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Preface

This is the second edition of an undergraduate one-variable analysis text.
Apart from correcting errors and rewriting several sections, material has been
added, notably in Chapter 1 and Chapter 4. A noteworthy addition is a real-
variable computation of the radius of convergence of the Bernoulli series using
the root test (Chapter 5). What follows is the preface from the first edition.

For undergraduate students, the transition from calculus to analysis is
often disorienting and mysterious. What happened to the beautiful calculus
formulas? Where did e-d and open sets come from? It is not until later that one
integrates these seemingly distinct points of view. When teaching “advanced
calculus”, I always had a difficult time answering these questions.

Now, every mathematician knows that analysis arose naturally in the nine-
teenth century out of the calculus of the previous two centuries. Believing that
it was possible to write a book reflecting, explicitly, this organic growth, I set
out to do so.

I chose several of the jewels of classical eighteenth and nineteenth century
analysis and inserted them at the end of the book, inserted the axioms for reals
at the beginning, and filled in the middle with (and only with) the material
necessary for clarity and logical completeness. In the process, every little piece
of one-variable calculus assumed its proper place, and theory and application
were interwoven throughout.

Let me describe some of the unusual features in this text, as there are other
books that adopt the above point of view. First is the systematic avoidance of
e-0 arguments. Continuous limits are defined in terms of limits of sequences,
limits of sequences are defined in terms of upper and lower limits, and upper
and lower limits are defined in terms of sup and inf. Everybody thinks in
terms of sequences, so why do we teach our undergraduates e-6’s? (In calculus
texts, especially, doing this is unconscionable.)

The second feature is the treatment of integration. Since the integral is
supposed to be the area under the graph, why not define it that way? What
goes wrong? Why don’t we define! the area of all subsets of R?? This is the
point of view we take in our treatment of integration. As is well known, this
approach remains valid, with no modifications, in higher dimensions.

The third feature is the treatment of the theorems involving interchange of
limits and integrals. Ultimately, all these theorems depend on the monotone

! As in geometric measure theory.
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convergence theorem which, from our point of view, follows from the Greek
mathematicians’ method of exrhaustion. Moreover, these limit theorems are
stated only after a clear and nontrivial need has been elaborated. For exam-
ple, differentiation under the integral sign is used to compute the Gaussian
integral.

As a consequence of our treatment of integration, uniform convergence and
uniform continuity can be dispensed with. (If the reader has any doubts about
this, a glance at the range of applications in Chapter 5 will help.) Nevertheless,
we give a careful treatment of uniform continuity, and use it, in the exercises,
to discuss an alternate definition of the integral that was important in the
nineteenth century (the Riemann integral).

The fourth feature is the use of real-variable techniques in Chapter 5. We
do this to bring out the elementary nature of that material, which is usually
presented in a complex setting using transcendental techniques.

The fifth feature is our heavy emphasis on computational problems. Com-
putation, here, is often at a deeper level than expected in calculus courses and
varies from the high school quadratic formula in §1.4 to ¢’(0) = —log(27)/2
in §5.8.

Because we take the real numbers as our starting point, basic facts about
the natural numbers, trigonometry, or integration are rederived in this context,
either in the text or as exercises. Although it is helpful for the reader to have
seen calculus prior to reading this text, the development does not presume this.
We feel it is important for undergraduates to see, at least once in their four
years, a nonpedantic, purely logical development that really does start from
scratch (rather than pretends to), is self-contained, and leads to nontrivial
and striking results.

We have attempted to present applications from many parts of analy-
sis, many of which do not usually make their way into advanced calculus
books. For example we discuss a specific transcendental number, convexity
and the Legendre transform, Machin’s formula, the Cantor set, the Bailey—
Borwein—Plouffe series, continued fractions, Laplace and Fourier transforms,
Bessel functions, Euler’s constant, the AGM, the gamma and beta functions,
the entropy of the binomial coefficients, infinite products and Bernoulli num-
bers, theta functions, the zeta function, primes in arithmetic progressions,
the Euler-Maclaurin formula, and the Stirling series. Again and again, in
discussing these results, we show how the “theory” is indispensable.

As an aid to self-study and assimilation, there are 366 problems with all
solutions at the back of the book. If some of the more “theoretical parts”
are skipped, this book is suitable for a one-semester course (the extent to
which this is possible depends on the students’ calculus abilities). Alterna-
tively, covering thoroughly the entire text fills up a year—course, as I have
done at Temple teaching our advanced calculus sequence.

Philadelphia, Fall 2006 Omar Hijab
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1

The Set of Real Numbers

A Note to the Reader

This text consists of many assertions, some big, some small, some almost in-
significant. These assertions are obtained from the properties of the real num-
bers by logical reasoning. Assertions that are especially important are called
theorems. An assertion’s importance is gauged by many factors, including its
depth, how many other assertions it depends on, its breadth, how many other
assertions are explained by it, and its level of symmetry. The later portions
of the text depend on every single assertion, no matter how small, made in
Chapter 1.

The text is self-contained, and the exercises are arranged linearly: Every
exercise can be done using only previous material from this text. No outside
material is necessary.

Doing the exercises is essential for understanding the material in the text.
Sections are numbered linearly within each chapter; for example, §4.3 means
the third section in Chapter 4. Equation numbers are written within paren-
theses and exercise numbers in bold. Theorems, equations, and exercises are
numbered linearly within each section; for example, Theorem 4.3.2 denotes
the second theorem in §4.3, (4.3.1) denotes the first numbered equation in
§4.3, and 4.3.3 denotes the third exercise at the end of §4.3.

Throughout, we use the abbreviation ‘iff” to mean ‘if and only if” and O
to signal the end of a derivation.

1.1 Sets and Mappings

We assume the reader is familiar with the usual notions of sets and mappings,
but we review them to fix the notation. Strictly speaking, some of the material
in this section should logically come after we discuss natural numbers (§1.3).
However we include this material here for convenience.
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A set is a collection A of objects, called elements. If x is an element of A
we write € A. If x is not an element of A, we write z ¢ A. Let A, B be sets.
If every element of A is an element of B, we say A is a subset of B, and we
write A C B. Equivalently, we say B is a superset of A and we write B D A.
When we write A C B or A D B, we allow for the possibility A = B, i.e.,
ACAand AD A.

The union of sets A and B is the set C' whose elements lie in A or lie in B;
we write C = AU B, and we say C equals A union B. The intersection of sets
A and B is the set C whose elements lie in A and lie in B; we write C = ANB
and we say C equals A inter B. Similarly, one defines the union A; U...U A4,
and the intersection A; N...N A, of finitely many sets Aq,..., A,.

More generally, given any infinite collection of sets Aj, As, ..., their union
is the set [ J72 | A,, whose elements lie in at least one of the given sets. Similarly,
their intersection (), Ay is the set whose elements lie in all the given sets.

Let A and B be sets. If they have no elements in common, we say they
are disjoint, AN B is empty, or AN B = (), where @) is the empty set, i.e., the
set with no elements. By convention, we consider () a subset of every set.

The set of all elements in A, but not in B, is denoted A\ B = {x € A:
x ¢ B} and is called the complement of B in A. For example, when A C B,
the set A\ B is empty. Often the set A is understood from the context; in
these cases, A\ B is denoted B¢ and called the complement of B.

We will have occasion to use De Morgan’s law,

<G An> - ﬁ AC

n=1 n=1

<ﬁ An> = G Ac.
n=1 n=1

We leave this as an exercise. Of course these also hold for finitely many sets
Ay, .. A,

If A, B are sets, their product is the set A x B whose elements consist of
all ordered pairs (a,b) with a € A and b € B. A relation between two sets A
and B is a subset f C A x B. A mapping is a relation f C A x B, such that,
for each a € A, there is exactly one b € B with (a,b) € f. In this case, it is
customary to write b = f(a) and f: A — B.

If f: A — B is a mapping, the set A is the domain, the set B is the
codomain, and the set f(A) = {f(a) : a € A} C B is the range. A function is
a mapping whose codomain is the set of real numbers R, i.e., the values of f
are real numbers.

A mapping f : A — B is injective if f(a) = f(b) implies a = b, whereas
f A — B is surjective if every element b of B equals f(a) for some a € A,
i.e., if the range equals the codomain. A mapping that is both injective and
surjective is bijective.
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If f: A— Band g: B — C are mappings, their composition is the
mapping go f : A — C given by (go f)(a) = g(f(a)) for all a € A. In general,
gof#fog

If f: A— Band g: B — A are mappings, we say they are inverses
of each other if g(f(a)) = a for all @ € A and f(g(b)) =bforal b e B. A
mapping f : A — B is invertible if it has an inverse g. It is a fact that a
mapping f is invertible iff f is bijective.

Exercises

1.1.1. Give an example where fog# go f.
1.1.2. Verify De Morgan’s law.
1.1.3. Show that a mapping f : A — B is invertible iff it is bijective.

1.1.4. Let f : A — B be bijective. Show that the inverse g : B — A is unique.

1.2 The Set R

We are ultimately concerned with one and only one set, the set R of real
numbers. The properties of R that we use are

the arithmetic properties,
the ordering properties, and
the completeness property.

Throughout, we use ‘real’ to mean ‘real number’, i.e., an element of R.

The arithmetic properties start with the fact that reals a, b can be added to
produce a real a+b, the sum of a and b. The rules for addition are a+b = b+a
and a+ (b+c¢) = (a+b) + ¢, valid for all reals a, b, and c¢. There is also a real
0, called zero, satisfying a + 0 = 0+ a = a for all reals a, and each real a has
a negative —a satisfying a + (—a) = 0. As usual, we write subtraction a+ (—b)
as a —b.

Reals a, b can also be multiplied to produce a real a - b, the product of a
and b, also written ab. The rules for multiplication are ab = ba, a(bc) = (ab)c,
valid for all reals a, b, and c. There is also a real 1, called one, satisfying
al = la = a for all reals a, and each real a # 0 has a reciprocal 1/a satisfying
a(l/a) = 1. As usual, we write division a(1/b) as a/b.

Addition and multiplication are related by the property a(b+c¢) = ab+ ac
for all reals a, b, and ¢ and the assumption 0 # 1. Let us show how the above
properties imply there is a unique real number 0 satisfying 0+a=a+0=a
for all a. If 0’ were another real satisfying 0’ +a = a + 0" = a for all a, then,
we would have 0/ = 0+ 0" = 0"+ 0 = 0, hence, 0 = 0’. Also it follows that
there is a unique real playing the role of one and Oa = 0 for all a. These are
the arithmetic properties of the reals.
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The ordering properties start with the fact that there is subset RT of R,
the set of positive numbers, that is closed under addition and multiplication,
ie.,ifa,b € RT, then a+b,ab € RT. If a is positive, we write a > 0 or 0 < a,
and we say a is greater than 0 or 0 is less than a, respectively. Let R~ denote
the set of negative numbers, i.e., R~ = —R™ is the set whose elements are
the negatives of the elements of R*. The rules for ordering assume the sets
R, {0}, R are pairwise disjoint and their union is all of R. We write a > b
and b < a to mean a —b > 0. Then, 0 > a iff a is negative and a > b implies
a + ¢ > b+ c. In particular, for any pair of reals a, b, we have a < bora =10
or a > b. These are the ordering properties of the reals.

From the ordering properties, it follows, for example, that 0 < 1, i.e., one
is positive, a < b and ¢ > 0 imply ac < be, 0 < a < b implies aa < bb, and
a < b, b<cimply a < c¢. As usual, we also write < to mean < or =, > to
mean > or =, and we say a is nonnegative or nonpositive if a > 0 or a < 0.

If S is a set of reals, a number M is an upper bound for S if x < M for all
x € S. Similarly, m is a lower bound for S if m < z for all z € S (Figure 1.1).
For example, 1 and 1 + 1 are upper bounds for the sets J = {2 : 0 < z < 1}
and I = {z : 0 <z < 1} whereas 0 and —1 are lower bounds for these sets. S
is bounded above (below) if it has an upper (lower) bound. S is bounded if it
is bounded above and bounded below.

Not every set of reals has an upper or a lower bound. Indeed, it is easy
to see that R itself is neither bounded above nor bounded below. A more
interesting example is the set N of natural numbers (next section): N is not
bounded above.

Fig. 1.1. Upper and lower bounds for A.

A given set S of reals may have several upper bounds. If S has an upper
bound M such that M < b for any other upper bound b of S, then, we say M is
a least upper bound or M is a supremum or sup for S, and we write M = sup S.
Since there cannot be more than one least! upper bound, the sup, whenever it
exists, is uniquely determined. For example, consider the sets I and J defined
above. If M is an upper bound for I, then M > =z for every = € I, hence
M > 1. Thus 1 is the least upper bound for I, or 1 = sup /. The situation
with the set J is only slightly more subtle: If M < 1, then ¢ = (1 + M)/2
satisfies M < ¢ < 1, s0 ¢ € J, hence M cannot be an upper bound for J. Thus
1 is the least upper bound for J, or 1 = sup J.

A real m that is a lower bound for S and satisfies m > b for all other lower
bounds b is called a greatest lower bound or an infimum or inf for S, and we

L If a and b are least upper bounds, then, ¢ < b and a > b.
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write m = inf S. Again the inf, whenever it exists, is uniquely determined. As
before, it follows easily that 0 = inf I anf 0 = inf J.

The completeness property of R asserts that every nonempty set S C R
that is bounded above has a sup, and every nonempty set S C R that is
bounded below has an inf.

We introduce a convenient abbreviation, two symbols co, —oo, called infin-
ity and minus infinity, subject to the ordering rule —oco < = < oo for all reals
z. If a set S is not bounded above, we write sup.S = co. If S is not bounded

below, we write inf S = —oo. For example, supR = oo, inf R = —o0; in
§1.4 we show that supIN = co. Recall that the empty set () is a subset of R.
Another convenient abbreviation is to write sup ) = —oo, inf ) = co. Clearly,

when S is nonempty, inf S < sup S.

With this terminology, the completeness property asserts that every subset
of R, bounded or unbounded, empty or nonempty, has a sup and has an inf;
these may be reals or +o0.

We emphasize that oo and —oo are not reals but just convenient abbrevi-
ations. As mentioned above, the ordering properties of oo are —co < z < 00
for all real z; it is convenient to define the following arithmetic properties of
+o0:

00 + 00 = 00,
—00 — 00 = —00,
00 — (—00) = o0,
oo+ ¢ = o0, ceR,
—00+c¢c=—0o0, ceR,
(£00) - ¢ = +o0, c>0,
00+ 00 = 00,

00 - (—00) = —00.

Note that we have not defined co — oo, 0 - 00, 00/00, or ¢/0.

Let a be an upper bound for a set S. If a € S, we say a is a mazimum of
S, and we write a = max S. For example, with I as above, maxI = 1. The
max of a set S need not exist; for example, according to the Theorem below,
max J does not exist.

Similarly, let a be a lower bound for a set S. If a € S, we say a is a
minimum of S, and we write ¢ = min S. For example, min/ = 0 but min J
does not exist.

Theorem 1.2.1. Let S C R be a set. The mazx of S and the min of S are
uniquely determined whenever they exist. The max of S exists iff the sup of
S lies in S, in which case the max equals the sup. The min of S exists iff the
inf of S lies in S, in which case the min equals the inf.
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To see this, note that the first statement follows from the second since we
already know that the sup and the inf are uniquely determined. To establish
the second statement, suppose that sup S € S. Then, since sup S is an upper
bound for S, max .S = sup S. Conversely, suppose that max S exists. Then,
sup S < max S since max S is an upper bound and sup S is the least such.
On the other hand, sup S is an upper bound for S and maxS € S. Thus,
max S < sup.S. Combining sup S < max S and supS > max .S, we obtain
max S = sup S. For the inf, the derivation is completely analogous. 0O

Because of this, when max .S exists we say the sup is attained. Thus, the
sup for [ is attained whereas the sup for J is not. Similarly, when min S exists,
we say the inf is attained. Thus, the inf for I is attained whereas the inf for J
is not.

Let A, B be subsets of R, let a be real, and let ¢ > 0; let —A={—-z:x €
A}V, Ada={z+a:z€ A}, cA={cx:x € A},and A+ B={z+y:z €
A,y € B}. Here are some simple consequences of the definitions that must be
checked at this stage:

A C B implies sup A < sup B and inf A > inf B (monotonicity property).
sup(—A) = —inf A, inf(—A) = —sup A (reflection property).

sup(A + a) = sup A + a, inf(A + a) = inf A + a for a € R (translation
property).

sup(cA) = csup A4, inf(cA) = cinf A for ¢ > 0 (dilation property).
sup(A+B) = sup A+sup B, inf(A+ B) = inf A+inf B (addition property),
whenever the sum of the sups and the sum of the infs are defined.

These properties hold whether A and B are bounded or unbounded, empty
or nonempty.

We verify the first and the last properties, leaving the others as Exercise
1.2.7. For the monotonicity property, if A is empty, the property is immediate
since sup A = —oo and inf A = oco. If A is nonempty and a € A, then a € B,
hence, inf B < a < sup B. Thus, sup B and inf B are upper and lower bounds
for A, respectively. Since sup A and inf A are the least and greatest such, we
obtain inf B < inf A < sup A < sup B.

Now, we verify sup(4A + B) = sup A + sup B. If A is empty, then, so, is

A+ B; in this case, the assertion to be proved reduces to —oo 4+ sup B = —o0
which is true (remember we are excluding the case oo — 0o). Similarly, if B is
empty.

If A and B are both nonempty, then, sup A > x for all z € A, and sup B >
y for all y € B, so, supA+supB > x+y for all z € A and y € B. Hence,
supA+supB > z for all z € A+ B, or sup A + sup B is an upper bound for
A+ B. Since sup(A + B) is the least such, we conclude that sup A + sup B >
sup(A + B). If sup(A + B) = oo, then, the reverse inequality sup A 4 sup B <
sup(A + B) is immediate, yielding the result.

If, however, sup(A + B) < co and « € A, y € B, then, z +y € A+ B,
hence,  + y < sup(A + B) or, what is the same, < sup(A + B) — y. Thus,
sup(A 4+ B) — y is an upper bound for A; since sup A is the least such, we get
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sup A < sup(A4 + B) — y. Now, this last inequality implies, first, sup A < oo
and, second, y < sup(A+ B) —sup A for all y € B. Thus, sup(4A+ B) —sup A
is an upper bound for Bj; since sup B is the least such, we conclude that
sup B < sup(A + B) — sup A or, what is the same, sup(A + B) > sup A +
sup B. Since we already know that sup(A4 + B) < sup A + sup B, we obtain
sup(A + B) = sup A + sup B.

To verify inf(A + B) = inf A + inf B, use reflection and what we just
finished to write

inf(A + B) = —sup[—(A + B)] = —sup[(—A4) + (—B)]
= —sup(—A) —sup(—B) = inf A + inf B.

This completes the derivation of the addition property.

Every assertion that follows in this book depends only on the arithmetic,
ordering, and completeness properties of R, just described.

Exercises
1.2.1. Show that a0 = 0 for all real a.

1.2.2. Show that there is a unique real playing the role of 1. Also show that
each real a has a unique negative —a and each nonzero real a has a unique
reciprocal.

1.2.3. Show that —(—a) = a and —a = (—1)a.

1.2.4. Show that negative times positive is negative, negative times negative
is positive, and 1 is positive.

1.2.5. Show that a < band c € Rimply a+c¢ < b+¢, a < b and ¢ > 0 imply
ac < bc,a <band b < cimply a < ¢, and 0 < a < b implies aa < bb.

1.2.6. Let a,b > 0. Show that a < b iff aa < bb.

1.2.7. Verify the properties of sup and inf listed above.

1.3 The Subset N and the Principle of Induction

A subset S C R is inductive if

A. 1€ S and
B. S is closed under addition by 1: z € S impliesx +1 € S.

For example, R* is inductive. The subset N C R of natural numbers or
naturals is the intersection of all inductive subsets of R,

N = ﬂ{S : S C R inductive}.
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Then, N itself is inductive. Indeed, since 1 € S for every inductive set .S, we
conclude that 1 € N{S : S C R inductive} = N. Similarly, n € N implies
n € S for every inductive set S. Hence, n + 1 € S for every inductive set S.
hence, n+1 € ({S: S C R inductive} = N. This shows that N is inductive.

From the definition, we conclude that N C S for any inductive S C R. For
example, since R* is inductive, we conclude that N C R*, i.e., every natural
is positive.

From the definition, we also conclude that N is the only inductive subset
of N. For example, S = {1} U (N + 1) is a subset of N, since N is inductive.
Clearly, 1 € S. Moreover, z € S implies z € N implies  + 1 € N + 1 implies
x+1e€S8,s0,S is inductive. Hence, S=Nor {1}U(N+1)=N,ie,n—1
is a natural for every natural n other than 1.

The conclusions above are often paraphrased by saying N is the smallest
inductive subset of R, and they are so important they deserve a name.

Theorem 1.3.1 (Principle of Induction). If S C R is inductive, then,
S D N. If S C N is inductive, then, S =N. 0O

Let 2 =1+ 1 > 1; we show that there are no naturals between 1 and 2.
For this, let S = {1} U{n € N :n > 2}. Then, 1 € S. If n € S, there are two
possibilities. Either n =1 orn # 1. lf n =1, then,n+1=2¢€ S. If n # 1,
then,n > 2, so,n+1>n>2andn+1¢€ N, so,n+1 € S. Hence, S is
inductive. Since S C N, we conclude that S = N. Thus, n > 1 for all n € N,
and there are no naturals between 1 and 2. Similarly (Exercise 1.3.1), for any
n € N, there are no naturals between n and n + 1.

N is closed under addition and multiplication by any natural. To see this,
fix a natural n, and let S = { :  + n € N}, so, S is the set of all reals x
whose sum with n is natural. Then, 1 € S since n+1 € N, and z € S implies
z+n € N implies (x +n)+1 = (r+1)+n € N implies z + 1 € S. Thus,
S is inductive. Since N is the smallest such set, we conclude that N C S or
m +mn € N for all m € N. Thus, N is closed under addition. This we write
simply as N 4+ N C N. Closure under multiplication N -N C N is similar and
left as an exercise.

In the sequel, when we apply the principle of induction, we simply say ‘by
induction’.

To show that a given set S is inductive, one needs to verify A and B. Step
B is often referred to as the inductive step, even though, strictly speaking,
induction is both A and B, because, usually, most of the work is in establishing
B. Also, the hypothesis in B, « € S, is often referred to as the inductive
hypothesis.

Let us give another example of the use of induction. A natural is even if
it is in 2N = {2n : n € N}. A natural n is odd if n 4+ 1 is even. We claim
that every natural is either even or odd. To see this, let S be the union of the
set of even naturals and the set of odd naturals. Then, 2 = 2 -1 is even, so,
1is odd. Hence, 1 € S. If n € S and n = 2k is even, then, n + 1 is odd since
m+D)+1=n+2=2k+2=2(k+1). Hence, n+1€ S.If n € S and n is
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odd, then, n + 1 is even, so, n + 1 € S. Hence, in either case, n € S implies
n+1€S, ie., Sis closed under addition by 1. Thus, S is inductive. Hence,
we conclude that S = N. Thus, every natural is even or odd. Also the usual
parity rules hold: even plus even is even, etc.

Let A be a nonempty set. We say A has n elements if there is a bijection
between A and the set {k € N : 1 < k < n}. We often denote this last set by
{1,2,...,n}. If A =0, we say that the number of elements of A is zero. A set
A is finite if it has n elements for some n. Otherwise, A is infinite. Here are
some consequences of the definition that are worked out in the exercises. If A
and B are disjoint and have n and m elements, respectively, then, A U B has
n + m elements. If A is a finite subset of R, then, max A and min A exist. In
particular, we let max(a,b), min(a,b) denote the larger and the smaller of a
and b. However, max A and min A may exist for an infinite subset of R.

Theorem 1.3.2. If S C N is nonempty, then, min S exists.

To see this, note that ¢ = inf S is finite since S is bounded below. Since
c+ 1 is not a lower bound, there is an n € S with ¢ < n < c+ 1. If ¢ = n,
then, ¢ € S. Hence, c = min S and we are done. If c Zn, then,n—1 < c < mn,
and n is not a lower bound for S. Hence, n > 1, and there is an m € S lying
between n — 1 and n. But there are no naturals between n — 1 and n. O

The two other subsets, mentioned frequently, are the integers Z = NU{0}U
(=N) = {0,£1,£2,...}, and the rationals Q = {m/n : m,n € Z,n # 0}.
Then, Z is closed under subtraction (Exercise 1.3.3), and Q is closed under
all four arithmetic operations, except under division by zero. As for naturals,
we say that the integers in 2Z = {2n : n € Z} are even, and we say that an
integer n is odd if n + 1 is even.

Fix a real a. By (an extension of) induction, one can show (Exercise 1.3.9)
that there is a function f: N — R satisfying f(1) = a and f(n+ 1) = af(n)
for all n. As usual, we write f(n) = a™. Hence, by construction a' = a and
a"t1 = g"a for all n. Since the set {n € N : (ab)” = a"b"} is inductive, it
follows also that (ab)” = a™b™ for n € N.

Now, (—1)™ is 1 or —1 according to whether n € N is even or odd, a > 0
implies a” > 0 for n € N, and a > 1 implies a™ > 1 for n € N. These are
easily checked by induction.

If a # 0, we extend the definition of a” to n € Z by setting a® = 1
and a=™ = 1/a™ for n € N. Then (Exercise 1.3.10), a"™™ = a¢"a™ and
(a™)™ = a™™ for all integers n, m.

Let @ > 1. Then, a” = a™ with n,m € Z only when n = m. Indeed,
n—m € Z,and a" ™ = a"a”™ = a"/a™ = 1. But af > 1 for k € N, and
a* =1/a% < 1 for k € —N. Hence, n —m = 0 or n = m. This shows that
powers are unique.

As another application of induction, we establish, simultaneously, the
validity of the inequalities 1 < 2™ and n < 2™ for all naturals n. This time, we
do this without mentioning the set S explicitly, as follows. The inequalities
in question are true for n = 1 since 1 < 2! = 2. Moreover, if the inequalities
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1 < 2™ and n < 2™ are true for a particular n (the inductive hypothesis),
then, 1 < 2" < 2" 427 = 272 = 2"*1 g0, the first inequality is true for n+ 1.
Adding the inequalities valid for n yields n 4+ 1 < 2" 4 2" = 22 = 27+l oo,
the second inequality is true for n + 1. This establishes the inductive step.
Hence, by induction, the two inequalities are true for all n € N. Here, the set
SisS={neN:1<2" n<2"}.

Using these inequalities, we show that every nonzero n € Z is of the form
2Fp for a uniquely determined & € N U {0} and an odd p € Z. We call k the
number of factors of 2 in n.

If 2Fp = 27¢ with k > j and odd integers p, ¢, then, ¢ = 2F~7p = 2.2F=7—1p
is even, a contradiction. On the other hand, if j > k, then, p is even. Hence,
we must have k = j. This establishes the uniqueness of k.

To show the existence of k, by multiplying by a minus, if necessary, we
may assume n € N. If n is odd, we may take £k = 0 and p = n. If n is even,
then, n; = n/2 is a natural < 2n~1 If ny is odd, we take k =1 and p = n;.
If ny is even, then, ny = n; /2 is a natural < 2"~2. If ny is odd, we take k = 2
and p = nsy. If no is even, we continue this procedure by dividing ny by 2.
Continuing in this manner, we obtain ni,ng,... naturals with n; < 2777,
Since this procedure ends in fewer than n steps, there is some k£ natural or 0
for which p = n/2* is odd.

The final issue we take up here concerns square roots. Given a real a, a
square root of a, denoted \/a, is any real x whose square is a, x> = a. For
example 1 has the square roots +1, 0 has the square root 0. On the other
hand, not every real has a square root. For example, /—1 does not exist
within R, i.e., there is no real z satisfying 2 = —1, since 22 + 1 > 0. In fact,
this argument shows that negative numbers never have square roots.

At this point, we do not know whether /2 exists within R. Now, we show
that v/2 does not exist within Q.

Theorem 1.3.3. There is no rational a satisfying a® = 2.

We argue by contradiction. Suppose that a = m/n is a rational whose
square is 2. Then, (m/n)? = 2 or m? = 2n?, i.e., there is a natural N, such
that N = m2?, N = 2n%. Then, m = 2¥p with odd p and £ € N U {0},
so, N = m? = 2%%p2. Since p? is odd, we conclude that 2k is the number
of factors of 2 in N. Similarly n = 27¢ with odd ¢ and j € N U {0}, so,
N =2n? = 22%7¢%2 = 227+142_ Since ¢? is odd, we conclude that 2j + 1 is the
number of factors of 2 in N. Since 2k # 2j + 1, we arrive at a contradiction.
|

Note that Q satisfies the arithmetic and ordering properties. The com-
pleteness property is all that distinguishes Q and R.

As usual, in the following, a digit means either 0, 1,2 or 3 = 2+1, 4 = 3+1,
5=441,6=5+1,7=6+1,8=7+1, or 9 =8+ 1. Also, the letters n, m,
i, j will usually denote integers, so, n > 1 will be used interchangeably with
n € N, with similar remarks for m, 1, j.
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We say that a nonzero n € Z divides m € Z if m/n € Z. Alternatively, we
say that m is divisible by n, and we write n | m. A natural n is composite if
n = jk for some j, k € N with j > 1 and k£ > 1. A natural is prime if it is not
composite and is not 1. Thus, a natural is prime if it is not divisible by any
smaller natural other than 1.

For a > 1, let |a] = max{n € N : n < a} denote the greatest integer < a
(Exercises 1.3.7 and 1.3.8). Then, |a] < a < |a] + 1, and the fractional part
of a is {a} = a — |a]. Note that the fractional part is a real in [0,1). More
generally, |a] € Z and 0 < {a} < 1 are defined? for all a € R.

Exercises

1.3.1. Let n be a natural. Show that there are no naturals between n and
n—+ 1.

1.3.2. Show that the product of naturals is natural, N - NN C N.

1.3.3. If m > n are naturals, then, m — n € N. Conclude that Z is closed
under subtraction.

1.3.4. Show that no integer is both even and odd. Also, show that even times
even is even, even times odd is even, and odd times odd is odd.

1.3.5. If n, m are naturals and there is a bijection between {1,2,...,n} and
{1,2,...,m}, then, n = m (use induction on n). Conclude that the number
of elements # A of a nonempty set A is well defined. Also, show that #A = n,
#B =m,and AN B =0 imply #(AUB) =n +m.

1.3.6. If A C R is finite and nonempty, then, show that max A and min A
exist (use induction).

1.3.7. If S C Z is nonempty and bounded above, then, show that S has a
max.

1.3.8.If z > y > 0 are reals, then, show that z = yq + r with ¢ € N,
r € RT U {0}, and r < y. (Look at the sup of {g € N : yq < z}.)

1.3.9. Fix a real a. A set f C R x R is inductive if (1,a) € f and (z,y) € f
implies (x 4+ 1,ay) € f. For example, N x R is inductive. Now, let f be the
smallest inductive set in R x R and let A = {z € R : (x,y) € f for some
y € R}.

e Show that A = N.
e Show that f is a mapping with domain N and codomain R.
e Show that f(1) =a and f(n+ 1) = af(n) for all n > 1.

2 {n € Z:n < a} is nonempty since inf Z = —co (§1.4).
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This establishes the existence of a function f : N — R satisfying f(1) = a and
f(n+1)=af(n) for all n > 1. This function is usually denoted f(n) = a™.

1.3.10. Let a be a nonzero real. By induction show that a"a™ = a™*™ and
(a™)™ = a™™ for all integers n, m.

1.3.11. Using induction, show that

1
1+2+~~+n:%

for every n € N.

1.3.12. Let p > 1 be a natural. Show that for each nonzero n € Z there is a
unique k € N U {0} and an integer m not divisible by p (i.e., m/p is not in
Z), such that n = pFm.

1.3.13. Let S C R satisfy

e leSand
e n € S whenever k € S for all naturals &k < n.

Show that S D N. This is an alternate, and sometimes useful, form of induc-
tion.

1.3.14. Fix a > 0 real, and let S, = {n € N : na € N}. If S, is nonempty,
m € S,, and p = min S,, show that p divides m (Exercise 1.3.8).

1.3.15. Let n, m be naturals and suppose that a prime p divides the product
nm. Show that p divides n or m. (Consider a = n/p, and show that min S, = 1
or minS, =p.)

1.3.16. (Fundamental Theorem of Arithmetic) By induction, show that
every natural n either is 1 or is a product of primes, n = p;...p,, with the
p;’s unique except, possibly, for the ordering. (Given n, either n is prime or
n = pm for some natural 1 < m < n; use induction as in Exercise 1.3.13.)

1.3.17. Given 0 < z < 1, let 79 = z. Define naturals ¢,, and remainders r,, by

setting
1
— = Gn+41 T Tntl, n > 0.
T'n

Thus, g¢,4+1 = |[1/7y] is the integer part of 1/r, and r,41 = {1/r,} is the
fractional part of 1/r,, and

xTr =

q +

+
q2 1

Gn +7Tn

..'Qn—1+

is a continued fraction. This algorithm stops the first time r,, = 0. Then, the
continued fraction is finite. If this never happens, this algorithm does not end,
and the continued fraction is infinite. Show that the algorithm stops iff x € Q.
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1.4 The Completeness Property

We begin by showing IN has no upper bound. Indeed, if N has an upper bound,
then, N has a (finite) sup, call it ¢. Then, ¢ is an upper bound for N whereas
¢ — 1 is not an upper bound for N, since c is the least such. Thus, there is
an n > 1, satisfying n > ¢ — 1, which gives n+ 1 > c and n+ 1 € N. But
this contradicts the fact that ¢ is an upper bound. Hence, N is not bounded
above. In the notation of §1.2, sup N = co.

Let S = {1/n : n € N} be the reciprocals of all naturals. Then, S is
bounded below by 0, hence, S has an inf. We show that inf .S = 0. First, since
0 is a lower bound, by definition of inf, inf.S > 0. Second, let ¢ > 0. Since
supN = oo, there is some natural, call it k, satisfying k& > 1/c. Multiplying
this inequality by the positive ¢/k, we obtain ¢ > 1/k. Since 1/k is an element
of S, this shows that c is not a lower bound for S. Thus, any lower bound for
S must be less or equal to 0. Hence, inf S = 0.

The two results just derived are so important we state them again.

Theorem 1.4.1. supN = oo, and inf{l/n:ne N} =0. O

As a consequence, since Z D N, it follows that sup Z = oco. Since Z D (—N)
and inf(A) = —sup(—A), it follows that inf Z < inf(—N) = —supN = —o0,
hence, inf Z = —o0.

An interval is a subset of R of the following form:

(a,b) ={x:a <z <b},
a,b] = {z:a <z < b},
b)

a,b) ={z:a <z <b},

(a,b) ={xz:a <z <b}.
Intervals of the form (a,b), (a,0), (—o0,b), (—00, 00) are open, whereas those
of the form [a,b], [a,0), (—o0,b] are closed. When —oo < a < b < o0, the

interval [a, b] is compact. Thus, (a,00) = {z : x > a}, (—o0,b] = {z : x < b},
and (—o0,0) = R.
For x € R, we define |z|, the absolute value of z, by

|z| = max(x, —z).

Then, z < |z| for all , and, for a >0, {z: —a <z <a} ={z:|z| <a} =
{z:z<a}n{z:z>—-a},{z:2< —a}U{z:2>a} ={z:|2|>a}.
The absolute value satisfies the following properties:

A. |z| > 0 for all nonzero z, and |0| = 0,
B. |$‘ |y| = |$y| fOI' all Z,Y,
C. |z +y| < |z| + |y| for all z,y.
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We leave the first two as exercises. The third, the triangle inequality, is
derived using |z|? = 22 as follows:

(z+y)? =2"+2zy+y°

|z +y?> =
< |zl* 4 2wyl + [yI* = 2> + 20| |y] + |yI* = (=] + [y])>.

Since a < b iff a2 < b2 for a,b nonnegative (Exercise 1.2.6), the triangle
inequality is established.
Frequently, the triangle inequality is used in alternate forms, one of which
is
|z =yl > || = [yl.
This follows by writing |z| = |(x — y) + y| < |z — y| + |y| and transposing |y|
to the other side. Another form is

lai + a2+ -+ ay| < |ar]| +|ag| + -+ |an|, n>1

We show how the completeness property can be used to derive the existence
of v/2 within R.

Theorem 1.4.2. There is a real a satisfying a® = 2.

To see this, let S = {z : z > 1 and 2% < 2}. Since 1 € S, S is nonempty.
Also, z € S implies # = 21 < 2z = 22 < 2, hence, S is bounded above by 2,
hence, S has a sup, call it a. We claim that a? = 2. We establish this claim by
ruling out the cases a? < 2 and a? > 2, leaving us with the desired conclusion
(remember every real is positive or negative or zero).

So, suppose that a? < 2. If we find a natural n with

1\2
(a—|—> < 2,
n

then, a + 1/n € S, hence, the real a could not have been an upper bound for
S, much less the least such. To see how to find such an n, note that

if (2a 4+ 1)/n < 2—a?, ie., if n > (2a +1)/(2 — a?). Since a? < 2, b =
(2a +1)/(2 — a?) is a perfectly well defined positive real. Since supN = oo,
such a natural n > b can always be found. This rules out a? < 2.

Before we rule out a? > 2, we note that S is bounded above by any positive
b satisfying b> > 2 since, for b and z positive, b*> > 22 iff b > .

Now suppose that a® > 2. Then, b = (a® — 2)/2a is positive, hence, there
is a natural n satisfying 1/n < b which implies a® — 2a/n > 2. Hence,
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s0, a — 1/n is an upper bound for S. This shows that a is not the least upper
bound, contradicting the definition of a. Thus, we are forced to conclude that
a?=2. 0O

A real a satisfying a? = 2 is called a square root of 2. Since (—x)? = 22,
there are two square roots of 2, one positive and one negative. From now
on, the positive square root is denoted v/2. Similarly, every positive a has a
positive square root, which we denote v/a. In the next chapter, after we have
developed more material, a simpler proof of this fact will be derived.

More generally, for every b > 0 and n > 1, there is a unique a > 0 satisfying
a™ = b, the nth root a = b*/™ of b. Now, forn > 1, k > 1, and m € Z,

[me]™ = {[my] ") = @y = e,

hence, by uniqueness of roots, (b)Y = (b™*)1/"*_ Thus, for r = m/n ratio-

nal, we may set b" = (bm)l/ ™ defining rational powers of positive reals.
Since v2 ¢ Q, R\ Q is not empty. The reals in R\ Q are the irrationals.

In fact, both the rationals and the irrationals have an interlacing or density

property.

Theorem 1.4.3. If a < b are any two reals, there is a rational s between
them, a < s < b, and there is an irrational t between them, a <t < b.

To see this, first, choose a natural n satisfying 1/n < b — a. Second let
S={m e N:na<m}, and let ¥k = inf S = min S. Since k € S, na < k.
Since k — 1 ¢ S, k— 1 < na. Hence, s = k/n satisfies

1
a<s<a+-—<b.
n

For the second assertion, choose a natural n satisfying 1/nv2 < b — a, let
T={meN: V2ona < m}, and let k = min7T. Since k € T, k > v2na. Since
k—1¢T, k—1<+2na. Hence, t = k/(nv/2) satisfies

1
a<t<a+ ——=<b.
nyv2

Moreover, t is necessarily irrational. O
Approximation of reals by rationals is discussed further in the exercises.

Exercises

1.4.1. Show that x < |z| for all z and, fora >0, {z: —a <z < a} = {z:
lz] <a} ={z:z<a}n{z:z>—-a}, {z:2 < —-a}U{z:2>a} ={z:
|z| > a}.
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1.4.2. For all z € R, || > 0, || > 0if z # 0, and |z||y| = |zy| for all
z,y € R.

1.4.3. By induction, show that a1 + ag + -+ + an| < |a1| + |az| + -+ + |an]
for n > 1.

1.4.4. Show that every a > 0 has a unique positive square root.

1.4.5. Show that az? + bx + ¢ = 0, a # 0, has two, one, or no solutions in R
according to whether b — 4ac is positive, zero, or negative. When there are
solutions, they are given by z = (=b + v/b? — 4ac)/2a.

1.4.6. By induction, show that (14+a)” < 1+(2"—1)aforn > 1and 0 < a < 1.
Also show that (1+a)® > 1+naforn>1and a> —1.

1.4.7. For a,b > 0, show that a™ > b™ iff a > b. Also show that every b > 0
has a unique positive nth root for all n > 1 (use Exercise 1.4.6 and modify
the derivation for \@)

1.4.8. Show that the real ¢ constructed in the derivation of Theorem 1.4.3 is
irratio