i ixr e

1x
2x

3x
P

O

Fig. 4.1 Displacement of fluid particles

1v dt

r

1x

2x

P

O

( )1 1 1 1,v v dx dt+

2v dt

2 1 1,v dx dt

( )1 1 2 2,v v dx dt+

1 2 2,v dx dt

1 2,v dt

( )2 2 1 1,v v dx dt+2 1,v dt
1 1 1,v dx dt

( )1 1 11 ,dx v dt+

( )2 2 21 ,dx v dt+

1dx
2dx

t

t dt+

Fig. 4.2 Deformation of a fluid element
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direction of the line element. The line element dx1 in Fig. 4.2 gets a change in
length v1;1 dx1dt. The rate of longitudinal strain at P in the x1–direction is
therefore:

_e1 ¼
v1;1 dx1dt

dx1dt
¼ v1;1 ð4:1:4Þ

The negative change per unit time of a material right angle at particle P is
called a rate of shear strain, or for short the shear rate at P. The right angle
between the line element dx1 and dx2 is reduced by v1;2 dt þ v2;1 dt. The shear rate
at P for the two directions x1 and x2 is therefore:

_c12 ¼ v1;2 þ v2;1 ð4:1:5Þ

With respect to the line elements dx1, dx2, and dx3 there are 3 rates of longi-
tudinal strain:

_ei ¼ vi;i ; i ¼ 1; 2; or 3 ð4:1:6Þ

and 3 rates of shear strain:

_ci k ¼ vi;k þvk;i ; i 6¼ k ð4:1:7Þ

Note that _ci k is symmetric: _ci k ¼ _ck i.
The change in volume per unit volume and per unit time at a particle P is called

the rate of volumetric strain at P. For the fluid element in Fig. 4.2 the volume at
time t is:

dVðtÞ ¼ dx1dx2dx3 ð4:1:8Þ

At time t ? dt the volume of the same fluid element has become:

dVðt þ dtÞ ¼ dx1 1þ v1;1 dtð Þ½ � dx2 1þ v2;2 dtð Þ½ � dx3 1þ v3;3 dtð Þ½ �
¼ dx1 1þ _e1 � dtð Þ½ � dx2 1þ _e2 � dtð Þ½ � dx3 1þ _e3 � dtð Þ½ �
¼ dVðtÞ þ _e1 þ _e2 þ _e3ð ÞdtdVðtÞ þ higher order terms )

dVðt þ dtÞ ¼ dVðtÞ þ _e1 þ _e2 þ _e3ð ÞdtdVðtÞ ð4:1:9Þ

The rate of volumetric strain thus becomes:

_eV ¼
dVðt þ dtÞ � dVðtÞ

dVðtÞ � dt
)

_eV ¼ _e1 þ _e2 þ _e3 ¼ vk;k ¼ divv � r � v ð4:1:10Þ

The formulas (4.1.6), (4.1.7), and (4.1.10) show that the seven characteristic
measures of rates of deformation: _ei; _cik; and _eV , may be expressed by the
velocity gradients vi;k : The strain rates _ei and _cik are presented in the rate of
deformation matrix:
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D ¼ 1
2

_cik

� �
¼

_e1
1
2 _c12

1
2 _c13

1
2 _c21 _e2

1
2 _c23

1
2 _c31

1
2 _c32 _e3

0
BBBB@

1
CCCCA ð4:1:11Þ

Due to the symmetry in the shear rates _cik the rate of deformation matrix has only 6
distinct components, i.e., D is a symmetric matrix:

D ¼ DT , Di k ¼ Dk i ð4:1:12Þ

DT denotes the transposed matrix to D, i.e., DT is obtained from D by inter-
changing rows and columns. The elements in the matrix D may according to the
formulas (4.1.6), (4.1.7), and (4.1.11) be expressed as:

Di k ¼
1
2

vi;k þvk;ið Þ , D ¼ 1
2

Lþ LT
� �

ð4:1:13Þ

In general the velocity gradient matrix L contains 9 distinct elements vi;k :
Because the rate of deformation matrix D only contains 6 distinct elements in the
formula (4.1.13), only 6 of the ‘‘informations’’ in L have been used. The other 3
‘‘informations’’ in L represent rotation of the fluid. This fact will now be
demonstrated.

The matrix L is decomposed into a symmetric matrix D and an antisymmetric
matrix W:

W ¼ 1
2

L� LT
� �

¼ �WT , Wi k ¼
1
2

vi;k�vk;ið Þ ¼ �Wk i ð4:1:14Þ

It follows that:

L ¼ W þ D , Li k ¼ Wi k þ Di k ð4:1:15Þ

The matrix W is called the rate of rotation matrix and the elements Wik are the rate
of rotation components. Other names of W found in the literature are the vorticity
matrix and the spin matrix, and the elements Wik are called vorticities or spins. The
antisymmetry of W implies that the matrix only contains 3 distinct elements. Thus
W represents the three ‘‘informations’’ in the velocity gradient matrix L mentioned
above. It will now be demonstrated that W represents a rate of rotation.

Before we demonstrate the meaning of the rate of rotation matrix W for general
flow, we consider the special case in Fig. 4.3 of a velocity field that corresponds to a
rigid-body rotation about the x3-axis. The angular velocity is x3:The fluid particles
move in circular, concentric paths with the velocity v proportional with the distance
R from the axis of rotation: v ¼ x3R: In vector notation the angular velocity x, the
velocity vector v, and the velocity components vi in the Ox-system are:
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x ¼ x3 e3; v ¼ x� r ¼ vi ei

v1 ¼ �v sin h ¼ �v
x2

R
¼ �x3x2; v2 ¼ v cos h ¼ v

x1

R
¼ x3x1; v3 ¼ 0

ð4:1:16Þ

The velocity gradient matrix L, the rate of rotation matrix W, and the rate of
deformation matrix D become:

L ¼ W ¼
0 �x3 0
x3 0 0
0 0 0

0
@

1
A; D ¼ 0 ð4:1:17Þ

A fluid element surrounding a particle P, see Fig. 4.3, rotates as a rigid body about
the x3-axis.

As a generalization we consider a rigid-body rotation about the origin with the
angular velocity vector x ¼ xi ei; and we find:

v ¼ x� r ) v1 ¼ x2 x3 � x3 x2; v2 ¼ x3 x1 � x1 x3; v3 ¼ x1 x2 � x2 x1

L ¼ vi;kð Þ ¼ 1
2

vi;k �vk;ið Þ ¼ W ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

0
B@

1
CA; D ¼ 0

ð4:1:18Þ

The three distinct elements of W are in this case given by the components of the
angular velocities vector.

Now we shall discuss the implications of any general velocity field v(x,t). The
velocity gradient matrix L:

P

1x

2x

1x

2x

θ

3ω

2v

1v

v

θ

R

O

Fig. 4.3 Rigid-body rotation
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L ¼
v1;1 v1;2 v1;3
v2;1 v2;2 v2;3
v3;1 v3;2 v3;3

0
@

1
A ð4:1:19Þ

is decomposed into three matrices:W ; D1; and D2; such that:

L ¼ W þ D1 þ D2; D ¼ D1 þ D2 ð4:1:20Þ

D1 ¼
_e1 0 0
0 _e2 0
0 0 _e3

0
@

1
A; D2 ¼

1
2

0 _c12 _c13
_c21 0 _c23
_c31 _c32 0

0
@

1
A ð4:1:21Þ

The rate of rotation matrix W is defined by Eq. (4.1.14) and presented by W in Eq.
(4.1.18) with:

x1 ¼
1
2

v3;2�v2;3ð Þ ¼ W32; x2 ¼
1
2

v1;3�v3;1ð Þ ¼ W13;

x3 ¼
1
2

v2;1�v1;2ð Þ ¼ W21

ð4:1:22Þ

The vector x ¼ xiei is called the angular velocity of a fluid particle and will be
interpreted below. It follows from the Eq. (4.1.22) that:

x ¼ 1
2

rot v � 1
2
r� v ð4:1:23Þ

In fluid mechanics it is customary to use the vorticity vector c rather than the
angular velocity vector w :

c ¼ rot v � r� v ¼ 2x ð4:1:24Þ

In order to demonstrate the physical implication of W, the displacement vector
(v ? dv)dt is presented in its component form as follows.

vi þ vi;k dxkð Þdt ¼ vi dt þ Li k dxk dt ¼ vidt þ Wi k þ D1i k þ D2i kð Þdxk dt ð4:1:25Þ

The right-hand side of Eq. (4.1.25) is a sum of four contributions, each repre-
senting a characteristic motion of the fluid in the neighborhood of a particle
P. Figure 4.4 shall illustrate these motions.

In Fig. 4.4 the cubic fluid element dV ¼ dx1 dx2 dx3; where dx1 ¼ dx2 ¼ dx3;
surrounds the particle P. During a short time interval dt the velocity v of the
particle gives the volume element a translation vdt. The rate of rotation matrix
W contributes with a rigid-body rotation about the particle P. The two deformation
rate matrices D1 and D2 represent a motion of the fluid relative to the particle P:
The matrix D1 gives a motion that is symmetrical with respect to the planes
through P parallel to the sides of the element. Each of the three distinct elements in
the matrix D2 represents a motion that is symmetrical with respect to diagonal
planes, one of which is shown in Fig. 4.4. The ‘‘net rotation’’ of the fluid in the
neighborhood of the P is thus expressed by the rate of rotation W.
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A further investigation of the deformation kinematics in the neighborhood of
any particle P will show that there exist three orthogonal material line elements
through P that remain orthogonal after the displacement (v ? dv)dt, and that the
three line elements rotate with the angular velocity x; defined by Eq. (4.1.23). The
shear strain rates with respect to each pair of these line elements are zero. A
differential volume element with edges parallel to the three line elements retains its
orthogonal form during the displacement (v ? dv)dt. The Sects. 4.1.1 and 4.1.2
will illustrate these properties. The three orthogonal line elements are said to
represent the principal direction of the rates of deformation.

4.1.1 Rectilinear Flow with Vorticity: Simple Shear Flow

A fluid flows between two parallel plane surfaces. One surface is at rest, while the
other surface moves with a constant velocity v, Fig. 4.5.

dtv

dtv

β α+

β α−

α

β

β

2. Rates of rotation  W:

13. Rates og longitudinal strain      :D

24. Rates of shear strain      :D

1. Translation       :dtv

P

( )12only is illustratedγ

P

P

P

P

t

P

1dx

2dx

P

t dt+

General motion and deformation ( ) :d dt+v v

Fig. 4.4 Decomposition of the motion and deformation of a fluid element around a fluid particle P
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We assume that the fluid particles move in straight parallel paths, that the fluid
sticks to the solid surfaces, and such that the velocity field takes the form:

vx ¼
v

h
y; vy ¼ vz ¼ 0 ð4:1:26Þ

Referred to the xyz-coordinate system only one rate of deformation is different
from zero, and only one component of the rate of rotation matrix is different from
zero:

_cxy ¼
v

h
; Wxy ¼

v

2h
, xz ¼ �

v

2h
ð4:1:27Þ

The flow is rectilinear but exhibits vorticity. Figure 4.5 illustrates that the fluid
element 1 has a shear rate _cxy: The fluid element 2 has the angular velocity
component �xz ¼ �v=2h about the z-axis, and the element sides remain
orthogonal during the short time interval dt. Note that the rate of volumetric strain:
_eV ¼ div v ¼ 0 for this flow. The three matrices L, D, and W for this flow are:

L ¼
0 1 0
0 0 0
0 0 0

0
@

1
A v

h
; D ¼

0 1 0
1 0 0
0 0 0

0
@

1
A v

2h
; W ¼

0 1 0
�1 0 0
0 0 0

0
@

1
A v

2h

ð4:1:28Þ

4.1.2 Circular Flow Without Vorticity. The Potential Vortex

A solid circular cylinder rotating about its vertical axis with a constant angular
velocity x and surrounded by a Newtonian fluid, introduces a vortex in the fluid
without vorticity. See Problem 12. The situation is illustrated in Fig. 4.6. The
radius of the cylinder is a.The fluid particles move in concentric circular paths in
the velocity field:

dtγ

z dtω−

vdt vdt
v

1

2
vdth

y

x

1

2
h

fixed surface

moving surface

element   1

z dtω−
element   2

xv

Fig. 4.5 Simple shear flow
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vh ¼
a
R
; a ¼ xa2; vR ¼ vz ¼ 0 ð4:1:29Þ

In a Cartesian coordinate system Oxyz the velocity components are:

vx ¼ �vh sin h ¼ �vh
y

R
¼ � ay

x2 þ y2
; vy ¼ vh cos h ¼ vh

x

R
¼ ax

x2 þ y2
ð4:1:30Þ

The velocity gradients become:

ovx

ox
¼ 2ayx

x2 þ y2ð Þ2
;

ovx

oy
¼ � a

x2 þ y2
þ 2ay2

x2 þ y2ð Þ2

ovy

ox
¼ a

x2 þ y2
� 2ax2

x2 þ y2ð Þ2
;

ovy

oy
¼ � 2axy

x2 þ y2ð Þ2

ð4:1:31Þ

The non-trivial rate of rotationWxy, the angular velocity component xz, and the
rate of volumetric strain are zero:

Wxy ¼ �xz ¼
1
2

ovx

oy
� ovy

ox

� �
¼ 0; _eV ¼ div v ¼ ovx

ox
þ ovy

oy
þ ovz

oz
¼ 0 ð4:1:32Þ

For the rates of strain we obtain:

_ex ¼
ovx

ox
¼ 0; _ey ¼

ovy

oy
¼ 0 both at x ¼ 0 and at y ¼ 0

_cxy ¼
ovx

oy
þ ovy

ox
¼ 2a y2 � x2ð Þ

x2 þ y2ð Þ2
¼

2a
y2 at x ¼ 0

� 2a
x2 at y ¼ 0

( ð4:1:33Þ

x

y

vθ ( ),0yv x
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Fig. 4.6 Potential vortex due to a rotating solid cylinder in a Newtonian fluid
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In Sect. 4.1.2 the rate of strain components and rate of rotation components in
cylindrical coordinates ðR; h; zÞare listed. From the formulas (4.2.1) and (4.2.2) we
obtain for the velocity field (4.1.29):

_cRh ¼ R
d

dR

vh

R

� �
¼ � 2a

R2
; WRh ¼ �xz ¼ �

1
2R

d

dR
Rvhð Þ ¼ 0 ð4:1:34Þ

Figure 4.7 illustrates that a differential fluid element 1, subjected to the rate of
shear strain _cxy ¼ �2a=R2; will during a short time increment dt move symmetri-
cally with respect to the indicated diagonal planes. The diagonals shown in Fig. 4.7
thus represent two of the principal directions of rates of deformation. Compare the
deformation of this element with the result of the matrix D2 in Fig. 4.4. The dif-
ferential fluid element 2 in Fig. 4.7, which is oriented in the direction of the
principal directions of rates of deformation, retains its right angles and does not
rotate. To obtain the deformation figures of the two differential elements 1 and 2,
the motion in the neighborhood of particle P in position: x ¼ R ; y ¼ 0; is
decomposed into a rigid-body motion vh1 and a motion vh2 :

vh1 ¼
a
R
þ a

R2
DR; vh2 ¼ �

2a
R2

DR ð4:1:35Þ

DRis a local radial coordinate measured from the particle P. To obtain this
decomposition, the velocity vh in the neighborhood of P is expanded in a Taylor
series, such that:

vh ¼
a

Rþ DR
� a

R
1� DR

R

� �
¼ a

R
þ a

R2
DR� 2a

R2
DR ¼ vh1 þ vh2 ð4:1:36Þ

The flow (4.1.29) is a potential flow, see Problem 12. The velocity potential is
/ ¼ ah; which results in the velocity field:

v ¼ r/ ¼ eR
o

oR
þ eh

1
R

o

oh
þ ez

o

oz

� �
/ ) vR ¼ 0 ; vh ¼

a
R
; vz ¼ 0

ð4:1:37Þ

in accordance with the Eq. (4.1.29). Hence the name potential vortex for this flow.
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Fig. 4.7 Motion and deformation of a Newtonian fluid elements in a potential vortex
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4.1.3 Stress Power: Physical Interpretation

The stress power per unit volume is defined by formula (3.10.11):

x ¼ tk � v;k¼ rikvi;k ¼ �pvi;iþsikvi;k ð4:1:38Þ

A physical interpretation of the individual terms in the sum x ¼ rikvi;k will now
be presented.
First we rewrite the sum. Using the symmetry property of the stress matrix, we
obtain:

x ¼ rikvi;k ¼
1
2
rikvi;kþ

1
2

rkivk;i¼ rik
1
2

vi;kþvk;ið Þ ¼ rikDik )

x ¼ rikvi;k ¼ rikDik ð4:1:39Þ

The sum contains two kinds of terms represented by:

r11D11 and r12D12 þ r21D21

Figure 4.8 shows a fluid element of volume dV ¼ dx1 dx2 dx3 subjected to the
coordinate stresses rik and the coordinate strains D11 dt and 2D12 dt: The work
done on the element by the stresses due to the two strains is the sum of two terms:

DW11 ¼ r11 dx2dx3ð Þ D11 dtð Þdx1½ �; DW12 ¼ r12 dx1dx3ð Þ 2D12 dtð Þdx2½ �

The total work by all the stresses rik on the element when the element is subjected
to the deformation Dik dt becomes:

DW ¼ r11 D11 þ 2r12D12dx2dx3 þ � � �ð Þ dx1 dx2 dx3 dtð Þ ¼ rik Dik dV dt ð4:1:40Þ

The stress power represents the work done by the stresses per unit volume and per
unit time. For incompressible fluid, in which div v ¼ vi;i¼ 0; the stress power is
expressed by:

x ¼ sikDik ð4:1:41Þ

33σ
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31σ
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12σ
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122D
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2dx
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2dx

Fig. 4.8 Volume element dV with coordinate stresses rik and strains D11dt and 2D12dt
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4.2 Cylindrical and Spherical Coordinates

Two curvilinear coordinate systems are of particular importance in applications:
cylindrical coordinates ðR; h; zÞ and spherical coordinates ðr; h;/Þ. Both systems
represent orthogonal coordinates and at each place we may introduce a local
Cartesian system with base vectors that are tangents to the coordinate lines. This
makes it possible to form the rate of deformation matrices and the rate of rotation
matrices for the two curvilinear coordinate systems, although the expressions of
some of the elements of the matrices are not obtained directly from their Cartesian
equivalents. The matrices and their elements are now presented without further
explanations.

Cylindrical coordinates R; h; zð Þ, see the figure in Sect. 3.3.4.

D ¼
_eR

1
2 _cRh

1
2 _cRz

1
2 _chR _eh

1
2 _chz

1
2 _czR

1
2 _czh _ez

0
B@

1
CA; _eR ¼

ovR

oR
; _eh ¼

1
R

ovh

oh
þ vR

R
; _ez ¼

ovz

oz

_cRh ¼
1
R

ovR

oh
þ R

o

oR

vh

R

� �
; _chz ¼

ovh

oz
þ 1

R

ovz

oh
; _czR ¼

ovz

oR
þ ovR

oz
ð4:2:1Þ

W ¼ 1
2

0 �xz xh

xz 0 �xR

�xh xR 0

0
B@

1
CA; WRh ¼ �xz ¼

1
2R

ovR

oh
� o

oR
Rvhð Þ

� 	

Whz ¼ �xR ¼
1
2

ovh

ox
� 1

R

ovz

oh

� 	
; WRh ¼ �xh ¼

1
2

ovz

oR
� ovR

oz

� 	

ð4:2:2Þ

Spherical coordinates ðr; h;/Þ, see the figure in Sect. 3.3.5.

D ¼

_er
1
2 _crh

1
2 _cr/

1
2 _chr _eh

1
2 _ch/

1
2 _c/r

1
2 _c/h _e/

0
BBBB@

1
CCCCA: ð4:2:3Þ

_er ¼
ovr

or
; _eh ¼

1
r

ovh

oh
þ vr

r
; _e/ ¼

1
r sin h

ov/

o/
þ vr

r
þ vh cot h

r

_crh ¼
1
r

ovr

oh
þ r

o

or

vh

r

� �
; _ch/ ¼

1
r sin h

ovh

o/
þ sin h

r

o

oh
v/

sin h

� �

_c/r ¼ r
o

or

v/

r

� �
þ 1

r sin h
ovr

o/

ð4:2:4Þ

74 4 Deformation Kinematics

http://dx.doi.org/10.1007/978-3-319-01053-3_3
http://dx.doi.org/10.1007/978-3-319-01053-3_3
http://dx.doi.org/10.1007/978-3-319-01053-3_3
http://dx.doi.org/10.1007/978-3-319-01053-3_3


W ¼
0 �x/ xh

x/ 0 �xr

�xh xr 0

0
B@

1
CA; Wrh ¼ �x/ ¼

1
2r

ovr

oh
� o

or
r vhð Þ

� 	

Wh/ ¼ �xr ¼
1

2r sin h
ovh

o/
� o

oh
sin hv/
� �� 	

W/r ¼ �xh ¼
1
2

o

or
r v/

� �
� 1

sin h
ovr

o/

� 	
ð4:2:5Þ

4.3 Constitutive Equations for Newtonian Fluids

A Newtonian fluid is defined by the constitutive equation (3.4.1). These may now
be rewritten to:

sik ¼ 2lDik þ j� 2l
3

� �
Djj dik , T 0 ¼ 2lDþ j� 2l

3

� �
trD 1 ð4:3:1Þ

trD � trace of the matrix D � Djj � the sum of the diagonal elements in the
matrix. The symbol 1 is the unit matrix with the Kronecker delta dik as elements,
see formula (3.3.19). The matrix form of the constitutive equations may be used in
all orthogonal coordinate systems, when the proper rate of deformation matrix is
used. In cylindrical coordinates and spherical coordinates we use the matrices in
Eqs. (4.2.1) and (4.2.3). The trace of the matrix D becomes:

trD ¼ Djj ¼
ovx

ox
þ ovy

oy
þ ovz

oz
in Cartesian coordinates

trD ¼ DRR þ Dhh þ Dzz ¼
1
R

o

oR
RvRð Þ þ 1

R

ovh

oh
þ ovz

oz
in cylindrical coordinates

ð4:3:2Þ

For incompressible Newtonian fluids the equation (4.3.1) are reduced to:

sik ¼ 2lDik , T 0 ¼ 2lD ð4:3:3Þ

In Cartesian coordinates and in cylindrical coordinates these equations are:

sxx ¼ 2lDxx ¼ 2l _ex ¼ 2l
ovx

ox
; sxy ¼ 2Dxy ¼ l _cxy ¼ l

ovx

oy
þ ovy

ox

� �
etc:

ð4:3:4Þ
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sRR ¼ 2lDRR ¼ 2l _eR ¼ 2l
ovR

oR
; shh ¼ 2lDhh ¼ 2l _eh ¼ 2l

1
R

ovh

oh
þ vR

R

� �

szz ¼ 2lDzz ¼ 2l _ez ¼ 2l
ovz

oz
; sRh ¼ l _cRh ¼ l

1
R

ovR

oh
þ R

o

oR

vh

R

� �� �

shz ¼ l _chz ¼ l
ovh

oz
þ 1

R

ovz

oh

� �
; szR ¼ l _czR ¼ l

ovz

oR
þ ovR

oz

� �

ð4:3:5Þ

The stress power per unit volume for an incompressible Newtonian fluid is
previously presented in Eq. (3.10.17), which by the formulas (4.1.39) and (4.3.3)
now may be rewritten to:

d ¼ 2lDikDik , d ¼ 2l tr D2
� �

in orthogonal coordinate systemsf g
ð4:3:6Þ

4.4 Shear Flows

4.4.1 Simple Shear Flow

Steady flow between to parallel plates and without modified pressure gradient, ass
in Fig. 4.9, is called steady simple shear flow. As this type of flow has some
characteristic features common to many more complex flows important in appli-
cations, we shall take a closer look at the characteristic aspects of steady simple
shear flow. The velocity field and the rate of deformation matrix are:

v1 ¼ _cx2; v2 ¼ v3 ¼ 0; D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A 1

2
_c; _c ¼ v=h ð4:4:1Þ

The flow has the following characteristic features:

v dt

Shearing surfaces

v

h

2x

1x

2dx

1 2v xγ=

dtγ
fluid element

at the time t dt+

Fig. 4.9 Steady simple shear flow
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(a) The flow is isochoric, i.e. volume preserving: r � v ¼ trD ¼ 0:
(b) Material planes parallel to the x1x3-plane move in the x1-direction without in-

plane strains. We say that these planes represent a one-parameter family of
isometric planes. The coordinate x2 is the parameter defining each plane in the
family. The word isometric is used to indicate that the distances between
particles in the planes do not change during the flow. The planes are called
shearing surfaces.

(c) The rate of deformation matrix D is given by Eq. (4.4.1). The characteristic
parameter _c is called the shear rate.

(d) The shear rate _c in Eq. (4.4.1) is constant.

The traces of two shearing surfaces a distance dx2 apart are shown in Fig. 4.9.
The particles in the upper surface have the velocity vrel ¼ v1;2 � dx2 relative to the
lower surface. The streamlines related to the velocity field vrel ¼ v1;2 � dx2 where
dx2 is small, are called lines of shear. The lines of shear are straight lines parallel
to the x1-axis. Because the fluid particles are fixed to the same line of shear at all
times, the lines of shear are material lines.

4.4.2 General Shear Flow

The general shear flow has features parallel to those of the simple steady shear
flow. A flow is a shear flow if the following conditions are fulfilled, Fig. 4.10:

(a) The flow is isochoric, i.e. volume preserving: r � v ¼ trD ¼ 0:
(b) A one-parameter family of material surfaces exists, in which the surfaces

move isometrically, i.e. without in-surface strains. These surfaces are called
shearing surfaces.

The streamlines related to the velocity field vrel ¼ v1;2 � dx2 of one shearing
surface relative to a neighbor shearing surface are called lines of shear. The
particles on one shear line at the time t will not in general stay on the same line of
shear at a later time. In other words, the lines of shear are not necessarily material
lines. The condition (a) implies that the distance between any two neighboring
shearing surfaces is constant.

Shearing surfaces

Line of shear

2dx

relv

Fig. 4.10 Shear surfaces and line of shear
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4.4.3 Unidirectional Shear Flow

A shear flow that in addition to the conditions (a) and (b) for a general shear flow,
also satisfies the condition:

(c) The lines of shear are material lines,

is called a unidirectional shear flow. The material lines coinciding with the shear
lines at a particular time will continue to be lines of shear as time passes. We may
imagine that the lines of shear are ‘‘drawn’’ on the shearing surfaces, and these
material lines would then represent the shear lines at later times. Unidirectional
shear flow is the most common shear flow in applications and in particular in
experiments designed to investigate the properties of non-Newtonian fluids.

The analysis of the deformation kinematics of shear flows in the neighborhood
of a particle P is simplified by introducing a local Cartesian coordinate system Px
at the particle, as shown in Fig. 4.11. The coordinate axes are chosen such that the
base vector e1 and e3 are tangents to the shearing surface, with e1 in the direction
of the relative velocity vrel of the shearing surface relative to the neighbor shearing
surface. The base vector e1 is thus tangent to the line of shear through the particle.
The base vector e2 is normal to the shearing surface. The three vectors ei are called
the shear axes, and the vector e1 is the shear direction.

A fluid element dV = dx1dx2dx3 is during a short time interval dt deformed as
indicated in Fig. 4.12. The deformation is govern by one deformation rate: the
shear rate _c ¼ v1;2 : The rate of deformation matrix D in the Px-system is therefore
equal to the deformation rate matrix of a simple shear flow:

D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A 1

2
_c ð4:4:2Þ

Shearing surface

Line of shear

2x

1x

2e

3e

1e

3x

P

Fig. 4.11 Shear axes
through particle P
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4.4.4 Viscometric Flow

A unidirectional flow that also satisfies the condition:

(d) For every particle the rate of shear _c is independent of time,

is called a viscometric flow. Another name of this kind of flow is rheological
steady flow. The flow is not necessarily a steady flow as defined in fluid mechanics.
The expression rheological steady means that the deformation rate of the fluid is
not changing with time. Viscometric flows play an important role in investigating
the properties of non-Newtonian fluids. We shall now present a series of important
viscometric flows and identify shearing surfaces, lines of shear, and shear axes for
each flow. Some of these flows will be further investigated later in relation to
experimental situations.

4.4.4.1 Steady Axial Annular Flow: Steady Pipe Flow

The fluid flows in the annular space between two solid, concentric cylindrical
surfaces, or as shown in Fig. 4.13, the fluid flows in a cylindrical pipe. The flow is

Line of shear

2e

1e

t
3e t dt+

dtγ
P

P

Fig. 4.12 Deformation of a
fluid element

Shearing surface

Line of shear

y

x

z
R

θ

1e

2e

3e

Pipe wall

Fig. 4.13 Axial annular flow. Steady pipe flow
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steady and the velocity is parallel to the axis of the cylindrical surfaces. The
velocity field and the shear rate are:

vz ¼ vzðRÞ; vR ¼ vh ¼ 0; _c ¼ _czR ¼
dvz

dR
ð4:4:3Þ

The shearing surfaces are concentric cylindrical surfaces. The lines of shear are
straight lines parallel to the axis of the cylindrical surfaces, and they coincide with
the streamlines of the flow and with the pathlines of the fluid particles. The shear
axes are:

e1 ¼ ez; e2 ¼ eR; e3 ¼ eh ð4:4:4Þ

The shear direction is parallel to the z-direction.

4.4.4.2 Steady Tangential Annular Flow

The fluid flows in the annular space between two concentric solid cylindrical
surfaces. One of the solid surfaces rotates with a constant angular velocity x.
Figure 4.14 shows the case where the inner cylindrical surface rotates. The
velocity field is:

vh ¼ vhðRÞ; vz ¼ vR ¼ 0 ð4:4:5Þ

The shearing surfaces are concentric cylindrical surfaces. The lines of shear are
circles with constant R and z, and they coincide with streamlines of the flow and
the pathlines of the particles. The shear axes are:

e1 ¼ eh; e2 ¼ eR; e3 ¼ � ez ð4:4:6Þ
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Fig. 4.14 Tangential annular
flow
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Figure 4.15 illustrates the derivation of the shear rate for this type of flow. We
consider a fluid element between two shear surfaces and at times t and t þ dt: From
the figure we read:

_cdt ¼ 1
dR

dvh

dR
� dR � dt

� �
� vh � dt

R
)

_c ¼ _cRh ¼
dvh

dR
� vh

R
� R

d

dR

vh

R

� �
ð4:4:7Þ

This result may also be obtained directly from the formulas (4.2.1).
It is found that for a Newtonian fluid the velocity field shown in Eq. (4.4.5) is

unstable when the angular velocity x is increased above a certain limit. The
instability introduces a secondary flow with velocities both in the z- and
R- directions, and is described as Taylor vortexes. Instability and Taylor vortexes
occur when the parameter:

Ta �
q
l

xr1 r2 � r1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r1
� 1

r
[ 41:3 ð4:4:8Þ

q ¼density, l ¼viscosity, r1 and r2 are the radii of the inner and outer solid
boundary surfaces. At Ta [ 400 the flow becomes turbulent. Similar instabilities
can occur for non-Newtonian fluids.

4.4.4.3 Steady Torsion Flow

The fluid is set in motion between two plane parallel circular disks. One disk is at
rest while the other disk rotates about its axis at a constant angular velocity x.

x
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v dtθ

R dR

θ

dtγ

1e

2e

Shearing surface

t

t dt+

Fig. 4.15 Derivation of the formula (4.4.7) for the rate of shear
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Figure 4.16a, b illustrates the situation. The dashed curved line indicates a ‘‘free
surface’’. In the case of a thick fluid this may really be a free surface, while in the
case of a thin fluid, the disks are submerged in a fluid bath. The rotating disk is
touching the free surface of the bath and the dashed line marks an artificial free
surface. Only the fluid between the disks is considered in the analysis.

The velocity field is assumed to be:

vh ¼ vhðR; zÞ ¼
xRz

h
; vR ¼ vz ¼ 0 ð4:4:9Þ

The expression for the shear rate is found from Fig. 4.16c, which shows an
unfolded part of the cylinder surface R � dz between two shearing surfaces a dis-
tance dz apart:

_c ¼ _chz ¼
ovh

oz
¼ xR

h
ð4:4:10Þ

The result may also be obtained from the formulas (4.2.1). Based on the
assumption that the fluid sticks to the solid disks, the velocity vhðR; zÞ satisfies the
boundary conditions:

vhðR; hÞ ¼ xR; vhðR; 0Þ ¼ 0 ð4:4:11Þ

The shearing surfaces are planes normal to the axis of rotation. The lines of
shear are concentric circles, see Fig. 4.16b, and coincide with the streamlines
of the flow and the pathlines of the particles. Figure 4.16c shows an unfolded part
of the cylinder surface R � dz between two shear surfaces a distance dz apart. From
the deformation of the fluid element shown in Fig. 4.16c, we conclude that the
shear axes are:

e1 ¼ eh; e2 ¼ ez; e3 ¼ eR ð4:4:12Þ
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∂
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Fig. 4.16 Torsion flow between two parallel circular disks
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4.4.4.4 Steady Helix Flow

The flow of the fluid in the annular space between to solid cylindrical surfaces is
driven by the rotation and the axial translation of the inner cylindrical surface, see
Fig. 4.17. The angular velocity x and the axial velocity v are constants.

The velocity field is assumed as:

vh ¼ vhðRÞ; vz ¼ vzðRÞ; vR ¼ 0 ð4:4:13Þ

This kind of flow may also be obtained by a combination of a rotation of the inner
cylinder and a constant modified pressure gradient dP=dz: The shearing surfaces
are concentric cylindrical surfaces, which rotate and move in the axial direction.
A fluid particle moves in a helix. Thus path lines and stream lines are helices. A
fluid particle on a shearing surface moves relative to a neighbor shearing surface
also in a helix. Hence the lines of shear are helices, but they do not coincide with
the streamlines or the path lines. This is shown in Fig. 4.17. The rate of defor-
mation matrix in cylindrical coordinates, the equation (4.2.1), contains only two
independent elements for the assumed flow:

_cRh ¼ R
d

dR

vh

R

� �
; _czR ¼

dvz

dR
ð4:4:14Þ

The first of these formulas is identical to formula (4.4.7). The shear axis normal
to the shearing surface is e2 ¼ eR: To find the two shear axes e1 and e3 tangent to
the shearing surface, we consider the relative motion of two fluid particles
PðR; h; zÞ and QðRþ dR; h; zÞ in Fig. 4.18. The particles are on neighboring
shearing surfaces. From the figure it follows that during the time increment dt
particle P moves from position P to the position P0, while the particle Q moves
from its position Q the position Q0: Relative to the shearing surface through the
particle P, the particle Q has a combination of two motions represented by the
displacement vectors (Fig. 4.18a, b):

_cRhdt � dRð Þeh parallel to the xy� plane,

_czRdt � dR
� �

ez parallel to the Rz� plane,
ð4:4:15Þ
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Fig. 4.17 Helix flow
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The total displacement of Q relative to the shearing surface through P is given by
the vector, see Fig. 4.18c:

_cdt � dRð Þe1 ¼ _cRhdt � dRð Þeh þ _czRdt � dR
� �

ez ð4:4:16Þ

_c is the shear rate and e1 is the shear direction for this flow. From Eq. (4.4.16) we
obtain the results:

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_cRhð Þ2þ _czR

� �2
q

; e1 ¼
_cRh

_c
eh þ

_czR

_c
ez ð4:4:17Þ
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Fig. 4.18 Helix flow. Construction of shear rate and shear direction
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The third axis of shear is then found to be:

e3 ¼
_czR

_c
eh �

_cRh

_c
ez ð4:4:18Þ

That this result is true, follows from the fact that e3 satisfies that conditions:

e3 � e3 ¼ 1; e3 � e1 ¼ e3 � e2 ¼ 0

e1; e2; and e3 form a right - handed system , e1e2e3½ � � e1 � e2ð Þ � e3 ¼ þ1

4.5 Extensional Flows

4.5.1 Definition of Extensional Flows

As mentioned in Sect. 4.1, in any flow there exist through each particle three
orthogonal material line elements that do not show rates of shear strain: The lines
remain orthogonal after a short time increment dt. Confer the elements 2 in the
Figs. 4.5 and 4.7. The three material line elements represent the principal direc-
tions of rates of deformation at the time t. In a local Cartesian coordinate system
Px at the particle P, with base vectors ei coinciding with the principal directions of
rates of deformation at the time t, the rate of deformation matrix takes the form:

D ¼
_e1 0 0
0 _e2 0
0 0 _e3

0
@

1
A ð4:5:1Þ

For an incompressible fluid the strain rates must satisfy the incompressibility
condition:

_e1 þ _e2 þ _e3 ¼ 0 ð4:5:2Þ

A flow is called an extensional flow if the same material line elements through
each particle represent the principal directions of strain rates at all times. The
literature also uses elongational flows or shear free flows for this type of flow.

A simple extensional flow is given by the velocity field:

vx ¼ _e1ðtÞ x; vy ¼ _e2ðtÞ y; vz ¼ _e3ðtÞ z ð4:5:3Þ

The deformation of a volume element in this flow is illustrated in Fig. 4.19.
Material lines parallel to the coordinate axes represent the principal directions PD
of the rates of deformation at all times. The principal directions are fixed in space
for this flow.

Figure 4.20 shows that in a simple shear flow the material line elements ML
representing the principal directions PD of the rates of deformation at a time t do
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not represent the principal directions at a later time t ? dt. The principal directions
are fixed in space but the material lines coinciding with the principal directions at
one time, are not fixed in space. As we shall see in Chap. 5 on material functions
this difference between shear flows and extensional flows is very important in
modeling of non-Newtonian fluids.Extensional flows are important in experi-
mental investigations of the properties of non-Newtonian fluids. These flows are
also relevant in connection with forming processes for plastics, as for example in
vacuum forming, blow molding, foaming operations, and spinning. In metal
forming, extensional flows are important in milling and extrusion.

Figure 4.21 illustrates an extrusion apparatus. The fluid in the container is
extruded through a die. A piston provides the pressure in the fluid. Along the
container wall at some distance from the piston the flow is approximately shear
flow. Near the symmetry axis of the container the flow is extensional, as indicated

dx

dy ( )1 ydy dtε⋅ +

( )1 xdx dtε⋅ +
PD

PD

t t dt+

Fig. 4.19 Extensional flow PD = principal directions of strain rates = material lines

dx

dy
PD

ML=

PD ML≠

ML
t t dt+

Fig. 4.20 Principal directions PD and material line elements ML in simple shear flow

shear flow

extensional flow

extrudatepiston

die

container

Fig. 4.21 Extrusion
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by two material elements that each is represented in two configurations of the same
material element at two different times. In the die, which in the present case is a
short circular tube, most of the fluid is in a shear flow.

4.5.2 Uniaxial Extensional Flow

This type of extensional flow is characterized by the rate of deformation matrix:

D ¼
2 0 0
0 �1 0
0 0 �1

0
@

1
A _eðtÞ

2
ð4:5:4Þ

A simple uniaxial flow is given by the velocity field:

vx ¼ _e x; vy ¼ �
_e
2

y

vz ¼ �
_e
2

z; e ¼ eðtÞ
ð4:5:5Þ

Figure 4.22 which shows the same fluid element at the times t and t þ dt, illus-
trates this flow. Uniaxial extensional flow is relevant when the fluid is stretched
axisymmetrically in one direction.

4.5.3 Biaxial Extensional Flow

When a fluid is stretched or compressed equally in two directions the flow may be
characterized as biaxial extensional flow. The strain rate matrix for this type of
flow is:

D ¼
1 0 0
0 1 0
0 0 �2

0
@

1
A_eðtÞ ð4:5:6Þ

t dt+

t
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z

Fig. 4.22 Uniaxial
extensional flow
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Figure 4.23 illustrates the deformation of a fluid element in biaxial flow. If the two
types of flow in Figs. 4.22 and 4.23 are compared, and keeping in mind that the
fluid is incompressible, it should be understood that the constitutive modeling will
be identical. This fact will be addressed more closely in Sect. 5.6.

4.5.4 Planar Extensional Flow� Pure Shear Flow

This type of flow is characterized by the rate of deformation matrix:

D ¼
1 0 0
0 �1 0
0 0 0

0
@

1
A_eðtÞ ð4:5:7Þ

The flow is given the paradoxical name pure shear flow because we may find three
orthogonal directions e1; e2; and ez; see Fig. 4.24, with respect to which the rate
of deformation matrix is:

D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A_eðtÞ ð4:5:8Þ

This is the same rate of deformation matrix as for simple shear flow, see the
Eq. (4.4.1).

t dt+

t
z

y

x

Fig. 4.23 Biaxial
extensional flow
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Fig. 4.24 Planar extensional
flow. Pure shear flow
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The major difference between a simple shear flow and pure shear flow is that
the principal directions of rates of deformation in the case of pure shear flow are
represented by the same material line elements at all times while this is not so in
the case of a general shear flow. Compare the Figs. 4.20 and 4.24.

Extensional flows are important in experimental investigations of the properties
of non-Newtonian fluids. These flows are also relevant in connection with forming
processes for plastics, as for example in vacuum forming, blow molding, foaming
operations, and spinning. In metal forming extensional flows are important in
milling and extrusion.
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Chapter 5
Material Functions

5.1 Definition of Material Functions

Relations between stress components and deformation components, like strains
and strain rates, in characteristic and simple flows are expressed by material
functions. The viscosity function gð _cÞ; defined by Eq. (1.4.7), the creep function in
shear aðso; tÞ; defined by Eq. (1.4.21) and the relaxation function in shearbðco; tÞ;
defined by Eq. (1.4.23), are examples of material functions for simple shear
flows. The characteristic flows for which the material functions are defined occur
in standard experiments designed to investigate the properties of non-Newtonian
fluids. In general the material functions may be functions of stresses, rates of
stress, rates of deformation, temperature, time, and other parameters.

The material functions are determined experimentally and are represented by
data or mathematical functions representing these data. The material functions are
also applied in classification of fluids, as discussed in Chap. 1.

In analyses of general flows fluid models are introduced. These models are
defined by constitutive equations. A constitutive equation is a relationship between
stresses and different measures of deformations, as strains, rates of deformation,
and rates of rotation. A general constitutive equation is intended to represent a
fluid in any flow, although it is experienced that most constitutive equations have
limited applications and only to a few cases of flows. The material functions may
enter the constitutive equations or are used to determine material parameters
entering the constitutive equations.

It might be a goal when constructing a fluid model that the constitutive equa-
tions contain the material functions that are relevant for the special test flows that
most resemble the actual flow the fluid model is intended for.

F. Irgens, Rheology and Non-Newtonian Fluids,
DOI: 10.1007/978-3-319-01053-3_5, � Springer International Publishing Switzerland 2014
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5.2 Material Functions for Viscometric Flows

We shall consider an isotropic and incompressible fluid in a general viscometric
flow, as described in Sect. 4.4.4. Figure 5.1a shows a particle P and the shearing
surface and the line of shear going through the particle at time t. A local Cartesian
coordinate system Px is introduced such that the base vectors ei are the shear axes,
see Fig. 5.1b. The rate of deformation matrix becomes:

D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A 1

2
_c ð5:2:1Þ

The rate of deformation matrix D in Eq. (5.2.1) satisfies the condition of incom-
pressibility. It is assumed that the extra stresses sik are due to the shear flow and
thus only a function of the shear rate _c and the temperature. The temperature
dependence will not be reflected implicitly in the following. Thus we set:

sik ¼ sikð _cÞ ð5:2:2Þ

The condition of isotropy implies that the state of stress must have the same sym-
metry as the state of rate of deformation. The x1x2 � plane is a symmetry plane. With
reference to Fig. 5.1c, this means that the shear stresses s13 ¼ s31 and s23 ¼ s32

must be zero because these stresses act antisymmetrically with respect to the
x1x2 � plane.

The state of stress in the fluid is therefore given by the stress matrix:

T ¼ �pdik þ sikð Þ ¼
s11 � p s12 0

s12 s22 � p 0
0 0 s33 � p

0
@

1
A ð5:2:3Þ

For an incompressible fluid the pressure level cannot influence the flow. Only
pressure gradients are of importance. A thermodynamic equation of state for the
pressure p is ignored when flows of incompressible fluids are discussed. Incom-
pressibility implies therefore that the pressure p cannot be given by a constitutive
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Fig. 5.1 Rate of deformation and stresses in the viscometric flow. a Shearing surface and line of
shear, b Rate of deformation, c Stresses
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equation but has to be determined from the equations of motion and the boundary
conditions for the flow.

In measuring directly or indirectly the normal stresses, it is not possible to
distinguish between the pressure p and the contribution from the extra stresses due
to the deformation of the fluid. The implication of this is that only normal stress
differences may be expressed by constitutive equations. In a viscometric flow we
seek constitutive equations for the following stress and stress differences:

Shear stress : s12

Primary normal stress difference : N1 ¼ r11 � r22 � s11 � s22

Secondary normal stress difference : N2 ¼ r22 � r33 � s22 � s33

ð5:2:4Þ

The third normal stress difference, r11 � r33, is determined by the two others:

r11 � r33 ¼ r11 � r22ð Þ þ r22 � r33ð Þ ¼ N1 þ N2 ð5:2:5Þ

Three material functions, called viscometric functions, are introduced in a
viscometric flow:

gð _cÞ ¼ the viscosity function

w1ð _cÞ ¼ the primary normal stress coefficient

w2ð _cÞ ¼ the secondary normal stress coefficient

ð5:2:6Þ

The viscosity function is also called the apparent viscosity. The viscometric
functions are defined by the relations:

s12 _cð Þ ¼ g _cð Þ _c , g _cð Þ ¼ s12 _cð Þ= _c

N1 _cð Þ ¼ w1 _cð Þ _c2 , w1 _cð Þ ¼ N1 _cð Þ= _c2

N2 _cð Þ ¼ w2 _cð Þ _c2 , w2 _cð Þ ¼ N2 _cð Þ= _c2

ð5:2:7Þ

The viscometric functions are all even functions:

g � _cð Þ ¼ g _cð Þ; w1 � _cð Þ ¼ w1 _cð Þ; w2 � _cð Þ ¼ w2 _cð Þ ð5:2:8Þ

This property is a consequence of the assumption that the fluid is isotropic. This
may be seen from the following reasoning, with reference to Fig. 5.2. Figure 5.2a
shows the stresses resulting from a positive shear rate _c, and Fig. 5.2b shows the
stresses due to a negative shear rate � _c: Isotropy implies that the stresses are the
same as in Fig. 5.2b if the fluid, before it is subjected to shear rate � _c, has been
rotated 180o about the e2-direction. In the latter case Fig. 5.2.b may be interpreted
as a mirror image of Fig. 5.2a. Thus the normal stresses in the two figures must be
the same, while the shear stress must be equal in magnitude but opposite in
direction. Therefore:

s11 � _cð Þ ¼ s11 _cð Þ; s22 � _cð Þ ¼ s22 _cð Þ; s33 � _cð Þ ¼ s33 _cð Þ
s12 � _cð Þ ¼ �s12 _cð Þ

ð5:2:9Þ
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The results (5.2.8) now follow from the Eqs. (5.2.4) (5.2.7), and (5.2.9).
The viscosity function gð _cÞ for a typical shear-thinning fluid is shown in

Fig. 5.3. For low shear rates the viscosity gð _cÞ is nearly constant and equal to
go ¼ g 0ð Þ, the zero-shear-rate-viscosity. For high shear rates the viscosity gð _cÞ
may approach asymptotically an infinite-shear-rate viscosity g1: For some fluids,
for example highly concentrated polymer solutions and polymer melts, it may be
impossible to measure g1: For these fluids the reason is that the polymer chains
are destroyed at very high shear rates.

The primary normal stress w1 _cð Þis positive, and is almost constant equal to
w1;0 ¼ w1 0ð Þ for low shear rates, and then decreases more rapidly with increasing
shear rate than the viscosity function g _cð Þ: A lower bound for w1 _cð Þ when _c!
1 is not registered. Figure 5.3 shows a characteristic behavior of the primary
normal stress coefficient. Figure 5.9 presents some experimental curves for w1 _cð Þ.

The secondary normal stress coefficient w2 _cð Þ is usually negative and is found
for polymeric fluids to have an absolute value of approximately 10 % of the
primary normal stress coefficient w1 _cð Þ for the same fluid. Figure 5.3 shows a
characteristic behavior of the secondary normal stress coefficient w2 _cð Þ. Figure 5.9
presents some experimental curves for w2 _cð Þ.
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Fig. 5.2 Fluid element with shear rate and stresses. a positive shear rate, b negative shear rate
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Fig. 5.3 Characteristic behavior of viscometric functions: viscosity function g _cð Þ, primary
normal stress coefficient w1 _cð Þ, and secondary normal stress coefficient w2 _cð Þ
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5.3 Cone-and-Plate Viscometer

The most commonly used viscometer for measuring all three viscometric functions
for a fluid is of the cone-and-plate type. Figure 5.4 illustrates this viscometer
which consists of a stationary circular horizontal plate and a rotating cone. The
angle ao between the conic surface and the plate is very small, usually less than 4o.
The fluid to be investigated is placed in the space between the cone and the plate.
The fluid surface at the edge of the instrument, which is marked by a dashed line in
Fig. 5.4, may be a free surface if the fluid is sufficiently thick. If the consistency of
the fluid is such that it has a tendency to flow out of the viscometer if the dashed
marked surface was free, the viscometer is placed in a fluid bath. The influence of
the fluid outside of the dashed marked surface is then neglected.

The cone is subjected to the torque M and the force F and is set to rotate about
its vertical axis at constant angular velocity x. The torque M ¼ MðxÞ is balanced
by the shear stresses from the fluid, while the force F ¼ FðxÞ is transferred to the
plate by the normal stresses from the fluid. The plate has narrow channels for
pressure measurements by pressure transducers.

Kinematics of the Viscometer. We shall use spherical coordinates ðr; h;/Þ;
Fig. 5.5, in the analysis of the viscometer. The only velocity component in the
fluid is then v/. Because the angle ao is very small, we may assume that v/ varies
linearly along a circular arc aor, from zero at the plate to xr cos ao � xr at the
cone. Using the angle a ¼ p=2� h as a variable, see Fig. 5.4, we may set:

v/ðr; aÞ ¼
xr

ao
a; vh ¼ vr ¼ 0 ð5:3:1Þ

The flow is viscometric. The shearing surfaces are cones defined by the parameter
a. Figure 5.6 shows a small fluid element on a spherical surface of radius r and
between two neighboring shearing surfaces. The lines of shear are circles with
radius r cos a. The shear axes are:

e1 ¼ e/; e2 ¼ �eh; e3 ¼ er ð5:3:2Þ
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Fig. 5.4 The cone-and-plate
viscometer
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The fluid element is subjected to the normal stresses rrr; rhh; r//; and the shear
stress s ¼ sh/; of which the last three stresses are shown in Fig. 5.6. The shear rate
_c will be found from Fig. 5.6. Approximately the shear rate becomes:

_c ¼ ov/

oa
da dt

� �
1

r da
1
dt
¼ x

ao
¼ constant ð5:3:3Þ

The exact expression for the shear rate _c ¼ � _ch/ may be found from
equation (4.2.4):
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Fig. 5.5 Spherical coordinates
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Fig. 5.6 Fluid element with stresses and shear rate
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_ch/ ¼
1

r sin h
ovh

o/
þ sin h

r

o

oh
v/

sin h

� �
¼ sin h

r

1
sin h

xr

ao
ð�1Þ þ sin h

r

xr

ao
a
� cos h

sin2 h

� � x
ao

for ao\\1

The result (5.3.3) shows that in this viscometric flow the shear rate is the same
everywhere in the fluid. Because the shear rate is constant throughout the flow, the
extra stresses related to the shear axes, i.e. to the spherical coordinate system, are
also constant in the fluid, since they by the assumption in Eq. (5.2.2), are functions
of the shear rate.

Viscosity Function gð _cÞ. The shear stress is expressed by the viscosity function:

s ¼ sh/ ¼ gð _cÞ _c ¼ constant through the fluid ð5:3:4Þ

The torque M is equal to the resultant of the shear stress s on the plate. Per unit
area the contribution to the torque is ðs � rÞ. The ring element of the plate, shown in
Fig. 5.7, has the radius r and the area dA ¼ 2pr � dr. The torque from this element
is then ðs � rÞ � ð2pr � drÞ. Hence:

ZR

0

ðs � rÞ � ð2pr � drÞ ¼ M )

s ¼ 3M

2pR3
ð5:3:5Þ

From the Eqs. (5.3.3–5.3.5) we obtain the following formula for the viscosity
function:

gð _cÞ ¼ 3M

2pR3

1
_c
; _c ¼ x

ao
ð5:3:6Þ

Ring element 2dA drrπ=

R

r

dr

τ

τ

τ

τ

Fig. 5.7 Shear stress from
the fluid on a ring element on
the plate

5.3 Cone-and-Plate Viscometer 97



Normal stress coefficients _w1ð _cÞ and _w2ð _cÞ: We need the equation of motion in the
r-direction. We assume that the velocities are very small and may therefore neglect
centripetal accelerations. Furthermore, because a\\1; a pressure field due to the
gravitational force g is neglected. As stated above the extra stresses are all con-
stant. Thus we obtain from the equation of motion (3.3.32) the following reduced
equation:

0 ¼ � op

or
þ 1

r
2srr � shh � s//

� �
ð5:3:7Þ

Because the extra stress srr is constant and rrr ¼ � p� srrð Þ; we may write:

op

or
¼ o

or
p� srrð Þ ¼ � orrr

or
ð5:3:8Þ

By definition of the normal stress coefficients in the Eqs. (5.2.4) and (5.2.7) we
have:

r// � rhh ¼ s// � shh ¼ w1ð _cÞ _c2 ð5:3:9Þ

rhh � rrr ¼ shh � srr ¼ w2ð _cÞ _c2 ð5:3:10Þ

from which we obtain:

2srr � shh � s// ¼ � w1 þ 2w2ð Þ _c2 ð5:3:11Þ

The equation of motion (5.3.7) may now be rewritten to:

orrr

or
¼ 1

r
w1 þ 2w2ð Þ _c2 ð5:3:12Þ

The stress boundary condition at r = R is:

rrrðRÞ ¼ �pa ð5:3:13Þ

pa is the atmospheric pressure. Equation (5.3.12) is now integrated in the
r-direction along the plate, a ¼ 0; and the boundary condition (5.3.13) is used. We
then obtain:

ZR

r

orrr

or
dr ¼ rrrðRÞ � rrrðrÞ ¼ w1 þ 2w2ð Þ _c2 ln R� ln r½ � )

rrrðrÞ ¼ w1 þ 2w2ð Þ _c2 ln
r

R
� pa at a ¼ 0 ð5:3:14Þ

The pressure on the plate is rhh rð Þj j ¼ �rhh rð Þ on the fluid side and pa on the
atmospheric side. The force F on the plate must balance the resultant of these
pressures. The contribution to the force from the pressures on the ring element of
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area dA ¼ 2pr � dr; see Fig. 5.7, is: dF ¼ �rhh rð Þ � pa½ �dA: The Eqs. (5.3.10) and
(5.3.14) give:

�rhhðrÞ � pa ¼ �w2 _c2 � rrrðrÞ � pa at a ¼ 0 )

�rhhðrÞ � pa ¼ �w2 _c2 � w1 þ 2w2ð Þ _c2 ln
r

R
at a ¼ 0 ð5:3:15Þ

Hence:

F ¼
ZR

0

�rhh rð Þ � pa½ �2pr dr

¼ �2p
ZR

0

w2 _c2 þ w1 þ 2w2ð Þ _c2 ln
r

R

h i
r dr ¼ �w2 _c2pR2 þ w1 þ 2w2ð Þ _c2 pR2

2
)

F ¼ w1 _c2 pR2

2
ð5:3:16Þ

The following formulas have been utilized in the derivation:
Z

2r ln
r

R
dr ¼ r2ln

r

R
� r2

2
; 0 � ln0 ¼ 0

From the result (5.3.16) we get the expression for the primary normal stress
coefficient.

w1 _cð Þ ¼ 2F

pR2

1
_c2
; _c ¼ x

xo
ð5:3:17Þ

Next we shall develop a method to determine the secondary normal stress

coefficient _w2ð _cÞ. Since the secondary normal stress difference by Eq. (5.3.10) is
independent of r, we may use the result (5.3.12) to obtain the result:

drhh

dr
¼ 1

r
w1 þ 2w2ð Þ _c2 at a ¼ 0

which by application of the chain rule:

drhh

dr
¼ drhh

dðln rÞ
dðln rÞ

dr
¼ drhh

dðln rÞ
1
r

may be rewritten to:

drhh

dðln rÞ ¼ w1 þ 2w2ð Þ _c2 at a ¼ 0 ð5:3:18Þ
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From this equation we obtain the following formula for the secondary normal
stress coefficient:

w2 _cð Þ ¼ 1
2_c2

drhh

dðln rÞ �
1
2

w1; _c ¼ x
xo

ð5:3:19Þ

To find the term drhh=dðln rÞ we use recordings of the pressure �rhh on the
plate as a function of the radius r, from which the term can be calculated.

If the force F is not measured in the experiment using the cone and plate
viscometer, the force may be calculated from the pressure measurements.

An alternative method to determine the two normal stress coefficients is as
follows. From equation (5.3.10) and the boundary condition (5.3.13) we get:

w2ð _cÞ ¼
1
_c2

rhh þ pað Þ at r ¼ R ð5:3:20Þ

The expression in the parenthesis is determined from the pressure measure-

ments on the plate. When _w2ð _cÞ has been found from equation (5.3.20), formula
(5.3.19) is used to obtain w1:

Figure 5.8 shows a semi-log plot of results from pressure measurements on the
plate of a cone and plate viscometer with a plate radius R = 50 mm. The fluid is a
2.5 % polyacrylamide solution and the figure is adapted from Bird et al. [3]. The
slopes of the lines give the term drhh=dðln rÞ in the formula (5.3.19). Some
experimental results for the two normal stress coefficients are shown in Fig. 5.9. In
Problem 19 we are asked to determine points on the diagrams for the normal stress
coefficients using the formulas (5.3.19 and (5.3.20) and experimental data in
Fig. 5.8.
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Fig. 5.8 Pressure measurements from a cone-and-plate viscometer. The fluid is 2.5 %
polyacrylamide solution. The data are adapted from Bird et al. [3]
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w1 : r 7 % aluminium laurate in decalin and m-cresol.D 1.5 % polyacrylamide
in water-glycerin solution.

Based on a figure in Bird et al . [3] with data adopted from Huppler et al.,
Trans. Soc. Rheol., 11, 159–179, 1967.

w2 :
r 2.5 % polyacrylamide in water-glycerin solution.

D 3 %polyethyleneoxide in water-glycerin-isopropyl alcohol solution.

Based on a figure in Bird et al. [3] with data adopted from E. B. Chris-
tensen and W. R. Leppard, Trans- Soc. Rheol, 18. 65–86, 1974.

5.4 Cylinder Viscometer

Figure 5.10 illustrates a cylinder viscometer. A circular cylinder rotates about a
vertical axis in a cylindrical container. The cap h between the concentric cylin-
drical surfaces is very small as compared to the radii r1 and r2 :

h ¼ r2 � r1\\r1 ð5:4:1Þ

The lower part of the rotating cylinder is a cone. The angle a0 between the
conic surface of the rotating cylinder and the plane surface of the bottom of the
cylindrical container is very small and will be specified further below. The fluid to
be tested is poured into the space between the rotating cylinder and the container
and fills the annular space between the cylindrical surfaces to the height H: The
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Fig. 5.9 Primary and secondary normal stress coeffisients w1 and w2 for two fluids
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viscometer may be used to find the viscosity function gð _cÞ of the fluid. The rotating
cylinder is subjected to a constant torque M and rotates with a constant angular
velocity x:

In the annular space between the two cylindrical surfaces the flow may be
consider to be as a viscometric flow between two parallel plane surfaces, as shown
in Fig. 1.3. The shear rate is according to formula (1.4.2):

_c ¼ r1

h
x ð5:4:2Þ

In the space between the conic surface of the rotating cylinder and the plane
container bottom the flow is also viscometric and the shear rate is given by formula
(5.3.3) as:

_c ¼ x
ao

ð5:4:3Þ

To make the two shear rates (5.4.2) and (5.4.3) equal, the angle ao is chosen to be:

ao ¼
h

r1
ð5:4:4Þ

The shear stress s on the cylindrical container wall and on the plane bottom of
the cylinder will now be the same and given by:

sð _cÞ ¼ gð _cÞ _c ð5:4:5Þ

fluid

,M ω

H

1r

2r

rα

h

oα

Fig. 5.10 The cylinder
viscometer
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The torque M is balanced by two contributions: Mc from the cylindrical surface
and Mb from the bottom surface. Using the formulas (1.4.3) and (5.3.5), we get:

M ¼ Mc þMb; Mc ¼ 2pr2
1Hs; Mb ¼

2pr3
1

3
s ð5:4:6Þ

By combining the equations (5.4.2), (5.4.5), and (5.4.6), we obtain the
expression for the viscosity function:

gð _cÞ � sð _cÞ
_c
¼ h

2pr3
1H 1þ r1=3Hð Þ

M

x
ð5:4:7Þ

5.5 Steady Pipe Flow

The viscosity function gð _cÞ may be determined from tests with steady pipe flow. In
this section we shall develop a set of formulas that first give the volumetric flow
Q for any proposed viscosity function. Then it will be shown how these formulas
may be used to determine the viscosity function from tests with steady pipe flow
(Fig. 5.11).

We consider a steady pipe flow in a circular pipe of internal diameter d. The
velocity field is assumed to be:

vz ¼ vðRÞ; vR ¼ vh ¼ 0 ð5:5:1Þ

This is a viscometric flow with the shear axes: e1 ¼ ez; e2 ¼ eR; e3 ¼ eh

and rate of deformation matrix:

D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A _c

2
; _c ¼ dvz

dR
¼ dv

dR
ð5:5:2Þ

The stress matrix is, confer equation (5.2.3):

g

d

zv
z

R

Fig. 5.11 Steady pipe flow
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T ¼
szz � P s 1

s sRR � P 0
0 0 shh � P

0
@

1
A ð5:5:3Þ

P is the modified pressure, and s ¼ szR: The shear rate is according to equa-
tion (5.5.2) a function of the radius R only, and because the extra stresses are
functions of the shear rate only, the extra stresses in the stress matrix (5.5.3) are
also functions of the radius R only.

The analysis of steady pipe flow is presented in Sect. 3.8 from where we collect
the formula (3.8.2) for the volumetric flow Q in a pipe of diameter d, and the
formula (3.8.5) for the shear stress s :

Q ¼ 2p
Zd=2

0

R vðRÞ dR; s � szR ¼
c

2
R; c ¼ oP

oz
\0 ð5:5:4Þ

The shear stress s may be expressed by the shear stress s0 on the inner wall of
the pipe:

s ¼ � 2s0

d
R; s0 ¼

cj jd
4

ð5:5:5Þ

Volumetric Flow Q . Partial integration of the integral in equation (5.5.4) yields:

Q ¼ 2p
R2

2
vðRÞ

� 	d=2

0

�2p
Zd=2

0

R2

2
dv

dR
dR ð5:5:6Þ

It is now assumed that the fluid sticks to the pipe wall: vðd=2Þ ¼ 0: This
boundary condition reduces the formula for the volumetric flow to:

Q ¼ �2p
Zd=2

0

R2

2
_c dR ð5:5:7Þ

At the end of the present section we shall see how we may extend the analysis
in case slipping occurs at the pipe wall.

Now the variable in the integral in equation (5.5.7) is changed from the radius
R to the shear stress s from the equation (5.5.5). We get:

R2 ¼ d2

4s2
0

s2; dR ¼ � d

2s0
ds ð5:5:8Þ

This provides us with the following expression for the volumetric flow:

104 5 Material Functions

http://dx.doi.org/10.1007/978-3-319-01053-3_3
http://dx.doi.org/10.1007/978-3-319-01053-3_3
http://dx.doi.org/10.1007/978-3-319-01053-3_3
http://dx.doi.org/10.1007/978-3-319-01053-3_3


Q ¼ pd3

8s3
0

Zso

0

s2 _c ds; _c ¼ dv

dR










 ð5:5:9Þ

Note that for convenience in the following development the negative rate of
shear _c in equation (5.5.2) has been changed to the positive shear rate _c ¼ dv=dRj j:
The formula is called the Rabinowitsch equation, after B. Rabinowitsch (1939).
The formula (5.5.9) for Q may be used to compute the volumetric flow in a pipe
when the relationship between the shear rate _c and the shear stress s is known for
the fluid. If the viscosity function gð _cÞ ¼ s= _c is given, it may be inverted to give
_cðsÞ: In most cases the integration in formula (5.5.9) must be executed

numerically.
For a Newtonian fluid, with s ¼ l _c; equation (5.5.9) may be integrated ana-

lytically and gives the Hagen-Poiseuille formula in the equation (3.8.12):

Q ¼ pd3

32l
s0 ¼

pd4 cj j
128l

; the Hagen� Poiseuille formula ð5:5:10Þ

If the viscosity function is given by the power law: g ¼ K _cn�1; the integration
of formula (5.5.9) yields:

Q ¼ s0

K

� �1=n n

1þ 3n

pd3

8
¼ cj jd

4K

� �1=n n

1þ 3n

pd3

8
ð5:5:11Þ

This result is also found as equation (3.8.16) in Sect. 3.8.
Viscosity Function. We shall present a method by which the viscosity function

gð _cÞ may be determined from pipe flow tests. The starting point is the Rabi-
nowitsch Equation (5.5.9), from which we obtain:

Zso

0

s2 _c ds ¼ 8Q

pd3
s3

0 ð5:5:12Þ

This equation is differentiated with respect to s0; and the result is:

s2
0 _c0 ¼

d

ds0

8Q

pd3
s3

0

� 	
ð5:5:13Þ

_co is the shear rate at the pipe wall. The viscosity function is then:

gð _c0Þ �
s0

_c0
¼ s3

0
d

ds0

8Q

pd3
s3

0

� 	� ��1

ð5:5:14Þ

The result will be transformed into a more practical formula. First we introduce
two parameters:
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C ¼ 32Q

pd3
; �n ¼ dðlog s0Þ

dðlog CÞ ð5:5:15Þ

We may note that for a Newtonian fluid the expression (5.5.10) for the volu-
metric flow inserted into the first of the equation (5.5.15) yields:

C ¼ s0

l
¼ _c0; �n ¼ 1 ð5:5:16Þ

For a power law fluid the expression (5.5.11) for the volumetric flow inserted into
the equation (5.5.15) yields:

C ¼ 4n

1þ 3n

s0

K

� �1=n
¼ 4n

1þ 3n
_c0; �n ¼ n ð5:5:17Þ

In a general case, when the viscosity function is unknown, we expand the term in the
curly brackets in equation (5.5.14), using the parameter C in the equation (5.5.15).

d

ds0

8Q

pd3
s3

0

� 	
¼ d

ds0

1
4

s3
0 C

� 	
¼ 3

4
s2

0 Cþ 1
4
s3

0
dC
ds0

ð5:5:18Þ

The parameter �n in equation (5.5.15), which represents the slope of the graph of
log s0 versus log C; is also expanded.

�n ¼ dðlog s0Þ
dðlog CÞ ¼

dðlog s0Þ
ds0

ds0

dC
dC

dðlog CÞ ¼
C
s0

ds0

dC
ð5:5:19Þ

We then obtain:

s3
0

d

ds0

8Q

pd3
s3

0

� 	� ��1

¼ s3
0

1
3
4 s2

0 Cþ 1
4 s3

0
dC
ds0

¼
4 C

s0

ds0
dC

1þ 3 C
s0

ds0
dC

s0

C
)

s3
0

d

ds0

8Q

pd3
s3

0

� 	� ��1

¼ 4�n

1þ 3�n

s0

C
ð5:5:20Þ

By comparing the expressions (5.5.14) and (5.5.20), we see that the viscosity
function is obtained as:

gð _c0Þ �
s0

_c0
¼ 4�n

1þ 3�n

s0

C
, _c0 ¼

s0

gð _c0Þ
¼ 1þ 3�n

4�n
C ð5:5:21Þ

Based on the results from this analysis, we may design the following procedure to
find the viscosity function gð _cÞ for a fluid based on pipe flow tests.

1. Data sets for the modified pressure gradient c and the volumetric flow Q are
recorded.

2. For each data set the shear stress so at the pipe wall is calculated from the
second of the formulas in (5.5.5) and the parameter C is found from the first of
the formulas (5.5.15). The graph of log so versus log C is drawn.
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3. The parameter �n in the second of the formulas (5.5.15), which is the slope of
the graph of log so versus log C, is found at each data point on the graph, for
instance by using a central difference formula.

4. Corresponding values for the viscosity function gð _cÞ and the shear rate _c are
calculated from the formulas (5.5.21). The graph of log g versus log _c is
drawn.

5. A suitable mathematical function for the viscosity function, for instance one of
the analytical models presented in Sect. 6.1, is fitted to the graph of log g versus
log _c:

The Case of Slip at the Pipe Wall. It may happen that the fluid does not stick to the
wall of the pipe. A slip velocity vo is then introduced. In fluids containing solid
particles it may be that the particles have a tendency to move away from the wall
and create a higher concentration near the center of the pipe. In the vicinity of the
wall the fluid is then less viscous than in the central flow. This effect may be taken
care of by introducing an apparent slip velocity at the wall and otherwise treat the
fluid as homogeneous.

The slip velocity vo may be found using the following procedure. First the
formula (5.5.9) for volumetric flow is modified to:

Q ¼ pd2

4
vo þ

pd3

8s3
o

Zso

0

s2 _c ds; _c ¼ dv

dR










 ð5:5:22Þ

Then:

1. Pipes of different diameters d are used. The modified pressure gradient c is
adjusted such that the shear stress at the pipe wall: so ¼ cj jd=4 is the same for
all the different diameters. The volumetric flow Q for the different diameters
d is measured.

2. From equation (5.5.22) we find the following linear function of the variable 1/d.

f ð1=dÞ � 4Q

pd3
¼ vo

d
þ 1

2s3
o

Zso

0

s2 _c ds ð5:5:23Þ

The graph of f ð1=dÞis drawn. The slip velocity vo is then determined as the
slope of the graph.

3. Points 1 and 2 are repeated using different values of the shear stress so at the
pipe wall.

4. The graph of the slip velocity vo as a function of the wall shear stress so is
drawn, from which a suitable function: vo ¼ voðsoÞ is determined.

When the slip velocity vo ¼ voðsoÞ has been found, the parameter C in the first of
the formulas (5.5.15) is replaced by:
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C ¼ 32Q

pd3
� 8vo

d
ð5:5:24Þ

Then the viscosity function gð _cÞ may then be determined as describe above.

5.6 Material Functions for Steady Extensional Flows

Extensional flows are defined in Sect. 4.5. In a local coordinate system Px at a
particle P with the xi � axes parallel to the principal directions of rates of
deformation the rate of deformation matrix is:

D ¼
_e1 0 0
0 _e2 0
0 0 _e3

0
@

1
A ð5:6:1Þ

The principal directions are represented by the same material lines at all times.
This implies that these directions also represent the principal directions of strain.
For isotropic fluids these directions coincide with the principal directions of stress,
i.e. no coordinate shear stresses in the Px� system, which again implies that the
stress matrix in the Px� system is the diagonal matrix:

T ¼
s11 � P 0 0

0 s22 � P 0
0 0 s33 � P

0
@

1
A ð5:6:2Þ

For incompressible fluids, since the pressure is constitutively indeterminable, only
normal stress differences may be modeled. It is customary two concentrate on:

r11 � r22 ¼ s11 � s22; r22 � r33 ¼ s22 � s33 ð5:6:3Þ

The third normal stress difference may be expressed by those two.
Three special cases of extensional flows are presented in Sect. 4.5, each defined

by its characteristic rate of deformation matrix.

Uniaxial extensional flow : D ¼
2 0 0
0 �1 0
0 0 �1

0
@

1
A _e

2
; Figure 4:22 ð5:6:4Þ

Biaxial extensional flow : D ¼
1 0 0
0 1 0
0 0 �2

0
@

1
A_e; Figure 4:23 ð5:6:5Þ

Planar extensional flow : D ¼
1 0 0
0 �1 0
0 0 0

0
@

1
A_e; Figure 4:24 ð5:6:6Þ
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The rate of deformation matrix for all these special extensional flows have only
one characteristic strain rate. Two material functions may be introduced for these
flows:

�g1ð_eÞ ¼
s11 � s22

_e
; �g2ð_eÞ ¼

s22 � s33

_e
ð5:6:7Þ

Uniaxial Extensional Flow. The rate of deformation matrix (5.6.4) and isotropy
implies that the normal stress in the x2 � and x3 � directions must be equal. Thus
only one normal stress difference need be modeled and the material function is
called the extensional viscosity or the Trouton viscosity, named after F. T. Trouton
(1906):

gEð_eÞ � �gð_eÞ ¼ �g1ð_eÞ ¼
s11 � s22

_e
ð5:6:8Þ

The alternative symbols for the extensional viscosity are used respectively by
Barnes et al. [2] and by Bird et al. [3]. For some fluids the extensional viscosity is
decreasing with increasing strain rate. This is called tension-thinning. When the
extensional viscosity is increasing with increasing strain rate it is called tension-
thickening.

For incompressible Newtonian fluids, the constitutive equations in Sect. 4.3,
yield:

sik ¼ 2lDik ) s11 ¼ 2l _e; s22 ¼ �l _e; s33 ¼ �l _e )

s11 � s22 ¼ 3l _e; gE ¼ 3l ð5:6:9Þ

This relationship between the extensional viscosity and the shear viscosity l is in
classical Newtonian fluid mechanics associated with the name Trouton.

The behavior of the extensional viscosity for a non-Newtonian fluid is fre-
quently qualitatively different from that of the viscosity in shear flow. It is found
that highly elastic polymer solutions that show shear-thinning often exhibit a
dramatic tension-thickening. Experiments and further analysis in continuum
mechanics show that as the strain rate _e approaches zero, the extensional viscosity
approaches a value three times the value of the zero-shear-rate-viscosity as the
shear strain rate approaches zero:

gEj_e!0¼ 3gj _c!0 , gEo ¼ 3go ð5:6:10Þ

Biaxial Extensional Flow. The rate of deformation matrix (5.6.5) for this flow and
the rate of deformation matrix (5.6.4) for uniaxial extensional flow are equivalent.
The extra stresses s11 and s22 are equal, and only one normal stress difference
need be modeled. The material function is called the biaxial extensional viscosity
gEB :

gEBð_eÞ � �g2ð_eÞ ¼
s11 � s33

_e
; �g1ð_eÞ ¼ 0 ð5:6:11Þ
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From the formula (5.6.8) for gEð_eÞand the formula (5.6.11) for gEBð_eÞ it follows
that:

s11 � s33 ¼ _egEBð_eÞ ¼ � s33 � s11ð Þ ¼ �ð�2_eÞgEð�2_eÞ )

gEBð_eÞ ¼ 2gEð�2_eÞ ð5:6:12Þ

Planar Extensional Flow. In this type of flow only one material function, called
the planar extensional viscosity, is defined:

gEPð_eÞ � �g1ð_eÞ ð5:6:13Þ

5.6.1 Measuring the Extensional Viscosity

It is much more difficult to measure the extensional viscosity gEð_eÞ than the shear
viscosity gð _cÞ: Figure 5.12 indicates an arrangement that is used. A cylindrical
specimen of the fluid is stretched by a force F ¼ FðtÞ in the x1 � direction:

The length L of the specimen becomes an increasing function of time, while the
cross-sectional area A becomes a decreasing function of time. The axial stress is:

r11 ¼ s11 � p ¼ FðtÞ
AðtÞ � pa ð5:6:14Þ

pa is the atmospheric pressure. If body forces and accelerations are neglected, the
general equations of motion (3.3.24) are reduced to:

0 ¼ �p;iþsii;i i ¼ 1; 2; 3 ð5:6:15Þ

( )L t

( )F t

( )F t

1x

2x

3x

( )A t

ap

Fig. 5.12 Fluid element
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These equations imply that the stresses rii ¼ sii � p are independent of the
coordinate xi. On the cylindrical surface of the specimen the atmospheric pressure
pa represents the stress vector, which implies that:

r22 ¼ r33 ¼ �pa

everywhere in the specimen
ð5:6:16Þ

Thus:

s22 � p ¼ s33 � p ¼ �pa

everywhere in the specimen
ð5:6:17Þ

From equations (5.6.14) and (5.6.17) we then get:

s11 � s22 ¼
FðtÞ
AðtÞ ð5:6:18Þ

It will now be shown that to obtain a constant strain rate _e in the axial direction, the
length LðtÞ of the rod must be increased exponentially with time. Let the length
and cross-sectional area of the rod at time t be Lo and Ao respectively. Then:

_e ¼
_L

L
¼ constant )

ZL

Lo

dL

L
¼ _e

Z t

0

dt ) ln
L

Lo

� �
¼ _e t )

LðtÞ ¼ Lo exp _e tð Þ ð5:6:19Þ

The volume of an incompressible fluid is constant: LðtÞAðtÞ ¼ Lo Ao; which
implies that:

AðtÞ ¼ Ao exp �_e tð Þ ð5:6:20Þ

To obtain a constant axial stress F/A, independent of time, the force must be
adjusted such that:

FðtÞ ¼ Foð_eÞ exp �_e tð Þ ð5:6:21Þ

The extensional viscosity may then be determined from the equations (5.6.8,
5.6.18, 5.6.20, 5.6.21). Hence:

gEð_eÞ ¼
s11 � s22

_e
¼ Foð_eÞ

_e Ao
ð5:6:22Þ
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Chapter 6
Generalized Newtonian Fluids

6.1 General Constitutive Equations

The constitutive equations for an incompressible Newtonian fluid are defined by
Eq. (4.3.3) in a Cartesian coordinate system Ox:

si k ¼ 2l Di k ð6:1:1Þ

D ¼ Di kð Þ is the rate of deformation matrix defined by:

Di k ¼
1
2

vi;kþvk;ið Þ ð6:1:2Þ

The viscosity l is a function of the temperature and varies slightly with the
pressure. However, the viscosity may in many cases be treated as a constant.

A generalized Newtonian fluid is an incompressible purely viscous fluid defined
by the constitutive equations:

si k ¼ 2gð _cÞDi k ð6:1:3Þ

The viscosity function gð _cÞ is a function of the magnitude of shear rate _c; which is
defined as:

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2tr D2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Di k Di k

p
ð6:1:4Þ

It may be shown that the magnitude of shear rate _c is an invariant, i.e. that the
magnitude of shear rate is independent of the Cartesian coordinate system chosen
to evaluate the rates of deformation Dik: The definition (6.1.4) is easily extended
to include also non-Cartesian coordinate system. In cylindrical coordinates
ðR; h; zÞ and in spherical coordinates ðr; h;/Þ we use the rate of deformation
matrices in the Eqs. (4.2.1 and 4.2.3) respectively.

In a viscometric flow the rate of deformation matrix when related to the shear
axes, takes the form:

F. Irgens, Rheology and Non-Newtonian Fluids,
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D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A _c

2
ð6:1:5Þ

The term _c is the shear rate of the flow. It follows from Eq. (6.1.4) that the
magnitude of shear rate is equal to _cj j for viscometric flows. The constitutive
equation (6.1.3) of a generalized Newtonian fluid give in viscometric flows the
extra stresses:

s12 � s ¼ gð _cÞ _c; other sik ¼ 0 ð6:1:6Þ

The viscosity function gð _cÞ may thus be determined as the viscosity function for
viscometric flows, see Eq. (5.2.7). On the other hand the primary and secondary
normal stress coefficients for a generalized Newtonian fluid are both zero. That is
contrary to experiments with most non-Newtonian fluids in steady shear flow. This
discrepancy is a deficiency of the generalized Newtonian fluid model. For instance,
the fluid model cannot describe the rod climbing phenomenon discussed in
Chap. 2. Experience shows that the generalized Newtonian fluid is best suited for
steady viscometric flows. However, it is also widely applied in more general types
of flows, even for unsteady flows.

Figure 6.1 shows a characteristic graph for the viscosity function gð _cÞ meant to
fit data from experiments with a particular shear-thinning fluid in a viscometric
flow. The value g0 is the zero-shear- rate-viscosity, and the value g1 is the infinite-
shear-rate-viscosity.

(a) Power Law Fluid (Ostwald-de Waele-fluid). The graph fitted to the experi-
mental viscosity function of a shear-thinning fluid in a log–log diagram is often
linear over the most interesting region of shear rates, as indicated in Fig. 6.1. The
power law:

experimental data and model (e)

model (a)

model (b)

2

Ns

m

η
⎡ ⎤
⎢ ⎥⎣ ⎦

0η

sγ −1⎡ ⎤⎣ ⎦

η∞

oγ

210

10

1

10−1

1 10 21010−110−2 ⋅
⋅

Fig. 6.1 Log-log plot of experimental viscosity function compared to proposed viscosity
functions: (a) The power law fluid, (b) The Spriggs fluid, (e) The Carreau fluid, and an
experimental graph
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gð _cÞ ¼ K _cn�1 ð6:1:7Þ

fits this linear portion of the viscosity function in the log–log plot. From
Eq. (6.1.7) it follows that:

log g ¼ log K þ ðn� 1Þ log _c ð6:1:8Þ

The dimensionless power law index n is often found in the interval from 0.15 to
0.6. The consistency parameter K has the unity [Nsn/m2]. Examples of data pairs
for the material parameters K and n are shown in Table 1.1. The dependence of
K and n on the temperature H is often presented as:

K ¼ K0 exp �A
H�H0

H0

� �
; n ¼ n0 þ B

H�H0

H0
ð6:1:9Þ

K0;A0; n0; and B are parameter values at the reference temperature H0: The
parameter B is often so small that the power law index may be taken to be
constant. The power law was first suggested by W. Ostwald in Kolloid-Z., 36,
99-117 (1925) and A. de Waele in Oil and Color Chem. Assoc. Journal, 6, 33–88,
(1923). An important objection to this model is the fact that it does not reflect the
zero-shear-rate-viscosity. However, in many flow problems the regions of low
shear rates are of lesser importance. A great advantage of the model is that it lends
itself nicely to analytical solutions, and therefore the power law fluid model is
widely in use in applications.

(b) Spriggs Fluid (The truncated power law-fluid) was suggested by T.W. Spriggs,
Chem. Engr. Sci.,20, 931 (1965) and is defined by the viscosity function:

gð _cÞ ¼ g0 when _c� _c0; gð _cÞ ¼ g0
_c
_c0

� �n�1

when _c� _c0 ð6:1:10Þ

_c0 is a reference shear rate.

(c) Eyring Fluid was proposed by H. Eyring and presented in F. H. Ree, T. Ree,
and H. Eyring, Ind. Eng. Chem., 50, 1036–1040 (1959). The viscosity function is:

gð _cÞ ¼ s0

_c
arcsin t0 _cð Þ ð6:1:11Þ

s0 is a characteristic shear stress and t0 is a time constant.

(d) Zener-Hollomon fluid. This fluid model has been used in simulation of
extrusion of aluminium by Sintef, Norway. The viscosity function is:

gð _cÞ ¼ 1ffiffiffi
3
p

a _c
arcsin

Z

A

� �1
n

" #
; Z ¼ _c exp

Q

RH

� �
ð6:1:12Þ

a; A; and n are material parameters, and H is the temperature. The material
parameter Q is called the activation energy, and R is the universal gas constant.
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Z is called the Zener-Hollomon parameter, and is a temperature compensated
magnitude of shear rate.

The viscosity function gð _cÞ in Eq. (6.1.12) is based on a suggestion in a paper
by C. Zener, and J. H. Hollomon, J. H., J. Appl. Phys., Vol. 15, p. 22, 1944.
Clearly, this fluid model is a variant of the Eyring fluid.

(e) Carreau Fluid was proposed by P.J. Carreau in his Ph.D. Thesis from Uni-
versity of Wisconsin 1968. The viscosity function is:

gð _cÞ ¼ g1 þ g0 � g1ð Þ 1þ k _cð Þ2
h in�1

2 ð6:1:13Þ

and contains both the zero-shear-rate-viscosity g0 and the infinite-shear-rate-vis-
cosity g1: In addition the model contains the time parameter k and the power law
index n: As seen from Fig. 6.1 the Carreau function (6.1.13) can be adjusted to
give a very good fit to the experimental graph for the viscosity function over the
whole range of _c� values:

(f) Bingham Fluid is attributed to E. C. Bingham and was suggested in his book
Fluidity and Plasticity, McGraw-Hill, New York, 1922. This is a viscoplastic fluid
model, behaving like a solid at low level of maximum shear stress and as a purely
viscous fluid when the maximum shear stress smax in the fluid exceeds the yield
shear stress sy: The viscosity function may be presented as:

gð _cÞ ¼ lþ sy

_c
when smax� sy; gð _cÞ ¼ 1 when smax� sy ð6:1:14Þ

This model is often used to model drilling mud, applied as a lubricant and a
medium for conveying drill chips. It follows that when smax� sy the magnitude of
shear rate _c ¼ 0:

Drilling fluid may consist of a mixture of small solid particles suspended in a
liquid. The viscosity l and the yield shear stress sy are functions of the volume
fraction / of solid particles, the diameter of the particles Dp; and the viscosity ll of
the liquid. D. G. Thomas (A.I. Ch. E. Journal, 7, 431–437 (1961) and 9, 310-316
(1963)) has proposed these empirical formulas:

sy ¼ 312:5
/3

Dp
; l ¼ ll exp

5
2
þ 14ffiffiffiffiffiffi

Dp
p

" #
ð6:1:15Þ

In these formulas the particle diameter Dp has the unit micrometer, and the yield
stress sy is given in Pa ð¼ N/m2Þ.

(g) Casson Fluid was proposed by N. Casson in Rheology of Disperse Systems
(C.C. Mills, Ed.), Pergamon Press, New York, 1959 to describe the flow of
mixtures of pigments and oil. The viscosity function is:
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gð _cÞ ¼ ffiffiffi
l
p þ

ffiffiffiffi
sy

_c

r� �2

¼ lþ sy

_c
þ 2

ffiffiffiffiffiffiffiffi
l

sy

_c

r
when smax� sy

gð _cÞ ¼ 1 when smax� sy

ð6:1:16Þ

The Casson fluid model is often used to describe blood flow. Blood consists of
plasma and blood cells. The volume fraction of cells is called hematocrit and
denoted H. Blood plasma is a Newtonian fluid. At high values of the magnitude
of shear rate _c; blood behaves as Newtonian fluid. At low values of the magnitude
of shear rate _c; blood is a non-Newtonian fluid. The Casson fluid model seems to
be appropriate when _c\10 s�1 and H\40 %: A detailed discussion of the
mechanical properties of blood may be found in the book Biomechanics by Fung
[6].

A few simple, but practically important, flow problems may be solved ana-
lytical using generalized Newtonian fluid models following the same procedures as
for a Newtonian fluid. Applications with the power law fluid and the Bingham fluid
have been presented in Sects. 3.7–3.9. However, most flow problems with non-
Newtonian fluids must be solved numerically. In the next section we shall see how
easily we run into practical problems when we try to solve a fairly simple problem
analytically.

6.2 Helix Flow in Annular Space

For all the flow examples discussed in Sects. 3.7–3.9 the magnitude of shear rate _c
is equal to the absolute value of the only rate of deformation used in the analysis of
the flow. In the present section we shall discuss an example of a flow where this is
not the case. The example will clearly demonstrate how soon computational
problems arise in analysis of non-Newtonian fluid flows.

Figure 6.2a, b shall illustrate the flow of non-Newtonian fluid of density q in
the annular space between two concentric cylindrical surfaces with a vertical
axis. The distance h between the surfaces is small compared to radii r1 and r2 of
the cylindrical surfaces. An example of this situation is given by the flow of
drilling fluid around a drilling pipe during drilling for oil. The drilling mud flows
downwards inside of the drilling pipe and returns upwards in the annular space
between the pipe and the drilling hole carrying the drilling chips made by the
drill crown.

The flow is driven by a constant negative modified pressure gradient qP/qz and
a rotation of the inner cylindrical surface, which rotates with a constant angular
velocity x: As a model for the fluid we select the power law fluid, and our task is to
find an expression for the volumetric flow Q in the axial direction. We shall
discover that the development of an analytical solution is possible up to a point
from which we need in the most general case to apply a numerical solution. If the
distance h is not small compared to the cylinder radii, an analytical solution to
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the problem becomes impossible, and a numerical solution to the relevant dif-
ferential equations must be performed at the very start of the solution.

Because h � r1, we may treat the flow as flow between two parallel plates,
Fig. 6.2c. The velocity field is assumed as:

vz ¼ vzðyÞ; vx ¼ vxðyÞ; vy ¼ 0 ð6:2:1Þ

Assuming that the fluid sticks to the solid surfaces, and referring to Fig. 6.2b, c, we
may state the boundary conditions as:

ð1Þ vxð0Þ ¼ 0; ð2Þ vxðhÞ ¼ x r1; ð3Þ vzð0Þ ¼ 0; ð4Þ vzðhÞ ¼ 0 ð6:2:2Þ

The velocity field (6.2.1) gives the rate of deformation matrix:

D ¼
0 1

2
dvx
dy 0

1
2

dvx
dy 0 1

2
dvz

dy

0 1
2

dvz

dy 0

0
B@

1
CA ð6:2:3Þ

from which we compute the magnitude of shear rate _c :

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dik Dik

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dvx

dy

� �2

þ dvz

dy

� �2
s

ð6:2:4Þ

zv zv
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1h r<<

h
y

x

1v rω=
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(b)
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e.g. wall of drilling hole
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e.g. wall of drilling hole

fixed cylinder

rotating cylinder

rotating cylinder

Fig. 6.2 Helix flow in annular space
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The extra stresses are calculated from the constitutive equation (6.1.3) with the
formula (6.1.7) for the viscosity function, and the stresses become functions of the
coordinate y:

sikðyÞ ¼ 2K _cn�1Dik )

sxyðyÞ ¼ K _cn�1 dvx

dy
; szyðyÞ ¼ K _cn�1 dvz

dy
; szx ¼ sxx ¼ syy ¼ szz ¼ 0 ð6:2:5Þ

The velocity field (6.2.1) results in no accelerations and the equations of motion
(3.5.4) are reduced to the following equilibrium equations:

0 ¼ � oP

ox
þ dsxy

dy
; 0 ¼ � oP

oy
; 0 ¼ � oP

oz
þ dszy

dy
ð6:2:6Þ

Due to symmetry with respect to the z-axis the modified pressure P must be inde-
pendent of the tangential direction, which means that in the local coordinate system
in Fig. 6.2c the modified pressure P must be independent of the x-coordinate. Then
by the second of the equilibrium equations (6.2.6) the modified pressure is only a
function of the z-coordinate. The third of the equilibrium equations (6.2.6) then
implies that the pressure gradient in the z–direction must be a constant.

dP

dz
¼ �c ðc is a positive constant) ð6:2:7Þ

Substitution of the stresses (6.2.5) into the equilibrium Eq. (6.2.6) yields:

d

dy
K

dvx

dy

� �2

þ dvz

dy

� �2
" #n�1

2
dvx

dy

8<
:

9=
; ¼ 0;

d

dy
K

dvx

dy

� �2

þ dvz

dy

� �2
" #n�1

2
dvz

dy

8<
:

9=
; ¼ � c

ð6:2:8Þ

Integrations of the two equations give, with A and B as constants of integration:

dvx

dy

� �2

þ dvz

dy

� �2
" #n�1

2
dvx

dy
¼ A;

dvx

dy

� �2

þ dvz

dy

� �2
" #n�1

2
dvz

dy
¼ � c

K
yþ B

ð6:2:9Þ

These equations are solved with respect to the velocity gradients and the result is:

dvx

dy
¼ A2 þ B� c

K
y

� �2
� �1�n

2n

A;
dvz

dy
¼ A2 þ B� c

K
y

� �2
� �1�n

2n

B� c

K
y

� �

ð6:2:10Þ
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The next integration must in the general case be performed numerically.
However, for n = 1/3 an analytical solution is found as:

vx ¼
Z

A2 þ B� c

K
y

� �2
� �

A dy ¼ A3yþ A B� c

K
y

� �3 K

�3c

� �
þ C

vz ¼
Z

A2 þ B� c

K
y

� �2
� �

B� c

K
y

� �
dy

¼ A2 B� c

K
y

� �2 K

�2c

� �
þ B� c

K
y

� �4 K

� 4c

� �
þ D

ð6:2:11Þ

C and D are constants of integrations. To determine the four constants of inte-
gration A, B, C, and D we use the boundary conditions (6.2.2). Boundary condi-
tions number (3) and number (4) yield:

D ¼ A2B2K

2c
þ B4K

4c
; 2A2 B� ch

K

� �2

þ B� ch

K

� �4

�2A2B2 � B4 ¼ 0 ð6:2:12Þ

The last equation is of third degree for the unknown constant B, and the only real
root is:

B ¼ ch

2K
ð6:2:13Þ

The boundary conditions (6.2.2) number (1) and number (2) now yield:

C ¼ AB3K

3c
; A3 þ 1

12
ch

K

� �2

A� x r1

h
¼ 0 ð6:2:14Þ

The only real root of the third degree equation for A is:

A ¼ x r1

h

� �1
3 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ E

r" #1
3

þ 1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ E

r" #1
3

8<
:

9=
;; E ¼ c2h2

36K2

� �3
h

x r1

� �2

ð6:2:15Þ

The four constants of integration A, B, C, and D are now given by the
Eqs. (6.2.12–6.2.15), and the velocity field is determined. The result is:

vxðyÞ ¼ A3yþ Ac2h3

12K2
4

y

h

� �3
�6

y

h

� �2
þ3

y

h

� �

vzðyÞ ¼ A2 þ c2h2

4K2

� �
ch2

2K

y

h
� A2 þ 3c2h2

4K2

� �
ch2

2K

y

h

� �2
þ c3h4

2K3

y

h

� �3
� c3h4

4K3

y

h

� �4

ð6:2:16Þ
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The volumetric flow in the axial direction is:

Q ¼
Zh

0

vz dy

2
4

3
5 � 2pr1 ¼

pr1h2

40
ch

K

� �3

1þ 20
3

AK

ch

� �2
" #

ð6:2:17Þ

In order to get a better understanding of the expression for the volumetric flow
Q for large values of the pressure gradient c, we develop a power series expansion
using the formulas:

1þ xð Þ1=2¼ 1þ 1
2

xþ . . .; 1� xð Þ1=3¼ 1� 1
3

xþ . . .; xj j\1ð Þ ð6:2:18Þ

First we write:

AK

ch
¼ K

h

x r1

h

� �1
3 1

2c3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4c6
þ E

r" #1
3

þ 1
2c3
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ E

r" #1
3

8<
:

9=
;

Using the expansions (6.2.18), we obtain the approximate formula:

AK

ch
	 12

x r1

h

� � K

ch

� �3

ð6:2:19Þ

From the Eqs. (6.2.17) and (6.2.19) we finally get:

Q ¼ pr1h2

40
ch

K

� �3

1þ 960
x r1

h

� �2 K

ch

� �6
" #

ð6:2:20Þ

This formula shows to what extent the rotation of the inner cylindrical surface
enlarges the volumetric flow in the axial direction. The reason is that the apparent
viscosity of the fluid:

gð _cÞ ¼ K _cn�1 ¼ K=_c2=3 ð6:2:21Þ

is decreased when the magnitude of shear rate (6.2.4) is increased by the contri-
bution from the tangential shear rate _cRh 	 _cxy ¼ dvx=dy: Note that for a Newtonian
fluid the axial flow and the tangential flow will be uncoupled, confer Problem 17.

6.3 Non-Isothermal Flow

With the exception of the example in Sect. 3.10.3, in all examples and flow cases
we have discussed up to now, it has been tacitly assumed that the temperature in
the fluid is constant. In other words, we have only treated isothermal flows.
However, due to dissipation heat is created in the fluid and a temperature field will
be developed. In addition the temperature field will influence the material
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parameters of the constitutive equations. We shall now briefly discuss non-iso-
thermal flows in a power law fluid.

For simplicity we assume that it is acceptable as a first approximation to take
the fluid density q and the coefficient of heat conduction k to be constants. To
assume constant density implies that free convection is not considered.

First we shall write the thermal energy balance equation (3.10.16):

qc _H ¼ kr2Hþ x ð6:3:1Þ

for incompressible fluids using the expression (3.10.11): for the stress power:

x ¼ sik vi;k ð6:3:2Þ

Due to the symmetry in the extra stresses, we may write:

x ¼ sik vi;k ¼
1
2

sik vi; k þ
1
2
ski vk; i¼ sik

1
2

vi;k þvk;ið Þ )

x ¼ sik Dik ð6:3:3Þ

For a generalized Newtonian fluid represented by constitutive equation (6.1.3) the
stress power becomes:

x ¼ sik Dik ¼ 2gð _cÞDik Dik ¼ 2gð _cÞD2 ð6:3:4Þ

The thermal energy balance equation (6.3.1) is then for a generalized Newtonian
fluid and for a power law fluid, respectively:

qc _H ¼ kr2Hþ x ¼ kr2Hþ 2gDikDik ð6:3:5Þ

qc _H ¼ kr2Hþ x ¼ kr2Hþ 2K _cn�1DikDik ð6:3:6Þ

The other basic fluid mechanics equations are: The incompressible condition:

div v ¼ 0 ð6:3:7Þ

and the Cauchy equations of motion:

q _v ¼ �rpþr � T0 þ q b; q _vi ¼ �p;iþsik;k þqbi ð6:3:8Þ

6.3.1 Temperature Field in a Steady Simple Shear Flow

A fluid between two parallel horizontal plates flows steadily due to a constant
velocity v of one plate relative to the other plate. Both plates are kept at constant
temperature H0; Fig. 6.3.

We want to determine the temperature field HðyÞ in the fluid due to the flow.
The fluid is modeled as a power law fluid, and we assume for simplicity that the
two material parameters K and n of the model are assumed to be constants.
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We assume the velocity field:

vx ¼ vxðyÞ; vy ¼ vz ¼ 0 ð6:3:9Þ

The accelerations are zero, and the rate of deformation matrix and the magnitude
of shear rate become:

D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A 1

2
dvx

dy
; _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dik Dik

p
¼ dvx

dy

				
				 ð6:3:10Þ

The pressure p and the extra stresses are functions of the coordinate y:

p ¼ pðyÞ; sik ¼ 2K _cn�1Dik )

sxy ¼ K
dvx

dy

				
				
n�1dvx

dy
¼ K

dvx

dy

� �n

; other sik ¼ 0
ð6:3:11Þ

The equations of motion (6.3.8) are reduced to:

0 ¼ � dp

dy
� qg ) pðyÞ ¼ �qgyþ pðhÞ; 0 ¼ dsxy

dy
) K

d

dy

dvx

dy

� �n

¼ 0

ð6:3:12Þ

The unknown pressure pðhÞ at the moving plate is introduced as a boundary
condition. Integration of the second of the equation (6.3.12) yields the general
result:

dvx

dy

� �n

¼ Cn
1 ) dvx

dy
¼ C1 ) vxðyÞ ¼ C1 yþ C2 ð6:3:13Þ

The constants of integration C1 and C2 are determined by the boundary conditions:

vxð0Þ ¼ 0 ) C2 ¼ 0; vxðhÞ ¼ v ) C1 ¼
v

h
ð6:3:14Þ

The velocity field is then:

vxðyÞ ¼
v

h
y ð6:3:15Þ

hy

x

v

( )xv y

fluid
0Θ

0Θ
g

moving plate

fixed plate

Fig. 6.3 Steady shear flow
between two parallel plates
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The energy equation (6.3.6) is first reduced to:

0 ¼ k
d2H
dy2
þ 2K _cn�1 1

2
dvx

dy

� �2

þ 1
2

dvx

dy

� �2
" #

)

k
d2H
dy2
þ K

dvx

dy

� �nþ1

¼ 0 ð6:3:16Þ

Then the velocity field (6.3.15) is introduced, which gives:

d2H
dy2
¼ �K

k

v

h

� �nþ1
) HðyÞ ¼ �K

k

v

h

� �nþ1y2

2
þ C3yþ C4 ð6:3:17Þ

The constants of integration C3 and C4 are determined by the boundary conditions:

Hð0Þ ¼ To ) C4 ¼ H0; HðhÞ ¼ H0 ) C3 ¼
K

k

v

h

� �nþ1h

2
ð6:3:18Þ

The temperature field is thus:

HðyÞ ¼ H0 þ
Kh2

2k

v

h

� �nþ1 y

h
� y

h

� �2
� �

; Hmax ¼ H
h

2

� �
¼ H0 þ

Kh2

8k

v

h

� �nþ1

ð6:3:19Þ

A more realistic solution to this problem in which the material parameter K is
temperature dependent as in the formulas (6.1.9), may follow the same solution
procedure as above, but since the equations of motion and the energy equation now
will be coupled, the solution which has to be numerical, is much more complex.

124 6 Generalized Newtonian Fluids



Chapter 7
Linearly Viscoelastic Fluids

7.1 Introduction

If the stresses in a fluid depend both on strains and on strain rates, the fluid is
characterized as viscoelastic. In general the stresses in a viscoelastic fluid depend
on the deformation history the fluid has been subjected to. All real fluids are really
viscoelastic because the pressure p is always a function of the volumetric strain.
But if we limit the discussion to incompressible fluid models, we may distinguish
between viscoelastic models and purely viscous models.

When we wish to analyze a non-steady flow problem for a viscoelastic fluid we
must often use very complex constitutive equations to obtain acceptable results. In
this chapter we discuss linearly viscoelastic fluid models that are relatively simple
to apply, but which have a relatively limited range of applications. We have to
assume that the strains are small in the time span of investigation and that the
velocity gradients are small. The latter assumption implies that both the rates of
deformation and the rates of rotation are small. The models may be used in
analyses of small deformations of plastics, but also in some real fluid flow prob-
lems. The linearly viscoelastic fluid models are also of interest because the models
may be ‘‘extended’’, as we shall see in the Sects. 8.6 and 8.7, to be relevant to real
fluids in general flows.

7.2 Relaxation Function and Creep Function in Shear

The relaxation function b c0; tð Þ in shear and the creep function a s0; tð Þ in shear are
material functions entering constitutive equations of linearly viscoelastic fluid
models. These functions, resulting from two special so-called static tests with
viscometric flows, were defined in Sect. 1.4.3 and the definition will be repeated
below.
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It is convenient in the mathematical presentation to introduce two special
functions that are related to one another. The Heaviside unit step function is
defined in Eq. (1.4.20):

H tð Þ ¼
0 t� 0

for
1 t [ 0

8<
: ð7:2:1Þ

The Dirac delta function d tð Þ, named after Paul A. M. Dirac [1902–1984], is
defined by the following properties:

d tð Þ � _H tð Þ ¼
0 t 6¼ 0

for

1 t ¼ 0

8><
>:

Zt2

t1

f tð Þd tð Þdt ¼ f 0ð Þ H t2ð Þ � H t1ð Þ½ �

ð7:2:2Þ

f tð Þ is any function of time t.
In a relaxation test in shear the fluid is subjected to a constant shear strain co

from the time t ¼ 0: Using the Heaviside unit step function, we may express the
strain history by:

c tð Þ ¼ c0 H tð Þ ð7:2:3Þ

The shear stress s then becomes a function of the shear strain level c0 and of time
t, and the general relaxation function in shear b co; tð Þ is now defined by:

s c0; tð Þ ¼ b c0; tð Þc0 H tð Þ ð7:2:4Þ

In a creep test the shear strain c is registered as a result of a constant shear stress
s0 from the time t ¼ 0þ: The shear stress history is presented as:

s tð Þ ¼ s0 H tð Þ ð7:2:5Þ

( )tβ
iβ

t

β

0

Fig. 7.1 The relaxation
function in shear b tð Þ
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The resulting shear strain history defines the general creep function in shear
a s0; tð Þ :

c s0; tð Þ ¼ a s0; tð Þs0 H tð Þ ð7:2:6Þ

For linearly viscoelastic fluids the relaxation function in shear and the creep
function in shear are functions of time only, Figs. 7.1 and 7.2:

b ¼ b tð Þ; a ¼ a tð Þ ð7:2:7Þ

The shear stress that results from a shear strain increment c0 at the time �t, i.e. from
the strain history c0 H t ��tð Þ, is independent of the level of strain prior to the time
�t: Likewise, the shear strain that results from a shear stress increment s0 at the time
�t, i.e. from the stress history s0 H t ��tð Þ, is independent of the level of stress prior
to the time �t: These aspects may be used to develop constitutive equations for
linearly viscoelastic fluids. We shall also see how the two material functions
b tð Þ and a tð Þ are related. In the Eq. (1.4.25) the following relationships were
presented:

agbg ¼ 1; aebe ¼ 1 ð7:2:8Þ

ag � a 0ð Þ is the glass compliance, bg � b 0ð Þ is the glass modulus, ae � a 1ð Þ is
the equilibrium compliance, and be � b 1ð Þ is the equilibrium modulus.

Now we want to determine an expression for the shear stress sðtÞ due to a shear
strain history:

c ¼ c �tð Þ; 1\�t� t ð7:2:9Þ

We assume that cð�tÞ ¼ 0 for �t� t0: The time interval ½t0; t� is divided into
n equal time increments Dt , Fig. 7.3:

Dt ¼ ti � ti�1; i ¼ 1; 2; 3; . . .; n ð7:2:10Þ

In the interval ½ti�1; ti� we can find a time �ti such that:

_c �tið Þ ¼
ci � ci�1

ti � ti�1
¼ Dci

Dt
) Dci ¼ _c �tið ÞDt ð7:2:11Þ

( )tβ

iα

( )tα
restitution

t

1t

α

0

Fig. 7.2 The creep function
in shear a tð Þ
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The shear strain history cð�tÞ may then approximately be replaced by the step
function:

�c �tð Þ ¼
Xn

i¼1

Dci H �t ��tið Þ ¼
Xn

i¼1

_c �tið ÞH �t ��tið ÞDt ð7:2:12Þ

See Fig. 7.3. Every element in the sums corresponds to a constant strain increment,
and the response of the fluid is a shear stress expressed by the relaxation function
b tð Þ and the shear strain increment. The shear strain increment Dci results in the
shear stress:

si tð Þ ¼ b t ��tið ÞDci ¼ b t ��tið Þ _c �tið ÞDt ð7:2:13Þ

Because t [�ti for all i ¼ 1; 2; 3; . . .; n; the Heaviside function is left out in
Eq. (7.2.13). The shear strain history gives the shear stress history:

Xn

i¼1

si tð Þ ¼
Xn

i¼1

b t ��tið Þ _c �tið ÞDt ð7:2:14Þ

When we let n!1; the approximate shear strain history approaches the given
shear strain history cð�tÞ, and the shear stress approaches:

s tð Þ ¼
Z t

to

b t ��tð Þ _c �tð Þ d�t) s tð Þ ¼
Z t

�1

b t ��tð Þ _c �tð Þ d�t ð7:2:15Þ

The implication in Eq. (7.2.15) follows from the assumption that _cð�tÞ ¼
0 when �t\to: This method to arrive at the result (7.2.15) is called the Boltzmann

it it1it − nt t=ot
t

γ

iγ1iγ −

iγΔ

tΔ

( )tγ

( )tγ

1t

Fig. 7.3 Shear strain history

128 7 Linearly Viscoelastic Fluids



superposition principle and was introduced by Ludwig Boltzmann [1844–1906] in
(1874).

A similar procedure may be used to derive the following expression for the
shear strain history cðtÞ if the shear stress history sðtÞ is given:

c tð Þ ¼
Z t

�1

a t ��tð Þ _s �tð Þ d�t ð7:2:16Þ

The two material functions, the relaxation function bðtÞ and the creep function
aðtÞ, are related to one another. To obtain this relationship the strain history
cðtÞ ¼ aðtÞs0 HðtÞ in a creep test and the corresponding stress history sðtÞ ¼
s0 HðtÞ are introduced into the constitutive equation (7.2.15). The result is:

s0 H tð Þ ¼
Z t

�1

b t ��tð Þ a �tð Þs0 d �tð Þ þ _a �tð Þs0 H �tð Þ½ � d�t

¼ b tð Þa 0ð Þs0 þ
Z t

�1

b t ��tð Þ _a �tð Þs0 H �tð Þ½ � d�t)

1 ¼ b tð Þag þ
Z t

0

b t ��tð Þ _a �tð Þ d�t

ð7:2:17Þ

A similar procedure applied to the constitutive equation (7.2.16) yields:

1 ¼ a tð Þbg þ
Z t

0

a t ��tð Þ _b �tð Þ d�t ð7:2:18Þ

From either of the Eqs. (7.2.17) or (7.2.18) we obtain the result:

1 ¼ agbg ð7:2:19Þ

For t ¼ 1 the Eq. (7.2.18) yields:

1 ¼ a 1ð Þbgþ a 1ð Þ b 1ð Þ � b 0ð Þ½ � )
1 ¼ ae be

ð7:2:20Þ

7.3 Mechanical Models

In order to get a physical understanding of viscoelastic response it is customary to
compare the behaviour of the viscoelastic material in uniaxial stress to that of
mechanical models. Figure 7.4a shows a test specimen of viscoelastic material
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subjected to an axial tensile force N. The cross-sectional area of the specimen is A,
and the length is L0 when N ¼ 0: The specimen has uniaxial stress r ¼ N=A; and
the strain in the axial direction becomes e: For a linearly elastic material Hooke’s
law applies:

r ¼ Ee ð7:3:1Þ

E is the modulus of elasticity. The mechanical model shown in Fig. 7.4b is a linear
spring with spring constant k. The force N ¼ rA results in an elongation DL ¼ eLo

such that:

N ¼ kDL ) rA ¼ ke L0 ); r ¼ kL0

A
e ¼ Ee ) k ¼ EA

L0
ð7:3:2Þ

Thus Eq. (7.3.1) represents the response to the mechanical model in Fig. 7.4b and
a linearly elastic material in uniaxial stress. Similarly the linear dashpot (damper)
model in Fig. 7.4c has the same response as a linearly viscous material in uniaxial
stress and the response equation is:

r ¼ c_e ð7:3:3Þ

The parameter c is a viscosity.
Figure 7.4d shows the simplest viscoelastic mechanical model relevant for fluid

modelling: the Maxwell model, James Clerk Maxwell [1831–1879]. The spring
provides the strain contribution: e1 ¼ r=E; and the dashpot results in a strain rate

[ ]0 1L ε+

N

σ

N

σ

σ

σ

σ

σ

σ

σ

c

E

E

E

c

1c

2c

test specimen in uniaxial stress

linear spring, Hooke model

linear dashpot, Newton model

Maxwell model

Jeffreys model

(a)

(b)

(c)

(d)

(e)

Fig. 7.4 Mechanical models
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contribution: _e2 ¼ r=c: The total strain rate for the Maxwell mechanical model is
then:

_e ¼ _r
E
þ r

c
ð7:3:4Þ

This equation is rearranged to the response equation for the Maxwell model:

rþ c

E
_r ¼ c_e ð7:3:5Þ

Figure 7.4e shows the Jeffreys model, Harold Jeffreys [1891–1989]. The
response equation for this model is developed as follows. The dashpot on the left-
hand side in Fig. 7.4c contributes the strain rate:

_e1 ¼
r
c1

ð7:3:6Þ

The parallel element of the spring and the dashpot contributes the strain e2

resulting in the stress Ee2 in the spring and the stress c2 _e2 in the dashpot. The total
stress in the parallel element is therefore:

r ¼ E e2 þ c2 _e2 ð7:3:7Þ

The total strain in the Jeffreys model is:

e ¼ e1 þ e2 ð7:3:8Þ

From the Eqs. (7.3.6–8) we obtain:

_r ¼ E _e� _e1ð Þþc2 €e� €e1ð Þ ¼ E _e� r
c1

� �
þ c2 €e� _r

c1

� �
)

rþ c1 þ c2

E
_r ¼ c1 _eþ c1 c2

E
€e

ð7:3:9Þ

This is the response equation for the Jeffreys model.
The mechanical models presented in Fig. 7.4 are most appropriate for visco-

elastic solids. However, the models may give a physical understanding for vis-
coelastic behaviour of both solid and liquids. Viscoelastic response of liquids is
usually investigated by shear tests, for instance with a cylinder viscometer. This
fact will be reflected in the presentation of the general constitutive equations in the
following section.

7.4 Constitutive Equations

In this section we shall present the most commonly used models for isotropic,
linearly viscoelastic, and incompressible fluids. Each model is related to a corre-
sponding mechanical model.
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The Maxwell fluid is defined by the following response equations, which is
analogous to Eq. (7.3.5) for a mechanical Maxwell model.

sik þ k _sik ¼ 2lDik ð7:4:1Þ

k is a time parameter called the relaxation time, and l is a viscosity. For simple
shear flow the Eq. (7.4.1) are reduced to the response equation for the shear
stress s and shear strain rate _c :

sþ k _s ¼ l _c ð7:4:2Þ

The relaxation function in shear bðtÞ is determined by integration of the
response equation (7.4.2) for the shear strain history:

cðtÞ ¼ c0 HðtÞ ð7:4:3Þ

with the shear stress condition: sðtÞ ¼ 0 when t� 0: Substitution of the shear strain
history (7.4.3) into the response equation (7.4.2), results in the differential equation:

sþ k _s ¼ lc0 dðtÞ ð7:4:4Þ

A particular solution of the homogeneous equation sþ k _s ¼ 0; is exp ð�t=kÞ:
Using the method of variation of parameters, we assume as the general solution of
Eq. (7.4.4):

sðtÞ ¼ CðtÞ exp � t

k

� �
ð7:4:5Þ

The function CðtÞ is determined from the inhomogeneous equation (7.4.4). When
the solution (7.4.5) is substituted into Eq. (7.4.4), we obtain:

_CðtÞ ¼ l
k

co exp
t

k

� �
dðtÞ ð7:4:6Þ

Because sðtÞ ¼ 0 for t\0; Cð0Þ ¼ 0: Thus for any t0\0 :

CðtÞ ¼
Z t

t0

_Cð�tÞ d�t ¼ l
k

c0

Z t

t0

exp
�t

k

� �
dð�tÞ d�t ¼ l

k
c0 HðtÞ ð7:4:7Þ

The response to the shear strain history: cðtÞ ¼ c0 HðtÞ is therefore, according to
Eq. (7.4.5) and the result (7.4.7):

sðtÞ ¼ l
k

c0 exp � t

k

� �
HðtÞ ð7:4:8Þ

This is the solution of the differential equation (7.4.4) under the stress condition
sðtÞ ¼ 0 when t\0: The relaxation function in shear for the Maxwell fluid is thus:

bðtÞ ¼ l
k

exp � t

k

� �
ð7:4:9Þ
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The graph bðtÞ of is shown in Fig. 7.5a. The relaxation time k is illustrated in
Fig. 7.5a.

The creep function in shear aðtÞ is determined by integration of the response
Eq. (7.4.2) for the shear stress history:

sðtÞ ¼ s0 HðtÞ ð7:4:10Þ

with the shear strain condition: cðtÞ ¼ 0 when t� 0: Substitution of the shear
stress history (7.4.10) into the response equation (7.4.2), results in the differential
equation:

_c ¼ 1
l

HðtÞ þ k
l

dðtÞ
� �

s0 ð7:4:11Þ

Integration of this equation from any time t0� 0 to the present time t yields:

c ¼
Z t

t0

_c d�t ¼ s0

l

Z t

t0

Hð�tÞ d�t þ ks0

l

Z t

t0

dð�tÞ d�t ¼ 1
l

t þ kð Þ s0 HðtÞ

From which we extract the creep function in shear for a Maxwell fluid:

aðtÞ ¼ k
l

1þ t

k

� �
ð7:4:12Þ

The graph of aðtÞ is shown in Fig. 7.5b, which also indicates the restitution when
the stress s0 is removed at time t1:

The Jeffreys fluid is defined by the following response equations, which is
analogous to Eq. (7.3.9) for a mechanical Jeffreys model.

sik þ k1 _sik ¼ 2lDik þ 2lk2 _Dik ð7:4:13Þ

k1 and k2 are time parameters, and l is a viscosity. For simple shear flow the Eq.
(7.4.13) are reduced to the response equation:

sþ k1 _s ¼ l _cþ lk2 €c ð7:4:14Þ
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Fig. 7.5 The relaxation function bðtÞ and the creep function aðtÞ in shear for the Maxwell fluid
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The relaxation function in shear bðtÞ and the creep function in shear aðtÞ for the
Jeffreys fluid are determined as for the Maxwell fluid. The result is:

bðtÞ ¼ l
k1

1� k2

k1

� �
exp � t

k1

� �
þ k2 dðtÞ

� �
;

aðtÞ ¼ t

l
þ k1 � k2

l
1� exp � t

k2

� �� � ð7:4:15Þ

The graph of bðtÞ and aðtÞ are shown in Fig. 7.6.
For a simple shear flow a general constitutive equation of a linearly viscoelastic

fluid with a relaxation function in shear bðtÞ is given by Eq. (7.2.15). A gener-
alization of this equation yields the following general constitutive equation of an
incompressible and isotropic linearly viscoelastic fluid when subjected to the rate
of deformation history DikðtÞ:

sikðtÞ ¼ 2
Z t

�1

bðt ��tÞDikð�tÞ d�t ð7:4:16Þ

It is convenient to rewrite the integral in Eq. (7.4.16) by introducing the con-
cept of a ‘‘past time’’ s ¼ t ��t; which measures time backwards from the present
time t to the current time �t :

s ¼ t ��t ) s ¼ t at �t ¼ 0; s ¼ 0 at �t ¼ t and d�t ¼ �ds ð7:4:17Þ

Then we obtain:

si kðtÞ ¼ 2
Z0

1

bðsÞDi kðt � sÞ �dsð Þ )

si kðtÞ ¼ 2
Z1

0

bðsÞDi kðt � sÞ ds

ð7:4:18Þ
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Fig. 7.6 The relaxation function bðtÞ and the creep function aðtÞ in shear for the Jeffreys fluid
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These equations are the general constitutive equations for linearly viscoelastic
fluids.

Alternative constitutive equations may be found as a generalization of the shear
flow equation (7.2.16), which is based on the creep function in shear aðtÞ. How-
ever, these alternative equations are not particularly useful for viscoelastic fluids.

7.5 Stress Growth After a Constant Shear Strain Rate

We consider a viscoelastic fluid between two parallel horizontal plates, Fig. 7.7.
The fluid is at rest at times t� 0: The lower plate is at rest at all times. At the time
t ¼ 0 the upper plate starts suddenly to move with a constant velocity vo; such that
the horizontal plate velocity is given by:

vðtÞ ¼ v0 HðtÞ ð7:5:1Þ

We assume simple shear flow in the fluid:

vxðx; tÞ ¼ vðtÞ y

h
¼ v0 HðtÞ y

h
; vy ¼ vz ¼ 0 ð7:5:2Þ

The only non-zero rate of deformation is:

DxyðtÞ ¼
1
2

dvx

dy
¼ 1

2
_c0 HðtÞ; _c0 ¼

v0

h
ð7:5:3Þ

The general constitutive equations (7.4.18) for a linearly viscoelastic fluid yield
only one non-zero extra stress:

sðtÞ � sxyðtÞ ¼ 2
Z1

0

bðsÞDxyðt � sÞ ds ¼
Z1

0

bðsÞ _c0 Hðt � sÞ ds )

sðtÞ � sxyðtÞ ¼ _c0

Z t

0

bðsÞ ds

2
4

3
5HðtÞ; _c0 ¼

vo

h
ð7:5:4Þ

hy

x
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( )xv y

fluid

gFig. 7.7 Simple shear flow
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After a while, theoretically after infinitely long time, the flow becomes steady, and
the shear stress is:

s0 ¼ _c0

Z1

0

bðsÞds ð7:5:5Þ

The integral represents the viscosity l0 in the case of a steady shear flow.

l0 ¼
Z1

0

bðsÞds ð7:5:6Þ

The value of l0 is equal to the area under graph of the relaxation function in shear,
as represented in Fig. 7.1. The shear stress in a steady flow is: s0 ¼ l0 _c0:

For a Maxwell fluid with the relaxation function in shear (7.4.9) we get:

Z t

0

bðsÞ ds ¼
Z t

0

l
k

exp � s

k

� �
ds ¼ l

k
�kð Þ exp � s

k

� �h it

0
¼ l 1� exp � t

k

� �h i
)

Z t

0

bðsÞ ds ¼ l 1� exp � t

k

� �h i
; l0 ¼

Z1

0

bðsÞ ds ¼ l ð7:5:7Þ

The viscosity in steady flow lo is thus equal to the viscosity parameter l: From the
equation (7.5.4) and (7.5.7) we obtain:

sðtÞ ¼ s0 1� exp � t

k

� �h i
HðtÞ; s0 ¼ sð1Þ ¼ l_c0 ð7:5:8Þ

The graph of the shear stress sðtÞ is shown in Fig. 7.8.

τ

t
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0 0τ μγ=
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Fig. 7.8 Shear stress sðtÞ
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7.6 Oscillations with Small Amplitude

We consider a viscoelastic fluid between two parallel plates as in Fig. 7.7. The
lower plate is at rest at all times, while the upper plate oscillates horizontally with
the velocity:

vðtÞ ¼ v0 cos xt; v0 ¼ constant ð7:6:1Þ

The parameter x is the angular: frequency of the oscillations. We assume that the
velocity field in the fluid is:

vxðy; tÞ ¼
vðtÞ

h
y ¼ v0

h
y cos xt; vy ¼ vz ¼ 0 ð7:6:2Þ

This assumption implies that we neglect propagation of velocity waves between
the oscillating plate and the stationary plate. The only non-zero rate of deformation
in this flow is:

DxyðtÞ ¼
1
2

dvx

dy
¼ 1

2
_c0 cos xt; _c0 ¼

v0

h
ð7:6:3Þ

The only extra stress in this flow is the shear stress sðtÞ � sxyðtÞ; which is to be
determined from the constitutive equations of the fluid. This procedure will be
demonstrated below.

When the shear stress sðtÞ � sxyðtÞ; has been found, we can use the result to
calculate the torque MðtÞ in the cylinder viscometer in Fig. 5.10 if the rotating
cylinder is subjected to a harmonically angular velocity:

XðtÞ ¼ X0 cos xt; X0 ¼ constant ð7:6:4Þ

The non-zero rate of deformation in the viscometer becomes, see Eq. (5.4.2):

DxyðtÞ ¼
1
2

_cðtÞ ¼ 1
2

r1

h
XðtÞ ¼ 1

2
_c0 cos x t; _c0 ¼

r1 X0

h
ð7:6:5Þ

The torque MðtÞ is obtained from the Eq. (5.4.6):

MðtÞ ¼ 2pr3
1

3
1þ 3H

r1

� �
sðtÞ ð7:6:6Þ

The constitutive equations (7.4.18) for linearly viscoelastic fluids give:

sðtÞ ¼
Z1

0

bðsÞ _cðt � sÞ ds ¼ _c0

Z1

0

bðsÞ cos x t � sð Þ½ � ds ð7:6:7Þ

The trigonometric formula: cos x t � sð Þ½ � ¼ cos x t cos xsþ sin x t sin xs ; is
substituted into the integral and the result is:
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sðtÞ ¼ g0ðxÞ cos x t þ g00ðxÞ sin x t½ � _c0 ð7:6:8Þ

g0ðxÞ ¼
Z1

0

bðsÞ cos xs ds; g00ðxÞ ¼
Z1

0

bðsÞ sin xs ds ð7:6:9Þ

The two parameters g0; called the dynamic viscosity, and g00; are material func-
tions for shear flow oscillations.

It is customary to introduce the complex viscosity function:

g� ¼ g0 � ig00; i ¼
ffiffiffiffiffiffiffi
�1
p

ð7:6:10Þ

The result (7.6.9) can now be presented as the real part of the complex shear stress
s � ðtÞ:

s � ðtÞ ¼ g � ðxÞ _c � ðtÞ; _c � ðtÞ ¼ _c0 expðix tÞ; expðixtÞ ¼ cos x t þ i sin x t

ð7:6:11Þ

We may express the complex viscosity function alternatively as:

g� ¼
Z1

0

bðsÞ exp �ixsð Þ ds ð7:6:12Þ

The shear strain rate is given by the real part of the complex shear strain rate, and
the shear stress is given by the real part of the complex stress:

Re _c � ðtÞf g ¼ Re _c0 exp ix tð Þf g ¼ _c0 cos xt

sðtÞ ¼ Re s � ðtÞf g ¼ Re g � ðxÞ _c � ðtÞf g ¼ g0ðxÞ cos x t þ g00ðxÞ sin x t½ � _co

ð7:6:13Þ

For a Maxwell fluid with the relaxation function in shear (7.4.9) we obtain,
using an integral table, the results:

g0ðxÞ ¼ l
k

Z1

0

exp � s

k

� �
cos x s ds ¼ l

k

1
k

1
k2 þ x2

" #
)

g0ðxÞ ¼ l

1þ kxð Þ2

g00ðxÞ ¼ l
k

Z1

0

exp � s

k

� �
sin x s ds ¼ l

k
x

1
k2 þ x2

" #
)

ð7:6:14Þ

g00ðxÞ ¼ lkx

1þ kxð Þ2
ð7:6:15Þ
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7.7 Plane Shear Waves

A linearly viscoelastic fluid fills the semi-infinite space: 1\x\1 ; 0� y\1;
Fig. 7.9. At y ¼ 0 the fluid sticks to a plane, horizontal plate. The plate oscillates in
the x� direction with the velocity v0 cos xt; and a velocity wave is propagated
from the plate and into the fluid. In order to simplify the solution procedure we shall
use complex quantities. Assuming that the complex velocity field in the fluid is:

vxðy; tÞ ¼ vðyÞ exp ixtð Þ; vy ¼ vz ¼ 0 ð7:7:1Þ

we shall determine the velocity in the x� direction as the real part of the complex
velocity vxðy; tÞ:
The boundary conditions are:

Re vxð0; tf g ¼ v0 cos xt; Re vxð1; tÞf g ¼ finite ð7:7:2Þ

The non-zero rate of deformation in the flow is:

Dxy y; tð Þ ¼ 1
2

ovx

oy
¼ 1

2
dv

dy
exp ixtð Þ ð7:7:3Þ

The constitutive equations (7.4.18) yield for the non-zero complex extra stress:

sxy y; tð Þ ¼ 2
Z1

0

bðsÞDxyðt � sÞ ds ¼ dv

dy
exp ixtð Þ

Z1

0

b sð Þ exp �ixsð Þ ds ð7:7:4Þ

By the Eqs. (7.7.4) and (7.6.12) the stress is expressed as:

sxy y; tð Þ ¼ g � dv

dy
exp ixtð Þ ð7:7:5Þ

The Cauchy equations of motion (3.3.26) are in this case reduced to:

q
ovx

ot
¼ � op

ox
þ osxy

oy
; 0 ¼ � op

oy
� qg; 0 ¼ � op

oz
ð7:7:6Þ

These three equations, the conditions vx ¼ vx y; tð Þ and sxy ¼ sxy y; tð Þ; and the
condition that the pressure p must be finite when x!1, imply the result:

y

x

cosov tω

fluidg

oscillating plate

Fig. 7.9 Fluid flow in a
semi-infinite space over an
oscillating plate
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p y; tð Þ ¼ �qgyþ C tð Þ ð7:7:7Þ

C tð Þ is an unknown function of time. The equation of motion in the x� direction,
i.e. the first of the equation (7.7.6) is now reduced to:

q
ovx

ot
¼ osxy

oy
ð7:7:8Þ

By the Eqs. (7.7.1) and (7.7.5) the above equation is transformed to an ordinary
differential equation:

d2v

dy2
� ixq

g� v ¼ 0 ð7:7:9Þ

The general solution of this equation is:

v yð Þ ¼ C1 exp

ffiffiffiffiffiffiffiffi
ixq
g�

s
y

 !
þ C2 exp �

ffiffiffiffiffiffiffiffi
ixq
g�

s
y

 !
ð7:7:10Þ

C1 and C2 are constants of integration. We define a complex parameter with two
positive real constants /1 and /2:

ffiffiffiffiffiffiffiffi
ixq
g�

s
¼ /1 þ i/2 ð7:7:11Þ

Then the velocity vx y; tð Þ becomes:

vx y; tð Þ ¼ vðyÞ expðix tÞ
¼ C1 exp /1yð Þ exp i /2yð Þ þ C2 exp �/1yð Þ exp �i/2yð Þ½ � expðix tÞ

ð7:7:12Þ

With the boundary conditions (7.7.2) the following real solution is obtained for the
fluid velocity in the x� direction:

vx y; tð Þ ¼ vo exp �/1yð Þ cos x t � /2yð Þ ð7:7:13Þ

This velocity field represents a wave with exponentially decreasing amplitude and,
as will be demonstrated, with the wave velocity:

c ¼ x
/2

ð7:7:14Þ

The wave propagates from the oscillating plate into the fluid in the y� direction:
Fig. 7.10 shows the graph of the wave at two different times: t and t þ Dt: The zero
point P moves in the y� direction during the time interval Dt a distance Dy
obtained from the expression:
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cos x t þ Dtð Þ � /2 yþ Dyð Þ½ � ¼ cos xt � /2yð Þ ) x Dt � /2 Dy ¼ 0 )

Dy ¼ x
/2

Dt ¼ c Dt

ð7:7:15Þ

The result implies that the velocity propagates into the fluid with the wave velocity
given by equation (7.7.14).

For a Newtonian fluid with viscosity l we find, using the formula:ffiffi
i
p
¼ 1þ ið Þ=

ffiffiffi
2
p

:

g� ¼ g0 ¼ l; g00 ¼ 0; /1 ¼ /2 ¼
ffiffiffiffiffiffiffi
qx
2l

r
ð7:7:16Þ

The velocity field for the shear wave in the Newtonian fluid becomes:

vx y; tð Þ ¼ vo exp �
ffiffiffiffiffiffiffi
qx
2l

r
y

� �
cos xt �

ffiffiffiffiffiffiffi
qx
2l

r
y

� �
ð7:7:17Þ

The wave velocity is expressed by:

c ¼
ffiffiffiffiffiffiffiffiffi
2lx
q

s
ð7:7:18Þ
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Fig. 7.10 Plane shear wave
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Chapter 8
Advanced Fluid Models

8.1 Introduction

Chapter 6 has presented the simplest and most commonly used models of non-
Newtonian fluids, the generalized Newtonian fluids. These models are well suited
for steady shear flow and in particular steady viscometric flows, and are also used
for unsteady flows of purely viscous fluids. However, a main objection to these
models is that they do not reflect normal stress differences in shear flows.

The linearly viscoelastic fluid models in Chap. 7 are only applicable in flows
with small deformations, i.e. small strains and small rotations. Also the strain rates
have to be small for these models to apply. The fundamental reasons for these
restrictions can be found in the books [2, 3, 10 and 15] or in books on continuum
mechanics, but is beyond the scope of the present book to present these objections
in any detail.

The aim of the present chapter is to present some of the mostly used advanced
fluid models of non-Newtonian fluids. The models in Chaps. 6 and 7 will appear as
special cases of the more advanced models. However, it is not possible to give a
detailed presentation and motivation of the individual models. The references
[1, 3, 5, 10, 11 and 15] give a more comprehensive discussion of the models
presented in this chapter, and of other useful but even more complex models.

The book ‘‘Engineering Rheology’’ by R. I. Tanner [15] provides interesting
evaluations of the models presented in this chapter and other models not included
here. Tanner also discusses the models in relation to special flow situations.

Before the advanced models are introduced, we shall review some of the basic
concepts used in continuum mechanics related to fluids, and even introduce a few
new concepts needed for the presentation of the advanced models.

Figure 8.1 presents a fluid body at three different times: K0 is a reference
configuration of the body at the reference time t0 : K is the present configuration of
the body at the present time t, and �K is a configuration at the current time �t :
�1\�t� t: The motion of the fluid is represented by the functions xiðX; tÞ, and
the particle velocity is:

F. Irgens, Rheology and Non-Newtonian Fluids,
DOI: 10.1007/978-3-319-01053-3_8, � Springer International Publishing Switzerland 2014
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vi ¼
oxi

ot
ð8:1:1Þ

We now introduce a new concept: the deformation gradients:

Fik ¼
oxi X; tð Þ

oXk
ð8:1:2Þ

The inverse F-1 of the deformation gradient matrix F has the elements:

F�1
kj ¼

oXk x; tð Þ
oxj

ð8:1:3Þ

such that:

FF�1 ¼ 1 , FikF�1
kj ¼

oxi

oXk

oXk

oxj
¼ dij ð8:1:4Þ

The matrix F�1 is called the inverse matrix of the matrix F.
The velocity gradients are defined in the Eq. (4.1.2) by:

Lik ¼
oviðx; tÞ

oxk
� vi;k ð8:1:5Þ

The relationship between the matrices F and L is found as follows:

Lik ¼
ovi

oxk
¼ o

oxk

oxi

ot

� �
¼ o

oXj

oxi

ot

� �
oXj

oxk
¼ o

ot

oxi

oXj

� �
oXj

oxk
¼ o

ot
Fij

� �
F�1

jk ,

Lik ¼ _FijF
�1
jk , L ¼ _FF�1 , _F ¼ LF

ð8:1:6Þ
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Fig. 8.1 Reference Rf, coordinate system Ox, and configurations K0; �K; and K, and base vectors ei
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The rate of deformation matrix, D defined in Eq. (4.1.13) and the rate of rotation
matrix W defined in Eq. (4.1.14) are given by:

D ¼ 1
2

Lþ LT
� �

; W ¼ 1
2

L� LT
� �

ð8:1:7Þ

Although the concept of strain is not of primary interest in fluid flow, we need a
few concepts from the strain analysis to get a satisfactory understanding of the
constitutive equations of some of the more advanced fluid models. By strain we
mean local deformation of a material. There are three primary concepts of strain
longitudinal strain expressing the change of the length of material line elements,
shear strain (or angular strain) expressing the change of the angle between
material line elements, and volumetric strain representing the change in the vol-
ume of the material. We shall include here a very brief introduction to longitudinal
strain. A differential material line element in the direction of the unit vector
e ¼ ek ek at the particle X, see Figure 8.1, is in the reference configuration K0

expressed by the vector dXk of length ds0: The same material line element is in the
present configuration K expressed by the vector dxi of length ds: We find:

ek ¼
dXk

ds0
; dxi ¼

oxi

oXk
dXk ¼ Fik

dXk

ds0
ds0 ¼ Fikekds0 ð8:1:8Þ

ds2
0 ¼ dXkdXk; ds2 ¼ dxidxi ¼ Fikekds0ð Þ Filelds0ð Þ ¼ ekFikFilelds2

0 ð8:1:9Þ

It follows that:

ds

ds0

� �2

¼ ekFikFilel ð8:1:10Þ

We now introduce the strain matrix:

Ekl ¼
1
2

FikFil � dklð Þ , E ¼ 1
2

FT F � 1
� �

ð8:1:11Þ

Then:

ds2 � ds2
o

ds2
o

¼ ekFikFilel � 1 ¼ 2ekEklel ð8:1:12Þ

The longitudinal strain in the direction e is defined as the change in length of a
material line element per unit length, and is mathematically expressed by:

e ¼ ds� ds

ds0
¼ ds

ds0
� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ekEklel

p
� 1 ð8:1:13Þ

The two other primary strain measures, the shear strain and the volumetric strain,
can also be expressed by the strain matrix. However, these two measures are not
needed in the following exposition.
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The time rate of change of the strain matrix E is the rate of strain matrix:

_E ¼ 1
2

_FT F þ FT _F
� �

¼ 1
2

FT LT F þ FT LF
� �

) _E ¼ FT DF ð8:1:14Þ

where a result from the Eq. (8.1.6) has been used, followed by use of the
expression in Eq. (8.1.7) for the rate of deformation matrix D. The literature uses
both the name rate of strain matrix and the name rate of deformation matrix for D,
probably because for small strains the two quantities: _E in Eq. (8.1.14) and
D coincide.

It has now been demonstrated that the matrices for strains, rates of strain, rates
of deformation, and the rates of rotation all may be derived from the deformation
gradient matrix F. The stresses in a material may depend on the complete history
of the deformation the material has been subjected to. We therefore introduce the
concept of deformation history Ft of a material:

Ft � Ft X; sð Þ ¼ F X;�tð Þ ¼ F X; t � sð Þ; 0� s\1; �1��t\t ð8:1:15Þ

The parameter s, called the ‘‘past time’’, was introduced in Eq. (7.4.17). We also
need to express the temperature history: Ht X; sð Þ:

In continuum mechanics a material model is called a simple thermomechanical
material if it can be defined by constitutive equations of the type:

Tik � rik ¼ Pik

s¼1

s¼0
Ft X; sð Þ; Ht X; sð Þ; X; t½ � ð8:1:16Þ

The matrix P is a functional, i.e. a general operator, of the deformation history and
the temperature history, and a function of the particle identification coordinates Xi

and of time t. Two examples of fluid models that classify as simple materials
according to the constitutive equations (8.1.16), have already been presented:

Generalized Newtonian fluids in Sect. 6.1 and defined by:

rik ¼ �pdik þ 2g _cð ÞDik

D ¼ 1
2

_FF�1 þ F�T _FT
� �

; Dik ¼
1
2

_FijF
�1
jk þ F�T

ij
_Fkj

� �

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DikDik

p
�

ffiffiffiffiffiffiffiffiffiffiffi
2trD2
p

ð8:1:17Þ

Linearly viscoelastic fluids in Sect. 7.4 and defined by Eq. (7.4.18):

rik ¼ �pdik þ
Z1

0

b sð ÞDik t � sð Þds ð8:1:18Þ

We shall now present a fundamental principle from continuum mechanics that
all constitutive thermomechanical models are supposed to obey. First we shall
agree that it seems reasonable to assume that the material properties of a contin-
uum are not influenced by a rigid body motion of the material. For instance, it is a
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priori understood that the stiffness of a spring is the same regardless of the position
and orientation of the spring, or in what kind of motion the spring is. A translation
and rotation of a material may always be eliminated by changing the reference Rf
to which the motion of the material is related. Thus, the material properties are
expected to be invariant with respect to two conditions: (a) any change of the
position and orientation of the material in space, and (b) any change of reference
Rf. The condition (a) implies that the space is homogeneous and isotropic with
respect to material properties, while the condition (b) implies that the material
properties are reference invariant. For all practical purposes the two conditions are
equivalent. The conditions may be formulated in:

The principle of material objectivity (PMO): The constitutive equations of a material
model must be reference invariant in the following sense: The stress vector t on a surface
at a particle is independent of the reference Rf to which the constitutive equations are
related, i.e. the stress vector t in the reference Rf is equal to the stress vector t� related to
the reference Rf �: In other words: Constitutive equations that in one reference Rf give the
stresses rik at the time t, shall in any other reference Rf � give the stresses r�ik ¼ rik if the
coordinate systems used in the two references coincide at the time t.

The principle implies that the response of a fluid does not change if a rigid-body
motion is added to the deformation field the fluid is subjected to. The rigid-body
motion may be eliminated by changing reference from Rf to a reference that moves
relative to Rf in accordance with the rigid-body motion.

8.2 Tensors and Objective Tensors

To really appreciate the implications of PMO we need to briefly introduce the
concept of tensors. Figure 8.2 shows a fluid body in a current reference configu-
ration �K at the time �t� t; a reference Rf with a coordinate system Ox, and a
reference Rf � with a coordinate system O�x�: The two references are moving with
respect to each other. To describe this motion we need the relations between the
base vectors in the two coordinate systems:

e�i ¼ Qikek ; ek ¼ Qike�i ð8:2:1Þ

where Qik is the cosine of the angle between the base vector e�i and the base vector
ek :

Qik ¼ Qik �tð Þ ¼ cos e�i ; ek

� �
ð8:2:2Þ

The elements Qik are called direction cosines for the base vectors. The matrix
Q ¼ ðQikÞ is called the transformation matrix for the coordinate transformation
from Ox to O�x�: The transformation matrix is an orthogonal matrix in the sense
that:

QT Q ¼ 1 , QikQil ¼ dkl , QT ¼ Q�1 ð8:2:3Þ

8.1 Introduction 147



That is: the transpose QT of the matrix Q is equal to the inverse Q�1 of Q:

QT
ik ¼ Qki; Q�1Q ¼ 1 , Q�1

ij Qjk ¼ dik ð8:2:4Þ

To see that in fact QT ¼ Q�1, we write:

ek ¼ Qike�i ¼ QikQijej ) QikQij ¼ dkj , QT Q ¼ 1 ð8:2:5Þ

A vector a is defined by its component set ak in Ox, or by the components
a�i in O�x�:

a ¼ akek ¼ a�i e�i ð8:2:6Þ

The relations between the two sets of components are found by writing:

a ¼ a�i e�i ¼ a�i Qikek ¼ akek ¼ akQike�i )
a�i ¼ Qikak , a� ¼ Qa; ak ¼ Qika�i , a ¼ QT a�

ð8:2:7Þ

The symbols a� and a are vector matrices of the components of the vector a.
The motion of a fluid particle with respect to the references Rf and Rf �is given

by the place vectors:

�r ¼ xk X;�tð Þek; �r� ¼ x�k X�;�tð Þe�k ð8:2:8Þ

The coordinate vector matrices X and X� relate to the same particle. From Fig. 8.2
we get the vector relationship:

�r� ¼ cþ �r , x�i e�i ¼ c�i e�i þ xkek ¼ c�i þ xkQik

� �
e�i ð8:2:9Þ

from which we obtain the coordinate relations:

r

1x

,K t

3x

2e

3e

1e *r
2 *x3 *x

1 *x

2 *e

1 *e

3 *e

Rf

*Rf
c

*O

P

O 2x

Fig. 8.2 The current configuration �K of a fluid body relative to two references Rf and Rf �
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x�i ¼ c�i þ Qikxk , x� ¼ c� þ Qx ,
xk ¼ �ck þ Qikx�i , x ¼ �cþ QT x�

ð8:2:10Þ

Let us first consider a situation in which the two references do not move relative
to each other, i.e. the vector c and the transformation matrix Q are constants. The
Cauchy stress theorem relates the components tk in the Ox-system of the stress
vector t on a surface at a particle to the coordinate stresses rkl and the components
nl of the unit normal vector n on the surface. In the O�x� � system this is a
relation between the components t�i of the stress vector, the coordinate stresses r�ij,
and the components n�j of the unit normal vector. Thus we have the relations:

tk ¼ rklnl , t ¼ Tn; t�i ¼ r�ijn
�
j , t� ¼ T�n� ð8:2:11Þ

The two sets of coordinate stresses are related, and the relationship is found as
follows, by use of the components relations (8.2.7):

t�i ¼ r�ijn
�
j ¼ Qiktk ¼ Qikrklnl ¼ QikrklQjln

�
j ) r�ijn

�
j ¼ QikrklQjln

�
j

Since the final result is valid for any choice of surface at the particle, i.e. any
choice of the vector n, it follows that:

r�ij ¼ Qikrkl Qjl , T� ¼ Q T QT ð8:2:12Þ

Equation (8.2.12), relating the stress matrices in two coordinate systems and which
represent the same state of stress, is called the transformation rule for the com-
ponents rkl and r�ij of a second order tensor, namely the stress tensor T. We say
that the stress tensor T is a coordinate invariant quantity, which in any coordinate
system is represented by the stress matrix in that coordinate system, i.e. T in Ox
and T* in O*x*. The Cauchy stress theorem (3.3.8) may now be expressed in a
coordinate invariant form as:

t ¼ T n , t ¼ Tn; t� ¼ T�n� Cauchy’s stress theorem ð8:2:13Þ

We will find that the velocity gradient matrix L, the rate of deformation matrix
D, and the rate of rotation matrix W related to the coordinate system Ox represent
tensors, i.e. the velocity gradient tensor L, the rate of deformation tensor D and the
rate of rotation tensor W respectively, in the sense that in any other Cartesian
coordinate system O*x* the rates of deformation and the rates of rotation are given
by the matrices L�; D�; and W� such that:

L�ij ¼ QikLklQjl , L� ¼ QLQT

D�ij ¼ QikDklQjl , D� ¼ QDQT

W�ij ¼ QikWklQjl , W� ¼ QWQT

ð8:2:14Þ

The Eqs. (8.2.12) and (8.2.14) show the general relationship between components
and matrices of a second order tensor in two Cartesian coordinate system. Because
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the matrix D is symmetric, D is called a symmetric tensor, while because W is an
antisymmetric matrix, W is an antisymmetric tensor.

For later reference we need to define the principal invariants of a symmetric
second order tensor, e.g. D. First we show that the trace of the matrices D and D*

are equal. Then it follows that the trace of the matrices D2 and D�
2

are equal and
that the determinants of D and D* are equal. From the Eq. (8.2.14) we obtain:

tr D� � Dii ¼ QikDkl Qil ¼ Dkldkl ¼ Dkk � trD

tr D�
2 � D�ikD�ki ¼ D�ikD�ik ¼ tr D�ð Þ2¼ tr Dð Þ2¼ tr D2

det D� ¼ det QDQT
� �

¼ det Q det D det QT ¼ det D

The three quantities tr D; tr D2; and det D are thus independent of the coordinate
system Ox, i.e. they are coordinate invariants, and they are denoted:tr D ;

tr D2; and det D. The three principal invariants of a symmetric second order
tensor D are defined as:

I ¼ trD; II ¼ 1
2

trDð Þ2�trD2
� �

; III ¼ det D ð8:2:15Þ

Now we shall consider the situation when the reference Rf � moves with respect
to Rf. With reference to Fig. 8.2 and Eq. (8.2.2), the motion of Rf � with respect to
Rf is, given by the vector cð�tÞ and the transformation matrix Qð�tÞ: It is convenient
to choose the coordinate systems Ox and O*x* such that they coincides at the
present time t.

x�i X�; tð Þ ¼ xi X; tð Þ; e�i tð Þ ¼ ei , QikðtÞ ¼ dik; cðtÞ ¼ 0 ð8:2:16Þ

According to the Eqs. (8.2.12) and (8.2.16) the two stress matrices representing the
stress tensor T coincide at the present time t:

r�ij ¼ rij , T� ¼ T at time �t ¼ t ð8:2:17Þ

According to the PMO the stress vector t� observed in Rf � is equal to the stress
vector t observed in Rf, i.e. the stress vector is independent of the reference. It then
follows from Cauchy stress theorem (8.2.13) that the stress tensor is also inde-
pendent of the reference:

T� ¼ T ð8:2:18Þ

Because the stress vector and the stress tensor are not influenced by a change of
reference they are called an objective vector and an objective tensor respectively.
Any quantity that is not influenced by a change of reference is called an objective
quantity or a reference invariant quantity. Thus the stress vector and the stress
tensor are objective quantities.

The material derivative of the stress matrix is called the stress rate matrix. We
shall now see that the stress rate matrices with respect to two references moving
with respect to each other do not represent an objective quantity. First we shall

150 8 Advanced Fluid Models



show the time derivative of the transformation matrix Q is antisymmetric at the
time �t ¼ t:

_QT ¼ � _Q , _Qki ¼ � _Qik at �t ¼ t ð8:2:19Þ

The matrix equation QT Q ¼ 1 is differentiated with respect to the time �t and
evaluated at the present time t:

d

d�t
QT Q
� �

¼ _QT Qþ QT _Q ¼ 0 ) _QT þ _Q ¼ 0 at �t ¼ t )
_QT ¼ � _Q ) _Qki ¼ � _Qik at �t ¼ t QED

Then we compute the material derivative of Eq. (8.2.12):

_r�ij ¼ _QikrklQjl þ Qik _rklQjl þ Qikrkl
_Qjl ð8:2:20Þ

If the two coordinate systems were both fixed in Rf, the transformation matrix
would have been time independent, and Eq. (8.2.20) gives the following rela-
tionship between the stress rate matrices:

Constant Q�matrix ) _r�ij ¼ Qik _rklQjl at �t\t; _r�ij ¼ _rkl at �t ¼ t

ð8:2:21Þ

But that is not the case here since the O�x� � system is moving with the reference
Rf �: At the present time t we obtain the following result, when the property
(8.2.19) is applied:

_r�ij ¼ _rij þ _Qikrkj � rik
_Qkj , _T� ¼ _T þ _QT � T _Q at �t ¼ t ð8:2:22Þ

From the relations (8.2.21) and (8.2.22) we may conclude: (1) The rate of stress
matrices with respect to coordinate systems fixed in a reference Rf represent a
coordinate invariant quantity, i.e. a second order tensor. (2) The rate of stress
matrices with respect to coordinate systems fixed in two references moving with
respect to each other do not represent a reference invariant or objective quantity,
and do not therefore represent the same tensor in the two references. We say that
the rate of stress matrices do not represent an objective tensor.

It is convenient to introduce the rate of rotation tensor S for the reference Rf
relative to the reference Rf � represented by the following matrices and components
at the present time t:

Skl ¼ _Qkl , S ¼ _Q in Ox at �t ¼ t

S�ij ¼ QikSklQjl ¼ Sij , S� ¼ S in O�x� at �t ¼ t
ð8:2:23Þ

We shall now investigate the relations between the rate of deformation matrices
and the rate of rotation matrices referred to the two references Rf and Rf � moving
relative to each other. First we calculate the velocities and velocity gradients in the
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two coordinate systems Ox and O�x�: We use a bar over the velocities and the
velocity gradients to indicate the operations are performed at the current time �t:

�vk ¼ _�xk; �Lkl ¼
o�vk

o�xl
� �vkl; at �t� t ð8:2:24Þ

�v�i ¼ _�x�i ¼ _c�i þ _Qik�xk þ Qik _�xk at �t� t

�L�ij ¼
o�v�i
ox�j
� _Qik

o�xk

ox�j
þ Qik

o�v�i
ox�j

at �t� t
ð8:2:25Þ

At the present time t: Qik ¼ dik and _Qik ¼ Sik, and the results (8.2.25) give:

v�i ¼ _x�i ¼ _c�i þ Sikxk þ _xi , v� ¼ _x� ¼ _c� þ S xþ _x

L�ij ¼ Sij þ Lij , L� ¼ Sþ L
ð8:2:26Þ

The rate of deformation matrices and the rate of rotation matrices at the present
time t with respect to the two references become:

Dij ¼
1
2

Lij þ Lji

� �
; D�ij ¼

1
2

L�ij þ L�ji

� �
¼ Dij ð8:2:27Þ

Wij ¼
1
2

Lij � Lji

� �
; W�ij ¼

1
2

L�ij � L�ji

� �
¼ Wij þ Sij ð8:2:28Þ

Using tensor symbols we write:

L� ¼ Lþ S; D� ¼ D; W� ¼Wþ S ð8:2:29Þ

From these results we conclude that while the rate of deformation matrices rep-
resent an objective: tensor, which is the rate of deformation tensor D, the velocity
gradient matrices and the rate of rotation matrices represent reference related
tensors, which are the velocity gradient tensors L and L� and the rate of rotation
tensors W and W*. Because D is an objective: tensor the principal invariants I, II,
and III of D, defined by the formulas (8.2.15), are also objective quantities, and
they are called objective scalars.

To insure that constitutive equations of fluids do satisfy the objectivity prin-
ciple, we may follow either of two general procedures:

1. The constitutive equations at a fluid particle are formulated in a reference Rf r

that rotates with the particle, such that the rate of rotation matrix Wr vanishes.
Such a reference is called a corotational reference and is introduced in
Sect. 8.4. The constitutive equations are then transformed to the reference Rf
originally chosen to describe the flow. The implication of this procedure will be
discussed in Sects. 8.4, 8.5, and 8.6.

2. The constitutive equations at a fluid particle are formulated in a coordinate
system imbedded in the fluid. The system moves and deforms with the fluid and
the coordinate system is curvilinear. Such coordinates are called convected
coordinates or codeforming coordinates. The constitutive equations are then
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transformed to the coordinate system fixed in the reference Rf and chosen to
describe the flow. In the present context we are not in the position to use
general curvilinear coordinates. However, implications of this procedure will be
discussed in Sect. 8.7.

For curvilinear coordinate system and tensor analysis see Irgens: ‘‘Continuum
Mechanics’’ [7].

8.3 Reiner-Rivlin Fluids

George Gabriel Stokes formulated four criteria for the relations between stresses
and the velocity field in a viscous fluid:

1. The stresses are continuous functions of the rates of deformation Dik:
2. The fluid is homogeneous such that the stresses are explicitly independent of

the particle coordinates Xi.
3. When the rates of deformation are zero, i.e. Dik ¼ 0; the stresses are given by

the isotropic thermodynamic pressure p ¼ pðq;HÞ:
4. Viscosity is an isotropic property, or in other words, the fluid is isotropic.

It may be shown that the first three criteria imply the following form of the
constitutive equations of viscous fluids, called in general Stokesian fluids.

rik ¼ �p q;Hð Þdik þ sik D; q;Hð Þ; sik 0; q;Hð Þ ¼ 0 ,
T ¼ �p q;Hð Þ1þ T0 D; q;Hð Þ; T0 0; q;Hð Þ ¼ 0

ð8:3:1Þ

Since the constitutive equations (8.3.1) involve only objective quantities, the
principle of material objectivity is satisfied. Furthermore, it may be shown that the
principle of material objectivity (PMO) implies that the fluid defined by
Eq. (8.3.1) is isotropic. Thus the fourth criterion of Stokes is implied by the first
three criteria. The fact that the constitutive equations (8.3.1) represent an isotropic
material is formulated mathematically by stating that the stress tensor is an iso-
tropic function of the rate of deformation tensor, see Irgens [7]. It then follows
from a mathematical theorem that the extra stresses in general can be expressed as:

sik ¼ adik þ 2gDik þ 4w2DijDjk , T0 ¼ a1þ 2gDþ 4w2D2 ð8:3:2Þ

a; g; and w2 are scalar-valued functions of the three principal invariants I, II, and
III of the tensor D.

For incompressible fluids:

I ¼ trD ¼ trD ¼ Dkk ¼ _ev ¼ 0 ð8:3:3Þ

and the magnitude of shear rate _c may be expressed as:
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_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2trD2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2trD2

p
¼ 2

ffiffiffiffiffiffiffiffi
�II
p

ð8:3:4Þ

For incompressible fluids the first term in the constitutive equations (8.3.2)
cannot be distinguished from the isotropic pressure term in the total stress
expressions (8.3.1). For incompressible fluids the extra stresses are therefore given
as:

sik ¼ 2gDik þ 4w2DijDjk , T0 ¼ 2gDþ 4w2D2 ð8:3:5Þ

These are the constitutive equations for a Reiner-Rivlin fluid (M. Reiner 1945, R.
S. Rivlin 1948).

For simple shear flows, Sect. 4.1.1, we obtain:

D ¼
0 1 0

1 0 0

0 0 0

0
B@

1
CA 1

2
_c

� �
; D2 ¼

1 0 0

0 1 0

0 0 0

0
B@

1
CA 1

2
_c

� �2

; _c ¼
ffiffiffiffiffiffiffiffiffiffiffi
2trD2
p

¼ v

h

I ¼ trD ¼ 0; II ¼ 1
2

trDð Þ2�trD2
� �

¼ � 1
2

_c; III ¼ det D ¼ 0

ð8:3:6Þ

The constitutive equations (8.3.5) give the extra stresses:

sikð Þ ¼ 2g

0 1 0

1 0 0

0 0 0

0
B@

1
CA 1

2
_c

� �
þ 4w2

1 0 0

0 1 0

0 0 0

0
B@

1
CA 1

2
_c

� �2

)

s12 ¼ g _c; s11 ¼ s22 ¼ w2 _c2; s33 ¼ 0

From the definitions of viscometric functions in Sect. 5.2 we see that g may be
interpreted as the viscosity function, that the primary normal stress coefficient w1
is zero, while the secondary normal stress coefficient may be interpreted as the
scalar-valued function w2 in Eq. (8.3.5).

Unfortunately no real fluids have been found that fit the Reiner-Rivlin fluid
model. As mentioned in Chap. 5, it is often found for polymers that w1 is about 10
times the absolute value of w2:Due to this fact the literature has rejected the Reiner-
Rivlin fluid in its general form. We see that the generalized Newtonian fluid model
is a Reiner-Rivlin fluid with w2 ¼ 0 and the viscosity function g as a function of
the second invariant II of D, i.e. a function of the magnitude of shear rate _c:

8.4 Corotational Derivative

We now introduce the concept of a corotational reference Rf r; i.e. a reference
rotating with the fluid particle that the constitutive equations are meant for. With
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respect to a corotational reference the rate of rotation matrix and the rate of
rotation tensor are zero:

Wr ¼ Wr
ik

� �
¼ 0 , Wr ¼ 0 ð8:4:1Þ

If Q is the transformation matrix representing the rotation of the corotational
reference Rf r with respect to the reference Rf chosen to finally present the con-
stitutive equation, it follows from the Eqs. (8.2.23) and (8.2.28) that:

Sik ¼ _Qik ¼ �Wik ð8:4:2Þ

The material derivative of the stress matrix Tr with respect to the corotational
reference is given by Eq. (8.2.22) as:

_Tr ¼ _T �WT þ TW ð8:4:3Þ

We take this matrix to define the matrix in Rf of an objective tensor orT; called
the corotational derivative of the stress tensor T. In Rf the matrix of the tensor
orT is thus:

orT ¼ _T �W T þ T W ð8:4:4Þ

In any other reference Rf*, not necessarily the corotational reference, we obtain
from the Eqs. (8.2.22, 8.2.29) and (8.4.2) that:

orT
� ¼ _T� �W�T� þ T� W� ¼ _T þ _QT � T _Q

� �
� W þ _Q
� �

T þ T W þ _Q
� �

¼ _T �W T þ T W )

orT
� ¼ _T �W T þ T W ð8:4:5Þ

The formulas (8.4.4) and (8.4.5) show that the two matrices orT and orT� are
equal, and thus they represent an objective tensor orT, the corotational derivative
of the stress tensor:

orT ¼ _T�WTþ TW ð8:4:6Þ

This is a tensor equation and may be interpreted by its matrix representation
(8.4.4) in the Ox� system:

We have seen in Eq. (8.2.29) that the rate of deformation matrix D represents
an objective tensor, the rate of deformation tensor D. The corotational derivative
of the rate of deformation tensor is defined by the matrix:

orD ¼ _D�WDþ DW ð8:4:7Þ

In the next section we need expressions for orDik in the case of steady simple
shear flow. From Sect. 4.1.1 we have:
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D ¼
0 1 0
1 0 0
0 0 0

0
@

1
A 1

2
_c

� �
; W ¼

0 1 0
�1 0 0
0 0 0

0
@

1
A 1

2
_c

� �
; _c ¼

ffiffiffiffiffiffiffiffiffiffiffi
2trD2
p

¼ v

h

ð8:4:8Þ

We compute:

WD ¼ Wij Djk

� �
¼

1 0 0
0 �1 0
0 0 0

0
@

1
A 1

2
_c

� �2

;

DW ¼ Dij Wjk

� �
¼

�1 0 0
0 1 0
0 0 0

0
@

1
A 1

2
_c

� �2
ð8:4:9Þ

When these results are introduced into Eq. (8.4.7), we obtain for the corotational
derivatives of the rate of deformation matrix for simple shear flow:

orD ¼ _D�WDþ DW ¼
0 1 0
1 0 0
0 0 0

0
@

1
A 1

2
€cþ

�1 0 0
0 1 0
0 0 0

0
@

1
A 1

2
_c2 ð8:4:10Þ

8.5 Corotational Fluid Models

A second-order fluid is a model that has been used for steady flows. The consti-
tutive equations are:

sik ¼ 2l Dik þ k5 orDik � 2k6 DijDjk

� �
, T 0 ¼ 2l Dþ k5 orD� 2k6 D2

� �
ð8:5:1Þ

l; k5; and k6 are temperature dependent material parameters. l is a viscosity
with unit Ns/m2 ¼ Pa � s, pascalsecond, while k5 and k6 are time parameters.
The numbering of the k0s will be explained by Table 8.1 below.

In steady simple shear flow we use the results in the equations (8.3.6) and
(8.4.10). Equation (8.5.1) now gives for the extra stresses:

T 0 ¼
l �k5 � k6ð Þ _c2 l _c 0

l _c l k5 � k6ð Þ _c2 0
0 0 0

0
@

1
A ,

s11 ¼ l �k5 � k6ð Þ _c2

s22 ¼ l k5 � k6ð Þ _c2

s12 ¼ l _c

s33 ¼ s31 ¼ s32 ¼ 0

ð8:5:2Þ
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The viscometric functions are:

g ¼ l; w1 ¼ s11 � s22ð Þ= _c2 ¼ �2lk5; w2 ¼ s22 � s33ð Þ=_c2 ¼ l k5 � k6ð Þ
ð8:5:3Þ

We see that all three viscometric functions are represented by constants. The
model may be used for low values of the shear rate.

A better model for steady flows is the CEF fluid, named after W.O. Criminale
Jr., J.L. Ericksen, and G.L. Filbey (1958) [4]. The constitutive equations are:

sik ¼ 2gDik þ 2w1 þ 4w2ð ÞDijDjk � w1orDik ,
T 0 ¼ 2gDþ 2w1 þ 4w2ð ÞD2 � w1orD

ð8:5:4Þ

g; w1; and w2 are the viscometric functions for viscometric flows as presented in
Sect. 5.2, and thus functions of the magnitude of shear rate _c defined in
equation (8.3.4).

A comparison of the equation (8.5.4) with the constitutive equations (6.1.3) of a
generalized Newtonian fluid shows that the generalized Newtonian fluid is a
special CEF fluid.

In a steady simple shear flow the magnitude of shear rate is equal to the shear
deformation rate: _c ¼ 2D12; the rate of deformation matrix D and the matrix D2

are given by the equation (8.3.6), and the corotational derivative of the rate of
deformation matrix orD is given by equation (8.4.10). The extra stresses from
equations (8.5.4) become:

T 0 ¼ g

0 1 0

1 0 0

0 0 0

0
B@

1
CA _cþ 2w1 þ 4w2ð Þ

1 0 0

0 1 0

0 0 0

0
B@

1
CA 1

2
_c

� �2

�w1

�1 0 0

0 1 0

0 0 0

0
B@

1
CA 1

2
_c2 )

T 0 ¼
w1 þ w2ð Þ _c2 g _c 0

g _c w2 _c2 0

0 0 0

0
B@

1
CA ,

s12 ¼ g _c

s11 � s22 ¼ w1 _c2

s22 � s33 ¼ w2 _c2

ð8:5:5Þ

Table 8.1 Fluid models obtained from the Oldroyd 8-constant fluid model

Fluid models Material parameters

Oldroyd 8-constant fluid l k1 k2 k3 k4 k5 k6 k7

Newtonian fluid l
Corotational Jeffreys fluid l k1 k5

Corotational Maxwell l k1

Upper-convected Maxwell fluid l k1 k1

Lower-convected Maxwell fluid l k1 �k1

Oldroyd A-fluid l k1 k2 �k1 k5 �k5

Oldroyd B-fluid l k1 k2 k1 k5 k5

Second-order fluid l k5 k5

8.5 Corotational Fluid Models 157

http://dx.doi.org/10.1007/978-3-319-01053-3_5
http://dx.doi.org/10.1007/978-3-319-01053-3_5
http://dx.doi.org/10.1007/978-3-319-01053-3_6


The results (8.5.5) confirm that g; w1; and w2 are the three viscometric func-
tions for viscometric flows.

It may be shown that the CEF fluid is a non-linear viscoelastic fluid. The
viscoelastic properties are contained in the normal stress coefficients.

The NIS fluid, named after H. Norem, F. Irgens, and B. Schieldrop (1986) [12],
is a viscoelastic-plastic fluid designed to be used for granular materials. A granular
material consists of solid particles in a fluid suspension. If the volume fraction of
solid particles is small, the material behaves approximately as the suspension fluid,
very often as a Newtonian fluid. The NIS-model has been discussed and applied in
F. Irgens, H. Norem (1996) [8] and F. Irgens, B. Schieldrop, C. Harbitz, U.
Domaas, and R. Opsahl (1998) [9].

The flow of the granular material is characterized as a macroviscous flow. For
high values of the volume fraction of solid particles, collisions between the par-
ticles as the granular material flow and deforms, result in non-Newtonian behavior.
In steady simple shear tests the shear stress s12 can be proportional to the square
of the shear strain rate. Furthermore, it is found that for granular materials with
predominantly dry, coarse particles, at low shear strain rates, the ratio of the shear
stress s12 and the normal stress r22 is approximately constant and independent
of the shear strain rate. This relationship may be expressed by:

s12 ¼ r22j j tan h ð8:5:6Þ

h is an internal dry friction angle of the granular material.
In its most general form the NIS fluid model is defined by the constitutive

equation:

sik ¼ 2
aþ bpe

_c
Dik þ sik from equation 8:5:4ð Þ ð8:5:7Þ

a represents cohesion, b is a dry friction coefficient, and pe, called the effective
pressure, is the part of the total pressure p that represents the direct contact
between the solid particles in the suspension. The total pressure consists of the
effective pressure and the pore pressure po:

A special version of the NIS fluid model has been used in simulations of snow
avalanches, landslides, and in submarine slides. The viscometric functions are
chosen as power laws:

g ¼ l _cn�1; w1 ¼ m1 _cn�2; w2 ¼ m2 _cn�2 ð8:5:8Þ

l; n; m1; and m2 are constant material parameters. Based on experimental evi-
dence, the power law index is chosen to be 2 for a granular material with a high
volume fraction of solid particles. For cohesionless material, a ¼ 0; the ratio
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between the shear stress s12 and the normal stress r22 in a steady simple shear flow
becomes:

s12

r22j j ¼
bpe þ l _c2

pe þ m2 _c2
ð8:5:9Þ

This relationship agrees reasonably well with experiments.

8.6 Quasi-Linear Corotational Fluid Models

These models are developed from linear viscoelastic models. The response
equations and constitutive equations at a fluid particle of the linear models are
presented in a corotational reference for the particle, and then transformed to any
convenient reference common to all fluid particles. These new models are there-
fore called quasi-linear and they satisfy the principle of material objectivity. The
quasi-linear fluid models have a much wider application potential then the cor-
responding linearly viscoelastic counterparts. The reason for this is mainly the fact
that the rotations of the principal axes of strains and the principal axes of strain
rates are eliminated by introducing the corotational reference

From the Jeffreys fluid the corotational Jeffreys fluid is developed. The model is
defined by the response equations:

sik þ k1orsik ¼ 2l Dik þ k5 orDikð Þ , T 0 þ k1orT
0 ¼ 2l Dþ k5 orDð Þ

ð8:6:1Þ

l; k1; and k5 are temperature dependent material parameters. In a corotational
reference the response equations (8.6.1) reduce to the response equations (7.4.13)
of the linear viscoelastic Jeffreys fluid. Constitutive equations for a corotational
Jeffreys fluid on forms similar to the constitutive equations (7.4.16) for the linear
Jeffreys fluid can be derived, but these will contain functions that are not easy to
discuss in the present context.

It follows from the expressions (8.4.4) for the corotational derivatives that the
response equations (8.6.1) are non-linear. The term quasi-linear refers to the fact
that the equation (8.6.1) are locally linear at a particle if they are related to a
corotational reference for that particle.

For the special case k5 ¼ 0 in the equations (8.6.1), we obtain the response
equations of the corotational Maxwell fluid.

sik þ k1orsik ¼ 2lDik , T 0 þ k1 orT
0 ¼ 2lD ð8:6:2Þ

Compare these equations with the equation (7.4.1) for a linearly viscoelastic
Maxwell fluid.
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8.7 Oldroyd Fluids

A coordinate system that is embedded in the fluid and moves and deforms with the
fluid is called a convected coordinate system and will naturally be a curvilinear
coordinate system. Another name for convected coordinates is codeforming
coordinates. In the present context we are in no position to discuss or use general
curvilinear coordinates. A presentation of curvilinear coordinates and convected
coordinates may be found in the book ‘‘Continuum Mechanics’’ by Irgens (2008)
[7]. However, we need to consider some consequences of using convected coor-
dinates in order to understand the definitions of the fluid models called Oldroyd
fluids. J. G. Oldroyd (1950) [13] and (1958) [14] defined the fluid models that are
named after him by constitutive equations defined in convected coordinates. Such
constitutive equations automatically satisfy the principle of material objectivity: a
rigid-body rotation superimposed on any deformation history can not be registered
by equations written in convected coordinates.

In Sect. 8.2 it was shown that the material derivative of the stress matrix T did
not represent an objective tensor. However, material differentiation of the stress
matrix in a convected coordinate system does lead to tensors satisfying the
objectivity principle. Transformation of the components to a reference fixed
Cartesian coordinate system will result in either of two objective tensors: the
upper-convected derivative Tr of the tensor T, and the lower-convected derivative
TD of the tensor T. The tensors Tr and TD have the matrix representations:

Tr ¼ _T � LT � T LT , rrik ¼ _rik � Lijrjk � rijLkj ð8:7:1Þ

TD ¼ _T þ LT T þ T L , rD
ik ¼ _rik þ Ljirjk þ rijLjk ð8:7:2Þ

Lik � vi;k are the velocity gradients. The two convected derivatives Tr and TD

are also called Oldroyd derivatives.
The convected derivatives Tr and TD , and the corotational derivative orT

of a tensor T are related. From the definitions (8.4.4), (8.7.1), and (8.7.2) we
obtain:

orT ¼ _T �W T þ T W ¼ _T � 1
2

L� LT
� �

T þ T
1
2

L� LT
� �

¼ 1
2

_T � LT � T LT
� �

þ 1
2

_T þ LT T þ T L
� �

)

orT ¼
1
2

Tr þ TD
� �

ð8:7:3Þ

In Problem 26 the following formulas are asked for:

orT ¼ Tr þ TDþ DT ; orT ¼ TD � TD� DT ð8:7:4Þ
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In order to demonstrate that the tensor defined by the matrix in equation (8.7.1)
is objective we construct the expression for the matrix in a moving reference Rf*.
From the equations (8.2.17–8.2.20, 8.2.22, 8.2.23, 8.2.26) and we obtain:

T� ¼ T ; _T� ¼ _T þ _QT � T _Q; L� ¼ Lþ _Q; _QT ¼ � _Q ð8:7:5Þ

Then:

T�
r ¼ _T� � L�T� � T�L�

T ¼ _T þ _QT � T _Q
� �

� Lþ _Q
� �

T � T LT þ _QT
� �

)
T�
r ¼ _T � LT � TLT

ð8:7:6Þ

Thus, the upper convected derivatives Tr and T�
r

of the stress matrix T with
respect to any two references, Rf and Rf �; and with coordinate systems Ox and
O*x* coinciding at the present time, are represented by the same matrix and
therefore represent an objective tensor. A similar analysis can be used to show that
the lower convected derivative of the stress matrix T represents an objective
quantity.

By transforming the response function (7.4.13) of the Jeffreys fluid from con-
vected coordinates to Cartesian coordinates fixed in the reference Rf, Oldroyd
obtained the response equations of two quasi-linear models: the lower-convected
Jeffreys fluid or the Oldroyd A-fluid defined by:

sik þ k1s
D
ik ¼ 2l Dik þ k5DD

ik

� �
ð8:7:7Þ

and the upper-convected Jeffreys fluid or the Oldroyd B-fluid defined by:

sik þ k1s
r
ik ¼ 2l Dik þ k5Drik

� �
ð8:7:8Þ

In a steady simple shear flow the following viscometric functions
g; w1; and w2 are found, and in a steady uniaxial extensional the following
extensional viscosity gE is found for the Oldroyd A-fluid and the Oldroyd B-fluid:
Oldroyd A-fluid:

g ¼ l; w1 ¼ 2l k1 � k5ð Þ; w2 ¼ �w1; gE _eð Þ ¼ 3l
1þ k5 _e� 2k1k5 _e2

1þ k1 _e� 2k2
1 _e2

ð8:7:9Þ

Oldroyd B-fluid:

g ¼ l; w1 ¼ 2l k1 � k5ð Þ; w2 ¼ 0; gE _eð Þ ¼ 3l
1� k5 _e� 2k1k5 _e2

1� k1 _e� 2k2
1 _e2

ð8:7:10Þ

Because it is commonly found that w2j j\\w1; the Oldroyd A-fluid overpredicts
the second normal stress coefficient w2 and has been judged in the literature not to
be a useful model. The Oldroyd B-fluid has a zero second normal stress coefficient
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w2 and predicts a tension-thickening effect when k1 [ k5; or a constant extensional
viscosity gE ¼ 3l when k1 ¼ k5: For k1\k5 the Oldroyd B-fluid predicts a
negative primary normal stress coefficient w1: Neither the Oldroyd A-fluid nor the
Oldroyd B-fluid predict shear-thinning.

As shown in Sect. 7.4, by choosing k5 ¼ 0 in the linearly viscoelastic Jeffreys
fluid, we obtain the Maxwell fluid. If we set k5 ¼ 0 in the Oldroyd A-fluid and
Oldroyd B-fluid, two new fluid models are created:

The lower � convected Maxwell fluid : sik þ k1s
D
ik ¼ 2lDik ð8:7:11Þ

The upper � convected Maxwell fluid : sik þ k1s
r
ik ¼ 2lDik ð8:7:12Þ

As seen from the formulas (8.7.9) the lower-convected Maxwell fluid overpredicts
the second normal stress coefficient w2. As seen from the formulas (8.7.10) the
upper-convected Maxwell fluid has a zero second normal stress coefficient w2 and
can predict tension thickening effect. None of the convected Maxwell fluids pre-
dict shear-thinning.

The most serious drawback with the four fluid models presented above is the
fact that none of them are shear-thinning. To remedy this J. L. White and A.
B. Metzner (1963) [16] proposed a fluid model, later named the White–Metzner
fluid, and defined by the response equation:

sik þ
g _cð Þ
b

srik ¼ 2g _cð ÞDik ð8:7:13Þ

g _cð Þ is the shear viscosity function and b is a shear modulus. The White–Metzner
fluid contains both the shear-thinning features of a general Newtonian fluid and the
viscoelastic, memory aspects of a Maxwell fluid. If the viscosity function is chosen
to have a zero-shear-rate limit, the White-Metzner fluid behaves as an upper
convected Maxwell fluid at low shear rates.

Oldroyd (1958) [14] proposed a fluid model that includes most of the fluid
models presented in this chapter. Apart for the corotational derivatives of the extra
stress matrix T 0 and the rate of deformation matrix D, the response equations
include all possible terms that are linear in D and T 0; and quadratic in D: The
model has been called Oldroyd 8-constant fluid. The response equations contain 8
constants, the viscosity l and 7 time parameters k1; k2; . . .; k7, or really 8 tem-
perature dependent material parameters:

T 0 þ k1orT
0 þ k2trT 0D� k3 T 0Dþ DT 0ð Þ þ k4tr T 0Dð Þ1

¼ 2l Dþ k5orD� 2k6D2 þ k7trD21
� �

,
sik þ k1orsik þ k2sjjDik � k3 sijDjk þ Dijsjk

� �
þ k4sjlDjldik

¼ 2l Dik þ k5orDik � 2k6DijDjk þ k7DjlDjldik

� �
ð8:7:14Þ

162 8 Advanced Fluid Models

http://dx.doi.org/10.1007/978-3-319-01053-3_7
http://dx.doi.org/10.1007/978-3-319-01053-3_7


Using the formulas (8.7.4), we can derive the alternative forms of the response
equations (8.7.14):

sik þ k1s
r
ik þ k2sjjDik þ k1 � k3ð Þ sijDjk þ Dijsjk

� �
þ k4sjlDjldik

¼ 2l Dik þ k5 Drik þ 2 k5 � k6ð ÞDijDjk þ k7DjlDjldik

� � ð8:7:15Þ

sik þ k1s
D
ik þ k2sjjDik � k1 þ k3ð Þ sijDjk þ Dijsjk

� �
þ k4sjlDjldik

¼ 2l Dik þ k5DD
ik � 2 k5 þ k6ð ÞDijDjk þ k7DjlDjldik

� � ð8:7:16Þ

Table 8.1 below shows that many of the fluid models presented in this chapter are
represented by the Oldroyd 8-constant fluid model.

8.7.1 Viscometric Functions for the Oldroyd 8-Constant
Fluid

The viscometric functions g _cð Þ; w1 _eð Þ; and w2 _eð Þ for the Oldroyd 8-constant
fluid will now be derived. For steady simple shear flow the matrices for the rate of
deformation, the rate of rotation, and the matrix D2 and the corotational derivative
of the rate of deformation matrix are found in the equations (8.3.6, 8.4.8) and
(8.4.10). In addition we compute the following matrices:

orT 0 ¼ �WT 0 þ T 0W ¼
�2s12 s11 � s22 �s23

s11 � s22 2s12 s13

�s23 s13 0

0
@

1
A 1

2
_c ð8:7:17Þ

trT 0ð ÞD ¼
0 s11 þ s22 þ s33 0

s11 þ s22 þ s33 0 0
0 0 0

0
@

1
A 1

2
_c ð8:7:18Þ

T 0Dþ DT 0 ¼
2s12 s11 þ s22 s23

s22 þ s11 2s12 s13

s23 s13 0

0
@

1
A 1

2
_c; tr D2

� �
1 ¼

1 0 0
0 1 0
0 0 1

0
@

1
A 1

2
_c2

ð8:7:19Þ
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The constitutive equations (8.7.14) for the Oldroyd 8-constant fluid now become:

s11 s12 s13

s21 s22 s23

s31 s32 s33

0
B@

1
CAþ k1

�2s12 s11 � s22 �s23

s11 � s22 2s12 s13

�s23 s13 0

0
B@

1
CA 1

2
_cþ k2

0 s11 þ s22 þ s33 0

s11 þ s22 þ s33 0 0

0 0 0

0
B@

1
CA 1

2
_c

� k3

2s12 s11 þ s22 s23

s22 þ s11 2s12 s13

s23 s13 0

0
B@

1
CA 1

2
_cþ k4

s12 0 0

0 s12 0

0 0 s12

0
B@

1
CA _c

¼ 2l

0 1 0

1 0 0

0 0 0

0
B@

1
CA 1

2
_cþ k5

�1 0 0

0 1 0

0 0 0

0
B@

1
CA 1

2
_c2 � 2k6

1 0 0

0 1 0

0 0 0

0
B@

1
CA 1

4
_c2 þ k7

1 0 0

0 1 0

0 0 1

0
B@

1
CA 1

2
_c2

8><
>:

9>=
>;

From this matrix equation we obtain the following component equations:

s11 þ s12 �k1 � k3 þ k4ð Þ _c ¼ l �k5 � k6 þ k7ð Þ _c2

s22 þ s12 k1 � k3 þ k4ð Þ _c ¼ l k5 � k6 þ k7ð Þ _c2

s33 þ s12k4 _c ¼ lk7 _c2

ð8:7:20Þ

s12 þ
1
2

s11 k1 þ k2 � k3ð Þ _cþ 1
2

s22 �k1 þ k2 � k3ð Þ _cþ 1
2
s33k2 _c ¼ l _c ð8:7:21Þ

We solve the equation (8.7.20) for s11; s22; and s33:

s11 ¼ l �k5 � k6 þ k7ð Þ _c2 � s12 �k1 � k3 þ k4ð Þ _c
s22 ¼ l k5 � k6 þ k7ð Þ _c2 � s12 k1 � k3 þ k4ð Þ _c

s33 ¼ lk7 _c2 � s12k4 _c

ð8:7:22Þ

The expressions for s11 and s22 are substituted into equation (8.7.21), and we
obtain the following equation for s12:

s12 1þ k2
1 þ k2 k3 �

3
2

k4

� �
� k3 k3 � k4ð Þ

	 

_c2

� �

¼ l _c 1þ k1k5 þ k2 k6 �
3
2

k7

� �
� k3 k6 � k7ð Þ

	 

_c2

� � ð8:7:23Þ

The viscosity function is then:

g _cð Þ ¼ s12

_c
¼ l

1þ k1k5 þ k2 k6 � 3
2 k7

� �
� k3 k6 � k7ð Þ


 �
_c2

1þ k2
1 þ k2 k3 � 3

2 k4
� �

� k3 k3 � k4ð Þ

 �

_c2
ð8:7:24Þ

From the equations (8.7.22) and (8.7.24) we obtain:

s11 � s22 ¼ 2s12k1 _c� 2lk5 _c2 ¼ 2gð _cÞk1 � 2lk5ð Þ _c2 )

w1 _cð Þ ¼ s11 � s22

_c2
¼ 2gð _cÞk1 � 2lk5

ð8:7:25Þ
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From the equations (8.7.22, 8.7.24, 8.7.25) we get:

s22 � s33 ¼ � s11 � s22ð Þ þ s11 � s33

¼ �w1 _c2 þ l �k5 � k6ð Þ _c2 � gð _cÞ �k1 � k3ð Þ _c2 )

w2 _cð Þ ¼ s22 � s33

_c2
¼ �w1 þ gð _cÞ k1 þ k3ð Þ � l k5 þ k6ð Þ ð8:7:26Þ

The expressions (8.7.8–8.7.9) for the viscometric functions for the Oldroyd A-fluid
and Oldroyd B-fluid are contained in the formulas (8.7.24–8.7.26).

8.7.2 Extensional Viscosity for the Oldroyd 8-Constant Fluid

Uniaxial extensional flow is presented in Sect. 4.5.2 and is given by the velocity
field:

v1 ¼ _ex1; v2 ¼ �
1
2

_ex2; v1 ¼ �
1
2

_ex3 ð8:7:27Þ

We want to find the extensional viscosity defined by:

gE _eð Þ ¼ s11 � s22

_e
ð8:7:28Þ

Due to symmetry: s22 ¼ s33, and:

tr T 0 ¼ s11 þ s22 þ s33 ¼ s11 þ 2s22 ð8:7:29Þ

We find the following matrices:

D ¼
2 0 0
0 �1 0
0 0 �1

0
@

1
A 1

2
_e; D2 ¼

4 0 0
0 1 0
0 0 1

0
@

1
A 1

4
_e2; W ¼ 0 ð8:7:30Þ

tr T 0ð ÞD ¼
2 s11 þ 2s22ð Þ 0 0

0 � s11 þ 2s22ð Þ 0
0 0 � s11 þ 2s22ð Þ

0
@

1
A 1

2
_e ð8:7:31Þ

T 0D ¼ DT 0 ¼
2s11 0 0

0 �s22 0
0 0 �s22

0
@

1
A 1

2
_e; trD2

� �
1 ¼ 3

2
_e2

1 0 0
0 1 0
0 0 1

0
@

1
A

ð8:7:32Þ

tr T 0Dð Þ1 ¼
1 0 0
0 1 0
0 0 1

0
@

1
A s11 � s22ð Þ_e ð8:7:33Þ
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_T 0 ¼ 0; _D ¼ 0; orT
0 ¼ 0; orD

0 ¼ 0 ð8:7:34Þ

From the constitutive equation (8.7.14) we now obtain the matrix equation:

s11 s12 s13

s21 s22 s23

s31 s32 s22

0
B@

1
CAþ k2 s11 þ 2s22ð Þ

2 0 0

0 �1 0

0 0 �1

0
B@

1
CA 1

2
_e

� k3

2s11 0 0

0 �s22 0

0 0 �s22

0
B@

1
CA_eþ k4 s11 � s22ð Þ

1 0 0

0 1 0

0 0 1

0
B@

1
CA_e

¼ 2l

2 0 0

0 �1 0

0 0 �1

0
B@

1
CA 1

2
_e� 2k6

4 0 0

0 1 0

0 0 1

0
B@

1
CA 1

4
_e2 þ 3

2
k7

1 0 0

0 1 0

0 0 1

0
B@

1
CA_e2

8><
>:

9>=
>;

ð8:7:35Þ

From this matrix equation we obtain two component equations and the expression
for trT 0:

s11 þ k2 s11 þ 2s22ð Þ_e� 2k3 s11 _eþ k4 s11 � s22ð Þ_e ¼ l 2_e� 4k6 _e2 þ 3k7 _e2
� �

s22 �
1
2
k2 s11 þ 2s22ð Þ_eþ k3 s22 _eþ k4 s11 � s22ð Þ_e ¼ l �_e� k6 _e2 þ 3k7 _e2

� �
ð8:7:36Þ

Solving these two equations (8.7.37) for s11 � s22ð Þ we get the expression for the
extensional viscosity:

gE ¼
s11 � s22ð Þ

_e
¼ 3l

1� k6 _eþ 3
2 k2 � k3
� �

2k6 � 3k7ð Þ_e2

1� k3 _eþ 3
2 k2 � k3
� �

2k3 � 3k4ð Þ_e2
ð8:7:37Þ

The expressions for the extensional viscosity for the Oldroyd A-fluid and Oldroyd
B-fluid are contained in the formula (8.7.37).

8.8 Non-Linear Viscoelasticity: The Norton Fluid

All metals show non-linearly viscoelastic response, except at very low levels of
stress, whenever the temperature is higher than a critical temperature Hc: Also
plastics must often be treated as non-linearly viscoelastic materials. For materials
showing a dominant secondary creep, like metals, and that is subjected to weakly
varying stress the following constitutive equations are often applied:
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3
2

_ec

rc

re

rc

� �m�1

T 0ik þ
1

2G
_Tik �

m
1þ vð Þ

_Tjj dik

� �
¼ Dik ,

3
2

_ec

rc

re

rc

� �m�1

T0 þ 1
2G

_T� m
1þ vð Þ tr _T

� �
1

� �
¼ D

ð8:7:38Þ

_ec; rc; m; G and m are material parameters. G is the shear modulus of elasticity
and m is called the Poison’s ratio. For incompressible materials m ¼ 0:5. The stress
re is an effective stress and is defined by:

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

T 0ikT 0ik

r
ð8:7:39Þ

The first term in the equation (8.7.38) reflects non-linear viscosity while the two
last terms express linear elastic behavior.

For a uniaxial state of stress r in the x1 � direction the effective stress becomes
equal to rj j, and the constitutive equations (8.7.38) reduce to:

_ec

rc

r
rc

� �m�1

rþ _r
E
¼ v1;1 ; � 1

2

_ec

rc

re

rc

� �m�1

r ¼ v2;2¼ v3;3 ð8:7:40Þ

E ¼ 2Gð1þ mÞ is the modulus of elasticity. The first of the equation (8.7.40) is
called Norton’s law for secondary creep, and the equations (8.7.38) define the
Norton Fluid, named after F. H. Norton, Creep of Steel at high Temperature,
McGraw-Hill (1929). Note that the linearly elastic contribution in the constitutive
equations (8.7.38) presumes small strains. This implies that the Norton fluid model
is mostly relevant for fluid-like behavior of solids, as in creep and stress relaxation.
The first of the constitutive equations (8.7.40) resembles the response equation
(7.3.5) for the mechanical Maxwell model, but with a non-linear viscous dashpot in
series with a linear elastic spring.
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Symbols

A ¼ Aikð Þ; Aik 3� 3matrix, matrix elements
AT ) AT

ik ¼ Aki AT transposed matrix
A�1 ) AA�1 ¼ 1 A�1 inverse matrix
A ; Aij tensor, tensor components
a; a; ai vector, vector matrix, vector

components
b body force
c specific heat
c vorticity
D ¼ Dikð Þ; D rate of deformation matrix, rate of

deformation tensor
Dik rates of deformation
De Deborah number
E modulus of elasticity, internal energy
E Green strain tensor
e specific internal energy
ei base vectors
F deformation gradient
f Fanning friction number
f x1; x2; x3; tð Þ � f x; tð Þ place function
f X1;X2;X3; tð Þ � f X; tð Þ particle function
_f ðX; tÞ ¼ of ðX;tÞ

ot � otf ðX; tÞ material derivative of a particle func-
tion f ðX; tÞ

_f ðx; tÞ ¼ otf þ f ;i vi material derivative of a place function
f ðx; tÞ

of

oxi
� f ;i ;

o2f

oxjoxi
� f ;ij� f ;ji ;

of

ot
� otf

X3

i¼1

of ðx; tÞ
oxi

vi � f ;i vi
Einstein summation convention
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G shear modulus
g gravitational force per unit mass
h x; tð Þ heat flux vector
H tð Þ Heaviside unit step function
K present configuration, consistency

parameter
K0 reference configuration
�K current configuration
k heat conduction coefficient
M torque
m mass
N1, N2 primary and secondary normal stress

difference
n power law index
P mechanical power, modified pressure
p pressure, thermodynamic pressure
pe effective pressure
p0 pore pressure
ps static pressure
Q ¼ Qikð Þ; Qik transformation matrix, direction

cosines, volumetric flow
q heat flux
R radius, gas constant
R rotation tensor
r place vector
Rf reference frame, reference
S rate of rotation tensor
T 0 ¼ T 0ik

� �
¼ sikð Þ; T0 extra stress matrix, extra stress tensor

T ¼ Tikð Þ ¼ rikð Þ; T stress matrix, stress tensor
Tik coordinate stresses
t time
t stress vector
v; vi velocity vector, velocity components
W; W ; Wik rate of rotation tensor, rate of rotation

matrix, rates of rotation
x angular velocity vector

v ¼ _r ¼ or X;tð Þ
ot � ot r X; tð Þ velocity of particle X

vi ¼ _xi ¼ oxi X;tð Þ
ot � otxi X; tð Þ velocity components

x, y, and z Cartesian coordinates
xi Cartesian particle coordinates in the

present configuration, place
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x �
x
x2

x3

0
@

1
A � x1 x2 x3f g

place, vector matrix

Xi Cartesian particle coordinates in the
reference configuration, particle

X �
X1

X2

X3

0
@

1
A � X1 X2 X3f g particle, vector matrix

xi X1;X2;X3; tð Þ � xi X; tð Þ motion of particle X
x1; x2; x3; tð Þ � x; tð Þ Eulerian coordinates
X1;X2;X3; tð Þ � X; tð Þ Lagrangian coordinates
r � ei

o
oxi

del-operator in Cartesian coordinates

ra � grad a ¼ ei
oa
oxi

gradient of a scalar a

r � a � div a ¼ oai
oxi
� ai;i divergence of a vector a

r� a � curl a � rot a rotation of a vector a
1 unit matrix
1 unit tensor
x, xi, X, Xi Cartesian coordinates
Z Zener-Hollomon parameter
a, b,… scalars
a cohesion
aðtÞ creep function in shear
ag; ae glass compliance, equilibrium compli-

ance in shear
b friction coefficient
bðtÞ relaxation function in shear
bg; be glass modulus, equilibrium modulus in

shear
c shear strain
ce equilibrium shear strain
_c; _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DikDik
p

shear rate, magnitude of shear rate
dij Kronecker delta
dðtÞ Dirac delta function
e; _e longitudinal strain, longitudinal strain

rate
ev; _ev volumetric strain, volumetric strain

rate
g _cð Þ viscosity function
gE _eð Þ extensional viscosity, Trouton

viscosity
gEB _eð Þ; gEP _eð Þ biaxial extensional viscosity, planar

extensional viscosity
H temperature
h internal friction angle
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j bulk modulus, bulk viscosity
l viscosity
m Poissons’s ratio
q density
r normal stress
rc stress parameter
re effective stress
rik coordinate stresses
s; sy shear stress, yield shear stress
se equilibrium shear stress
sik extra stresses
w1;w2 primary and secondary normal stress

coefficient
x angular frequency, stress power per

unit volume
R; h; z cylindrical coordinates
r; h;/ spherical coordinates
I, II, III principal invariants of the rate of

deformation tensor D
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Problems

Problem 1. A concentric cylinder viscometer is used to measure the viscosity l of
a Newtonian-fluid. The cylindrical container rotates with constant angular velocity
x: The inner cylinder is kept at rest by a constant torque M. The inner cylinder has
a radius R; and the distance between the two cylindrical surfaces in contact with
the fluid is h ð\\RÞ: The fluid sticks to the walls. In order to eliminate the
influence of shear stresses on the plane circular end surface of the inner cylinder,
the torques is measured for two heights H1 and H2 of the thin fluid film between
the cylindrical surfaces.

Determine the viscosity l of the fluid when the following data are given:

R ¼ 50 mm, h ¼ 0:5 mm, x ¼ 30 rad/s

H ¼ H1 ¼ 50 mm) M ¼ M1 ¼ 0:45 Nm

H ¼ H2 ¼ 100 mm) M ¼ M2 ¼ 0:81 Nm

Fig. Problem 1

H
h

g
M

R
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Problem 2. A closed vessel filled with a fluid is given a translatoric motion defined
by the velocity field:

v1 ¼ �vo sin xt; v2 ¼ vo cos xt

vo and x are constants. The fluid moves with the vessel as a rigid body. Show
the streamlines at time t are straight lines, and that the path lines are circles.

Problem 3. Show that the streamlines and the path lines coincide for the following
type of non-steady two-dimensional flow:

v1 ¼ f ðtÞ gðx; yÞ; v2 ¼ f ðtÞ hðx; yÞ; v3 ¼ 0

f(t), g(x,y), and h(x,y) are arbitrary functions of the variables: time t and
Cartesian coordinates x and y.

Problem 4. Let aðr; tÞ ¼ 0 represent a fixed boundary surface A in a flow of a
fluid. Show that the velocity field vðr; tÞ must satisfy the condition:

v � ra ¼ 0 on A

Problem 5. Let aðr; tÞ ¼ 0 represent a moving boundary surface A in a fluid flow.
Show that the velocity field vðr; tÞ must satisfy the condition:

otaþ v � ra ¼ 0 on A

Problem 6. The following information is known about the velocity field of the
flow of an incompressible fluid:

v1 ¼ v1 x1; tð Þ ¼ � ax1

to � t
; v2 ¼ v2 x2; tð Þ; v2 0; tð Þ ¼ 0; v3 ¼ 0

a and to are constants.

(a) Determine the velocity component v2 x2; tð Þ:
(b) Compute the local acceleration, the convective acceleration, and the particle

acceleration.
(c) Show that the flow is irrotational, i.e. rot v ¼ 0; and determine the velocity

potential / from the formula v ¼ r/:

Problem 7. Two vectors are defined by their Cartesian components:

a ¼ 1; 2;�2½ �; b ¼ 2; 1;�1½ �

Compute:

(a) the scalar product: ab ¼ ai bi

(b) the matrices: A ¼ Aij

� �
¼ ai bj

� �
; B ¼ Bij

� �
¼ bi aj

� �
(c) the scalar: a ¼ Aij Bij

(d) the vector: ci ¼ Aikbk
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Problem 8. The coordinate stresses in a particle Xi are given by:

rij ¼ �p dij þ sij

Determine the formula for the normal stress on a surface with unit normal:
n ¼ cos /; sin /; 0½ �;where is the angle between n and the x1 � axis:

Problem 9. A capillary viscometer consists in principle of a container with a long
straight circular thin tube (capillary tube). The container, which may be open or
closed, as indicated in the figure, is filled with a fluid for which we will determine
the viscous properties. For a given pressure po over the free fluid surface the
volume flow Q through the tube is determined by measuring the amount of fluid
flowing out of the tube in a certain time interval.

Assume static conditions in the container and that the fluid level h is
approximately constant. Also neglect the special flow conditions at the inlet and
the outlet of the tube. The atmospheric pressure at the outlet is pa:

l

h

g

ap

Q

d

op

Fig. Problem 9
A fluid is modeled as a power-law fluid. The consistency K and power law

index n shall be determined using the following procedure:

(a) Develop the formula:

po � pa

l
þ qg 1þ h

l

� �
¼ 8Q

pd3

3nþ 1
n

� �n4K

d

(b) Set: h ¼20 cm, l ¼ 50 cm, d ¼ 5 mm, q ¼ 1,05�103 kg/m3.

Determine K and n using the formula above and the following two sets of
data:

(1) Q1 ¼25 cm3/s for po � pa ¼ 8,92 kPa
(2) Q2 ¼35 cm3/s for po � pa ¼ 11,73 kPa
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Problem 10. The container in the capillary viscometer in problem 9 is now open
and the pressure po is equal to the atmospheric pressure pa. The container is filled
with fluid to a height h = H. The container has the internal diameter D. Determine
the time it takes to empty the container through the tube. Neglect inflow and
outflow lengths in the tube, and assume static conditions in the container.

(a) The fluid is modeled as a Newtonian fluid with viscosity l:
(b) The fluid is modeled as a power-law fluid with consistency K and index n:

Answer: a) 32llD2

qgd4 ln 1þ H
l

� �
; b) 4K

qgd

� �1
n

1þ H
l

� �n�1
n �1

h i
3nþ1
n�1

2lD2

d3

Problem 11. A Newtonian fluid flows between two parallel planes a distance
h apart. One of the planes is at rest and is kept at constant temperature To. The
other plane moves with a constant velocity vo and is insulated. The gradient of the
modified pressure is constant equal to dP/dx in the flow direction. The viscosity l
and the thermal conductivity k are constants. Determine the temperature field TðyÞ
in the fluid.

hy

x

v

( )xv y

fluid
oT

oT
g

Fig. Problem 11
Problem 12. A Newtonian fluid moves in the annular space between two
concentric cylindrical surfaces. The inner and outer radii of the annular space are
r1 and r2, and the inner cylindrical surface is at rest. The outer cylindrical surface
is subjected to a torque M and can rotate. Neglect end effects and assume steady
laminar flow with the velocity field in cylindrical coordinates R; h; zð Þ:

vh ¼ vh Rð Þ; vR ¼ vz ¼ 0

(a) Show that: vh ¼ x r1

1� r1=r2ð Þ2½ �
r1
r2
� r1 R

r2
2

h i
; M ¼ 4plLx r2

1

1� r1=r2ð Þ2½ �

(b) Show that the flow is irrotational when b!1; and determine the velocity
potensial / such that v ¼ r/:

Problem 13. The annular space between two concentric cylindrical surfaces is
filled with a Bingham-fluid. The inner and outer radii of the annular space are r1

and r2, and the inner cylindrical surface is at rest. The outer cylindrical surface is
subjected to a torque M and can rotate. Neglect end effects and assume steady
laminar flow with the velocity field in cylindrical coordinates R; h; zð Þ:

vh ¼ vh Rð Þ; vR ¼ vz ¼ 0
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(a) Find an expression for the shear stress sRhðRÞ:

(b) Determine the minimum value of the torque M that make flow possible..
(c) Determine the velocity field and draw a graph of vh(R). Determine the angular

velocity of the outer cylindrical surface.

( )Rθ R

( )v Rθ

R

R

1r

2r

M

Fig. Problem 13

Problem 14. Determine the velocity field and draw the graph of vh Rð Þ in problem
13 when the conditions are altered as follows: The inner cylindrical surface is
subjected to the torque M, while the outer cylindrical surface is at rest.

Problem 15. A generalized Newtonian fluid with density q and viscosity function
given by the power law has a steady, laminar flow in an annular space between two
concentric cylindrical surfaces with vertical axis and radii r1 and r2. The flow is
driven by a modified pressure gradient oP=dz ¼ �c in the axial z� direction:

(a) Assume that the distance between the cylindrical surfaces: h ¼ r2 � r1\\r1:
Determine the velocity field and the volume flow Q.

(b) Let K ¼ 18.7 Nsn/m2, n ¼ 0.4 for the power law parameters, and h ¼ 20 mm.
Determine Q as a function of the modified pressure gradient c.

(c) Determine the velocity field and the volume flow when h can not be assumed
much less than r1:

Problem 16. The figure illustrates a parallel-plate viscometer. A thick non-
Newtonian fluid is placed between two parallel plates. The lower plate is at rest,
while the upper plate is rotating with constant angular velocity x: The torque M as
a function of x is recorded. A power-law fluid defined by the consistency
parameter K and power law index n, is suggested as a fluid model. The velocity
field in cylindrical coordinates ðR; h; zÞ is assumed to be:

vh ¼ Rf ðzÞ; vR ¼ vz ¼ 0

(a) Show that if accelerations are neglected f ðzÞ ¼ xz=h:

(b) Derive the following formula relating M and x : M ¼ 2pK x
h

� �nrnþ3

nþ3.
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This formula may be used to evaluate the material parameters K and n.

h

R

r

fluid

M

g

z,K,n

Fig. Problem 16

Problem 17. A Newtonian fluid with density q and viscosity l has a steady,
laminar flow in an annular space between two concentric cylindrical surfaces with
a vertical axis. The flow is driven by a modified pressure gradient oP=dz and a
rotation of the inner cylindrical surface. The inner cylinder rotates with a constant
angular velocity x:

( )v Rθ

R

1r2r

g

zv
zv

Fig. Problem 17
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(a) Assume that h ¼ r2 � r1\\r1: Determine the velocity field and the volume
flow in the axial direction.

(b) Determine the velocity field and the volume flow when h is not much less than
r1:

Problem 18. The viscosity function gð _cÞ for steady unidirectional shear flow is to
be determined experimentally for a polymer solution. The fluid flows through a
circular capillary tube with internal diameter d ¼ 2 mm. The reduction of the
modified pressure DP along a length of l ¼ 100 mm is measured. The Table.
Problem 18 presents corresponding data for DP and the volume flow Q. The table
is adapted from Bird et al. [3].

Use the method presented in Sect 5.5 and:

(a) Determine the shear stress at the tube wall: so ¼ �DP d=4l; and the parameter
C ¼ 32Q=pd3: Draw the graph for log so versus log C:

(b) Determine the parameter: �n ¼ d ln soð Þ
d ln Cð Þ ¼

d log soð Þ
d log Cð Þ. Compute:

_co ¼
3�nþ 1

4�n
; g _coð Þ ¼

so

_co

Draw the graph of log g versus log _c: Try to fit the experimental results to the
viscosity function for the Carreau fluid model presented in Sect. 6.1

Table Problem 18

DP

mm H2O½ �
Q

cm3=s
	 


16:3

40:8

69:4

108

173

240

306

398

490

0:0157

0:0393

0:0785

0:157

0:393

0:785

1:57

3:93

7:85

Problem 19. Fig. 5.8 presents data from pressure measurements on the plate of a
cone-and-plate viscometer. The plate has a radius of R ¼ 50 mm. The fluid is a
2.5 % polyacrylamide solution. Let rrrðRÞ be equal to the atmospheric pressure pa:
Determine the viscometric functions w1;w2;N1; and N2 for the fluid. See
Fig. 5.9.
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Problem 20. The pressure drop in a tube of length L ¼ 1 m and diameter d ¼ 10
mm is found to be: DP ¼ �2:5 kPa: for a test fluid. The fluid is modeled as
Carreau fluid specified by the material parameters:

g0 ¼ 10:6 Ns/m2; g1 ¼ 10�2 Ns/m2; k ¼ 8:04 s, n ¼ 0:364:

Determine the volume flow Q from the Rabinowitsch-equation, Eq. (5.5.9):

Q ¼ pd3

8s3
o

Zso

0

s2 _c ds ; so ¼ �
DP

4L
d

Problem 21. A linearly viscoelastic fluid flows between two parallel plates. The
distance between the plates is constant and equal to h: The fluid sticks to both
plates. One of the plates can move with a velocity parallel the other plate, and this
motion drives the flow, such that the flow is a simple shear flow with shear stress s
and shear rate _c: The fluid has the relaxation function in shear bðtÞ:

(a) For t\0 one of the plates moves with a constant velocity v0. For t [ 0 both
plates are at rest. Derive the following expression for the shear stress.

sðtÞ ¼ vo

h

Z1

0

bðsÞ ds� HðtÞ
Z t

0

bðsÞ ds

0
@

1
A

(b) Determine the shear stress sðtÞ for a Maxwell-fluid.

Problem 22. The annular space between two concentric cylindrical surfaces is
filled with a generalized Newtonian fluid. The inner and outer radii of the annular
space are r1 and r2: See Fig. Problem 13. The cylinder length is L. The inner
cylindrical surface is fixed. The outer cylinder is subjected to an external constant
torque M and can rotate. Neglect effects from the ends at z ¼ 0 and z ¼ L: The
fluid sticks to both cylindrical walls. Assume steady, laminar flow with the
velocity field given by:

vh ¼ vh Rð Þ; vR ¼ vz ¼ 0

The density of the fluid is q and the viscosity function is the power law:

g _cð Þ ¼ K _cn�1

(a) Determine the expression for the shear stress: sRhðRÞ:
(b) Develop the following formula for the strain rate:

_cRh ¼
dvh

dR
� vh

R
¼ R

d

dR

vh

R

� �

(c) Formulate the boundary conditions for the velocity field vhðRÞ:
(d) Sketch the velocity field vhðRÞ:
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(e) Determine the velocity field vhðRÞ:
(f) Find the expression for the angular velocity x of the outer cylinder.

Problem 23. Determine the velocity field vhðRÞ in problem 22 when the situation
is changed to: The inner cylinder is subjected to a constant torque and can rotate,
while the outer cylinder is fixed.

Problem 24. A shear thinning fluid has steady flow through a circular pipe. The
gradient oP=dz in the axial direction of the modified pressure is constant. The fluid
is modeled as a two-component-fluid: A central core of diameter d flows as a
power law fluid with the viscosity function: g _cð Þ ¼ K _cn�1. In a thin layer of
thickness h\\d between the core and the pipe wall the fluid is modeled as a
Newtonian fluid with viscosity l: The velocity vzðRÞ in the layer may be assumed
to vary linearly with the radial distance R:

Fig. Problem 24

(a) Show that the shear stress: szRin the fluid is everywhere given by:
szR ¼ ðR=2ÞdP=dz:

(b) Formulate the boundary conditions for the velocity vzðRÞ at the wall and at the
interface between the two fluid models.

(c) Determine the velocity vzðRÞ:

Problem 25. The figure shows a rheometer for measuring the yield shear stress and
the viscosity of a viscoplastic material. The cylinder is subjected to an external
torque M and can rotate with a constant angular velocity x: Assume that the fluid
sticks to the rigid boundaries. A test fluid is to be modelled as an incompressible
Bingham fluid with viscosity l and yield shear stress sy: Just before the flow is
initiated in the fluid the torque is My:

The velocity field in the test fluid is assumed as:

vh ¼ vðRÞ; vR ¼ vz ¼ 0 when r�R� r þ h

vh ¼ R f ðzÞ; vR ¼ vz ¼ 0

when R� r þ h; 0� z� a
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Fig. Problem 25

(a) Determine a formula for sy:

(b) Determine the strain rates _cRh and _chz; and the corresponding shear stresses
for the assumed velocity field.

(c) Neglect all accelerations and body forces, and present the equations of motion
in cylindrical coordinates and with the assumed velocity field. Formulate the
boundary conditions for the velocity field.

(d) Use the equations of motion to show that f ðzÞ ¼ xz=a:
(e) Determine the region ro�R� r þ hwhere vðRÞ ¼ 0; and sketch the velocity

field.

Problem 26.

(a) Derive the formulas (8.7.4)
(b) Derive the formulas (8.7.15) and (8.7.16) from the formulas (8.7.14)
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Index

A
Acceleration, 28
Amorphous state, 1
Angular

frequency, 137
momentum, 31
velocity of a fluid particle, 68

Anisotropic mechanical properties, 1
Anisotropic state of stress, 3
Annular

flow, 19
space, 19, 79

Antisymmetric tensor, 150
Antithixotropic fluid, 10
Apparent viscosity, 7, 17, 93, 121
Atmospheric pressure, 20
Axial annular flow, 19, 79

B
Base vector, 26, 147
Biaxial

extensional flow, 87, 108, 109
extensional viscosity, 109

Bingham fluid, 8, 43, 46, 47, 50, 51, 55, 116
Body, 25
Body force, 31
Boltzmann superposition principle, 129
Bulk viscosity, 39

C
Carreau fluid, 114, 116
Cartesian coordinate system, 25
Casson fluid, 116
Cauchy’s equations of motion, 35, 122

in Cartesian coordinates, 36
in cylindrical coordinates, 37
in spherical coordinates, 38

Cauchy’s stress tensor, 33
Cauchy’s stress theorem, 33, 149
Cauchy tetrahedron, 33, 57
CEF fluid, 157
Centipoise, 6
Circular flow without vorticity, 70
Codeforming coordinates, 153, 160
Complex viscosity function, 138
Cone-and-plate viscometer, 95
Configuration, 25
Consistency parameter, 7, 45, 115
Constitutive equations, 2, 16, 63, 91

CEF fluid, 157
generalized Newtonian fluids, 113
linearly viscoelastic fluids, 135
linearly viscous fluid, 39
Newtonian fluid, 39, 75
NIS fluid, 158
Reiner-Rivlin fluid, 154
second-order fluid, 156
Stokesian fluid, 153

Contact force, 31
Continuity equation, 30

for an incompressible fluid, 30
Continuum hypothesis, 2, 29
Convected coordinates, 153, 160
Convective acceleration, 28
Coordinate invariant quantity, 149
Coordinate stresses, 32, 33
Corotational

derivative, 155, 156
fluid models, 156
Jeffreys fluid, 157, 159
Maxwell fluid, 157, 159
reference, 152, 155

Creep, 11
Creep function in shear, 14, 91, 125, 127

for Jeffreys fluid, 134
for Maxwell fluid, 133
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Creep test, 12
Critical temperature, 12, 166
Crystalline state, 1
Current configuration, 26, 143, 148
Cylinder viscometer, 4, 101
Cylindrical coordinates, 37, 74, 75

D
Deborah number, 16
Deformation

gradient, 144
gradient matrix, 144
history, 8, 125, 146
power, 59

Del-operator, 28
Density, 2, 27, 29, 36
Dilatant fluid, 9
Dirac delta function, 126
Direction cosines, 147
Divergence of the stress tensor, 36
Dynamic viscosity, 39, 138

E
Effective pressure, 158
Effective stress, 167
Einstein summation convention, 26
Elastic after-effect, 13
Elastic restitution, 13
Elongational flows, 85
Energy equation, 56, 60

in cylindrical coordinates, 60
Equation of motion, 31
Equilibrium compliance, 14, 127
Equilibrium modulus, 14, 127
Equilibrium shear strain, 13
Equilibrium shear stress, 13
Eulerian coordinates, 27
Euler’s axioms, 31
Exstra stress matrix, 35
Exstra stress tensor, 35
Extensional flows, 85, 86

biaxial, 87
planar, 88
uniaxial, 87

Extensional viscosity, 109, 110, 161
Oldroyd 8-constant fluid, 164, 165
Oldroyd A- and B-fluid, 161, 166

Extra stresses, 35
in cylindrical coordinates, 37
in spherical coordinates, 38

Extrudate swell, 19

Extrusion, 86
Eyring fluid, 115

F
Fading memory, 20
Fanning friction number, 22
Field, 27
Film flow, 53
First law of thermodynamics, 57
Flows between parallel planes, 42, 123
Flows with straight parallel streamlines, 41
Fluid, 3
Fluid element, 6
Fluid mechanics, 3
Fourier’s heat conduction equation, 59
Functional, 146

G
Gas, 1
General equations of motion for a fluid, 36
Generalized Newtonian fluid, 45, 47, 113, 143,

146, 154
General shear flow, 77
Glass compliance, 14, 127
Glass modulus, 14, 127
Glass transition temperature, 12
Gradient, 36
Gravitational force, 31

H
Hagen-Poiseuille formula, 51, 105
Heat, 56
Heat flux, 57
Heat flux vector, 57
Heat power, 57
Heaviside unit step function, 13, 126
Helix flow, 83

in annular space, 117
Hematocrit, 117
Hooke model, 130
Hysteresis loop, 10

I
Incompressibility condition, 30, 122
Incompressible fluid, 30, 40, 59
Incompressible Newtonian fluid, 75, 76, 109,

113
Individual derivative, 27
Infinite-shear-rate viscosity, 94, 114, 116
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Initial shear strain, 12
Intensive quantity, 27
Interatomic forces, 1
Intermolecular forces, 1
Internal energy, 56
Inverse of a matrix, 144, 148
Irrotational flow, 29
Isochoric flow, 40, 77
Isometric plane, 77
Isothermal flows, 121
Isotropic

function, 153
pressure, 35
state of stress, 3

Isotropic incompressible fluid, 92
Isotropic mechanical properties, 1

J
Jeffreys fluid, 133
Jeffreys model, 130, 131, 133

response equation, 131

K
Kinematics, 25
Kinetic energy, 57
Kronecker delta, 35, 75

L
Lagrangian coordinates, 27
Laminar flow, 42, 61
Linear dashpot, 130
Linearly elastic material, 8
Linearly viscoelastic fluids, 125, 143, 146
Linearly viscoelastic response, 14
Linearly viscous fluids, 39
Linear momentum, 31
Line of shear, 77, 80, 82, 83, 95
Liquid, 1
Liquid crystal, 3
Local acceleration, 28
Longitudinal strain, 2, 145
Long time modulus, 14
Lower-convected derivative, 160
Lower-convected Jeffreys fluid, 161
Lower-convected Maxwell fluid, 157, 162

M
Macroscopic structure, 1
Macroviscous flow, 158
Magnitude of shear rate, 113, 118, 123, 154

Mass density, 27
Mass of a body, 29
Mass particle, 32
Material coordinate plane, 32
Material equation, 2
Material derivative, 27
Material function, 91

for viscometric flows, 92
for extensional flows, 109
for shear flow oscillations, 138

Matrix equation, 35
Maxwell fluid, 15, 132, 136, 138

response equation in simple shear, 15, 132
Maxwell model, 130, 131, 167
Mechanical models, 129
Mechanical power, 57
Microscopic structure, 1
Modified pressure, 41
Modulus of elasticity, 2, 130, 167
Motion, 26

N
Navier-Stokes equations, 40
Newtonian fluid, 4, 6, 39, 44, 45, 50, 54, 70,

106, 157
NIS fluid, 158
Non-isothermal flow, 121
Non-Newtonian fluid, 4, 6
Non-steady flow, 28
Normal stress, 2, 6, 32
Normal stress coefficients, 98
Norton fluid, 166, 167
Norton’s law, 167

O
Objective

scalar, 152
tensor, 147, 150
vector, 150

Objective quantity, 150
Oldroyd A-fluid, 157, 161, 166
Oldroyd B-fluid, 157, 161, 162, 166
Oldroyd 8-constant fluid, 157, 162, 163
Oldroyd derivative, 160
Oldroyd fluids, 160
Orthogonal matrix, 147

P
Particle, 25
Particle coordinates, 27
Particle derivative, 27
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Particle function, 27
Pascal-second, 6
Pathline, 29, 80
Pipe flow, 48, 103
Place, 25

coordinates, 27
function, 27
vector, 148

Planar extensional flow, 88, 108, 110
Planar extensional viscosity, 110
Plane shear waves, 139
Plate/cylinder system, 20
Plug flow, 9, 46, 47, 50, 55
Poise, 6
Poisson’s ratio, 167
Potential flow, 29, 72
Potential vortex, 70, 72
Power law, 7
Power law fluid, 7, 45, 46, 50, 51, 54, 106,

114, 117, 122
Power law index, 7, 45, 115
Present configuration, 26, 143
Primary creep, 12
Primary normal stress coefficient, 93
Primary normal stress difference, 93, 101
Principal directions

of rates of deformation, 69, 72, 108
of strains, 108
of stress, 108

Principal invariants, 150
Principle of material objectivity, 147
Pseudoplastic fluid, 9
Purely elastic material, 8
Purely viscous fluid, 6
Pure shear flow, 88

Q
Quasi-linear corotational fluid models, 159

R
Rabinowitsch equation, 105
Rate of deformation, 70

matrix, 65, 74
tensor, 149, 152, 155

Rate of longitudinal strain, 64, 69
Rate of rotation, 66
Rate of rotation matrix, 66, 74
Rate of rotation tensor, 149, 151, 152
Rate of shear strain, 6, 65, 69
Rate of shear strain history, 15
Rate of strain matrix, 146
Rate of volumetric strain, 65, 70

Rates of deformation, 63
in cylindrical coordinates, 74
in spherical coordinates, 74

Rates of rotation, 69
Rates of rotation matrix

in cylindrical coordinates, 74
in spherical coordinates, 74

Rectilinear flow with vorticity, 69
Reduction of drag, 22
Reference, 25
Reference configuration, 25, 143
Reference frame, 25
Reference invariant quantity, 150
Reference related tensor, 152
Reference time, 25
Reiner-Rivlin fluid, 153, 154
Relative reference configuration, 26
Relaxation function in shear, 14, 91, 125, 126,

127, 134
for Jeffreys fluid, 135
for Maxwell fluid, 132, 133

Relaxation test, 13
Relaxation time, 15, 132
Response equation, 15

corotational Jeffreys fluid, 159
corotational Maxwell fluid, 159
Jeffreys model, 131
Maxwell model, 131
lower-convected Jeffreys fluid, 161
lower-convected Maxwell fluid, 162
Oldroyd A fluid, 161
Oldroyd B fluid, 161
Oldroyd 8 constant fluid, 162
upper-convected Jeffreys fluid, 161
upper convected Maxwell fluid, 162
White-Metzner fluid, 162

Restitution, 13, 21
Resultant force, 31
Resultant moment, 31
Reynolds number, 19, 22
Rheology, 4
Rheological steady flow, 79
Rheopectic fluid, 10
Rigid-body rotation, 66, 67
Rod climbing, 18

S
Secondary creep, 12, 166, 167
Secondary flow, 20
Secondary normal stress coefficient, 93
Secondary normal stress difference, 93, 101
Second-order fluid, 156, 157
Shear axes, 78, 80, 82, 83, 95
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Shear direction, 78, 84
Shear flow, 77
Shearing surface, 76, 77, 80, 82, 83, 95
Shear modulus, 8, 167
Shear rate, 6, 65, 77, 78, 84
Shear rate history, 10, 11
Shear strain, 5, 145
Shear strain history, 127
Shear stress, 2, 6, 32
Shear stress history, 129
Shear-thickening fluid, 9
Shear-thinning fluid, 9, 17, 94
Shear viscosity, 39
Short time modulus, 14
Simple shear flow, 6, 60, 69, 70, 76, 91, 135
Simple thermomechanical material, 146
Slip velocity, 107
Solid, 3
Specific internal energy, 56

specific heat, 56
Specific linear momentum, 27
Specific quantity, 27
Spherical coordinates, 38, 74, 95, 96
Spin, 66
Spin matrix, 66
Spriggs fluid, 114
Static pressure, 41
Steady axial annular flow, 79
Steady flow, 29
Steady helix flow, 83
Steady pipe flow, 79, 103
Steady shear flow, 77
Steady simple shear flow, 76
Steady tangential annular flow, 80
Steady torsion flow, 81
Stokesian fluids, 153
Strain matrix, 145
Streamline, 28, 77
Stress

matrix, 32
power, 59, 73, 76
rate matrix, 151
relaxation, 11
tensor, 33, 149
vector, 31, 32

Swelling, 20
Substantial derivative, 27
Symmetric tensor, 150

T
Tangential annular flow, 80
Taylor vortexes, 81
Temperature, 36, 59

Temperature field, 60, 122
Temperature history, 146
Tension-thickening, 109
Tension-thinning, 109
Tensor, 147
Tensor equation, 35, 155
Tertiary creep, 12
Thermal conductivity, 59
Thermal energy balance equation, 59

for a particle, 59
at a place, 59

Thermodynamic pressure, 19, 36
Thixotropic fluid, 10
Time dependent fluid, 10
Time dependent restitution, 13
Time independent fluid, 8
Torsion flow, 82
Traction, 31
Transformation matrix, 147
Transposed matrix, 66, 148
Trouton viscosity, 109
Tubeless siphon, 21

U
Uniaxial extensional flow, 87, 108, 109
Unidirectional shear flow, 78
Unit matrix, 35, 75
Unit tensor, 35
Upper-convected derivative, 160
Upper-convected Jeffreys fluid, 161, 162
Upper-convected Maxwell fluid, 157, 162

V
Vector matrix, 25
Velocity, 27

gradient, 28, 63
gradient matrix, 63
gradient tensor, 149, 152
potential, 29, 72

Viscoelastic, 8, 11
fluid, 8, 11, 21, 125
liquid, 13
material, 8
response, 11
solid, 13
plastic fluid, 158

Viscometricflows, 79
Viscometric functions, 93, 154

oldroyd A- and B-fluid, 161
oldroyd 8-constant fluid, 163

Viscoplastic fluid, 8, 9, 116
Viscosity, 6, 17, 39
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Viscosity function, 6, 17, 91, 93, 94, 97, 102,
105, 114, 162, 164

Oldroyd fluids, 160, 165
Viscous normal stress, 19
Volumetric flow, 104
Volumetric strain, 145
Vortex, 70
Vorticity, 29, 70, 66
Vorticity free flow, 29
Vorticity matrix, 66
Vorticity vector, 29, 68

W
Wave velocity, 140, 141

White-Metzner fluid, 162

Y
Yield shear stress, 8, 47, 52, 116

Z
Zener-Hollomon

fluid, 115
parameter, 116

Zero-shear-rate-viscosity, 7, 94, 114, 116
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