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Carles Casacuberta, Universitat de Barcelona
Angus MacIntyre, Queen Mary, University of London
Kenneth Ribet, University of California, Berkeley
Claude Sabbah, CNRS, École Polytechnique
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Preface

In essence, class field theory is the study of the abelian extensions of arbitrary global
or local fields. In particular, one is interested in characterizing the abelian extensions
of a given field K in terms of the arithmetical data for K . The most basic example
of such a characterization is the Kronecker-Weber Theorem, which states that the
abelian extensions of the field of rational numbers are subfields of its cyclotomic
extensions, so expressible in terms of roots of unity.

Also of interest is to describe how the prime ideals in the ring of integers of a
global or local field decompose in its finite abelian extensions. In the case of the
quadratic extensions of the field of rational numbers, such a description is obtained
through the Law of Quadratic Reciprocity. There are also higher reciprocity laws of
course, but all of these are subsumed by what is known as Artin Reciprocity, one of
the most powerful results in class field theory.

I have always found class field theory to be a strikingly beautiful topic. As
it developed, techniques from many branches of mathematics were adapted (or
invented!) for use in class field theory. The interplay between ideas from number
theory, algebra and analysis is pervasive in even the earliest work on the subject.
And class field theory is still evolving. While it is prerequisite for most any kind of
research in algebraic number theory, it also continues to engender active research. It
is my hope that this book will serve as a gateway into the subject.

Class field theory has developed through the use of many techniques and points
of view. I have endeavored to expose the reader to as many of the different tech-
niques as possible. This means moving between ideal theoretic and idèle theoretic
approaches, with L-functions and the Tate cohomology groups thrown in for good
measure. I have attempted to include some information about the history of the
subject as well. The book progresses from material that is likely more naturally
accessible to students, to material that is more challenging.

The global class field theory for number fields is presented in Chapters 2-6, which
are intended to be read in sequence. For the most part they are not prerequisite for
Chapter 7. (The exceptions to this are in Chapter 6: profinite groups and the theory
of infinite Galois extensions in Section 6, and the notion of a ramified prime in
an infinite extension from Section 7.) The local material is positioned last primar-
ily because it is somewhat more challenging; for this reason, working through the
earlier chapters first may be of benefit.

v



vi Preface

For students who have completed an introductory course on algebraic number
theory, a one-term course on global class field theory might comprise Chapters 2-5
and sections 1–4 of Chapter 6. For more experienced students, some of the material
in these chapters may be familiar, e.g., the sections on Dirichlet series and the The-
orem on Primes in Arithmetic Progressions. In that case, the remainder of Chapter 6
may be included to produce a course still entirely on global class field theory. For
somewhat more sophisticated students, Chapter 7 provides the option of including
the local theory.

Facility with abstract algebra and (very) basic topology and complex analysis
is assumed. Chapter 1 contains an outline of some of the prerequisite material on
number fields and their completions. Nearly all of the results in Chapter 1 appear
without proof, but details can be found in Fröhlich and Taylor’s Algebraic Number
Theory, [FT], or (for the global fields) Marcus’ Number Fields, [Ma].

The level of preparation in abstract algebra that is required increases slightly
as one progresses through the book. However, I have included a little background
material for certain topics that might not appear in a typical first-year course in
abstract algebra. For example there are brief discussions on topological groups,
infinite Galois theory, and projective limits. Finite Galois theory is heavily used
throughout, and concepts such as modules, exact sequences, the Snake Lemma, etc.,
play important roles in several places. A small amount of cohomology is introduced,
but there is no need for previous experience with cohomology.

The source for the material on Dirichlet characters in Chapter 2 is Washington’s
Cyclotomic Fields, [Wa], while the material on Dirichlet series was adapted primar-
ily from Serre’s A Course in Arithmetic, [Se1], and the book by Fröhlich and Taylor,
[FT]. The section on Dirichlet density is derived mostly from Janusz’ Algebraic
Number Fields, [J], and Lang’s Algebraic Number Theory, [L1].

I first saw class fields interpreted in terms of Dirichlet density in Sinnott’s lec-
tures, [Si], which greatly influenced the organization of the material in Chapters 3
and 4. (This point of view appears also in Marcus’ Number Fields, [Ma].) Other
sources that were particularly valuable in the writing of these two chapters were [J],
[L1], and Cassels and Fröhlich’s Algebraic Number Theory, [CF].

The main source consulted in the preparation of Chapters 5 and 6 is [L1],
although [J], [CF], [Si], Neukirch’s Class Field Theory, [N], and the lecture notes of
Artin and Tate, [AT], also were very valuable throughout. For section 7 of Chapter 6,
[Wa] is the primary source, and Lang’s Cyclotomic Fields I and II, [L3], was also
consulted.

Other references that proved particularly useful in the preparation of the chap-
ters on global class field theory include Gras’ Class Field Theory, [G], and Milne’s
lecture notes, [Mi].

The presentation of local class field theory in Chapter 7 relies mainly on the
article by Hazewinkel, [Haz2]. Also very useful were Iwasawa’s Local Class Field
Theory, [I], Neukirch’s book, [N], and the seminal article of Lubin and Tate, [LT].

A preliminary version of this book was used by a group of students and faculty at
the University of Colorado, Boulder. I am indebted to them for their careful reading
of the manuscript, and the many useful comments that resulted. My thanks espe-
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cially to David Grant, who led the group and kept detailed notes on these comments,
and to the members: Suion Ih, Erika Frugoni, Vinod Radhakrishnan, Zachary Strider
McGregor-Dorsey and Jonathan Kish.

Several incarnations of the manuscript for this book have been used for courses
in class field theory that I have offered periodically. I am grateful to my class field
theory students over the past few years, who have participated in these courses using
early versions of the manuscript. Among those who have helped in spotting typo-
graphical errors and other oddities are Eric Driver, Ahmed Matar, Chase Franks,
Rachel Wallington, Michael McCamy and Shawn Elledge. Special thanks also to
John Kerl for advice on creating diagrams in LaTeX and to Linda Arneson for her
excellent work in typing the first draft of the course outline, which grew into this
book.

In completing this book, I am most fortunate to have worked with Mark Spencer,
Frank Ganz and David Hartman at Springer, and to have had valuable input from
the reviewers. My sincere thanks to them as well.

Tempe, AZ
2007
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Chapter 1
A Brief Review

For the convenience of the reader and to fix notation, in this chapter we recall some
basic definitions and theorems for extensions of number fields and their comple-
tions. Typically the material discussed in this chapter would be presented in detail
in an introductory course on algebraic number theory.

We conclude this chapter with a brief discussion of some questions that arise
naturally in the study of algebraic number fields. These questions were important to
the development of class field theory. In subsequent chapters, we shall explore some
of the mathematics they have inspired. Class field theory provides information on
the nature of the abelian extensions of number fields, their ramified primes, their
primes that split completely, elements that are norms, etc. We also treat the abelian
extensions of local fields in a later chapter, where analogous questions may be asked.
The present chapter is intended to be used as a quick reference for the notation,
terminology and precursory facts relating to these concepts.

We state nearly all of the results in this chapter without proof. For a more thor-
ough treatment of introductory algebraic number theory, see Fröhlich and Taylor’s
Algebraic Number Theory, [FT], (which includes material on completions), or Mar-
cus’ Number Fields, [Ma], (which does not). Somewhat more advanced books on the
subject include Janusz’ Algebraic Number Fields, [J], and Lang’s Algebraic Number
Theory, [L1].

1 Number Fields

A number field is a finite extension of the field Q of rational numbers. If F is a
number field, denote the ring of algebraic integers in F by OF . It is well-known that
OF is a Dedekind domain, so that any ideal of OF has a unique factorization into a
product of prime ideals. A fractional ideal of F is a non-zero finitely generated OF -
submodule of F . The fractional ideals of F form a group IF under multiplication;
the identity in IF is OF , and for a fractional ideal a, we have

a−1 = {x ∈ F : xa ⊆ OF }.

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 1, 1
C© Springer Science+Business Media, LLC 2009



2 1 A Brief Review

The principal fractional ideals of F form a (normal) subgroup of IF , denoted PF .
The quotient CF = IF

/
PF

is called the ideal class group of F . A non-trivial the-
orem in algebraic number theory says that CF is a finite group for any number field
F . Its order is the class number of F , denoted hF .

Given a finite extension K/F of algebraic number fields, consider the ideal pOK ,
where p is a non-zero prime ideal of OF . Using unique factorization of ideals in OK ,
we have

pOK = Pe1
1 · · ·Peg

g

where the P j are (distinct) prime ideals of OK , g = g(p) is a positive integer and
the e j are positive integers. We call e j the ramification index for P j/p, denoted
e j = e(P j/p). If K/F is a Galois extension, then the Galois group permutes the P j

transitively, so that e1 = · · · = eg = e, say.
Since every non-zero prime ideal is maximal in a Dedekind domain, the quotients

OK
/
P j

and OF
/
p are fields, called residue fields. Indeed, they are finite fields of

characteristic p, where p ∩Z = pZ. We may view OF
/
p as a subfield of OK

/
P j

.

The residue field degree is

f (P j/p) =
[OK

/
P j

: OF
/
p

]
.

If K/F is Galois, then f (P1/p) = · · · = f (Pg/p) = f , say.
In general, we have

∑g
j=1 e(P j/p) f (P j/p) = [K : F]. When K/F is Galois,

this becomes e f g = [K : F].
If K/F is an extension of number fields, we say that the prime p is unramified

in K/F if e(P j/p) = 1 for all j , p is totally ramified in K/F if there is a unique
prime P above p with e(P/p) = [K : F], p remains inert in K/F if pOK is prime
in OK , and p splits completely in K/F if g = [K : F].

Given an extension K/F of number fields and a prime ideal p of OF , one
approach to finding the factorization of pOK is the following, sometimes called
the Dedekind-Kummer Theorem.

Theorem 1.1. Let K/F be an extension of number fields and supposeOK = OF [α].
Let f (X) = IrrF (α, X), the irreducible polynomial of α over F, and let p be a prime
ideal in OF . Put Fp = OF

/
p, and denote the image of f (X) in Fp[X] by f (X),

(reduce the coefficients of f modulo p). Suppose in Fp[X], the factorization of f (X)
is given by

f (X) = p1(X)
e1 · · · pg(X)

eg

where the p j (X) are distinct monic irreducible polynomials in Fp[X]. For each j ,
let p j (X) be a monic lift of the corresponding p j (X) to OF [X], and let P j be the
ideal of OK generated by p and p j(α). Then
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pOK = Pe1
1 · · ·Peg

g

with the P j distinct prime ideals of OK . ��
The discriminant of an extension of number fields will be of use to us. This can be

defined in terms of the discriminants of bases for K as a vector space over F . Recall
that if K/F is a finite extension of number fields, with {v1, . . . , vn} an F-basis of
K , then we define the discriminant of this basis to be

d(v1, . . . , vn) = det[TrK/F (viv j )] = det[σi (v j )]2

where σ1, . . . , σn : K ↪→ Falg are F-monomorphisms. The relationship between
the discriminants of two different bases for K over F can be described in terms of
the change of basis matrix between them: If A is an n × n matrix with
(w1, . . . , wn)t = A(v1, . . . , vn)t , then

d(w1, . . . , wn) = (det A)2d(v1, . . . , vn).

In the case when K = F(α) where [K : F] = n, the matrix [σi (α j−1)] is
Vandermonde, so

d(1, . . . , αn−1) =
∏

1≤i< j≤n

(σi (α)− σ j (α))2.

Specifically, if OK = OF [α] and f (X) is the irreducible polynomial of α over F ,
then NK/F ( f ′(α)) = (−1)

n(n−1)
2 d(1, α, . . . , αn−1).

Note that different F-bases for K need not have the same discriminant. Hence
the discriminant of the extension K/F must be defined in terms of all the possible
bases for K . To do so, we generate a module with all these discriminants.

Suppose M is a non-zero OF -submodule of K and M contains an F-basis of K .
We let d(M) be the OF -module generated by all d(v1, . . . , vn) where {v1, . . . , vn} ⊂
M varies through the F-bases for K contained in M . Of course if M is a fractional
ideal of K then d(M) is a fractional ideal of F . Moreover, if M is a free OF -module,
say M = ⊕n

i=1OFwi , then d(M) = d(w1, . . . , wn)OF .
The (relative) discriminant of the extension K/F is dK/F = d(OK ), where OK is

considered as a (finitely generated) OF -module. This makes dK/F an integral ideal
of OF . The (absolute) discriminant of K is dK = dK/Q. Note that OK is a free
Z-module of rank n = [K : Q], so dK = dK/Q is a (principal) ideal in Z, generated
by d(v1, . . . , vn) where {v1, . . . , vn} is any integral basis for OK , (by integral basis
we mean a Z-basis for OK ).

One of the reasons why discriminants will be useful to us is that they carry infor-
mation about the primes that ramify in an extension. For a non-zero prime ideal p
of OF , we have that p is ramified in K/F if and only if p | dK/F .

We shall make heavy use of the notion of the norm of a fractional ideal. We
record its definition and a few basic facts here. Let K/F be a finite extension of
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number fields. Let p be a non-zero prime ideal of OF and let P be a prime of OK

dividing pOK . Define the norm of P as NK/F (P) = p f (P/p). Now extend NK/F to
arbitrary fractional ideals of K by multiplicativity, i.e.,

NK/F (Pa1
1 · · ·Pat

t ) = NK/F (P1)a1 · · · NK/F (Pt )
at .

Thus the norm of a fractional ideal of K is a fractional ideal of F . Note that if K/F
is Galois, then

NK/F (A)OK =
∏

σ∈Gal(K/F)

σ (A).

If α ∈ K , then NK/F (αOK ) = NK/F (α)OF , where the norm on the right is the usual
element norm. Also, if F ⊆ E ⊆ K are number fields, then

NK/F = NE/F ◦ NK/E .

The specific case when F = Q gives NK/Q(A) = aZ for some a ∈ Q. We shall
sometimes write NA for NK/Q(A), and frequently in our expressions for Dirichlet
series we shall also use NA to represent the non-negative generator |a| of aZ.

Given a Galois extension of number fields K/F with Galois group G, a non-
zero prime ideal p of OF and a prime ideal P of OK with P

∣
∣pOK , we define the

decomposition group

Z (P/p) = {σ ∈ G : σ (P) = P}.

Note that Z (P/p) acts on the finite field FP = OK
/
P, fixing the subfield Fp =

OF
/
p elementwise, so there is a natural homomorphism of groups

Z (P/p) → Gal (FP/Fp).

From algebraic number theory, we have the following.

Theorem 1.2. Let K/F be a Galois extension of number fields with Galois group
G. Let p be a non-zero prime ideal of OF .

i. G acts transitively on the set of prime ideals P of OK that divide pOK whence

[G : Z (P/p)] = #{primes P of OK : P
∣∣pOK } = g.

Also, if P, P′ are prime ideals of OK dividing pOK , then Z (P/p) and Z (P′/p)
are G-conjugate.

ii. Np = #Fp, NP = #FP and Gal (FP/Fp) is cyclic, generated by the Frobenius
automorphism ϕp : x �→ x Np.
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iii. The homomorphism Z (P/p) → Gal (FP/Fp) is surjective; its kernel is called
the inertia subgroup, denoted T (P/p). Note that [Z (P/p) : T (P/p)] = f and
T (P/p) has order e. ��

In the case of a Galois extension K/F of number fields, the decomposition group
and inertia subgroup give rise, via the Galois correspondence, to intermediate fields,
called the decomposition field and inertia field, respectively. Let KZ be the fixed
field of Z (P/p) and let KT be the fixed field of T (P/p). For an abelian extension,
the factorization of the ideals generated by p in these intermediate fields is given by
the following result from algebraic number theory.

Theorem 1.3 (Layer Theorem). Let p be a non-zero prime ideal ofOF , where K/F
is an abelian extension of number fields. Then p splits completely in KZ/F. The
primes above p remain inert in KT /KZ and ramify totally in K/KT . ��

If e(P/p) = 1, then via the natural homomorphism in (iii ) of Theorem 1.2, we
have Z (P/p) ∼= Gal (FP/Fp) is cyclic of order f . The Galois group for the residue
fields is generated by the Frobenius automorphism ϕp, whence there is a unique
element σ ∈ Z (P/p) that corresponds to ϕp under the natural isomorphism. We
have Z (P/p) = 〈σ 〉. This element σ is called the Frobenius element at P. We

denote it σ =
(

P
K/F

)
= (P, K/F).

Proposition 1.4. Let K/F be a Galois extension of number fields, p a non-zero
prime of OF that is unramified in K/F and P a prime of OK with P

∣
∣pOK . Then

the Frobenius element at P is the unique element σ ∈ Gal (K/F) that satisfies
σ (α) ≡ αNp (mod P) for every α ∈ OK .

Proof. Say σ (α) ≡ αNp (mod P) for all α ∈ OK . From this congruence we see
that σ (P) ⊆ P, whence σ (P) = P, i.e., σ ∈ Z (P/p). Clearly, the isomorphism

Z (P/p) ∼= Gal (FP/Fp) maps σ to ϕp. Thus σ =
(

P
K/F

)
. ��

If we suppose further that G is abelian, then by (i ) of Theorem 1.2 we know
that Z (P/p) depends only on p and we may write Z (p). Also, if p is unramified
in K/F , then we show in Proposition 1.5 below that the Frobenius element at P
depends only on p. In this case, we call it the Artin automorphism for p, denoted(

p
K/F

)
= (p, K/F).We may define a map

{primes of OF that are unramified in K/F} → G

given by p �→ σp =
(

p
K/F

)
.

Proposition 1.5. Let K/F be an abelian extension of number fields, p a non-zero
prime of OF that is unramified in K/F and P a prime of OK with P

∣
∣pOK . Then

σ =
(

P
K/F

)
does not depend on the choice of the prime P above p.
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Proof. To show independence, suppose the primes P and P′ divide pOK . Write
σ, σ ′ for the Frobenius elements at P, P′, respectively. Now by (i ) of Theorem 1.2,
there exists τ ∈ G such that τ (P) = P′, so

τσ (α) ≡ τ (αNp) (mod P′)

≡ τ (α)Np (mod P′) ∀α ∈ OK .

But τσ = στ since G is abelian, so σ (τ (α)) ≡ τ (α)Np (mod P′) for all α ∈ OK .
Since τ is a bijection, we must have σ (α) ≡ αNp (mod P′) for all α ∈ OK , whence
σ = σ ′. ��
Proposition 1.6. Suppose K/F is an abelian extension with Galois group G and we
have a field L with F ⊆ L ⊆ K , (so L/F and K/L are also abelian). Let p be a

prime of OF that is unramified in K/F . Then
(

p
L/F

)
and

(
p

K/F

)
are both defined

and

(
p

L/F

)
=
(

p

K/F

) ∣∣
∣
∣

L
.

Proof. Let σ =
(

p
K/F

)
, σ ′ =

(
p

L/F

)
, and let P be a prime ideal of OK above p.

Then σ (α) ≡ αNp (mod P) for all α ∈ OK . Let P′ = P ∩OL . For every α ∈ OL

we have σ (α) ≡ αNp (mod P′). Thus σ
∣
∣
∣

L
= σ ′. ��

Exercise 1.1. Suppose K/F is Galois but not necessarily abelian. Let P be a prime
of OK above p, and suppose e(P/p) = 1.

a. Find and prove a statement similar to Proposition 1.6 for the Frobenius element
at P.

b. Suppose L is an intermediate field in the extension K/F . How are
(

P
K/L

)
and

(
P

K/F

)
related?

c. Fix the prime ideal p of OF and let P vary through all the prime ideals of

OK above p. Show that the set
{(

P
K/F

)
: P
∣
∣pOK

}
is a conjugacy class in

G = Gal (K/F). ♦

Example.

1. Let F = Q, K = Q(ζm); then G = Gal (K/F) ∼=
(
Z
/

mZ

)×
. We may

assume that m is either odd or divisible by 4, so that p|m if and only if pZ

ramifies in K/Q. Suppose p � m. Let σ =
(

pZ

Q(ζm )/Q

)
and suppose P

∣∣pZ. Then

σ (α) ≡ α p (mod P). In particular, σ (ζm) ≡ ζ p
m (mod P). We claim this implies

σ (ζm) = ζ
p

m . Suppose we have verified this claim. Then σ (ζm) = ζ
p

m . Since
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ζ
p

m = σp(ζm) and ζm generates K/Q, it follows that σ = σp. The Artin auto-
morphism is the same as the pth power map in this case. It remains to verify the
claim. The following proposition resolves this.

Proposition 1.7. If ζ, ζ ′ are m th roots of unity in K and P
∣
∣pZ is unramified, with

ζ ≡ ζ ′ (mod P), then ζ = ζ ′.
Proof. Let μm denote the set of m th roots of unity and consider the polynomial
Xm − 1 =∏η∈μm

(X − η). Differentiate to obtain:

m Xm−1 =
∑

η∈μm

∏

η′ �=η
(X − η′).

Now evaluate for X = ζ :

mζm−1 =
∑

η∈μm

∏

η′ �=η
(ζ − η′) =

∏

η′ �=ζ
(ζ − η′).

Suppose ζ ≡ ζ ′ (mod P) and ζ �= ζ ′. Then
∏
η′ �=ζ (ζ − η′) ≡ 0 (mod P),

which yields mζm−1 ≡ 0 (mod P). It follows that P
∣
∣mζm−1OK , so P

∣
∣mOK . We

conclude that p|m and thus p is ramified (a contradiction). ��
We shall encounter the Artin automorphism again in Chapter V; it plays a central

role in our proofs of the main theorems of class field theory. For now, we are content
to use it to show the following result on primes that split completely in subextensions
of cyclotomic fields. The reader is encouraged to keep this result in mind as we
discuss the definition of class field in Chapter 3.

Theorem 1.8. If K ⊆ Q(ζm), then identify Gal (Q(ζm)/Q) ∼=
(
Z/

mZ

)×
and let

H <
(
Z
/

mZ

)×
be the subgroup corresponding to Gal (Q(ζm)/K ). The primes

p � m that split completely in K/Q are those p such that p mod m ∈ H .

Proof. The primes that split completely in K/Q are precisely the primes with triv-
ial decomposition group, hence precisely the unramified primes with trivial Artin
automorphism.

Since p � m, we have that p is unramified. Hence p splits completely if and only

if its Artin automorphism is trivial:
(

pZ

K/Q

)
= 1. But

(
pZ

K/Q

)
=
(

pZ

Q(ζm )/Q

) ∣∣
∣

K
=

σp

∣
∣
∣

K
. Thus

p splits completely in K/Q ⇐⇒ σp|K = 1

⇐⇒ σp ∈ Gal (Q(ζm)/K )

⇐⇒ p mod m ∈ H. ��

For example, when m = 13, Q(ζ13)/Q is of degree 12 and has cyclic Galois
group. Let K be the unique subfield of Q(ζ13) with [K : Q] = 3. In this case, we
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have H ∼= Gal (Q(ζ13)/K ) and H is the unique subgroup of
(
Z
/

13Z

)×
of order 4.

Thus H = {1, 5, 12, 8} = 〈5〉. By Theorem 1.8,

p splits completely in K/Q ⇐⇒ p ≡ 1, 5, 8, or 12 (mod 13).

Finally, for a number field F , we shall need to understand the group O×
F . Let

r1 denote the number of embeddings F ↪→ R and let r2 denote the number of
conjugate pairs of imaginary embeddings F ↪→ C. (Then [F : Q] = r1 + 2r2.) The
group O×

F is described by the following.

Theorem 1.9 (Dirichlet Unit Theorem). Let F be a number field and let r1 and
r2 represent the number of real embeddings and the number of conjugate pairs of
imaginary embeddings of F, respectively. There are units ε1, . . . , εr1+r2−1 ∈ O×

F
such that

O×
F
∼=WF × 〈ε1〉 × · · · × 〈εr1+r2−1〉
∼=WF × Zr1+r2−1,

where WF is the group of roots of unity in F. The ε j are called a fundamental system
of units for F. ��

Among many other things, fundamental units are used to define the regulator of
F . Let {ε1, . . . , εr } be a fundamental system of units for F , where r = r1 + r2 − 1.
Consider the matrix

A = [log |σ j (εi)| j ] for 1 ≤ i ≤ r and 1 ≤ j ≤ r1 + r2

where:

|x | j =
{ |x | if 1 ≤ j ≤ r1

|x |2 if r1 + 1 ≤ j ≤ r1 + r2.

Here | · | is the usual absolute value on C, and σ1, . . . , σr1 are all the real embeddings
of F , while σr1+1, . . . , σr1+r2 are a set of representatives (one from each conjugate
pair) of the imaginary embeddings. The regulator RF is the absolute value of the
determinant of any r × r minor of A. It is independent of the choice of the fun-
damental system {ε1, . . . , εr }. The volume of a fundamental parallelopiped in the
lattice associated to OF may be expressed in terms of the regulator as

√
r1 + r2 RF .

2 Completions of Number Fields

As our study of class field theory progresses, it will become evident that the various
completions of a number field F all play equally important roles. We gather some
of the basic facts about completions in this section.

Let F be an algebraic number field. An absolute value on the field F is a function
F → [0,∞), where the image of x ∈ F is denoted |x |, such that
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i. |x | = 0 if and only if x = 0
ii. |xy| = |x ||y| for all x, y ∈ F

iii. |x + y| ≤ |x | + |y| for all x, y ∈ F .

A non-Archimedean absolute value is an absolute value that satisfies the stronger
condition

iii’. |x + y| ≤ max{|x |, |y|} for all x, y ∈ F .

If | · | is an absolute value on F , then it gives rise to a metric on F via d(x, y) =
|x − y|. We say two absolute values on F are equivalent if they give rise to the
same metric topology on F . When we discuss places a bit later, we shall relax our
definition of absolute value slightly, but it will turn out that this relaxed notion of
absolute value does not alter the topological situation: Any such (relaxed) absolute
value will induce a topology homeomorphic to the topology induced by an absolute
value satisfying (i ), (ii ) and (iii ), above.

To obtain a non-Archimedean absolute value on a number field F , let p be a non-
zero prime ideal of OF . For x ∈ F×, we may factor the fractional ideal generated
by x as a product of prime ideals, paying particular attention to our fixed prime p;
say

xOF = pαpα1
1 · · · pαt

t ,

where the p j are distinct to p, and α, α j ∈ Z. By unique factorization of fractional
ideals in F , we may define

ordp(x) = α.

The function ordp : F× → Z is what is known as a discrete valuation on the field
F . (To be a valuation, a function v : F× → R must satisfy v(xy) = v(x) + v(y)
and v(x + y) ≥ min{v(x), v(y)}. To be discrete, its image v(F×) must be a discrete
subgroup of R.) In fact, ordp is normalized, meaning that ordp(F×) = Z. Using
it, we define the p-adic absolute value on F as follows. Fix a real number c, with
0 < c < 1 and define

|x |p =
{

0 if x = 0
cordp(x) if x �= 0.

(Different choices of the real number c yield equivalent absolute values.) It is easy to
verify that | · |p is a non-Archimedean absolute value on F . Also, if p �= q, then | · |p
and | · |q are inequivalent absolute values on F . Typical choices for the real number

c are 1/p , where pZ = p ∩ Z, or 1/
Np, where Np is the positive generator of

NF/Q(p).
One may obtain an Archimedean absolute value on a number field F from any

embedding σ : F ↪→ C by setting
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|x |σ = |σ (x)| where | · | is the usual absolute value on C.

Let σ1, . . . , σr1 be all the distinct real embeddings of F and let σr1+1, . . . , σr1+r2 be
distinct imaginary embeddings of F , chosen so that each conjugate pair of imagi-
nary embeddings is represented exactly once. One may show that the absolute values
| · |σ1 , . . . , | · |σr1+r2

are pairwise inequivalent on F , while the absolute values | · |τ
and | · |τ̄ for a conjugate pair of imaginary embeddings of F are equivalent on F .

For example, F = Q(
√

3) has two inequivalent Archimedean absolute values:

|a + b
√

3|1 = |a + b
√

3|R
|a + b

√
3|2 = |a − b

√
3|R.

By a theorem of Ostrowski, every non-trivial absolute value on a number field F
arises (up to equivalence) as a | · |p or a | · |σ for some non-zero prime p of OF or
some embedding σ : F ↪→ C.

The completion of an algebraic number field F with respect to the absolute value
| · | is the field

{Cauchy sequences in F}/{Null sequences in F}.

Via constant sequences, we may view F as a subfield of any of its completions. If
| · | = | · |p for some non-zero prime ideal p of OF , then we denote the completion
of F by Fp. If | · | = | · |σ for some embedding σ : F ↪→ C, then the completion of
F is isomorphic either to R or C, according as σ (F) ⊆ R or not.

Let us examine the p-adic completion Fp in more detail. Let

Op = {x ∈ Fp : |x |p ≤ 1},

the ring of p-adic integers. Op is a local ring (in fact a discrete valuation ring) with
unique maximal ideal

Pp = {x ∈ Fp : |x |p < 1}.

(The units of Op are precisely those elements having absolute value one.) Note that
OF is a subring of Op and is dense in Op. We also have Pp = pOp and

Op
/
Pp
∼= OF

/
p.

Hence Fp is a local field, i.e., it is complete with respect to a discrete valuation, and
it has finite residue field.

Choose π ∈ p − p2 and view π as an element of Fp. Observe that Pp = 〈π〉;
we say π is a uniformizer in Fp. Every element x ∈ Fp may be written as x = επ t ,
where t ∈ Z and ε ∈ O×

p . This leads to the p-adic expansion of x :
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x =
∞∑

j=t

a jπ
j

where the a j may be chosen from a (finite) set of distinct representatives forOp
/
Pp

.

In particular, when F = Q, we have p = pZ for some prime number p. Denote
the completion by Qp, and the ring of p-adic integers by Zp. In this case, we may
choose the a j from the set {0, . . . , p − 1}.

Again let F be a number field and let p be a prime ideal of OF . The following
result allows us to lift a factorization of a polynomial over the residue field OF

/
p

to a factorization over the completion Fp. It is one version among many that bear
the same title. While similar statements hold in more general settings, this version
is all that we require.

Theorem 2.1 (Hensel’s Lemma). Let F be a number field and let p be a non-zero
prime ideal of OF . Suppose we are given a monic polynomial f (X) ∈ Op[X], say of

degree n. Let f̄ (X) be the canonical image of f (X) in the ring Op
/
Pp

[X], (reduce

the coefficients modulo Pp). If we have a factorization f̄ (X) = ḡ(X)h̄(X) where

deg(ḡ) = t and where ḡ and h̄ are monic and coprime in Op
/
Pp

[X], then there is

a factorization f (X) = g(X)h(X) in Op[X], where deg g = t and g, h are monic
polynomials that reduce modulo Pp to ḡ, h̄ respectively. ��

In particular, note that if we apply Hensel’s Lemma to the special case where
g(X) is linear, we find that a simple zero of f̄ (X) lifts to a simple zero of f (X).
Thus it is perhaps not surprising that the proof of Hensel’s Lemma may be regarded
as a generalization of Newton’s method for approximating a zero of a polynomial.
See Exercise 1.3 for an opportunity to apply Hensel’s Lemma.

Observe that Qp is not algebraically closed, but unlike the situation for the Archi-
medean absolute value on Q, when one takes an algebraic closure Q

alg
p for Qp, it will

not be complete! (Finite extensions of Qp are complete, but the algebraic closure is
an infinite extension.) Luckily, the completion of an algebraic closure of Qp is both
algebraically closed and complete. Thus we have a field that is analogous to the
complex numbers C in this regard. We denote it Cp. There is a unique absolute
value on Cp that extends the p-adic absolute value of Qp. We continue to use | · |p
to denote this absolute value on Cp.

At first glance, the Archimedean and non-Archimedean absolute values on a
number field seem to arise in very different ways. However, this is something of a
misconception. To illustrate, we first introduce the following notational convention.
Let | · |∞ denote the usual Archimedean absolute value on Q. Allowing p to be any
fixed prime, or p =∞, observe that if we have an absolute value on a number field
F that extends | · |p from Q, then the completion of F with respect to this absolute
value is the compositum FQp, (where Q∞ is R).

Still taking p to be any fixed prime or p = ∞, let F be a number field and
suppose σ : F ↪→ Q

alg
p is an embedding, (where Q

alg
∞ = C). We may define for

x ∈ F ,
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|x |σ = |σ (x)|p.

Then | · |σ is readily seen to be an absolute value on F that extends | · |p on Q.
Moreover, every extension of | · |p to F arises (up to topological equivalence) as
some | · |σ . When do two embeddings σ1 and σ2 of F give rise to equivalent abso-
lute values on F? Precisely when they are conjugate embeddings, i.e., when there
is an automorphism ϕ of Q

alg
p such that ϕ ◦ σ1 = σ2. Thus there is a bijective

correspondence

{topologically distinct extensions of | · |p to F}
←→ {conjugacy classes of embeddings σ : F ↪→ Qalg

p }.

If we write the number field F as a simple extension of Q, say F = Q(α), then we
may use the monic irreducible polynomial f (X) of α over Q to learn more about
the extensions of | · |p. In Qp[X], we factor f (X) into irreducibles, say

f (X) = h1(X) · · · hg(X)

with the hi (X) distinct irreducible polynomials over Qp. Then two embeddings σ1,
σ2 are conjugate if and only if they send α to roots of the same hi (X). Thus there
are g distinct extensions of | · |p to F . Moreover, if σ (α) is a root of h j (X) and the
completion of F with respect to | · |σ is denoted Fσ , then deg h j = [Fσ : Qp].

Returning exclusively to the non-Archimedean case, suppose F is an algebraic
number field and p is a non-zero prime ideal of OF , with p∩Z = pZ. The restriction
of the absolute value | · |p to Q gives the same topology on Q as | · |p does. The
completion Fp is a finite extension of Qp that can be embedded as a subfield of
Q

alg
p , hence also of Cp. There is one subtle point. This embedding must preserve the

topology, so must be chosen so that elements of Fp that are “close” with respect to
the p-adic absolute value are mapped to elements of Cp that are close with respect

to | · |p. By the above, we know that | · |p arises from an embedding σ : F ↪→ Q
alg
p .

We have Fp = Fσ and our embedding of Fp into Cp will extend σ .
Suppose K/F is an extension of algebraic number fields and p is a non-zero

prime ideal of OF . We may factor

pOK = Pe1
1 · · ·Peg

g

where the P j are distinct prime ideals of OK and the e j are positive integers. The
absolute values |·|P1, . . . , |·|Pg are pairwise inequivalent on K , but their restrictions
to the subfield F all produce the same topology on F as | · |p does. The absolute
values | · |P1 , . . . , | · |Pg represent all the topologically inequivalent extensions of
| · |p to K . Each completion KP j is a finite extension of Fp. Conversely, if we begin
with any finite extension k of Fp, there will be some finite extension K of F and
some prime ideal P of OK so that k = KP. Thus all the finite extensions of Fp arise
from prime ideals in finite extensions of F .
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Analogous to the number field case, the notion of fractional ideal applies to the
completions Fp. As with number fields, we have unique factorization of fractional
ideals (Op is a p.i.d.). Of course the factorizations are very simple in this case
because there is only one prime ideal! For the extension KP/Fp, we can factor
the ideal PpOP = pOP as Pe

P for some positive integer e = e(PP/Pp), the

local ramification index. Putting f = f (PP/Pp) =
[OP

/
PP

: Op
/
Pp

]
, (the

local residue field degree), we have e f = [KP : Fp]. (Since Op and OP are local
rings, necessarily we have no splitting in the extension KP/Fp.) We also use the
terminology totally ramified ( f = 1), ramified (e > 1), and unramified (e = 1) in
the local setting, but we can apply these descriptions to the entire extension, since
there is only one prime for each field.

In general, if K/F is an extension of number fields and p is a prime ideal of
OF with pOK = Pe1

1 · · ·Peg
g , then e(PP j/Pp) = e(P j/p), and f (PP j/Pp) =

f (P j/p), i.e., ramification indices and residue field degrees for the number fields
and their completions coincide. Moreover, if K/F is Galois, then so is KP j /Fp, and

Gal(KP j /Fp) ∼= {σ ∈ Gal(K/F) : |σ (x)|P j = |x |P j ∀x ∈ KP j }
∼= Z (P j/p).

Example.

2. Let K = Q(i ), F = Q, p = 5Z. We have that 5Z splits completely: 5Z[i ] =
P1P2 where P1 = 〈2− i〉 and P2 = 〈2+ i〉. Since we have a prime that splits
completely, the ramification index and residue field degree are both trivial, i.e.,
e = f = 1, so the extensions KP j /Q5 are trivial. This means that we have
KP1

∼= KP2
∼= Q5. However, we must be careful how we distinguish between

KP1 and KP2 . On one hand, they are both Q5, but on the other hand each must
contain an isomorphic copy of K that is the image of a continuous embedding,
and the topology on K is different in each case.
There are two square roots of −1 in Q5; say α is the one that is congruent to
2 modulo 5. Since KP1

∼= Q5, there is an embedding ιP1 : K ↪→ Q5. This
embedding must preserve absolute values, so that 2− i ∈ P1 is identified with
2− α ∈ Q5, while 2+ i is identified with a 5-adic unit. On the other hand, the
embedding ιP2 : K ↪→ Q5 maps 2 + i ∈ P2 to 2 − α ∈ Q5 while 2 − i is
now mapped to a unit. Thus we have found the two distinct embeddings of K
into Q5 (one for each extension of | · |5 to K ). As the above illustrates, writing
“2+ i” for an element of Q5 is ambiguous unless the embedding of K into Q5

being used is understood.

Exercise 1.2. Let F = Q(β), where β is a root of f (X) = X3− 3. Let p = ∞. Use
f (X) to find the extensions of | · |∞ to F . ♦

Exercise 1.3. Let F = Q(β), where β is a root of f (X) = X3− X −1. Let p = 17.
Factor f (X) over Q17 to find the number of extensions of | · |17 to F and the degrees
of their respective completions over Q17 (Hensel’s Lemma may be of use for this).



14 1 A Brief Review

Find ramification indices and residue field degrees for the primes of OF above 17Z

and verify that this agrees with the information obtained from the factorization of
f (X). ♦

The following theorem collects some other facts about ramification in extensions
of Fp; these results typically are proved in a first course in algebraic number theory.
For example, proofs may be found in the books of Fröhlich and Taylor, [FT], Janusz,
[J], and Lang, [L1].

Theorem 2.2. Let Fp denote the completion of a number field F at a non-zero prime
ideal p of OF .

i. Every finite totally ramified extension of Fp has the form Fp(π), where π is a
zero of some Eisenstein polynomial in Op[T ].

ii. If π ∈ Falg
p is a zero of some Eisenstein polynomial in Op[T ], then Fp(π)/Fp

is totally ramified.
iii. For a given positive integer f , there is a unique unramified extension of Fp

of degree f , (unique within some fixed algebraic closure). It is Galois with a
cyclic Galois group, and is obtained by adjoining to Fp a lifting of any primitive

element for the degree- f extension of the finite field Op
/
Pp
. ��

Finally we remark that the norm of an element or of a fractional ideal, the dis-
criminant, etc., may be defined for the extension KP j /Fp in exactly the same way
as was done for extensions of number fields.

Exercise 1.4. Let K/F be an extension of algebraic number fields, and let p be a
prime ideal of OF . For any α ∈ K , show that

NK/F (α) =
∏

P|p
NKP/Fp

(ιP(α)).

(Hint: It may help to study the previous example; if we identify Fp and KP with
extensions of Qp (where pZ = p∩Z), the embeddings ιP of K into its completions
must be chosen correctly or the above formula does not hold.) ♦

3 Some General Questions Motivating Class Field Theory

Let F be a number field, CF its ideal class group. (Thus OF is a u.f.d. if and only
if CF = {1}.) Suppose CF �= {1}. It would be useful to embed F into a larger
number field K , where OK is a u.f.d. Can one find a finite extension K/F of class
number one, i.e., with CK = {1}? For a long time, the answer to this question was
not known. There were known examples of cases where such an extension K exists,
but (for good reason) no one had succeeded in proving that K must always exist. As
was first shown in the early 1960s by Shafarevich and Golod, there are examples of
number fields F having no finite extension K of class number one.
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Perhaps we may ask for a bit less. Is there an extension K/F such that any non-
principal ideal a of OF becomes principal in OK , (i.e., the ideal aOK is principal in
OK )? Happily, the answer here is yes, by a result called the Principal Ideal Theorem,
(see Chapter 6). This was conjectured by Hilbert, but not proved until the 1930s by
Furtwängler.

The well-known theorem of Kronecker and Weber gives a classificaton of all the
finite abelian extensions of Q, proving that any such extension is a subfield of a
cyclotomic field. There are also results describing the abelian extensions of imagi-
nary quadratic fields (in terms of special values of elliptic modular functions). It is
natural to seek to extend this to the study of all abelian extensions of an arbitrary
number field F . This is the heart of class field theory. As we shall discover, the
finite abelian extensions K of a number field F correspond to certain subgroups of
ideals (or alternately, of idèles), whose factor groups turn out to be isomorphic to
the Galois groups Gal (K/F). (These are the Existence, Completeness and Isomor-
phy Theorems.) While these results give a description of the nature of the abelian
extensions of an arbitrary number field F , the problem of constructing explicitly the
abelian extensions of F remains an open question. Progress in special cases has been
made using techniques from computational number theory. For a nice introduction
to this facet of the subject, see Cohen’s Advanced Topics in Computational Number
Theory, [Coh].

While we do not treat them in this text, there are results (using algebraic K -
theory) that provide information on the abelian extensions of fields of finite tran-
scendence degree over their prime fields. This more general setting has been studied
in the work of Bloch, Kato, Saito, et al., beginning in the 1980s (for example, see
[Ka], [Bl] and [KS]). Raskind, [R], has gathered much of the material on this topic
into an extensive survey. Another area of recent interest (also outside the scope
of this text) is non-abelian class field theory, (the Langlands philosophy), much of
which is still only conjectured.



Chapter 2
Dirichlet’s Theorem on Primes in Arithmetic
Progressions

As is well-known, Euclid gave a proof of the existence of infinitely many primes.
Centuries later, Euler devised another proof using the Riemann zeta function.

Dirichlet’s proof of his theorem on primes in arithmetic progressions is a gener-
alization of Euler’s idea, except the zeta function is replaced by the L-function of
a Dirichlet character. Dirichlet gave the proof for prime modulus in 1837, finishing
the general case in 1840.

Theorem (Dirichlet’s Theorem on Primes in Arithmetic Progressions). If m is
a positive integer and a is an integer for which (a,m) = 1, then there are infinitely
many primes p satisfying p ≡ a (mod m).

Taking m = 1 gives a restatement of Euclid’s result, and reduces Dirichlet’s proof
to the one given by Euler. The theorem on arithmetic progressions was a key ingredi-
ent in Legendre’s attempted “proof” of Quadratic Reciprocity. Unfortunately, while
he relied upon it, Legendre didn’t prove it; it remained conjectural until Dirichlet’s
1837 paper. The first complete proof of Quadratic Reciprocity (by Gauss, using a
different approach) also came later, although it pre-dates Dirichlet’s Theorem.

In this chapter, we introduce Dirichlet characters and their L-functions, and give
a proof of Dirichlet’s Theorem on Primes in Arithmetic Progressions, which moti-
vates our discussion of ray class groups in Chapter 3.

1 Characters of Finite Abelian Groups

We recall some basic facts about characters of finite abelian groups. Given a finite
abelian group G, a character of G is a multiplicative homomorphism G → C×. Let
Ĝ denote the set of all characters of G.

If χ , ψ ∈ Ĝ, then we define their product χψ to be the function χψ : G → Cx

that satisfies χψ(g) = χ(g)ψ(g). It is straightforward to show that χψ is also a
character of G, and that under this multiplication, Ĝ is a group, called the character
group of G. For example, the homomorphism χ0 : G → C× given by χ0 : g �→ 1 is
called the trivial character on G. It serves as the identity in Ĝ. In fact, we have the
following.

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 2, 17
C© Springer Science+Business Media, LLC 2009
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Proposition 1.1. If G is a finite abelian group, then Ĝ ∼= G.

Proof. Since G is abelian, it may be written as a direct sum of cyclic groups of the

form Z
/

mZ. It follows that Ĝ is the product of groups of the form Ẑ
/

mZ . For any

χ ∈ Ẑ
/

mZ the complex number χ(1) determines χ completely, since Z/
mZ is

an additive cyclic group generated by 1. Thus we have an injective homomorphism

of groups Ẑ
/

mZ → C× given by χ �→ χ(1). Note also that the image of this
homomorphism is precisely the set of m th roots of unity in C, which is a cyclic

group of order m. Hence Z/
mZ

∼= Ẑ
/

mZ, and we conclude G ∼= Ĝ. ��

It is clear from the above proposition that ˆ̂G ∼= G, but we include additional
details because it is possible to give a canonical isomorphism explicitly. Given g ∈
G, let g̃ : Ĝ → C× be defined by g̃ : χ �→ χ(g), (so g̃ ∈ ˆ̂G).

Exercise 2.1. Show that the map g �→ g̃ is a homomorphism G → ˆ̂G. ♦

Proposition 1.2. The map g �→ g̃ is an isomorphism G → ˆ̂G.

Proof. To show injectivity, suppose g ∈ G satisfies χ(g) = 1 for all χ ∈ Ĝ. Let
H = 〈g〉 < G. Then the elements of Ĝ may be viewed as (distinct) characters of
G/

H . But by Proposition 1.1, there are exactly #
(

G/
H

)
of these. It follows that

#H = 1. We have shown that if χ(g) = 1 for all χ ∈ Ĝ, then g = 1. Hence, we

have an injective homomorphism G ↪→ ˆ̂G. Since the orders are equal, it follows

that this is an isomorphism G
∼=−→ ˆ̂G. ��

Proposition 1.3. Let G be a finite abelian group. For H < G, let

H⊥ = {χ ∈ Ĝ : χ(h) = 1 for all h ∈ H };

i. if H < G, then H⊥ ∼= Ĝ/
H

ii. if H < G, then Ĥ ∼= Ĝ/
H⊥

iii. (H⊥)⊥ = H , (if we identify ˆ̂G = G).

Proof.
(i.) The isomorphism is given by identifying χ ∈ H⊥ with ψ ∈ Ĝ/

H , where
ψ(gH ) = χ(g). This mapping is well-defined since χ is trivial on H . It is
routine to check that it is an isomorphism of groups.

(ii.) Clearly restriction χ �→ χ
∣
∣

H
is a homomorphism Ĝ → Ĥ with kernel H⊥.

This yields an embedding Ĝ/
H⊥ ↪→ Ĥ . It must also be surjective, since the

orders agree:
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#H⊥ = #
(

Ĝ/
H

)
= #

(
G/

H

)

= #G/
#H

whence #Ĥ = #H = #G/
#H⊥

= #Ĝ/
#H⊥.

(iii.) By definition, (H⊥)⊥ = {g̃ ∈ ˆ̂G : g̃(χ) = 1 for all χ ∈ H⊥}. Considering
orders, we get

#(H⊥)⊥ = # ˆ̂G/
H⊥ = #Ĝ/

H⊥

= #Ĝ/
#H⊥

= #G/
(#G/#H )

= #H.

Since the orders agree, it suffices to observe that if h ∈ H , then h̃ : χ �→ χ(h)

satisfies h̃(H⊥) = {1} from which we deduce that ˆ̂H = H ⊆ (H⊥)⊥. ��
Finally, we give a proof of two very useful equations known as the orthogonality

relations.

Proposition 1.4 (Orthogonality Relations).

i. Fix a character χ of the finite abelian group G. Then

∑

g∈G

χ(g) =
{

0 if χ �= χ0

#G if χ = χ0

]
.

ii. Fix an element g of the finite abelian group G. Then

∑

χ∈Ĝ

χ(g) =
{

0 if g �= 1
#G if g = 1

]
.

Proof. For (i), let h ∈ G and note that
∑

g∈G

χ(g) =
∑

g∈G

χ(gh) = χ(h)
∑

g∈G

χ(g). This

implies that (1 − χ(h))
∑

g∈G

χ(g) = 0, for all h ∈ G. If χ �= χ0 , then there is some

h ∈ G for which χ(h) �= 1. It follows that
∑

g∈G

χ(g) = 0. Of course, for χ = χ0 , the

expression becomes
∑

g∈G

χ0 (g) =
∑

g∈G

1 = #G.
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For (ii), note that
∑

χ∈Ĝ

χ(g) =
∑

χ∈Ĝ

g̃(χ) and use (i). ��

2 Dirichlet Characters

The notion of Dirichlet character predates considerably the more general ideas dis-
cussed in the previous section. However, we shall make use of the more modern
terminology to define Dirichlet characters as follows. Let n be a positive integer. A

Dirichlet character modulo n is a character of the abelian group
(
Z/

nZ

)×
, i.e., a

multiplicative homomorphism

χ :
(
Z/

nZ

)×
→ C×.

We call n the modulus of χ .

Examples.

1. Let p be an odd prime, and let χ :
(
Z
/

pZ

)×
→ C× be the Legendre symbol

mod p, i.e., χ(a) =
(

a
p

)
.

2. Let i be the usual complex number, and define χ :
(
Z
/

5Z

)×
→ C× by χ(1) =

1, χ(2) = i , χ(3) = −i , χ(4) = −1.
If χ is a Dirichlet character of modulus n and n|m, then by using the natural

homomorphism ϕ :
(
Z/

mZ

)×
→
(
Z/

nZ

)×
, we may define χ ′ = χ ◦ ϕ. Now χ ′

is also a Dirichlet character, but of modulus m. In this situation, we say that χ ′ is
induced by χ .

Let fχ be the minimal modulus for the Dirichlet characterχ , i.e., χ is not induced
by any Dirichlet character of modulus smaller than fχ . Call fχ the conductor of χ .
A Dirichlet character defined modulo its conductor is called primitive.

Examples.

3. Let χ :
(
Z/

12Z

)×
→ C× be given by χ(1) = 1, χ(5) = −1, χ(7) = 1,

χ(11) = −1. Since χ(a + 3k) = χ(a) we see that χ is induced by the char-

acter ψ :
(
Z
/

3Z

)×
→ C×, where ψ(1) = 1, ψ(2) = −1. Furthermore ψ is

primitive. We conclude that fχ = 3.

4. Let χ :
(
Z/

12Z

)×
→ C× be given by χ(1) = 1, χ(5) = −1, χ(7) = −1,

χ(11) = 1. It is easy to check that χ is primitive, whence fχ = 12.
A Dirichlet character χ also may be regarded as a function χ : Z → C by letting

χ(a) =
{
χ(a mod fχ ) if (a, fχ ) = 1
0 if (a, fχ ) �= 1.
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We also refer to this periodic function on Z as a Dirichlet character, and we do not

distinguish notationally between a Dirichlet character as a function on
(
Z/

fχZ

)×

and the periodic function on Z associated to it.
Let χ0 denote the trivial character of conductor 1. Let χ,ψ be primitive Dirichlet

characters of conductors fχ , fψ , respectively. Let n = lcm( fχ , fψ ). The function

η :
(
Z/

nZ

)×
→ C× defined by

η : a �→ χ(a)ψ(a)

is easily seen to be a (possibly imprimitive) Dirichlet character. Define the product
χψ to be the primitive Dirichlet character that induces η. In this way, we are able to
define a multiplication on primitive Dirichlet characters that is closed. It is trivial to
check that this multiplication is associative and commutative and that χ0 serves as
the identity. Note that the conductor of χψ must be a divisor of the product of the
conductors of χ and ψ .

Example.

5. Let

χ :
(
Z/

12Z

)×
→ C× by χ(1) = 1, χ(5) = −1, χ(7) = −1, χ(11) = 1

ψ :
(
Z/

4Z

)×
→ C× by ψ(1) = 1, ψ(3) = −1.

Then η :
(
Z/

12Z

)×
→ C× by η(1) = 1, η(5) = −1, η(7) = 1, η(11) = −1.

The character η is imprimitive, induced by the primitive character χψ . We find

that χψ :
(
Z/

3Z

)×
→ C× by χψ(1) = 1, χψ(2) = −1. Note: χ(2)ψ(2) =

0 �= χψ(2).

Exercise 2.2. Show: if ( fχ , fψ ) = 1, then fχψ = fχ fψ . ♦

Given a Dirichlet character χ :
(
Z
/

nZ

)×
→ C×, we can associate to it the

map χ̄ :
(
Z
/

nZ

)×
→ C× by χ̄(a) = (χ(a))−1 = χ(a), the complex conjugate.

It is straightforward to show that χ̄ is a Dirichlet character, that it has the same
conductor as χ , and that χ̄χ = χ0 . Thus the (primitive) Dirichlet characters form
a group under multiplication. The order of a Dirichlet character is its order as an
element of this group. Because the image of a Dirichlet character is necessarily a
(finite) group of roots of unity in C×, its order will always be finite. Indeed, if χ has
conductor n, then the order of χ must be a divisor of ϕ(n). A Dirichlet character of
order 2 is sometimes called a quadratic Dirichlet character.

For any Dirichlet character χ , we must have χ(−1) = ±1. If χ(−1) = 1, then χ
is called even; if χ(−1) = −1, then χ is called odd.
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Exercise 2.3. Show that the set of all even Dirichlet characters is a subgroup of the
group of all Dirichlet characters under multiplication. ♦

Given a fixed positive integer n, the Dirichlet characters having conductors divid-
ing n form a finite group. In fact, letting ζn be a primitive n-th root of unity, we

can identify Gal (Q(ζn)/Q) = G with
(
Z/

nZ

)×
whence the group of Dirichlet

characters modulo n may be regarded as characters of the Galois group G.
Let χ be a character of G = Gal (Q(ζn)/Q). Let K be the fixed field of the kernel

of χ . We call K the field associated to χ .

Example.

6. Let χ : G = Gal (Q(ζ12)/Q) → C× by χ(σ1) = 1, χ(σ5) = −1, χ(σ7) = 1,
χ(σ11) = −1, where σ j : ζ12 �→ ζ

j
12. Then kerχ = {σ1 = id, σ7}.

Now σ7(ζ3) = ζ3, so kerχ fixes elements of Q(ζ3). Comparing orders and
indices, we see that Q(ζ3) is the fixed field of kerχ = Gal (Q(ζ12)/Q(ζ3)).
Hence Q(ζ3) is the field associated to χ . It follows that χ is really a character of
G/

kerχ , which corresponds to Gal (Q(ζ3)/Q) ∼=
(
Z
/

3Z

)×
. Note fχ = 3.

More generally, let X be a finite group of Dirichlet characters and let n be the least
common multiple of all of the conductors of these characters. Then we may view
X as a subgroup of Ĝ, where G = Gal (Q(ζn)/Q). Let H = ∩ kerχ , where the
intersection is over all χ ∈ X . Then H is a subgroup of G; let K be the fixed field
of H . K is called the field associated to X.

Note that if χ ∈ X , then H < kerχ , so the field associated to χ is a subfield
of the field associated to X . Also, if X is cyclic, generated by χ , then the field
associated to X is the same as the field associated to χ .

Examples.

7. Let χ :
(
Z
/

15Z

)×
→ C× be given by χ(1) = 1, χ(2) = −1, χ(4) = 1,

χ(7) = −1, χ(8) = −1, χ(11) = 1, χ(13) = −1, χ(14) = 1. Consider χ
as a character of Gal (Q(ζ15)/Q). Now kerχ has order 4, so its fixed field K
must satisfy [K : Q] = 2. Also K must be real, since its elements must be



2 Dirichlet Characters 23

fixed by σ14, which is complex conjugation. The quadratic subfields of Q(ζ15)
are diagrammed below.

Only one of the quadratic subfields of Q(ζ15)/Q, is real. Thus K = Q(
√

5) is the
field associated to χ . Note that dK/Q = 5, and χ has conductor 5.

8. Let ψ :
(
Z/

15Z

)×
→ C× be the Dirichlet character given by ψ(1) = 1,

ψ(2) = −1, ψ(4) = 1, ψ(7) = 1, ψ(8) = −1, ψ(11) = −1, ψ(13) = 1,

ψ(14) = −1. Let ϑ :
(
Z
/

15Z

)×
→ C× be the Dirichlet character given

by ϑ(1) = 1, ϑ(2) = 1, ϑ(4) = 1, ϑ(7) = −1, ϑ(8) = 1, ϑ(11) = −1,
ϑ(13) = −1, ϑ(14) = −1. Consider ψ and ϑ as characters of Gal (Q(ζ15)/Q).
As in the previous example, each must correspond to a quadratic subextension
of Q(ζ15)/Q. Checking conductors, we see that the conductor of ψ is 3, while

the conductor of ϑ is 15. Thus we must have that ψ is a character of
(
Z
/

3Z

)×
,

so that the field associated to ψ is Q(ζ3) = Q(
√−3). The field associated to ϑ

must be the only remaining possibility, i.e., Q(
√−15).

9. Let G = Gal (Q(ζn)/Q) ∼=
(
Z
/

nZ

)×
and let X be the set of all even characters

in Ĝ. Exercise 2.3 tells us that X is a subgroup of Ĝ. Note that X has index 2
in Ĝ (the product of two odd characters is even, so the only non-trivial coset in
Ĝ/

X contains all the odd characters). Since χ(−1) = 1 for all χ ∈ X , we must
have σ−1 ∈ kerχ for all χ ∈ X . Now, the automorphism σ−1 : ζn �→ ζ−1

n is
complex conjugation, so the field associated to X must be real. In fact, if χ is
any character, then the field associated to χ is real if and only if χ is even. Since
X is the largest subgroup of Ĝ consisting entirely of even characters, one expects
that its associated field will be the maximal real subfield of Q(ζn). Soon we shall
have a theoretical result that makes this apparent. For now, however, we simply
find ∩

χ∈X
kerχ .

We have shown ∩
χ∈X

kerχ ⊇ {σ1, σ−1}. The reverse containment is also true,

for if σr ∈ ∩
χ∈X

kerχ is non-trivial, then the canonical isomorphism G → ˆ̂G
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gives that σ̃r is non-trivial, (see Proposition 1.2). But then there is some ψ ∈ Ĝ
such that ψ(σr ) �= 1. We cannot have ψ ∈ X , so ψ must be odd. However ψ2

is even, and hence ψ2(σr ) = 1. It follows that ψ(σr ) = −1. Since [Ĝ : X] = 2,
any other odd character of G will have the form ψχ for some χ ∈ X , so σ̃r

sends every odd character in Ĝ to −1 and every even character in Ĝ to 1. But
then σ̃r = σ̃−1. Thus the field associated to X is the fixed field of {σ1, σ−1},
which is Q(ζn + ζ−1

n ), the maximal real subfield of Q(ζn).
In several of the previous examples, the reader has perhaps noticed a relationship

between the conductor of a Dirichlet character and the discriminant of its associated
field. We include the following result without proof, although we have seen evidence
to support it in our examples, (it may be proved using analytic techniques – see
Chapter 7 of Long’s Algebraic Number Theory, [Lo]).

Theorem 2.1 (Conductor Discriminant Formula). Let X be a finite group of
Dirichlet characters and K its associated (abelian) number field. Then

dK/Q = (−1)r2
∏

χ∈X

fχ

where r2 is the number of pairs of imaginary embeddings of K . ��
Exercise 2.4. Let p > 2 be a prime. Use the Conductor Discriminant Formula to
find the discriminant of Q(ζp + ζ−1

p ) over Q. ♦
Exercise 2.5. Let p > 2 be a prime and let n > 0 be an integer. Use the Conductor
Discriminant Formula to find the discriminant of Q(ζpn ) over Q. ♦

We want to describe more precisely the relationship between groups of Dirichlet
characters and their associated fields. What results is an enhancement of the Galois
correspondence for abelian extensions of Q. Let Q ⊆ L ⊆ K , where K/Q is finite
abelian. Let X K denote the group of characters of Gal (K/Q). Then

{χ ∈ X K : χ(g) = 1 for all g ∈ Gal (K/L)} = Gal (K/L)⊥

=
̂

Gal (K/Q)/
Gal (K/L)

= ̂Gal (L/Q) = X L

where X L is the group of characters associated to L.
Conversely, beginning with a finite abelian extension K/Q having group of char-

acters X K , let Y be any subgroup of X K and let L be the fixed field of Y⊥. Then

Y⊥ = {g ∈ Gal (K/Q) : χ(g) = 1 for all χ ∈ Y } = Gal (K/L)

and

Y = (Y⊥)⊥ = Gal (K/L)⊥ = ̂Gal (L/Q) = X L .
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We have shown that there is a bijective correspondence

{subgroups of X K } ←→ {subfields of K }

given by:

Y ←→ fixed field of Y⊥

or by

X L = Gal (K/L)⊥ ←→ L .

Note that the above correspondence is order-preserving, i.e., L1 ⊆ L2 if and only if
X L1 ⊆ X L2 . The following diagram illustrates this correspondence.

Let us revisit Example 9 momentarily. We consider the group X consisting of
all even Dirichlet characters whose conductors divide n. We know that the field
associated to X is real. If L is any real subfield of Q(ζn), then L is fixed by σ−1, so
σ−1 ∈ X⊥L , i.e., all the elements of X L are even. But then X L ⊆ X . It follows that
the field associated to X must be the maximal real subfield of Q(ζn).

Exercise 2.6. Let X j be the group of Dirichlet characters corresponding to the field
L j ( j = 1, 2). Prove or disprove each of the following.

a. The group generated by X1 and X2 corresponds to the compositum L1 L2.

b. The group X1 ∩ X2 corresponds to L1 ∩ L2. ♦

For abelian extensions of Q, we can compute ramification indices in terms of
Dirichlet characters. To describe how, we need to make some preliminary observa-
tions. Let n be a positive integer, and suppose n = ∏m

j=1 p
a j

j , where the p j ’s are
distinct primes and a j > 0. Then

(
Z
/

nZ

)× ∼=
m∏

j=1

(
Z
/

p
a j

j Z

)×
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so a Dirichlet character χ defined modulo n may be written as

χ =
m∏

j=1

χp j

where χp j is a Dirichlet character modulo p
a j

j .

For example, the character ϑ :
(
Z/

15Z

)×
→ C× defined by ϑ(1) = 1, ϑ(2) =

1, ϑ(4) = 1, ϑ(7) = −1, ϑ(8) = 1, ϑ(11) = −1, ϑ(13) = −1, ϑ(14) = −1 (from
Example 8) may be written as ϑ = ϑ3ϑ5 where

ϑ3 :
(
Z/

3Z

)×
→ C is given by ϑ3 (1) = 1, ϑ3 (2) = −1

ϑ5 :
(
Z/

5Z

)×
→ C is given by ϑ5 (1) = 1, ϑ5 (2) = −1, ϑ5 (3) = −1, ϑ5 (4) = 1.

Let X be a group of Dirichlet characters modulo n =∏m
j=1 p

a j

j , and put

X p j = {χp j : χ ∈ X}.

We have the following result.

Theorem 2.2. Suppose X is a group of Dirichlet characters with associated field K .
If p ∈ Z is prime then the ramification index of p in K/Q is e = #(X p).

Proof. Let n = lcm { fχ : χ ∈ X} and say n = pam where p � m. We have
K ⊆ Q(ζn), and we note that Q(ζm) ⊆ L = K (ζm) ⊆ Q(ζn). What is the group of
characters with associated field L? Since ̂Gal (L/Q) is generated by ̂Gal (K/Q) and

̂Gal (Q(ζm)/Q), it is generated by X and the characters modulo m. Since (p,m) = 1,
̂Gal (L/Q) is the direct product of X p with the characters of Q(ζm). We have L =

EQ(ζm) where E is the subfield of Q(ζpa ) corresponding to X p.

Since p is unramified in Q(ζm)/Q, the ramification index for p in L/Q is e. Since
p is unramified in L/E , the ramification index for p in E/Q is e. But p is totally
ramified in Q(ζpa )/Q, so also in E/Q. Thus e = [E : Q] = #(X p). ��
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Corollary 2.3. Let X be a group of Dirichlet characters and let K be its associated
field. A prime p is unramified in K/Q if and only if χ(p) �= 0 for all χ ∈ X .

Proof. Suppose p ramifies in K/Q. We have e = #X p �= 1, so X p contains some
non-trivial element χ . Thus there is a non-trivial character χ in X with conductor
divisible by p, i.e., with χ(p) = 0.

Conversely, if χ(p) = 0 for some element χ of X , then the conductor of χ must
be divisible by p. Thus X p must be non-trivial. But this implies that e = #X p > 1,
whence p is ramified. ��

Example.

10. In K = Q(ζ12), the subfield L = Q(i ) has associated characters

X L = {χ mod 12 : χ(σ ) = 1 for all σ ∈ Gal (K/L)}.

Now Gal (K/L) = {1, σ } where σ fixes i = ζ 3
12

, hence σ : ζ12 �→ ζ 5
12

. We find
that χ(σ ) = 1 if and only if χ(5) = 1. Thus X L = {1, ϑ}, where ϑ(1) = 1,
ϑ(5) = 1, ϑ(7) = −1, ϑ(11) = −1. Now ϑ has conductor 4, so ϑ(p) = 0 if and
only if p = 2. This confirms that 2 is the only ramified prime in Q(i )/Q.

Exercise 2.7. In this exercise we study quadratic Dirichlet characters and their asso-
ciated fields.

a. Let m be an odd positive integer. How many quadratic Dirichlet characters mod-
ulo m are there? How many of them are primitive? (Hint: if p is an odd prime,
how many quadratic Dirichlet characters have conductor p? How many have
conductor p2?)

b. What does your answer to part a tell you about the quadratic subfield(s) of Q(ζp),
where p is an odd prime? Does a quadratic subfield always exist? Is it unique?
When is it real?

c. Let p be an odd prime. How many quadratic Dirichlet characters modulo 4 p
are there? How many of them are primitive? What does this tell you about the
quadratic subfield(s) of Q(ζ4p), where p is an odd prime?

d. Answer similar questions about the quadratic subfield(s) of Q(ζ8).

e. For any odd prime p, show Q(
√

p) ⊆ Q(ζm) for m = p or 4 p. Use this to
show (without Kronecker-Weber) given any integer d , there is some m such that
Q(
√

d) ⊆ Q(ζm). ♦

Theorem 2.4. Let X be a group of Dirichlet characters with associated field K . Let
p be prime, and define the subgroups

Y = {χ ∈ X : χ(p) �= 0}
Y1 = {χ ∈ X : χ(p) = 1}.
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Then:

X/
Y is isomorphic to the inertia subgroup for p

X/
Y1

is isomorphic to the decomposition group for p

Y /
Y1

is cyclic of order f .

Proof. By Corollary 2.3, the subfield L of K associated to Y must be the largest
subfield of K in which p is unramified. Thus L = KT is the fixed field of the inertia
subgroup Tp and Tp = Gal (K/L).

By the bijective correspondence between subgroups of X and subfields of K , we
have

Y = Gal (K/L)⊥

whence

X/
Y = ̂Gal (K/Q)/

Gal (K/L)⊥

= ̂Gal (K/L)
∼= Gal (K/L) = Tp.

Thus e = #(Tp) = [X : Y ].
Now consider only the extension L/Q. It is unramified at p and its group of

characters is Y . If n = lcm { fχ : χ ∈ Y }, then L ⊆ Q(ζn). Also p � n
since p is unramified in L/Q. Recall that the Frobenius automorphism for p in
G = Gal (Q(ζn)/Q) is σp : ζn �→ ζ

p
n (σp is unique since p is unramified).

Now Gal (L/Q) ∼= G/
Gal (Q(ζn)/L), so the Frobenius automorphism for p in

Gal (L/Q) is identified with σ̄p, the coset of σp in the quotient. But if χ ∈ Y ,
then χ(σ ) is trivial on Gal (Q(ζn)/L) whence χ(σ̄p) = χ(σp) = χ(p). Thus

Y1 = {χ ∈ X : χ(σ̄p) = 1} = 〈σ̄p〉⊥ and Y /
Y1
∼= 〈̂σ̄p〉 ∼= 〈σ̄p〉, a cyclic group of

order f . We have [Y : Y1] = f , [Y1 : 1] = g.
Finally, recall that 〈σ̄p〉 is isomorphic to the quotient of the decomposition group

by the inertia subgroup. But p is unramified in L/Q, so 〈σ̄p〉 is isomorphic to the
decomposition group for p in L/Q (The order of the inertia subgroup is 1). Let F
be the fixed field of the decomposition group for p in L/Q. The character group of
F is Y1 (F is the fixed field of σ̄p, so χ ∈ ̂Gal (F/Q) if and only if χ(σ̄p) = 1, so if
and only if χ ∈ Y1). Hence Y1

∼= Gal (F/Q).
We return to K/Q. Now p splits completely in F/Q, the primes above p remain

inert in L/F , and ramify in K/L.
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The decomposition group for p in K/Q is isomorphic to Gal (K/F), since the only
splitting of p in K/Q occurs in F/Q, and p splits completely there. We conclude
that Y1 = Gal (K/F)⊥ by the bijective correspondence, and

X/
Y1
= ̂Gal (K/Q)/

Gal (K/F)⊥ = ̂Gal (K/F)

∼= Gal (K/F),

which is isormorphic to the decomposition group for p in K/Q. ��
As mentioned earlier, Dirichlet characters will play an important role in the next

section, where we give a proof of Dirichlet’s Theorem on Primes in Arithmetic
Progressions. But results such as the one above also may be used to study certain
finite unramified abelian extensions of a number field K (in the case when K is
abelian over Q).

Example.

11. Let χ be a generator of the cyclic group ̂Gal (Q(ζ5)/Q) and let ψ be a generator

of ̂Gal (Q(i )/Q). Let K be the field associated to the character χ2ψ and let L
be the field associated to the character group 〈χ2, ψ〉. Now χ2ψ has conductor
20, so we may view all these characters as elements of ̂Gal (Q(ζ20)/Q). Writing
σ j : ζ20 �→ ζ j

20
as usual, we see that kerψ = 〈σ13〉, and kerχ2 = 〈σ9 , σ11 〉, whence

L is the fixed field of 〈σ9 〉. Also, kerχ2ψ = 〈σ3 〉, so K is the fixed field of 〈σ3 〉.
It is now elementary to verify that L = Q(

√
5, i ) and K = Q(

√−5).
Clearly L/K is unramified at all primes other than 2 and 5. Using the above

results on the relationship between Dirichlet characters and ramification, we may
find the ramification indices for 2 and 5 in the extensions L/Q and K/Q from
which the ramification indices in L/K may be deduced. For the extension K/Q
and p = 2 or 5, we have X = {χ0, χ

2ψ} and Y = {χ0}, whence e2 = e5 = 2
for K/Q. For the extension L/Q and p = 2, we have X = {χ0 , χ

2, ψ, χ2ψ} and
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Y = {χ0, χ
2}, whence e2 = 2 for L/Q. For the extension L/Q and p = 5, we

have X = {χ0, χ
2, ψ, χ2ψ} and Y = {χ0 , ψ}, whence e5 = 2 for L/Q. Thus the

extension L/K is unramified at every prime. (In fact, L/K is also unramified at
the “infinite prime” of K . . . terminology we shall explain in Chapter 3.)
It should be noted that while very effective in certain situations, the use of Dirich-

let characters to find ramification indices, etc., has limitations. In the above example,
we were able to find the ramification indices for L/K not merely because L/K was
abelian, but rather because L/Q was abelian. Otherwise we could not have used
Dirichlet characters for L/Q.

More generally, one might ask whether, for a given number field K , it is possi-
ble to find a non-trivial abelian extension L/K in which every prime is unramified
(without requiring that L/Q be abelian). Is it possible to find more than one? Is there
a finite bound on the the degree [L : K ] or might it be that a fixed number field K has
everywhere unramified abelian extensions of arbitrarily large degree? (If we require
that L/Q be abelian, then we leave it as Exercise 2.8 to show that there is a maximal
such L, which has finite degree over K .) We shall return to these kinds of questions
(for L/Q not necessarily abelian) after we have defined the Hilbert class field.

Exercise 2.9. Let K be the field associated to the character χ2ψ , where χ is a gen-
erator of ̂Gal (Q(ζ5)/Q) and ψ is a generator of ̂Gal (Q(ζ3)/Q). Use the above ideas
to construct an extension of number fields L/K in which every prime is unramified,
and for which Gal (L/K ) is cyclic of order 2. (Hint: Let L be the field associated
to the character group 〈χ2, ψ〉.) ♦

Exercise 2.10. Let K be the field associated to the character χ2ψ , where χ is a
generator of ̂Gal (Q(ζ5)/Q) and ψ is a generator of ̂Gal (Q(ζ13)/Q). Construct an
extension of number fields L/K in which every prime is unramified, and for which
Gal (L/K ) is cyclic of order 2. ♦

Exercise 2.11. Let K be the field associated to the character χ4ψ , where χ is a
generator of ̂Gal (Q(ζ13)/Q) and ψ is a generator of ̂Gal (Q(ζ7)/Q). (If you want to
express K as a splitting field of some irreducible polynomial over Q, it may be best
to employ technology to aid in the computations.) Construct an extension of number
fields L/K in which every prime is unramified, and for which Gal (L/K ) is cyclic
of order 3. ♦

Exercise 2.12. Let K = Q(
√−21). Find an extension L of K so that L/Q is

abelian, [L : K ] = 4 and every prime is unramified in L/K . (Hint: Use Dirichlet
characters modulo 84.) ♦

3 Dirichlet Series

The Riemann zeta function and the Dirichlet L-functions are examples of Dirichlet
series. In this section, we shall discuss a few general properties of Dirichlet series,
which we shall need later. This is a very rich subject; much more than what we
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do here can be said. The reader is encouraged to consult a text on analytic number
theory.

A Dirichlet series is a series of the form

f (s) =
∞∑

n=1

an

ns

where an ∈ C for all n, and s is a complex variable. We gather some facts about
Dirichlet series in the following discussion. More can be found in Serre’s A Course
in Arithmetic, [Se1].

Exercise 2.13. Prove Abel’s Lemma: let (an) and (bn) be sequences, and for r ≥
m, put Am,r =

∑r
n=m an and Sm,r =

∑r
n=m anbn . Then

Sm,r =
r−1∑

n=m

Am,n(bn − bn+1)+ Am,r br .
♦

Exercise 2.14. Let A be an open subset of C and let ( fn) be a sequence of holomor-
phic functions on A that converges uniformly on every compact subset to a function
f . Show that f is holomorphic on A and the sequence of derivatives ( f ′n) converges
uniformly on all compact subsets to f ′. (Hint: Let D be a closed disk contained in
A and let C be its boundary. For s0 in the interior of D, Cauchy’s Formula applies
to the fn(s0). Let n → ∞ to get a similar formula for f (s0). For the derivatives,

proceed in the same way, using f ′(s0) = 1

2π i

∫

C

f (s)

(s − s0)2
ds.) ♦

Lemma 3.1. If f (s) = ∑∞
n=1

an
ns converges for s = s0, then it converges uniformly

in every domain of the form {s : Re(s − s0) ≥ 0, |Arg(s − s0)| ≤ θ} with θ < π
2 .

Proof. Translating if necessary, we may assume s0 = 0. Then we have that
∑∞

n=1 an

converges and we must show that f (s) converges uniformly in every domain of the
form {s : Re(s) ≥ 0, |Arg(s)| ≤ θ} for θ < π

2 . Equivalently, we must show that
f (s) converges uniformly in every domain of the form {s : Re(s) ≥ 0, |s|

Re(s) ≤ M}.
Let ε > 0 and let Am,r be as in Abel’s Lemma (see Exercise 2.13 above). Since∑∞
n=1 an converges, there is a sufficiently large number N so that if r > m ≥ N

then we have |Am,r | < ε. Let bn = n−s and apply Abel’s Lemma to get

Sm,r =
r−1∑

n=m

Am,n(n−s − (n + 1)−s)+ Am,r r−s .

Taking absolute values, and noting that

|e−cs − e−ds | = |s|
∫ d

c
e−tRe(s)dt = |s|

Re(s)
(e−cRe(s) − e−dRe(s)),



32 2 Dirichlet’s Theorem on Primes in Arithmetic Progressions

we obtain

|Sm,r | ≤ ε
(

1+ |s|
Re(s)

r−1∑

n=m

(n−Re(s) − (n + 1)−Re(s))

)

.

Hence

|Sm,r | ≤ ε
(
1+ M(m−Re(s) − r−Re(s))

) ≤ ε(1+ M).

Of course Sm,r is just a difference of partial sums of our Dirichlet series, so the
uniform convergence of f (s) on the domain {s : Re(s) ≥ 0, |s|

Re(s) ≤ M} follows. ��
Theorem 3.2. If the Dirichlet series f (s) = ∑∞

n=1
an
ns converges for s = s0, then it

converges (though not necessarily absolutely) for Re(s) > Re(s0) to a function that
is holomorphic there.

Proof. Clear from Lemma 3.1 and Exercise 2.14. ��
Corollary 3.3. Let f (s) =∑∞

n=1
an
ns be a Dirichlet series.

i. If the an are bounded, then f (s) converges absolutely for Re(s) > 1.
ii. If An = a1 + . . .+ an is a bounded sequence, then f (s) converges (though not

necessarily absolutely) for Re(s) > 0.
iii. If f (s) =∑∞

n=1
an
ns converges at s = s0, then it converges absolutely for Re(s) >

Re(s0)+ 1.

Proof

i. Suppose the an are bounded, say |an| ≤ M . Then

∣∣
∣
∣
∣

r∑

n=1

an

ns

∣∣
∣
∣
∣
≤ M

r∑

n=1

n−σ

where σ = Re(s). The result now follows from the convergence of
∑∞

n=1
1

nσ

for σ > 1.
ii. For r > m let Am,r =

∑r
n=m an as in Abel’s Lemma. We have that the Am,r are

bounded, say Am,r ≤ M . Apply Abel’s Lemma with bn = n−s as in the proof
of Lemma 3.1. We get

|Sm,r | ≤ M

(
r−1∑

n=m

∣
∣
∣
∣

1

ns
− 1

(n + 1)s

∣
∣
∣
∣+
∣
∣
∣
∣

1

r s

∣
∣
∣
∣

)

.

By Theorem 3.2, we may assume that s = σ is real. But then we have

|Sm,r | ≤ M

mσ
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from which we see that the partial sums of f (s) comprise a Cauchy sequence
when Re(s) > 0.

iii. Let

g(s) = f (s + s0) =
∑

(
an

ns0
)(

1

ns
).

Since f (s0) converges, bn = an
ns0 → 0 as n →∞. Hence, {bn} is bounded. By

(i), g(s) converges absolutely for Re(s) > 1. Thus f (s) = g(s − s0) converges
absolutely for Re(s − s0) > 1, i.e., for Re(s) > Re(s0)+ 1. ��

Let χ :
(
Z
/

mZ

)×
→ C×, be a Dirichlet character. The Dirichlet L-function

associated to χ is

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

The Riemann zeta function is

ζ (s) =
∞∑

n=1

1

ns
.

Suppose χ �= χ0 . Let An = χ(1) + . . . + χ(n) and write n = mk + r , where
0 ≤ r ≤ m − 1. Then

An = [χ(1)+ . . .+ χ(m)]+ [χ(m + 1)+ . . .+ χ(2m)]+ . . .
+ [χ(km + 1)+ . . .+ χ(km + r )]

= χ(km + 1)+ . . .+ χ(km + r )

so |An| ≤ r < m.
Now use Corollary 3.3. By (ii ), if χ �= χ0 , L(s, χ) is analytic for Re (s) > 0. For

any χ (including χ0 ), L(s, χ) converges absolutely for Re (s) > 1 by (iii).

Proposition 3.4. L(s, χ) has a so-called Euler product:

L(s, χ) =
∏

p prime

(1− χ(p)p−s)−1 for Re (s) > 1.

Proof. Fix s, with Re (s) > 1. We want to show:

lim
N→∞

∏

p≤N

(
1− χ(p)

ps

)−1

= L(s, χ).

Say p1, . . . , pk are all the primes less than N . Then
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k∏

i=1

(
1− χ(pi)

ps
i

)−1

=
k∏

i=1

(
1+ χ(pi )

ps
i

+ . . .+ χ(pm
i )

pms
i

+ . . .
)

=
∑

m1,...,mk≥0

χ(pm1
1 pm2

2 . . . pmk
k )

(pm1
1 pm2

2 . . . pmk
k )s

=
∑

n∈JN

χ(n)

ns

where JN = {n ∈ Z : n > 0 and n is not divisible by any prime p > N }.
We have L(s, χ) −

∏

p≤N

(
1− χ(p)

ps

)−1

=
∑

n∈(Z+\JN )

χ(n)

ns
. Taking absolute val-

ues, and applying the triangle inequality, we get

∣∣
∣
∣
∑

n∈Z+\JN

χ(n)

ns

∣∣
∣
∣ ≤

∑

n∈Z+\JN

1

nσ
where σ = Re (s)

≤
∑

n≥N

1

nσ
→ 0 as N →∞,

since
∑

n>N
1

nσ converges for σ > 1. The result follows. ��
Note that L(s, χ) �= 0 for Re (s) > 1. We obtain

log L(s, χ) = −
∑

p

log(1− χ(p)p−s),

where “log” denotes the branch of the logarithm such that log L(s, χ) → 0 as
s →∞.

Using the expansion for log(1+ T ),

log L(s, χ) =
∑

p

− log(1− χ(p)p−s)

=
∑

p

∑

n≥1

χ(p)n p−ns

n

=
∑

p

∑

n≥1

χ(p)n

npns
.

Now
∣∣
∣χ (p)n

npns

∣∣
∣ ≤

∣∣
∣ 1

pns

∣∣
∣ = 1

pnσ where σ = Re (s), so

∑

p

∑

n≥1

∣∣
∣
∣
χ(p)n

npns

∣∣
∣
∣ ≤

∑

p

∑

n≥1

1

pnσ
≤
∑

m≥1

1

mσ
,
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which converges for σ > 1. Hence the above expression for log L(s, χ) is absolutely
convergent for Re (s) > 1. This allows us to rearrange the terms to get

log L(s, χ) =
∑

p

∑

n≥1

χ(p)n

npns
=
∑

p

χ(p)

ps
+
∑

p

∑

n≥2

χ(p)n

npns
.

Let

β(s, χ) =
∑

p

∑

n≥2

χ(p)n

npns
.

Note that β(s, χ) is absolutely convergent for Re (s) > 1/2, (so β(1, χ) takes a
finite value).

4 Dirichlet’s Theorem on Primes in Arithmetic Progressions

In this section, we give a proof of Dirichlet’s Theorem on Primes in Arithmetic
Progressions. As we mentioned earlier, Dirichlet’s proof of this theorem is a gener-
alization of a technique of Euler that used the Riemann zeta function to prove that
there are infinitely many primes, (the case m = 1). We sketch Euler’s proof here.

Recall that the Riemann zeta function is given by

ζ (s) =
∞∑

n=1

1

ns
=

∏

p prime

(1− p−s)−1.

Suppose there are only finitely many primes p1, p2, . . . , pn in Z. Then

ζ (s) =
n∏

j=1

(1− p−s
j )−1 =

n∏

j=1

(
1

1− 1
ps

j

)
.

Taking limits, we have

lim
s→1

ζ (s) =
n∏

j=1

(
1

1− 1
p j

)
,

a rational number. But, (from the series for ζ (s)) it is clear that lim
s→1

ζ (s) = ∞, a

contradiction.
In the proof of Dirichlet’s Theorem on Primes in Arithmetic Progressions, the

zeta function is replaced by Dirichlet L-functions.

Theorem 4.1 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). If m
is a positive integer and a is an integer for which (a,m) = 1, then there are infinitely
many primes p satisfying p ≡ a (mod m).
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Proof. Let (m, a) = 1 and consider all Dirichlet characters χ that are defined mod-
ulo m. Then

∑

χ∈ ̂(Z/mZ)×
χ(a)−1 log L(s, χ) =

∑

χ

χ(a)−1

(
∑

p

χ(p)

ps
+ β(s, χ)

)

=
∑

p

1

ps

∑

χ

χ(a)−1χ(p)+
∑

χ

χ(a)−1β(s, χ)

=
∑

p

1

ps

∑

χ

χ(pa−1)+
∑

χ

χ(a)−1β(s, χ).

But, by the orthogonality relations,

∑

χ

χ(pa−1) =
{
ϕ(m) p ≡ a (mod m)
0 otherwise,

so

∑

χ

χ(a)−1 log L(s, χ) = ϕ(m)
∑

p≡a (mod m)

p−s +
⎛

⎝
something
abs. conv.

for Re (s) > 1
2

⎞

⎠ . (∗)

Now let s → 1. For the right side of (∗) we get

lim
s→1

ϕ(m)
∑

p≡a (mod m)

p−s + (a finite constant),

which would be finite if there were only finitely many primes p with p ≡ a
(mod m). The proof will be complete if we can show that for the left side of (∗)
we have lim

s→1

∑

χ

χ(a)−1 log L(s, χ) =∞.
First, if χ = χ0 , (with modulus m), then

L(s, χ0 ) =
∏

p

(1− χ0(p)p−s)−1 = ζ (s)
∏

p|m
(1− p−s) →∞ as s → 1

whence log L(s, χ0 ) →∞ as s → 1.
Now, if χ �= χ0 , then we have seen by (ii) of Corollary 3.3 that L(s, χ) is

analytic for Re (s) > 0. Since L(1, χ) is defined for χ �= χ0 , log L(1, χ) will
be finite if we can show that L(1, χ) �= 0 for χ �= χ0 . Given this, we’ll have∑

χ χ(a)−1 log L(s, χ) →∞ as s → 1+, and the proof will be complete.
Of course, it remains to show that L(1, χ) �= 0 when χ �= χ0 . In 1840, Dirichlet

gave an analytic proof of this result. In 1850, Kummer gave an arithmetic proof,
which we begin here. We shall need the Dedekind zeta function.
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Let K be an algebraic number field and let a vary through the nonzero integral
ideals of OK , (so that we may view Na as a positive integer). Define the Dedekind
zeta function of K as

ζK (s) =
∑

a

1

Nas
.

By an argument similar to the one for L-functions, we have

ζK (s) =
∏

p

(1− Np−s )−1,

where p runs over the prime ideals of OK . (The proof uses unique factorization of
ideals.) It is easy to see that

ζK (s) =
∞∑

n=1

γn

ns
where γn = #{a : Na = n}.

Exercise 2.15. Show that ζK (s) is absolutely convergent for Re (s) > 1. (Com-
pare this to (i) of Corollary 3.3 in the section on Dirichlet series — are the γn

bounded?) ♦
The following theorem comes from the work of Dedekind; we omit the proof.

Theorem 4.2. ζK (s) can be analytically continued to C− {1}, with a simple pole at
s = 1, i.e.,

ζK (s) = ρ(K )

s − 1
+ (something entire).

Moreover

ρ(K ) = 2r1 (2π)r2 hK RK

wK
√|dK/Q|

where

r1 = # real embeddings of K

r2 = # pairs of imaginary embeddings of K

hK = # CK = class number of K

RK = regulator of K

wK = # roots of unity in K

dK/Q = the discriminant.

��
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We shall use the Dedekind zeta function to show that L(1, χ) �= 0 for χ �= χ0 ,
completing the proof of Dirichlet’s Theorem on Primes in Arithmetic Progressions.
Take K = Q(ζm), where m is the modulus in Dirichlet’s Theorem, so also the
modulus of the characters χ . We have

ζK (s) =
∏

p

(1− Np−s )−1

=
∏

p

∏

p|p
(1− Np−s )−1

=
(∏

p|m

∏

p|p
(1− Np−s )−1

)(∏

p�m

∏

p|p
(1− Np−s )−1

)
.

Now Np = p f , where f is the residue field degree, and since K/Q is Galois, we
have e f g = ϕ(m). If p � m, then e = 1, f = #Z (p) = ordm p, g = ϕ(m)/ f .

Lemma 4.3. If p � m, then (1− T f )ϕ(m)/ f =∏χ mod m(1− χ(p)T ).

Proof. Let G = Gal(K/Q), where K = Q(ζm) as before. Let Z = Z (p) be the

decomposition group for p in K/Q and define a map Ĝ → Ẑ by χ �→ χ

∣
∣
∣

Z

. Then

∏

χ∈Ĝ

(1− χ(p)T ) =
∏

ψ∈Ẑ

∏

χ∈Ĝ,

χ

∣
∣

Z
=ψ

(1− χ(p)T )

=
∏

ψ∈Ẑ

(1− ψ(p)T )�(ψ)

where

�(ψ) = #{χ ∈ Ĝ : χ
∣
∣
∣

Z

= ψ}
= #ker (Ĝ → Ẑ)

= #Ĝ/
#Ẑ

= ϕ(m)/
f = g.

Thus

∏

χ∈Ĝ

(1− χ(p)T ) =
∏

ψ∈Ẑ

(1− ψ(p)T )g.

It remains only to show that 1 − T f = ∏
ψ∈Ẑ (1 − ψ(p)T ). As a subgroup of

(
Z
/

mZ

)×
, Z is generated by p mod m. Map Ẑ → μ f = { f th roots of unity} by



4 Dirichlet’s Theorem on Primes in Arithmetic Progressions 39

ψ �→ ψ(p). Since p is a generator, this is an isomorphism. Thus

∏

ψ∈Ẑ

(1− ψ(p)T ) =
∏

η∈μ f

(1− ηT )

= 1− T f . ��
Now put T = p−s in Lemma 4.3:

(1− p−s f )−ϕ(m)/ f =
∏

χ

(1− χ(p)p−s)−1.

Take the product over all p � m:

∏

p�m

(1− p−s f )−ϕ(m)/ f =
∏

χ

∏

p�m

(1− χ(p)p−s)−1.

Now, if p|m then χ(p) = 0, so

∏

p�m

(1− p−s f )−ϕ(m)/ f =
∏

p

(1− p−s f )−ϕ(m)/ f =
∏

χ

L(s, χ).

On the other hand,

∏

p�m

(1− p−s f )−ϕ(m)/ f =
∏

p�m

∏

p|p
(1− Np−s )−1

= ζK (s)
∏

p|m

∏

p|p
(1− Np−s ).

Thus

ζK (s)
∏

p|m

∏

p|p
(1− Np−s ) =

∏

χ

L(s, χ)

= L(s, χ0 )
∏

χ �=χ0

L(s, χ)

= ζ (s)
∏

p|m
(1− ps)

∏

χ �=χ0

L(s, χ).

We get

(∏
p|m
∏

p|p(1− Np−s )
)
ζK (s)

(∏
p|m(1− p−s)

)
ζ (s)

=
∏

χ �=χ0

L(s, χ).
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Now
∏

p|m

∏

p|p
(1−Np−s ) and

∏

p|m
(1− p−s) are non-zero constants, while each of ζK (s)

and ζ (s) has a simple pole at s = 1. Letting s → 1, the expression on the left side
approaches a constant, hence

∏
χ �=χ0

L(s, χ) does too. This shows that L(1, χ) �= 0
for all χ �= χ0 and our proof of Dirichlet’s Theorem is complete. ��

5 Dirichlet Density

Let f (s), g(s) be defined for s ∈ R, s > 1. Write f (s) ∼ g(s) to signify that
f (s)− g(s) is bounded as s → 1+.

We may reformulate our proof of Dirichlet’s Theorem using this notation. Recall
that for any χ ,

log L(s, χ) =
∑

p

χ(p)

ps
+ {Dirichlet series converging for Re (s) > 1/2},

so

log L(s, χ) ∼
∑

p

χ(p)

ps
.

Thus (assuming L(1, χ) �= 0 if χ �= χ0 )

∑

χ

χ(a)−1 log L(s, χ) ∼
∑

p≡a(mod m)

ϕ(m)

ps

∼ log L(s, χ0 ).

Now

L(s, χ0 ) =
∏

p

(
1− χ0 (p)

ps

)−1

=
(∏

p|m
(1− p−s )

)
ζ (s),

so log L(s, χ0 ) ∼ log ζ (s) and we get

∑

p≡a(mod m)

1

ps
∼ 1

ϕ(m)
log ζ (s).

Letting s → 1+, we find that
∑

p≡a (mod m)
1
ps diverges, which gives Dirichlet’s

Theorem.
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The above reformulation leads naturally to the notion of Dirichlet density. Note
that lim

s→1+
(s − 1)ζ (s) = 1, and

1

ϕ(m)
log ζ (s) = 1

ϕ(m)

(
log(s − 1)ζ (s)+ log

(
1

s − 1

))
.

Hence

∑

p≡a(mod m)

p−s ∼ 1

ϕ(m)
log

(
1

s − 1

)
.

Indeed

lim
s→1+

∑
p≡a(mod m) p−s

log( 1
s−1 )

= 1

ϕ(m)
.

This motivates the following definition.
Let S be any set of primes. If

lim
s→1+

∑
p∈S p−s

log( 1
s−1 )

= δ exists,

then we say that S has Dirichlet density δ = δ(S).

Examples.

12. If S = {primes p : p ≡ a (mod m)}, then δ(S) = 1
ϕ(m) .

13. If S is a finite set of primes, then δ(S) = 0.
14. If S = {primes p : the first digit of p is “1”}, (e.g., 11, 17, 103, etc.), then

δ(S) = log10 2. (This example is due to Bombieri; it illustrates the distinction
between Dirichlet density and natural density. See 6.4.5 of Serre’s A Course in
Arithmetic, [Se1].)

Exercise 2.16. Is the converse to Example 13 also true? ♦

Exercise 2.17. Show that if S = {all primes of Z}, then δ(S) = 1. ♦

Exercise 2.18. Let H be a subgroup of Z
/

nZ and let

S = {primes p of Z : p + nZ ∈ H }.

Find δ(S) in terms of #H and prove that your answer is correct. ♦

Exercise 2.19. Suppose S and T are sets of primes with S ∩ T = ∅. Show that if
any two of δ(S), δ(T), δ(S ∪ T) are finite then so is the third, and that in this case
δ(S ∪ T) = δ(S)+ δ(T). ♦
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Theorem 5.1. Let K/Q be Galois, and let

SK = {p ∈ Z : p splits completely in K/Q}.

Then δ(SK ) = 1/
[K : Q].

Proof. Let ζK (s) =∏p(1− Np−s )−1 for Re (s) > 1, be the Dedekind zeta function
for K . Consider s ∈ R, s > 1. We have

log ζK (s) = −
∑

p

log(1− Np−s )

=
∑

p

∞∑

n=1

1

n
Np−ns .

Now log ζK (s) = log((s − 1)ζK (s))+ log(1/(s − 1)), so

log ζK (s) ∼ log(1/(s − 1))

∼
∑

p

∞∑

n=1

1

n
Np−ns

∼
∑

p

Np−s +
∑

p

∞∑

n=2

1

n
Np−ns

∼
∑

p

Np−s

since
∑

p

∑∞
n=2

1
n Np−ns is bounded as s → 1+. Hence

log ζK (s) ∼ log

(
1

s − 1

)
∼
∑

p

Np−s

∼
∑

p
f (p/p)=1=e(p/p)

p−s +
∑

p
f (p/p)>1

p− f (p/p)s +
∑

p
f (p/p)=1
e(p/p)>1

p−s .

Note that the second series is bounded as s → 1+. The third is also, since the
number of ramified primes is finite. Hence,

log ζK (s) ∼ log

(
1

s − 1

)
∼
∑

p∈SK

g(p)p−s.

If p ∈ SK , then g(p) = [K : Q], so

log ζK (s) ∼ log

(
1

s − 1

)
∼
∑

p∈SK

[K : Q] p−s
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whence

log

(
1

s − 1

)
= [K : Q]

∑

p∈SK

p−s + b(s)

where b(s) is bounded as s → 1+. We may now compute δ(SK ).

δ(SK ) = lim
s→1+

∑
p∈SK

p−s

log
(

1
s−1

)

= lim
s→1+

(
[K : Q]

∑
p∈SK

p−s + b(s)
∑

p∈SK
p−s

)−1

= [K : Q]−1. ��
More generally, we may also define Dirichlet density on sets of prime ideals in a

number field F . If S is a set of prime ideals of OF , and

lim
s→1+

∑
p∈S Np−s

log( 1
s−1 )

= δ exists,

then we say that S has Dirichlet density δ = δF (S).
The previous theorem holds in this more general setting:

Corollary 5.2. Let K/F be Galois, and let

SK/F = {p ∈ OF : p splits completely in K/F}.

Then δF (SK/F ) = 1/
[K : F].

Proof. Exercise 2.20.
��

Let S,T be sets of primes in OF , where F is a number field. We define the
following notation.

Write S ≺ T to mean δF (S \ T) = 0.
Write S ≈ T if S ≺ T ≺ S.

Exercise 2.21. Let F be a number field.

a. Compute δF (S), where S = {primes p of OF : f (p/p ∩ Z) = 1}.
b. Let S and T be arbitrary sets of primes in OF . Prove or disprove: S ≈ T if and

only if S and T differ by finitely many elements. ♦

Theorem 5.3. Let E and K be number fields, each of which is Galois over Q. Then
SK ≺ SE if and only if E ⊆ K .
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Proof. “⇐=” is clear. For “=⇒” suppose SK ≺ SE . Note that SK E = SE ∩ SK . We
have δ(SK \ SE ) = 0, so (using Exercise 2.19),

δ(SK E ) = δ(SE ∩ SK ) = δ(SK \ SE )+ δ(SE ∩ SK ) = δ(SK ).

Theorem 5.1 gives [K E : Q] = [K : Q], whence K E = K and E ⊆ K . ��
Exercise 2.22. Can the hypothesis that E/Q is Galois be omitted in Theorem 5.3?♦

Exercise 2.23. Generalize Theorem 5.3 to two extensions E and K of an arbitrary
number field F using δF and SK/F , SE/F . ♦



Chapter 3
Ray Class Groups

As we have seen in the previous chapter, there are infinitely many primes of Z in an
arithmetic progression {a + jm : j ∈ N} whenever (a,m) = 1. This is a theorem
about primes of Z, but one may hope to generalize it to prime ideals of OF where
F is an algebraic number field.

Are there infinitely many primes p of OF in an “arithmetic progression”? What
might one mean by an “arithmetic progression”? Perhaps we could interpret it as a
question about ideal classes: Given an ideal class c ∈ CF , are there infinitely many
primes of OF in c? (Recall CF = IF

/
PF

where IF = {nonzero fractional ideals of
F}, PF = {principal fractional ideals in IF }.) But where does the modulus m enter
into this?

If we hope to follow Dirichlet, we must replace m by an ideal m of OF , and we
must consider “congruences” modulo m. This leads naturally to the idea of general-
ized ideal class groups, defined for each such m, called ray class groups. We shall
also need to expand our notions of Dirichlet character and L-function if an analogue
of Dirichlet’s argument is to apply in this more general setting.

In this chapter, we pursue these ideas, following the framework of Dirichlet’s
argument, as Weber did. This will lead us to the notion of class field, and the proof
of the Universal Norm Index Inequality. First, however, we shall need a brief dis-
cussion of absolute values and the Approximation Theorem.

1 The Approximation Theorem and Infinite Primes

Theorem 1.1 (Approximation Theorem). Let | · |1, · · · | · |n be non-trivial pairwise
inequivalent absolute values on a number field F, and let β1, . . . , βn be non-zero
elements of F. For any ε > 0, there is an element α ∈ F such that |α − β j | j < ε,
for each j = 1, . . . , n.

Proof. First, we show that there are elements x1, . . . , xn ∈ F such that for every
j = 1, . . . , n

|x j | j > 1, and |xi | j < 1 for any i �= j

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 3, 45
C© Springer Science+Business Media, LLC 2009
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by induction on n.
Let j = 1, (other values of j are handled similarly). For n = 2, since | · |1

and | · |2 are inequivalent, we must have that there are elements y, z ∈ F such that
|y|1 > 1, |y|2 ≤ 1, while |z|1 ≤ 1, |z|2 > 1. Take x1 = y

z .
Now suppose there is some x ∈ F that satisfies |x |1 > 1 and |x | j < 1 for all

j = 2, . . . , n − 1. By the n = 2 case, there is some v ∈ F with |v|1 > 1 and
|v|n < 1. Choose x1 so that

x1 =
⎧
⎨

⎩

x if |x |n < 1
xrv if |x |n = 1

xr v
1+xr if |x |n > 1,

where r ∈ Z will be determined as follows. In the case where |x |n = 1, note that
while |v| j may be larger than 1, we still have |xrv| j < 1 for all j = 2, . . . , n, when
r is sufficiently large. In the case where |x |n > 1, we have

|x1| j =
|x |rj |v| j

|1+ xr | j
= |v| j

|x−r + 1| j
.

When 2 ≤ j ≤ n − 1, this yields |x1| j ≤ |v| j

||x|−r
j −1| → 0 as r → ∞. Also, |x1|1 ≤

|v|1
||x|−r

1 −1| → |v|1 as r → ∞, while |x1|n ≤ |v|n||x|−r
n −1| → |v|n < 1 as r → ∞. Thus,

again, if r is sufficiently large, then we have |x1| j < 1 for all j = 2, . . . , n, while
|x1|1 > 1.

Our induction argument shows that we have x1 ∈ F that is large at | · |1 and small
at all other | · | j . By symmetry, we may find x2, . . . , xn similarly.

Now let α = ∑
j

x�j
1+x�j

β j , where � will be determined below. We have (by the

triangle inequality)

|α − β j | j ≤
∣
∣∣
∣
∣
β j

1+ x�j

∣
∣∣
∣
∣

j

+
∑

i �= j

∣
∣∣
∣

x�i
1+ x�i

βi

∣
∣∣
∣

j

.

Choose � to be a sufficiently large integer so that the above expression is smaller
than ε for every j. ��

Note that when p is a prime ideal of OF and c = |π |p for π ∈ p − p2, the
statement αβ �= 0 and |α − β|p < ε gives ordp( α

β
− 1) > n, where n is given by

ε
|β|p < cn . If α and β are p-adic units, then this just means α ≡ β (mod pn). In
particular, if each of the absolute values in the Approximation Theorem is p-adic
for some p, we get the Chinese Remainder Theorem.

Note also that when | · | j = | · |σ , where σ : F ↪→ R, the statement αβ �= 0 and
|α − β|σ < ε for small ε means that σ (α/β) > 0.

The Approximation Theorem is yet one more result that suggests that it would
be advantageous to have some kind of unifying notation that would allow us to treat
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simultaneously the p-adic absolute values on a number field F and the absolute
values arising from embeddings of F into C.

In the p-adic situation above, we were able to write α ≡ β (mod pn). We can
write something similar in the case of the real embeddings σ of F if we make the
following convention. When σ : F ↪→ R, we associate to σ a formal object that we
call an infinite real prime, which we denote by pσ . We may then define

α ≡ β (mod pσ ) if and only if σ (α/β) > 0.

(We may also define infinite imaginary primes: We associate an object pσ to each
conjugate pair σ, σ̄ : F ↪→ C. We don’t use the congruence notation with infinite
imaginary primes however.)

Other language used for prime ideals can be adapted to infinite primes as well.
In particular, if K/F is an extension of number fields, we say that an infinite prime
pσ ramifies in K/F if and only if σ (F) ⊆ R, but for some extension of σ to K we
have σ (K ) �⊆ R.

Using the infinite real primes (and the usual primes), we may also define what is
known as a divisor, (or modulus) for F as a formal product

∏
p pt(p), where t(p) ∈ N

is non-zero for only finitely many p, and can only take a value of 0 or 1 when p is an
infinite real prime. (We may consider the notion of an infinite imaginary prime, but
if we do, we must take t(p) = 0 for all infinite imaginary primes p.) Specifically, we
shall denote the product of all the infinite real primes by m∞ =

∏
σ real pσ .

In the next section, we avoid the use of these infinite primes at first, but at the
end we discuss how one may rewrite what we have done in terms of them. It is
recommended that the reader consider this question while progressing through the
section.

In the next chapter, we shall present the notion of places, which is a somewhat
different way to treat these ideas, and which will be the language we use in our
discussion of idèles.

2 Ray Class Groups and the Universal Norm Index Inequality

If an element α ∈ F satisfies σ (α) > 0 for every real embedding σ of F , we say
that α is totally positive, and write α " 0. Let m be a non-zero integral ideal of OF .
Define P+F,m to be the subgroup of PF generated by

{〈α〉 : α ∈ OF , α ≡ 1 (mod m), and α " 0}.

How do we characterize a fractional ideal in P+F,m? The following exercise pro-

vides an answer. Write α
×≡ 1 (mod m) when α ≡ 1 (mod pordp(m)) in the com-

pletion Fp for every p
∣
∣m. (We are abusing notation slightly here; when writing

congruences modulo powers of p in the completion, we really mean congruences
modulo powers of the unique maximal ideal in the ring of integers of Fp.)
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Exercise 3.1. Show that

P+F,m = {〈α〉 : α ∈ F, α " 0, α
×≡ 1 (mod m)}

= {〈α
β
〉 :
α

β
" 0;α, β ∈ OF prime to m;α ≡ β (mod m))}.

♦

Let IF (m) be the group of fractional ideals of F whose factorizations do not
contain a non-trivial power of any prime ideal dividing m:

IF (m) = {a ∈ IF : ordpa = 0 for all p|m}.

The strict (narrow) ray class group (or generalized ideal class group) of F for m, is

R+
F,m = IF (m)/

P+F,m.

Example.

1. Let F = Q, m = mZ, where m ≥ 1. If 〈r〉 ∈ I(m), then we may suppose r > 0
and r = a/b, where (a,m) = (b,m) = 1. The map

IQ(m) −→
(
Z/

mZ

)×

given by 〈r〉 �→ ab−1 (mod m) is then well-defined. It is clearly surjective and its
kernel is {〈r〉 : r > 0, r = a/b, (a,m) = (b,m) = 1, a ≡ b (mod m)} = P+Q,m.
Hence for F = Q, m = mZ, we have

IQ(m)/
P+Q,m

∼=
(
Z/

mZ

)×
.

For a non-zero integral ideal m of OF we define the ray modulo m as

PF,m = {〈α〉 : α
×≡ 1 (mod m)}.

The ray class group of F for m is

RF,m = IF (m)/PF,m
.

(The strict ray class group R+
F,m may also be viewed as a ray class group in the

above sense if one views P+F,m as a ray modulo the divisor mm∞. We discuss this
briefly a bit later.)
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Returning to Example 1, for F = Q, m = mZ, we have R+
Q,m

∼=
(
Z
/

mZ

)×
and

RQ,m
∼= (Z/mZ)×

/
{±1}.

These ideas are consistent with the original notion of an ideal class group of F ,
for when m = OF , we have

RF,m = IF
/
PF

= CF , the ordinary ideal class group

R+
F,m = IF

/
P+F , the strict (narrow) ideal class group.

Exercise 3.2. Let F = Q(
√

m) where m > 1 is a square-free integer. Let m = OF

and let ε be a fundamental unit in OF .

a. Suppose NF/Q(ε) = −1. Show that the ideal class group of F and the strict ideal
class group of F are isomorphic.

b. Suppose NF/Q(ε) = 1. Show that the strict ideal class group of F is twice as
large as the ideal class group of F . ♦

Our question about a possible generalization of Dirichlet’s Theorem on Primes
in Arithmetic Progressions may be formulated as follows.

Fix a non-zero integral ideal m of OF , where F is an algebraic number field. Are there
infinitely many prime ideals p of OF in each class of R+

F,m ?

In the hope that the answer is yes, we shall attempt (as Weber did) to follow the
framework set by Dirichlet. Define a generalized Dirichlet character (or Weber
character) of modulus m as a homomorphism of groups χ : R+

F,m → C×. Recall

from our example in the case F = Q, m = mZ, we have R+
Q,m

∼=
(
Z/

mZ

)×
so

that this truly is a consistent generalization of the classical Dirichlet characters. We
may also define an L-function for generalized Dirichlet characters: let

Lm(s, χ) =
∑

integral ideals
a of OF ,
(a,m)=1

χ(a)Na−s ,

where by χ(a), we really mean χ of the image of a in R+
F,m. These L-functions are

sometimes called Weber L-functions. (In the case F = Q, we recover the Dirichlet
L-functions.)

As with Dirichlet L-functions, we have an Euler product for Lm(s, χ):

Lm(s, χ) =
∏

p�m

(1− χ(p)Np−s )−1.
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Taking logs and proceeding as before, we find that there are infinitely many primes
p in each class, provided that Lm(1, χ) is defined, and Lm(1, χ) �= 0 for every
χ �= χ0 .

If we wish to continue to follow Dirichlet’s argument, we must find an extension
K/F such that Lm(s, χ) occurs as a factor of ζK (s). Class field theory will establish
this field K .

First we want to study the strict ray class groups R+
F,m. There is a well-known

result that the ordinary class group is finite; its order has been the subject of much
study. We may ask whether the strict ray class groups are also finite groups. The
answer is provided by the following proposition.

Proposition 2.1. R+
F,m is a finite group, with

#R+
F,m =

hF 2r1ϕ(m)

[UF : U+F,m]

where

hF = #CF

r1 = # of real embeddings of F

ϕ(m) = #
(OF

/
m

)×
=
∏

p|m
Npep−1(Np − 1), where m =∏p|m pep

UF = O×
F , the units of OF

U+F,m = {ε ∈ UF : ε " 0, ε ≡ 1 (mod m)}.

#R+
F,m is called the strict ray class number modulo m or the ray class number mod-

ulo mm∞.

Proof. Let PF (m) = {principal fractional ideals in IF (m)} = IF (m) ∩ PF . We
divide the proof into four steps.

step 1. IF (m)/PF (m)
∼= IF

/
PF

= CF .
Proof of step 1. We must show IF = IF (m)PF (i.e., for each a ∈ IF there exists
α ∈ F such that a = 〈α〉b, for some b ∈ IF (m)).
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Let p1, . . . , pr be the primes dividing m. For each j , let π j ∈ p j−p2
j . Let a ∈ IF ,

e j = ordp j (a) ∈ Z. Choose α ∈ F satisfying:

|α − π e j

j |p j < |π e j

j |p j

for all i = 1, . . . , r (possible by the Approximation Theorem).
It follows that |α|p j = |π e j

j |p j , whence ordp j (α) = e j = ordp j (a). Thus
ordp j (α

−1a) = 0 for all j = 1, . . . , r .
Let b = α−1a; by the above, it will be in IF (m), and clearly we have a = 〈α〉b.

step 2. PF (m)/P+F,m
∼= F(m)/UF F+m

where

F(m) = {α ∈ F× : 〈α〉 ∈ IF (m)}
F+m = {α ∈ F× : α " 0, α

×≡ 1 (mod m)}.

Proof of step 2. Consider the epimorphism F(m) → PF (m)
/

P+F,m that is given

by α �→ 〈α〉P+F,m. Its kernel is

{α ∈ F(m) : 〈α〉 ∈ P+F,m}
= {α ∈ F(m) : ∃β ∈ F+m such that 〈α〉 = 〈β〉}
= {α ∈ F(m) : ∃β ∈ F+m such that β = αε for some ε ∈ UF }
= UF F+m .

Thus

F(m)/UF F+m
∼= PF (m)/

P+F,m.

step 3. F(m)/
F+m

∼= (±1)r1

(OF
/
m

)×
.

Proof of step 3. Map F(m) → {±1}r1

(OF
/
m

)×
by

α �→ (sign σ1(α), . . . , sign σr1 (α))(α +m)

where σ1, . . . , σr1 are the real embeddings of F .
We leave it as Exercise 3.3 to show this map is an epimorphism. Its kernel is

{α ∈ F(m) : α " 0, α ≡ 1 (mod m)} = F+m .

step 4. UF F+m
/

F+m
∼= UF

/

U+F,m .
Proof of step 4.
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UF F+m
/

F+m
∼= UF

/

UF ∩ F+m
= UF

/

U+F,m.

Now we combine the information from all four steps. Consider the following
diagram.

IF (m)∣
∣
∣
∣

F(m) ←−−→ PF (m)∣
∣
∣∣

∣
∣
∣∣

UF F+m ←−−→ P+F.m∣∣
∣
∣

F+m

We have

#R+F,m = [IF (m) : P+F,m] = [IF (m) : PF (m)][PF(m) : P+F,m]

= [IF (m) : PF (m)][F(m) : F+m ]
/

[UF F+m : F+m ]

= hF 2r1ϕ(m)
/

[UF : U+F,m]. ��

Example.

2. Let F = Q(
√

3), m = OF . As we have seen previously, R+
F,m = IF

/
P+F . With

Proposition 2.1, we obtain #R+
F,m = hF 2r1ϕ(m)

[UF :U+F,m]
. For this particular field F , the

quantities in the numerator of this formula are well-known: r1 = 2, hF = 1, and

ϕ(m) = ϕ(OF ) = #
(OF

/
OF

)×
= 1. To find the denominator, note that by

Dirichlet’s Unit Theorem,

UF
∼= {±1} × Z ∼= {±1} × 〈ε〉

where ε is a fundamental unit. The fundamental units for Q(
√

3) are 2 ± √3,
both of which are positive. Take ε = 2+√3; then we have ε " 0, and

U+F,m = {u ∈ UF : u " 0, u ≡ 1 (mod OF )} = 〈ε〉.

Hence [UF : U+F,m] = 2, and we conclude
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#R+
F,m =

1 · 22 · 1

2
= 2.

Finally, note that in this case RF,m = IF
/
PF

, so we obtain #RF,m = #CF =
hF = 1.

Exercise 3.4. Let F = Q(
√

5), m = OF . Find the fundamental units for F , and
determine R+

F,m (up to isomorphism of groups). ♦
The definition of class field is due to Weber ([We2], 1897-1898). Earlier, Kro-

necker (e.g., [K1], 1853) had observed that every abelian extension of Q is cyclo-
tomic. (In 1886-1887 Weber gave the first complete proof, [We1].) Kronecker had
also observed ([K3], 1883-1890) that the transformation and division equations of
modular and elliptic functions generated abelian extensions of imaginary quadratic
fields. (He had hoped to prove that every abelian extension of an imaginary quadratic
field can be obtained thus. Weber, [We3], partially succeeded in doing this in 1908,
but the first complete proof did not come until Takagi, [T], in 1920. See also
Hilbert’s twelfth problem, [Hi3].) In these examples, Weber observed that the primes
that split completely in these abelian extensions seemed to be related to the Galois
groups. (Compare Theorem 1.8 in Chapter 1.) These ideas led Weber to his defini-
tion of class field.

Let K/F be Galois, and let m be an integral ideal of OF . We say that K is the
class field over F of P+F,m if

SK/F = {primes p of OF : p splits completely in K/F}
≈ {primes p of OF : p ∈ P+F,m}.

(Recall that S ≈ T if and only if they differ by a set with Dirichlet density zero.)

Example.

3. For F = Q and m = mZ, we have

{pZ : pZ ∈ P+Q,m} = {pZ : p ≡ 1 (mod m), p > 0}
= {pZ : pZ splits completely in Q(ζm)/Q}
= SQ(ζm )/Q.

Thus K = Q(ζm) is the class field over Q of P+Q,m.

More generally, we may define the notion of class field for subgroups of IF (m) that
contain P+F,m. If m is a non-zero integral ideal of OF , and H satisfies

P+F,m < H < IF (m),

then we say K is the class field over F of H if K/F is Galois and

SK/F ≈ {primes p of OF : p ∈ H}.
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What Weber had observed in the cases F = Q and F equal to an imaginary
quadratic extension of Q, was that the Galois groups for K/F were isomorphic to
the associated factor groups IF (m)/H (so clearly abelian). The isomorphism with
the Galois group in these examples is an illustration of the Isomorphy Theorem,
which we state shortly (its proof will be a consequence of Artin Reciprocity, see
Chapter 5).

It will be some time before we can address the question of the existence of a class
field for any such H, but the issue of uniqueness can be settled easily.

Theorem 2.2 (Weber). If the class field K of H exists, then it is unique.

Proof. Recall the Dirichlet density of a set S of primes of F is

δF (S) = lim
s→1+

∑
p∈S

1
Nps

log( 1
s−1 )

.

We have shown that δF (SK/F ) = 1
[K :F] . If K1, K2 are two class fields for H, then let

K = K1 K2. We find

SK/F = SK1/F ∩ SK2/F

≈ {p of F : p ∈ H},

i.e.,

SK/F ≈ SK1/F ≈ SK2/F .

Thus

1

[K : F]
= 1

[K1 : F]
= 1

[K2 : F]

and we must have K = K1 = K2. ��
Exercise 3.5. Let F be a number field and let n, m be (not necessarily distinct)
ideals of OF . Let P+F,n < H1 < IF (n), and P+F,m < H2 < IF (m). If H1 �= H2, is it
possible for them to have the same class field over F? ♦

Let us return to our efforts to generalize the techniques of Dirichlet in his proof
of the Theorem on Primes in Arithmetic Progressions. Let F , m be as before.
Recall that a group homomorphism χ : IF (m)/P+F,m −→ C× is called a gener-

alized Dirichlet character, and we have defined the Weber L-function Lm(s, χ) =∑
a∈I(m)

χ (a)
Nas , which has Euler product Lm(s, χ) = ∏

p�m(1 − χ(p)Np−s)−1 for
Re(s) > 1. We collect a few facts about Weber L-functions below, but omit the
proofs, which are generalizations of the arguments used to prove the analogous facts
about Dirichlet L-functions.
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Some Facts About Lm(s, χ).

1. For χ �= χ0 , Lm(s, χ) can be analytically continued to the entire complex plane.
2. Lm(s, χ0 ) can be analytically continued to the entire complex plane except for a

simple pole at s = 1.
3. For χ0 , we have:

Lm(s, χ0 ) =
∏

p�m

(1− Np−s )−1

=
(∏

p|m
(1− Np−s )

)
ζF (s).

Recall that if S is finite, then it has Dirichlet density δF (S) = 0; if S consists of
all the primes of F , then δF (S) = 1.

For a ∈ IF (m) we may define

Sa,m = {primes p of OF : p ≡ a in R+
F,m} = {primes p ∈ aP+F,m}.

We claim that if for every character χ �= χ0 of R+
F,m we have Lm(1, χ) �= 0, then

δF (Sa,m) = 1

#R+
F,m.

Of course, this says Sa,m contains infinitely many prime ideals. Thus the general-
ization of the Theorem on Primes in Arithmetic Progressions will follow once we
have shown that Lm(1, χ) �= 0 when χ �= χ0 . This turns out to be related to Weber’s
notion of class field, as we shall soon discover.

First we need to prove the claim about δF (Sa,m). More generally, we shall prove
the following.

Proposition 2.3. Let a ∈ IF (m). Suppose P+F,m < H < IF (m). If for all characters
χ �= χ0 of IF (m) that are trivial on H, we have Lm(1, χ) �= 0, then

δF ({primes p of OF : p ∈ aH}) = 1

[IF (m) : H].

Proof.

Lm(s, χ) =
∏

p�m

(1− χ(p)Np−s )−1

log Lm(s, χ) = −
∑

p�m

log(1− χ(p)Np−s )

=
∑

p�m

∞∑

n=1

χ(p)n Np−ns

n
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=
∑

p�m

χ(p)Np−s +
∑

p�m

∞∑

n=2

χ(p)n Np−ns

n

∼
∑

p�m

χ(p)Np−s .

Now if χ is a character of IF (m) that is trivial on H, then χ may be viewed as a
character of IF (m)/H. For a fixed prime p of OF , we have

∑

χ

χ(a)−1χ(p) =
{

0 if p /∈ aH
[I(m) : H] if p ∈ aH

where the sum is over χ ∈ ̂IF (m)/H. Taking βχ (s) = ∑p�m

∑∞
n=2

χ (p)n Np−ns

n , we
get

∑

χ

χ(a)−1 log Lm(s, χ) =
∑

χ

χ(a)−1

[∑

p�m

χ(p)Np−s + βχ (s)

]

∑

χ

χ(a)−1[log Lm(s, χ)− βχ (s)] =
∑

p∈aH
[IF (m) : H] Np−s . (*)

Let S = {primes p of OF : p ∈ aH}. We must show that

lim
s→1+

∑
p∈S Np−s

log( 1
s−1 )

converges to the desired limit. From (∗),

∑

p∈S

[IF (m) : H] Np−s =
∑

χ �=χ0

χ(a)−1(log Lm(s, χ)− βχ (s))

+ log((s − 1)Lm(s, χ0 ))− log(s − 1)− βχ0
(s)

Letting h = [IF (m) : H], this becomes

∑

p∈S

Np−s = 1

h

∑

χ �=χ0

χ(a)−1[log Lm(s, χ)− βχ (s)]

+ 1

h
log[(s − 1)Lm(s, χ0 )]+ 1

h
log

(
1

s − 1

)
− 1

h
βχ0

(s).

Rearranging, we get
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∑

p∈S

Np−s − 1

h
log

(
1

s − 1

)
= 1

h

∑

χ �=χ0

χ(a)−1[log Lm(s, χ)− βχ (s)]

+ 1

h
log[(s − 1)Lm(s, χ0 )]− 1

h
βχ0

(s).

Note that the right side of the above equation is bounded as s → 1+ (since
Lm(1, χ) �= 0 for all χ �= χ0 , and Lm(s, χ0 ) has a simple pole at s = 1). Therefore

∑
p∈S Np−s

log( 1
s−1 )

− 1

h
−→ 0 as s −→ 1+.

But then

δF (S) = 1

h
= 1

[IF (m) : H] .

��
Using Artin Reciprocity, it is possible to prove other results similar in nature to

Proposition 2.3. See the homework problems in Chapter 5 for some examples.
We can now begin to address the remaining ingredient in our attempt to gen-

eralize the Theorem on Primes in Arithmetic Progressions. Recall that we need to
show Lm(1, χ) �= 0 whenever χ �= χ0 is trivial on H. The following theorem nearly
accomplishes this.

Theorem 2.4. Suppose K/F is Galois, and P+F,m < H < IF (m). Suppose there is
some set of primes T ⊆ H with SK/F ≈ T. Then

[IF (m) : H] ≤ [K : F],

and Lm(1, χ) �= 0 whenever χ �= χ0 and χ is trivial on H.

Proof. Let m(χ) = ords=1(Lm(s, χ)). For χ �= χ0 , we know m(χ) ≥ 0, while

m(χ0) = −1. Since χ is trivial on H, we may view χ as a character of IF (m)/H.
There is some constant a such that

∏

χ∈Î(m)/H
Lm(s, χ) = a(s − 1)

∑
χ m(χ) + · · ·

Taking logs, we get

∑

χ

log Lm(s, χ) ∼
(∑

χ

m(χ)

)
log(s − 1)

= −
(∑

χ

m(χ)

)
log

(
1

s − 1

)
.
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Now

log Lm(s, χ) =
∑

p�m

∞∑

n=1

χ(p)n

nNpns

∼
∑

p�m

χ(p)Np−s

as before, so

∑

χ

log Lm(s, χ) ∼
∑

p∈H
[IF (m) : H] Np−s

as before. Hence,

∑

p∈H
[IF (m) : H] Np−s ∼ −

(∑

χ

m(χ)

)
log

(
1

s − 1

)
.

But

∑

p∈H
[IF (m) : H] Np−s = [IF (m) : H]

(∑

p∈T

Np−s +
∑

p∈H\T

Np−s

)
.

Dividing by log( 1
s−1 ), and letting s → 1+, we get

−
(∑

χ

m(χ)

)
= lim

s→1+

[IF (m) : H]
∑

p∈SK/F
Np−s

log( 1
s−1 )

+ lim
s→1+

[IF (m) : H]
∑

p∈H\SK/F
Np−s

log( 1
s−1 )

= [IF (m) : H] δF (SK/F )+ [IF (m) : H] (a finite nonnegative constant)

≥ [IF (m) : H]
/

[K : F].

(Note that the first term on the right above converges since δF (SK/F ) exists, whence
the second term on the right side must also converge because the left side is finite.)
Recalling that m(χ) ≥ 0 for all χ �= χ0 and that m(χ0 ) = −1, we have

1 ≥ 1−
∑

χ �=χ0

m(χ) ≥ [IF (m) : H]
/

[K : F] > 0
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whence

0 ≥ −
∑

χ �=χ0

m(χ) > −1.

But this forces m(χ) = 0 for all χ �= χ0 . Hence −
(
∑

χ m(χ)

)
= 1 and

1 ≥ [IF (m) : H]
/

[K : F], i.e.,

[K : F] ≥ [IF (m) : H].

Finally, whenever χ �= χ0 , the fact that m(χ) = 0 gives that Lm(s, χ) has a nonzero
constant term when expanded in powers of s−1. But this implies that Lm(1, χ) �= 0
for all χ �= χ0 . ��
Corollary 2.5. If K/F is Galois and K is the class field for H where P+F,m < H <

IF (m), then

[IF (m) : H] = [K : F].

Proof. Say K is the class field for H, i.e., {primes p of OF : p ∈ H} ≈ SK/F . Then

δF ({primes p ∈ H} \ SK/F ) = lim
s→1+

∑

p∈H\SK/F

Np−s

log( 1
s−1 )

= 0,

so proceeding as in the proof of Theorem 2.4, we get

1 = −
∑

χ

m(χ) = [IF (m) : H]
/

[K : F].
��

By Theorem 2.4, we shall have concluded the proof of the generalization of the
Theorem on Primes in Arithmetic Progressions as soon as we verify that there is
always a class field for H = P+F,m. This issue will be settled in Chapter 6. With
what we have done thus far, we may readily obtain the following result first proved
by Weber ([We2], 1897-1898).

Theorem 2.6 (Universal Norm Index Inequality). (Historically, this was called
the First Fundamental Inequality of Class Field Theory. Later it was called the
Second Fundamental Inequality.) Let K/F be a Galois extension of number fields
and let H = P+F,mNK/F (m) where

NK/F (m) = {a ∈ IF (m) : a = NK/F (A) for some A in IK }.

(Note that the factorization of the fractional ideal A of K cannot contain a non-
trivial power of any prime ideal that divides mOK , i.e., A ∈ IK (mOK ).) Then
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[IF (m) : H] ≤ [K : F].

Proof. If p ∈ SK/F and P|p, where P is a prime of OK , then NK/FP = p (since
p ∈ SK/F , it splits completely in K/F giving f (P/p) = 1). Thus SK/F ≈ T

for some T ⊆ H and we may apply the previous theorem to get [IF (m) : H]
≤ [K : F]. ��

It is natural to ask whether one may better specify the relationship between the
two indices [IF (m) : H] and [K : F]. The “Global Cyclic Norm Index Inequality”
(historically, the Second Fundamental Inequality of Class Field Theory, later the
First Fundamental Inequality) says that if K/F is cyclic and m is divisible by a
sufficiently high power of each p that ramifies in K/F , then

[IF (m) : P+F,mNK/F (m)] ≥ [K : F].

It then follows that these indices are equal in the cyclic case. The proof of the Global
Cyclic Norm Index Inequality uses techniques that are entirely different to those
used in this chapter, and must be delayed for now (see Chapter 4). We shall be able
to say more about the non-cyclic abelian case when we study Artin Reciprocity in
Chapter 5.

As was mentioned earlier, it is possible to rephrase what we have done in terms
of divisors. For a divisor m =∏p pa(p) of F , we shall write m0 =

∏
finite p pa(p) and

mre =
∏

real p pa(p). Of course, if p is real, then a(p) is either 0 or 1, and in general,
we have a(p) = 0 for all but finitely many p.

Given a divisor m of F , we write α ≡ 1 (mod m) to denote that α
×≡ 1 (mod m0)

(i.e., ordp(α − 1) ≥ ordp(m0) for all p dividing m0), and that σ (α) > 0 whenever σ
is a real embedding with pσ dividing mre.

Remembering that m is a divisor of F (and not necessarily an ideal), we let
PF,m denote the set of principal fractional ideals of F that have a generator α with
α ≡ 1 (mod m). (PF,m is sometimes called the ray modulo the divisor m.) Also, set

IF (m) = IF (m0). We call RF,m = IF (m)/PF,m
the ray class group modulo the

divisor m.
Comparing this with what we did before, note that for an ideal m0, P+F,m0

=
PF,m0m∞ , where m∞ = ∏

real p p. Similarly, we have R+
F,m0

= RF,m0m∞ . This
notation is consistent, for in the case of PF,m0 and RF,m0 , the ideal m0 may also
be viewed as a divisor with no infinite factors.

3 The Main Theorems of Class Field Theory

In this chapter, we have seen from a historical perspective the origins of some of
the central ideas of Class Field Theory. Many of these ideas first surfaced in the
work of Kronecker, Weber and Hilbert. However, their proofs often remained elusive
until the 20th century; the majority of these proofs were first given in generality by
Takagi, ([T], 1920).
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In subsequent chapters, we shall discuss the theorems in detail, introducing some
of the techniques that contributed to the discovery (or the reformulation) of their
proofs. For now, we simply give an outline of the results themselves. The first two
results give us a bijective correspondence between the finite abelian extensions of
a number field F and the groups H that satisfy P+F,m < H < IF (m) for some m.
The third result tells us that the Galois group of such an extension is related to the
group H. Moreover, this relationship can be described in terms of a canonical map
(the Artin map).

Existence Theorem. For any H, with P+F,m < H < IF (m), there is a class field
K/F associated to H.

In fact, the theorem holds if we replace P+F,m above with PF,m where m is a divisor. In
particular, if we take H = P+F,m , then the Existence Theorem implies that Lm (1, χ) �= 0 for
all χ except χ = χ0 , so provides the missing step to complete the proof of the generalization
of Dirichlet’s Theorem on Primes in Arithmetic Progressions.

Completeness Theorem. For any abelian extension K/F , there is some m and
some H with P+F,m < H < IF (m) such that K is the class field over F of H.

Isomorphy Theorem. When P+F,m < H < IF (m), and K is the class field over
F of H, we have

Gal (K/F) ∼= IF (m)/H
with the isomorphism being induced by the Artin map.

In particular, if m = OF , and H = PF,m , then we get a class field K , for H, called the

Hilbert class field. By the Isomorphy Theorem, Gal (K/F) ∼= IF
/
PF

= CF . We shall also
see that K is the maximal unramified abelian extension of F (every prime is unramified
including the infinite ones).



Chapter 4
The Idèlic Theory

Idèles were introduced by Chevalley ([Ch2], 1940); the modern definition is due
to Weil. They were used by Chevalley as an alternative to the approach of Takagi
using ray class groups and L-functions. For example, with idèles, he was able to
give a proof of the Universal Norm Index Inequality that did not rely on L-functions
([Ch2], 1940), and he was able to consider infinite Galois extensions, as we discuss
in Chapter 6. Chevalley’s idèle class groups will play a role similar to that played by
the ray class groups of Chapter 3. One of our tasks in the present chapter will be to
describe precisely the relationship between idèle class groups and ray class groups.

In order to define idèles, we shall need places. In about 1900, Hensel introduced
the p-adic numbers for p a prime in Z. This can be generalized as in Chapter I to
p-adic numbers, where p is a prime ideal of OF for some number field F . To define
idèles, we consider simultaneously all of the Archimedean absolute values on F ,
together with the p-adic absolute values on F for all the primes p of OF .

Each place is a collection of topologically equivalent absolute values, treated as
a single entity. The idèles are then defined in terms of all of the places of the number
field F . Because the idèles of F carry global information about F in terms of local
information at each of its places, they are a successful implementation of the local
global principle, which is a recurring theme in algebraic number theory.

In the first section, we use a definition of absolute value that is slightly less
restrictive than the definition we gave in Chapter 1. This allows us to normalize
our absolute values in a particular way, so that certain formulas will hold once we
begin working with idèles in the third section. Fortunately, it does not affect things
topologically.

In the fourth section, we pause to study a small amount of cohomology, so that
we may make use of the Herbrand quotient when we return to idèles in Section 5.
The cohomological approach to class field theory was developed in the 1950s, (e.g.,
Artin’s notion of “class formations” as discussed in [AT]; see also [HN] and [Tat]).
These ideas give rise to alternate proofs of many of the results for number fields
included in this text, and also can be used to treat local class field theory. They are
important to the proofs of other related results, (e.g., one can use higher cohomology
groups to get information on the norms in non-cyclic abelian extensions, as we
mention at the end of Section 5).

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 4, 63
C© Springer Science+Business Media, LLC 2009
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1 Places of a Number Field

Let F be an algebraic number field. An absolute value on F is a mapping

‖ · ‖ : F → [0,∞)

that satisfies ‖0‖ = 0,whose restriction to F× is a homomorphism of multiplicative
groups F× → R×+, and that satisfies

‖1+ x‖ ≤ c whenever ‖x‖ ≤ 1

(for some suitable constant c).
Such an absolute value induces a (metric) topology on F via fundamental sys-

tems of neighborhoods of the form:

{x ∈ F : ‖x − a‖ < ε}, ε > 0.

Note that we must have c ≥ 1.

Exercise 4.1. For any such absolute value ‖ · ‖, show that there exists a positive real
number λ such that the absolute value ‖ · ‖λ satisfies the triangle inequality (i.e., is
an absolute value in the stricter sense of Chapter 1). ♦

We say that two absolute values are equivalent if they induce the same topology.
Exercise 4.1 gives that any absolute value ‖ · ‖ is topologically equivalent to an
absolute value that satisfies the triangle inequality.

A place of F is an equivalence class of non-trivial absolute values on F . Denote
the set of places of F by VF . By a theorem of Ostrowski, each of the places of F
falls into one of the following three categories.

1. Places that contain one of the p-adic absolute values given by ‖α‖p = Np−ordp(α),
for a non-zero prime ideal p of OF . These are the finite (or non-Archimedean, or
discrete) places of F .

2. Places that contain one of the absolute values ‖α‖σ = |σ (α)|
R
, for some real

embedding σ : F ↪→ R of F . These are the infinite real (or real Archimedean)
places of F .

3. Places that contain one of the absolute values ‖α‖σ = |σ (α)|2
C
, for some σ :

F ↪→ C, an imaginary embedding of F . These are the infinite imaginary (or
imaginary Archimedean) places of F .

Note that two distinct non-zero prime ideals of OF cannot produce absolute values
that are equivalent, so there is a distinct finite place for each non-zero prime ideal
of OF . Similarly, distinct real embeddings produce inequivalent absolute values so
are associated to distinct places of F . In the case of imaginary embeddings, we
have that each place contains the two (equivalent) absolute values corresponding to
a conjugate pair of embeddings. On the other hand, if two imaginary embeddings of
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F are not conjugate, then they give rise to inequivalent absolute values. Thus there
is a single place for each conjugate pair of imaginary embeddings of F .

For a number field F , there are a finite number of infinite places. Also, given
x ∈ F×, there can be only finitely many prime ideals p of OF for which ‖x‖p �= 1,
(namely those p that appear in the factorization of the fractional ideal xOF ).

For a non-zero prime ideal p of OF , we let vp denote the place containing ‖ · ‖p.
For an embedding σ : F ↪→ C, we let vσ denote the place containing ‖ · ‖σ .

Conversely, for a finite place v ∈ VF , we let pv denote the associated prime ideal
of OF . To simplify notation, we write ordv instead of ordpv .

For a place v ∈ VF , we let ‖ · ‖v denote the specific absolute value described in
(1), (2) or (3) above (and not merely an arbitrary absolute value from the place v).
These particular absolute values satisfy the product formula: For any x ∈ F×

∏

v∈VF

‖x‖v = 1.

It is important to note that if v is an infinite imaginary place, the absolute value
‖ ·‖v does not satisfy the triangle inequality. However, by Exercise 4.1 there is some
λ such that ‖ · ‖λv does. Of course, we know well that λ = 1/2.

Examples.

1. Let F = Q(
√

3) and K = Q(ζ12) = Q(i,
√

3). Now F has two embeddings
(both real):

σ1 : a + b
√

3 �→ a + b
√

3 and σ2 : a + b
√

3 �→ a − b
√

3.

Each of these may be extended to K in two ways:

σ1,1 :
√

3 �→
√

3, i �→ i and σ1,2 :
√

3 �→
√

3, i �→ −i extend σ1,

σ2,1 :
√

3 �→ −
√

3, i �→ i and σ2,2 :
√

3 �→ −
√

3, i �→ −i extend σ2.

The real places of F are vσ1 and vσ2 , (F has no imaginary places). There is one
place of K above vσ1 , namely the imaginary place vσ1,1 = vσ1,2 , and one place of
K above vσ2 , namely the imaginary place vσ2,1 = vσ2,2 .

2. Let F = Q(
√

3) and K = Q( 8
√

3). The places of K are:

vσ1,1, vσ1,2 and vσ1,3 = vσ̄1,3 above vσ1 , and

vσ2,1 = vσ̄2,1 and vσ2,2 = vσ̄2,2 above vσ2

where



66 4 The Idèlic Theory

σ1,1 : 8
√

3 �→ 8
√

3,

σ1,2 : 8
√

3 �→ − 8
√

3,

σ1,3 : 8
√

3 �→ i
8
√

3,

σ2,1 : 8
√

3 �→ ξ
8
√

3,

σ2,2 : 8
√

3 �→ ξ3 8
√

3,

for ξ a primitive 8th root of unity.
3. Let F = Q(ζ12). Note that 3 ramifies in Q(ζ3)/Q with ramification index 2,

while 3 is inert in Q(i )/Q. Thus we have e = f = 2 for the prime 3 in F/Q,
p = 〈√−3〉 is prime in OF , and 3OF = p2. We may compute ‖3‖p = Np−2 =
9−2. Meanwhile, as we saw in Example 1, F has two imaginary places v1 and
v2, where v1 contains the absolute values arising from the identity and complex
conjugation, while v2 contains the absolute values arising from the maps ζ12 �→
ζ 5

12 and ζ12 �→ ζ 7
12. We have ‖3‖v j = |3|2 = 9, for j = 1, 2. Consequently, we

compute
∏
v∈VF

‖3‖v = ‖3‖p‖3‖v1‖3‖v2 = 1 as the product rule predicts.

Exercise 4.2. Let F = Q(
√

2) and K = Q( 4
√

2,
√

3). Find all of the infinite
places of F and K , grouping the places of K according to which place of F they
extend. ♦
Exercise 4.3. Let F = Q(i ) and x = 2 − i . Compute ‖x‖v for all of the places
v ∈ VF and verify that the product formula holds for x . ♦
Exercise 4.4. Let K/F be a Galois extension of number fields, and let v be an infi-
nite real place of F . Show that the places of K above v are either all real, or all
imaginary. ♦

For a number field F and a place v ∈ VF , we may complete F with respect to
(any of the absolute values in) v. Denote the completion by Fv . Note that if v is a
finite place, then Fv = Fp for some non-zero prime ideal p of OF . If v is an infinite
real place, then Fv ∼= R, while if v is an infinite imaginary place, then Fv ∼= C.

We may embed F into Fv for each place v; write ιv : F ↪→ Fv for the embedding.
Note that ιv is continuous if F is given the topology from ‖·‖v and that ιv(F) is dense
in Fv . If α ∈ F is non-zero, then ιv(α) is a non-zero element of Fv for every v. Fur-
thermore, ιv(α) is a unit of Fv for all but finitely many of the places v. (For an infinite
place v, we understand the “units” of Fv to be the group F×v ; for a finite place v, we
understand the “units” of Fv to be the groupUv = O×

v , the elements having absolute
value one.) These embeddings ιv will be important to our discussion of idèles.

2 A Little Topology

A topological group is a group G that is also a topological space, for which multi-
plication μ : G × G → G, given by μ : (a, b) �→ ab, and inversion ρ : G → G,
given by ρ : a �→ a−1 are continuous.
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Proposition 2.1. Let G be a topological group and fix g ∈ G. If fg : G → G is
given by fg(x) = gx (left multiplication by g), then fg is a homeomorphism.

Proof. First note that for any subset A of G, we have

f −1
g (A) = {g−1a : a ∈ A} = fg−1 (A)

so that it suffices to show that f −1
g (A) is open in G for any open subset A of G and

for any g ∈ G. Let ηg : {g}×G → G×G be inclusion. Thenμ◦ηg : {g}×G → G
is continuous. But (μ ◦ ηg)−1(A) = {g} × f −1

g (A). Hence f −1
g (A) is open in G. ��

Similarly right multiplication by g is a homeomorphism, so that a topological
group G is necessarily a homogeneous space (i.e., for any two elements of G there
is a homeomorphism from G onto G that carries one element to the other).

If G is a topological group and H is a subgroup of G, then we may give the
set of left cosets of H in G the quotient topology. Since we may also define left
multiplication by g on the cosets, it is easy to see that the set of left cosets G/

H is

a homogeneous space. If H is normal in G, then G/
H is also a topological group.

Exercise 4.5. Note that the additive group of integers Z is a normal subgroup of
the additive group of real numbers R. If R is given its usual topology, then it is a
topological group. Describe the topological group R/

Z. ♦
Exercise 4.6. Show that if H is a subgroup of the topological group G, then the
closure of H is also a subgroup of G. ♦
Exercise 4.7. Let G be a topological group with identity 1, and suppose there is
some compact neighborhood A of 1 in G. Show that G is locally compact. ♦
Exercise 4.8. Let H be a subgroup of the topological group G.

a. Show that if H is open in G, then H is also closed.

b. Show that if H is closed with finite index in G, then H is also open.

c. Show that if G is compact and H is open in G, then [G : H ] is finite. ♦

Exercise 4.9. Let G be a topological group with identity 1. Prove or disprove and
salvage:

a. If H is a subgroup of G that contains an open neighborhood of 1, then H is open
in G.

b. If A is an open neighborhood of 1 in G, then A is a subgroup of G. ♦

Exercise 4.10. For each of the following, determine whether it is a topological
group. If so, is it compact, locally compact or neither? Is it connected? totally dis-
connected?

a. The p-adic integers Zp under addition, with its usual p-adic metric topology.
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b. The p-adic units Z×p under multiplication, with the usual p-adic metric topology.

c. The additive group Qp, with its usual p-adic metric topology.

d. The complex numbers C under addition, with its usual metric topology.

e. The torus C
/
L under addition, with the quotient topology, where L is a lattice

in C. ♦

3 The Group of Idèles of a Number Field

An idèle of a number field F is an “infinite vector” a = (. . . , av, . . .)v∈VF where
each av is an element of its corresponding F×v , and where av ∈ Uv for all but finitely
many v.

The idèles of F form a multiplicative group, denoted JF =
∏
v
F×v , (the symbol

∏
denotes a so-called “restricted topological product”— see below).

We let EF =
∏
v∈VF

Uv , (clearly a subgroup of JF ). We may give EF the product
topology, where each Uv has its metric topology.

We want to put a topology on JF that will make it a locally compact topological
group. The challenge is to make the operations in JF continuous and to have the
subspace topology on EF agree with the product topology. To do so, we require
aEF to be an open subset of JF for every a ∈ JF , and also require that the map
EF �→ aEF (multiplication by a) be a homeomorphism for every a ∈ JF . These
requirements already are sufficient to determine the topology on JF . Specifically,
JF must be the restricted topological product of the F×v with respect to the Uv . We
define this next. Then Exercise 4.11 shows that as a subspace of JF , EF will have
the product topology as desired. Note however that the topology on JF will not be
the product topology.

In general, restricted topological product is defined as follows. If {Bi : i ∈ I} is a
family of topological spaces, and if for each i (or for all but finitely many of the i ),
we are given an open subset Ai ⊆ Bi , we may form

B = {{xi}i∈I : xi ∈ Bi for all i ; xi ∈ Ai for all but finitely many i}.

Give B a topology by taking

{
∏

Ci : Ci is an open subset of Bi for all i ; Ci = Ai for all but finitely many i}

as a basis of open sets. The space B with this topology is called the restricted topo-
logical product of the Bi with respect to the Ai . Note that for any finite subset T of
I, this makes

∏
i∈T Bi

∏
i �∈T Ai an open set in B .

Exercise 4.11. Show that for JF , a basis of open sets may be given by

{aA : a ∈ JF , and A is an open subset of EF }.
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Hence the subspace topology on EF is the product topology, as desired. ♦

Exercise 4.12. Show that JF with this topology is a topological group. ♦

Note that for a finite place v, Uv is compact, so

EF =
∏

v infinite

Uv
∏

v finite

Uv ∼= (R×)r1 × (C×)r2 × {a compact set}.

It is easy to show that in the restricted topological product, if the Bi are locally
compact and the Ai are compact, then B is locally compact. We give a proof for the
special case B = JF next.

Proposition 3.1. JF is a locally compact topological group.

Proof. By Exercise 4.12, JF is a topological group. Thus, it suffices to find a com-
pact neighborhood of 1. For v infinite, let

Av = {x ∈ F×v : ‖x − 1‖v ≤ 1/2}

(a compact neighborhood of 1 in F×v ). Now let A =∏v infinite Av
∏
v finite Uv . Clearly

A is a compact neighborhood of 1 in EF , as EF has the product topology. Thus A is
a compact neighborhood of 1 in JF as well. ��
Exercise 4.13. What happens if instead of JF we consider

∏
v F×v with the product

topology? ♦

Exercise 4.14. For an idèle a = (. . . , av, . . .) ∈ JF , we define the content of a to
be content(a) = ∏v∈VF

‖av‖v . Show that the map a �→ content(a) is a continuous
homomorphism JF → R×+. ♦

Proposition 3.2. The quotient group JF
/
EF

is isomorphic to IF , the group of frac-

tional ideals of F .

Proof. Define a map η : JF → IF by

η : a = (. . . , av, . . .) �→ 〈a〉 =
∏

v finite

pordv(av)
v .

Note that the product on the right is actually a finite product, since ordv(av) = 0 for
all but finitely many v. Now η is clearly a surjective homomorphism of groups, and

ker η = {(. . . , av, . . .) : ordv(av) = 0 for all finite v} = EF . ��
We may view α ∈ F× as an idèle (. . . , ιv(α), . . .), where ιv : F ↪→ Fv is

an embedding of F into its completion at v. This gives an embedding, called the
diagonal embedding,
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ι : F× ↪→ JF , where ι(α) = (. . . , ιv(α), . . .).

Usually it will do no harm to identify α and ι(α), and we shall often write F× when
we really mean ι(F×). If we do, we find that η(α) = ∏

v finite pordv(α)
v = αOF and

η(F×) = PF . This observation gives us:

Proposition 3.3. For a number field F , we have

JF
/

F×EF
∼= CF = IF

/
PF .

��
The embeddings ιv : F ↪→ Fv mentioned above are important. A given place v

of F will lie above either the infinite real place ∞ of Q or above a finite place of Q

corresponding to a prime p of Z, (abusing the language slightly, we say “above p”).
Above the place∞, we choose the ιv from the set of embeddings F ↪→ Fv ⊆ C, so
that each infinite place of F is represented exactly once. Analogously, for the finite
places v above p, we want to choose the ιv from the set of embeddings F ↪→ Fv ⊆
Cp so that each place of F above p is represented exactly once.

Let | · | denote the usual absolute value on C. For the infinite places and their
embeddings, we have ‖x‖v = |ιv(x)|d (where d = 1 if v is real and d = 2 if v is
imaginary, i.e., d = [Fv : R]). The same occurs for the finite places: for a finite place
v = vp, where p lies above the prime p of Z, the embedding ιv : F ↪→ Fv ⊆ Cp

satisfies ‖x‖v = |ιv(x)|dp, where d = [Fv : Qp] and | · |p is the p-adic absolute value

on Cp, normalized so that |p|p = 1
p .

Example.

4. If F = Q(i,
√

3) = Q(ζ ), where ζ is a primitive 12th root of unity, we find that
there are two places of F above p = 5. Say they are associated to the distinct
prime ideals p5 and p

′
5 of OF . Let θ5 be one of the two solutions to X2 − 3 = 0

in C5. Note that [Q5(θ5) : Q5] = 2 and (identifying the completions of F with
extensions of Qp), Fp5

= Q5(θ5) = Fp
′
5
. There are two solutions to X2 + 1 = 0

in Q5; call them κ5 and κ̃5. Note that κ5κ̃5 = 1, and without loss of generality we
may choose κ5 ≡ 2 (mod 5), (so κ̃5 ≡ 3 (mod 5)). If we look at i = ζ 3 ∈ F , we
find that i − 2 is in one of p5, p

′
5, while i − 3 is in the other. Suppose i − 2 ∈ p5.

Now |κ5 − 2|5 = |κ̃5 − 3|5 < 1, so the embeddings ιp5
, ιp′5

: F ↪→ Q5(θ5) must

satisfy ιp5
(i ) = κ5, ιp′5 (i ) = κ̃5. We may then take ιp5

(
√

3) = θ5 = ιp′5
(
√

3) to
complete the definitions of ιp5

and ιp′5 .
Let us look also at the case p = 3. There is a single prime ideal p3 of F above

the prime p = 3, and we have [Fp3 : Q3] = 4. In this case, we have only one
place above our prime, and we may choose θ3 to be either of the solutions to
X2 − 3 = 0 and κ3 to be either of the solutions to X2 + 1 = 0 in C3. We have
Fp3 = Q3(θ3, κ3) and we let ιp3 : F ↪→ Q3(θ3, κ3) be given by ιp3 (i ) = κ3 and
ιp3 (
√

3) = θ3.
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Finally, let us look at the infinite places of F . There are two imaginary places
(one above each real place of Q(

√
3)); say v1 is above the real place of Q(

√
3)

that corresponds to the embedding that sends
√

3 �→ √
3, and v2 is above the real

place of Q(
√

3) that corresponds to the embedding that sends
√

3 �→ −√3. We
have Fv1 = Fv2 = C and we let ιv1 , ιv2 : F ↪→ C be given by ιv1 (

√
3) = √

3,
ιv2 (
√

3) = −√3, and ιv1 (i ) = i = ιv2 (i ).
Say α = √−3 ∈ F . The idèle in JF associated to α is

ι(α) = (
√−3,−√−3︸ ︷︷ ︸

above ∞
, . . . , θ3κ3︸︷︷︸

above 3

, θ5κ5, θ5κ̃5︸ ︷︷ ︸
above 5

, . . .).

Exercise 4.15. Show that F×, (viewed as a subset of JF , so identified with ι(F×)),
is a discrete subgroup of JF . It is called the subgroup of principal idèles and CF =
JF
/

F× is called the group of idèle classes. ♦

Exercise 4.16. The following steps may be used to give a proof of the finiteness of
the ideal class group CF .

a. Denote the kernel of the content map on JF by J 1
F . Show that F× < J 1

F and that
J 1

F

/

F× (with the quotient topology) is compact.

b. Let η : JF → IF be as before. Show that if IF is given the discrete topology,
then η is continuous.

c. Show that η(J 1
F ) = IF .

d. Show that IF
/
PF

is compact. (Since it is also a discrete group, it must be

finite.) ♦

Proposition 3.4. Let m be a non-zero integral ideal of OF , and define

J+F,m = {a ∈ JF : av > 0 for all real v, and av ≡ 1 (mod pordv(m)
v ) for all pv|m},

E+F,m = J+F,m ∩ EF .

Then

JF
/

F×E+F,m
∼= R+

F,m.

Proof. Note that J+F,m ∩ F× = {α ∈ F× : α " 0, α
×≡ 1 (mod m)} = F+m . We

claim J+F,m F× = JF .
To prove the claim, let (. . . , av, . . .) = a ∈ JF , and let ε > 0. By the Approx-

imation Theorem, and the density of ιv(F) in Fv , there exists α ∈ F× such that
‖ιv(α)− av‖v < ε for all infinite real v, and also for all finite v with pv|m. Thus, if
ε is sufficiently small, then:
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sign (ιv((α)) = sign (av) for all infinite real v, and

ιv(α)−1av ≡ 1(mod pordv(m)
v ) for all v with pv|m.

We conclude that the idèle α−1a is in J+F,m, whence a = αb for some b ∈ J+F,m.
This implies JF = J+F,m F×, as claimed.

From the claim, we get

J+F,m
/

F+m
= J+F,m

/

J+F,m ∩ F×
∼= J+F,m F×/

F× = JF
/

F×,

whence

J+F,m
/

E+F,mF+m
∼= JF

/

F×E+F,m.

As in the proof of Proposition 3.3, let

ηm : J+F,m → IF (m)

be given by

ηm : a = (. . . , av, . . .) �→ 〈a〉 =
∏

v finite

pordvav
v .

Then clearly ηm = η
∣
∣

J+F,m
and ηm(J+F,m) = IF (m). Also ker ηm = J+F,m∩EF = E+F,m

and we conclude

J+F,m
/

E+F,m
∼= IF (m).

Thus

J+F,m
/

E+F,mF+m
∼= IF (m)

/

ηm(F+m )

= IF (m)
/

P+F,m = R+
F,m.

But then

JF
/

F×E+F,m
∼= J+F,m

/

E+F,mF+m
∼= R+

F,m. ��

Corollary 3.5. The set of subgroups H of JF , with H ⊇ F×E+F,m for some m,
corresponds to the set of open subgroups of JF that contain F×.
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Proof. We have that E+F,m is an open subgroup of JF ; in fact

E+F,m ∼=
∏

v imaginary

C×
∏

v real

R×+
∏

v finite
pv |m

(1+ pordvm
v )

∏

v finite
pv�m

Uv,

which is open in EF , (EF has the product topology), so is open in JF . This gives that
F×E+F,m is open, whence any subgroup H of JF , with H ⊇ F×E+F,m is open.

Conversely, if H is an open subgroup of JF that contains F×, then we claim that
H ⊇ E+F,m for some m. Now 1 ∈ H, so there is an open neighborhood, A, of 1 in H.
We may take A to be of the form: A = ∏v Av, where Av = Uv for all but finitely
many places v, and for the remaining places, Av is an open neighborhood of 1 of
the form

Av =
{

1+ pnv
v for v finite

{x ∈ Fv : ‖x − 1‖v < ε} for v infinite.

Now let Ho be the subgroup of JF generated by A. We have Ho ⊆ H. Also,

Ho =
∏

v∈VF

〈Av〉 =
∏

v infinite

〈Av〉
∏

v finite

Av

since 1+ pnv
v is already a group.

For v real, 〈Av〉 = R×+ or R×. (This is clear, since if α ∈ R×+, then α
1
n ∈ Av for

n sufficiently large, giving α ∈ 〈Av〉. Thus R×+ ⊆ 〈Av〉 ⊆ R×.)
For v imaginary, 〈Av〉 = C×. (This follows, since if z ∈ C×, then |z| 1

n e
iθ
n ∈ Av

for n sufficiently large and θ = arg z, whence z ∈ 〈Av〉.)
Putting everything together, we get

Ho =
∏

v imaginary

C×
∏

v real

{R× or R×+}
∏

v finite

Av

where

Av =
{Uv almost everywhere

1+ pnv
v else.

Let m = ∏
pnv
v , where the product is over the finite places v ∈ VF for which

Av = 1+ pnv
v . Then Ho ⊇ E+F,m, and we have H ⊇ Ho ⊇ E+F,m. ��

We may now reformulate Takagi’s class field theory in terms of idèles. The main
ideas translate to the following claim.
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There is an order reversing, bijective correspondence between the set of all finite abelian
extensions K/F and the set of open subgroups H of JF for which H ⊇ F×. In this corre-

spondence Gal (K/F) ∼= JF
/
H.

Compare the result that JF
/

F×E+F,m
∼= IF (m)

/

P+F,m = R+
F,m. Subgroups H

as in the claim will contain F×E+F,m for appropriately chosen m. It remains for
us to answer many questions about the precise nature of the “translation” between
Takagi’s ray classes and Chevalley’s idèles. For example, if H is an open subgroup

of JF containing F×E+F,m, then we may consider the subgroup H/
F×E+F,m of the

factor group JF
/

F×E+F,m . What is the corresponding subgroup of R+
F,m?

Recall the Isomorphy Theorem asserts that if P+F,m ⊆ H̃ ⊆ IF (m) and K̃ is the

class field for H̃, then Gal (K̃/F) ∼= IF (m)
/

H̃. If the subgroup H̃
/

P+F,m of R+
F,m

corresponds to the subgroup H/
F×E+F,m of JF

/

F×E+F,m , how are the class field

K̃ of H̃ and the extension K/F associated to H (in the claim) related?
We were also especially interested in the subgroups P+F,mNK/F (m), where

NK/F (m) = {a ∈ IF (m) : a = NK/F (A) for some A ∈ IK }, (see the Universal
Norm Index Inequality). It is perhaps not surprising that the open idèlic subgroups
H containing F× and the subgroups H̃ = P+F,mNK/F (m) of IF (m) are related.

We may make a more precise statement (to be proved later), if we introduce
the notion of the norm of an idèle. Let K/F be an extension of number fields.
Define NK/F : JK → JF as follows. Let (. . . , aw, . . .) = a ∈ JK , where the w are
places of K . For a fixed v ∈ VF , the set {w ∈ VK : w|v} is finite. We construct
the norm of a as an idèle of F by computing each v-component in terms of the
corresponding set {w ∈ VK : w|v}. Specifically, we let bv =

∏
w|v NKw/Fv (aw) and

define NK/F (a) = (. . . , bv, . . .) ∈ JF .
Recall that if α ∈ K , then for any fixed v ∈ VF ,

NK/F (α) =
∏

w|v
NKw/Fv (ιw(α)).

Hence if α ∈ K× is viewed as an idèle in JK , then NK/F (α) is the idèle in JF

arising from the usual norm of the element α. In other words, we have a commutative
diagram:
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If H corresponds to K in the claim above, then it turns out that H = F×NK/F JK .

Moreover, soon we’ll be able to show the following (it is Proposition 5.6).

Proposition. Let K/F be abelian Galois, and let

H = F×NK/F JK

(so F× ⊆ H ⊆ JF ). Then H is an open subgroup in JF . Moreover, if m is chosen
so that

E+F,m ⊆ H

then the image of H under the isomorphism

JF
/

F×E+F,m
∼= IF (m)

/

P+F,m

is precisely P+F,mNK/F (m)
/

P+F,m and

in particular, we have [JF : H] = [IF (m) : P+F,mNK/F (m)] ≤ [K : F]. ��
Compare the above proposition with the Universal Norm Index Inequality of

Chapter 3. Before we can give a proof, we need to study (a very small amount of)
cohomology of groups. Once we have done so, we shall return to idèles and prove
the above proposition.

4 Cohomology of Finite Cyclic Groups and the Herbrand
Quotient

Let G be a finite cyclic group, say G = 〈σ 〉, and let A be a G-module, (so G acts
on A and A is a module over the group ring Z[G]). Let

s(G) = 1+ σ + · · · + σ n−1,
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where n is the order of G.
Consider the map σ − 1 on A. We have

ker (σ − 1) = {a ∈ A : σ (a) = a} = AG .

Note that s(G)A ⊆ AG :

(σ − 1)(1+ σ + · · · + σ n−1) = (σ n − 1) = 1− 1 = 0

since n = #G. Similarly

(σ − 1)A ⊆ ker s(G).

We define

QG(A) = [AG : s(G)A]
/

[ker s(G) : (σ − 1)A]

when these indices are finite. The number QG(A) is called the Herbrand quotient of
A for the group G.

Example.

5. Let G = 〈σ 〉 be cyclic of order n and let A = Z, with G acting trivially on A.
Then

AG = {a ∈ Z : σ (a) = a} = Z

and

s(G)A = s(G)Z = nZ.

Also, ker s(G) = {0}, and (σ − 1)A = {0}.We get

QG(A) = [AG : s(G)A]
/

[ker s(G) : (σ − 1)A] = [Z : nZ] = n.

Next we want to study some properties of the Herbrand quotient. For their proofs,
we use a lemma about the Tate cohomology groups

H 0(A) = ker A(σ − 1)
/

s(G)A

H 1(A) = ker As(G)
/

(σ − 1)A.

Note that #H 0(A)
/

#H 1(A) = QG(A).
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Lemma 4.1. (Exact Hexagon Lemma). Suppose we have an exact sequence of

Z[G]-modules 0 −→ B
f−→ A

g−→ C −→ 0. Then there are Z[G]-homomorphisms
f0, f1, g0, g1, δ0, δ1 such that

is exact.

Proof. Define

f0 : H 0(B) → H 0(A) by

b + s(G)B �→ f (b)+ s(G)A

g0 : H 0(A) → H 0(C) by

a + s(G)A �→ g(a)+ s(G)C

f1 : H 1(B) → H 1(A) by

b + (σ − 1)B �→ f (b)+ (σ − 1)A

g1 : H 1(A) → H 1(C) by

a + (σ − 1)A �→ g(a)+ (σ − 1)C.

All are clearly well-defined Z[G]-homomorphisms.

Now define δ0 : H 0(C) → H 1(B) as follows. Let c ∈ ker C (σ − 1). We must
define δ0(c + s(G)C). Now g is surjective, so there is an element a0 ∈ A such that
g(a0) = c. And since c ∈ ker C (σ − 1), we have

(σ − 1)(g(a0)) = 0

g((σ − 1)(a0)) = 0

(σ − 1)(a0) ∈ ker g = im f.

Hence there is an element b0 ∈ B such that f (b0) = (σ − 1)(a0). Now s(G)(σ − 1)
is the zero map, so

0 = s(G)(σ − 1)(a0)

= s(G) f (b0)

= f (s(G)(b0)).
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But f is injective, so s(G)(b0) = 0. This gives b0 ∈ ker Bs(G), so we may let

δ0(c+ s(G)C) = b0 + (σ − 1)B (∈ H 1(B)).

We must show that δ0 is well-defined. Suppose c+ s(G)C = c′ + s(G)C . Repeating
the above for c′, we obtain

a′0 ∈ A with g(a′0) = c′, and

b′0 ∈ B with f (b′0) = (σ − 1)(a′0).

It suffices to show that

b0 − b′0 ∈ (σ − 1)B.

We have that c−c′ ∈ s(G)C and since g : A → C is surjective, there is some a ∈ A
with

c − c′ = s(G)(g(a)) = g(s(G)(a)).

Also c − c′ = g(a0)− g(a′0) = g(a0 − a′0). Thus

g(a0 − a′0 − s(G)(a)) = 0,

i.e.,

a0 − a′0 − s(G)(a) ∈ ker g = im f.

But now there exists b ∈ B with

f (b) = a0 − a′0 − s(G)(a)

(σ − 1)( f (b)) = (σ − 1)(a0 − a′0 − s(G)(a))

= f (b0)− f (b′0)

f ((σ − 1)(b)) = f (b0 − b′0).

Since f is injective, we must have

(σ − 1)(b) = b0 − b′0
b0 − b′0 ∈ (σ − 1)B.

We have shown δ0 is well-defined. The proof that δ0 is Z[G]-linear is routine. We
leave it as Exercise 4.17.

Now we must define δ1 : H 1(C) → H 0(B). Let c ∈ ker C s(G). Since g is
surjective, we know that there is some a1 ∈ A such that g(a1) = c. Also, since
c ∈ ker Cs(G), we have
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s(G)(g(a1)) = 0

g(s(G)(a1)) = 0

s(G)(a1) ∈ ker g = im f.

Hence there exists b1 ∈ B with f (b1) = s(G)(a1). Now

0 = (σ − 1)s(G)(a1)

= (σ − 1)( f (b1))

= f ((σ − 1)(b1)).

Since f is injective, we must have

(σ − 1)(b1) = 0

b1 ∈ ker B (σ − 1).

Hence we may let δ1(c+ (σ − 1)C) = b1 + s(G)B .

Exercise 4.18. Show that δ1 is well-defined, and that the “hexagon” is exact. ��

Proposition 4.2. If B is a G-submodule of A, and C = A/
B , then

QG(A) = QG(B)QG(C).

(In particular, if any two of these exist, then so does the third.)

Proof. We have the canonical exact sequence

0 −→ B
f−→ A

g−→ C −→ 0

so we may apply Lemma 4.1 to get the the exact hexagon below.

Now suppose QG(B), QG(A), QG(C) are defined. (Note that if any two of them are
defined, then so is the third.) Then
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#H 0(B) = #(ker f0) #(im f0)

#H 0(C) = #(ker δ0) #(im δ0)

#H 0(A) = #(ker g0) #(im g0), etc.

From the exact hexagon, we have

#H 0(B) #H 0(C) #H 1(A)

= #(ker f0) #(im f0) #(ker δ0) #(im δ0) #(ker g1) #(im g1)

= #(im δ1) #(ker g0) #(im g0)
︸ ︷︷ ︸

#(ker f1) #(im f1)
︸ ︷︷ ︸

#(ker δ1)

= #H 1(C) #H 0(A) #H 1(B),

whence

QG(B) QG(C) = #H 0(B) #H 0(C)
/

#H 1(B) #H 1(C)

= #H 0(A)
/

#H 1(A) = QG(A).

��
Proposition 4.3. If A is a finite G-module, then QG(A) = 1.

Proof. Since A is a finite Z[G]-module, we have

QG(A) = [ker (σ − 1) : im s(G)]
/

[ker s(G) : im (σ − 1)]

= #ker (σ − 1)

#im s(G)

#im (σ − 1)

#ker s(G)
= #A

#A
= 1.

(Note that since A is finite, all of the cardinalities above are finite.) ��
Corollary 4.4. if B is a G-submodule of A of finite index, then QG(A) = QG(B).

Proof. Clear. ��
Proposition 4.5. (Shapiro’s Lemma). Suppose A = A1 ⊕ · · · ⊕ Ar , where the
A j are subgroups of A (not submodules) and suppose that G transitively permutes
A1, . . . , Ar . Let

G j = {τ ∈ G : τ (A j ) = A j}.

Then A j is a G j -module and QG(A) = QG j (A j). (Note that since G is cyclic, each
G j is also cyclic so QG j (A j) makes sense.)

Proof. We shall give the proof for j = 1 (clearly the proof for arbitrary j is the
same).
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Step 1. First, we show that the natural projection π : A → A1 induces an isomor-
phism H 0

G(A) ∼= H 0
G1

(A1).

Proof. Let G = r∪
j=1
σ j G1 be a coset decomposition of G, where σ j satisfies σ j (A1) = A j . Then

AG = ker A(σ − 1) =
{

r∑

j=1

σ j (a1) : a1 ∈ AG1
1

}

.

(For “⊇” suppose a1 ∈ AG1
1 . We have σ ∈ σk G1 for some (unique) k, so σ = σkτ for some τ ∈ G1.

Given j ∈ {1, . . . , r} there is a unique i j ∈ {1, . . . , r} such that σ jσ
−1
k ∈ σi j G1 or, equivalently,

σkσi j ∈ σ j G1, say σkσik = σ jτ j , (τ j ∈ G1). Note the i j are pairwise distinct, so

σ
( r∑

i=1

σi (a1)
)
= σ

( r∑

j=1

σi j (a1)
)
=

r∑

j=1

σkτσi j (a1)

=
r∑

j=1

σkσi j (a1) =
r∑

j=1

σ jτ j (a1) =
r∑

j=1

σ j (a1).

For “⊆” suppose a ∈ AG . We have a = ∑r
j=1 a j for a unique set of a j ∈ A j . Also, since

σ j (A1) = A j , we have a j = σ j (ã j ) for some ã j ∈ A1. So a = ∑r
j=1 σ j (ã j ) ∈ AG . For a fixed

index i , apply σ−1
i

a = σ−1
i (a) =

r∑

j=1

σ−1
i σ j (ã j ),

the first equality being true because a ∈ AG . Thus the A1-component of a is σ−1
i σi (ãi ) = ãi . But

we know that the A1-component of a is unique, so a1 = ãi . This must hold for every i . Hence,
a =∑r

j=1 σ j (ã j ) =
∑r

j=1 σ j (a1), as needed.)

Since AG = {∑r
j=1 σ j (a1) : a1 ∈ AG1

1 } we see that an element of AG is completely

determined by its A1-component. Thus AG1
1
∼= AG via ϕ : a1 �→

∑r
j=1 σ j (a1). Under ϕ, we

also have

s(G1)(a1) �→
r∑

j=1

σ j s(G1)(a1) = s(G)(a1 ) ∈ s(G)A.

Thus the map

ϕ̄ : AG1
1

/
s(G1)A1

−→ AG/
s(G)A

given by a1+ s(G1)A1 �→
∑r

j=1 σ j (a1)+ s(G)A is well-defined. It is also surjective, since
ϕ was. Now for a1 + s(G1)A1 to be in ker ϕ̄, we must have

∑r
j=1 σ j (a1) = s(G)(b) for

some b ∈ A. Write b = b1 + · · · + br = σ1(b̃1)+ · · · + σr (b̃r ) where b̃ j ∈ A1. Then

s(G)(bi ) =
r∑

j=1

σiσ j s(G1)(b̃i ).

But, since s(G)(bi ) = σ−1
i s(G)(bi ), we also have

s(G)(bi ) =
r∑

j=1

σ j s(G1)(b̃i ).
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If a1 + s(G1)A1 ∈ ker ϕ̄, then

r∑

j=1

σ j (a1) =
r∑

i=1

s(G)(bi )

=
r∑

i=1

r∑

j=1

σ j s(G1)(b̃i )

=
r∑

j=1

σ j s(G1)

(
r∑

i=1

b̃i

)

.

Compare A1-components in the above to get

σ1(a1) = σ1s(G1)

(
r∑

i=1

b̃i

)

a1 = s(G1)

(
r∑

i=1

b̃i

)

∈ s(G1)A1.

Thus ker ϕ̄ is trivial, and we have

AG1
1

/
s(G1)A1

∼= AG/
s(G)A.

Step 2. Next we show H 1
G(A) ∼= H 1

G1
(A1).

Proof. Exercise 4.19.

We now have

QG(A) = #H 0
G(A)

#H 1
G(A)

= #H 0
G1

(A1)

#H 1
G1

(A1)
= QG1 (A1). ��

Example.

6. Let F/Q be a cyclic extension of number fields, with G = Gal (F/Q), and let
A = OF (so G acts on A). What is QG(OF )?

The Normal Basis Theorem gives the existence of a Q-basis for F of the form
{aτ : τ ∈ G}. (Here we are using the notation aτ in place of τ (a).) We may
assume a ∈ OF (if a /∈ OF some multiple of it is). Let B = Za+Zaσ +Zaσ

2 +
· · · + Zaσ

n−1
where G = 〈σ 〉 has order n. Now rank B = n, and [OF : B] is

finite. Thus QG(OF ) = QG(B). Let A1 = Za. Then G1 = {τ ∈ G : τ (A1) =
A1} = {1}. We have (by Shapiro’s Lemma):

QG(B) = QG1 (A1) = [AG1
1 : s(G1)A1]

/
[ker s(G1) : (σ1 − 1)A1]

= [A1 : A1]
/

[{0} : {0}] = 1.

Hence QG(OF ) = 1.
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5 Cyclic Galois Action on Idèles

Let K/F be a (not necessarily abelian) Galois extension of number fields. We return
to our study of idèles by defining an action of Gal (K/F) on JK .

Let G = Gal (K/F) and let a = (· · · , aw, · · · ) ∈ JK . Let σ ∈ G. For a place w
of K , define the place σw by

‖α‖σw = ‖σ−1(α)‖w,

or equivalently ‖σ (α)‖σw = ‖α‖w . Note that τ (σw) = (τσ )w. It is clear that G
transitively permutes the places of K , and (K , ‖ · ‖w) is isometric to (K , ‖ · ‖σw) via
σ : α �→ σ (α). Thus σ induces an isomorphism between the completions that we
also denote by σ :

σ : Kw

∼=−→ Kσw.

We may now define for each v ∈ VF

σ (. . . , aw, . . .)w|v = (. . . , bw, . . .)w|v

where

bσw = σ (aw), i.e., bw = σ (aσ−1w).

This gives an action of σ on JK .

Exercise 4.20. Show that this action is consistent with the usual action of G on K×,
where we view K× ⊆ JK as before. ♦

Now we have that JK is a G-module. What is J G
K ? We endeavor to find it: Sup-

pose a ∈ J G
K , i.e., σ (a) = a for all σ ∈ G. Then, for every place v of F , we have

σ (. . . , aw, . . .)w|v = (. . . , aw, . . .)w|v

whence

aw = σ (aσ−1w) for all σ, and for all w.

If we let Gw = {σ ∈ G : σw = w}, then aw = σ (aw) for every σ ∈ Gw . Note
that Gw is the Galois group of Kw/Fv; in particular, if w is a finite place of K , then
Gw = Z (Pw/pv), (the decomposition group). We have shown that aw ∈ Fv for
every place v of F and for every place w of K above v. Now suppose w1, w2 both
lie above v. Then there is some σ ∈ G with σ : w2 �→ w1. Since w2 = σ−1w1, we
have aw1 = σ (aw2). But aw1 ∈ Fv and aw2 ∈ Fv . It follows that aw1 = aw2 .
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We have shown that if σ (a) = a for all σ ∈ G, then for every place v of F ,

(. . . , aw, . . .)w|v = (bv, . . . , bv)

for some bv ∈ Fv . This gives

J G
K = {(. . . , (bv, . . . , bv), . . .)} = JF ,

where we have identified JF with its image in JK under the obvious embedding
JF ↪→ JK sending (. . . , bv, . . .) �→ (. . . , (bv, . . . , bv), . . .).

Now suppose G is cyclic. We want to study s(G)JK . We shall use multiplicative
notation for s(G), so s(G) : JK → JK by a �→ ∏

σ∈G σ (a). This suggests that we
consider norms. Is

∏
σ∈G σ (a) the same as NK/F (a) (the idèlic norm)?

Recall for a = (· · · , aw, . . .)w∈VK , if for each v ∈ VF , we set bv =
∏
w|v NKw/Fv (aw),

then NK/F (a) = (. . . , bv, . . .), an idèle of F .
Fix v ∈ VF . Then

(. . . , aw, . . .)w|v = (aw1, 1, 1, . . . 1)(1, aw2, 1, . . . , 1) · · · (1, . . . , 1, awr ).

Now
∏
σ∈G σ (aw1, 1, . . . , 1) is invariant under the action of G. Hence, by our com-

putation of J G
K , we see that

∏

σ∈G

σ (aw1, 1, . . . , 1) = (cv, . . . , cv)

for some cv ∈ Fv . On the other hand, if σ �∈ Gw1 , then the first coordinate of
σ (aw1, 1, . . . , 1) is 1. Thus the first coordinate of

∏
σ∈G σ (aw1, 1, . . . , 1) is

∏

σ∈Gw1

σ (aw1) = NKw1 /Fv (aw1).

It follows that

∏

σ∈G

σ (aw1, 1, . . . , 1) = (NKw1 /Fv (aw1), . . . , NKw1 /Fv (aw1)).

In the same way,

∏

σ∈G

σ (1, . . . , 1, aw j , 1, . . . , 1) = (NKw j /Fv (aw j ), . . . , NFw j /Fv (aw j ))

for each j . We get

∏

σ∈G

σ (aw1, . . . , awr ) =
(∏

w|v
NKw/Fv (aw), . . . ,

∏

w|v
NKw/Fv (aw)

)
. (∗)
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Since
∏
w|v NKw/Fv (aw) is the vth coordinate of NK/F (a), if we embed JF ↪→ JK as

before, we have

∏

σ∈G

σ (a) = NK/F (a)

as desired.
Now we may study the Herbrand quotient. Say G = 〈σ 〉 is a finite cyclic group,

with G = Gal (K/F) as before. Recall, for a G-module A, we have

QG(A) = [AG : s(G)A]
/

[ker s(G) : (σ − 1)A].

We want [JF : F×NK/F JK ] to be of the form [AG : s(G)A]. In order to make this
statement more precise, (and to give a proof of it!), we need to know more about
the Herbrand quotient on idèles and idèle class groups. We begin with the following
lemma.

Lemma 5.1. Let CK = JK
/

K× be the group of idèle classes of K , and similarly

let CF = JF
/

F× . The embedding JF ↪→ JK induces an embedding CF ↪→ CK .

Furthermore, CG
K = CF .

Proof. Let a ∈ JF and ā ∈ JF
/

F× be the image of a in CF . Suppose when we

consider a as an element of JK , we find that it is in K×, i.e., ā = 1̄ in CK . Now
a ∈ JF = J G

K also, so a ∈ J G
K ∩ K× = (K×)G = F×. Thus ā = 1̄ in CF . We

have shown that there is an embedding CF ↪→ CK that arises from the embedding
JF ↪→ JK as claimed. It remains to find CG

K .
Suppose b ∈ JK has image b̄ in CK and that b̄ ∈ CG

K . Then for all σ ∈ G,
σ (b̄) = b̄, i.e., for all σ ∈ G, σ (b)b−1 = 1̄, i.e., for all σ ∈ G, σ (b)

b ∈ K×. Let
ϕb : G → K× by ϕb : σ �→ σ (b)

b . Then, for τ, σ ∈ G, we have

τ (ϕb(σ )) = τσ (b)

τ (b)

= ϕb(τσ )[ϕb(τ )]−1.

(The above equation gives that ϕb is what is known as a 1-cocycle or a crossed
homomorphism.) By Hilbert’s Theorem 90, (see below), there is some α ∈ K× such
that

ϕb(σ ) = σ (α)

α
for all σ ∈ G.
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We have

σ (α)

α
= σ (b)

b
for all σ ∈ G

σ (α−1b) = α−1b for all σ ∈ G

α−1b ∈ J G
K = JF .

Now α−1b = b̄ in CK , since α−1 ∈ K×. But α−1b ∈ JF by the above, so we must
have α−1b ∈ CF . The map CF ↪→ CK is injective. Thus b̄ ∈ CF , and we have
shown CG

K ⊆ CF . The reverse inclusion is clear. ��

We record the statement of Hilbert’s Theorem 90 in its modern form here.

Theorem 5.2 (Hilbert Theorem 90). Let G = Gal (K/F), and let f : G → K×

satisfy f (τσ ) = τ ( f (σ )) f (τ ) Then there is some α ∈ K× such that f (σ ) = σ (α)
α

for all σ ∈ G. ��

The classical version of this theorem, which originated in the work of Gauss and
Kummer, says that if we have β ∈ K× and NK/F (β) = 1, then β = σ (α)

α
for

some α ∈ K×, where G = Gal (K/F) = 〈σ 〉 is cyclic. Note that for a crossed
homomorphism f , we have

NK/F ( f (σ )) =
∏

τ∈G

τ ( f (σ ))

=
∏

τ∈G

(
f (τσ )

f (τ )

)

=
∏

τ∈G
f (τσ )

∏

τ∈G
f (τ )

= 1.

Reviewing what we have done so far, we have

J G
K = JF

s(G)JK = NK/F JK

CF ↪→ CK

CG
K = CF .

Also, we have defined NK/F on CK , and the diagram below commutes.
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Putting this together,

[CG
K : s(G)CK ] = [CF : NK/F CK ]

=
[

JF
/

F× : NK/F JK
/

F× ∩ NK/F JK

]

= [JF : F×NK/F JK ].

(As we’ll see, [JF : F×NK/F JK ] = [IF (m) : P+F,mNK/F (m)] for some m.) Given
the above, it seems potentially useful to study QG(CK ) when G = Gal (K/F) is
cyclic.

Our approach to this study begins by recalling that we have shown JK
/

K×EK
∼=

CK , the ideal class group of K . In particular, K×EK has finite index in JK , which

implies that K×EK
/

K× has finite index in CK , the idèle class group. This gives

QG(CK ) = QG

(
K×EK

/

K×
)

.

Now EK ∩ K× = UK = O×
K , so

K×EK
/

K× ∼= EK
/

EK ∩ K× = EK
/
UK

whence

QG(CK ) = QG

(EK
/
UK

)
.

On the other hand,

EK =
∏

w∈VK

Uw =
∏

v∈VF

(∏

w|v
Uw
)

and G = Gal (K/F) permutes {Uw : w|v}. This makes
∏
w|v Uw a G-module.

Exercise 4.21. If A and B are G-modules that have Herbrand quotients, show that

QG(A × B) = QG(A)QG(B). ♦

By Exercise 4.21, we may choose any finite set S of places v ∈ VF , and write

QG(
∏

v∈VF

∏

w|v
Uw) =

(∏

v∈S

QG

(∏

w|v
Uw
))(

QG

(∏

v /∈S

∏

w|v
Uw
))
.



88 4 The Idèlic Theory

By Shapiro’s Lemma, we know

QG

(∏

w|v
Uw
)
= QGw(Uw)

where Gw = {σ ∈ G : σw = w}. In our study of QG(CK ), we shall take

S = {v ∈ VF : v is infinite or v is finite and pv ramifies in K/F},

(see (iii ) of Proposition 5.7 below).
From the above observations, it is apparent that it will be useful to study the Her-

brand quotient on units in local fields. We continue to use multiplicative notation, so
that from the Herbrand quotient, we obtain information about the norm index. The
following lemma shows that for a cyclic extension of local fields this is governed by
the ramification index for the extension.

Lemma 5.3. Let k2/k1 be an extension of local fields, (for us this means that for
some p, k j/Qp is a finite extension), with Gal (k2/k1) = G, a cyclic group. Let U j

denote the units of k j , i.e., the elements of absolute value 1. Then QG(U2) = 1, and

[UG
2 : s(G)U2] = [U1 : Nk2/k1U2] = e(k2/k1)

(whence also [ker s(G) : (σ − 1)U2] = e(k2/k1)).

Proof. Consider the p-adic power series

log X =
∞∑

n=1

(−1)n−1 (X − 1)n

n

exp X =
∞∑

n=0

Xn

n!
.

These converge (p-adically) on small discs about 1 and 0, respectively. If we take the

radii of these discs to be less than p−
1

p−1 , these functions satisfy the usual identities.
Let D = pNO2, where O2 denotes the integers of k2. (For large N , D is a small

open subgroup of O2, preserved by the Galois group G.) Let B = exp(D) (this will
be defined if N is sufficiently large).

Now log 1 = 0, (and log is continuous), so taking ε = |pN |p, there exists δ > 0
such that whenever |x − 1|p < δ we have | log x |p < ε. Thus |x − 1|p < δ implies
log x ∈ D, whence x ∈ B . We have shown that B contains an open neighborhood
of 1:

B ⊇ {x : |x − 1|p < δ}.

Hence B is open.



5 Cyclic Galois Action on Idèles 89

The map exp : (D,+)
∼=−→ (B, ·) is a group isomorphism. Also, for σ ∈ G,

σ (exp x) = exp(σ (x)), so exp is in fact an isomorphism of G-modules.
Now D has finite index in O2. Also B has finite index in U2. (Since B is open,

the cosets of B in U2 are all open, so that U2 is a disjoint union of open sets. But
U2 is compact, so there exists a finite subcover of U2. Since the union is disjoint, we
cannot eliminate any coset from the union and still cover U2. Thus the total number
of cosets must be finite already.)

We conclude QG(U2) = QG(B) = QG(D) = QG(O2). As in the number field
case, (see the example following Shapiro’s Lemma), QG(O2) = 1. (Note: in the
global situation we were discussing before the present lemma, we can now say that
for a finite place w, QGw

(Uw) = 1.)
Since QG(O2) = 1 = QG(U2), we have

[U1 : Nk2/k1U2] = [UG
2 : s(G)U2] = [ker U2 s(G) : (σ − 1)U2].

Let A = ker U2 s(G), (for u ∈ A, we have s(G)(u) = 1, i.e., Nk2/k1 (u) = 1). By
Hilbert’s Theorem 90, if u ∈ A then u = σ (α)

α
for some α ∈ k×2 . Let π be a

uniformizer in k2 and write

α = π tε, for some t ∈ Z, ε ∈ U2.

We get

u = σ (α)

α
=
(
σ (π)

π

)t (
σ (ε)

ε

)

≡
(
σ (π)

π

)t

(mod (σ − 1)U2).

Hence σ (π )
π

generates A
/

(σ − 1)U2
= ker U2 s(G)

/
(σ − 1)U2

. To find the order

of this group, we need only find the order of its generator, i.e., the smallest positive

exponent t such that
(
σ (π )
π

)t
∈ (σ − 1)U2.

Say
(
σ (π )
π

)t
∈ (σ − 1)U2. Then

(
σ (π )
π

)t
= σ (η)

η
, for some η ∈ U2, so σ (π t )

σ (η) = π t

η
,

and we find that σ fixes π t

η
. Since G = 〈σ 〉 = Gal (k2/k1), we must have π t

η
∈

k1. But for any element γ ∈ k×1 , we have e|ordπ (γ ), where e = e(k2/k1) is the

ramification index. Thus t = ordπ
(
π t

η

)
is divisible by e.

Conversely, if we let ρ be a uniformizer in k1, then π e = δρ for some δ ∈ U2, so
σ (π e)
π e = σ (δ)

δ
∈ (σ − 1)U2. Thus

(
σ (π )
π

)e
∈ (σ − 1)U2.

We have shown that e is the order of σ (π )
π

in the group ker U2 s(G)
/

(σ − 1)U2
.

Since σ (π )
π

is a generator for this group, it follows that
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e = [ker U2 s(G) : (σ − 1)U2]

= [U1 : Nk2/k1U2]. ��
Note in particular, that if k2/k1 is an unramified extension of local fields, then

e = 1 and Lemma 5.3 gives U1 = Nk2/k1U2. This shows that the norm is surjective
on units in unramified local extensions. (If k2/k1 is unramified, then it is necessarily
cyclic.)

What can be said in the case of a non-cyclic (hence ramified) abelian extension
of local fields? Our strategy will be to decompose the extension into a tower of
intermediate subfields, so that each stage in the tower is a (normal) extension with a
cyclic Galois group.

Lemma 5.4. Let k2/k1 be an extension of local fields and suppose we have sub-
groups B < A < U2, with [A : B] = d . Then Nk2/k1 B ⊆ Nk2/k1 A are subgroups of
U1 and [Nk2/k1 A : Nk2/k1 B] divides d .

Proof. That Nk2/k1 B ⊆ Nk2/k1 A are subgroups of U1 is clear. Let ϕ : A → A/
B be

the canonical epimorphism, and define a map

f : A/
B → Nk2/k1 A/

Nk2/k1 B

given by

f : a B �→ Nk2/k1 (a)Nk2/k1 B.

It is routine to verify that f is a well-defined epimorphism. We have B = kerϕ ⊆
ker ( f ◦ ϕ) ⊆ A, whence [A : ker ( f ◦ ϕ)] divides [A : B] = d . The result now
follows, since Nk2/k1 A/

Nk2/k1 B
∼= A/

ker ( f ◦ ϕ). ��

Let k1 ⊆ k2 ⊆ k3 be a tower of local fields, and suppose [U1 : Nk2/k1U2] ≤
e(k2/k1), and [U2 : Nk3/k2U3] ≤ e(k3/k2).
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Since Nk3/k1 = Nk2/k1 ◦ Nk3/k2 , we have Nk3/k1U3 ⊆ Nk2/k1U2, and

[U1 : Nk3/k1U3] = [U1 : Nk2/k1U2][Nk2/k1U2 : Nk3/k1U3]

= [U1 : Nk2/k1U2][Nk2/k1U2 : Nk2/k1 (Nk3/k2U3)].

By Lemma 5.4, [Nk2/k1U2 : Nk2/k1 (Nk3/k2U3)] divides [U2 : Nk3/k2U3]. It follows that

[U1 : Nk3/k1U3] ≤ e(k2/k1) e(k3/k2) = e(k3/k1).

We have shown the following.

Corollary 5.5. If k2/k1 is an abelian extension of local fields, then

[U1 : Nk2/k1U2] ≤ e(k2/k1). ��

Exercise 4.22. Let k2/k1 be an extension of local fields above Qp. Show that, with
respect to the p-adic topology, Nk2/k1 : k2 → k1 is continuous. ♦

Returning to the (global) number field case, we may now prove the following
proposition. A straightforward consequence of this proposition will be that for
some m,

JF
/

F×NK/F JK
∼= IF (m)

/

P+F,mNK/F (m).

Proposition 5.6. For an abelian extension K/F of number fields with group G, let
H = F×NK/F JK . Then

i. H is open in JF , so H ⊇ E+F,m for some m,
ii. the image of H under the isomorphism

JF
/

F×E+F,m
∼= IF (m)

/

P+F,m
(see Proposition 3.4) is precisely

P+F,mNK/F (m)
/

P+F,m.

Proof. i. Since H ⊇ NK/F JK , we have

H ⊇ NK/FEK =
∏

v

(∏

w|v
NKw/FvUw

)
.

Say v is finite. If w|v is unramified, then NKw/FvUw = Uv . If w|v is rami-
fied, then [Uv : NKw/FvUw] ≤ e(w/v), the ramification index. Since NKw/Fv
is continuous, we have that NKw/FvUw is compact. Thus NKw/FvUw is a closed
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subgroup of finite index in the compact group Uv . This gives that NKw/FvUw is
open (see Exercise 4.8).

If v is infinite, then Uw = C× or R×, and NKw/FvUw = C×, R× or R×+ is
open.

Since EF has the product topology, we conclude that NK/FEK is open in
EF . But this implies that H = F×NK/F JK is open in JF , (we may give an
open neighborhood of a ∈ H by noting that since 1 ∈ NK/FEK , we have a ∈
aNK/FEK ⊆ H, and aNK/FEK is open since it is a basis set for the topology
on JF ). Recall the result in Corollary 3.5. Since H is open and F× ⊆ H, we
know that there is some m for which H ⊇ E+F,m.

ii. We have F×E+F,m ⊆ F×NK/F JK = H ⊆ JF = F× J+F,m and (as we saw in the
proof of Proposition 3.4)

JF
/

F× =
F× J+F,m

/

F×
∼= J+F,m

/

J+F,m ∩ F× =
J+F,m

/

F+m .

Now F×NK/F JK = F×
(
F×NK/F JK ∩ J+F,m

)
, so

F×NK/F JK
/

F×
∼= F×NK/F JK ∩ J+F,m

/

F× ∩ F×NK/F JK ∩ J+F,m

∼= F×NK/F JK ∩ J+F,m
/

F+m .

The map ηm : J+F,m −→ IF (m) given by

(. . . , av, . . .) �→
∏

v finite

pordv(av)
v

is surjective with kernel E+F,m.
Consider the restriction of ηm to F×NK/F JK ∩ J+F,m. Since E+F,m ⊆ F×NK/F JK ,

the kernel of the restriction is still E+F,m. We leave it as Exercise 4.23 to show that
its image is P+F,mNK/F (m). Thus

F×NK/F JK ∩ J+F,m
/

E+F,m
∼= P+F,mNK/F (m)

and

F×NK/F JK
/

F×E+F,m
∼= F×NK/F JK ∩ J+F,m

/

F+mE+F,m
∼= P+F,mNK/F (m)

/

P+F,m. ��
In the above proposition, we may say a bit more about the ideals m that satisfy

H ⊇ E+F,m. Recall that we proved (in Corollary 3.5) that such an ideal must exist for



5 Cyclic Galois Action on Idèles 93

an open subgroup H of JF containing F× by first finding an open neighborhood of
1 in H of the form A =∏ Av, where Av = Uv for all but finitely many places and

Av =
{

1+ pnv
v for v finite

{x ∈ Fv : ‖x − 1‖v < ε} for v infinite

for the remaining places. We then set m = ∏ pnv
v , where the product was over the

finite places v of F for which Av = 1 + pnv
v . Since we know that the local norm

is surjective for the unramified finite places, it is clear that we may find an open
neighborhood of 1 in H = F×NK/F JK for which Av = Uv for all unramified v.
Thus we may find an ideal m that satisfies the propostion and that is divisible only
by primes that ramify in K/F .

Example.

7. Let p > 2 be a prime and let K = Q(ζp), F = Q, so H = Q×NK/Q JK . We
want to find m = mZ so that H ⊇ E+Q,m. Now

E+Q,m = R×+ ×
∏

q|m

(
1+ qordq mZq

)×
∏

q�m

Z×q .

For a prime q �= p, we know that q is unramified in K/Q. If w is a place of K
above q , then the local norm map is surjective on units, i.e., NKw/QqUw = Z×q .
On the other hand, the prime p is totally ramified in K/Q, so if w is a place of
K above p, then [Z×p : NKw/QpUw] = p − 1. Since Z×p ∼= μp−1 × (1 + pZp)
has only one subgroup of index p − 1, we must have NKw/QpUw = 1 + pZp.
Thus

NK/Q JK = R×+ × (1+ pZp)×
∏

q �=p

Z×q .

This allows us to take m = pZ for Q(ζp)/Q.

Exercise 4.24. Let E/F be an arbitrary extension of number fields (not necessarily
Galois). Let H = F×NE/F JE . Use an argument similar to the proof of part (i) of
Proposition 5.6 to show that H is an open subgroup of JF . ♦

For an arbitrary abelian extension of number fields K/F , let m be divisible only
by ramified primes and such that F×NK/F JK ⊇ E+F,m. Let us examine the proof of
Proposition 5.6 more closely. It gives us an isomorphism

JF
/

F×NK/F JK
∼= IF (m)

/

P+F,mNK/F (m),

which we see arises from the isomorphism JF
/

F×
∼= J+F,m

/

F+m
. Recall that we

first encountered this isomorphism during the proof of Proposition 3.4:
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JF
/

F×E+F,m
∼= R+

F,m.

In that proof, we argued that given a ∈ JF , there is some α ∈ F× such that αa ∈
J+F,m. It was from this that we deduced the isomorphism JF

/

F×
∼= J+F,m

/

F+m
.

Explicitly, consider the map

ϕ : JF −→ J+F,m
/

F+m
−→ IF (m)

/

P+F,m
given by

ϕ : a −→ αaF+m −→ 〈αa〉P+F,m

where α ∈ F× is chosen so that αa ∈ J+F,m. Specifically, we are taking α ∈ F×

to satisfy ιv(α)av > 0 for all real places v of F , ιv(α)av ∈ Ov and ιv(α)av ≡ 1
(mod pordvm

v ) for all finite places v. (Recall that for an idèle b ∈ J+F,m we have
〈b〉 = ηm(b) as before.)

Exercise 4.25. Show that the map ϕ is well-defined. What is its kernel? ♦
Our results on cyclic extensions of local fields also allow us to prove the follow-

ing proposition on Herbrand quotients of local units arising from a cyclic extension
of number fields, which in turn will allow us to evaluate the Herbrand quotient for
the idèle class group CK .

Proposition 5.7. Let K/F be a Galois extension of number fields, with cyclic
Galois group G = 〈σ 〉. Let v be a place of F and let w be a place of K above
v. Then

i. QGw
(Uw) = 1 if w is finite, if w is real, or if v is imaginary.

ii. QGw
(Uw) = 2 if w is imaginary but v is real.

iii. QG(
∏
v /∈S

∏
w|v Uw) = 1, where

S = {v ∈ VF : v is infinite, or v ramifies in K/F}.

Proof.

i. First assume that w is real (so v is real). Then Gw = Gal (Kw/Fv) = {1} and
Uw = R×. Thus QGw

(Uw) = 1.
Next assume that v is imaginary. Again Gw = {1} so QGw

(Uw) = 1.
If w is finite, then Lemma 5.3 gives that QGw

(Uw) = 1.
ii. Suppose that w is imaginary and v is real. Then Gw is generated by complex

conjugation. We have UGw
w = (C×)G = R×, and s(Gw)Uw = s(Gw)C× = {zz̄ :

z ∈ C×} = R×+. Also

ker Uws(Gw) = {z ∈ C× : zz̄ = 1},
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the “unit circle group,” and if τ denotes complex conjugation,

(τ − 1)Uw = (τ − 1)C× = { z

z̄
: z ∈ C×}

is also the unit circle group. It follows that

[UGw

w : s(Gw)Uw] = [R× : R×+] = 2

[ker Uw s(Gw) : (τ − 1)Uw] = 1,

whence QGw
(Uw) = 2.

iii. Let

S = {v ∈ VF : v is infinite or v is ramified in K/F}.

Note that S is a finite set. Let

A =
∏

v /∈S

Av, where Av =
∏

w|v
Uw.

By Shapiro’s Lemma, QG(Av) = QGw
(Uw) and this equals 1 by part (i).

Now AG
v = {(u, . . . , u) : u ∈ Uv} ∼= Uv (see (∗) in the proof that s(G)(a) =

NK/F (a) for a ∈ JK ). Also

s(G)Av =
∏

w|v
NKw/FvUw ∼= Uv,

since

s(G)(. . . , aw, . . .)w|v =
(
. . . ,

∏

w|v
NKw/Fv (aw), . . .

)

w|v
.

As before,

∏

w|v
NKw/FvUw = Uv

since v /∈ S implies v is unramified so that the local norm NKw/Fv is surjective on
units by Lemma 5.3.

We have [AG
v : s(G)Av] = 1. But also QG(Av) = 1. Thus

[ker Av s(G) : (σ − 1)Av] = 1.
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We get

AG =
∏

v /∈S

AG
v =

∏

v /∈S

Uv =
∏

v /∈S

s(G)Av = s(G)A.

It follows that [AG : s(G)A] = 1. Since ker Av s(G) = (σ − 1)Av, we obtain

ker As(G) =
∏

v /∈S

ker Av s(G) =
∏

v /∈S

(σ − 1)Av = (σ − 1)A.

It follows that [ker As(G) : (σ − 1)A] = 1 and

QG(A) = QG

(∏

v /∈S

∏

w|v
Uw
)
= 1. ��

Observe that Proposition 5.7 allows us to compute the Herbrand quotient of EK :

QG(EK ) = 2a,

where a = #{v ∈ VF : v is real on F, but extends to imaginary places on K }.
We want to find the Herbrand quotient of UK , where K/F is a cyclic extension of

number fields. Once we have done so, we can combine it with the above information
about QG(EK ) to find the Herbrand quotient of the idèle class group CK . This in
turn will lead to a proof of a result on the norm index in the case of a cyclic global
extension.

We shall need two preliminary lemmas.

Lemma 5.8. Let S be a finite set and let V = ⊕
w∈S

RXw be a real vector space. For

an element
∑

w∈S awXw of V , define

‖
∑

w∈S

awXw‖0 = max
w
{|aw| : w ∈ S},

(the sup-norm on V ). If {X ′w : w ∈ S} is given so that ‖X ′w − Xw‖0 <
1

dim
R

V for

each w, then {X ′w : w ∈ S} is also a basis for V .

Proof. Suppose not. Then there is a set of scalars {bw : w ∈ S} ⊆ R such that∑
w∈S bwX ′w = 0 and not all of the bw are 0. Without loss of generality we may

assume maxw |bw| = 1. Then

0 =
∑

w∈S

bwX ′w =
∑

w∈S

bw(X ′w − Xw)+
∑

w∈S

bwXw
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whence

∑

w∈S

bwXw = −
∑

w∈S

bw(X ′w − Xw).

Taking norms, we obtain

1 = max
w
|bw|

≤
∑

w∈S

|bw| ‖X ′w − Xw‖0

≤
∑

w∈S

‖X ′w − Xw‖0

<
∑

w∈S

1

dim
R
V

=
∑

w∈S

1

#S

= 1,

a contradiction. ��

Next, we prove the following, which appears in the Artin-Tate class field theory
notes of 1961, [AT].

Lemma 5.9. Let G be a finite group acting on a finite set S. Let V = ⊕
w∈S

RXw be a

vector space. Then G acts on V via

σ

(∑

w∈S

awXw

)
=
∑

w∈S

awXσw.

Note that the action of G preserves sup-norms: ‖σ (X)‖0 = ‖X‖0 for all X ∈ V . Let
L ⊆ V be a lattice preserved by G. Then there is a basis {Yw}w∈S of V contained in
L such that σ (Yw) = Yσw for all σ ∈ G and for all w ∈ S.

Proof. We have a lattice L in V , so RL = V . Our finite group G acts on the finite set
S; let r denote the number of orbits of G in S, and let w1, . . . , wr be a complete set
of representatives for the orbits, (one w j from each orbit). For each j = 1, . . . , r ,
choose X ′w j

∈ QL such that

‖X ′w j
− Xw j ‖0 <

1

dim
R
V
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and define

X ′′w j
= 1

#Gw j

( ∑

σ∈Gw j

σ (X ′w j
)

)
.

Then

‖X ′′w j
− Xw j‖0 =

∥∥
∥
∥

1

#Gw j

( ∑

σ∈Gw j

σ (X ′w j
)

)
− Xw j

∥∥
∥
∥

0

=
∥
∥
∥
∥

1

#Gw j

∑

σ∈Gw j

(
σ (X ′w j

)− σ (Xw j )
)∥∥
∥
∥

0

(since σ (Xw j ) = Xw j for all σ ∈ Gw j )

≤ 1

#Gw j

∑

σ∈Gw j

‖σ (X ′w j
− Xw j )‖0

= 1

#Gw j

∑

σ∈Gw j

‖X ′w j
− Xw j‖0

(since ‖σ (X)‖0 = ‖X‖0 for all σ , for all X)

= ‖X ′w j
− Xw j ‖0

<
1

dim
R
V
.

Thus, for any w ∈ S, one can write w = σw j for some j and some σ , and define

X ′′w = σ (X ′′w j
).

(This is independent of σ , so long as σw j = w, so is well-defined. This is why we
needed to define the X ′′. We couldn’t have used the X ′w j

: The above would not be
independent of σ .)

By Lemma 5.8, we have that {X ′′w : w ∈ S} is a basis for V . Note also that X ′′w ∈
QL for all w. Hence, there exists a sufficiently large integer N so that N X ′′w ∈ L for
all w ∈ S.

We may now take Yw = N X ′′w for each w ∈ S. Then {Yw : w ∈ S} is a basis for
V . It remains only to show that σ (Yw) = Yσw for all σ , for all w. We leave this as

Exercise 4.26. after which our proof of Lemma 5.9 will be complete. ��
Proposition 5.10. Let K/F be a Galois extension of number fields, with cyclic
Galois group G = 〈σ 〉. Then

QG(UK ) = 2a

[K : F]

where a = #{v ∈ VF : v is real on F, but extends to imaginary places on K }.



5 Cyclic Galois Action on Idèles 99

Proof. Let a = #{v ∈ VF : v is real, but becomes imaginary in VK }. Let UK = O×
K .

By Dirichlet’s Unit Theorem, rankZ UK = r1 + r2 − 1. Let

� : UK → Rr1+r2

be given by

�(ε) = (. . . , log ‖ε‖w, . . .)w|∞.

Then �(UK ) is a discrete subgroup of V = Rr1+r2 (i.e., �(UK ) is a lattice in a sub-
space of V . In fact, it is a lattice in V0 = {(. . . , xw, . . .) ∈ V :

∑
w xw = 0}. Note

that dim
R
V0 = r1 + r2 − 1.)

Let S = {w ∈ VK : w is infinite}, and forw ∈ S, let Xw = (0, . . . , 0, 1, 0, . . . , 0)
where the 1 is in the wth component. Then V =→

w∈S
⊕RXw . Let G = Gal (K/F)

act via σ (Xw) = Xσw and let

L = �(UK )⊕ Z�0, where �0 =
∑

w

Xw = (1, . . . , 1).

Note that L is a lattice in V = V0 ⊕ R�0. We shall compute QG(UK ) by relating it
to QG(L).

Now σ (�0) =∑w∈S σ (Xw) =∑w∈S Xσw = �0, and for ε ∈ UK , we have

�(σ (ε)) = (. . . , log ‖σ (ε)‖w, . . .)
=
∑

w∈S

log ‖σ (ε)‖wXw

=
∑

w∈S

log ‖σ (ε)‖σwXσw

=
∑

w∈S

log ‖ε‖wXσw

= σ
(∑

w∈S

log ‖ε‖wXw

)

= σ (. . . , log ‖ε‖w, . . .)
= σ (�(ε)).

Thus σ (�(UK )) = �(σ (UK )) = �(UK ). Since we also have σ (�0) = �0, it follows
that σ (L) = L.

Recall that ker � = WK , the (finite) group of roots of unity in K , so we have an
exact sequence

0 −→WK −→ UK −→ �(UK ) −→ 0,

and UK
/
WK

∼= �(UK ). We get
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QG(UK ) = QG(WK )QG(�(UK )) = QG(�(UK )).

Now G acts trivially on Z�0
∼= Z, so QG(Z�0) = #G. Thus, as a G-module, the

lattice L = �(UK )⊕ Z�0 has Herbrand quotient

QG(L) = QG(�(UK ))QG(Z�0)

= QG(UK )[K : F].

Now we may apply Lemma 5.9. There is a basis {Yw} of V with Yw ∈ L and
τ (Yw) = Yτw for all w ∈ S, for all τ ∈ G.

Let L′ =→
w∈S

⊕ZYw, a sublattice of L: rank
Z
L′ = #S = rank

Z
L and L′ ⊆ L.

Hence L/L′ is finite and QG(L) = QG(L′). We may reorder the w to get

L′ = ⊕
v∈VF

v|∞

(
⊕
w|v

ZYw

)
.

Each ⊕
w|v

ZYw is a G-module, and G permutes its summands transitively, so we may

apply Shapiro’s Lemma to get

QG(⊕
w|v

ZYw) = QGw
(ZYw).

Since ZYw ∼= Z with trivial Gw-action we get QGw
(ZYw) = #Gw. Hence

QG(L′) =
∏

v|∞
v∈VF

#Gw

where we take one arbitrary w|v for each factor of the product. Now

#Gw = [Kw : Fv] =
{

1 if w, v are both real or both imaginary
2 otherwise.

Thus

QG(L′) = 2a

where a = #{v ∈ VF : v is real but extends to an imaginary w ∈ VK }. We get

QG(UK ) = QG(L)

[K : F]

= QG(L′)
[K : F]

= 2a

[K : F]
.

��
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Given Proposition 5.10, finally we have enough information to find the Herbrand
quotient of the idèle class group and to use it to prove the Global Cyclic Norm
Index Equality.

Corollary 5.11. QG(CK ) = [K : F].

Proof. QG(CK ) = QG

(EK
/
UK

)
= 2a

(
2a

[K :F]

)−1
. ��

Theorem 5.12 (Global Cyclic Norm Index Equality). If K/F is a cyclic extension
of number fields and m is an integral ideal of OF that is divisible by a sufficiently
high power of every ramified prime in K/F, then

[IF (m) : P+F,mNK/F (m)] = [K : F].

Proof. Since QG(CK ) = [K : F], we have

[CG
K : s(G)CK ] = [K : F][ker CK s(G) : (σ − 1)CK ].

But also [CG
K : s(G)CK ] = [CF : NK/F CK ] = [IF (m) : P+F,mNK/F (m)], whenever

m satisfies F×NK/F JK ⊇ E+F,m. Thus [K : F] divides [IF (m) : P+F,mNK/F (m)] and
we have obtained the “Global Cyclic Norm Index Inequality”

[K : F] ≤ [IF (m) : P+F,mNK/F (m)].

Meanwhile, on the other hand we have already shown the Universal Norm Index
Inequality, which gives [IF (m) : P+F,mNK/F (m)] ≤ [K : F]. ��

Note that the preceeding proof also gives us (σ − 1)CK = ker CK s(G) when
G = 〈σ 〉 is cyclic.

The hypothesis that K/F is cyclic may be weakened in Theorem 5.12, but we
obtain the resulting stronger statement (for arbitrary abelian extensions) as a con-
sequence of Artin Reciprocity, which we haven’t yet discussed (see Chapter 5).
Indeed, Takagi took the equation [IF (m) : H] = [K : F] to be the defining property
for K to be a class field for H.

The term “Second Fundamental Inequality” has previously been used for the
inequality [K : F] ≤ [IF (m) : P+F,mNK/F (m)] because historically its proof came
later (Takagi, [T], 1920) than that of the Universal Norm Index Inequality, which
was proved by Weber, [We2], (using Dirichlet L-series) in the late 19th century.
This terminology was the convention originally. Many authors however, (including
Artin and Tate, [AT]), reverse the order in which the two inequalities are presented,
and consequently refer to the above as the First Inequality and the Universal Norm
Index Inequality as the Second Inequality. It is perhaps best to avoid this confusion
by using the names “Global Cyclic Norm Index” and “Universal Norm Index” for
these inequalities.

Exercise 4.27. Let K/F be a cyclic extension of number fields and suppose D < JF

satifies
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i. D ⊆ NK/F JK

ii. F×D is dense in JF .

Show that K = F . Does this result generalize to arbitrary abelian extensions
K/F? ♦

We must emphasize that the techniques we have used in this chapter (idèles,
cohomology) were not available to Takagi. They came onto the scene only in the
1930s. The original proof of the Global Cyclic Norm Index Inequality, for example,
uses what Hasse called a “far-reaching generalization” of Gauss’ theory of genera
of quadratic forms, [CF]. See Disquisitiones Arithmeticae, 1801, for Gauss’ results.

To conclude this chapter, we discuss a result about norms that is a nice application
of what we have done so far. Let

A = ker JK s(G)

B = ker CK s(G)

and let θ : A → B be the restriction of the natural homomorphism JK → CK . We
have the following commutative diagram with exact rows and columns.

The Snake Lemma gives the existence of δ : B −→ F×
/

NK/F K× so that

A
θ−→ B

δ−→ F×
/

NK/F K×
ι̃−→ JF

/
NK/F JK

is exact.
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Since s(G)(σ−1) = 0, we have (σ−1)JK ⊆ A = ker JK s(G). Thus (σ−1)CK ⊆
θ (A), whence B = θ (A) by Theorem 5.12. Now exactness gives ker δ = θ (A), so

δ(B) = {1}. It follows that the map ι̃ : F×
/

NK/F K× −→ JF
/

NK/F JK
has trivial

kernel, i.e., ι̃ is an injection. From this, we conclude that if α ∈ F× ⊆ JF is in
NK/F JK , then α ∈ NK/F K×, whence α = NK/F (β) for some β ∈ K×.

Exercise 4.28. Let K/F be a cyclic extension. Supposeα ∈ F×, and view F× ⊆ JF

as usual. Show that α ∈ NK/F JK if and only if α ∈ NKw/Fv K×
w for all places v of F

and all places w of K with w|v. ♦

Given Exercise 4.28, we have

Hasse’s Norm Principle. For any cyclic extension K/F , an element α ∈ F× is a norm
from K if and only if α is a local norm in each completion.

The hypothesis that K/F is cyclic is necessary here. Hasse’s norm principle fails
in general for K/F non-cyclic abelian. Indeed, the simplest example occurs for the
simplest non-cyclic abelian Galois group: In the extension Q(

√
13,
√

17)/Q, there
are many examples of rational numbers that are local norms for every completion
but are not global norms. For more about the defect in the non-cyclic abelian case
one must look at higher cohomology. See the article by Tate in Algebraic Number
Theory, (Cassels and Fröhlich, [CF]) for details.

Hasse’s norm prinicple is useful in proving the Hasse-Minkowski Theorem on
quadratic forms: A non-degenerate quadratic form over a number field F that rep-
resents zero in Fv for all v must represent zero in F . Exercise 4.4 in Cassels and
Fröhlich, [CF], outlines the steps of the proof.



Chapter 5
Artin Reciprocity

Artin Reciprocity answers explicitly the problem of finding a proof for the Isomorphy
Theorem. Takagi ([T], 1920) proved the isomorphism by considering cyclic groups
and their orders, but he did not give a canonical map for it. Indeed, mathematicians
working at the time did not seem to be concerned with finding such a map.

Artin ([A2], 1927), using some ideas from Chebotarev’s work on a conjecture of
Frobenius, was able to give explicitly a map that was the desired isomorphism. This
was a more complete answer than the original problem had required and it allowed
Artin to prove a result on L-functions, which had been his motivation at the time.
Together with some other work of Artin, it also leads to a proof of a conjecture of
Hilbert that says that every ideal of a number field generates a principal ideal in its
Hilbert class field. The first proof of this, the Principal Ideal Theorem or Principal
Divisor Theorem, was given by Furtwängler ([Fur2], 1930). A simpler proof, using
an idea of Artin ([A3], 1930) that reduces the problem to a question in group theory
was given subsequently (Iyanaga, [Iy], 1934). We discuss the Hilbert class field and
the Principal Ideal Theorem in Chapter 6.

Artin Reciprocity is regarded as the central result in class field theory, even
though its proof came later than the proofs of nearly all of the other results. Once
it was known, many of the other main theorems of class field theory were seen to
follow from it. It was also seen to imply all previously known reciprocity laws.

In this chapter, we define the Artin symbol, and give a proof of Artin Reciprocity.
The proof we give is Artin’s, although not his original proof from 1927. We also
show how Artin Reciprocity can be used to obtain a proof of Quadratic Reciprocity.
The other main theorems of class field theory will be treated in Chapter 6.

1 The Conductor of an Abelian Extension of Number Fields
and the Artin Symbol

Recall that for an ideal m of OF , we set

J+F,m = {a ∈ JF : av > 0 for all real v, av ≡ 1 (mod pordv(m)
v ) for all finite v}

E+F,m = J+F,m ∩ EF

N. Childress, Class Field Theory, Universitext, DOI 10.1007/978-0-387-72490-4 5, 105
C© Springer Science+Business Media, LLC 2009
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F+m = J+F,m ∩ F×

IF (m) = {a ∈ IF : ordpa = 0 for all p|m}
P+F,m = {〈α〉 ∈ PF : α " 0, α

×≡ 1 (mod m)}
NK/F (m) = {a ∈ IF (m) : a = NK/F (A) for some A ∈ IK }

and showed

JF
/
F×E+F,m

∼= J+F,m/E+F,m F+m
∼= IF (m)/

P+F,m

via the homomorphism ηm : J+F,m −→ IF (m) given by

a = (. . . , av, . . .) �→ 〈a〉 =
∏

v finite

pordv(av)
v .

Given an abelian Galois extension of number fields K/F , we have also shown
that the subgroup H = F×NK/F JK of JF contains E+F,m for some (integral) ideal
m ∈ IF divisible by sufficiently high powers of the primes that ramify in K/F .
The ideal m is not unique however. Suppose n is another ideal of OF for which
E+F,n ⊆ H. Let (m, n) denote the g.c.d. of m and n.

Exercise 5.1. Show that E+F,mE+F,n = E+F,(m,n). ♦

By Exercise 5.1, we have that there is a minimal ideal f of OF such that E+F,f ⊆ H.
This ideal f is called the conductor of H (or of K/F), denoted f = f(K/F). By
minimality here, we mean precisely that if E+F,m ⊆ H then f|m.

Exercise 5.2. Let K/F be an abelian extension of number fields, and let f =
f(K/F).

a. Show: if m is an ideal of OF such that E+F,m ⊆ F×NK/F JK , then IF (m) ⊆ IF (f).

b. Prove or disprove and salvage: If E+F,m ⊆ F×NK/F JK , then P+F,mNK/F (m) =
P+F,fNK/F (f) ∩ IF (m).

c. Suppose IF (m) ⊆ IF (f). Show that there is a natural embedding

IF (m)/
P+F,mNK/F (m) ↪→

IF (f)/
P+F,fNK/F (f)

induced by inclusion.

d. Under what circumstances is the embedding of part c an isomorphism? ♦

Exercise 5.3. Suppose F ⊆ E ⊆ K are number fields and K/F is abelian. How are
f(K/F) and f(E/F) related? ♦
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Which primes of OF can divide the conductor f(K/F)? Recall from Chapter 4,
we can find an ideal m that is divisible only by the primes that ramify in K/F and
for which E+F,m ⊆ F×NK/F JK (see the discussion following the proof of Proposi-
tion 4.5.6). For any m, as in the proof of Corollary 4.3.5, we have

E+F,m =
∏

v imaginary

C×
∏

v real

R×+
∏

pv|m
(1+ pordvm

v )
∏

pv�m

Uv.

Since NK/FEK is open in EF , we can choose m so that

E+F,m ⊆ NK/FEK .

(Such an m is said to be admissible for K/F .) But for an unramified prime pv , and
any place w of K above v, we know that NKw/Fv is surjective on units. Thus

NK/FEK =
( ∏

v finite
unramified

Uv
)( ∏

v finite
ramified

∏

w|v
NKw/FvUw

)( ∏

v infinite

∏

w|v
NKw/Fv K×

w

)
.

It follows that we only need ordvm > 0 when NKw/FvUw �= Uv , which cannot
happen unless v is ramified. By the minimality of f, we therefore have that if pv is
unramified then pv � f. The conductor cannot be divisible by any unramified prime.

If pv is a ramified prime, then we have not yet determined whether pv must divide
f. We shall return to this question in Chapter 6 after we have developed a bit more
of the theory.

Exercise 5.4. Suppose K/F is a cyclic extension of number fields and m is an
admissible ideal for K/F . What can you conclude from Lemma 4.5.3 about divisi-
bility of m by ramified primes? ♦

For some authors, the conductor is a divisor, and includes factors involving
the infinite real primes of F that extend to imaginary primes of K (the ramified
infinite primes). This makes sense, as it is precisely for these infinite places that
NKw/Fv K×

w = NC/RC× = R×+ �= R×. For us, however, the conductor is an ideal
of OF .

We may incorporate the notion of conductor into some of our results from Chap-
ter 4. To summarize, we have shown (via the Global Cyclic Norm Index Equality)

[K : F] = [CF : NK/F CK ]

= [JF : F×NK/F JK ]

= [IF (f) : P+F,fNK/F (f)]

for K/F cyclic and f = f(K/F). This is actually still true if K/F is only assumed
to be abelian, but we have not yet shown it. (It does not generalize to non-abelian
Galois extensions.)
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Let us return briefly to the question of the primes of OF that split completely in
an abelian extension K/F . Recall we set

SK/F = {primes p of F that split completely in K/F}.

We have seen in Chapter 3 that SK/F is central to Weber’s notion of class field and
that the Dirichlet density δF (SK/F ) = 1

[K :F] . Now consider the set

TK/F = {primes p ∈ P+F,fNK/F (f)}.

If p splits completely in K/F , then (p, f) = 1 and for P
∣∣p, we have NK/F P = p.

Thus SK/F ⊆ TK/F . Also, (see Proposition 3.2.3), if we can show Lf(1, χ) �= 0
for all characters χ �= χ0 of IF (f) that are trivial on P+F,fNK/F (f), and if we have
the generalization to abelian extensions of the Global Cyclic Norm Index Equality
mentioned above, then

δF (TK/F ) = 1

[IF (f) : P+F,fNK/F (f)]
= 1

[K : F]
= δF (SK/F ),

so SK/F ≈ TK/F . Recall, according to Weber’s definition of class field, it would
then follow that K is the class field over F of P+F,fNK/F (f), and the Completeness
Theorem would be established.

After we have proved Artin Reciprocity, we shall be able to say more about
SK/F and TK/F . Artin Reciprocity gives an explicit isomorphism between the Galois

group of an abelian extension K/F and the group IF (m)/P+F,mNK/F (m) for suit-

able m, yielding (among other things) the generalization of the Global Cyclic Norm
Index Equality to arbitrary abelian extensions. Moreover, the nature of the isomor-
phism is such that information about SK/F is readily obtained. This isomorphism is
defined using the Artin symbol, which we introduce next.

Let K/F be a Galois extension of number fields with abelian Galois group G.
Let p be a prime ideal of OF that is unramified in K/F . Then the decomposition
group Gp = Z (p) must be cyclic (inertia is trivial) with a canonical generator σp =(

p
K/F

)
, the Artin automorphism.

Let m be an ideal of OF that is divisible by all the primes that ramify in the
extension K/F and no others. The map p �→ σp induces a homomorphism A =
AK/F : IF (m) → G given by a �→ σa =

(
a

K/F

)
where, for a = ∏p pnp ∈ IF (m),

we set

σa =
∏

p

σ
np

p :=
(

a

K/F

)
.
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(σa does not depend on the choice of m.) The map A is called the Artin map and(
a

K/F

)
is the Artin symbol. Note that since m is divisible by all the ramifying primes,

σp is defined for all p � m.
Recall that if τ : K → K ′ is an isomorphism, and τ (F) = F ′, then

τ

(
p

K/F

)
τ−1 =

(
p′

K ′/F ′

)

where τ (p) = p′, (a prime of OF ′).
Next we prove a result on the Artin symbol in towers of number fields.

Proposition 1.1 (Consistency Property). Let F ⊆ L ⊆ K , F ⊆ E ⊆ K be
number fields and suppose K/F is abelian. Let p be a prime ideal of OF that is
unramified in K/F and let PK be a prime ideal of OK that divides p. Let PL =
PK ∩ L, PE = PK ∩ E (prime ideals of OE , OL , respectively, that divide p).

Then

(
PE

K/E

) ∣∣∣
∣

L

=
(

p

L/F

) f

where f = f (PE/p) is the residue field degree.

Proof. Let σp =
(

p
L/F

)
. Recall, for α ∈ OL , we have

σp(α) ≡ αNp (mod PL ),

and this congruence completely characterizes σp.
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Let σPE =
(

PE

K/E

)
. Then σPE (α) ≡ αNPE (mod PK ) for all α ∈ OK . If α ∈ OL ,

then σPE (α) ≡ αNPE (mod PK ∩ L). Of course PK ∩ L = PL , so σPE

∣
∣∣

L

(α) ≡
αNPE (mod PL ).

Now NPE = (Np) f , so

σ
f

p (α) ≡ αNp f ≡ αNPE (mod PL ).

Hence σ f
p (α) ≡ σPE

∣
∣∣

L

(α) (mod PL ). It follows that σ f
p = σPE

∣
∣∣

L

as desired. (They

are equal on the residue field, and the map to the residue field has kernel equal to
the inertia group, which is trivial here.) ��

By the Consistency Property, we have

(
PE

K/E

) ∣∣
∣
∣

L

=
(

p

L/F

) f

=
(

p f

L/F

)
=
(

NE/FPE

L/F

)
.

Multiplicativity gives

(
A

K/E

) ∣∣
∣∣

L

=
(

NE/F A

L/F

)

for any fractional ideal A ∈ IE (m), (where m is divisible by all the ramified primes,
and no others).

Corollary 1.2. Let F ⊆ L ⊆ K be number fields, where K/F is abelian Galois.
Let p be a prime ideal of OF that is unramified in K/F . Then

(
p

K/F

) ∣∣
∣
∣

L

=
(

p

L/F

)
.

Proof. Putting E = F in Proposition 1.1 gives p = PE ; the corollary follows. ��
Corollary 1.3. Let F ⊆ E ⊆ K be number fields, where K/F is abelian Galois.
Let p be a prime ideal of OF that is unramified in K/F and let PE be a prime of
OE above p. Then

(
PE

K/E

)
=
(

NE/F PE

K/F

)
.

Proof. Putting L = K in Proposition 1.1 gives the result. ��
Corollary 1.4. Let K/F be an abelian Galois extension of number fields. Let m be
an ideal of OF that is divisible by all the primes that ramify in K/F . Then

NK/F (m) ⊆ ker (A : IF (m) → G).
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(See (iii ) of Artin Reciprocity in the next section.)

Proof. Putting L = K = E in Proposition 1.1 gives

(
NK/FPK

K/F

)
=
(

PK

K/K

) ∣∣∣
∣

K

= 1.

If A is any ideal of K that is prime to the ramifying primes of K/F , then by factoring
A, we have

(
NK/FA

K/F

)
= 1. ��

Exercise 5.5. Let K = Q(
√

5, i ). Then Gal (K/Q) = {1, σ, τ, στ }, where σ is
complex conjugation, while τ fixes i and sends

√
5 �→ −√5. Suppose pZ is an

unramified prime in K/Q.

a. Compute
(

pZ

K/Q

)
, i.e., give conditions (in terms of congruences) on p that deter-

mine whether the Artin symbol is 1, σ , τ , or στ . (Hint: If you can find some
cyclotomic field that contains K , then Example 1 of Chapter 1 may be of use.)

b. Give necessary and sufficient conditions (in terms of congruences) for the prime
pZ to split completely in K/Q. Compare your answer with part a and Theo-
rem 1.1.8.

c. Suppose pZ is inert in Q(i )/Q. What can you say about
(

pZ[i]
K/Q(i)

)
?

d. Suppose pZ splits in Q(i )/Q, say pZ[i ] = pp′. What can you say about(
p

K/Q(i)

)
?

2 Artin Reciprocity

Theorem 2.1 (Artin Reciprocity). Let K/F be an abelian extension of number
fields, and assume m is an ideal of OF , divisible by all the ramifying primes. Let
G = Gal (K/F). Then

i. A : IF (m) −→ G is surjective,
ii. the ideal m of OF can be chosen so that it is divisible only by the ramified primes

and satisfies P+F,m ⊆ ker (A); thus we have an epimorphism IF (m)/P+F,m −→
G (it is surjective by (i )),

iii. NK/F (m) ⊆ ker (A).
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Choosing m as in (ii ), we have a well-defined homomorphism

IF (m)/
P+F,mNK/F (m) → G

(still surjective). Since #

(
IF (m)/P+F,mNK/F (m)

)
≤ [K : F] = #G by the Univer-

sal Norm Index Inequality, in fact we have

IF (m)/
P+F,mNK/F (m)

∼= G.

Note that this isomorphism is given explicitly by the Artin map. (Compare this to the
Isomorphy Theorem.)

Proof. It will take some effort to give the proof. However, we have shown (iii)
already, as a corollary to the Consistency Property in the previous section.

Next we prove (i ), (i.e., A : IF (m) → G is surjective). Let H = A(IF (m)) ⊆ G,
and let E be the fixed field of H . Note that

(
a

E/F

)
=
(

a

K/F

) ∣∣∣
∣

E

for all a prime to m, by Corollary 1.2.

By our choice of H , we have
(

a
K/F

)
∈ H , and since E is the fixed field of H ,

we have
(

a

K/F

) ∣∣
∣
∣

E

= 1 =
(

a

E/F

)
.

In particular, if a = p is any prime with p � m, then
(

p
E/F

)
= 1 generates the

decomposition group Z E/F (p). Therefore p splits completely in E/F .
Let SE/F be as before, and let SF = {all primes p of F}. Then, by the above

SF \ SE/F is finite, whence

1

[E : F]
= δF (SE/F ) = δF (SF ) = 1.

Thus F = E is the fixed field of H . It follows that H = G.
Finally, we prove (ii ), i.e., there exists m such that P+F,m ⊆ ker (A : IF (m) →

G). Moreover, we may take m to be divisible only by primes that ramify in K/F .
We begin with the special case F = Q, and K = Q(ζm) where ζm is a primitive

m th root of unity. Let pZ be a prime of Z, where (p,m) = 1. Then
(

pZ

K/F

)
= σp,

where σp : ζm �→ ζ
p

m . Let a ∈ Z+, say a = pe1
1 · · · per

r , and suppose the p j are all
prime to m. Then
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(
aZ

K/F

)
=

r∏

j=1

σ
e j
p j = σa

where σa : ζm �→ ζ a
m . Now say a = b

c , (where b, c ∈ Z+). Then ca = b, so

(
caZ

K/F

)
= σca = σcσa = σb.

Thus, σa = σb σ−1
c . Choose d ∈ Z+ with dc ≡ 1 (mod m). Then σ−1

c = σd , and
σa = σbd . When do we have σa = 1, i.e., when is aZ ∈ ker (IQ(mZ) → G)? Our
choice of d gives σa = 1 if and only if σbd = 1, so if and only if bd ≡ 1 (mod m).

But this happens if and only if a
×≡ 1 (mod mZ), (since a and bd are congruent

modulo pordpm in Qp for any prime p dividing m). Hence ker (IQ(mZ) → G) =
P+Q,mZ, and we have shown that (ii ) is true for Q(ζm)/Q.

Next suppose F is an arbitrary number field and K = F(ζm).

We have

(
a

K/F

) ∣∣∣
∣

Q(ζm )

=
(

Na

Q(ζm)/Q

)

by the Consistency Property. Note that an automorphism σ ∈ Gal (K/F) is trivial if

and only if σ
∣
∣
∣

Q(ζm )

= 1.

Let m = mOF , and suppose a ∈ P+F,m. Then a = 〈α〉, where α
×≡ 1 (mod m),

and α " 0. Thus

(
a

K/F

) ∣∣
∣
∣

Q(ζm )

=
( 〈α〉

K/F

) ∣∣
∣
∣

Q(ζm )

=
(

N〈α〉
Q(ζm)/Q

)
=
( 〈Nα〉

Q(ζm)/Q

)
.
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Since α " 0, we must have Nα > 0. Moreover, since α
×≡ 1 (mod m), we must

have Nα
×≡ 1 (mod m). But we already know from our discussion of Q(ζm)/Q that(

〈Nα〉
Q(ζm )/Q

)
= 1 if and only if Nα

×≡ 1 (mod m). Thus

(
a

K/F

) ∣∣
∣
∣

Q(ζm )

=
( 〈Nα〉

Q(ζm)/Q

)
= 1

and (as we have already observed), this is only possible if
(

a
K/F

)
= 1 i.e., if a ∈

ker (A : IF (m) → G). It follows that P+F,m ⊆ ker (A) and (ii ) is true for F(ζm)/F ,
where F is any number field.

Exercise 5.6. Show that (ii ) is true for E/F where F is any number field and E ⊆
F(ζm). ♦

Next let K/F be an arbitrary cyclic extension of number fields. We have seen that
[K : F] = [IF (m) : P+F,mNK/F (m)] for m “sufficiently large,” i.e., for m divisible
by all the ramifying primes and such that E+F,m ⊆ F×NK/F JK . Since A : IF (m) →
G is surjective, we find:

[IF (m) : ker A] = #G = [K : F] = [IF (m) : P+F,mNK/F (m)].

We’ll show (Proposition 2.2 below) that

ker A ⊆ P+F,mNK/F (m).

Given this, we conclude ker A = P+F,mNK/F (m) ⊇ P+F,m. Proposition 2.2 thus
suffices to complete the proof that (ii ) is true for K/F arbitrary cyclic.

Finally, let K/F be an arbitrary abelian extension. By the above, for each cyclic
E/F there is some mE such that P+F,mE

is contained in the kernel of the Artin map
for E/F . Let m = ∏

E/F cyclic
E⊆K

mE . Then P+F,m ⊆ P+F,mE
for all such E . This means that

P+F,m is contained in the kernel of the Artin map for every such E/F .

Suppose a ∈ P+F,m. Then
(

a
E/F

)
= 1 for every cyclic subextension E/F . Let

σ =
(

a
K/F

)
; so σ

∣
∣
∣

E

= 1 for every E . If σ �= 1, then there exists a non-trivial

character χ : 〈σ 〉 → C× (so χ(σ ) �= 1). Extend χ to a character of G and let
H = kerχ . Then G/

H is cyclic, since the image of χ is a finite subgroup of C×.

(In fact, H = 〈χ〉⊥ so 〈χ〉 ∼= H⊥ ∼= Ĝ/
H
∼= G/

H .)

We have that G/
H is cyclic. If we take E to be the fixed field of H , then we have

that Gal (E/F) ∼= G/
H is cyclic. By the above, σ

∣
∣∣

E

= 1, which means we must

have σ ∈ H and χ(σ ) = 1, a contradiction.
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Hence σ = 1 on all of K , i.e.,
(

a
K/F

)
= 1. Thus a must be in the kernel of the

Artin map for K/F . It follows that P+F,m is contained in the kernel of the Artin map
for K/F . ��

For the proof of Artin Reciprocity to be complete, it only remains to show the
following proposition.

Proposition 2.2. If K/F is a cyclic extension of number fields with Galois group G,
and m is an ideal of OF sufficiently large so that it is divisible by all the ramifying
primes in K/F and so that E+F,m ⊆ F×NK/F JK , then the kernel of the Artin map
satisfies ker (A : IF (m) → G) ⊆ P+F,mNK/F (m).

Proof. Let a ∈ IF (m) with
(

a
K/F

)
= 1. We’ll show

a = 〈α〉NK/F (A)

where α " 0, α
×≡ 1 (mod m), A ∈ IK (mOK ). This will require several lemmas;

the proofs of the first few are due to Van der Waerden (1934). Also see the work of
Birkoff-Vandiver, Chevalley, Iyanaga and Takagi.

Lemma 2.3. Let r > 1, a > 1 be integers, and let q be a prime number. There is a

prime number p such that the order of a mod p in
(
Z
/

pZ

)×
is qr .

Proof. Let t = aqr−1
aqr−1−1

, and u = aqr−1 − 1. We have

aqr = (1+ u)q = 1+ qu +
(

q

2

)
u2 + · · · + uq , whence

t = aqr − 1

u
= (1+ u)q − 1

u

= q +
(

q

2

)
u + · · · + uq−1

≡ q (mod u).

Let p be a prime dividing t . If p|u, then p|q , and we get p = q . Thus, unless t
is a power of q , we may choose p|t , p �= q and therefore have p � u. We get

aqr ≡ 1 (mod p) but aqr−1 �≡ 1 (mod p).

This will give that the order of a mod p in
(
Z
/

pZ

)×
is qr as claimed. It remains

only to consider the case when t is a power of q .
Suppose t = qe, for some e ∈ Z+. Note in fact e > 1, since the binomial

expansion forces t > q . So q2|t . Using the binomial expansion, we find q|u. Since
q|u, we have
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0 ≡ t = q +
(

q

2

)
u + · · · + uq−1

≡ q + uq−1 (mod q2)

If q > 2, then uq−1 ≡ 0 (mod q2), and we get 0 ≡ q (mod q2), a contradiction.
Thus q = 2.

If q = 2, then we have 2|u so that 2|a2r−1 − 1 whence a is odd. Since r > 1, we
get

uq−1 = u ≡ (a2r−2
)2 − 1 ≡ 0 (mod 8).

But q + uq−1 ≡ 0 (mod q2), which (for q = 2) gives

q + uq−1 = 2+ u ≡ 0 (mod 4),

a contradiction.
Our proof is complete, since t cannot be a power of q. ��

Corollary 2.4. Let a > 1 be an integer. Given qr as before, there are infinitely many

primes p such that qr divides the order of a mod p in
(
Z
/

pZ

)×
.

Proof. Apply Lemma 2.3 to qr+k , for all k ∈ Z+. ��
Lemma 2.5. Let S be a finite set of primes, and let a > 1, n > 1 be integers.
There is an integer d , prime to all the elements of S, such that n divides the order of

a mod d in
(
Z/

dZ

)×
.

Proof. Write n = qr1
1 · · · qrs

s . The above corollary implies that for any j there is a

prime p j /∈ S such that the order of a mod p j in
(
Z
/

p jZ

)×
is divisible by q

r j

j .

Hence n divides the order of a mod d in
(
Z
/
dZ

)×
where d = p1 · · · ps . ��

Now fix n, a ∈ Z, with n, a > 1, and a finite set of primes S. Find d as in

Lemma 2.5, i.e., n dividing the order of a mod d in
(
Z/

dZ

)×
.

Let S′ = S ∪ {primes p : p|d}, and let n′ be the order of a mod d in
(
Z/

dZ

)×
,

(so n|n′). Apply Lemma 2.5 to S′, n′, to get d ′ ∈ Z, prime to all the elements of S′

(i.e., to S and to d), and such that n′ divides the order of a mod d ′ in
(
Z
/
d ′Z
)×
.

Let m = dd ′.
Lemma 2.6. Given integers n > 1, a > 1, and a finite set S of primes, there is a
positive integer m such that

i. m is prime to all the elements of S

ii. n divides the order of a mod m in
(
Z
/
mZ

)×
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iii. there exists b ∈ Z such that n divides the order of b mod m in
(
Z
/
mZ

)×
but a

and b are independent mod m, (i.e., 〈a mod m〉 ∩ 〈b mod m〉 = 1).

Proof. Let m, d , d ′, n′, S′ as before. Then (i) and (ii) are clear. For (iii), take

b ≡ a (mod d)

b ≡ 1 (mod d ′).

(The Chinese Remainder Theorem implies that b exists.) Then

order of b mod m in
(
Z/

mZ

)×
= order of a mod d in

(
Z/

dZ

)×

≡ 0 (mod n).

Suppose a and b are not independent modulo m. Then there exist integers i, j such
that 1 �≡ ai ≡ b j (mod m). Since b ≡ 1 (mod d ′), we have

ai ≡ b j ≡ 1 (mod d ′).

Since n′ divides the order of a mod d ′ in
(
Z
/
d ′Z
)×

, we get n′|i . Now n′ is the

order of a mod d in
(
Z
/
dZ

)×
, so ai ≡ 1 (mod d). But m = dd ′, whence

ai ≡ 1 (mod m), a contradiction. Thus a and b must be independent modulo m as
claimed. ��
Lemma 2.7. Let F be a number field, S a finite set of primes in Z, p a prime of OF .
Then for any integer n > 1, there exists m ∈ Z, prime to S and to p, such that if ζm

is a primitive m th root of unity, then

i. Gal (F(ζm)/F) ∼=
(
Z/

mZ

)×
.

ii.
(

p
F(ζm )/F

)
has order divisible by n in Gal (F(ζm)/F).

iii. there is some τ ∈ Gal (F(ζm)/F) of order divisible by n, such that τ is indepen-

dent to
(

p
F(ζm )/F

)
. [Note: independence implies 〈τ 〉∩ Z (p) = 1, since

(
p

F(ζm )/F

)

generates the decomposition group Z (p).]

Proof. Let

S′ = {p : pZ ramifies in F/Q} ∪ {p ∩ Z} ∪ S.

Apply Lemma 2.6 to S′, a = Np, and n ∈ Z, n > 1. There is some integer m, prime

to all the elements of S′, such that the order of a mod m in
(
Z/

mZ

)×
is divisible

by n. In addition, there is an integer b, also having order divisible by n, which is
independent modulo m to a.
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Now, since m is prime to the elements of S′, the primes dividing m are unramified
in F/Q. But primes that do not divide m cannot ramify in Q(ζm). Thus F ∩Q(ζm) is
everywhere unramified over Q. By Minkowski theory, Q doesn’t have a non-trivial
extension that is everywhere unramified. We must have F ∩Q(ζm) = Q, whence

Gal (F(ζm)/F) ∼= Gal (Q(ζm)/Q) ∼=
(
Z/

mZ

)×
.

Under this isomorphism,

(
p

F(ζm)/F

)
�→
(

p

F(ζm)/F

) ∣∣
∣
∣
Q(ζm )

=
(

Np

Q(ζm)/Q

)
�→ a mod m.

Since n divides the order of a mod m, we have shown (i) and (ii).

Meanwhile, there is some integer b that has order divisible by n in
(
Z/

mZ

)×
,

and that is independent modulo m to a. If we take τ ∈ Gal (F(ζm)/F) corresponding
to b mod m, then (iii) follows also. ��
Lemma 2.8 (Artin’s Lemma). Let K/F be a cyclic extension of number fields of
degree n, S a finite set of primes of Z, p a prime of OF . Then there is some m ∈ Z+,
prime to the elements of S and to p, and an extension E/F such that

i. K ∩ E = F
ii. K (ζm) = E(ζm), i.e., K E ⊆ K (ζm) = E(ζm)

iii. K ∩ F(ζm) = F
iv. p splits completely in E/F .

Proof. Enlarge S to contain all the primes that ramify in K/Q. Using n = [K :
F] in Lemma 2.7, we obtain m ∈ Z, prime to the enlarged S and to p, such that

Gal (F(ζm)/F) ∼=
(
Z
/
mZ

)×
, with the order of

(
p

F(ζm )/F

)
divisible by n, and τ

independent to
(

p
F(ζm )/F

)
, etc. Thus F ∩Q(ζm) = Q, K ∩Q(ζm) = Q, K ∩ F(ζm) =

F , and (iii) is proved.
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Let G = Gal (K/F) = 〈σ 〉. Now

Gal (K (ζm)/F) ∼= Gal (K/F)×Gal (F(ζm)/F)

∼= 〈σ 〉 ×
(
Z/

mZ

)×

We shall identify Gal (K (ζm)/F) and Gal (K/F)×Gal (F(ζm)/F). Note that, under
this identification,

(
p

K/F

)
×
(

p

F(ζm)/F

)
=
(

p

K (ζm)/F

)
.

Let τ satisfy the conditions from the previous lemma, (so τ ∈ Gal (F(ζm)/F)). Let

H be the subgroup of Gal (K (ζm)/F) generated by σ×τ and by
(

p
K/F

)
×
(

p
F(ζm )/F

)
.

Let E be the fixed field of H .

Since
(

p
K (ζm )/F

)
generates the decomposition group Z K (ζm )/F (p), we have

Z K (ζm )/F (p) ⊆ H.

Thus E is a subfield of the decomposition field for p in K (ζm)/F . This shows that p
splits completely in E/F , i.e., (iv) is proved.
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Now, since σ × τ ∈ H , we have that σ × τ fixes the elements of E and hence
in particular, those of K ∩ E . Also 1× τ ∈ Gal (K/F) × Gal (F(ζm)/F) fixes the
elements of K , so it fixes the elements of K ∩ E . Hence

σ × 1 = (σ × τ )(1× τ )−1

fixes the elements of K ∩ E . Since σ generates G = Gal (K/F), we must have
K ∩ E = F , and (i) is proved.

It remains only to prove (ii). Now H = Gal (K (ζm)/E). A typical element of H
is

(σ × τ )i

((
p

K/F

)
×
(

p

F(ζm)/F

)) j

.

Also Gal (K (ζm)/F(ζm)) ∼= G×1 has typical element σ a×1. Note that H ∩ (G×1)
has fixed field E(ζm).

Say b ∈ H ∩ (G × 1). Then

b = (σ × τ )i

((
p

K/F

)
×
(

p

F(ζm)/F

)) j

= σ a × 1.

Comparing second coordinates, we see that

τ i

(
p

F(ζm)/F

) j

= 1.

By the previous lemma, n divides the order of τ and also divides the order of(
p

F(ζm )/F

)
. Thus n|i and n| j , (since τ and

(
p

F(ζm )/F

)
are independent).

Now we consider first coordinates and find

σ i

(
p

K/F

) j

= σ a .
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Since #G = n and n| j , n|i , we must have σ a = 1 whence b = σ a × 1 = 1.
Thus H ∩ (G × 1) = {1} = Gal (K (ζm)/E(ζm)). It follows that K (ζm) = E(ζm)
completing the proof of (ii). ��

We are now ready to prove the proposition that was all that was needed to com-
plete the proof of Artin Reciprocity. Recall Proposition 2.2 asserts that when K/F
is cyclic and m is sufficiently large, ker (A : IF (m) → G) ⊆ P+F,mNK/F (m).

Proof. Let K/F be cyclic, and suppose G = Gal (K/F) = 〈σ 〉 with #G = n =
[K : F]. Let a ∈ ker AK/F , i.e., suppose

(
a

K/F

)
= 1, and let m be a multiple of

f = f(K/F), chosen divisible by all the ramified primes and no others. We may
factor

a =
r∏

i=1

p
γi
i .

Let di be defined by

(
p
γi
i

K/F

)
= σ di .

Since
(

a
K/F

)
= 1, we find σ d1+···+dr = 1, whence n|d1 + · · · + dr .

Apply Artin’s Lemma to p1, . . . , pr in succession to get integers m1, . . . ,mr and
fields E1, . . . , Er as in the following diagram.

Let Gi = Gal (F(ζmi )/F). We may assume that mi , . . . ,mr are pairwise relatively
prime (enlarge S each time we apply Artin’s Lemma), and that each is prime to
all the primes that ramify in K/Q and to p1, . . . , pr (again by enlarging S). Thus
a ∈ IF (m1 · · ·mrm).

Working in L = K (ζm1 , . . . , ζmr ), put E = E1 · · · Er . Then K∩E = F = K∩Ei

and Gal (L/F) ∼= G × G1 × · · · × Gr . Since K ∩ E = F , we have

G = Gal (K/F) ∼= Gal (K Ei/Ei ) ∼= Gal (K E/E),

the isomorphisms being given by restriction.
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Let BE ∈ IE (m1 · · ·mrmOE ) be such that

(
BE

K E/E

) ∣
∣
∣

K

= σ

(the Artin map is surjective so some such BE exists) and let bF = NE/FBE . (Note
that bF ∈ IF (m1 · · ·mrm).) Then

(
bF

K/F

)
=
(

BE

K E/E

) ∣
∣∣

K

= σ

and for each i ,

(
p
γi
i b−di

F

K/F

)

= σ diσ−di = 1.

Since pi splits completely in Ei/F , it is a norm from Ei (of any prime of Ei that
lies above it). Thus p

γi

i b−di
F is a norm from Ei (recall bF is a norm from E ⊇ Ei ).

Hence p
γi
i b−di

F = NEi /FAEi , for some fractional ideal AEi of Ei . (Note that the AEi

are prime to mim.) By the Consistency Property, we have

(
AEi

K Ei/Ei

) ∣
∣
∣

K

=
(

p
γi
i b−di

F

K/F

)

= 1.

Since Gal (K Ei/Ei ) ∼= Gal (K/F) via restriction, we must have
(

AEi
K Ei/Ei

)
= 1.

Thus AEi ∈ ker (IEi (mimOEi ) → Gal (K Ei/Ei )).
For each i we have K Ei ⊆ Ei (ζmi ).
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We have already shown that Artin Reciprocity is true for the extension Ei (ζmi )/Ei .
By Exercise 5.6, it is also true for the subextension K Ei/Ei ; we use this fact to get

AEi = 〈αEi 〉NK Ei /Ei AK Ei

where αEi

×≡ 1(mod mimOEi ), αEi " 0 and AK Ei ∈ IK Ei (mimOK Ei ). Thus

p
γi
i b−di

F = NEi /FAEi

= NEi /F
(〈αEi 〉NK Ei /Ei AK Ei

)

= 〈NEi /F (αEi )〉NK Ei /FAK Ei

∈ P+F,mi m
NK/F (mim)

because

NEi /F (αEi )
×≡ 1(mod mim)

NEi /F (αEi ) " 0

NK Ei /FAK Ei ∈ NK/F (mim).

We have p
γi
i b−di

F ∈ P+F,mi m
NK/F (mim) for all i , so

∏r
i=1 p

γi
i b−di

F ∈ P+F,mNK/F (m),

i.e., ab−d1−d2−···−dr
F ∈ P+F,mNK/F (m). Now n|(−d1−· · ·−dr ) (where n = [K : F]).

Say −d1 − · · · − dr = −dn. Then

a(b−d
F )n = aNK/F (b−d

F OK ) ∈ P+F,mNK/F (m).

But NK/F (b−d
F OK ) ∈ P+F,mNK/F (m) already, since bF ∈ IF (m). It follows that

a ∈ P+F,mNK/F (m), and our proof is complete. ��

Exercise 5.7. Let K/F be an abelian extension of number fields. Show that if m is
any admissible ideal for K/F then
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IF (m)/
P+F,mNK/F (m)

∼= Gal (K/F)

and in particular, the conductor f(K/F) satisfies Artin Reciprocity. ♦
If K/F is abelian, Artin Reciprocity gives us (for an appropriately chosen m)

IF (m)/
P+F,mNK/F (m)

∼= Gal (K/F).

In the case of a cyclic extension K/F , we already knew that the orders were equal
by the norm index inequalities. From the above isomorphism, we see that the orders
are equal for all abelian extensions K/F , as was claimed in Chapter 4.

Now that we have completed the proof of Artin Reciprocity, we may also revisit
our consideration of the primes that split completely in an abelian extension of num-
ber fields. As before, suppose m satisfies Artin reciprocity and let

SK/F = {prime ideals p of OF : p splits completely in K/F}
TK/F = {prime ideals p of OF : p ∈ P+F,mNK/F (m)}.

Recall we have seen that if Lm(1, χ) �= 0 for all characters χ �= χ0 of R+
F,m

that are trivial on P+F,mNK/F (m), then Dirichlet density can be used to show that
SK/F ≈ TK/F , i.e., K is the class field over F of P+F,mNK/F (m), thus proving
the Completeness Theorem. Also, we have seen that SK/F ⊆ TK/F . Using Artin
Reciprocity, we may obtain the Completeness Theorem without the result on the
Weber L-functions. Compare the following corollary to Theorem 1.1.8.

Corollary 2.9. Let K/F be an abelian extension of number fields, say with [K :
F] = n, and let p be a prime of OF , unramified in K/F . Suppose m is divisible
by all the ramified primes and no others, and suppose m satisfies Artin Reciprocity.
Let f be the smallest positive integer such that p f ∈ P+F,mNK/F (m). Then, in OL ,
we have a factorization pOL = P1 · · · Pg, where each Pi is a prime of OL with
residue degree f over p, and where g = n/ f . In particular, SK/F = TK/F .

Proof. Let A : IF (m) → G as in Artin Reciprocity, so ker (A) = P+F,mNK/F (m).
From our choice of the integer f , it follows that f is the smallest positive integer

such that p f ∈ ker (A). Hence f is the order of
(

p
K/F

)
in Gal (K/F).

Since p is unramified and the extension is Galois, we have a factorization pOL =
P1 · · · Pg where the primes Pi are distinct and have equal residue degrees. This
common residue degree is the order of the decomposition group, which is cyclic and

generated by
(

p
K/F

)
= A(p). Hence the residue degree is equal to f as claimed.

For the assertion about SK/F , note we have

p ∈ SK/F ⇐⇒ Z (p) = 1

⇐⇒ p ∈ ker (A) = P+F,mNK/F (m)

⇐⇒ p ∈ TK/F ��
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Exercise 5.8. Now that we have SK/F = TK/F , we may apply Theorem 3.2.4 to
deduce that Lm(1, χ) �= 0 for all characters χ �= χ0 of R+

F,m that are trivial on
P+F,mNK/F (m). Is this sufficient to finish the proof of the generalization of the The-
orem on Primes in Arithmetic Progressions? Explain. ♦

In the following exercises, we continue to revisit some of the ideas from Chap-
ter 3. To answer them, it may be necessary to assume that for any number field F ,
any ideal m of OF and any non-trivial character χ of R+

F,m, the Weber L-function
satisfies Lm(1, χ) �= 0. (As we saw in Chapter 3, this follows from the Existence
Theorem, which we shall prove in Chapter 6.)

Exercise 5.9. Let K/F be an abelian extension of number fields with Gal (K/F) =
G. Let σ ∈ G and define

Sσ = {primes p of OF : p is unramified in K/F and

(
p

K/F

)
= σ }.

Show that δF (Sσ ) = 1
[K :F] . ♦

Exercise 5.10. Let K/F be a (possibly non-abelian) Galois extension of number
fields with Gal (K/F) = G. Because the extension is not necessarily abelian,
instead of the Artin automorphism associated to a prime p of OF , we must consider
Frobenius elements at the primes above p. Let σ ∈ G and let [σ ]G = {τστ−1 :
τ ∈ G} be the conjugacy class of σ in G. Let E = K 〈σ 〉 and put n = [K : F],
d = [K : E], c = #[σ ]G . Define

Sσ = {unramified primes p of OF :

(
P

K/F

)
∈ [σ ]G for P

∣∣pOK }

SE,σ = {primes Q of OE : p = Q ∩OF is unramified in K/F, f (Q/p) = 1

and

(
Q

K/E

)
= σ }

SK ,σ = {primes P of OK : e(P/P ∩OF ) = 1 and

(
P

K/F

)
= σ }.

a. Show that δE (SE,σ ) = 1
d .

b. Show that P �→ P ∩OE gives a bijection SK ,σ → SE,σ .

c. Show that P �→ P ∩OF sends n
cd primes of SK ,σ to each prime of Sσ .

d. Prove the Chebotarev Density Theorem : δF (Sσ ) = c
n . ♦

Exercise 5.11. Let F be a number field, and let f (X) ∈ F[X] be a polynomial.
Suppose f (X) splits into linear factors modulo p for all but finitely many prime
ideals p of OF . Use the Chebotarev Density Theorem, applied to the splitting field
of f (X), to show that f (X) splits in F[X]. ♦
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Exercise 5.12. Let f (X), g(X) ∈ Z[X] be irreducible and denote their splitting
fields (over Q) by K f , Kg, respectively. Let

Spl( f ) = {primes p ∈ Z : f (X) factors completely modulo p}
Spl(g) = {primes p ∈ Z : g(X) factors completely modulo p}.

a. What is the relationship between Spl( f ) and SK f /Q?

b. Prove the Inclusion Theorem: K f ⊇ Kg if and only if Spl( f ) is “almost”
a subset of Spl(g), i.e., with finitely many exceptions, Spl( f ) is a subset of
Spl(g). ♦

The statement and proof of Artin Reciprocity were formulated in terms of ideals. In
order to understand how all this fits together with the results of Chapter 4, we need to
find an interpretation in terms of idèles. If m is chosen so that E+F,m ⊆ F×NK/F JK ,
then we have

JF −→
canonical
surjection

JF
/

F×NK/F JK

∼=−→ IF (m)/
P+F,mNK/F (m)

∼=−→
Artin map

Gal (K/F).

Let

ρK/F : JF −→ Gal (K/F)

be this composition of functions; it is a surjective homomorphism of groups with
kernel F×NK/F JK . We say K is the class field over F of F×NK/F JK and we call
ρK/F the idèlic Artin map. For a ∈ JF , we sometimes denote

ρK/F (a) =
(

a
K/F

)
.

Can we give ρK/F explicitly? Recall from Chapter 4, the isomorphism

JF
/

F×NK/F JK
∼= IF (m)/

P+F,mNK/F (m)

arises via the isomorphism JF
/

F×
∼= J+F,m/

F+m
so arises via the map

JF −→ J+F,m/
F+m

−→ IF (m)/
P+F,m

given by

a �→ bF+m �→ 〈b〉P+F,m
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where b = αa, with α ∈ F× chosen so that αa ∈ J+F,m. This means we must choose
α ∈ F× so that

i. for any finite place v of F , ιv(α) ∈ Ov , and ιv(α)av ≡ 1 (mod pordvm
v )

ii. for any real place v of F , ιv(α)av > 0.

By Exercise 4.25, we know that the map a �→ bF+m �→ 〈b〉P+F,m is well-defined.

Exercise 5.13. Show that the idèlic Artin map is given by

ρK/F (a) =
( 〈αa〉

K/F

)
∈ Gal (K/F)

where α is as in (i) and (ii) above, and

〈αa〉 =
∏

v finite

pordv(ιv (α)av )
v

as usual. ♦

Exercise 5.14. For K/F abelian, we know that the idèlic Artin map JF → Gal (K/F)
is surjective with kernel F×NK/F JK , (Artin Reciprocity). Alternatively, show how

we may write this in terms of the idèle class group CF = JF
/

F× . In particular,
show that the Artin map gives rise to a homomorphism CF → Gal (K/F), which is
surjective with kernel NK/F CK . Thus,

JF
/

F×NK/F JK
∼= CF

/
NK/F CK

∼= Gal (K/F).

(We shall not pursue it now, but those familiar with inverse limits may also wish
to consider what happens if we take inverse limits here. Doing so yields a map
CF → Gal (Fab/F) where Fab is the maximal abelian extension of F . This map
is also surjective. See the discussion on the norm residue symbol in Chapter 6 for
more about this.) ♦

Exercise 5.15. Let F ⊆ L ⊆ K , F ⊆ E ⊆ K be number fields and suppose K/F
is abelian. If a ∈ JE , do we have

(
a

K/E

) ∣∣
∣∣

L

=
(

NE/F (a)

L/F

)

as we did with the classical Artin maps on fractional ideals? ♦
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3 An Example: Quadratic Reciprocity

Throughout this section, let F = Q, K = Q(
√

(−1)
p−1

2 p ), where p > 2 is a prime.
Then p is the only finite prime that ramifies in K/Q, so the ideal m in the statement
of Artin Reciprocity is a positive power of pZ. Also,∞ ramifies in K/Q if and only
if p−1

2 is odd. Consider the Artin map

ρK/Q : JQ −→ Gal (K/Q) = {±1}.

We have (by Artin Reciprocity), that kerρK/Q = Q×NK/Q JK . We want to compute
the image under ρK/Q of several particular idèles.

Let c∞ = (−1, 1, 1, . . .) ∈ JQ, (where the −1 is in the component at ∞). Take
α = 1− pordpm so that αc∞ ∈ J+Qm

. Then

ρK/Q(c∞) =
( 〈αc∞〉

K/Q

)
.

Now ρK/Q(c∞) = 1 if and only if c∞ ∈ kerρK/Q. This is easily seen to be true if and
only if −1 ∈ NK∞/Q∞ (K×

∞) = NK∞/R(K×
∞), which occurs if and only if K∞ = R,

i.e., if and only if (−1)
p−1

2 = 1. We have shown that

ρK/Q(c∞) = (−1)
p−1

2 =
(−1

p

)
,

the Legendre symbol.
Now let � be a prime of Q and let c� = (1, . . . 1,−1, 1, . . .) ∈ JQ, (where the−1

is in the component at v�). If � �= p,∞, then c� ∈ Q+
m so we may take α = 1. We

get

ρK/Q(c�) =
( 〈c�〉

K/Q

)
=
∏

v

(
pv

K/Q

)ordv(cv)

= 1.

Artin Reciprocity says that −1 ∈ Q× ⊆ kerρK/Q. Since, as idèles, ι(−1) = ∏ c�,
where � ranges over all the primes (including∞) of Q, we must have

1 = ρK/Q(ι(−1)) =
∏

�

ρK/Q(c�)

= ρK/Q(c∞)ρK/Q(cp).

We conclude that

ρK/Q(cp) =
(−1

p

)
.
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Let q be a prime of Z and let b� = (1, . . . , 1, q, 1, . . .) ∈ JQ, where the q is in
the component at v�. For � �= p, � �= q , we have b� ∈ J+Qm

and

ρK/Q(b�) =
∏

v

(
pv

K/Q

)ordv(bv )

= 1.

If � = p �= q , then we have αbp ∈ J+Qm
for some positive α ∈ Z with αq ≡ 1

(mod pordpm). Now ρK/Q(bp) = 1 if and only if bp ∈ kerρK/Q, which, by Artin
Reciprocity, happens if and only if bp ∈ Q×NK/Q JK , i.e., if and only if q is a
norm from K p to Qp. Now K p/Qp is totally ramified of degree 2, so the norms in
Up = Z×p have index e = 2 in the group Z×p . (Note that q ∈ Z×p .) We know

Z×p ∼= μp−1 × (1+ pZp),

where μp−1 denotes the ( p − 1)th roots of unity in Z×p . Since p is odd, the only
subgroup of index 2 is μ2

p−1× (1+ pZp) = (Z×p )2. Thus, ρK/Q(bp) = 1 if and only
if q ∈ (Z×p )2, which happens if and only if q is a square modulo p, i.e., if and only

if
(

q
p

)
= 1. We have shown ρK/Q(bp) =

(
q
p

)
.

If � = q �= p, then we have αbq ∈ J+Qm
for α = 1, and

ρK/Q(bq ) =
∏

v

(
pv

K/Q

)ordv(α(bq )v)

=
(

qZ

K/Q

)
.

Thus

ρK/Q(bq) = 1 ⇐⇒
(

qZ

K/Q

)
= 1

⇐⇒ qZ splits completely in K/Q

(by Corollary 2.9)

⇐⇒ (−1)
p−1

2 p is a square in Zq

⇐⇒
(−1

q

) p−1
2
(

p

q

)
= 1 if q �= 2

or (−1)
p−1

2 p ≡ 1 (mod 8) if q = 2.

Artin Reciprocity says that q ∈ Q× ⊆ kerρK/Q. For q �= p, 2, we have
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1 = ρK/Q(ι(q)) =
∏

�

ρK/Q(b�)

= ρK/Q(bq )ρK/Q(bp)

= (−1)
q−1

2 · p−1
2

(
p

q

)(
q

p

)
.

Meanwhile for q = 2, we have

1 =
(

2

p

)
(−1)

p2−1
8

since (−1)
p−1

2 p ≡ 1 (mod 8) if and only if p ≡ ±1 (mod 8).
The above example shows that Quadratic Reciprocity follows from Artin Reci-

procity! Indeed, after Artin Reciprocity was proved, all previously known reci-
procity laws were seen to follow from it. For more on this, see the exercises in
Cassels and Fröhlich, [CF].

4 Some Preliminary Results about the Artin Map on Local Fields

We want to study the idèlic Artin map on local fields. First, we consider the image
of the local units. Let K/F be an abelian extension of number fields, and consider

the map JF � Gal (K/F) given by a �→
(

a
K/F

)
. Let m be an ideal of OF that is

divisible only by the ramified primes in K/F , and such that E+F,m ⊆ F×NK/F JK .
Let v be any place of F . Recall if v is infinite, then we take Uv = F×v by conven-

tion. We may view the local units Uv as a subgroup of JF as follows. Map u ∈ Uv to
the idèle

ϕv(u) = (1, . . . , 1, u, 1, . . .) ∈ JF ,

where the u is in the component corresponding to v. Via the map ϕv , we see readily
that

Uv ∼= (1, . . . , 1,Uv, 1, . . .) < JF .

Example.

1. Let F = Q, K = Q(ζ15), v = 3, u = 5. For this extension, we know that
the conductor is divisible only by the primes that ramify, i.e., only by 3 and 5.
Eventually, we shall be able to prove that the conductor m of this extension is
exactly 15Z. We have Uv = Z×3 . Of course, 5 ∈ Z×3 , so what is ρK/Q(ϕ3(5))? We
must find α ∈ Q× such that

αϕ3(5) = (α, . . . , α, 5α, α, . . .) ∈ J+Q,m
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so we need α > 0, α ≡ 1 (mod pordvm
v ) for finite v �= 3, and 5α ≡ 1

(mod 3ordvm). Using the future result (Chapter 6) that m = 15Z, we see that
we may take α = 11. Then

ρK/Q(ϕ3(5)) =
( 〈11ϕ3(5)〉

K/Q

)

=
(

p
ord3(55)
3

∏
v �=3 pordv(11)

v

K/Q

)

=
(

11Z

K/Q

)
,

which is the automorphism of K sending ζ15 �→ ζ 11
15 (see the example in Chap-

ter 1).
Now suppose the finite place v has pv unramified in K/F . Let u ∈ Uv , with

ϕv(u) = (1, . . . , 1, u, 1, . . . , 1) as above. Then, since pv is unramified, we have
pv � m, so ϕv(u) ∈ J+F,m (clearly ϕv(u) ≡ 1 (mod q) for all q|m, and ϕv(u) " 0). It

follows easily that ρK/F (ϕv(u)) =
(
ϕv(u)
K/F

)
= 1. Thus, we have shown that for every

finite unramified place v,
(
ϕv(Uv )
K/F

)
= {1}.

Exercise 5.16. We say that an infinite place v of F ramifies in K/F if and only if
v is real and it extends to some imaginary place of K . With this notion of ramified
infinite place, and with the convention Uv = F×v for infinite places, does the above
still hold when v is infinite? ♦

In the same way, we can view F×v as a subgroup of JF . Simply extend the map ϕv:
for any x ∈ F×v , let ϕv(x) = (1, . . . , 1, x, 1, . . .), where the x is in the component
corresponding to v. Now fix a uniformizer π for F×v . Any x ∈ F×v may be written
x = uπa for some u ∈ Uv , and some integer a. Again suppose v is a finite place of
F , with pv unramified in K/F . If x ∈ F×v , then ϕv(x) ∈ J+F,m already, and

〈ϕv(x)〉 = 〈ϕv(uπa)〉 = pa
v .

We get

ρK/F (ϕv(x)) =
(

pv

K/F

)a

where a = ordv(x).

Since
(

pv
K/F

)
generates the decomposition group Z (pv) when v is finite and pv is

unramified, we find in this case

(
ϕv(F×v )

K/F

)
= Z (pv).



132 5 Artin Reciprocity

Exercise 5.17. With the conventions discussed in the previous exercise, is the above
still true when v is infinite and unramified? To rephrase, for infinite primes, we
are taking Uv = F×v , so their images are the same. How would you define the
decomposition group of an infinite place? Is it going to be trivial in the case of an
unramified infinite place? ♦

What happens when v is ramified? Suppose v corresponds to a finite prime pv that
ramifies in K/F . Let KT denote the fixed field of the inertia subgroup T (pv). Then

pv is unramified in KT /F , so
(
ϕv(Uv )
KT /F

)
= 1. Now Gal (KT /F) ∼= Gal (K/F)/

T (pv).

The idèlic version of the Consistency Property for Artin symbols gives

(
ϕv(Uv)
K/F

) ∣∣
∣∣

KT

=
(
ϕv(Uv)
KT /F

)
= 1.

Thus
(
ϕv(Uv)
K/F

)
⊆ Gal (K/KT ) = T (pv).

(They are actually equal, but it will be some time before we can prove it.)
We can also find a result on ρK/F (ϕv(F×v )) when v is ramified. For any finite

place v of F , let Z (pv), T (pv) be the decomposition and inertia subgroups of G =
Gal (K/F) as usual. Let KZ , KT be their respective fixed fields.

Since pv splits completely in KZ , we know that ϕv(F×v ) ⊆ NK Z /F JK Z (see the
corollary to Artin Reciprocity). Thus, for x ∈ F×v , we have

ρK/F (ϕv(x)) =
(
ϕv(x)

K/F

)

=
(

NK Z /F (b)

K/F

)
for some b ∈ JK Z

=
(

b
K/KZ

)

∈ Gal (K/KZ ) = Z (pv).

We have shown that for any finite place v of F ,

ρK/F (ϕv(F×v )) ⊆ Z (pv).

As with our result on the image of Uv, more is true. Eventually, we shall prove that
the above is in fact an equality.

Example.

2. Suppose we have an abelian extension K/F of number fields that is everywhere
unramified (including the infinite places). Let H = F×NK/F JK . By Artin Reci-
procity, H = kerρK/F . Since no prime ramifies, we have
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(
ϕv(Uv)
K/F

)
= 1

and

ϕv(Uv) ⊆ H = F×NK/F JK

for every place v. Now H is open of finite index in JF , hence H is also closed
(the compliment is open since it is the union of finitely many non-trivial cosets
of H). Consider the subgroup of JF generated by {ϕv(Uv) : all v}. It is contained
in H, and H is closed, so its closure is contained in H, i.e.,

∏
v Uv = EF ⊆ H.

Thus the open subgroup F×EF ⊆ H.
We shall refer to the above example again; it will help us to begin our study of

Hilbert class fields. To do so will require the Existence Theorem, which we prove in
the next chapter.

Exercise 5.18. Let K/F be an abelian extension of number fields such that all the
principal fractional ideals of F are in the kernel of the Artin map. What can you
conclude about the relationship of the class number of F to the degree [K : F]? ♦



Chapter 6
The Existence Theorem, Consequences
and Applications

Let K/F be abelian, and let m be an ideal of OF that is divisible by all the ramifying
primes in K/F and is such that E+F,m ⊆ F×NK/F JK . As we have seen previously,
the kernel of the idèlic Artin map JF → Gal (K/F) is F×NK/F JK , and F×NK/F JK

is an open subgroup of JF containing F×.
This suggests the following question. Given an open subgroup H ⊆ JF with

F× ⊆ H, when will H be of the form F×NK/F JK for some finite abelian extension
K/F? The answer is provided by the Existence Theorem, which we state here in
terms of idèles.

Theorem (Existence). Every open subgroup H ⊆ JF with H ⊇ F× is of the form
H = F×NK/F JK for some (unique) finite abelian extension K/F.

Once we verify the Existence Theorem, then we shall know that there is a bijec-
tive correspondence

{finite abelian extensions K/F} ←→ {open subgroups H of JF : F× ⊆ H}.

The field K is the class field to H. (This statement combines idèlic versions of the
Existence and Completeness Theorems.) We have shown in Chapter 3 that the class
fields of Weber (defined in terms of ideals) are unique. Uniqueness of K follows
from this, using the relationship between the classical (ideal-based) theory and the
idèlic theory that we proved in Chapter 4. But it is also easy to verify directly, which
we shall do in the first section.

The correspondence in the Existence/Completeness Theorems is given by

H = F×NK/F JK .

Our results from Chapter 5 then imply that we have

JF
/
H ∼= Gal (K/F)

via the Artin map (this is the Isomorphy Theorem).
Thus, the Existence Theorem is all that remains in order to complete the proofs

of the theorems we discussed in 3.3. One of the main objectives of this chapter is to
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prove the Existence Theorem. The proof we give uses Kummer extensions, so we
shall spend a bit of time discussing them. The results on Kummer extensions also
will allow us to return to our partially completed study of the Artin map on local
fields and prove the Complete Splitting Theorem.

The special case of the Hilbert class field is discussed in the fourth section. In the
fifth section, we take a moment to consider extensions of number fields that are per-
haps non-abelian. In Section 6, we show how to extend the Artin map to a maximal
abelian extension of a number field, and sketch a proof of the Existence Theorem
that uses this idea. The remainder of the chapter contains a few applications of class
field theory to cyclotomic fields.

1 The Ordering Theorem and the Reduction Lemma

We begin with a consequence of Artin Reciprocity that is related to the Complete-
ness Theorem, and that proves part of the bijective correspondence between finite
abelian extensions of a number field F , and open subgroups of JF that contain F×.

Proposition 1.1. Let

� : {finite abelian extensions K of F}
−→ {open subgroups H of JF that contain F×}

be given by �(K ) = F×NK/F JK . Then:

i. K ⊆ K ′ if and only if �(K ′) ⊆ �(K ), the Ordering Theorem ,
ii. �(K K ′) = �(K ) ∩�(K ′),

iii. �(K ∩ K ′) = �(K )�(K ′).
iv. If H = �(E) = F×NE/F JE and K ⊇ E , then E is the fixed field of ρK/F (H).

Proof. Let H = �(K ), H′ = �(K ′). By Artin Reciprocity, we have H = kerρK/F

and H′ = kerρK ′/F .

(ii.) Since
(

a
K K ′/F

) ∣∣∣
∣

K

=
(

a
K/F

)
and

(
a

K K ′/F

) ∣∣∣
∣

K ′
=
(

a
K ′/F

)
, it follows that

kerρK K ′/F ⊆ H ∩H′.

Conversely, if a ∈ H ∩ H′, then there is some element σ =
(

a
K K ′/F

)
in

Gal (K K ′/F) that is trivial on both K and K ′. Thus σ = 1 on K K ′, and we conclude
that a ∈ kerρK K ′/F .

(i.) If K ⊆ K ′, then NK ′/F JK ′ = NK/F (NK ′/K JK ′) ⊆ NK/F JK , which gives us
H′ ⊆ H.

Conversely, if H′ ⊆ H, then H′ ∩H = H′, so

[K ′ : F] = #
(

JF
/
H′
)

= #
(

JF
/
H ∩H′

)

= [K K ′ : F] by (ii ).
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But then K ′ = K K ′, whence K ⊆ K ′.
(iv.) We have K ⊇ E ⊇ F and H = kerρE/F by Artin Reciprocity. If a ∈ H,

then
(

a
K/F

) ∣∣
∣
∣

E

=
(

a
E/F

)
= ρE/F (a) = 1,

so ρK/F (H) fixes E .
If x ∈ K is fixed by ρK/F (H), then E(x) is fixed by ρK/F (H). Hence, for any

a ∈ H,

ρK/F (a)

∣∣
∣
∣

E(x)

=
(

a
E(x)/F

)
= 1,

i.e., a ∈ kerρE(x)/F . We have shown

H = F×NE/F JE ⊆ kerρE(x)/F = F×NE(x)/F JE(x).

It follows that �(E) ⊆ �(E(x)). Now we may apply (i) to conclude E(x) ⊆ E and
hence x ∈ E .

(iii.) Since K , K ′ ⊇ K ∩ K ′, we have H, H′ ⊆ �(K ∩ K ′) by (i). But then
HH′ ⊆ �(K ∩ K ′).

Conversely, let E be the fixed field of ρK K ′/F (HH′). Now H ⊆ HH′, so
ρK K ′/F (H) ⊆ ρK K ′/F (HH′).Hence the fixed field K of ρK K ′/F (H) must contain the
fixed field E of ρK K ′/F (HH′). Similarly, H′ ⊆ HH′, so K ′ ⊇ E . Thus K ∩K ′ ⊇ E .

On the other hand, if b ∈ H and b′ ∈ H′, then

(
bb′

K K ′/F

) ∣∣∣
∣

K∩K ′
=
(

b
K K ′/F

) ∣∣∣
∣

K∩K ′

(
b′

K K ′/F

) ∣∣∣
∣

K∩K ′
= 1.

Hence ρK K ′/F (bb′) fixes K ∩ K ′, so that we must have K ∩ K ′ ⊆ E . We have
E = K ∩ K ′ and �(E) = F×NE/F JE = kerρE/F . By (iv), we must have that E
is the fixed field of ρK K ′/F (�(E)). By the bijectivity of the Galois correspondence,
we conclude ρK K ′/F (�(E)) = ρK K ′/F (HH′).

Now a ∈ �(E) implies ρK K ′/F (a) = ρK K ′/F (bb′), where b ∈ H and b′ ∈ H′.
But then a(bb′)−1 ∈ kerρK K ′/F = �(K K ′) = H ∩H′ by (ii), whence a ∈ HH′. ��

Note that (i) of the above proposition shows that the map � is injective. Once
we have shown the Existence Theorem, we shall know that � is actually surjective
as well, i.e., every open subgroup H of JF that contains F× is of the form H =
F×NK/F JK = kerρK/F for some finite abelian extension K of F , (this field K is
the class field to H over F). The proof of the bijective correspondence will then be
complete.

Corollary 1.2. Suppose K is the class field to the open subgroup H of JF , where H
contains F×, and let H′ ⊇ H be an open subgroup of JF . Then H′ has a class field
over F .
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Proof. Let K ′ be the fixed field of ρK/F (H′). We have F ⊆ K ′ ⊆ K . Also,
(

a
K ′/F

)
=
(

a
K/F

) ∣∣
∣∣

K ′
, so

a ∈ kerρK ′/F ⇐⇒
(

a
K/F

) ∣∣
∣∣

K ′
= 1

⇐⇒
(

a
K/F

)
∈ ρK/F (H′)

⇐⇒ there is some b ∈ H′ with

(
ab−1

K/F

)
= 1

⇐⇒ there is some b ∈ H′ with ab−1 ∈ kerρK/F = H
⇐⇒ a ∈ HH′ = H′. ��

Proposition 1.3 (Reduction Lemma). Let K/F be a cyclic extension of number
fields and suppose H is an open subgroup of JF that contains F×. Let HK = {x ∈
JK : NK/F (x) ∈ H} = N−1

K/F (H). If HK has a class field over K , then H has a class
field over F .

Proof. Let E be the class field of HK over K . Then Gal (E/K ) is abelian and HK =
K×NE/K JE = kerρE/K .

We first show that E/F is Galois. Let E ′ be the Galois closure of E/F , (i.e., the
smallest Galois extension of F that contains E). Let σ ∈ Gal (E ′/F). Note that for
x ∈ JK , NK/F (σ (x)) = NK/F (x). Also, x ∈ HK if and only if NK/F (x) ∈ H, so if
and only if NK/F (σ (x)) ∈ H. Thus σHK = HK . This implies that σ E = E (since
σ E is the class field for σHK ). Thus E ′ = E and E/F is Galois.

Next we show that E/F is abelian. Let σ ∈ Gal (E/F) with Gal (K/F) = 〈σ ∣∣
K
〉,

(possible since K/F is cyclic). Let τ ∈ Gal (E/K ). It suffices to show that σ and τ
commute.

Since E/K is abelian, it makes sense to talk about the Artin map ρE/K . By Artin
Reciprocity, ρE/K is surjective, so there is some b ∈ JK with τ = ρE/K (b). Then

στσ−1 =
(

σ (b)

σ E/σK

)
=
(
σ (b)

E/K

)
.

Now NK/F (σ (b)/
b) = 1 ∈ H, so σ (b)/

b ∈ HK = kerρE/K . Thus

(
σ (b)

E/K

)
=
(

b
E/K

)
.

We get στσ−1 = τ , whence E/F is abelian as claimed.
Since E is the class field over K to HK , we have HK = K×NE/K JE . Also, by

definition NK/FHK ⊆ H. Now that we know that E/F is abelian, we also find
that E is the class field over F to the subgroup F×NE/F JE of JF . Combining these
observations, we obtain
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F×NE/F JE ⊆ F×NK/F (NE/K JE ) ⊆ F×NK/FHK ⊆ F×H = H.

By Corollary 1.2, we conclude that H has a class field, namely the fixed field of
ρE/F (H). ��

2 Kummer n-extensions and the Proof of the Existence Theorem

Let n be a positive integer. An abelian group G is said to have exponent n if gn = 1
for every g ∈ G. Similarly, an abelian extension K/F is said to have exponent n if
the abelian group Gal (K/F) has exponent n.

Let H be an open subgroup of JF with F× ⊆ H, and suppose that JF
/
H has

exponent n. (It certainly has some exponent, since it is a finite group.) We want to
show that H has a class field over F .

Consider the extension F(ζn)/F , where as usual ζn is a primitive nth root of unity.
We can find a tower of intermediate fields:

F = F0 ⊆ F1 ⊆ · · · ⊆ Ft = F(ζn)

such that each Gal (Fi+1/Fi ) is a cyclic group. For each i , let Hi = N−1
Fi /FH. Note

that we have a ∈ Hi if and only if NFi−1/F (NFi /Fi−1 (a)) ∈ H, so if and only if
NFi /Fi−1 (a) ∈ N−1

Fi−1/FH = Hi−1. Thus Hi = N−1
Fi /Fi−1

Hi−1. Our strategy will be first
to prove that Ht has a class field and then to apply the Reduction Lemma to the
cyclic extension Ft/Ft−1 to conclude that Ht−1 has a class field. Continuing in (a
finite number of) steps, we get eventually that H = H0 has a class field.

The above shows that when JF
/
H has exponent n, we are reduced to considering

the case where F containsμn , the set of all nth roots of unity. This situation has been
the subject of sufficiently much study to have acquired its own set of terminology.
A finite abelian extension K/F is called a Kummer n-extension if Gal (K/F) is
a group with exponent n and F contains all the nth roots of unity. We need some
facts from the theory of such extensions (“Kummer theory”). First we show that the

Kummer n-extensions correspond to the finite subgroups of F×/
(F×)n .

Theorem 2.1. Let F be a number field containing all the nth roots of unity. There
is a bijective correspondence between the finite Kummer n-extensions K of F and
the subgroups W of F× with (F×)n ⊆ W and W/

(F×)n finite. The correspon-

dence associates W to the field K = F(W 1/n), for which we have Gal (K/F) ∼=
W/

(F×)n .

Proof. Let K be a Kummer n-extension of F with Galois group G. Let

D = {α ∈ K× : αn ∈ F×}.
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Then α ∈ D is a root of a polynomial Xn − a for some a ∈ F×. Thus for σ ∈ G,
we have σ (α) = ζα where ζ is some nth root of unity in F .

Given α ∈ D, let ψα : G −→ F× be given by ψα(σ ) = σ (α)
α
∈ μn ⊆ F×.

Note that this makes ψα a character of G. Moreover, the map ψ : α �→ ψα is a
homomorphism D −→ Ĝ with kerψ = F×. Thus ψ gives rise to an embedding

D/
F× ↪→ Ĝ.

We claim that this is an isomorphism.
Suppose ψ(D) is a proper subgroup of Ĝ. Let L be the field associated to ψ(D).

Then L is the fixed field of

∩
χ∈ψ(D)

kerχ = ∩
α∈D

kerψα = {σ ∈ G : σ (α) = α for all α ∈ D}

and L � K . Note also that D ⊆ L. Since L �= K , there is some non-trivial σ ∈ G
with σ

∣
∣

L
= 1. But then σ ∈ ∩

χ∈ψ(D)
kerχ and ψα(σ ) = 1 for every α ∈ D. It follows

that there is some σ ∈ G with σ �= 1 and ψα(σ ) = 1 for all α ∈ D.
Since G is abelian, we may write G = 〈τ 〉 × G0, where we may choose τ and

G0 so that σ �∈ G0 and σ = τ �γ , with τ � �= 1, γ ∈ G0. Let E be the fixed field of
G0; then Gal (E/F) ∼= 〈τ 〉 is cyclic, say of order t . (Note that t|n and t � �.) Let ξ
be a primitive t th root of unity in F . Then NE/F (ξ ) = ξ t = 1. Hilbert’s Theorem 90
implies that there is some α ∈ E× with ξ = τ (α)

α
. Thus αt ∈ F and α ∈ D. By our

choice of σ , we have ψα(σ ) = 1. But ψα(τ ) = τ (α)
α
= ξ so that ψα is one-to-one on

〈τ 〉. Also, ψα(G0) = 1 since α ∈ E . Thus

1 �= ψα(τ �) = ψα(τ �γ ) = ψα(σ ) = 1,

a contradiction. Thus we must have ψ(D) = Ĝ, whence

D/
F×

∼= Ĝ ∼= G.

Since no non-trivial element of G fixes all of D, it follows that K = F(D).
The nth power map gives rise to an epimorphism

D/
F× −→ Dn/

(F×)n .

If two elements of D have equal nth powers, then their quotient is an nth root of
unity, so is in F×. Thus we have an isomorphism

D/
F×

∼= Dn/
(F×)n .

This shows that all Kummer n-extensions arise as claimed, (take W = Dn).
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Now let W be any subgroup of F× with (F×)n ⊆ W and W/
(F×)n finite.

Let α1, . . . , αr be representatives for a set of cosets that independently generate
W/

(F×)n . Put

K = F(W 1/n) = F(α1/n
1 , . . . , α1/n

r ).

Then K/F is Galois of finite degree. Let σ ∈ Gal (K/F). Then σ (α1/n
i ) = ζα

1/n
i ,

where ζ is some nth root of unity in F . We find σ n = 1. Since Gal (K/F) is clearly
abelian, we have shown that K/F is a finite Kummer n-extension.

It remains only to show that W is uniquely determined by K = F(W 1/n). Let

D = {α ∈ K× : αn ∈ F×}. Then Dn ⊇ W and Dn/
(F×)n has order [D : F×] =

[K : F] as before. We need only show [K : F] ≤ [W : (F×)n] to get Dn = W .
Let αi (F×)n have order di in the group W/

(F×)n , so that [W : (F×)n] =
d1 · · · dr . Now α

di
i ∈ (F×)n, whence

[F( n
√
αi ) : F] ≤ di

[K : F] = [F( n
√
α1, . . . ,

n
√
αr ) : F] ≤ d1 · · · dr . ��

Now that we have some information about Kummer extensions, we need to define
certain subgroups of the idèles. They too will play an important role in the proof of
the Existence Theorem.

Let F be a number field. Let S be a finite set of places of F and assume S ⊇
S∞ = {infinite places of F}. Define

JF,S =
∏

v∈S

F×v ×
∏

v �∈S

Uv an open subgroup of JF ,

FS = JF,S ∩ F× the S-units of F , a discrete subgroup of JF,S.

Note that FS also may be defined without using idèles:

FS = {α ∈ F× : the factorization of 〈α〉 involves no prime pv with v �∈ S}.

Exercise 6.1. What are JF,S∞ and FS∞? ♦
Lemma 2.2. There is a finite set of places S ⊇ S∞ such that JF = F× JF,S.

Proof. Since the ideal class group of F is finite, we can choose a set of representa-
tives a1, . . . , ah for the classes in CF . There are finitely many prime ideals in OF

that appear in the factorizations of the a j , say p1, . . . , pt are these primes. Choose
S to be the set of places of F corresponding to p1, . . . , pt together with the infinite
places of F . We claim that this S satisfies JF = F× JF,S.

That JF ⊇ F× JF,S is clear. For “⊆” let a = (. . . , av, . . .) ∈ JF . As in Proposi-
tion 3.2 of Chapter 4, we associate a fractional ideal to a by putting
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η(a) =
∏

v finite

pordvav
v .

Since the a j comprise a complete set of representatives for CF , there is ai with
η(a) ∈ aiPF , say η(a) = 〈α〉ai , with α ∈ F×. Consider the idèle α−1a. We have
η(α−1a) = ai , so

ai =
∏

v finite

pordv(α−1av)
v .

All the primes in the factorization of ai come from S, so ordv(α−1av) = 0 whenever
v �∈ S. It follows that α−1a ∈ JF,S, whence a ∈ F× JF,S as desired. ��
Exercise 6.2. The group of S-idèle classes of F is

CF,S = JF,S
/

FS
.

We have JF,S ⊆ JF and FS ⊆ F×. so there is a natural monomorphism CF,S ↪→
CF . Show that there is a topological and algebraic isomorphism

JF
/

F× JF,S
∼= CF

/
CF,S

. ♦
We are now ready to give a proof of a result on S-units that has its origins in the

work of Dirichlet, Chevalley and Hasse.

Theorem 2.3. Let S be a finite set of places of F, with S∞ ⊆ S. Then FS is the direct
product of the (finite cyclic) group of roots of unity in F, and a free abelian group
of rank #S− 1. That is,

FS
∼=WF × Z#S−1.

Proof. Write S0 = S− S∞ and let IS0 be the group of fractional ideals of F gener-
ated by {pv : v ∈ S0}. We have an exact sequence

1 −→ UF −→ FS
γ−→ IS0

where UF = O×
F and γ : α �→ 〈α〉. For each v ∈ S0, note that ph

v must be a principal
ideal in IS0 , (h = #CF ), so

Ih
S0
⊆ γ (FS) ⊆ IS0 .

Since both IS0 and Ih
S0

are free abelian groups of rank #S0, we must have that γ (FS)
is too.

Exercise 6.3. Show that FS
∼= O×

F × γ (FS). ♦
The theorem now follows from Dirichlet’s Unit Theorem. ��
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Corollary 2.4. If F contains the nth roots of unity and S ⊇ S∞ is a finite set of
places of F , then

[FS : Fn
S] = n#S.

Proof. FS = 〈ζ 〉 × A, where ζ is a root of unity of order divisible by n and A is a
free abelian group of rank #S− 1. Now 〈ζ 〉/〈ζ n〉 has order n and A/

An has order

n#S−1. ��
Let us return to the proof of the Existence Theorem. Recall we have reduced

the problem to the case where F contains the nth roots of unity (for n equal to the
exponent of JF

/
H). First we prove a lemma about nth powers in completions of F .

Lemma 2.5. Let v be a finite place of F , and let n ∈ Z+. If μn denotes the set of all
nth roots of unity, then

i. [Uv : Un
v ] = 1

‖n‖v #(Fv ∩ μn).

ii. [F×v : (F×v )n] = n
‖n‖v #(Fv ∩ μn).

Proof. (ii) follows from (i) since F×v ∼= Uv × Z (via the map x �→ (ε,m), where for
a fixed uniformizer π , we have x = επm).

It remains to prove (i). The proof we give is Artin’s.
Let π be a uniformizer for Fv and choose an integer t sufficiently large so that

|nπ t+1| ≥ |π2t |.

We have

(1+ xπ t )n ≡ 1+ nxπ t (mod nπ t+1), for any x ∈ Ov.

If ordvn = r , then

(1+ pt
v)

n = 1+ pt+r
v .

Take t sufficiently large so that no non-trivial nth root of unity lies in 1+pt
v. Consider

the homomorphism f : Uv −→ Uv given by f (x) = xn. We have

[Uv : 1+ pt
v] = [ f (Uv) : f (1+ pt

v)][ker f : ker f
∣
∣

1+pt
v

]

= [Un
v : (1+ pt

v)
n][Fv ∩ μn : 1]

= [Un
v : 1+ pt+r

v ]#(Fv ∩ μn)

= [Uv : 1+ pt+r
v ]

[Uv : Un
v ]

#(Fv ∩ μn).
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Thus

[Uv : Un
v ] = [Uv : 1+ pt+r

v ]

[Uv : 1+ pt
v]

#(Fv ∩ μn)

= [1+ pt
v : 1+ pt+r

v ]#(Fv ∩ μn)

= Npr
v #(Fv ∩ μn)

= 1

‖n‖
v

#(Fv ∩ μn).

��
Note that if Fv contains the nth roots of unity, then [Uv : Un

v ] = n
‖n‖v and [F×v :

(F×v )n] = n2

‖n‖v .

Theorem 2.6. Let F be a number field that contains all the nth roots of unity. Let
S be a finite set of places of F containing S∞, the places v such that pv|n and
sufficiently many finite places so that JF = F× JF,S. Let

B =
∏

v∈S

(F×v )n ×
∏

v �∈S

Uv.

Then F×B has class field F(F1/n
S ) over F.

Proof. Clearly FS ∩ (F×)n = Fn
S . Also

FS(F×)n/
(F×)n ∼= FS

/
FS ∩ (F×)n = FS

/
Fn

S

is a finite group of order n#S by Corollary 2.4. Thus K = F(F1/n
S ) is the Kummer

n-extension corresponding to FS(F×)n , and the group of order n#S above is isomor-
phic to Gal (K/F). Note that K is obtained by adjoining to F the roots of equations
f (X) = Xn − α = 0 with α ∈ FS. If β is such a root, then f ′(β) = nβn−1 is
divisible only by primes associated to places in S. Hence if v �∈ S then pv cannot
ramify in K/F . We must show that F×B = F×NK/F JK .

For “⊆”, note that since Gal (K/F) has exponent n, any element x ∈ (F×v )n for
v ∈ S satisfies ϕv(x) ∈ kerρK/F = F×NK/F JK . Meanwhile, any x ∈ Uv for v �∈ S

is a local norm since the norm is surjective on units in unramified local extensions.
Thus

∏
v �∈S Uv ⊆ NK/F JK .

For “⊇”, note that since [JF : F×NK/F JK ] = #Gal (K/F) = [K : F] = n#S

by Artin Reciprocity and Corollary 2.4 above, and since we now have F×B ⊆
F×NK/F JK , it suffices to show that [JF : F×B] = n#S. But

[JF : F×B] = [F× JF,S : F×B]

= [JF,S : B]

[JF,S ∩ F× : B ∩ F×]
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=
∏
v∈S[F×v : (F×v )n]

[FS : B ∩ F×]

=
∏
v∈S

n2

‖n‖v
[FS : B ∩ F×]

by Lemma 2.5

= n2#S

[FS : B ∩ F×]
by the Product Formula.

If we can show that B ∩ F× = Fn
S , we’ll be done. Clearly Fn

S ⊆ B ∩ F×.
Conversely, let x ∈ B∩F×. Then x is a local nth power at all v ∈ S. Thus [Fv(x1/n) :
Fv] = 1 for all v ∈ S, whence pv splits completely in F(x1/n)/F for all v ∈ S. Also,
if v �∈ S, then pv is unramified in F(x1/n). We have shown JF,S ⊆ NF(x1/n )/F JF(x1/n )

from which we conclude

JF = F× JF,S ⊆ F×NF(x1/n )/F JF(x1/n ).

This says that the kernel of the Artin map for F(x1/n)/F is all of JF , whence
Gal (F(x1/n)/F) is trivial, i.e., F(x1/n) = F , and x1/n ∈ F . Now x ∈ B implies
x ∈ Fn

S . ��

Let F be a number field. Given an open subgroup H of JF containing F×, let
JF
/
H have exponent n. As we have observed before, we may assume that F con-

tains the nth roots of unity. Find a set S of places as in the above theorem, then
enlarge S further to contain all v such that Uv �⊆ H. For this enlarged S, we get
B ⊆ H. Since F×B has a class field (by the theorem) and H = F×H ⊇ F×B ,
Corollary 1.2 applies and we conclude that H has a class field too. This completes
the proof of the following.

Theorem 2.7 (Existence). Let F be a number field. Let H be an open subgroup of
JF with F× ⊆ H. Then H has a class field over F, i.e., there is a finite abelian
extension K of F such that H = F×NK/F JK . ��

With this, we have finished the proofs of all the theorems mentioned at the end
of Chapter 3. Also, we have completed the proof of the generalization of Dirichlet’s
Theorem on Primes in Arithmetic Progressions, as the existence of a class field for
P+m was all that was needed to show that the Weber L-function satisfies Lm(1, χ) �=
0 for every non-trivial character χ of R+

m. Given Exercise 5.10, the proof of the
Chebotarev Density Theorem is also complete.

Using the Existence Theorem, we may also obtain a bit more information about
the primes that split completely in abelian extensions K/F . Recall the corollary to
Artin Reciprocity:

SK/F = {p of OF : p splits completely in K/F}
= {p of OF : p ∈ P+mNK/F (m)} = TK/F .
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We want to look at SK/F as it relates to the open subgroups of the idèles. We shall
use the embeddings ϕv : F×v ↪→ JF defined in Chapter 5.

Theorem 2.8. Let H be an open subgroup of JF that contains F× and let K be the
class field of H over F. Let v be a place of F. If pv splits completely in K/F, then
ϕv(F×v ) ⊆ H.
Proof. If pv splits completely in K/F , then the local norm at v is surjective on
units (because e = 1), and there is a uniformizer π for Fv , with π the norm of a
uniformizer for Kw , where w is a place of K above v (because f = 1). Since every
element of F×v has the form επ t for some ε ∈ Uv and some t ∈ Z, we conclude that
every element of F×v is a norm. Thus ϕc(F×v ) ⊆ F×NK/F JK = H. ��

The converse of the above proposition is also true (it is called the Complete
Splitting Theorem), but its proof requires more work; we postpone it until the next
section. For now, we shall show a partial converse (for Kummer extensions). Its
proof is based on a technique of Herbrand.

Theorem 2.9. Let H be an open subgroup of JF that contains F× and let K be the
class field over F of H. Suppose JF

/
H has exponent n and that F contains the nth

roots of unity. Let v0 be a place of F with ϕv0 (F×v0
) ⊆ H. Then pv0 splits completely

in K/F.

Proof. Let S be a finite set of places of F chosen so that all of the following are
true:

S∞ ⊆ S,

v0 ∈ S,

{v : pv ramifies in K/F} ⊆ S,

{v : pv|n} ⊆ S, and

JF = F× JF,S.

Let

B1 = F×v0
×
∏

v∈S
v �=v0

(F×v )n ×
∏

v �∈S

Uv

B2 = (F×v0
)n ×

∏

v∈S
v �=v0

F×v ×
∏

v �∈S

Uv.

Both are open subgroups, and we have

B1 ∩ B2 =
∏

v∈S

(F×v )n ×
∏

v �∈S

Uv = B.

We claim that B1 ⊆ H. To prove the claim, note that ϕv0 (F×v0
) ⊆ H by hypothesis,

and since JF
/
H has exponent n, ϕv((F×v )n) ⊆ H. Finally, if v �∈ S, then pv is

unramified in K/F and the local norm is surjective on Uv , whence ϕv(Uv) ⊆ H =
F×NK/F JK .
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Since B1 ⊆ H, F×B1 ⊆ F×H = H. Now F×B1 has a class field over F , say
K1. Since F×B1 ⊆ H, we have K ⊆ K1. We’ll show that pv0 splits completely in
K1/F , whence also in K/F .

Let W1 = F× ∩ B1, W2 = F× ∩ B2. Then Fn
S ⊆ Wi ∩ (F×)n (why?).

Conversely, Fn
S ⊇ Wi ∩ (F×)n is clear, so that Fn

S = Wi ∩ (F×)n . Let

L1 = F(W 1/n
2 ), L2 = F(W 1/n

1 ).

We claim L1 = K1. Now L1 = F((W2(F×)n)1/n), and similarly for L2, so we may
apply Kummer theory to conclude

[L1 : F] = [W2(F×)n : (F×)n]

= [W2 : W2 ∩ (F×)n]

= [W2 : Fn
S ].

Similarly, [L2 : F] = [W1 : Fn
S ].

Let Hi = F×NLi /F JLi , so that Li is the class field of Hi over F . Note that for v �∈
S, pv cannot ramify in Li/F because Li is obtained by adjoining roots of equations
f (X) = Xn − α = 0 with α ∈ F× ∩ B j . If β is such a root, then f ′(β) = nβn−1

is divisible only by primes associated to places in S. Thus the extensions Li/F are
unramified outside S.

If x ∈ W2 = B2 ∩ F×, then x is a local nth power at v0, so that x1/n ∈ Fv0 . It
follows that [Fv0 (x1/n) : Fv0 ] = 1 = e f and pv0 splits completely in F(x1/n)/F ,
hence also in L1/F . Similarly, if v ∈ S and v �= v0, then pv splits completely in
L2/F .

Now ϕv0 (F×v0
) ⊆ H1 by Theorem 2.8, and ϕv((F×v )n) ⊆ H1 for v ∈ S, v �= v0,

since L1/F is a Kummer n-extension. Also, ϕv(Uv) ⊆ H1 for v �∈ S since such v
are unramified in L1/F so all their local units are norms. Thus B1 ⊆ H1. Similarly
B2 ⊆ H2.

We get

[L1 : F] = [JF : H1] by Artin Reciprocity

≤ [JF : F×B1] since F×B1 ⊆ H1

= [F× JF,S : F×B1]

= [JF,S : B1]

[FS : F× ∩ B1]

= [F× ∩ B1 : Fn
S ]

⎛

⎝

∏
v∈S
v �=v0

[F×v : (F×v )n]

[FS : Fn
S ]

⎞

⎠ (∗)

= [W1 : Fn
S]

⎛

⎝

∏
v∈S
v �=v0

[F×v : (F×v )n]

n#S

⎞

⎠

= [L2 : F]

n#S

∏

v∈S
v �=v0

[F×v : (F×v )n].
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Similarly,

[L2 : F] ≤ [JF : F×B2] = [L1 : F]

n#S
[F×v0

: (F×v0
)n]. (∗∗)

Putting these together, we get

[L1 : F][L2 : F] ≤
∏
v∈S[F×v : (F×v )n]

n2#S
[L1 : F][L2 : F]

=
∏
v∈S

n2

‖n‖v
n2#S

[L1 : F][L2 : F]

=
∏

v∈S

1

‖n‖
v

[L1 : F][L2 : F]

= [L1 : F][L2 : F].

The last equality follows by the Product Formula (since S contains all v for which
‖n‖

v
�= 1). We must have equality everywhere in (∗) and (∗∗), whence

[Li : F] = [JF : F×Bi ].

Since Hi = F×NLi /F JLi , we also have

[Li : F] = [JF : Hi ].

We have shown that L1 = K1 is class field to F×B1 so that pv0 splits completely
in L1/F as claimed. ��

3 The Artin Map on Local Fields

We have reached a point where it is possible to revisit our discussion of the Artin
map on local fields. In particular, we can prove the following.

Theorem 3.1. Let K/F be an abelian extension of number fields, and let v be a
finite place of F. The Artin map ρK/F satisfies ρK/F (ϕv(F×v )) = Z (pv), the decom-
position group.

Proof. Previously, we have shown that ρK/F (ϕv(F×v )) ⊆ Z (pv) and that they are
equal when pv is unramified in K/F . Since we are concerned only with the comple-
tions, and since the completion of KZ equals the completion of F , we may assume
F = KZ , the fixed field of Z (pv), and thus g(pv) = 1 for K/F .

Let E be the fixed field of the subgroup ρK/F (ϕv(F×v )) of Z (pv). We must show
E = F .
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Suppose E �= F . Then Gal (E/F) is a non-trivial abelian group, so there is a
field L, with F ⊆ L ⊆ E and Gal (L/F) cyclic of prime order, say of order q . Let
ζ be a primitive q th root of unity, and consider the fields below.

Note that

ρL/F (ϕv(F×v )) =
(
ϕv(F×v )

L/F

)

=
(
ϕv(F×v )

K/F

) ∣∣
∣
∣

L

= 1

since L ⊆ E , the fixed field of ρK/F (ϕv(F×v )).

Exercise 6.4. Show that this implies ρL(ζ )/F(ζ )(ϕw(F(ζ )×w)) = 1, where w is a place
of F(ζ ) above v. ♦

Now we use Exercise 6.4. We have

ϕw(F(ζ )×w) ⊆ kerρL(ζ )/F(ζ )

and

JF(ζ )
/

kerρL(ζ )/F(ζ )
∼= Gal (L(ζ )/F(ζ )) ∼= Gal (L/F),

(note [F(ζ ) : F] is a divisor of q − 1 so is prime to q). Since this has exponent
q , we may apply Theorem 2.9 from the previous section to conclude that pw splits
completely in L(ζ )/F(ζ ). Again note that (q, q − 1) = 1; since e and f are multi-
plicative in towers of fields, we must have e = f = 1 for L/F also.

We have shown that pv splits completely in L/F . Since F = KZ , this is not
possible unless L = F , a contradiction. Thus E = F as claimed. ��
Corollary 3.2 (Complete Splitting Theorem). Let H be an open subgroup of JF

with F× ⊆ H, and let K be the class field of H over F . Let v be a finite place of F .
Then pv splits completely in K/F if and only if ϕv(F×v ) ⊆ H.
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Proof. The forward implication follows since every element of F×v is a norm,
as we have observed before. We have shown the reverse implication for Kum-
mer n-extensions already; now we prove it in general. Suppose ϕv(F×v ) ⊆ H =
F×NK/F JK = kerρK/F . Then 1 =

(
ϕv(F×v )

K/F

)
= Z (pv) by Theorem 3.1. Since

#Z (pv) = e f = 1, we get that pv splits completely. ��
Exercise 6.5. Is the above also true for infinite places v? ♦
Exercise 6.6. Show (for w|v), that ker (ρK/F ◦ ϕv) = NKw/Fv K×

w . ♦
Corollary 3.3. Let H be an open subgroup of JK with F× ⊆ H and let K be the
class field of H over F . Then

ϕv(F×v ) ∩H = ϕv(NKw/Fv K×
w )

ϕv(Uv) ∩H = ϕv(NKw/FvUw).

Proof. H = kerρK/F . ��
Theorem 3.4. Let K/F be an abelian extension of number fields, and let H =
F×NK/F JK . Let v be a finite place of F. Then ρK/F (ϕv(Uv)) = T (pv), the inertia
subgroup in Gal (K/F).

Proof. Recall, we have shown ρK/F (ϕv(Uv)) ⊆ T (pv) in general, and equality when
pv is unramified, i.e., when T (pv) is trivial.

As before, we may assume that F = KZ , so that Gal (K/F) = Z (pv). Let KT be
the fixed field of T (pv); it is the maximal subfield of K that is unramified over F .
We have Gal (K/KT ) = T (pv).

If w is a place of KT above v, then

(
ϕw(Uw)

K/KT

)
=
(

NKT /F (ϕw(Uw))

K/F

)

=
(
ϕv(N(KT )w/FvUw)

K/F

)

=
(
ϕv(Uv)
K/F

)
since (KT )w/Fv is unramified.

Since f = 1 for Pw in K/KT , there is a uniformizerπ of (KT )w that is a local norm

from the completion of K . Thus ϕw(π) ∈ K×
T NK/KT JK , whence

(
ϕw(π )
K/KT

)
= 1. Now

(KT )×w = 〈π〉 × Uw , and

(
ϕw((KT )×w)

K/KT

)
= Z (Pw) = Gal (K/KT ) = T (pv).

The above implies that we must have
(
ϕw(Uw )
K/KT

)
= T (pv) since the image of π is

trivial. Thus
(
ϕv(Uv )
K/F

)
= T (pv). ��.
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Corollary 3.5. If H is an open subgroup of JF with F× ⊆ H, and K is the class
field to H over F , then for any finite place v of F , the class field to Hϕv(Uv) is the
maximal subfield of K in which pv is unramified, hence it is the field KT . ��

Recall we have shown (Chapter 4) that [Uv : NKw/FvUw] ≤ e(w/v), with equality
when the extension is cyclic. By Theorem 3.4, we now have equality for any abelian
extension.

Corollary 3.6. Let K/F be an abelian extension of number fields, v a finite place
of F , and w a place of K above v. Then

Uv/
NKw/FvUw ∼= T (pv). ��

Now that we have shown that [Uv : NKw/FvUw] = e(w/v) for any abelian
extension K/F , we can prove a result about the conductor, as was promised in
Chapter 5.

Theorem 3.7. If K/F is an abelian extension of number fields, then f(K/F) is divis-
ible by all the ramified primes, and no others.

Proof. By definition, the conductor is the minimal ideal f of OF such that E+F,f ⊆
F×NK/F JK = H. For any m, we have

E+F,m =
∏

v imaginary

C× ×
∏

v real

R×+ ×
∏

pv |m
(1+ pordvm

v )×
∏

pv�m

Uv.

Since NK/FEK is open in EF , we can choose m so that

E+F,m ⊆ NK/FEK =
∏

v

∏

w|v
NKw/FvUw.

Since the local norm is surjective on units at unramified places, we have

ϕv(Uv) ⊆ NK/FEK

whenever pv is unramified. Thus the ideal m need not be divisible by any unramified
prime.

The minimality of f implies f|m for any such m, so f is not divisible by any
unramified prime.

On the other hand, suppose pv is ramified in K/F . Recall H = F×NK/F JK =
kerρK/F by Artin Reciprocity. We know (for pv ramified), that ρK/F (ϕv(Uv)) =
T (pv) �= 1, whence ϕv(Uv) �⊆ kerρK/F = H. If pv � f, then the component of E+F,f
at v would be all of Uv, i.e., we would have ϕv(Uv) ⊆ E+F,f. Since E+F,f ⊆ H by the
definition of conductor, we get ϕv(Uv) ⊆ H, a contradiction. Thus pv|f whenever pv
is ramified. ��
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Recall, by Corollary 3.3 (to the Complete Splitting Theorem), for H = F×NK/F JK ,
we have H ∩ ϕv(Uv) = ϕv(NKw/FvUw). We may combine this with Theorem 3.7 to
find the conductor of a cyclotomic extension of Q.

Example.

1. Let F = Q, K = Q(ζm), where m = pt for some prime p and some positive
integer t . Let f be the conductor of K/Q. The only ramified prime is p, so that
by Theorem 3.7, we have f = prZ for some positive integer r . Now p ramifies
totally in K/Q, so

[Z×p : NKw/QpUw] = pt−1(p − 1).

Recall that Z×p = μp−1× (1+ pZp), so we must have NKw/QpUw = 1+ pt Zp,
(for p = 2 this can be checked directly; for p > 2 this is the only subgroup of
Z×p with index pt−1(p − 1) — why?).

On the other hand,

E+Q,f = R×+ × (1+ prZp)×
∏

q �=p

Uq ⊆ H.

This gives

ϕp(1+ prZp) ⊆ H ∩ ϕp(Z×p ) = ϕp(NKw.QpUw)

1+ prZp ⊆ 1+ ptZp

r ≥ t .

By the minimality of f, we must have r = t , i.e., f = mZ.

Exercise 6.7. Let F = Q, K = Q(ζm), where m is any positive integer. Show that
f(K/Q) = mZ. ♦

Exercise 6.8. For K = Q(
√

d), where d is square-free, and F = Q, show that this
notion of conductor again agrees with the classical definition of the conductor, i.e.,
f = f Z where f is the smallest positive integer such that K ⊆ Q(ζ f ). (If we had
defined the conductor as a divisor, then we would have had f = f Z when K is real
and f = p∞ f Z when K is imaginary, where p∞ is the infinite prime of Q.) ♦

Let us consider cyclotomic fields further. We have shown E+Q,f ⊆ H = Q×NK/Q JK ,
where K = Q(ζm), f = mZ, and m = pt for some prime p and some positive inte-
ger t . Exercise 6.7 allows us to extend this result to all positive integers m. Recall
H = kerρK/Q by Artin Reciprocity. In Proposition 3.4 of Chapter 4 we showed

JQ
/

Q×E+Q,f
∼= R+

Q,f,

the ray class group, and in Chapter 3 we showed
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R+
Q,f
∼=
(
Z/

mZ

)×
.

By Artin Reciprocity,

JQ
/

Q×NK/Q JK
∼= Gal (K/Q) ∼=

(
Z/

mZ

)×
.

Putting this together, we conclude

Q×E+Q,f = Q×NK/Q JK .

It follows that K = Q(ζm) is the class field of Q×E+Q,mZ, (or, in terms of ideals, of
P+Q,mZ).

Now suppose F/Q is any finite abelian extension. Then F is the class field of
Q×NF/Q JF , or, in terms of ideals, it is the class field of some subgroup H of IQ(f)
withP+Q,f ⊆ H. (Here f is the conductor of F/Q, an ideal f Z of Z.) Since P+Q,f ⊆ H,
we have Q×E+Q,f ⊆ Q×NF/Q JF in terms of idèles. By the order-reversing property
of the correspondence between open subgroups of JQ and class fields, the class field
of Q×E+Q,f must contain the class field of Q×NF/Q JF . It follows that F ⊆ Q(ζ f ).
We have shown the following.

Theorem 3.8 (Kronecker, Weber). Every finite abelian extension F of Q satisfies
F ⊆ Q(ζ ) for some root of unity ζ. ��

4 The Hilbert Class Field

Now that we have proved the Existence Theorem, we know that the group H =
F× JF,S∞ = F×EF has a class field. Call it F1. Recall the example at the end of
Chapter 5. In it, we showed that if K/F is everywhere unramified, then F×NK/F JK ⊇
F×EF . Thus K ⊆ F1.

The converse is also true. Suppose H ⊇ F×EF is a subgroup of JF . Then H is
open, so it has a class field K over F . Since ϕv(Uv) ⊆ H = kerρK/F for every v,

we have that
(
ϕv(Uv )
K/F

)
= 1, whence T (pv) = 1. We have shown the following.

Proposition 4.1. Let F be a number field and let H be an open subgroup of JF that
contains F×. Then: H ⊇ F×EF if and only if the class field to H over F is an
abelian extension of F that is everywhere unramified. ��

Taking H = F×EF and applying Proposition 4.1, we find that the extension
F1/F is abelian and everywhere unramified; it is necessarily the maximal unrami-
fied abelian extension of F . F1 is called the Hilbert class field of F .

Note that the Isomorphy Theorem gives Gal (F1/F) ∼= JF
/

F×EF
. But we

showed (much) earlier, that JF
/

F×EF
∼= CF , the ideal class group (see Propo-

sition 4.3.3). Thus
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Gal (F1/F) ∼= CF .

In particular, note that [F1 : F] = hF and the maximal unramified abelian extension
of a number field is a finite extension.

Exercise 6.9. Which primes of OF split completely in F1? ♦
Exercise 6.10. Let F be a number field, and let F1 be its Hilbert class field. Find the
conductor f of F1/F and identify the subgroup H with P+F,f < H < IF (f) that has
F1 as its class field over F (in the sense of Weber). ♦
Exercise 6.11. Let F ⊆ K ⊆ E ⊆ K1 be number fields, where K1 is the Hilbert
class field of K , and suppose E/F is abelian. Show that f(E/F) = f(K/F) and that
an infinite prime of F ramifies in E/F if and only if it ramifies in K/F . ♦
Exercise 6.12. Let K be the maximal unramified abelian p-extension of a number
field F . Show that Gal (K/F) is isomorphic to the Sylow p-subgroup of the ideal
class group CF . The field K is called the Hilbert p-class field of F . Find the con-
ductor f of K/F and identify the subgroup H with P+F,f < H < IF (f) such that the
class field over F of H is the Hilbert p-class field. ♦
Example.

2. Let F = Q(
√−5). The conductor f(F/Q) = f Z, where f is the smallest posi-

tive integer such that F ⊆ Q(ζ f ). Thus f(F/Q) = 20Z. We may use Minkowski
theory to compute the class number of F : hF = 2. Thus [F1 : F] = 2. We
are seeking an extension F1/F of degree 2 that is everywhere unramified. It
will necessarily be the (unique) maximal unramified extension of F . We found
such an extension in Chapter 2 (using Dirichlet characters). Hence we conclude
F1 = Q(i,

√−5).

Exercise 6.13. Let F = Q(
√−15). Find the Hilbert class field F1. ♦

Exercise 6.14. Let F = Q(
√−21). Show (without Minkowski theory) that hF ≥ 4.

Assuming that hF = 4, find the Hilbert class field F1. ♦
The above example and exercises are perhaps misleading in that all share the

property that F1/Q is abelian. This need not be the case in general. Indeed, F/Q
may not even be Galois. We include the following example from Janusz’ book, [J],
to illustrate this situation.

Example.

1. Let F = Q(α), where α is the real cube root of 11. Minkowski theory gives
hF = 2. We may factor 2OF by noting that

X3 − 11 ≡ (X + 1)(X2 + X + 1) (mod 2)

so that 2OF = p1p2 where Np1 = 2Z, Np2 = 4Z. One may show (see Chapter 1
of [J]) that p1 is not principal and that p2

1 = 〈α2 − 5〉. The units in OF are
{±1} × 〈ε〉, where ε > 0 is a fundamental unit.
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Since F/Q is not normal, we use Kummer theory to find F1. Note that [F1 :
F] = 2, so F1/F is a Kummer 2-extension. Thus F1 is a subfield of the extension
of F obtained by adjoining the square roots of all the S-units for a suitable choice
of S, as in the proof of the Existence Theorem. Here we may take S = {p1, p2}
∪S∞.

If x ∈ F× is divisible only by primes in S, then

〈x〉 = pa
1p

b
2 = (p1p2)bpa−b

1 = 〈2〉bpa−b
1 .

Only even powers of p1 are principal, so a − b is even, and we get

〈x〉 = 〈2b〉〈α2 − 5〉k

where k = a−b
2 . Thus

x = 2b(α2 − 5)ku

for some unit u. We have shown that the S-units are

FS = {±1} × 〈ε〉 × 〈2〉 × 〈α2 − 5〉.

To get an unramified extension of F of degree 2 = hF , we want to adjoin a
root of some (irreducible) polynomial of the form X2 − β with β ∈ FS chosen
so that no prime ramifies. If 2 or α2 − 5 divides β then p1 will ramifiy. Hence
we must take β ∈ {±1} × 〈ε〉. Since F has a real prime and we do not want it to
ramify either, we must take β > 0. Thus

F1 = F(
√
ε)

where ε > 0 is the fundamental unit in F . Janusz computes this fundamental
unit explicitly in his Chapter 1 as ε = 89+ 40α + 18α2.
As we mentioned in Chapter 3, the work of Weber on class field theory grew out

of two main examples. First was the study of the abelian extensions of Q, which
are completely described by the Kronecker-Weber Theorem. Second was the study
of the abelian extensions of imaginary quadratic fields. For an imaginary quadratic
field F = Q(

√−d), the theory of complex multiplication gives us a description of
the abelian extensions of F . A theorem of Weber ([We3], 1908) and Fueter ([Fue],
1914) tells us that there is a one-to-one correspondence between the ideal classes in
CF and isomorphism classes of elliptic curves over C with complex multiplication
by OF ; the j -invariant j of such an elliptic curve is an algebraic integer, and the
field F( j ) is the Hilbert class field F1. The above imaginary quadratic examples
and exercises bear this out. More generally, the maximal abelian extension of F
is generated over F by the j -invariant and the values of a certain analytic func-
tion (a Weber function) at all the torsion points of the elliptic curve, (Takagi, [T],
1920). For details, see Shimura’s Introduction to the Arithmetic Theory of Automor-
phic Functions, [Sh], or Lang’s Elliptic Functions, [L2]. Also see Serre’s article
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Complex Multiplication in Cassels and Fröhlich, [CF]. Hilbert’s Twelfth Problem,
[Hi3], is to find for any number field F , functions that play the same role. The theory
of elliptic curves with complex multiplication by an imaginary quadratic field has
been generalized to higher dimensions: One considers abelian varieties with com-
plex multiplication by a C M-field and automorphic functions. This provides some
nice results for C M-fields. However, for other number fields, in general we do not
have explicit constructions of their abelian extensions.

A conjecture of Hilbert was that any ideal of a number field F becomes principal
in F1. This was one of the original motivations for class field theory. It was not
proved until 1930 by Furtwängler, [Fur2]. Now called the Principal Ideal Theorem,
its proof was simplified shortly thereafter using an idea of Artin, [A3], which we
describe here.

Let F2 be the Hilbert class field of F1. We first show that F2/F is Galois. To
this end, suppose λ is an F-isomorphism F2 −→ λ(F2). Then λ

∣
∣

F1
∈ Gal (F1/F),

so λ(F1) = F1. But λ(F2) is everywhere unramified and abelian over λ(F1) = F1,
whence λ(F2) = F2 by the uniqueness of the Hilbert class field.

Let G = Gal (F2/F) and let A = Gal (F2/F1), so that G/
A
∼= Gal (F1/F).

Clearly, within F2, the subfield F1 is maximal abelian over F , so G/
A is the largest

abelian factor group of G. Thus A = G ′, the commutator subgroup of G. Note also
that since A is abelian, (G ′)′ is trivial.

Consider the map

γ : IF
/
PF

−→ IF1
/
PF1

given by aPF �→ (aOF1)PF1 . This is readily seen to be a well-defined group homo-
morphism γ : CF −→ CF1 . To prove the Principal Ideal Theorem amounts to
showing that this map is trivial.

By Artin Reciprocity, we have

CF
∼= Gal (F1/F) ∼= G/

A = G/
G ′ and

CF1
∼= Gal (F2/F1) = A = G ′.

Let V : G/
G ′ −→ G ′ be the homomorphism making the following diagram com-

mute.

Exercise 6.15. Given any group G, put Gab = G/
G ′ . Suppose H < G with

[G : H ] finite. We can define V : Gab −→ H ab as follows. Choose a set R of
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representatives for the left cosets of H in G. Let g ∈ G. For each r ∈ R there is a
unique pair r̄ ∈ R and hr such that gr = r̄ hr . Put V (gG ′) =∏r∈R hr H ′. Show that
this map V is well-defined and that it is the desired map to make the above diagram
commute. ♦

Artin’s idea was to show that the map V , the group theoretical map called the
transfer (or Verlagerung), must be trivial. This reduced the problem to a purely
group theoretical result (also called the “principal ideal theorem,” even though it
does not appear to be about ideals at all!):

If G is a finite group and G ′ is its commutator subgroup, then the transfer V : G/
G ′ −→

G ′/
(G ′)′ is the trivial map.

We omit the proof, but the interested reader may consult the 1934 paper of Iyanaga,
[Iy], the 1954 paper of Witt, [Wi], or Neukirch’s book, [N]. We record the result
below. (For a result that has the Principal Ideal Theorem as a corollary, see Suzuki’s
1991 article, [Su].)

Theorem 4.2 (Principal Ideal Theorem). Every fractional ideal a of a number
field F becomes principal in F1, i.e., aOF1 is principal. ��

Consider the tower

F ⊆ F1 ⊆ F2 ⊆ · · ·

called the Hilbert class field tower of F . If this tower is finite, then every ideal
of some Fi is principal, so that the number field F is contained in a number field
Fi of class number 1. It was an open question for a long time as to whether the
Hilbert class field tower could ever be infinite. In the early 1960s, Golod and
Shafarevich, [GS], were able to give examples of number fields F having infinite
class field towers. For example, the field Q(

√
d), where d = 22 · 3 · 7 · 11 · 13 ·

19 · 23 is such a field. (See Roquette’s article in Cassels and Fröhlich, [CF], for
details.)

Suppose F is a number field that can be embedded in a number field L of class
number 1.

Since hL = 1, we must have L1 = L. Since L F1/L is abelian and everywhere
unramified (because F1/F is), we must have L F1 ⊆ L1. Thus F1 ⊆ L.
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Now consider F2. By the same reasoning, L F2/L is everywhere unramified and
abelian, so F2 ⊆ L. Continuing by induction, we find that the entire class field tower
for F is contained in the number field L. This forces the class field tower of F to
be finite. The result of Golod and Shafarevich shows that there are number fields
F that cannot be embedded into a number field of class number 1. In such a tower,
for any i the ideals of Fi will all become principal in Fi+1, but there will always be
other ideals of Fi+1 that are non-principal.

The above argument is based on the fact that if K/F is an extension of number
fields, then K F1/K is abelian and everywhere unramified so that K F1 ⊆ K1. We
can exploit this idea further to obtain information about class numbers in certain
situations.

Theorem 4.3. Let K/F be an extension of number fields and suppose K ∩ F1 = F.
Then

i. hF

∣∣hK .
ii. the map NK/F : CK −→ CF is surjective.

Proof. Note that Gal (K F1/K ) ∼= Gal (F1/F) ∼= CF is abelian. Also K F1/K is
everywhere unramified (since F1/F is). Thus K ⊆ K F1 ⊆ K1. We have the follow-
ing picture.

But then

CK
∼= Gal (K1/K )

restr.
� Gal (K F1/K ) ∼= Gal (F1/F) ∼= CF .
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This implies that hF

∣
∣hK .

Apply the Consistency Property of the Artin symbol, and it follows that for any
a ∈ IK ,

(
a

K1/K

) ∣∣
∣∣

F1

=
(

NK/Fa

F1/F

)
.

Note that the Artin symbol is defined for any ideal of K , since K1/K is unramified
everywhere. This gives us a commutative diagram:

The horizontal arrows are the isomorphisms arising from Artin Reciprocity.
Since Gal (K F1/K ) ∼= Gal (F1/F) via restriction, the vertical arrow on the right

is an epimorphism. This implies that the map NK/F : CK −→ CF is surjective. ��
Proposition 4.4. If K/F is an extension of number fields, and there is some prime
p of OF that is totally ramified in K/F , then hF

∣∣hK .

Proof. Let K/F be an extension of number fields and suppose p is a prime of OF

that is totally ramified in K/F . Now p is totally ramified in K ∩ F1/F because it is
totally ramified in K/F . But also p is unramified in F1/F , so it is unramified K ∩
F1/F . The only way that p can be simultaneously totally ramified and unramified
in K ∩ F1/F is if K ∩ F1 = F . Now apply (i ) of the Theorem. ��

5 Arbitrary Finite Extensions of Number Fields

The ideas from the previous section can be used to obtain some information on
non-abelian extensions of number fields. For example, if E/F is a (not necessarily
abelian) Galois extension of number fields, let G = Gal (E/F) and let G ′ be the
commutator subgroup of G. Put Gab = G/

G ′ as before. If K denotes the fixed
field of G ′, then K/F is abelian with Galois group isomorphic to Gab. By Artin
Reciprocity, we have an isomorphism

JF
/

F×NK/F JK
∼= Gab.

It is easy to show that F×NE/F JE ⊆ F×NK/F JK since K ⊆ E , but in fact we can
say more. The following theorem gives F×NE/F JE = F×NK/F JK , since it shows
that they have the same class field.

Theorem 5.1. Let E/F be an extension of number fields and let H = F×NE/F JE ,
an open subgroup of JF that contains F×. Let K be the class field of H over F.
Then K/F is the maximal abelian subextension of E/F.
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Proof. We know that H is an open subgroup of JF by Exercise 4.24. Thus it has
a class field K over F . Now K/F is abelian, and F×NK/F JK = H. If K/F is a
subextension of E/F , then it is clearly the maximal abelian subextension of E/F .
(By the Ordering Theorem, any properly larger abelian subextension of E/F would
correspond to a smaller subgroup H̃ with H = F×NE/F JE ⊆ H̃ � H.) Hence
it suffices to show that K ⊆ E . We do this by considering the extension K E/E .
By Artin Reciprocity H is the kernel of the Artin map for K/F . If a ∈ JE , then
NE/F (a) ∈ H, whence

1 =
(

NE/F (a)

K/F

)
=
(

a
K E/E

) ∣∣
∣
∣

K

by the Consistency Property. Since an automorphism of K E/E is completely deter-
mined by its action on K , we must have that a is in the kernel of the Artin map for
K E/E . It follows that the kernel of the Artin map for K E/E is all of JE . Thus (by
Artin Reciprocity again), Gal (K E/E) is trivial, i.e., K E = E and K ⊆ E . ��
Exercise 6.16. Let F be a number field and let H be an open subgroup of JF that
contains F×. Show that if E/F is a finite extension, then K E is the class field over
E to N−1

E/FH. ♦

Exercise 6.17. Let E/F be a finite extension of number fields. Show that [E : F] =
[JF : F×NE/F JE ] if and only if E/F is abelian. ♦

At the present time, efforts to extend class field theory to arbitrary Galios exten-
sions of number fields remain largely incomplete. However, there is at least one
idea that generalizes quite nicely, via the Chebotarev Density Theorem. Let K/F
be a Galois extension of number fields and as usual let SK/F be the set of prime
ideals of OF that split completely in K/F . If K/F is abelian, then we know that
SK/F uniquely determines K . Using the Chebotarev Density Theorem, (see Exer-
cise 5.10), we may extend this result to arbitrary finite Galois extensions of the
number field F .

Let G = Gal (K/F), a possibly non-abelian group, where K/F is a Galois exten-
sion of number fields. For σ ∈ G, put

Sσ = {unramified primes p of OF :

(
P

K/F

)
∈ [σ ]G for P

∣
∣pOK }

(as before [σ ]G denotes the conjugacy class of σ in G). Note that if σ and τ are
conjugate in G, then Sσ = Sτ , while if they are not conjugate, then Sσ ∩ Sτ = ∅.
The Chebotarev Density Theorem says that δF (Sσ ) = c

n , where c = #[σ ]G and
n = #G.

Now let E/F be an arbitrary (not necessarily Galois) extension of number fields
and put

S1
E/F = {unramified primes p of OF : f (P/p) = 1 for some prime P

∣
∣pOE }.
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Note we have S1
E/F = SE/F when E/F is Galois. In general, suppose K/F is the

normal closure of E/F , and put G = Gal (K/F), H = Gal (K/E). Then, up to a set
of Dirichlet density zero, we may write S1

E/F as a disjoint union over the conjugacy
classes [σ ]G in G:

S1
E/F ≈ ∪

[σ ]G∩ H �=∅
Sσ .

Observe that we have H ⊆ ∪
[σ ]G∩ H �= ∅

[σ ]G with equality if and only if E/F is Galois.

Thus

1

[E : F]
= #H

#G

≤ 1

#G

∑

[σ ]G∩ H �= ∅
#[σ ]G

=
∑

[σ ]G ∩ H �= ∅
δF (Sσ ) by Chebotarev

= δF

(
∪

[σ ]G∩ H �= ∅
Sσ

)

= δF (S1
E/F ),

with equality if and only if E/F is Galois.

Exercise 6.18. Let E/F be an extension of number fields. Show that E/F is Galois
if and only if every prime in S1

E/F splits completely in E/F . ♦

Theorem 5.2. Suppose K/F is a Galois extension of number fields and L/F is any
finite extension. Then S1

L/F ≺ SK/F if and only if K ⊆ L.

Proof. We show the forward implication (the converse is clear). Suppose S1
L/F ≺

SK/F and let N/F be the Galois closure of K L/F . Put G = Gal (N/F) and H =
Gal (N/K ), H ′ = Gal (N/L).
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Then

S1
L/F ≈ ∪

[σ ]G∩ H ′ �= ∅
Sσ,N/F ≺ SK/F = S1

K/F ≈ ∪
[τ ]G∩ H �= ∅

Sτ,N/F .

Let σ ∈ H ′. By Chebotarev, the set Sσ,N/F has positive Dirichlet density. So there is
some some prime p ∈ Sσ,N/F that occurs in one of the Sτ,N/F , where τ ∈ G satisfies
[τ ]G ∩ H �= ∅. We have shown that Sσ,N/F ∩ Sτ,N/F contains the prime p. But the
only way to have Sσ,N/F ∩ Sτ,N/F �= ∅ is if [σ ]G = [τ ]G , and since H is normal in
G, we also have [τ ]G ⊆ H . It follows that σ ∈ H . We have shown that H ′ ⊆ H ,
and thus their fixed fields satisfy the reverse containment: K ⊆ L. ��
Corollary 5.3. A Galois extension of number fields K/F is uniquely determined by
the set SK/F of primes that split completely. ��

Note that when E/F is Galois and non-abelian, and K/F is its maximal abelian
subextension, then on the one hand we have F×NE/F JE = F×NK/F JK by Theo-
rem 5.1, but on the other we have SE/F � SK/F by Corollary 5.3. This behavior is
illustrated for example in the case when F = Q and E is the splitting field of X3−11
over Q. The reader may verify that the prime 7Z splits completely in K = Q(ζ3)/Q
but not in E/Q, while the prime 19Z splits completely in E/Q (so also in K/Q).

6 Infinite Extensions and an Alternate Proof of the Existence
Theorem

We begin with a brief review of infinite Galois theory. Let M/F be a (possibly
infinite) Galois extension with Galois group G. In order to describe the Galois cor-
respondence it is necessary to topologize G. For each σ ∈ G, we take the cosets

{σ Gal (M/K ) : K/F is a finite subextension of M/F}

as a basis of open neighborhoods of σ. The resulting topology is called the Krull
topology on G.

Exercise 6.19. Let G = Gal (M/F) as above.

a. Show that the topology defined above makes G a Hausdorff topological group.

b. What are the open subgroups if the extension M/F is finite? What are the closed
subgroups? ♦

Exercise 6.20. We can show that G is compact as follows. Consider the map

ϑ : G
∏

K

Gal (K/F) given by ϑ : σ �→
∏

K

σ
∣∣

K

where K/F runs through all finite Galois subextensions of M/F .
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a. Show that
∏

K Gal (K/F) is compact.

b. Show that ϑ is injective and continuous.

c. Show that ϑ(G) is closed in
∏

K Gal (K/F). ♦

Theorem 6.1 (Main Theorem of Galois Theory – General Case). Let M/F be
a Galois extension with Galois group G. The map L �→ Gal (M/L) is a bijective
correspondence between the subextensions L/F of M/F and the closed subgroups
of Gal (M/F). Moreover, in this correspondence the open subgroups of Gal (M/F)
are paired with the finite subextensions of M/F, (this is because any open subgroup
is also closed, so has finite index in Gal (M/F) by Exercise 6.20).

Proof. We must show that if L/F is a subextension of M/F , then Gal (M/L) is a
closed subgroup of G. Certainly it is a subgroup. Also, we may write

Gal (M/L) = ∩
K⊆L

[K :F]<∞

Gal (M/K ).

Thus it suffices to show that Gal (M/K ) is closed for all finite subextensions K/F .
But if K/F is a finite subextension and N is its normal closure in M , then N/F is
finite, and for any σ ∈ Gal (M/K ), we may see that σ lies inside an open neigh-
borhood within Gal (M/K ) by noting we have σ ∈ σ Gal (M/N) ⊆ Gal (M/K ). It
follows that Gal (M/K ) is open, and hence it is also closed.

It is clear that the map L �→ Gal (M/L) is injective, since the fixed field of a
subgroup of G is uniquely determined. We must show that it is also surjective, i.e.,
if H is a closed subgroup of G, then there is some subextension L/F such that
H = Gal (M/L). If this is to succeed, it must be that L is the fixed field of H . Thus
we must show that if H is a closed subgroup of G and L is the fixed field of H , then
Gal (M/L) = H .

That Gal (M/L) ⊇ H follows from the definitions, so we consider an arbitrary
element τ ∈ Gal (M/L). Let E/L be any finite subextension of M/L and apply
the natural map H → Gal (E/L), (given by restriction to E). The image of H in
Gal (E/L) has fixed field L, and since E/L is a finite extension, we may apply finite
Galois theory to conclude that the image of H is all of Gal (E/L). Thus we may find
σ ∈ H such that σ

∣
∣

E
= τ ∣∣

E
. But then σ ∈ τ Gal (M/E)∩H , and hence τ lies inside

the topological closure of H . Since H is closed, we have τ ∈ H as needed. ��
Much in the same way as for finite extensions one may also show that closed

normal subgroups of Gal (M/F) correspond to intermediate fields L such that L/F

is Galois, and in this case we have Gal (M/F)
/

Gal (M/L)
∼= Gal (L/F).

Exercise 6.21. Let G = Gal (M/F) and let σ0 ∈ G denote the identity. Show that
σ0 has a basis of neighborhoods consisting of normal subgroups of G. A compact
Hausdorff topological group with this property is called a profinite group. (Hint:
Consider the groups Gal (M/K ), where K varies through the finite Galois subex-
tensions of M/F .) ♦
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Exercise 6.22. Show that a compact Hausdorff topological group is profinite if and
only if it is totally disconnected. (Hence every finite group is a profinite group.) ♦
Exercise 6.23. Show that the group of units of the ring of integers in a finite exten-
sion of Qp is a profinite group. ♦

Next, we discuss how profinite groups can be constructed from finite groups.
Recall, a directed set is an ordered set I that has the property that every pair of
elements i1, i2 ∈ I is dominated by some element of I, i.e., there is some element
i3 ∈ I such that i1 ≤ i3 and i2 ≤ i3. A projective system over a directed set I is
a family of sets (groups for us) Gi and morphisms (group homomorphisms for us)
ϕi j : G j → Gi defined whenever i ≤ j in I, such that ϕii = idGi for any i , and
whenever i ≤ j ≤ k we have ϕi j ◦ ϕ jk = ϕik . Given a projective system, we define
its projective limit to be

G = lim←−
i∈I

Gi =
{ ∏

i∈I

σi ∈
∏

i∈I

Gi : ϕi j (σ j ) = σi whenever i ≤ j
}
.

When the Gi are groups and the ϕi j are homomorphisms, G is a group. When the Gi

are topological spaces and the ϕi j are continuous, we get that G is a closed subspace
of the product of the Gi , (see Exercise 6.24).

Exercise 6.24. Let {Gi , ϕi j} be a projective system of finite groups over the directed
set I. Show that lim←−

i∈I

Gi is a closed subgroup of
∏

i∈I Gi . (Consider the Gi as

discrete topological spaces.) ♦
Exercise 6.24 tells us that the projective limit of finite groups lim←−

i∈I

Gi is a compact

Hausdorff toplogical group (here we are using the subspace topology induced from
the product topology on

∏
i∈I Gi ). Hence lim←−

i∈I

Gi will be a profinite group if it has

a basis of open neighborhoods of 1 consisting of normal subgroups.
For a finite subset J of I, consider the subgroups of

∏
i∈I Gi of the form

UJ =
∏

i �∈J

Gi

∏

i∈J

Hi,

where each Hi is a normal subgroup of Gi . The intersections UJ ∩ lim←−
i∈I

Gi are

normal subgroups of lim←−
i∈I

Gi . It is straightforward to verify that they form a basis of

open neighborhoods of 1 in lim←−
i∈I

Gi . Hence the projective limit of finite groups is a

profinite group (thus the terminology “profinite”)!

Exercise 6.25. Let p be a prime. Order N in the usual way, and (for n ≤ m) use the
natural maps Z/

pmZ −→ Z/
pnZ to form a projective system. Show that

lim←−
n∈N

Z/
pnZ

∼= Zp. ♦
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Example.

4. Fix a prime p and consider the extension F
alg
p /Fp. For each positive integer n,

we have a finite subextension Fpn/Fp of degree n inside F
alg
p /Fp. Let ϕn denote

the Frobenius automorphism in Gal (Fpn/Fp); then there is an isomorphism

Gal (Fpn/Fp) ∼= Z/
nZ

given by ϕn �→ 1 + nZ. The Galois groups Gal (Fpn/Fp) comprise a projec-
tive system, indexed by the positive integers (ordered by “divides”). The maps
Gal (Fpm/Fp) −→ Gal (Fpn/Fp) in this projective system are the canonical ones.
We may form the group

lim←−
n∈Z+

Gal (Fpn/Fp)

= {
∏

n∈Z+

σn ∈
∏

n∈Z+

Gal (Fpn/Fp) : σm

∣∣
Fpn
= σn whenever n|m}.

It is clear that we have an isomorphism

lim←−
n∈Z+

Gal (Fpn/Fp) ∼= lim←−
n∈Z+

Z/
nZ

where in the limit on the right, the ordering on Z+ is again “divides,” and where
the maps Z

/
mZ −→ Z

/
nZ for the limit on the right (when n|m) are the natural

ones.

Exercise 6.26. Show that

Gal (Falg
p /Fp) ∼= lim←−

n∈Z+

Gal (Fpn/Fp).

Then use the Chinese Remainder Theorem to show that lim←−
n∈N

Z/
nZ , which is usu-

ally denoted Ẑ, is isomorphic to the product
∏

p Zp. ♦

Continue to let ϕn denote the Frobenius automorphism in Gal (Fpn/Fp). Under

the isomorphism Gal (Falg
p /Fp) ∼= lim←−

n∈N

Z
/

nZ = Ẑ, the element ϕ = (. . . , ϕn, . . .) ∈

Gal (Falg
p /Fp) is mapped to (. . . , 1+nZ, . . .) = 1 ∈ Ẑ. Under the isomorphism with∏

p Zp, the element ϕ corresponds to (. . . , 1, . . .).

Exercise 6.27. Let p be a prime and let G = Gal (Falg
p /Fp). Show that the element

ϕ ∈ G as discussed above, satisfies ϕ : x �→ x p. Hence ϕ is the Frobenius automor-
phism in G. ♦
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By Exercise 6.27, the Frobenius automorphism ϕ ∈ G = Gal (Falg
p /Fp) is

mapped to 1 ∈ Ẑ under the isomorphism of Exercise 6.26. It follows that the image
of 〈ϕ〉 in Ẑ is 〈1〉 ∼= Z. Hence, (in contrast to the situation for finite extensions
of Fp), 〈ϕ〉 is a proper subgroup of G. Note however, that 〈1〉 ∼= Z is dense in Ẑ

(why?), so that 〈ϕ〉 is dense in G.

Exercise 6.28. Let G be a profinite group and let H vary through the open normal
subgroups of G. Show that G ∼= lim←−

H

G/
H topologically and algebraically. ♦

Exercise 6.29. Show that if M/F is a Galois extension, then its Galois group (with
the Krull topology) is a profinite group. ♦
Example.

5. For a natural number n, we let Q(n) denote the unique subfield of Q(ζpn+1) that is
cyclic of degree pn over Q. Then

Q = Q(0) ⊆ Q(1) ⊆ Q(2) ⊆ · · ·

and if Q(∞) = ∪Q(n) then Q(∞)/Q is infinite Galois, with Galois group isomor-
phic to Zp.

More generally, if F is a number field, we put F (n) = FQ(n) and F (∞) =
FQ(∞) = ∪ F (n). Then F (∞)/F is infinite Galois with Galois group isomorphic
to Zp. (This extension F (∞)/F is called the cyclotomic Zp-extension of F ; any
infinite Galois extension of F with Galois group isomorphic to Zp is called a
Zp-extension of F .)

Exercise 6.30. Suppose that K/F is a Zp-extension. Show that for every n ∈ N

there is a unique intermediate field K (n) with [K (n) : F] = pn . Moreover, show that
these intermediate fields K (n) are the only proper intermediate fields in the extension
K/F . ♦

If G is any group, then the profinite completion of G is

lim←−
H

G/
H

where H varies through all the normal subgroups of G of finite index in G. For
example, the profinite completion of Z is Ẑ.

Exercise 6.31. What is the profinite completion of a finite group? ♦
Exercise 6.32. Suppose A is a G-module, where G is a profinite group. Show that
the following are equivalent.

i. ∪
H

AH = A, where H runs through the open subgroups of G.

ii. The map G × A −→ A defined by (g, x) �→ gx is continuous, where A is given
the discrete topology. ♦
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At this point, we may return to our study of class field theory. We want to sketch
an alternate proof of the Existence Theorem. For this proof, we need to have an
analogue of the Artin map for an infinite abelian extension M of a number field F .
Using the above discussion of infinite Galois theory, we are led to consider projec-
tive limits as we study Gal (M/F). It is the Consistency Property of the idèlic Artin
symbol that allows us to construct an Artin map for an infinite extension using the
Artin maps for its finite subextensions.

From the Consistency Property, we see that if K/F and L/E are abelian exten-
sions of number fields, with F ⊆ E and K ⊆ L, then the diagram below commutes.

(The vertical map on the right is the natural one.)
Suppose M/F is an infinite abelian extension, where F is a number field. We

may define a homomorphism

ρM/F : JF −→ Gal (M/F)

using a projective limit. If K/F runs through the finite subextensions of M/F then
the elements ρK/F (a) can be pasted together to form an element of lim←−

K

Gal (K/F).

Since we can identify lim←−
K

Gal (K/F) with Gal (M/F), we may set the correspond-

ing element of Gal (M/F) equal to ρM/F (a). Note that if a ∈ F×, then for any of
the finite extensions K/F , the image ρK/F (a) is the identity in Gal (K/F). Hence
ρM/F (a) must be the identity in Gal (M/F), i.e., F× ⊆ kerρM/F . We continue to
use the term “Artin map” for ρM/F , even when M/F is infinite Galois.

Continuing to let F be a number field, we let M = Fab be the maximal abelian
extension of F , an infinite Galois extension. The group Gal (Fab/F) is profinite, as
we have seen in Exercise 6.29. Recall that when K/F is finite abelian, the Artin
map gives rise to a surjective homomorphism

CF � Gal (K/F)

with kernel NK/F CK . Taking the projective limit of the set of all finite abelian groups
Gal (K/F) as discussed above, we construct the Artin map ρM/F in the case M =
Fab, (typically, ρFab/F is denoted simply ρF ). Now let ωF denote the map on CF that
corresponds to the map ρF on JF (possible since F× ⊆ kerρF ). The map

ωF : CF → Gal (Fab/F)

is called the norm residue symbol for F .
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Exercise 6.33. Show that the norm residue symbol is a continuous surjective homo-
morphism, and its kernel is contained in every open subgroup of finite index in
CF . ♦

Now we sketch an alternate proof of the Existence Theorem, as it appears in the
lecture notes of Artin and Tate, [AT]. Define an absolute value on JF by

|a| =
∏

v

‖av‖v

and put J 0
F = {a ∈ JF of absolute value 1} and C0

F = {[a] ∈ CF where a ∈ J 0
F }.

Exercise 6.34. Show that the above satisfies the axioms for an absolute value on JF .
Then show that F× ⊆ J 0

F , from which we see that C0
F is well-defined. ♦

Exercise 6.35. Show that C0
F is compact and that ωF (C0

F ) = ωF (CF ). ♦

Let B be an open subgroup of finite index in CF . Then B is also closed in CF .
By Exercise 6.35, C0

F is compact. Since B0 = B ∩C0
F is closed in C0

F , it is compact
as well. Note that [C0

F : B0] = [CF : B].
Put H = ωF (B0); this is a closed subgroup of G = Gal (Fab/F). Since B ⊇

kerωF , we may conclude that B0 = ω−1
F (H ) ∩ C0

F . Thus [G : H ] = [C0
F : B0] =

[CF : B].
Let K be the fixed field of H . Then (from the definition of ωF ) NK/F CK ⊆

ω−1
F (H ) ⊆ B . But then [CF : NK/F CK ] = [K : F] = [G : H ] = [CF : B] gives

B = NK/F CK .
The argument sketched above shows that every open subgroup B of finite index

in CF is of the form NK/F CK for some finite abelian extension K/F . For uniqueness
of the extension K/F , see the Ordering Theorem or Theorem 3.2.2.

7 An Example: Cyclotomic Fields

Let p > 2 be prime, let E = Q(ζp), and let E+ = Q(ζp + ζ−1
p ), the totally real

subfield of index 2 in E .
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We have a Hilbert class field E+1 of E+ that is everywhere unramified over E+ and
also we know that pZ is totally ramified in E/Q, so also in E/E+. Thus E ∩ E+1 =
E+ and we may apply Proposition 4.4 from the section on the Hilbert class field
to get that hE+ divides hE . (Note that the infinite primes of E+ are all real and the
infinite primes of E are all imaginary, so that the infinite primes ramify in E/E+

too.)
Let h = hE and h+ = hE+ . Define

h− = h/
h+ , the relative class number of E .

How can we interpret h− algebraically? Since E+1 ∩E = E+, we have the following
picture.

Thus, we may apply (ii ) of Theorem 4.3 to conclude that NE/E+ : CE −→ CE+

is surjective. Let

C∗E = {[a] ∈ CE : NE/E+a ∈ PE+} = ker CE NE/E+ .

We have shown that

1 −→ C∗E
⊆−→ CE

NE/E+−→ CE+ −→ 1

is exact, whence

CE
/
C∗E

∼= CE+ .
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From this we conclude

Gal (E1/E) ∼= CE

Gal (E E+1 /E) ∼= Gal (E+1 /E+) ∼= CE+

Gal (E1/E E+1 ) ∼= C∗E .

Exercise 6.36. How much of the above can be generalized to the cyclotomic field
E = Q(ζm) where m is a prime power? What if m is an arbitrary positive
integer? ♦

For E = Q(ζp), we record the following result of Kummer.

Theorem 7.1. Let p > 2 be a prime, let E = Q(ζp) have class number h, and let

E+ = Q(ζp + ζ−1
p ) have class number h+. Let h− = h/

h+ . Then

h− = 2 p
∏

χ odd
fχ=p

1

2
L(0, χ)

h+ = [UE : YE ]

where YE is the group of cyclotomic units of E, i.e.,

YE =
{

1− ζ a
p

1− ζ b
p

: a, b �≡ 0 (mod p)

}

.
��

The above theorem allows one to study h− using techniques from complex anal-
ysis, and also, (because there are p-adic interpolations of Dirichlet L-functions),
techniques from p-adic analysis.

The result that says h+ divides h comes from a proposition that applies more
generally (to fields that are not necessarily cyclotomic). In particular, we could use
it to show that hF divides hE whenever E is a totally imaginary extension of a totally
real field F , with [E : F] = 2, (a C M-field). In the case when E is cyclotomic, we
actually have a stronger result; its proof makes use of the roots of unity in E .

Theorem 7.2. Let p > 2 be a prime, let E = Q(ζp), and let E+ = Q(ζp + ζ−1
p ) as

before. The map CE+ −→ CE given by [a]E+ �→ [aOE ]E is injective.

Proof. We must show that if aOE is principal in E then a was principal in E+

already. Say

aOE = 〈α〉

for α ∈ E and note that ᾱ
/
α is real and

〈ᾱ/α〉 = āa−1OE = OE = 〈1〉,
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(because a is real so that ā = a). Thus ᾱ
/
α is a unit in OE . Also ᾱ

/
α has absolute

value 1 in C, as do all of its conjugates (over Q).

Exercise 6.37. Show that if ε is an algebraic integer all of whose conjugates have
absolute value 1 in C, then ε is a root of unity, (a theorem of Kronecker). ♦
By Exercise 6.37, ᾱ

/
α is a root of unity. Let π = ζp − 1. Then P = 〈π〉 is the

prime ideal of E above pZ and

π/
π̄ = ζp − 1/

ζ−1
p − 1 = −ζp

so π
/
π̄ generates the group WE . Thus

ᾱ/
α =

(π/
π̄
)t

for some t , whence απ t = ᾱπ̄ t ∈ R. Also a ⊆ R. Now if x ∈ R ∩ E , then
ordπ (x) ∈ 2Z. Similarly, since a ⊆ R, we have ordP(a) ∈ 2Z. Thus

t = ordπ (απ t )− ordπ (α)

= ordπ (απ t )− ordP(a) ∈ 2Z.

We get

ᾱ/
α = (−ζp)t ∈W2

E .

Thus

ᾱ/
α = (−ζp)2d = ζ

d
p
/
ζ̄ d

p

whence αζ d
p ∈ R. This gives

aOE = αOE = αζ d
pOE = 〈αζ d

p 〉OE

where 〈αζ d
p 〉 is a principal ideal of E+. By Exercise 6.38 below, we must have

a = 〈αζ d
p 〉. ��

Exercise 6.38. Let E/F be an extension of number fields and let a, b be fractional
ideals of F . Show that if aOE = bOE then a = b. ♦
Exercise 6.39. Can the previous theorem be generalized to the field Q(ζm), where
m = pt ? ♦
We record the following two theorems of Kummer, which are related to the one we
already mentioned. The first comes from results on special values of L-functions.
The second represents one of the classical approaches to the search for a proof
of Fermat’s Last Theorem; however it was an incomplete approach, as we discuss
below.



172 6 The Existence Theorem, Consequences and Applications

Theorem 7.3. Let E = Q(ζp) and let Bn denote the nth Bernoulli number, i.e.,

t

et − 1
=

∞∑

n=0

Bn
tn

n!
.

Then p|hE if and only if p divides the numerator of some B2k , where 1 ≤ k
<

p−1
2 . ��

Theorem 7.4. If p > 2 is prime and p � hE , where E = Q(ζp), then

x p + y p = z p, (xyz, p) = 1
has no non-trivial solution in integers. ��

If p � hE , we say p is regular. Otherwise p is irregular. There are infinitely
many irregular primes (the proof is by contradiction, using congruences amongst
Bernoulli numbers). The first few examples of irregular primes are 37, 59, 67, 101,
103, . . .Also, hE grows rapidly as p increases; OE is a p.i.d. in only a small number
of cases, (a result obtained independently by Montgomery and Uchida in 1971 says
that hE = 1 if and only if p ≤ 19).

A conjecture known as Vandiver’s conjecture, (although its origin seems to date
to Kummer’s work), says that if E = Q(ζp), then p � h+. It has been verified com-
putationally for primes up to several digits. There are probabilistic heuristics that
seem to indicate that it should be true for a large majority of primes. See Chapter 8
of [Wa] for a discussion of this.

We know it is very possible to have p|h. And certainly, if p|h− then p|h. If we
want to prove the converse, then showing that p|h+ implies p|h− will suffice. The
result that p|h if and only if p|h− allows one to study regular versus irregular primes
using only h−, (which is generally more accessible, since one may apply analytic
techniques using L-functions). This is exactly the approach taken in the proof of
the theorem of Kummer mentioned above, where the Bernoulli numbers arise. The
reader is encouraged to consult a text on analytic number theory, (or on cyclotomic
fields), for a detailed account of the relationship between L-functions and Bernoulli
numbers and a proof of Kummer’s result. See Washington’s Introduction to Cyclo-
tomic Fields, [Wa], and Lang’s Cyclotomic Fields I and II, [L3], for much more on
these and other related ideas. We shall be content here to prove that p|h if and only
if p|h−. First we need a lemma.

Lemma 7.5. If K/E is everywhere unramified and Galois with Gal (K/E) = G,
then IG

K = IE .

Proof. That IG
K ⊇ IE is clear. For “⊆” suppose A ∈ IG

K and factor A as a product
of prime ideals in OK . For P|A, let p = P ∩ E . Since G transitively permutes the
primes above p, but fixes A, we see that every prime of OK that divides p must occur
in the factorization of A and that all occur with equal multiplicity. Thus A has the
form

A = pr1
1 · · · prt

t OK ,

which we identify with an ideal of E in the obvious way. ��
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Theorem 7.6 (Kummer). Let E = Q(ζp) where p > 2 is prime. If p|h+, then
p|h−.

Proof. Assume p|h+. Since h+ = [E+1 : E+], we see that G = Gal (E+1 /E+) has
a quotient of order p, whence there is an intermediate field L with E+ ⊆ L ⊆ E+1 ,
and [L : E+] = p. Note that L/E+ is everywhere unramified and abelian (in fact
cyclic). Let K = E L.

Now K/E is also unramified everywhere and cyclic of degree p (because E ∩ L =
E+ since (2, p) = 1). Say Gal (K/E) = 〈σ 〉.

Note that NK/E (ζp) = ζ
p
p = 1, so we may apply Hilbert’s Theorem 90 to con-

clude that ζp = β

σ (β) for some β ∈ K×. Now β �∈ E , as ζp �= 1.

We get σ (β) = βζ−1
p and also that σ fixes β p = α, say. We have α ∈ E and

K ⊇ E( p
√
α) = E(β) � E .

Since [K : E] is prime, we must have K = E(β).
Now Gal (E/E+) = 〈 j〉, say, where j is essentially complex conjugation. Thus

Gal (K/L) is also generated by complex conjugation; we use j to denote the gener-
ator of Gal (K/L) as well. Write β̄ = j (β) as usual. Then in Gal (K/E+), we have

σ j = jσ (why?) and σ (ββ̄) = βζ−1
p βζ−1

p = ββ̄. Thus ββ̄ ∈ E . Of course, ββ̄ ∈ R

too, so ββ̄ ∈ E+.
Consider the ideal βOK . Since σ (β) and β are associates in OK , the ideal βOK

is fixed by σ , hence by Gal (K/E).
Since K/E is everywhere unramified, IGal(K/E)

K = IE by Lemma 7.5, whence

βOK = aOK

for some a ∈ IE . We claim that [a] has order p in C∗E .
To show that [a] ∈ C∗E , note that since βOK = aOK , we have

(NK/LaOK ) = (NK/LβOK ),

a j (a)OK = ββ̄OK .

But ββ̄ ∈ E+. Also (NE/E+a)OE = a j (a), an ideal of E . By Exercise 6.38,

a j (a) = ββ̄OE

NE/E+a = 〈ββ̄〉 in E+.
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To show that [a] has order p, note that

apOK = β pOK = αOK

and α ∈ E . By Exercise 6.38 again,

ap = 〈α〉 in E .

It remains to eliminate the possibility that [a] has order 1, i.e., a is principal
in E . Suppose a = γOE , for some γ ∈ E . Then γOK = aOK = βOK , so
β/
γ = ε ∈ O×

K and K = E(β) = E(ε).

Now ε p = β p/
γ p = α/γ p ∈ E , so ε p ∈ O×

E , say ε p = δ. Since ε generates K
over E and Gal (K/E) = 〈σ 〉, we have σ (ε) �= ε. But

(
σ (ε)/

ε

)p
= σ (δ)/

δ = δ
/
δ = 1

so σ (ε)/
ε is a primitive pth root of unity, say ζ a

p , with (a, p) = 1. We have σ (ε) =
ζ a

pε.
Let η = ε/

ε̄ , an element of O×
K . Since Gal (K/L) ∼= Gal (E/E+) = 〈 j〉 we see

that L is totally real and K is totally imaginary. If λ : K ↪→ C is any embedding,
then λ(L) ⊆ R and

λ(η) = λ(ε)/
λ(ε̄) = λ(ε)/

λ(ε)

whence |λ(η)|
C
= 1 for every embedding λ of K . Thus η is a root of unity.

Also, since η = ε/ε̄ , we may compute

σ (η) = σ (ε)/
σ (ε̄) = ζ

a
pε
/
ζ a

pε
= ζ

2a
p ε
/
ε̄ = ζ 2a

p η.

Since (a, p) = 1 and p > 2, we have (2a, p) = 1 and ζ 2a
p �= 1. This gives σ (η) �= η,

so η �∈ E .
Now E � E(η) ⊆ K and [K : E] = p, so K = E(η) = Q(ζp, η), a cyclotomic

extension of E . All cyclotomic extensions are ramified (Exercise 6.40). Thus K/E
is ramified, a contradiction. We have shown that [a] cannot have order 1 in C∗E , so
must have order p and the claim is proved.

Now p|#C∗E and

#C∗E = #CE
/

#CE+
= h/

h+ = h−.

Thus p|h−. ��
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We can also apply what we know about infinite Galois extensions to cyclotomic
fields, yielding some ideas about Zp-extensions that are important in Iwasawa the-
ory. To do this, we must first understand ramification in infinite extensions. The
notion of ramification index is troublesome, since the upper field in our extension
is not a number field. Without factorization of ideals, we cannot determine a ram-
ification index using the methods employed for number fields. Instead, we shall
approach the issue by considering inertia groups. Recall in the case of a finite Galois
extension, the ramification index of a prime ideal is simply the order of its inertia
group. In the infinite Galois case, we want to use an analog of this to define the
ramification index. Of course, first we must have a suitable definition of the inertia
subgroup associated to a prime ideal in the case of an infinite Galois group.

If K is an algebraic extension of Q (finite or infinite), then we let OK denote the
ring of algebraic integers in K . If P is a prime ideal of OK , then P ∩ Z is a prime
ideal of Z. Moreover, if P is non-zero, then so is P∩ Z (why?). Thus P∩Z = pZ

for some prime p.

Exercise 6.41. Show that OK
/
P is a field, and is an algebraic extension of Fp; then

show that it is Galois over Fp with abelian Galois group. ♦

Now suppose that K/F is a (finite or infinite) Galois extension. Let P, OK be as
before and put p = P ∩OF , a prime ideal of OF .

Exercise 6.42. Show that Gal (K/F) acts transitively on the set of prime ideals of
OK above p. (Hint: You can assume this result for finite extensions of F , then use
the profiniteness of the Galois group for K/F to relate the infinite extension K/F
to an appropriately chosen tower of finite subextensions.) ♦

We define the decomposition group for P/p as we did for finite extensions of
number fields:

Z (P/p) = {σ ∈ Gal (K/F) : σ (P) = P}.

We also define the inertia subgroup:

T (P/p) = {σ ∈ Z (P/p) : σ (x) ≡ x (mod P) for all x ∈ OK }.

The decomposition and inertia subgroups are closed subgroups of Gal (K/F) so
correspond to intermediate fields. And just as in the case of a finite extension of
number fields we have an exact sequence

1 −→ T (P/p) −→ Z (P/p) −→ Gal
(OK/P

/
OF/p

)
−→ 1.

When K/F is Galois we can define the ramification index for P/p by

e(P/p) = #T (P/p).
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In the case when K/F is an algebraic but not necessarily Galois extension, we
must find a way to use inertia subgroups if we want a definition of the ramification
index that does not rely on factorization of ideals. But to have an inertia subgroup we
must first have a Galois extension. We accomplish this by considering an algebraic
closure Qalg. Let Q be a prime ideal in the ring of algebraic integers of Qalg that lies
above P. Since the extensions Qalg/K and Qalg/F are Galois, we may consider the
inertia groups T (Q/P) and T (Q/p). Note that T (Q/P) = T (Q/p)∩Gal (Qalg/K ).
We define the ramification index for P/p as

e(P/p) = [T (Q/p) : T (Q/P)].

Note that if K/F is Galois, this definition gives e(P/p) = #T (P/p) so is consis-
tent with the conventional definition of ramification index for extensions of number
fields. Also note that the ramification index need not be finite when K/F is an
infinite extension.

Exercise 6.43. How would you define the ramification index for an Archimedean
place in the (possibly infinite) algebraic extension K/F? (Hint: Consider exten-
sions to K of the embeddings of F , but take care to show that in a Galois extension,
the Galois group acts transitively on the extensions of a given infinite place of F ;
then define decomposition and inertia groups for these infinite places and follow the
ideas we used above.) ♦

Proposition 7.7. Suppose K/F is a Zp-extension, where F is a number field. Let q
be a prime of F that does not divide pOF . Then K/F is unramified at q.

Proof. Let T be the inertia subgroup for q in Gal (K/F). We know T is a closed
subgroup of Gal (K/F) ∼= Zp, so we must have T = 0 or T ∼= pmZp for some m.
Suppose it is the latter. Then we may choose primes qn of K (n) above q recursively
as follows. Put q0 = q, and let qn+1 be a prime of K (n+1) above qn.

Let K (n)
q denote the completion of K (n) at qn and let K (∞)

q = ∪ K (n)
q . Let U (n)

q ,
U (∞)

q be the units in the integer rings of K (n)
q , K (∞)

q respectively. By Theorem 3.4,
there is a surjective homomorphism U (n)

q −→ T (qn+1/qn), where T (qn+1/qn) is the
inertia subgroup for qn in Gal (K (n+1)/K (n)). We leave it as Exercise 6.44 to show
that there is a surjective homomorphism U (∞)

q −→ T . Since T ∼= pmZp, we have a
surjective homomorphism U (∞)

q −→ pmZp .

On the other hand, if q is the prime number such that q ∩ Z = qZ, then one can
use the q-adic logarithm to show that U (∞)

q
∼= (a finite group)×Za

q for some positive
integer a.

Note that the torsion part of pmZp is trivial. Hence the above implies that there is
a continuous surjective homomorphism Za

q −→ pmZp. Composing with the natural
map, (reduction modulo pm+1), we find there is a continuous surjective homomor-

phism Za
q −→ pmZp

/
pm+1Zp

so there is a closed subgroup of index p in Za
q . Since

no such subgroup exists, we have a contradiction. Thus T = 0 and q is unramified
in K/F. ��
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Proposition 7.8. Let K/F be a Zp-extension, where F is a number field. Some
prime of OF ramifies in K/F and moreover there is some level m such that every
prime that ramifies in K/K (m) is totally ramified.

Proof. The maximal abelian unramified extension of F (i.e., the Hilbert class field
of F) is a finite extension, so some prime must ramify in K/F . By Proposition 7.7,
only primes above p can ramify in K/F . Call them p1, . . . , ps and let T1, . . . , Ts

be their inertia groups. Then ∩ Tj = pmZp for some m. The fixed field of pmZp is
K (m) and Gal (K/K (m)) ⊆ Tj for each j . Thus the primes above p j in K (m) are all
totally ramified in K/K (m). ��

Next we show how class field theory is used to define a certain Galois action
that is central to Iwasawa theory. Those wishing to read more about Iwasawa theory
should consult Washington’s book, [Wa], for a nice introduction to the subject.

Let K/F be a Zp-extension, where Γ = Gal (K/F) ∼= Zp. Since the closed
subgroups of Zp are precisely 0 and pnZp for natural numbers n, it follows that for
each n there is a unique intermediate field K (n) such that [K (n) : F] = pn, and also
that these K (n), together with K , are the only intermediate fields in K/F . We have

F = K (0) ⊆ K (1) ⊆ K (2) ⊆ · · · ⊆ K .

For each n, let M (n) be the maximal unramified abelian p-extension of K (n), and put

Xn = Gal (M (n)/K (n)).

Recall from Exercise 6.12 on the Hilbert p-class field that Xn is isomorphic to the
p-Sylow subgroup of the ideal class group of K (n). Let M = ∪ M (n) and let X =
Gal (M/K ).

Exercise 6.45. Show that each (finite) extension M (n)/F is Galois, then show that
the (infinite) extension M/F is also Galois. ♦

Let G = Gal (M/F). We have the following diagrams.



178 6 The Existence Theorem, Consequences and Applications

One of the central ideas in Iwasawa theory is that X can be viewed as a Γ - module
in a natural way. (In fact, although we don’t show it here, it turns out to be finitely
generated and Zp[[Γ ]]-torsion.) Structure theorems about such modules then lead
to a rich theory, which includes a surprising relationship to p-adic L-functions. See
Washington [Wa] or Lang [L3] for (many) more details. We shall be content here
simply to describe the action of Γ on X .

Replacing F by some K (m) if necessary, we shall assume for simplicity that all
primes that ramify in K/F are totally ramified. With this assumption, we have that

K (n+1) ∩ M (n) = K (n)

and

Gal (M (n)/K (n)) ∼= Gal (K (n+1) M (n)/K (n+1))

is a quotient of Xn+1. We have a map Xn+1 −→ Xn , which, via class field
theory, is seen to arise from the norm map on the ideal class groups. But also
Xn
∼= Gal (K M (n)/K ). Thus

lim←−Xn
∼= Gal

(
(∪

n≥0

K M (n))/K

)
= Gal (M/K ) = X.

For γ ∈ Γn = Γ /
Γ pn = Gal (K (n)/F), we may extend γ to γ̃ ∈ Gal (M (n)/F).

For x ∈ Xn , we have an action of γ via

xγ = γ̃ x γ̃−1.

This makes Xn a Zp[Γn]-module. Suppose we are given an element γ ∈ Γ and an
element x = (x0, x1, . . .) ∈ X = lim←−Xn . For each n we let the coset of γ in Zp[Γn]

act on the nth component of x by conjugation as described above. We leave it as
Exercise 6.46 to show that the result, which we denote xγ , is in X , and hence that
X is a Zp[[Γ ]]-module as desired.

Exercise 6.47. In fact, show that the above action of Γ on X is given by xγ =
γ̃ x γ̃−1, where in this case γ̃ is an extension of γ to G = Gal (M/F). ♦

Finally we include a brief discussion of another infinite extension of a number
field F that is important in Iwasawa theory. Fix a prime p and let M be the maximal
p-extension that is unramified except at primes above p. Let N/F be the maximal
unramified subextension of M/F , i.e., N is the Hilbert p-class field of F . We have
an exact sequence

1 −→ Gal (M/N) −→ Gal (M/F) −→ A −→ 1
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where A is the Sylow p-subgroup of the ideal class group CF . Thus we shall have
described Gal (M/F) once we have described Gal (M/N). It is possible to do this
in terms of certain groups of units.

Let Up = O×
p and let U1

p = {x ∈ Up : x ≡ 1 (mod p)}. Let Ū denote the topo-
logical closure of the image of O×

F in Up =
∏

p|p Up under the diagonal embedding.
Let U1

p =
∏

p|p U1
p.

Exercise 6.48. Show that Gal (M/N) ∼= U1
p
/

U1
p ∩ Ū . ♦

The above is related to an important conjecture, due to Leopoldt. Note that U1
p is

a Zp-module of rank [F : Q] so U1
p ∩ Ū is also a Zp-module. By Exercise 6.48, we

have

rank
Zp

(Gal (M/F)) = [F : Q]− rank
Zp

(U1
p ∩ Ū).

Leopoldt’s Conjecture says that rank
Zp

(U1
p ∩ Ū ) = r1 + r2 − 1 where r1 and r2

are the number of real embeddings of F and the number of conjugate pairs of
imaginary embeddings of F , respectively. There is a proof of this conjecture, given
by A. Brumer, in the case when F is an abelian extension of Q. In the general
case it remains an open problem. If Leopoldt’s Conjecture is true, then we have
rank

Zp
(Gal (M/F)) = r2 + 1. This would give that the Zp-rank of the Galois

group of the compositum of all the Zp-extensions of F is r2 + 1. See Washington’s
Introduction to Cyclotomic Fields, [Wa], for more on the implications of Leopoldt’s
Conjecture.



Chapter 7
Local Class Field Theory

Many of the main theorems on the class field theory of local fields were first proved
by Hasse ([Has], 1930), but his proofs relied on connections to global class field the-
ory. Schmidt ([Sc], 1930) and Chevalley ([Ch1], 1933) were able to give an approach
that did not rely on the global theory. Indeed, once this had been accomplished, it
became apparent that the proofs of many of the results for the global case could be
reinterpreted using the analogous local results. A cohomological approach to local
class field theory was crystallized in the work of Hochschild and Nakayama ([HN],
1952). See also the book by Artin and Tate, [AT], Serre’s book, [Se2], and Serre’s
article in Cassels and Fröhlich, [CF].

One may rephrase the Kronecker-Weber Theorem to say that a maximal abelian
extension of Q is generated by the torsion points of the action of Z on C×, (where
n ∈ Z sends x ∈ C× to xn). Similarly, a maximal abelian extension of a local
field K is generated by the torsion points of an action of the ring of integers of K
on a module that arises via the formal group laws of Lubin and Tate. We discuss
here the approach of Lubin and Tate ([LT], 1965), especially as treated in a paper
of Hazewinkel ([Haz2], 1975), who was able to adapt the ideas from [LT] so that
the theory of formal groups was not explicitly present in the exposition. While we
take Hazewinkel’s point of view, we also include a bit about the underlying formal
groups, so that the module mentioned above can be described.

This chapter is intended as an introduction to the subject; for a more complete
exposition of local class field theory describing in detail the relationship to formal
groups, see Iwasawa’s Local Class Field Theory ([I], 1986), wherein work of Cole-
man ([Col], 1979) plays an important role. An extensive treatment of local class
field theory from a different point of view may be found in Serre’s Local Fields,
[Se2].

In the first section, we discuss some preliminary results on local fields and their
extensions, including some important infinite extensions. The second section is
devoted to the study of extensions of a complete discretely valued field with alge-
braically closed residue field. In the third section, we return to local fields (where
the residue field is finite) and prove some key results on units and their norms.
Formal group laws and the Lubin-Tate formal group laws are introduced in sections
four and five, respectively. In section six we see how the ideas of Lubin and Tate
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lead to certain totally ramified extensions of a local field, from which its maximal
abelian extension is constructed. We conclude with an explicit construction of the
local Artin map and a local version of Artin Reciprocity in section seven.

The reader may notice that for completions of number fields, some of the results
in this chapter follow from the class field theory for number fields, (in particular,
see sections 5.4 and 6.4). However, we prove them here without relying on global
class field theory.

1 Some Preliminary Facts About Local Fields

In this section, we let K denote a field that is complete with respect to a normalized
discrete valuation vK : K× −→ Z. If desired, the reader may assume that K is an
extension field of Qp (of possibly infinite degree). Let

OK = {x ∈ K : vK (x) ≥ 0}
UK = {x ∈ K : vK (x) = 0}
πK , a uniformizer in K , so vK (πK ) = 1

PK = {x ∈ K : vK (x) > 0} = πK OK

Um
K = {x ∈ UK : x ≡ 1 (mod Pm

K )}
FK = OK

/
PK
, the residue field of K .

We do not necessarily assume K is a local field (where the residue field FK is finite),
however we do assume that FK is perfect. If FK is either finite or algebraically
closed, and L/K is a finite Galois extension, then Gal (L/K ) is solvable (see Serre’s
Local Fields, [Se2], for a proof).

Exercise 7.1. Suppose L/K is a finite Galois extension. Let KL denote the maximal
unramified subextension in L/K . Put G = Gal (L/K ), and Gram = Gal (L/KL ).
(Most authors use G0 instead of Gram, but we shall follow Hazewinkel here.)

a. Show: Gram is a normal subgroup of G and G/
Gram

is a cyclic group. Does Gram

have an analogue in the global theory (of number fields)?

b. Suppose E is an intermediate field in L/K , and E/K is Galois. Show that the
image of Gram under the natural map Gal (L/K ) −→ Gal (E/K ) is contained in
Gal (E/K )ram. ♦

We shall be interested in several extensions of K . Denote by
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Kur a maximal unramified extension of K ,

K̂ur the completion of Kur,

Fur the residue field of K̂ur,

Ω a complete, algebraically closed extension of K̂ur.

Consider the case when K is local. Let K(t) denote the unramified extension of
K of degree t , i.e., the splitting field over K of the polynomial Xqt − X , where
q = #FK . Clearly K(t) ⊆ K(n) if and only if t|n. The field Kur is simply the union
∪
t

K(t). (It is straightforward to show that any unramified extension of K , finite or

not, must be contained in this union.)

Proposition 1.1. Let K be a local field. The field Fur is an algebraic closure of FK .
Moreover, there is a natural isomorphism Gal (Kur/K ) ∼= Gal (FKur/FK ).

Proof. First note that OKur = ∪t OK(t ) and PKur = ∪t PK(t ) so that FKur = ∪t FK(t ) . But

[FK(t ) : FK ] = [K(t) : K ] = t , so FK(t ) is just the unique degree t extension of the
finite field FK . Thus, Fur is an algebraic closure of FK .

For the assertion about the Galois groups, note that

Gal (Kur/K ) = lim←−Gal (K(t)/K )

and

Gal (FKur/FK ) = lim←−Gal (FK(t )/FK ),

where the maps for the limits are the canonical ones. Since Gal (K(t)/K ) ∼=
Gal (FK(t )/FK ), the result follows. ��

We have a notion of Frobenius automorphism for finite unramified extensions
L/K of local fields; namely the Frobenius automorphism is just the lift to Gal (L/K )
of the map x �→ xq from Gal (FL/FK ). (Here q is the cardinality of the residue field
of K .) But the map x �→ xq also can be viewed as belonging to Gal (FKur/FK ); its
lift to Gal (Kur/K ) will be called the Frobenius automorphism of K , denoted ϕ.

Exercise 7.2. Suppose FK is a finite field.

a. Show that Kur/K is abelian, so that we may write Kab ⊃ Kur, where Kab denotes
a maximal abelian extension of K .

b. Show that Gal (Kur/K ) ∼= Ẑ, (see Exercise 6.26).

c. Show that the subgroup 〈ϕ〉 is dense in Gal (Kur/K ) and that K is the fixed field
of 〈ϕ〉 in Kur.

d. Let L/K be a finite extension with residue field degree f . Let ϕL denote the
Frobenius automorphism of L. Show that Lur = L Kur and ϕL

∣
∣

Kur
= ϕ f .

e. What elements must be adjoined to K to obtain Kur when K = Qp? ♦
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Proposition 1.2. Let K be a local field and suppose L/K is Galois with Kur ⊆ L.
Let σ ∈ Gal (L/K ) be such that σ

∣∣
Kur
= ϕ. Let F be the fixed field of σ in L. Then

F Kur = L and F ∩ Kur = K , so Gal (L/F) ∼= Gal (Kur/K ). Note this implies F/K
is totally ramified.

Proof. The fixed field of σ
∣
∣

Kur
must be F ∩ Kur. Since K is the fixed field of ϕ, we

get F ∩ Kur = K . Recall, for a positive integer t , we let K(t) denote the (unique)
unramified extension of K of degree t . To show that F Kur = L, it suffices to show
for any t that F K(t) = E whenever F ⊆ E ⊆ L and [E : F] = t . Since F ∩
Kur = K , we have [F K(t) : F] = t , from which it follows that E K(t)/F is a finite
subextension of L/F .

Since 〈σ 〉 is dense in Gal (L/F), (F is the fixed field of σ ), we find that 〈σ ∣∣
E K(t )
〉 =

Gal (E K(t)/F). Because this is cyclic, there is only one intermediate field of degree
t over F . Hence E = F K(t). ��
Exercise 7.3. Suppose L/K is a finite Galois extension. Show that L̂ur/K̂ur is
Galois, with Gal (L̂ur/K̂ur) ∼= Gal (L/K )ram. ♦

One may show that when FK is a finite field and L/K is an unramified Galois
extension, the norm map NL/K : UL −→ UK is surjective. In Chapter 4 (see
Lemma 4.5.3) we proved this when L and K are finite extensions of Qp for some
prime p. In the case where FK is algebraically closed and L/K is a finite extension,
the norm map NL/K : UL −→ UK is again surjective, as is NL/K : L× −→ K×,
(see Serre’s Local Fields, [Se2]).

Theorem 1.3 (Decomposition Theorem). Let L/K be a finite Galois extension,
and suppose FK is a finite field. There is a totally ramified extension L ′/K such that
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L ′ur = L ′Kur = L Kur = Lur. Moreover, if Gal (L/K )ram is central in Gal (L/K ),
then we can take L ′/K to be abelian.

Proof. Letting KL be as in Exercise 7.1, we have that Gal (KL/K ) is cyclic, gener-
ated by Frobenius ϕ. Lift ϕ to ϕ′ ∈ Gal (L/K ). The order of ϕ is [KL : K ], which
must divide the order of ϕ′. Thus for t equal to the order of ϕ′ in Gal (L/K ), we get
KL ⊆ K(t).

Let ϕ′′ ∈ Gal (L K(t)/K ) be determined by the following conditions:

ϕ′′
∣
∣
∣

K(t )

= Frobenius in Gal (K(t)/K ),

ϕ′′
∣∣
∣

L
= ϕ′.

This uniquely determinesϕ′′. Denote the fixed field of ϕ′′ by L ′. Then L ′/K is totally
ramified (why?) and L ′K(t) = L K(t). But K(t) ⊂ Kur, and this implies L ′Kur =
L Kur.

Now suppose Gal (L/K )ram is central in Gal (L/K ). Then Gal (L K(t)/K )ram is
central in Gal (L K(t)/K ), so 〈ϕ′′〉 is a normal subgroup. Thus L ′/K is Galois (and
abelian). ��
Example.

1. Let K = Q3 and let L be the splitting field of the polynomial X4−3X2+18 over
Q3. Then L/Q3 is a cyclic Galois extension of degree 4 and ramification index
2; the intermediate field KL is the only quadratic extension of Q3 contained in
L. Note that KL/Q3 is unramified with Gal (KL/Q3) = 〈ϕ〉, where ϕ : x �→ x3

is the Frobenius automorphism. The lift ϕ′ of ϕ to Gal (L/Q3) has order 4, so
t = 4. The field L K(4) is a degree-8 extension of Q3, with Gal (L K(4)/Q3) ∼=
Z
/

2Z × Z
/

4Z. The automorphism ϕ′′ has order 4 in Gal (L K(4)/Q3); its fixed

field L ′ is a totally ramified quadratic extension of Q3.



186 7 Local Class Field Theory

Exercise 7.4. Suppose Gal (L/K ) ∼= Q8 (the quaternions) and Gal (L/K )ram =
Gal (L/KL ) is cyclic of order 4. (For example, this occurs when K = Q3 and L
is a splitting field of X8 + 9X4 + 36. See the database of Jones and Roberts, [JR],
for other such examples.) Find the order of ϕ′ in Gal (L/K ), the degree [L K(t) : K ]
and the degree [L ′ : K ]. What can you say about L ′∩L? Is L ′/K a Galois extension?
Prove that your answers are correct. ♦

Exercise 7.5. Suppose FK is a finite field.

a. Let M be a maximal totally ramified abelian extension of K . Show that Kab =
Kur M .

b. Show that Gal (Kab/K )ram
∼= lim←− Gal (L/K )ram, where L varies over the finite

abelian extensions of K and the maps Gal (L/K )ram −→ Gal (E/K )ram for
the limit (where E ⊆ L) are induced by the natural maps Gal (L/K ) −→
Gal (E/K ).

c. Show that Gal (Kab/K ) ∼= Gal (Kab/K )ram × Ẑ. ♦

Exercise 7.6. Suppose FK is algebraically closed, and let L/K be an abelian exten-
sion. Show that L/K is totally ramified. ♦

2 A Fundamental Exact Sequence

In this section, we prove a result for abelian extensions L/K , where K is com-
plete with respect to a normalized discrete valuation and has an algebraically closed
residue field FK . This result will play a crucial role as we progress toward the local
version of Artin Reciprocity. Before continuing, we must take a moment to prove a
lemma on finite abelian groups.

Lemma 2.1. Let G be a finite abelian group and let g ∈ G. Then G contains a
subgroup H such that G/

H is cyclic and the order of gH in G/
H is the same as

the order of g in G.

Proof. Decompose the abelian group G as a direct sum G ∼= ⊕
p

G p, where G p is the

Sylow p-subgroup of G. Identify g ∈ G with the element (. . . , gp, . . .) ∈ ⊕
p

G p.

Now write each G p as a direct sum of cyclic groups, say G p
∼= Z

/
pi1Z

⊕ · · · ⊕
Z/

pir Z
and identify gp ∈ G p with (gp1, . . . , gpr ) in this direct sum. Let

dp(gp) = max
1≤n≤r

{in − ordp(gpn)},

so the order of gp in G p is pdp(gp ). Let j be an index where the maximum is attained,

i.e., dp(gp) = i j − ordp(gpj). Let Hp = ⊕
n �= j

Z/
pin Z

(a subgroup of G p) and let
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H = ⊕
p

Hp (a subgroup of G). For any p, the order of gp Hp in G p
/

Hp
is the same

as the order of gp in G p. Thus H is the desired subgroup of G. ��
Throughout this section, we suppose K is complete with respect to a discrete

valuation and FK is algebraically closed. For the extension L/K , we put

V(L/K ) =
〈σ (u)

u
: u ∈ UL , σ ∈ Gal (L/K )

〉
,

a subgroup of UL .

Exercise 7.7. Let L/K be as above, and suppose σ, τ ∈ Gal (L/K ).

a. Show that
στ (πL )

πL
and

σ (πL )

πL

τ (πL )

πL
represent the same coset in UL

/
V(L/K ).

b. Let r ∈ Z. Show that
σ (π r

L
)

π r
L

and
σ r (πL )

πL
represent the same coset in UL

/
V(L/K ).♦

Exercise 7.8. Show that the map i : Gal (L/K ) −→ UL
/
V(L/K ) given by i (σ ) =

σ (πL )

πL
V(L/K ) is a well-defined homomorphism of groups. ♦

Proposition 2.2. Let L/K be a finite abelian extension. The group homomorphism
i of Exercise 7.8 is injective.

Proof. Let τ ∈ G = Gal (L/K ) with τ �= 1 and let H be a subgroup of G such that
G/

H is cyclic and the order of τH in G/
H is the same as the order of τ in G. Let

σ ∈ G be such that σH generates G/
H and let r ∈ Z+ with τH = σ r H . Since

τH �= H , we may take r < |σ |. We have τ = σ r h0 for some h0 ∈ H . Suppose
i (τ ) = V(L/K ). Then, using Exercise 7.7 and considering the form of a typical
element of V(L/K ), we have

σ (π r
L
)

π r
L

h0(πL )

πL

=
|σ |∏

s=1

∏

h∈H

σ sh(ush)

ush

where each ush ∈ UL . Now replace each factor on the right-hand side with the
expression derived from the following equation

σ sh(ush)

ush
=
[
σ sh(ush)

σ s−1h(ush)

σ s−1h(ush)

σ s−2h(ush)
· · · σ

2h(ush)

σh(ush)

σh(ush)

h(ush)

]
h(ush)

ush

= σ
[
σ s−1h(ush) σ s−2h(ush) · · · σh(ush) h(ush)

]

σ s−1h(ush) σ s−2h(ush) · · · σh(ush) h(ush)

h(ush)

ush

= σ (wsh)

wsh

h(ush)

ush
, say,
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yielding

σ (π r
L
)

π r
L

h0(πL )

πL

=
|σ |∏

s=1

∏

h∈H

σ (wsh)

wsh

h(ush)

ush

where each wsh ∈ UL . Collecting, we obtain

σ (π r
L
)

π r
L

h0(πL )

πL

= σ (w)

w

∏

h∈H

h(uh)

uh

for w ∈ UL , uh ∈ UL . Let E be the fixed field of H and apply NL/E to both sides of
this equation to obtain

σ̃ (π r
E
)

π r
E

= σ̃ (w̃)

w̃

where πE = NL/E (πL ), w̃ = NL/E (w), and σ̃ ∈ Gal (E/K ) corresponds to σH ∈
G/

H . Since G/
H is cyclic generated by σH , Gal (E/K ) is cyclic generated by

σ̃ , so the above implies that π r
E
w̃−1 ∈ K . But, since E/K is totally ramified (see

Exercise 7.6) and r < |σ̃ | = [E : K ], this cannot happen. Thus, for τ �= 1, we have
i (τ ) �= V(L/K ). ��

We have reached the first step in our effort to define a local analogue of the norm
residue symbol (see section 6). Namely, we are able to show, for a finite abelian
extension L/K where FK is algebraically closed, a certain sequence is exact. This
will be accomplished by first proving the result for cyclic extensions, then using
induction and the cyclic result to deduce exactness of the sequence for abelian
extensions.

Theorem 2.3. Suppose FK is algebraically closed, and L/K is a finite cyclic exten-

sion. Let N : UL
/
V(L/K ) −→ UK be the map that sends the coset uV(L/K ) to

NL/K (u). Since elements of V(L/K ) have norm 1, this is a well-defined homomor-
phism. The sequence

is exact.

Proof. We have shown that i is injective and we also know that N is surjective since
FK is algebraically closed. It remains to show that the image of i and the kernel of
N are equal.

It is clear that the composition N i is the trivial map, as NL/K (σ (πL )) =
NL/K (πL ) for any σ ∈ Gal (L/K ). Thus im i ⊆ ker N . For the reverse contain-
ment, suppose uV(L/K ) ∈ ker N , i.e., NL/K (u) = 1. By Hilbert’s Theorem 90,
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there is some y ∈ L× such that u = σ (y)
y , where σ is a generator of Gal (L/K ).

We can write y = π r
L
v for v ∈ UL , r ∈ Z. Using Exercise 7.7, we conclude

uV(L/K ) = σ (π r
L

)

π r
L

V(L/K ) = σ r (πL )

πL
V(L/K ) = i (σ r ) ∈ im i. ��

Now we begin the process of generalizing Theorem 2.3 to finite abelian exten-
sions L/K . We continue to assume that FK is algebraically closed.

Lemma 2.4. Let L/K be a finite Galois extension, and let K ⊆ E ⊆ L, where
E/K is Galois. Then NL/EV(L/K ) = V(E/K ).

Proof. Let H = Gal (L/E), a subgroup of G = Gal (L/K ). For “⊇” we must show
that if g̃ ∈ Gal (E/K ) ∼= G/

H and if u ∈ UE , then g̃(u)
u ∈ NL/EV(L/K ). Now

we know that NL/E : UL −→ UE is surjective, so there is some v ∈ UL such that

NL/E (v) = u. Let g̃ ∈ Gal (E/K ). Then g̃ corresponds to some gH ∈ G/
H , where

g ∈ G. We have

NL/E
( g(v)

v

) =
∏

h∈H

hg(v)

v

=
∏

h g(g−1hg)(v)
∏

h h(v)

= g̃(
∏

h(g−1hg)(v))
∏

h h(v)

= g̃(u)

u

as needed. Note by starting with v ∈ UL and g ∈ G, the above equation also gives
us “⊆”. ��
Lemma 2.5. Let L/K be a finite abelian extension, let E be an intermediate field
such that L/E is cyclic. Then

is exact, where the map Ñ is induced by NL/E .

Proof. First, i is injective because it is the restriction of an injective map on
Gal (L/K ). Also, Ñ is surjective because NL/E : UL −→ UE is surjective. We
have a commutative diagram
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where the vertical maps are the natural ones (note V(L/E) ⊆ V (L/K )), and the top
row is exact. We must show ker Ñ = image i in the bottom row. Let uV(L/K ) ∈
ker Ñ . Then u ∈ UL satisfies NL/E (u) ∈ V(E/K ). The previous lemma implies
that there is v ∈ V(L/K ) such that NL/E (v) = NL/E (u), whence NL/E (uv−1) =
1. Exactness of the top row gives uv−1V(L/E) = σ (πL )

πL
V(L/E) for some σ ∈

Gal (L/E). But then uV(L/K ) = σ (πL )

πL
V(L/K ) ∈ image i.We have shown ker Ñ ⊆

image i . The reverse containment is clear. ��
Theorem 2.6. If FK is algebraically closed and L/K is a finite abelian extension,
then

is an exact sequence.

Proof. We induct on the degree [L : K ]. The base step is trivial. For the induction
step, let E/K be a proper subextension of L/K (so the induction hypothesis applies
to E/K ), chosen so that L/E is cyclic. Consider the following diagram.

It is straightforward to check that this commutes. The previous lemma makes the
second column exact. The induction hypothesis makes the third row exact. Clearly
the first column is also exact. Hence the second row must be exact too. ��
Exercise 7.9. Extend the previous theorem to the case where L/K is totally ramified
non-abelian to obtain an exact sequence

♦
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3 Local Units Modulo Norms

Throughout this section we suppose K is a local field (so FK is finite). Let L/K
be a finite abelian extension that is totally ramified. Then the extension L̂ur/K̂ur

is abelian and totally ramified with Gal (L̂ur/K̂ur) ∼= Gal (L/K ). Recall we let Fur

denote the residue field of K̂ur (and of Kur), so that Fur is an algebraic closure of FK .
We use ϕ to denote the Frobenius automorphism in Gal (Fur/FK ); also we continue
to use ϕ to denote its lifts in Gal (Kur/K ) and Gal (Lur/L), and their extensions to
K̂ur and L̂ur. We have a homomorphism

ϕ − 1 : UK̂ur
−→ UK̂ur

given by u �→ ϕ(u)u−1. With it, we obtain the following commutative diagram,
where A, B , C , D are the appropriate kernels and cokernels, so that the rows and
columns are exact.

Lemma 3.1. In the situation described above, we have:

i. ϕ − 1 : UK̂ur
−→ UK̂ur

is surjective, as is ϕ − 1 : OK̂ur
−→ OK̂ur

,
ii. ϕ − 1 : V(L̂ur/K̂ur) −→ V(L̂ur/K̂ur) is surjective,

iii. ker
(
ϕ − 1 : UK̂ur

−→ UK̂ur

) = UK .

Proof. For (i ), let Un
K̂ur
= {u ∈ UK̂ur

: u ≡ 1 mod πn
K
}, where n is any positive

integer. We have induced homomorphisms
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ϕ − 1 : UK̂ur

/

U1
K̂ur

−→ UK̂ur

/

U1
K̂ur

and, for n ≥ 1,

ϕ − 1 :
Un

K̂ur

/

Un+1
K̂ur

−→ Un
K̂ur

/

Un+1
K̂ur
.

But

UK̂ur

/

U1
K̂ur

∼= F×ur (the multiplicative group)

and, for n ≥ 1,

Un
K̂ur

/

Un+1
K̂ur

∼= Fur (the additive group).

Thus we have homomorphisms

ϕ − 1 :F×ur → F×ur given by x �→ xq−1,

ϕ − 1 :Fur → Fur given by x �→ xq − x .

Since Fur is algebraically closed, these are surjective. We leave it as Exercise 7.10
to show that this implies ϕ − 1 : UK̂ur

−→ UK̂ur
is surjective. A similar argument,

(using πn
K
OK̂ur

instead of Un
K̂ur

), gives that ϕ − 1 : OK̂ur
−→ OK̂ur

is also surjective.

For (ii ), let τ (x)x−1 ∈ V(L̂ur/K̂ur) and choose y ∈ UL̂ur
such that (ϕ−1)(y) = x .

Then

(ϕ − 1)
(τ (y)

y

)
= ϕτ (y)

ϕ(y)

(τ (y)

y

)−1
= τϕ(y)

τ (y)

(ϕ(y)

y

)−1
= τ (x)

x

(we have used that L/K is totally ramified to deduce that ϕ and τ commute).
For (iii ), suppose u ∈ UL̂ur

satisfies ϕ(u) = u. We may write u = ε0+πK ν, where
ε0 ∈ Kur. Since ϕ(u) = u, we have ϕ(ε0) ≡ ε0 mod πK , so we may find u0 ∈ K
with u = u0 + πKw1. But now ϕ(u) = u gives ϕ(w1) = w1. Write w1 = πn1

K
ε1,

where ε1 ∈ UK̂ur
; then ϕ(ε1) = ε1. Repeat the above with ε1 in place of u to get

u = u0 + πn1+1
K

u1 + πn1+2
K

w2, where u0, u1 ∈ K .

By induction we find that u is congruent to an element of K modulo πn
K

for any
n. Since K is complete, this implies u ∈ UK (we already knew u ∈ UK̂ur

). Thus
ker (ϕ − 1) ⊆ UK . The reverse containment is clear. ��
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Now we want to define a map

θL/K : UK −→ Gal (L/K )

for abelian extensions L/K that are totally ramified. In the diagram (∗), the rows
are exact by Theorem 2.6, so we can apply the Snake Lemma to obtain a homo-
morphism δ : B −→ C . By (iii ) of the previous lemma, B = UK . Also, since
L/K is totally ramified, ϕ commutes with any τ ∈ Gal (L/K ). It follows that
ϕ − 1 : Gal (L/K ) −→ Gal (L/K ) is the “zero” map, so we have identified
C = Gal (L/K ). We let θL/K (u) be the element of Gal (L/K ) that corresponds
to δ(u) ∈ C .

Proposition 3.2. Let θL/K be as described above. Then

i. θL/K is surjective,
ii. ker θL/K = NL/KUL .

Proof. For (i) it suffices to show D = 0 in (∗). But we know by (i ) of Lemma 3.1
that ϕ − 1 : UL̂ur

−→ UL̂ur
is surjective.

For (ii), the diagram (∗) implies that β(A) ⊇ NL/KUL . Let x̃ = xV(L̂ur/K̂ur) ∈
A, where x ∈ UL̂ur

. Since A = ker (ϕ − 1) we have ϕ(x)x−1 ∈ V(L̂ur/K̂ur). By
(ii ) of Lemma 3.1, there is y ∈ V(L̂ur/K̂ur) such that ϕ(y)y−1 = ϕ(x)x−1. But then
ϕ(xy−1) = xy−1 so that xy−1 ∈ UL by (iii ) of Lemma 3.1. Since xV(L̂ur/K̂ur) =
xy−1V(L̂ur/K̂ur), we also have

NL̂ur/K̂ur
(x) = NL̂ur/K̂ur

(xy−1)

= NL/K (xy−1) (why?)

∈ NL/KUL .

It follows that β(x̃) ∈ NL/KUL . ��
Theorem 3.3. For any finite totally ramified abelian extension L/K , there is an
isomorphism

θ̃L/K : UK
/

NL/KUL
−→ Gal (L/K ).

Moreover, if E/K is a subextension of the totally ramified abelian extension L/K ,
then the following diagram commutes.
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Proof. The isomorphism follows from the proposition. The commutativity of the
diagram follows from (∗). ��

We want to consider finite abelian extensions L/K that are not necessarily totally
ramified. If ϕ is the Frobenius automorphism in Gal (Fur/FK ), let ϕ′ be any lift of
ϕ to Gal (Lur/K ). Let L ′ be the fixed field of ϕ′. We know that L ′/K is abelian and
totally ramified. Also L ′ur = Lur. We may identify Gal (L/K )ram and Gal (L ′/K )
and obtain the following diagram.

As before, it follows that we have an isomorphism

UK
/

NL ′/KUL ′
−→ Gal (L ′/K ) = Gal (L/K )ram.

There is some finite unramified extension E/K such that L ′E = L E and L E/L
is unramified. Moreover, since the norm is surjective on units in an unramified
extension, we have NL E/KUL E = NL/K NL E/LUL E = NL/K UL , and similarly
NL ′E/KUL ′E = NL ′/KUL ′ . Thus NL ′/KUL ′ = NL/KUL , and we have an isomorphism

θ̃L/K : UK
/

NL/KUL
−→ Gal (L/K )ram.

The following theorem gives us a starting point for the definition of (the totally
ramified part of) the local Artin map. (See the proof of Theorem 6.8 for the extension
of this theorem to Gal (Kab/K ).) If the local field K is a completion of the global
field F , then the Artin map for K and the Artin map for F are connected as in
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Section 3 of Chapter 6. However, soon we shall be able to give a definition of the
local Artin map that does not rely on the global Artin map. Compare the theorem
below with Corollary 3.6, whose proof uses the global Artin map.

Theorem 3.4. If L/K is a finite abelian extension, then there is a canonical isomor-

phism θ̃L/K : UK
/

NL/K UL
−→ Gal (L/K )ram and moreover, if K ⊆ M ⊆ L, then

the following diagram commutes.

Proof. We have already shown the isomorphism; commutativity of the diagram fol-
lows from (∗). ��

4 One-Dimensional Formal Group Laws

Formal groups were first defined by Bochner ([Bo], 1946) in characteristic zero.
The theory in characteristic p was developed by Chevalley and Dieudonné in the
1950s. An interpretation of formal groups using power series was developed by
Lazard ([Laz1], [Laz2], 1955). Lazard’s is the approach that we use here. We begin
with a few general facts about one-dimensional formal group laws. There are higher
dimensional formal group laws, but we shall not need them. For a complete treat-
ment of formal group laws, including higher dimensions, see Hazewinkel’s Formal
Groups and Applications, [Haz1].

Let R be a commutative ring with identity, and denote by R[[X]], R[[X,Y ]],
etc., the rings of formal power series with coefficients from R. For two such formal
power series F , G we write F ≡ G (mod deg d) to mean that F and G coincide
in terms of degree less than d .

A one-dimensional formal group law over R is a power series, F ∈ R[[X,Y ]]
such that

i. F(X, 0) = X , F(0,Y ) = Y , and
ii. F(X, F(Y, Z )) = F(F(X,Y ), Z ).

If we also have F(X,Y ) = F(Y, X), then F is said to be a commutative formal
group law.

Exercise 7.11. Show that (i ) in the above definition may be replaced by the require-
ment F(X,Y ) ≡ X + Y (mod deg 2). ♦
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Example.

2. Over an arbitrary commutative ring R with identity, we may define

Ga(X,Y ) = X + Y and Gm(X,Y ) = X + Y + XY.

Each is easily seen to be a commutative formal group law. Ga is called the addi-
tive formal group law and Gm is called the multiplicative formal group law.
All one-dimensional formal group laws over a “nice” ring R are commutative.

To have a non-commutative one-dimensional formal group law over R, there must
be some non-zero torsion nilpotent element in R (a result of Connell and Lazard).

Exercise 7.12. Let R = Fp[t]/
〈t2〉 and let F(X,Y ) = X + Y + t XY p . Show that

F is a non-commutative one-dimensional formal group law over R. ♦

Exercise 7.13. Let F be a one-dimensional formal group law over R. Show that
there is a power series i (X) ∈ R[[X]] that functions as an “inverse” for F , i.e., so
that F(X, i (X)) = 0. ♦

In certain circumstances, a formal group law over R may be used to define an
actual group operation. For example, if R is a complete local ring with maximal
ideal p, then it is easy to see that for x , y ∈ p, the formal group law F(X,Y ) over
R converges p-adically at X = x , Y = y to an element of p. Thus we may define a
group operation+F on p by setting

x +F y = F(x, y).

Exercise 7.14. Let F be a one-dimensional commutative formal group law over R.
For f , g ∈ X R[[X]], define

f +F g = F( f (X), g(X)).

Show that with this operation, X R[[X]] is an abelian group. ♦
We may define a notion of “homomorphism” between formal group laws as fol-

lows. Suppose F and G are one-dimensional formal group laws over R. A power
series θ ∈ R[[X]] that satisfies

i. θ (X) ≡ 0 (mod deg 1), and
ii. θ (F(X,Y )) = G(θ (X), θ (Y ))

is called an R-homomorphism from F to G. Denote the set of all R-homomorphisms
from F to G by HomR(F,G). An R-homomorphism from F to F is called an
R-endomorphism of F . Denote the set of all R-endomorphisms of F by EndR(F).

Exercise 7.15. Show that HomR(F,G) is a subgroup of X R[[X]] under the opera-
tion +G defined earlier. ♦
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Exercise 7.16. Show that EndR(F) is a ring under+F and “formal composition” (of
power series): (θ ◦ θ ′)(X) = θ (θ ′(X)). ♦

There is, of course also a notion of isomorphism for formal group laws. Sup-
pose θ ∈ HomR(F,G). If there is some θ ′ ∈ HomR(G, F) so that θ and θ ′ satisfy
θ ′(θ (X)) = θ (θ ′(X)) = X , then we say θ is an R-isomorphism and θ ′ is the inverse
isomorphism to θ .

Example.

3. The formal power series exp(X) and log(1+X) are mutually inverse Q-isomorphisms
between the formal group laws Ga and Gm of Example 2.

Given θ ∈ HomR(F,G), we denote by J (θ ) the element a ∈ R such that

θ (X) ≡ a X (mod deg 2).

J (θ ) is called the Jacobian of θ .

Exercise 7.17. Show that θ is an isomorphism if and only if the Jacobian J (θ ) is a
unit in R. ♦

Example.

4. Take R = F3. Then

Ga(X,Ga(X, X)) = Ga(X, X + X)

= X + X + X

= 0,

Gm(X,Gm(X, X)) = Gm(X, X + X + X2)

= X + X + X + X2 + X2 + X2 + X3

= X3.

If θ (X) = a1 X + a2 X2 + · · · were an F3-isomorphism from Gm to Ga, then its
Jacobian would have to be a unit, whence a1 �= 0 in F3. But also, it would have
to satisfy θ (Gm(X,Y )) = Ga(θ (X), θ (Y )), which implies

θ (X3) = θ (Gm(X,Gm(X, X)))

= Ga(θ (X), θ (Gm(X, X)))

a1 X3 + a2 X6 + · · · = Ga(θ (X),Ga(θ (X), θ (X)))

= 0,

a contradiction. Hence Ga and Gm are not F3-isomorphic.

Exercise 7.18. Show that Ga and Gm are not Fp-isomorphic for any prime p. ♦
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5 The Formal Group Laws of Lubin and Tate

The formal group laws we study in this section were introduced in 1965 by Lubin
and Tate, [LT]. Following the approach in Hazewinkel’s paper, [Haz2], we shall use
them to prove the main results of local class field theory (see Iwasawa’s book, [I],
for a more general treatment).

Let K be a local field. Lubin-Tate formal group laws (overOK ) are certain power
series Ff (X,Y ), which we define below. In order to give the definition, we first need
some notation and a technical lemma. For each uniformizer π of K , let

Fπ = { f (X) ∈ OK [[X]] : f (X) ≡ πX (mod deg 2), and f (X) ≡ Xq (mod PK )}.

We shall make use of the following lemma several times, for various choices of
linear form �(X1, . . . , Xm), for various m. It can be generalized to the case where
f ∈ Fπ and g ∈ Fπ ′ with π �= π ′, but to do so involves more cumbersome notation.
Since we only must address this more complicated situation once, for the sake of
clarity we have opted to postpone our discussion of it until Lemma 7.6. See Iwa-
sawa’s book, [I], for the general statement.

Lemma 5.1 (Lubin, Tate). Let π be a uniformizer in a local field K , and let FK

have order q . Suppose f , g ∈ Fπ and let �(X1, . . . , Xm) = a1 X1 + · · · am Xm

be a linear form (with ai ∈ OK ). Then there is a unique power series F ∈
OK [[X1, . . . , Xm]] such that

F(X1, . . . , Xm) ≡ �(X1, . . . , Xm) (mod deg 2)

f (F(X1, . . . , Xm)) = F(g(X1), . . . , g(Xm)).

Proof. We construct F by defining a sequence F1, F2 . . . of polynomials, where
deg Fi ≤ i , with F1 = � and

f (Fn(X1, . . . , Xm)) ≡ Fn(g(X1), . . . , g(Xm)) (mod deg n + 1).

It will follow that F = lim
n→∞ Fn is the desired power series. Proceed recursively,

beginning with F1 = �. Suppose we have found Fn ∈ OK [X1, . . . , Xm] of degree
no greater than n satisfying the above congruence. To construct Fn+1 we seek a
homogeneous polynomial hn+1 ∈ OK [X1, . . . , Xm] of degree n + 1 such that

f (Fn(X1, . . . , Xm)+ hn+1(X1, . . . , Xm))

≡ Fn(g(X1), . . . , g(Xm))+ hn+1(g(X1), . . . , g(Xm)) (mod deg n + 2).

(Note that for any such hn+1 we also get Fn + hn+1 ≡ Fn (mod deg n + 1)
and deg(Fn + hn+1) ≤ n + 1.) Uniqueness of the power series F will follow
if we find that the homogeneous polynomial hn+1 is unique. If the polynomial
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hn+1 exists, then we put Fn+1 = Fn + hn1 . Given the nature of f and g, we
must have

f (Fn+1(X1, . . . , Xm)) ≡ f (Fn(X1, . . . , Xm))+ πhn+1(X1, . . . , Xm))

Fn+1(g(X1), . . . , g(Xm)) ≡ Fn(g(X1), . . . , g(Xm))+ πn+1hn+1(X1, . . . , Xm)

where both congruences are (mod deg n+2). From this, the only possible candidate
for hn+1 is the (homogeneous) degree n + 1 part of

f (Fn(X1, . . . , Xm))− Fn(g(X1), . . . , g(Xm))

πn+1 − π .

The above has coefficients in K and has no terms of degree less than n+1. We need
only verify that its coefficients lie in OK . Since f (X) ≡ Xq ≡ g(X) (mod π) and
for any a ∈ OK we have aq ≡ a (mod π), it follows that

Fn(g(X1), . . . , g(Xm)) ≡ Fn((Xq
1 , . . . , Xq

m)

≡ Fn(X1, . . . , Xm)q

≡ f (Fn(X1, . . . , Xm)) (mod π).

Thus π divides f (Fn(X1, . . . , Xm)) − Fn(g(X1), . . . , g(Xm)) and the polynomial
hn+1 has coefficients in OK . ��

For f ∈ Fπ , let Ff (X,Y ) be the unique power series in OK [[X,Y ]] that satisfies

Ff (X,Y ) ≡ X + Y (mod deg 2),

f (Ff (X,Y )) = F f ( f (X), f (Y )).

(Apply the lemma with m = 2, f = g and �(X,Y ) = X + Y .)

Exercise 7.19. Show that Ff is a commutative formal group law over OK . The for-
mal group laws F f for f ∈ FπK

are called the Lubin-Tate formal group laws for πK .
(Hint: To verify the equations in the definition of formal group law, show that each
side satisfies Lemma 5.1 for an appropriately chosen linear form �; the uniqueness
part of the lemma then gives that the two sides must be equal. For example, taking
�(X,Y ) = X + Y in the lemma shows Ff (X,Y ) = Ff (Y, X) since both make the
lemma true for this �.) ♦

Example.

5. Let K = Qp, π = p. It is elementary to verify that f (X) = (1 + X)p − 1 is in
Fp. Now consider the multiplicative formal group law Gm(X,Y ) = X+Y+XY .
We have

Gm( f (X), f (Y )) = (X + 1)p(Y + 1)p − 1 = f (Gm(X,Y )).
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By uniqueness, it follows that Ff (X,Y ) = Gm(X,Y ) in this case.

Lemma 5.2 (Lubin, Tate). Suppose K is a local field, with residue field FK of order
q . Let π be a uniformizer in K , and let f (X), g(X) ∈ Fπ . Then for any a ∈ OK

there is a unique power series [a] f,g(X) ∈ OK [[X]] such that

f ([a] f,g(X)) = [a] f,g(g(X))

[a] f,g(X) ≡ a X (mod X2).

Proof. Apply Lemma 5.1 with m = 1 and �(X) = a X . ��
The power series [a] f,g(X) will play an important role in what is to come. By the

following corollary, each power series [a] f,g(X) gives us a homomorphism from Fg

to Ff , which will be an isomorphism precisely when its Jacobian a satisfies a ∈ UK .

Corollary 5.3 (Lubin, Tate). Let K be a local field and let π be a uniformizer in
K . Suppose f (X), g(X), h(X) ∈ Fπ and a, b ∈ OK . As is customary, we put
[a] f = [a] f, f .

i. [π] f (X) = f (X).
ii. [a] f,g([b]g,h(X)) = [ab] f,h(X) for any a, b ∈ OK .

iii. [1] f,g([1]g, f (X)) = X .
iv. [a] f,g(Fg(X,Y )) = Ff ([a] f ,g(X), [a] f,g(Y )).
v. [a + b] f,g(X) = Ff ([a] f,g(X), [b] f,g(X)).

Proof. For (i ), note that both F(X) = [π] f (X) and F(X) = f (X) are solutions to

f (F(X)) = F( f (X))

F(X) ≡ πX (mod X2).

By the uniqueness part of Lemma 5.1, it follows that [π] f (X) = f (X). The proofs
of (ii ) – (v) are similar, and are left as Exercise 7.20. ��

As can be seen from the above corollary, the power series [a] f (X) allows us to
define a formal OK -module structure when combined with the formal group law
Ff . In turn, this allows us to define an actual OK -module as follows.

For x, y ∈ PΩ , the series F f (x, y) converges to an element of PΩ , which we
denote x + f y. It is straightforward to check that PΩ is an abelian group under this
operation. Similarly, for a ∈ OK and x ∈ PΩ , the series [a] f (x) converges to an
element of PΩ , which we denote a · f x . Using this as our “scalar multiplication,”
the corollary implies that PΩ becomes an OK -module, which we denote P f .

Care must be taken to remember that the operations on P f are not the usual ones
inherited from the field Ω (hence the alternate notation for the same set). P f is
called the Lubin-Tate module for π .

The following exercise shows that, up to isomorphism, P f is independent of
choice of f ∈ Fπ .

Exercise 7.21. Let f, g ∈ Fπ . Show that theOK -modulesP f andPg are isomorphic.♦
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6 Lubin–Tate Extensions

In this section, we see how the formal group laws of Lubin and Tate lead to
totally ramified extensions of the local field K . To begin, we need a lemma about
polynomials.

Lemma 6.1. Let k be any field, and let g(X) = Xn + an−1 Xn−1 + · · · + a0 ∈ k[X]
where either char k = 0 or n is prime to char k. Then we may find a positive integer
r and a polynomial g̃(X) ∈ k[X] of degree less than r , such that the polynomial
h(X) = Xr g(X)+ g̃(X) has only simple zeros.

Proof. If k has infinite cardinality, then take r = 1, g̃(X) = a0 ∈ k; this yields
d

d X (Xg(X)+ a0) = g(X)+ Xg′(X), which is prime to Xg(X)+ a0 for suitable a0.
Thus we may suppose that k has finite cardinality, say #k = q . Note if g is linear,
there is nothing to prove, so we assume n > 1. Since n is prime to char k, we know
that deg g′ = n− 1 > 0. Let α1, . . . , αn−1 be the zeros of g′(X) and let k ′ be a finite
extension of k(α1, . . . , αn−1), chosen so that #k ′ = qs > deg g. Take r = qs+1 and
g̃(X) = Xq g(X)+ 1 to get

h(X) = Xqs+1
g(X)− Xq g(X)+ 1

h′(X) = (Xqs+1 − Xq )g′(X) (note char k divides q).

If β is a zero of h′(X), then it is a zero of Xqs+1 − Xq or of g′(X). In the first case,
we have h(β) = 1 �= 0. In the second, we have β ∈ k ′, so βqs = β, and again
h(β) = 1 �= 0. ��

We shall use the polynomials that give rise to Lubin-Tate formal group laws to
construct certain totally ramified abelian extensions of a local field K . Let q = #FK

and, as before, let FπK
denote the set of all power series f (X) ∈ OK [[X]] such that

f (X) ≡ πK X (mod X2) and f (X) ≡ Xq (mod πK ). Suppose f (X) ∈ FπK
is a

monic polynomial of degree q . Then

f (X) = Xq + πK (aq−1 Xq−1 + · · · + a2 X2)+ πK X, where a j ∈ OK .

For a positive integer m, define recursively

f (1)(X) = f (X), f (2)(X) = f ( f (X)), . . . , f (m)(X) = f ( f (m−1)(X)).

By (i ) and (ii ) of Corollary 5.3, we have

f (X) = [πK ] f (X) and f (m)(X) = [πm
K

] f (X).

It follows that if λ ∈ P f , (the Lubin-Tate module), then

f (m)(X) = πm
K
· f λ.
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Exercise 7.22. Let f (m)(X) be as above.

a. Show, for m ≥ 2, that f (m−1)(X)
∣
∣
∣ f (m)(X).

b. Prove it is possible to find λ1, λ2, . . . ∈ Ω so that λ1 is a zero of f (X), and for
each m ≥ 2, λm is a zero of f (m)(X) but not a zero of f (m−1)(X). Moreover, show
that the λm can be chosen so that f (λm) = λm−1 for m ≥ 2.

c. Show, for m ≥ 2, that the polynomial
f (m)(X )

f (m−1)(X )
is Eisenstein of degree (q−1)qm−1

and has constant term equal to πK . ♦

Let λ!, λ2, . . . be as in part (b) of Exercise 7.22, and put Lm = K (λm). By part
(c) of Exercise 7.22, the extension Lm/K is totally ramified of degree (q − 1)qm−1,
the element λm is a uniformizer in Lm , and πK is a norm from Lm (for any m). Since
πm

K
· f λm = 0, we may view the element λm as a πm

K
-torsion point in the Lubin-Tate

module P f . It is “primitive” since πm−1
K

· f λm �= 0.

Example.

6. We shall find Lm for K = Qp, πK = p, and f (X) = (1 + X)p − 1. Recall
this choice of f (X) qualifies as an element of Fp. A simple computation yields
f (m)(X) = (1+ X)pm − 1, so we obtain

f (m)(X)

f (m−1)(X)
= (1+ X)pm − 1

(1+ X)pm−1 − 1)

= �pm (1+ X),

where �pm is the cyclotomic polynomial. Hence we find λm = ζpm − 1 and
Lm = Qp(ζpm ), where ζpm is a primitive pm-th root of unity in Ω . If we choose
the primitive pm-th roots of unity coherently, we also get f (λm) = λm−1 for
m ≥ 2.

Proposition 6.2. Let K be a local field and fix a polynomial f (X) ∈ FπK
. For

m ∈ Z+, let Lm be the field associated to f (X) as discussed above. Then

NLm/KULm ⊆ Um
K .

Proof. A typical element of ULm has the form εu, where ε is a (q− 1)th root of unity
and u ∈ U1

Lm
. Observe that

NLm/K (ε) = ε(q−1)qm−1 = 1

so we must show NLm/K (u) ∈ Um
K for any u ∈ U1

Lm
. This is clear if m = 1. Assume

m ≥ 2. Now u ∈ U1
Lm

may be written

u = 1+ a1λm + a2λ
2
m + · · · + anλ

n
m +w
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where ai ∈ OK , n = m(q − 1)qm−1 − 1, and the valuation of w satisfies v(w) ≥
v(πm

K ). Note this choice of n gives (n, char FK ) = 1. Let

d(X) = Xn + a1 Xn−1 + · · · + an

and let g(X) ∈ FK [X] be the image of d(X) modulo PK . Apply Lemma 6.1 with
k = FK , and let r and g̃(X) be as the lemma provides. Now lift g̃(X) to ĝ(X) ∈
OK [X], where deg ĝ = deg g̃, and let

h(X) = Xr d(X)+ ĝ(X).

Then the image of h(X) in FK [X] has no multiple zeros and the zeros of h(X) are
in Kur.

As can be seen from the proof of Lemma 6.1, we may choose the constant term
of g̃(X) so that the constant term of h(X) is 1. Let α1, . . . , αi be the zeros of h(X).
Since the constant term of h(X) is 1, we have

∏
αi = ±1, and the zeros of h(X) are

all in UKur . Also,

(1− α1λm) · · · (1− αtλm) = 1+ a1λm + · · · + anλ
n
m +w′

where v(w′) ≥ v(πm
K

). We have

u = 1+ a1λm + · · · + anλ
n
m + w

= (1− α1λm) · · · (1− αtλm)+w −w′
= (1− α1λm) · · · (1− αtλm)(1+ y)

where y = w−w′
∏

i (1−αiλm )
. Note we have v(y) ≥ v(πm

K
) and hence NLm/K (1+ y) ∈ Um

K .

It remains to show NLm/K
(∏

i (1 − αiλm)
) ∈ Um

K , which will follow if we show
NLm Kur/Kur

(∏
i (1 − αiλm)

) ∈ Um
Kur

, because Um
Kur
∩ UK = Um

K and the following
diagram commutes (since Kur/K is unramified and Lm/K is totally ramified).

Because Kur/K is unramified, the Eisenstein polynomial f (m)(X )
f (m−1)(X ) remains irre-

ducible over Kur, so it is the minimum polynomial of λm over Kur. Hence for
α ∈ UKur we have

NLm Kur/Kur (1− αλm ) = α(q−1)qm−1 f (m)(α−1)

f (m−1)(α−1)
.
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Thus

NLm Kur/Kur

(∏

i

(1− αiλm)
) = (

∏

i

αi
)(q−1)qm−1 ∏

i

f (m)(α−1
i )

f (m−1)(α−1
i )

=
∏

i

f (m)(α−1
i )

f (m−1)(α−1
i )

, (since ∏iαi = ±1 and m ≥ 2)

= 1 +
∏

i f (m)(α−1
i )−∏i f (m−1)(α−1

i )
∏

i f (m−1)(α−1
i )

.

Now α−1
i is a unit, so f (m−1)(α−1

i ) is also a unit. Thus we need only show

t∏

i=1

f (m)(α−1
i )−

t∏

i=1

f (m−1)(α−1
i ) ≡ 0 (mod πm

K
).

The Frobenius automorphism ϕ permutes the αi (they are the zeros of h(X)), so ϕ
also permutes the α−1

i . Modulo πK , the map ϕ is just x �→ xq ; also (since f ∈ FπK
)

the map x �→ f (x) mod πK is just x �→ xq . This means f (α−1
i ) ≡ α−1

j (mod πK )
for some j . In general, if a, b ∈ OKur satisfy a ≡ b mod π r

K
for r ∈ Z+, then

aq ≡ bq (mod π r+1
K

)

and

πK as ≡ πK bs (mod π r+1
K

) for any s = 1, . . . , q − 1.

Hence

f (a) ≡ f (b) (mod π r+1
K

).

Since f (α−1
i ) ≡ α−1

j (mod πK ), we may apply this result with a = f (α−1
i ), b =

α−1
j and r = 1. A simple induction argument yields

f (m)(α−1
i ) ≡ f (m−1)(α−1

j ) (mod πm
K

).

But then

t∏

i=1

f (m)(α−1
i ) ≡

t∏

j=1

f (m−1)(α−1
j ) (mod πm

K
)

as needed. ��
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Exercise 7.23. Let f, g ∈ FπK
be polynomials of degree q and suppose μ ∈ PΩ is

a zero of g(m)(X) but not a zero of g(m−1)(X). Let a ∈ OK . Show

a. [a] f,g(μ) is a zero of f (m)(X),

b. if u ∈ UK , then [u] f,g(μ) is not a zero of f (m−1)(X). ♦

By the exercise above, if λm is a zero of f (m)(X) but not a zero of f (m−1)(X),
then [u] f (λm) is also a zero of f (m)(X) but not a zero of f (m−1)(X). Observe that
[u] f (λm) ∈ K (λm) = Lm because [u] f (X) ∈ OK [[X]] and Lm is complete. We want
to prove that the extension Lm/K is Galois; we do this by showing that varying u in
[u] f (λm) yields all the conjugates of λm .

Lemma 6.3. Let f (X) ∈ OK [[X]], and suppose L/K is a finite extension. If there
is some λ ∈ L with vL (λ) > 0 and f (λ) = 0, then there is a power series h(X) ∈
OK [[X]] with f (X) = (X − λ)h(X).

Proof. We work with polynomials: For any n there is a polynomial hn(X) ∈ OK [X],
and some constant bn ∈ OL such that f (X) ≡ (X − λ)hn(X) + bn (mod Xn).
Since f (λ) = 0, we have bn ≡ 0 (mod πn

K
), so vL (bn) ≥ n vL (λ) > 0. This says

lim
n→∞ vL (bn) = ∞. We have

(X − λ)hn+1(X)+ bn+1 ≡ (X − λ)hn(X)+ bn (mod Xn)

bn+1 ≡ bn (mod λn)

so that

(X − λ)(hn+1(X)− hn(X)) ≡ 0 (mod 〈Xn, λn〉).

Say hn+1(X)−hn(X) = an Xn+an−1 Xn−1+· · ·+a1 X+a0. Then vL (a0λ) ≥ n vL (λ),
and vL (aiλ − ai−1) ≥ n vL (λ), for i = 1, . . . n − 1. But this implies vL (a0) ≥ (n −
1)vL (λ), vL (a1) ≥ (n−2)vL(λ), . . . , vL (an−1) ≥ 0. Hence we conclude lim

n→∞ hn(X)

exists; put h(X) = lim
n→∞ hn(X). Then for any n,

f (X) ≡ (X − λ)h(X) (mod 〈Xn, λn〉).

But this is only possible if f (X) = (X − λ)h(X). ��
Lemma 6.4. Suppose u, u′ ∈ UK and let f (X) ∈ FπK

be a polynomial of degree q .
If [u] f (λm) = [u′] f (λm) then u Um

K = u′ Um
K .

Proof. First note that [u] f ([u′] f (X)) = [uu′] f (X). Because of this, it suffices to
show that if [u] f (λm) = λm , then u ∈ Um

K . Let σ : Lm ↪→ Ω be any K -embedding.
Then σ (λm) is a zero of [u] f (X) − X . Also, since [u] f ( f (X)) = f ([u] f (X)), we
have that f (λm) is a zero of [u] f (X)− X . Applying this idea repeatedly, we see that
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f (r)(λm) is a zero of [u] f (X)− X for any r ≤ m. But then all the zeros of f (m)(X)
are zeros of [u] f (X)− X . Now use the previous lemma to write

[u] f (X)− X = f (m)(X) h(X)

for some h(X) ∈ OK [[X]]. Note that f (m)(X) ≡ πm
K

X (mod X2), and compare
coefficients in the two sides of the above equation. It follows that u − 1 = h0π

m
K

,
where h0 is the constant term of h(X). Since the coefficients of h(X) lie in OK , we
have u ∈ Um

K as desired. ��

Theorem 6.5. Let K be a local field and let Lm be as above, for some polynomial

f (X) ∈ FπK
of degree q. Then Lm/K is Galois, and Gal (Lm/K ) ∼= UK

/
Um

K .

Proof. For any u ∈ UK , we know that [u] f (λm) is a conjugate of λm in Lm .

Thus, Lemma 6.4 implies that distinct cosets in UK
/
Um

K
correspond to distinct

conjugates of λm in Lm . But #
(UK

/
Um

K

)
= (q − 1)qm−1 = [Lm : K ]. It fol-

lows that all the conjugates of λm are in Lm , and hence that Lm/K is Galois.

Now map Gal (Lm/K ) → UK
/
Um

K
by σ �→ u Um

K , where u ∈ UK satisfies

[u] f (λm) = σ (λm). It is straightforward to show that this yields a well-defined
isomorphism of groups. ��

We have succeeded in showing that varying u in [u] f (λm) yields all the conju-
gates of λm . Considering a certain submodule of the Lubin- Tate module P f leads
to a similar result. To discuss this, we study the πm

K
-torsion points of P f a bit more.

For a degree-q polynomial f ∈ FπK
, put

W f,m = ker [πm
K

] f = {λ ∈ P f : πm
K
· f λ = 0}.

Observe that W f,m is an OK -submodule of P f , and because W f,m is annihilated by

πm
K
OK , it also can be regarded as an OK

/
πm

K
OK

-module. We have

{0} ⊂ W f,1 ⊂ W f,2 ⊂ · · · ⊂ W f,m ⊂ · · · .

Putting f (0)(X) = X , (so that W f,0 = {0}), we have (for m ≥ 1)

#W f,m = #W f,m−1 + (q − 1)qm−1,

from which it follows that #W f,m = qm.
Now fix λm ∈ W f,m−W f,m−1, and define δ : OK → W f,m by δ(a) = a · f λm . The

map δ is easily seen to be OK -linear. To find ker δ, note that any non-zero a ∈ OK

may be written a = π t
K
u for some u ∈ UK and some t ∈ N. If δ(a) = 0, then
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0 = a · f λm = [a] f (λm)

= [π t
K
u] f (λm)

= [π t
K
] f ([u] f (λm))

= f (t)([u] f (λm)).

Since u ∈ UK , we know that [u] f (λm) is a conjugate of λm , so it is a zero of f (m)(X)
and not a zero of f (m−1)(X). Since f (t)([u] f (λm)) = 0, we must have t ≥ m. We
have shown: If a ∈ ker δ, then a ∈ πm

K
OK . The converse is also clearly true. Hence

ker δ = πm
K
OK .

By the above argument, δ gives rise to an injective OK -linear map

δ̃ : OK
/
πm

K
OK

↪→ W f,m .

This map is actually an isomorphism of OK -modules, since the cardinalities agree:

#
(OK

/
πm

K
OK

)
= qm = #W f,m .

Now consider the map OK
/
πm

K
OK

−→ EndOK (W f,m ) given by a �→ [a] f .

By Corollary 5.3, this is a ring homomorphism. Since EndOK (OK
/
πm

K
OK

) ∼=
OK
/
πm

K
OK

as (finite) rings, we may use the OK -linear isomorphism δ̃ defined

above to conclude

OK
/
πm

K
OK

∼= EndOK (W f,m)

as rings. Comparing the units in these rings, we also get

UK
/
Um

K
∼= AutOK (W f,m)

via the map u �→ [u] f .

Exercise 7.24. Let f, g ∈ FπK
be polynomials of degree q .

a. Show that W f,m and Wg,m are isomorphic as OK -modules.

b. Show that W f,m is a free OK
/
πm

K
OK

-module of rank 1. ♦

We know that Lm/K is Galois; we now discover it is also independent of the
choice of f ∈ FπK

.

Corollary 6.6. The extensions Lm/K depend only on the choice of uniformizer πK ;
they do not depend on the choice of polynomial f (X) ∈ FπK

. The field Lm is called
the m th Lubin-Tate extension of K associated to the uniformizer πK .
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Proof. Suppose

f (X) = Xq + πK (aq−1 Xq−1 + · · · + a2 X2)+ πK X

g(X) = Xq + πK (bq−1 Xq−1 + · · · + b2 X2)+ πK X,

where a j , b j ∈ OK . By Lemma 5.2, there is a unique power series [1] f,g(X) ∈
OK [[X]], such that [1] f,g(X) ≡ X (mod X2) and f ([1] f,g(X)) = [1] f,g(g(X)). Let
μm be a zero of g(m)(X) that is not a zero of g(m−1)(X). By Exercise 7.23, [1] f,g(μm)
is a zero of f (m)(X) and is not a zero of f (m−1)(X). Hence Lm = K ([1] f,g(μm)).
Since [1] f,g(μm) ∈ K (μm), we must have Lm ⊆ K (μm). Since they have equal
degrees over K , it follows that Lm = K (μm). ��

Corollary 6.7. Let Lm be the m th Lubin-Tate extension of a local field K . Then
NLm/KULm = Um

K .

Proof. We have shown NLm/KULm ⊆ Um
K . Also, since Lm/K is totally ramified, we

have Gal (Lm/K ) ∼= UK
/

NLm/KULm
via the map θ̃Lm/K . The result is then clear

from Theorem 6.5. ��

We have reached the point where it is possible to study the extension Kab/K ,
where K is a local field (so FK is finite).

Theorem 6.8. Let K be a local field. There are isomorphisms Gal (Kab/K )ram
∼= UK

and Gal (Kab/K ) ∼= UK × Ẑ.

Proof. We have shown that if L/K is a finite abelian extension, then there is an

isomorphism θ̃L/K : UK
/

NL/KUL

∼=−→ Gal (L/K )ram. Now we take the limit over

all finite abelian extensions L to obtain an isomorphism

θKab/K : lim←−
UK
/

NL/KUL

∼=−→ Gal (Kab/K )ram.

For any such L, the group UL is compact and the map NL/K is continuous. It
follows that NL/KUL is a compact subgroup in UK . But it also has finite index in
UK , since Gal (L/K )ram is finite. Thus NL/KUL is both open and closed in UK . In
particular, there is some m ∈ Z+ such that Um

K ⊆ NL/K UL . We have shown that
Um

K = NLm/KULm where Lm is the m th Lubin-Tate extension of K . Thus, we must
have

lim←−
UK
/

NL/KUL
= UK .

This allows us to consider θKab/K as an isomorphism UK −→ Gal (Kab/K )ram.

For the second assertion, it suffices to recall that
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Gal (Kab/K ) ∼= Gal (Kab/K )ram × Ẑ

by Exercise 7.5. ��
Corollary 6.9. Let K be a local field with uniformizer πK . Put LπK

= ∪ Lm where
the Lm are the Lubin-Tate extensions of K associated to the uniformizer πK . Then
Kab = LπK

Kur.

Proof. Since LπK
Kur/K is abelian, we have LπK

Kur ⊆ Kab. For the reverse con-
tainment, let α : Gal (Kab/K ) −→ Gal (LπK

Kur/K ) be the natural homomorphism
and consider the following commutative diagram with exact rows.

(Here α′ is the homomorphism induced by α.) Taking projective limits as in the
theorem, we also have homomorphisms

θKab/K : UK −→ Gal (Kab/K )ram

θLπK
Kur/K : UK −→ Gal (LπK

Kur/K )ram

where in the first case the limit is over all the finite abelian extensions L/K , and in
the second case the limit is over finite extensions L/K , with L ⊆ LπK

Kur. By the
theorem, θKab/K is an isomorphism. Similarly θLπK

Kur/K is an isomorphism. More-
over, we have

α′ ◦ θKab/K = θLπK
Kur/K

so that α′, (and hence α), is also an isomorphism. ��
Example.

7. Let K = Qp. Using π = p and f (X) = (X + 1)pm − 1, we have computed
λm = ζpm−1, so that Lm = Qp(ζpm ). The extension Lπ/Qp will then be obtained
by adjoining all p-power roots of unity to Qp. The maximal unramified extension
of Qp can be obtained by adjoining all the roots of unity whose orders are prime
to p. By Corollary 6.9, we now have that the maximal abelian extension of Qp

is Qp(μ∞), where μ∞ is the set of all roots of unity in Ω .

Exercise 7.25. Give K× ∼= UK × Z the topology of open subgroups H of finite
index (where H is open with respect to the topology of the valuation vK ). Show that
the completion of K× in this topology is UK × Ẑ. ♦
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7 The Local Artin Map

Observe that Exercise 7.25 gives us an embedding K× ↪→ UK × Ẑ. Also, since we
have UK × Ẑ ∼= Gal (Kab/K ), we have an embedding K× ↪→ Gal (Kab/K ). Our
aim, however, is to find a canonical isomorphism — we want to be able to choose
the isomorphism UK × Ẑ ∼= Gal (Kab/K ) so that for any finite abelian extension
L/K the kernel of the map given by the composition

K× incl.−→ UK × Ẑ
∼=−→ Gal (Kab/K )

nat.−→ Gal (L/K )

will be NL/K L×. Thus, if we succeed in finding such an isomorphism, we shall have
obtained a local analogue of Artin Reciprocity.

Lemma 7.1. If L/K is a finite abelian extension, then [K× : NL/K L×] = [L : K ].

Proof. Let KL/K denote the maximal unramified subextension of L/K . Then The-

orem 3.4 implies that [L : KL ] = #
(UK

/
NL/K UL

)
. Consider the following com-

mutative diagram with exact rows,

where μ : Z −→ Z is multiplication by [KL : K ]. It follows that [K× : NL/K L×] =
[KL : K ][UK : NL/KUL ] = [KL : K ][L : KL ] = [L : K ]. ��

Now suppose L/K is a finite totally ramified abelian extension, and choose the
uniformizer πK to be a norm from L. Let K(t)/K be an unramified extension of K of
degree t . We want to use the map θL/K that was defined previously for finite totally
ramified abelian extensions of K to construct a map for L K(t). We let ρL K(t )/K :
K× −→ Gal (L K(t)/K ) be the unique homomorphism that satisfies

ρL K(t )/K (u) = θL/K (u−1) for u ∈ UK

ρL K(t )/K (πK ) = ϕ Frobenius in Gal (L K(t)/L).

Note that Gal (L/K )ram = Gal (L/K ) so that θL/K is onto Gal (L/K ) by Proposi-
tion 3.2. Since we also have Gal (L/K ) ∼= Gal (L K(t)/K(t)), the above definition
of ρL K(t )/K (u) for u ∈ UK should be interpreted by identifying Gal (L/K ) and
Gal (L K(t)/K(t)). Since L K(t)/L is finite and unramified, we have Gal (L K(t)/L) =
〈ϕ〉, so the map ρL K(t )/K is surjective. To be useful, we want the map ρL K(t )/K to
depend only on the extension L K(t)/K and not on the totally ramified subextension
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L/K used to define it. Our first task is to show that if E is another finite totally
ramified abelian extension of K such that E K(t) = L K(t), then the maps ρL K(t )/K

and ρE K(t )/K agree.

Lemma 7.2. Let K(t)/K be a finite unramified extension of K of degree t . Let L/K
and E/K be finite totally ramified abelian extensions of K such that L K(t) = E K(t).
Consider the composition

The kernel of this composition is NE/K E×.

Proof. By the previous lemma it suffices to prove that NE/K E× is contained in the
kernel. Since we already know that NE/KUE is contained in the kernel, it remains to
show that NE/K (πE ) is in the kernel, where πE is a uniformizer in E .

Note that ρL K(t )/K (UK ) = Gal (L K(t)/K )ram, so there is some u ∈ UK such
that 〈ρL K(t )/K (u) ϕ〉 has fixed field E . Let πL be a uniformizer in L, chosen so that
NL/K (πL ) = πK and let πE = επL . We leave it as Exercise 7.26 to show that
NL K(t )/K(t ) (ε) ∈ UK . By our choice of u, we have

(
ρL K(t )/K (u) ϕ

)
(πE ) = πE so

(
θL/K (u−1)

)
(πL )

πL

=
(
ρL K(t )/K (u)

)
(πL )

πL

=
(
ρL K(t )/K (u) ϕ

)
(πL )

πL

since ϕ(πL ) = πL

=
(
ρL K(t )/K (u) ϕ

)
(ε−1)

ε−1
since ε−1πE = πL

=
(
ρL K(t )/K (u) ϕ

)
(ε−1)

ϕ(ε−1)

ϕ(ε−1)

ε−1

∈ ϕ(ε−1)

ε−1
V(L̂ur/K̂ur).

We have shown that i
(
θL/K (u−1)

)
and (ϕ − 1)

(
ε−1V(L̂ur/K̂ur)

)
are equal. From the

diagram (∗), it follows that NL K(t )/K(t ) (ε) ∈ u NL/KUL . But then

ρL K(t )/K (NE/K (πE )) = ρL K(t )/K (uπK ) = ρL K(t )/K (u) ϕ.

Since this fixes the elements of E , the result follows. ��
Lemma 7.2 tells us that the definition of ρL K(t )/K does not depend on the choice of

finite totally ramified abelian extension L/K . For, if E/K is another such extension,
with E K(t) = L K(t), then our definition of ρE K(t )/K would require
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ρE K(t )/K (u) = θE/K (u−1) for u ∈ UK

ρE K(t )/K (π ′
K
) = ϕ Frobenius in Gal (E K(t)/E),

where π ′
K

is a uniformizer in K that is a norm from E .

Exercise 7.27. Use Lemma 7.2 to verify that ρL K(t )/K and ρE K(t )/K are equal on
K×. ♦

With what we have done, we are able to define a local reciprocity homomor-
phism, which plays a role comparable to the Artin map in the global class field
theory. (It is called the local Artin map or the local norm residue map, denoted
ρK .) To do so, we choose a uniformizer πK of K , and use the union LπK

of the
Lubin-Tate extensions of K , recalling that Kab = LπK

Kur, and we may identify
Gal (Kab/Kur) = Gal (LπK

/K ). Define ρK : K× −→ Gal (Kab/K ) to be the unique
homomorphism that satisfies

ρK (u) = θKab/K (u−1) ∈ Gal (LπK
/K ) for u ∈ UK

ρK (πK ) = ϕ Frobenius in Gal (Kab/LπK
).

Since πK ∈ NLm/K L×m for all the Lubin-Tate extensions Lm/K , it follows that
ρK agrees with ρLm K(t )/K . Thus the definition of ρK is independent of choice of
uniformizer πK of K by Lemma 7.2. Recall UK × Ẑ ∼= Gal (Kab/K ). By Exer-
cise 7.28 below, the homomorphism ρK is the restriction to K× of an isomorphism
UK × Ẑ −→ Gal (Kab/K ).

Exercise 7.28. Give Gal (Kab/K ) the Krull topology.

a. Is ρK continuous? Prove that your answer is correct.

b. Is the image ρK (K×) dense in Gal (Kab/K )? Prove that your answer is correct.

c. Show ρK can be extended to an isomorphism UK × Ẑ −→ Gal (Kab/K ). ♦

Lemma 7.3. Let L/K be a finite abelian extension and let KL be the maximal
unramified subextension of L/K , where [KL : K ] = n. Then the following diagram
commutes.

Proof. Choose a totally ramified abelian extension L ′/K and an associated positive
integer t as in the Decomposition Theorem. Then L ′K(t) = L K(t), where as usual
K(t) is the unramified extension of K of degree t . We also have L ′ur = Lur and
KL ⊆ K(t) so that n ≤ t .
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It suffices to show that the following diagram commutes.
Since any element of K×

L can be expressed as a product of an element of UKL times a
power of some fixed uniformizer, we shall check the commutativity of this diagram
by first considering where the mappings send a uniformizer and then where they
send units.

Note that if ϕ ∈ Gal (L ′K(t)/L ′) is the Frobenius automorphism, then ϕn is the
Frobenius automorphism in Gal (L ′K(t)/L ′KL ). Choose a uniformizer πK so that it
is a norm from L ′, (note πK is a uniformizer in KL too); then ρK (NKL/K (πK )) =
ρK (πn

K
) = ϕn = ρKL (πK ). Hence it remains to check commutativity on elements of

UKL .
We want to show for u ∈ UKL , that ρKL (u) = ρK (NKL/K (u)). Choose v ∈ UL̂ ′ur

so
that NL̂ ′ur/K̂ur

(v) = u. (The unit v exists because the extension is unramified, so the
norm is surjective on units.) Recall that in Gal (L ′KL/KL ) = Gal (L ′K(t)/K(t)), the
element ρKL (u) is characterized by

ρKL (u)(π
L ′ )

π
L ′

V(L̂ ′ur/K̂ur) = v

ϕn(v)
V(L̂ ′ur/K̂ur),

where π
L ′ is any uniformizer in L ′. But then

ρKL (u)(π
L ′ )

π
L ′

V(L̂ ′ur/K̂ur) = v

ϕ(v)
· ϕ(v)

ϕ2(v)
· · · ϕ

n−1(v)

ϕn(v)
V(L̂ ′ur/K̂ur).
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Now u · ϕ(u) · · · ϕn−1(u) = NKL /K (u), so if we put w = v · ϕ(v) · · · ϕn−1(v), then
NL̂ ′ur/K̂ur

(w) = NKL /K (u), and we have

ρKL (u)(π
L ′ )

π
L ′

V(L̂ ′ur/K̂ur) = w

ϕ(w)
V(L̂ ′ur/K̂ur).

Now consider ρK (x) ∈ Gal (L ′K(t)/K(t)), where x ∈ UK . Choose y ∈ UL̂ ′ur
so that

NL̂ ′ur/K̂ur
(y) = x . Then ρK (x) is characterized by

ρK (x)(π
L ′ )

π
L ′

V(L̂ ′ur/K̂ur) = y

ϕ(y)
V(L̂ ′ur/K̂ur).

Putting everything together, we must have ρKL (u) = ρK (NKL/K (u)), (an element of
Gal (L ′K(t)/K(t)) ⊆ Gal (L ′K(t)/KL )). ��

The following theorem amounts to a local version of Artin Reciprocity.

Theorem 7.4. Let L/K be a finite abelian extension. Consider the composition

K× ρK−→ Gal (Kab/K )
restr,−→ Gal (L/K ).

The kernel of this composition is NL/K L×.

Proof. We have shown [K× : NL/K L×] = [L : K ] so it suffices to show NL/K L×

is contained in the kernel. Suppose KL is the maximal unramified subextension
of L/K , where [KL : K ] = n. Consider ρL/KL . Since L/KL is totally ramified,
kerρL/KL = NL/KL L× by Lemma 7.2. Also NL/K L× = NKL /K (NL/KL L×). By
commutativity of the diagram in the previous lemma, the theorem follows. ��
Corollary 7.5. The open subgroups of finite index in K× are precisely the sub-
groups of the form NL/K L×, for L/K finite abelian. Indeed, any open subgroup of
finite index in K× is the kernel of the composition

K× ρK−→ Gal (Kab/K )
nat.−→ Gal (L/K )

for some finite abelian extension L/K .

Proof. Exercise 7.29. ��
Lubin and Tate have given an explicit construction of the reciprocity homomor-

phism ρK using formal groups. We discuss this construction next. To begin, we
need a technical lemma about formal power series. It provides a generalization of
Lemma 5.1.

Lemma 7.6. Let π and π ′ be uniformizers in a local field K , say with π ′ = uπ ,
where u ∈ UK . Let q = #FK and suppose f (X), g(X) are polynomials of degree q
such that f (X) ∈ Fπ and g(X) ∈ Fπ ′ We use ϕ to denote the Frobenius automor-
phism in Gal (Kur/K ) and also its extension to K̂ur.
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i. There is a power series ϑ(X) ∈ OK̂ur
[[X]] such that ϑϕ(X) = ϑ([u] f (X)), and

ϑ(X) ≡ εX (mod X2) for some ε ∈ UK̂ur
. (Here ϑϕ(X) is the power series

obtained by applying ϕ to the coefficients of ϑ(X).)
ii. There is a power series ϑ ′(X) that satisfies (i ), and also satisfies

ϑ ′([a] f (X)) = [a]g(ϑ ′(X)) for any a ∈ OK .

Proof. i. Choose ε ∈ UK̂ur
so that u = ϕ(ε)ε−1, (possible since ϕ − 1 is surjective

on UKur by Lemma 3.1). Put ϑ1(X) = εX . We have

ϑ
ϕ

1 (X) = ϕ(ε)X = εu X ≡ ϑ1([u] f (X)) (mod X2).

Continuing recursively, suppose we have constructed ϑm(X) satisfying

ϑm(X) ≡ εX (mod X2),

ϑϕm(X) ≡ ϑm([u] f (X)) (mod Xm+1).

It follows that there is some c ∈ OK̂ur
such that

ϑϕm(X)− ϑm([u] f (X)) ≡ −cXm+1 (mod Xm+2).

By the surjectivity of ϕ − 1 on OK̂ur
, there is b ∈ OK̂ur

such that

ϕ(b)− b = (εu)−(m+1)c = ϕ(ε)−(m+1)c.

Thus

ϕ(bεm+1) = (b + ϕ(ε)−(m+1)c
)
ϕ(ε)m+1 = bϕ(ε)m+1 + c.

Now put

ϑm+1(X) = ϑm(X)+ bεm+1 Xm+1.

Then ϑm+1(X) ≡ ϑm(X) ≡ εX (mod X2) and

ϑ
ϕ

m+1(X)− ϑm+1([u] f (X))

≡
(
ϑϕm(X)+ (bϕ(ε)m+1 + c)Xm+1

)
−
(
ϑm([u] f (X))+ bϕ(ε)m+1 Xm+1

)

≡ ϑϕm(X)− ϑm([u] f (X))+ cXm+1

≡ 0 (mod Xm+2).

The desired series is then ϑ(X) = lim
m
ϑm(X).
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ii. Consider the power series ϑ(X) from (i ). There is a power series in OK̂ur
[[X]],

which we shall denote ϑ−1(X), such that ϑ(ϑ−1(X)) = X = ϑ−1(ϑ(X)). Put

h(X) = ϑϕ ( f (ϑ−1(X)).

Applying (i ) and noting that f (X) = [π] f (X), we get

h(X) = ϑ([u] f ( f (ϑ−1(X))) = ϑ([u] f [π] f (ϑ−1(X))) = ϑ([π ′] f (ϑ−1(X))).

We leave it as Exercise 7.30 to show that hϕ(X) = h(X) so that h(X) has coef-
ficients in OK . If we examine the series h(X) more closely, we find

h(X) ≡ ϕ(ε)πε−1 X ≡ uεπε−1 X ≡ uπX ≡ π ′X (mod X2),

h(X) ≡ ϑϕ ((ϑ−1(X))q) ≡ ϑϕ((ϑ−1)ϕ(Xq )) ≡ Xq (mod π).

This means (by Lemma 5.2) there is a power series [1]g,h(X) ∈ OK [[X]] that
satisfies [1]g,h(X) ≡ X (mod X2) and g([1]g,h(X)) = [1]g,h(h(X)). From this
we can define the series

ϑ ′(X) = [1]g,h(ϑ(X)).

Because the coefficients of [1]g,h(X) are in OK , it follows that ϑ ′(X) satisfies (i ).
It remains to show ϑ ′([a] f (X)) = [a]g(ϑ ′(X)) for any a ∈ OK . Equivalently, we
shall show ϑ ′([a] f ((ϑ ′)−1(X))) = [a]g(X). Let r (X) = ϑ ′([a] f ((ϑ ′)−1(X))).
Then

g(r (X)) = g(ϑ ′([a] f ((ϑ ′)−1(X))))

= g([1]g,h(ϑ([a] f (ϑ−1([1]h,g(X))))))

= [1]g,h(h(ϑ([a] f (ϑ−1([1]h,g(X))))))

= [1]g,h(ϑ([π ′] f (ϑ−1(ϑ([a] f (ϑ−1([1]h,g(X))))))))

= [1]g,h(ϑ([π ′] f ([a] f (ϑ−1([1]h,g(X))))))

= [1]g,h(ϑ([a] f ([π ′] f (ϑ−1([1]h,g(X))))))

= [1]g,h(ϑ([a] f (ϑ−1(h([1]h,g(X))))))

= [1]g,h(ϑ([a] f (ϑ−1([1]h,g(g(X))))))

= ϑ ′([a] f ((ϑ ′)−1(g(X))))

= r (g(X)).

But this says that the power series r (X) satisfies the definition of [a]g(X). Since
[a]g(X) is the unique power series that behaves this way, we conclude r (X) =
[a]g(X) as needed. ��
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Exercise 7.31. Let π and π ′ be uniformizers in a local field K , and suppose
f (X), g(X) are polynomials of degree q , where q = #FK , such that f (X) ∈ Fπ
and g(X) ∈ Fπ ′ . What does the result of Lemma 7.6 tell us about the relationship
between the formal group laws Ff (X,Y ) and Fg(X,Y )? ♦

Let K be a local field and fix the uniformizer π = πK . Recall the union Lπ of the
Lubin-Tate extensions Lm/K satisfies LπKur = Kab. Let λm be as in Exercise 7.22
(so Lm = K (λm)). Let f (X) ∈ Fπ . We have seen, for u ∈ UK , that there is an
automorphism σu ∈ Gal (Lπ/K ) such that σu(λm) = [u] f (λm) for any m, (see
Theorem 6.5).

With what we have done, we are able to define explicitly a homomorphism
γπ : K× −→ Gal (LπKur/K ), which we shall show is just the reciprocity homo-
morphism ρK . To determine γπ completely, we need only give the image of π and
of an arbitrary element u of UK . We put

γπ (u) = σu−1 in Gal (LπKur/Kur) ∼= Gal (Lπ/K ),

γπ (π) = ϕ Frobenius in Gal (LπKur/Lπ ).

Theorem 7.7. The homomorphism γπ defined above does not depend on the choice
of uniformizer π . Moreover, γπ is the local Artin map, i.e., γπ = ρK .

Proof. Let π and π ′ be uniformizers in K , say π ′ = uπ . Note that γπ (π ′) and
γπ ′(π ′) induce the Frobenius automorphism on Kur, while on Lπ ′ , by definition
γπ ′(π ′) is the identity. Hence to deduce that γπ (π ′) = γπ ′(π ′), we want to show that
γπ ′(π) is the identity on Lπ ′ . To get this, it suffices to show that γπ (π ′)(λ′m) = λ′m for
all m. (Here λ′m generates Lπ ′ = K (λ′m).) Recall, from Exercise 7.22, the element

λ′m is a zero of
g(m) (X )

g(m−1)(X )
, where g(X) ∈ Fπ ′ is a monic polynomial of degree q .

Now let λm be a zero of
f (m)(X )

f (m−1)(X )
, where f (X) is a monic polynomial of degree

q in Fπ so that Lπ = K (λm). Consider a power series ϑ ′(X) ∈ OK̂ur
as in (ii ) of

the previous lemma. It follows that ϑ ′(λm) is a zero of
g(m)(X )

g(m−1)(X )
. Thus we may put

ϑ ′(λm) = λ′m . Let ϕ denote the Frobenius automorphism in Gal (LπKur/Lπ ). Then

γπ (π ′)(λ′m) = γπ (u) ϕ(ϑ ′(λm))

= γπ (u)(ϑ ′([u] f (λm)))

= ϑ ′([u] f (γπ (u)(λm)))

= ϑ ′([u] f ([u−1] f (λm)))

= ϑ ′(λm)

= λ′m .

Finally, we note that γπ and ρK agree, since at π each is the Frobenius automor-
phism on Kur and the identity on Lπ . ��
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Exercise 7.32. Let K be a local field, and let Lm be the m th Lubin-Tate extension of
K . Factor a ∈ K× as a = uπ t

K
, where u ∈ UK and t ∈ Z. Show that a ∈ kerρLm/K

if and only if u−1 ∈ Um
K . ♦

Exercise 7.32 tells us kerρLm/K = 〈πK 〉 × Um
K , a subgroup of K×. But we know

that kerρLm/K = NLm/K L×m by Theorem 7.4. Hence Lm is the class field over K of
the group 〈πK 〉 × Um

K .

Exercise 7.33. Suppose E/K is unramified, and let a ∈ K×. Find, as explicitly as
possible, ρE/K (a). ♦
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