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Preface 

The study of fluid mechanics and transfer phenomena in flows involves the 
association of difficulties which are encountered in different disciplines: 
thermodynamics, mechanics, thermal conduction, diffusion, chemical reactions, etc. 
This book is not intended to be an encyclopaedia, and we will thus not endeavour to 
cover all of the aforementioned disciplines in a detailed fashion. The main objective 
of the text is to present the study of the movement of fluids and the main 
consequences in terms of the transfer of mass and heat. The book is the result of 
many years of teaching and research, both theoretical and applied, in scientific 
domains which are often considered separately. In effect, the development of new 
disciplines which are at the same time specialized and universal was very much a 
characteristic of science in the 20th century. Thus, signal processing, system 
analysis, numerical analysis, etc. are all autonomous disciplines and indispensable 
means for students, engineers or researchers working in the domain of fluid 
mechanics and energetics. In the same way, various domains such as the design of 
chemical reactors, the study of the stars and meteorology require a solid knowledge 
of fluid mechanics in addition to that of their specific topics. 

This book is primarily aimed at students, engineers and researchers in fluid 
mechanics and energetics. However, we feel that it can be useful for people working 
in other disciplines, even if the reading of some of the more theoretical and 
specialized chapters may be dispensable in this case. The science and technology of 
the first half of the 20th century was heavily rooted in classical mechanics, with 
concepts and methods which relied on algebra and differential and integral calculus, 
these terms being taken into account in the sense they were used at that time. 
Furthermore, scientific thought was fundamentally deterministic during this period, 
even if the existence of games of chance using mechanical devices (dice, roulette, 
etc.) seemed far from the philosophy of science or Cauchy’s theorem. Each time has 
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its concepts, which are based on the current state of knowledge, and the science of 
fluid mechanics was reduced for the most part to semi-empirical engineering 
formulae and to particular analytical solutions. Between the 1920s and the 1950s, 
our ideas on boundary layers and hydrodynamic stability were progressively 
elucidated. Studies of turbulence, which began in the 1920s from a conceptual 
statistical point of view, have really only made further progress in the 1970s, with 
the writing of the balance equations using turbulence models with a physical basis. 
This progress remains quite modest, however, considering the immensity of the task 
which remains. 

It should be noted that certain disciplines have seen a spectacular renewal since 
the 1970s for two main reasons: on the one hand, the development of information 
technology has provided formidable computation and experimental methods, and on 
the other hand, multidisciplinary problems have arisen from industrial necessities. 
Acoustics is a typical example: many problems of propagation had been solved in 
the 1950s-1960s and those which were not made only very slow progress. Physics 
focused on other fundamental, more promising sectors (semiconductors, properties 
of matter, etc.). However, in the face of a need to provide practical solutions to 
industrial problems (sound generated by fluid flow, the development of ultra-sound 
equipment, etc.), acoustics became an engineering science in the 1970s. Acoustics is 
indeed a domain of compressible fluid mechanics and it will constitute an integral 
part of our treatment of the subject. 

Parallel to this, systems became an object of study in themselves (automatic 
control) and the possibilities of study and understanding of the complexity 
progressed (signal processing, modeling of systems with large numbers of variables, 
etc.). Determinism itself is now seen in a more modest light: it suffices to remember 
the variable level of our ambitions with regard to meteorological prediction in the 
last 30 years to see that we have not yet arrived at a point where we have a definite 
set of concepts. Meteorological phenomena are largely governed by fluid 
mechanics. 

The conception of this book results from the preceding observations. The author 
refuses to get into the argument which consists of saying that the time of analytical 
solutions has passed and that numerical simulation will solve all our problems. The 
reality is clearly more subtle than this: analytical solution in the broad sense, that is, 
the obtaining of results derived from reasoning and mathematical concepts, is the 
basis of physical concepts. Computations performed by computers by themselves 
cannot provide any more insight than an experiment, although both must be 
performed with great care. The state of knowledge and of understanding of 
mechanisms varies depending on the domain studied. In particular, the science of 
turbulence is still at a somewhat embryonic stage, and the mystery of turbulent 
solutions of the Navier-Stokes equations is far from being thoroughly cleared up. 
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We are still at the stage of Galileo who attempted to understand mechanics without 
the ideas of differential calculus. Nobody can today say precisely what are the 
difficulties to be solved, and the time which will be required for their resolution (10 
years, a century or 10 centuries). We will therefore present the state of our 
knowledge in the current scientific context by also considering some of the 
accompanying disciplines (thermodynamics, ideas related to partial differential 
equations, signal processing, system analysis) which are directly useful to the 
concepts, modeling, experiments and applications in fluid mechanics and energetics 
of flows. We will not cover specific combustion phenomena, limiting ourselves to a 
few simplified cases of physico-chemical reactions. 

This book covers the necessary fundamentals for the study and understanding of 
the specific concepts and general properties of flows: the establishment and 
discussion of the balance equations of extensive quantities in fluid motions, the 
transport of these quantities by convection, wave-propagation or diffusion. These 
physical concepts are issued from the comprehension of theoretical notions 
associated with equations, such as characteristic curves or surfaces, perturbation 
methods, modal developments (Fourier series, etc.) and integral transforms, model 
reduction, etc. These mathematical aspects are either consequences of properties of 
partial differential equations or derived from other disciplines such as signal 
processing and system analysis, whose impact is important in every scientific or 
technological domain. They are discussed and illustrated by some elementary 
problems of fluid mechanics and thermal conduction, including measurement 
methods and experimental data processing This book is an introduction to the study 
of more specialized topics of fluid flow and transfer phenomena encountered in 
different domains of application: incompressible or compressible flow, dynamic and 
thermal boundary layers, natural or mixed convection, 3D boundary layers, physico-
chemical reactions in flows, acoustics in flows, aerodynamic sound, 
thermoacoustics, etc. 

Chapter 1 is devoted to a synthetic presentation of thermodynamics. After 
recalling the basics of the representation of material systems, thermostatics is 
covered in an axiomatic fashion which avoids the use of differential formulations 
and which allows for a simplified presentation of classical results. Taking entropy 
dynamics as a starting point, the thermodynamics of non-equilibrium states is then 
discussed using simple examples with phenomenological laws of linear 
thermodynamics.  

The continuous medium at rest is obtained by taking the limit of discrete systems 
in Chapter 2. The exchange of extensive quantities is modeled by means of flux 
densities, and irreversible thermodynamics leads to the diffusion equations. Some 
reminders of fluid statics are given. We then discuss the difficulties specific to the 
diffusion of matter. 



xiv     Fundamentals of Fluid Mechanics and Transport Phenomena 

The association of mechanical phenomena with thermodynamics is briefly 
developed in Chapter 3 along with the formalism used for the description of the 
motion of continuous media. The elementary properties of viscosity are then 
discussed. 

Chapter 4 is dedicated to the writing of the general equations of the dynamics of 
fluid and transfer. The integration of local equations in a domain enables the 
separation of sources and fluxes of extensive quantities, these fluxes being transfer 
phenomena involving definition of input-output mechanisms for that domain, 
considered as a system. The energy equation explicitly expresses the interactions 
between thermodynamics and the movement of matter. The main usual boundary 
conditions and similarity and its consequences are then discussed. 

Chapter 5 discusses the classification of partial differential equations in fluid 
mechanics. The mathematical aspects at the basis of physical concepts are well 
understood, but unfortunately rarely taught. These are very important, both for the 
numerical solution of equations and for the understanding of physical phenomena. 
We will present them here without providing any thorough demonstrations. The 
reader who struggles with this chapter should nonetheless try to assimilate its 
content while leaving aside the details of certain calculations. 

Chapter 6 is dedicated in the main to the influence of diffusion in the convection 
of linear or angular momentum. It firstly covers vortex dynamics, the transposition 
to continuous media of concepts used in solid body rotation. Vorticity often results 
from transitional processes which may be more or less viscous, but its transport is 
very often governed by the equations for an inviscid fluid. Lagrange’s theorem 
introduces the idea of conservation of circulation of velocity which allows the 
rotation to be treated as a frozen material field. Elementary solutions of the 2D 
incompressible potential flows are quickly discussed. We then look at the quasi-1D 
approximation, which is particularly important in fluid mechanics, either for pipes 
or for flows in the vicinity of walls when a non-dimensional quantity becomes large. 
This last circumstance corresponds to a singular perturbation problem in the form of 
a boundary layer, which corresponds to the effects of viscous diffusion from the 
walls. The discussion of the boundary-layer equations reveals the separation 
mechanisms which are associated with the non-linear terms in steady flow 
equations. 

The measurement of flow and transfer phenomena presents difficulties which are 
outlined in Chapter 7. The recent evolution of techniques based on the digitization 
of measurements, signal processing, analysis and reduction of models are naturally 
suited to applications in fluid mechanics and energetics. These methods have led to 
a renewal of progress in disciplines where unsteady phenomena are encountered, 
and in particular in the study of acoustic phenomena and turbulent flows. 
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Improvements in computing have of course also led to considerable progress in the 
modeling of phenomena. The use of these methods requires specialized techniques 
whose treatment is beyond the scope of this book. The elements of signal processing 
and system analysis which we provide are only intended to alert the reader to the 
possibilities and utility of these methods, but also to show their limits. The idea that 
computers will allow the resolution of all our problems remains too ubiquitous. 
Computers only provide a tool to help us find the solutions we seek. These recent 
methods, signal processing or system analysis, are also useful for the identification 
of physical concepts associated with phenomena and the representation of solutions. 

In Chapter 7, we also indicate in a synthetic manner the essential ideas necessary 
for measurement and signal processing procedures which are most useful in the 
domains studied. The possibility of large computations in modeling and 
experimental data processing leads us to evoke the idea of conditioning of linear 
systems, which is a generalization of elementary calculations of errors and 
uncertainties. 

Chapter 8 is dedicated to modeling which provides a general context for the 
study of the evolution of physical systems. However, automatic control is reasoning 
in a general way on models without taking account of the laws of thermodynamics. 
These are essential for the disciplines studied in this book. We will present a few 
points of view and methods developed in automatic control, directly applied to the 
balance equations of basic problems of thermal conduction. The approximation 
procedures for the balance equations are far from being equivalent depending on the 
way in which we proceed. In order to simplify the presentation and to clearly 
separate the difficulties, we will mainly limit ourselves here to the state 
representation which is derived from thermodynamic modeling, leaving aside 
models derived from the approximation of solutions which do not exactly satisfy the 
balance equations. 

NOTE.  
We have chosen to respect the usual notation of physical quantities in each 

discussed scientific domain, while trying to have consistent notations whenever 
possible.  

At the same time, the notations for derivatives are different, depending on the 
domain covered (thermodynamics, mechanics or more mathematical developments) 
and the size of equations. They all are usual and well known:  

 For functions y (x) of one variable, they are marked  y' (x), y'' (x),  y''' (x),  y'''' 
(x),..., y(n)(x). 

 When discussing mechanical questions, the two first temporal derivatives of 
x(t) are written with dots: )(tx  and )(tx . 
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 The symbol 
dt
d

 is used only for material (Lagrangian) derivatives, which are 

indeed derivatives with respect to time of compound functions in Euler variables; 

this is equivalent to the other usual notation 
Dt
D

. 

 
 For functions f (x, y) of several variables, the two following notations are used 

according circumstances: either with symbol   (
yx

f
yx
f

y
f

x
f

2

32
,,,  ,...) or with 

indices marking the variables with respect of which derivations are performed: fx , 
fy, fxy , fxxy. 

Integrals are always indicated by a simple integration sign, as the nature of this 
(single, double, triple, etc.) should be clear from the integration domain indicated 
and the differential element.  

When tensor notation is used, vectors or matrices are denoted using upper case 
letters, their components being written in lower case letters. The convention of 
summation over repeated indices (Einstein’s convention) will systematically be 
used. 



Chapter 1 

Thermodynamics of Discrete Systems 

The general objective of thermodynamics is to describe the properties of matter. 
After recalling the representational bases of material systems, thermostatics is dealt 
with by postulating the existence of a general equation of state which relates the 
extensive quantities. In this way we can forgo the need to delve into principles 
related to differential forms, and thereby simplify the presentation of traditional 
results. Then the thermodynamics of out of equilibrium systems are considered in 
terms of entropy dynamics, and discussed using simple examples. Finally, the 
phenomenological laws of linear thermodynamics are then considered. 

1.1. The representational bases of a material system 

1.1.1. Introduction 

1.1.1.1. Geometric Euclidean space and physical quantities 

The object of the physical sciences is the study of matter, for which the 
formulation of physical laws is necessary. However prior to the formulation of any 
such laws it is clearly necessary to characterize matter in terms of the various 
physical quantities which we can directly or indirectly measure. Matter is present all 
around us, and in a first instance we will limit ourselves to considering it in a static 
way, at a given instant which we can identify (this supposes a minimal definition of 
time); we perform geometric measurements in a 3D Cartesian coordinates system in 
order to identify the position and/or dimension of material elements. Measuring 
length presents no particular difficulty, excepting the choice of units. We will 
observe material elements in a geometric Euclidean space. 
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The geometric description of space is independent of the presence of matter; in 
other words the metric tensor does not depend on any physical quantity. This is not 
true for certain astrophysical phenomena which require us to place ourselves in the 
context of general relativity where geometric properties of space are no longer 
independent of the presence of matter. Simplistically put, the length of a meter 
depends on the mass found in its vicinity, which considerably complicates matters. 
In the following we exclude such phenomena, as they only become important at 
scales which greatly exceed those of our terrestrial physics. 

We thus postulate (Axiom 1) the existence of a geometric space whose structure 
is independent of the properties of matter and the associated physical phenomena 
(gravitation, force fields, etc.). 

We also admit (Axiom 2) that this space is homogenous and isotropic, which 
leads us to a traditional geometric Euclidean description of space R3 with its 
associated notions of length, surface and volume, whose scalar values are 
independent of the particular geometric frame of reference we choose to consider. 
This property of homogenity and isotropy will have important consequences for the 
expression of physical laws, which must not favor any given point or physical 
spatial direction. In particular, physical laws should neither favor any particular 
point in the universe, nor change as a result of a change in reference frame. 

Finally, we suppose (Axiom 3) that matter can be characterized by physical 
quantities which are measurable at each instant in time, and not by mathematical 
entities (wavefunctions etc.) which allow, via mathematical operations, access to 
information of a probabilistic kind with regard to a physical quantity. This 
hypothesis of the possibility of directly measuring physical quantities supposes that 
the measure does not change the physical quantities of the material element 
considered. We therefore exclude microscopic phenomena relevant to quantum 
mechanics from our field of study, and we suppose the smallest material elements 
studied to contain a number of atoms or molecules sufficient for the neglect of 
statistical microscopic fluctuations to be justified. 

1.1.1.2. The existence of isolated systems and the definition of time 

The study of physical phenomena presupposes their reproducibility; the same 
effects should be observed under identical conditions. The establishment of physical 
laws thus supposes the definition of a time with the property of homogenity: in 
particular, quantifiable and reproducible observations of the evolution of a given 
material system must be possible. 

The definition of time should thus be appropriately chosen. Previously associated 
with the length of the day, the definition of time has varied considerably between 
different individuals and epochs. For example, during the Roman period the lengths 
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of the day and the night were respectively divided into seven and four parts, the 
Babylonians 2,000 years beforehand divided the day and the night each into 12 
hours, which were clearly of unequal duration and varied according to the seasons. 
The Chinese and the Japanese divided each of the two cycles, from dawn to dusk 
and from dusk to dawn, into six periods. Japan only adopted the occidental system in 
1873, but this did not prevent Japanese clockmakers from making mechanical clocks 
as early as the 17th century, these having quite complex mechanisms in order to 
accommodate the variable length of their hour. 

The definition and measurement of time are thus not automatic operations for 
human beings. The relatively old notion of regular time (homogenous in the physical 
sense) is related to the use of indefinitely reproducible phenomena; this notion dates 
from the end of antiquity, the early Middle Ages and the invention of the clock 
(clepsydras, mechanical clocks, hourglass). 

We will thus postulate (Axiom 4) that physical phenomena are reproducible, 
regardless of when an experiment is performed. Any evolutionary phenomenon 
which is considered reproducible will allow a time unit to be defined. A temporal 
dimension can be constructed simply by virtue of the reproducibility of a 
phenomenon, which amounts to admitting that time is homogenous, i.e. no instant in 
the universe is given any special privilege. This homogenity of time does not really 
exist in cosmological problems, and in particular during the time of the initial big 
bang. We exclude these kinds of problem. 

Having long been attached to the average duration of a solar day, the definition 
of time is now effected using the vibration frequency of an atom of caesium 123 
under the most stable conditions possible (at very low temperature). 

1.1.1.3. Causality and irreversibility 

We now dispose of a space-time coordinates system comprising three space 
dimensions and one time dimension. However, in contrast with geometric space, 
time is not isotropic. In effect, the definition of entropy (section 1.2.2.4) shows that 
an irreversible evolution exists in the universe with which we can associate a time 
variable (or one related to the age of the universe) in an attempt to characterize it. 
This irreversibility is explained by statistical mechanics whereby matter always 
tends to states in which it is maximally mixed: gas molecules in a volume will 
always be evenly dispersed over the volume. This is the most probable state in 
which the molecules will be found; while the probability of finding all of the 
molecules confined to the left half of the volume is not strictly zero, this situation is 
never observed. 

The age of the universe is thus associated with a measure of its entropy on a very 
large scale (the universe or at least the earth). However, a time characterized by this 
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scale has no guarantee of being homogenous. This “age” of the universe does not 
give us a useful indication of what time to use, and we will content ourselves with 
the time previously defined from the notion of reproducibility. The notion of entropy 
(or of the ageing of the universe) shows that time has a considerable anisotropy, 
manifest in the distinction between the past, the present and the future. The 
equations translating the physical laws and their consequences should not violate 
this anisotropy, the effect of which can be immediately seen if we change the 
direction of time by letting tt ' . 

Let us consider an isolated mechanical oscillator with friction, which can be 
described by the equation: 

0)()()( tkxtxftxm  [1.1] 

whose oscillatory solution takes the form tmtfA cos2/exp . 

By multiplying equation [1.1] by )(tx  and integrating with respect to time 
between 0 and T, the total variation of mechanical energy Em between these 
instants is: 

T
T

m dtxfkxxmE 0
2

0

22

2
1

2
1

 

The absolute value of this variation Em is always negative and increasing for a 

positive value of the friction coefficient. The quantity T dtxf0
2  is known as the 

dissipation function of the system. 

Changing the direction of time would be equivalent to changing the term )(txf  
to )(txf , which implies a negative friction coefficient f leading to the solution 

tmtfA cos2/'exp  and to an increase in mechanical energy as a time 
function. This is impossible with an isolated oscillator and could only be made 
possible by the intervention of an exterior energy source. The preceding equation is 
clearly unstable in the sense that its solutions diverge analogously to the instabilities 
encountered in the local study of equilibrium.  

Let us take as an example three equations representative of constant coefficient, 
second order partial differential equations (see Chapter 5): 
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  Laplace equation:

 wave equation:

 heat equation:
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f f
x t
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x t

 

The general solution of Laplace’s equation (which is elliptic) at a point requires 
that conditions be known at all points lying on a curve surrounding this point 
(Dirichlet condition). All points at the frontier of the domain exert an influence on 
the solution at a point (x,t). The result is that no physical phenomenon can be 
represented by Laplace's equation if time is chosen as a variable, since the solution 
in t would depend on smaller (earlier) and larger (later) values of the time variable. 

The wave equation (which is hyperbolic) on the contrary is compatible with the 
definition of time. Its general solution: 

)()(, txtxtxf  

represents two waves which propagate along the x-axis with velocities +1 and –1. 
The value at a point x and instant t depends on what happens to each of the said 
waves to the left and the right of x, and before their arrival at time t. The wave 
equation is thus compatible with the non-influence of the future on the present.  

The heat equation (which is parabolic) is also compatible with the non-influence 
of the future on the present, as we will see for heat conduction problems, since the 
initial conditions (or values from the past) suffice for a determination of the solution 
at any later time.  

Another remark can be made here regarding the inversion of the direction of 
time. By replacing t with  t', we see that the wave equation remains unchanged, 
while the heat equation becomes: 

0
'2

2

t

f

x

f
 

We will see similar behavior for the complete solution of the heat equation in a 
wall (Chapter 8) in which the inversion of the direction of time results in a change of 
a sum of temporally decaying exponential terms to a sum of temporally increasing 
exponential terms. Changing the direction of time in the heat equation leads to a 
physically inadmissible equation.  

The preceding phenomena can be interpreted in a number of ways: 
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1) In terms of energy dissipation and of the creation of entropy 
The wave equation represents a frictionless mechanical phenomenon, there is no 

creation of entropy over time; we have a reversible phenomenon and so an inversion 
of the direction of time is not incompatible with the laws of the universe. We should 
note however that the wave equation is only valid for relatively short times, for 
which the inevitable friction is not to have an influence. Acoustic waves are finally 
damped by diverse frictional forces after they have covered a very large distance; 
light waves are finally absorbed by matter in an irreversible process (the Joule 
effect) etc. Energy transfer creates entropy and is therefore compatible with the 
evolution of the universe. 

2) In terms of information loss 
The wave equation was earlier interpreted as a transmission of a signal by pure 

propagation. There is no loss of information during the transmission. The 
introduction of dissipation (creation of entropy) leads to the telegrapher's equation, 
which is no longer invariant under a change in the direction of time, and thus 
involves an attenuation of the signals during transmission, and then a subsequent 
loss of information. 

The heat equation translates a smoothing of temperature distributions, which 
may initially be complex, to a more uniform field. The final state is often a constant 
temperature which has no memory of its initial distribution. We note again that an 
inversion of the time direction in heat diffusion problems does not allow for a 
retrieval of the information which has been lost. The same goes for an oscillator 
with friction, whose final state of rest precludes any knowledge of the initial 
conditions. 

The notions of past and future, with respect to an event, introduce a fundamental 
asymmetry; the present does not depend on the future. This has certain 
consequences, both in the application of certain mathematical transformations 
(Fourier for example) on temporal signals, and in flow problems where the 
distinction between upstream and downstream is of the same nature as that between 
the past and the future. 

1.1.1.4. Causality and determinism 

The question of cause and effect is a very old philosophical problem (Aristotle, 
the scholastic philosophers of the middle-ages, Descartes, Leibniz, Spinoza, Hume, 
Kant, Schopenhauer, Bernard, etc.). We will not go into the complex philosophical 
distinctions related to causes (adequate, inadequate, efficient, final, formal, material, 
primary, secondary etc.). An effect is the result of and is produced by an efficient 
cause.  



Thermodynamics of Discrete Systems     7  

Kant upholds that the causality relation is “absolutely general and even 
necessary”. The general principle of causality is even more clear in determinism, 
which holds that all events can be rationally predicted, with a desired degree of 
precision, provided that past events and all of the laws of nature are known with 
sufficient precision. Such absolute and universal determinism is associated with a 
conception of a universe dominated by laws of celestial mechanics (Laplace). In 
other words, the same causes produce the same effects, and so our capacity to 
predict depends only on our scientific knowledge. Of course, quantum mechanics 
has brought this vision of things into question, but not on the scale of the phenomena 
studied here. 

However, the question of determinism is not as simple as it might seem, in 
particular in situations where unstable phenomena intervene, or where chance plays 
a central role (chaos). Examples of such situations are usual in mechanical devices 
used for games of chance (dice, roulette, etc.) or in fluid mechanics whose equations 
have unstable solutions going through unpredictable evolutions in which flows are 
fluctuating in a chaotic way. This is the phenomenon of turbulence encountered in 
most practical flows; for example, atmospheric flows are results of such instabilities 
and then weather prediction is fundamentally impossible beyond a few days. 
Nevertheless, a statistical treatment of these turbulent flows leads to a more global 
kind of determinism ([LES 98]). 

It is useful to note at this point that the conditions for prediction can be defined 
mathematically via theorems which treat of the existence of unique solutions for 
differential equations given a suitable set of initial conditions. The Cauchy-Lipschitz 
theorem is the best known, and deals with differential equations with real variables 
(x,y) of the form: 

),( yxfdxdy  

The function f(x,y) is only required to verify a Lipschitz condition1. This theorem 
establishes the existence of a unique solution y = (x) which verifies the initial 
condition y0 = (x0) . This solution is continuous over the interval ),( 00 hxx , 
where h is characterized by the interval of definition for x and an upper bound of f  
in the rectangle considered. This theorem can be extended to systems of differential 
equations with the same kinds of conditions. 

A similar theorem (Cauchy-Kovalevskaïa), but with stricter analycity conditions 
of the function f(x,y) in the neighborhood of the point ),( 00 yx  (functions which can 
                                   
1 I.e.: ')',(),( yyAyxfyxf , condition in which (x,y) and (x,y') are arbitrarily 
chosen in a rectangle where f(x,y) is supposed to be continuous, A being a positive constant. 
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be developed in power series), leads to a unique analytic solution )(xy  in the 
neighborhood of the point ),( 00 yx  with the initial condition )( 00 xy . These 
results can be extended to systems of differential equations, linear partial differential 
equations, etc. 

Cauchy’s theorem thus translates a form of determinism, since given a cause (the 
initial condition )( 00 xy ), a unique solution )(xy  exits. However, we see 
that there are certain limitations, in particular with the Cauchy-Kovalevskaïa 
theorem which imposes analyticity conditions, the physical realization of which has 
no reason to be assured for the function f(x,y) or any other perturbation which we 
may add in order to test the stability of the system 

In all causal situations, the preceding Cauchy theorems lead to results of a local 
nature, that is to say over a short period of time, considering the variable x to 
represent time. In the middle to long term, numerous “mathematical accidents” may 
occur. The uniqueness of a local solution is not in contradiction with the 
impossibility of prediction of the evolution of this solution on a long enough period 
of time due to a chaotic behavior ([BER 84], [ORS 77]). 

In conclusion, the notions of determinism and causality are far from being 
universally applicable in the domains which we will cover.  

1.1.2. Systems analysis and thermodynamics 

1.1.2.1. Introduction 

The analysis of systems is a discipline which consists of constructing a model or 
a representation of a system characterized by observations and measurements, with a 
view to predicting the behavior of this system at a later stage, under conditions 
which may be different from those first encountered. We also attempt to contrive 
means of manipulating the system in order to cause it to evolve in a manner which 
we specify a priori. We thus enter into the domain of command and control, since it 
is now necessary to verify that the results are those sought, and if not, to perform the 
necessary corrections in order to obtain the desired results. 

The characterization of a material device can thus vary depending on the 
objective which we seek to achieve. The device may be static and we may only be 
interested in its “state”; it may be dynamic, in which case it evolves as a time 
function. 

In general, the objective of a system is to transform some input quantities u(t), 
known thanks to some measurement (which provides the input variables), into some 
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output quantities y(t) which are also obtained via a measurement (output variables). 
For example, the input variables of a heating system are the available heating power, 
the desired temperature, and the output (controlled) variables are the power 
consumed and the temperature observed in the space to be heated. We also dispose 
of a command variable for the heating system. The input variables are thus the given 
conditions, while the output variables are the quantities obtained. Observations can 
be made for the time evolution of the various quantities in a continuous or sampled 
manner. 

1.1.2.2. External description (black box) 

The description of a system may be external, that is we satisfy ourselves to 
simply measuring the inputs and outputs of the system, the system itself remaining a 
“black box”. We thereby ignore what goes on inside the system. As the system 
operates we measure y(t) which depends on the input u(t) and time t. Often, the 
system “has a history”, and the output y(t) cannot be represented as a function of the 
only two variables u(t) and t. 

The external description of a state is thus generally not sufficient. The difference 
between a raw egg and a hard-boiled egg is not visible to external measurements 
(size, mass, color, etc.); it is a result of internal variables (chemical composition) 
which cannot be measured directly, but which can be known indirectly (the 
rotational movement of a mass of solid and a mass of liquid are not the same), or by 
virtue of some previous known history (the egg was boiled). 

From a mathematical point of view, the black box description corresponds to a 
direct relationship between the inputs and the outputs, in other words to calculations 
defined a priori on the input quantities. As long as the dynamic system is invariant 
in time, the formalism of transfer functions (or of impulse responses) is largely used. 
It is nonetheless necessary to pay close attention to questions of causality when 
using such approaches (see Chapter 7; for more detailed information, the reader is 
referred to works which deal with signal processing and automatic control theory). 

1.1.2.3. Internal description (state variable approach)  

In place of a “black box” description, we substitute a description of the internal 
state of the system using a number of state variables X(t) (state vector). These 
characterize the “state” of the system, and when combined with a knowledge of the 
system inputs, knowledge of the system outputs can be obtained at every instant by 
means of evolution equations (ordinary or partial differential equations) which 
describe the conditions on geometric boundary of the system and the initial state. 
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The simplest dynamic systems are represented by constant-coefficient linear 
differential equations; these are known as invariant linear systems as their response 
does not depend on the initial instant chosen for the study of their evolution: 

000 )( :);( XtXtttBUAX
dt
dX

 

In order to identify a state representation, we can use purely mathematical 
considerations which are essentially based on the nature of the response of the 
system (system outputs) to a specific excitation (Dirac impulse or step function). If it 
is possible to identify the existence of different time constants, for example 1 and 

2, then the behavior of the system can be considered to be second order, which 
implies the need for a description based on two state variables. State variables 
identified via an empirical modeling approach will not necessarily lend themselves 
to a clear physical interpretation. They are merely indicators which are linked in 
some way to the dominant physical quantities of the system. We will come back to 
this point when we discuss model reduction methods (Chapter 8). 

 T 

e e 
x 

T  

Figure 1.1. Temperature pulse function unrealizable from imposed conditions  
on the walls (identical temperature on the two walls) 

Finally, we may wish to manipulate certain system variables in order to achieve 
a given desired state. From a mathematical point of view, boundary conditions must 
of course exist which allow a solution of the local equations (partial differential 
equations) corresponding to the evolution of the physical system towards such a 
final state. This condition is not always satisfied, as shown in Figure 1.1. In this 
example, the physical system considered is not controllable. 

1.1.2.4. Thermodynamics and mechanics 

This chapter and Chapter 2 are dedicated to a presentation of those basic physical 
laws which are valid regardless of the particular properties of the material elements 
considered. These basic laws constitute thermodynamics and mechanics; they need 
to be completed by means of other particular laws which may play a role in the 
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behavior of the material elements, associated for example with physics (state 
equations of compressible fluids), chemistry, electricity, magnetism, 
electromagnetism, or any combination of these disciplines (laser-matter interactions, 
plasmas, chemical reactions or electrolysis in flows, etc.). 

The laws of thermodynamics derive from the laws of mechanics applied to 
ensembles comprising a very large number n of molecules (statistical mechanics). 
The properties resulting from interactions between these n molecules cannot be 
exactly established for a variety of reasons (residual quantum effects, computations 
rendered impossible for very large numbers of particles, etc.). We therefore need to 
complete our microscopic mechanical models (kinetic theory of gas, molecular 
theory of liquids) by means of additional statistical axioms. 

Thermostatics provides interpretations of physical quantities using the notion of 
balance via the intermediary of extensive quantities. This is the equivalent of 
imposing conservation principles for certain quantities, whose creation, 
disappearance or variation is not spontaneous, but which is associated with a clear 
cause that results in the transformation or displacement of the quantity considered. 
This static study of the properties of material systems is firstly made in a reference 
frame in which the material does not move, or at least under conditions such that the 
effects of movement have no effect on this material. 

When considering balances, a knowledge of time only serves to localize various 
instants, while its definition is not important due to the infinitely slow nature of 
thermostatic transformations. On the contrary, the definition of time in 
thermodynamics is of great importance for the study and the prediction of the 
velocity of a system’s temporal evolution. On the other hand, the equations of 
thermodynamics and its related disciplines must be associated with boundary and 
initial conditions which allow solutions that are actually observed in reality. 

1.1.3. The notion of state 

In thermodynamics, a state is a set of material elements which have well-defined 
properties. In order to characterize the state (a) of this ensemble, physical quantities 
Gi must be defined which can be measured (measurements gi) and which allow us to 
distinguish between these and other material elements, or the same elements at 
another instant, after a transformation. From a mathematical point of view, a state is 
thus constituted by an ensemble of variables gi which characterize the material 
contained in some entity or geometric domain. States thus defined obey the usual 
rules of the set theory ([GIL 64], [BOC 92]). We often refer to this material as being 
in state (a). It is clear that once defined as being in a given single state, the notion of 
a system does not supply any additional information with respect to the notion of 
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state. The state of a system may be more or less complex and its description may 
require a more or less large number of variables, depending on the case considered. 

As an example, let us consider 2n contiguously arranged plates of a homogenous 
material (Figure 1.2a) distributed in three separate blocks by two thin thermally 
insulated layers P1 and P2. Suppose that the notion of temperature is known (for this 
example); half of these plates are at a temperature Ti which is greater than the 
temperature of the other half (Figure 1.2a). The description of this initial state thus 
requires that 2n temperatures be given. Let us now cause this state to evolve, under 
the constraints imposed by the thermally insulated lateral faces. These 2n variables 
are not necessarily required; the walls P1 and P2 play the role of a strong thermal 
resistance, the blocks of plates have an approximately uniform temperature at each 
instant (Figure 1.2b); these three temperatures suffice for a description of the state of 
the system and its subsequent temporal evolution. After a sufficiently long time, the 

state is at a uniform temperature 
n

i
if T

n
T

2

12
1

. This final state, which is described 

by a single variable is clearly in a state of equilibrium.  

 T T P2
 P1

 P2P1

Tf Tf
 

(a) (b) 

 

Figure 1.2. (a) System with 2n variables; (b) system with 3 variables 

The general problem of describing a state comes down to finding the necessary 
variables. From the preceding example we see that the number of necessary 
variables depends largely on the physical situation we wish to describe. The more 
complex the system considered, the greater the number of variables required. We 
will frequently come back to this point, emphasizing it with respect to the specific 
objectives. 

A state of equilibrium is in fact a succession of states for which all of the 
variables that constitute it conserve a constant value, physical exchanges with the 
exterior having ceased. 
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1.1.4. Processes and systems 

1.1.4.1. Definition of a process 

Certain authors define a process (a,b) as a pair of states: initial (a) and final (b). 
They are thereby led to distinguish between states which are possible and those 
which are not. Insofar as we limit ourselves to only consider processes which are 
truly observed (physical processes), the discussion of an axiomatization concerning 
impossible processes, being ill-defined, is beyond the scope and objectives of this 
book. 

From a physical perspective, this means that a process can only be defined if the 
initial and boundary conditions are entirely determined during the process. It makes 
no sense to speak of a process which allows us to pass from a state (a) to state (b) 
unless the external conditions which constrain that process are specified. This is no 
longer a mathematical question, but rather a problem related to a determinism which 
amounts to admitting that an initial state (a), well-defined and always subjected to 
the same constraints, will always lead to the same final state (b). It will always be 
possible to relate two given states, under the condition that, on the one hand, 
exchanges with the exterior furnish the necessary physical quantities, and on the 
other, that the internal system processes which redistribute these quantities allow the 
desired distribution of these system quantities to be achieved. For example, it is not 
possible to realize a state consisting of a given mass whose temperature distribution 
comprises a central peak (Figure 1.1) by means of an action at the exterior walls. 
The necessary energy must be directly supplied to the central zone, which must be 
insulated from the adjacent regions. 

By definition, a process is a series of states. This mathematical definition only 
has physical relevance for processes representative of real evolutions. While not 
precluding a choice of states with no link (a rabbit, a carrot, etc.), the obtention of 
physical evolution laws for matter implies a “certain continuity of content” for this 
ensemble of states. The same goes for all practical problems. A process is therefore 
a succession of states which must be uniquely defined. Apart from some exceptions 
(shocks), we will only consider processes comprising a continuous series of states, 
described by variables which must be continuous functions of time. We will 
however allow situations with discontinuities (shocks, shockwaves, deflagration) 
which momentarily violate this continuity condition. 

1.1.4.2. The notion of a system 

The notion of a system is a relatively vague one; it is in fact included in that of a 
process: a system is an entity which we consider during a process. As our 
considerations often take a differential form, the system is the principal part (zero 
order) on which we perform differential balances. The notion of a system is not 
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clearly identified if we do not entirely state the conditions of the process under 
study. 

Take the following examples: 

1) The matter studied remains enclosed in a fixed volume (a cylindrical 
calorimetric bomb, for example). The observation domains D and D' at times t and t' 
are contained in the interior of the cavity C (Figure 1.3a). The presence of the barrier 
constituted by the rigid wall leads to the matter inside C being constrained to remain 
within the system (Figure 1.3a). This is a closed system. 

 

C=D=D’ 

D(t) 

D’=D(t’) 

V V

(a) (b) (c) 

D0 
 

Figure 1.3. (a) and (b): closed systems; (c) open system 

2) Now consider the case where matter is caused to move at a velocity V  with 
respect to the used reference. The observation and description of this matter in 
movement can be performed: 

– either, by following the matter in its movement, in which case the observation 
domain D(t) is displaced in time (Figure 1.3b); the matter contained within the 
domain D(t) constitutes a closed system in the sense just defined; 

– or, by considering a fixed domain D0 in which the matter is continually 
renewed; the ensemble of states contained within the fixed geometric domain is 
qualified as an open system, in other words a system which exchanges matter with 
the exterior (Figure 1.3c).  

In Chapter 3 we will encounter these different ways of describing the movement 
of matter in the form of substantial (Lagrangian variables) and spatial (Eulerian 
variables) descriptions. 

By definition, we will say that a process describing the evolution of material 
elements which are identified, and remain unchanged, operates on a closed system, 
in other words a system which does not exchange (does not provide or receive) 
matter with the exterior of the system. We can also use the denomination material 
system. 
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On the other hand, a process (a series of states) during which some matter passes 
from the inside of the domain to its outside corresponds to an open system. 

1.1.4.3.  Types of processes and states 

We normally define the terminology of processes and states in the following 
way: 

– a natural process is undergone by an isolated system which is not subjected to 
any external action; 

– a reversible process is a process for which the direction of time can be 
changed. It is of course a process in which no entropy is created. Such processes 
occur over infinitely slow transformations; 

– a quasi-static process is a succession of close infinitely equilibrium states; 

– a possible process is a process where the constraints placed on entropy are 
obeyed. In the opposite case we speak of an impossible process; 

– a state of equilibrium is in fact the result of a succession of states whose 
variables remain constant, any exchanges of its physical properties with the exterior 
having ceased. 

1.1.4.4. Enclosures and walls 

A diathermic wall is a wall which is permeable to heat and to external sources of 
entropy. 

An adiabatic wall is impermeable to heat and does not allow the passage of 
entropy. It thermally insulates the system from the exterior. 

1.2. Axioms of thermostatics 

1.2.1. Introduction 

The traditional presentation of thermodynamics usually begins with a direct 
definition of the various quantities (force, pressure, etc.) which are then used in the 
subsequent definition of elementary work and heat. The first and second principles 
(conservation of energy and entropy respectively) are then stated, to which further 
laws are then added (conservation of mass, chemical species, etc.). This all leads to 
the differential form of energy being written as the differential of a function E, 
energy. The result is a lack of coherence well known by students of 
thermodynamics. This situation can be avoided by means of a more structured 
presentation concerning the extensive quantities, among which energy plays a 
particular role in physics, whereas entropy is the basis of all considerations 
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pertaining to irreversible thermodynamics. We will also more clearly outline the fact 
that the more complex and irreversible the evolution considered, the greater the 
number of variables required. 

1.2.2. Extensive quantities 

1.2.2.1. Definition of extensive quantities 

Among the quantities used for the description of a state, we postulate (basic 
principle) that for every system S there exists an ensemble of n extensive quantities 
whose measure is proportional to the extension of the system, and which are always 
defined regardless of the state considered. 

 
  b 

S 

a  

Figure 1.4. Disjoint states 

Consider two disjoint states, i.e. states which have no matter in common; the 
extensive quantity Xi associated with the ensemble of the two states (a) and (b) is 
equal to the sum of the quantities corresponding to each state: 

)()()( bXaXbaX iii  

If the sub-ensembles corresponding to (a) and (b) are not disjoint, we clearly 
have: 

)()()()( baXbXaXbaX iiii   

This definition only concerns the description of a state (a collection of matter) at 
a given instant. Under no circumstances does it imply the same property for two 
separated sub-systems (a) and (b) which we bring together in an externally applied 
field (force field, electromagnetic field, etc.), as this would constitute a process 
(series of states). 

The index i takes on small integer values as these quantities are generally small 
in number for a state. The following quantities are extensive: mass, volume, number 
of moles, energy, entropy, force, etc. 
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1.2.2.2. Natural processes 

The usual (historic) presentation of thermodynamics begins with a statement of 
the first law of thermodynamics, which sees energy play a central role compared 
with the other extensive quantities. This is in fact only one of the conservation 
principles among the axioms of thermostatics, which affirm the existence of 
conservation laws all possessing the same structure. Consider a material system (i.e. 
a collection of defined material elements) which evolves according to a natural 
process (without exchange with the exterior). The system is described in a Galilean 
(or inertial) reference frame in relation to which it is fixed (no dynamic effects in the 
sense of mechanics are authorized), and only geometric changes of reference frame 
are permitted. 

The following principles can be established: 

– The entropy S of the material system is non-decaying during the natural 
evolution of a process.  

– The other extensive quantities Xi of a material system remain constant during 
the natural evolution of a process. 

The preceding axioms actually express the existence of physical conservation 
laws, except for the entropy which can only increase during the spontaneous 
evolution of an isolated system. The axiom of extensive quantities also implies that 
the concept of variation in the extensive quantities of a system (a) is meaningful: it 
is possible to conceive of the quantity Xi of which (a) has gained an amount X.  

 

(a) 

(b) 

abba XX
S 

 

Figure 1.5. Action and reaction in a system 

1.2.2.3. Action and reaction 

The preceding definition implies a principle of action and reaction: let us divide 
the considered system into two sub-systems (a) and (b), separated by a surface S 
(Figure 1.5). The extensive quantity abX  gained by (a) to the detriment of (b) is 
opposed to the extensive quantity baX  gained by (b) to the detriment of (a). This 
amounts to saying that the action exercised by (a) on (b), the source of the transfer 
between (a) and (b), is opposed to the action of (b) on (a): 
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0abba XX  [1.2] 

To be more general, we can consider a process during which the sub-systems (a) 
and (b) receive in addition the quantities Xa ext and Xb ext from the exterior of the 
system S: 

baextbbabextaa XXXXXX ;  

The conservation of the quantity X in the system implies that the total amount of 
the quantity X is equal to the amount of this quantity which is received from the 
exterior: 

extbextaba XXXX  

Equality [1.2] is once again the result. 

The preceding reasoning is not applicable to entropy, for which we do not have 
conservation, but only non-decay. This results in the principle of action and reaction, 
which, as applied to the entropy, is written: 

0abba SS  [1.3] 

This inequality implies that one of the sub-systems has gained more entropy than 
the other has lost. 

The actions leading to a gain in the quantity X in system (a) can be classed into 
two categories: 

– volume actions related to fields which can exert their influence from a distance: 
an electric field produces a displacement of electric charges, electromagnetic 
radiation can lead to a the creation of heat by absorption in the material medium, 
etc.; 

– contact actions  (on a surface) between (a) and (b) (Figure 1.5) essentially 
results from the action between the molecules in the immediate vicinity of the 
surface S (at distances of the order of the intermolecular distances or of the mean 
free path in a gas). As this volume is based on the surface S and is of small 
thickness, it can be modeled by the surface S, on which we can concentrate the 
interaction between (a) and (b). The usual contact actions are pressure, frictional 
force, thermal conduction, molecular diffusion, etc. 
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1.2.2.4. States of equilibrium and extensive variables 

Let us consider a material system in a given initial state. Suppose that excepting 
its entropy, the values of its extensive quantities are known. We thus have a partial 
characterization which does not allow a full description of the state of the system. It 
is clear that a knowledge of the global values of mass, energy, etc., does not provide 
any understanding of how these quantities are distributed within the system. 

Let us now isolate the system and leave it to evolve according to a natural 
process; the extensive quantities which it contains will naturally distribute 
themselves in a balanced way throughout the system. It is easy to understand that the 
final equilibrium state of the system is unique, as confirmed by experience. In other 
words, the extensive quantities of a material system allow a description of the 
equilibrium state achieved by a system at the end of all natural processes (provided 
the system remains isolated). Following the axiom pertaining to the entropy (section 
1.2.2.2), the entropy associated with such a material system increases in order to 
attain a maximum value corresponding to this final state of equilibrium. We thereby 
deduce that this entropy of the equilibrium state is a well-determined function of the 
other extensive quantities for the system considered: 

)( iXSS  [1.4] 

Relation [1.4] constitutes the entropic representation of the system in 
equilibrium. It is in fact a state equation (in the thermodynamic sense) for 
equilibrium states which are only comprised of the extensive variables. In order not 
to confuse it with the usual state equations, we will refer to it as the general 
equation of state of a system. This relation is unique for a given material system, 
although numerous state equations, more or less dependent on it, can be derived 
from it. The variance of a system is the number of independent extensive quantities 
necessary for its representation. 

The existence of this general equation of state leads to the properties of 
thermostatics. 

1.2.2.5. Homogenity 

We have said that the extensive quantities of a material system are proportional 
to its extension without stating exactly what this extension is. Let us suppose that 
these extensive quantities Xi and the entropy S are all associated with a given 
volume of ordinary 3D space. Taking two systems S  and S with material contents 
which are homothetic (or which are geometrically similar) with a ratio of  and  
which are constituted from the same matter, under the same physical conditions, at 
homologous points, we can say that the extensive quantities Xi are proportional to a 
cube with a reference dimension:  
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SSXX ii
33  

Denoting our two states by (a) and p (a), with p = 3, state relation [1.4] can be 
written: 

)()( iip XpSpXSS  [1.5] 

The function iXS  is a first degree homogenous function. 

1.2.2.6. Note 

This property no longer holds if the extensive quantities are associated with 
spaces of different dimensions. As an example consider a drop of water whose total 
energy is the sum of two terms, on the one hand an energy associated with its 
weight, Eg, proportional to its volume, and on the other hand an energy associated 
with its surface tension, ET, proportional to its surface: 

Tg EEE  

The total energy of the system S  becomes, considering a homothetic ratio 

Tg EEE 23  

Other extensive quantities Xi (for example, mass or volume) of this drop remain 
proportional to the homothetic ratio 3 and respect relation [1.4]. It is therefore clear 
that relation [1.5] is no longer respected. We will not consider such cases in what 
follows. 

1.2.3. Energy, work and heat 

1.2.3.1. Energetic representation of a system 

Among the extensive quantities, the energy, which we denote E, is often 
assigned a particular role. Depending on whether it is explicitly solved in S, or in E 
(energetic representation), the general equation of state [1.4] of a system can be 
written: 

),(or),( ii XSEEXESS  [1.6] 
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In practical applications at usual temperatures, energy and entropy only appear in 
terms of their variations. In these conditions, it is not necessary to define them in an 
absolute sense and it is sufficient to evaluate them to the nearest constant. 

For a system at rest in a Galilean reference frame, the energy of a system is 
essentially comprised of its internal energy and the different forms of potential energy 
of the system elements. Changing the Galilean reference frame would amount to adding 
a constant amount of kinetic energy, which clearly does not change our description. 
This will no longer be the case if elements of the system have different movements, in 
which case their respective kinetic energies would need to be accounted for. 

1.2.3.2. Work and heat 

By calculating the differential of relation [1.6]: 
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we can define the elementary work dW and the elementary heat dQ by the relations: 
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 [1.7] 

such that we obtain the classic definition dQdWdE , in which the differential 
forms dW and dQ are not differentials of a function, i.e. they are not exact differentials. 

1.3. Consequences of the axioms of thermostatics 

1.3.1. Intensive variables 

1.3.1.1. Definition and properties 

We will only study equilibrium states entirely characterized by the values of the 
extensive variables and the relation of state [1.4] or [1.6] between them. 

We define entropic intensive variables using the relations: 
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 [1.8] 

Zi (resp. 1/T) being called the conjugated variable of Xi (resp. E) with respect to S. 
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The energetic intensive variables are similarly defined: 
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i  [1.9] 

Yi (resp. T) is the conjugated variable of Xi (resp. S) with respect to E. 

The differentials dE of the energy and dS of the entropy can be written: 

i
iidXYTdSdE  [1.10] 

i
iidXZdE

T
dS

1
 [1.11] 

From this, the relation between the energetic and entropic intensive variables, 
respectively Yi and Zi can be obtained: 

ii TZY  [1.12] 

Consider a fluid defined by the extensive variables (volume V, number of moles 
N, energy E and entropy S), the energetic intensive variables are the pressure p (to 
the nearest sign), the temperature T and the chemical potential 
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1.3.1.2. Consequences of homogenity 

Differentiating relation [1.5] with respect to p, and letting p = 1, we obtain: 
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and: 

i
ii XYTSE  [1.14] 

We note that the general relation [1.13] or [1.14] does not allow the 
characterization of a system. It constitutes a differential equation which is satisfied 
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by any homogenous function S of degree 1. For example, for a fluid, the following 
relation can be written: 

NpVTSE  

Differentiating relation [1.13] or [1.14], and comparing with expression [1.10] or 
[1.11], we obtain the relations: 

(Gibbs Duhem relation)i i
i

SdT+ X dY =0 -  [1.15] 
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1.3.1.3. The equations of state 

An expression relating the extensive and the intensive quantities which 
characterize a system is habitually called an equation of state. 

 
The intensive variables, being by definition partial derivatives of a function 

,...),( XSE , are not independent. In practice we rarely use the general equation of 
state [1.6], which only relates the extensive quantities, using instead the more usual 
equations of state which relate extensive and intensive variables, which can be more 
or less dependent. 

For example, for a perfect gas, we know that there are two equations of state: 

dTmCdENRTpV v  

These are not independent as the first equation of state implies that the specific 
heat Cv can only be a function of the temperature (Joule’s law; see elementary works 
on thermostatics). 

1.3.2. Thermodynamic potentials 

1.3.2.1. Introduction 

While the preceding presentation assigns a particular role to the extensive 
variables, using them to represent a given system does not lead to the most useful 
means of studying that system. The temperature or pressure of a fluid are of a more 
direct interest than its volume or its energy when it comes to isobaric or isothermal 
processes. We often prefer a combination of intensive and extensive variables for 
studying a given system. From a mathematical point of view, such changing of 
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variables can be relatively complex (e.g. contact or Legendre transformations [IGO 
89], [COU 89], [BYU 02]). 

Let us consider a simplified situation comprising a function ),( yxf  in two 
variables. Instead of taking the couple (x,y), we take the new variables ( yfx /, ): 
we thus replace the variable y with the derivative yf / , the function f not being 
known a priori. We cannot therefore hope to obtain the explicit properties, only 
those of the differentials being accessible. We thus perform a change of function, 
replacing the differential of the extensive variable with the differential of the 
conjugate intensive variable. The simplest example is the introduction of the 
enthalpy H:  

pVEH(p,S,N)  

For a fluid, the differential dH can be written: 

dNTdSVdppVEddH  

whence we see the intensive variable p appears in differential form. This is 
particularly convenient for the study of isobaric transformations or shaft work.  

1.3.2.2. Definition of thermodynamic potentials 

The preceding method is a general one. Suppose for instance that we want to 
choose the collection of independent variables ( ji YX , )2: we define the function 

ji YXE , : 

j
jjji YXEYXE ,  

Using relation [1.10]3 the differential of the function ji YXE ,  can be written 
as: 

j
jj

i
ii

j
jjjj dYXdXYdXYdYXdEEd  [1.17] 

The function E  is a thermodynamic potential whose partial derivatives: 

                                   
2 The subscripts i and j correspond respectively to the different couples of extensive and 
intensive variables. 
3 Here, S is included in extensive variables X and is not explicitly written.  
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kjYiXk
k

Y

E
X

,  

with respect to the intensive variables Yk, are the corresponding extensive variables4.  

Using this expression in the definition of E , we obtain the Gibbs-Helmholtz 
relation (a partial differential equation for E as a function of E): 

EY
Y
E

E
j

j
j

 [1.18] 

Remember that we frequently use:  

– the Helmholtz function NTVF ,,  (free energy); 

, ,
hence:

with: 

F V T N E TS

dF pdV SdT μdN

F F F
p S μ

V T N

 

– the Gibbs function NTpG ,,  (free enthalpy): 

, ,
hence:

with: 

G p T N E pV TS

dG Vdp SdT μdN

G G G
S μ

p T N
V

 

The thermodynamic potentials are first order homogenous functions which 
satisfy Gibbs-Duhem relations (section 1.3.1.2). They are useful for the study of 
systems where certain intensive variables remain constant.    

                                   
4 Notation 

kjYiXkY ,  specifies that the chosen independent variables are Xi and Yj. 
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For example, during a constant-pressure (pa) evolution of a system whose 
volume increases by an amount V, the system receives an amount of work 

Vpa .  from the exterior. If W  denotes the work (aside from that due to the 
pressure pa), the variation of enthalpy H of the system is (section 1.3.2.1): 

QWVpEVpEH aa ..  [1.19] 

Generally speaking, the source of an extensive quantity Xj, for which the 
intensive variable Yj is constant, providing the system with Xj by means of a quasi-
static process, leads to a variation of its thermodynamic potential equal to: 

QWXYEE jj  

(W and Q being respectively the work and heat received from means other than the 
source, with Yj being constant). 

1.3.2.3. Thermostatics and variables change 

The traditional practical problem of thermostatics consists of passing from a 
representation of a system with n variables to another representation with n variables 
related to the first by means of conjugation properties in the entropic and energetic 
representations. The number of possible combinations of n independent variables 
among the 2n extensive or intensive variables is clearly large. It is in fact the 
principal practical difficulty of thermodynamics. This multiplicity of possible 
independent variables leads to the numerous Maxwell relations between the 
coefficients of the differential forms of energy, entropy, enthalpy and the different 
thermodynamic potentials; the general form can be written by means of the 
differential Ed  [1.17]: 

i

j

j

j

i

i

i

i

i

j

j

i

Y

X

Y

X

X
Y

X
Y

Y

Y

X
X '

'

'

'
 

We will leave it to the reader to work out examples involving the explicit 
functions given below. 

Remember the rules for changing variables when using partial derivatives: if the 
three variables (x,y,z) are related, it is straightforward to show that: 

11
zzyxz x

y

y

x

x

z

z

y

y

x
 [1.20] 
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1.3.2.4. “Thermodynamic” coefficients 

For quasi-static closed process (N=const) we define the coefficients using units 
of mass or of volume. The specific heats at constant volume Cv and at constant 
pressure Cp, and the calorific coefficients h and l are: 

dphdTNMCdVldTNMCTdSdQ pv  

from which we can derive the relations: 

2

2

,

2

2

,

T

G

NM

T

T

S

NM

T
C

T

F

NM

T

T

S

NM

T
C

Np
p

NV
v

 [1.21] 

NVNT T
p

T
TV
F

T
V
S

Tl
,

2

,
 [1.22] 

NPNT T

V
T

TP

G
T

P

S
Th

,

2

,
 [1.23] 

In general, depending on the thermodynamic transformations studied, we may 
choose diverse independent variables. For example, we define the calorific 
coefficients and : 

dvdpTdSdQ  

and the isothermal and adiabatic compressibility coefficients, respectively T and S: 

S
S

T
T

p
V

Vp
V

V
11

 [1.24] 

Recall the Reech relation (not derived here): 

 
V

p

S

T

C
C
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The speed of sound is defined by the relation (  being specific mass): 

SSN

p
c

12  [1.25] 

The coefficients of dilatation are defined by the relations: 

VT
F

pT
p

ppT
G

VT
V

V VP

22 11
;

11
 [1.26] 

We recall the usual relations, which the reader can verify using identities [1.20]: 
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2
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We deduce from this that the differential of the specific entropy (per unit mass) s 
as a function of the dp and d  variables can be written in one of the following forms: 

dcdp
pT

C
d

T

C
dp

pT
C

dcdp
p
s

d
s

dp
p
s

ds

vpv

p

2

2

 [1.27] 

1.3.2.5. Perfect gas 

Consider a perfect gas with constant specific heats vC  and pC and of molar mass 
M. By reasoning using the unit of mass, state relation [1.6] between the extensive 
quantities can be written: 
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1
1 const exp const

with: ; ;

v

v

e s
s C Ln e

C

m V NM V s S m e E m h H m

 

From the intensive variable definitions, we can easily derive the usual state 
equations: 

const with: . joule/molevp r T e C T R r  

We can thereby obtain expressions for the extensive variables as functions of 
other variables, (e0, h0, s0) being some constants:  

00101

0000 ;
1

;
1

s
p

LnCs
p

T
LnCs

T
LnCs

h
p

hTChe
p

eTCe

vpv

pv

 

in addition to expressions for the usual coefficients given below: 

.;

;;
1

;
1

; 2

vpvp

S

CCrCC

rT
p

c
T

hpl
 [1.28] 

 

1.4. Out-of-equilibrium states 

1.4.1. Introduction 

The reasoning of section 1.2.2.4 shows how a system which is not in equilibrium 
does not have a general state relation outside of equilibrium conditions. The 
extensive quantities remain defined, but they are no longer sufficient to characterize 
the state of the system, as the entropy can no longer be defined as a function of these 
parameters alone. As seen in section 1.2.2.4, the distribution of extensive variables 
is uniquely defined for a system in equilibrium, whereas this is no longer the case 
for a system which is not in equilibrium: a more detailed description of the structure 
of the system is thus necessary. This implies that more parameters will be necessary 
a priori for a description of an out-of-equilibrium system than for one which is in a 
state of equilibrium. 
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The general method for describing an out-of-equilibrium system involves 
considering the system as a collection of sub-systems, each of which is in a state of 
equilibrium and which can thus be described by means of their extensive variables. 
We suppose (postulate) that such a procedure is always possible. 

As the system is no longer in equilibrium, exchanges occur between the 
extensive variables of the various sub-systems, and the intensity of these exchanges 
must be characterized. It is now essential that time be homogenous, in other words, 
for an out-of-equilibrium system whose characteristics do not change, the amounts 
of quantities exchanged must be proportional to the duration of the transfers. At this 
point, it is sufficient to consider continuous matter at rest, i.e. in a fixed reference 
frame. 

1.4.2. Discontinuous systems 

1.4.2.1. General principles 

A real system nearly always comprises a continuous variation of its physical 
properties. We therefore represent the latter using piecewise constant functions 
defined on a partition of the system in P sub-systems, each of which is 
approximately in a state of equilibrium, and to which we can therefore apply the 
properties of systems in equilibrium. Let k be the number of independent extensive 
variables required for a description of each sub-system (number of moles, volume, 
energy, entropy, etc.) in terms of an energetic or entropic representation. 

A knowledge of the state of the system S requires a complete description of the P 
sub-systems, i.e. a total of kP variables. As seen earlier, certain extensive variables 
can be replaced by their corresponding intensive variables, which are defined for 
each sub-system as a result of the hypothesis that these sub-systems are in a state of 
equilibrium. This of course does not change the total number of independent 
variables, kP. For each sub-system p, we have the entropic form of the general 
equation of state (the energy of each sub-system, which is not individualized here, is 
included in the variables Xi): 

kiPpXSS ippp ,...,1;,...,1  

where Xip designates the extensive quantity Xi contained in the sub-system p. 

The extensive quantities of the complete system can be obtained by adding the 
corresponding extensive quantities of the sub-systems: 

),...,1(;
11

PpXSSXX
P

p
ipp

P

p
ipi  
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Note that in general, it is obviously not possible to obtain a relation between the 
extensive quantities Xi of a system and its entropy S, since the kP variables Xip must 
be eliminated from the k + 1 preceding equations. This fact bears witness to the 
absence of a general equation of state for an out-of-equilibrium system. 

The extensive quantities Xi are generally functions of time. The flux ip of the 
quantity Xi received by the component p is defined by: 

dt

dX ip
ip  

The origin of the quantities dXip and the flux ip can be considered individually 
for each of the sub-systems. Let dXip,q (resp. dXiq,p) be the amount of extensive 
quantity Xi received by the sub-system p (resp. q) from the sub-system q (resp. p) in 
time dt. The amount of entropy dSp,q (resp. dSq,p) received by each of the systems 
and associated with the aforementioned transfer is evaluated by means of the 
entropic representation differential of each of the sub-systems: 

k

i
piqiqpq

k

i
qipipqp dXZdSdXZdS

1
,,

1
,,  

The intensive variables Zip and Ziq of two neighboring sub-systems will have 
different values if the sub-systems are not in equilibrium, and so the entropy 
variations dSp,q and dSq,p will have different absolute values. Indeed, there can only 
be an exact balance between the two sub-systems if the intensive variables Zip and 
Ziq are equal. 

With the exception of entropy, “exchanged” quantities obey the principle of 
action and reaction which results from the conservation principles (section 1.2.2.3): 

0,,,, pqqppiqqip dSdSdXdX  [1.29] 

During an irreversible transfer of an extensive quantity, the entropy gained by a 
body is greater than the entropy lost by the body from which the extensive quantity 
is transferred (this statement is algebraically true). 

The distribution of intensive variables is thus a constant function of space within 
the spatial bounds of a given sub-system, discontinuities at the frontier of each sub-
system existing in proportion to the degree of thermodynamic imbalance within the 
system. Such imbalance leads to an exchange of the quantities dXip,q between the 
sub-systems. It is thus necessary to introduce relations between these causes and 
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their effects. Before dealing with the general problem of these relations, we will 
illustrate the methodology using the following elementary example, comprising two 
sub-systems which only exchange heat between themselves, or with the exterior. 

1.4.2.2. An insulated thermal system 

1.4.2.2.1. Entropy variation 

The simplest example is an ensemble which is insulated from the exterior 
(Figure 1.6a), comprising two conducting blocks separated by a diathermic wall 
which creates a resistance to heat transfer (thermal resistance). Each of the subs-
systems is, by assumption, characterized by its calorific energy content Q1 (resp. Q2) 
or its temperature T1 (resp. T2), assumed to be uniform at every instant. These 
quantities vary slowly with time on account of the thermal resistance of the system. 

 

 (a)  (b)

 T1

Ti 

T2

 x 
O

1e  2e T1,2 T2,1

T1 

Ti 

T2 

 

x 
O 

 

T1,2 T2,1 

 

Figure 1.6. Heat transfer in an (a) insulated or (b) uninsulated system 

The ensemble is not in equilibrium and is thus subject to a natural evolution 
during which the entropy increases, while the internal energy remains constant. We 
will calculate the variation in entropy between the state thus defined and the 
equilibrium state. 

The entropy of a solid mass m of constant specific heat capacity C is 
const;S mC LnT  the entropy of the ensemble of the two blocks, which are 

assumed to be identical, is thus: 

1 2 1 2 constS S S mC LnTT  

As the ensemble is insulated from the exterior, the total amount of heat remains 
constant: 

1 2 constmCT mCT  
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The natural evolution of the system S from initial temperatures T10 and T20 leads 

to the final temperature 
2

2010 TT
T f , which is identical for the two blocks, and 

to the final entropy S of the system:  

2 constfS mC LnT  

The variation in entropy S between the final and initial instants is thus: 

2010

2
2010

2010

2
2010

4
1

4 TT

TT
mcLn

TT

TT
mcLnS  

It is always positive and independent of the intermediate evolution between the 
initial and final instants. 

1.4.2.2.2. Entropy sources  

Let dQp,q be the quantity of heat received in time dt by the component p 
( 2,1p ) from the other component ( pq 2,1 ): 

01,22,1 dQdQ   

The heat flow Tp,q received by the sub-system p is the quantity of heat 
dtdQ qp,  received per unit time by the component p ( 2,1p ) from the other 

component. Thus, we have: 

21

2,11,2

2

2,1

1

1111
TTdt

dQ

dt

dQ

Tdt

dQ

Tdt

dS
 [1.30] 

The rate of entropy creation dtdS  is always positive on account of the fact that 
the heat transfer naturally occurs from the hot body to the cold body: 

T1 > T2  dQ1,2 < 0     and     T1 < T2  dQ1,2 > 0 

Let us consider the first situation (T1 > T2). The quantity dQ2,1 is positive; the 
entropy (positive) dS2 gained by sub-system 2 is greater than the entropy -dS1 lost by 
sub-system 1. This is in accordance with the fact that for irreversible heat transfer, 
the entropy gained by a system is greater than the entropy lost by the body which 
has provided the heat. 
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The higher the degree of the imbalance, the greater the thermal flux, and the 
greater the rate of entropy creation. 

1.4.2.3. The insulated system and entropy creation 

Let us consider two bodies, each in equilibrium, and which exchange a quantity 
X across a wall permeable for this quantity. We define the intensive entropic 
parameters:  

1

1
1 X

S
Z    or   

2

2
2 X

S
Z   

During a quasi-static transformation where the quantity dX1,2 = -dX21 is 
exchanged in time dt, we obtain: 

21
2,11,2

2
2,1

1 ZZ
dt

dX

dt

dX
Z

dt

dX
Z

dt
dS

 [1.31] 

As the entropy can only increase, the value of X increases (resp. decreases) in the 
sub-system for which the value of Z is greatest (smallest). The transfer of the 
quantity X occurs spontaneously from the sub-system with the smallest value of Z to 
the sub-system with the greatest value of Z.  

As in the preceding section, we see that during an irreversible transfer of an 
extensive quantity, the entropy gained by a system is greater than the entropy lost by 
the body which has lost this extensive quantity. 

Expression [1.31] can be immediately generalized to a system constituted of P 
sub-systems characterized by I independent extensive quantities: 

.,
1 1 1

,
, pq

dt

dX
Z
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dS I

i
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P

q

qip
pi  
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or, after grouping the opposing fluxes (p < q, so as to only count this component 
once): 

qp
dt

dX
ZZ

dt
dS I

i

P

p

P

q

qip
qipi

1 1 1

,
,,  

1.4.2.4. Systems with external exchanges and entropy source   

Let us first consider the same thermal systems as above (section 1.4.2.2), but 
where each of these receives a quantity of heat dQpe (p = 1,2) in time dt from the 
exterior. For the heat exchange we have (Figure 1.6b): 

0:with;; 1,22,121,2212,11 dQdQdQdQdQdQdQdQ ee  

The increase in system entropy is: 

212

2,1

2

2

1

1 11
TTT

dQ

T

dQ

T

dQ
dS ee

 [1.32] 

The external entropy supply terms 
dt

dQ
T

e1

1

1
 and 

dt
dQ

T
e2

2

1
 can now take any 

sign. The term in [1.32] which corresponds to irreversible internal heat exchange, 
which is always positive, constitutes an entropy source. We thus have: 

dS
T

dQ

p p

pe

2,1
 [1.33] 

Suppose, in addition, that the external sources of heat are in thermostatic 
equilibrium, such that their temperatures T1S and T2S are defined. These transfers are 
natural internal evolutions for any ensemble constituted of a sub-system and a 
corresponding external source. They are, as before, entropy generators; we can 
therefore write: 

0
11

2,12,12,1 pSpp p

pe

p pS

pe

p p

pe

TTT

dQ

T

dQ

T

dQ
 [1.34] 
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By then evaluating the entropy lost by the external sources we obtain the 
Clausius inequality: 

dS
T

dQ

T

dQ

p p

pe

p pS

pe

2,12,1
 [1.35] 

Similarly, for internal and external exchanges of an extensive quantity X, we 
obtain, using the same notations as above: 

1 21 2
1 2 1 2

positive term

,e e dXdS dX dX
Z Z Z Z

dt dt dt dt  

The term 21
2,1 ZZ

dt

dX
, which is always positive, is the entropy source 

associated with internal exchanges. The rate of entropy creation is proportional to 

the intensity 
dt

dX 2,1
 of the internal exchanges and to the imbalance 21 ZZ  

between the two sub-systems. 

In general, the internal production of entropy dtdS int  (entropy source) is 
associated with the evolution of all of the extensive quantities in this system, which 
is made up of two sub-systems: 

IiZZ
dt

dX

dt

dS I

i
ii

i ,....2,1
1

21
2,1int

 [1.36] 

Finally, let us recall that the entropic intensive quantities Zi are related to the 
energetic intensive quantities ([1.12]: ii TZY ) and that it is possible to express 
the entropy source as a function of any other quantities. 

The reasoning used above leads to an expression for entropy sources dt

dS int
 in a 

system made up of P sub-systems characterized by I independent extensive 
quantities: 

,int
, ,

1 1 1

( )    
I P P

ip q

i p i p

i p q

dxds
Z Z p q

dt dt
 [1.37] 
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Expression [1.37] only applies to internal entropy creation in the system 
considered. Entropy production is also associated with the transfer of extensive 
quantities from sources external to the system; this entropy production can be 
evaluated in the same way. For thermal transfers between external temperature 
sources TpS (p = 1,…,P) and the system, we have, as above, the Clausius inequality: 

dS
T

dQ

T

dQ P

p p

peP

p pS

pe

11
 

1.4.2.5. The average intensive quantity 

1.4.2.5.1. Definition 

An out-of-equilibrium system is characterized by a collection of intensive 
quantities whose values differ according to the sub-systems considered. It may be 
useful to characterize the system by a global intensive variable, which is an “average 
value” of the intensive variables of the sub-systems. In order to define this average 
value, we will refer to an “equivalent” equilibrium state of the system. 

Consider an out-of-equilibrium system S made up of P sub-systems Sp each of 
which is in instantaneous equilibrium (quasi-static transformations). For each of 
these, we can define the intensive entropic quantities Zip associated with their N 
extensive quantities Xip. The total amount of extensive quantity Xi contained in the 

system S is the sum 
P

p
ipX

1
 of the extensive quantities of each sub-system. 

It is clear that the system S cannot be described by any intensive quantity 
associated with Xi. We can however associate system S with an average intensive 
quantity Ym or Zm at any given instant t, defined as the intensive quantity which the 
system S would attain following a natural evolution during which values Xi should 
be constant (without any external contribution). Let us consider as an example the 
variables Zm. 

Suppose that during the transformations undergone by the system, certain 
extensive quantities );,...,1( pIiX ip of the sub-systems are exchanged, while 
the other IN extensive quantities remain constant in each of the sub-systems (for 
example mass, number of moles, volume, etc.). All intensive quantities of all sub-
systems vary during the exchange of extensive quantities. In the final state of the 
previously defined system, intensive quantities Zip corresponding to exchanged 
extensive quantities have the uniform value Zim for all sub-systems: 
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In each sub-system p, every intensive quantity Zip corresponding to the extensive 
exchanged quantities Xip can be expressed as a function of the N extensive quantities 
(I extensive quantities Xip exchanged with other sub-systems and N – I other 
extensive quantities Xjp which are constant for the sub-system).  

),...,1;,...,1;,...,1(, PpINjIiXXZZ jpipipip  

By solving the preceding system of I equations for each sub-system p, with 
respect to the extensive quantities Xip, we obtain: 

),...,1;,...,1;,...,1(, PpINjIiXZXX jpipipip  

The quantities Xi for the system S can be immediately obtained: 

);,...,1;,...,1(,
1

INjIiXZXX
P

p
jpipipi  

The equilibrium conditions for the system can be written );,...,1( pIiZZ imip
pIZZ. 

Considering the quantities Xi to be constant, we obtain a system of I equations 
from which we can evaluate the I average intensive quantities Zim which 
characterize the out-of-equilibrium system: 

1

, ( 1,... ; 1,..., 1)
P

i ip im jp

p

X X Z X i I j N  [1.38] 

We laid down that certain extensive variables were not exchanged between the 
sub-systems. The problem can be easily discussed in the same manner with different 
conditions: for example, by fixing the uniform value to certain intensive quantities 
in the whole system (section 1.4.2.5.2, example 2), or by choosing different 
conditions according to certain ensembles of sub-systems. 

1.4.2.5.2. Examples 

We will consider two examples in order to illustrate the preceding procedure, 
which we will encounter again in the study of fluid mechanics: 

1) A thermal system – consider a system S1 (Figure 1.7a) whose P sub-systems 
exchange heat via a constant-volume process, such that the temperature Tp is the 
only variable intensive quantity of any of the sub-systems during the process. The 
energy Ep of each sub-system can be expressed as a function of its temperature and 
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its specific heat capacity p, which is assumed to be constant for the sake of 
simplicity: 

ppp TE
 

The energy E of the system and its average temperature Tm can be obtained: 

P

p
pmm

P

p
p

P

p
pp TTTE

111
:with;

 

The average temperature of the out-of-equilibrium system can thus be written: 

p
ppm TT

1

 

In this particular case, the average temperature is the average of the temperatures 
weighted by the specific heat capacities. 

 

 Tp 

 T2 

 T1 

(a) System S1 

p1
 T1 

p2
 T2 

pp
 Tp 

(b) System S2  

Figure 1.7. Examples of out-of-equilibrium system: 
(a) incompressible thermal system S1; (b) compressible thermal system S2 

2) A thermo-compressible system – consider now a system S2 (Figure 1.7b), 
which is comprised of sub-systems of variable volumes Vi, containing a perfect 
gas and susceptible to exchange heat between each other. The volumes Vi are 
separated by pistons which may be subject to fluid friction. The equations of 
state for a perfect gas (section 1.3.2.5) give the expression sought for the 
extensive quantities:  

( : heat capacity at constant volume)p p

p p vp p vp

p

n RT
V E T
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The global volume and internal energy balances for a natural transformation 
allow the average pressure and temperature to be defined: 

1 1 1

1 1

;

with: and: 
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We obtain the following expressions for the average temperature and pressure: 
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The average values of the intensive quantities are no longer simply weighted 
arithmetic averages. 

1.4.2.5.3. Some comments 

1) The “equivalent” system used to define the average intensive quantities is in 
thermostatic equilibrium. It thus behaves according to a general state equation and 
may therefore constitute a reduced representation of the out-of-equilibrium system, 
which is clearly incomplete for a detailed description of the sub-systems. With the 
exception of entropy, this is coherent with the laws of thermostatics (we can also say 
that this is a “consistent” representation). 

2) The average intensive quantities are only weighted arithmetic averages if the 
expressions for the extensive quantities Xip are linear functions of Xjp and Yip. The 
reader can verify that the state equation for the equivalent complete system 
comprises the same linear properties. 

3) In the examples of the last section we have considered two systems 
constituted of sub-systems with identical properties. The study of more complex 
systems, comprising combinations of sub-systems with different structures, can be 
effected in the same way.  

4) The procedure for definition of average intensive quantities can also be 
applied to systems whose intensive quantities may be subjected to certain 
constraints. Let us reconsider the example of Figure 1.7a, in which the sub-systems 
are all at constant pressure equal to that of the atmosphere, rather than being at 
constant volume. We suppose nonetheless that the external walls of the system, 
which are in contact with the atmosphere, are adiabatic. The conservation of internal 
energy can be written by taking into account the work done by the atmospheric 
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pressure on the system. The reader can verify that this amounts to writing the 
conservation of enthalpy of the sub-systems. 

1.4.2.6.  Phenomenological laws 

1.4.2.6.1. Introduction 

In general, all causes of the same tensor nature act on all of the corresponding 
effects: we thus have a coupling of irreversible phenomena; the example of a 
thermocouple is well known. Phenomena of different tensorial order do not mutually 
interact (Curie’s principle). The interested reader should refer to the specialized 
literature ([DEG 62], [BYU 02], [PRI 68]). 

Consider two sub-systems p and q between which scalar quantities X can be 
exchanged. This exchange between the two sub-systems is assumed to be 
independent of other sub-systems, which is the case when exchanges only occur via 
direct contact, action at a distance not being possible. The irreversible evolution 
which occurs takes the form of a flux, dtdX qip,  between the two sub-systems, and 
is caused by the existence of an imbalance characterized by the different values Zjp 
and Zjq of all the intensive entropic quantities of the two sub-systems (j = 1,..., I). 

We have a relation between the causes Zjp and Ziq and the effects (the fluxes) 
whose general form can be written as: 

IjiZZF
dt

dX
jqjpi

qip ,...,1,,,  

The principle of action and reaction and the condition of zero flux at thermostatic 
equilibrium )( jejqjp ZZZ  can be represented by the relations: 

0,;,, jejeijpjqijqjpi ZZFZZFZZF  

From this we can deduce a property of the derivatives of Fi which will be used in 
the following section: 

jpjq
jq

i
jqjp

jp

i ZZ
Z
F

ZZ
Z
F

,,  

1.4.2.6.2. Linear thermodynamics 

Provided the degree of thermodynamic imbalance is reasonably small, it is 
possible to perform a limited Taylor expansion of the functions jqjpi ZZF ,  in the 
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vicinity of the point , ( 1,..., )ieZ ie I , of thermodynamic equilibrium. Taking into 
account the above equality we have: 

IjiZZoZZ
Z
F

ZZZZF jqjpieie
jp

i
jqjpjqjpi ,...,1,,,,  

In the preceding relations, ieie
jp

i
iij ZZ

Z
F

ZL ,0  is a square matrix of 

order I, the properties of which cannot be obtained via thermodynamic 
considerations. Only an experiment or a suitably adapted theory can provide these 
laws, which we here qualify as phenomenological laws. 

Statistical reasoning shows that this matrix is often symmetric (Onsager 
relations). This symmetry is no longer maintained if other intensive variables are 
used in place of intensive entropic variables. 

As long as the preceding approximation is valid, we say that we are dealing with 
linear thermodynamics of irreversible phenomena. We thus have, for each 
thermodynamic flux of an extensive quantity: 

jqjpieij
qip ZZZL

dt

dX ,  [1.39] 

Internal entropy source [1.36], which exists at the interface of the two sub-
systems considered, becomes: 

njiZZZZZL
dt

dS
jj

i
iieij

j
,....2,1,2121

int  [1.40] 

This internal entropy source is thus a positive quadratic form whose principal 
diagonal elements are all positive ( 0eii ZL ).  

We can also perform a change of variables which involves expressing the 
intensive entropic variables as a function of other thermodynamic variables, for 
example the energetic intensive variables. Consider two sub-systems 1 and 2. The 
differences 21 ii ZZ  are generally linear functions (to second order excepted) of 
the differences between the new variables which are chosen. 

For example, with the intensive entropic variable T1 which is associated with 
energy, we obtain: 
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21

12

21

11
TT

TT
TT  [1.41] 

and, generally, by using intensive energy variables ii TZY  in the place of 
intensive entropic variables Zi: 

21
21

1
21

21

1

2

2

1

1
21 TT

TT

Y
YY

TT
T

T

Y

T

Y
ZZ i

ii
ii

ii  [1.42] 

that is, to second order excepted, by linearizing in the vicinity of ( 00 , iYT ): 

212
0

0
21

0
212

0

21

21

1;11
TT

T

Y
YY

T
ZZ

T

TT
TT

i
iiii  [1.43] 

By substituting expression [1.43] into expression [1.39] for the thermodynamic 
flux in which the temperature appears, we obtain a linearized expression for the flux 
as a function of the intensive energy variables (including the temperature): 

2100
int1 , jjiij

i YYYTL
dt

dX  

in which the matrix ijL  can be easily deduced from the matrix Lij. It is easy to see 
that the matrix ijL  is not symmetric, as noted earlier. 

In addition, the terms of the matrix diagonal ijL  are negative: the flux of the 
extensive quantities is in the same direction as the decaying intensive energy 
quantities. 

Letting i = j = 1, the heat flux 
dt

dQ 2,1
 and the temperature T, we define the 

thermal resistance RT which is the inverse of the term 11L  of the first diagonal term 
of the matrix ijL : 

TR
TT

dt

dQ 122,1
 

The entropy source at the interface of the two sub-systems can be written using 
the energy variables (accurate to second order excepted): 
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IjiYYYYYL
dt

dS
jj

i j
iijij ,....2,1,' 2121

int

 

1.4.2.6.3. Conditions for the application of irreversible linear thermodynamics 

We have already noted that it is possible to linearize the phenomenological law 
which gives the flux of extensive variables if the imbalances are “small”. This idea 
can be stated in the following usual way: if the imbalance corresponds to a weak 
variation of a “regular” process, then the linearization may be satisfactory. This 
leads us to invoke irreversible extensive quantity transfer mechanisms. Let us 
examine the case of thermal transfers, which are primarily due to two mechanisms. 

1) Intermolecular action within a material  

Molecular agitation, the intensity of which increases with temperature, results in 
the transmission of extensive properties via collisions between molecules, ions, etc. 
This is a statistical mechanism, which tends to cause a uniform distribution of the 
properties of a body. For example, the mechanical energy of molecules in hot 
regions is transmitted to molecules in cold regions via collisions between the 
molecules (gases), and/or by the action of intermolecular forces (liquids, solids). 
Within the context of kinetic theory in traditional mechanics, molecules are 
animated with a velocity in the order of the speed of sound; they cover a distance 
called the mean free path between successive collisions. Under ordinary conditions 
of pressure and temperature, this distance is in the order of 10-7 meters. Thermal 
energy is due to kinetic and potential energy of molecules. Let us take an example to 
evaluate the imbalance due to a temperature gradient. If we admit that statistically 
molecules lose one-thousandth of their energy with each collision, we can conclude 
that about 100 collisions are necessary in order for gas molecules to lose one-tenth 
of their energy. This loss corresponds to a temperature drop of about 30 Kelvin 
which will be produced over a distance of the order of 10-5 meters (10 m). This 
corresponds to a considerable thermal imbalance. However, these collisions, which 
correspond to a tiny mean energy loss of 1/1,000, are clearly very small processes in 
comparison to two microscopic fluxes of mechanical energy due to the molecules 
going through any plane in one direction and also in the opposite direction. These 
opposite fluxes have nearly the same absolute value. The macroscopic mechanism 
for irreversible transfer of extensive quantities by molecular collision is thus 
statistically a tiny perturbation amongst the mechanisms of thermal agitation, and it 
is thus not surprising that the macroscopic processes are linear. Our experience 
verifies the arguments proposed by this rather simplistic reasoning. 

However, we must realize that the collision properties can vary with temperature, 
even if the mean free path is not very temperature sensitive. This implies that the 
properties of thermal resistance can depend on the temperature chosen T0 in relation 
[1.43], in order to evaluate the thermal resistance (the inverse of the first diagonal 
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term of the matrix '
ijL ). In fact, for large temperature differences, it is necessary to 

consider thermal resistance as a succession of isothermic thermal resistances in 
series and to perform an integration which takes the temperature variation into 
account: 

2

1

2,1 T

T T TR
dT

dt

dQ
 

As a first approximation, we can often take the temperature T0 as being equal to 

the mean temperature 
2

21 TT
. 

2) Thermal radiation 

Thermal radiation is in fact an electromagnetic radiation, whose emitted power 
qT per unit surface (thermal flux density) of a blackbody can be represented by 
Stefan’s law: 

4 ( : Stefan constant;T  Kelvin)Tq T  

Consider two parallel planes, face to face and respectively heated to 
temperatures of T1 and T2 (T1 < T2). The net heat flux density qT received by plane 1 
is equal to: 

4
1

4
2 TT qT   

The preceding relation will quickly deviate from a linear heat transfer law valid 
for small temperature differences. The reader can verify that in this case the 
preceding law can be represented by a thermal resistance RT equal to 331 T , 
which varies strongly with temperature. 

1.4.3. Application to heat engines 

A heat engine is a device in which a fluid is made to evolve according to a cycle 
C: the material follows an evolution parameterized by the time t, after which the 
final state is identical to the initial state. Diverse extensive quantities are exchanged 
by this material with external sources of work and of heat. The objective of this 
machine is to produce certain desired quantities (work for a heat engine, heat for a 
heat pump, etc.) from external sources of other quantities. 
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The fluid which circulates in the engine passes through successive devices which 
either furnish or extract work and heat. Consider a mass m of this fluid whose 
quantities and in particular the temperature T(t) evolve in a quasi-static manner as a 
time function t. Let Q be an amount of heat which it receives between the instants t 
and t+ t. During the cycle C, the variations of the fluid’s entropy and of its internal 
energy are zero: 

0;0 CCC dSQWQWdE  [1.44] 

Thus, the evolution process of the fluid over a cycle, as for all processes, creates 
entropy (see section 1.4.2.4). As the entropy variation of the fluid is zero over the 
cycle, a generalized version of relation [1.33] can be written, T being the 
temperature of the fluid: 

0C T
dQ

 

On the other hand, the heat transfer from the sources at temperature TS(t) is also 
accompanied by a creation of entropy, the reasoning of relation shows that we have 
the Clausius inequalities: 

0
CCC

dS
T
dQ

T
dQ

S
 

The preceding reasoning has the advantage of highlighting the entropy sources 
associated with the Clausius inequality; it also shows that the difference between the 
inequality terms is greater in proportion to the level of irreversibility. 

We will not get into a detailed discussion of such cycles and the efficiency of 
heat engines, all of which can be deduced from the aforementioned inequalities. The 
reader will find such discussions in texts on applied thermodynamics. 



Chapter 2 

Thermodynamics of Continuous Media 

The properties of continuous media can be obtained by a limiting process on 
variables of discrete systems. The exchange of extensive quantities is modeled by 
means of flux densities. Irreversible thermodynamics can be transposed in the same 
way, being represented by diffusion equations expressed in terms of intensive 
quantities (heat and diffusion equations of chemical species). The principal results of 
fluid statics are presented. The diffusion of material leads to the existence of several 
macroscopic reference frames, which brings with it specific difficulties which are 
discussed. 

2.1. Thermostatics of continuous media  

2.1.1. Reduced extensive quantities 

The continuous medium is defined according to the usual method of passing 
from the discrete to the continuous by letting the elementary sub-systems tend 
towards zero, their number thereby increasing indefinitely. If the geometric 
dimensions of a system tend toward zero, the extensive quantities of that system also 
tend toward zero, whereas the intensive quantities do not change. A limiting process 
is therefore necessary for the study of continuous media. 

We define reduced extensive quantities, i.e. extensive quantities per unit of mass, 
volume, or number of moles:

 
 

– a quantity per unit mass 
m
G

g ,  
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– a volume quantity 
V
G

g , 

– a molar quantity 
N
G

g~ . 

The amount of G which is contained in the domain D is: 

DDD dvgndvggdvG ~  

The concept of a local quantity corresponds to an average over a volume which 
is large on the microscopic scale, but small on the macroscopic scale. If we imagine 
that it is possible to measure an average quantity for a set of particles (molecules, for 
example) of a continuous medium, contained within a sphere of radius r and 
centered on a point M, the values obtained will only tend towards the value of the 
reduced extensive quantity if r is sufficiently large. For small values of r, noticeable 
fluctuations would be observed. Figure 2.1 shows the result of a measurement of the 
average density which would be obtained for a sphere whose radius r is of the order 
of the inter-molecular distances. On a larger scale we would of course observe the 
gradient (macroscopic) of the reduced extensive quantity. 

 

rMm ,

r 

M

r M 

 

Figure 2.1. Local value of the average specific mass in a  
 sphere of radius r and fluctuations at a molecular scale 

2.1.2. Local thermodynamic equilibrium 

The description of a given continuous medium can be performed by means of a 
field of reduced extensive quantities. We use the same methodology used for finite 
discrete systems, as the reduced extensive quantities chosen only allow for a 
description of the continuous medium if a hypothesis of local thermodynamic 
equilibrium is made: any very small volume obeys the general equation of state for a 
system in equilibrium, with all its consequences. We obtain the thermostatic 
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relations for continuous media by a limiting process when the characteristic 
dimension of the discrete sub-systems tends to zero. 

General equilibrium equation [1.6] for a discrete system is first degree 
homogenous; it can be applied immediately for reduced extensive quantities. By 
performing a trivial transposition of the reduced notation (X x, E e, S s, etc.), 
the notation S which here designates the mathematical function of formula [1.6], we 
have: 

( , ) or: ( , ) or: ( , )s S x e s S x e s S x e  [2.1] 

The consequences of the hypothesis of local thermostatic equilibrium have 
already been described in Chapter 1; the diverse relations obtained being first degree 
homogenous relations, they are entirely transposable via a replacement of the 
extensive quantities by the corresponding reduced extensive quantities. We note 
however that the variance has decreased by one unit. We will often consider a 
divariant fluid (two independent state variables) which will often be a perfect gas 
with constant Cv, for which the equations of state become: 

constTCerT
p

v  

The local thermodynamic equilibrium hypothesis translates the existence of two 
rapid dynamic processes which are opposed, such that locally there is a balanced 
exchange between them: in effect, the energy mechanism and momentum 
transmission on the molecular scale involves molecular collisions during which the 
exchange of extensive quantities occurs in both directions. The macroscopic transfer 
is no more than the residuum of these exchanges in opposing directions. Molecular 
displacements occur with a velocity in the order of the molecular agitation velocity 
(in the order of the speed of sound). The corresponding fluxes are individually very 
high, but they are in opposing directions and it is their very weak net outcome that 
we observe at the macroscopic scale for irreversible phenomena. These amount to a 
very weak perturbation of the local equilibrium of the continuous medium, which 
obeys thermostatic relations. 

The local thermodynamic equilibrium hypothesis is based on the fact that the 
time required for the local gas equilibrium to be achieved (relaxation time) is small 
compared with the times associated with the macroscopic gas evolution. For the 
molecules of mean free path  and molecular velocity c, the relaxation time is in the 
order of /c, if we consider that each molecular collision is efficient in the transfer of 
extensive molecular quantities (quantum conditions). 
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The molecular interactions which are at the heart of the aforementioned 
processes have a very short radius of action, whether we consider the intermolecular 
forces or the collisions characterized by their mean free paths. These actions are in 
fact volumetric at the scale of the given distances, and at the macroscopic scale they 
appear as contacts, i.e. flux densities of extensive quantities, which are determined 
by local conditions, i.e. surface forces. 

The condition of local thermodynamic equilibrium is not always satisfied in the 
case of certain gases undergoing rapid changes (for example, tri-atomic gases during 
the passage of a series of shock waves, or in supersonic nozzles) and plasmas. We 
are therefore led to separate different populations (ions and electrons) or different 
forms of molecular energy (translation and vibration), for which we must introduce 
a further extensive quantity and supplementary hypotheses (relaxation law, etc.). 
Such separations into sub-systems are not only spatial. The interested reader can 
refer to [BAS 98] or texts dealing with ultrasound.  

This condition of local thermodynamic equilibrium does not allow the entire 
medium considered to be in global thermodynamic equilibrium. It can be shown 
using statistical methods taken from kinetic gas theory, for example, that the net 
balance of the extensive molecular quantities gives, at first order, a distribution of 
Maxwell-Boltzmann velocities which correspond to a local statistic mechanical 
equilibrium ([CHA 91], [HIR 64]). At second order we have phenomena associated 
with the irreversible transfer of extensive quantities ([BIR 02]); in section 3.4.1.3 we 
will discuss the mechanism of this irreversible transfer in the case of momentum 
transfer. The statistical equations describing turbulence are identical to the preceding 
molecular statistical transfer equations, in which turbulent fluctuations play the role 
of molecular fluctuations for the transfer of these extensive quantities. 
Unfortunately, turbulent fluctuations do not verify general statistical laws and the 
preceding analogy is only formal ([COU 89], [MAT 00], [TEN 72]). 

2.1.3. Flux of extensive quantities 

2.3.1.1. Flux density 

An extensive quantity G can be transferred in a continuous medium by different 
processes, the nature of which does not interest us here. The definition of a flux 

GS  of the quantity G across the surface S has already been given for the surface of 
finite systems (the amount of the quantity G which crosses the surface S per unit 
time). 

We will show that in a continuous medium, the flux of an extensive scalar 
quantity G is characterized by a flux density vector. 
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Consider the tetrahedron OA1A2A3 whose corners are the origin O and three 
points lying on the axes (Figure 2.2). Suppose that the surface dimensions of this 
tetrahedron are small, of order . Let 1Gq  ds1, 2Gq  ds2, 3Gq  ds3 be, respectively, 
the fluxes of quantity G across the surfaces OA2A3, OA1A3 and OA1A2 (of 
respective surface areas ds1, ds2 and ds3, of order 2) in the positive direction along 
the coordinate axes. 

Let Gd be the flux leaving the face A1A2A3 of area ds of the tetrahedron. 
Suppose that the (algebraic) sources of the quantity G are volumetric. The amount of 
the quantity created in the tetrahedron is O( 3). The balance of the extensive 
quantity G leaving the tetrahedron can be written: 

)( 3
332211 Odsqdsqdsqd GGGG  

 

x1

A1
1 

A2

A3

n
x2

x3

 

Figure 2.2. Quantities balance on an elementary tetrahedron 

We obtain: 

)3,2,1(idsds ii  

where i designates the directional cosines of the normal n  oriented towards the 
exterior of the tetrahedron. 

By replacing the surfaces dsi with their previous expressions and by letting  
towards 0, the terms of order 2 should cancel out. By defining vector Gq  or the flux 
density of the quantity G, with components 321 ,, GGG qqq , we obtain the 
elementary flux of the quantity G across ds (the quantity of G crossing ds per unit 
time in the direction normal n ): 

dsnqdsqd GiGiG .  [2.2] 
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The flux G of the quantity G across the surface S can be written: 

S GG dsnq .  [2.3] 

By a similar argument, it can be shown that the transfer of a vector quantity Gi 
would be characterized by a tensor Gijq  whose flux across an elementary surface ds 
would give the vector quantity Gi which crossed ds per unit time: 

dsnqdsnqd GjGijGi .  [2.4] 

where the tensor Gq  is defined, as before, using the vector fluxes across the co-
ordinate planes. 

2.1.3.2. Examples of flux of extensive quantities 

The preceding property did not require any hypothesis regarding the transfer 
mechanisms of the quantity G (action by contact or action at a distance): it results 
solely from the notion of balance for an extensive quantity. As an example, we can 
consider the flux of extensive quantities due either to propagative phenomena 
(example 1) or phenomena involving action by direct contact (examples 2 and 4): 

1) Energy transfer by electromagnetic radiation (energy-flux density vector 
in lighting, infra-red heating, etc.) or by acoustic propagation (acoustic intensity 
vector). 

2) Heat transfer in a material (molecular agitation energy at the molecular 
scale) is represented by the thermal flux density vector (section 2.1.5.3.1). 

3) The diffusion of a chemical species in a material medium is represented 
by the molar flux density vector of the species considered (n: the number of 
moles/volume) (section 2.4.2). 

4) For example, if the extensive quantity is a force density (or momentum 
density at the microscopic scale), the corresponding flux density is the stress 
tensor ij . However, the convention for the orientation of the normal is here 
reversed. The elementary force is the force exerted on the surface ds, by the 
material situated on the side of the normal (side 1 in Figure 2.3a), towards the 
other side: 

dsndf jiji  [2.5] 
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Figure 2.3. Definition and symmetry of the stress tensor 

The force density at the point M on the surface ds is the stress T : 

n
ds

fd
tMT .),(  

Figure 2.3b shows the stresses on the faces of a parallelepiped whose corners are 
parallel to the axes. The reader can easily verify that in the absence of volume sources of 
torques, the equality of the moments about the axis Ox3 of the stresses exerted on the 
four faces parallel to the axis Ox3 (see Figure 2.3c) leads to 2112 . The same goes 
for the other components of the stress tensor ( jiij ). 

2.1.3.3. Volume source equivalent to the fluxes 

The balances in a material domain are clearly always effected on closed surfaces 
which comprise the boundary. By applying the Ostrogradski theorem the flux G of 
the quantity G leaving a closed surface  can be written: 

D
i

Gi
D GGG dv

x

q
dvqdivdsnq .  [2.6] 

This flux can thus be written in the form of a volume integral, which implies 
that the total flux of the quantity G on a closed surface is equivalent to the 

action of the volume source Gqdiv  of the quantity G. 
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In the case of stresses in a continuous medium, a force volume source 

generated by a stress is equal to the vector div : 

D dvdivdsndstMT .),(  

Reciprocally, all volume sources which are mathematically expressed by means of a 
divergence operator ( qdiv  for instance) can be interpreted as a transfer by the flux 
across a closed surface of vector flux density q . 

2.1.4. Balance equations in continuous media 

2.1.4.1. Balance equation of an extensive quantity 

 

x1 
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O
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Figure 2.4. Balance of an extensive quantity 

The balance equation of a volumetric extensive quantity g  consists of 
writing that the variation of this quantity in a material domain D is due to 
contributions from outside, and which have thus crossed the closed surface  
which constitutes the boundary of D (the normal is directed outwards), and to 
volume sources of density G in D: 

dsnqdvdv
t
g

jGjD GD  [2.7] 

Supposing this relation to be true regardless of the domain D, we can deduce the 
local equation: 

j

Gj
G

x

q

t
g

 [2.8] 
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For a fixed medium, which can thus not be deformed, mass1 must be strictly 
conserved, and we have: 

0
t

 

Balance equation [2.8] for the quantity G can also be written, using the mass 
quantity g: 

j

Gj
G

x

q

t
g

 [2.9] 

For a fixed continuous medium, the principal extensive quantities are internal 
energy (in its thermal form, and in the absence of possible physicochemical 
reactions), volume and the number of moles of a chemical species. Electric 
quantities may also be manifested; however, we will not deal with such questions in 
this work. 

For a material of constant specific heat C, in the absence of chemical reactions, 
the variation of volumetric internal energy de is equal to CdT, and the balance 
equation can be written: 

j

Tj
T

x

q

t
T

C  [2.10] 

Heat-source volume T is in fact a residuum of another form of energy which is 
present in the mass and which is degraded in the form of heat (Joule effect caused by 
the passage of an electric current (Ohm’s law), absorption of electromagnetic 
radiation, etc.). This result could be obtained in a general way, but such a discussion 
is beyond the scope of this work. We will come back to this question in Chapters 3 
and 4 when it comes to dealing with mechanical energy. 

For a chemical species comprising a number of moles ni per unit volume (molar 
concentration), the balance equation can be written: 

j

ijn
in

i

x

q

t
n

 [2.11] 

                                   
1 Excepting diffusion processes, for which we only give volumic balances in this chapter 
(section 2.4.4.2.2). 
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The molar flux densities qni and the sources ni of chemical species are due, 
respectively, to diffusion phenomena and chemical reactions. 

2.1.4.2. Entropy source 

During the natural evolution of a system, entropy is not conserved and it can only 
increase. We have already described the entropy-creation mechanism in the case of two 
discrete sub-systems that are in contact and have different temperatures (section 1.4.2.3) 
and (section 1.4.2.4). The zone where entropy is created was localized in the contact 
zone between the two sub-systems. Here the distribution of entropic variables is 
continuous, and entropy creation will be diffused and associated with the existence of 
gradients with entropic variables.  

On account of the local equilibrium hypothesis, relation [1.13] can be written, for the 
per mass unit quantities: 

t

g
Z

t
e

Tt
s i

i  [2.12] 

By replacing the derivatives 
t

gi  in equation [2.12] by expressions obtained using 

balance equations [2.9], the following relation can be obtained: 

i

k
Gki

i
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Gki
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x

qZ
Z

t
e

T

x

q
Z

t
e

Tt
s

 [2.13] 

in which the surface flux terms associated with the divergence operator have been 
separated from those associated with the volume source as defined in section 2.1.3.3. 
The entropy is associated with the extensive quantities and the corresponding entropy 
addition are represented by two terms: 

– SGkkZ  external entropy source associated with the source Gk  of the 
extensive quantity Gk;  

– SGkik ZqZ  entropy flux associated with the flux of extensive quantities. 
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The thermodynamic imbalance is characterized by the gradients iZgrad , which 

we designate under the label thermodynamic forces. The additional term 
i

k
Gki x

Z
q  

of equation [2.13] is the entropy source associated with the local macroscopic 
imbalance. It is always positive. Its expression is analogous to the expression for the 

creation of entropy 21
2,1 ZZ

dt

dX
 from formula [1.31].  

2.1.5. Phenomenological laws 

2.1.5.1. Introduction 

An irreversible evolution is characterized by flux density fields of the quantity Gkq  
in a continuous medium. These thermodynamic fluxes are associated with gradients of 
intensive entropic quantities Zi. The transfer of a quantity Gi can occur via relatively 
different kinds of processes: 

1) Molecular agitation leads to an exchange of extensive quantities between the 
particles involved. These intermolecular actions occur from place to place, because it is 
these microscopic particles themselves which transport the extensive quantity considered 
(mass, momentum, energy, chemical species, etc.). The interaction zone between two 
material domains D1 and D2 separated by the surface S (Figure 2.5) is limited to a 
thickness in the order of 2d (d: intermolecular distance in liquids or mean free path in 
gases). This extremely thin zone is modeled on the macroscopic scale by the surface S, 
on which we can consider contact actions. 

 

2d

S 

D1 

D2 

 

Figure 2.5. Interaction zone between material domains D1 and D2 

2) On the macroscopic scale, and for turbulent flows, we observe chaotic 
velocity fluctuations which lead to fluxes of extensive quantities convected by the 
fluid. The effective interaction zone between two material domains is no longer 
limited to a surface as before. The flux depends on the structure of the whole 
turbulent zone. Considerable difficulties result from this situation in which the cause 
of the flux of an extensive quantity can no longer be modeled with a general local 
phenomenological law ([COU 89], [MAT 00], [TEN 72]). 
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3) In other situations, the flux of an extensive quantity (essentially energy) is due 
to the presence of an electromagnetic field. This is the case for energy transfer by 
thermal radiation in semi-transparent media, which both emit and absorb at all 
points and whose local state results from the emission balance in a macroscopic 
volume surrounding the point considered. Here again, we can no longer localize the 
cause of the extensive quantity flux on a single surface. 

2.1.5.2. Contact actions and thermodynamic forces  

The interaction zone between two material domains D1 and D2 is modeled by the 

surface S. The thermodynamic forces, represented by iZgrad , are the cause of 
thermodynamic fluxes. 

As with discrete systems (section 1.4.2.6) all causes of the same tensorial nature 
act on all the corresponding effects and we have a coupling of irreversible 
phenomena: for example, a temperature gradient leads to a material flux (thermal 
diffusion). Phenomena of different tensorial orders do not interact.  

A rudimentary explanation of these facts can be provided from context of kinetic 
gas theory. A gas is a set of molecules which are subjected to a thermal agitation. 
Irreversible phenomena are the macroscopic result of this spontaneous action. 
Molecules with different properties (mass, type, kinetic energy, etc.) do not respond 
in the same way to non-symmetries in the mean properties of the medium. A 
molecular concentration of a given species will be progressively diluted in the rest 
of the gas; a temperature gradient (gradient of the molecular kinetic energy) will not 
act in the same way on different species of molecules and so may create a 
concentration gradient. For example, at equal energy, we notice that smaller, and 
therefore faster, molecules can slip in a gas comprising larger molecules, hence the 
phenomenon of thermal diffusion. On the other hand, it is difficult to see how the 
static scalar properties of a gas which is macroscopically at rest can spontaneously 
generate a vector macroscopic momentum (i.e. a bulk movement) in the absence of 
an external influence. 

There thus exists a relation between thermodynamic forces and thermodynamic 
fluxes of the same tensorial rank. Since in the absence of thermodynamic forces, the 
thermodynamic fluxes are zero, the general form of this relation can be written as: 

( , 1,..., ) with: 0,0,... 0k ilGkq F gradZ k l K F  [2.14] 

On account of the principle of action and reaction, the function kF  is odd 

( lklk ZgradFZgradF ). Relation [2.14] must verify properties of 
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homogeneity and of spatial and material isotropy. In what follows, we will limit our 
discussion to cases where the difference from thermodynamic equilibrium is 
relatively small, so that we can justify a first order Taylor expansion of the functions 

lk ZgradF : 

lkllk ZgradLZgradF  

For a set of K extensive quantities, klL  is a square matrix of order K whose 
terms are functions of the values of the K intensive quantities Zk at the point Zke, 
about which linearization is effected. When the preceding approximation is valid, 
we consider that we are dealing with linear thermodynamics of irreversible 
phenomena. 

If the medium is considered to be isotropic, the matrix is reduced to a matrix of 
dimension K (see section 2.1.5.3.1). 

Thermodynamics does not provide access to any properties associated with the 
matrix klL . However, by means of statistical reasoning the matrix can be shown to 
be symmetric (Onsager’s relations). This symmetry is only verified if the entropic 
variables Zk are used to define this matrix. 

In practice, the local imbalance is characterized using simpler variables than the 
intensive entropic variables Zk. For example, we use temperature in place of the 
entropic intensive variable T1  (section 1.3.1.1). Expressions for linearized 
thermodynamic force are equivalent to first order, but the matrix coefficients ijL  are 
modified, such that the symmetric properties generally disappear. An analogous 
situation has been observed in the case of discontinuous media (section 1.4.2.6.2). 

2.1.5.3. Some simplifying laws for irreversible transfer 

2.1.5.3.1. Fourier’s law and thermal conduction 

Consider firstly a case where the medium comprises a pure body, such that 
thermal transfer occurs alone, without any coupling with diffusion or electrical 
conduction. The relation between the thermal flux density and the thermal gradient 
can be written in the context of linear thermodynamics (Fourier’s law) as: 

. or Ti ijT
j

T
q gradT q

x
 

The principal axes of the 3*3 tensor ij  are the symmetric axes of the medium. 
If the medium is homogenous (fluids, non-crystalline solids, etc.), the three 
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eigenvalues of the tensor ij  are equal and this one is spherical ( ijij ); it can 
thus be expressed solely as a function of the thermal conductivity  of the medium. 
Fourier’s law can be written as: 

Tgradq
x
T

q T
i

Ti  [2.15] 

The thermal conductivity of the medium  is expressed in Watts/meter.K. 

Heat is the macroscopic form of mechanical energy related to thermal agitation 
of a medium. Its transfer in the medium is due to interactions between the 
microscopic entities (molecules, atoms, ions, electrons). The values of the 
coefficient  depends on the nature of the medium. 

Metallic media are excellent thermal conductors, thermal conduction being 
principally assured by electrons which have a high mobility. The values of the 
coefficient  lie in a range spanning from a few tens to a few hundred W/m.K. 

Solid crystalline media are generally good conductors: as the crystalline structure 
presents a reasonably strong coherence on account of its organization, energy can be 
transmitted in a vibrational form (phonons). The coefficient values  are in the order 
of a few W/m.K. 

Solid amorphous media or composites have weaker conductivity: well under 1 
W/m.K for fibrous materials. 

Liquids, comprising a looser structure, are poorer conductors of heat than solids 
(of the order of 0.1 to 0.2 W/m.K): intermolecular forces here assure conduction. 

Energy exchange in gases only occurs by means of molecular collisions in the 
gaseous medium; the corresponding values of the coefficient  are of the order of 
0.01 to 0.02 W/m.K. Insulating materials are constituted of a matrix (fibers, wools, 
foams, etc.) which is as light as possible, thermal insulation being assured by the 
gaseous interstices. 

The thermal flux across a surface S can thus be written as: 

SSS TT ds
n
T

dsnTgraddsnq ...  

We can also define the thermal diffusivity a: 
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C
a  

The reader can easily verify that this quantity a can be expressed in m2/sec; we 
will see the important role that this quantity plays in the heat equation (section 
2.3.1). 

The thermal diffusivity takes on the following values at 20ºC: 

– air: 0.19 × 10-4 m2. s-1; 

– water: 1.4 × 10-7 m2. s-1; 

– metals: ~ 10-4 m2. s-1. 

2.1.5.3.2. Fick’s law and the diffusion of chemical species 

As the extensive variable is here the number of molecules of a chemical species, 

the corresponding intensive entropic variable is 
T

 (where μ is the chemical 

potential (section 1.3.1.1)). In ideal solutions or perfect gases, we replace the 
intensive entropic variables with a molar or mass concentration variable. This 
simplified approach will suffice here for an exposition and discussion of the 
phenomena which we will examine. It will allow us to outline the principal 
difficulties associated with fluid movement. The additional complications which 
arise when we take account of more complex thermodynamic and chemical 
properties are beyond the scope of this work. 

The presence of a concentration gradient leads to the existence of a molecular 
flux towards regions of weaker concentration. Taking the molecular concentration 
n1 (the number of moles per unit volume) of a component, Fick’s law, which 
characterizes the diffusion of the species considered, can be written:  

11
ngradDq n  [2.16] 

where D is the diffusion coefficient. 

Diffusion is a complex phenomenon, as it implies that the material is not 
immobile, and in such cases it is not possible to effect a generalized reasoning 
using a single constituent. We will come back to this point at a later stage 
(section 2.4), and we will specify the conditions under which law [2.16] is valid. 
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2.1.5.3.3. Electrical conduction and Ohm’s law 

Electric conduction presents certain analogies with thermal conduction and 
diffusion; however, the underlying physics is a little different. Here we are dealing 
with an electric field derived from an electric potential elV  which exerts a force on 
mobile electric charge carriers. Ohm’s law has the same form as the preceding laws:  

elel Vgradj  

where j  is the electric current density and el  is the electrical conductivity. 

Thermal molecular agitation, which grows with temperature, slows down the 
movement of electric charge-carriers because of collisions; thus, electrical 
conductivity is a decreasing function of temperature, whereas for other irreversible 
phenomena, thermal agitation is the driving factor of thermal and diffusional fluxes. 

2.1.5.3.4. General case: coupled transfer between diffusion and thermal 
conduction 

In general, the flux of a scalar quantity (energy, chemical species) depends on all 
the local thermodynamic forces , , , etc.,igradT grad n grad p  associated with these 
scalar quantities. 

We can schematically write under certain conditions the following relations for 
the diffusion of a constituent of binary mixing in the presence of heat transfer: 

111

1

ngradD
T

Tgrad
Dq

ngradKTgradq

T
n

T

 

The coefficient TD1  characterizes the thermal diffusion (Soret effect), i.e. the 
existence of a flux of chemical species which is associated with a temperature 
gradient. The symmetric effect of a heat flux caused by a concentration gradient 
(Dufour effect) and characterized by the coefficient K is generally much weaker. 

From a physical point of view, the problem is more complex than this, as each 
chemical species introduces its own thermal energy (enthalpy at constant pressure, 
etc.). Definitions of the preceding coefficients may vary, and we will not provide a 
complete discussion of these phenomena, as this would require lengthy discussions 
concerning chemical thermodynamics ([BIR 01], [DEG 62], [PRI 68]). 
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2.2. Fluid statics  

2.2.1. General equations of fluid statics 

2.2.1.1. Stresses in a fluid at rest 

We designate as a fluid any body which is in either a liquid or a gaseous state. In 
contrast to solids, fluids do not have any intrinsic shape. They adapt to the shape of 
the container in which they are found. On the microscopic scale, there is no longer a 
crystalline structure, and the molecules, ions, etc., interact by means of 
intermolecular forces and collisions. On the macroscopic scale, fluids generally have 
isotropic properties; the forces in a fluid at rest are thus represented at each point by 
a spherical stress tensor p ij which depends on a scalar quantity p, designating 
pressure. The force dfi exerted on an elementary surface ds by the material situated 
on the same side as the positive normal is (Figure 2.6a): 

dsnpfddspndsnpdf ijiji  

2.2.1.2. Conditions for the existence of equilibrium in a fluid 

A fluid in equilibrium is only subjected to pressure forces and to external forces 
of mass density gi. By considering the net force balance on a domain D, we obtain: 

0. D dvgdsnp  [2.17] 
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Figure 2.6. (a) Pressure force on a surface; (b) Laplace’s law 

Using the identity D dvfgraddsnf .. , we obtain: 

0i
i

g
x
p

 [2.18] 
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Equation [2.18] can only be solved if the vector gi can be derived from a 
potential, in other words if the following condition is satisfied: 

0ggradgrotgrot  

We can see that for a fluid of constant density, an equilibrium situation can only 
exist if the force field Ugradg  derives from a potential.  

Supposing that the force field gi can be derived from a potential U 
( Ugradg ) the preceding condition can be written:  

0Ugradgrad  

This leads to the fact that surfaces of =const. and U=const. are identical. 

Equation [2.18] then becomes:  

0Ugradpgrad  [2.19] 

This also leads to the identity of isobaric and equipotential surfaces that are 
identical. If the fluid is divariant, with an equation of state in the form Tpp , , 
the said surfaces are also isothermal. 

For example, in the case of gravitational forces, equilibrium is only possible if 
the horizontal surfaces are isothermal. If this condition is not satisfied, natural 
convection will occur. 

The resultant pressure force on the exterior of the closed surface  can be 
immediately deduced from relation [2.17]: 

D dvgdsnp.  

This force is the opposite of the sum of the forces exerted by the force field g  
on the fluid contained in D.  

Let us now consider the case of gravity. As with equation [2.17], the balance 
moment of forces on domain D – where  is the center of gravity of this domain D 
filled with the fluid – can be written: 
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0. DD dvMgdvgMdsnpM  

which is zero from the definition of the center of gravity. 

So, the collection of the pressure forces is equivalent to a single force, equal to 
the weight of fluid displaced and applied at the center of gravity of the domain 
supposed to be filled with the fluid. The point  is called the center of buoyancy. 
This result constitutes Archimedes’ theorem. 

Now, considering a vertical cylinder with identical horizontal bases, we see that 
the difference in pressure forces between the lower and the upper bases is equal to 
the weight of fluid contained in the cylinder.  

2.2.1.3. Solution to the general hydrostatic equation 

If the preceding conditions are satisfied, the pressure satisfies equation [2.19]. 
The conditions for the existence of the solution (stratification of the space into 
identical surfaces U=const, p=const, =const, etc.) for a fluid whose equation of 
state is Tpp ,  leads, under equilibrium conditions, to the relation pf  
between p and . We often say that such a fluid is barotropic (which is not strictly 
true, as this is not a property of the fluid, but of the configuration studied). 

We can thus define the function 
dp

ph )(  such that: 

pgrad
hgrad

dp
dh    

If the specific fluid entropy is constant over the entire domain studied, it is said 
to be homoentropic, and the function h is therefore the specific fluid enthalpy. 
General equation [2.19] can be written as:  

0Uhgrad  

and its solution is: constUh . The pressure p can thus be obtained by inverting 
the function h(p). 

In the case of gravity, the function U is equal to gz, where z designates an 
increasing vertical coordinate. 
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2.2.1.4. Equilibrium of an incompressible fluid 

2.2.1.4.1. Hydrostatic equations  

Such a fluid is generally either a liquid or a gaseous domain of limited vertical 
extent, such that its density can be considered constant. We thus consider density to 
be independent of pressure, which may eventually be a function of the coordinate z. 
If the fluid is considered to be of uniform density 0, we have: 

0 const (U gz for gravity potential)gp U p  

So, it is this quantity Up 0  (in the case of gravity gzp 0 ) and not the 
pressure alone which is constant in a motionless fluid. Hence, variations of this 
quantity must be the causes of movement. For this reason, we will call it “driving 
pressure” and we will note it as gzppg 0  in the case of gravity. 

In fact, for such an incompressible homogenous fluid, we will find (see Chapter 
4) that, under certain conditions, movement is associated with variations of this 
driving pressure alone, without explicit intervention from pressure.  

EXERCISES – 

1) Equilibrium of a homogenous liquid in a rotating reference frame of axis Oz. 
Give the expression for pressure as a function of the coordinates x and y and z. Show 
that in a reference frame which rotates with angular velocity  about the vertical 
axis Oz, the isobar surfaces are paraboloids of revolution about the axis Oz. 

(Answer: 2 2 21 const
2

)p ( x y ) gz  

2) Equilibrium of a homogenous liquid in a reference frame which is undergoing 
a constant horizontal acceleration . Derive an expression for pressure as a function 
of the abscissa x parallel to the acceleration and the altitude z. Show that in this 
reference frame isobar surfaces are inclined planes. 

(Answer: const)p gz x  

2.2.1.4.2. Conditions at fluid-fluid interfaces 

Continuity of the pressure between two immiscible fluids is only guaranteed if 
the interfacial surface is a plane. If this is not the case, the interface behaves in many 
respects like a membrane; its constant surface tension is characterized by the set of 
the two fluids, if they are pure, and generally decreases with temperature. The 
pressure discontinuity 21 pp  across the interface is given by Laplace’s law: 
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'
11

21
RR

pp  

R and R' are the radii of curvature of two interfacial surface sections by 
perpendicular planes which contain the normal to this interface at the considered 
point of this one. The pressure p1 is greater on the concave side of the surface 
(Figure 2.6b). 

On the other hand, the contact angle between an interface and wall is a physical 
characteristic between these three domains [BEN 06]. A liquid wetting the wall 
perfectly is joining tangentially to another liquid (water on a clean wall made of 
glass, for instance). Surface active substances generally ensure a perfect wetting of 
the surface, but they modify the value of the surface tension.  

2.2.1.5. Equilibrium of the atmosphere 

By limiting ourselves to the troposphere (lower limit of the stratosphere), the 
atmosphere can be considered to comprise a homogenous mixture of nitrogen and 
oxygen, and it is characterized by a rapidly decaying temperature with increasing 
altitude. It is not in thermodynamic equilibrium, because as oxygen is more dense 
than nitrogen, it should be more concentrated in the lower layers. In fact, the 
atmosphere is constantly undergoing movements whose characteristic time is small 
compared with the time required for the temperature to become uniform. The 
atmosphere is in fact perfectly mixed: in the movement of large air masses, the 
atmosphere undergoes rapid compression and rarefaction, which occur 
isentropically, and so during their movement air masses do not have the time to 
exchange heat by thermal conduction. This mixing leads to an atmosphere at 
constant entropy. Experiments confirm that the Earth’s atmosphere is in a state 
which is very nearly homoentropic. This condition defines the standard atmosphere, 
whose differences from reality, in the order of a few percent, are due to 
meteorological phenomena. 

EXERCISES –  

Calculate the pressure p as a function of the altitude z: 

1) in an isothermal atmosphere of temperature T0: (
0

0
0 exp

rT

zzg
pp ); 

2) in a homoentropic atmosphere, where the temperature at the ground is equal to 
T0.  
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2.2.1.6. Stability of equilibrium solutions in stratified fluids 

A stratified fluid with horizontal surfaces of constant density is in an 
equilibrium situation in the gravitational field. The stability of this fluid can be 
tested in an elementary way by displacing a fluid particle and observing whether 
or not it undergoes a restoring force. Let us first of all consider an 
incompressible fluid whose density, which depends only on temperature, 
increases with increasing altitude. A fluid particle which is displaced in the 
upward direction finds itself in a region of heavier fluid; it thus undergoes a 
greater thrust, and its movement upward is amplified. 

The same reasoning applied to a compressible fluid (the atmosphere for 
example) leads to the following situation: as the displacement occurs 
isentropically, it is the specific entropy of the particle which must be compared 
with that of the local environment into which the fluid particle is moved. If the 
local entropy of ambient fluid falls as the fluid particle rises, the temperature of 
the particle is greater than that of this ambient fluid: the Archimedes force thus 
increases and the fluid particle comes up. 

In conclusion, we have equilibrium stability of a fluid if its temperature (or 
its entropy) increases with increasing altitude. In the opposite case, the fluid 
system is unstable. 

2.2.2. Pressure forces on solid boundaries 

2.2.2.1. Constant pressure 

A constant pressure situation occurs in numerous applications: pipe-systems 
and compressed-air reservoirs, water-distribution networks, etc., where the 
effects of an external force field is often negligible as a result of the high 
pressure levels which occur within the system.  

Consider a surface S (Figure 2.7a) with normal n  on which uniform pressure 
p is exerted, the pressure force on this surface S is: 

S dsnpF  

Letting ds' be the projection of the elementary surface ds on the plane 
perpendicular to the direction Ox, the component Fx on the axis Ox can be obtained 
from: 

'.'.. ' SppdsdsnxpF SSx  
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The component of the uniform pressure force in the direction Ox is equal to the 
pressure force on the surface S', which is a projection of S on the plane 
perpendicular to Ox. 
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Figure 2.7. Pressure forces: (a) arbitrary surface with constant pressure;  
(b) forces due to a liquid on a plane surface  

In practice, this surface is an element of a pipe, a reservoir, etc. Let us take the 
example of a cylindrical pipe with radius R. The stress T on the wall, due to the 
overpressure p in the pipe, must balance the pressure forces on a half-cylinder. It is 
thus equal to pR per unit length: the stress on the wall increases with the radius R. 
For a tube of radius 1 cm transporting compressed air pressurized to 100 
atmospheres, this is equal to 105 N/meter. 

Pipeline and reservoir dimensions (diameters) ought to be as small as possible, in 
order to avoid technical difficulties related to the wall resistances. 

2.2.2.2. Hydrostatics 

The equilibrium of a homogenous liquid (often water) in a gravitational field is 
of considerable practical importance, particularly in cases such as water reservoir 
walls, sluice gates and boat hulls. 

The pressure forces on a plane surface, one side of which is covered by a liquid, 
are parallel to the wall normal: they are thus equivalent to a single vector applied at 
a given point on the wall, the center of pressure . Consider a plane surface S 
identified by the coordinates Oxy in its plane (Figure 2.7b). Suppose that the free 
surface of the water is at z = 0. The hydrostatic pressure is equal to p = g z. 
Denoting the center of inertia of the surface S as G, the thrust P (the resultant 
pressure force) is equal to: 

SpSgzSygydsggzdsP GGGSS .coscos  
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The thrust P is equal to the product of the pressure at the center of inertia G of 
the homogenous surface and its surface S. The center of pressure, which can be 
easily calculated by taking the moment of the pressure forces with respect to Oz, is 
beneath the inertia centers. 

The forces exerted by water on the walls of large reservoirs and dams are often 
considerable; the construction of dams thus involves massive elevations of earth 
whose weight blocks the mass of water (weight dams), or large concrete 
constructions which resist by returning the thrust on the rocky walls (mountain arch 
dams). 

The reader can easily verify that the horizontal component (along Ox) of the 
hydrostatic pressure force on a curved surface is equal to the hydrostatic pressure 
force on the surface S', which is the projection of S on a plane perpendicular to Ox. 
This result clearly makes no sense for a vertical component. 

EXERCISES – 

1) Calculate the coordinates of the pressure center  on the surface S of Figure 
2.7b. (Answer: Gxx , SIyy yGGy / , IGy giving the inertia moment of 

the surface taking with respect to a straight line parallel to Oy and passing through 
G.) 

2) Calculate the load-force generated on a vertical rectangular wall, 4 m in width 
and containing a mass of water 3 m in height. Determine the position of the center of 
pressure. (Answer: 18.0 ×104 newtons, 1 m above the bottom.) 

3) Answer the same questions for a dam in the form of a 50 m high equilateral 
triangle. 

2.2.2.3. Floaters 

A floater is a body placed on the surface of a liquid, and whose weight is less 
than that of an equivalent volume of the same liquid. In this kind of situation there is 
always an equilibrium position, such that the force exerted by the fluid on the body 
balances its weight. However, the stability of this position is not guaranteed. We will 
not study hull-stability problems ([BAR 01]) which requires geometrical knowledge 
related to surface curvature and normal fields ([KRE 91]). 

We will only discuss a simple example in order to illustrate the origin of such 
problems. Consider a homogenous, elliptical cylinder whose density is half that of 
water, such that at equilibrium, the center of the ellipse is always in the plane free 
surface of the water. While in equilibrium, the upward thrust which the cylinder 
experiences, P, applied at the center of buoyancy  opposes that of its weight, P, 
applied at the center of gravity of the ellipse, G, which lies in a vertical section of 
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the meridian plane of the cylinder. There are two equilibrium positions ((a) and (c) 
in Figure 2.8) corresponding to the vertical positions for each axes of the ellipse. 
The equilibrium stability is studied in the usual way: a small clockwise rotation of 
the cylinder is performed (positions (b) and (d) in Figure 2.8).  

G GGG

(a) (b) (d)(c)
 

Figure 2.8. Stability study of a floater whose cross-section is elliptic 

We assume that the submerged volume (beneath the flotation plane) and the 
thrust P remain constant during the displacement; however as the distribution of 
the volume submerged has changed, the center of buoyancy  is moved to the 
side where the submerged volume has increased (with respect to the vertical 
passing through G), thus creating either a restoring moment (situation (b)) or an 
amplifying moment (situation (d)), depending on the situation: position (a) is 
stable, whereas position (c) is unstable. 

In fact for a real hull we must also take account of the way it is loaded, and 
possible movements of this load. For the preceding elliptical floater, we see that 
we can add a weight to the upper surface of the cylinder: the system will be 
stable as long as the restoring moment is less than the moment generated by the 
extra weight. On the other hand, a circular cylinder is in a state of neutral 
equilibrium if it is not loaded; it obviously becomes unstable if any weight is 
added to the upper side. Escorting floating logs during their floatation down 
rivers is not a straightforward use of fluid statics! 
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2.3. Heat conduction 

2.3.1. The heat equation 

By inserting expression [2.15] into relation [2.10] we obtain a thermal balance 
equation: 

T
ii x

T
xt

T
C  

which, if the thermal conductivity of the medium  is constant, becomes: 

ii
T

xx
T

T
t
T

C
2

with  

In the absence of thermal power sources ( T = 0), we obtain the heat equation: 

Ta
t
T  

The thermal diffusivity Ca  can be expressed in meter2/second. 

2.3.2. Thermal boundary conditions 

Here we will deal with the principal problems of heat conduction, which we 
will later encounter in a similar form when we deal with viscous fluid 
mechanics. Thermal boundary conditions can generally be classed in one of the 
following categories: 

1) Dirichlet condition: the temperature distribution T(M) is known at all 
points on the boundary. This is often the case for recipient walls which contain 
an agitated fluid, walls which are in contact with highly conductive solids 
(metals, etc.); the corresponding practical problems relate to heating, thermal 
insulation, etc. 

2) Neumann condition: the heat-flux density on the boundary )(MqTp  is 
known at all points M on the boundary. These conditions are found in the 
presence of heat sources resulting from the dissipation of other forms of energy, 
such as heating by Joule effect, heat produced by nuclear reactors, radiation 
absorption, etc.  
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3) Mixed condition: where a linear relationship exists between the wall flux-
density and the temperature difference between the wall temperature Tp(M) and 
a given temperature T0: 

0)( TTh
n
T

Mq p
p

Tp  

The coefficient h of the above relation is called the heat-transfer coefficient 
of the wall. It can represent diverse phenomena, such as an external wall, heat 
transfer across the boundary layer of a flowing fluid, etc. 

Furthermore, as we have already said, it is necessary to fix the initial 
temperature distribution in the domain being studied. 

In addition to a detailed knowledge of temperature fields, other important 
unknown quantities are: 

– either the wall heat-flux-density and the thermal power issuing from the 
domain studied when the wall temperature is given; 

– or the wall temperature in the case where the heat-flux wall is given. 

Finally, in the case where chemical reactions occur at the boundary 
(evaporation, fusion, catalytic reactions, oxidation, electrolytic reactions, etc.), 
we have more complex conditions. So, it is often at the boundary that heat is 
released (positively or negatively) with a power proportional to the speed of a 
reaction. As the reaction is often limited with respect to the transfer towards the wall 
of certain reactants present in the fluid, we have a coupling between a thermal 
problem and a problem related to the diffusion of the fluid constituents in which the 
presence of flows plays an essential role. For example, in evaporation of a wet wall 
in an air flow (temperature measured by a wet-bulb thermometer), the quantity of 
liquid evaporated and heat absorbed in the wall surface are increasing functions of 
the flow velocity, but the wall temperature is quite independent of the flow velocity 
([BIR 01]). 

2.4. Diffusion 

2.4.1. Introduction 

2.4.1.1. Definition 

When a fluid F1 is carefully introduced to a recipient which contains a fluid F2 
which is miscible with F1, after a certain duration we notice that movements related 



74     Fundamentals of Fluid Mechanics and Transport Phenomena 

to mixing have ceased, and that hydrostatic equilibrium is attained; however, an 
inhomogeneity can persist in the concentration (this can be observed by differences 
in color for example). This indicates that the phenomenon is an extremely slow 
function of time. This migration of the components with respect to one another 
constitutes a phenomenon known as material diffusion which is characterized by the 
fact all of the components of a mixture do not have exactly the same speed, and 
these differences lead to variations in the composition of the mixture.  

The molecular velocity of a body of given chemical species which makes up a 
mixture is thus engendered by two causes: the diffusion and the bulk movement of 
the mixture (convection). The separation of these two causes must be very carefully 
considered, as the bulk movement results from the behavior of all of the 
constituents. Interactions between the two kinds of phenomena (convection and 
diffusion) are encountered in all mixing processes with or without chemical 
reactions (for example, sugar, which dissolves in coffee). 

2.4.1.2. Microscopic interpretation of diffusion 

This difference in the behavior of the two components is obviously related to 
molecular agitation, which leads to a macroscopic displacement and is different for 
the two components. The molecular agitation can be directly visible under certain 
conditions in the presence of very small particles (in the order of a few micrometers) 
in suspension in a fluid. Examined under a microscope these particles present erratic 
behavior: this is known as Brownian movement, which is a macroscopic 
manifestation of molecular agitation. These movements obey diffusion equations. 

Let us consider two molecular species (black and white molecules in Figure 
2.9a). By supposing that the two categories of molecules have the same energy (in 
other words the same temperature), each molecular species moves as a result of 
collisions. These collisions have a random character; for a resting gas made up of 
one or many species of molecule, uniformly distributed, we see that the molecules 
are statistically stationary, because each species only permutes between themselves. 
During collisions and molecular interactions in the volume shown in Figure 2.9a, 
there are more black (or respectively white) molecules at the bottom (or at the top), 
but they will end up uniformly distributed in the container considered. The statistical 
aspects of the second principle of thermodynamics leads to a complete mixing of the 
two species, whose concentrations become uniform.  

However, in this container, where the pressure is supposed constant, the total 
molar concentration remains constant at all points, with the species whose 
concentration decreases being replaced by the other species whose concentration 
increases. This pressure constraint leads to a relation between migrations of the two 
species.  
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Figure 2.9. (a) Gaseous diffusion in a volume; (b) evaporation of a liquid 

Evaporation towards the atmosphere of a liquid contained in a tube (Figure 2.9b) 
is another example of gaseous diffusion where we have a vapor flux from the liquid 
towards the exterior across air, which is at rest in the tube. Note that the vapor 
crosses the free surface of the liquid (at the lower wall where evaporation takes 
place) and diffuses towards the exterior air, whereas the air, which does not dissolve 
in the liquid, does not cross the free surface. 

For the sake of simplicity, we will consider the case of mixing between two 
perfect gases: gravity here often plays a negligible role at the laboratory scale. 
Kinetic gas theory allows the modeling of phenomena at the molecular scale. We 
will limit the discussion to cases where the temperature of the systems studied is 
uniform; if this was not the case, it would be necessary to introduce a further 
phenomenon: thermal diffusion. The interested reader should refer to classic texts on 
the subject (see section 2.4.5). 

It should nevertheless be noted that, depending on the problem studied, the 
influence of external forces or accelerations on diffusive phenomena should be taken 
into account (centrifugation for example).  

2.4.1.3. Extensive variables of a mixture  

The composition of a continuous medium where k chemical species are present 
can be characterized by the local reduced extensive concentration variables which 
can be either: 
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 the number of moles ni of each species per unit volume (molar 
concentration); 

 the partial density i of the species i, which is the mass per unit volume 
( iii Mn ) of the molecules of species i, of molar mass Mi (mass 
concentration); 

 the partial pressure pi associated with the molecules of species i supposed 
only to occupy an elementary local volume of the mixture.  

As the preceding quantities are additive, we can define the total number of moles 
n (or molecules) per unit volume, and the density  of the mixture: 

k

i
ii

k

i
i

k

i
i Mnnn

111
;  [2.20] 

If the system comprises a perfect gas, which we assume in what follows, the 
total pressure is equal to the sum of the partial pressures of the different 
constituents. 

We also consider the concentrations of the species i by means of relative values: 

– molar fraction i ; 

– mass fraction i : 

nnii / ; /ii  [2.21] 

According to [2.20], these variables respect the relations: 

1;1
11

k

i
i

k

i
i  

While the density  or the number of moles n per unit volume of a mixture 
appear in the global mixing equations, the composition of the mixture is in fact 
characterized by the given concentrations of only k  1 components.  

In a liquid medium, the molar concentration Ci (also called molarity) is 
expressed as the number of moles of a species contained in a volume equal to 1 liter. 

It often happens that the mixture contains a constituent 1, which is dominant, and 
a weak proportion of a species i: 
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1 1 1or: or: ....i i in n p p  

All relative concentrations of species 1 then have the same first order value. For 
example, it is thus possible to confuse the molar fraction i = ni / n with the quantity 

i = ni / n1, the errors thus committed being in the order of (ni / n1)2. The same goes 
for the mass fraction i = i /  and the quantity i / 1, the partial pressure pi / p 
and pi / p1. All these variables of relative concentration are proportional. We will 
note as ci the species concentration i present in small quantities in a mixture.  

2.4.2. Molar and mass fluxes 

2.4.2.1. Flux of a component 

We have seen (see section 2.1.3.1) that for any scalar extensive quantity G, we 
can identify a corresponding vector flux density Gq , whose flux across the surface 
(S) (equation [2.3]) represents the quantity of G which crosses S per unit time. The 
extensive quantities of a pure body (volume, energy, etc.) are associated with the 
matter which we suppose fixed in the reference frame. In the presence of diffusion, 
not only does this reference not exist, but the flux densities of the components, as a 
result of their movement, depend on the particular reference which is chosen. We 
will return to this choice at a later stage... 

It can easily be seen that the matter which crosses a surface ds at a velocity 
V over a period of length t, comprises a cylinder of length tV whose volume is 
equal to V.n t.   

   

ds

S
V  

t.V

n

 

Figure 2.10. Balance in an elementary displacement across ds 
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Letting g  be the volume density of the quantity G (see section 2.1.1), we can 
derive expressions for the vector flux density gq  of G2 and the flux GS  of the 
quantity G across the surface S:

SS GGSg dsnVgdsnqVgq ..  

By considering g  to be the number of moles per unit volume, we obtain 
respectively for the molar flux density niq  and the molar flux ni  across (S) of the 

constituent i with velocity iV : 

S iiS nniiini dsnVndsnqVnq
i

..;  [2.22] 

If we now choose mass to be the extensive quantity, we obtain, respectively for 
the mass flux density miq  and the mass flux mi  of the component i across (S):  

S iiS mimiiimi dsnVdsnqVq ... [2.23]

The molar flux ni  and the mass flux mi  represent, respectively, the number 
of moles and the component mass i crossing S per unit time.

2.4.2.2. Balance equations 

The balance equation of each constituent i (i =1, 2,…, k) can be obtained by 
applying equation [2.8] to the volumic number of moles ni: 

nini
i

j

nij
ni

i qdiv
t

n
x

q

t
n

 

The volume source ni is the (volumetric) volumic number of moles in 
component i created by homogenous chemical reactions. By replacing the molar flux 
density with expression [2.22]: 

.,..2,1 kiun
xt

n
niiji

j

i  [2.24] 

                                   
2 We shall study convective fluxes in more detail later (section 3.3.3.2). 
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Balance equations can be written for the density i , which are equivalent to 
[2.24], by multiplying each of these by the molar mass Mi of the corresponding 
component: 

.,..2,1 kiMu
xt

niiiji
j

i  [2.25] 

2.4.2.3. Global fluxes and mean velocities 

For the set of components of a mixture, we define: 

– the total density nq  of the molar flux and the total molar flux n :  

i
k

i
i

k

i
inn Vnqq

11       
S nn dsnq .  [2.26] 

– the total density mq  of the mass flux and the total mass flux m :
 
 

i
k

i
i

k

i
imm Vqq

11        
S mm dsnq .  [2.27] 

The global molar and mass balances for the mixture allow average mixing 
velocities to be defined according to the methodology described in section 1.4.2.5 
for the intensive quantities3. We thus define: 

– the molar average velocity 
*V (which is independent of the molar mass) using 

the molar balance [2.26]: 

k

i
iiVn

n
V

1

* 1  [2.28] 

– the mass average velocity V  (velocity of the inertia center of a fluid particle4), 
using mass balance [2.27]: 

k

i

m
ii

q
VV

1

1
 [2.29] 

where iii Mn is the partial density of the species i of molar mass Mi. 

                                   
3 The velocity is an intensive quantity (see section 1.2.1). 
4 See section 3.2.1 and following sections. 
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The velocities V  and *V  are the same only if the continuous medium comprises 
a homogenous mixture of constant composition or of identical molecules (a pure 
substance). 

The molar fluxes n  and m  represent, respectively, the number of moles and 
the total mass of a mixture which are crossing a surface S per unit time: 

SS nn dsVndsq .. *       SS mm dsVdsq ..

By summing equations [2.24], term by term, and taking account of definition 
[2.28], we obtain the balance equation for the total volumic number of moles n: 

k

i
niVndiv

t
n

1

*  [2.30] 

The quantity 
k

i
ni

1
 is the number of moles created by chemical reactions.  

We do the same for equations [2.25] and [2.29]; however, the sum 
k

i
niiM

1
 is 

zero as there is no mass source. We obtain the conservation equation for the total 
mass: 

0Vdiv
t

 [2.31] 

We will encounter the preceding equation again in the next chapter, during our 
study of fluid flows, where it plays a fundamental role. 

The reader will note that the k equation [2.24] (or [2.25]) is equivalent to the 
system of k-1 equation [2.24] (or [2.25]) and equation [2.30] (or [2.31]). In other 
words, it suffices to describe k-1 component balance equations in addition to the 
global balance equation for the mixture.

2.4.3. Choice of reference frame 

2.4.3.1. Introduction 

In this chapter, we have already studied the transfer of diverse quantities G 
(energy, entropy, etc.) with respect to matter which was supposed stationary; in 
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Chapter 3 we will examine the transport of a quantity G associated with convection 
of matter, in other words associated with a bulk movement of the continuous 
medium. 

In an inhomogenous mixture, each component i has its own velocity iV . There is 
therefore no preferred reference frame in which all of the matter is stationary. It is 
for this reason that we did not specify the reference frame used in the preceding 
definitions of flux. 

As diffusion is a differential phenomenon between the components, it is 
necessary to identify a global condition which defines the bulk movement of the 
matter, in other words it is necessary to fix the local mean velocities field for the 
matter, as diffusion is a phenomenon which must be considered relative to a mean 
velocity. The reference frame chosen for a study of diffusion is thus determined by 
the choice of reference frame for the mean velocity. It depends on the kind of 
problem studied, as the following examples demonstrate. 

The quantities which characterize diffusion (velocities, flux densities), which 
depend on the reference frame R chosen for their study, will be represented between 
brackets *  with a superscript (*,G or 1) indicating the reference frame. 

2.4.3.2. Diffusion in a fluid at mechanical rest 

Let us now consider an isothermal fluid mixture containing k components. 
Diffusion phenomena are here characterized by very slow velocities associated with 
negligible accelerations. The local composition is characterized by the number of 
moles ni per unit volume for each species. Suppose that the total number of moles n 
per unit volume is constant at all points in the mixture (for example, in an ideal 
isothermal gas). In the absence of chemical reactions, equation [2.30] can thus be 
written: 

0*Vdiv  [2.32] 

We will limit our discussion to a simple case involving a configuration in stable 
equilibrium (section 2.2.1.6), in which the concentration is constant in horizontal 
planes, the diffusion velocities being vertical and parallel to the axis Ox. The field 

txV ,* , which thus respects the condition 0* dxdV , derived from [2.32], is 

uniform at each instant and the molar average velocity tV *  is only a function of 
time. 

The preceding situation is observed for isothermal gaseous mixtures whose 
pressure is uniform and constant. In a gravitational field, diffusion only occurs 
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without natural convection for fluids in situations of 1D equilibrium. In other cases, 
the inevitable density gradients created by variations in the component 
concentrations must be taken into account: these induce complex movements due to 
natural convection in the fluid. 

2.4.3.3. Diffusion in a closed container 

Let us now consider a perfect, isothermal, gaseous mixture, contained in a fixed 
container (Figure 2.9a), whose total volumic number of moles n is constant. We will 
suppose that the walls are impermeable; this results in a molar average velocity 
which is zero in the reference frame of the container, which can thus be considered a 
preferred reference frame: 

* ** *

1
0, with: 

k

i i i i

i

nV n V V V V  

This results in the molar flux densities playing an important role in this reference 
frame:  

* **
, with: 0i ini ni

i

q n V q   

2.4.3.4. Diffusion in steady evaporation  

Let us now examine the 1D problem of steady evaporation of a liquid contained 
in a vertical tube as shown in Figure 2.9b. As before, the pressure is constant in the 
tube. We suppose that the temperature is constant and the composition is 
independent of time, but not uniform in space. The total volumic number of moles n 
and the molar velocity *V  (section 2.4.3.2) are steady and uniform in space. The 
molar flux densities of air (species 1) and vapor (species 2) are steady (section 
2.4.3.2). 

As the free surface of the liquid at the bottom of the tube is impermeable to air, 
the flux density and velocity of the air are both zero at all points within the tube: the 

air is at rest in the reference frame of the tube ( 0
1

1V ) and so diffusion velocity 
of vapor in air can be written: 

12
1

2 VVV  

Since we have a steady evaporation regime, we can conclude that the flux of 
liquid evaporated 1

22Vn  across a cross-section of the tube is independent of the 
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vertical position of this section (otherwise, we should have some accumulation of 
vapor between two sections with different fluxes, which would increase with time). 

2.4.3.5. Diffusion in a moving medium 

By virtue of the laws of dynamics, the characteristics of the inertia center of a 
material system can be obtained through knowledge of the external forces acting on 
the system. The same goes for fluid particles of a continuous medium if the external 
forces acting on the fluid particle are known. 

Diffusive phenomena amount to differences in velocity between different 
components of a fluid. The separation of bulk movement and diffusive phenomena 
can be achieved by identifying the diffusive velocities in a reference frame 
associated with the inertia center G of fluid particles (mass or barycentric reference 
frame) which move with velocity GV  (mass velocity) and we will denote simply as 

V , as obtained from the equations of motion which will be covered in Chapter 3. 
From definition [2.29] we have, for the local inertia center:  

k

i
iiVV

1
 [2.33] 

Quantities measured in a reference frame RG associated with this inertia center 
are denoted G  (between brackets and with the superscript G). Relation [2.33] can 
be written: 

1
0, with:

k
G G

i i i i

i

V V V V  [2.34] 

This relation expresses a particular importance of the mass flux densities:  

1
, with: 0

kG G G
i i mimi

i

q V q  [2.35] 

which describe the diffusive fluxes in this reference frame. 

2.4.3.6. Diffusion of components in weak concentration 

The preceding difficulties disappear when a mixture is almost entirely comprised 
of one of the components (for example species 1). Supposing that the number of 
moles of the other components takes on a small value, of order , we have seen in 
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section 2.4.1.3 that all concentration definitions were equivalent for the first order. It 
can be shown in the same way from expressions [2.28] and [2.29] that the 
velocities ,V *V and 1V  are equal to order , so that the predominant component 
constitutes the natural reference frame. 

In this case, the diffusion velocity of a component is its velocity with respect to 
the predominant species, and any extensive quantities can be used to define a flux 
density, as the reference frame is no longer described by a balance equation. 

2.4.3.7. General methodology: diffusion in an arbitrary reference frame 

The preceding examples show that the velocity of a component is not the only 
characteristic of its diffusion and we always have a global condition between the 
ensemble of diffusion velocities which characterize the particular problem 
considered. Diffusion itself is characterized by diffusion velocities and flux densities 
in the reference frame best adapted to the problem considered. The flux density of 
the extensive quantity associated with this velocity also depends on the choice of 
reference frame. 

The diffusion velocities and corresponding flux densities (molar, barycentric or 
otherwise) of each component are summarized in Table 2.1 for different reference 
frames, which are denoted by indices corresponding to the preceding quantities:  

 the superscript * in the reference frame R* corresponding to the molar average 
velocity *V ; 

 the superscript G in the reference frame RG corresponding to the mass average 
velocity5 V  (G being the inertia center);  

 the superscript 1 in the reference frame R1 of fluid 1. 

                                   
5 The mass speed V is the local speed of fluid medium intervening in the mechanical 
equations ( GV V ). 
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Reference frame Extensive 
quantity 

Diffusion 
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Diffusion flux densities 
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Table 2.1. Variables characterizing diffusion for different reference frames 

The situations described in Table 2.1 correspond to those most frequently 
encountered. Other more complex situations may arise (unsteady evaporation, 
macroscopic mixing of numerous components with walls which are permeable to 
only some of these, etc.). In all cases, a global analysis is necessary for an 
appropriate choice of representation for the diffusion equations. 

2.4.4. Binary isothermal mixture 

2.4.4.1. Expressions for diffusion velocities and flux densities 

We have reviewed the different definitions which are possible for extensive 
quantities in different reference frames. For n flux-density vectors, diffusion 
phenomena are characterized by n-1 independent equations for the flux-densities or 
the diffusion velocities, and by an equation which describes a global condition. The  
n-1 differences in diffusion velocities, two by two are obviously independent of the 
reference frame used, and they can be linked to causes of imbalance, such as 
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concentration gradients, by phenomenological relations. We here limit our treatment 
of the problem to a binary mixture; the reader should consult texts treating the 
problem of irreversible thermodynamics for developments associated with diffusion 
in mixtures with more than two components. 

For a binary mixture, the only quantity which is independent of the reference 
frame and diffusion characteristic is the velocity difference 21 VV , of species 1 
and 2 with respect to an arbitrary reference frame. Diffusion velocities in the 
reference frames R* or RG can then be easily expressed as a function of 21 VV . 

In effect, in the reference frame corresponding to the mean molar velocity *,V  
we obtain relation [2.28]: 

* * * *
1 1 2 2 0 with: i in V n V V V V  

which can be written as: 
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or: 
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1 VV
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VnqVnq nn  [2.37] 

In the reference frame R* associated with the molar velocity, the diffusion 
velocities and molar flux densities of each component can be written as a function of 
the velocity difference 21 VV . 

Similarly, using relation [2.34] between the mass flux densities in reference 
frame RG we obtain: 

21
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222111 VVVqVq
GG

m
GG

m  [2.38] 

Comparing [2.36] and [2.38] gives: 
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where 
21

2211

nn
MnMn

M  is the local average molar mass of the mixture. 

In summary, the diffusion velocity in a given reference frame can be expressed 
as a function of the velocity difference between the two components by means of the 
law which defines the reference frame. It is thus velocity differences which 
characterize binary diffusion phenomena independently of the reference frame 
which is chosen. 

2.4.4.2. Isothermal diffusion 

2.4.4.2.1. Fick’s law 

Isothermal diffusion is caused by the existence of concentration gradients which 
we will characterize by a volumic number of moles. 

In order to define a diffusion coefficient we will use the relation: 
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DVV  [2.41] 

the ratio 
2

1

n
n  being dimensionless. It is equal to the concentrations ratio of two 

species, expressed using a proportional definition for the two species6: 
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 [2.42] 

                                   
6 Using partial pressures is only correct for perfect gases and ideal solutions. 
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Relation [2.41] shows that the diffusion coefficient can be expressed in m2.s-1. 
For a gas at atmospheric pressure, it is more or less independent of concentration. 
For mixtures with air, it usually lies between 1.0 × 10-5 and 2.5 × 10-5 m2.s-1, the 
lowest values corresponding to heavy molecules (carbon dioxide, ethanol, benzene, 
etc.). Very light molecules (hydrogen, helium) give larger values (up to 13.2 × 10-5 
m2.s-1 for hydrogen-helium mixtures). 

In liquid mixtures, the diffusion coefficient is in the order of 10-9 m2.s-1. 
Diffusion in solids results from different mechanisms, depending on whether we are 
dealing with diffusion of impurities which move from a free position in one 
crystalline structure to another, or with particles (atoms, etc.) capable of moving 
around the structural grid. The diffusion coefficient in solids varies from 10-12 to  
10-14 m2.s-1. 

Expression [2.41] shows that the quantity gradD  has the dimension of velocity 
and that this gives an order of magnitude of D  for the diffusion velocities, where 

 is the distance over which the concentration gradient is extended. Taking for 

example  = 0.1 meter, we can see that the diffusion velocity is in the order of 10-4 
m.s-1 in gases and 10-8 m.s-1 in liquids. These velocities increase considerably if the 
distance  is significantly diminished; as for momentum transfer (section 6.5.3), 
convection effect can reduce this quantity to values comparable with the thickness of 
a boundary layer, leading to a significant increase in diffusion velocity ([BIR 01]). 

We define the Lewis number Le as the dimensionless ratio between the diffusion 
coefficient and thermal diffusivity a:  

a
D

Le  

Excluding instances of extremely strong force fields or accelerations, the total 
number of moles n per unit volume is often nearly constant (n1+ n2  constant) 
under standard conditions (in particular for ideal gases). Thus, we have: 

021 ngradngrad  [2.43] 

Substituting [2.43] into Fick’s law [2.41], the velocity difference can be written 
as a function of the concentration n1 alone:  

1
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DVV  [2.44] 
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2.4.4.2.2. Diffusion in the local reference frame of molar velocity 

We use the local reference frame R* of molar velocity for diffusion in a closed 
fixed volume. From [2.41] and [2.44] we obtain an expression for the molar flux in 
the reference frame R*: 

2
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ngrad
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From this we can deduce the molar flux densities of the two species: 
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Instead of representing the concentrations by n1 and n2, diffusion velocities in 
the fixed reference frame can be expressed as a function of quantities of the two 
gases which are proportional to these concentrations, such as the partial specific 
masses 1 and 2, the partial pressures p1 and p2, and the molar fractions 

1
 and 

2
:  

2

2

2

2

2

2*
2

1

1

1

1

1

1*
1

grad
D

p
pgrad

D
grad

DV

grad
D

p
pgrad

D
grad

DV

 [2.47] 

The mass fractions cannot be directly used as concentration variables, because 
the specific mass of the mixture varies within the volume. 

NOTE – Expression [2.47], using the molar fractions as variables, is exact, even if 
the volumic number of moles n has a non-zero gradient. This results from the 
definition: 

1 2 1 21 and: 0grad grad  

and from expression [2.42] of Fick’s law using molar fractions which can be written: 

1
21

21 grad
D

VV  [2.48] 
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From [2.47], we obtain the densities of molar flux: 

2
*

21
*

1 gradDnqgradDnq nn  [2.49] 

2.4.4.2.3. Application to diffusion in a medium at macroscopic rest 

Here we consider a medium at macroscopic rest, in other words a medium 
whose very slight movements are related to diffusion phenomena. We assume 
that the medium satisfies the equations of fluid statics and that differences of 
specific mass do not lead to movements associated with natural convection. 

In the case of a closed impermeable container in which a fluid is at rest, the 
molar average velocity is assumed to be zero at all points of the medium in a 
cartesian reference frame associated with the container. 

The diffusion equation of the components can be obtained by applying [2.8] 
for the number of moles n1 and n2, 

j

jn
G

x

q

t
n 11  

which, on accounting for expression [2.46], gives: 

GG
jj

ngradDdiv
t

n
x
n

D
xt

n
1

111  [2.50] 

The volume source G of species 1 expresses the number of moles per unit volume 
of this species created by a homogenous chemical reaction inside the container. It is 
fixed by chemical kinetics. It is zero in the absence of any chemical reaction. 

In the common case where the diffusion coefficient is constant and where there 
is no chemical reaction, equation [2.50] reduces to the heat equation: 

1
1 nD
t

n
 [2.51] 

The boundary conditions for impermeable walls can be represented by a zero 
normal component 1ngrad at the walls ( :wn normal to the wall): 
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0. 1
1

w
w

n
n

ngradn   

2.4.4.2.4. Diffusion with respect to a fixed component 

The discussion of the steady evaporation problem  given in section 2.4.3.4 
(Figure 2.9b) showed us that gas 1 is fixed. In this case it suffices to directly apply 
Fick’s law in the form [2.44]: 

2
21

2 ngrad
nn
n

DV  

The flux density of species 2 can thus be written as: 

2

2
222

nn
ngrad

nDVnqn  

The conservation equation of species 2 can be written: 

0
2

2

nn
ngrad

nDdiv  [2.52] 

For the 1D evaporation problem of Figure 2.9b, we obtain, by integrating [2.52]: 

constant2

2
2

dx
dn

nn
nD

qn  [2.53] 

We consider the following boundary conditions: 

 at the surface of the liquid ( 0x ), the number of moles per unit volume nS, is 
that of the saturated vapor at the experimental temperature;  

 at the tube extremities ( x ), we assume that the very slight movements of 
atmospheric air suffice to eliminate all vapor, such that we can write that the vapor 
concentration n2 is equal to the water vapor concentration n2a of the atmospheric air.  

The distribution of the water vapor concentration can be obtained by 
integrating equation [2.53]: 

nD

qx
nnnn n

S
2

2 exp  
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Expressing, at the abscissa , the concentration condition for the ambient air 
we obtain a relation giving the flux density of the vapor: 

S

an

nn

nn

nD

q 22 ln  

For relatively weak concentrations we have: 

aS
n

nnD
q 2

2  [2.54] 

Numerical application  

Take a tube of height  = 0.10 m. We base our reasoning on a density which is 
proportional to the volumic number of moles for water vapor at 20ºC, assuming the 
external air to be perfectly dry (n2a = 0) and using the following data: D=2.6 × 10-5 
m2.s-1: s = 0.018 kg.m-3. We find, for the flux density evaporated:  

126
5

2 ..1068.4
1.0

018.0106.2
smkgqm  

This corresponds to a reduction in the level of the free surface of about 0.4 mm 
per day. For acetone, whose saturated vapor pressure is 10 times greater, the 
evaporation is 10 times more rapid. 

Evaporation rate in static conditions is very weak. Diffusion in a stationary 
medium is a very slow process, which only becomes efficient in the presence of 
convection (section 2.4.4.2.1).  

2.4.4.2.5. Diffusion in a reference frame related to the local inertia center 

Equation [2.38] gives an expression for the mass flux in a reference frame 
associated with the local inertia center: 

21
21

222111 VVVqVq
GG

m
GG

m  [2.55] 

The expression of Fick’s law [2.42] which is best adapted to this reference frame 
uses mass fractions for the concentration variables:  
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2

2

1

1

2

1

2

1

21
gradgrad

D
grad

DVV  

From the definition of mass fractions, we obtain: 

0and1 2121 gradgrad  

and thus: 

1
21

21 grad
D

VV  [2.56] 

Substituting [2.56] into [2.55] gives: 

2211 gradDqgradDq G
m

G
m  [2.57] 

There are almost no static diffusion problems which lead to a motionless local 
inertia center. Expression [2.57] will be used in the diffusion equation in the 
presence of convection in Chapter 4. 

NOTE – Using relations [2.39] and [2.40], diffusion velocities in the reference 
frame RG can be expressed, as before, as a function of the variables n1 and n2, as 
well as 1 with 2, p1 and p2 or 1 and 2: 

1
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1

12

1
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grad
M

DM
p

pgrad
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pgrad
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G  [2.59] 

With these concentration variables, diffusion velocities can no longer be 
expressed by means of the same diffusion coefficient and so we have two different 
diffusion coefficients, in which the molar average mass M is variable:  

M
DM

D
M

DM
D GG

1
2

2
1  
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2.4.4.2.6. Unsteady evaporation 

From a practical point of view, the consequences of the developments 
outlined in the preceding sections are that the exact formulation of equations for 
diffusion problems should only be performed after an explicit choice of 
reference frame when possible; this allows us to obtain precise expressions for 

1[ ]V  and 1
2[ ]V . For example, in certain problems (steady evaporation, see 

sections 2.4.1.2 and 2.4.4.2.4) one of the gases, say G1, is stationary, and only 
gas G2 moves during diffusion. Taking a reference frame R1 linked with G1, the 
velocity 1

2[ ]V  of gas G2 follows immediately from [2.41]. 

On the other hand, if the evaporation is no longer steady, then the air (species 1) 
is no longer stationary. Consider the case where the tube in Figure 2.9b is filled only 
with air at the initial instant; the total pressure remains constant; the rise of vapor 
(species 2) in the tube moves the molar quantity corresponding to the air which is 
now in movement and is thus no longer the favored reference frame. 

Let us reconsider the evaporation problem for the unsteady 1D case, in an 
atmosphere at constant temperature and pressure (Figure 2.9b). The total 
volumetric number of moles n is constant. This leads to a situation where the 
molar average velocity V* and the total molar flux *nVqn  are independent of 
the abscissa x. However, a priori they do depend on time. All that remains is to 
write the balance equation for the vapor in the reference frame of the tube:  

022
2 Vn

xt
n

 [2.60] 

The flux density of the vapor 22Vn  is now a function of the two variables x and t. 

It can be obtained by decomposing the velocity, 
* *

2 2 ,V V V and by replacing 

2[ ]V  by its expression in [2.45]: 

n
n

q
x

n
DVnq nn

22
222  [2.61] 

By substituting into equation [2.60], we obtain the diffusion equation: 

02
2

2

x
n

Dn
n

q
xt

n n  [2.62] 
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As the velocity V1 of the air is zero at the abscissa x = 0 (impermeability of the 

liquid surface), the total molar flux *nVqn  is equal to the molar flux 022 xVn  
of the vapor at the origin. This can be obtained by means of expression [2.44] of 
Fick’s law and the condition 2 (0, ) sn t n : 

0

2
022

*

x
n

nn
Dn

VnnVq
S

xn  [2.63] 

The molar concentration n2 satisfies equation [2.62] and condition [2.63] with 
which we can associate the conditions used in section 2.4.4.2.4 for positions 0 and : 

as ntnntn 222 ,,0  

in addition to the concentration distribution n2(x,0) at the initial time.  

We will go no further with these calculations. Let us just recover the steady 
regime studied earlier (section 2.4.4.2.4) by observing that in this case, gas 1 is 
stationary; we therefore have, for all x: 

22
* VnnVqn  

Substituting this expression into [2.61] gives us: 

x
n

nn
n

DVn 2

2
22  

Equation [2.62] is thus identical to [2.53]: 

02

2 x
n

D
nn

n
x

 

If evaporation occurs at constant volume in a container in which initially no 
vapor is present, the pressure will increase during evaporation, which also produces 
a displacement of the mixture. We will leave aside such static problems where the 
equations of motion are to be solved.  



96     Fundamentals of Fluid Mechanics and Transport Phenomena 

2.4.4.2.7. Case of weak concentrations  

When the mixture contains a weak proportion of species 2: 

....or;or; 121212 ppnn  

it is then possible to confuse the different units of concentration (section 2.4.1.3). 

By comparing relations [2.28] and [2.29], we can see that the three reference 
frames R*, RG and R1 become identical to the first order. We can note that 

expressions [2.47], or [2.58] and [2.59], show that the diffusion velocities 
*

1V  or 
G

V1  of component 1, which is excessively large, are negligible compared with the 

diffusion velocity 
*

2V  or 
G

V2  of component 2. 

It results in the preceding approximations that: 

– the molecular diffusion velocity 2V  of species 2 is thus the same in any one of 
the three reference frames R*, RG and R1; 

 any variable amongst those defined in section 2.4.1.3 (number of moles per 
unit volume n2, molar or mass concentration c2 or 2, partial pressure p2, molar or 
mass fraction 2 or 2, etc.) can be used to represent the concentration c2 of 
component G2 to the second order excepted. 

Then we have, in the three reference frames previously chosen to characterize 
the diffusion the relation: 

2

2
2 c

cgrad
DV  [2.64] 

In these conditions, we can define the flux density of species 2 by means of the 
variable c2: 

2222 cgradDVcqc  [2.65] 

The flux 2c  of the variable c2 across the surface (S) related to any one of the 
three mentioned reference frames is: 

SS cc dscgradDdsq .. 222 [2.66]
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This approximation of law [2.41] in balance equation [2.8] allows the diffusion 
equation to be obtained: 

22
2

2
22 cgradDdiv

t
c

x
c

D
xt

c

jj
 [2.67] 

The volume source 2 of species 2 expresses, with the units of concentration c2, 
the quantity per unit of time of this species created by a homogenous chemical 
reaction. 

For weak concentrations, we can usually assume that the coefficient of diffusion 
D is constant; the diffusion equation is then reduced to the heat equation: 

22
2

2
2

2
2 cD

t
c

xx
c

D
t

c

jj
 [2.68] 

This approximation for weak concentrations is often used, either on account of 
experimental conditions or because it allows for a simplified approximate treatment 
of the problem, particularly in situations where it is associated and coupled with a 
heat release and with chemical reactions. On the other hand, diffusion often occurs 
in flows which present difficulties, and thus the preceding approximation is 
necessary. 

2.4.5. Coupled phenomena with diffusion 

2.4.5.1. Binary non-isothermal mixtures 

The elementary discussion of the last section is not entirely rigorous, even in the 
absence of movement in the gas, because all phenomena characterized by scalar 
quantities are coupled (sections 2.1.5.2 and 2.1.5.3.4): the diffusion of a species in 
another species is accompanied by a thermal flux and a temperature gradient 
(Dufour effect). However, this is very often negligible in the absence of thermal 
conditions leading to a temperature gradient. Similarly, a temperature gradient 
(differences in the energy of molecular agitation of diluted gases) will induce a 
concentration gradient (i.e. a difference in the ways two different species of 
molecule will move in a gaseous mixture, some moving to the cold regions, others 
moving in the opposite direction). 

The action of a mass force field (gravity, inertial forces, etc.) on the two species 
is manifest in a static equilibrium comprising a pressure gradient (or of the volumic 
number of moles), as we saw in section 2.2.1.5 (atmospheric equilibrium). In such a 
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situation, the lighter molecules tend to rise. The thermodynamic force responsible 
for this effect is the pressure gradient. In practice, the diffusion of pressure is 
entirely negligible in the atmosphere, where the quantity ngrad  is nearly always 

negligible compared with 1ngrad or 2ngrad ; diffusion therefore occurs as if there 
was no force field. The diffusion of pressure must be accounted for in mixtures 
subjected to high accelerations, as in centrifuges. 

Another cause for the molecular migration of a chemical species with respect to 
molecules of another species is a difference in the forces exerted between the two, 
for example between ions with different charges placed in an electric field. This 
thermodynamic force is a vector field, in other words of the same rank as the 
gradient of a scalar quantity. These phenomena are encountered, for example, during 
the electrolysis of solutions or in an ionized gas in the presence of an electric field. 

Kinetic gas theory allows us to construct the theory of diffusive phenomena. The 
principle involves seeking distribution functions for neighboring velocities of the 
Maxwell-Boltzman distribution (Chapman-Enskog method). We find that first order 
deviations from this equilibrium distribution lead to the irreversible processes 
previously discussed. This theory also shows a decoupling between imbalances of 
different tensor orders such as thermal, mass or viscous fluxes. We will not develop 
the corresponding equations. For velocity differences in a gas ([PEN 55]) we obtain:  
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 [2.69] 

DT is the thermal diffusion coefficient; we usually define the thermal diffusion 
ratio kT by the relation: 

DkD TT  

The thermal diffusion ratio kT is more or less independent of temperature, but 
varies strongly with concentration: in particular, it tends to zero with each of the 
concentrations. Its maximal value, attained when the concentrations of components 
are in the same order of magnitude, is of the order of 0.1-0.2. 

The preceding expression shows that a temperature gradient leads to 
additional diffusion phenomena (thermal diffusion) which can be used to 
separate two components of a gaseous mixture when chemical or other physical 
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methods are not practicable (for example, in gaseous mixtures comprising two 
isotopes).  

2.4.5.2. Mixtures with several components 

Once a mixture is comprised of many components, the number of reduced 
extensive variables increases, each component requiring a concentration variable. 
There thus exist as many mass or molar flux densities as there are species present. 
For each species, we have a balance equation [2.24]. 

Following the principle outlined in sections 1.4.2.6 and 2.1.5.2, all diffusive fluxes 
depend on all of the thermodynamic forces of the same tensor rank. We thus have a 
matrix of diffusion coefficients. The general discussion concerning the choice of 
reference frames which characterize the diffusion processes is identical to that outlined 
earlier. 

As we have already said (section 2.4.2.3), the k balance equations for each 
component leads to a global mixing equation that describes the conditions under 
which the mixture will evolve (in movement, at rest in a fixed container, during 
evaporation). The k equations are generally replaced by this global equation and k – 
1 equations characterizing the components of the mixture. 

The interested reader should consult textbooks covering problems of 
irreversible thermodynamics ([BIR 02], [BOC 92], [CHA 91], [DEG 62], [DOU 
01], [EU 92], [GER 94], [LEV 62], [PRI 68]).  

2.4.6. Boundary conditions 

In the absence of chemical reactions, the boundary conditions can be identical to 
those of the thermal problem (section 2.3.2). The existence of a heterogenous 
reaction on the wall P leads to the production or absorption of the components. 
Chemical kinetics provides the law for the reaction speed for the components 
concerned. The flux density of a component at the wall must be equal to that 
produced or absorbed by the chemical reaction, for example for a reaction of order 
m: 

m
P

P
kc

n
c

D 1
1  [2.70] 

The coefficient k is often an expression of the form RTUkk exp0 , where 
U is the activation energy of the reaction, T designating the absolute temperature. 
The form of this relation shows a strong coupling between the temperature and the 
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reaction speed. The heat release due to heterogenous chemical reactions must be 
taken into account in the boundary conditions of the energy equation ([BOR 00], 
[PEN 55], [WIL 65]). 



Chapter 3 

Physics of Energetic Systems in Flow 

In the preceding chapters, we examined the physical and mechanical properties 
of matter independent of the dynamic effects induced by motion. Before dealing in 
the next chapter with the general equations of fluid dynamics and the transfer of 
quantities in flows, we will first recall the basic laws of mechanics and their role in 
thermodynamics; we will then outline the formalism used to describe the motion of 
continuous media and finally we will examine the mechanical properties of moving 
fluids. 

3.1. Dynamics of a material point 

3.1.1. Galilean reference frames in traditional mechanics 

As geometric space is homogenous and isotropic, the translational motion of an 
isolated material point is necessarily rectilinear and uniform. In effect, for any other 
kind of trajectory, a favored direction could be defined and any non-uniform 
movement of an isolated material point would imply an inhomogenous time. We 
thus postulate the existence of Galilean reference frames in which the distance 
traveled by an isolated material particle is a linear function of time. The laws of 
physics should be the same in all Galilean the reference frames. We must now 
change the reference frame to where the transformation matrix is a function of time 
and where all uniform translational movement are required to have the same 
properties in the new reference frame. For Cartesian reference frames this results in 
new coordinate systems which are in uniform rectilinear translation with respect to 
one another, and which form a group. 

Fundamentuls of Fluid Mechanics and Transport Phenomena 
Jean-Laurent Peube 

Copyright 0 2009, ISTE Ltd. 
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In traditional mechanics, changes in the reference frame which conserve 
distances and time belong to the Galilean group. They have the form: 

ttitVxx iii '),3,2,1('   

The presence of the time variable in these reference frame changes leads to 
specific properties of temporal derivatives. As time is the same in all Galilean 
reference frames, the values of extensive scalar quantities are independent of the 
Galilean reference frame used. On the other hand, components of vector or tensor 
quantities vary in reference frame changes according to the usual formulae 
(covariant or contravariant according to the case considered). We say that these 
quantities are invariant for (geometric) changes of the Galilean reference frame (see 
texts on linear or tensor algebra). However, certain vectors (position or velocity of a 
particle) are defined with respect to a given Galilean reference frame; the evaluation 
of their temporal derivatives depends on the reference frame chosen for this 
definition. For example, the components in reference frame R’ of the velocity of a 
point defined in reference frame R are not equal to the components in reference 
frame R’ of the velocity of the point defined in reference frame R’. In a general 
manner, so-called cinematic operations (such as calculations of temporal derivatives 
velocity, acceleration) lead to formulae of changing reference frames dependent on 
their relative motion. We will assume that these ideas are known to the reader. 

Let us recall the following elementary formulae, which will subsequently prove 
useful: 

rrearea VVVV 2,  

in which the indices a and r indicate that derivatives with respect to time are 
calculated in a Galilean reference frame (a) or in some other reference frame (r) 
which is in motion relative to the former. In the expression of acceleration the first 
term e represents the drag term (centripetal acceleration in the case of a rotating frame) 
and the third term is the Coriolis acceleration. 

In the following, where not indicated otherwise, momentum, velocity and 
acceleration will be calculated in a Galilean reference frame. 

3.1.2. Isolated mechanical system and momentum 

We have seen in Chapter 2 that we characterize motionless matter by convenient 
extensive properties and that the assumption of thermodynamic equilibrium leads to 
the existence of relations between thermodynamic properties. 
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As in Chapter 1, we will begin by considering the simplest discrete system 
having mechanical properties: the material particle or the material point. This choice 
is made on account of the fact that a geometric point suffices to define its position. 
A material system, like any thermodynamic system, is made up of many simple 
systems, each comprised of an ensemble of material particles. These are described 
by systems whose dimensions are sufficiently small. 

The extensive quantity associated with the motion of a material particle is 
momentum. The momentum of a material system is the sum of the momentum of its 
components. This vector quantity is proportional to the extension of the particle. 

The momentum of an isolated mechanical system remains constant. 

3.1.3. Momentum and velocity  

As space is homogenous, the momentum of an isolated system is a function 
neither of its coordinates nor of time. Its expression must be identical in all Galilean 
reference frames; this property will impose an expression for the momentum. 

We must note firstly that the idea of entropy does not exist in the mechanics of a 
particle. It only appears for systems in which the thermodynamic properties are 
defined and in which mechanical energy is transformed into heat. We will come 
back to this point a little later (section 3.2.5). 

The intensive quantity associated with the momentum, for an elementary system, 
is the velocity ,V with components ui, which represents the intensity of motion in a 
Galilean reference frame. Velocity depends on the reference frame used. 

In a Galilean reference frame, momentum can only be a function of velocity in 
that reference frame, and not of position or time. The relationship between 
momentum and velocity can be derived from the preceding principles. 

In effect, consider an isolated system composed of two identical particles. These 
particles, of constant initial velocities 1V  and 2V  in a Galilean reference frame R, 
interact through a collision (whose details are not important) such that after the 
collision they have the same constant velocity 'V  (a soft impact) in this same 
reference frame. If Vp  is the momentum of each particle, the momentum 
conservation of the two particle system can be written in R as: 

'221 VpVpVp  
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This equality must be true in all Galilean reference frames moving with constant 
velocity V (V having any value) with respect to the reference frame R. The 
following identity is derived, true for all V : 

VVVpVVpVVp '221  

This equality implies that the function Vp  is a linear function (take V  

successively equal to 1V  and 'V , and then derive the identity 

YXpYpXp , characteristic of a linear relationship). 

The momentum of a particle can thus be written in the form: 

Vmpump jiji .  

where m  is a constant tensor which characterizes the material particle. As space is 
isotropic, this tensor is necessarily spherical ( ijij mm ). 

A material particle is thus characterized by a scalar m (mass) which leads to the 
relation: 

     )( Vmpumump iijiji  [3.1] 

Similar reasoning using a Lorentz group for changing reference frames leads to a 
different expression of mass in special relativity. 

3.1.4. Definition of force  

As momentum is an extensive quantity it must satisfy a balance equation. When 
a material particle is subjected to an external action, its momentum changes. We call 
this external action force f ; it constitutes a source of momentum for this particle, 

whose rate of change 
dt
pd

 is: 

dt
pd

f  [3.2] 
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Forces are independent of the Galilean reference frame chosen for their 
description (this is no longer true in relativistic mechanics). 

The effect of a force during a time interval (t', t) is characterized by a vector 
equal to the momentum variation t

tp '  between these two instants. This is, by 

definition, the impulse I  received by the particle: 

t
t

t
t pdtfI ''  [3.3] 

The idea of an impulse is useful in the study of collisions, which are often very 
rapid events and the detailed modeling of which is replaced by more or less global 
assumptions regarding their nature (soft impact, elastic, etc.). The external force f  

acting on a material particle is the impulse quantity 
dt
Id

 
received by the particle per 

unit time. 

As for the other thermodynamic quantities, this definition is only of interest in so 
far as we are able to explain the expression of this force as a function of external 
parameters. As with the other thermodynamic quantities, we can distinguish: 

– volume forces representing actions at a distance, which are due to force fields: 
gravity, electromagnetic forces, etc.; 

– contact forces, due to interactions on the microscopic scale between molecules, 
ions, atoms, etc. As for other contact actions, these are modeled by surface forces: 
stresses, pressure, viscous or dry friction, etc. We will come back to this point in the 
sections covering continuous media. 

NOTES – 

1) A force is associated with the material element on which it acts: forces are 
localized vectors (bi-points in mathematics) which can only be composed for each 
application point considered separately, except in the case of a rigid solid. 

2) Forces are actions which obviously exist independent of motion.  
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3.1.5. The fundamental law of dynamics (closed systems)  

Consider a closed material particle, i.e. one that does not exchange matter with 
the exterior; its mass is thus constant. Substituting [3.1] into [3.2] we obtain:  

dt
Vd

m
dt

Vmd
f  [3.4] 

This equation, called the fundamental law of dynamics (or Newton’s second law 
of motion), involves the acceleration ;dV / dt  the quantity m  is called the 
quantity of acceleration.  

The quantity of acceleration is only the momentum’s time derivative for systems 
of constant mass. A rocket which ejects a certain momentum in order to propel itself 
is not a closed system. In fluid mechanics, we will often reason in terms of open 
systems which exchange momentum with the exterior. 

3.1.6. Kinetic energy  

Every extensive quantity has a corresponding form of energy. The term for the 
energy differential (kinetic energy Ec) associated with the extensive quantity p  for 
the preceding system’s motion is: 

iic dpudE  [3.5] 

which, taking account of expression [3.1] for a particle of constant mass m, is: 

2

2mV
ddumudE iic  [3.6] 

Kinetic energy can thus be expressed by the relation: 

2

2mV
Ec
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The kinetic energy theorem can be obtained by taking the scalar product of the 
two sides of equation [3.2] with the velocity V : 

Vf
dt
pd

V
dt

dEc ..  [3.7] 

The quantity Vf .  is the power of the force f  in the reference frame considered. 
As with the kinetic energy, it depends on the reference frame used for its evaluation. 

3.2. Mechanical material system  

3.2.1. Dynamic properties of a material system  

A mechanical material system will be constructed, as for any thermodynamic 
system, by decomposition into n sub-systems which are points (or nearly points) in 
separate equilibriums (here at uniform velocity). The sub-systems interact amongst 
themselves according to the principle of action and reaction which results from the 
extensive nature of momentum. This quantity and the kinetic energy associated with 
the movement for the whole system of points are additive:  

n

i

ii
c

n

i
i

Vm
Epp

1

2

1 2
 [3.8] 

The conservative nature of extensive quantities entails that total momentum 
remains constant in an isolated system. The velocity, which is the corresponding 
intensive variable, is of course not defined for the complete system if this one is not 
in a uniform state. 

Quantity p  is called the total linear momentum or momentum of the system. We 
also define the total angular momentum or angular momentum O  at a point O by 
the relation: 

n

i
iiO pOM

1
  

Introducing the inertia center of the material system, and using formula [3.1], 
relation [3.8] can be written: 

GVmP  
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Internal actions between components of the material system balance one another 
two by two like all internal actions. Let us separate the forces acting on the particle 
Mi into external forces iextF  and internal forces iFint  representing interactions 
between Mi and the other material particles of the system. Applying equation [3.2] 
gives:  

niFF
dt
pd

iiext
i ,.....2,1int  [3.9] 

The n vector equations [3.9] enable a detailed study of the mechanical system. 
By taking their sum, we obtain a vector equation which eliminates the internal forces 
and describes the effect of external action on the sum of the quantities of particle 
acceleration dtpdm iii  in the system, which is called dynamic 

resultant dtPdm
i

ii  

n

i
iextG Fm

dt
Pd

1
 [3.10] 

Equations [3.10] state that the dynamic resultant dtPd  is equal to the sum of 
the external forces. Internal forces do not participate and the momentum of an 
isolated system remains constant. 

We proceed in similar fashion for the moments of the internal forces, which 
cancel one another out, two by two; the moment C  at a given point in the ensemble 
of forces, naturally reduces to the moment of the external forces. The sum of the 
moments of the quantities of acceleration dtpd i  at O, also called dynamic moment 

O  at a point O, is equal to the sum extM  of the moments of the external forces 
acting on the points Mi and considered at the same point. 

We know that in taking moments, either at a fixed point O, or at the inertia 
center of the system, the dynamic moment O  is equal to the time derivative of the 
total angular moment O , this last moment being the sum of the momentum 
moments: 

n

i
iext

O
O M

dt
d

1
 [3.11] 
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The conservation of linear momentum for an isolated system is thus a 
consequence of the properties of internal forces. 

Two particular vectors P  and O  define an entity which replaces the detailed 
distribution of localized momentums only in the case of rigid solids. The reader 
should refer to texts on mechanics for a further study [AME 58].  

3.2.2. Kinetic energy of a material system  

3.2.2.1. Kinetic energy theorem  

Kinetic energy theorem [3.7] is applied for each particle of the system. For the 
material system it can be obtained by taking the sum of all the kinetic energy 
equations corresponding to the particles Mi (obtained by taking the scalar product of 

each equation [3.9] with iV ): 

mecf
n

i

iic Vm
dt
d

dt
dE

PP int
1

2

2
 [3.12] 

with:  
n

i
iif FV

1
intint .P , the power of the internal forces; 

n

i
iextimec FV

1
.P , the power of the external forces (mechanical power 

provided to the mechanical system from the exterior). 

The power of the internal forces is not generally zero. 

3.2.2.2. The power of internal forces  

The power of internal forces is independent of the reference frame used for its 
evaluation. 

In order to show this, it suffices to regroup the internal forces by couples of 
opposed forces ijF  and jiF  interacting between the points Mi and Mj. The work Wij 
of these forces is: 

jiijijijijijijij MMFMMFMFMFW .  
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The two vectors of the scalar product Wij are independent of the reference frame 
chosen (Galilean or otherwise) and the scalar Wij takes on the same value in all 
reference frames; the same is true for the total work done by the internal forces. As 
time is identical in all reference frames, the power of the internal forces is thus 
independent of the reference frame used. 

Certain internal forces derive from a potential, such as Newtonian forces or 
elastic forces; the same is not true for frictional forces. 

3.2.2.3. The power of external forces  

Let us consider a case where the external forces and certain internal forces 
derive from a potential U, the other internal forces being designated by ifF int . 
Equation [3.12] can be written: 

n

i
ifi

n

i

ii FVMiU
Vm

dt
d

1
int

1

2
.

2
 

[3.13] 

We define the mechanical energy Em of the system by the relation: 

n

i
i

ii
m MU

Vm
E

1

2

2
 

Equation [3.13] can be written: 

intf
m

dt
dE

P  [3.14] 

The total mechanical energy of the isolated material system is not conserved 
because the internal forces provide a non-zero power, except in certain particular 
cases (rigid, solid, etc.). 

Consider the following example: two particles of the same mass m are elastically 
linked with friction; they constitute an oscillator where each of their opposed 
elongations are centered around the inertia center G. 
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Figure 3.1. Isolated oscillator 

We assume that there are no external forces. The kinetic energy of the whole is 
the kinetic energy of the inertia center animated by the constant velocity VG, which 
is increased by the kinetic energy of the oscillator in a reference frame related to the 
inertia center G. The total mechanical energy can be obtained by adding the 
potential energy of the oscillator. This decreases on account of the friction and is 
transformed into heat, thus increasing the internal energy by heat addition. On the 
other hand, the momentum of the ensemble has not changed. 

The power of the internal forces depends only on the relative particle velocity 
and not on the chosen reference frame. On account of the internal friction of the 
system, it decays as well as the total mechanical energy of the system. 

3.2.3. Mechanical system in thermodynamic equilibrium: the rigid solid  

We will now examine how motion intervenes in thermostatics and 
thermodynamics. Consider a material system, assumed to be in movement and 
isolated, in other words not surrounded by any other material system which exerts an 
action on it; it will finish by being “rigidified”: the relative movements of its 
different constituents disappear under the effect of internal dissipative forces 
(viscous damping or internal friction, exchange of momentum and collisions 
between the particles comprising the system, etc.). In other terms, the relative 
distances between the different material particles making up the system remain 
constant. The mechanical system in thermodynamic equilibrium has become a rigid 
system in which there are no longer any entropy sources associated with friction. 
The system is in a state of thermostatic equilibrium if its other extensive quantities, 
defining its internal state, are no longer susceptible to change. 

We obtain the same final state for a material system placed in a force field 
derived from a potential. The fluids contained in such a material system are thus in 
hydrostatic equilibrium. We have already discussed, in section 2.2.1.2, the restrictive 
conditions necessary for the existence of such a situation. However, if the external 
force field does not derive from a potential, the exterior will always be able to 
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communicate an energy to compensate the friction to the fluid (by an 
electromagnetic action in a conducting fluid, for example). 

The rigid solid thus plays an important role from the point of view of 
thermostatics, since it is the ultimate state (thermostatic equilibrium) towards which 
all isolated mechanical systems will tend. It is furthermore what is observed for a 
gaseous or liquid mass enclosed in a container which is not subject to any external 
action; the same is true for all collections of solids (a pile of sand, etc.), including 
solar bodies: the moon no longer rotates, always showing the same side to the Earth; 
the daily rotation of the Earth slows continually due to diverse dissipative effects 
(mostly tidal movements of the oceans, which lead to a dissipation of energy on 
account of a gravitational Earth-sun and Earth-moon interactions). 

We know that the momenta of a rigid solid are characterized by linear 
momentum and angular momentum, which are constant for an isolated rigid solid. 
Recall that its motion is not characterized by an instantaneous constant velocity 
vector of rotation; (this motion is a Poinsot motion around its inertia center (see texts 
on mechanics [AME 58])). 

3.2.4. The open mechanical system  

3.2.4.1. Introduction 

We can also perform a balance for an open material system whose momentum 
varies because of an input of matter (for example a water bomber collecting water) 
or an output of matter (the propulsion of a rocket). In fluid mechanics, the balances 
of extensive quantities, including momentum, are performed for open systems. 
However, the physical conservation laws for extensive quantities are applied to a 
given material quantity, i.e. to closed systems. The balance equations for open 
systems must obviously take account of the change of definition in the system where 
the balance is performed (section 1.1.4.2), i.e. take into account the input or output 
of extensive quantities associated with the input or loss of matter. 

3.2.4.2. Momentum of a rocket  

As an example, consider the vertical motion of a rocket in a gravitational field. 

Its mass m(t) decreases with the ejection of a constant mass flow of gas 
dt
dm

qm , 

at a velocity U with respect to the rocket. 

Let m(t) be the rocket mass at instant t. We consider a fixed reference frame Oz 
and perform an elementary momentum balance between time t and t + dt on the 
mass m comprised by the rocket at time t. 
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Figure 3.2. Momentum balance: (a) closed system; rocket + gas, 

(b) open system; rocket alone 

At the instant t + dt the rocket mass has changed from m to m + dm, whereas the 
velocity in the fixed reference frame has increased from V  to ,V dV and the mass 
–dm of gas has been ejected. The mass ejected, initially moving at a velocity V  has 
now changed to UV  at time t + dt in the fixed reference frame. Between these 
two instants, the momentum variation of the mass m can be calculated as: 

dmUVdmVmUVdmVdVdmmpd  [3.15] 

Equality [3.15] highlights: 

 the change in momentum Vmdpd f  of the rocket (of variable mass m): 

VmdVmVdVdmmpd f  

 the momentum gpd  of the mass –dm ejected from the rocket: 

UVdmdpg  

We have, per unit time: 

dt
dm

U
dt
Vd

m
dt

pd

dt

pd
UV

dt
dm

dt
Vmd

dt
pd gf  [3.16] 
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The time derivative of the momentum fp
 
of the rocket is not equal to the 

quantity of acceleration 
dt
Vd

m . 

The quantity dtpd g is associated with a matter which is constantly being 
generated at the exit of the rocket exhaust: it is a momentum flux. 

In order to simplify matters, we will consider that the only external force is 
constituted by gravity; taking account of [3.16], equation [3.10] for the momentum 
at constant mass m can be written: 

gm
dt
dm

U
dt
Vd

m
dt
pd

 

or: 

gmqU
dt
Vd

m m  [3.17] 

Equation [3.17] shows that we can apply the fundamental dynamic relation to a 
system of variable mass by considering the quantity of acceleration for that system, 
the ejection of burned gases generating a force on the rocket opposed to the 
momentum flux mqU  (relative to the rocket) generated by the propulsion system. 

We can verify that the opposite of this force, acting for a time dt, corresponds to 
the impulsion dtqU m  necessary to give to the mass dtqm ejected in time dt a 

variation in velocity equal to .U This force is the rocket thrust . 

The preceding balance can also be written in the non-Galilean reference frame of 

the rocket (whose acceleration is 
dt
dV

). In this reference frame, the rocket ejects 

momentum mqU  per unit time (momentum flux) which balances the inertial force 

dt
Vd

m and the gravitational force gm . 
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A momentum flux is associated with the existence of a force. This observation is 
the basis of many concepts in fluid mechanics. We will see it again when we study 
the momentum flux theorem. 

The preceding results can be extended to moments (of momentum, or of 
quantities of acceleration) taken about a fixed point O or about the inertia center of 
the system. 

3.2.4.3. Kinetic energy balance  

The variation of kinetic energy dEc of a system comprising mass m can be 
calculated in a similar manner to that used to calculate the momentum. We have: 

2
.

222
1

2

22222 U
UVq

V
dt
d

m
V

UVq
V

dt
d

m
dt

dE
mm

c

 
By taking the scalar product of equation [3.17] with the velocity V  we find the 

kinetic energy equation of the rocket: 

VgmqVU
V

dt
d

m m ..
2

2
 

This gives, for the kinetic energy variation cdE : 

Vgm
U

q
dt

dE
m

c .
2

2
 [3.18] 

The term Vgm .  is the power of the gravitational force. The power Pfint of the 

internal forces is here equal to 
2

2U
qm  which represents the quantity of kinetic 

energy per unit time created by combustion in the fixed reference frame of the 
rocket where chemical energy (reaction enthalpy) is transformed into mechanical 
energy. 

This preceding reasoning will be used in a more general manner in Chapter 4, 
where the balance equations in a moving fluid will be established. We will use 
Eulerian variables in order to clearly explain the phenomena associated with the 
concept of convection. 
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3.2.5. Thermodynamics of a system in motion  

3.2.5.1. Energy equation  

Consider a material system, described by means of the variables of a certain 
number p of sub-systems. The internal energy of each component is the energy of its 
matter in a reference frame in which it is at rest. The differential [3.5] dE of the 
internal energy can be expressed as a function of the extensive quantities Xi and the 
intensive quantities Yi previously defined: 

p

i
iiii dXYdSTdE

1
 

Now suppose that the system components are in motion. The total energy 
contained in the system must take account of all energy forms, including its kinetic 
energy Ec. In other words, the mechanical properties constitute just one particular 
aspect of the physical phenomena to be considered. We denote as Et this “total” 
energy in order to distinguish it from the internal energy, denoted E: 

ct EEE  

The conservation principle is thus applied, not to the internal energy alone, but to 
the total energy, whose variation tE  is equal to the quantities of heat Q and of 
work W received from the exterior, including the work mecW  received by the system 
and coming from the external forces: 

QWEEE ct  

The extensive and intensive scalar variables, and in particular the internal 
energy, do not depend on the reference frame chosen: for example, the tension of an 
elastic string and its stretching, the pressure of a gas and its volume, the number of 
moles of a chemical species and its chemical potential, etc. Interpretations of 
internal energy in diverse physical theories are often made using forces whose 
details are of little importance, but as these are internal forces, their resultant 
moments are zero; we have seen (section 3.2.2.2) that the power Pfint of the internal 
forces of a system (or the corresponding work) is independent of the reference frame 
chosen for its evaluation. This power of the internal forces is in fact already 
described in the differential dE of the internal energy (work done by pressure forces, 
etc.). 

The kinetic energy and the total energy of a system depends on the reference 
frame chosen for their evaluation. 
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For a system which receives from exterior sources of a purely mechanical kind, 
we thus have: 

( )c mec th
d  E + E  + 
dt

P P  [3.19] 

Pmec and Pth being the mechanical and thermal powers provided to the system from 
the exterior. 

Consider first a mechanical system comprised of a material “particle” which is 
animated, for the sake of simplicity, by a macroscopic translational motion of 
velocity V. Now suppose that this particle receives, from the exterior, the 
mechanical power FVmec .P  and the thermal power Pth. The balance equation for 
the (total) energy of the material system can be written: 

mecth
mV

E
dt
d

PP
2

2

 

Now consider a system of n material particles of velocities .kV Letting E denote 
the internal energy of the system (which is not in equilibrium), the balance equation 
can be written, taking account of motion, as: 

mecth
n

k

kkVm
E

dt
d

PP
1

2

2
 [3.20] 

Subtracting the kinetic energy equation [3.12] from [3.20], we obtain the energy 
equation (E, the internal energy) of the material system: 

intfth
dt
dE

PP  [3.21] 

The rate of internal energy variation of a system is equal to the difference 
between the thermal power which it has received and the power of its internal forces. 

3.2.5.2. The entropy form of the energy equation  

It is useful to explain the preceding phenomena using an example. Consider the 
system already discussed in section 3.2.2.3 (Figure 3.1), comprised of two masses 
linked by elastic under tension  and equipped with a viscous friction system. 
The tension force  derives from a potential. 
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The masses are subjected to external forces jF  (j=1,2); we assume that gravity 
does not directly intervene. The viscous friction system is assumed to have no mass 
and the heat released by the friction heats the two masses which are assumed to be at 
the same temperature. The dynamic equation of motion for the masses in the 
reference frame of the inertia center can be written: 

fext FFm 11      fext FFm 22  

in which the tension  of the elastic link and the viscous friction force fF , 
aligned with the axis Ox, are, by definition, the forces applied on each mass: 

f
dt

xxd
fF f

12  

By adding the terms of the two equations after multiplication of each by its 
corresponding velocity 2,1kVk , we obtain the kinetic energy equation. The 
power of the internal forces can be immediately calculated: 

2
21 fVVF ff intP  [3.22] 

Energy equation [3.21] can be written: 

thf
dt
dE

P2  [3.23] 

By specifying the differential of the internal energy dTdSdE  for the 
system, we finally obtain the energy balance equation in its entropic form: 

thf
dt
dS

T P2  [3.24] 

We see that in this entropic form of the energy equation the mechanical terms 
have been eliminated and all that remains is the irreversible part of the motion 
which is transformed into heat. The dissipation function 2xf  is a heat source which 
is always positive. It appears in equation [3.24] as an internal entropy source. 

The preceding developments can be repeated for a system of n particles at the 
same temperature, between which there exist elastic forces and friction forces. We 
thus obtain an entropic form of the energy equation, analogous to [3.24], with a 
dissipation function for all the internal frictions of the system. The reader will note 
that this reasoning is only valid if the entropy of the system studied is a function of 
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the other extensive quantities, i.e. if the system is in a state of thermostatic 
equilibrium at every instant. 

We will see these developments (sections 3.1 and 3.2) once again when we study 
flowing continuous media, albeit with a formalism which is naturally more complex. 

3.3. Kinematics of continuous media  

3.3.1. Lagrangian and Eulerian variables  

A problem of flowing matter involves the study of the influences of external 
conditions on the fluid medium, specifically the many different ways forces exerted 
on the medium (presence of fixed boundaries with respect to the observer, moving 
boundaries such as propellers blades, turbine blades, etc., pressure differences 
between two reservoirs, external forces such as gravity and electrical volume forces 
due to some external device, etc.). The properties of a flow thus result from the 
action of external causes which modify the mechanical and physical properties of 
the matter (velocity and acceleration, internal stresses, pressure, temperature, 
chemical composition, etc.) and inversely the flowing medium exerts stresses on 
walls or modifies the boundary properties (stresses induced, temperature, chemical 
properties, etc.). 

The questions posed and the results expected from a study, an experiment or the 
operation of a device or system can vary considerably. Here are some examples: 

– in a water treatment station or in a chemical reactor, we are naturally 
concerned with the product being treated; the practical problem is thus to design 
walls, materials and diverse processes so as to obtain the desired result concerning 
the product which is treated; 

– in meteorological applications, the objective is to predict the weather at a given 
place and time, i.e. to predict the motion, and the physical and chemical properties 
of large air masses (velocity, temperature, humidity, presence of pollutants, etc.); 

– for a boat, a plane or a vehicle in motion, the essential properties are the 
external forces exerted on the solid boundaries in contact with the flow when the 
vehicle is displaced at a given velocity. The same is true for the flow of a river or 
fluids in an industrial pipe network for which suitable constructions are necessary 
(dams, turning vanes, pipes, open channels, pumps, turbines, etc.). 

The study of a physical problem begins with a definition of its variables. The 
description of moving matter involves the localization of a material particle which is 
identifiable in a given reference frame by means of coordinates. The physical 
properties of this particle are associated with it. In particle mechanics, we give 
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numbers to the different particles studied and to the physical quantities which 
characterize them. We thus define the trajectory of a particle as an ensemble of the 
successive positions which it occupies over the course of time. 

When studying the physics and mechanics of continuous media, this means of 
description is no longer suitably adapted, since the set of the material particles of a 
continuous medium is not denumerable. We thus need to identify them with respect 
to a continuous ensemble which is simply the ensemble of positions xi0 which this 
material occupies at a given reference time. The variables g associated with the 
matter are thus functions of this position xi0 occupied at an initial instant and of time: 

),( 0 txgg i  

This is called material representation by means of Lagrangian variables. 
Problems for moving continuous media where the matter must be clearly 
individualized are generally treated using Lagrangian variables; this description is 
often used in the mechanics and physics of solids.  

The disadvantage of Lagrangian variables is that such a description does not 
have any particular interest for the observer in many situations: the fisherman at the 
water’s edge sees the passage of water particles which he will never again see, and 
the same is true for the plumber examining a radiator, etc. As the fluid matter passes 
by continuously, the identification of fluid particles is not particularly useful. This is 
not the case however when we are interested in identifying the local physico-
chemical properties of the matter. Examples include the progress of a chemical 
reaction in a closed reactor, the presence of clouds and the knowledge of humid air 
masses in weather applications or the presence and movement of pollutants 
downstream of a pollution source, etc. 

Frequently, in fluid mechanics we consider a preferred observer reference frame, 
which is most often associated with solid boundaries between which or in the 
vicinity of which the fluid matter passes (pipe networks, solid obstacles, the wings 
of an aircraft, etc.). We thus represent the matter spatially by means of a field where 
quantities associated with a material particle are functions of the coordinates xi 
which the particles occupy at the observation time t. This kind of representation 
involves Eulerian variables. 

In physics, the study of particles contained in and subject to a force field 
generally involves the combination of these two representations, the particle being 
described by its coordinates as a function of time (Lagrangian variables) whereas the 
external field (gravity, etc.) is defined using its spatial properties. 
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Fluids in motion are generally described using Eulerian variables, the observer 
reference frame being associated with the solid boundaries. A considerable difficulty 
thus appears, as the formulation of the laws of thermodynamics and mechanics 
requires the balance of extensive quantities associated with matter. In the following 
sections we will write these balances by “following matter” over material domains 
represented using Eulerian variables. 

3.3.2. Trajectories, streamlines, streaklines  

In Eulerian variables the kinematics of a flow is characterized by the velocity 
field, which is a function of time: 

1 2 3 ori i ju u x ,t i, j , , V V M ,t .
 

In a velocity field, we can define the following curve families: 

 the streamlines at time t are lines whose tangents are the velocity vectors at 
this instant. 

These give a vision of the flow at instant t and their differential equations are: 
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 [3.25] 

a  trajectory is the locus of a fluid particle; trajectories are characterized by 
their spatial coordinates which are a function of time (Lagrangian description); their 
differential equations (here t is a variable) are: 

dt
txu

dx
txu

dx
txu

dx
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1  [3.26] 

 a streakline at time t is the locus of particles which have passed by a given 
point earlier than t, such as the cloud of smoke issuing from a chimney or the 
colored line obtained in a moving fluid by injection of a colored liquid or a trickle of 
smoke. The process of flow visualization involves the generation of visible emission 
lines (Figure 3.3) by injection of markers (dyes, smoke, small particles). 
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trajectory

fluctuating wind

streakline
 

Figure 3.3. Trajectory of a smoke particle and  
streakline from a chimney when wind is blowing 

When a velocity field does not explicitly depend on the variable t, 
jiji xutxu ,  and we have a steady flow. The streamlines, which no longer 

depend on time, are fixed in space: the appearance of the flow does not change. The 
preceding definitions and equations show that streamlines, trajectories and 
streaklines are all the same in steady flows. 

EXERCISE – Find the equations for the streamlines, the trajectories and the 
streaklines of the following 2D velocity field: u = constant, tav cos t. Interpret 
the results. 

3.3.3. Material (or Lagrangian) derivative  

3.3.3.1. Material (or Lagrangian) derivative of a quantity g  

Let txg i ,  be the field of a continuous scalar quantity associated with a 
medium of fluid particles moving with a velocity field txu ji ,

 
defined in a given 

reference frame. The material derivative (also called the total or Lagrangian or 
substantial derivative) is defined as the time derivative of the quantity g associated 
with the material particle of coordinates tx j  and velocity txu ji , . It can be 
obtained by calculating the time derivative of g in which the coordinates are 
functions of time and describe the trajectory: 

ggradV
t
g

dt
dg

x
g

u
t
g

dt
dg

j
j .or  

We will denote the Lagrangian derivative 
dt
d

, which is by its very definition the 

derivative of a function of time only for a fluid particle. It is also often denoted 
Dt
D

 

in fluid mechanics. 
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In particular, for components of the acceleration, we have: 

VVgrad
t
V

dt
Vd

x
u

u
t

u
dt

du

j

i
j

ii
i or  [3.27] 

Acceleration [3.27] can also be written in the form: 

V
V

grad
t
V

dt
Vd

2
2

2
 [3.28] 

where Vtor
2
1

is the rotation vector. The vorticity vector is twice the rotation 

vector. 

NOTE – The material derivative 
dt
dg

, defined in a Galilean reference frame, is a 

physical quantity which does not depend on the reference frame chosen for its 

evaluation; on the contrary, the temporal derivative
t
g

 of the spatial representation 

corresponds to an observation of the quantity g at a fixed point and it does depend 
on the reference frame chosen to represent the field. Consider two Cartesian 
reference frames of coordinates tx j ,  and tx j

~,~ : 

.~;~ tttUxx jjj  

The reader can easily verify the relation: 

j
j

x
g

U
t
g

t
g

~
~

~
~

 

where we let .~,~~, txgtxg ii  

The time derivative calculated in a reference frame depends on the choice of 
reference frame. Its value is notably associated with spatial inhomogenities of the 
quantity considered and which is displaced with respect to this reference frame. 
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For example, the reader can verify that the field of the quantity g, steady in the 
reference frame tx ,1  and with spatial period  

1
1

2
cos),(

x
Atxg   

is seen by a fixed observer in the reference frame ttUtxx ~;~
11  as an 

oscillating field with temporal period UT
~ . We will come back to this 

phenomenon, which is known as the Doppler-Fizeau effect in acoustics. 

3.3.3.2. Flux of the quantity G 

We saw (section 2.1.3.1) that the transfer of an extensive quantity G is 
characterized by a flux density vector Gq  whose flux across a surface is equal to the 
amount of the quantity G which crosses this surface per unit time. The 
demonstration of the existence of this vector is independent of the transfer 
mechanisms considered. In particular, the movement of matter with respect to a 
surface leads to a flux of the quantities associated with the matter across this surface, 
which we often refer to as a convective flux of the quantity G. 

 

ds

n

V

tV  

Figure 3.4. Balance in a flow through ds  
for an elementary displacement 

When a quantity G is transported by moving matter, the quantity G which 
crosses a surface ds of unit normal n  in time t occupies an oblique cylinder of 
length tV  (Figure 3.4). We thus derive an expression for the flux density vector of 
G: 

(g: quantity of  per volume unit)gq gV G  [3.29] 

The convective flux of the quantity G crossing a surface S per unit time is thus 
equal to: 

dsnugdsnVgdsnq jjGSS gG ..  [3.30] 
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The volume and mass transported by the matter’s motion are respectively 
characterized by the volume flux density vector V  and the mass flux density vector 

V  which correspond, respectively, to 1g  and g . 

The elementary volume flux dqv and the elementary mass flux dqm are1: 

dsnVdqdsnVdq mv .and.  

The volume flux qv (or volume flow rate) and the mass flux qm (or mass flow 
rate) across a surface S can be written: 

SmSv dsnVqdsnVq .and.   

When the quantity G  is a vector (for example the momentum Vm ), the 
preceding results can simply be applied to each of the components ig . We thus 

define a flux density tensor Gq  of the quantity G  by the relation: 

Vgqugq GjiGij or  [3.31] 

The flux of the quantity G  crossing the surface S is thus the vector GS : 

S GGS dsnq  

3.3.3.3. Material derivative of a volume integral  

Let ),(),( txgtxg ii  be the volume density of the quantity G (g designates 
the corresponding mass density). The amount of the quantity G contained in a 
domain D of fluid inside the closed surface  is: 

D dvtxgG i ),(   

The laws of physics imply the balance of the extensive quantities (mass, 
momentum, etc.) associated with the matter which, in a flow, is in motion. It is 
therefore necessary to calculate the variation of the quantity G associated with a 
material domain D in motion using the usual Eulerian representation. n designates 
the unit normal to the surface  directed towards the outside of the fluid domain D. 

                              
1 We shall use the usual scalar notation qv and qm for volume or mass fluxes which evidently 
are fluxes and not flux densities; confusion is not possible, flux densities being at least 
vectors. 
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The extensive quantities are associated with the matter and the balance of the 
quantity G must be performed on a material domain. Consider (Figure 3.5a) the 
domain tD  occupied by the matter at instant t, of external surface , and then the 
domain ttD  occupied by the matter at time tt . Between these two 
instants, the material domain is displaced such that it leaves  over the section  
whereas it is displaced towards the interior of tD  over the surface  (Figure 
3.5b); let D0 be the volume common to tD  and ttD . Let 1D and 2D  be 
the additional parts of D0 in D(t) and ttD  generated by the surfaces 1 and 2 

and the vector displacement tV . The (positive) amounts of the quantity G 

contained in each of these domains are, respectively, 
1

. tdsnVg  and 

2
. tdsnVg . 

 

(a) (b)

n
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x2
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D  ds

D0 

1
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n
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V

D1

D2

 

Figure 3.5. Balance of an extensive quantity in a flow:  
(a) domain at one instant; (b) displacement of the material domain 

The variation G of the quantity G contained in D between the instants t and 
tt  is thus: 

21
..)()(

)()(

tdsnVgtdsnVgdvtgttg

tGttGG

0D
 

By regrouping the surface integrals, taking the limit as 0t , and applying 
Ostrogradski’s theorem, we obtain: 

DD dvVgdiv
t
g

dsnVgdv
t
g

dt
dG

.  [3.32] 
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or, using notation with indices: 

DD dv
x
ug

t
g

dsnugdv
t
g

dt
dG

i

i
ii  [3.33] 

The notation 
dt
dG

 in equation [3.32] or [3.33] indicates a Lagrangian derivative. 

Formula [3.33] shows that the flux of the quantity G across the surface  can be 
interpreted as due to the integration over the volume of the local volume source 

Vgdiv .  

Material derivatives can also be expressed as a function of the mass density g: 

mv gdqdvg
t

dqgdv
t
g

dt
dG

DD  

Let us take the elementary case where 1g . The quantity G is the volume of 
the domain D. For a small domain of volume v , we have: 

vVdiv
dt

vd
.   

The quantity Vdiv  is thus the local velocity of the volume expansion 

dt
vd

v
1

. 

If the quantity G  is a vector (for example the volume momentum V ), the 
preceding steps can simply be applied to each of the components gi. We thereby 

define a tensor flux of the quantity G  by the relation: 

or , (with : Cartesian product).Gij i j Gq g u q g V  

NOTE – A more mathematical demonstration of expression [3.33] could be 
performed by using the fact that the domain ttD  can be derived from the 
domain tD  by means of a one-to-one geometric transformation which is precisely 
defined by the displacement of fluid particles between these instants ([ZIL 06]). 
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3.3.3.4. Material derivative of a flux integral 

Consider now the integral SS dsnB. , in which the vector B  and the surface 

S are attached to the moving matter. The surface S(t) moves to position ttS , 
which we will call S1 at time tt , having thus swept the surface S  (Figure 3.6). 

The flux variation S  between these two instants is: 

SSSSS dsntBdsnttBttt ).().()()(
1

 [3.34] 

Consider the domain D bounded by the surface SSS1 ; d  is the 
elementary arc of the curve C which encloses the surface S; we take the normal in 
the direction dV , on the lateral surface element dtV  swept out by d  

during time t . 

 

ds

S1S 

S  d

tV n B

V

C

 

Figure 3.6. Material derivative of a flux integral 

The flux of B  leaving the closed surface  at time t can be written: 

CSS dVBtdsntBdsntBdvtBdivdsntB ....
1D  

Taking account of this expression, flux variation [3.34] can be written: 

C

SSS

dVBtdvtBdiv

dsntBdsnttB

.

).().(
11

D

 

Applying Ostrogradski’s theorem, and letting t  tend to zero, we obtain the 
material derivative of the flux S  crossing S: 
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SCS
S dsBdivnVdVBdsn

t
B

dt
d

...  

which is, after the application of Stokes’ theorem: 

S
S dsnBdivVVBtor

t
B

td
d

.  [3.35] 

If the field B  is conservative ( 0Bdiv ), the total derivative of the flux S  can 
be written: 

S
S dsnVBtor

t
B

td
d

.  [3.36] 

3.3.3.5. Unsteady and quasi-steady flows  

In Eulerian variables, a flow (or the transfer of a quantity G) is considered 
unsteady if the time t appears as a variable in the description of the flow: 

/ 0 or / 0iu t g t  

In Lagrangian variables, the idea of a flow’s unsteadiness does not have any 
direct meaning. 

If the term tui /  (respectively tg / ) is very small and negligible compared 
with the other terms involving the corresponding material derivative, the flow 
(respectively the transfer of quantity G) is quasi-steady and the differential character 
with respect to time no longer features in the balances. The time t thus becomes a 
parameter, and the unsteady properties of the problem studied are those of a steady 
flow (or of the transfer of the quantity G). The physical causes of variations of the 
quantity G in the matter are thus solely balanced by convective fluxes. 

Following the note made in section 3.3.3.1, the flow can only be steady in a 
given, particular reference frame. 

3.3.4. Deformation rate tensors 

The determination of the stresses undergone by the matter in a flow is related to 
our understanding of the manner in which the matter is deformed. Any deformation 
of a solid requires the action of a stress. A fluid which does not have any particular 
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shape or form can be deformed easily without stresses, on condition that the 
corresponding action occurs slowly. 

In a fluid stresses are thus associated with the structure of the velocity field. 
However, velocity fields corresponding to changes of reference frame, or to 
displacements, will not be associated with stresses. 

The study of the local structure of a velocity field at any time is made by 
considering two neighboring points M  and MdM  at the respective coordinates xi 
and ii dxx  (Figure 3.7) whose velocities are ji xu  and jji dxxu . 

 

x2 

x3 

x1 

MV

MdMVMdM

M

 

Figure 3.7. Velocity field at two neighboring points 

The study of the velocities at these two points will allow the nature of the motion 
of the matter to be determined. We perform a Taylor expansion about the point 
M, at coordinates xj: 

)()()( hoh
x
u

xuhxu j
j

i
jijji   

We can separate the symmetric and anti-symmetric components of the 
tensor ji xu : 

1 1with: ;
2 2

j ji i i
ij ij ij ij

j j i j i

u uu u u

x x x x x
 [3.37] 

The anti-symmetric part jij h  of the velocity field dui can be written: 

1221

3113

2332

3

2

1

3213

3221

1321

0
0

0

hh
hh
hh

h
h
h

h jij   



Physics of Energetic Systems in Flow     131 

with: 

213132321  

The preceding expression jij h , written in vector form h , expresses the 
velocity field due to the instantaneous rotational velocity vector : 

Vrot
2
1

 [3.38] 

The remaining symmetric tensor ij  characterizes the deformation rates (strain 
rates), as the displacement velocities have already been accounted for. 

We can easily verify that the diagonal terms of the tensor ij  are expansion (or 
compression) rates, the other terms corresponding to shear (or angular) expansion 
rates. By considering for example the velocity field 0, 3221 uuxu  we see 
that the deformation generated comprises a transverse motion of the segment MM' 
(Figure 3.8a) with respect to the velocity. 

If the segment MM' is parallel to the velocity ( 0, 3211 uuxu ), the 

segment MM' is expanded or compressed according to the sign of 1du (Figure 
3.8b). 

 

x1 x1+dx1x1 

u1 u1+du1

x2 

x1 

x2+dx2 
x2 u1 

u1+du1

M 

M' 
M M' 

(a): (b): 011 xu021 xu  

Figure 3.8. Deformation rates: (a) shear 1 2/ 0;u x   

(b) expansion 011 xu  

The volume expansion rate Vdiv  (section 3.3.3.3) is furthermore always the 
trace of the matrix ij, i.e. the sum of the linear expansion rates following the three 
axes. We will leave it to the reader to verify this. 
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3.4. Phenomenological laws of viscosity 

3.4.1. Definition of a fluid  

3.4.1.1. Introduction 

We saw in Chapter 2 that the stresses in a continuous medium can be represented 
by a tensor ij . A fluid particle undergoing a bulk movement (translation and 
rotation) is at rest in a moving Cartesian reference frame. It is not subject to stresses 
other than those induced by pressure forces. On the other hand, this is no longer the 
case in the presence of strain. The internal stresses in this continuous medium do not 
depend on the relative position of the fluid particles, but on their relative velocities: 
an infinitely slow fluid movement will not generate any stresses, contrary to what 
occurs in solid bodies. This distinction between fluids and solids does not always 
exist: certain bodies can have the properties of elastic solids for motions which 
occur at the scale of seconds or fractions of seconds, and their shape may be 
changed by a flow at the scale of many hours or many days (e.g. viscoelasticity, 
creep in solids). 

3.4.1.2. Viscous fluids  

A viscous fluid is one in which the stresses at a given instant are a function only 
of the deformation rates at that instant. We will separate pressure stresses and the 
viscous stress tensor ij using the relation: 

(Kronecker symbol : 0 1)ij ij ij ij iip si i j,  [3.39] 

This definition corresponds with the idea of a fluid as defined in fluid statics 
(section 2.2.1.1). In keeping with what has already been said, the viscous stress 
tensor depends only on the strain rates, and not the deformations. There exist “visco-
elastic” bodies in which these two kinds of stress generation can co-exist. We will 
not cover the more complex cases ([FRE 64], [GER 94], [TAN 00], [COI 97]), 
limiting our attention to the study of viscous fluids. 

As in other domains of physics, the “relationship” between viscous stresses and 
strain rates become complex when the structure is complex at the molecular level. In 
particular, the flow may provoke changes in the “molecular cohesion”, or preferred 
orientations in the presence of macromolecules. The establishment of a flow in a 
fluid (gas or liquid) containing solid particles which are more or less dispersed may 
lead to their becoming suspended. For example, the wind can carry sand in the 
desert or on beaches, in many industrial applications powders are often transported 
using fluidized beds (airflows which are sufficiently energetic to raise and transport 
solid particles, these particles being deposed when the fluid velocity drops 
sufficiently), etc. A snow avalanche is a heavy fluid which flows, whereas the snow 
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comprised a solid structure beforehand. The polymerization of a liquid progressively 
increases its viscosity until it becomes solid. 

The properties of fluids may thus depend on their history, or on the way we 
excite them (this is the case for quicksand, yoghurt stirred with a spoon, soils 
liquefaction, etc.), and the chemical transformations which they undergo (cooking of 
food, polymerization during the generation of plastics, for example). Such behaviors 
have significant practical importance, as they are often encountered in the chemical 
industry, in the food industry and in many other natural phenomena. The complete 
representation of these properties is a difficult problem which is beyond the scope of 
this book; we will here limit ourselves to the presentation of just some of the laws 
governing the complex viscous behavior of simple 1D flows. 

The general form of the relation between the viscous stress tensor and the strain-
rate tensor must be invariant in changing reference frames (in particular, geometric 
space is homogenous and isotropic). Moreover, a fluid is often a body with isotropic 
physical properties (with the exception of liquid crystals, nematic and smectic 
liquids, etc.), so the relationship between the viscous stresses characterized by the 
tensor ij and the strain rates characterized by the tensor ij should not have any 
favored direction. This means that the two tensors should have the same principal 
axes. The general expression of the laws governing non-linear fluid behavior, which 
obeys the necessary invariance in changing reference frames, is beyond the scope of 
this book and we will limit ourselves in a first instance to the study of 1D flows, and 
then to a more general study of Newtonian fluids which correspond to the linear 
approximation of irreversible thermodynamics. For other cases the discussion 
becomes quite complex and the reader should refer to texts concerning the rheology 
of non-Newtonian fluids ([FRE 64], [GER 94], [TAN 00], [VER 97]).  

Finally, recall that the action of the stress tensor on matter is equivalent to the 

existence of the volume source div  (see section 2.1.3.2) which can be written: 

divpgraddiv  [3.40] 

3.4.1.3. Physical origin of viscosity  

A fluid is comprised of matter which does not have any particular structure: the 
relative positions of the particles which make up the matter are not fixed with 
respect to any reference structure. These particles can move around freely, rather 
like a person moving around in a crowd which is confined to a closed space: this 
person can have a relatively autonomous motion in the crowd, but he or she must 
follow the general motion. 
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Macroscopic forces in a fluid are either forces induced by a force field at the 
microscopic level (intermolecular forces), or the result (or manifestation) of 
momentum transfers at the molecular level (thermal agitation). For an ordinary fluid 
at macroscopic rest, the effects of molecular forces and thermal agitation reduce to 
pressure forces. 

A simple physical rationale can be used to explain the origin of viscous 
phenomena. Consider a gas in which the molecules are sufficiently sparsely 
distributed for their interactions to be entirely localized in the vicinity of the 
intermolecular collisions. Consider schematically two layers P and P  in the vicinity 
of molecules, of average velocities u and u + du (Figure 3.9). The forces exerted 
directly (from a distance) by each of the layers on the other are zero, on account of 
the preceding assumption. In addition to their mean velocities, all of the molecules 
are subjected to a thermal agitation whose action does not have any privileged 
direction. In particular, the molecules of the lower layer move through the upper 
layer and vice versa. While a molecule moves from one layer to the other due to a 
transverse motion it conserves its longitudinal momentum. Thus, the molecules of 
the lower layer P , of mean velocity u, are slower than those of the upper layer P into 
which they arrive. This layer, P, will exert a force on these slower molecules in 
order to increase their velocity to u+du. The molecules thus accelerated will 
obviously have exerted an opposing force on the layer P which is opposite to the 
velocity. An analogous effect is produced in the reverse direction for molecules 
which descend into the plane P . This constant exchange means that the lower layer 
slows the upper layer, while the upper layer transports the lower layer. 

 

 

M1

M2
c

P

c

P'

u+du 

u 

 

Figure 3.9. Viscous friction and momentum transfer 

Let us propose a simple model, supposing that the molecules are exchanged 
between two layers separated by a distance equal to the mean free path . Let c  be 
the mean transfer velocity of molecules towards the plane P (mean quadratic 
velocity). A molecule of mass m moving from the lower layer to the upper layer 
arrives with a momentum deficit equal to mdu . Now, over the distance , the 
variation of the velocity is equal to dydu . The mass flux of the molecules, per 
unit surface, arriving from the lower layer into P is equal to 22 ccnM  (where 
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n is the volume number of moles), where the factor 1/2 comes from the simplifying 
assumption that half of the molecules move from the lower to the upper layer. This 
results in a force per unit surface, exerted by these molecules on the plane P, equal 

to 
dy
du

c
2
1

. We note that the friction force increases with the temperature in 

the same way as the mean velocity does.  

In other words, the viscous stress  is proportional to the velocity gradient, and 
the order of magnitude of the proportionality coefficient (the dynamic viscosity  
defined in section 3.4.3) is: 

c
2
1

 [3.41] 

The preceding rationale can be rigorously applied in the context of kinetic gas 
theory. It cannot be directly applied to liquids in which intermolecular forces act 
directly between the fluid layers. The effect of viscous friction is thus directly 
related to these forces and to the geometry of the molecules, particularly when these 
are complex (long macromolecules which may be oriented, stretched or broken 
under the shearing action of a velocity gradient). Furthermore, these mechanisms 
show that an increase in temperature, on account of the increased thermal agitation, 
will decrease the effect of these intermolecular forces and thence the level of viscous 
friction. 

The origin of viscosity is thus seen to be a microscopic momentum-mixing 
phenomenon. At the macroscopic scale, the same phenomenon is encountered in 
turbulent flows where considerable fluctuations occur. However, the scale of these 
fluctuations is no longer that of the mean free path or the intermolecular distance, 
but that of the flow. This leads to considerable difficulties which completely change 
the nature of the problem ([MAT 00], [TEN 72]). 

3.4.2. Viscometric flows  

3.4.2.1. Introduction  

We consider here the flow of fluids of constant specific mass in which the 
acceleration is everywhere equal to zero. The trajectories and streamlines are thus 
straight lines traveled over at constant speed by fluid particles which possess a 
uniform motion. The conservation of the mass requires that these straight lines be 
parallel, all convergence or divergence of these lines obviously implying an 
acceleration or deceleration of particles in the medium which is supposed 
continuous. The corresponding dynamic equations are obtained by writing, as in 
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fluid statics, that the sum of the external forces acting on the fluid is zero. In the 
presence of a mass force of density ig  and using expression [3.39], we obtain: 

0or0 divpgradg
xx

p
g

j

ij

i
i  [3.42] 

If the force g  derives from a potential U, we can, in such flows, replace the 
pressure with the driving pressure gzppg 0 (z, vertical upwards coordinate; 
see section 2.2.1.4.1): 

0or0 divpgrad
xx

p
g

j

ij

i

g  [3.43] 

As the axis Ox is taken parallel to and in the same direction as the velocity u(y,z) 
of the flow, the strain-rate tensor in Cartesian coordinates is reduced to two 
components: 

z
u

y
u

zxxzyxxy 2
1

2
1

 

Let us assume that for a fixed flow geometry, the shear velocities do not lead to 
normal and transverse stresses (no effect analogous to a Poisson coefficient in 
elasticity). All that remains therefore are the viscous shear stresses, xy and xz. 
Using these assumptions with the equations for viscous fluids, we see that there is 
no variation of the driving pressure in the directions Oy and Oz. There remains only 
a single equation in the direction Ox for the force balance: 

zyx

p xzxyg0  [3.44] 

We can immediately see that as the viscous stresses are only functions of the 
coordinates (y,z), the driving pressure is necessarily a linear function of the 
direction x. The gradient dxdp  is equal to the ratio Lpg / , where pg is the 
pressure drop observed over the distance L (for example, in a tube (Figure 3.10)). 
Supposing that we know the driving pressure, then equation [3.44] contains two 
unknown viscous stresses which can only be calculated if the physical law which 
relates them to the velocity gradient is given. 

Flows of this type will often involve plane or cylindrical boundaries aligned with 
Ox, and whose viscous properties are independent of physical factors which are a 
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function of the x-direction. These flows are fully immersed, i.e. without free 
surfaces. 

3.4.2.2. 2D viscometric flows  

Axisymmetric or 2D plane problems can be easily solved, as there is only a single 
unknown viscous stress xy , which we will denote simply as  in order to simplify 
notations. Equation [3.44] can thus be integrated and the distribution of viscous 
stresses is independent of the phenomenological laws governing the viscous stresses. 

For a 1D flow with plane symmetry we obtain: 

ydx

dpg0  

By integrating we can show that the distribution of viscous stresses is a linear 
function of the y-direction: 

const
dx

dp
y g  [3.45] 

We obtain an analogous result for an axisymmetric problem of axis Ox, either 
writing equation [3.44] with cylindrical coordinates or making a balance of forces 
exerted from the exterior on the cylinder whose radius is r (Figure 3.10b): 

 
rrr

dx
dp

20 2   

By integrating with respect to the radial coordinate r, we obtain the distribution 
of viscous stress:  

const
2
r

dx
dp

r  [3.46] 

Under the assumption that there is no variation of the driving pressure in the medium, 
the viscous stress  is constant. The flow can thus only be produced by the viscous 
entrainment of the fluid due to friction on some cylindrical walls which are moving at a 
different velocity. In the 2D plane, a Couette flow is produced between the two plane 
surfaces (Figure 3.10a); such a flow is also generated by two circular cylinders 
undergoing axial displacement, but these configurations are of little practical interest.  

The flow between two fixed planes or in a cylindrical tube requires a driving 
pressure gradient. 
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In the preceding cases, the viscous stress distribution is independent of the laws 
of viscosity. In particular, these results will be valid for turbulent flows for which 
there is no local physical law for the stresses ([COU 89], [MAT 00], [TEN 72]).  

When a fluid is purely viscous, the phenomenological law takes the form: 

ruyu 'or'  [3.47] 

Substituting this relation into the expression for the viscous stress distribution 
[3.45] or [3.46], we obtain a differential relation which permits the calculation of the 
longitudinal velocity distribution u and of the mass flux across a cross-section. The 
volume flow rate in a circular cylinder can therefore be obtained by integration over 
the cross-section; for example, for the problem of revolution in the circular cylinder 
of radius R: 

R

v rudrq
0
2   

3.4.2.3. The Couette flow  

Assuming that there is no variation of the driving pressure in the medium, it is 
straightforward to verify that with the preceding assumptions the viscous stress is 
constant. For the plane geometry, we have a viscous flow generated by entrainment 
of the fluid by friction, which occurs between a fixed plane y=0 and a mobile plane 
y=e which is moving at velocity V (Figure 3.10a). The velocity field u(y) is parallel 
to the axis Ox and the viscous stress tensor reduces to the components 

yxxy  which cause the fluid situated above the plane to exert a shear stress 
on the fluid situated beneath the plane. This tension is constant in the thickness of 
fluid contained between the two planes. 
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Figure 3.10. Couette flow: (a) principle, (b) Couette rheometer, 

(c) rheometer with rotating cone 
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The practical realization of such a flow involves two co-axial cylinders, one of 
radius R, which is fixed, and a second, of radius R+e, which is animated by a 
rotational motion of angular velocity  about its axis (Figure 3.10b). The moment of 
the torque measured on the fixed cylinder gives the value of the viscous stress. 

Another realization is the plane-cone rheometer which is comprised of a cone 
turning over a plane (Figure 3.10c); a fluid placed between these is then studied. 
Locally this gives a Couette flow. As the thickness e between the walls and the 
velocity of the cone wall are proportional to the distance from the axis, the shear 
velocity is constant at all points. 

These two devices are particularly well-adapted to studying the 
phenomenological law of a fluid whose viscous stress is only a function of the shear 
velocity gradient u (y). The result of this is that the shear velocity is also constant 
and the velocity distribution is linear regardless of the phenomenological laws 
governing the fluid studied (see Figure 3.10), y being the distance of a point situated 
between the two cylinders from the inner cylinder: 

e
y

Vyu  

The Couette flow allows us to obtain in a direct and simple manner the viscous 
law of a fluid for viscometric flows. As the general law for the viscous behavior of 
fluids is of a tensorial nature, the preceding relationship is a simplified law, which is 
uniquely valid for this kind of flow. 

3.4.2.4. Principal physical laws for viscous behavior of a fluid  

3.4.2.4.1. Introduction 

We have just discussed a means of simultaneously measuring the velocity 
gradient yu'  and the viscous stress , in other words, means of establishing the 
phenomenological law for the viscous behavior of a fluid. Fluids comprised of 
molecules of a sufficiently small size generally have a linear behavior, viscous stress 
being proportional to shear velocity (Newton’s law). Fluids containing 
macromolecules, particles which are more or less solid in suspension, that is to say 
pasty substances, may have relatively varied viscous laws. In general, the non-
linearity of the viscous law is closely related to the complexity of the molecular 
structure. The viscous behavior may be a function of time, in other words of the 
mechanical excitations and motions which the fluid has most recently undergone. 



140     Fundamentals of Fluid Mechanics and Transport Phenomena 

Due to the tensorial nature of the viscous stresses and strain-rates, there may 
exist transverse effects associated with a 1D effect (normal stresses for a shear 
velocity). This is comparable to the properties of solids (Poisson coefficient in 
elasticity). This type of effect is mainly manifest in liquids with complex structures. 
Furthermore, elastic effects may occur for relatively weak stresses in viscoelastic 
bodies; these may or may not be time dependent: the body may present the 
properties of a solid for a stress whose modulus is less than some level , beyond 
which it becomes liquid (Figure 3.11b and Figure 3.11c). In what follows we will 
only discuss some simple cases from the vast domain of rheology. 

3.4.2.4.2. Time-dependent fluids  

We will distinguish: 

 the thixotropic (Figure 3.11a) situation in which the excitations and the 
imposed stresses reduce the viscosity (ketchup, yoghurt, gels, drilling mud, 
quicksand, etc.); 

 rheopexy, which is less frequently encountered (Figure 3.11b), which 
corresponds to an opposite effect, where the viscosity increases with agitation 
(suspensions of Indian corn starch in water). 

The time dependence effect of the viscous behavior leads to hysteresis 
phenomena (Figure 3.11c). 

 

(b) (c)(a) 

u'(y) u'(y) u'(y) 

 

Figure 3.11. Hysteresis cycles: thixotropic fluid (a) without or 
(b) with elastic properties; (c) rheopexic fluid with elastic properties  

These effects are obviously associated with local modification for the particles or 
macromolecules which are more or less in contact at the microscopic level. The 
explanation for thixotropy is schematically as follows. In suspensions of solid grains 
in liquid, the grains, after a sufficiently long duration of immobility, finish by 
coming into contact with one another; this leads to solid friction. After a certain 
level of agitation (vibration, flow) and the resultant stresses imposed on the 
ensemble, all solid-solid contact has been undone, and a lubrication occurs such that 
the grains now slide over one another when a velocity gradient is imposed. This 
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corresponds to the phenomenon of “quicksand”. Further to these purely mechanical 
effects, physico-chemical interactions may occur between the grains, leading to a 
structural macroscopic organization. This is progressively destroyed under the 
effects of a velocity gradient. The possible complexity of these phenomena is such 
that explanations of the same nature may, depending on the circumstances, often 
lead to inverse effects (rheopexy). 

3.4.2.4.3. Purely viscous fluids  

Their viscous behavior is characterized by a single physical law which is 
independent of time for a fluid of a given structure and composition. The most 
commonly encountered types of fluid are: 

he Newtonian fluid which obeys a linear law (curve 1 of Figure 3.12): 

' ( ) ( : the coefficient of  dynamic viscosity)u y  [3.48]

 The Ostwald-de Waele fluid. Behavior is no longer linear for fluids containing 
molecules with complex structures or particles in suspension and of strong 
concentration: 

)(')(' 1 yuyum n  [3.49] 

When the viscous stress increases faster than the velocity gradient (n>1) the fluid 
is said to be dilatant or rheothickening (curve 3 of Figure 3.12); in the opposite case 
(n<1), it is known as pseudoplastic or rheofluidifying (curve 4 of Figure 3.12). The 
first case occurs in concentrated suspensions of solid particles which are in contact 
with one another, when the velocity gradients are steep. The second situation is 
observed in flows of polymers of high molecular mass, whose linear molecules are 
more or less intertwined and trap a certain quantity of water. Under agitation, the 
velocity shear aligns the molecules along their axes, thus freeing the trapped water. 

 

u'(r) 

(1)

(2)
(3)

(4)

0
 

Figure 3.12. (1) Newtonian fluid, (2) Bingham,  
(3) rheothickening, (4) rheofluidifying  
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 The Bingham fluid. This kind of a fluid is characterized by a cohesion such 
that if the modulus of the stress  is less than a given threshold  no strain rate 
exists in the fluid, which therefore remains rigid; the sliding of liquid layers over 
one another only occurs when the stress exceeds the threshold value, and the 
relationship between the stress and the velocity gradients then becomes linear (curve 
2 of Figure 3.12): 

00

0

'

0'

yu

yu
 [3.50] 

This law is used in particular for the flow of pastes and certain types of mud. 

As discussed above, fluids containing solid particles in suspension have a 
complex behavior. However, when the solid particles are in weak volumic 
concentration c, the fluid thus constituted is Newtonian: its viscosity  is modified 
with respect to that of the pure fluid according to the (Einstein) relation, valid for 
any 3D flow: 

c
2
5

10   

3.4.2.5. Poiseuille flow  

3.4.2.5.1. Flow in a circular cylinder  

The flow is here due entirely to a pressure gradient and the conduit is assumed 
sufficiently long for the flow to become fully established, in other words such that 
phenomena associated with the tube entrance are not present. Furthermore, the fluid 
is assumed to be incompressible such that pressure variations do not lead to changes 
in the fluid density. 

We will consider the flow of a fluid in a circular tube of radius R (using the 
notation of Figure 3.13). The flow, directed in the positive direction along the axis 
Ox, leads to a constant negative axial pressure gradient, corresponding to a drop in 
the driving pressure equal to gp  for a length L of the pipe. 
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Figure 3.13. Established flow in a circular tube 

The velocity distribution can be calculated using equation [3.46], along with the 
phenomenological law for the viscous fluid. Using physical law [3.47] in relation 
[3.46], we obtain an expression for the derivative u’(y) as a function of the radius r 
and the pressure gradient; integrating and taking the velocity equal to zero at the 
wall ( Rr ), we obtain a parabolic velocity distribution. The mass flow qv can be 
obtained as a function of the pressure gradient by integrating the velocity over a 
cross-section. 

We define the mean mass flux velocity uq using the mass flux qv: 

S
q

u v
q  

This leads to the following results: 

 Newtonian fluid with constant viscosity: =cte. The velocity distribution is 
parabolic (Figure 3.14a): 

4

22 Rr
dx
dp

u  [3.51] 

We can deduce the volume flow rate qv in the tube and the flow velocity uq as a 
function of the pressure gradient (Poiseuille’s law): 
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q
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q v
qv  [3.52] 
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– Bingham fluid. Using the relationship between the stresses and the velocity 
gradient for the fluid ([3.50]), the velocity profile can be calculated as for Newtonian 
fluids. We find a velocity distribution comprising a uniform central section 
(corresponding to a bulk displacement) and two half-parabolas (Figure 3.14b). 

(a) Newtonian fluid (b) Bingham fluid

  solid core

 

Figure 3.14. Velocity profile for (a) a Newtonian fluid and (b) a Bingham fluid 

– Ostwald-de Waele model. The physical law is no longer linear for fluids 
containing strong concentrations of particles in suspension: 

dr
du

dr
du

m
n 1

 

The velocity distribution thus calculated looks like a parabolic distribution, but 
pointier if n is greater than 1, and flatter if n is less than 1. 

3.4.2.5.2. The Rabinowitsch-Mooney relation  

The law for the drop in driving pressure as a function of the mass flow in a 
Poiseuille flow depends in a complex way on the law governing the viscous 
behavior of the fluid, as this law must be integrated over the radius. The 
measurement of pressure-drop in capillary tubes does not directly give the physical 
law governing viscous behavior; such measurements must be specially treated in 
order to determine the physical laws. We will here outline the principle of the 
method (Rabinowitsch-Mooney) for obtaining the relationship between the viscous 
stress  and the velocity gradient u (r). 
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We note first of all that the pressure gradient measured can be expressed using 
[3.46] as a function of the wall friction p (which is defined as the stress exerted by 
the fluid on the wall, R ), from which we obtain: 

with:   
2p

p

r dp R
R

R dx
 [3.53] 

The measurement gives a relation between the flow rate qv and the pressure 
gradient or, according to [3.53], between the viscous wall stress p and the flow rate 
qv  which can be written:  

pvv qq  [3.54] 

We obtain a relation between the flow rate and the velocity gradient using 
integration by parts on the defining relation for the flow rate: 

RRR

v dr
dr
du

rrudrudrq
0

2

0

2

0
2  

Formula [3.53] allows us to use the viscous stress  as a variable in place of the 
radius r in the expression for the flow rate, which can be written (noting that R 
= (R)): 

R

d
dr
du

R

q Rv
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2
3

3
 [3.55] 

Then, from [3.54], the relation pvq  is known; we thus differentiate the two 

sides of [3.55] with respect to R: 

R

Rv

RR d
qd

Rdr
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which finally gives: 
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33
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'  [3.56] 
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Relation [3.56] between the velocity gradient Ru'  and the stress p is the 
relation sought between the velocity gradient and the viscous stress. 

3.4.2.5.3. Diverse remarks  

1) The flow between two fixed parallel planes separated by a distance 2e can be 
treated in a similar fashion. We find, for a Newtonian fluid of dynamic viscosity , 
the following velocity distribution u(y), flow rate qv and mass-flow velocity uq: 

32
;

3
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;
2

2322 e
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e
q

u
e

dx
dp

q
ey

dx
dp

u v
qv  

Flows of Bingham or Ostwald-de Waele fluids produce results analogous to 
those obtained in the case of the circular cylinder. 

The preceding results remain valid when the thickness e varies slowly, in other 
words when the planes are weakly non-parallel. These results are the basic laws used 
for the theory of dynamic lubrication flows in a thin fluid film (oil or gas) of slightly 
variable thickness between a moving wall and a fixed wall; such a flow generates 
pressures high enough to support heavy rotating devices without solid contacts in a 
bearing ([GUY 01]). 

2) It is necessary to note that experimental results agree with the preceding 
results provided the mass-flow velocity is not too great. In fact, the condition which 
must be satisfied involves the Reynolds number Re which, for a circular tube of 
diameter D equal to 2R, is written: 

Du
Re q  

The value of the Reynolds number Re must be less than about 1,850 for the 
preceding theoretical results to agree with experiments. Above this value the flow 
becomes unstable and turbulent, and this entirely changes the momentum transfers, 
as stated earlier in section 3.4.1.3 ([MAT 00], [SCH 99], [TEN 72]) 

3.4.3. The Newtonian fluid  

3.4.3.1. Definition of viscosity  

We will place ourselves in the context of linear thermodynamics where the 
relationship between the causes (the strain-rate tensor ij) and effects (the viscous 
stress tensor ij) is linear. Furthermore, as the fluid matter considered has isotropic 
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properties, and as geometric space is homogenous and isotropic, this relationship 
cannot involve any preferred direction. As a consequence of this, the two preceding 
tensors must have the same principal axes. Hence, they must be proportional, 
excluding the addition of an isotropic tensor proportional to the trace Vdiv  of the 
strain tensor. The linear relationship sought between the two preceding tensors 
(Newton’s law) can thus be written: 

ij
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ijij
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x
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x
u

3
2

3
2

2  [3.57] 

Linear relation [3.57] introduces dynamic viscosity  and bulk viscosity . The 
latter corresponds to the friction introduced by a purely spherical expansion, for 
which the diagonal terms of the strain-rate tensor are equal, and the off-diagonal 
terms are zero: 

Vdiv
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u
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3
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2
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1   

Thus: 

Vdiv332211  

This relation shows that the viscosity  is indeed associated with a expansion 
velocity, and that this coefficient must be positive in order to represent friction. In 
what follows we will neglect the effects of bulk viscosity, which is only important 
for phenomena comprising very strong expansion rates, such as shock waves, very 
high frequency ultrasound, etc. 

3.4.3.2. Properties of viscosity  

Dynamic viscosity  is associated with friction in the sliding of fluid layers over 
one another. It is expressed in Pascal.second (Poiseuille or decapoise). 

The values of dynamic viscosity under normal conditions are, for air and water: 

 air: = 17.08 × 10-6 Pa.s (same order of magnitude for gases); 

water: = 1.793 ×10-3 Pa.s. 

The variability in the order of magnitude of the viscosity of liquids compared to 
the viscosity of water is a little greater for usual liquids, with the exception of oils 
and glycerine, which have very high viscosity (from 10-2 to 1 Pa.s). 
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In section 3.4.1.3 we have given a rough estimation of the viscosity of a gas. As 
thermal agitation increases with temperature, changes occur in momentum exchange 
at the molecular level. The viscosity increases with increases in the absolute 
temperature of gases in accordance with the following (Sutherland) formula, in 
which C is a constant which depends on the gas (C=142K for air): 

 

The viscosity decreases quite rapidly with temperature for liquids, because the 
intermolecular forces responsible for viscosity in condensed media have a less 
vigorous action on account of increased thermal agitation (section 3.4.1.3). 

The quantity , called the kinematic viscosity, is expressed in m2.s-1. 

EXERCISE –  

Calculate the components of the viscous stress tensor ij: 

at all points of the flow defined by the velocity field u1=kx2, u2=u3=0; 

 in the vicinity of a solid boundary. 

3.4.3.3. Expression of viscous volume forces  

We have seen (section 3.4.1.2) that the action of viscous stresses in matter is 

equivalent to a volume source div  (or jij x  in tensor notation). Assuming a 
variable viscosity, we obtain, from [3.57]: 
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At constant viscosity this simplifies to: 
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The first term of jij x  is equal to iu , where iu  are the components of 

the Laplacian vector V : 



Physics of Energetic Systems in Flow     149 

VdivgradVrotrotV  

Replacing V  with the above expression gives, in vector notation: 

VdivgradVrotrotVdivgradVdiv
3

4
3

  [3.58] 

Usually expansion velocities are weak compared with shear velocities and only 

the first term Vrotrot  of div  remains: 

Vrotrotdiv  [3.59] 

With the preceding approximation, formula [3.59] can be written in Cartesian 
coordinates: 

jj

i

j

ij

xx
u

x

2
 [3.60] 



 

Chapter 4 

Fluid Dynamics Equations 

This chapter is devoted to general equations describing the dynamics of fluid 
flows and of the associated transfers. Writing the balance equations for extensive 
quantities leads to the equations of fluid dynamics with heat or mass transfers which 
take on either local or global forms, and which allow the separation of input and 
output mechanisms and sources of extensive quantities. The energy equation then 
allows us to discern the interactions between thermodynamics and the movement of 
the fluid matter. The main boundary conditions which must be associated with the 
partial differential equations are then discussed. Because of the invariance of 
physical laws with respect to unit systems, similarity relations allow us to 
characterize dynamic and energy problems by means of non-dimensional 
parameters. 

4.1. Local balance equations  

4.1.1. Balance of an extensive quantity G  

4.1.1.1. The global balance equation  

In matter, the physical phenomena associated with the scalar quantity G are 
governed by the volume sources G and fluxes characterized by the flux density 
vector Gq . We perform a balance for G over the domain D associated with matter in 
motion, in other words on a closed system in the thermodynamic sense (no exchange 
of matter with the exterior). This balance can be written in the same way as in a 
fixed medium, the material derivative (section 3.3.3.3) replacing the temporal 
derivative (section 2.1.4.1): 

Fundamentuls of Fluid Mechanics and Transport Phenomena 
Jean-Laurent Peube 

Copyright 0 2009, ISTE Ltd. 
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dsnqdvdsnugdv
t
gdvg

dt
d

jGjGjj DDD  [4.1] 

The first term dv
t
g

D  of the left-hand side of equation [4.1] represents the 

variation rate in the amount of the quantity G contained in D, expressing an 
accumulation of G in D.  

The second term dsnug jj  is the flux (convective flux) of the quantity G 

leaving the surface . 

The first term of the right-hand side dvD G  is a volume source, in other words 
a creation of the quantity G, most often by means of the transformation of another 
extensive quantity. 

The second term dsnq jGj  is a convective flux of the quantity G leaving the 

surface  characterized by physical quantities localized on the surface . 

4.1.1.2. Local balance equation  

We can now transform the surface integrals of equation [4.1] into volume 
integrals: 

D D dv
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j  [4.2] 

As balance integral [4.2] is true in any domain D, we can derive a local relation 
under the usual regularity conditions of the functions considered: 
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 [4.3] 

When the volume quantity is a vector, g (or 1, 2,3)ig , i , we have a balance 
equation for each of its components, which can be written in the vector form: 

ori j Giji
Gi G G

j j

g u qg g
div g V div q

t x x t
 



Fluid Dynamics Equations     153 
 

4.1.2. Interpretation of an equation in terms of the balance equation  

The terms in equation [4.3] each have a specific form corresponding to physical 
mechanisms which we have discussed earlier (section 2.1.3.3). Consider a partial 
differential equation which can be written in the form [4.3]: 

j

j

x

q

t
f

 [4.4] 

We can integrate equation [4.3] over a geometric domain D to give: 

dsnqdvdv
t
f

jjDD  [4.5] 

We will interpret f as the volume density of a quantity F, the amount of which 

present in D is equal to .f dv
D  

The first term dv
t
f

D  of equation [4.4] represents 

the variation rate in the amount of the quantity F contained in D. 

On the right-hand side of equation [4.4], we have separated the terms which can 
be written in the form of a divergent vector qi expressed using data or functions of 
the problem, and those which cannot be written in this form. In integrating over the 
domain D, the terms written in the form of a divergence have been transformed into 
flux integrals of the vector qi on the external surface  of the domain D: they can 
thus be interpreted as transfers of the quantity F by the vector qi. These transport 
terms are thus the input-output of the quantity F in D, in other words quantities 
gained by D from (or lost to) the exterior through the surface .  

On the other hand, if the vector qi can be written in the form ii vfq , we 

interpret the term 
j

j

x

q
 as representing the convective transport of the quantity F by 

the velocity field vi , whose physical interpretation is not important here. In fact, the 
vector qi will most often be the sum of a variety of terms with different physical 
interpretations. In general, a flux term will only transport a quantity without creating 
any; in balance equations which are integrated over a large domain bounded by a 
surface , fluxes which only have local effects will not appear. 

Terms which cannot be written in the form of the divergence of a vector having a 
physical meaning consistent with the problem considered cannot be interpreted as 
flux terms. Furthermore, take in this case a balance equation by integration on a 
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domain D which encloses a zone containing the phenomena to be studied. As the 
volume integral of non-divergent terms cannot be written as a surface integral, it is 
not possible to characterize as an input or an output the detailed repartition of 
quantity of F injected in this domain by the source . This distinction between 
these two kinds of terms is very often used in turbulence theory ([COU 89], [MAT 
00], [TEN 72]). 

We will have occasion to use this interpretation. 

4.2. Mass balance 

4.2.1. Conservation of mass and its consequences  

4.2.1.1. The equation of mass conservation  

Mass is strictly conserved (no sources or fluxes of mass in a barycentric 
reference frame); we let g . We obtain from [4.3] the equation (known as the 
continuity equation): 

0
i

i

x
u

t
 [4.6] 

or alternatively: 

0
i

i

x
u

dt
d

 [4.7] 

which shows that the variation rate of the density 
dt
d1

 of a fluid particle is 

compensated by the volume expansion rate 
i

i

x

u
. 

The flow of an incompressible fluid (liquid or gas moving at low velocity) of 
variable density satisfies 0dtd : matter is displaced with its specific mass on a 
trajectory (obvious a priori). 

4.2.1.2. Consequences of the mass conservation equation  

4.2.1.2.1. Writing the balance of a mass quantity 

Let g be a mass quantity ( gg ); by means of a simple calculation the 
following two useful relations can be immediately verified: 
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The balance equation of the quantity G can be written using the mass quantity g: 
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4.2.1.2.2. Stream functions  

In the particular case of problems with two variables, the solution of equation 
[4.6] or [4.7] can immediately be written by means of a stream function : 

a) For a 1D compressible flow:  

t
u

xx
u

t
0  [4.11] 

b) For a steady plane 2D flow:  
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y
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x
u

000  [4.12] 

It is easy to verify that, in this case, the lines  = const are streamlines of the 

flow (we have 0grad.V ). 

The mass flow between two streamlines passing through the points A and B is 
equal to the difference AB0 . The arc element dydxd ,  of the curve 
joining A and B allows the elementary vector dxdydn ,  of the normal of this 
curve to be expressed, from which we can derive the mass flow: 

ABddy
y

dx
x

dnVq ABABABm 000.  

c) For a steady axisymmetric flow (where Oz is the axis of symmetry), the mass 
conservation equation in a steady regime is equivalent to the following definition for 
the stream function : 
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d) For flows with constant density , the densities disappear from the definition 
of the stream function; in a 2D plane flow, we have: 
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4.2.1.2.3. Velocity fields of a viscous fluid near a solid boundary  

The property which we will discuss here only depends on the mass balance and 
is of course independent of the reference frame which is chosen (Galilean or 
otherwise). We will consider a solid boundary P and study the velocity field in the 
vicinity of some point O on this boundary. Taking rectangular axes such that the 
plane Oxz is tangential to the surface (whose normal is Oy) at the point O. Assuming 
the fluid to be viscous, the velocity V  with components (u, v, w) is zero at the 
surface (y = 0). The u and w components of the velocity ,V parallel to the wall, can 
be expanded about y in the vicinity of this point: 
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Figure 4.1. Flow near a rigid wall 

Substituting into the mass conservation equation [4.7] we obtain: 

)(
1 211 yO

z
w

x
u

y
dt
d

y
v

  



Fluid Dynamics Equations     157 
 

or, by integrating: )(
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1 311
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When the expansion rate is negligible or equal to zero (incompressible fluid 
(section 4.2.2)), the first non-zero term of the expansion of the v component is O(y2). 
The normal component v tends to zero more rapidly in y than the components 
tangent to the wall: the velocity in the vicinity of the wall is parallel to the wall. The 
wall streamline C is the streamline limit when y tends to zero (Figure 4.1). 

4.2.1.2.4. The strain-rate tensor near a solid boundary  

Replacing the preceding expressions for the velocity components into the 
expression for strain rate tensor [3.37], we obtain: 
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We note the existence of shear velocities associated with a velocity field which is 
quasi-parallel to the wall, and a expansion velocity which is essentially normal to 
the wall. 

4.2.1.2.5. Acceleration near a solid boundary 

From the preceding expressions for the velocity we can derive the expressions of 
the fluid acceleration components (in the wall reference frame). Let us first consider 

the component 
z
u

w
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u
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x . In the general case where 

dtd  is not equal to zero, by substituting the velocity components with their 
preceding expressions, we obtain: 
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Fluid expansion and unsteady flow variations involve the existence of terms of 
order y near the wall. 
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In the same way, for the second tangential component 
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z  we obtain: 
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We finally derive the following expressions for the acceleration component 
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y  normal to the wall: 
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The acceleration is a linear function of the distance from the wall.  

For an unsteady flow of an incompressible fluid, the expansion rate is equal to 
zero so that we have 0dtd  (section 4.2.2). The preceding expressions for 
acceleration component y normal to the wall is O(y2), the tangential components 
remaining O(y). 

For a steady flow of an incompressible fluid, we have: 
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In the absence of a expansion rate (incompressible fluid), the acceleration 
normal to the wall is of higher order than the tangential acceleration components. 
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4.2.1.2.6. Velocity and acceleration near a fixed surface of path lines 

Consider a fixed surface which is the locus of trajectories which may be variable. 
As we will later see, the practical realization of such surfaces frequently involves 
walls or flow separation surfaces on which the flow of a non-viscous fluid slides. 
We proceed as above, performing an expansion following the surface normal, for an 
incompressible fluid: 
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The normal velocity component and the acceleration components can be directly 
calculated: 
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The expansion is accounted for as before. 

4.2.1.2.7. Application to the study of quasi-1D flows 

We often encounter flows with one or more preferred directions because these 
are guided by walls presenting small angles of divergence or convergence (pipes) or 
by a wall with a weak curvature (boundary layer). The same can be true in certain 
zones of flows generated from almost parallel flows (jets, mixing-layers, etc.). 

The preceding developments show that the velocity components and 
accelerations normal to these privileged directions are small compared with the 
other components. It is thus possible to neglect these components under certain 
conditions: for example, the momentum or acceleration is essentially longitudinal in 
a 1D flow and there can obviously be no transverse component except in the 
presence of an external action. Thus, a fluid with a trajectory associated with a 
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curved wall will have a centripetal acceleration which is compensated by a pressure 
gradient. 

On the other hand, in a steady flow, the transverse component v ensures the 
conservation of mass in any evolution which is not strictly parallel. Examination of 
mass conservation equation [4.6] shows that the term yv  is necessary for the 
existence of a longitudinal variation xu  of the u component.  

The existence of a weak transverse velocity component leads to a transverse 
displacement of the longitudinal momentum associated with and transported by the 
fluid matter (sections 4.5.4 and 6.5). 

4.2.2. Volume conservation   

Volume conservation is not a physical law of matter; it results from particular 
physical conditions. The flow of a liquid in ordinary conditions is a transformation 
which occurs at practically constant volume, except in the case of natural 
convection. We will see that the same goes for gas flows at a small Mach number. 
The conservation of volume is expressed by a zero expansion velocity: 

)0or(0 Vdiv
x
u

k

k  

Taking the previous relation into account, mass balance equation [4.7] may be 
written for an incompressible fluid: 

0
dt
d

 

4.3. Balance of mechanical and thermodynamic quantities  

4.3.1. Momentum balance 

4.3.1.1. Dynamic equations  

The quantity considered ( Vmp ) is a vector quantity: ( ii ug  or ii ug ). 
Hence we obtain the dynamic equations (i, j = 1, 2, 3): 

dsndvfdv
dt

du
dvu

dt
d

jiji
i

i DDD  
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with: fi the force mass density (for example gravity gi) and ij the stress tensor 
(section 2.1.3.2) Transforming the surface integral of the stress tensor using 
Ostrogradsky’s theorem (section 2.1.3.3), and assuming continuous and differentiable 
properties, we obtain the local dynamic equations: 

divf
dt
Vd

orji
x

f
dt

du

j

ij
i

i )3,2,1,(  [4.13] 

Replacing the stress tensor with expression [3.39], we obtain the Navier-Stokes 
equations: 

divfpgrad
dt
Vd

ji
x

f
x
p

dt
du

j

ij
i

i

i

or

)3,2,1,(
 [4.14] 

In a gas flow of sufficient velocity (at least a few meters per second), the effects 
of gravity are negligible and the corresponding term can be ignored. On the 
contrary, pressure gradient is negligible for natural convection ([LAN 89], [SCH 
99], [YIH 77]). 

Case of an external force deriving from a potential U 

The force fi may derive from a potential U ( iii xUf ), essentially for 
gravitation, electrostatic forces and a few simple cases of inertial entrainment forces 
(when the equations are written in a non-Galilean reference frame). Navier-Stokes 
equations [4.14] can then be written:  

divUgradpgrad
dt
Vd

xx
U

x
p

dt
du

j

ij

ii

i

or

 [4.15] 

In many cases of practical interest, the external force field is gravity which 
derives from the potential gz, where z is a vertically ascending direction; we have: 

divgzgradpgrad
dt
Vd

xx
z

g
x
p

dt
du

j

ij
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i or
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When the fluid has constant density  (often incorrectly referred to as an 
“incompressible fluid”), the dynamic equations can be written with the driving 
pressure zgppg , as previously defined (section 2.2.1.4.1): 

)3,2,1,( ji
xx

p

dt

du

j

ij

i

gi  

The form of the equations shows that the cause of movement (the local resultant 
of external forces) is the gradient of the driving pressure. This elimination of gravity 
from the dynamic equations is only of interest if the boundary conditions can also be 
expressed as a function of the driving pressure alone (section 4.4.2.4). 

NOTE – The force fi does not derive from a potential in many very important 
configurations, such that: 

– the electromagnetic Laplace force which results from the interaction of an 
electric current of density j  with a magnetic field B : this produces the volume 

force Bj ; 

– the Coriolis force in a reference frame moving with an angular velocity , 
which leads to a mass force V2 . 

We note that these two forces have a similar structure; thus, this produces some 
analogous properties between flows in a rotating frame and flows of a fluid 
conducting electricity in a magnetic fluid.. 

4.3.1.2. Other expressions of the Navier-Stokes equations  

Using vector expression [3.28] for acceleration, we have: 

divUgrad
pgrad

VVrot
V

grad
t
V

dt
Vd 1

2

2
 [4.16] 

For a divariant fluid, we can express the pressure as a function of the specific 
enthalpy h and the specific entropy s: 

sgradT
pgrad

hgradTds
dp

dh :or  [4.17] 
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This gives: 

divUgradsgradThgradVVrot
V

grad
t
V 1

2

2
 [4.18] 

or: 

divsgradTVVrothU
V

grad
t
V 1

2

2
 [4.19] 

We note that despite the presence of enthalpy and entropy in equation [4.19], the 
origin of this equation is purely mechanical (we have so far not considered any 
energy balance). 

4.3.1.3. The case of a Newtonian fluid  

The term div , which represents the viscous stresses, can be expressed using 
one of the forms discussed in section 3.4.3.3: 
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In the case where the viscosity coefficients are constant, we have expression 
[3.58] and the Navier-Stokes equation is written as: 

VdivgradVrotrotUgradpgrad
dt
Vd

3
2

 
[4.20] 

The expansion velocity is usually small and we have, from [3.60]: 
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 [4.21] 

4.3.1.4. Inviscid fluids – the Euler equations  

When viscous terms are negligible in [4.21], we obtain Euler equations: 

fpgrad
dt
Vd

f
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p

dt
du

i
i

i ;  [4.22] 
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For a compressible fluid, we can express the pressure as a function of enthalpy 
and entropy ([4.17]):  

2

(gravity: )
2

V V
grad U h rotV V T grads U gz

t
 [4.23] 

Assuming a compressible inviscid fluid we have a situation where the fluid 
particles undergo isentropic transformations. 

If the flow is homoentropic (s is constant in all the fluid), we have: 

2

(gravity: )
2

V V
grad U h rotV V U gz

t
 [4.24] 

Note the presence of the rotation vector  (or vorticity 2Vrot ) on the 
right-hand side of the preceding equations; we will consider the consequences later. 

If the fluid flow has constant and uniform density, the Euler equations can be 
written with the driving pressure gzppg : 

g
i

gi pgrad
dt
Vd

x

p

dt
du

 [4.25] 

This form of dynamic equation shows that the cause of movement (local result of 
external forces) is indeed the driving pressure gradient. 

4.3.2. Kinetic energy theorem  

4.3.2.1. Local equation  

The kinetic energy theorem is a consequence of the Navier-Stokes equations; the 
local form of the kinetic energy equation is obtained as before (section 3.2.2.1) by 
taking the scalar product of dynamic equations [4.13] and the velocity vector: 
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uuf
V

dt
d

dt
du

u
2

2
 [4.26] 

Kinetic energy is not an extensive quantity for which a conservation principle 
applies; we can nevertheless consider [4.26] as a balance equation (section 3.2.4.3). 
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Replacing the stress tensor with expression [3.39] and assuming that the external 
force fi derives from a potential U, we obtain, after grouping similar terms: 
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4.3.2.2. Enthalpic form of the kinetic energy equation  

For a divariant fluid we have the thermodynamic relation: 

1or:
i i i

dp p h s
dh Tds T

x x x
  

Substituting the preceding expressions into equation [4.27], we obtain: 
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The reader will note that equation [4.28] is an equation of essentially mechanical 
origin, even if it involves thermodynamic functions. 

4.3.2.3. Applications  

4.3.2.3.1. The constant density fluid  

When the density of a fluid is uniform, we can introduce the driving pressure pg 
previously defined in equation [4.27]. We then derive the kinetic energy equation: 

)3,2,1,(
22

22
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ig

i
i  [4.29] 

Note the absence of any coupling between the mechanical and the 
thermodynamic phenomena for a constant density fluid. 
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Equation [4.29] leads to the definition of total pressure pt and total driving 
pressure pgt: 

22

22 V
pp

V
pp tggt  

If we assume that the flow is steady and the viscous stresses are zero, the first 
term on the left-hand side and the right-hand side of equation [4.29] can be removed, 
giving: 

0
2

or0
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22 V
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dt
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x

u gg
j

j  [4.30] 

Bernoulli’s first theorem: in steady inviscid flow, the total driving pressure 

2

2V
pp ggt  is constant on a trajectory or here on a streamline. 

Bernoulli’s first theorem can also be written: 

ggt pp
V 2  [4.31] 

We thus have, in differential (Lagrangian) form: 0VdVdpg . 

This expression shows that the driving pressure is a decaying function of the 
velocity modulus. 

4.3.2.3.2. The flow of compressible fluids  

With the exception of flows generated by natural convection, which are due to a 
density gradient, the effects of gravity are negligible in gas flows. Kinetic energy can 
be written: 

j

ij
i

i
i

i
i

x
u

x
s

Tuh
V

x
u

V
t 22

22
 [4.32] 
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For steady flows of inviscid fluid undergoing isentropic transformations, this 
relation can be written as: 

0
2dt

d
:or0

2V
h

x
h

u
j

t
j  

This is Bernoulli’s first theorem: total enthalpy 22Vhht  is constant on 
streamlines in steady inviscid flow. It is equal to the enthalpy generation h0 which 
corresponds to zero velocity. We have: 

hhVor
V

hhh tt 2:
2

2

0  [4.33] 

In differential form, following a streamline, we obtain: 

0VdV
dp

dht  [4.34] 

Here again, pressure is a decaying function of the velocity modulus along a 
streamline. 

4.3.2.3.3. Case of a perfect gas: the Saint-Venant relation  

Consider a divariant fluid evolving according to an isentropic transformation 
along its trajectory; the quantities  and c (sound velocity) are then functions of one 
variable, p for example. Relation [4.34] is a differential equation whose integration 
gives the pressure-velocity relationship. Consider the case of a perfect gas for which 
we have: 

0

0pp
 

Substituting this expression into [4.34] gives: 

0
1

0

1
0 VdV

p

dpp
VdV

dp
 



168     Fundamentals of Fluid Mechanics and Transport Phenomena 

Integrating and taking as reference (p0, 0, T0) the initial or generation 
conditions, where the velocity is zero, we obtain the Saint-Venant relation: 

1

00

0 1
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2
p
pp

V  [4.35] 

As the pressure and thermodynamic temperature cannot be negative, the Saint-
Venant relation implies the existence of a maximum velocity Vmax: 
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p
V . 

The local sound speed c is given by relation [1.25] Spc2 . We obtain: 

rT
p

c  [4.36] 

Let us denote by c* the velocity V in conditions (called critical conditions) where 
the fluid velocity is equal to the local sound speed: *ccV . Considering a 
perfect gas of specific enthalpy TCh p , and substituting the preceding definitions 
into [4.33] expressing the conservation of total enthalpy, we obtain: 
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The velocities c* and Vmax are defined by generation conditions. 
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Figure 4.2. Saint-Venant relation  



Fluid Dynamics Equations     169 
 

 Solving the Saint-Venant relation with respect to pressure, 2/1
00 )( pcc  

being sound velocity in generation conditions, we obtain: 
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The development of pressure to fourth order with respect to Mach number 
00M cV  is: 

2 4 2 2

0 0 0 02 2
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V V V V
p p

c c
 

For values of p close to p0, i.e. for small enough Mach numbers, the Saint-
Venant relation reduces to formula [4.31] for an incompressible fluid, whose 
application to compressible fluid induces a relative error amounting only to 4M 2

0 . 
Then by using Bernoulli’s theorem to air flowing at 70 m.s-1 ( 2.0#M0 ), error is 
only 1%. For pressure calculations, Bernoulli’s incompressible relation can be used 
for many industrial or domestic problems of gas flowing such as ventilation, wind 
effects, etc.  

We will look at some other consequences of the Saint-Venant relation in section 
5.5. 

4.3.2.3.4. Variation of the mass flux density and the Hugoniot relation  

The mass flux density (mass flow per unit section of a stream tube) is equal to  
 V. Replacing dp in equation [4.34] by its expression dcdp 2 , we obtain: 

dV
c

V
d

2
 [4.37] 

or, introducing the Mach number M = V / c: 

dVMVd 21  [4.38] 

We see that the mass flux density  V increases with the Mach number in 
subsonic flows while it decreases in supersonic flows; it is at maximum for 
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*ccV . Variations of 
** c

V
 as a function of the velocity V are shown in 

Figure 4.3 ( * is the critical density). Note that two velocity values correspond to the 
preceding ratio, one subsonic, the other supersonic. 

 

V c* 
O Vmax

** c
V

1 

 

Figure 4.3. Variation of the mass flux density (with reference  
to critical conditions) as a function of the flow velocity 

Consider a stream tube of variable cross-section S, small enough for the 
properties Vp ,,  of the fluid to be uniform in any cross-section (this is the 
approximation of the flow by slices). 

For an incompressible fluid (d  the mass conservation SV = const is 
manifest in the fact that the cross-section and the velocity are inversely proportional. 
In the stream tube shown in Figure 4.4a, the velocity increases to a maximum which 
occurs at the throat of the minimal section Sc, then decays. According to [4.34], the 
driving pressure is minimal at the throat. 

V

S

Sc

x

(b)(a)
 

Figure 4.4. (a) Flow in a stream tube; (b) nozzle 

Consider now the case of a divariant compressible fluid which undergoes 
isentropic transformations along a stream tube. The thermodynamic and mechanical 
quantities of the fluid now only depend on one variable (pressure, velocity, cross-
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section, etc.). We can write the conservation of mass flow SV  in differential form 
in this stream tube ( 0VSd ); taking account of [4.38], we obtain Hugoniot’s 
differential relation: 

01
2

2

S
dS

V
dV

c

V
VS
VSd

 [4.39] 

Equation [4.39] cannot be solved with respect to the derivative dV/dS in a 
velocity interval in which we have the velocity V = c (critical conditions), this value 
corresponding to a singular point of this differential equation.  

On the other hand, we can always solve equation [4.39] with respect to dS/dV, 
showing that the cross-section S of the tube is a decreasing function of the velocity 
in subsonic flow (V<c), but increasing for supersonic flows (V>c). 

The minimum cross-section corresponds to: 

– either a velocity maximum in a subsonic flow, as in the incompressible case; 

– or a velocity equal to the local sound speed. 

As the mass flow rate SV  is constant, the area S of the cross-section varies 
inversely with the product V  studied earlier (Figure 4.3). The maximum mass 
flux density V  occurs in the throat of the nozzle, where the cross-section is 
smallest. However, this quantity V  can only take values smaller than the critical 
value * c*. So, the mass flow rate cannot exceed the critical value * Sc c* calculated 
in the throat cross-section. The mass flow rate may be obviously less than this 
maximum value, the velocity in cross-section Sc then being smaller than the sound 
velocity. 

This configuration is characteristic of nozzles (Figure 4.4b). Note that for a given 
value of the cross-section S or the quantity SV,  there are two corresponding 
velocities, which explains the difficulty encountered when we try to solve equation 
[4.39] for the velocity V. We will return to look at the consequences of this situation 
in section 5.5.4. 

4.3.3. The vorticity equation  

We have seen that for a mechanical system, we can consider a dynamic moment 
(section 3.2.1) taken about the inertia center of the system in a reference frame 
which is parallel to a Galilean reference frame. The instantaneous rotational 



172     Fundamentals of Fluid Mechanics and Transport Phenomena 

movements in a fluid are characterized by the vorticity vector Vrot2  ([3.38]). 
The vorticity equation can be obtained by taking the curl of the Navier-Stokes 
equations [4.14]. Assuming body forces to derive from a potential, and using the 
identity: 

AagradArotaAarot ..  [4.40] 

we obtain, for any fluid: 

divrotpgradgradVVrotrot
t
Vrot 11

2
 [4.41] 

For a divariant fluid, we have, applying formulae [4.19] and [4.40]: 

divrotsgradTgradVVrotrot
t
Vrot 1

 [4.42] 

Assuming a Newtonian fluid with constant viscosity and density, the vorticity 
equation can be written, with [4.21]: 

Vrot
t

 [4.43] 

For a 2D velocity field, the vorticity vector  has only one component. This fact 
leads to very important specific properties, in particular in the study of turbulence 
([COU 89], [MAT 00], [TEN 72]) 

The reader will note that the vorticity equations in inviscid flows are identical for 
homoentropic and incompressible fluids.  

4.3.4. The energy equation  

4.3.4.1. The total energy equation  

4.3.4.1.1. General expression as a function of the stress tensor  

We will here apply the same procedure which we applied for an elementary 
material system (section 3.2.5.1). 
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The quantity g is here the total specific energy 22Ve  whose balance is 
obtained by writing that its variation in a domain D is due to the external addition of 
energy: 

mecthdv
V

e
dt
d

PPD 2

2
 [4.44] 

The external additions of energy are: 

– mechanical power mecP  provided from the exterior, which includes: 

- the specific mechanical power fiui due to the specific force fi in the domain D; 
- the surface power ij nj uj due to external stresses ij nj on the outer surface 

of the domain D; 

DDDP dvu
x

dvufdsundvuf iij
j

iiijijiimec  

– thermal power Pth received from the exterior, which includes: 
- volume power T generated by volume source in the domain D; 
- thermal fluxes across the outer surface  due to the thermal flux vector 

density Tq : 

dv
x

q
dvdsnqdv

j

Tj
TjTjTth DDDP  

Replacing the powers Pth and Pmec in [4.44] with their values, we obtain: 
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 [4.45] 

Using Ostrogradsky’s theorem to transform the surface integrals, and relation 
[4.45], we get the local equation: 
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or by introducing the viscous stress tensor [3.39]: 
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4.3.4.1.2. Expression using the total enthalpy  

Taking the divergent form (see [4.10]) of the left-hand side of [4.47], we have: 
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Using the definition of enthalpy ( peh ) then gives: 
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 [4.48] 

4.3.4.1.3. The internal energy equation  

Subtracting equation [4.26] from equation [4.46] gives: 
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Expanding the stress tensor, we obtain: 
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4.3.4.1.4. Enthalpic and entropic forms of the energy equation  

Equation [4.47] can also be written as a function the other extensive variables: 
the internal energy e, the enthalpy h or the entropy s, defined by the thermodynamic 
relations: 

p
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or, taking account of relation [4.7]: 
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The energy equation can thus be written in one of the following forms: 
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The third equation of [4.51] allows us to define the dissipation function : 

j

i
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x
u

 [4.52] 

which represents the thermal power released locally per unit volume by viscous 
friction. 

4.3.4.1.5. Entropy balance  

The entropic form of energy equation [4.51] is of some interest, as it in fact 
constitutes an entropy balance, which is not surprising since on account of the 
assumption of local equilibrium, the entropy is a state function related to the internal 
energy. This equation contains the flux terms jTj xq  (divergence terms), and 
volume source terms associated with jiij xu  and T . The entropy balance 
equation can thus be written: 
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TTx
u
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 [4.53] 

4.3.4.1.6. Other forms of the energy equation  

The left-hand side of the energy equation can also be written using other 
thermodynamic variables. For example, formula [1.27] allows us to write (  is 
expansion coefficient [1.26] at constant volume): 
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Finally, equation [4.6] for the conservation of mass allows us to replace 
i
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dt
d1

 and to obtain other forms for the left-hand side of equation [4.51]: 
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The heat convection equation can be obtained from an expression of equation 
[4.51] for a transformation: 

 at constant pressure (dp/dt = 0) using specific enthalpy h; 

 at constant volume ( 0jj xu ) using specific internal energy e. 

For a perfect gas or an incompressible liquid, these quantities can be expressed 
as a temperature function ( dTCdh p  and dTCde v ) and [4.51] can be written 
in the following form, where, depending on the case considered, we take either Cp or 
Cv as the specific heat C: 
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C  

4.3.4.1.7. Expression of the dissipation function for a Newtonian fluid  

Substituting [3.57] for the viscous tensor of a Newtonian fluid into [4.52], we 
obtain ( Vdiv ): 
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Very often, the shear velocities are much greater than the expansion velocities 
and the expression for the dissipation function is simplified: 
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4.3.5. Balance of chemical species  

Equation [2.25] for the mass balance of a chemical species can be written using 
the partial density i and the local velocity iV  of the component i: 

miii
i Vdiv

t
 [4.57] 

The volume source of mass mi of species i is a homogenous chemical reaction. 

Introducing the local mass average velocity V  [2.29] gives: 

VVdivVdiv
t

iimii
i  [4.58] 

The mass flux density   VVq iimi    is associated with diffusive 
phenomena considered here in the reference frame of the inertia center (section 
2.4.3.5). For the case of a binary mixture, this can be expressed using formula [2.69] 
for non-isothermal mixtures. 

In the case of isothermal diffusion, the mass flux density of the species i is given 
by relation [2.57]. We thus obtain the diffusion equation of the flow: 

2,1igradDdivVdiv
t

i
mii

i  [4.59] 
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In the case where species 1 is in weak concentration, a discussion analogous to 
that of section 2.4.4.2.7 leads to the following equation: 

111
1 cDVcdiv
t

c
c  [4.60] 

Recall that for a binary mixture, diffusion is represented by the balance equation 
of one species, associated with the mass conservation equation for the mixture. In 
simple cases, we can consider that the creation of species 1 is due to a homogenous 
reaction of order m: 

m
c kc11  [4.61] 

The coefficient k for the reaction kinetics varies according to a law of the form: 

RT
U

kk exp0  

The quantity U is the activation energy; T designates the absolute temperature. 
The form of the preceding relation shows a strong coupling between the temperature 
and the reaction speed. 

4.4. Boundary conditions  

4.4.1. General considerations  

The partial differential equations satisfied by the preceding quantities are not 
sufficient for the definition of a particular problem. We must also specify boundary 
conditions of different kinds. The definition of the domain studied D constitutes the 
first step. It is defined by the surface which bounds D and on which we will impose 
conditions for the unknowns of the problem (boundary conditions). Because of the 
particular nature of the time variable, we must also specify the initial conditions. 

In fluid mechanics the boundary conditions must be carefully considered, as we 
rarely encounter physical problems in entirely closed domains, since the flow must 
be generated by some appropriate device (a pump, a fan, a moving vehicle, a 
meteorological situation, an acoustic cavity, etc.). The domain studied is generally 
limited by solid walls and zones which are connected to other zones being studied. 
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4.4.2. Geometric boundary conditions  

4.4.2.1. Solid walls  

The usual solid walls are relatively easy to treat, since the fluid touches the wall: 
the velocities of the solid wall and the fluid are equal where they are in contact. The 
reason for this fact is related to the roughness of the walls on the molecular level, 
and to the thermal excitation by which mean momentum is transferred from one 
medium to another (it is incidentally the same as the interpretation of viscosity and 
contact action). This interpretation is such that the physico-chemical nature of the 
wall does not influence the adherence condition. 

This adherence condition of the fluid at the wall is always very well satisfied in 
ordinary conditions where the mean free path of the molecules is small compared 
with the roughness. The same is not true in the study of rarefied gases, where we 
must take account of the properties of the wall and introduce a slipping coefficient. 

In certain cases, the walls are permeable, in other words they let some matter 
pass through them. This is the case when we suck or blow through a porous 
medium. In these conditions, the difference between the tangential fluid velocities 
and the wall are zero at the wall. The normal fluid velocity with respect to the wall 
depends on the fluid injection process. An analogous condition is encountered in the 
presence of phase changes at the wall: evaporation, fusion, and other heterogenous 
chemical reactions which consume or produce fluid. 

The boundary conditions for thermal and diffusion problems were discussed in 
sections 2.3.2 and 2.4.6, which the reader can refer to. 

4.4.2.2. Flow entry and exit zones  

In addition to the walls which guide the flow, we generally need to specify the 
conditions at the entrance or exit of the domain studied. Real flows are always 
generated by machines (solid surface in movement) or by differences in conditions 
between upstream and downstream reservoirs. In practice, we know how to impose 
wall velocities, injection or extraction flow rates, unsteady forces on a wall (by 
means of electromagnetic devices). However, it should be noted that we do not 
know how to impose a given pressure or velocity distribution throughout a fluid. 

In fact, the entrance of a flow into a domain is a rather particular zone, as we 
have an initial condition which is largely analogous to that of the temporal variable 
(it is in fact an initial condition in Lagrangian variables). In practice, such a zone is 
found at the exit of another fluid domain and we need to specify a velocity or 
pressure distribution which is compatible with the equations of motion. This is 
straightforward when we can take a uniform flow or zone at rest with a constant 
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driving pressure in a section perpendicular to the velocity relatively far upstream of 
the walls which are to guide the flow. However, in general, this is not the case, and 
the choice of an incompatible velocity profile leads to difficulties (“numerical 
shocks”) in the subsequent numerical solutions. The same difficulties are 
encountered in thermal and acoustic studies, where initial conditions for the entropy 
or other material quantities are required. We will come back to this point in section 
5.6.2 when we consider the classification of partial differential equations. 

Further to the preceding difficulties, we will see in Chapter 5 that certain 
material properties can also be transported by waves which propagate in different 
directions, including in the upstream direction. This means that the very idea of the 
flow entrance (“upstream” and “downstream”) may depend on what it is we wish to 
study. Remember also that the idea of an extensive quantity leads to conservation 
properties which must be satisfied in the global balances, and it is not always 
obvious that this condition is respected. 

Finally, for flows which possess unstable zones, it is not sufficient to specify 
velocity or pressure distributions: the perturbations which enter the domain must be 
defined so as to fully determine the problem to be solved. 

In conclusion, it is clear that we are a long way from understanding how to 
proceed in all cases in order to obtain a well-posed problem.1 

4.4.2.3. Free surfaces  

The free surface of a flow2 (or the interface between two immiscible fluids) is an 
unknown boundary, on which the two following properties need to be ensured: 

1) The free surface (or the interface) is a material boundary between two 
immiscible fluids: it comprises the locus of fluid particle trajectories. Let z be the 
altitude of this free surface3: 

),,( tyxz  

The w component of the velocity in the Oz direction satisfies the relation (known 
as the kinematic relation): 

                                   
1 We will here define a well-posed theoretical problem (to be solved analytically or 
numerically) or an experiment whose solution is reproducible, even if we change a calculation 
method or an experimental process. 
2 For instance, water flows in open channels, rivers, etc. 
3 The axis Oz is the opposite of the direction of external forces field, usually gravity field. 
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2) The physical nature of this surface must provide the conditions necessary for 
the stress tensor. The pressure discontinuity 21 pp  across the surface is given by 
Laplace’s law: 

'
11

21 RR
pp  

where the quantities , R and R’ are, respectively, the surface tension and the radii 
of curvature of the free surface at the point considered (section 2.2.1.4.2). 

For nearly all industrial flows of water and aqueous solutions, surface tension 
does not play an important role: we can assume pressure continuity at the free 
surface. 

The discontinuity of the tangential stresses is related to the physico-chemical and 
flow conditions of the free surface; in particular, if the free surface contains a 
surface active substance (a mono-molecular thickness layer can suffice) and is not 
regenerated, it behaves like a solid surface. In many cases of water flow, the free 
surface is regenerated and we have continuity of the tangential stresses between the 
two media. In hydraulics, we can consider that the viscous stress is nearly equal to 
zero at the free surface of a flow. 

4.4.2.4. Fully immersed flows 

Fully immersed flows are flows without free surface whose upstream and 
downstream conditions are hydrostatic. We have seen that in the Navier-Stokes 
equations, gravity can be eliminated by using a driving pressure variable pg = p + 

gz. This change of variables is only of interest so long as it does not result in 
gravity reappearing in the boundary conditions, which should be expressed in terms 
of the driving pressure and not pressure itself. This excludes flows with free surfaces 
which are not horizontal (sea swells, rivers, surface runoff, etc.) for which we have, 
for example, a constant pressure condition. 

4.4.3. Initial conditions  

No physical problem is timeless. There is always a beginning to an experiment 
and therefore to its modeling. From this point of view, flow problems can be 
difficult, because even if the boundary conditions are steady (independent of time), 
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the solution may present diverse and complex characteristics. Some examples will 
demonstrate the degree of these difficulties: 

– a steady solution may be established after a transition period, but this solution 
may depend on the initial conditions (such properties are used in fluidics when we 
manipulate the eventual hysteresis of separated flow zones); 

– no steady solution may exist, but a more or less complexly established 
unsteady flow regime may occur, which is determined and predictable; 

– the flow may become more or less chaotic while maintaining a more or less 
organized unsteadiness; 

– an established turbulence may be present in certain domains of the established 
flow: in other words the flow, while unsteady, may have stable statistical 
characteristics; 

 weak perturbations, which are difficult to characterize, may be present in the 
initial or boundary conditions, and these may be of considerable importance for the 
evolution of the flow.  

We will come back to some of these points in section 6.6. 

4.5. Global form of the balance equations  

4.5.1. The interest of the global form of a balance 

Even the most rudimentary model must satisfy conservation laws for extensive 
quantities. The interest in a global balance is that it allows us to observe a system 
from the exterior. Balance equation [4.1] for a quantity G in the domain D can be 
written by replacing the material derivative by its expression (section 3.3.3.3); it 
can be written in one of the following two forms, as a function of the volume 
quantity g  or of the mass quantity g: 

dsnqdvdsnugdv
t
g

jGjGii DD  [4.62] 

dsnqdvgdqdv
t
g

jGjGm DD  [4.63] 

Note that it is equivalent to writing a Eulerian balance in a domain D which is 
assumed fixed. As we saw in section 1.1.4.2, this balance corresponds to an open 
system.  
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  “physical” flux  convective flux

G Gj j i iD D
g

dv dv q n ds gu n ds
t   

The left-hand side term corresponds to the possible accumulation of the quantity 
G in D. This variation of the quantity G contained in this domain is the sum of: 

 the production of the sources G; 

 the fluxes of the quantity G due to transfers through matter;  

 the fluxes of quantity G associated in the matter which enters D by crossing the 
boundary  (convective fluxes). 

In the preceding equations, we can interpret the surface and volume integrals in 
different ways: 

– the surface integrals over  comprise inputs and outputs of the material system 
contained in D, in other words we can evaluate them without knowing the internal 
structure of the flow within the system; 

– the volume integrals in the domain D clearly imply the internal variables of the 
system for which a model is necessary. 

IMPORTANT NOTES – 

1) The global balance equations do not require the assumption of a continuous 
medium. They can be applied to any domain D constituted by matter, continuous or 
discontinuous: diverse media containing many different phases (liquid flows with 
bubbles, fluidized beds for transport of pulverized media, etc.), avalanches of solid 
substances (stones, snow, mud, etc.) and/or liquids (mud, etc.). The balance equation 
can be directly written without assumptions concerning the differentiable properties 
of the continuous medium. Only the assumption of integrability of the fluxes across 
the surface  is necessary. Even the time differentiation assumption is not necessary: 
it suffices to effect a balance of the amount of G contained in D between two 
instants t1 and t2: 

21

12

andbetween 

processother by 
fromout  come

in created
convectionby 

 fromout  come
)()(

  ofquantity 

tt

DtGtG

G

DD  

When the quantity G is a vector (momentum), the same balance can be 
performed on its moments. 
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2) In all modeling we must have a global extensive variable G(t) internal to the 

domain D, defined from the amount of G contained in D, such that D dv
t
g

 is 

equal to 
dt
dG

; equation [4.63] can thus be written in the form: 

DD into
of inputs

inside
ofsource

GGdt
dG

 

4.5.2. Equation of mass conservation 

The expression of mass conservation for a fluid of density  inside the domain 
D during its movement, can be written from [4.62], with g : 

0mqdv
tD  

where mm dqq  is the mass flux leaving the surface . 

4.5.3. Volume balance  

The elementary volume flux dqv crossing the surface ds is: dsnVdqv . . The 
volume flux leaving the domain D can be written: 

dv
x

u
dvVdivdq

i

i
v DD

 

4.5.4. The momentum flux theorem  

Applying formulae [4.8] and [3.33] to the quantity Vg , we obtain the linear 
momentum theorem: 

ijjiD
i Fedsnuudv

t
u

 

or, expressing the elementary mass flux: dqm= uj nj ds: 
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 [4.64] 

Note that in a steady flow the balance depends only on the input-output of the 
domain. In unsteady flows, the first term corresponds to an eventual accumulation of 
momentum in D. 

Thus, as discussed in section 3.2.1, we can also perform a balance using the 
moments (angular momentum). This gives: 

extmD MdqVOMdv
t
V

OM  [4.65] 

The momentum flux theorem is particularly useful in applications. Let us 
consider as an example a propulsion device whose role is to increase the velocity of 
the fluid which crosses it (a propeller, a turbine, a pump which produces a jet, etc.). 
The reference frame is associated with the propulsion device, which is considered to 
operate in a steady regime. We will ignore the details of the system and we will 
consider the pressure to be constant on a surface  external to the device (Figure 
4.5). 

 

D1V

1V

2V

1V

 

Figure 4.5. Propeller thrust 

Let qm be the mass flow rate passing through the propulsion device. The 

momentum flow rate parallel to the upstream velocity 1V  and leaving the surface  
is equal to: 

12 VVqdqV mm  
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The momentum flux is balanced by the thrust it generates, equal to 

12 VVqP m . 

Let us note that conservation of mass flow rate demands the existence of an 
incoming mass flow through the lateral sides of surface 

Very many practical problems can be treated in the same way, the changes in 
momentum corresponding to the forces which can be calculated from a knowledge 
of the mass flows and the velocities ([EVE 89], [GAR 06], [GUY 01], [SAG 66], 
[SPU 97]). 

4.5.5. Kinetic energy theorem  

The global form can be obtained by integrating the local form [4.27] over the 
domain D. Assuming a potential U which is independent of time, we obtain: 

dv
x

udv
x
p

udsnuU
V

dv
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t
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d
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d
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We transform the terms of the right-hand side by introducing the divergence of a 
vector, the corresponding integral being thus transformed into a surface integral ; 
we obtain, after moving a pressure term to the left-hand side: 

dv
x

u
dsnudv

x

u
p

dsnuU
V

pdv
V

t

j

i
ijjjij

i

i

jj

DD

D 22

22

 

The first term describes the accumulation of kinetic energy in D in the 
transitional regime. The sum of this term and the following terms of mechanical 
energy flux (kinetic and pressure) across  is equal to the sum of the power P  of 
the external viscous stresses exerted on of the power of pressure forces in D, and 
of the power –P D dissipated in D by viscosity (dissipation function [4.52]): 
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with: dsnuP jjij  the external power provided by the viscosity on ; 

 
dv

x
u

P
j

i
ijDD  the power dissipated in D by viscous friction. 

In incompressible flows, we obtain: 

DD vvjj PPdsnu
V

ghpdv
V

t 22
 

22
 [4.67] 

In incompressible inviscid flows, the sum of the temporal variation in the kinetic 
energy of D and the flux of mechanical energy (kinetic and pressure) leaving  is 
zero. 

4.5.6. The energy equation  

The integration of the energy equation over the domain D should be performed 
using a form of the equation which allows flux integrals to be written. For a 
compressible fluid, the form [4.48] with the total enthalpy is best suited. We obtain, 
neglecting gravity: 

dsnqdvdsnu

dsnu
V

hdv
V

e
t

jTjTjiij

jj

D

D 22

22

 [4.68] 

This equation has the inconvenience of not including the dissipation function . 
Using one of the forms [4.51] is preferable for thermodynamic balances, but internal 
balances remain in the form of volume integrals: 

dsnqdvdvdv
x
p

u
t
p

hdqdv
t
h

jTjG
j

jm DDDD  
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However, these forms become perfectly adapted for the study of thermal transfer 
at constant pressure or constant volume. In such conditions, we immediately obtain, 
from [4.51]: 

dsnqdvdvgdqdv
t
g

jTjTm DDD  [4.69] 

where for g we must use either the specific internal energy e or the specific enthalpy 
h. For the usual case of a fluid of constant specific heat, the preceding equation 
becomes: 

dsnqdvdvCTdqdv
t
CT

jTjTm DDD
)(

 [4.70] 

where, depending on the case, we used either Cp or Cv for the specific heat C. 

4.5.7. The balance equation for chemical species  

Equation [4.58] can be immediately integrated to give: 

dsnqdvdsnVdv
t

mimii
i

DD .  [4.71] 

For a binary isothermal mixture, using [4.59] we obtain: 

dsgradnDdvdsnVdv
t

i
mii

i .. DD  [4.72] 

In the case of weak concentrations, balance equation [4.60] gives: 

dscgradnDdvdsnVcdv
t

c
icii

i .. DD  [4.73] 

Homogenous or heterogeneous chemical reactions must be specified 
accordingly, in the volume source term dvciD  or in the flux term 

dscgradnD i.  at the walls. In general, chemical reactions also lead to heat 

release, which must be accounted for in a source term of the energy equation  
([BIR 01]). 
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4.6. Similarity and non-dimensional parameters  

4.6.1. Principles  

4.6.1.1. Invariance of physical laws  

The fundamental physical laws are described by relations between real numbers 
obtained as measures of physical quantities. A measurement is a comparison 
between the quantity studied and a similar quantity considered as a unit. Most units 
are “derived”, as they depend on physical laws: for example, the surface unit is a 
square whose sides measure one unit of length. With such choices, physical laws are 
relations which comprise either dimensional coefficients which have a physical 
interpretation (the speed of sound for example) and which can be expressed using 
the units of the system, or non-dimensional coefficients which are independent of 
the system (for example,  for the surface of a circle). There are four fundamental 
units which can be arbitrarily taken for mass, length, time and temperature, and 
whose choice determines a coherent system of units. No specific physical 
phenomenon is used to govern the particular quantities chosen as units, and for 
practical reasons we can arbitrarily choose the four fundamental units of the 
international metric system (the meter, the kilogram, the second, the Kelvin). 

With these choices, the mathematical relations representing physical phenomena 
are true regardless of the fundamental units which are used, which means that they 
possess an invariance with respect to changes in the units which are used, 
transformations which form a group. A given physical problem thus has an infinity 
of equivalent numerical representations. Similarly, a numerical problem can 
represent many different physical problems obtained using different systems of 
units. 

4.6.1.2. Similar problems  

A given problem must be repeatable, meaning that its definition must always 
lead to identical results, within a certain margin of error. The problem is only 
defined if analysis of the phenomena involved has been correct and complete, in 
other words if we know the partial differential equations, and the boundary and 
initial conditions which define the problem. 

Two problems are similar if two systems of units exist, such that the 
measurements of all the quantities of one of the problems, using a given system of 
units, are equal to the measurements of the corresponding quantities of the other 
problem using another system of units. 

The conditions for similarity may be obtained by searching for conditions in 
which the two problems will obey the same ensemble of equations and boundary 
conditions after an appropriate change of the system of units. Because we can 



190     Fundamentals of Fluid Mechanics and Transport Phenomena 

choose the system of units, it is easier to write the equations and conditions of a 
problem with a system of units which corresponds to the problem; the equations 
obtained are non-dimensional, in other words they are independent of the units 
chosen for the physical measurements: calculating the area of a circle using its 
radius as a unit gives a result equal to . 

4.6.1.3. Non-dimensional study of a problem 

4.6.1.3.1. Dynamic and thermal problem  

We will now consider a flow problem involving a perfect gas with heat transfer 
around a circular obstacle of diameter L. We will assume that the specific heat Cp, 
the viscosity , and the thermal conductivity  are constant. The problem is posed in 
the following manner: 

– mass conservation:  

0
i

i

x
u

t
 [4.74] 

– Navier-Stokes equations:  
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i  [4.75] 

– energy equation (in enthalpic form) and the equation of state:  

rT
p

xx
T
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dT

C
jj

ijp
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 [4.76] 

– dynamic boundary conditions:  
 - on the body surface, velocity equal to zero: 0iu ; 

 - at infinity, velocity V  equal to U ; 
 - eventually a free surface condition on a horizontal surface; 

– thermal boundary conditions: 
 - constant temperature T equal to Tw on the surface; 
 - constant temperature equal to TO at infinity; 
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– initial conditions:  
- the fluid is assumed at rest at time t=0.  

The results of the problem are the velocity field, the pressure field and the 
temperature field, in addition to the surface densities (friction stresses, pressure, 
thermal flux density, etc.) or the global quantities (drag, lift, heat flux, etc.). These 
are functions of the coordinates and the n data of the problem (U, L, 0, T0, Tw, , 

, g, Cp). 

4.6.1.3.2. Non-dimensional equations  

For the fundamental units we will use the data of the problem such as the 
velocity U, the length L and the reference density 0, and we will define the 
following non-dimensional variables:  
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We have: 
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Performing variable change [4.77] in equations [4.74] to [4.76] and dividing by 
the dimensional coefficients of the left-hand side in each equation leads to the 
following reduced equations: 
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 [4.78] 
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where the dissipation function ij  (which characterizes kinetic heating) is given 

by [4.56]: ijij
L

U ~~
2

2
. 

The preceding equations contain the following (non-dimensional) similarity 
parameters: 

0

0 0

p

2 2
p 0 0

  Reynolds number:  Re

  Froude number: Fr  U
  Mach number: M U
  Prandtl number: Pr C

  Eckert number: Ec U C 1 M

UL μ

g

c

μ

T

 

which allows us to write [4.78] in the form: 
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The Eckert number and the Mach number are related by the perfect gas relation 
between Cp and r ( pCr 1 ). We also define the Péclet number Pe = Re. Pr. 

These similarity parameters characterize the importance of the non-dimensional 
terms by reference to the terms of the left-hand side of the non-dimensional 
equations. For example, we can write: 
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The Eckert number (or the Mach number) represents the influence of 
compressibility on the properties of the flow whose kinetic energy is due to enthalpy 
variations in the steady flow (conservation of the total enthalpy [4.33]). 

The Reynolds number usually takes on very large values (from 103 to 108), 
which signifies the globally weak effects of viscosity and thermal conduction in 
most flows. We will see in Chapter 6 that this property is not true in zones close to 
solid boundaries (boundary layers). 

Note that if the viscosity or other physical properties are not constant we must 
introduce further non-dimensional functions. 

4.6.1.3.3. Non-dimensional boundary conditions 

The treatment of boundary conditions is immediate: the conditions U and L are 
transformed into a single condition equal to 1. The thermal problem requires, for 
example, the temperature Tp, given at the wall to be transformed into a non-
dimensional parameter 0TTp . If other velocity conditions or geometric dimensions 
are given, they provide supplementary similarity parameters (velocity ratio, shape 
factor, etc.). 

The boundary conditions determine the order of magnitude of the similarity 
parameters and the associated phenomena. Simplifications can result from this. For 
example: 

– if the Mach number is small (less than 0.3 in practice), it has to be shown (see 
section 4.3.2.3.3) that the density variations can be neglected for the study of fluid 
motion and that incompressible fluid relations can be used. Thermal transfer thus 
occurs at constant pressure and the dissipation function is generally negligible. The 
only unknown of the problem is therefore the temperature 0TT , and we take as a 

reduced temperature 
0

0~
TT
TT

T
p

; 
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– for fully immersed flows of a liquid (section 4.4.2.4), we have seen that gravity 
no longer has a direct effect on the flow; we therefore take the driving pressure 

zgppg  to be the only variable, gravity disappearing from the equations 
and from the boundary conditions: the Froude number is no longer a parameter. 

4.6.1.3.4. Non-dimensional expression of results  

The non-dimensional quantities of a problem are functions of non-dimensional 
coordinates and similarity parameters. They allow the calculation of dimensional 
results which take on a specific form. For example, the pressure p can be written: 

2
0 ( , ,  Re, M, ...)ip U p x t  

Note that in place of n dimensional data, we now have only n – 4 similarity 
parameters (Re, Pr, Ec, Fr, Tp/T0). For a purely dynamic problem (no thermodynamic 
equation), we would have only n – 3 similarity parameters. These results, which can 
be obtained from a dimensional analysis (without writing the specific equations of 
the problem), constitute the Vaschy-Buckingham theorem. Note that the 
dimensional analysis does not allow us to see if certain similarity parameters 
(Froude number) can be eliminated. 

In practice, in place of the preceding non-dimensional parameters, we use other 
quantities defined by custom. For example, we define the local pressure coefficient 

2
C 2

0
p

U

p
 which is equal to 2~p . The local viscous friction stress at a solid 

boundary, equal to 
0~0

~
~

nn
p

n
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L
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n
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 can be expressed by means of the 

friction coefficient 
2

C 2
0

f
U

p , which can also be written: 
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The local thermal flux density at the wall 
0n

Tp n
T

q  can be written in 

non-dimensional form of the local Nusselt number Nu:  
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The global quantities (components of the force exerted on an obstacle, thermal 
flux, etc.) can be obtained by integration of the local quantities over the wall surface. 
We here define the non-dimensional coefficients, which can be immediately 
deduced from the local coefficients. For example, the force X exerted on an obstacle 
in the x-direction can be calculated by integration over the surface S of the obstacle: 

S
n

S
n

dsp
n
u

LUdsp
n
u

X ~
0~

22

0
sin~cos~

~

Re
2

sincos  

Instead of the non-dimensional integral in the above formula, we can use the 
drag coefficient Cx in the x-direction, often defined by means of the surface Sc, 
projected frontal area (projection of S on to the plane perpendicular to the x-axis): 

 
2

0
xC

2 c
U

X S  

4.6.1.3.5. Case of unsteady flows  

The procedure is identical to that outlined above; the temporal conditions 
introduce further similarity parameters, for example the Strouhal number 
St = ,NL / U  where N is a characteristic frequency which appears among the data of 
the problem. 

However, we will see in section 6.6 that a problem posed with steady boundary 
conditions will often have an unsteady or turbulent solution: the non-dimensional 
solution is therefore a function of the variable t~ . For example, if the wake of the 
cylinder discussed above comprises a preferred frequency N, the non-dimensional 
frequency St = NL/U will be a function of the similarity parameters St(Re,M,...).  

4.6.1.3.6. Validity of the similarity approach and comparison with experiments  

The posing of a problem in non-dimensional form constitutes a mathematical 
model of the phenomena studied, which is based on a choice of equations supposed 
to be representative. The experimental verification of the model involves ensuring 
that the non-dimensional results are correct, in other words that the non-dimensional 
coefficients are only functions of similarity parameters defined with the model. For 
example, in the fully immersed flow of an incompressible Newtonian fluid, the 
results should depend on the Reynolds number alone. The problem has been badly 
posed if this is not the case. 

We can take an historic example: at the beginning of the 20th century, L. Prandtl 
and G. Eiffel independently measured the drag of a sphere in a wind tunnel. They 
found different drag coefficients for the same Reynolds number. This raised 
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questions over the validity of the similarity approach. An understanding of this 
phenomenon was obtained 20 years later: one of the experiments comprised a 
laminar flow in the zone of the boundary layer where the wake was generated, 
whereas the turbulence had already been triggered in the other experiment. The 
solution of the Navier-Stokes equations was not the same in the two experiments 
because of instabilities generated by the residual present turbulence that is different 
in the two wind tunnels. 

Questioning the similarity methodology amounts to denying the validity of the 
basic laws of classical physics, which seems, at the very least, both erroneous and 
presumptuous. It is clearly the specific model used which must be questioned when 
agreement is not obtained by means of the non-dimensional representation of the 
results (for example, the friction coefficient as a function of the Reynolds number). 

4.6.1.3.7. Similarity in diffusion problems  

We will limit ourselves to the case of weak concentrations [4.60] by considering 
the steady flow of a fluid of initial concentration c0 which reacts with a reactive wall 
according to a law of the form [2.70]. The concentration c satisfies equation: 

cDuc
x

i
i

 

with the condition at the wall P: m
P

n
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n
c

D
0

. 

This can be written in non-dimensional form by letting 0
~ ccc . The non-

dimensional problem can be written: 

c
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with the absorption condition for a constituent, due to heterogeneous reaction at the 
wall: 
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 [4.80] 

The similarity parameters of the diffusion problem are: 



Fluid Dynamics Equations     197 
 

– the Péclet diffusion number: Re.Sc
D

UL
PeD ; 

– the Schmidt number: 
D

Sc  (  kinematic viscosity); 

– the Damköhler number: 
D

Lkcm 1
0 which characterizes the speed of the 

chemical reaction. 

Condition [4.80] shows that if the number 
D

Lkcm 1
0  is large compared to 1, the 

wall concentration is zero, and the flux of the corresponding constituent is limited by 

diffusion. If, on the other hand, we have 1
1

0

D

Lkcm
, we have 0cc P  and the 

reaction speed is equal to mkc0 : diffusion is no longer important.  

 

 



 

Chapter 5 

Transport and Propagation 

The objective of this chapter is to present the general properties of the equations 
which describe the flow of matter. The substantial derivative describes the physical 
idea of the properties associated with matter which is in motion. It results in a 
particular structure of the equations of fluid mechanics and the properties associated 
with the displacement of material quantities. This leads to a specific means of posing 
and numerically solving fluid mechanics problems. The corresponding mathematical 
techniques which underlie the physical concepts are well known, but unfortunately 
they are not widely taught; we will here recall them without providing detailed 
demonstrations. 

5.1. General considerations  

5.1.1. Differential equations  

We will first quickly recall the general properties of a differential equation which 
is satisfied by a scalar function: 

– the order n of the equation: the greater the maximum order n of the derivatives, 
the greater the complexity of the solution (n time constants correspond to n 
independent solutions for a linear differential equation with constant coefficients). 
We know that, in general, the solutions of a differential equation form a family of 
functions which depend on the n parameters. This means that the number of 
boundary conditions which must be specified in order to determine a unique solution 
is generally equal to the order n; 
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– the general structure of the differential equation: the solutions of a linear 
differential equation belong to a vector space, which means that we can express a 
solution by means of suitable linear combinations of other solutions. The dimension 
of the vector space of the solutions is equal to the order of the differential equation; 

– the properties of the coefficients of the differential equation, and in particular 
their eventual singular properties: a coefficient which cancels itself out at some point 
very often leads to particular properties of the solutions at that point. Such is the 
case for solutions to problems of revolution about an axis for the point which 
corresponds to the axis (generally denoted r = 0). Other particular points can play an 
important role, as we will see with regard to stability problems; 

– the nature of the boundary conditions imposed determines the kind of 
differential problem which is posed: 

- a Cauchy problem is determined by n boundary conditions given at a point 
for the function and its n – 1 successive derivatives; such problems generally have a 
unique solution1 in the vicinity of this point. This kind of problem is often 
encountered in mechanics for initial values of a motion. Regular behavior is only 
ensured in the vicinity of the point, and the regular behavior can eventually extend 
to the entire domain considered; however, in numerous cases we encounter accidents 
in the behavior of the system far from the said point (divergence of the solution, 
instabilities and random behavior, etc.), 

- the n boundary conditions required may be specified at the two points of the 
extremities of an interval. This case is common in physics, for field problems of 
physical quantities (electromagnetic fields, velocity and displacement fields, etc.) for 
which the solid boundaries impose particular conditions. The existence and 
uniqueness of the mathematical solution can be obtained if the problems have been 
well posed in physical terms for the entire domain.2 

In the preceding particular case where we impose zero conditions at two points, 
the differential equation generally has a zero solution. However, there may exist 
particular coefficient values for which a non-zero solution exists, and which 
therefore depends on some parameter. These particular values correspond to the 
eigenvalues of the differential operator. We will treat these problems in more detail 
in Appendix 4. 

The case of a system of coupled differential equations can amount to the study of 
a higher order differential equation for one of the unknown functions after 
elimination of the other unknown functions. For example, the system of two second 
                                   
1 I.e. when we have mathematical properties of regularity, for the rest more or less satisfied in 
application conditions of physics and mechanics.  
2 We wish to say that any approximation with notable physical consequences has been made 
when writing the equations for the problem. 
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order equations with two unknown functions y(x) and z(x) can immediately be 
transformed: 

),,',,'(''),,',,'('' xyyzzgzxyyzzfy  

Deriving z'' leads to the appearance in the expression for z''' the derivatives y'' and 
z'' which we replace with their earlier expression f and g, giving for z''' an expression 
of the form ),,',,'( xyyzzh . Doing the same for z'''', we get a similar expression 

),,',,'( xyyzzm . The elimination of y, y' from the three equations: 

),,',,'(''''),,,',,'('''),,,',,'('' xyyzzmzxyyzzhzxyyzzgz  

gives a fourth order differential equation for the function z(x). 

Conversely the differential equation '''' ( ''', '', , )z f z z z x  for the unknown 
function z(x) is immediately transformed into a system of four first-order differential 
equations by letting wzvzuz ','',''' : 

wzvwuvxzwvufu '.;';';,,,,'  

More generally, the system of first-order differential equations: 

njitxftx jii ,...,1,,'  

can be transformed into a differential equation of order n for one variable, for 
example x1; in effect, by differentiating tx '

1 , the two other derivatives txi
'  

appear, which we replace as a function of the quantities xi (t); we thus obtain: 

txgtx
x
f

txtx jj
j

i
j ,, 2
'''

1

 

Doing the same for the subsequent derivatives up to order n, we obtain n 
equations which express the first n derivatives of the function x1 as a function of all 
the functions xi: 

njitxgtx ji
i ,...,2,1,,)(

1  

Eliminating the n – 1 functions txi  (i = 2, 3,…, n) between the n preceding 
equations leads to the nth order differential equation satisfied by the function x1 t . 
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The initial conditions 1,...,001 nkx k  can be obtained in the same way 
as a function of the initial values 0ix . 

The preceding procedure is only appropriate if the equations of the system are 
suitably coupled. Otherwise, new variables Xi must be chosen, such that the 
equations are coupled. We will leave it to the reader to verify this for the elementary 
linear system (let: X1 = x1. + x2 and X2.= x1 – x2): 
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5.1.2. The Cauchy problem for differential equations 

Consider the differential equation: 

fxgxf ,'  [5.1] 

Solving the Cauchy problem involves calculating the value of the solution in the 
vicinity of the value x0 of the variable x, at which the value f0 = f (x0) is given. It is 
equivalent to saying that given the point (x0, f0) of the plane (x,f), we must find the 
variations dx and df which it is possible to calculate from equation [5.1]: 

dfdxxf '  [5.2] 

It is clear that the system of equations [5.1] and [5.2] with the unknown f '(x) 
should be of rank 1, hence the condition: 

0
1

dfdx
g

 

The curve of the plane fx,  on which the value of f extends (or is transmitted) 
is therefore given by the relation: 

fxg
dfdx

,1
 

The preceding presentation may seem unnecessarily formal, but its interest is 
that it can be extended to the study of partial differential equations. 
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5.2. First order quasi-linear partial differential equations  

5.2.1. Introduction 

In expressing the laws of physics in a local form, we obtain partial differential 
equations, the functions representing the physical quantities depending on space and 
time variables. These equations have properties which are quite different from 
differential equations, because their general solution no longer comprises a family of 
functions with a finite number of parameters, but a family of functions which we can 
choose arbitrarily. Let us take the simple example of the equation: 

0
2

yx
f

 

whose solution depends on the two arbitrary functions  and : 

)()(),( yxyxf  

This solution is only a general form of the function dependence with respect to 
the variables. The choice of these functions will depend on the boundary conditions 
which are specified. 

As with the differential equation, we can define a Cauchy problem: for example, 
for a partial differential equation with two variables yx, , the unknown function f 
is given on the curve C0 of the plane (x,y) and we seek to evaluate this function in 
the vicinity of C0.  

In what follows, we will limit ourselves to a relatively elementary approach 
which only consists in verifying the existence of a series expansion in the place of a 
solution. We thus identify the essential properties of the solutions and the basic 
concepts which govern the general physics of the phenomena studied. 

We will not demonstrate the uniqueness of the solution, as this requires advanced 
mathematical knowledge and precise assumptions which do not necessarily have 
physical reality, for example: 

– do analytical functions (indefinitely differentiable) exist?; 
– what is the nature of the “relation” between distributions and physical 

problems?; 
– how can we verify the physical reality of a Lipschitz application (section 

1.1.1.4)?  
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DEFINITION – A quasi-linear partial differential equation is an equation which is 
linear with respect to the partial derivatives of highest order, whose coefficients are 
functions of variables and derivatives of lower order. 

The equations which we will encounter in mechanics and energy of continuous 
media will be quasi-linear. 

 
5.2.2. Geometric interpretation of the solutions  

We have previously seen that the substantial derivative in the equations of fluid 
mechanics describes transport of a quantity associated with matter. We will recover 
this interpretation of the substantial derivative by purely mathematical 
considerations. 

Consider the partial differential equation which represents transport of the 
quantity F, in which the right-hand side is equal to g(f,x,y,t): 

),,,( tyxfg
y
f

v
x
f

u
t
f

 [5.3] 

The coefficients u and v are given functions of (f, x, y, t). Equation [5.3] 
describes the balance of the scalar quantity F (mass, entropy, number of moles of a 
chemical species, etc.) associated with the corresponding specific quantity f (section 
4.2.1.2.1). The function g can be considered a source of quantity F, as it only 
depends on the coordinates of the material particle and the associated value of the 
function f. There is however no interaction with the neighboring particles, and 
equation [5.3] does not contain any diffusive flux term for the quantity F. Balance 
equation [4.3] of the volume quantity f  can thus be expressed in the form [5.3]. 

Let us ignore for the moment the physical interpretation of equation [5.3], of 
which we will here give a geometric interpretation. In the 4D space (t, x, y, z), 
consider the surface S described by the equation: 

0,,),,,( tyxfzzyxt  

We know that the vector grad  of components 1,,, yxt fff  is normal to 
S. The equation of the plane tangent to the surface S at the point (t, x, y, z) can be 
written (designating the usual coordinates (T, X, Y, Z)): 
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0zZyY
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f

xX
x
f
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f

 [5.4] 

Comparing equations [5.3] and [5.4] shows that the vector (1, u, v, g) is located 
in the plane tangent to the surface S. The solutions to the partial differential 
equation are thus represented by surfaces tangential to the vector field gvu ,,,1  in 
the said 4D space. Now the curves tangent to the vector field (1, u, v, g) can be 
obtained by integration of the system of three differential equations: 

g
df

v
dy

u
dx

dt  [5.5] 

The curves defined by system [5.5] are called characteristic curves. We note 
immediately that the first two differential equations define the trajectories of fluid 
particles (section 3.3.2). The third differential equation allows the unknown function 
f to be calculated on these curves. We thus obtain a Lagrangian (substantial) 
representation of the balance of the quantity f associated with the fluid particles. 
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Figure 5.1. C: characteristic curve; S: solution surface;  
S0: surface with initial conditions (Cauchy problem) 

Note that the solution of equation [5.3] amounted to the solution of a system of 
differential equations with initial conditions. In the preceding 4D space, any surface 
S constituted of characteristic curves (characteristic surface) is tangent to the vector 
field V (1, u, v, g); it is thus a solution of the partial differential equation (Figure 
5.1a). If a trajectory point C belongs to a surface S, then the curve C lies entirely on 
S. 

In summary, any quasi-linear first order partial differential equation can be 
interpreted as a transport equation for a quantity on the trajectories associated with 
that equation. 
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This property allows the definition of the ideas of input (the surface S0 on which 
the initial conditions are given) and output (any surface derived from S0 by 
“translation” following the characteristic curves). This introduces a dissymmetry 
between the input and output. Depending on the physical context of a problem, the 
ideas of input and output may correspond to upstream and downstream, or to initial 
and final conditions. 

5.2.3. Comments 

1) The preceding reasoning can be applied to any number of variables. 

2) The preceding mathematical interpretation actually amounts to writing the 
balance of the quantity F in Lagrangian variables. For any material particle M 
which is displaced on this solution surface S of the 4D space, the associated volume 
quantity satisfies: 

., :w0 vdtdyudtdxithdfdy
y
f

dx
x
f

dt
t
f

 [5.6] 

The balance equation g
dt
df

 for each fluid particle describes the compatibility 

between relation [5.6] and partial differential equation [5.3]. The preceding 
considerations show the equivalence between the Lagrangian balance formulation 
in the form of differential equations [5.5], and the balance equation in Eulerian 
variables, expressed in the form of partial differential equation [5.3]. 

3) In the presence of diffusion of the quantity F, the right-hand side of the 
balance equations is not of the form tyxfg ,,, , rather it contains the second order 
transverse derivatives with respect to the characteristic curves: these derivatives 
express an interaction between neighboring characteristic curves due to diffusion of 
the quantity F. The introduction of higher order partial derivatives modifies the 
properties found earlier. However, these partial derivatives are associated with a 
coefficient which is often very small, and which leads to a reduction in the order of 
the equation, except in singular zones (sections 6.4.3 and 6.5.3): nearly everywhere, 
F is transported on the trajectories, with the source g taken into account.  

5.2.4. The Cauchy problem for partial differential equations  

We will reconsider the preceding problem in the mathematical form, which 
consists of solving the Cauchy problem where the value of the unknown function is 
given on the surface S0, and where we seek to calculate its value in the 
neighborhood of S0 by means of the partial differential equation. This problem can 
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be solved by means of geometric interpretation (Figure 5.1b), provided that the 
surface S0 does not comprise characteristic curves (characteristic surface). 

In effect, we have seen that the calculation of the function f can be performed by 
integration over the characteristic curves (trajectories): in order for this calculation 
to be possible, these characteristic curves must obviously cross the surface S0 on 
which the initial values of the function f are given. 

Note that the solution of equation [5.3] is only defined in the domain D of the 
space containing the characteristic curves which cross the surface S0: D is the 
influence domain of the initial conditions given on S0. It is rigorously delimited. 
This property is specific to all quasi-linear first order partial differential equations. 

In summary, the Cauchy problem for a first order partial differential equation 
was reduced to an ensemble of independent Cauchy problems for a system of 
ordinary differential equations on each of the characteristic curves (trajectories). In a 
transverse direction with respect to these curves, the partial differential equation 
gives no information regarding the function f: the solution on characteristic curve C 
has no influence on its neighboring points, except on C. The properties of the 
solution in the neighborhood of a characteristic curve are uniquely fixed by the 
initial conditions corresponding to this neighborhood. The solution space is thus 
found to be as a bundle of fibers. 

We will later return to the Cauchy problem (section 5.3.5.1) in a more local 
manner, and one which is closer to the practical methods used for numerical 
calculations. 

5.3. Systems of first order partial differential equations  

5.3.1. The Cauchy problem for n unknowns and two variables  

Consider now a quasi-linear system of first order partial differential equations 
with n unknown functions and which we will here limit to two independent variables 
(x,t). The simplest equations of fluid mechanics involve at least three 
thermodynamic quantities (for example, the density , a velocity component u and 
the pressure p) which we will represent by the vector F with three components 

321 ,, fff . Consider the system of three equations described in vector form (the 
case of n unknown functions can be treated in an identical manner): 
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 [5.7] 

We will adopt the position of the Cauchy problem: we assume that the value of F 
is known on a curve C0 of equation 0, tx  in the plane (x,t), and that from a 
point (x0, t0) of this curve, we seek to calculate the value of the function F in its 

neighborhood: this is possible if we know the value of the partial derivatives 
x
F

 

and 
t
F

 at the point (x0, t0). The calculation of these is possible using data on the 

curve C0 and equation [5.7]. Designating the elemental arc xt,  of the curve C0 
and the growth F  of F on this arc, we have: 

Fx
x
F

t
t
F

 [5.8] 

Eliminating 
t
F

 between [5.7] and [5.8] we have the system: 

t
F

AG
x
F

A
t
x

B  [5.9] 

If the determinant A
t
x

BQ  of the system [5.9] is non-zero, the unknown 

x
F

 has a unique value. We can therefore obtain the value of F in the neighborhood 

of the considered point and the Cauchy problem has a unique solution. The 
preceding determinant is called the characteristic determinant of system [5.7]. Its 
value depends on the ratio tx , in other words on the choice of the curve 
C0. 

Suppose now that the determinant Q of the system [5.9] is zero, tx  is a 
root of characteristic equation [5.10]: 

0A
t
x

BQ  [5.10] 
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The corresponding curve C0 is the characteristic curve associated with the root 
. When all the roots of the equation 0Q  are real, system [5.7] is called 

hyperbolic (or totally hyperbolic). 

When the characteristic determinant is zero, the system rank [5.9] has diminished 
by one unit and a non-zero solution exists for system [5.9], if we have a 

compatibility relation between the components of the vector 
t
F

AG  of the 

right-hand side. 

This relationship can be obtained, for example, from the non-zero left solutions L 
(eigenfunctions) of the characteristic equation: 

0ABL  [5.11] 

Multiplying on the left side [5.9] by L and taking account of [5.11], we then 
obtain the relationship sought between the components of F on the characteristic 
curve concerned: 

0
t
F

AGL  [5.12] 

In summary, characteristic curves of the plane (x,t), on which the characteristic 
determinant cancels out, are such that: 

– the given values of F do not allow the Cauchy problem to be solved 
(calculation of F in their neighborhood); 

– the unknown vector function F satisfies particular differential relations. 

As in the case of solutions to quasi-linear partial differential equations, the last 
property can be used to study the solutions. We will come back to this point a little 
later. 

NOTE – The relationship between the components of F is of “Lagrangian” type in 
the sense that the value of this variation is calculated for corresponding values of t 
and of tdx : the evaluation point of  F is displaced at “velocity” . 

We will examine two particular cases which show the physical interest of these 
results. 
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5.3.2. Applications in fluid mechanics  

5.3.2.1. Unsteady 1D flow of a compressible inviscid fluid 

The equations of a compressible perfect fluid in unsteady inviscid flow can be 
written ([4.6], [4.22] and [4.55]): 
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 [5.13] 

Letting:
0
0
0

;
0
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G
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BIA
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uF , they can be written 

in vector form [5.7]: 
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Equation [5.9] can thus be written: 

t
F

x
F

IB )(  [5.14] 

We can thus derive characteristic equation [5.10]: 

0
0

10
0

2
cucuu

uc
u

u
Q  [5.15] 

The three roots ucu,  of equation [5.15] correspond, respectively, to a 
displacement of the fluid matter on the trajectory tux , and to propagation 
at the speed of sound c with respect to the matter which moves with velocity u 

tucx . 
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The system for the left eigenfunctions 321 LLLL  of [5.11] can here be 
written: 

0

32

2
321

1
t

uLL
cLuLL

uL
IBL  [5.16] 

The vector L corresponding to each of the eigenvalues can be easily calculated. 
Relation [5.12], which provides the relation between the variations F of the 
components of the vector F, can thus be written: 

0. FL  [5.17] 

1) For the root  = u, we obtain: 102cL  and: 

010 22 cp
p
ucFL  [5.18] 

Here we recover the relationship which characterizes isentropic transformations 
(formula [1.27]): the entropy remains constant during matter displacement. The 
reader should note that the identification of this simple property required some 
mathematical developments. 

2) For the eigenfunctions uc solution of system [5.16] gives:  

1
2

1 2 3

2 3

0 i.e. 0 1

t
L c

L B I L L c L c L c

L L c

 

We thus obtain: 

010 ucp
p
uc

p
uL  [5.19] 

These relationships correspond to acoustic waves which propagate in two 
directions at the speed of sound c with respect to the fluid matter which moves with 
velocity u. 
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NOTES –  

1) Relation [5.16] for each of the roots can be written in Lagrangian variables. 
By means of linear combinations using initial system [5.13] of the equations of 
motion describing the flow of a compressible perfect fluid, we can easily obtain the 
system of equations: 

x
c

dt
d

x
cu

ttD
D

tD
uD

c
tD
pD

x
c

dt
d

x
cu

tDt
D

Dt
Du

c
Dt
Dp

x
u

tdt
d

dt
d

c
dt
dp

~
~

:with0~
~

~
~

:with0

02

 [5.20] 

This system is the expression in Eulerian variables of relations [5.18] and [5.19]. 
We furthermore obtain the directions of characteristic curves from the preceding 
expression of derivatives in relations [5.20] [YIH 77, p.211]. 

2) The case of an incompressible fluid 0xu  can be obtained by letting the 
speed of sound tend to infinity. The eigenvalues of the acoustic propagation 
disappear, and only the eigenvalue utx  exists with the characteristic variable 

0t . The reader can verify that this result can be obtained from [5.13].  

5.3.2.2. Steady 2D flow of an incompressible perfect fluid  

The equations for this kind of flow can be written ([4.6] and [4.22]): 

0;0;0
y
p

y
v

v
x
v

u
x
p

y
u

v
x
u

u
y
v

x
u

 
[5.21] 

and can be put in the form [5.7] ( G
y
F

B
x
F

A ) with: 

0
0
0

;
10
00
010

;;
00
10
001

G
v

vB
p
v
u

F
u

uA  [5.22] 

Following the steps outlined in section 5.3.1 leads to the vector equation: 



Transport and Propagation     213 
 

x
F

A
x
F

A
x
y

B  [5.23] 

From this we can calculate the characteristic determinant yAxBQ  and 
the roots xy . Equation [5.10] can here be written as: 

01
10

0
01

2vu
uv

uvQ  [5.24] 

Equation [5.24] only has one real root uvxy  which corresponds to 
the differential equation of the trajectories. For this root, system [5.11] can be 
written: 

0
100

00
01

32

1

1

321

t

LuvL
L

uvL
uv

uv
LLL

u
v

ABL   

hence: uvLLLL /10321 . 

Substituting into relation [5.12] gives: 

0
00
10
001

10 pvvuu
p
v
u

u
uuvFLA

 

[5.25] 

The characteristic curves uvxy  are the trajectories, and the variation of 
the quantity pvvuu  is zero on these. We can recognize Bernoulli’s 
first theorem for a perfect incompressible fluid (see section 4.3.2.3.1, relation [4.30]) 
which was obtained previously. 

5.3.2.3. Steady 2D flow of a inviscid compressible fluid  

The equations for a steady 2D plane of perfect compressible fluid can be written 
([4.6], [4.22] and [4.55]): 
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0.0

;0;0

22

y
v

c
x
u

c
y
p

v
x
p

u
y
p

y
v

v
x
v

u

x
p

y
u

v
x
u

u
y
v

x
u

y
v

x
u

[5.26] 

or, in matrix form [5.7]: 

0F
y

B
x

A
 

2 2

0 0 0 0
0 0 1 0 0 0

with: ; ; .0 0 0 0 0 1

0 0 0 0

u v

u vu
F A B

u vv

p c u c v

 

Characteristic equation [5.10] can be written: 

0

0
100

00
0

22 uvcc
uv

uv
uv

A
x
y

BQ  

or: 

02 2222222 cvuvcuuv  [5.27] 

It has the same real root uv  as for the incompressible fluid, but here it is a 
double root. 

The two other roots satisfy a second degree equation whose discriminant can be 
written: 

22222222      if0' cvuVcvuc  [5.28] 

These are real only if the flow is supersonic (V > c). If the flow is subsonic, the 
roots and the characteristic curves are imaginary, as in the case of the 
incompressible fluid. The values of the slopes of the characteristic curves are: 
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22

2222 ])[(

cu

cvucuv

x
y

 [5.29] 

The velocity V  is the bisector of the characteristic curves; in effect, taking the 
axis Ox parallel to the velocity V  (i.e. v = 0), slopes [5.29] of the characteristic 
curves in the plane (x,y) are opposed: 

1

1
222

2

Mcu

c
x
y

 

where cVM  designates the local Mach number defined using the local sound 
speed c.  

The reader can easily verify that the characteristic curves lie at an angle  with 
respect to the velocity vector (or the trajectory) defined by: M1sin  (we have 

tan ); these curves are thus called Mach lines. 

Identification of the relationship between the components of the differential F 
on each of the characteristic curves can be effected as previously by finding a vector 
L which is a left solution of equation [5.11] and by substituting it into equation 
[5.12]. We will here only show the calculation for the value uv : 

0

00
1000

000

00

22

4321

cc
u
v

u
v

u
v

LLLL
u
v

ABL  

or: 

.0;0;0 32
2

41
2

41 L
u
v

LcLLcL
u
v

L
u
v

 

From this we can calculate L3 and L4 as a function of the two arbitrary values of 
L1 and L2: 

00 32
2

41 L
u
v

LcLL  
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Substituting into condition [5.12] gives: 

0221 pvvuuL
c

p
uL   

As this equation is satisfied regardless of the values of L1 and L2, we have the 
two relations: 

0;0
2

pvvuu
c

p
 

which describe the Lagrangian conservation of entropy and mechanical energy on 
the trajectories (Bernoulli’s first theorem). 

5.3.3. Cauchy problem with n unknowns and p variables  

Now consider an n dimensional vector function F with components fi 
ni ,...,1, functions of p variables xj pj ,...,1 . The function F satisfies the n 

first order quasi-linear partial differential equations: 

0
),...;1

;,...,1,(
0 G

x
F

A
pj
ni

g
x
f

A i
j

ji  [5.30] 

We will now solve the Cauchy problem, in other words we will calculate the 
variation F  of the function F in the neighborhood of a point M of a hypersurface 
S0 of dimension p – 1 on which the values of F are given. This results in our 
knowing p – 1 independent derivatives of the function F calculated following the 
surface directions. The derivative of the vector function F following a transverse 
direction S0 is not given, but it can be calculated from system [5.30]. 

In order to individualize this direction, we will perform a change of coordinates 
pkjxx kjj ,...,1, . 

The Wronskian (functional determinant) 
k

jx
 is assumed non-zero such that 

we can also write: 
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pkjx jkk ,...,1,  

This gives the following relationships between the partial derivatives of F with 
respect to the two sets of variables: 

x
F

x
F

pkj
n

x
f

x
f

j

k

kj
. 

),...1,
;,...,1(

 [5.31] 

System [5.30] can thus be written: 

0.
,...1,

;,...,1,
0 G

x
F

A
pkj
ni

g
x

f
A i

j

k

k
ij  [5.32] 

We will choose the coordinates k ),...,3,2( pk  such that they describe the 
surface (curvilinear coordinates on S0 (Figure 5.2)). The curve of coordinate 1 
crosses the surface S0 whose equation is 0,...211 p . The derivatives 

kf  are known from the functions f  on the surface S0. 

 

 O 

S031

x1

x2

x3

 

Figure 5.2. Initial surface of the Cauchy problem 

All that remains is to determine the n unknown derivatives 1f  in the 
direction 1 by means of system [5.30] in which all the other terms in 

1kf k  are now known; system [5.30] can be written: 

1

1

1

1

, 1,..., ;
,.. 0

1,... ; 2,...

or: 0 with:  

ij i i

j k

ij

j

i nf f
A g

j p k px

F
A G A A

x

 [5.33] 
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where the function i  is known from the derivatives which are already given 
1kf k . 

If the determinant of the matrix A
~  is non-zero, system [5.33] with unknowns 

1f  is of rank n and the n derivatives 1f  can be uniquely determined. 
The Cauchy problem thus possesses a unique solution. 

If, on the other hand, we have 0~
A , system [5.33] is of rank n – 1 and the 

determination of the n unknown derivatives 1f  is no longer possible. 

Equation 0~
A  is a partial differential equation for the scalar function jx1  

of p variables: 

0~ 1

j
ij

x
AA  [5.34] 

We thus have a problem such as that described in section 5.2.4. The vector 
jx1  associated with the point M and satisfying equation [5.34] belongs to a 

hypersurface (the cone C with summit M) of dimension p – 1 of the geometric space 
(x1,…, xp). At the point M, this vector is the direction of the surface normal S0 of the 
equation 1= 0; the tangent plane is normal to it, and the surface S0 is surrounded by 
tangent planes whose normals belong to the cone C. This surface S0 is itself a cone 
of summit M to which the characteristic curves passing through M are tangent. 

As before, in the case 0~
A , there exists a non-zero vector L such that 

01

j
iji

x
AL . Equation [5.33] thus results in a linear relation between the partial 

derivatives 1kf ki : 

pknig
f

L i
k

ii ,...2;,...,1,0,..  

5.3.4. Partial differential equations of order n  

The same reasoning can be applied for an nth order quasi-linear partial 
differential equation with p variables, or for a system of such equations. For 
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example, consider the quasi-linear second order equation whose coefficients and the 
right-hand side term g depend on the function f, on its first derivatives and on the 
variables xi: 

)1 (
2

,....,pi,jg
xx
f

A
ji

ij  [5.35] 

Suppose now that the values of the function f and of its first derivatives are given 
at all points M of a hypersurface S0 of dimension p – 1. The values of the second 
derivatives taken on this surface are known. We can perform the change of 
coordinates described in section 5.3.3, such that the second derivatives of the 
function are known on the surface S0 of equation 0,...211 p  in the 

reference frame i . The change of variables [5.31] allows the terms of equation 
[5.35] to be written in the form: 

2 2

...( , 1,..., )k m

i j k m j i

f f
i j p

x x x x
 

The calculation is performed as previously, and the equation thus transformed 

should allow the calculation of the unknown value of 2
1

2 f
 at the point where we 

seek a solution of the Cauchy problem. We obtain: 

),...,2(
),...,1,(

0,..,,
2

2
1

2
11

pk
pji

g
ff

f
f

xx
A

kiiji
ij  [5.36] 

where the function  is a function of f, of its first derivatives and of its second 

derivatives 1
2

k
f

ki
, which are known from the initial data given at all 

points M of the hypersurface S0. The coefficient of 2
1

2 f  must obviously be 
non-zero for the calculation to be possible. If it is zero, we find a direction 1 
corresponding to the characteristic surface 0,...21 p . These characteristic 

directions 
i

i
x

1  satisfy the equation: 
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),...,1,(;011 pjiA
xx

A jiij
ji

ij  [5.37] 

The left-hand side of equation [5.37] is a quadratic form which represents the 
equation of a second degree cone comprising the normals to the characteristic 
surfaces. If it is imaginary, we have an elliptic equation. If on the other hand it is 
real, the equation is hyperbolic. The preceding equation, which is easy to write, 
allows us to reduce our study of the type of a differential equation to the 
identification of the nature of a quadratic form. Instead of searching for the principal 
directions and performing an orthogonal change of reference frame, we can follow 
the simpler procedure of directly identifying a reduced form for this quadratic form. 
We will look at some applications in the next section. 

The compatibility relation of equation [5.36] can be written for the solutions of 
[5.37]: 

),...,2(
),...,1,(

0,..,,
2

pk
pji

g
ff

f
kii

 

5.3.5. Applications  

5.3.5.1. Quasi-linear partial differential equation 

We will apply the preceding results to the flow of an inviscid fluid, limiting 
ourselves to the identification of characteristic surfaces for the two-variable 
examples already studied. 

We immediately recover the results of section 5.2, by applying the preceding 
results to equation [5.3]. Characteristic equation [5.37] can be written: 

0111

y
v

x
u

t
 

Its solutions 0,,11 yxt  are equations of surfaces comprising the 
trajectories (the equation shows in effect that the surface normals are normal to the 
vector (1, u, v) which is thus situated in the tangent plane of the surface). 

5.3.5.2. System of partial differential equations with two independent variables  

The characteristic curves obtained in section 5.3.1 can also be found using 
characteristic equation [5.34]. This can be written as: 
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ni
x

B
t

A ii ,...,1,011  [5.38] 

In two dimensions, the characteristic “surfaces” are the curves 0,1 xt  on 

which we have 011
1 x

x
t

t
. Eliminating 

t
1  and 

x
1  between 

this relation and [5.38], we recover equation [5.10] for the characteristic curves: 

0ii A
t
x

B  

5.3.5.3. Unsteady 2D flow of a perfect compressible fluid  

Let us reconsider the study of section 5.4.2.3. with the two spatial coordinates 
(x,y). The equations for an inviscid compressible fluid can be written ([4.6], [4.22] 
and [4.54]): 

2

0; 0

0; 0

with:

d u v du p

dt x y dt x

dv p d dp
c

dt y dt dt

d
u v

dt t x y

 [5.39] 

or in matrix form: 

0

0

00

00

0

22
p
v
u

dt
d

y
c

x
c

ydt
d

xdt
d

yxdt
d

 

The unknown function fi which has four components ( , u, v, p) is assumed to be 
given on the surface S0 defined in the preceding section and characterized by the 
coordinates 1kk . Setting yxxxctx 321 ,, , we can perform the 
change of variables [5.31]: 
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3,2;4,..,11

1
ki

x
f

x
f

x
f

j

k

k

i

j

i

j

i  

Separating the unknown derivatives 
1

if
 we have: 

3,20
(known)
similar to

terms

0

00

00

0

1

11212

1

11

111

k

p
v
u

p
v
u

dt
d

y
c

x
c

ydt
d

xdt
d

yxdt
d

k

 

This system of equations does not have a unique solution 
1

if
 if its determinant 

is zero: 

0

0

00

00

0

2
12

2
12

2
1

2
12

11212

1

11

111

x
c

y
c

dt
d

dt
d

dt
d

y
c

x
c

ydt
d

xdt
d

yxdt
d

 

The characteristic equation can be decomposed into two first order partial 
differential equations: 

1) A quasi-linear equation 01

dt
d

 whose solution we have already studied in 

section 5.2.2. We have seen that the characteristic curves are the trajectories, the 
corresponding characteristic surfaces being defined from these. 

2) The partial differential equation: 

0
1 2

1
2

1
2

1

xydt
d

c
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which can be easily interpreted by taking a reference frame for which velocity (u, v) 
of a point M is zero at time t (this reference frame has the speed of the matter of 
point M at the considered instant). In this last frame the previous substantial 

derivative 
tMdt

d

,

1  is equal to 
tMt ,

1 , so that the previous equation relation 

between derivatives of function 1 is written:

0
),(

1
2

,

1
2

,

1
2

,

1
2

tMtMtM yxttMc
  

showing that the vector 
tMtMtM yxt ,

1

,

1

,

1 ,,  is located on the revolving 

cone of summit M, of axis Ot and whose equation is: 

0
),(

1 222
2 MMM yyxxtt

tMc
 

The tangent planes at point M to the characteristic surfaces are normal to the 

vector 
tMtMtM yxt ,

1

,

1

,

1 ,, , which makes an angle ]),(1tan[ tMcArc  

with the axis Ot. They envelope the complementary cone of revolution whose angle 
with axis Ot is equal to tan[ ( , )]Arc c M t and whose equation is: 

0),( 2222
MMM yyxxtttMc  

The characteristic curves comprised by the cone satisfy the relations 
0222 dtcdr  which describe radial propagation at the speed of sound c with 

respect to the matter. 

5.3.6. Physical interpretation of propagation  

The partial differential equations of fluid dynamics and transfer are balance 
equations; we have now outlined the essential ideas which govern the manner in 
which material quantities are displaced on the characteristic curves either by 
convection (transport of material quantities by fluid particles) or by propagation. 
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The latter mode results from the exchange of extensive quantities between fluid 
particles, from one to the next and so on. It can be simply interpreted. 

Consider a string of coupled oscillators comprising the masses m and springs of 
stiffness k and length x. Let xn be the coordinate where the nth mass is at rest, and 
let n be its displacement with respect to this rest position (Figure 5.3). 

 k mm 

x 
xn-1 

xn+1xn n-1 n n+1

m m m k k k 

 
Figure 5.3. Propagation on a line of mass-spring oscillators 

The equation of motion for the nth mass can be written: 

02 11 nnnn km  [5.40] 

Consider this string to be a model for a continuous medium with spatial 
discretization xxxxx nnnn ...11 . 

The second spatial derivative can be approximated by: 

2
11

2

2 2

xx
nnn  

such that by letting mkxc 3, equation [5.40] becomes a wave equation: 

0
1

2

2

2

2

2 xtc
 

The propagation of waves results from interactions between the mass of the 
medium and its compressibility (or what is equivalent, its elasticity). In the 
continuous compressible medium, the mass and the elasticity are uniformly 
distributed. 

                                   
3 The reader can verify that stiffness per unit length is k x and mass per unit length is m/ x, 
so that by identifying the mass and the stiffness with corresponding properties of gas pressure 
and specific mass), we obtain the value of the sound velocity Spc .
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5.4. Second order partial differential equations  

5.4.1. Introduction 

We have just shown that a system which flows generally presents at least one 
family of characteristic curves (its trajectories) which correspond to the transport of 
matter and on which there exists a balance relation for the extensive quantities 
(entropy, mechanical energy, etc.). In many practical cases, the flowing fluid may 
possess properties of homogenity, either dynamic (absence of vorticity) or physical 
(constant entropy). If we have strict conservation of this quantity everywhere in the 
flow, then the corresponding partial differential equation can be immediately 
integrated. For example the steady 1D flow studied in section 5.3.2.1 is 
homoentropic, which leads to the existence of the relation p . 

We can thus often obtain a quasi-linear second order partial differential equation 
(i.e. linear with respect to the second derivatives) for one of the quantities of the 
problem by using a system of first order partial differential equations. 

For example, let us assume for the sake of simplicity that the density and 
velocity variations are small enough for the linearization of equations [5.13] to be 
possible in a constant entropy medium: 

0;0
x
p

t
u

x
u

t
 

Using the definition of the speed of sound Spc2 , here assumed to be 
constant on account of the linearization, we obtain the wave equation: 

0
1

2

2

22

2

t

p

cx

p
 

We will now reconsider quasi-linear second order partial differential equations 
with two variables, in a form largely used in practice when a velocity potential exists 
(the homentropic flow of a compressible fluid, waves on the surface of liquids, etc.; 
see Chapter 6). Furthermore, as their characteristic equation is of second degree, it is 
locally of a well-defined type, elliptic or hyperbolic depending on whether the roots 
are imaginary or real. This facilitates a discussion of a problem’s boundary 
conditions. 

Consider the quasi-linear second order partial differential equation with two 
variables: 

DtCsBrA 2  [5.41] 
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with the usual notation:4 

tfsfrfqfpf yyxyxxyx    

The coefficients A, B, C and D are functions of the unknown function f and of its 
first derivatives p and q: 

.,,,,;,,,,
;,,,,;,,,,

yxqpfDDyxqpfCC
yxqpfBByxqpfAA

 

5.4.2.  Characteristic curves of hyperbolic equations  

Because of the practical applications of this formulation, we will reconsider the 
Cauchy problem, which consists here of determining the solution using data for f 
and its derivatives (p,q) on a curve C0 in the plane (x,y). In order to know the 
function f at all points in the neighborhood of the point (x,y) in C0, it suffices to 
know the second derivatives (r, s, t) at that point (we can then calculate the higher 
order derivatives in a similar fashion by successive differentiations of equation 
[5.41]). The functions (r, s, t) satisfy the relations: 

qytxspysxrDCtBsAr ;;2  [5.42] 

or, in matrix form: 

q
p

D

t
s
r

yx
yx

CBA

0
0

2
 [5.43] 

As a function of the known variations qp,  of qp,  on the curve C0 
between the points yyxx ,  and (x, y) on this one, we can generally 
calculate the quantities tsr ,,  at (x, y), except if the characteristic determinant of 
system [5.43] is zero: 

2 2

2
0 0 or: 2 0

0

A B C

x y C x B x y A y

x y

   [5.44] 

                                   
4 In order to simplify the writing in section 4.6 and in any other case when it will be useful, 
partial derivatives / x, / z will be written fx, fz,, a notation that does not allow any mistake 
in mathematical calculations. 
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The directions 
A

ACBB
x
y 2

, solutions of the preceding equation, are 

the characteristic directions tangent at each point to the characteristic curves: 

– if 02 ACB  the roots of the characteristic equation are real and the 
equation is of a hyperbolic kind; 

– if 02 ACB  the roots of the characteristic equation are imaginary and the 
equation is of an elliptic kind; the Cauchy problem always possesses a unique 
solution in the neighborhood of any curve on which the values of the functions (f, p, 
q) are given; 

– if 02 ACB  the characteristic equation possesses a double root, and the 
equation is of a parabolic kind. 

In the hyperbolic case, the determination of (r, s, t), which is non-unique on the 
characteristic curves, is only possible if the system of equations [5.42] is of rank 2. 
There then exists a relation between D, p and q which can be obtained, as 
outlined in the preceding sections, by searching for a vector L which is a left 
solution of the system 0LM , where M is the system matrix [5.43] without the 
right-hand side. We find: 

xCyAyxL ,,  

By multiplying the left-hand side of system [5.43] by L we obtain the following 
relation for each of the solutions ixy  of characteristic equation [5.44]: 

.2,10 i
x
p

x
y

A
x
q

C
x
y

D
iiii

 [5.45] 

Relations [5.45] allow the function f and its derivatives (p, q) to be calculated 
from place to place in the following manner. Consider the subdivision ABDEF of an 
arc of the curve C0 and trace at each of the points the two families of characteristics 

1 and 2 of slope ixy , (i=1, 2). The different families of characteristics 
obtained from A and B intersect at G (Figure 5.4). We obtain relation [5.45] on each 
of the arcs AG and BG, which allows the values of pG and qG to be calculated as a 
function of their values on the curve C0 at A and B. Assuming the arcs to be 
sufficiently small, these relationships can be written: 



228     Fundamentals of Fluid Mechanics and Transport Phenomena 

0

0

22

11

BGBGBG

AGAGAG

pp
x
y

AqqCxx
x
y

D

pp
x
y

AqqCxx
x
y

D

 

the elementary arcs AG and BG having respective slopes 
1x

y
 and 

2x
y

. 

y

Characteristics 1
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Figure 5.4. Domain of influence of the arc AF of the initial curve C0 

The preceding relations uniquely determine pG and qG as a function of the values 
of f, p and q at A and B. We thus see that the initial values on the curve C0 
propagate partially on each of the characteristics by virtue of relation [5.45]. The 
value of f at G is determined by the mean of the finite variations formula between 
the points A (or B) and G: 

AGAAGAAG yyqxxpfff . 

The values f, p and q of the solution of the partial differential equation can thus 
be determined from place to place by the preceding procedure at any point within 
the curvilinear triangle AFM, which is delimited by the arc AF and the arcs AM and 
FM of the characteristic curves: in effect, it suffices for this point to be attained by 
progressing along the two families of characteristic curves starting from the initial 
arc AF. The inner domain of the curvilinear triangle AFM is called the influence 
domain of the arc AF of the initial curve C0. 

This method is not applicable to parabolic equations: by considering the case B 
= C = 0 in equation [5.41], relation [5.44] gives  y= 0, and system [5.45] gives no 
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new relation on the characteristic curves comprising the axis Ox. We will return to 
discuss the parabolic equation in section 5.4.5.4. 

In summary, the solution of the Cauchy problem is always possible for an elliptic 
equation regardless of the choice of initial data. On the other hand, the existence of 
real characteristic curves or surfaces implies a propagation of function values along 
these curves. 

5.4.3. Reduced form of the second order quasi-linear partial differential equation  

We will demonstrate that a second order quasi-linear partial differential equation 
can be locally changed, at all points, to a standard reduced form.  

Recall firstly that a quadratic form 22 2 CnBmnAm  can be written in a 
reduced form by means of an appropriate change of basis. In effect, by considering 
the new variables ( , ): 

fendcm  

the preceding quadratic form can be written as a function of these: 

2222 22 CnBmnAm  [5.46] 

By appropriately choosing the coefficients (c, d, e, f) of basis change, we can 
eliminate  and make equal the absolute values of  and . Let us apply this 
procedure to equation [5.41], which can be associated with the quadratic form 

22 2 CnBmnAm  whose coefficients are functions of the quantities (f, p, q, x, 
y). 

The change of coordinates 

yxfFyxyx ,,),(),(     

transforms equation [5.41] into another equation of the same kind. Showing 
explicitly only those terms containing second order partial derivatives, we have: 
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The left-hand side of equation [5.41] can be written: 

2 2

2 2

2 2 ....

with:  

2

2

xx xy yy

x x y y x y

x x y y

x x y y

Af Bf C f F F F

A B B C

A B C

A B C

 [5.47] 

We can immediately verify the relation: 

222
xyyxBAC    

which shows that the discriminant of the quadratic form retains the same sign after 
the coordinates change. 

The reduction to the normal form can be obtained by letting   and  = 0. 
This last condition is satisfied by letting: 

yxyyxx BAMCBM ..  [5.48] 

By replacing in [5.47] the derivatives of  with the preceding expressions, we 
can show that the coefficient  can be written: 

222222 2 BACMCBABACM yyxx  [5.49] 

Depending on the value of 2BAC , we can distinguish the following cases: 

– Elliptic case: 02BAC . 
Letting 122 BACM , we have . The characteristic equation 

[5.44] does not have a real solution and equation [5.41] is elliptic; as the coefficient 
 is non-zero, the second derivatives can be regrouped in the form of a Laplacian: 

DFFCfBfAftCsBrA yyxyxx ....22
 
 

– Hyperbolic case: 02BAC . 
Letting 122 BACM , we have . The reduced form of the 

equation [5.41] can be written in the form of a wave equation: 

DFFCfBfAftCsBrA yyxyxx ....22 . 
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Another reduced form of the hyperbolic equation can be obtained by 
alternatively choosing the functions  and  to represent the two families of 
characteristic curves ( , ) constx y  and ( , ) const;x y in the place of 
relations [5.48], we let the tangent slopes of these curves equal the roots of 
characteristic equation [5.44] (the characteristic curves are taken as local coordinate 
curves): 

y

x

y

x

x
y

x
y

  ;  
21

. 

It now follows from equation [5.44]: 

022 2222
yyxxxyxy CBAABC  

By substituting the product and the sum of the ratios yx /  and yx / by 
their expressions obtained from the characteristic equation [5.44], we obtain the 
non-zero coefficient  defined by [5.47]: 

A
B

CCBA yyyyxyyxxx

2
2  

Equation [5.41], now considering the characteristic curves, can be written: 

'DF  

where D' is a function of coordinates, and of the values of F, and of its first 
derivatives. 

–Parabolic case: 02BAC . 
We take  such that 01 yx  

to obtain  = 0; it follows that  = 0; and 
the normal form of the parabolic equation is then: 

...F D  

We will return to the properties of the parabolic equation when we consider it in 
terms of constant coefficients (section 5.4.5.4). 

NOTE – As pointed out (section 5.4.1), we have verified that second order partial 
differential equations no longer have characteristic curves which represent 
trajectories, even though they do represent flows. 
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5.4.4. Second order partial differential equations in a finite domain  

5.4.4.1. The significance of the Cauchy problem 

In systems of quasi-linear partial differential equations, we can have mixed 
situations: for example, the flow of the incompressible fluid discussed in section 
5.3.2.2 only represents a single family of characteristic curves, on which only 
mechanical energy is transported, but no other quantity propagates. On the other 
hand, the quasi-linear second order partial differential equations lead to two 
principal kinds of local situation: 

– second order elliptic equations always possess a solution to the Cauchy 
problem, which implies that the initial data have a significant influence on the 
solution in their neighborhood; 

– hyperbolic equations lead to a double structure associated with two families of 
characteristic curves on which the initial information is transmitted. 

While elliptic equations distribute information in all directions, hyperbolic 
equations transmit it along the “fibers” of two bundles of curves. However, as the 
elliptic or hyperbolic character is a local property, an equation can be hyperbolic in 
one region of space and elliptic in another. 

Our discussion of the Cauchy problem shows us that the simultaneous presence 
in a flow of subsonic and supersonic zones leads to very different modes of 
transmitting information and to certain contradictions; this results in important 
difficulties regarding the boundary conditions which must be imposed, which are 
different in the two cases (section 5.4.5). This situation often leads to the presence of 
shock waves. We will consider a simple example by studying the flow of a 
compressible fluid in a nozzle (section 5.5.4). 

The understanding of these situations and of these properties is particularly 
important, not only for the discussion of physical phenomena, but also for numerical 
calculations whose algorithms must be chosen such that numerical information is 
transmitted in a manner which is compatible with the general properties which we 
have just outlined. 

5.4.4.2. Constant coefficient second order partial differential equations  

When the coefficients A, B and C are constants, the nature of the partial 
differential equation is identical in all parts of the domain studied. 

Constant coefficients elliptic equations with no right-hand side can be expressed 
as a Laplace equation: 
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This equation is encountered in problems of potential flow of incompressible 
fluids, and in problems of thermal conduction or mass diffusion in steady flows. The 
presence of a right-hand side (Poisson equation) implies the existence of sources for 
the quantities studied. 

Constant coefficients hyperbolic equations with no right-hand side take the form 
of the wave equation: 
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in which the y variable is often the time. The characteristic curves are the straight 
lines constantxy  and constantxy  By performing the change of 
variables ,, yx , the equation can be written: 

0
2 f

 

Its general solution can be written using two arbitrary functions  and : 

yxyxf ,  

The reduced form of the parabolic equation is the heat equation: 

0
2

2
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f
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f
 

in which the y variable is very often the time. 

5.4.5. Second order partial differential equations and their boundary conditions 

5.4.5.1. Introduction 

As physical problems do not usually occur in the form of a Cauchy problem, on 
account of the presence of boundaries (walls or other surfaces) surrounding more or 
less completely the fluid domain under study, and on which we must impose specific 
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conditions. The properties discussed in the preceding sections regarding the 
characteristic curves or surfaces show that these depend on the nature of the system 
of partial differential equations. We will first examine the case of a quasi-linear 
second order equation with constant coefficients. 

5.4.5.2. Elliptic equations  

The Cauchy problem, which involves specifying the function values and its first 
derivatives on a curve C0, generally allows the unique determination of the solution 
in the neighborhood of this curve C0. However, physical problems are not given in 
this way for elliptic equations, and we generally have a problem posed in a domain 
on the boundary of which are given either: 

– the unknown function (Dirichlet problem); 

– the function’s normal derivative at the boundary (Neumann problem); 

– or a mixed condition in the form of a linear relation between the function and 
its normal derivative (mixed problem). 

Problems involving heat conduction in a steady flow regime have already been 
discussed in section 2.3.2. Steady subsonic flow of an inviscid fluid about an 
obstacle is a Neumann problem (Chapter 6). 

Elliptic problems cannot deal with propagative phenomena; they can generally 
only represent steady phenomena or unsteady situations where propagation plays a 
negligible role (domains which are small compared with a wavelength for example). 
We will come back to discuss this point on numerous occasions. 

In the case of the Neumann problem, a compatibility condition exists as a result 
of Otrogradski’s theorem. For example, the Poisson equation of a steady 2D heat 
conduction problem in a domain D of the plane (x,y): 

TTgraddiv  

imposes on the curve C, which bounds D, the integral condition: 

D TDCC dsdsTgraddivdnTgradd
n
T

.  

This expresses the global conservation of energy, where the thermal flux 
crossing the curve C must be equal to the thermal power generated in D under 
steady conditions. 
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Under usual conditions, the solution of an appropriately posed problem, of one 
of the preceding kinds (Dirichlet, Neumann or mixed), is unique and elliptic 
equations do not lead to difficulties, provided of course that they correctly represent 
the physical problem studied. 

5.4.5.3. Hyperbolic equations  

For equations of this kind, the discussion of section 5.4.2 outlined the ideas of 
propagation and influence domain. The concept of the Cauchy problem is here 
degenerated to a certain extent, due to the structure of the solutions. As already 
discussed in section 5.2.4, the initial data have no influence in transverse directions 
with respect to the characteristic curves. 

In addition to the initial conditions, we often impose other boundary conditions. 
For example, the presence of an obstacle in a flow leads to the conditions 

0nf  on its wall, associated with the equation for the velocity potential f. This 
condition leads in particular to a reflection of waves on the considered wall, an idea 
which we will encounter for diverse phenomena (acoustic, supersonic flows, etc.). 

In practice, the Cauchy problem is rather academic, as physical problems are 
always posed in limited domains at the boundaries of which the boundary conditions 
are generally defined by external data. However, its study (section 5.4.2) has 
allowed us to define the characteristic curves and to show that these strictly limit the 
influence domain of conditions given on a bounding curve. Conversely, the value of 
an unknown function at a point M cannot depend on data outside the influence 
domain formed by the characteristic curves which arrive at this point (Figure 5.5). 
The notion of information transmission is closely associated with these 
considerations: the characteristic curves constitute the means of information transfer 
in the medium considered. 

 

C2 

M 
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D
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Figure 5.5. Domain D influencing the value of the unknown function f in M 

The boundary conditions associated with the wave equation can often be 
considered as initial conditions. However, the direction of travel of the characteristic 
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curves is not important for a wave equation which is invariant if the time direction is 
changed (section 1.1.1.3). Figure 5.5a shows an example of initial data for an 
acoustic problem (given at time t = 0), while Figure 5.5b corresponds to velocity 
data given for a supersonic steady flow in the plane (x,y) (which can be reduced 
under certain particular conditions to a wave equation). 

5.4.5.4. Parabolic equations  

We have seen in section 5.4.2 that a double characteristic curve exists on which 
there is no longer a propagation relation. Taking it as a coordinate curve, we obtain a 
heat equation [5.50] (see section 5.4.3) whose behavior we will study (we let t be the 
parabolic variable y which we will interpret as time): 

t
f

x

f
2

2
 [5.50] 

We have already seen, in section 1.1.1.4, the consequences of asymmetry 
between the variables x and y; in particular, the variable y must evolve towards 
increasing values (from past to future, or from upstream to downstream, etc.). 

We will now treat the problem of a thermal shock5 in a semi-infinite medium. We 
will let f be the temperature in equation [5.50] and consider the thermal problem 
which corresponds to a unit temperature step function imposed at the initial instant 
 t  0, at the origin x  0 of a semi-infinite medium )0(x , initially at temperature 
 f = 0. We impose therefore the boundary conditions: 

1),0(00
00,00

tftx
xftx

 [5.51] 

The scales X and Y corresponding to the variation F of f in [5.50] are: 

 

The preceding estimate leads to the definition of the variable tx 2  and 
we look for a solution of the form6 txf , . Substituting this function into 
equation [5.50], we have: 
                                   
5 The word “shock” is relative here to an initial condition and not to a discontinuity appearing 
in the solution. 
6 We have here a self-similar solution, i.e. which is invariant with respect to a group of affine 
transformations. Flow equations, which are exact or approximate for high Reynolds numbers, 
can have such solutions ([SCH 99], [YIH 77]). 
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0'2'' ff  

from which we obtain: 

2exp' Af  

Taking account of boundary conditions [5.51] leads to: 

2

2

2( , ) exp (- ) 1 ( 2 )
x t

f x t du erf x tu  [5.52] 

with:  
 

2

0

2 exp (- )  ( 1)
x

erf x du erfu .

 
Figure 5.6 shows the temperature diffusion imposed at the origin, whose 

influence can be felt in a zone, whose width, in the order of X, is proportional to t1/2 
(curves 1 to 4 for different increasing times). The dimensional presentation of the 
problem will be treated in section 8.3.2.2.2.  
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Figure 5.6. Influence zone of a unit step function (of temperature) imposed at the origin 

We thus see that the behavior of the parabolic differential equation lies 
somewhere between that of the hyperbolic and elliptic equations: 

– the double characteristic curve is a preferred axis for the transmission of 
information; 

– the form of solution [5.52] shows an instantaneous action at all points of the 
axis Ox: the notion of propagation has completely disappeared; 

– we have “diffusion” (transverse spreading) of the initial data about the 
characteristic curve. 
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The same initial boundary conditions applied to the wave equation would lead to 
an acceptable solution for negative values of y, which is not the case here: the heat 
equation describes an irreversible phenomenon, in other words the impossibility of 
reversing the time direction (section 1.1.1.3). 

5.4.5.5. Mixed equations  

In section 5.4.2 we saw that, depending on the quantity 2BAC , quasi-linear 
partial differential equation [5.43]: 
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can be either elliptic, hyperbolic or parabolic. The nature of the solution depends 
therefore on the local coefficients value. The simplest example of a mixed equation 
is the Tricomi equation: 
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For negative values of x this equation is elliptic, while for positive values, it is 
hyperbolic. It is a summary model of the situation described in section 5.3.2.3, 
where, in a subsonic flow, the problem is elliptic, while a supersonic flow has a 
hyperbolic character. The passage from a subsonic flow to a supersonic flow 
happens in a transonic range, which may be locally represented by a Tricomi 
equation (the passage from the reduced form of the elliptic equation to the reduced 
form of the hyperbolic equation assumes that a coefficient changes sign when going 
to zero): 

 
elliptic 
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O

 

 Figure 5.7 Mixed problem (Tricomi equation) 

Consider a flow such that it is subsonic for negative values of x and supersonic 
for positive values. We assumed that the speed of sound is attained by the flow 
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velocity at x = 0. Determination of the solution in the elliptic zone is possible using 
the boundary conditions on the curve C0 (Figure 5.7) and the condition 

02BAC  here corresponds to sonic velocity on the boundary x = 0 between the 
subsonic zone and the hyperbolic zone. In the supersonic zone, the flow is 
determined by the upstream conditions. So, as any real subsonic flow is generated 
by an ensemble of conditions upstream and downstream, the presence of a 
supersonic zone leads to a contradiction corresponding to the presence of shock 
waves, which we will now examine. 

Note that the coefficients of partial differential equation [5.42] are not only a 
function of the coordinates, but also of the unknown function and its first 
derivatives. Contrary to the Tricomi equation, the nature of the equation and the 
(associated) boundary conditions that must be associated are not easily predictable 
in general, as they depend on the solution values. 

5.5. Discontinuities: shock waves  

5.5.1. General considerations  

The presence of shock waves may feature in the varied conditions of supersonic 
flows of compressible fluids. We will show, using examples, that the existence of 
characteristic curves or surfaces and the nature of the solutions to the hyperbolic 
equations lead to the possibility of discontinuities. 

We will first of all study two examples (1D flow of an inviscid compressible 
fluid and steady supersonic flow) for which a discussion of the characteristic curves 
leads to the impossibility of a continuous flow. We will then consider a steady 1D 
flow of an inviscid fluid in a nozzle which is governed by a differential equation 
which again shows the necessity of shocks. 

5.5.2. Unsteady 1D flow of an inviscid compressible fluid  

 Let us take the example of a one-dimensional flow of a compressible fluid 
verifying equations [5.13] (section 5.3.2.1). The characteristic transport curve 

utx  ensures constant entropy at all points, which leaves only two 
independent variables p and u. This condition leads to the relations: 
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in which  (p0 , 0) are the initial conditions of the fluid for a zero velocity. 

Let us now apply the method of characteristics on a grid discretized as defined in 
section 5.4.2. Starting from two neighboring points R and S whose physical 
quantities (pR, uR) and (pS, uS) are known, and which are not located on the same 
characteristic curve (Figure 5.8a), we trace out two characteristic curve segments 
with respective slopes u  c  which intersect in plane (x, t) at the point T whose 
the values of the unknowns (pT, uT) are calculated using the relations 

0ucp  (with notations of section 5.4.2) taken on the previous curves 
segments. These are written: 

0;0 STSSSTRTRRRT uucppuucpp  

These relations can be used for calculation of the values (pT, uT) for pressure and 
velocity at point T. At first order, we can take ccc SSRR , so that we have: 

1 1 1
2 2T R S S R T R S S Rp p p c u u u u u p p

c
 

We can then deduce from thermodynamic relations with constant entropy, the 
specific mass T and the sound velocity cT at point T. 

Let us consider the case where pressure and velocity take uniform values on the 
characteristic curve issued from point R, which having then a constant slope c + u, is 
a straight line. If R' is a neighboring point of R on this characteristic curve, at point 
T and at the intersection T' of characteristic curves issued from R' and S, we have:  

.0;0 '''' RTRTRTRT uucppuucpp  

Taking out the first relation from the second relation, we obtain the relation on 
characteristic curve of slope  c + u: between points T and T':   

0'' TTTT uucpp  

So, between points T and T' we obtain the relation on characteristic curve of 
slope c + u:  

0'' TTTT uucpp  

We then obtain the relation: 
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0'' TTTT uucpp   

which shows that pressure, velocity and sound velocity values are the same at points 
T and T'. Going on from place to place on characteristic curve of slope cS + uS 
issued from S, we see that the flow properties are identical along this curve, which is 
also a straight line. The corresponding flow (a simple progressive wave) is then 
characterized by the propagation along axis Ox with velocity cS + uS of pressure p 
and velocity u variations between the two characteristic curves going through R 
and S. These variations verify the relation: 

ucp   

The previous calculation can be continued on the next characteristic curves of 
the same family which will possess the same property of simple progressive waves. 
The reader can easily show that another family of simple progressive waves exists 
associated with the other family of characteristic curves of slope  c + u. For these 
waves, propagating towards the negative part of axis Ox, we have the relation 

ucp . 
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Figure 5.8. (a) Application of the characteristics method and evolution of the 
 characteristic straight lines for a decreasing pressure (or a negative velocity); 

(b) evolution of the velocity at the points O, C and F 

Now consider the domain formed by the first quadrant of the plane (x, t) with the 
following boundary conditions: 

tUtutPtpxt
xupxpxt

,0,00:0
00,0,0:0 0  
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The domain thus defined is the influence domain of the given conditions on the 
positive sides of the axes Ox and Ot. The positive side of the axis Ox is at rest at the 
initial instant and we apply pressure and velocity variations at the origin x = 0, as a 
function of time, which will then propagate on the Ox axis. 

As previously, we can apply the method of characteristics by starting from the 
points O, A, B, C, D, E,…,P, Q, etc., of the Ox and Ot axis (Figure 5.8a), and 
calculating the values of the unknowns p and u using the relations 0ucp  
taken on appropriate segments of the characteristic curves of slopes . c+ u   

However, the initial state, being uniform and at rest, can be considered as a 
regime of simple progressive waves. Indeed, by applying previous relations on 
characteristic curves issued from points A, B, C, D, E, etc., we see that the initial 
rest data are transmitted to points H, I, etc., on the straight lines issued from 
previous points on all parts of the plane above the straight line x = ct + OA. 

Previous results show that propagation can only proceed with simple waves for 
increasing times. It can be verified that the values (pO, uO) at point O are also 
obtained from place to place for all points of the characteristic curve x =cO t issued 
from O, on which the fluid state is uniform. Calculation is then carried out at points 
P, Q, etc., of axis Ot, and it can be seen that we have a flow with simple progressive 
waves, propagating on the characteristic straight lines of a positive slope.  

The difference of pressure and velocity values between two neighboring 
characteristic curves verify the relation ucp  of simple progressive waves. 
This condition must be verified at points P, Q, etc., of axis Ot, so as not to create an 
inverse propagation towards negative times on characteristic curves of negative 
slopes: this should be not acceptable according to the physical aspects of problem. 
This compatibility condition is a consequence of the definition of the initial data 
curve itself, since there exist characteristic lines of a negative slope issued from axis 
Ox intersecting axis Ot, which involves the relation ucp .  

The simplest practical realization of the preceding flow involves imposing a 
suitable velocity on the fluid matter by means of a moving piston. We will leave it to 
the reader to determine the domain thus defined in the plane (x,t) for this Lagrangian 
condition (we consider the trajectory of the piston). 

When the pressure and velocity variations are negative and decreasing 
(expansion), the slope of the characteristic lines is a decreasing function of time 
(Figure 5.8a). These divergent straight lines thus form the shape of a fan, which 
involves a broadening of the wave front as it propagates; Figure 5.8b shows the form 
of the temporal velocity variation at the origin O, and then at points C and F.  
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Figure 5.9. (a) Application of the characteristics method and evolution of 
 the characteristic straight lines for a positive and growing variation of pressure  

(or velocity); (b) evolution of the velocity t the points O, C and F 

On the other hand, when the pressure and velocity variations are positive and 
increasing (compression), the slope of the characteristic lines is an increasing 
function of time (Figure 5.9a). They thus form a beam of straight lines which tighten 
and finally intersect. This situation leads to a compression of the wave front as it 
propagates, which eventually leads to a discontinuity. Indeed, we note in this last 
case that it is impossible (equation [5.44]) to have more than one characteristic curve 
of each family at a given point. The result of this is that a continuous solution cannot 
exist everywhere in the influence domain of the boundary conditions which are 
specified. A discontinuity thus appears (a shock wave) downstream of which the 
calculation of the solution can only be achieved using the conditions which result 
from the shock wave. Figure 5.9b shows the form of temporal variation at the origin 
O, and then at points C and F. 

The formation of a shock wave can be physically explained in the following 
elementary manner: the increasing pressure can be decomposed into a succession of 
elementary (acoustic) waves which propagate at the speed of sound. Each of these 
elementary waves corresponds to an isentropic compression which increases the 
temperature, and thence the speed of sound. Each elementary wave will thus travel 
slightly faster than its predecessor, which it will finally catch. These waves are thus 
concentrated at a point where they form a discontinuity. It is clear that when the 
pressure decreases, an inverse process occurs: the elementary waves are spread out. 
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5.5.3. Plane steady supersonic flow  

We have already studied this flow in section 5.3.2.3, and so we will limit 
ourselves here to a qualitative discussion. Consider a uniform homentropic flow next 
to a wall in a semi-infinite medium (Figure 5.10). 

 

Figure 5.10. Plane supersonic flow around (a) a convex wall  
and (b) a concave wall  

Bernoulli’s first theorem is valid everywhere in the flow, as are the Saint-Venant 
and Hugoniot relations (section 4.3.2.3). The characteristic curves form an angle  
with the streamlines, defined by M1sin . 

If the wall is convex (Figure 5.10a), the streamlines spread and the density 
decreases while the velocity V  increases (supersonic expansion, section 4.3.2.3.4). 
The velocity (direction and modulus) propagates from the wall along the 
characteristic of a positive slope, and which is the only characteristic of consequence 
here (straight line CA, CB,… … from A, B, etc.); the Mach number thus increases 
and the angle  decreases in the downstream direction. Similar to the previous 
example, we see divergent characteristics straight lines. 

In the presence of a concave wall, an inverse situation occurs: the streamlines 
tighten up, leading to a reduction in the velocity associated with a compression; the 
Mach number decreases, and the characteristic lines intersect. Thus, a shock wave is 
formed (Figure 5.10b). 

5.5.4. Flow in a nozzle  

A nozzle is a truncated conduit comprised of a convergent section followed by a 
divergent section (Figure 5.11). When it separates two independent gaseous spaces, 
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it supports a flow between an upstream region at pressure pA and a downstream 
region at pressure pE (pE < pA). We will assume that viscous friction effects at the 
nozzle walls are small enough to be negligible up to the exit. The flow exiting from 
the nozzle is thus in the form of a jet; the main viscous dissipation corresponds to 
the energy loss due to the pressure difference; this dissipation occurs in the jet 
downstream of the nozzle exit. Experience shows that we can consider that the 
pressure in the exit plane is equal to pE as long as the jet is subsonic. 

Assuming that the quantities associated with the gas are constant in a normal 
section, the Saint-Venant relation (section 4.3.2.3.3) provides an expression for the 
velocity as a pressure function using the generation conditions (initial conditions at 
zero velocity in the upstream domain) and in particular the velocity VE in the exit 
section SE. The isentropic transformation relation ( y

p constp ) determines the 
density E in the exit plane. From this we can deduce the mass flow EEEm SVq  
in the nozzle. 

However, we have shown (section 4.3.2.3.4) that a stream tube resulting from a 
given set of generation conditions has a maximum flow rate cccm SVq max  
which occurs when the speed of sound c is attained in the smallest cross-section. We 
are thus faced with the following alternative: 

– either the flow rate qm evaluated at the exit plane is less than or equal to qm max 
and we can calculate the continuous flow in the nozzle; 

– or the flow rate qm evaluated at the exit plane is greater than qm max and the 
problem thus posed does not have a solution. 

In the first case, the Hugoniot relation [4.39] in its differential form (section 
4.3.2.3.4) shows that the velocity increases in the convergent part of the nozzle up to 
a value which is at most equal to the speed of sound c* at the throat, and which then 
decreases such that its value at the exit plane VE is that previously predicted. The 
flow is then everywhere subsonic (V < c). Figure 5.11 shows the pressure variations 
(contrary to the velocity variations) in the nozzle for regimes 1, 2 and 3 which are 
entirely subsonic. For pressures pE1 and pE2, the velocity at the throat Vmax is less 
than the speed of sound, while for the pressure at the exit pE3 the throat velocity is 
equal to the speed of sound c*. 
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Figure 5.11. Flow regimes in a nozzle 

In the second case, the flow in the convergent part of the nozzle is subsonic, then 
it becomes supersonic after passing through the throat where the velocity magnitude 
is equal to the speed of sound c* and the critical conditions (p* and *) are attained. 
However the continuous supersonic solution, calculated using the Saint-Venant 
relation in the exit plane using the generation conditions, is unique. It provides the 
value pEsup for the exit pressure, which is not equal to the exit pressure imposed pE. 

However, the supersonic flow in the nozzle must match the exit conditions. This 
adaptation is achieved by means of a shock wave. So long as the shock wave 
remains within the nozzle, it is plane (from pE3 to pE7 in Figure 5.11). For lower 
pressures (pE sup < pE3 < pE7) we have a more or less complex system of shock 
waves in the jet (under-expanded jet). For pE less that pE sup, the adaptation is 
achieved by means of expansion waves (over-expanded jet). 

The idea of characteristic curves and of propagation do not hold for the 
differential equation of the 1D model nozzle. We note only the non-existence of a 
continuous solution which verifies the boundary conditions at the exit. In fact, the 
flow in the nozzle is governed by the models outlined in section 5.3.2.3: 

– for the subsonic part of the flow, the system of partial differential equations is 
elliptic and the flow is determined by the boundary conditions on all boundaries. Its 
solution assumes Neumann conditions which are here known in the upstream region, 
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on the walls and in the exit section of the subsonic flow: depending on the regime, 
this is either at the nozzle exit or at the throat; 

– from the throat of nozzle in the sonic regime, and up to the shock, the subsonic 
flow is governed by the 2D plane mode discussed in section 5.3.2.3, the fluid being 
assumed to be isentropic. The supersonic zone of flow belongs to the influence 
domain of the “upstream” conditions (section 5.4.5.3) which are here situated at the 
sonic throat. An exit condition cannot influence the supersonic flow, as the 
information cannot move upstream due to the characteristic curves which all have 
slopes 212 )1(M . In these conditions no continuous supersonic solution can 
account for the conditions at the exit. 

The specific characteristics of the plane 2D supersonic model also generally 
correspond to the 1D model whose behavior is appropriate but without explaining 
the difficulties: we observe that data given at two conditions, one at the throat and 
the other at the exit, leads to an impossibility because of the existence of a singular 
point for M = 1 in [4.38] and [4.39]. Such difficulties are often encountered in fluid 
mechanics, where a global model can lead to contradictions (or to “paradoxes”) that 
only a more refined model can explain. 

The shock wave is a boundary between two spaces which cannot communicate 
completely, the upstream space not being able to receive information regarding the 
pressure at the exit. However, matter crosses the shock wave and the balance 
equations for the extensive quantities must be satisfied through the shock. 

In conclusion, a continuous solution of the 1D equations does not usually exist in 
isentropic compressible fluid, for a nozzle whose throat velocity is sonic (critical 
velocity). From a physical point of view, we could also consider that the shock wave 
comprises an accumulation of pressure waves which travel from the downstream 
and which stop when they can no longer do so. 

The shock wave is a dissipative structure which leads to an increase in entropy 
([LAN 89], [YIH 77]), viscosity playing an important role at the scale of the mean 
free molecular path, for which a continuous viscous model is appropriate for the 
shock wave. 

Let us finish by highlighting a particularly useful application for nozzles 
operating in the supersonic regime whose mass flow is fixed and depends only on 
the upstream conditions. Such a nozzle, placed upstream of an installation, perfectly 
regulates the flow if the upstream generation conditions are fixed, which is often the 
case in laboratory situations: downstream perturbations can have no influence on the 
mass flow of the device. The pressure loss of such a nozzle is relatively small (  104 
pascal). 
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5.5.5. Separated shock wave  

A problem of the same kind is posed by a supersonic flow around an obstacle 
which imposes boundary conditions which cannot travel upstream in the supersonic 
flow. In particular, upstream of the obstacle there exists the stagnation point A, 
where the velocity is zero, and therefore a subsonic zone of flow in the region near 
the surface. 

A

shock wave

supersonic zone subsonic zone  

Figure 5.12. Detached shock wave in front of a body in a supersonic flow 

Similar to the case of the nozzle, the adaptation of the supersonic flow to 
downstream conditions occurs by means of the shock wave. 

5.5.6. Other discontinuity categories 

Combustion phenomena in gaseous flows obey the fluid dynamics equations 
which we have already discussed in Chapter 4. We must however introduce the 
properties of chemical reactions using the methods of chemical thermodynamics 
which must be applied to the moving matter. Without containing new physical 
phenomena, the formalism obtained combines the difficulties of the two domains. 
We cannot address these questions in detail in this book (see [BOR 00], [KIR 67], 
[OPP 06], [WIL 65], [WIL 85]). Schematically, the possibility of a chemical 
reaction amounts to the introduction of a heat source associated with a local increase 
in temperature: we thus notice that a shock wave can trigger a chemical reaction 
which can augment its effects considerably, transforming the shock wave into a 
detonation wave.  

Other domains of fluid mechanics also involve hyperbolic equations. Such is the 
case for flows including a free surface (see section 6.2.6) in which we observe the 
propagation of surface waves (swell in the sea) and flows of stratified fluids (vertical 
distribution of density) which present similar properties. We encounter analogous 
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phenomena to those discussed for a gas, and in particular the possibility of 
discontinuities called hydraulic jumps [YIH 77] or tidal bores in estuaries which 
propagates against flowing water.  

5.5.7. Balance equations across a discontinuity  

A velocity discontinuity undergone by a material body in movement assumes 
infinite external forces and (finite) inertial effects associated with non-Galilean 
reference frames are therefore neglected. The equations for the shocks and collisions 
can be written in any reference frame, both in particle or solid body mechanics and 
in the dynamics of continuous media. 

We will consider a discontinuous surface which is crossed by matter in 
movement and we will designate by the indices 1 and 2 the upstream and 
downstream quantities of the discontinuity. We apply the balance equations in 
global form in a thin volume D comprised of two parallel surfaces at the 
discontinuity S, of area ds and with normals oriented towards the exterior (Figure 
5.13). The indices n and t designate the velocity components normal and tangent to 
the surface of the discontinuity. 

 
 1  2p1, 1,T1 p2, 2,T2

1V
2V

 D 
ds

1n

2n S  

Figure 5.13. Balance on a discontinuity surface (shock)  

We now write the balance equations for the extensive quantities in global form 
(section 4.5) in the domain D for the following quantities: 

– mass (section 4.5.2): 

nn VV 2211   [5.53]  

– momentum (section 4.5.4): 

ntnt

nn

VVVV

VpVp

222111

2
222

2
111   [5.54]  
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– total energy (enthalpic form) (section 4.5.6): 

22

2
2

222

2
1

111
V

hV
V

hV nn  [5.55]  

– chemical species (i =1,2 …):  

niinii VV 2211   [5.56]  

We can immediately deduce the continuity of the tangential velocity components 
across the shock: 

tt VV 21   [5.57]  

NOTE – In the presence of a chemical reaction on the surface S (detonation or 
deflagration wave), balances [5.55] and [5.56] take the following form: 

niiminiir VQV
V

hQ
V

h 2211

2
2

2

2
1

1 22
 [5.58] 

where, Qmi and Qr denote the mass of species i and thermal surface power released 
by the chemical reaction for the mass flux nV11  crossing the shock S, the 
enthalpies hi being taken as equal to Cpi Ti for perfect gases (“sensible enthalpy”). 

5.6. Some comments on methods of numerical solution 

5.6.1. Characteristic curves and numerical discretization schemes 

The numerical resolution of a system of first order differential equations with 
initial conditions (Cauchy) given at a point can be achieved from place to place: by 
discretizing the first derivatives, we calculate the value of the unknown vector 
function at a point using the values at the previous point. However, we often have 
conditions on either extremity of an interval instead of Cauchy conditions, in 
particular when the system is associated with a flow between solid boundaries. We 
therefore often use a shooting method: the missing initial values are determined by 
successive approximations so as to obtain suitable values at the other extremity of 
the interval. 

Such an iterative procedure presents the advantage of not involving the inversion 
of a large matrix. 
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A numerical solution consists of replacing equations of a differential kind with 
finite difference algebraic equations obtained by means of a discretization of the 
derivatives which can be performed in many different ways which we will quickly 
evoke further. By way of a simple example, consider the transport equation in which 
the velocity u is constant: 

0
x
f

u
t
f

 [5.59] 

The axes Ox and Ot are discretized with step-sizes x and t such that x = u. t. 
We will here approximate the derivatives by formulae using the values at two points. 
We calculate the partial temporal derivative using the formula: 

1,,
1

, nnnnnn txftxf
t

tx
t

f
 [5.60] 

We approximate the spatial derivative 
x
f

 at the point xn by its value at the 

instant tn-1, 1, nn tx
x
f

 such that we have a simple, explicit scheme for the 

discussion. Take as an approximation of 1, nn tx
x
f

 one of the following 

schemes, which are apparently locally equivalent: 

– upwind scheme: 1111 ,,
1

, nnnnnn txftxf
x

tx
x
f

; 

– downwind scheme: 1111 ,,
1

, nnnnnn txftxf
x

tx
x
f ; 

– centered scheme: 11111 ,,
2

1
, nnnnnn txftxf

x
tx

x
f . 

Substituting these expressions into [5.59] we can calculate the value of the 
function nn txf ,  as a function of its values at the instant tn-1 at the points next to 
the axis Ox. We obtain for the different schemes: 

– upwind scheme: 11,, nnnn txftxf ; 

– downwind scheme: 111 ,,2, nnnnnn txftxftxf ; 
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– centered scheme: 

11111 ,
2
1

,
2
1

,, nnnnnnnn txftxftxftxf . 

Figure 5.14 schematically shows the transmission of numerical information 
between the points of the discretized network for the three numerical schemes. 

   

x n   x n - 1 x n+1   

x   

t n - 1   

t n   

xn xn-1 xn+1   

x   

tn 

tn-1 

xn xn-1 xn+1 

x 

tn 

tn-1 

(c): centered scheme   (b): downwind scheme (a): upwind scheme   

t   t t 

 

Figure 5.14. Transmission of information in the numerical resolution 
following different discretization schemes 

Now, equation [5.59] is hyperbolic and its characteristics are the straight lines 
,x ut const  which are trajectories of the uniform velocity field u. To simplify 

matters, the discretization ( x = u. t) was chosen such that these straight 
characteristics pass through the points of the computation. Let us examine a 
particular case of the problem, defined by the boundary conditions which 
corresponds to transport at velocity u of a unit step function from the origin in a field 
with zero initial values: 

0,     0:    ( ,0) 0
0,     0:    (0, ) 1

t x f x

t x f t
 [5.61] 

Table 5.1 indicates, on each line, the numerical values obtained by means of the 
three numerical schemes for the six points on the axis Ox at the six first instants (0, 

t, 2 t, 3 t, etc. from the bottom of the table). 
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1   1   1   1   1   1 1   0   0   0   0   0 1.0   1.312  1.875  1.156  0.312  0.031 
1   1   1   1   1   0 1   0   0   0   0   0 1.0   1.500  1.375  0.500  0.062 0 
1   1   1   1   0   0 1   0   0   0   0   0 1.0   1.375  0.750  0.125  0        0 
1   1   1   0   0   0 1   0   0   0   0   0 1.0   1.000  0.250  0         0        0 
1   1   0   0   0   0 1   0   0   0   0   0 1.0   0.500  0         0         0        0 
1   0   0   0   0   0 1   0   0   0   0   0 1.0   0         0         0         0        0 
(a) upwind scheme (b) downwind scheme (c) centered scheme 

Table 5.1. Calculated evolution of the function txf ,  for three numerical schemes 

The downwind scheme cannot transmit the numerical values in the direction of 
the flow. It is contrary to the physical nature of the problem studied. Regardless of 
the values specified on the straight line x = 0, we will have a discontinuity between 
these and the values of the function f on the neighboring points. 

The centered scheme transmits boundary condition information at 0x  in a 
partial and deformed manner: if the upstream and downstream values are very 
different, this scheme will favor the larger, and this may lead to numerical 
oscillations. 

These examples, albeit rather rudimentary, show clearly that it is not simply by 
increasing the order of the numerical schemes that we can hope to improve the 
results. The material balance can only be assured by ensuring the transfer of 
information along the trajectories u – ct = const. 

Regardless of the nature of a flow, the characteristic curves constitute privileged 
lines of information transmission and any numerical scheme which does not 
completely respect this constraint will lead to divergence and instability of the 
computation. As the trajectories and the characteristic curves of wave propagation 
are generally unknown, the respect of this condition introduces notable 
complications. 

5.6.2. A complex example  

We will now consider the more complex practical case of an unsteady 1D 
inviscid compressible flow governed by the equations of section 5.3.2.1. Let us 
indicate the experimental conditions of the problem modeled. The supply pipes of a 
thermal engine are dimensioned such that the quantity of air supplied is maximum at 
a suitable operating condition. The amplitudes of the velocity pulsations may be 
large on account of acoustic resonances which are contrived in order to ensure the 
maximum air supply. The air entropy is not uniform as it issues from zones which 
may be more or less heated, but thermodynamic transformations are isentropic. 
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We have instantaneous measurements of the pressure txp ,  and the velocities 
txu ,  at the extremities 0x  and x =  of the pipe system studied. We wish to 

calculate the distribution of physical quantities in the pipe (pressure, velocity, 
entropy, etc.) from the said measurements. The calculation domain was discretized 
and different high precision calculation methods were employed. As a general rule, 
with the exception of method of characteristics, these all led to the production of a 
numerical shock for the entropy values. 

The three families of characteristics defined in section 5.3.2.1 for this system are: 

– characteristics C1: 0tux   with: 02cp ; 

– characteristics C2: 0tucx   with: 0ucp ; 

– characteristics C3: 0tucx   with: 0ucp . 

These are shown in Figure 5.15 with their domain of influence: the families C1 
and C2 transport their associated characteristic variables from the axis x = 0, whereas 
the family C3 leads to the propagation of its characteristic variable 0ucp  

at the speed – c + u from the straight line x = . The characteristic variables are, by 
their nature, “input” variables in the region where their associated characteristic 
curves enter the domain. Their associated “exit” values at the other extremity of an 
interval cannot be given conditions without being in contradiction with the 
mathematical structure of the system of equations. 

 t 

 

A 

C3 C2

C1

B 

x
 characteristic curve C1: 0tux  
 characteristic curve C2: 0tucx  
 characteristic curve C3: 0tucx  

O 

 

Figure 5.15. Characteristic curves of an unsteady, subsonic, 1D flow  
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The boundary conditions concerning p and u at the extremities of the interval 
[0, ] are thus the sum of the “entry” data and the “exit” values: the values of p and u 
at the point A are initial conditions to be given on the characteristics C1 and C2, and 
the result of propagation on the characteristic C3. The situation is similar at point B, 
but with a single datum on C3. Laying down three conditions on p and u at x = 0 

and x =  amounts to an implicit specification of the “entry” conditions on the three 
families of characteristics C1, C2 and C3. In order to correctly lay down the 
problem, it is thus necessary to specify the suitable information (as a function of 
time), i.e., preferentially, two boundary conditions on the left 0x  and one 
boundary condition on the right x . These boundary conditions are 
combinations of the “to be given” characteristic variables (entry variables) and 
unknowns (exit variables). 

Numerical information concerning any physical quantity at a point is issued from 
three different progresses, each bringing a partial contribution to the value of this 
quantity. Now, only an upwind discretization scheme is suitable for information to 
progress in one direction (section 5.6.1). It follows that any discretization of the 
physical quantity is necessarily inconsistent with at least one of the three 
progressions of the information. Using a numerical scheme, be it of high precision 
or otherwise, which does not take into account the preceding physical (or 
mathematical) reality can only lead to difficulties in the calculation and to the 
appearance of numerical oscillations and discontinuities which are incompatible 
with the desired solution. The solution can only be obtained by using a 
characteristics method with a suitable discretization scheme; we note that the 
solution of this discretized system cannot be obtained by a computation from place 
to place [SAN 97]. 

5.6.3. Boundary conditions of flow problems 

We saw earlier how the values of the variables of a problem move along the 
characteristic curves. The preceding example shows the difficulties which can be 
encountered when we try to correctly write the boundary conditions of a flow 
problem which is often posed in an open domain. The physical quantities of the fluid 
entering the domain must be given. Even if we assume that there is no propagation 
in directions opposed to the trajectories (incompressible or supersonic flow), we still 
have to deal with three principle difficulties: 

 in the region where the fluid enters the domain, the velocity and pressure fields 
must satisfy the dynamic equations which are used: this condition, which is satisfied 
by a uniform flow, is often difficult to meet for other kinds of flow, even if they are 
steady; 
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 furthermore, no characteristic curves must go out through the initial curves or 
surfaces unless suitable compatibility conditions are verified, both for compressible 
flows and incompressible flows; for instance, in certain near-wall regions 
(separation around the downstream part of an obstacle or in a divergent conduit 
(section 6.5.3.7)) the flow of a fluid can be in the opposite direction to the main 
flow: the corresponding entry zones, situated downstream, depend therefore on the 
structure of the solution of the problem; 

 finally, in the case of real, measured, fluid values used as domain boundary 
conditions, measurement errors may lead to computational difficulties in so far as 
they may correspond to entry (or exit) conditions which are incompatible with the 
problem which is posed; 

The considerations developed in this chapter concern flows of inviscid fluids 
which are represented by either elliptic or hyperbolic equations. The presence of 
viscous structures along certain trajectories in high Reynolds number flows (section 
6.5.3) often leads to parabolic equations along these trajectories, so creating an 
enlargement of the influence domain of the initial conditions along these (see section 
5.4.5.4). 

In summary, with the exception of some simple situations, the specification of 
boundary conditions for a flow problem is often a delicate operation, and it is 
extremely difficult accomplish in a rigorous fashion.  



Chapter 6 

General Properties of Flows 

In this chapter we will study some general physical properties of flows which 
result from the structure of the balance equations. Transport and propagation 
phenomena are always present, even in systems with uniform initial conditions. The 
dynamics of fluids and transfers imply coupled phenomena with multiple 
interactions. In the simplest cases, non-dimensional parameters can be identified 
which characterize the ratio of orders of magnitude between the terms corresponding 
to two phenomena, and this ratio is generally small or large with respect to 1. The 
dynamics of fluids and transfer is thus the domain of perturbation phenomena which 
lead to singular structures. 

After examining the vortex properties, we will discuss flow properties associated 
with uniform initial conditions which lead to a relative simplification due to the 
existence of a potential. The third part of this chapter will deal with the study of 
orders of magnitude and perturbation problems. Quasi-1D approximations in pipes 
and boundary layers are then discussed. The last part will be dedicated to a short 
presentation of unsteady phenomena in flows. 

6.1. Dynamics of vorticity 

6.1.1. Kinematic properties of the rotation vector 

6.1.1.1. Definitions 

These are associated with definition [3.38] of the rotation vector Vtor
2
1

 

given in section 3.3.4. Let us recall that vorticity vector 2  (section 4.3.3) has 
obviously the same properties as . At a given instant, we call: 
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– surface of rotation or vortex surface, a surface which at each of its points is 
tangent to the vector ; 

– line of rotation or vortex line, a line which is tangent to the vector  at each of 
its points; 

– tube of rotation or vortex tube, a surface generated by the lines of rotation 
relying on a closed contour. 

The divergence of the rotation vector is clearly zero, and the flux of the vortex 
vector across any closed surface is also zero. 

6.1.1.2. Circulation of the velocity vector V  

Let AB be the circulation of the velocity vector along an arc AB: 

ABAB ldV .  

In the case where the curve C is closed, the circulation C  is equal to the flux of 

the vector V rot  across a surface S relying on the contour C (Stokes’ theorem): 

dsnldV SCC .2.  [6.1] 

The circulations 1 2andC C  along the two closed curves C1 and C2 situated on 
the same tube of rotation which they move around the same number of times are 
equal. 

In effect, let D be the inner domain of a tube of rotation which is bounded by two 
surfaces S1 and S2 whose contours on the rotating tube are, respectively, the closed 
curves C1 and C2. The flux of the vortex across the lateral surface of the tube and 
across the surface which bounds the fluid domain D is zero; the result of this is 
that by orientating, continuously along the tube, the normals n  across the surfaces S1 
and S2, we have equality of the fluxes of the vector across the two surfaces, and 
consequently across all sections of the vortex tube. This results in the equality of the 
circulations 1 2 .andC C  

The intensity of a vortex tube is defined by the circulation value of the velocity 
vector along a closed curve encircling the tube once counter-clockwise. 

The circulation C can be calculated by following the matter. Using result [3.36] 
of section 3.3.3.4 concerning the material derivative of the integral of the flux of the 
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conservative vector field B  ( 0Bdiv ) across the material surface S of fluid in 
movement, we can express the material derivative of the circulation C in the form: 

SS
C dsnVtor

t
dsn

dt
d

td
d

.2.2  [6.2] 

This expression will be useful for the demonstration of Lagrange’s theorem. 

6.1.1.3. The Biot and Savart formula 

Any vector field can be decomposed into a field with zero divergence and an 
irrotational field. The latter is a gradient field derived from a potential. The zero-
divergence field is a rotational field, defined to a near gradient. Knowledge of the 
rotation vector  allows the computation of the rotational part rV  of the velocity 

field V . Letting ArotVr  and taking into account = 0divA 1 gives: 

AAAdivgradArotrotVrot r2  

The components of the vector A  in Cartesian coordinates satisfy the Poisson 
equation iiA 2  whose solution is: 

23
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Taking the curl of this expression gives: 

dv
r

r
V Dr 32

1
 

which is the formula of Biot and Savart for a magnetic field, where the current 
density is equivalent to the vortex, and the velocity corresponds to the magnetic 
field. Note that this result, which is purely kinematic, is not related to any 
assumption regarding the nature of the fluid or the flow. 

                                   
1 The vector A  is not defined in a unique way; we can add any gradient at A  without 
changing the values of rV . Thus, we choose this gradient vector so that 0Adiv . 
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6.1.1.4. The velocity field induced by a vortex  

At a given instant, consider the tube of a cylindrical vortex, of radius r0, and 
suppose that  is uniform over a cross-section S0 of the tube and zero outside 
the tube. 

 

 r  

 V ( r ) 

 r 0 

 r 0   

 r  

  

 V   

( a ) ( b )  

Figure 6.1. Velocity around an uniform vortex tube 

Consider the circular surface S in the plane of a cross-section of the tube, 
centered on the axis of the tube, and of radius r (Figure 6.1a). The circulation 

VrC 2  of the velocity along the circle C of radius r is equal to the vector flux 

Vrot  across the surface of the circle of radius r. This flux can be expressed in two 
different ways, depending on the relative values of r and r0. We can write: 

r

r
VrrrVrr

2
0

00 ;  

The velocity induced outside the vortex tube decays as 1/r, whereas it grows 
linearly with r on the inside of the vortex tube (Figure 6.1b). 

6.1.1.5. Material derivative of the rotation vector  

Let us introduce the material derivative of the rotation vector: 

j

i
j

ii

x
u

tdt

d
Vgrad

tdt
d

..  

We can write the following identities for the arbitrary vectors A  and B  [HAR 
98]: 

AdivBABgradBdivABAgradBArot ....  
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or, in this case ( 0div ): 

.

...

VgradVdiv

VgradVdivVgradVrot
 

From expression [3.37] for Vgrad  as a function of the tensor  of the strain-

rates and of the anti-symmetric tensor , we can derive the relation: 

..Vgrad ; hence: 

.... VdivVdivVgradVrot  

Finally we obtain the expression: 

... Vdiv
t

Vdiv
dt
d

Vrot
t

 [6.3] 

We can associate the volume quantity  with the mass quantity ; taking 

account of the mass conservation equation (see section 4.2.1.2.1 and formula [4.9]) 
leads to (Helmholtz): 

dt
d

Vdiv
t

 [6.4] 

6.1.2. Equation and properties of the rotation vector  

6.1.2.1. The vorticity equation in the form of a balance equation  

Equation [4.41] (section 4.3.3), which is satisfied by the rotation vector  for 
any given fluid, can be written by taking account of expressions [6.3] and [6.4] in 
one of the two forms: 

divrotpgradgrad

dt
d

Vdiv
t

2
1

2

1
.

2
 [6.5] 
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Equation [6.5] has the form of a balance equation of a volume vector quantity 
(equation [4.3], section 4.1.1.2). It can be interpreted as a balance of the rotation 
vector , considered as a volume density of an extensive quantity (with which we 
can associate the mass quantity ). 

For a divariant compressible, by taking rotational of hgrad  (relation [4.17]), we 
have: 

sgradTgradpgradgrad
2

1
 

Vorticity equation [6.5] is thus a transport equation comprising: 

– two volume source terms associated respectively: 
- with the usual properties of the kinetic effects of the rotation ( . ); 
- with the movement associated with mechanical or thermodynamic imbalance;  

– a viscous diffusion term.  

If the mechanical equilibrium condition ( 0pgradgrad ) of a fluid in a 
force field is not satisfied, a rotational movement will result. For example, a 
horizontal pressure gradient in a fluid with a vertical density gradient, which is 
initially at rest, will create a horizontal acceleration inversely proportional to  and 
therefore a horizontal velocity gradient. 

As for the viscous stresses, their role is essential in diffusing the rotation, as we 
will see in an example (section 6.1.2.4.1). We should furthermore note that the 
creation of a viscous flow (Poiseuille flow, boundary layer, etc.) from a non-viscous 
flow is accompanied by the creation of vorticity as a result of the adherence 
condition at the wall, which creates a shear flow in the vicinity of the wall (section 
3.4.2.5), which is necessarily rotational. For the sake of simplicity, we will not give 
detailed expressions of the viscous stresses here. 

For the case of an incompressible Newtonian fluid ( 0Vdiv ) with constant 
viscosity and specific mass, we have Vrotrotdiv  (section 3.4.3.3) and we 
obtain the following form of equation: 

 ( )    or: .d
rot V v v

t dt
 [6.6] 
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For an inviscid fluid which is homentropic or with constant specific mass, the 
preceding equations are simplified: 

.

0

dt
d

Vdiv
t

Vrot
t  [6.7] 

6.1.2.2. Interactions between vorticity and strain rates  

We will characterize the effects of the volume source term .  ( ijj . ) which 
translates an interaction between vorticity and the strain-rate tensor. In order to 
simplify matters let us consider equation [6.7] for a constant specific mass: 

. ... or: . ...i
ij j

dd

dt dt
 

Let us first of all examine the effect of the first component 1  of the rotation 
vector on itself. The corresponding equation can be written: 

1
1. 11 ...d

dt
 

This demonstrates the creation of 1  if the source term 111.  is positive, for 
example if 1  and 11  are positive; thus, 11  is the rate of increase of the 
component u1 of the velocity in the x1 direction (section 3.3.4), and it leads to a 
stretching of the matter along this axis: a stretching of the matter along a given 
direction increases the corresponding component of the rotation vector (Figure 
6.2a). This result is in fact analogous to the intensity conservation of a vortex tube, 
the stretching rate being inversely proportional to the variation velocity of the tube 
cross-section.  

Now consider the source term 211  in the equation for the component 2: 

2
1. 21 ...d

dt
 

The strain-rate 21  amounts to a shearing of the type 
2

1

x
u

 (section 3.3.4). We 

therefore see here the creation of the component 2 , along the axis Ox2, by the 
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component 1  (Figure 6.2b), in other words a tilting of the rotation vector (a 
gyroscopic effect). 

 x1 

 1 1 

 (a) 

 x2 

 (b) 

 x1 

 u1 

 1

 2

  

 u1  u1 

 

Figure 6.2. Deformation of a vortex: (a) stretching in a lengthening velocity; 
 (b) tilting in a shear velocity 

These properties are true for the three spatial directions; their effect is the 
creation and maintenance of the 3D character of rotational flows. 

If the fluid is compressible, the second term of material derivative [6.3] contains 
the term Vdiv.  which translates a reduction of  proportional to the 

expansion ,divV leaving the angular velocity constant in a material volume. This 
term is contained in the first term of vorticity equation [6.5] written with the mass 
quantity . 

6.1.2.3. The 2D plane flow  

The vorticity source term ijj .  presents a marked 3D character but disappears 
in a 2D plane flow, because the rotation vector has only a component  
perpendicular to the velocity plane, and so we have: 

0.0
0

000
0
0

. 2221

1211

ijj   

In the 2D case, the rotation vector (or the vortex) satisfies the scalar equation: 

td

d
 [6.8] 
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In a 2D plane flow, the vorticity equation is a convection-diffusion equation 
which ensures the conservation of the rotation in all space (see definitions of 
diffusion terms in Chapter 2). 

For an inviscid fluid, scalar equation [6.8] for the vorticity is an equation 
describing the transport of vorticity by the matter: 

0
dt
d

 [6.9] 

6.1.2.4. Diffusion of the vorticity in a viscous fluid  

By way of an example, consider equation [6.8] of an incompressible Newtonian 
fluid in plane two-dimensional flow. It has the form of a heat convection equation 
(section 4.3.4.1.6) or of the equation for the diffusion of chemical species (in weak 
concentration) with source terms and diffusion terms: vorticity is diffused by viscous 
action. 

Let us examine the case of a vortex system of revolution about the axis Oz and 
whose velocity field, parallel to the plane Oxy and of zero radial component, has a 
tangential component equal to  ( )trV , . The vortex vector field tr, , parallel to 
Oz, is a function of r and t. Equation [6.8] can be written: 

t
 [6.10] 

or, in plane polar coordinates: 

r
r

rrt
 [6.11] 

The reader can easily verify that equation [6.11] has a class of solutions2 in the 
form ftn  where we have introduced the new variable tr 42 . The 
function f  satisfies a differential equation which depends on the parameter n. 

The circulation tr,  of the velocity vector along the circle centered on the 
origin and of radius r is equal to the flux of the vector 2  across this circle: 

                                   
2 These solutions are “self-similar” like solution [5.52] (see footnote 5 in section 5.4.5.4). 
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dvvftdvvftrdr
t

u
fttr ntrnrn

0
14

0
1

0

2
882

4
2,

2

 

Suppose that after the initial instant t = 0, there is no source of vorticity 
anywhere in space; the circulation on the circle whose radius tends to infinity 
remains constant, and this leads to the choice 1n . Substituting this expression 
for  into [6.11] we obtain the differential equation satisfied by the function f : 

0''' ff  

A first integration gives: 

const'f f  

Integrating a second time, taking the constant of integration to be zero such that 
the circulation remains constant for infinite , the vorticity tending therefore to zero. 
This immediately gives the desired solution: 

 
      const A

4
exp exp , 

2
  

 
 

 
 
 
 

  
   

t
r

t
A

t 
A 

tr 
 

   

The circulation tr,  of the velocity vector along a circle of radius r can be 
expressed as: 

t
r

Atr
4

exp18,
2

 

Its value is constant and equal to A8  for sufficiently large r. The velocity 
V (r,t) can be calculated from the circulation: 

t
r

r
A

r
tr

trV
4

exp1
4

2
),(

),(
2

 

This solution represents the diffusive spreading of a Dirac impulse of vorticity 
placed at the origin (Figure 6.3). The velocity distribution decays as 1/r outside the 
viscous zone (section 6.1.1.4) which contains the vorticity. The velocity gradient 
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diminishes under the effect of viscosity which has no further real effect for a radius 
a little greater than that at which the maximum is located. 

 

r 

V  

r 

V 

t 

r 

t 

(a)  (b)  (c)  
 

Figure 6.3. (a) Vorticity zone, (b) diffusion of the velocity and (c) of the vorticity 

For a fixed radius r, when t increases, the circulation and the velocity decay so as 
to tend to zero as time tends to infinity: the rotation initially concentrated on the axis 
diffuses over time across the entire fluid under the action of viscosity. Defining the 
radius tRv  of the viscous core using the condition that this contains 99% of the 
circulation of the velocity vector (exp( ) = 0.01 or = 4.605), we have: 

4.29vR t . 

6.1.2.5. Lagrange’s theorem  

Consider an inviscid fluid whose entropy is uniform if it is compressible. Taking 
account of vorticity equation [6.8], material derivative [6.2] of the circulation of the 
velocity on a closed curve C enclosing the surface S can be written: 

S
C dsnVtor

ttd
d

0.2  

Lagrange’s theorem: the circulation of the velocity vector on a material curve, 
or the flux of a vorticity vector across a material surface, is conserved during 
movement. In particular, if the flux of the vorticity vector across a material surface S 
is zero at an instant t, it will remain zero thereafter. 

As we are dealing with a material derivative, the surface S is constituted of fluid 
particles. It should not contain any singularity leading to the creation of vorticity (for 
example, a vortex whose intensity varies with time). We can deduce the following 
very important consequences: 
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– if, at a given instant, the flux S  is zero in a domain D of a flow regardless of 
the surface S, the flow is irrotational in the domain D (it suffices to take three 
elementary orthogonal surfaces to verify that the vector  is necessarily zero). 
From Lagrange’s theorem we thus see that the flow remains irrotational afterwards 
in the material domain D. This situation is encountered when a flow issues from a 
fluid region at rest or of uniform velocity;  

– a vortex surface (or rotation surface) is a surface to which the vorticity vector 
is tangent at an instant t; it moves whilst remaining a vortex surface (the flux of the 
vortex remains zero on all elementary surface of rotation). In particular, a vortex 
tube remains a vortex tube during any displacement of the matter of which it is 
constituted. Considering the circulation of the velocity along a curve situated on the 
tube and which encircles it once, we see that the intensity of a vortex tube remains 
constant during its displacement: the vortex tube transports its circulation; this can 
be easily seen in a rotational smoke ring (a closed rotation tube) in which smoke 
makes the motion of the matter and its rotation visible; 

– a vortex line (or rotation line) at instant t can be considered as an intersection 
of two vortex surfaces: it therefore remains a vortex line. This results in vortex lines 
being displaced with the matter.  

NOTES – 

1) The notion of circulation on a closed material curve C is essential: in effect, it 
deforms during its displacement with the matter. It can eventually be divided into 
two curves C1 and C2 when passing an obstacle (Figure 6.4), but it cannot be 
transformed into a third curve C3 (Figure 6.4). The sum of the circulations 

1 2andC C  over the curves C1 and C2 is equal to the circulation C  over the 
curve C, whereas the circulation 3C  over the curve C3 can take on any other value. 
We will use an elementary example (section 6.2.5.2.2) for which the circulations  

1 2andC, C C are zero, whereas 3C  is non-zero. This property is related to the 
structure of the surface S interior to 3C  which is not simply connected (to put it 
simply, it contains a “hole”) and the vector field is not continuously differentiable on 
the interior of 3C . 

2) Lagrange’s theorem does not express the transport of the vorticity vector by 
the matter; it only expresses a more global property. For the reasons given above, we 
say that the vector field  which satisfies equation [6.7] is “frozen in the moving 
medium”.  
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Figure 6.4. Evolution of closed material curves in the flow around an obstacle 

3) The reader will note that once again we recover here a property of flow-
information transfer over characteristic curves associated with convection. 

6.2. Potential flows  

6.2.1. Introduction 

Lagrange’s theorem expresses the property of transport of circulation of the 
velocity over any curve C in the flow of an inviscid, homentropic fluid if the fluid is 
compressible. When the circulation is zero, we can perform a partial integration of 
the equations of fluid mechanics over the family of characteristic curves constituted 
by the trajectories: the flow is therefore irrotational and the velocity field derives 
from a potential: 

gradV
x

u
i

i    :or  [6.12] 

6.2.2.  Bernoulli’s second theorem  

Dynamic equation [4.19] can be written in the form: 

0
2

2
hU

V
grad

t
V

 

with: h the specific enthalpy (for a perfect gas: TCh p ) and U the potential of the 
gravitational forces ( gzU , height z being taken on a vertically ascending axis). 
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The existence of a velocity potential  allows the immediate integration of the 
above equation with respect to the space variables, giving Bernoulli’s second 
theorem: 

2

const
2

V
gz h

t
 [6.13] 

We note that equation [6.13] is valid everywhere in the domain of study and for 
an unsteady flow, contrary to Bernoulli’s first theorem, which can only be applied in 
a steady flow over a streamline. For an incompressible fluid, it can be written: 

2

const
2

V
gz p

t
 [6.14] 

6.2.3. Flow of compressible inviscid fluid  

The partial differential equation satisfied by the velocity potential  is a quasi-
linear second order equation and is derived from the Euler equations. As integration 
has already been performed on the trajectories, the equation has only two families of 
real or imaginary characteristic curves or surfaces which we have already seen 
(section 5.4.2). 

The mass conservation equation in the form [4.7] can be written: 

0
1

i

i

x

u

dt
d

 [6.15] 

For a divariant fluid in homentropic flow, we have dcdp 2  and dhdp . 
Replacing d  as a function of dh in equation [6.15] gives: 

0
1

0
1

22
Vdiv

dt
dh

cx

u

dt
dh

c i

i  [6.16] 

The potential equation can therefore be obtained by replacing the enthalpy h in 
equation [6.16] by its expression as obtained from equation [6.13]: 

0
2

1
2

2
gz

grad
tdt

d

c
 [6.17] 
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For the flow of a compressible fluid, we can in general neglect the gravitational 
term and potential equation [6.17] becomes: 

0
2

1
2

2
grad

tdt
d

c
 [6.18] 

or, by developing: 

0
1

2
1 22

2

2

2

2

2
iijijijj xxxxxxcxxttc

 [6.19] 

where, by introducing the usual notation for the velocity components wvu ,,  along 
the axes zyx ,, : 

0222
1

2

22111

22222

222

2

2

2

2

2

tztytxttzx

yzxyzzyyxx

c

w

c

v

c

u

cc

wu

c

vw

c

uv

c

w

c

v

c

u

 [6.20] 

The potential equation for the flow of an incompressible fluid which can be 
obtained by letting the velocity sound tend to infinity in [6.17] reduces to Laplace’s 
equation: 

0
2

ii xx
 [6.21] 

6.2.4. Nature of equations in inviscid flows  

Equation [6.19] or [6.20] is of the type studied in section 5.4. Writing explicitly 
the velocity components ii xu  and the Mach number cVM , equation 
[6.19] can be written: 

02
1 2

2

2

2

2

2
ji

ji

j
j

xxc

uu

xt
u

tc
 



272     Fundamentals of Fluid Mechanics and Transport Phenomena 
 

The characteristic directions are given by equation [5.37] which corresponds to 
the preceding equation. Letting ii x1  and tt 1  (section 5.3.4), we 
obtain: 

02
1

2
2

2 iiij
ji

jtjt
c

uu
u

c
 

This characteristic equation can be written in the reduced form: 

0
1 2
2 iijjt u

c
 

This form is hyperbolic3 and the potential equation of a compressible fluid is in 
general of hyperbolic character. 

In the situation involving acoustic perturbations in a medium at rest, which is 
obtained when the Mach number approaches zero in equation [6.19] or [6.20], the 
wave equation is obtained: 

0
1

2

2

2 tc
 [6.22] 

Considering now only steady solutions, the potential equation can be written: 

0
1 2

2

2

jijiii xxxxcxx
 [6.23] 

Its characteristic equation can be obtained as before: 

0
2

ii
j

j
c

u
 

or, writing the indices explicitly: 

02
3

2
2

2
1

2

3
3

2
2

1
1

c

u

c
u

c
u

 [6.24] 

                                   
3 Letting cu jjtT and 2rii , the previous equation can be written 

022 rT ; it represents a cone of revolution around axis TO  in a 4D space.  
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The nature of the quadratic form can be easily obtained by a geometric 
interpretation. Consider the vector 321 ,,OA . Equation [6.24] can be 
written in the form: 

0.
2

2

OA
c
V

OA  [6.25] 

This equality shows that the projection of cV  on OA  must be equal to OA. The 

existence of the non-zero vectors OA  is possible only if cVM  is greater than 1, 
in other words if the flow is supersonic. We recover the result already obtained in 
section 5.3.2.3. We deduce from [6.25] the value of the angle  between the normal 
to the characteristic surface and the velocity direction: 

MVc 1cos  

The velocity thus makes the complementary angle  with the characteristic 
surface; and so the result of section 5.3.2.3 is recovered ( M1sin ). 

6.2.5. Elementary solutions in irrotational flows  

6.2.5.1. Introduction 

We will now examine some elementary solutions in simple examples of potential 
equations. We will first consider the case of an incompressible fluid. The velocity 
potential satisfies Laplace’s equation. Subsonic flows verifying an elliptic equation 
have similar properties, but are modified by the compressibility of the fluid  
([YIH 77]). 

The second case studied is the acoustic wave equation, which can be obtained 
via linearization and a suitable referential change in equation [6.18] and which 
represents the local properties of all second order hyperbolic equations. 

6.2.5.2. Irrotational 2D plane flow of an incompressible fluid  

6.2.5.2.1. Introduction 

The problem comes down to the solution of Laplace’s equation with free-slip 
conditions imposed at the solid boundaries. The best adapted means for the study of 
these flows involves the use of complex variables. In effect, relations [6.26] defining 
the velocity potential  and the stream function : 
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yx
v

xy
u  [6.26] 

are Cauchy relations between the derivatives of the real and imaginary parts,  and 
, of an analytic function zF  of the complex variable jyxz : 

yxjyxzF ,,  [6.27] 

The function zF  is the complex potential of the flow considered. Its derivative 
zF '  with respect to z is the complex velocity of the expression: 

jvuzF ' [6.28] 

If the function zF  is analytic, the function zjF  is also. The velocity 
potential and the stream function of zjF  are, respectively,  and . The flows 
associated with the two potentials zF  and zjF  are known as conjugated flows. 
Any analytical function of complex variables thus provides two solutions to the 
Laplace equation corresponding to two conjugated flows where the curves of 
potential lines of one flow are streamlines of the other. 

Consider the integral C dzzF '  taken once counter-clockwise on a closed path 
of the complex plane (x, y). It can be written as a function of the velocity circulation 

 and of the volume flow rate dqv  (section 4.2.1.2.2): 

vCCC jqjddvdxudyjvdyudxdzzF ' [6.29] 

If the closed path C does not surround any poles of the function zF ' , then the 
function zF  is uniform: it takes on the same value after any excursion of the 
variable z on the contour C. The flow across C and the circulation of the velocity on 
C are zero. If C contains a pole of zF ' , then the value of the function zF  
increases by vjq  with each excursion around C (see an example of the vortex in 
section 6.2.5.2.2). 

As the velocity field is determined by the Laplace equation, the pressure is given 
by Bernoulli’s second theorem [6.14]. 

The simplest example of an irrotational flow is a uniform velocity field 
corresponding to the complex potential    B,z U z F   where U and B are complex 
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constants. The velocity Cartesian components Re( ) and Im( )u U v U can be 
immediately obtained from the complex velocity UzF ' . 

NOTE – Time is not a variable in Laplace’s equation, but it can be a parameter 
present in the boundary conditions and the coefficients of the solution. The result of 
this is that initial conditions do not have any meaning for this equation. 

6.2.5.2.2. Source and vortex  

A source and a vortex centered at the origin of the coordinate system are 
conjugated flows corresponding to the complex potential zF  and to the complex 

velocity zF '  expressed in plane polar coordinates (with jrez ): 

z
A

zFjr
A

z
A

zF
2

')ln(
2

ln
2

 [6.30] 

The application of formula [6.29] to a closed contour C1 (Figure 6.5a) which 
does not contain the origin leads to zero volume flow rate and circulation, since after 
one path counter clockwise, the variation of the polar angle  is zero. On the other 
hand, if the closed contour C2 (Figure 6.5a) contains the origin, the variation of the 
angle  is equal to 2  and the integral C dzzF '  is equal to j A: 

jAjqdzzF vC '  [6.31] 

(b) source (or sink) (c) vortex
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Figure 6.5. (a) Integral of complex velocity on a closed path, 
(b) flow of a source and (c) of a vortex  
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When the quantity A is real, application of formula [6.31] over a closed contour 
C2 containing the origin leads to a volume flow rate Aqv , while the circulation  
of the velocity is zero on all closed curves. The function zF  represents the radial 
flow caused by a source (positive A) or a sink (negative A) of volume flow rate qv. 
The potential zF  and the complex velocity zF '  can be written: 

z

q
zFjr

q
z

q
zF vvv

2
')ln(

2
ln

2
 [6.32] 

We deduce from this the velocity potential , the stream function  and the 
radial and tangential components, ur and u , of the velocity vector: 

0
1

22
ln

2 r
u

r
q

r
u

q
r

q v
r

vv  [6.33] 

The potential lines are circles centered on the origin O and the streamlines 
( const) are straight lines lying on radii from the origin O (Figure 6.5b). 

If the constant A is imaginary, application of formula [6.31] to a closed contour 
C2 containing the origin leads to the circulation jA , or, jA . The volume 
flow rate is zero across any closed surface C. The function zF  therefore 
represents the flow of an irrotational point vortex centered on the origin (Figure 
6.5c). The potential zF  and the complex velocity zF '  can be written: 

z
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zFrjz
j

zF
2

')ln(
2

ln
2

 [6.34] 

We can deduce from this the velocity potential , the stream function  and the 
radial and tangential components, ur and u , of the velocity vector: 

.
2

1
;0;ln

2
;

2 rr
u

r
ur r  [6.35] 

The potential lines are straight radii coming from the origin and the streamlines 
are circles centered on the origin. 
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NOTES – 

1) The values of the volume flow rate and circulation can be easily found from 
the components of the velocity by direct calculation; we will leave it to the reader to 
verify this. 

2) The vorticity  of the irrotational point vortex is zero at all points, except at 
the origin where it takes on the value of a Dirac impulse, a multiplying factor 
excepted. The circulation  can be alternatively written as the flux of the rotation 
vector across the surface S enclosed by the curve C. The flux is only non-zero for 
surfaces containing the vorticity impulse. 

3) When the source, the sink or the vortex are placed at z  and not at the origin, 
the variable z in the functions zF  and zF '  is replaced by 0zz . 

6.2.5.2.3. Superposed flows  

Any linear combination of harmonic functions or of analytic functions of 
complex variables is also a harmonic or an analytic function. We can therefore 
construct new solutions from known solutions. While the velocity fields can be 
superposed, the same is not true for the pressure fields, as Bernoulli’s theorem is not 
linear. Let us consider some common simple examples. 

The potential and the complex velocity of the superposition of a source and a 
sink with the same flow rate or of two vortices of opposite circulation positioned at 
the points A and A’ of coordinates (0, ± a) (Figure 6.6a) can be obtained from 
equation [6.30]: 

22' .';'ln
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zFjrr
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zF AA  [6.36] 
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Figure 6.6. Flow of a vortex (a), of a source (b)  
placed near a solid wall 
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Similarly, the potential and complex velocity of the superposition of two 
identical sources or of two vortices of the same circulation positioned at A and A’ 
can be written: 

..';''ln
2

ln
2 22

22

az

zK
zFjrr

K
az

K
zF  

with (Figure 6.6b): MAAxAMAxMArAMr ',';,;''; . 

The constant A takes on the value qv (respectively j ) for the sources or sinks 
(respectively two vortices of identical or opposite circulation). The other quantities 
( ,  and the velocity components) of these flows can also be obtained by taking the 
difference or sum of the corresponding values of the base flows. 

When the axis Oy is a streamline which can be “solidified” (solid boundary with 
free-slip condition) we have a representation of the flow associated with a vortex or 
a source in the presence of a plane wall. These interesting specific cases (Figure 6.6) 
are obtained respectively with: 

 two vortices of opposite circulation whose stream functions derived from 

[6.35] are equal to 
'

ln
2 r

r
 and for which we obtain the axis Oy for 'rr ; 

 two sources of equal flow rate whose stream function (derived from [6.33]) is: 

'
2

vq
 and for which we obtain the axis Oy for ' . 

A doublet is a combination of a source and a sink of the same strength, in terms 
of their absolute value, of which the distance 2a tends to zero such that the quantity 
2aqv is equal to C (moment of the doublet). A series development in za  in formula 
[6.36] leads immediately to an expression for the complex potential of the doublet: 

zCzF 2)( . 

The velocity potential , the stream function  and the radial and tangential 
components, ur and u  of the velocity vector can be derived: 
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The potential lines (respectively the streamlines) are circles centered on the axis 
Ox (respectively Oy) and tangent to the axis Oy (respectively Ox). 
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6.2.5.2.4. Flow around a circular cylinder  

Consider a straight circular cylinder of radius R, of unit extent, placed in a flow 
(Figure 6.7) whose velocity at infinity is equal to xU  (U is a constant or a function 
of time). Let us use polar coordinates and consider the complex potential, a 
superposition of a uniform flow and a doublet at the origin: 

2

0( ) with:  iR
F z U z z re

z
 [6.37] 

The circulation of the velocity vector on a curve surrounding the cylinder is 
zero. The velocity potential , the stream function  and the radial ur and tangential 
u  components of the velocity vector in polar coordinates can be derived from 
[6.37]: 
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We can verify that for Rr  we have cte0  and 0ru : the circle of 
radius R is a streamline. 

Some particular values of the velocity components allow us to outline the form 
of the streamlines. In particular, on the circle Rr , we have: sin2URu  
and on the axis Ox (  = 0 or ), ur is positive (negative) for r > R ( Rr ): there 
exist two points A and A’ of zero velocity stagnation points, (section 6.2.5.2.5) of 
the flow on the cylinder (Figure 6.7a). 

When z tends to infinity, F (z) tends to U z, the complex potential of a uniform 
flow. The velocity field presents a symmetry with respect to the axes Ox and Oy 
(between upstream and downstream). 

We obtain an irrotational flow with circulation  around the cylinder of radius R 
by superposing the preceding flow and a point vortex, whose streamlines are circles 
centered on the origin. The complex potential and the complex velocity of this flow 
are: 
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 [6.38] 
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Figure 6.7. Flow of an inviscid fluid around a circle: 
0; 4 ; 4 ; 4RU RU RU(a) circulation (b) (c) (d) 

The expression for the velocity RURu 2sin2  on the circle of 
radius R indicates that two stagnation points A and A’ are found on the circle if 

RU4  (Figure 6.7b). These are joined for RU4  (Figure 6.7c). 

For RU4 , the points of zero velocity are the solutions of the equation 
0' zF ; letting ayjz , we find for ya two roots, only one of which is external 

to the circle of radius R (Figure 6.7d). 

Bernoulli’s second theorem allows us to calculate the pressure pC on the cylinder 
from the velocity distribution on this one. We here limit ourselves to the case of a 
steady flow, as unsteadiness introduces secondary effects due to the added mass 
([YIH 77]). We have: 

constant22sin2 2
0 RUpc  [6.39] 

The force F  exerted by the fluid on the cylinder (per unit extent) can be 
decomposed into the drag D and the lift L ( yPxTF ). These can be calculated 
from expression [6.39] for the pressure. We find immediately: 
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2
0

2
0 .sin;0.cos URdpLRdpD cc  

Regardless of the form of the obstacle, these results are true for the drag  
(d’Alembert’s paradox) and for the lift (Kutta-Joukowski theorem [YIH 77], [PAR 
98]). 

Comparisons with experiment 

In the case where  = 0, this theoretical pressure distribution on the cylinder 
(Figure 6.8, curve a) can be compared with experimental results. In Figure 6.8, we 

have shown pressure variations 
22U

pp
C p  (difference between the wall 

pressure p and the pressure p  in the uniform flow normalized by the dynamic 

pressure 22U ) as a function of the angle  (defined in Figure 6.7a). 

O

c
–

Cp

0

1

-3

-2

-1b

downstream face upstream faceupstream face

a

  

Figure 6.8. Distribution of the pressure coefficient on a circular cylinder (  = 0): 
(a) irrotational flow; (b) laminar separation; (c) turbulent separation

The values of the preceding calculation are relatively close to those measured on 
the upstream side of the cylinder, up to the angular position where a separation of 
the flow from the cylinder occurs and a wake is formed (section 6.5.3.7). The 
pressure measurements at locations situated on the wall where the flow has 
separated illustrate a strong flow dissymmetry between the upstream and 
downstream faces, which leads to a non-zero value for the drag (whence 
d’Alembert’s paradox given to the “theoretical” result). The difference, which is 
quite small, between the calculation and the measurement on the upstream face of 
the cylinder comes from the fact that an inviscid fluid flow is not produced about the 
cylinder, rather it is produced about the ensemble constituted by both the cylinder 
and its wake. 
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The non-zero drag force D exerted by the fluid on the cylinder can be explained 
by the presence of the wake on the downstream face, on which a pressure force is 
exerted which is greater than that exerted on the upstream face. This force, known as 
pressure drag, is obviously proportional to the dynamic pressure 22U . The value 
of the separation angle  (and therefore of the drag) is different ([SCH 99], [YIH 
77]), depending on where the boundary layer (section 6.5.3) is laminar (subcritical 
flow, Figure 6.8, curve b) or has become turbulent (supercritical flow, Figure 6.8, 
curve c).  

The lift due to the circulation (Kutta-Joukowski theorem) is indeed observed for 
wing profiles and for cylinders in rotation. However, the question as to the 
mechanism by which the circulation has been created has not been discussed. The 
latter is created by the beginning of the fluid movement about the airfoil as a result 
of viscous stresses on the wall (see section 6.6.4.1). However, the Kutta-Joukowski 
theorem is satisfied, and the effect of the lift is a curved trajectory for bodies being 
in rotation (the Magnus effect); this phenomenon is used in games with balloons and 
balls (the balls are “cut”). 

The lift of a stationary circular cylinder can also result from actions which 
generate dissymmetries of the wake by modification of viscous effects in the vicinity 
of the wall (dissymmetric sucking of the boundary layer).4 

6.2.5.2.5. Kzn potential flows  

Consider the plane polar coordinate system (r, ) and flows whose potentials and 
complex velocities are given by: 

111'

sincos
njnn

nnn

enKrnKzzF

nrjKnrKKzzF
 

The straight lines n  are streamlines terminating at, or issuing from, the 
zero velocity point 0z  (for negative n). The case 2n  corresponds to the usual 
stagnation point of a flow (points A and A’ of Figures 6.7a, Figure 6.7b and point A 
in Figure 6.7d). The case 3n  corresponds to a higher order stagnation point 
(point A in Figure 6.7c). Taking viscosity into account in these flows is possible 
with self-similar solutions of the boundary layer where n can take on any value 
([SCH 99], [YIH 77]). 

                                   
4 A ship with “sails”, “l’Alcyon”, has been built using this principle by Y. Cousteau and L. 
Malavard. 
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6.2.5.3. The wave equation 

While the use of characteristics allows in principle the solution step by step of 
the acoustic wave equation, writing a complete solution in this way is generally 
difficult. We can immediately verify that a progressive plane wave is an elementary 
solution of [6.22]: 

ctnxfctnOMftx iii .,  [6.40] 

(ni: direction cosines of the unit vector n  normal to the plane wave ( 1n )). 

The velocity and the pressure fluctuation p' can be found from solution [6.40] 
and from a linearized version of Bernoulli’s second theorem [6.13]: 

cVctnxcf
t

pfuuVctnxfnu iiiiiiii '';';'  

Taking the axis OX parallel to the normal n , the quantity ii nx  of the problem of 
the function f is equal to X, and the function f can be written ctXftxi , . 
This form reveals the transmission without signal deformation (velocity potential, 
velocity or pressure). We note that if ctXf  is a solution of [6.40], the same is 
true of ctXg  which propagates in the opposite direction. 

The superposition of certain waves can eventually lead to the disappearance of 
the propagative character, and we obtain stationary waves in which all points in 
space are in phase, as shown by the following simple example: 

kXtkXtkXt coscos2coscos  

Conversely, any suitable superposition of harmonic stationary waves can lead to 
one progressive harmonic wave: 

 

The ensemble of progressive plane waves is thus equivalent to the ensemble of 
stationary plane waves. 

The equation for spherical waves tr,  can be immediately obtained (the 
expression for the divergence can be obtained by applying Ostrogradski’s theorem 
between two spheres of radius r and r + dr). It is written: 
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 [6.41] 

Its solution is analogous to that of the plane wave equation: 

ctrg
r

ctrf
r

tr
11

,  

In the case where 0g , the expressions for the pressure and the velocity are: 

ctrf
r

ctrf
rr

uctrf
r
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t
p
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1
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;'  

The expression for the velocity of spherical waves differs from the expression 

for plane waves by the term ctrf
r 2
1

, which dominates in the vicinity of the 

origin 0r  (nearfield term). We have, for the volume flow rate qv: 

ctrfctrrf
r

rtrqv '44, 2  

We see that the flow rate at the origin tQ  is equal to 
ctftqtQ v 4,0 . 

The velocity potential  and the pressure p can be thus be written: 

c
r

tQ
r

p
c
r

tQ
r
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6.2.6. Surface waves in shallow water  

6.2.6.1. 2D equation for potential  

We will now consider a problem governed by an elliptic partial differential 
equation in space zyx ,, , but whose boundary conditions induce propagative 
phenomena in the plane yx, . 

Consider a horizontal plane Oxy, on which a layer of liquid is subjected to a 
vertical gravitational action. Let yx,  be the height of the free surface of the 
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liquid. If the movement of the liquid is considered irrotational, the velocity potential 
tzyx ,,,  satisfies Bernoulli’s equation: 

 
c o n s t  g z

p  V  
t  

    
 
 

 
 

2  

2  
 [6.42]
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Figure 6.9. Flow with free surface in shallow water 

As the liquid is inviscid, the velocity is horizontal at the bottom z = 0 where w is 
zero (slip condition). We will consider the case of shallow water: the flow is locally 
uniform (the horizontal components u and v are independent of z), and the thickness 
e is small compared with the horizontal distance L characteristic of variations of the 
velocity .V  The volume conservation equation: 

0
z
w

v
v

x
u

 [6.43] 

allows the magnitude of the w component to be determined: the first two terms being 
of order V/L, we obtain LVew . The vertical component of the velocity w is of 

second order with respect to the velocity .V  The component w can be calculated by 
integration following z of equation [6.43]: 

v
v

x
u

zw  [6.44] 

The velocity potential  is thus the sum of two terms: 

– a function (x,y,t) whose gradient comprises the u and v components of the 
velocity; 



286     Fundamentals of Fluid Mechanics and Transport Phenomena 
 

– a small term of order 
2

2z
 associated with the w component which can be 

written using [6.44] by expressing u and v as a function of : 

zw  [6.45] 

The free surface is a material surface; its vertical velocity zw  is the material 

derivative of the height  of the fluid particle being on this surface (kinematic 
condition): 

y
v

x
u

tdt
d

w z  

Substituting into [6.45] gives: 

dt
d  [6.46] 

As this w component is small compared with u and v, Bernoulli’s theorem leads 
to a z-distribution of the hydrostatic pressure, over a vertical section, which depends 
on the height tyx ,,  of the free surface on which the atmospheric pressure pa 
acts: 

gpgzp a  [6.47] 

Relation [6.42] can thus be written: 

2 2

const
2

u v
g

t
 [6.48] 

We replace  in [6.46] with its expression taken from [6.48] in order to obtain 
the potential : 

0
2

1 2V
tdt

d
g

 [6.49] 

6.2.6.2. Analogy with a compressible fluid  

Letting gc 2 , we see that equation [6.49] can be written in a form identical 
to equation [6.18] for the potential of a compressible fluid with two spatial 
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dimensions. This equation, which is hyperbolic, represents the propagation of 
surface waves of velocity amplitude V and height  

Comparison between the corresponding equations [6.15] and [6.46] of these two 
problems shows that the height  is analogous to the density . However, the 
expression for the velocity of sound 12 kpc  of the compressible fluid 

and that gc 2 of the free surface indicates an exponent  equal to 2 for the 
equivalent compressible fluid. 

In physical terms, compressing a gas or elevating the free surface of a fluid 
creates a reactive force in the form of a pressure increase (section 5.3.6) or of driving 
pressure corresponding to the “elastic” energy of an oscillator. The hyperbolic 
character of equation [6.49] leads to the existence of shock waves in the form of a 
hydraulic jump ([YIH 77]). 

6.2.6.3. Influence of surface tension  

We have previously assumed (section 6.2.6.1) the continuity of pressure across 
the free surface. However, waves of small wavelength require surface tension  to 
be taken into account. The pressure difference p  due to surface tension is given 
by Laplace’s law (section 2.2.1.4.2) which can be written by expressing the average 
curvature, accurate to second order: 

2

2

2

2

'
11

yxRR
ppp a  

Condition [6.47] is replaced by: 

gppgpgzp aa  

Substituting into Bernoulli’s equation [6.42] gives the relation: 

2 2

const
2 2

V p V
gz g

t t
 

which, associated with [6.46], gives a complex system which we will not study here 
(see [YIH 77]). 
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6.3. Orders of magnitude  

6.3.1. Introduction and discussion of a simple example  

The mathematical variable properties of a continuous medium are relatively 
regular. The equations governing a continuous medium assume the continuity and 
the derivability to at least second order in the physical quantities, with the exception 
of regions where shocks or discontinuities occur. The validity of physical models 
(axioms of the continuous medium or models obtained from kinetic gas theory) 
implies that the physical quantities observed are solutions of ordinary or partial 
differential equations whose behavior is locally regular. 

It is thus reasonable to admit that a quantity f undergoing variations in the order 
of f on an interval of a time or space variable of length L, possesses temporal or 
spatial derivatives of the order of Lf  and that their second derivatives under the 

same conditions are in order 2Lf . Such a hypothesis should be subsequently 
verified in discussing the results which can thence be obtained. The scale L 
corresponds to the interval over which the function f varies. For example, for an 
exponential function L is the characteristic dimension of the exponential variation 
(space or time constant). 

The preceding considerations result from the fact that a derivative is the ratio 
limit of finite increases of the function and the variable, when the latter tends to 
zero. It is clear that to within a factor of at most a few units, this derivative is equal 
to the ratio of the finite increases in the region considered. 

A partial differential equation (or an ordinary differential equation) is a 
numerical balance between a certain number of terms containing derivatives. If this 
equation only contains two terms, the absolute values of these are equal. On the 
other hand, if the equation contains a sufficiently large number of terms, certain of 
these are dominant in a given part of the domain, other terms being more important 
in other regions. Each zone of the domain can thus be characterized by the locally 
dominant physical phenomena. 

Take the elementary example of the mass-spring oscillator with one degree of 
freedom: 

 [6.50] 

Suppose that we do not know the solution. We search first of all if a 
characteristic time  exists for the phenomena described by this equation and 
corresponding to a movement of amplitude xm. 
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The term kx of given order of magnitude kxm is in the same order as at least one 

of the other two terms of the equation which are, respectively: 2
mmxO  and 

mxfO . 

Let us first suppose that xf  is small compared to
 
kxm which is then of the same 

order as xm : 

kmxk
mx

xkxm m
m

2
 

The characteristic time  necessary for the amplitude to vary from zero to xm is 

of order km  and we also have mkf . 

To first approximation, equation [6.50] can be written: 

     00 ;0    with: 0     xxxkx x m 0   [6.51] 

If, on the other hand, xm is small, then it is the term xf  which balances kx ; we 
thus have: 

kfxk
xf

kxxf m
m  

The characteristic time  necessary for the amplitude to vary from zero to xm is of 

order / ,  with ;f k f mk  equation [6.50] thus reduces to: 

 [6.52] 

The preceding order of magnitude analysis allows us to define the characteristic 
time  for the phenomena described by the initial equation and to obtain an 
approximate equation for this particular time scale. Simple general considerations 
allow us to show that equation [6.51] represents an oscillatory movement, at least at 
the scale . For example, it is useful to discuss the equation in the plane (x, x ), often 
referred to as the phase-plane. The trajectory [ txtx , ] is there a curve 
parameterized by the time and a simple qualitative discussion using equation [6.51] 
allows us to easily see the form of this (Figure 6.10a), based on the fact that x  is the 
derivative of x , and its sign indicates the direction of the variation x . 
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Equation [6.52] corresponds to a damped aperiodic movement. The trajectory in 
the phase-plane is therefore a straight line with slope fk . We will later discuss 
the effect of the second initial condition 00x  which obviously had to be 
abandoned for the first order differential equation. 

If we have equality in the orders of magnitude mkf , the three terms of the 
equation must be conserved, but we will pass gradually from the form of Figure 
6.10a to that of Figure 6.10c. 

 

x 

x  

x 

x

O 

(a) (b) 

x

x

O 

(c)  

Figure 6.10. Evolution of the oscillator in the plane (x, x ): (a) oscillator with a small 
damping; (b) damped oscillator; (c) aperiodic motion (strong damping) 

It then remains to study the influence of the small term neglected in each case: 
this is a perturbation problem which we will discuss a little later (section 6.4). In the 
first oscillatory case, we study the influence of friction with the balance equation for 
the mechanical energy derived from [6.50] by multiplying by x  and integrating 
between 0 and t. We have, taking account of the initial conditions: 

222

2
0

2

0
2

2 kxkx
dtxf

xm t  [6.53] 

Equation [6.53] immediately shows the following properties: 

1) kinetic energy is localized in the vicinity of the origin x=0; 
2) potential energy is localized in the vicinity of the extrema of the stretching 

motion; 

3) kinetic energy can be transformed into potential energy such that the total 
mechanical energy decays with time; 
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4) dissipated energy t dtxf0
2  is an increasing function of time; the result of this 

is that the velocity must tend to zero if the integral is to remain finite; we can write 
equation [6.53] in the form: 

t
t kxxm

dtxf
0

22

0
2

22
 [6.54] 

Let a be the damping time of the oscillations; let mx  denote the maximum of 
the velocity at the beginning of the movement which is considered only lightly 
damped; this leads to the following orders of magnitude: 

2

2

0
22 mt
ma

xm
xfdtxf  

From this we can derive the order of magnitude of the damping time: 
f
m

a . 

It should be noted that the preceding considerations are concerned with orders of 
magnitude which do not require an exact expression of equation [6.50]; they are in 
fact valid for any equation whose terms have the orders of magnitudes posed above. 
Therefore, an approximate knowledge of results do not require complex 
mathematical procedures above and beyond the numerical discussion about 
monomes (“rule of three”). By this procedure, which needs to be completed by a 
discussion of perturbation problems, we can identify the important terms in a system 
of equations, in other words, the dominant physical phenomena in each of the zones 
of the problem domain. The order of magnitude of the unknown quantities can also 
be deduced from this analysis. 

6.3.2. Obtaining approximate values of a solution 

6.3.2.1. Principles 

Most particular functions (called “elementary” or “special”) are solutions of 
linear equations with simple algebraic coefficients. For linear partial differential 
equations (Laplace equation, wave equation, heat equation, Maxwell’s equations, 
etc.), these functions are often useful in the search for solutions with particular 
boundary conditions. As the equations of fluid mechanics are not linear, the 
elementary or special functions are rarely directly useful. 

Having simplified the equations and qualitatively discussed the various 
phenomena, we can obtain approximate values in a simple manner by searching for 
a global solution in each zone where the equations can be simplified. The method 
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which we will use here can be generally applied, insofar as we suppose that we 
ignore the exact solution of the equations, and that the particularities of the equation 
linearity and the coefficient constancy are not used. The method consists in 
searching for a global condition which can be obtained by integrating the equations 
over each interval of the study. We then represent the form of the solution by a 
plausible function in which the main unknown value is a parameter which we can 
deduce from the preceding global condition. We will first apply this technique to the 
preceding example of the oscillator. 

6.3.2.2. Global solution for the linear oscillator  

Let us take for  the first instant where the abscissa x is zero (Figure 6.11a), the 
velocity being then approximately maximum; this value  is more or less equal to a 
quarter of the period T of the oscillatory movement. Let us consider equation [6.51] 
with the conditions:  

0;00;0  0 xxxx  [6.55] 

t

x(t)

O

x0

t

tx

O

mx

(a) (b)  

Figure 6.11. (a) Law of motion during the first quarter of a period;  
(b) variation of the velocity during half a period 

Taking these conditions into account, the integration of equation [6.51] between 
0 and  gives the global condition: 

00 dttxkxm  [6.56] 

First write the function x(t) which in the form 0xtx  of a non-
dimensional function of the variable t  satisfying [6.51] and conditions [6.55]: 

2

0 with  0 1, 1 0 and 0 0k

m
 [6.57] 
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Integrating [6.57] between 0 and 1, we obtain: 

01 1
0

2
d

m
k

 [6.58] 

Equation [6.58] allows us to determine the unknown  if the function  is known. 
It remains to choose the function , whose general shape we know in the phase 
plane from the discussion of section 6.3.1.1. The simplest algebraic function 
satisfying conditions [6.57] is: 

21  [6.59] 

Substituting into [6.58] we obtain: 

0
3

1
2

m
k

 

whose positive root km3  only is acceptable. Thus, for the period kmT 34  

we obtain the value 928.634  which is slightly larger than the exact value 
2 6.28 (error of 10%). The reader will note that the error level is quite small, 
given the crudeness of the computation. 

However, we can hope to improve the result relatively easily by imposing 
supplementary conditions resulting from equation [6.57] on the second derivative 

 at instants 0 and 1: 

01,0
2

m
k

 [6.60] 

Consider firstly second conditions [6.60]: 01 . The simplest polynomial 
satisfying this and conditions [6.55] is of third order: 

22
3

1
32

 [6.61] 

Substituting into equation [6.58] gives: 

0
4
5

3
2

m
k
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We therefore obtain kmT 51244 ; the value 197.65124  only 
differs from the exact value by 1.4%. 
 

The simplest polynomial satisfying the conditions [6.55] and [6.60] is of fourth 
order: 

43
4322

21
36

5
2m

k
 

hence: 

2
6

1
2

m
k

 and 
10
7

40

2
1
0 m

k
d  

As the form of the curve representing the function  depends on the unknown 
parameter mk2 , we obtain, by substituting into [6.58] a second order equation: 

02
15
13

40
1 222

m
k

m
k

 

which has roots 2.497 and 32.16. It is easy to see that the second value is not 
suitable,  having to be positive on the interval [0,1]. With the first value, the 
calculation of the period gives: 

k
m

T
k
m

32.6458.1  

The use of boundary conditions taken from the equation for the second 
derivative thus leads to an improvement (error less than 1%). It should be noted 
however that it is not possible to further improve the results of such a method, which 
only uses local data at the extremities of the interval considered. 

6.3.2.3. Damping of the oscillations  

In an oscillatory regime, the essential movement corresponds to an exchange 
between the kinetic and potential energy terms; only a small amount of the 
mechanical energy is dissipated in each period. The interest of the kinetic energy 
theorem [6.54] is that it gives an expression for the dissipated energy as a function 
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of the variation of total mechanical energy: this is equal to the variation of maximum 
kinetic energy 22

mxm , )(txm  being the maximum velocity value at each stretching 
value of the mass m equal to zero. During a half-period 2  (notation as in the 
preceding section) contained between two instants t and t + 2  where the elongation 
is zero ( mxx ), equation [6.54] translates this mechanical energy variation: 

2 2
12

12

2
2

2
1

2
t
t

p

p
dtxfxm

xm
 [6.62] 

Suppose as before that the amplitude of the velocity mx  varies only slightly and 
that it can be considered as a constant during the half-period, while the velocity 
variation is symmetric with respect to the instant  (Figure 6.11b). The law for the 
velocity 0xtx  results from the choice of the preceding function : 

0 0with: 1
1m m

t
x t x t x x x  

Taking the time origin at the beginning of the half-period, at the instant where 
0x , and designating the velocity amplitude by mx , gives, after substitution into 

[6.62]: 

1
0

2
2

2
2 22

1

2
2

d
xf

dtxfx
m mt

tm  [6.63] 

Relation [6.63] is a finite difference equation with a step 2  for the amplitude 
mx , which we can replace with the differential equation: 

1 22
2 0

2with:
2 1

m

m

dd xm
fx

dt
 

or: 

0m
m x

dt
xd

f
m

 [6.64] 
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The differential equation [6.64] can be solved as before using a global method. 
We will here simply note that it represents a first order damped system with time 
constant fma . 

It remains to calculate the constant . From the parabolic law of motion [6.59] 
we have: 

 

The third order law of motion [6.61] gives: 

 

The exact solution for the damping is 
f
m

a
2

. The error is a little greater than 

for the calculation of the period: this is because a given approximation is always 
better for a function  than for its derivative . 

6.4. Small parameters and perturbation phenomena 

6.4.1. Introduction 

The equations governing a physical phenomenon involve various non-
dimensional parameters. Very often, some of these are small. The associated terms 
appear as a perturbation of the equations which are obtained when these terms are 
zero. Mathematical phenomena associated with these perturbation terms can be 
complex and their study should be carefully effected in order to understand their 
precise role. We will limit ourselves in this section to the usual elementary cases in 
fluid mechanics. 

6.4.2. Regular perturbation  

6.4.2.1. Elementary example  

A perturbation is called regular if the effects resulting from the perturbations 
terms are everywhere in the same order of magnitude as the parameter which 
characterizes them. A good example involves a first order damped system governed 
by the following equation with the small parameter : 
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001 xxx  

whose solution is (Figure 6.12a): )1(1 tex . 

This idea of a regular perturbation is associated with the mathematical idea of 
uniform convergence which we will recall here briefly: a family of functions ),(tf  
converges uniformly towards the function )0,(tf  if the difference between the two 
functions is independent of the value of t on a closed interval, and tends to zero with 
. The limit )0,(tf  of the family of functions is thus continuous. This condition is 

visibly satisfied for the preceding example. 

 

 1 

 O

 x 

 t 

 1-exp(-t / ) 
 1 

 O 

 x 

 t 

 1-exp(-t) 

 (1+ )[1-exp(-t)]
 1+

 (b)  (a)  1  1 
 

Figure 6.12. (a) Regular perturbation; (b) singular perturbation 

6.4.2.2. Regular perturbation of linear differential equations  

Consider the linear differential problem which depends on the parameter , 
whose solution ,tx  converges uniformly towards 0,tx  when the small 
parameter  tends to zero; we can often search for ,tx  in the form of a power 
series expansion of the parameter , if this parameter has been suitably chosen: 

......, 2
2

10 txtxtxtxtx i
i  [6.65] 

Substituting the preceding expression into the differential equation, we obtain a 
series in increasing powers of , the identification of whose coefficients in the two 
sides provides successive differential equations. Let us first consider a simple 
example of a linear differential equation in order to illustrate the computation5 
mechanism. Consider the differential equation representing the movement of a point 
subjected to a weak repulsive force, t varying on [0,1]: 

                                   
5 We assume that the domain of study corresponds to an time interval bounded a priori in 
order to ensure uniform convergence. 



298     Fundamentals of Fluid Mechanics and Transport Phenomena 
 

1000 xxatxtx  [6.66] 

Substituting development [6.65] into differential equation [6.66], we obtain the 
successive differential equations: 

..............

0000
..............

0000
0000
1000

1

2212

1101

000

pppp xxtxtx

xxtxtx
xxtxtx
xxatx

 

The first differential equation is the non-perturbed equation which corresponds 
to 0 ; the successive differential equations only depend on the functions already 
calculated, of lower rank in the development. The boundary conditions can be 
carried back into the first equation, provided they do not contain the parameter . 

The solution of the preceding system can be calculated immediately from place 
to place and we thus obtain a series development of the solution: 

........,
!12!12

....,

,
!5!6

,
!3!4

,
2

1212

56

2

34

1

2

0

p
t

p
t

ax

tt
ax

tt
axt

t
ax

pp

p

 [6.67] 

However, a development including many terms is not of much interest, 
particularly if we consider the computational methods used by computers. 
Furthermore, if the parameter takes on values which require many terms of the 
development, the principal properties of the unperturbed equation are significantly 
modified: in other words the unperturbed equation is no longer a sufficiently 
representative model for the mathematical and physical properties of the solution for 
these values of . 

For example, we easily recognize that [6.67] is the series development of the 
solution which is here easy to calculate directly: 

tsh
tch

a
x 1  
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When  is no longer small, the preceding series development is of limited 
practical interest, despite an infinite radius of convergence, as the behavior of the 
perturbed solution is too far from that of the unperturbed solution. 

6.4.2.3. Regular perturbation of non-linear differential equations  

Consider a given first order differential equation: 

axxtfx 0,,  

Calculating the development of the function ,, xtf  in increasing powers of 
the small parameter  becomes quickly complicated, and in general we are satisfied 
by a limited development. We will here only outline the principle of the method and 
the beginning of the calculation. 

As before, we seek a solution of the form [6.65]: 

......, 2
2

10 txtxtxtxtx i
i

 

We have: 

....0,,
2

0,,0,,
2
1

0,,

0,,0,,0,,

0..,,
2

0..,,0..,,

0,,
2

0,,0,,,,

3
0

2
1

01002
2

0100

10

2

2
2

102
2

10

2

xtf
x

xtfxxtfxtfx

xtfxxtfxtf

xxtfxxxtfxxxtf

xtfxtfxtfxtf

xxxx

x

 

Substituting the preceding development into the differential equation and 
identifying the following increasing powers of the small parameter , we obtain: 

000,,
2

0,,0,,
2
1

0,,

000,,0,,
000,,

20

2
1

010022

10011

000

xxtf
x

xtfxxtfxtfxx

xxtfxtfxx
axxtfx

xxxx

x  

The first differential equation corresponds to the zero perturbation for . We note 
that the successive differential equations are linear for the corresponding unknown 
function, with a right hand side which only depends on the previous solutions. The 
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equation linearity facilitates their numerical resolution. However, the expressions for 
the differential equations can quickly become complex. 

The interest of regular perturbation methods is particularly evident for problems 
governed by partial differential equations, if particular solutions can be found which 
have a simple mathematical structure (for example, one which approaches 
differential equations), in which case the equations resulting from the application of 
the regular perturbation method have a structure analogous to the initial solution. 
We will see different examples of these methods applied to slightly unsteady flows, 
to thermal systems which do not vary too quickly, and to the problems where inertia 
terms due to geometric variations must be accounted for. 

6.4.2.4. Choice of a perturbation parameter 

The perturbation parameter chosen for a study is of the utmost importance. 
Suppose that a model leads to the following equation: 

Axtbtxax n
n 0,  [6.68] 

It is clearly possible to seek a solution in the form of a development of the 
solution in powers of 

0
1

( , )  ( ) ( )i

i

i

x t x t x t  

However, it is more interesting to take 
1i

i
ia  as the perturbation 

parameter and to seek a solution of the differential equation: 

Axtbtxax 0,0  

in the form 0
1

( , )  ( ) ( ).i

i

i

x t x t x t
 

We find for the successive differential equations: 

1

1

( )=- ( )     (0) 0

( )=-      x (0) 0

i

i o i j i j j

j

i o i i i

x a x t a x t x

x a x t x
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The system obtained is far simpler for ix~  than for xi. The preceding example is 
apparently rudimentary. However, it translates the fact that the model has attributed 
an important role to the parameter , rather than to  which was chosen in order to 
establish the model. It is clear that we can have a better development with the 
parameter  than with . This problem of parameter choice is often encountered in 
order to best represent the range of solutions, for example, for solutions of boundary 
layer equations ([SCH 99], [YIH 77]). The term b(t) of [6.68] can depend on 

which must therefore express as a function of .  

The method can be applied to partial differential equations. We will later see 
some examples of this (section 6.4.2.6). Suitable variable changes also allows the 
modification or simplification of the differential problem (section 8.5.3.2). 

The practical limits of the preceding method are determined by the convergence 
of the entire series, but even more by the speed of convergence of the series 
obtained. Methods for accelerating the convergence can be used here ([ABR 65] 
p. 16, [BRE 91]). 

6.4.2.5. Regular perturbations and orders of magnitude 

In the domain of studies where the orders of magnitude of the terms are fixed, 
knowledge of a solution (exact or approximate) of an unperturbed problem allows 
the calculation of correctional terms for the solutions in the neighborhood of the 
base solution. 

The successive differential equations obtained are linear equations which all 
have the same linear operator, the right hand sides being known at each stage from 
the preceding solutions. Numerical solution is thus simplified. The computation of 
higher order terms of the solution by means of analytical developments, is generally 
difficult in practice, on account of its complexity. 

6.4.2.6. Applications in fluid mechanics  

With the exception of viscous stresses, taking account of other phenomena in 
fluid mechanics, when these are relatively weak, very often leads to regular 
perturbations: unsteady effects in established flow (in other words a flow which is 
independent of its initial conditions), effects of compressibility in steady flow, weak 
geometric changes, etc. 

Consider the established flow of an incompressible fluid with constant viscosity 
in a rectilinear pipe of arbitrary cross-section (Figure 6.13), and let us suppose that 
we have a Poiseuille flow, with a driving pressure gradient xp , parallel to the 
velocity in the direction Ox, which is a given function of time; the velocity satisfies 
the following equation (from [4.21]) and boundary conditions: 
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 [6.69] 

We will consider the following non-dimensional parameters and variables: 

tf
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zy
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u
u

T

t
t ~,~,~~~ 22

 

where D and T are, respectively, a reference length for the cross-section and a unit of 
time to be defined. 

Equation [6.69] can be written: 

2
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2
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~;~~~

~
~

zy
utf

t
u

 [6.70] 
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Figure 6.13. Established flow in a cylindrical tube 

Assume to be small and consider that equation [6.70] is the result of a regular 
perturbation of this equation for  = 0. We seek the solution of [6.70] in the form 

=0
= .i

i
i

u u Substituting into equation [6.70] and identifying terms following the 

increasing powers of , we obtain the system: 

0 1
0 1 2 10 ; ; ; ...; ; ...i

i

u u u
f t u u u u

t t t
 

with the boundary conditions: 
~~,~0,~ Czyzyui  0,1, 2,..., ,...i n  
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It is immediately verifiable from place to place that the functions iu~ are variables 
of separated functions and that they are proportional to the successive derivatives of 
f(t): 

0

)( ~)~,~()~,~,~(~
i

i
i tfzygtzyu  [6.71] 

The functions )~,~( zygi are solution of the system:  

0 1 0 2 1 11;   ;   ;   ... , ...n ng g g g g g g   

with the boundary conditions: ( , ) 0   ( , ) ;   0,1,..., ...ig y z y z C i n  

The preceding equations can be solved successively with increasing i, and the 
first equation corresponds to the Poiseuille flow (section 3.4.2.5). Let  = 1, which 
amounts to taking 2DT  as a unit of time. The expression for the velocity 
becomes: 

)~,~(~)~,~,~(~,,
0

)( zygtfUtzyuUtzyu i
i

i

The volume flow rate can thus be easily expressed as a function of the successive 
derivatives of the pressure gradient: 

sdzygtfUDsdtzyuUDq S i
i

i
Sv

~)~,~(~~)~,~,~(~
0

)(22  

Defining the dimensionless coefficients sdzygG S ii
~)~,~( , it can be written in 

the form: 

0

)(2 ~
i

i
iv tfGUDq  

Let p(t) be the driving pressure loss for the length L; the pressure gradient can 

be written in the form: 
L

tp
x
p

 and we have: 
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From this we can derive an expression for the volume flow rate as a function of 
the pressure loss and its temporal derivatives: 

0

24

i i

ii

iv
L
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t

D
G

D
q  

For example, in the case of a circular cross-section C (
r

r
rr ~

~
~~

1~ ) of 

radius 1r , we easily find: 
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The physical interpretation of the series is not so simple, as the physical 
significance of the higher order derivatives implies a long-term property. It suffices 
to consider a function tf  and a polynomial approximation of this over an interval 
of time. The higher order derivatives of these functions are very different, and so, 
consequently, are the preceding corresponding series. In fact, we can easily verify 
the convergence of the series for exponential or sinusoidal functions whose time or 
frequency constants are relatively small, but the preceding representation is of 
limited use for these particular cases. 

For the example considered, we can show that we have convergence of the series 
if the series of the general term nn tf 4~  converges. Recall, however, that, from 

a mathematical point of view, the solutions established for the partial differential 
equation does not require the existence of derivatives for the given function tf . 
The preceding results can equally be obtained by means of a Laplace transform 
(Appendix 1) in the asymptotic approximation for large periods of time. 

The regular perturbation of the solution to a non-linear partial differential 
equation is more difficult (section 6.4.2.3), and in general we can only obtain the 
first terms of the development. Examples of this kind of development (Blasius 
series, Görtler series, etc.) are found for boundary layer equations ([SCH 99], [YIH 
77]). 

The method of regular perturbations can also be applied in acoustics and 
energetics. Consider the geometry of Figure 6.13 in which the cylinder of base C is a 
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solid, with constant physical properties, subjected to a heat release of volume power 
P(t) and whose external wall is maintained at constant temperature T = 0. 

The thermal conduction equation for this solid and the associated boundary 
conditions: 

;)( TtP
t
T

C with: ( , ) : ( , , ) 0y z C T y z t

 

can be immediately reduced to equation and boundary conditions given in [6.69]. 

6.4.3. Singular perturbations  

6.4.3.1. Introduction 

In section 6.4.2 we assumed that the differential equation could be solved with 
respect to the first derivative such that the unperturbed equation ( =0) possesses a 
differentiable solution. This is not the case if the coefficient of the derivative tends 
to zero with  faster than the other coefficients. Let us examine the elementary 
example of the following differential equation in which the parameter  is now the 
coefficient of the derivative )(tx : 

001)(' xtxtx  [6.72] 

The solution is: ttx exp1 . 

For  to tend to zero, it is easy to follow the evolution of the solution towards its 
discontinuous limit (Figure 6.12b) made up of the half-line (x = 1, t > 0) and the 
origin O. Letting  equal to zero in equation [6.72], we obtain the solution 1x  
which is valid nearly everywhere, and we can no longer satisfy the initial condition 
posed at the origin for this part of the solution (called the external solution). We note 
that the family of functions ,tx  does not converge uniformly towards its limit for 
 = 0. 

It is therefore necessary to perform a particular study over a small interval in the 
neighborhood of the origin where the solution undergoes significant variations over 
a small distance (internal solution) in order to recover the boundary condition which 
is not satisfied. 

The external solution can also undergo a regular perturbation due to the small 
parameter . For example, the solution of the following differential equation: 

001 xxx  
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does only differs from the preceding equation by the coordinate 1 +  of the 
horizontal asymptote. 

6.4.3.2. Methods for studying singular perturbations  

The existence of a singular perturbation is related to the presence of a singularity 
for the limit solution of a system of differential equations. This phenomenon is 
encountered in diverse circumstances and notably in the case of the lowering of the 
order of a differential system in which we impose  as zero, or when the limit 
solution or one of the derivatives involves a discontinuity on the interval of the 
study. We will limit ourselves here to the study of a very simple case in order to 
illustrate the general method by which we discuss such problems. 

The direct numerical study of a problem involving singular perturbations often 
presents difficulties on account of the very large disparity in the characteristic scales 
found in different regions of the study. This point can obviously involve difficulties 
for numerical methods in fluid mechanics. It is therefore particularly interesting to 
directly obtain information independent of the exact solution (often very difficult) of 
the differential problem which is posed. We will illustrate this using a very simple 
case; the general analysis method involves a number of stages: 

1) searching for the external solution: a study of the order of magnitude of the 
solution which is assumed to vary regularly over the interval under study allows us 
to obtain equations which are satisfied by the external solution; 

2) we then try to identify a contradiction with respect to the data of the problem 
in order to identify the singularity to study; 

3) a new examination of the order of magnitudes of the terms of the equation 
provides information pertaining to the scales of the singularity to be studied; 

4) it is then possible to identify the equations of the differential problem in the 
singular zone (internal solution), these resulting from simplifications of the 
complete problem; 

5) we then discuss the boundary conditions to be associated with the two 
preceding problems for matching their solutions. 

6.4.3.3. An elementary example  

The example of section 6.4.3.1 is too simple because the internal solution and the 
exact solution are identical. Consider the following differential problem: 

001)( xttxtx  [6.73] 
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Ignoring the results of the last example, let us apply the methodology described 
above: 

1) We first look for the external solution by supposing that the unknown function 
has variations of the order of one on the intervals of the same order of magnitude. 
To O( ), differential equation [6.73] reduces to: 

ttx 1)(  

The equation obtained is here an algebraic relation (a zero order differential 
equation) which explicitly gives the external solution which is valid nearly 
everywhere. 

2) The condition that x(t) be zero at the origin is not fulfilled. We must therefore 
complete the preceding solution by an internal solution on an interval with a 
different scale to the interval where the external solution is valid, otherwise we will 
only recover the latter. Let  be the order of magnitude of the length scale of the 
interval over which the neglected term x  must be taken into account. 

The interval sought of scale  must be situated at the origin. In effect, if this was 
not the case, we would have between this interval o(1) and the origin a finite interval 
on which the results of the external zone would be applicable; the function x would 
be equal to 1+ t and would not therefore be zero at the origin, which would imply 
that nothing had been solved. The only reasonable possibility is therefore to place 
our small interval  in the neighborhood of the origin. 

3) The order of magnitude of  can be obtained by supposing that the term  x' is 
of the same order as that of the variations of x, i.e. of the order of 1: 

11

1)( ttxtx
 

We can deduce from this that , and we need to study the behavior of the 
solution in an interval of amplitude  close to the origin. 

4) We perform the change of variable: 

Xtx
t

 

Neglecting the terms of order , equation [6.73] can be written: 

001)( XXX  
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Its solution satisfying the condition at the origin can be written:  

eAX 1  

It tends to A when  tends to infinity. 

5) We now have two pieces of the solution (Figure 6.14b) which we need to 
match. This procedure appears relatively empirical and we will consider only small 
values of . We see that as  tends to zero, the value 1  of the external solution 
for x =  tends to 1. We therefore adopt the following simple matching rule. 

The limit of the internal solution F( ) for  becoming infinite is equal to the 
limit of the external solution x(t) when t tends to 0: 

txX
t 0
limlim  

 y

 (b)

 1

 O  x

internal solution:
 1-exp(-t/ )

exact solution

 external solution:
 x = 1+ t

 1

 O

 y

 x

 exact solution

 (a)

 asymptote: x = 1+ t

 

Figure 6.14. (a) Exact solution of differential problem [6.73];  
(b) matching of external and internal solutions 

This rule provides the boundary conditions which were missing for the internal 
solution and leads to a value of 1 being assigned to the constant A. We thus obtain 
the internal solution: 

( ) 1   with: /X e t  

In fluid mechanics, the internal solution is called a boundary layer. Such 
singularities are encountered in all domains of physics (skin effect in 
electromagnetism, penetration depth of an evanescent electromagnetic or acoustic 
wave, etc.). We will see other examples in problems of heat transfer or chemical 
reactions with or without flow. 



General Properties of Flows     309 
 

The singularity can also consist of a discontinuity of the first or second 
derivatives. 

Perturbation problems can also present other characteristics. Consider for 
example, the following lightly damped oscillator (section 6.3.1.1): 

0xxx  

The friction term x  is a perturbation of the undamped equation. The 

modification of the oscillatory solution due to a damping term 2te  has an effect 
of order  over a duration O(1), but the final result is the suppression of the 
movement. The perturbation effects due to friction are cumulative.  

More complete developments on singular perturbations can be found in 
specialized textbooks ([COL 68], [HIN 91], [NAY 81], [VAN 75]).  

6.5. Quasi-1D flows  

6.5.1. General properties  

6.5.1.1. Assumptions  

Many flows can present a quasi-1D character, in other words the evolution scales 
of phenomena differ depending on whether we follow the principal direction of the 
flow or the transverse directions. 
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Figure 6.15. Quasi-1D flows 

The basic assumption of a viscous quasi-1D flow is that the cross-section and 
direction of a stream tube vary quite slowly (Figure 6.15). The thickness d of the 
domain of study is small compared to its length L (d << L). We consider the 
coordinate on a curve oriented along Ox, more or less parallel to the stream tubes 
(the axis of a pipe, jet or wall, etc.) and the orthogonal coordinates in cross-sections 
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orthogonal to Ox. The local coordinates defined by the curvilinear abscissa x and the 
orthogonal coordinates zy,  in cross-sections constitute a coordinate system which 
is locally Cartesian. These assumptions allow us to write the balance equations in 
Cartesian form in this zone. 

We furthermore assume that the variations f of the quantities f studied are more 
or less of the same order of magnitude over the distances d and L. 

6.5.1.2. Approximations 

The following properties result from the preceding assumptions: 

1) Partial derivatives of a quantity in the directions y or z are an order of 
magnitude greater than the corresponding axial derivative in the direction Ox. In 
effect Lfxf  and dfyf  lead to: 
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x
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This results in vectors of the form k fgrad  (for example, the thermal or mass 
flux densities Gq , etc.) are perpendicular to the axis Ox and that we only take into 
account the two components k yf  and k zf  of the flux density Gq . 

2) The diffusion term Gqdiv  of the balance equation of a scalar quantity G is 
therefore reduced to the sum of the transverse derivatives yqGy  and 

zqGz . 

3) The transverse components v and w of the velocity are small compared with 
the axial component u ( uv and uw ). In effect, assuming the flow to be 
incompressible, the volume balance can be written:  

0
z
w

y
v

x
u

 

If variations of the cross-section exist, the transverse velocity is not zero, but it is 
very small, in order to ensure the inclination of the velocity with respect to the axis 
Ox, of order d/L. Assuming the 2D problem (w = 0) in order to simplify matters, the 
two derivatives xu  and yv  have the same value (sign excepted). An order of 
magnitude analysis shows that: 
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i.e., sign excepted, LUdv . 

No simplification is possible in the mass conservation equation. 

The result of this evaluation of the velocity components is that the dominant 
terms of the viscous stress tensor are the tangential components yu  and 

zu  (friction forces in the Ox direction). 

4) The material derivative of a scalar quantity conserves its general expression 
in the quasi-1D approximation. 

Consider the material derivative 
y
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 of the quantity g. The 

two convection terms are of the same order: 
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5) On the other hand, an analogous order of magnitude calculation shows that the 
small value of the transverse components of the velocity leads to the transverse 
accelerations dv/dt and dw/dt being negligible with respect to the axial acceleration 
du/dt. 

6.5.1.3. Local balance equations  

Taking account of the preceding approximations, balance equation [4.3] for the 
volume quantity g  can be written: 
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t
g GzGy

G  [6.74] 

By way of example, the dynamic equation following Ox [4.21], for a Newtonian 
fluid, can be written: 
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In a plane 2D flow, we obtain for a fluid with constant physical properties 
(where pg is the driving pressure): 
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dt

du g  [6.76] 

Finally, as the transverse accelerations dv/dt and dw/dt are negligible with 
respect to the axial acceleration du/dt, the viscous stress terms of the transverse 
equations are equally negligible with respect to the corresponding term in the axial 
dynamic equation. The transverse equations reduce to: 
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The pressure (or driving pressure) distribution in a cross-section is hydrostatic, 
but it depends on x and t. 

Energy equation [4.51] can thus be written in the quasi-1D approximation: 
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 [6.77] 

Dissipation function [4.56] can be simplified by only considering the dominant 
strain rates yu  and zu . We find immediately: 
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y
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 [6.78] 

6.5.1.4. Parabolic character of the quasi-1D equations  

Consider first convection equation [6.74] in which the velocity field is assumed 
to be given. This presents a structure analogous to the heat equation, i.e. it has a 
dissymmetry in the order of the derivations with respect to the variables: second 
derivatives with respect to y and z are encountered, the derivatives with respect to x 
and t being only first order. This results in a parabolic behavior with respect to the 
variables x and t: the temperature distribution in a cross-section of coordinate x at 
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the instant t depends only on data from the past or the upstream region. This 
explains the fact that the state of the matter in the cross-section depends on its 
anterior state on the trajectory; the diffusion term of quantity G only provides a 
limited action in this section, the suppression of the conduction term xqGx  
amounting to the suppression of all flux in the upstream direction.  

The velocity components u and v are the unknowns of dynamic equation [6.76]. 
The demonstration of the parabolic character can be effected by introducing the 
stream function  such that the mass conservation is satisfied: 

xvyu  

Equation [6.76] can thus be written: 

3

3

2

222

yx

p

yxyxyytdt
du g  [6.79] 

In equation [6.79] the derivations with respect to x and t are of order 1, whereas 
the derivation with respect to y is of order 3, which indicates the parabolic character 
with respect to the variables x and t. 

In applications, the hypotheses of section 6.5.1.1 are very often encountered. 
Quasi-1D flows can be produced: 

 when the geometric boundary conditions impose such an evolution: in flows in 
pipes this kind of approximation exists for most macroscopic physical phenomena 
(electric, electromagnetic, thermal, etc.); 

 when diffusion phenomena in flows lead to weak fluxes of extensive quantities 
in the axial direction Ox compared with the convection fluxes of these. In inviscid 
fluids transport or propagation phenomena governed by the characteristics are, in 
fact, perturbed by contact actions (viscosity, thermal conduction, diffusion, etc.), and 
this leads to a transverse migration of the extensive quantities. The balance 
equations contain high-order derivatives which “perturb” the convective transport 
terms. In these situations, there exist non-dimensional parameters (Reynolds, Peclet 
numbers, etc.) which take on high values. 

We will successively examine two categories of problem in which the data are 
different. 
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6.5.2. Flows in pipes  

6.5.2.1. Nature of the problem  

A pipe is a stream tube  materialized by a wall. The dominant velocity 
component u in a cross-section is directed along its axis. The definition of the 
problem to solve can be obtained as usual by combining the local balance equations 
(mass, axial momentum, energy, etc.) with the initial and usual boundary conditions 
on the wall L. 

xu(x,t)

S(x)

x

D

L
C

d

 L

 

Figure 6.16. Balance in a pipe 

The geometric elements of the pipe are given, such that integration of the 
dynamic equation leads to a relation between the volume (or mass) flow and a 
pressure difference between two cross-sections. Calculation of the velocity 
distribution (or of a quantity G) in a cross-section is an internal problem posed in 
the interior domain of the stream tube  (Figure 6.16). 

6.5.2.2. Global balance equation for an extensive quantity in a pipe  

The normal of a cross-section S(x) is here oriented parallel to Ox (orientation by 
continuity). This convention requires a change in sign at the time of application of 
Osstrogradski’s theorem to a closed surface  containing cross-sections. By 
assumption, the lateral wall L is supposed impermeable to the flow, i.e. 

0.
L

dsnVg . Consider the small domain  D of the pipe comprised between the 

sections of abscissas x and x + x of the lateral surface L (Figure 6.16). 

Formula [4.62] for the global balance of a volume quantity g  can be written: 

dsnqdvdsnugdv
t
g

jGjGii DD  [6.80] 
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Taking account of the preceding assumptions, we have: 

S GG
xx

xSii dsxdvgudsdsnug .; D  

The density flux Gq  is essentially normal to the lateral wall (section 6.5.1.2) for 

irreversible changes (viscosity, conduction, diffusion) and the integral dsnq jGj  is 

equal to dqx C Gw.  taken over the contour C of the cross-section (qGw is the flux 
density of G, normal to the wall). 

Substituting these expressions into [6.80] and dividing by x gives: 

dqdsdsgu
x

ds
t
g

C GwGS SS  [6.81] 

In the place of the volume quantity gg , let us take the massive quantity g; 
we obtain: 

C GwGS dqdsugds
x

ds
t
g

SS  [6.82] 

The quantity SSGS dsguugds  is the flow of quantity G across the 
cross-section S. 

6.5.2.3. Applications 

Taking 1g , we have the volume flow rate SvS udsq  across S. 

Taking 1g , we have the equation for the mass balance: 

0
x

q
ds

t
m

S  [6.83] 

with: Sm udsq , the mass flow in the rate cross-section S. 

The momentum balance along Ox can be obtained by applying formula [6.82] of 
the quantity g = u. Supposing (section 6.5.1.3) that the driving pressure gradient 

xpg  (here, the term G) is constant over the cross-section S, and designating by 
w the viscous stress exerted by the fluid on the lateral wall, we have: 
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d
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2  [6.84] 

Proceeding as before, kinetic energy equation [4.66] can immediately be written, 
by noting that the power of the viscous forces on the external surface of D is zero 
because of the assumptions which have been made (zero velocity on the wall, and 
quasi-1D approximation on S), we obtain: 

SS vS g Puds
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t 22
 

22
 [6.85] 

with: SvS dsP , the power dissipated by viscosity per unit length of the pipe. 

The first term of [6.85] gives the accumulation of kinetic energy in D in 
transitional regime and the second expresses the flow rate of mechanical energy 
across S. 

The different forms of the energy equation seen in section 4.3.4 can be integrated 
over the surface S (or in the domain D), but it is not possible to write down an 
energy flow in the cross-section, except if we use initial formula [4.68] of the 
balance equation which contains the flow of total enthalpy  

2= [ ( / 2)]ht m
s
h V dq  across the section S.  

Furthermore, the integral over D of the term 
j

iij

x

u
 can be transformed into a 

surface integral, which is zero, as we have already said. 

Proceeding as before for the thermal flux density, we obtain: 
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 [6.86] 

Recall that the power of an external force field is often negligible for a perfect 
gas. The expressions for the internal specific energy e and the specific enthalpy h for 
a perfect gas can be written: 
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The energy equation for an incompressible fluid of constant specific heat C 
(section 4.3.4.1.6 and equation [4.70]) can be written: 

C TwTSS dqdsPuCTds
x

ds
t
CT

SS
 [6.87] 

where, depending on the case, we used either Cp or Cv for the specific heat C. 

6.5.2.4. Average values of intensive quantities  

As we have already said in section 1.4.2.5, to be consistent, the definition of 
mean intensive values is effected such that the balance of the corresponding 
extensive quantities is verified for the system studied. The application of this general 
principle is expressed here by writing that values of the fluxes of extensive 
quantities (mass, momentum, energy, etc.) in the cross-section S are identical either 
by integration of local values or by using these mean values for balances. Then, we 
take the following definitions: 

 the mean density m:  
S

m ds
S
1

 

 the mean velocity uq:  
Sm

q dsu
S

u
1

 

 the mean temperature Tm (C = const):  
Sqm

m dsuT
Su

T
1

 

 and in general the mean quantity gm: 
Sqm

m dsug
Su

g
1  

These quantities are often called the average mixing values (or mean mixing 
values), as they correspond to the intensive value represented by the variable g under 
the assumption that the flow of G across the section S would directly fill a volume 
where it should be mixed without any external input. The preceding definition of Tm 
supposes that the specific heat is independent of the temperature. 

In cases where the same quantity contributes differently to several mean values, 
we introduce a suitable coefficient, for example: 

 the momentum coefficient : 
Sm

q dsu
S

u 22 1
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 the kinetic energy coefficient : 
Sm

m dsu
S

u 33 1

 

These mean values and the preceding coefficients allow the equations for the 
quasi-1D model of flow in a pipe to be written very simply in a form analogous to 
the 1D slice approximation with uniform properties in the cross-section (see section 
4.3.2.3.4). However, the system of differential equations obtained only determines a 
solution if the preceding coefficients constitute data, which must be chosen more or 
less empirically from assumptions derived from the velocity, temperature or 
concentration profiles. 

We will leave it to the reader to verify that in a laminar flow we have the 
following values: 

 uniform flow:  =  = 1;

 Poiseuille flow in a circular tube:  =2;  = 4/3. 

In industrial pipe systems, the values of  and  are often of the order of 1.1 to 
1.3 ([ASH 89], [IDE 99]). If the differences between the local velocity u and the 
mean velocity uq are small, the reader can verify that we have approximately6 

131 . 

The mechanical energy balance [6.85] (generalized Bernoulli’s theorem) in a 
pipe for an incompressible fluid can be written with the definition of : 
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We can thus define the total mean driving pressure: 

2

2
q

tm
u

ghpp . 

The quantity tmv pq  represents the flow rate of mechanical energy across a 
cross-section S. Equation [6.88] becomes, on neglecting the power of the viscous 
forces on  (approximation 2 of section 6.5.1.2): 

                                   
6 Let 'uuu q  and neglect the term in 3'u  in the calculation of 
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Integrating along the axis in the domain D included between two cross-sections 
S1 and S2 gives: 

DD vtmtmv
q Pppqdv

u

t
12

2

2
  [6.89] 

This equation is a model which reveals the inflows and outflows for the studied 
domain of the pipe; it is particularly useful in steady flows for evaluating the 
mechanical energy dissipated, using measurements of velocity distributions in the 
sections S1 and S2 [IDE 99]. 

6.5.2.5. Local equations  

The local equations in the cross-section S of the stream tube are identical to the 
local equations of the boundary layer which are developed in the following section. 

6.5.3. The boundary layer in steady flow 

6.5.3.1. Introduction 

We will limit our discussion in this section to the case of a steady flow of an 
incompressible fluid of constant viscosity. The Navier-Stokes equations ([4.74] and 
[4.75]) can be written with non-dimensional variables (section 4.6.1.3), p~  being 
here the non-dimensional driving pressure: 
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Under the usual conditions, the Reynolds number is very large compared to 1, 
and the term iu~~  is weighted by a coefficient which is very small compared to 1. 
This therefore appears to be a perturbation quantity whose nature we will study 
using the procedure outlined in section 6.4. 
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6.5.3.2. External solutions and the Euler equations  

Assuming that the solution of the preceding equations and its derivatives vary at 
the scale of 1, all the non-dimensional derivatives are in the order of 1, and the term 

iu
Re

~~1
 is therefore very small compared to 1. 

The dynamic equations can be reduced to the Euler equations: 
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These are one order less, and require weaker boundary conditions than the 
Navier-Stokes equations. It is clear from a physical point of view that we must 
abandon the adherence condition, since the viscosity no longer exists, and the fluid 
can therefore slide over the walls. We thus find ourselves in the singular 
perturbation situation described in section 6.4.3. 

6.5.3.3. Finding a singular perturbation zone  

Following the preceding reasoning, this zone cannot concern a zone of scale 1 in 
all three dimensions. At least one of the dimensions of this zone must be small in 
order for the value of a derivative to be sufficiently large to compensate the 
coefficient 1/Re. Where can such a zone be found? We note firstly that on account of 
the transport of fluid and its properties, it is difficult for such a zone to 
spontaneously appear in the heart of the flow. An exterior intervention is then 
necessary in order to create a viscous phenomenon sufficiently large which then 
develops. This can only happen when the flow of an inviscid fluid encounters an 
obstacle on the singular streamline which contains the stagnation point A of zero 
velocity (Figure 6.17). 

The subsequent velocity evolution on the wall streamlines of the inviscid fluid 
lead to a non-zero sliding velocity which increases downstream of the point A. It is 
then in the neighborhood of the wall that the viscosity must necessarily act. 

The length of this zone is in the order of obstacle dimension L and its thickness 
 is necessarily o(L), otherwise we are back in the preceding situation. We must 

therefore study a thin zone in the vicinity of the walls where we can make the 
approximation of a quasi-1D flow. We will here consider a plane 2D flow over an 
obstacle placed in a flow of uniform velocity U (Figure 6.17), and we will allow the 
radii of curvature of the walls to be large compared with the thickness . 
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6.5.3.4. Boundary layer equations  

Let us consider an obstacle inside a uniform flow of an inviscid fluid at speed U. 
Let us take a locally Cartesian coordinate system (x, y) defined in the following way 
(Figure 6.17): x is the curvilinear abscissa evaluated algebraically on the wall 
downstream of the stagnation point A on the obstacle, the coordinate y being 
evaluated along the wall normal n . The velocity components are designated by (u,v) 
in the coordinate system fixed to the wall and in its immediate vicinity. 

L

nL

xy

flow of
inviscid fluid

 boundary layer

A

y

x

y

ue(x)

(b) (a)

U

 

Figure 6.17. Boundary layer on the wall of an obstacle in uniform flow: 
(a) figure on the scale of L; (b) figure on the scale of 

The discussion is as per section 6.5.1.3. The longitudinal velocity and 
acceleration components are nearly parallel to the wall; the normal acceleration 
component is negligible compared to the longitudinal component: the pressure, 
constant across the thickness of the boundary layer is here only a function of the 
abscissa x (section 6.5.1.3). However, in the dynamic equation, it is not possible to 
neglect the v component in the material derivative which ensures a part of the 
momentum transport (section 6.5.1.2). The dimensional equations of the 2D 
boundary layer can thus be written: 
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The order of magnitude  of the boundary layer thickness can be obtained by 
writing that the material derivative and the viscous stress term are of the same order 
of magnitude (section 6.5.1.3): 
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where UL , or by defining the Reynolds number ULReL  with 
the length L: 

21Re LULL  [6.92] 

Introducing the stream function  ( xvyu ; ), equations [6.91] 
can be reduced to the equation: 
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 [6.93] 

The order of the derivatives with respect to x is less than the order of the 
derivatives with respect to y in equation [6.93] which is parabolic: the distribution of 
the velocity at a given abscissa x0 only depends on the upstream conditions of the 
external velocity ue(x), corresponding to values of x less than x0. 

6.5.3.5. Boundary conditions  

The boundary layer equations are clearly simpler than the Navier-Stokes 
equations. We have already seen that the suppression of the transverse dynamic 
equation leads to pressure being a function of the x direction only. We must now 
express the adherence condition of the fluid at the wall, as this was our objective in 
the introduction to the boundary layer.  

00,0,0 xvxuy  

We must now match the boundary layer and the external inviscid fluid flow. We 
proceed in a first approximation as per section 6.4.3.3 by writing that the velocity at 
the outer edge of the boundary layer is equal to the velocity xue  of the inviscid 
fluid on the wall in the absence of a boundary layer: 

xuyxu
y

e,  [6.94] 

The velocity xue  and pe (x) satisfy Bernoulli’s theorem on the wall for an 
inviscid fluid: 

22

22 U
p

xu
xp e

e  [6.95] 

where p  designates the static pressure in the external uniform flow of velocity U. 
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Finally, we must fix the initial upstream condition for the velocity distribution at 
a given abscissa often taken as the origin x = 0. As we have explained in section 
6.5.3.3, the stagnation point A of the flow of a inviscid fluid over the obstacle 
(Figure 6.17) is the departure point of the boundary layer that can be easily 
calculated in this zone where its thickness is quite small ([SCH 99], [YIH 77]). 

If the leading edge of the obstacle is of negligible thickness (plane or wedge-
shaped wall), the thickness of the boundary layer is here taken to be zero. 

6.5.3.6. General properties of boundary layers  

6.5.3.6.1. Physical interpretation of the boundary layer  

We can immediately note that the condition of zero velocity on the wall also 
leads to a condition of zero acceleration. Conversely, the viscous stress becomes 
zero at the outer edge of the boundary layer. This is therefore a zone where the 
pressure gradient, which is constant, sees its action balanced by the acceleration in 
the outer region and by the viscous friction at the wall. This situation is shown 
schematically in Table 6.1 which indicates the dominant terms following the height 
in the boundary layer. 

The solution previously obtained in section 5.4.5.4 for the heat equation is of the 
same kind as that of the boundary layer, with time replaced by the x coordinate. The 
zero-velocity condition imposed on the wall leads to viscous diffusion of the viscous 
stress and of the vorticity. This results in an augmentation of the boundary layer 
thickness as an abscissa function, as indicated by the order of magnitude 

21Re LULL  found earlier [6.92]. 

height in the 
boundary layer 

acceleration 

quantity
dt
du

 

pressure 

gradient 
dx
dp

 

viscous stress 

2

2

y

u
 

outside (inviscid 
fluid) 

X X 0 

inside boundary 
layer 

x X x 

wall 0 X X 

Table 6.1. Balance of “forces” in the boundary layer 
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This diffusion can be counterbalanced by an aspiration of fluid across the wall. 
Consider the simple case of a plane wall placed in a uniform flow of velocity ue and 
realize a suction of fluid across the wall at constant velocity  v0 (Figure 6.18). We 
see immediately that the solution: 

y
v

uu e
0exp  [6.96] 

satisfies equations [6.91] of the boundary layer and corresponds to an established 
solution where the thickness 0v  is constant. Figure 6.18 represents this flow. 
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ue 

0v
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v0 

v0 

ue 

 

Figure 6.18. Established boundary layer with suction 
 through a wall in an uniform flow 

We note that in the case where we have blowing rather than suction (  v0 
positive), the solution is not acceptable: the boundary layer no longer exists if the 
blowing is sufficiently strong ([SCH 99], [YIH 77]). 

6.5.3.6.2. Non-dimensional equations  

Let us write equations [6.91] in non-dimensional form with the following change 
of variables: 
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Equations [6.97] do not contain the parameter ULRe . This results in the non-
dimensional solution being independent of the Reynolds number. So, all bodies which 
have the same form have identical velocity distributions xue

~~  at the wall; they therefore 
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have the same boundary layer development. We note however that the Reynolds number 
comes into play as soon as we recast the problem using dimensional data for the 
coordinate y and notably for the thickness of the boundary layer (formula [6.92]). 

6.5.3.7. Separation of steady flows  

The preceding discussion shows that, in the external part of the boundary layer, 
the flow is close to the flow of an inviscid fluid where the pressure gradient is 
determined by Bernoulli’s theorem: the modulus of the velocity decreases if the 
pressure increases. 

Close to the wall, the weak kinetic energy no longer plays an appreciable role 
and the variations of the viscous stresses are opposed to the pressure gradient in the 
boundary layer equations. The flow which is nearly purely viscous close to the wall 
results from two causes: 

1) The pressure gradient leads to a tendency of the flow towards decaying 
pressures as in a Poiseuille flow (section 3.4.2.5). The velocity curvature profile at 
the wall is equal, according to [6.91] and [6.95] to: 
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2) The external velocity xue  imposed creates a viscous entrainment in the 
boundary layer in a manner analogous to the corresponding phenomena in a Couette 
flow (section 3.4.2.3). 

When the flow external to the boundary layer xue  increases with the abscissa 
x, the longitudinal pressure gradient is negative and the velocity curvature profile 
has a constant sign (Figure 6.19a). In the opposite case (Figure 6.19b), the sign of 
the curvature of the profile changes, and this can lead, close to the wall, to a flow 
which is reversed with respect to the external flow xue . 

 

(a) dp/dx < 0 (b) dp/dx > 0 

x x   

u e (x) increasing ue(x) decreasing  

 
Figure 6.19. Velocity profile near the wall with a 

(a) negative or (b) positive pressure gradient 
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The appearance of a flow from downstream to upstream is in contradiction with 
the parabolic properties of the boundary layer equations: the velocity distribution in 
the zone of reversed flow no longer depends only on the upstream conditions the 
external velocity ue(x) considered, but also on the downstream conditions. The 
boundary layer equations are thus no longer applicable in such a zone. 

y

S
R

(a) (b)

wake

rotational

 

Figure 6.20. (a) Separation with reattachment in the boundary layer (profiled obstacle);  
(b) separation and creation of an open wake (unprofiled obstacle)  

There therefore exists a back stagnation point S in a viscous flow where the 
friction stresses on the wall are zero (Figure 6.20a). In fact, the flow, which is 
reversed with respect to the main flow, comes from a rotational zone which can be 
manifested in two forms: 

– either a relatively thin rotational zone is generated within the boundary layer, 
but reattaches at point R (Figure 6.20a); following what was said above, this can 
only happen if the effect of the pressure gradient is sufficiently weak for the viscous 
entrainment to constitute the dominant effect. This is the case for profiled obstacles 
whose reducing section in the downstream direction is very gradual; 

– or a completely open wake can be generated downstream of an obstacle which 
is not profiled (Figure 6.20b). 

Note that the position of the separation point is independent of the Reynolds 
number, provided the velocity distribution of the inviscid fluid at the wall does not 
depend on the Reynolds number either. This is the case for the irrotational inviscid 
fluid around a profiled obstacle which is not modified (to second order) and 
obviously does not depend on the viscosity. For the unprofiled obstacle, the real 
velocity field is different from the field calculated in an inviscid fluid on account of 
the presence of a rotational wake which is fed from downstream; however, if we 
assume that the structure of this wake is independent of the Reynolds number, we 
see that it is consistent to assume that the position of the separation point is also 
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independent of this parameter: this is confirmed by experiments, provided the 
boundary layer is not turbulent ([SCH 99], [YIH 77]). 

6.6. Unsteady flows and steady flows  

6.6.1. Introduction 

The temporal evolution of the properties of matter is fundamentally based on the 
balance laws of the associated extensive quantities. We have already discussed in 
Chapter 2 the difficulties of representing the continuous medium which we 
encounter depending on whether we choose to use a Lagrangian (substantial) 
description of the fluid particles or a Eulerian (spatial) representation of the flow. 
We must now return to the fundamental difficulties which arise when we use 
Eulerian variables. 

The fields to which matter is subjected are furthermore always due to actions at a 
distance performed by other material elements: a gravitational field is caused by the 
presence of mass, an electric field results from the presence of charges, an 
electromagnetic field is due to electric charges in movement at either the 
macroscopic or the microscopic scale. A field is described by functions of space-
time variables in a reference frame (known as the laboratory reference frame) 
associated with a flow device or an object moving with respect to a fluid (vehicle, 
plane, etc.). There are numerous situations for this observer in which the velocity 
fields and the material quantities are not functions of time, but only of space. The 
corresponding phenomena are therefore steady. This terminology only has meaning 
in reference to this privileged reference frame, the quantities attached to the 
material particles being always functions of time (Lagrangian representation). 

However, these steady phenomena, when they exist, always arise as a result of 
the evolution of a transitional regime. Thus, in many situations, the transitional 
regimes do not lead to steady flows and we observe complex phenomena which we 
will describe very briefly here. 

In order to simplify the discussion, we will consider in what follows an inviscid 
or Newtonian fluid of constant density, unless otherwise stated. The variations of the 
physical properties, if they are not too great, do not significantly modify the 
structure of the phenomena which we will discuss. 

We will leave aside questions related to the existence and to the uniqueness of 
solutions of the Navier-Stokes equations, the understanding of which requires a 
more advanced course in mathematical analysis. In this domain many questions 
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remain open, and the physical aspects of the phenomena which we describe in this 
textbook demonstrate the formidable complexity of such an eventual theory. 

6.6.2. The existence of steady flows  

For a flow and the associated transfers to be steady, it is necessary for the 
boundary conditions describing the corresponding problem to be steady; in 
particular, actions on the flow by fixed elements in this reference frame should be 
independent of time. For example, the flow between upstream and downstream 
infinite reservoirs at constant pressure and connected by a nozzle (section 5.5.4) can 
be independent of time if the system is described in the reference frame of the 
nozzle. However, before being observed at a given flow rate, the flow was created 
from a zero pressure difference and it followed an evolution through the following 
states: a subsonic regime with increasing velocity, then a sonic regime and finally a 
supersonic regime with the progressive appearance of a shock wave which descends 
in the divergent part of the pipe until the pressure gradient is stabilized. 

The solution of the problem defined by the steady boundary conditions is not 
always unique. The nature of the boundary conditions to be used is often a source of 
considerable difficulty (section 5.6.3). Consider for example the flow between two 
cross-sections S1 and S2 (S1 > S2) in a divergent pipe (Figure 6.21). Under the 
assumption of an inviscid incompressible fluid and with the approximation of the 
flow by slices, Bernoulli’s theorem can be written: 
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The flow rate VSqv  in this section of the pipe can be immediately 
obtained: 
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There exist two opposite flow rate values for this steady flow. We will see later 
that only one of these is really acceptable in the context of the preceding 
assumptions. 

Let us now perform an experiment with a plane pipe whose divergent has a 
sufficiently large angle (of the order to 10 degrees or so). Here we observe that the 
steady flow follows one of the walls while it separates from the other. The flow 
chooses the wall to follow as a result of particular circumstances of the transitional 
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regime. For example, in the configuration in Figure 6.21a, we have included in the 
walls two suction orifices A1 and A2 which are not activated in the steady regime 
and which we can use in order to create a small additional transitional depression in 
order to “suck” the flow towards a chosen wall. This suction does not need to be 
constant: once the flow has attached to one of the walls, it will remain so after the 
suction has been stopped. Such flows with two stable positions can be used to 
control flows in fluid circuits (fluidics command and control). 

 suction orifice A 2

 suction orifice A1S2 S1

p1p2

(a) (b)  

Figure 6.21. Steady flows with two configurations 

For the two preceding flows, the pressure is nearly constant in each of the 
sections S1 and S2. Writing the boundary conditions for the steady flow of a viscous 
fluid leads to considerable difficulties, because there no longer exists a velocity 
potential and we know that we cannot independently specify the entry and exit 
conditions of a flow since the transport properties on the trajectories are dominant 
(section 5.6). 

Figure 6.21b shows another configuration where two flow structures in a pipe are 
possible depending on whether the flow reattaches or not on an obstacle placed on 
its wall. The existence of reattachment is also related to the transitional regime 
which leads to the fully established flow. Examples of the same kind exist for sheets 
of water over spillways, which may flow above cavities either ventilated (i.e. filled 
with air) or not ([CHA 04] p. 399, [JAI 01] p. 264). 

The preceding problems are examples of systems presenting hysteresis (the state 
of a system depends on its history). From a physical point of view, we can note that 
we have here a “retroaction” in the upstream direction which leads to the existence 
of a memory for the flow. 
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In summary, a flow problem with steady boundary conditions does not 
necessarily have a unique steady solution. We could also say that a steady problem 
is not necessarily a well-posed problem. 

6.6.3. Transitional regime and permanent solution  

6.6.3.1. Relation between pressure and flow rate in a fixed stream tube  

Depending on the imposed conditions, pressure can be the cause or the 
consequence of movement of a fluid. Aside from cases where the viscosity plays a 
dominant role (low Reynolds number flows), the pressure (or the driving pressure 
depending on the case) balances the acceleration, and for steady flow of an inviscid 
fluid, Bernoulli’s first theorem treats the pressure (or the total enthalpy) as a 
component of the total mechanical energy which is conserved for a fluid particle. 
This local property no longer exists in unsteady flows. 

Consider the flow of an inviscid fluid of constant density whose fluid trajectories 
are fixed; they are thus coincident with the streamlines (and the emission lines). A 
stream tube is therefore a surface on which the inflow and outflow of fluid occurs 
over the cross-sections S1 and S2 with velocities V1 and V2 (Figure 6.22). The 
assumption of incompressibility leads to a volume flow SVtqv  circulating in 
the stream tube which is independent of the cross-section used to evaluate it; we will 
treat it thus as a variable. Let us apply kinetic energy theorem [6.85] to the interior 
domain D of the stream-tube element limited by the surfaces SL, S1 and S2 (Figure 
6.22); we have: 
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where p designates the driving pressure by way of simplification. 
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Figure 6.22. Flow by slices inside a stream tube: 
(a) convergent tube; (b) divergent tube 
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In the slice approximation of the flow, the quantities are uniform in all cross-
sections, and after simplification by qv, we immediately obtain: 
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The relation between the flow rate qv and the pressure difference p1  p2 can be 
written: 

21
2 ppqB

dt
dq

A v
v  [6.98] 

This equation shows that the pressure is balanced by two acceleration terms, one 

unsteady, 
dt

dq
A v , and the other, 2

vqB , corresponding to the steady flow, 

proportional to the square of the flow rate and independent of the direction of the 
flow. This separation is related to the Eulerian description of the phenomena, and 
from a physical point of view there are not two kinds of acceleration for the fluid 
particles. As we have already said (section 3.3.3.5), this description is always 
associated with a favored reference frame resulting from the existence of boundary 
conditions on the particular surfaces which are here the sides of the stream tube. 

We should note that the coefficient A of equation [6.98] has an order of 
magnitude proportional to the length, contrary to the coefficient B which only 
depends on the values of the inflow and outflow sections. Furthermore, the 1/S 
dependence of the integral A shows that a severe intermediate narrowing will not 
modify the values S1 and S2 but will lead to a considerable increase of the coefficient 
A, in other words to the pressure difference necessary for the transitional 
acceleration in the Eulerian representation. The reason for this is the existence of a 
strong acceleration in sections of small dimension where the velocity takes on high 
values in order to conserve the flow rate. 

6.6.3.2. Properties of the solutions  

Let us take B to be positive ( 21 SS ), which does not restrict the generality of 
the reasoning. Equation [6.98] can only therefore possess steady solutions if the 
difference p1  p2 is positive. In this case, we have the two steady solutions 
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Bppqv 21 , corresponding to an established flow, either in the positive 

direction, or in the negative direction of the axis  (section 6.6.2). However, the 
possibility of realizing such a solution depends on the existence of a transitional 
regime which can lead to this kind of situation. 

In the unsteady regime, the pressure difference p1  p2 can be negative. However, 
an examination of equation [6.98] shows that if it is always negative, the same goes 

for the derivative 
dt

dqv ; we can thus see that the flow rate qv decays indefinitely, 

which is physically unacceptable. 

Suppose now that the difference p1  p2 is positive and let 

BpptQ 21 ; Q(t) is the positive value of the flow rate under the 
assumption that the unsteady term is negligible. Equation [6.98] can be written: 

22
v

v qtQB
dt

dq
A  [6.99] 

We see that: 

– if the instantaneous flow rate qv is greater than Q(t), the derivative 
dt

dqv  is 

negative: the flow rate qv decays and approaches the value Q(t); 

– if qv lies between – Q and + Q, it therefore increases, and approaches the value 
Q(t) once again; 

– if the instantaneous flow rate qv is less than  Q(t), the derivative dtdqv  is 
negative: the flow rate qv decays and moves away from the value  Q(t). 

This property leads to the flow rate being bounded if the positive quantity Q is 
bounded. If Q(t) tends to a limit for infinite t, the same goes for the instantaneous 
flow rate qv if the latter remains always greater than – Q. Under the assumption of 
constant pressure difference p1  p2, we see that the transitional regime does not 

allow the solution BpptQqv 21  to be attained. 

The inviscid fluid model does not apply for negative flow rates, and the viscosity 
must be introduced. The study of viscous fluid flow between two infinite divergent 
planes can be performed (the Jeffery-Hamel exact solution of the Navier-Stokes 
equations). We find that a separation occurs for a Reynolds number which tends to 
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infinity, even if the angle of the planes tends to zero ([SCH 99], p. 104). In these 
conditions, the uniqueness of the solution is not assured. 

6.6.3.3. Comparison with experiments and consequences  

In practice, flow is possible in a divergent channel, but it is not possible to model 
this using an inviscid fluid, even for very large Reynolds number values. A section 
of convergent pipe transforms the mechanical power 21 ppqv  provided by the 

pressure difference into an increase in the kinetic energy flow 23
mSu  between 

the inflow and outflow sections (section 6.5.2.4). A divergent section leads to the 
opposite transformation: kinetic energy is partially recovered in the pressure. 

We define the efficiency of these transformations using the kinetic energy flow 
23

mSu  between the inflow and outflow sections (section 6.5.2.4) and the 
mechanical power 21 ppqv  provided or recovered by the pressure difference. 
Whereas a pipe with a convergent section in the flow direction transforms pressure 
into kinetic energy with good efficiency, the inverse effect in a divergent pipe occurs 
with a non-negligible dissipation. For a given ratio S1 / S2 of the sections S1 and S2, 

the efficiency is close to 1 in a converging flow for a short length  whereas in a 
divergent pipe, the efficiency goes through a maximum of the order of 0.7-0.8 for an 
angle of about 7º. A compromise must be found between a small angle and a large 
length over which there exists a notable viscous dissipation, and a larger angle 
leading to the formation of a separated flow at the wall, whose kinetic energy is 
nearly entirely lost. 

The approximation of the flow by slices (uniform velocity distribution in the 
stream tube constituted by the pipe) is always a good approximation for steady flow 
in a convergent pipe. On the other hand, this approximation is a poor model in a 
divergent element, because numerous phenomena can occur which contradict the 
assumption of uniform velocity and lead to the loss of mechanical energy (tendency 
for the flow to separate close to the wall in the boundary layer (section 6.6.3.7), 
instabilities close to the wall leading to the generation of turbulence, etc.). 

The experiment always amounts to an observable process, and thus to a well-
posed problem provided a suitable analysis is performed. As we have just seen, the 
same is not true for theoretical models for which the initial conditions must be 
ascertained by experiment. In particular, methods of numerical solution of the 
Navier-Stokes equations often relies on the computation of a velocity field from a 
pressure field, which allows, at the next iteration, the computation of a new pressure 
field, hence a velocity field and so on. These intermediate fields are not solutions of 
the equations of motion, and the intermediate pressure fields can thus correspond to 
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initial conditions which lead to a rapid divergence of the velocity field at the 
following approximation. This is an important and unfortunately common difficulty. 

6.6.3.4. Separation in unsteady flow  

We have seen (section 6.5.3.7) that separation is due to the quadratic term in the 
Bernoulli’s theorem for an inviscid fluid. The argument thus invoked is no longer 
valid in a strongly unsteady flow. Consider an irrotational unsteady flow for which 
we have Bernoulli’s second theorem ([6.13]). 

When the dynamic pressure 22V  is smaller than the term t , the 
phenomenon of flow separation at the wall no longer occurs. If the flow is 
oscillatory, the velocity profile may present changes of sign, but there no longer 
generally exists a rear stagnation point S at the origin of a streamline towards the 
heart of the fluid (Figure 6.20a), which is characteristic of a 2D separation. 

6.6.4. Non-existence of a steady solution  

Even if we impose steady conditions at the fluid domain boundaries, we do not 
encounter steady flows in very many situations. The wakes observed behind 
obstacles belong to this category. Let us reconsider the example of a circular 
cylinder of diameter D (without circulation) in a velocity field which is assumed to 
be uniform and steady at infinity. The structure of the flow depends on the Reynolds 
number UDRe . 
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(a) (b) 

(c)  (d) 
 

Figure 6.23. Real flow around a circular cylinder placed in a uniform steady velocity field  

Figure 6.23 shows the evolution of this flow as the Reynolds number increases. 
For values of the Reynolds number small compared to 1, the flow is symmetric 
(Figure 6.23a); the dissymmetry between upstream and downstream increases with 
the Reynolds number; for larger values (of the order of 0.2-20) we observe the 
appearance of a fixed zone of reversed flow just downstream of the cylinder 
(attached wake (Figure 6.23b)) comprising two symmetric vortices). For values 
greater than 20 (Figure 6.23c), we observe the emission of alternate vortices at a 
well-defined frequency. Beyond values of Re of the order of 1,000, the periodicity 
of the vortices is attenuated (Figure 6.23c) and random fluctuations appear. 

6.6.4.1. The creation of the circulation  

We have studied the flow around a circular cylinder with circulation (section 
6.2.5.2.4). The origin of this circulation cannot be explained by a rotation of the 
cylinder since the fluid is inviscid. Experiment furthermore shows that an important 
difference exists between the circulation calculated in the fluid and the circulation 
calculated on the cylinder using the velocity at the wall. This difference shows that 
the circulation is not created directly by viscous diffusion from the wall, which is 
not significant in an inviscid fluid. 

The circulation is in fact created during the transitional regime of the flow. It is 
due to the viscosity of the fluid. Consider a fluid initially at rest about a profiled 
body at incidence. In the initial acceleration regime of the flow around the body, a 
dissymmetry appears between the intrados (the under-side) and the extrados (the 
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upper-side) of the profile which generates at the trailing edge (downstream of the 
boundary layers) a sheared viscous flow at the origin of a vortex, which grows 
(Figure 6.24a and Figure 6.24b) until it separates from the obstacle and is carried 
away by the flow (Figure 6.24c). The viscosity is only important for a small zone 
and Lagrange’s theorem can be applied in the inviscid fluid external to the ensemble 
of the obstacle and the vortex. As the circulation is initially zero, it remains so: the 
vortex carries away the circulation , and the opposite circulation –  is established 
about the obstacle. 

(a) (b) (c)

- 

U(t) U(t) U(t)

 

Figure 6.24. Creation of circulation by initial emission of a vortex around a profiled body 

The circulation about a non-profiled obstacle is created by the same transitional 
mechanism, to which is added a turbulent wake analogous to that described in 
section 6.6.3.4, and which does not create and additional mean circulation. 

 

(a) (b) 

(c) (d) 

T1 

 

Figure 6.25. Creation of circulation by initial emission of a vortex 
 around a non-profiled body: (a) and (b) development of the initial vortex; 

 (c) and (d) the circulation is installed after the emission of the initial vortex T1 
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6.6.4.2. Instabilities and turbulence  

The phenomena described in the preceding sections result from flow instabilities, 
in other words to phenomena associated with the amplification of perturbations of 
varying amplitudes. Situations of instability are numerous in fluid mechanics and the 
viscosity is not necessarily a damping factor for these phenomena. On the other 
hand, in so far as the most unstable structures correspond to high Reynolds numbers, 
the characteristic time constant of the amplification is much lower than the damping 
time. 

Instabilities evolve in general towards a variety of more of less complex 
situations; for high Reynolds numbers corresponding to the flows encountered in 
practice, we see the appearance of random fluctuations the details of which are 
unpredictable (chaos). The velocity fluctuations of fluid particles also lead to the 
fluctuations of other extensive quantities, and the transfer mechanisms of 
irreversible phenomena are significantly changed ([SCH 99], [YIH 77]). 



Chapter 7 

Measurement, Representation and  
Analysis of Temporal Signals 

The measurement of flows and transfer mechanisms presents specific difficulties 
related to fluid movement. We will review the principles of the main measurement 
methods. A synthesis of the different signal processing procedures commonly used 
in the domains studied, and the various numerical techniques used in order to 
implement these, will be presented. 

7.1. Introduction and position of the problem  

The modeling of macroscopic phenomena can be more or less detailed. The 
representation of the continuous medium by means of fields of continuous quantities 
was obtained by extending systems of finite dimensions in thermodynamic 
equilibrium to their limits. Writing an infinite number of values of a continuous 
field is obviously impossible and constitutes the infinite limit of a practical 
realization; this can only be achieved if we dispose of a procedure for computing the 
value at every point, which can be trivial and consist of the simple condition of a 
constant value. Furthermore, discrete systems in thermodynamic equilibrium 
constitute a more or less good approximation to a real system. The information 
necessary for the description of a continuous system always therefore comprises an 
ensemble, necessarily finite, of numerical values and a procedure for the 
computation of quantities at all points, which amounts to an interpolation. 

A material ensemble is described by means of quantities characterized by 
measurements which permit the representation of its evolution. The equations are 
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exact equalities between real (or complex) numbers, which represent the physical 
quantities studied. Now, these are never known exactly and this exact knowledge is 
furthermore neither practically obtainable nor necessary. We work with 
approximations or mathematical representations (transformed signals) which are 
more convenient to use. The values themselves can be synthesized by a 
transformation procedure allowing their number to be reduced. The representation 
of physical quantities is thus a basic problem associated with our knowledge of the 
phenomena of interest. These considerations can apply both to space and time 
variant quantities. In what follows we will reason in terms of a temporal 
representation of a signal, but the problems discussed are analogous regardless of 
the nature of the representation and the number of variables. 

Time is a particular variable, since the cause of a phenomenon observed at time 
t0 can only be a function of the state variables from earlier times: only the past 
influences the future. In reality, this property is also encountered for spatial 
variables in flows, since the extensive properties remain attached to the matter in 
movement. The notion of causality, largely developed in signal processing can in 
fact by applied in space-time over characteristic curves or the succession of 
characteristic surfaces. While causality appears obvious for the time-direction 
considered in isolation, the problem is far less simple when we perform a Fourier 
transform. We will not cover problems of causality which appear in integral 
transformations: the reader should refer to the specialized literature ([AND 99], 
[BEE 03], [DEB 06], [PRE 91]). 

The idea of continuous phenomena has only really been used by some modern 
calculation methods. The first analog calculators produced a physical representation 
of the equations, the adjustment of the variables and parameters being achieved by 
modification of physical quantities (for example, voltage for electronic calculators 
or pressure for hydraulic and pneumatic systems). With numerical calculation, we 
operate using numerical values, which requires equations to be discretized. 

7.2. Measurement and experimental data in flows  

7.2.1. Introduction 

Knowledge of a physical system requires the measurement of its quantities. In 
general, the local intensive quantities are easier to measure than the extensive 
quantities which are most often measured indirectly using equations of state, 
phenomenological laws or relationships obtained theoretically (for example, 
Bernoulli’s theorem). As we cannot here provide detailed description of 
measurement methods, we will simply indicate the principles on which these are 



Measurement, Representation and Analysis of Temporal Signals     341  

based. The quantities measured are primarily the pressure, the velocity, the 
temperature and the concentration of a constituent. 

7.2.2. Measurement of pressure  

As pressure is a force normal to a surface, its direct measurement can be related 
to the measurement of a force; as the force is the energetic intensive quantity 
associated with a displacement in a fixed discrete system, we are dealing with a 
measurement of displacement which is in fact achieved by the intermediary of 
associate electrical or electromagnetic phenomena. Let us consider a few examples 
of such measurement devices: piezoresistive probes where deformation of the 
silicon membrane produces variations in electrical resistance, capacitive probes 
(Figure 7.1b) which comprise a fixed electrode opposite the membrane, the 
movement of the latter is accompanied by a variation of the capacitance, or 
piezoelectric probes (Figure 7.1a) that comprise a piezoelectric material on which 
the action of a force creates a difference of potential. 

For steady flow, a measurement which is less and less frequently employed 
consists of using liquid manometers, based on hydrostatics laws, to find the 
difference in height h between the free surfaces in two tubes implying a pressure 
difference equal to g h, or between two free surfaces if the two tubes 
communicate directly, or, between the pressure taps in the liquid. We measure here 
a difference of level (a length), but the real difficulty comes from the accurate 
identification of the position of the free surface and the effects of surface tension 
(section 2.2.1.4.2). 
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Figure 7.1. Probes for pressure (a), (b) and (c) and driving pressure (d) measurements  

The pressure measured by a probe is the surface force on the sensitive member 
of the probe. Pressure measurement at a point in a fluid requires in principle that the 
probe is positioned such that it does not itself create a perturbation: it must therefore 
be carried with the matter in movement. This is clearly unrealistic, unless some 
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optical means of pressure measurement could be made – and this is generally not 
possible. In practice, it is only possible to use some instrument, which is integrated 
into a solid surface. It is thus necessary to extract the pressure and transmit it to the 
sensitive surface of the probe by means of a pneumatic or hydraulic link. 

The extraction of pressure can be performed by means of an orifice at the tube 
extremity used for its transmission. The tube extremity comprises an obstacle in a 
flow, and this must be considered. We can assume that the pressure in an orifice 
pierced in a wall is the pressure in the fluid at that point. We can in fact consider 
that the flow is here parallel to the wall, without any velocity component normal to 
the wall; the balance of transverse forces is zero on any fluid element, hence the 
local uniformity of pressure along the wall normal. However, the pressure tube must 
be contained in a suitable obstacle, such that it does not modify the flow and 
therefore the pressure value. We will come back to this point a little later when we 
deal with velocity measurements. 

Furthermore, the transmission of pressure fluctuations by a tube is a delicate 
problem when the length of the tube is more than a few centimeters, as it is 
necessary to avoid problems of acoustic resonance [GAB 98]. However, this 
problem is beyond the scope of this work. 

7.2.3. Anemometric measurements  

7.2.3.1. Introduction 

On a wall, the velocity of a fluid in motion is equal to that of the wall. It is 
obviously only of interest to measure the velocity at points at the heart of the flow. 
When making direct measurements of velocity, it is necessary to consider individual 
fluid particles, of a given size, and to obtain an electrical or optical signal which 
results from a phenomenon associated with the velocity of this fluid particle. 
Velocity measurement devices (anemometers) which allow direct measurement are 
mainly laser Doppler anemometers, cup anemometers, etc.). Indirect measurement 
of velocity can be obtained by means of pressure measurements by application of 
the laws of fluid mechanics (Pitot tubes, total pressure probes, etc.) or from 
calibrated thermal measurements (hotwire anemometers). The same is true for 
measurements of the flow rate, which are not generally made by directly measuring 
the volume or mass which flowed during some given time. 

As for the pressure, it is necessary to measure the local property of a material 
element (Lagrangian measurement) or to introduce a probe which is sensitive to the 
local velocity but which will necessarily disturb the flow (Eulerian measurement). 
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7.2.3.2. Lagrangian anemometry  

In general we want to know the velocity at an observation point which we define 
with respect to the laboratory reference frame (Euler variables). Fluid particles are 
not individually visible and it is necessary in all cases to introduce solid elements, 
which are entrained by the fluid. The problem of solid particle entrainment by a 
fluid is therefore essential. 

In the case of cup anemometers (Figure 7.2a), we use the dissymmetry of a 
rotating device, which presents a resistance to the fluid movement in a given 
direction (cup C1) and very low resistance in the other direction (cup C2). The result 
is that the cup situated at position C1 tends to follow the flow, whereas the other, C2 
induces a very low torque on the moveable system. Alternatively a propeller can be 
used (Figure 7.2b). As the elements of these devices are not entrained by the fluid 
with the fluid velocity, it is necessary to calibrate them. 
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Figure 7.2. (a) Cup anemometer or (b) propeller anemometer 

Laser Doppler Anemometry (LDA) involves the creation of a system of 
interference fringes by means of a laser whose beam is split into two beams focused 
by a lens (Figure 7.3a). Very tiny particles crossing the fringes are alternatively 
illuminated as they cross the fringes. It is possible to measure the scattered light by 
means of a photomultiplier. The frequency value n of the light signal measured 
allows a calculation of the particle velocity, equal to i.n, where i is the inter-fringe 
spacing, easily obtained from the optical characteristics of the device. The 
denomination Doppler comes from the fact that the procedure can also be explained 
by considering the variation of the optical frequency which occurs when the particle 
scatters the light provided by each of the coherent light beams. 
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Figure 7.3. (a) Principle of anemometric measurement by ALD (L, laser; S, beam-splitter and 
focusing lens; Z, fringes in the measurement zone; P, photodetector centered on the zone Z); 

(b) bias in ALD measurement in a non-homogenous flow seeding  

The principle of anemometric measurement assumes the presence of small 
particles, which are in suspension in the fluid [DUR 81]. These nearly always exist 
in water, but it is necessary to “seed” gaseous flows by means of droplets obtained 
by the pulverization of some suitable oil, or by very light smoke obtained by 
combustion of some suitable substance (incense for example) so as to obtain 
particles whose dimensions are in the order of 1 m The introduction of particles 
needs to be effected so as to produce as uniform a distribution as possible in the 
flow. Figure 7.3b shows a region of flow between a stream of velocity V and a 
region of flow at rest; the frontier f between the two oscillates unpredictably; only 
fluid particles coming from the flow containing seeding will provide a measurement 
signal: we thus see a systematic bias in the measurement of the velocity which will 
“favor” the same kinds of flow structures. 

The LDA procedure provides a local and instantaneous measurement in most 
conditions. It is well suited to the laboratory study of small flow structures and it 
even allows us to obtain acoustic velocities (from 1 mm/s to 1 cm/s) [PEU 92]. Cup 
anemometers only allow measurement in a volume in the order of some 
considerable fraction of a dm3, and therefore these are only suitable for quite global 
measurements (wind velocity in meteorology or air-conditioning units). 

Let us finally recall anemometric measurements at the atmospheric scale, which 
are obtained by releasing balloons that move at constant altitude and whose position 
can be tracked by satellite. This method provides trajectories (Lagrangian 
viewpoint) and not streamlines (Eulerian representation of meteorological charts). 
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7.2.3.3. Eulerian anemometry  

We here use a device, which is fixed in space, on which the flow acts by creating 
a phenomenon whose intensity (overpressure, temperature, etc.) depends on the 
velocity of the flow. 

In the steady flow of an ideal incompressible fluid for which Bernoulli’s theorem 
is valid, the difference in driving pressure between two points whose velocities are 
respectively equal to V and 0 is equal to: 

2

2V
pg   

The measurement of velocity is thus realized by means of a measurement of a 
pressure difference. A zero velocity is obtained when a flow is stopped by an 
obstacle, on the upstream edge of which a stagnation point A occurs (Figure 7.4a); it 
suffices to measure the total driving pressure (or the total pressure for a gas) at this 
point A by connecting the orifice to a pressure probe. This orifice needs to be of 
very small size in order to obtain a well-defined pressure value. However, if the 
flow is not correctly aligned with respect to the obstacle, the orifice will not be at 
the stagnation point and will not therefore measure the total pressure (Figure 7.4b). 
The effect of the angle of incidence can be reduced by using a tube with a divergent 
opening (Prandtl tube, Figure 7.4c). 

A
A

V V

A

V

(a) (b) (c)
Prandtl tube

A
L

L

(d)
Pitot tube

pg+ V2/2 V2/2pg+ V2/2 pg+ V2/2
 

Figure 7.4. Measurement of stagnation pressure in a flow 

By placing the total pressure tube inside a streamlined cylindrical tube (Figure 
2.4d), the flow quickly returns to a uniform state (after 5 or 6 external diameters); 
lateral orifices L placed on the external wall will measure the static driving pressure 
pg (or static pressure in a gas) and the difference in pressure between the two tubes 

provides a direct estimate of the dynamic pressure 22V . This device, known as a 
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Pitot tube, constitutes a somewhat cumbersome obstacle (it is at least a few 
centimeters in length); it assumes that the flow velocity is defined and uniform at 
this scale. 

Bernoulli’s theorem is also applicable for a compressible fluid in subsonic flow, 
provided of course that the compressible form of Bernoulli’s equation is used. The 
problem is more difficult in supersonic flows because of the existence of a shock 
wave upstream of the tube, across which specific laws need to be applied.  

Hot wire anemometry is based on a very different principle: the thermal power 
evacuated by a heated body is an increasing function of velocity. If the body is 
electrically heated, this power can be known by means of a measurement of 
intensity. It can be used in a flow in which velocity fluctuations exist with very 
small hotwire diameters (1 to 5 m) whose thermal inertia is compensated by a 
suitable supply (constant temperature anemometer). It is thus possible to measure 
velocity fluctuations whose frequencies may be as large as 1,000 to 2,000 Hz. With 
two or three differently inclined hotwires it is possible to measure the instantaneous 
velocity vector. We therefore have in the hotwire anemometer a powerful means of 
knowing the velocity fluctuations provided these remain smaller than the mean 
velocity, as it is clearly not possible to distinguish the velocity direction from a 
thermal power measurement alone.  

7.2.4. Temperature measurements 

The local measurement of temperature at the heart of a continuous medium can 
be achieved by optical methods (measurements at a distance) or by means of probes 
introduced into the flow. Optical procedures are based on emission phenomena, 
which are associated with absorption phenomena, the medium considered being thus 
semi-transparent for the wavelengths used. This leads to calculation methods which 
are often complex and we direct the reader to specialized texts for more detail (see 
for example ([BRU 95], [JOH 98], [MAR 99], [MCG 88]). 

In a manner analogous to the introduction of pressure or velocity measurement 
probes, the introduction of temperature measurement probes provokes a 
modification of the flow and associated thermal phenomena only of importance at 
high velocities. As with the pressure, the temperature of a fluid will depend on the 
position of the measurement element on the wall of the probe; these measurements 
are generally performed either at a stagnation point, or on a wall which is parallel to 
the flow. For an ideal gas in adiabatic flow, we have conservation of total enthalpy 
(section 4.3.2.3.2), or, with Ta the stagnation temperature: 



Measurement, Representation and Analysis of Temporal Signals     347  

app TC
V

TC
2

2
 

However, the measurement of temperature presents additional problems, as the 
temperature of the sensible part of the probe is the result of a thermal balance 
between the heat flux transmitted by the flow, the heat flux in the metallic electric 
wires and in the support structure, and the thermal radiation caused by the 
surrounding walls. As the last two quantities are independent of the flow, their 
influence is less important on the temperature measurements at higher velocities. 
We will note that for high enough velocities, thermal dissipation in the vicinity of 
the obstacle, which is constituted by the temperature probe, may be a non-negligible 
factor ([SCH 99]). Temperature measurements in flows are always difficult and 
should not be attempted without a careful discussion of the different thermal 
phenomena which may be present. 

7.2.5. Measurements of concentration  

The measurement of the concentration of a mixture is quite difficult. Very often 
a fluid sample is taken via local suction by a tubular probe. The probe geometry is 
not important here, but the suction velocity needs to be suitably chosen so as not to 
alter the fluid trajectories in the extraction zone (isokinetic sampling) ([BRU 95], 
[JOH 98], [CHE 88], [LIP 05]). An analysis of the fluid sample is then performed 
using physico-chemical methods adapted to the mixture under study. 

In certain cases, it is possible to perform measurements from a distance by 
means of optical procedures associated with radiation emission. It is also possible to 
use physico-chemical reactions on a surface placed in the flow, but the specific 
procedure employed is always dependent on the particular mixture studied, and 
often requires modeling of the heat and mass transfer phenomena involved. For 
example, we have already said that evaporation phenomena induce a variation of 
temperature: a wet thermometer does not measure temperature of air (section 2.3.2). 
In a conducting liquid medium, the use of electrodes allows the measurement of 
concentration in certain circumstances (diffusion phenomena have to be negligible). 

7.2.6. Fields of quantities and global measurements  

7.2.6.1. Introduction to field quantities  

In practice, local quantities are of limited interest, unless they are representative 
of the device being studied. The dimensioning of a device or the control of its 
operation requires knowledge of global quantities (mass flux, thermal power, etc.) 
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or of certain local quantities, which may be associated with possible damage 
(temperature at a hot spot in thermal systems). These two kinds of data require 
knowledge of the associated field quantities, either for integration (computation of a 
flow rate for example) or for identifying the point where critical values may be 
attained. In many situations, knowledge of field quantities can only be obtained by 
exploring the domain by means of local measurement probes. This is clearly only of 
interest if the concerned experiment is reproducible, which can only be the case if 
the flow is perfectly defined. It is then possible to obtain velocity, pressure, 
temperature fields, etc. This situation does not include poorly defined flows 
regardless of their origin (instabilities, turbulence, etc.). 

Steady flows do not present particular difficulties, since the instant of 
measurement is unimportant. For unsteady flows, this is not the case however, as the 
fields of a quantity g(xi,t) now depend on time. The installation of an ensemble of 
probes, which instantaneously and simultaneously measure the quantity g over the 
entire domain considered, is not generally realistic. Only methods which allow the 
obtaining of full instantaneous fields by optical means are possible; such techniques 
have seen significant progress in recent years. 

7.2.6.2. Direct obtaining of field quantities of a flow  

7.2.6.2.1. Visualizations 

The visualization of a flow can consist of “photographing” visible material 
elements which have been placed into the flow without disturbing it at fixed 
locations with respect to the observer. For instance, it is possible to place pieces of 
light wires on a grid inside a flow; these will then be oriented depending on the 
direction of the local velocity. The same procedure can be used on a wall in order to 
obtain the direction of streamlines and to visualize separated zones. The visible 
effect is here a Eulerian representation (observation of streamlines). 

It is also possible to introduce streams of smoke into the air or to inject colored 
dyes in a liquid medium. This kind of injection requires certain precautions (suitable 
injection velocity, density of colored dye equal to that of the liquid medium, etc.). 
Diverse particles can also be introduced and entrained by the flow (which has not at 
some point stopped to observe the flow structures visible in a river, a gutter, etc.). 
However, it is important to remember that this kind of visualization is Lagrangian, 
and it shows streaklines which may be very different from the streamlines and 
trajectories (section 3.3.2). 

Finally, Eulerian visualizations can be performed on walls by means of physical 
processes (entrainment of a coating comprising particles for example) or physico-
chemical processes producing a differential deposit on wall streamlines (evaporation 
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of the coating solvent, or electrochemical deposit under particular conditions). For a 
more complete and practical information, see ([HAN 05], [MER 87], [YAN 01]). 

7.2.6.2.2. Obtaining instantaneous fields  

The preceding visualization methods are rather qualitative. We can make these 
quantitative by introducing tracer particles and photographing these with suitable 
lighting, either over a period short enough for visualization of the distance covered 
during the lighting-time or by means of two successive light pulses. It then remains 
to measure the segment covered by each particle in order to ascertain the velocity. It 
is obviously necessary to know the position of the particles in space, and this is done 
by generating a light sheet of small thickness, particles external to this light sheet 
not being visible. This method requires a seeding of particles with very small 
diameter (1 to 3 m) which is not biased (section 7.2.3.2). Such approaches are 
known as particle image velocimetry (PIV). Modern techniques for the generation 
of two close light pulses of short duration (5 to 10 ns) by a suitable laser and the 
processing of images have made this technique less fastidious than in the past ([RAF 
98], [STA 00], [STA 00]). However, in turbulent flows, the obtaining of a mean 
velocity field requires statistics to be gathered from a large number of identical 
experiments (sections 7.2.6.3.2 and 7.2.6.3.3). 

Optical methods of temperature and concentration measurement provide field 
quantities; as mentioned earlier, the semi-transparent aspect of the medium 
considered (which is both emissive and absorbent) leads to rather global 
measurements which depend on thickness, and a deconvolution of signals acquired 
in a band of wavelengths is necessary in order to reconstruct the value of the 
quantity in each slice. These optical procedures are used in observations by 
meteorological satellites. 

7.2.6.3. Application in unsteady flows  

7.2.6.3.1. Unsteady repeatable flows  

We here assume that the flow can be reproduced at will, in other words there 
exists an initial instant with identical initial and boundary conditions. This is true for 
transitional regimes, which precede the established regimes, and also that of 
periodic flows. 

We repeat the flow regime which is to be studied as many times as necessary, 
and measure the value of the quantity g(x, t) each time (Figure 7.5a) at different 
points (x1, x2,…, xp,…). We then represent the fields (Figure 7.5b) at successive 
instants (tx1, t2,…, tn,…) which we have chosen. These operations, which are in 
principle quite simple, clearly require the use of numerical calculations ([PEU 79], 
[PEU 89], [PEU 91]). 
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Figure 7.5. Obtaining instantaneous fields of quantity g from 
point measurements as a function of time 

7.2.6.3.2. “Steady” turbulence flows  

A turbulent flow presents random fluctuations. We will here call a “steady” 
turbulent flow any flow whose mean value of the measured quantity, over a large 
enough time, does not depend on the initial instant chosen to begin the 
measurement. We see immediately that an analogous procedure to that described in 
the last section allows the obtention of quantities derived from the curves g(x, t) by 
means of appropriate operations (mean values, fluctuations, variance of the quantity 
g, etc.) used in the study of turbulent flows ([SCH 99], [YIH 77]). 

7.2.6.3.3. Unsteady “reproducible” turbulent flows  

This category of flow is obtained by imposing fixed initial and boundary 
conditions that are defined functions of time. As before, we repeat successive 
measurements at different points by reproducing the experiment exactly. As the 
flow is maintained in a turbulent state, in other words it fluctuates from one 
experiment to the next, it is necessary to perform the measurement a sufficient 
number of times at each point, for the associated statistical quantities to be 
calculated; these statistical quantities are the only ones which are meaningful for this 
ensemble of experiments. 
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7.2.6.4. Measurement of global quantities  

Global quantities such as mass or volume flux, internal energy or enthalpy flux 
are very important in industry. Precise knowledge of these can be obtained by 
integrating local measurements performed on a grid that covers the region of 
interest. This method of integration is used for establishing norms for precise 
measurement. However, these methods are time-consuming, expensive and often 
cumbersome. It is thus necessary to implement more global procedures based on 
laws of fluid mechanics and transfer. The corresponding devices require calibration 
in laboratory conditions. Each of these measurement procedures is based on a 
particular physical phenomenon, for example, the flow rate in a duct can be obtained 
from the mean spatial velocity deduced from the frequency of vortices emission 
behind a cylinder, after a calibration of the used device. 

7.2.7. Errors and uncertainties of measurements  

7.2.7.1. Introduction 

Errors, which occur in the measurement of physical quantities, arise as a result 
of diverse factors. It is first of all necessary to appreciate the experimental 
conditions, which lead to an experiment always being of an approximate nature. The 
control of experimental conditions (temperature and velocity, etc.) are factors which 
can significantly diminish these errors, although without eliminating them. In other 
words, the data of a problem are only known within the bounds of some uncertainty. 
Measurements are always accompanied by errors of various kinds, depending on the 
kind of methods that are used: 

- with analog devices errors come from the sensitivity of the components which 
are used, parasite phenomena (influence of temperature, etc.), dry friction in devices 
with moving parts, aging of components, etc.; 

- the numerical treatment of an electric signal introduces no error (with the 
exception of rounding errors); it does however introduce errors in the signal 
acquisition to be treated (sampling and digitization mainly: for example, the 
digitization on 8 bits leads to an additional uncertainty equal to ½8 in absolute 
value). 

Because they retain many decimal places, numerical devices are too often 
considered to be capable of a precision that they do not necessarily provide. They 
constitute most often only the last visible phase of a complex process of 
measurement, the precision of which is not representative: the precision of the 
numerical presentation is not directly related to the uncertainty on the quantity 
measured and the error in the measurement of a voltage by means of a measurement 
system having a numerical display is not simply the digit of the last decimal place. 
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7.2.7.2. General properties  

A measurement error is not always exactly known, otherwise it would be 
possible to eliminate it. It is systematic when due to a particular flaw in the 
measurement device; this flaw is generally not known, otherwise a correction would 
be possible. It is random, when it is associated with parasite phenomena (noise from 
electronic circuits, diverse fluctuations, etc.). Regardless of their origin, errors will 
always exist, and can never be exactly evaluated. The only quantity that is really 
available is the uncertainty of a measurement or numerical value, in other words an 
upper bound on the absolute value of the error. Uncertainties moreover verify rules 
that correspond to properties of distances as they are defined in mathematics 
(triangular inequality, etc.). 

The evaluation of uncertainty of a measurement should always be made after 
error calculation, which is performed in accordance with the usual rules for 
calculating small variations in the variables of the problem. For example, we 
calculate a quantity ),( bas  using measurements of signals a and b. The error  can 
immediately be obtained as a function of the errors a and b: 

b''
ba sass

The formulae obtained in the calculation of errors allow us to obtain the 
uncertainty of the quantity considered by bound estimation for the errors. For the 
quantity s, it is possible to obtain the uncertainty s as a function of the uncertainties 

a and b: 

bsass ba
''  [7.1]

We draw the reader’s attention to this last point, which is very important in 
practice. It is indeed regrettable that these elementary ideas are so often completely 
forgotten in the beginning of higher level education. 

Let us note that depending on the content of the mathematical expressions, the 
uncertainties may be partially compensated or notably worsened, as we will see in 
the following example, where we evaluate a quantity ),( bas  from measurement of 
signals a and b each of which has the same uncertainty a . We will leave it to the 
reader to calculate the relative uncertainty which results in s in the two following 
cases: 

1/
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In the second case, we see that if b is equal to 2a, the measurement of a does not 
cause any uncertainty in s (to second order). The function s thus presents an 
extremum with respect to the variable a, making it stationary. The situation is thus 
quite optimal for measuring the quantity s. In general, expression [7.1] shows that 
the lower the sensitivity of the quantity measured to the variations of the 
measurement parameters, the better the precision of the measurement. Note that 
systems that are close to instability are particularly sensitive to perturbations and 
that the measurement of associated quantities is thus particularly difficult. 

These elementary ideas are sufficient in simple cases. However, they must be 
completed in the case of complex measurements requiring a large number of 
unknowns and of quantities to be measured. 

7.2.7.3. Errors and conditioning of a linear system  

These ideas of errors and uncertainty have been broadly studied for the 
numerical solution of linear systems of various sizes. The development of computer 
technology has led to the possibility of measuring large numbers of quantities 
simultaneously and of deducing interesting physical quantities by solving the 
equations that characterize the measurement process. The problems posed here are 
identical to those encountered in the numerical study of systems of equations 
obtained from modeling. 

Let us assume that the evaluation of a vector quantity X is performed via the 
measurement of another vector quantity B of the same size. The vector of unknowns 
X and the vector of given data B are assumed to be related by a linear system in 
which the square matrix A models the measurement process: 

BAX  [7.2] 

As we are here interested in discussing errors that are assumed small, the linear 
system can always be obtained by linearizing the equations about the experimental 
conditions and the matrix A is constant. It is invertible (otherwise the measurement 
is not meaningful). The precision which can be obtained for the solution BAX 1  
depends on the sensitivity of the system: if a small variation in the right-hand side 
B leads to a large variation of the solution, we must expect poor precision in 

obtaining the solution. We quantify the idea of sensitivity by means defining the 
condition number Ap  of the matrix A by the relation: 
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ppp AAA 1  

The symbol p.  designates a matrix norm defined most often by means of a 

vector norm. For example, the norm 1A of the matrix A is the maximum value 

taken as the sum of absolute element values of each column of A. A norm p.  

satisfies the conditions: 

pppppppp BAAAABABA .B.;.;  

Using this condition, the reader can easily verify the following inequalities: 
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This inequality shows that the condition number Ap  constitutes an upper 

bound of the relative amplification error between the data B and the unknown X in 
solution of system [7.2]. The greater this value, the greater the sensitivity of the 
solution to variations in B. The precise condition number value depends on the 
choice of the norm. A well-conditioned system ( Ap  

of the order of 1) allows the 

obtention of a good accuracy in the solution. 

In order to illustrate the influence of the condition number we will consider a 
rudimentary example where X has two components. Consider the matrix A with 
which we associate the norm 1A  (defined above): 
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A  [7.3] 

The reader can certify that we obtain: 
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When  is equal to 0, the system is perfectly conditioned ( 11 A ). In this 
case the solution is the identity ( BX ), or: ( 2211 , bxbx ). We thus directly 
measure the unknowns, which is ideal. 

On the other hand, for 100 , we have an ill-conditioned system and small 
variations of measurement B can lead to large variations in solution X. The reader 
can easily verify that, for the preceding example, changing the vector B from: 

1
100

 to 
0

100
 will cause solution X to change from 

1
0

 to 
0

100
: a variation of 

1% in the modulus of the inputs data B leads to a variation of a factor of 100 in the 
vector X, which has also rotated by 90°. They can also calculate the relative 
variation 11 XX  of the solution and that of the right-hand side, in addition to 

the amplification factor of the relative error between B and X. 

These considerations show that the conditioning of a linear system of equations 
deteriorates as its matrix becomes filled and its coefficients are large. A full matrix 
of large size is thus very poorly conditioned. 

Poor conditioning can be improved by a suitable change in the way the equation 
is written. The system of the last example [7.3] is optimal. The system of the last 
example [7.3] can be written in the solved form [7.4] whose conditioning is optimal. 
The accuracy problem has not been resolved however, as we see that it is the 
quantity   2 1 b b   which must be measured directly with good precision. Changing 
the way the system of equations is written without changing the measurement 
method clearly improves nothing. 

In conclusion, this idea of conditioning is essential in order to appreciate the 
quality of an experiment, a model or a numerical processing of information. 
Considerable theoretical and practical progress has been made in this domain. We 
refer the reader to [DEM 97], [PRE 07] and to manuals of computation tools 
(MATLAB for example; instructions “cond” and “condest”). 

7.2.7.4. Consequences for measurement techniques  

In general, the evaluation of a quantity is effected by measuring other quantities 
that are related to the first by relations that characterize the measurement procedure. 
The matrix A of the corresponding system of equations must be well conditioned in 
order that the uncertainty is as small as possible. In cases of poor conditioning of the 
matrix A, the very principle of the method of measuring the unknown quantities is 
questionable and needs to be modified. In simple terms, the preceding example 
amounts to saying that if two measurements are determined for the most part by 
means of a single quantity, it will not be possible to obtain an indication of the value 
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of another quantity with good accuracy and it will be necessary to change the 
measurement method. 

For example, uncertainties always accumulate for independent measurements; 
we should always avoid obtaining the value of a quantity g by means of the 
difference in measurements between two much larger quantities. Thus, the value for 
a small air velocity is obtained using Bernoulli’s theorem from the pressure 
difference p between two cross-sections that are quite close together, but of 
different sections. It is clear that p should be directly measured by means of a 
differential manometer which is directly sensitive to this pressure difference and not 
from the independent measurement of two pressures. 

In general, the quantities measured should be in the same order of magnitude as 
the unknown. Let us take another example, the propagation velocity c of sound 
signals with respect to matter is large (about 340 m/s in air or 1,500 m/s in water). If 
the matter is in movement at velocity U (a few m/s), a signal emitted at A (Figure 
7.6) will arrive at B (AB parallel to the velocity; dAB ) with a delay equal to 

Ucd , whereas a signal emitted at B will arrive at A with delay of Ucd . 
The separation  between the propagation times of the two signals is thus equal to 

222 UcUd . In principle, the measurement of  allows the measurement of the 
flow velocity U. 

   

U 

c+U c-U 
A   B 

  

t O 
 

Figure 7.6. Direct measurement of the delay between the arrival 
of two synchronous signals in A and B 

However, it is important not to measure the propagation times of the two signals, 
but rather the time separation ; for this the two signals should be emitted 
simultaneously, and the time difference can be measured for example by starting a 
stopwatch when the first signal arrives. Proceeding in this way, errors of 
discretization and digitization which are only concerned with a reduced value  
rather than much larger values will be avoided (in accordance with the ratio c/U). If 
the measurement were performed by means of analogous measurement devices, the 
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conclusion would be the same, as these have a relative accuracy, which is associated 
with the scale of the measurement. 

In general, methods which involve ensuring that the quantity measured is zero in 
conditions very close to those in which we operate are known as zero methods. The 
electric-bridge methods used (Wheatstone bridge, etc.) to measure impedance are 
well-known zero methods. 

7.3. Representation of signals  

7.3.1. Objectives of continuous signal representation  

7.3.1.1. Introduction 

We have seen in the preceding chapters how a physical system can be 
represented by a continuous medium or modeled by associating components in a 
state of thermodynamic equilibrium. We have limited ourselves to thermodynamic 
aspects without really discussing the “quantity of information” necessary for 
knowledge of a system. This idea is quite difficult to define, as it depends in fact on 
the complexity of the system, the degree of approximation which can be tolerated in 
this knowledge, the sensitivity of the system towards perturbations and the way the 
information is structured. We have only indicated that the number of variables 
necessary is greater as the thermodynamic imbalances are more pronounced. 

The continuous medium described in Chapter 2 is an indispensable mathematical 
limit wherein the equations describe the observable macroscopic properties, 
provided that the associated physical quantities have been included. In order to aid 
the discussion, we will assume that the physical system and its appropriate model 
(for example, the Navier-Stokes equations) are equivalent models: results obtained 
from each should be identical (Figure 7.7). It is clearly an optimistic departure point, 
but one which can afterwards be tempered by taking account of the errors associated 
with the choice of models, the measurement procedures, the numerical methods of 
calculation, etc. 

The solutions of the theoretical model and the physical quantities of the 
corresponding experiments possess the same properties of continuity and 
differentiation. The representation of these solutions and quantities is the first 
practical problem to be solved. In what follows, we will limit ourselves to a 
function of one variable, which is for instance a temporal signal. 
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Figure 7.7. Physical system and its mode 

In a procedure adopted over many years, any solution to the equations of 
continuous media, mechanical or electrical, are presented in the form of an 
analytical representation from which it is possible to calculate the value of a 
measurable global quantity, for example the flow rate in a pipe as a function of the 
pressure difference applied, the value of an electrical resistance of a conductor of a 
given form, the thermal flux resulting from a temperature difference imposed 
between two external surfaces of a medium, etc. 

Thus, experiments have for a long time consisted of measuring certain local or 
global quantities which allow the validation of the model of the system studied. The 
appearance of computer techniques has not really changed this manner of 
proceeding, but it has allowed us to increase to an extraordinary extent the power of 
the means by which we compute quantities in the model. Progress in analog and 
numerical electronics has also allowed instantaneous measurements that were 
previously unimaginable. We thus find ourselves today confronted with an 
enormous quantity of information contained in the results of numerical 
computations or measurements, which need to be processed in as rational a manner 
as possible. These new technologies have radically changed both the way in which 
results are represented and used. Beyond these practical aspects, the comprehension 
of physical phenomena has been profoundly modified. An analogous mutation was 
produced at the beginning of the 19th century with the introduction of the Fourier 
series. 

Finally, the problem representing a function arises both from the point of view 
of analysis and storage of measurement data, and that of the analytical or numerical 
resolution of modeling problems. The numerical calculation of solutions of 
differential equations was obtained either by performing finite difference 
calculations or by means of tables, these having been calculated for discrete values 
of the variables. In practice, these procedures required important and careful effort; 
only the use of numerical tables was familiar to the physicist or engineer who was 
mostly happy to calculate a numerical value by interpolation between two values of 
a table. 
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In this chapter, we will limit our discussion to general procedures for 
representing signals; the problems of representation associated with modeling will 
be discussed in Chapter 8. 

7.3.1.2. Objectives of signal representation 

In these conditions, the first question to be considered concerns the practical 
utility of a field of a continuous quantity and the reasons for using it. The model of 
Figure 7.7 is a knowledge model, which allows us to know everything about the 
problem that is posed. It contains variables which are continuous functions of time 
and which represent quantities of the associated physical system. 

A variety of different reasons lead to the representation of a temporal signal: 

– we can firstly analyze it, in other words obtain information which allows us to 
understand the physical process and eventually to modify it; 

– the signal can also be recorded in its totality with a view to later use; 

 we can also extract more or less condensed information from this signal that 
we will keep for a later, significant, signal restoration; 

– in certain cases, we would like later to construct physical synthetic signals: 
music synthesizers, speech or image synthesizers, modeling of real devices by 
numerical simulation on computers, active control of phenomena, etc.; 

– finally, we can perform a signal transformation by applying to it an algorithm 
with the objective of computing another signal. 

Depending on the objective in mind, the nature and the quantity of the 
“information” which we intend to conserve and use, we proceed differently. In fact, we 
often find ourselves confronted by a double problem of storage and/or of interpreting 
information contained in a physical signal. Conserving billions of numerical values 
without understanding what they represent is not very helpful; this operation has a 
certain associated cost, even if this is becoming less and less. In certain difficult and 
expensive experimental cases, it is of interest to conserve large masses of data, which 
is possible using modern equipment, in the hope that we will know how to extract 
pertinent information which we do not know how to extract at the moment of the 
experiment; but the difficulty is storing the data in a suitable form. 

With the exception of measurements performed with a specific objective, any 
representation of a function of time s(t) should allow the signal to be recalculated. The 
practical needs associated with the storage and reproduction of information concerns 
all domains; beyond science and technology, the conservation of music, speech and 
image (for historians, etc.) has a social interest. Signal processing is a complex 
discipline that we will not consider in detail; the reader should refer to specialized texts 
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([BAH 01], [CAS 06], [JAC 91], [MEA 91], [PRI 91]). We will here only give certain 
general indications, which should allow the reader to appreciate the information 
processing problems that arise in the treatment of physical phenomena encountered in 
acoustics, fluid mechanics and thermodynamics. 

7.3.2. Analytical representation  

A signal s(t) can be represented by a simple “analytical” function, in other words 
a compact expression which defines a process at each instant of an interval of study, 
either by means of predefined functions such as circular functions, polynomials, 
Bessel functions, etc. or by means of formulae which imply one or many known 
methods (integration, differentiation, convolution, etc.). The “analytical” term is not 
here to be taken in the strict mathematical sense, despite the fact that the function 
used can satisfy the mathematical definition of analyticity. 

This analytical representation, exact or approximate, can be obtained in different 
ways: 

– an exact explicit solution of a system of equations that constitute a model, 
although in practice this is rarely possible for continuous media in flow; 

– an approximate global solution of the same system of equations by a procedure 
which consists of satisfying the averaged equations (weak solution). Different ways 
of proceeding exist; for example, we can replace the equations with integral 
conditions which constitute a simpler system of equations containing fewer 
variables and to which it is possible to find an analytical solution (see elementary 
examples discussed in sections 6.2.6, 6.3.1.2 and 6.5.2.2) or a solution of a form 
which is given a priori and for which certain coefficients can be obtained by least 
square methods (error minimization, etc.); 

– interpolation functions (polynomial or other function) obtained from punctual 
measurement data, graphical recordings, etc. 

The analytical representation of a signal s(t) thus consists of defining the class of 
functions used and the parameters that characterize this particular function. In 
general, predefined elementary or special functions allow a particular synthetic 
knowledge, which a numerical representation does not provide. Knowledge of their 
properties often allows interpretations of the solution thus obtained and reasoning 
regarding the relations of cause and effect by means of known analytical properties. 
It is thus possible to derive particular properties or other analytical forms without 
any numerical computation in the context of the theories used. These analysis 
possibilities only exist if the analytical representation comprises only a handful of 
coefficients: the properties of a full series are too general to be useful, except if they 
represent known functions or if they are defined by laws of recurrence. 
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Finally, certain exact solutions of the equations of fluid mechanics, of 
thermodynamics and acoustics, can be brought to the solution of linear differential 
equations if the partial differential equation is linear, or even non-linear in the most 
cases. We have already seen examples (sections 5.4.5.4 and 6.1.1.2.4), which most 
of the time correspond to a well-defined physical evolution.  

In summary, a curve that is measured or numerically calculated or a table of n 
numerical values gives raw, unstructured information that is apt to represent many 
kinds of signals. On the other hand, an analytical formula, which characterizes the 
curve, provides a structured information. An analytical function with few numerical 
coefficients often allows clear physical concepts to be associated with the 
information; obviously this analytical formula can only represent very specific kinds 
of phenomena. The development of computer technology has unfortunately led to 
analytical results being neglected, which frequently allow analysis and sometimes 
predictions based on physical arguments. Numerical calculations are of course not 
to be neglected; on the contrary, it must not be forgotten that they provide 
knowledge of the same kind as an experiment. 

7.3.3. Signal decomposition on the basis of functions; series and elementary 
solutions  

7.3.3.1. Representation in the form of a series of functions  

Exact mathematical representations can also be obtained in the form of series or 
integrals, but in so far as general procedures are concerned, their physical interest is 
often limited. Thus, a function of a real variable can be decomposed in terms of a set 
of basis functions, of which there are many kinds. For example, a signal can be 
represented by a power series development (Taylor) around an instant t0: 
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This series is often unusable in physics, as the property of infinite 
differentiability does not exist; furthermore, the convergence of the series of an 
analytical function is often limited to a finite interval. We will nonetheless note the 
following particularity of power series developments: all information concerning the 
function of time to be represented can be found concentrated at a given instant t0. 
This assumes that the future of the function is completely determined from that 
instant: the fact of indicating data in the long term creates problems of accuracy 
which are manifest in the numerical value of the higher order derivatives. Such a 
representation, which is theoretically possible for large values of time (the power 
series cos t converges regardless of t), is nonetheless unusable in practice. 
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A function s (t) can also be developed as a Fourier series on a finite interval 
[0,T] of length T: 
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The coefficients an and bn being given by the classical formulae: 
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The Fourier series represents a periodic function of period T; it is badly adapted 
to the representation of very rapid variations and discontinuities. As the harmonic 
functions of period T/n are orthogonal (where n is an integer), we have: 
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This property can be interpreted as a conservation of energy: the energy of the 
signal during time T is equal to the sum of the energies of the harmonics (Parseval’s 
theorem). 

There exist many other basis functions sets on a finite interval: Bessel functions, 
Legendre and Tchehychev polynomials, etc. (see mathematical texts). The interest 
in these is often related to the nature of the considered problem. Certain functions 
such as real decaying exponentials are particularly useful for the study of damped 
systems, but they do not form an orthogonal basis set. Finally, basis functions are 
not necessarily continuous, as we will see in a later example (section 8.3.2.3). 

7.3.3.2. Representation by combinations of elementary solutions  

The series evoked above are often chosen as a function of simple and universal 
mathematical properties (Taylor series, etc.) without any prior consideration of the 
physical properties of the system studied. Another manner of constructing solution 
representations consists of combining elementary solutions of the equations studied. 
For example, for problems associated with Laplace’s equation (electrostatics, steady 
conduction of heat or electricity, irrotational fluid flow, etc.), we can seek an exact 
or approximate solution that satisfies the boundary conditions in the form of a 
linear combination of monopoles, dipoles and vortices. In general, such methods are 
possible for linear problems in different forms (singularities and multipole 
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distribution methods, Green’s functions, boundary element methods, etc.). These 
methods often use a mathematical formalism which can be quite involved and which 
we cannot cover in this text.  

We will encounter this kind of methodology in the synthesis of musical sounds; 
we can however already note that a musical score constitutes a combination of 
elementary solutions (the notes of the instruments and indications regarding their 
interpretation) which allow the representation of a musical sequence in a manner 
equivalent to the numerical values recorded on a CD. 

7.3.3.3. Signal reconstruction  

The reconstruction of a signal s(t) represented in the form of a series or as a 
combination of functions is an intricate exercise, which can sometimes be quite 
difficult. Finding a simple analytical representation of a series is an almost 
impossible task, except in very specific cases; only a numerical reconstruction of the 
signal is possible. 

Let us recall that a power series is associated with a function independent of the 
value of its radius of convergence and it is characterized by the infinite sequence of 
coefficients. Because of this, calculating the value of a function thus represented is a 
normal mathematical operation, even if the series diverges. The simplest way to 
obtain the values of the developed function s(t) is to numerically calculate the sum 
of the series when possible. In the case of series divergence (or poor convergence), 
there exist procedures which allow the divergence problem to be contoured or the 
speed of convergence to be improved in order that its sum be efficiently calculated 
(analytical prolongation, Euler algorithms, Cesaro or Féjer sums for Fourier series, 
etc. The interested reader should refer to mathematical texts ([ABR 65] p. 16, [BRE 
91], [PRE 07])). 

In summary, a series development of a function s(t) replaces the function by a 
denumerable sequence of numerical values (series coefficients) and knowledge of 
the basis functions. However, such developments are only of interest if the function 
can be calculated with a small number of terms thus obtained, which is often the 
case when the basis functions are solutions of the equations which correspond to the 
model of the physical problem (Appendix 4). 

7.3.4. Integral transforms  

7.3.4.1. Introduction 

An integral transform is a generalization of the idea of a series, which amounts 
to developing a function on a continuous infinity of basis functions tg ,  that 
depend on the parameter . Instead of obtaining a denumerable sequence of 
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coefficients, the result of the integral transform T of the function s(t) is the function 
Ts( ) of the variable ; as the information provided by the function is greater than 
that contained in a denumerable sequence of coefficients, we see that the conditions 
for applying integral transforms are far broader than those of series developments. 
We can often associate an integral transform with a series development. The integral 
transforms can comprise complex values. 

An integral transform can often be inversed, in other words there exits another 
integral transform T –1 whose result T –1(T (s(t))) is equal to the original function 
s(t). The exact or approximate reconstruction of the initial signal is the obvious 
condition for using an integral transform to store a signal. This condition is not 
necessary for its analysis. 

The correlation coefficient fgC  of two temporal functions f(t) and g(t) is 

defined by the relation: 
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In the usual definition, we consider the infinite interval T by taking the limit. In 
practice, this coefficient is always calculated on as large a finite interval as possible. 
An integral transform is thus a factor excepted no more than the ensemble of 
correlations between a function s(t) and the family of basis functions tg , . 

An integral transform only provides interesting information and simplifications 
if a large correlation is obtained for a small number of functions tg , . In such 
cases significant interpretations may be possible. The use of an integral transform is 
only of interest if a reduced set of basis functions represents a notable part of the 
properties of the signal studied. There exist many integral transforms. We will give 
some examples of commonly used transforms with only some of their basic 
properties, chosen on account of their physical interest. The reader will find a more 
exhaustive discussion in specialized books ([AND 99], [BEE 03], [DEB 06], [GUP 
83], [JER 92], [WOL 79]).  

7.3.4.2. Fourier transforms  

7.3.4.2.1. Definition and properties  

We will leave aside the rigorous definition and conditions for existence of the 
Fourier transform. Consider a real-valued temporal signal x(t); its Fourier transform 
Fx( ) is a complex function of the frequency  defined by the relation: 
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The real and imaginary parts of this transform Fx ( ) are: 
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The modulus )(xF  and the phase )(xF  of Fx( ), respectively known as 
the amplitude spectrum and the phase spectrum, can be written: 
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The temporal signal is reconstructed by the inverse Fourier transform: 
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Fx( ) and x(t) are two different and equivalent representations of the same 
quantity, respectively in frequency space and in the temporal domain. 

The main properties of the Fourier transform are: 

1) the property of evenness:  

x(t) real    Re[Fx( )] even, Im[Fx( )] uneven 

x(t) real even   Fx( ) real even 

x(t) real odd   Fx( ) imaginary odd 

x(-t)     Fx(- ) = Fx( )* 

2) a stretching of the timescale of the function x(t) which leads to a contraction 
of the frequency scale for the transform Fx ( ) and vice versa (similarity): 
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3) a translation  of the timescale of the function x(t) which leads to a phase 
rotation equal to –2  for the transform Fx ( ) and vice versa: 
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4) the Dirac distribution ( ) is defined by the relation:  

 1 ) (   
 
 dt t  with: 0,  ( ) 0t t  

It satisfies: 

0)()( fdttft . 

We can easily show that its Fourier transform is equal to one: 
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The Fourier transform of a Dirac distribution centered at the origin is a constant 
function of the variable , equal to one on the interval [- , + ];  

5) the Dirac distribution )(t  centered at the instant  verifies: 

 fdttft )()(  

From the relation of translation of the timescale, we obtain its Fourier transform:  
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6) the inverse Fourier transform of the Dirac distribution )( N  in frequency 
space is: 
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7) the Fourier transform of the function tjNe2  is then the Dirac distribution 
centered on frequency +N

)()2exp( NF tjN  
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8) the Fourier transforms of the functions  tN2cos  and  t2sin  are the half-
sum and the half-difference of two Dirac distributions centered on the frequencies 
+  and - . 

The function  2      tA cos , continuous in temporal space, is thus 
represented by only three numerical values A,  and  in frequency-space; 

9) the Fourier transform of the product of two functions x1(t) and x2 (t) is equal 
to a convolution product Fx1 ( )*Fx2 ( ) of the Fourier transforms Fx1 ( ) and Fx2 

( ), and vice versa; 

10) Parseval’s theorem expresses that the energy of a signal s(t) is conserved by 
the Fourier transform: 

dFdttsE ss
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We see completely different distributions of information in temporal and 
frequency space: the non-zero temporal signal and the infinite duration of the cosine 
function is found concentrated in four non-zero values (frequencies , amplitude 
and phase or complex amplitude), whereas the information of the Dirac 
concentrated at the time axis origin is found spread over the entire frequency 
domain. 

7.3.4.2.2. Interpretation of the Fourier transform 

Using the Fourier transform amounts to seeking the correlation between a signal 
x(t) and the harmonic signals of frequency , which can be expressed in the form 
ej t. This interpretation is valuable because it can be shown that the better this 
correlation, the closer the signal is to a harmonic signal. For a signal mainly 
comprising harmonic discrete signals, the correlation will be high for corresponding 
frequencies (spectrum of lines) and the signal will be characterized by the values of 
these lines. We thus obtain a small number of numerical values in the place of the 
values obtained by temporal discretization of the signal. The Fourier transform 
consists of representing the functions x(t) using a basis-set of harmonic functions. 

The application of the Fourier transform on a temporal signal of infinite length 
poses two problems that are difficult to reconcile a priori with the idea of 
irreversible time associated with the second law of thermodynamics: 

– on the one hand, we can only know the transform after a very long period of 
time;  

– on the other hand, it assumes that the beginning of the signal is situated a long 
time ago in the past. 
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The first inconvenience makes it difficult to follow the evolution of a 
phenomenon without a long enough delay; this can be remedied by means of 
observation windows of limited duration. The second difficulty is more serious, as it 
implies that the signals obtained by inverse Fourier transform are not possible to 
realize if they occupy the time interval [- , + ]. Only a non-zero temporal signal 
which starts from a given instant is realizable: we refer to this as a causal signal, 
which defines a possible action in time. 

7.3.4.3. Laplace transform  

The Laplace transform possesses properties similar to those of the Fourier 
transform, and is defined by the relation: 

0 )()( dttfepL pt
f  

Laplace transformation is not fundamentally different from Fourier 
transformation, as it consists of taking in this Fourier transform imaginary values for 
the variable in complex plane; it has the same properties, except for inverse 
transformation. 

This transform is of considerable interest, notably for the study of damped 
systems in automatic control, the family of functions for comparison with the signal 
s(t) being precisely the ensemble of aperiodic damped modes of linear invariant 
systems of first order. The reader can refer to texts on the dynamics and control of 
systems ([BEE 03], [DEB 06], [GUP 83], [WOL 79]). We will see in Chapter 8 the 
application of the Laplace transform for the solution of linear systems with constant 
coefficients (Appendix 1). 

7.3.4.4. The Hilbert transform  

The objective of the Hilbert transform is to define the amplitude and the 
instantaneous frequency of a movement which is close to a harmonic movement, by 
with variable characteristics. We here have a generalization of the definition of the 
complex exponential ntje 2  (Appendix 2). We define the Hilbert transform tH  
of the signal tH  by the relation1: 
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 [7.5] 

                                   
1 The notation VP means that the integral has to be understood in terms of Cauchy principal 
value; notation * indicates the convolution product of two functions.  



Measurement, Representation and Analysis of Temporal Signals     369  

The Hilbert transform of  2 tcos  is equal to  2 tsin ; in general, the effect 
of the Hilbert transform is to introduce a phase lag of 2/  in the initial harmonic 
function. For any real signal tx , we can associate the complex analytical signal 

tx : 

   ) ( ) ( t jH t x tx     [7.6] 

The modulus ta  and the argument t  of the analytical signal tx  can be 
defined as the amplitude and the instantaneous phase of the signal x (t): 

tj
x etattx )(ReRe  

The instantaneous frequency i  is defined as the derivative of the instantaneous 

phase 
dt
d

i .
2
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. The idea of instantaneous frequency is only meaningful for 

functions that are close to harmonic functions, in other words for relatively 
narrowband signals. We will note that these signals possess two very different 
timescales, one rapid timescale corresponding to a “carrier” and another much 
slower scale that characterizes a modulation. Figure 7.8 shows an example of a 
signal modulated in amplitude (a) or in frequency (b). 

Most musical signals are characterized by a fixed frequency, which is modulated 
in amplitude, and in phase. They constitute the basis for the synthesis of sounds in 
musical synthesizers. We will come back to this point a little later in section 7.4.3.4. 

ax(t)x (t) x (t)

(a) (b)

t t

 

Figure 7.8. Signal modulated in amplitude (a) or in phase (b) 

7.3.4.5. Cepstrum 

The principle of cepstrum consists of taking the logarithm of a spectral density, 
and then performing an inverse transform. Ordinary products and convolution 
products are respectively transformed into sums and products; a harmonic 
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modulation of the spectrum is transformed into a Dirac in the inverse transform. 
These properties are often used for signal processing applications such as: 

– the suppression of echoes in acoustic signals; 

– the characterization of vibrations in rotating machinery and more particularly 
in obscuring the operation of machines (for example, in looking for defects in 
rotating parts which result from the wear of bearings and which leads to the 
appearance of lines in the spectrum or by modulation frequencies which are difficult 
to see in a simple spectrum). 

We will see examples of applications of the cepstrum in Appendix 3. Depending 
on the problem, different definitions of the cepstrum are used ([DES 00], [JUR 08], 
[NOR 03], [WAI 90]). 

7.3.4.6. Short time Fourier transforms  

The Fourier transform is defined on an infinite interval. For diverse reasons, we 
can only record a signal over a limited duration, and this modifies the Fourier 
transform. It is thus necessary to find a compromise between the volume of 
information required and the accuracy of the results obtained. Recording a signal for 
a finite duration T, consists of multiplying it by a non-zero function over this 
interval and by zero outside of this interval. Following the usual terminology, we 
will say that this function, called a gate function T(t), is a particular case 
(rectangular function) of a window function. The gate function T(t) centered at the 
origin can be written: 
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The signal transform thus truncated is written: 
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The Fourier transform of the truncated signal x(t). T(t) is equal to the 
convolution product of the Fourier transforms of the signal x (t) on the infinite 
interval and the gate T(t). The Fourier transform )(

T
F  of this one is a cardinal 

sine function: 
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Now consider the effect of recording the signal nt2cos  using a gate of 
duration T. The Fourier transform of a cosine of infinite duration is composed of 
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two Diracs (Figure 7.9a): the spectrum of the cosine convolved with the transform 
of the gate of duration T is comprised of two cardinal2 sinusoids centered on the 
frequencies  n of the two preceding Dirac distributions (Figure 7.9b). Considering 
that the width of the central peak of the cardinal sinusoid is characterized by its first 
zero, the widening of the Dirac function peak is equal to 2/T, which is, for a window 
which records 10 periods, a widening in frequency of 0.1n on either side of the 
frequency n. 

 

+ n - n    
(a) 

+ n- n  

2 /T 

(b) (c)
+ n- n    
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Figure 7.9. Fourier transform of: (a) cos 2  ;nt  (b)  nttT  2cos ).(  with  

1/T << 2n; (c)  nttT  2cos ).(  with 1/T = 2n

We see that the shorter the window, the wider the frequency band obtained: an 
insufficient observation will reduce the accuracy of the Fourier transform by 
“clouding” the signal. We note that as a recording which does not disturb the 
spectrum should be applied with a window which is the inverse transform of the 
Dirac distribution, in other words the unrealizable infinite width time window, 
which we wanted to avoid. 

According to the usual Rayleigh criterion, we consider that the frequency peaks 
become unidentifiable if the first zero of the cardinal sinusoid centered at the 
frequency +n is found at the frequency –n (Figure 7.9c), i.e.: 

nT 2/1  

The perception of a frequency n requires thus an observation horizon of duration 
T greater than 1/2n: the recording duration T should include at least a half period of 
the lowest visible frequency of the short-time Fourier transform. Another result of 
these considerations is that we can only distinguish two frequencies  and  +  if 
they are separated by at least the value 1/2T. From a physical point of view, an 
insufficient recording of information can only give bad results (see formula [7.8] 
and Shannon’s sampling theorem (section 7.3.6.4)). We will note that the spectrum 
obtained by such a transform has not only lost the details concerning the peak; but it 
also contains low frequencies that do not exist physically. 
                                   
2 We obtain: tfdtf . 
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The Fourier transform is thus only a correlation performed between a signal and 
a family of harmonic reference signals. This observation allows a simple physical 
interpretation of the widening of peaks, which results from the use of a finite 
window. In effect, the correlation between two harmonic functions is zero over an 
infinite time, unless their frequencies are equal. However, the same correlation will 
be increased, as the window size become progressively smaller and as the 
frequencies are nearer. We will leave it to the reader to verify these observations. 

In reality, the widening of the Dirac spectrum by the cardinal sinusoid function 
is not limited to the central peak of this function and the smaller but non-negligible 
amplitudes of the lateral lobes can also lead to a net increase in the width of the 
spectrum obtained. This last inconvenience is a problem, in particular for analyses 
of acoustic signals on account of the sensitivity of the ear (the logarithmic decibel 
scale clearly leads to a smaller scale of the amplitude variations). As the energy of 
the secondary lobes is quite weak, we try to re-center it on the main lobe, even if 
this means widening it slightly. This can be achieved by replacing the gate function 

T(t) by a window function )(tT , which leads to much smaller amplitudes of the 
lateral spectrum peaks than those obtained with a rectangular window: 

)(*)()()()( 2
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The recording of a raw signal over a limited duration therefore leads to 
deformations of the Fourier transform consisting of two kinds of distributive 
modification of spectral energy: the widening of the central peak and the appearance 
of secondary lobes. This widening of the signal spectrum can be studied and 
characterized for each window by taking the “moment of the signal energy” 

dttxt
22 )(  and of its transform dFx

22 )( . General considerations ([BLA 
98], [FLA 98], [HIG 93], [STR 96]) allow the demonstration of the Heisenberg-
Gabor inequality: 
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1

.t  [7.8] 

In this inequality t and  are respectively the duration of the energy content of 
the temporal signal and the width of the frequency band in which the energy is 
contained; t is of the order of T/2 and  is analogous to the quantity 2/T defined 
above for the rectangular gate. The equality is obtained for a Gauss window, which 
corresponds thus to an optimum of the preceding minimization criterion. The 
limitation of the preceding principle is related to the basic uncertainty of quantum 
mechanics, but the physical analogy is far from complete, the interpretation of 
quantities being very different in the two domains. 
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In practice, the effective choice of a window results from the ensemble of 
various considerations. For a presentation and comparison of commonly used 
windows, the reader should refer to ([BAH 01], [MAD 98], [NOR 03], [STR 96] 
[MAX 96]). 

7.3.4.7. Continuous wavelet transforms  

7.3.4.7.1. Introduction 

The Fourier transform with a window function can also be interpreted as an 
integral transform whose kernel is the product tj

T et 2)(  of the complex 

exponential tje 2 by the window tT . In other words, we no longer perform a 
Fourier transform over a limited duration; rather, we perform a transform with a 
function tj

T ettg 2)(,  that is different from the complex exponential. Such 
a function is often called a wavelet. 

This point of view can be generalized by considering functions of time that 
contain additional parameters such as window width, which can depend on the 
frequency. An example is the Gabor transform in which we decompose the signal 
studied according to a basis of functions comprising the product of the complex 
exponential tje 2  and Gauss windows of width , centered here at the origin: 
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In the Gabor transform, we thus have as an additional parameter the width  of 
the window; we obtain, after transformation, a function with two variables which 
provide redundant information for representation of the signal x (t). The frequency 
representation studied in section 7.3.4.6 can be obtained by fixing the value of 
window width; by varying this, we can obtain complementary information. Consider 
for example a signal comprising one or two periods of a harmonic function of a 
given frequency that is centered at the origin. Let us apply the Gabor transform, we 
obtain a new transform which is not so different from the previous one, so long as 
the analysis window has a width  of the order of that of the preceding signal, but if 
this window is widened, the value of the transform will be reduced. A Gabor 
transform with variable width allows the length of a signal to be identified. 

7.3.4.7.2. Timescale transforms  

We thus arrive at the idea that by using window width as a variable of the 
analysis wavelet, we can obtain information regarding the timescales of the signal. 
We thus use an analysis wavelet whose form is conserved when we dilate the 
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window width. It is clear that by proceeding in this way, the physical idea of 
frequency is no longer so clear. If the window comprises little oscillation, then it is 
its size that will be the pertinent variable for the transform. 

 

(a) (b) (c) 

t t t 

 

Figure 7.10. Wavelets with variable width ((a) and (b))  
 or variable frequency ((b) and (c))  

We define the transform Ts (a) of the signal s(t) by the wavelet h(t/a): 

dtathtsaaTs )(2/1  

in which the transform variable is the scale a. 

A simple wavelet is the “Mexican hat” wavelet, which is the second derivative 
of the Gauss function: 
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Figure 7.10 shows the window variations for a timescale analysis (windows a 
and b) and for a time-frequency analysis (windows b and c). 

Diverse problems arise in the choice of wavelets and in particular for the 
reconstruction of a signal from its transform ([ALL 04], [FLA 77], [MIS 07], [STR 
96]). 

7.3.5. Time-frequency (or timescale) representations 

7.3.5.1. General principles  

The representation of a signal x(t) by means of an integral transform is useful so 
long as this is not too different from the transform kernel: very short signals 
centered at the origin will be well represented by wavelets, whereas the Fourier 
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representation is better suited to periodic (or nearly periodic) signals. For other 
signals the preceding representations are numerically ill-conditioned. 

Let us take the example of a centered signal of length 100 and which comprises 
two sequences of oscillation (Figure 7.11) separated by a sequence in which the 
signal is zero. Its representation by means of a Fourier series on the interval [-50,50] 
(after change of time origin) is theoretically possible, but it will require a series with 
so many coefficients that if will not be very useful. 

 x(t) 

0
t 

50 –50

 

Figure 7.11. Intermittent signal comprising two different sequences 

The use of a Fourier transform in the same window will hardly be more 
satisfactory. The use of a Fourier transform with window functions would be even 
worse on account of signal attenuation towards the window edges. Furthermore, the 
(complex) transforms will not indicate in a simple manner the fact that the signal 
comprises two sequences of different frequencies at distinct instants, rather than a 
uniformly distributed frequency content. We can also think of performing two 
Fourier transforms on the separate intervals, but such a procedure is directly related 
to the signal structure and so cannot be easily generalized. 

The most direct representation thus consists of recording the signal by means of 
a window function which is centered on the instant , and then performing a short-
time Fourier transform. We are thus led to perform sliding transforms, which allow 
the identification of the spectral content of signals contained in the window  (t - ). 
This sliding Fourier transform is expressed: 

 
 dtetxt F tj

x    2)()( ) , (  
      

The transform ),(xF  is a function of two variables  and  which we will 
qualify as a time-frequency representation. The spectral distributions become 
functions of time. However, such a continuous representation contains much 
redundant information concerning the signal x(t) since knowledge of a single 
transform on the time interval of the signal suffices for a reconstruction of the initial 
signal.  
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7.3.5.2. Practical applications  

A natural solution for reducing the size of the time-frequency representation thus 
consists of performing a partition of the total study interval into n temporal 
segments each of a length t in the order of the window width, and only conserving 
the Fourier transforms performed at the center of the segments. We thus obtain a 
succession of spectra, each of which can be attributed to a given instant.  

 

Figure 7.12. Spectrogram 

The representation of these spectra in the form of a succession of spectra as a 
function of time is known as a spectrogram (Figure 7.12). However, a spectrogram 
can quickly become quite complex and difficult to read for long signals. We often 
prefer a representation, known as a sonogram, where the values are shown in the 
time-frequency plane where the use of color or grayscale allows the indication of the 
signal level. In this way the information contained in the signal can be visualized in 
terms of the evolution of the frequencies and amplitudes. 

Figure 7.13. Sonogram of the word “shah” pronounced by a person 
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Sonograms (often known as spectrograms) are very often used for the analysis of 
complex signals; Figure 7.13 shows the sonogram of an acoustic signal 
corresponding to the word “shah”. We can note that the ensemble of letters “sh” 
corresponds to higher frequencies than the ensemble “ah”.  

The considerations of section 7.3.4.6, relating to the time-frequency uncertainty, 
here applies and the Heisenberg-Gabor inequality indicated earlier remains valid: a 
precise temporal localization and an accurate analysis are incompatible. This 
phenomenon is illustrated by Figure 7.14. which presents sonograms of a signal 
composed of a silence of 0.05 second duration, followed by a harmonic oscillation 
of frequency 4 kHz during 0.05 seconds, and then, once again a silence. The 
analyses performed by means of the software COOL EDIT with windows of width 

F respectively equal to 0.031 and 0.002 seconds show that the first value allows a 
suitable identification of the frequency, whereas the second allows a better temporal 
localization of the portions of the signal. The Blackmann-Harris window used gave 
better results than the other windows that were available; however, the reader 
should remember that the choice of window depends on empirical considerations 
([ALL 04], [JUR 08], [MAD 98], [STR 96], [WAI 90]). 

 

Figure 7.14. Influence of the width F of the Fourier window 
on the sonogram (4,000 Hz) 

The explanations which have just been provided for the time-frequency analysis 
can be transposed to timescale analysis. This domain is more common in image 
treatment; the interested reader should see specialized texts on this subject. The 
principle of time-frequency representation can be applied in two dimensions, the 
frequency or scale spectra being thus functions of two variables. 
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7.3.5.3. Regarding multiple timescales  

The fact that spatial or temporal variations of a phenomenon take place at two 
completely different scales has important but variable consequences depending on 
the mathematical form of the variations. If these are relatively uniform and non-
oscillatory, we have a singular perturbation problem (see section 6.4.3). For 
oscillations of a linear system, the preceding time-frequency analysis is only 
meaningful if the notion of frequency can be defined, in order to allow separate 
identification of the rapid component (short oscillation period) and the slow 
component (characteristic time of the amplitude and phase variation, etc. (section 
7.3.4.4)). 

These notions of fast and slow scales are not however so easy to define. Let us 
consider the example of a signal s(t), which is the sum of two harmonic signals of 
close frequencies NN0  and NN0 : 

tNtNtNNtNNts 2cos.2cos
2
1

2cos2cos)( 000  

This expression shows that s(t) can be considered as a harmonic signal 
tN02cos  with fast variations, whose amplitude is slowly modulated by the 

function tN2cos . The two timescales are here clearly 1/N and 1/ N. The 
amplitude modulation can be any broadband slow signal a(t) as in the transmission 
of radio waves. 

Frequency modulation is also a system with two timescales, with a low-
frequency carrier signal N0 and a slow variation of frequency N: 

.2cos)( 0 ttNNts  

The spectrum of this signal modulated with frequency tNtN cos)(( 0 is 
not very different from the amplitude modulated spectrum: in addition to the two 
close frequencies N N   0 0  and N N   0 0 , it contains only a small number of 
weak peaks. 

The amplitude spectra of amplitude and frequency modulated signals are nearly 
similar, but the temporal signals and the phase spectra have very different structures. 
This comparison illustrates the difficulty of reconstructing, with its detailed 
characteristics, the time signal which corresponds to an amplitude or energy 
spectrum: theoretically only the temporal and complex spectral representations are 
completely equivalent. More generally, a signal similar to a harmonic signal of 
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frequency N0 can be studied with Hilbert transform, amplitude and frequency 
modulations being defined from its analytical signal (section 7.3.4.4). 

In practice, signals used in telecommunications are modulated in amplitude or in 
frequency by a low frequency signal, which contains information to be transmitted 
and decoded. In mechanical or energetic systems, these modulations are the result, 
either of the presence of two close frequencies, or of a slow oscillatory variation of 
the physical characteristics of an oscillator (stiffness or length of a vibrating system, 
for example, or interaction between structures of different frequencies in fluid 
mechanics or acoustics). 

We will re-encounter the problem of multiple time (and space) scales in 
turbulent fluids, at the heart of which are fluctuations of central importance. An 
everyday example can be found for flow in the atmosphere: the wind presents 
instantaneous fluctuations with very short periods (a couple of seconds for gusts of 
wind), and longer periods (from many hours to a day for perturbations (in the 
meteorological sense)) which are relatively individual structures at the atmospheric 
scale. These two categories of scale are generally distinct and we can thus separate 
meteorological and turbulence phenomena by performing statistics for the mean 
values at the scale of the turbulent fluctuations. Meteorological predictions and data 
provide the mean velocity, the effect of fluctuations due to gusts being smoothed at 
timescales of a fraction of an hour. 

On the other hand, turbulence frequencies have a continuous spectrum and the 
temporal separation of phenomena is hazardous in proportion to the degree of non-
linearity of the turbulence mechanisms. Furthermore, the corresponding flows can 
nonetheless be subject to temporal variations at a slower scale due to influences 
other than that of the turbulence.  

7.3.5.4. Study of intermittency  

We call intermittency that property of a signal that comprises structures of the 
same nature, which occur at intervals that may be more or less regular or random. 
The signal is comprised of “packets” with a specific structure different from the 
characteristics of the rest of the signal (Figure 7.15). 

 x(t) 

0 t 

 

Figure 7.15. Example of intermittent signal 



380     Fundamentals of Fluid Mechanics and Transport Phenomena 

Intermittency is encountered in many flows; for example, Figure 7.16 shows that 
a fixed observer at the horizontal level N will perform measurements characterized 
by intermittency for liquid packets in a water jet (a), the external turbulent zones of 
a boundary layer (b), or ascending currents in clouds which are carried by the wind 
(c). 

F

U U

(a) (b) (c)

NNN

 

Figure 7.16. Intermittency phenomena in: (a) a liquid jet; (b) in the frontier zone of a 
turbulent boundary layer; (c) in atmospheric flow with cumulus 

Figure 7.17 shows the sonogram of a sound recording of a water flow that issues 
from a floater tap in which a rapid liquid jet bursts in an air pocket which is trapped 
at the top of a vertical pipe before filling a reservoir. The impact of the liquid 
packets on the walls is particularly loud and is translated by dark regions on the 
sonogram. When the air pocket is purged, all that remains is the sound produced by 
the turbulence in the water which is much less noisy, and the sonogram is thus a 
relatively uniform shade of gray. 

Figure 7.17. Sonogram of the noise of a flow of water with  
air pockets downstream a tap 
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In general, the emission of sound in a flow is always associated with unsteady 
structures. This is a frequent nuisance, easily identified by an attentive ear, that we 
seek to eliminate. The analysis of flow noise with the signal processing techniques 
discussed above, and in particular time-frequency analysis, often allows the 
identification and improvement of noisy regions of a flow. These procedures merit 
broader use, but they require relatively complete knowledge in the domains of fluid 
mechanics and acoustics. 

7.3.6. Discretized signals  

7.3.6.1. Evolution of techniques  

While physical quantities are represented by real or complex numbers with 
continuous values, the results of experiments are truncated decimal approximations, 
which are subject to the uncertainties of the experiment. Since the earliest scientific 
developments, it is the experimenter himself who discretizes the values of the 
measurements he performs. In the same way numerical applications of the 
equations, which result from exact or empirical theories, can only be used with 
discretized, truncated numerical values. The introduction of computer technology 
has completely modified both experimental techniques and the practice of system 
modeling. 

The evolution of experimental and measurement methods has been marked by 
two types of devices, depending on the nature of the electronic treatment: 

– analog devices in which the input signal (voltage or electric current) is a 
continuous function of time which is then transformed by electronic circuits into an 
electrical output signal, which is itself a continuous function of time; in these 
devices, mathematical discontinuities don’t really exist. These measurement devices 
generally have a relative accuracy associated with the scale chosen for the 
measurement; 

– digital devices, which use information technology, and operate on signals 
constituted of a finite sequence of truncated numerical values (which are encoded in 
a number of “bits” or “bytes”). Here, once again, digitization errors (quantification) 
are in direct relation with the maximum value chosen for the representation of 
numbers (12 or 16 bits for example). 

The interest of digital techniques lies in the ease of adaptation and the near 
infinite possibilities: any modification in the treatment of a signal is performed 
through the modification of a computer program, on the contrary, the modification 
of an electric analog circuit can only be achieved through modifying the physical 
properties of the components, some of which may be variable by construction 
anyway. 
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The techniques used in practice are often mixed for different reasons: 

– as the initial signals are often continuous, it is necessary to construct a table of 
numerical values which we wish to retain by sampling (this is the job of the analog-
to-digital converter); 

– the signals which result from a treatment are often destined to be used to act on 
analog materials which require a certain power (power amplifiers, actuators, 
loudspeakers, etc.); the discontinuities of the numerical values must therefore be 
interpolated by means of a digital-to-analog converter which delivers a continuous 
electrical signal. 

7.3.6.2. Sampling of continuous signals  

The representation of continuous signals by tables of numerical values is only 
useful if the initial signal can be reconstructed exactly without any loss of 
information. We replace the continuous signal by a sequence of values that are 
generally recorded at regular intervals. It is clear that the signal should not have 
varied too much between two successive values, such that its reconstruction in a 
continuous form can be performed with suitable precision. 

The temporal representation of a signal s(t) amounts to its decomposition into a 
basis of Dirac functions according to the following property: 

dtftf )(  

Sampling a signal s(t) comes down to multiplying it by the sampling function 
)(__ tTIII  (also known as Dirac comb or impulse train) defined by the sum of Dirac 

impulses positioned at the points kT (k integer): 

integer,)(__ kt-kTkT
k

k
TIII  

We thus have: 

( ) ( ) , integer
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k

s kT t kT s t dt k

 

The sampling of temporal signals is a complex operation ([BAH 01], [BEL 00], 
[CAS 06], [HIG 93], [MAD 98], [MAX 96]). 
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7.3.6.3. Fourier transform of a discretized signal  

The sampling function is a periodic function of period T. Its development as a 
Fourier series can be immediately written by calculating the Fourier coefficients 
(section 7.3.3.1) of the Dirac function on interval [-T/2, T/2]: 
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Using the previous second expression of function )(__ tTIII  and results from 
section 7.3.4.2.1, it is easy to obtain: 
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For a discretized signal of finite duration, which can be written as: 
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the Fourier transform is equal to: 

integer-
1

-*
1

)(*

0
0

0
0

2
__

kkfF
f

kfF
f

eFFF

k

k
s

k

k
s

k

k

k
T
t

j
sIIIs.

T

 

The Fourier transform of the sampled signal is the transform of the signal s(t) 
which is completed by a periodization on the frequency axis, with a period equal to 
f0 = 1/T. 

The other integral transformations studied earlier can also be applied to 
discretized signals. The essential physical notions already discussed for these apply 
equally to the discretized signals; of course it is necessary to take account of the 
numerical aspects associated with the discretization ([BEE 03], [BEL 02], [FLA 98], 
[JER 92], [PRI 91]). 
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7.3.6.4. Errors associated with digital techniques  

The digitization of analog signals can be performed by means of devices 
comprising a fixed number of digits (8, 12, 16, etc., binary digits). A quantification 
(or rounding) error results, which is all the greater as the number of significant 
digits is small. For example, the representation on 12 bits allows the representation 
of 212 (=4,096) numerical values; thus a relative precision far greater than 1/1,000 
cannot be hoped for, and this is on condition that the 12 bits are nearly all used. For 
example, if the 12 bits allow the representation of numerical values between 0 and 
100, the absolute quantification error of a given number is in the order of 100.2-12, 
i.e. about 0.03; only 5 and 6 bits will be used to represent the number 1.378, 
corresponding to a relative accuracy of the order of 2%. The preceding error is 
similar to the reading error of measurements on analog apparatus, for which it is 
necessary that the quantity to be measured is near of the full scale used. 

The errors associated with discretization are greater in proportion to the 
evolutionary rapidity of the phenomena as in impulse signals. In practice, an 
impulse is applied over a certain duration; if this duration is in the order of a very 
small number of temporal points, the measurement error may be very great. This 
loss moreover corresponds to irreversible information loss. 

In section 7.3.6.3, we saw that signal discretization leads to the periodization of 
the Fourier transform of continuous signal. In order to reconstruct this initial signal, 
it is thus necessary to conserve one period of the spectrum, and this assumes that the 
Fourier transforms of each period do not overlap: if N is the sampling frequency, the 
signal spectrum should not contain frequencies greater than N/2. This result 
constitutes Shannon’s theorem.3 In these conditions, by taking the inverse Fourier 
transform of the central period of the spectrum, we exactly reconstruct the initial 
discretized signal without any information loss. 

The result of this, given that any signal will contain parasite noise of various 
origins and different characteristics, is that it is necessary to suppress the higher 
frequencies vis-à-vis Shannon’s theorem. This is the role of low-pass filters 
positioned before the analog-to-digital converter; these filters are called anti-aliasing 
filters (as they prevent energy at frequencies higher than the Shannon limit from 
appearing in the lower frequencies, this being due to the partial overlapping of two 
successive periods of periodized spectrum). We cannot discuss these problems in 
greater detail; the interested reader should refer to texts on signal processing. 

                                   
3 A usual and equivalent statement of Shannon’s theorem is that a signal comprising only 
frequencies up to p Hz must be sampled at 2p Hz at least, so as not lose any information. 



Measurement, Representation and Analysis of Temporal Signals     385  

7.3.6.5. Discrete transformations of discretized signals  

The transforms described above operate on signals with continuous or discrete 
values, but they provide continuous values. These need to be discretized in order 
that they can be stored or transformed numerically. In most practical cases, 
numerical calculations of integral transforms are performed by means of algorithms 
applied to discretized signals that directly provide discrete values. 

As a result of binary representation of numerical values, transform algorithms 
can be greatly simplified for ensembles of values whose number is a power of two. 
The fast Fourier transform is performed by means of a fast algorithm proposed by 
Tuckey. Any signal s(t), which is discretized into 2 n values, will have a discrete 
Fourier transform that contains as many values in the frequency domain as the 
discretized temporal signal contained. There has thus not been any data reduction 
compared with the initial signal. However, for a real signal, on account of the 
properties of evenness, the number of significant values is equal to 2n-1. 

Furthermore, the discretization of an unknown signal can create difficulties. 
Consider a temporal signal composed of p narrow impulses. Its analysis and 
representation are clearly quite simple in the continuous temporal domain. However, 
the discretization obtained by temporal sampling will constitute a rather poor 
representation of the signal s(t) if the impulses do not occur at the measurement 
instants. On the other hand, the Fourier transform of the discretized signal is a sum 
of complex exponentials the properties of which are not immediately obvious. 

This difficulty is also encountered in the frequency domain for the identification 
of one or several isolated peaks (harmonic oscillations) if the central frequencies of 
the peaks are not equal to one of the frequencies of the sampled spectrum obtained. 
It is for this reason that if we want an accurate measure of a spectrum’s peak 
amplitude (a sound spectrum for example), it is important to choose window 
functions which broaden the peak, while at the same time suppressing the secondary 
lobes of the Fourier transform of the window ([BEL 98], [HIG 93], [MAD 98]). 

7.3.7. Data compression  

7.3.7.1. Introduction 

Files containing raw numerical values can be extremely large, even after 
transformation. Images for example, in comparison with sound and text, consume an 
enormous quantity of data when digitized. Experimental modern measurements also 
produce large quantities of numerical data. It is thus necessary to reduce the size of 
the files for storage by exploiting the power of processors, and it would not be 
appropriate to discuss signal representation without recalling certain specific 
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procedures of data compression. This is achieved by exploiting particular 
properties of data that result from arithmetic or numerical properties of the signal 
studied or of one of its transforms. 

Data compression procedures may or may not be accompanied by data loss. 
Their efficiency can be evaluated by means of a degree of compression (volume of 
the compressed file/volume of initial file). These are classed according to two main 
categories depending on the arithmetic or analytic nature of the characteristics that 
are exploited. 

7.3.7.2. Arithmetic methods of data compression  

A sequence of numerical values often presents particular combinational 
properties: for example, real numbers have a periodic decimal development. Any 
data file comprises a sequence of numerical values, which is not the result of pure 
chance, as they always represent some specific information. This implies that the 
file belongs to a certain class of files and it therefore possesses certain arithmetic 
particularities, which can be demonstrated. For example, an image is not made up of 
numerical values chosen at random – it includes certain structures (contours, color-
ranges, etc.) which correspond to the images it represents. An image constituted of 
random pixels will most likely not represent anything at all. Similarly, a sequence of 
letters chosen randomly has a very small probability of representing a text. To 
clarify this, consider the following: the number of permutations, without repetition, 
of the 26 letters of the alphabet (equal to 26!) is of the order of 4 × 1026. If we admit 
repetition, the number of combinations is much greater. It is clear that this number is 
far greater than the number of meaningful sentences comprising only 26 letters that 
it is possible to write in a given language. Text files thus form a particular class of 
files. 

The combinatory particularities of a class of files can be used in order to define 
appropriately adapted representation conventions. It is therefore possible to estimate 
that such an encoding of a file will allow the reduction of its size. Of course, the 
reverse decoding operation must be possible without any ambiguity. 

Arithmetic methods of compression involve searching for numerical structures in 
a sequence of values of a file and exploiting the multiplicity of their occurrence. Let 
us consider three examples: 

– the method of repetition involves “factorizing” the sequences which are 
repeated one after another; for example, a sequence of 30 identical values (96 for 
example) for consecutive pixels of an image will be denoted 96*30 instead of (96, 
96, 96, etc.); a suitable convention for writing the file is obviously necessary; 

– the dictionary method involves recognizing the structure of values which are 
repeated and are thus indexed; the name “dictionary” derives from the fact that a 
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text is not a random sequence of letters, but rather a sequence of words which we 
sort and store in a dictionary, indexing them by order of their appearance in the 
dictionary. The compressed file is thus the dictionary, and the text is encoded with 
the order numbers of the words used. While the words of a text are easy to read, 
numerical structures (sequences of similar bytes) of an image file must be sought 
with a suitable algorithm. It is also possible to establish a partial dictionary by not 
encoding isolated values, which are not recognized as part of a repeated structure. 
This method is applicable to all types of files. 

– the Huffman method, which is entirely statistical, is based on the fact that in 
language, all the letters are not used with the same frequency. In French, for 
example, the probability of encountering the vowel “a” is 17.3%, whereas that of 
encountering the consonant “w” is 0.05%. Now, letters are encoded on 8 bits 
(ASCII characters). In general, a byte file contains variable occurrences for the 
different bytes which are possible, while the Huffman method consists of encoding 
the bytes encountered in a source file with variable binary lengths such that the most 
frequent data are encoded on a very short binary length, rare bytes being represented 
by a binary length which is greater than the average. The few bits lost on the rare 
bytes are quickly recovered for the more frequent bytes (“a” is 346 times more 
frequent than “w”). As the number of bits encoded is now variable, it is necessary to 
establish a criterion that allows us to distinguish between successive encoded 
elements. The encoded file will finally comprise the used source code file and the 
encoded message. Its establishment requires the implementation of a suitable 
algorithm; data reading, in other words the reconstruction of the initial file, is 
performed by means of a decoding algorithm (decompression). 

The Huffman method is applicable to all kinds of file (text, image, music, etc.) 
since it can establish a table of byte frequencies when the file is read. Despite its age 
(it dates from 1952), this method remains competitive, as research has improved its 
capacity to compress data. 

All of the above methods of data compression are no-loss methods, as it is 
possible to completely reconstruct the initial file. They do not use any underlying 
“physical” property of the file structure, the algorithms detecting the structure of 
repetitions in a purely logical manner. A suitable data compression code leads to a 
reduction of the file volume. Its efficiency is related to the degree of repetition of 
the file entities (bits, bytes, structures, etc.). 

7.3.7.3. Analytical methods  

Let us note first of all that the representation of a signal by an analytical formula 
can be considered as signal encoding, its decoding being performed by numerical 
calculation with formulae used for analytical representation. However, in most 
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situations, the signal is constituted by a sequence of numerical values that cannot be 
represented by an analytical formula. 

Any kind of understanding of the physical structure of the phenomena 
represented can allow the identification of numerical particularities. 
Transformations, which are adapted to the physical processes encountered, will 
reduce the amount of data significant for that phenomenon: for example, the Fourier 
transform of a harmonic function only gives non-zero values for the amplitude and 
phase for one frequency. The broadening due to the finite length of the observation 
window will increase the number of values in the vicinity of the signal frequency. In 
these conditions it suffices to retain the data with sufficiently high values, by 
adopting the convention that frequencies which are not retained have zero 
amplitude. This manner of writing the results of the Fourier transform constitutes 
data compression. 

MP3 (Mpeg Audio Layer 3) encoding for sound files is based on a 
psychoacoustic model and uses 10 to 12 times less data than a standard sound file. 
Recall that one second of stereo sound on a CD comprises 2*44,200 values (the 
sensitivity of the ear is 0-20 kHz, the sampling frequency which must be respected 
(Shannon) is greater than 40 kHz). This encoding is a little destructive, but this loss 
is nearly imperceptible to the human ear: 

– we eliminate the sounds of a sequence which will not be perceived by the ear, 
the frequencies being close to those of the dominant sound whose energy is much 
greater (“masking effect”); 

– we also eliminate, by means of Fletscher and Munsen curves which determine 
the perceptual limits of the ear, all those sounds for which the level and frequencies 
are weaker than the values of these curves: thus for an average level, the sensitivity 
of the ear is maximum between 1,000 and 5,000 Hz; it decays strongly below 300-
400 Hz, and it also decays from 8,000 Hz. Sounds outside a certain range are thus 
eliminated; 

– in the case of stereo recording, we compress the data in mono in the low 
frequencies, the difference in phase of the low frequency sound between the two 
ears being so small as to be imperceptible to the listener. 

– finally we use Huffman compression, without loss, which associates an 
encoding which is shorter in proportion to the frequency of data sequences. The 
single use of this method provides 20-25% of the compression. 

 the source signal is also decomposed into sub-bands during the Fourier 
transform. The psychoacoustic model is used in these sub-bands which are 
quantified by thresholds. The assembly of the sub-bands is then realized. 
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Data compression is thus based on quite general properties [SAY 00]) either due 
to purely arithmetic statements, or to some general structural property, such as the 
oscillatory phenomena for music, speech data, or the specific occurrence of letters in 
a text. Obviously, a Fourier transformation will not have any value for compression 
of text file data.  

7.4. Choice of representation and obtaining pertinent information  

7.4.1. Introduction 

Knowledge is structured by successive levels of systems which are more or less 
interlinked, and to each of which there corresponds a category of properties, and 
whose properties are attributed at each level in order that they can be synthesized at 
the next level. Epistemologically speaking, these are elaborated by means of a 
“system-analysis” methodology, which is discussed in Chapter 8. It begins with 
formal logic and extends as far as the science of living systems. The idea of 
pertinent information is thus difficult to define in an absolute sense, as it depends on 
the context and the objective of the analysis performed. We will position ourselves 
here at the level of the physics of systems of continuous media in flows, acoustic 
and transfer phenomena included.  

The representation of physical phenomena, arising from simulation or 
experimentation, now consists of tables of numerical values that contain all the 
corresponding information. Let us assume for example that we have a recording of 
the instantaneous velocity modulus of a turbulent flow at 20 points and with 400 
measurements per second for 1 minute. We obtain an ensemble of numerical values 
containing 40 x 20 x 60 = 48,000 values. The reading of these values is of little 
interest to the human mind. At most, we might note that the velocity varies over 
certain intervals, and that these values seem to be associated here or there as broad 
groups. The graphical representation of the velocity values as a function of time 
provides curves whose reading may provide some further indications to the trained 
eye, but the information content thus recognized will appear rather small. For at 
least a century, we have observed turbulent fluctuations, and despite this, the 
science of turbulence remains incomplete. 

The choice of representation obviously depends on the objective that is in view. 
The detailed reproduction of a signal can be realized from a numerical recording, 
eventually using a lossless compression of the data. We will tolerate some small 
losses for the approximate reproduction (MP3 procedures for music, JPEG for 
images, etc.). We may eventually choose a variable step size in the discretization so 
as to suitably represent the rapid variations of phenomena in different zones (in 
certain compression procedures, or in finite element calculation). 
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A signal may similarly be studied with a view of its analysis in order to 
recognize certain global properties that are represented by synthetic information. An 
integral transform does not generally lead to an economy in the numerical 
representation of the initial signal; this is only possible by means of specific 
transforms which allow an adapted representation which simplifies the presentation 
of information (Fourier transforms, etc.). An integral transform is only of interest in 
cases where the physical properties of the signal are analogous to its kernel (section 
7.3.4). An adapted representation of a signal thus results from a knowledge of its 
properties and, as this is often achieved thanks to a suitable form of representation, 
we find ourselves confronted by certain difficulties. Hence, we have to find the 
answer to a question which is always phrased in a manner corresponding to our 
known concepts. If the answer needs other concepts unknown to us, it will be very 
difficult to find in what direction the solution is: the human mind is progressing 
from a known place to a nearly known place. In other words, we should never forget 
that we will only find what we set out to find, and we only ever seek with ideas 
which we know! Could Galileo imagine or ever understand the laws of mechanics in 
the 17th century without the knowledge of the derivative? 

We will study signal-analysis problems and information processing in the case 
of audible sound signals, which are less complex than turbulence, at least in 
appearance.  

7.4.2. An example: analysis of sound  

7.4.2.1. Introduction 

Sound amounts to pressure fluctuations that propagate in a fluid medium. Their 
origin may be due to internal fluid mechanisms (aerodynamic sound for example), 
or to the vibration of solid surfaces which are in contact with the fluid, or to the 
interaction of fluid with solid surfaces. The structure of a sound field depends both 
on the production mechanism and the conditions of propagation. Sound signals are 
complex and very often contain important information whose scientific analysis can 
be difficult. We will here limit our discussion to audible sounds whose spectral 
content is contained between 20 Hz and 20 kHz. 

The complexity of an audible sound signal results from Shannon’s theorem, 
which requires at least 40,000 values per second in order for the sound to be 
characterized. The reader can calculate the (very large) number of sound sequences 
that are possible in one second by assuming that each numerical value is encoded on 
8 bits. 

Audible sounds have the particularity of sending the human brain a signal with 
which a sensation is associated; this is then compared to memories and eventually 
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interpreted. It is clear that these mechanisms of recognition are the consequence of 
training with respect to the usual sounds of our environment, which constitutes only 
a very small part of the ensemble of possible sound sequences. It is precisely 
because we already have an intuitive understanding of these sounds that we will 
take them as an example for discussing signal analysis and synthesis methodologies.  

The interpretation of audible sounds by the brain concerns the domain of 
psychoacoustics. We will not discuss the structure of the human hearing system. For 
questions associated with acoustic signals, it is sufficient to note that the response of 
the ear is non-linear, sensations being moreover recorded on a logarithmic scale. 
Now any action of a linear filter on a linear combination of harmonic signals leads 
to another linear combination of harmonic signals of the same frequencies. On the 
other hand, any non-linear operation on a linear combination of harmonic signals 
of discrete frequencies will create new frequency components (harmonics and sub-
harmonics); for example, consider the signal s(t) which is the sum of harmonic 
signals of frequencies 2n and 3n ( n2 ): 

ttats 3cos2cos)(  

Its square s2 can be written: 

ttttats 5cos6cos4cos
2
1

cos122  

The signal thus obtained does not contain the initial frequencies 2n and 3n which 
are replaced by the harmonics 4n, 5n, 6n, and the sub-harmonics of the frequency n. 
However, the spectral composition in relative value is here independent of the 
amplitude a. In general this is not the case, and the global amplitude variation of a 
sound signal modifies the spectral content as soon as the non-linear operation is not 
simple. The reader can easily verify that the spectral composition of the signal 

ss 2  depends on the constant value .  

This leads to the human ear hearing frequencies that do not have any physical 
existence: this is the question of the “missing fundamental”, the ear hearing the 
previous sub-harmonics ([BER 90], [KIN 82]). Navier-Stokes equations being non-
linear, turbulence evolution is a strongly non-linear dynamic process in which 
frequencies associated with turbulent fluctuations are increasing (turbulent energy 
cascade [MAT 00]). 

7.4.2.2. Hearing and time-frequency analysis  

As the ear has a spectral response that is rather logarithmic for sound levels, it is 
not a good instrument for evaluating the spectral content of a sound. The spectral 
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content of sounds perceived by the human ear does not vary significantly if we 
modify the sound level; this can be easily verified by listening to music on a high-
quality system (except at very low sound level). However, the elementary 
calculations of the last section show how the ear can hear sounds whose frequencies 
do not exist in the sound spectrum. This phenomenon has been known for a long 
time in music, where suitable harmonic combinations can lead to the belief in the 
presence of a fundamental frequency that does not exist. The interested reader can 
see texts treating psychoacoustics and musical acoustics. Fourier analysis of sound 
differs from the perception that the ear can have of sound; in what follows we will 
leave aside the problem of sound sensation, and we will limit our results to the 
physical analysis performed using time-frequency techniques. 

7.4.2.3. “Natural” sounds  

We will designate by the term “natural” sounds all those sounds that are 
generated mechanically in our environment. These are produced by vibration of 
solid bodies (plates, shells, membranes, etc.), by oscillations in fluid velocity 
(musical wind instruments, speech, the wind, etc.) or by interactions between solids 
and fluids (wavemakers, vibrating walls under the influence of a flow, etc.). These 
sounds result from the properties of the movement of fluids and solids. There is 
incidentally no physical difference between musical sounds (which are in principle 
agreeable to the ear) and industrial sounds that are often a nuisance. The two 
categories of sound are produced by means of impacts (percussion instruments, a 
hammer, etc.) friction (violin, squeaking of brakes, etc.), by airflows (flute, pipes 
which blow, speech, etc.). These properties of natural or forced vibration are quite 
well known in many relatively un-complicated instances.  

“Natural” sounds are thus particular categories of sound signals whose 
function or utility is quite varied: 

– familiar sounds are part of the environment and the context of normal life; any 
modification of these is immediately perceived as new information; the absence of 
any sound can quickly become oppressive, as we can experience by spending time 
in an anechoic chamber; 

– suitable musical sounds have a relaxing and agreeable effect, which may vary 
depending on the individual; 

– sounds emitted by a sound source allow the identification of the position and 
nature (at least partially) of its source; an anomaly in the content of a sound can 
serve to identify an anomaly in the functioning of the source (for example, listening 
to the sound of the engine of a car or of an industrial process): we have here a 
diagnostic function which is beginning to be used in certain software of preventive 
maintenance ([BOU 98], [WAN 06]); 
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– finally speech allows the transmission of information between individuals in 
the form of language. 

The scientific problem which is posed is that of defining a methodology for 
obtaining the numerical characteristics corresponding to sound signals. The 
understanding of mechanisms leading to these characteristics (phase of analysis) 
will allow the subsequent implementation of devices that permit the synthesis and 
control of the natural signals (music, speech, etc.). We will examine here the case of 
musical sounds, which are more “standardized” and better understood than 
industrial sounds, before describing the kinds of field quantities encountered in 
flows. 

7.4.3. Analysis of musical signals  

7.4.3.1. Introduction 

Consider the example of a piece of music one minute long; we know that the 
complete reproduction of the sound signal perceived by the ear of a listener needs to 
be sampled at least 40 kHz, in order that no information be lost (for high-definition 
listening for example). A minute of music is represented by at least 40,000 x 60 = 
240,000 numerical values. It is this ensemble of values that we record on to an 
ordinary audio CD. In fact, we record two channels in stereo (one for each ear) and 
we sample at 44.2 kHz instead of the 40 kHz necessary according to Shannon’s 
theorem. From the scientific point of view, such a numerical table can be considered 
as a complete musical score. 

The listener or the musician does not perceive this table as such, but he feels the 
impressions, which do not really correspond to such a quantity of information. The 
reaction time of the brain is much less than the sampling time of a piece of music, as 
a consequence of which a certain number of modifications to the numerical table of 
values can be made without the listener noticing. In fact, the listening apparatus is a 
natural receiver which is adapted to the reception of ambient sounds: acoustic 
vibrations are perceived by the organs of the inner ear, which transforms these into 
electrical signals that are transmitted to the brain, via an analog measurement 
“device” (or rather “evaluation” device). The brain performs an analysis of the 
sound signal and deduces information (origin and causes of the sound, etc.); this is 
an expertise which is based on pre-training (memories of similar sounds already 
encountered) and the brain tries then to identify the global sound structures in a 
complex ensemble and to compare these to “known” sounds. We thus recognize the 
music of a piano, the firing of a cannon, the sound of a train, etc. We will now 
describe the physical mechanisms of musical sounds and the analysis methods 
which allow us to characterize these. 
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7.4.3.2. Instruments and sound structures  

In fact, each sound structure comes from an individual mechanical system, 
which we call an instrument in the domain of music. The production of “natural” 
sounds is a complex phenomenon, which assumes the creation of a vibrational 
energy and its transformation into sounds that propagate through the atmosphere. It 
is interesting to study these in order to better understand the links that exist between 
the physical mechanisms to be analyzed and the analysis tools that need to be 
implemented.  

Since the origin of humanity, sounds have been emitted by mechanical 
vibrations produced by bodies in motion. Musical instruments, the human voice, 
natural sounds due to the wind or the flow of water, etc., each constitute what can be 
termed a mechanical musical instrument in which a form of a more or less 
continuous mechanical energy is transformed into sound energy. 

Sound is thus a “by-product” of a mechanical system in which occurs a 
transformation of mechanical energy into vibrations, often highly complex, and 
which are localized in a region of restricted dimensions that we might designate as a 
primary acoustic source. It is for example the contact zone between a solid and a 
body which strikes it, the flow region behind an obstacle where vortices are 
generated, the contact zone between a wheel and the road or a rail, the contact zone 
between a bow and the string of a violin (or between a brake pad and disc), etc. The 
musician acts essentially in this zone by producing an impulse (percussion 
instruments), a continuous movement or a continuous airflow which produces more 
or less periodic vibrations (emission of vortices, relaxation oscillations in bowed 
string instruments, etc.). This primary source often has a highly non-linear behavior 
which varies in time. It may also be periodic (imbalance in wheel rotation or purr of 
a transformer for industrial noise, etc.) The oscillatory mechanical energy created is 
essentially localized here and only a small part of this is transformed into acoustic 
energy.  

Let us now take the example of traditional classical music. The primary acoustic 
source excites the rest of the musical instrument, which is generally larger, and whose 
role is to “filter” the excitation, in other words to transform it without creating 
additional vibrational energy. The resonant parts of the instrument are the apparent 
acoustic source for the listener, which can be referred to as secondary source (Figure 
7.18a). These allow the localized oscillatory energy to be transformed into acoustic 
energy that propagates through the air (in fact we are dealing here with an impedance 
adaptation mechanism (see horns in [KIN 82]). Furthermore, we know the importance 
of certain construction details of a musical instrument for the quality of the sound that 
is obtained. The essential role of the instrument is to provide a very weakly damped 
filter which supports oscillations of very small amplitude and the equations for which 
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are thus linear with coefficients which are independent of time, at least as long as the 
instrument geometry is not changed. 

From a mathematical point of view (Chapter 5), the main mechanical energy of a 
wind instrument is contained in the part of the solution associated with the 
convective characteristic curve, the sound corresponding to the propagative 
characteristic curves. 

Then, the listener listens to these sound vibrations in a given environment, which 
also possesses particular reverberation properties. Finally, the vibrational 
characteristics of the energy-creation zone are far from being the same as those of 
the sounds which we hear: the final sound signal which results from these 
successive operations, between which there may be retroaction, at least so far as the 
primary and secondary sources are concerned. More exceptionally, this retroaction 
may exist between the surrounding environment and the primary source, as seen, for 
example, in the Larsen effect between a loudspeaker and a microphone connected to 
the same sound system. 

   

primary acoustic source  
(Acoustic energy creation)  acoustic sources  

Secondary

listening room

microphone   

Lips

 nasal
passage 
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pharynx 

larynx and
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(a) (b)  

Figure 7.18. Acoustic mechanisms: (a) emission of the sound of a violin 
 in a room; (b) speech emission  

The human voice is a musical wind instrument (Figure 7.18b). The initial 
mechanical energy of the airflow coming from the lungs produces an oscillatory 
energy in the larynx in the vicinity of the vocal cords (the primary acoustic source) 
which comprise vibrating obstacles. The secondary source in contact with the 
outside environment is an “acoustic filter” comprising the nasal and buccal passages 
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and the pharynx. Important geometric modulations with slow variations are 
produced by movement of the lips in particular, and of the tongue, and this 
constitutes a considerable complication compared with the instrument that produces 
fixed sounds. The acoustic filter thus realized is not representable by a linear 
constant-coefficient differential equation system. 

To summarize, musical signals are comprised of combinations of weakly damped 
sinusoidal functions and by modulations, which are more or less variable at a 
timescale which is greater than the period of the emitted harmonic signals. They 
thus constitute a particular class of intermittent signals which correspond to the 
eigenfrequencies of the acoustic system. 

7.4.3.3. The importance of harmonic signals  

Musical instruments produce periodic oscillations which are more or less 
variable (amplitude, phase and frequency variations, etc.). As a periodic function is 
decomposable in a Fourier series, sinusoidal functions play an essential role in 
temporal representation. These are also found in different domains of physics 
(electricity, electromagnetism, optics, etc.). The analysis of periodic and harmonic 
signals has been used for over 150 years in the domain of physics. However, the 
study of speech has only become possible with the use of devices which allow a 
graphical representation of the amplitude of sound vibrations as a function of 
frequency and of time (the first sonograms appeared before the 1950s).  

Let us return to our musical signal, represented by 44,200 numerical values per 
second. We need a means of easily recognizing functions that are a priori not so 
different from harmonic functions, which are in fact wave-packets. Time-frequency 
analysis (section 7.3.5) is thus well adapted to this interpretation. As each note of a 
musical instrument is quite well characterized by its pitch (fundamental frequency) 
and its harmonic content, it will appear on the sonogram as an ensemble of parallel 
bands with respect to the time axis. Figure 7.13 shows this, the human voice being a 
musical instrument, which is slightly complicated by its variable geometry. This 
representation shows the separation of two phonemes “sh” and “ah”, which is not 
truly visible in a temporal representation of the corresponding sound.  

A musical signal is thus illustrated in the time-frequency domain by geometric 
structures whose forms are associated with physical characteristics and whose levels 
are given by a grayscale or a system of colors. In general, these forms vary very 
little as the note is played (fundamental frequency) or the sound level is changed. 
We can thus say that this global structure is characteristic of a musical instrument. 
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7.4.3.4. Applications to the synthesis of musical signals  

7.4.3.4.1. General principles  

The information which characterizes musical signals is encoded in the occidental 
world by means of musical scores: it is classically characterized by the tempo 
(duration of a black note), the notes to be played, the names of the instruments used 
by the musicians, the indicated sound level (forte, piano, etc.) and some indications 
of temporal variations (crescendo, etc.) and interpretation (glissando, rubato, etc.). 
The data of the score are used by composers in order to write the music and for the 
musicians to interpret it; the listeners hardly recognize any more than this. The 
number of numerical values that can be encoded in the musical score of an orchestra 
for a second is quite restricted (at most a few dozen). 

On the other hand, the preceding time-frequency analysis allows the 
quantification in a musical sound of: 

– the characteristics and the general structure of a musical instrument 
characterized by its harmonic content (its timbre); 

– the note played, characterized by pitch and duration, this being noted explicitly 
on the musical partition; 

– the interpretation of the musician (sound intensity, eventual variations of 
frequency) indicated more or less completely on the score. 

We will now examine how these ideas can be used in order to reconstruct pieces of 
synthesized music, which amounts to the reconstruction of a musical signal that has 
been stored in a compressed form. The procedure is here very different from data 
compression techniques described earlier, as we directly use the structure of the 
musical sounds, by reproducing in a digitized form the interpretation of a musical 
score with synthetic instruments (a “virtual” realization). The score and its 
interpretation are realized in a MIDI file, the instruments being, as in reality, realized 
independently of the score in distinct analog or digital modules (synthesizers). 

7.4.3.4.2. The MIDI system  

The MIDI (“musical instrument digital interface”) system is essentially a tool for 
the control and management of information allowing the control of musical 
instruments such as samplers or synthesizers, which are integrated into computers in 
the form of cards. This amounts to the transcription into computer language of an 
ensemble of data which is characteristic of a musical score with its interpretation 
and diverse additional parameters. The MIDI system also allows the control of 
mixing consoles, effect processors and recording systems. An international norm 
defines the MIDI system with certain extensions and variants ([ROT 95]). We will 
here limit ourselves to a description of the principles. 
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The MIDI system is a serial control interface that was originally dedicated to 
musical systems. However, it rapidly went beyond its original vocation and can 
today be found in the control of a broad range of material that is not only audio, but 
also dedicated to theatrical lighting. The MIDI protocol integrates numerous control 
parameters, most of which can be freely manipulated by the user depending on his 
needs. It is possible to control polyphonic musical instruments in pseudo-real time: 
transmission times are imperceptible in most cases. It is also possible to address 
numerous devices using the same MIDI data. 

The basic data of the system are messages, which comprise: 

– a status (engagement and release of a note, “sustain” pedal, modulation, 
polyphonic pressure, continuous control, change of program, weak variation of pitch 
(“pitchbend”), etc.); 

– data characterizing the action indicated in the status (note played, amplitude of 
variation in level of pitch applied by the rowel of pitch variation, speed of key 
engagement, etc.). 

MIDI data are most often elaborated using an electromechanical interface for the 
inputs, this being a keyboard which looks like that of a musical instrument (piano, 
accordion, saxophone, etc.), and on which the user plays as if it was a real 
instrument. The rapidity of the transmission of digitized data allows the control of 
16 instruments quasi-simultaneously; we have in fact a single line crossing all of the 
instruments played, on which the MIDI messages serve as indicators of which 
device they are to be addressed to; each of these transmits all of the messages and 
only takes account of the messages with which it is concerned (MIDI channel). The 
temporal delay, which results from this in-series configuration, is small enough not 
to be perceived by the listener. 

A schematic of the MIDI system is shown in Figure 7.19; the data of a MIDI 
partition can be written either by playing keyboards 1 or 2 or by writing the MIDI 
files directly from a computer. In the same manner sound restitution can be obtained 
directly from the keyboards, or off-line from a MIDI file (.mid file extension mid). 
The MIDI instructions, which define the sound signals, are then transformed into 
continuous electrical signals by sound generators (synthesizers). 

The reader will very likely find a MIDI file reader in the accessories of his 
computer (Windows Media Player, etc.), associated with a numerical sound 
synthesizer. It is easy to verify that the volume of such files is quite small (e.g. 5 
kbytes for one minute of music, whereas the same musical piece sampled at 44.2 
kHz contains over 200 Mbytes). 
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Figure 7.19. Diagram of links of the MIDI system 

MIDI constitutes an economical means of controlling and storing sound 
information. We take advantage of this information link for the transmission of 
other kinds of data (message systems). However, the greatest advantage of the MIDI 
system remains the ease of correcting and editing MIDI scores, any parameter being 
individually and quickly modified. 

7.4.3.4.3. Synthesizing musical instruments  

It now remains to study the analysis and synthesis of musical instruments, which 
can be analogous or digital. We have seen previously that a musical instrument is 
characterized by its timbre (harmonic content). We must add to this a temporal 
variation of sound, which takes account of the evolution of sound amplitude 
emitted, which depends on the nature of the instrument and its mode of excitation 
(Figure 7.20): the sound of a wind instrument can last a very long time, whereas the 
sound emitted by a chord which is struck (piano) or plucked (guitar) is essentially 
transitional. 

   p(t)   p(t)  p(t)   

t   t   t   organ   piano   guitar   
 

Figure 7.20. Time evolution (amplitude envelope) of the amplitude 
 of an organ, piano and guitar sound 
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In fact, synthesis, which is based on the realization of a fundamental and its 
harmonics, is not sufficient for the ear to have the impression of a real instrument. 
Even if the sound obtained seems similar enough to that produced by an instrument, 
it is not identical to a note played from the real instrument. The reality is more 
complex than the approach outlined earlier from study of the sonogram. The sound 
emission is associated with the resonance of the instrument body, but also to certain 
more complex transitional properties of the sound which depend on certain details 
of the excitation: in the sound emission of a flute we first hear the sound of blowing. 
Finally, weak modulations of frequency or amplitude can be produced for diverse 
reasons related to the sound amplitude, the way of playing, etc. These can be 
deliberate on the part of the musician (player or composer). 

Let us quickly describe the parameters of the usual synthesizer. We define the 
amplitude envelope by a small number of values indicating the durations T1 and T2 
of the attack sound, the duration Tm of the sound established if it exists, and two 
parameters T3 and T4 for the duration of the extinction of the sound; we associate 
these values with an amplitude curve, which is piece-wise linear in practice. 
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Figure 7.21. Examples of amplitude and frequency variation envelopes 

These parameters allow the representation of characteristics of two principal 
kinds of sound which can be excited permanently (wind instruments, string 
instruments: flute, organ, trumpet, violin, etc.) or by impulse (percussion 
instruments or instruments with plucked strings: drum, piano, guitar, xylophone, 
etc.). These also allow the characterization of transitional regimes. 

It then remains to realize the spectral sound content sought. For the established 
regime, the harmonic content can be obtained by different means: additive synthesis 
using harmonics: superposition of signals which are rich in harmonics (triangle, 
etc.) which we may eventually filter in order to only conserve the first harmonics, 
subtractive or multiplicative synthesis, frequency modulation, etc. We can introduce 
temporal variations of the harmonic or amplitude content (modulation) associated 
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with the envelope parameters and diverse effects. We will note that these are distinct 
from variations related to the preceding envelope curves. We can also add recorded 
sounds that are difficult to synthesize. 

Another technique consists of recording the sound of an instrument and 
eventually modifying it by filtering in order to improve it. However, the variation in 
pitch of the note by the MIDI command can give imperfect results, as the sound of 
the real instrument can vary during the duration of the note. 

Finally, we obtain reasonable results for instruments of fixed geometry. The 
result is less satisfactory for instruments where it is up to the musician to generate 
the note (violin, for example), as the sound of the violin is harmonious only thanks 
to small variations in frequency due to the musician, and that depend on the piece 
played. This effect cannot be accounted for in the sound generator; it can 
theoretically be included in the MIDI file through the introduction of a suitable 
controller, but this risks notably increasing the volume of data. 

7.4.3.4.4. Regarding the musical sound structures  

Synthesizers and sound generators can also create new sounds by manipulating 
the system parameters. We will note that variety music contains many synthesized 
sounds. However, this synthesized music remains in the context of music, which is 
measured and based on the equal temperament. 

The preceding technologies do not allow the exploration of the vast domain of 
electronic music that is different from the preceding context, being based on sound 
structures which are not related to the harmonics of a fundamental frequency or the 
modal frequencies. From this perspective, the first stage of research is to define 
agreeable sounds, which can allow us to make the distinction between music and 
noise. The reader can easily imagine the difficulties which may be encountered by 
the composers of electronic music whose objective is to generate new sound 
structures which do not result from the resonant properties of vibrating strings or 
resonant cavities. Regardless of whether their sound is agreeable or not, it should be 
possible to characterize them using a small number of parameters, in order to define 
a musical notation of a new kind which would allow their representation by means 
of a musical score. We are here dealing with a relatively unexplored domain, which 
is well beyond the scope of this book. It is worth noting, however, that a first 
difficulty is to succeed in specifying the domain to be explored and to find a concept 
that can replace the Pythagorean basis of tonal music ([LIC 02]). 

In conclusion, the time-frequency analysis concept has allowed significant 
progress in the analysis of sound signals, in particular musical sounds, and also 
speech analysis, recognition and synthesis, topics we could not discuss here.  
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7.4.4. Signal analysis in aero-energetics 

7.4.4.1. Introduction 

We have examined (section 7.2) the different ways in which signals can be 
represented and analyzed, these two notions being related as we have seen. An 
exhaustive treatment of this subject is beyond the scope of this book. Many other 
analysis and extraction procedures also exist: in particular, filtering procedures 
consist of the extraction or suppression of certain components of a signal. For 
example, we can extract a coherent signal from a random background noise; these 
procedures are largely used, but it is always necessary to characterize what it is we 
are looking for. The preceding example of acoustic signals has shown the links that 
exist between physical analysis and signal processing techniques. However, the 
local measurement of quantities is the result of modifications of the fluid medium on 
the ensemble of its characteristic curves or surfaces (Chapter 5) which move with 
the matter, or propagate “acoustically”. 

7.4.4.2. Effects of turbulence  

The solutions of the equations of fluid mechanics are very often unstable and 
they present a chaotic aspect with random fluctuations (known as “turbulent”) 
whose properties determine the flow properties, heat and mass transfer ([SCH 99], 
[YIH 77]). A detailed understanding of turbulence is far from complete. On the 
other hand, all linear measurements allow the user to obtain mean values of flow 
quantities (velocity, pressure, etc.). The measurements using devices with a non-
linear response need to be treated prior to the application of statistical analysis or 
integral transforms. The presence of turbulence may considerably hinder 
instantaneous measurements, as we will see in the following example. 

7.4.4.3. Separation of causes of phenomena in measurements  

Classifying the phenomena encountered in flows and discussing the possible 
interactions between the various physical mechanisms is not easy (sections 5.3 to 
5.6). Obtaining relations or properties depends on the specific dominant phenomena. 
An important particular case concerns low Mach numbers (velocities less than 100 
m.s-1 in air) which correspond to air or water flow conditions in many industrial, 
domestic or environmental problems. All fluids are compressible and we have seen 
in Chapter 5 that modifications of properties are transferred either by convection or 
by means of acoustic waves. The orders of magnitude of these two kinds of 
phenomena are here generally very different: the acoustic component is very often 
weak compared to the dynamic or thermal effects which result from the boundary 
conditions. For example, acoustic variations of velocity are less than 1 mm/s, 
whereas the velocities of the matter are very often between 10 and 100 m/s1. The 
variations of temperature that result from dynamic effects are of the order of 1°C (at 
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about 100 m/s-1), whereas the smallest problem of heat transfer generally involves 
fluctuations of some about 10°C. For example, a local, instantaneous measurement 
sensor of velocity or of temperature characterizes phenomena associated with the 
flow and the heat transfer depending on the circumstances (section 7.2.4). 

On the other hand, the respective contributions  ap  of the acoustic modes and 
 c p   of the convective modes to pressure variations may be of the same order. In 
effect, we have seen (section 5.3.2) that we have: 

– on the acoustic characteristic curve:  

aa ucp  

– on the convective characteristic curve:  

0VVpc  

The ratio of these pressure fluctuations is thus: 
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As the Mach number is small at low velocity (M ~ 0.05 to 0.15 in ventilation 
problems for example), the factor M1  is quite large and it compensates the small 
acoustic velocity fluctuations compared to the turbulent velocity fluctuations. This 
results in pressure fluctuations due to local turbulence effects, which are of the same 
order of magnitude as acoustic pressure fluctuations. 

A pressure probe (microphone) measures the local pressure independently of its 
origin and without knowing on which characteristic curve it is transmitted: it is no 
longer possible to distinguish acoustic fluctuations from those due to local velocity 
fluctuations. This problem is well known to those who measure sound: a 
microphone placed in a flow does not only measure noise. Listening to the pressure 
signal acquired by a microphone placed in the wind we are immediately aware of a 
parasite “sound” due to the wind. This “sound” is not of an acoustic nature, but 
rather a signal that corresponds to local pressure fluctuations associated with the 
flow created around the microphone. Measurement of sound in the presence of wind 
requires suitable precautions in order to reduce the impact of parasitic phenomena 
(for example, “anti-wind” foam covers on microphones). 

The separation of turbulence and acoustic pressure components is an important 
and extremely difficult problem, since it corresponds to Navier-Stokes solutions for 
which the theory of characteristics curves is in practice not applicable. This 
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separation between acoustic and turbulence signatures can only be made possible if 
additional information is available: for example the periodic sound due to a 
propeller can be extracted from a signal containing random turbulence fluctuations. 

7.4.4.4. The study of unsteady flows  

The velocity, pressure or temperature fields associated with unsteady flows are 
now accessible by means of experimental methods described in section 7.2.6.3; on 
the other hand, the different methods of time-frequency analysis allows the temporal 
and spectral characteristics of flows to be identified. These modern methods allow 
us to consider the vast domain of experimental unsteady fluid mechanics, provided 
that experiments can be performed in a reproducible manner (which means that 
different realizations obtained are identical (section 7.2.6.3)). The identification of 
unsteady flow structures and, in particular, the dynamics of vortex interactions 
constitutes a domain of study which is relatively unexplored. 

We will see that turbulence, being by its nature unsteady and broadly 3D, is 
largely the result of interactions between inviscid fluid structures (turbulent energy 
cascade [MAT 00]). The origin of turbulence is furthermore associated with the 
development of flow instabilities issued from pre-existing perturbations. The 
elementary mechanisms of these highly unsteady interactions are poorly understood. 
For these reasons, we have focused on signal-processing and experimental methods 
that can be used in a broad range of applications where unsteady phenomena are 
encountered in possibly rotational flows These methods allowed for example the 
acquisition of experimental data for the problem discussed in section 5.6.2.  



Chapter 8 

Thermal Systems and Models 

This chapter is dedicated to the modeling of systems. The perspective developed 
in automatic control and the corresponding methods are outlined. In addition to the 
mathematical properties of thermodynamic balance equations and the measurement 
and signal processing problems, these provide a general framework for the study of 
the representation and evolution of physical systems. Using some basic heat 
conduction problems in media at rest, the methods can be easily proved on account 
of the linear properties that these present. 

8.1. Overview of models  

8.1.1. Introduction and definitions  

In Chapters 1 to 4 we studied how to describe a physical system in the context of 
thermodynamics. The equations for continuous media are hardly useable except for 
very simple problems and any more complex system can only be represented by 
making approximations, which it must be possible to evaluate. We will limit 
ourselves in this chapter to state representation in which a given thermodynamic 
system is represented as a group of sub-systems in instantaneous equilibrium. This 
makes it possible to define the state variables of each sub-system. The partial 
differential equations which represent the continuous medium are thus replaced by 
partial differential equations describing the evolution of a restricted number of 
variables. The general study of systems is derived from automatic control and signal 
processing which provide, as in thermodynamics, general principles which cannot be 
ignored. We will recall here the ideas that are necessary for the establishment of 

Fundamentuls of Fluid Mechanics and Transport Phenomena 
Jean-Laurent Peube 

Copyright 0 2009, ISTE Ltd. 



406     Fundamentals of Fluid Mechanics and Transport Phenomena 
 

models in fluid dynamics and heat and mass transfer, by limiting ourselves to the 
study of thermal systems, whose damped character simplifies the discussion. 

A system is a material ensemble that exchanges quantities with the exterior. We 
act on the system(s) by means of inputs, which are imposed variables (a 
temperature, a mass flow, pressures, etc.); these inputs lead to modifications of the 
system which are manifest in observed and measured effects, which constitute the 
outputs of the system. The inputs are therefore causes and the outputs are 
consequences.  

 System OutputsInputs 

Initial conditions 
 

Figure 8.1. Scheme of a system 

A system is said to be causal (with respect to a variable) if the conditions which 
determine its state and its outputs for a value of the variables x0 result from data for 
values of the variable x which are less than or equal to x0. This idea of causality 
simply translates the mathematical properties associated with the parabolic or 
hyperbolic character of the system towards certain variables or groups of variables 
of the model that is used. While it is obvious for the time dimension (section 
1.1.1.3), this idea, which is used in automatic control and signal processing, can also 
be applied to transport and propagation phenomena (sections 5.3.2 and 5.4.5.4). 

The description and knowledge of a system can be achieved by means of a 
model, which can only be established if the system is observable, in other words if 
we can measure the data necessary for its establishment. This condition obviously 
depends on the nature of the system and the objective of the modeling. 

The control of a system is an action that is often necessary for diverse reasons: 
control of temperature in a zone, of a flow structure, a sound level, etc. A system is 
said to be controllable if, from any initial state of the system, it is possible to act on 
certain inputs in order to bring the system to a desired state. 

A system is said to be instantaneous if its state and its outputs at a given instant 
depend only on the inputs at that instant. This definition can be applied to any 
system whose sub-systems are in mutual thermodynamic equilibrium. A system is 
said to be dynamic if it is not instantaneous.  
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Systems exhibiting hysteresis present the particularity that the stationary solution 
corresponding to fixed inputs depends on their history (state variables at the initial 
state and the past evolution of the inputs). Let us take the example of an oscillator 
comprising a mass P placed between two springs and subjected to a friction force on 
a fixed wall. If the friction is caused by a fluid, the equilibrium position of the point 
P is unique, the tension in the springs being therefore equal. In return the existence 
of a solid source of friction in P means that the final position of the point P also 
depends on the movement history (Figure 8.2a). 

Flow systems with hysteresis are encountered not only with fluids whose 
behavior laws involve a solid friction (Bingham fluid), but also for Newtonian 
fluids. This phenomenon is thus associated with the existence of two possible steady 
solutions for a flow with fixed conditions. This circumstance may be due to diverse 
phenomena such as the feeding of a siphon (Figures 8.2b and 8.2c), reattachment of 
a flow on a curved surface (Figure 8.2d and Figure 8.2e), the flow of water over a 
weir depending on whether the sheet of water is aerated (or ventilated) or not 
(Figure 8.2f and Figure 8.2g), etc. The observed solution can vary depending on the 
manner we seek to achieve it by. 

 

A 
P 

B 

(a) (b) (c)

(d) 

airwater

(g)

water

(e) (f)  

Figure 8.2. Systems with hysteresis – (a) springs with dry friction; set of 2 tanks with feuded 
(b) or not (c) siphon; flows in a divergent pipe (d) and (e); weir with aerated water sheet (f) 

or non-aerated water sheet (g) 

In addition, unknown perturbations (noise) are always present to varying degrees 
in these inputs and can have diverse effects (“instabilities”). The idea of a stable 
system is difficult to define, because it depends on the nature of the applied 
perturbations and the properties of the response of the system. Stability is a complex 
problem and of extreme importance in fluid mechanics ([SCH 99], [YIH 77]).  
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A system is said to be stationary or time-invariant if the outputs corresponding to 
a given set of inputs do not depend on the instant at which the inputs are applied. 
The equations of a time-invariant system are not influenced by a change of the time 
origin. Systems whose structure and physical properties only depend on the state 
variables are time-invariant. The same is not true of systems whose parameters1 
depend on external conditions which vary with time (for example, the flow of a 
liquid in the process of polymerization, the action of an obstacle with an incidence 
angle (t) which is imposed in accordance with some external law, etc.). 

A linear time-invariant system (LTIS), which is also known as a linear 
stationary system (LSS), presents in addition the property of linearity: effects 
proportional to the causes which produce them. These systems are described by 
constant-coefficient linear models. Apart from some very specific cases, a system 
with a non-uniform flow is not linear. The heat transfer of mass by diffusion is often 
linear, even in flows, provided the temperature or concentration does not cause the 
physical properties of the fluid to change. Coupling between different phenomena 
and in particular chemical reactions in flows suppresses this linearity property. The 
reader can verify these properties for the general equations in Chapters 1 to 4.  

8.1.2. Modeling by state representation and choice of variables 

In automatic control, state representation of a discrete system is a model of the 
form [8.1] which represents its evolution: 

UEXDYUBXA
dt
dX

....  [8.1] 

The state vector X is a set of n variables which characterize the state of the 
system. The state representation is also called the internal representation. This 
definition is no different in principle to the definition which was given in Chapter 1 
where extensive and intensive variables were used as state variables. However, in 
automatic control the components of the vector X can be any variables which 
characterize the state of the system. The matrix A is a square matrix of rank n. It 
characterizes the make-up of the system and of the sub-systems which correspond to 
the choice of the state vector X. 

The vector U is the input vector; it is of dimension p and corresponds to different 
actions on the system. It does not in general have the same dimension as the vector 
X, and the matrix B is a rectangular matrix of dimension n * p. 

                                   
1 I.e. the coefficients of operators in the equation; the inputs are not parameters of the system 
here. 
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The vector Y is the output vector; it is of dimension q and it comprises the 
different results desired for the problem posed. It does not in general have the same 
dimension as the vectors X and U. In what follows, we will take E = 0 (the system is 
thus called proper). 

The representation of the state of a system is not unique as the variables can be 
chosen in different ways or can be modified by changes of variable. Furthermore, 
the components of the state vector can be related when we are limited to particular 
operation regimes  as we will see on numerous occasions in the remainder of this 
chapter (section 8.3, section 8.5 and section 8.6). However, the systems studied in 
this work are constituted of a matter, which obeys the laws of thermodynamics. The 
form of differential system [8.1] is analogous to that of the balance equations, but 
the coherence with the laws of thermodynamics is only effective because of a 
suitable choice of state vector components (section 1.2.1). 

We also saw in section 5.1.1 that a system of first order differential equations 
can be written in the form of a scalar differential equation of order n for one scalar 
variable. This equation can also be written in the form of differential system [8.1], 
the state vector X (t) being replaced by a state vector having the same number of 
components, but constituted of a variable x1 (t) and of its n – 1 first derivatives. By 
reconsidering the calculation of section 5.1.1 the reader will see that the inputs 
obtained for this differential system imply the initial inputs and their n – 1 first 
derivatives. This form of state-representation is known as the form of observability 
([DOU 95], [GUP 83], [KUO 02]). We will use this for a particular case in section 
8.4.2.2. 

For a non-linear system the matrices A, B and D can be functions of the state 
vector X of the system. 

For a system involving an instantaneous response, the derivative dtd  takes on 
small values compared with second order terms; the inertia of this system is weak 
and the extensive quantities which result from the inputs are instantaneously 
transferred to the sub-systems. The differential character and the idea of the initial 
state of system [8.1] have disappeared and the representation is reduced to an 
algebraic system: 

XDYUBXA .,0..  

We note that in the case of an impulse input, the response and the outputs of an 
instantaneous-response system involve a discontinuity. As nature does not contain 
discontinuities in such situations, we have in reality a continuous transitional regime 
involving a singular perturbation (section 6.4.3). 
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In the case of a time-invariant system, the coefficients matrices A, B and D are 
independent of time, but they may be functions of the state variables: the structure of 
the system remains unchanged over the course of time. If the system is furthermore 
linear, they are constant and we have a time-invariant linear system. 

For a system made up of continuous media, the system of differential equations 
[8.1] is replaced by partial differential equations. The inputs are either boundary 
conditions or volume heat source terms. When the physical properties depend on the 
temperature, these equations are non-linear. On the other hand, if the properties are 
only a function of the coordinates, we have a time-invariant linear system. In the 
presence of a flow, the temporal derivative t  becomes a material derivative 

dtd  in the case of a Eulerian representation. 

8.1.3. External representation 

The external representation of a system consists of considering it as a black box 
that links inputs and outputs. However, the conservation laws of extensive quantities 
must be considered between the inputs and outputs of a system. The permanent 
production of mechanical or thermal energy is only possible if energy is provided to 
the system; the same goes for mass, chemical species in the absence of chemical 
reactions, etc. The consequences of the second principle of thermodynamics are 
directly manifest in the constraints upon the entropy of the system studied. In other 
words, the system can only evolve within the bounds of possible processes. In fact, 
the coherence between automatic control and thermodynamics is only ensured if the 
global thermodynamic balances are satisfied for state representation [8.1] of the 
system. 

In practice, a system is often characterized using incomplete data which are 
obtained by means of indicial experiments: we modify one variable by quickly 
increasing it by a small amount (Heaviside unit step) and we record the evolution of 
the outputs. If the response of these is not instantaneous, the system undergoes an 
internal evolution which must be characterized. For example, the progressive 
response of a system to an instantaneous increase of the mass flow rate or of the 
input temperature indicates the capacity of the system to accumulate matter or mass 
in its interior. We must therefore introduce an internal state variable to the system 
(volume or pressure for a compressible fluid, calorific capacity, etc.) or, 
equivalently, we must introduce terms involving temporal derivatives in the external 
representation (section 8.4.2.2). 

The formulae used by engineers for over two centuries are external 
representations which correspond to operating conditions of the system, which are 
more or less well (or badly) defined. Models which use continuous-medium 
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equations are state representations in which the inputs and outputs take the form of 
simple formulae corresponding to the system studied under particular conditions. 
These simplified external representations are then often used in more general 
conditions in which their degree of approximation is difficult to evaluate. For 
example, in a flow system comprising a pipe of length L and of diameter D, in which 
the mass flow mq  is given (as an input), an interesting output is the pressure 
difference p  in the flow between the input and output sections. This will depend, 
for example, on the mass flux, on the viscosity, on the density of the fluid and on the 
dimension k of the roughness of the pipe. We will therefore have, in non-
dimensional form for the pressure p : 

D
k

D
L

S

q
p m

e Re,
2 2

2
 [8.2] 

where S is the area of a reference cross-section. The non-dimensional coefficient  
of the driving pressure loss is a function of the dimensionless data (Reynolds 
number Re and roughness parameter k/D) (section 4.6.1.3.4), this function having 
been determined by semi-empirical considerations and experiments. 

Approximate external representations can be used in the study of more complex 
systems modeled by means of state representations. For example, in models of large 
dimension in continuous media studied by means of numerical solution of the 
Navier-Stokes equations by finite difference or finite volume methods, boundary 
layers in the vicinity of walls are too thin to be discretized (section 6.5.3.3). The 
friction on the walls is therefore taken as a boundary condition of certain elements 
and it is expressed by a global relation analogous to [8.2] as a function of the 
characteristics of the velocity field next to these elements. 

8.1.4. Command models 

The objective of a knowledge model is to describe quantitatively an evolving 
system and its internal and external transfers, with a precise enough description of 
the physics of processes both sufficient and pertinent. 

A command model defines actions whose objective is to cause the system to 
evolve towards a given state. We seek only to represent the evolution of the system 
in the vicinity of a given state of operation; a linear relation between input and 
output variations is often sufficient. We must however note that this rather blind 
manner of proceeding assumes that the internal structure of the system remains 
unchanged. 
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The pragmatic approach, from the point of view of control and command of a 
system, often consists of considering only the observable outputs such as the 
temperature, the pressure, certain concentrations of chemical species, fluxes, etc., at 
points in an industrial system where measurement is possible. The objective of 
control is to fix the values of certain output variables (temperature, pressure, etc.) or 
certain state variables. The commands act on the input variables which may be of 
the same nature as the output variables. In practice, we content ourselves with the 
examination of the response of the system to perturbations such that we can estimate 
the corrections which need to be made. The study of a response curve allows us to 
define the global order of a system. 

8.2. Thermodynamics and state representation  

8.2.1. General principles of modeling 

8.2.1.1. Introduction 

System [8.1] is of a differential nature with respect to time. We must add an 
initial condition for the state variable )0(X . The procedure in automatic control 
consists of only considering the state-representation form and “forgetting” the origin 
or the physical interpretation of this. In practice, the real problem of establishing a 
model lies in the choice of variables for the state vector X, which must be performed 
in a manner which conforms to the laws of thermodynamics. 

Our study of thermodynamics in Chapters 1 to 4 showed the following general 
mathematical structure: 

– extensive quantities satisfying the conservation laws (balance equations) 
defined for each sub-system regardless of its state of imbalance;  

– intensive quantities which are only defined for discrete systems in equilibrium, 
or for continuous media with an assumption of local equilibrium; 

– fluxes of extensive quantities associated with thermodynamic imbalance 
characterized by differences or gradients of the intensive quantities; 

– relations between intensive and extensive variables (equations of state) and 
phenomenological laws for the thermodynamic fluxes of the extensive quantities. 

Modeling a sub-system leads us to define and choose the variables necessary for 
its dynamic description, and in particular stocks and fluxes of extensive quantities at 
each instant. The discrete equations result from the application of the balance 
equations to each of the sub-systems. The extensive quantities are additive and they 
are always defined for any given sub-system. 
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8.2.1.2. Intensive variables and thermodynamic fluxes  

We have seen that if the extensive variables of a system or a sub-system are 
always defined, the same is not necessarily true of the intensive variables that only 
have meaning if the system is in equilibrium. The complete thermodynamic 
representation consists of representing the system with sufficient details, such that 
each of the elementary sub-systems is close to a state of instantaneous equilibrium. 
This condition is fulfilled if the size of the elements is not too great. For a finite sub-
system which is never rigorously in equilibrium, we have discussed the way to 
define the mean intensive quantities (section 1.4.2.5 and section 6.5.2.4). 
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Figure 8.3. Thermal flux between two neighboring elements 

The behavior laws necessary to close the system of equations of the system 
create a particular difficulty, as the thermodynamics fluxes which cross a surface are 
related to the local gradients of the intensive quantities of the local continuous 
medium. The problem is thus to express these by means of the intensive quantities 
of the neighboring sub-systems. There is no general solution to this problem. Let us 
take as an example the thermal resistance between two elements. Consider a fixed 
1D continuous medium which is modeled as two blocks E1 and E2 which are 
homogenous and of width 1 and 2 (Figure 8.3). For a fixed homogenous medium, 
the mean temperatures T1 and T2 of each element are defined here by taking the 
mean of the temperatures. Attributing the mean temperature to the central points of 
the elements may appear natural. However, if the temperature gradient at the 
interface is equal to the slope of the segment M1M2 in the temperature distribution 
of Figure 8.3a, the same is not necessarily so in the case of Figure 8.3b. 

The segmentation of the continuous medium is acceptable for the thermal 
imbalance of the first case, whereas it is too coarse for that of the second case. We 
encounter here a usual interpolation problem. 
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The modeling of thermal fluxes between the two sub-systems requires in 
addition a suitable discretization of the intensive quantities between two neighboring 
sub-systems. Let us consider two examples: 

1) Consider a 1D solid (Figure 8.4) subjected to a conductive thermal flux and 
discretized into n elements Ei of uniform thickness e and temperature Ti. 
(i=1,2,…,n). The element Ei is characterized either by its energy Qi or by its mean 
temperature Ti: 
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Figure 8.4. Model of a 1D thermal transfer  

We must now express the thermal fluxes between two neighboring elements. 
Assuming that the middle of each element is at temperature Ti, we can write the 
thermal flux qTi,i+1 received by Ei from Ei+1: 

e
TT

q ii
iTi

1
1,  

We note that this expression satisfies the principal of action and reaction 
( 1, 1,Ti i Ti iq q ) associated with the conservation of energy. If there is no lateral 
thermal flux, the balance equation can be written for each element Ei: 

e
TTT

e
TT

e
TT

dt
dT

Ce iiiiiiii 1111 2
 [8.3] 

2) Consider the established flow of a fluid in a cylindrical pipe. We assume, in 
order to simplify matters, that the flux and the physical properties of the fluid are 
constant. 
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We have seen (section 6.5.2.2) that the balance equation of a quantity g in a pipe 
can be written by means of surface integrals on a cross-section and an integral over 
the contour of this section ([6.82]). We thus consider a cutting out of the pipe into n 
surfaces Si with an inter-surface spacing of e (Figure 8.4). Let ),( Mtu  and ),( MtT  
be the velocity and temperature distributions in the cross-section; we define below 
the mean temperature Ti and the mean mixing-temperature Tmi for the section Si: 

Si
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miSii Tdsu
q

tTTdstT
1

;  

The energy balance in the pipe can be written ([6.87]): 
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Figure 8.5. Model of a pipe flow with thermal transfer 

The calculation of the convective thermal flux between two successive surfaces 
must be realized from upstream to downstream of the flow (section 5.6.1) and the 
derivative x  should be discretized between the sections Si-1 and Si. Let Tpi be the 
temperature of the wall associated with the surface Si; the preceding equation [6.87] 
can thus be written: 

mipiimimv
i TTheTTCq

dt
dT

CSe 11  [8.4] 

where we denote by  the perimeter of the cross-section. The exchange coefficient h 
between the fluid and the wall is defined as a function of the mean mixing-
temperature Tmi; its value depending on the considered problem is obtained from 
experiments or theoretical evaluation in neighboring problems ([SCH 99], [YIH 
77]). 
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8.2.1.3. Balance equations for the sub-systems  

The writing of balance equations for a system is not necessarily associated with 
the cutting out which is chosen in order to model the n disconnected sub-systems. 
Each finite sub-system is characterized by the extensive quantity G which it contains 
and the flux SG which it receives from the neighboring sub-systems. The balance 
equations for the extensive mass quantity g in a domain S can be written ([2.7]): 

S GSGS dvgdv
t

 

The extensive quantity of a system is obviously the sum of the corresponding 
extensive quantities of its sub-systems only if these are disjoint. For two such sub-
systems, such as S1 and S2, we have: 

2121 SSSS gdvgdvgdv  
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Figure 8.6. Balance equations for three material adjacent sub-systems 

The balances can be obtained for sub-systems which are partially over-lapped. 
Figure 3.6 shows the case of three contiguous sub-systems S1, S2 and S3: the sub-
system S2  S3 overlaps S2, but it is possible to write the balance equations for the 3 
disjoint sub-systems or for the three ensembles of sub-systems different two by two. 
This manner of proceeding is nonetheless limited by the fact that the system of 
equations obtained must be suitably enough conditioned (section 7.2.7.3), each 
equation providing specific and sufficient information. The sum of the internal 
fluxes exchanged between the sub-systems is zero (principle of action and reaction). 
In the construction of models and numerical schemes we must be careful that this 
property is ensured (conservative scheme). 



Thermal Systems and Models     417 

8.2.1.4. Coupling coefficients between two sub-systems  

Consider a system comprising n sub-systems Ei characterized by their extensive 
quantities gi and their associated intensive energy quantities, or an equivalent (for 
example, quantity of heat and temperature). Let us assume that two elements i and j 
exchange a flux of the quantity g under the effect of a difference the intensive 
quantity ji yy . The flux ijij yy of the quantity x received from the element 

j by the element i is opposed to the flux jiji yy of the quantity x received from 

the element i by the element j (action and reaction) and the positive coefficients ij 
and ji are equal. The balance equations of the quantity g for these two sub-systems 
can be written: 

jiji
j

ijij
i yy

dt

dg
yy

dt

dg
;  

or, by classing the terms: 

iji
j

jij
i y

dt

dg
y

dt

dg
;  

Denoting by U the group of sources of the quantity gi and defining the state 
vectors G and Y of the extensive quantities gi and the corresponding intensive 
quantities yi, the balance equations can be written in the general form: 

UJYK
dt
dG

 [8.5] 

The matrix J translates the importance in each element of the external 
contributions. As the coupling coefficients ij and ji between the elements i and j 
are equal, the matrix K is symmetric. This feature is not a general constant, since the 
coefficients of ij are functions of the state variables of the elements i and j. 

So, the extensive variable gi and the intensive variable yi of a sub-system are 
related by a state equation. Passage to the form [8.1] of the state representation of 
the system can often be realized in thermal systems by expressing in each of the sub-
systems the extensive variable gi as a function of the only corresponding intensive 
variable yi, iii ygg . By defining the diagonal matrix  of positive elements 

iiijij dydgd , we have in this case: 
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dt
dY

dt
dG

 [8.6] 

Letting Y = X, system [8.5] can be written in the form [8.1]: 

. :with. 11 JBKABUXA
dt
dX

 [8.7] 

It is easy to verify that the matrix KA .1  of equation [8.1] is not symmetric, 
except if the value of each element dij is independent of the index i (identical sub-
systems). The reader can verify these considerations by means of the example in 
section 8.3.1.3 by comparing equations [8.23] and [8.24] (or [8.28] and [8.29]). The 
importance of this property for the linear case is discussed in section 8.2.2.2. 

8.2.1.5. Equivalence of inputs and initial conditions  

Inhomogenous system [8.8] with impulse inputs, but with zero initial conditions, 
can be reduced to a homogenous system with non-zero initial conditions. Let us 
verify this point in an elementary manner using second order differential equation 
[8.8] with zero initial conditions and having a Dirac distribution tc  at instant 0 as 
the input: 

000)( 1 xxtctxtxatx  [8.8] 

By integrating between 0 and a small time  and assuming that the functions 
txandtx  remain bounded, we obtain: 

oxcx )(  

Problem [8.8] is thus reduced to a homogenous problem with an initial condition 
at the instant : 

cxoxtxtxatx ,;0)( 1  [8.9] 

Letting  tend to zero, we obtain the equivalent problem [8.10]: 

cxxtxtxatx 0,00;0)( 1  [8.10] 

The mechanical interpretation of this result (sometimes known as Schwartz’s 
theorem) is clear, given an initial velocity c is equivalent to the application of an 
impulse which produces this velocity at the initial instant. 
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The reader can verify in the same way that non-linear problem [8.11] is 
equivalent to problem [8.12]: 

00.)(. 0 XtXtUBtXXA
dt
dX

 [8.11] 

00.)(. XXtUBtXXA
dt
dX

 [8.12] 

We can replace the initial conditions with these additional impulse inputs which 
act on the state variables. In certain cases, these can be realized by acting on the 
existing inputs U, except if the number of state variables n is greater than the 
number of independent inputs. In summary, it is often not possible to make clear 
conceptual distinctions between inputs and initial conditions (or boundary 
conditions) such that they appear in the mathematical representation of a model. 

8.2.1.6. Modeling and numerical solution of equations for continuous media  

We have reasoned so far in the context of “thermodynamic” modeling of systems 
by means of an ensemble of discrete sub-systems which are each in a state of 
thermodynamic quasi-equilibrium. Other approaches are possible for obtaining 
discretized equations from the balance equations for continuous media: 

– finite difference methods consist of discretizing the domain under study and 
replacing the differential operators at the points of the grid thus obtained with finite 
difference operators; 

– finite element methods represent the local solution by simple algebraic 
functions in very small sub-domains; the balance equations are integrated in the 
domain after multiplication by the weighting functions, n being the number of 
unknown parameters defining the ensemble of local solutions. Integrations by parts 
often allow the reduction of the order of the necessary derivatives, and the use of 
finite elements of standard form allows the realization of very general calculatory 
procedures. We thus obtain an integral formulation comprising n integral conditions 
for the determination of n unknowns; 

– finite volume methods consist of the definition of finite elements in which the 
balance equations are integrated; the approximations of the solution in each element 
are simple algebraic functions. 

In all cases, we obtain a system of equations which is analogous to the state 
representation, the preceding numerical schemes belong to two broad categories 
depending on whether they are conservative or not (a numerical scheme is said to be 
conservative if the discretized equations exactly satisfy the balance of an extensive 
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quantity with the variables which are used to represent the system). A conservative 
scheme avoids the amplification of numerical errors which are integrated into the 
balance of physical quantities. It cannot of course correct the unstable character of a 
physical system. The finite element method is not conservative, contrary to the finite 
volume method. Finite difference schemes may or may not be conservative. Finally, 
it is important to remember that, regardless of the method used for discretizing the 
equations, numerical schemes and algorithms used should respect the rules of 
transmission of information from one point or element to another which results from 
the character elliptic, hyperbolic, parabolic or mixed of the equations (section 5.6.1). 

8.2.2. Linear time-invariant system (LTIS) 

8.2.2.1. Introduction 

Differential system [8.7] for A constant and with initial conditions can be 
written: 

00,.. XXUBXA
dt
dX

 [8.13] 

The linearity of equation [8.13] makes it possible to use the usual methods of 
solving linear differential equations. The solution is the sum: 

– of a particular solution )(tX e  of the complete system [8.14]: 

UBXA
dt

dX
e

e ..  [8.14] 

– and a solution )(ˆ tX  of the homogenous system [8.15] adjusted such that the 
solution satisfies the initial conditions: 

000ˆ,ˆ.
ˆ

XXXXA
dt
Xd

e  [8.15] 

The solutions of the homogenous system [8.15] are real decaying exponentials or 
damped sinusoidal functions if the system is stable. They represent transitional 
regimes. 

A particular solution )(tX e  is often chosen so as not to contain transitional 
terms and represents an established regime of the problem treated (assumed stable), 
independent of the initial conditions. This established regime plays a very important 
role in numerous cases, in particular when the inputs are either simple algebraic 
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functions of time or harmonic excitations. This particular solution can be obtained in 
general by the variation of constants method (see mathematical texts). 

The separation between transitional and established solutions is no longer 
theoretically so clear for non-linear systems; it can however be useful in numerous 
cases, as dissipation phenomena are often associated with a progressive elimination 
of the initial conditions, except of course in the case of a multiplicity of established 
solutions (section 6.6.2). 

The above result can be immediately transposed to partial differential equations. 
In this case the particular solution tX e  of the inhomogenous equation should 
satisfy all the zero and non-zero boundary conditions, the solutions of the 
homogenous equation satisfying zero boundary conditions. The solution obtained for 
the homogenous equation is chosen such that the complete solution satisfies the 
initial conditions. 

8.2.2.2. Recall on transitional regimes  

The general solution of homogenous equation [8.15] is a linear combination of 
terms of the form te ,  being a solution of the eigenvalue problem: 

0 unit matrix A I I  [8.16] 

Equation [8.16] only has non-zero solutions for particular values i, which are 
known as eigenvalues, of which there are n, including their eventual multiplicity. 
For each value i the solutions of equation [8.16] are of the form iic , where i is 
an eigenvector associated with the eigenvalue i (ci is some constant). An 
eigenvalue and its associated eigenvectors are known collectively as a mode. The 
eigenvalues are real and negative for aperiodic modes (in thermal systems in 
particular) or complex with a real part which may be negative for oscillatory damped 
modes or zero for unamped modes (in acoustics for example). By limiting ourselves 
here to thermal systems, the eigenvalues tX i

ˆ  can be written: 

ttX iii expˆ  

The complete solution of a given problem is thus written: 

n

i
iiie tctXtXtXtX

1
expˆ:withˆ   [8.17] 

The scalar coefficients ci are calculated from the initial condition 0X  which is 
assumed to be known: 
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n

i
iie cXX

1
00   [8.18] 

The transitional regimes are solutions comprising the return to rest of the 
homogenous system (or to the established regime )(tX e  of the system with a right-
hand side) from non-zero initial conditions (or eventually zero for an established 
regime )(tX e ). Having determined the eigenvectors i, the coefficients ci are 
solutions of linear system [8.18], the matrix of which is full; for a large number n of 
equations this system is ill-conditioned (section 7.2.7.3). However, if a scalar 
product exists VU  for which the matrix A is self-adjoint 

( VAUVUA ), the eigenvalues i are orthogonal (taking account of 

[8.16], if ji , we have 011
jijjiiji AA ). 

For the scalar product UVVUVU tt of the vectors U and V , defined 
with the diagonal matrix  (relation [8.6]), K being symmetric, this leads to: 

VAUKVUKVUVKUVAUVUA tttttt 11  

We can deduce from this, in a manner analogous to that outlined in section 
A.4.2.2 of Appendix 4: 

i
t
ii

t
ei XXXXXc ..00  

NOTE – Expression [8.17] is the development at instant t of the function X̂ t  on 

the basis of eigenfunctions i with instantaneous coefficients expi ic t . After a 
time lapse t, which is large compared to 1/ J, the mode j is no longer present in the 
transitional solution; its coefficient there being equal to zero, this gives: 

0..ˆ
j

t
ej

t tXtXtX  [8.19] 

8.3. Modeling linear invariant thermal systems  

8.3.1. Modeling discrete systems  

8.3.1.1. Introduction 

The fundamental problem is the reasoned choice of the number of sub-systems 
or the variables necessary for representation of a system, the number of variables 
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being greater as the thermodynamic imbalance is more pronounced. We will limit 
our discussion here to linear systems which only possess modal solutions allowing 
an analytical treatment. The methodologies for writing balance equations are 
independent of linearity properties. The variation of physical properties as a function 
of the state variables often leads to weak non-linearities, which do not change the 
general properties and the orders of magnitude obtained. We will first study three 
examples of simple discrete thermal systems, then two problems of continuous 
media (thermal walls). 

8.3.1.2. Models with two sub-systems at constant temperature  

Consider a time-invariant linear system which is composed of two blocks E1 and 
E2 of width , of specific heat C and separated by a thermal resistance R. Let us then 
consider a representation of this system by means of two sub-systems of uniform 
temperatures tT1  and tT2  (Figure 8.7). Each of these two sub-systems is 
separated from the exterior by another thermal resistance R’. 

A thermal resistance is an element of small thickness which transmits heat in a 
quasi-instantaneous manner; the thermal flux  which crosses this element is 
proportional to the temperature difference between its external faces. The fluxes 

1,2, 1w and 2w received by each sub-system (Figure 8.7) are: 

.
'

;
'

; 22
2

11
1

21
2,1

R
TT

R
TT

R
TT ex

w
ex

w  [8.20] 

The initial temperatures )0(1T and )0(2T  and the external temperatures T1ex(t) 
and T2ex(t) are given. 

 

T1ex T1 T2 T2ex

2w1w 1,2

E1 E2 RR' R'

m m 

 

Figure 8.7. Thermal conducting system with two equilibrium sub-systems  
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Taking account of [8.20], the energy balance of each sub-system allows the 
obtaining of a differential system for the temperatures tT1  and tT2 : 

.
'

;
'

2212211211

R
TT

R
TT

dt
dT

mC
R

TT
R

TT
dt

dT
mC exex  

or in matrix form: 

ex

ex
T
T

RT
T

RRR

RRR
T
T

dt
d

mC
2

1

2

1

2

1

'
1

'
111

1
'

11

 [8.21] 

Searching for solutions of the form rte  for the homogenous system associated 
with [8.21] gives the eigenvalue equation (characteristic equation): 

0
1

'
11

'
111

1
'

11

2

2

R
mCr

RRmCr
RRR

R
mCr

RR
 

This has two roots (eigenvalues): 

'
121

;
'

1
21

RRmC
r

mCR
r  [8.22] 

From these we can find the components ( i1, i2) of the eigenvectors i (i = 1, 
2), which are solutions to the system of equations: 

2

1

2

1

'
111

1
'

11

i

i

i

i

RRR

RRRmCr  

We obtain: 

– mode 1 (symmetric, i = 1, with 11 = 12 = 1): 
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'/exp;
'

1
12111 mCRtTT

mCR
r  

– mode 2 (antisymmetric, i = 2, with 21 =  22 = 1): 

'
12

exp;
'

121
22212

RRmC
t

TT
RRmC

r  

The general solution of the homogenous system can be written: 

.expexp,expexp 2211222111 trctrcTtrctrcT  

Let T1e(t) and T2e(t) be a particular solution of [8.21] (“established” solution); 
we obtain as a general solution to [8.21]: 

tTtrctrctT
tTtrctrctT

e

e

222112

122111
expexp)(
expexp)(

 

The integration constants c1 and c2 can be calculated with initial conditions;  

20000
20000

21212

21211

ee

ee

TTTTc
TTTTc

 

The decomposition of the solution into two modes can be written: 

2exp2/
2exp2

2122212

2111211
tTtTtrctTtTt

tTtTtrctTtTt

ee

ee  

The fast mode 2(t) corresponds here to the establishment of internal equilibrium 
of the system, while the slow mode 1(t) represents the establishment of equilibrium 
between the system and the exterior. For a system isolated from the exterior (infinite 
R’), we obtain: 

mCR
t

TTtTtTTTtTtT
2

exp00)()(,00)()( 21212121  

8.3.1.3. System with three components in series  

Consider now the system shown in Figure 8.8 consisting of three sub-systems 
E1, E2 and E3. The component E3, isolated from the exterior, is in contact with 
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E1and E2 via the thermal resistances of the same value R/2. As before, the sub-
systems E1 and E2 are each in contact via a thermal resistance of the same value R’, 
with the external medium at temperature Ti ex(t) (i = 1,2). Sub-system E3 is isolated 
from the exterior. 

The energy balance equations can be written: 

R
T

R
T

R
T

dt
dT

Cm

R
T

R
T

RR
T

dt
dT

mC

R
T

R
T

RR
T

dt
dT

mC

ex

ex

3213

23
2

2

13
1

1

4
.

22
'

;
'

2
'

12

;
'

2
'

12

 [8.23] 

 

T1ex T1 T2ex

2p 1p 1,3

E1 

T3 

E3 

T2 

E2 

3,2

R/2 R/2 R' R' 
m m'= m m 

 

Figure 8.8. System with three sub-systems (first example)  

The system of equations can be written in matrix form (with 
m
m'

): 

0'
1

422

2
'

20

20
'

2

1
2

1

3

2

1

3

2

1

ex

ex
T
T

mCRT
T
T

R
R

R
R

mCRT
T
T

dt
d

 [8.24] 

We will limit ourselves here to the discussion of solutions to the homogenous 

system associated with [8.24] in the form i
rte . By letting 

'
2

R
R

a  and 
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rmCR , we obtain the non-dimensional eigenvalue equation (characteristic 
equation): 

0844
422

20
20

2 aaaa
a

 [8.25] 

The roots of equation [8.25] are: 

3,2,
2

48164
;

22

1 i
aaa

a i  [8.26] 

As the sum of the roots 2 and  3 of the equation are negative and their product 
is positive, the two roots are negative (a diffusive system is aperiodic). 

The symmetry of the system allows us to immediately find the modes. A 
symmetric mode is characterized by 21 ii . Substituting this relation into the 
homogenous system derived from [8.24], we have: 

1331 44;2 iiiia  

Eliminating i3 between these relations, we find that the eigenvalues i 
corresponding to these modes satisfy the second order trinomial of characteristic 
equation [8.25]. The values of i1 and i3 are of the same sign or of opposite sign 
depending on whether a  is positive or negative. Substituting –a as the value of 

 in the preceding trinomial, we find that this takes on a negative value, which 
shows that the value – a is situated between the roots of the trinomial. We can easily 
derive from this that the quantity a  is positive for the largest root 3, whereas 
it is negative for the other root 2. We can verify immediately that the root 

a1  corresponds to the anti-symmetric mode 1211  and 013 .  

+ + + 

2 

1   3 2 

+ – 0 

1 

1   3 2 

+ + – 

3 

1   3 2 

 

Figure 8.9. Structure of normal modes classed with increasing modulus of the eigenvalues 
312 rrr (decreasing time constants) 
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The structure of the modes is shown in Figure 8.9. The time constant of a mode 
is equal to r1 . The preceding discussion shows that we have 312 rrr . The 
slowest mode corresponds to the root r2 for which the three sub-systems at the same 
temperature constitute a thermodynamic system in equilibrium, a structure for which 
the thermal inertia is greatest towards the thermal resistances R’. On the other hand, 
the most “agitated” mode corresponds to the smallest time constant 31 r . 

Suppose now that the mass m’ of the sub-system E3 is small compared to the 
mass m of the sub-systems E1 and E2 (i.e.  << 1). Performing a series development 
of the roots [8.26], we obtain: 

OaOa 21
4

; 231  

Returning to the dimensional values mcRr ii , we obtain: 

'
14

'
121

231
mCR

r
mCR

r
RRmC

r  

The values r1 and r2 are those already found ([8.22]) for the system studied in 
section 8.3.1. As the value of r3 is large compared to r1 and r2, mode 3 is very 
quickly damped; after this damping, we have the relation [8.19] for i =3, which can 
here be written 0.ˆ

3
ttX . Replacing tX̂ ,  (a matrix which allows us to 

pass from [8.23] to [8.24]) and 3 by their values at small : 

/2
1

1
;

00
00
00

;ˆ
3

3

2

1

mC
mC

mC

T
T
T

tX  

we obtain: 

02.ˆ
3213 TTTmCtX t  [8.27] 

Relation [8.27] reduces to the balance equation of the sub-system E3 (third 
equation [8.23]) in which the mass is negligible. We verify that in replacing T3 in 
the first two equations of [8.23] with its value taken from [8.27] we recover 
equations [8.21]: the three sub-systems model has been reduced to a model with two 
sub-systems by removal of the third sub-system of small mass. 
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8.3.1.4. Thermal systems with 3 components in the form of a star  

Now consider the system shown in Figure 8.10, which comprises three sub-
systems E1, E2 and E3 in contact two by two across the same thermal resistances R. 
Each of these is in contact across the same thermal resistance R’ with the external 
temperature medium Ti ex(t) (i = 1, 2, 3). We will only discuss the structure of the 
modes here. The energy balance equations can be written: 

'
2

'

'
2

;
'

2

333213

223212

113211

R
TT

R
TTT

dt
dT

Cm

R
TT

R
TTT

dt
dT

mC

R
TT

R
TTT

dt
dT

mC

ex

ex

ex

 [8.28] 

or, in matrix form, letting: 
'

2
R
R

a  and 
m
m'

: 

ex

ex

ex

T
T
T

mCRT
T
T

a
a

a

mCRT
T
T

dt
d

3

2

1

3

2

1

3

2

1

'
1

11
11
11

1
 [8.29] 

 
T1ex 

T1 T2 
T2ex

2w1w 1,2

3,23,1

3wT3ex

T3 

E1 E2 

E3 

R 

R 

R' 

R' 

R' 

R 

m' 

m m 

 

Figure 8.10. System with three sub-systems (second example) 

Searching for solutions of the form i
rte  for the homogenous system associated 

with [8.29] gives the non-dimensional eigenvalue equation, where we have let 
rmCR : 
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0
11

11
11

a
a

a

 

or: 

0121221 2223 aaaa  [8.30] 

Taking account of the system symmetry, we see immediately that the anti-
symmetric mode verifies the relations 1211  and 013 . Substituting 
these relations into the equations of the homogenous system, we find that the 
corresponding eigenvalue is equal to )1(1 a . The characteristic equation 
[8.30] can be written: 

21 [ ( ( 1) ) ( 1)( 2)] 0a a a a a  [8.31] 

Its two other roots  are (i = 2.3):  

2

1421 2222 aaaaaa
i  

The structure of the modes can be obtained by simple reasoning. Taking account 
of the system symmetry, the other eigenfunctions should present the symmetry 

21 ii . Substituting this relation into the homogenous system derived from 
[8.29], we obtain: 

1331 2;1 iiiiii aa  

We immediately find that the values  which satisfy the preceding relations are 
the roots of the second order trinomial of characteristic equation [8.31]. The values 
of 1 and 3 have the same sign or opposite sign depending on whether ai  
is positive or negative. Substituting a  as the value of  in the preceding 
trinomial, we find that this takes on a negative value, showing that this value is 
between the roots of the trinomial. The result is that the quantity ai  is 
positive for the largest root 3, whereas it is negative for the other root 2. Figure 
8.11 shows the structure of the three modes. 
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Figure 8.11. Structure of normal modes 

For small values of the calorific capacity m'C of sub-system E3, a development 
in  gives the values: 

O
a

aO
a 2

11 23  

The corresponding values of mCRr ii  are: 

'2
'3

'
1

'
121

'
131

231
RR
RR

mCR
r

RRmC
r

RRmC
r  

As in the case of three components in series, r3 is much larger than r1 and r2, and 
mode 3 is thus rapidly damped. The third equation of system [8.28] can thus be 
written: 

0
'

2 33213

R
TT

R
TTT ex  

The reader can verify that the preceding relation is identical to condition [8.19]. 
Contrary to the case of three components in series, the limit of this system for m' = 0 
is not the preceding system of two sub-systems (section 8.3.1.2). 

8.3.2. Thermal models in continuous media  

8.3.2.1. Overview 

The idea of a continuous medium amounts to replacing an integer valued index 
(number of components of the state vector X) by a spatial variable of continuous 
values. The temporal and spatial behaviors of the system are thus continuous 
functions or piecewise continuous. However, we have seen in Chapter 5 that the 
theory of characteristics allows us to identify different behaviors for these variables. 
If the time is by nature irreversible, the spatial properties or spatio-temporal 
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properties are different, depending on the elliptic, parabolic or hyperbolic nature of 
the system. 

We will here consider problems of thermal conduction in homogenous media. 
The method can also be applied analogously in heterogenous media with physical 
properties which depend on the spatial variables. 

8.3.2.2. Wall problem  

8.3.2.2.1. Equations and solution of homogenous systems  

Consider a wall of thickness 2  comprising a homogenous material whose faces 
are supposed, for example, to be at a given, equal temperature T1(t). The thermal 
diffusivity a of the material is supposed constant. The distribution of temperature on 
the interval [– , ] satisfies the heat equation: 

x
x

T
a

t
T

2

2
 [8.32] 

The given data are: 

– the initial conditions: xTxT 0,0 ; 

– the boundary conditions (fixed temperature): tTtTtT 1,, . 

As equation [8.32] is linear, the methodology is the same as before: the complete 
solution can be obtained by superposition of the particular solution txTe ,  of 
equation [8.32] satisfying the non-zero boundary conditions and a general solution 
of the heat equation with zero boundary conditions for the temperature. As in section 
8.2.2.2, the coefficients of this solution are calculated such that the complete 
solution satisfies the initial conditions. 

In order to simplify the notation of the general solution, let us take the non-
dimensional variables: 

2~;~ tatxx  [8.33] 

Equation [8.32] becomes: 

1~1~~ 2

2
x

x

T
t
T

 [8.34]  
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We seek a group of solutions with separated variables of the form: 
)~()~()~,~( xgtftxT . Substituting this expression into [8.34], we obtain2: 

2cte
)~(
)~("

)~(
)~('

xg
xg

tf
tf

 [8.35] 

We derive from this the function f: 

)~exp()~( 2 ttf  [8.36]  

and the eigenvalue problem for the function g: 

01;0)~()~(" 2 gxgxg  [8.37] 

The integration of equation [8.37] shows that the eigenfunctions are of the form 
BxAxg ~cos)~( . The expression of boundary conditions [8.37] at 1~x  

gives the values of the constants  and B. We thus obtain: 

integers):',('
2

;
2

pppBpB  

or: 

2
'

2
;

2
' ppBpp  

In the preceding expressions p – p' and p + p' have the same parity: 

– if p – p'=2k is even, we have kk2  and the corresponding eigenfunctions 
are odd: xkg k

~sin2 ; 

– if p – p' = 2k + 1 is odd, we have 
2

122 kk  and the eigenvalues are 

even: xkg k
~

2
12cos12 . 

The first eigenfunctions of the wall problem at zero wall temperature are 
represented in Figure 8.12. 

                                   
2 The system being damped, the constant of equation [8.36] is necessarily negative. 
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Figure 8.12. First eigenfunctions of the homogenous problem 
inside a wall with constant temperature faces 

The preceding eigenfunctions form a representation basis of functions which are 
zero at the extremities of the interval [-1,1] and which possess sufficient regularity 
properties. Taking account of the condition 01g , the eigenfunctions of 
problem [8.37] are orthogonal. In effect, an integration by parts immediately gives: 

1
1

''1
1

'1
1

'' ~~ xdggdggxdgg qpqpqp  

hence: 
1

'' ''

1
0.p q q pg g g g dx  

The operator of problem [8.37] is self-adjoint (Appendix 4), showing the 
orthogonality property. Te being the established solution (section 8.2.2.2), we thus 
express the solution in the form: 

0

2 )~()~exp(~,~)~,~( xgtctxTetxT iii  [8.38]  

The coefficients ci are calculated at the instant 0~t : 

0
0 )~(0,~~)0,~( xgcxTxTxT iie  

hence (Appendix 4): 
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1
1

2

1
1 0

~)~(

~)~(0,~)~(

xdxg

xdxgxTxT
c

i

ie
i  [8.39] 

8.3.2.2.2. Thermal shocks on the walls  

Let us now consider the simple example of the formation of thermal shocks on 
the two faces of a wall whose initial temperature xT0  is uniform and whose 
temperatures tT ~

1  on the wall faces are constant and equal to T1 for positive t~ . 
The established solution txTe

~,~  is thus constant and equal to T1. The coefficients 
c2k corresponding to the odd eigenfunctions are zero. Formula [8.39] gives, for the 
coefficients of the even eigenfunctions: 

12
41

1012
k

TTc
k

k  

From this we can derive the solution of the thermal shock problem T1 – T0 
applied on the two faces of a wall of thickness 2 : 

xke
kTT

TtxT

k

tkk
~

2
12cos.

12
41

1
)~,~(

0

~
4

12

01

0

2
2

 [8.40] 

The mean3 temperature 
1

1
~)~,~(

2
1

xdtxTTm  can be expressed: 

0

~
4

12

22
01

0

2
2

12

8
1

)~(

k

tk
m e

kTT
TtT

 [8.41] 

This expression allows us to know the contribution of each mode (Table 8.1) to 
the thermal energy supplied by conduction, this being proportional to the relative 

amplitude of the mode (we have 2 2

0

8 2 1 1):
k

k  

 

 

                                   
3 Defined as the space mean temperature for homogenous media. 
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Mode number 0 1 2 3 4 5 6 

Mode amplitude  0.8106 0.0901 0.0324 0.0165 0.0100 0.0067 0.0048 

Table 8.1. Distribution of thermal energy in the seven first modes 

The wall behaves in a manner similar to a first order system, since only 20% of 
the heat is exchanged more rapidly in modes higher than the first mode. The density 
of the thermal flux xTp xTtq ,  on the face of the wall at -  can be 
derived from [8.40]. Infinite at time t = 0, it decays very rapidly in the first instants 
and it can immediately be written in non-dimensional form: 

.2
,

0

4
12

01

2

2
2 at

kTp e
TT

tq
 [8.42] 
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Figure 8.13. Evolution of the temperature distribution during 
a thermal shock on the two faces of a wall 

Figure 8.13 shows the evolution of the temperature profiles with time (curves 
from 0 to 5). The curve 0 is the distribution at the initial instant where we impose the 
temperature T1 on the walls ( x ). The diffusion of this condition occurs 
progressively from the walls: the curves 1 and 2 represent the thermal shocks in a 
quasi-infinite medium from the walls. The thermal diffusion zones are then rejoined 
on the other curves (3 to 5). On curves 4 and 5, observed after a non-dimensional 
time in the order of 1/ 1, only the first mode g1 remains, and it damps until its 
amplitude falls to zero. 

The temperature distribution of the thermal shock in a semi-infinite domain from 
a wall has already been obtained (section 5.4.5.4 and formula [5.52]). It can be 
written here for the thermal boundary layer on the wall x , and by taking non-
dimensional variables [8.33]: 
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erf
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x
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The complete solution which represents the two boundary layers can be written: 

t

x
erf

t

x
erf

TT

TT
~2

1~
~2

1~
2

01

0  [8.43] 

The thermal flux density at the wall 1~x  can be derived from [8.43]: 

01 TT
tax

T
q

x
Tp  

It can be written in non-dimensional form (section 4.6.1.3.4), with the reduced 
time t~  [8.33]: 

tTT

tqTp
~

1
~,

01
  [8.44] 

The mean temperature of the wall in the thermal boundary layer regime can be 
obtained by performing the energy balance in the wall between instants 0 and t: 

a

t
TT

au

du
TTduuqCTT tt

Tpm
2

0100100  

or: 

t
TT

TtTm ~2

01

0  [8.45] 

8.3.2.2.3. Composite representation by matched asymptotic expansions  

The series expansion of eigenfunctions of the thermal shock problem on the 
faces of a wall is a poorly adapted representation in the first instants of the thermal 
shock, whereas the representation by thermal boundary layers captures the physics 
of the problem more satisfactorily. For small time values, the modal representation 
of the mean temperature is nearly acceptable with very few modes (taking account 
of a discontinuity at t = 0); on the other hand, modal expression [8.42] for the 
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thermal flux density is unusable and we thus have recourse to expression [8.44] 
which is equivalent to the sum of the series [8.42] in these conditions. 

We are thus led to search for a formula which contains the two different 
asymptotic expressions f1(t) and f2(t) of the function f(t), which are valid for small 
and large values of t respectively following the time value. This can be obtained by 
means of a matching formula or a weight between the two temporal domains which 
gives exact values for the function f and its temporal derivative at the origin, and 
which respects the asymptotic behavior at infinity. A simple means consists of 
weighting the two formulae by a suitable auxiliary function (t) close to 1 for small t 
and tending quite quickly to zero for t equal to infinity. The expression: 

tfttfttf 21 1  

satisfies these conditions if the function (t) at least satisfies the relations 
00',10  and if '(t) tends at infinity faster to zero than tf 2 ; we 

have: 

'
2

'
2

'
11 00'00 ffffffff  

The simplest weighting function is the Gaussian 
2~~ tet . 

It remains to write a matching condition which can be defined at a point where 
the two approximations differ very little and where we require that the value of the 
function (t) is equal to 0.5 (here, the function f(t) is the mean of the values f1(t) and 
f2(t)). 

Let us apply this procedure to obtain a quite simple expression of the solution 
valid all over the interval [- ,+ ]. We take as our asymptotic expression at infinity 
the modal solution limited to the first mode, and for small t, the boundary layer 
solution. We will choose the mean temperature in order to determine the matching 
condition. A simple numerical calculation shows that the difference between the 
values of expression [8.41] limited to the first mode and formula [8.45] is minimal 
in the vicinity of 20.0~t . Taking as a weighting function the Gaussian 

2~~ tet  and taking (0.2) equal to 0.5, we find  = 7.5. 

The mixed representation thus obtained for the first mode of the temperature Tm 
can be written: 
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2
2 20 7.5. 7.5. 4

2
1 0

2 81 1 .
tm t t

T t T
e t e e

T T
  [8.46] 

The corresponding expression for the wall’s thermal flux density is thus: 

2
2 27.5. 7.5. 4

1 0

, 1 1 2.
tTp t t

q t
e e e

T T t
 [8.47] 

The preceding formulae represent the exact solution to 1% accuracy. 

The spatio-temporal temperature distribution can also be written in the same 
manner from expressions [8.40] and [8.43]: 

2

2
2

7.5.0

1 0

7.5. 4

1 12
2 2

41 1 cos
2

t

t
t

T T x x
e erf erf

T T t t

x
e e

 

The interest in simple analytic expressions is clear; furthermore, the precision of 
the approximations effected can be improved as much as we desire by conserving 
additional terms of the modal solution in the preceding composite solution. 

8.3.2.3. Thermal systems with continuous components 

8.3.2.3.1. Conduction in two walls separated by a thermal resistance  

The separation of variables method can be applied to continuous media by 
individual segments which comprise discontinuities. We will reconsider the linear 
invariant system with two identical components discussed in section 8.3.1.2 with a 
continuous medium model of constant thermal diffusivity a; the sub-systems are 
separated by the thermal resistance R per unit cross-section, located at the origin 
(Figure 8.14). We will assume that the thermal flux densities are given on the 
external faces, the external thermal resistance R’ being taken as zero. 

With equation [8.32] on the intervals [– ,0–] and [0+, ], we must associate: 

– the matching condition involving the thermal resistance between the two sub-
systems: 

R
TT

x
T

x
T )0()0(

00
 [8.48] 
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– the boundary conditions of the system: thermal flux densities given (or 
eventually the temperature or thermal resistance) at the points x ; 

– the initial temperature distribution 0,xT . 

 

 

T1ex 
T(x)

T2ex

2w1w 
1,2

E1 E2 
–  

x 

O

T 

T(0+)T(0-)

 

Figure 8.14. Thermal conduction in a system of two continuous media 
separated by a thermal resistance 

As before, the complete solution can be obtained by superposition of a solution 
which satisfies the non-zero boundary conditions and a general solution of the heat 
equation with homogenous boundary conditions. The coefficients of this general 
solution are calculated such that the complete solution satisfies the initial conditions. 

8.3.2.3.2. General solution of the homogenous problem  

As an example, we will treat the problem where a thermal flux is imposed at the 
interval extremities [– ,+ ]. The condition at x = ±  of the homogenous problem is 
thus a zero thermal flux. As above, we write the homogenous problem with non-
dimensional variables [8.33]. We add to equation [8.34] the boundary conditions and 
thermal resistance matching condition [8.48], which can be written in non-
dimensional form as: 

)0()0(~~;0~
001

TT
Rx

T
x
T

x
T

 [8.49]  

The problem depends on the parameter RP , which represents the 
importance of the thermal resistance  of a component with respect to the thermal 
resistance R. 

The solutions to equation [8.34] where the variables are separated as 
xgtftxT ~~~,~  again satisfy relations [8.35] and [8.36] for the function 

)~exp()~( 2 ttf . 
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The eigenvalue problem for the eigenfunction g can now be written: 

)0()0()0(')0(';01'

;0)~()~(" 2

gg
R

ggg

xgxg
 [8.50] 

The integration of equation [8.50] leads to eigenfunctions of the form 
( ) cosg x A x B , the constants (A, B) taking on, respectively, the values (A , 

B ) and (A+, B+) on the intervals (-1,0) and (0,1): 

BxAxgx
BxAxgx

~cos)~(:1~0

~cos)~(:0~1
 

The expression of the boundary conditions at 1~x  gives: 

0sin.sin. BABA  

or:  

integers:',' pppBpB  [8.51] 

Matching condition [8.49] for the thermal flux densities at x = 0 can be written: 

BABAPBABA coscossinsin  [8.52] 

Equations [8.51] and [8.52] possess two groups of solution4: 

1) Even eigenfunctions. We find immediately the solutions to equations [8.51] 
and [8.52]: 

integer) (;;0 2 kkAABB k   [8.53] 

The evenness of the eigenfunctions xkxg k
~cos~

2  of the two-wall 
ensemble leads to the absence of thermal transfer between the two sub-systems 
which behave as a single symmetric block. The first four eigenfunctions (k = 0, 1, 2, 
3) are represented in Figure 8.15a (we have taken 1AA ). 

                                   
4 We will number the functions with even numbers (respectively odd) for even eigenvalues 
(respectively odd) with increasing order of the eigenvalues.  
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-1   +1   
x~   

gi    

: g2  : g4  : g6  : g0  

+1   

-1     
0    

: 2P/ : tan      

  
       

(a) (b) 
 

Figure 8.15. (a) Even eigenfunctions of two walls separate by a thermal resistance; 
(b) graphical solution of the eigenvalue equation in the case of odd eigenfunctions 

2) Odd eigenfunctions. Substituting the values [8.51] of the pairs (B–, B+) into 
first relation [8.52], we obtain a second group of solutions  ( 0, 0):B B  

or  B B ; A A B B ; A A   

We derive the relation: 

BABA cos.cos.   

Substituting this expression into [8.52], and taking account of [8.51], we obtain 
the eigenvalue equation: 

P2tan  [8.54] 

whose graphical solution is shown in Figure 8.15b. The eigenfunctions xg k
~

12  
which correspond to these eigenvalues are here odd and by taking 1AA  
they present a discontinuity amplitude equal to 12cos2 k  at the origin. They can 
be written: 

1~cos)~(:10 121212 xAxgx kkk  

These discontinuous eigenfunctions depend on the dimensionless parameter P. 
We have represented, in Figure 8.16b, the first four odd eigenfunctions 
corresponding to 05.0P  (eigenvalues 1=0.3111, 3=3.1731, 5=6.2991, 

7=9.43538). 
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Figure 8.16. Odd eigenvalues for two walls separated by a thermal resistance  

8.3.2.3.3. Evolution of odd eigenfunctions 

The value of thermal resistance placed between the two walls (in other words the 
value of P) has a strong influence on the discontinuity amplitude. Figure 8.16a 
shows the evolution of the first odd eigenfunction as a function of P. The small 
values of P (high thermal resistance R) lead to eigenvalues of the odd functions 
which are thus quite close to k , which are the eigenvalues of the even functions 
(Figure 8.15b). The discontinuity at the origin 2 12cos k  of the odd eigenfunctions 
is strong, and the thermal flux 1212 sin kk  between the two blocks is all the 
smaller as k is large. The absolute values of the odd and even eigenfunctions are thus 
very close in each of the two continuous media. A homogenization of the 
temperature occurs in each block, the thermal flux 1212 sin kk  between them 
being essentially limited to the first odd mode. 

If the thermal resistance R tends to zero, P becomes large and the eigenvalues 

12k  tend to the odd eigenvalues k
2

 of the total isolated system. We thus 

find the odd eigenfunctions 
2 1

sin
2

k x
 of the conduction problem for an 

insulated wall (and of course, the temperature continuity at the origin). 

In expression [8.17] of the modal development of the temperature, the 
dimensional time constant k of each mode is directly related (formulae [8.33] and 
[8.36]) to the corresponding eigenvalue k: 
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22
kk a  

For small values of P, the first term of the development of 1 as a function of P 

is equal to P2  (equation [8.54]). Substituting this value into the above expression 
and replacing P by R , we find for the time constant 1: 

22

2

2
1

2

1
RC

aPa
 

We find the time constant of the thermodynamic model of section 8.3.1.2 in the 
particular case where we have R' = 0, with m . 

8.3.2.3.4. Expression of the solution  

The complete solution of the problem can be obtained from formula [8.18] as the 
development of the difference )0,()0,( xTxT e  as a series of eigenfunctions of the 
problem; these are orthogonal if the operator of the problem is self-adjoint 
(Appendix 4). The verification of this property can be checked easily by separately 
considering the intervals [-1,0–] and [0+,1]; and taking account of the condition 

01'g , we have, after integration by parts, for p not equal to q: 

0
1

'''0
1

'0
1

'' ~00~ xdggggdggxdgg qpqpqpqp  

Proceeding in a similar manner for the other interval, we obtain: 

00000000

~

''''

1
1

''''

pqqppqqp

pqqp

gggggggg

xdgggg
 

Taking account of conditions [8.48] for the thermal resistance at x = 0 and after 

replacing ''
pg  and ''

qg  by their expressions taken from equation [8.50], we see that 

the integral 
1

'' ''

1
 p q q pg g g g dx  is zero if p is not equal to q: 

1 1
'' '' 2 2

1 1
0p q q p p q p qg g g g dx g g dx  

The eigenfunctions gp and gq are orthogonal for the scalar product 

xdfggf ~, 1
1 . 
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The complete solution [8.18] can be written: 

0
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~
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2 )~()~cos()~,~()~,~(
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ke xgecxkectxTtxT k   [8.55]  
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T( x, ) T ( x, ) g ( x )dx
c k , , ,...,n,...

g ( x )dx

c T( x, ) T ( x, ) dx; c T( x, ) T ( x, ) cos( k x )dx k , ,...,n,...

 

 8.3.2.4. Modal representation of systems and number of parameters  

The modal representation of a discrete system consists of replacing the n state 
variables txi , functions of time, with n coefficients ci of the expression of the 
solution on the basis of the eigenfunctions whose time dependence is known. We 
thus see that, assuming the eigenfunctions to be known, the number of numerical 
values (series development coefficients) which characterize the solution decreases 
with time. 

The same is true for the preceding models for continuous media, for which we 
replace the temperature distribution T(x,t) in two continuous variables by a 
denumerable sequence of series development coefficients ci [8.55] of eigenfunctions 
associated with the physical model used. In a manner analogous to the development 
of a periodic function in a Fourier series, the information necessary to characterize 
the solution has been considerably reduced through the use of basis functions 
adapted to the problem. 

Furthermore, these developments offer the advantage that they provide an 
organization of information. We saw in Chapter 7 that the frequencies associated 
with the terms of a Fourier series are greater as the order of these terms is high. This 
thus results in criteria regarding: the nature of the approximation which has been 
made where only a limited number of terms are retained, and regarding the sampling 
of the corresponding temporal signals (Shannon’s theorem). The modal 
representation of thermal systems indicates that the wealth of information decreases 
as time increases. For continuous media, this information diffuses from the wall and 
becomes progressively poorer. The results are that the representation using space-
time numerical data (x,t) is very variable. During the first instants, we need to 
discretize the time and near-wall zones very densely, while the central zone of the 
wall is not subjected to any phenomenon. For larger times, the entire wall needs to 
be discretized, but less densely, and the same goes for the time variable. We will 
note that, as the modes vanish successively, the quantity of information contained in 
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the solution decays with time, the effect of the second law of thermodynamics 
(increasing entropy) being to homogenize the temperature. 

8.4. External representation of linear invariant systems  

8.4.1. Overview 

Transitional solutions of differential system [8.13] of n linear first order 
differential equations with n unknowns form a vector space of dimension n. They 
allow the characterization of all possible states described by [8.13]. In practice, it 
often happens that the initial data of a category of problems is of reduced number p, 
the system starting for example from a given standard state (rest for example). The 
transitional solutions which correspond to these initial conditions belong to a family 
which depends only on these p parameters. The state representation of a system of n 
state variables thus constitutes an overly detailed model. Rather than establishing a 
state representation, we can be satisfied with the study of system responses by 
means of an external representation by limiting ourselves to the effective inputs and 
initial conditions. 

Consider for example a linear invariant system for which the inputs are zero. 
This is the modeling of an isolated homogenous system which evolves towards 
equilibrium and which is characterized by a zero value for the state vector and the 
outputs. Suppose that we impose as initial conditions given values (step functions 
for example) for p components (p < n) of the state vector, the other components 
being zero. This initial vector must be decomposed on eigenvectors of the 
homogenous system, and apart from some particular cases, none of these 
components is zero. The responses to these excitations comprise the n eigenmodes, 
but they belong to a family of only p parameters which form a vector sub-space of 
dimension p of the output space, which we can study directly. 

8.4.2. External description of linear invariant systems  

8.4.2.1. Impulse response  

The solution corresponding to diverse inputs and initial conditions is the sum of 
solutions for each of the inputs and initial conditions taken separately, the others 
being considered zero. This superposition property for solutions of time-invariant 
linear systems allows us to separately study the response to different inputs and 
initial conditions. 

Consider firstly a system with a single input u1 to which we apply a Dirac 
distribution at the initial instant, the system being initially at rest; the output vector 
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thY1  represents the evolution of the system outputs to this impulse on the first 
input. Now, any given input tu1  can be considered as the superposition of Dirac 
distributions: 

dtutu 0 11  

The response tY1  of the system outputs to the excitation tu1  can be written: 

duthtY Y .0 111  [8.56] 

The impulse response of the output vector therefore makes the characterization 
of the response of a stationary linear system to any input excitation possible. 

Proceeding similarly for the group of p inputs, we obtain a rectangular matrix 
ththth YpYY ,...,, 21  of dimension q * p formed with the p corresponding output 

vectors, the entire group of which constitutes the matrix )(tHY  of the impulse 
response output vectors of the system. This allows us to calculate the output 
corresponding to any given input vector )(tU : 

dUtHtY Y ..0  [8.57] 

The impulse response matrix )(tHY  constitutes an external description of the 
system taken to be initially at rest. Easily realizable experimentally, it can be 
obtained using only impulse excitations, without any knowledge of the internal 
variables in the initial reference state. It also allows us to describe the evolutions 
corresponding to the given non-zero initial states of the system which are obtainable 
by using suitable impulses on the inputs (section 8.2.1.5).  

As an input vector is usually of smaller dimension than the state vector, the 
impulse response matrix )(tHY  is a reduced model of the system adapted to its 
operating conditions and which is not equivalent to the state representation of 
section 8.1.2. 

This matrix contains p*q time functions whose useful duration is equal to a 
number of times the largest damping time constant. The quantity of information is 
here much greater than in the case of the state representation: this is the result of the 
absence of a model. For the linear time-invariant5 thermal system, each of the 
                                   
5 Responses of stable systems usually studied in fluid mechanics and acoustics present an 
oscillatory damped character. 
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functions is a sum of decaying exponentials which we can seek to identify 
approximately, at least for the first of these. In the absence of a state representation, 
any interpretation of results is difficult and the obtaining of the structure of the 
eigenmodes of the system is problematic. 

The result of formula [8.57] is that at a given instant, the state of a linear 
invariant system depends only on the inputs belonging to a past which is at most 
equal to the duration of the impulse response. 

NOTE – The preceding procedure can also be applied to a state vector X(t). The 
application of a Dirac impulse as an input of index i provides the state vector thXi . 
Operating in a similar fashion on the ensemble of inputs, we obtain the matrix 

)(tH X  of impulse responses of the state vector, of dimension n * p, which allows us 
to obtain the response of the state vector to any given input U(t): 

dUtHtX X ..0  

However, the direct measurement of state variables is not easy in general, and 
the impulse response matrix )(tH X  of the state vector is only of limited interest. 

8.4.2.2. Inputs-outputs analytic representation 

The complete external representation of a system can be obtained from its state 
representation, cast in the form of a scalar differential equation of order n (section 
5.1.1 and section 8.1.2) in a scalar state variable x (t). Let us take the simple 
example (n = 3) of the state representation with a single output y(t): 

''';'''''' 2103210 xdxdxdyuxaxaxaxa  [8.58] 

Calculating the linear combination ''' 210 ududud  and eliminating x(t) and its 
derivatives with [8.58], we obtain a differential equation for the output y (t): 

''''''''' 2103210 udududyayayaya  [8.59] 

The method can be generalized to a differential equation of arbitrary order: 

p

k

k
jkj

n

i

i
i xdyuxa

00
;   [8.60] 

We obtain: 
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ji udxdaya

00 00
 [8.61]  

The inverse passage of the preceding external representation to a state 
representation can be achieved easily, the coefficients of relations [8.60] and [8.61] 
(or [8.58] and [8.59]) being identical. 

The representation of a dynamic system of n variables, effected by means of a 
differential equation of order n, can be replaced by a relation of a differential 
nature between the inputs and the outputs. However, obtaining the preceding 
external representations by means of measurements, without any knowledge of the 
structure of the system, is impractical for complex systems: the evaluation of the 
temporal derivatives obtained from differences between measurements lead to errors 
which will be greater as the order of the differentiation is increased. 

8.4.2.3. Example of a thermal system with two variables  

As an example, consider the state representation of the two-component system of 
section 8.3.1.2: 

2222121
'
21212111

'
1 ; uTaTaTuTaTaT  [8.62] 

where the quantities ui and aij are defined in equation [8.21]: 

2,1
'

;
1

;
'

111
21122211 i

mCR
T

u
mCR

aa
RRmC

aa iex
i . 

Differentiating the first equation [8.62] and eliminating '
2T  by means of second 

relation [8.62], we obtain a second order differential equation satisfied by T1: 

212
'
1122

''
1

'
12211121122211 uauuaTTaaTaaaa  [8.63] 

Taking the output variable in the form [8.58]: '
1110 TdTdy , the external 

representation can be obtained from [8.59]: 

'''' 10221121122211 ududyyaayaaaa  [8.64] 

with: 212
'
1122 uauuau . 
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8.4.2.4. Laplace transforms and operational transfer matrices  

We have already seen in Chapter 7 the value of Fourier transforms for the study 
of oscillatory signals. The Laplace transform (Appendix 1) presents an analogous 
interest for the study of aperiodic signals and damped systems. The Laplace 
transform Lf  of a function f(t) is defined by the relation: 

0 dtetfpL pt
f  [8.65] 

It possesses diverse properties which are analogous to those of the Fourier 
transform (section 7.3.4.2); in particular, the Laplace transform of the derivative 
function f is written: 

0' fppLpL ff  

This property allows us to transform the system of differential equations and the 
initial conditions into a system of algebraic equations between the transforms of the 
variables. For example, the differential equation transform: 

tukxxfxm   

can be written: 

ux LxpxLkpfpm 0'02  

or: 

kpfpm

xpxpL
pL u

x 2
00

 [8.66] 

We thus obtain the transform of the complete solution written as a function of 
the initial conditions and the transform Lu(p) of the right-hand side (the input). All 
that remains is to perform the inverse transform (Appendix 1). 

The transform linearity allows it to be applied to a vector or to a matrix of 
functions. For the initial conditions 0X , the Laplace transform of the state 
representation [8.1] of a linear invariant dynamic system can be written: 

XYUXX LDLLBALXpL .;.0  
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We can thus deduce the transforms of the solution tX  and of the output vector 
tY : 

-1 0 : . .X U Y XL p pI A BL p X L D L  [3.67] 

As the inverse of a matrix M is equal to the ratio between the transpose of its 
comatrix6 and its determinant ([HAR 98]), the elements of the matrix 1ApI  of 
rank n are rational fractions whose denominator is equal to ApI , the numerator 
being a polynomial in p whose order is at least equal to n. This rational fraction can 
be decomposed into simple elements associated with the poles (zeros of the 
denominator) which are the eigenvalues of the system studied. Each of these 
elements is the Laplace transform of the real or complex exponential functions 
which correspond to the eigenmodes of the system studied. 

The matrix BApIDpH 1.  is the operational transfer matrix of the 
system: 

pLpHpLBApIDpL UUY ... 1  [3.68] 

As the Laplace transform of a Dirac distribution at instant t = 0 is equal to 1, the 
transfer matrix pH  is the Laplace transform of the impulse response matrix 

)(tHY . 

The Laplace transform is particularly useful in the domain of system controls 
which are essentially beyond the scope of this textbook, despite applications in the 
domain of flow and transfer phenomena. 

8.5. Parametric models  

8.5.1. Definition of model parameters  

A parametric model can be defined as an exact or approximate solution whose 
state vector X(t) can be written in the form of a combination (linear or otherwise) of 
some state vectors Xj(t) independent of the inputs; the coefficients Pj of this 
combination are time functions which are deduced from the input vector )(tU  (the 
coefficients Pj are functionals of tU ). For a linear combination, we have: 

                                   
6 I.e. the matrix of cofactors of each element. 
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j
jj tUPXtX  [8.69] 

Expression [8.69] is quite analogous to a series development of eigenfunctions. 
Like these, the vectors Xj are universal, as they do not depend on any particular 
inputs of the problem. The coefficients Pj are parameters characterizing, in a simple 
manner, the solution represented at each instant as a basis composed of state vectors 
Xj which are often chosen in order to best represent the solution for a class of given 
inputs. Their non-dimensional expressions are often called form parameters, as they 
characterize the relative value distribution of the state vector components (see 
example in section 8.5.2). We have adopted the terminology parametric model in 
reference to the idea of form parameters often used in fluid mechanics. 

The output vector XDY .  can be written in an analogous form [8.69] with the 
universal vectors D Xj and the parameters Pj: 

j
jj tUPXDtXDtY   [8.70] 

We can note that the solution of the system obtained by solving equations [8.14] 
and [8.15] of the state representation using the variation of constants method is not 
in general of the form [8.69] or [8.70]. 

Solutions of parametric type can also be obtained in an approximate manner by 
means of global methods. Some examples of parametric solutions of linear systems 
will be covered in the following section. Such exact or approximate solutions are 
also used in fluid mechanics for the study of the boundary layer (Blasius and 
Howarth series, Görtler series, Karman-Polhausen global method, etc. ([SCH 99], 
[YIH 77])). 

The value of the parametric methods is quite significant: 

– with the objective of understanding and interpreting physical phenomena: the 
values of the parameters Pj allow in effect the classing of excitation situations by the 
function U(t) by characterizing these situations using simple analytical forms of the 
solution. We will see examples of the application; 

– for writing models of complex systems: expression [8.70] is an external explicit 
representation of a system in which the inputs and outputs are variables which 
characterize the interactions between neighboring systems; limited to a small 
number of terms, it constitutes an approximate representation which is particularly 
useful for modeling of interacting systems. 
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8.5.2. Established regimes of linear invariant systems  

8.5.2.1. Systems described by a state representation  

In section 8.2.2.1 we defined an established regime as a solution of a differential 
system whose expression does not contain transitional terms associated with the 
initial conditions. The solutions of discrete time-linear linear systems can be cast in 
a simple parametric form, at least when the inputs do not vary too rapidly. The 
guiding idea of the method has already been outlined in section 6.4.2.6; it consists of 
considering the unsteady term of state equation [8.1] as a perturbation [SAD 93]. By 
introducing the parameter  which we will take to be equal to one in the following, 
the state equation [8.1] can be written: 

UBXA
dt
dX

..  [8.71] 

We seek the solution of equation [8.71] in the form: 

0
tXtX i

i
 [8.72] 

By substituting expression [8.72] into equation [8.71], and by identification 
according to the increasing powers of the parameter , we obtain the system: 

;.

;.;.

;0..

'
12

'
1

'
01

0

tXtXA

tXtXAtXtXA

tUBtXA

ii  [8.73] 

Assuming the matrix A to be invertible, we deduce: 

;''.

;.;'.

;.

3
2

)(12
1

1
0

tUBAtX

tUBAtXtUBAtX

tUBAtX
ii

i  

Substituting and taking  to be formally equal to 1, we finally obtain: 
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1

)(11

1

)(11

......

..

tUBACtUDBCAUDXCtY

tUBAtUBAtX

ii

i

ii

 [8.74] 

Series [8.74] is a general solution to the established regime of system [8.1]. 
Independent of the initial conditions, it converges if the successive derivatives of the 
input vector U do not vary too quickly, for example if the quantities tu i  are 

bounded by ik 1  ( 1: smallest eigenvalue of the matrix A, k constant). 

The idea of form parameters can be introduced by means of the simple example 
of a system with a scalar input tu . Solution [8.74] can thus be written: 

1

)(
11 ..

i

i
i

tu
tu

BABAtutX  [8.75] 

The parameters tutu i  are form parameters of the problem and determine 
the structure of the solution. 

The Laplace transform allows the preceding results to be retrieved by giving an 
explicit expression of the term -1

UpI A BL p  of the established regime of 
equation [8.67]. We obtain: 

...22111111 nn ApAppAIApAIAApI  

or: 

U
nn

UX LBApAppAIALBpIAL ......... 22111  

This expression is indeed the Laplace transform of the first equation [8.74]. 

NOTES – 

1) Temporal series of the form [8.74] (or [8.76]) which describes in parametric 
form how the established regimes can be derived from responses obtained by the 
convolution integral [8.57] in which we perform a Taylor series development. For 
example, for the state vector, taking account of the commutativity of the convolution 
product, we have: 
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2

0 0

2

0 0 0

. ' ' ...
2

' . '' ...
2

X t U t H d U t U t U t H d

U t H d U t H d U t H d

 

2) The perturbation method used can also be applied to non-linear equations. 

8.5.2.2. Case of representation by differential equations of order n 

The preceding method can be applied to write the established system and the 
solution to the differential equation [8.60] of order n, representing system [8.1], with 
a single state variable x (t): 

1

01
;

n

k

k
jkj

n

i

i
i xdytuxa  

We obtain, for the established regime: 

pLpdLpLpLpa x
n

k

k
jkjyux

n

i

i
i

1

01
;  

or: 

pL
pa

pd
L

pa

pL
pL un

i

i
i

n

k

k
jk

jyn

i

i
i

u
x

1

1

0

1

;  

The established regime for small values of p can be obtained by calculating the 
above fraction series development following the increasing powers of p, for 
example, by means of a division following increasing powers. 

By limiting ourselves to the third term, we obtain: 

pLp
a

a

a

aa
a

a
p

a
a

a

a
p

a
a

a

p
a
a

a

pL
pL

u

ii

u
x

...
2

1
1

1

3
3
0

3
1

2
0

12

0

32

0

2
2
0

2
1

0

1

0

0
0
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whence the parametric expression for the state variable x(t): 

...'''"'. 3210 tuAtuAtuAtuAtx  [8.76] 

2 3
31 1 2 2 1 1

0 1 2 32 3 2 2 3 4
0 0 0 0 0 0 0

21with ; ; ; ;....
aa a a a a a

A A A A
a a a a a a a

 

8.5.2.3. External representations  

The same procedure can be employed for the input-output representation [8.59]: 

''''''''' 2103210 udududyayayaya   

for which the Laplace transform can be written: 

pLpdpddpLpapapaa uy
2

210
3

3
2

210  

or: 

pL
papapaa

pdpdd
pL uy 3

3
2

210

2
210

 

By dividing the fraction in p following increasing powers, and then returning to 
the space-time domain, we obtain the differential representation: 

..."'
0

2
2
0

11
2
0

20
3
0

2
10

2
0

10

0

1

0

0 tu
a
d

a

ad

a

ad

a

ad
tu

a

ad
a
d

tu
a
d

ty  

8.5.2.4. Harmonic established regimes  

A system can also be characterized in spectral space. We thus proceed in a 
manner analogous to the case of impulse excitation, but with harmonic excitations in 
complex form tje . The established harmonic regimes of the linear invariant 
systems can be studied by means of the complex amplitudes method by searching 
for solutions in the form tjeXX ˆ , where we denote by M̂  the constant 

complex matrix associated with the matrix function tjeMtM ˆ , the temporal 
derivation having been replaced by a multiplication by j . System [8.1] can be 
written: 
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UBXAXj ˆˆ.ˆ  [8.77] 

Solving linear algebraic system [8.77] makes it possible to calculate complex 
amplitudes of the state vector )(X̂  and the output vector )(Ŷ  for all values of 
the pulsation . We obtain complex algebraic equations analogous to those obtained 
by Laplace transform for the established regimes, where the variable p is replaced by 
j . The complex vector amplitudes )(X̂  and )(Ŷ  can be written: 

1

1

ˆ ˆ( ) . ( );
ˆ ˆ ˆ( ) ( ). ( ) with: .

X j I A BU

Y H U H D j I A B
 

The matrix )(H  is the transfer matrix of the system between the inputs and the 
outputs. It is the Fourier transform of the impulse response matrix. 

The harmonic regimes of external representations obtained above can be 
obtained in the same way. For example, from relation [8.59] we can derive the 
complex amplitude of the output ŷ  as a function of the input ˆ( ):u  

u
aajaa

djdd
y ˆˆ

2
31

2
20

2
210

 

The parametric representations obtained earlier can be written in the harmonic 
regime, by performing a series development in increasing powers of j . For 
example, with the discrete system of equations [8.1], we have, from [8.74]: 

UBAjCDYUBAjX n

n

nn

n

n ˆ.ˆ.;ˆ.ˆ 1

0

1

0
 

The preceding series developments in  are a valid approximation for the low 
frequencies. We will obtain in section 8.5.3 an estimation of the radius of 
convergence of the preceding series in  in an example. 

In the study of certain vibration problems (mechanical, electrical and 
electromechanical, acoustics), we define impedances which are functions of the 
transfer between the intensive quantities (forces, electric potentials, acoustic 
pressure) and the flux of associated extensive7 quantities (velocity, electrical 
intensity, acoustic flux) evaluated at the same point. These impedances are in fact a 
                                   
7 These extensive quantities can be reduced, for instance in the case of mechanical 
impedances. 
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particular kind of transfer function. We will assume that these ideas are known to 
the reader at least in the domain of electricity. 

NOTE – The different external representations discussed above are equivalent. In 
practice, we use the form which is best adapted to the problem under study. 

8.5.3. Established regimes in continuous media  

8.5.3.1. Systems described by a continuous state representation  

Consider the cylinder of axis Ox, of cross-section limited by the arbitrary curve 
C (Figure 6.13 of section 6.4.2.6) and on the wall of which we impose the uniform 
temperature Tw(t). The 2D temperature distribution tzyT ,,  satisfies the equations 
and conditions: 

tTtzyTCzyTa
t
T

w,,:,:with;  [8.78] 

Let us take the dimensionless variables:  

2~;~;~ tatzzyy  

Equation [8.78] becomes: 

tTtzyTCzyT
t
T

w
~~,~,~:~,~:with~

~  [8.79] 

Let us look for a solution in the form [PEU 84]: 

0

)( ~)~,~()~,~,~(
i

i
wi tTzygtzyT  [8.80] 

Substituting into [8.79] and identifying the terms corresponding to the 
derivatives tT i

w
~)( , we obtain: 

0 1 0 2 1 10; ; ; ... ; ...n ng g g g g g g  

with the boundary conditions: 0, : , 1; , 0 1,..., ,...iy z C g y z g y z i n  
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The functions zygi
~,~  can thus be calculated from place to place. The reader 

can immediately verify that these are identical to the corresponding functions of the 
unsteady flow problem of a viscous fluid in a cylindrical tube of contour C (section 
6.4.2.6), a difference of unity excepted for the value of index i. 

The method used can be applied to continuous systems containing discrete 
elements. Let us take the system constituted of two walls separated by a thermal 
resistance (section 8.3.2.3.1). Consider here the case where one of the faces is 
maintained at constant temperature 0T , the other face at abscissa +  being 
subject to the variable temperature Tw(t). Taking the dimensionless variables [8.33] 

( xx~  and 2~ tat ), we obtain the heat equation on the intervals [-1,0] and 
[0,1]: 

2

2 ; with:-1 x 0, 0 x 1T T

t x
 [8.81] 

As the thermal resistance R is characterized by relation [8.49] (with RP ), 
we have the boundary conditions (section 8.3.2.3.1): 

)0()0(~~;~1;01
00

TTP
x
T

x
T

tTTT w   [8.82] 

We can easily verify that the equation and the preceding boundary conditions 
possess a solution analogous to [8.80]: 

0

)( ~~)~,~(
i

i
wi tTxgtxT   [8.83] 

The functions xgi
~  satisfy the following successive relations and conditions:  

;11;01

0000;011:,,1

~~;~~;~~;0~

00

''

1
''

1
''

20
''

1
''

0

gg

gg
R

ggggi

xgxgxgxgxgxgxg

iiiiii

nn

 

We can easily calculate the first two functions:  
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2
1~

21
68

1~
216

1

;1
21

1~
10

21
68

1~
216

1~
;

21
1~

0~1

2
2

1

0

2
10

x
P

P
x

P
xP

g

P
xP

gx

P
P

x
P

xP
g

P
xP

gx

 [8.84] 

The first function xg ~
0  is the temperature distribution in the steady regime. 

The reader can easily certify that this corresponds to the thermal resistances in series 
associated with two continuous media and to the resistance R. The thermal flux 
density on the walls is derived from the following expressions: 

tT
aP

PP
P

tTP

x
T

q

tT
aP

PP
P

tTP

x
T

q

p
p

Tp

p
p

Tp

'
2

2

'
2

2

213

34
1

21

213

34
21

 [8.85] 

More generally, M being an operator which only contains spatial derivatives, let 
us consider equation [8.86]: 

t
f

fM   [8.86] 

which possesses parametric solutions of the form: 

0

)(,,),,,(
i

i
wi tTzyxgtzyxT   

The first function zyxg ,,0  is the spatial distribution of the function f in the 
steady regime corresponding to the steady conditions imposed which define the 
reference temperature Tw. The universal functions gi satisfy the successive 
equations: 

0 1 0 1, , 0; , , , , ; , , , , ;n nMg x y z Mg x y z g x y z Mg x y z g x y z  

For example, the thermal conduction equation for a cylindrical problem in a 
heterogenous medium can be written: 
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y
T

zy
yy

T
zy

yzyczyt
T

,,
,,

1
 

It corresponds to the operator , , :T
M a y z y z

y y
 

y
zy

yy
zy

yzyczy
M ,,

,,
1

  

The case where the cylinder is the seat of a volume heat source T(t) can be 
treated in an analogous manner to that of the problem of viscous flow in a 
cylindrical tube, as studied in section 6.4.2.6: 

; with: , : , , 0T

T
t a T y z C T y z t

t
 

The equations of the universal functions g have been established in section 
6.4.2.6. The parameters Pj of formula [8.69] which characterize the input are here 

the successive derivatives ti
T . 

8.5.3.2. Established boundary layer regimes  

The regular perturbation method used for parametric solutions in a finite domain 
can be extended to the case of boundary layers, on the condition that the problem be 
cast as a regular problem. Let us reconsider the example of a thermal shock in a 
semi-infinite medium as described in section 5.4.5.4 (and applied at the end of 
section 8.3.2.2.2) and verifying the heat conduction equation [8.78] but with the 
variable wall temperature Tw(t). In the plane (x, t) we have a singular perturbation in 
the vicinity of x = 0 where the solution obtained presents very different scales: for 
small time values the spatial variations of temperature are rapid, whereas for large 
time values they are slow. The convergence of solutions close to this base solution 
towards this solution cannot therefore be uniform. The variable adapted to the 
boundary layer atx 2  is defined as in section 5.4.5.4. We first of all perform 
a change of coordinates ,, tx , in order that the difference between the two 
solutions can be characterized in a uniform manner: 

,,;2 txTtatx  

Transformed heat equation [8.32] can be written: 
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24
1

2

2
 [8.87] 

This equation is of a form analogous to [8.86] where the differentiation operators 
are separated into two parts, the time derivative constitutes the perturbation term. 
The calculation is performed as before and we seek a series development of 
functions in separated variables: 

0
,

i
ii fg  [8.88] 

Letting 
d
d

d

d
M

24
1

2

2
, equation [8.87] can be written: 

M  

We obtain the recurrence relations: 

'
11

'
1212

'
0101

00

,

0

iiii

w

ggffM

ggffM

ggffM

TgfM

 [8.89] 

which are associated with the boundary conditions: 

,,2,100;10;,,2,1,00 0 iffif ii  

Taking account of the conditions at infinity, the function f0( ) is (see section 
5.4.5.4): 

erff 10  

The analytical calculation of the functions fi is difficult: even if the solution to 
the homogenous equation 0ifM  can be expressed easily as a function of a 
multiplicative constant (section 5.4.5.4), the variation of constants method is 
impractical on account of the complexity of calculations. A numerical solution, 



Thermal Systems and Models     463 

which is preferable, makes the easy calculation of the first functions fi possible. The 
series of functions fi is alternated and tends asymptotically to two functions equal to 

f  which can be easily determined from system [8.89]: 

with:  0 0Mf f f f  

The reader can verify that we have: 2exp( ) ( : constant)f c c  

However, the recurrence relation '
1ii gg  does not provide a simple 

expression for the functions gi. Furthermore, we note that the perturbation term 

 of equation [8.87], of order tTtT ww
'  in relative value, must remain 

quite small: the temporal derivative of the imposed temperature must decay quickly 
enough as time increases. From a physical point of view, it seems natural that in 
order to remain as a small perturbation, the imposed temperature variation decreases 
with time as the temperature distribution of the base solution T0 spreads (Figure 
8.6). In order to render the perturbation uniform in time, we compress the time scale 
by performing the temporal variable change: 

ii gtGt ˆln , 

which simplifies recurrence relation [8.89] of the functions gi, which can be written: 

tTtGtG

tTtGtGtTtGtTtG
i

wii

www

ˆˆˆ

ˆˆˆˆˆˆˆ
)('

1

'''
1

'
2

'
10  [8.90] 

The parametric expression of the solutions for the thermal shock is thus: 

0

)( ˆ,
i

i
i

w ftTtxT  [8.91] 

The derivatives of the function Tw(t) being taken with respect to the variable 
tt lnˆ . 

The thermal flux density at the wall can be written: 

0
')(

0
0ˆ

2
1

i
i

i
w

x
Tw ftT

atx
T

q  
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The values of the derivative 0'
if  are shown in Table 8.2. 

i 0 1 2 3 4 

2/)0('if  –0.5642 –0.7821 0.3859 –0.3203 0.2985 

i 5 6 7 8 9 

2/)0('if  –0.2897 0.2857 –0.2838 0.2829 –0.2826 

Table 8.2. Values of the derivative 0'
if  

The preceding method can also be applied to the expression of solutions in the 
vicinity of the base solutions of the form ft n . In particular, it is easy to verify 
that the value n = 1/2 corresponds to the constant thermal flux which is given at the 
wall. The solutions where the thermal flux varies gradually can be obtained as 
before. 

8.5.3.3. Harmonic solutions of the equations for continuous media  

The method described in section 8.5.2.4 can be applied to continuous media by 
eliminating the temporal variable of the partial differential equation of the problem. 
Let us take the example of temperature oscillation applied to the surface of abscissa 
x = 0 of a semi-infinite wall. We encounter this problem of oscillatory thermal 
penetration into rocks or ground which is subjected to daily or annual temperature 
variations. Assuming a homogenous medium, the temperature txT ,  satisfies heat 
equation [8.32] with the following boundary conditions:  

002

2
,;cos,0; TtTtTtT

x

T
a

t
T

   [8.92] 

We seek solutions of the form: 

xfeTT tj
0  

The heat equation becomes a differential equation: 

xaffj ''  

whose characteristic equation ( 02 jra ) has roots: ajr 2/1 . 
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The real solutions sought for the temperature distribution can be written: 

xtxTT cosexp0  

The depth a2  is a space constant for the thermal damping oscillation. 
The solution represents a temperature oscillation which becomes damped with 
increasing depth. A numerical application shows that this damping is fast: taking a 
value of 10-6 m2.s-1 for the thermal diffusivity of the ground (corresponding to an 
average rock), we find that  is respectively equal to 0.17 meters and to 3.15 meters 
for daily and annual oscillations of temperature. The oscillation phase is opposite at 
a depth of  /2 where amplitude has been reduced by a factor equal to 1.65. 

The complex amplitudes method can be applied equally well to problems defined 
in finite domains (walls, cylinders, etc.). 

8.6. Model reduction  

8.6.1. Overview 

The objective of a knowledge model is to capture the evolution of a system, the 
sub-system interactions of which we do not know. It comprises a large number of 
variables in order to represent all the possible properties. The results involve either a 
large quantity of numerical results from a computer solution or analytical 
representations which may be more or less complex. The use of a knowledge model 
amounts to performing a numerical experiment, which is often less expensive than a 
physical experiment. A model is often too complex for a simple description of a 
particular category of evolutions. Reduction of this model consists of replacing it 
with a reduced model having a smaller number of variables, and whose objective is 
to represent the principal phenomena with regard to the objective which is defined 
(physical understanding of the model mechanisms, elaboration of a simulation 
program or engineering formulae, control of processes). We are therefore interested 
in decomposing the system into a small number of components with relatively 
simple properties and whose interactions can provide a representative description of 
the system in fixed conditions. Of course, the reduced model is not adapted to the 
study of other operating conditions in the system. 

Model reductions can be performed using various methods. However, the value 
of the results of a model or of an experiment always depends on the pertinence of the 
original hypotheses, on the reasoned use of numerical solutions or physical 
measurement techniques and on a suitable physical analysis of the phenomena. 
Certain methods consist of the performance of a numerical solution of a system by 
means of a knowledge model, and the coupling of inputs and outputs with 
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representations of an empirical form which can be obtained by least mean square 
methods; this practice has been used for a long time in order to establish engineering 
formulae for certain applications. It has evolved into more sophisticated forms 
through the use of more sophisticated mathematical methods. The use of these 
methods is only justified as a method of exploiting the calculations resulting from a 
physical analysis, which evaluates the nature of the approximations that are made 
and the relative importance of the components in the functioning of a system. We 
will prefer methods which increase our physical knowledge of the system studied, 
and we will assume that the variables of the knowledge model have a physical 
meaning and are not simply numerical values collected from experiments. 

8.6.2. Model reduction of discrete systems  

8.6.2.1. Principles of reduction of the state representation  

A knowledge model, in the form of a state representation of a system with n state 
variables or of an equivalent representation (an nth order differential equation in one 
variable, etc.) makes the detailed description of all possible evolutions of the system. 
The complexity associated with a large number n of variables leads to it being 
replaced by a model with s state variables (s < n), called a reduced model, the 
objective of which is to represent a particular evolution of the given physical system 
(including its inputs and outputs) with good accuracy, or more general evolutions 
with reduced precision. We have already seen some examples in section 8.3.2.2.3. 

By definition, a differential system of order s cannot be equivalent to a 
differential system of order n (n > s); however, these systems may have an identical 
behavior for a family of solutions which depend on at most s parameters. The 
reduction in the number of variables appearing in the differential equations can only 
come from a regrouping of the equations, allowing the replacement of several 
variables by a single variable or simplification of the equations, which lose their 
differential character. Consider knowledge model [8.93]: 

XDYUBXA
dt
dX

...   [8.93] 

Consider the reduced state vector Xr with s components (s < n) derived from X 
by a passage matrix R from X to Xr (Xr = R X); the state vector Xr satisfies the 
reduced state representation: 

rrrrr
r XDYUBXA

dt
dX

..  [8.94] 

with conditions [8.95] obtained by multiplying the left-hand side of equation [8.93] 
by R and by comparing with [8.94]: 
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.00;; DRDRXXRBBRARA rrrr  [8.95] 

If conditions [8.95] are exactly satisfied, representation [8.94] is an exact 
reduced model for the ensemble of solutions X of [8.93] such that RX is non-zero. 
However, in general, with the exception of cases where these solutions are known 
explicitly, the realization of an exact reduced model is impractical. 

Assuming conditions [8.95] are not satisfied, reduced representation [8.94] is an 
approximate reduced model. The reduced vector Xr = RX of the solution X of [8.93], 
does not exactly satisfy equation [8.94]; if q is the residuum, the error of equation 
[8.94]: 

qUBXA
dt

dX
rrr

r ..  [8.96] 

Let rX̂  be a solution of [8.94]: 

UBXA
dt
Xd

rrr
r .ˆ.

ˆ
 [8.97] 

We define the error rr XXe ˆ  with respect to the exact solution rX̂  assumed 
to be verified by equation [8.94]; it satisfies the differential equation obtained by 
subtracting term by term [8.96] and [8.97]: 

UBXA
dt

dX
eAqeA

dt
de

rrr
r

rr ..  

We must therefore determine the matrices R, Ar and Br, such that the error of 
equation q is minimized. This minimization procedure can be performed on an 
ensemble of known solutions. We will leave aside the details of this kind of 
procedure. 

It is easy to impose that the reduction be exact for the steady regime. In this case, 
equations [8.93] and [8.94] can be solved and we obtain: 

BURARXUBAX rrr
11 .  

and consequently the relation: BRAAB rr
1 . 

In the unsteady regime, the preceding elimination is no longer possible and the 
vector RX obtained with the solution of [8.93] is no longer equal to the solution rX̂  
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of [8.97]. The matrix Ar can be determined by minimizing the error of equation q. 
This minimization can be performed for chosen inputs and for criteria which need to 
be defined for the weighting to be applied at different instants [PET 91]. This 
procedure comes down to performing a numerical interpolation on the knowledge 
model by means of a reduced model. 

8.6.2.2. Physical aspects of the model reduction  

The considerations of the preceding section are essentially of a mathematical 
nature and they leave a wide choice for the variables (in particular the matrix R), the 
class of solutions and the objectives of error minimization. They can be applied to a 
perfect knowledge model from the perspective of thermodynamics (sub-systems in 
quasi-equilibrium), this needing to be verified for solutions which vary quite slowly 
in space-time. The reduction in a knowledge model can only have a limited interest 
if the discretization is too rough in certain domains. The partitioning of a system into 
sub-systems is the most important operation and we will assume that it is suitable. In 
general, the reduction in the number of variables is associated with a regrouping of 
components, which leads to a choice of the reduced variables to be retained; this 
should be done such that the definition of the mean intensive variables of the sub-
systems of the reduced model have a reasonable physical meaning in the balance 
equations (section 1.4.2.5 and section 6.5.2.4). 

The grouping of sub-systems which are in neighboring or identical states leads to 
the replacement of many differential equations by a single equation: for example, a 
material domain which has been segmented into three components and whose 
temperatures are close can be represented by a single component at a suitable 
temperature whose thermal energy is the sum of the energies of the components. 

The sub-systems whose extensive quantity contents are small can often be 
eliminated or assimilated into neighboring components, leading to the suppression 
of the corresponding variables. The components whose extensive quantities are 
constant or vary little can become sources of established fluxes: they thus play a role 
of a simple resistance for the transfer of extensive quantities and their modeling 
loses its differential character. We have seen two examples in sections 8.3.1.3 and 
8.3.1.4. 

In general, the number and the size of the sub-systems (or the grid of the system 
domain) must be adapted to the categories of the solutions studied. Let us take the 
example of the discretization on a continuous medium of a wall whose surfaces are 
subjected to a thermal shock (section 8.3.2.2.2). Let us begin by segmenting the wall 
into 50 equal elements in series (a system analogous to that of section 8.3.1.3). 
Figure 8.13 shows that the temperature variations in the first instances are rapid in 
the vicinity of the wall surface, whereas later, they become quite regular. The 
discretization in equal elements is thus not the best solution: a finer discretization is 
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needed in the vicinity of the wall surfaces if we want to have a suitable precision in 
the first instants, whereas such a fine discretization is not necessary later in the 
central part of the wall. A better result with 50 elements is obtained when these are 
distributed broadly at the center of the wall, and extremely close to the edges of the 
wall. 

8.6.2.3. The problem of local constraints  

However, many systems present local constraints (in the mathematical sense) on 
certain intensive variables related to the possible modification of material elements: 
deteriorations due to excessive temperature or to large8 instantaneous stresses. In 
this case, we obviously cannot eliminate from the model the small component which 
contains, for example, a small thermal energy, but which possesses a critical 
temperature value (temperature of a thermal measurement probe, a fragile element 
whose temperature must be limited, etc.). The intensive variable concerned (often 
the local temperature) is necessary for the regulation of a controller whose job it is 
to modify or stop the system functioning. Model reduction in such zones is 
obviously delicate. 

8.6.2.4. Modal reduction of time-invariant linear systems  

8.6.2.4.1. Introduction 

Modal reduction is essentially concerned with time-invariant linear systems 
whose transitional solution is the sum of eigenmodes of the system of equations (see 
the examples of discrete or continuous systems in section 8.3). The solution of a 
linear system can be expressed in an explicit modal form using initial conditions and 
an established solution (section 8.2.2.2); the reduction here amounts to a 
simplification operation, but the question regarding the pertinence of the different 
modes arises for discretized systems. We are then interested in writing a reduced 
state representation which will allow the numerical simulation of the system in 
complex conditions. 

8.6.2.4.2. Modal reduction of continuous solution of continuous media 

The modal solution of the heat equation involves replacing the continuous 
variable by a denumerable set of mode coefficients in the explicit expression of 
solution [8.38] in the form of a series. The reduction problem therefore consists of 
simplifying and/or truncating this series. A consequence of this truncation is the 
introduction of a discontinuity at the time origin, which amounts to assuming that 

                                   
8 For example, cavitation (vaporization and chiefly sudden condensation) when local pressure 
in a liquid flow is less than the saturation vapor pressure, high temperature on a wall in high 
supersonic or hypersonic air flow, production of pollutants inside engines or chemical 
reactors due to local bad conditions of temperature or concentrations, etc.  
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fast energy transfers in the higher order modes occur instantaneously (section 
8.2.2.2). Various authors avoid this discontinuity by adding a fictitious mode or by 
attributing to the last mode retained the total remaining amplitude. Let us illustrate 
this problem by reconsidering the example of thermal shock on the wall edges 
(section 8.3.2.2.2). 

 

t~

T1

T0 

Tm(t) 

1 
2 3 
4 

1 20  

Figure 8.17. Mean temperature on a wall during a thermal shock on its two faces 
(section 8.3.2.2.2). The draughts are indicative 

Let us consider the mean temperature Tm (formula [8.41]), which translates the 
thermal energy evolution over the course of the heating processes caused by the 
thermal shock (curve 1, Figure 8.17). We have seen (Table 8.1) that the first mode 
contains 81% of the process energy; in only conserving this first mode, we obtain a 
representation for the temperature Tm (curve 2, Figure 8.17), which contains a 
discontinuity at the origin equal to 1 00 19. T T ; considering the first two modes of 
the series representing Tm (curve 3, Figure 8.17) this discontinuity is reduced to 

1 00 10. T T ). 

We can remove this discontinuity by including the total remaining amplitude 
(0.19 in relative units) in the highest mode retained (curve 4, Figure 8.17) in 
accordance with the formula: 

2 29
4 4

1 0 1 0 81 0 19
t t

mT ( t ) T T T [ . . ]e e  

However, the second mode is now too large; we can therefore look to determine 
a time constant of the second mode in order to achieve a better representation of the 
function Tm (t), for example by a mean square error minimization method. It is also 
possible to add a fictitious mode. It is clear that a good solution is not achieved and 
the values obtained by empirical adjustments are not physically pertinent.  
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In effect, in the first instants of the evolution, only zones in the vicinity of edges 
are concerned with the heat transfer. Further from these, the sum of the series terms 
[8.41] is zero: the modal representation is not adapted to the representation of a 
thermal boundary layer problem (section 8.3.2.2.2). We can obviously note that the 
thermal boundary layer is independent of the wall thickness  that can take any 
value: defining modes by means of an arbitrary length is indeed an irrational method 
which cannot lead to a judicious mathematical representation.  

A good reduced model of thermal conduction in a wall must also take into 
account the modal aspect as the evolution of the unsteady boundary layer. There is 
no other (or nearly no other) way to obtain such a reduced model than a composite 
representation matching the modal representation and the thermal shock solution: 
we have presented this method in section 8.3.2.2.3, where a good precision was 
obtained for the mean temperature [8.46], using only the first mode. This method 
also has the advantage of giving precise values for the thermal flux density at the 
edges [8.47] at any instant. 

8.6.2.4.3. Modal reduction of discrete models  

In section 8.6.2.2 we considered the model with 50 elements of a continuous 
wall subjected to a thermal shock, leading to a linear system with 50 variables, and 
which thus comprises 50 eigenvalues and eigenmodes. We will consider that a half 
period of a sinusoid requires at least ten intervals in order to be represented by a 
constant function in each element. The interval under study cannot therefore 
comprise more than five arches: we can only represent the first three even modes 
and the first two odd modes (see Figure 8.12). The 45 other modes are increasingly 
noisy as the order is increased (the 50th mode corresponds to a change of sign of the 
eigenfunction between each of the 50 intervals). Their physical existence is 
increasingly problematic and it is not useful to consider them despite the fact that 
they constitute exact solutions of the model. 

A discretization into sub-systems should comprise a sufficiently large number of 
elements, but only a few modes are actually useful. The modal solution is obviously 
the most interesting because it provides a structured knowledge which highlights the 
system properties. However, the discretization of a linear system proceeding from 
the calculation of its modes requires more elements than a discretization, taking into 
account physical aspects and particularly the level of unbalance between two 
neighboring sub-systems: if we consider the preceding example of the wall on the 
interval [-1,+1], it is necessary to calculate the modes to be retained over the entire 
interval, whose form (Figure 8.12) requires discretization of the interval [-1,+1] in 
equal segments, as opposed to a numerical resolution for which a discretization, 
narrower near the wall faces and wider in the central part, is more fitted to the form 
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of the solution (Figure 8.13). This more rational method of discretization has the 
advantage of reducing the number of variables. 

Once a discretization is chosen for our knowledge model of a time-invariant 
linear system, we have to deal with a lot of modes that have no physical 
significance, as we have seen at the beginning of this section. The best reduction 
method thus consists of using the properties of the modal solution, where only first 
modes, corresponding to the actual evolution of the system, are retained. Returning 
to the definition of an exact reduced state representation (section 8.6.2.1), let us 
assume that the reduced state vector Xr = R X with s components (s < n), derived 
from X by means of the reduction matrix R, satisfies reduced state representation 
[8.98]: 

UBXA
dt

dX
rrr

r ..  [8.98] 

With condition [8.99] obtained by multiplying the left-hand side of equation 
[8.93] by R and comparing with [8.98]: 

.00;; RXXRBBRARA rrr  [8.99] 

we verify that an eigenmode of [8.94] is also an eigenmode of complete state 
representation [8.93]: 

00 iiriiii RIARIRAIA  

The s eigenvalues i of the reduced model are thus eigenvalues of the complete 
model, the corresponding eigenvectors being equal to R i

9, the choice of which 
modes to retain in the reduced model results from the definition of matrix R. The 
reduction matrix R is thus such that the reduced state vector is constituted of the s 
retained modes. Taking eigenvalues as a basis (modal basis), the matrix A is the 
diagonal eigenvalue matrix i. We assume that the s eigenvalues to be retained have 
been placed in the first s elements of the diagonal. In the modal basis, the reduction 
matrix R, of dimension s*n contains 1 on the diagonal, in correspondence with the 
first diagonal element. The reader can verify that the reduced square matrix Ar 
contains the s eigenvalues which were retained. 

The same result can in principle be obtained in another manner. We have seen in 
section 8.2.2.2 that the suppression of a mode amounts to requiring that its 
coefficient be zero in the modal development at each instant: this results in an 
instantaneous linear relationship between the state vector components (formula 
                                   
9 Eigenvectors which have not been retained belong to the kernel of R. 
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[8.19]). The suppression of n-s modes of the model comes down to writing n-s 
relations between the variables, which allows us to eliminate n-s state variables. We 
thus obtain a representation by s state variables of the system which is reduced. This 
method does not require us to calculate the modal basis. While it is in principal 
arbitrary in the preceding methods, the choice of physical variables which are not 
eliminated should nonetheless be performed so as to be conducive to physical 
interpretation. The reader will also note that the principle of modal reduction itself 
leads to a situation where discontinuous data leads to a discontinuity of the 
variables of the reduced representation. 

8.6.2.5. Reduction of input-output representations 

8.6.2.5.1. Introduction 

Simple input-output representations are useful: 

– for obtaining a global knowledge of the behavior of a system in view of the 
implementation of control; 

– for the dimensioning of components during the realization of a system; 

– for the representation of sub-systems in models of complex systems. 

The properties of these reduced representations differ according to their 
utilization: command or engineering formulae. 

8.6.2.5.2. Command models  

The essential characteristics to know are thus relatively global and it is sufficient 
to know one or several “response times” corresponding to the inputs on which we 
act. The output variables allow us to define values of actions to be effected. We will 
here consider a model of the form [8.59] of low order: for example, for a single 
input single output system, we often consider a second order differential equation 
which is satisfied by the output variable and whose input is the right-hand side. We 
will here only consider an open-loop system (without any retroaction by the 
command); the system operation in close-loop depends on the command structure 
and is not the object of this work (see [OBI 00]). 

Second order differential equations represent accumulation (of mass or heat for 
example), damping and stiffness mechanisms, which are themselves represented, 
respectively, by second order terms, first order terms and zero order terms (the 
function). It is thus possible to represent aperiodic or stable oscillatory systems. The 
coefficients of such differential equations can be determined by imposing an 
impulse excitation as an input, and then by “best” identifying the response of the 
system to an expression of the form tae t cos . This is equivalent to 
performing a spectral study of the system (section 8.5.2.4). 
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8.6.2.5.3. Engineering formulae  

We will designate under this category the input-output relations derived from 
knowledge models and which are simple enough to be immediately useful for 
example for quick dimensional assessment of components of a system in view of a 
realization or for the representation of a sub-system in a more complex system. 
These formulae are the result of reduced state representations whose pertinence has 
been previously verified. They can also be obtained by simplification of an 
analytical solution when one exists, for example by truncating a series (example of 
section 8.6.2.4.2) or when using composite representations (section 8.3.2.2.3). 

8.6.2.5.4. Established regimes  

The parametric expression of established regimes, obtained in section 8.5.2 in 
the form of a series, can be simplified by truncation of this. Let us recall that the 
representation in the form of a series is only of interest if it is possible to limit this to 
a small number of terms. If this is not the case, this indicates that thermal boundary 
layers exist in the domain, and it is therefore preferable to find a direct expression 
which represents the boundary layer and to describe a composite solution by 
matched asymptotic expansion (see section 8.3.2.2.3). 

8.7. Application in fluid mechanics and transfer in flows 

The evolution equations of a discrete or continuous system as a time function are 
parabolic (or irreversible). In the presence of flow, the evolution variable is the time 
only when Lagrangian variables are used. In Eulerian variables, the evolution speed 
of a quantity g is no longer represented by its temporal derivative tg  but by the 
material derivative dtdg . This representation does not change the parabolic 
character of the balance equations for extensive quantities with Euler variables 
expressed along curvilinear abscissa of trajectories (or characteristic curves), which 
is a parabolic variable equivalent to the time with Lagrange variables (see 
interpretation of section 5.2.1) upstream then becoming the equivalent of the past. In 
steady flow, the time variable disappears and the evolution variable becomes the 
coordinate of the particle trajectories: systems studied thus appear as dynamic 
systems along the trajectories. The same is true of boundary layer equations, or more 
generally of the evolution of fluid properties along trajectories. These preceding 
ideas are thus applicable to problems encountered in flows. 

The methods evoked in this chapter are encountered when dealing with the 
solution of flow and transfer problems in boundary layers ([SCH 99], [YIH 77]). 
However, these are generally non-linear and computations cannot be effected in as 
complete a manner as in this chapter. Writing balance equations, ultimately with 
approximations which may be more or less global, leads to state representations 
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where time is replaced by a boundary layer coordinate. The inputs are therefore 
often evolution laws for the velocity of a perfect fluid as a function of the spatial 
coordinate, the initial conditions having been provided in the initial section of a 
boundary layer or a pipe. It is thus possible to obtain approximate external 
representations in forms which are more or less explicit. 

In principle, the procedure is of the same nature as for linear problems: an 
elementary analytical solution makes it possible to study situations which are more 
or less similar, and to identify the parameters associated with the category of 
solutions studied. However, non-linearity does not enable the easy use of series 
developments of eigenfunctions or of integral transformations. On the other hand, 
singular or regular perturbation methods remain useful for writing the equations as a 
cascade of successive approximations (section 6.4.2.3). The differential equations 
obtained must often be solved, either by numerical means or by some global 
methods (section 6.3.1.2). In other words, the general methodology of the present 
chapter is applicable to problems of flow and associated transfer by means of an 
adaptation of the calculation methods. The preceding discussions of linear dynamic 
systems often allow us to organize knowledge gained from these non-linear systems 
in a more rational way. 

 



Appendix 1 

Laplace Transform 

A1.1. Definition 

The Laplace transform of a real variable function f(t), considered for 0t  
( 0)(tf for t < 0), is defined by the relation 

0
dtetfpL pt

f  

where p is a complex valued variable. It is particularly well adapted to causal 
signals. 

A1.2. Properties 

– The Laplace transform is a linear application on integrable functions. 
 The Laplace transform of the derivative of a function is written: 

00' 00' fppLfdtetfpdtetfpL f
ptpt

f  

The derivative is here taken in the sense of distributions: any discontinuity of the 
function leads to a Dirac distribution at that point for the derivative. 
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– The Laplace transform of a primitive is written: 

)(
1

)(0 pL
p

pLduuftg fg
t   

– The Laplace transform of a delayed temporal signal can be written: 

if: ttgttftg 0)(,)(  

p
f

xpptpt
g epLdxexfdtetfdtetgpL )(00  

Conversely, if: taetftg )()(  

)(00 apLdtetfdteetfpL f
tapptta

g  

– The Laplace transform of a convolution product of two functions f and g is 
equal to the product of the Laplace transforms of these functions:  

)()()(* pLpLpL gfgf  

A1.3. Some Laplace transforms 

– The Laplace transform of a Dirac function is equal to 1: 

10 dtetdtetpL ptpt  

 being zero for negative values of t. 
– The unit step H(t), equal to 1 for t positive, is the primitive of the Dirac 

distribution: 
0

dtt ; its transform is: ppLH 1 .

– The unit ramp t is the primitive t duuH0  of the unit step H(f); its transform 

is: 21)( ppLt . 

In general, we obtain: 11 n
t ppL n . 

– 
pt f ppLtff

0
limlim0  
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– 
0

limlim
pt f ppLtff  

– Consider the limited development Pm(t) to order m for small values of time t. 
We obtain: 

m

i

m

i i
i

P
i

im
p

a
pLtatP

m
0 0 1

 

The lowest order terms in p-1 represent the Laplace transform which corresponds 
to small values of time t. 

For a limited development, and for large values of t, (t  ) we obtain: 

n

mni
i
i

Q

n

mni

i
im p

a
pLtatQ

m 1  

The highest order terms in p-1 represent the Laplace transform which corresponds 
to large values of t. 

– The Laplace transforms of exponential and harmonic functions are: 

22sin22cos

exp0
)(

exp

;

1
;

1

p
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dtepL
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A1.4. Application to the solution of constant coefficient differential equations  

Consider the system: 00. XXBUXA
dt
dX

.  

The Laplace transform LX(p) of vector X(t) satisfies the equation:  

0XpLpLApI BUX  

From this we deduce: 

0)()( XpLApIpL BUX
-1  
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The matrix 1-pI A  is comprised of elements which are rational fractions of the 
frequency p which can be developed in a complete series in p. We can write this in 
the form: 

0i
i

i DpApI 1-  

The transformed linear system can thus be written: 

0
0

0
0

)()()( XApIpLDXApIpLDppL
i

BUi
i

BUi
i

X i
1-1-

 

The second term represents the transient response to the initial conditions. The 
steady response is thus: 

0

)(

i

i
i tUBDX  



Appendix 2 

Hilbert Transform 

The amplitude a and the frequency  of an oscillatory harmonic motion appear 
naturally if the signal is written as the real part of a complex number in the 
trigonometric form tjae , in which the time derivative of the instantaneous phase 

tt 2  is equal to 2 . In the same way, we can associate a complex-
valued function tx  (called an analytical signal) with any real signal x(t) by 
adding to it an imaginary-valued function of time jy(t). This complex signal can be 
written in the trigonometric form: 

])(Re[)(:with.)()()( )()( tjtj
x etatxetatjytxt  

The modulus ta  and the argument t  of this complex number can be defined 
as the amplitude and the instantaneous phase of the signal x(t); we thus define the 
instantaneous frequency as the derivative 2' t .  

These definitions are only meaningful if the point whose affix is the complex 
function turns nearly regularly in the positive direction around the origin, in a way 
quite similar to a complex exponential function. This is the case for amplitude- or 
phase-modulated harmonic signals, or for the sounds of musical instruments. A 
narrow-band signal x(t) appears on an oscilloscope as a carrier of the neighbouring 
frequency o, whose amplitude [a(t)] varies slowly and whose phase [ (t)] is 
fluctuating. 

Given the real part of a complex number, it cannot be determined uniquely, 
because we only know the product ta cos . As the signals to be represented are 
quite close to harmonic signals, it is natural to apply the Fourier transform and to 
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generalize the properties of harmonic signals. However, we note that the definition 
of an analytic signal tje 2  for a sinusoidal function t2cos  consists of 
eliminating the negative frequencies of the Fourier transform of this analytical 
signal, by folding over the negative frequencies onto the positive frequency axis. 
This operation can be applied to any signal x(t) and it allows the analytical signal 

x(t) to be defined. Let xF  be the Fourier transform of the signal x(t). The 
Fourier transform of the analytical signal tx  associated with x(t) is defined by: 

0for2
0for0

xx

x
FF

F
 

0   ( ) 1
i.e.  ( ) ( ) ( ). ( )   with: 

0   ( ) 1ax x x

x Sign x
F v F v Sign v F v

x Sign x
 [A2.1] 

As the inverse Fourier transform .1 SignF  of the sign function is equal to 
tj  ([BEE 03], [PRI 91]), the analytical signal tx  is thus obtained by 

performing the inverse Fourier transform of expression [A2.1] 

tjHtxFFt xxx
1  

where Hx(t) designates the Hilbert transform of the signal x(t): 

ut
du

uxVPtx
t

FSignjFtH x .
1

*
1

.1  

The Hilbert transform is limited to positive time, contrary to the Fourier 
transform. The Hilbert “filter” is a linear filter whose impulse response is 1/ t; it is 
thus not causal. The transfer function of this filter is 

signjFH tH .1 . The Hilbert filter transforms a cosine to a sine; it 
is a perfect quadrature filter. It is unfortunately not achievable as it is non-causal; 
we can only create quadratures which function in a limited band of frequencies. 
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Cepstral Analysis 

A3.1. Introduction 

The cepstrum is an integral transform that can be calculated from a spectrum and 
contributes to its analysis. For example, in a vibration problem, it makes it possible 
to separate the impulse response from the excitation forces. The analysis of vibration 
signals from rotating machinery is important. The different operating conditions of a 
machine, as well as defects, can be observed in the spectral domain ([STR 96]). 

It is also used in speech processing, the vocal signal coming from the 
convolution of the excitation (source) and the impulse response of the vocal passage. 

Another application is the extraction of incident sound from a signal containing 
both the incident sound and its reflection (echo suppression). We will quickly cover 
this application, which enables the demonstration of the use of logarithms and thus 
of the cepstrum. 

A3.2. Definitions 

Let x(t) be a time signal and Fx( ) its Fourier transform; by definition the 
complex cepstrum Cx(t) is the inverse Fourier transform, denoted F-1, of the 
logarithm of function )(xF ([BOU 98], [NOR 03 ], [STR 96]) 

))((ln)( 1
xx FFC  

if )()()( j
xx eFF , then: )()(ln)(ln jFF xx  
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The power cepstrum may be defined in several ways, for example, as the square 
of the modulus of the complex cepstrum of the signal: 

21 ))((ln xpx FFC . 

or by taking the inverse Fourier transform of logarithm of the modulus square: 

21 )(ln xpx FFC  

A3.3. Example of echo suppression 

Let x(t) be a sound signal comprising the superposition of an original sound s(t) 
and an unwanted echo sr(t): 

)()()( tststx r  

The reflected sound is attenuated and dephased compared with the original signal 

)()( 0ttsatsr  

The Fourier transform of x(t) can be written: 

021)()( tj
sx eaFF  

and the square of the modulus of this transform is:  

0
222 2cos21)()( taaFF sx  

If we take the logarithm of this quantity, the echo phenomenon is seen in 
frequency space by the addition of a periodic term, of period 1/t0:  

0
222 2cos21ln)(ln)(ln taaFF sx  

We now take the inverse Fourier transform of this expression ([ALL 04], ([MAD 
98], [NOR 03]): the first two terms will be, respectively, the power cepstrums x(t) 
and x(t); the third term will be the inverse Fourier transform of the periodic function 
shown above, which will be comprised of Dirac functions of different amplitude, 
separated by t0 
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0
21 2cos21ln)()( taaFCC pspx  

We thus find ourselves in a pseudo-temporal space, whose variable is known as 
“quefrency”, in which we perform a “liftering” of the Dirac signals (the terms 
“cepstrum”, “quefrency” and “liftering” are respectively anagrams of the words 
spectrum, frequency and filtering). The echo signal is thus eliminated by the 
suppression of the Dirac signals in this space. The initial signal is thus reconstructed 
without its echo by an inverse process ([NOR 03]); however, we note that phase 
information has been lost with this procedure of cepstrum power.  

A3.4. General case 

We consider a source signal x(t) going through a passive linear system whose 
impulse response is h(t). The output signal y(t) is the convolution product of x by h: 

)(*)()( txthty  

The convolution product becomes a simple product after Fourier transform: 

xy FHF  

The cepstrum transforms the product to a sum: 

)()()( xhy CCC  

In order to perform the deconvolution, in other words the separation of the 
source from that of the medium, some assumptions must be made regarding the class 
of functions which comprise either the source or the medium: 

– in the case of speech, we assume that the vocal excitation is comprised of a 
periodic impulse t0 (this property is of course only applied to the stable parts of 
sounds) and that the cepstral contribution of the vocal passage is found in the low 
quefrencies; we can thus obtain a smoothed spectrum which only contains 
information on the vocal passage. The inverse Fourier transform of the spectrum 
gives the estimated impulse response of the passage and is used for voice synthesis 
([JUR 08], [MAD 98]).  

– in mechanics, free oscillatory periods of a medium are generally small 
compared to the periods of the excitations: the cepstrum of the impulse response of 
the structure is in the left part, while that of the excitation is in the right part of the 
cepstrum graph of structure response to excitation ([DES 00], [NOR 03], [ALL 
04]). 



Appendix 4 

Eigenfunctions of an Operator 

A4.1. Eigenfunctions of an operator 

Consider a linear operator L applied to a function xf  which satisfies 
homogenous boundary conditions at the extremities of the interval defined by [a,b]. 
The eigenvalues i of this operator and the associated eigenfunctions fi satisfy the 
relation:  

ii ffL  

A4.2. Self-adjoint operator 

A4.2.1. Eigenfunctions 

Let us define the scalar product gf , for the foregoing functions f, by the 
relation: 

b
a dxxgxfgf .  

The operator L is the self-adjoint if it satisfies the relation  

b
a

b
a dxxLgxfdxxgxLfgfLLgf ..  

Under some general conditions: 
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 the eigenvalues of the self-adjoint operator L are positive and form an infinite 
denumerable set 1, 2,..., ,...i i n . With each eigenvalue i we can associate an 
eigenfunction fi; 

 the eigenfunctions fi form a basis for the class of functions f. 

A4.2.2. Expression of a function f using an eigenfunction basis-set 

Consider the following series development of f on the eigenfunction-basis: 

xfcxf j
j

j
1

 

Let us calculate the scalar product iff : 

xfxfcxfxf ij
j

ii
1

 [A4.1] 

Now, the eigenfunctions are orthogonal for the scalar product. In effect, with the 
assumption of a self-adjoint operator, we obtain for ji :  

0jiijjiji ffffLLff  

We also obtain: 

2
iiiiiii fffLff   

Substituting previous results into [A4.1], we obtain the value of the coefficient 
ci:  

2

1
xfcxfxfcxfxf iiij

j
ii  

or:     2
i

i

i

f x f x
c

f x
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Eulerian, 345 
Lagrangian, 342 
laser Doppler, 343 

Archimedes’ theorem, 65 
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Balance equations, 54;  
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local for chemical species, 177 
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Calorific coefficients, 27 
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Causal signal, 368 
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Center of buoyancy, 65, 71 
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Characteristic determinant, 208, 213 
Characteristic equation, 208, 222, 
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Command model, 411, 473 
Complex potential, 274 
Compressibility coefficients, 27 
Compression of data, 385 

analytical methods, 387 
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D 
D’Alembert’s paradox, 281 
Damköhler number, 197 
Damping of oscillations, 294 
Deformation rate tensors, 129 
Determinism, 6, 13 
Differential equations, 199 

first order quasi-linear, 203 
of order n, 218 
quasi-linear partial, 220 
reduced form, 229 
second order partial, 225, 232 
system of partial, 220 

Diffusion, 73 
coefficient, 61, 88, 93 
equation, 97 
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in a fixed component, 91 
in a fluid at rest, 81, 90 
in a moving medium, 83 
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isothermal, 87 
thermal, 58 
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Dirac distribution, 418, 446 
Discretization, 414, 472 

schemes, 250 
Discretized signals, 381 
Dissipation function, 175, 176 
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Drag, 280 

coefficient, 195 
Driving pressure, 66 
Dynamic 
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resultant, 108 
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Eckert number, 192 
Energy 

internal, 21, 32, 40 
mechanical, 44  

Energy equation, 116, 172, 187 
entropy form of, 117 
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generation, 167 
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Equations 
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equation of state, 190 
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Equilibrium 
local thermodynamic, 48 
of the atmosphere, 67 
stability of, 68 

Errors 
in measurements, 351 
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Established regimes, 453, 474 
for boundary layers, 461 
harmonic, 456 
in continuous media, 458 

Euler equations, 163 
Evaporation 

steady, 82, 91 
unsteady, 94 

Extensive quantities, 16 
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Fick’s law, 61, 87 
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Flow 
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 2D steady, 212, 213 
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 around a circular cylinder, 279 

compressible inviscid fluid, 270  
in a nozzle, 244 
in a pipe, 314 
quasi-1D, 309 
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steady, 327 
unsteady, 327 

Flux 
mass, 125 
thermal, 412 
volume, 125 

Flux density vector, 77, 124 
diffusion, 84 
extensive quantities, 50 
mass, 78 
molar, 52, 78 
thermal, 52 

Force 
definition of, 104 
deriving from a potential, 161 
external, 108 
internal, 109 
power of, 107 
power of external, 110 
power of internal, 109 
viscous volume, 148 

Fourier 
discrete transform of discretized 
signal, 385 
fast Fourier transform, 385 
series, 362 
short time transform, 370 
transform, 364 
transform of a discretized signal, 
383 

Fourier’s law, 59 
Free surfaces, 180 
Friction coefficient, 194 
Froude number, 192 
Fully immersed flows, 181 

G, H 
Gabor transform, 373 
Galilean reference frame, 101, 123 
Gibbs function, 25 
Gibbs-Helmholtz relation, 25 
Heat convection equation, 176 
Heat engines, 45 
Heat equation, 72 

Heat-transfer coefficient, 73 
Heisenberg-Gabor inequality, 372 
Hilbert transform, 368 
Homoentropic fluid, 65, 67, 164 
Homogenity, 19 
Hugoniot relation, 169 
Hydrostatics, 69 

center of buoyancy, 71 
center of pressure, 69 
equations, 66 
thrust, 69 

Hysteresis, 407 

I 
Impulse, 105 

input, 418 
response, 447 

Initial conditions, 181, 418 
Integral transforms, 363 
Intermittency, 379 
Internal energy equation, 174 
Inviscid fluid, 163, 166, 172, 187 
Irreversibility, 3 
Irreversible phenomena, 49, 58 
Irrotational flows, 273 
Isolated systems, 2 

K, L 
Kinetic energy, 106 

balance, 115 
coefficient, 318 
enthalpic form of theorem, 165 
theorem, 107, 109, 164, 186 

Lagrange’s theorem, 267 
Laplace transform, 368, 450 
Laplace’s law, 66, 181, 287 
Laws for viscous fluids, 139 

Bingham, 142 
Newtonian, 141 
Ostwald-de Waele, 141 
purely viscous, 138, 141 
time-dependent, 140 
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Lewis number, 88 
Lift, 280 

M 
Mach lines, 215 
Mach number, 160, 169, 192, 215 
Mass 

average velocity, 79 
concentration, 76 
conservation, 154, 160, 170, 184, 
190 
enthalpy, 65 
fraction, 76 

Matched asymptotic expansions, 437 
Material derivative, 122 

of a flux integral, 128 
of a volume integral, 125 

Modal reduction, 465 
continuous media, 469 
discrete models, 471 
discrete systems, 466 

Model reduction 
input-output, 473 

Modulation 
amplitude, 378 
frequency, 378 

Molar 
average velocity, 79 
concentration, 76 
fraction, 76 
molarity, 76 
momentum, 102, 103 
angular, 107 
balance, 113, 160 
coefficient, 317 
conservation of, 103 
flux, 114 
flux theorem, 184 
linear, 107 

MP3 encoding, 388 

 

 

N, O 
Navier-Stokes equations, 161, 190 
Newtonian fluid, 163, 176, 407 
Non-dimensional parameters, 189 
Non-isothermal mixtures, 97 
Numerical solutions, 250 
Nusselt number, 194 
Ohm’s law, 61 
Onsager relations, 42, 59 

P, Q 
Parametric models, 451 
Parseval’s theorem, 362 
Particle Image Velocimetry, 349 
Péclet diffusion number, 192, 197 
Perfect gas, 23, 28, 39 
Perturbation, 296 

parameter, 300 
regular, 296 
singular, 305 

Poiseuille flow, 142 
Potential 

equation, 271 
flows, 269, 282 
lines, 276 

Power 
mechanical, 173 
thermal, 173 

Prandtl number, 192 
Pressure 

center of, 70 
driving, 162, 170, 180, 181, 194 
forces, 63, 68 
mean driving, 318 
measurement of, 341 
partial, 76 
total, 166 
total driving, 166 

Process, 13 
natural, 15, 16 
possible, 15 
quasi-static, 15 
reversible, 15 
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Progressive wave, 241 
Propeller thrust, 185 

Q, R 
Quantity of acceleration 
Rabinowitsch-Mooney relation, 144 
Rayleigh criterion, 371 
Reconstruction of a signal, 363 
Reduced extensive quantities, 47 
Representation 

analytical, 448 
by differential equations, 455 
external, 410, 446, 456 
internal, 408 
mixed, 438 
modal, 445, 471 
state, 408 

Representation of signals, 357 
analytical, 360 
on basis of functions, 361 

Reynolds number, 146, 193, 195 
Rotation vector, 123, 257 

material derivative, 260 

S 
Saint-Venant relation, 167 
Sampling of signals, 382 
Schmidt number, 197 
Separation 

steady flow, 325 
unsteady flow, 334 

Shannon’s theorem, 384 
Shock waves, 239, 247, 248 
Sound analysis, 390 

musical signals, 393 
Source, 275 
Sources of entropy, 35 
Specific heats, 27 
Spectrogram 

sonagram, 376 
Speed of sound, 28 
Spring-mass oscillator, 288 

State, 11 
equation, 19, 23 
general equation, 19, 20 
internal, 9 
of equilibrium, 12, 15, 19 
representation, 412, 453 
variables, 9 
vector, 408 

Statics of fluids, 63 
Stefan’s law, 45 
Streakline, 121 
Stream function, 155, 273 
Streamline, 121, 155, 166, 276 
Strouhal number, 195 
Superposed flows, 277 
Supersonic flow, 244 
Surface 

tension, 287 
waves in shallow water, 284 

Synthesis of musical signals, 397 
MIDI system, 397 
musical instruments, 399 

System, 13 
closed, 14 
insulated thermal, 32 
isolated mechanical, 102 
open, 14, 112 
out-of-equilibrium, 30, 37 
rigid, 111 

T 
Temperature 

mean mixing, 415 
measurements, 346 

Thermal 
conduction, 59, 62, 72 
conductivity, 60 
diffusion, 62 
diffusion coefficient 98 
diffusivity, 60, 72, 88 
radiation, 45 

Thermal system 
2 components, 423, 449 
3 components (series), 425 
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3 components (star), 429 
n components, 414 

Thermodynamic 
fluxes, 57 
forces, 57, 58 
potentials, 23, 25 

Thrust of a rocket, 114 
Time-frequency representation, 374 
Time-invariant system, 408 

linear, 408, 410, 420 
Time-scale transform, 373 
Trajectory, 121 
Transitional regimes, 421 
Tricomi equation, 238 
Turbulence 

analysis of signals, 402 
Turbulent and acoustic pressure 

fluctuations, 403 
Two wall thermal system, 439 

V 
Variables 

Eulerian, 14, 119, 412 
extensive, 18 
intensive, 21, 25, 37, 412 
Lagrangian, 14, 119 

Vaschy-Buckingham theorem, 194 
Velocity potential, 273 
Viscometric flow, 135 
Viscosity, 132 (see also Laws for 

viscous fluids) 
bulk, 147 
definition of, 146 
dynamic, 147 
kinematic, 148 
physical origin, 133 

 
 
 
 
 
 
 
 

Viscous 
fluid, 156 
stress, 163, 173, 186 

Visualizations, 348 
Volume 

balance, 184 
source, 53 

Vortex, 275 
line, 258 
stretching, 263 
tube, 258 
velocity field, 260 

Vorticity 
diffusion of the, 265 
equation, 171, 261 
vector, 123, 257 

W 
Wall 

adiabatic, 15 
diathermic, 15 

Wall thermal problem 
constant temperature faces, 432 
shocks on the faces, 435 

Wave equation, 2 
Wavelet transform, 373 
Weak concentration, 83, 96 


