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ABSTRACT
Geometric programming is used for design and cost optimization and the development of generalized
design relationships and cost rations for specific problems. The early pioneers of the process, Zener,
Duffin, Peterson, Beightler, and Wilde, played important roles in the development of geometric
programming. The theory of geometric programming is presented and 10 examples are presented
and solved in detail. The examples illustrate some of the difficulties encountered in typical problems
and techniques for overcoming these difficulties. The primal-dual relationships are used to illustrate
how to determine the primal variables from the dual solution. These primal-dual relationships can
be used to determine additional dual equations when the degrees of difficulty are positive. The goal
of this work is to have readers develop more case studies to further the application of this exciting
mathematical tool.

KEYWORDS
cost optimization, design optimization, general solutions, posynominials, primal, dual,
pioneers, casting design, metal cutting economics, LPG cylinder design
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Preface
The purpose of this text is to introduce manufacturing engineers, design engineers, manufac-

turing technologists, cost engineers, project managers, industrial consultants and finance managers
to the topic of geometric programming. I was fascinated by the topic when first introduced to it over
40 years ago at a National Science Foundation(NSF) short course in Austin, Texas in 1967. The
topic was only a day or so of a three week course, but I recognized its potential in the application to
riser design in the metal casting industry during the presentation. I was fortunate to have two of the
pioneers in Geometric Programming make the presentations, Doug Wilde of Stanford University
and Chuck Beightler of the University of Texas, and had them autograph their book “Foundations
of Optimization” for me which I fondly cherish even now.

Since I was working on my PhD in pyrometallurgy at the time, I did not have time to work
on a separate publication using geometric programming until 1972. I have written several journal
papers using geometric programming on metal cutting and riser design, but never had been able to
teach a complete course on the topic. Thus, before I retire, I decided to write a brief book on the
topic illustrating the basic approach to solving various problems to encourage others to pursue the
topic in more depth. I feel that its ability to lead to design and cost relationships in an integrated
manner makes this tool essential for engineers, product developers, and project managers be more
cost competitive in this global market place.

This book is dedicated to the pioneers of geometric programming such as Clarence Zener,
Richard Duffin, Elmor Peterson, Chuck Beightler, Doug Wilde, Don Phillips, and others for de-
veloping this topic. This work is also dedicated to my family members, Natalie and Jennifer; Rob,
Denie, Robby and Sammy, and Chal and Joyce.

I also want to recognize those who have assisted in the reviewing and editing of this work
and they are Dr. M. Adithan, Dean of Faculty and Staff at VIT University in Vellore, India and
Dr. Deepak Gupta, Assistant Professor at Southeast Missouri State University, USA.

Robert C. Creese
October 2009
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C H A P T E R 1

Introduction
1.1 OPTIMIZATION AND GEOMETRIC PROGRAMMING

1.1.1 OPTIMIZATION
Optimization can be defined as the process of determining the best or most effective result utilizing a
quantitative measurement system.The measurement unit most commonly used in financial analysis,
engineering economics, cost engineering or cost estimating tends to be currency such as US Dollars,
Euros, Rupees, Yen, Won, Pounds Sterling, Kroner, Kronor, Mark or specific country currency. The
optimization may occur in terms of net cash flows, profits, costs, benefit/cost ratio, etc. Other mea-
surement units may be used, such as units of production or production time, and optimization may
occur in terms of maximizing production units, minimizing production time, maximizing profits,
or minimizing cost. Design optimization determines the best design that meets the desired design
constraints at the desired objective, which typically is the minimum cost. Two of the most impor-
tant criteria for a successful product are to meet all the functional design requirements and to be
economically competitive.

There are numerous techniques of optimization methods such as linear programming,dynamic
programming, geometric programming, queuing theory, statistical analysis, risk analysis, Monte
Carlo simulation,numerous search techniques, etc.Geometric programming is one of the better tools
that can be used to achieve the design requirements and minimal cost objective.The development of
geometric programming started in 1961. Geometric programming can be used not only to provide
a specific solution to a problem, but it also can, in many instances, give a general solution with
specific design relationships. These design relationships based upon the design constants can then
be used for the optimal solution without having to resolve the original problem. This fascinating
characteristic appears to be unique to geometric programming.

1.1.2 GEOMETRIC PROGRAMMING
Geometric programming is a mathematical technique for optimizing positive polynomials, which are
called posynominials.This technique has many similarities to linear programming but has advantages
in that:

1. a non-linear objective function can be used;

2. the constraints can be non-linear; and

3. the optimal cost value can be determined with the dual without first determining the specific
values of the primal variables.
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Geometric programming can lead to generalized design solutions and specific relationships
between variables.Thus, a cost relationship can be determined in generalized terms when the degrees
of difficulty are low, such as zero or one.This major disadvantage is that the mathematical formulation
is much more complex than linear programming, and complex problems are very difficult to solve.
It is called geometric programming because it is based upon the arithmetic-geometric inequality
where the arithmetic mean is always greater than or equal to the geometric mean. That is:

(X1 + X2 + . . . Xn)/n ≥ (X1
∗X2

∗ . . . ∗Xn)
(1/n) . (1.1)

Geometric programming was first presented over 50 years but has not received adequate
attention similar to that which linear programming has obtained over its history of less than 70 years.
Some of the early historical highlights and achievements of geometric programming are presented
in the next chapter.

1.2 EVALUATIVE QUESTIONS
1. What is the most common unit of measurement used for optimization?

2. The following series of costs($) were collected: 2, 4, 6, 8, 10.

(a) What is the arithmetic mean of the series of costs?

(b) % b. What is the geometric mean of the series of costs?

3. The following series of costs(€) were collected: 20, 50, 100, 500, 600.

(a) What is the arithmetic mean of the series of costs?

(b) What is the geometric mean of the series of costs?

4. What is the year recognized as the beginning of geometric programming?
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C H A P T E R 2

Brief History of Geometric
Programming

2.1 PIONEERS OF GEOMETRIC PROGRAMMING

Clarence Zener, Director of Science at Westinghouse Electric in Pittsburgh, Pennsylvania, USA, is
credited as being the father of geometric programming. In 1961, he published a paper in the Pro-
ceedings of the National Academy of Science on “A Mathematical Aid in Optimizing Engineering
Designs,” which is considered as the first paper on geometric programming. Clarence Zener is better
known in electrical engineering for the Zener diode. He later teamed with Richard J. Duffin and
Elmor L. Peterson of the Carnegie Institute of Technology (now Carnegie-Mellon University, USA)
to write the first book on geometric programming, named “Geometric Programming” in 1967. A
report by Professor Douglas Wilde and graduate student Ury Passey on “Generalized Polynomial
Optimization” was published in August 1966. Professor Douglas Wilde of Stanford University and
Professor Charles Beightler of the University of Texas included a chapter on geometric programming
in their text “Foundations of Optimization.” I attended an optimization short course at the Univer-
sity of Texas in August 1967, and that is when I first became interested in geometric programming.
I realized at that time that geometric programming could be used for the riser design problem, and
I published a paper on it in 1971.

Other early books by these leaders were “Engineering Design by Geometric Programming”
by Clarence Zener in 1971, “Applied Geometric Programming” by C.S. Beightler and D.T. Phillips
in 1976, and the second edition of “Foundations of Optimization” by C.S. Beightler, D.T. Phillips,
and D. Wilde in 1979. Many of the initial applications were in the area of transformer design as
Clarence Zener worked for Westinghouse Electric in the area of chemical engineering, which was
the area emphasized by Beightler and Wilde. It is also important to note that several graduate
students played an important role, namely Elmor Peterson at Carnegie Institute of Technology and
Ury Passy and Mordecai Avriel at Stanford University.

2.2 EVALUATIVE QUESTIONS

1. Who is recognized as the father of geometric programming?

2. When was the first book published on geometric programming, and what was the title of the
book?
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3. Which three universities played an important role in the development of geometric program-
ming?
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C H A P T E R 3

Theoretical Considerations
3.1 PRIMAL AND DUAL FORMULATION
The mathematics of geometric programming are rather complex; however, the basic equations are
presented and followed by an illustrative example.The theory of geometric programming is presented
in more detail in some of the references [10, 17, 19, 1] listed at the end of the book. The primal
problem is complex, but the dual version is much simpler to solve. The dual is the version typically
solved, but the relationships between the primal and dual are needed to determine the specific values
of the variables in the primal. The primal problem is formulated as:

Ym(X) =
Tm∑

T =1

σmtCmt

N∏
n=1

Xamtn
n ; m = 0, 1, 2, . . . M , (3.1)

with σmt = ±1 and Cmt > 0
and Ym(X) ≤ σm for m = 1, . . . M for the constraints
where Cmt = positive constant coefficients in cost and constraint equations
and Ym(X) = primal objective function
and σmt = signum function used to indicate sign of term in the equation

(either +1 or −1).
The dual is the problem formulation that is typically solved to determine the dual variables

and value of the objective function. The dual objective function is expressed as:

d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωm0/ωmt )
σmtωmt

]σ

m = 0, 1, . . . M and t = 1, 2, . . . Tm , (3.2)

where
σ = signum function (± 1)

Cmt = constant coefficient
ωm0 = dual variables from the linear inequality constraints
ωmt = dual variables of dual constraints
σmt = signum function for dual constraints,

and by definition:
ω00 = 1 . (3.3)

The dual is formulated from four conditions:
(1) a normality condition:

Tm∑
T =1

σ0tω0t = σ where σ = ±1 , (3.4)
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where
σ0t = signum of objective function terms
ω0t = dual variables for objective function terms.

(2) N orthogonal conditions
M∑

m=0

T∑
t=1

σmtamtnωmt = 0 , (3.5)

where
σmt = signum of constraint term
amtn = exponent of design variable term
ωmt = dual variable of dual constraint.

(3) T non-negativity conditions (dual variables must be positive):

ωmt ≥ 0 m = 0, 1 . . . M and t = 1, 2 . . . . . . Tm . (3.6)

(4) M linear inequality constraints:

ωmo = σm

Tm∑
t=1

σmtωmt ≥ 0 . (3.7)

The dual variables, ωmt , are restricted to being positive, which is similar to the linear program-
ming concept of all variables being positive. If the number of independent equations and variables in
the dual are equal, the degrees of difficulty are zero.The degrees of difficulty is the difference between
the number of dual variables and the number of independent linear equations, and the greater the
degrees of difficulty, the more difficult the solution. The degrees of difficulty can be expressed as:

D = T − (N + 1) , (3.8)

where
T = total number of terms (of primal)
N = number of orthogonality conditions plus normality condition

(which is equivalent to the number of primal variables).
Once the dual variables are found, the primal variables can be determined from the relation-

ships:

Cot

N∏
n=1

Xamtn
n = ωotσYo t = 1, . . . To , (3.9)

and

Cmt

N∏
n=1

Xamtn
n = ωmt/ωmo t = 1, . . . To and m = 1, . . . M . (3.10)

The theory may appear to be overwhelming with all the various terms, but a simple example will be
presented to illustrate application of the various equations.
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3.2 THE OPTIMAL BOX DESIGN PROBLEM
A box manufacturer wants to determine the optimal dimensions for making boxes to sell to customers.
The cost for production of the sides is C1 ($ 2/sq ft), and the cost for producing the top and bottom
is C2 ($ 3/sq ft) as more cardboard is used for the top and bottom of the boxes. The volume of the
box is to be set a limit “V ” (4 ft3), which can be varied for different customer specifications. If the
dimensions of the box are W for the width, H for the box height, and L for the box length, what
should the dimensions be based upon the cost values and box volume? The problem is to minimize
the box cost for a specific box volume.

The primal objective function is:

Minimize: Cost(Y ) = C2WL + C1H(W + L) (3.11)
Subject to: WLH ≥ V . (3.12)

However, in geometric programming, the inequalities must be written in the form of ≤ and
the right-hand side must be ±1. Thus, the primal constraint becomes:

Minimize: Cost(Y ) = C1HW + C1HL + C2WL (3.13)
Subject to: −WHL/V ≤ −1 . (3.14)

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ03 = 1
σ11 = −1
σ1 = −1 .

Thus, the dual formulation is:

Objective Function (using Equations (3.3) and (3.14)) ω01 + ω02 + ω03 = 1 (3.15)
L terms (terms (using Equations (3.5), (3.13), and (3.14)) ω02 + ω03 − ω11 = 0 (3.16)
H terms (terms (using Equations (3.5), (3.13), and (3.14)) ω01 + ω02 − ω11 = 0 (3.17)
W terms (using Equations (3.5), (3.13),) and (3.14)) ω01 + ω03 − ω11 = 0 . (3.18)

The degrees of difficulty are equal to:

D = T − (N + 1) = 4 − (3 + 1) = 0 .

Thus, one has the same number of variables as equations, so this can be solved by simultaneous
equations as these are linear equations.

Using Equations (3.15)–(3.18), the values for the dual variables are found to be:
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ω01=1/3
ω02=1/3
ω03=1/3
ω11=2/3

and by definition

ω00=1 .

Using the linearity inequality equation expressed by Equation (3.7),

ω10 = ωmt = σm

∑
σmt ωmt = (−1)∗(−1∗2/3) = 2/3 > 0 where m = 1 and t = 1 .

The objective function can be found using Equation (3.8) is:

d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmt ωmo/ωmt )
σmtωmt

]σ

, (3.8)

d(ω) = 1
[
{(C1

∗1)/(1/3)}(1)∗(1/3) ∗{(C1
∗1)/(1/3)}(1)∗(1/3)∗{(C2∗1)/(1/3)}(1)∗(1/3)

∗ {((1/V )∗1)/(2/3)}(−1)∗(2/3)
]1

= 1
[
{(3C1)

1/3} ∗{(3C1)
1/3} ∗{(3C2)

1/3}
∗ {(1/V )−2/3}

]
= 3C

2/3
1 C

1/3
2 V 2/3 (3.19)

= 3 22/331/342/3 = $17.31 .

Note, the solution has been determined without finding the values for L, W , or H . Also note
that the dual expression is expressed in constants, and thus the answer can be found without having
to resolve the entire problem as one only needs to use the new constant values. To find the values of
L, W , and H , one must use Equations (3.9) and (3.10). Using Equation (3.9), the relationships are:

C1HW = ω01Y = Y/3
C1HL = ω02Y = Y/3
C2WL = ω03Y = Y/3 .

Combining the first two of these relationships, one obtains

W = L . (3.20)
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Combining the last two of these relationships, one obtains

H = (C2/C1)L . (3.21)

Since V = HWL = (C2/C1) L L L = (C2/C1)L
3.

Thus,

L = [V (C1/C2)]1/3 (3.22)
W = L = [V (C1/C2)]1/3 (3.23)
H = (C2/C1)L = (C2/C1)[V (C1/C2)]1/3 = [V (C2

2/C2
1)]1/3 . (3.24)

The specific values for this particular problem would be:

L = [4(2/3)]1/3 = 1.387 ft
W = L = 1.387 ft
H = [4(32/22)]1/3 = 2.080 ft .

The volume of the box, LWH = (1.386)(1.386)(2.080) = 4.0 ft3, which was the minimum
volume required for the box. To verify the results, the parameters are used in the primal problem
(Equation (3.13)) to make certain the solution obtained is the same.

Cost(Y ) = C1HW + C1HL + C2WL . (3.13)

Y0 = C1[V (C2
2/C2

1)]1/3[V (C1/C2)]1/3 + C1[V (C2
2/C2

1)]1/3[V (C1/C2)]1/3

+ C2[V (C1/C2)]1/3[V (C1/C2)]1/3

Y0 = C
2/3
1 (V 2/3)C

1/3
2 + C

2/3
1 (V 2/3)C

1/3
2

+ C
2/3
1 (V 2/3)C

1/3
2

Y0 = 3C
2/3
1 C

1/3
2 V 2/3 . (3.25)

The expressions for Equation (3.19) from the primal and Equation (3.25) from the dual are
equivalent. The geometric programming solution is in general terms, and thus can be used for any
values of C1, C2, and V . This ability to obtain general relationships makes the use of geometric
programming a very valuable tool for cost engineers.

The dual variables associated with the objective function, ω01, ω02 or ω03 were equal to the
value of 1/3, which implies that each term of the primal contributed equally to the objective function.
This can be illustrated by examining the three terms of the primal, individually, in Equation (3.13).
The specific values of L, W , and H (1.387 ft, 1.387 ft and 2.080 ft, respectively) were put in the
three terms of the primal with the cost parameter:
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C1HW = $2/ft2 × 2.080 ft × 1.387 ft = $5.77

C1HL = $2/ft2 × 2.080 ft × 1.387 ft = $5.77

C2WL = $3/ft2 × 1.386 ft × 1.386 ft = $5.77 .

The total cost is the sum of the three components, which is $ 17.31 as determined by the
solution of the dual, previously.

3.3 EVALUATIVE QUESTIONS
1. What version of the geometric problem formulation is solved for the objective function and

why?

2. What values can the signum function have?

3. How are the primal variables determined?

4. A large box is to be made with the values of C1 = 4 Euros/m2, C2 = 4 Euros/m2, and V =
8 m3. What is the cost(Euros) and the values of H , W , and L?
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C H A P T E R 4

Trash Can Case Study
4.1 INTRODUCTION
Various case studies are used to illustrate the different applications of geometric programming as
well as to illustrate the different conditions that must be evaluated in solving the problems. The
first case study, the trash can case study, will be easy to solve and have zero degrees of difficulty,
and the latter cases will indicate situations where the degrees of difficulty are positive and where
the dual variables may be negative. When the dual variables become negative, that indicates that a
constraint is non-binding, and thus that constraint can be removed from the solution. The solutions
are provided in detail, giving the general solution for the problem in addition to the specific solution.
These examples are provided so that the readers can develop solutions to specific problems that they
may have and to illustrate the importance of the generalized solution.

4.2 PROBLEM STATEMENT AND GENERAL SOLUTION
Bjorn of Sweden has entered into the trash can manufacturing business and he is making cylindrical
trash cans and wants to minimize the material cost. The trash can is an open cylinder and designed
to have a specific volume. The objective will be to minimize the total material cost of the can.
Figure 4.1 is a sketch of the trash can illustrating the design parameters of radius and height. The
bottom and sides can be of different costs as the bottom is typically made of a thicker material. The
primal objective function is:

Minimize: Cost(Y ) = C1πr2 + C22πrh (4.1)
Subject to: V = πr2h , (4.2)

where:

r = radius of trash can bottom
h = height of trash can
V = volume of trash can
C1 = material constant cost of bottom material of trash can
C2 = material constant cost of side material of trash can.

The constraint must be written in the form of an inequality, so

V ≥ πr2h . (4.3)
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2r

h

Figure 4.1: Trash can.

And it must be written in the less than equal form, so it becomes

−πr2h/V ≤ −1 . (4.4)

Thus, the primal problem is:

Minimize: Cost(Y ) = C1πr2 + C22πrh (4.5)
Subject to: − πr2h/V ≤ −1 . (4.6)

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ11 = −1
σ1 = −1 .

The dual formulation is:

Objective Function ω01 + ω02 = 1 (4.7)
r terms 2ω01 + ω02 − 2ω11 = 0 (4.8)
h terms ω02 − ω11 = 0 . (4.9)

Using theses equations, the values of the dual variables are found to be:

ω01 = 1/3
ω02 = 2/3
ω11 = 2/3
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and by definition

ω00 = 1 .

The degrees of difficulty are equal to:

D = T − (N + 1) = 3 − (2 + 1) = 0 . (4.10)

Using the linearity inequality equation,

ω10 = ωmt = σm

∑
σmt ωmt = (−1)∗(−1∗2/3) = 2/3 > 0 where m = 1 and t = 1 .

The objective function can be found using the dual expression:

Y = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmt ωmo/ωmt )
σmtωmt

]σ

(4.11)

= 1
[[

{(π C1
∗1/(1/3))}(1∗1/3)

] [
{π C2

∗1/(2/3))}(1∗2/3)
] [

{(π/V )∗((2/3)/(2/3)}(−1∗2/3)
]]1

Y = 3π1/3 C
1/3
1 C

2/3
2 V 2/3 . (4.12)

The values for the primal variables can be determined from the relationships between the
primal and dual as:

C1πr2 = ω01Y = 1/3∗Y , (4.13)
and C22πrh = ω02Y = 2/3∗Y . (4.14)

Dividing these expressions and reducing terms one can obtain:

r = (C2/C1)
∗h . (4.15)

Setting
V = πr2h . (4.16)

And using the last two equations one can obtain

h = ((V/π)(C2
1/C2

2))1/3 , (4.17)
and r = ((V/π)(C2/C1))

1/3 . (4.18)

Using (4.17) and (4.18) in Equation (4.5) for the primal, one obtains:

Y = C1πr2 + C22πrh (4.5)

= 3π1/3C
1/3
1 C

2/3
2 V 1/3 . (4.19)
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Note that Equations (4.19) and (4.12) are identical, which is what should happen, as the
primal and dual objective functions must be identical.

An important aspect about the dual variables is that they indicate the effect of the terms
upon the solution. The values of ω02 = 2/3 and ω01 = 1/3 indicate that the second term has twice
the impact as the first term in the primal. For example, if C1 = 9 $/sq ft, C2 = 16 $/sq ft, and
V = 4π(12.57) cubic feet, then

h = ((V/π)(C2
1/C2

2))1/3 = ((4π/π)(92/162))1/3 = (4∗81/256)1/3 = 1.082 ft ,

and r = ((V/π)(C2/C1))
1/3 = ((4π/π)(16/9))1/3 = (4∗16/9)1/3 = 1.923 ft .

Note that:
V = πr2h = 3.1416∗1.082 ft∗(1.923 ft)2 = 12.57 ft3 .

And

Y = C1πr2 + C22πrh = 9∗3.14∗1.9232 + 16∗2∗3.14∗1.923∗1.082
= $104.5 + $209.0
= $313.5 .

Note that the contribution of the second term is twice that of the first term, which is what is
predicted by the value of the dual variables as ω01 = 1/3 and ω02 = 2/3. This occurs regardless of
the values of the constants used, and this is an important concept for cost analysis. Thus, the cost of
the walls (2πrh) is twice the cost of the base(πr2), regardless of the values of C1 and C2. The values
of h and r , as well as the total cost, are dependent upon C1 and C2, but the ratio of the cost between
the walls and base will remain the same. This information on the ratios of the costs is unique to
geometric programming.

4.3 EVALUATIVE QUESTIONS
1. A trash can is designed to hold 3 cubic meters of trash. Determine the cost and the design

parameters (radius and height) in meters for if the costs C1 and C2 are 20 Swedish Kroner per
square meter and 10 Swedish Kroner per square meter, respectively.

2. If the volume is doubled to 6 cubic meters, what are the new dimensions and cost?

3. If the trash can is to have a lid, which will have the same dimensions as the bottom of the
trash can, what are the cost and dimensions of the trash can with the lid?
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C H A P T E R 5

Open Cargo Shipping Box Case
Study

5.1 PROBLEM STATEMENT AND GENERAL SOLUTION
This is a classic geometric programming problem as it was the first illustrative problem presented
in the first book [10, page 5] on geometric programming. The problem was expanded to determine
the dimensions of the box as well as the minimum cost of the shipping box. The problem is stated
as such: “Suppose that 400 cubic yards (V ) of gravel must be ferried across a river. The gravel is to
be shipped in an open cargo box of length x1, width x2 and height x3. The sides and bottom of the
box cost $ 10 per square yard (A1), and the ends of the box cost $ 20 per square yard (A2). The cargo
box will have no salvage value and each round trip of the box on the ferry will cost 10 cents (A3).”

a) What is the minimum total cost of transporting the 400 cubic yards of gravel?
b) What are the dimensions of the cargo box?
c) What is the number of ferry trips to transport the 400 cubic yards of gravel?
Figure 5.1 illustrates the parameters of the open cargo shipping box.

End 

Bottom 
Side 

x2 

x1 

x3 

Figure 5.1: Open cargo shipping box.

The first issue is to determine the various cost components to make the objective function.
The ferry transportation cost can be determined by:

T 1 = V ∗A3/(x1
∗x2

∗x3) = 400∗0.10/(x1
∗x2

∗x3) = 40/(x1
∗x2

∗x3) . (5.1)
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The cost for the ends of the box (2 ends) is determined by:

T 2 = 2∗(x2
∗x3)

∗A2 = 2∗(x2
∗x3)

∗20 = 40∗(x2
∗x3) . (5.2)

The cost for the sides of the box (2 sides) is determined by:

T 3 = 2∗(x1
∗x3)

∗A1 = 2∗(x1
∗x3)

∗10 = 20∗(x1
∗x3) . (5.3)

The cost for the bottom of the box is determined by:

T 4 = (x1
∗x2)

∗A1 = (x1
∗x2)

∗10 = 10∗(x1
∗x2) . (5.4)

The objective function (Y ) is the sum of the four components and is:

Y = T 1 + T 2 + T 3 + T 4 (5.5)
Y = 40/(x1

∗x2
∗x3) + 40∗(x2

∗x3) + 20∗(x1
∗x3) + 10∗(x1

∗x2) . (5.6)

The primal objective function can be written in terms of generic constants for the cost variables
to obtain a generalized solution.

Y = C1/(x1
∗x2

∗x3) + C2
∗(x2

∗x3) + C3
∗(x1

∗x3) + C4
∗(x1

∗x2) , (5.7)

where C1 = 40, C2 = 40, C3 = 20 and C4 = 10.
From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ03 = 1
σ04 = 1 .

The dual formulation is:

Objective Function ω01 + ω02 + ω03 + ω04 = 1 (5.8)
x1 terms −ω01 + ω03 + ω04 = 0 (5.9)
x2 terms −ω01 + ω02 + ω04 = 0 (5.10)
x3 terms −ω01 + ω02 + ω03 = 0 . (5.11)

Using theses equations, the values of the dual variables are found to be:

ω01 = 2/5
ω02 = 1/5
ω03 = 1/5
ω04 = 1/5 ,
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and by definition

ω00 = 1 .

Thus, the dual variables indicate that the first term of the primal expression is twice as im-
portant as the other three terms. The degrees of difficulty are equal to:

D = T − (N + 1) = 4 − (3 + 1) = 0 . (5.12)

The objective function can be found using the dual expression:

Y = d(ω) = σ

⎡
⎣ M∏

m=0

T m∏
t=1

(Cmtωmo/ωmt )
σmtωmt

⎤
⎦

σ

(5.13)

= 1[[{(C1
∗1/(2/5))}(1∗2/5)][{C2

∗1/(1/5))}(1∗1/5)][{C3
∗1/(1/5)}(1∗1/5)][{C4

∗1/(1/5)}(1∗1/5)]]1
= 1002/5 ∗ 2001/5 ∗ 1001/5 ∗ 501/5

= 1002/5 ∗ 10000001/5

= 1002/5 ∗ 1003/5

= $100 .

Thus, the minimum cost for transporting the 400 cubic yards of gravel across the river is $
100.

The values for the primal variables can be determined from the relationships between the
primal and dual as:

C1/(x1
∗x2

∗x3) = ω01Y = (2/5)Y (5.14)
C2

∗x2
∗x3 = ω02Y = (1/5)Y (5.15)

C3
∗x1

∗x3 = ω03Y = (1/5)Y (5.16)
C4

∗x1
∗x2 = ω04Y = (1/5)Y . (5.17)

If one combines Equations (5.15) and (5.16), one can obtain the relationship:

x2 = x1
∗(C3/C2) . (5.18)

If one combines Equations (5.16), (5.17), and (5.18), one can obtain the relationship:

x3 = x2
∗(C4/C3) = x1

∗(C3/C2)
∗(C4/C3) = x1

∗(C4/C2) . (5.19)

If one combines Equations (5.14) and (5.15), one can obtain the relationship:

x1
∗x2

2
∗x2

3 = (1/2)∗(C1/C2) . (5.20)

Using the values for x2 and x3 in Equation (5.20), one can obtain:

x1 = [(1/2)∗(C1C
3
2/(C2

3C2
4))]1/5 . (5.21)
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Similarly, one can solve for x2 and x3 and the equations would be:

x2 = [(1/2)∗(C1C
3
3/(C2

2C2
4))]1/5 (5.22)

and
x3 = [(1/2)∗(C1C

3
4/(C2

2C2
3))]1/5 . (5.23)

Now using the values of C1 = 40, C2 = 40, C3 = 20 and C4 = 10, the values of x1, x2, and x3 can
be determined using Equations (5.21), (5.22), and (5.23) as:

x1 = [(1/2)∗(40∗403/(202102))]1/5 = [32]1/5 = 2 yards
x2 = [(1/2)∗(40∗203/(402102))]1/5 = [1]1/5 = 1 yard
x3 = [(1/2)∗(40∗103/(402202))]1/5 = [0.03125]1/5 = 0.5 yard .

Thus, the box is 2 yards in length, 1 yard in width, and 0.5 yard in height. The total box
volume is the product of the three dimensions, which is 1 cubic yard.

The number of trips the ferry must make is 400 cubic yards/1 cubic yard/trip = 400 trips. If
one uses the primal variables in the primal equation, the values are:

Y = 40/(x1
∗x2

∗x3) + 40∗(x2 ∗ x3) + 20∗(x1
∗x3) + 10∗(x1

∗x2) . (5.6)
Y = 40/(2∗1∗1/2) + 40∗(1∗1/2) + 20∗(2∗1/2) + 10∗(2∗1) (5.24)
Y = 40 + 20 + 20 + 20

= $100 .

Note that the primal and dual give the same result for the objective function. Note that the
components of the primal solution (40, 20, 20, 20) are in the same ratio as the dual variables (2/5,
1/5, 1/5, 1/5). This ratio will remain constant even as the values of the constants change, and this
is important in the ability to determine which of the terms are dominant in the total cost. Thus,
the transportation cost is twice the cost of the box bottom, and the box bottom is the same as the
cost of the box sides and the same as the cost of the box ends. This indicates the optimal design
relationships between the costs of the various box components and the transportation cost associated
with the design.

5.2 EVALUATIVE QUESTIONS
1. The ferry cost for a round trip is increased from $ 0.10 to $ 3.20. What is the new total cost, the

new box dimensions, and the number of ferry trips required to transport the 400 cubic yards
of gravel?

2. The ferry cost for a round trip is increased from $ 3.20 to $ 213.06. What is the new total cost,
the new box dimensions, and the number of ferry trips required to transport the 400 cubic yards
of gravel?
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3. A cover must be added to the box, and it is made having the same costs as the box bottom.
Determine the new total cost, the new box dimensions, and the number of ferry trips required
to transport the 400 cubic yards of gravel.
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C H A P T E R 6

Metal Casting Cylindrical Riser
Case Study

6.1 INTRODUCTION

The riser design problem in metal casting is always a concern for foundry engineers. The riser(also
called feeders in many parts of the world) is an amount of additional metal added to a metal
casting to move the thermal center from the casting into the riser so there will be no solidification
shrinkage in the casting. The risers are typically shaped as cylinders as other shapes are difficult for
the molding process, and this shape has been successfully used for decades. The riser also has other
design conditions such as to supply sufficient feed metal, but thermal design issues are typically the
primary concern. There are several papers on riser design using geometric programming concerning
side riser, top riser, insulated riser and many other riser design issues in the references [4, 5, 6, 7, 8].

For a riser to be effective, the riser must solidify after the casting in order to provide liquid
feed metal to the casting. The object is to have a riser of minimum volume to improve the yield
of the casting process which improves the economics of the process. The case study considered is a
cylindrical side riser which consists of a cylinder of height H and diameter D. Figure 6.1 indicates
the relationship between the casting, the side riser and the parameters of the riser.

Riser

D

H

Casting

Figure 6.1: The cylindrical riser.

The theoretical basis for riser design is Chvorinov’s Rule, which is

t = K(V/SA)2 , (6.1)
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where

t = solidification time (minutes or seconds)
K = solidification constant for molding material (minutes/in2 or seconds/cm2)
V = riser volume (in3 or cm3)

SA = cooling surface area of the riser (in3 or cm3) .

The objective is to design the smallest riser such that

tR ≥ tC (6.2)

where

tR = solidification time of the riser
tC = solidification time of the casting .

This constraint (Equation (6.2)) can be written as:

KR(VR/SAR) ≥ KC(VC/SAC) . (6.3)

The riser and the casting are assumed to be molded in the same material so the KR and KC

are equal and thus the equation can be written as:

(VR/SAR) ≥ (VC/SAC) . (6.4)

The casting has a specified volume and surface area, the right-hand side of the equation can
be expressed as a constant Y = (VC/SAC), which is called the casting modulus, and Equation (6.4)
becomes

(VR/SAR) ≥ Y . (6.5)

The volume and surface of the cylindrical riser can be written as:

VR = πD2H/4 (6.6)
SAR = πDH + 2πD2/4 . (6.7)

The surface area expression neglects the connection area between the casting and the riser as
the effect is small. Thus, Equation (6.5) can be rewritten as:

(πD2H/4)/(πDH + 2πD2/4) = (DH)/(4H + 2D) ≥ Y . (6.8)

The constraint must be rewritten in the less than equal form with the right-hand side being
less than or equal to one, which becomes

4YD−1 + 2YH−1 ≤ 1 . (6.9)
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6.2 PROBLEM FORMULATION AND GENERAL SOLUTION
The primal form of the side cylindrical riser design problem can be stated as:

Minimize:
V = πD2H/4 . (6.10)

Subject to:
4YD−1 + 2YH−1 ≤ 1 . (6.11)

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ11 = 1
σ12 = 1
σ1 = 1

The dual problem formulation is:

Objective Function ω01 = 1 (6.12)
D terms 2ω01 − ω11 = 0 (6.13)
H terms ω01 − ω12 = 0 . (6.14)

Using Equations (6.12) to (6.14), the values of the dual variables were found to be:

ω01 = 1
ω11 = 2
ω12 = 1 .

The degrees of difficulty are equal to:

D = T − (N + 1) = 3 − (2 + 1) = 0 . (6.15)

Using the linearity inequality equation, ω10 can be evaluated as:

ω10 = ωmt = σm

∑
σmtωmt = (1)∗(1∗2 + 1∗1) = 3 > 0 where m = 1 and t = 1 . (6.16)

The objective function can be found using the dual expression:

Y = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωmo/ωmt )
σmtωmt

]σ

(6.17)

= 1[[{(π/4∗1/1)}(1∗1)][{(4Y ∗3/2)}(1∗2)][{(2Y ∗3/1)}(1∗1)]]1

= (π/4)∗(6Y )2∗(6Y )

= (π/4)∗(6Y )3 . (6.18)
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The values for the primal variables can be determined from the relationships between the
primal and dual as:

4YD−1 = ω11/ω10 = 2/3 (6.19)
and 2YH−1 = ω11/ω10 = 1/3 . (6.20)

The equations for H and D can be determined as:

D = 6Y (6.21)
and H = 6Y . (6.22)

Using (6.21) and (6.22) in Equation (6.6) for the primal, one obtains:

VR = (π/4)∗(6Y )3 . (6.23)

Note that Equations (6.18) and (6.23) are identical, which is what should happen, as the
primal and dual objective functions must be identical. The design equations for the riser diameter
and the riser height are both six times the casting modulus. This relationship holds for the side
cylindrical riser design with negligible effects for the connecting area. This also indicates that the
riser height and riser diameter are equal for the side riser. Designs for other riser shapes and with
insulating materials using geometric programming are given in the references.

6.3 EXAMPLE PROBLEM
A rectangular plate casting with dimensions L = W = 10 cm and H = 4 cm is to be produced, and
a cylindrical side riser is to be used. The optimal dimensions for the side riser can be obtained from
the casting modulus Y and Equations (6.21) and (6.22). The casting modulus is obtained by:

Y = (VC/SAC) = (10 cm × 10 cm × 4 cm)/[2(10 cm × 10 cm)

+ 2(10 cm × 4 cm) + 2(10 cm × 4 cm)]
= 400 cm3/360 cm2 = 1.111 cm .

Thus,

H = 6Y = 6 × 1.111 cm = 6.67 cm
D = 6Y = 6 × 1.111 cm = 6.67 cm .

The volume of the riser can be obtained from Equation (6.23) as:

VR = (π/4)(6Y )3 = 233 cm3 .

Thus, once the modulus of the casting is determined, the riser height, diameter, and volume
can be determined using Equations (6.21)–(6.23).
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6.4 EVALUATIVE QUESTIONS
1. A side riser is to be designed for a metal casting, which has a surface area of 40 cm2 and

a volume of 120 cm3. The hot metal cost is 100 Rupees per kg, and the metal density is
3.0 gm/cm3.

(a) What are the dimensions in centimeters for the side riser (H and D)?

(b) What is the volume of the side riser (cm3)?

(c) What is the metal cost of the side riser(Rupees)?
item What is the metal cost of the casting(Rupees)?

2. Instead of a side riser, a top riser is to be used; that is, the riser is placed on the top surface of
the riser. The cooling surface area for the top riser is:

SAR = πDH + πD2/4 .

Show that for the top riser that D = 6Y and H = 3Y .
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C H A P T E R 7

Process Furnace Design Case
Study

7.1 PROBLEM STATEMENT AND SOLUTION
An economic process model was developed [20, 16] for an industrial metallurgical application. The
annual cost for a furnace operation in which the slag-metal reaction was a critical factor of the process
was considered, and a modified version of the problem is presented. The object was to minimize the
annual cost, and the primal equation representing the model was:

Y = C1/(L
2∗D∗T 2) + C2

∗L∗D + C3L
∗D∗T 4 . (7.1)

The model was subject to the constraint that:

D ≤ L .

The constraint must be set in geometric programming for which would be:

(D/L) ≤ 1 , (7.2)

where

D = Depth of the furnace (ft)
L = Characteristic Length of the furnace (ft)
T = Furnace Temperature (K) .

For the specific example problem, the values of the constants were:

C1 = 1013($ − ft3 − K2)

C2 = 100($/ft2)

C3 = 5∗10−11(ft−2 − K−4) .

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ03 = 1
σ11 = 1
σ1 = 1 .
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D

L

T=?

Figure 7.1: Process furnace.

The dual problem formulation is:

Objective Function ω01 + ω02 + ω03 = 1 (7.3)
L terms −2ω01 + ω02 + ω03 − ω11 = 0 (7.4)
D terms −ω01 + ω02 + ω03 + ω11 = 0 (7.5)
T terms −2ω01 + 4ω03 = 0 . (7.6)

Using Equations (7.3) to (7.6), the values of the dual variables were found to be:

ω01 = 0.4 (7.7)
ω02 = 0.4 (7.8)
ω03 = 0.2 (7.9)
ω11 = −0.2 . (7.10)

The dual variables cannot be negative, and the negative value implies that the constraint is
not binding, that is it is a loose constraint. Thus, the problem must be reformulated without the
constraint, and the dual variable is forced to zero, that is ω11 = 0 and the equations resolved. The
new dual becomes:

Objective Function ω01 + ω02 + ω03 = 1 (7.11)
L terms −2ω01 + ω02 + ω03 = 0 (7.12)
D terms −ω01 + ω02 + ω03 = 0 (7.13)
T terms −2ω01 + 4ω03 = 0 . (7.14)

Now the problem is that it has 4 equations to solve for three variables. If one examines
Equations (7.12) and (7.13), one observes that Equation (7.12) is dominant over Equation (7.13),
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and thus Equation (7.13) will be removed from the dual formulation. The new dual formulation is:

Objective Function ω01 + ω02 + ω03 = 1 (7.15)
L terms −2ω01 + ω02 + ω03 = 0 (7.16)
T terms −2ω01 + 4ω03 = 0 . (7.17)

The new solution for the dual becomes:

ω01 = 1/3
ω02 = 1/2
ω03 = 1/6

and by definition

ω00 = 0.0 .

The dual variables indicate that the second term is the most important, followed by the first
term and then the third term. The degrees of difficulty are now equal to:

D = T − (N + 1) = 3 − (2 + 1) = 0 .

The objective function can be found using the dual expression:

Y = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωmo/ωmt )
σmtωmt

]σ

(7.18)

= 1[[{(C1
∗1/(1/3)1)}(1/3∗1)][{(C2

∗1/(1/2)}(1/2∗2)][{(C3/(1/6))}(1/6∗1)]]1

= 1[[{(1∗1013∗1/(1/3)1)}(1/3∗1)][{(100∗1/(1/2)}(1/2∗2)][{(5∗10−11/(1/6))}(1/6∗1)]]1

= $11, 370 .

This can be expressed in a general form in terms of the constants as:

Y = (3C1)
1/3(2C2)

1/2(6C3)
1/6 . (7.19)

The values for the primal variables can be determined from the relationships between the
primal and dual, which are:

C1
∗L−2∗D−1∗T −2 = ω01Y (7.20)

C2
∗L∗D = ω02Y (7.21)

and C3
∗L∗D∗T 4 = ω03Y . (7.22)
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The fully general expressions are somewhat difficult, but the variables can be expressed in
terms of the constants and objective function as:

T = [(ω03/ω02)
∗(C2/C3)]1/4 (7.23)

L = [(C1
∗(C2

∗C3)
(1/2))]/[ω01

∗(ω02
∗ω03)

(1/2)∗Y 2] (7.24)

D = [(ω01
∗ω(3/2)

02
∗ω(1/2)

03 Y 3)/(C1
∗C(3/2)

2
∗C(1/2)

3 ] . (7.25)

The expressions developed for the variables in terms of the constants in a reduced form were:

T = (1/3 C2/C3)
1/4 (7.26)

L = 1.3743 ∗ (C
1/3
1 C

−1/2
2 C

1/6
3 ) (7.27)

D = 1 . (7.28)

Using the values of Y = 11369, C1 = 1013, C2 = 100, C3 = 5∗10−11, ω01 = 1/3, ω02 =
1/2, and ω03 = 1/6, the values for the variables are:

T = 903K

L = 56.85 ft
and

D = 1.00 ft .

Using the values of the variables in the primal equation, the objective function is:

Y = C1/(L
2∗D∗T 2) + C2

∗L∗D + C3
∗L∗D∗T 4

= 1013/(56.852∗1∗9032) + 100∗56.85∗1 + 5∗10−11∗56.85∗1∗(9034)

= 3, 795 + 5, 685 + 1, 890
= $11, 370 .

The values of the objective function for the primal and dual are identical, which implies that
the values for the primal variables have been correctly obtained. Note that the costs terms are in the
same ratio as the dual variables; the third term is the smallest, the first term is twice the third term,
and the second term is three times the third term.

This problem was presented to indicate the difficulties in that when the constraint is loose,
the problem must be restated with the loose constraint removed and a new solution obtained for
the dual variables. The constraint is loose as D = 1 ft is much lower than L = 56.85 ft. The other
item of interest was that equations dominated by other equations can prevent a solution and must
be removed. The removal of the dominated equation was necessary to obtain a solution and may be
the cause of D being unity.

7.2 EVALUATIVE QUESTIONS
1. The problem constraint was given as D ≤ L, but the designer decided that was incorrect and

reversed the constraint to L ≤ D. Resolve the problem and determine the dual and primal
variables as well as the objective function.
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2. Resolve the problem making the initial assumption that L = D and reformulate the primal
and dual problems and find the variables and objective function.
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C H A P T E R 8

Gas Transmission Pipeline Case
Study

8.1 PROBLEM STATEMENT AND SOLUTION

The energy crisis is with us today, and one of the problems is in the transmission of energy. A gas
transmission model was developed [20, 14] to minimize the total transmission cost of gas in a new
gas transmission pipeline. The problem is more difficult than the previous case studies as several of
the exponents are not integers. The primal expression for the cost developed was:

C = C1
∗L1/2∗V/(F 0.387∗D2/3) + C2

∗D∗V + C3/(L
∗F) + C4

∗F/L . (8.1)

Subject to:

(V/L) ≥ F .

The constraint must be restated in the geometric form as:

−(V/(LF)) ≤ −1 , (8.2)

where
L = Pipe length between compressors (feet)
D = Diameter of Pipe (in)
V = Volume Flow Rate (ft3/sec)
F = Compressor Pressure Ratio Factor.

Figure 8.1 is a sketch of the problem indicating the variables and is not drawn to scale.

L

DF F

CompressorCompressor

V

Figure 8.1: Gas transmission pipeline.
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For the specific problem, the values of the constants were:

C1 = 4.55∗105

C2 = 3.69∗104

C3 = 6.57∗105

C4 = 7.72∗105 .

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ03 = 1
σ04 = 1
σ11 = −1
σ1 = −1 .

The dual problem formulation is:

Objective Function ω01 + ω02 + ω03 + ω04 = 1 (8.3)
L terms 0.5ω01 − ω03 − ω04 + ω11 = 0 (8.4)
F terms − 0.387ω01 − ω03 + ω04 + ω11 = 0 (8.5)
V terms ω01 + ω02 − ω11 = 0 (8.6)
D terms −0.667ω01 + ω02 = 0 . (8.7)

Using Equations (8.3) to (8.7), the values of the dual variables were found to be:

ω01 = 0.26087
ω02 = 0.17391
ω03 = 0.44952
ω04 = 0.11570
ω11 = 0.43478

and by definition
ω00 = 1 ,

and

ω10 = ωmt = σm

∑
σmtωmt = (−1)∗(−1∗0.43478) = 0.43478 where m = 1 and t = 1 .
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The objective function can be found using the dual expression:

Y = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωmo/ωmt )
σmtωmt

]σ

(8.8)

= 1[[{(4.55∗105∗1/0.26087)}(1∗0.26087)]∗[{(3.69∗104∗1/0.17391)}(1∗0.17391)]∗
[{(6.57∗105∗1/0.44952)}(1∗0.44952)]∗[{(7.72∗105∗1/0.11570)}(1∗0.11570)]∗
[{(1∗0.43478/0.43478)}(−1∗0.43478)]]1

= $1.3043∗106/ yr .

The degrees of difficulty are equal to:

D = T − (N + 1) = 5 − (4 + 1) = 0 . (8.9)

The values for the primal variables can be determined from the relationships between the
primal and dual which are:

C1
∗L1/2∗V/(F 0.387∗D2/3) = ω01Y (8.10)

C2
∗D∗V = ω02Y (8.11)

C3/(L
∗F) = ω03Y (8.12)

C4
∗F/L = ω04Y (8.13)

V/(F ∗L) = ω11/ω10 = 1 . (8.14)

The fully general expressions are somewhat difficult, but the variables can be expressed in
terms of the constants and objective function as:

F = [(C3ω04)/(C4ω03)]1/2 (8.15)
V = C3/(ω03

∗Y ) (8.16)
L = [(C3C4)/(ω03ω04)]/Y (8.17)
D = [(ω02

∗ω03)/(C2
∗C3)]∗Y 2 . (8.18)

Using the values of Y = 1.3043∗106, C1 = 4.55∗105, C2 = 3.69∗104, C3 = 6.57∗105, C4 =
7.72∗105, ω01 = 0.26087, ω02 = 0.17391, ω03 = 0.44952, ω04 = 0.11570, and ω11 = 0.43478
one obtains:

F = [(C3
∗ω04)/(C4

∗ω03)]1/2 = [(6.57∗105∗0.11570)/(7.72∗105∗0.44952)]1/2 = 0.468

V = C3/(ω03
∗Y ) = 6.57∗105/(0.44952 ∗ 1.3043∗106) = 1.1205 ft3/sec

L = [(C3
∗C4)/(ω03

∗ω04)]1/2/Y = [(6.57∗105∗7.72∗105)/(0.44952∗0.1157)]1/2/1.3043∗106 = 2.3943 ft
D = [(ω02

∗ω03)/(C2
∗C3)]∗Y 2 = [(0.17391∗0.44952)(3.69∗1046.57∗105)]∗(1.3043∗106)2 = 5.4857 in .
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The primal expression can now be solved using the primal variables and the contribution of
each of the terms can be observed.

C = C1
∗L1/2∗V/(F 0.387∗D2/3) + C2

∗D∗V + C3/(L
∗F) + C4

∗F/L

= 4.55∗105∗2.39431/2∗1.1205/(0.4680.387∗5.48572/3) + 3.69∗104∗5.4857∗1.1205+
6.57∗105/(2.3943∗0.468) + 7.72∗105∗0.468/2.3943

= 3.4029∗105 + 2.26814∗105 + 5.8633∗105 + 1.5090∗105

= $1, 304, 300 .

The third term is slightly higher than the others, but all terms are of the same magnitude.
Since the constraint is binding, that is V = L∗F , and the results indicate that holds as:

1.1205 = 2.3943∗0.468 = 1.1205 .

The values of the dual variables were more complex for this problem than the previous prob-
lems, but the values of these dual variables still have the same relationship to the terms of the primal
cost function. The first dual variable, ω01 was 0.26087, and the relation between the first cost term
of the primal to the total cost is 3.4029∗105/1.3043∗106 = 0.2609. The reader should show that
the other dual variables have the same relationships between the terms of the primal cost function
and the total primal cost.

8.2 EVALUATIVE QUESTIONS
1. Resolve the problem with the values of C1 = 6∗105, C2 = 5∗104, C3 = 7∗105, and C4 =

8∗105. Determine the effect upon the dual variables, the objective function, and the primal
variables. Also examine the percentage of each of the primal terms in the objective function
and in the original objective function.

2. The constraint is a binding constraint. If the constraint is removed, the objective function
should be lower. What problem(s) occurs when the constraint is removed that causes concern?
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C H A P T E R 9

Journal Bearing Design Case
Study

9.1 INTRODUCTION

An interesting problem with one degree of difficulty is a journal bearing design problem presented
by Beightler, Lo, and Bylander [2].The objective was to minimize the cost(P), and the variables were
the half-length of the bearing(L) and the radius of the journal(R). The objective function presented
and the constants in the problem are those presented in the original paper, and the derivations of the
constants were not detailed. The solution presented is based upon deriving an additional equation
whereas the original problem was solved by reducing the degree of difficulty and determining upper
and lower bounds to the solution. The solution presented solves the problem, directly using the
additional equation and without needing to use search techniques.

9.2 PRIMAL AND DUAL FORMULATION OF JOURNAL
BEARING DESIGN

The generalized primal problem was:

Minimize P : = C01R
3L−2 + C02R

−1 + C03RL−3 (9.1)
Subject to: C11

∗R−1∗L3 ≤ 1 , (9.2)

where
P = Cost ($)
R = radius of the journal (in)
L = half-length of the bearing (in)
C01 = 0.44 (for example problem)
C02 = 10 (for example problem)
C03 = 0.592 (for example problem)

and C11 = 8.62 (for example problem).

Figure 9.1 is a sketch illustrating the variables for the problem.
From the coefficients and signs, the signum values for the dual from Equations (9.1) and (9.2)

are:
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R

L

Figure 9.1: Journal bearing parameters.

σ01 = 1
σ02 = 1
σ03 = 1
σ11 = 1
σ1 = 1 .

The dual problem formulation is:

Objective Function ω01 + ω02 + ω03 = 1 (9.3)
R terms 3ω01 − ω02 + ω03 − ω11 = 0 (9.4)
L terms −2ω01 − 3ω03 + 3ω11 = 0 . (9.5)

From the constraint equation there is only one term, so:

ω10 = ω11 . (9.6)

This adds one additional equation but also one additional term, so the degrees of difficulty
are equal to:

D = T − (N + 1) = 4 − (2 + 1) = 1 ≥ 0 . (9.7)

The dual has more variables than equations, and thus another equation is needed to solve for
the dual variables.The relationships between the primal and dual variables will be used to determine
an additional equation, and the equation typically is non-linear.The relationships between the primal
and dual which are:

C01R
3L−2 = ω01P (9.8)

C02R
−1 = ω02P (9.9)

C03RL−3 = ω03P (9.10)
C11R

−1L3 = (ω11/ω10) . (9.11)

Since ω10 = ω11, Equation (9.11) can be used to relate the primal variables, that is:

R = C11L
3 . (9.12)
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Using Equation (9.12) in Equation (9.9), one obtains

P = C02/(ω02R)

= [C02/(C11ω02L
3)] . (9.13)

Using Equation (9.10) with Equations (9.12) and (9.13), one obtains after reducing terms:

L3 = (C03R)/(ω03P)

= [(C02/(C03C11))
∗(ω03/ω02)] . (9.14)

Now using Equation (9.7) and the values for R and L, one obtains

(C01C11L
10)/C02 = ω01/ω02 . (9.15)

Now using Equation (9.14) in Equation (9.15) and reducing it, one can obtain:

(C01C
7/3
02 )/(C

10/3
03 C

8/3
11 ) = (ω01ω

7/3
02 /ω

10/3
03 ) , (9.16)

or the form of
(C3

01C
7
02)/(C

10
03C8

11) = (ω3
01ω

7
02/ω

10
03) . (9.17)

Now using Equations (9.3) to (9.5) to solve for the dual variables in terms of ω02, one obtains

ω01 = (3/7)ω02 (9.18)
ω03 = 1 − (10/7)∗ω02 (9.19)
ω11 = 1 − (8/7)∗ω02 . (9.20)

Using Equations (9.18) to (9.20) in Equation (9.17), one can obtain

(3/7ω02)
3(ω02)

7/[1 − ((10/7)∗ω02)] = (C3
01C

7
02)/(C

10
03C8

11) = A

or (ω02/(1 − ((10/7)ω02) = [A∗(7/3)3]1/10 = B

or ω02 = (7B/(7 + 10B)) . (9.21)

Thus, the remaining dual variables can be solved for as:

ω01 = 3B/(7 + 10B) (9.22)
ω03 = 7/(7 + 10B) (9.23)
ω11 = (7 + 2B)/(7 + 10B) . (9.24)

Using Equations (9.10) and (9.12)

P = (C03/ω03)RL−3

= (C03/ω03)(C11L
3)L−3

= C11C03/ω03

= (C11C03)(1 + (10/7)B)

= (C11C03)(1 + (10/7)[(7/3)3A]1/10)

= (C11C03)(1 + (10/7)(7/3)3/10[(C3
01C

7
02)/(C

10
03C8

11)]1/10

= C11C03 + C11C03(10/7)(7/3)3/10[(C3
01C

7
02)/(C

10
03C8

11)]1/10

= C11C03 + (10/7)[((7/3)(C01)]3/10∗(C02)
7/10∗(C11)

2/10 . (9.25)
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Using Equation (9.9) to solve for R, one obtains:

R = C02/(ω02P)

= C02/[(7B/(7 + 10B))∗(C11C03)(1 + (10/7)B)

= C02/[(7B/(7 + 10B))∗(C11C03)(7 + (10B)7)

= (C02/(C11C03))/B

= (C02/(C11C03))/[(7/3)3∗C3
01C

7
02/(C

10
03C8

11)]1/10

= [(3/7)∗(C02/C01)]3/10C
−2/10
11 . (9.26)

Using Equation (9.10) to solve for L, one obtains:

L = [C03R/(ω03P)]1/3

= [C03
∗[(3/7)∗(C02/C01)]3/10C

−2/10
11 ]/[ω03

∗C11C03/ω03]
= [(3/7)(C02/C01)]1/10∗C−4/10

11 . (9.27)

The equations for P, R, and L are general equations but are rather complex equations com-
pared to the previous problems illustrated. The solution was based upon determining an additional
equation from the primal-dual relationships, which was highly non-linear and resulted in rather
complex expressions for the variables. The additional equation along with the dual variables were
used in the equations relating the primal and dual to determine the final expressions for the variables.
This frequently happens when the degrees of difficulty are greater than zero.

For this particular example problem where C01 = 0.44, C02 = 10, C03 = 0.592 and C11 =
8.62, the value for A and B are:

A = (C3
01C

7
02)/(C

10
03C8

11) = [(0.44)3(10)7]/[(0.592)10(8.62)8] = 5.285 (9.28)
B = [A(7/3)3]1/10 = [5.285(7/3)3]1/10 = 1.523 . (9.29)

Now using the equations for the dual variables, Equations (9.21) to (9.24), one obtains

ω02 = 7B/(7 + 10B) = 0.480
ω01 = 3B/(7 + 10B) = 0.205
ω03 = 7/(7 + 10B) = 0.315
ω11 = (7 + 2B)/(7 + 10B) = 0.452 .

From Equation (9.25) the value of P can be found as:

P = C11C03 + (10/7)[((7/3)(C01)]3/10∗(C02)
7/10∗(C11)

2/10

= (8.62)(0.592) + (10/7)[((7/3)(0.44)]0.3(10)0.7(8.62)0.2

= 5.10 + 11.10
= $16.2 .
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The primal variables can be determined from Equations (9.26) and (9.27) as:

R = [(3/7)(C02/C01)]3/10C
−2/10
11

= [(3/7)(10/0.44]3/108.62−2/10

= 1.29 in

L = [(3/7)(C02/C01)]1/10C
−4/10
11

= [(3/7)(10/0.44)]1/108.62−4/10

= 0.530 in .

Now, if the values of R and L are used in Equation (9.1) for evaluating the primal, one obtains:

P = C01R
3L−2 + C02R

−1 + C03RL−3

= 0.44(1.29)3(0.53)−2 + 10(1.29)−1 + 0.592(1.29)(0.53)−3

= 3.363 + 7.752 + 5.130
= $16.2 .

As in the previous case studies, the value of the primal and dual objective functions are
equivalent.

It was difficult to determine the additional equation, and other methods can be used. One
method that is often used is the constrained derivative approach.This method has the dual equations
rearranged in terms of one unknown dual variable, and these are substituted into the dual objective
function. The objective function is set into logarithmic form and differentiated with respect to the
unknown dual variable, set to zero, and then solved for the unknown dual variable. The solved dual
variable is used in the dual equations to obtain the values of the other dual variables.

9.3 EVALUATIVE QUESTIONS
1. Use the values of C01 = 0.54, C02 = 10, C03 = 0.65 and C11 = 9.00, determine the values

of A and B, of the dual variables and the value of the objective function. Also determine the
values of L and R, and use these to determine P .

2. Determine the sensitivity of the objective function and the primal variables of R and L by
changing one of the constants by 20% (such as C01).

3. There are other approaches for determining the additional equation other than the algebraic
approach used. Select one method, and use it to derive the additional equation.
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C H A P T E R 10

Metal Casting Hemispherical
Top Cylindrical Side Riser

Case Study
10.1 INTRODUCTION
The sphere is the shape which will give the longest solidification time, so a riser with a hemispheric
shaped top should be a more efficient riser than a cylindrical riser and thus be more economical.
However, the problem of designing this type of riser is more complex and has two degrees of difficulty.
The case study considered is a side riser with a hemispherical top and a cylindrical bottom for ease
of molding and to provide a better connection to the casting. The top hemispherical cap has the
same diameter(D) as the cylinder.

10.2 PROBLEM FORMULATION
The volume of the riser is the sum of the cylinder part and the hemisphere part and can be written
as:

V = cylindrical part + Hemispherical part
V = πD2H/4 + πD3/12 (10.1)

SA = πD2/4 + πDH + πD2/2

= 3/4πD2 + πDH . (10.2)

The constraint for riser design is Chvorinov’s Rule, which is

t = K(V/SA)2 , (10.3)

where
t = solidification time (minutes or seconds)
K = solidification constant for molding material (minutes/in2 or seconds/cm2)
V = volume (in3 or cm3)
SA = cooling surface area (in2 or cm2).

An illustration of the hemispherical top side riser is shown in Figure 10.1 where the radius of
the hemisphere is the same as the radius of the cylinder which is the same as the diameter divided
by two.
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Figure 10.1: Hemispherical top side riser design.

This results in the relation
(V/SA) ≥ Mc = K , (10.4)

where
Mc = the modulus of the casting (a constant K for a particular casting).

Thus, using the cooling surface area (SA) and volume (V ) expressions, Equation (10.4) can
be rewritten as:

V/SA = (πD2H/4 + πD3/12)/(3/4πD2 + πDH) ≥ K

= (πD2/12)∗(3H + D)/[(πD/4)∗(3D + 4H) ≥ K

= D∗(3H + D)/[3∗(3D + 4H)] ≥ K . (10.5)

Rearranging the equation in the less than equal form results in:

4KD−1 + 3KH−1 − (1/3)DH−1 ≤ 1 . (10.6)

Thus, the primal form of the problem can be stated as:

Min V = πD2H/4 + πD3/12 . (10.7)

Subject to:
4KD−1 + 3KH−1 − (1/3)DH−1 ≤ 1 . (10.8)

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ11 = 1
σ12 = 1
σ13 = −1
σ1 = 1 .
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The dual problem formulation is:

Objective Function ω01 + ω02 = 1 (10.9)
D terms 2ω01 + 3ω02 − ω11 − ω13 = 0 (10.10)
H terms ω01 − ω12 + ω13 = 0 . (10.11)

The degrees of difficulty are equal to:

D = T − (N + 1) = 5 − (2 + 1) = 2 . (10.12)

Using the linearity inequality equation,

ω10 = ωmt = σm

∑
σmtωmt = (1)∗(1∗ω11 + 1∗ω12 + (−1)∗ω13)

ω10 = ω11 + ω12 − ω13 . (10.13)

The dual variables cannot be determined directly as the degrees of difficulty are 2; that is,
there are two more variables than there are equations. The objective function can be found using the
dual expression:

V = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωmo/ωmt )
σmtωmt

]σ

(10.14)

V = 1[[{(π/4)∗1/ω01)}(1∗ω01)]∗[{(π/12∗ω02)}(1∗ω02)]∗[{(4K∗ω10/ω11)}(1∗ω10)]∗
[{(3K∗ω10/ω12)}(1∗ω10)]∗[{((1/3)∗ω10/ω13)}(−1∗ω10)]]1 . (10.15)

The relationships between the primal and dual variables can be written as

(π/4)D2H = ω01V (10.16)
(π/12)D3 = ω02V (10.17)
(4K)D−1 = ω11/ω10 (10.18)
(3K)H−1 = ω12/ω10 (10.19)
(1/3)DH−1 = ω13/ω10 . (10.20)

If one takes Equation (10.16) and divides by Equation (10.17), one obtains,

3H/D = ω01/ω02 . (10.21)

If one takes the inverse of Equation 10.20, one obtains,

3H/D = ω10/ω13 . (10.22)

Now comparing Equations (10.21) and (10.22), one can obtain an equation between the dual
variables as:

ω01/ω02 = ω10/ω13 . (10.23)
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If one takes Equation (10.18) and divides by Equation (10.19), one obtains:

(4/3)H/D = ω11/ω12 . (10.24)

Now comparing Equations (10.21) and (10.24),one can obtain an additional equation between
the dual variables as:

ω01/ω02 = (9/4)ω11/ω12 . (10.25)

Now there are six equations with only the six dual variables, and they are Equations (10.9)
to (10.11), (10.13), (10.23), and (10.25). The procedure used was to solve for all of the variables in
terms of ω02 and then obtain the specific value of ω02.

From Equation (10.9), one obtains:

ω01 = 1 − ω02 . (10.26)

If one adds Equations (10.10) and (10.11), one obtains:

3ω01 + 3ω02 − ω11 − ω12 = 0 .

Which can be reduced to:
ω11 + ω12 = 3 . (10.27)

Using Equations (10.13) and (10.27), one obtains:

ω10 = ω11 + ω12 − ω13

ω10 = 3 − ω13 . (10.28)

Now using Equations (10.28) and (10.23), one obtains:

ω01/ω02 = ω10/ω13 = (3 − ω13)/ω13 = (1 − ω02)/ω02 .

Solving for ω13 one obtains:
ω13 = 3ω02 . (10.29)

From Equations (10.28) and (10.29):

ω10 = 3 − ω13 = 3 − 3ω02

ω10 = 3(1 − ω02) . (10.30)

Using Equations (10.26) and (10.29) in Equation (10.11), one obtains:

ω12 = ω10 + ω13

= (1 − ω02) + 3ω02

= 1 + 2ω02 . (10.31)
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Using Equations (10.10), (10.26), and (10.29), one has:

ω11 = 2ω01 + 3ω02 − ω13

= 2(1 − ω02) + 3ω02 − 3ω02

= 2(1 − ω02) . (10.32)

Now using Equation (10.25), one can solve for ω02 using the values for ω01, ω11, and ω12

ω01/ω02 = (9/4)ω11/ω12

(1 − ω02)/ω02 = (9/4)2(1 − ω02)/(1 + 2ω02) .

And solving for ω02 results in:
ω02 = 0.4 .

Therefore,
ω01 = 0.6
ω11 = 1.2
ω12 = 1.8
ω13 = 1.2
ω10 = 1.8 .

Now using the dual variables in Equation (10.15) to find the minimum volume, one obtains:

V = 1[[{(π/4∗1/ω01)}(1∗ω01)]∗[{(π/12∗ω02)}(1∗ω02)]∗[{(4K∗ω10/ω11)}(1∗ω11)]∗
[{(3K∗ω10/ω12)}(1∗ω12)]∗[{((1/3)∗ω10/ω13)}(−1∗ω13)]]1

= 1[[{(π/4)∗1/0.6)}(1∗0.6)]∗[{(π/12∗0.4)}(1∗0.4)]∗[{(4K∗1.8/1.2)}(1∗1.2)]∗
[{(3K∗1.8/1.8)}(1∗1.8)]∗[{((1/3)∗1.8/1.2)}(−1∗1.2)]]1

= 1[[{((5/12)π)}(0.6)]∗[{((5/24)π)}(0.4)]∗[{(6K)}(1.2)]∗[{(3K)}(1.8)]∗[{(1/2)}(−1.2)]]1

= 1[[{((2∗5/24)π)}(0.6)]∗[{((5/24)π)}(0.4)]∗[{(2∗3K)}(1.2)]∗[{(3K)}(1.8)]∗[{(2)}(1.2)]]1

= 20.6[(5/24)π ](0.6+0.4)∗21.2∗(3K)(1.2+1.8)21.2

= (5π/24)1∗2(0.6+1.2+1.2)∗(3K)3

V = (5π/24)∗(6K)3 . (10.33)

The values for H and D can be found from Equations (10.18) and (10.19)

D = 4K∗(ω10/ω11)

= 4k∗(1.8/1.2)

D = 6K . (10.34)

And

H = 3K∗(ω10/ω12)

= 3K∗(1.8/1.8)

H = 3K . (10.35)
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Now the primal can be evaluated using Equation (10.7) with the values for H and D from
Equations (10.34) and (10.35).

V = πD2H/4 + πD3/12

V = π(6K)2(3K)/4 + π(6K)3/12

= π27K3 + π18K3

= 45πK3 (10.36)
= (5π/24)∗(6K)3 . (10.37)

The values for the primal and dual are equivalent, which is required for the solution. The
expression of Equation (10.37) is the preferred expression for foundry as 6K is the value for the
diameter for the simple cylindrical risers where K is the modulus of the casing. This example
illustrates that it is possible to solve problems with two degrees of difficulty in some instances, but
there are numerous mathematical operations that must be performed.

10.3 EVALUATIVE QUESTIONS
1. A side riser with a hemispheric top is to be designed for a casting which has a surface area

of 40 cm2 and a volume of 120 cm3. The hot metal cost is 100 Rupees per kg and the metal
density is 3.0 gm/cm3. Compare these results with Problem 1 in Section 6.3.

(a) What are the dimensions of the hemispherical side riser(H and D)?

(b) What is the volume of the hemispherical side riser(cm3)?

(c) What is the metal cost of the hemispherical side riser(Rupees)?

(d) What is the metal cost of the casting(Rupees)?

2. Two castings of equal volume but of different dimensions are to be cast. If one is a 3 inch
cube and the other is a plate of 1 × 3 × 9 inches and a top riser is to be used, what are the
dimensions (H and D) of the risers for the two cases?
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C H A P T E R 11

Liquefied Petroleum Gas(LPG)
Cylinders Case Study

11.1 INTRODUCTION

This case study problem deals with the design of liquefied petroleum gas cylinders, more commonly
known as propane gas cylinders in the USA. This is a very interesting problem as it has two general
solutions as well as one degree of difficulty. The two general solutions occur depending upon the
relationship between the constants. What happens in this particular problem is that one of the two
constraints can be either binding or loose, depending upon the value of the constants.

11.2 PROBLEM FORMULATION

The problem [13] was to minimize the drawing force(Z) to produce the tank by deep drawing, and
two constraints were considered so the tank would have a minimum volume and the height/diameter
ratio would be less than one. The formulation of the primal problem was:

Z(min) = K1hd + K2d
2 . (11.1)

Subject to the two constraints:

πd2h/4 ≥ Vmin , (11.2)

or in the proper geometric programming form as

(4Vmin/π)d−2h−1 ≤ 1 , (11.3)

and

h/d ≤ 1 , (11.4)

where

K1 = πPYC/F (11.5)
K2 = ((C − E)πPY/2F , (11.6)

where
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Z = drawing force
P = internal gas pressure
Y = material yield strength
F = hoop stress
C = constant = 1.04
E = constant = 0.65 .

If all the constants are combined, the primal form can be written as:

Z = K1hd + K2d
2 . (11.1)

Subject to:
K3h

−1d−2 ≤ 1 , (11.7)

and
K4hd−1 ≤ 1 , (11.8)

where
K3 = (4Vmin/π) , (11.9)

and
K4 = 1 (This could be taken as the minimum d/h ratio) . (11.10)

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ11 = 1
σ21 = 1
σ1 = 1
σ2 = 1 .

The dual problem formulation is:

Objective Function ω01 + ω02 = 1 (11.11)
h terms ω01 − ω11 + ω21 = 0 (11.12)
d terms ω01 + 2ω02 − 2ω11 − ω21 = 0 . (11.13)

The degrees of difficulty are equal to:

D = T − (N + 1) = 4 − (2 + 1) = 1 . (11.14)

From the constraint equations which have only one term it is apparent that:

ω10 = ω11 , (11.15)
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and
ω20 = ω21 . (11.16)

An additional equation is needed, and one must examine the primal dual relationships to find
the additional relationship, which are:

K1hd = ω01Z (11.17)
K2d

2 = ω02Z (11.18)
K3h

−1d−2 = ω11/ω10 = 1 (11.19)
K4hd−1 = ω21/ω20 = 1 . (11.20)

If one adds Equations (11.12) and (11.13), one can solve for ω11 by:

2ω01 + 2ω02 − 3ω11 = 0 (11.21)
2(ω01 + ω02) − 3ω11 = 0 (11.22)

2 − 3ω11 = 0 (11.23)
ω11 = 2/3 . (11.24)

If one takes Equation (11.17) and divides it by Equations (11.18) and (11.20), one obtains:

K1hd/(K2d
2∗K4hd−1) = K1/(K2K4) = ω01Z/(ω02Z

∗1) = ω01/ω02 . (11.25)

This can be solved for ω01 in terms of ω02 and the constants:

ω01 = ω02(K1/(K2K4)) . (11.26)

Now using Equations (11.26) and (11.11), one can solve for ω01 and ω02 and obtain:

ω01 = K1/(K1 + K2K4) (11.27)
ω02 = K2K4/(K1 + K2K4) . (11.28)

Now using Equation (11.12) and substituting the values for ω01 and ω11, one obtains:

ω21 = ω11 − ω01 = (2K2K4 − K1)/[3(K1 + K2K4)] . (11.29)

Now ω21 must be ≥ 0, so that implies that:

2K2K4 − K1 ≥ 0 , (11.30)

or
K2K4/K1 ≥ 1/2 . (11.31)

There are two sets of solutions, depending upon whether Equation (11.31) holds as illustrated
in Figure 11.1.
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Now, the solutions can be found for the two cases. If the answer is “No,” then the objective
function can be evaluated using the dual expression:

Z = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωmo/ωmt )
σmtωmt

]σ

, (11.32)

where by definition
ω00 = 1 . (11.33)

IF
(K2 K4 /K1) 1/2

No (loose constraint)
(that is h < d)

11 = 2/3
21 = 0 (can’t be negative)
01 = 11 = 2/3
02 = 1/3

Yes
(that is h=d)

11 = 2/3
21 = (2K2 K4 K1) / [3( K1 + K2 K4)]
01 = K1 /(K1 + K2 K4)
02 = K2 K4 /( K1 + K2 K4)

Figure 11.1: Values of dual variables based upon making ω21 ≥ 0.

Z = [K1
∗1/(2/3)]1∗2/3[K2

∗1/(1/3)]1∗1/3[K3
∗(2/3)/(2/3)]1∗2/3 , (11.34)

which can be reduced to:
Z = [3/22/3]K2/3

1 K
1/3
2 K

2/3
3 . (11.35)

Now, the primal variables can be determined from the primal dual relationships. If one uses
Equation (11.18) and solves for d2 and then for d, one obtains:

d2 = ω02Z/K2 = (1/3)∗{[3/22/3]K2/3
1 K

1/3
2 K

2/3
3 }/K2 . (11.36)

Solving for d and reducing terms results in:

d = (K1K3/2K2)
1/3 . (11.37)
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Similarly, if one uses Equation (11.17) to solve for h, one obtains:

h = ω01Z/K1d = {(2/3)∗{[3/22/3]K2/3
1 K

1/3
2 K

2/3
3 }}/[K1

∗(K1K3/2K2)
1/3] . (11.38)

Reducing terms, one obtains:

h = 22/3K
−2/3
1 K

2/3
2 K

1/3
3 . (11.39)

Now substituting the primal variables into the primal objective function, one has:

Z = K1hd + K2d
2 , (11.1)

= K1
∗22/3K

−2/3
1 K

2/3
2 K

1/3
3

∗(K1K3/2K2)
1/3 + K2

∗(K1K3/2K2)
2/3

= 2K
2/3
1 K

1/3
2 K

2/3
3 /22/3 + K

2/3
1 K

1/3
2 K

2/3
3 /22/3

= 3K
2/3
1 K

1/3
2 K

2/3
3 /22/3

= [3/22/3]∗K2/3
1 K

1/3
2 K

2/3
3 . (11.40)

The equations for the primal and dual, Equations (11.35) and (11.40), give the same results.
Thus, one has a general solution for the objective function and the two primal variables when the
“No” route was taken.

The “Yes” route has the dual variables as functions of the constants and thus is the more
complex route. The objective function can be evaluated using the dual expression:

Z = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωmo/ωmt )
σmtωmt

]σ

, (11.32)

where by definition
ω00 = 1 . (11.33)

The dual variables are:

ω11 = 2/3 (11.41)
ω21 = (2K2K4 − K1)/[3(K1 + K2K4)] (11.42)
ω01 = K1/(K1 + K2K4) (11.43)
ω02 = K2K4/(K1 + K2K4) . (11.44)

Using these dual variables and the signum values the dual objective function is:

Z = (K1ω00/ω01)
1∗ω01(K2ω00/ω02)

1∗ω02(K3)
1∗ω11(K4)

1∗ω21

= (K1 + K2K4)
ω01[(K1 + K2K4)/K4]ω02(K3)

2/3(K4)
ω11−ω01

= [(K1 + K2K4)/K4]ω01[(K1 + K2K4)/K4]ω02(K3K4)
2/3

= [(K1 + K2K4)/K4](K3K4)
2/3

= (K3)
2/3[(K1K

−1/3
4 + K2K

2/3
4 )] . (11.45)
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The primal variables can be obtained from the relationships between the primal and dual
variables. Using Equation (11.20), one can obtain a relation between h and d which is:

h = d/K4 . (11.46)

If one combines Equations (11.19) and (11.20) one obtains:

(K3h
−1d−2)(K4hd−1) = 1∗1 ,

which yields:
K3K4d

−3 = 1 ,

or
d = (K3K4)

1/3 . (11.47)

Now from Equations (11.46) and (11.47) one obtains:

h = d/K4 = K
1/3
3 K

−2/3
4 . (11.48)

Now, using the primal equation for the objective function with the primal variables, one has:

Z = K1hd + K2d
2 , (11.1)

= K1(K
1/3
3 K

−2/3
4 )(K3K4)

1/3 + K2(K3K4)
2/3

= K1(K
2/3
3 K

−1/3
4 ) + K2(K3K4)

2/3

= K
2/3
3 (K1K

−1/3
4 + K2K

2/3
4 ) . (11.49)

Note that the general objective function is the same for both the primal and dual solutions.
This problem illustrates that it is possible to solve a problem with more than one degree of difficulty
and have two solutions, depending upon the specific values of the constants in the problem.

11.3 EVALUATIVE QUESTIONS
1. A tank is to be designed with a minimum volume of 17,500,000 mm3 and the values for

parameters are:

P = 0.2535 kg/mm2

F = 32.33 kg/mm2

Y = 25 kg/mm2

C = 1.04
E = 0.65 .

Determine the amount of the drawing force (kg) and the height (mm) and diameter (mm) of
the tank.
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2. A new procedure was developed for another older machine which changed the expression for
K2. The new expression was:

K2 = (2C − E)πPY/(2F) . (11.50)

Using the same data as in Evaluative Question 1, determine the amount of the drawing
force (kg) and the height (mm) and diameter (mm) of the new tank.

3. A tank is to be designed with a minimum volume of 11,000 in3 and the values for parameters
are:
P = 360 lb/in2

F = 46,000 lb/in2

Y = 35,500 lb/in2

C = 1.04
E = 0.65 .

Determine the amount of the drawing force (lb and tons) and the height (in) and diameter (in)
of the tank.
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C H A P T E R 12

Material Removal/Metal
Cutting Economics Case Study

12.1 INTRODUCTION
Material removal economics, also known as metal cutting economics or machining economics, is an
example of a problem which has non-integer exponents, and this makes the problem challenging.
This problem has been presented previously [9, 11], but this version is slightly different from, and
easier than, those presented earlier. The material removal economics problem is based upon the
Taylor Tool Life Equation, which was developed by Frederick W. Taylor over 100 years ago. There
are several versions of the equation, and the form selected is one of the modified versions which
includes cutting speed and feed rate. The equation selected was:

T V 1/nf 1/m = C , (12.1)

where

T = tool life (minutes)
V = cutting speed (ft/min or m/min)
F = feed rate (inches/rev or mm/rev)

1/n = cutting speed exponent
1/m = feed rate exponent

C = Taylor’s Modified Tool Life Constant.

The object is to minimize the total cost for machining, operator, tool cost and tool changing
cost.

12.2 PROBLEM FORMULATION
An expression for the machining cost, operator cost, tool cost and tool changing cost was devel-
oped [9] and the resulting expression was:

Cu = K00 + K01f
−1V −1 + K02f

(1/m−1)V (1/n−1) , (12.2)

where
Cu = total unit cost

K00 = (Ro + Rm)tl

K01 = (Ro + Rm)B

K02 = [(Ro + Rm)tch + Ct ]QBC−1,
and
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Ro = operator rate ($/min)
Rm = machine rate ($/min)

tl = machine loading & unloading time (min)
tch = tool changing time (min)
B = cutting path surface factor of tool (in-ft, or mm-m)
Q = fraction of cutting path that tool is cutting material
Ct = tool cost ($/cutting edge)
C = Taylor’s Modified Tool Life Constant.

The first part of the objective function expression represents the loading and unloading costs,
the second part represents the cutting costs, and the third part represents the tool and tool changing
costs. The loading and unloading costs are not a function of the feed and cutting speed. Since K00

is a constant, the primal problem can be formulated as solving for the variable cost, Cu(var) as:

Cu(var) = K01f
−1V −1 + K02f

(1/m−1)V 1/n−1) . (12.3)

Subject to a maximum feed constraint written as:

K11f ≤ 1 , (12.4)

where
K11 = 1/fmax .

From the coefficients and signs, the signum values for the dual are:

σ01 = 1
σ02 = 1
σ11 = 1
σ1 = 1 .

The dual problem formulation is:

Objective Function ω01 + ω02 = 1 (12.5)
f terms −ω01 + (1/m − 1)ω02 + ω11 = 0 (12.6)
V terms −ω01 + (1/n − 1)ω02 = 0 . (12.7)

The degrees of difficulty are equal to:

D = T − (N + 1) = 3 − (2 + 1) = 0 . (12.8)

From the constraint equations, which have only one term, it is apparent that:

ω10 = ω11 . (12.9)
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Since there are zero degrees of difficulty, the dual parameters can be solve directly. Thus, if
one adds Equations (12.5) and (12.7), one can solve for ω02 directly and obtain:

ω02 = n . (12.10)

Then, from Equation (12.5), one obtains;

ω01 = 1 − n . (12.11)

Finally, by using the values for ω01 and ω02, one can determine ω11 as:

ω11 = 1 − n/m . (12.12)

The objective function can be evaluated using the dual expression:

Cu(var) = d(ω) = σ

[
M∏

m=0

Tm∏
t=1

(Cmtωmo/ωmt )
σmtωmt

]σ

(12.13)

Cu(var) = 1{[(K01ω00/ω01)
ω01][(K02ω00/ω02)

ω02][(K11ω10/ω11)
ω11]}1 (12.14)

= [(K011/(1 − n))(1−n)][(K021/n)n][(K11(1 − n/m)/(1 − n/m))(1−n/m)]
= [K01/(1 − n)][(K02/K01)((1 − n)/n)]n[(K11)

(1−n/m)]
= (K11)

1−n/mK1−n
01 Kn

02(1 − n)n−1/nn . (12.15)

The primal variables, V and f , can be evaluated from the primal-dual relationships.

K01f
−1V −1 = ω01Cu(var) (12.16)

K02f
1/m−1V 1/n−1 = ω02Cu(var) (12.17)

K11f = 1 . (12.18)

From Equation (12.18), is seen that:
f = 1/K11 . (12.19)

If one divides Equation (12.17) by Equation (12.16), one obtains:

f 1/mV 1/n = (K01/K02)(n/(1 − n)) . (12.20)

Using Equation (12.19) in (12.20) and solving for V , one obtains

V = [(n/(1 − n)]n(K01/K02)
nK

n/m

11 . (12.21)

Now, if one uses the values of f and V from Equations (12.19) and (12.21) in the primal
Equation (12.3) and also using Equation (12.20), one obtains:

Cu(var) = K01f
−1V −1 + K02f

(1/m−1)V (1/n−1) , (12.3)
= f −1V −1[K01 + K02f

1/mV 1/n]
= K11[(n/(1 − n))−n(K01/K02)

−nK
−n/m

11 [K01 + K02(n/(1 − n)(K01/K02)]
= K

1−n/m

11 (n/(1 − n))−n(K01/K02)
−n[K01 + K01(n/(1 − n)]

= K
1−n/m

11 K1−n
01 Kn

02(1 − n)n−1/nn . (12.22)
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The variable unit cost expressions, Cu (var), are identical for both the primal and dual formu-
lations. The expressions for the primal variables and the variable unit cost are more complex than
the expressions obtained in the previous models because of the non-integer exponents.

Elaborate research work has been done with the material removal problems, and the disserta-
tion by Pingfang Tsai [15] has solutions for problems with an additional variable, the depth of cut,
and additional constraints on horsepower and depth of cut. With the additional constraints, there
is the possibility of loose constraints, and a flow chart has been developed for the different solutions
depending upon which constraints are loose.

12.3 EVALUATIVE QUESTIONS

1. A cylindrical bar, 6 inches long and 1 inch in diameter is to be finished turned on a lathe. The
maximum feed to be used to control the surface finish is 0.005 in/rev. Find the total cost to
machine the part, the variable cost to machine the part, the feed rate, the cutting speed, and
the tool life in minutes. Use both the primal and dual equations to determine the variable unit
cost. The data are:

Ro = 0.60 $/min
Rm = 0.40 $/min
Ct = $ 2.00/edge
tl = 1.5 min
D = 1 inch
L = 6 inches

1/m = 1.25 (m = 0.80)
1/n = 4.00 (n = 0.25)
C = 5.0 x 108 min
Q = 1.0 (for turning).

Using these values, one can obtain:

K00 = 1.50
K01 = 1.57 in-ft
K02 = 8.8 x 10−9

(solution f = 0.005 in/rev, V = 459 ft/min, Cu (var) = 0.91, and T = 8.5 min).

2. A cylindrical bar, 0.15 meters long and 25 mm in diameter is to be finished turned on a lathe.
The maximum feed to be used to control the surface finish is 0.125 mm/rev. Find the total
cost to machine the part, the variable cost to machine the part, the feed rate, the cutting speed,
and the tool life in minutes. The data are:
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Ro = 0.60 $/min
Rm = 0.40 $/min
Ct = $ 2.00/edge
tl = 1.5 min
D = 25 mm
L = 0.15 m

1/m = 1.25 (m = 0.80)
1/n = 4.00 (n = 0.25)
C = 2.46 x 108 min
Q = 1.0 (for turning).

Using these values, one can obtain:

K00 = 1.50
K01 = 11.78 mm-m
K02 = 1.34 x 10−7

(solution f = 0.125 mm/rev, V =140 m/min, Cu (var)=0.90, and T =8.6 min).
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C H A P T E R 13

Summary and Future Directions
13.1 SUMMARY

The object of this text is to generate interest in geometric programming amongst manufacturing
engineers,design engineers,manufacturing technologists,cost engineers,project managers, industrial
consultants and finance managers by illustrating the procedure for solving certain industrial and
practical problems. The various case studies were selected to illustrate a variety of applications as
well as a set of different types of problems from diverse fields. Table 13.1 is a summary of the case
studies presented in this text, giving the type of problem, degrees of difficulty, and other details.

The metal removal economics example also had variable exponents in the general solution.
The problems were worked in detail so general solutions could be obtained and also to show that
the dual and primal solutions were identical. The problems were selected to illustrate a variety of
types and also to show the use of the primal-dual relationships to determine the equations for the
primal variables. It is by showing the various types of applications in detailed examples that others
can follow the procedure and develop new applications.

13.2 FUTURE DIRECTIONS

The author is hopeful that others will communicate with him additional examples to illustrate new
applications that can be included in future editions. New applications will attract new practition-
ers to this fascinating area of geometric programming. It is believed that the scope of geometric
programming will expand with new applications.

The author would like to include some software for different applications in the future and
would welcome contributions.

13.3 DEVELOPMENT OF NEW DESIGN RELATIONSHIPS

There are many different types of problems that can be solved by geometric programming, and one
of the significant advantages of the method is that it is possible in many applications to develop
general design relationships. The general design relationships can save considerable time and effort
in instances where the constants are changed.

Although, geometric programming was first presented nearly 50 years ago, the applications
have been rather sparse compared to that of linear programming. One goal is that as researchers
take advantage of the potential to develop design relationships where new applications will rapidly
occur. The development of new design relationships can significantly reduce the development time
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and cost for new products, and this is essential for companies to remain competitive in the global
economy.





67

Bibliography

[1] C.S. Beightler, D.T. Phillips, and D.J. Wilde, Foundations of Optimization, 2nd Edition,
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

[2] C.S. Beightler, T. Lo, and H.G. Bylander, “Optimal Design by Geometric Programming,”
ASME, Journal of Engineering for Industry, 1970, pp. 191–196.

[3] R.C. Creese, “A Primal-Dual Solution Procedure for Geometric Programming,” ASME, Jour-
nal of Mechanical Design, 1979. (also as Paper No. 79-DET-78).

[4] R.C. Creese, “Optimal Riser Design by Geometric Programming,” AFS Cast Metals Research
Journal, Vol. 7, 1971, pp. 118–121.

[5] R.C. Creese, “Dimensioning of Risers for Long Freezing Range Alloys by Geometric Pro-
gramming,” AFS Cast Metals Research Journal, Vol. 7, 1971, pp. 182–184.

[6] R.C. Creese, “Generalized Riser Design by Geometric Programming,” AFS Transactions,
Vol. 87, 1979, pp. 661–664.

[7] R.C. Creese, “An Evaluation of Cylindrical Riser Designs with Insulating Materials,” AFS
Transactions, Vol. 87, 1979, pp. 665–669.

[8] R.C.Creese,“CylindricalTop Riser Design Relationships for Evaluating Insulating Materials,”
AFS Transactions, Vol. 89, 1981, pp. 345–348.

[9] R.C. Creese and P. Tsai, “Generalized Solution for Constrained Metal Cutting Economics
Problem,” 1985 Annual International Industrial Conference Proceedings, Institute of Industrial
Engineers, pp. 113–117.

[10] R.J. Duffin, E.L. Peterson, and C. Zener, Geometric Programming, John Wiley and Sons, New
York, 1967.

[11] D.S. Ermer, “Optimization of the Constrained Machining Economics Problem by Geometric
Programming,” Journal of Engineering for Industry, Transactions of the ASME, November
1971, pp. 1067–1072.

[12] U. Passey and D.J. Wilde, “Generalized Polynomial Optimization,” Stanford Chemical Engi-
neering Report, August 1966.



68 BIBLIOGRAPHY

[13] R. Pericherla, Design and Manufacture of Liquefied Petroleum Gas Cylinders, MS Thesis, West
Virginia University, 1992, Morgantown, WV, USA.

[14] T.K. Sherwood, A Course in Process Design, MIT Press, Cambridge, Mass. (1963).

[15] P. Tsai, An Optimization Algorithm and Economic Analysis for a Constrained Machining Model,
PhD Dissertation, West Virginia University, Morgantown, WV, pp. 214.

[16] W.H. Ray and J. Szekely, Process Optimization with Applications in Metallurgy and Chemical
Engineering, John Wiley and Sons, Inc., New York (1973).

[17] D.J. Wilde and C.S. Beighler, Foundations of Optimization, Prentice-Hall, Englewood Cliffs,
New Jersey, 1967.

[18] C.Zener,“A Mathematical Aid in Optimizing Engineering Design,” Proceedings of the National
Academy of Science, Vol. 47, 1961, pp. 537.

[19] C. Zener, Engineering Design by Geometric Programming, John Wiley and Sons, New York,
1971. DOI: 10.1073/pnas.47.4.537

[20] http://www.mpri.lsu.edu/textbook/Chapter3.htm (Chapter 3 Geometric Program-
ming) (visited May 2009).

http://dx.doi.org/10.1073/pnas.47.4.537
http://www.mpri.lsu.edu/textbook/Chapter3.htm


69

Index

Arithmetic Mean, 2

Box Design Problem, 7

Cargo Shipping Box, 15, 64
Casting Modulus, Mc, 24
Chvorinov’s Rule, 21, 43
Cylindrical Riser Design, 21, 23

Design of Cargo Shipping Box, 15, 64
Design of Cylindrical Riser, 23, 64
Design of Gas Transmission (Pipe Line), 33,

64
Design of Hemispherical Top Riser, 43, 48, 64
Design of Journal Bearing, 37, 64
Design of LPG (Propane Gas) Cylinder, 49, 64
Design of Process Furnace, 27, 64
Design of Trash Can, 11, 64
Design Relationships, 63
Dual Variables, 5, 7, 23
Dynamic Programming, 1

Furnace Design, 27, 64

Gas Transmission (Pipe Line) Design, 33, 64
Geometric Mean, 2
Geometric Programming, 1–3, 5, 7, 9, 11, 14,

21, 24, 27, 63
Engineering Design, 3
Future Directions, 63
History, 3
Pioneers, 3

Hemispherical Top Riser Design, 43

Inequality Constraints, 6

Journal Bearing Design, 37, 64

Linear Equations, 7
Linear Programming, 1, 2, 6, 63
LPG (Propane Gas) Cylinder Design, 49, 64

Machining Economics, 57
Material Removal Economics, 57, 63, 64
Metal Casting

Cylindrical Side Riser, 21, 25
Hemispherical Top Side Riser, 43

Metal Cutting (Material Removal) Economics,
57, 63, 64

Modulus, Casting, Mc, 22, 24
Monte Carlos Simulation, 1

Non-negativity Conditions, 6
Normality Conditions, 5, 6

Open Cargo Shipping Box, 15, 64
Optimal Box Design Problem, 7, 64
Optimization, 1

Design Optimization, 1
Techniques of Optimization, 1

Orthogonal Conditions, 6

Pipeline Design, 33, 64
Primal and Dual, 5, 24, 35, 37, 38, 40, 41, 45,

48, 54, 60
Primal Objective Function, 14



70 INDEX

Process Furnace Design, 27, 64
Propane Gas Cylinder (LPG) Design, 49, 64

Queuing Theory, 1

Riser Design, 3, 21, 43, 64
Cylindrical Riser, 21, 23, 43, 64
Hemispherical Top Cylindrical Side Riser,

43, 64

Risk Analysis, 1

Search Techniques, 1
Solidification Constant, K , 22, 43
Statistical Analysis, 1

Taylor’s Tool Life Equation, 57
Techniques of Optimization Methods, 1
Trash Can, 11, 14, 64


	Cover Page
	Preface
	Introduction
	Optimization and Geometric Programming
	Optimization 
	Geometric Programming

	Evaluative Questions

	Brief History of Geometric Programming
	Pioneers of Geometric Programming
	Evaluative Questions

	Theoretical Considerations
	Primal and Dual Formulation 
	The Optimal Box Design Problem
	Evaluative Questions

	Trash Can Case Study
	Introduction
	Problem Statement and General Solution
	Evaluative Questions

	Open Cargo Shipping Box Case Study
	Problem Statement and General Solution
	Evaluative Questions

	Metal Casting Cylindrical Riser Case Study
	Introduction
	Problem Formulation and General Solution
	Example Problem
	Evaluative Questions

	Process Furnace Design Case Study
	Problem Statement and Solution
	Evaluative Questions

	Gas Transmission Pipeline Case Study
	Problem Statement and Solution
	Evaluative Questions

	Journal Bearing Design Case Study
	Introduction
	Primal and Dual Formulation of Journal Bearing Design
	Evaluative Questions

	Metal Casting Hemispherical Top Cylindrical Side Riser
	 Metal Casting Hemispherical Top Cylindrical Side Riser Case Study
	Introduction
	Problem Formulation
	Evaluative Questions

	Liquefied Petroleum Gas(LPG) Cylinders Case Study
	Introduction
	Problem Formulation
	Evaluative Questions

	Material Removal/Metal Cutting Economics Case Study
	Introduction
	Problem Formulation
	Evaluative Questions


	Summary and Future Directions
	Summary
	Future Directions
	Development of New Design Relationships

	Bibliography
	Index

