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Preface

This is the second edition of an undergraduate one-variable analysis text.
Apart from correcting errors and rewriting several sections, material has been
added, notably in Chapter 1 and Chapter 4. A noteworthy addition is a real-
variable computation of the radius of convergence of the Bernoulli series using
the root test (Chapter 5). What follows is the preface from the first edition.

For undergraduate students, the transition from calculus to analysis is
often disorienting and mysterious. What happened to the beautiful calculus
formulas? Where did ε-δ and open sets come from? It is not until later that one
integrates these seemingly distinct points of view. When teaching “advanced
calculus”, I always had a difficult time answering these questions.

Now, every mathematician knows that analysis arose naturally in the nine-
teenth century out of the calculus of the previous two centuries. Believing that
it was possible to write a book reflecting, explicitly, this organic growth, I set
out to do so.

I chose several of the jewels of classical eighteenth and nineteenth century
analysis and inserted them at the end of the book, inserted the axioms for reals
at the beginning, and filled in the middle with (and only with) the material
necessary for clarity and logical completeness. In the process, every little piece
of one-variable calculus assumed its proper place, and theory and application
were interwoven throughout.

Let me describe some of the unusual features in this text, as there are other
books that adopt the above point of view. First is the systematic avoidance of
ε-δ arguments. Continuous limits are defined in terms of limits of sequences,
limits of sequences are defined in terms of upper and lower limits, and upper
and lower limits are defined in terms of sup and inf. Everybody thinks in
terms of sequences, so why do we teach our undergraduates ε-δ’s? (In calculus
texts, especially, doing this is unconscionable.)

The second feature is the treatment of integration. Since the integral is
supposed to be the area under the graph, why not define it that way? What
goes wrong? Why don’t we define1 the area of all subsets of R2? This is the
point of view we take in our treatment of integration. As is well known, this
approach remains valid, with no modifications, in higher dimensions.

The third feature is the treatment of the theorems involving interchange of
limits and integrals. Ultimately, all these theorems depend on the monotone

1 As in geometric measure theory.
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convergence theorem which, from our point of view, follows from the Greek
mathematicians’ method of exhaustion. Moreover, these limit theorems are
stated only after a clear and nontrivial need has been elaborated. For exam-
ple, differentiation under the integral sign is used to compute the Gaussian
integral.

As a consequence of our treatment of integration, uniform convergence and
uniform continuity can be dispensed with. (If the reader has any doubts about
this, a glance at the range of applications in Chapter 5 will help.) Nevertheless,
we give a careful treatment of uniform continuity, and use it, in the exercises,
to discuss an alternate definition of the integral that was important in the
nineteenth century (the Riemann integral).

The fourth feature is the use of real-variable techniques in Chapter 5. We
do this to bring out the elementary nature of that material, which is usually
presented in a complex setting using transcendental techniques.

The fifth feature is our heavy emphasis on computational problems. Com-
putation, here, is often at a deeper level than expected in calculus courses and
varies from the high school quadratic formula in §1.4 to ζ ′(0) = − log(2π)/2
in §5.8.

Because we take the real numbers as our starting point, basic facts about
the natural numbers, trigonometry, or integration are rederived in this context,
either in the text or as exercises. Although it is helpful for the reader to have
seen calculus prior to reading this text, the development does not presume this.
We feel it is important for undergraduates to see, at least once in their four
years, a nonpedantic, purely logical development that really does start from
scratch (rather than pretends to), is self-contained, and leads to nontrivial
and striking results.

We have attempted to present applications from many parts of analy-
sis, many of which do not usually make their way into advanced calculus
books. For example we discuss a specific transcendental number, convexity
and the Legendre transform, Machin’s formula, the Cantor set, the Bailey–
Borwein–Plouffe series, continued fractions, Laplace and Fourier transforms,
Bessel functions, Euler’s constant, the AGM, the gamma and beta functions,
the entropy of the binomial coefficients, infinite products and Bernoulli num-
bers, theta functions, the zeta function, primes in arithmetic progressions,
the Euler–Maclaurin formula, and the Stirling series. Again and again, in
discussing these results, we show how the “theory” is indispensable.

As an aid to self-study and assimilation, there are 366 problems with all
solutions at the back of the book. If some of the more “theoretical parts”
are skipped, this book is suitable for a one-semester course (the extent to
which this is possible depends on the students’ calculus abilities). Alterna-
tively, covering thoroughly the entire text fills up a year–course, as I have
done at Temple teaching our advanced calculus sequence.

Philadelphia, Fall 2006 Omar Hijab
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1

The Set of Real Numbers

A Note to the Reader

This text consists of many assertions, some big, some small, some almost in-
significant. These assertions are obtained from the properties of the real num-
bers by logical reasoning. Assertions that are especially important are called
theorems. An assertion’s importance is gauged by many factors, including its
depth, how many other assertions it depends on, its breadth, how many other
assertions are explained by it, and its level of symmetry. The later portions
of the text depend on every single assertion, no matter how small, made in
Chapter 1.

The text is self-contained, and the exercises are arranged linearly: Every
exercise can be done using only previous material from this text. No outside
material is necessary.

Doing the exercises is essential for understanding the material in the text.
Sections are numbered linearly within each chapter; for example, §4.3 means
the third section in Chapter 4. Equation numbers are written within paren-
theses and exercise numbers in bold. Theorems, equations, and exercises are
numbered linearly within each section; for example, Theorem 4.3.2 denotes
the second theorem in §4.3, (4.3.1) denotes the first numbered equation in
§4.3, and 4.3.3 denotes the third exercise at the end of §4.3.

Throughout, we use the abbreviation ‘iff’ to mean ‘if and only if’ and ��
to signal the end of a derivation.

1.1 Sets and Mappings

We assume the reader is familiar with the usual notions of sets and mappings,
but we review them to fix the notation. Strictly speaking, some of the material
in this section should logically come after we discuss natural numbers (§1.3).
However we include this material here for convenience.



2 1 The Set of Real Numbers

A set is a collection A of objects, called elements. If x is an element of A
we write x ∈ A. If x is not an element of A, we write x /∈ A. Let A, B be sets.
If every element of A is an element of B, we say A is a subset of B, and we
write A ⊂ B. Equivalently, we say B is a superset of A and we write B ⊃ A.
When we write A ⊂ B or A ⊃ B, we allow for the possibility A = B, i.e.,
A ⊂ A and A ⊃ A.

The union of sets A and B is the set C whose elements lie in A or lie in B;
we write C = A∪B, and we say C equals A union B. The intersection of sets
A and B is the set C whose elements lie in A and lie in B; we write C = A∩B
and we say C equals A inter B. Similarly, one defines the union A1 ∪ . . .∪An

and the intersection A1 ∩ . . . ∩ An of finitely many sets A1, . . . , An.
More generally, given any infinite collection of sets A1, A2, . . . , their union

is the set
⋃∞

n=1 An whose elements lie in at least one of the given sets. Similarly,
their intersection

⋂∞
n=1 An is the set whose elements lie in all the given sets.

Let A and B be sets. If they have no elements in common, we say they
are disjoint, A ∩ B is empty, or A ∩ B = ∅, where ∅ is the empty set, i.e., the
set with no elements. By convention, we consider ∅ a subset of every set.

The set of all elements in A, but not in B, is denoted A \ B = {x ∈ A :
x /∈ B} and is called the complement of B in A. For example, when A ⊂ B,
the set A \ B is empty. Often the set A is understood from the context; in
these cases, A \ B is denoted Bc and called the complement of B.

We will have occasion to use De Morgan’s law,
( ∞⋃

n=1

An

)c

=
∞⋂

n=1

Ac
n

( ∞⋂

n=1

An

)c

=
∞⋃

n=1

Ac
n.

We leave this as an exercise. Of course these also hold for finitely many sets
A1, . . . , An.

If A, B are sets, their product is the set A × B whose elements consist of
all ordered pairs (a, b) with a ∈ A and b ∈ B. A relation between two sets A
and B is a subset f ⊂ A × B. A mapping is a relation f ⊂ A × B, such that,
for each a ∈ A, there is exactly one b ∈ B with (a, b) ∈ f . In this case, it is
customary to write b = f(a) and f : A → B.

If f : A → B is a mapping, the set A is the domain, the set B is the
codomain, and the set f(A) = {f(a) : a ∈ A} ⊂ B is the range. A function is
a mapping whose codomain is the set of real numbers R, i.e., the values of f
are real numbers.

A mapping f : A → B is injective if f(a) = f(b) implies a = b, whereas
f : A → B is surjective if every element b of B equals f(a) for some a ∈ A,
i.e., if the range equals the codomain. A mapping that is both injective and
surjective is bijective.
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If f : A → B and g : B → C are mappings, their composition is the
mapping g ◦ f : A → C given by (g ◦ f)(a) = g(f(a)) for all a ∈ A. In general,
g ◦ f �= f ◦ g.

If f : A → B and g : B → A are mappings, we say they are inverses
of each other if g(f(a)) = a for all a ∈ A and f(g(b)) = b for all b ∈ B. A
mapping f : A → B is invertible if it has an inverse g. It is a fact that a
mapping f is invertible iff f is bijective.

Exercises

1.1.1. Give an example where f ◦ g �= g ◦ f .

1.1.2. Verify De Morgan’s law.

1.1.3. Show that a mapping f : A → B is invertible iff it is bijective.

1.1.4. Let f : A → B be bijective. Show that the inverse g : B → A is unique.

1.2 The Set R

We are ultimately concerned with one and only one set, the set R of real
numbers. The properties of R that we use are

• the arithmetic properties,
• the ordering properties, and
• the completeness property.

Throughout, we use ‘real’ to mean ‘real number’, i.e., an element of R.
The arithmetic properties start with the fact that reals a, b can be added to

produce a real a+b, the sum of a and b. The rules for addition are a+b = b+a
and a + (b + c) = (a + b) + c, valid for all reals a, b, and c. There is also a real
0, called zero, satisfying a + 0 = 0 + a = a for all reals a, and each real a has
a negative −a satisfying a+(−a) = 0. As usual, we write subtraction a+(−b)
as a − b.

Reals a, b can also be multiplied to produce a real a · b, the product of a
and b, also written ab. The rules for multiplication are ab = ba, a(bc) = (ab)c,
valid for all reals a, b, and c. There is also a real 1, called one, satisfying
a1 = 1a = a for all reals a, and each real a �= 0 has a reciprocal 1/a satisfying
a(1/a) = 1. As usual, we write division a(1/b) as a/b.

Addition and multiplication are related by the property a(b+ c) = ab+ac
for all reals a, b, and c and the assumption 0 �= 1. Let us show how the above
properties imply there is a unique real number 0 satisfying 0 + a = a + 0 = a
for all a. If 0′ were another real satisfying 0′ + a = a + 0′ = a for all a, then,
we would have 0′ = 0 + 0′ = 0′ + 0 = 0, hence, 0 = 0′. Also it follows that
there is a unique real playing the role of one and 0a = 0 for all a. These are
the arithmetic properties of the reals.
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The ordering properties start with the fact that there is subset R+ of R,
the set of positive numbers, that is closed under addition and multiplication,
i.e., if a, b ∈ R+, then a+ b, ab ∈ R+. If a is positive, we write a > 0 or 0 < a,
and we say a is greater than 0 or 0 is less than a, respectively. Let R− denote
the set of negative numbers, i.e., R− = −R+ is the set whose elements are
the negatives of the elements of R+. The rules for ordering assume the sets
R−, {0}, R+ are pairwise disjoint and their union is all of R. We write a > b
and b < a to mean a − b > 0. Then, 0 > a iff a is negative and a > b implies
a + c > b + c. In particular, for any pair of reals a, b, we have a < b or a = b
or a > b. These are the ordering properties of the reals.

From the ordering properties, it follows, for example, that 0 < 1, i.e., one
is positive, a < b and c > 0 imply ac < bc, 0 < a < b implies aa < bb, and
a < b, b < c imply a < c. As usual, we also write ≤ to mean < or =, ≥ to
mean > or =, and we say a is nonnegative or nonpositive if a ≥ 0 or a ≤ 0.

If S is a set of reals, a number M is an upper bound for S if x ≤ M for all
x ∈ S. Similarly, m is a lower bound for S if m ≤ x for all x ∈ S (Figure 1.1).
For example, 1 and 1 + 1 are upper bounds for the sets J = {x : 0 < x < 1}
and I = {x : 0 ≤ x ≤ 1} whereas 0 and −1 are lower bounds for these sets. S
is bounded above (below) if it has an upper (lower) bound. S is bounded if it
is bounded above and bounded below.

Not every set of reals has an upper or a lower bound. Indeed, it is easy
to see that R itself is neither bounded above nor bounded below. A more
interesting example is the set N of natural numbers (next section): N is not
bounded above.

m Mx

A A A

Fig. 1.1. Upper and lower bounds for A.

A given set S of reals may have several upper bounds. If S has an upper
bound M such that M ≤ b for any other upper bound b of S, then, we say M is
a least upper bound or M is a supremum or sup for S, and we write M = supS.
Since there cannot be more than one least1 upper bound, the sup, whenever it
exists, is uniquely determined. For example, consider the sets I and J defined
above. If M is an upper bound for I, then M ≥ x for every x ∈ I, hence
M ≥ 1. Thus 1 is the least upper bound for I, or 1 = sup I. The situation
with the set J is only slightly more subtle: If M < 1, then c = (1 + M)/2
satisfies M < c < 1, so c ∈ J , hence M cannot be an upper bound for J . Thus
1 is the least upper bound for J , or 1 = supJ .

A real m that is a lower bound for S and satisfies m ≥ b for all other lower
bounds b is called a greatest lower bound or an infimum or inf for S, and we
1 If a and b are least upper bounds, then, a ≤ b and a ≥ b.
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write m = inf S. Again the inf, whenever it exists, is uniquely determined. As
before, it follows easily that 0 = inf I anf 0 = inf J .

The completeness property of R asserts that every nonempty set S ⊂ R
that is bounded above has a sup, and every nonempty set S ⊂ R that is
bounded below has an inf.

We introduce a convenient abbreviation, two symbols ∞, −∞, called infin-
ity and minus infinity, subject to the ordering rule −∞ < x < ∞ for all reals
x. If a set S is not bounded above, we write supS = ∞. If S is not bounded
below, we write inf S = −∞. For example, supR = ∞, inf R = −∞; in
§1.4 we show that supN = ∞. Recall that the empty set ∅ is a subset of R.
Another convenient abbreviation is to write sup ∅ = −∞, inf ∅ = ∞. Clearly,
when S is nonempty, inf S ≤ supS.

With this terminology, the completeness property asserts that every subset
of R, bounded or unbounded, empty or nonempty, has a sup and has an inf;
these may be reals or ±∞.

We emphasize that ∞ and −∞ are not reals but just convenient abbrevi-
ations. As mentioned above, the ordering properties of ±∞ are −∞ < x < ∞
for all real x; it is convenient to define the following arithmetic properties of
±∞:

∞ + ∞ = ∞,

−∞−∞ = −∞,

∞− (−∞) = ∞,

∞± c = ∞, c ∈ R,

−∞± c = −∞, c ∈ R,

(±∞) · c = ±∞, c > 0,

∞ ·∞ = ∞,

∞ · (−∞) = −∞.

Note that we have not defined ∞−∞, 0 · ∞, ∞/∞, or c/0.
Let a be an upper bound for a set S. If a ∈ S, we say a is a maximum of

S, and we write a = max S. For example, with I as above, max I = 1. The
max of a set S need not exist; for example, according to the Theorem below,
max J does not exist.

Similarly, let a be a lower bound for a set S. If a ∈ S, we say a is a
minimum of S, and we write a = minS. For example, min I = 0 but minJ
does not exist.

Theorem 1.2.1. Let S ⊂ R be a set. The max of S and the min of S are
uniquely determined whenever they exist. The max of S exists iff the sup of
S lies in S, in which case the max equals the sup. The min of S exists iff the
inf of S lies in S, in which case the min equals the inf.
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To see this, note that the first statement follows from the second since we
already know that the sup and the inf are uniquely determined. To establish
the second statement, suppose that sup S ∈ S. Then, since supS is an upper
bound for S, max S = sup S. Conversely, suppose that max S exists. Then,
supS ≤ max S since max S is an upper bound and supS is the least such.
On the other hand, supS is an upper bound for S and maxS ∈ S. Thus,
max S ≤ supS. Combining supS ≤ max S and supS ≥ max S, we obtain
max S = supS. For the inf, the derivation is completely analogous. ��

Because of this, when max S exists we say the sup is attained. Thus, the
sup for I is attained whereas the sup for J is not. Similarly, when minS exists,
we say the inf is attained. Thus, the inf for I is attained whereas the inf for J
is not.

Let A, B be subsets of R, let a be real, and let c > 0; let −A = {−x : x ∈
A}, A + a = {x + a : x ∈ A}, cA = {cx : x ∈ A}, and A + B = {x + y : x ∈
A, y ∈ B}. Here are some simple consequences of the definitions that must be
checked at this stage:

• A ⊂ B implies supA ≤ supB and inf A ≥ inf B (monotonicity property).
• sup(−A) = − inf A, inf(−A) = − supA (reflection property).
• sup(A + a) = supA + a, inf(A + a) = inf A + a for a ∈ R (translation

property).
• sup(cA) = c sup A, inf(cA) = c inf A for c > 0 (dilation property).
• sup(A+B) = supA+supB, inf(A+B) = inf A+inf B (addition property),

whenever the sum of the sups and the sum of the infs are defined.

These properties hold whether A and B are bounded or unbounded, empty
or nonempty.

We verify the first and the last properties, leaving the others as Exercise
1.2.7. For the monotonicity property, if A is empty, the property is immediate
since sup A = −∞ and inf A = ∞. If A is nonempty and a ∈ A, then a ∈ B,
hence, inf B ≤ a ≤ sup B. Thus, supB and inf B are upper and lower bounds
for A, respectively. Since supA and inf A are the least and greatest such, we
obtain inf B ≤ inf A ≤ supA ≤ supB.

Now, we verify sup(A + B) = supA + supB. If A is empty, then, so, is
A + B; in this case, the assertion to be proved reduces to −∞+ supB = −∞
which is true (remember we are excluding the case ∞−∞). Similarly, if B is
empty.

If A and B are both nonempty, then, supA ≥ x for all x ∈ A, and supB ≥
y for all y ∈ B, so, supA + sup B ≥ x + y for all x ∈ A and y ∈ B. Hence,
supA + supB ≥ z for all z ∈ A + B, or supA + sup B is an upper bound for
A + B. Since sup(A + B) is the least such, we conclude that supA + supB ≥
sup(A + B). If sup(A +B) = ∞, then, the reverse inequality supA + supB ≤
sup(A + B) is immediate, yielding the result.

If, however, sup(A + B) < ∞ and x ∈ A, y ∈ B, then, x + y ∈ A + B,
hence, x + y ≤ sup(A + B) or, what is the same, x ≤ sup(A + B) − y. Thus,
sup(A + B)− y is an upper bound for A; since sup A is the least such, we get
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supA ≤ sup(A + B) − y. Now, this last inequality implies, first, supA < ∞
and, second, y ≤ sup(A +B)− supA for all y ∈ B. Thus, sup(A + B)− supA
is an upper bound for B; since sup B is the least such, we conclude that
supB ≤ sup(A + B) − sup A or, what is the same, sup(A + B) ≥ supA +
supB. Since we already know that sup(A + B) ≤ supA + supB, we obtain
sup(A + B) = supA + supB.

To verify inf(A + B) = inf A + inf B, use reflection and what we just
finished to write

inf(A + B) = − sup[−(A + B)] = − sup[(−A) + (−B)]
= − sup(−A) − sup(−B) = inf A + inf B.

This completes the derivation of the addition property.
Every assertion that follows in this book depends only on the arithmetic,

ordering, and completeness properties of R, just described.

Exercises

1.2.1. Show that a0 = 0 for all real a.

1.2.2. Show that there is a unique real playing the role of 1. Also show that
each real a has a unique negative −a and each nonzero real a has a unique
reciprocal.

1.2.3. Show that −(−a) = a and −a = (−1)a.

1.2.4. Show that negative times positive is negative, negative times negative
is positive, and 1 is positive.

1.2.5. Show that a < b and c ∈ R imply a + c < b + c, a < b and c > 0 imply
ac < bc, a < b and b < c imply a < c, and 0 < a < b implies aa < bb.

1.2.6. Let a, b ≥ 0. Show that a ≤ b iff aa ≤ bb.

1.2.7. Verify the properties of sup and inf listed above.

1.3 The Subset N and the Principle of Induction

A subset S ⊂ R is inductive if

A. 1 ∈ S and
B. S is closed under addition by 1: x ∈ S implies x + 1 ∈ S.

For example, R+ is inductive. The subset N ⊂ R of natural numbers or
naturals is the intersection of all inductive subsets of R,

N =
⋂

{S : S ⊂ R inductive}.
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Then, N itself is inductive. Indeed, since 1 ∈ S for every inductive set S, we
conclude that 1 ∈

⋂
{S : S ⊂ R inductive} = N. Similarly, n ∈ N implies

n ∈ S for every inductive set S. Hence, n + 1 ∈ S for every inductive set S.
hence, n + 1 ∈

⋂
{S : S ⊂ R inductive} = N. This shows that N is inductive.

From the definition, we conclude that N ⊂ S for any inductive S ⊂ R. For
example, since R+ is inductive, we conclude that N ⊂ R+, i.e., every natural
is positive.

From the definition, we also conclude that N is the only inductive subset
of N. For example, S = {1} ∪ (N + 1) is a subset of N, since N is inductive.
Clearly, 1 ∈ S. Moreover, x ∈ S implies x ∈ N implies x + 1 ∈ N + 1 implies
x + 1 ∈ S, so, S is inductive. Hence, S = N or {1} ∪ (N + 1) = N, i.e., n − 1
is a natural for every natural n other than 1.

The conclusions above are often paraphrased by saying N is the smallest
inductive subset of R, and they are so important they deserve a name.

Theorem 1.3.1 (Principle of Induction). If S ⊂ R is inductive, then,
S ⊃ N. If S ⊂ N is inductive, then, S = N. ��

Let 2 = 1 + 1 > 1; we show that there are no naturals between 1 and 2.
For this, let S = {1} ∪ {n ∈ N : n ≥ 2}. Then, 1 ∈ S. If n ∈ S, there are two
possibilities. Either n = 1 or n �= 1. If n = 1, then, n + 1 = 2 ∈ S. If n �= 1,
then, n ≥ 2, so, n + 1 > n ≥ 2 and n + 1 ∈ N, so, n + 1 ∈ S. Hence, S is
inductive. Since S ⊂ N, we conclude that S = N. Thus, n ≥ 1 for all n ∈ N,
and there are no naturals between 1 and 2. Similarly (Exercise 1.3.1), for any
n ∈ N, there are no naturals between n and n + 1.

N is closed under addition and multiplication by any natural. To see this,
fix a natural n, and let S = {x : x + n ∈ N}, so, S is the set of all reals x
whose sum with n is natural. Then, 1 ∈ S since n + 1 ∈ N, and x ∈ S implies
x + n ∈ N implies (x + n) + 1 = (x + 1) + n ∈ N implies x + 1 ∈ S. Thus,
S is inductive. Since N is the smallest such set, we conclude that N ⊂ S or
m + n ∈ N for all m ∈ N. Thus, N is closed under addition. This we write
simply as N+N ⊂ N. Closure under multiplication N ·N ⊂ N is similar and
left as an exercise.

In the sequel, when we apply the principle of induction, we simply say ‘by
induction’.

To show that a given set S is inductive, one needs to verify A and B. Step
B is often referred to as the inductive step, even though, strictly speaking,
induction is both A and B, because, usually, most of the work is in establishing
B. Also, the hypothesis in B, x ∈ S, is often referred to as the inductive
hypothesis.

Let us give another example of the use of induction. A natural is even if
it is in 2N = {2n : n ∈ N}. A natural n is odd if n + 1 is even. We claim
that every natural is either even or odd. To see this, let S be the union of the
set of even naturals and the set of odd naturals. Then, 2 = 2 · 1 is even, so,
1 is odd. Hence, 1 ∈ S. If n ∈ S and n = 2k is even, then, n + 1 is odd since
(n + 1) + 1 = n + 2 = 2k + 2 = 2(k + 1). Hence, n + 1 ∈ S. If n ∈ S and n is
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odd, then, n + 1 is even, so, n + 1 ∈ S. Hence, in either case, n ∈ S implies
n + 1 ∈ S, i.e., S is closed under addition by 1. Thus, S is inductive. Hence,
we conclude that S = N. Thus, every natural is even or odd. Also the usual
parity rules hold: even plus even is even, etc.

Let A be a nonempty set. We say A has n elements if there is a bijection
between A and the set {k ∈ N : 1 ≤ k ≤ n}. We often denote this last set by
{1, 2, . . . , n}. If A = ∅, we say that the number of elements of A is zero. A set
A is finite if it has n elements for some n. Otherwise, A is infinite. Here are
some consequences of the definition that are worked out in the exercises. If A
and B are disjoint and have n and m elements, respectively, then, A ∪ B has
n + m elements. If A is a finite subset of R, then, max A and minA exist. In
particular, we let max(a, b), min(a, b) denote the larger and the smaller of a
and b. However, max A and minA may exist for an infinite subset of R.

Theorem 1.3.2. If S ⊂ N is nonempty, then, min S exists.

To see this, note that c = inf S is finite since S is bounded below. Since
c + 1 is not a lower bound, there is an n ∈ S with c ≤ n < c + 1. If c = n,
then, c ∈ S. Hence, c = min S and we are done. If c �= n, then, n− 1 < c < n,
and n is not a lower bound for S. Hence, n > 1, and there is an m ∈ S lying
between n − 1 and n. But there are no naturals between n − 1 and n. ��

The two other subsets, mentioned frequently, are the integers Z = N∪{0}∪
(−N) = {0,±1,±2, . . . }, and the rationals Q = {m/n : m,n ∈ Z, n �= 0}.
Then, Z is closed under subtraction (Exercise 1.3.3), and Q is closed under
all four arithmetic operations, except under division by zero. As for naturals,
we say that the integers in 2Z = {2n : n ∈ Z} are even, and we say that an
integer n is odd if n + 1 is even.

Fix a real a. By (an extension of) induction, one can show (Exercise 1.3.9)
that there is a function f : N → R satisfying f(1) = a and f(n + 1) = af(n)
for all n. As usual, we write f(n) = an. Hence, by construction a1 = a and
an+1 = ana for all n. Since the set {n ∈ N : (ab)n = anbn} is inductive, it
follows also that (ab)n = anbn for n ∈ N.

Now, (−1)n is 1 or −1 according to whether n ∈ N is even or odd, a > 0
implies an > 0 for n ∈ N, and a > 1 implies an > 1 for n ∈ N. These are
easily checked by induction.

If a �= 0, we extend the definition of an to n ∈ Z by setting a0 = 1
and a−n = 1/an for n ∈ N. Then (Exercise 1.3.10), an+m = anam and
(an)m = anm for all integers n, m.

Let a > 1. Then, an = am with n,m ∈ Z only when n = m. Indeed,
n − m ∈ Z, and an−m = ana−m = an/am = 1. But ak > 1 for k ∈ N, and
ak = 1/a−k < 1 for k ∈ −N. Hence, n − m = 0 or n = m. This shows that
powers are unique.

As another application of induction, we establish, simultaneously, the
validity of the inequalities 1 < 2n and n < 2n for all naturals n. This time, we
do this without mentioning the set S explicitly, as follows. The inequalities
in question are true for n = 1 since 1 < 21 = 2. Moreover, if the inequalities
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1 < 2n and n < 2n are true for a particular n (the inductive hypothesis),
then, 1 < 2n < 2n +2n = 2n2 = 2n+1, so, the first inequality is true for n+1.
Adding the inequalities valid for n yields n + 1 < 2n + 2n = 2n2 = 2n+1, so,
the second inequality is true for n + 1. This establishes the inductive step.
Hence, by induction, the two inequalities are true for all n ∈ N. Here, the set
S is S = {n ∈ N : 1 < 2n, n < 2n}.

Using these inequalities, we show that every nonzero n ∈ Z is of the form
2kp for a uniquely determined k ∈ N ∪ {0} and an odd p ∈ Z. We call k the
number of factors of 2 in n.

If 2kp = 2jq with k > j and odd integers p, q, then, q = 2k−jp = 2·2k−j−1p
is even, a contradiction. On the other hand, if j > k, then, p is even. Hence,
we must have k = j. This establishes the uniqueness of k.

To show the existence of k, by multiplying by a minus, if necessary, we
may assume n ∈ N. If n is odd, we may take k = 0 and p = n. If n is even,
then, n1 = n/2 is a natural < 2n−1. If n1 is odd, we take k = 1 and p = n1.
If n1 is even, then, n2 = n1/2 is a natural < 2n−2. If n2 is odd, we take k = 2
and p = n2. If n2 is even, we continue this procedure by dividing n2 by 2.
Continuing in this manner, we obtain n1, n2, . . . naturals with nj < 2n−j .
Since this procedure ends in fewer than n steps, there is some k natural or 0
for which p = n/2k is odd.

The final issue we take up here concerns square roots. Given a real a, a
square root of a, denoted

√
a, is any real x whose square is a, x2 = a. For

example 1 has the square roots ±1, 0 has the square root 0. On the other
hand, not every real has a square root. For example,

√
−1 does not exist

within R, i.e., there is no real x satisfying x2 = −1, since x2 + 1 > 0. In fact,
this argument shows that negative numbers never have square roots.

At this point, we do not know whether
√

2 exists within R. Now, we show
that

√
2 does not exist within Q.

Theorem 1.3.3. There is no rational a satisfying a2 = 2.

We argue by contradiction. Suppose that a = m/n is a rational whose
square is 2. Then, (m/n)2 = 2 or m2 = 2n2, i.e., there is a natural N , such
that N = m2, N = 2n2. Then, m = 2kp with odd p and k ∈ N ∪ {0},
so, N = m2 = 22kp2. Since p2 is odd, we conclude that 2k is the number
of factors of 2 in N . Similarly n = 2jq with odd q and j ∈ N ∪ {0}, so,
N = 2n2 = 222jq2 = 22j+1q2. Since q2 is odd, we conclude that 2j + 1 is the
number of factors of 2 in N . Since 2k �= 2j + 1, we arrive at a contradiction.
��

Note that Q satisfies the arithmetic and ordering properties. The com-
pleteness property is all that distinguishes Q and R.

As usual, in the following, a digit means either 0, 1, 2 or 3 = 2+1, 4 = 3+1,
5 = 4 + 1, 6 = 5 + 1, 7 = 6 + 1, 8 = 7 + 1, or 9 = 8 + 1. Also, the letters n, m,
i, j will usually denote integers, so, n ≥ 1 will be used interchangeably with
n ∈ N, with similar remarks for m, i, j.
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We say that a nonzero n ∈ Z divides m ∈ Z if m/n ∈ Z. Alternatively, we
say that m is divisible by n, and we write n | m. A natural n is composite if
n = jk for some j, k ∈ N with j > 1 and k > 1. A natural is prime if it is not
composite and is not 1. Thus, a natural is prime if it is not divisible by any
smaller natural other than 1.

For a ≥ 1, let �a� = max{n ∈ N : n ≤ a} denote the greatest integer ≤ a
(Exercises 1.3.7 and 1.3.8). Then, �a� ≤ a < �a�+ 1, and the fractional part
of a is {a} = a − �a�. Note that the fractional part is a real in [0, 1). More
generally, �a� ∈ Z and 0 ≤ {a} < 1 are defined2 for all a ∈ R.

Exercises

1.3.1. Let n be a natural. Show that there are no naturals between n and
n + 1.

1.3.2. Show that the product of naturals is natural, N · N ⊂ N.

1.3.3. If m > n are naturals, then, m − n ∈ N. Conclude that Z is closed
under subtraction.

1.3.4. Show that no integer is both even and odd. Also, show that even times
even is even, even times odd is even, and odd times odd is odd.

1.3.5. If n, m are naturals and there is a bijection between {1, 2, . . . , n} and
{1, 2, . . . ,m}, then, n = m (use induction on n). Conclude that the number
of elements #A of a nonempty set A is well defined. Also, show that #A = n,
#B = m, and A ∩ B = ∅ imply #(A ∪ B) = n + m.

1.3.6. If A ⊂ R is finite and nonempty, then, show that maxA and min A
exist (use induction).

1.3.7. If S ⊂ Z is nonempty and bounded above, then, show that S has a
max.

1.3.8. If x ≥ y > 0 are reals, then, show that x = yq + r with q ∈ N,
r ∈ R+ ∪ {0}, and r < y. (Look at the sup of {q ∈ N : yq ≤ x}.)

1.3.9. Fix a real a. A set f ⊂ R × R is inductive if (1, a) ∈ f and (x, y) ∈ f
implies (x + 1, ay) ∈ f . For example, N × R is inductive. Now, let f be the
smallest inductive set in R × R and let A = {x ∈ R : (x, y) ∈ f for some
y ∈ R}.
• Show that A = N.
• Show that f is a mapping with domain N and codomain R.
• Show that f(1) = a and f(n + 1) = af(n) for all n ≥ 1.

2 {n ∈ Z : n ≤ a} is nonempty since inf Z = −∞ (§1.4).
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This establishes the existence of a function f : N → R satisfying f(1) = a and
f(n + 1) = af(n) for all n ≥ 1. This function is usually denoted f(n) = an.

1.3.10. Let a be a nonzero real. By induction show that anam = an+m and
(an)m = anm for all integers n, m.

1.3.11. Using induction, show that

1 + 2 + · · · + n =
n(n + 1)

2
for every n ∈ N.

1.3.12. Let p > 1 be a natural. Show that for each nonzero n ∈ Z there is a
unique k ∈ N ∪ {0} and an integer m not divisible by p (i.e., m/p is not in
Z), such that n = pkm.

1.3.13. Let S ⊂ R satisfy

• 1 ∈ S and
• n ∈ S whenever k ∈ S for all naturals k < n.

Show that S ⊃ N. This is an alternate, and sometimes useful, form of induc-
tion.

1.3.14. Fix a > 0 real, and let Sa = {n ∈ N : na ∈ N}. If Sa is nonempty,
m ∈ Sa, and p = min Sa, show that p divides m (Exercise 1.3.8).

1.3.15. Let n,m be naturals and suppose that a prime p divides the product
nm. Show that p divides n or m. (Consider a = n/p, and show that minSa = 1
or min Sa = p.)

1.3.16. (Fundamental Theorem of Arithmetic) By induction, show that
every natural n either is 1 or is a product of primes, n = p1 . . . pr, with the
pj ’s unique except, possibly, for the ordering. (Given n, either n is prime or
n = pm for some natural 1 < m < n; use induction as in Exercise 1.3.13.)

1.3.17. Given 0 < x < 1, let r0 = x. Define naturals qn and remainders rn by
setting

1
rn

= qn+1 + rn+1, n ≥ 0.

Thus, qn+1 = �1/rn� is the integer part of 1/rn and rn+1 = {1/rn} is the
fractional part of 1/rn, and

x =
1

q1 +
1

q2 +
1

. . . qn−1 +
1

qn + rn

is a continued fraction. This algorithm stops the first time rn = 0. Then, the
continued fraction is finite. If this never happens, this algorithm does not end,
and the continued fraction is infinite. Show that the algorithm stops iff x ∈ Q.
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1.4 The Completeness Property

We begin by showing N has no upper bound. Indeed, if N has an upper bound,
then, N has a (finite) sup, call it c. Then, c is an upper bound for N whereas
c − 1 is not an upper bound for N, since c is the least such. Thus, there is
an n ≥ 1, satisfying n > c − 1, which gives n + 1 > c and n + 1 ∈ N. But
this contradicts the fact that c is an upper bound. Hence, N is not bounded
above. In the notation of §1.2, supN = ∞.

Let S = {1/n : n ∈ N} be the reciprocals of all naturals. Then, S is
bounded below by 0, hence, S has an inf. We show that inf S = 0. First, since
0 is a lower bound, by definition of inf, inf S ≥ 0. Second, let c > 0. Since
supN = ∞, there is some natural, call it k, satisfying k > 1/c. Multiplying
this inequality by the positive c/k, we obtain c > 1/k. Since 1/k is an element
of S, this shows that c is not a lower bound for S. Thus, any lower bound for
S must be less or equal to 0. Hence, inf S = 0.

The two results just derived are so important we state them again.

Theorem 1.4.1. supN = ∞, and inf{1/n : n ∈ N} = 0. ��

As a consequence, since Z ⊃ N, it follows that supZ = ∞. Since Z ⊃ (−N)
and inf(A) = − sup(−A), it follows that inf Z ≤ inf(−N) = − supN = −∞,
hence, inf Z = −∞.

An interval is a subset of R of the following form:

(a, b) = {x : a < x < b},
[a, b] = {x : a ≤ x ≤ b},
[a, b) = {x : a ≤ x < b},
(a, b] = {x : a < x ≤ b}.

Intervals of the form (a, b), (a,∞), (−∞, b), (−∞,∞) are open, whereas those
of the form [a, b], [a,∞), (−∞, b] are closed. When −∞ < a < b < ∞, the
interval [a, b] is compact. Thus, (a,∞) = {x : x > a}, (−∞, b] = {x : x ≤ b},
and (−∞,∞) = R.

For x ∈ R, we define |x|, the absolute value of x, by

|x| = max(x,−x).

Then, x ≤ |x| for all x, and, for a > 0, {x : −a < x < a} = {x : |x| < a} =
{x : x < a} ∩ {x : x > −a}, {x : x < −a} ∪ {x : x > a} = {x : |x| > a}.

The absolute value satisfies the following properties:

A. |x| > 0 for all nonzero x, and |0| = 0,
B. |x| |y| = |xy| for all x, y,
C. |x + y| ≤ |x| + |y| for all x, y.
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We leave the first two as exercises. The third, the triangle inequality, is
derived using |x|2 = x2 as follows:

|x + y|2 = (x + y)2 = x2 + 2xy + y2

≤ |x|2 + 2|xy| + |y|2 = |x|2 + 2|x| |y| + |y|2 = (|x| + |y|)2.

Since a ≤ b iff a2 ≤ b2 for a, b nonnegative (Exercise 1.2.6), the triangle
inequality is established.

Frequently, the triangle inequality is used in alternate forms, one of which
is

|x − y| ≥ |x| − |y|.
This follows by writing |x| = |(x − y) + y| ≤ |x − y| + |y| and transposing |y|
to the other side. Another form is

|a1 + a2 + · · · + an| ≤ |a1| + |a2| + · · · + |an|, n ≥ 1.

We show how the completeness property can be used to derive the existence
of

√
2 within R.

Theorem 1.4.2. There is a real a satisfying a2 = 2.

To see this, let S = {x : x ≥ 1 and x2 < 2}. Since 1 ∈ S, S is nonempty.
Also, x ∈ S implies x = x1 ≤ xx = x2 < 2, hence, S is bounded above by 2,
hence, S has a sup, call it a. We claim that a2 = 2. We establish this claim by
ruling out the cases a2 < 2 and a2 > 2, leaving us with the desired conclusion
(remember every real is positive or negative or zero).

So, suppose that a2 < 2. If we find a natural n with

(

a +
1
n

)2

< 2,

then, a + 1/n ∈ S, hence, the real a could not have been an upper bound for
S, much less the least such. To see how to find such an n, note that

(

a +
1
n

)2

= a2 +
2a

n
+

1
n2

≤ a2 +
2a

n
+

1
n

= a2 +
2a + 1

n
< 2

if (2a + 1)/n < 2 − a2, i.e., if n > (2a + 1)/(2 − a2). Since a2 < 2, b =
(2a + 1)/(2 − a2) is a perfectly well defined positive real. Since supN = ∞,
such a natural n > b can always be found. This rules out a2 < 2.

Before we rule out a2 > 2, we note that S is bounded above by any positive
b satisfying b2 > 2 since, for b and x positive, b2 > x2 iff b > x.

Now suppose that a2 > 2. Then, b = (a2 − 2)/2a is positive, hence, there
is a natural n satisfying 1/n < b which implies a2 − 2a/n > 2. Hence,
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(

a − 1
n

)2

= a2 − 2a

n
+

1
n2

> 2,

so, a− 1/n is an upper bound for S. This shows that a is not the least upper
bound, contradicting the definition of a. Thus, we are forced to conclude that
a2 = 2. ��

A real a satisfying a2 = 2 is called a square root of 2. Since (−x)2 = x2,
there are two square roots of 2, one positive and one negative. From now
on, the positive square root is denoted

√
2. Similarly, every positive a has a

positive square root, which we denote
√

a. In the next chapter, after we have
developed more material, a simpler proof of this fact will be derived.

More generally, for every b > 0 and n ≥ 1, there is a unique a > 0 satisfying
an = b, the nth root a = b1/n of b. Now, for n ≥ 1, k ≥ 1, and m ∈ Z,

[
(bm)1/n

]nk

=
{[

(bm)1/n
]n}k

= (bm)k = bmk,

hence, by uniqueness of roots, (bm)1/n = (bmk)1/nk. Thus, for r = m/n ratio-
nal, we may set br = (bm)1/n, defining rational powers of positive reals.

Since
√

2 �∈ Q, R \Q is not empty. The reals in R \Q are the irrationals.
In fact, both the rationals and the irrationals have an interlacing or density
property.

Theorem 1.4.3. If a < b are any two reals, there is a rational s between
them, a < s < b, and there is an irrational t between them, a < t < b.

To see this, first, choose a natural n satisfying 1/n < b − a. Second let
S = {m ∈ N : na < m}, and let k = inf S = min S. Since k ∈ S, na < k.
Since k − 1 �∈ S, k − 1 ≤ na. Hence, s = k/n satisfies

a < s ≤ a +
1
n

< b.

For the second assertion, choose a natural n satisfying 1/n
√

2 < b− a, let
T = {m ∈ N :

√
2na < m}, and let k = minT . Since k ∈ T , k >

√
2na. Since

k − 1 �∈ T , k − 1 ≤
√

2na. Hence, t = k/(n
√

2) satisfies

a < t ≤ a +
1

n
√

2
< b.

Moreover, t is necessarily irrational. ��
Approximation of reals by rationals is discussed further in the exercises.

Exercises

1.4.1. Show that x ≤ |x| for all x and, for a > 0, {x : −a < x < a} = {x :
|x| < a} = {x : x < a} ∩ {x : x > −a}, {x : x < −a} ∪ {x : x > a} = {x :
|x| > a}.
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1.4.2. For all x ∈ R, |x| ≥ 0, |x| > 0 if x �= 0, and |x| |y| = |xy| for all
x, y ∈ R.

1.4.3. By induction, show that |a1 + a2 + · · · + an| ≤ |a1| + |a2| + · · · + |an|
for n ≥ 1.

1.4.4. Show that every a > 0 has a unique positive square root.

1.4.5. Show that ax2 + bx + c = 0, a �= 0, has two, one, or no solutions in R
according to whether b2 − 4ac is positive, zero, or negative. When there are
solutions, they are given by x = (−b ±

√
b2 − 4ac)/2a.

1.4.6. By induction, show that (1+a)n ≤ 1+(2n−1)a for n ≥ 1 and 0 ≤ a ≤ 1.
Also show that (1 + a)n ≥ 1 + na for n ≥ 1 and a ≥ −1.

1.4.7. For a, b ≥ 0, show that an ≥ bn iff a ≥ b. Also show that every b > 0
has a unique positive nth root for all n ≥ 1 (use Exercise 1.4.6 and modify
the derivation for

√
2).

1.4.8. Show that the real t constructed in the derivation of Theorem 1.4.3 is
irrational.

1.4.9. Let a be any real. Show that, for each ε > 0, no matter how small,
there are integers n �= 0, m satisfying

∣
∣
∣a − m

n

∣
∣
∣ <

ε

n
.

(Let {a} denote the fractional part of a, consider the sequence {a}, {2a},
{3a}, . . . , and divide [0, 1] into finitely many subintervals of length less than
ε. Since there are infinitely many terms in the sequence, at least 2 of them
must lie in the same subinterval.)

1.4.10. Show that a =
√

2 satisfies
∣
∣
∣a − m

n

∣
∣
∣ ≥ 1

(2
√

2 + 1)n2
, n,m ≥ 1.

(Consider the two cases |a − m/n| ≥ 1 and |a − m/n| ≤ 1, separately, and
look at the minimum of n2|f(m/n)| with f(x) = x2 − 2.)

1.4.11. Let a =
√

1 +
√

2. Then, a is irrational, and there is a positive real c
satisfying ∣

∣
∣a − m

n

∣
∣
∣ ≥ c

n4
, n,m ≥ 1.

(Factor f(a) = a4 − 2a2 − 1 = 0, and proceed as in the previous exercise.)

1.4.12. For n ∈ Z \ {0}, define |n|2 = 1/2k where k is the number of factors
of 2 in n. Also define |0|2 = 0. For n/m ∈ Q define |n/m|2 = |n|2/|m|2. Show
that | · |2 : Q → R is well defined and satisfies the absolute value properties
A, B, and C.
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1.5 Sequences and Limits

A sequence3 of real numbers is a function f : N → R. Usually, we write a
sequence as (an) where an = f(n) is the nth term. For example, the formulas
an = n, bn = 2n, cn = 2n, and dn = 2−n + 5n yield sequences (an), (bn),
(cn), and (dn). Later, we will consider sequences of sets (Qn) and sequences
of functions (fn), but now we discuss only sequences of reals.

It is important to distinguish between the sequence (an) (the function f)
and the set {an} (the range f(N) of f). In fact, a sequence is an ordered
set (a1, a2, a3, . . . ) and not just a set {a1, a2, a3, . . . }. Sometimes it is more
convenient to start sequences from the index n = 0, i.e., to consider a sequence
as a function on N ∪ {0}. For example, the sequence (1, 2, 4, 8, . . . ) can be
written an = 2n, n ≥ 0. Specific examples of sequences are usually constructed
by induction as in Exercise 1.3.9. However, we will not repeat the construction
carried out there for each sequence we encounter.

In this section, we are interested in the behavior of sequences as the index
n increases without bound. Often this is referred to as the “limiting behavior”
of sequences. For example, consider the sequences

(an) = (1/2, 2/3, 3/4, 4/5, . . . ),
(bn) = (1,−1, 1,−1, . . . ),

(cn) =

(

2,
√

2,

√√
2,

√√√
2, . . .

)

,

(dn) = (2, 3/2, 17/12, 577/408, . . . ),

where, in the last4 sequence, d1 = 2, d2 = (d1 + 2/d1)/2, d3 = (d2 + 2/d2)/2,
d4 = (d3 + 2/d3)/2, and so on. What are the limiting behaviors of these
sequences?

As n increases, the terms in (an) are arranged in increasing order, and
an ≤ 1 for all n ≥ 1. However, if we increase n sufficiently, the terms an =
(n−1)/n = 1−1/n become arbitrarily close to 1, since sup{1−1/n : n ≥ 1} = 1
(§1.4). Thus, it seems reasonable to say that (an) approaches one or the limit
of the sequence (an) equals one.

On the other hand, the sequence (bn) does not seem to approach any single
real, as it flips back and forth between 1 and −1. Indeed, one is tempted to
say that (bn) has two limits, 1 and −1.

The third sequence is more subtle. Since we have
√

x < x for x > 1, the
terms are arranged in decreasing order. Because of this it seems reasonable
that (cn) approaches its “bottom”, i.e., (cn) approaches L = inf{cn : n ≥ 1}.
Although, in fact, this turns out to be so, it is not immediately clear just what
L equals.
3 This notion makes sense for finite sets also: A finite sequence (a1, . . . , an) of reals

is a function f : {1, . . . , n} → R.
4 Decimal notation, e.g., 17 = (9 + 1) + 7, is reviewed in the next section.
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The limiting behavior of the fourth sequence is not at all clear. If one com-
putes the first nine terms, it is clear that this sequence approaches something
quickly. However, since such a computation is approximate, at the outset, we
cannot be sure there is a single real number that qualifies as “the limit” of
(dn). The sequence (dn) is discussed in Exercise 1.5.12 and in Exercise 1.6.5.

It is important to realize that

A. What does “limit” mean?
B. Does the limit exist?
C. How do we compute the limit?

are very different questions. When the situation is sufficiently simple, say, as
in (an) or (bn) above, we may feel that the notion of “limit” is self-evident and
needs no elaboration. Then, we may choose to deal with more complicated
situations on a case-by-case basis and not worry about a “general” definition
of limit. Historically, however, mathematicians have run into trouble using this
ad hoc approach. Because of this, a more systematic approach was adopted in
which a single definition of “limit” is applied. This approach was so successful
that it is universally followed today.

Below, we define the concept of limit in two stages, first, for monotone
sequences and, then, for general sequences. To deal with situations where
sequences have more than one limit, the auxiliary concept of a “limit point”
is introduced in Exercise 1.5.9. Now, we turn to the formal development.

Let (an) be any sequence. We say (an) is decreasing if an ≥ an+1 for all
natural n. If L = inf{an : n ≥ 1}, in this case, we say (an) approaches L as
n ↗ ∞, and we write an ↘ L as n ↗ ∞. Usually, we drop the phrase ‘as
n ↗ ∞’ and simply write an ↘ L. We say a sequence (an) is increasing if
an ≤ an+1 for all n ≥ 1. If L = sup{an : n ≥ 1}, in this case, we say (an)
approaches L as n ↗ ∞, and we write an ↗ L as n ↗ ∞. Usually, we drop
the phrase ‘as n ↗ ∞’ and simply write an ↗ L. Alternatively, in either case,
we say the limit of (an) is L, and we write

lim
n↗∞

an = L.

Note that since sups and infs are uniquely determined, we say ‘the limit’
instead of ‘a limit’. Thus,

lim
n↗∞

(

1 − 1
n

)

= 1

since sup{1 − 1/n : n ≥ 1} = 1,

lim
n↗∞

1
n

= 0

since inf{1/n : n ≥ 1} = 0, and

lim
n↗∞

n2 = ∞
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since sup{n2 : n ≥ 1} = ∞.
We say a sequence is monotone if the sequence is either increasing or

decreasing. Thus the concept of limit is now defined for every monotone se-
quence. We say a sequence is constant if it is both decreasing and increasing,
i.e. it is of the form (a, a, . . . ) where a is a fixed real.

If (an) is a monotone sequence approaching a nonzero limit a, then, there
is a natural N beyond which an �= 0 for n ≥ N . To see this, suppose that (an)
is increasing and a > 0. Then, by definition a = sup{an : n ≥ 1}, hence, a/2 is
not an upper bound for (an). Thus, there is a natural N with aN > a/2 > 0.
Since the sequence is increasing, we conclude that an ≥ aN > 0 for n ≥ N . If
(an) is increasing and a < 0, then, an ≤ a < 0 for all n ≥ 1. If the sequence
is decreasing, the reasoning is similar.

Before we define limits for arbitrary sequences, we show that every
sequence (an) lies between a decreasing sequence (a∗

n) and an increasing
sequence (an∗) in a simple and systematic fashion.

Let (an) be any sequence. Let a∗
1 = sup{ak : k ≥ 1}, a∗

2 = sup{ak : k ≥ 2},
and, for each natural n, let a∗

n = sup{ak : k ≥ n}. Thus, a∗
n is the sup of all

the terms starting from the nth term. Since {ak : k ≥ n + 1} ⊂ {ak : k ≥ n}
and the sup is monotone (§1.2), a∗

n+1 ≤ a∗
n. Moreover, it is clear from the

definition that

a∗
n = max(an, a∗

n+1) ≥ a∗
n+1, n ≥ 1,

holds for every n ≥ 1. Thus, (a∗
n) is decreasing and an ≤ a∗

n since an ∈ {ak :
k ≥ n}. Similarly, we set an∗ = inf{ak : k ≥ n} for each n ≥ 1. Then, (an∗)
is increasing and an ≥ an∗. (a∗

n) is the upper sequence, and (an∗) is the lower
sequence of the sequence (an) (Figure 1.2).

x1 x2 x3x4x5 x6

x1∗ x2∗ = x3∗ = x4∗ = x5∗ x∗
1 = x∗

2 = x∗
3x∗

4x∗
5

Fig. 1.2. Upper and lower sequences with xn = x6, n ≥ 6.

Let us look at the sequence (a∗
n) more closely and consider the following

question: When might the sup be attained in the definition of a∗
n? To be

specific, suppose the sup is attained in a∗
9, i.e. suppose

a∗
9 = sup{an : n ≥ 9} = max{an : n ≥ 9}.

This means the set {an : n ≥ 9} has a greatest element. Then, since a∗
8 =

max(a8, a
∗
9), it follows that the set {an : n ≥ 8} has a greatest element, or

that the sup is attained in a∗
8. Continuing in this way, it follows that all the

suprema in a∗
n, for 1 ≤ n ≤ 9, are attained. We conclude that if the sup is

attained in a∗
n for some particular n, then the sups are attained in a∗

m for all
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m < n. Equivalently, if the sup is not attained in a∗
n for a particular n, then

the suprema are not attained for all subsequent terms a∗
m, m > n.

Now suppose a∗
n > a∗

n+1 for a particular n, say a∗
8 > a∗

9. Since a∗
8 =

max(a8, a
∗
9), this implies a∗

8 = a8, which implies the sup is attained in a∗
8.

Equivalently, if the sup is not attained in a∗
8, then neither is it attained in a∗

9,
a∗
10, . . . , and moreover we have a∗

8 = a∗
9 = a∗

10 = . . . .
Summarizing, we conclude:5 For any sequence (an), there is an 1 ≤ N ≤ ∞

such that the terms a∗
n, 1 ≤ n < N , are maxima, a∗

n = max{ak : k ≥ n},
rather than suprema, and the sequence (a∗

N , a∗
N+1, . . . ) is constant. When

N = 1, the whole sequence (a∗
n) is constant, and when N = ∞, all terms in

the sequence (a∗
n) are maxima.

Let us now return to the main development.
If the sequence (an) is any sequence, then, the sequences (a∗

n), (an∗) are
monotone, hence, they have limits,

a∗
n ↘ a∗, an∗ ↗ a∗.

In fact, a∗ ≤ a∗. To see this, fix a natural N ≥ 1. Then,

aN∗ ≤ an∗ ≤ an ≤ a∗
n ≤ a∗

N , n ≥ N.

But since (an∗) is increasing, a1∗, a2∗, . . . , aN∗ are all ≤ aN∗, hence,

an∗ ≤ a∗
N , n ≥ 1.

Hence, a∗
N is an upper bound for the set {an∗ : n ≥ 1}. Since a∗ is the sup of

this set, we must have a∗ ≤ a∗
N . But this is true for every natural N . Since

a∗ is the inf of the set {a∗
N : N ≥ 1}, we conclude that a∗ ≤ a∗.

Theorem 1.5.1. Let (an) be a sequence, and let

a∗
n = sup{ak : k ≥ n}, an∗ = inf{ak : k ≥ n}, n ≥ 1.

Then, (a∗
n) and (an∗) are decreasing and increasing, respectively. Moreover, if

a∗ and a∗ are their limits, then,

A. an∗ ≤ an ≤ a∗
n for all n ≥ 1,

B. a∗
n ↘ a∗,

C. an∗ ↗ a∗, and
D. −∞ ≤ a∗ ≤ a∗ ≤ ∞.

A sequence (an) is bounded if {ak : k ≥ 1} is a bounded subset of R.
Otherwise, (an) is unbounded. We caution the reader that some of the terms
a∗

n, an∗ as well as the limits a∗, a∗, may equal ±∞, when (an) is unbounded.
Keeping this possibility in mind, the theorem is correct as it stands. ��

5 This was pointed out to me by Igor Rivin.



1.5 Sequences and Limits 21

If the sequence (an) happens to be increasing, then, a∗
n = a∗ and an∗ = an

for all n ≥ 1. If (an) happens to be decreasing, then, a∗
n = an and an∗ = a∗

for all n ≥ 1.
If N is a fixed natural and (an) is a sequence, let (aN+n) be the sequence

(aN+1, aN+2, . . . ). Then, an ↗ a∗ iff aN+n ↗ a∗, and an ↘ a∗ iff aN+n ↘ a∗.
Also, by the sup reflection property (§1.2), bn = −an for all n ≥ 1 implies
b∗n = −an∗, bn∗ = −a∗

n for all n ≥ 1. Hence, b∗ = −a∗, b∗ = −a∗.
Now we define the limit of an arbitrary sequence. Let (an) be any sequence,

and let (a∗
n), (an∗), a∗, a∗ be the upper and lower sequences together with

their limits. We call a∗ the upper limit of the sequence (an) and a∗ the lower
limit of the sequence (an). If they are equal, a∗ = a∗, we say that L = a∗ = a∗
is the limit of (an), and we write

lim
n↗∞

an = L.

Alternatively, we say an approaches L, and we write an → L as n ↗ ∞ or
just an → L. If they are not equal, a∗ �= a∗, we say that (an) does not have a
limit.

If (an) is monotone, let L be its limit as a monotone sequence. Then,
its upper and lower sequences are equal to itself and the constant sequence
(L,L, . . . ). Thus, its upper limit is L, and its lower limit is L. Hence, L is its
limit according to the second definition, In other words, the two definitions
are consistent.

Clearly a constant sequence (a, a, a, . . . ) approaches a in any of the above
senses, as a∗

n = a and an∗ = a for all n ≥ 1.
Let us look at an example. Take an = (−1)n/n, n ≥ 1, or

(an) =
(

−1,
1
2
,−1

3
,
1
4
, . . .

)

.

Then,

(a∗
n) =

(
1
2
,
1
2
,
1
4
,
1
4
, . . .

)

,

(an∗) =
(

−1,−1
3
,−1

3
,−1

5
,−1

5
, . . .

)

.

Hence, a∗ = a∗ = 0, thus, an → 0.
Not every sequence has a limit. For example (1, 0, 1, 0, 1, 0, . . . ) does not

have a limit. Indeed, here, a∗
n = 1 and an∗ = 0 for all n ≥ 1, hence, a∗ = 0 <

1 = a∗.
Limits of sequences satisfy simple properties. For example, an → a implies

−an → −a, and an → L iff aN+n → L. Thus, in a very real sense, the limiting
behaviour of a sequence does not depend on the first N terms of the sequence,
for any N ≥ 1. Here is the ordering property for sequences.
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Theorem 1.5.2. Suppose that (an), (bn), and (cn) are sequences with an ≤
bn ≤ cn for all n ≥ 1. If bn → K and cn → L, then, K ≤ L. If an → L and
cn → L, then, bn → L.

Note that, in the second assertion, the existence of the limit of (bn) is
not assumed, but is rather part of the conclusion. Why is this theorem true?
Well, c∗1 is an upper bound for the set {ck : k ≥ 1}. Since bk ≤ ck for all k,
c∗1 is an upper bound for {bk : k ≥ 1}. Since b∗1 is the least such, b∗1 ≤ c∗1.
Repeating this argument with k starting at n, instead of at 1, yields b∗n ≤ c∗n
for all n ≥ 1. Repeating the same reasoning again, yields b∗ ≤ c∗. If bn → K
and cn → L, then, b∗ = K and c∗ = L, so, K ≤ L, establishing the first
assertion. To establish the second, we know that b∗ ≤ c∗. Now, set Cn = −an

and Bn = −bn for all n ≥ 1. Then, Bn ≤ Cn for all n ≥ 1, so, by what we just
learned, B∗ ≤ C∗. But B∗ = −b∗ and C∗ = −a∗, so, a∗ ≤ b∗. We conclude
that a∗ ≤ b∗ ≤ b∗ ≤ c∗. If an → L and cn → L, then, a∗ = L and c∗ = L,
hence, b∗ = b∗ = L. ��

As an application, 2−n → 0 as n ↗ ∞ since 0 < 2−n < 1/n for all n ≥ 1.
Similarly, limn↗∞

(
1
n − 1

n2

)
= 0 since

− 1
n
≤ − 1

n2
≤ 1

n
− 1

n2
≤ 1

n

for all n ≥ 1 and ±1/n → 0 as n ↗ ∞.
Let (an) be a sequence with nonnegative terms. Often the ordering prop-

erty is used to show that an → 0 by finding a sequence (en) satisfying
0 ≤ an ≤ en for all n ≥ 1 and en → 0.

Below and throughout the text, we will use the following easily checked
fact: If a and b are reals and a < b + ε for all real ε > 0, then, a ≤ b. Indeed,
either a ≤ b or a > b. If the latter case occurs, we may choose ε = (a−b)/2 > 0,
yielding the contradiction a = b + (a− b) > b + ε. Thus, the former case must
occur, or a ≤ b. Moreover, if a and b are reals and b ≤ a < b + ε for all ε > 0,
then, a = b.

Throughout the text, ε will denote a positive real number.

Theorem 1.5.3. If an → a and bn → b with a, b real, then, max(an, bn) →
max(a, b) and min(an, bn) → min(a, b). Moreover, for any sequence (an) and
L real, an → L iff an − L → 0 iff |an − L| → 0.

Let cn = max(an, bn), n ≥ 1, c = max(a, b), and let us assume, first, that
the sequences (an), (bn) are decreasing. Then, their limits are their infs, and
cn = max(an, bn) ≥ max(a, b) = c. Hence, setting c∗ = inf{cn : n ≥ 1},
we conclude that c∗ ≥ c. On the other hand, given ε > 0, there are n and
m satisfying an < a + ε and bm < b + ε, so, cn+m = max(an+m, bn+m) ≤
max(an, bm) < max(a + ε, b + ε) = c + ε. Thus, c∗ < c + ε. Since ε > 0 is
arbitrary and we already know c∗ ≥ c, we conclude that c∗ = c. Since (cn) is
decreasing, we have shown that cn → c.
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Now, assume (an), (bn) are increasing. Then, their limits are their sups,
and cn = max(an, bn) ≤ max(a, b) = c. Hence, setting c∗ = sup{cn : n ≥ 1},
we conclude that c∗ ≤ c. On the other hand, given ε > 0, there are n and
m satisfying an > a − ε and bm > b − ε, so, cn+m = max(an+m, bn+m) ≥
max(an, bm) > max(a − ε, b − ε) = c − ε. Thus, c∗ > c − ε. Since ε > 0 is
arbitrary and we already know c∗ ≤ c, we conclude that c∗ = c. Since (cn) is
increasing, we have shown that cn → c.

Now, for a general sequence (an), we have (a∗
n) decreasing, (an∗) increasing,

and
max(an∗, bn∗) ≤ cn ≤ max(a∗

n, b∗n), n ≥ 1.

Thus, (cn) lies between two sequences converging to c = max(a, b). By the
ordering property, we conclude that cn → max(a, b).

Since min(a, b) = −max(−a,−b), the second assertion follows from the
first.

For the third assertion, assume, first, an → L, and set bn = an − L.
Since sup(A − a) = supA − a and inf(A − a) = inf A − a, b∗n = a∗

n − L, and
bn∗ = an∗−L. Hence, b∗ = a∗−L = 0, and b∗ = a∗−L = 0. Thus, an−L → 0.
If an −L → 0, then, L− an → 0. Hence, |an −L| = max(an −L,L− an) → 0
by the first assertion. Conversely, since

−|an − L| ≤ an − L ≤ |an − L|, n ≥ 1,

|an − L| → 0 implies an − L → 0, by the ordering property. Since an =
(an − L) + L, this implies an → L. ��

Often this theorem will be used to show that an → L by finding a sequence
(en) satisfying |an−L| ≤ en and en → 0. For example, let A ⊂ R be bounded
above. Then, supA− 1/n is not an upper bound for A, hence, for each n ≥ 1,
there is a real xn ∈ A satisfying supA − 1/n < xn ≤ supA, hence, |xn −
supA| < 1/n. By the above, we conclude that xn → supA. When A is not
bounded above, for each n ≥ 1, there is a real xn ∈ A satisfying xn > n.
Then, xn → ∞ = supA. In either case, we conclude, if A ⊂ R, there is a
sequence (xn) ⊂ A with xn → supA. Similarly, if A ⊂ R, there is a sequence
(xn) ⊂ A with xn → inf A.

Now we derive the arithmetic properties of limits.

Theorem 1.5.4. If an → a and c is real, then, can → ca. Let a, b be real. If
an → a, bn → b, then, an + bn → a + b and anbn → ab. Moreover, if b �= 0,
then bn �= 0 for n sufficiently large and an/bn → a/b.

If c = 0, there is nothing to show. If c > 0, set bn = can. Since sup(cA) =
c sup A and inf(cA) = c inf A, b∗n = ca∗

n, bn∗ = can∗, b∗ = ca∗, b∗ = ca∗.
Hence, an → a implies can → ca. Since (−c)an = −(can), the case with c
negative follows.

To derive the additive property, assume, first, that a = b = 0. We have to
show that an + bn → 0. Then,
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2min(an, bn) ≤ an + bn ≤ 2max(an, bn), n ≥ 1.

Thus, an + bn lies between two sequences approaching 0, so, an + bn → 0. For
general a, b, apply the previous to a′

n = an − a, b′n = bn − b.
To derive the multiplicative property, first, note that a1∗ ≤ an ≤ a∗

1, so,
|an| ≤ k for some k, i.e., (an) is bounded. Use the triangle inequality to get

|anbn − ab| = |(an − a)b + (bn − b)an| ≤ |b| |an − a| + |an| |bn − b|
≤ |b| |an − a| + k|bn − b|, n ≥ 1.

Now, the result follows from the additive and ordering properties.
To obtain the division property, assume b > 0. From the above, anb−abn →

0. Since bn → b, bn∗ ↗ b, so, there exists N ≥ 1 beyond which bn ≥ bN∗ > 0
for n ≥ N . Thus,

0 ≤
∣
∣
∣
∣
an

bn
− a

b

∣
∣
∣
∣ =

|anb − abn|
|bn| |b|

≤ |anb − abn|
bN∗ b

, n ≥ N.

Thus, |an/bn − a/b| lies between zero and a sequence approaching zero. The
case b < 0 is entirely similar. ��

In fact, although we do not derive this, this theorem remains true when
a or b are infinite, as long as we do not allow undefined expressions, such as
∞−∞ (the allowable expressions are defined in §1.2).

As an application of this theorem,

lim
n↗∞

2n2 + 1
n2 − 2n + 1

= lim
n↗∞

2 + 1
n2

1 − 2
n + 1

n2

=
2 + 0

1 − 2 · 0 + 0
= 2.

If (an) is a sequence with positive terms and bn = 1/an, then, an → 0
iff bn → ∞ (Exercise 1.5.3). Now, let a > 1 and set b = a − 1. Then,
an = (1 + b)n ≥ 1 + nb for all n ≥ 1 (Exercise 1.4.6). Hence, an ↗ ∞. If
0 < a < 1, then, a = 1/b with b > 1, so, an = 1/bn ↘ 0. Summarizing,

A. if a > 1, then, an ↗ ∞,
B. if a = 1, then, an = 1 for all n ≥ 1, and
C. if 0 ≤ a < 1, then, an → 0.

Sometimes we say that a sequence (an) converges to L if an → L. If
the specific limit is not relevant, we say that the sequence converges or is
convergent. If a sequence has no limit, we say it diverges. More precisely, if
the sequence (an) does not approach L, we say that it diverges from L, and
we write an �→ L. From the definition of an → L, we see that an �→ L means
either a∗ �= L or a∗ �= L. This is so whether L is real or ±∞.

Typically, divergence is oscillatory behavior, e.g., an = (−1)n. Here, the
sequence goes back and forth never settling on anything, not even ∞ or −∞.
Nevertheless, this sequence is bounded. Of course a sequence may be oscilla-
tory and unbounded, e.g., an = (−1)nn.
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Let (an) be a sequence, and suppose that 1 ≤ k1 < k2 < k3 < . . .
is an increasing sequence of distinct naturals. Set bn = akn

, n ≥ 1. Then,
(bn) = (akn

) is a subsequence of (an). If an → L, then, akn
→ L. Conversely,

if (an) is monotone, akn
→ L implies an → L (Exercise 1.5.4).

Generally, if a sequence (xn) has a subsequence (xkn
) converging to L, we

say that (xn) subconverges to L.
Let (an) converge to a (finite) real limit L, and let ε > 0 be given. Since

(an∗) is increasing to L, there must exist a natural N∗, such that an∗ > L− ε
for n ≥ N∗. Similarly, there must exist N∗ beyond which we have a∗

n < L + ε.
Since an∗ ≤ an ≤ a∗

n for all n ≥ 1, we obtain L − ε < an < L + ε for
n ≥ N = max(N∗, N∗). Thus, all but finitely many terms of the sequence lie
in (L − ε, L + ε) (Figure 1.3).

Note that choosing a smaller ε > 0 is a more stringent condition on the
terms. As such, it leads to (in general) a larger N , i.e., the number of terms
that fall outside the interval (L − ε, L + ε) depends on the choice of ε > 0.

Conversely, suppose that L − ε < an < L + ε for all but finitely many
terms, for every ε > 0. Then, for a given ε > 0, by the ordering property,
L− ε ≤ an∗ ≤ a∗

n ≤ L + ε for all but finitely terms. Hence, L− ε ≤ a∗ ≤ a∗ ≤
L + ε. Since this holds for every ε > 0, we conclude that a∗ = a∗ = L, i.e.,
an → L. We have derived the following:

Theorem 1.5.5. Let (an) be a sequence and let L be real. If an → L, then, all
but finitely many terms of the sequence lie within the interval (L − ε, L + ε),
for all ε > 0. Conversely, if all but finitely many terms lie in the interval
(L − ε, L + ε), for all ε > 0, then, an → L. ��

x1 x2x3 x4 x5 x6

L L + εL − ε

Fig. 1.3. Convergence to L.

From this, we conclude that, if an → L and L �= 0, then, an �= 0 for all
but finitely many n.

We end the section with an application. Suppose that f : N → N is
injective, i.e., suppose that (f(n)) = (an) is a sequence consisting of distinct
naturals. Then, f(n) → ∞. To see this, note that (since f is injective) for
each n natural there are only finitely many naturals k satisfying f(k) < n.
Let kn = max{k : f(k) < n}. Then, k > kn implies f(k) ≥ n which implies
f∗(kn + 1) = inf{f(k) : k > kn} ≥ n. Hence, f∗(kn + 1) ↗ ∞, as n ↗ ∞.
Since (f∗(n)) is monotone and (f∗(kn + 1)) is a subsequence of (f∗(n)), it
follows that f∗(n) ↗ ∞, as n ↗ ∞ (Exercise 1.5.4). Since f(n) ≥ f∗(n), we
conclude that f(n) → ∞.
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Exercises

1.5.1. Fix N ≥ 1 and (an). Let (aN+n) be the sequence (aN+1, aN+2, . . . ).
Then, an ↗ L iff aN+n ↗ L, and an ↘ L iff aN+n ↘ L. Conclude that
an → L iff an+N → L.

1.5.2. If an → L, then, −an → −L.

1.5.3. If A ⊂ R+ is nonempty and 1/A = {1/x : x ∈ A}, then, inf(1/A) =
1/ sup A, where 1/∞ is interpreted here as 0. If (an) is a sequence with positive
terms and bn = 1/an, then, an → 0 iff bn → ∞.

1.5.4. If an → L and (akn
) is a subsequence, then, akn

→ L. If (an) is
monotone and akn

→ L, then, an → L.

1.5.5. If an → L and L �= 0, then, an �= 0 for all but finitely many n.

1.5.6. Let an =
√

n + 1 −√
n, n ≥ 1. Compute (a∗

n), (an∗), a∗, and a∗. Does
(an) converge?

1.5.7. Let (an) be any sequence with upper and lower limits a∗ and a∗. Show
that (an) subconverges to a∗ and subconverges to a∗, i.e., there are subse-
quences (akn

) and (ajn
) satisfying akn

→ a∗ and ajn
→ a∗.

1.5.8. Suppose that (an) diverges from L ∈ R. Show that there is an ε > 0
and a subsequence (akn

) satisfying |akn
− L| ≥ ε for all n ≥ 1.

1.5.9. Let (xn) be a sequence. If (xn) subconverges to L, we say that L is a
limit point of (xn). Show that x∗ and x∗ are the least and the greatest limit
points.

1.5.10. Show that a sequence (xn) converges iff (xn) has exactly one limit
point.

1.5.11. Given f : (a, b) → R, let M = sup{f(x) : a < x < b}. Show that
there is a sequence (xn) with f(xn) → M . (Consider the cases M < ∞ and
M = ∞.)

1.5.12. Define (dn) by d1 = 2 and

dn+1 =
1
2

(

dn +
2
dn

)

, n ≥ 1,

and set en = dn −
√

2, n ≥ 1. By induction, show that en ≥ 0 for n ≥ 1. Also
show that

en+1 ≤ e2
n

2
√

2
, for all n ≥ 1.

(First, check that, for any real x > 0, one has (x + 2/x)/2 ≥
√

2.)
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1.5.13. Let 0 < x < 1 be irrational, and let (qn) be as in Exercise 1.3.17. Let

xn =
1

q1 +
1

q2 +
1

. . .
1

qn−1 +
1
qn

.

Let x′ and x′
n denote the continued fractions starting with 1/(q2 + . . . , i.e.,

with the top layer “peeled off.” Then, 0 < xn, x′, x′
n < 1.

A. Show that |x − xn| ≤ xxn|x′ − x′
n|, n ≥ 2.

B. Iterate A to show that |x − xn| ≤ 1/qn, n ≥ 1.
C. Show that x ≤ (q2 + 1)/(q2 + 2), x′ ≤ (q3 + 1)/(q3 + 2), etc.
D. If N of the qk’s are bounded by c, iterate A and use C to obtain

|x − xn| ≤
(

c + 1
c + 2

)N

,

for all but finitely many n.

Conclude that |x − xn| → 0 as n ↗ ∞. (Either qn → ∞ or qn �→ ∞.)

1.6 Nonnegative Series and Decimal Expansions

Let (an) be a sequence of reals. The series formed from the sequence (an)
is the sequence (sn) with terms s1 = a1, s2 = a1 + a2, and, for any n ≥ 1,
sn = a1 + a2 + · · · + an. The sequence (sn) is the sequence of partial sums.
The terms an are called summands, and the series is nonnegative if an ≥ 0 for
all n ≥ 1. We often use sigma notation, and write sn =

∑n
k=1 ak. Series are

often written
a1 + a2 + . . . .

In sigma notation,
∑

an or
∑∞

n=1 an. If the sequence of partial sums (sn) has
a limit L, then, we say the series sums or converges to L, and we write

L = a1 + a2 + · · · =
∞∑

n=1

an.

Then, L is the sum of the series. By convention, we do not allow ±∞ as limits
for series, only reals. Nevertheless, for nonnegative series, we write

∑
an = ∞

to mean
∑

an diverges and
∑

an < ∞ to mean
∑

an converges. As with
sequences, sometimes it is more convenient to start a series from n = 0. In
this case, we write

∑∞
n=0 an.
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Let L =
∑∞

n=1 an be a convergent series and let sn denote its nth partial
sum. The nth tail of the series is L − sn =

∑∞
k=n+1 ak. Since the nth tail is

the difference between the nth partial sum and the sum, we see that the nth
tail of a convergent series goes to zero:

lim
n↗∞

∞∑

k=n+1

ak = 0. (1.6.1)

Let a be real. Our first series is the geometric series

1 + a + a2 + · · · =
∞∑

n=0

an.

Here the nth partial sum sn = 1 + a + · · · + an is computed as follows:

asn = a(1 + a + · · · + an) = a + a2 + · · · + an+1 = sn + an+1 − 1.

Hence,

sn =
1 − an+1

1 − a
, a �= 1.

If a = 1, then, sn = n, so, sn ↗ ∞. If |a| < 1, an → 0, so, sn → 1/(1 − a).
If a > 1, then, an ↗ ∞, so, the series equals ∞ and hence, diverges. If
a < −1, then, (an) diverges, so, the series diverges. If a = −1, sn equals 0 or 1
(depending on n), hence, diverges, hence, the series diverges. We have shown

∞∑

n=0

an =
1

1 − a
, if |a| < 1,

and
∑∞

n=0 an diverges if |a| ≥ 1.
To study more general series, we need their arithmetic and ordering

properties.

Theorem 1.6.1. If
∑

an = L and
∑

bn = M , then,
∑

(an + bn) = L+M . If∑
an = L, c ∈ R, and bn = can, then,

∑
bn = cL = c(

∑
an). If an ≤ bn ≤ cn

and
∑

an = L =
∑

cn, then,
∑

bn = L.

To see the first property, if sn, tn, and rn denote the partial sums of
∑

an,∑
bn, and

∑
cn, then, sn+tn equals the partial sum of

∑
(an+bn). Hence, the

result follows from the corresponding arithmetic property of sequences. For
the second property, note that tn = csn. Hence, the result follows from the
corresponding arithmetic property of sequences. The third property follows
from the ordering property of sequences, since sn ≤ tn ≤ rn, sn → L, and
rn → L. ��

Now, we describe the comparison test which we use below to obtain the
decimal expansions of reals.
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Theorem 1.6.2 (Comparison Test). Let
∑

an,
∑

bn be nonnegative series
with an ≤ bn for all n ≥ 1. If

∑
bn < ∞, then,

∑
an < ∞. If

∑
an = ∞,

then,
∑

bn = ∞.

Stated this way, the theorem follows from the ordering property for se-
quences and looks too simple to be of any serious use. �� In fact, we use
it to express every real as a sequence of naturals. Recall that the digits are
defined in §1.3.

Theorem 1.6.3. Let b = 9 + 1. If d1, d2, . . . is a sequence of digits, then,
∞∑

n=1

dnb−n

sums to a real x, 0 ≤ x ≤ 1. Conversely, if 0 ≤ x ≤ 1, there is a sequence of
digits d1, d2, . . . , such that the series sums to x.

The first statement follows by comparison, since
∞∑

n=1

dnb−n ≤
∞∑

n=1

9b−n =
∞∑

n=0

9
b
b−n

=
9
b

∞∑

n=0

b−n =
9
b
· 1
1 − (1/b)

= 1.

To establish the second statement, if x = 1, we simply take dn = 9 for all
n ≥ 1. If 0 ≤ x < 1, let d1 be the largest integer ≤ xb. Then, d1 ≥ 0. This
way we obtain a digit d1 (since x < 1) satisfying d1 ≤ xb < d1 + 1. Now, set
x1 = xb − d1. Then, 0 ≤ x1 < 1. Repeating the above process, we obtain a
digit d2 satisfying d2 ≤ x1b < d2 + 1. Substituting yields d2 + bd1 ≤ b2x <
d2 + bd1 + 1 or d2b−2 + d1b−1 ≤ x < d2b−2 + d1b−1 + b−2. Continuing in
this manner yields a sequence of digits (dn) satisfying

(
n∑

k=1

dkb−k

)

≤ x <

(
n∑

k=1

dkb−k

)

+ b−n, n ≥ 1.

Thus, x lies between two sequences converging to the same limit. ��
The sequence (dn) is the decimal expansion of the real 0 ≤ x ≤ 1. As

usual, we write
x = .d1d2d3 . . . .

To extend the decimal notation to any nonnegative real, for each x ≥ 1,
there is a smallest natural N , such that b−Nx < 1. As usual, if b−Nx =
.d1d2 . . . , we write

x = d1d2 . . . dN .dN+1dN+2 . . . ,

the decimal point (.) moved N places. For example 1 = 1.00 . . . and b =
10.00 . . . . In fact, x is a natural iff x = d1d2 . . . dN .00 . . . . Thus, for naturals,
we drop the decimal point and the trailing zeros, e.g., 1 = 1, b = 10.
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As an illustration, x = 10/8 = 1.25 since x/10 = 1/8 < 1, and y = 1/8 =
.125 since 1 ≤ 10y < 2 so d1 = 1, z = 10y − 1 = 10/8 − 1 = 2/8 satisfies
2 ≤ 10z < 3 so d2 = 2, t = 10z − d2 = 10 ∗ 2/8− 2 = 4/8 satisfies 5 = 10t < 6
so d3 = 5 and d4 = 0.

Note that we have two decimal representations of 1, 1 = .99 · · · = 1.00 . . . .
This is not an accident. In fact, two distinct sequences of digits yield the same
real in [0, 1] under only very special circumstances (Exercise 1.6.2).

The natural b, the base of the expansion, can be replaced by any natural >
1. Then, the digits are (0, 1, . . . ,b−1), and we would obtain b-ary expansions.
In §4.1, we use b = 2 with digits (0, 1) leading to binary expansions and b = 3
with digits (0, 1, 2) leading to ternary expansions. In §5.2, we discuss b = 16
with digits (0, 1, . . . , 9, A,B,C,D,E, F ) leading to hexadecimal expansions.
This completes our discussion of decimal expansions.

How can one tell if a given series converges by inspecting the individual
terms? Here is a necessary condition.

Theorem 1.6.4 (nth Term Test). If
∑

an = L ∈ R, then, an → 0.

To see this, we know that sn → L, and, so, sn−1 → L. By the triangle
inequality,

|an| = |sn − sn−1| = |(sn − L) + (L − sn−1)| ≤ |sn − L| + |sn−1 − L| → 0. ��

However, a series whose nth term approaches zero need not converge. For
example, the harmonic series

∞∑

n=1

1
n

= 1 +
1
2

+
1
3

+ · · · = ∞.

To see this, use comparison as follows,

∞∑

n=1

1
n

= 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+ . . .

≥ 1 +
1
2

+
1
4

+
1
4

+
1
8

+
1
8

+
1
8

+
1
8

+ . . .

= 1 +
1
2

+
1
2

+
1
2

+ · · · = ∞.

On the other hand, let 0! = 1 and let n! = 1 · 2 · 3 · · · · · n (n factorial) for
n ≥ 1. Then, the nonnegative series

1
0!

+
1
1!

+
1
2!

+
1
3!

+ . . .

converges. To see this, check that 2n−1 ≤ n! by induction. Thus,

1 +
∞∑

n=1

1
n!

≤ 1 +
∞∑

n=1

2−n+1 = 3
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and, hence, is convergent. Since the third partial sum is s3 = 2.5, we see that
the sum lies in the interval (2.5, 3].

A series is telescoping if it is a sum of differences, i.e., of the form

∞∑

n=1

(an − an+1) = (a1 − a2) + (a2 − a3) + (a3 − a4) + . . . .

In this case, the following is true.

Theorem 1.6.5. If (an) is any sequence converging to zero, then, the corres-
ponding telescoping series converges, and its sum is a1.

This follows since the partial sums are

sn = (a1 − a2) + (a2 − a3) + · · · + (an − an+1) = a1 − an+1

and an+1 → 0. ��
As an application, note that

1
1 · 2 +

1
2 · 3 +

1
3 · 4 + · · · = 1

since ∞∑

n=1

1
n(n + 1)

=
∞∑

n=1

(
1
n
− 1

n + 1

)

= 1.

Another application is to establish the convergence of

∞∑

n=1

1
n2

= 1 +
∞∑

n=2

1
n2

< 1 +
∞∑

n=2

1
n(n − 1)

= 1 +
∞∑

n=1

1
n(n + 1)

= 2.

Thus,
1
12

+
1
22

+
1
32

+ · · · < 2.

Expressing this sum in terms of familiar quantities is a question of a totally
different magnitude. Later (§5.6), we will see how this is done.

More generally,
∞∑

n=1

1
n1+1/N

< ∞

follows in a similar manner, for any N ≥ 1.
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Exercises

1.6.1. Let 0 < x < 1 be real. Then, x = .d1d2 . . . is in Q iff there are n,m ≥ 1,
such that dj+n = dj for j > m, i.e., the sequence of digits repeats every n
digits, from the (m + 1)st digit on.

1.6.2. Suppose that .d1d2 · · · = .e1e2 . . . are distinct decimal expansions for
the same real, and let N be the first natural with dN �= eN . Then, either
dN = eN + 1, dk = 0, and ek = 9 for k > N , or eN = dN + 1, ek = 0, and
dk = 9 for k > N . Conclude that x > 0 has more than one decimal expansion
iff 10Nx ∈ N for some N ∈ N ∪ {0}.

1.6.3. Show that 2n−1 ≤ n!, n ≥ 1.

1.6.4. Fix N ≥ 1. Show that

A.
(

n

n + 1

)1/N

≤ 1 − 1
N(n + 1)

, n ≥ 1,

B. (n + 1)1/N − n1/N ≥ 1
N(n + 1)(N−1)/N

, n ≥ 1, and

C.
∞∑

n=2

1
n1+1/N

≤ N

∞∑

n=1

(an − an+1) where an = 1/(n1/N ), n ≥ 1.

Conclude that
∞∑

n=1

1
n1+1/N

< ∞. (Use Exercises 1.4.6 and 1.4.7 for A).

1.6.5. Let (dn) and (en) be as in Exercise 1.5.12. By induction, show that

en+2 ≤ 10−2n

, n ≥ 1.

This shows that the decimal expansion of dn+2 agrees6 with that of
√

2 to 2n

places. For example, d9 yields
√

2 to at least 128 decimal places. (First, show
that e3 ≤ 1/100. Since the point here is to compute the decimal expansion of√

2, do not use it in your derivation. Use only 1 <
√

2 < 2 and (
√

2)2 = 2.)

1.6.6. Let C ⊂ [0, 1] be the set of reals x = .d1d2d3 . . . whose decimal digits
dn, n ≥ 1, are zero or odd. Show that (§1.2) C + C = [0, 2].

1.7 Signed Series and Cauchy Sequences

A series is signed if its first term is positive, and at least one of its terms is
negative. A series is alternating if it is of the form

∞∑

n=1

(−1)n−1an = a1 − a2 + a3 · · · + (−1)n−1an + . . .

6 This algorithm was known to the Babylonians.
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with an positive for all n ≥ 1. Alternating series are particularly tractable,
but, first, we need a new concept.

A sequence (not a series!) (an) is Cauchy if its terms approach each other,
i.e., if there is a positive sequence (en) converging to zero, such that

|an+m − an| ≤ en, for all m,n ≥ 1.

If a sequence is Cauchy, there are many choices for (en). Any such sequence
(en) is an error sequence for the Cauchy sequence (an).

It follows from the definition that every Cauchy sequence is bounded,
|am| ≤ |am − a1| + |a1| ≤ e1 + |a1| for all m ≥ 1.

It is easy to see that a convergent sequence is Cauchy. Indeed, if (an)
converges to L, then, bn = |an − L| → 0, so (S1.5), b∗n → 0. Hence, by the
triangle inequality

|an+m − an| ≤ |an+m − L| + |an − L| ≤ b∗n + b∗n, m > 0, n ≥ 1.

Since 2b∗n → 0, (2b∗n) is an error sequence for (an), so, (an) is Cauchy.
The following theorem shows that if the terms of a sequence “approach

each other”, then, they “approach something”. To see that this is not a self-
evident assertion, consider the following example. Let an be the rational given
by the first n places in the decimal expansion of

√
2. Then, |an −

√
2| ≤ 10−n,

hence, an →
√

2, hence, (an) is Cauchy. But, as far as Q is concerned, there is
no limit, since

√
2 /∈ Q. In other words, to actually establish the existence of

the limit, one needs an additional property not enjoyed by Q, the completeness
property of R.

Theorem 1.7.1. A Cauchy sequence (an) is convergent.

With the notation of §1.5, we need to show that a∗ = a∗. But this follows
since the sequence is Cauchy. Indeed, let (en) be any error sequence. Then,
for all n ≥ 1, m ≥ 0, j ≥ 0,

an+m − an+j ≤ (an+m − an) + (an − an+j) ≤ 2en.

For n and j fixed, this inequality is true for all m ≥ 0. Taking the sup over
all m ≥ 0 yields

a∗
n − an+j ≤ 2en

for all j ≥ 0, n ≥ 1. Now, for n fixed, this inequality is true for all j ≥ 0.
Taking the sup over all j ≥ 0 and using sup(−A) = − inf A yields

0 ≤ a∗
n − an∗ ≤ 2en, n ≥ 1.

Letting n ↗ ∞ yields 0 ≤ a∗ − a∗ ≤ 0, hence, a∗ = a∗. ��
A series

∑
an is said to be absolutely convergent if

∑
|an| converges.

For example, below, we will see that
∑

(−1)n−1/n converges. Since
∑

1/n
diverges, however,

∑
(−1)n−1/n does not converge absolutely. A convergent

series that is not absolutely convergent is conditionally convergent.
If
∑

|an| is known to converge, one expects
∑

an to converge, because of
the possibility of cancellation. In fact, this is the case.
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Theorem 1.7.2. If
∑

an converges absolutely, then,
∑

an converges.

To see this, let (sn) and (Sn) denote the sequences of partial sums corre-
sponding to

∑
an and

∑
|an|. Since

∑
|an| converges, we know that (Sn) is

Cauchy. Let (en) be an error sequence for (Sn). To show that (sn) converges,
it is enough to show that (sn) is Cauchy. But, by the triangle inequality,

|sn+m − sn| = |an+1 + · · · + an+m|
≤ |an+1| + · · · + |an+m| = Sn+m − Sn ≤ en,

so, (en) is an error sequence for (sn). ��
A typical application of this result is as follows. If (an) is a sequence of

positive reals decreasing to zero and (bn) is bounded, then,

∞∑

n=1

(an − an+1)bn (1.7.1)

converges absolutely. Indeed, if |bn| ≤ C, n ≥ 1, is a bound for (bn), then,

∞∑

n=1

|(an − an+1)bn| ≤
∞∑

n=1

(an − an+1)C = Ca1 < ∞

since the last series is telescoping.
To extend the scope of this last result, we will need the following elemen-

tary formula:

a1b1 +
N∑

n=2

an(bn − bn−1) =
N−1∑

n=1

(an − an+1)bn + aNbN . (1.7.2)

This important identity, easily verified by decomposing the sums, is called
summation by parts.

Theorem 1.7.3 (Dirichlet Test). If (an) is a positive sequence decreasing
to zero and (cn) is such that the sequence bn = c1 + c2 + · · · + cn, n ≥ 1, is
bounded, then,

∑∞
n=1 ancn converges and

∞∑

n=1

ancn =
∞∑

n=1

(an − an+1)bn. (1.7.3)

This is an immediate consequence of letting N ↗ ∞ in (1.7.2) since bn −
bn−1 = cn for n ≥ 2. �� An important aspect of the Dirichlet test is that
the right side of (1.7.3) is, from above, absolutely convergent, whereas the left
side is often only conditionally convergent. For example, taking an = 1/n and
cn = (−1)n−1, n ≥ 1, yields (bn) = (1, 0, 1, 0, . . . ). Hence, we conclude not
only that
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1 − 1
2

+
1
3
− 1

4
+ . . .

converges but also that its sum equals the sum of the absolutely convergent
series obtained by grouping the terms in pairs.

Now, we can state the situation with alternating series.

Theorem 1.7.4 (Leibnitz Test). If (an) is a positive decreasing sequence
with an ↘ 0, then,

a1 − a2 + a3 − a4 + . . . (1.7.4)

converges to a limit L satisfying 0 ≤ L ≤ a1. If, in addition, (an) is strictly
decreasing, then, 0 < L < a1. Moreover, if sn denotes the nth partial sum,
n ≥ 1, then, the error |L−sn| at the nth stage is no greater than the (n+1)st
term an+1, with L ≥ sn or L ≤ sn according to whether the (n + 1)st term is
added or subtracted.

For example,

L = 1 − 1
3

+
1
5
− 1

7
+

1
9
− . . . (1.7.5)

converges, and 0 < L < 1. In fact, since s2 = 2/3 and s3 = 13/15, 2/3 < L <
13/15.

In the previous section, estimating the sum of

1 +
1
1!

+
1
2!

+
1
3!

+ . . .

to one decimal place involved estimating the entire series. Here, the situation
is markedly different: The absolute error between the sum and the nth partial
sum is no larger than the next term an+1.

To derive the Leibnitz test, clearly, the convergence of (1.7.4) follows by
taking cn = (−1)n−1 and applying the Dirichlet test, as above. Now, the
differences an − an+1, n = 1, 3, 5, . . . , are nonnegative. Grouping the terms
in (1.7.4) in pairs, we obtain L ≥ 0. Similarly, the differences −an + an+1,
n = 2, 4, 6, . . . , are nonpositive. Grouping the terms in (1.7.4) in pairs, we
obtain L ≤ a1. Thus, 0 ≤ L ≤ a1. But

(−1)n(L − sn) = an+1 − an+2 + an+3 − an+4 + . . . , n ≥ 1.

Repeating the above reasoning, we obtain 0 ≤ (−1)n(L − sn) ≤ an+1, which
implies the rest of the statement. If, in addition, (an) is strictly decreasing,
this reasoning yields 0 < L < a1. ��

If
∑

an converges absolutely and sn =
∑n

k=1 |ak|, then, by the triangle
inequality,

|sm − sn| =
m∑

k=n+1

|ak| ≤
∞∑

k=n+1

|ak|, m > n,

so, en =
∑∞

j=n+1 |aj |, n ≥ 1, is an error sequence for (sn).
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Our next topic is the rearrangement of series. A series
∑

An is a
rearrangement of a series

∑
an if there is a bijection (§1.1) f : N → N, such

that An = af(n) for all n ≥ 1. Absolutely convergent series and conditionally
convergent series behave very differently under rearrangements.

Theorem 1.7.5. If
∑

an is absolutely convergent, any rearrangement
∑

An

converges absolutely to the same limit. If
∑

an is conditionally convergent and
c is any real number, then, there is a rearrangement

∑
An converging to c.

To see this, first assume
∑

|an| is convergent, and let en =
∑∞

j=n+1 |aj |,
n ≥ 1. Then, (en) is an error sequence for the Cauchy sequence of partial sums
of
∑

|an|. Since (§1.5) (f(n)) is a sequence of distinct naturals, f(n) → ∞.
In fact, (§1.5) if we let f∗(n) = inf{f(k) : k ≥ n}, then, f∗(n) ↗ ∞. To show
that

∑
|An| is convergent, it is enough to show that

∑
|An| is Cauchy.

To this end,

|af(n+1)| + |af(n+2)| + · · · + |af(n+m)|
≤
∣
∣af∗(n+1)

∣
∣+

∣
∣af∗(n+1)+1

∣
∣+

∣
∣af∗(n+1)+2

∣
∣+ · · · = ef∗(n+1)−1

which approaches zero, as n ↗ ∞. Thus,
∑

|An| is Cauchy, hence, convergent.
Hence,

∑
An is absolutely convergent.

Now, let sn, Sn denote the partial sums of
∑

an and
∑

An, respectively.
Let En =

∑∞
k=n+1 |Ak|, n ≥ 1. Then, (En) is an error sequence for the Cauchy

sequence of partial sums of
∑

|An|. Now, in the difference Sn − sn, there will
be cancellation, the only terms remaining being of one of two forms, either
Ak = af(k) with f(k) > n or ak with k = f(j) with j > n (this is where
surjectivity of f is used). Hence, in either case, the absolute values of the
remaining terms in Sn − sn are summands in the series en + En, so,

|Sn − sn| ≤ en + En → 0, as n ↗ ∞.

This completes the derivation of the absolute portion of the theorem.
Now, assume that

∑
an is conditionally convergent, and let c ≥ 0 be any

nonnegative real. Let (a+
n ), (a−

n ) denote the positive and the negative terms in
the series

∑
an. Then, we must have

∑
a+

n = ∞ and
∑

a−
n = −∞. Otherwise,∑

an would converge absolutely. Moreover, a+
n → 0 and a−

n → 0 since an → 0.
We construct a rearrangement as follows: Take the minimum number of terms
a+

n whose sum s+
1 is greater than c, then, take the minimum number of terms

a−
n whose sum s−1 with s+

1 is less than c, then, take the minimum number
of additional terms a+

n whose sum s+
2 with s−1 is greater than c, then, take

the minimum number of additional terms a−
n whose sum s−2 with s+

2 is less
than c, etc. Because a+

n → 0, a−
n → 0,

∑
a+

n = ∞, and
∑

a−
n = −∞, this

rearrangement of the terms produces a series converging to c. Of course, if
c < 0, one starts, instead, with the negative terms. ��

We can use the fact that the sum of a nonnegative series is unchanged
under rearrangements to study series over other sets. For example, let N2 =
N × N be (§1.1) the set of ordered pairs of naturals (m,n), and set
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∑

(m,n)∈N2

1
m3 + n3

. (1.7.6)

What do we mean by such a series? To answer this, we begin with a definition.
A set A is countable if there is a bijection f : N → A, i.e., the elements of

A form a sequence. If there is no such f , we say that A is uncountable. Let us
show that N2 is countable:

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), . . . .

Here, we are listing the pairs (m,n) according to the sum m+n of their entries.
It turns out that Q is countable (Exercise 1.7.2), but R is not countable
(Exercise 1.7.4).

Every subset of N is countable or finite (Exercise 1.7.1). Thus, if f : A →
B is an injection and B is countable, then, A is finite or countable. Indeed,
choosing a bijection g : B → N yields a bijection g ◦ f of A with the subset
(g ◦ f)(A) ⊂ N.

Similarly, if f : A → B is a surjection and A is countable, then, B is
countable or finite. To see this, choose a bijection g : N → A. Then, f ◦ g :
N → B is a surjection, so, we may define h : B → N by setting h(b) equal to
the least n satisfying f [g(n)] = b, h(b) = min{n ∈ N : f [g(n)] = b}. Then, h
is an injection, and, thus, B is finite or countable.

Let A be a countable set. Given a positive function f : A → R, we define
the sum of the series over A ∑

a∈A

f(a)

as the sum of
∑∞

n=1 f(an) obtained by taking any bijection of A with N.
Since the sum of a positive series is unchanged by rearrangement, this is well
defined. As an exercise, we leave it to be shown that (1.7.6) converges.

Series over N2 are called double series. A useful arrangement of a double
series follows the order of N2 displayed above,

∞∑

n=1

⎛

⎝
∑

i+j=n+1

aij

⎞

⎠ .

This is the Cauchy order.

Theorem 1.7.6. For (amn) positive,

∑

(m,n)∈N2

amn =
∞∑

k=1

⎛

⎝
∑

i+j=k+1

aij

⎞

⎠ =
∞∑

n=1

( ∞∑

m=1

amn

)

=
∞∑

m=1

( ∞∑

n=1

amn

)

.

(1.7.7)
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To see this, recall that the first equality is due to the fact that a positive
double series may be summed in any order. Since the third and fourth sums
are similar, it is enough to derive the second equality. To this end, note that
for any natural K, the set AK ⊂ N2 of pairs (i, j) with i + j ≤ K + 1 is
contained in the set BMN ⊂ N2 of pairs (m,n) with m ≤ M , n ≤ N , for N ,
M large enough (Figure 1.4). Hence,

K∑

k=1

⎛

⎝
∑

i+j=k+1

aij

⎞

⎠ ≤
N∑

n=1

(
M∑

m=1

amn

)

≤
∞∑

n=1

( ∞∑

m=1

amn

)

.

Letting K ↗ ∞, we obtain

∞∑

k=1

⎛

⎝
∑

i+j=k+1

aij

⎞

⎠ ≤
∞∑

n=1

( ∞∑

m=1

amn

)

.

Conversely, for any N , M , BMN ⊂ AK for K large enough, hence,

N∑

n=1

(
M∑

m=1

amn

)

≤
K∑

k=1

⎛

⎝
∑

i+j=k+1

aij

⎞

⎠ ≤
∞∑

k=1

⎛

⎝
∑

i+j=k+1

aij

⎞

⎠ .

Letting M ↗ ∞,

∞∑

k=1

⎛

⎝
∑

i+j=k+1

aij

⎞

⎠ ≥
N∑

n=1

( ∞∑

m=1

amn

)

.

Letting N ↗ ∞,

∞∑

k=1

⎛

⎝
∑

i+j=k+1

aij

⎞

⎠ ≥
∞∑

n=1

( ∞∑

m=1

amn

)

.

This yields (1.7.7). ��
To give an application of this, note that, since

∑
1/n1+1/N converges, by

comparison, so does

Z(s) =
∞∑

n=2

1
ns

, s > 1.

(In the next chapter, we will know what ns means for s real. Now, think of s
as rational.) Then, (1.7.7) can be used to show that

∞∑

n=2

1
ns − 1

= Z(s) + Z(2s) + Z(3s) + . . . . (1.7.8)
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A7

A7

B65

B65

B65

(1, 1)

(1, 7)

(7, 1)

Fig. 1.4. The sets BMN and AK .

As another application, we describe the product of two series
∑

an and∑
bn. Given (1.7.7), it is reasonable to define their product or Cauchy product

as the series
∞∑

n=1

cn =
∞∑

n=1

⎛

⎝
∑

i+j=n+1

aibj

⎞

⎠ .

For example, c1 = a1b1, c2 = a1b2 + a2b1, c3 = a1b3 + a2b2 + a3b1, and

cn = a1bn + a2bn−1 + · · · + anb1, n ≥ 1.

Then, (1.7.7) shows that the Cauchy product sums to ab if both series are
nonnegative and

∑
an = a and

∑
bn = b. It turns out this is also true for

absolutely convergent signed series: If
∑

an and
∑

bn converge absolutely,
then, their Cauchy product converges absolutely to the product of their sums
(Exercise 1.7.7).

If a1 + a2 + a3 + . . . is absolutely convergent, its alternating version is
a1 − a2 + a3 − . . . . For example the alternating version of

1
1 − x

= 1 + x + x2 + . . .

equals
1

1 + x
= 1 − x + x2 − . . . .

Clearly, the alternating version is also absolutely convergent and the alter-
nating version of the alternating version of a series is itself. Note that the
alternating version of a series

∑
an need not be an alternating series. This

happens iff
∑

an is positive.
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Exercises

1.7.1. If A ⊂ B and B is countable, then, A is countable or finite. (If B = N,
look at the smallest element in A, then, the next smallest, and so on.)

1.7.2. Show that Q is countable.

1.7.3. If A1, A2, . . . is a sequence of countable sets, then,
⋃∞

n=1 An is count-
able. Conclude that Q × Q is countable.

1.7.4. Show that [0, 1] and R are not countable. (Assume [0, 1] is countable.
List the elements as a1, a2, . . . . Using the decimal expansions of a1, a2, . . . ,
construct a decimal expansion not in the list.)

1.7.5. Show that (1.7.6) converges.

1.7.6. Derive (1.7.8).

1.7.7. If
∑

an and
∑

bn converge absolutely, then, the Cauchy product of∑
an and

∑
bn converges absolutely to the product (

∑
an) (

∑
bn).

1.7.8. Let
∑

an and
∑

bn be absolutely convergent. Then, the product of
the alternating versions of

∑
an and

∑
bn is the alternating version of the

product of
∑

an and
∑

bn.

1.7.9. Given a sequence (qn) of naturals, let xn be as in Exercise 1.5.13. Show
that (xn) is Cauchy, hence, convergent to an irrational x. Thus, continued
fractions yield a bijection between sequences of naturals and irrationals in
(0, 1). From this point of view, the continued fraction (Figure 1.5)

x =
1 +

√
5

2
= 1 +

1

1 +
1

1 +
1

1 +
1

1 +
1

1 + . . .

is special. This real x is the golden mean; x clearly satisfies

x = 1 +
1
x

which is reflected in the infinite decreasing sequence of rectangles in Figure 1.5.
Show in fact this continued fraction does converge to (1 +

√
5)/2.
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Fig. 1.5. The golden mean x. Here the ratios of the sides of the rectangles are x : 1.



2

Continuity

2.1 Compactness

An open interval is a set of reals of the form (a, b) = {x : a < x < b}. As in
§1.4, we are allowing a = −∞ or b = ∞ or both. A compact interval is a set
of reals of the form [a, b] = {x : a ≤ x ≤ b}, where a, b are real. The length
of [a, b] is b − a. Recall (§1.5) that a sequence subconverges to L if it has a
subsequence converging to L.

Theorem 2.1.1. Let [a, b] be a compact interval and let (xn) be any sequence
in [a, b]. Then, (xn) subconverges to some x in [a, b].

To derive this result, assume, first, that a = 0 and b = 1. Divide the
interval I = [a, b] = [0, 1] into 10 subintervals (of the same length), and call
them I0, . . . , I9, ordering them from left to right (Figure 2.1). Pick one of
them, say Id1 , containing infinitely many terms of (xn), i.e., {n : xn ∈ Id1} is
infinite, and pick one of the terms of the sequence in Id1 and call it x′

1. Then,
the length of Id1 is 1/10. Now, divide Id1 into 10 subintervals again ordered
left to right and called Id10, . . . , Id19. Pick one of them, say Id1d2 , containing
infinitely many terms of the sequence, and pick one of the terms (beyond x′

1)
in the sequence in Id1d2 and call it x′

2. The length of Id1d2 is 1/100. Continuing
in this manner yields I ⊃ Id1 ⊃ Id1d2 ⊃ Id1d2d3 ⊃ . . . and a subsequence (x′

n)
where the length of Id1d2...dn

is 10−n and x′
n ∈ Id1d2...dn

for all n ≥ 1. But, by
construction, the real

x = .d1d2d3 . . .

lies in all the intervals Id1d2...dn
, n ≥ 1. Hence, |x′

n − x| ≤ 10−n → 0. Since
(x′

n) is a subsequence of (xn), this derives the result if [a, b] = [0, 1]. If this
is not so, the same argument works. The only difference is that the limiting
point now obtained is a + x(b − a). ��

Thus, this theorem is equivalent to, more or less, the existence of decimal
expansions. If [a, b] is replaced by an open interval (a, b), the theorem is false as
it stands, since the limiting point x may be one of the endpoints, and, hence,
the theorem needs to be modified. A useful modification is the following.
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Id1Id1d2

Fig. 2.1. The intervals Id1d2...dn .

Theorem 2.1.2. If (xn) is any sequence of reals, then, (xn) subconverges to
some real x or to ∞ or to −∞.

To see this, consider the two cases (xn) bounded and (xn) unbounded. In
the first case, we can find reals a, b with (xn) ⊂ [a, b]. Hence, by the previous
theorem, we obtain the subconvergence to some real x ∈ [a, b]. In the second
case, if (xn) is not bounded above, for each n ≥ 1, choose x′

n satisfying x′
n > n.

If (xn) is not bounded below, for each n ≥ 1, choose x′
n satisfying x′

n < −n.
Then, (x′

n) converges to ∞ or to −∞, yielding the subconvergence of (xn) to
∞ or to −∞. ��

Exercises

2.1.1. Let (an) and (bn) be sequences. We say (an, bn) subconverges to (a, b)
if there is a sequence of naturals (nk) such that (ank

) converges to a and
(bnk

) converges to b. Show that if (an) and (bn) are bounded, then (an, bn)
subconverges to some (a, b).

2.1.2. In the derivation of the first theorem, suppose that the intervals are
chosen, at each stage, to be the leftmost interval containing infinitely many
terms. In other words, suppose that Id1 is the leftmost of the intervals Ij

containing infinitely many terms, Id1d2 is the leftmost of the intervals Id1j

containing infinitely many terms, etc. In this case, show that the limiting
point obtained is x∗.

2.2 Continuous Limits

Let (a, b) be an open interval, and let a < c < b. The interval (a, b), punctured
at c, is the set (a, b) \ {c} = {x : a < x < b, x �= c}.

Let f be a function defined on an interval (a, b) punctured at c, a < c < b.
We say L is the limit of f(x) as x approaches c, and we write

lim
x→c

f(x) = L

or f(x) → L as x → c, if, for every sequence (xn) ⊂ (a, b) satisfying xn �= c
for all n ≥ 1 and converging to c, f(xn) → L.

For example, let f(x) = x2, and let (a, b) = R. If xn → c, then (§1.5),
x2

n → c2. This holds true no matter what sequence (xn) is chosen, as long as
xn → c. Hence, in this case, limx→c f(x) = c2.
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Going back to the general definition, suppose that f is also defined at c.
Then the value f(c) has no bearing on limx→c f(x) (Figure 2.2). For example,
if f(x) = 0 for x �= 0 and f(0) is defined arbitrarily, then, limx→0 f(x) = 0.
For a more dramatic example of this phenomenom, see Exercise 2.2.1.

f(c)

Fig. 2.2. The value f(c) has no bearing on the limit at c.

Of course, not every function has limits. For example, set f(x) = 1 if
x ∈ Q and f(x) = 0 if x ∈ R \ Q. Choose any c in (a, b) = R. Since (§1.4)
there is a rational and an irrational between any two reals, for each n ≥ 1 we
can find rn ∈ Q and in ∈ R \Q with c < rn < c + 1/n and c < in < c + 1/n.
Thus, rn → c and in → c, but f(rn) = 1 and f(in) = 0 for all n ≥ 1. Hence,
f has no limit anywhere on R.

Let (xn) be a sequence approaching b. If xn < b for all n ≥ 1, we write
xn → b−. Let f be defined on (a, b). We say L is the limit of f(x) as x
approaches b from the left, and we write

lim
x→b−

f(x) = L,

if xn → b− implies f(xn) → L. In this case, we also write f(b−) = L. If
b = ∞, we write, instead, limx→∞ f(x) = L, f(∞) = L, i.e., we drop the
minus.

Let (xn) be a sequence approaching a. If xn > a for all n ≥ 1, we write
xn → a+. Let f be defined on (a, b). We say L is the limit of f(x) as x
approaches a from the right, and we write

lim
x→a+

f(x) = L,

if xn → a+ implies f(xn) → L. In this case, we also write f(a+) = L. If
a = −∞, we write, instead, limx→−∞ f(x) = L, f(−∞) = L, i.e., we drop the
plus.

Of course, L above is either a real or ±∞.

Theorem 2.2.1. Let f be defined on an interval (a, b) punctured at c, a <
c < b. Then, limx→c f(x) exists and equals L iff f(c+) and f(c−) both exist
and equal L.

If limx→c f(x) = L, then, f(xn) → L for any sequence xn → c, whether the
sequence is to the right, the left, or neither. Hence, f(c−) = L and f(c+) = L.



46 2 Continuity

Conversely, suppose that f(c−) = f(c+) = L and xn → c with xn �= c for
all n ≥ 1. We have to show that f(xn) → L. Let f∗ and f∗ denote the upper
and lower limits of the sequence (f(xn)), and set f∗

n = sup{f(xk) : k ≥ n}.
Then, f∗

n ↘ f∗. Hence, for any subsequence (f∗
kn

), we have f∗
kn

↘ f∗. Now,
we have to show that f∗ = L = f∗. Break up the sequence (xn) as the union
of two subsequences. Let (yn) denote the terms xk that are greater than c,
and let (zn) denote the terms xk that are less than c, arranged in their given
order. Since f(c+) = L and yn → c+, we conclude that f(yn) → L, hence,
its upper sequence converges to L, supi≥n f(yi) ↘ L. Since f(c−) = L and
zn → c−, we conclude that f(zn) → L, hence, its upper sequence converges
to L, supi≥n f(zi) ↘ L.

For each m ≥ 1, let xkm
denote the term in (xn) corresponding to ym,

if the term ym appears after the term zm in (xn). Otherwise, if zm appears
after ym, let xkm

denote the term in (xn) corresponding to zm. Thus, for each
n ≥ 1, if j ≥ kn, we must have xj equal yi or zi with i ≥ n. Hence,

f∗
kn

= sup
j≥kn

f(xj) ≤ max
[

sup
i≥n

f(yi), sup
i≥n

f(zi)
]

, n ≥ 1.

Now, both sequences on the right are decreasing in n ≥ 1 to L, and the
sequence on the left decreases to f∗ as n ↗ ∞. Thus, f∗ ≤ L. Now, let g = −f .
Since g(c+) = g(c−) = −L, by what we have just learned, we conclude that
the upper limit of (g(xn)) is ≤ −L. But the upper limit of (g(xn)) equals
minus the lower limit f∗ of (f(xn)). Hence, f∗ ≥ L, so, f∗ = f∗ = L. ��

Since continuous limits are defined in terms of limits of sequences, they
enjoy the same arithmetic and ordering properties. For example,

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x),

lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x).

These properties will be used without comment.
A function f is increasing (decreasing) if x ≤ x′ implies f(x) ≤ f(x′)

(f(x) ≥ f(x′), respectively), for all x, x′ in the domain of f . The function
f is strictly increasing (strictly decreasing) if x < x′ implies f(x) < f(x′)
(f(x) > f(x′), respectively), for all x, x′ in the domain of f . If f is increasing
or decreasing, we say f is monotone. If f is strictly increasing or strictly
decreasing, we say f is strictly monotone.

In the exercises, the concept of a partition (Figure 2.3) is needed. If (a, b)
is an open interval, a partition of (a, b) is a choice of points (x1, x2, . . . , xn)
in (a, b), arranged in increasing order. When choosing a partition, we write
a = x0 < x1 < · · · < xn−1 < xn < xn+1 = b, denoting the endpoints a
and b by x0 and xn+1 respectively (even when they are infinite). We use the
same notation for compact intervals, i.e., a partition of [a, b], by definition, is
a partition of (a, b).
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a = x0 x1 x2 x3 x4 x5 = b

Fig. 2.3. A partition of (a, b).

Exercises

2.2.1. Define f : R → R by setting f(m/n) = 1/n, for m/n ∈ Q with no com-
mon factor in m and n > 0, and f(x) = 0, x /∈ Q. Show that limx→c f(x) = 0
for all c ∈ R.

2.2.2. Let f be increasing on (a, b). Then, f(a+) (exists and) equals inf{f(x) :
a < x < b}, and f(b−) equals sup{f(x) : a < x < b}.

2.2.3. If f is monotone on (a, b), then, f(c+) and f(c−) exist, and f(c) is
between f(c−) and f(c+), for all c ∈ (a, b). Show also that, for each δ > 0,
there are, at most, countably many points c ∈ (a, b) where |f(c+)−f(c−)| ≥ δ.
Conclude that there are, at most, countably many points c in (a, b) at which
f(c+) �= f(c−).

2.2.4. If f : (a, b) → R let In be the sup of the sums

|f(x2) − f(x1)| + |f(x3) − f(x2)| + · · · + |f(xn) − f(xn−1)| (2.2.1)

over all partitions a < x1 < x2 < · · · < xn < b of (a, b) consisting of
n points, and let I = sup{In : n ≥ 2}. We say that f is of bounded variation
on (a, b) if I is finite. Show that bounded variation on (a, b) implies bounded
on (a, b). The sum in (2.2.1) is the variation of f corresponding to the partition
a < x1 < x2 < · · · < xn < b, whereas I, the sup of all such sums over all
partitions consisting of arbitrarily many points, is the total variation of f over
(a, b).

2.2.5. If f is bounded increasing on an interval (a, b), then, f is of bounded
variation on (a, b). If f = g − h with g, h bounded increasing on (a, b), then,
f is of bounded variation on (a, b).

2.2.6. Let f be of bounded variation on (a, b), and, for a < x < b, let v(x)
denote the sup of the sums (2.2.1) over all partitions a =< x1 < x2 < · · · <
xn = x < b with xn = x fixed. Show that a < x < y < b implies v(x) +
|f(y)−f(x)| ≤ v(y), hence, v : (a, b) → R and v−f : (a, b) → R are bounded
increasing. Conclude that f is of bounded variation iff f is the difference of
two bounded increasing functions.

2.2.7. Show that the f in Exercise 2.2.1 is not of bounded variation on (0, 2)
(remember that

∑
1/n = ∞).
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2.3 Continuous Functions

Let f be defined on (a, b), and choose a < c < b. We say that f is continuous
at c if

lim
x→c

f(x) = f(c).

If f is continuous at every real c in (a, b), then, we say that f is continuous
on (a, b) or, if (a, b) is understood from the context, f is continuous.

Recalling the definition of limx→c, we see that f is continuous at c iff, for all
sequences (xn) satisfying xn → c and xn �= c, n ≥ 1, f(xn) → f(c). In fact, f is
continuous at c iff xn → c implies f(xn) → f(c), i.e., the condition xn �= c, n ≥
1, is superfluous. To see this, suppose that f is continuous at c, and suppose
that xn → c, but f(xn) �→ f(c). Since f(xn) �→ f(c), by Exercise 1.5.8, there
is an ε > 0 and a subsequence (x′

n), such that |f(x′
n)− f(c)| ≥ ε and x′

n → c,
for n ≥ 1. But, then, f(x′

n) �= f(c) for all n ≥ 1, hence, x′
n �= c for all n ≥ 1.

Since x′
n → c, by the continuity at c, we obtain f(x′

n) → f(c), contradicting
|f(x′

n)−f(c)| ≥ ε. Thus, f is continuous at c iff xn → c implies f(xn) → f(c).
In the previous section we saw that f(x) = x2 is continuous at c. Since this

works for any c, f is continuous. Repeating this argument, one can show that
f(x) = x4 is continuous, since x4 = x2x2. A simpler example is to choose a real
k and to set f(x) = k for all x. Here, f(xn) = k, and f(c) = k for all sequences
(xn) and all c, so, f is continuous. Another example is f : (0,∞) → R given by
f(x) = 1/x. By the division property of sequences, xn → c implies 1/xn → 1/c
for c > 0, so, f is continuous.

Functions can be continuous at various points and not continuous at other
points. For example, the function f in Exercise 2.2.1 is continuous at every
irrational c and not continuous at every rational c. On the other hand, the
function f : R → R, given by (§2.2)

f(x) =

{
1, x ∈ Q
0, x �∈ Q,

is continuous at no point.
Continuous functions have very simple arithmetic and ordering properties.

If f and g are defined on (a, b) and k is real, we have functions f + g, kf , fg,
max(f, g), min(f, g) defined on (a, b) by setting, for a < x < b,

(f + g)(x) = f(x) + g(x),
(kf)(x) = kf(x),
(fg)(x) = f(x)g(x),

max(f, g)(x) = max[f(x), g(x)],
min(f, g)(x) = min[f(x), g(x)].

If g is nonzero on (a, b), i.e., g(x) �= 0 for all a < x < b, define f/g by setting
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(f/g)(x) =
f(x)
g(x)

, a < x < b.

Theorem 2.3.1. If f and g are continuous, then, so are f + g, kf , fg,
max(f, g), and min(f, g). Moreover, if g is nonzero, then, f/g is continuous.

This is an immediate consequence of the arithmetic and ordering properties
of sequences: If a < c < b and xn → c, then, f(xn) → f(c), and g(xn) → g(c).
Hence, f(xn)+g(xn) → f(c)+g(c), kf(xn) → kf(c), f(xn)g(xn) → f(c)g(c),
max[f(xn), g(xn)] → max[f(c), g(c)], and min[f(xn), g(xn)] → min[f(c), g(c)].
If g(c) �= 0, then, f(xn)/g(xn) → f(c)/g(c). ��

For example, we see immediately that f(x) = |x| is continuous on R since
|x| = max(x,−x).

Let us prove, by induction, that, for all k ≥ 1, the monomials fk(x) = xk

are continuous (on R). For k = 1, this is so since xn → c implies f1(xn) =
xn → c = f1(c). Assuming that this is true for k, fk+1 = fkf1 since xk+1 =
xkx. Hence, the result follows from the arithmetic properties of continuous
functions.

A polynomial f : R → R is a linear combination of monomials, i.e., a
polynomial has the form

f(x) = a0x
d + a1x

d−1 + a2x
d−2 + · · · + ad−1x + ad.

If a0 �= 0, we call d the degree of f . The reals a0, a1, . . . , ad, are the coefficients
of the polynomial.

Let f be a polynomial of degree d > 0, and let a ∈ R. Then, there is a
polynomial g of degree d − 1 satisfying1

f(x) − f(a)
x − a

= g(x), x �= a. (2.3.1)

To see this, since every polynomial is a linear combination of monomials, it is
enough to check (2.3.1) on monomials. But, for f(x) = xn,

xn − an

x − a
= xn−1 + xn−2a + · · · + xan−2 + an−1, x �= a, (2.3.2)

which can be checked2 by cross-multiplying. This establishes (2.3.1).
Since a monomial is continuous and a polynomial is a linear combination

of monomials, by induction on the degree, we obtain the following.

Theorem 2.3.2. Every polynomial f is continuous on R. Moreover, if d is
its degree, there are, at most, d real numbers x satisfying f(x) = 0.

1 g also depends on a.
2 (2.3.2) with x = 1 was used to sum the geometric series in §1.6.
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A real x satisfying f(x) = 0 is called a zero or a root of f . Thus, every
polynomial f has, at most, d roots. To see this, proceed by induction on the
degree of f . If d = 1, f(x) = a0x + a1, so, f has one root x = −a1/a0. Now,
suppose that every dth degree polynomial has, at most, d roots, and let f
be a polynomial of degree d + 1. We have to show that the number of roots
of f is at most d + 1. If f has no roots, we are done. Otherwise, let a be a
root, f(a) = 0. Then, by (2.3.1) there is a polynomial g of degree d such that
f(x) = (x− a)g(x). Thus, any root b �= a of f must satisfy g(b) = 0. Since by
the inductive hypothesis, g has, at most, d roots, we see that f has, at most,
d + 1 roots. ��

A polynomial may have no roots, e.g., f(x) = x2 + 1. However, every
polynomial of odd degree has at least one root (Exercise 2.3.1).

A rational function is a quotient f = p/q of two polynomials. The natural
domain of f is R \ Z(q), where Z(q) denotes the set of roots of q. Since Z(q)
is a finite set, the natural domain of f is a finite union of open intervals. We
conclude that every rational function is continuous where it is defined.

Let f : (a, b) → R. If f is not continuous at c ∈ (a, b), we say that f
is discontinuous at c. There are “mild” discontinuities, and there are “wild”
discontinuities. The mildest situation (Figure 2.4) is when the limits f(c+)
and f(c−) exist and are equal, but not equal to f(c). This can be easily
remedied by modifying the value of f(c) to equal f(c+) = f(c−). With this
modification, the resulting function, then, is continuous at c. Because of this,
such a point c is called a removable discontinuity. For example, the function
f in Exercise 2.2.1 has removable discontinuities at every rational.

The next level of complexity is when f(c+) and f(c−) exist but may or may
not be equal. In this case, we say that f has a jump discontinuity (Figure 2.4)
or a mild discontinuity at c. For example, every monotone function has (at
worst) jump discontinuities. In fact, every function of bounded variation has
(at worst) jump discontinuities (Exercise 2.3.18). The (amount of) jump at c,
a real number, is f(c+) − f(c−). In particular, a jump discontinuity of jump
zero is nothing more than a removable discontinuity.

0 1

1

2 3 4

Fig. 2.4. A jump of 1 at each integer.

Any discontinuity that is not a jump is called a wild discontinuity
(Figure 2.5). If f has a wild discontinuity at c, then, from above, f cannot be
of bounded variation on any open interval surrounding c. The converse of this
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statement is false. It is possible for f to have mild discontinuities but not be
of bounded variation (Exercise 2.2.7).

Fig. 2.5. A wild discontinuity.

An alternate and useful description of continuity is in terms of a modulus
of continuity. Let f : (a, b) → R, and fix a < c < b. For δ > 0, let

µc(δ) = sup{|f(x) − f(c)| : |x − c| < δ, a < x < b}.

Since the sup, here, is possibly that of an unbounded set, we may have µc(δ) =
∞. The function µc : (0,∞) → [0,∞) ∪ {∞} is the modulus of continuity of
f at c (Figure 2.6).

For example, let f : (1, 10) → R be given by f(x) = x2 and pick c = 9.
Since x2 is monotone over any interval not containing zero, the maximum
value of |x2−81| over any interval not containing zero is obtained by plugging
in the endpoints. Hence, µ9(δ) is obtained by plugging in x = 9 ± δ, leading
to µ9(δ) = δ(δ +18). In fact, this is correct only if 0 < δ ≤ 1. If 1 ≤ δ ≤ 8, the
interval under consideration is (9−δ, 9+δ)∩(1, 10) = (9−δ, 10). Here, plugging
in the endpoints leads to µ9(δ) = max(19, 18δ−δ2). If δ ≥ 8, then, (9−δ, 9+δ)
contains (1, 10) and, hence, µ9(δ) = 80. Summarizing, for f(x) = x2, c = 9,
and (a, b) = (1, 10),

µc(δ) =

⎧
⎪⎨

⎪⎩

δ(δ + 18), 0 < δ ≤ 1,

max(19, 18δ − δ2), 1 ≤ δ ≤ 8,

80, δ ≥ 8.

Going back to the general definition, note that µc(δ) is an increasing func-
tion of δ, and, hence, µc(0+) exists (Exercise 2.2.2).

Theorem 2.3.3. Let f : (a, b) → R, and choose c ∈ (a, b). The following are
equivalent.

A. f is continuous at c.
B. µc(0+) = 0.
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1 1099 − δ 9 + δ

Fig. 2.6. Computing the modulus of continuity.

C. For all ε > 0, there exists δ > 0, such that |x− c| < δ implies |f(x)−f(c)|
< ε.

That A implies B is left as Exercise 2.3.2. Now, assume B, and suppose
that ε > 0 is given. Since µc(0+) = 0, there exists a δ > 0 with µc(δ) < ε.
Then, by definition of µc, |x− c| < δ implies |f(x)− f(c)| ≤ µc(δ) < ε, which
establishes C. Now, assume the ε-δ criterion C, and let xn → c. Then, for all
but a finite number of terms, |xn − c| < δ. Hence, for all but a finite number
of terms, f(c)− ε < f(xn) < f(c)+ ε. Let yn = f(xn), n ≥ 1. By the ordering
properties of sup and inf, f(c) − ε ≤ yn∗ ≤ y∗

n ≤ f(c) + ε. By the ordering
properties of sequences, f(c)−ε ≤ y∗ ≤ y∗ ≤ f(c)+ε. Since ε > 0 is arbitrary,
y∗ = y∗ = f(c). Thus, yn = f(xn) → f(c). Since (xn) was any sequence
converging to c, limx→c f(x) = f(c), i.e., A. ��

Thus, in practice, one needs to compute µc(δ) only for δ small enough,
since it is the behavior of µc near zero that counts. For example, to check
continuity of f(x) = x2 at c = 9, it is enough to note that µ9(δ) = δ(δ + 18)
for small enough δ, which clearly approaches zero as δ → 0+.

To check the continuity of f(x) = x2 at c = 9 using the ε-δ criterion C,
given ε > 0, it is enough to exhibit a δ > 0 with µ9(δ) < ε. Such a δ is the lesser
of ε/20 and 1, δ = min(ε/20, 1). To see this, first, note that δ(δ + 18) ≤ 19 for
this δ. Then, ε ≤ 19 implies δ(δ+18) ≤ (ε/20)(1+18) = (19/20)ε < ε, whereas
ε > 19 implies δ(δ + 18) < ε. Hence, in either case, µ9(δ) < ε, establishing C.

Now, we turn to the mapping properties of a continuous function. First,
we define one-sided continuity. Let f be defined on (a, b]. We say that f is
continuous at b from the left if f(b−) = f(b). In addition, if f is continuous
on (a, b), we say that f is continuous on (a, b]. Let f be defined on [a, b). We
say that f is continuous at a from the right if f(a+) = f(a). In addition, if f
is continuous on (a, b), we say that f is continuous on [a, b).

Note that a function f is continuous at a particular point c iff f is contin-
uous at c from the right and continuous at c from the left.

Let f be defined on [a, b]. We say that f is continuous on [a, b] if f is
continuous on [a, b) and (a, b]. Checking the definitions, we see f is continuous
on A if, for every c ∈ A and every sequence (xn) ⊂ A converging to c,
f(xn) → f(c), whether A is (a, b), (a, b], [a, b), or [a, b].
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Theorem 2.3.4. Let f be continuous on a compact interval [a, b]. Then,
f([a, b]) is a compact interval [m,M ].

Thus, a continuous function maps compact intervals to compact intervals.
Of course, it may not be the case that f([a, b]) equals [f(a), f(b)]. For example,
if f(x) = x2, f([−2, 2]) = [0, 4] and [f(−2), f(2)] = {4}. We derive two
consequences of this theorem.

Let f([a, b]) = [m,M ]. Then, we have two reals c and d in [a, b], such that
f(c) = m and f(d) = M . In other words, M is a max, and m is a min for the
set f([a, b]). Thus, a continuous function on a compact interval attains a max
and a min. Of course, this is not generally true on noncompact intervals since
f(x) = 1/x has no max on (0, 1].

A second consequence is: Suppose that L is an intermediate value between
f(a) and f(b). Then, there must be a c, a < c < b, satisfying f(c) = L. This
follows since f(a) and f(b) are two reals in f([a, b]), and f([a, b]) is an interval.
Thus, a continuous function on a compact interval attains every intermediate
value. This is the intermediate value property.

On the other hand, the two consequences, the existence of the max and
the min and the intermediate value property, combine to yield the theorem.
To see this, let m = f(c) and M = f(d) denote the max and the min, with
c, d ∈ [a, b]. If m = M , f is constant, hence, f([a, b]) = [m,M ]. If m < M and
m < L < M , apply the intermediate value property to conclude that there
is an x between c and d with f(x) = L. Hence, f([a, b]) = [m,M ]. Thus, to
derive the theorem, it is enough to derive the two consequences.

For the first, let M = sup{f(x) : a ≤ x ≤ b}. If M < ∞, for all n ≥ 1, we
choose xn ∈ [a, b] satisfying f(xn) > M − 1/n. If M = ∞, for all n ≥ 1, we
choose xn ∈ [a, b] satisfying f(xn) > n. In either case, we obtain a sequence
(xn) with f(xn) → M . But (§2.1) (xn) subconverges to some c ∈ [a, b]. By
continuity, (f(xn)) subconverges to f(c). Since (f(xn)) also converges to M ,
M = f(c), so, f has a max. Applying this to g = −f , we see that g has a max
which implies f has a min.

For the second, suppose that f(a) < f(b), and let L be an intermediate
value, f(a) < L < f(b). We proceed as in the construction of

√
2 in §1.4. Let

S = {x ∈ [a, b] : f(x) < L}, and let c = sup S. S is nonempty since a ∈ S,
and S is clearly bounded. For all n ≥ 1, c − 1/n is not an upper bound for
S. Hence, for each n ≥ 1, there is a real xn ∈ S with c ≥ xn > c − 1/n,
which gives xn → c. By continuity, f(xn) → f(c). Since f(xn) < L for all
n ≥ 1, we obtain f(c) ≤ L. On the other hand, c + 1/n is not in S, hence,
f(c + 1/n) ≥ L. Since c + 1/n → c, we obtain f(c) ≥ L. Thus, f(c) = L. The
case f(a) > f(b) is similar or is established by applying the previous to −f .
��

From this theorem, it follows that a continuous function maps open
intervals to intervals. However, they need not be open. For example, with
f(x) = x2, f((−2, 2)) = [0, 4). However, a function that is continuous and
strictly monotone maps open intervals to open intervals (Exercise 2.3.3).
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The above theorem is the result of compactness mixed with continuity.
This mixture yields other surprises. Let f : (a, b) → R be given, and fix a
subset A ⊂ (a, b). For δ > 0, set

µA(δ) = sup{µc(δ) : c ∈ A}.

This is the uniform modulus of continuity of f on A. Since µc(δ) is an increas-
ing function of δ for each c ∈ A, it follows that µA(δ) is an increasing function
of δ, and hence, µA(0+) exists. We say f is uniformly continuous on A if
µA(0+) = 0. When A = (a, b) equals the whole domain of the function, we
delete the subscript A and write µ(δ) for the uniform modulus of continuity
of f on its domain.

Whereas continuity is a property pertaining to the behavior of a function
at (or near) a given point c, uniform continuity is a property pertaining to
the behavior of f near a given set A. Moreover, since µc(δ) ≤ µA(δ), uniform
continuity on A implies continuity at every point c ∈ A.

Inserting the definition of µc(δ) in µA(δ) yields

µA(δ) = sup{|f(x) − f(c)| : |x − c| < δ, a < x < b, c ∈ A},

where, now, the sup is over both x and c.
For example, for f(x) = x2, the uniform modulus µA(δ) over A = (1, 10)

equals the sup of |x2 − y2| over all 1 < x < y < 10 with y − x < δ. But this is
largest when y = x+δ, hence, µA(δ) is the sup of δ2 +2xδ over 1 < x < 10−δ
which yields µA(δ) = 20δ − δ2. In fact, this is correct only if 0 < δ ≤ 9. For
δ = 9, the sup is already over all of (1, 10), hence, cannot get any bigger.
Hence, µA(δ) = 99 for δ ≥ 9. Summarizing, for f(x) = x2 and A = (1, 10),

µA(δ) =

{
20δ − δ2, 0 < δ ≤ 9,

99, δ ≥ 9.

Since f is uniformly continuous on A if µA(0+) = 0, in practice one needs
to compute µA(δ) only for δ small enough. For example, to check uniform
continuity of f(x) = x2 over A = (1, 10), it is enough to note that µA(δ) =
20δ − δ2 for small enough δ, which clearly approaches zero as δ → 0+.

Now, let f : (a, b) → R be continuous, and fix A ⊂ (a, b). What additional
conditions on f are needed to guarantee uniform continuity on A? When A is
a finite set {c1, . . . , cN},

µA(δ) = max [µc1(δ), . . . , µcN
(δ)] ,

and, hence, f is necessarily uniformly continuous on A.
When A is an infinite set, this need not be so. For example, with f(x) = x2

and B = (0,∞), µB(δ) equals the sup of µc(δ) = 2cδ + δ2 over 0 < c < ∞, or
µB(δ) = ∞, for each δ > 0. Hence, f is not uniformly continuous on B.

It turns out that continuity on a compact interval is sufficient for uniform
continuity.
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Theorem 2.3.5. If f : [a, b] → R is continuous, then, f is uniformly contin-
uous on (a, b).

To see this, suppose that µ(0+) = µ(a,b)(0+) > 0, and set ε = µ(0+)/2.
Since µ is increasing, µ(1/n) ≥ 2ε, n ≥ 1. Hence, for each n ≥ 1, by the
definition of the sup in the definition of µ(1/n), there is a cn ∈ (a, b) with
µcn

(1/n) > ε. Now, by the definition of the sup in µcn
(1/n), for each n ≥ 1,

there is an xn ∈ (a, b) with |xn − cn| < 1/n and |f(xn) − f(cn)| > ε. By
compactness, (xn) subconverges to some x ∈ [a, b]. Since |xn−cn| < 1/n for all
n ≥ 1, (cn) subconverges to the same x. Hence, by continuity, (|f(xn)−f(cn)|)
subconverges to |f(x) − f(x)| = 0, which contradicts the fact that this last
sequence is bounded below by ε > 0. ��

The conclusion may be false if f is continuous on (a, b) but not on [a, b] (see
Exercise 2.3.23). One way to understand the difference between continuity
and uniform continuity is as follows.

Let f be a continuous function defined on an interval (a, b), and pick
c ∈ (a, b). Then, by definition of µc, |f(x) − f(c)| ≤ µc(δ) whenever x lies in
the interval (c − δ, c + δ). Setting g(x) = f(c) for x ∈ (c − δ, c + δ), we see
that, for any error tolerance ε, by choosing δ satisfying µc(δ) < ε, we obtain
a constant function g approximating f to within ε, at least in the interval
(c− δ, c+ δ). Of course, in general, we do not expect to approximate f closely
by one and the same constant function over the whole interval (a, b). Instead,
we use piecewise constant functions.

We say g : (a, b) → R is piecewise constant if there is a partition a =
x0 < x1 < · · · < xn < xn+1 = b, such that g restricted to (xi−1, xi) is
constant for i = 1, . . . , n + 1 (in this definition, the values of g at the points
xi are not restricted in any way). The mesh δ of the partition a = x0 <
x1 < · · · < xn+1 = b, by definition, is the largest length of the subintervals,
δ = max1≤i≤n+1 |xi −xi−1|. Note that an interval has partitions of arbitrarily
small mesh iff the interval is bounded.

Let f : [a, b] → R be continuous. Then, from above, f is uniformly con-
tinuous on (a, b). Given a partition a = x0 < x1 < · · · < xn+1 = b with mesh
δ, choose x#

i in (xi−1, xi) arbitrarily, i = 1, . . . , n + 1. Then, by definition
of µ, |f(x) − f(x#

i )| ≤ µ(δ) for x ∈ (xi−1, xi). If we set g(x) = f(x#
i ) for

x ∈ (xi−1, xi), i = 1, . . . , n + 1, and g(xi) = f(xi), i = 0, 1, . . . , n + 1, we ob-
tain a piecewise constant function g : [a, b] → R satisfying |f(x)−g(x)| ≤ µ(δ)
for every x ∈ [a, b]. Since f is uniformly continuous, µ(0+) = 0. Hence, for
any error tolerance ε > 0, we can find a mesh δ, such that µ(δ) < ε. We have
derived the following (Figure 2.7).

Theorem 2.3.6. If f : [a, b] → R is continuous, then, for each ε > 0, there
is a piecewise constant function fε : [a, b] → R, such that

|f(x) − fε(x)| ≤ ε, a ≤ x ≤ b. ��
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a = x0

x#
1

x1

x#
2

x2

x#
3

x3

x#
4

x4 = b

Fig. 2.7. Piecewise constant approximation.

If f is continuous on an open interval, this result may be false. For example
f(x) = 1/x, 0 < x < 1, cannot be approximated as above by a piecewise con-
stant function (unless infinitely many subintervals are used), precisely because
f “shoots up to ∞” near 0.

Let us turn to the continuity of compositions (§1.1). Suppose that f :
(a, b) → R and g : (c, d) → R are given with the range of f lying in the
domain of g, f [(a, b)] ⊂ (c, d). Then, the composition g ◦ f : (a, b) → R is
given by (g ◦ f)(x) = g[f(x)], a < x < b.

Theorem 2.3.7. If f and g are continuous, so is g ◦ f .

Since f is continuous, xn → c implies f(xn) → f(c). Since g is continuous,
(g ◦ f)(xn) = g[f(xn)] → g[f(c)] = (g ◦ f)(c). ��

This result can be written

lim
x→c

g[f(x)] = g
[
lim
x→c

f(x)
]
.

Since g(x) = |x| is continuous, this implies

lim
x→c

|f(x)| =
∣
∣
∣ lim
x→c

f(x)
∣
∣
∣ .

The final issue is the invertibility of continuous functions. Let f : [a, b] →
[m,M ] be a continuous function. When is there an inverse (§1.1) g : [m,M ] →
[a, b]? If it exists, is the inverse g necessarily continuous? It turns out that the
answers to these questions are related to the monotonicity properties (§2.2)
of the continuous function. For example, if f is continuous and increasing on
[a, b] and A ⊂ [a, b], sup f(A) = f(sup A), and inf f(A) = f(inf A) (Exer-
cise 2.3.4). It follows that the upper and lower limits of (f(xn)) are f(x∗)
and f(x∗), respectively, where x∗, x∗ are the upper and lower limits of (xn)
(Exercise 2.3.5).
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Theorem 2.3.8 (Inverse Function Theorem). Let f : [a, b] → R be
continuous. Then, f is injective iff f is strictly monotone. In this case, let
[m,M ] = f([a, b]). Then, the inverse g : [m,M ] → [a, b] is continuous and
strictly monotone.

If f is strictly monotone and x �= x′, then, x < x′ or x > x′ which implies
f(x) < f(x′) or f(x) > f(x′), hence, f is injective.

Conversely, suppose that f is injective and f(a) < f(b). We claim that f is
strictly increasing (Figure 2.8). To see this, suppose not and choose a ≤ x <
x′ ≤ b with f(x) > f(x′). There are two possibilities: Either f(a) < f(x) or
f(a) ≥ f(x). In the first case, we can choose L in (f(a), f(x)) ∩ (f(x′), f(x)).
By the intermediate value property there are c, d with a < c < x < d < x′

with f(c) = L = f(d). Since f is injective, this cannot happen, ruling out the
first case. In the second case we must have f(x′) < f(b), hence, x′ < b, so, we
choose L in (f(x′), f(x)) ∩ (f(x′), f(b)). By the intermediate value property,
there are c, d with x < c < x′ < d < b with f(c) = L = f(d). Since f is
injective, this cannot happen, ruling out the second case. Thus, f is strictly
increasing. If f(a) > f(b), applying what we just learned to −f yields −f
strictly increasing or f strictly decreasing. Thus, in either case, f is strictly
monotone.

a x bx′

L

dc

Fig. 2.8. Derivation of the IFT when f(a) < f(b).

Clearly strict monotonicity of f implies that of g. Now, assume that f is
strictly increasing, the case with f strictly decreasing being entirely similar.
We have to show that g is continuous. Suppose that (yn) ⊂ [m,M ] with
yn → y. Let x = g(y), let xn = g(yn), n ≥ 1, and let x∗ and x∗ denote the
upper and lower limits of (xn). We have to show g(yn) = xn → x = g(y). Since
f is continuous and increasing, f(x∗) and f(x∗) are the upper and lower limits
of yn = f(xn). Hence, f(x∗) = y = f(x∗). Hence, by injectivity, x∗ = x = x∗.
��

As an application, note that f(x) = x2 is strictly increasing on [0, n], hence,
has an inverse gn(x) =

√
x on [0, n2], for each n ≥ 1. By uniqueness of inverses

(Exercise 1.1.4), the functions gn, n ≥ 1, agree wherever their domains over-
lap, hence, yield a single, continuous, strictly monotone g : [0,∞) → [0,∞)
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satisfying g(x) =
√

x, x ≥ 0. Similarly, for each n ≥ 1, f(x) = xn is strictly
increasing on [0,∞). Thus, every positive real x has a unique positive nth
root x1/n, and, moreover, the function g(x) = x1/n is continuous on [0,∞).
By composition, it follows that f(x) = xm/n = (xm)1/n is continuous and
strictly monotone on [0,∞) for all naturals m,n. Since x−a = 1/xa for a ∈ Q,
we see that the power functions f(x) = xr are defined, strictly increasing, and
continuous on (0,∞) for all rationals r. Moreover, xr+s = xrxs, (xr)s = xrs

for r, s rational, and, for r > 0 rational, xr → 0 as x → 0 and xr → ∞ as
x → ∞. The following limit is important: For x > 0,

lim
n↗∞

x1/n = 1. (2.3.3)

To derive this, assume x ≥ 1. Then, x ≤ xx1/n = x(n+1)/n, so, x1/(n+1) ≤
x1/n, so, the sequence (x1/n) is decreasing and bounded below by 1, hence,
its limit L ≥ 1 exists. Since L ≤ x1/2n, L2 ≤ x2/2n = x1/n, hence, L2 ≤ L
or L ≤ 1. We conclude that L = 1. If 0 < x < 1, then, 1/x > 1, so, x1/n =
1/(1/x)1/n → 1 as n ↗ ∞.

Any function that can be obtained from polynomials or rational functions
by arithmetic operations and/or the taking of roots is called a (constructible)
algebraic function. For example,

f(x) =
1

√
x(1 − x)

, 0 < x < 1,

is an algebraic function.
We now know what ab means for any a > 0 and b ∈ Q. But what if b /∈ Q?

What does 2
√

2 mean? To answer this, fix a > 1 and b > 0, and let

c = sup{ar : 0 < r < b, r ∈ Q}.

Let us check that when b is rational, c = ab. Since r < s implies ar < as,
ar ≤ ab when r < b. Hence, c ≤ ab. Similarly, c ≥ ab−1/n = ab/a1/n for all
n ≥ 1. Let n ↗ ∞ and use (2.3.3) to get c ≥ ab. Hence, c = ab when b is
rational. Thus, it is consistent to define, for any a > 1 and real b > 0,

ab = sup{ar : 0 < r < b, r ∈ Q},

a0 = 1, and a−b = 1/ab. For all b real, we define 1b = 1, whereas for 0 < a < 1,
we define ab = 1/(1/a)b. This defines ab > 0 for all positive real a and all real
b. Moreover (Exercise 2.3.7),

ab = inf{as : s > b, s ∈ Q}.

Now, we show that ab satisfies the usual rules.

Theorem 2.3.9. A. For a > 1 and 0 < b < c real, 1 < ab < ac.
B. For 0 < a < 1 and 0 < b < c real, ab > ac.
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C. For 0 < a < b and c > 0 real, acbc = (ab)c, (b/a)c = bc/ac, and ac < bc.
D. For a > 0 and b, c real, ab+c = abac.
E. For a > 0, b, c real, abc =

(
ab
)c.

Since A ⊂ B implies supA ≤ supB, ab ≤ ac when a > 1 and b < c.
Since, for any b < c, there is an r ∈ Q ∩ (b, c), ab < ac, thus, the first
assertion. Since, for 0 < a < 1, ab = 1/(1/a)b, applying the first assertion
to 1/a yields (1/a)b < (1/a)c or ab > ac, yielding the second assertion. For
the third, assume a > 1. If 0 < r < c is in Q, then, ar < ac and br < bc

yields (ab)r = arbr < acbc. Taking the sup over r < c yields (ab)c ≤ acbc.
If r < c and s < c are positive rationals, let t denote their max. Then,
arbs ≤ atbt = (ab)t < (ab)c. Taking the sup of this last inequality over all
0 < r < c, first, then, over all 0 < s < c yields acbc ≤ (ab)c. Hence (ab)c = acbc

for b > a > 1. Using this, we obtain (b/a)cac = bc or (b/a)c = bc/ac. Since
b/a > 1 implies (b/a)c > 1, we also obtain ac < bc. The cases a < b < 1 and
a < 1 < b follow from the case b > a > 1. This establishes the third. For the
fourth, the case 0 < a < 1 follows from the case a > 1, so, assume a > 1, b > 0,
and c > 0. If r < b and s < c are positive rationals, then, ab+c ≥ ar+s = aras.
Taking the sups over r and s yields ab+c ≥ abac. If r < b + c is rational, let
d = (b + c− r)/3 > 0. Pick rationals t and s with b > t > b− d, c > s > c− d.
Then, t+s > b+ c−2d > r, so, ar < at+s = atas ≤ abac. Taking the sup over
all such r, we obtain ab+c ≤ abac. This establishes the fourth when b and c
are positive. The cases b ≤ 0 or c ≤ 0 follow from the positive case. The fifth
involves approximating b and c by rationals, and we leave it to the reader. ��

As an application, we define the power function with an irrational expo-
nent. This is a nonalgebraic or transcendental function. Some of the transcen-
dental functions in this book are the power function xa (when a is irrational),
the exponential function ax, the logarithm loga x, the trigonometric functions
and their inverses, and the gamma function. The trigonometric functions are
discussed in §3.5, the gamma function in §5.1, whereas the power, exponential,
and logarithm functions are discussed below.

Theorem 2.3.10. Let a be real, and let f(x) = xa on (0,∞). For a > 0, f is
strictly increasing and continuous with f(0+) = 0 and f(∞) = ∞. For a < 0,
f is strictly decreasing and continuous with f(0+) = ∞ and f(∞) = 0.

Since x−a = 1/xa, the second part follows from the first, so, assume a > 0.
Let r, s be positive rationals with r < a < s, and let xn → c. We have to show
that xa

n → ca. But the sequence (xa
n) lies between (xr

n) and (xs
n). Since we

already know that the rational power function is continuous, we conclude that
the upper and lower limits L∗, L∗, of (xa

n) satisfy cr ≤ L∗ ≤ L∗ ≤ cs. Taking
the sup over all r rational and the inf over all s rational, with r < a < s,
gives L∗ = L∗ = ca. Thus, f is continuous. Also, since xr → ∞ as x → ∞
and xr ≤ xa for r < a, f(∞) = ∞. Since xa ≤ xs for s > a and xs → 0 as
x → 0+, f(0+) = 0. ��

Now we vary b and fix a in ab.
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Theorem 2.3.11. Fix a > 1. Then, the function f(x) = ax, x ∈ R, is strictly
increasing and continuous. Moreover,

f(x + x′) = f(x)f(x′), (2.3.4)

f(−∞) = 0, f(0) = 1, and f(∞) = ∞.

From the previous section, we know that f is strictly increasing. Since
an ↗ ∞ as n ↗ ∞, f(∞) = ∞. Since f(−x) = 1/f(x), f(−∞) = 0. Conti-
nuity remains to be shown. If xn ↘ c, then, (axn) is decreasing and axn ≥ ac,
so, its limit L is ≥ ac. On the other hand, for d > 0, the sequence is even-
tually below ac+d = acad, hence, L ≤ acad. Choosing d = 1/n, we obtain
ac ≤ L ≤ aca1/n. Let n ↗ ∞ to get L = ac. Thus, axn ↘ ac. If xn → c+ is
not necessarily decreasing, then, x∗

n ↘ c, hence, ax∗
n → ac. But x∗

n ≥ xn for
all n ≥ 1, hence, ax∗

n ≥ axn ≥ ac, so, axn → ac. Similarly, from the left. ��
The function f(x) = ax is the exponential function with base a > 1. In

fact, the exponential is the unique continuous function f on R satisfying the
functional equation (2.3.4) and f(1) = a.

By the inverse function theorem, f has an inverse g on any compact in-
terval, hence, on R. We call g the logarithm with base a > 1, and write
g(x) = loga x. By definition of inverse, aloga x = x, for x > 0, and loga(ax) = x,
for x ∈ R.

Theorem 2.3.12. The inverse of the exponential f(x) = ax with base a > 1
is the logarithm with base a > 1, g(x) = loga x. The logarithm is continuous
and strictly increasing on (0,∞). The domain of loga is (0,∞), the range is
R, loga(0+) = −∞, loga 1 = 0, loga ∞ = ∞, and

loga(bc) = loga b + loga c,

loga(bc) = c loga b,

for b > 0, c > 0.

This follows immediately from the properties of the exponential function
with base a > 1. ��

Exercises

2.3.1. If f is a polynomial of odd degree, then, f(±∞) = ±∞ or f(±∞) =
∓∞, and there is at least one real c with f(c) = 0.

2.3.2. If f is continuous at c, then µc(0+) = 0.

2.3.3. If f : (a, b) → R is continuous, then, f((a, b)) is an interval. In addition,
if f is strictly monotone, f((a, b)) is an open interval.

2.3.4. If f is continuous and increasing on [a, b] and A ⊂ [a, b], then,
sup f(A) = f(sup A), and inf f(A) = f(inf A).
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2.3.5. With f as in Exercise 2.3.4, let x∗ and x∗ be the upper and lower
limits of a sequence (xn). Then, f(x∗) and f(x∗) are the upper and lower
limits of (f(xn)).

2.3.6. With r, s ∈ Q and x > 0, show that (xr)s = xrs and xr+s = xrxs.

2.3.7. Show that ab = inf{as : s > b, s ∈ Q}.

2.3.8. With b and c real and a > 0, show that (ab)c = abc.

2.3.9. Fix a > 0. If f : R → R is continuous, f(1) = a, and f(x + x′) =
f(x)f(x′) for x, x′ ∈ R, then, f(x) = ax.

2.3.10. Use the ε-δ criterion to show that f(x) = 1/x is continuous at x = 1.

2.3.11. A real x is algebraic if x is a root of a polynomial of degree d ≥ 1,

a0x
d + a1x

d−1 + · · · + ad−1x + ad = 0,

with rational coefficients a0, a1, . . . , ad. A real is transcendental if it is not alge-
braic. For example, every rational is algebraic. Show that the set of algebraic
numbers is countable (§1.7). Conclude that the set of transcendental numbers
is uncountable.

2.3.12. Let a be an algebraic number. If f(a) = 0 for some polynomial f
with rational coefficients, but g(a) �= 0 for any polynomial g with rational
coefficients of lesser degree, then, f is a minimal polynomial for a, and the
degree of f is the algebraic order of a. Now, suppose that a is algebraic of
order d ≥ 2. Show that all the roots of a minimal polynomial f are irrational.

2.3.13. Suppose that the algebraic order of a is d ≥ 2. Then, there is a c > 0,
such that ∣

∣
∣a − m

n

∣
∣
∣ ≥ c

nd
, n,m ≥ 1.

(See Exercise 1.4.10. Here, you will need the modulus of continuity µa at a
of g(x) = f(x)/(x − a), where f is a minimal polynomial of a.)

2.3.14. Use the previous exercise to show that

.1100010 . . . 010 · · · =
1
10

+
1

102
+

1
106

+ · · · =
∞∑

n=1

1
10n!

is transcendental.

2.3.15. For s > 1 real,
∑∞

n=1 n−s converges.

2.3.16. If a > 1, b > 0, and c > 0, then, bloga c = cloga b, and
∞∑

n=1

1
5log3 n

converges.
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2.3.17. Give an example of an f : [0, 1] → [0, 1] that is invertible but not
monotone.

2.3.18. Let f be of bounded variation (Exercise 2.2.4) on (a, b). Then, the
set of points at which f is not continuous is at most countable. Moreover,
every discontinuity, at worst, is a jump.

2.3.19. If f : R → R is continuous and f(∞) = f(−∞) = −∞, then,
max{f(x) : x ∈ R} exists.

2.3.20. If f : R → R satisfies

lim
x→±∞

f(x)
|x| = +∞,

we say that f is superlinear. If f is superlinear and continuous, then

g(y) = max
−∞<x<∞

[xy − f(x)], y ∈ R,

is well defined (the max exists), and g is superlinear. (For y fixed, take a
sequence (xn), such that xny − f(xn) ↗ sup{xy − f(x) : x ∈ R}, and use
superlinearity to show that (xn) is bounded, hence, subconverges to some x
attaining the sup.)

2.3.21. If f : R → R is superlinear and continuous, then, g is also continuous.
(Modify the logic of the previous solution.)

2.3.22. Let f(x) = 1+ �x�−x, x ∈ R, where �x� denotes the greatest integer
≤ x (Figure 2.4). Compute

lim
n↗∞

(

lim
m↗∞

[f(n!x)]m
)

for x ∈ Q and for x /∈ Q.

2.3.23. Let f(x) = 1/x, 0 < x < 1. Compute µc(δ) explicitly for 0 < c < 1
and δ > 0. With I = (0, 1), show that µI(δ) = ∞ for all δ > 0. Conclude
that f is not uniformly continuous on (0, 1). (There are two cases, c ≤ δ and
c > δ.)

2.3.24. Let f : R → R be continuous, and suppose that f(∞) and f(−∞)
exist and are finite. Show that f is uniformly continuous on R.

2.3.25. Use
√

2
√

2
to show that there are irrationals a, b, such that ab is

rational.
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Differentiation

3.1 Derivatives

Let f be defined on (a, b), and choose c ∈ (a, b). We say that f is differentiable
at c if

lim
x→c

f(x) − f(c)
x − c

exists as a real, i.e., exists and is not ±∞. If it exists, we denote this limit f ′(c)

or
df

dx
(c), and we say that f ′(c) is the derivative of f at c. If f is differentiable

at c for all a < c < b, we say that f is differentiable on (a, b) or, if it is clear
from the context, differentiable. In this case, the derivative f ′ : (a, b) → R is
a function defined on all of (a, b).

For example, the function f(x) = mx + b is differentiable on R with
derivative f ′(c) = m for all c since

lim
x→c

(mx + b) − (mc + b)
x − c

= lim
x→c

m = m.

Since its graph is a line, the derivative of f(x) = mx + b (at any real) is the
slope of its graph. In particular, the derivative of a constant function f(x) = b
for all x is zero.

If f(x) = x2, then, f is differentiable with derivative

f ′(c) = lim
x→c

x2 − c2

x − c
= lim

x→c

(x − c)(x + c)
x − c

= lim
x→c

(x + c) = 2c.

If f is differentiable at c, then,

lim
x→c

f(x) = lim
x→c

[(
f(x) − f(c)

x − c

)

(x − c) + f(c)
]

= lim
x→c

(
f(x) − f(c)

x − c

)

lim
x→c

(x − c) + f(c)
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= f ′(c) · 0 + f(c) = f(c).

So, f is continuous at c. Hence, a differentiable function is continuous.
However, f(x) = |x| is continuous at 0 but not differentiable there since

lim
x→0+

|x| − |0|
x − 0

= 1,

whereas

lim
x→0−

|x| − |0|
x − 0

= −1.

However,
(|x|)′ =

x

|x| , x �= 0,

since |x| = x, hence, (|x|)′ = 1 on (0,∞), and |x| = −x, hence, (|x|)′ = −1 on
(−∞, 0).

Derivatives are computed using their arithmetic properties.

Theorem 3.1.1. If f and g are differentiable on (a, b), and k is real, so are
f + g, kf , fg, and, for a < x < b,

(f + g)′(x) = f ′(x) + g′(x),
(kf)′(x) = kf ′(x),
(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Moreover, if g is nonzero on (a, b), then, f/g is differentiable and

(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)
g(x)2

, a < x < b.

The first two identities together are called the linearity of the derivative,
the third is the product rule, whereas the last is the quotient rule. To derive
these rules, let a < c < b. For sums,

(f + g)′(c) = lim
x→c

(f(x) + g(x)) − (f(c) + g(c))
x − c

= lim
x→c

f(x) − f(c)
x − c

+ lim
x→c

g(x) − g(c)
x − c

= f ′(c) + g′(c).

For scalar multiplication,

(kf)′(c) = lim
x→c

kf(x) − kf(c)
x − c

= k lim
x→c

f(x) − f(c)
x − c

= kf ′(c).
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For products,

(fg)′(c) = lim
x→c

f(x)g(x) − f(c)g(c)
x − c

= lim
x→c

f(x)g(x) − f(c)g(x) + f(c)g(x) − f(c)g(c)
x − c

= lim
x→c

f(x) − f(c)
x − c

lim
x→c

g(x) + f(c) lim
x→c

g(x) − g(c)
x − c

= f ′(c)g(c) + f(c)g′(c).

For quotients,
(

f

g

)′
(c) = lim

x→c

f(x)/g(x) − f(c)/g(c)
x − c

= lim
x→c

f(x)g(c) − f(c)g(x)
(x − c)g(x)g(c)

= lim
x→c

(
f(x) − f(c)

x − c

)

· g(c) − f(c) ·
(

g(x) − g(c)
x − c

)

g(x)g(c)

=
f ′(c)g(c) − f(c)g′(c)

g(c)2
. ��

Above, we saw that the derivative of f(x) = x is f ′(x) = 1. By induction,
we show that the derivative of the monomial f(x) = xn is nxn−1. Since this
is true for n = 1, assume it is true for n ≥ 1. Then, by the product rule if
f(x) = xn+1,

f ′(x) =
(
xn+1

)′
= (xnx)′ = (xn)′ x + xn(x)′ = nxn−1x + xn(1) = (n + 1)xn.

This establishes that (xn)′ = nxn−1 for all n ≥ 1. Since polynomials are linear
combinations of monomials, they are differentiable everywhere. For example,

(x3 + 5x + 1)′ = (x3)′ + (5x)′ + (1)′ = 3x2 + 5.

Moreover,
(xn)′ = nxn−1, n ∈ Z, x �= 0. (3.1.1)

This is clear for n = 0 whereas, for n ≥ 1, using the quotient rule, we find
that

(
x−n

)′ =
(

1
xn

)′
=

(1)′xn − 1(xn)′

(xn)2

=
0 · xn − nxn−1

x2n
= − n

xn+1
= −nx−n−1.

This establishes (3.1.1). Another consequence of the quotient rule is that a
rational function is differentiable wherever it is defined. For example,
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(
x2 − 1
x2 + 1

)′
=

(2x)(x2 + 1) − (x2 − 1)(2x)
(x2 + 1)2

=
4x

(x2 + 1)2
.

We say that a function g is tangent to f at c if the difference f(x) − g(x)
vanishes faster than first order in x − c, i.e., if

lim
x→c

f(x) − g(x)
x − c

= 0.

Suppose that g(x) = mx+b is tangent to f at c. Since the graph of g is a line,
it is reasonable to call it the line tangent to f at (c, f(c)) or, more simply, the
tangent line at c. Note two lines are tangent to each other iff they coincide.
Thus, a function f can have, at most, one tangent line at a given real c.

(c, f(c))

(x, f(x))

f ′(c)(x − c)}

Fig. 3.1. The derivative is the slope of the tangent line.

If f is differentiable at c, then, g(x) = f ′(c)(x − c) + f(c) is tangent to f
at c, since

lim
x→c

f(x) − g(x)
x − c

= lim
x→c

f(x) − f(c) − f ′(c)(x − c)
x − c

= lim
x→c

f(x) − f(c)
x − c

− f ′(c) = 0.

Hence, the derivative f ′(c) of f at c is the slope of the tangent line at c
(Figure 3.1).

If f is differentiable at c, there is a positive k and some interval (c−d, c+d)
about c on which

|f(x) − f(c)| ≤ k|x − c|, c − d < x < c + d. (3.1.2)

Indeed, if this were not so, for each n ≥ 1, we would find a real xn ∈ (c −
1/n, c + 1/n) contradicting this claim, i.e., satisfying

∣
∣
∣
∣
f(xn) − f(c)

xn − c

∣
∣
∣
∣ > n.

But, then, xn → c, and, hence, this inequality would contradict differentiabil-
ity at c.

The following describes the behavior of derivatives under composition.
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Theorem 3.1.2 (Chain Rule). Let f , g be differentiable on (a, b), (c, d),
respectively. If f((a, b)) ⊂ (c, d), then, g ◦ f is differentiable on (a, b) with

(g ◦ f)′(x) = g′(f(x))f ′(x), a < x < b.

To see this, let a < c < b, and assume, first, f ′(c) �= 0. Then, xn → c and
xn �= c for all n ≥ 1 implies f(xn) → f(c) and (f(xn) − f(c))/(xn − c) →
f ′(c) �= 0. Hence, there is an N ≥ 1, such that f(xn) − f(c) �= 0 for n ≥ N .
Thus,

lim
n↗∞

g(f(xn)) − g(f(c))
xn − c

= lim
n↗∞

g(f(xn)) − g(f(c))
f(xn) − f(c)

· f(xn) − f(c)
xn − c

= lim
n↗∞

g(f(xn)) − g(f(c))
f(xn) − f(c)

lim
n↗∞

f(xn) − f(c)
xn − c

= g′(f(c))f ′(c).

Since xn → c and xn �= c for all n ≥ 1, by definition of limx→c (§2.2),

(g ◦ f)′(c) = lim
x→c

g(f(x)) − g(f(c))
x − c

= g′(f(c))f ′(c).

This establishes the result when f ′(c) �= 0. If f ′(c) = 0, by (3.1.2) there is a k
with

|g(y) − g(f(c))| ≤ k|y − f(c)|
for y near f(c). Since x → c implies f(x) → f(c), in this case, we obtain

|(g ◦ f)′(c)| = lim
x→c

∣
∣
∣
∣
g(f(x)) − g(f(c))

x − c

∣
∣
∣
∣

≤ lim
x→c

k|f(x) − f(c)|
|x − c|

= k|f ′(c)| = 0.

Hence, (g ◦ f)′(c) = 0 = g′(f(c))f ′(c). ��
For example,

((
1 − x

n

)n)′
= n

(
1 − x

n

)n−1

·
(

− 1
n

)

= −
(
1 − x

n

)n−1

follows by choosing g(x) = xn and f(x) = 1 − x/n, 0 < x < n.
If we set u = f(x) and y = g(u) = g(f(x)), then, the chain rule takes the

easily remembered form
dy

dx
=

dy

du
· du

dx
.

We say that f : (a, b) → R has a local maximum at c ∈ (a, b) if, for
some δ > 0, f(x) ≤ f(c) on (c − δ, c + δ). Similarly, we say that f has a
local minimum at c ∈ (a, b) if, for some δ > 0, f(x) ≥ f(c) on (c − δ, c + δ).
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Alternatively, we say that c is a local max or a local min of f . If, instead, these
inequalities hold for all x in (a, b), then, we say that c is a (global) maximum
or a (global) minimum of f on (a, b). It is possible for a function to have a
local maximum at every rational (see Exercise 3.1.9).

A critical point of a differentiable f is a real c with f ′(c) = 0. A critical
value of f is a real d, such that d = f(c) for some critical point c.

Let f defined on (a, b). Suppose that f has a local minimum at c, and is
differentiable there. Then, for x > c near c, f(x) ≥ f(c), so,

f ′(c) = lim
x→c+

f(x) − f(c)
x − c

≥ 0.

For x < c near c, f(x) ≥ f(c), so,

f ′(c) = lim
x→c−

f(x) − f(c)
x − c

≤ 0.

Hence, f ′(c) = 0. Applying this result to g = −f , we see that if f has a local
maximum at c, then, f ′(c) = 0. We conclude that a local maximum or a local
minimum is a critical point. The converse is not, generally, true since c = 0
is a critical point of f(x) = x3 but is neither a local maximum nor a local
minimum.

Using critical points, one can maximize and minimize functions over their
domains. For example, to compute

min
a<x<b

f(x)

when f is differentiable, it is enough to compute the critical values of f and
compare them with f(a+) and f(b−), assuming these limits exist. If the least
of these values is f(c) for some critical point c ∈ (a, b), then, f is minimized
at c. If the least of these values is f(b−) or f(a+), then, f has an inf but no
minimum over (a, b). Similarly, for computing max. For example,

max
−∞<x<∞

(6x − x2) = 9

since the only critical point of f(x) = 6x − x2 is at x = 3 and f(∞) =
f(−∞) = −∞.

Theorem 3.1.3 (Mean Value Theorem). If f is continuous on [a, b] and
differentiable on (a, b), then, there is a c in (a, b) with

f ′(c) =
f(b) − f(a)

b − a
.

To see this (Figure 3.2), first we subtract a line from f by setting

g(x) = f(x) −
{[

f(b) − f(a)
b − a

]

(x − a) + f(a)
}

, a ≤ x ≤ b.
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Then, g is continuous on [a, b], differentiable on (a, b), and g(a) = g(b) = 0. If
g(x) = 0 everywhere on [a, b], let a < c < b be any real. If g(x) > 0 somewhere
in (a, b), let c be a real at which g is maximized. If g(x) < 0 somewhere in
(a, b), let c be a real at which g is minimized. In all three cases, we obtain
g′(c) = 0. Since

g′(c) = f ′(c) − f(b) − f(a)
b − a

,

we are done. ��

Fig. 3.2. The mean value theorem.

For example, choose f(x) = (1 − x/n)n, a = 0, b > 0. Then, f ′(x) =
−(1 − x/n)n−1 is between −1 and 0 when 0 < x < n. By the mean value
theorem, we conclude that

0 ≤ 1 − (1 − b/n)n

b
≤ 1, 0 < b < n, n ≥ 1,

since the ratio equals the negative of (f(b) − f(0))/(b − 0). The point of
this inequality is that, when b > 0 is small, the numerator is small enough to
compensate for the smallness of the denominator, yielding a quotient bounded
between 0 and 1.

As a consequence of the mean value theorem, if f and g are differentiable
on (a, b) and f ′(x) = g′(x) for all x, then, f and g differ by a constant, f(x) =
g(x) + C. To see this, note that h(x) = f(x)− g(x) satisfies h′(x) = 0, so, by
the mean value theorem (h(c)− h(d))/(c − d) equals h′ at some intermediate
real. Hence, h(c) = h(d), hence, h is a constant function.

Let (−b, b) be an interval symmetric about 0. Given a function f :
(−b, b) → R, its even part fe is the function

fe(x) =
f(x) + f(−x)

2
,

and its odd part fo is

fo(x) =
f(x) − f(−x)

2
.

Clearly, f = fe + fo.
A function f is even over (−b, b) if f = fe on (−b, b) and odd over (−b, b)

if f = fo on (−b, b). Thus, an even function satisfies f(−x) = f(x) on (−b, b),
whereas an odd function satisfies f(−x) = −f(x) on (−b, b). For example, xn

is even or odd on R according to whether n is even or odd.
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Exercises

3.1.1. Let a > 0 and define f(x) = |x|a. Show that f is differentiable at 0 iff
a > 1.

3.1.2. Define f : R → R by setting f(x) = 0, when x is irrational, and
setting f(m/n) = 1/n3 when n > 0 and m have no common factor. Use
Exercise 1.4.10 to show that f is differentiable at

√
2. What is f ′(

√
2)?

3.1.3. Let f(x) = ax2/2 with a > 0, and set

g(y) = sup
−∞<x<∞

(xy − f(x)), y ∈ R. (3.1.3)

By direct computation, show that g(y) = y2/2a and f ′ and g′ are inverses.

3.1.4. If g : R → R is superlinear (Exercise 2.3.20) and differentiable, then,
g′(R) is unbounded above and below, sup g′(R) = ∞ and inf g′(R) = −∞.
(Argue by contradiction, and use the mean value theorem.)

3.1.5. Suppose that f is continuous on (a, b), differentiable on (a, b) punctured
at c, a < c < b, and limx→c f ′(x) = L exists. Show that f ′(c) exists and equals
L.

3.1.6. Suppose that f : (a, b) → R is differentiable, a < c < b, and f ′(c+)
and f ′(c−) exist. Show that f ′(c+) = f ′(c) = f ′(c−). (As opposed to the
previous exercise, here, we assume that f ′(c) exists.)

3.1.7. Suppose that f is differentiable on a bounded interval (a, b) with |f ′| ≤
I. Show that f is of bounded variation (Exercise 2.2.4) over (a, b) with total
variation ≤ I(b − a).

3.1.8. Show that the function f : R → R in Exercise 2.2.1 has a local
maximum at every c ∈ Q.

3.1.9. Suppose that f : (−b, b) → R is differentiable. Then, f ′ is even or odd
if f is odd or even, respectively. Moreover, if f : (−∞,∞) → R is even and
superlinear (Exercise 2.3.20), then, the function g, given by (3.1.3) above, is
even.

3.1.10. Suppose f : R → R is continuous on R and f is differentiable at
r ∈ R. We say r is a root of f if f(r) = 0. Show that r is a root of f iff
f(x) = (x − r)g(x) for some continuous function g : R → R.

3.1.11. Suppose f : R → R is continuous, and suppose f is differentiable at
d distinct reals r1, . . . , rd. Show that r1, r2, . . . , rd are roots of f iff f(x) =
(x − r1)(x − r2) . . . (x − rd)g(x) for some continuous function g : R → R.

3.1.12. Let f : R → R be differentiable. Show that if f has d distinct roots
r1, . . . , rd, then f ′ has d − 1 distinct roots s1, . . . , sd−1, where the sj ’s are
distinct from the rj ’s.
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3.2 Mapping Properties

To differentiate roots, we need to know how derivatives of inverses behave.
But continuous functions are invertible iff they are strictly monotone (§2.3),
so, we begin by using the derivative to identify monotonicity.

Theorem 3.2.1. Let f : (a, b) → R be differentiable. If f ′(x) �= 0 for a < x <
b, then, f is strictly monotone on (a, b) and f ′(x) > 0 on (a, b) or f ′(x) < 0
on (a, b). Moreover, f ′(x) ≥ 0 on (a, b) iff f is increasing, and f ′(x) ≤ 0 on
(a, b) iff f is decreasing.

By the mean value theorem, given a < x < y < b, there is a c in (x, y)
satisfying

f(y) − f(x) = f ′(c)(y − x).

If f ′ is never zero, this shows that f is injective, hence, strictly monotone
by the inverse function theorem (§2.3). This also shows that f ′ ≥ 0 on (a, b)
implies f is increasing and f ′ ≤ 0 on (a, b) implies f is decreasing. Conversely,
f increasing implies f(x) ≥ f(c) for x > c, so,

f ′(c) = lim
x→c+

f(x) − f(c)
x − c

≥ 0,

for all a < c < b. Similarly, if f is decreasing. In particular, we conclude that
if f ′ is never zero and f is monotone, we must have f ′ > 0 on (a, b) or f ′ < 0
on (a, b). ��

It is not, generally, true that strict monotonicity implies the nonvanishing
of f ′. For example, f(x) = x3 is strictly increasing on R but f ′(0) = 0.

Since its derivative was computed in the previous section, the function

f(x) =
x2 − 1
x2 + 1

is strictly increasing on (0,∞) and strictly decreasing on (−∞, 0). Thus, the
critical point x = 0 is a minimum of f on R.

A useful consequence of this theorem is the following: If f and g are dif-
ferentiable on (a, b), continuous on [a, b], f(a) = g(a), and f ′(x) ≥ g′(x) on
(a, b), then, f(x) ≥ g(x) on [a, b]. This follows by applying the theorem to
h = f − g.

Another consequence is that derivatives, although not necessarily contin-
uous, satisfy the intermediate value property (Exercise 3.2.8).

Now we can state the inverse function theorem for differentiable functions.

Theorem 3.2.2 (Inverse Function Theorem). Let f be continuous on
[a, b], differentiable on (a, b), and suppose that f ′(x) �= 0 on (a, b). Let
[m,M ] = f([a, b]). Then, f : [a, b] → [m,M ] is invertible and its inverse g
is continuous on [m,M ], differentiable on (m,M), and g′(y) �= 0 on (m,M).
Moreover,

g′(y) =
1

f ′(g(y))
, m < y < M.
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Note, first, that f ′ > 0 on (a, b) or f ′ < 0 on (a, b) by the previous theorem.
Suppose that f ′ > 0 on (a, b), the case f ′ < 0 being entirely similar. Then,
f is strictly increasing, hence, the range [m,M ] must equal [f(a), f(b)], f is
invertible, and its inverse g is strictly increasing and continuous. If a < c < b
and yn → f(c), yn �= f(c) for all n ≥ 1, then, xn = g(yn) → g(f(c)) = c and
xn �= c for all n ≥ 1, so, yn = f(xn), n ≥ 1, and

lim
n↗∞

g(yn) − g(f(c))
yn − f(c)

= lim
n↗∞

xn − c

f(xn) − f(c)
=

1
f ′(c)

.

Since (yn) is any sequence converging to f(c), this implies

g′(f(c)) = lim
y→f(c)

g(y) − g(f(c))
y − f(c)

=
1

f ′(c)
.

Since y = f(c) iff c = g(y), the result follows. ��
As an application, let b > 0. Since for n > 0, the function f(x) = xn is

continuous on [0, b] and f ′(x) = nxn−1 �= 0 on (0, b), its inverse g(y) = y1/n

is continuous on [0, bn] and differentiable on (0, bn) with

g′(y) =
1

f ′(g(y))
=

1
n(g(y))n−1

=
1

ny(n−1)/n
=

1
n

y(1/n)−1.

Since b > 0 is arbitrary, this is valid on (0,∞). Similarly, this holds on (0,∞)
for n < 0.

By applying the chain rule, for all rationals r = m/n, the power functions
f(x) = xr = xm/n = (xm)1/n are differentiable on (0,∞) with derivative
f ′(x) = rxr−1, since

f ′(x) =
(
(xm)1/n

)′
=

1
n

(xm)1/n−1 (xm)′

=
1
n

x(m/n)−mmxm−1 =
m

n
x(m/n)−1 = rxr−1.

Thus, the derivative of f(x) = xr is f ′(x) = rxr−1 for x > 0, for all r ∈ Q.
Using the chain rule, we now know how to differentiate any algebraic

function. For example, the derivative of

f(x) =

√
1 − x2

1 + x2
, 0 < x < 1,

is

f ′(x) =
1
2

(
1 − x2

1 + x2

)−1/2

·
(

−4x

(1 + x2)2

)

=
−2x

(1 + x2)
√

1 − x4
, 0 < x < 1.

Now let a > 0 and let r < s be rationals with r < a < s. We wish to
compute
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lim
x→1+

xa − 1
x − 1

(3.2.1)

for any a ∈ R. Recall that, for a ∈ Q, this limit is a1a−1 = a. Since for any
xn → 1+, the sequence Bn = (xa

n − 1)/(xn − 1) lies between the sequences
An = (xr

n−1)/(xn−1) and Cn = (xs
n−1)/(xn−1), the upper and lower limits

of (Bn) lie between limn↗∞ An = r and limn↗∞ Cn = s. Since r < a < s are
arbitrary, the upper and lower limits both equal a, hence, Bn = (xa

n−1)/(xn−
1) → a, hence, the limit (3.2.1) equals a. Since f(x) = 1/x is continuous at
x = 1, xn → 1− implies yn = 1/xn → 1+, so,

lim
n↗∞

xa
n − 1

xn − 1
= lim

n↗∞

1/ya
n − 1

1/yn − 1
= lim

n↗∞
y1−a

n · ya
n − 1

yn − 1
= 1 · a = a.

Thus,

lim
x→1−

xa − 1
x − 1

= a.

Hence, f(x) = xa is differentiable at x = 1 with f ′(1) = a. Since

lim
x→c

xa − ca

x − c
= ca−1 lim

x/c→1

(x/c)a − 1
(x/c) − 1

= aca−1,

f is differentiable on (0,∞) with f ′(c) = aca−1. Thus, for all real a > 0, the
derivative of f(x) = xa at x > 0 is f ′(x) = axa−1. Using the quotient rule,
the same result holds for real a ≤ 0.

As an application, let v be any real greater than 1. Then, by the chain
rule, the derivative of f(x) = (1 + x)v − 1 − vx is f ′(x) = v(1 + x)v−1 − v,
hence, the only critical point is x = 0. Since f(−1) = −1 + v > 0 = f(0) and
f(∞) = ∞, the minimum of f over (−1,∞) is f(0) = 0. Hence,

(1 + b)v ≥ 1 + vb, b ≥ −1. (3.2.2)

We already knew this for v a natural (Exercise 1.4.6), but now we know this
for any real v ≥ 1.

Now, we compute the derivative of the exponential function f(x) = ax

with base a > 1. We begin with finding f ′(0).
If 0 < x ≤ y and a > 1, then, insert v = y/x ≥ 1 and b = ax − 1 > 0 in

(3.2.2), and rearrange to get

ax − 1
x

≤ ay − 1
y

, 0 < x ≤ y.

Thus,

m+ = lim
x→0+

ax − 1
x

exists since it equals inf{(ax − 1)/x : x > 0} (Exercise 2.2.2). Moreover,
m+ ≥ 0 since ax > 1 for x > 0. Also,
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m− = lim
x→0−

ax − 1
x

= lim
x→0+

a−x − 1
−x

= lim
x→0+

a−x · ax − 1
x

= 1 · m+ = m+.

Hence, the exponential with base a > 1 is differentiable at x = 0, and we
denote its derivative there by m(a). Since ax = acax−c,

lim
x→c

ax − ac

x − c
= ac lim

x→c

ax−c − 1
x − c

= acm(a).

Hence, f is differentiable on R, and f ′(x) = axm(a) with m(a) ≥ 0. If m(a) =
0, then, f ′(x) = 0 for all x, hence, f is constant, a contradiction. Hence,
m(a) > 0. Also, for b > 1 and a > 1,

m(b) = lim
x→0

bx − 1
x

= lim
x→0

(aloga b)x − 1
x

= lim
x→0

ax loga b − 1
x

= m(a) loga b,

by the chain rule. By fixing a and varying b, we see that m is a continu-
ous, strictly increasing function with m(∞) = ∞ and m(1+) = 0. By the
intermediate value property §2.2, we conclude that m((1,∞)) = (0,∞).

Thus, and this is very important, there is a unique real e > 1 with
m(e) = 1. The exponential and logarithm functions with base e are called
natural. Throughout the book, e denotes this particular number. The decimal
expansion of e is computed in §3.4. We summarize the results.

Theorem 3.2.3. For all a > 0, the exponential f(x) = ax is differentiable
on R. There is a unique real e > 1, such that f(x) = ex implies f ′(x) = ex.
Moreover, f(x) = ax implies f ′(x) = ax loge a.

For a > 1, this was derived above. To derive the theorem for 0 < a < 1,
use ax = (1/a)−x and the chain rule. ��

In the sequel, log x will denote loge x, i.e., we drop the e when writing the
natural logarithm. Then,

elog x = x, log ex = x.

We end with the derivative of f(x) = loga x. Since this is the inverse of
the exponential,

f ′(x) =
1

af(x) log a
=

1
x log a

.

Thus, f(x) = loga x implies f ′(x) = 1/x log a, x > 0. In particular log e = 1,
so, f(x) = log x implies f ′(x) = 1/x, x > 0.

For example, combining the above with the chain rule,

(log |x|)′ =
1
x

, x �= 0.
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Another example is (x �= ±1)
[

log
(

x − 1
x + 1

)]′
=

1
(

x−1
x+1

) ·
(

x − 1
x + 1

)′
=
(

x + 1
x − 1

)

· 2
(x + 1)2

=
2

x2 − 1
.

We will need the following in §3.4.

Theorem 3.2.4 (Generalized Mean Value Theorem). If f and g are
continuous on [a, b], differentiable on (a, b), and g′(x) �= 0 on (a, b), there
exists a c in (a, b), such that1

f(b) − f(a)
g(b) − g(a)

=
f ′(c)
g′(c)

.

Either g′ > 0 on (a, b) or g′ < 0 on (a, b). Assume g′ > 0 on (a, b). To
see the theorem, let h denote the inverse function of g, so, h(g(x)) = x, and
set F (x) = f(h(x)). Then F (g(x)) = f(x), F is continuous on [g(a), g(b)] and
differentiable on (g(a), g(b)). So, applying the mean value theorem, the chain
rule, and the inverse function theorem, there is a d in (g(a), g(b)), such that

f(b) − f(a)
g(b) − g(a)

=
F (g(b)) − F (g(a))

g(b) − g(a)

= F ′(d) = f ′(h(d))h′(d) =
f ′(h(d))
g′(h(d))

.

Now, let c = h(d). Then, c is in (a, b). The case g′ < 0 on (a, b) is similar. ��
We end the section with l’Hopital’s rule.

Theorem 3.2.5 (L’Hopital’s Rule). Let f and g be differentiable on an
open interval (a, b) punctured at c, a < c < b. Suppose that limx→c f(x) = 0
and limx→c g(x) = 0. Then, g′(x) �= 0 for x �= c and

lim
x→c

f ′(x)
g′(x)

= L

imply2

lim
x→c

f(x)
g(x)

= L. (3.2.3)

To obtain this, define f and g at c by setting f(c) = g(c) = 0. Then, f and
g are continuous on (a, b). Now, let xn → c+. Apply the generalized mean
value theorem on (c, xn) for each n ≥ 1. Then,

f(xn)
g(xn)

=
f(xn) − f(c)
g(xn) − g(c)

=
f ′(dn)
g′(dn)

→ L,

1 g(b) − g(a) is not zero because it equals g′(d)(b − a) for some a < d < b.
2 g(x) �= 0 for x �= c since g(x) = g(x) − g(c) = g′(d)(x − c).
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since c < dn < xn. Similarly, this also holds when xn → c−, and, thus, this
holds for xn → c, which establishes (3.2.3). ��

The above deals with the “indeterminate form” f(x)/g(x) → 0/0. The
case f(x)/g(x) → ∞/∞ can be handled by turning the fraction f(x)/g(x)
upside down and applying the above. We do not state this case as we do not
use it.

Exercises

3.2.1. Show that 1 + x ≤ ex for x ≥ 0.

3.2.2. Let f(x) = e|x| − 1. With g(y) as in (3.1.3), by direct computation,
show that g(y) = |y| log |y| − |y| + 1 for |y| ≥ 1 and g(y) = 0 for |y| ≤ 1
(Exercise 3.1.9).

3.2.3. Show that limx→0 log(1 + x)/x = 1 and limn↗∞(1 + a/n)n = ea for
a ∈ R (take the log of both sides). If an → a, show also that limn↗∞(1 +
an/n)n = ea.

3.2.4. Let x ∈ R. Show that the sequence (1 + x/n)n, n ≥ |x|, increases to
ex as n ↗ ∞ (use (3.2.2)).

3.2.5. Let f(x) = |x|p/p with p > 1. With g(y) as in (3.1.3), by direct com-
putation, show that g(y) = |y|q/q where (1/p) + (1/q) = 1 and f ′ and g′ are
inverses.

3.2.6. Use the mean value theorem to show that

1 − 1√
1 + x2

≤ x2, x > 0.

3.2.7. Use the mean value theorem to show that
1

(2j − 1)x
− 1

(2j)x
≤ x

(2j − 1)x+1
, j ≥ 1, x > 0.

3.2.8. If f : (a, b) → R is differentiable, then, f ′ : (a, b) → R satisfies the
intermediate value property: If a < c < d < b and f ′(c) < L < f ′(d), then,
L = f ′(x) for some c < x < d. (Start with L = 0. Here the point is that f ′

need not be continuous.)

3.2.9. If f : R → R is superlinear (Exercise 2.3.20) and differentiable, then,
f ′(R) = R, i.e., f ′ is surjective.

3.2.10. For d ≥ 2, let

fd(t) =
d − 1

d
· t(d−1)/d +

1
d
· t−1/d, t ≥ 1.

Show that f ′
d(t) ≤ (d − 1)2/d2 for t ≥ 1. Conclude that

fd(t) − 1 ≤
(

d − 1
d

)2

(t − 1), t ≥ 1.
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3.3 Graphing Techniques

Let f be differentiable on (a, b). If f ′ = df/dx is differentiable on (a, b), we
denote its derivative by f ′′ = (f ′)′; f ′′ is the second derivative of f . If f ′′

is differentiable on (a, b), f ′′′ = (f ′′)′ is the third derivative of f . In general,
we let f (n) denote the nth derivative or the derivative of order n, where, by
convention, we take f (0) = f . If f has all derivatives, f ′, f ′′, f ′′′, . . . , we say f
is smooth on (a, b).

An alternate and useful notation for higher derivatives is obtained by
thinking of f ′ = df/dx as the result of applying d/dx to f , i.e., df/dx =
(d/dx)f . From this point of view, d/dx signifies the operation of differentia-
tion. Thus, applying d/dx twice, we obtain

f ′′ =
(

d

dx

)(
d

dx

)

f =
(

d2

dx2

)

f =
d2f

dx2
.

Similarly, third derivatives may be denoted

f ′′′ =
(

d

dx

)(
d2f

dx2

)

=
d3f

dx3
.

For example, f(x) = x2 has f ′(x) = 2x, f ′′(x) = 2, and f (n)(x) = 0 for
n ≥ 3. More generally, by induction, f(x) = xn, n ≥ 0, has derivatives

f (k)(x) =
dkf

dxk
=

⎧
⎨

⎩

n!
(n − k)!

xn−k, 0 ≤ k ≤ n,

0, k > n,
(3.3.1)

so, f(x) = xn is smooth. By the arithmetic properties of derivatives, it follows
that rational functions are smooth wherever they are defined.

Not all functions are smooth. The function f(x) = |x| is not differentiable
at zero. Using this, one can show that f(x) = xn|x| is n times differentiable on
R, but f (n) is not differentiable at zero. More generally, for f , g differentiable,
we do not expect max(f, g) to be differentiable. However, since f(x) = x1/n

is smooth on (0,∞), algebraic functions are smooth on any open interval of
definition. Also, the functions xa, ax, and loga x are smooth on (0,∞).

We know the sign of f ′ determines the monotonicity of f , in the sense that
f ′ ≥ 0 iff f is increasing and f ′ ≤ 0 iff f is decreasing. How is the sign of
f ′′ reflected in the graph of f? Since f ′′ = (f ′)′, we see that f ′′ ≥ 0 iff f ′ is
increasing and f ′′ ≤ 0 iff f ′ is decreasing.

More precisely, we say f is convex on (a, b) if, for all a < x < y < b,

f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y), 0 ≤ t ≤ 1.

Take any two points on the graph of f and join them by a chord or line
segment. Then, f is convex if the chord lies on or above the graph (Figure 3.3).
We say f is concave on (a, b) if, for all a < x < y < b,
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f((1 − t)x + ty) ≥ (1 − t)f(x) + tf(y), 0 ≤ t ≤ 1.

Take any two points on the graph of f and join them by a chord. Then, f is
concave if the chord lies on or below the graph.

Fig. 3.3. Examples of convex and strictly convex functions.

For example f(x) = x2 is convex and f(x) = −x2 is concave. A function
f : (a, b) → R that is both convex and concave is called affine. It is easy to
see that f : (a, b) → R is affine iff f ′ = m is constant on (a, b).

Similarly, we say that f is strictly convex on (a, b) if, for all a < x < y < b,

f((1 − t)x + ty) < (1 − t)f(x) + tf(y), 0 < t < 1.

Take any two points on the graph of f and join them by a chord. Then, f is
strictly convex if the chord lies strictly above the graph. Similarly, we define
strictly concave.

Note that a strictly convex f : (a, b) → R cannot attain its minimum m
at more than one point in (a, b). Indeed, if f had two minima at x and x′

and x′′ = (x + x′)/2, then, f(x′′) < [f(x) + f(x′)]/2 = (m + m)/2 = m,
contradicting the fact that m is a minimum.

The negative of a (strictly) convex function is (strictly) concave.

Theorem 3.3.1. Suppose that f is differentiable on (a, b). Then, f is convex
iff f ′ is increasing and f is concave iff f ′ is decreasing. Moreover, f is strictly
convex iff f ′ is strictly increasing, and f is strictly concave iff f ′ is strictly
decreasing. If f is twice differentiable on (a, b), then, f is convex iff f ′′ ≥ 0
and f is concave iff f ′′ ≤ 0. Moreover, f is strictly convex if f ′′ > 0, and f
is strictly concave if f ′′ < 0.

Since −f is convex iff f is concave, we derive only the convex part. First,
suppose that f ′ is increasing. If a < x < y < b and 0 < t < 1, let z =
(1 − t)x + ty. Then,

f(z) − f(x)
z − x

= f ′(c)

for some x < c < z. Also

f(y) − f(z)
y − z

= f ′(d)
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for some z < d < y. Since f ′(c) ≤ f ′(d),

f(z) − f(x)
z − x

≤ f(y) − f(z)
y − z

. (3.3.2)

Clearing denominators in this last inequality, we obtain convexity. Conversely,
suppose that f is convex and let a < x < z < y < b. Then, we have (3.3.2).
If a < x < z < y < w < b, apply (3.3.2) to a < x < z < y < b, then, apply
(3.3.2) to a < z < y < w < b. Combining the resulting inequalities yields

f(z) − f(x)
z − x

≤ f(w) − f(y)
w − y

.

Fixing x, y, and w and letting z → x yields

f ′(x) ≤ f(w) − f(y)
w − y

.

Let w → y to obtain f ′(x) ≤ f ′(y), hence, f ′ is increasing. If f ′ is strictly
increasing, then, the inequality (3.3.2) is strict, hence, f is strictly convex.
Conversely, if f ′ is increasing but f ′(c) = f ′(d) for some c < d, then, f ′ is
constant on [c, d]. Hence, f is affine on [c, d] contradicting strict convexity.
This shows that f is strictly convex iff f ′ is strictly increasing.

When f is twice differentiable, f ′′ ≥ 0 iff f ′ is increasing, hence, the third
statement. Since f ′′ > 0 implies f ′ strictly increasing, we also have the fourth
statement. ��

A key feature of convexity (Figure 3.4) is that the graph of a convex
function lies above any of its tangent lines (Exercise 3.3.5).

Fig. 3.4. A convex function lies above any of its tangents.

A real c is an inflection point of f if f is convex on one side of c and
concave on the other. For example c = 0 is an inflection point of f(x) = x3

since f is convex on x > 0 and concave on x < 0. From the theorem we see
that f ′′(c) = 0 at any inflection point c where f is twice differentiable.

If c is a critical point and f ′′(c) > 0, then, f ′ is strictly increasing near
c, hence, f ′(x) < 0 for x < c near c and f ′(x) > 0 for x > c near c. Thus,
f ′(c) = 0 and f ′′(c) > 0 implies c is a local minimum. Similarly, f ′(c) = 0
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and f ′′(c) < 0 implies c is a local maximum. The converses are not, generally,
true since c = 0 is a minimum of f(x) = x4, but f ′(0) = f ′′(0) = 0.

For example, f(x) = ax, a > 1, satisfies f ′(x) = ax log a and f ′′(x) =
ax(log a)2. Since log a > 0, ax is increasing and strictly convex everywhere.
Also f(x) = loga x has f ′(x) = 1/x log a and f ′′(x) = −1/x2 log a, so, loga x
is increasing and strictly concave everywhere. The graphs are as shown in
Figure 3.5.

ax

loga x

1

1

Fig. 3.5. The exponential and logarithm functions.

In the following, we sketch the graphs of some twice differentiable functions
on an interval (a, b), using knowledge of the critical points, the inflection
points, the signs of f ′ and f ′′, and f(a+), f(b−).

If f(x) = 1/(x2 + 1), −∞ < x < ∞, then, f ′(x) = −2x/(x2 + 1)2. Hence,
f ′(x) < 0 for x > 0 and f ′(x) > 0 for x < 0, so, f is increasing for x < 0 and
decreasing for x > 0. Hence, 0 is a global maximum. Moreover,

f ′′(x) =
(

−2x

(x2 + 1)2

)′
=

6x2 − 2
(x2 + 1)3

,

so, f ′′(0) < 0 which is consistent with 0 being a maximum. Now, f ′′(x) < 0 on
|x| < 1/

√
3 and f ′′(x) > 0 on |x| > 1/

√
3. Hence, x = ±1/

√
3 are inflection

points. Since f(0) = 1 and f(∞) = f(−∞) = 0, we obtain the graph in
Figure 3.6.

Fig. 3.6. f(x) = 1/(1 + x2).
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Let f(x) = 1/
√

x(1 − x), 0 < x < 1. Then,

f ′(x) =
2x − 1

2(x(1 − x))3/2

and

f ′′(x) =
3 − 8x(1 − x)
4(x(1 − x))5/2

.

Thus, x = 1/2 is a critical point. Since f ′′(1/2) > 0, x = 1/2 is a local
minimum. In fact, f is decreasing to the left of 1/2 and increasing to the right
of 1/2, hence, 1/2 is a global minimum. Since 3 − 8x(1 − x) > 0 on (0, 1),
f ′′(x) > 0, hence, f is convex. Since f(0+) = ∞ and f(1−) = ∞, the graph
is as shown in Figure 3.7.

Fig. 3.7. f(x) = 1/
√

x(1 − x).

Let f(x) =
3x + 1

x(1 − x)
. This rational function is defined away from x = 0 and

x = 1. Thus, we graph f on the intervals (−∞, 0), (0, 1), (1,∞). Computing,

f ′(x) =
3x2 + 2x − 1
x2(1 − x)2

.

Solving 3x2 + 2x − 1 = 0, x = −1, 1/3 are the critical points. Moreover,
f(∞) = 0, f(1+) = −∞, f(1−) = ∞, f(0+) = ∞, f(0−) = −∞, and
f(−∞) = 0. Since there are no critical points in (1,∞), f is increasing on
(1,∞). Moreover,

f ′′(x) =
6x3 − 6x(1 − x) + 2

x3(1 − x)3
,

so, f is concave on (1,∞). Moreover, the numerator in f ′′(x) is ≥ 1/2 on
(0, 1). Hence, f ′′(x) > 0 on (0, 1). Hence, f is convex in (0, 1) and x = 1/3
is a minimum of f . Since f ′′(−1) = −1 < 0, x = −1 is a maximum. Since
f ′′(x) → 0+ as x → −∞, there is an inflection point in (−∞,−1). Thus, the
graph is as shown in Figure 3.8.

To graph xne−x, x ≥ 0, we will need to show that
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Fig. 3.8. f(x) =
3x + 1

x(1 − x)
.

lim
x→∞

xne−x = 0. (3.3.3)

To establish the limit, we first show that

ex ≥ 1 + x +
x2

2!
+ · · · + xn

n!
, x ≥ 0, (3.3.4)

for all n ≥ 1. We do this by induction. For n = 1, let f(x) = ex, g(x) = 1+x.
Then, f ′(x) = ex ≥ 1 = g′(x) on x > 0 and f(0) = g(0), hence, f(x) ≥ g(x)
establishing (3.3.4) for n = 1. Now, let gn(x) denote the right side of (3.3.4),
and suppose that (3.3.4) is true for some n ≥ 1. Since f ′(x) = f(x) ≥ gn(x) =
g′n+1(x) and f(0) = gn+1(0), we conclude that f(x) ≥ gn+1(x), establishing
(3.3.4) for n + 1. By induction, (3.3.4) is true for all n ≥ 1. Now, (3.3.4) with
n + 1 replacing n implies ex ≥ xn+1/(n + 1)! which implies

xne−x ≤ (n + 1)!
x

, x > 0,

which implies (3.3.3).
Setting fn(x) = xne−x, n ≥ 1, fn(0) = 0 and fn(∞) = 0. Moreover,

f ′
n(x) = xn−1(n − x)e−x

and
f ′′

n (x) = xn−2
[
x2 − 2nx + n(n − 1)

]
e−x.

Thus, the critical point is x = n and fn is increasing on (0, n) and decreasing
on (n,∞). Hence, x = n is a max. The reals x = n±√

n are inflection points.
Between them, fn is concave and elsewhere convex. The graph is as shown in
Figure 3.9.

If we let n ↗ ∞ in (3.3.4), we obtain

ex ≥
∞∑

n=0

xn

n!
, x ≥ 0.
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xe−x

x2e−x

x3e−x

Fig. 3.9. fn(x) = xne−x.

As a consequence (nth term test §1.5),

lim
n↗∞

xn

n!
= 0 (3.3.5)

for all x ≥ 0, hence, for all x. Using (3.3.3), we can derive other limits.

Theorem 3.3.2. For a > 0, b > 0, and c > 0,

A. limx→∞ xae−bx = 0;
B. limt→0+ tb(− log t)a = 0; in particular, t log t → 0 as t → 0+;
C. limn↗∞(log n)a/nb = 0; in particular, log n/n → 0 as n ↗ ∞;
D. if c < 1, limn↗∞ nacn = 0. If c > 1, limn↗∞ n−acn = ∞;
E. limn↗∞ n1/n = 1.

To obtain the first limit, choose n > a, and let y = bx. Then, x → ∞
implies y → ∞, hence, xae−bx = yae−y/ba < yne−y/ba → 0 by (3.3.3).
Substituting t = e−x in the first yields the second since e−x → 0+, as x → ∞.
Substituting t = 1/n in the second yields the third. For the fourth, in the
first, replace x by n and e−b by c, if c < 1. If c > 1, n−acn = 1/na(1/c)n → ∞
by what we just derived. For the fifth, take the exponential of both sides of
the third with a = b = 1. Since ex is continuous, we obtain the fifth. ��

The moral of the theorem is log n << n << en as n ↗ ∞, where A << B
means that any positive power of A is much smaller than B.

Let us use (3.3.1) to derive the binomial theorem. If n ≥ 1, then, (c + x)n

is a polynomial of degree n, hence, there are numbers a0, . . . , an with

f(x) = (c + x)n = anxn + an−1x
n−1 + · · · + a1x + a0. (3.3.6)

Let us compute the derivatives of f by using either of the expressions in
(3.3.6). The left expression and (3.3.1) and the chain rule yield f (k)(0) =
n!/(n − k)!cn−k. The right expression yields f (k)(0) = k!ak. Hence, ak =
n!cn−k/(n − k)!k!. Now, define the binomial coefficient (read “n-choose-k”)

(
n

k

)

=
n!

(n − k)!k!
, 0 ≤ k ≤ n.

Then, we obtain the following.
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Theorem 3.3.3 (Binomial Theorem). If n ≥ 1 and a, b ∈ R, then,

(a + b)n = an +
(

n

1

)

an−1b + · · · +
(

n

n − 1

)

abn−1 + bn

=
n∑

j=0

(
n

j

)

an−jbj . ��

We say f : R → R is superlinear if

lim
x→±∞

f(x)
|x| = +∞.

Given f : R → R, its Legendre transform is the function

g(y) = max
−∞<x<∞

(xy − f(x)), y ∈ R. (3.3.7)

Exercise 2.3.20 shows that g is well-defined when f is superlinear and
continuous.

Below is a set of Exercises that show the Legendre transform of a convex
superlinear function is well-defined, and derive the result that the Legendre
transform of the Legendre transform of a convex superlinear function f is f :
If g is the Legendre transform of f , then f is the Legendre transform of g,

f(x) = max
−∞<y<∞

(xy − g(y)), x ∈ R. (3.3.8)

Examples of Legendre transforms are given in Exercises 3.1.3, 3.2.2,
and 3.2.5. The perfect symmetry between f and its Legendre transform g is
exhibited in Exercises 3.3.11, 3.3.15, and 3.3.18.

Exercises

3.3.1. Graph f(x) = (x + 2/x)/2 for x > 0.

3.3.2. Let f : R → R be convex and, for b �= a, let

s[a, b] =
f(b) − f(a)

b − a
.

Show that a < b < c implies s[a, b] ≤ s[a, c] ≤ s[b, c].

3.3.3. Suppose that f : (a, b) → R is convex. Then, for all c ∈ (a, b),

f ′
±(c) = lim

x→c±

f(x) − f(c)
x − c

both exist, and

f ′
+(c) ≤ f(x) − f(c)

x − c
≤ f(d) − f(x)

d − x
≤ f ′

−(d), a < c < x < d < b.

(3.3.9)
Moreover f ′

− ≤ f ′
+ and both f ′

+ and f ′
− are increasing on (a, b).
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3.3.4. If f : (a, b) → R is convex, then f is continuous on (a, b).

3.3.5. Suppose that f : (a, b) → R is convex and let a < c < b. Then,

f(x) ≥ f(c) + f ′
±(c)(x − c), a < x < b.

In particular, if f is differentiable at c, then the graph of f lies above its
tangent line at c,

f(x) ≥ f(c) + f ′(c)(x − c), a < x < b.

3.3.6. Let f : (a, b) → R and let a < c < b. A subdifferential of f at c is a
real p satisfying

f(x) ≥ f(c) + p(x − c), a < x < b.

Show that when f ′
±(c) both exist, we have f ′

−(c) ≤ p ≤ f ′
+(c). Show also

that when f is convex, the set of subdifferentials of f at c exactly equals the
interval [f ′

−(c), f ′
+(c)].

3.3.7. (Maximum Principle) Suppose that f : (a, b) → R is convex and
has a maximum at some c in (a, b). Then, f is constant (use subdifferentials).

3.3.8. Suppose that f : (a, b) → R is convex, g : (a, b) → R is differentiable,
and f − g attains a maximum at some a < c < b. Show that f ′(c) exists and
equals g′(c) (use subdifferentials).

3.3.9. If f1, . . . , fn are convex on (a, b), then so is

f = max(f1, . . . , fn).

In particular, if f1, . . . , fn are lines, then f is convex. Exercise 3.3.10 shows
that this is also sometimes true for infinitely many lines.

3.3.10. If f : R → R is superlinear and continuous, then its Legendre trans-
form g is convex. Moreover, for each y, if x attains the max in the definition
(3.3.7) of g(y), then x is a subdifferential of g at y (Exercise 2.3.20).

3.3.11. Suppose that f : R → R is superlinear and convex. Show that the
Legendre transform g of f is superlinear and convex and f is the Legendre
transform of g, i.e. (3.3.8) holds. Show also that this result is false if f is not
assumed convex.

3.3.12. If f is superlinear and convex, then, for each y, the max in the
definition (3.3.7) of g(y) is attained at x iff x is a subdifferential of g at y.
Show also that this result is false if f is not assumed convex.

3.3.13. If f : (a, b) → R is convex and differentiable, then f ′ : (a, b) → R is
continuous (recall f ′ is then increasing).
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3.3.14. If f : R → R is superlinear and strictly convex, then its Legendre
transform g is differentiable and g′ is continuous (start by showing that the
max in the definition (3.3.7) of g(y) is attained at a unique x).

3.3.15. If f : R → R is superlinear, differentiable, and strictly convex, then
its Legendre transform g is superlinear, differentiable, and strictly convex, and
f ′ is the inverse of g′.

3.3.16. Graph f , g, f ′, and g′ where f and g are as in Exercise 3.2.2.

3.3.17. Show that f(x) = ex is convex on R. Deduce the inequality atb1−t ≤
ta + (1 − t)b valid for a > 0, b > 0, and 0 ≤ t ≤ 1.

3.3.18. If f is superlinear, smooth, and strictly convex, then the Legendre
transform g of f is superlinear, smooth, and strictly convex iff f ′′(x) > 0 for
all x ∈ R. In this case, we have

g′′(y) =
1

f ′′(x)

whenever y = f ′(x) or equivalently x = g′(y). Also give an example of
a superlinear, smooth, and strictly convex f with a non-smooth Legendre
transform g.

3.3.19. Suppose f : R → R is smooth. We say r is a root of f of order n if
f(r) = f ′(r) = · · · = f (n−1)(r) = 0. We say f has n roots if there are distinct
reals r1, . . . , rk and naturals n1, . . . , nk such that n1 + · · · + nk = n and rj is
a root of f of order nj , j = 1, . . . , k. Show that if f has n roots in an interval
(a, b), then f ′ has n−1 roots in the same interval (a, b) (Use Exercise 3.1.12).

3.3.20. Show that a degree n polynomial f has n roots iff

f(x) = C(x − r1)n1(x − r2)n2 . . . (x − rk)nk

for some distinct reals r1, . . . , rk and naturals n1, . . . , nk satisfying n1 + · · ·+
nk = n (Use induction on n for the only if part).

3.3.21. If f is a degree n polynomial with n negative roots, then g(x) =
xnf(1/x) is a degree n polynomial with n negative roots.

3.3.22. Given positive reals a1, . . . , an, not necessarily distinct, let the reals
p1, . . . , pn be the coefficients given by

(x + a1) (x + a2) . . . (x + an) = xn +
(

n

1

)

p1x
n−1 + · · ·+

(
n

n − 1

)

pn−1x + pn.

Let f(x) denote the polynomial on the right.

A. Show that f has n negative roots.
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B. Show that differentiating f n − k − 1 times (1 ≤ k ≤ n − 1) yields a
(k + 1)-degree polynomial g with k + 1 negative roots.

C. Show that h(x) = xk+1g(1/x) is a degree k + 1 polynomial with k + 1
negative roots.

D. Show that differentiating h k − 1 times yields the quadratic polynomial

p(x) =
1
2
n!
(
pk−1 + 2pkx + pk+1x

2
)

having two roots.

Conclude that p2
k ≥ pk−1pk+1 (Exercise 1.4.5). This result is due to Newton.

3.3.23. With p1, . . . , pn as in the previous exercise and with a1, . . . , an

positive, show that p1 ≥ p
1/2
2 ≥ · · · ≥ p

1/n
n , with equality throughout only

if all the ai’s are equal. This result is due to Maclaurin.

3.4 Power Series

Let f : (a, b) → R be continuous, and fix c in (a, b). Suppose that f is
differentiable at c, and define h1(x) by

h1(x) =

⎧
⎨

⎩

f(x) − f(c)
x − c

, x �= c,

f ′(c), x = c.

Then, h1 is continuous, when x �= c, and limx→c h1(x) = f ′(c) = h1(c), so,
h1 is continuous at c. Thus, differentiability at c implies there is a continuous
function h1 : (a, b) → R satisfying h1(c) = f ′(c) and

f(x) = f(c) + h1(x)(x − c), a < x < b. (3.4.1)

We wish to derive the analog of this result for higher derivatives.
Let f be differentiable on (a, b) with f ′ continuous on (a, b), and suppose

that f ′ is differentiable at c ∈ (a, b). Define h2 : (a, b) → R by

h2(x) =

⎧
⎨

⎩

f(x) − f(c) − f ′(c)(x − c)
(x − c)2/2

, x �= c,

f ′′(c), x = c.

Then, h2 is continuous. To see this, note that h2 is continuous when x �= c,
whereas applying L’Hopital’s rule yields

lim
x→c

h2(x) = lim
x→c

f(x) − f(c) − f ′(c)(x − c)
(x − c)2/2

= lim
x→c

f ′(x) − f ′(c)
x − c

= f ′′(c).
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Thus, h2 : (a, b) → R is a continuous function satisfying h2(c) = f ′′(c) and

f(x) = f(c) + f ′(c)(x − c) +
1
2
h2(x)(x − c)2, a < x < b. (3.4.2)

Now, we carry out this procedure in the general case. Suppose that f is n
times differentiable on (a, b) with f (n) continuous on (a, b), and assume f (n) is
differentiable at c, i.e., assume f (n+1)(c) exists. Define the (n+1)st remainder

Rn+1(x, c) = f(x) −
[

f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + . . .

+
f (n)(c)

n!
(x − c)n

]

, a < x < b;

for example, R1(x, c) = f(x) − f(c). Define hn+1 : (a, b) → R by

hn+1(x) =

⎧
⎨

⎩

Rn+1(x, c)
(x − c)n+1/(n + 1)!

, x �= c,

f (n+1)(c), x = c.

Then, hn+1 is continuous when x �= c and R′
n+1(x, c; f) = Rn(x, c; f ′), where

Rn(x, c; f) denotes the remainder corresponding to f . Applying l’Hopital’s
rule n times,

lim
x→c

hn+1(x) = lim
x→c

R′
n+1(x, c)

(x − c)n/n!

= lim
x→c

Rn(x, c; f ′)
(x − c)n/n!

= lim
x→c

Rn−1(x, c; f ′′)
(x − c)n−1/(n − 1)!

= · · · = lim
x→c

R1(x, c; f (n))
x − c

= lim
x→c

f (n)(x) − f (n)(c)
x − c

= f (n+1)(c).

Thus, hn+1 is continuous on (a, b).

Theorem 3.4.1 (Taylor’s Theorem). Let n ≥ 0, and suppose that f is
n times differentiable on (a, b). If f (n+1)(c) exists at some fixed c in (a, b),
then, there is a continuous function3 hn+1 : (a, b) → R satisfying hn+1(c) =
f (n+1)(c) and

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + . . .

. . . +
f (n)(c)

n!
(x − c)n +

hn+1(x)
(n + 1)!

(x − c)n+1. (3.4.3)

Moreover, if f (n+1) exists on all of (a, b), then, for some ξ between c and x,
Rn+1(x, c) is given by the Cauchy form
3 Taylor’s theorem in §4.4 gives a useful formula for hn+1.
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Rn+1(x, c) =
hn+1(x)
(n + 1)!

(x − c)n+1 =
f (n+1)(ξ)

n!
(x − ξ)n(x − c),

and, for some η between c and x, Rn+1(x, c) is given by the Lagrange form

Rn+1(x, c) =
hn+1(x)
(n + 1)!

(x − c)n+1 =
f (n+1)(η)
(n + 1)!

(x − c)n+1.

The derivation of (3.4.3) is above. To obtain the Cauchy and Lagrange
forms, differentiate the expression defining Rn+1(x, c) once with respect to c.
Then, the sum collapses to (here, ′ means derivative with respect to c)

R′
n+1(x, c) = −f (n+1)(c)

n!
(x − c)n.

Now, apply the mean value theorem to t �→ Rn+1(x, t) on the interval joining
c to x. Since Rn+1(x, x) = 0, this yields the Cauchy form. To obtain the
Lagrange form, set g(t) = (x − t)n+1/(n + 1)!. Then, g′(t) = −(x − t)n/n!,
g(x) = 0, and R′

n+1(x, t)/g′(t) = f (n+1)(t). So, by the generalized mean value
theorem, there is an η between c and x with

hn+1(x) =
Rn+1(x, x) − Rn+1(x, c)

g(x) − g(c)
=

R′
n+1(x, η)
g′(η)

= f (n+1)(η). ��

In particular, the Lagrange form implies that, for f smooth on R and any
n ≥ 1, for each x ∈ R, there is an η between 0 and x with

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn +

f (n+1)(η)
(n + 1)!

xn+1. (3.4.4)

Thus, a smooth function f can be approximated near 0 by an nth degree
polynomial with an error Rn(x, 0) given by a certain expression, for every
n ≥ 1.

If the remainder Rn(x, 0) approaches 0 as n ↗ ∞, we can let n ↗ ∞ in
(3.4.4) to obtain a series for f . Thus, if we know enough about Rn(x, 0), we
may be able to express f as an “infinite polynomial”

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · + f (n)(0)

n!
xn + . . . .

This series is the Taylor series of f centered at 0. For example, with f(x) = ex,
f (n)(x) = ex, hence, f (n)(0) = 1 for all n ≥ 0. Thus, the absolute value of the
nth remainder satisfies

|Rn(x, 0)| =
eη

(n + 1)!
|x|n+1 ≤ e|x|

(n + 1)!
|x|n+1, n ≥ 1.

But, now, Rn(x, 0) → 0 follows from (3.3.5).
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We have shown that

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ . . . , x ∈ R. (3.4.5)

In particular, we have arrived at a series for e,

e = 1 +
1
1!

+
1
2!

+
1
3!

+ . . . .

In §1.6 we obtained 2.5 < e ≤ 3. In fact, by the addition of sufficiently many
terms, e can computed to arbitrarily many places.

More generally, we call

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · · + f (n)(c)

n!
(x − c)n + . . .

the Taylor series4 centered at c.
Using (3.4.4) with f(x) = ex, we can show that e is irrational. Indeed,

suppose that e were rational. Then, there would be a natural N , such that
n!e ∈ N for all n ≥ N . So, choose n greater than 3 and greater than N , and
write (3.4.4) for this n and x = 1 to get

e = 1 +
1
1!

+
1
2!

+ · · · + 1
n!

+
eη

(n + 1)!
.

Then

n!e = n!
(

1 +
1
1!

+
1
2!

+ · · · + 1
n!

)

+
eη

n + 1
.

So, eη/(n + 1) is a natural, which is false since 0 < η < 1 and n > 3 imply

eη

n + 1
<

e

4
≤ 3

4
.

This contradiction allows us to conclude the following.

Theorem 3.4.2. e is irrational. ��

The Taylor series of a smooth function may or may not converge for a
given x. When it does converge, its sum need not equal the function. In fact,
for each x, the Taylor series of f evaluated at x sums to f(x) iff Rn(x, 0) → 0.
However, there are smooth functions f for which Rn(x, 0) �→ 0. For example
(Exercise 3.4.3), the function

f(x) =

{
e−1/x x > 0,

0 x ≤ 0,

4 When centered at zero, the Taylor series is also called the Maclaurin series of f .
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satisfies f (n)(0) = 0 for all n ≥ 0. It follows that Rn(x, 0) = f(x) for all n ≥ 1
and x ∈ R. Thus, for all x, the Taylor series centered at zero converges, since
it is identically zero, but Rn(x, 0) �→ 0 when x �= 0. Hence, the Taylor series
does not sum to f(x), except when x ≤ 0.

Now, we turn to the general study of series involving powers of x as in
(3.4.5). Below, we denote the series (3.4.5) by exp x. Thus, expx = ex.

A power series is a series of the form

f(x) =
∞∑

n=0

anxn = a0 + a1x + a2x
2 + . . .

where the coefficients an, n ≥ 0, are reals. We have seen that f(x) = ex can
be expressed as a power series. What other functions can be so expressed?
Two examples are the even and the odd parts of exp.

The even and odd parts (§3.1) of exp are the hyperbolic cosine cosh and the
hyperbolic sine sinh (these are pronounced to rhyme with ‘gosh’ and ‘cinch’).
Thus,

sinh x =
ex − e−x

2
= x +

x3

3!
+

x5

5!
+ . . . ,

and

cosh x =
ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+ . . . .

Since
∑∞

n=0 |xn/n!| =
∑∞

n=0 |x|n/n! = exp |x|, the series exp is absolutely
convergent on all of R. By comparison with exp, the series for sinh and cosh
are also absolutely convergent on all of R. From their definitions, cosh′ = sinh
and sinh′ = cosh.

Note that the series for sinh x involves only odd powers of x and the series
for coshx involves only even powers of x. This holds for all odd and even
functions (Exercise 3.4.14).

To obtain other examples, we write alternating versions (§1.7) of the last
two series obtaining

sinx = x − x3

3!
+

x5

5!
− . . . ,

and

cos x = 1 − x2

2!
+

x4

4!
− . . . .

These functions are studied in §3.5. Again, by comparison with exp, sin and
cos are absolutely convergent series on all of R. However, unlike exp, cosh,
and sinh, we do not as yet know sin′ and cos′.

In general, since a power series is a series involving a variable x, it may
converge at some x’s and diverge at other x’s. For example (§1.6),

1 + x + x2 + . . .

⎧
⎨

⎩

=
1

1 − x
, |x| < 1,

diverges, |x| ≥ 1.
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Note that the set of x’s for which this series converges is an interval centered
at zero. This is not an accident (Figure 3.10).

Theorem 3.4.3. Let
∑

anxn be a power series. Then, either the series con-
verges absolutely for all x, the series converges only at x = 0, or there is an
R > 0, such that the series converges absolutely if |x| < R and diverges if
|x| > R.

To derive the theorem, let R = sup{|x| :
∑

anxn converges}. If R = 0,
the series converges only for x = 0. If R > 0 and |x| < R, choose c with
|x| < |c| < R and

∑
ancn convergent. Then, {ancn} is a bounded sequence

by the nth term test, say |ancn| ≤ C, n ≥ 0, and it follows that
∑

|anxn| =
∑

|ancn| · |x/c|n ≤ C
∑

|x/c|n < ∞,

since |x/c| < 1 and the last series is geometric. This shows that
∑

anxn

converges absolutely for all x in (−R,R). On the other hand, if R < ∞, the
definition of R shows that

∑
anxn diverges for |x| > R. Finally, if R = ∞,

this shows that the series converges absolutely for all x. ��

−R R0

Fig. 3.10. Region of convergence of a power series.

Note that the theorem says nothing about x = R and x = −R. At these
two points, anything can happen. For example, the power series

f(x) = 1 − x

1
+

x2

2
− x3

3
+ . . .

has radius R = 1 and converges for x = 1 but diverges for x = −1. On the
other hand, the series f(−x) has R = 1 and converges for x = −1 but diverges
for x = 1. The geometric series has R = 1 but diverges at x = 1 and x = −1,
whereas

1 +
x

12
+

x2

22
+

x3

32
+ . . .

has R = 1 and converges at x = 1 and x = −1. Because the interval of
convergence is (−R,R), the number R is called the radius of convergence.
If the series converges only at x = 0, we say R = 0, whereas if the series
converges absolutely for all x, we say R = ∞.

Here are two useful formulas for the radius R.

Theorem 3.4.4 (Root Test). Let
∑

anxn be a power series and let L denote
the upper limit of the sequence (|an|1/n). Then, R = 1/L where we take 1/0 =
∞ and 1/∞ = 0.
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To derive this, it is enough to show that LR = 1. If |x| < R, then
∑

anxn

converges absolutely, hence |an| · |x|n = |anxn| ≤ C for some C (possibly
depending on x); thus, |an|1/n|x| ≤ C1/n. Taking the upper limit of both
sides, we conclude that L|x| ≤ 1. Since |x| may be as close as desired to R,
we obtain LR ≤ 1. On the other hand, if x > R, then, the sequence (anxn)
is unbounded (otherwise, the series converges on (−x, x) contradicting the
definition of R). Hence, some subsequence of (|an||x|n) is bounded below by
1, which implies that some subsequence of (|an|1/n|x|) is bounded below by 1.
We conclude that L|x| ≥ 1. Since |x| may be as close as desired to R, we obtain
LR ≥ 1. Hence, LR = 1. ��

Theorem 3.4.5 (Ratio Test). Let (an) be a nonzero sequence, and suppose
that

ρ = lim
n↗∞

|an|/|an+1|

exists. Then, ρ equals the radius of convergence R of
∑

anxn.

To show that ρ = R, we show that
∑

anxn converges when |x| < ρ and
diverges when |x| > ρ. If |x| < ρ, choose c with |x| < |c| < ρ. Then, |c| ≤
|an|/|an+1| for n ≥ N . Hence,

∣
∣an+1x

n+1
∣
∣ =

∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ · |c| · |anxn| ·

∣
∣
∣
x

c

∣
∣
∣ ≤ |anxn| ·

∣
∣
∣
x

c

∣
∣
∣ , n ≥ N.

Iterating this, we obtain |aN+2x
N+2| ≤ |x/c|2|aNxN |. Continuing in this man-

ner, we obtain |anxn| ≤ C|x/c|n−N , n ≥ N , for some constant C. Since∑
|x/c|n converges, this shows that

∑
|anxn| converges. On the other hand,

if |x| > ρ, then, the same argument shows that
∣
∣an+1x

n+1
∣
∣ ≥ |anxn| for

n ≥ N , hence, anxn �→ 0. By the nth term test,
∑

anxn diverges. Thus,
ρ = R. ��

A function that can be expressed as a power series with infinite radius of
convergence is said to be entire. Thus exp, sinh, cosh, sin, and cos are en-
tire functions. Clearly the sum of entire functions is entire. Since the Cauchy
product (Exercise 1.7.7) of absolutely convergent series is absolutely conver-
gent, the product of entire functions is entire. It is not true, however, that
the quotient of entire functions is entire. For example, f(x) = 1 divided by
g(x) = 1 − x is not entire.

Using the formula for the radius of convergence together with the fact that
exp converges everywhere yields

lim
n↗∞

(n!)1/n = ∞. (3.4.6)

This can also be derived directly.
It turns out that functions constructed from power series are smooth in

their interval of convergence. They have derivatives of all orders.
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Theorem 3.4.6. Let f(x) =
∑

anxn be a power series with radius of conver-
gence R > 0. Then,

∞∑

n=1

nanxn−1 = a1 + 2a2x + 3a3x
2 + . . . (3.4.7)

has radius of convergence R, f is differentiable on (−R,R), and f ′(x) equals
(3.4.7) for all x in (−R,R).

In other words, to obtain the derivative of a power series, one need only
differentiate the series term by term. To see this, we first show that the radius
of the power series

∑
(n + 1)an+1x

n is R. Here, the nth coefficient is bn =
(n + 1)an+1, so,

|bn|1/n = (n + 1)1/n|an+1|1/n = (n + 1)1/n
[
|an+1|1/(n+1)

](n+1)/n

,

so, the upper limit of (|bn|1/n) equals the upper limit of (|an|1/n) since (n +
1)1/n → 1 (§3.3) and (n + 1)/n → 1.

Now we show that f ′(c) exists and equals
∑

nancn−1, where −R < c < R
is fixed. To do this, let us consider only a single term in the series, i.e., let us
consider xn with n fixed, and pick |c| < R. Then, by the binomial theorem
(§3.3),

xn = [c + (x − c)]n =
n∑

j=0

(
n

j

)

cn−j(x − c)j

= cn + ncn−1(x − c) +
n∑

j=2

(
n

j

)

cn−j(x − c)j .

Thus,
xn − cn

x − c
− ncn−1 =

n∑

j=2

(
n

j

)

cn−j(x − c)j−1, x �= c.

Now, choose d > 0 with |c| + d < R. Then, for x satisfying 0 < |x − c| < d,

∣
∣
∣
∣
xn − cn

x − c
− ncn−1

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

n∑

j=2

(
n

j

)

cn−j(x − c)j−1

∣
∣
∣
∣
∣
∣

≤ |x − c|
n∑

j=2

(
n

j

)

|c|n−j |x − c|j−2

≤ |x − c|
n∑

j=2

(
n

j

)

|c|n−jdj−2

=
|x − c|

d2

n∑

j=2

(
n

j

)

|c|n−jdj
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≤ |x − c|
d2

(|c| + d)n,

where we have used the binomial theorem again. To summarize,
∣
∣
∣
∣
xn − cn

x − c
− ncn−1

∣
∣
∣
∣ ≤

|x − c|
d2

(|c| + d)n, 0 < |x − c| < d. (3.4.8)

Assume, temporarily, that the coefficients an are nonnegative, an ≥ 0, n ≥ 0.
Multiplying (3.4.8) by an and summing over n ≥ 0 yields

∣
∣
∣
∣
∣

f(x) − f(c)
x − c

−
∞∑

n=1

nancn−1

∣
∣
∣
∣
∣
≤ |x − c|

d2
f(|c| + d), 0 < |x − c| < d.

Letting x → c in the last inequality establishes the result when an ≥ 0, n ≥ 0.
If this is not so, the same argument works, except for a slight modification in
the right side of this last inequality, which we leave to the reader. ��

Since this theorem can be applied repeatedly to f , f ′, f ′′,. . . , every
power series with radius of convergence R determines a smooth function f
on (−R,R). For example, f(x) =

∑
anxn implies

f ′′(x) =
∞∑

n=2

n(n − 1)anxn−2

on the interval of convergence. It follows that every entire function is smooth
on all of R. The converse, however, is not generally true. For example,

1
1 + x2

= 1 − x2 + x4 − x6 + . . .

converges only on the interval (−1, 1), but 1/(1 + x2) is smooth on R.
In particular, sin and cos are smooth functions on R (we already knew

this for exp, cosh, and sinh). Moreover, differentiating the series for sin and
cos, term by term, yields sin′ = cos and cos′ = − sin.

Our last topic is to describe Newton’s generalization of the binomial
theorem (§3.3) to nonnatural exponents. The result is the same, except that
the sum proceeds to ∞. For v real and n ≥ 1, let

(
v

n

)

=
v · (v − 1) · · · · · (v − n + 1)

1 · 2 · · · · · n .

Also let
(
v
0

)
= 1. If v is a natural, then,

(
v
n

)
is the binomial coefficient defined

previously for 0 ≤ n ≤ v and
(

v
n

)
= 0 for n > v. Then, for any natural N with

n > N ≥ v,
∣
∣
∣
∣

(
v

n + 1

)∣
∣
∣
∣ ≤

N · (N + 1) · · · · · (N + n)
1 · 2 · · · · · (n + 1)

≤ 1 · 2 · · · · · N · · · · · (N + n)
1 · 2 · · · · · (n + 1)

= (n + 2) · · · · · (n + N − 1) · (n + N) ≤ (n + N)N−1.
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Theorem 3.4.7 (Newton’s Binomial Theorem). For v real,

(1 + x)v =
∞∑

n=0

(
v

n

)

xn, −1 < x < 1.

To see this, fix a natural N > |v| and apply the Lagrange form of the
remainder in Taylor’s theorem to f(x) = (1+x)v and 0 < x < 1, c = 0. Then,
f ′(x) = v(1 + x)v−1, f ′′(x) = v(v − 1)(1 + x)v−2, and

f (n)(x) = v(v − 1) . . . (v − n + 1)(1 + x)v−n.

So, f (n)(x)/n! =
(

v
n

)
(1 + x)v−n. Hence, for some 0 < η < x < 1 (see §3.3 for

the limits), we obtain

|Rn(x, c)| =
∣
∣
∣
∣

(
v

n + 1

)∣
∣
∣
∣ (1 + η)v−n−1xn+1 ≤ (N + n)N−1xn+1 → 0, n ↗ ∞.

Since f (n)(0)/n! =
(

v
n

)
, n ≥ 0, the Taylor series yields

(1 + x)v =
∞∑

n=0

(
v

n

)

xn, 0 < x < 1,

which establishes the theorem on (0, 1).
To establish the result on (−1, 0), apply the Cauchy form of the remain-

der to f(x) = (1 − x)v and 0 < x < 1, c = 0. Then, f (n+1)(x)/n! =
(−1)n+1

(
v

n+1

)
(1 − x)v−n−1(n + 1), so, for some 0 < ξ < x, we obtain

|Rn(x, c)| = (n + 1)
∣
∣
∣
∣

(
v

n + 1

)∣
∣
∣
∣ (1 − ξ)v−n−1(x − ξ)n(x − 0)

= (n + 1)x
∣
∣
∣
∣

(
v

n + 1

)∣
∣
∣
∣

(
x − ξ

1 − ξ

)n

(1 − ξ)v−1

≤ (n + 1)x(N + n)N−1

(
x − ξ

1 − ξ

)n

(1 − ξ)v−1.

If v ≥ 1, (1 − ξ)v−1 ≤ 1. If v < 1, (1 − ξ)v−1 ≤ (1 − x)v−1. Hence, in both
cases, (1− ξ)v−1 is bounded by [1 + (1−x)v−1], a fixed quantity independent
of n (remember that ξ may depend on n). Moreover, (x − ξ)/(1 − ξ) < (x −
0)/(1 − 0) = x. Hence,

|Rn(x, c)| ≤ [1 + (1 − x)v−1](n + 1)(N + n)N−1xn+1,

which goes to zero as n ↗ ∞. Since f (n)(0)/n! = (−1)n
(

v
n

)
, n ≥ 0, the Taylor

series yields

(1 − x)v =
∞∑

n=0

(−1)n

(
v

n

)

xn =
∞∑

n=0

(
v

n

)

(−x)n, 0 < x < 1,

which establishes the theorem on (−1, 0). ��
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Exercises

3.4.1. Suppose that f : R → R is nonnegative, twice differentiable, and
f ′′(c) ≤ 1/2 for all c ∈ R. Use Taylor’s theorem to conclude that |f ′(c)| ≤√

f(c). (Choose x = c + t, and note that f(c + t) ≥ 0.)

3.4.2. Use the exponential series to compute e to four decimal places, justi-
fying your reasoning.

3.4.3. Let

h(x) =

{
e−1/x, x > 0,

0, x ≤ 0.

By induction on n ≥ 1, show that

A. h(n−1)(x) = h(x)Rn(x), x > 0, for some rational function Rn, and
B. h(n−1)(x) = 0, x ≤ 0.

Conclude that h (Figure 3.11) is smooth on R. (Here, do not try to compute
Rn.)

0

Fig. 3.11. Graph of the function h in Exercise 3.4.3.

3.4.4. Show directly that limn↗∞(n!)1/n = ∞. (First, show that the lower
limit is ≥ 100.)

3.4.5. Show that
1√

1 − x2
= 1 +

1
2
· x2 +

1
2
· 3
4
· x4 +

1
2
· 3
4
· 5
6
· x6 + . . .

for |x| < 1.

3.4.6. Compute the Taylor series of log(1 + x) centered at 0.

3.4.7. Suppose that

f(x) = a0 + a1x + a2x
2 + . . . (3.4.9)

converges for |x| < R. Show that the series in (3.4.9) is the Taylor series of f
centered at 0. Conclude that

∑
anxn =

∑
bnxn for |x| < R implies an = bn

for n ≥ 0. Thus, the coefficients of a power series are uniquely determined.
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3.4.8. Show that

log(1 + x)
1 + x

= x−
(

1 +
1
2

)

x2 +
(

1 +
1
2

+
1
3

)

x3 −
(

1 +
1
2

+
1
3

+
1
4

)

x4 + . . .

for |x| < 1 by considering the product (§1.7) of the series for 1/(1 + x) and
the series for log(1 + x).

3.4.9. Let f : R → R be twice differentiable with f , f ′, and f ′′ continuous. If
f(0) = 1, f ′(0) = 0 and f ′′(0) = q, use Taylor’s theorem and Exercise 3.2.3
to show that

lim
n↗∞

[f(x/
√

n)]n = exp(qx2/2).

This result is a key step in the derivation of the central limit theorem.

3.4.10. Show that the inverse arcsinh : R → R of sinh : R → R exists and is
smooth, and compute arcsinh′. Show that f(x) = cosh x is superlinear, smooth
and strictly convex. Compute the Legendre transform g(y) (Exercise 3.3.11),
and check that g is smooth.

3.4.11. Compute the radius of convergence of
∑∞

n=0 (−1)nxn/4n(n!)2.

3.4.12. What is the radius of convergence of
∞∑

n=0

xn! = 1 + x + x2 + x6 + x24 + x120 + . . .?

3.4.13. Show that
(
−1/2

n

)

=
(−1)n(2n)!

4n(n!)2
, n ≥ 0.

3.4.14. Let f(x) = a0 + a1x + a2x
2 + . . . converge for −R < x < R. Then,

f is even iff the coefficients a2n−1, n ≥ 1, of the odd powers vanish, and f is
odd iff the coefficients a2n, n ≥ 1, of the even powers vanish.

3.4.15. Compute

lim
t→0

(
1

et − 1
− 1

t

)

by writing et = 1 + t + t2h(t)/2.

3.4.16. Let k ≥ 0. Show that there are integers aj , 0 ≤ j ≤ k, such that

(

x
d

dx

)k ( 1
1 − x

)

=
k∑

j=0

aj

(1 − x)j+1
.

Use this to show the sum ∞∑

n=1

nk

2n

is a natural.
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3.5 Trigonometry

In the previous section, we introduced alternating versions of the even and the
odd parts of the exponential series, the sine function, and the cosine function,

sinx = x − x3

3!
+

x5

5!
− x7

7!
+ . . . ,

and

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ . . . .

Since these functions are defined by these convergent power series, they are
smooth everywhere and satisfy (§3.4):

(sin x)′ = cos x

(cos x)′ = − sin x,

sin 0 = 0, and cos 0 = 1. The sine function is odd and the cosine function is
even,

sin(−x) = − sin x,

and
cos(−x) = cos x.

Since
(
sin2 x + cos2 x

)′
= 2 sin x cos x + 2 cos x(− sin x) = 0,

sin2 + cos2 is a constant; evaluating sin2 x + cos2 x at x = 0 yields 1, hence

sin2 x + cos2 x = 1 (3.5.1)

for all x. This implies | sin x| ≤ 1 and | cos x| ≤ 1 for all x. If a is a critical
point of sinx, then, cos a = 0, hence, sin a = ±1. Hence, sin a = 1 at any
positive local maximum a of sin x.

Let f , g be differentiable functions satisfying f ′ = g and g′ = −f on R.
Now, the derivatives of f sin +g cos and f cos−g sin vanish, hence,

f(x) sin x + g(x) cos x = g(0),

and
f(x) cos x − g(x) sin x = f(0)

for all x. Multiplying the first equation by sinx and the second by cos x and
adding, we obtain

f(x) = g(0) sin x + f(0) cos x.

Multiplying the first by cosx and the second by − sin x and adding, we obtain
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g(x) = g(0) cos x − f(0) sin x.

Fixing y and taking f(x) = sin(x + y) and g(x) = cos(x + y), we obtain the
identities

sin(x + y) = sinx cos y + cos x sin y,

cos(x + y) = cos x cos y − sinx sin y. (3.5.2)

If we replace y by −y and combine the resulting equations with (3.5.2), we
obtain the identities

sin(x + y) + sin(x − y) = 2 sin x cos y,

sin(x + y) − sin(x − y) = 2 cos x sin y,

cos(x − y) − cos(x + y) = 2 sin x sin y,

cos(x − y) + cos(x + y) = 2 cos x cos y. (3.5.3)

For 0 ≤ x ≤ 3, the series

x − sin x =
x3

3!
− x5

5!
+

x7

7!
− . . .

is alternating with decreasing terms (Exercise 3.5.7). Hence, by the Leibnitz
test (§1.7),

x − sinx ≤ x3

6
, 0 ≤ x ≤ 3,

and

x − sin x ≥ x3

6
− x5

120
, 0 ≤ x ≤ 3.

Inserting x = 1 in the first inequality and x = 3 in the second, we obtain

sin 0 = 0, sin 1 ≥ 5
6
, sin 3 ≤ 21

40
.

Hence, there is a positive b in (0, 3), where sin b is a positive maximum, which
gives cos(b) = 0 and sin(b) = 1. Let a = inf{b > 0 : sin b = 1}. Then, the
continuity of sinx implies sin a = 1. Since sin 0 = 0, a > 0. Since sin is a
specific function, a is a specific real number.

For more than 20 centuries, the real 2a has been called “Archimedes’
constant.” More recently, since the eighteenth century, the greek letter π has
been used to denote this real. Thus,

sin
(π

2

)
= 1,

and
cos

(π

2

)
= 0.
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As yet, all we know about π is 0 < π/2 < 3. In §5.2, we address the issue of
computing π accurately.

Since the slope of the tangent line of sinx at x = 0 is cos 0 = 1, sin x >
0 for x > 0 near 0. Since there are no positive local maxima for sinx in
(0, π/2) and sin 0 = 0, we must have sinx > 0 on (0, π/2). Hence, cos x is
strictly decreasing on (0, π/2). Hence, cos x is positive on (0, π/2). Hence,
sin x is strictly increasing on (0, π/2). Moreover, since (sin x)′′ = − sin x, and
(cos x)′′ = − cos x, sin x and cos x are concave on (0, π/2). This justifies the
graphs of sinx and cos x in the interval [0, π/2] (Figure 3.12).

Inserting y = π and replacing x by −x in (3.5.2) yields

sin(π − x) = sinx,

cos(π − x) = − cos x. (3.5.4)

These identities justify the graphs of sinx and cos x in the interval [π/2, π].
Hence, the graphs are now justified on [0, π]. Replacing x by −x in (3.5.4), we
obtain

sin(x + π) = − sin x,

and
cos(x + π) = − cos x.

These identities justify the graphs of sinx and cos x on [0, 2π]. Repeating this
reasoning once more,

sin(x + 2π) = sin(x + π + π) = − sin(x + π) = sinx,

and
cos(x + 2π) = cos(x + π + π) = − cos(x + π) = cos x,

showing that 2π is a period of sinx and cos x. In fact, repeating this reasoning,

sin(x + 2πn) = sin x, n ∈ Z,

and
cos(x + 2πn) = cos x, n ∈ Z,

showing that every integer multiple of 2π is a period of sin x and cos x. If sinx
or cos x had any other period p, then, by subtracting from p an appropriate
integral multiple of 2π, we would obtain a period in (0, 2π), contradicting the
graphs. Hence, 2πZ is the set of periods of sin x and of cos x.

If we set x = y in (3.5.2), we obtain

sin(2x) = 2 sin x cos x,

and
cos(2x) = cos2 x − sin2 x.

By (3.5.1), the second identity implies



102 3 Differentiation

cos2 x =
1 + cos(2x)

2
,

and

sin2 x =
1 − cos(2x)

2
.

sin x cos x

0

π/2 π 3π/2 2π

Fig. 3.12. The graphs of sine and cosine.

By the inverse function theorem, sinx has an inverse on [−π/2, π/2] and
cos x has an inverse on [0, π]. These inverses are arcsin : [−1, 1] → [−π/2, π/2]
and arccos : [−1, 1] → [0, π]. Since cos x > 0 on (−π/2, π/2), by (3.5.1),
cos(arcsin x) =

√
1 − x2 on [−1, 1]. Similarly, since sinx > 0 on (0, π),

sin(arccos x) =
√

1 − x2 on [−1, 1]. Thus, the derivatives of the inverse func-
tions are given by

(arcsin x)′ =
1

cos(arcsin x)
=

1√
1 − x2

, −1 < x < 1,

and
(arccos x)′ =

1
− sin(arccos x)

=
−1√
1 − x2

, −1 < x < 1.

As an application,

(
2 arcsin

√
x
)′ = 2 · 1

√

1 −√
x

2
· 1
2
√

x
=

1
√

x(1 − x)
, 0 < x < 1.

Now, we make the connection with the unit circle. The unit circle is the
subset {(x, y) : x2 + y2 = 1} of R2. The interior {(x, y) : x2 + y2 < 1} of the
unit circle is the (open) unit disk.

Theorem 3.5.1. If (x, y) is a point on the unit circle, there is a real θ with
(x, y) = (cos θ, sin θ). If φ is any other such real, then, θ − φ is in 2πZ. If
(x, y) is any point in R2, then, (x, y) = (r cos θ, r sin θ) for some uniquely
determined r ≥ 0 and real θ, with θ determined up to an additive integer
multiple of 2π, when r > 0.
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Since x2+y2 = 1, |x| ≤ 1. Let θ = arccos x. Then, sin2 θ+cos2 θ = 1 implies
y = ± sin θ. If y = sin θ, we have found a real θ, as required. Otherwise, replace
θ by −θ. This does not change cos θ = cos(−θ), but changes sin θ = − sin(−θ).
For the second statement, suppose that (cos θ, sin θ) = (cos φ, sin φ). Then,

cos(θ − φ) = cos θ cos φ + sin θ sin φ = 1.

Hence, θ−φ is an integer multiple of 2π. For general (x, y), set r =
√

x2 + y2.
If r = 0, any θ yields (x, y) = (r cos θ, r sin θ), whereas, if r > 0, (x/r, y/r) is
on the unit circle, so, we can choose θ by the first part. ��

Of course (r, θ) are the usual polar coordinates of the point (x, y).
The tangent function, tan x = sin x/ cos x, is smooth everywhere except at

odd multiples of π/2 where the denominator vanishes. Moreover, tanx is an
odd function, and

tan(x + π) =
sin(x + π)
cos(x + π)

=
− sin x

− cos x
= tanx.

So, π is the period for tanx. By the quotient rule

(tan x)′ =
(sin x)′ cos x − sinx(cos x)′

(cos x)2
=

1
cos2 x

, −π/2 < x < π/2.

Thus, tan x is strictly increasing on (−π/2, π/2). Moreover,

tan(π/2−) = ∞,

tan(−π/2+) = −∞,

and

(tan x)′′ =
(

1
cos2 x

)′
= 2

tan x

cos2 x
.

Thus, tan x is convex on (0, π/2) and concave on (−π/2, 0). The graph is as
shown in Figure 3.13.

tan x

arctan x

0 π

Fig. 3.13. The graphs of tan x and arctan x.
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By the inverse function theorem, tanx has an inverse on (−π/2, π/2). This
inverse, arctan : (−∞,∞) → (−π/2, π/2), is smooth and

(arctan x)′ = 1/ cos(arctan x)−2 = cos2(arctan x).

Since cos x is positive on (−π/2, π/2), dividing (3.5.1) by cos2 x, we have
tan2 x + 1 = 1/ cos2 x. Hence, cos2 x = 1/(1 + tan2 x). Thus,

(arctan x)′ =
1

1 + x2
.

It follows that arctanx is strictly increasing on R. Since (arctan x)′′ =
−2x/(1 + x2)2, arctan x is convex for x < 0 and concave for x > 0. More-
over, arctan∞ = π/2 and arctan(−∞) = −π/2. The graph is as shown in
Figure 3.13.

Often, we will use the convenient abbreviations secx = 1/ cos x, csc x =
1/ sin x, and cotx = 1/ tan x. These are the secant, cosecant, and cotangent
functions. For example, (tanx)′ = sec2 x, and (cotx)′ = − csc2 x.

If t = tan(θ/2), we have the half-angle formulas

sin θ =
2t

1 + t2
,

cos θ =
1 − t2

1 + t2
,

and
tan θ =

2t

1 − t2
.

The rest of the section is a review of euclidean geometry in the plane. The
key concept is that of a euclidean motion.

Let (a, b) ∈ R2. A translation or a translation by (a, b) is the mapping
T = T(a,b) : R2 → R2 given by

(x, y) �→ (x + a, y + b).

Let θ be a real. A rotation or a rotation by θ is the mapping R = Rθ : R2 → R2

given by
(x, y) �→ (x cos θ − y sin θ, x sin θ + y cos θ).

A euclidean motion5 is a translation or a rotation or a composition of the two.
The basic group properties of euclidean motions are as follows. If T , T ′ are

translations by (a, b), (a′, b′), then, T ◦T ′ is a translation by (a+a′, b+b′). If R,
R′ are rotations by θ, θ′, then, R ◦R′ is a rotation by θ + θ′ (this follows from
(3.5.2)). The translation by (0, 0) and the rotation by 0 are both the identity
mapping and the inverses of T(a,b) and Rθ are T(−a,−b) and R−θ, respectively.

5 These are the proper euclidean motions; we are not including reflections.
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If A = (x, y) and A′ = (x′, y′) are points in R2, their sum is A + A′ =
(x + x′, y + y′). If t is a real and A = (x, y) is a point in R2, its multiple
tA is the point (tx, ty). If t > 0, tA is also called a dilate of A. The origin
is O = (0, 0), and a point is nonzero if A �= O. The set of all nonnegative
multiples {tA : t ≥ 0} of a fixed nonzero point A, by definition, is the ray
through A.

If A = (x, y) and A′ = (x′, y′) are any two points in R2, the distance
between A and A′ is

|AA′| =
√

(x − x′)2 + (y − y′)2.

Note that the distance between A and A′ equals the distance between A−A′

and O. If a translation sends A and B to A′ and B′, then, the distance formula
shows that |AB| = |A′B′|. Thus, distances are unchanged by translation.

If a rotation sends A, B to A′ and B′, then, it sends A+B and tA to A′+B′

and tA′. This linearity property follows from the definition of Rθ. It follows
that rotations send rays to rays. If A = (x, y) is rotated into A′ = (x′, y′),
then |OA| = |OA′| since

x′2 + y′2 = (x cos θ − y sin θ)2 + (x sin θ + y cos θ)2 = x2 + y2.

In particular, this is so when |OA| = 1, i.e., when A is on the unit circle.
Hence, rotations send the unit circle into itself. If a rotation sends A and B
to A′ and B′, then,

|AB| = |O(A − B)| = |O(A − B)′| = |O(A′ − B′)| = |A′B′|.

Thus, distances are unchanged by rotation.
Given any two nonzero points A, B we define the angle ∠AOB (with

vertex at O). We say ∠AOB = θ if Rθ maps the ray through A to the
ray through B (Figure 3.14). Note that this notion of angle is oriented, i.e.,
∠AOB = −∠BOA. Moreover, ∠AOB is defined up to an additive multiple of
2π and ∠AOB = ∠A′OB′ for any dilates A′, B′ of A, B, since the rays through
A and B equal the rays through A′ and B′, respectively. Since Rα+β = Rα◦Rβ ,
angles add as they should, i.e., for any three nonzero points A, B, and C,
∠AOB + ∠BOC = ∠AOC.

More generally, given any three points A, B, and C with A �= B, C �= B,
we define ∠ABC (with vertex at B) to be ∠A′OC ′ where A′ = A − B and
C ′ = C − B.

If a translation sends A, B, and C to A′, B′, and C ′, then, A−B = A′−B′

and C − B = C ′ − B′. Hence,

∠ABC = ∠(A − B)O(C − B) = ∠(A′ − B′)O(C ′ − B′) = ∠A′B′C ′.

Thus, angles are unchanged by translation.
If a rotation sends nonzero points A, B, C to A′, B′, C ′, then, ∠AOA′ =

∠BOB′. Hence,
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AO

B

Rθ

Fig. 3.14. Definition of the angle ∠AOB = θ.

∠AOB = ∠AOA′ + ∠A′OB′ + ∠B′OB

= ∠AOA′ + ∠A′OB′ − ∠BOB′ = ∠A′OB′.

Now, the rotation sends A − B to A′ − B′ and C − B to C ′ − B′. Hence,

∠ABC = ∠(A − B)O(C − B) = ∠(A′ − B′)O(C ′ − B′) = ∠A′B′C ′.

Thus, angles are unchanged by rotation.
Using the euclidean invariance of distance and angle, one can derive any

euclidean identity by reducing it to a simple situation. For example, given two
points A = (x, y) and A′ = (x′, y′), their inner product is

〈OA,OA′〉 = xx′ + yy′.

Then, 〈OA,OA′〉 is unchanged by rotation (Exercise 3.5.8). It follows that

〈OA,OA′〉 = |OA| |OA′| cos(∠AOA′). (3.5.5)

To see this, note that both sides are invariant under rotation, hence, we may
assume A = (r cos θ, r sin θ), A′ = (r′, 0). The result now falls out since both
sides equal rr′ cos θ.

Exercises

3.5.1. Derive the Cauchy–Schwarz inequality

〈OA,OA′〉2 ≤ |OA|2|OA′|2

directly, i.e., without using (3.5.5).

3.5.2. Derive the half-angle formulas.

3.5.3. Let f(x) = x sin(1/x), x �= 0, f(0) = 0. Show that f is continuous at
all points, but is not of bounded variation on any interval (a, b) containing 0.
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3.5.4. Let f(x) = x2 sin(1/x), x �= 0, f(0) = 0. Show that f is differentiable
at all points with |f ′(x)| ≤ 1 + 2|x|. Show that f is of bounded variation on
any bounded interval.

3.5.5. Show that the composition of a rotation by φ with a rotation by θ is a
rotation by φ + θ.

3.5.6. For any three distinct points A, B, and C, ∠ABC +∠BCA+∠CAB =
π.

3.5.7. Show that, for 0 ≤ x ≤ 3, the series

x3

3!
− x5

5!
+

x7

7!
− . . .

has decreasing terms.

3.5.8. Given two points A = (x, y) and A′ = (x′, y′), let 〈OA,OA′〉 = xx′ +
yy′. Show that 〈OA,OA′〉 is unchanged by rotation.

3.5.9. For any three distinct points A, B, and C,

|AB|2 + |BC|2 − 2|AB| |BC| cos(∠ABC) = |AC|2.

(First, assume that B = O and expand the squares in |AC|2.)

3.5.10. Show that cos(π/9) cos(2π/9) cos(4π/9) = 1/8.

3.5.11. Compute the sine, cosine and tangent of π/6, π/4, and π/3.

3.5.12. Use (3.5.2) and induction to show that

1 + 2 cos x + 2 cos(2x) + · · · + 2 cos(nx) =
sin

[(
n + 1

2

)
x
]

sin
(

1
2x
)

for n ≥ 1 and x �∈ 2πZ.

3.5.13. Show that 2 cot(2x) = cot x − tan x.

3.5.14. Show that
(
x2 − 2x cos θ + 1

)
·
(
x2 − 2x cos(π − θ) + 1

)
=
(
x4 − 2x2 cos(2θ) + 1

)
.

Use this to derive the identity

x2n − 1 =
(
x2 − 1

)
·

n−1∏

k=1

(
x2 − 2x cos(kπ/n) + 1

)
(3.5.6)

for n = 2, 4, 8, 16, . . . . Here,
∏n−1

k=1 ak means a1a2 . . . an−1. (Use induction:
Assuming (3.5.6) is true, establish the same equation with 2n replacing n.)

3.5.15. Use the Dirichlet test (§1.7) to show that
∑∞

n=1 cos(nx)/n is conver-
gent for x �∈ 2πZ (Exercise 3.5.12).
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3.6 Primitives

Let f be defined on (a, b). A differentiable function F is a primitive of f if

F ′(x) = f(x), a < x < b.

For example, f(x) = x3 has the primitive F (x) = x4/4 on R since (x4/4)′ =
(4x3)/4 = x3.

Not every function has a primitive on a given open interval (a, b). Indeed,
if f : (a, b) → R has a primitive F on (a, b), then, by Exercise 3.2.8, f = F ′

satisfies the intermediate value property. Hence, f((a, b)) must be an interval.
Moreover, Exercise 3.1.6 shows that the presence of a jump discontinuity

in f at a single point in (a, b) is enough to prevent the existence of a primitive
F on (a, b). In other words, if f is defined on (a, b) and f(c+), f(c−) exist
but are not both equal to f(c), for some c ∈ (a, b), then, f has no primitive
on (a, b).

Later (§4.4), we see that every continuous function has a primitive on any
open interval of definition.

Now, we investigate the converse of the last statement: To what extent
does the existence of a primitive F of f determine the continuity of f? To
begin, it is possible (Exercise 3.6.7) for a function f to have a primitive
and to be discontinuous at some points, so, the converse is, in general, false.
However, the previous paragraph shows that such discontinuities cannot be
jump discontinuities but must be wild, in the terminology of §2.3. In fact, it
turns out that, wherever f is of bounded variation, the existence of a primitive
forces the continuity of f (Exercise 3.6.8). Thus, a function f that has a
primitive on (a, b) and is discontinuous at a particular point c ∈ (a, b) must
have unbounded variation near c, i.e., must be similar to the example in
Exercise 3.6.7.

From the mean value theorem, we have the following simple but funda-
mental fact.

Theorem 3.6.1. Any two primitives of f differ by a constant.

Indeed, if F and G are primitives of f , then, H = F − G is a primitive of
zero, i.e., H ′(x) = (F (x)−G(x))′ = 0 for all a < x < b. Hence, H(x)−H(y) =
H ′(c)(x − y) = 0 for a < x < y < b, i.e., H is a constant. ��

For example, all the primitives of f(x) = x3 are F (x) = x4/4 + C with
C a real constant. Sometimes, F is called the anti-derivative or the indefinite
integral of f . We shall use only the term primitive and, symbolically, we write

F (x) =
∫

f(x) dx (3.6.1)

to mean — no more, no less — F ′(x) = f(x) on the interval under consid-
eration. The reason for the unusual notation (3.6.1) is due to the connection
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between the primitive and the integral. This is explained in §4.4. With this
notation, ∫

f ′(x) dx = f(x)

is a tautology. As a mnemonic device, we sometimes write d[f(x)] = f ′(x)dx.
With this notation,

∫
and d “cancel”:

∫
d[f(x)] = f(x).

Based on the derivative formulas in Chapter 3, we can list the primitives
known to us at this point. These identities are valid on any open interval
of definition. These formulas, like any formula involving primitives, can be
checked by differentiation.

∫

xa dx =
xa+1

a + 1
, a �= −1,

∫
1
x

dx = log |x|,
∫

ax dx =
1

log a
ax, a > 0,

∫

cos x dx = sinx,

∫

sinx dx = − cos x,

∫

sec2 x dx = tan x,

∫

csc2 x dx = − cot x,

∫
1√

1 − x2
dx = arcsin x,

and ∫
1

1 + x2
dx = arctan x.

From the linearity of derivatives, we obtain the following.

Theorem 3.6.2. If f and g have primitives on (a, b) and k is a real, so do
f + g and kf , and

∫

[f(x) + g(x)] dx =
∫

f(x) dx +
∫

g(x) dx,

and ∫

kf(x) dx = k

∫

f(x) dx. ��

From the product rule, we obtain the following analog for primitives of
summation by parts (§1.7).
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Theorem 3.6.3 (Integration By Parts). If f and g are differentiable on
(a, b) and f ′g has a primitive on (a, b), then, so does fg′, and

∫

f(x)g′(x) dx = f(x)g(x) −
∫

f ′(x)g(x) dx.

To see this, let F be a primitive for f ′g. Then, (fg−F )′ = f ′g+fg′−F ′ =
fg′, so, fg−F is a primitive for fg′. �� We caution the reader that integration
is taken up in §4.3. Here, this last result is called integration by parts because
of its usefulness for computing integrals in the next chapter. There are no
integrals in this section.

From the chain rule, we obtain the following.

Theorem 3.6.4 (Substitution). If g is differentiable on (a, b), g[(a, b)] ⊂
(c, d) and

∫
f(x) dx = F (x) on (c, d), then,

∫

f [g(x)]g′(x) dx = F [g(x)], a < x < b. ��

We work out some examples. It is convenient to allow the undefined symbol
dx to enter into the expression for f and to write, e.g.,

∫
dx instead of

∫
1 dx

and
∫

dx/x instead of
∫

(1/x)dx.
Substitution is often written

∫
f [g(x)]g′(x) dx =

∫
f(u)du, u = g(x). For

example,
∫

cot x dx =
∫

cos x

sin x
dx

=
∫

d sin x

sin x
=
∫

du

u
= log |u| = log | sin x|.

Similarly,
∫

2x + 1
1 + x2

dx =
∫

2x

1 + x2
dx +

∫
1

1 + x2
dx

=
∫

d(1 + x2)
1 + x2

+ arctan x

= log(1 + x2) + arctan x.

Particularly useful special cases of substitution are
∫

f(x) dx = F (x) implying
∫

f(x + a) dx = F (x + a),

and
∫

f(x) dx = F (x) implying
∫

f(ax) dx =
1
a
F (ax), a �= 0.

We call these the translation and dilation properties. Thus, for example,
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∫

eaxdx =
1
a
eax, a �= 0.

Integration by parts is often written
∫

udv = uv −
∫

vdu. If we take u =
log x, dv = dx, then, du = u′dx = dx/x, v = x, so,

∫

log x dx = x log x −
∫

x(dx/x) = x log x −
∫

dx = x log x − x.

Similarly,
∫

x log x dx =
x2

2
log x −

∫
x2

2
(dx/x)

=
x2

2
log x −

∫
x

2
dx

=
x2

2
log x − x2

4
.

By a trigonometric formula (§3.5),
∫

cos2 x dx =
∫

1 + cos(2x)
2

dx =
x

2
+

1
2

∫

cos(2x) dx

=
x

2
+

sin(2x)
4

=
2x + sin(2x)

4
.

Since 4x(1 − x) = 4x − 4x2 = 1 − (2x − 1)2,
∫

dx
√

x(1 − x)
=
∫

2dx√
4x − 4x2

=
∫

d(2x − 1)
√

1 − (2x − 1)2
= arcsin(2x − 1)

by translation and dilation. Of course, we already know (§3.5) that another
primitive is 2 arcsin

√
x, so, the two primitives must differ by a constant

(Exercise 3.6.9). The reduction 4x−4x2 = 1−(2x−1)2 is the usual technique
of completing the square.

To compute
∫ √

1 − x2 dx, let x = sin θ, dx = cos θ dθ. Then,
∫ √

1 − x2 dx =
∫ √

1 − sin2 θ cos θ dθ

=
∫

cos2 θ dθ

=
1
4
[2θ + sin(2θ)]

=
1
2
(θ + sin θ cos θ)

=
1
2

(
arcsin x + x

√
1 − x2

)
.
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Alternatively, let u =
√

1 − x2, dv = dx. Then, du = −xdx/
√

1 − x2, v = x.
So,

∫ √
1 − x2 dx = x

√
1 − x2 −

∫

x(−xdx/
√

1 − x2)

= x
√

1 − x2 +
∫

x2dx√
1 − x2

= x
√

1 − x2 +
∫

(x2 − 1)dx√
1 − x2

+
∫

dx√
1 − x2

= x
√

1 − x2 −
∫ √

1 − x2 dx + arcsin x.

Moving the second term on the right to the left side, we obtain the same
result.

To compute
∫

dx

1 − x2
, write

1
1 − x2

=
1
2

(
1

1 + x
+

1
1 − x

)

to get
∫

dx

1 − x2
=

1
2

[log(1 + x) − log(1 − x)] =
1
2

log
(

1 + x

1 − x

)

.

If f is given as a power series, the primitive is easily found as another
power series.

Theorem 3.6.5. If R > 0 is the radius of convergence of

f(x) = a0 + a1x + a2x
2 + . . . ,

then, R is the radius of convergence of
∑

anxn+1/(n + 1), and
∫

f(x) dx = a0x +
a1x

2

2
+

a2x
3

3
+ . . . (3.6.2)

on (−R,R).

To see this, one first checks that the radius of convergence of the series in
(3.6.2) is also R using n1/n → 1, as in the previous section. Now, differentiate
the series in (3.6.2) obtaining f(x). Hence, the series in (3.6.2) is a primitive.
��

For example, using the geometric series with −x replacing x,

1
1 + x

= 1 − x + x2 − x3 + . . . , |x| < 1.

Hence, by the theorem
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log(1 + x) = x − x2

2
+

x3

3
− . . . , |x| < 1. (3.6.3)

Indeed, both sides are primitives of 1/(1 + x), and both sides equal zero at
x = 0. Similarly, using the geometric series with −x2 replacing x,

1
1 + x2

= 1 − x2 + x4 − x6 + . . . , |x| < 1.

Hence, by the theorem,

arctan x = x − x3

3
+

x5

5
− x7

7
+ . . . , |x| < 1. (3.6.4)

This follows since both sides are primitives of 1/(1+x2), and both sides vanish
at x = 0. To obtain the sum of the series (1.7.5), we seek to insert x = 1 in
(3.6.4). We cannot do this directly since (3.6.4) is valid only for |x| < 1.
Instead, we let sn(x) denote the nth partial sum of the series in (3.6.4). Since
this series is alternating with decreasing terms (§1.7) when 0 < x < 1,

s2n(x) ≤ arctan x ≤ s2n−1(x), n ≥ 1.

In this last inequality, the number of terms in the partial sums is finite. Letting
x ↗ 1, we obtain

s2n(1) ≤ arctan 1 ≤ s2n−1(1), n ≥ 1.

Now, letting n ↗ ∞ and recalling arctan 1 = π/4, we arrive at the sum of the
Leibnitz series

π

4
= 1 − 1

3
+

1
5
− 1

7
+ . . . ,

first discussed in §1.7. In particular, we conclude that

8
3

< π < 4.

In §5.2, we obtain the sum of the Leibnitz series by a procedure that will be
useful in many other situations.

The Leibnitz series is “barely convergent” and is not useful for computing
π. To compute π, the traditional route is to insert x = 1/5 and x = 1/239 in
(3.6.4) and to use Machin’s 1706 formula

π

4
= 4 arctan

1
5
− arctan

1
239

.

Exercises

3.6.1. Compute
∫

ex cos x dx.
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3.6.2. Compute
∫

earcsin x dx.

3.6.3. Compute
∫

x + 1√
1 − x2

dx.

3.6.4. Compute
∫

arctan x

1 + x2
dx.

3.6.5. Compute
∫

x2(log x)2dx.

3.6.6. Compute
∫ √

1 − e−2xdx.

3.6.7. Let F (x) = x2 sin(1/x), x �= 0, and let F (0) = 0. Show that the
derivative F ′(x) = f(x) exists for all x, but f is not continuous at x = 0.

3.6.8. If f is of bounded variation and F ′ = f on (a, b), then, f is continuous
(Exercise 2.3.18).

3.6.9. Show directly (i.e., without derivatives) that

2 arcsin
√

x = arcsin(2x − 1) + π/2. (3.6.5)

3.6.10. Show that

arcsin x = x +
1
2
· x3

3
+

1
2
· 3
4
· x5

5
+

1
2
· 3
4
· 5
6
· x7

7
+ . . .

for |x| < 1.

3.6.11. If f is a polynomial, then,
∫

e−xf(x) dx = −e−x(f(x) + f ′(x) + f ′′(x) + f ′′′(x) + . . . ).

3.6.12. Show that
tan(a + b) =

tan a + tan b

1 − tan a tan b
.

Use this to derive Machin’s formula.

3.6.13. Use Machin’s formula and (3.6.4) to obtain π = 3.14 . . . to within an
error of 10−2.

3.6.14. Simplify arcsin(sin 100). (The answer is not 100.)

3.6.15. Compute
∫ −4x

1 − x2
dx.

3.6.16. Compute
∫

4
√

2 − 4x

x2 −
√

2x + 1
dx.

3.6.17. Show that
log 2 = 1 − 1

2
+

1
3
− 1

4
+ . . .

following the procedure discussed above for the Leibnitz series.
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Integration

4.1 The Cantor Set

The subject of this chapter is the measurement of the areas of subsets of the
plane R2 = R×R. The areas of elementary geometric figures, such as squares,
rectangles, and triangles, are already known to us. By known to us we mean
that, e.g., by defining the area of a rectangle to be the product of the lengths
of its sides, we obtain quantities that agree with our intuition. Since every
right-angle triangle is half a rectangle, the areas of right-angle triangles are
also known to us. Similarly, we can obtain the area of a general triangle.

How does one approach the problem of measuring the area of an unfamiliar
figure or subset of R2, say a subset that cannot be broken up into triangles?
For example, how does one measure the area of the unit disk

D = {(x, y) : x2 + y2 < 1}?

One solution is to arbitrarily define the area of D to equal whatever one
feels is right. The Egyptian book of Ahmes (∼1900 b.c.) states that the area
of D is (16/9)2. In the Indian Śulbastras (written down ∼500 b.c.), the area of
D is taken to equal (26/15)2. Albrecht Dürer (1471–1528 a.d.) of Nuremburg
solved a related problem which amounted to taking the area of D to equal
25/8.

Which of these answers should we accept as the area of D? If we treat
these answers as estimates of the area of D, then, in our minds, we must have
the presumption that such a quantity — the area of D — has a meaningful
existence. In that case, we have no way of judging the merit of an estimate
except by the quality of the reasoning leading to it.

Realizing this, by reasoning that remains perfectly valid today, Archimedes
(∼250 b.c.) carefully established,

223
71

< area (D) <
22
7

.
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In §4.4, we show that area (D) = π, where π, “Archimedes’ constant”, is the
real number defined in §3.5.

At the basis of the Greek mathematicians’ computations of area was the
method of exhaustion. This asserted that the area of a set A ⊂ R2 could be
computed as the limit of areas of a sequence of inscribed sets (An) that filled
out more and more of A as n ↗ ∞ (Figure 4.1). Nevertheless the Greeks
were apparently uncomfortable with the concept of infinity and never used
this method as stated. Instead, for example, in dealing with D, Archimedes
used inscribed and circumscribed polygons with 96 sides to obtain the above
result. He never explicitly passed to the limit. It turns out, however, that the
method of exhaustion is so important to integration that in §4.5 we give a
careful derivation of it.

Fig. 4.1. The method of exhaustion.

Now, the unit disk is not a totally unfamiliar set to the reader. But, if we
are presented with some genuinely unfamiliar subset C, the situation changes,
and we may no longer have any clear conception of the area of C. If we are
unable to come up with a procedure leading us to the area, then, we may
be forced to reexamine our intuitive notion of area. In particular, we may be
led to the conclusion that the “true area” of C may have no meaning. Let us
describe such a subset.

Let C0 denote the compact unit square [0, 1] × [0, 1]. Divide C0 into nine
equal subsquares and take out from C0 all but the four compact corner sub-
squares. Let C1 be the remainder, i.e., the union of the four remaining compact
subsquares. Repeat this process with each of the four subsquares. Divide each
subsquare into nine equal compact sub-subsquares and take out, in each sub-
square, all but the four compact corner sub-subsquares. Call the union of the
remaining sixteen sub-subsquares C2. Continuing in this manner yields a se-
quence C0 ⊃ C1 ⊃ C2 ⊃ . . . . The Cantor set is the common part (Figure 4.2)
of all these sets, i.e., their intersection

C =
∞⋂

n=1

Cn.
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At first glance it is not clear that C is not empty. But (0, 0) ∈ C! Moreover the
sixteen corners of the set C1 are in C. Similarly, any corner of any subsquare,
at any level, lies in C. But the set of such points is countable (§1.7), and it
turns out that there is much more: There are as many points in C as there
are in the unit square C0. In particular C is uncountable.

C0 C1 C2

Fig. 4.2. The Cantor set.

To see this, recall the concept of ternary expansions (§1.6). Let a ∈ [0, 1].
We say that

a = .a1a2 . . .

is the ternary expansion of a if the naturals an are ternary digits 0, 1, 2, and

a =
∞∑

n=1

an3−n.

Now, let (a, b) ∈ C0, and let

a = .a1a2 . . .

and
b = .b1b2 . . .

be ternary expansions of a and b. If a1 �= 1 and b1 �= 1, then, (a, b) is in C1.
Similarly, in addition, if a2 �= 1 and b2 �= 1, (a, b) ∈ C2. Continuing in this
manner, we see that, if an �= 1 and bn �= 1 for all n ≥ 1, (a, b) ∈ C. Conversely,
(a, b) ∈ C implies that there are ternary expansions of a and b as stated. Thus,
(a, b) ∈ C iff a and b have ternary expansions in which the digits are equal to
0 or 2.

Now, although some reals may have more than one ternary expansion, a
real a cannot have more than one ternary expansion .a1a2 . . . where an �= 1
for all n ≥ 1 because any two ternary expansions yielding the same real must
have their nth digits differing by 1 for some n ≥ 1 (Exercise 1.6.2 treats the
decimal case). Thus, the mapping

(a, b) = (.a1a2a3 . . . , .b1b2b3 . . . ) �→
( ∞∑

n=1

a′
n2−n,

∞∑

n=1

b′n2−n

)

,



118 4 Integration

where a′
n = an/2, b′n = bn/2, n ≥ 1, is well defined. Since any real in [0, 1] has

a binary expansion, this mapping is a surjection of the Cantor set C onto the
unit square C0. Since C0 is uncountable (Exercise 1.7.4), we conclude that C
is uncountable (§1.7).

The difficulty of measuring the size of the Cantor set underscores the
difficulty in arriving at a consistent notion of area. Above, we saw that the
Cantor set is uncountable. In this sense, the Cantor set is “big”. On the other
hand, note that the areas of the subsquares removed from C0 to obtain C1 sum
to 5/32. Similarly, the areas of the sub-subsquares removed from C1 to obtain
C2 sum to 20/92. Similarly, at the next stage, we remove squares with areas
summing to 80/272. Thus, the sum of the areas of all the removed squares is

5
9

+
20
92

+
80
272

+ · · · =
5
9

(

1 +
4
9

+
(

4
9

)2

+ . . .

)

=
5
9
· 1

1 − 4
9

= 1.

Since C is the complement of all these squares in C0 and C0 has area 1, the
area of C is 1 − 1 = 0. Thus, in the sense of area, the Cantor set is “small”.

This argument is perfectly reasonable, except for one aspect. We are as-
suming that areas can be added and subtracted in the usual manner, even
when there are infinitely many sets involved. In §4.2, we show that, with
an appropriate definition of area, this argument can be modified to become
correct, and the area of C is in fact zero.

Another indication of the smallness of C is the fact that C has no interior.
To explain this, given any set A ⊂ R2, let us say that A has interior if we
can fit some rectangle Q within A, i.e., Q ⊂ A. If we cannot fit a (non-trivial)
rectangle, no matter how small, within A, then, we say that A has no interior.
For example, the unit disk has interior but a line segment has no interior. The
Cantor set C has no interior, because there is a point in every rectangle whose
coordinate ternary expansions contain at least one digit 1. Alternatively, if C
contained a rectangle Q, then, the area of C would be at least as much as the
area of Q, which is positive. But we saw above that the area of C equals zero.

Since this reasoning applies to any set, we see that if A ⊂ R2 has interior,
then, the area of A is positive. The surprising fact is that the converse of this
statement is false. There are sets A ⊂ R2 that have positive area but have no
interior. Such a set is described in Exercise 4.1.2.

These issues are discussed to point out the existence of unavoidable
phenomena involving area where things do not behave as simply as triangles.
In the first three decades of this century, these issues were finally settled. The
solution to the problem of area, analyzed extensively by Archimedes more
than two thousand years ago, can now be explained in a few pages. Why did
it take so long for the solution to be discovered? It should not be too surprising
that one missing ingredient was the completeness property of the set of real
numbers, the importance of which was not fully realized until the nineteenth
century.
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Exercises

4.1.1. Let C0 = [0, 1] × [0, 1] denote the unit square, and let C ′
1 be obtained

by throwing out from C0 the middle subrectangle (1/3, 2/3) × [0, 1] of width
1/3 and height 1. Then, C ′

1 consists of two compact subrectangles. Let C ′
2 be

obtained from C ′
1 by throwing out, in each of the subrectangles, the middle

sub-subrectangles (1/9, 2/9)× [0, 1] and (7/9, 8/9)× [0, 1], each of width 1/32

and height 1. Then, C ′
2 consists of four compact sub-subrectangles. Similarly

C ′
3 consists of eight compact sub-sub-subrectangles, obtained by throwing

out from C ′
2 the middle sub-sub-subrectangles of width 1/33 and height 1.

Continuing in this manner, we have C ′
1 ⊃ C ′

2 ⊃ C ′
3 ⊃ . . . . Let C ′ =

⋂∞
n=1 C ′

n.
Show that area (C ′) = 0 and C ′ has no interior.

4.1.2. Fix a real 0 < α < 1 (e.g., α = .7) and let C0 = [0, 1]× [0, 1] be the unit
square. Let Cα

1 be obtained from C0 by throwing out the middle subrectangle
of width α/3 and height 1. Then, Cα

1 consists of two subrectangles. Let Cα
2 be

obtained from Cα
1 by throwing out, in each of the subrectangles, the middle

sub-subrectangles of width α/32 and height 1. Then, Cα
2 consists of four sub-

subrectangles. Similarly Cα
3 consists of eight sub-sub-subrectangles, obtained

by throwing out from Cα
2 the middle sub-sub-subrectangles of width α/33

and height 1. Continuing in this manner, we have Cα
1 ⊃ Cα

2 ⊃ Cα
3 ⊃ . . . . Let

Cα =
⋂∞

n=1 Cα
n . Show that area (Cα) > 0, but Cα has no interior.

4.1.3. For A ⊂ R2 let

A + A = {(x + x′, y + y′) : (x, y) ∈ A, (x′, y′) ∈ A}

be the set of sums. Show that C + C = [0, 2] × [0, 2] (See Exercise 1.6.6).

4.2 Area

Let I and J be intervals, i.e. subsets of R of the form (a, b), [a, b], (a, b], or
[a, b). As usual, we allow the endpoints a or b to equal ±∞ when they are not
included within the interval. A rectangle is a subset of R2 = R×R (Figure 4.3)
of the form I × J . A rectangle Q = I × J is open if I and J are both open
intervals, closed if I and J are both closed intervals, and compact if I and
J are both compact intervals. For example, the plane R2 and the upper-half
plane R × (0,∞) are open rectangles. We say that a rectangle Q = I × J
is bounded if I and J are bounded subsets of R. For example, the vertical
line segment {a} × [c, d] is a compact rectangle. A single point is a compact
rectangle. If I is a bounded interval, let Ī denote the compact interval with the
same endpoints, and let I◦ denote the open interval with the same endpoints.
If Q = I × J is a bounded rectangle, the compact rectangle Q̄ = Ī × J̄ is
its compactification. If Q = I × J is any rectangle, then the open rectangle
Q◦ = I◦ × J◦ is its interior. Note that Q◦ ⊂ Q ⊂ Q̄, and Q̄ \ Q◦ is a subset
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A

B

C

Fig. 4.3. A and B are rectangles, but C is not.

of the sides of Q, for any rectangle Q. Note that an open rectangle may be
empty, for example (a, a) × (c, d) is empty.

Let A be a subset of R2. A cover of A is a sequence of sets (An) such that
A is contained in their union,

A ⊂
∞⋃

n=1

An.

In a given cover, the sets (An) may overlap, i.e., intersect. If, for some N ,
An = ∅ for n > N , we say that (A1, . . . , AN ) is a finite cover (Figure 4.4).

Fig. 4.4. A finite cover.

A paving of A is a cover (Qn), where the sets Qn, n ≥ 1, are rectangles. A
finite paving is a finite cover that is also a paving (Figure 4.5). Every subset
A ⊂ R2 has at least one (not very interesting) paving Q1 = R2, Q2 = ∅,
Q3 = ∅, . . . .

For any interval I as above, let |I| = b− a denote the length of I. For any
rectangle Q = I×J , let ‖Q‖ = |I| · |J |. Then, ‖Q‖, the traditional high-school
formula for the area of a rectangle, is a positive real or 0 or ∞. We also take
‖∅‖ = 0. For reasons discussed below, we call ‖Q‖ the naive area of Q.
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Fig. 4.5. A finite paving.

Let A be a subset of R2. The area1 of A is defined by

area (A) = inf

{ ∞∑

n=1

‖Qn‖ : all pavings (Qn) of A

}

. (4.2.1)

This definition of area is at the basis of all that follows. It is necessarily compli-
cated because it applies to all subsets A of R2. As an immediate consequence
of the definition, area (∅) = 0. Similarly, the area of a finite vertical line seg-
ment A is zero since A can be covered by a thin rectangle of arbitrarily small
naive area.

In words, the definition says that to find the area of a set A, we cover A
by a sequence Q1, Q2, . . . of rectangles, measure the sum of their naive areas,
and take this sum as an estimate for the area of A. Of course, we expect that
this sum will be an overestimate of the area of A for two reasons. The paving
may cover a superset of A, and we are not taking into account any overlaps
when computing the sum. Then, we define the area of A to be the inf of these
sums.

Of course, carrying out this procedure explicitly, even for simple sets A,
is completely impractical. Because of this, we almost never use the definition
directly to compute areas. Instead, as is typical in mathematics, we derive
the elementary properties of area from the definition, and we use them to
compute areas.

We emphasize that according to the above definitions, a rotated rectangle
A is not a rectangle. Hence, ‖A‖ is not defined unless the sides of the rectan-
gle A are parallel to the axes. Nevertheless, we will see, below, that area is
rotation-invariant, and, moreover, area (A) turns out as expected.

Whether or not we can compute the area of a given set, the above definition
applies consistently to every subset A. In particular, this is so whether A is a
rectangle, a triangle, a smooth graph, or the Cantor set C. Let us now derive
the properties of area that follow immediately from the definition.

Since every rectangle Q is a paving of itself, area (Q) ≤ ‖Q‖. Below, we
obtain area (Q) = ‖Q‖ for a rectangle Q. Until we establish this, we repeat
1 This is called the two-dimensional Lebesgue measure in some texts.
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that we refer to ‖Q‖ as the naive area of Q. Note that, although area is defined
for every subset, naive area is defined only for (nonrotated) rectangles.

If (a, b) is a point in R2 and A ⊂ R2, the set

A + (a, b) = {(x + a, y + b) : (x, y) ∈ A}

is the translate of A by (a, b). Then, [A + (a, b)] + (c, d) = A + (a + c, b + d)
and, for any rectangle Q, Q + (a, b) is a rectangle and ‖Q + (a, b)‖ = ‖Q‖.
From this follows the translation invariance of area,

area [A + (a, b)] = area (A) , A ⊂ R2.

To see this, let (Qn) be a paving of A. Then, (Qn + (a, b)) is a paving of
A + (a, b), so

area [A + (a, b)] ≤
∞∑

n=1

‖Qn + (a, b)‖ =
∞∑

n=1

‖Qn‖.

Since area (A) is the inf of the sums on the right, area [A + (a, b)] ≤ area (A).
Now, in this last inequality, replace, in order, (a, b) by (−a,−b) and A
by A + (a, b). We obtain area (A) ≤ area [A + (a, b)]. Hence, area (A) =
area [A + (a, b)], establishing translation invariance (Figure 4.6).

A

(a, b)

A + (a, b)

Fig. 4.6. area (A) = area [A + (a, b)].

If k > 0 is real and A ⊂ R2, the set

kA = {(kx, ky) : (x, y) ∈ A}

is the dilate of A by k. Then, k(cA) = (kc)A for k and c positive, kQ is a
rectangle, and ‖kQ‖ = k2‖Q‖ for every rectangle Q. From this follows the
dilation invariance of area,

area (kA) = k2 · area (A) , A ⊂ R2.
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To see this, let (Qn) be a paving of A. Then, (kQn) is a paving of kA so

area (kA) ≤
∞∑

n=1

‖kQn‖ = k2

( ∞∑

n=1

‖Qn‖
)

.

Since area (A) is the inf of the sums on the right, we obtain area (kA) ≤
k2 · area (A). Now, in this last inequality, replace, in order, k by 1/k and A
by kA. We obtain k2 · area (A) ≤ area (kA). Hence, area (kA) = k2 · area (A),
establishing dilation invariance.

A

kA

Fig. 4.7. area (kA) = k2 · area (A).

Instead of dilation from the origin, we can dilate from any point in R2.
In particular, by elementary geometry, certain subsets such as rectangles,
triangles, and parallelograms have well defined centers, and we can dilate
from these centers. Given a subset A and an arbitrary point (a, b), its centered
dilation kA (from (a, b)) is the set (Figure 4.8) obtained by translating (a, b)
to (0, 0), dilating as above by the factor k > 0, then, translating (0, 0) back
to (a, b). Then, area (kA) = k2 · area (A) for centered dilations as well. For
example, if k < 1, kA is A shrunk towards (a, b).

Fig. 4.8. Centered dilation.

The diagonal line segment A = {(x, y) : 0 ≤ x ≤ 1, y = x} has zero area
(Figure 4.9). To see this, choose n ≥ 1 and let Qk = {(x, y) : (k − 1)/n ≤ x ≤
k/n, (k − 1)/n ≤ y ≤ k/n}, k = 1, . . . , n. Then, (Q1, . . . , Qn) is a paving of
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A. Hence, area (A) ≤ ‖Q1‖ + · · · + ‖Qn‖ = n · 1
n2 = 1/n. Since n ≥ 1 may

be arbitrarily large, we conclude that area (A) = 0. Similarly the area of any
finite line segment is zero.

Fig. 4.9. Area of a diagonal line segment.

As with dilation, setting −A = {(−x,−y) : (x, y) ∈ A}, we have reflection
invariance of area,

area (−A) = area (A) , A ⊂ R2,

and monotonicity,

area (A) ≤ area (B) , A ⊂ B ⊂ R2.

Another property is subadditivity. For any cover (An) of a given set A,

area (A) ≤
∞∑

n=1

area (An) . (4.2.2)

Here, the sets An, n ≥ 1, need not be rectangles. For future reference, we
call the sum on the right side of (4.2.2) the area of the cover (An).

In particular, since (A,B) is a cover of A ∪ B,

area (A ∪ B) ≤ area (A) + area (B) .

Similarly, (A1, A2, . . . , An) is a cover of A1 ∪ A2 ∪ . . . ∪ An, so,

area (A1 ∪ A2 ∪ . . . ∪ An) ≤ area (A1) + area (A2) + · · · + area (An) .

To obtain subadditivity, note that, if the right side of (4.2.2) is ∞, there
is nothing to show, since in that case (4.2.2) is true. Hence, we may safely
assume area (An) < ∞ for all n ≥ 1. Let ε > 0, and, for each k ≥ 1, choose a
paving (Qk,n) of Ak satisfying

∞∑

n=1

‖Qk,n‖ < area (Ak) + ε2−k. (4.2.3)
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This is possible since area (Ak) is the inf of sums of the form
∑∞

n=1 ‖Qn‖.
Then, the double sequence (Qk,n) is a cover by rectangles, hence, a paving of
A. Summing (4.2.3) over k ≥ 1, we obtain

area (A) ≤
∞∑

k=1

( ∞∑

n=1

‖Qk,n‖
)

≤
∞∑

k=1

(
area (Ak) + ε2−k

)
=

( ∞∑

k=1

area (Ak)

)

+ ε.

Since ε > 0 is arbitrary, subadditivity follows.
Now let Q be any bounded rectangle and let Q̄ and Q◦ denote its compact-

ification and its interior respectively. We claim area
(
Q̄
)

= area (Q◦). To see
this, by monotonicity, we have area

(
Q̄
)
≥ area (Q◦). Conversely, let t > 1 and

let tQ◦ denote the centered dilation of Q◦. Then tQ◦ ⊃ Q̄ so by monotonicity
and dilation, area

(
Q̄
)
≤ area (tQ◦) = t2 area (Q◦). Since t > 1 is arbitrary,

we have area
(
Q̄
)
≤ area (Q◦), hence the claim follows. As a consequence, we

see that for any bounded rectangle Q, we have area (Q) = area
(
Q̄
)
.

Theorem 4.2.1. The area of a rectangle Q equals the product of the lengths
of its sides, area (Q) = ‖Q‖.

The derivation of this non-trivial result is in several steps.

Step 1

Assume first Q is bounded. Since area (Q) = area
(
Q̄
)

and ‖Q‖ =
∥
∥Q̄

∥
∥, we

may assume without loss of generality that Q is compact. Since we already
know area (Q) ≤ ‖Q‖, we need only derive ‖Q‖ ≤ area (Q). By the definition
of area (4.2.1), this means we need to show that

‖Q‖ ≤
∞∑

n=1

‖Qn‖ (4.2.4)

for every paving (Qn) of Q.
Let (Qn) be a paving of Q. We say (Qn) is an open paving if every rectangle

Qn is open. Suppose we established (4.2.4) for every open paving. Let t > 1.
Then for any paving (Qn) (open or not), (tQ◦

n) is an open paving since Qn ⊂
tQ◦

n for n ≥ 1; under the assumption that (4.2.4) is valid for open pavings,
we would have

‖Q‖ ≤
∞∑

n=1

‖tQ◦
n‖ = t2

∞∑

n=1

‖Q◦
n‖ = t2

∞∑

n=1

‖Qn‖. (4.2.5)

Since t > 1 in (4.2.5) is arbitrary, we would then obtain (4.2.4) for the
arbitrary paving (Qn). Thus it is enough to establish (4.2.4) when the paving
(Qn) is open and Q is compact.
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Step 2

Assume now Q is compact and the paving (Qn) is open. We use compactness
(§2.1) to show there is an N > 0 such that Q is contained in the finite union2

Q1 ∪Q2 ∪ . . .∪QN . For simplicity assume Q = [0, 1]× [0, 1] is the unit square,
and argue by contradiction: Suppose that there is no finite subcollection of
(Qn) covering Q. Divide Q into 100 = 10 · 10 subsquares (of the same area)
Q00, . . . , Q99. Here, the subsquares are ordered from left to right and bottom
to top, i.e., d < d′ implies Qde is to the left of Qd′e, and e < e′ implies
Qde is below Qde′ . Since there are finitely many subsquares, there is at least
one subsquare, call it Qd1e1 , that is not covered by any finite subcollection of
(Qn). Now repeat the process and divide Qd1e1 into 100 subsquares, ordered
as above. At least one of them, call it Qd1e1d2e2 , is not covered by any finite
subcollection of (Qn). Continuing in this manner, we obtain

Q ⊃ Qd1e1 ⊃ Qd1e1d2e2 ⊃ . . .

where, for each m ≥ 1, Qd1e1d2e2...dmem
has area 100−m and is not covered by

any finite subcollection of (Qn). For each m ≥ 1, let (xm, ym) be the lower
left corner of Qd1e1d2e2...dmem

,

xm = .d1d2 . . . dm, ym = .e1e2 . . . em;

then xm → x and ym → y where x and y are the reals

x = .d1d2 . . . , y = .e1e2 . . . .

Then, (x, y) lies in all the squares Qd1e1d2e2...dmem
, m ≥ 1. Since, in particu-

lar, (x, y) lies in Q, there is at least one rectangle Qi from the paving (Qn)
containing (x, y). Since Qi is open, (x, y) lies in the interior of Qi and not
on any of its sides. Since the dimensions of Qd1e1d2e2...dmem

approach zero as
m ↗ ∞, we conclude that for m large enough we have

Qd1e1d2e2...dmem
⊂ Qi.

But this shows that Qd1e1d2e2...dmem
can be covered by one, hence, a finite

subcollection of (Qn), contradicting the choice of Qd1e1d2e2...dmem
. Thus, our

initial assumption must be false, i.e., we conclude that there is a finite subcol-
lection Q1, . . . , QN covering Q. If Q = [a, b]×[c, d] were not a square, the same
argument works. The limiting point now obtained is (a+(b−a)x, c+(d−c)y).

Step 3

We are reduced to establishing

‖Q‖ ≤ ‖Q1‖ + · · · + ‖QN‖ (4.2.6)
2 When framed appropriately, this property is equivalent to compactness.
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whenever Q ⊂ Q1 ∪ . . . ∪ QN and Q is compact and Q1, . . . , QN are open.
Since area (Q◦) = area

(
Q̄
)
, a moment’s thought shows that we may

assume both Q and Q1, . . . , QN are compact.
Moreover, since ‖Q ∩ Qn‖ ≤ ‖Qn‖ and (Q ∩ Qn) is a paving of Q, by

replacing (Qn) by (Q∩Qn), we may additionally assume Q = Q1 ∪ . . .∪QN .
This now is a combinatorial, or counting, argument. Write Q = I × J

and Qn = In × Jn, n = 1, . . . , N . Let c0 < c1 < · · · < cr denote the dis-
tinct left and right endpoints of I1,. . . ,IN , arranged in increasing order, and
set I ′i = [ci−1, ci], i = 1, . . . , r. Let d0 < d1 < · · · < ds denote the distinct
left and right endpoints of J1,. . . ,JN , arranged in increasing order, and set
J ′

j = [dj−1, dj ], j = 1, . . . , s. Let Q′
ij = I ′i ×J ′

j , i = 1, . . . , r, j = 1, . . . , s. Then

A. the rectangles Q′
ij intersect at most along their edges,

B. the union of all the Q′
ij , i = 1, . . . , r, j = 1, . . . , s, equals Q,

C. the union of all the Q′
ij contained in a fixed Qn equals Qn.

Let cijn equal 1 or 0 according to whether Q′
ij ⊂ Qn or not. Then

‖Q‖ =
∑

i,j

∥
∥Q′

ij

∥
∥ (4.2.7)

and
‖Qn‖ =

∑

i,j

cijn

∥
∥Q′

ij

∥
∥, 1 ≤ n ≤ N, (4.2.8)

since both sums are telescoping. Combining (4.2.8) and (4.2.7) and interchang-
ing the order of summation, we get

‖Q‖ =
∑

i,j

∥
∥Q′

ij

∥
∥ ≤

∑

i,j

∑

n

cijn

∥
∥Q′

ij

∥
∥ =

∑

n

∑

i,j

cijn

∥
∥Q′

ij

∥
∥ =

∑

n

‖Qn‖.

This establishes (4.2.6).

Step 4

Thus we have established (4.2.4) for finite pavings, hence, by Step 2, for
all pavings. Taking the inf over all pavings (Qn) of Q in (4.2.4), we obtain
‖Q‖ ≤ area (Q), hence, area (Q) = ‖Q‖ for Q compact. As mentioned in
Step 1, this implies the result for every bounded rectangle Q. When Q is
unbounded, Q contains bounded subrectangles of arbitrarily large area, hence
the result follows in this case as well. ��

The reader may be taken aback by the complications involved in estab-
lishing this intuitively obvious result. Why is the derivation so complicated?
The answer is that this complication is the price we have to pay if we are
to stick to our definition (4.2.1) of area. The fact that we will obtain many
powerful results — in a straightforward fashion — easily offsets the seemingly
excessive complexity of the above result. In part, we are able to derive the
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powerful results in the rest of this Chapter and in Chapter 5, because of our
decision to define area as in (4.2.1). The utility of such a choice can only be
assessed in terms of the ease with which we obtain our results in what follows.

Now, we can compute the area of a triangle A with a horizontal base of
length b and height h by constructing a cover of A consisting of thin horizontal
strips (Figure 4.10). Let ‖A‖ denote the naive area of A, i.e., ‖A‖ = hb/2. By
reflection invariance, we may assume A lies above its base. Let us first assume
the two base angles are non-obtuse, i.e., are at most π/2. Since every triangle
may be rotated into one whose base angles are such, this restriction may be
removed after we establish rotation-invariance below.

A

B
C

Fig. 4.10. Cover of a triangle.

Divide A into n horizontal strips of height h/n as in Figure 4.10. Then the
length of the base of each strip is b/n shorter than the length of the base of
the strip below it, so (Exercise 1.3.11)

area (A) ≤ h

n
(b + (b − b/n) + (b − 2b/n) + . . . )

=
bh

n2
(n + (n − 1) + · · · + 1) =

bh

n2
· n(n + 1)

2
=

bh(n + 1)
2n

.

Now let n ↗ ∞ to obtain area (A) ≤ (hb/2) = ‖A‖.
To obtain the reverse inequality, draw two other triangles B, C with hor-

izontal bases, such that A ∪ B ∪ C is a rectangle and A, B, and C intersect
only along their edges. Then, by simple arithmetic, the sum of the naive areas
of A, B, and C equals the naive area of A ∪ B ∪ C, so, by subadditivity of
area,

‖A‖ + ‖B‖ + ‖C‖ = ‖A ∪ B ∪ C‖
= area (A ∪ B ∪ C)
≤ area (A) + area (B) + area (C)
≤ area (A) + ‖B‖ + ‖C‖.

Cancelling ‖B‖, ‖C‖, we obtain the reverse inequality ‖A‖ ≤ area (A).

Theorem 4.2.2. The area of a triangle equals half the product of the lengths
of its base and its height. ��
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We have derived this theorem assuming that the base of the triangle is
horizontal. The general case follows from rotation invariance, which we do
below.

Let P be a parallelogram with horizontal base and let ‖P‖ denote its naive
area, i.e., the product of the length of its base and its height. Then, we leave
it as an exercise to show that area (P ) = ‖P‖.

Theorem 4.2.3. The area of a parallelogram equals the product of the lengths
of its base and height. ��

By the next theorem, the areas of rectangles, triangles and parallelograms
are given by the last three theorems, even when rotated. Recall that rotations
were defined in §3.5.

Theorem 4.2.4 (Rotation Invariance). Let A ⊂ R2. If A is rotated into
A′, then, area (A) = area (A′).

To see this, first, assume that Q is a bounded rectangle. Hence, Q′ is a
rotated rectangle. Now, decompose Q′ into the union of a parallelogram P
and two triangles S, T , all with horizontal bases and intersecting along their
edges (Figure 4.11). Moreover, the base angles of the triangles S and T are
at most π/2, hence we know area (S) = ‖S‖ and area (T ) = ‖T‖. Moreover,
the previous result tells us area (P ) = ‖P‖. Then, by simple arithmetic, the
sum of the naive areas of S, T , and P equals the naive area of Q, so, by
subadditivity,

area (Q′) ≤ area (S) + area (P ) + area (T )
= ‖S‖ + ‖P‖ + ‖T‖ = ‖Q‖ = area (Q) .

We have just shown that area (Q′) ≤ area (Q) for any bounded rectangle Q.
If Q is an unbounded rectangle, this last inequality is clearly true. Hence,
area (Q′) ≤ area (Q) for every rectangle Q.

Now, let A be any subset, and let (Qn) be a paving of A. Suppose that
the rotation sending A to A′ sends Qn to Q′

n, n ≥ 1. Then (Q′
n) is a cover of

A′ (not a paving!) so, by subadditivity,

area (A′) ≤
∞∑

n=1

area (Q′
n) ≤

∞∑

n=1

area (Qn) .

Here, we used the inequality derived in the previous paragraph. Taking the
inf over all pavings of A, we obtain area (A′) ≤ area (A). If we apply this last
inequality to A′ instead of A and to the inverse rotation, we obtain the reverse
inequality area (A) ≤ area (A′). We conclude that area (A′) = area (A). ��

Area also has good invariance properties under other types of dilation. For
example, let k > 0 and set H(x, y) = (kx, y), V (x, y) = (x, ky). Then, the
mappings H : R2 → R2, V : R2 → R2 dilate area in the sense area [H(A)] =
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Q Q′Rθ( ) =

Fig. 4.11. Rotation invariance of area.

k ·area (A) = area [V (A)]. To see this, first, check that this is so on rectangles.
Then, use the definition of area to arrive at the general case.

Our last item is additivity. In general, we do not expect that area (A ∪ B) =
area (A) + area (B) because A and B may overlap, i.e., intersect. If A and B
are disjoint, one expects to have additivity. Here, we establish additivity only
for the case when A and B are well separated. Exercises 4.5.12 and 4.5.13
discuss a broader case.

If A ⊂ R2 and B ⊂ R2, set

d(A,B) = inf
√

(a − c)2 + (b − d)2,

where the inf is over all points (a, b) ∈ A and points (c, d) ∈ B. We say A
and B are well separated if d(A,B) is positive (Figure 4.12). For example,
although {(2, 0)} and the unit disk are well separated, Q × Q and {(

√
2, 0)}

are disjoint but not well separated. Note that, since inf ∅ = ∞, A empty
implies d(A,B) = ∞. Hence, the empty set is well separated from any subset
of R2.

A B

Fig. 4.12. Well Separated sets.

If the lengths of the sides of a rectangle Q are a and b, by the diameter of
Q, we mean the length of the diagonal

√
a2 + b2.

Theorem 4.2.5 (Well-Separated Additivity). If A and B are well sepa-
rated, then,

area (A ∪ B) = area (A) + area (B) .
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By subadditivity, area (A ∪ B) ≤ area (A) + area (B), so, we need show
only that

area (A ∪ B) ≥ area (A) + area (B) (4.2.9)

If area (A ∪ B) = ∞, (4.2.9) is true, so, assume area (A ∪ B) < ∞. In this
case, to compute the area of A ∪ B, we need consider only pavings involving
bounded rectangles, since the sum of the areas of rectangles with at least
one unbounded rectangle is ∞. Let ε = d(A,B) > 0. If (Qn) is a paving of
A∪B with bounded rectangles Qn, n ≥ 1, divide each Qn into subrectangles
all with diameter less than ε. Since ‖Qn‖ equals the sum of the areas of its
subrectangles, by replacing each Qn by its subrectangles, we obtain a paving
(Q′

n) of A ∪ B by rectangles Q′
n of diameter less than ε and

∞∑

n=1

‖Q′
n‖ =

∞∑

n=1

‖Qn‖.

Thus, for each n ≥ 1, Q′
n intersects A or B or neither but not both. Let (QA

n )
denote those rectangles in (Q′

n) intersecting A, and let (QB
n ) denote those

rectangles in (Q′
n) intersecting B. Because no Q′

n intersects both A and B,
(QA

n ) is a paving of A and (QB
n ) is a paving of B. Hence, by subadditivity,

area (A) + area (B) ≤
∞∑

n=1

∥
∥QA

n

∥
∥+

∞∑

n=1

∥
∥QB

n

∥
∥

≤
∞∑

n=1

‖Q′
n‖ =

∞∑

n=1

‖Qn‖.

Taking the inf over all pavings (Qn) of A ∪ B, we obtain the result. ��
As an application, let A denote the unit square [0, 1] × [0, 1] and B the

triangle obtained by joining the three points (1, 0), (1, 1) and (2, 1). We already
know that area (A) = 1 and area (B) = 1/2, and we want to conclude that
area (A ∪ B) = 1 + 1/2 = 3/2 (Figure 4.13). But A and B are not well
separated, so, we do not have additivity directly. Instead, we dilate A by a
factor 0 < α < 1 towards its center. Then, the shrunken set αA and B are
well separated. Moreover, αA ⊂ A, so,

area (A ∪ B) ≥ area ((αA) ∪ B) = area (αA) + area (B)
= α2 · area (A) + area (B) = α2 + 1/2.

Since α can be arbitrarily close to 1, we conclude that area (A ∪ B) ≥ 3/2.
Since subadditivity yields area (A ∪ B) ≤ area (A)+area (B) = 1+1/2 = 3/2,
we obtain the result we seek, area (A ∪ B) = 3/2.

Additivity holds by induction for several sets. If A1, A2, . . . , An are pair-
wise well separated subsets of R2, then,

area (A1 ∪ . . . ∪ An) = area (A1) + · · · + area (An) . (4.2.10)
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A
B B

αA

Fig. 4.13. Area of A ∪ B.

To see this, (4.2.10) is trivially true for n = 1, so, assume (4.2.10) is true
for a particular n ≥ 1, and let A1, . . . ,An+1 be pairwise well separated. Let
εj = d(Aj , An+1) > 0, j = 1, . . . , n. Since

d(A1 ∪ . . . ∪ An, An+1) = min(ε1, . . . , εn) > 0,

An+1 and A1∪. . .∪An are well separated. Hence, by the inductive hypothesis,

area (A1 ∪ . . . ∪ An+1) = area (A1 ∪ . . . ∪ An) + area (An+1)
= area (A1) + · · · + area (An) + area (An+1) .

By induction, this establishes (4.2.10) for all n ≥ 1.
More generally, if (An) is a sequence of pairwise well separated sets, then,

area

( ∞⋃

n=1

An

)

=
∞∑

n=1

area (An) . (4.2.11)

To see this, subadditivity yields

area

( ∞⋃

n=1

An

)

≤
∞∑

n=1

area (An) .

For the reverse inequality, apply (4.2.10) and monotonicity to the first N sets,
yielding

area

( ∞⋃

n=1

An

)

≥ area

(
N⋃

n=1

An

)

=
N∑

n=1

area (An) .

Now let N ↗ ∞, obtaining

area

( ∞⋃

n=1

An

)

≥
∞∑

n=1

area (An) .

This establishes (4.2.11).
As an application of (4.2.11), we can now compute the area of the Cantor

set C. The Cantor set is constructed by removing, at successive stages, smaller
and smaller open subsquares of C0 = [0, 1] × [0, 1]. Denote these subsquares
Q1, Q2, . . . (at what stage they are removed is not important). Then, for each
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n, C and Qn are disjoint, so, for 0 < α < 1, C and the centered dilations
αQn are well separated. Moreover for each m,n the centered dilations αQn

and αQm are well separated. But the union of C with all the squares αQn,
n ≥ 1, lies in the unit square C0. Hence, by (4.2.11),

area (C) +
∞∑

n=1

area (αQn) = area

(

C ∪
( ∞⋃

n=1

αQn

))

≤ area (C0) = 1.

In the previous section we obtained,
∑∞

n=1 area (Qn) = 1. By dilation invari-
ance, this implies area (C)+α2 ≤ 1. Letting α ↗ 1, we obtain area (C)+1 ≤ 1
or area (C) = 0.

Theorem 4.2.6. The area of the Cantor set is zero. ��

Exercises

4.2.1. Establish reflection invariance and monotonicity of area.

4.2.2. Show that the area of a bounded line segment is zero and the area of
any line is zero.

4.2.3. Let P be a parallelogram with a horizontal base, and let ‖P‖ denote
the product of the length of its base and its height. Then, area (P ) = ‖P‖.

4.2.4. Compute the area of a trapezoid.

4.2.5. If A and B are rectangles, then, area (A ∪ B) = area (A) + area (B) −
area (A ∩ B).

4.2.6. For k ∈ R, define H : R2 → R2 and V : R2 → R2 by H(x, y) = (kx, y)
and V (x, y) = (x, ky). Then, area [V (A)] = |k| · area (A) = area [H(A)] for
every A ⊂ R2.

4.2.7. A mapping L : R2 → R2 is linear if it is of the form L(x, y) =
(ax + by, cx + dy) with a, b, c, d ∈ R. Show that a linear mapping sends lines
to (possibly collapsed) lines and parallelograms to (possibly collapsed) paral-
lelograms. Show that a linear mapping L is invertible (i.e., a bijection §1.1)
iff the real det(L) = ad− bc is not zero. In this case, show that the inverse K
of L is linear and compute det(K).

4.2.8. Let L : R2 → R2 be an invertible linear mapping. Show that

area [L(A)] = |det(L)| · area (A) , A ⊂ R2. (4.2.12)

Thus, L is area-preserving iff det(L) = ±1. Such an L is called affine, and
this result is affine-invariance of area. (Do this for rectangles first.)
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Fig. 4.14. Affine invariance of area.

4.2.9. Let L : R2 → R2 be a noninvertible linear mapping. Show that L(R2)
is contained in a line and (4.2.12) holds.

4.2.10. Show that {(
√

2, 0)} and the unit disk are well separated, but {(
√

2, 0)}
and Q × Q are not.

4.2.11. Let D be the unit disk, and let D+ = {(x, y) : x2+y2 < 1 and y > 0}.
Show that area (D) = 2 · area (D+).

4.2.12. Compute the area of the sets C ′ and Cα described in Exercises 4.1.1
and 4.1.2, using the properties of area.

4.2.13. Let Pk = (cos(2πk/n), sin(2πk/n)), k = 0, 1, . . . , n. Then, P0, P1, . . . ,
Pn are evenly spaced points on the unit circle with Pn = P0. Let Dn denote
the n-sided polygon obtained by joining the points Pk. Compute area (Dn).

4.2.14. Let A ⊂ R2. A triangular paving of A is a cover (Tn) of A where
each Tn, n ≥ 1, is a triangle (oriented arbitrarily). With area (A) as defined
previously, show that

area (A) = inf

{ ∞∑

n=1

‖Tn‖ : all triangular pavings (Tn) of A

}

.

Here, ‖T‖ denotes the naive area of the triangle T , i.e., half the product of
the length of the base times the height.

4.2.15. Let A ⊂ R2. If area (A) > 0 and 0 < α < 1, there is some rectangle
Q, such that area (Q ∩ A) > α · area (Q). (Argue by contradiction, and use
the definition of area.)

4.3 The Integral

Let f : (a, b) → R be a function defined on an open interval (a, b), where, as
usual, a may equal −∞ or b may equal ∞. We say f is bounded if |f(x)| ≤ M ,
a < x < b, for some real M . If f is nonnegative, i.e., if f(x) ≥ 0, a < x < b,
the subgraph of f over (a, b) is the set (Figure 4.15)



4.3 The Integral 135

Fig. 4.15. Subgraphs of nonnegative functions.

G = {(x, y) : a < x < b, 0 < y < f(x)} ⊂ R2.

Note that the inequalities in this definition are strict.
For nonnegative f , we define the integral3 of f from a to b to be the area

of its subgraph G,
∫ b

a

f(x) dx = area (G) .

Then, the integral is either 0, a positive real, or ∞. The reason for the unusual
notation is explained below.

Thus, according to our definition, every nonnegative function has an inte-
gral and integrals of nonnegative functions are areas — nothing more, nothing
less — of certain subsets of R2.

Since the empty set has zero area, we always have
∫ a

a
f(x) dx = 0. For each

k ≥ 0, the subgraph of f(x) = k, a < x < b, over (a, b) is an open rectangle,
so,

∫ b

a

k dx = k(b − a).

Since the area is monotone, so is the integral: If 0 ≤ f ≤ g on (a, b),
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

In particular, 0 ≤ f ≤ M on (a, b) implies 0 ≤
∫ b

a
f(x) dx ≤ M(b − a).

A nonnegative function f is integrable over (a, b) if
∫ b

a
f(x) dx < ∞. For

example, we have just seen that every bounded nonnegative f is integrable
over a bounded interval (a, b). Now, we discuss the integral of a signed function,
i.e., a function that takes on positive and negative values.

Given a function f : (a, b) → R, we set

f+(x) = max[f(x), 0],

and
f−(x) = max[−f(x), 0].

These are (Figure 4.16) the positive part and the negative part of f , respec-
tively. Note that f+ − f− = f and f+ + f− = |f |.
3 This is called the Lebesgue integral in some texts.



136 4 Integration
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Fig. 4.16. Positive and negative parts of sin x.

We say a signed function f is integrable over (a, b) if

∫ b

a

|f(x)| dx < ∞.

In this case,
∫ b

a
f±(x) dx ≤

∫ b

a
|f(x)| dx are both finite. For integrable f , we

define the integral
∫ b

a
f(x) dx of f from a to b by

∫ b

a

f(x) dx =
∫ b

a

f+(x) dx −
∫ b

a

f−(x) dx.

From this follows ∫ b

a

[−f(x)] dx = −
∫ b

a

f(x) dx

for every integrable function f , since g = −f implies g+ = f− and g− = f+.
We warn the reader that, although

∫ b

a
f(x) dx =

∫ b

a
f+(x) dx−

∫ b

a
f−(x) dx

is a definition, we have not verified the correctness of the identity
∫ b

a
|f(x)| dx =

∫ b

a
f+(x) dx+

∫ b

a
f−(x) dx for general integrable f . However, we verify it when

f is continuous; this property — linearity — is discussed in the next section.
Also, from the above discussion, we see that every bounded (signed) func-

tion is integrable over a bounded interval. For example, sinx and sin x/x are
integrable over (0, π). In fact, both functions are integrable over (0, b) for any
finite b and, hence,

∫ b

0
sin x dx and

∫ b

0
(sin x/x) dx are defined.

It is reasonable to expect that sin x is not integrable over (0,∞). Indeed
the subgraph of | sin x| consists of a union of sets Gn, n ≥ 1, where each Gn

denotes the subgraph over ((n − 1)π, nπ). By translation invariance, the sets
Gn, n ≥ 1, have the same positive area and the sets G1, G3, G5, . . . , are well
separated. Hence, we obtain

∫ ∞

0

(sin x)+ dx = area

( ∞⋃

n=1

G2n−1

)

=
∞∑

n=1

area (G2n−1) = ∞.



4.3 The Integral 137

By considering, instead, G2, G4, G6, . . . , we obtain
∫∞
0

(sin x)− dx = ∞. Thus,
∫ ∞

0

(sin x)+ dx −
∫ ∞

0

(sin x)− dx = ∞−∞.

Hence,
∫∞
0

sin x dx cannot be defined as a difference of two areas.
It turns out that sinx/x is also not integrable over (0,∞). To see this, let

Gn denote the subgraph of | sin x/x| over ((n−1)π, nπ), n ≥ 1 (Figure 4.17). In
each Gn, we can insert a rectangle Qn of area

√
2/(4n−1) so that the rectangles

are well separated (select Qn to have base the open interval obtained by
translating (π/4, 3π/4) by (n − 1)π, and height as large as possible — see
Figure 4.17). By additivity, then, we obtain

∫ ∞

0

| sin x|
x

dx ≥ area

( ∞⋃

n=1

Qn

)

=
∞∑

n=1

area (Qn) =
∞∑

n=1

√
2

4n − 1
= ∞,

by comparison with the harmonic series. Thus, sinx/x is not integrable over
(0,∞). More explicitly, this reasoning also shows that

∫ ∞

0

(
sin x

x

)+

dx ≥ area (Q1) + area (Q3) + area (Q5) + · · · = ∞

and
∫ ∞

0

(
sin x

x

)−
dx ≥ area (Q2) + area (Q4) + area (Q6) + · · · = ∞.

Thus,
∫ ∞

0

(
sin x

x

)+

dx −
∫ ∞

0

(
sin x

x

)−
dx = ∞−∞,

hence,
∫∞
0

sinx/x dx also cannot be defined as a difference of two areas.
To summarize, the integral of an integrable function is the area of the

subgraph of its positive part minus the area of the subgraph of its negative
part. Every property of

∫ b

a
f(x) dx ultimately depends on a corresponding

property of area.
Frequently, one checks integrability of a given f by first applying one or

more of the properties below to the nonnegative function |f |. For example,
consider the function g(x) = 1/x2 for x > 1, and, for each n ≥ 1, let Gn

denote the compact rectangle [n, n + 1] × [0, 1/n2]. Then, (Gn) is a cover of
the subgraph of g over (1,∞) (Figure 4.18). Hence,

∫ ∞

1

1
x2

dx ≤
∞∑

n=1

1
n2

,

which is finite (§1.6). Thus, g is integrable over (1,∞). Since the signed
function f(x) = cos x/x2 satisfies |f(x)| ≤ g(x) for x > 1, by monotonicity,
we conclude that
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Fig. 4.17. The graphs of sin x/x and | sin x|/x.

∫ ∞

1

∣
∣
∣
cos x

x2

∣
∣
∣ dx < ∞. (4.3.1)

Hence, cos x/x2 is integrable over (1,∞).

1 2 3 4 5

Fig. 4.18. A cover of the subgraph of 1/x2 over (1,∞).

Of course, functions may be unbounded and integrable. For example, the
function f(x) = 1/

√
x is integrable over (0, 1). To see this, let Gn denote

the compact rectangle [1/(n + 1)2, 1/n2]× [0, n + 1]. Then, (Gn) is a cover of
the subgraph of f over (0, 1) (Figure 4.19). Hence,

∫ 1

0

1√
x

dx ≤
∞∑

n=1

(n + 1)
(

1
n2

− 1
(n + 1)2

)

=
∞∑

n=1

2n + 1
n2(n + 1)

≤ 2
∞∑

n=1

1
n2

,

which is finite. Thus, f is integrable over (0, 1).
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0 11/41/91/16

Fig. 4.19. A cover of the subgraph of 1/
√

x over (0, 1).

Theorem 4.3.1 (Monotonicity). Suppose that f and g are both nonnegative
or both integrable on (a, b). If f ≤ g on (a, b), then,

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

If 0 ≤ f ≤ g, we already know this. For the integrable case, note that
f ≤ g implies f+ = max(f, 0) ≤ max(g, 0) = g+ and g− = max(−g, 0) ≤
max(−f, 0) = f− on (a, b). Hence,

∫ b

a

f+(x) dx ≤
∫ b

a

g+(x) dx,

and ∫ b

a

f−(x) dx ≥
∫ b

a

g−(x) dx.

Subtracting the second inequality from the first, the result follows. ��
Since ±f ≤ |f |, the theorem implies

±
∫ b

a

f(x) dx =
∫ b

a

±f(x) dx ≤
∫ b

a

|f(x)| dx

which yields ∣
∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
∣
≤
∫ b

a

|f(x)| dx

for every integrable f .

Theorem 4.3.2 (Translation and Dilation Invariance). Let f be non-
negative or integrable on (a, b). Choose c ∈ R and k > 0. Then,

∫ b

a

f(x + c) dx =
∫ b+c

a+c

f(x) dx,
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∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx,

and ∫ b

a

f(kx) dx =
1
k

∫ kb

ka

f(x) dx.

If f is nonnegative, let G denote the subgraph of f(x + c) over (a, b)
(Figure 4.20). Then, the translate G + (c, 0) equals

{(x, y) : a + c < x < b + c, 0 < y < f(x)},

which is the subgraph of f(x) over the interval (a + c, b + c). By transla-
tion invariance of area, we obtain translation invariance of the integral in the
nonnegative case. If f is integrable, by the nonnegative case,

∫ b

a

f+(x + c) dx =
∫ b+c

a+c

f+(x) dx,

and ∫ b

a

f−(x + c) dx =
∫ b+c

a+c

f−(x) dx.

Now, if g(x) = f(x + c), then, g+(x) = f+(x + c) and g−(x) = f−(x + c).
So, subtracting the last equation from the previous one, we obtain translation
invariance in the integrable case.

For the second equation and f nonnegative, recall that from the previous
section the dilation mapping V (x, y) = (x, ky), and let G denote the subgraph
of f over (a, b). Then, V (G) = {(x, y) : a < x < b, 0 < y < kf(x)}.
Hence, area (V (G)) =

∫ b

a
kf(x) dx. Now, dilation invariance of the area

(Exercise 4.2.6) yields
∫ b

a
kf(x) dx = k

∫ b

a
f(x) dx for f nonnegative. For

integrable f , the result follows by applying, as above, the nonnegative case to
f+ and f−.

For the third equation, let H(x, y) = (kx, y), and let G denote the sub-
graph of f(kx) over (a, b). Then, H(G) = {(x, y) : ka < x < kb, 0 < y <
f(x)}. The third equation now follows, as before, by dilation invariance. For
integrable f , the result follows by applying the nonnegative case to f±. ��

Fig. 4.20. Translation and dilation invariance of integrals.

By similar reasoning, one can also derive (Figure 4.21)
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∫ −a

−b

f(−x) dx =
∫ b

a

f(x) dx,

valid for f nonnegative or integrable over (a, b).

Fig. 4.21. Reflection invariance of integrals.

The next property is additivity.

Theorem 4.3.3 (Additivity). Suppose that f is nonnegative or integrable
over (a, b), and choose a < c < b. Then,

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

To see this, first, assume that f is nonnegative. Since the vertical line x = c
has zero area, subadditivity yields

∫ b

a

f(x) dx ≤
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

So, we need only show that
∫ b

a

f(x) dx ≥
∫ c

a

f(x) dx +
∫ b

c

f(x) dx. (4.3.2)

If f is not integrable, (4.3.2) is immediate since the left side is infinite, so,
assume f is nonnegative and integrable. Now , choose any strictly increasing
sequence a < c1 < c2 < . . . converging to c. Then, for n ≥ 1, the subgraph of f
over (a, cn) and the subgraph of f over (c, b) are well separated (Figure 4.22).
So, by monotonicity and well separated additivity,

∫ b

a

f(x) dx ≥
∫ cn

a

f(x) dx +
∫ b

c

f(x) dx. (4.3.3)

We wish to send n ↗ ∞ in (4.3.3). To this end, for each n ≥ 1, let Gn denote

{(x, y) : cn ≤ x ≤ cn+1, 0 < y < f(x)}.

Since G2, G4, G6, . . . , are pairwise well separated,
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area (G2) + area (G4) + area (G6) + · · · ≤
∫ c

a

f(x) dx < ∞.

Since G1, G3, G5, . . . , are pairwise well separated,

area (G1) + area (G3) + area (G5) + · · · ≤
∫ c

a

f(x) dx < ∞.

Adding the last two inequalities yields the convergence of
∑∞

n=1 area (Gn).
Hence, the tail (§1.6) goes to zero:

lim
n↗∞

∞∑

k=n

area (Gk) = 0.

Since the subgraph of f over (cn, c) is contained in Gn ∪ Gn+1 ∪ Gn+2 ∪ . . . ,
monotonicity and subadditivity implies

0 ≤
∫ c

cn

f(x) dx ≤
∞∑

k=n

area (Gk) , n ≥ 1.

Hence, we obtain

lim
n↗∞

∫ c

cn

f(x) dx = 0. (4.3.4)

Since by monotonicity and subadditivity, again,
∫ cn

a

f(x) dx ≤
∫ c

a

f(x) dx ≤
∫ cn

a

f(x) dx +
∫ c

cn

f(x) dx, n ≥ 1,

we conclude that
lim

n↗∞

∫ cn

a

f(x) dx =
∫ c

a

f(x) dx.

Now, sending n ↗ ∞ in (4.3.3) yields (4.3.2). Hence, the result for f nonneg-
ative. If f is integrable, apply the nonnegative case to f+ and f−. Then,

∫ b

a

f+(x) dx =
∫ c

a

f+(x) dx +
∫ b

c

f+(x) dx,

and ∫ b

a

f−(x) dx =
∫ c

a

f−(x) dx +
∫ b

c

f−(x) dx.

Subtracting the second equation from the first, we obtain the result in the
integrable case. ��

The bulk of the derivation above involves establishing (4.3.4). If f is
bounded, say by M , then, the integral in (4.3.4) is no more than M(c − cn),
hence, trivially, goes to zero. The delicacy is necessary to handle unbounded
situations.
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bcn cn+1a bccn+1

Gn

Fig. 4.22. Additivity of integrals.

The main point in the derivation is that, although the subgraph G of f
over (a, c) and the subgraph G′ of f over (c, b) are not well separated, we still
have additivity, because we know something — the existence of the vertical
edges — about the geometry of G and G′.

In the previous section, when we wanted to apply additivity to several sets
(for example, when we computed the area of the Cantor set) that were not
well separated, we dilated them by a factor 0 < α < 1 and, then, applied
additivity to the shrunken sets.

Why don’t we use the same trick here for G or G′? The reason is that if
the graph of f is sufficiently “jagged” (Figure 4.23), we do not have αG ⊂ G,
a necessary step in applying the shrinking trick of the previous section.

G G′ G′αG

Fig. 4.23. A “jagged” function.

By induction, additivity holds for a partition (§2.2) of (a, b): If a = x0 <
x1 < · · · < xn+1 = b and f is nonnegative or integrable over (a, b), then,

∫ b

a

f(x) dx =
n+1∑

k=1

∫ xk

xk−1

f(x) dx.

Since the right side does not involve the values of f at the points defining the
partition, we conclude that the integrals of two functions f : (a, b) → R and
g : (a, b) → R are equal, whenever they differ only on finitely many points
a < x1 < · · · < xn < b.

Another application of additivity is to piecewise constant functions.
A function f : (a, b) → R is piecewise constant if there is a partition a =
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x0 < x1 < · · · < xn+1 = b, such that f , restricted to each open subinterval
(xi−1, xi), i = 1, . . . , n + 1, is constant. (Note that the values of a piecewise
constant function at the partition points xi, 1 ≤ i ≤ n, are not restricted in
any way.) In this case, additivity implies

∫ b

a

f(x) dx =
n+1∑

i=1

ci∆xi,

where ∆xi = xi − xi−1, i = 1, . . . , n + 1. Since a continuous function can
be closely approximated by a piecewise constant function (§2.3), the integral
should be thought of as a sort of sum with ∆xi “infinitely small,” hence, the
notation dx replacing ∆xi and

∫
replacing

∑
.

This view is supported by Exercise 4.3.3. Indeed, by defining integrals as
areas of subgraphs, we capture the intuition that integrals are approximately
sums of areas of rectangles in any paving, and not just finite vertical pavings
as given by the “Riemann sums” of Exercise 4.3.3.

Also, since the integral is, by definition, a combination of certain areas
and the notation

∫ b

a
f(x) dx is just a mnemonic device, the variable inside the

integral sign is a “dummy” variable, i.e.,
∫ b

a
f(x) dx =

∫ b

a
f(t) dt. Nevertheless,

the interpretation of the integral as a “continuous sum” is basic, useful, and
important.

Let us go back to the integrals of sinx and sinx/x over (0,∞). Above, we
saw that these functions were not integrable over (0,∞), and, so,

∫∞
0

sin x dx

and
∫∞
0

sin x/x dx could not be defined as the difference of the areas of the
positive and the negative parts. An alternate approach is to consider F (b) =
∫ b

0
sin x dx and to take the limit F (∞) = limb→∞ F (b). However, since the

areas of the sets Gn, n ≥ 1, are equal, by additivity, F (nπ) = area (G1) −
area (G2) + · · · ± area (Gn) equals area (G1) or zero according to whether n is
odd or even. Thus, the limit F (∞) does not exist and this approach fails for
sin x.

For sin x/x, however, it is a different story. Let F (b) =
∫ b

0
sin x/x dx, and

let Gn denote the subgraph of | sin x|/x over ((n − 1)π, nπ) for each n ≥ 1.
Then, by additivity F (nπ) = area (G1) − area (G2) + · · · ± area (Gn). Hence,

lim
n↗∞

∫ nπ

0

sin x

x
dx = area (G1) − area (G2) + area (G3) − . . . .

But this last series has a finite sum since it is alternating with decreasing
terms! Thus, ∫ ∞

0

sin x

x
dx �= lim

n↗∞

∫ nπ

0

sinx

x
dx (4.3.5)

since the left side is not defined and the right side is a well defined, finite real.
The limit limn↗∞ F (nπ) is computed in Exercise 5.4.12.

On the other hand, when f is nonnegative or integrable, its integral over an
interval (a, b) can be obtained as a limit of integrals over subintervals (an, bn)
(Figure 4.24), and the behavior (4.3.5) does not occur.
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Theorem 4.3.4 (Continuity At The Endpoints). If f is nonnegative or
integrable on (a, b) and an → a+, bn → b−, then,

∫ b

a

f(x) dx = lim
n↗∞

∫ bn

an

f(x) dx. (4.3.6)

If f is integrable on (a, b) and an → a+, bn → b−, then, in addition,

lim
n↗∞

∫ an

a

f(x) dx = 0, (4.3.7)

and

lim
n↗∞

∫ b

bn

f(x) dx = 0. (4.3.8)

a ban bn

Fig. 4.24. Continuity at the endpoints.

To see this, first assume that f is nonnegative and bn ↗ b, and fix a < c < b.
Since area is monotone, the sequence

∫ bn

c
f(x) dx, n ≥ 1, is increasing and

lim
n↗∞

∫ bn

c

f(x) dx ≤
∫ b

c

f(x) dx.

For the reverse inequality, let Gn denote the subgraph of f over (bn, bn+1),
n ≥ 1. By additivity,

∫ bn

c

f(x) dx =
∫ b1

c

f(x) dx +
n−1∑

k=1

area (Gk) ,

so, taking the limit and using subadditivity,

lim
n↗∞

∫ bn

c

f(x) dx =
∫ b1

c

f(x) dx +
∞∑

k=1

area (Gk)

≥
∫ b1

c

f(x) dx +
∫ b

b1

f(x) dx ≥
∫ b

c

f(x) dx.
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Hence,

lim
n↗∞

∫ bn

c

f(x) dx =
∫ b

c

f(x) dx. (4.3.9)

In general, if bn → b−, then, bn∗ ↗ b (§1.5), and bn∗ ≤ bn < b. Hence,

∫ bn∗

c

f(x) dx ≤
∫ bn

c

f(x) dx ≤
∫ b

c

f(x) dx, n ≥ 1,

which implies (4.3.9), for general bn → b−. Since

∫ c

an

f(x) dx =
∫ −an

−c

f(−x) dx,

applying what we just learned to f(−x) yields

lim
n↗∞

∫ c

an

f(x) dx =
∫ c

a

f(x) dx.

Hence,

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

= lim
n↗∞

∫ c

an

f(x) dx + lim
n↗∞

∫ bn

c

f(x) dx

= lim
n↗∞

∫ bn

an

f(x) dx.

For the integrable case, apply (4.3.6) to f± to get (4.3.6) for f . Since

∫ an

a

f(x) dx =
∫ b

a

f(x) dx −
∫ b

an

f(x) dx,

we get (4.3.7). Similarly, we get (4.3.8). ��
For example, ∫ 1

0

xr dx = lim
a→0+

∫ 1

a

xr dx,

and ∫ ∞

1

xr dx = lim
b→∞

∫ b

1

xr dx,

both for r real.
When f is integrable, the last theorem can be improved: We have continuity

of the integral at every point in (a, b).
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Theorem 4.3.5 (Continuity). Suppose that f is integrable over (a, b), and
set

F (t) =
∫ t

a

f(x) dx, a < t < b.

Then, F is continuous on (a, b).

To see this, fix a < c < b, and let cn → c−. Applying the previous theorem
on (a, c) we obtain F (cn) → F (c). Hence, we obtain continuity of F from the
left at every real in (a, b).

Now, let g(x) = f(−x), −b < x < −a, and

G(t) =
∫ −a

t

g(x) dx, −b < t < −a.

Since, by additivity,

G(t) =
∫ −a

−b

g(x) dx −
∫ t

−b

g(x) dx, −b < t < −a,

by the previous paragraph applied to g, the function G is continuous from the
left at every point in (−b,−a). Thus, the function

G(−t) =
∫ −a

−t

f(−x) dx =
∫ t

a

f(x) dx = F (t), a < t < b,

is continuous from the right at every point in (a, b). This establishes continuity
of F on (a, b). ��

Our last item is the integral test for positive series.

Theorem 4.3.6 (Integral Test). Let f : (0,∞) → (0,∞) be decreasing.
Then,

γ = lim
n↗∞

[
n∑

k=1

f(k) −
∫ n+1

1

f(x) dx

]

(4.3.10)

exists and 0 ≤ γ ≤ f(1). In particular, the integral
∫∞
1

f(x) dx is finite iff the
sum

∑∞
n=1 f(n) converges.

For each n ≥ 1, let Bn = (n, n + 1) × (0, f(n)), B′
n = (n, n + 1) × [f(n +

1), f(n)], and let Gn denote the subgraph of f over (n, n + 1) (Figure 4.25).
Since f is decreasing, Gn ⊂ Bn ⊂ Gn ∪ B′

n, for all n ≥ 1. Then, the quantity
whose limit is the right side of (4.3.10), equals

n∑

k=1

[area (Bk) − area (Gk)] ,

which is clearly increasing with n (here, we used additivity). Hence, the limit
γ ≥ 0 exists. On the other hand, by subadditivity, we get
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1 2 3 4 5

Fig. 4.25. Integral test.

area (Bk) − area (Gk) ≤ area (B′
k) = f(k) − f(k + 1).

So,

γ =
∞∑

n=1

[area (Bk) − area (Gk)] ≤
∞∑

k=1

[f(k) − f(k + 1)] = f(1).

Thus, γ ≤ f(1). If either
∫∞
1

f(x) dx or
∑∞

n=1 f(n) is finite, (4.3.10) simplifies
to

γ =
∞∑

n=1

f(n) −
∫ ∞

1

f(x) dx,

which shows that the sum is finite iff the integral is finite. ��

Exercises

4.3.1. Show that
∫∞
0

f(kx)x−1 dx =
∫∞
0

f(x)x−1 dx for k > 0 and f(x)/x
nonnegative or integrable over (0,∞).

4.3.2. Show that
∫ −a

−b
f(−x) dx =

∫ b

a
f(x) dx for f nonnegative or integrable

over (a, b).

4.3.3. Let f : [a, b] → R be continuous. If a = x0 < x1 < · · · < xn+1 = b is a
partition of [a, b], a Riemann sum corresponding to this partition is the real
(Figure 4.26)

n+1∑

i=1

f(x#
i )(xi − xi−1),

where x#
i is arbitrarily chosen in (xi−1, xi), i = 1, . . . , n+1. Let I =

∫ b

a
f(x) dx.

Show that, for every ε > 0, there is a δ > 0, such that
∣
∣
∣
∣
∣
I −

n+1∑

i=1

f(x#
i )(xi − xi−1)

∣
∣
∣
∣
∣
≤ ε (4.3.11)
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for any partition a = x0 < x1 < · · · < xn+1 = b of mesh less than δ and choice
of points x#

1 , . . . , x#
n+1. (Approximate f by a piecewise constant fε as in §2.3.)

a = x0 x1 x2 x3 x4 = b

x#
2x#

1 x#
3 x#

4

Fig. 4.26. Riemann sums.

4.3.4. Let f : (0, 1) → R be given by

f(x) =

{
x if x irrational,
0 if x rational.

Compute
∫ 1

0
f(x) dx.

4.3.5. Let f : (a, b) → R be nonnegative, and suppose that g : (a, b) → R is
nonnegative and piecewise constant. Use additivity to show that

∫ b

a

[f(x) + g(x)] dx =
∫ b

a

f(x) dx +
∫ b

a

g(x) dx.

(First, do this for g constant.)

4.3.6. Let f : (0,∞) → R be nonnegative and equal to a constant cn on each
subinterval (n − 1, n) for n = 1, 2, . . . . Then,

∫ ∞

0

f(x) dx =
∞∑

n=1

cn.

Instead, if f is integrable, then,
∑∞

n=1 cn is absolutely convergent and the
equality holds.

4.3.7. A function f : (a, b) → R is Riemann integrable over (a, b) if there is
a real I satisfying the following property: For all ε > 0, there is a δ > 0,
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such that (4.3.11) holds for any partition a = x0 < x1 < · · · < xn+1 = b

of mesh less than δ and choice of intermediate points x#
1 , . . . , x#

n+1. Thus,
Exercise 4.3.3 says every function continuous on a compact interval [a, b] is
Riemann integrable over (a, b). Let f(x) = 0 for x ∈ Q and f(x) = 1 for
x �∈ Q. Show that this f is not Riemann integrable over (0, 1).

4.3.8. Let g : (0,∞) → (0,∞) be decreasing and bounded. Show that

lim
δ→0+

δ

∞∑

n=1

g(nδ) =
∫ ∞

0

g(x) dx.

(Apply the integral test to f(x) = g(xδ).)

4.3.9. Let f : (−b, b) → R be nonnegative or integrable. If f is even, then,
∫ b

−b
f(x) dx = 2

∫ b

0
f(x) dx. Now, let f be integrable. If f is odd, then,

∫ b

−b
f(x) dx = 0.

4.3.10. Show that
∫∞
−∞ e−a|x| dx < ∞ for a > 0.

4.3.11. If f : R → R is superlinear (Exercise 2.3.20) and continuous, the
Laplace transform

L(s) =
∫ ∞

−∞
esxe−f(x) dx

is finite for all s ∈ R. (Write
∫∞
−∞ =

∫ a

−∞ +
∫ b

a
+
∫∞

b
for appropriately chosen

a and b.)

4.3.12. A function δ : R → R is a Dirac delta function if it is nonnegative
and satisfies ∫ ∞

−∞
δ(x)f(x) dx = f(0) (4.3.12)

for all continuous nonnegative f : R → R. Show that there is no such function.
(Construct continuous f ’s which take on the two values 0 or 1 on most or all
of R, and insert them into (4.3.12).)

4.3.13. If f is convex on (a, b) and a < c − δ < c < c + δ < b, then
(Exercise 3.3.5)

f(c ± δ) − f(c) ≥ ±f ′
±(c)δ ≥

∫ c

c−(±δ)

f ′
±(x) dx. (4.3.13)

Here ± means there are two cases, either all +s or all −s. Use this to conclude
that if f is convex on an open interval containing [a, b], then

f(b) − f(a) =
∫ b

a

f ′
+(x) dx =

∫ b

a

f ′
−(x) dx.

(Break [a, b] into an evenly spaced partition a = x0 < x1 < · · · < xn < xn+1 =
b, xi − xi−1 = δ, and apply (4.3.13) at each point c = xi.)
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4.4 The Fundamental Theorem of Calculus

By constructing appropriate covers, Archimedes was able to compute areas
and integrals in certain situations. For example, he knew that

∫ 1

0
x2 dx = 1/3.

On the other hand, Archimedes was also able to compute tangent lines to
certain curves and surfaces. However, he apparently had no idea that these
two processes were intimately related, through the fundamental theorem of
calculus. It was the discovery of the fundamental theorem, in the seventeenth
century, that turned the computation of areas from a mystery to a simple and
straightforward reality.

In this section, all functions will be continuous. Since we will use f+ and
f− repeatedly, it is important to note that (§2.3) a function is continuous iff
both its positive and negative parts are continuous.

Let f be continuous on (a, b), and let [c, d] be a compact subinterval. Since
(§2.3) continuous functions map compact intervals to compact intervals, f is
bounded on [c, d], hence, integrable over (c, d).

Let f be continuous on (a, b), fix a < c < b, and set

Fc(x) =

⎧
⎪⎨

⎪⎩

∫ x

c

f(t) dt, c ≤ x < b,

−
∫ c

x

f(t) dt, a < x ≤ c.

By the previous paragraph, Fc(x) is finite for all a < x < b. From the
previous section, we know that Fc is continuous. Here, we show that Fc is
differentiable and F ′

c(x) = f(x) on (a, b) (Figure 4.27). We will need the
modulus of continuity µx (§2.3) of f at x. To begin, by additivity, Fc(y) −
Fc(x) = Fx(y) − Fx(x) for any two points x, y in (a, b), whether they are to
the right or the left of c.

Then, for a < x < t < y < b, |f(t) − f(x)| ≤ µx(y − x). Thus, f(t) ≤
f(x) + µx(y − x). Hence,

Fc(y) − Fc(x)
y − x

=
Fx(y) − Fx(x)

y − x

=
1

y − x

∫ y

x

f(t) dt

≤ 1
y − x

∫ y

x

[f(x) + µx(y − x)] dt = f(x) + µx(y − x).

Similarly, since a < x < t < y < b implies f(x) − µx(y − x) ≤ f(t),

Fc(y) − Fc(x)
y − x

≥ f(x) − µx(y − x).

Combining the last two inequalities, we obtain
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∣
∣
∣
∣
Fc(y) − Fc(x)

y − x
− f(x)

∣
∣
∣
∣ ≤ µx(y − x)

for a < x < y < b. If a < y < x < b, repeating the same steps yields
∣
∣
∣
∣
Fc(y) − Fc(x)

y − x
− f(x)

∣
∣
∣
∣ ≤ µx(x − y).

Hence, if a < x �= y < b,
∣
∣
∣
∣
Fc(y) − Fc(x)

y − x
− f(x)

∣
∣
∣
∣ ≤ µx(|y − x|),

which implies, by continuity of f at x,

lim
y→x

Fc(y) − Fc(x)
y − x

= f(x).

Hence, F ′
c(x) = f(x). We have established the following result, first mentioned

in §3.6.

c x y

F (x)

F ( x) − F (y )

y − x

Fig. 4.27. The derivative at x of the integral of f is f(x).

Theorem 4.4.1. Every continuous f : (a, b) → R has a primitive on (a, b).
��

When f is continuous and integrable on (a, b), we can do better.

Theorem 4.4.2. Let f : (a, b) → R be continuous and integrable. Then,

F (x) =
∫ x

a

f(t) dt, a < x < b,

implies
F ′(x) = f(x), a < x < b,

and

F (x) =
∫ b

x

f(t) dt, a < x < b,

implies
F ′(x) = −f(x), a < x < b.
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To see this, for the first implication, write
∫ x

a
f(t) dt =

∫ c

a
f(t) dt + Fc(x),

and use F ′
c(x) = f(x). Since, by additivity,

∫ x

a
f(t) dt +

∫ b

x
f(t) dt equals the

constant
∫ b

a
f(x) dx, the second implication follows. ��

For example, if

F (x) =
∫ tan x

0

e−t2 dt, 0 < x <
π

2
,

then, F ′(x) = e− tan2 x sec2 x by the above theorem combined with the chain
rule. We will need this in §5.4.

The last two results show that integrals yield primitives. This is one version
of the fundamental theorem of calculus. The other version of the fundamental
theorem states that primitives yield integrals. When one is seeking areas or
integrals, it is this version that is all-important.

Theorem 4.4.3 (Fundamental Theorem of Calculus). Let f be nonneg-
ative or integrable over (a, b). Suppose that f is continuous on (a, b), and let
F be any primitive of f on (a, b). Then, F (b−) and F (a+) exist, and

∫ b

a

f(x) dx = F (b−) − F (a+).

To see this, first, assume that f is nonnegative. Then, F is increasing
(F ′ = f ≥ 0). Hence, F (b−) and F (a+) exist for any primitive F . In particular,
with Fc as above, Fc(b−) and Fc(a+) exist. Since Fc − F = k is a constant,
by continuity at the endpoints,

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

= lim
n↗∞

∫ c

a+1/n

f(x) dx + lim
n↗∞

∫ b−1/n

c

f(x) dx

= − lim
n↗∞

Fc(a + 1/n) + lim
n↗∞

Fc(b − 1/n)

= Fc(b−) − Fc(a+)
= (F (b−) + k) − (F (a+) + k) = F (b−) − F (a+).

For the integrable case, let F± denote primitives of f± (here, F± are not the
positive and negative parts of F ). Then, F+ − F− differs from any primitive
F of f by a constant k. Since F±(b−) and F±(a+) exist, so do F (b−) and
F (a+). Hence,

∫ b

a

f(x) dx =
∫ b

a

f+(x) dx −
∫ b

a

f−(x) dx

= F+(b−) − F+(a+) − F−(b−) + F−(a+)
= F (b−) + k − F (a+) − k = F (b−) − F (a+). ��
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Note that, in the fundamental theorem, as stated above, a or b or F (a+)
or F (b−) may be infinite.

When a, b, F (b−) and F (a+) are all finite, the fundamental theorem
simplifies slightly. Indeed, in this case, by defining F (b) = F (b−), F (a) =
F (a+), the primitive F extends to a continuous function on the compact
interval [a, b] and the fundamental theorem becomes

∫ b

a

f(x) dx = F (b) − F (a).

In particular, this simpler form of the fundamental theorem applies when f
and (a, b) are both bounded. All primitives displayed below were obtained in
§3.6.

For example, sin x is bounded and has the primitive − cos x on (0, π). So,
∫ π

0

sin x dx = (− cos π) − (− cos 0) = 2.

Similarly, xn, n ≥ 0, is bounded and has the primitive xn+1/(n + 1) over any
bounded interval (a, b), so,

∫ b

a

xn dx =
bn+1

n + 1
− an+1

n + 1
, n ≥ 0. (4.4.1)

Below, it is convenient to denote F (b) − F (a) = F (x)|ba. Since, in §3.6, a
primitive of f was written

∫
f(x) dx, the fundamental theorem becomes

∫ b

a

f(x) dx =
∫

f(x) dx

∣
∣
∣
∣

b

a

.

This explains the notation
∫

f(x) dx for primitives. (The notation
∫ b

a
f(x) dx

for integrals was explained in §4.3.)
Also f(x) = 1/

√
x(1 − x) > 0 has the primitive F (x) = 2 arcsin

√
x

continuous over [0, 1], so,

∫ 1

0

dx
√

x(1 − x)
= 2 arcsin

√
x
∣
∣1
0

= 2arcsin 1 = π.

Similarly, since f(x) = 1/(1 + x2) is nonnegative and has the primitive
F (x) = arctan x over R,

∫ ∞

−∞

dx

1 + x2
= arctan x|∞−∞ =

π

2
−
(
−π

2

)
= π.

The unit disk
D = {(x, y) : x2 + y2 < 1}
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is the disjoint union of a horizontal line segment and the two half-disks

D± = {(x, y) : x2 + y2 < 1,±y > 0}.
Then, area (D) = 2 · area (D+) (Exercise 4.2.11). But D+ is the subgraph
of f(x) =

√
1 − x2 over (−1, 1), which has a primitive continuous on [−1, 1].

Hence,
∫ 1

−1

√
1 − x2 dx =

1
2

(
arcsin x + x

√
1 − x2

)∣∣
∣
∣

1

−1

=
π

2
.

This yields the following.

Theorem 4.4.4. The area of the unit disk is π. ��
Of course, by translation and dilation invariance, the area of any disk of

radius r > 0 is πr2. Another integral is
∫ 1

0

(− log x) dx = (x − x log x)|10 = 1 + lim
x→0+

x log x = 1 + 0 = 1.

Our next item is the linearity of the integral.

Theorem 4.4.5 (Linearity). Suppose that f , g are continuous on (a, b). If f
and g are both nonnegative or both integrable over (a, b), then,

∫ b

a

[f(x) + g(x)] dx =
∫ b

a

f(x) dx +
∫ b

a

g(x) dx.

To see this, let F and G be primitives corresponding to f and g. Then,
f + g = F ′ + G′ = (F + G)′. So, F + G is a primitive of f + g. By the
fundamental theorem,

∫ b

a

[f(x) + g(x)]dx = F (b−) + G(b−) − F (a+) − G(a+)

=
∫ b

a

f(x) dx +
∫ b

a

g(x) dx. ��

We say f : (a, b) → R is piecewise continuous if there is a partition
a = x0 < x1 < · · · < xn+1 = b, such that f is continuous on each subinterval
(xi−1, xi), i = 1, . . . , n+1. Now, by additivity, the integral

∫ b

a
can be broken up

into
∫ xi

xi−1
, i = 1, . . . , n+1. We conclude that linearity also holds for piecewise

continuous functions.
By induction, linearity holds for finitely many (piecewise) continuous

functions. If f1, . . . , fn are (piecewise) continuous and all nonnegative or all
integrable over (a, b), then,

∫ b

a

n∑

k=1

fk(x) dx =
n∑

k=1

∫ b

a

fk(x) dx.

Since primitives are connected to integrals by the fundamental theorem,
there is an integration by parts (§3.6) result for integrals.
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Theorem 4.4.6 (Integration By Parts). Let f and g be differentiable on
(a, b) with f ′g and fg′ continuous. If f ′g and fg′ are both nonnegative or both
integrable, then,

∫ b

a

f(x)g′(x) dx = f(x)g(x)
∣
∣
∣
∣

b−

a+

−
∫ b

a

f ′(x)g(x) dx.

This follows by applying the fundamental theorem to f ′g + fg′ = (fg)′

and using linearity. ��
Since primitives are connected to integrals by the fundamental theorem,

there is a substitution (§3.6) result for integrals. Recall (§2.3) that continuous
strictly monotone functions map open intervals to open intervals.

Theorem 4.4.7 (Substitution). Let g be differentiable and strictly monotone
on an interval (a, b) with g′ continuous, and let (m,M) = g[(a, b)]. Let f :
(m,M) → R be continuous. If f is nonnegative or integrable over (m,M),
then, f [g(t)]|g′(t)| is nonnegative or integrable over (a, b), and

∫ M

m

f(x) dx =
∫ b

a

f [g(t)]|g′(t)| dt. (4.4.2)

To see this, first, assume that g is strictly increasing and f is nonnegative,
let F be a primitive of f , let H(t) = F [g(t)], and let h(t) = f [g(t)]g′(t). Then,
(m,M) = (g(a+), g(b−)) and H ′(t) = F ′[g(t)]g′(t) = f [g(t)]g′(t) = h(t) by
the chain rule. Hence, H is a primitive for h. Moreover, h is continuous and
nonnegative, F (M−) = H(b−), and F (m+) = H(a+). By the fundamental
theorem,

∫ M

m

f(x) dx = F (M−) − F (m+)

= H(b−) − H(a+)

=
∫ b

a

h(t) dt

=
∫ b

a

f [g(t)]g′(t) dt.

Since |g′(t)| = g′(t), this establishes the case with g strictly increasing and f
nonnegative. If f is integrable, apply the nonnegative case to f±. Since the
positive and negative parts of f [g(t)]g′(t) are f±[g(t)]g′(t), the integrable case
follows.

If g is strictly decreasing, then, (m,M) = (g(b−), g(a+)). Now, h(t) =
g(−t) is strictly increasing, h((−b,−a)) = (m,M), and h′(−t) = −g′(t) =
|g′(t)| is nonnegative on (a, b). Applying what we just learned to f and h over
(−b,−a) yields

∫ M

m

f(x) dx =
∫ −a

−b

f [h(t)]h′(t) dt
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=
∫ b

a

f [h(−t)]h′(−t) dt

=
∫ b

a

f [g(t)]|g′(t)| dt. ��

If g is not monotone, then, (4.4.2) has to be reformulated (Exercise 4.4.21).
To see what happens, let us consider a simple example with f(x) = 1. Let
g : (a, b) → (m,M) be piecewise linear with line segments inclined at ±π/4.
By this, we mean g is continuous on (a, b) and the graph of g is a line segment
with slope ±1 on each subinterval (ti−1, ti), i = 1, . . . , n+1, for some partition
a = t0 < t1 < · · · < tn+1 = b of (a, b) (Figure 4.28). Then, |g′(t)| = 1 for all
but finitely many t, so,

∫ b

a
|g′(t)| dt = b − a. On the other hand, substituting

f(x) = 1 in (4.4.2) gives
∫ b

a
|g′(t)| dt = M − m. Thus, in such a situation,

(4.4.2) cannot be correct unless the domain and the range have the same
length, i.e., M − m = b − a.

To fix this, we have to take into account the extent to which g is not a
bijection. To this end, for each x in (m,M), let #(x) denote the number of
points in the inverse image g−1({x}). Since (m,M) is the range of g, #(x) ≥ 1
for all m < x < M . The correct replacement for (4.4.2) with f(x) = 1 is

∫ M

m

#(x) dx =
∫ b

a

|g′(t)| dt. (4.4.3)

This holds as long as g is continuous on (a, b) and there is a partition a =
t0 < t1 < · · · < tn+1 = b of (a, b) with g differentiable, g′ continuous, and
g strictly monotone on each subinterval (ti−1, ti), for each i = 1, . . . , n + 1
(Exercise 4.4.21). For example, supposing g : (a, b) → (m,M) piecewise linear
with slopes ±1, reduces (4.4.3) to

∫M

m
#(x) dx = b − a. Dividing by M − m

yields
1

M − m

∫ M

m

#(x) dx =
b − a

M − m
. (4.4.4)

Now, the left side of (4.4.4) may be thought of as the average value of #(x)
over (m,M). We conclude that, for a piecewise linear g with slopes ±1, the
average value of the number of inverse images equals the ratio of the lengths
of the domain over the range.

Now, we derive the integral version of

Theorem 4.4.8 (Taylor’s Theorem). Let n ≥ 0 and suppose that f is
(n+1) times differentiable on (a, b), with f (n+1) continuous on (a, b). Suppose
that f (n+1) is nonnegative or integrable over (a, b), and fix a < c < x < b.
Then,

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + . . .
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x

x′

Fig. 4.28. Piecewise linear: #(x) = 4, #(x′) = 3.

. . . +
f (n)(c)

n!
(x − c)n +

hn+1(x)
(n + 1)!

(x − c)n+1,

where

hn+1(x) = (n + 1)
∫ 1

0

(1 − s)nf (n+1)[c + s(x − c)] ds.

To see this, recall, in §3.4, that we obtained Rn+1(x, x) = 0 and (here,
′ denotes derivative with respect to t)

R′
n+1(x, t) = −f (n+1)(t)

n!
(x − t)n.

Now, apply the fundamental theorem to −R′
n+1(x, t) and substitute t =

c + s(x − c), dt = (x − c)ds, obtaining

Rn+1(x, c) =
1
n!

∫ x

c

f (n+1)(t)(x − t)n dt

=
(x − c)n+1

n!

∫ 1

0

f (n+1)(c + s(x − c))(1 − s)n ds

=
(x − c)n+1

(n + 1)!
hn+1(x). ��

In contrast with the Lagrange and Cauchy forms (§3.4) of the remainder,
here, we need continuity and nonnegativity or integrability of f (n+1).

Our last item is the integration of power series. Since we already know
(§3.6) how to find primitives of power series, the fundamental theorem and
(4.4.1) yield the following.

Theorem 4.4.9. Suppose that R > 0 is the radius of convergence of

f(x) =
∞∑

n=0

anxn.

If [a, b] ⊂ (−R,R), then,
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∫ b

a

f(x) dx =
∞∑

n=0

∫ b

a

anxn dx. �� (4.4.5)

For example, substituting −x2 for x in the exponential series,

e−x2
= 1 − x2 +

x4

2!
− x6

3!
+

x8

4!
− . . . .

Integrating this over (0, 1), we obtain
∫ 1

0

e−x2
dx = 1 − 1

1!3
+

1
2!5

− 1
3!7

+
1

4!9
− . . . .

This last result is, in general, false if a = −R or b = R. For example,
with f(x) = e−x =

∑∞
n=0(−1)nxn/n! and (a, b) = (0,∞), (4.4.5) reads 1 =

∞ − ∞ + ∞ − ∞ + . . . . Under additional assumptions, however, (4.4.5) is
true, even in these cases (see §5.2).

Exercises

4.4.1. Compute
∫∞
0

e−sx dx for s > 0.

4.4.2. Compute
∫ 1

0
xr−1 dx and

∫∞
1

xr−1 dx and
∫∞
0

xr−1 dx for r real. (There
are three cases, r < 0, r = 0, and r > 0.)

4.4.3. Suppose that f is continuous over (a, b), and let F be any primitive. If
f and (a, b) are both bounded, then, f is integrable, and F (a+) and F (b−)
are finite.

4.4.4. Let f(x) = sin x/x, x > 0, and let F (b) =
∫ b

0
f(x) dx, b > 0. Show

that F (∞) = limb→∞ F (b) exists and is finite. (Write F (b) =
∫ 1

0
f(x) dx +

∫ b

1
f(x) dx, integrate the second integral by parts, and use (4.3.1). This limit

is computed in Exercise 5.4.12.)

4.4.5. For f continuous and nonnegative or integrable over (0, 1),
∫ 1

0

f(x) dx =
∫ ∞

0

e−tf(e−t) dt.

4.4.6. Compute
∫∞
0

e−sxxn dx for s > 0 and n ≥ 0. (Integration by parts.)

4.4.7. Compute
∫∞
0

e−nx sin(sx) dx and
∫∞
0

e−nx cos(sx) dx for n ≥ 1.
(Integration by parts.)

4.4.8. Show that
∫∞
0

e−t2/2tx dt = (x−1)
∫∞
0

e−t2/2tx−2 dt for x > 1. Use this
to derive ∫ ∞

0

e−t2/2t2n+1 dt = 2nn!, n ≥ 0.

(Integration by parts.)
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4.4.9. Compute
∫ 1

0
(1− t)ntx−1 dt for x > 0 and n ≥ 1. (Integration by parts.)

4.4.10. Compute
∫ 1

0
(− log x)n dx.

4.4.11. Show that
∫ 1

−1

(x2 − 1)n dx = (−1)n 2n · (2n − 2) · · · · · 2
(2n + 1) · (2n − 1) · · · · · 3 · 2.

(Integrate by parts.)

4.4.12. For n ≥ 0, the Legendre polynomial Pn (of degree n) is given by
Pn(x) = f (n)(x)/2nn!, where f(x) = (x2 − 1)n. Show that

∫ 1

−1

Pn(x)2 dx =
2

2n + 1
.

4.4.13. Use the integral test (§4.3) to show that

ζ(s) =
∞∑

n=1

1
ns

, s > 1,

converges.

4.4.14. Use the integral test (§4.3) to show that

γ = lim
n↗∞

(

1 +
1
2

+
1
3

+ · · · + 1
n
− log n

)

exists and 0 < γ < 1. This particular real γ is Euler’s constant.

4.4.15. Compute
∫ π

−π
x cos(nx) dx and

∫ π

−π
x sin(nx) dx for n ≥ 0. (Integration

by parts.)

4.4.16. Compute
∫ π

−π
f(nx)g(mx) dx, n,m ≥ 0, with f(x) and g(x) equal to

sin x or cos x (three possibilities — use (3.5.3)).

4.4.17. If f, g : (a, b) → R are nonnegative and continuous, derive the Cauchy–
Schwarz inequality

[∫ b

a

f(x)g(x) dx

]2

≤
[∫ b

a

f(x)2 dx

]

·
[∫ b

a

g(x)2 dx

]

.

(Use the fact that q(t) =
∫ b

a
[f(x) + tg(x))]2 dx is a nonnegative quadratic

polynomial and Exercise 1.4.5.)

4.4.18. For n ≥ 1, show that
∫ n

0

1 − (1 − t/n)n

t
dt = 1 +

1
2

+ · · · + 1
n

.
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4.4.19. We say f : (a, b) → R is piecewise differentiable if there is a partition
a = x0 < x1 < · · · < xn+1 = b, such that f restricted to (xi−1, xi) is
differentiable for i = 1, . . . , n + 1. Let f : (a, b) → R be piecewise continuous
and integrable. Show that F (x) =

∫ x

a
f(t) dt, a < x < b, is continuous on (a, b)

and piecewise differentiable on (a, b).

4.4.20. If f : (a, b) → R is nonnegative and g : [a, b] → R is nonnegative and
continuous, then,

∫ b

a

[f(x) + g(x)] dx =
∫ b

a

f(x) dx +
∫ b

a

g(x) dx.

(Use Exercise 4.3.5 and approximate g by a piecewise constant gε as in §2.3.
Since f is arbitrary, linearity may not be used directly.)

4.4.21. Suppose that g : (a, b) → (m,M) is continuous, and suppose that
there is a partition a = t0 < t1 < · · · < tn+1 = b of (a, b), such that g is
differentiable, g′ is continuous, and g is strictly monotone on each subinterval
(ti−1, ti), for each i = 1, . . . , n + 1. For each x in (m,M), let #(x) denote the
number of points in the inverse image g−1({x}). Also let f : (m,M) → R be
continuous and nonnegative. Then4

∫ M

m

f(x)#(x) dx =
∫ b

a

f [g(t)]|g′(t)| dt. (4.4.6)

(Use additivity on the integral
∫ b

a
.)

4.4.22. Let f be differentiable with f ′ continuous on an interval containing
[a, b]. Show that the variation of f corresponding to any partition in (a, b)
(Exercise 2.2.4) is bounded by

∫ b

a
|f ′(x)|dx. Use Exercise 4.3.3 to show that

the total variation of f over (a, b) equals
∫ b

a
|f ′(x)| dx. (Rewrite the variation

of f over a given partition as a Riemann sum for |f ′|.)

4.5 The Method of Exhaustion

In this section, we compute the area of the unit disk D via the Method of
Exhaustion.

For n ≥ 3, let Pk = (cos(2πk/n), sin(2πk/n)), 0 ≤ k ≤ n. Then, the points
Pk are evenly spaced about the unit circle {(x, y) : x2 +y2 = 1}, and Pn = P0.
Let Dn ⊂ D be the interior of the inscribed regular n-sided polygon obtained
by joining the points P0, P1, . . . , Pn (we do not include the edges of Dn in the
definition of Dn). Then (Exercise 4.2.13),

4 (4.4.6) is actually valid under general conditions.
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area (Dn) =
n

2
sin(2π/n) = π · sin(2π/n)

2π/n
.

Since limx→0
sinx

x
= sin′ 0 = cos 0 = 1, we obtain

lim
n↗∞

area (Dn) = π. (4.5.1)

Since

D4 ⊂ D8 ⊂ D16 ⊂ . . . , and D =
∞⋃

n=2

D2n , (4.5.2)

it is reasonable to make the guess that

area (D) = lim
n↗∞

area (D2n) , (4.5.3)

and, hence, conclude that area (D) = π. The reasoning that leads from (4.5.2)
to (4.5.3) is generally correct. The result is called the Method of Exhaustion.

Although area (D) was computed in the previous section using the fun-
damental theorem, in Chapter 5 we will need the Method to compute other
areas.

We say that a sequence of sets (An) is increasing (Figure 4.29) if A1 ⊂
A2 ⊂ A3 ⊂ . . . .

A

A

A

1

2

3

Fig. 4.29. An increasing sequence of sets.

Theorem 4.5.1 (Method of Exhaustion). If A1 ⊂ A2 ⊂ . . . is an increas-
ing sequence of subsets of R2, then,

area

( ∞⋃

n=1

An

)

= lim
n↗∞

area (An) .

We warn the reader that the result is false, in general, for decreas-
ing sequences. For example, take An = (n,∞) × (−∞,∞), n ≥ 1. Then,
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area (An) = ∞ for all n ≥ 1, but
⋂∞

n=1 An = ∅ so area (
⋂∞

n=1 An) = 0. This
lack of symmetry between increasing and decreasing sequences is a reflection
of the lack of symmetry in the definition of area: area (A) is defined as an inf
of over-estimates, not as a sup of underestimates.

The derivation of this result is technical and not as compelling as the
applications in Chapter 5. Moreover, the techniques used in this derivation
are not used elsewhere in the text. Because of this, the reader may wish to
skip the derivation on first reading, and come back to it after completing the
next Chapter.

The Method is established in three stages: first, when (definitions below) the
sets An, n ≥ 1, are open; then, when the sets An, n ≥ 1, are interopen; finally,
for arbitrary sets An, n ≥ 1. Open and interopen are structural properties of
sets that we describe below.

We call a set G ⊂ R2 open if every point (a, b) ∈ G can be surrounded
by a nonempty, open rectangle wholly contained in G. For example an open
rectangle is an open set, but a compact rectangle Q is not, since no point on
the edges of Q can be surrounded by a rectangle wholly contained in Q. The
n-sided polygon Dn, considered above, is an open set as is the unit disk D.
Since there are no points in ∅ for which the open criterion fails, ∅ is open.

For our purposes, the most important example of an open set is given by
the following.

Theorem 4.5.2. If f ≥ 0 is continuous on (a, b), its subgraph is an open subset
of R2.

To see this, pick x and y with a < x < b and 0 < y < f(x). We have
to find a rectangle Q containing (x, y) and contained in the subgraph. Pick
y < y1 < f(x). We claim there is a c > 0, such that |t − x| < c implies
a < t < b and f(t) > y1. If not, then, for all n ≥ 1, we can find a real tn in the
interval (x − 1/n, x + 1/n) contradicting the stated property, i.e., satisfying
f(tn) ≤ y1. Then, tn → x, so, by continuity f(tn) → f(x). Hence, f(x) ≤ y1,
contradicting our initial choice of y1. Thus, there is a c > 0, such that the
rectangle Q = (x − c, x + c) × (0, y1) contains (x, y) and lies in the subgraph.
��

Thus, the integral of a continuous nonnegative function is the area of an
open set.

An alternative description of open sets is in terms of distance. If (a, b) is a
point and A is a set, then, the distance d((a, b), A) between the point (a, b) and
A, by definition, is the distance between the set {(a, b)} and the set A (§4.2).
For example, if Q is an open rectangle and (a, b) ∈ Q, then, d((a, b), Qc) is
positive. Here and below, Ac = R2 \ A.

Theorem 4.5.3. A set G is open iff d((a, b), Gc) > 0 for all points (a, b) ∈ G.

Indeed, if (a, b) ∈ G and Q ⊂ G contains (a, b), then, Qc ⊃ Gc, so,
d((a, b), Gc) ≥ d((a, b), Qc) > 0. Conversely, if d = d((a, b), Gc) > 0, then,
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the disk R of radius d/2 and center (a, b) lies wholly in G. Now, choose any
rectangle Q in R containing (a, b). ��

If G, G′ are open subsets, so, are G ∪ G′ and G ∩ G′. In fact, if (Gn) is a
sequence of open sets, then, G =

⋃∞
n=1 Gn is open. To see this, if (a, b) ∈ G,

then, (a, b) ∈ Gn for some specific n. Since the specific Gn is open, there is a
rectangle Q with (a, b) ∈ Q ⊂ Gn ⊂ G. Hence, G is open. Thus, an infinite
union of open sets is open. If G1, . . . , Gn are finitely many open sets, then,
G = G1∩G2∩. . .∩Gn is open. To see this, if (a, b) ∈ G, then, (a, b) ∈ Gk for all
1 ≤ k ≤ n, so, there are open rectangles Qk with (a, b) ∈ Qk ⊂ Gk, 1 ≤ k ≤ n.
Hence, Q =

⋂n
k=1 Qk is an open rectangle containing (a, b) and contained in

G (a finite intersection of open rectangles is an open rectangle). Thus, a finite
intersection of open sets is open. However, an infinite intersection of open sets
need not be open.

If A ⊂ R2 is any set and ε > 0, by definition of area, we can find an open set
G containing A and satisfying area (G) ≤ area (A) + ε (Exercise 4.5.6). If we
had additivity and area (A) < ∞, writing area (G) = area (A) + area (G \ A),
we would conclude that area (G \ A) ≤ ε. Conversely, if we are seeking prop-
erties of sets that guarantee additivity, we may, instead, focus on those sets
M in R2 satisfying the above approximability condition: For all ε > 0, there
is an open superset G of M , such that area (G \ M) ≤ ε. Instead of doing
this, however, it will be quicker for us to start with an alternate equivalent
(Exercise 4.5.16) formulation.

We say a set M ⊂ R2 is measurable if

area (A) = area (A ∩ M) + area (A ∩ M c) , for all A ⊂ R2. (4.5.4)

For example, the empty set is measurable and M is measurable iff M c is
measurable. Below, we show that every open set is measurable. Measurability
may be looked upon as a strengthened form of additivity, since the equality
in (4.5.4) is required to hold for every A ⊂ R2. Note that the trick, below,
of summing alternate areas C1, C3, C5, . . . was already used in derivating
additivity in §4.3. Compare the next derivation with that derivation!

In §4.2, we established additivity when the sets were well separated. Now,
we establish a similar result involving open sets.

Theorem 4.5.4. If G is open, then, G is measurable.

To see this, we need show only that

area (A) ≥ area (A ∩ G) + area (A ∩ Gc) (4.5.5)

for every A ⊂ R2, since the reverse inequality follows by subadditivity. Let
A ⊂ R2 be arbitrary. If area (A) = ∞, (4.5.5) is immediate, so, let us assume
that area (A) < ∞. Let Gn be the set of points in G whose distance from Gc

is at least 1/n. Since A ∩ Gn and A ∩ Gc are well separated (Figure 4.30),

area (A) ≥ area (A ∩ Gn) + area (A ∩ Gc) .
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By subadditivity,

area (A ∩ G) ≤ area (A ∩ Gn) + area (A ∩ G ∩ Gc
n) .

Combining the last two inequalities, we obtain

area (A) ≥ area (A ∩ G) + area (A ∩ Gc) − area (A ∩ G ∩ Gc
n) . (4.5.6)

Thus, if we show that

lim
n↗∞

area (A ∩ G ∩ Gc
n) = 0, (4.5.7)

letting n ↗ ∞ in (4.5.6), we obtain (4.5.5), hence, the result.
To obtain (4.5.7), let Cn be the set of points (a, b) in G satisfying

1/(n + 1) ≤ d((a, b), Gc) < 1/n. Since G is open, d((a, b), Gc) > 0 for every
point in G. Thus,

G ∩ Gc
n = Cn ∪ Cn+1 ∪ Cn+2 ∪ . . . .

But the sets Cn, Cn+2, Cn+4, . . . , are well separated. Hence,

area (A ∩ Cn) + area (A ∩ Cn+2) + area (A ∩ Cn+4) + · · · ≤ area (A ∩ G) .

Since Cn+1, Cn+3, Cn+5, . . . , are well separated,

area (A ∩ Cn+1) + area (A ∩ Cn+3) + area (A ∩ Cn+5) + · · · ≤ area (A ∩ G) .

Adding the last two inequalities, by subadditivity, we obtain

area (A ∩ G ∩ Gc
n) ≤

∞∑

k=n

area (A ∩ Ck) ≤ 2 area (A ∩ G) < ∞. (4.5.8)

Now, (4.5.8) with n = 1 shows that the series
∑∞

k=1 area (A ∩ Ck) converges.
Thus, the tail series, starting from k = n in (4.5.8), approaches zero, as n ↗ ∞.
This establishes (4.5.7). ��

Cn+2Cn+1
CnGn

Fig. 4.30. An open set is measurable.

Now we establish the Method for measurable, hence, for open sets. In fact,
we need to establish a strengthened form of the Method for measurable sets.
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Theorem 4.5.5 (Measurable Method of Exhaustion). If M1 ⊂ M2 ⊂ . . .
is an increasing sequence of measurable subsets of R2 and A ⊂ R2 is arbitrary,
then,

area

[

A ∩
( ∞⋃

n=1

Mn

)]

= lim
n↗∞

area (A ∩ Mn) .

To derive this, let M∞ =
⋃∞

n=1 Mn. Since A ∩ Mn ⊂ A ∩ M∞, by
monotonicity, the sequence (area (A ∩ Mn)) is increasing and bounded above
by area (A ∩ M∞). Thus,

lim
n↗∞

area (A ∩ Mn) ≤ area (A ∩ M∞) .

To obtain the reverse inequality, apply (4.5.4) with M and A, there, replaced
by M1 and A ∩ M2 respectively, obtaining

area (A ∩ M2) = area (A ∩ M2 ∩ M1) + area (A ∩ M2 ∩ M c
1 ) .

Since A ∩ M2 ∩ M1 = A ∩ M1, this implies that

area (A ∩ M2) = area (A ∩ M1) + area (A ∩ M2 ∩ M c
1 ) .

Now, apply (4.5.4) with M and A, there, replaced by M2 and A∩M3 respec-
tively, obtaining

area (A ∩ M3) = area (A ∩ M2) + area (A ∩ M3 ∩ M c
2 )

= area (A ∩ M1) + area (A ∩ M2 ∩ M c
1 )

+ area (A ∩ M3 ∩ M c
2 ) .

Proceeding in this manner, we obtain

area (A ∩ Mn) = area (A ∩ M1) +
n∑

k=2

area
(
A ∩ Mk ∩ M c

k−1

)
.

Sending n ↗ ∞, we obtain

lim
n↗∞

area (A ∩ Mn) = area (A ∩ M1) +
∞∑

k=2

area
(
A ∩ Mk ∩ M c

k−1

)
.

Since
M1 ∪ (M2 ∩ M c

1 ) ∪ (M3 ∩ M c
2 ) ∪ · · · = M∞,

subadditivity implies that

area (A ∩ M∞) ≤ area (A ∩ M1) +
∞∑

k=2

area
(
A ∩ Mk ∩ M c

k−1

)
.
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Hence, we obtain the reverse inequality

lim
n↗∞

area (A ∩ Mn) ≥ area (A ∩ M∞) . ��

By choosing A = R2, we conclude that the Method is valid for measurable,
hence, open sets. This completes stage one of the derivation of the Method.

Next we establish the Method for interopen sets. A set I ⊂ R2 is interopen
if I is the infinite intersection of a sequence of open sets (Gn), I =

⋂∞
n=1 Gn.

Of course, every open set is interopen. Also, every compact rectangle is
interopen (Exercise 4.5.5). The key feature of interopen sets is that any set
A can be covered by some interopen set I, A ⊂ I, having the same area,
area (A) = area (I) (Exercise 4.5.7).

Theorem 4.5.6. If (Mn) is a sequence of measurable sets, then,
⋂∞

n=1 Mn is
measurable.

To derive this theorem, we start with two measurable sets M , N , and we
show that M ∩ N is measurable. First, note that

(M ∩ N)c = (M ∩ N c) ∪ (M c ∩ N) ∪ (M c ∩ N c). (4.5.9)

Let A ⊂ R2 be arbitrary. Since N is measurable, write (4.5.4) with A ∩ M
and N replacing A and M , respectively, obtaining

area (A ∩ M) = area (A ∩ M ∩ N) + area (A ∩ M ∩ N c) .

Now, write (4.5.4) with A ∩ M c and N replacing A and M respectively,
obtaining

area (A ∩ M c) = area (A ∩ M c ∩ N) + area (A ∩ M c ∩ N c) .

Now, insert the last two equalities in (4.5.4). By (4.5.9) and subadditivity,
we obtain

area (A) = area (A ∩ M) + area (A ∩ M c)
= area (A ∩ (M ∩ N)) + area (A ∩ (M ∩ N c))

+ area (A ∩ (M c ∩ N)) + area (A ∩ (M c ∩ N c))
≥ area (A ∩ (M ∩ N)) + area (A ∩ (M ∩ N)c) .

Hence,

area (A) ≥ area (A ∩ (M ∩ N)) + area (A ∩ (M ∩ N)c) .

Since the reverse inequality is an immediate consequence of subadditivity,
we conclude that M ∩ N is measurable.

Now, let (Mn) be a sequence of measurable sets and set Nn =
⋂n

k=1 Mk,
n ≥ 1. Then, Nn, n ≥ 1, are measurable. Indeed N1 = M1 is measurable. For
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the inductive step, suppose that Nn is measurable. Since Nn+1 = Nn ∩Mn+1,
we conclude that Nn+1 is measurable. Hence, by induction, Nn is measurable
for all n ≥ 1. Now, M∞ =

⋂∞
n=1 Mn =

⋂∞
n=1 Nn and N1 ⊃ N2 ⊃ . . . . Hence,

N c
1 ⊂ N c

2 ⊂ . . . , so, by the measurable Method, we obtain

area (A ∩ M c
∞) = area

[

A ∩
( ∞⋂

n=1

Nn

)c]

(4.5.10)

= area

(

A ∩
∞⋃

n=1

N c
n

)

= lim
n↗∞

area (A ∩ N c
n) .

Here, we used De Morgan’s law (§1.1). Now, for each n ≥ 1,

area (A) = area (A ∩ Nn) + area (A ∩ N c
n)

≥ area (A ∩ M∞) + area (A ∩ N c
n) . (4.5.11)

Sending n ↗ ∞ in (4.5.11) and using (4.5.11) yields

area (A) ≥ area (A ∩ M∞) + area (A ∩ M c
∞) .

Since the reverse inequality follows from subadditivity, we conclude that
M∞ =

⋂∞
n=1 Mn is measurable. ��

By choosing (Mn) in the theorem to consist of open sets, we see that every
interopen set is measurable. Hence, we conclude that the Method is valid for
interopen sets. This completes stage two of the derivation of the Method.

The third and final stage of the derivation of the Method is to establish it
for an increasing sequence of arbitrary sets. To this end, let A1 ⊂ A2 ⊂ . . . be
an arbitrary increasing sequence of sets. For each n ≥ 1, by Exercise 4.5.7,
choose an interopen set In containing An and having the same area: In ⊃ An

and area (In) = area (An). For each n ≥ 1, let

Jn = In ∩ In+1 ∩ In+2 ∩ . . . .

Then, Jn is interopen, An ⊂ Jn ⊂ In, and area (Jn) = area (An), for all n ≥ 1.
Moreover Jn = In ∩ Jn+1. Hence (and this is the reason for introducing the
sequence (Jn)), the sequence (Jn) is increasing. Thus, by applying the Method
for interopen sets,

lim
n↗∞

area (An) = lim
n↗∞

area (Jn)

= area

( ∞⋃

n=1

Jn

)

≥ area

( ∞⋃

n=1

An

)

. (4.5.12)

On the other hand, by monotonicity, the sequence (area (An)) is increasing
and bounded above by area (

⋃∞
n=1 An). Hence,
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lim
n↗∞

area (An) ≤ area

( ∞⋃

n=1

An

)

.

Combining this with (4.5.12), we conclude that

lim
n↗∞

area (An) = area

( ∞⋃

n=1

An

)

.

This completes stage three, hence, the derivation of the Method. ��
We end by describing the connection between the areas of the inscribed

and circumscribed polygons of the unit disk D, as the number of sides doubles.
Let

Pk =
(

cos(2πk/n)
cos(π/n)

,
sin(2πk/n)
cos(π/n)

)

, 0 ≤ k ≤ n.

Then, the points Pk are evenly spaced about the circle {(x, y) : x2 + y2 =
sec2(π/n)}, and Pn = P0. Let D′

n denote the interior of the regular n-sided
polygon obtained by joining the points P0, . . . , Pn by line segments. Then,
D′

n ⊃ D and D′
n = c · Dn with c = sec(π/n). Hence, by dilation invariance,

we obtain
area (D′

n) = c2 · area (Dn) = n tan(π/n)

which also goes to π as n ↗ ∞.
Let an, a′

n denote the areas of the inscribed and circumscribed
n-sided polygons Dn, D′

n, respectively. Then, using trigonometry, one obtains
(Exercise 4.5.11)

a2n =
√

ana′
n (4.5.13)

and
1

a′
2n

=
1
2

(
1

a2n
+

1
a′

n

)

. (4.5.14)

Since a4 = 2 and a′
4 = 4, we obtain a8 = 2

√
2 and a′

8 = 8(
√

2 − 1). Thus,

2
√

2 < π < 8(
√

2 − 1).

Continuing in this manner, one obtains approximations to π. These identities
are very similar to those leading to Gauss’ arithmetic-geometric mean, which
we discuss in §5.3.

Exercises

4.5.1. If Q is an open rectangle and (x, y) ∈ Q, then, d((x, y), Qc) > 0.

4.5.2. Find a sequence (An) of open sets, such that
⋂∞

n=1 An is not open.
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4.5.3. A set A is closed if Ac is open. Show that a compact rectangle is closed,
an infinite intersection of closed sets is closed, and a finite union of closed
sets is closed. Find a sequence (An) of closed sets, such that

⋃∞
n=1 An is not

closed. (You will need De Morgan’s law (§1.1).)

4.5.4. Given a real a, let La denote the vertical infinite line through a,
La = {(x, y) : x = a, y ∈ R}. Also set L∞ = L−∞ = ∅. Let f be nonnegative
and continuous on (a, b). Show that

C = {(x, y) : a < x < b, 0 ≤ y ≤ f(x)} ∪ La ∪ Lb

is a closed set and ∫ b

a

f(x) dx = area (C) .

This shows that the integral of a continuous nonnegative function is also
the area of a closed set. (Compare C with the subgraph of f(x) + ε/(1 + x2)
for ε > 0 small.)

4.5.5. Show that C is closed iff

d((x, y), C) = 0 ⇐⇒ (x, y) ∈ C.

If C is closed and Gn = {(x, y) : d((x, y), C) < 1/n}, then, Gn is open and
C =

⋂∞
n=1 Gn. Thus, every closed set is interopen.

4.5.6. Let A ⊂ R2 be arbitrary. Use the definition of area (A) to show: For
all ε > 0, there is an open superset G of A satisfying area (G) ≤ area (A) + ε.
Conclude that

area (A) = inf{area (G) : A ⊂ G, G open}.

4.5.7. Let A ⊂ R2 be arbitrary. Show that there is an interopen set I
containing A and having the same area as A (use Exercise 4.5.6).

4.5.8. If (Mn) is a sequence of measurable sets, then,
⋃∞

n=1 Mn is measurable.

4.5.9. The Cantor set is closed.

4.5.10. Show that D′
n ⊃ D.

4.5.11. Derive (4.5.13) and (4.5.14).

4.5.12. If A and B are disjoint and A is measurable, then, area (A ∪ B) =
area (A) + area (B).

4.5.13. If (An) is a sequence of disjoint measurable sets, then,

area

( ∞⋃

n=1

An

)

=
∞∑

n=1

area (An) .
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4.5.14. If A and B are measurable, then, area (A ∪ B) = area (A)+area (B)−
area (A ∩ B).

4.5.15. Let A, B, C, D be measurable subsets of R2. Obtain expressions for
area (A ∪ B ∪ C) and area (A ∪ B ∪ C ∪ D) akin to the result in the previous
Exercise.

4.5.16. Show that M is measurable iff, for all ε > 0, there is an open superset
G of M , such that area (G \ M) ≤ ε.

4.5.17. Let A ⊂ R2 be measurable. If area (A) > 0, there is an ε > 0, such
that area (A ∩ A′) > 0 for all translates A′ = A + (a, b) of A with |a| < ε and
|b| < ε. (Start with A a rectangle, and use Exercise 4.2.15.)

4.5.18. If A ⊂ R2 is measurable and area (A) > 0, let

A − A = {(x − x′, y − y′) : (x, y) and (x′, y′) ∈ A}

be the set of differences. Note that A−A contains the origin. Then, for some
ε > 0, A − A must contain the open rectangle Qε = (−ε, ε) × (−ε, ε). (Use
Exercise 4.5.17.)
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Applications

5.1 Euler’s Gamma Function

In this section, we derive the formula

∫ 1

0

dx

xx
=

∞∑

n=1

1
nn

=
1
11

+
1
22

+
1
33

+ . . . . (5.1.1)

Along the way we will meet Euler’s gamma function and the monotone
convergence theorem, both of which play roles in subsequent sections.

The gamma function is defined by

Γ (x) =
∫ ∞

0

e−ttx−1 dt, x > 0.

Clearly Γ (x) is positive for x > 0. Below we see that the gamma function is
finite, and, in the next section, we see that it is continuous. Since

∫ ∞

0

e−atdt =
1
−a

e−at

∣
∣
∣
∣

∞

0

= −1
a

(
e−a∞ − e−a0

)
=

1
a
, a > 0, (5.1.2)

we have Γ (1) = 1. Below, we use the convention 0! = 1.

Theorem 5.1.1. The gamma function Γ (x) is positive, finite, and Γ (x+1) =
xΓ (x) for x > 0. Moreover, Γ (n) = (n − 1)! for n ≥ 1.

To derive the first identity, use integration by parts with u = tx, dv = e−tdt.
Then, v = −e−t, and du = xtx−1dt. Hence, we obtain the following equality
between primitives:

∫

e−ttxdt = −e−ttx + x

∫

e−ttx−1dt.
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Since e−ttx vanishes at t = 0 and t = ∞ for x > 0 fixed, and the integrands
are positive, by the fundamental theorem, we obtain

Γ (x + 1) =
∫ ∞

0

e−ttxdt

= − e−ttx
∣
∣∞
0

+ x

∫ ∞

0

e−ttx−1dt

= 0 + xΓ (x) = xΓ (x).

Note that this identity is true whether or not Γ (x) is finite. We derive Γ (n) =
(n−1)! by induction. The statement is true for n = 1 since Γ (1) = 1 from above.
Assuming the statement is true for n, Γ (n + 1) = nΓ (n) = n(n − 1)! = n!.
Hence, the statement is true for all n ≥ 1. Now, we show that Γ (x) is finite for
all x > 0. Since the integral

∫ 1

0
e−ttx−1 dt ≤

∫ 1

0
tx−1 dt = 1/x is finite for x > 0,

it is enough to verify integrability of e−ttx−1 over (1,∞). Over this interval,
e−ttx−1 increases with x, hence,

∫∞
1

e−ttx−1 dt ≤
∫∞
1

e−ttn−1 dt ≤ Γ (n) for
any natural n ≥ x. But we already know that Γ (n) = (n − 1)! < ∞, hence,
the result. ��

Because of this result, we define x! = Γ (x + 1) for x > −1. For example,
in Exercise 5.4.1, we obtain (1/2)! =

√
π/2.

We already know (linearity §4.4) that the integral of a finite sum of
continuous functions is the sum of their integrals. To obtain linearity for
infinite sums, we first derive the following.

Theorem 5.1.2 (Monotone Convergence Theorem (For Integrals)).
Let 0 ≤ f1 ≤ f2 ≤ f3 ≤ . . . be an increasing sequence of nonnegative func-
tions1, all defined on an interval (a, b). If

lim
n↗∞

fn(x) = f(x), a < x < b,

then,

lim
n↗∞

∫ b

a

fn(x) dx =
∫ b

a

lim
n↗∞

fn(x) dx =
∫ b

a

f(x) dx.

To see this, let Gn denote the subgraph of fn over (a, b), G the subgraph
of f over (a, b). Then, Gn ⊂ Gn+1 since y < fn(x) implies y < fn+1(x).
Moreover, y < f(x) iff y < fn(x) for some n ≥ 1, hence, G =

⋃∞
n=1 Gn. The

result now follows from the method of exhaustion and the definition of the
integral of a nonnegative function. ��

We caution that this result may be false when the sequence (fn) is not
increasing (Exercise 5.1.1). Nevertheless, one can still obtain roughly half this
result for any sequence (fn) of nonnegative functions (Exercise 5.1.2).

As an immediate application of the above, since Γ (x) = Γ (x + 1)/x for
x > 0 and Γ (1) = 1, Γ (0+) = ∞. Also, for x ≥ n, Γ (x) ≥

∫∞
1

e−ttx−1 dt ≥
1 These functions need not be continuous, they may be arbitrary.
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∫∞
1

e−ttn−1 dt ≥ (n − 1)! − 1/n. Hence, Γ (∞) = ∞. In the next section, we
show that Γ is continuous whereas, in Exercise 5.1.7, we show that Γ is
convex. Later (§5.4), we show that Γ is strictly convex. Putting all of this
together, we conclude that Γ has exactly one global positive minimum and
the graph for x > 0 is as in Figure 5.1. Later (§5.8), we will extend the domain
of Γ to negative reals.

023 −−− 1

Fig. 5.1. The gamma function.

Now, we can derive linearity for infinite positive series of functions. Let
(fn) be a sequence of nonnegative functions. Then, the sequence of partial
sums sn = f1 + · · ·+fn, n ≥ 1, is an increasing sequence, hence, the monotone
convergence theorem applies. Since sn ↗

∑∞
n=1 fn, we obtain the following.

Theorem 5.1.3 (Summation Under the Integral Sign — Positive
Case). If (fn) is a sequence of nonnegative continuous functions on (a, b),
then,

∫ b

a

[ ∞∑

n=1

fn(x)

]

dx =
∞∑

n=1

∫ b

a

fn(x) dx.

For alternating series, we need a different version of this result (next
section).

Since the functions are continuous, use linearity and the monotone
convergence theorem to obtain

∫ b

a

[ ∞∑

n=1

fn(x)

]

dx =
∫ b

a

lim
n↗∞

[
n∑

k=1

fk(x)

]

dx
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= lim
n↗∞

∫ b

a

[
n∑

k=1

fk(x)

]

dx

= lim
n↗∞

n∑

k=1

∫ b

a

fk(x) dx

=
∞∑

n=1

∫ b

a

fn(x) dx.��

Now, we derive (5.1.1). To see this, we use the substitution x = e−t (Exer-
cise 4.4.5), the exponential series, the previous theorem, shifting the index
n by one, the substitution nt = s (dilation invariance), and the property
Γ (n) = (n − 1)!:

∫ 1

0

x−xdx =
∫ ∞

0

(
e−t

)−e−t

e−t dt =
∫ ∞

0

ete−t

e−t dt

=
∫ ∞

0

[ ∞∑

n=0

1
n!

tne−nt

]

e−t dt

=
∞∑

n=0

1
n!

∫ ∞

0

tne−(n+1)tdt

=
∞∑

n=1

1
(n − 1)!

∫ ∞

0

e−nttn−1 dt

=
∞∑

n=1

1
(n − 1)!

n−n

∫ ∞

0

e−ssn−1 ds

=
∞∑

n=1

1
(n − 1)!

n−nΓ (n) =
∞∑

n=1

n−n.��

We end with a special case of the monotone convergence theorem.

Theorem 5.1.4 (Monotone Convergence Theorem (For Series)). Let
(anj), n ≥ 1, be a sequence of sequences, and let (aj) be a given sequence.
Suppose that 0 ≤ a1j ≤ a2j ≤ a3j ≤ . . . for all j ≥ 1. If

lim
n↗∞

anj = aj , j ≥ 1,

then,

lim
n↗∞

∞∑

j=1

anj =
∞∑

j=1

lim
n↗∞

anj =
∞∑

j=1

aj .

To see this, define piecewise constant functions fn(x) = anj , j−1 < x ≤ j,
j ≥ 1, and f(x) = aj , j − 1 < x ≤ j, j ≥ 1. Then, (fn) is nonnegative on
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(0,∞) and increasing to f . Now, apply the monotone convergence theorem
for integrals, and use Exercise 4.3.6. ��

Using this theorem, one can derive an analog of summation under the
integral sign involving series (“summation under the summation sign”), rather
than integrals. But we already did this in §1.7.

Exercises

5.1.1. Find a sequence f1 ≥ f2 ≥ f3 ≥ · · · ≥ 0 of nonnegative functions, such
that fn(x) → 0 for all x ∈ R, but

∫∞
−∞ fn(x) dx = ∞ for all n ≥ 1. This shows

that the monotone convergence theorem is false for decreasing sequences.

5.1.2. (Fatou’s Lemma) Let fn, n ≥ 1, be nonnegative functions, all defined
on (a, b), and suppose that fn(x) → f(x) for all x in (a, b). Then, the lower
limit of the sequence

(∫ b

a
fn(x) dx

)
is greater or equal to

∫ b

a
f(x) dx. (For each

x, let (gn(x)) equal the lower sequence (§1.5) of the sequence (fn(x)).)

5.1.3. Let f0(x) = 1−x2 for |x| < 1 and f0(x) = 0 for |x| ≥ 1, and let fn(x) =
f0(x − n) for −∞ < x < ∞ and n ≥ 1. Compute f(x) = limn↗∞ fn(x),
−∞ < x < ∞,

∫∞
−∞ fn(x) dx, n ≥ 1, and

∫∞
−∞ f(x) dx (Figure 5.2). Conclude

that, for this example, the inequality in Fatou’s Lemma is strict.

fn

− 1 1 n − 1 n + 1

f0

Fig. 5.2. Exercise 5.1.3.

5.1.4. Show that

Γ (x) = lim
n↗∞

∫ n

0

(

1 − t

n

)n

tx−1 dt, x > 0.

(Use Exercise 3.2.4.)

5.1.5. Use substitution t = ns, and integrate by parts to get
∫ n

0

(

1 − t

n

)n

tx−1 dt =
nxn!

x(x + 1) . . . (x + n)
, x > 0,

for n ≥ 1. Conclude that

Γ (x) = lim
n↗∞

nxn!
x(x + 1) . . . (x + n)

, x > 0. (5.1.3)
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5.1.6. We say that a function f : (a, b) → R+ is log-convex if log f is convex
(§3.3). Show that the right side of (5.1.3) is log-convex on (0,∞). Suppose that
fn : (a, b) → R, n ≥ 1, is a sequence of convex functions, and fn(x) → f(x),
as n ↗ ∞, for all x in (a, b). Show that f is convex on (a, b). Conclude that
the gamma function is log-convex on (0,∞).

5.1.7. Show that Γ is convex on (0,∞). (Consider Γ = exp(log Γ ) and
remember that ex is convex.)

5.1.8. Let sn(t) denote the nth partial sum of
1

et − 1
= e−t + e−2t + e−3t + . . . , t > 0.

Use sn(t) to derive
∫ ∞

0

tx−1

et − 1
dt = Γ (x)ζ(x), x > 1,

where ζ(x) =
∑∞

n=1 n−x, x > 1.

5.1.9. Let

ψ(t) =
∞∑

n=1

e−n2πt, t > 0.

Show that
∫ ∞

0

ψ(t)tx/2−1dt = π−x/2Γ (x/2)ζ(x), x > 1,

where ζ is as in the previous exercise.

5.1.10. Show that
∫ 1

0
tx−1(− log t)n−1 dt = Γ (n)/xn for x > 0 and n ≥ 1

(Exercise 4.4.5).

5.1.11. Show that
∫ ∞

0

e−ttx−1| log t|n−1 dt ≤ Γ (n)
xn

+ Γ (x + n − 1)

for x > 0 and n ≥ 1. (Break up the integral into
∫ 1

0
+
∫∞
1

and use log t ≤ t
for t ≥ 1.)

5.1.12. Use the monotone convergence theorem for series to compute ζ(1+)
and ψ(0+).

5.1.13. With τ(t) = t/(1 − e−t), show that
∫ ∞

0

e−xtτ(t) dt =
∞∑

n=0

1
(x + n)2

, x > 0.

(Compare with Exercise 5.1.8.)

5.1.14. Use the monotone convergence theorem to derive continuity at the
endpoints (§4.3): If f : (a, b) → R is nonnegative and an ↘ a, bn ↗ b, then,
∫ bn

an
f(x) dx →

∫ b

a
f(x) dx.
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5.2 The Number π

In this section, we discuss several formulas for π, namely,

• the Leibnitz series
π

4
= 1 − 1

3
+

1
5
− 1

7
+ . . . , (5.2.1)

• the Wallis product

π

2
= lim

n↗∞

2 · 2 · 4 · 4 · 6 · 6 · · · · · 2n · 2n

1 · 3 · 3 · 5 · 5 · 7 · · · · · (2n − 1) · (2n + 1)
, (5.2.2)

• the Vieta formula

2
π

=

√
1
2
·

√

1
2

+
1
2

√
1
2
·

√
√
√
√1

2
+

1
2

√

1
2

+
1
2

√
1
2
· . . . , (5.2.3)

• the continued fraction expansion

π

4
=

1

1 +
1

2 +
9

2 +
25

2 +
49

2 + . . .

, (5.2.4)

• the Bailey–Borwein–Plouffe series

π =
∞∑

n=0

1
16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)

. (5.2.5)

Along the way, we will meet the dominated convergence theorem, and we also
compute the Laplace transform of the Bessel function of order zero.

It is one thing to derive these remarkable formulas and quite another to
discover them. We begin by rederiving the Leibnitz series for π by an alternate
method to that in §3.6.

Start with the power series expansion

1
1 + x2

= 1 − x2 + x4 − x6 + . . . , 0 < x < 1. (5.2.6)

We seek to integrate (5.2.6), term by term, as in §4.4. Since arctan 1 = π/4
and arctanx is a primitive of 1/(1 + x2), we seek to integrate (5.2.6) over the
interval (0, 1). However, since the radius of convergence of (5.2.6) is 1, the
result in §4.4 is not applicable. On the other hand, the theorem in §5.1 allows
us to integrate, term by term, any series of nonnegative continuous functions.
Since (5.2.6) is alternating, again this is not applicable.
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If we let sn(x) denote the nth partial sum in (5.2.6), then, by the Leibnitz
test (§1.7),

0 < sn(x) < 1, 0 < x < 1, n ≥ 1. (5.2.7)

It turns out that (5.2.7) allows us to integrate (5.2.6) over the interval (0,1),
term by term. This is captured in the following theorem.

Theorem 5.2.1 (Dominated Convergence Theorem (for Integrals)).
Let fn : (a, b) → R, n ≥ 1, be a sequence of continuous functions and let
f : (a, b) → R be continuous. Suppose that there is an integrable positive
continuous function g : (a, b) → R satisfying |fn(x)| ≤ g(x) for all x in (a, b)
and all n ≥ 1. If

lim
n↗∞

fn(x) = f(x), a < x < b,

then,

lim
n↗∞

∫ b

a

fn(x) dx =
∫ b

a

lim
n↗∞

fn(x) dx =
∫ b

a

f(x) dx. (5.2.8)

Note that (5.2.8) says we can switch the limit and the integral, exactly
as in the monotone convergence theorem. This theorem takes its name from
the hypothesis |fn(x)| ≤ g(x), a < x < b, which is read fn is dominated by g
over (a, b). The point of this hypothesis is the existence of a single continuous
integrable g that dominates all the fn’s.

The two results, the monotone and the dominated convergence theorems,
are used throughout mathematics to justify the interchange of integrals and
limits. Which theorem is applied when depends on which hypothesis is applica-
ble to the problem at hand. When trigonometric or more general oscillatory
functions are involved, the monotone convergence theorem is not applicable.
Often, in these cases, it is the dominated convergence theorem that saves the
day.

When (a, b) = (0,∞) and the functions fn, n ≥ 1, f , g, are piecewise
constant, the dominated convergence theorem reduces to a theorem about
series, which we discuss at the end of the section. Also one can allow the
interval (an, bn) to vary with n ≥ 1 (Exercise 5.2.13). We defer the derivation
of the dominated convergence theorem to the end of the section.

Going back to the derivation of (5.2.1), since the nth partial sum sn

converges to f(x) = 1/(1 + x2) and |sn(x)| ≤ 1 by (5.2.7), we can choose
g(x) = 1 which is integrable on (0, 1). Hence, applying the fundamental
theorem and the dominated convergence theorem yields

π

4
= arctan 1 − arctan 0 =

∫ 1

0

1
1 + x2

dx =
∫ 1

0

[ ∞∑

n=0

(−1)nx2n

]

dx

=
∫ 1

0

lim
N↗∞

sN (x) dx = lim
N↗∞

∫ 1

0

sN (x) dx
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= lim
N↗∞

N∑

n=0

(−1)n

∫ 1

0

x2n dx =
∞∑

n=0

(−1)n

∫ 1

0

x2n dx

=
∞∑

n=0

(−1)n 1
2n + 1

= 1 − 1
3

+
1
5
− 1

7
+ . . . .

This completes the derivation of (5.2.1).
The idea behind this derivation of (5.2.1) can be carried out more generally.

Theorem 5.2.2 (Summation Under the Integral Sign — Alternating
Case). Let fn : (a, b) → R, n ≥ 1, be a decreasing sequence of continuous
positive functions on (a, b), and suppose that f1 is integrable. If

∑∞
n=1(−1)n−1fn

is continuous on (a, b), then,

∫ b

a

[ ∞∑

n=1

(−1)n−1fn(x)

]

dx =
∞∑

n=1

(−1)n−1

∫ b

a

fn(x) dx.

To derive this, we need only note that the nth partial sum sn(x) is
nonnegative and no greater than g(x) = f1(x), which is continuous and
integrable. Hence, we may apply the dominated convergence theorem, as
above, to the sequence (sn) of partial sums. ��

For example, using this theorem to integrate the geometric series 1/(1+x) =
1 − x + x2 − x3 + . . . over (0, 1), we obtain

log 2 = 1 − 1
2

+
1
3
− 1

4
+ . . . .

Now, we discuss the general case.

Theorem 5.2.3 (Summation Under the Integral Sign — Absolute
Case). Let fn : (a, b) → R, n ≥ 1, be a sequence of continuous functions, and
suppose that there is an integrable, positive, continuous function g : (a, b) → R
satisfying

∑∞
n=1 |fn(x)| ≤ g(x) for all x in (a, b) and all n ≥ 1. If

∑∞
n=1 fn(x)

is continuous on (a, b), then,

∫ b

a

[ ∞∑

n=1

fn(x)

]

dx =
∞∑

n=1

∫ b

a

fn(x) dx.

To derive this, we need only note that |sN (x)| ≤ |f1(x)| + · · · + |fN (x)| ≤
g(x), which is continuous and integrable. Hence, we may apply the dominated
convergence theorem, as above, to the sequence (sn) of partial sums. ��

The Bessel function of order zero is defined by

J0(x) =
∞∑

n=0

(−1)n x2n

4n(n!)2
, −∞ < x < ∞.

To check the convergence, rewrite the series using Exercise 3.4.13 obtaining
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J0(x) =
∞∑

n=0

(
−1/2

n

)
x2n

(2n)!
, −∞ < x < ∞.

Now, use the definition of
(

v
n

)
(§3.4) to check the inequality |

(−1/2
n

)
| ≤ 1 for

all n ≥ 0. Hence,

|J0(x)| ≤
∞∑

n=0

∣
∣
∣
∣

(
−1/2

n

)
x2n

(2n)!

∣
∣
∣
∣ ≤

∞∑

n=0

x2n

(2n)!
≤ e|x|, −∞ < x < ∞. (5.2.9)

This shows that the series J0 converges absolutely for all x real. Since J0

is a convergent power series, J0 is a smooth function on R. We wish to use
summation under the integral sign to obtain

∫ ∞

0

e−sxJ0(x) dx =
1√

1 + s2
, s > 1. (5.2.10)

The left side of (5.2.10), by definition, is the Laplace transform of J0. Thus,
(5.2.10) exhibits the Laplace transform of the Bessel function J0. In Exer-
cise 5.2.1, you are asked to derive the Laplace transform of sinx/x.

To obtain (5.2.10), fix s > 1, and set fn(x) = e−sx
(−1/2

n

)
x2n/(2n)!, n ≥ 0.

Then, by (5.2.9), we may apply summation under the integral sign with
g(x) = e−sxex, x > 0, which is positive, continuous, and integrable (since
s > 1). Hence,

∫ ∞

0

e−sxJ0(x) dx =
∞∑

n=0

(
−1/2

n

)
1

(2n)!

∫ ∞

0

e−sxx2ndx.

Inserting the substitution x = t/s, dx = dt/s, and recalling Newton’s gener-
alization of the binomial theorem (§3.4) yields

∫ ∞

0

e−sxJ0(x) dx =
∞∑

n=0

(
−1/2

n

)
1

(2n)!s2n+1

∫ ∞

0

e−tt2ndt

=
∞∑

n=0

(
−1/2

n

)
Γ (2n + 1)
(2n)!s2n+1

=
1
s

∞∑

n=0

(
−1/2

n

)(
1
s2

)n

=
1
s
· 1
√

1 + (1/s)2
=

1√
1 + s2

.

This establishes (5.2.10).
Now, let

F (x) =
∫ ∞

0

sin(xt)
1 + t2

dt, −∞ < x < ∞.

We use the dominated convergence theorem to show that F is continuous
on R. To show this, fix x ∈ R, and let xn → x; we have to show that
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F (xn) → F (x). Set fn(t) = sin(xnt)/(1 + t2), f(t) = sin(xt)/(1 + t2), and
g(t) = 1/(1 + t2). Then, fn(t), n ≥ 1, f(t), and g(t) are continuous, all the
fn(t)’s are dominated by g(t) over (0,∞), fn(t) → f(t) for all t > 0, and g(t)
is integrable over (0,∞) since

∫∞
0

g(t) dt = π/2. Hence, the theorem applies,
and

lim
n↗∞

F (xn) = lim
n↗∞

∫ ∞

0

sin(xnt)
1 + t2

dt

=
∫ ∞

0

lim
n↗∞

sin(xnt)
1 + t2

dt

=
∫ ∞

0

sin(xt)
1 + t2

dt = F (x).

This establishes the continuity of F .
Similarly, one can establish the continuity of the gamma function on (0,∞).

To this end, choose 0 < a < x < b < ∞, and let xn → x with a < xn < b. We
have to show Γ (xn) → Γ (x). Now, fn(t) = e−ttxn−1 satisfies

|fn(t)| ≤
{

e−ttb−1, 1 ≤ t < ∞,

e−tta−1, 0 < t ≤ 1.

If we call the right side of this inequality g(t), we see that fn(t), n ≥ 1, are
all dominated by g(t) over (0,∞). Moreover, g(t) is continuous (especially at
t = 1) and integrable over (0,∞), since

∫∞
0

g(t) dt ≤ Γ (a) + Γ (b). Also, the
functions fn(t), n ≥ 1, and f(t) = e−ttx−1 are continuous, and fn(t) → f(t)
for all t > 0. Thus, the dominated convergence theorem applies. Hence,

lim
n↗∞

Γ (xn) = lim
n↗∞

∫ ∞

0

e−ttxn−1dt

=
∫ ∞

0

lim
n↗∞

e−ttxn−1dt =
∫ ∞

0

e−ttx−1dt = Γ (x).

Hence, Γ is continuous on (a, b). Since 0 < a < b are arbitrary, Γ is continuous
on (0,∞).

Next, we derive Wallis’ product (5.2.2). Begin with integrating by parts to
obtain
∫

sinn x dx = − 1
n

sinn−1 x cos x +
n − 1

n

∫

sinn−2 x dx, n ≥ 2. (5.2.11)

Evaluating at 0 and π/2 yields
∫ π/2

0

sinn x dx =
n − 1

n

∫ π/2

0

sinn−2 x dx, n ≥ 2.

Since
∫ π/2

0
sin0 x dx = π/2 and

∫ π/2

0
sin1 x dx = 1, by the last equation and

induction,
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I2n =
∫ π/2

0

sin2n x dx =
(2n − 1) · (2n − 3) · · · · · 1

2n · (2n − 2) · · · · · 2 · π

2
,

and

I2n+1 =
∫ π/2

0

sin2n+1 x dx =
2n · (2n − 2) · · · · · 2

(2n + 1) · (2n − 1) · · · · · 3 · 1,

for n ≥ 1. Since 0 < sinx < 1 on (0, π/2), the integrals In are decreasing in
n. But, by the formula for In with n odd,

1 ≤ I2n−1

I2n+1
≤ 1 +

1
2n

, n ≥ 1.

Thus,

1 ≤ I2n

I2n+1
≤ I2n−1

I2n+1
≤ 1 +

1
2n

, n ≥ 1,

or I2n/I2n+1 → 1, as n ↗ ∞. Since

I2n

I2n+1
=

(2n + 1) · (2n − 1) · (2n − 1) · · · · · 3 · 3 · 1
2n · 2n · (2n − 2) · · · · · 4 · 2 · 2 · π

2
,

we obtain (5.2.2).
A derivation of Vieta’s formula (5.2.3) starts with the identity

sin θ

2n sin(θ/2n)
= cos

(
θ

2

)

cos
(

θ

22

)

. . . cos
(

θ

2n

)

(5.2.12)

which follows by multiplying both sides by sin(θ/2n) and using the double-
angle formula sin(2x) = 2 sin x cos x repeatedly. Now insert in (5.2.12) θ = π/2,
and use, repeatedly, the formula cos(θ/2) =

√
(1 + cos θ)/2. This yields

2
π
· π/2n+1

sin(π/2n+1)
=

√
1
2
·

√

1
2

+
1
2

√
1
2
·

√
√
√
√1

2
+

1
2

√

1
2

+
1
2

√
1
2
· . . .

. . . ·

√
√
√
√1

2
+

1
2

√

1
2

+
1
2

√
1
2

+ . . .,

where the last (nth) factor involves n square roots. Letting n ↗ ∞ yields
(5.2.3) since sin x/x → 1 as x → 0.

To derive the continued fraction expansion (5.2.4), first, we must under-
stand what it means. To this end, introduce the convergents

cn =
1

1 +
1

2 +
9

2 +
25

2 +
49

. . . 2 +
(2n − 1)2

2

. (5.2.13)
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Then, we take (5.2.4) to mean that the sequence (cn) converges to π/4. To
derive this, it is enough to show that2 cn equals the nth partial sum

sn = 1 − 1
3

+
1
5
− · · · ± 1

2n + 1

of the Leibnitz series (5.2.1) for all n ≥ 1.
Given reals a1, . . . , an, let

s∗n = a1 + a1a2 + a1a2a3 + · · · + a1a2 . . . an.

Then, s∗n = s∗n(a1, . . . , an) is a function of the n variables a1, . . . , an. Later,
we will make a judicious choice of a1, . . . , an. Note that

a1 + a1s
∗
n(a2, . . . , an+1) = s∗n+1(a1, a2, . . . , an+1).

Let f(x, y) = x/(1 + x − y), and let

c∗1(a1) = f(a1, 0) =
a1

1 + a1
,

c∗2(a1, a2) = f(a1, f(a2, 0)) =
a1

1 + a1 −
a2

1 + a2

,

c∗3(a1, a2, a3) = f(a1, f(a2, f(a3, 0))) =
a1

1 + a1 −
a2

1 + a2 −
a3

1 + a3

,

and so on. More systematically, define c∗n(a1, . . . , an) inductively by setting
c∗1(a1) = a1/(1 + a1) and

c∗n+1(a1, a2, . . . , an+1) =
a1

1 + a1 − c∗n(a2, . . . , an+1)
, n ≥ 1.

We claim that: c∗n = s∗n/(1 + s∗n) for all n ≥ 1, and we verify this by
induction. Here c∗n = c∗n(a1, . . . , an) and s∗n = s∗n(a1, . . . , an). Clearly c∗1 =
s∗1/(1+s∗1) since s∗1 = a1. Now, assume c∗n = s∗n/(1+s∗n). Replacing a1, . . . , an

by a2, . . . , an+1 yields

c∗n(a2, . . . , an+1) = s∗n(a2, . . . , an+1)/[1 + s∗n(a2, . . . , an+1)].

Then,

c∗n+1(a1, a2, . . . , an+1) =
a1

1 + a1 − c∗n(a2, . . . , an+1)

2 following Euler.
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=
a1

1 + a1 −
s∗n(a2, . . . , an+1)

1 + s∗n(a2, . . . , an+1)

=
s∗n+1(a1, a2, . . . , an+1)

1 + s∗n+1(a1, a2, . . . , an+1)
.

Thus, c∗n+1 = s∗n+1/(1 + s∗n+1). Hence, by induction, the claim is true.
Now, choose

a1 = −1
3
, a2 = −3

5
, a3 = −5

7
, . . . , an = −2n − 1

2n + 1
.

Then,

s∗n = −1
3

+
1
5
− 1

7
+ · · · ± 1

2n + 1
= sn − 1,

and

c∗n =
− 1/3

1 − 1/3 +
3/5

1 − 3/5 +
5/7

1 − 7/9+
. . .

+
(2n − 1)/(2n + 1)

1 − (2n − 1)/(2n + 1)

. (5.2.14)

Now, multiply the top and bottom of the first fraction by 3, then, the top and
bottom of the second fraction by 5, then, the top and bottom of the third
fraction by 7, and so on. (5.2.14) becomes

c∗n =
− 1

2 +
9

2 +
25

2 +
49

2+
. . .

+
(2n − 1)2

2

,

which, when compared with (5.2.13), yields

cn =
1

1 − c∗n
=

1
1 − s∗n/(1 + s∗n)

=
1

1 − (sn − 1)/sn
= sn, n ≥ 1.

Since sn → π/4, we conclude that cn → π/4. This completes the derivation
of (5.2.4).
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The series (5.2.5) is remarkable not only because of its rapid convergence,
but because it can be used to compute specific digits in the hexadecimal
(base 16, see §1.6) expansion of π, without computing all previous digits (the
Bailey–Borwein–Plouffe paper explains this very clearly; see the references).

To obtain (5.2.5), check that

4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
=

4
√

2 − 4x

x2 −
√

2x + 1
− 4x

1 − x2

using x8 − 1 = (x4 − 1)(x4 + 1) and x4 + 1 = (x2 +
√

2x + 1)(x2 −
√

2x + 1).
Hence (Exercises 3.6.15 and 3.6.16),

∫
4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
dx

= 4 arctan(
√

2x − 1) − 2 log(x2 −
√

2x + 1) + 2 log(1 − x2).

Evaluating at 0 and 1/
√

2 yields

π =
∫ 1/

√
2

0

4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
dx. (5.2.15)

To see the equivalence of (5.2.15) and (5.2.5), note that

∫ 1/
√

2

0

xk−1

1 − x8
dx =

∫ 1/
√

2

0

( ∞∑

n=0

xk−1+8n

)

dx

=
∞∑

n=0

∫ 1/
√

2

0

xk−1+8n dx

=
∞∑

n=0

1
(k + 8n)(

√
2)k+8n

=
1

√
2

k

∞∑

n=0

1
16n(k + 8n)

.

Now, use this with k equal 1, 4, 5, and 6, and insert the resulting four series
in (5.2.15). You obtain (5.2.5).

To derive the dominated convergence theorem, we will need Fatou’s Lemma
which is Exercise 5.1.2. This states that, for any sequence fn : (a, b) → R,
n ≥ 1, of nonnegative functions satisfying fn(x) → f(x) for all x in (a, b), the
lower limit of the sequence

(∫ b

a
fn(x) dx

)
is greater or equal to

∫ b

a
f(x) dx.

Although shelved as an exercise, we caution the reader that Fatou’s Lemma
is so frequently useful that it is rivals the monotone convergence theorem and
the dominated convergence theorem in importance.

Now, we derive the dominated convergence theorem. Let I∗ and I∗ denote
the upper and lower limits of the sequence (In) =

(∫ b

a
fn(x) dx

)
, and let

I =
∫ b

a
f(x) dx. It is enough to show that



188 5 Applications

I ≤ I∗ ≤ I∗ ≤ I, (5.2.16)

since this implies the convergence of (In) to I.
If fn, n ≥ 1, are as given, then, ±fn(x) ≤ g(x). Hence, g(x) − fn(x)

and g(x) + fn(x), n ≥ 1, are nonnegative and converge to g(x) − f(x) and
g(x) + f(x), respectively, for all x in (a, b).

Apply Fatou’s Lemma to the sequence (g + fn). Then, the lower limit of
the sequence
∫ b

a

[g(x) + fn(x)] dx =
∫ b

a

g(x) dx +
∫ b

a

fn(x) dx =
∫ b

a

g(x) dx + In, n ≥ 1,

is greater or equal to
∫ b

a

[g(x) + f(x)] dx =
∫ b

a

g(x) dx + I.

In the last two equations, we are justified in using linearity since the functions
f , g, and fn, n ≥ 1, are all continuous. But the lower limit of the sequence(∫ b

a
g(x) dx + In

)
equals

∫ b

a
g(x) dx + I∗. Subtracting

∫ b

a
g(x) dx, we conclude

that I∗ ≥ I, which is half of (5.2.16).
Now apply Fatou’s Lemma to the sequence (g− fn). Then, the lower limit

of the sequence
∫ b

a

[g(x) − fn(x)] dx =
∫ b

a

g(x) dx −
∫ b

a

fn(x) dx =
∫ b

a

g(x) dx − In, n ≥ 1,

is greater than or equal to
∫ b

a

[g(x) − f(x)] dx =
∫ b

a

g(x) dx − I.

Since the lower limit of (−an) equals minus the upper limit of (an), the lower
limit of the sequence

(∫ b

a
g(x) dx − In

)
equals

∫ b

a
g(x) dx − I∗. Subtracting

∫ b

a
g(x) dx, we conclude that I∗ ≤ I, which is the other half of (5.2.16). ��
Let f : (a, b) × (c, d) → R be a function of two variables (x, t), and fix

a < x < b, c < t < d. We say that f is continuous3 at (x, t) if xn → x and
tn → t imply f(xn, tn) → f(x, t). We say that f is continuous on (a, b)× (c, d)
if f is continuous at every (x, t) in (a, b) × (c, d).

A useful consequence of the dominated convergence theorem is the follow-
ing.

Theorem 5.2.4 (Continuity Under the Integral Sign). Let f : (a, b) ×
(c, d) → R be continuous, and suppose that there is an integrable, positive,
3 In some texts, this is called joint continuity.
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continuous g : (c, d) → R satisfying |f(x, t)| ≤ g(t) for a < x < b and
c < t < d. If F : (a, b) → R is defined by

F (x) =
∫ d

c

f(x, t) dt, a < x < b, (5.2.17)

then, F is continuous.

Note that the domination hypothesis guarantees that F is well defined.
To establish this, fix x in (a, b) and let xn → x. We have to show that
F (xn) → F (x). Let kn(t) = f(xn, t), c < t < d, n ≥ 1, and k(t) = f(x, t),
c < t < d. Then, kn(t) and k(t) are continuous on (c, d) and kn(t) → k(t) for
c < t < d. By the domination hypothesis, |kn(t)| ≤ g(t). Thus, the dominated
convergence theorem applies, and

F (xn) =
∫ d

c

kn(t) dt →
∫ d

c

k(t) dt = F (x). ��

For example, the continuity of the gamma function on (a, b), 0 < a < b < ∞,
follows by choosing, as in the beginning of the section,

g(t) =

{
e−ttb−1, 1 ≤ t < ∞,

e−tta−1, 0 < t ≤ 1.

We also have to check that f(x, t) = e−ttx−1 is continuous on (0,∞)× (0,∞),
so, let xn → x and tn → t. Since e−t is continuous, e−tn → e−t. Since log
is continuous, log tn → log t. Hence, (xn − 1) log tn → (x − 1) log t. Hence,
txn−1
n = exp[(xn − 1) log tn] → exp[(x − 1) log t] = tx−1. Hence, e−tntxn−1

n →
e−ttx−1. This shows that f is continuous. Because continuity is established in
the same manner in all our examples below, we will usually omit this step.

In fact, continuity under the integral sign is nothing but a packaging of
the derivation of continuity of Γ , presented earlier.

Let us go back to the statement of the dominated convergence theorem.
When (a, b) = (0,∞) and the functions (fn), f , and g are piecewise constant,
the dominated convergence theorem reduces to the following.

Theorem 5.2.5 (Dominated Convergence Theorem (for Series). Let
(anj), n ≥ 1, be a sequence of sequences, and let (aj) be a given sequence. Also
suppose that there is a convergent positive series

∑∞
j=1 gj satisfying |anj | ≤ gj

for all j ≥ 1 and n ≥ 1. If

lim
n↗∞

anj = aj , j ≥ 1,

then,

lim
n↗∞

∞∑

j=1

anj =
∞∑

j=1

lim
n↗∞

anj =
∞∑

j=1

aj .
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To see this, for j − 1 < x ≤ j set fn(x) = anj , n ≥ 1, f(x) = aj , and
g(x) = gj , j = 1, 2, . . . , and use Exercise 4.3.6. Although, strictly speaking,
the dominated convergence theorem for integrals is not applicable since, here,
the functions fn, n ≥ 1, f , g are not continuous, if we go back to the
derivation of the dominated convergence theorem, we see that continuity
was used only to assure linearity. But linearity holds (§4.4) just as well
for piecewise continuous functions and, in particular, for piecewise constant
functions. Thus, (this extension of) the dominated convergence theorem for
integrals is applicable, and we get the result for series. Alternatively, instead
of extending the dominated convergence theorem to piecewise continuous
functions, one can simply repeat the derivation of the dominated convergence
theorem with series replacing integrals everywhere. ��

Let us use the dominated convergence theorem for series to show4

lim
x→1

(

1 − 1
2x

+
1
3x

− 1
4x

+ . . .

)

= 1 − 1
2

+
1
3
− 1

4
+ . . . , (5.2.18)

which sums to log 2. For this, by the mean value theorem, (2j−1)−x−(2j)−x =
x(2j − t)−x−1 for some 0 < t < 1. Hence, (2j − 1)−x − (2j)−x ≤ 2(2j − 1)−3/2

when 1/2 < x < 2. Now, let xn → 1 with 1/2 < xn < 2, and set anj =
(2j − 1)−xn − (2j)−xn , aj = (2j − 1)−1 − (2j)−1, gj = 2(2j − 1)−3/2 for j ≥ 1,
n ≥ 1. Then, anj → aj and |anj | ≤ gj for all j ≥ 1. Hence, the theorem applies,
and, since the sequence (xn) is arbitrary, we obtain (5.2.18). Note how, here, we
are not choosing anj as the individual terms but as pairs of terms, producing
an absolutely convergent series out of a conditionally convergent one (cf. the
Dirichlet test (§1.7)).

Just as we used the dominated convergence theorem for integrals to obtain
continuity under the integral sign, we can use the theorem for series to obtain
the following.

Theorem 5.2.6 (Continuity Under the Summation Sign). Let (fn) be
a sequence of continuous functions defined on (a, b), and suppose that there is
a convergent positive series

∑∞
n=1 gn of numbers satisfying |fn(x)| ≤ gn for

n ≥ 1 and a < x < b. If

F (x) =
∞∑

n=1

fn(x), a < x < b,

then, F : (a, b) → R is continuous. ��

For example,

ζ(x) =
∞∑

n=1

1
nx

is continuous on (a,∞) for a > 1, since 1/nx ≤ 1/na for x ≥ a and
∑

gn =∑
1/na converges. Since a > 1 is arbitrary, ζ is continuous on (1,∞).

4 This series converges for x > 0 by the Leibnitz test.
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Exercises

5.2.1. Use
sinx

x
= 1 − x2

3!
+

x4

5!
− . . .

to derive the Laplace transform
∫ ∞

0

e−sx sin x

x
dx = arctan

(
1
s

)

, s > 1.

5.2.2. Suppose that fn, n ≥ 1, f , and g are as in the dominated convergence
theorem. Show that f is integrable over (a, b).

5.2.3. Show that x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x) = 0 for all x.

5.2.4. Derive (5.2.11) by integrating by parts.

5.2.5. Show that sinx/x = cos(x/2) cos(x/4) cos(x/8) . . . .

5.2.6. This is an example where switching the integral and the series changes
the answer. Show that

∞∑

n=0

(−1)n

n!

∫ ∞

0

e−xxn dx �=
∫ ∞

0

e−x

[ ∞∑

n=0

(−x)n

n!

]

dx.

5.2.7. Show that the Fourier transform

∫ ∞

0

sin(sx)
ex − 1

dx =
∞∑

n=1

s

n2 + s2
, −∞ < s < ∞.

(Compare with Exercise 5.1.8.)

5.2.8. Show that
∫ ∞

0

sinh(sx)
ex − 1

dx =
∞∑

n=1

s

n2 − s2
, |s| < 1.

5.2.9. Let (pn) denote the sequence

(4, 0, 0,−2,−1,−1, 0, 0, 4, 0, 0,−2,−1,−1, 0, 0, . . . ),

where the block (4, 0, 0,−2,−1,−1, 0, 0) repeats forever. Show that the Bailey–
Borwein–Plouffe series (5.2.4) can be rewritten

π =
∞∑

n=1

pn

16�n/8� · n,

where �x� denotes the greatest integer ≤ x.
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5.2.10. Show that the νth Bessel function

Jν(x) =
1
π

∫ π

0

cos(νt − x sin t) dt, −∞ < x < ∞,

is continuous. Here, ν is any real.

5.2.11. Show that ψ(x) =
∑∞

n=1 e−n2πx, x > 0, is continuous.

5.2.12. Let fn, f, g : (a, b) → R be as in the dominated convergence theorem,
and suppose that an → a+ and bn → b−. Suppose that we have domination
|fn(x)| ≤ g(x) only on (an, bn), n ≥ 1. Show that

lim
n↗∞

∫ bn

an

fn(x) dx =
∫ b

a

f(x) dx.

5.2.13. Show that the J0 in the text is the same as the Jν in Exercise 5.2.10
with ν = 0.

5.2.14. Use Exercise 4.4.18 to show that Euler’s constant satisfies

γ = lim
n↗∞

[∫ 1

0

1 − (1 − t/n)n

t
dt −

∫ n

1

(1 − t/n)n

t
dt

]

.

Use the dominated convergence theorem to conclude that

γ =
∫ 1

0

1 − e−t

t
dt −

∫ ∞

1

e−t

t
dt.

(For the second part, first, use the mean value theorem to show that 0 ≤
[1 − (1 − t/n)n]/t ≤ 1.)

5.3 Gauss’ Arithmetic-Geometric Mean (AGM)

Given a > b > 0, their arithmetic mean is given by

a′ =
a + b

2
,

and their geometric mean by
b′ =

√
ab.

Since
a′ − b′ =

a + b

2
−
√

ab =
1
2

(√
a −

√
b
)2

> 0, (5.3.1)

these equations transform the pair (a, b), a > b > 0, into a pair (a′, b′),
a′ > b′ > 0. Gauss discovered that iterating this transformation leads to a
limit with striking properties.
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To begin, since a is the larger of a and b and a′ is their arithmetic mean,
a′ < a. Similarly, since b is the smaller of a and b, b′ > b. Thus, b < b′ < a′ < a.

Set a0 = a and b0 = b, and define the iteration

an+1 =
an + bn

2
, (5.3.2)

bn+1 =
√

anbn, n ≥ 0. (5.3.3)

By the previous paragraph, for a > b > 0, this gives a strictly decreasing
sequence (an) and a strictly increasing sequence (bn) with all the a’s greater
than all the b’s. Thus, both sequences converge (Figure 5.3) to finite positive
limits a∗, b∗ with a∗ ≥ b∗ > 0.

0 b b1 b2 a2 a1 a

M(a, b)

Fig. 5.3. The AGM iteration.

Letting n ↗ ∞ in (5.3.2), we see that a∗ = (a∗+b∗)/2 which yields a∗ = b∗.
Thus, both sequences converge to a common limit, the arithmetic-geometric
mean (AGM) of (a,b), which we denote

M(a, b) = lim
n↗∞

an = lim
n↗∞

bn.

If (a′
n), (b′n) are the sequences associated with a′ = ta and b′ = tb, then,

from (5.3.2) and (5.3.3), a′
n = tan, and b′n = tbn, n ≥ 1, t > 0. This implies

that M is homogeneous in (a, b),

M(ta, tb) = t · M(a, b), t > 0.

The convergence of the sequences (an), (bn) to the real M(a, b) is quadratic
in the following sense. The differences an − M(a, b) and M(a, b) − bn are no
more than 2cn+1, where

cn+1 =
an − bn

2
, n ≥ 0. (5.3.4)

By (5.3.1),

0 < cn+1 =
1
4

(√
an−1 −

√
bn−1

)2

=
c2
n

(√
an−1 +

√
bn−1

)2 ≤ 1
4b

c2
n.

Iterating the last inequality yields
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0 < an − bn ≤ 8b

(
a − b

8b

)2n

, n ≥ 1. (5.3.5)

This shows that each additional iteration roughly doubles the number-of-
decimal-place agreement, at least if (a − b)/8b < 1. For a general pair (a, b),
eventually, (aN − bN )/8bN < 1. After this point, we have the rapid conver-
gence (5.3.5). In (5.3.18) below, we improve (5.3.5) from an inequality to an
asymptotic equality. In Exercise 5.7.5, we further improve this to an actual
equality.

For future reference note that

a2
n = b2

n + c2
n, n ≥ 1.

The following remarkable formula is due to Gauss.

Theorem 5.3.1. For a > b > 0,

1
M(a, b)

=
2
π

∫ π/2

0

dθ
√

a2 cos2 θ + b2 sin2 θ
.

The proof of this is straightforward, once one knows the answer. Gauss
was initially guided to this formula by noting that, for (a, b) = (1, 1/

√
2), both

sides agreed to eleven decimal places. We compute M(1, 1/
√

2) explicitly in
the next section (see (5.4.5)).

To derive the formula, call the right side I(a, b). Note that, if a = b = m,
then, I(a, b) = I(m,m) = 1/m. The main step is to show that

I(a, b) = I

(
a + b

2
,
√

ab

)

. (5.3.6)

To see this, substitute t = g(θ) = b tan θ in I(a, b). This maps (0, π/2) to
(0,∞). Since dt = g′(θ)dθ = b sec2 θdθ = (b + b tan2 θ)dθ, dθ = bdt/(b2 + t2).
Also

a2 cos2 θ + b2 sin2 θ = (a2 + t2) cos2 θ =
a2 + t2

1 + tan2 θ
= b2 · a2 + t2

b2 + t2
.

Plugging into I(a, b), we obtain the alternate formula

I(a, b) =
2
π

∫ ∞

0

dt
√

(a2 + t2)(b2 + t2)
. (5.3.7)

Now substitute u = g(t) = (t − ab/t)/2, and let a′ = (a + b)/2, b′ =
√

ab.
This substitution takes (0,∞) to (−∞,∞), and g′(t) = (1 + ab/t2)/2 =
(t2 + b′2)/2t2. Thus,

du =
(t2 + b′2) dt

2t2
.
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Now,

b′
2 + u2 = ab +

1
4

(

t − ab

t

)2

=
1
4

(

t +
ab

t

)2

=

(
t2 + b′2

)2

4t2
,

so,
du

√
b′2 + u2

=
dt

t
. (5.3.8)

Also,

a′2 + u2 =
(

a + b

2

)2

+
1
4

(

t − ab

t

)2

=
1
4

(

a2 + b2 + t2 +
a2b2

t2

)

=
1

4t2
(
a2 + t2

) (
b2 + t2

)
.

So,
1

2
√

a′2 + u2
=

t
√

(a2 + t2)(b2 + t2)
. (5.3.9)

Multiplying (5.3.8) and (5.3.9),

I(a, b) =
2
π

∫ ∞

0

dt
√

(a2 + t2)(b2 + t2)

=
2
π

∫ ∞

−∞

du

2
√

(a′2 + u2)(b′2 + u2)

=
2
π

∫ ∞

0

du
√

(a′2 + u2)(b′2 + u2)
= I(a′, b′),

which is (5.3.6). Iterating (5.3.6), we obtain I(a, b) = I(an, bn) for all n ≥
1. Now, let m = M(a, b). Since I(a, b) is a continuous function of (a, b)
(Exercise 5.3.1) and an → m, bn → m, passing to the limit,

I(a, b) = lim
n↗∞

I(an, bn) = I(m,m).

But I(m,m) = 1/m, hence, the result. ��
Next, we look at the behavior of M(1, x), as x → 0+. When a0 = 1 and

b0 = 0, the arithmetic-geometric iteration yields an = 2−n and bn = 0 for
all n ≥ 1. Hence, M(1, 0) = 0. This leads us to believe that M(1, x) → 0, as
x → 0+, or, what is the same, 1/M(1, x) → ∞, as x → 0+. Exactly at what
speed this happens leads us to another formula for π.
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Theorem 5.3.2.

lim
x→0+

[
π/2

M(1, x)
− log

(
4
x

)]

= 0. (5.3.10)

To derive this, from (5.3.7),

π/2
M(1, x)

=
∫ ∞

0

dt
√

(1 + t2)(x2 + t2)
. (5.3.11)

By Exercise 5.3.4, this equals

π/2
M(1, x)

= 2
∫ 1/

√
x

0

dt
√

(1 + t2)(1 + (xt)2)
. (5.3.12)

Now call the right side of (5.3.12) I(x). Thus, the result will follow if we show
that

lim
x→0+

[

I(x) − log
(

4
x

)]

= 0. (5.3.13)

To derive (5.3.13), note that

J(x) = 2
∫ 1/

√
x

0

dt√
1 + t2

= 2 log
(
t +

√
1 + t2

)∣
∣
∣
1/

√
x

0

= 2 log
(
1 +

√
x + 1

)
+ log

(
1
x

)

= 2 log
(

1
2

+
1
2
√

x + 1
)

+ log
(

4
x

)

and, so, log(4/x) − J(x) → 0 as x → 0+. Thus, it is enough to show that

lim
x→0+

[I(x) − J(x)] = 0. (5.3.14)

But, for xt > 0,

0 ≤ 1 − 1
√

1 + (xt)2
≤ 1 − 1

1 + xt
=

xt

1 + xt
≤ xt.

So,

0 ≤ J(x) − I(x) = 2
∫ 1/

√
x

0

1√
1 + t2

[

1 − 1
√

1 + (xt)2

]

dt

≤ 2
∫ 1/

√
x

0

xt√
1 + t2

dt

= 2x
√

1 + t2
∣
∣
∣
1/

√
x

0
= 2

√
x(1 + x) − 2x,
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which clearly goes to zero as x → 0+. ��
Our next topic is the functional equation. First and foremost, since the

AGM limit starting from (a0, b0) is the same as that starting from (a1, b1),

M(a, b) = M

(
a + b

2
,
√

ab

)

.

Below, given 0 < x < 1 we let x′ =
√

1 − x2 be the complementary variable.
For example, (x′)′ = x and k = 2

√
x/(1+x) implies k′ = (1−x)/(1+x) since

(
2
√

x

1 + x

)2

+
(

1 − x

1 + x

)2

= 1.

Also, with an, bn, cn, n ≥ 1, as above, (bn/an)′ = cn/an. The functional
equation we are after is best expressed in terms of the function

Q(x) =
M(1, x)
M(1, x′)

, 0 < x < 1.

Note that Q(x′) = 1/Q(x).

Theorem 5.3.3 (AGM Functional Equation).

Q(x) = 2Q
(

1 − x′

1 + x′

)

, 0 < x < 1. (5.3.15)

To see this, note that M(1 + x′, 1 − x′) = M(1, x). So,

M(1, x) = M(1 + x′, 1 − x′) = (1 + x′)M
(

1,
1 − x′

1 + x′

)

. (5.3.16)

Here, we used homogeneity of M . On the other hand,

M(1, x′) = M
[
(1 + x′)/2,

√
x′
]

=
(1 + x′)

2
M

(

1,
2
√

x′

1 + x′

)

=
(1 + x′)

2
M

[

1,

(
1 − x′

1 + x′

)′]

. (5.3.17)

Here, again, we used homogeneity of M . Dividing (5.3.16) by (5.3.17), the
result follows. ��

If (an) and (bn) are positive sequences, we say that (an) and (bn) are
asymptotically equal, and we write an ∼ bn, as n ↗ ∞, if an/bn → 1, as n ↗ ∞.
Note that (an) and (bn) are asymptotically equal iff log(an) − log(bn) → 0.
Now, we combine the last two results to obtain the following improvement of
(5.3.5).
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Theorem 5.3.4. Let a > b > 0, and let an, bn, n ≥ 1, be as in (5.3.2),(5.3.3).
Then,

an − bn ∼ 8M(a, b) · q2n

, n ↗ ∞, (5.3.18)

where q = e−πQ(b/a).

To derive this, use (5.3.4) and an → M(a, b) to check that (5.3.18) is
equivalent to

cn

4an
∼
(
e−πQ(b/a)/2

)2n

, n ↗ ∞. (5.3.19)

Now, let xn = cn/an. Then, xn → 0, as n ↗ ∞. By taking the log of (5.3.19),
it is enough to show that

log
(

4
xn

)

− 2n π

2
Q

(
b

a

)

→ 0, n ↗ ∞. (5.3.20)

By (5.3.10), (5.3.20) is implied by

1
M(1, xn)

− 2nQ

(
b

a

)

→ 0, n ↗ ∞. (5.3.21)

By Exercise 5.1.6, (5.3.21) is implied by

1
Q(xn)

− 2nQ

(
b

a

)

→ 0, n ↗ ∞. (5.3.22)

In fact, we will show that the left side of (5.3.22) is zero for all n ≥ 1. To this
end, since cn/an = (bn/an)′,

cn+1

an+1
=

an − bn

an + bn

=
1 − (bn/an)
1 + (bn/an)

=
1 − (cn/an)′

1 + (cn/an)′
.

Hence, by the functional equation,

Q (cn+1/an+1) = Q

(
1 − (cn/an)′

1 + (cn/an)′

)

=
1
2
Q (cn/an) .

Iterating this down to n = 1, we obtain

Q(cn/an) = 2−1Q(cn−1/an−1) = 2−2Q(cn−2/an−2) = . . .

. . . = 2−(n−1)Q(c1/a1) = 2−nQ((b/a)′) = 2−n/Q(b/a), n ≥ 1.

This shows that 1/Q(xn) = 2nQ(b/a). ��
Dividing by 2n in (5.3.20), we obtain
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lim
n↗∞

2−n log
(

an

cn

)

=
π

2
Q

(
b

a

)

, (5.3.23)

which we will need in §5.7. Note that we have discarded the 4 since 2−n log 4 →
0. In the exercises below, the AGM is generalized from two variables (a, b) to
d variables (x1, . . . , xd).

Exercises

5.3.1. Use the dominated convergence theorem to show that an → a and
bn → b, a > b > 0, implies I(an, bn) → I(a, b).

5.3.2. Show that

1
M(1 + x, 1 − x)

=
2
π

∫ π/2

0

dθ
√

1 − x2 sin2 θ
, 0 < x < 1.

5.3.3. Show that

1
M(1 + x, 1 − x)

=
∞∑

n=0

(
2n

n

)2
x2n

16n
, 0 < x < 1,

by using the binomial theorem to expand the square root and integrating term
by term.

5.3.4. Show that

1
M(1, x)

=
4
π

∫ √
x

0

dt
√

(1 + t2)(x2 + t2)
=

4
π

∫ 1/
√

x

0

dt
√

(1 + (xt)2)(1 + t2)
.

(Break (5.3.11) into
∫√

x

0
+
∫∞√

x
, and substitute t = x/s in the second piece.)

5.3.5. With x′ =
√

1 − x2, show that M(1 + x, 1 − x) = M((1 + x′)/2,
√

x′).

5.3.6. Show that
∣
∣
∣
∣

1
M(1, x)

− 1
Q(x)

∣
∣
∣
∣ ≤ x, 0 < x < 1.

5.3.7. Show that

Q(x) =
1
2
Q

(
2
√

x

1 + x

)

, 0 < x < 1.

5.3.8. Show that M(1, ·) : (0, 1) → (0, 1) and Q : (0, 1) → (0,∞) are strictly
increasing, continuous bijections.

5.3.9. Show that for each a > 1, there exists a unique 1 > b = f(a) > 0, such
that M(a, b) = 1.
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5.3.10. With f as in the previous Exercise, use (5.3.10) to show

f(a) ∼ 4ae−πa/2, a → ∞.

(Let x = b/a = f(a)/a and take logs of both sides.)

5.3.11. Given reals a1, . . . , ad, let p1, . . . , pd be given by

(x + a1) (x + a2) . . . (x + ad) = xd +
(

d

1

)

p1x
d−1 + · · · +

(
d

d − 1

)

pd−1x + pd.

Then p1, . . . , pd are polynomials in a1, . . . , ad, the so-called elementary sym-
metric polynomials.5 Show that pk(1, 1, . . . , 1) = 1, 1 ≤ k ≤ d, p1 is the
arithmetic mean (a1 + · · · + ad)/d, and pd is the product a1a2 . . . ad. For
a1, . . . , ad positive, conclude (Exercise 3.3.23) the arithmetic and geometric
mean inequality

a1 + · · · + ad

d
≥ (a1a2 . . . ad)

1/d
,

with equality iff all the aj ’s are equal.

5.3.12. Given a1 ≥ a2 ≥ · · · ≥ ad > 0, let a′
1 = p1(a1, . . . , ad) be their

arithmetic mean and let a′
d = pd(a1, . . . , ad)1/d be their geometric mean. Use

Exercise 3.2.10 to show
(

a′
1

a′
d

− 1
)

≤
(

d − 1
d

)2 (
a1

ad
− 1

)

.

5.3.13. Given a1 ≥ a2 ≥ · · · ≥ ad > 0, let

(a′
1, a

′
2, . . . , a

′
d) = G(a1, a2, . . . , ad) = (p1, p

1/2
2 , . . . , p

1/d
d ),

(a′′
1 , a′′

2 , . . . , a′′
d) = G2(a1, a2, . . . , ad) = G(a′

1, a
′
2, . . . , a

′
d),

and so on. This defines a sequence

(a(n)
1 , a

(n)
2 , . . . , a

(n)
d ) = Gn(a1, a2, . . . , ad), n ≥ 0.

Show that (a(n)
1 ) is decreasing, (a(n)

d ) is increasing, and

a
(n)
1

a
(n)
d

− 1 ≤
(

d − 1
d

)2n (
a1

ad
− 1

)

, n ≥ 0.

Conclude that there is a positive real m such that a
(n)
j → m as n → ∞, for all

1 ≤ j ≤ d (Exercise 3.3.23 and Exercise 5.3.12). If we set m = M(a1, . . . , ad),
show that

M(a1, a2, . . . , ad) = M
(
p1, p

1/2
2 , . . . , p

1/d
d

)
.

5 More accurately, the normalized elementary symmetric polynomials.
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5.4 The Gaussian Integral

In this section, we derive the Gaussian integral
∫ ∞

−∞
e−x2/2 dx =

√
2π. (5.4.1)

This formula is remarkable because the primitive of e−x2/2 cannot be
expressed in terms of the elementary functions (i.e., the functions studied
in Chapter 3). Nevertheless the area (Figure 5.4) of the (total) subgraph of
e−x2/2 is explicitly computable. Because of (5.4.1), the Gaussian function
g(x) = e−x2/2/

√
2π has total area under its graph equal to 1.

Fig. 5.4. The Gaussian function.

The usual derivation of (5.4.1) involves changing variables from cartesian
coordinates (x, y) to polar coordinates (r, θ) (§3.5) in a double integral. How
to do this is a two-variable result. Here, we give an elementary derivation that
uses only the one-variable material we have studied so far. To derive (5.4.1),
we will, however, need to know how to “differentiate under an integral sign.”

To explain this, consider the integral

F (x) =
∫ d

c

f(x, t) dt, a < x < b, (5.4.2)

where f(x, t) = 3(2x + t)2 and a < b, c < d are reals. We wish to differentiate
F . There are two ways we can do this. The first method is to evaluate the
integral obtaining F (x) = (2x + d)3 − (2x + c)3 and, then, to differentiate to
get F ′(x) = 6(2x + d)2 − 6(2x + c)2. The second method is to differentiate
the integrand f(x, t) = 3(2x+ t)2 with respect to x, obtaining 12(2x+ t) and,
then, to evaluate the integral

∫ d

c
12(2x+t) dt, obtaining 6(2x+d)2−6(2x+c)2.

Since both methods yield the same result, for f(x, t) = 3(2x+ t)2, we conclude
that

F ′(x) =
∫ d

c

∂f

∂x
(x, t) dt, a < x < b, (5.4.3)

where the partial derivative ∂f/∂x(x, t) is the derivative with respect to x,

∂f

∂x
(x, t) = lim

x′→x

f(x′, t) − f(x, t)
x′ − x

, a < x < b.

It turns out that (5.4.2) implies (5.4.3) in a wide variety of cases.
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Theorem 5.4.1 (Differentiation Under the Integral Sign). Let f :
(a, b)×(c, d) → R be a continuous function, such that ∂f/∂x : (a, b)×(c, d) → R
exists and is continuous. Suppose that there is an integrable positive continuous
function g : (c, d) → R, such that

|f(x, t)| +
∣
∣
∣
∣
∂f

∂x
(x, t)

∣
∣
∣
∣ ≤ g(t), a < x < b, c < t < d.

If F : (a, b) → R is defined by (5.4.2), then, F is differentiable on (a, b),
F ′ : (a, b) → R is continuous, and (5.4.3) holds.

Note that the domination hypothesis guarantees that F (x) and the right
side of (5.4.3) are well defined. Let us apply the theorem right away to obtain
(5.4.1).

To this end, let I =
∫∞
0

e−s2/2 ds be half the integral in (5.4.1). Since
(s − 1)2 ≥ 0, −s2/2 ≤ (1/2) − s. Hence, I ≤

∫∞
0

e(1/2)−s ds =
√

e. Thus, I is
finite and

I2 = I

∫ ∞

0

e−t2/2 dt =
∫ ∞

0

e−t2/2I dt. (5.4.4)

Now, set

f(x, t) = e−t2/2

∫ t·tan x

0

e−s2/2 ds, 0 < t < ∞, 0 < x < π/2.

Since tan(π/2−) = ∞, by continuity at the endpoints, f(π/2−, t) = e−t2/2I
for all t > 0. Now, let

F (x) =
∫ ∞

0

f(x, t) dt, 0 < x < π/2.

Since f(x, t) ≤ Ie−t2/2 and g(t) = Ie−t2/2 is integrable by (5.4.4), by the
dominated convergence theorem, we obtain

F (π/2−) = lim
x→π/2−

∫ ∞

0

f(x, t) dt =
∫ ∞

0

f(π/2−, t) dt = I2.

Thus, to evaluate I2, we need to compute F (x). Although F (x) is not directly
computable from its definition, it turns out that F ′(x) is, using differentiation
under the integral sign.

To motivate where the formula for F comes from, note that the formula for
I2 can be thought of as a double integral over the first quadrant 0 < s < ∞,
0 < t < ∞, in the st-plane, and the formula for F (x) can be thought of as
a double integral over the triangular sector 0 < s < t · tan x, 0 < t < ∞, in
the st-plane. As the angle x opens up to π/2, the triangular sector fills the
quadrant. Of course, we do not actually use double integrals in the derivation
of (5.4.1).
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Now, by the fundamental theorem and the chain rule,

∂f

∂x
(x, t) = e−t2(1+tan2 x)/2t sec2 x = e−t2 sec2 x/2t sec2 x.

We verify the hypotheses of the theorem on (0, b)× (0,∞), where 0 < b < π/2
is fixed. Note, first, that f(x, t) and ∂f/∂x are continuous in (x, t). Moreover,
0 ≤ f(x, t) ≤ Ie−t2/2 and 0 ≤ ∂f/∂x(x, t) ≤ e−t2/2t sec2 b (sec2 x ≥ 1 is
increasing on (0, π/2)). So, we may take g(t) = e−t2/2(I + t sec2 b), which is
integrable.6 This verifies all the hypotheses. Applying the theorem yields

F ′(x) =
∫ ∞

0

e−t2 sec2 x/2t sec2 x dt =
∫ ∞

0

e−u du = 1, 0 < x < b.

Here, we used the substitution u = t2 sec2 x/2, du = t sec2 x dt. Since 0 < b <
π/2 is arbitrary, F ′(x) = 1 is valid on (0, π/2).

Thus, F (x) = x+constant on (0, π/2). To evaluate the constant, note that
f(0+, t) = 0 for all 0 < t < ∞, by continuity at the endpoints. Then, since
f(x, t) ≤ Ie−t2/2, we can apply the dominated convergence theorem to get

F (0+) = lim
x→0+

∫ ∞

0

f(x, t) dt =
∫ ∞

0

f(0+, t) dt = 0.

This shows that F (x) = x, so, F (π/2−) = π/2. Hence, I2 = π/2. Since I is
half the integral in (5.4.1), this derives (5.4.1). ��

Let us apply the theorem to the gamma function

Γ (x) =
∫ ∞

0

e−ttx−1 dt, x > 0.

To this end, fix 0 < a < b < ∞. We show that Γ is differentiable on (a, b).
With f(x, t) = e−ttx−1,

∂f

∂x
(x, t) = e−ttx−1 log t, 0 < t < ∞, 0 < x < ∞.

Then, f and ∂f/∂x are continuous on (a, b)×(0,∞). Since |f |+|∂f/∂x| ≤ g(t)
on (a, b) × (0,∞), where

g(t) =

{
e−tta−1(| log t| + 1), 0 < t ≤ 1,

e−ttb−1(| log t| + 1), 1 ≤ t,

and g is continuous and integrable over (0,∞) (Exercise 5.1.11), the domi-
nation hypothesis of the theorem is verified. Thus, we can apply the theorem
to obtain

Γ ′(x) =
∫ ∞

0

e−ttx−1 log t dt, a < x < b.

6
∫∞
0

g(t) dt = I2 + sec2 b.
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Since 0 < a < b are arbitrary, this shows that Γ is differentiable on (0,∞).
Since this argument can be repeated,

Γ ′′(x) =
∫ ∞

0

e−ttx−1(log t)2 dt, x > 0.

Since this last quantity is positive, we see that Γ is strictly convex on (0,∞)
(§3.3). Differentiating repeatedly we obtain Γ (n)(x) for all n ≥ 1. Hence, the
gamma function is smooth.

In Exercise 5.2.1, the Laplace transform

F (x) =
∫ ∞

0

e−xt sin t

t
dt = arctan

(
1
x

)

is computed for x > 1 by expanding sin t/t in a series. Now, we compute F (x)
for x > 0 by using differentiation under the integral sign. In Exercise 5.4.12,
we need to know this for x > 0; x > 1 is not enough. Note that, to compute
F (x) for x > 0, it is enough to compute F (x) for x > a, where a > 0 is
arbitrarily small.

First, ∂f/∂x = −e−xt sin t, so, f and ∂f/∂x are continuous on (a,∞) ×
(0,∞). Since sin t and sin t/t are bounded by 1, |f(x, t)|+|∂f/∂x| is dominated
by 2e−at on (a,∞)× (0,∞). Applying the theorem and Exercise 4.4.7 yields

F ′(x) = −
∫ ∞

0

e−xt sin t dt = − 1
1 + x2

, x > a.

Now, by the dominated convergence theorem, F (∞) = limx→∞ F (x) = 0. So,

F (x) = F (x) − F (∞) = −
∫ ∞

x

F ′(t) dt

= arctan t|∞x = π/2 − arctan x = arctan
(

1
x

)

, x > a.

Since a > 0 is arbitrarily small, this is what we wanted to show.
Now, we derive the theorem. To this end, fix a < x < b, and let xn → x,

with xn �= x for all n ≥ 1. We have to show that

F (xn) − F (x)
xn − x

→
∫ d

c

∂f

∂x
(x, t) dt.

Let

kn(t) =
f(xn, t) − f(x, t)

xn − x
, c < t < d, n ≥ 1,

and
k(t) =

∂f

∂x
(x, t), c < t < d.

Then, kn(t) and k(t) are continuous on (c, d). By the mean value theorem7

7 x′
n also depends on t.
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kn(t) =
∂f

∂x
(x′

n, t), c < t < d, n ≥ 1,

for some x′
n between xn and x. By the domination hypothesis, we see that

|kn(t)| ≤ g(t). Thus, we can apply the dominated convergence theorem, which
yields

F (xn) − F (x)
xn − x

=
∫ d

c

kn(t) dt →
∫ d

c

k(t) dt =
∫ d

c

∂f

∂x
(x, t) dt.

This establishes (5.4.3). By continuity under the integral sign, (5.4.3) implies
that F ′ is continuous. ��

Now, we compute M
(
1, 1/

√
2
)
.

Theorem 5.4.2.

M

(

1,
1√
2

)

=
Γ (3/4)
Γ (1/4)

√
2π. (5.4.5)

To this end, bring in the beta function8

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1 dt, x > 0, y > 0. (5.4.6)

The next result shows that 1/B(x, y) extends the binomial coefficient
(
x+y

x

)

to nonnatural x and y.

Theorem 5.4.3. For all a > 0 and b > 0,

B(a, b) =
Γ (a)Γ (b)
Γ (a + b)

. (5.4.7)

We derive this following the method used to obtain (5.4.1). First, write

Γ (b)Γ (a) =
∫ ∞

0

Γ (b)e−tta−1 dt (5.4.8)

and

Γ (b)e−tta−1 = e−tta−1

∫ ∞

0

e−ssb−1 ds

=
∫ ∞

0

e−s−tsb−1ta−1 ds

=
∫ ∞

t

e−r(r − t)b−1ta−1 dr, t > 0.

Here, we substituted r = s + t, dr = ds. Now, set h(t, r) = e−r(r − t)b−1ta−1,

8 B(x, y) is finite by (5.4.7).



206 5 Applications

f(x, t) =
∫ ∞

t/x

h(t, r) dr, t > 0, 0 < x < 1,

and
F (x) =

∫ ∞

0

f(x, t) dt, 0 < x < 1.

By continuity at the endpoints (the integrand is nonnegative), f(1−, t) =∫∞
t

h(t, r) dr = e−tta−1Γ (b). Then, (5.4.8) says
∫∞
0

f(1−, t) dt = Γ (a)Γ (b).
Since f(x, t) ≤ f(1−, t) for 0 < x < 1 and f(1−, t) is integrable, the dominated
convergence theorem applies, and we conclude that F (1−) = Γ (a)Γ (b).

Moreover, F (0+) = 0. To see this, note, by continuity at the endpoints
(the integrand is integrable), that we have f(0+, t) = 0 for all t > 0. By the
dominated convergence theorem, again, it follows that F (0+) = 0.

Now, by the fundamental theorem and the chain rule,

∂f

∂x
(x, t) = −e−t/xta−1(t/x − t)b−1

(

− t

x2

)

=
(

t

x

)a+b−1

e−t/xxa−1(1 − x)b−1 · 1
x

. (5.4.9)

hence (0 < x < 1)

∣
∣
∣
∣
∂f

∂x
(x, t)

∣
∣
∣
∣ ≤

e−tta+b−1

x(1 − x)
·
(

1
x
− 1

)b

. (5.4.10)

Fix 0 < ε < 1 and suppose ε ≤ x ≤ 1 − ε. Then the function x(1 − x) is
minimized on ε ≤ x ≤ 1− ε at the endpoints, so its minimum value is ε(1− ε).
The maximum value of the factor ((1/x)− 1)b is attained at x = ε and equals
((1/ε) − 1)b. Hence if we set Cε = ((1/ε) − 1)b/ε(1 − ε), we obtain

∣
∣
∣
∣
∂f

∂x
(x, t)

∣
∣
∣
∣ ≤ Cεe

−tta+b−1, ε < x < 1 − ε, t > 0.

Thus, the domination hypothesis is verified with9 g(t) = f(1−, t)+Cεe
−tta+b−1

on (ε, 1− ε)× (0,∞). Differentiating under the integral sign and substituting
t/x = u, dt/x = du,

F ′(x) =
∫ ∞

0

(
t

x

)a+b−1

e−t/xxa−1(1 − x)b−1 · 1
x

dt

=
∫ ∞

0

ua+b−1e−uxa−1(1 − x)b−1 du = xa−1(1 − x)b−1Γ (a + b),

valid on (ε, 1 − ε). Since ε > 0 is arbitrary, we obtain

9
∫∞
0

g(t) dt = Γ (a)Γ (b) + CεΓ (a + b).
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F ′(x) = xa−1(1 − x)b−1Γ (a + b), 0 < x < 1.

Integrating, we arrive at

Γ (a)Γ (b) = F (1−) − F (0+) =
∫ 1

0

F ′(x) dx

= Γ (a + b)
∫ 1

0

xa−1(1 − x)b−1 dx = Γ (a + b)B(a, b),

which is (5.4.7). ��
To derive (5.4.5), we use (5.4.7) and a sequence of substitutions. From

§5.3,
π/2

M(1, 1/
√

2)
=
∫ π/2

0

dθ
√

1 − 1
2 sin2 θ

.

Substituting sin θ = t, we obtain

π/2
M(1, 1/

√
2)

=
√

2
∫ 1

0

dt
√

(1 − t2)(2 − t2)
.

Now, substitute x2 = t2/(2 − t2) to obtain

π/2
M(1, 1/

√
2)

=
√

2
∫ 1

0

dx√
1 − x4

.

Now, substitute u = x4 to get

π/2
M(1, 1/

√
2)

=
√

2
4

∫ 1

0

u1/4−1(1 − u)1/2−1 du =
√

2
4

B

(
1
4
,
1
2

)

.

Since

B

(
1
4
,
1
2

)

=
Γ (1/4)Γ (1/2)

Γ (3/4)

and (Exercise 5.4.1) Γ (1/2) =
√

π, we obtain (5.4.5). ��
We end the section with an important special case of the theorem. Suppose

that (c, d) = (0,∞) and f(x, t) is piecewise constant in t, i.e., suppose that
f(x, t) = fn(x), a < x < b, n− 1 < t ≤ n, n ≥ 1. Then, the integral in (5.4.2)
reduces to an infinite series. Hence, the theorem takes the following form.

Theorem 5.4.4 (Differentiation Under the Summation Sign). Let fn :
(a, b) → R, n ≥ 1, be a sequence of differentiable functions with f ′

n : (a, b) → R,
n ≥ 1, continuous. Suppose that there is a convergent positive series

∑
gn of

numbers, such that

|fn(x)| + |f ′
n(x)| ≤ gn, a < x < b, n ≥ 1.
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If

F (x) =
∞∑

n=1

fn(x), a < x < b,

then, F is differentiable on (a, b), F ′ : (a, b) → R is continuous, and

F ′(x) =
∞∑

n=1

f ′
n(x), a < x < b.

To derive this, one, of course, applies the dominated convergence theorem
for series instead of the theorem for integrals. ��

Let f : (a, b)×(c, d) → R be a function of two variables (x, y), and suppose
that ∂f/∂x exists. If ∂f/∂x is differentiable with respect to x, we denote its
derivative by

∂

∂x

(
∂f

∂x

)

=
∂2f

∂x2
.

Similarly the derivative of ∂f/∂x with respect to y is denoted ∂2f/∂y∂x, the
derivative of ∂2f/∂y∂x with respect to x is denoted ∂3f/∂x∂y∂x, and so on.
Although we do not discuss this here, it is often, but not always, true that
∂2f/∂x∂y = ∂2f/∂y∂x.

Exercises

5.4.1. Use the substitution x =
√

2t in (5.4.1) to obtain Γ (1/2) =
√

π.
Conclude that (1/2)! =

√
π/2.

5.4.2. Show that the Laplace transform

L(s) =
∫ ∞

−∞
esxe−x2/2 dx, −∞ < s < ∞,

is given by L(s) =
√

2πes2/2. (Complete the square in the exponent, and use
translation invariance.)

5.4.3. Compute L(2n)(0) with L as in the previous Exercise, to obtain
∫ ∞

−∞
e−x2/2x2n dx =

√
2π · (2n)!

2nn!
, n ≥ 0.

(Writing out the power series of L yields L(2n)(0).)

5.4.4. Show that the Fourier transform

F (s) =
∫ ∞

−∞
e−x2/2 cos(sx) dx, −∞ < s < ∞,
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is finite and differentiable on (−∞,∞). Differentiate under the integral sign,
and integrate by parts to show that F ′(s)/F (s) = −s for all s. Integrate this
equation over (0, s), and use F (0) =

√
2π to obtain

F (s) =
√

2πe−s2/2.

5.4.5. Derive the Hecke integral

H(a) =
∫ ∞

0

e−x−a/x dx√
x

=
√

πe−2
√

a, a > 0, (5.4.11)

by differentiating under the integral sign and substituting x = a/t to obtain
H ′(a)/H(a) = −1/

√
a. Integrate this equation over (0, a), and use H(0) =

Γ (1/2) =
√

π to obtain (5.4.11).

5.4.6. Show that
∫ ∞

−∞
e−x2/2q dx =

√
2πq, q > 0.

5.4.7. Let ψ(t) =
∑∞

n=1 e−n2πt, t > 0. Use the integral test (Exercise 4.3.8)
to show that

lim
t→0+

√
t · ψ(t) =

1
2
.

5.4.8. Show that ζ(x) =
∑∞

n=1 1/nx, x > 1, is smooth. (Differentiation under
the summation sign.)

5.4.9. Show that ψ(t) =
∑∞

n=1 e−n2πt, t > 0, is smooth.

5.4.10. Show that the Bessel function Jν (Exercise 5.2.10) is smooth. If ν is
an integer, show that Jν satisfies Bessel’s equation

x2J ′′
ν (x) + xJ ′

ν(x) + (x2 − ν2)Jν(x) = 0, −∞ < x < ∞.

(Differentiation under the integral sign and integration by parts.)

5.4.11. Suppose that f : R → R is nonnegative, superlinear, and continuous,
and let

F (s) =
∫ ∞

−∞
esxe−f(x) dx, −∞ < s < ∞,

denote the Laplace transform of e−f (Exercise 4.3.11). Show that F is
smooth, and compute (log F )′′. Use the Cauchy–Schwarz inequality
(Exercise 4.4.17) to conclude that log F is convex.

5.4.12. Let F (b) =
∫ b

0
sin x/x dx, b > 0. Integrate by parts to show that

∫ b

0

e−sx sin x

x
dx = e−sbF (b) + s

∫ b

0

e−sxF (x) dx, s > 0.
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Let b → ∞, change variables on the right, and let s → 0+ to get

lim
s→0+

∫ ∞

0

e−sx sin x

x
dx = lim

b→∞

∫ b

0

sin x

x
dx.

Conclude that that F (∞) = π/2.

5.5 Stirling’s Approximation of n!

The main purpose of this section is to derive Stirling’s approximation to
n!. If (an) and (bn) are positive sequences, we say that (an) and (bn) are
asymptotically equal, and we write an ∼ bn as n ↗ ∞, if an/bn → 1 as
n ↗ ∞. Note that an ∼ bn as n ↗ ∞ iff log an − log bn → 0 as n ↗ ∞.

Theorem 5.5.1. If x is any real, then,

Γ (x + n) ∼ nx+n−1/2e−n
√

2π, n ↗ ∞. (5.5.1)

In particular, if x = 1, we have Stirling’s approximation

n! ∼ nn+1/2e−n
√

2π, n ↗ ∞.

Note that Γ (x + n) is defined, as soon as n > −x. By taking the log of
both sides, (5.5.1) is equivalent to

lim
n↗∞

log Γ (x + n) −
[(

x + n − 1
2

)

log n − n

]

=
1
2

log(2π).

To derive (5.5.1), recall that

Γ (x + n) =
∫ ∞

0

e−ttx+n−1dt, x > 0. (5.5.2)

Since this integral is the area of the subgraph of e−ttx+n−1 and all we want is
an approximation, not an exact evaluation, of this integral, let us check where
the integrand is maximized, as this will tell us where the greatest contribution
to the area is located. A simple computation shows that the integrand is
maximized at t = x + n − 1, which goes to infinity with n. To get a handle
on this region of maximum area, perform the change of variable t = ns. This
leads to

Γ (x + n) = nx+n

∫ ∞

0

e−nssx+n−1ds = nx+n

∫ ∞

0

enf(s)sx−1 ds, (5.5.3)

where
f(s) = log s − s, s > 0.
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Now the varying part enf(s) of the integrand is maximized at the maximum
of f , which occurs at s = 1, since f(0+) = −∞, f(∞) = −∞. Since the
maximum value of f at s = 1 is −1, the maximum value of the integrand is
roughly enf(1) = e−n. By analogy with sums (Exercise 5.5.1), we expect the
limiting behavior of the integral in (5.5.3) to involve the maximum value of
the integrand. Let us pause in the derivation of Stirling’s formula, and turn
to the study of the limiting behavior of such integrals, in general.

Theorem 5.5.2. Suppose that f : (a, b) → R is continuous and bounded above
on a bounded interval (a, b). Then,

lim
n↗∞

1
n

log

[∫ b

a

enf(x) dx

]

= sup{f(x) : a < x < b}. (5.5.4)

To see this (Figure 5.5), let In denote the integral, and let M = sup{f(x) :
a < x < b}. Then, M is finite since f is bounded above. Given ε > 0, choose
c ∈ (a, b) with f(c) > M − ε, and, by continuity, choose δ > 0, such that
f(x) > f(c) − ε on (c − δ, c + δ). Then, f(x) > M − 2ε on (c − δ, c + δ), and

(b − a)enM ≥ In ≥
∫ c+δ

c−δ

enf(x) dx ≥
∫ c+δ

c−δ

en(M−2ε) dx = 2δen(M−2ε).

Now, take the log of this last inequality, and divide by n to obtain

1
n

log(b − a) + M ≥ 1
n

log(In) ≥ 1
n

log(2δ) + M − 2ε.

Sending n ↗ ∞, the upper and lower limits of the sequence ((1/n) log(In))
lie between M and M − 2ε. Since ε > 0 is arbitrary, (1/n) log(In) → M . ��

ba

M

Fig. 5.5. The global max is what counts.

Although a good start, this result is not quite enough to obtain Stirling’s
approximation. The exact form of the limiting behavior, due to Laplace, is
given by the following.

Theorem 5.5.3 (Laplace’s Theorem). Let f : (a, b) → R be differentiable
and assume f is concave. Suppose that f has a global maximum at c ∈ (a, b)
with f twice differentiable at c and f ′′(c) < 0. Suppose that g : (a, b) → R is
continuous with polynomial growth and g(c) > 0. Then,
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In =
∫ b

a

enf(x)g(x) dx ∼ enf(c)g(c)

√
2π

−nf ′′(c)
, n ↗ ∞. (5.5.5)

By polynomial growth, we mean that |g(x)| ≤ A + B|x|p, a < x < b, for
some constants A, B, p. Before we derive this theorem, let us apply it to obtain
the asymptotic behavior of (5.5.3) to complete the derivation of (5.5.1).

In the case of (5.5.3), f ′(s) = 1/s− 1, and f ′′(s) = −1/s2, so, f is strictly
concave, has a global maximum f(1) = −1 at c = 1, and f ′′(1) = −1 < 0.
Since g(s) = sx−1 has polynomial growth (in s), the integral in (5.5.3) is
asymptotic to e−n

√
2π/n, which yields (5.5.1). ��

Now, we derive Laplace’s theorem. We write In = I−n + I0
n + I+

n , where

I−n =
∫ c−δ

a

enf(x)g(x) dx,

I0
n =

∫ c+δ

c−δ

enf(x)g(x) dx,

I+
n =

∫ b

c+δ

enf(x)g(x) dx.

Since c is a maximum, f ′(c) = 0. Since f ′′(c) exists, by Taylor’s theorem
(§3.4), there is a continuous function h : (a, b) → R satisfying h(c) = f ′′(c),
and

f(x) = f(c) + f ′(c)(x − c) +
1
2
h(x)(x − c)2 = f(c) +

1
2
h(x)(x − c)2. (5.5.6)

If we let µc(δ) denote the modulus of continuity of h at c and let ε = µc(δ), then,
ε → 0 as δ → 0. Thus, we can choose δ > 0, such that h(x) ≤ f ′′(c) + µc(δ) =
f ′′(c) + ε < 0 and g(x) > 0 on (c − δ, c + δ). Now, substituting x = c + t/

√
n

in I0
n, dx = dt/

√
n, and inserting (5.5.6),

I0
n =

∫ δ

−δ

enf(c)+nh(x)(x−c)2/2g(x) dx

=
enf(c)

√
n

∫ δ
√

n

−δ
√

n

eh(c+t/
√

n)t2/2g(c + t/
√

n) dt.

But g(x) is bounded on (c − δ, c + δ). Hence,

eh(c+t/
√

n)t2/2|g(c + t/
√

n)| ≤ Ce(f ′′(c)+ε)t2/2, |t| < δ
√

n,

which is integrable10 over (−∞,∞). Thus, the dominated convergence
theorem applies, and11

10 The integral is C
√

2π/(−f ′′(c) − ε).
11 by Exercise 5.2.12.
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e−nf(c)I0
n

√
n =

∫ δ
√

n

−δ
√

n

eh(c+t/
√

n)t2/2g(c + t/
√

n) dt

→
∫ ∞

−∞
ef ′′(c)t2/2g(c) dt = g(c)

√
2π

−f ′′(c)
,

by Exercise 5.4.6.
We conclude that

I0
n ∼ enf(c)g(c)

√
2π

−nf ′′(c)
. (5.5.7)

To finish the derivation, it is enough to show that In ∼ I0
n as n ↗ ∞.

To derive In ∼ I0
n, it is enough to obtain I+

n /I0
n → 0 and I−n /I0

n → 0, since

In

I0
n

=
I−n
I0
n

+ 1 +
I+
n

I0
n

, n ≥ 1.

To obtain I+
n /I0

n → 0, we use convexity. Since f is concave, −f is convex.
Hence, the graph of −f on (c + δ, b) lies above its tangent line at c + δ
(Exercise 3.3.5). Thus,

f(x) ≤ f(c + δ) + f ′(c + δ)(x − c − δ), a < x < b.

Since f is strictly concave at c, f ′(c + δ) < 0 and f(c + δ) < f(c). Inserting
this in the definition for I+

n and substituting x = t + c + δ,

∣
∣I+

n

∣
∣ ≤ enf(c+δ)

∫ b

c+δ

enf ′(c+δ)(x−c−δ)|g(x)| dx (5.5.8)

≤ enf(c+δ)

∫ b−c−δ

0

enf ′(c+δ)t(A + B|t + c + δ|p) dt (5.5.9)

≤ enf(c+δ)

∫ ∞

0

ef ′(c+δ)t(A + B|t + c + δ|p) dt (5.5.10)

= Cenf(c+δ), (5.5.11)

where C denotes the (finite) integral in (5.5.8). Now, divide this last expression
by the expression in (5.5.7), obtaining

∣
∣
∣
∣
I+
n

I0
n

∣
∣
∣
∣ ≤

Cenf(c+δ)

I0
n

∼ Cenf(c+δ)

enf(c)g(c)
√

2π
−nf ′′(c)

= constant ·
√

n · e−n(f(c)−f(c+δ)),

which goes to zero as n ↗ ∞ since the exponent is negative. Since I−n /I0
n is

similar, this completes the derivation. ��
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Since Stirling’s approximation provides a manageable expression for n!, it
is natural to use it to derive the asymptotics of the binomial coefficient

(
n

k

)

=
n!

k!(n − k)!
, 0 ≤ k ≤ n.

Actually, of more interest is the binomial coefficient divided by 2n, since this
is the probability of obtaining k heads in n tosses of a fair coin.

To this end, suppose 0 < t < 1 and let (kn) be a sequence of naturals
such that kn/n → t as n → ∞. Applying Stirling to n!, kn! = (tnn)!, and
(n − kn)! = ((1 − tn)n)! and simplifying, we obtain the following:

Theorem 5.5.4. Fix 0 < t < 1. If (kn) is a sequence of naturals such that the
ratio kn/n → t, as n ↗ ∞, then the probabilities

(
n
k

)
2−n of tossing k = kn

heads in n tosses satisfy
(

n

k

)

2−n ∼ 1√
2πn

· 1
√

t(1 − t)
· e−nH(t), n ↗ ∞,

where
H(t) = t log(2t) + (1 − t) log[2(1 − t)], 0 < t < 1.��

Because the binomial coefficients are so basic, the function H which
governs their asymptotic decay, must be important. The function H, called
the entropy, controls the rate of decay of the binomial coefficients. Note that
H is convex (Figure 5.6) on (0, 1) and has a global minimum of zero at t = 1/2
with H ′′(1/2) = 4.

H(x)

21/

Fig. 5.6. The entropy H(x).

We end the section with an application of (5.5.1) to the following formula
for the gamma function.

Theorem 5.5.5 (The Duplication Formula). For s > 0,

22s · Γ (s)Γ (s + 1/2)
Γ (2s)

= 2
√

π.

To derive this, let f(s) denote the left side. Then, using Γ (s + 1) = sΓ (s),
check that f is periodic of period 1, i.e., f(s+1) = f(s). Hence, f(s+n) = f(s)
for all n ≥ 1. Now, inserting the asymptotic (5.5.1) (three times) in the
expression for f(s+n) yields f(s+n) ∼ 2

√
π, as n ↗ ∞. Hence, f(s) = 2

√
π,

which is the duplication formula. ��
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Exercises

5.5.1. Show that

lim
n↗∞

(an + bn + cn)1/n = max(a, b, c), a, b, c > 0,

and
lim

n↗∞

1
n

log
(
ena + enb + enc

)
= max(a, b, c), a, b, c ∈ R.

Moreover, if log(an)/n → A, log(bn)/n → B, and log(cn)/n → C, then

lim
n→∞

1
n

log (an + bn + cn) = max(A,B,C).

5.5.2. Use a computer to obtain 100! and its Stirling approximation s. Compute
the relative error |100! − s|/100!.

5.5.3. Show that
(

2n

n

)

2−2n ∼ 1/
√

πn as n ↗ ∞.

5.5.4. Apply Stirling to n!, k!, and (n − k)! to derive the asymptotic for(
n

k

)

2−n given above.

5.5.5. Let 0 < p < 1. Graph

H(t, p) = t log(t/p) + (1 − t) log[(1 − t)/(1 − p)], 0 < t < 1.

5.5.6. Suppose that a flawed coin is such that the probability of obtaining
heads in a single toss is p, where 0 < p < 1. Let 0 < t < 1 and let (kn)
be a sequence of naturals satisfying kn/n → t as n → ∞. Show that the
probabilities

(
n
k

)
pk(1 − p)n−k of obtaining k = kn heads in n tosses satisfy

(
n

k

)

pk(1 − p)n−k ∼ 1√
2πn

· 1
√

t(1 − t)
· e−nH(t,p), n ↗ ∞.

5.5.7. For 0 < q < 1 and 0 < a < b < ∞, let f(q) =
∫ b

a
qx2

dx. Compute

lim
n↗∞

1
n

log f (qn) .

5.5.8. Show that

33s · Γ (s)Γ (s + 1/3)Γ (s + 2/3)
Γ (3s)

is periodic of period 1, hence, is a constant. Determine the constant.
Generalize.
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5.5.9. Let f : R → R be superlinear and continuous. Consider the Laplace
transforms

Ln(y) =
∫ ∞

−∞
exye−nf(x) dx, n ≥ 1.

Show that
lim

n↗∞

1
n

log [Ln(ny)] = g(y),

where g is the Legendre transform (3.3.7) of f . (Break L(ny) into three pieces,
as in Exercise 4.3.11, and use Exercise 5.5.1.)

5.5.10. Differentiate the log of the duplication formula to obtain

Γ ′(1)
Γ (1)

− Γ ′(1/2)
Γ (1/2)

= 2 log 2.

5.5.11. Use the duplication formula to get Γ (1/4)Γ (3/4) = π
√

2. Hence,

M

(

1,
1√
2

)

=
2π3/2

Γ 2(1/4)
.

5.6 Infinite Products

Given a sequence (an), let pn = (1 + a1) (1 + a2) . . . (1 + an) denote the nth
partial product, n ≥ 1. We say that the infinite product

∏∞
n=1 (1 + an) converges

if there is a finite L, such that pn → L. In this case, we write

L =
∞∏

n=1

(1 + an) .

For example, by induction, check that, for n ≥ 1,

(1 + x)
(
1 + x2

) (
1 + x4

)
. . .

(
1 + x2n−1

)
= 1 + x + x2 + x3 + · · · + x2n−1.

If |x| < 1, the sum converges. Hence, the product converges12 to

∞∏

n=0

(
1 + x2n

)
= 1 + x + x2 + x3 + · · · =

1
1 − x

, |x| < 1.

If
∏∞

n=1 (1 + an) converges and L �= 0, then, 1 + an = pn/pn−1 → L/L = 1.
Hence, a necessary condition for convergence, when L �= 0, is an → 0.

12 This identity is simply a reflection of the fact that every natural has a unique
binary expansion (§1.6).
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Theorem 5.6.1. For x �= 0,

sinh(πx)
πx

=
∞∏

n=1

(

1 +
x2

n2

)

. (5.6.1)

To see this, we need the factorization

X2N − 1 =
(
X2 − 1

)
·

N−1∏

n=1

(
X2 − 2X · cos(nπ/N) + 1

)
. (5.6.2)

This factorization, trivial for N = 2, is most easily derived using complex
numbers. However, by replacing X by X2 in (5.6.2) and using the double-angle
formula, one obtains (5.6.2) with 2N replacing N (Exercise 3.5.14). Hence,
by induction, and without recourse to complex numbers, one obtains (5.6.2)
for N = 2, 4, 8, . . . . In fact, this is all we need to derive (5.6.1).

Insert X = a/b in (5.6.2) and multiply through by b2N , obtaining

a2N − b2N =
(
a2 − b2

)
·

N−1∏

n=1

[
a2 − 2ab · cos

(nπ

N

)
+ b2

]
.

Now, because (1 + a/n)n → ea and sinhx = (ex − e−x)/2, it makes sense to
insert

a =
(
1 +

πx

2N

)
, b =

(
1 − πx

2N

)
.

Simplifying and dividing by 2πx, we obtain
(
1 +

πx

2N

)2N

−
(
1 − πx

2N

)2N

2πx

=
1
N

·
N−1∏

n=1

{

2
[
1 − cos

(nπ

N

)]
+

π2x2

2N2

[
1 + cos

(nπ

N

)]}

=
1
N

·
N−1∏

n=1

[

4 sin2
( nπ

2N

)
+

π2x2

N2
cos2

( nπ

2N

)]

, (5.6.3)

where we used the double-angle formula, again. Taking the limit of both sides
as x → 0 using l’Hopital’s rule (§3.2), we obtain

1 =
1
N

·
N−1∏

n=1

[
4 sin2

( nπ

2N

)]
. (5.6.4)

Now divide (5.6.3) by (5.6.4), factor by factor, obtaining
(
1 +

πx

2N

)2N

−
(
1 − πx

2N

)2N

2πx
=

N−1∏

n=1

[

1 +
x2

n2
· f

( nπ

2N

)]

,
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where f(x) = x2 cot2 x. To obtain (5.6.1), we wish to take the limit N ↗ ∞.
But (tan x)′ = sec2 x ≥ 1. So, tan x ≥ x, so, f(x) ≤ 1 on (0, π/2). Thus,

(
1 +

πx

2N

)2N

−
(
1 − πx

2N

)2N

2πx
≤

N−1∏

n=1

(

1 +
x2

n2

)

.

Sending N ↗ ∞ through powers of 2, we obtain

sinh(πx)
πx

=
eπx − e−πx

2πx
≤

∞∏

n=1

(

1 +
x2

n2

)

,

which is half of (5.6.1). On the other hand, for M ≤ N ,

(
1 +

πx

2N

)2N

−
(
1 − πx

2N

)2N

2πx
≥

M−1∏

n=1

[

1 +
x2

n2
· f

( nπ

2N

)]

.

Since limx→0 f(x) = 1, sending N ↗ ∞ through powers of 2 in this last
equation, we obtain

sinh(πx)
πx

≥
M−1∏

n=1

(

1 +
x2

n2

)

.

Now, let M ↗ ∞, obtaining the other half of (5.6.1). ��
To give an example of the power of (5.6.1), take the log of both sides to

get

log
(

sinh(πx)
πx

)

=
∞∑

n=1

log
(

1 +
x2

n2

)

, x �= 0. (5.6.5)

Now, differentiate under the summation sign to obtain

π coth(πx) − 1
x

=
∞∑

n=1

2x

n2 + x2
, x �= 0. (5.6.6)

Here, coth = cosh / sinh is the hyperbolic cotangent. To justify this, note that
log(1 + t) =

∫ t

0
ds/(1 + s) ≤

∫ t

0
ds = t. Hence, log(1 + t) ≤ t for t ≥ 0. Thus,

with fn(x) = log(1 + x2/n2), |fn(x)|+ |f ′
n(x)| ≤ (2b + b2)/n2 = gn on |x| < b,

and
∑

gn < ∞. Thus, (5.6.6) is valid on 0 < |x| < b, hence, on x �= 0. Now,
dividing (5.6.6) by 2x, letting x ↘ 0, and setting t = πx yields13

∞∑

n=1

1
n2

= lim
x↘0

∞∑

n=1

1
n2 + x2

= lim
x↘0

πx coth(πx) − 1
2x2

= π2 · lim
t↘0

t coth t − 1
2t2

.

13 by the monotone convergence theorem for series.
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But this last limit can be evaluated as follows. Since

sinh t

t
= 1 +

t2

3!
+

t4

5!
+ . . . ,

and

cosh t = 1 +
t2

2!
+

t4

4!
+ . . . ,

it follows that

t coth t − 1
2t2

=
1

2t2

(
cosh t

sinh t/t
− 1

)

=
1

2t2

⎛

⎜
⎝

1 +
t2

2!
+

t4

4!
+ . . .

1 +
t2

3!
+

t4

5!
+ . . .

− 1

⎞

⎟
⎠

=
1

2t2
·

(

1 +
t2

2!
+

t4

4!
+

t6

6!
+ . . .

)

−
(

1 +
t2

3!
+

t4

5!
+

t6

7!
+ . . .

)

1 +
t2

3!
+

t4

5!
+ . . .

=
1

2t2
·

t2

3
+

t4

3!5
+

t6

5!7
+ . . .

1 +
t

3!
+

t2

5!
+ . . .

=

1
6

+
t2

60
+

t4

1680
+ . . .

1 +
t

3!
+

t2

5!
+ . . .

.

Now, take the limit, as t ↘ 0, obtaining the following:

Theorem 5.6.2.
π2

6
=

1
12

+
1
22

+
1
32

+ . . . . ��

Recalling the zeta function

ζ(x) =
∞∑

n=1

1
nx

, x > 1,

this result says that ζ(2) = π2/6, a result due to Euler. In fact, Euler used
(5.6.6) to compute ζ(2n) for all n ≥ 1. This computation involves certain
rational numbers first studied by Bernoulli.

The Bernoulli function is defined by

τ(x) =

{ x

1 − e−x
, x �= 0,

1, x = 0.

Clearly, τ is a smooth function on x �= 0. The Bernoulli numbers Bn, n ≥ 0,
are defined by the Bernoulli series
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τ(x) = B0 + B1x +
B2

2!
x2 +

B3

3!
x3 + . . . . (5.6.7)

Since 1 − e−x = x − x2/2! + x3/3! − x4/4! + . . . , (1 − e−x)/x = 1 − x/2! +
x2/3! − x3/4! + . . . . Hence, to obtain the Bn’s, one computes the reciprocal
of this last series, which is obtained by setting the Cauchy product (§1.7)

(

1 − x

2!
+

x2

3!
− x3

4!
+ . . .

)(

B0 + B1x +
B2

2!
x2 +

B3

3!
x3 + . . .

)

= 1.

Multiplying, this leads to B0 = 1 and the recursion formula

Bn−1

(n − 1)!1!
− Bn−2

(n − 2)!2!
+ · · · + (−1)n−1 B0

0!n!
= 0, n ≥ 2. (5.6.8)

Computing, we see that each Bn is a rational number with

B1 =
1
2
, B2 =

1
6
, B4 = − 1

30
,

B6 =
1
42

, B8 = − 1
30

, B10 =
5
66

, . . . .

It turns out (Exercise 5.6.2) that |Bn| ≤ 2nn!. Hence, by the root test,
the Bernoulli series (5.6.7) converges, at least, for |x| < 1/2. In particular, this
shows that τ is smooth near zero. Hence, τ is smooth on R. Let 2πβ > 0 denote
the radius14 of convergence of (5.6.7). Then, (5.6.7) holds for |x| < 2πβ. Since

x

1 − e−x
− x

2
=

x

2
· 1 + e−x

1 − e−x
=

x

2
· ex/2 + e−x/2

ex/2 − e−x/2
=

x

2
coth

(x

2

)
,

subtracting x/2 = B1x from both sides of (5.6.7), we obtain

x

2
coth

(x

2

)
= 1 +

∞∑

n=2

Bn

n!
xn, 0 < |x| < 2πβ.

But (x/2) coth(x/2) is even. Hence, B3 = B5 = B7 = · · · = 0, and

x

2
coth

(x

2

)
− 1 =

∞∑

n=1

B2n

(2n)!
x2n, 0 < |x| < 2πβ.

Now, replacing x by 2π
√

x and dividing by x,

π
√

x coth (π
√

x) − 1
x

=
∞∑

n=1

B2n

(2n)!
(2π)2nxn−1, 0 < x < β2.

Thus, from (5.6.6), we conclude that

14 In fact, below we see β = 1 and the radius is 2π.
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1
2

∞∑

n=1

B2n

(2n)!
(2π)2nxn−1 =

∞∑

n=1

1
n2 + x

, 0 < x < β2.

Since the left side is a power series, we may differentiate it term by term
(§3.4). On the other hand, the right side may15 be differentiated under the
summation sign. Differentiating both sides r − 1 times,

1
2

∞∑

n=r

B2n

(2n)!
(2π)2n · (n − 1)!

(n − r)!
xn−r =

∞∑

n=1

(−1)r−1(r − 1)!
(n2 + x)r

, 0 < x < β2.

Sending x → 0+, the right side becomes (−1)r−1(r − 1)!ζ(2r), whereas the
left side reduces to the first coefficient (that corresponding to n = r). We have
derived the following.

Theorem 5.6.3. For all n ≥ 1,

ζ(2n) =
(−1)n−1

2
· B2n

(2n)!
· (2π)2n. ��

As an immediate consequence, we obtain the radius of convergence of the
Bernoulli series (5.6.7).

Theorem 5.6.4. The radius of convergence of the Bernoulli series (5.6.7)
is 2π.

The derivation is an immediate consequence of the previous theorem, the
root test (§3.4), and the fact ζ(∞) = 1. ��

Above, we saw that relating an infinite series to an infinite product led to
some nice results. In particular, we derived the infinite product for sinhπx/πx,
which we rewrite, now, as

1 +
π2x2

3!
+

π4x4

5!
+ · · · =

∞∏

n=1

(

1 +
x2

n2

)

, x �= 0. (5.6.9)

We wish to derive the analog of this result for the sine function, i.e., we want
to obtain (5.6.9) with −x2 replacing x2.

To this end, consider the following identity

1 + b1x + b2x
2 + · · · =

∞∏

n=1

(1 + anx) , 0 < x < R. (5.6.10)

We seek the relations between (an) and (bn). As a special case, if we suppose
that an = 0 for all n ≥ 3, (5.6.10) reduces to

15 With fn(x) = 1/(n2 +x) and gn = r!/n2, |fn(x)|+ |f ′
n(x)|+ · · ·+ |f (r−1)

n (x)| ≤ gn

and
∑

gn = r!ζ(2).
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1 + b1x + b2x
2 = (1 + a1x) (1 + a2x)

which implies b1 = a1 +a2 and b2 = a1a2. Similarly, if we suppose that an = 0
for all n ≥ 4, (5.6.10) reduces to

1 + b1x + b2x
2 + b3x

3 = (1 + a1x) (1 + a2x) (1 + a3x)

which implies

b1 = a1 + a2 + a3 =
∑

i

ai,

b2 = a1a2 + a1a3 + a2a3 =
∑

i<j

aiaj ,

and
b3 = a1a2a3 =

∑

i<j<k

aiajak.

Theorem 5.6.5. Suppose that (an) and (bn) are positive sequences and the
series in (5.6.10) converges on (−R,R). Suppose also (5.6.10) holds; then,

1 − b1x + b2x
2 − · · · =

∞∏

n=1

(1 − anx) , 0 < x < R. (5.6.11)

We call (5.6.11) the alternating version of (5.6.10). Let us immediately
apply this theorem to derive the infinite product for the sine. Replacing x by√

x in (5.6.9), we obtain

1 +
π2x

3!
+

π4x2

5!
+ · · · =

∞∏

n=1

(
1 +

x

n2

)
, x > 0. (5.6.12)

Now, the alternating version of (5.6.12) is given by

1 − π2x

3!
+

π4x2

5!
− · · · =

∞∏

n=1

(
1 − x

n2

)
, x > 0.

Replacing x by x2 in the last equation leads to

1 − π2x2

3!
+

π4x4

5!
− · · · =

∞∏

n=1

(

1 − x2

n2

)

, x �= 0.

But this last series is the series for sin(πx)/πx.

Theorem 5.6.6. For x �= 0,

sin(πx)
πx

=
∞∏

n=1

(

1 − x2

n2

)

. �� (5.6.13)
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This is the alternating version of (5.6.1).
To derive (5.6.11) from (5.6.10), write the finite version of (5.6.10),

1 + b
(N)
1 x + b

(N)
2 x2 + · · · + b

(N)
N xN =

N∏

n=1

(1 + anx) , (5.6.14)

and let b
(N)
1 , b

(N)
2 , . . . , b

(N)
N , denote the coefficients obtained by expanding the

right side. Then,

b
(N)
1 =

N∑

i=1

ai ↗
∞∑

i=1

ai = b
(∞)
1 ,

as N ↗ ∞,
b
(N)
2 =

∑

1≤i<j≤N

aiaj ↗
∑

1≤i<j<∞
aiaj = b

(∞)
2 ,

as N ↗ ∞, and so on. Here, b
(∞)
1 , b

(∞)
2 , . . . , are defined as the positive infinite

sums
∑

i ai,
∑

i<j aiaj , . . . . We want to show that
(
b
(∞)
n

)
equals the given

sequence (bn). For this, let N ↗ ∞ in (5.6.14). Since x is positive, there is no
problem with the limits (everything is increasing) and we get

1 + b
(∞)
1 x + b

(∞)
2 x2 + · · · =

∞∏

n=1

(1 + anx) , 0 < x < R.

Since the coefficients of a power series are unique (Exercise 3.4.7), this and
(5.6.10) yield bn = b

(∞)
n for n ≥ 1. Hence, b

(N)
n ↗ bn for all n ≥ 1, as N ↗ ∞.

Now, replace x by −x in (5.6.14) to get

1 − b
(N)
1 x + b

(N)
2 x2 − · · · + (−1)Nb

(N)
N xN =

N∏

n=1

(1 − anx) , 0 < x < R.

Clearly, as N ↗ ∞ the right side of this last equation decreases to the right
side of (5.6.11) (an → 0 since

∑
an < ∞ since

∏
(1 + anx) converges). Thus,

to derive the theorem, it is enough to show that
N∑

n=1

(−1)nb(N)
n xn →

∞∑

n=1

(−1)nbnxn, N ↗ ∞.

But, for 0 < x < R,
∣
∣
∣
∣
∣

N∑

n=1

(−1)nb(N)
n xn −

∞∑

n=1

(−1)nbnxn

∣
∣
∣
∣
∣
≤

N∑

n=1

[
bn − b(N)

n

]
xn +

∞∑

n=N+1

bnxn.

Now, the second sum on the right is the tail (§1.6) of a convergent series,
hence, goes to zero, as N ↗ ∞, whereas the first sum on the right goes to
zero by the dominated convergence theorem for series. Indeed, the terms in
the first sum on the right are no greater than gn = bnxn with

∑
gn finite by

assumption. Thus, we arrive at (5.6.11). ��
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Exercises

5.6.1. Compute ζ(4), ζ(6), ζ(8).

5.6.2. Use the recursion (5.6.8) to derive |Bn| ≤ 2nn!, n ≥ 1. Conclude
that the Bernoulli series (5.6.7) converges on (−1/2, 1/2). Also show that the
numbers (B2, B4, B6, . . . ), form an alternating sequence (+,−,+, . . . ).

5.6.3. If (an) is a positive sequence, then,

∞∑

n=1

an ≤
∞∏

n=1

(1 + an) ≤ exp

( ∞∑

n=1

an

)

. (5.6.15)

Conclude that
∑

an < ∞ iff
∏

(1 + an) < ∞.

5.6.4. Use Exercise 5.1.5 (Equation (5.1.3)) to show that

Γ (x) =
e−γx

x

∞∏

n=1

⎡

⎢
⎢
⎣

ex/n

1 +
x

n

⎤

⎥
⎥
⎦ , x > 0,

where γ is Euler’s constant (Exercise 4.4.14). (Use 1+1/2+· · ·+1/n−log n →
γ and nx = ex log n.)

5.6.5. Use Exercise 5.1.5 applied to Γ (x) and Γ (1 − x) to show that

π

Γ (x)Γ (1 − x)
= sin(πx), 0 < x < 1.

5.6.6. Let

B(x) = 1 +
∞∑

n=1

(−1)n B2n

(2n)!
x2n, |x| < 2πβ.

Use Exercise 1.7.8 to show that(x/2) cos(x/2) = B(x) sin(x/2) for |x| < 2πβ.
Conclude that

x

2
cot

(x

2

)
= 1 +

∞∑

n=1

(−1)n B2n

(2n)!
x2n, 0 < |x| < min(2π, 2πβ).

5.6.7. Use Exercise 5.6.6 to conclude that β ≤ 1, i.e., the radius of convergence
of the Bernoulli series (5.6.7) is no more than 2π.

5.6.8. Use (5.6.13) and modify the development leading up to (5.6.6) to obtain

π cot(πx) − 1
x

=
∞∑

n=1

2x

x2 − n2
, 0 < |x| < 1.
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5.6.9. Use Exercise 5.6.6 above and Exercise 3.5.13 to obtain

tan x =
∞∑

n=1

(−1)n−1 B2n

(2n)!
22n(22n − 1)x2n−1, |x| < πβ/2.

5.6.10. Use Exercise 5.6.4, and differentiate under the summation sign to get

d

dx
log Γ (x) =

Γ ′(x)
Γ (x)

= −γ − 1
x

+
∞∑

n=1

(
1
n
− 1

n + x

)

, x > 0.

5.6.11. Use the previous Exercise to show that Γ ′(1) = −γ and Γ ′(2) = 1−γ.
Conclude that the global minimum of Γ (x), x > 0, lies in the interval (1, 2).

5.6.12. Differentiate under the summation sign to obtain the Laplace trans-
form of τ ,

d2

dx2
log Γ (x) =

∫ ∞

0

e−xtτ(t) dt, x > 0.

(Exercise 5.6.10 above and Exercise 5.1.13.)

5.6.13. Use Exercise 5.6.10 to show

lim
x→1−

{

−1
2

Γ ′[(1 − x)/2]
Γ [(1 − x)/2]

+
1

x − 1

}

=
1
2
γ.

5.7 Jacobi’s Theta Functions

The theta function is defined by

θ(s) =
∞∑

−∞
e−n2πs = 1 + 2e−πs + 2e−4πs + 2e−9πs + . . . , s > 0.

This positive sum, over all integers n (positive and negative and zero),
converges for s > 0 since

∞∑

−∞
e−n2πs ≤

∞∑

−∞
e−|n|πs

= 1 + 2
∞∑

n=1

e−nπs = 1 +
2e−πs

1 − e−πs
< ∞.

Recall (Exercise 5.1.9) the function ψ(s) =
∑∞

n=1 e−n2πs. This is related to
θ by θ = 1 + 2ψ. The main result in this section is the following remarkable
identity, which we need in the next section.
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Theorem 5.7.1 (Theta Functional Equation). For all s > 0,

θ (1/s) =
√

sθ(s), s > 0, (5.7.1)

which can be rewritten as
∞∑

−∞
e−n2π/s =

√
s

∞∑

−∞
e−n2πs, s > 0. (5.7.2)

As one indication of the power of (5.7.2), plug in s = .01. Then, the series
for θ(.01) converges slowly (the tenth term is 1/eπ), whereas the series for
θ(100) converges quickly. In fact, the sum θ(100) of the series on the left differs
from its zeroth term 1 by less than 10−100.

In terms of ψ, the functional equation becomes

1 + 2ψ (1/s) =
√

s[1 + 2ψ(s)]. (5.7.3)

To derive (5.7.1), we need to introduce three power series, Jacobi’s theta
functions, and relate them to the arithmetic-geometric mean of §5.3. These
functions’ most striking property, double-periodicity, does not appear unless
one embraces the complex plane. Nevertheless, within the confines of the real
line, we shall be able to get somewhere.

The Jacobi theta functions, defined for |q| < 1, are defined by

θ0(q) =
∞∑

−∞
qn2

= 1 + 2q + 2q4 + 2q9 + . . . ,

θ−(q) =
∞∑

−∞
(−1)nqn2

= 1 − 2q + 2q4 − 2q9 + . . . ,

and

θ+(q) =
∞∑

−∞
q(n+1/2)2 = 2q1/4 + 2q9/4 + 2q25/4 + . . . .

By comparing these series with the geometric series, we see that they all
converge for |q| < 1.

The simplest properties of these functions depend on parity properties of
integers. For example, because n is odd iff n2 is odd, θ0(−q) = θ−(q), since

θ0(−q) =
∞∑

−∞
(−1)n2

qn2
=

∞∑

−∞
(−1)nqn2

= θ−(q).

Similarly, since θ−(q) is the alternating version (§1.7) of θ0(q),

θ0(q) + θ−(q) = 2
∑

n even

qn2
= 2

∞∑

−∞
q(2n)2 = 2

∞∑

−∞

(
q4
)n2

= 2θ0

(
q4
)
. (5.7.4)
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In the remainder of the section, we restrict q to lie in the interval (0, 1). In
this case, θ0(q) ≥ 1, θ−(q) is bounded in absolute value by 1 by the Leibnitz
test, and, hence, θ2

−(q) ≤ θ2
0(q).

For n ≥ 0, let σ(n) be the number of ways of writing n as a sum of
squares, n = i2 + j2, with i, j ∈ Z, where permutations and signs are taken
into account. Thus,

σ(0) = 1 because 0 = 02 + 02,

σ(1) = 4 because 1 = (±1)2 + 02 = 02 + (±1)2,
σ(2) = 4 because 2 = (±1)2 + (±1)2,
σ(3) = 0,
σ(4) = 4 because 4 = (±2)2 + 02 = 02 + (±2)2,
σ(5) = 8 because 5 = (±2)2 + (±1)2 = (±1)2 + (±2)2,
σ(6) = σ(7) = 0,
σ(8) = 4 because 8 = (±2)2 + (±2)2,
σ(9) = 4 because 9 = (±3)2 + 02 = 02 + (±3)2,

σ(10) = 8 because 10 = (±1)2 + (±3)2 = (±3)2 + (±1)2,
etc.

Then,

θ2
0(q) =

( ∞∑

−∞
qn2

)2

=

( ∞∑

−∞
qi2

)( ∞∑

−∞
qj2

)

=
∑

i,j∈Z

qi2+j2
=

∞∑

n=0

⎛

⎝
∑

i2+j2=n

qn

⎞

⎠ =
∞∑

n=0

σ(n)qn (5.7.5)

= 1 + 4q + 4q2 + 4q4 + 8q5 + 4q8 + 4q9 + 8q10 + . . . .

Similarly, since n is even iff n2 is even,

θ2
−(q) =

∞∑

n=0

(−1)nσ(n)qn. (5.7.6)

Now, if n = i2 + j2, then, 2n = (i + j)2 + (i − j)2 = k2 + �2. Conversely, if
2n = k2 + �2, then, n = ((k + �)/2)2 + (k − �)/2)2 = i2 + j2. Thus,

σ(2n) = σ(n), n ≥ 1.

For example, σ(1) = σ(2) = σ(4) = σ(8). Here, we used the fact that k2 +�2 is
even iff k + � is even iff k − � is even. Since the series (5.7.6) is the alternating
version of the series (5.7.5),

θ2
0(q) + θ2

−(q) = 2
∑

n even

σ(n)qn
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= 2
∞∑

n=0

σ(2n)q2n = 2
∞∑

n=0

σ(n)
(
q2
)n

= 2θ2
0

(
q2
)
. (5.7.7)

Now, subtract (5.7.7) from the square of (5.7.4). You obtain

2θ0(q)θ−(q) = [θ0(q) + θ−(q)]2 −
[
θ2
0(q) + θ2

−(q)
]

= 4θ2
0

(
q4
)
− 2θ2

0

(
q2
)

= 2θ2
−
(
q2
)
, (5.7.8)

where the last equality is by (5.7.7) again. Rewriting (5.7.7) and (5.7.8), we
have arrived at the AGM iteration

θ2
0(q) + θ2

−(q)
2

= θ2
0

(
q2
)
,

√
θ2
0(q)θ

2
−(q) = θ2

−
(
q2
)
. (5.7.9)

Setting a0 = θ2
0(q) and b0 = θ2

−(q), let (an), (bn), be the AGM iteration
(5.3.2),(5.3.3). Iterating (5.7.9), we obtain

an = θ2
0

(
q2n

)
,

and
bn = θ2

−

(
q2n

)
,

n ≥ 0. Since θ0(0) = 1 = θ−(0), q2n → 0, and an → M(a0, b0), bn → M(a0, b0),
we arrive at M(a0, b0) = 1 or M

(
θ2
0(q), θ

2
−(q)

)
= 1.

Theorem 5.7.2. Suppose that (a, b) lies in the first quadrant of the ab-plane
with a > 1 > b. Then, (a, b) lies on the AGM curve M(a, b) = 1 iff (a, b) =
(θ2

0(q), θ
2
−(q)) for a unique 0 < q < 1. In particular,

M
(
θ2
0(q), θ

2
−(q)

)
= 1, 0 < q < 1. (5.7.10)

Above we derived (5.7.10). To get the rest, suppose that a > 1 > b > 0 and
M(a, b) = 1. Since θ2

0 : (0, 1) → (1,∞) is a bijection (Exercise 5.7.1), there
is a unique q in (0, 1) satisfying a = θ2

0(q). Then, by (5.7.10), M
[
a, θ2

−(q)
]

=
1 = M(a, b). Since b �→ M(a, b) is strictly increasing, we must have b = θ2

−(q).
��

Now let cn =
√

a2
n − b2

n, n ≥ 0, be given by (5.3.4). We show that

cn = θ2
+

(
q2n

)
, n ≥ 0. (5.7.11)

To this end, compute

θ2
0(q) − θ2

0

(
q2
)

=
∞∑

n=0

σ(n)qn −
∞∑

n=0

σ(2n)q2n
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=
∑

n odd

σ(n)qn

=
∑

i,j∈Z

i2+j2 odd

qi2+j2
.

Now, i2 +j2 is odd iff i+j is odd iff i−j is odd, in which case k = (j + i−1)/2
and � = (j − i− 1)/2 are integers. Solving, since i = k − �, and j = k + � + 1,
the last sum equals

θ2
0(q) − θ2

0

(
q2
)

=
∑

k,
∈Z

q(k−
)2+(k+
+1)2

=
∑

k,
∈Z

(
q2
)(k2+k+1/4)+(
2+
+1/4)

=

[ ∞∑

−∞

(
q2
)k2+k+1/4

]2

= θ2
+

(
q2
)
.

Hence,
θ2
0

(
q2
)

+ θ2
+

(
q2
)

= θ2
0(q). (5.7.12)

Adding (5.7.7) and (5.7.12) leads to

θ2
0

(
q2
)
− θ2

+

(
q2
)

= θ2
− (q) .

Multiplying the last two equations and recalling (5.7.8) leads to

θ4
0

(
q2
)

= θ4
−
(
q2
)

+ θ4
+

(
q2
)
. (5.7.13)

Now replacing q2 by q2n

in (5.7.13) leads to (5.7.11) since a2
n = b2

n + c2
n. This

establishes (5.7.11). ��
From §5.3, we know that cn → 0. Let us compute the rate at which this

happens. It turns out that the decay rate is exponential, in the sense that

lim
n↗∞

1
2n

log(cn) =
1
2

log q. (5.7.14)

To see this, let us denote, for clarity, 2n = N . Then, by (5.7.11),

1
N

log(cn) =
1
N

log
(
θ2
+

(
qN

))

=
2
N

log
(
2qN/4 + 2q9N/4 + 2q25N/4 + . . .

)

=
2
N

[
log 2 + (N/4) log q + log

(
1 + q2N + q6N + . . .

)]
.

Hence, since qN → 0, we obtain (5.7.14). This computation should be compared
with Exercise 5.5.7. Now, (5.3.23) says
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lim
n↗∞

1
2n

log
(

an

cn

)

=
π

2
Q

(
b

a

)

.

Inserting an → θ0(0) = 1 and (5.7.14) into this equation and recalling a =
θ2
0(q), b = θ2

−(q), we obtain

− 1
π

log q = Q

(
θ2
−(q)

θ2
0(q)

)

. (5.7.15)

Here, Q(x) = M(1, x)/M(1, x′). Solving for q, we obtain the following sharp-
ening of the previous theorem.

Theorem 5.7.3. Suppose that (a, b) satisfies M(a, b) = 1, a > 1 > b > 0, and
let q ∈ (0, 1) be such that (a, b) = (θ2

0(q), θ
2
−(q)). Then,

q = e−πQ(b/a). �� (5.7.16)

Now go back and look at (5.3.18). In Exercise 5.7.5, (5.3.18) is improved
to an equality.

Now, let q = e−πs, s > 0, and set θ0(s) = θ0 (e−πs), θ±(s) = θ± (e−πs).
Then, (5.7.15) can be written

s = Q

(
θ2
−(s)

θ2
0(s)

)

=
M

(
1, θ2

−(s)/θ2
0(s)

)

M
(
1, (θ2

−(s)/θ2
0(s))′

) , s > 0. (5.7.17)

Replacing s by 1/s in this last equation and using 1/Q(x) = Q(x′), we obtain

s = Q

((
θ2
−(1/s)

θ2
0(1/s)

)′)

= Q

(
θ2
+(1/s)

θ2
0(1/s)

)

, s > 0.

Here, we use (5.7.13) to show that (θ2
−/θ2

0)
′ = θ2

+/θ2
0. Equating the last two

expressions for s and using the strict monotonicity of Q (Exercise 5.3.8), we
arrive at

θ2
−(s)

θ2
0(s)

=
θ2
+(1/s)

θ2
0(1/s)

, s > 0. (5.7.18)

Now, we can derive the theta functional equation (5.7.1), as follows.

sθ2
0(s) =

sθ2
0(s)

M
(
θ2
0(s), θ

2
−(s)

) [(5.7.10)]

=
s

M
(
1, θ2

−(s)/θ2
0(s)

) [homogeneity]

=
[
M

(
1,
(
θ2
−(s)/θ2

0(s)
)′)]−1

[(5.7.17)]

=
[
M

(
1, θ2

+(s)/θ2
0(s)

)]−1

=
[
M

(
1, θ2

−(1/s)/θ2
0(1/s)

)]−1
[(5.7.18)]
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=
θ2
0(1/s)

M
(
θ2
0(1/s), θ2

−(1/s)
) [homogeneity]

= θ2
0(1/s). [(5.7.10)]

Since θ0(s) = θ(s), this completes the derivation of (5.7.1). �� Combining
(5.7.1) with (5.7.18), we obtain the companion functional equation

√
sθ−

(
e−πs

)
= θ+

(
e−π/s

)
, s > 0. (5.7.19)

Exercises

5.7.1. Show that θ0 and θ+ are strictly increasing functions of (0, 1) onto
(1,∞).

5.7.2. Derive (5.7.19).

5.7.3. Show that θ− is a strictly decreasing function of (0, 1) onto (0, 1). (Use
(5.7.19) to compute θ−(1−).)

5.7.4. Compute σ(n) for n = 11, 12, 13, 14, 15. Show that σ(4n − 1) = 0 for
n ≥ 1.

5.7.5. Let a > b > 0, let (an) and (bn) be the AGM iteration, and let q be as
in (5.7.16). Show that

an − bn = 8M(a, b)q2n ×
(
1 + 2q2n+2

+ q2n+3
+ . . .

)

for n ≥ 0.

5.7.6. Let ψ(t, x) =
∑∞

n=1 e−n2πt cos(nx), t > 0, x ∈ R. Show that16 ψ
satisfies the heat equation

∂ψ

∂t
= π

∂2ψ

∂x2
.

5.8 Riemann’s Zeta Function

In this section, we study the Riemann zeta function

ζ(x) =
∞∑

n=1

1
nx

= 1 +
1
2x

+
1
3x

+ . . . , x > 1,

and we discuss
16 The notation ψ for this function, which occurs in Riemann’s 1859 paper, became

so well known that the physicist Schrödinger, in deriving (1926) his famous
quantum-mechanical analog of the heat equation, denoted the solution of his
equation by ψ.
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• the behavior of ζ near x = 1,
• the extension of the domains of definition of Γ and ζ,
• the functional equation,
• the values of the zeta function at the nonpositive integers,
• the Euler product, and
• primes in arithmetic progressions.

Most of the results in this section are due to Euler. Nevertheless, ζ is
associated with Riemann because, as Riemann showed, the subject really
takes off only after x is allowed to range in the complex plane.

We already know that ζ(x) is smooth for x > 1 (Exercise 5.4.8) and
ζ(1) = ζ(1+) = ∞ (Exercise 5.1.12). We say that f is asymptotically equal to
g as x → a, and we write f(x) ∼ g(x), as x → a, if f(x)/g(x) → 1, as x → a
(compare with an ∼ bn §5.5).

Theorem 5.8.1.
ζ(x) ∼ 1

x − 1
, x → 1 + .

We have to show that (x − 1)ζ(x) → 1 as x → 1+. Multiply ζ(x) by 2−x

to get

2−xζ(x) =
1
2x

+
1
4x

+
1
6x

+ . . . , x > 1. (5.8.1)

Then,
(

1 − 2
2x

)

ζ(x) = 1 − 1
2x

+
1
3x

− 1
4x

+ . . . , x > 1. (5.8.2)

Now, by the Leibnitz test, the series in (5.8.2) converges for x > 0, equals
log 2 at x = 1 (Exercise 3.6.17), and

lim
x→1

(

1 − 1
2x

+
1
3x

− 1
4x

+ . . .

)

= 1 − 1
2

+
1
3
− 1

4
+ . . .

by the dominated convergence theorem for series (see (5.2.18)). On the other
hand, by l’Hopital’s rule,

lim
x→1

1 − 21−x

x − 1
= log 2.

Thus,

lim
x→1+

(x − 1)ζ(x) = lim
x→1+

x − 1
1 − 21−x

·
(

1 − 2
2x

)

ζ(x)

=
1

log 2

(

1 − 1
2

+
1
3
− 1

4
+ . . .

)

= 1. ��

Thus, ζ(x) and 1/(x−1) are asymptotically equal as x → 1+. Nevertheless, it
may be possible that the difference ζ(x) − 1/(x − 1) still goes to infinity. For
example, x2 and x2+x are asymptotically equal as x → ∞ but (x2+x)−x2 →
∞, as x → ∞. In fact, for ζ(x), we show that this does not happen.
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Theorem 5.8.2.

lim
x→1+

[

ζ(x) − 1
x − 1

]

= γ, (5.8.3)

where γ is Euler’s constant.

To see this, use Exercise 5.1.8 and Γ (x) = (x − 1)Γ (x − 1) to get, for
x > 1,

[

ζ(x) − 1
x − 1

]

Γ (x) = ζ(x)Γ (x) − Γ (x − 1)

=
∫ ∞

0

tx−1

et − 1
dt −

∫ ∞

0

e−ttx−2 dt

=
∫ ∞

0

tx−1

(
1

et − 1
− 1

tet

)

dt.

Applying the dominated convergence theorem (Exercise 5.8.1),

lim
x→1+

(

ζ(x) − 1
x − 1

)

Γ (x) =
∫ ∞

0

(
1

et − 1
− 1

tet

)

dt. (5.8.4)

But the integral in (5.8.4) is not easy to evaluate directly, so, we abandon this
approach. Instead, we use the following identity.

Theorem 5.8.3 (Sawtooth Formula). Let f : (1,∞) → R be differentiable,
decreasing, and nonnegative, and suppose that f ′ is continuous. Then,

∞∑

n=1

f(n) =
∫ ∞

1

f(t) dt +
∫ ∞

1

(1 + �t� − t)[−f ′(t)] dt. (5.8.5)

Here �t� is the greatest integer ≤ t, and 0 ≤ 1+ �t�− t ≤ 1 is the sawtooth
function (Figure 2.4 in §2.3). To get (5.8.5), break up the following integrals
of nonnegative functions and integrate by parts:

∫ ∞

1

f(t) dt +
∫ ∞

1

(1 + �t� − t)[−f ′(t)] dt

=
∞∑

n=1

{∫ n+1

n

f(t) dt +
∫ n+1

n

(1 + n − t)[−f ′(t)] dt

}

=
∞∑

n=1

{∫ n+1

n

f(t) dt + (1 + n − t)(−f(t))|n+1
n −

∫ n+1

n

f(t) dt

}

=
∞∑

n=1

f(n). ��

Now, insert f(t) = 1/tx in (5.8.5), and evaluate the integral obtaining
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ζ(x) =
1

x − 1
+ x

∫ ∞

1

1 + �t� − t

tx+1
dt, x > 1. (5.8.6)

We wish to take the limit x → 1+. Since the integrand is dominated by 1/t2

when x > 1, the dominated convergence theorem applies. Hence,

lim
x→1+

[

ζ(x) − 1
x − 1

]

=
∫ ∞

1

1 + �t� − t

t2
dt.

But
∫ ∞

1

1 + �t� − t

t2
dt = lim

N↗∞

N∑

n=1

∫ n+1

n

1 + n − t

t2
dt

= lim
N↗∞

N∑

n=1

(

−n + 1
t

− log t

)∣
∣
∣
∣

n+1

n

= lim
N↗∞

[

1 +
1
2

+ · · · + 1
N

− log(N + 1)
]

= γ.

This completes the derivation of (5.8.3). ��
The series expression for ζ(x) is valid only when x > 1. Below we extend

the domain of ζ to x < 1. To this end, we seek an alternate expression for
ζ. Because the expression that we will find for ζ involves Γ , first, we extend
Γ (x) to x < 0.

Recall (§5.1) that the gamma function is smooth and positive on (0,∞).
Hence, its reciprocal L = 1/Γ is smooth there. Since Γ (x + 1) = xΓ (x),
L(x) = xL(x + 1). But xL(x + 1) is smooth on x > −1. Hence, we can use
this last equation to define L(x) on x > −1 as a smooth function vanishing
at x = 0. Similarly, we can use L(x) = xL(x + 1) = x(x + 1)L(x + 2) to
define L(x) on x > −2 as a smooth function, vanishing at x = 0 and x = −1.
Continuing in this manner, the reciprocal L = 1/Γ of the gamma function
extends to a smooth function on R, vanishing at x = 0,−1,−2, . . . . From this,
it follows that Γ itself extends to a smooth function on R \ {0,−1,−2, . . . }.
Moreover (Exercise 5.8.3),

Γ (x) ∼ (−1)n

n!
· 1
x + n

, x → −n, n ≥ 0. (5.8.7)

To obtain an alternate expression for ζ, start with

ψ(t) =
∞∑

n=1

e−n2πt, t > 0,

use Exercise 5.1.9, and substitute 1/t for t to get, for x > 1,

π−x/2Γ (x/2)ζ(x) =
∫ ∞

0

ψ(t)tx/2−1 dt
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=
∫ 1

0

ψ(t)tx/2−1dt +
∫ ∞

1

ψ(t)tx/2−1 dt

=
∫ ∞

1

[

ψ

(
1
t

)

t−x/2−1 + ψ(t)tx/2−1

]

dt. (5.8.8)

Now, by the theta functional equation (5.7.3),

ψ

(
1
t

)

=
√

t

2
+
√

tψ(t) − 1
2
.

So, (5.8.8) leads to

π−x/2Γ (x/2)ζ(x) =
∫ ∞

1

t−x/2−1

(√
t

2
− 1

2

)

dt

+
∫ ∞

1

ψ(t)
[
t(1−x)/2 + tx/2

] dt

t
.

Evaluating the first integral (recall x > 1), we obtain our alternate expression
for ζ,

π−x/2Γ (x/2)ζ(x) =
1

x(x − 1)
+
∫ ∞

1

ψ(t)
[
t(1−x)/2 + tx/2

] dt

t
, (5.8.9)

valid for x > 1.
Let us analyze (5.8.9). The integral on the right is a smooth function of x

on R (Exercise 5.8.4). Hence, the right side of (5.8.9) is a smooth function
of x �= 0, 1. On the other hand, π−x/2 is smooth and positive, and L(x/2) =
1/Γ (x/2) is smooth on all of R. Thus, (5.8.9) can be used to define ζ(x) as
a smooth function on x �= 0, 1. Moreover, since 1/xΓ (x/2) = 1/2Γ (x/2 + 1),
(5.8.9) can be used to define ζ(x) as a smooth function near x = 0. Now, by
(5.8.7), Γ (x/2)(x + 2n) → 2(−1)n/n! as x → −2n. So, multiplying (5.8.9) by
x + 2n and sending x → −2n yields

(−1)nπn(2/n!) lim
x→−2n

ζ(x) =

{
0 if n > 0,

−1 if n = 0.

Thus, ζ(−2n) = 0 for n > 0 and ζ(0) = −1/2. Now, the zeta function ζ(x) is
defined for all x �= 1. We summarize the results.

Theorem 5.8.4. The zeta function can be defined, for all x �= 1, as a smooth
function. Moreover, ζ(−2n) = 0 for n ≥ 1, and ζ(0) = −1/2. ��

Now the right side of (5.8.9) is unchanged under the substitution x �→
(1 − x). This, immediately, leads to the following.

Theorem 5.8.5 (Zeta Functional Equation). If ξ(x) = π−x/2Γ (x/2)ζ(x),
then

ξ(x) = ξ(1 − x), x �= . . . ,−4,−2, 0, 1, 3, 5, . . . . �� (5.8.10)
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Since we obtained ζ(2n), n ≥ 1, in §5.6, plugging in x = 2n, n ≥ 1, into
(5.8.10) leads us to the following.

Theorem 5.8.6. For all n ≥ 1,

ζ(1 − 2n) = −B2n

2n
.

For example, ζ(−1) = −1/12. We leave the derivation of this as Exer-
cise 5.8.5. �� Now, we know ζ(x) at all nonpositive integers and all positive
even integers. Even though this result is over 200 years old, similar expressions
for ζ(2n + 1), n ≥ 1, have not yet been computed. In particular, very little is
known about ζ(3).

We turn to our last topic, the prime numbers. Before proceeding, the reader
may wish to review the Exercises in §1.3. That there is a connection between
the zeta function and the prime numbers was discovered by Euler in 1737.

Theorem 5.8.7 (Euler Product). For all x > 1,

∞∑

n=1

1
nx

=
∏

p

(

1 − 1
px

)−1

.

Here the product17 is over all primes.

This follows from the fundamental theorem of arithmetic (Exercise 1.3.16).
More specifically, from (5.8.1),

ζ(x)
(

1 − 1
2x

)

= 1 +
1
3x

+
1
5x

+ · · · = 1 +
∑

2�n

1
nx

, x > 1, (5.8.11)

where 2 � n means 2 does not divide n and n > 1. Similarly, subtracting 1/3x

times (5.8.11) from (5.8.11) yields

ζ(x)
(

1 − 1
2x

)(

1 − 1
3x

)

= 1 +
∑

2�n
3�n

1
nx

, x > 1.

Continuing in this manner,

ζ(x)
N∏

n=1

(

1 − 1
pn

x

)

= 1 +
∑

p1,p2,...,pN �n

1
nx

, x > 1, (5.8.12)

where p1, p2, . . . , pN are the first N primes. But p1, p2, . . . , pN � n and n > 1
implies n > N . Hence, the series on the right side of (5.8.12) is no greater
than

∑∞
n=N+1 1/nx, which goes to zero as N ↗ ∞. ��

17 This equality and its derivation are valid whether or not there are infinitely many
primes.
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Euler used his product to establish the infinitude of primes, as follows:
Since (Exercise 5.8.9)

0 < − log(1 − a) ≤ 2a, 0 < a ≤ 1/2, (5.8.13)

it follows that

log ζ(x) =
∑

p

− log
(

1 − 1
px

)

≤ 2
∑

p

1
px

, x > 1. (5.8.14)

Now, as x → 1+, ζ(x) → ∞, hence, log ζ(x) → ∞. On the other hand,∑
p 1/px →

∑
p 1/p, as x ↘ 1, by the monotone convergence theorem. We

have arrived at the following.

Theorem 5.8.8. There are infinitely many primes. In fact, there are enough
of them so that

∑

p

1
p

= ∞. ��

Our last topic is the infinitude of primes in arithmetic progressions. Let
a and b be naturals. An arithmetic progression is a subset of N of the form
aN+ b = {a + b, 2a + b, 3a + b, . . . }. Apart from 2 and 3, every prime is either
in 4N + 1 or 4N + 3. Note that p ∈ aN + b iff a divides p− b, which we write
as a | p − b. Here is Euler’s result on primes in arithmetic progressions.

Theorem 5.8.9. There are infinitely many primes in 4N + 1 and in 4N + 3.
In fact, there are enough of them so that

∑

4|p−1

1
p

= ∞

and ∑

4|p−3

1
p

= ∞.

We proceed by analogy with the preceding derivation. Instead of relating∑
p 1/px to log ζ(x), now, we relate

∑
4|p−1 1/px and

∑
4|p−3 1/px to log L1(x)

and log L3(x), where

L1(x) =
∑

4|n−1

1
nx

, x > 1,

and
L3(x) =

∑

4|n−3

1
nx

, x > 1.

By comparison with ζ(x), the series L1(x) and L3(x) are finite for x > 1. To
make the analogy clearer, we define χ1 : N → R and χ3 : N → R by setting
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χ1(n) =

{
1, n ∈ 4N + 1,

0, otherwise,

and

χ3(n) =

{
1, n ∈ 4N + 3,

0, otherwise.

Then,

L1(x) =
∞∑

n=1

χ1(n)
nx

, L3(x) =
∞∑

n=1

χ3(n)
nx

, x > 1.

Proceeding further, the next step was to obtain an identity of the form

∞∑

n=1

χ(n)
nx

=
∏

p

[

1 − χ(p)
px

]−1

, x > 1. (5.8.15)

Denote the series in (5.8.15) by L(x, χ). Thus, L1(x) = L(x, χ1) and L3(x) =
L(x, χ3). When χ = χ1 or χ = χ3, however, (5.8.15) is false, and for a very
good reason: χ1 and χ3 are not multiplicative.

Theorem 5.8.10. Suppose that χ : N → R is bounded and multiplicative, i.e.,
suppose that χ(mn) = χ(m)χ(n) for all m,n ∈ N. Then, (5.8.15) holds.

The derivation of this is completely analogous to the previous case and
involves inserting factors of χ in (5.8.12). �� Having arrived at this point,
Euler bypassed the failure of (5.8.15) for χ1, χ3 by considering, instead,

χ+ = χ1 + χ3,

and
χ− = χ1 − χ3.

Then, χ+(n) is 1 or 0 according to whether n is odd or even, L(x, χ+) is given
by (5.8.11), χ− is given by

χ−(n) =

⎧
⎪⎨

⎪⎩

1, 4 | n − 1,

−1, 4 | n − 3,

0, n even,

and
L(x, χ−) = 1 − 1

3x
+

1
5x

− 1
7x

+ . . . .

But this is an alternating, hence, convergent series for x > 0 by the Leib-
nitz test, and L(1, χ−) > 0. Moreover (Exercise 5.8.11), by the dominated
convergence theorem,

lim
x→1

L(x, χ−) = L(1, χ−) > 0. (5.8.16)
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Now, the key point is that χ+ and χ− are multiplicative (Exercise 5.8.10),
and, hence, (5.8.15) holds with χ = χ±.

Proceeding, as in (5.8.14), and taking the log of (5.8.15) with χ = χ+, we
obtain

log L(x, χ+) ≤ 2
∑

p

χ+(p)
px

, x > 1.

Since, by (5.8.11), limx→1+ L(x, χ+) = ∞, sending x → 1+, we conclude that

lim
x→1+

∑

p

χ+(p)
px

= ∞. (5.8.17)

Turning to χ−, we claim it is enough to show that
∑

p χ−(p)p−x remains
bounded as x → 1+. Indeed, assuming this claim, we have

∑

4|p−1

1
p

=
∑

p

χ1(p)
p

= lim
x↘1

∑

p

χ1(p)
px

= lim
x↘1

1
2

[
∑

p

χ+(p)
px

+
∑

p

χ−(p)
px

]

= ∞

by the monotone convergence theorem, the claim, and (5.8.17). This is the
first half of the theorem. Similarly,

∑

4|p−3

1
p

=
∑

p

χ3(p)
p

= lim
x↘1

∑

p

χ3(p)
px

= lim
x↘1

1
2

[
∑

p

χ+(p)
px

−
∑

p

χ−(p)
px

]

= ∞.

This is the second half of the theorem.
To complete the derivation, we establish the claim using

|− log(1 − a) − a| ≤ a2, |a| ≤ 1/2, (5.8.18)

which follows from the power series for log (Exercise 5.8.9). Taking the log
of (5.8.15) and using (5.8.18) with a = χ−(p)/px, we obtain

∣
∣
∣
∣
∣
log L(x, χ−) −

∑

p

χ−(p)
px

∣
∣
∣
∣
∣
≤
∑

p

1
p2x

≤
∞∑

n=1

1
n2

, x > 1.



240 5 Applications

By (5.8.16), log L(x, χ−) → log L(1, χ−) and, so, remains bounded as x →
1+. Since, by the last equation,

∑
p χ−(p)p−x differs from log L(x, χ−) by a

bounded quantity, this establishes the claim. ��
One hundred years later (1840), Dirichlet showed18 there are infinitely

many primes in any arithmetic progression aN + b, as long as a and b have
no common factor.

Exercises

5.8.1. Use the dominated convergence theorem to derive (5.8.4). (Exer-
cise 3.4.15.)

5.8.2. Show that

γ =
∫ ∞

0

(
1

et − 1
− 1

tet

)

dt.

5.8.3. Derive (5.8.7).

5.8.4. Dominate ψ by a geometric series to obtain ψ(t) ≤ ce−πt, t ≥ 1, where
c = 1/(1 − e−π). Use this to show that the integral in (5.8.9) is a smooth
function of x in R.

5.8.5. Use (5.8.10) and the values ζ(2n), n ≥ 1, obtained in §5.6, to show that
ζ(1 − 2n) = −B2n/2n, n ≥ 1.

5.8.6. Let I(x) denote the integral in (5.8.6). Show that I(x) is finite, smooth
for x > 0, and satisfies I ′(x) = −(x + 1)I(x + 1). Compute I(2).

5.8.7. Use (5.8.9) to check that (x−1)ζ(x) is smooth and positive on (1−δ, 1+δ)
for δ small enough. Then, differentiate log[(x− 1)ζ(x)] for 1 < x < 1+ δ using
(5.8.6). Conclude that

lim
x→1

[
ζ ′(x)
ζ(x)

+
1

x − 1

]

= γ.

5.8.8. Differentiate the log of (5.8.10) to obtain ζ ′(0) = − 1
2 log(2π). (Use the

previous Exercise, Exercise 5.5.10, and Exercise 5.6.13.)

5.8.9. Derive (5.8.13) and (5.8.18) using the power series for log(1 + a).

5.8.10. Show that χ± : N → R are multiplicative.

5.8.11. Derive (5.8.16) using the dominated convergence theorem. (Group the
terms in pairs, and use the mean value theorem to show that a−x − b−x ≤
x/ax+1, b > a > 0.)

18 By replacing χ± by the characters χ of the cyclic group (Z/aZ)∗.
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5.9 The Euler–Maclaurin Formula

Given a smooth function f : R → R, can we find a smooth function g : R → R
satisfying

f(x + 1) − f(x) =
∫ x+1

x

g(t) dt, x ∈ R? (5.9.1)

By the fundamental theorem, the answer is yes: g = f ′, and g is also smooth.
However, this is not the only solution because g = f ′ + p′ solves (5.9.1) for
any smooth periodic p, i.e., for any smooth p satisfying p(x + 1) = p(x) for all
x ∈ R.

The starting point for the Euler–Maclaurin formula is to ask the same
question but with the left side in (5.9.1) modified. More precisely, given a
smooth function f : R → R, can we find a smooth function g : R → R
satisfying

f(x + 1) =
∫ x+1

x

g(t) dt, x ∈ R? (5.9.2)

Note that g = 1 works when f = 1. We call a g satisfying (5.9.2) an Euler–
Maclaurin derivative of f .

It turns out the answer is yes and (5.9.2) is always solvable. To see this,
let q denote a primitive of g. Then, (5.9.2) becomes f(x) = q(x) − q(x − 1).
Conversely, suppose that

f(x) = q(x) − q(x − 1), x ∈ R, (5.9.3)

for some smooth q. Then, it is easy to check that g = q′ works in (5.9.2). Thus,
given f , (5.9.2) is solvable for some smooth g iff (5.9.3) is solvable for some
smooth q.

In fact, it turns out that (5.9.3) is always solvable. Note, however, that q
solves (5.9.3) iff q + p solves (5.9.3), where p is any periodic smooth function,
i.e., p(x + 1) = p(x), x ∈ R. So, the solution is not unique.

To solve (5.9.3), assume, in addition, that f(x) = 0 for x < −1, and define
q by

q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x), x ≤ 0,

f(x) + f(x − 1), 0 ≤ x ≤ 1,

f(x) + f(x − 1) + f(x − 2), 1 ≤ x ≤ 2,

and so on.

(5.9.4)

Then, q is well defined and smooth on R and (5.9.3) holds (Exercise 5.9.1).
Thus, (5.9.3) is solvable when f vanishes on (−∞,−1). Similarly, (5.9.3) is
solvable when f vanishes on (1,∞) (Exercise 5.9.2).

To obtain the general case, we write f = f+ + f−, where f+ = 0 on
(−∞,−1) and f− = 0 on (1,∞). Then, q = q+ + q− solves (5.9.3) for f if q±
solve (5.9.3) for f±. Thus, to complete the solution of (5.9.3), all we need do
is construct f±.
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Because we require f+, f− to be smooth, it is not immediately clear this
can be done. To this end, we deal, first, with the special case f = 1, i.e., we
construct φ± smooth and satisfying φ+ = 0 on (−∞,−1), φ− = 0 on (1,∞),
and 1 = φ+ + φ− on R.

To construct φ±, let h denote the function in Exercise 3.4.3. Then, h :
R → R is smooth, h = 0 on R− and h > 0 on R+. Set

φ+(x) =
h(1 + x)

h(1 − x) + h(1 + x)
, x ∈ R,

and

φ−(x) =
h(1 − x)

h(1 − x) + h(1 + x)
, x ∈ R.

Since h(1 − x) + h(1 + x) > 0 on all of R, φ± are smooth with φ+ = 0 on
(−∞,−1), φ− = 0 on (1,∞), and φ+ + φ− = 1 on all of R.

Now, for smooth f , we may set f± = fφ±, yielding f = f+ + f− on all of
R. Thus, (5.9.3) is solvable for all smooth f . Hence, (5.9.2) is solvable for all
smooth f .

Theorem 5.9.1. Every smooth f : R → R has a smooth Euler–Maclaurin
derivative g : R → R. ��

Our main interest is to obtain a useful formula for an Euler–Maclaurin
derivative g of f . To explain this, we denote f ′ = Df , f ′′ = D2f , f ′′′ =
D3f , and so on. Then, any polynomial in D makes sense. For example,
D3 + 2D2 − D + 5 is the differential operator that associates the smooth
function f with the smooth function

(D3 + 2D2 − D + 5)f = f ′′′ + 2f ′′ − f ′ + 5f.

More generally, we may consider infinite linear combinations of powers of D.
For example,

etDf(c) =
(

1 + tD +
t2D2

2!
+

t3D3

3!
+ . . .

)

f(c) (5.9.5)

= f(c) + tf ′(c) +
t2

2!
f ′′(c) +

t3

3!
f ′′′(c) + . . . (5.9.6)

may sum to f(c + t), since this is the Taylor series, but, for general smooth f ,
diverges from f(c + t). When f is a polynomial of degree d, (5.9.5) does sum
to f(c + t). Hence, etDf(c) = f(c + t). In fact, in this case, any power series
in D applied to f is another polynomial of degree d, as Dnf = 0 for n > d.
For example, if Bn, n ≥ 0, are the Bernoulli numbers (§5.6), then,

τ(D) = 1 + B1D +
B2

2!
D2 +

B4

4!
D4 + . . . (5.9.7)
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may be applied to any polynomial f(x) of degree d. The result τ(D)f(x),
then, obtained is another polynomial of, at most, the same degree.

If τ(D) is applied to f(x) = eax for a real, we obtain

τ(D)eax = τ(a)eax, (5.9.8)

where τ(a) is the Bernoulli function of §5.6,

τ(a) = 1 + B1a +
B2

2!
a2 +

B4

4!
a4 + . . . .

Thus, (5.9.8) is valid only on the interval of convergence of the power series
for τ(a).

Let c(a) be a power series. To compute the effect of c(D) on a product
eaxf(x), where f is a polynomial, note that

D [eaxx] = axeax + eax = eax(ax + 1)

by the product rule. Repeating this with D2, D3, . . . ,

Dn [eaxx] = eax(anx + nan−1).

Taking linear combinations, we conclude that

c(D) (eaxx) = eax[c(a)x + c′(a)] =
∂

∂a
[c(a)eax] .

Thus, c(D)(eaxx) is well defined for a in the interval of convergence of c(a).
Similarly, one checks that c(D)(eaxxn) is well defined for any n ≥ 1 and a in
the interval of convergence (Exercise 5.9.3) and

c(D) (eaxxn) =
∂n

∂an
[c(a)eax] . (5.9.9)

We call a smooth function elementary if it is a product eaxf(x) of an exponen-
tial eax with a in the interval of convergence of τ(a) and a polynomial f(x).
In particular, any polynomial is elementary. Note that τ(D)f is elementary
whenever f is elementary.

Theorem 5.9.2. Let f be an elementary function. Then τ(D)f is an Euler–
Maclaurin derivative,

f(x + 1) =
∫ x+1

x

τ(D)f(t) dt, x ∈ R. (5.9.10)

To derive (5.9.10), start with f(x) = eax. If a = 0, (5.9.10) is clearly true.
If a �= 0, then, by (5.9.8), (5.9.10) is equivalent to

ea(x+1) =
∫ x+1

x

τ(a)eat dt = τ(a) · ea(x+1) − eax

a
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which is true since τ(a) = a/(1 − e−a). Thus,

ea(x+1) =
∫ x+1

x

τ(a)eat dt, a ∈ R, x ∈ R.

Now, apply ∂n/∂an to both sides of this last equation, differentiate under
the integral sign, and use (5.9.9). You obtain (5.9.10) with f(x) = eaxxn. By
linearity, one obtains (5.9.10) for any elementary function f . ��

Given a < b with a, b ∈ Z, insert x = a, a + 1, a + 2, . . . , b − 1 in (5.9.10),
and sum the resulting equations to get the following.

Theorem 5.9.3 (Euler–Maclaurin). For a < b in Z and any elementary
function f ,

∑

a<n≤b

f(n) =
∫ b

a

τ(D)f(t) dt. �� (5.9.11)

The derivation of this is a triviality. The depth lies in the usefulness of
the result. This arises from the fact that (5.9.11) equates a discrete sum of f
on the left with a continuous sum of a related function τ(D)f on the right.
Indeed, the tension between the discrete and the continuous is at the basis of
many important mathematical phenomena.19

By inserting a = 0, b = ∞, and f(t) = 1/(x + t)2, x fixed, in (5.9.11), one
can derive a sharpening of Stirling’s approximation (§5.5), the Stirling series
for log Γ (x). Since this f is not elementary, here, one obtains a divergent series
τ(D)f . Instead of starting with (5.9.11), however, it will be quicker for us to
derive the Stirling series from the identity (Exercise 5.6.12)

d2

dx2
log Γ (x) =

∫ ∞

0

e−xtτ(t) dt, x > 0. (5.9.12)

But, first, we discuss asymptotic expansions.
Let f and g be defined near x = c. We say that f is big oh of g, as

x → c, and we write f(x) = O(g(x)), as x → c, if the ratio f(x)/g(x) is
bounded for x �= c in some interval about c. If c = ∞, then, we require
that f(x)/g(x) be bounded for x sufficiently large. For example, f(x) ∼ g(x),
as x → c, implies f(x) = O(g(x)) and g(x) = O(f(x)), as x → c. We
write f(x) = g(x) + O(h(x)) to mean f(x) − g(x) = O(h(x)). Note that
f(x) = O(h(x)) and g(x) = O(h(x)) imply f(x) + g(x) = O(h(x)) or, what is
the same, O(h(x)) + O(h(x)) = O(h(x)).

We say that
f(x) ≈ a0 + a1x + a2x

2 + . . . , (5.9.13)

is an asymptotic expansion of f at zero if

f(x) = a0 + a1x + · · · + anxn + O(xn+1), x → 0, (5.9.14)

19 Is light composed of particles or waves?
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for all n ≥ 0. Here, there is no assumption regarding the convergence of the
series in (5.9.13). Although the Taylor series of a smooth function may diverge,
we have the following.

Theorem 5.9.4. If f is smooth in an interval about 0, then,

f(x) ≈ f(0) + f ′(0)x +
1
2!

f ′′(0)x2 +
1
3!

f ′′′(0)x3 +
1
4!

f (4)(0)x4 + . . .

is an asymptotic expansion at zero.

This follows from Taylor’s theorem. If an = f (n)(0)/n!, then, from §3.4,

f(x) = a0 + a1x + a2x
2 + · · · + anxn +

1
(n + 1)!

hn+1(x)xn+1,

with hn+1 continuous on an interval about 0, hence, bounded near 0. ��
For example,

e−1/|x| ≈ 0, x → 0,

since t = 1/x implies e−1/|x|/xn = e−|t|tn → 0 as t → ±∞.
Actually, we will need asymptotic expansions at ∞. Let f be defined near

∞, i.e., for x sufficiently large. We say that

f(x) ≈ a0 +
a1

x
+

a2

x2
+ . . . , (5.9.15)

is an asymptotic expansion of f at infinity if

f(x) = a0 +
a1

x
+ · · · + an

xn
+ O

(
1

xn+1

)

, x → ∞,

for all n ≥ 0. For example, e−x ≈ 0 as x → ∞, since e−x = O (x−n), as
x → ∞, for all n ≥ 0. Here is the Stirling series.

Theorem 5.9.5 (Stirling). As x → ∞,

log Γ (x) −
[(

x − 1
2

)

log x − x

]

≈ 1
2

log(2π) +
B2

2x
+

B4

4 · 3x3
+

B6

6 · 5x5
+ . . . . (5.9.16)

Note that, ignoring the terms with Bernoulli numbers, this result reduces to
Stirling’s approximation §5.5. Moreover, note that, because this is an expression
for log Γ (x) and not Γ (x), the terms involving the Bernoulli numbers are
measures of relative error. Thus, the principal error term B2/2x = 1/12x
equals 1/1200 for x = 100 which agrees with the relative error of .08% found
in Exercise 5.5.2.

To derive (5.9.16), we will use (5.9.12) and replace τ(t) by its Bernoulli
series to obtain
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d2

dx2
log Γ (x) ≈ 1

x
+

1
2x2

+
B2

x3
+

B4

x5
+ . . . , x → ∞. (5.9.17)

Then, we integrate this twice to get (5.9.16).
First, we show that the portion of the integral in (5.9.12) over (1,∞) has

no effect on the asymptotic expansion (5.9.17). Fix n ≥ 0. To this end, note
that

0 ≤
∫ ∞

1

e−xtτ(t) dt ≤ 1
1 − e−1

∫ ∞

1

e−xtt dt =
1

1 − e−1
· 1 + x

x2
· e−x

for x > 0. Thus,
∫ ∞

1

e−xtτ(t) dt = O

(
1

xn+1

)

, x → ∞.

Since τ is smooth at zero and the Bernoulli series is the Taylor series of τ , by
Taylor’s theorem (§3.4), there is a continuous hn : R → R satisfying

τ(t) = B0 +
B1

1!
t +

B2

2!
t2 + · · · + Bn−1

(n − 1)!
tn−1 +

hn(t)
n!

tn, t ∈ R.

Then (Exercise 5.9.4),
∫ 1

0

e−xthn(t)
tn

n!
dt =

1
xn+1

∫ x

0

e−thn(t/x)
tn

n!
dt = O

(
1

xn+1

)

since hn(x) is bounded for 0 ≤ x ≤ 1. Similarly (Exercise 5.9.5),
∫ ∞

1

e−xt t
k

k!
dt = O

(
1

xn+1

)

, x → ∞, k ≥ 0.

Now, insert all this into (5.9.12), and use
∫ ∞

0

e−xt t
n

n!
dt =

1
xn+1

to get, for fixed n ≥ 0,
∫ ∞

0

e−xtτ(t) dt =
∫ 1

0

e−xtτ(t) dt +
∫ ∞

1

e−xtτ(t) dt

=
∫ 1

0

e−xtτ(t) dt + O

(
1

xn+1

)

=
n−1∑

k=0

Bk

∫ 1

0

e−xt t
k

k!
dt +

∫ 1

0

e−xthn(t)
tn

n!
dt + O

(
1

xn+1

)

=
n−1∑

k=0

Bk

∫ 1

0

e−xt t
k

k!
dt + O

(
1

xn+1

)
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=
n−1∑

k=0

Bk

xk+1
−

n−1∑

k=0

Bk

∫ ∞

1

e−xt t
k

k!
dt + O

(
1

xn+1

)

=
n−1∑

k=0

Bk

xk+1
+ O

(
1

xn+1

)

.

Since B0 = 1, B1 = 1/2, and this is true for all n ≥ 0, this derives (5.9.17).
To get (5.9.16), let f(x) = (log Γ (x))′′−(1/x)−(1/2x2). Then, by (5.9.17),

f(x) =
B2

x3
+

B4

x5
+ · · · + Bn

xn+1
+ O

(
1

xn+2

)

. (5.9.18)

Since the right side of this last equation is integrable over (x,∞) for any x > 0,
so is f . Since −

∫∞
x

f(t) dt is a primitive of f , we obtain
∫ ∞

x

f(t) dt = −[log Γ (x)]′ + log x − 1
2x

− A

for some constant A. So, integrating both sides of (5.9.18) over (x,∞) leads
to

−[log Γ (x)]′ + log x − 1
2x

− A =
B2

2x2
+

B4

4x4
+ · · · + Bn

nxn
+ O

(
1

xn+1

)

.

Similarly, integrating this last equation over (x,∞) leads to

log Γ (x) − x log x + x +
1
2

log x + Ax − B

=
B2

2 · 1x
+

B4

4 · 3x3
+ · · · + Bn

n · (n − 1)xn−1
+ O

(
1
xn

)

.

Noting that the right side of this last equation vanishes as x → ∞, inserting
x = n in the left side, and comparing with Stirling’s approximation in §5.5,
we conclude that A = 0 and B = log(2π)/2, thus, obtaining (5.9.16). ��

Exercises

5.9.1. Show that q, as defined by (5.9.4), is well defined, smooth on R, and
satisfies (5.9.3), when f vanishes on (−∞,−1).

5.9.2. Find a smooth q solving (5.9.3), when f vanishes on (1,∞).

5.9.3. Let c be a power series with radius of convergence R. Show that
c(D)(eaxxn) is well defined for |a| < R and n ≥ 0 and satisfies

c(D) (eaxxn) =
∂n

∂an
[c(a)eax].
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5.9.4. Show that
∫ 1

0
e−xtf(t)tn dt = O

(
1

xn+1

)
for any continuous bounded

f : (0, 1) → R and n ≥ 0.

5.9.5. For all n ≥ 0 and p > 0, show that
∫∞
1

e−xttp dt ≈ 0, as x → ∞.

5.9.6. Show that the Stirling series in (5.9.16) cannot converge anywhere.
(If it did converge at a �= 0, then, the Bernoulli series would converge on all
of R.)
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Solutions

A.1 Solutions to Chapter 1

Solutions to exercises 1.1

1.1.1 Let A denote the set of all cats (alive or dead), and, for each a ∈ A,
let f(a) and g(a) denote the mother and father of a, respectively. Then,
f : A → A and g : A → A, and f(g(a)) is a’s father’s mother whereas g(f(a))
is a’s mother’s father.

1.1.2 For the first equation in De Morgan’s law, choose a in the right side⋂∞
n=1 Ac

n. Then, a ∈ Ac
n for all n ≥ 1. Hence, a /∈ An for all n ≥ 1. Hence, a

is not in
⋃∞

n=1 An, i.e., a is in the left side. Thus,
( ∞⋃

n=1

An

)c

⊃
∞⋂

n=1

Ac
n.

If a is in the left side (
⋃∞

n=1 An)c, then, a is not in
⋃∞

n=1 An. Hence, a is not
in An for any n ≥ 1. Hence, a ∈ Ac

n for every n ≥ 1. Hence, a is in
⋂∞

n=1 Ac
n.

Thus, ( ∞⋃

n=1

An

)c

⊂
∞⋂

n=1

Ac
n.

We conclude that ( ∞⋃

n=1

An

)c

=
∞⋂

n=1

Ac
n.

To obtain the second equation in De Morgan’s law, replace An by Ac
n in the

first equation. Since (Ac)c = A, we obtain
( ∞⋃

n=1

Ac
n

)c

=
∞⋂

n=1

An.
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Taking the complement of each side yields the second equation

∞⋃

n=1

Ac
n =

( ∞⋂

n=1

An

)c

.

1.1.3 Suppose that f : A → B is invertible. This means there is a g : B → A
with g(f(a)) = a for all a and f(g(b)) = b for all b ∈ B. If f(a) = f(a′), then,
a = g(f(a)) = g(f(a′)) = a′. Hence, f is injective. If b ∈ B, then, a = g(b)
satisfies f(a) = b. Hence, f is surjective. We conclude that f is bijective.
Conversely, if f is bijective, for each b ∈ B, let g(b) denote the unique element
a ∈ A satisfying f(a) = b. Then, by construction, f(g(b)) = b. Moreover, since
a is unique element of A mapping to f(a), we also have a = g(f(a)). Thus, g
is the inverse of f . Hence, f is invertible.

1.1.4 Suppose that g1 : B → A and g2 : B → A are inverses of f . Then,
f(g1(b)) = b = f(g2(b)) for all b ∈ B. Since f is injective, this implies
g1(b) = g2(b) for all b ∈ B, i.e., g1 = g2.

Solutions to exercises 1.2

1.2.1 a0 = a0 + (a − a) = (a0 + a) − a = (a0 + a1) − a = a(0 + 1) − a =
a1 − a = a − a = 0. This is not the only way.

1.2.2 The number 1 satisfies 1a = a1 = a for all a. If 1′ also satisfied 1′b = b1′ =
b for all b, then, choosing a = 1′ and b = 1 yields 1 = 11′ = 1′. Hence, 1 = 1′.
Now, suppose that a has two negatives, one called −a and one called b. Then,
a + b = 0, so, −a = −a + 0 = −a + (a + b) = (−a + a) + b = 0 + b = b. Hence,
b = −a, so, a has a unique negative. If a �= 0 has two reciprocals, one called 1/a
and one called b, ab = 1, so, 1/a = (1/a)1 = (1/a)(ab) = [(1/a)a]b = 1b = b.

1.2.3 Since a + (−a) = 0, a is the (unique) negative of −a which means
−(−a) = a. Also a + (−1)a = 1a + (−1)a = [1 + (−1)]a = 0a = 0, so, (−1)a
is the negative of a or −a = (−1)a.

1.2.4 By the ordering property, a > 0, and b > 0 implies ab > 0. If a < 0 and
b > 0, then, −a > 0. Hence, (−a)b > 0, so, ab = [−(−a)]b = (−1)(−a)b =
−((−a)b) < 0. Thus, negative times positive is negative. If a < 0 and b < 0,
then, −b > 0. Hence, a(−b) < 0. Hence, ab = a(−(−b)) = a(−1)(−b) =
(−1)a(−b) = −(a(−b)) > 0. Thus, negative times negative is positive. Also,
1 = 11 > 0 whether 1 > 0 or 1 < 0 (1 �= 0 is part of the ordering property).

1.2.5 a < b implies b−a > 0 which implies (b+c)−(a+c) > 0 or b+c > a+c.
Also c > 0 implies c(b − a) > 0 or bc − ac > 0 or bc > ac. If a < b and b < c,
then, b − a and c − b are positive. Hence, c − a = (c − b) + (b − a) is positive
or c > a. Multiplying a < b by a > 0 and by b > 0 yields aa < ab and ab < bb.
Hence, aa < bb.
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1.2.6 If 0 ≤ a ≤ b we know, from above, that aa ≤ bb. Conversely, if aa ≤ bb
then, we cannot have a > b because applying 5 with the roles of a, b reversed
yields aa > bb, a contradiction. hence, a ≤ b iff aa ≤ bb.

1.2.7

A. By definition, inf A ≤ x for all x ∈ A. Hence, − inf A ≥ −x for all
x ∈ A. Hence, − inf A ≥ y for all y ∈ −A. Hence, − inf A ≥ sup(−A).
Conversely, sup(−A) ≥ y for all y ∈ −A, or sup(−A) ≥ −x for all x ∈ A,
or − sup(−A) ≤ x for all x ∈ A. Hence, − sup(−A) ≤ inf A which implies
sup(−A) ≥ − inf A. Since we already know that sup(−A) ≤ − inf A, we
conclude that sup(−A) = − inf A. Now, replace A by −A in the last
equation. Since −(−A) = A, we obtain supA = − inf(−A) or inf(−A) =
− supA.

B. Now, supA ≥ x for all x ∈ A, so, (sup A)+a ≥ x+a for all x ∈ A. Hence,
(supA) + a ≥ y for y ∈ A + a, so, (sup A) + a ≥ sup(A + a). In this last
inequality, replace a by −a and A by A + a to obtain [sup(A + a)] − a ≥
sup(A+a−a), or sup(A+a) ≥ (sup A)+a. Combining the two inequalities
yields sup(A + a) = (sup A) + a. Replacing A and a by −A and −a yields
inf(A + a) = (inf A) + a.

C. Now, supA ≥ x for all x ∈ A. Since c > 0, c supA ≥ cx for all x ∈ A. Hence,
c sup A ≥ y for all y ∈ cA. Hence, c sup A ≥ sup(cA). Now, in this last
inequality, replace c by 1/c and A by cA. We obtain (1/c) sup(cA) ≥ supA
or sup(cA) ≥ c supA. Combining the two inequalities yields sup(cA) =
c sup A. Replacing A by −A in this last equation yields inf(cA) = c inf A.

Solutions to exercises 1.3

1.3.1 Let S be the set of naturals n for which there are no naturals between n
and n+1. From the text, we know that 1 ∈ S. Assume n ∈ S. Then, we claim
n + 1 ∈ S. Indeed, suppose that m ∈ N satisfies n + 1 < m < n + 2. Then,
m �= 1, so, m − 1 ∈ N (see §1.3) satisfies n < m − 1 < n + 1, contradicting
n ∈ S. Hence, n + 1 ∈ S, so, S is inductive. Since S ⊂ N, we conclude that
S = N.

1.3.2 Fix n ∈ N, and let S = {x ∈ R : nx ∈ N}. Then, 1 ∈ S since n1 = n.
If x ∈ S, then, nx ∈ N, so, n(x + 1) = nx + n ∈ N (since N + N ⊂ N), so,
x + 1 ∈ S. Hence, S is inductive. We conclude that S ⊃ N or nm ∈ N for all
m ∈ N.

1.3.3 Let S be the set of all naturals n such that the following holds: If m > n
and m ∈ N, then, m − n ∈ N. From the text, we know that 1 ∈ S. Assume
n ∈ S. We claim n+1 ∈ S. Indeed, suppose that m > n+1 and m ∈ N. Then,
m−1 > n. Since n ∈ S, we conclude that (m−1)−n ∈ N or m− (n+1) ∈ N.
Hence, by definition of S, n + 1 ∈ S. Thus, S is inductive, so, S = N. Thus,
m > n implies m − n ∈ N. Since, for m,n ∈ N, m > n, m = n, or m < n,
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we conclude that m − n ∈ Z, whenever m,n ∈ N. If n ∈ −N and m ∈ N,
then, −n ∈ N and m − n = m + (−n) ∈ N ⊂ Z. If m ∈ −N and n ∈ N,
then, −m ∈ N and m − n = −(n + (−m)) ∈ −N ⊂ Z. If n and m are both
in −N, then, −m and −n are in N. Hence, m− n = −((−m)− (−n)) ∈ Z. If
either m or n equals zero, then, m−n ∈ Z. This shows that Z is closed under
subtraction.

1.3.4 If n is even and odd, then, n + 1 is even. Hence, 1 = (n + 1)−n is even,
say 1 = 2k with k ∈ N. But k ≥ 1 implies 1 = 2k ≥ 2, which contradicts
1 < 2. If n = 2k is even and m ∈ N, then, nm = 2(km) is even. If n = 2k − 1
and m = 2j − 1 are odd, then, nm = 2(2kj − k − j + 1) − 1 is odd.

1.3.5 For all n ≥ 1, we establish the claim: If m ∈ N and there is a bijection
between {1, . . . , n} and {1, . . . , m}, then, n = m. For n = 1, the claim is clearly
true. Now, assume the claim is true for a particular n, and suppose that we
have a bijection f between {1, . . . , n + 1} and {1, . . . , m} for some m ∈ N.
Then, by restricting f to {1, . . . , n}, we obtain a bijection g between {1, . . . , n}
and {1, . . . , k − 1, k + 1, . . . ,m}, where k = f(n + 1). Now, define h(i) = i
if 1 ≤ i ≤ k − 1, and h(i) = i − 1 if k + 1 ≤ i ≤ m. Then, h is a bijection
between {1, . . . , k−1, k+1, . . . ,m} and {1, . . . , m−1}. Hence, h◦g is a bijection
between {1, . . . , n} and {1, . . . , m−1}. By the inductive hypothesis, this forces
m−1 = n or m = n+1. Hence, the claim is true for n+1. Hence, the claim is
true, by induction, for all n ≥ 1. Now, suppose that A is a set with n elements
and with m elements. Then, there are bijections f : A → {1, . . . , n} and
g : A → {1, . . . , m}. Hence, g◦f−1 is a bijection from {1, . . . , n} to {1, . . . , m}.
Hence, m = n. This shows that the number of elements of a set is well defined.
For the last part, suppose that A and B have n and m elements, respectively,
and are disjoint. Let f : A → {1, . . . , n} and g : B → {1, . . . , m} be bijections,
and let h(i) = i + n, 1 ≤ i ≤ m. Then, h ◦ g : B → {n + 1, . . . , n + m} is
a bijection. Now, define k : A ∪ B → {1, . . . , n + m} by setting k(x) = f(x)
if x ∈ A, k(x) = h ◦ g(x) if x ∈ B. Then, k is a bijection, establishing the
number of elements of A ∪ B is n + m.

1.3.6 Let A ⊂ R be finite. By induction on the number of elements, we show
that max A exists. If A = {a}, then, a = max A. So, max A exists. Now, assume
that every subset with n elements has a max. If A is a set with n+1 elements
and a ∈ A, then, B = A \ {a} has n elements. Hence, max B exists. There
are two cases: If a ≤ max B, then, max B = max A. Hence, max A exists. If
a > max B, then, a = max A. Hence, max A exists. Since, in either case max A
exists when #A = n + 1, by induction, maxA exists for all finite subsets A.
Since −A is finite whenever A is finite, min A exists by the reflection property.

1.3.7 Let c = sup S. Since c − 1 is not an upper bound, choose n ∈ S with
c − 1 < n ≤ c. If c ∈ S, then, c = max S and we are done. Otherwise, c �∈ S,
and c − 1 < n < c. Now, choose m ∈ S with c − 1 < n < m < c concluding
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that m − n = (m − c) − (n − c) lies between 0 and 1, a contradiction. Thus,
c = max S.

1.3.8 If yq ≤ x, then, q ≤ x/y. So, {q ∈ N : yq ≤ x} is nonempty and bounded
above, hence, has a max, call it q. Let r = x − yq. Then, r = 0, or r ∈ R+.
If r ≥ y, then, x − y(q + 1) = r − y ≥ 0, so, q + 1 ∈ S, contradicting the
definition of q. Hence, 0 ≤ r < y.

1.3.9 Since N×R is an inductive subset of R×R, f ⊂ N×R. Now, 1 ∈ A
since (1, a) ∈ f , and x ∈ A implies (x, y) ∈ f for some y implies (x+1, ay) ∈ f
implies x + 1 ∈ A. Hence, A is an inductive subset of R. We conclude that
A ⊃ N. Since f ⊂ N×R, we obtain A = N. To show that f is a function, we
need to show that, for each n, there is a unique y ∈ R with (n, y) ∈ f . Suppose
that this is not so, and let n be the smallest natural, such that (n, y) is in f for
at least two distinct y’s. We use this n to discard a pair (n, y) from f obtaining
a strictly smaller inductive subset f̃ . To this end, if n = 1, let f̃ = f �{(1, y)},
where y �= a. If n > 1, let f̃ = f �{(n, y)} where y �= af(n−1). Since there are
at least two y’s corresponding to n and n is the least natural with this property,
f(n− 1) is uniquely determined, and there is at least one pair (n, y) ∈ f with
y �= af(n − 1). Now, check that f̃ is inductive, contradicting the fact that f
was the smallest. Hence, f is a function. Moreover, by construction, f(1) = a,
and f(n + 1) = af(n) for all n.

1.3.10 By construction, we know that an+1 = ana for all n ≥ 1. Let S be the
set of m ∈ N, such that an+m = anam for all n ∈ N. Then, 1 ∈ S. If m ∈ S,
then, an+m = anam, so, an+(m+1) = a(n+m)+1 = an+ma = anama = anam+1.
Hence, m + 1 ∈ S. Thus, S is inductive. Hence, S = N. This shows that
an+m = anam for all n,m ∈ N. If n = 0, then, an+m = anam is clear,
whereas n < 0 implies an+m = an+ma−nan = an+m−nan = aman. This shows
that an+m = anam for n ∈ Z and m ∈ N. Repeating this last argument
with m, instead of n, we obtain an+m = anam for all n,m ∈ Z. We also
establish the second part by induction on m with n ∈ Z fixed: If m = 1, the
equation (an)m = anm is clear. So, assume it is true for m. Then, (an)m+1 =
(an)m(an)1 = anman = anm+n = an(m+1). Hence, it is true for m + 1, hence,
by induction, for all m ≥ 1. For m = 0, it is clearly true, whereas for m < 0,
(an)m = 1/(an)−m = 1/a−nm = anm.

1.3.11 Assuming

1 + 2 + · · · + n =
n(n + 1)

2
, (A.1.1)

we have

1 + 2 + · · · + n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
n2 + n + 2(n + 1)

2
=

(n + 1)(n + 2)
2



254 A Solutions

establishing the inductive step. Since (A.1.1) is obvious when n = 1, the result
follows by induction.

1.3.12 Since p ≥ 2, 1 < 2n ≤ pn and n < 2n ≤ pn for all n ≥ 1. If pkm = pjq
with k < j, then, m = pj−kq = ppj−k−1q is divisible by p. On the other hand,
if k > j, then, q is divisible by p. Hence, pkm = pjq with m, q not divisible by
p implies k = j. This establishes the uniqueness of the number of factors k. For
existence, if n is not divisible by p, we take k = 0 and m = n. If n is divisible
by p, then, n1 = n/p is a natural < pn−1. If n1 is not divisible by p, we take
k = 1 and m = n1. If n1 is divisible by p, then, n2 = n1/p is a natural < pn−2.
If n2 is not divisible by p, we take k = 2 and m = n2. If n2 is divisible by p,
we continue this procedure by dividing n2 by p. Continuing in this manner,
we obtain n1, n2, . . . naturals with nj < pn−j . Since this procedure ends in n
steps at most, there is some k natural or 0 for which m = n/pk is not divisible
by p and n/pk−1 is divisible by p.

1.3.13 We want to show that S ⊃ N. If there is not so, then, N \ S would be
nonempty, hence, would have a least element n. Thus, k ∈ S for all naturals
k < n. By the given property of S, we conclude that n ∈ S, contradicting
n /∈ S. Hence, N \ S is empty or S ⊃ N.

1.3.14 Since m ≥ p, m = pq + r with q ∈ N, r ∈ N ∪ {0}, and 0 ≤ r < p
(Exercise 1.3.8). If r �= 0, multiplying by a yields ra = ma− q(pa) ∈ N since
ma ∈ N and pa ∈ N. Hence, r ∈ Sa is less than p contradicting p = min Sa.
Thus, r = 0, or p divides m.

1.3.15 With a = n/p, p ∈ Sa since pa = n ∈ N, and m ∈ Sa since ma =
nm/p ∈ N. By the previous Exercise, minSa divides p. Since p is prime,
min Sa = 1, or minSa = p. In the first case, 1 ·a = a = n/p ∈ N, i.e., p divides
n, whereas, in the second case, p divides m by the previous Exercise.

1.3.16 We use induction according to Exercise 1.3.2. For n = 1, the statement
is true. Suppose that the statement is true for all naturals less than n. Then,
either n is a prime or n is composite, n = jk with j > 1 and k > 1. By the
inductive hypothesis, j and k are products of primes, hence, so is n. Hence,
in either case, n is a product of primes. To show that the decomposition for
n is unique except for the order, suppose that n = p1 . . . pr = q1 . . . qs. By the
previous Exercise, since p1 divides the left, hence, the right side, p1 divides
one of the qj ’s. Since the qj ’s are prime, we conclude that p1 equals qj for
some j. Hence, n′ = n/p1 < n can be expressed as the product p2 . . . pr and
the product q1 . . . qj−1qj+1 . . . qs. By the inductive hypothesis, these p’s and
q’s must be identical except for the order. Hence, the result is true for n. By
induction, the result is true for all naturals.

1.3.17 If the algorithm ends, then, rn = 0 for some n. Solving backward, we
see that rn−1 ∈ Q, rn−2 ∈ Q, etc. Hence, x = r0 ∈ Q. Conversely, if x ∈ Q,
then, all the remainders rn are rationals. Now, given a rational r = m/n with
n ∈ N and m ∈ Z (in lowest terms), let N(r) = m and D(r) = n. Then,
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D(r) = D(r + n) for n ∈ Z. Moreover, since 0 ≤ rn < 1, N(rn) < D(rn).
Then,

N (rn) = D

(
1
rn

)

= D (qn+1 + rn+1) = D (rn+1) > N (rn+1) .

Thus, N(r0) > N(r1) > N(r2) > . . . is strictly decreasing. Hence, N(rn) = 1
for some n, so, rn+1 = 0.

Solutions to exercises 1.4

1.4.1 Since |x| = max(x,−x), x ≤ |x|. Also −a < x < a is equivalent
to −x < a and x < a, hence, to |x| = max(x,−x) < a. By definition of
intersection, x > −a and x < a is equivalent to {x : x < a} ∩ {x : x > −a}.
Similarly, |x| > a is equivalent to x > a or −x > a, i.e., x lies in the union of
{x : x > a} and {x : x < −a}.
1.4.2 Clearly |0| = 0. If x �= 0, then, x > 0 or −x > 0, hence, |x| =
max(x,−x) > 0. If x > 0 and y > 0, then, |xy| = xy = |x| |y|. If x > 0 and
y < 0, then, xy is negative, so, |xy| = −(xy) = x(−y) = |x| |y|. Similarly, for
the other two cases.

1.4.3 If n = 1, the inequality is true. Assume it is true for n. Then,

|a1 + · · · + an + an+1| ≤ |a1 + · · · + an| + |an+1|
≤ |a1| + · · · + |an| + |an+1|

by the triangle inequality and the inductive hypothesis. Hence, it is true for
n + 1. By induction, it is true for all naturals n.

1.4.4 Assume first that a > 1. Let S = {x : x ≥ 1 and x2 < a}. Since 1 ∈ S,
S is nonempty. Also x ∈ S implies x = x1 ≤ x2 < a, so, S is bounded above.
Let s = supS. We claim that s2 = a. Indeed, if s2 < a, note that

(

s +
1
n

)2

= s2 +
2s

n
+

1
n2

≤ s2 +
2s

n
+

1
n

= s2 +
2s + 1

n
< a

if (2s + 1)/n < a − s2, i.e., if n > (2s + 1)/(a − s2). Since s2 < a, b =
(2s + 1)/(a − s2) is a perfectly well defined, positive real. Since supN = ∞,
such a natural n > b can always be found. This rules out s2 < a. If s2 > a,
then, b = (s2−a)/2s is positive. Hence, there is a natural n satisfying 1/n < b
which implies s2 − 2s/n > a. Hence,

(

s − 1
n

)2

= s2 − 2s

n
+

1
n2

> a,
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so (by Exercise 1.2.6), s − 1/n is an upper bound for S. This shows that s
is not the least upper bound, contradicting the definition of s. Thus, we are
forced to conclude that s2 = a. Now, if a < 1, then, 1/a > 1 and 1/

√
1/a is a

positive square root of a. The square root is unique by Exercise 1.2.6.

1.4.5 By completing the square, x solves ax2 + bx + c = 0 iff x solves
(x + b/2a)2 = (b2 − 4ac)/4a2. If b2 − 4ac < 0, this shows that there are no
solutions. If b2 − 4ac = 0, this shows that x = −b/2a is the only solution.
If b2 − 4ac > 0, take the square root of both sides to obtain x + b/2a =
±(

√
b2 − 4ac)/2a.

1.4.6 The inequality (1+a)n ≤ 1+(2n−1)a is clearly true for n = 1. So, assume
it is true for n. Then, (1 + a)n+1 = (1 + a)n(1 + a) ≤ (1 + (2n − 1)a)(1 + a) =
1+2na+(2n−1)a2 ≤ 1+(2n+1−1)a since 0 ≤ a2 ≤ a. Hence, it is true for all
n. The inequality (1+b)n ≥ 1+nb is true for n = 1. So, suppose that it is true
for n. Since 1 + b ≥ 0, then, (1 + b)n+1 = (1 + b)n(1 + b) ≥ (1 + nb)(1 + b) =
1 + (n + 1)b + nb2 ≥ 1 + (n + 1)b. Hence, the inequality is true for all n.

1.4.7 If 0 ≤ a < b, then, an < bn is true for n = 1. If it is true for n, then,
an+1 = ana < bna < bnb = bn+1. Hence, by induction, it is true for all n. Hence,
0 ≤ a ≤ b implies an ≤ bn. If an ≤ bn and a > b, then, by applying the previous,
we obtain an > bn, a contradiction. Hence, for a, b ≥ 0, a ≤ b iff an ≤ bn. For
the second part, assume that a > 1, and let S = {x : x ≥ 1 and xn ≤ a}. Since
x ≥ 1, xn−1 ≥ 1. Hence, x = x1 ≤ xxn−1 = xn < a. Thus, s = supS exists.
We claim that sn = a. If sn < a, then, b = sn−1(2n − 1)/(a − sn) is a well
defined, positive real. Choose a natural k > b. Then, sn−1(2n − 1)/k < a− sn.
Hence, by Exercise 1.4.6,

(

s +
1
k

)n

= sn

(

1 +
1
sk

)n

≤ sn

(

1 +
2n − 1

sk

)

= sn +
sn−1(2n − 1)

k
< a.

Hence, s + 1/k ∈ S. Hence, s is not an upper bound for S, a contradiction. If
sn > a, b = nsn−1/(sn − a) is a well defined, positive real, so, choose k > b.
By Exercise 1.4.6,

(

s − 1
k

)n

= sn

(

1 − 1
sk

)n

≥ sn
(
1 − n

sk

)

= sn − sn−1n

k
> a.

Hence, by the first part of this Exercise, s−1/k is an upper bound for S. This
shows that s is not the least upper bound, a contradiction. We conclude that
sn = a. Uniqueness follows from the first part of this Exercise.
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1.4.8 If t = k/(n
√

2) is a rational p/q, then,
√

2 = (kq)/(np) is rational, a
contradiction.

1.4.9 Let (b) denote the fractional part of b. If a = 0, the result is clear. If
a �= 0, the fractional parts of a, 2a, 3a, . . . , form a sequence in [0, 1]. Now,
divide [0, 1] into finitely many subintervals, each of length, at most, ε. Then,
the fractional parts of at least two terms pa and qa, p �= q, p, q ∈ N, must
lie in the same subinterval. Hence, |(pa) − (qa)| < ε. Since pa − (pa) ∈ Z,
qa − (qa) ∈ Z, we obtain |(p − q)a − m| < ε for some integer m. Choosing
n = p − q, we obtain |na − m| < ε.

1.4.10 The key issue here is that |2n2 − m2| = n2|f(m/n)| is a nonzero
integer, since all the roots of f(x) = 0 are irrational. Hence, |2n2 − m2| ≥ 1.
But 2n2−m2 = (n

√
2−m)(n

√
2+m), so, |n

√
2−m| ≥ 1/(n

√
2+m). Dividing

by n, we obtain ∣
∣
∣
√

2 − m

n

∣
∣
∣ ≥ 1

(
√

2 + m/n)n2
. (A.1.2)

Now, if |
√

2 − m/n| ≥ 1, the result we are trying to show is clear. So, let us
assume that |

√
2−m/n| ≤ 1. In this case,

√
2 + m/n = 2

√
2 + (m/n−

√
2) ≤

2
√

2 + 1. Inserting this in the denominator of the right side of (A.1.2), the
result follows.

1.4.11 By Exercise 1.4.5, the (real) roots of f(x) = 0 are ±a. The key issue
here is that |m4−2m2n2−n4| = n4|f(m/n)| is a nonzero integer, since all the
roots of f(x) = 0 are irrational. Hence, n4|f(m/n)| ≥ 1. But, by factoring,
f(x) = (x − a)g(x) with g(x) = (x + a)(x2 +

√
2 − 1), so,

∣
∣
∣a − m

n

∣
∣
∣ ≥ 1

n4g(m/n)
. (A.1.3)

Now, there are two cases: If |a−m/n| ≥ 1, we obtain |a−m/n| ≥ 1/n4 since
1 ≥ 1/n4. If |a−m/n| ≤ 1, then, 0 < m/n < 3. So, from the formula for g, we
obtain 0 < g(m/n) ≤ 51. Inserting this in the denominator of the right side
of (A.1.3), the result follows with c = 1/51.

1.4.12 First, we verify the absolute value properties A, B, and C for x, y ∈ Z.
A is clear. For x, y ∈ Z, let x = 2kp and y = 2jq with p, q odd. Then,
xy = 2j+kpq with pq odd, establishing B for x, y ∈ Z. For C, let i = min(j, k)
and note x + y = 0 or x + y = 2ir with r odd. In the first case, |x + y|2 = 0,
whereas, in the second, |x+y|2 = 2−i. Hence, |x+y|2 ≤ 2−i = max(2−j , 2−k) =
max(|x|2, |y|2) ≤ |x|2 + |y|2. Now, using B for x, y, z ∈ Z, |zx|2 = |z|2|x|2 and
|zy|2 = |z|2|y|2. Hence, |zx/zy|2 = |zx|2/|zy|2 = |z|2|x|2/|z|2|y|2 = |x|2/|y|2 =
|x/y|2. Hence, | · |2 is well defined on Q. Now, using A, B, and C for x, y ∈ Z,
one checks A, B, and C for x, y ∈ Q.
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Solutions to exercises 1.5

1.5.1 If (an) is increasing, {an : n ≥ 1} and {an : n ≥ N} have the same
sups. Similarly, for decreasing. If an → L, then, a∗

n ↘ L. Hence, a∗
n+N ↘ L

and an∗ ↗ L. Hence, a(n+N)∗ ↗ L. We conclude that an+N → L.

1.5.2 If an ↗ L, then, L = sup{an : n ≥ 1}, so, −L = inf{−an : n ≥ 1}, so,
−an ↘ −L. Similarly, if an ↘ L, then, −an ↗ −L. If an → L, then, a∗

n ↘ L,
so, (−an)∗ = −a∗

n ↗ −L, and an∗ ↗ L, so, (−an)∗ = −an∗ ↘ −L. Hence,
−an → −L.

1.5.3 First, if A ⊂ R+, let 1/A = {1/x : x ∈ A}. Then, inf(1/A) = 0 implies
that, for all c > 0, there exists x ∈ A with 1/x < 1/c or x > c. Hence,
supA = ∞. Conversely, supA = ∞ implies inf(1/A) = 0. If inf(1/A) > 0,
then, c > 0 is a lower bound for 1/A iff 1/c is an upper bound for A. Hence,
supA < ∞ and inf(1/A) = 1/ sup A. If 1/∞ is interpreted as 0, we obtain
inf(1/A) = 1/ sup A in all cases. Applying this to A = {ak : k ≥ n} yields
bn∗ = 1/a∗

n, n ≥ 1. Moreover, A is bounded above iff inf(1/A) > 0. Applying
this to A = {bn∗ : n ≥ 1} yields sup{bn∗ : n ≥ 1} = ∞ since a∗

n ↘ 0. Hence,
bn → ∞. For the converse, bn → ∞ implies sup{bn∗ : n ≥ 1} = ∞. Hence,
inf{a∗

n : n ≥ 1} = 0. Hence, an → 0.

1.5.4 Since kn ≥ n, an∗ ≤ akn
≤ a∗

n. Since an → L means a∗
n → L and an∗ →

L, the ordering property implies akn
→ L. Now assume (an) is increasing.

Then, (akn
) is increasing. Suppose that an → L and akn

→ M . Since (an) is
increasing and kn ≥ n, akn

≥ an, n ≥ 1. Hence, by ordering, M ≥ L. On the
other hand, {akn

: n ≥ 1} ⊂ {an : n ≥ 1}. Since M and L are the sups of
these sets, M ≤ L. Hence, M = L.

1.5.5 From the text, we know that all but finitely many an lie in (L− ε, L+ ε),
for any ε > 0. Choosing ε = L shows that all but finitely many terms are
positive.

1.5.6 The sequence an =
√

n + 1−√
n = 1/(

√
n + 1+

√
n) is decreasing. Since

an2 ≤ 1/n has limit zero, so does (an). Hence, a∗
n = an and an∗ = 0 = a∗ = a∗.

1.5.7 We do only the case a∗ finite. Since a∗
n → a∗, a∗

n is finite for each n ≥ N
beyond some N ≥ 1. Now, a∗

n = sup{ak : k ≥ n}, so, for each n ≥ 1, we can
choose kn ≥ n, such that a∗

n ≥ akn
> a∗

n − 1/n. Then, the sequence (akn
) lies

between (a∗
n) and (a∗

n − 1/n), hence, converges to a∗. But (akn
) may not be a

subsequence of (an) because the sequence (kn) may not be strictly increasing.
To take care of this, note that, since kn ≥ n, we can choose a subsequence
(kjn

) of (kn) which is strictly increasing. Then, (ap : p = kjn
) is a subsequence

of (an) converging to a∗. Similarly (or multiply by minuses), for a∗.

1.5.8 If an �→ L, then, by definition, either a∗ �= L or a∗ �= L. For definiteness,
suppose that a∗ �= L. Then, from Exercise 1.5.7, there is a subsequence (akn

)
converging to a∗. From §1.5, if 2ε = |L − a∗| > 0, all but finitely many of the
terms akn

lie in the interval (a∗ − ε, a∗ + ε). Since ε is chosen to be half the
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distance between a∗ and L, this implies that these same terms lie outside the
interval (L − ε, L + ε). Hence, these terms form a subsequence as requested.

1.5.9 From Exercise 1.5.7, we know that x∗ and x∗ are limit points. If (xkn
) is a

subsequence converging to a limit point L, then, since kn ≥ n, xn∗ ≤ xkn
≤ x∗

n

for all n ≥ 1. By the ordering property for sequences, taking the limit yields
x∗ ≤ L ≤ x∗.

1.5.10 If xn → L, then, x∗ = x∗ = L. Since x∗ and x∗ are the smallest and
the largest limit points, L must be the only one. Conversely, if there is only
one limit point, then, x∗ = x∗ since x∗ and x∗ are always limit points.

1.5.11 If M < ∞, then, for each n ≥ 1, the number M − 1/n is not an
upper bound for the displayed set. Hence, there is an xn ∈ (a, b) with f(xn) >
M − 1/n. Since f(xn) ≤ M , we see that f(xn) → M , as n ↗ ∞. If M = ∞,
for each n ≥ 1, the number n is not an upper bound for the displayed set.
Hence, there is an xn ∈ (a, b) with f(xn) > n. Then, f(xn) → ∞ = M .

1.5.12 Note that

1
2

(

a +
2
a

)

−
√

2 =
1
2a

(
a −

√
2
)2

≥ 0, a > 0. (A.1.4)

Since e1 = 2 −
√

2, e1 ≥ 0. By (A.1.4), en+1 ≥ 0 as soon as en ≥ 0. Hence,
en ≥ 0 for all n ≥ 1 by induction. Similarly, (A.1.4) with a = dn plugged in
and dn ≥

√
2, n ≥ 1, yield en+1 ≤ e2

n/2
√

2, n ≥ 1.

1.5.13 If f(a) = 1/(q + a), then, |f(a)− f(b)| ≤ f(a)f(b)|a− b|. This implies
A. Now, A implies |x − xn| ≤ xn|x′ − x′

n| ≤ xnx′
n|x′′ − x′′

n| ≤ . . . , where x
(k)
n

denotes xn with k layers “peeled off.” Hence,

|x − xn| ≤ xnx′
nx′′

n . . . x(n−1)
n , n ≥ 1. (A.1.5)

Since x
(n−1)
n = 1/qn, (A.1.5) implies B. For C, note that, since qn ≥ 1,

x ≤ 1/[1 + 1/(q2 + 1)] = (q2 + 1)/(q2 + 2). Let a = (c + 1)/(c + 2). Now, if one
of the qk’s is bounded by c, (A.1.5) and C imply |x − xn| ≤ a, as soon as n
is large enough, since all the factors in (A.1.5) are bounded by 1. Similarly, if
two of the qk’s are bounded by c, |x − xn| ≤ a2, as soon as n is large enough.
Continuing in this manner, we obtain D. If qn → ∞, we are done, by B. If not,
then, there is a c, such that qk ≤ c for infinitely many n. By D, we conclude
that the upper and lower limits of (|x − xn|) lie between 0 and aN , for all
N ≥ 1. Since aN → 0, the upper and lower limits are 0. Hence, |x − xn| → 0.

Solutions to exercises 1.6

1.6.1 First, suppose that the decimal expansion of x is as advertised. Then,
the fractional part of 10n+mx is identical to the fractional part of 10mx. Hence,
x(10n+m − 10m) ∈ Z, or x ∈ Q. Conversely, if x = m/n ∈ Q, perform long
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division to obtain the digits: From Exercise 1.3.8, 10m = nd1 + r1, obtaining
the quotient d1 and remainder r1. Similarly, 10r1 = nd2 + r2, obtaining the
quotient d2 and remainder r2. Similarly, 10r2 = nd3 + r3, obtaining d3 and r3,
and so on. Here, d1, d2, . . . are digits (since 0 < x < 1), and r1, r2, . . . are zero
or naturals less than n. At some point the remainders must start repeating,
and, therefore, the digits also.

1.6.2 We assume dN > eN , and let x = .d1d2 · · · = .e1e2 . . . . If

y = .d1d2 . . . dN−1(eN + 1)00 . . . ,

then, x ≥ y. If
z = .e1e2 . . . eN99 . . . ,

then, z ≥ x. Since .99 · · · = 1, z = y. Hence, x = y and x = z. Since x = y,
dN = eN + 1 and dj = 0 for j > N . Since x = z, ej = 9 for j > N . Clearly,
this happens iff 10Nx ∈ Z.

1.6.3 Since 21−1 ≤ 1!, the statement is true for n = 1. Assume it is true for
n. Then, 2(n+1)−1 = 22n−1 ≤ 2n! ≤ (n + 1)n! = (n + 1)!.

1.6.4 From Exercise 1.4.6, (1 + b)n ≥ 1 + nb for b ≥ −1. In this inequality,
replace n by N and b by −1/N(n + 1) to obtain [1 − 1/N(n + 1)]N ≥
1− 1/(n + 1) = n/(n + 1). By Exercise 1.4.7, we may take Nth roots of both
sides, yielding A. B follows by multiplying Aby (n + 1)1/N and rearranging.
If an = 1/n1/N , then, by B,

an − an+1 =
(n + 1)1/N − n1/N

n1/N (n + 1)1/N

≥ 1
N(n + 1)(N−1)/Nn1/N (n + 1)1/N

≥ 1
N(n + 1)1+1/N

.

Summing over n ≥ 1 yields C.

1.6.5 Since e1 = 2 −
√

2 and en+1 ≤ e2
n/2

√
2, e2 ≤ e2

1/2
√

2 = (3 − 2
√

2)/
√

2.
Similarly,

e3 ≤ e2
2

2
√

2

≤ (3 − 2
√

2)2

4
√

2

=
17 − 12

√
2

4
√

2

=
1

4(17
√

2 + 24)
≤ 1

100
.
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Now, assume the inductive hypothesis en+2 ≤ 10−2n

. Then,

e(n+1)+2 = en+3 ≤ e2
n+2

2
√

2
≤ e2

n+2 =
(
10−2n

)2

= 10−2n+1
.

Thus, the inequality is true by induction.

1.6.6 Since [0, 2] = 2[0, 1], given z ∈ [0, 1], we have to find x ∈ C and y ∈ C
satisfying x + y = 2z. Let z = .d1d2d3 . . . . Then, for all n ≥ 1, 2dn is an
even integer satisfying 0 ≤ 2dn ≤ 18. Thus, there are digits, zero or odd (i.e.,
0, 1, 3, 5, 7, 9), d′n, d′′n, n ≥ 1, satisfying d′n+d′′n = 2dn. Now, set x = .d′1d

′
2d

′
3 . . .

and y = .d′′1d′′2d′′3 . . . .

Solutions to exercises 1.7

1.7.1 Since B is countable, there is a bijection f : B → N. Then, f restricted
to A is a bijection between A and f(A) ⊂ N. Thus, it is enough to show that
C = f(A) is countable or finite. If C is finite, we are done, so, assume C is
infinite. Since C ⊂ N, let c1 = min C, c2 = min C \{c1}, c3 = min C \{c1, c2},
etc. Then, c1 < c2 < c3 < . . . . Since C is infinite, Cn = C \ {c1, . . . , cn} is not
empty, allowing us to set cn+1 = min Cn, for all n ≥ 1. Since (cn) is strictly
increasing, we must have cn ≥ n for n ≥ 1. If m ∈ C \ {cn : n ≥ 1}, then, by
construction, m ≥ cn for all n ≥ 1, which is impossible. Thus, C = {cn : n ≥ 1}
and g : N → C given by g(n) = cn, n ≥ 1, is a bijection.

1.7.2 With each rational r, associate the pair f(r) = (m,n), where r = m/n
in lowest terms. Then, f : Q → N2 is an injection. since N2 is countable and
an infinite subset of a countable set is countable, so is Q.

1.7.3 If x ∈
⋃∞

n=1 An, then, x ∈ An for some n. Let n be the least such
natural. Now, since An is countable, there is a natural m ≥ 1 such that x
is the mth element of An. Define f :

⋃∞
n=1 An → N × N by f(x) = (m,n).

Then, f is an injection. Since N×N is countable, we conclude that
⋃∞

n=1 An

is countable. To show that Q × Q is countable, let Q = (r1, r2, r3, . . . ), and,
for each n ≥ 1, set An = {rn} × Q. Then, An is countable for each n ≥ 1.
Hence, so is Q × Q, since it equals

⋃∞
n=1 An.

1.7.4 Suppose that [0, 1] is countable, and list the elements as

a1 = .d11d12 . . .

a2 = .d21d22 . . .

a3 = .d31d32 . . .

. . . .

Let a = .d1d2 . . . , where dn is any digit chosen, such that dn �= dnn, n ≥ 1
(the “diagonal” in the above listing). Then, a is not in the list, so, the list is
not complete, a contradiction. Hence, [0, 1] is not countable.
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1.7.5 Note that i + j = n + 1 implies i3 + j3 ≥ (n + 1)3/8 since at least one
of i or j is ≥ (n + 1)/2. Sum (1.7.6) in the order of N2 given in §1.7:

∑

(m,n)∈N2

1
m3 + n3

=
∞∑

n=1

⎛

⎝
∑

i+j=n+1

1
i3 + j3

⎞

⎠

≤
∞∑

n=1

⎡

⎣
∑

i+j=n+1

8
(n + 1)3

⎤

⎦

=
∞∑

n=1

8n

(n + 1)3
≤ 8

∞∑

n=1

1
n2

< ∞.

1.7.6 Since n−s < 1, the geometric series implies

1
ns − 1

=
n−s

1 − n−s
=

∞∑

m=1

(n−s)m.

Summing over n ≥ 2,

∞∑

n=2

1
ns − 1

=
∞∑

n=2

( ∞∑

m=1

n−sm

)

=
∞∑

m=1

( ∞∑

n=2

n−ms

)

=
∞∑

m=1

Z(ms).

1.7.7 Since
∑

|an| and
∑

|bn| converge, from the text, we know that their
Cauchy product converges. Thus, with cn =

∑
i+j=n+1 aibj and by the triangle

inequality,
∞∑

n=1

|cn| ≤
∞∑

n=1

⎛

⎝
∑

i+j=n+1

|ai| |bj |

⎞

⎠ < ∞.

Hence,
∑∞

n=1 cn converges absolutely. Now, in the difference

DN =
N∑

n=1

⎛

⎝
∑

i+j=n+1

aibj

⎞

⎠−
(

N∑

i=1

ai

)⎛

⎝
N∑

j=1

bj

⎞

⎠

there will be cancellation, with the absolute value of each of the remaining
terms occuring as summands in
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∞∑

n=N+1

⎛

⎝
∑

i+j=n+1

|ai| |bj |

⎞

⎠ .

Thus, DN → 0, as N ↗ ∞. On the other hand, DN →
∑∞

n=1 cn −
(
∑

ai) (
∑

bj), hence, the result.

1.7.8 Let ãn = (−1)n+1an and b̃n = (−1)n+1bn. If
∑

c̃n is the Cauchy product
of
∑

ãn and
∑

b̃n, then,

c̃n =
∑

i+j=n+1

ãib̃j =
∑

i+j=n+1

(−1)i+1(−1)j+1aibj = (−1)n+1cn,

where
∑

cn is the Cauchy product of
∑

an and
∑

bn.

1.7.9 As in Exercise 1.5.13, |xn − xm| ≤ xnx′
nx′′

n . . . x
(n−1)
n , for m ≥ n ≥ 1.

Since x
(n−1)
n = 1/qn, this yields |xn − xm| ≤ 1/qn, for m ≥ n ≥ 1. Hence, if

qn → ∞, (1/qn) is an error sequence for (xn). Now, suppose that qn �→ ∞.
Then, there a c with qn ≤ c for infinitely many n. Hence, if Nn is the
number of qk’s, k ≤ n + 2, bounded by c, limn↗∞ Nn = ∞. Since x

(k)
n ≤

(qk+2 + 1)/(qk+2 + 2), the first inequality above implies that

|xn − xm| ≤
(

c + 1
c + 2

)Nn

, m ≥ n ≥ 1.

Set a = (c + 1)/(c + 2). Then, in this case, (aNn) is an error sequence for
(xn). For the golden mean x, note that x = 1+1/x; solving the quadratic, we
obtain x = (1 ±

√
5)/2. Since x > 0, we must take the +.

A.2 Solutions to Chapter 2

Solutions to exercises 2.1

2.1.1 By the theorem, select a subsequence (nk) such that (ank
) converges to

some a. Now apply the theorem to (bnk
), selecting a sub-subsequence (nkm

)
such that (bnkm

) converges to some b. Then clearly (ankm
) and (bnkm

) converge
to a and b respectively, hence (an, bn) subconverges to (a, b).

2.1.2 For simplicity, we assume a = 0, b = 1. Let the limiting point be
L = .d1d2 . . . . By the construction of L, it is a limit point. Since x∗ is the
smallest limit point (Exercise 1.5.9), x∗ ≤ L. Now, note that if t ∈ [0, 1]
satisfies t ≤ xn for all n ≥ 1, then, t ≤ any limit point of (xn). Hence,
t ≤ x∗. Since changing finitely many terms of a sequence does not change
x∗, we conclude that x∗ ≥ t for all t satisfying t ≤ xn for all but finitely
n. Now, by construction, there are at most finitely many terms xn ≤ .d1.
Hence, .d1 ≤ x∗. Similarly, there are finitely many terms xn ≤ .d1d2. Hence,
.d1d2 ≤ x∗. Continuing in this manner, we conclude that .d1d2 . . . dN ≤ x∗.
Letting N ↗ ∞, we obtain L ≤ x∗. Hence, x∗ = L.
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Solutions to exercises 2.2

2.2.1 If limx→c f(x) �= 0, there is at least one sequence xn → c with xn �= c,
n ≥ 1, and f(xn) �→ 0. From Exercise 1.5.8, this means there is a subsequence
(xkn

) and an N ≥ 1, such that |f(xkn
)| ≥ 1/N , n ≥ 1. But this means that, for

all n ≥ 1, the reals xkn
are rationals with denominators bounded in absolute

value by N . hence, N !xkn
are integers converging to N !c. But this cannot

happen unless N !xkn
= N !c from some point on, i.e., xkn

= c from some point
on, contradicting xn �= c for all n ≥ 1. Hence, the result.

2.2.2 Let L = inf{f(x) : a < x < b}. We have to show that f(xn) → L
whenever xn → a+. So, suppose that xn → a+, and assume, first, xn ↘ a,
i.e., (xn) is decreasing. Then, (f(xn)) is decreasing. Hence, f(xn) decreases to
some limit M . Since f(xn) ≥ L for all n ≥ 1, M ≥ L. If d > 0, then, there is
an x ∈ (a, b) with f(x) < L + d. Since xn ↘ a, there is an n ≥ 1 with xn < x.
Hence, M ≤ f(xn) ≤ f(x) < L + d. Since d > 0 is arbitrary, we conclude that
M = L or f(xn) ↘ L. In general, if xn → a+, x∗

n ↘ a. Hence, f(x∗
n) ↘ L. But

xn ≤ x∗
n, hence, L ≤ f(xn) ≤ f(x∗

n). So, by the ordering property, f(xn) → L.
This establishes the result for the inf. For the sup, repeat the reasoning, or
apply the first case to g(x) = −f(−x).

2.2.3 Assume f is increasing. If a < c < b, then, apply the previous exercise
to f on (c, b), concluding that f(c+) exists. Since f(x) ≥ f(c) for x > c, we
obtain f(c+) ≥ f(c). Apply the previous exercise to f on (a, c) to conclude
that f(c−) exists and f(c−) ≤ f(c). Hence, f(c) is between f(c−) and f(c+).
Now, if a < A < B < b and there are N points in [A,B] where f jumps by
at least δ > 0, then, we must have f(B) − f(A) ≥ Nδ. Hence, given δ and
A, B, there are, at most, finitely many such points. Choosing A = a + 1/n
and B = b − 1/n and taking the union of all these points over all the cases
n ≥ 1, we see that there are, at most, countably many points in (a, b) at which
the jump is at least δ. Now, choosing δ equal 1, 1/2, 1/3, . . . , and taking the
union of all the cases, we conclude that there are, at most, countably many
points c ∈ (a, b) at which f(c+) > f(c−). The decreasing case is obtained by
multiplying by minus.

2.2.4 Choose any c ∈ (a, b), and consider the partition with just two points
a = x0 < x1 < x2 < x3 = b, where x1 = c and x2 = x. Then, the variation
corresponding to this partition is |f(x) − f(c)|. Hence, |f(x) − f(c)| ≤ I for
x > c. Similarly, |f(x) − f(c)| ≤ I for x < c. Hence, f(x) is bounded by
I + |f(c)|.
2.2.5 If f is increasing, then, there are no absolute values in the variation
(2.2.1) which, therefore, collapses to f(xn) − f(x1). Since f is also bounded,
this last quantity is bounded by some number I. Hence, f is of bounded
variation. Now, note f and g of bounded variation implies −f and f + g are
also of bounded variation, since the minus does not alter the absolute values,
and the variation of the sum f + g, by the triangle inequality, is less or equal
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to the sum of the variation of f and the variation of g. This implies the second
statement.

2.2.6 If a < x < y < b, every partition a = x0 < x1 < x2 < · · · < xn =
x < xn+1 = b with xn = x yields, by adding the point {y}, a partition
a = x0 < x1 < x2 < · · · < xn = x < xn+1 = y < xn+2 = b with xn+1 = y.
Since v(x) and v(y) are the sup of the variations over all such partitions,
respectively, this and (2.2.1) yield v(x) + |f(y) − f(x)| ≤ v(y). Hence, v is
increasing and, throwing away the absolute value, v(x) − f(x) ≤ v(y) − f(y),
i.e., v−f is increasing. Thus, f = v− (v−f) is the difference of two increasing
functions. Finally, since 0 ≤ v ≤ I, both v and v − f are bounded.

2.2.7 Look at the partition x1 = 1, x′
1, x2 = 1/2, x′

2, . . . , xn = 1/n, x′
n, where

x′
i is an irrational between xi and xi+1, 1 ≤ i ≤ n (for this to make sense,

take xn+1 = 0). Then, the variation corresponding to this partition is 2sn − 1,
where sn is the nth partial sum of the harmonic series. But sn ↗ ∞.

Solutions to exercises 2.3

2.3.1 Let f be a polynomial with odd degree n and highest order coefficient
a0. Since xk/xn → 0, as x → ±∞, for n > k, it follows that f(x)/xn → a0.
Since xn → ±∞, as x → ±∞, it follows that f(±∞) = ±∞, at least when
a0 > 0. When a0 < 0, the same reasoning leads to f(±∞) = ∓∞. Thus, there
are reals a, b with f(a) > 0 and f(b) < 0. Hence, by the intermediate value
property, there is a c with f(c) = 0.

2.3.2 By definition of µc, |f(x)−f(c)| ≤ µc(δ) when |x−c| < δ. Since |x−c| <
2|x− c| for x �= c, choosing δ = 2|x− a| yields |f(x)− f(c)| ≤ µc(2|x− c|), for
x �= c. If µc(0+) �= 0, setting ε = µc(0+)/2, µc(1/n) ≥ 2ε. By the definition
of the sup in the definition of µc, this implies that, for each n ≥ 1, there is
an xn ∈ (a, b) with |xn − c| ≤ 1/n and |f(xn) − f(c)| ≥ ε. Since the sequence
(xn) converges to c and f(xn) �→ f(c), it follows that f is not continuous at
c. This shows Aimplies B.

2.3.3 Let A = f((a, b)). To show that A is an interval, it is enough to show
that (inf A, sup A) ⊂ A. By definition of inf and sup, there are sequences
mn → inf A and Mn → supA with mn ∈ A, Mn ∈ A. Hence, there are reals
cn, dn with f(cn) = mn, f(dn) = Mn. Since f([cn, dn]) is a compact interval,
it follows that [mn,Mn] ⊂ A for all n ≥ 1. Hence, (inf A, sup A) ⊂ A. For the
second part, if f((a, b)) is not an open interval, then, there is a c ∈ (a, b) with
f(c) a max or a min. But this cannot happen: Since f is strictly monotone
we can always find an x and y to the right and to the left of c such that f(x)
and f(y) are larger and smaller than f(c). Thus, f((a, b)) is an open interval.

2.3.4 Let a = supA. Since a ≥ x for x ∈ A and f is increasing, f(a) ≥ f(x)
for x ∈ A, or f(a) is an upper bound for f(A). Since a = supA, there is a
sequence (xn) ⊂ A with xn → a. By continuity, f(xn) → f(a). Now, let M
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be any upper bound for f(A). Then, M ≥ f(xn), n ≥ 1. Hence, M ≥ f(a).
Thus, f(a) is the least upper bound for f(A). Similarly, for inf.

2.3.5 Let yn = f(xn). From Exercise 2.3.4, f(x∗
n) = sup{f(xk) : k ≥ n} = y∗

n,
n ≥ 1. Since x∗

n → x∗ and f is continuous, y∗
n = f(x∗

n) → f(x∗). Thus,
y∗ = f(x∗). Similarly, for lower stars.

2.3.6 Remember xr is defined as (xm)1/n when r = m/n. Since
[
(x1/n)m

]n

= (x1/n)mn =
[(

x1/n
)n]m

= xm,

xr = (x1/n)m also. With r = m/n ∈ Q and p in Z, (xr)p =
[
(x1/n)m

]p
=

(x1/n)mp = xmp/n = xrp. Now, let r = m/n and s = p/q with m,n, p, q integers
and nq �= 0. Then, [(xr)s]nq = (xr)snq = xrsnq = xmp. By uniqueness of
roots, (xr)s = (xmp)1/nq = xrs. Similarly, (xrxs)nq = xrnqxsnq = xrnq+snq =
x(r+s)nq = (xr+s)nq. By uniqueness of roots, xrxs = xr+s.

2.3.7 We are given ab = sup{ar : 0 < r < b, r ∈ Q}, and we need to show that
ab = c, where c = inf{as : s > b, s ∈ Q}. If r, s are rationals with r < b < s,
then, ar < as. Taking the sup over all r < b yields ab ≤ as. Taking the inf over
all s > b implies ab ≤ c. On the other hand, choose r < b < s rational with
s− r < 1/n. Then, c ≤ as < ara1/n ≤ aba1/n. Taking the limit as n ↗ ∞, we
obtain c ≤ ab.

2.3.8 In this solution, r, s, and t denote rationals. Given b, let (rn) be a
sequence of rationals with rn → b−. If t < bc, then, t < rnc for n large.
Pick one such rn and call it r. Then, s = t/r < c and t = rs. Thus,
t < bc iff t is of the form rs with r < b and s < c. By Exercise 2.3.6,
(ab)c = sup{(ab)s : 0 < s < c} = sup{(sup{ar : 0 < r < b})s : 0 < s < c} =
sup{ars : 0 < r < b, 0 < s < c} = sup{at : 0 < t < bc} = abc.

2.3.9 Since f(x + x′) = f(x)f(x′), by induction, we obtain f(nx) = f(x)n.
Hence, f(n) = f(1)n = an for n natural. Also a = f(1) = f(1 + 0) =
f(1)f(0) = af(0). Hence, f(0) = 1. Since 1 = f(n − n) = f(n)f(−n) =
anf(−n), we obtain f(−n) = a−n for n natural. Hence, f(n) = an for n ∈ Z.
Now, (f(m/n))n = f(n(m/n)) = f(m) = am, so, by uniqueness of roots
f(m/n) = am/n. Hence, f(r) = ar for r ∈ Q. If x is real, choose rationals
rn → x. Then, arn = f(rn) → f(x). Since we know that ax is continuous,
arn → ax. Hence, f(x) = ax.

2.3.10 Given ε > 0, we seek δ > 0, such that |x−1| < δ implies |(1/x)−1| < ε.
By the triangle inequality, |x| = |(x − 1) + 1| ≥ 1 − |x − 1|. So, δ < 1 and
|x − 1| < δ implies |x| > 1 − δ and

∣
∣
∣
∣
1
x
− 1

∣
∣
∣
∣ =

|x − 1|
|x| <

δ

1 − δ
.

Solving δ/(1 − δ) = ε, we have found a δ, δ = ε/(1 + ε), satisfying 0 < δ < 1
and the ε-δ criterion.
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2.3.11 Let An be the set of all real roots of all polynomials with degree d
and rational coefficients a0, a1, . . . , ad, with denominators bounded by n and
satisfying

|a0| + |a1| + · · · + |ad| + d ≤ n.

Since each polynomial has finitely many roots and there are finitely many
polynomials involved here, for each n, the set An is finite. But the set of
algebraic numbers is

⋃∞
n=1 An, hence, is countable.

2.3.12 Let b be a root of f , b �= a, and let f(x) = (x − b)g(x). If b is
rational, then, the coefficients of g are necessarily rational (this follows from
the construction of g in the text) and 0 = f(a) = (a− b)g(a). Hence, g(a) = 0.
But the degree of g is less than the degree of f . This contradiction shows that
b is irrational.

2.3.13 Write f(x) = (x − a)g(x). By the previous exercise, f(m/n) is never
zero. Since ndf(m/n) is an integer,

nd|f(m/n)| = nd|m/n − a| |g(m/n)| ≥ 1,

or ∣
∣
∣a − m

n

∣
∣
∣ ≥ 1

nd|g(m/n)| . (A.2.1)

Since g is continuous at a, choose δ > 0 such that µa(δ) < 1, i.e., such
that |x − a| < δ implies |g(x) − g(a)| ≤ µa(δ) < 1. Then, |x − a| < δ
implies |g(x)| < |g(a)| + 1. Now, we have two cases: Either |a − m/n| ≥ δ
or |a − m/n| < δ. In the first case, we obtain the required inequality with
c = δ. In the second case, we obtain |g(m/n)| < |g(a)| + 1. Inserting this in
the denominator of the right side of (A.2.1) yields

∣
∣
∣a − m

n

∣
∣
∣ ≥ 1

nd(|g(a)| + 1)
,

which is the required inequality with c = 1/[|g(a)| + 1]. Now, let

c = min
(

δ,
1

|g(a)| + 1

)

.

Then, in either case, the required inequality holds with this choice of c.

2.3.14 Let a be the displayed real. Then, a is irrational since its decimal
expansion is not repeating. Let sn denote the nth partial sum. Then, for
k ≥ n, (k + 1)! ≥ n!k and 10n! ≥ 2, so,

|a − sn| =
∞∑

k=n+1

1
10(k+1)!

≤
∞∑

k=n+1

1
10n!k

=
1

(10n!)n+1

∞∑

k=0

1
(10n!)k

≤ 1
(10n!)n+1

∞∑

k=0

1
2k

=
1

(10n!)n
· 2
10n!

.
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Now, write sn = M/N with M ∈ N and N = 10n!. Then, for all ε > 0, choose
n ≥ 1 satisfying 2/10n! < ε. This yields

∣
∣
∣
∣a − M

N

∣
∣
∣
∣ <

ε

Nn
.

By Exercise 2.3.13, this shows that the algebraic order of a is more than n.
Since n ≥ 1 may be chosen arbitrarily large and ε > 0 may be chosen arbitarily
small, a is transcendental.

2.3.15 From §1.6, we know that
∑

n−r converges when r = 1 + 1/N . Given
s > 1 real, we can always choose N with 1 + 1/N < s. The result follows by
comparison.

2.3.16 To show that bloga c = cloga b, apply loga obtaining loga b loga c from
either side. For the second part,

∑
1/5log3 n =

∑
1/nlog3 5 which converges

since log3 5 > 1.

2.3.17 Such an example cannot be continuous by the results of §2.3. Let
f(x) = x + 1/2, 0 ≤ x < 1/2, and f(x) = x − 1/2, 1/2 ≤ x < 1, f(1) = 1.
Then, f is a bijection, hence, invertible.

2.3.18 First, assume f is increasing. Then, by Exercise 2.2.3, f(c−) = f(c) =
f(c+) for all except, at most, countably many points c ∈ (a, b), where there
are at worst jumps. Hence, f is continuous for all but at most countably
many points at which there are at worst jumps. If f is of bounded variation,
then, f = g − h with g and h bounded increasing. But, then, f is continuous
wherever both g and h are continuous. Thus, the set of discontinuities of f is,
at most, countable with the discontinuities at worst jumps.

2.3.19 Let M = sup{f(x) : x ∈ R}. Then, M > −∞. If M < ∞, for each
n ≥ 1, choose xn with f(xn) > M − 1/n. Then, f(xn) → M . If M = ∞, for
each n ≥ 1, choose xn with f(xn) > n. Then, f(xn) → M . Now, from §2.1,
(xn) subconverges to some x where x may equal ±∞. If (xn) subconverges to
±∞, then, f(xn) subconverges to −∞ since f(∞) = f(−∞) = −∞. But this
cannot happen since M > −∞. Hence, (xn) must subconverge to some real x.
Since f is continuous, (f(xn)) must subconverge to f(x). Hence, f(x) = M .
This shows that M is finite and M is a max.

2.3.20 If xn → ∞, then, xny−f(xn) = xn(y−f(xn)/xn) → ∞(y−∞) = −∞
by superlinearity. If xn → −∞, by superlinearity, xny− f(xn) → −∞. Hence,
for each fixed y, the function h(x) = xy−f(x) satisfies h(±∞) = −∞. Hence,
g(y) is well defined by the previous problem. Now, for x > 0 fixed and yn → ∞,
g(yn) ≥ xyn − f(x). Hence,

g(yn)
yn

≥ x − f(x)
yn

.

It follows that the lower limit of (g(yn)/yn) is ≥ x. Since x is arbitrary, it
follows that the lower limit is ∞. Hence, g(yn)/yn → ∞. Since (yn) was any
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sequence converging to ∞, we conclude that limy→∞ g(y)/|y| = ∞. Similarly,
limy→−∞ g(y)/|y| = ∞. Thus, g is superlinear.

2.3.21 Suppose that yn → y. We want to show that g(yn) → g(y). Let L∗ ≥ L∗
be the upper and lower limits of (g(yn)). For all z, g(yn) ≥ zyn − f(z). Hence,
L∗ ≥ zy − f(z). Since z is arbitrary, taking the sup over all z, we obtain
L∗ ≥ g(y). For the reverse inequality, let (y′

n) be a subsequence of (yn) satisfying
g(y′

n) → L∗. Pick, for each n ≥ 1, x′
n with g(y′

n) = x′
ny′

n − f(x′
n). From §2.1,

(x′
n) subconverges to some x, possibly infinite. If x = ±∞, then, superlinearity

(see previous solution) implies the subconvergence of (g(y′
n)) to −∞. But

L∗ ≥ L∗ ≥ g(y) > −∞, so, this cannot happen. Thus, (x′
n) subconverges to a

finite x. Hence, by continuity, g(y′
n) = x′

ny′
n−f(x′

n) subconverges to xy−f(x)
which is ≤ g(y). Since by construction, g(y′

n) → L∗, this shows that L∗ ≤ g(y).
Hence, g(y) ≤ L∗ ≤ L∗ ≤ g(y) or g(yn) → g(y).

2.3.22 Note that 0 ≤ f(x) ≤ 1 and f(x) = 1 iff x ∈ Z. We are supposed
to take the limit in m first, then, n. If x ∈ Q, then, there is an N ∈ N,
such that n!x ∈ Z for n ≥ N . Hence, f(n!x) = 1 for n ≥ N . For such an
x, limm→∞[f(n!x)]m = 1, for every n ≥ N . Hence, the double limit is 1 for
x ∈ Q. If x �∈ Q, then, n!x �∈ Q, so, f(n!x) < 1, so, [f(n!x)]m → 0, as m ↗ ∞,
for every n ≥ 1. Hence, the double limit is 0 for x �∈ Q.

2.3.23 In the definition of µc(δ), we are to maximize |(1/x) − (1/c)| over all
x ∈ (0, 1) satisfying |x − c| < δ or c − δ < x < c + δ. In the first case, if
δ ≥ c, then, c − δ ≤ 0. Hence, all points x near and to the right of 0 satisfy
|x − c| < δ. Since limx→0+(1/x) = ∞, in this case, µc(δ) = ∞. In the second
case, if 0 < δ < c, then, x varies between c − δ > 0 and c + δ. Hence,

∣
∣
∣
∣
1
x
− 1

c

∣
∣
∣
∣ =

|x − c|
xc

is largest when the numerator is largest (|x − c| = δ) and the denominator is
smallest (x = c − δ). Thus,

µc(δ) =

{
δ/(c2 − cδ), 0 < δ < c,

∞, δ ≥ c.

Now, µI(δ) equals the sup of µc(δ) for all c ∈ (0, 1). But, for δ fixed and c → 0+,
δ ≥ c eventually. Hence, µI(δ) = ∞ for all δ > 0. Hence, µI(0+) = ∞, or f is
not uniformly continuous on (0, 1).

2.3.24 Follow the proof of the uniform continuity theorem. If µ(0+) > 0, set
ε = µ(0+)/2. Then, since µ is increasing, µ(1/n) ≥ 2ε for all n ≥ 1. Hence, for
each n ≥ 1, by the definition of the sup in the definition of µ(1/n), there is a
cn ∈ R with µcn

(1/n) > ε. Now, by the definition of the sup in µcn
(1/n), for

each n ≥ 1, there is an xn ∈ R with |xn − cn| < 1/n and |f(xn)− f(cn)| > ε.
Then, by compactness (§2.1), (xn) subconverges to some real x or to x = ±∞.
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It follows that (cn) subconverges to the same x. Hence, ε < |f(xn) − f(cn)|
subconverges to |f(x) − f(x)| = 0, a contradiction.

2.3.25 If
√

2
√

2
is rational, we are done. Otherwise a =

√
2
√

2
is irrational. In

this case, let b =
√

2. Then, ab = (
√

2
√

2
)
√

2 =
√

2
2

= 2 is rational.

A.3 Solutions to Chapter 3

Solutions to exercises 3.1

3.1.1 Since a > 0, f(0) = 0. If a = 1, we already know that f is not
differentiable at 0. If a < 1, then, g(x) = (f(x) − f(0))/(x − 0) = |x|a/x
satisfies |g(x)| → ∞ as x → 0, so, f is not differentiable at 0. If a > 1, then,
g(x) → 0 as x → 0. Hence, f ′(0) = 0.

3.1.2 Since
√

2 is irrational, f(
√

2) = 0. Hence, (f(x) − f(
√

2))/(x −
√

2) =
f(x)/(x −

√
2). Now, if x is irrational, this expression vanishes whereas, if x

is rational with denominator d,

q(x) ≡ f(x) − f(
√

2)
x −

√
2

=
1

d3(x −
√

2)
.

By Exercise 1.4.10 it seems that the limit will be zero, as x →
√

2. To prove
this, suppose that the limit of q(x) is not zero, as x →

√
2. Then, there exists

at least one sequence xn →
√

2 with q(xn) �→ 0. It follows that there is a
δ > 0 and a sequence xn →

√
2 with |q(xn)| ≥ δ. But this implies all the

reals xn are rational. If dn is the denominator of xn, n ≥ 1, we obtain, from
Exercise 1.4.10,

|q(xn)| ≤ d2
n

d3
nc

=
1

dnc
.

Since dn → ∞ (Exercise 2.2.1), we conclude that q(xn) → 0, contradicting
our assumption. Hence, our assumption must be false, i.e., limx→

√
2 q(x) = 0

or f ′(
√

2) = 0.

3.1.3 Since f is superlinear (Exercise 2.3.20), g(y) is finite, and the max is
attained at some critical point x. Differentiating xy− ax2/2 with respect to x
yields 0 = y − ax, or x = y/a for the critical point, which, as previously said,
must be the global max. Hence,

g(y) = (y/a)y − a(y/a)2/2 = y2/2a.

Since f ′(x) = ax and g′(y) = y/a, it is clear they are inverses.

3.1.4 Suppose that g′(R) is bounded above. Then, g′(x) ≤ c for all x. Hence,
g(x) − g(0) = g′(z)(x − 0) ≤ cx for x > 0, which implies g(x)/x ≤ c for
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x > 0, which contradicts superlinearity. Hence, g′(R) is not bounded above.
Similarly, g′(R) is not bounded below.

3.1.5 To show that f ′(c) exists, let xn → c with xn �= c for all n ≥ 1.
Then, for each n ≥ 1 there is a yn strictly between c and xn, such that
f(xn) − f(c) = f ′(yn)(xn − c). Since xn → c, yn → c, and yn �= c for all
n ≥ 1. Since limx→c f ′(x) = L, it follows that f ′(yn) → L. Hence, (f(xn) −
f(c))/(xn − c) → L. Since (xn) was arbitrary, we conclude that f ′(c) = L.

3.1.6 To show that f ′(c) = f ′(c+), let xn → c+. Then, for each n ≥ 1, there is
a yn between c and xn, such that f(xn)−f(c) = f ′(yn)(xn−c). Since xn → c+,
yn → c+. It follows that f ′(yn) → f ′(c+). Hence, (f(xn) − f(c))/(xn − c) →
f ′(c+), i.e., f ′(c) = f ′(c+). Similarly, for f ′(c−).

3.1.7 If a = x0 < x1 < x2 < · · · < xn+1 = b is a partition, the mean value
theorem says f(xk)− f(xk−1) = f ′(zk)(xk − xk−1) for some zk between xk−1

and xk, 1 ≤ k ≤ n + 1. Since |f ′(x)| ≤ I, we obtain |f(xk) − f(xk−1)| ≤
I(xk − xk−1). Summing over 1 ≤ k ≤ n + 1, we see that the variation
corresponding to this partition is ≤ I(b−a). Since the partition was arbitrary,
the result follows.

3.1.8 Let c ∈ Q. We have to show that, for some n ≥ 1, f(c) ≥ f(x) for all
x in (c − 1/n, c + 1/n). If this were not the case, for each n ≥ 1, we can find
a real xn satisfying |xn − c| < 1/n and f(xn) > f(c). But, by Exercise 2.2.1,
we know that f(xn) → 0 since xn → c and xn �= c, contradicting f(c) > 0.
Hence, c must be a local maximum.

3.1.9 If f is even, then, f(−x) = f(x). Differentiating yields −f ′(−x) = f ′(x),
or f ′ is odd. Similarly, if f is odd. If f : R → R is even,

g(−y) = max
−∞<x<∞

(x(−y) − f(x))

= max
−∞<−x<∞

(x(−y) − f(x))

= max
−∞<x<∞

((−x)(−y) − f(−x))

= max
−∞<x<∞

(xy − f(x)) = g(y).

Hence, g is even.

3.1.10 Let g(x) = (f(x) − f(r))/(x − r), x �= r, and g(r) = f ′(r). Then g is
continuous and f(r) = 0 iff f(x) = (x − r)g(x).

3.1.11 As in the previous exercise, set g(x) = f(x)/(x−r1) . . . (x−rd). Then g
is continuous away from r1, . . . , rd. If f(rj) = 0, then limx→rj

g(x) =
f ′(rj)/(rj − r1) . . . (rj − rj−1)(rj − rj+1) . . . (rj − rd). Since g has remov-
able singularities at rj , g can be extended to be continuous there. With
this extension, we have f(x) = (x − r1) . . . (x − rd)g(x). Conversely, if
f(x) = (x − r1) . . . (x − rd)g(x), then f(rj) = 0.
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3.1.12 If a < b and f(a) = f(b) = 0, then by the Mean Value Theorem, there
is a c ∈ (a, b) satisfying f ′(c) = 0. Thus between any two roots of f , there is
a root of f ′.

Solutions to exercises 3.2

3.2.1 Let f(x) = ex. Since f(x) − f(0) = f ′(c)x for some 0 < c < x, we have
ex − 1 = ecx. Since c > 0, ec > 1. Hence, ex − 1 ≥ x for x ≥ 0.

3.2.2 Since g is even (Exercise 3.1.9), it is enough to compute g(y) for y ≥ 0.
In this case, since f(x) ≥ 0, the maximum is attained for x ≥ 0,

g(y) = max
x≥0

(xy − f(x)),

so, we look only at x ≥ 0. Also (xy − f(x))′ = 0 iff y = f ′(x), i.e., y = ex.
Thus, x > 0 is a critical point if y > 1 and x = log y, which gives xy − f(x) =
y log y − y + 1. If 0 ≤ y ≤ 1, the function x �→ xy − f(x) has no critical points
in (0,∞). Hence, it is maximized at x = 0, i.e., g(y) = 0 when 0 ≤ y ≤ 1. If
y > 1, we obtain the critical point x = log y, the corresponding critical value
y log y−y +1, and the endpoint values 0 and −∞. To see which of these three
values is largest, note that (y log y − y + 1)′ = log y > 0 for y > 1 and, thus,
y log y − y + 1 ≥ 0 for y ≥ 1. Hence, g(y) = y log y − y + 1 for y ≥ 1 and
g(y) = 0 for 0 ≤ y ≤ 1.

3.2.3 If f(x) = log(1 + x), then, by l’Hopital’s rule limx→0 log(1 + x)/x =
limx→0 1/(1+x) = 1. This proves the first limit. If a �= 0, set xn = a/n. Then,
xn → 0 with xn �= 0 for all n ≥ 1. Hence,

lim
n↗∞

nlog(1 + a/n) = a lim
n↗∞

log(1 + xn)
xn

= a.

By taking exponentials, we obtain limn↗∞(1 + a/n)n = ea when a �= 0. If
a = 0, this is immediate, so, the second limit is true for all a. Now, if an → a,
then, for some N ≥ 1, a − ε ≤ an ≤ a + ε for all n ≥ N . Hence,

(

1 +
a − ε

n

)n

≤
(
1 +

an

n

)n

≤
(

1 +
a + ε

n

)n

for n ≥ N . Thus, the upper and lower limits of the sequence in the middle lie
between ea−ε and ea+ε. Since ε > 0 is arbitrary, the upper and lower limits
must both equal ea. Hence, we obtain the third limit.

3.2.4 Let b = x/(n + 1), v = (n + 1)/n, and en = (1 + x/n)n. Then, |b| < 1,
so, by (3.2.2), (1 + b)nv ≥ (1 + vb)n. Hence, en+1 ≥ en.

3.2.5 Since p > 1, f is superlinear, so, the max exists. First, note that g
is even by Exercise 3.1.9. Therefore, we need compute g(y) only for y ≥ 0.
If y = 0, we obtain g(0) = 0, whereas, if y > 0, we need consider only
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x > 0 since f(x) ≥ 0, in computing the sup for g(y). To find the critical
points, solve 0 = (xy − f(x))′ = y − f ′(x) for x > 0 obtaining xp−1 = y or
x = y1/(p−1). Plugging this into xy − f(x) yields the required g. Finally, f ′

and g′ are odd, and, for x ≥ 0, f ′(x) = xp−1 and g′(y) = yq−1 are inverses
since (p − 1)(q − 1) = 1.

3.2.6 If f(x) = (1 + x2)−1/2, then, f(x)− f(0) = f ′(c)(x− 0) with 0 < c < x.
Since f ′(c) = −c(1 + c2)−3/2 > −c > −x for x > 0,

1√
1 + x2

− 1 = f ′(c)x ≥ −x2,

which implies the result.

3.2.7 With f(t) = −t−x and f ′(t) = xt−x−1, the left side of the displayed
inequality equals f(2j) − f(2j − 1), which equals f ′(c) with 2j − 1 < c < 2j.
Hence, the left side is xc−x−1 ≤ x(2j − 1)−x−1.

3.2.8 First, suppose that L = 0. If there is no such x, then, f ′ is never zero.
Hence, f ′ > 0 on (a, b) or f ′ < 0 on (a, b), contradicting f ′(c) < 0 < f ′(d).
Hence, there is an x satisfying f ′(x) = 0. In general, let g(x) = f(x) − Lx.
Then, f ′(c) < L < f ′(d) implies g′(c) < 0 < g′(d), so, the general case follows
from the case L = 0.

3.2.9 From Exercise 3.1.4, g′(R) is not bounded above nor below. But g′

satisfies the intermediate value property. Hence, the range of g′ is an interval.
Hence, g′(R) = R.

3.2.10 Note first fd(1) = 1 and

f ′
d(t) =

(
d − 1

d

)2

t−1/d − 1
d2

t−(d+1)/d ≤
(

d − 1
d

)2

, t ≥ 1.

By the mean value theorem,

fd(t) − 1 = fd(t) − fd(1) ≤
(

d − 1
d

)2

(t − 1), t ≥ 1.

Solutions to exercises 3.3

3.3.1 Since f ′(x) = (1/2)−(1/x2), the only positive critical point (Figure A.1)
is x =

√
2. Moreover, f(∞) = f(0+) = ∞, so,

√
2 is a global minimum over

(0,∞), and f(
√

2) =
√

2. Also, f ′′(x) = 2/x3 > 0, so, f is convex.

3.3.2 If a < b < c and t = (b − a)/(c − a), then, b = (1 − t)a + tc. Hence, by
convexity,

f(b) ≤ (1 − t)f(a) + tf(c).



274 A Solutions

Fig. A.1. The graph of (x + 2/x)/2.

Subtracting f(a) from both sides and, then, dividing by b − a yields s[a, b] ≤
s[a, c]. Instead, if we subtract both sides from f(c) and, then, divide by c− b,
we obtain s[a, c] ≤ s[b, c].

3.3.3 Exercise 3.3.2 says x �→ s[c, x] is an increasing function of x. Hence,

f ′
+(c) = lim

t→c+
s[c, t] = inf{s[c, t] : t > c} ≤ s[c, x], x > c

exists. Similarly

f ′
−(d) = lim

t→d−
s[t, d] = sup{s[t, d] : t < d} ≥ s[x, d], x < d

exists. Since s[c, x] ≤ s[x, d] by Exercise 3.3.2, (3.3.9) follows. Also, since
s[y, c] ≤ s[c, x] for y < c < x, inserting c = d in the last two inequalities,
we conclude that f ′

−(c) ≤ f ′
+(c). Moreover, since t < x < s < y implies

s[t, x] ≤ s[s, y], let t → x− and s → y− to get f−(x) ≤ f−(y), hence f− is
increasing. Similarly for f+.

3.3.4 The inequality (3.3.9) implies f ′
+(c) ≤ s[c, x] ≤ f ′

−(d). Mutiplying this
inequality by (x − c) and letting x → c+ yields f(c+) = f(c). Similarly
multiplying f ′

+(c) ≤ s[x, d] ≤ f ′
−(d) by (x − d) and letting x → d− yields

f(d−) = f(d). Since c and d are any reals in (a, b), we conclude f is continuous
on (a, b).

3.3.5 Multiply f ′
+(c) ≤ s[c, x] by (x − c) for x > c and rearrange to get

f(x) ≥ f(c) + f ′
+(c)(x − c), x ≥ c.

Since f ′
+(c) ≥ f ′

−(c), this implies

f(x) ≥ f(c) + f ′
−(c)(x − c), x ≥ c.

Similarly, multiply f ′
−(c) ≥ s[y, c] by (y − c) for y < c and rearrange to get

f(y) ≥ f(c) + f ′
−(c)(y − c), y ≤ c.

Since f ′
+(c) ≥ f ′

−(c) and y − c ≤ 0, this implies

f(y) ≥ f(c) + f ′
+(c)(y − c), y ≤ c.
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Thus
f(x) ≥ f(c) + f ′

±(c)(x − c), a < x < b.

If f is differentiable at c, the second inequality follows since f ′
+(c) = f ′(c) =

f ′
−(c).

3.3.6 If p is a subdifferential of f at c, rearranging the inequality

f(x) ≥ f(c) + p(x − c), a < x < b,

yields
f(x) − f(c)

x − c
≥ p ≥ f(y) − f(c)

y − c

for y < c < x. Letting x → c+ and y → c−, we conclude

f ′
−(c) ≤ p ≤ f ′

+(c).

Conversely, assume f is convex; then f ′
±(c) exist and are subdifferentials of f

at c. If x ≥ c and f ′
−(c) ≤ p ≤ f ′

+(c), we have

f(x) ≥ f(c) + f ′
+(c)(x − c) ≥ f(c) + p(x − c), c ≤ x < b.

Similarly, if x ≤ c, we have

f(x) ≥ f(c) + f ′
−(c)(x − c) ≥ f(c) + p(x − c), a < x ≤ c.

Hence p is a subdifferential of f at c.

3.3.7 If c is a maximum of f , then f(c) ≥ f(x) for a < x < b. Let p be a
subdifferential of f at c: f(x) ≥ f(c)+p(x−c) for a < x < b. Combining these
inequalities yields f(x) ≥ f(x)+ p(x− c) or 0 ≥ p(x− c) for a < x < b. Hence
p = 0 hence f(x) ≥ f(c) from the subdifferential inequality. Thus f(x) = f(c)
for a < x < b.

3.3.8 We are given that f(c) − g(c) ≥ f(x) − g(x) for all a < x < b. Let p
be a subdifferential of f at c: f(x) ≥ f(c) + p(x − c), a < x < b. Combining
these inequalities yields g(x) ≥ g(c) + p(x− c) or p is a subdifferential of g at
c. Hence p = g′(c) by Exercise 3.3.6. Hence f has a unique subdifferential at
c, hence by Exercise 3.3.6 again, f is differentiable at c and f ′(c) = g′(c).

3.3.9 Since fj , j = 1, . . . , n, is convex, we have

fj((1− t)x + ty) < (1− t)fj(x) + tfj(y) ≤ (1− t)f(x) + tf(y), 0 < t < 1,

for each j = 1, . . . , n. Maximizing the left side over j = 1, . . . , n, the result
follows.

3.3.10 Fix a < b and 0 ≤ t ≤ 1. Then

x[(1− t)a+ tb]− f(x) = (1− t)[xa− f(x)]+ t[xb− f(x)] ≤ (1− t)g(a)+ tg(b).
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Since this is true for every x, taking the sup of the left side over x yields the
convexity of g. Now, fix y, and suppose that g(y) = xy − f(x), i.e., x attains
the max in the definition (3.3.7) of g(y). Since g(z) ≥ xz − f(x) for all z, we
get

g(z) ≥ xz − f(x) = xz − (xy − g(y)) = g(y) + x(z − y)

for all z. This shows x is a subdifferential of g at y.

3.3.11 Since f is convex, it is continuous (Exercise 3.3.4). Thus by
Exercise 2.3.20, g is well-defined and superlinear. By Exercise 3.3.10, g is
convex. It remains to derive the formula for f(x). To see this, note, by the
formula for g(y), that f(x) + g(y) ≥ xy for all x and all y, which implies
f(x) ≥ maxy[xy − g(y)]. To obtain equality, we need to show: For each x,
there is a y satisfying f(x)+g(y) = xy. To this end, fix x; by Exercise 3.3.6, f
has a subdifferential p at x. Hence f(t) ≥ f(x)+ p(t−x) for all t which yields
xp ≥ f(x)+ (pt− f(t)). Taking the sup over all t, we obtain xp ≥ f(x)+ g(p).
Since we already know f(x) + g(p) ≥ xp by the definition (3.3.7) of g, we
conclude f(x) + g(p) = xp. Hence f(x) = maxy(xy − g(y)), i.e. (3.3.8) holds.
Note that when f is the Legendre transform of g, then f is necessarily convex;
hence if f is not convex, the result cannot possibly be true.

3.3.12 The only if part was carried out in Exercise 3.3.10. Now fix y and
suppose x is a subdifferential of g at y. Then g(z) ≥ g(y) + x(z − y) for all z.
This implies xy ≥ g(y)+(xz−g(z)) for all z. Maximizing over z and appealing
to Exercise 3.3.11, we obtain xy ≥ g(y) + f(x). Since we already know by
the definition (3.3.7) of g that xy ≤ g(y) + f(x), we conclude x achieves the
maximum in the definition of g. For a counter-example for non-convex f , let
f(x) = 1 − x2 for |x| ≤ 1, f(x) = x2 − 1 for |x| ≥ 1. Then f is superlinear
and continuous, so its Legendre transform g is well-defined and convex. In fact
g(y) = |y|, |y| ≤ 2, g(y) = 1 + y2/4, |y| ≥ 2. The set of subdifferentials of g at
y = 0 is [−1, 1], while x attains the max in (3.3.7) for g(0) iff x = ±1. It may
help to graph f and g.

3.3.13 Since f is convex, f ′ is increasing. By Exercise 2.2.3, this implies
f ′ can only have jump discontinuities. By Exercise 3.2.8, f ′ satisfies the
intermediate value property, hence cannot have jump discontinuities. Hence
f ′ is continuous.

3.3.14 Fix y and suppose the maximum in the definition (3.3.7) of g(y) is
attained at x1 and x2. By strict convexity of f , if x = (x1 + x2)/2, we have

g(y) =
1
2
g(y) +

1
2
g(y) =

1
2
(x1y − f(x1)) +

1
2
(x2y − f(x2)) < xy − f(x),

contradicting the definition of g(y). Thus there can only be one real x at which
the max is attained, hence by Exercise 3.3.12, there is a unique subdifferential
of g at y. By Exercise 3.3.6, this shows g′+(y) = g′−(y) hence g is differentiable
at y. Since g is convex by Exercise 3.3.10, we conclude g′ is continuous by
Exercise 3.3.13.
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3.3.15 We already know g is superlinear, differentiable, and convex, and
xy = f(x)+ g(y) iff x attains the maximum in the definition (3.3.7) of g(y) iff
x is a subdifferential of g at y iff x = g′(y). Similarly, since f is the Legendre
transform of g, we know xy = f(x)+g(y) iff y attains the maximum in (3.3.8)
iff y is a subdifferential of f at x iff y = f ′(x). Thus f ′ is the inverse of g′. By
the inverse function theorem for continuous functions §2.3, it follows that g′

is strictly increasing, hence g is strictly convex.

3.3.16 Here, f ′ does not exist at 0. However, the previous Exercise suggests
that g′ is trying to be the inverse of f ′ which suggests that f ′(0) should be
defined to be (Figure A.2) the line segment [−1, 1] on the vertical axis. Of
course, with such a definition, f ′ is no longer a function, but something more
general (f ′(0) is the set of subdifferentials at 0, see Exercise 3.3.6).

0

− 1

− 1

− 1

1

1

1

f g

f ′ g′

Fig. A.2. The graphs of f , g, f ′, g′ (Exercise 3.3.16).

3.3.17 Since (ex)′′ > 0, ex is convex. Hence, et log a+(1−t) log b ≤ telog a + (1 −
t)elog b. But this simplifies to atb1−t ≤ ta + (1 − t)b.

3.3.18 By Exercise 3.3.15, we know g is superlinear, differentiable, and strictly
convex, with g′(f ′(x)) = x for all x. If g′ is differentiable, differentiating
yields g′′[f ′(x)]f ′′(x) = 1, so, f ′′(x) never vanishes. Since convexity implies
f ′′(x) ≥ 0, we obtain f ′′(x) > 0 for all x. Conversely, if f ′′(x) > 0, by the
inverse function theorem for derivatives §3.2, g is twice differentiable with
g′′(x) = (g′)′(x) = 1/(f ′)′[g′(x)] = 1/f ′′[g′(x)]. Hence g is twice differentiable
and

g′′(x) =
1

f ′′[g′(x)]
.

Since f is smooth, whenever g is n times differentiable, g′ is n − 1 times
differentiable, hence by the right side of this last equation, g′′ is n − 1 times
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differentiable, hence g is n+1 times differentiable. By induction, it follows that
g is smooth. For the counter-example, let f(x) = x4/4. Although f ′′(0) = 0,
since f ′′(x) > 0 for x �= 0, it follows that f is strictly convex on (−∞, 0)
and on (0,∞). From this it is easy to conclude (draw a picture) that f is
strictly convex on R. Also f is superlinear and smooth, but g(y) = (3/4)|y|4/3

(Exercise 3.2.5) is not smooth at 0.

3.3.19 Since (f ′)(j)(ri) = f (j+1)(ri) = 0 for 0 ≤ j ≤ ni − 2, it follows that ri

is a root of f ′ of order ni − 1. Also, by Exercise 3.1.12, there are k − 1 other
roots s1, . . . , sk−1. Since

(n1 − 1) + (n2 − 1) + · · · + (nk − 1) + k − 1 = n − 1,

the result follows. Note if these roots of f are in (a, b), then so are these roots
of f ′.

3.3.20 If f(x) = (x − r1)n1g(x), differentiating j times, 0 ≤ j ≤ n1 − 1,
shows r1 is a root of f of order n1. Since the advertised f has the form
f(x) = (x − ri)nigi(x) for each 1 ≤ i ≤ k, each ri is a root of order ni,
hence f has n roots. Conversely, we have to show that a degree n polynomial
having n roots must be of the advertised form. This we do by induction. If
n = 1, then f(x) = ax + b and f(r) = 0 implies ar + b = 0 hence b = −ar
hence f(x) = a(x − r). Assume the result is true for n − 1, and let f be a
degree n polynomial having n roots. If r1 is a root of f of order n1, define
g(x) = f(x)/(x − r1). Differentiating f(x) = (x − r1)g(x) j + 1 times yields

f (j+1)(x) = jg(j)(x) + (x − r1)g(j+1)(x).

Inserting x = r1 shows g(j)(r1) = 0 for 0 ≤ j ≤ n1 − 2. Thus r1 is a root
of g of order n1 − 1. If ri is any other root of f of order ni, differentiating
g(x) = f(x)/(x− r1) using the quotient rule ni − 1 times and inserting x = ri

shows g(j)(ri) = 0 for 0 ≤ j ≤ ni − 1. Thus ri is a root of g of order ni. We
conclude g has n− 1 roots. Since g is a degree n− 1 polynomial, by induction,
the result follows.

3.3.21 If f has n negative roots, then by Exercise 3.3.20

f(x) = C(x − r1)n1(x − r2)n2 . . . (x − rk)nk

for some distinct negative reals r1, . . . , rk and naturals n1, . . . , nk satisfying
n1 + · · · + nk = n. Hence g(x) = xnf(1/x) satisfies

g(x) = C(1 − r1x)n1(1 − r2x)n2 . . . (1 − rkx)nk

= C ′
(

x − 1
r1

)n1
(

x − 1
r2

)n2

. . .

(

x − 1
rk

)nk

which shows g has n negative roots.
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3.3.22 Since the aj ’s are positive, f has n negative roots by Exercise 3.3.20,
establishing A. B follows from Exercise 3.3.19. C follows from Exercise 3.3.21.
Since the j-th derivative of xk is nonzero iff j ≤ k, the only terms in f that
do not vanish upon n − k − 1 differentiations are

xn +
(

n

1

)

p1x
n−1 + · · · +

(
n

k + 1

)

pk+1x
n−k−1.

This implies

g(x) =
n!

(k + 1)!

(

xk+1 +
(

k + 1
1

)

p1x
k + · · · +

(
k + 1

k

)

pkx + pk+1

)

which implies

h(x) =
n!

(k + 1)!

(

1 +
(

k + 1
1

)

p1x + · · · +
(

k + 1
k

)

pkxk + pk+1x
k+1

)

.

Differentiating these terms k − 1 times yields p. By Exercise 3.3.19, p has
two roots. This establishes D. Since a quadratic with roots has nonnegative
discriminant (Exercise 1.4.5), the result follows.

3.3.23 Since p2
k ≥ pk−1pk+1, 1 ≤ k ≤ n − 1, we have p2

1 ≥ p2 or p1 ≥ p
1/2
2 .

Assume p
1/(k−1)
k−1 ≥ p

1/k
k . Then

p2
k ≥ pk−1pk+1 ≥ p

(k−1)/k
k pk+1

which implies
p
(k+1)/k
k ≥ pk+1.

Taking the (k + 1)-st root, we obtain p
1/k
k ≥ p

1/(k+1)
k+1 . If we have p1 = p

1/2
2 =

· · · = p
1/n
n = m, then from the previous exercise, f(x) equals

xn +
(

n

1

)

mxn−1 + · · · +
(

n

n − 1

)

mn−1x + mn = (x + m)n

by the binomial theorem. Hence all the aj ’s equal m.

Solutions to exercises 3.4

3.4.1 By Taylor’s Theorem, f(c+t) = f(c)+f ′(c)t+f ′′(η)t2/2 with η between
c and c + t. Since f(c + t) ≥ 0 and f ′′(η) ≤ 1/2, we obtain

0 ≤ f(c) + f ′(c)t + t2/4, −∞ < t < ∞.

Hence, the quadratic Q(t) = f(c)+f ′(c)t+ t2/4 has at most one solution. But
this implies (Exercise 1.4.5) f ′(c)2 − 4(1/4)f(c) ≤ 0, which gives the result.
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3.4.2 Since n! ≥ 2n−1 (Exercise 1.6.3),

∑

k≥n+1

1
k!

≤
∑

k≥n+1

21−k = 21−n.

Now choose n = 15. Then, 2n−1 > 104, so, adding the terms of the series
up to n = 15 yields accuracy to four decimals. Adding these terms yields
e ∼ 2.718281829 where ∼ means that the error is < 10−4.

3.4.3 For n = 1, Ais true since we can choose R1(x) = 1. Also B is true for
n = 1 since h(0) = 0. Now, assume that Aand B are true for n. Then,

lim
x→0+

h(n)(x) − h(n)(0)
x

= lim
x→0+

Rn(x)
x

e−1/x = lim
t→∞

tRn(1/t)e−t = 0

since tde−t → 0, as t → ∞, and Rn is rational. Since limx→0−[h(n)(x) −
h(n)(0)]/x = 0, this establishes B for n + 1. Now, establish Afor n + 1 using
the product rule and the fact that the derivative of a rational function is
rational. Thus, Aand B hold by induction for all n ≥ 1.

3.4.4 If n ≥ 100, then,

n! ≥ 101 · 102 · · · · · n ≥ 100 · 100 · · · · · 100 = 100n−100.

Hence, (n!)1/n ≥ 100(n−100)/n, which clearly approaches 100. Thus, the lower
limit of ((n!)1/n) is ≥ 100. Since 100 may be replaced by any N , the result
follows.

3.4.5 Apply the binomial theorem with v = −1/2 to obtain

1√
1 + x

= 1 − 1
2
x +

1
2
· 3
4
x2 − 1

2
· 3
4
· 5
6
x3 + . . . .

Now, replace x by −x2.

3.4.6 If f(x) = log(1 + x), then, f(0) = 0, f ′(x) = 1/(1 + x), f ′′(x) =
−1/(1 + x)2, and f (n)(x) = (−1)n−1(n − 1)!/(1 + x)n for n ≥ 1. Hence,
f (n)(0)/n! = (−1)n−1/n or

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . . .

3.4.7 Inserting x = 0 in the series yields f(0) = a0. Now,

f ′(x) = a1 + 2a2x + 3a2x
2 + . . . ,

so, inserting x = 0 yields f ′(0) = a1. Differentiating the series repeatedly
yields
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f (n)(x) = n!an + (n + 1)!an+1
x

1!
+ (n + 2)!an+2

x2

2!
+ . . . .

Hence, f (n)(0) = n!an or f (n)(0)/n! = an. Thus, the series is the Taylor series
centered at zero.

3.4.8 If 1/(1 + x) =
∑∞

n=0 anxn and log(1 + x) =
∑∞

n=1 bnxn, then, log(1 +
x)/(1 + x) =

∑∞
n=1 cnxn, where

cn = a0bn + a1bn−1 + · · · + an−1b1 + anb0.

Since an = (−1)n, bn = (−1)n−1/n, we obtain

cn =
n∑

i=0

an−ibi =
n∑

i=0

(−1)n−i(−1)i−1/i

= −(−1)n

(

1 +
1
2

+
1
3

+ · · · + 1
n

)

.

3.4.9 First, f(x) = f(0) + f ′(0)x + h(x)x2/2 with h continuous and h(0) =
f ′′(0) = q. So,

f

(
x√
n

)

= 1 +
h(x/

√
n)x2

2n
.

Now, apply Exercise 3.2.3 with an = h(x/
√

n)x2/2 → qx2/2 to obtain the
result.

3.4.10 Since sinh(±∞) = ±∞, sinh(R) = R. Since sinh′ = cosh > 0, sinh is
bijective, hence, invertible. Note that cosh2 − sinh2 = 1, so,

cosh2(arcsinh x) = 1 + x2.

The derivative of arcsinh : R → R is (by the IFT)

arcsinh′(x) =
1

sinh′(arcsinh x)
=

1
cosh(arcsinh x)

=
1√

1 + x2
.

Since 1/
√

1 + x2 is smooth, so is arcsinh. Now, cosh is superlinear since
cosh x ≥ e|x|/2 and strictly convex since cosh′′ = cosh > 0. Hence, the max in

g(y) = max
−∞<x<∞

(xy − cosh(x))

is attained at x = arcsinh y. We obtain g(y) = y arcsinh y −
√

1 + y2.

3.4.11 With an = (−1)n/4n(n!)2, use the ratio test,

|an|
|an+1|

= 4(n + 1)2 → ∞.
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Hence, the radius ρ equals ∞.

3.4.12 Here, neither the ratio test nor the root test work. If |x| ≥ 1, by the
nth term test, the series diverges, whereas, if |x| < 1, the series converges
absolutely by comparison with the geometric series. Hence, R = 1.

3.4.13 For n = 0, this is immediate. If n ≥ 1,
(
−1/2

n

)

=

(
− 1

2

) (
− 1

2 − 1
)
. . .

(
− 1

2 − n + 1
)

1 · 2 · · · · · n

=
(−1)n1 · 3 · 5 · · · · · (2n − 1)

2nn!

=
(−1)n1 · 2 · 3 · 4 · · · · · (2n − 1) · (2n)

2nn! · 2 · 4 · 6 · · · · · (2n)

=
(−1)n(2n)!

2nn! · 2n · 1 · 2 · 3 · · · · · n

=
(−1)n(2n)!

4n(n!)2
.

3.4.14 Inserting −x for x in the series yields f(−x) = a0 − a1x + a2x
2 − . . . .

Hence,

fe(x) =
f(x) + f(−x)

2
= a0 + a2x

2 + . . . .

But f is even iff f = fe, so, the result follows. The odd case is similar.

3.4.15 Define h(t) by et = 1+t+t2h(t)/2, t �= 0. Then, et−1 = t(1+th(t)/2),
and, by the exponential series, limt→0 h(t) = 1. Now,

1
et − 1

− 1
t

=
1

t[1 + th(t)/2]
− 1

t

=
1
t

[
1

1 + th(t)/2
− 1

]

=
1
t
· th(t)/2
1 + th(t)/2

=
−h(t)/2

1 + th(t)/2
.

This shows that the limit is −1/2.

3.4.16 Establish the first identity by induction. If k = 1, we have
(

x
d

dx

)(
1

1 − x

)

= x

(
1

1 − x

)′
=

x

(1 − x)2
= − 1

1 − x
+

1
(1 − x)2

.

Now assume the identity is true for k; differentiate it to get
(

x
d

dx

)k+1( 1
1 − x

)

= x
d

dx

k∑

j=0

aj

(1 − x)j+1

=
k∑

j=0

(j + 1)xaj

(1 − x)j+2
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=
k∑

j=0

−(j + 1)aj

(1 − x)j+1
+

k∑

j=0

(j + 1)aj

(1 − x)j+2
.

This establishes the inductive step. For the second assertion, note

∞∑

n=1

nk

2n
=
(

x
d

dx

)k ( 1
1 − x

)∣∣
∣
∣
∣
x=1/2

by differentiating the geometric series under the summation sign. The result
follows by plugging x = 1/2 into the first assertion.

Solutions to exercises 3.5

3.5.1 We have to show that (xx′+yy′)2 ≤ (x2+y2)(x′2+y′2). By multiplying,
show that

(xx′ + yy′)2 + (xy′ − x′y)2 = (x2 + y2)(x′2 + y′2).

This implies Cauchy–Schwarz.

3.5.2 Since sin2 + cos2 = 1, tan2 +1 = 1/ cos2, or cos2 = 1/(1 + tan2). Hence,
cos2(θ/2) = 1/(1 + t2), which gives

cos θ = 2 cos(θ/2)2 − 1 =
2

1 + t2
− 1 =

1 − t2

1 + t2
.

Also,

sin θ = 2 sin(θ/2) cos(θ/2) = 2t cos2(θ/2) =
2t

1 + t2
.

Also,

tan θ = sin θ/ cos θ =
2t

1 − t2
.

3.5.3 f is differentiable at all nonzero reals, hence, continuous there. Since
|f(x)| ≤ |x|, f is also continuous at x = 0. Compute the variation of f
corresponding to the partition xk = 2/(kπ), k = 1, . . . , n. Since f(xk) =
0 for k even and f(xk) = ±2/kπ for k odd, the variation is larger than
(2/π)(1/2 + 1/3 + · · · + 1/n). Hence, f is not of bounded variation near 0.

3.5.4 If x �= 0, then, f ′(x) = 2x sin(1/x) − cos(1/x). If x = 0, then, f ′(0) =
limx→0 f(x)/x = limx→0 x sin(1/x) = 0. Hence, |f ′(x)| ≤ 1+2|x| for all x. By
Exercise 3.1.7, f is of bounded variation on any bounded interval.

3.5.5 If (x′, y′) = (x cos θ − y sin θ, x sin θ + y cos θ) and (x′′, y′′) = (x′ cos φ −
y′ sinφ, x′ sin φ + y′ cos φ), then, by the addition formulas,

x′′ = (x cos θ − y sin θ) cos φ − (x sin θ + y cos θ) sin φ
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= x(cos θ cos φ − sin θ sinφ) − y(sin θ cos φ + cos θ sin φ)
= x cos(θ + φ) − y sin(θ + φ).

Similarly,
y′′ = x sin(θ + φ) + y cos(θ + φ).

Thus, Rθ ◦ Rφ = Rθ+φ.

3.5.6 Draw the line L through C parallel to the line through A and B, and
mark two points A′ and B′ on L, one on either side of C. Then, by rotation
and translation invariance, ∠CAB = ∠ACA′, and ∠ABC = ∠B′CB. Hence,

∠ABC + ∠BCA + ∠CAB = ∠B′CB + ∠BCA + ∠ACA′ = B′CA′ = π

since B′, C, and A′ all lie on L.

3.5.7 It is enough to show that xn/n! ≥ xn+1/(n + 1)! for 0 ≤ x ≤ 3 and
n ≥ 3. But, simplifying, we see that the inequality holds iff x ≤ n + 1, which
is true, since x ≤ 3 ≤ n + 1.

3.5.8 If (z, w) = (x cos θ − y sin θ, x sin θ + y cos θ) and (z′, w′) = (x′ cos θ −
y′ sin θ, x′ sin θ + y′ cos θ), then,

zz′ + ww′ = (x cos θ − y sin θ)(x′ cos θ − y′ sin θ)
+(x sin θ + y cos θ)(x′ sin θ + y′ cos θ)

= (xx′ + yy′)(cos2 θ + sin2 θ) = xx′ + yy′.

3.5.9 Since both sides are translation invariant, we may assume that B = O,
A = (a, a′), and C = (c, c′). Then,

|AC|2 = (a − c)2 + (a′ − c′)2 = (a2 + a′2) + (c2 + c′
2) − 2(ac + a′c′)

= |AO|2 + |OC|2 − 2|AO| |OC| cos(AOC)

by (3.5.5).

3.5.10 Let θ = π/9. Then, sin(8θ) = sin(θ) since 8θ + θ = 9θ = π. Hence,

sin θ = sin(8θ)
= 2 sin(4θ) cos(4θ)
= 4 sin(2θ) cos(2θ) cos(4θ)
= 8 sin(θ) cos(θ) cos(2θ) cos(4θ).

Now, divide both sides by 8 sin θ.

3.5.11 sin(π/3) = sin(π − π/3) by (3.5.3). Hence,

sin(π/3) = sin(2π/3) = 2 sin(π/3) cos(π/3),
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or cos(π/3) = 1/2, which implies sin(π/3) =
√

3/2 and tan(π/3) =
√

3.
From (3.5.2), we obtain sin(π/2−x) = cos x and cos(π/2−x) = sin x. Hence,
sin(π/6) = 1/2, cos(π/6) =

√
3/2, and tan(π/6) = 1/

√
3. Also, 0 = cos(π/2) =

2 cos(π/4)2 − 1, so, cos(π/4) = 1/
√

2, sin(π/4) = 1/
√

2, and tan(π/4) = 1.

3.5.12 Let sn denote the sum on the left. Since 2 cos a sin b = sin(a + b) −
sin(a − b) from (3.5.3), with a = x and b = x/2,

sin(x/2)s1 = sin(x/2) + 2 cos x sin(x/2)
= sin(x/2) + sin(3x/2) − sin(x/2) = sin(3x/2).

Thus, the result is true when n = 1. Assuming the result is true for n and
repeating the same reasoning with a = (n + 1)x and b = x/2,

sin(x/2)sn+1 = sin(x/2) (sn + 2 cos((n + 1)x))
= sin((n + 1/2)x) + 2 sin(x/2) cos((n + 1)x)
= sin((n + 1/2)x) + sin((n + 3/2)x) − sin((n + 1/2)x)
= sin((n + 3/2)x).

This derives the result for n + 1. Hence, the result is true for all n ≥ 1.

3.5.13 Divide 2 cos(2x) = 2 cos2 x − 2 sin2 x by sin(2x) = 2 sin x cos x.

3.5.14 The first identity is established using the double-angle formula. When
n = 2, the identity (3.5.6) says (x4 − 1) = (x2 − 1)(x2 + 1) and is true. Now,
assume the validity of the identity (3.5.6) for n. To obtain (3.5.6) with 2n
replacing n, replace x by x2 in (3.5.6) and use the first identity. Then,

x4n − 1
x4 − 1

=
n−1∏

k=1

[
x4 − 2x2 cos(kπ/n) + 1

]

=
n−1∏

k=1

[
x2 − 2x cos(kπ/2n) + 1

]
·

n−1∏

k=1

[
x2 − 2x cos(π − kπ/2n) + 1

]

=
n−1∏

k=1

[
x2 − 2x cos(kπ/2n) + 1

]
·

n−1∏

k=1

[
x2 − 2x cos((2n − k)π/2n) + 1

]

=
n−1∏

k=1

[
x2 − 2x cos(kπ/2n) + 1

]
·

2n−1∏

k=n+1

[
x2 − 2x cos(kπ/2n) + 1

]

=
∏

k �=n
1≤k≤2n−1

[
x2 − 2x cos(kπ/2n) + 1

]

=
1

(x2 + 1)
·
2n−1∏

k=1

[
x2 − 2x cos(kπ/2n) + 1

]
.
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Multiplying by (x4 − 1) = (x2 − 1)(x2 + 1), we obtain the result.

3.5.15 Let an = 1/n and cn = cos(nx), n ≥ 1. Then, for x �∈ 2πZ, by
Exercise 3.5.12, the sequence bn = c1 + · · · + cn, n ≥ 1, is bounded. Hence,
by the Dirichlet test,

∑
cos(nx)/n converges.

Solutions to exercises 3.6

3.6.1 With dv = exdx and u = cos x, v = ex and du = − sin x dx. So,

I =
∫

ex cos x dx = ex cos x +
∫

ex sinx dx.

Repeat with dv = exdx and u = sin x. We get v = ex and du = cos x dx.
Hence, ∫

ex sin x dx = ex sinx −
∫

ex cos x dx.

Now, insert the second equation into the first to yield

I = ex cos x + [ex sinx − I] .

Solving for I yields
∫

ex cos x dx =
1
2

(ex cos x + ex sinx) .

3.6.2 Let u = arcsin x. Then, x = sin u, so, dx = cos u du. So,
∫

earcsin xdx =
∫

eu cos u du =
1
2
eu (sin u + cos u)

by Exercise 3.6.1. Since cos u =
√

1 − x2, we obtain
∫

earcsin xdx =
1
2
earcsin x

(
x +

√
1 − x2

)
.

3.6.3
∫

x + 1√
1 − x2

dx =
∫

x√
1 − x2

dx +
∫

dx√
1 − x2

= −1
2

∫
d(1 − x2)√

1 − x2
+ arcsin x

= −(1 − x2)1/2 + arcsin x = arcsin x −
√

1 − x2.
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3.6.4 If u = arctanx, then,
∫

arctan x

1 + x2
dx =

∫

u du =
1
2
u2 =

1
2
(arctan x)2.

3.6.5 If u = (log x)2 and dv = x2dx, then, v = x3/3 and du = 2(log x)dx/x.
Hence, ∫

x2(log x)2dx =
1
3
x3(log x)2 − 2

3

∫

x2 log x dx.

If u = log x and dv = x2dx, then, v = x3/3 and du = dx/x. Hence,
∫

x2 log x dx =
1
3
x3 log x − 1

3

∫

x2dx =
1
3
x3 log x − 1

9
x3.

Now, insert the second integral into the first equation, and rearrange to obtain
∫

x2(log x)2dx =
x3

27
(
9 log2 x − 6 log x + 2

)
.

3.6.6 Take u =
√

1 − e−2x. Then, u2 = 1 − e−2x, so, 2udu = 2e−2xdx =
2(1 − u2)dx. Hence,

∫ √
1 − e−2xdx =

∫
u2du

1 − u2
=
∫

du

1 − u2
− u =

1
2

log
(

1 + u

1 − u

)

− u

which simplifies to
∫ √

1 − e−2xdx = log
(
1 +

√
1 − e−2x

)
+ x −

√
1 − e−2x.

3.6.7 Since | sin | ≤ 1, F ′(0) = limx→0 F (x)/x = limx→0 x sin(1/x) = 0.
Moreover,

F ′(x) = 2x sin(1/x) − cos(1/x), x �= 0.

So, F ′ is not continuous at zero.

3.6.8 If f is of bounded variation, then, its discontinuities are, at worst, jumps
(Exercise 2.3.18). But, if f = F ′, then, f is a derivative and Exercise 3.1.6
says f cannot have any jumps. Thus, f must be continuous.

3.6.9 Let θ = arcsin
√

x. Then, x = sin2 θ and the left side of (3.6.5) equals
2θ. Now, 2x − 1 = 2 sin2 θ − 1 = − cos(2θ), so, the right side equals

π/2 − arcsin(cos(2θ)) = arccos[cos(2θ)] = 2θ.
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3.6.10 Since (arcsin x)′ = 1/
√

1 − x2 and the derivative of the exhibited
series is the Taylor series (Exercise 3.4.5) of 1/

√
1 − x2, the result follows

from the theorem in this section.

3.6.11 Integration by parts: With u = f(x) and dv = e−xdx, v = −e−x, and
du = f ′(x)dx. So,

∫

e−xf(x)dx = −e−xf(x) +
∫

e−xf ′(x)dx.

Repeating this procedure with derivatives of f replacing f , we obtain the
result.

3.6.12 Divide the first equation in (3.5.2) by the second equation in (3.5.2). You
obtain the tangent formula. Set a = arctan(1/5) and b = arctan(1/239). Then,
tan a = 1/5, so, tan(2a) = 5/12, so, tan(4a) = 120/119. Also, tan b = 1/239,
so,

tan(4a − b) =
tan(4a) − tan b

1 + tan(4a) tan b
=

(120/119) − (1/239)
1 + (120/119)(1/239)

=
120 · 239 − 119
119 · 239 + 120

= 1.

Hence, 4a − b = π/4.

3.6.13 Since

arctan x = x − x3

3
+

x5

5
− x7

7
+ . . .

is alternating with decreasing terms (as long as 0 < x < 1), plugging in x = 1/5
and adding the first two terms yields arctan(1/5) = .1973 with an error less
than the third term which is less than 1×10−4. Now, plugging x = 1/239 into
the first term yields .00418 with an error less than the second term which is
less than 10−6. Since 16 times the first error plus 4 times the second error is
less than 10−2, π = 16 arctan(1/5)− 4 arctan(1/239) = 3.14 with an error less
than 10−2.

3.6.14 If θ = arcsin(sin 100), then, sin(θ) = sin 100 and |θ| ≤ π/2. But 32π =
32× 3.14 = 100.48, and 31.5π = 98.9, with an error less than 32× 10−2 = .32.
Hence, we are sure that 31.5π < 100 < 32π or −π/2 < 100 − 32π < 0, i.e.,
θ = 100 − 32π.

3.6.15 Let u = 1 − x2. Then, du = −2xdx. Hence,
∫ −4x

1 − x2
dx =

∫
2du

u
= 2 log u = 2 log(1 − x2).

3.6.16 Completing the square, x2 −
√

2x + 1 = (x − 1/
√

2)2 + 1/2. So, with
u =

√
2x − 1 and v = (

√
2x − 1)2 + 1 = 2x2 − 2

√
2x + 2 = 2(x2 −

√
2x + 1),



A.4 Solutions to Chapter 4 289

∫
4
√

2 − 4x

x2 −
√

2x + 1
dx =

∫
8
√

2 − 8x

(
√

2x − 1)2 + 1
dx

=
∫

4
√

2
(
√

2x − 1)2 + 1
dx − 2

∫
2
√

2(
√

2x − 1)
(
√

2x − 1)2 + 1
dx

=
∫

4du

u2 + 1
− 2

∫
dv

v

= 4arctan u − 2 log v + 2 log 2
= 4 arctan(

√
2x − 1) − 2 log(x2 −

√
2x + 1).

3.6.17 Let sn(x) denote the nth partial sum in (3.6.3). Then, if 0 < x < 1,
by the Leibnitz test,

s2n(x) ≤ log(1 + x) ≤ s2n−1(x), n ≥ 1.

In this last inequality, the number of terms in the partial sums is finite. Letting
x ↗ 1, we obtain

s2n(1) ≤ log 2 ≤ s2n−1(1), n ≥ 1.

Now, let n ↗ ∞.

A.4 Solutions to Chapter 4

Solutions to exercises 4.1

4.1.1 The first subrectangle thrown out has area (1/3) × 1 = 1/3, the next
two each have area 1/9, the next four each have area 1/27, and so on. So, the
areas of the removed rectangles sum to (1/3)(1 + (2/3) + (2/3)2 + . . . ) = 1.
Hence, the area of what is left, C ′, is zero. At the nth stage, the width of each
of the remaining rectangles in C ′

n is 3−n. Since C ′ ⊂ C ′
n, no rectangle in C ′

can have width greater than 3−n. Since n ≥ 1 is arbitrary, no open rectangle
can lie in C ′.

4.1.2 Here, the widths of the removed rectangles sum to α/3+2α/32+4α/33+
· · · = α, so, the area of what is left, Cα, is 1 − α > 0. At the nth stage, the
width of each of the remaining rectangles in Cα

n is 3−nα. Since Cα ⊂ Cα
n , no

rectangle in Cα can have width greater than 3−nα. Since n ≥ 1 is arbitrary,
no open rectangle can lie in Cα.

4.1.3 Here, all expansions are ternary. Since [0, 2]× [0, 2] = 2C0, given (x, y) ∈
C0, we have to find (x′, y′) ∈ C and (x′′, y′′) ∈ C satisfying x′ + x′′ = 2x and
y′ + y′′ = 2y. Let x = .d1d2d3 . . . and y = .e1e2e3 . . . . Then, for all n ≥ 1, 2dn

and 2en are 0, 2, or 4. Thus, there are digits d′n, d′′n, e′n, e′′n,n ≥ 1, equalling 0 or
2 and satisfying d′n + d′′n = 2dn and e′n + e′′n = 2en. Now, set x′ = .d′1d

′
2d

′
3 . . . ,

y′ = .e′1e
′
2e

′
3 . . . , x′′ = .d′′1d′′2d′′3 . . . , y′′ = .e′′1e′′2e′′3 . . . .
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Solutions to exercises 4.2

4.2.1 If Q is a rectangle, then, so is −Q and ‖Q‖ = ‖−Q‖. If (Qn) is a paving
of A, then, (−Qn) is a paving of −A, so,

area (−A) ≤
∞∑

n=1

‖−Qn‖ =
∞∑

n=1

‖Qn‖.

Since area (A) is the inf of the sums on the right, we obtain area (−A) ≤
area (A). Applying this to −A, instead of A, yields area (A) ≤ area (−A) which
yields reflection invariance, when combined with the previous inequality. For
monotonicity, if A ⊂ B and (Qn) is a paving of B, then, (Qn) is a paving of
A. So, area (A) ≤

∑∞
n=1 ‖Qn‖. Since the inf of the sums on the right over all

pavings of B equals area (B), area (A) ≤ area (B).

4.2.2 Let L be a line segment. If L is vertical, we already know that area (L) =
0. Otherwise, by translation and dilation invariance, we may assume that
L = {(x, y) : 0 ≤ x ≤ 1, y = mx}. If Qi = [(i−1)/n, i/n]× [m(i−1)/n,mi/n],
i = 1, . . . , n, then, (Q1, . . . , Qn) is a paving of L and

∑n
i=1 ‖Qi‖ = m/n.

Since n ≥ 1 is arbitrary, we conclude that area (L) = 0. Since any line L is a
countable union of line segments, by subadditivity, area (L) = 0. Or just use
rotation-invariance to rotate L into the y-axis.

4.2.3 First, write P = A∪B∪C, where A and B are triangles with horizontal
bases and C is a rectangle, all intersecting only along their edges. Since the
sum of the naive areas of A, B, and C is the naive area of P , subadditivity
yields

area (P ) ≤ area (A) + area (B) + area (C)
= ‖A‖ + ‖B‖ + ‖C‖ = ‖P‖.

To obtain the reverse inequality, draw two triangles B and C with horizontal
bases, such that P ∪B∪C is a rectangle and P , B, and C intersect only along
their edges. Then, the sum of the naive areas of P , B, and C equals the naive
area of P ∪ B ∪ C, so, by subadditivity of area,

‖P‖ + ‖B‖ + ‖C‖ = ‖P ∪ B ∪ C‖
= area (P ∪ B ∪ C)
≤ area (P ) + area (B) + area (C)
≤ area (P ) + ‖B‖ + ‖C‖.

Cancelling ‖B‖ and ‖C‖, we obtain the reverse inequality ‖P‖ ≤ area (P ).

4.2.4 If T is the trapezoid, T can be broken up into the union of a rectangle
and two triangles. As before, by subadditivity, this yields area (T ) ≤ ‖T‖. Also
two triangles can be added to T to obtain a rectangle. As before, this yields
‖T‖ ≤ area (T ).
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4.2.5 By extending the sides of the rectangles, A ∪ B can be decomposed
into the union of finitely many rectangles intersecting only along their edges
(seven rectangles in the general case). Moreover, since A ∩ B is one of these
rectangles and is counted twice, using subadditivity, we obtain area (A ∪ B) ≤
area (A) + area (B) − area (A ∩ B). To obtain the reverse inequality, add two
rectangles C and D, to fill in the corners, obtaining a rectangle A∪B∪C ∪D,
and proceed as before.

4.2.6 If Q is a rectangle, then, H(Q) is a rectangle and ‖H(Q)‖ = |k| · ‖Q‖.
If (Qn) is a paving of A, then, (H(Qn)) is a paving of H(A). So,

area [H(A)] ≤
∞∑

n=1

‖H(Qn)‖ =
∞∑

n=1

|k| · ‖Qn‖ = |k|
∞∑

n=1

‖Qn‖.

Taking the inf over all pavings of A yields area [H(A)] ≤ |k| · area (A). In this
last inequality replace A by H−1(A) and k by 1/k to obtain |k| · area (A) ≤
area (H(A)). Thus, area [H(A)] = |k| · area (A). V is similar.

4.2.7 Suppose that (X,Y ) = (ax + by, cx + dy) and (x, y) lies on a line with
rise m and run n, (x, y) = (nt+ p,mt+ q). Then, (X,Y ) = (Nt+P,Mt+Q),
where M = cn+dm and N = an+bm, or (X,Y ) lies on a line with rise M and
run N . Thus, L sends lines to lines. Since the slope of the new line depends
only on the slope of the old line, parallel lines are sent to parallel lines. Hence,
parallelograms are sent to parallelograms. Now, L is a bijection iff the pair of
equations (X,Y ) = (ax + by, cx + dy) can be solved uniquely for (x, y). But
these equations are equivalent to (dX−bY,−cX +dY ) = (ad−bc)(x, y) which
can be solved iff det L = ad − bc �= 0. Moreover, the solution is K(X,Y ) =
(dX − bY,−cX + aY )/det L = (AX + BY,CX + DY ). So, A = d/det L,
B = −b/det L, C = −c/det L, and D = a/det L, which shows that K is
linear and detK = AD − BC = 1/det L.

4.2.8 If Q = [0, 1] × [0, 1], then, L(Q) is a parallelogram with corners (0, 0)
(a, c), (b, d), and (a+b, c+d). Since we know that the formulas for the areas of
rectangles and parallelograms, we obtain (4.2.12) in this case (draw a picture).
By dilation invariance, then, we obtain (4.2.12) when Q is any rectangle with
the bottom left corner at the origin. By translation invariance, (4.2.12), then,
is true for any rectangle Q. Now, use pavings as in Exercise 4.2.6 to obtain
half of (4.2.12). Use invertibility to obtain the other half.

4.2.9 If L is not invertible, then, ad− bc = 0 or ad = bc. With the notation of
solution 4.2.7, this implies cX = aY and dX = bY . Thus, if not all of a, b, c, d
are zero, at least one of the sets A = {(X,Y ) : cX = aY }, A′ = {(X,Y ) :
dX = bY } is a line passing through the origin and L(R2) ⊂ A ∩ A′. This
shows that L(R2) is contained in a line, when not all of a, b, c, d are zero.
When a = b = c = d = 0, we have (X,Y ) = (0, 0). Hence, L(R2) = {(0, 0)} is,
again, contained in a line. Thus, in either case, L(R2) is contained in a line.
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Since a line has zero area and det(L) = 0, in this case, both sides of (4.2.12)
are equal.

4.2.10 If (a, b) is in the unit disk, then, a2 + b2 < 1. Hence, |a| < 1. Hence,
√(√

2 − a
)2

+ (0 − b)2 ≥ |
√

2 − a| ≥
√

2 − |a| ≥
√

2 − 1.

Hence, d(D, {(
√

2, 0)}) > 0. For the second part, let (an) denote a sequence
of rationals converging to

√
2. Then, (an, 0) ∈ Q × Q, and

d((an, 0), (
√

2, 0)) → 0, n ↗ ∞.

4.2.11 For 1 > h > 0, let D+
h = {(x, y) ∈ D+ : y > h}. Then, D+ \ D+

h is
contained in a rectangle with area h, and D+

h and D− = {(x, y) ∈ D : y < 0}
are well separated. By reflection invariance, area (D+) = area (D−). So, by
subadditivity,

area (D) ≥ area
(
D+

h ∪ D−) = area
(
D+

h

)
+ area

(
D−)

≥ area
(
D+

)
− area

(
D+ \ D+

h

)
+ area

(
D+

)

≥ 2 · area
(
D+

)
− h.

Since h > 0 is arbitrary, we obtain area (D) ≥ 2 · area (D+). The reverse
inequality follows by subadditivity.

4.2.12 The derivation is similar to the derivation of area (C) = 0 presented
at the end of §4.2.

4.2.13 If T is the triangle joining (0, 0), (a, b), (a,−b), where

(a, b) = (cos(π/n), sin(π/n)),

then, area (T ) = sin(π/n) cos(π/n). Since Dn is the union of n triangles T1, . . . ,
Tn, each having the same area as T (rotation invariance), subadditivity yields
area (Dn) ≤ n sin(π/n) cos(π/n) = n sin(2π/n)/2. The reverse inequality is
obtained by shrinking each triangle Ti towards its center and using well
separated additivity.

4.2.14 Let α denote the inf on the right side. Since (Tn) is a cover, we obtain
area (A) ≤

∑∞
n=1 area (Tn) =

∑∞
n=1 ‖Tn‖. Hence, area (A) ≤ α. On the other

hand, if (Qn) is any paving of A, write each Qn = Tn ∪T ′
n as the union of two

triangles to obtain a triangular paving (Tn) ∪ (T ′
n). Hence,

α ≤
∞∑

n=1

‖Tn‖ + ‖T ′
n‖ =

∞∑

n=1

‖Qn‖.

Taking the inf over all pavings (Qn), we obtain α ≤ area (A).
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4.2.15 Assume not. Then, for every rectangle Q, area (Q ∩ A) ≤ α · area (Q).
If (Qn) is any paving of A, then, (Qn ∩ A) is a cover of A. So

area (A) ≤
∞∑

n=1

area (Qn ∩ A) ≤ α

∞∑

n=1

area (Qn) .

Taking the inf of the right side over all (Qn), area (A) ≤ α · area (A). Since
α < 1, this yields area (A) = 0.

Solutions to exercises 4.3

4.3.1 Apply dilation invariance to g(x) = f(x)/x. Then,
∫ ∞

0

f(kx)x−1 dx = k

∫ ∞

0

f(kx)(kx)−1 dx = k

∫ ∞

0

g(kx) dx

= k · 1
k

∫ ∞

0

g(x) dx =
∫ ∞

0

f(x)x−1 dx.

4.3.2 Let G be the subgraph of f over (a, b), and let H(x, y) = (−x, y).
Then, H(G) equals {(−x, y) : a < x < b, 0 < y < f(x)}. But this equals
{(x, y) : −b < x < −a, 0 < y < f(−x)}, which is the subgraph of f(−x) over
(−b,−a). Thus, by Exercise 4.2.6,

∫ b

a

f(x) dx = area (G) = area (H(G)) =
∫ −a

−b

f(−x) dx.

4.3.3 Since f is uniformly continuous on [a, b], there is a δ > 0, such that
µ(δ) < ε/(b− a). Here, µ is the uniform modulus of continuity of f over [a, b].
In §2.3, we showed that, with this choice of δ, for any partition a = x0 < x1 <
· · · < xn+1 = b of mesh < δ and choice of intermediate points x#

1 , . . . , x#
n+1,

the piecewise constant function g(x) = f(x#
i ), xi−1 < x < xi, 1 ≤ i ≤ n + 1,

satisfies |f(x) − g(x)| < ε/(b − a) over (a, b). Now, by additivity,

∫ b

a

[g(x) ± ε/(b − a)] dx =
n+1∑

i=1

f(x#
i )(xi − xi−1) ± ε,

and
g(x) − ε/(b − a) < f(x) < g(x) + ε/(b − a), a < x < b.

Hence, by monotonicity,

n+1∑

i=1

f(x#
i )(xi − xi−1) − ε ≤

∫ b

a

f(x) dx ≤
n+1∑

i=1

f(x#
i )(xi − xi−1) + ε,
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which is to say that
∣
∣
∣
∣
∣
I −

n+1∑

i=1

f(x#
i )(xi − xi−1)

∣
∣
∣
∣
∣
≤ ε.

4.3.4 Since f(x) ≤ x = g(x) on (0, 1) and the subgraph of g is a triangle, by
monotonicity,

∫ 1

0
f(x) dx ≤

∫ 1

0
x dx = 1/2. On the other hand, the subgraph

of g equals the union of the subgraphs of f and g − f . So, by subadditivity,

1/2 =
∫ 1

0

g(x) dx ≤
∫ 1

0

f(x) dx +
∫ 1

0

[g(x) − f(x)] dx.

But g(x)− f(x) > 0 iff x ∈ Q. So, the subgraph of g − f is a countable (§1.7)
union of line segments. By subadditivity, again, the area

∫ 1

0
[g(x)− f(x)] dx of

the subgraph of g − f equals zero. Hence,
∫ 1

0
f(x) dx = 1/2.

4.3.5 Suppose that g is a constant c ≥ 0, and let G be the subgraph of f .
Then, the subgraph of f + c is the union of the rectangle Q = (a, b) × (0, c]
and the vertical translate G + (0, c). Thus, by subadditivity and translation
invariance,

∫ b

a

[f(x) + g(x)] dx = area [Q ∪ (G + (0, c))]

≤ area (G) + area (Q)

=
∫ b

a

f(x) dx +
∫ b

a

g(x) dx.

Let αQ denote the centered dilate of Q, 0 < α < 1. Then, αQ and G + (0, c)
are well separated. So,

∫ b

a

[f(x) + g(x)] dx ≥ area [αQ ∪ (G + (0, c))]

= area (G) + α2 area (Q)

=
∫ b

a

f(x) dx + α2

∫ b

a

g(x) dx.

Let α → 1 to get the reverse inequality. Thus, the result is true when g is
constant. If g is piecewise constant over a partition a = x0 < x1 < · · · < xn+1 =
b, then, apply the constant case to the intervals (xi−1, xi), i = 1, . . . , n + 1,
and sum.

4.3.6 By subadditivity,
∫∞
0

f(x) dx ≤
∑∞

n=1

∫ n

n−1
f(x) dx =

∑∞
n=1 cn. For the

reverse inequality,
∫ ∞

0

f(x) dx ≥
∫ N

0

f(x) dx =
N∑

n=1

∫ n

n−1

f(x) dx =
N∑

n=1

cn.
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Now, let N ↗ ∞. This establishes the nonnegative case. Now, apply the
nonnegative case to |f |. Then, f is integrable iff

∑
|cn| < ∞. Now, apply

the nonnegative case to f+ and f−, and subtract to get the result for the
integrable case.

4.3.7 To be Riemann integrable, the Riemann sum must be close to a specific
real I for any partition with small enough mesh and any choice of intermediate
points x#

1 , . . . , x#
n+1. But, for any partition a = x0 < x1 < · · · < xn+1 = b,

with any mesh size, we can choose intermediate points that are irrational,
leading to a Riemann sum of 1. We can also choose intermediate points that
are rational, leading to a Riemann sum of 0. Since no real I can be close to 0
and 1, simultaneously, f is not Riemann integrable.

4.3.8 Apply the integral test to f(x) = g(xδ) to get

∫ ∞

1

g(xδ) dx ≤
∞∑

n=1

g(nδ) ≤
∫ ∞

1

g(xδ) dx + g(δ).

By dilation invariance,

∫ ∞

δ

g(x) dx ≤ δ

∞∑

n=1

g(nδ) ≤
∫ ∞

δ

g(x) dx + δg(δ).

Since g is bounded, δg(δ) → 0, as δ → 0+. Now, let δ → 0+, and use continuity
at the endpoints.

4.3.9 If f is even and nonnegative or integrable, by Exercise 4.3.2,

∫ b

−b

f(x) dx =
∫ 0

−b

f(x) dx +
∫ b

0

f(x) dx

=
∫ b

0

f(−x) dx +
∫ b

0

f(x) dx

= 2
∫ b

0

f(x) dx.

If f is odd and integrable,

∫ b

−b

f(x) dx =
∫ 0

−b

f(x) dx +
∫ b

0

f(x) dx

=
∫ b

0

f(−x) dx +
∫ b

0

f(x) dx = 0.

4.3.10 By the previous Exercise,
∫∞
−∞ e−a|x| dx = 2

∫∞
0

e−ax dx. By the integral
test,

∫∞
1

e−ax dx ≤
∑∞

n=1 e−an = 1/(1 − e−a) < ∞. Hence,
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∫ ∞

0

e−ax dx =
∫ 1

0

e−ax dx +
∫ ∞

1

e−ax dx ≤ 1 +
1

1 − e−a
.

4.3.11 Since f is superlinear, for any M > 0, there is a b > 0, such
that f(x)/x > M for x > b. Hence,

∫∞
b

esxe−f(x) dx ≤
∫∞

b
e(s−M)x dx =

∫∞
b

e−(M−s)|x| dx. Similarly, there is an a < 0 such that f(x)/(−x) > M

for x < a. Hence,
∫ a

−∞ esxe−f(x) dx ≤
∫ a

−∞ e(s+M)x dx =
∫ a

−∞ e−(M+s)|x| dx.
Since f is continuous, f is bounded on (a, b), hence, integrable over (a, b).
Thus, with g(x) = esxe−f(x),

∫ ∞

−∞
esxe−f(x) dx =

∫ a

−∞
g(x) dx +

∫ b

a

g(x) dx +
∫ ∞

b

g(x) dx

≤
∫ a

−∞
e−(M+s)|x| dx +

∫ b

a

esxe−f(x) dx +
∫ ∞

b

e−(M−s)|x| dx,

which is finite, as soon as M is chosen > |s|.
4.3.12 Suppose that there were such a δ. First, choose f(x) = 1, for all x ∈ R,
in (4.3.12) to get

∫∞
−∞ δ(x) dx = 1. Thus, δ is integrable over R. Now, let f

equal 1 at all points except at zero, where we set f(0) = 0. Then, (4.3.12)
fails because the integral is still 1, but the right side vanishes. However, this
is of no use, since we are assuming (4.3.12) for f continuous only. Because of
this, we let fn(x) = 1 for |x| ≥ 1/n and fn(x) = n|x| for |x| ≤ 1/n. Then, fn

is continuous and nonnegative. Hence, by monotonicity,

0 ≤
∫

|x|≥1/n

δ(x) dx ≤
∫ ∞

−∞
δ(x)fn(x) dx = fn(0) = 0,

for all n ≥ 1. This shows that
∫
|x|≥1/n

δ(x) dx = 0 for all n ≥ 1. But, by
continuity at the endpoints,

1 =
∫ ∞

−∞
δ(x) dx =

∫ 0

−∞
δ(x) dx +

∫ ∞

0

δ(x) dx

= lim
n↗∞

(∫ −1/n

−∞
δ(x) dx +

∫ ∞

1/n

δ(x) dx

)

= lim
n↗∞

(0 + 0) = 0,

a contradiction.

4.3.13 By Exercise 3.3.5 with x = c ± δ,

f(c ± δ) − f(c) ≥ ±f ′
±(c)δ.

Since f ′
+ is increasing,
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f ′
+(c)δ ≥

∫ c

c−δ

f ′
+(x) dx.

Also, since f ′
− is increasing,

f ′
−(c)δ ≤

∫ c+δ

c

f ′
−(x) dx.

Combining these inequalities yields (4.3.13). Now note that f ′
± are both

increasing and therefore bounded on [a, b] between f ′
±(a) and f ′

±(b), hence
integrable on (a, b). Select n ≥ 1 and let δ = (b − a)/(n + 1) and a = x0 <
x1 < · · · < xn < xn+1 = b be the partition of [a, b] given by xi = a + iδ,
i = 0, . . . , n + 1. Then applying (4.3.13) at c = xi yields

f(xi+1) − f(xi) ≥
∫ xi

xi−1

f ′
+(x) dx.

Summing over 1 ≤ i ≤ n, we obtain

f(b) − f(a + δ) ≥
∫ b−δ

a

f ′
+(x) dx.

Let δ → 0. Since f is continuous (Exercise 3.3.4) and integrable, continuity
at the endpoints implies

f(b) − f(a) ≥
∫ b

a

f ′
+(x) dx.

Similarly,

f(xi) − f(xi−1) ≤ f ′
−(xi)δ ≤

∫ xi+1

xi

f ′
−(x) dx.

Summing over 1 ≤ i ≤ n, we obtain

f(b − δ) − f(a) ≤
∫ b

a+δ

f ′
−(x) dx.

Now let δ → 0. Since f ′
−(t) ≤ f ′

+(t), the result follows.

Solutions to exercises 4.4

4.4.1 F (x) = e−sx/(−s) is a primitive of f(x) = e−sx, and e−sx is positive.
So, ∫ ∞

0

e−sx dx =
1
−s

e−sx

∣
∣
∣
∣

∞

0

=
1
s
, s > 0.



298 A Solutions

4.4.2 xr/r is a primitive of xr−1 for r �= 0, and log x is a primitive, when
r = 0. Thus,

∫ 1

0
dx/x = log x|10 = 0 − (−∞) = ∞ and

∫∞
1

dx/x = log x|∞1 =
∞− 0 = ∞. Hence, all three integrals are equal to ∞, when r = 0. Now,

∫ 1

0

xr−1 dx =
1
r
− 1

r
lim

x→0+
xr =

{
1
r , r > 0,

∞, r < 0.

Also,
∫ ∞

1

xr−1 dx =
1
r

lim
x→∞

xr − 1
r

=

{
− 1

r , r < 0,

∞, r > 0.

Since
∫∞
0

=
∫ 1

0
+
∫∞
1

,
∫∞
0

xr−1 dx = ∞ in all cases.

4.4.3 Pick c in (a, b). Since any primitive F differs from Fc by a constant, it is
enough to verify the result for Fc. But f bounded and (a, b) bounded implies
f integrable. So, Fc(a+) and Fc(b−) exist and are finite by continuity at the
endpoints.

4.4.4 Take u = 1/x and dv = sin x dx. Then, du = −dx/x2 and v = − cos x.
So,

∫ b

1

sinx

x
dx =

− cos x

x

∣
∣
∣
∣

b

1

+
∫ b

1

cos x

x2
dx.

But, by (4.3.1), cos x/x2 is integrable over (1,∞). So, by continuity at the
endpoints,

lim
b→∞

∫ b

1

sinx

x
dx = cos 1 +

∫ ∞

1

cos x

x2
dx.

Since F (b) −
∫ b

1
sin x(dx/x) does not depend on b, F (∞) exists and is finite.

4.4.5 The function g(t) = e−t is strictly monotone with g((0,∞)) = (0, 1).
Now, apply substitution.

4.4.6 Let u = xn and dv = e−sx dx. Then, du = nxn−1 dx, and v = e−sx/(−s).
Hence, ∫ ∞

0

e−sxxn dx =
e−sxxn

−s

∣
∣
∣
∣

∞

0

+
n

s

∫ ∞

0

e−sxxn−1 dx.

If we call the integral on the left In, this says that In = (n/s)In−1. Iterating
this down to n = 0 yields In = n!/sn since I0 = 1/s from Exercise 4.4.1.

4.4.7 Call the integrals Is and Ic. Let u = sin(sx) and dv = e−nx dx. Then,
du = s cos(sx) dx and v = e−nx/(−n). So,

Is =
e−nx sin(sx)

−n

∣
∣
∣
∣

∞

0

+
s

n

∫ ∞

0

e−nx cos(sx) dx =
s

n
Ic.
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Now, let u = cos(sx) and dv = e−nx dx. Then, du = −s sin(sx) dx and
v = e−nx/(−n). So

Ic =
e−nx cos(sx)

−n

∣
∣
∣
∣

∞

0

− s

n

∫ ∞

0

e−nx sin(sx) dx =
1
n
− s

n
Is.

Thus, nIs = sIc, and nIc = 1 − sIs. Solving, we obtain Is = s/(n2 + s2) and
Ic = n/(n2 + s2).

4.4.8 Let u = tx−1 and dv = e−t2/2t dt. Then, du = (x − 1)tx−2 dt, and
v = −e−t2/2. So,

∫ ∞

0

e−t2/2tx dx = −e−t2/2tx−1
∣
∣
∣
∞

0
+ (x − 1)

∫ ∞

0

e−t2/2tx−2 dt

= (x − 1)
∫ ∞

0

e−t2/2tx−2 dt.

If In =
∫∞
0

e−t2/2tn dt, then,

I2n+1 = 2n · I2n−1 = 2n · (2n − 2)I2n−3

= · · · = 2n · (2n − 2) . . . 4 · 2 · I1 = 2nn!I1.

But, substituting u = t2/2, du = t dt yields

I1 =
∫ ∞

0

e−t2/2t dt =
∫ ∞

0

e−u du = 1.

4.4.9 Let u = (1 − t)n and dv = tx−1 dt. Then, du = −n(1 − t)n−1 dt, and
v = tx/x. So,

∫ 1

0

(1 − t)ntx−1 dt =
(1 − t)ntx

x

∣
∣
∣
∣

1

0

+
n

x

∫ 1

0

(1 − t)n−1tx+1 dt

=
n

x

∫ 1

0

(1 − t)n−1tx+1 dt.

Thus, integrating by parts increases the x by 1 and decreases the n by 1.
Iterating this n times,

∫ 1

0

(1 − t)ntx−1 dt =
n · (n − 1) · · · · · 1

x · (x + 1) · · · · · (x + n − 1)
·
∫ 1

0

tx+n−1 dt.

But
∫ 1

0
tx+n−1 dt = 1/(x + n). So,

∫ 1

0

(1 − t)ntx−1 dt =
n!

x · (x + 1) · · · · · (x + n)
.
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4.4.10 Let t = − log x, x = e−t. Then, from Solutions to exercises 5 and 6,
∫ 1

0

(− log x)n dx =
∫ ∞

0

e−ttn dt = n!.

4.4.11 Let In =
∫ 1

−1
(x2 − 1)n dx and u = (x2 − 1)n, dv = dx. Then,

In = x(x2 − 1)n
∣
∣1
−1

− 2n

∫ 1

−1

(x2 − 1)n−1x2 dx

= −2nIn − 2nIn−1.

Solving for In, we obtain

In = − 2n

2n + 1
In−1 = · · · = (−1)n 2n · (2n − 2) · · · · · 2

(2n + 1) · (2n − 1) · · · · · 3 · 2

since I0 = 2.

4.4.12 Let f(x) = (x2−1)n. Then, Pn(x) = f (n)(x)/2nn!. Note that f(±1) =
0, f ′(±1) = 0, . . . , and f (n−1)(±1) = 0, since all these derivatives have at
least one factor (x2 − 1) by the product rule. Hence, integrating by parts,

∫ 1

−1

f (n)(x)f (n)(x) dx = −
∫ 1

−1

f (n−1)(x)f (n+1)(x) dx

increases one index and decreases the other. Iterating, we get
∫ 1

−1

Pn(x)2 dx =
1

(2nn!)2

∫ 1

−1

[
f (n)(x)

]2
dx =

(−1)n

(2nn!)2

∫ 1

−1

f(x)f (2n)(x) dx.

But f is a polynomial of degree 2n with highest order coefficient 1. Hence,
f (2n)(x) = (2n)!. So,

∫ 1

−1

Pn(x)2 dx =
(−1)n(2n)!

(2nn!)2

∫ 1

−1

(x2 − 1)n dx.

Now, inserting the result of the previous Exercise and simplifying leads to
2/(2n + 1).

4.4.13 By the integral test, ζ(s) differs from
∫∞
1

x−s dx by, at most, 1. But
∫∞
1

x−s dx converges for s > 1 by Exercise 4.4.2.

4.4.14 Here, f(x) = 1/x and
∫ n+1

1
f(x) dx = log(n + 1). Since 1/(n + 1) → 0,

by the integral test,

γ = lim
n↗∞

(

1 +
1
2

+
1
3

+ · · · + 1
n
− log n

)
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= lim
n↗∞

[

1 +
1
2

+
1
3

+ · · · + 1
n

+
1

n + 1
− log(n + 1)

]

= lim
n↗∞

[

f(1) + f(2) + · · · + f(n) −
∫ n+1

1

f(x) dx

]

exists and satisfies 0 < γ < 1.

4.4.15 Call the integrals Ic
n and Is

n. Then, Is
0 = 0, and Ic

n = 0, n ≥ 0, since
the integrand is odd. Also, Is

n = 2
∫ π

0
x sin(nx) dx since the integrand is even.

Now, for n ≥ 1,
∫ π

0

x sin(nx) dx = −x cos(nx)
n

∣
∣
∣
∣

π

0

+
1
n

∫ π

0

cos(nx) dx

= −π cos(nπ)
n

+
1
n
· sin(nx)

n

∣
∣
∣
∣

π

0

=
(−1)n−1π

n
.

Thus, Is
n = 2π(−1)n−1/n, n ≥ 1.

4.4.16 By oddness,
∫ π

−π
sin(nx) cos(mx) dx = 0 for all m,n ≥ 0. For m �= n,

using (3.5.3),
∫ π

−π

sin(nx) sin(mx) dx =
1
2

∫ π

−π

[cos((n − m)x) − cos((n + m)x)] dx

=
1
2

(
sin((n − m)x)

n − m
− sin((n + m)x)

n + m

)∣
∣
∣
∣

π

−π

= 0.

For m = n,
∫ π

−π

sin(nx) sin(mx) dx =
1
2

∫ π

−π

[1 − cos(2nx)] dx

=
1
2
[x − sin(2nx)/2n]

∣
∣
∣
∣

π

−π

= π.

Similarly, for
∫ π

−π
cos(nx) cos(mx) dx. Hence,

∫ π

−π

cos(nx) cos(mx) dx =
∫ π

−π

sin(nx) sin(mx) dx =

{
0, n �= m,

π, n = m.

4.4.17 By linearity, q(t) = at2+2bt+c where a =
∫ b

a
g(t)2 dt, b =

∫ b

a
f(t)g(t) dt,

and c =
∫ b

a
f(t)2 dt. Since q is nonnegative, q has at most one root. Hence,

b2 − ac ≤ 0, which is Cauchy–Schwarz.
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4.4.18 By substituting t = n(1 − s), dt = nds, and equation (2.3.2),

∫ n

0

1 − (1 − t)n

t
dt =

∫ 1

0

1 − sn

1 − s
ds

=
∫ 1

0

[
1 + s + · · · + sn−1

]
ds

= 1 +
1
2

+ · · · + 1
n

.

4.4.19 Continuity of F was established in §4.3. Now, f is continuous on the
subinterval (xi−1, xi). Hence, F (x) = F (xi−1) + Fxi−1(x) is differentiable by
the (first version of) the fundamental theorem.

4.4.20 For any f , let I(f) =
∫ b

a
f(x) dx. If g : [a, b] → R is nonnegative

and continuous, we can (§2.3) find a piecewise constant gε ≥ 0, such that
gε(x) ≤ g(x) + ε ≤ gε(x) + 2ε on a ≤ x ≤ b. By monotonicity,

I(gε) ≤ I(g + ε) ≤ I(gε + 2ε).

But, by Exercise 4.3.5, I(g+ε) = I(g)+ε(b−a) and I(gε+2ε) = I(gε)+2ε(b−a).
Hence,

I(gε) ≤ I(g) + ε(b − a) ≤ I(gε) + 2ε(b − a),

or
|I(g) − I(gε)| ≤ ε(b − a).

Similarly, since f(x) + gε(x) ≤ f(x) + g(x) + ε ≤ f(x) + gε(x) + 2ε,

|I(f + g) − I(f) − I(gε)| ≤ ε(b − a),

where we have used Exercise 4.3.5, again. Thus, |I(f + g) − I(f) − I(g)| ≤
2ε(b − a). Since ε is arbitrary, we conclude that I(f + g) = I(f) + I(g).

4.4.21 Let mi = g(ti), i = 0, 1, . . . , n + 1. For each i = 1, . . . , n + 1, define
#i : (m,M) → {0, 1} by setting #i(x) = 1 if x is between mi−1 and mi and
#i(x) = 0, otherwise. Since the mi’s may not be increasing, for a given x,
more than one #i(x), i = 1, . . . , n + 1, may equal one. In fact, for any x not
equal to the mi’s,

#(x) = #1(x) + · · · + #n+1(x).

Since G is strictly monotone on (ti−1, ti),

∫ ti

ti−1

f(g(t))|g′(t)| dt =
∫ mi

mi−1

f(x) dx =
∫ M

m

f(x)#i(x) dx.

Now, add these equations over 1 ≤ i ≤ n + 1 to get
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∫ b

a

f(g(t))|g′(t)| dt =
n+1∑

i=1

∫ M

m

f(x)#i(x) dx

=
∫ M

m

n+1∑

i=1

f(x)#i(x) dx =
∫ M

m

f(x)#(x) dx.

Here, the last equality follows from the fact that #(x) and
∑n+1

i=1 #i(x) differ
only on finitely many points in (m,M).

4.4.22 If a = x0 < x1 < · · · < xn+1 = b is a partition, then,

|f(xi) − f(xi−1)| =

∣
∣
∣
∣
∣

∫ xi

xi−1

f ′(x) dx

∣
∣
∣
∣
∣
≤
∫ xi

xi−1

|f ′(x)| dx

by the fundamental theorem. Summing this over 1 ≤ i ≤ n + 1 yields the
first part. Also, since this was any partition, taking the sup over all partitions
shows that the total variation is ≤

∫ b

a
|f ′(x)| dx. Call this last integral I. To

show that the total variation equals I, given ε, we will exhibit a partition
whose variation is within ε of I. Now, since |f ′| is continuous over [a, b],
|f ′| is Riemann integrable. Hence (Exercise 4.3.3), given ε > 0, there is a
partition a = x0 < x1 < · · · < xn+1 = b whose corresponding Riemann sum∑n+1

i=1 |f ′(x#
i )|(xi−xi−1) is within ε of I, for any choice of intermediate points

x#
i , i = 1, . . . , n + 1. But, by the mean value theorem,

n+1∑

i=1

|f(xi) − f(xi−1)| =
n+1∑

i=1

|f ′(x#
i )|(xi − xi−1)

for some intermediate points x#
i , i = 1, . . . , n + 1. Thus, the variation of this

partition is within ε of I.

Solutions to exercises 4.5

4.5.1 Let Q = (a, b) × (c, d). If (x, y) ∈ Q and (x′, y′) �∈ Q, then, the distance
from (x, y) to (x′, y′) is no smaller than the distance from (x, y) to the boundary
of Q, which, in turn, is no smaller than the minimum of |x − a| and |x − b|.
4.5.2 Let Qn = (−1/n, 1/n) × (−1/n, 1/n), n ≥ 1. Then, Qn is an open set
for each n ≥ 1, and

⋂∞
n=1 Qn is a single point {(0, 0)}, which is not open.

4.5.3 If Q is compact, then, Qc is a union of four open rectangles. So, Qc is
open. So, Q is closed. If Cn, n ≥ 1, is closed, then, Cc

n is open. So,
( ∞⋂

n=1

Cn

)c

=
∞⋃

n=1

Cc
n



304 A Solutions

is open. Hence,
⋂∞

n=1 Cn is closed. Let Qn = [0, 1]× [1/n, 1], n ≥ 1. Then, Qn

is closed, but
∞⋃

n=1

Qn = [0, 1] × (0, 1]

is not.

4.5.4 It is enough to show that Cc is open. But Cc is the union of the
four sets (draw a picture) (−∞, a) × R, (b,∞) × R, (a, b) × (−∞, 0), and
{(x, y) : a < x < b, y > f(x)}. The first three sets are clearly open, whereas
the fourth is shown to be open using the continuity of f , exactly as in the text.
Thus, C is closed. Since C contains the subgraph of f , area (C) ≥

∫ b

a
f(x) dx.

On the other hand, C is contained in the union of the subgraph of f +ε/(1+x2)
with La and Lb. Thus,

area (C) ≤
∫ b

a

[f(x) + ε/(1 + x2)] dx + area (La) + area (Lb)

=
∫ b

a

f(x) dx + ε

∫ b

a

dx

1 + x2
≤
∫ b

a

f(x) dx + ε

∫ ∞

−∞

dx

1 + x2

=
∫ b

a

f(x) dx + επ.

Since ε > 0 is arbitrary, the result follows.

4.5.5 Distance is always nonnegative, so ( ⇐⇒ means iff),

C is closed ⇐⇒ Cc is open
⇐⇒ d((x, y), (Cc)c) > 0 iff (x, y) ∈ Cc

⇐⇒ d((x, y), C) > 0 iff (x, y) ∈ Cc

⇐⇒ d((x, y), C) = 0 iff (x, y) ∈ C.

This is the first part. For the second, let (x, y) ∈ Gn. If α = 1/n−d((x, y), C) >
0 and |x − x′| < ε, |y − y′| < ε, then, d((x′, y′), C) ≤ d((x, y), C) + 2ε =
1/n + 2ε−α, by the triangle inequality. Thus, for ε < α/2, (x′, y′) ∈ Gn. This
shows that Qε ⊂ Gn, where Qε is the open rectangle centered at (x, y) with
sides of length 2ε. Thus, Gn is open, and

⋂∞
n=1 Gn = {(x, y) : d((x, y), C) = 0},

which equals C.

4.5.6 Given ε > 0, we have to find an open superset G of A satisfying
area (G) ≤ area (A) + ε. If area (A) = ∞, G = R2 will do. If area (A) < ∞,
choose a paving (Qn), such that

∑∞
n=1 area (Qn) < area (A) + ε. Then, G =⋃∞

n=1 Qn is open, G contains A, and

area (G) = area

( ∞⋃

n=1

Qn

)

≤
∞∑

n=1

area (Qn) < area (A) + ε.
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For the second part, let α = inf{area (G) : A ⊂ G,G open}. Choosing G as
above, α ≤ area (G) ≤ area (A) + ε for all ε. Hence, α ≤ area (A). Conversely,
monotonicity implies that area (A) ≤ area (G) for any superset G. Hence,
area (A) ≤ α.

4.5.7 For each ε > 0, by Exercise 4.5.6, choose Gε open such that A ⊂ Gε

and area (Gε) ≤ area (A) + ε. Let I =
⋂∞

n=1 G1/n. Then, I is interopen, and
area (I) ≤ infn≥1 area

(
G1/n

)
≤ infn≥1(area (A)+1/n) = area (A). But I ⊃ A.

So, area (I) ≥ area (A).

4.5.8 We already know that the intersection of a sequence of measurable
sets is measurable. By De Morgan’s law (§1.1), Mn measurable implies the
complement M c

n is measurable. So,
( ∞⋃

n=1

Mn

)c

=
∞⋂

n=1

M c
n

is measurable. So, the complement
⋃∞

n=1 Mn is measurable.

4.5.9 Let Cn and C be as in §4.1. Since Cn is a finite union of compact
rectangles, Cn is closed. Since C =

⋂∞
n=1 Cn, C is closed.

4.5.10 Let Pk, k = 0, . . . , n, denote the vertices of D′
n. It is enough to show

that the closest approach to O of the line joining Pk and Pk+1 is at the midpoint
M = (Pk + Pk+1)/2, where the distance to O equals 1. Let θk = kπ/n. Then,
the distance squared from the midpoint to O is given by

[cos(2θk) + cos(2θk+1)]2 + [sin(2θk) + sin(2θk+1)]2

4 cos(θ1)2

=
2 + 2[cos(2θk) cos(2θk+1) + sin(2θk) sin(2θk+1)]

4 cos2(θ1)

=
2 + 2 cos(2θ1)

4 cos2(θ1)
= 1.

Thus, the distance to the midpoint is 1. To show that this is the minimum,
check that the line segments OM and PkPk+1 are perpendicular.

4.5.11 Here, an = n sin(π/n) cos(π/n), and a′
n = n tan(π/n). So, ana′

n =
n2 sin2(π/n). But a2n = 2n sin(π/2n) cos(π/2n) = n sin(π/n). So, a2n =√

ana′
n. Also,

1
a2n

+
1
a′

n

=
1

n sin(π/n)
+

1
n tan(π/n)

=
cos(π/n) + 1
n sin(π/n)

=
2 cos2(π/2n)

2n sin(π/2n) cos(π/2n)
=

2
2n tan(π/2n)

=
2

a′
2n

.
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4.5.12 In the definition of measurable, replace M and A by A ∪ B and A,
respectively. Then, A ∩ M is replaced by A, and A ∩ M c is replaced by B.

4.5.13 From the previous exercise and induction,

area

( ∞⋃

n=1

An

)

≥ area

(
N⋃

n=1

An

)

=
N∑

n=1

area (An) .

Let N ↗ ∞ to get

area

( ∞⋃

n=1

An

)

≥
∞∑

n=1

area (An) .

Since the reverse inequality follows from subadditivity, we are done.

4.5.14 Note that A and B \A are disjoint and their union is A∪B. But B \A
and A ∩ B are disjoint and their union is B. So,

area (A ∪ B) = area (A) + area (B \ A)
= area (A) + area (B) − area (A ∩ B) .

4.5.15

area (A ∪ B ∪ C) = area (A) + area (B) + area (C)
− area (A ∩ B) − area (B ∩ C) − area (A ∩ C)
+ area (A ∩ B ∩ C) .

The general formula, the inclusion-exclusion principle, is that the area of a
union equals the sum of the areas of the sets minus the sum of the areas of
their double intersections plus the sum of the areas of their triple intersections
minus the sum of the areas of their quadruple intersections, etc.

4.5.16 By Exercise 4.5.6, given ε > 0, there is an open superset G of M
satisfying area (G) ≤ area (M) + ε. If M is measurable and area (M) < ∞,
replace A in (4.5.4) by G to get area (G) = area (M) + area (G \ M). Hence,
area (G \ M) ≤ ε. If area (M) = ∞, write M =

⋃∞
n=1 Mn with area (Mn) < ∞

for all n ≥ 1. For each n ≥ 1, choose an open superset Gn of Mn satisfying
area (Gn \ Mn) ≤ ε2−n. Then, G =

⋃∞
n=1 Gn is an open superset of M ,

and area (G \ M) ≤
∑∞

n=1 area (Gn \ Mn) ≤ ε. This completes the first part.
Conversely, suppose, for all ε > 0, there is an open superset G of M satisfying
area (G \ M) ≤ ε, and let A be arbitrary. Since G is measurable,

area (A ∩ M) + area (A ∩ M c)
≤ area (A ∩ G) + area (A ∩ Gc) + area (A ∩ (G \ M))
≤ area (A) + ε.
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Thus, area (A ∩ M) + area (A ∩ M c) ≤ area (A). Since the reverse inequality
follows by subadditivity, M is measurable.

4.5.17 When A is a rectangle, the result is obvious (draw a picture). In fact,
for a rectangle Q and Q′ = Q+(a, b), area (Q ∩ Q′) ≥ (1−ε)2 area (Q). To deal
with general A, let Q be as in Exercise 4.2.15 with α to be determined below,
and let A′ = A + (a, b). Then, by subadditivity and translation invariance,

area (Q ∩ Q′) ≤ area ((Q ∩ A) ∩ (Q′ ∩ A′))
+ area (Q \ (Q ∩ A)) + area (Q′ \ (Q′ ∩ A′))

= area ((Q ∩ A) ∩ (Q′ ∩ A′)) + 2 · area (Q \ (Q ∩ A))
≤ area (A ∩ A′) + 2 · area (Q \ (Q ∩ A)) .

But, from Exercise 4.2.15 and the measurability of A, area [Q \ (Q ∩ A)] <
(1 − α) area (Q). Hence,

area (A ∩ A′) ≥ area (Q ∩ Q′) − 2(1 − α) area (Q)
≥ (1 − ε)2 area (Q) − 2(1 − α) area (Q) .

Thus, the result follows as soon as one chooses 2(1 − α) < (1 − ε)2.

4.5.18 If area [A ∩ (A + (a, b))] > 0, then, A ∩ (A + (a, b)) is nonempty. If
(x, y) ∈ A∩ (A+(a, b)), then, (x, y) = (x′, y′)+(a, b) with (x′, y′) ∈ A. Hence,
(a, b) ∈ A − A. Since Exercise 4.5.17 says that area [A ∩ (A + (a, b))] > 0 for
all (a, b) ∈ Qε, the result follows.

A.5 Solutions to Chapter 5

Solutions to exercises 5.1

5.1.1 Let fn(x) = 1/n for all x ∈ R. Then,
∫∞
−∞ fn(x) dx = ∞ for all n ≥ 1,

and fn(x) ↘ f(x) = 0.

5.1.2 Let In =
∫ b

a
fn(x) dx and I =

∫ b

a
f(x) dx. We have to show that I∗ ≥ I.

The lower sequence is

gn(x) = inf{fk(x) : k ≥ n}, n ≥ 1.

Then, (gn(x)) is nonnegative and increasing to f(x), a < x < b. So, the
monotone convergence theorem applies. So, Jn =

∫ b

a
gn(x) dx →

∫ b

a
f(x) dx =

I. Since fn(x) ≥ gn(x), a < x < b, In ≥ Jn. Hence, I∗ ≥ J∗ = I.

5.1.3 Given x fixed, |x − n| ≥ 1 for n large enough. Hence, f0(x − n) = 0.
Hence, fn(x) = 0 for n large enough. Thus, f(x) = limn↗∞ fn(x) = 0. But,
by translation invariance,
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∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞
h(x) dx =

∫ 1

−1

[1 − x2] dx =
4
3

> 0.

Since
∫∞
−∞ f(x) dx = 0, here, the inequality in Fatou’s lemma is strict.

5.1.4 By Exercise 3.2.4, (1 − t/n)n ↗ e−t as n ↗ ∞. To take care of the
upper limit of integration that changes with n, let

fn(t) =

{(
1 − t

n

)n
tx−1, 0 < t < n,

0, t ≥ n.

Then, by the monotone convergence theorem,

Γ (x) =
∫ ∞

0

e−ttx−1 dt

=
∫ ∞

0

lim
n↗∞

fn(t) dt

= lim
n↗∞

∫ ∞

0

fn(t) dt

= lim
n↗∞

∫ n

0

(

1 − t

n

)n

tx−1 dt.

5.1.5 By Exercise 4.4.9,
∫ n

0

(

1 − t

n

)n

tx−1 dt = nx

∫ 1

0

(1 − s)nsx−1 ds =
nxn!

x · (x + 1) · · · · · (x + n)
.

5.1.6 Convexity of fn means that fn((1− t)x+ ty) ≤ (1− t)fn(x)+ tfn(y) for
all a < x < y < b and 0 ≤ t ≤ 1. Letting n ↗ ∞, we obtain f((1− t)x+ ty) ≤
(1 − t)f(x) + tf(y) for all a < x < y < b and 0 ≤ t ≤ 1, which says that f is
convex. Now, let

fn(x) = log
(

nxn!
x · (x + 1) · · · · · (x + n)

)

.

Then, log Γ (x) = limn↗∞ fn(x) by (5.1.3) and

d2

dx2
fn(x) =

d2

dx2

(

x log n + log(n!) −
n∑

k=0

log(x + k)

)

=
n∑

k=0

1
(x + k)2

,

which is positive. Thus, fn is convex. So, log Γ is convex.

5.1.7 Since log Γ (x) is convex,

log Γ ((1 − t)x + ty) ≤ (1 − t) log Γ (x) + t log Γ (y)
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for 0 < x < y < ∞, 0 ≤ t ≤ 1. Since ex is convex and increasing,

Γ ((1 − t)x + ty) = exp(log Γ ((1 − t)x + ty))
≤ exp((1 − t) log Γ (x) + t log Γ (y))
≤ (1 − t) exp(log Γ (x)) + t exp(log Γ (y))
= (1 − t)Γ (x) + tΓ (y)

for 0 < x < y < ∞ and 0 ≤ t ≤ 1.

5.1.8 Use summation under the integral sign, with fn(t) = tx−1e−nt, n ≥ 1.
Then, substituting s = nt, ds = ndt,

∫ ∞

0

tx−1

et − 1
dt =

∫ ∞

0

∞∑

n=1

tx−1e−nt dt

=
∞∑

n=1

∫ ∞

0

tx−1e−nt dt

=
∞∑

n=1

n−x

∫ ∞

0

sx−1e−s ds

= ζ(x)Γ (x).

5.1.9 Use summation under the integral sign, with fn(t) = tx−1e−n2πt, n ≥ 1.
Then, substituting s = n2πt, ds = n2πdt,

∫ ∞

0

ψ(t)tx/2−1 dt =
∫ ∞

0

∞∑

n=1

e−n2πttx/2−1 dt

=
∞∑

n=1

∫ ∞

0

e−n2πttx/2−1 dt

=
∞∑

n=1

π−x/2n−x

∫ ∞

0

e−ssx/2−1 ds

= π−x/2ζ(x)Γ (x/2).

5.1.10 By Exercise 4.4.5,
∫ 1

0

tx−1(− log t)n−1 dt =
∫ ∞

0

e−xssn−1 ds =
Γ (n)
xn

.

Here, we used the substitutions t = e−s, then, xs = r.

5.1.11 Recall that log t < 0 on (0, 1) and 0 < log t < t on (1,∞). From the
previous Exercise, with f(t) = e−ttx−1| log t|n−1,
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∫ ∞

0

e−ttx−1| log t|n−1 dt =
∫ 1

0

f(t) dt +
∫ ∞

1

f(t) dt

≤
∫ 1

0

tx−1| log t|n−1 dt +
∫ ∞

1

e−ttx−1tn−1 dt

=
Γ (n)
xn

+ Γ (x + n − 1).

5.1.12 If xn ↘ 1, then, k−xn ↗ k−1 for k ≥ 1. So, by the monotone
convergence theorem for series, ζ(xn) =

∑∞
k=1 k−xn →

∑∞
k=1 k−1 = ζ(1) = ∞.

If xn → 1+, then, x∗
n ↘ 1 (§1.5) and ζ(1) ≥ ζ(xn) ≥ ζ(x∗

n). So, ζ(xn) →
ζ(1) = ∞. Thus, ζ(1+) = ∞. Similarly, ψ(0+) = ∞.

5.1.13 Since τ(t) =
∑∞

n=0 te−nt, use summation under the integral sign:
∫ ∞

0

e−xtτ(t) dt =
∞∑

n=0

∫ ∞

0

e−xtte−nt dt =
∞∑

n=0

1
(x + n)2

.

Here, we used the substitution s = (x + n)t, and Γ (2) = 1.

5.1.14 The problem, here, is that the limits of integration depend on n. So,
the monotone convergence theorem is not directly applicable. To remedy this,
let fn(x) = f(x) if an < x < bn, and let fn(x) = 0 if a < x ≤ an or bn ≤ x < b.
Then, fn(x) ↗ f(x) (draw a picture). Hence, by the monotone convergence
theorem,

∫ bn

an

f(x) dx =
∫ b

a

fn(x) dx →
∫ b

a

f(x) dx.

Solutions to exercises 5.2

5.2.1 First, for x > 0,

e−sx

(

1 +
x2

3!
+

x4

5!
+ . . .

)

≤ e−sx
∞∑

n=0

x2n

(2n)!
≤ e−sxex.

So, with g(x) = e−(s−1)x, we may use summation under the integral sign to
get

∫ ∞

0

e−sx sinx

x
dx =

∫ ∞

0

∞∑

n=0

(−1)n x2n

(2n + 1)!
e−sx dx

=
∞∑

n=0

(−1)n

(2n + 1)!

∫ ∞

0

e−sxx2n dx

=
∞∑

n=0

(−1)n

(2n + 1)!
· Γ (2n + 1)

s2n+1
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=
∞∑

n=0

(−1)n(1/s)2n+1

(2n + 1)

= arctan
(

1
s

)

.

Here, we used (3.6.4).

5.2.2 Since |fn(x)| ≤ g(x) for all n ≥ 1, taking the limit yields |f(x)| ≤ g(x).
Since g is integrable, so, is f .

5.2.3 J0(x) is a power series, hence, may be differentiated term by term. The
calculation is made simpler by noting that x[xJ ′

0(x)]′ = x2J ′′
0 (x) + xJ ′

0(x).
Then,

xJ ′
0(x) =

∞∑

n=1

(−1)n 2nx2n

4n(n!)2
,

and

x2J ′′
0 (x) + xJ ′

0(x) = x(xJ ′
0(x))′ =

∞∑

n=1

(−1)n 4n2x2n

4n(n!)2

=
∞∑

n=0

(−1)n+1 4(n + 1)2x2n+2

4n+1((n + 1)!)2
= −x2

∞∑

n=0

(−1)n x2n

4n(n!)2
= −x2J0(x).

5.2.4 With u = sinn−1 x and dv = sin x dx,

In =
∫

sinn x dx = − cos x sinn−1 x + (n − 1)
∫

sinn−2 x cos2 x dx.

Inserting cos2 x = 1 − sin2 x,

In = − cos x sinn−1 x + (n − 1)(In−2 − In).

Solving for In,

In = − 1
n

cos x sinn−1 x +
n − 1

n
In−2.

5.2.5 Using the double-angle formula,

sin x = 2 cos(x/2) sin(x/2)
= 4 cos(x/2) cos(x/4) sin(x/4)
= · · · = 2n cos(x/2) cos(x/4) . . . cos(x/2n) sin(x/2n).

Now, let n ↗ ∞, and use 2n sin(x/2n) → x.

5.2.6 The integral on the left equals n!. So, the left side is
∑∞

n=0(−1)n, which
has no sum. The series on the right equals e−x. So, the right side equals∫∞
0

e−2x dx = 1/2.
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5.2.7 Now, for x > 0,

sin(sx)
ex − 1

=
∞∑

n=1

e−nx sin(sx),

and ∞∑

n=1

e−nx| sin(sx)| ≤
∞∑

n=1

e−nx|s|x = |s|x/(ex − 1) = g(x),

which is integrable (
∫∞
0

g(x) dx = |s|Γ (2)ζ(2) by Exercise 5.1.8). Hence, we
may use summation under the integral sign to obtain

∫ ∞

0

sin(sx)
ex − 1

dx =
∞∑

n=1

∫ ∞

0

e−nx sin(sx) dx

=
∞∑

n=1

s

n2 + s2
.

Here, we used Exercise 4.4.7.

5.2.8 Writing sinh(sx) = (esx − e−sx)/2 and breaking the integral into two
pieces leads to infinities. So, we proceed, as in the previous exercise. For x > 0,
use the mean value theorem to check

∣
∣
∣
∣
sinh x

x

∣
∣
∣
∣ ≤ cosh x ≤ ex.

So,
sinh(sx)
ex − 1

=
∞∑

n=1

e−nx sinh(sx),

and ∞∑

n=1

e−nx| sinh(sx)| ≤
∞∑

n=1

|s|xe−nxe|s|x = g(x),

which is integrable when |s| < 1 (
∫∞
0

g(x) dx = |s|
∑∞

n=1 Γ (2)/(n − |s|)2).
Using summation under the integral sign, we obtain

∫ ∞

0

sinh(sx)
ex − 1

dx =
∞∑

n=1

∫ ∞

0

e−nx sinh(sx) dx

=
∞∑

n=1

1
2

∫ ∞

0

e−nx(esx − e−sx) dx

=
1
2

∞∑

n=1

(
1

n − s
− 1

n + s

)

=
∞∑

n=1

s

n2 + s2
.
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5.2.9 Because (pn) is nonzero only when n − 1, n − 4, n − 5, or n − 6 are
divisible by 8,

∞∑

n=1

pn

16[n/8]n
=

8∑

k=1

∞∑

n=0

p8n+k

16n(8n + k)

=
∞∑

n=0

4
(8n + 1)16n

+
∞∑

n=0

−2
(8n + 4)16n

+
∞∑

n=0

−1
(8n + 5)16n

+
∞∑

n=0

−1
(8n + 6)16n

=
∞∑

n=0

1
16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)

.

5.2.10 We have to show that xn → x implies Jν(xn) → Jν(x). But g(t) = 1 is
integrable over (0, π) and dominates the integrands below. So, we can apply
the dominated convergence theorem,

Jν(xn) =
1
π

∫ π

0

cos(νt − xn sin t) dt → 1
π

∫ π

0

cos(νt − x sin t) dt = Jν(x).

5.2.11 It is enough to show that ψ is continuous on (a,∞) for all a > 0, for,
then, ψ is continuous on (0,∞). We have to show that xn → x > a implies
ψ(xn) → ψ(x). But xn > a, n ≥ 1, implies e−k2πxn ≤ e−kπa, k ≥ 1, n ≥ 1,
and

∑
gk =

∑
e−kπa < ∞. So, the dominated convergence theorem for series

applies, and

ψ(xn) =
∞∑

k=1

e−k2πxn →
∞∑

k=1

e−k2πx = ψ(x).

5.2.12 Set f̃n(x) = fn(x) if an < x < bn, and f̃n(x) = 0 if a < x < a ≤ an

or bn ≤ x < b. Then, |f̃n(x)| ≤ g(x) on (a, b), and f̃n(x) → f(x) for any x in
(a, b). Hence, by the dominated convergence theorem,

∫ bn

an

fn(x) dx =
∫ b

a

f̃n(x) dx →
∫ b

a

f(x) dx.

5.2.13 Use the Taylor series for cos:

J0(x) =
1
π

∫ π

0

cos(x sin t) dt =
∞∑

n=0

(−1)n x2n

(2n)!π

∫ π

0

sin2n t dt.
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But

1
π

∫ π

0

sin2n t dt =
2
π

∫ π/2

0

sin2n t dt =
2
π

I2n

=
(2n − 1) · (2n − 3) · · · · · 1

2n · (2n − 2) · · · · · 2 =
(2n)!

22n(n!)2
.

Inserting this in the previous expression, one obtains the series for J0(x). Here,
for x fixed, we used summation under the integral sign with g(t) = ex. Since∫ π

0
g(t) dt = exπ, this applies.

5.2.14 By Exercise 4.4.18,

lim
n↗∞

[∫ 1

0

1 − (1 − t/n)n

t
dt −

∫ n

1

(1 − t/n)n

t
dt

]

= lim
n↗∞

[∫ n

0

1 − (1 − t/n)n

t
dt −

∫ n

1

1
t

dt

]

= lim
n↗∞

(

1 +
1
2

+ · · · + 1
n
− log n

)

= γ.

For the second part, since (1− t/n)n → e−t, we obtain the stated formula by
switching the limits and the integrals. To justify the switching, by the mean
value theorem with f(t) = (1 − t/n)n,

0 ≤ 1 − (1 − t/n)n

t
=

f(0) − f(t)
t

= −f ′(c) = (1 − c/n)n−1 ≤ 1.

So, we may choose g(t) = 1 for the first integral. Since (1 − t/n)n ≤ e−t, we
may choose g(t) = e−t/t for the second integral.

Solutions to exercises 5.3

5.3.1 If an → a and bn → b with a > b > 0, then, there is a c > 0 with an > c
and bn > c for all n ≥ 1. Hence,

fn(θ) =
1

√
a2

n cos2 θ + b2
n sin2 θ

≤ 1
√

c2 cos2 θ + c2 sin2 θ
=

1
c
.

Hence, we may apply the dominated convergence theorem with g(θ) = 2/cπ.

5.3.2 Since the arithmetic and geometric means of a = 1 + x and b = 1 − x
are (1,

√
1 − x2), M(1+x, 1−x) = M(1,

√
1 − x2). So, the result follows from

cos2 θ + (1 − x2) sin2 θ = 1 − x2 sin2 θ.
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5.3.3 By the binomial theorem,

1
√

1 − x2 sin2 θ
=

∞∑

n=0

(−1)n

(
−1/2

n

)

x2n sin2n θ.

By Exercise 3.4.13,
(−1/2

n

)
= (−1)n4−n

(
2n
n

)
. So, this series is positive. Hence,

we may apply summation under the integral sign. From Exercise 5.2.13,
I2n = (2/π)

∫ π/2

0
sin2n θ dθ = 4−n

(
2n
n

)
. Integrating the series term by term, we

get the result.

5.3.4 With t = x/s, dt = −xds/s2, and f(t) = 1/
√

(1 + t2)(x2 + t2), f(t) dt =
−f(s) ds. So,

1
M(1, x)

=
2
π

∫ ∞

0

dt
√

(1 + t2)(x2 + t2)

=
2
π

∫ √
x

0

f(t) dt +
2
π

∫ ∞

√
x

f(t) dt

=
2
π

∫ √
x

0

f(t) dt +
2
π

∫ √
x

0

f(s) ds

=
4
π

∫ √
x

0

dt
√

(1 + t2)(x2 + t2)

=
4
π

∫ 1/
√

x

0

dr
√

(1 + (xr)2)(1 + r2)

For the last integral, we used t = xr, dt = xdr.

5.3.5 The AGM iteration yields (1 + x, 1 − x) �→ (1, x′) �→ ((1 + x′)/2,
√

x′).

5.3.6 Now, x < M(1, x) < 1, and x′ < M(1, x′) < 1. So,
∣
∣
∣
∣

1
M(1, x)

− 1
Q(x)

∣
∣
∣
∣ =

1 − M(1, x′)
M(1, x)

≤ 1 − x′

x
=

1 − x′2

x(1 + x′)
=

x

1 + x′ ≤ x.

5.3.7 We already know that

Q

(
1 − x′

1 + x′

)

=
1
2
Q(x).

Substitute x = 2
√

y/(1 + y). Then, x′ = (1 − y)/(1 + y). So, solving for y
yields y = (1 − x′)/(1 + x′).

5.3.8 From the integral formula, M(1, x) is strictly increasing and continuous.
So M(1, x′) is strictly decreasing and continuous. So, Q(x) is strictly increasing
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and continuous. Moreover, x → 0 implies x′ → 1 implies M(1, x) → 0 and
M(1, x′) → 1, which implies Q(x) → 0. Thus, Q(0+) = 0. If x → 1−, then,
x′ → 0+. Hence, M(1, x) → 1 and M(1, x′) → 0+. So, Q(x) → ∞. Thus,
Q(1−) = ∞, hence, M(1, ·) : (0, 1) → (0, 1) and Q : (0, 1) → (0,∞) are strictly
increasing bijections.

5.3.9 M(a, b) = 1 is equivalent to M(1, b/a) = 1/a which is uniquely solvable
for b/a, hence, for b by the previous exercise.

5.3.10 Let x = b/a = f(a)/a. Then, the stated asymptotic equality is equiv-
alent to

lim
a→∞

[
log(x/4) +

πa

2

]
= 0.

Since 0 < b < 1, a → ∞ implies x → 0 and M(1, x) = M(1, b/a) = 1/a by
homogeneity, this follows from (5.3.10).

5.3.11 By multiplying out the d factors in the product, the only terms with
xd−1 are ajx

d−1, 1 ≤ j ≤ d, hence dp1 = a1 + · · · + ad, hence p1 is the
arithmetic mean. If x = 0 is inserted, the identity reduces to a1a2 . . . ad = pd.
If a1 = a2 = · · · = ad = 1, the identity reduces to the binomial theorem, hence
pk(1, 1, . . . , 1) = 1, 1 ≤ k ≤ d. The arithmetic and geometric mean inequality
is then an immediate consequence of Exercise 3.3.23.

5.3.12 Since a1 ≥ a2 ≥ · · · ≥ ad > 0, replacing a2, . . . , ad−1 by a1 in p1

increases p1. Similarly, replacing a2, . . . , ad−1 by ad in pd decreases pd. Thus

a′
1

a′
d

≤ a1 + a1 + · · · + a1 + ad

d(a1ad . . . adad)1/d
= fd

(
a1

ad

)

,

where fd is as in Exercise 3.2.10. The result follows.

5.3.13 Note by Exercise 3.3.23, (a′
1, . . . , a

′
d) = (p1, . . . , p

1/d
d ) implies a′

1 ≥
a′
2 ≥ · · · ≥ a′

d > 0. Now a′
1 is the arithmetic mean and a1 is the largest,

hence a1 ≥ a′
1. Also a′

d is the geometric mean and ad is the smallest, hence
ad ≤ a′

d. Hence (a(n)
1 ) is decreasing and (a(n)

d ) is increasing and thus both
sequences converge to limits a1∗ ≥ a∗

d. If we set In = [a(n)
d , a

(n)
1 ], we conclude

the intervals In are nested I1 ⊃ I2 ⊃ · · · ⊃ [a∗
d, a1∗], and, for all n ≥ 0, the

reals a
(n)
1 , . . . , a

(n)
d all lie in In. By applying the inequality in Exercise 5.3.12

repeatedly, we conclude

0 ≤ a
(n)
1

a
(n)
d

− 1 ≤
(

d − 1
d

)2n (
a1

ad
− 1

)

, n ≥ 0.

Letting n → ∞, we conclude a∗
d = a1∗. Denoting this common value by m,

we conclude a
(n)
j → m as n → ∞, for all 1 ≤ j ≤ d. The last identity follows

from the fact that the limit of a sequence is unchanged if the first term of the
sequence is discarded.
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Solutions to exercises 5.4

5.4.1 If x =
√

2t, dx = dt/
√

2t, and t = x2/2. So
√

π

2
=
∫ ∞

0

e−x2/2 dx =
∫ ∞

0

e−t dt√
2t

=
1√
2
Γ (1/2).

Hence, (1/2)! = Γ (3/2) = (1/2)Γ (1/2) =
√

π/2.

5.4.2 Since (x − s)2 = x2 − 2xs + s2,

e−s2/2L(s) =
∫ ∞

−∞
e−(x−s)2/2 dx =

∫ ∞

−∞
e−x2/2 dx =

√
2π

by translation invariance.

5.4.3 By differentiation under the integral sign,

L(n)(s) =
∫ ∞

−∞
esxxne−x2/2 dx.

So,

L(2n)(0) =
∫ ∞

−∞
x2ne−x2/2 dx.

To justify this, note that for |s| < b and f(s, x) = esx−x2/2,

n∑

k=0

∣
∣
∣
∣

∂k

∂sk
f(s, x)

∣
∣
∣
∣ = esx−x2/2

n∑

k=0

|x|k

≤ n!esx−x2/2
n∑

k=0

|x|k
k!

≤ n!e(b+1)|x|−x2/2 = g(x)

and g is even and integrable (
∫∞
−∞ g(x) dx ≤ 2n!L(b + 1)). Since the integrand

is odd for n odd, L(n)(0) = 0 for n odd. On the other hand, the exponential
series yields

L(s) =
√

2πes2/2 =
√

2π

∞∑

n=0

s2n

2nn!
=

∞∑

n=0

L(2n)(0)
s2n

(2n)!
.

Solving for L(2n)(0), we obtain the result.

5.4.4 With f(s, x) = e−x2/2 cos(sx),

|f(s, x)| +
∣
∣
∣
∣

∂

∂s
f(s, x)

∣
∣
∣
∣ = e−x2/2(| cos(sx)| + |x| sin(sx)|)

≤ e−x2/2(1 + |x|) = g(x),
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which is integrable since
∫∞
−∞ g(x) dx =

√
2π + 2. Thus, with u = sin(sx) and

dv = −xe−x2/2dx, v = e−x2/2, du = s cos(sx) dx. So,

F ′(s) = −
∫ ∞

−∞
e−x2/2x sin(sx) dx

= uv|∞−∞ − s

∫ ∞

−∞
e−x2/2 cos(sx) dx

= −sF (s).

Integrating F ′(s)/F (s) = −s over (0, s) yields log F (s) = −s2/2 + log F (0) or
F (s) = F (0)e−s2/2.

5.4.5 With f(a, x) = e−x−a/x/
√

x and a ≥ ε > 0,

|f(a, x)| +
∣
∣
∣
∣

∂

∂a
f(a, x)

∣
∣
∣
∣ ≤

⎧
⎨

⎩

e−ε/x

(
1√
x

+
1

x
√

x

)

, 0 < x < 1,

e−x, x > 1.

But the expression on the right is integrable over (0,∞). Hence, we may
differentiate under the integral sign on (ε,∞), hence, on (0,∞). Thus, with
x = a/t,

H ′(a) = −
∫ ∞

0

e−x−a/x dx

x
√

x

= −
∫ ∞

0

e−a/t−t dt√
at

= − 1√
a
H(a).

Integrating H ′(a)/H(a) = −1/
√

a, we get log H(a) = −2
√

a + log H(0) or
H(a) = H(0)e−2

√
a.

5.4.6 Let x = y
√

q. Then, dx =
√

q dy. Hence,
∫ ∞

−∞
e−x2/2q dx =

√
q

∫ ∞

−∞
e−y2/2 dy =

√
2πq.

5.4.7 Inserting g(x) = e−x2π and δ =
√

t in Exercise 4.3.8 and π = 1/2q in
the previous Exercise yields

lim
t→0+

√
t ψ(t) =

∫ ∞

0

e−x2π dx =
1
2

√
2πq =

1
2
.

5.4.8 It is enough to show that ζ is smooth on (a,∞) for any a > 1. Use
differentiation N times under the summation sign to get

ζ(k)(s) =
∞∑

n=1

(−1)k logk n

ns
, s > a,N ≥ k ≥ 0.
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To justify this, let fn(s) = n−s, n ≥ 1, s > 1. Since log n/nε → 0 as n ↗ ∞,
for any ε > 0, the sequence (log n/nε) is bounded, which means that there is
a constant Cε > 0, such that | log n| ≤ Cεn

ε for all n ≥ 1. Hence,

N∑

k=0

∣
∣
∣f (k)

n (s)
∣
∣
∣ ≤

N∑

k=0

| logk n|
ns

≤ (N + 1)
CN+1

ε nNε

na
=

C

na−Nε
.

Then, if we choose ε small enough, so that a− Nε > 1, the dominating series∑
gn = C

∑
nNε−a converges.

5.4.9 Again, we show that ψ is smooth on (a,∞) for all a > 0. Use differen-
tiation N times under the summation sign to get

ψ(k)(t) =
∞∑

n=1

(−1)kπkn2ke−n2πt, t > a,N ≥ k ≥ 0.

To justify this, let fn(t) = e−n2πt, n ≥ 1, t > a. Since xN+1e−x → 0 as
x → ∞, the function xN+1e−x is bounded. Thus, there is a constant CN > 0,
such that xNe−x ≤ CN/x for x > 0. Inserting x = n2πt, t > a,

N∑

k=0

∣
∣
∣f (k)

n (t)
∣
∣
∣ ≤

N∑

k=0

n2kπke−n2πt ≤ (N + 1)CN

n2π · aN+1
.

Then, the dominating series
∑

gn =
∑

(N + 1)CN/πaN+1n2 converges.

5.4.10 Differentiating under the integral sign leads only to bounded functions
of t. So Jν is smooth. Computing, we get

J ′
ν(x) =

1
π

∫ π

0

sin t sin(νt − x sin t) dt

and
J ′′

ν (x) = − 1
π

∫ π

0

sin2 t cos(νt − x sin t) dt.

Now, integrate by parts with u = −x cos t − ν, dv = (ν − x cos t) cos(νt −
x sin t) dt, du = x sin t dt, and v = sin(νt − x sin t):

x2J ′′
ν (x) + (x2 − ν2)Jν(x) =

1
π

∫ π

0

(x2 cos2 t − ν2) cos(νt − x sin t) dt

=
1
π

∫ π

0

u dv =
1
π

uv

∣
∣
∣
∣

π

0

− 1
π

∫ π

0

v du

= − 1
π

∫ π

0

x sin t sin(νt − x sin t) dt

= −xJ ′
ν(x).

Here, ν must be an integer to make the uv term vanish at π.
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5.4.11 Differentiating under the integral sign,

F (n)(s) =
∫ ∞

−∞
xnesxe−f(x) dx.

Since |x|n ≤ n!e|x|, with h(s, x) = esxe−f(x) and |s| < b,

N∑

n=0

∣
∣
∣
∣
∂nh

∂sn

∣
∣
∣
∣ ≤

N∑

n=0

|x|nes|x|e−f(x) ≤ (N + 1)!e(b+1)|x|−f(x) = g(x)

and g is integrable by Exercise 4.3.11. This shows that F is smooth. Differ-
entiating twice,

[log F (s)]′′ =
F ′′(s)F (s) − F ′(s)2

F (s)2
.

Now, use the Cauchy–Schwarz inequality (Exercise 4.4.17) with the functions
e(sx−f(x))/2 and xe(sx−f(x))/2 to get F ′′(s)F (s) ≥ F ′(s)2. Hence, [log F (s)]′′ ≥
0, or log F (s) is convex.

5.4.12 With u = e−sx and dv = sin x(dx/x), du = −se−sx dx, and v = F (t) =
∫ t

0
sin r(dr/r). So, integration by parts yields the first equation. Now, change

variables y = sx, sdx = dy in the integral on the right yielding

∫ b

0

e−sx sinx

x
dx = −e−sbF (b) +

∫ b/s

0

e−yF (y/s) dy.

Let b → ∞. Since F is bounded,
∫ ∞

0

e−sx sinx

x
dx =

∫ ∞

0

e−yF (y/s) dy.

Now, let s → 0+, and use the dominated convergence theorem. Since F (y/s) →
F (∞), as s → 0+, for all y > 0,

lim
s→0+

∫ ∞

0

e−sx sinx

x
dx =

∫ ∞

0

e−yF (∞) dy = F (∞) = lim
b→∞

∫ b

0

sin x

x
dx.

But, from the text, the left side is

lim
x→0+

arctan
(

1
x

)

= arctan(∞) =
π

2
.

Solutions to exercises 5.5

5.5.1 Without loss of generality, assume that a = max(a, b, c). Then, (b/a)n ≤
1 and (c/a)n ≤ 1. So,
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lim
n↗∞

(an + bn + cn)1/n = a lim
n↗∞

(1 + (b/a)n + (c/a)n)1/n = a.

For the second part, replace a, b, c in the first part by ea, eb, and ec. Then,
take the log. For the third part, given ε > 0, for all but finitely many n ≥ 1, we
have log(an) ≤ (A+ε)n or an ≤ en(A+ε). Similarly, bn ≤ en(B+ε), cn ≤ en(C+ε)

for all but finitely many n ≥ 1. Hence the upper limit of log(an + bn + cn)/n
is ≤ max(A,B,C) + ε. Similarly, the lower limit of log(an + bn + cn)/n ≥
max(A,B,C) − ε. Since ε is arbitrary, the result follows.

5.5.2 The relative error is about .08%.

5.5.3 In the asymptotic for
(
n
k

)
, replace n by 2n and k by n. Since t = n/2n =

1/2 and H(1/2) = 0, we get 1/
√

πn.

5.5.4 Straight computation.

5.5.5 H ′(t, p) = log(t/p) − log[(1 − t)/(1 − p)] equals zero when t = p. Since
H ′′(t, p) = 1/t + 1/(1 − t), H is convex. So, t = p is a global minimum.

5.5.6 Straight computation.

5.5.7 Since (qn)x2
= enx2 log q, the limit is

sup{x2 log q : a < x < b} = a2 log q,

by the theorem. Here, log q < 0.

5.5.8 Since Γ (s + 1) = sΓ (s),

f(s + 1) = 33s+3 Γ (s + 1)Γ (s + 1 + 1/3)Γ (s + 1 + 2/3)
Γ (3s + 3)

=
33s(s + 1/3)(s + 2/3)

(3s + 2)(3s + 1)3s
· f(s) = f(s).

Inserting the asymptotic for Γ (s + n) yields 2π
√

3 for the limit. The general
case is given by

nns Γ (s)Γ (s + 1/n) . . . Γ (s + (n − 1)/n)
Γ (ns)

=
√

n(2π)(n−1)/2.

5.5.9 Here,

Ln(ny) =
∫ ∞

−∞
en(xy−f(x)) dx,

and g(y) = max{xy − f(x) : x ∈ R} exists by Exercise 2.3.20 and the max is
attained at some c. Fix y ∈ R and select M > 0 such that −(M ± y) < g(y)
and M ± y > 0. Since f(x)/|x| → ∞ as |x| → ∞, we can choose b such that
b > 1, b > c, and f(x) ≥ Mx for x ≥ b. Similarly, we can choose a such that
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a < −1, a < c, and f(x) ≥ M(−x) for x ≤ a. Write Ln(ns) = I−n + I0
n + I+

n =
∫ a

−∞ +
∫ b

a
+
∫∞

b
. The second theorem in §5.5 applies to I0

n, hence

lim
n→∞

1
n

log(I0
n) = max{xy − f(x) : a < x < b} = g(y)

since the max over R is attained within (a, b). Now

I−n ≤
∫ a

−∞
en(M+y)x dx =

en(M+y)a

n(M + y)
,

so
lim

n→∞

1
n

log(I−n ) ≤ (M + y)a < −(M + y) < g(y).

Similarly,

I+
n ≤

∫ ∞

b

e−n(M−y)x dx =
e−n(M−y)b

n(M − y)
,

so
lim

n→∞

1
n

log(I+
n ) ≤ −(M − y)b < −(M − y) < g(y).

By Exercise 5.5.1, we conclude that

lim
n↗∞

1
n

log Ln(ny) = lim
n↗∞

1
n

log
(
I−n + I0

n + I+
n

)
= g(y).

5.5.10 The log of the duplication formula is

2s log 2 + log Γ (s) + log Γ (s + 1/2) − log Γ (2s) = log(2
√

π).

Differentiating,

2 log 2 +
Γ ′(s)
Γ (s)

+
Γ ′(s + 1/2)
Γ (s + 1/2)

− 2
Γ ′(2s)
Γ (2s)

= 0.

Inserting s = 1/2, we obtain the result.

5.5.11 Insert s = 1/4 in the duplication formula to get

√
2
Γ (1/4)Γ (3/4)

Γ (1/2)
= 2

√
π.

Now recall that Γ (1/2) =
√

π. To obtain the formula for 1/M(1, 1/
√

2),
replace Γ (3/4) in the formula in the text by π

√
2/Γ (1/4).
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Solutions to exercises 5.6

5.6.1 ζ(4) = π4/90, ζ(6) = π6/945, and ζ(8) = π8/9450.

5.6.2 Let bk = Bk/k!, and suppose that |bk| ≤ 2k for k ≤ n− 2. Then, (5.6.8)
reads

n−1∑

k=0

bk(−1)n−1−k

(n − k)!
= 0

which implies (n! ≥ 2n−1)

|bn−1| ≤
n−2∑

k=0

|bk|
(n − k)!

≤
n−2∑

k=0

2k

(n − k)!

≤
n−2∑

k=0

2k

2n−k−1
≤ 2n−1.

Thus, |bn| ≤ 2n for all n ≥ 1 by induction. Hence, the radius of convergence
by the root test is at least 1/2. Also, from the formula for ζ(2n) > 0, the
Bernoulli numbers are alternating.

5.6.3 The left inequality follows from (5.6.10) since b1 =
∑∞

n=1 an. For the
right inequality, use 1 + an ≤ ean . So,

∞∏

n=1

(1 + an) ≤
∞∏

n=1

ean = exp

( ∞∑

n=1

an

)

.

5.6.4 From (5.1.3),

Γ (x) = lim
n↗∞

nxn!
x(1 + x)(2 + x) . . . (n + x)

=
1
x

lim
n↗∞

ex(log n−1−1/2−···−1/n)exex/2 . . . ex/n

(1 + x)(1 + x/2) . . . (1 + x/n)

=
e−γx

x

∞∏

n=1

(
ex/n

1 + x
n

)

.

5.6.5 For 0 < x < 1 use (5.1.3) with x and 1 − x replacing x. Then, Γ (x)
Γ (1 − x) equals

lim
n↗∞

nxn!n1−xn!
x(1 + x)(2 + x) . . . (n + x)(1 − x)(2 − x) . . . (n + 1 − x)

=
1
x

lim
n↗∞

n(n!)2

(1 − x2)(4 − x2) . . . (n2 − x2)(n + 1 − x)
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=
1
x

lim
n↗∞

1
(1 − x2)(1 − x2/4) . . . (1 − x2/n2)(1 + (1 − x)/n)

=

[

x

∞∏

n=1

(

1 − x2

n2

)]−1

=
π

sin(πx)
.

5.6.6 The series B(x) is the alternating version of the Bernoulli series (5.6.7),
and the Taylor series for sin(x/2) is the alternating version of the Taylor series
for sinh(x/2). But the Bernoulli series times sinh(x/2) equals (x/2) cosh(x/2).
Hence (Exercise 1.7.8),

B(x) sin(x/2) = (x/2) cos(x/2).

Dividing by sin(x/2), we obtain the series for (x/2) cot(x/2).

5.6.7 If β > 1, then, B(x) would converge at 2π. But (x/2) cot(x/2) = B(x)
is infinite at 2π.

5.6.8 Taking the log of (5.6.13),

log[sin(πx)] − log(πx) =
∞∑

n=1

log
(

1 − x2

n2

)

.

Differentiating under the summation sign,

π cot(πx) − 1
x

=
∞∑

n=1

2x

x2 − n2
.

To justify this, let fn(x) = log(1−x2/n2) and let |x| < b < 1. Then, log(1−t) =
t + t2/2 + t3/3 + · · · ≤ t + t2 + t3 + · · · = t/(1 − t). So,

|fn(x)| + |f ′
n(x)| ≤ x2

n2 − x2
+

2|x|
n2 − x2

≤ b2 + 2b

n2 − b2
= gn,

which is summable. Since this is true for all b < 1, the equality is valid for
|x| < 1.

5.6.9 By Exercise 3.5.13, cot x− 2 cot(2x) = tan x. Then, the series for tan x
follows from the series for cot x in Exercise 5.6.6 applied to cot x and 2 cot(2x).

5.6.10 By Exercise 5.6.4,

log Γ (x) = −γx − log x +
∞∑

n=1

[x

n
− log

(
1 +

x

n

)]
.

Differentiating, we obtain the result. To justify this, let fn(x) = x/n− log(1+
x/n), f ′

n(x) = 1/n− 1/(x + n). Then, t− log(1 + t) = t2/2− t3/3 + · · · ≤ t2/2
for t > 0. Hence, fn(x) ≤ x2/n2. So,
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|fn(x)| + |f ′
n(x)| ≤ b2 + b

n2
= gn,

which is summable, when 0 < x < b. Since b is arbitrary, the result is valid
for x > 0.

5.6.11 Inserting x = 1 in the series for Γ ′(x)/Γ (x) yields a telescoping series.
So, we get Γ ′(1) = −γ. Inserting x = 2 yields

−γ − 1
2

+ 1 − 1
3

+
1
2
− 1

4
+

1
3
− 1

5
+

1
4
− 1

6
+ · · · = 1 − γ.

Since Γ is strictly convex, this forces the min to lie in (1, 2).

5.6.12 Differentiate the series in Exercise 5.6.10, and compare with the series
in Exercise 5.1.13. Here, on 0 < x < b, we may take gn = (b + 1)/n2, n ≥ 1.

5.6.13 Substituting (1−x)/2 �→ x, we see that the stated equality is equivalent
to

lim
x→0+

[
Γ ′(x)
Γ (x)

+
1
x

]

= −γ.

Move the 1/x to the left in Exercise 5.6.10, and, then, take the limit x → 0+.
Under this limit, the series collapses to zero by the dominated convergence
theorem for series (here, gn = b/n2 for 0 < x < b).

Solutions to exercises 5.7

5.7.1 θ0 is strictly increasing since it is the sum of strictly increasing monomials.
Since θ0 is continuous and θ0(0+) = 1, θ0(1−) = ∞, θ0((0, 1)) = (1,∞).
Similarly, for θ+.

5.7.2 Multiply (5.7.18) by sθ0(s)2 = θ2
0(1/s). You get (5.7.19).

5.7.3 The AGM of θ2
0(q) and θ2

−(q) equals 1: M(θ2
0(q), θ

2
−(q)) = 1 for 0 < q < 1.

Since θ0 is strictly increasing, θ2
0 is strictly increasing. This forces θ2

− to be
strictly decreasing. Moreover, θ−(0+) = 1. Hence, θ2

−(0+) = 1, and q → 1−
implies M(∞, θ2

−(1−)) = 1 or θ2
−(1−) = 0. Thus, θ2

− maps (0, 1) onto (0, 1).
Since θ− is continuous and θ−(0+) = 1, we also have θ− strictly decreasing
and θ−((0, 1)) = (0, 1)).

5.7.4 Since σ(6) = σ(7) = 0 and σ(2n) = σ(n), σ(12) = σ(14) = 0. Also,
σ(13) = 8 since

13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.

To show that σ(4n − 1) = 0, we show that 4n − 1 = i2 + j2 cannot happen.
Note that 4n − 1 is odd when exactly one of i or j is odd and the other is
even. Say i = 2k and j = 2� + 1. Then,

4n − 1 = 4k2 + 4�2 + 4� + 1 = 4(k2 + �2 + �) + 1,
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an impossibility. Hence, σ(4n − 1) = 0, so, σ(11) = σ(15) = 0.

5.7.5 Let m = M(a, b), a′ = a/m, b′ = b/m. Then b/a = b′/a′ and M(a′, b′) =
1 so (a′, b′) = (θ2

0(q), θ
2
−(q)). Hence

a − b = m(a′ − b′) = m
(
θ2
0(q) − θ2

−(q)
)

= 2M(a, b)
∑

n odd

σ(n)qn

= 8M(a, b)q ×
(
1 + 2q4 + q8 + . . .

)
.

Replacing q by q2n

yields the result..

5.7.6 Let fn(t, x) = e−n2πt cos(nx), n ≥ 1. Then, ∂fn/∂t = −n2πfn, and
∂2fn/∂x2 = −n2fn, n ≥ 1. Thus, to obtain the heat equation, we need only
justify differentiation under the summation sign. But, for t ≥ 2a > 0,

|fn| +
∣
∣
∣
∣
∂fn

∂t

∣
∣
∣
∣+ +

∣
∣
∣
∣
∂fn

∂x

∣
∣
∣
∣+

∣
∣
∣
∣
∂2fn

∂x2

∣
∣
∣
∣ ≤ 4n2πe−2an2

= gn,

which is summable since xe−ax is bounded for x > 0, hence, xe−2ax ≤ e−ax.

Solutions to exercises 5.8

5.8.1 Assume that 1 < x < 2. The integrand f(x, t) is positive, hence,
increasing, hence, ≤ f(2, t). By Exercise 3.4.15, f(2, t) is asymptotically equal
to t/2, as t → 0+ which is bounded. Also, the integrand is asymptotically equal
to te−t, as t → ∞ which is integrable. Since f(2, t) is continuous, g(t) = f(2, t)
is integrable. Hence, we may switch the limit with the integral.

5.8.2 The limit of the left side of (5.8.4) is γ, by (5.8.3), and Γ (1) = 1.

5.8.3 Since Γ (x + n + 1) = (x + n)Γ (x + n) = (x + n)(x + n − 1) . . . xΓ (x),
for x ∈ (−n − 1,−n) ∪ (−n,−n + 1),

(x + n)Γ (x) =
Γ (x + n + 1)

x(x + 1) . . . (x + n − 1)
.

Letting x → −n, we get (x + n)Γ (x) → (−1)n/n!.

5.8.4 For t ≥ 1,

ψ(t) ≤
∞∑

n=1

e−nπt =
e−πt

1 − e−πt
≤ ce−πt

with c = 1/(1−e−π). Now, the integrand f(x, t) in (5.8.9) is a smooth function
of x with ∂nf/∂xn continuous in (x, t) for all n ≥ 0. Moreover, for b > 1 and
0 < x < b and each n ≥ 0,

∣
∣
∣
∣
∂nf

∂xn

∣
∣
∣
∣ ≤ ψ(t)2−n| log t|n

[
t(1−x)/2 + tx/2

]
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≤ ce−πt2−n+1| log t|ntb/2 = gn(t),

which is integrable over (1,∞). Hence, we may repeatedly apply differentiation
under the integral sign to conclude that the integral in (5.8.9) is smooth.

5.8.5 Inserting x = 2n in (5.8.10), we get

ζ(1 − 2n) =
π−nΓ (n)ζ(2n)

πn−1/2Γ (−n + 1/2)

= π−2n+1/2(n − 1)!

× (−n + 1/2)(−n + 3/2) . . . (−n + n − 1/2)
Γ (−n + n + 1/2)

× (−1)n−1B2n22n−1π2n

(2n)!
= −B2n

2n
.

5.8.6 Here, f(x, t) = (1+ [t]− t)/tx+1, and I(x) =
∫∞
1

f(x, t) dt, x > 1. Since,
for b > x > a > 1,

|f(x, t)| +
∣
∣
∣
∣
∂f

∂x
(x, t)

∣
∣
∣
∣ ≤

b + 2
ta+1

= g(t), t > 1,

and g is integrable, we may differentiate under the integral sign, obtaining
I ′(x) = (x + 1)I(x + 1) for a < x < b. Since a < b are arbitrary, this is
valid for x > 0. Inserting x = 2 in (5.8.6) yields π2/6 = ζ(2) = 1 + 2I(2) or
I(2) = π2/12 − 1/2.

5.8.7 The right side of (5.8.9) is smooth, except at x = 0, 1. Hence, (x−1)ζ(x)
is smooth, except (possibly) at x = 0. By (5.8.6),

log((x − 1)ζ(x)) = log
(

1 + x(x − 1)I(x)
)

.

So,

ζ ′(x)
ζ(x)

+
1

x − 1
=

d

dx
log((x − 1)ζ(x)) =

(2x − 1)I(x) + x(x − 1)I ′(x)
1 + x(x − 1)I(x)

.

Taking the limit x → 1 we approach I(1) = γ.

5.8.8 (5.8.10) says that π−x/2Γ (x/2)ζ(x) = π−(1−x)/2Γ ((1 − x)/2)ζ(1 − x).
Differentiating the log of (5.8.10) yields

−1
2

log π +
1
2

Γ ′(x/2)
Γ (x/2)

+
ζ ′(x)
ζ(x)

=
1
2

log π − 1
2

Γ ′((1 − x)/2)
Γ ((1 − x)/2)

− ζ ′(1 − x)
ζ(1 − x)

.

Now, add 1/(x − 1) to both sides, and take the limit x → 1. By the previous
exercise, the left side becomes − log π/2 + Γ ′(1/2)/2Γ (1/2) + γ. By Exercise
5.6.13, the right side becomes log π/2 + γ/2 − ζ ′(0)/ζ(0). But ζ(0) = −1/2,
and, by Exercise 5.5.10 and Exercise 5.6.11,
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1
2

Γ ′(1/2)
Γ (1/2)

=
1
2

Γ ′(1)
Γ (1)

− log 2

= −γ

2
− log 2.

So,

− log π

2
+
(
−γ

2
− log 2

)
+ γ =

log π

2
+ γ/2 + 2ζ ′(0).

Hence, ζ ′(0) = − log(2π)/2.

5.8.9 For 0 < a ≤ 1/2,

− log(1 − a) = a +
a2

2
+

a3

3
+ · · · ≤ a + a2 + a3 + · · · =

a

1 − a
≤ 2a.

On the other hand, by the triangle inequality, for |a| ≤ 1/2,

| − log(1 − a) − a| =
∣
∣
∣
∣
a2

2
+

a3

3
+ . . .

∣
∣
∣
∣

≤ |a|2
2

+
|a|3
3

+ . . .

≤ 1
2
(
|a|2 + |a|3 + . . .

)
=

1
2
· a2

1 − |a| ≤ a2.

5.8.10 m and n are both odd iff mn is odd. So, χ+(m) and χ+(n) both equal 1 iff
χ+(mn) = 1. Since χ+ equals 0 or 1, this shows that χ+(mn) = χ+(m)χ+(n).
For χ−, m or n is even iff mn is even. So,

χ−(mn) = χ−(m)χ−(n) (A.5.1)

when either n or m is even. If n and m are both odd and m = 4i+3, n = 4j+3,
then, mn = (4i + 3)(4j + 3) = 4(4ij + 3i + 3j + 2) + 1 which derives (A.5.1)
when χ−(m) = χ−(n) = −1. The other 3 cases are similar.

5.8.11 With fn(x) = 1/(4n − 3)x − 1/(4n − 1)x,

L(s, χ−) =
∞∑

n=1

fn(x), x > 0.

Then, by the mean value theorem, fn(x) ≤ x/(4n − 3)x+1. Hence, |fn(x)| ≤
b/(4n − 3)a+1 = gn for 0 < a < x < b. Since 4n − 3 ≥ n,

∑
gn ≤ bζ(a + 1).

So, the dominated convergence theorem applies.

Solutions to exercises 5.9

5.9.1 On n − 1 ≤ x ≤ n, q(x) =
∑n

k=0 f(x − k), so, q(n) =
∑n

k=0 f(n − k).
On n ≤ x ≤ n + 1, q(x) =

∑n+1
k=0 f(x− k) =

∑n
k=0 f(x− k) + f(x−n− 1), so,
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q(n) =
∑n

k=0 f(n−k)+f(−1). Since f(−1) = 0, q is well defined at all integers.
If n− 1 ≤ x ≤ n, q(x) =

∑n
k=0 f(x− n), and q(x− 1) =

∑n
k=0 f(x− 1− k) =

∑n+1
k=1 f(x− k). So, q(x)− q(x− 1) = f(x)− f(x− n− 1) = f(x) since f = 0

on [−2,−1]. Thus, q solves (5.9.3). To show that q is smooth on R, assume
that q is smooth on (−∞, n). Then, q(x− 1)+ f(x) is smooth on (−∞, n+1).
Hence, so is q(x) by (5.9.3). Thus, q is smooth on R.

5.9.2 If f(x) = 0 for x > 1, the formula reads

q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−f(x + 1), x ≥ −1,

−f(x + 1) − f(x + 2), −1 ≥ x ≥ −2,

−f(x + 1) − f(x + 2) − f(x + 3), −2 ≥ x ≥ −3,

and so on.

5.9.3 We show, by induction on n ≥ 0, that

c(D) [eaxxn] =
∂n

∂an
[c(a)eax] (A.5.2)

for all |a| < R and convergent series c(a) on (−R,R). Clearly, this is so for
n = 0. Assume that (A.5.2) is true for n − 1 and check (by induction over
k) that Dk(eaxxn) = xDk(eaxxn−1) + kDk−1(eaxxn−1), k ≥ 0. Taking linear
combinations, we get c(D)(eaxxn) = xc(D)(eaxxn−1) + c′(D)(eaxxn−1). By
the inductive hypothesis applied to c and c′, we obtain

c(D)(eaxxn) =
∂n−1

∂an−1
[xc(a)eax + c′(a)eax]

=
∂n−1

∂an−1
· ∂

∂a
[c(a)eax]

=
∂n

∂an
[c(a)eax].

Thus, (A.5.2) is true for all n ≥ 0.

5.9.4 Change variable xt = s, xdt = ds. Then, with |f(t)| ≤ C, 0 < t < 1,
∣
∣
∣
∣x

n+1

∫ 1

0

e−xtf(t)tn dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ x

0

e−sf(s/x)sn ds

∣
∣
∣
∣

≤ C

∫ ∞

0

e−ssn ds = CΓ (n + 1).

This shows that the integral is O(x−n−1).

5.9.5 Note that
∫∞
1

e−xt dt = e−x/x and, by differentiation under the integral
sign,

∫ ∞

1

e−xttp dt = (−1)p dp

dxp

∫ ∞

1

e−xt dt = (−1)p dp

dxp

e−x

x
= R(x)e−x
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for some rational function R. But e−x = O(x−n) for all n ≥ 1 implies
R(x)e−x = O(x−n) for all n ≥ 1. Thus, the integral is ≈ 0.

5.9.6 If the Stirling series converged at some point a, then, Bn/n(n− 1)an−1,
n ≥ 1, would be bounded by the nth term test. Then, the Bernoulli series
would be dominated by

∑
∣
∣
∣
∣
Bn

n!
xn

∣
∣
∣
∣ ≤

∑ C

|a|(n − 2)!
(|a|x)n

which converges for all x. But we know (§5.6) that the radius of convergence
of the Bernoulli series is 2π.
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for integrals 160
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