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Preface

Image registration is an emerging topic in image processing with many applications
in medical imaging, picture and movie processing. The classical problem of image
registration is concerned with finding an appropriate transformation between two
data sets. This fuzzy definition of registration requires a mathematical modeling and
in particular a mathematical specification of the terms appropriate transformations
and correlation between data sets. Depending on the type of application, typically
Euler, rigid, plastic, elastic deformations are considered. The variety of similarity
measures ranges from a simple Lp distance between the pixel values of the data to
mutual information or entropy distances.

This goal of this book is to highlight by some experts in industry and medicine
relevant and emerging image registration applications and to show new emerging
mathematical technologies in these areas.

Currently, many registration application are solved based on variational princi-
ple requiring sophisticated analysis, such as calculus of variations and the theory
of partial differential equations, to name but a few. Due to the numerical complex-
ity of registration problems efficient numerical realization are required. Concepts
like multi-level solver for partial differential equations, non-convex optimization,
and so on play an important role. Mathematical and numerical issues in the area of
registration are discussed by some of the experts in this volume.

Moreover, the importance of registration for industry and medical imaging is
discussed from a medical doctor and from a manufacturer point of view.

We would like to thank Stephanie Schimkowitsch for a marvelous job in type-
setting this manuscript. Moreover, we would like to thank Prof. Vincenzo Capasso
for the continuous encouragement and support of this book and I would like to ex-
press my thanks to Ute McCrory (Springer) for her patience during the preparation
of the manuscript.

The work of myself is supported by the FWF, Austria Science Foundation,
Projects Y-123INF, FSP 9203-N12 and FSP 9207-N12. Without the support of the
FWF for my research this volume would not be possible.

June, 2005 Otmar Scherzer (Innsbruck)
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Institute of Mathematics
Wallstraße 40
D-23560 Lübeck
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Numerical Methods



A Generalized Image Registration Framework using
Incomplete Image Information – with Applications to
Lesion Mapping

Stefan Henn1, Lars Hömke2, and Kristian Witsch3

1 Lehrstuhl für Mathematische Optimierung, Mathematisches Institut, Heinrich-Heine
Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
henn@am.uni-duesseldorf.de

2 Institut für Medizin, Forschungszentrum Jülich GmbH,
D-52425 Jülich, Germany. hoemke@am.uni-duesseldorf.de

3 Lehrstuhl für Angewandte Mathematik, Mathematisches Institut, Heinrich-Heine
Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
witsch@am.uni-duesseldorf.de

Abstract This paper presents a novel variational approach to obtain a d-dimensional
displacement field u = (u1, · · · , ud)t, which matches two images with incomplete
information. A suitable energy, which effectively measures the similarity between
the images is proposed. An algorithm, which efficiently finds the displacement field
by minimizing the associated energy is presented. In order to compensate the ab-
sence of image information, the approach is based on an energy minimizing inter-
polation of the displacement field into the holes of missing image data. This inter-
polation is computed via a gradient descent flow with respect to an auxiliary energy
norm. This incorporates smoothness constraints into the displacement field. Appli-
cations of the presented technique include the registration of damaged histological
sections and registration of brain lesions to a reference atlas. We conclude the paper
by a number of examples of these applications.

Keywords image registration, inpainting, functional minimization, finite difference
discretization, regularization, multi-scale

1 Introduction.

Deformable image registration of brain images has been an active topic of research
in recent years. Driven by ever more powerful computers, image registration algo-
rithms have become important tools, e.g. in

– guidance of surgery,
– diagnostics,
– quantitative analysis of brain structures (interhemispheric, interareal and in-

terindividual),
– ontogenetic differences between cortical areas,
– interindividual brain studies.
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The need for registration in interindividual brain studies arises from the fact
that the human brain exhibits a high interindividual variability. While the topology
is stable on the level of primary structures, not only the general shape, but also
the spatial localization of brain structures varies considerably across brains. That
renders a direct comparison impossible. Hence, brains have to be registered to a
common “reference space”, i.e. they are registered to a reference brain. Often there
are also, so-called maps, that reside in the same reference space. In so called brain
atlases there are additional maps that contain different kinds of information about
the reference brain, such as labeled cortical regions. Once an individual brain has
been registered to the reference brain the maps can be transferred to the registered
brain. It is not only that obtaining the information from the individual brain itself
is often more intricate than registering it to a reference, in some cases it is also
impossible. For instance, the microstructure of the brain cannot be analyzed in vivo,
since the resolution of in vivo imaging methods, such as MRI and PET, is too low.
Registration can also be a means of creating such maps, by transferring information
from different brains into a reference space.

In the last decade computational algorithms have been developed in order to map
two images, i.e. to determine a “best fit” between them. Although these techniques
have been applied very successfully for both the uni- and the multi-modal case (e.g.
see [1, 2, 7, 8, 10, 11, 13, 19, 21, 22, 25]) these techniques may be less appropriate
for studies using brain-damaged subjects, since there is no compensation for the
structural distortion introduced by a lesion (e.g. a tumor, ventricular enlargement,
large regions of atypical pixel intensity values, etc.).

Generally the computed solution cannot be trusted in the area of a lesion. The
magnitude of the effect on the solution depends on the character of the registration
scheme employed. It is not only that these effects are undesirable, but also that in
some cases one is especially interested in where the lesion would be in the other
image. If, for instance, we want to know which function is usually performed by the
damaged area, we could register the lesioned brain to an atlas and map the lesion to
functional data within the reference space.

In more general terms the problem can be phrased as follows. Given are two
images and a domainG including a segmentation of the lesions. The aim of the pro-
posed image registration algorithm is to find a “smooth” displacement field, which

– minimizes a given similarity functional and
– conserve the lesion in the transformed template image.

There have been approaches to register lesions manually[12]. In this paper we
present a novel automatically image registration approach for human brain vol-
umes with structural distortions (e.g a lesion). The main idea is to define a suit-
able matching energy, which effectively measures the similarity between the im-
ages. Since the minimization solely the matching energy is an ill-posed problem
we minimize the energy by a gradient descent flow with respect to a regularity en-
ergy borrowed from linear elasticity theory. The regularization energy incorporates
smoothness constraints into the displacement field during the iteration.
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The presented approach can be seen as the well known “image inpainting ap-
proach” (e.g. see [3, 5, 6]) for the unknown displacement field u. In inpainting
missing or damaged parts of an image are restored using information from the sur-
rounding area. Applications include the restoration of damaged photographs and
movies or the removal of selected objects.

The analogy to image inpainting is given as follows: both approaches

1. consider a data model restricted on a domain Ω \ G, where data is missing on
G,

2. use a regularity energy defined on Ω,
3. determine a solution defined on Ω.

Inpainting proposed appr.
Input: I|Ω\G T |Ω\G1 ,R|Ω\G2

Data model: restricted Ω \G restricted Ω \ (G1 ∪G2)
Regularity energy: defined on Ω defined on Ω
Output: entire image I|Ω entire displacement field u|Ω

The paper is organized as follows. In section 2 we describe an abstract mathematical
framework to handle a variety of distance measures so-called matching energies. In
the next section we present a novel variational approach, which matches two images
with absent information on a part of the image-domain. The aim of the approach is to
obtain a d-dimensional displacement field defined on Ω which preserves the lesion
in the transformed images.

For this reason a suitable matching energy, which effectively measures the sim-
ilarity between the images is proposed. Even when the images contain complete
information, the sole minimization of the matching energy is an ill-posed problem.
Thus, we add an auxiliary Lagrange term, given by an energy norm, which incorpo-
rates smoothness constraints into the displacement field.

In order to present a general description of the approach we use a general frame-
work up to this point. In section 4 we present the numerical description, with a
particular choice of the matching energy as well as for the energy norm for the dis-
placement field. We discuss the discretization of the problem and the underlying
numerical scheme to solve the resulting subproblems. In section 5 we present two-
and three-dimensional results, where brain data is used. For the two-dimensional
example we use a digitized histological section. In the three-dimensional case the
approach is applied to lesioned MR volume data that is registered to a reference
brain.

2 Abstract Framework.

Given are two images, a reference R and a template T using the same or differ-
ent imaging modalities. We assume that in continuous variables the images can be
represented by compactly supported functions
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T,R : Ω ⊂ R
d → R.

Usually, these images are two- or three-dimensional. This means, the map associates
with each pixel (picture element)

x = (x1, · · · , xd)t

on the image domain Ω its intensities T (x) and R(x). For the purpose of numerical
computationΩ will simply be the d-dimensional unit square [0, 1]d. We assume that
T is distorted by an invertible deformation φ−1. We search for a transformation

φ(u)(·) : R
d → R

d, φ(u)(x) : x �→ (x1 − u1(x), · · · , xd − ud(x))t

that depends on the unknown displacements

u : R
d → R

d, u : x �→ u(x) := (u1(x), · · · , ud(x))t.

The goal of image registration is to determine u(x) in such a way that the trans-
formed template T ◦φ(u(x)) matches the referenceR. The image registration prob-
lem can be identified with a minimization problem in the following manner:

Problem 1. IMAGE REGISTRATION PROBLEM
For an energy functional

D[R, T,Ω; u(x)] :=
∫

Ω

Φ(R, T, u) dx : R
d → R,

which measures the disparity between T ◦ φ(u(x)) and R(x) on the image do-
main Ω, the image registration problem is given by the following minimization
problem:

Find u(x), such that D[R, T,Ω; u(x)] is minimal. (1)

Thus we ask for solutions of the problem to minimize D[R, T,Ω; u(x)] over

Ld
2(Ω) := L2(Ω) × · · · × L2(Ω)︸ ︷︷ ︸

d−times

.

A minimizer u(x) of (1) is characterized by the necessary condition

grad
(
D[R, T, u(x)]

)
= 0,

where grad
(
D[R, T, u(x)]

)
∈ Ld

2(Ω). Indeed, we require
〈
grad(D[R, T, u(x)]), ϕ

〉
= 0 ∀ϕ ∈ Ld

2(Ω).

In the following we denote the so-called external forces grad
(
D[R, T, u(x)]

)
just

by f(u(x)). In the image registration process the task of the external forces is to
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bring similar regions of the images into correspondence. For instance, in the situa-
tion that the intensities of the given images are comparable, a common approach is
to minimize their squared difference (see, e.g. [1, 2, 7, 13, 21]) for all x ∈ Ω, i.e. to
minimize

DSD[R, T ; u(x)] =
∫

Ω

(
T (x1−u1(x), · · · , xd−ud(x))−R(x1, · · · , xd)

)2

dΩ.

(2)
It is used, for example, in the case that the images are recorded with the same imag-
ing machinery, the so-called mono-modal image registration. The necessary condi-
tion for a minimizer u∗(x) of (2) is given by:

fSD(u(x)) = −grad
(
T (x1 − u1(x), · · · , xd − ud(x))

)
·(

T (x1 − u1(x), · · · , xd − ud(x)) −R(x1, · · · , xd)
)

see, e.g. [20].
Another kind of problem is the so-called multimodality image matching (see, e.g.
[9, 22, 23, 26, 29]). Here, the distance between the images is measured by mutual
information or entropy based functionals.

Recently, an approach based on the definition of a matching energy, which mea-
sures the local morphological “defect” between the images, has been presented [11].

Unfortunately, the image registration problem (1) is not well posed: Solutions, if
they exist, are in general neither unique nor stable. Different solutions can give very
similar outputs, and small data errors can yield very different solutions. Therefore,
the approximations u of (1) may be useless. One has to define better approximate
solutions. Since the problem is ill-posed, we have to apply a regularizing technique
to solve the problem in a stable way. Many regularization methods are discussed
in the literature and the choice of the regularization term depends crucially on the
underlying application.

3 Gradient Descent Flow Using Incomplete Image Information.

The aim of this section is to determine a displacement field u on domains where the
image information is unavailable.

3.1 Extension of the Similarity Functional

Let Ω denote the complete image domain for the image registration problem
presented in the previous section. We assume that there are domains Ui ⊂ Ω,
1 ≤ i ≤ s, where image data in the template image T is missing respectively
domains Vj ⊂ Ω, 1 ≤ j ≤ t, where image data in the reference image R is missing.
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Then the image registration problem is given by:

Problem 2. IMAGE REGISTRATION WITH INCOMPLETE INFORMATION
Let G := GU ∪GV and Ω′ = Ω \G an open domain, with

GU =
{
x ∈ R

d
∣∣ x ∈ Ω ∩ (U1 ∪ · · · ∪ Us)

}

and

GV =
{
x ∈ R

d
∣∣ x ∈ Ω ∩ (V1 ∪ · · · ∪ Vt)

}
.

Then the complete image registration problem for images with incomplete in-
formation is given by the following minimization problem:

Find u(x), such that D[R, T,Ω′; u] is minimal. (3)

In order to solve the problem we define an extension of the functional D as follows.

Definition 1. The zero extension Dε[R, T,Ω′; u] of the similarity function is de-
fined by

Dε[R, T,Ω′; u] :=
∫

Ω′
Φε(R, T, u) dx,

with

Φε(R, T, u) :=
{
Φε(R, T, u) if x ∈ Ω′,

0 if x ∈ G.

With this definition we can restate problem 2.

Problem 3. MODIFIED IMAGE REGISTRATION PROBLEM
By using the zero extension of the similarity function Dε[R, T,Ω; u] the com-
plete image registration problem for images with incomplete information is
given by the following minimization problem:

Find u(x), such that Dε[R, T,Ω; u] is minimal. (4)

We now describe an approach to solve the minimization problem. Because the prob-
lem is nonlinear, we have to use an iterative method. Assume that after k iterations
a current deformation φk = x − u(k)(x) is given, then the domains G and Ω′

k are
changed in the following way

Gk = φk (GU ) ∪GV , Ω′
k = Ω \Gk,

since the displacements only acts on the template image.
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3.2 Extended Iterative Minimization Method

To minimize Dε[R, T,Ω; u] for a given current approximation u(k), we search for
an approximation u(k+1) so that

Dε[R, T,Ω; u(k+1)] < Dε[R, T,Ω; u(k)].

The reduction for the next iterate u(k+1) is given approximately by

Dε[R, T,Ω; u(k+1)] −Dε[R, T,Ω; u(k)] ≈ ∂

∂d(k)
Dε[R, T,Ω; u(k)], (5)

where the Gâtaux-derivative at u(k) in the descend direction

d(k) = u(k+1) − u(k)

is given by
∂

∂d(k)
Dε[R, T,Ω; u(k)] =

〈
fk, d

(k)
〉

L2(Ω)

with

fk := f(u(k)) =
{
grad(Dε[R, T,Ω; u(k)]) if x ∈ Ω′

k,
0 if x ∈ Gk.

By using the negative gradient the nonlinear steepest descent iteration for problem
3 is given by

u(k+1) = u(k) − τkfk, (6)

with
τk = arg min

τ∈R

Dε[R, T,Ω; u(k) − τfk].

Unfortunately, for most real applications the steepest descent iteration (6) is not
suitable to solve the image registration problem. This is at least due to two factors.
First, because of the ill-posedness, this method does not have global convergence
properties. Second, due to noise sensitivity of the ill-posed registration problem,
regularization techniques have to be applied in order to compute meaningful so-
lutions. Hence, to ensure robustness and fast local convergence it is necessary to
incorporate additional information.

3.3 Filling-in by an Unified Regularization Approach

A natural way to alleviate this effects is to find a descend direction subject to an
energy constraint || · ||E smaller than some particular value η, i.e.

arg min
〈
fk, d

(k)
〉

L2(Ω)
, s.t. ||d(k)||2E ≤ η,

where the energy norm || · ||E is defined by

||v||E =
√

〈v, v〉E
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with inner product
〈v, w〉E = 〈Lv,w〉Ld

2(Ω)

and a symmetric positive definite operator L.

Remark 1. In order to guarantee positive definiteness of the operator L in the fol-
lowing, we assume Dirichlet boundary conditions, i.e.

d(k)(x) = 0 for x ∈ ∂Ω and k = 0, 1, 2, · · · .

Other possibilities to guarantee positive definiteness are described in cf. [17].

The method of Lagrange multipliers gives the functional

arg min
d(k)

{〈
fk, d

(k)
〉

L2(Ω)
+ α

〈
Ld(k), d(k)

〉
L2(Ω)

}
, (7)

with some parameter α(η) = α > 0. We have the following result:

Theorem 1. The unique minimizer of (7) is characterized by the following boundary
value problem

αL d(k)(x) = −grad(Dε[R, T,Ω; u(k)]) for x ∈ Ω′
k,

αL d(k)(x) = 0 for x ∈ Gk,
d(k)(x) = 0 for x ∈ ∂Ω.

⎫⎬
⎭ (8)

Proof. Since L is a symmetric positive definite operator, a weak solution of (7) is
given by the variational equation

〈
αLd(k), ϕ

〉
L2(Ω)

= 〈−fk, ϕ〉L2(Ω) (9)

for every ϕ with ϕ = 0 on ∂Ω. Classical solutions fulfill

αL d(k)(x) = −fk for x ∈ Ω,
d(k)(x) = 0 for x ∈ ∂Ω

or equivalent

αL d(k)(x) = −grad(Dε[R, T,Ω; u(k)]) for x ∈ Ω′
k,

αL d(k)(x) = 0 for x ∈ Gk,
d(k)(x) = 0 for x ∈ ∂Ω.

�

We minimize Dε[R, T,Ω; u] by successively determining d(k) = −α−1L−1fk as
solution of (8) and perform the following iteration

u(k+1) = u(k) + d(k) = u(k) − α−1L−1fk for k = 0, 1, . . .
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with an initial guess u(0)(x) = u∗(x) and u(k+1)(x) = 0 for x ∈ ∂Ω. If in each
iteration step the scalar α−1 is chosen to minimize

τk = arg min
α−1∈R

Dε[R, T,Ω; u(k) − α−1L−1fk],

then one obtains the steepest descent method with respect to the energy || · ||2E . If
one restricts the parameter α−1 ∈ [0, 2||d(k)||−1

∞ ], i.e.

τk = arg min
α−1∈[0,2||d(k)||−1

∞ ]
Dε[R, T,Ω; u(k) − α−1L−1fk]

= arg min
α−1∈[0,2]

Dε[R, T,Ω; u(k) − α−1L−1fk||d(k)||−1
∞ ] (10)

one obtains a method known as Landweber iteration with trust-region restriction.
This means that the template image is moved in one iteration step by at most two
pixels. In practice, this seems to be a reasonable compromise between convergence
speed and robustness. We stop the iteration when grad

(
Dε[R, T,Ω; u(k)]

)
≈ 0

and get algorithm 1.

Algorithm 1 Iterative minimization of Dε[R, T,Ω; u]
k = 0; u(0) = 0;
repeat

calculate f(u(k)(x)) on Ω′
k = Ω \ Gk

compute d(k) from (8)
set s(k) = d(k)/||d(k)||∞
compute τk by solving problem (10)
set u(k+1) = u(k) + τk · s(k)

set k = k + 1
compute Gk = φk(GU ) ∪ GV

until ||f(u(k)(x))||2 ≤ eps

Remark 2. In some applications it is useful to determine a descend direction subject
to a semi-norm. Then the operator L is only positive semi-definite and consequently
the operator contains a non-trivial kernel. In this situation one has to consider the
following situations:

1. If fk �∈ (L) then
d̃(k) = L+fk

is the least squares solution of (8).
2. If fk ∈ (L) then all solutions of (8) are given by d(k) = d̃(k) + vλ, where
λ ∈ R

d and v is an arbitrary basis for ker(L).

In the second case the parameter λ is chosen to minimize

Dε[R, T,Ω; u(k+1) − λv]

in each iteration.
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4 Algorithmic Aspects

In this section we will turn to the numerical aspects of the proposed approach. We
present an algorithm for the efficient and robust computation of solutions d(k) of
(8).

4.1 Model

For our specific application we choose

Dε[T,R,Ω;u] :=
1
2

∫
Ω′

(T (x− u(x)) −R(x))2dx (11)

as the energy functional, i.e. the least squared difference. For the regularization term
〈Lu, u〉 we chose the elliptic differential Navier-Lamé operator

Lu := −µ∆u− (µ+ λ)∇(∇u), (12)

with Dirichlet boundary conditions, i.e. u = 0 for x ∈ Γ . The “external force” is
then given by

f(u(x)) =
{
−∇T (x− u(x)) (T (x− u(x)) −R(x)) , x ∈ Ω′

0 , otherwise . (13)

4.2 Discretization

For the discretization of the domain Ω = [0, 1]d ∈ R
d we define a grid

Gd
h :=

{
(x1,i1 , x2,i2 , . . . , xd,id

)| xl,ij
= ij · hl, ij = 0, . . . , nl − 1 j, l = 1, . . . , d

}
,

with hl = 1/(nl − 1). Then the inner points of the discrete domain are

Ωd
h =

{
(x1,i1 , x2,i2 , . . . , xd,id

)| 1 ≤ ij ≤ nj − 2, j = 1, . . . , d
}
,

and the set of discrete boundary points is defined by

∂Ωd
h := Γ d

h =
{
(x1,i1 , x2,i2 , . . . , xd,id

)| ∃j : ij ∈ {0, nj − 1}
}
.

We can also write

Ωd
h = Gd

h ∩Ωd,

∂Ωd
h = Γ d

h = Gd
h ∩ Γ d.

For Gk we have

Gd
h,k := Ωd

h ∩ (Gk ∪ U(Gk)) ,

Ω
′d
h := Ωd

h \Gd
h,k,

where U is a set of points in the neighborhood of Gk which depends on the discrete
approximation of external force f(u(x)). Specifically U(Gk) has to be chosen such
that there exists no x = (x1,i1 , . . . , xd,id

) used in the discrete approximation of
f(u(x)) that is in Ωd

h ∩Gk.
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Fig. 1. Depending on the approximation Gk has to be enlarged by U to avoid that points in
Gk are used in the approximation of f .

Example 1. When only the direct neighbors are involved in the discrete approxima-
tion of f(u(x)), then we have

U :=
{
x| x± ej · h ∈ G, x ∈ Ω′, 1 ≤ j ≤ d

}
.

We shall see that this is exactly the case for the approximation that is introduced in
the following sections.

For x ∈ Ω̄d
h and u(x) we define the following alternative notation :

(x1,i1 , x2,i2 , . . . , xd,id
)t =̂ xi1i2...id

,

u(xi1i2...id
) =̂ ui1i2...id

.

4.3 Approximation

From (12) and (13) we obtain the system of partial differential equations

−µ

⎛
⎝ d∑

j=1

∂2ui

∂x2
j

⎞
⎠− (λ+ µ)

∂

∂xi

⎛
⎝ d∑

j=1

∂uj

∂xj

⎞
⎠ = fi(u), i = 1, . . . , d, (14)

where

fi(u) =
{

(T (x− u(x)) −R(x)) ∂
∂xi
T (x− u(x)) , for x ∈ Ω′d

h

0 , otherwise
. (15)

Higher order terms of the Jacobian J(x−u(x)) have been omitted, i.e. J(x−u(x))
has been replaced by the identity. The partial derivatives are approximated using the
finite differences approximations
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∂uj(x)
∂xl

=
uj(x+ elhl) − uj(x− elhl)

2hl
+ O(h2

l ),

∂2uj(x)
∂x2

l

=
uj(x+ elhl) − 2uj(x) + uj(x− elhl)

h2
l

+ O(h2
l ),

∂2uj(x)
∂xl∂xm

=
1

4hlhm

[
uj(x− elhl − emhm) − uj(x+ elhl − emhm)

[9pt] −uj(x− elhl + emhm) + uj(x+ elhl + emhm)
]

+ O(max(hl, hm)2).

In the following we give the explicit discretization of the three dimensional case
(d = 3). Furthermore we will assume nl = n, l = 1, . . . , d. With the short notation
defined in section 4.2 we have

∂uj

∂x1
≈
uji1+1,i2,i3

− uji1−1,i2,i3

2h
,

∂2uj

∂x2
1

≈
uji1+1,i2,i3

− 2uji1,i2,i3
+ uji1−1,i2,i3

h2
,

∂2uj

∂x1∂x2
≈
uji1−1,i2−1,i3

− uji1+1,i2−1,i3
− uji1−1,i2+1,i3

+ uji1+1,i2+1,i3

4h2
.

These equation can be rewritten in operator form as

∂ui

∂x1
≈ 1

2h
[
[0]
[
−1 0 1

]
[0]
]
ui,

∂2ui

∂x2
1

≈ 1
h2

[
[0]
[
1 −2 1

]
[0]
]
ui,

∂2ui

∂x1∂x2
≈ 1

4h2

⎡
⎣[0]

⎡
⎣ 1 0 −1

0 0 0
−1 0 1

⎤
⎦ [0]

⎤
⎦ui,

∆hui ≈
3∑

l=1

∂2ui

∂x2
l

=
1
h2

⎡
⎣[1]

⎡
⎣0 1 0

1 −6 1
0 1 0

⎤
⎦ [1]

⎤
⎦ui

where the left and right inner brackets account for the third dimension. For the
system of partial differential equation we get
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f(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(
µ∆h + µ+λ

h2

[
[0]
[
1 −2 1

]
[0]
])
u1

− (µ+λ)
4h2

⎛
⎝
⎡
⎣[0]

⎡
⎣1 0 −1

0 0 0
−1 0 1

⎤
⎦ [0]

⎤
⎦u2 +

[[
1 0 −1

]
[0]
[
−1 0 1

]]
u3

⎞
⎠

− (µ+λ)
4h2

⎡
⎣[0]

⎡
⎣1 0 −1

0 0 0
1 0 −1

⎤
⎦ [0]

⎤
⎦u1 −

⎛
⎝µ∆h + µ+λ

h2

⎡
⎣[0]

⎡
⎣ 1
−2
1

⎤
⎦ [0]

⎤
⎦
⎞
⎠u2

− (µ+λ)
4h2

⎡
⎣[0]

⎡
⎣1 0 −1

0 0 0
−1 0 1

⎤
⎦ [0]

⎤
⎦u3

− (µ+λ)
4h2

⎛
⎝[[1 0 −1

]
[0]
[
−1 0 1

]]
u1 +

⎡
⎣
⎡
⎣ 1

0
−1

⎤
⎦ [0]

⎡
⎣−1

0
1

⎤
⎦
⎤
⎦u2

⎞
⎠

−
(
µ∆h + µ+λ

h2 [[1] [−2] [1]]
)
u3

For the actual computation of the solution u we employ a multi-scale approach
that is wrapped around algorithm 1. There are two basic reasons to adopt such a
procedure. These are reduced computational cost and robustness. The amount of
data to be processed decreases with O((h′/h)d), where h′ is the distance between
grid points on a coarser grid. Furthermore large deformations on the fine grid can be
computed faster and more robustly, since they correspond to smaller deformations
on coarser grids. Correspondence problems due to locally alike substructures are
also avoided.

Algorithm 2 approximate a solution u∗ on one grid
1: function APPROXSOLUTION(T,R, G, u)
2: k ← 0
3: G0 ← φk(GU ) ∪ GV

4: u0 ← u
5: repeat
6: calculate f(u(k)(x))
7: compute d(k)

8: s(k) ← d(k)/||d(k)||∞
9: compute τk by solving problem (3.3)

10: u(k+1) ← u(k) + τks(k)

11: k ← k + 1
12: Gk ← φk(GU ) ∪ GV

13: until (||f(u(k)(x))||2 ≤ ε or k = kmax)
14: u ← u(k)

15: end function
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The multi-scale approach is based on a Gaussian pyramid. We require that n =
2r + 1, r ∈ N. We define a series of grids {Ω̄d

hl
}l=�log2 n�,...,2,1, where

hl = 1/(nl − 1) and nl = 2l + 1.

Then we have

Ωd
hi

⊂ Ωd
hj

and Γ d
hi

⊂ Γ d
hj
, i < j.

In terms of grid points xi1...id
that means

xi1...id
= x′m(i1...id), x ∈ Ω̄d

hj
, x′ ∈ Ω̄d

hk
, j < k, m = 2k−j .

We say Ωd
hi

is coarser than Ωd
hj

when i < j, respectively finer in case i > j.
Using a Gaussian pyramid implies smoothing the data before sub sampling. One
possible way to do this is using a binomial filter of width 3

1
64

⎡
⎣
⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦
⎡
⎣2 4 2

4 8 4
2 4 2

⎤
⎦
⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦
⎤
⎦ . (16)

Note that this corresponds to the full-weighting transfer operator used in the
standard multigrid. In analogy the multigrid we call the coarsening restriction.
When transferring u to a coarser grid the boundary points need not be smoothed,
since we have Dirichlet boundary conditions, u(x) = 0 ∀x ∈ Γ d

h . That corresponds
to the injection transfer operator. After computing the solution u on one grid it has
to be interpolated to the next finer grid. Inverting the transfer operator described
above results in trilinear interpolation.

Pseudocode algorithms for the approximation of u on each level (Algorithm 2),
and the multi-scale scheme (Algorithm 3) are given. The MULTISCALE function
calls itself recursively until a defined level, levelstop, is reached. Then APPROXSOLU-
TION performs at most kmax iterations on that level. On return from the recursion
the solution u′ from the coarser grid is interpolated to the current grid. This approx-
imation then serves as the starting point for the iteration on that level.

For line 7 in algorithm 2 a large sparse system of linear equations has to be
solved. We use a standard multigrid algorithm (with optimal multigrid complexity
O(N) forN picture elements) as a solver, for details see e.g. [20, 18]. Yet any other
solver, such as a fast discrete Fourier transformation (FFT) [28] or Krylov subspace
methods [27], can be used.

5 Examples

In this section we demonstrate our algorithm on two examples. In both applica-
tion the missing region will only be in the template. First we give a two dimen-
sional example since principal effects of extending the energy functional are easier
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Algorithm 3 compute solutions u on different scales starting with the coarsest on
defined by levelstop

1: function MULTISCALE(T,R, G, u,level)
2: if level=levelstop then � stop at levelstop

3: approxsolution(T, R, G, u)
4: else
5: T ′ ← restrict(T )
6: R′ ← restrict(R)
7: G′ ← restrict(G)
8: u′ ← restrict(u)
9: multiscale(T ′, R′, u′, G′,level-1)

10: u ← interpolate(u′)
11: approxsolution(T, R, G, u)
12: end if
13: end function

to demonstrate and visualize in two dimensions. Here the input data consists of dig-
itized histological sections of a human postmortem brain that have been stained for
cell bodies. In the second example we use three dimensional volume data of the
human brain. It will be demonstrated how lesions can be mapped into a reference
space and an example of comparison to atlas data will be given.

In the following we use the term incomplete template for the template in which a
region is missing or damaged, complete template otherwise. The regionG is defined
by a mask, where values greater 0 imply that the point is in G. In both examples
we defined the incomplete regions ourselves. This allows for the comparison with
the results of the registration with the complete templates. In most applications a
complete template is not available and the missing region has to be defined by an
expert.

5.1 Incomplete Histological Sections

The data in this example consists of histological sections of the human brain
(256× 256). With such sections the structure of the brain can be studied at a micro-
scopical level. The sections were obtained from a human postmortem brain. With
a microtome 20µm thick sections are cut from a paraffin embedded brain. In the
course of cutting, the section “wrinkle” and fold up. They have to be straightened
out in a warm water bath. The deformations that are introduced in this process have
to reversed when one wants to reconstruct the brain from the digitized sections. In
addition to the deformations the section might tear in some regions or parts may be
torn of. This is one source of problems brain volume reconstruction from sections.

We generated a template (figure 2(b)) by registering the reference (figure 2(a)) to
another section. Then we “damaged” the template (figure 2(c)) by erasing a region
defined by a mask (figure 2(d)). The white contour corresponds to the silouhette of
the reference.
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(a) Reference (b) Template

(c) Template with lesion (d) Lesion mask

Fig. 2. Here the reference 2(a), template 2(b), template with lesion 2(c) and lesion mask 2(d)
are displayed. The white contour around the sections corresponds to the silhouette of the
reference.

Three different registrations were performed with identical parameters:

– registration of the complete template to the reference,
– registration of the damaged template to the reference without the extended energy

functional
– registration of the damaged template to the reference with the extended energy

functional.

The first one serves as a reference to which the latter two can be compared. In
figures 3–5 the results for all three registrations are shown. Here in each figure, the
left image (a) shows the transformed templates and in the right one the template is
shown along with the deformation vector field.
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Fig. 3. Registration of the complete template. (a) shows the transformed templates. (b) the
template is shown along with the deformation vector field. Both images are presented with
superimposed reference contour.
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(a)
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Fig. 4. Registration of the incomplete template. (a) shows the transformed templates. (b) the
template is shown along with the deformation vector field. Both images are presented with
superimposed reference contour.
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Fig. 5. Registration of the incomplete template and the additional information about the miss-
ing region. (a) shows the transformed templates. (b) the template is shown along with the
deformation vector field. Both images are presented with superimposed reference contour.
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Fig. 6. Here the differences between the result of the registration with the complete tem-
plate and the registrations with the incomplete template are displayed. Figure (a) shows the
difference with the incomplete template without providing information about the lesion. In
Figure (b) the difference with the registration with the extended energy functional is shown

It is obvious that in the second registration tissue from the surrounding area
is pulled into the missing region. That is to be expected, since that minimizes the
difference between template and reference. With the extended energy functional the
difference in that region is not taken into account, i.e. the “force” is zero in that
region. The deformation is interpolated into the missing region by the regularizing
term of the equation (figure 5(b)).

The effect is visible in figure 6, too. Here the difference between the result of the
registration with the complete template and the other two registrations is displayed.
We chose the difference over the squared difference, since small deviations would
not be visible otherwise. There are two important points to make. First, the lesion
affects the transformation on the whole regardless which method is employed. That
is due to the fact that a global functional is minimized, and hence the effect of local
variations is propagated over the whole solution. Second, the proposed approach
only works well in regions, where “sufficient information” is present in vicinity of
the lesion. The only large difference with the proposed method occurs in a region
where we find a small isolated structure.

5.2 Lesion Mapping

As mentioned earlier lesioned brains pose a particular problem to most registration
algorithms, since the assumption about structural correspondence between reference
and template is not satisfied anymore. Yet, when registering lesions to a reference
atlas, it is paramount that the lesions are preserved by the registration. There have
been attempts to register the lesions manually. Interactive manual mapping is prone
to observer dependent bias. Additionally only simple deformation models can be
used. Thus automatic, observer-independent methods that preserve the lesions are
needed.
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In this example we have taken a MR volume data set (256 × 256 × 256) of
a healthy human male (figure ??), and segmented parts of the postcentral gyrus
(figure ??). The postcentral gyrus (gyrus postcentralis) belongs to the sensory cortex
and lies “behind” the sulcus centralis. The precentral gyrus (gyrus precentralis) is
always in “front” of the sulcus centralis and belongs to the motor cortex. All surface
renderings in figure A show top views of the brain, where the frontal part of the
brain is always at the top of the image. All slices shown in this section do have the
same orientation. The brain is registered to a reference brain (figure ??)[24]. The
deformed lesion mask was then compared with probabilistic cytoarchiteconic maps
that reside in the reference space.

These maps comprise data from 10 postmortem brains. They were constructed
by registering the brains, along with the cortical region labels obtained from cytoar-
chitectonic studies on histological sections, to the reference brain. The degree of
overlap of the labels from different brains for a certain region constitutes the prob-
ability for a voxel to belong to that region. Here we use the maps that contain the
50%-isocontours, the so called 50% maps.

Again we performed the same three registration as in the two-dimensional case
above. Figure B shows the reference, the template and the results for one horizontal
slice of the volume data set. The corresponding masks are overlayed in red. For the
registration results the original mask has been transformed with the corresponding
deformation-field. Again it is obvious that when no information about the lesion is
provided the missing region is filled with surrounding tissue. As a result the lesion
mask is compressed (figure ??). A comparison of figure ?? and figure ?? shows that
the lesion is well preserved when a lesion mask is provided.

Figure C shows the overlayed 50% maps for Brodmann areas 1, 2, 3a, 3b, 4a, 4p
[16][15][14] for the registration with the lesion mask. Sensory areas 1, 2, 3a, 3b can
always be found on the gyrus postcentralis whereas motor areas 4a and 4p occupy
the gyrus precentralis.

The overlayed probability maps have exactly that characteristic. Areas 4a, 4p are
on the gyrus precentralis, whereas all the other areas are on the gyrus postcentralis.
To quantify to which extend the regions are within the lesion we compute the voxel
overlap of the maps with the transformed mask (table 1). Note that the overall voxel
numbers for the maps include both hemispheres. Registration with the complete

cortical voxel overlap #voxels
area without lesion with mask without mask in map

1 5087 4659 1065 13340
2 49 47 0 5399
3a 2139 1997 195 11025
3b 4295 3754 475 13776
4a 418 571 138 14478
4p 536 744 73 6925

Table 1. Voxel overlap of deformed lesion mask with the probability maps for all three reg-
istrations performed.
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template and incomplete template with lesion mask yield similar results. In the case
where no lesion mask is provided the mask is displaced and the overlap with the
maps decreases. If this would be a real patient brain, we could now correlate our
findings with results from other modalities such as behavioral tests [4].
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Abstract In this paper a variational method for registering or mapping like points
in medical images is proposed and analyzed. The proposed variational principle pe-
nalizes a departure from rigidity and thereby provides a natural generalization of
strictly rigid registration techniques used widely in medical contexts. Difficulties
with finite displacements are elucidated, and alternative infinitesimal displacements
are developed for an optical flow formulation which also permits image interpola-
tion. The variational penalty against non-rigid flows provides sufficient regulariza-
tion for a well-posed minimization and yet does not rule out irregular registrations
corresponding to an object excision. Image similarity is measured by penalizing
the variation of a local image feature along optical flow trajectories. The approach
proposed here is also independent of the order in which images are taken. For com-
putations, a lumped finite element Eulerian discretization is used to solve for the
optical flow. Also, a Lagrangian integration of the intensity along optical flow tra-
jectories has the advantage of prohibiting diffusion among trajectories which would
otherwise blur interpolated images. The subtle aspects of the methods developed
are illustrated in terms of simple examples, and the approach is finally applied to
the registration of magnetic resonance images.

1 Introduction

The diagnostic use of medical image sets in a clinical setting implicitly requires a
point by point correspondence between the same tissue sites in separate images. For
example, two given images may be of a single patient at different times, such as dur-
ing a mammography examination involving repeated imaging after the injection of a
contrast agent [30]. On the other hand, the images may be of a single patient viewed
by different imaging modalities, such as by magnetic resonance and computerized
tomography to provide complementary information for image-guided surgery [13].
In fact, images of two separate patients may even be compared to evaluate the ex-
tent of pathology of one in relation to the other [34]. Similarly, an image of a patient
may be compared to an idealized atlas in order to identify or segment tissue classes
based upon a detailed segmentation of the atlas [34]. Thus, what is needed finally
is an explicit coordinate transformation that will map any point in one image to
its corresponding point in the other. With such a mapping, images are said to be
registered.

Since the term registration is often used rather loosely in the context of its appli-
cations, it may be useful to elaborate on the above description of what registration
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is by stating what it is not. Note that by manipulating intensities alone, it is possi-
ble to warp or morph one image to another without having an explicit coordinate
transformation identifying like image points. Thus image registration is not image
morphing, but can be used for such an application. Similarly, image interpolation
can be achieved without registration, but a parameterized coordinate transformation
can be used to interpolate between images. Also, when complementary information
in separate imaging modalities is superimposed, images are said to be fused. Since
fusion too can be achieved by manipulating intensities alone, fused images need not
be registered, but rather can be fused by registration.

Rigid registration is performed under the constraint that images are related by a
pure rigid-body transformation, i.e., a translation plus a rotation. Such registration
is attractive in medical imaging because of the ubiquity of nearly rigid objects in
the body. It is especially popular for image modality fusion in order to guide brain
surgery [13]. Particularly when performed prospectively with the use of extrinsic
fiducial markers, rigid registration and its concomitant errors are well understood
[14]. Since rigid registration is widely used and treated as a standard for comparison
in the medical community [13], even in cases for which a more flexible registration
is sought [30], it was an initial aim of the present work to define a generalization
which maximizes rigidity in a natural sense.

A leading application and demand for non-rigid registration is for mammo-
graphic image sequences in which tissue deformations are less rigid and more elastic
[30]. This observation has motivated the development of registration methods based
on linear elasticity [12], [28], but difficulties resulting from finite displacements
will be elucidated here. Alternatives emerge from noting that a rigid transformation
is equivalent to one which is both conformal (angle preserving) and isometric (area
preserving) [7]. Some authors relax rigidity by constraining transformations to be
conformal or isometric [15]. Others employ a local rigidity constraint [21] or al-
low identified objects to move as rigid bodies [22]. The approach developed here
involves instead a variational principle penalizing a departure from rigidity. Thus, a
rigid registration is selected when one fits the data. Otherwise rigidity is maximized
strongly or weakly depending upon the dominance of the rigidity penalty. Based
upon a function space minimization, this approach is non-parametric. By contrast,
many other non-rigid registration methods are parametric, based for instance upon
the determination of polynomial coefficients [30].

Whether parametric or non-parametric, the unknowns in a registration problem
are generally over-determined by the available information, and must be determined
by optimizing an image similarity measure; see [13] for further details. When two
images are related by a simple misalignment, the sum of squared intensity differ-
ences is a natural similarity measure. Statistical measures have also been employed,
and the correlation coefficient has been recognized as ideal when the intensities of
the two images are related by a linear rescaling [37]. Also, the adaptation of ther-
modynamic entropy for information theory has suggested mutual information as an
image similarity measure [24] [40], and a heuristically based normalized mutual in-
formation has been found to work very well in practice [31]. While simple examples
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can be constructed to demonstrate the advantages and disadvantages of these mea-
sures in relation to each other, it is a noteworthy conclusion of the study in [41] that
highly accurate rigid registrations of multi-modal brain images can be achieved with
information-theoretic measures. Nevertheless, as recognized in [29], mutual infor-
mation contains no local spatial information, and random pixel perturbations leave
underlying entropies unchanged. Higher order entropies including probabilities of
neighboring pixel pairs can be employed to achieve superior results for non-rigid
registration [29]; however, the message is that local spatial information in an image
similarity measure is advantageous. Thus, in the present framework image similar-
ity is driven by penalizing the variation of a local image feature along trajectores
connecting like points. In the present work, the investigated local image feature is
the scaled intensity, but other discussed features can be treated naturally.

Without regularization the ill-posed process of image registration can lead to
quite aberrant results, particularly when it is performed parametrically and espe-
cially when it is performed under landmark constraints [25]. Specifically, a land-
mark constraint is a required correspondence between points generally identified
retrospectively and either automatically or manually [28]. Parametric spline-based
formulations in particular are readily amenable to regularization for instance by
penalizing second order derivatives [30]. Such curvature based regularization has
also been applied non-parametrically [11]. In the approach developed here, a varia-
tional penalty on the departure from rigidity provides sufficient regularization for a
well-posed minimization. At the same time, the penalty does not rule out irregular
registrations, for example, corresponding to an object excision.

The approach developed in this work was influenced by Thirion’s interpreta-
tion of optical flow as a means of driving a diffusion process in which one image
is deformed toward a match with a static second image [33]. This process may
be visualized in Fig. 1 with the deformations evolving from the front face (shown
right) toward the back face (shown left) of the displayed box. Because of an appar-
ent unnatural directionality in this diffusion process, the present work was oriented
from the outset so that the registration would be the same independent of the or-
der in which images are taken; see also [5]. With this preconception, one might
already anticipate an elliptic formulation in the box of Fig. 1, with the given im-
ages imposed as boundary conditions on the front and back faces. In fact, an elliptic
system is derived here for an optical flow field whose integrated trajectories con-
nect like image points in the front and back faces. Natural boundary conditions
also permit trajectories to leave the computational domain, which is a necessary
condition to support purely rigid transformations. Furthermore, image interpolation
is achieved in parallel image planes by distributing the (optimally scaled) intensity
with minimal variation along trajectories. Thus, while the optical flow is determined
in an Eulerian frame, the intensity is determined in a Lagrangian frame, which has
the advantage of prohibiting diffusion among trajectories which would otherwise
blur interpolated images. Note that optical flow has been proposed in other ways
for registration, but with an evolution equation formulation that depends upon the
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order of the images [2], and with more usual optical flow regularization that leads
to aqueous effects which are unnatural for medical applications [17].

The paper can now be summarized as follows. In Section 2 a framework used
throughout the paper is presented. Specifically, optical flow is defined and image
similarity is developed in terms of the variation of a local image feature, such as
scaled intensity, along optical flow trajectories. In Section 3 basic elements from
elasticity theory are explored for registration regularization. It is shown that lin-
earized elastic potential energy of finite displacements does not select rigid trans-
formations preferentially, and that the unlinearized energy is computationally in-
tractable. Finally, a computationally convenient penalty on the departure of infini-
tesimal displacements from rigidity is identified. Section 4 begins with a complete
definition of the proposed variational registration method. Then the optimality con-
ditions are derived separately for each variable in subsections. Simple examples are
also considered to justify the choice of penalty functions and of boundary condi-
tions. Also, the optical flow system is shown to be well-posed under the condi-
tion that the intensity does not manifest certain trivial symmetries. For the case of
landmark constraints, Lagrange Multipliers are shown to exist and satisfy station-
arity conditions. Section 5 begins by introducing the numerical framework for the
proposed registration method. Then the discretizations of the optimality system of
the previous section are developed separately for each variable in subsections. In
Section 6 the final numerical implementation is applied both to test cases and to
magnetic resonance images. In particular it is shown that the approach succeeds in
achieving a natural generalization of rigid registration.

2 Image Similarity

Following the illustration in Fig. 1 for 2D images, let two given images I0 and I1 be
situated respectively on the front and back faces of a box,

Q = {(x1, . . . , xN , z) = (x, z) : 0 < x1, . . . , xN , z < 1}, (1)

i.e.,
I0 on Ω0 = {(x, z) ∈ ∂Q : z = 0} (2)

and
I1 on Ω1 = {(x, z) ∈ ∂Q : z = 1}. (3)

Then define curvilinear coordinates (ξ1, . . . , ξN , ζ) = (ξ, ζ) so that ξ is constant
along trajectories through Q that connect like points in I0 and I1, and ζ = z. Also,
suppose that x = ξ in Ω0 and therefore the displacement vector within Q is d =
x−ξ. Further, a trajectory tangent is given by (u1, . . . , uN , 1) in terms of the optical
flow defined as

u = (u1, . . . , uN ) = xζ . (4)

Now the simplest similarity measure described in Section 1, i.e., the sum of
squared intensity differences, takes the following form,
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Fig. 1. The domain Q with 2D images I0 and I1 on the front and back faces Ω0 and Ω1,
respectively. Curvilinear coordinates are defined to be constant on trajectories connecting
like points in I0 and I1.

∫
Ωc

0

[I0(ξ) − I1(x(ξ, 1))]2 dξ. (5)

It is not assumed that every point in Ω0 finds a like point in Ω1, i.e., trajectories
are allowed to move out of the box Q. Therefore, the domain of integration in (5) is
given by Ωc

0 = {ξ ∈ Ω0 : x(ξ, ζ) ∈ Q, 0 < ζ < 1}, the subset of Ω0 on which
trajectories extend completely through the full depth of Q. To reach a similarity
measure which involves only infinitesimal displacements as opposed to the finite
displacement d(ξ, 1) = x(ξ, 1) − ξ, consider now the integral,

∫ 1

0

∫
Ωc

0

[
dI

dζ
(x(ξ, ζ), ζ)

]2

dξdζ, (6)

constrained by the boundary conditions:

I(ξ, 0) = I0(ξ), I(x(ξ, 1), 1) = I1(x(ξ, 1)), ξ ∈ Ωc
0. (7)

To demonstrate the relation between (5) and (6), consider that, under the condition
(7), (6) is minimized by:

I(x(ξ, ζ), ζ) = I0(ξ) + ζ[I1(x(ξ, 1)) − I0(ξ)]. (8)

Substituting this expression into (6) then leads back to (5). However, with (4) the
optical flow equation [18]:
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dI

dζ
(x(ξ, ζ), ζ) = ∇xI · xζ + Iζ = ∇xI · u + Iz, (9)

now suggests the following modification of (6),
∫

Q

[∇xI · u + Iz]
2
dxdz, (10)

which has an integrand involving purely local information throughout Q. It differs
from (6) by not including the transformation Jacobian 1/det(∇ξx). In other words,
(10) gives a convenient Eulerian (local) counterpart to the Lagrangian (trajectory
following) form appearing in (6). Furthermore, the counterpart to (7) in the Eulerian
context is given by:

I = I0 on Ω0, I = I1 on Ω1. (11)

It is also shown by a consideration of optimality conditions in Section 4 that a min-
imizer I for (10) should satisfy the supplementary boundary condition:

I = 0 on Γ = ∂Q\{Ω0 ∪Ω1}. (12)

Thus, an image similarity measure is given by (10) under the constraints (11) and
(12).

Other similarity measures can be treated along the same lines. Specifically, sup-
pose D is an operator which extracts a local image feature which should differ as
little as possible between like points in the images I0 and I1. Then subject to the
new boundary conditions,

I = DI0 on Ω0, I = DI1 on Ω1, (13)

the function I in (10) transports the chosen feature along optical flow trajectores.
For instance, D may be a differential operator designed to match level curves. Of
course, other differential geometric or statistical descriptors can be treated naturally.
In particular, intensity scaling is considered here.

Specifically, suppose x∗(ξ, 1) is an error-free registration. As explained in Sec-
tion 1, because of acquisition differences, the intensity function I0(ξ) can possess
a different scaling in relation to I1(x∗(ξ, 1)). In other words, there may exist a
function σ∗(ι) such that σ∗(I0(ξ)) = I1(x∗(ξ, 1)). However, since the number
of quantized intensity values may be quite different in the two images I0 and I1,
a reciprocal formulation requires that both images be scaled; see Subsection 4.2.
Thus, unknown scaling functions σ0(ι) and σ1(ι) are introduced in (5) through the
new residual [σ0(I0(ξ)) − σ1(I1(x(ξ, 1)))]2. Similarly, σ0 and σ1 are introduced
into (10) through the boundary conditions:

I = σ0(I0) on Ω0, I = σ1(I1) on Ω1. (14)

Thus, an image similarity measure incorporating scaling functions is given by (10)
under the constraints (12) and (14).
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3 Elastic Regularization

For a given ζ in Fig. 1, consider now the deformation x(ξ, ζ) and the associated
matrix (the right Cauchy-Green strain tensor in elasticity [7]),

C(ζ) = ∇ξx
T∇ξx = {∇ξxi · ∇ξxj}. (1)

The transformation is conformal if ∇ξxi · ∇ξxj = 0, i �= j, and additionally
isometric if ‖∇ξxi‖2 = 1, i = 1, . . . , N , and so rigid when C(ζ) = I [7]. Thus,
the (Green-St.Venant) strain E = 1

2 (C − I) measures how close the deformation is
to being rigid. The work required to perform a given deformation gives the elastic
potential energy stored in the deformed body [7],

W (E) =
∫

Ωc
0

[
λtr(E)2 + 2µ|E|2

]
dξ, (2)

where λ and µ are the so-called Lamé constants [7]. Here, |E|2 = E : E where :
denotes a componentwise matrix scalar product. Now in terms of the displacement
d = x−ξ the strain can be linearized according to 2E = C− I = ∇ξd+∇ξd

T +
∇ξd

T∇ξd ≈ ∇ξd + ∇ξd
T which gives the approximation to the elastic potential

energy,

W (E) ≈
∫

Ωc
0

[
λ(∇ξ · d)2 + 1

2µ
∣∣∣∇ξd

T + ∇ξd
∣∣∣2
]
dξ. (3)

With (5) and (3), consider (tentatively) computing a registration by minimizing
the following cost,

Jlin(d) =
∫

Ωc
0

[I0(ξ) − I1(ξ + d(ξ, 1))]2 dξ

+
∫ 1

0

∫
Ωc

0

[
λ (∇ξ · d)2 +

µ

2

∣∣∣∇ξd
T + ∇ξd

∣∣∣2 + ν (dζ · dζζ)
2

]
dξdζ

(4)
where the term ν(dζ ·dζζ)2 is included for regularity in the depth direction and also
to vanish for a natural rigid transformation. The following reasoning shows that (3)
is not a suitable regularization for selecting rigid transformations. Suppose I0 and I1
are related by a rigid transformation r via I0(ξ) = I1(r(ξ)). Clearly the choice of a
morphing x(ξ, ζ) in which r can be embedded via x(ξ, 0) = ξ and x(ξ, 1) = r(ξ)
is not unique. Specifically, define the rigid-body motion,

x̂(ξ, ζ) = R(ζ)(ξ − a) + a, (5)

where a is the center of rotation and R(ζ) = eζW for a skew-symmetrix matrix W
[26]. Also define the convex combination x̃(ξ, ζ) = (1−ζ)ξ+ζx̂(ξ, 1), which with
increasing ζ corresponds to compressing the initial image and then expanding it to
the final image. Assume further that the intensities corresponding to these transfor-
mations are given in Q by (8) with x replaced by x̂ and x̃ respectively. With this
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choice, the similarity term (5) is zero. Now, with d̂ = x̂ − ξ and d̃ = x̃ − ξ, an
elementary calculation shows that Jlin(d̃) < Jlin(d̂). In other words, the linearized
elastic potential energy regularization selects the compression/expansion instead of
the rigid-body motion.

The situation is different for the unlinearized elastic potential energy. Using (5)
and (2) to define the cost,

Junl(x) =
∫

Ωc
0

[I0(ξ) − I1(x(ξ, 1))]2 dξ

+
λ

4

∫ 1

0

∫
Ωc

0

[
N∑

i=1

(
‖∇ξxi‖2 − 1

)]2

dξdζ

+
µ

2

∫ 1

0

∫
Ωc

0

⎡
⎣ N∑

i=1

(
‖∇ξxi‖2 − 1

)2
+
∑
i�=j

(∇ξxi · ∇ξxj)
2

⎤
⎦ dξdζ

+ ν

∫ 1

0

∫
Ωc

0

(xζζ · xζζζ)
2
dξdζ.

(6)

leads to Junl(x̂) = 0 < Junl(x̃), and thus the unlinearized elastic potential energy
regularization selects the rigid-body motion instead of the compression/expansion.
However, the optimality system for Junl is very complex and contains coefficients
with terms

(
‖∇ξxi‖2 − 1

)
whose signs may not even be uniform.

Nevertheless, these difficulties can be circumvented by formulating rigidity in
an Eulerian frame instead of in a Lagrangian frame. To this end, note that xζ(ξ, ζ) =
u(x(ξ, ζ), ζ) gives ∇ξxζ = ∇xu∇ξx, and therefore C(ζ) in (1) satisfies:

∂ζC(ζ) = ∇ξx
T
ζ ∇ξx + ∇ξx

T∇ξxζ = ∇ξx
T
[
∇xuT + ∇xu

]
∇ξx. (7)

Hence, if ∇xu is skew-symmetric, then ∂ζC(ζ) = 0 implies C(ζ) = C(0) = I
and the transformation is rigid for all ζ ∈ [0, 1].

Now with (10) and (7), consider computing a registration by minimizing the
following cost,

Jeul(I,u) =
∫

Q

[
(∇xI · u + Iz)

2 + β
∣∣∇xuT + ∇xu

∣∣2 + α|uz|2
]
dxdz (8)

subject to I = I0 on Ω0, I = I1 on Ω1, and I = 0 on Γ . The term involving uz is
included on the same grounds that ζ-derivative terms are included in (4) and (6). To
test this formulation with x̂ and x̃ as considered above, define

û(x, z) = x̂ζ = W (x − a) (9)
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and ũ(x, z) = x̃ζ = [z + (R(1) − I)−1]−1(x − a). As before, assume that the
similarity term (10) is zero, which is the case for the following intensity:

Î(x, z) = I0
(
R(z)T(x − a) + a

)
. (10)

Then an elementary calculation shows that Jeul(Î , û) = 0 < Jeul(Î , ũ). In other
words, the rigid-body motion is selected instead of the compression/expansion. It
is also seen in the next section that the optimality system corresponding to (8) is
computationally convenient.

Notice that (5) and (9) give the unique rigid transformation whose center of
rotation is fixed globally with respect to ζ or z. Now suppose it is desired to allow
some local variation in the center of rotation with respect to the depth direction. To
accommodate the wider class of rigid transformations,

x(ξ, ζ) = R(ζ)(ξ − a) + (a + bζ), u(x, z) = W (x − a − bz) + b (11)

in which the center of rotation (a+bz) is shifted in a natural linear fashion, the cost
must be modified as follows for well-posed minimization:

Jloc(I,u) =
∫

Q

[(∇xI · u + Iz)
2 + γ

∣∣∇xuT + ∇xu
∣∣2

+β|∇xuz|2 + α|uzz|2]dxdz. (12)

At the other extreme is the apparently narrower class of rigid transformations which
are autonomous, for which the cost may be defined as follows:

Jaut(I,u) =
∫

Q

(∇xI · u + Iz)
2
dxdz +

∫
Ω

β
∣∣∇xuT + ∇xu

∣∣2 dx. (13)

The consistent trend toward autonomy among the experiments in Section 6 raises
the question about when autonomous flows are selected by costs other than (13).
This matter can be at least partly illuminated by demonstrating the existence of a
registration which cannot be realized by an autonomous flow. For this, define the
flow:

x1(ξ1, ξ2, ζ) = ξ1 cos[(π + εξ22)ζ] + ξ2 sin[(π + εξ22)ζ]

x2(ξ1, ξ2, ζ) = −ξ1 sin[(π + εξ22)ζ] + ξ2 cos[(π + εξ22)ζ]

and the discrete map X(ξ) = x(ξ, 1). Note that for a given ζ and for ε > 0
sufficiently small, det(∂x/∂ξ) = 1 − 2εξ1ξ2ζ > 0 holds, and the mapping is
diffeomorphic. Note also that origin centered circles are mapped onto themselves,
‖x(ξ, ζ)‖2 = ‖ξ‖2, and in fact X(ξ) maps the ξ1-axis onto itself while [X ◦X](ξ)
is periodic on the ξ1-axis. Given these mappings, let I0 and I1 be any two images
which satisfy I0(ξ) = I1(X(ξ)) and which can be registered essentially only by
X; e.g., suppose I1 has uniformly distributed random intensity values. Now sup-
pose that ū = x̄ζ is an autonomous flow field which realizes the given registration
according to x̄(ξ, 1) = X(ξ). Then a contradiction is reached as follows; see [4].
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From the phase space property, x̄(ξ, ζ) = x̄(x̄(ξ, τ), ζ) = x̄(ξ, τ + ζ) =
x̄(x̄(ξ, ζ), τ), of τ -periodic autonomous flows, x̄(ξ, 0) = ξ = x̄(ξ, τ), it follows
that if x̄ is τ -periodic at any point on a given circle, then x̄ is τ -periodic at all points
on that circle. While x̄(ξ, 2) = x̄(x̄(ξ, 1), 1) = [X ◦ X](ξ) = ξ holds for all
points ξ with ξ2 = 0, it holds for no points with ξ2 �= 0, and therefore ū cannot be
autonomous. Further details of autonomous registrations given by (13) will be con-
sidered in detail along with (12) and with elasticity [12] and curvature [11] based
regularization in forthcoming work.

4 Optimality Conditions

On the basis of previous sections, image registration and interpolation are now
achieved by minimizing the following cost,

J(I, σ0, σ1,u) =
∫

Q

[
(∇I · u + Iz)2 + φ

(∣∣∇uT + ∇u
∣∣2)+ α |uz|2

]
dxdz

(1)
subject to:

I = σ0(I0) on Ω0, I = σ1(I1) on Ω1, and I = 0 on Γ (2)

and to possible landmark constraints:

x(ξj, 1) = xj, j = 1, . . . , ĵ (3)

where trajectories through the domain Q are defined by integrating the optical flow
under boundary conditions, i.e., by solving:

x(ξ, ζ) = ξ +
∫ ζ

0

u(x(ξ, ρ), ρ)dρ, ξ ∈ Ω0, ζ ∈ [0, 1] (4)

and

y(η, ζ) = η +
∫ 1

ζ

u(y(η, ρ), ρ)dρ, η ∈ Ω1, ζ ∈ [0, 1]. (5)

A registration is given by the coordinate transformation x(ξ, 1) and by the inverse
transformation y(η, 0). The given images I0 and I1 are interpolated by the intensity
I .

The function φ appearing in (1) is discussed further in Subsection 4.3, but it is
assumed to be smooth on (0,∞) and continuous on [0,∞). Also, the term involv-
ing uz is included to select the most natural rigid-body motion in Q as well as to
establish the well-posedness shown below in Theorem 2.

With respect to the registration goal as stated in the Introduction, it may be ob-
served now that the formulation in Q increases the problem dimension by one. In
this connection, the following points are worthwhile to emphasize. First, the present
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formulation affords image interpolation in addition to registration. Also, alternative
diffusion processes evolving from Ω0 to Ω1 are here replaced by an elliptic formu-
lation in Q with the payoff that the result is independent of the image order. Finally,
these benefits are gained without an increased problem dimension if the optical flow
is autonomous. Although the condition uz = 0 is not imposed explicitly in this
work, it was found to hold practically in all examples presented in Section 6.

The necessary optimality conditions are now derived separately for each variable
in the following subsections. The intent is to solve cyclically for one variable with
the other held fixed.

4.1 Optimality Conditions for Intensity

First, for fixed σ0, σ1, and u, the variational derivative of J with respect to I is
given by:

δJ

δI
(I; Ī) = 2

∫
Q

(∇I · w)
(
∇Ī · w

)
dy (6)

where for convenience ∇ = (∇, ∂z), w = (u, 1), and y = (x, z). Also, assume
for the moment that I is only subject to I = σ0(I0) on Ω0 and I = σ1(I1) on Ω1,
so that the perturbation Ī is constrained to vanish onΩ0 and onΩ1. Then, boundary
integrals on Ω0 and on Ω1 vanish in the following:

δJ

δI
(I; Ī) = 2

∫
∂Q

(∇I · w) (w · ν) Īdy − 2
∫

Q

∇ · [(∇I · w) w] Īdy

= 2
∫

Γ

(∇I · w) (u · n) Īdy − 2
∫

Q

∇ · [(∇I · w) w] Īdy.

(7)

Here, ν is an outwardly directed normal vector at ∂Q which reduces to n at Γ . For
the variational derivative above to vanish for all perturbations Ī , in particular for
perturbations vanishing on the boundary Γ , the following equation must hold in the
interior:

∇ · [(∇I · w) w] = ∇ (∇I · u + Iz) · u + (∇I · u + Iz)z + (∇ · u) (∇I · u + Iz)

=
d2I

dζ2
+ (∇ · u)

dI

dζ
= 0 in Q

(8)
in which (9) has been applied. Consider now the choice of boundary conditions
shown in (2). For the boundary term in (7) to vanish for all perturbations Ī , there
are three possibilities on Γ : Ī = 0, u · n = 0, or ∇I · w = 0. The first case
corresponds to having imposed (2) so that the perturbation Ī would be constrained
to vanish on all of ∂Q. To see the unsatisfactory consequences of the other two
options, consider first that u · n = 0 is imposed at Γ . This means that trajectories
would not be allowed to impinge upon the boundary at Γ , and this restriction would
clearly corrupt a rigid registration. Since it is required to produce a rigid registration
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Fig. 2. When the intensity I is constant along trajectories connected with Γ , all trajectories
are drawn toward Γ until the cost J vanishes.

when one fits the data, the boundary condition u · n = 0 at Γ is ruled out. Now
consider that ∇I · w = dI/dζ = 0 is imposed at Γ . Then fix a trajectory which
departs from Ω0 and impinges on Γ at ζ = ζ́ as shown in Fig. 2.

From (8), the conditions on the trajectory that d2I/dζ2 + (∇ ·u)dI/dζ = 0 for
0 < ζ < ζ́, I = σ0(I0) at ζ = 0, and dI/dζ = 0 at ζ = ζ́ imply that I remains
constant at I = σ0(I0) along the trajectory. The situation is similar for trajectories
that depart from Ω1 and impinge upon Γ in the reverse direction. This is in fact
a state toward which the solution (I, σ0, σ1,u) would be drawn since it reduces
the cost J . Specifically, when the intensity I is computed in this way, the optical
flow u is drawn in its next iteration toward more trajectories that impinge upon Γ .
Eventually all trajectories impinge upon Γ to give the minimum possible cost, and
no like points in I0 and I1 are connected. Clearly, this is a solution to be avoided.
Thus, the intensity field is assumed to satisfy the boundary conditions (2).

From (2) and (8), the optimal intensity I for fixed σ0, σ1, and u is given in a
Lagrangian frame by:

I(x(ξ, ζ), ζ) =

⎧⎨
⎩
σ0(I0(ξ))[1 − U(ξ, ζ, 1)] + σ1(I1(x(ξ, 1)))U(ξ, ζ, 1), ξ ∈ Ωc

0

σ0(I0(ξ))[1 − U(ξ, ζ, ζ́)], x(ξ, ζ́) ∈ Γ, ξ ∈ Ωi
0

σ0(I0(ξ)), x(ξ, ζ́) ∈ Ξ, ξ ∈ Ωi
0,

(9)
and:

I(y(η, ζ), ζ) =

⎧⎨
⎩
σ1(I1(η))[1 − V (η, 0, ζ)] + σ0(I0(y(η, 0)))V (η, 0, ζ), η ∈ Ωc

1

σ1(I1(η))[1 − V (η, ζ̀, ζ)], y(η, ζ̀) ∈ Γ, η ∈ Ωi
1

σ1(I1(η)), y(η, ζ̀) ∈ Ξ, η ∈ Ωi
1

(10)
in terms of quantities defined as follows. Here, Ωc

0 and Ωi
0 are the disjoint subsets

of Ω0 from which trajectories extend completely and incompletely, respectively,
through the full depth of Q. Also, Ωc

1 and Ωi
1 are disjoint subsets of Ω1 defined

similarly. Let Ξ ⊂ Q denote a set in which trajectories fail to be well defined, e.g.,
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due to a singularity in the optical flow field. Define U and V by:

U(ξ, ζ, ζ́) =

⎧⎪⎨
⎪⎩

Ũ(ξ, ζ) − Ũ(ξ, 0)

Ũ(ξ, ζ́) − Ũ(ξ, 0)
,

0, x(ξ, ζ́) ∈ Ξ,

Ũ(ξ, ζ) =
∫ ζ

ζ0
exp

[
−
∫ �

ζ0
∇ · u(x(ξ, ρ), ρ)dρ

]
d�,

(11)
for ξ ∈ Ω0, ζ ∈ [0, ζ́], and arbitrary ζ0 ∈ [0, ζ́], and:

V (η, ζ̀, ζ) =

⎧⎪⎨
⎪⎩

Ṽ (η, 1) − Ṽ (η, ζ)

Ṽ (η, 1) − Ṽ (η, ζ̀)
,

0, y(η, ζ̀) ∈ Ξ,

Ṽ (η, ζ) =
∫ ζ

ζ0
exp

[
−
∫ �

ζ0
∇ · u(y(η, ρ), ρ)dρ

]
d�,

(12)
for η ∈ Ω1, ζ ∈ [ζ̀ , 1], and arbitrary ζ0 ∈ [ζ̀ , 1]. Under a condition such as
u ∈ W 1,∞(Q) ⊂ C0,1(Q̄) [35], trajectories are well defined by (4) and (5) and
the singular set Ξ is empty [10]. On the other hand, it is not intended to rule out
situations where the registration is correctly described by a discontinuous optical
flow field which would occur for instance when an object is excised. Suppose that
Ξ ⊂ Q denotes the set where shocks develop in the optical flow field as seen below
in Fig. 4. Then trajectories are defined up to the shock and the intensity is con-
stant along such trajectories as shown in (9) and (10). At all other points in Q not
accessible from trajectories (4) or (5) the intensity is zero.

4.2 Optimality Conditions for Scaling

Next, for fixed I and u, consider the computation of σ0 and σ1. Now the term (10)
appearing in (1) can be written in a Lagrangian frame as follows:

∫
Q

[∇I · u + Iz]2dxdz = T c
0 + T i

0 + T i
1 ≡

∫
Ωc

0

∫ 1

0

[
dI

dζ

]2

det (∇ξx) dζdξ+

∫
Ωi

0

∫ ζ́(ξ)

0

[
dI

dζ

]2

det (∇ξx) dζdξ +
∫

Ωi
1

∫ 1

ζ̀(η)

[
dI

dζ

]2

det (∇ηy) dζdη

(13)
where the first integral can be written equivalently with (10), (5), and (12) over Ωc

1:

∫
Ωc

0

∫ 1

0

[
dI

dζ

]2

det (∇ξx) dζdξ ≡ T c
0 = T c

1 ≡
∫

Ωc
1

∫ 1

0

[
dI

dζ

]2

det (∇ηy) dζdη.

(14)
Also, (9) and (10) define ζ́ and ζ̀ as functions of ξ and η, respectively, and can be
used to express (13) and (14) explicitly in terms of σ0 and σ1:

T c
0 =

∫
Ωc

0

∫ 1

0

[σ0(I0(ξ)) − σ1(I1(x(ξ, 1)))]2U2
ζ (ξ, ζ, 1) det (∇ξx) dζdξ (15)
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T c
1 =

∫
Ωc

0

∫ 1

0

[σ1(I1(η)) − σ0(I0(y(η, 0)))]2V 2
ζ (η, 0, ζ) det (∇ηy) dζdη (16)

T i
0 =

∫
Ωi

0

∫ ζ́(ξ)

0

σ2
0(I0(ξ))U2

ζ (ξ, ζ, ζ́(ξ)) det (∇ξx) dζdξ (17)

T i
1 =

∫
Ωi

1

∫ 1

ζ̀(η)

σ2
1(I1(η))V 2

ζ (η, ζ̀(η), ζ) det (∇ηy) dζdη. (18)

Since (17) and (18) are independent of σ1 and σ0, respectively, the variational deriv-
ative of J with respect to σ0 for fixed σ1 is:

δJ

δσ0
(σ0; σ̄0) = 2

∫
Ω0

[σ0(I0(ξ)) − I1(ξ)]σ̄0(I0(ξ))U(ξ)dξ (19)

and with respect to σ1 for fixed σ0 is:

δJ

δσ1
(σ1; σ̄1) = 2

∫
Ω1

[σ1(I1(η)) − I0(η)]σ̄1(I1(η))V(η)dη (20)

where

U(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1

0

U2
ζ (ξ, ζ, 1) det (∇ξx) dζ, ξ ∈ Ωc

0

∫ ζ́(ξ)

0

U2
ζ (ξ, ζ, ζ́(ξ)) det (∇ξx) dζ, ξ ∈ Ωi

0

(21)

V(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1

0

V 2
ζ (η, 0, ζ) det (∇ηy) dζ, η ∈ Ωc

1

∫ 1

ζ̀(η)

V 2
ζ (η, ζ̀(η), ζ) det (∇ηy) dζ, η ∈ Ωi

1

(22)

and:

I0(η) =

⎧⎨
⎩
σ0(I0(y(η, 0))), η ∈ Ωc

1

0, y(η, ζ̀) ∈ Γ, η ∈ Ωi
1

σ1(I1(η)), y(η, ζ̀) ∈ Ξ, η ∈ Ωi
1

(23)

I1(ξ) =

⎧⎨
⎩
σ1(I1(x(ξ, 1))), ξ ∈ Ωc

0

0, x(ξ, ζ́) ∈ Γ, ξ ∈ Ωi
0

σ0(I0(ξ)), x(ξ, ζ́) ∈ Ξ, ξ ∈ Ωi
0.

(24)

Now let ι̂0 = max{I0(ξ) : ξ ∈ Ω0} and ι̂1 = max{I1(η) : η ∈ Ω1}, so the
ranges of I0 and I1 are [0, ι̂0] and [0, ι̂1]. Then assume that |∇I0| = 0 when I0
assumes values K0 ⊂ [0, ι̂0] and |∇I1| = 0 when I1 assumes values K1 ⊂ [0, ι̂1].
Further, let the integral in (19) be decomposed into the support of |∇I0| and its
complement in Ω0, and similarly let the integral in (20) be decomposed into the
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support of |∇I1| and its complement in Ω1. Then, with the coarea formula [9], the
variational derivatives take the forms:

δJ

δσ0
(σ0; σ̄0) = 2

∑
ι∈K0

σ̄0(ι)
∫

I0(ξ)=ι

[σ0(ι) − I1(ξ)]U(ξ)dξ

+ 2
∫ ι̂0

0

σ̄0(ι)

[∫
I0(ξ)=ι,∇I0(ξ) �=0

[σ0(ι) − I1(ξ)]
U(ξ)

|∇I0(ξ)|dξ
]
dι

(25)
and:

δJ

δσ1
(σ1; σ̄1) = 2

∑
ι∈K1

σ̄1(ι)
∫

I1(η)=ι

[σ1(ι) − I0(η)]V(η)dη

+ 2
∫ ι̂1

0

σ̄1(ι)

[∫
I1(η)=ι,∇I1(η) �=0

[σ1(ι) − I0(η)]
V(η)

|∇I1(η)|dη
]
dι.

(26)
Requiring these variational derivatives to vanish for all perturbations σ̄0 and σ̄1 leads
to the following optimality conditions for σ0 and σ1:

σ0(ι) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
I0(ξ)=ι

I1(ξ)U(ξ)dξ

/∫
I0(ξ)=ι

U(ξ)dξ, ι ∈ K0,

∫
I0(ξ)=ι

I1(ξ)
U(ξ)

|∇I0(ξ)|dξ
/∫

I0(ξ)=ι

U(ξ)
|∇I0(ξ)|dξ, ι ∈ [0, ι̂0]\K0

(27)
and:

σ1(ι) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
I1(η)=ι

I0(η)V(η)dη

/∫
I1(η)=ι

V(η)dη, ι ∈ K1,

∫
I1(η)=ι

I0(η)
V(η)

|∇I1(η)|dη
/∫

I1(η)=ι

V(η)
|∇I1(η)|dη, ι ∈ [0, ι̂1]\K1.

(28)
Although (27) and (28) are not considered numerically in the present work, their

meaning can be elucidated by simple examples. First, assume that the given optical
flow corresponds to a rigid transformation, u = û, as shown in (9). Then ∇ · û = 0
holds and it follows with (11) and (12) that Uζ = 1 and Vζ = 1 hold. A direct
calculation with (5) gives det(∇ξx̂) = 1. Solving (5) with (9) gives ŷ(η, ζ) =
R(1 − ζ)(η − a) + a and therefore det(∇ηŷ) = 1. Hence, with (21) and (22) it
follows that U = 1 and V = 1 hold. Now for simplicity, assume that I0 and I1
are both equal to one on their supports which are contained strictly within Ωc

0 and
Ωc

1, respectively. Assume also that σ0 and σ1 are initialized as the identity. Then
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Fig. 3. Scaling I0 without scaling I1 leaves σ0(I0) a binary image. Scaling I1 without scaling
I0 gives σ1(I1) = I0. Thus, the result of nonreciprocal scaling depends upon the order in
which images are taken.

according to (27), the average of I1(x(ξ, 1)) over the support of I0(ξ) gives the
value σ0(1). Similarly, with (27), the average of I0(y(η, 0)) over the support of
I1(η) gives the value σ1(1). With a perfect registration, σ0(1) = σ1(1) = 1.

Now to illustrate the importance of scaling reciprocally, suppose that u = 0 for
two images, shown in Fig. 3,

which are identical except that I1 is noisy and I0 is not. For simplicity, assume
for a square S, I0 = χS and I1 = I1χS , where the characteristic function χS is
equal to one on the support S. Assume now that no scaling is performed for I1 so that
σ1(ι) = ι. Then, as explained above, σ0(1) is calculated as the average of I1 over S.
Specifically, σ0(I0) remains a binary image while σ1(I1) = I1 does not. Therefore,
by (9), the intensity distribution I(x, z) = σ0(I0(x))[1 − z] + I1(x)z drives a
disturbance in u in the next optical flow calculation. Assume now on the other hand,
that no scaling is performed for I0 so that σ0(ι) = ι. Then since the average of I0
on any subset of S is equal to one, the calculation of σ1 gives σ1(I1(x)) = I0(x).
Therefore, from (9) the intensity field I(x, z) = I0(x) preserves the optical flow
u = 0, unlike the case with scaling only on I0. Thus, reciprocal scaling is required
for the registration result to be independent of the order in which images are taken.
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This example also shows the importance of initializing the scaling functions with the
identity at each iteration, since otherwise the resolution of certain intensity values
can be lost in all subsequent iterations.

4.3 Optimality Conditions for Optical Flow

Now, for fixed I , σ0, and σ1, the variational derivative of J with respect to u is
given by:

δJ

δu
(u; ū) = 2

∫
Q

[(∇I · u + Iz)(∇I · ū) + α (uz · ūz)] dxdz

+ 2
∫

Q

φ′
(∣∣∇uT + ∇u

∣∣2) [∇uT + ∇u
]

:
[
∇ūT + ∇ū

]
dxdz.

(29)
The optical flow u is computed by solving the weakly formulated optimality system:

0 =
1
2
δJ

δu
(u; ū) = B(u,u, ū) − F (ū), ∀ū ∈ C∞(Q̄), (30)

where B and F are defined as follows:

B(u,v,w) =
∫

Q

[(∇I · v)(∇I · w) + α (vz · wz)] dxdz

+
∫

Q

φ′
(∣∣∇uT + ∇u

∣∣2) (∇vT + ∇v
)

:
(
∇wT + ∇w

)
dxdz (31)

F (w) = −
∫

Q

Iz∇I · wdxdz. (32)

The solvability of (30) is considered below in Theorem 2 for linear φ. The optimality
system is also given below in differential form. As explained in connection with (7),
only natural boundary conditions are considered for u in order to avoid disturbances
to rigid registrations, and therefore, the above variational derivative satisfies

1
2
δJ

δu
(u; ū) =

∫
Q

{
(∇I · u+Iz)∇I−αuzz

−∇ ·
[
2φ′

(∣∣∇uT+∇u
∣∣2) (∇uT+∇u

)]}
· ūdxdz

+
∫

Γ

n ·
[
2φ′

(∣∣∇uT+∇u
∣∣2) (∇uT+∇u

)]
· ūdxdz

+
∫

Ω1

αuz · ūdx−
∫

Ω0

αuz · ūdx.

(33)

Requiring this variational derivative to vanish for smooth perturbations ū which
have vanishingly small support while remaining concentrated at a given point in a
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Fig. 4. The intensity Ie models the excision of an object from Ω0, and the discontinuous ue

is the natural corresponding optical flow.

single integral above leads to the following optimality conditions on the optical flow
u: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−2∇ ·
[
φ′
(∣∣∇uT + ∇u

∣∣2) (∇uT + ∇u
)]

−αuzz +
(
∇I∇IT

)
u = −Iz∇I, Q,

n ·
(
∇uT + ∇u

)
= 0, Γ, uz = 0, Ω0, Ω1.

(34)

To illustrate the effect of the function φ, consider the system for one-dimensional
images, Ie(x, 0) and Ie(x, 1) from Ie(x, z) = max{(1− 1

2z)− 2|x− 1
2 |, 0}, which

model the excision of an object {Ie(x, 0) > 1
2} in Ω0 as shown in Fig. 4. The

natural corresponding optical flow is ue(x, z) = 1
4χ[0,1/2](x) − 1

4χ[1/2,1](x), but
the corresponding cost is not finite if φ is linear. Instead, the fitting penalty in this
case is total variation φ(s) = β

√
s,

J(u) =
∫ 1

0

∫ 1
2

z
4

(2u− 1
2 )2dxdz +

∫ 1

0

∫ 1− z
4

1
2

(2u+ 1
2 )2dxdz

+
∫ 1

0

∫ 1

0

[
2β|ux| + α|uz|2

]
dxdz

(35)

for which J(ue) = β and for which (30) holds with u = ue. Note the difficulty
in implementing such singular transformations in a purely Lagrangian frame such
as with (4). Of course, if smoother registrations are desired, then choosing a linear
function φ is more appropriate. Intermediate regularization goals can be reached
through intermediate choices for φ [39], but it is assumed here that φ(s2) is convex
for well-posed minimization [3].

4.4 Well-Posedness of the Variational Problem

It is not quite clear beforehand whether the cost function (1) is sufficiently coercive
with respect to u to guarantee well-posedness for (30) or whether additional optical
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flow regularization such as
∫

Q

φ
(
|∇u|2

)
dxdz (36)

is necessary. For instance, suppose the intensity has the form I(x, z) = |x|2 in Q,
and thereby supports an ambiguous optical flow uθ = θWx for any θ ∈ R and for
any skew-symmetric matrix W ∈ RN×N . Then the cost is zero for every θ ∈ R,
and in particular J(uθ) �→ ∞ as ‖uθ‖H1(Q) = O(θ) → ∞. However, it can be
assumed safely that medical images do not support such ambiguity. Thus, on the
basis of the following theorem, the regularization shown in (36) is not used in this
work.

Theorem 2. Suppose that an intensity I ∈W 1,∞(Q) manifests sufficiently few sym-
metries that for every a ∈ RN and for every skew-symmetric W ∈ RN×N ,

∫
Q

|∇I · (a +Wx)|2dxdz > 0, (37)

unless a = 0 = W . Then with φ(s) = β(x, z)s, 0 < β0 ≤ β(x, z) ≤ β1 < ∞,
there exists a unique u ∈ H1(Q) such that (30) holds.

Proof: Since C∞(Q̄) is dense in H1(Q), the claim follows from the Lax-Milgram
Theorem [6] once it is shown that B(u,v) = B(·,u,v) is bounded and coercive
on H1(Q) and that F (v) is bounded on H1(Q). The boundedness of B and F is
readily established:

|B(u,v)| ≤ ‖I‖2
W 1,∞(Q)‖u‖L2(Q)‖v‖L2(Q) + α‖uz‖L2(Q)‖vz‖L2(Q)

+4β1‖∇u‖L2(Q)‖∇v‖L2(Q)

≤ [‖I‖2
W 1,∞(Q) + α+ 4β1]‖u‖H1(Q)‖v‖H1(Q) (38)

|F (v)| ≤ ‖I‖2
W 1,∞(Q)‖v‖L2(Q). (39)

To establish coercivity of B, assume there exists a sequence {un} ⊂ H1(Q) such
that

‖un‖H1(Q) = 1 while B(un,un) → 0. (40)

For convenience, define now the semi-norm |·|B satisfying the following inequality:

|u|2B = ‖∇uT + ∇u‖2
L2(Q) + ‖uz‖2

L2(Q) ≤
1

min{α, β0}
B(u,u). (41)

Since H1(Q) is compactly embedded in L2(Q) [1], there is a subsequence {unl
}

which converges in L2(Q). From Korn’s Inequality [32],

‖∇u‖2
L2(Q) ≤ k1‖u‖2

L2(Q) + k2‖∇uT + ∇u‖2
L2(Q) (42)
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it follows that

‖unl
− unk

‖H1(Q) ≤ c1‖unl
− unk

‖L2(Q) + c2|unl
− unk

|B . (43)

Since both terms on the right vanish, it follows that {unl
} is a Cauchy sequence in

H1(Q) with some limit u∗ ∈ H1(Q) which satisfies:

min{α, β0}|u∗|B ≤ B(u∗,u∗) = lim
nl→0

B(unl
,unl

) = 0. (44)

From (41) and (44) it follows that ∂zu
∗
i = 0 = e∗ij = 1

2 (∂xi
u∗j + ∂xj

u∗i ). Thus,
u∗ is independent of z. From the identity ∂xixj

u∗k = ∂xi
e∗jk + ∂xj

e∗ki − ∂xk
e∗ij

[8], it follows that u∗ is a linear function of x. Since e∗ij = 0, u∗ is given by
u∗ = a +Wx for some a ∈ RN and some skew-symmetric W ∈ RN×N . Then
from B(u∗,u∗) = 0 it follows that the integral in (37) vanishes. However, this
violates the assumption on I unless u∗ = 0, which contradicts the assumption that
‖un‖H1(Q) = 1. Thus, B is coercive on H1(Q).

Although details are not provided here, it is assumed that if I ∈ W 1,∞(Q)
then u ∈ W 1,∞(Q) [35], as mentioned in Subsection 4.1 concerning conditions
under which trajectories are globally well-defined. When the given images are so
noisy that only I0 ∈ BV (Ω0) and I1 ∈ BV (Ω1) can be assumed, then additional
intensity regularization can be considered, similar to that found in [2]. Otherwise,
global existence of trajectories can be assured by representing I0 and I1 in terms of
their multilinear interpolants. Finally, note that with minor changes in the proof of
Theorem 2, analogous theorems can also be established for (12) and (13).

4.5 Optimality Conditions with Landmark Constraints

The optical flow is obtained under landmark constraints (3) when the following
Lagrangian function is stationary:

L(u,λ) = 1
2J(u) + λTE(u), (45)

where λ ∈ R2ĵ and:

Ej(u) = x(ξj, 1) − xj = ξj − xj +
∫ 1

0

u(x(ξj, ρ), ρ)dρ, j = 1, . . . , ĵ. (46)

Here, I , σ0, and σ1 are fixed as in Subsection 4.3. According to the dependence of
x(ξj, ζ) upon u in (4), the variational derivative of x(ξj, ζ) with respect to u for a
perturbation ū is given by:

δx(ξj, ζ)
δu

(u; ū) =
∫ ζ

0

[
∇u(x(ξj, ρ), ρ)

δx(ξj, ρ)
δu

(u; ū) + ū(x(ξj, ρ), ρ)
]
dρ.

(47)



Medical Image Registration 47

For an explicit formulation of the variational derivative, assume u ∈W 1,∞(Q) (see
Theorem 2 above and the comments at the end of Section 4.4) or that u is at least
locally smooth enough to define a solution operator Su,j(ζ, ρ) with the following
properties [10]:

Su,j(ζ, �)Su,j(�, ρ) = Su,j(ζ, ρ), 0 ≤ ρ ≤ � ≤ ζ ≤ 1
Su,j(ζ, ζ) = I, ζ ∈ [0, 1]

∂ζSu,j(ζ, ρ) = ∇u(x(ξj, ζ), ζ)Su,j(ζ, ρ)
∂ρSu,j(ζ, ρ) = −Su,j(ζ, ρ)∇u(x(ξj, ρ), ρ)

(48)

to give (47) the form:

δx(ξj, ζ)
δu

(u; ū) =
∫ ζ

0

Su,j(ζ, ρ)ū(x(ξj, ρ), ρ)dρ. (49)

Then, using the functional:

Gj(u, ū) =
∫ 1

0

Su,j(1, ρ)ū(x(ξj, ρ), ρ)dρ (50)

together with (30), the stationarity conditions for L are:

δL

δu
(u; ū) = B(u,u, ū) − F (ū) + λTG(u, ū) = 0, ∀ū ∈ C∞(Q̄), (51)

∂L

∂λ
= E(u) = 0. (52)

Although details are not provided here, it is assumed that u has sufficient reg-
ularity [35], as mentioned in Subsection 4.3, so that (4) and (48) are well defined.
Thus, the existence of the Lagrange multipliers in (51) is given as follows.

Theorem 3. Assume that J(u) is minimized subject to E(u) = 0 at u∗ ∈ H1(Q)∩
W 1,∞(Q). Then there exists a λ∗ ∈ R2ĵ such that (u∗,λ∗) satisfy (51).

Proof: First note that J(u) and E(u) are both differentiable with respect to the
finer topology of H1(Q) ∩W 1,∞(Q). Also, the derivative of L with respect to u
in (51) is densely defined and continuously extendable to H1(Q) in which C∞(Q̄)
is dense. Thus, once it is shown that for every k = {kj} ∈ R2ĵ, kj ∈ R2, there
exists a v ∈ H1(Q) ∩W 1,∞(Q) such that G(u∗,v) = k, the claim follows from
the Lagrange Multiplier Theorem in [23]. For this, note from (48) that:

∫ ζ

0

Su,j(ζ, ρ)[I − ρ∇u∗(x(ξj, ρ), ρ)]dρ

=
∫ ζ

0

(ρSu,j(ζ, ρ))ρdρ = ζSu,j(ζ, ζ) = ζI.

(53)
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Now let u∗
ε ∈ C∞(Q̄) be a mollification converging to u∗ as ε→ 0, so the matrix:

Gj =
∫ 1

0

Su,j(1, ρ)[I − ρ∇u∗
ε(x(ξj, ρ), ρ)]dρ (54)

is arbitrarily near the identity and hence invertible for ε ∈ (0, δ] with δ sufficiently
small. Also, the regularity in u∗ guarantees uniqueness in (4) [10], so the ĵ trajecto-
ries have no intersection. Thus, there exists a partition of unity {ψj} ⊂ C∞(Q̄) for
which ψj = 1 on the jth trajectory and ψj = 0 on the other trajectories. Hence,

v(x, z) = [I − z∇u∗
δ(x, z)]

ĵ∑
j=1

ψj(x, z)G−1
j kj ∈ C∞(Q̄) ⊂ H1(Q)∩W 1,∞(Q)

(55)
satisfies G(u∗,v) = k.

Although (51) and (52) are not considered numerically in the present work, their
form can be elucidated by simple examples. In particular, for the example of Fig. 4,
in which the constraints x(0, 1) = 1

4 and x(1, 1) = 3
4 may be imposed,

G1(u; ū) =
∫ ζ

0

ū(0 + 1
4ρ, ρ)dρ, G2(u; ū) =

∫ ζ

0

ū(1 − 1
4ρ, ρ)dρ (56)

and L is stationary at u = ue and λ1 = 0 = λ2. Also, for the example of (9) and
(10) in which any number of landmark conditions (3) conforming to (5) may be
given,

Gj(u; ū) =
∫ ζ

0

R(ζ − ρ)ū(x̂(ξj, ρ), ρ)dρ, j = 1, . . . , ĵ (57)

and L is stationary at u = û and λ = 0. In these examples, the landmark constraints
conform to a solution to the unconstrained problem, and therefore the constraints are
inactive at stationarity with λ = 0. Active constraints will be considered in detail in
forthcoming work.

5 Numerical Approximation

In the remainder of this work, only the computational implementation of (8) and (34)
is treated, and (27), (28), (51) and (52) will be considered in detail in forthcoming
work. The discretizations of (8) and (34) are described separately in the subsections
below with the intent to implement them in the following loop by solving for one
variable while the other is held fixed:

• Set u = 0.
• Repeat until the relative difference in u is sufficiently small:

◦ Compute I from u as specified in Subsection 5.1.
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◦ Compute u from I as specified in Subsection 5.2.

While the convergence of this cycling is not proved here, convergence has been
observed for all examples presented in Section 6.

The numerical discretization begins with a division ofQ into a grid of cells, each
having dimensions (h, . . . , h, τ), in the x1, . . . , xN , and z directions, respectively,
where h = 2−p and τ = 1/K for integers p and K. Specifically, with the integer-
component N -dimensional multi-indices i = (i1, . . . , iN ), 0 = (0, . . . , 0), and
1 = (1, . . . , 1), define the cell corners by (xi+1/2, zk+1/2) = (ih, kτ), 0 ≤ i ≤
2p · 1, 0 ≤ k ≤ K, and the cell centroids by (xi, zk) = ((i − 1

2 )h, (k − 1
2 )τ),

1 ≤ i ≤ 2p ·1, 1 ≤ k ≤ K. Then, the notation fi,k is used for a grid function at the
cell centroid (i, k), and fractional indices are used for cell boundaries. The given
images I0 and I1 are imposed numerically as boundary conditions, Ii,k0 = I0,i

and Ii,k1 = I1,i in the cell face coordinates (i, k0) and (i, k1), respectively, where
k0 = 1

2 and k1 = K + 1
2 .

5.1 Intensity Discretization

To discuss the effects of different discretizations, the following model situation is
considered. Suppose with x(ξ, ζ) = ξ + uζ and u = (1/

√
2, 1/

√
2), that the given

images are related by a simple translation, I0(ξ) = I1(ξ + u). Thus, ∇ ·u = 0 and
(8) takes the form,

∇ (∇I · u + Iz) · u + (∇I · u + Iz)z =
d2I

dζ2
= 0. (1)

Assume that the intensity is represented as a grid function Ii,k. Then, an Eulerian
discretization of (1) takes the form,

I(i+uτ/h,k+1) − 2Ii,k + I(i−uτ/h,k−1) = 0 (2)

solved for example through iteration by

I�
i,k =

1
2

[
I�−1
(i+uτ/h,k+1) + I�−1

(i−uτ/h,k−1)

]
(3)

where the values I(i+uτ/h,k+1) and I(i−uτ/h,k−1) must be interpolated from nearby
intensity grid values. To see the consequences of such an interpolation, consider the
case illustrated in Fig. 5 where I0(x) = χS(x) and I1(x) = χS(x − u) for the
square S = {x : 0 ≤ x1, x2 ≤ 1

2}, and the correct intensity I is defined on Q as
equal to one in the diagonal zone and zero otherwise. Let the empty circle denote
the cell (i, k), the filled circles its cell neighbors, and the stars the cell coordinates
(i±uτ/h, k± 1). Then, a natural linear interpolation of intensity grid values in the
respective neighborhoods gives I(i+uτ/h,k+1) = 1

2 = I(i−uτ/h,k−1), and therefore
from (3) the value of Ii,k drops from one to one-half. Repeated application of (3)
produces the results shown in Fig. 6, where for the given 32 × 32 images I0 and
I1 shown in Fig. 5, intermediate images {{Ii,k} : 1 ≤ k ≤ 16}, are read in Fig. 6
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Fig. 5. The given images I0 and I1 are shown on the left and on the right, respectively, and
a planview of the correct intensity I in Q is illustrated in the middle, along with an Eulerian
discretization around the empty circle.

Fig. 6. For the given 32×32 images I0 and I1 shown in Fig. 5, intermediate images {{Ii,k} :
1 ≤ k ≤ 16} computed with an Eulerian discretization of (1) are read from left to right and
from top to bottom.

Fig. 7. For the given 32×32 images I0 and I1 shown in Fig. 5, intermediate images {{Ii,k} :
1 ≤ k ≤ 16} computed with a Lagrangian discretization of (1) are read from left to right and
from top to bottom.

from left to right and from top to bottom. Clearly, the linear interpolation is too dis-
sipative, and although nonlinear interpolation operators can be considered, the con-
clusion from this experiment is that a Lagrangian discretization of (8) is preferred
over an Eulerian one. In fact, the results shown in Fig. 7 reflect the improvement
obtained from the Eulerian discretization described below.

The discretization of (9) and (10) requires first an integration through the optical
flow field u in (4) and (5) to obtain trajectories x(ξ, ζ) and y(η, ζ) impinging onΩ0

and on Ω1 as illustrated in Fig. 2. The intensity discretization requires secondly an
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integration through the divergence field ∇ · u in (11) and (12) to obtain U(ξ, ζ, ζ́)
and V (η, ζ̀, ζ) for (9) and (10). However, the optical flow discretization remains
Eulerian. Therefore, multilinear interpolation of the values {ui,k} is used to repre-
sent u for (4) and (5). Similarly, multilinear interpolation of the values {∇h · ui,k}
is used to represent the divergence ∇·u in (11) and (12), where ∇h ·ui,k is obtained
by central differences with natural one-sided modifications at the boundary. Outside
the convex hull of centroids, u and ∇ · u are represented by multilinear extrapo-
lation. With the interpolated optical flow vector and divergence fields, the integrals
in (4), (5), (11), and (12) are approximated using a Runge-Kutta-Fehlberg adaptive
integration.

Although the discretization chosen for (8) is Lagrangian, intensity grid values
are needed for the Eulerian discretization of (34). In order to perform image mor-
phing, intensity values are also needed along trajectories emanating from front cell
faces {(i, k0)} and from rear cell faces {(i, k1)}. Therefore, one option is to calcu-
late only those trajectories emanating from front or rear cell faces, to solve for the
intensity along these trajectories, and then to interpolate these intensity values onto
interior cells to obtain intensity grid values for (34). However, such interpolation
leads again to smoothing problems as illustrated in Figs. 5 and 6. Thus, the chosen
procedure is to generate trajectories emanating from every cell centroid (xi, zk),
both toward Ω0 and toward Ω1 so that with (9) and (10) an intensity grid function
can be obtained without interpolation. For this, ζ0 in (11) and (12) is set to its value
at a cell centroid. In spite of the apparent expense of these integrations, note that they
are independent, but require individual treatment to halt integration once the bound-
ary Γ or an irregular flow zone Ξ has been reached. Nevertheless, the integrations
can be vectorized by maintaining a grid function,

�i,k =
{

1, trajectory through (xi, zk) advances through Q,
0, otherwise (4)

which always multiplies trajectory increments and which switches from one to zero
after a trajectory has reached Γ or Ξ . While it is clear when the boundary Γ has
been reached, an arrival criterion for the set Ξ can be implemented numerically in
terms of whether an integration accuracy criterion has been met. Once a trajectory
reaches the boundary of Q, the intensity I is computed from (9) and (10) using
multilinear interpolation from face centroid values of I0 on Ω0 and I1 on Ω1 and
from I = 0 on Γ .

The computation of the intensity can now be summarized as follows:

• From each cell centroid, integrate (4) and (5) to generate trajectories x and y
directed toward Ω0 and Ω1, respectively.

• Simultaneously integrate (11) and (12) to obtain U and V .
• While integrating, represent u and ∇ · u by multilinear interpolation and extrap-

olation from cell centroids.
• Represent the intensity on the boundary of Q by multilinear interpolation from

face centroid values of I0 on Ω0 and I1 on Ω1 and from I = 0 on Γ .
• Compute the intensity I at each cell centroid using in (9) and (10).
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5.2 Optical Flow Discretization

Now, consider the computation of the optical flow u from (34). The numerical ap-
proximation is obtained naturally from a finite element discretization of (29) [6].
Specifically, let Sh,τ be the space of tensor products of linear C0 splines defined on
Q, and let u ∈ Sh,τ be determined by:

B(u,u,χ) = F (χ), ∀χ ∈ Sh,τ (5)

where B and F are given in (31) and (32). Because of the possible nonlinearity, φ′

in (5), a lagged diffusivity iteration is used [38]. Specifically, given u�−1 ∈ Sh,τ ,
let u� ∈ Sh,τ be determined by:

B(u�−1,u�,χ) = F (χ), ∀χ ∈ Sh,τ . (6)

For this, assume that φ is sufficiently regularized so that 0 < β0 ≤ φ′ ≤ β1 < ∞.
Thus, by Theorem 2, u� is well-defined by (6).

As illustrated in [19], finite element discretizations lead to aberrant conse-
quences in the limit of vanishing regularization corresponding to an ever improving
signal-to-noise ratio. To avoid these consequences as well as the wide bandwidth of
the algebraic system in (6), a lumping approach is used to derive a finite difference
discretization which is consistent with (6). Such lumping is implemented here by
using cell-centered tensor products of spline basis functions:

s(0)(t) = χ[0,1](t), s(1)(t) = [s(0) ∗ s(0)](t)

s(mi)(h−1xi − N + mi

2 ) on Qxi
= [mi

2 h, 1 − mi

2 h]
s(n)(τ−1z − N + n

2 ) on Qz = [n
2 τ, 1 − n

2 τ ].

Q ≈ Q̂ = Qx1 × · · · ×QxN
×Qz

(7)

which are minimally smooth in a given direction for a given term as detailed below.
The effect of this lumping is to concentrate the algebraic formulation at cell centers.
Thus, the final system unknowns become the optical flow grid values directly instead
of merely finite element basis function weights.

Lumping is implemented for the term
∫

Q̂
(∇I · u)(∇I · χ)dxdz from

B(u�−1,u,χ) with mi = n = 0 in (7) and leads to the algebraic coefficients
(∇Ii,k∇IT

i,k)ui,k. Here, the numerical gradient ∇hI is computed with simple cen-
tral differences with natural one-sided modifications at the boundary. In spite of the
apparent wavelike nature of the transport of intensities through Q, nonlinear gradi-
ent approximations [27] were not found necessary for the computation of ∇hI . The
transport is however sensitive to the computation of Iz , which must be consistent
with (9):

(Iz)i,k = (dI/dζ)i,k −∇hIi,k · uI
i,k (8)

where uI in (8) denotes the optical flow used to compute the intensity. With Iz
computed in this way, the term −

∫
Q̂
Iz∇I · χdxdz from F (χ) leads with mi =

n = 0 in (7) to the source term −(Iz)i,k∇hIi,k.
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Lumping is implemented as follows for the terms of
∫

Q̂
φ′�−1[(∇uT + ∇u) :

(∇χT + ∇χ)]dxdz from B(u�−1,u,χ). In all cases, n = 0 in (7). Then for di-
agonal terms, φ′∂xi

ui∂xi
χi, the values mj = δij are used in (7). For off-diagonal

terms, φ′∂xi
uk∂xι

χκ, i �= ι, k �= κ, the values mj = δij + διj are used in (7). Also,

βi,k = φ′
(∣∣∣[∇uT + ∇u]�−1

i,k

∣∣∣2
)

(9)

is computed using central differences for ∇u�−1. Natural one-sided modifications
are used at the boundary, and for fractional subscripts β is computed by differencing
u�−1 symmetrically with respect to the appropriate cell face. This lumping is partic-
ularly useful to derive the numerical boundary conditions and the resulting stencils
are given in detail in [20].

Finally, lumping is implemented for the term
∫

Q̂
α[uz · χz]dxdz from

B(u�−1,u,χ) with mi = 0 and n = 1 in (7), and leads to the standard finite
difference discretization of the 1D Laplacian with Neumann boundary conditions.

The discretizations defined above lead to a 2NpK × 2NpK linear system,

A�−1u
� = f (10)

in which the matrix A�−1 is dependent upon u�−1. A detailed Taylor series analysis
shows that this discretization is consistent with the differential form of the optimality
system for the optical flow given in (34). According to the following, u� is well
defined by (10).

Theorem 4. Suppose that the grid values {∇hIi,k} manifest sufficiently few sym-
metries that for every a ∈ RN and for every skew-symmetric W ∈ RN×N ,

∑
1≤i≤2p·1

∑
1≤k≤K

|∇hIi,k · (a +Wxi)|2 > 0, (11)

unless a = 0 = W . Also, assume that φ′�−1 is cellwise constant and that (9) satisfies
0 < β0 ≤ βi,k ≤ β1 < ∞. Then A�−1 in (10) is a symmetric and positive definite
matrix.

Proof: The matrix is evidently symmetric and non-negative. Suppose there exists a
vector of grid values u∗ = {u∗

i,k} such that u∗ ·A�−1 · u∗ = 0.
Now let w represent the function which is cellwise constant with respect to x

and piecewise linear and globally C0 with respect to z, and suppose w has coeffi-
cients {u∗

i,k} for the corresponding spline tensor products shown in (7). Then the
terms in u∗ · A�−1 · u∗ derived from integrals involving α result from substituting
w in these integrals and thus,

0 = u∗ ·A�−1 · u∗ ≥
∫

Q̂

α|wz|2. (12)

Therefore, the coefficients {u∗
i,k} are constant with respect to k.
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Now let v represent the function which is cellwise constant with respect to z
and piecewise multilinear and globally C0 with respect to x, and suppose v has
coefficients {u∗

i,k} for the corresponding spline tensor products shown in (7). Then
note that the mass matrices for s(0)(t) and s(1)(t), i.e.,

M (0) =
{∫ 1

0

s(0)(h−1t− k) s(0)(h−1t− l) dt : 0 ≤ k, l ≤ h−1

}
(13)

M (1) =

{∫ 1−h
2

h
2

s(1)(h−1t− k + 1
2 )s(1)(h−1t− l + 1

2 )dt : 0 ≤ k, l ≤ h−1

}
(14)

satisfy the spectral property:

1
6χ ·M (0) · χ ≤ χ ·M (1) · χ ≤ χ ·M (0) · χ. (15)

Therefore, all terms in u∗ ·A�−1 · u∗ derived from integrals involving φ′�−1 can be
estimated in terms of tensor products of splines in (7) withmi = 1 and n = 0. Thus,
all such terms result from substituting v in the corresponding integrals and hence:

0 = u∗ ·A�−1 · u∗ ≥ β0

∫
Q̂

|∇vT + ∇v|2dxdz. (16)

Since the coefficients {u∗
i,k} are constant with respect to k, v has the form u∗

i,k =
v(xi, zk) = a + Wxi for some a ∈ RN and for some skew-symmetric W ∈
RN×N , as argued in the proof of Theorem 2.

Finally, since u∗ · A�−1 · u∗ majorizes the sum in (11), that sum must vanish.
However, this violates the assumption on I unless u∗ = 0.

The computation of the optical flow can now be summarized as follows:

• Compute ∇hI by central differences and Iz by (8).
• Set u0 = u and � = 1.
• Repeat until the relative difference in u� is sufficiently small:

◦ Assemble A�−1 using u�−1, solve (10) for u�, and set � = �+ 1.
• Set u = u�.

According to Theorem 4, the system in (10) can be solved using a conjugate gradient
method. Although conjugate gradient is relatively slow in the present context, it is
used in the present work for convenience. On the other hand, note that if α = ∞
(uz = 0) and φ(s) = βs, then (10) is �-independent and has the spectral structure
of the elasticity approach of [12] in which fast Fourier methods are used. However,
particularly for the treatment of natural boundary conditions, the preferred solution
procedure for (5) involves nonlinear multigrid techniques [16] [36] as well as multi-
scale pyramidal strategies in place of the loop shown at the beginning of Section 5.
Further numerical details will be reported separately.
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Fig. 8. In the two uppermost rows, the intermediate 32 × 32 images {{Ii,k} : 1 ≤ k ≤ 16}
are read from left to right and from top to bottom. The essentially z-independent computed
optical flow field is shown in the lower left. The registration error is represented in the lower
right, where I0(ξ), I1(ξ), and |I0(ξ)−I1(ξ)|, respectively, appear in the top row, and I1(η),
I0(η), and |I1(η) − I0(η)|, respectively, appear in the bottom row.

6 Computational Results

The final numerical methods defined in the previous section are applied first to test
cases and then to magnetic resonance images. First, Fig. 8 shows a simple example
in which the given 32 × 32 images I0 and I1, shown to the right of the optical
flow vector field, are related by a pure rotation. All the computations reported in
this section were performed using the IDL (See http://www.rsinc.com/idl/index.asp)
(Interactive Data Language) system. In every example, h and τ are one but can be
rescaled in terms of regularization parameters to be consistent with the definition
Q = (0, 1)N . Also, I ∈ [0, 1] holds in all examples, and white represents I = 1
while black represents I = 0. In the example of Fig. 8, α = 10 and φ(s) = βs with
β = 10. The successful computation of the rotation is evident in the sequence of
intermediate images {{Ii,k} : 1 ≤ k ≤ 16} and in the essentially z-independent
rotational optical flow field. Now with the transported or morphed images I0 and I1

defined in (23) and (24), define the registration errors:

Ep
0 (Ω) = ‖I0 − I1‖Lp(Ω), Ω ⊆ Ω0, (1)

Ep
1 (Ω) = ‖I0 − I1‖Lp(Ω), Ω ⊆ Ω1. (2)

For the example shown in Fig. 8, the errors satisfy E1
0(Ωc

0) = 0.0094 = E1
1(Ωc

1) on
the domain subsets on which trajectories extend completely through the full depth
of Q, and E1

0(Ω0) = 0.014 = E1
1(Ω1) on the full image domains. Also, E1

0(Ω0) =
0.016 = E1

1(Ω1) holds for the example shown in Fig. 7 for which α = 1 and β = 1
were used. Thus, the approach succeeds to produce a rotation or a translation when
one fits the data.
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Fig. 9. Penalties φ(s) = βs and φ(s) = β
√

s + ε are compared in the top and bottom
rows, respectively. The essentially k-independent optical flow fields are shown in the left
column. The middle column shows the morphing of a uniform grid from Ω0 to Ω1. The
corresponding registration errors are shown to the right in the same format as used in Fig. 8
but with scaled errors in the rightmost column. Specifically, for each penalty, I0(ξ), I1(ξ),
and |I0(ξ) − I1(ξ)|/E∞

0 (Ω0) appear above I1(η), I0(η), and |I1(η) − I0(η)|/E∞
1 (Ω1),

respectively.

On the other hand, the example shown in Fig. 8 is also constructed so that trajec-
tories emanating from nontrivial pixels in Ω0 and Ω1 would impinge on the bound-
ary Γ . As a result, the registration error satisfies E∞

0 (Ωc
0) = 0.52 = E∞

1 (Ωc
1) on

the subdomains Ωc
0 and Ωc

1, but E∞
0 (Ω0) = 1 = E∞

1 (Ω1) on the full domains Ω0

and Ω1. By contrast E∞
0 (Ω0) = 0.45 = E∞

1 (Ω1) holds for the translation exam-
ple shown in Fig. 7. Although the desired registration has been computed for the
rotation, there is clearly a potentially influential loss of information when nontrivial
trajectories impinge upon Γ , and such a loss can be avoided simply by extending
images by zero and using a sufficiently large domain. The alternative use of non-
natural boundary conditions would clearly disturb the images shown in Fig. 8.

Next, Fig. 9 shows a computational counterpart to Fig. 4 in which the given
32 × 32 images I0 and I1 are related by an excision, i.e., the middle component
{I0 > 1

2} is removed to create I1. According to the same format used in Fig. 8, I0
appears above I1 leftmost among the images shown in Fig. 9. Also, the (Gaussian)
penalty φ(s) = βs, β = 10−3, and the (regularized TV) penalty φ(s) = β

√
s+ ε,

β = 10−4, ε = 10−2 are compared. In both cases, K = 4 and α = 105 are chosen,
and the optical flow field is essentially k-independent. The superior performance of
the TV penalty can be seen most conspicuously from the middle column in Fig. 9
which shows a morphing of a uniform grid fromΩ0 toΩ1. Note that for both penal-
ties, the wide grey zone in I1 shows that the middlemost region of I1 has been
expanded. On the other hand, while the TV penalty maps only greyer pixels in I0
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Fig. 10. To demonstrate strongly and weakly rigid registration with a simple example, penal-
ties φ(s) = βs with large and small β are compared in the top and bottom rows, respectively.
The essentially k-independent optical flow fields are shown in the left column. The middle
column shows the morphing of a uniform grid from Ω0 to Ω1. The corresponding registration
errors are shown to the right in the same format as used in Fig. 8 but with scaled errors in the
rightmost column. Specifically, for each penalty, I0(ξ), I1(ξ), and |I0(ξ)−I1(ξ)|/E∞

0 (Ω0)
appear above I1(η), I0(η), and |I1(η) − I0(η)|/E∞

1 (Ω1), respectively.

onto I0, the Gaussian penalty spuriously maps some brighter pixels of I0 onto I0 to
generate a brighter strip in the middle of I0. Also, the inappropriate x2-dependence
resulting from the Gaussian penalty, particularly in the top and bottom image bor-
ders, is evident in the corresponding images I0 and |I1 − I0|/E∞

1 (Ω1). With the
Gaussian penalty, the errors areE1

0(Ωc
0) = 0.14,E∞

0 (Ωc
0) = 0.5,E1

1(Ωc
1) = 0.011,

and E∞
1 (Ωc

1) = 0.29 on the subdomains, and E1
0(Ω0) = 0.14, E∞

0 (Ω0) = 0.5,
E1

1(Ω1) = 0.013, and E∞
1 (Ω1) = 0.5 on the full domains. With the TV penalty,

the errors are E1
0 = 0.14, E∞

0 = 0.5, E1
1 = 0.005, and E∞

1 = 0.025 both on the
subdomains and the full domains.

Now, Fig. 10 shows a final simple example to reveal how the strongly rigid reg-
istration shown especially in Fig. 8 can be relaxed to what will be referred to as
weakly rigid registration obtained by relaxing the dominance of the rigidity penalty.
Again, following the format of Figs. 8 and 9, I0 is shown above I1 leftmost among
the images shown in Fig. 10. Here, the 32 × 32 images I0 and I1 both contain a
left-situated square which remains fixed, while a right-situated square moves up-
ward from I0 to I1. In both cases of this example, a linear penalty, φ(s) = βs, is
used andK = 2 and α = 10 are chosen. The compared cases correspond to β = 10
(strongly rigid) in the upper part of Fig. 10 and to β = 10−2 (weakly rigid) in the
lower part. The difference between strongly and weakly rigid registration is particu-
larly evident in the respective uniform grid morphings from Ω0 to Ω1 shown in the
middle column of Fig. 10. Specifically, weakly rigid registration evidently permits
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a departure from rigidity, i.e., a fluctuation in areas and angles, which vanishes on
average and with increasing variance as the dominance of the rigidity penalty is re-
laxed. The errors corresponding to the strongly rigid case are E1

0 = 0.037 = E1
1

and E∞
0 = 1 = E∞

1 both on the subdomains and the full domains. The errors cor-
responding to the weakly rigid case are E1

0 = 0.0045 = E1
1 and E∞

0 = 0.41 = E∞
1

both on the subdomains and the full domains. Note that this and other more complex
examples were constructed particularly to generate a nonautonomous optical flow
field. The field can of course be made nonautonomous for sufficiently small α, but
the result manifests more numerical fluctuation than any information rich variation
which contributes to the registration. The trend of the flows is toward autonomy, and
suggests further investigation of the regularization discussed in Section 3.

Finally, Fig. 11 shows an example of the registration of two magnetic resonance
images I0 and I1 from a contrast enhanced dynamic scan containing 128× 128 pix-
els each. The scan was performed with a T1-weighted inversion recovery turbo-flash
sequence. Again, following the format of Figs. 8 – 10, I0 is shown above I1 leftmost
among the images shown in Fig. 11. The most conspicuous object in the middle of
these images is the left kidney situated to the right of the vertebral column appearing
along the left border. This example is similar to that of Fig. 10 in the sense that the
left-situated vertebrae remain fixed while the right-situated kidney moves upward
from I0 to I1 as a consequence of respiration. In both cases of this example, a linear
penalty, φ(s) = βs, is used and K = 2 and α = 10 are chosen. As with Fig. 10,
the compared cases correspond to β = 10 (strongly rigid) in the left part of Fig. 11
and to β = 10−2 (weakly rigid) in the right part. The difference between strongly
and weakly rigid registration is again particularly evident in the respective uniform
grid morphings from Ω0 to Ω1 shown in the middle row of Fig. 11. The errors
corresponding to the strongly rigid case are E1

0(Ωc
0) = 0.046, E∞

0 (Ωc
0) = 0.58,

E1
1(Ωc

1) = 0.046, and E∞
1 (Ωc

1) = 0.55 on the subdomains, and E1
0(Ω0) = 0.049,

E∞
0 (Ω0) = 0.61, E1

1(Ω1) = 0.048, and E∞
1 (Ω1) = 0.62 on the full do-

mains. The errors corresponding to the weakly rigid case are E1
0(Ωc

0) = 0.030,
E∞

0 (Ωc
0) = 0.40, E1

1(Ωc
1) = 0.029, and E∞

1 (Ωc
1) = 0.44 on the subdomains,

and E1
0(Ω0) = 0.031, E∞

0 (Ω0) = 0.43, E1
1(Ω1) = 0.029, and E∞

1 (Ω1) = 0.47
on the full domains. The error images have been displayed according to a common
scale, in which 0.64 represents the brightest error intensity, in order to reveal the im-
provement obtained by the weakly in relation to the strongly rigid registration. Note
that these images were taken in sequence after the injection of a Gadolinium-DTPA
based contrast agent, as is particularly evident from certain bright spots which ap-
pear suddenly in one image and not the other. The registration is particularly difficult
in the neighborhood of a bright spot in I1 situated to the left among the vertebrae,
and forthcoming work on image similarity measures will be useful for treating such
situations. The applications of primary interest for forthcoming research will be
focused mainly on the registration of dynamic magnetic resonance imaging data,
particularly for the study of tissues or organs with physiological motion such as the
kidneys or the heart.
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Fig. 11. To demonstrate strongly and weakly rigid registration of magnetic resonance images,
penalties φ(s) = βs with large and small β are compared in the left and right columns,
respectively. The essentially k-independent optical flow fields are shown in the bottom row.
The middle row shows the morphing of a uniform grid from Ω0 to Ω1. The corresponding
registration errors are shown at the top in the same format as used in Fig. 8 but with a common
scale for the errors. Specifically, for each penalty, I0(ξ), I1(ξ), and |I0(ξ) − I1(ξ)|/0.64
appear above I1(η), I0(η), and |I1(η) − I0(η)|/0.64, respectively.
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Summary Image registration is a fundamental task in today’s medical imaging. In
particular for histological serial sectioning, where a three-dimensional object is cut
into thin sections for a further microscopic analysis, registration leads to a three di-
mensional reconstruction of the sections. This reconstruction enables an exploration
of the digitized data in any direction, not only in the cutting direction. In this paper,
we describe cutting and reconstruction procedures. For the reconstruction, we use
linear as well as non-linear registration schemes. Moreover, we present some results
for a whole brain of a Sprague Dawley rat.

1 Introduction

Histological serial sectioning is a valuable and essential tool in visualizing micro-
scopic structures of tissue like, for example, cells. A three-dimensional object is
sectioned into thin (5–40 µm) sections; cf. Fig. 1. These sections form the basis for
a microscopic investigation; cf. Fig. 2. It is important to note that the sections are
inevitable to deduce information about cells like, for example, size, position, and
orientation. Alternative three-dimensional imaging devices like, for example, com-
puter tomography (CT) or (micro) magnetic resonance imaging (MRI or µMRI)
have resolutions that are far behind the visualization of cells [4, 11]. The infor-
mation obtained from the microscopic analysis is related to the coordinates in the
two-dimensional tissue section rather than the ones of the three-dimensional original
object. However, the sectioning process introduces all kinds of deformations to the
tissue and this results in distorted tissue sections; cf. Fig. 1(b). Therefore, the two-
dimensional information can not be used to perform an overall three-dimensional
analysis and visualization.

A remedy is provided by so-called image registration techniques; cf., e.g., [24,
17]. Image registration is one of the fundamental tasks in today’s image processing
and is used routinely in many medical applications; for an overview, see, e.g., [6,
16, 22, 17] and references therein. The objective of image registration is to make
images which are taken at different times, from different perspectives, and/or from
different devices to be more alike.

Particularly in the context of histological serial sectioning, the aim is to recover
non-deformed versions of the tissue sections. Ideally, these non-deformed sections
can then be glued together to get a three-dimensional tissue back; see also [19,
8, 21, 2]. By knowing the deformations, one can map from the deformed to the
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non-deformed tissue and vice versa. Therefore, one can also visualize cells in a
three-dimensional view and perform a three-dimensional structure analysis.

Here, we describe a registration procedure for images arising in the Human
NeuroScanning Project (HNSP) [23]. The overall goal of this project is a three-
dimensional reconstruction of a whole human brain down to particular neurons
based on microscopic modalities. This data will then be used as the basic struc-
ture for the integration of functional data based on stochastic mapping and later on
for modelling and simulation studies in a virtual brain; see [23] for details.

The production of the histological serial sectioning of a human brain is ad-
dressed in Section 2. As illustrated in Fig. 3, non-linear registration is essential
for the reconstruction of the brain sections. Fig. 3(a,b) displays two flat bed scans
of consecutive sections of a serial sectioning of a human brain. The scans have
been pre-registered using a principal axis transformation; cf., e.g., [1]. As it is ap-
parent from the difference image Fig. 3(c), intolerable differences with respect to
the geometry are observable (particularly near the cerebral cortex). Fig. 3(d) shows
the difference after an affine linear registration. Though the difference has been re-
duced considerably and especially with respect to the left hemisphere, the result
is still not convincing since large deformations are observable (particularly in the
right hemisphere). This example demonstrates that the deformations to be observed
are in general non-linear and therefore non-linear registration techniques have to be
used in addition. Fig. 3(e) finally displays the difference image after an additional
so-called elastic registration of these two slices. For elastic registration, we refer to
the extended literature; see, e.g., [5, 3, 7, 10, 9, 12, 17].

The remaining part of the paper is organized as follows. In Section 3 we de-
scribe the three phases of our registration scheme. The first phase is related to some
preprocessing: digitizing the tissue sections, segmentation, principal axis transfor-
mation (PAT) based pre-registration of the images (cf., e.g., [1]), and gray value
equalization. The second phase is an affine linear registration of the image stack and
the last phase is an elastic registration thereof.

Section 4 presents some results, the reconstruction and visualization of a whole
brain of a Sprague Dawley rat. Moreover, we also present some timings for these
particular reconstructions. Finally, we conclude in Section 5 and comment on future
work.

2 Material

In order to locate the spatial positions of single neurons, the postmortem brain from
a 55 year old male human voluntary donor was prepared in several steps; cf. [23].
In the beginning, the brain was fixed in a neutral buffered formaldehyde solution.
After fixation an MR-scan of the brain was produced to obtain information of the
original topology; cf. Fig. 2(a). Finally, the brain was dehydrated and embedded in
paraffin; cf. Fig. 1(a).
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(a) paraffine embedded human brain
(sagittal sectioning) 

(c) slicing workbench (d) high resolution FBS

(b) sliding microtome with tissue section on
the blade (axial sectioning)

Fig. 1. Sectioning machinery: (a) paraffin embed human brain; (b) sliding microtome with
tissue section on top of the blade; (c) part of the slicing workbench; (d) transparent flat-bed-
scanner (FBS) with microscopic slide.

This preparatory work was followed by sectioning the brain in 20 µm thick
slices (about 5000 for this brain) using a sliding microtome; cf. Fig. 1(b,c). A high
resolution episcopic image (1352×1795 pixels, three colors) was taken before each
slicing step; cf. Fig. 1(c) and Fig. 2(c).

Fig. 1(b) also displays a tissue slice after sectioning. The tissue slice was then
stretched in warm water at 55◦C for flattening. Thereafter, it was transferred onto a
microscopic slide and dried. After drying, the sections were deparaffinized, stained
in gallocyanin chromalum, and mounted under cover-glasses.
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(a) slice of MRI scan (b) light microscope

(c) episcope image (d) cells

(e) scan of histological section

Fig. 2. Different image modalities of the brain: (a) MRI slice, (c) episcope image, (e) trans-
parent flat bed scan of a microscopic slide; (b) light-microscope with microscopic slides on
the table; (d) view through the microscope.
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(a) scan 3799

(c) jTPAT - Rj

(e) jTelas - Rj

(d) jTlin - Rj

(b) scan 3800

Fig. 3. Two consecutive axial scans 3799 (a) and 3800 (b) as well as difference images: (c)
after PAT registration, (d) after optimal affine linear registration, and (e) after elastic registra-
tion.



68 Jan Modersitzki, Oliver Schmitt, and Stefan Wirtz

A specialized light microscope with an extraordinarily large object range of
250×250 mm2 is used to visualize all cells of the large tissue sections (Fig. 2(b,d)).
Different neuronal entities were analyzed on different structural scales, i.e. from
macroscopic details down to the cellular level; see [23] for the image processing.
Although scanner technology has been improved tremendously within the last years,
yet light-microscopy represents the only possibility to visualize fine details, like, for
example, the exact spatial location of cells (Fig. 2(d)); cf. [23].

In order to relate the microscopic data to a macroscopic view of the slice and to
recover the geometrical deformation of the tissue introduced by the various section-
ing steps, flat bed scans of the slices were produced (Fig. 1(d) and Fig. 2(e)). These
scans form the basis for our numerical treatment. Note, the fixed and mounted tissue
sections can not be deformed whereas the scans (i.e. the digital images of the sec-
tions) can. Using a resolution of 2032 parts per inch in an 8 Bit gray-scale mode
the digitized images range between 5000×2000 and 11000×7000 pixels (about
196 MBytes storage for the largest scan).

3 Registration Procedures

In this section we describe our reconstruction procedure for a stack of n scans. We
use a continuous image model which enables us to use fast numerical schemes like,
for example, Gauss-Newton schemes.

In Section 3.1 we discuss the discretization and interpolation schemes. In Sec-
tion 3.2 we describe our preprocessing. The main objective is a segmentation of the
scan of the brain and a gray value homogenization. The latter is necessary because
the staining of consecutive section shows large variations. Section 3.3 summarizes
general remarks concerning the registration of a stack of preprocessed scans. The
second phase of our reconstruction, which may also be viewed as a further pre-
processing step, consists of an affine linear registration; cf. Section 3.4. Here, the
transformation can be phrased in terms of a small number of parameters and we
end up with a parametric registration problem. The third and final phase consists of
an elastic registration; cf. Section 3.5. For the affine linear and elastic registration
we exploit a multilevel approach; see also [13, 14]. Here, the smoothed images are
down-sampled and registration results obtained on a coarse level are used as starting
values for the registration on the next finer level.

3.1 Discretization

Though the scans of the sections present discrete data, we prefer a continuous image
model. Using a continuous model, the numerical schemes become independent of
the actual image resolution and, most importantly, we are able to apply fast opti-
mization schemes which typically rely on at least first order derivatives. However,
for two reasons we ignore the need of differentiability of the transformed images
and use a bilinear interpolation scheme, only. One reason is that higher order in-
terpolation schemes, like, e.g. B-spline interpolations lead to oscillations and Gibbs
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phenomenon which are very pronounced at the cerebral cortex, of course. The sec-
ond reason is that our numerical experiments strongly indicates that the benefit of
higher order interpolation is hardly noticeable but the price in terms of computing
time is quite high.

We assume all discrete data to be of the size m-by-n. The images are interpo-
lated at pixel values (i, j) which are associated to points (i/(m+ 1), j/(n+ 1)) ∈
Ω :=]0, 1[2. For an arbitrary point (x, y) we set T (x, y) = b, if (x, y) �∈ Ω. Here,
b is the gray value of the background which is typically zero. For the evaluation
of T (x, y), where (x, y) ∈ Ω, we use a bilinear interpolation scheme based on the
four closest pixels. Spatial derivatives are computed using central differences of the
pre-smoothed image, where a convolution with a discrete Gaussian kernel is used
for smoothing. For the computation of the two-dimensional integrals we use the
midpoint quadrature rule.

3.2 Preprocessing

The stack of scans S(j), j = 1, . . . , n, forms the basis for our numerical treatment.
In a preprocessing step, each image is segmented using a simple but robust threshold
based algorithm and it can be normalized using a PAT; cf., e.g., [1, 17].

Fig. 4 illustrates the normalization procedure for scan S(3800) of a human brain.
The solid and dashed lines illustrate the first and second principal axis, respectively.
The cross point is the center of gravity and the lengthes of the lines indicate the
standard deviations in the principal directions. Note that the PAT registration is
redundant. Moreover, particularly for scans resulting from corrupted sections, we
observed that a PAT normalization can lead to an inferior starting point.

Fig. 4. Scan before (a) and after (b) pre-registration. The solid and dashed lines illustrate the
first and second principal axis, respectively. The cross point is the center of gravity and the
lengthes indicate the standard deviations in principal directions.
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Before registration we apply a gray value homogenization. We use the gray value
statistic to equalize the gray value variation of the image stack which are due to
staining variations. Let γ and σ denote the mean gray value and its standard devi-
ation with respect to the non-zero image, respectively. With γ̂ and σ̂ we denote the
target values obtained from a sliding median filtering of the corresponding values of
the image stack. We replace the image S by Ŝ := σ̂

σ (S − γ) + γ̂, where clipping is
applied to out of range values. Hence, by linearity of the expectation value we have

E[Ŝ] =
σ̂

σ
E[S − γ] + γ̂ = γ̂ and E[(Ŝ − γ̂)2] =

(
σ̂

σ

)2

E[(S − γ)2] = σ̂2.

To minimize notational overhead, we subsequently denote the normalized scans
also by S(j).

3.3 Stack Registration

Our registration is based on the L2-difference or Sum of Squared Differences (SSD)
(cf., e.g., [6])

D(A,B) :=
1
2

∫
Ω

(A(x) −B(x))2 dx, (1)

where A,B are two given images. For any image S(j) we consider an individual
transformation u(j), such that the joint distance

J(u(1), . . . ,u(n)) :=
n∑

j=2

D(S(j−1) ◦ u(j−1), S(j) ◦ u(j))

=
1
2

n∑
j=2

∫
Ω

(
S(j−1) ◦ u(j−1) − S(j) ◦ u(j)

)2
dx

(2)

becomes minimal, where (S(j) ◦ u(j))(x) := S(j)(u(j)(x)) denotes the transformed
scan.

In order to avoid systematic scaling errors in the registration of the stack, the
image S(ν) with largest number of non-zero pixels remains unaltered throughout
the registration, i.e. u(ν)(x) = x. Therefore, the above minimization problem (2)
decouples into two parts. Moreover, for the linear registration part, we constrain the
transformations u(e), e = 1, n, to be volume preserving, i.e.,

det∇u(e) = 1. (3)

Since a re-scaling of the images S(e) is already penalized by the elastic regularizer,
we do not constrain u(e) in the non-linear registration.

The constraints on u(e) to be volume preserving is crucial, particularly when
registering cone shaped objects. Without these additional constraints, one may ob-
tains a cylinder shaped result. However, not all shape problems can be cured by this
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(a) box (b) twisted box (c) axial section

Fig. 5. Two three-dimensional objects, a box (a) and a twisted copy (b); arbitrary non-empty
axial section through either of the two objects (c).

approach. Fig. 5 displays two three dimensional objects, a box and a twisted copy.
If we would produce axial serial sectioning, we would obtain the same images for
both objects; cf. Fig. 5(c). Therefore one has to face ambiguity in the reconstruction
of three-dimensional objects from two-dimensional slices.

It is important to note that the registration discussed here aims to recover fine
level details. Registration can not compensate for global shape variations, which are
already introduced by removing the brain from the skull or by putting it onto a table.
In order to correct for these global shape deformations, additional information has
to be supplied. We will use an a priori taken magnetic resonance scan (MRI) of the
brain (Fig. 2(a)) as a non-deformed reference and finally register our reconstruction
to the MRI.

In the above discussion we assumed that the scan with maximal number of non-
zero pixels is uniquely defined. However, the approach can be extended easily to
the case when more than one scan take the maximum. As a matter of fact, we never
observed this situation in our numerical experiments.

For the numerical minimization of J in (2), we use an iterative multilevel non-
linear block Gauss-Seidel scheme. The iteration counter is denoted by k. For k = 0,
we set u(j)

k such that the associated map becomes the identity, u(j)
k (x) = x, j =

1, . . . , n. For j = 1, . . . , n , j �= ν, we minimize

Ĵj(u(j)) := J(u(1)
k+1, . . . ,u

(j−1)
k+1 ,u(j),u(j+1)

k , . . . ,u(n)
k ), (4)

with respect to u(j) only and the minimizer is denoted by u(j)
k+1. Setting k �→ k + 1

we repeat the iteration until stagnation in the distance measure J is observed.
Of course, other optimization strategies can be used as well. However, a discus-

sion is beyond the scope of this paper and we therefore refer to the optimization
literature; see, e.g., [18] and references therein.

Note that the minimization in (4) is only with respect to u(j). With Ŝ(j)
k denoting

the deformed image, Ŝ(j)
k (x) = S(j)(u(j)

k (x)) and some constants d we have
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Ĵ1(u(1)) = D(S(1) ◦ u(1), Ŝ
(2)
k ) + d,

Ĵn(u(n)) = D(S(n) ◦ u(n), Ŝ
(n−1)
k ) + d,

Ĵj(u(j)) = D(Ŝ(j−1)
k+1 , S(j) ◦ u(j)) +D(S(j) ◦ u(j), Ŝ

(j+1)
k ) + d1

= D(S(j) ◦ u(j),
1
2
Ŝ

(j−1)
k+1 +

1
2
Ŝ

(j+1)
k ) + d2.

Therefore, a minimizer of (4) can be obtained by minimizing

J2(u) := D(R, T ◦ u), (5)

where

T := S(j) and R :=

⎧⎪⎪⎨
⎪⎪⎩

1
2 (Ŝ(j−1)

k+1 + Ŝ
(j+1)
k ), 1 < j < n,

Ŝ
(2)
k , j = 1,

Ŝ
(n−1)
k , j = n.

As already pointed out, we apply a multilevel approach for the minimization
of (5). The images on the fine grid are smoothed by convolving with a discrete
Gaussian kernel and are down-sampled to a coarse grid. The registration results on
the coarse grid are mapped to the fine grid and serve as generally excellent starting
values for the registration on the fine grid.

3.4 Affine Linear Registration

Since an affine linear transformation u belongs to a finite dimensional space, it can
be parameterized like, for example,

u(x) :=
(
u1x1 + u2x2 + u3

u4x1 + u5x2 + u6

)
(6)

and we therefore associate u with the parameter vector (u1, . . . , u6). For the volume
preserving map we use the parameterization

u(e)(x) =
(

1 u
(e)
1

0 1

)(
cosu(e)

2 − sinu(e)
2

sinu(e)
2 cosu(e)

2

)(
x1

x2

)
+
(
u

(e)
3

u
(e)
4

)
,

where the first matrix describes shear and the second rotation.
For a numerical solution of (5) we exploit a Gauss-Newton scheme, where only

first order derivatives of the images are needed; cf., e.g., [18]. Starting with an initial
guess u0, we obtain uk+1 = uk + δu, where δu is the solution of the linearized L2

approximation problem

‖R− T ◦ uk+1‖ ≈ ‖R− T ◦ uk −∇u[T ◦ u]u=uk
δu‖ = min .
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The generic derivative ∇u[T ◦ u] is given by

∂u1 [T ◦ u] = ∂1T · x1, ∂u4 [T ◦ u] = ∂2T · x1,

∂u2 [T ◦ u] = ∂1T · x2, ∂u5 [T ◦ u] = ∂2T · x2,

∂u3 [T ◦ u] = ∂1T, ∂u6 [T ◦ u] = ∂2T,

where the directional derivatives ∂jT = ∂jT (u(x)) are approximated by cen-
tered finite difference approximation of the smoothed images T ; cf. Section 3.1. The
derivatives for the first and last section are given by

∂
u

(e)
1

[T ◦ u(e)] = ∂1T · (sx1 + cx2),

∂
u

(e)
2

[T ◦ u(e)] = ∂1T · ((ca− s)x1 − (c+ as)x2) − ∂2T (−cx1 + sx2),

∂
u

(e)
3

[T ◦ u(e)] = ∂1T,

∂
u

(e)
4

[T ◦ u(e)] = ∂2T.

3.5 Elastic Registration

As it is apparent from Fig. 3(d), an affine linear registration alone does not lead to
satisfying reconstruction results. Therefore, a non-linear registration becomes nec-
essary. Here, we use an elastic registration which has been studied for over 20 years;
see, e.g., [5, 3, 7, 10, 17].

The basic idea of elastic registration can be described as follows. Assume that
the template image has been painted onto a rubber. A deformation of the rubber
results in a deformed template image but also introduces a potential energy to the
rubber. The stronger the deformation the higher this potential becomes. The idea
is to find a deformation which minimizes both, the distance between reference and
deformed template as well as the elastic potential. Therefore, deformations leading
to a very high elastic potential become disregarded even if they lead to small values
of D. In other words, the distance measure (5) is regularized by the elastic potential
and the registration problem becomes

Jelas(u) = D(R, T ◦ u) + S(u) = min, (7)

where

S(u) =
∫

R2

λ

2
(div u)2 + µ

{
(∂1u1)2 + (∂2u2)2 +

1
2
(∂1u2 + ∂2u1)2

}
dx (8)

and µ and λ are the so-called Lamé constants reflecting material properties; see,
e.g., [17] for details.

This particular regularization in our registration scheme is motivated by the fact
that the histological sections originally consist of almost pure paraffin wax. The
deformation process due to sectioning is therefore expected to be dominated by the
elastic properties of the section. Note that also other processes like, e.g., drying or
mounting contributes to the overall deformations.
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Note that in contrast to the affine linear registration where u is described in
terms of at most six parameters, the deformation in the continuous formulation of the
nonlinear registration is not restricted to a finite dimensional search space. However,
in our implementation we use a discretization where values of u(x) are computed
for each pixel x.

Following [9], a minimizer is characterized by the Euler-Lagrange equations

Au(x) + f(x,u(x)) = 0 for all x ∈ Ω, (9)

where the well-known Navier-Lamé operator A is related to the Gâteaux-derivative
of S,

A[u] = µ∆u + (λ+ µ)∇divu

= µ
(
∂1,1u1 + ∂2,2u1
∂1,1u2 + ∂2,2u2

)
+ (λ+ µ)

(
∂1,1u1∂1,2 + u2
∂1,2u1∂2,2 + u2

)

and the so-called force f is related to the Gâteaux-derivative of D,

f(x,u(x)) =
(
R(x) − T (x + u(x))

)
· ∇T (x + u(x)). (10)

For the computation of a numerical solution, we used the scheme proposed in [9].

4 Results

Fig. 6 displays some results for the registration of a stack of n = 503 slices from a
Sprague Dawley rat brain. Each scan has a resolution of 1900×1900 pixels, which
ends up in a total amount of 1.7 gigabytes (GB) of data. Heavily corrupted tissue
sections were automatically detected and disregarded, such that 474 scans (1.6 GB)
remained.

Fig. 6(a) displays a view of the non-registered stack and (b) a view of the elas-
tically registered stack. To illustrate the value of the reconstruction, we resampled
the data orthogonally to the direction of sectioning and show a virtual sagittal slice;
see Fig. 7.

In the virtual sagittal slice structures like, for example, the cerebellar fissures,
molecular and granular layer, and white substance of cerebellum are clearly recog-
nizable. Note that the initial fuzzy looking brain now offers morphological details
and obviously dramatic increase of surface smoothness. Overall, the displaced areas
are coherent again. It should be noted, that the registration is an indispensable tech-
nique for recognition, discussion and three-dimensional measurement of internal
and external morphologic entities.

For this reconstruction, a linear pre-registration based on the principle axis trans-
formation was performed. The error (cf. (2)) decreased by about 27%, i.e.

J(uPAT) ≈ 0.73 · J(u0).
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(a) no registration

(b) elastic registration

Fig. 6. Lateral view of the three-dimensional reconstruction of a whole rat brain; (a) no reg-
istration and (b) elastic registration.

For this reconstruction, it turned out that a pure elastic registration through five
levels of a Gaussian pyramid (coarsest images 128×128 pixels) leads to a satisfying
convergence. No PAT pre-registration was applied. The MATLAB [15] implemented
registration algorithm lasted about ten hours for the high-resolution images on a
AMD Athlon XP 2700+, 1GB RAM, running Linux.

Only 35 iteration steps were needed and the error decreased by 79%, i.e.

J(uelas) ≈ 0.21 · J(u0).

In Tab. 1 the runtime results for the registration of images in different resolutions is
assembled.

Beside measuring the registration results with the distance measure D, the re-
sults were evaluated by an anatomist. An important criterium is the improvement
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(a) no registration

(b) elastic registration

Fig. 7. Reproduced virtual slice (sagittal, orthogonal to the sectioning direction, Bregma -
5.82 mm, Interaural 4.18 mm; see, e.g., Paxinos & Watson [20]). A column of the virtual slice
represents the intersection of the virtual slice with an original slice (axial); (a) no registration,
(b) after elastic registration. Note that registration enables the identification of anatomical
structure.
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Table 1. Computational costs of the registration versus data dimensions; MB gives the storage
requirements of the data, #levels the number of levels used in our multiscale approach, titer
is the CPU time in minutes needed for one iteration on the finest grid, ttotal is the total CPU
time needed for the registration, and #iter is the overall number of iterations on all levels. The
whole reconstruction process takes about ten hours CPU time using MATLAB [15] on a AMD
Athlon XP 2700+, 1GB RAM, running Linux.

data dimensions MB #levels titer (min) ttotal (min) #iter
128 × 128 × 474 8 1 0.5 9 19
256 × 256 × 474 30 2 1.9 32 24
512 × 512 × 474 119 3 10.7 125 28

1024 × 1024 × 474 474 4 42.9 240 32
1900 × 1900 × 474 1632 5 149.5 547 35

of the representation of small structures (subcortical nuclei, cortical areas) and the
smoothness of inner and outer borders. The registered slices do fulfill this require-
ment. Generally, three classes of neuroanatomical structures are recognizable only
after registration: 1) subcortical nuclei, 2) ventricles, and 3) certain cerebral and
cerebellar cytoarchitectonic layers. More precisely, subcortical nuclei like the cau-
date putamen complex, medial geniculate nucleus - ventral part, anterior pretectal
nucleus - ventral part, ventral posterolateral thalamic nucleus, ventral posterome-
dial thalamic nucleus among other things can be localized. Furthermore, the lateral
ventricle and the aqueduct become visible. Finally, cytoarchitectonic layering at cer-
tain parts of the cerebral and the cerebellar cortex can be detected. In the forebrain
one can observe hippocampal substructures like the CA1, CA2, CA3 regions (CA:
cornu amonis) and the dentate gyrus, see Fig. 7. Moreover, in the entorhinal region
the layer II (external granular layer) and IV (internal granular layer) are distinguish-
able.

In Fig. 8 the results of the registration processes are visualized in detail for a
part of the rat brain. Fig. 8 depicts the three-dimensional reconstruction of 68 slices
before (a) and after (b) registration. The massively shifted images yield to an blurred
reconstruction without recognizable fine anatomic details (Fig. 8(c)). Fig. 8 also il-
lustrates the variation of the internal structures before (c) and after (d) registration
by means of virtual slice orthogonal to the sectioning direction. Note, that the reg-
istration results allows for a detailed discussion of the internal structures.

5 Conclusions

We presented the first fully reconstructed rat brain at a resolution at level of the
micrometer scale. The huge amount of data (≈ 1.6 GB) as well as the required
quality demand for a special registration technique. Only the use of a specific vari-
ational technique accompanied by strategies to incorporate special properties of the
underlying tissue enables us to match the high anatomical demands.
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(a) original data (b) after elastic registration

(c) original data (d) after elastic registration

Fig. 8. Three-dimensional lateral view of a part of the rat brain and virtual orthogonal slices;
(a) original data, (b) after elastic registration. This part of the brain shows the brainstem at
the top and the cerebellum with folia at the bottom. The virtual slices (orthogonal to the
sectioning direction) demonstrate the morphologic effect of registration: (c) original data,
(d) after elastic registration. Recognizable structures after registration: a cerebellar fissures,
b molecular layer, c granular layer, d white substance of the cerebellum.

The backbone of the scheme is a super-fast solution technique for the inner linear
system. This technique is accompanied by sound strategies for accelerating the outer
iteration. This includes a multi-scale approach based on a Gaussian pyramid as well
as a sophisticated estimation of the material constants for the elastic potential.

The results of the registration process enable the identification of histological
details that pertain to three distinct groups of neuroanatomical structures: subcor-
tical nuclei, ventricles and cerebellar or cerebral cytoarchitectonic layers. Before
registration the detection of these structures was impossible. Therefore, it is essen-
tial to apply elastic registration to this kind of non-linear problem. Furthermore,
now it is feasible to develop strategies for three-dimensional morphometric analysis
of specific areas in registered stacks of images derived from normal and pathologic
brains for experimental studies. Finally, the obvious advantages were quantified by
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a distance measure leading to an improvement of about 79% after just 35 iteration
steps.

Currently we are working at a full reconstruction of a human brain. Here the
task is to align about 6000 slices of dimension (12000 × 7000) pixels (resolution:
31.75µm per pixel)! Preliminary results look very promising and indicate that the
outlined approach is capable of dealing with such an amount of data on a PC from
the shelf.
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Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
henn@am.uni-duesseldorf.de

4 Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn,
Nussallee 15, D-53115 Bonn, Germany.
martin.rumpf@ins.uni-bonn.de

5 Lehrstuhl für Angewandte Mathematik, Mathematisches Institut, Heinrich-Heine
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Summary Image registration is the process of the alignment of two or more data sets
recorded with the same or different imaging machineries. Especially nonlinear im-
age registration techniques allow the alignment of data sets that are mismatched in a
nonuniform manner. Mathematically, this yields a nonlinear ill–conditioned inverse
problem. In this presentation, we introduce several computational methods based
on variational PDE approaches to obtain an approximate solution of the nonlinear
registration problem. In each approach we have to solve a sequence of subproblems.
Each subproblem has to be well-posed and should be efficiently solvable.

1 Introduction

The following contribution gives an overview on variational techniques which are
used to solve the so called image matching or template matching problem. The ori-
gin of this problem is in medical applications, especially image assisted diagnostics
and surgery planning. Here, physicians often need robust and valid segmentation
and classification results as well as an analysis of the temporal change of anatomic
structures. To this aim they want to correlate images recorded with different imag-
ing machinery or at different times in a suitable way. There is a rich theory and
also a large number of algorithms to to solve this registration problem. They all
ask for an “optimal” deformation which deforms one image such that there is an
“optimal” correlation to another image with respect to a suitable coherence or dif-
ference measure. The pure minimization of such difference measures typically leads
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to an ill-posed problem (see section 3). Therefore regularization approaches must be
taken into account.

Mainly two different regularization techniques have been discussed in the lit-
erature [5, 6, 10, 15, 23, 25, 32]. On the one hand, so called elastic registration
techniques deal with a regularization of the energy, typically adding a convex en-
ergy functional based on gradients to the actual matching energy. The regularization
energy is regarded as a penalty for “elastic stresses” resulting from the deforma-
tion of the images. This approach is related to the well known classical Tikhonov
regularization of the originally ill-posed problem. On the other hand, viscous flow
techniques are taken into account. They compute smooth paths from some initial de-
formation towards the set of minimizers of the matching energy. Thereby, a suitable
regularization of the velocity, e.g., adding an artificial viscosity, ensures a certain
problem dependent smoothness modulus. This class of methods can be interpreted
as a gradient flow approach with respect to a metric which penalizes non–regular
descent directions. Taking into account a time-step discretization this methodology
is closely related to iterative Tikhonov regularization methods [16, 31, 18].

A mixture of these approaches is used in [12], where on the one hand an elastic
energy is added to the difference measure, on the other hand a regularized gradient
flow is taken into account.

The aim of this contribution is to give a systematic overview on all these tech-
niques, i.e., dealing with a similarity measure leading to an ill-posed problem and
the corresponding regularization aspects.

In section 2 we discuss the general nature of image matching in more detail. Es-
pecially, we will show that variational approaches are a natural way to solve those
matching problems section 2.2. In section 3 we will explain why using only the
difference measures leads to ill-posed problems. The corresponding regularization
aspects are discussed in section 4. An overview of possible combinations of match-
ing energies and regularizations is given in section 5. Note that the non–convexity of
the minimization problem in image registration makes it difficult to find the absolute
minimum of a chosen matching energy in case of larger deformations. Alternatively,
one can consider a convolution of the images with a large corresponding filter width
which destroys much of the detailed structure, match those images, and then suc-
cessively reduce the filter-width and iterate the process [2, 28, 35]. This kind of
preconditioning is explained in section 5.5.

2 A Variational Formulation

Given two images T,R : Ω → R, where Ω ⊂ R
d and d = 2, 3, we would like to

determine a deformation φ : Ω → R
d which maps the first image T via a deforma-

tion φ to the second image R such that corresponding structures are mapped onto
each other. In the following we call the image T the template and R the reference.

Many image analysis methodologies have been developed to tackle this prob-
lem. Image registration strategies are normally classified in two general categories.
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On the one hand, there exist feature-based methods, i.e., the deformation is calcu-
lated based on a number of “anatomical” correspondences established manually,
or automatically on a number of distinguish “anatomical” features, such as dis-
tinct landmark-point [29] or a combination of curves and surfaces, e.g. see [33]. On
the other hand methods based on volumetric transformations are considered. This
methods seek to maximize the similarity between the template and the reference via
a deformation.

In many practical applications only a noisy version Rδ of the exact data R is
given with

||R−Rδ|| ≤ δ

with unknown noise level δ. We furthermore expect φ(Ω) = Ω. For the ease of
presentation we assume Ω = [0, 1]d throughout this paper. We consider u as the
displacement corresponding to φ: 1I + u = φ.

In this section we want to collect examples of similarity measures. Here, a lot
of choices are possible depending on the application one has in mind. At this point
one may distinguish two fundamental cases:

2.1 Mono-modal Matching Energies

Let us start with the easier case of monomodal matching. Given are two (or more)
images, where similar structures are represented by similar grey-values. In this case
one usually aims for the deformation φ that

T ◦ φ ≈ R .

The most basic energy D depending on the displacement u (resp. the deforma-
tion φ) is the L2-distance:

DLSQ[u] =
1
2

∫
Ω

|T ◦ (1I + u) −R|2 . (D)

In what follows we use either φ or u as the argument of the energyD. If u is an ideal
deformation the above energy vanishes. Thus we ask for solutions of the problem to
minimize DLSQ[ · ] for u in some Banach space X .

A minimizer u of (6) is characterized by the necessary condition (DLSQ)′[u] =
0, where (DLSQ)′[u] ∈ X ′ for the dual space X ′ of X . Indeed, we require

〈(DLSQ)′[u], ϕ〉 = 0 ∀ϕ ∈ X .

Suppose [L2(Ω)]d is embedded in the space X ′. Under certain regularity as-
sumptions on T , R and ∇T we obtain the L2-representation of (DLSQ)′

gradL2DLSQ[u] = (T ◦ (1I + u) −R)∇T ◦ (1I + u) . (1)

In the following sections we will especially focus on this special choice of distance
measure.
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2.2 Multi-modal Matching Energies

In general, if the images are recorded with different imaging machinery, the so-
called multi-modal registration, theDLSQ functional is not an appropriate measure.
The main reason is that the same structures may have quite different gray values in
the multi-modal case. In this case the use of (D) does not make any sense.

Mutual Information Energy One frequently used approach to this problem is the
so called mutual information strategy [14, 24, 34, 36]. There, one searches for an
affine-linear transformation so that the mutual information (or transinformation) is
maximized. Nonlinear approaches are presented, e.g in [9, 19, 21, 20]. Mutual infor-
mation is borrowed from information theory, see e.g. [4]. The mutual information
between two discrete random variables X and Y is defined to be

I(X,Y ) = H(X) +H(Y ) −H(X,Y ),

where H(X) is the entropy of the random variable X and H(X,Y ) is the joint en-
tropy of these variables.
This intensity based matching energy was introduced in the context of multi-modal
image-registration in [34]. Using our notation, the mutual-information based match-
ing energy is defined by

DMI [u] = I(T ◦ (1I + u), R).

The mutual information based matching energy is maximal if the images are
matched. Therefore the mutual information based matching energy is a measure
of alignment between the images. This signifies that we have to maximize DMI [u]
or equivalently minimize D−MI [u] := −DMI [u]. Confer to figure J or an example
of an MRI-CT matching of the brain based on this similarity measure.

Morphological Matching Energy A disadvantage of the Mutual Information ap-
proach is its global character. Indeed our energy integral is an integral in the space of
grey values where the corresponding energy density is nonlocal and consists of the
probability distributions. We might ask for a local energy density reflecting solely
the morphology. Thus, let us define the morphology M [I] of an image I as the set
of level sets of I:

M [I] := {MI
c | c ∈ R},

where MI
c := {x ∈ Ω | I(x) = c} is a single level set for the grey value c. I.e.

M [γ ◦ I] = M [I] for any reparametrization γ : R → R of the grey values. Up to
the orientation the morphology M [I] can be identified with the normal map (Gauss
map)

NI : Ω → R
d ; x �→ ∇I

‖∇I‖ .
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Morphological methods in image processing are characterized by an invariance with
respect to the morphology [30]. Now, aiming for a morphological multi-modal reg-
istration method, we will ask for a deformation φ : Ω → Ω such that

M [T ◦ φ] = M [R] .

Thus, we set up a matching functional which locally measures the twist of the tan-
gent spaces of the template image at the deformed position and the deformed refer-
ence image or the defect of the corresponding normal fields. We aim to minimize a
suitable matching energy, which measures the morphological defect of the reference
image R and the deformed template image T , i. e., we ask for a deformation φ such
that NT ◦ φ | |Nφ

R, where Nφ
R is the transformed normal of the reference image R

on Tφ(x)φ(MR
R(x)) at position φ(x). Here, TyM denotes the tangent space of a sur-

face M at a position y. From the transformation rule for the exterior vector product
Dφu ∧Dφv = cofDφ(u ∧ v) for all vectors v, w which are tangential to the level
set MR

R(x) one derives

Nφ
R =

cofDφNR

‖cofDφNR‖
wherecofA = detA · A−T for invertible A ∈ R

d,d is the cofactor matrix of A - a
matrix consisting of all (n− 1)-minors of A. Thus, we have for Dφ :

n = 2 : cofDφ =
[

∂2φ2 −∂2φ1

−∂1φ2 ∂1φ1

]

n = 3 : (cofDφ)ij = ∂i+1φi+1∂i+2φi+2

−∂i+1φi+2∂i+2φi+1.

with cyclic indices. Now, one might be tempted to define the matching energy∫
Ω
‖NT ◦φ−Nφ

R‖2dµ. But, for a better treatment of the singularities [12], we avoid
the normalization appearing in Nφ

R and choose the following matching energy

Dmorph[φ] :=
∫

Ω

g0(∇T ◦ φ,∇R, cofDφ)dµ.

where g0 is a 0-homogenous extension of a function g : Sd−1×Sd−1×R
d,d → R

+,
i. e., g0(v, w,A) := 0 if v = 0 or w = 0 and g0(v, w,A) := g(v, w,A) otherwise.
If we want to achieve an invariance of the energy under non-monotone grey-value
transformation, the symmetry condition g(v, w,A) = g(−v, w,A) = g(v,−w,A)
has to be fulfilled.

Figure 1 shows results obtained for the registration of image morphologies.
Here, we have considered an elastic regularization approach (cf. Section 4), to over-
come the ill-posedness of the resulting matching problem.

3 Ill-posedness of the Problem

In general the image registration problem is not well-posed in the sense of Hadamard,
i.e. for all admissible images one of the following properties does not hold
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Fig. 1. An artificial test example for multi-modal morphological matching. The top row shows
the given template resp. reference images which differ by a translation and a non-monotone
contrast change. The bottom row depicts the initial misfit (left) and the final registration result
by multi-scale minimization of the morphological registration energy.

(H1)a deformation exists,
(H2) the deformation is unique and
(H3) the deformation depends continuously on the images.

In practice the violation of the existence of a deformation does not play an important
role. For instance, in the case of mono-modal matching almost all practical problems
do not have an exact solution. To overcome this issue our aim is weakened by:

T ◦ φ ≈ R .

The most often used strategy to solve the above “equation” is the definition of
an energy, which leads for global minimizers (or maximizers) to an almost perfect
matching result. Furthermore one designs these energies such that certain additional
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assumptions are fulfilled, as e.g. invariance w.r.t. rigid body motions and/or higher
regularity [13].

The violation of the uniqueness of a deformation is a much more serious prob-
lem for the user as well as for the mathematician. In order to demonstrate this for
the mono-modal matching problem, we consider the setting with the L2-distance
DLSQ.

For a deformation φ and for c ∈ R the level sets

MT
c = {x ∈ Ω |T (x) = c}

any displacement Λ which keeps MT
c fixed for all c, does not change the energy,

i.e.,

D[φ] = D[Λ ◦ φ].

This especially holds true for a possible minimizer φ. Hence, a minimizer – if it
exists – is non-unique and the set of minimizers is expected to be non-regular and
not closed in a usual set of admissible displacements. Note that the above example
holds for all energies which are based on the matching of level-sets.

The problem is turning even worse in case of multi-modal registration problems.
Indeed, for any deformation φwhich maps level sets onto level set (T (x) = T (y) ⇒
T ◦ φ(x) = T ◦ φ(y)) - not necessary corresponding ones - we then still have that
D[φ] = D[Λ ◦ φ].

Since the image registration problem has obviously multiple solutions and the
solution set is typically very large and irregular one has to decide which solution
is of interest (for a given application) and which is not. From the mathematical
point of view, the problem behaves just like a singular system. Generically, there
is not enough information to determine a deformation uniquely. The problem is
underdetermined. Additional information will be inserted most commonly requiring
“smoothness” of a solution.

4 Regularization of the Problem

The aim of this section is to introduce different minimization approaches to the
problem

D[·] −→ min. (2)

Most common approaches to minimize nonlinear functionals are steepest decent
and Newton type methods. Unfortunately, even when (H2) is fulfilled, the use of
this methods leads to serious numerical problems, since a solution of the image
registration problem does not depend continuously on the image-data.

Unfortunately, recalling our observation above irregular in particular discontin-
uous solutions with arbitrary large strain are possible. To rule out these unrequested
solutions it is necessary to penalize them.
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4.1 Energy Relaxation

One way of doing so consists in changing the energy functional and adding a so
called regularization energy. Typical examples of such energies are

– a Dirichlet functional
SDir[φ] =

∫
Ω

|∇φ|2 dx , (3)

which indeed leads to better smoothness properties of the results. Nagel and
Enkelmann proposed an anisotropic quadratic form for the gradient of the de-
formation which regularizes edges of the image only in the tangential direction
[11, 26]. Alvarez, Weickert and Sanchez [2] used these ideas for deriving a con-
sistent model, centering deformation and anisotropy in the same image.

– functionals from elasticity, which relates to the assumption that the deformation
is caused by some kind of elastic forces. The structure of those energies for n = 3
is as follows:

Selast[φ] =
∫

Ω

W (Dφ,cofDφ,detDφ) dx . (4)

In the above integrand we use the cofactor matrixcofDφ of the derivativeDφ and
the corresponding determinant.

– higher order functionals. Here a well known example is used in [13]

Shigher[φ] =
d∑

l=1

∫
Ω

|∆φl|2 dx , (5)

Note that the addition of those energies leads to minimizers which no longer
yield perfect matching results. In this sense we weakened our aim and try to find
almost perfect matches φ with

T ◦ φ ≈ R .

Let us collect what we have found so far. We want to solve the image matching
problem by minimizing an energy whose ingredients are the similarity measure and
a regularization energy:

E[φ] = D[φ] + αS[φ] (6)

This approach is in the inverse problem community widely known as Tikhonov
regularization.

4.2 Iterative Relaxation

Henn and Witsch [18] introduced the so called iterative Tikhonov regularization for
minimizing D[u]. The solution of the minimization problem is denoted by uα for
α fixed. Now, we consider a solution curve uα for decreasing α. One starts with
α0 � 0 which is helpful for the solution method. Then minimal solutions of the



Computational Methods for Nonlinear Image Registration 89

Tikhonov functional

uk+1 = arg min
u

{D[u] + αkS(u− u(k))}

with a monotone decreasing sequence αk → 0 for k → ∞ and initial guess u(k) are
computed. Each subproblem, for regular chosen S and αk sufficiently large, is well
posed. The iteration is stopped whenever the functional D increases.

At the end of this section we want to consider a different related regularization
method, based on gradient flow ideas. Gradient flows are well known tools in min-
imization of functionals. Classical examples are the heat flow as gradient flow for
the Dirichlet integral or mean curvature evolution of surfaces as a gradient flow for
the area-functional (see e.g. [22]).

Here, we want to describe a gradient flow approach to the minimization problem
(2), i.e., we would like to determine a path within a suitable space of deformations,
that tends towards the set of minima of D.

On account of the discussed ill-posedness of this problem, gradient flows have
to integrate regularizations to avoid nonsmooth paths on the energy landscape.

At this point, we see a principal difference between ”classical” gradient flow
methods [27] for PDEs and our approach to ill-posed optimization problems. We do
not interprete a given PDE as a gradient flow but we use metrics for modeling and
regularization purposes.

The idea is to introduce a regularizing metric g : X × X → R measuring the
derivative of D in a regular space X . If we consider the duality in X ′ we have a
representation A : X → X ′ of g :

g(u, v) = 〈Au, v〉 .

Obviously, this mapping is bijective on account of the metric properties. If we mea-
sure the derivative w.r.t. g then the formal gradient flow with respect to the metric
g(·, ·)

∂tu(t) = −gradgD[u(t)]

reads as
g(∂tu, ϕ) = −〈D′[u], ϕ〉 ,

for all ϕ ∈ X . This can be re-formulated using the mapping A (A∂tu = −D′[u])
or equivalently:

∂tu = −A−1D′[u] .

The mapping A−1 transfers the derivative of D to the more regular space X . For
more details and relations to the above regularization methods we refer to [8].

5 Computational Approaches to Minimize the Matching Energy

In the previous section we have discussed the image registration problem. It turns
out, that the problem is ill-posed and consequently traditional numerical methods



90 U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch

must fail. The aim of this section is to present some basic computational approaches
to solve the image registration problem, i.e., to minimize a similarity functional D,
or to find roots of

f(u) := gradD[u] .

Furthermore, we define an energy norm || · ||E defined by

||v||E =
√

〈v, v〉E

with inner product
〈v, w〉E = 〈Av,w〉Ld

2(Ω) (7)

and a symmetric positive definite operator A. Let us hint at the fact, that this energy
norm can be regarded as regularizing metric as discussed above.

5.1 Direct Time Dependent Methods

One of the most basic ideas for the solution of the minimization of the similar-
ity measure D consists in applying a steepest descent method. Thus we look for a
path in the energy landscape of the deformations heading always in the direction
−gradD[u]. This direction interpreted in the metric sense is given by −A−1f(u).
Continuously we consider the evolution problem

ut +A−1f(u) = 0, 0 ≤ t ≤ T, u(0) = u0 .

The easiest time-discretization is the following one:

1) Explicit Time Discretization
Here, the next iterate is given by simply going one timestep τ in the direction of
the steepest descent (gradient direction):

uk+1 − uk

τ
+A−1f(uk) = 0 .

This is equivalent to the scheme

uk+1 = uk − τA−1f(uk) .

An additional line-search leads to a more efficient and stable method:

τk = arg min
τ∈R

D
[
uk − τA−1f(uk)

]
. (8)

Algorithmically, this reads as in Algorithm 4. Higher stability of the steepest de-
scent method may be obtained by an
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Algorithm 4 Steepest descent with explicit time discretization
1: k = 0; u(0) = 0;
2: repeat
3: calculate fk = f(uk(x));
4: compute dk = A−1fk with A given by (7);
5: compute τk by solving problem ( 8);
6: set uk+1 = uk + τk · dk;
7: set k = k + 1;
8: until ||f(uk)||2 ≤ eps

2) Implicit Time Discretization
In this case, the descent direction is taken at time τ instead of the “old” time 0.
Principally we have to solve a nonlinear problem.

uk+1 − uk

τ
+A−1f(uk+1) = 0

Formally, the determination of the next time-step is similar to the explicit case:

uk+1 = uk − τA−1f(uk+1), .

Nevertheless, such a fully implicit discretization is rarely applied because it is not
really practical.

5.2 Regularized Time Dependent Methods

In the above solution methods we introduced a regularization via regularizing the
descent direction using the representation A of the energy E. Another possibility
consists in adding a regularization energy and minimizing the resulting energy:

Jα(u) = D[u] + α||u||2E → min!

In this case, a descent direction of Jα(u) is given by αAu+ f(u). In the same way
as above, a continuous model leading to at least local minimizers is:

ut + αAu+ f(u) = 0, 0 ≤ t ≤ T, u(0) = u0 .

3.) Explicit time discretization. Conceptually, there is no difference compared
to the above explicit time discretization. The search direction is now given by
αAuk + f(uk):

uk+1 − uk

τ
+ αAuk + f(uk) = 0

The update displacement computes as:

uk+1 = uk − τ (αAuk + f(uk))︸ ︷︷ ︸
=J ′

α

.

Once again a line-search algorithm as in (8) should be used for efficiency reasons.
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Algorithm 5 Steepest descent with semi-implicit time discretization
k = 0; u(0) = 0;
repeat

calculate fk = f(u(k)(x))
compute l(k) = uk − τfk

solve (I + ατA)uk+1 = l(k)

set k = k + 1
until ||f(u(k)(x))||2 ≤ eps

4) Semi-implicit Discretization. One frequently used technique consists in treat-
ing the linear term Au implicitly and the nonlinear derivative of the difference
measure explicitly:

uk+1 − uk

τ
+ αAuk+1 + f(uk) = 0 .

As corresponding system which is to solve we obtain:

(I + ατA)uk+1 = uk − τf(uk)

The displacement update is given by

uk+1 = uk − τ(I + ατA)−1(αAuk + f(uk)) .

Thus, (I+ατA)−1(αAuk+f(uk)) is a descend direction of Jα (cf. Algorithm 5)
As usual for non-explicit methods, a line-search algorithm is at least difficult to
implement.

5) Implicit Discretization
The fully implicit highly nonlinear problem

uk+1 − uk

τ
+ αAuk+1 + f(uk+1) = 0

arising from a regularization of the energy is not used in practice.

5.3 Gradient Descent Methods

We start the discussion of minimization methods by considering the unconstraint
minimization problem

min
u
D.

Mathematically, dk is a descend direction from uk if
〈
grad

(
D[uk]

)
, dk

〉
< 0
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and it is guaranteed that for sufficient small τ > 0

D[uk + τdk] < D[uk].

If dk is a descend direction and τ > 0 sufficient small, then

uk+1 = uk + τdk.

reduces the value of the matching energy D. This motivates the following iterative
method for the image registration problem

uk+1 = uk + τkdk

with a parameter τk chosen by a line-search method. Since the image registration
problem is ill-conditioned, methods based on these descend directions do not even
converge locally. Hence, to ensure robustness and fast local convergence it is neces-
sary to incorporate additional information.

6) Steepest Descent Method in terms of an Energy
The direction of most rapid descend of D at uk is the solution of

min
d

〈
grad

(
D[uk]

)
, dk

〉
,

and is called the steepest descent direction

dk = −grad
(
D[uk]

)
= −fk.

Consider the quadratic approximation of D[uk + dk]

Qk[dk] = D[uk] +
〈
grad

(
D[uk]

)
, dk

〉

+
1
2

〈
HD

(
uk

)
dk, dk

〉

with the Hessian HD(uk) of D at uk. Since the Hessian is in general for the
image registration problem not positive definite, the minimization of Qk has not
a unique minimizer. Therefore the Hessian is replaced by a well known positive
definite operator A and we get the following perturbed steepest descent direction

dk = −gradA(D) = −A−1fk. (9)

The next iterate is given by

uk+1 = uk − τA−1fk, k = 0, 1, · · ·

with
τk = arg min

τ∈R

D
[
uk − τA−1fk

]
. (10)

We get the following algorithm.
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Algorithm 6 Perturbed steepest descent method for D
k = 0; u(0) = 0;
repeat

calculate fk = f(uk(x))
compute dk from (9)
set sk = dk/||dk||∞
compute τk by solving problem (10)
set uk+1 = uk + τk · sk

set k = k + 1
until ||f(uk(x))||2 ≤ eps

7) Steepest Descent Method for Jα

Consider the regularized functional

Jα[u] = D[u] + α 〈Au, u〉Ld
2(Ω)

the steepest descent direction of Jα at uk is given by

dk = −gradJα
(D[uk]) = −(αAuk + fk). (11)

For a given initial guess u(0) we get the following iteration

uk+1 = uk − τk(αAuk + fk), k = 0, 1, · · ·

where the parameter τk is the solution of the following line-search problem

τk = arg min
τ∈R

Jα [uk − τ(αAuk + fk)] . (12)

8) Steepest Descent Method for Jα in terms of an Energy
Consider the regularized functional

Jα[u] = D[u] + α 〈Au, u〉Ld
2(Ω)

Algorithm 7 Steepest descent method for the regularized functional Jα[u]
k = 0; u(0) = 0;
repeat

calculate fk = f(uk(x))
compute dk from (11)
compute τk by solving problem (12)
set uk+1 = uk − τk(αAuk + fk)
set k = k + 1

until ||αAuk + fk||2 ≤ eps
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Algorithm 8 Perturbed steepest descent method for Jα[u]
k = 0; u(0) = 0;
repeat

calculate fk = f(uk(x))
compute dk from (13)
compute τk by solving problem (14)
set uk+1 = uk − τk(αuk + A−1fk)
set k = k + 1

until ||αAuk + fk||2 ≤ eps

a quadratic approximation of Jα[uk + dk] is given by

Qk[dk] = Jα[uk] +
〈
grad

(
Jα[uk]

)
, dk

〉

+
1
2

〈
HJ

[
uk

]
dk, dk

〉

with the Hessian HJ(uk) = HD(uk) + αA of J at uk. Since HD(uk) is ill-
conditioned, we replace HJ(uk) by A and get the following quadratic approxi-
mation

Qk[dk] = J [uk] +
〈
grad

(
J [uk]

)
, dk

〉

+
1
2

〈
A
(
uk

)
dk, dk

〉

with unique minimizer

dk = −A−1(αAuk + fk) = −αuk −A−1fk (13)

for a given initial guess u(0) we get the following iteration

uk+1 = uk − τ(αuk +A−1fk)
= (1 − ατ)uk − τA−1fk, k = 0, 1, · · ·

with τk solution of

τk = arg min
τ∈R

Jα

[
uk − τ(αuk +A−1fk)

]
. (14)

A different approach uses the regularized functional. The reason is that higher values
of α can be used without increasing the regularization. This yields derivatives with
better condition.The first approach is given by:

10) Consider the regularized functional

Jk
α[u] = D[u] + α 〈A(u− uk), u− uk〉Ld

2(Ω)
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with steepest descent direction

gradJk
α
(D[u]) = f(u) + αA(u− uk)

of Jα[u]. The evaluation at uk leads to

dk = −grad
(
Jk

α[uk]
)

= −fk.

This approach lead to the steepest descend iteration for D

uk+1 = uk − τfk

with a line-search
τk = arg min

τ∈R

Jα [(uk − τfk] .

over the regularized functional Jα.
11) Consider the regularized functional

Jk
α[u] = D[u] + α 〈A(u− uk), u− uk〉Ld

2(Ω)

by replacing the Hessian of Jk
α by A we get the unique descend direction at uk

dk = −A−1fk

for a given initial guess u(0) we get the following iteration

uk+1 = uk − τA−1fk, k = 0, 1, · · ·

with
τk = arg min

τ∈R

Jk
α

[
uk − τA−1fk

]
.

5.4 Higher Order Methods

In the case that the similarity functional is given by a least-squares functional, such
as

DLSQ[u(x)] =
1
2

∫
Ω

(
T (x+ u(x)) −R(x)

)2

dx

higher order minimization methods can be considered.

Newton-type methods An affine model of d(u) = T (x− u(x)) − R(x) around a
vector uk is given by

d(u) − d(uk) ≈ Jd(uk) (u− uk)︸ ︷︷ ︸
=dk

, (15)
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where Jd is the Jacobian of d given by

Jd(u) =
(∂d(u)
∂u1

, · · · , ∂d(u)
∂ud

)
.

The Jacobian matrix and the Hessian of DLSQ at uk are given by

g(uk) = J t
d(uk)d(uk)

and
H(uk) = J t

d(uk)Jd(uk) + S(uk).

Here,

S(u) =
∫

Ω

d(u)d′′(u)dx =
∫

Ω

d(u)∇2T (x− u(x))dx

constitutes the nonlinear part of H(u).
Newton-type methods applied on the image registration problem are iterative methods
which can be written as:

uk+1 = uk + dk,

at each step, where u(0) is an initial given vector and dk is the solution of the normal
equation:

dk = −A−1
k g(uk) = −A−1

k J t
d(uk)d(uk).

In the case Ak = I this is just the steepest descend method. Higher order methods
are given by:

– Ak = H(uk) Newton’s method
– Ak = J t

d(uk) · Jd(uk) Gauss-Newton method.

For the most real applications these methods are not suitable to solve the registra-
tion problem. The matrix Ak has a large condition number cond2(Ak) so that these
methods do not even converge locally and due to noise sensitivity of the ill-posed
problem, regularization techniques have to be applied in order to compute meaning-
ful solutions. The modified Newton step

dk = −(J t
d(uk) · Jd(uk) + αkA)−1J t

d(uk)d(uk) (16)

becomes well posed for some αk > 0 with unknown size. A trust-region approach
to determine the parameter αk in each iteration step is presented in [17].

Nonlinear Approaches Here the idea is to minimize the nonlinear regularized
functional

Jα[u] = D[u] + α||u||2E
by a nonlinear iterative method. Amit [3] uses Fourier and Wavelet techniques. In
[18] an approach is presented, where the multigrid-idea and the minimization of
the nonlinear functional is combined by a modified multigrid full approximation
scheme.
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(a) template image (b) reference image

(c) resulting deformation (d) resulting deformed template

Fig. 2. Example for a multiscale uni-modal image registration problem with large deforma-
tion: The reference (b) is an artificial rotational distortion of the template (a). The computation
of the result involved gradient descents on the complete hierarchy of grids.

5.5 Multi-scale Approaches

At the end of this section we want to hint at a well-established global minimiz-
ing approaches for image matching problems, based on a multi-scale of matching
problems.

For typical image intensity functions T ,R, as discussed above the energyD[·] is
non-convex and we expect an energy landscape with many local minima. Especially
for gradient flow methods this implies that descent paths mostly tend to asymp-
totic states which only locally minimize the energy. Following Alvarez et al. [1] we
consider a continuous annealing method based on a whole scale of image pairs Tε,
Rε, where ε ≥ 0 is the scale parameter. Here we consider scale spaces of images
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generated by a scale space operator S(·) which maps an initial image I onto some
coarser image, i.e.,

Iε = S(ε)I .

The scale parameter ε allows to select fine grain representations corresponding to
small values of ε and coarse grain representations with most of the image details
skipped for larger values of ε. For the choice of S we refer to [7, section 4, 6]. For
given ε ≥ 0 we then consider the difference measure

Dε[u] =
1
2

∫
Ω

|Tε ◦ (1I + u) −Rε|2 .

We are left to choose the initial mapping φ0 = 1I + u0,ε for the evolution on scale
ε. Here we expect the minimizer or a sufficiently good approximation of the same
problem on a coarse scale to be a suitable starting point to approach the global
minimum on the finer scale. Thus, in an iteration, starting from a coarse scale with
large value of ε, one successively refines the small and reduces ε correspondingly.
Details of the implementation are given in [7, section 4, 6]. An example with a large
non-linear deformation, where computations took place from coarse to fine scales
resolved on suitably resolved grids is given in Figure 2, where the template and
reference images differ by a rotational twist by up to π

4 .
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100 U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch

10. C. A. Davatzikos, R. N. Bryan and J. L. Prince: Image registration based on boundary
mapping, IEEE Trans. Medical Imaging, 15/1, pp 112-115, (1996)

11. R. Deriche, P. Kornobst and G. Aubert: Optical–flow estimation while preserving its dis-
continuities: A variational approach, Proc. Second Asian Conf. Computer Vision (ACCV
’95, Singapore, December 5–8, 1995), 2, pp 290-295, (1995)

12. M. Droske, and M. Rumpf: A variational approach to non-rigid morphological registra-
tion, SIAM Appl. Math., 64/2, pp 668-687, (2004)

13. B. Fischer J. and Modersitzki: Curvature based image registration, Journal of Mathe-
matic Imaging and Vision, 18/1, pp 81-85, (2003)

14. G. Hermosillo, C. Chefd’hotel and O. Faugeras: Variational methods for multi-modal
image matching, Int. J. Comput. Vision, 50/3, pp 329-343, (2002)

15. U. Grenander and M. I. Miller: Computational anatomy: An emerging discipline, Quar-
terly Appl. Math., LVI, 4, pp 617-694, (1998)

16. Hanke, M. and Groetsch, C. W.: Nonstationary iterated tikhonov regularization, J. Optim.
Theory and Applications, 98, pp 37-53, (1998)

17. S. Henn: A Levenberg-Marquardt Scheme for nonlinear image registration, BIT Numer-
ical Mathematics, 43/4, pp 743-759, (2003)

18. S. Henn and K. Witsch: Iterative multigrid regularization techniques for image matching,
SIAM J. Sci. Comput. (SISC), 23/4, pp 1077-1093, (2001)

19. S. Henn and K. Witsch: Multi-modal image registration using a variational approach,
SIAM J. Sci. Comput. (SISC), 25/4, pp 1429-1447, (2004)

20. G. Hermosillo: Variational methods for multi-modal image matching, Phd thesis, Uni-
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Summary Optic flow describes the displacement field in an image sequence. Its
reliable computation constitutes one of the main challenges in computer vision, and
variational methods belong to the most successful techniques for achieving this goal.
Variational methods recover the optic flow field as a minimiser of a suitable energy
functional that involves data and smoothness terms. In this paper we present a survey
on different model assumptions for each of these terms and illustrate their impact
by experiments. We restrict ourselves to rotationally invariant convex functionals
with a linearised data term. Such models are appropriate for small displacements.
Regarding the data term, constancy assumptions on the brightness, the gradient,
the Hessian, the gradient magnitude, the Laplacian, and the Hessian determinant
are investigated. Local integration and nonquadratic penalisation are considered in
order to improve robustness under noise. With respect to the smoothness term, we
review a recent taxonomy that links regularisers to diffusion processes. It allows
to distinguish five types of regularisation strategies: homogeneous, isotropic image-
driven, anisotropic image-driven, isotropic flow-driven, and anisotropic flow-driven.
All these regularisations can be performed either in the spatial or the spatiotemporal
domain. After discussing well-posedness results for convex optic flow functionals,
we sketch some numerical ideas in order to achieve real-time performance on a
standard PC by means of multigrid methods, and we survey a simple and intuitive
confidence measure.

1 Introduction

Finding the displacement field between subsequent frames of an image sequence
has become a classical computer vision problem. This displacement field is called
optic flow. Solving the optic flow problem does not only have an impact in fields
like video coding or robot navigation, it is also a prototype for the entire class of
correspondence problems, where one seeks a sufficiently smooth mapping that maps
the features in one image to the structures in another one. Other applications where
such problems appear include the fields of stereo reconstruction and medical image
registration.

Already in 1981, Horn and Schunck introduced the first variational method for
computing the optic flow field in an image sequence [44]. This method is based on
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two assumptions that are characteristic for many variational optic flow methods: a
brightness constancy assumption and a smoothness assumption. These assumptions
enter a continuous energy functional whose minimiser yields the desired optic flow
field.

Performance evaluations such as [9, 35] showed that variational methods be-
long to the best performing techniques for computing the optic flow field. It is
thus not surprising that a lot of research has been carried out in order to im-
prove these techniques even further: These amendments include refined model
assumptions with discontinuity-preserving constraints [2, 28, 42, 62, 65, 73, 91]
or spatiotemporal regularisation [11, 61, 92], improved data terms with modi-
fied constraints [3, 26, 62, 74] or nonquadratic penalisation [11, 43, 56, 26], and
efficient multigrid algorithms [15, 22, 39, 38, 78, 95] for minimising these energy
functionals.

The goal of the present chapter is to analyse the data term and the smoothness
term in detail and to survey some of our recent results on variational optic flow com-
putation. For the sake of simplicity we focus on small displacements, where Taylor
linearisations of the data term are valid approximations. This restriction allows to
consider convex functionals where many theoretical and practical aspects become
significantly easier and more transparent.

Our chapter is organised as follows: In Section 2 we sketch the general structure
of these techniques. While Section 3 analyses the data term in more detail, a dis-
cussion of the different possibilities for smoothness constraints is given in Section
4. Suitable combinations of data and smoothness tersm are investigated in Section
5, well-posedness results are presented in Section 6, and algorithmic aspects are
sketched in Section 7. A simple but general confidence measure for energy-based
optic flow methods in discussed in Section 8. Our chapter is concluded with a sum-
mary in Section 9. A significantly shorter early version of the present chapter has
been presented at a workshop [90].

2 General Structure

Let f(x1, x2, x3) denote some scalar-valued image sequence, where (x1, x2) is the
location and x3 denotes time. Often f is obtained by preprocessing some initial
image sequence f0 by convolving it with a Gaussian Kσ of standard deviation σ:

f = Kσ ∗ f0. (1)

Let us assume that Dkf describes the set of all partial (spatial and temporal) deriv-
atives of f of order k, and that the optic flow field u(x1, x2, x3) = (u1(x1, x2, x3),
u2(x1, x2, x3), 1)� gives the displacement rate between subsequent frames with
temporal frame distance 1. In the present paper we consider variational methods
that are based on the minimisation of the continuous energy functional
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E(u) =
∫

Ω

(M(Dkf, u)︸ ︷︷ ︸
data term

+α S(∇f,∇u)︸ ︷︷ ︸
regulariser

) dx (2)

where the integration domain Ω is either a spatial or a spatiotemporal domain.
In the spatial case we have x := (x1, x2)� and ∇ := ∇2 := (∂x1 , ∂x2)

�,
and in the spatiotemporal case we use the notations x := (x1, x2, x3)� and
∇ := ∇3 := (∂x1 , ∂x2 , ∂x3)

�. The optic flow field u(x1, x2, x3) is obtained as a
function that minimises E(u). The energy functional E(u) penalises all deviations
from model assumptions. Typically is consists of a data termM(Dkf, u) which ex-
presses e.g. a brightness constancy assumption, and a regulariser S(∇f,∇u) with
∇u := (∇u1,∇u2)� that penalises deviations from (piecewise) smoothness. The
weight α > 0 serves as regularisation parameter: Larger values correspond to more
simplified flow fields.

The simplest and oldest representative of the class (2) is given by the method of
Horn and Schunck [44]. It is based on the minimisation of the spatial functional

E(u) =
∫

Ω

(
(u�∇3f)2 + α

2∑
i=1

|∇ui|2
)
dx. (3)

As will be detailed in the forthcoming sections, the Horn–Schunck functional com-
bines a data term that describes the brighness constancy of moving patterns with a
smoothness term which involves homogeneous (Tikhonov [79]) regularisation.

It should be noted that continuous energy functionals of type (2) may be for-
mulated in a rotationally invariant way: Apart from very few exceptions such as
[6, 28, 52], almost all continuous optic flow functionals that have been proposed
are rotationally invariant. Results from numerical analysis then show that consis-
tent discretisations approximate this invariance under rotations arbitrarily well if the
sampling is sufficiently fine. Moreover, if the energy functional is convex, a unique
minimiser exists that can be found in a relatively simple way by globally convergent
algorithms. Variational optic flow methods are global methods: If there is not suffi-
cient local information, the data termM(Dkf, u) is so small that it is dominated by
the smoothness term αS(∇f,∇u) which fills in information from more reliable sur-
rounding locations. Thus, in contrast to local methods, the filling-in effect of global
variational approaches always yields dense flow fields and no subsequent interpola-
tion steps are necessary: Everything is automatically accomplished within a single
variational framework.

3 Data Terms

In the design of data terms for optic flow methods prior knowledge plays an impor-
tant role. This knowledge may include information on the imaging device (e.g. the
quality of the images with respect to noise), on the conditions during the acquisition
of the video material (e.g. the occurrence of frequent illumination changes) as well
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as information on the expected type of motion (e.g. mainly translational motion of
cars in traffic sequences). For a specific problem, this information may allow to se-
lect a data term that is especially appropriate and thus improves the quality of the
estimation significantly. For this reason, the following section gives an overview on
data terms that are frequently used in literature. Moreover, a detailed discussion on
their advantages and shortcomings should guide the reader to select an appropriate
data term for a specific problem.

3.1 Constancy Assumptions

In order to analyse motion within subsequent frames of an image sequence, temporal
constancy has to be imposed on certain image features. The most frequently used
feature in this context is the image brightness. Many differential methods are based
on the assumption that this brightness is constant, i.e. that the grey value of objects
does not change over time. If we denote the motion of some image structure by
(x1(x3), x2(x3))� this assumptions can be formulated as

df(x1(x3), x2(x3), x3)
dx3

= 0. (4)

By applying the chain rule and defining fxi
:= ∂xi

f the following optic flow con-
straint (OFC) is obtained:

fx1u1 + fx2u2 + fx3 = 0. (5)

Note that the optic flow field satisfies (u1, u2, 1)� = (∂x3x1, ∂x3x2, 1)�.
It also is instructive to derive this constraint in a second way: Assuming a frame
distance of 1, the brightness constancy constraint between two subsequent frames at
time x3 and x3 + 1 can be expressed as

0 = f(x1+u1, x2+u2, x3+1) − f(x1, x2, x3) (6)

such that (5) follows from a Taylor linearisation in the point (x1, x2, x3)�. How-
ever, this Taylor linearisation is only a reasonable approximation if the flow field
varies sufficiently smooth and the displacement rates are small, i.e. in the order of
one pixel or below. In the following we assume that this is the case, because it would
be much more burdensome to deal with the unlinearised constraint (6) than its lin-
earised counterpart (5).
In order to use equation (5) within the energy functional (2), we penalise all devia-
tions from zero by considering the quadratic data term [44]

M1(D1f, u) := (u�∇3f)2. (7)

As long as the image data does not violate the brightness constancy assumption,
the use of M1 can give good results. In particular with regard to image data with
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non-constant brightness, however, constancy assumptions should be based on im-
age features that are less sensitive to illumination changes. A simple and efficient
strategy in this context is the consideration of derivatives. Instead of imposing con-
stancy to the image brightness f along the path (x1(x3), x2(x3))�, one may e.g.
assume that the spatial brightness gradient (fx1 , fx2)

� does not change along the
same path [83]:

dfx1(x1(x3), x2(x3), x3)
dx3

= 0, (8)

dfx2(x1(x3), x2(x3), x3)
dx3

= 0. (9)

This gives the two equations

u�∇3fx1 = 0, (10)
u�∇3fx2 = 0. (11)

Squaring and adding them produces the data term

M2(D2f, u) :=
2∑

i=1

(u�∇3fxi
)2. (12)

In a straightforward way, constancy assumptions can also be imposed on higher-
order derivatives, e.g. on the (spatial) Hessian H2f . Squaring and adding the corre-
sponding equations we obtain the following data term:

M3(D3f, u) :=
2∑

i=1

2∑
j=1

(u�∇3fxixj
)2. (13)

WithM2 andM3 we have proposed data terms that are designed for sequences with
illumination changes. However, one should note that their performance depends sig-
nificantly on the occurring type of motion. This has the following reason: In contrast
to the image brightness both gradient and Hessian contain directional information.
As a consequence, any constancy assumption on these expressions implies a con-
stancy assumption on their orientation. On one hand, this property may be useful if it
comes to the estimation of translational, divergent or slow rotational motion. In this
case the orientation of the features does hardly change and the combination of two
or three constraints in one data term may improve the results. On the other hand,
poor results have to be expected if fast rotations are dominating and the implied
orientation constancy does not hold.

A way to overcome this limitation is to create motion invariant image features
from these ”oriented” derivatives. Instead of imposing constancy on the (spatial)
brightness gradient and therewith on its orientation, one may e.g. assume that only
its magnitude is constant over time. Then, the following data term is obtained:
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M4(D2f, u) := (u�∇3|∇f |)2. (14)
This idea can also be extended to higher-order derivatives. As an example, let

us consider the (spatial) Hessian H2f . In this case, one may either think of impos-
ing constancy on the (spatial) Laplacian ∆2f or on the determinant of the (spatial)
Hessian H2f . While the data term associated to the Laplacian is given by

M5(D3f, u) := (u�∇3(∆2f))2, (15)
the data term based on the constancy of the determinant of the Hessian reads

M6(D3f, u) := (u�∇3 det(H2f))2. (16)
This example shows that in general multiple of such scalar valued expressions

can be derived from the set of derivatives of a single order. However, there is no
general rule which expression gives the best performance. An overview of all data
terms presented so far is given in Table 1. It may also be useful to combine multiple
of these terms by means of a linear combination. Moreover, one should note that
M2–M6 can be more sensitive to noise thanM1, since they involve higher orders of
derivatives of the image sequence.

In Figure 1 we illustrate the impact of different constancy assumptions on the
computed flow field. To this end we use the data terms M1–M6 within a spatial
energy functional based on homogeneous regularisation of Horn–Schunck type, i.e.
we minimise

E(u) =
∫

Ω

(
Mj + α

2∑
i=1

|∇ui|2
)
dx. (17)

Table 1. Comparison of the data terms M1–M6.

data term constancy assumption illum. changes motion type

M1 (u�∇3f)2 brightness no any

translational
M2

2∑
i=1

(u�∇3fxi)
2 gradient yes divergent

slow rotational

translational
M3

2∑
i=1

2∑
j=1

(u�∇3fxixj )
2 Hessian yes divergent

slow rotational

M4 (u�∇3|∇f |)2 gradient magnitude yes any

M5 (u�∇3(∆2f))2 Laplacian yes any

M6 (u�∇3 det(H2f))2 Hessian determinant yes any
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Fig. 1. From left to right, and from top to bottom: (a) Frame 8 of the Yosemite sequence with
clouds of size 316 × 256. (b) Ground truth. (c) Computed flow field for a spatial approach
with data term M1 (brightness constancy) and homogeneous regularisation as smoothness
term. (d) Data term M2 (gradient constancy). (e) Data term M3 (constancy of Hessian). (f)
Data term M4 (gradient magnitude constancy). (g) Data term M5 (constancy of Laplacian).
(h) Data term M6 (constancy of Hessian determinant).
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Table 2. Impact of the constancy assumption on the quality of the optic flow field. We
used a spatial energy functional with homogeneous regularisation, and computed the average
angular error (AAE) for the Yosemite sequence with clouds. The parameters σ and α have
been optimised.

constancy assumption data term σ α AAE
brightness M1 1.30 500 7.17◦

gradient M2 2.10 20 5.91◦

Hessian M3 2.70 1.8 6.46◦

gradient magnitude M4 1.90 14 6.37◦

Laplacian M5 2.50 3.0 6.18◦

Hessian determinant M6 3.00 0.1 8.10◦

for j = 1,...,6. As test sequence we take the popular Yosemite sequence with clouds.
It consists of 15 frames of size 316 × 252 and combines divergent and translational
motion under varying illumination. Both the sequence and its ground truth flow field
are available from ftp://csd.uwo.ca under the directory pub/vision. In
order to allow for a quantitative comparison of the different data terms we computed
the so-called average angular error (AAE) as proposed in [9] :

AAE(uc,ue) =
1
|Ω|

∫
Ω

arccos
(
u�c ue

|uc||ue|

)
dx. (18)

In this context the subscripts c and e denote the correct respectively the estimated
spatiotemporal optic flow vectors uc = (uc1, uc2, 1)� and ue = (ue1, ue2, 1)�.
Moreover, |Ω| =

∫
Ω
dx is the integration domain, and |u| =

√
u2

1 + u2
2 + 1. The

obtained results for optimised Gaussian presmoothing parameter σ (cf. equation
(1)) and regularsiation parameter α are presented in Table 2. As one can see, the
commonly used grey value constancy assumption is outperformed by almost all
other constraints that involve higher derivatives. This quantitative impressions are
also confirmed qualitatively by the corresponding flow fields shown in Figure 1.
While M1 gives slightly better results at the mountain site, the other data terms are
significantly superior in estimating the sky region where illumination changes are
present. This shows that it can be worthwhile to replace the brightness constancy
constraint by constraints that involve higher derivatives, in particular when varying
illumination has to be expected. We also observe that constancy assumptions based
on higher order derivatives require a larger Gaussian width σ in order to give optimal
results.

3.2 Increasing the Robustness of the Data Term

WithM1–M6 we have proposed data terms for different illumination conditions and
different types of motion. Let us now discuss by the example of M1 how these data
terms can be modified such that they become more robust. To this end we inves-
tigate three strategies: local least square fitting, adaptive averaging with nonlinear
diffusion, and nonquadratic penalisation.
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Local Least Square Fitting A useful strategy to make optic flow estimation more
robust under noise is the consideration of neighbourhood information within the
data term [26]. To this end one may e.g. assume that the optic flow is constant
within some spatial or spatiotemporal neighbourhood of size ρ. Then, simple statis-
tical methods such as least square regressions can be applied to estimate the flow
vector from the considered neighbourhood [54]. In this context it is common to de-
crease the weight of neighbours with increasing distance to the center. Let us now
apply such a Gaussian weighted least square fit to M1 = u�∇3f ∇3f

�u. Then the
corresponding data term reads

M7(D1f, u) := u�Jρ(∇3f)u (19)

where the structure tensor (see e.g. [10, 33, 69]

Jρ(∇3f) := Kρ ∗ (∇3f ∇3f
�) (20)

results from componentwise Gaussian convolution of the tensor product J0 =
∇3f ∇3f

�. In this case the standard deviation ρ of the Gaussian Kρ is called inte-
gration scale. One should note that for ρ = 0 this least square fit by minimisingM7

comes down to the original data term M1.

Adaptive Averaging with Nonlinear Diffusion Although the preceding integra-
tion of local information by means of a Gaussian convolution is a good concept for
achieving robustness under noise, the integration relies on the underlying assump-
tion that the optic flow field is constant within the local neighbourhood described
by the Gaussian kernel. Especially in the area of discontinuities in the flow field this
assumption is not valid, and thus the Gaussian convolution compromises the flow es-
timation. As a remedy, one can assume that the flow field is only piecewise constant.
Then one replaces the (linear) structure tensor in (20) that is based on Gaussian con-
volution – or equivalently linear diffusion – by a nonlinear structure tensor [89, 20]
that uses nonlinear tensor-valued diffusion for the local integration. Since nonlin-
ear diffusion reduces the amount of smoothing at discontinuities, it avoids the in-
tegration of unrelated data beyond these discontinuities and therefore leads to less
ambiguity in the least square regression.

Since the structure tensor is a matrix field, a matrix-valued scheme for nonlinear
diffusion is needed. Such a scheme is proposed in [81] where the matrix channels
are coupled by a joint diffusivity. With J0 = ∇3f∇3f

� as initial value for the
nonlinear diffusion process

∂tĴij = div

⎛
⎝g

⎛
⎝ 3∑

k,l=1

|∇Ĵkl|2
⎞
⎠∇Ĵij

⎞
⎠ (i, j = 1, 2, 3) (21)

the solution Ĵt constitutes a nonlinear structure tensor for a certain diffusion time t.
The diffusion time is the scale parameter of the nonlinear structure tensor, similar to
the standard deviation of the Gaussian kernel used in (20), and steers the size of the
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local neighbourhood. The so-called diffusivity function g is a decreasing function
that reduces the amount of smoothing at discontinuities in the data. An appropriate
choice is the regularised total variation (TV) diffusivity [5]

g(s2) = ε1 +
1√

s2 + ε22
(22)

where the small positive constants ε1 and ε1 are introduced for theoretical reasons
and in order to avoid unbounded diffusivities. In practice they can be set, for in-
stance, to 0.001.
If we apply the nonlinear structure tensor to M1, we obtain the data term

M8(D1f, u) := u�Ĵt(∇3f)u, (23)

which is a nonlinear alternative to M7.
Alternative ways of creating adaptive structure tensors are studied in [63] and

[19]. It is also worth noting that if one chooses the diffusivity function

g(s2) = 1 (24)

one ends up with homogeneous diffusion, which does not adapt to the data. Homo-
geneous diffusion with diffusion time t is equivalent to Gaussian convolution with
standard deviation ρ =

√
2t. This shows the direct relation between the employment

of the structure tensor Jρ and the nonlinear structure tensor Ĵt.
In our second experiment we compare different data terms regarding their ro-

bustness under noise. To this end we have added Gaussian noise with zero mean and
varying standard deviation σn to the Yosemite sequence with clouds. Apart from the
data terms M7 and M8 that are based on the concept of local integration, we also
considered the ordinary data terms M1 and M2. As expected, the results in Table
3 show a better performance of the data terms M7 and M8 when noise is present.
Figure 2 depicts the corresponding flow field for the data term M7 and σn = 40.
Although the original sequence was degraded severely, the computed flow field still
looks reasonable. In this context one should also note the worse performance ofM2.
It shows that higher-order derivatives are more sensitive to noise.

Nonquadratic Penalisation So far we have only considered data terms that pe-
nalise deviations from constancy assumptions in a quadratic way. From a statistical
viewpoint, however, it seems desirable to penalise outliers less severely than in a
quadratic setting. In particular with regard to the preservation of discontinuities in
the data term, this concept from robust statistics [41, 45] proves to be very useful;
see e.g. [11, 43, 56]. In order to guarantee well-posedness for the remaining problem
and allow the construction of simple globally convergent algorithms it is advanta-
geous to use penalisers Ψ(s2) that are convex in s. Such penalisers comprise e.g. the
regularised TV penaliser [70, 64]

Ψ(s2) = ε21 s
2 + 2

√
s2 + ε22, (25)



A Survey on Variational Optic Flow Methods for Small Displacements 113

Table 3. Comparison of data terms M1, M2, M7 and M8 under noise. We added Gaussian
noise with varying standard deviations σn to the Yosemite sequence with clouds and used a
spatial energy functional with homogeneous regularisation to compute the average angular
error (AAE). The parameters σ, α, ρ, and t have been optimised.

noise data term σ α integration parameter AAE
σn = 0 M1 1.30 500 - 7.17◦

M2 2.10 20 - 5.91◦

M7 1.30 500 ρ = 1.80 7.14◦

M8 1.30 300 t = 250 6.97◦

σn = 20 M1 2.08 2200 - 12.17◦

M2 3.60 35 - 12.26◦

M7 2.09 1600 ρ = 10.70 11.71◦

M8 2.10 1600 t = 225 11.76◦

σn = 40 M1 2.45 4100 - 16.80◦

M2 4.20 55 - 18.00◦

M7 2.38 2000 ρ = 17.60 15.82◦

M8 2.40 2500 t = 500 16.29◦

Fig. 2. (a) Left: Frame 8 of the Yosemite sequence with clouds degraded by Gaussian of
standard deviation σn = 40. (b) Right: Computed flow field for a spatial approach with data
term M7 (least squares) and homogeneous smoothness term.

where ε1 and ε2 are small positive constants.
In Figure 3 the graphs of the corresponding functions are depicted. Apart from

TV penalisation also an example for a nonconvex function is shown. However, one
should note that in the case of such nonconvex functions multiple minima have to
be expected. As a consequence, minimisation strategies do usually not succeed in
finding the global minimum. Let us now replace the quadratic penaliser in M1 and
M7 by one of the proposed convex functions. Then we obtain the data terms given
by

M9(D1f, u) := Ψ((u�∇3f)2),
M10(D1f, u) := Ψ(u�Jρ(∇3f)u).

An overview on the data terms M7–M10 and their capability of handling disconti-
nuities in the data is given in Table 4.
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Fig. 3. Comparison of different penalising functions. From left to right: (a) Tikhonov
(quadratic). (b) Total variation (linear). (c) Example of a nonconvex function.

Table 4. Comparison of data terms M7–M10 and their suitability for respecting discontinu-
ities in the image sequence.

data term concept discontinuities
M7 u�Jρ(∇3f) u least squares no
M8 u�Ĵt(∇3f) u nonlinear diffusion yes
M9 Ψ((u�∇3f)2) nonquadratic penaliser yes

least squares
M10 Ψ(u�Jρ(∇3f) u) and yes

nonquadratic penaliser

Table 5. Comparison of quadratic and nonquadratic penalisers for the data term M1 (bright-
ness constancy). We used a spatial energy functional with homogeneous regularisation, and
computed the average angular error (AAE) for the Yosemite sequence with clouds. The para-
meters σ, α and ρ have been optimised.

penaliser data term σ α ρ AAE
quadratic M1 1.30 500 - 7.17◦

nonquadratic M9 1.40 190 - 7.08◦

nonquadratic + least squares M10 1.40 200 2.0 6.76◦

In our last experiment on the impact of data terms we investigate the advantages
of nonquadratic penalisers. This is done in Table 5 where the termsM1,M9 andM10

are compared. Again, the listed results refer to the Yosemite sequence with clouds.
Obviously, one can improve the average angular error by replacing the quadratic
penaliser with a nonquadratic one. The reason for this improvement can be found in
Figure 4. It depicts a zoom into the lower left corner of frame 8 and 9, the ground
truth as well as the computed flow fields for the different data terms. As one can
see, those boundary pixels from frame 8 that are not present in frame 9 have a
large impact on the estimated flow field when penalised in a quadratic way. By
using a nonquadratic approach, however, their influence is reduced significantly.
As a consequence, the estimation at these locations becomes more precise and the
average angular error decreases.
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Fig. 4. From left to right: (a) Detail from Frame 8 of the Yosemite sequence with clouds (48×
128 pixels). (b) Frame 9. (c) Ground truth. (d) Computed flow field for a spatial approach
with data term M1 (quadratic penaliser) and homogeneous regularisation. (e) Data term M9

(nonquadratic penaliser). (f) Data term M10 (nonquadratic penaliser and least squares).

4 Smoothness Terms

So far we have analysed different possibilities for modelling the data term. Let us
now explore different models for the smoothness term. This is done in two steps:
First we survey a taxonomy that links the regularisers in optic flow functionals to
vector-valued diffusion processes. In a second step we investigate the impact of
replacing a spatial smoothness assumption by a spatiotemporal one.

4.1 A Diffusion Taxonomy for Smoothness Terms

A taxonomy of the different possibilities to design smoothness constraints has been
presented in [91]. It exploits the connection between regularisation methods and
diffusion filtering. In order to describe this taxonomy we derive the steepest de-
scent equations for the optic flow functionals. Since they come down to a diffusion–
reaction system, we analyse diffusion filters for vector-valued images. Finally we
transfer this classification into the optic flow setting.

From Energy Functionals to Diffusion–Reaction Systems Minimising the en-
ergy functional (2) can be done in two ways:
One possibility is to compute the so-called Euler–Lagrange equations. They consti-
tute necessary conditions a minimiser of E(u) has to satisfy [29, 36]. In the specific
case of a spatial energy functional (2) they are given by the two-dimensional system
of partial differential equations (PDEs)

0 = ∂x1Su1x1
+ ∂x2Su1,x2

− 1
α∂u1M, (26)

0 = ∂x1Su2x1
+ ∂x2Su2,x2

− 1
α∂u2M (27)

equipped with homogeneous Neumann (reflecting) boundary conditions. The term
Sui,xj

denotes the partial derivative of S with respect to ∂xj
ui.
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Alternatively we can minimise E(u) by means of the steepest descent method. In
the case of a spatial functional we obtain a system of two-dimensional diffusion–
reaction equations, where the diffusion term results from the regulariser S(∇f,∇u),
and the reaction term is induced by the data term M(Dkf, u):

∂tu1 = ∂x1Su1,x1
+ ∂x2Su1,x2

− 1
α∂u1M, (28)

∂tu2 = ∂x1Su2,x1
+ ∂x2Su2,x2

− 1
α∂u2M (29)

The parameter t is a pure numerical parameter that should not be confused with
the time x3 of the image sequence. If E(u) is strictly convex, a unique minimiser
exist and the steepest descent evolution is globally convergent, i.e. its steady–state
does not depend on the initialisation. For t→ ∞, this steady–state of the diffusion–
reaction system is given by the Euler–Lagrange equations (26)–(27).

Since we are interested in a taxonomy for optic flow regularisers, it it sufficient
to restrict ourselves to the diffusion part of (28)–(29). This leads to the vector-valued
diffusion process

∂tui = ∂xi
Sui,x1

+ ∂xi
Sui,x2

(i = 1, 2). (30)

In order to get a better understanding of such processes, it is instructive to make a
little excursion to diffusion filters for multichannel images. This shall be done next,
following the description in [89].

Diffusion of Vector-Valued Images Vector-valued images arise for example as
colour images, multispectral satellite images and multi-spin echo MR images. Dif-
fusion filtering of some multichannel image f = (f1(x), ..., fm(x))� with x ∈ �2

may be based on one of the following evolutions:

(a)Homogeneous diffusion (introduced in [46] in the scalar case):

∂tui = ∆ui (i = 1, ...,m) (31)

(b)Linear isotropic diffusion (introduced in [34] in the scalar case):

∂tui = div
(
g
(∑

j

|∇fj |2
)
∇ui

)
(i = 1, ...,m) (32)

(c)Linear anisotropic diffusion (introduced in [47] in the scalar case):

∂tui = div
(
D
(∑

j

∇fj∇f�j
)
∇ui

)
(i = 1, ...,m) (33)

(d)Nonlinear isotropic diffusion [37]:

∂tui = div
(
g
(∑

j

|∇uj |2
)
∇ui

)
(i = 1, ...,m) (34)
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(e)Nonlinear anisotropic diffusion [87]:

∂tui = div
(
D
(∑

j

∇uj∇u�j
)
∇ui

)
(i = 1, ...,m) (35)

where f(x) acts as initial condition for the solution u(x, t):

ui(x, 0) = fi(x) (i = 1, ...,m). (36)

Here, g denotes a scalar-valued diffusivity, and D is a positive definite diffusion
matrix. The diffusivity g(s2) is a decreasing function in its argument. Moreover, we
assume that the flux function g(s2)s is nondecreasing in s. One may e.g. use the reg-
ularised TV diffusivity (22). In the linear case this ensures that at edges of the initial
image f , where

∑
j |∇fj |2 is large, the diffusivity g(

∑
j |∇fj |2) is close to zero.

Consequently, diffusion at edges is inhibited. In the nonlinear case one introduces
a feedback by adapting the diffusivity g to the evolving image u. In physics, a dif-
fusion process with a scalar-valued diffusivity is called isotropic, since its diffusive
behavior does not depend on the direction. Anisotropic diffusion with a direction
depending behavior may be realised by replacing the scalar-valued diffusivity g by
some positive definite diffusion matrix D. One may design the diffusion matrix D
such that diffusion along edges of f or u is preferred and diffusion across edges is
inhibited. This may be very useful in cases when noisy edges are present.

How can edge directions in some vector-valued image f be measured? Di Zenzo
[30] has proposed to consider the matrix

∑
j ∇fj∇f�j . It serves as a structure ten-

sor for vector-valued images since its eigenvectors v1, v2 describe the directions of
highest and lowest contrast. This contrast is given by the corresponding eigenvalues
µ1 and µ2.

A natural choice for the design of some diffusion matrix D as a function of a
vector-valued image f would thus be to specify its eigenvectors as the eigenvectors
v1, v2 of

∑
j ∇fj∇f�j , and its eigenvalues λ1, λ2 via

λ1 = g(µ1), (37)
λ2 = g(µ2), (38)

with a diffusivity function g as e.g. in (22).
Three remarks are in order here:

1. The fact that in the preceding models the same diffusivity or diffusion matrix
is used for all channels ensures that the evolutions between the channels are
synchronised. This prevents e.g. that discontinuities evolve at different locations
in each channel.

2. Let J ∈ �2×2 be symmetric with eigenvectors v1, v2 and eigenvalues µ1, µ2:

J = µ1v1v
�
1 + µ2v2v

�
2 . (39)

A formal way to extend some scalar-valued function g(s2) to a matrix-valued
function g(J) is to define
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g(J) := g(µ1)v1v�1 + g(µ2)v2v�2 . (40)

With this notation we may characterise the linear and nonlinear isotropic mod-
els by their diffusivities g(

∑
j ∇f�j ∇fj) and g(

∑
j ∇u�j ∇uj), while their

anisotropic counterparts are given by g(
∑

j ∇fj∇f�j ) and g(
∑

j ∇uj∇u�j ).
Hence, isotropic and anisotropic models only differ by the location of the trans-
position.

3. The preceding models are not the only PDE methods that have been proposed
for processing vector-valued images. For alternative approaches the reader is
referred to [14, 50, 72, 82, 88] and the references therein. Our classification is
based on diffusion processes in divergence form that can be derived as steepest
descent methods for minimising suitable energy functionals.

Figure L illustrates the effect of the different smoothing strategies for a noisy
color image with three channels corresponding to the red, green and blue compo-
nents. We observe that homogeneous diffusion performs well with respect to de-
noising, but does not respect image edges. Space-variant linear isotropic diffusion,
however, may suffer from noise sensitivity as strong noise may be misinterpreted
as an important edge structure where the diffusivity is reduced. Anisotropic linear
diffusion allows smoothing along edges, but reduces smoothing across them. This
leads to a better performance than isotropic linear diffusion if images are noisy. We
can also observe that nonlinear models give better results than their linear counter-
parts. This is not surprising, since the nonlinear models adapt the diffusion process
to the evolving image instead of the initial one.

From Vector-Valued Diffusion to Optic Flow Regularisation Having discussed
a taxonomy for vector-valued diffusion, we can transfer it to the optic flow set-
ting. The idea is to identify the optic flow regularisers S(∇f,∇u) that produce
homogeneous, linear isotropic, linear anisotropic, nonlinear isotropic, and nonlin-
ear anistropic diffusion. It should be noted that now that we returned to the optic
flow setting, f denotes the image sequence again, and u is the flow field.

The simplest optic flow regulariser is the homogeneous regularisation of Horn
and Schunck [44]. This quadratic regulariser of type S(∇u) = |∇u1|2 + |∇u2|2
penalises all deviations from smoothness of the flow field. It can be related to lin-
ear diffusion with a constant diffusivity. Thus, the flow field is blurred in a ho-
mogeneous way such that motion discontinuities may loose sharpness and get dis-
located. It is thus not surprising that people have tried to construct a variety of
discontinuity-preserving regularisers. Depending on the structure of the resulting
diffusion term, we can classify a regulariser S(∇f,∇u) as image-driven or flow-
driven, and isotropic or anisotropic.

For image-driven regularisers, S is not only a function of the flow gradient ∇u
but also of the image gradient ∇f . This function is chosen in such a way that it
respects discontinuities in the image data. If only the gradient magnitude |∇f | mat-
ters, the method is called isotropic. It can avoid smoothing at image edges. An
anisotropic technique depends also on the direction of ∇f . Typically it reduces
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smoothing across edges of f (i.e. along ∇f ), while smoothing along edges of f is
still permitted. Image-driven regularisers can be related to linear diffusion processes.

Flow-driven regularisers take into account discontinuities of the unknown flow
field u by preventing smoothing at or across flow discontinuities. If the resulting
diffusion process uses a scalar-valued diffusivity that only depends on |∇u|2 :=
|∇u1|2 + |∇u2|2, it is an isotropic process. Cases where also the direction of ∇u1

and ∇u2 matters are named anisotropic. Flow-driven regularisers lead to nonlinear
diffusion processes.

Table 6 gives an overview of the different regularisers and their corresponding
diffusion filters. As a rule of thumb, one can expect that flow-driven regularisers
offer advantages over image-driven ones for highly textured sequences, where the
numerous texture edges create an oversegmentation of the flow field. Moreover,
anisotropic methods may give somewhat better results than isotropic ones, since the
latter ones are too “lazy” at noisy discontinuities.

Figure 5 presents an experiment that illustrates the impact of the smoothness
terms we have discussed so far. We compare the regularisers S1–S5 from Table 6
within a spatial approach based on the brightness constancy assumption M1. In or-
der to illustrate their impact on the flow field, we use the 512 × 512 Marble scene by
Otte and Nagel. This sequence that is available at http://i21www.ira.uka.
de/image-sequences consists of 31 frames and requires the estimation of flow
discontinuities within a globally translational motion. Figure 5 depicts a zoom into
the computed flow fields, where one of these discontinuities is shown. The perfor-
mance of the different regularisers is not surprising: Homogeneous regularisation
is fairly blurry and cannot preserve the discontinuity. Flow-driven and image-driven
regularisers perform better whereby the usage of flow information offers advantages
in textured regions. And finally, one observes that anisotropic regularisation yields
slightly more accurate results than the isotropic one.

4.2 Spatiotemporal Regularisation

While our general functional (2) allows either spatial or spatiotemporal models, the
regularisers that we have discussed so far use only spatial smoothness constraints.
Thus, it would be natural to impose some amount of (piecewise) temporal smooth-
ness as well. Let us now investigate what happens if we consider such spatiotempo-
ral models.

Going from spatial to spatiotemporal models is not very difficult in principle: All
one has to do is to replace the spatial integration domain Ω in (2) by a spatiotempo-
ral one, and to consider spatiotemporal instead of spatial derivatives. As a resulting
steepest descent method, one obtains the three-dimensional diffusion–reaction sys-
tem

∂tu1 = ∂x1Su1,x1
+ ∂x2Su1,x2

+ ∂x3Su1,x3
− 1

α∂u1M, (41)

∂tu2 = ∂x1Su2,x1
+ ∂x2Su2,x2

+ ∂x3Su2,x3
− 1

α∂u2M (42)

instead of its two-dimensional counterpart (28)–(29).
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Fig. 5. (a) Top left: Detail from Frame 16 of the Marble sequence (128×128 pixels). (b) Top
right: Computed optic flow magnitude for a spatial approach with data term M1 (brightness
constancy) and smoothness term S1 (homogeneous regularisation). (c) Middle left: Smooth-
ness term S2 (image-driven isotropic regularisation). (d) Middle right: Smoothness term S3

(image-driven anisotropic regularisation). (e) Bottom left: Smoothness term S4 (flow-driven
isotropic regularisation) (f) Bottom right: Smoothness term S5 (flow-driven anisotropic reg-
ularisation). From [91].
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Table 6. Vector-valued diffusion processes and their corresponding optic flow regularisers.
In the diffusion context, f denotes the vector-valued initial image and u its evolution. In the
optic flow setting, f is the scalar-valued image sequence and u describes the optic flow field.

vector-valued diffusion process optic flow regulariser
∂tui = ∂x1Suix1

+ ∂x2Suix2
S(∇f,∇u)

homogeneous homogeneous

∂tui = ∆ui S1 =
2∑

i=1

|∇ui|2

(scalar case: Iijima 1959 [46]) (Horn/Schunck 1981 [44])

linear isotropic image-driven, isotropic

∂tui = div
(
g(
∑

j
|∇fj |2) ∇ui

)
S2 = g(|∇f |2)

2∑
i=1

|∇ui|2

(scalar case: Fritsch 1992 [34]) (Alvarez et al. 1999 [2])

linear anisotropic image-driven, anisotropic

∂tui = div
(
g(
∑

j
∇fj∇f�

j ) ∇ui

)
S3 =

2∑
i=1

∇u�
i D(∇f)∇ui

(scalar case: Iijima 1962 [47]) (Nagel 1983 [60])

nonlinear isotropic flow-driven, isotropic

∂tui = div
(
Ψ ′(
∑

j
|∇uj |2) ∇ui

)
S4 = Ψ

( 2∑
i=1

|∇ui|2
)

(Gerig et al. 1992 [37]) (Schnörr 1994 [73])

nonlinear anisotropic flow-driven, anisotropic

∂tui = div
(
Ψ ′(
∑

j
∇uj∇u�

j ) ∇ui

)
S5 = trace Ψ

( 2∑
i=1

∇ui∇u�
i

)

(Weickert 1994 [87]) (Weickert/Schnörr 2001 [91])

In practice, spatiotemporal models have not been used too often so far. An early
suggestion for spatiotemporal anisotropic image-driven regularisers goes back to
Nagel [61], followed by spatiotemporal flow-driven approaches such as [11, 92]. It
appears that the limited memory of previous computer architectures prevented many
researchers from studying approaches with spatiotemporal regularisers, since they
require to keep the entire image stack in the computer memory. On contemporary
PCs, however, these memory requirements are no longer a severe restriction in most
cases. With respect to the computing time, the additional requirements are moderate
if the entire sequence has to be analysed anyway. Often spatiotemporal models re-
ward their users by significantly improved optic flow estimates. It is thus likely that
spatiotemporal regularisers will become more important in the future.
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Fig. 6. (a) Left: Detail of Frame 8 of the Copenhagen hallway sequence. (b) Middle: Com-
puted flow field for the spatial approach with data term M1 (brightness constancy) and
smoothness term S4 (isotropic flow-driven regularisation). (c) Right: Ditto for the spatiotem-
poral approach. From [92].

In Figure 6 we study the effect of replacing spatial by spatiotemporal regulari-
sation. This is done by the example of the 256×256 Copenhagen hallway sequence
by Olsen and Nielsen. This real-world sequence consists of 16 frames and shows a
person who walks along a hallway towards the camera. Comparing the quality of
both flow fields, one sees that the additional assumption of temporal smoothness
may lead to significantly improved results. In particular the displacements of fast
moving body parts such as arms and legs are estimated with a much higher preci-
sion.

5 Experiments with Suitable Combinations

In the previous experiments we have focused either on the data or on the smoothness
term. Let us now present experiments that illustrate how useful suitable combina-
tions of these terms are.

We start by considering a spatial approach with the least square regression data
termM7 and homogeneous regulariser S1. Then we replace the quadratic penalisers
in both the data and the smoothness term by nonquadratic penalising functions.
Thus, a spatial approach with data termM10 and isotropic flow-driven regulariser S4

is obtained. And finally, the energy functionals of both the original and the modified
variant are extended to the spatiotemporal domain.

A comparison of these four approaches is performed in Table 7 where average
angular errors for the Marble sequence are listed. The improvements of the results
thereby clearly show that established concepts in data and smoothness term should
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Fig. 7. (a) Top left: Frame 16 of the Marble sequence. (b) Top right: Ground truth magnitude.
(c) Middle left: Computed flow field for a spatial approach with data term M7 (least squares)
and smoothness term S1 (homogeneous regularisation). (d) Middle right: Ditto with data
term M10 (nonquadratic and least squares) and smoothness term S4 (isotropic flow-driven
regularisation). (e) Bottom left: Spatiotemporal approach with data term M7 (least squares)
and smoothness term S1 (homogeneous regularisation). (f) Bottom right: Ditto with data
term M10 (nonquadratic and least squares) and smoothness term S4 (isotropic flow-driven
regularisation). Adapted from [26].
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Table 7. Results for different combinations based on local integration. The average angular
error (AAE) has been computed for the Marble sequence. Adapted from [26].

approach data term smoothness term AAE
2-D quadratic M7 S1 5.30◦

2-D nonquadratic M10 S4 5.14◦

3-D quadratic M7 S1 2.06◦

3-D nonquadratic M10 S4 1.70◦

be combined in order to obtain the best performance. This is also confirmed by Fig-
ure 7, where we depict the computed flow fields. One can see that each component
contributes to the overall improvement: The non-quadratic data term improves the
estimation for outliers in the boundary region, the flow-driven isotropic regulariser
allows a better preservation of the discontinuities at the marbled blocks and the tem-
poral extension produces a more homogeneous estimation of the floor.

In a second experiment we replace the brightness constancy assumption within
M10 by the gradient constancy assumption used in M2. Let us denote this new
data term by M11. In Table 8 the resulting spatial and spatiotemporal approach are
compared to other methods from the literature, when being applied to the Yosemite
sequence with clouds. With 2.78◦ respectively 3.50◦ very low average angular er-
rors are obtained1. The corresponding flow fields for the spatiotemporal method are
depicted in Fig. 8. Obviously, they match the ground truth very well. This shows
that sophisticated variational approaches belong to the qualitatively best performing
optic flow methods.

6 Well-Posedness Results

One specific advantage of convex variational methods for optic flow computations
results from the fact that they allow a rigorous mathematical analysis. As an exam-
ple, the following result has been proven in [91] for spatial or spatiotemporal energy
functionals with the brightness constancy assumption as data term M1 and any of
the smoothness terms S1,...,S5:

Theorem (Well-Posedness of Optic Flow Functionals).
Assume that the following properties hold:

(a)The penalising function Ψ(s2) is differentiable and strictly convex in s ∈ �.
(b)There exist c1, c2 > 0 such that c1s2 ≤ Ψ(s2) ≤ c2s

2 for all s.
(c)The initial data are sufficiently smooth: f ∈ H1(Ω).
(d)fx1 and fx2 are linearly independent in L2(Ω) and have finite L∞(Ω) norm.

Then the (spatial or spatiotemporal) energy functional

1This method has been further modified in [18] where it yielded the best results in the
literature so far.
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Table 8. Comparison between results from the literature with 100 % density and our re-
sults using a 3-D functional with data term M11 (nonquadratic penalised gradient constancy)
and smoothness term S4 (isotropic flow-driven regulariser). All data refer to the Yosemite
sequence with cloudy sky. Multiscale means that some focusing strategy using linear scale-
space or pyramids has been applied. AAE = average angular error.

technique multiscale AAE
Horn/Schunck, original [9] no 31.69◦

Singh, step 1 [9] no 15.28◦

Anandan [9] no 13.36◦

Singh, step 2 [9] no 10.44◦

Nagel [9] no 10.22◦

Horn/Schunck, modified [9] no 9.78◦

Uras et al., unthresholded [9] no 8.94◦

Alvarez/Weickert/Sánchez [3] yes 5.53◦

Mémin/Pérez (IEEE TIP) [56] yes 5.38◦

Bruhn/Weickert/Schnörr [26] no 5.18◦

Mémin/Pérez (ICCV ’98) [57] yes 4.69◦

2-D nonquadratic / gradient constancy (M11 + S4) no 3.50◦

3-D nonquadratic / gradient constancy (M11 + S4) no 2.78◦

Fig. 8. (a) Top left: Ground truth for the Yosemite sequence with clouds. (b) Top right: Mag-
nitude of the ground truth. (c) Bottom left: Computed flow field for a spatiotemporal approach
with data term M11 (nonquadratic gradient constancy) and smoothness term S4 (isotropic
flow-driven regularisation). (d) Bottom right: Magnitude of the computed flow field.
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E(u) =
∫

Ω

(
〈u,∇3f〉2 + αSj(∇f,∇u)

)
dx (43)

with j ∈ {1,...,5} has a unique minimiser w := (u1, u2) ∈ H1(Ω)×H1(Ω) =: H.
It depends in a continuous way on the image sequence f .

The proof of this theorem combines methods from [75] and from [91] where
two essential properties are required:

1. In order to guarantee strict convexity of the smoothness term, a convexity esti-
mate for matrices is needed:
Let Ψ : �→ � be strictly convex, A and B two positive semidefinite symmet-
ric m×m matrices with A �= B, and β ∈ (0, 1). Then

traceΨ(βA+ (1 − β)B) < β traceΨ(A) + (1 − β) traceΨ(B). (44)

2. On the other hand, strict convexity of the data term requires to address degen-
eracies by showing that there exists a constant c > 0 such that

∫
Ω

(
(∇f�w)2 + γ|∇w|2

)
dx ≥ c ‖w‖2

H , ∀w ∈ H. (45)

It should be noted that such a well-posedness proof is much more than a pure
theoretical result: In practise it also guarantees e.g. stability of the optic flow field
with respect to noise that perturbs the image data. In this sense it is the real reason
behind the high robustness that distinguishes good variational approaches from a
number of alternative ways to estimate the optic flow field. For alternative ways to
obtain well-posedness results for optic flow functionals we refer to [6, 7, 43].

7 Algorithms

For the numerical minimisation of the energy functional (2), two strategies are used
very frequently:

In the first strategy, one discretises the parabolic diffusion–reaction system (28),
(29) and recovers the optic flow field as the steady–state solution for t → ∞. The
simplest numerical scheme would be an explicit (Euler forward) finite difference
scheme [58, 59, 76]. More efficient methods include semi-implicit approaches that
offer better stability properties at the expense of the need to solve linear systems of
equations.

Alternatively, one can directly discretise the elliptic Euler-Lagrange equations
(26), (27), either by finite differences [58, 59, 76] or finite elements [27, 85].
This also requires to solve large linear or nonlinear systems of equations. Efficient
methods for this task include successive overrelaxation (SOR) methods [84, 94],
preconditioned conjugate gradient (PCG) algorithms [55, 71] and multigrid tech-
niques [16, 17, 40, 80, 93].
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Fig. 9. Example of a full multigrid implementation for four levels. Starting from a coarse
scale the solution is refined step by step. From [22].

Table 9. Performance benchmark for the 316 × 252 Yosemite sequence with clouds. FPS
= frames per second. Runtimes refer to the computation of all 14 frames with a numerical
precision of 10−3. The implementation was done in C on a 3.06 GHz Pentium 4 PC. The
obtained average angular error is 7.17◦. From [22].

solver iterations/frame runtime [s] FPS [s−1] speedup
Gauß–Seidel 21931 543.799 0.026 1
SOR 286 10.140 1.381 54
Gauß–Seidel, coarse-to-fine 237 8.399 1.667 65
SOR, coarse-to-fine 25 1.723 8.125 316
full multigrid 1 0.768 18.229 708

Figure 9 illustrates an example of a full multigrid cycle with 4 levels. Such
strategies have been used in [22, 23] for finding the minimum of a variational ap-
proach with data term M2 and a homogeneous regulariser. Thus, it was possible to
compute up to 18 dense flow fields of size 316 × 252 pixels on 3.06 GHz Pentium
4 PC within a single second. Table 9 compares the performance of this numerical
scheme to widely used iterative solvers like the Gauß-Seidel method or its extrap-
olated SOR variant. As one can see, the full multigrid cycle is almost three orders
of magnitude more efficient than the Gauß-Seidel relaxation scheme and 13 times
faster than the SOR method. Even frequently used coarse-to-fine strategies with-
out error correction steps are outperformed clearly. This shows that computational
efficiency is no problem for variational optic flow methods, when state-of-the-art
numerical methods are used.

While this example refers to a quadratic energy functional that leads to linear
Euler–Lagrange equations, it is also possible to achieve real-time performance with
nonquadratic functionals that give rise to nonlinear Euler–Lagrange equations. This
is shown in [24] as well as in [25] where a larger variety of methods is studied.

8 A Simple and General Confidence Measure

While global, energy-based optic flow methods yield dense flow fields due to the
filling-in effect, it is clear that the flow estimates cannot have the same reliability
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at all locations. It would thus be interesting to find a confidence measure that al-
lows to assess the reliability of a dense optic flow field. In 1994 Barron et al. [9]
have identified the absence of such good measure as one of the main drawbacks
of energy-based global optic flow techniques: Simple heuristics such as using |∇f |
as a confidence measure did not work well. As a remedy, we present a confidence
measure that is not only very simple, but also suited for any variational optic flow
method. In our description we follow [26].

Since the energy functional E penalises deviations from model assumptions by
summing up the deviations Ei from all pixels i in the image domain, it appears
natural to use Ei for assessing the local reliability of the computation. All we have
to do is to consider the cumulative histogram of the contributionsEi of all pixels i ∈
{1,...,N} in the image domain. As an approximation to the p percent locations with
the highest reliability, we look for the p percent locations where the contribution Ei

is lowest. There are very efficient algorithms available for this purpose; see e.g. [67,
Section 8.5].

Let us now evaluate the quality of our energy-based confidence measure. To this
end we consider the spatiotemporal energy functional with the local least square fit
data term M7 and the isotropic flow-driven regulariser S4. In [26], this technique
is named 3-D CLG (combined local–global) method. Figure 10(a) depicts the 20
% quantile of locations where the 3-D CLG method has lowest contributions to the
energy. A comparison with Figure 10(b) – which displays the result of a theoretical
confidence measure that would be optimal with respect to the average angular error
– demonstrates that the energy-based confidence method leads to a fairly realistic
sparsification of flow fields. In particular, we observe that this confidence criterion
is very successful in removing the cloudy sky regions. These locations are well-
known to create large angular errors in many optic flow methods [9]. A number of
authors have thus only used the modified Yosemite sequence without cloudy sky,
or they have neglected the flow values from the sky region for their evaluations

Fig. 10. Confidence criterion for the Yosemite sequence with clouds. (a) Left: Locations with
the lowest contributions to the energy (20 % quantile). The non-black grey values depict the
optic flow magnitude. (b) Right: Locations where the angular error is lowest (20 % quantile).
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[8, 12, 13, 31, 32, 48, 49, 53, 77]. As we have seen one may get significantly lower
angular errors than for the full sequence with cloudy sky.

A quantitative evaluation of our confidence measure is given in Table 10. Here
we have used the energy-based confidence measure to sparsify the dense flow field
such that the reduced density coincides with densities of well-known optic flow
methods. Most of them have been evaluated by Barron et al. [9]. We observe that
the sparsified 3-D CLG method performs very favourably: It has a far lower angular
error than all corresponding methods with the same density. In several cases there
is an order of magnitude between these approaches. At a flow density of 2.4 %,
an average angular error of 0.76 ◦ is reached. To our knowledge, these are the best
values that have been obtained for this sequence in the entire literature. It should be
noted that these results have been computed from an image sequence that suffers
from quantisation errors since its grey values have been stored in 8-bit precision
only.

In Table 10 we also observe that the angular error decreases monotonically un-
der sparsification over the entire range from 100 % down to 2.4 %. This in turn
indicates an interesting finding that may seem counterintuitive at first glance: Re-
gions in which the filling-in effect dominates give particularly small angular errors.
In such flat regions, the data term vanishes such that a smoothly extended flow field
may yield only a small local contribution to the energy functional. If there were

Table 10. Comparison between the “nondense” results from Barron et al. [9], Weber and
Malik [86], Ong and Spann [66] and our results for the Yosemite sequence with cloudy sky.
AAE = average angular error. CLG = average angular error of the 3-D CLG method with the
same density. The sparse flow field has been created using our energy-based confidence crite-
rion. The table shows that using this criterion clearly outperforms all results in the evaluation
of Barron et al.

Technique Density AAE CLG
Singh, step 2, λ1 ≤ 0.1 97.7 % 10.03◦ 6.04◦

Ong/Spann 89.9 % 5.76◦ 5.26◦

Heeger, level 0 64.2 % 22.82◦ 3.00◦

Weber/Malik 64.2 % 4.31◦ 3.00◦

Horn/Schunck, original, |∇f | ≥ 5 59.6 % 25.33◦ 2.72◦

Ong/Spann, tresholded 58.4 % 4.16◦ 2.66◦

Heeger, combined 44.8 % 15.93◦ 2.07◦

Lucas/Kanade, λ2 ≥ 1.0 35.1 % 4.28◦ 1.71◦

Fleet/Jepson, τ = 2.5 34.1 % 4.63◦ 1.67◦

Horn/Schunck, modified, |∇f | ≥ 5 32.9 % 5.59◦ 1.63◦

Nagel, |∇f | ≥ 5 32.9 % 6.06◦ 1.63◦

Fleet/Jepson, τ = 1.25 30.6 % 5.28◦ 1.55◦

Heeger, level 1 15.2 % 9.87◦ 1.15◦

Uras et al., det(H) ≥ 1 14.7 % 7.55◦ 1.14◦

Singh, step 1, λ1 ≤ 6.5 11.3 % 12.01◦ 1.07◦

Waxman et al., σf = 2.0 7.4 % 20.05◦ 0.95◦

Heeger, level 2 2.4 % 12.93◦ 0.76◦
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large angular errors in regions with such low energy contributions, our confidence
measure would not work well for low densities. This also confirms the observation
that |∇f | is not necessarily a good confidence measure [9]: Areas with large gradi-
ents may represent noise or occlusions, where reliable flow information is difficult
to obtain. The filling-in effect, however, may create more reliable information in
flat regions by averaging less reliable information that comes from all the surround-
ing high-gradient regions. A more extensive experimental evaluation of the energy
based confidence measure is presented in [21].

9 Summary and Extensions

In this chapter we have outlined some basic design principles for variational optic
flow methods and studied their performance in a number of experiments. For the-
oretical and practical reasons we have restricted ourselves to convex energy func-
tionals that use linearised data terms. They are valid approximations when the tem-
poral sampling is sufficiently fine such that the displacements between subsequent
frames are small. We have seen that contemporary variational optic flow models
have reached a high degree of sophistication that allows to achieve highly accurate
computations of the displacement fields. Moreover, they are mathematically well-
founded, they allow real-time computations on standard hardware, and it is possible
to apply a simple and intuitive confidence measure.

There are several possibilities to improve the performance of these methods even
further: One may for instance use data terms that renounce linearisations [3, 11, 62].
They create models that are better suitable for large displacements between subse-
quent frames. Unfortunately they lead to nonconvex functionals that may possess
numerous local minimisres. In such a case one often uses multilevel strategies that
encourage convergence towards a global minimiser [3, 4, 56]. Another extension
that becomes relevant for large displacements consists of using modified functionals
in order to deal with occlusion problems [1, 68]. On the numerical side, paralleli-
sation strategies can be investigated, e.g. domain decomposition methods [51]. A
detailed discussion of these extensions is beyond the scope of the present chapter.

It is our hope that the models we have described do not remain restricted to optic
flow computation, but will also prove their use in related correspondence problems
such as stereo reconstruction and image registration.
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Fast Image Matching for Generation of Panorama
Ultrasound

Armin Schoisswohl

GE Medical Systems Kretz Ultrasound, Austria armin.schoisswohl@med.ge.com

Summary Panorama imaging is a key technology for enlarging the view in medical
diagnostic ultrasound. Due to the high acquisition data rate and the relatively noisy
image data it is a challenging task to performe panorama imaging with software
implementation in real-time. A multiscale approach for image matching is presented
which meets the requirements in terms of runtime performance and stability.

Keywords medical ultrasound imaging, panorama images, image matching, regis-
tration, multilevel optimization

1 Introduction

Medical ultrasound imaging is widely used in various medical applications like Car-
diology, Radiology, Obstetrics and Gynecology. Besides of having no negative ef-
fects on the human body, its main advantage is that examination results are obtained
in real-time providing immediate feedback to the operator.

Ultrasound images are obtained by sending focussed mechanical oszillations of
several MHz into the human body and receiving the echoes generated by the scat-
terers inside the tissue. The ultrasound transducer consists of a 1D array of piezo-
electric elements which are excited in a time-delayed manner to form a spheriacal,
focussed wave. This same concept of beamforming is used on receive, where the
signal is formed by a delay-and-sum approach. The aperture of the array antenna
is usually limited by the number of system channels and the size of the elements,
which is in the range of half wavelength in order to get sufficient image quality. A
thorough introduction to ultrasonic beamforming is given by Anderson and Trahey
[17].

As a result of the limited aperture only a limited view can be obtained with
a fixed transducer position. However, in many applications it is desirable to get a
more comprehensive overview of the region of investigation. This problem can be
overcome by recovering in-plane transducer motions and combining the information
into a single compound image (Figure 1).

The problem of computing the motion between images is referred to as registra-
tion and can be classified into several groups [15, 16]:

– Feature based methods [6, 7] compute the displacement of a small number of
characteristic features, so-called landmarks. In general these have to be assigned
manually, which is a time-intensive and sometimes quite difficult task.
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Fig. 1. Principle of creating an extended view: The probe is moved in-plane during the ac-
quisition; in order to overlay the images to form a compound panorama image the geometric
transform τ , which describes the probe movement has to be recovered.

– Especially in ultrasound imaging compound images are often generated using
external position sensoring systems to receive the exact spatial displacement of
the image data [14, 13]. This in particular requires additional hardware.

– Image matching methods are based on the optimization of a similarity measure
between images and typically work without user interaction. A typical example
of such a similarity measure is mutual information which is used for matching
images of different modalities (e.g., CT and MRI data [12]). For matching of
data which were acquired with the same imaging system often L2-measures are
considered [5, 8]. Excellent sources for additional information on this topic are
[11, 9].

Methods for extended ultrasound imaging based on image matching methods
have been presented in [19, 20, 18]. There the authors suggest to find translations
of sub-image regions and to recover a full isometric affine transformation (rotation
and translation) from the individual sub-translations. These algorithms have been
released to the market in 1996 under the trademark SieScapeTM by Siemens Ultra-
sound. For image data acquired with small rotations these algorithms have proven
to be reliable and stable.

The focus of this article is on the computation of the full in-plane transducer
motion that can be described by a rotation and a translation in a fast and reliable
way.

2 Problem Formulation

In the following we will consider the recovery of the transformation between two
successive images u and v of an image sequence. We assume real valued images
defined on a subset Ω of the spatial domain R

2:

u : Ω ⊂ R
2 → R.
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The idea of image matching is to find a suitable spatial transformation τ : R
2 → R

2

such that the two successive images u and v are similar on their intersectioning
domain, i.e.,

u
(
τ(x)

)
= v(x). (1)

In reality there may not exist a solution of (1) due to noise and different acquisi-
tion conditions (like deformations, illumination changes, etc). Therefore, instead of
looking for a solution of (1), we aim to minimize a similarity measure between u(τ)
and v in a suitable class of transformations T .

3 A Constrained Optimization Problem

The application of image matching considered in this paper is the generation of
panorama images, i.e., different views of a single static object have to be com-
pounded. The model for the admissible movements here is exactly all in-plane trans-
lations and rotations of the transducer; there it makes sense to restrict the admissible
mappings to the set of isometric affine transformations, which are exactly composi-
tions of a rotation and a translation, i.e.,

T := {τ = τ(ϕ, b) : R
2 → R

2, x �→ R(ϕ)x+ b}.

This in particular means that all admissible mappings τ ∈ T can be parameterized
by the tuple (ϕ, b), with the rotation angle ϕ ∈ (−π, π) and the translation vector
b ∈ R

2.
The similarity of the remapped image u(τ) and v can be measured by the L2-

error
ε(τ) :=

∫
(u(τ(x)) − v(x))2 dx.

If both images contain the whole object surrounded by an identical background (e.g.,
horizontal CT slices), then the dependency of the functional ε from the overlapping
domain Ω(τ) can be eliminated by extending the data sets in an appropriate way.
Matching problems of this kind are tackled by solving the Euler equations [5, 8].

However, as already mentioned in the introduction, Ultrasound data is given on
a finite domain Ω ⊂ R

2. Thus, after transformation the displaced image u(τ) is
defined on the set τ−1(Ω) which, in general, is different from Ω, and there is no
information available on how to extend the image beyond its boundaries. Therefore
the intersection of the two images has to be taken into account. This can be done
with the relative L2-error functional of [3]

∫
Ω(τ)

(u(τ(x)) − v(x))2dx

|Ω(τ)|

in the domain of overlap Ω(τ) of the images u and v

Ω(τ) := τ−1(Ω) ∩Ω.
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However, we propose to address the intersection problem by considering the modi-
fied L2 error functional

εu,v(τ) :=

∫
R2
χ
(
u(τ(x))

)
· χ
(
v(x)

)
·
(
u(τ(x)) − v(x)

)2
dx

∫
R2
χ
(
u(τ(x))

)
· χ
(
v(x)

)
dx

, (2)

where χ is an appropriately chosen function. We suppose that

u(x) = v(x) := 0 for all x /∈ Ω.

The particular choice of the function χ : R → R can be used to suppress or empha-
size certain image intensities, e.g., neglect differences if one image is below some
threshold. In practice it turned out that setting χ to the identity function χ(s) = s is
a reasonable choice.

The problem of finding the matching transformation τk between the two succes-
sive image uk and uk+1 of an image sequence can now be written as finding the
minimizer of the functional εu,v from (2), i.e.,

τu,v := arg min
τ∈T

εu,v(τ),

4 Multiscale Optimization

In practical implementation the functional ε from (2) shows many local extrema
that are caused by image features, and are also due to the interpolation that has to
be used when evaluating the image transformations (Figure 2).

In order to stabilize and speedup the optimization procedure, we propose a mul-
tiresolution approach for minimizing ε over T :

1. For two images u and v we compute a series of approximations

um := Pmu, vm := Pmv, (m = 0, . . . ,M)

of decreasing resolution m; here Pm denotes the projection onto the space Vm,
where {Vm} is a series of approximation spaces of decreasing resolution. As
suggested in [1] we use approximations according to a Laplacian pyramid.

2. Now we use an iterative multilevel technique with respect to the scaling para-
meter m:
a) We specify the coarsest level m := M and an appropriate initial guess τ0

— typically the identity mapping.
b) To minimize the functional

εm(τ) := εum,vm
(τ)

we use an iterative optimization method with initial guess τ0
m; here the

subscripts indicate the dependency on the input data um and vm.
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Fig. 2. Plot of the error functional ε(τ) for 2D input data; displacements are restricted to
translations τ = τ(0, b): the zoom (bottom) shows the ripples introduced by image interpo-
lation.

c) The minimizer τm = (ϕm, bm) of the functional εm is used as initial guess
τ0
m−1 at the next finer level m := m− 1 and we proceed with step 2b until
m = 0 or an appropriate stopping criterion is satisfied.

This approach has two advantages: first, the functional εm is smoother than ε
and has less local minima. Moreover the computational effort for evaluating εm is
significantly smaller compared to the effort for evaluating ε since the projected data
sets um, vm are significantly smaller (by a factor of 4m). Once an approximation τm
has been obtained the optimization algorithm on the next finer scale m− 1 requires
only a few iterations due to a good initial guess τ0

m−1.
In comparison with ε the functional εm has significantly less local minima.

However the ripples caused by interpolation are still significant. Experiments showed
that optimization methods utilizing derivatives (like e.g., the Levenberg–Marquardt
method as suggested in [3, 1]) are sometimes too sensitive to the local minima in-
troduced by the ripples.

We therefore propose to use the Hooke–Jeeves optimization algorithm [2], a
direct search method that has been designed specifically for the optimization of
non-smooth functionals. This method does not perform any line search but rather
takes discrete steps along search directions (usually the coordinate directions of the
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parameter space), where the size of the steps is decreased during the optimization
procedure, thus avoiding to be trapped into small local minima. A good overview
about this method is given in [4].

5 Numerical Results

This section presents some results that show the performance and stability of the
proposed method for image matching. For measuring the accuracy of the method we
used the synthetic image data as shown in Figure 3: a blurred bright square on dark
background of 512 by 512 pixels. For experiments using noisy data we distorted
this image by Gaussian white noise of 10dB PSNR which had been smoothed by a
Gaussian window to resemble more closly the appearance of ultrasound data.

The proposed algorithm has been implemented in C on a Intel Pentium 4 proces-
sor running at 2 GHz. The code makes use of Intel’s Performance Primitives [21], a
collection of highly processor specific optimized image and signal processing rou-
tines. CPU times were measured from the CPU’s cycle counter meaning that the
processing times include some overhead originating from the operating system.

5.1 Experiments using Synthetic Data

In a first test we shifted the undisturbed image by an amount of 13.7 pixels hor-
izontally and 7.4 pixels vertically. This image was matched with the original im-
age. Figure 4 shows the progress of the multi-scale Hooke-Jeeves optimization. It is
clearly visible that the optimal solution is approached rapidly at the coarse approx-
imation level (upper two rows), where iterations are computationally inexpensive
due to the small amount of data of the approximations from the Laplacian pyramid.
It can also be noticed that the Hooke-Jeeves iterations themselves show good per-
formance when approaching the optimum in big steps at the beginning and refining
the solution in finer steps subsequently.

Fig. 3. Sythetic test datasets without noise (left) and with noise of 10dB PSNR (right)
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Fig. 4. Progress of optimization on test data set from Figure 3: Black spots denote base
points of the Hooke-Jeeves Algorithm, circles denote explored points. Intermediate results
are shown for translation only for image scale 4 (upper two rows) and the results for scale 3
and 2 (bottom row)
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On the finer levels from the Laplacian pyramid the result is refined only mar-
ginally. Therefore only few iterations have to be carried out.

Figure 5 shows the progess of the optimization over computing time - both the
value of the error functional as well as the relative error plotted versus CPU time.
These graphs again show that the optimum is approached rapidly on the coarse
scales, where iterations are relatively inexpensive. At finer levels only a few itera-
tions are needed.
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Fig. 5. Progress of optimization on test data set from Figure 3: functional value versus CPU-
time (top) and relative error of parameter guess versus CPU-time (bottom). Dark spots denote
the solution on a specific image scale.
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5.2 Experiments using Noisy Data

The experiments from the previous section were repeated using noisy data (Figure 3,
right). The results are basically identical to the results using non-distorted data: The
optimum is approached fast on the coarse levels, and subsequently on finer levels
only a few iterations are needed. The results are shown in Figures 6 and 7.

5.3 Multi-scale Hooke-Jeeves Performance

We also compared the performance of the usual Hooke-Jeeves optimization and the
multi-scale Hooke-Jeeves optimization as proposed in this article. Figure 8 shows
that the multi-scale approach reduces the CPU time by more than 50% (3.1sec vs.
6.8sec). Although this improvement by a multi-scale aproach is not as significant
as found in combination with other optimization techniques [3], it is still significant
enough, especially when dealing with real time performance requirements: 3.1 CPU
seconds means that about 30 frames per second can be processed.
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Fig. 6. Progress of optimization on noisy test data set from Figure 3: Black spots denote base
points of the Hooke-Jeeves Algorithm, circles denote explored points. Start on level 4 (top
left), results on level 4 (top right), level 3 (bottom left) and level 2 (bottom right)
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CPU-time (top) and relative error of parameter guess versus CPU-time (bottom). Dark spots
denote the solution on a specific image scale.

Finally in Figure 9 we show a result as shown in the implementation of the
proposed method on a commercial Ultrasound scanner. The panorama image has
been generated from 3 second sweeps at an acquisition frame rate of 44Hz, i.e.,
from about 130 images. For displaying the displaced images have been combined
using averaging techniques.
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Fig. 8. Progress of optimization on noisy test data set from Figure 3: relative error of para-
meter guess versus CPU-time. The multiscale approach (solid) shows an additional speedup
compared to the single scale approach (dashed).

Fig. 9. Result as shown in the implementation on a commercial Ultrasound Scanner. The
image is generated from a 3 second sweep acquired at a framerate of 44Hz
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Abstract We consider fully automatic restauration of movie sequences which are
distorted by blotches and scratches. Two different approaches are combined:

Firstly, distortions localized within a single frame are detected by analyzing
temporal correlations between frames. For this means motion estimation between
frames is performed by employing an optical flow computation. An efficient algo-
rithm for the calculation of the optical flow field is described. Regions where the
motion estimation gives bad results are considered as distorted. Blotches are re-
paired by copying appropriate image data from neighboring frames, according to
the flow field.

Secondly, distortions extending over several contiguous frames usually appear
as narrow, vertical scratches. Since they occur at nearly the same locations in sub-
sequent frames they are not detected by the optical flow. Due to their shape they are
easily identified as peaks in the mean column intensity. Mostly image information
destroyed by scratches is neither available in adjacent frames. Thus a still image
inpainting algorithm is used to reconstruct the lost image contents solely from the
available information within one frame.

1 Introduction

A lot of research has been done recently in the area of image inpainting algo-
rithms. The task of this research is to fill in missing (or otherwise destroyed
or unwanted) regions in images. The two main approaches thereby considered
are with partial differential equations (PDEs), resp., variational based algorithms
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], and texture synthesis algorithms, usually with
Markov Random Fields [12, 13, 14, 15, 16, 17]. Some hybrid algorithms have been
proposed combining both approaches [18, 19, 20, 21]. There also exist a few al-
gorithms based on different approaches [22, 23, 24, 25]. Most of these algorithms
require as input the corrupted image along with a mask highlighting the corrupted
regions. This mask has to be created manually by the user. The time needed to create
the mask and the computation time of the algorithm usually exceed by far the time
needed to perform manual inpainting with standard image processing packages like,
e.g., Adobe Photoshop or The GIMP. Besides, the quality of manual inpainting is
mostly superior to the results of inpainting algorithms.

The situation is different if a sequence of consecutive images should be restau-
rated, e.g., restauration of a digitized celluloid movie. Even short movies consist
of several thousands of frames with disturbances appearing in random locations in



152 Harald Grossauer

every frame. Thus it is not feasible to manually mark distorted regions. Since con-
secutive frames differ only marginally and in a mostly predictable way it is possible
to detect defects like scratches automatically. Moreover, if a corresponding undis-
turbed region is found in neighboring frames the image information can be copied
from there, thereby omitting still image inpainting algorithms.

Several movie restauration algorithms making use of temporal correlations be-
tween frames have already been proposed. One possible approach is to perform
spatio-temporal texture synthesis to create dynamic textures, see e.g., [26, 27, 28].
Thereby texture synthesis is performed in three dimensions where adaptions are
made to account for the special role of the time dimension. A movie inpainting al-
gorithm employing this approach was presented in [29]. For the examples given in
the paper and on the website (short sequences with low resolution) the author re-
ports computation times of two days on average with an unoptimised code.1 The
topic of movie inpainting in general is treated in detail in the extensive work of
Kokaram (cf. [30] and the numerous citations therein). The algorithm presented in
the current paper relies on similar ideas as in Kokaram’s work but while he em-
ploys statistical methods we use PDE based techniques. Further Kokaram performs
motion estimation block-wise whereas we calculate motion vectors on a per-pixel
basis. Like Kokaram we emphasize the importance of coupling the detection and
the restauration phase.

The remainder of this paper is built up as follows: in section 2 we introduce the
optical flow which is our method for identifying corresponding regions in contigu-
ous frames. In section 3 we introduce a method to detect scratches from the optical
flow field. In section 4 we finally present a method for inpainting of frames which
makes use of appropriate information in adjacent frames.

2 Optical Flow

The problem of identifying correspondences between frames has a long tradition in
computer vision. One of the first approaches was given by Horn & Schunck [31]. Its
underlying assumption is that the grey value of an object does not change along its
trajectory, i.e.,

I(x(t1), y(t1); t1) = I(x(t2), y(t2); t2), ∀t1, t2 (1)

or its linearized version

dI(x, y; t)
dt

=
∂I

∂x
· dx
dt

+
∂I

∂y
· dy
dt

+
∂I

∂t
= 0 (2)

where (x(t), y(t)) denotes the “trajectory” of a pixel. (1) is called the grey value
constancy condition (GVC condition), (2) is the famous optical flow constraint. By
introducing the optical flow field h(t) := (u(t), v(t)) :=

(
dx
dt ,

dy
dt

)
(2) can also be

written as
1Private communication with the author
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∂I

∂t
= −∇I · h . (3)

Two issues are important. Firstly, (2) is one equation for two unknown functions
(u, v). Secondly, (3) only allows to detect the motion component parallel to the im-
age gradient (the so called aperture problem). This problem is common to all image
gradient based approaches. The first problem can be overcome by supplementing
an additional constraint on the flow field, e.g., smoothness or piecewise smooth-
ness constraints. Several different constraints have been investigated by Nagel &
Enkelmann [32].

We make use of a variational formulation for the optical flow problem which is
similar to that presented by Brox et.al. [33]. Given two consecutive frames I1, I2 :
Ω ⊂ R

2 → R we search for a displacement field h = (u, v) that minimizes

E(h) =
∫

Ω

(
1
2

(I1(x) − I2(x + h))2 + α‖∇h‖
)
dx . (4)

Here α is a weighting parameter controlling the influence of the smoothness term
‖∇h‖, the Frobenius norm of the Jacobian matrix ∇h. For an analysis of energy
functionals like (4) we confer to [34].

2.1 Optimality Condition and Numerical Implementation

To find a minimizer of functional (4) we employ a gradient descent approach, i.e., we
introduce an artificial time parameter and solve the parabolic differential equation

∂h
∂t

= −E′(h) (5)

up to a stationary point in time. All along this work we assume homogeneous Neu-
mann boundary data for h. Thus

−E′(h) = (I1(x) − I2(x + h)) · (∇I2) |x+h +α∇
(

∇h
‖∇h‖

)
(6)

is the steepest descent direction for E(h). Here (∇I2) |x+h denotes the gradient
of I2, evaluated at x + h. (5) depicts a system of two equations, we describe its
discretization with the first equation, the second equation goes along analogously.
Partial derivatives are denoted by subscript indices, e.g., I2,x := ∂I2

∂x . Further we
abbreviate

φ :=
1

‖∇h‖ =
(√

u2
x + u2

y + v2
x + v2

y + β2
)−1

where β is a small regularization parameter to prevent divisions by zero. With this
notation discretizing (5) in time results in

un+1 − un

δt
= (I1(x) − I2(x + hn)) · I2,x(x + hn) (7)

+α∇
(
φn+1∇un+1

)
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where the the smoothness term has been treated implicitly and the data term explic-
itly. Thus in each time step we solve the nonlinear elliptic PDE(
�− αδt∇φn+1∇

)
un+1 = un + δt · (I1(x) − I2(x + hn)) · I2,x(x + hn) (8)

and an analogous equation for vn+1. For the discretization of the spatial derivatives
where we use (cf. [35])

(∇(φ∇u))i,j = (∂xφ∂xu+ ∂yφ∂yu)i,j (9)
≈ φi+ 1

2 ,j · (ui+1,j − ui,j) − φi− 1
2 ,j · (ui,j − ui−1,j)

+φi,j+ 1
2
· (ui,j+1 − ui,j) − φi,j− 1

2
· (ui,j − ui,j−1)

where values at “half-index points” are evaluated as the mean value of their respec-
tive neighbors, and the spatial discretization width has been set to 1. We solve (8)
by a fixed point iteration, i.e., we iteratively solve the linearized equations(

�− αδt∇φn+1,l∇
)
un+1,l+1 = RHS (10)

up to a stationary point with respect to l. Here RHS is the same as in (8). Note that
the right hand side is not updated during the fixed point iteration.

Using (9) for the spatial discretization, (10) results in a sparse band-diagonal
system of linear equations which is easily solved using any appropriate solver. In
our case we employed an additive operator splitting (AOS) scheme (cf. [36]), i.e.,
we approximate

(�− αδt · ∇φ∇)−1 ≈ 1
2

(
(�− 2αδt · ∂xφ∂x)−1 + (�− 2αδt · ∂yφ∂y)−1

)
.

(11)
By performing a formal series expansion one sees that the AOS scheme has the
same order of approximation to the underlying PDE as the original scheme, and it
only requires inverting four tridiagonal matrices per iteration (two for u and two for
v) which can be done in linear time.

Once the fixed point iteration has converged the right hand side is updated for
the next time step. In practice it is not necessary to solve (8) accurately since we are
not interested in modelling the time evolution but rather in reaching a fixed point
quickly.

To speed up convergence and avoid local minima a multi-scale approach is im-
plemented. I.e., we chose a decreasing sequence of numbers σk and apply our al-
gorithm to downsampled versions of Gσk

∗ I1 and Gσk
∗ I2, where Gσk

denotes
a Gaussian of width σk. The flow field resulting from level k is upsampled and
rescaled to serve as initial value for level k + 1 until a solution on the finest level is
achieved.

3 Detecting Corrupted Pixels

Old celluloid movies basically suffer from two different kinds of distortions:

1. blotches are small isolated distorted regions caused by burned-in dust particles
or punctual mechanical damage in the celluloid,
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2. scratches are long vertical distortions caused by mechanical friction when the
celluloid is pulled through the projector.

Blotches appear as temporal discontinuities and violate the grey value constancy
assumption. Thus they lead to improper results in the optical flow computation and
can automatically be detected. Scratches on the other hand often extend over sev-
eral frames in nearly the same location, whereby they fit into the optical flow model.
Other approaches are needed to detect scratches. In the following sections we de-
scribe methods to automatically detect both types of distortions.

3.1 Blotch Detection

From (7) it is obvious that the influence of the source term (which stems from the
data term in the energy functional) becomes zero, if either the difference image
I1(x) − I2(x + h) = 0 or ∂I2

∂x (x + h) = 0. In the first case this means that pixels
x of I1 have been successfully tracked to location x + h in I2. In the second case
x + h is only the best matching pixel within a surrounding, i.e., a small change
in h would lead to a worse match. A blotchy region in one frame can usually not
be matched exactly to another frame thus resulting in high intensity values in the
difference image.

To detect blotches in frame In we calculate two optical flow fields: the backward
flow field hb and the forward flow field hf which fulfill

In−1(x + hb) ≈ In(x) ≈ In+1(x + hf ) . (12)

A pixel x of In is assumed to belong to a blotch if

|In−1(x + hb) − In(x)| > t and (13)
|In+1(x + hf ) − In(x)| > t

where t is a reasonably chosen threshold parameter. The reason for using forward
and backward flow fields is based on the following considerations:

1. A blotch in frame In+1 or In−1, which leads to imperfect matches, might be
falsely interpreted to be a blotch in frame In. Unless frame In−1 and In+1 ac-
cidentally have blotches at nearly the same locations only one of the thresholds
is exceeded and no spurious blotches are detected in frame In, see figure 1.

2. Imperfect matches can also be caused by (dis)occlusion events, i.e., an object
disappearing behind, resp., appearing from behind another object. Unless the
object appears (disappears) for just a single frame only one of the thresholds is
exceeded.

This method does not work for frames at the beginning or the end of a scene, i.e.,
frames directly before or after a cut. Cuts are easily identified either by checking
for overall large mismatches in the matched frames, or by verifying that hb �≈ −hf

as one would usually expect. Before computing the flow field cuts could also be
quickly detected by comparing the histograms of the frames.
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Fig. 1. The upper row shows three consecutive frames of the movie “Flatboatmen of the Fron-
tier”, taken from the Prelinger collection on http://www.archive.org. Blotches in the middle
picture should be detected. The lower left image shows the difference between the middle
frame and the motion compensated left frame, corresponding to |In−1(x + hb) − In(x)|.
Blotches from both frames appear in the difference image. The lower right image shows the
analogous difference for the motion compensated right frame. In the lower middle picture –
containing the pixelwise geometric mean of both difference images – only blotches occurring
in the middle frame are salient.

3.2 Scratch Detection

Due to mechanical forces in the projector celluloid movies frequently suffer from
long vertical scratches spanning several frames. Since they show up at similar posi-
tions in neighboring frames they can be matched exactly and thus are not detected
by the algorithm described in the previous section. Although there exist several ap-
proaches for scratch detection (see [37, 38, 39, 40, 41]) we found the simple algo-
rithm described in the following to be quite successfull. For an image I : �2 → �

let

PI(x) =
1
H

∫ H

0

I(x, y)dy (14)

denote its mean intensity at “column” x, where H denotes the height of the image.
A scratch is usually a narrow vertical region which is substantially darker (or some-
times brighter) than adjacent columns. Thus scratch locations may be identified as
peaks in PI(x), see figure 2. Algorithmically we find scratches as follows: first we
calculate PI(x). Since PI(x) has several small extrema we apply a few steps of
a one-dimensional bounded variation filter (see, e.g., [42]), which suppresses small
extrema but leaves large ones almost undisturbed. Possible peak locations are found
as zero-crossings in the first derivative of PI(x) and are accepted as peak if the
second derivative is larger than a given threshold, i.e.,

(PI)′(x) = 0, and |(PI)′′(x)| > t . (15)
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The width of the scratch is assumed to be twice the distance from the peak to the
nearest inflection points at each side (zero-crossings of the second derivative). I.e.,
if xp denotes the location of the peak, xl and xr denote positions of the nearest
inflection points to the left, resp., right of xp, then the scratch is assumed to cover
the interval [xp − 2(xp − xl), xp + 2(xr − xp)].

Obviously this algorithm is very sensitive to narrow, nearly vertical image fea-
tures, but so are most other scratch detection algorithms. In our test sequences we
did not have a single case of a falsely detected scratch.

4 Inpainting of Image Sequences

After distorted locations in the frames have been identified an inpainting algorithm
can be applied. Several of them can be found in the reference list. Instead of that,
available information can also be transferred from neighboring frames, filling the
distorted regions more reliably if corresponding pixels can be found. A natural
choice to look for corresponding pixel locations is to use the optical flow fields
which have already been computed for the blotch detection. But since for blotches
there are usually no matching counterparts in adjacent frames the displacement vec-
tors do not necessarily attain meaningful values. Instead, their values strongly de-
pend on the regularization parameter α, see figure 3. If α is chosen large enough
then the regularization term straightens out irregularities in the optical flow field
caused by small blotches. Thus the displacement vectors still often point to pixels
containing appropriate image information to fill in the blotchy region. Our numerical
experiments support this opinion: the results achieved by our algorithm are satisfac-
tory even without post-processing the flow field inside blotch regions.

To fill in missing regions and make use of available data as much as possible
we employ the following strategy: in a first step we calculate the forward and back-
ward flow fields for all frames. Using the criteria from section 3.1 blotchy pixels
are marked as corrupted. To prevent edge effects the blotch regions are slightly en-
larged by performing a morphological dilation. Likewise, by applying the scratch
detection from section 3.2, pixels being covered by vertical scratches are identi-
fied as corrupted. In the second step we transfer data from frames In−1 and In+1

into In. First, image data from In−1 is copied according to the backward flow field
hb, unless hb points to a corrupted pixel in In−1. Second, image data from In+1 is
transfered into In using the forward flow field hf , again omitting possibly corrupted
pixels in In+1. In the final third step all remaining corrupted pixels of In are treated
by the still image inpainting algorithm described in [21, 43].

5 Results

An example for movie inpainting is shown in figure 4. The top left image shows the
originally corrupted frame which contains extensive damaged areas. The upper right
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Fig. 2. The uppermost picture shows a frame of the “Flatboatmen”-sequence. The middle
picture shows the mean intensity along the columns of the frame. Peaks occur at locations
where the frame is scratched. The lower picture indicates all columns which were found by
our algorithm to belong to a scratch.
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Fig. 3. The influence of the parameter α on the flow field at a blotch. The left image shows the
optical flow field with α = 0.01, for the right image α = 0.1 has been chosen. The length of
the arrows is scaled differently for the two images. The “true” motion consists of a panning
move towards the lower left.

Fig. 4. Progress of movie inpainting. From top left to bottom right: original (corrupted) frame,
the same frame after copying corresponding pixels from the previous frame, after copying
from the following frame, and after treating remaining corrupted pixels via still image in-
painting.

image shows the frame after corresponding pixels have been copied from the previ-
ous frame using the backward flow field. A large fraction of the damaged array has
already been filled. In the bottom left image additional pixels have been added using
the forward flow field and the following frame, which again decreased the size of the
blotch. Note that especially the long vertical scratches could not be filled using im-
age information from adjacent frames, since the scratches appear at approximately
the same locations. Finally, the bottom right image shows the resulting frame after
the still image inpainting algorithm from [21] has been applied.
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Introduction The discovery of x-rays by Wilhelm Conrad Röntgen in 1895 revo-
lutionized medicine. The novel technology permitted to investigate internal struc-
tures of the body without surgery in a non-invasive manner. In the meantime many
different imaging modalities have been developed allowing for non-invasive and
painless examination of the patient. In contrast to plain x-ray images modern tomo-
graphic imaging technologies allow to reconstruct cross-sectional images providing
superposition-free images. Digital images are generated which can be transferred
via internal of external networks and processed and modified by various computer
algorithms. Digital images allow for the direct measurement of biological struc-
tures and their functions. Accurate quantitative and qualitative information can be
extracted. Two global categories of imaging modalities can be defined: Anatomical
modalities depicting primarily information on morphology and functional modali-
ties depicting primarily information on metabolism. The relationship of anatomical
and functional information is of major interest for biological science and in particu-
lar for medical practice.

Various imaging modalities, including x-ray, CT, MR, PET, SPECT, ultrasound
etc. are based on different physical principles thereby often containing complemen-
tary information. Each imaging modality possesses special attributes which may
contribute to a better understanding of the physiology, abnormality or the disease.
Many patients with signs and symptoms possibly related to a brain tumour undergo
different imaging procedures including MRI, CT, SPECT and PET, each of them
contributing specific information. CT and MRI provide complementary morpholog-
ical information. For example MR optimally depicts brain tissue, but bony structures
and calcifications are visualized better by CT. In addition many patients with brain
tumours undergo radiation therapy necessitating a CT study for calculation of the
dose distribution. Nuclear imaging modalities as SPECT and PET provide infor-
mation about function (e.g. proliferation state with 201Tl or receptor status with
somatostatin analogs) and metabolism (e.g. glucose uptake in 18FDG PET). Func-
tional imaging has the capability to differentiate between metabolically active and
inactive tissue corresponding to tumour or necrotic tissue.

Multiple 3D - image datasets are usually displayed with a light box side by side.
For the clinician it is difficult to mentally integrate information from multiple diag-
nostic sources and construct a 3D - geometric relationship. Usually the radiologist
extracts the useful data from the images and interprets it according to his knowl-
edge. Whenever correlating information from multimodality studies from one pa-
tient is considered, the images should represent the same anatomy. However, since
the same or different image sets acquired in the same subject may differ in scale, ori-
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Table 1. Primarily morphological modalities

x-ray
Portal images
DSA (digital subtraction angiography)
CT (computed tomography)
CTA (computed tomography angiography)
MRI (magnetic resonance imaging)
US (ultrasound) including
Video images

Table 2. Primarily functional modalities

Scintigraphy
SPECT (single photon emission computed tomography) e.g. intra- and interictal SPECT
PET (positron emission tomography)
fMRI (functional MRI)
Doppler US
EEG (electro-encephalography)
EKG (electro-cardiography)
MEG (magnetoencephalography)
pMRI (perfusion MRI)
pCT (perfusion CT)

entation (angle) and position, an integration process is necessary in order to achieve
a correct spatial alignment of all study modalities. This procedure is called registra-
tion. Recent advances in computer and software technology provide comprehensive
capabilities for multimodal image fusion, which is useful in many medical appli-
cations in the whole body. Especially for applications in the brain for radiotherapy
planning, anatomic mapping of cerebral function and tumour volume response to
treatment image fusion was used successfully. After registration, a fusion step is re-
quired for the integrated display of the data involved [1]. Multimodality imaging is
a synthesis of these different imaging datasets into a single composite image.

Besides multimodality registration monomodality registration is very important
for verifying changes over time in order to monitor treatment and to get an idea
about the biological features of various structures and pathologies, see figure E.
In addition, differences between individuals and populations are investigated. In
schizophrenia, for instance, subtle changes of certain structures of the brain in com-
parison to the normal population have been found using registration and quantitative
volumetric measurements.
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1 Methods of Medical Image Registration

Excellent survey of publications concerning medical imaging registration tech-
niques were published by van der Elsen [2] Maintz and Viergever [1] and by Hanjal
JH et al. [3]

Two different steps of integrating two or more images were defined: First, reg-
istration, bringing the modalities into spatial alignment and second, fusion for inte-
grated display of the data. For medical applications usually 3D data is registered to
3D data, however it is also possible to register 2D to 3D data or coregister planar
images. Applications of 2D-2D registration include comparison of different portal
images at different times in order to evaluate and verify patient positioning during
radiotherapy. An example of 2D - 3D registration is the matching of preoperative 3D
- CT data with intraoperative fluoroscopy [4]. According to Maintz and Viergever
the nature of registration basis can be classified extrinsic and intrinsic image-based
registration and non-image-based registration. Extrinsic registration relies on exter-
nal reference points that have to be introduced into the imaged space reliably in
identical relationship to patient anatomy. These reference structures are either in-
vasively or non-invasively attached to the patient. In contrast to extrinsic methods
intrinsic methods rely on the patient image data only, thus allowing retrospective
co-registration. A set of anatomical landmarks, segmented structures or the voxels
itself are used for the registration process.

1.1 Extrinsic Methods

Invasive Extrinsic Methods The gold standard for registration accuracy are inva-
sive stereotactic frames rigidly mounted on the patient‘s skull under local or general
anaesthesia by means of pins or screws. These frames are usually applied for stereo-
tactic neurosurgery, neurosurgical biopsies and radiosurgery. Conventional frames
have to remain on the patient’s skull in the time between the different image acquisi-
tions and surgery, the patient often being anesthetized for a long time. According to
this, invasive frames are limited by their short-term only application and not suitable
for the purpose of (follow-up) multimodal image fusion.

Alternatively, invasive screws can be used as markers or as marker carriers [5],
[6]. They provide an accuracy comparable to stereotactic frames. However, they may
cause patient discomfort and should not be left in place over an extended period of
time, thus application of invasive markers is not justified for diagnostic purposes
solely.

Non-invasive Extrinsic Methods In order to overcome the drawbacks of invasive
markers, adhesive, low cost skin markers may be applied [7], [8]. However, skin
markers have several drawbacks including inaccuracies due to skin shift. If there
are no clearly defined points on the skin (naevi, scars, etc.) for precise marker repo-
sitioning for the different scans, the markers have to remain on the patient’s skin
during the time between different scans. This problem may be solved by applying
artificial ink landmarks to the skin.
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Fig. 1. The Vogele-Bale-Hohner mouthpiece with the vacuum area in the centre. The anterior
and lateral rods may be used for the attachment of the reference frame and fixating arms.

The Laitinen stereoadapter [9] is mounted on the patient’s head by means of
two ear plugs, a nasion support and a connector plate over the vertex. The reposi-
tioning accuracy of this stereoadapter depends upon how tightly the support arms
are braced between nasion, external auditory meati and vertex. Unfortunately, such
rigid fixation-devices exert pressure on the external auditory canals and can cause
patient discomfort and pain.

Attaching markers to mask-based fixation systems [10], [11], [12] is an interest-
ing and viable method if one assumes high repositioning accuracy of the underlying
anatomy. The accuracy of all mask based systems is however limited by movement
of the underlying skin. The patient would also need to be fixated for each imaging
procedure.

The systems of Hauser [13], the GTC localizer [14] the Banana Bar system [15]
and the VBH mouthpiece [16] are devices based on a dental impression for repo-
sitioning an registration device on the patient: Hauser et al. fixate their referencing
system on the patient by an upper dental cast, nasion and the external auditory meati.
An attached N-box allows creates external points of reference. It is used for image-
guided surgery in the ENT region. The GTC localizer [14] (Radionics Inc., Burling-
ton, Mass., USA) is connected to the patient via an upper dental impression and a
head support. Registration rods comparable to other commercially available inva-
sive Stereotactic frames connected to the base ring of the frame provide precisely
defined correlation points. The non-invasive relocatable Banana Bar (BB) fiducial
marker system consists of a symmetrical U-shaped aluminum bar, sweeping back-
wards bilaterally along the head. It is held in place by actively biting on a dental
impression of both maxillary and mandibular teeth.

The above mentioned devices that are based on dental impressions have two
important drawbacks: First, they contain metallic components and therefore they
are not suitable for MR exams, second the repositioning accuracy depends on the
cooperation of the patient.

In 1994 our group has developed and patented the Vogele-Bale-Hohner (VBH)
vacuum mouthpiece (Medical Intelligence Inc., Schwabmünchen, Germany) for
computer-assisted ENT surgery and neurosurgery [17], [18]. The VBH mouthpiece
is a simple, non-invasive and rigid device which does not contain any metallic com-
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Fig. 2. Patient wearing the VBH mouthpiece: A tube connects the VBH mouthpiece with
the vacuum pump. It fixates the mouthpiece on the upper dentition and allows for continuous
monitoring of the positioning accuracy.

Fig. 3. The SIP-Lab Innsbruck frame contains 12 exchangeable spherical shaped markers.
Depending on the imaging modality the respective markers are applied (glass beads for CT,
nitrolingual capsules for MRI, 241Am for SPECT, 18 F-FDG solution for PET)

ponents. Fabrication of the VBH mouthpiece takes 10 - 15 minutes and is fabricated
prior to the initial scan. The form-stable impression material allows for repositioning
accuracy of less than 1 mm [16]. In contrast to other systems a vacuum system fix-
ates the VBH mouthpiece on the upper dentition of the patient and in addition, the
vacuum pump guarantees continuous monitoring of the positioning accuracy. Re-
cently we have developed a universal reference frame, the so-called SIP-Lab Inns-
bruck frame (Medical Intelligence Inc., Schwabmünchen, Germany), to be repro-
ducibly mounted to the VBH mouthpiece. The SIP-Lab frame with its 12 markers
is always and objectively in identical relationship to the cranium due to the negative
pressure of the MP, irrespective of patient compliance.

Our phantom and patient study [19] showed that a high level of registration
accuracy can be achieved despite the poor resolution of the scintigraphic images.
In contrast to segmentation and voxel based registration methods the actual level of
accuracy can be quantified by means of the RMSE value (root mean square error)
as calculated by the software. The RMSE represents the mean distance between the
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matched paired-points after registration. Introduction of the mouthpiece with the
frame takes additional 1 minute per CT/MR/SPECT/PET scan.

The localization error increases not only as a function of marker/ fiducial local-
ization error (RSME) but also as the distance from the marker centroid to the point
of interest increases [8]. Therefore the SIP-frame curves around the head with the
most posterior markers located behind the ear. Since the markers are larger than the
dimensions of a single voxel, defining their centre of mass in large magnification
allows subvoxel registration accuracy [5]. It has to be noticed that the RMSE error
is an indicator of the registration accuracy of the extrinsic reference points (frame),
not the intrinsic anatomical structures. Our experiences however confirmed the re-
sults of a phantom study conducted at this institution, whereby fiducial (frame) and
actual target registration error between CT/MR and CT/SPECT datasets correlated
to under 1.5 mm.
We see the usefulness of this method mainly for registration of low resolution im-
ages such as SPECT and PET. The reference points on this frame grant completely
objective registration using relatively simple and ubiquitous software, independent
of a user’s capability of defining anatomic landmarks or the varying limitations
of more elaborate and costly algorithms. In addition we have developed an algo-
rithm for automatic detection of the spherical markers of the reference frame on
CT/MR/SPECT and PET, allowing a fully automatic extrinsic registration [20].

The limitations of the dental based reference systems are that accuracy of regis-
tration and repositioning is not reliable in edentulous patients. One important draw-
back of all extrinsic methods is the prospective character. This requires additional
intrinsic methods that allow to performing the registration from the image content
itself.

1.2 Intrinsic Methods

Anatomical Landmark-based Methods The simplest method is the use of anatom-
ical landmarks. In the landmark-based registration method three or more appropri-
ate, precisely definable landmarks or features are identified by the user or in an au-
tomatic fashion in the different image data sets and correlated to each other. Due to
the good anatomical resolution, intrinsic registration methods work well for CT-CT,
MR-MR and CT-MR fusion.

Our own experience is in accordance with that of other groups [3] that such
anatomical landmarks can be co-registered to about 2-5 mm for CT and MRI. Such
landmarks are however hard to define in SPECT/PET images.

It is often difficult to identify precisely the same anatomic features on two stud-
ies that reveal the anatomy in complementary fashion [21] requiring skill and prac-
tice of the user. The identification of the landmarks should be done or supervised by
an experienced radiologist.

Surface-based Methods The “head-hat” method by Pelizzari et al. [22] relies on
the segmentation of the skin surface from the different modalities. This method may
yield gross misregistrations although the contours align perfectly due to identical
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Fig. 4. Visual inspection of CT-MRI registration of the brain based on mutual information
algorithm shows a satisfactory result.

Fig. 5. Due to the low resolution SPECT images appear very blurry and it is very difficult
to define (precise) anatomical landmarks as demonstrated in these axial, sagittal and coronal
reformatted interictal SPECT data of the brain.

axes of symmetry. Different imaging modalities can also provide substantially dif-
ferent image contrast between corresponding surfaces. The registration accuracy is
limited to the accuracy of the segmentation step which is especially problematic in
SPECT/PET images.

1.3 Voxel-property Based Methods

Voxel property-based registration methods [23],[24] rely on the image grey values
without prior segmentation, using the full image content for the registration process.
In most approaches the registration is performed automatically. The voxel property-
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based or mutual-information based registration methods are not influenced by seg-
mentation errors or subjective determination of anatomical landmarks. Comparisons
of mutual information based registration with external marker based registration of
the brain as part of the retrospective evaluation project performed at the Vanderbilt
University, TN, USA showed subvoxel accuracy of CT to MR and PET to MR. It is
highly robust and does not require segmentation or definition of landmarks. There-
fore it is very user-friendly and useful for daily clinical routine. However, especially
in extra-cranial regions problems related to the intrinsic based registration method
may occur, see figure I. In addition, the quality of registration is also influenced
by the resolution of the images, modality specific image degradations and artefacts.
Due to the intrinsic selective uptake of tracers only in areas with altered metabolism,
SPECT images do not sufficiently depict the anatomy. For this reason precise, inter-
nal anatomical markers, precise surfaces and comparable voxels are lacking so that
image fusion based on intrinsic information may fail.

The result of CT-MR registration can be visually checked by the naked eye.
Registration results seem somewhat more satisfying in methods involving SPECT
and PET images because the blurry nature of the images seems to allow a larger
displacement. The image resolution should not be used to formulate a clinically
relevant level of accuracy: SPECT-to-MR or PET-to-MR registration may even re-
quire higher accuracy than some instances of CT-to-MR registration, even though
the smaller error is more easily assessed by the naked eye in the latter case. The
actual level of accuracy is still unknown in many applications, and cannot be quan-
tified accurately, even by the clinicians involved.

Especially in cases where scintigraphic images are implemented in neuro-
surgery, radiotherapy or other therapeutic interventions high precision of co-registration
is paramount.

All the above mentioned algorithms assume the image datasets as rigid bodies.

2 Non-image Based Registration

2.1 Combined PET-CT or SPECT-CT Scanners

Non-image based registration is possible if the coordinate systems of different scan-
ners are calibrated to each other. Combined PET/CT or SPECT-CT scanners provide
spatially registered images from the two modalities acquired in a single imaging ses-
sion.

2.2 CT-US Fusion

Another example is a navigated ultrasound system where the ultrasound probe is
tracked by a 3D -localization system, the patient being immobilized in the CT-or
MR-scanner. Due to a calibration of the ultrasound system with the coordinates of
the scanner a real-time registration and fusion of ultrasound images with recon-
structed CT/MR images can be performed [25].
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Fig. 6. A dynamic reference frame with 4 reflective markers is mounted to the SonoNav ul-
trasound probe. The reflective markers are detected by the cameras of the navigation system,
which calculated the actual position of the ultrasound probe in 3D space with respect to the
patient.

In the SIP-Lab Innsbruck a different approach is performed: The patient is
scanned in the CT/MR/SPECT/PET with artifical markers attached to the patient,
the BodyFix or the SIP-Lab frame. The dataset is sent to the navigation system. The
patient is registered in the laboratory or in the OR using the navigation system. A
video signal of the tracked ultrasound probe (SONONav, Medtronic, USA) is sent to
the navigation system and the navigation system reconstructs the respective planes
of the CT/MR/SPECT/PET in real time, thus the actual ultrasound image can be
superimposed to the pre-operative scan datasets.

The weighting of the ultrasound image over the other modalities can be adjusted
via mouse-controlled sliders. This technology has originally been developed for the
compensation of brain shift during neurosurgical interventions. However it can be
used in the whole body using various immobilization and registration devices.

3 Routine Application of Image Fusion for Diagnosis and
Interventions at the Interdisciplinary Stereotactic Intervention-
and Planning Laboratory (SIP-Lab)

A few years ago the optical based Treon navigation system (Medtronic Inc., Louisville,
U.S.A.) was installed at our interdisciplinary laboratory for image-guided neuro-
, ENT- and orthopaedic- surgery. The software module “Cranial 4” is part of the
Treon navigation system. It allows for synergistic simultaneous fusion of any com-
bination of CT/MR/SPECT/PET data based on paired-point matching of extrinsic
markers or intrinsic (anatomical) markers. In addition, a mutual based fully auto-
matic algorithm for fusion of CT/MR/SPECT/PET data is available.

3.1 The “Cranial 4” Multimodality Software:

The CT/MR/SPECT/PET studies respective of each patient are transferred to the
Treon via hospital own intranet. The Cranial 4 multimodality software allows the
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Fig. 7. Sononavigation in the neck area: Left image: reformatted CT according to the
realtime-ultrasound image. Right image: 50 % superposition of the real-time ultrasound with
the real-time reformatted CT.

Fig. 8. The centres of the external landmarks in the CT data (left) and SPECT data (right)
are selected in the highest possible magnification.

user to correlate up to 10 different image sets of one patient and to display and re-
view the correlated images.
The registration procedure is a one-to-one mapping between the reference and the
working image set ensuring that the same anatomical point in both images corre-
sponds to each other. Image fusion software process starts with loading of the ref-
erence CT scan, which remains the base standard for fusion with MR/SPECT/PET
since it is free of distortion artefacts. After preview and verification of the images
the CT dataset is set as a reference, the following CT/MR/SPECT datasets as work-
ing image sets. The Cranial 4 software is capable of two different image registration
methods; both are rigid-model based:

1. Paired-point matching
The registration is performed manually by selecting a minimum of 4 clearly
defined corresponding fiducials or anatomical landmarks on both, the reference
and the working dataset. The landmarks are selected by pointing-and-clicking
the mouse cursor within the image in the highest possible magnification.



Multimodality Registration in Daily Clinical Practice 175

Fig. 9. A 3D reconstruction of the 241Am markers on the SIP Lab Innsbruck frame based on
SPECT data.

Fig. 10. A 3D reconstruction of the reference frame with the glass bead markers based on
helical CT data.

Using the SIP Lab Innsbruck frame 4 - 12 spherical fiducials (external markers)
are selected for each registration process
When manually registering two data sets, registration accuracy is calculated by
the software as the root square mean error (RSME) which is the mean distance
of the respective frame-reference points in the two data sets.

2. Voxel-intensity based algorithm
The fully automatic voxel-intensity algorithm implemented in the Cranial 4
workstation is based on the use of the general notion of mutual information.
It allows us to import and co-register the previous CT/MR images, which were
obtained without the frame, with the actual multimodal datasets, which are ob-
tained with the frame.
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3.2 Fusion / Display

Once the image set has been registered the Cranial 4 software provides a variety of
tools which enable the user to quantitatively and qualitatively compare the registered
image sets. The software enables the user to combine the registered image sets by
using the blend mode for visual comparison of results.

In this manner, each image modality can be displayed with the others as a com-
bined level of reference and working pixel intensities in three planes (axial, coro-
nal, sagittal). The threshold levels of all image sets as well as the weighting of
one modality over the other can be adjusted via mouse-controlled sliders allowing
quick visualization of any region in any magnification in three planes (axial, coro-
nal, sagittal). Using interactive linked cursors a pixel to pixel correspondence can
be evaluated. Up to ten further previously registered studies, be it CT, MRI or func-
tional imaging studies (SPECT/PET), can then be uploaded and compared to each
other individually.

4 Implementation of Multimodal Image Data into Image-guided
ENT and Neurosurgery

Image-guided surgery may be performed on the basis of the multimodal datasets.
The tip of the pointer is displayed in real-time on re-sliced 2D and 3D images. A
transformation of the coordinate system associated with the pre-operative datasets
and the coordinate system of the 3D - localizer is achieved. For such a link struc-
tures that are visible on the imaged data and that can be detected by the 3D - lo-
calizer must exist. For many neurosurgical procedures high registration accuracies
are required which - according to our own experiences in more than hundred ENT
cases - cannot be achieved with simple anatomical paired-point matching. Mutual
information based registration algorithms can - as a matter of course - not be used
for registration of imaged space to physical space. Some groups use surface based
algorithms by rendering the skin surface of the 3D object and touching at least 30
points on the patient or, alternatively, using a laser to render a 3D - surface of the
real patient. As discussed above the accuracy of these methods are sensitive to tissue
shift and depend on correct rendering of the skin surface. In addition, an irregular
shape of the surface is paramount for an accurate registration. In order to achieve
higher degrees of accuracy reliable extrinsic reference points are necessary.

Invasive markers are accurate, but they are cumbersome for the patient and the
surgeon. For most image-guided neurosurgical procedures a prospective registration
based on skin fiducials is performed, even though this method is sensitive to soft
tissue shift which may result in deviations. An additional preoperative MRI has to
be acquired, with the skin markers attached to the patient. We routinely use the
reference points on the SIP-Lab Innsbruck frame for image-guided neurosurgery.

1. Image Fusion and image-guided surgery in the cranial area
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Fig. 11. Image-guided neurosurgery using the VBH mouthpiece: The dynamic reference
frame and the SIP-Lab frame are attached to the mouthpiece. The markers on the frame are
indicated by the probe of the navigation system and the corresponding fiducials are selected
on the 3D-image dataset.

Fig. 12. After registration the reference frame is removed and the surgeon can use the pointer
to navigate during neurosurgery.

In patients with intact dentition of the upper jaw a VBH mouthpiece is made
at initial presentation of a patient presenting with symptoms suspicious of a
cranial tumor [18]. The initial 3D CT/ MRI /SPECT /PET data sets can then
be registered and used for frameless stereotactic neurosurgery and/or radiation
-planning and -treatment [26], [27] as well as brachytherapy applications [28],
reducing the need for additional scans as the patient proceeds from department
to department. Previous anatomical and functional datasets are registered to the
current data by voxel-based algorithms or, in selected cases, by choosing intrin-
sic landmarks.
In edentulous patients the different CT- and MR- and PET- datasets are reg-
istered to each other by mutual information algorithms or, in some cases, by
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Fig. 13. Individual mattress for CT-PET fusion of the body.

selecting clearly defined anatomical landmarks. For image-guided surgery an
additional MRI scan of the patient with skin fiducials is performed.

2. Extra-cranial Image-fusion
All the above mentioned algorithms assume the image datasets as rigid bodies.
The result of extra-cranial image fusion highly depends on the positioning of
the patient in the various scanners. In addition, different filling of the bladder
and the gut as well as differences in breathing may cause big deviations (up to
5 cm, experience by the author). The most important reason is the different res-
piration patterns during the different scan acquisitions. Frequently we are asked
to fuse image datasets in a retrospective manner. Retrospective image fusion of
CT/MR/SPECT/PET datasets using mutual information based algorithms pro-
vides sometimes disastrous results which cannot be applied for diagnostic pur-
poses. In these cases we try to use anatomical landmarks. Every organ near the
diaphragm has to be matched separately.
For precise fusion identical positioning and fixation is required. This can be per-
formed by immobilizing the patient in the scanners with an individually formed
vacuum mattress. Depending on the type of imaging the respective external
markers are attached to the fixation system.

4.1 Procedure

An individual mattress from the patient is formed by the radiation technician prior
to the image acquisition.

This takes about 5-10 minutes. The vacuum mattress is stored in the SIP-Lab.
For every imaging acquisition (CT/PET/SPECT) the patient is repositioned into the
vacuum mattress and the respective markers are attached to the mattress at identical
positions.

We use 5 markers per region (thorax, head/neck or abdomen). During the PET
and SPECT acquisition the patients breathe normally. For the CT scan the patient
has to expire slightly and keep his breath during the scan. In most scanners respira-
tory triggering for PET and SPECT is not available. Thus the resulting information is
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Fig. 14. For imaging acquisition the patient is repositioned into the vacuum mattress and the
respective markers are attached to the mattress at identical positions.

Fig. 15. Evaluating the accuracy of an image guided puncture for radiofrequency ablation of
a hypernephroma metastasis in the right acetabulum: The intraoperative CT is fused with the
pre-operative planning dataset and the actual position of the instrument is superimposed to
the planned path.

a sum of the information provided by different respiratory positions. By our breath-
ing protocol an optimal correlation between the functional data and the anatomical
data can be achieved, see figure G and H. Using this respiratory triggering the lung
and the organs in the upper abdomen are in a similar position according to the “mean
position” during the PET/SPECT acquisition. The same breathing protocol should
also be used in combined PET/SPECT - CT scanners. The different datasets are sent
to the Treon navigation system and registered to each other by means of paired-point
matching.

4.2 Examples of Clinical Applications of Image Fusion that are Routinely
Performed by the SIP-Lab Innsbruck

1. Diagnostic work-up
In most cases image fusion is used in the diagnostic investigation of a variety of
pathologic conditions including tumors, inflammations etc. Fusion of SPECT
and CT is routinely used in the investigation of hyperparathyroidism and neuro-
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endocrine neoplasm. Fusion of PET with MR/CT is routinely performed in pa-
tients with cancer.

2. Epilepsy - Detection of the anatomic origin of the seizure activity
a) Fusion of MR - PET - ictal and interictal SPECT, see figure F and K

For localization of the origin of the seizure different imaging data are avail-
able, all providing different information. For epilepsy patients it is impor-
tant to have conclusive diagnostic information concerning the origin of the
seizure. In patients with a conclusive localization the respective brain area
is resected. In a high percentage of epilepsy cases the origin of the seizure
is located in the hippocampus. The so-called hippocampal sclerosis can be
visualized by MRI and must be confirmed by image fusion with the func-
tional imaging (PET/SPECT) prior to surgery.
In addition data from the EEG and videomonitoring are important for the
therapeutic decision. In some cases structural abnormalities in other brain
areas are responsible for the disease. These lesions may also be detected by
MRI and must be confirmed by functional imaging.

b) Detection of the focus of seizure activity based on the EEG
In the remaining cases the MRI does not reveal any pathology or anatomical
abnormality the decision for surgery is very difficult. The EEG electrodes
can be replaced by markers visible in MRI. A 3D - reconstruction of the
brain and the skin markers are performed visualizing the region of the brain
being responsible for the seizure activity.

c) Fusion of two different 3D - objects from different image acquisitions:
If the fusion of anatomical data and functional data and the other neuro-
logical examinations do not provide enough information about localization
of the seizure origin invasive electrodes are implanted directly on the brain
surface or via the foramen ovale inside the basal cisterns. For precise lesion
localization it is important to know the actual location of the different elec-
trodes with respect to the brain surface. Therefore two 3D - models have
to be reconstructed, one 3D reconstruction of the brain surface and one of
the electrodes. A post-operative CT scan is obtained to reconstruct the elec-
trodes. However due to the artefacts of the electrodes it is not possible to
reconstruct the brain surface with sufficient quality. Thus the post-operative
3D - CT dataset is matched with the pre-operative 3D MR dataset. A 3D re-
construction of the brain surface of the MR is then superimposed to the 3D -
reconstruction of the electrodes of the postoperative CT. By this means 3D -
volume images indicate the positions of subdural and trigeminal electrodes
with respect to the brain surface, see figure D.

d) Subtraction of inter-ictal from ictal SPECT data (between and during
seizures).
In some patients the acquisition of a SPECT between and during the
seizures is required. By using a subtraction algorithm the active focus re-
mains. By fusing this active focus with an MR scan the anatomical local-
ization of this focus can be visualized.
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3. Radiotherapy planning
CT is needed for calculation of the dose distribution, MR is required for precise
definition of the treatment volume due to better outlining of the tumour tissue.
Accurate CT-MR-SPECT-PET image registration allows for precise definition
of active tumour tissue to be irradiated.

4. Follow-up: verification of treatment
Monomodality registration by comparison of pre-and post-intervention images
(after radiation therapy, chemotherapy, surgery etc.) is an interesting tool for
growth monitoring and treatment verification.

5. Evaluation of accuracy of image guided punctures
During an image guided puncture an intraoperative CT or MR can be obtained.
This dataset can be fused with the pre-operative planning dataset and the actual
position of the biopsy needle, the driller or the drill-hole can be superimposed
to the planned path.

6. Sono-navigation
The Sono-navigation tool can be used for diagnostic purposes. We currently use
it for the comparison of CT, MIBI-SPECT and ultrasound in the diagnosis of
parathyroid adenoma. Ultrasound can also be used as an intraoperative real-time
imaging tool to compensate brain shift.

4.3 Conclusion

This article focuses on the methods used in daily clinical practice by the authors.
Currently we use only rigid of affine transformations. For further information on
other registration algorithms in other medical fields see the paper by Lavallee [25]
and the review paper by Maintz and Viergever [1]. Elastic deformation algorithms
are currently developed and are very interesting for inter-subject and atlas registra-
tion. Advances in imaging and computer technology should increase and optimize
the extraction and quantification of useful inherent information and the application
of this information for patient treatment. Effective visualization, synthesis, extrac-
tion and analysis of fused 3D biomedical images will be enhanced by continuing
improvement of current methods. Multimodality image fusion provides synergistic
information about the different imaging data, which might result in a better inter-
pretation of the total imaging data. Hopefully this may result in a more effective
diagnosis and treatment of disease.
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(a) Reference (b) Template (c) Incomplete template

(d) Result with complete
template

(e) Result with incomplete
template

Fig. A. Here surface renderings of the reference, template and result brains are shown. The
brains are displayed from top view, slightly tilted to the right. The frontal part of the brain
is always at the top of the image. The corresponding mask are projected onto the surface.
Figure (d) shows the result for the registration with the complete template. Figure (e) shows
the result with the incomplete template, when a lesion mask is provided.
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(a) (b) (c)

(d) (e)

Fig. B. All subfigures show the same horizontal slice in different brains. Figure (a) shows the
reference and figure (b) the template with the overlayed lesion mask. Results for the three
different registration are shown in figure (c)-(e). The first one is the result for the registration
with the complete template. Then comes the registration with the incomplete template without
the lesion mask (d) and with the lesion mask (e).

(a) Area 1,3a,3b (b) Area 2,4a,4p

Fig. C. Here a horizontal slice of the registered brain, overlayed with the lesion mask and
probability maps for a number of cortical areas, is shown. The colors for the cortical areas
are: 1–blue, 3a–light blue, 3b–green, 2–red, 4a–yellow, 4p–orange.



188 Clarenz et al., Henn et al., Weickert et al., and Bale

Fig. D. Fusion of the 3D-surface of the brain from the pre-operative MRI and the 3D-
reconstruction of the electrodes from the post-operative CT.

Fig. E. Sagittal views after fusion of a CT of a patient with oesophageal carcinoma before
(left) and after (right) chemotherapy. Monomodality registration allows for precise monitor-
ing of the growth/treatment success in 3 dimensions.

Fig. F. Patient with right sided hippocampal sclerosis in the anatomical MRI and decrease of
activation in the functional PET (blend mode 50 %).
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Fig. G. Fusion of 99m Tc-SPECT and CT in a patient with primary hyperparathyroidism
showing an activation in the mediastinum which corresponds to a soft tissue mass visible in
the CT scan. Surgery confirmed an atypically located parathyroid adenoma.

Fig. H. Follow-up CT-PET image fusion in a patient with Hodgkin lymphoma of the stomach
reveals an additional pathological lymphnode in the neck, which was initially not detected in
the CT scan.

Fig. I. Visual inspection shows a disastrous result after retrospective CT-PET fusion of the
thorax using mutual information algorithm requiring additional registration based on anatom-
ical landmarks.
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(a) CT-reference image (b) MR-template image

Fig. J. Example for a multi-modal image registration problem: computer tomography (CT)–
magnetic resonance imaging (MRI). Both images are presented with superimposed reference
contour.

Fig. K. depicts coronal reconstruction of a fusion (blend mode 50%) of MRI and 123I-
Iomazenil - SPECT in a patient with left temporal lobe epilepsy (red dot).
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Fig. L. Diffusion filtering of colour images. (a) Top left: Noisy color image. (b) Top right:
Homogeneous diffusion. (c) Middle left: Linear isotropic diffusion. (d) Middle right: Linear
anisotropic diffusion. (e) Bottom left: Nonlinear isotropic diffusion. (f) Bottom right: Nonlin-
ear anisotropic diffusion. From [89].
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