
Boundary
Control of PDEs

Advances in Design and Control

SIAM’s Advances in Design and Control series consists of texts and monographs dealing with all areas of
design and control and their applications. Topics of interest include shape optimization, multidisciplinary
design, trajectory optimization, feedback, and optimal control. The series focuses on the mathematical
and computational aspects of engineering design and control that are usable in a wide variety of scientific
and engineering disciplines.

Editor-in-Chief
Ralph C. Smith, North Carolina State University

Editorial Board
Athanasios C. Antoulas, Rice University
Siva Banda, Air Force Research Laboratory
Belinda A. Batten, Oregon State University
John Betts, The Boeing Company
Stephen L. Campbell, North Carolina State University
Eugene M. Cliff, Virginia Polytechnic Institute and State University
Michel C. Delfour, University of Montreal
Max D. Gunzburger, Florida State University
J. William Helton, University of California, San Diego
Arthur J. Krener, University of California, Davis
Kirsten Morris, University of Waterloo
Richard Murray, California Institute of Technology
Ekkehard Sachs, University of Trier

Series Volumes
Krstic, Miroslav, and Smyshlyaev, Andrey, Boundary Control of PDEs: A Course on Backstepping Designs
Ito, Kazufumi and Kunisch, Karl, Lagrange Multiplier Approach to Variational Problems and Applications
Xue, Dingyü, Chen, YangQuan, and Atherton, Derek P., Linear Feedback Control: Analysis and Design

with MATLAB
Hanson, Floyd B., Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and

Computation
Michiels, Wim and Niculescu, Silviu-Iulian, Stability and Stabilization of Time-Delay Systems:

An Eigenvalue-Based Approach
Ioannou, Petros and Fidan, Baris, Adaptive Control Tutorial
Bhaya, Amit and Kaszkurewicz, Eugenius, Control Perspectives on Numerical Algorithms and Matrix

Problems
Robinett III, Rush D., Wilson, David G., Eisler, G. Richard, and Hurtado, John E., Applied Dynamic

Programming for Optimization of Dynamical Systems
Huang, J., Nonlinear Output Regulation: Theory and Applications
Haslinger, J. and Mäkinen, R. A. E., Introduction to Shape Optimization: Theory, Approximation,

and Computation
Antoulas, Athanasios C., Approximation of Large-Scale Dynamical Systems
Gunzburger, Max D., Perspectives in Flow Control and Optimization
Delfour, M. C. and Zolésio, J.-P., Shapes and Geometries: Analysis, Differential Calculus, and Optimization
Betts, John T., Practical Methods for Optimal Control Using Nonlinear Programming
El Ghaoui, Laurent and Niculescu, Silviu-Iulian, eds., Advances in Linear Matrix Inequality Methods in Control
Helton, J. William and James, Matthew R., Extending H∞ Control to Nonlinear Systems: Control

of Nonlinear Systems to Achieve Performance Objectives

¸

Society for Industrial and Applied Mathematics
Philadelphia

Boundary
Control of PDEs
A Course on Backstepping Designs

Miroslav Krstic
University of California, San Diego

La Jolla, California

Andrey Smyshlyaev
University of California, San Diego

La Jolla, California

Copyright © 2008 by the Society for Industrial and Applied Mathematics.

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For information,
write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia,
PA 19104-2688 USA.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are used in an editorial context only; no infringement of trademark is intended.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please
contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7101, info@mathworks.com, www.mathworks.com.

Library of Congress Cataloging-in-Publication Data

Krstic, Miroslav.
Boundary control of PDEs : a course on backstepping designs / Miroslav Krstic, Andrey Smyshlyaev.

p. cm. -- (Advances in design and control ; 16)
Includes bibliographical references and index.
ISBN 978-0-89871-650-4

1. Control theory. 2. Boundary layer. 3. Differential equations, Partial. I. Smyshlyaev, Andrey. II. Title.
QA402.3.K738 2008
515'.353--dc22 2008006666

is a registered trademark.

n48 main
2008/4/7
page v

�

�

�

�

�

�

�

�

Contents

Preface ix

1 Introduction 1
1.1 Boundary Control . 1
1.2 Backstepping . 2
1.3 A Short List of Existing Books on Control of PDEs 2
1.4 No Model Reduction in This Book 3
1.5 Control Objectives for PDE Systems 3
1.6 Classes of PDEs and Benchmark PDEs Dealt with in This Book 3
1.7 Choices of Boundary Controls . 4
1.8 The Domain Dimension: 1D, 2D, and 3D Problems 5
1.9 Observers . 6
1.10 Adaptive Control of PDEs . 6
1.11 Nonlinear PDEs . 6
1.12 Organization of the Book . 6
1.13 Why We Don’t State Theorems . 8
1.14 Focus on Unstable PDEs and Feedback Design Difficulties 9
1.15 The Main Idea of Backstepping Control 9
1.16 Emphasis on Problems in One Dimension 11
1.17 Unique to This Book: Elements of Adaptive and Nonlinear Designs

for PDEs . 11
1.18 How to Teach from This Book . 11

2 Lyapunov Stability 13
2.1 A Basic PDE Model . 14
2.2 Lyapunov Analysis for a Heat Equation in Terms of “L2 Energy” . . . 16
2.3 Pointwise-in-Space Boundedness and Stability in Higher Norms . . . 19
2.4 Notes and References . 22
Exercises . 22

3 Exact Solutions to PDEs 23
3.1 Separation of Variables . 23
3.2 Notes and References . 27
Exercises . 27

v

n48 main
2008/4/7
page vi

�

�

�

�

�

�

�

�

vi Contents

4 Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations 29
4.1 Backstepping: The Main Idea . 30
4.2 Gain Kernel PDE . 31
4.3 Converting the Gain Kernel PDE into an Integral Equation 33
4.4 Method of Successive Approximations 34
4.5 Inverse Transformation . 35
4.6 Neumann Actuation . 41
4.7 Reaction-Advection-Diffusion Equation 42
4.8 Reaction-Advection-Diffusion Systems with Spatially Varying

Coefficients . 44
4.9 Other Spatially Causal Plants . 46
4.10 Comparison with ODE Backstepping 47
4.11 Notes and References . 50
Exercises . 50

5 Observer Design 53
5.1 Observer Design for PDEs . 53
5.2 Output Feedback . 56
5.3 Observer Design for Collocated Sensor and Actuator 57
5.4 Compensator Transfer Function . 60
5.5 Notes and References . 63
Exercises . 63

6 Complex-Valued PDEs: Schrödinger and Ginzburg–Landau Equations 65
6.1 Schrödinger Equation . 65
6.2 Ginzburg–Landau Equation . 67
6.3 Notes and References . 75
Exercises . 76

7 Hyperbolic PDEs: Wave Equations 79
7.1 Classical Boundary Damping/Passive Absorber Control 80
7.2 Backstepping Design: A String with One Free End and Actuation on

the Other End . 83
7.3 Wave Equation with Kelvin–Voigt Damping 85
7.4 Notes and References . 87
Exercises . 88

8 Beam Equations 89
8.1 Shear Beam . 91
8.2 Euler–Bernoulli Beam . 95
8.3 Notes and References . 101
Exercises . 105

9 First-Order Hyperbolic PDEs and Delay Equations 109
9.1 First-Order Hyperbolic PDEs . 109
9.2 ODE Systems with Actuator Delay 111
9.3 Notes and References . 113
Exercises . 114

n48 main
2008/4/7
page vii

�

�

�

�

�

�

�

�

Contents vii

10 Kuramoto–Sivashinsky, Korteweg–de Vries, and Other “Exotic”
Equations 115
10.1 Kuramoto–Sivashinsky Equation . 116
10.2 Korteweg–de Vries Equation . 117
10.3 Notes and References . 118
Exercises . 118

11 Navier–Stokes Equations 119
11.1 Channel Flow PDEs and Their Linearization 119
11.2 From Physical Space to Wavenumber Space 121
11.3 Control Design for Orr–Sommerfeld and Squire Subsystems 122
11.4 Notes and References . 127
Exercises . 128

12 Motion Planning for PDEs 131
12.1 Trajectory Generation . 132
12.2 Trajectory Tracking . 139
12.3 Notes and References . 141
Exercises . 141

13 Adaptive Control for PDEs 145
13.1 State-Feedback Design with Passive Identifier 146
13.2 Output-Feedback Design with Swapping Identifier 151
13.3 Notes and References . 157
Exercises . 158

14 Towards Nonlinear PDEs 161
14.1 The Nonlinear Optimal Control Alternative 162
14.2 Feedback Linearization for a Nonlinear PDE: Transformation in Two

Stages . 163
14.3 PDEs for the Kernels of the Spatial Volterra Series in the Nonlinear

Feedback Operator . 165
14.4 Numerical Results . 167
14.5 What Class of Nonlinear PDEs Can This Approach Be Applied to in

General? . 167
14.6 Notes and References . 170
Exercise . 171

Appendix Bessel Functions 173
A.1 Bessel Function Jn . 173
A.2 Modified Bessel Function In . 174

Bibliography 177

Index 191

n48 main
2008/4/7
page viii

�

�

�

�

�

�

�

�

n48 main
2008/4/7
page ix

�

�

�

�

�

�

�

�

Preface

The method of “integrator backstepping” emerged around 1990 as a robust version of
feedback linearization for nonlinear systems with uncertainties. Backstepping was partic-
ularly inspired by situations in which a plant nonlinearity, and the control input that needs
to compensate for the effects of the nonlinearity, are in different equations. An example is
the system

ẋ1 = x2 + x3
1d(t),

ẋ2 = x3,

ẋ3 = u ,

where x = (x1, x2, x3) is the system state, u is the control input, and d(t) is an unknown
time-varying external disturbance. Note that for d(t) ≡ 1 this system is open-loop unstable
(with a finite escape time instability). Because backstepping has the ability to cope with
not only control synthesis challenges of this type but also much broader classes of systems
and problems (such as unmeasured states, unknown parameters, zero dynamics, stochas-
tic disturbances, and systems that are neither feedback linearizable nor even completely
controllable), it has remained the most popular method of nonlinear control since the early
1990s.

Around 2000 we initiated an effort to extend backstepping to partial differential equa-
tions (PDEs) in the context of boundary control. Indeed, on an intuitive level, backstepping
and boundary control are the perfect fit of method and problem. As the simplest example,
consider a flexible beam with a destabilizing feedback force acting on the free end (such
as the destabilizing van der Waals force acting on the tip of the cantilever of an atomic
force microscope (AFM) operating with large displacements), where the control is applied
through boundary actuation on the opposite end of the beam (such as with the piezo actuator
at the base of the cantilever in the AFM). This is a prototypical situation in which the input
is “far” from the source of instability and the control action has to be propagated through
dynamics—the setting for which backstepping was developed.

Backstepping has proved to be a remarkably elegant method for designing controllers
for PDE systems. Unlike approaches that require the solution of operator Riccati equations,
backstepping yields control gain formulas which can be evaluated using symbolic compu-
tation and, in some cases, can even be given explicitly. In addition, backstepping achieves
stabilization of unstable PDEs in a physically appealing way, that is, the destabilizing terms
are eliminated through a change of variable of the PDE and boundary feedback. Other
methods for control of PDEs require extensive training in PDEs and functional analysis.

ix

n48 main
2008/4/7
page x

�

�

�

�

�

�

�

�

x Preface

Backstepping, on the other hand, requires little background beyond calculus for users to
understand the design and the stability analysis.

This book is designed to be used in a one semester course on backstepping techniques
for boundary control of PDEs. In Fall 2005 we offered such a course at the University of
California, San Diego. The course attracted a large group of postgraduate, graduate, and
advanced undergraduate students. Due to the diversity of backgrounds of the students in the
class, we developed the course in a broad way so that students could exercise their intuition
no matter their backgrounds, whether in fluids, flexible structures, heat transfer, or control
engineering. The course was a success and at the end of the quarter two of the students,
Matthew Graham and Charles Kinney, surprised us with a gift of a typed version of the notes
that they took in the course. We decided to turn these notes into a textbook, with Matt’s and
Charles’ notes as a starting point, and with the homework sets used during the course as a
basis for the exercise sections in the textbook.

We have kept the book short and as close as possible to the original course so that the
material can be covered in one semester or quarter. Although short, the book covers a very
broad set of topics, including most major classes of PDEs. We present the development
of backstepping controllers for parabolic PDEs, hyperbolic PDEs, beam models, trans-
port equations, systems with actuator delay, Kuramoto–Sivashinsky-like and Korteweg–de
Vries-like linear PDEs, and Navier–Stokes equations. We also cover the basics of motion
planning and parameter-adaptive control for PDEs, as well as observer design with boundary
sensing.

Short versions of a course on boundary control, based on preliminary versions of the
book, were taught at the University of California, Santa Barbara (in Spring 2006) and at the
University of California, Berkeley (in Fall 2007 and where the first author was invited to
present the course as a Russell Severance Springer Professor of Mechanical Engineering).

Acknowledgments. This book is a tutorial summary of research that a number of gifted
collaborators have contributed to: Andras Balogh, Weijiu Liu, Dejan Boskovic, Ole Morten
Aamo, Rafael Vazquez, and Jennie Cochran. Aside from our collaborators, first and foremost
we thank Petar Kokotovic, who read the manuscript from cover to cover and provided
hundreds (if not thousands) of constructive comments and edits. Our very special thanks
also go to Charles Kinney and Matt Graham. While developing the field of backstepping
for PDEs, we have also enjoyed support from and interaction with Mihailo Jovanovic,
Irena Lasiecka, Roberto Triggiani, Baozhu Guo, Alexandre Bayen, George Weiss, Michael
Demetriou, Sanjoy Mitter, Jessy Grizzle, and KarlAstrom. For the support from the National
Science Foundation that this research has critically depended on, we are grateful to Drs.
Kishan Baheti, Masayoshi Tomizuka, and Mario Rotea. Finally, we wish to thank our loved
ones, Olga, Katerina, Victoria, Alexandra, and Angela.

La Jolla, California Miroslav Krstic
November, 2007 Andrey Smyshlyaev

n48 main
2008/4/7
page 1

�

�

�

�

�

�

�

�

Chapter 1

Introduction

Fluid flows in aerodynamics and propulsion applications; plasmas in lasers, fusion reactors,
and hypersonic vehicles; liquid metals in cooling systems for tokamaks and computers as
well as in welding and metal casting processes; acoustic waves and water waves irrigation
systems. Flexible structures in civil engineering applications, aircraft wings and helicopter
rotors, astronomical telescopes, and in nanotechnology devices such as the atomic force
microscope. Electromagnetic waves and quantum mechanical systems. Waves and “ripple”
instabilities in thin film manufacturing and in flame dynamics. Chemical processes in
process industries and in internal combustion engines.

For a control engineer, few areas of control theory are as physically motivated—
but also as impenetrable—as control of partial differential equations (PDEs). Even “toy”
problems such as heat equations and wave equations (neither of which are unstable) require
the user to have a considerable background in PDEs and functional analysis before one can
study the control design methods for these systems, particularly boundary control design.
As a result, courses in control of PDEs are extremely rare in engineering programs. Control
students are seldom trained in PDEs (let alone in control of PDEs) and are cut off from
numerous physical applications in which they could be making contributions, either on the
technological or on the fundamental level.

With this book we hope to help change this situation. We introduce methods which are
easy to understand, require minimal background beyond calculus, and are easy to teach—
even for instructors with only minimal exposure to the subject of control of PDEs.

1.1 Boundary Control
Control of PDEs comes in roughly two settings—depending on where the actuators and
sensors are located—“in domain” control, where the actuation penetrates inside the domain
of the PDE system or is evenly distributed everywhere in the domain (likewise with sens-
ing) and “boundary” control, where the actuation and sensing are applied only through the
boundary conditions. Boundary control is generally considered to be physically more realis-
tic because actuation and sensing are nonintrusive (think, for example, of a fluid flow where

1

n48 main
2008/4/7
page 2

�

�

�

�

�

�

�

�

2 Chapter 1. Introduction

actuation would normally be from the walls of the flow domain).1 Boundary control is also
generally considered to be the harder problem, because the “input operator” (the analog of
the B matrix in the LTI (linear time invariant) finite-dimensional model ẋ = Ax +Bu) and
the output operator (the analog of the C matrix in y = Cx) are unbounded operators. As a
result of the greater mathematical difficulty, fewer methods have been developed over the
years for boundary control problems of PDEs, and most books on control of PDEs either
don’t cover boundary control or dedicate only small fractions of their coverage to boundary
control.

This book is devoted exclusively to boundary control. One reason is because this is
the more realistic problem called for by many of the current applications. Another reason
is because the method that this book pursues has so far been developed only for boundary
control problems because of a natural fit between the method and the boundary control
paradigm.

1.2 Backstepping
The method that this book develops for control of PDEs is the so-called backstepping control
method. Backstepping is a particular approach to stabilization of dynamic systems and is
particularly successful in the area of nonlinear control [97]. Backstepping is unlike any
of the methods previously developed for control of PDEs. It differs from optimal control
methods in that it sacrifices optimality (though it can achieve a form of “inverse optimality”)
for the sake of avoiding operator Riccati equations, which are very hard to solve for infinite-
(or high-) dimensional systems such as PDEs. Backstepping is also different from pole
placement methods because, even though its objective is stabilization, which is also the
objective of the pole placement methods, backstepping does not pursue precise assignment
of even a finite subset (let alone the entire infinite collection) of the PDE’s eigenvalues.
Instead, the backstepping method achieves Lyapunov stabilization, which is often achieved
by collectively shifting all the eigenvalues in a favorable direction in the complex plane,
rather than by assigning individual eigenvalues. As the reader will soon learn, this task can be
achieved in a rather elegant way, where the control gains are easy to compute symbolically,
numerically, and in some cases even explicitly.

1.3 A Short List of Existing Books on Control of PDEs
The area of control of infinite-dimensional systems—PDEs and delay systems—has been
under development since at least the 1960s. Some of the initial efforts that laid the founda-
tions of the field in the late 1960s and early 1970s were in optimal control and controllability
of linear PDE systems. Controllability is a very challenging question for PDE systems be-
cause a rank test of the type [b, Ab, A2b, . . . , An−1b] cannot be developed. It is also a
fascinating topic because different classes of PDEs call for very different techniques. Con-
trollability is an important topic because, even though it does not yield controllers robust
to uncertainties in initial conditions and modeling errors, it answers the fundamental ques-
tion of whether input functions can be found to steer a system from one state to another.

1“Body force” actuation of electromagnetic type is also possible, but it has low control authority and its spatial
distribution typically has a pattern that favors the near-wall region.

n48 main
2008/4/7
page 3

�

�

�

�

�

�

�

�

1.6. Classes of PDEs and Benchmark PDEs Dealt with in This Book 3

Feedback design methods for PDEs, which do possess robustness to various uncertainties,
include different varieties of linear quadratic optimal control, pole placement, and other
ideas extended from finite-dimensional to infinite-dimensional systems.

Some of the books on control of distributed parameter systems that have risen to
prominence as research references are those by Curtain and Zwart [44], Lasiecka and Trig-
giani [109], Bensoussan et al. [22], and Christofides [36]. Application-oriented books
on control of PDEs have been dedicated to problems that arise from flexible structures
[122, 103, 106, 17, 145] and from flow control [1, 64].

1.4 No Model Reduction in This Book
Model reduction often plays an important role in most methods for control design for PDEs.
Different methods employ model reduction in different ways to extract a finite-dimensional
subsystem to be controlled while showing robustness to neglecting the remaining infinite-
dimensional dynamics in the design. The backstepping method does not employ model
reduction—none is needed except at the implementation stage, where the integral operators
for state feedback laws are approximated by sums and when PDE observers are discretized
for numerical implementation.

1.5 Control Objectives for PDE Systems
One can pursue several different objectives in a control design for both ordinary differential
equation (ODE) and PDE systems. If the system is already stable, a typical objective for
feedback control would be to improve performance. Optimality methods are natural in such
situations. Another control objective is stabilization. This book almost exclusively focuses
on open-loop unstable PDE plants and delivers feedback laws of acceptable complexity
which solve the stabilization problem without resorting to operator Riccati equations.

Stabilization of an equilibrium state is a special case of a control problem in which
one wants to stabilize a desired motion, such as in trajectory tracking. Before pursuing
the problem of designing a feedback law to stabilize a desired trajectory, one first needs to
solve the problem of trajectory generation or motion planning, where an open-loop input
signal needs to be found that generates the desired output trajectory in the case of a perfect
initial condition (that is matched to the desired output trajectory). No book currently exists
that treats motion planning or trajectory tracking for PDEs in any detail. These problems
are at an initial stage of research. We dedicate Chapter 12 of this book to motion planning
and trajectory tracking for PDEs. Our coverage is elementary and tutorial and it adheres to
the same goal of developing easily computable and, whenever possible, explicit results for
trajectory generation and tracking of PDEs.

1.6 Classes of PDEs and Benchmark PDEs Dealt with in
This Book

In contrast to ODEs, no general methodology can be developed for PDEs, neither for analysis
nor for control synthesis. This is a discouraging fact about this field but is also one of its

n48 main
2008/4/7
page 4

�

�

�

�

�

�

�

�

4 Chapter 1. Introduction

Table 1.1. Categorization of PDEs in the book.

∂t ∂tt

∂x transport PDEs, delays

∂xx parabolic PDEs, hyperbolic PDEs,
reaction-advection-diffusion systems wave equations

∂xxx Korteweg–de Vries

∂xxxx Kuramoto–Sivashinsky Euler-Bernoulli
and Navier–Stokes and shear beams,

(Orr–Sommerfeld form) Schrödinger, Ginzburg–Landau

most exciting features because it provides an endless stream of opportunities for learning
and creativity. Two of the most basic categories of PDEs studied in textbooks are parabolic
and hyperbolic PDEs, with standard examples being heat equations and wave equations.
However, the reality is that there are many more classes and examples of PDEs that don’t fit
into these two basic categories. By browsing through our table of contents the reader will
observe the large number of different classes of PDEs and the difficulty with fitting them into
neat groups and subgroups. Table 1.1 shows one categorization of the PDEs considered in
this book, organized by the highest derivative in time, ∂t , and in space, ∂x , that an equation
contains. We are considering in this book equations with up to two derivatives in time,
∂tt , and with up to four derivatives in space, ∂xxxx . This is not an exhaustive list. One can
encounter PDEs with even higher derivatives. For example, the Timoshenko beam model
has four derivatives in both time and space (a backstepping design for this PDE is presented
in [99, 100]).

All the PDEs listed in Table 1.1 are regarded as real-valued. However, some of
these PDEs, particularly the Schrödinger equation and the Ginzburg–Landau equation, are
commonly studied as complex-valued PDEs. In that case they are written in a form that
includes only one derivative in time and two derivatives in space. Their coefficients are also
complex-valued in that case. For this reason, even though they “look” like parabolic PDEs,
they behave like oscillatory, hyperbolic PDEs. In fact, the (linear) Schrödinger equation is,
in some ways, equivalent to the Euler–Bernoulli beam PDE.

The list in Table 1.1 is not exhaustive. Many other benchmark PDEs exist, particularly
when one explores the possibility of these PDEs containing nonlinearities.

1.7 Choices of Boundary Controls
As indicated earlier, this book deals exclusively with boundary control. However, more then
one option exists when it comes to boundary actuation. In some applications it is natural to
actuate the boundary value of the state variable of the PDE (Dirichlet actuation). This is the

n48 main
2008/4/7
page 5

�

�

�

�

�

�

�

�

1.8. The Domain Dimension: 1D, 2D, and 3D Problems 5

case, for example, in flow control where microjects are used to actuate the boundary values
of the velocity at the wall. In contrast, in other applications it is only natural to actuate
the boundary value of the gradient of the state variable of the PDE (Neumann actuation).
This is the case, for example, in thermal problems where one can actuate the heat flux
(the derivative of the temperature) but not the temperature itself. All of our designs are
implementable using both Dirichlet and Neumann actuation.

1.8 The Domain Dimension: 1D, 2D, and 3D Problems
PDE control problems are complex enough for domains of one dimension, such as, a string,
a beam, a chemical tubular reactor, etc. They can be unstable, can have a large number
of unstable eigenvalues (in the presence of external “feedback-type” forces that induce
instability), and can be highly nontrivial to control. However, many physical PDE problems
exist which evolve in two and three dimensions. It is true that some of them are dominated
by phenomena evolving in one coordinate direction (while the phenomena in the other
directions are stable and slow) but there exist some equations that are genuinely three-
dimensional (3D). This is particularly the case with Navier–Stokes equations, where the
full richness and realism of turbulent fluid behavior is exhibited only in three dimensions.
We present one such problem: a boundary control design for a 3D Navier–Stokes flow in a
channel.

2D and 3D problems are easier when the domain shape is “regular” in some way. For
example, PDE control for a system whose domain is a rectangle or an annulus is much more
readily tractable than for a problem in which the domain has an “amorphous” shape. In
oddly shaped domains, particularly if the PDE is unstable, the control problem is formidable
for any method. Unfortunately, the literature abounds with abstract control methods for 2D
and 3D PDE systems on general domains, where the complexities are hidden behind neatly
written Riccati equations, with no numerical results offered that show that such equations
are efficiently solvable and that the closed-loop system works well and is robust to modeling
uncertainties. One should realize that genuine 2D and 3D systems, particularly if unstable
and on oddly shaped domains, are typically impossible to represent by reasonable low-
order finite-dimensional approximations. Such systems, such as turbulent fluids in three
dimensions around irregularly shaped bodies, truly require millions of differential equations
to capture their dynamics faithfully and tens of thousands of equations to perform control
design properly. Systems of this type are still beyond the reach of the control methodologies,
numerical methods, and the computer hardware available today. The reader should not
expect to find solutions to such problems (unstable PDEs on irregularly shaped 2D and 3D
domains, with boundary control) in this book, and, for that matter, in any other book on
control of PDEs. Currently such problems are still on the list of future topics in backstepping
control research for PDEs.

A reasonable setup for boundary control, which is still “hard” but tractable, is a setup
where one has an order of magnitude fewer control inputs than states. This is the case with
end point boundary control in one dimension (covered throughout this book), boundary
control of a part of a 1D boundary in a 2D problem (covered, for example, in [174]), and
boundary actuation of a part of a 2D boundary in a 3D problem (covered in Chapter 11 on
Navier–Stokes equations).

n48 main
2008/4/7
page 6

�

�

�

�

�

�

�

�

6 Chapter 1. Introduction

1.9 Observers
In addition to presenting the methods for boundary control design, we present the dual
methods for observer design using boundary sensing. Virtually every one of our control
designs for full state stabilization has an observer counterpart, although to avoid monotony
we don’t provide all those observers. The observer gains are easy to compute symbolically
or even explicitly in some cases. They are designed in such a way that the observer error
system is exponentially stabilized. As in the case of finite-dimensional observer-based
control, a separation principle holds in the sense that a closed-loop system remains stable
after a full state stabilizing feedback is replaced by a feedback that employs the observer
state instead of the plant state.

1.10 Adaptive Control of PDEs
In addition to developing state estimators for PDEs, we also show approaches for developing
parameter estimators—system identifiers—for PDEs. This is an extremely challenging
problem, especially for unstable PDEs. We give examples of adaptive control systems in
which unstable PDEs with unknown parameters are controlled using parameter estimators
supplied by identifiers and using state estimators supplied by observers. We provide example
proofs of stability—a striking result, given that the infinite-dimensional plant is unstable,
only a scalar output is measured, and only a scalar input is actuated. The area of adaptive
control of PDEs is in its infancy. We present only reasonably “simple” results of tutorial
value. A whole array of more advanced results and different methods is contained in our
papers. Adaptive control of PDEs is a wide open, fertile area for future research.

1.11 Nonlinear PDEs
Currently, virtually no methods exist for boundary control of nonlinear PDEs. Several
results are available that apply to nonlinear PDEs which are neutrally stable, where the
nonlinearity plays no destabilizing role, that is, where a simple boundary feedback law needs
to be carefully designed so that the PDE is changed from neutrally stable to asymptotically
stable. However, no advanced control designs exist for nonlinear PDEs which are open-loop
unstable, where a sophisticated control Lyapunov function of non-quadratic type needs to be
constructed to achieve closed-loop stability. Even though the focus of this book is on linear
PDEs, we introduce initial ideas and current results that exist for stabilization of nonlinear
PDEs.

1.12 Organization of the Book
We begin, in Chapter 2, with an introduction to basic Lyapunov stability ideas for PDEs.
Backstepping is a method which employs a change of variable and boundary feedback to
make an unstable system behave like another, stable system, where the destabilizing terms
from the plant have been eliminated. With the backstepping method an entire class of
PDEs can be transformed into a single representative and desirable PDE from that class.
For example, all parabolic PDEs (including unstable reaction-diffusion equations) can be

n48 main
2008/4/7
page 7

�

�

�

�

�

�

�

�

1.12. Organization of the Book 7

transformed into a heat equation. Therefore, to study closed-loop stability of systems
controlled by backstepping, one should focus on the stability properties of certain basic (and
stable) PDEs, such as the heat equation, a wave equation with appropriate damping, and other
stable examples from other classes of PDEs. For this reason, our coverage of stability of
PDEs in Chapter 2 focuses on such basic PDEs, highlighting the role of spatial norms (L2, H1,
and so on), the role of the Poincaré, Agmon, and Sobolev inequalities, the role of integration
by parts in Lyapunov calculations, and the distinction between energy boundedness and
pointwise (in space) boundedness. The reader should immediately appreciate that it is
possible to determine whether a PDE behaves desirably even if one has not yet learned how
(or will never be able) to solve it.

In Chapter 3 we introduce the concepts of eigenvalues and eigenfunctions and the
basics of finding the solutions of PDEs analytically.

In Chapter 4 we introduce the backstepping method. This is done for the class of
parabolic PDEs. Our main “tutorial tool” is the reaction-diffusion PDE example

ut (x, t) = uxx(x, t) + λu(x, t) ,

which is evolving on the spatial interval x ∈ (0, 1), with one uncontrolled boundary condi-
tion at x = 0,

u(0, t) = 0 ,

and with a control applied through Dirichlet boundary actuation at x = 1. The reaction term
λu(x, t) in the PDE can cause open-loop instability. In particular, for a large positive λ this
system can have arbitrarily many unstable eigenvalues. Using the backstepping method,
we design the full-state feedback law,

u(1, t) = −
∫ 1

0
λy

I1

(√
λ(1 − y2)

)
√

λ(1 − y2)
u(y, t)dy ,

where I1 is a Bessel function, and show that this controller is exponentially stabilizing. This
is a remarkable result, not only because such an explicit formula for a PDE control law
is not achievable with any of the other previously developed methods for control of PDEs
(note that the gain kernel formula is given explicitly both in terms of the spatial variable
y and in terms of the parameter λ), but also because the simplicity of the formula and of
the method itself makes this PDE control design easy to understand by users with very
little PDE background, making it an ideal entry point for studying control of PDEs. The
rest of Chapter 4 is dedicated to various generalizations and extensions within the class of
parabolic PDEs.

In Chapter 5 we develop the observer design approach. The class of parabolic PDEs
from Chapter 4 is used here to introduce the design ideas and tools of this approach, but
such observers can be developed for all classes of PDEs in this book.

In Chapter 6 we consider Schrödinger and Ginzburg–Landau PDEs. They look like
parabolic PDEs. For example, the linear Schrödinger equation looks exactly like a heat
equation but its diffusion coefficient is imaginary and its state variable is complex valued.
The designs for these equations follow easily after the designs from Chapter 4. An important
example of an output feedback controller applied to a model of vortex shedding is presented.

n48 main
2008/4/7
page 8

�

�

�

�

�

�

�

�

8 Chapter 1. Introduction

Chapters 7, 8, and 9 deal with hyperbolic and “hyperbolic-like” equations—wave
equations, beams, transport equations, and delay equations. For wave and beam equations,
we introduce an important new “trick” that distinguishes the design for this class from the
design for parabolic PDEs. This trick has to do with how to introduce damping into these
systems where, as it turns out, damping (of “viscous” type) cannot be introduced directly
using boundary control. In Chapter 9 we show a backstepping design for compensation of
an actuator delay in a stabilizing control design for an unstable finite-dimensional plant. To
achieve this, we treat the delay as a transport PDE.

In Chapter 10 we turn our attention to the “exotics”—PDEs with just one spatial
derivative but with three, and even four, spatial derivatives—the Kuramoto–Sivashinsky
and the Korteweg–de Vries equations (or their variants, to be precise).

Chapter 11 is the only chapter in this book that deals with a problem that is more than
a benchmark problem. We present an application of backstepping to stabilization of a 3D
high Reynolds number Navier–Stokes equation.

In Chapter 12 we introduce the basics of motion planning/trajectory generation for
PDEs. For example, we consider how to move one end of a flexible beam to produce
precisely the desired motion with the free end of the beam. An example is then given of
how to combine the motion planning results from Chapter 12 with the feedback results from
the other chapters to achieve trajectory tracking.

In Chapter 13 we introduce the key elements of adaptive control for parametrically
uncertain PDEs.

Finally, in Chapter 14 we introduce the main idea for designing backstepping boundary
controllers for nonlinear PDEs.

1.13 Why We Don’t State Theorems
This book is intended for students being introduced to PDE control for the first time–not
only the most mathematically inclined Ph.D. students, but also Masters students in control
engineering who are aware of many applications for PDE control and enroll in a course
with the primary intent of learning control algorithms (rather than primarily proofs), but
who remain interested in the subject only if some of the technical details are “swept under the
rug.” Our presentation style is tuned to ease the latter students into the subjects of boundary
control and backstepping design for PDEs, while also providing a more mathematically
oriented student with plenty of food for thought in the form of challenging problems that
other methods do not address effectively. Although theorems are not stated for the designs
that we develop and whose stability we prove here, theorems are stated in our papers that
have inspired the writing of this text. An astute reader will easily deduce the missing details
from the choices of Lyapunov functions that we use and from boundary conditions that we
impose, along with the help of the properties of our changes of variables. The spaces that
our closed-loop systems are defined on, the assumptions needed on the initial conditions,
and other technical details are all implicit in our stability presentation. The well posedness
issues for our designs are nearly trivial because our “target systems” are basic PDEs which
are not only well studied in the literature but also explicitly solvable. We give plenty of
simulation results, which are probably more useful to most students than theorems. In our
experience with teaching this course to a diverse engineering audience, we found that going
through the material at a brisk pace, without stating theorems, but with highlighting the

n48 main
2008/4/7
page 9

�

�

�

�

�

�

�

�

1.15. The Main Idea of Backstepping Control 9

physical intuition, works better; in fact, this is the only approach that does work for our
intended purpose of attracting interest in control of PDEs from a broader set of potential
technology-oriented users.

1.14 Focus on Unstable PDEs and Feedback Design
Difficulties

Despite the fact that a reader who uses mathematics for a living (particularly, who studies
properties of solutions of PDEs such as existence, uniqueness, the function spaces to which
the solutions belong, etc.) won’t find our exposition fitting the formalisms preferred in
his/her field of work, the book successfully focuses on problems that are challenging per
today’s standards. We deal primarily with open-loop unstable problems. Even within
the class of hyperbolic PDEs, we identify classes of physically motivated unstable plants
(Exercises 7.3 and 8.3) for which boundary control is feasible. An instructor using this text
to ease his/her students into the field of control of PDEs can rest assured that the challenge of
the control problems treated in the text is not eliminated by the accessible presentation style.
Likewise, a mathematically inclined researcher will find plenty of problems to inspire future
research in the directions that present greater challenges, particularly in the construction of
feedback laws for stabilization of PDEs.

1.15 The Main Idea of Backstepping Control
A reader who wants to understand the main idea of backstepping design can go straight
to Section 4.1, whereas the reader who is primarily intrigued by the name “backstepping”
will find in Section 4.11 a (long) discussion of the origins of this term. The key ideas
of backstepping design for PDEs are intricately linked to the key ideas behind “feedback
linearization” techniques for control of nonlinear finite-dimensional systems.2 Feedback
linearization focuses on nonlinearities in the plant, including those whose effect on stability
is potentially harmful. Feedback linearization entails two steps: the first is the construction
of an invertible change of variables such that the system appears linear in the new variables
(except for a nonlinearity which is “in the span” of the control input vector), and the second
is the cancellation of this nonlinearity3 and the assignment of desirable linear exponentially
stable dynamics on the closed-loop system. Hence, the system is made to behave as an easy-
to-analyze linear system in the new variables, while its behavior in the original variables is
also predictably stable due to the fact that the change of variables has a well-defined inverse.

Our extension of this design framework to PDEs goes as follows. First, one identifies
the undesirable term or terms in a PDE model. This task may be trivial when the open-loop

2For finite-dimensional nonlinear systems, “backstepping” is an extension of “feedback linearization,” which
provides design tools that endow the controller with robustness to uncertain parameters and functional uncertainties
in the plant nonlinearities, robustness to external disturbances, and robustness to other forms of modeling errors,
including some dynamic uncertainties.

3In contrast to standard feedback linearization, backstepping allows the flexibility to not necessarily cancel the
nonlinearity. A nonlinearity may be kept if it is useful, or it may be dominated (rather than cancelled non-robustly)
if it is potentially harmful and uncertain. A rather subtle use of the capability of the backstepping method to avoid
the cancellation of useful terms is included in Section 6.2 the design of a controller for the suppression of vortex
shedding in a Ginzburg–Landau PDE model.

n48 main
2008/4/7
page 10

�

�

�

�

�

�

�

�

10 Chapter 1. Introduction

plant is such that stability can be analyzed easily, for example, by computing the open-loop
eigenvalues. Then one decides on a “target system” in which the undesirable terms are
eliminated after the application of a change of variable and feedback, as in the case of
feedback linearization. The change of variable is a key ingredient of the method. It shifts
the system state by a Volterra operator (in the spatial variable of the PDE) acting on the same
state. A Volterra operator is an integral operator, where the integral runs from 0 up to x as
the upper limit (rather than being an integral over the entire spatial domain). The Volterra
form of the shift of the state variable means that the state transformation is “triangular,” as
it is in the backstepping design for finite-dimensional nonlinear systems. This triangularity
ensures the invertibility of the change of variable. One can also think of this change of
variable as being “spatially causal.” Another key ingredient of the backstepping method
is the boundary feedback obtained from the Volterra transformation. The transformation
alone is obviously not capable of eliminating the undesirable terms. This transformation
only “brings them to the boundary,” where the boundary feedback controller can cancel
them (or dominate them).

The gain function of the boundary controller is defined by the kernel of the Volterra
transformation. As the reader will find in Chapter 4, this kernel satisfies an interesting PDE
which is linear and easily solvable. The simplicity of finding the control gains is one of the
main benefits of the backstepping method. The standard methods for control of PDEs, which
are “PDE extensions” of linear-quadratic-optimal methods for finite-dimensional systems
obtain their gains through the solution of Riccati equations—quadratic operator-valued
equations which are in general hard to solve.

We emphasize, however, that the numerical advantage of backstepping is just part of
its appeal. Another advantage is the conceptual elegance of using a feedback transformation
that eliminates exactly the undesirable part of the PDE (or adds a part that is missing, such
as damping), while leaving the PDE in a form which is familiar to the user, where physical
intuition can be used in shaping the closed-loop dynamics.

Backstepping represents a major departure from the “one-size-fits-all” and “extending
the results from finite-dimensional to infinite-dimensional systems” philosophies that drive
some of the standard approaches in the field of PDE control. In the spirit of PDEs, where
each class calls for a special treatment, backstepping requires the designer to physically
understand what the desired, “target” behavior within the given class is and to develop a
transformation capable of achieving such behavior. This requires a designer who is capable
of more than just “turning the crank on a method,” though this capability is more in the
realm of creatively combining some basic ideas from physics and control design rather than
the realm of very advanced mathematics. For the extra effort, the designer is rewarded with
controllers and closed-loop systems whose properties are easy to understand and whose
gains are easy to compute and tune.

Backstepping contradicts the conventional view that PDEs are “much harder to control
than ODEs.” If the only important feature of PDEs was their high dimension, then this
statement would be true. However, there is a structure to PDEs. The role which the
spatial derivatives play in this structure is crucial. If one approaches a particular PDE
with a custom design, one can arrive at control designs of great simplicity—including even
explicit formulae for control gains, as the reader shall see in Chapter 4.

n48 main
2008/4/7
page 11

�

�

�

�

�

�

�

�

1.18. How to Teach from This Book 11

1.16 Emphasis on Problems in One Dimension
The reader will observe a relative absence of problems in dimensions higher than one. Except
for Chapter 11, where we treat linearized Navier–Stokes equations in three dimensions, the
book focuses on PDEs in one dimension. Even in Chapter 11, the 3D problem dealt with is
in a very special geometry, where the flow is between two parallel plates. Instinctively, one
might view the absence of results for general geometries in two and three dimensions as a
shortcoming. However, one should understand that in general geometries for PDEs one can
only state abstract results. If we were to deal with general geometries, the clarity, elegance,
and physical insight that we strive to achieve in this text would have to be abandoned.
Noncomputable feedback laws (and even “potentially computable” feedback laws, whose
implementation would require further research to deduce the implementation details from
“existence” results) are not what this book is about. Hence, we concentrate mainly on 1D
problems, where the challenges are primarily drawn from the instability of the plant and
from the noncollocation of the control input and the source of instability.

1.17 Unique to This Book: Elements of Adaptive and
Nonlinear Designs for PDEs

While our coverage of adaptive and nonlinear control designs is limited to examples (to
maintain the tutorial and accessible character of the book), adaptive and nonlinear control are
important elements of this book, as many of our designs for linear PDEs are “alternatives”
to existing designs (alternatives that perhaps offer significant advantages), whereas the
adaptive and nonlinear designs are the first and only methods available for some of the PDE
problems considered. Our view is that the state of the art in adaptive control for PDEs before
the introduction of backstepping was comparable to the state of the art of adaptive control for
ODEs in the late 1960s, when the focus was on relative degree one (and related) problems.
Similarly, the current state of the art in control of nonlinear PDEs is comparable to where
the state of nonlinear control for ODEs was in the late 1970s. The backstepping idea that
we introduce for designing nonlinear controllers and nonquadratic Lyapunov functions is
intended to advance the nonlinear control for PDEs to where the state of nonlinear control for
ODEs was in, roughly, the early 1990s. The idea builds upon the Volterra transformations
employed in the linear parts of the book, but is generalized to nonlinear Volterra series.
Our use of Volterra series is different than their conventional usage in representation theory
for nonlinear ODEs, where Volterra series in time are employed. We use Volterra series
in space to represent plant (static) nonlinearities and nonlinear (static, full-state) feedback
laws rather than input-output dynamics.

1.18 How to Teach from This Book
Most of the material from this book was covered in a one-quarter course, MAE 287:
Distributed Parameter Systems, at the University of California, San Diego in Fall 2005.

n48 main
2008/4/7
page 12

�

�

�

�

�

�

�

�

12 Chapter 1. Introduction

An instructor can cover about one chapter per week and be done with most of the book in
one quarter (skipping Chapters 10, 13, and 14, for example); the entire book can be covered
in one semester. The book contains many examples and simulation results to motivate the
students through the material. Homework exercises are included. To obtain a solutions
manual, the instructor should contact the authors at krstic@ucsd.edu.

n48 main
2008/4/7
page 13

�

�

�

�

�

�

�

�

Chapter 2

Lyapunov Stability

Before we venture forth into the study of stability analysis tools for PDEs, let us recall some
of the basics of stability analysis for ODEs. Since we study only linear PDEs in this book,
only the linear ODE stability theory is of relevance here.

An ODE
ż = Az (2.1)

with z ∈ R
n is said to be exponentially stable at the equilibrium z = 0 if there exist positive

constants M and α such that

‖z(t)‖ ≤ Me−αt‖z(0)‖ for all t ≥ 0 , (2.2)

where ‖ · ‖ denotes one of the equivalent vector norms, for example, the 2-norm.
This is a definition of stability and is not practical as a test of stability. One (necessary

and sufficient) test that guarantees exponential stability is to verify that all the eigenvalues
of the matrix A have negative real parts. However, this test is not always practical.

An alternative test, which can be used for studying the system robustness and which
also extends to nonlinear ODEs, is the Lyapunov stability test. The system (2.1) is expo-
nentially stable in the sense of definition (2.2) if and only if for any positive definite n × n

matrix Q there exists a positive definite and symmetrical matrix P such that

PA + AT P = −Q . (2.3)

Along with this test comes the concept of a Lyapunov function V = xT Px, which is positive
definite and whose derivative V̇ = −xT Qx is negative definite.

The point of the Lyapunov method is finding the solution P to the Lyapunov matrix
equation (2.3). This analysis paradigm extends to infinite-dimensional systems such as
PDEs, but only on the abstract level. Even without the difficulties associated with solving
an (infinite-dimensional) operator equation such as (2.3), one has to carefully consider the
question of the definition of stability (2.2).

In a finite dimension, the vector norms are “equivalent.” No matter which norm one
uses for ‖·‖ in (2.2) (for example, the 2-norm, 1-norm, or ∞-norm), one can get exponential
stability in the sense of any other vector norm. What changes are the constants M and α in
the inequality (2.2).

13

n48 main
2008/4/7
page 14

�

�

�

�

�

�

�

�

14 Chapter 2. Lyapunov Stability

For PDEs the situation is quite different. Since the state space is infinite-dimensional,
for example, the state index i in z1, z2, . . . , zi, . . . , zn is replaced by a continuous spatial
variable x (in a PDE that evolves on a 1D domain), the state space is not a Euclidean space
but a function space, and likewise, the state norm is not a vector norm but a function norm.
Unfortunately, norms on function spaces are not equivalent; i.e., bounds on the state in terms
of the L1-, L2-, or L∞-norm in x do not follow from one another. To make matters worse,
other natural choices of state norms for PDEs exist which are not equivalent with Lp-norms.
Those are the so-called Sobolev norms, examples of which are the H1- and H2-norms (not
to be confused with Hardy space norms in robust control for ODE systems), and which,
roughly, are the L2-norms of the first and second derivative, respectively, of the PDE state.

With such a variety of choices, such lack of generality in the meaning of the stability
results, and such idiosyncrasy of the PDE classes being studied, general Lyapunov stability
tests for PDEs offer almost no practical value. Instead, one has to develop an understanding
of the relationships between functional norms and gain experience with deriving “energy
estimates” in different norms.

In this chapter we try to give the reader a flavor of some of the main issues that arise
in deriving exponential stability estimates for parabolic PDEs in one dimension. In the rest
of the book we also consider hyperbolic PDEs and higher-dimensional domains.

2.1 A Basic PDE Model
Before introducing stability concepts, we develop a basic “nondimensionalized” PDE model,
which will be the starting point for many of the analysis and control design considerations
in this book.

Consider a thermally conducting (metal) rod (Figure 2.1) of length L whose temper-
ature T (ξ, τ) is a function of the spatial variable ξ and time τ . The initial temperature
distribution is T (ξ) and the ends of the rod are kept at constant temperatures T1 and T2. The
evolution of the temperature profile is described by the heat equation4

Tτ (ξ, τ) = εTξξ (ξ, τ) , (2.4)

T (0, τ) = T1 , (2.5)

T (1, τ) = T2 , (2.6)

T (ξ, 0) = T0(ξ) . (2.7)

Here ε denotes the thermal diffusivity and Tτ and Tξξ are the partial derivatives with respect
to time and space.

Our objective is to write this equation in nondimensional variables that describe the
error between the unsteady temperature and the equilibrium profile of the temperature. This
is done as follows:

1. We scale ξ to normalize the length:

x = ξ

L
, (2.8)

4While in physical heat conduction problems it is more appropriate to assume that the heat flux Tξ (rather than
the temperature T itself) is held constant at the boundaries, for simplicity we proceed with the boundary conditions
as in (2.5) and (2.6).

n48 main
2008/4/7
page 15

�

�

�

�

�

�

�

�

2.1. A Basic PDE Model 15

0 L

T1 T2

ξ

Figure 2.1. A thermally conducting rod.

which gives

Tτ (x, τ) = ε

L2
Txx(x, τ) , (2.9)

T (0, τ) = T1 , (2.10)

T (1, τ) = T2 . (2.11)

2. We scale time to normalize the thermal diffusivity:

t = ε

L2
τ , (2.12)

which gives

Tt (x, t) = Txx(x, t) , (2.13)

T (0, t) = T1 , (2.14)

T (1, t) = T2 . (2.15)

3. We introduce the new variable
w = T − T̄ , (2.16)

where T̄ (x) = T1 + x(T2 − T1) is the steady-state profile and is a solution to the
two-point boundary-value ODE

T̄ ′′(x) = 0 , (2.17)

T̄ (0) = T1 , (2.18)

T̄ (1) = T2 . (2.19)

Finally, we obtain

wt = wxx , (2.20)

w(0) = 0 , (2.21)

w(1) = 0 , (2.22)

where the initial distribution of the temperature fluctuation is w0 = w(x, 0). Note that here,
and throughout the rest of the book, for clarity of presentation we drop the dependence on
time and spatial variable where it does not lead to confusion; i.e., by w, w(0) we always
mean w(x, t), w(0, t), respectively, unless specifically stated otherwise.

n48 main
2008/4/7
page 16

�

�

�

�

�

�

�

�

16 Chapter 2. Lyapunov Stability

The following are the basic types of boundary conditions for PDEs in one dimension:

• Dirichlet: w(0) = 0 (fixed temperature at x = 0).

• Neumann: wx(0) = 0 (fixed heat flux at x = 0).

• Robin: wx(0) + qw(0) = 0 (mixed).

Throughout this text we will be studying problems with all three types of boundary
conditions.

2.2 Lyapunov Analysis for a Heat Equation in Terms of “L2
Energy”

Consider the heat equation

wt = wxx , (2.23)

w(0) = 0 , (2.24)

w(1) = 0 . (2.25)

The basic question we want to answer is whether this system is exponentially stable in the
sense of an L2-norm of the state w(x, t) with respect to the spatial variable x. It is true that
this particular PDE can be solved in closed form (see the next chapter), and the stability
properties can be analyzed directly from the explicit solution. Moreover, from the physical
point of view, this system clearly cannot be unstable since there is no heat generation
(reaction terms) in the equation. However, for more complex problems the explicit solution
usually cannot be found, and even physical considerations may not be conclusive. Thus,
it is important to develop a tool for analyzing the stability of such PDEs without actually
solving them.

Consider the Lyapunov function5

V (t) = 1

2

∫ 1

0
w2(x, t) dx. (2.26)

Let us calculate the time derivative of V :

V̇ = dV

dt
=
∫ 1

0
w(x, t)wt (x, t)dx (applying the chain rule)

=
∫ 1

0
wwxxdx (from (2.23))

= wwx |10 −
∫ 1

0
w2

xdx (integration by parts)

= −
∫ 1

0
w2

xdx . (2.27)

5Strictly speaking, this is a functional, but we refer to it simply as a “Lyapunov function” throughout the book.

n48 main
2008/4/7
page 17

�

�

�

�

�

�

�

�

2.2. Lyapunov Analysis for a Heat Equation in Terms of “L2 Energy” 17

The time derivative of V shows that it is bounded. However, it is not clear whether or
not V goes to zero because (2.27) depends on wx and not on w, so one cannot express the
right-hand side of (2.27) in terms of V .

Let us first recall two very useful inequalities:

Young’s Inequality (special case):

ab ≤ γ

2
a2 + 1

2γ
b2 . (2.28)

Cauchy–Schwarz Inequality:

∫ 1

0
uw dx ≤

(∫ 1

0
u2 dx

)1/2 (∫ 1

0
w2 dx

)1/2

. (2.29)

The following lemma establishes the relationship between the L2-norms of w and wx .

Lemma 2.1 (Poincaré Inequality). For any w, continuously differentiable on [0, 1],
∫ 1

0
w2 dx ≤ 2w2(1) + 4

∫ 1

0
w2

x dx ,∫ 1

0
w2 dx ≤ 2w2(0) + 4

∫ 1

0
w2

x dx .

(2.30)

Remark 2.2. The inequalities (2.30) are conservative. The tight version of (2.30) is

∫ 1

0
w2 dx ≤ w2(0) + 4

π2

∫ 1

0
w2

x dx , (2.31)

which is sometimes called “a variation of Wirtinger’s inequality.” The proof of (2.31) is
far more complicated than the proof of (2.30) and is given in [69].

Proof of Lemma 2.1.

∫ 1

0
w2 dx = xw2|10 − 2

∫ 1

0
xwwx dx (integration by parts)

= w2(1) − 2
∫ 1

0
xwwx dx

≤ w2(1) + 1

2

∫ 1

0
w2dx + 2

∫ 1

0
x2w2

x dx .

n48 main
2008/4/7
page 18

�

�

�

�

�

�

�

�

18 Chapter 2. Lyapunov Stability

Subtracting the second term from both sides of the inequality, we get the first inequality
in (2.30):

1

2

∫ 1

0
w2dx ≤ w2(1) + 2

∫ 1

0
x2w2

xdx

≤ w2(1) + 2
∫ 1

0
w2

xdx . (2.32)

The second inequality in (2.30) is obtained in a similar fashion.

We now return to equation (2.27). Using the Poincaré inequality along with boundary
conditions, we get

V̇ = −
∫ 1

0
w2

xdx ≤ −1

4

∫ 1

0
w2 ≤ −1

2
V (2.33)

which, by the basic comparison principle for first-order differential inequalities, implies that
the energy decay rate is bounded by

V (t) ≤ V (0)e−t/2 (2.34)

or by

‖w(t)‖ ≤ e−t/4‖w0‖ , (2.35)

where

w0(x) = w(x, 0)

is the initial condition and ‖ · ‖ denotes the L2-norm of a function of x, namely,

‖w(t)‖ =
(∫ 1

0
w(x, t)2 dx

)1/2

. (2.36)

Thus, the system (2.23)–(2.25) is exponentially stable in L2.
The dynamic response of the PDE in Figure 2.2 demonstrates the stability result that

we have just established. Even though the solution starts from a nonsmooth initial condition,
it rapidly smoothes out. This “instant smoothing” effect is the characteristic feature of the
heat equation. Our major message here is that by using Lyapunov tools we predicted the
overall decay of the solution without knowledge of the exact solution w(x, t) for a specific
initial condition w0(x).

For PDEs, the L2 form of stability in (2.35) is just one of the many possible (non-
equivalent) forms of stability, and the Lyapunov function (2.26) is just one of the many
possible choices, a well known feature of the Lyapunov method for ODEs. Nevertheless,
the L2 stability, quantified by (2.26) and (2.35), is usually the easiest one to prove for a vast
majority of PDEs, and an estimate of the form (2.35) is often needed before proceeding to
study stability in higher norms.

n48 main
2008/4/7
page 19

�

�

�

�

�

�

�

�

2.3. Pointwise-in-Space Boundedness and Stability in Higher Norms 19

xt

w(x, t)

Figure 2.2. Response of a heat equation to a nonsmooth initial condition.

2.3 Pointwise-in-Space Boundedness and Stability in
Higher Norms

We established that

‖w‖ → 0 as t → ∞,

but this does not imply that w(x, t) goes to zero for all x. There could be “unbounded
spikes” for some x along the spatial domain (on a set of measure zero) that do not contribute
to the L2-norm; however, Figure 2.2 shows that this is unlikely to occur, as our analysis to
follow will demonstrate.

It would be thus desirable to show that

max
x∈[0,1]

|w(x, t)| ≤ e− t
4 max

x∈[0,1]
|w(x, 0)| , (2.37)

namely, stability in the spatial L∞-norm. This is possible only in some special cases, using
problem specific considerations, and therefore is not worth our attention in a text that focuses
on basic but generally applicable tools. However, it is easy to show a more restrictive result
than (2.37), given by

max
x∈[0,1]

|w(x, t)| ≤ Ke− t
2 ‖w(x, 0)‖H1 , (2.38)

for some K > 0, where the H1-norm is defined by

‖w‖H1 :=
∫ 1

0
w2dx +

∫ 1

0
w2

xdx. (2.39)

Remark 2.3. The H1-norm can be defined in different ways, but the definition given above
suits our needs. Note also that by using the Poincaré inequality, it is possible to drop the
first integral in (2.39) for most problems.

n48 main
2008/4/7
page 20

�

�

�

�

�

�

�

�

20 Chapter 2. Lyapunov Stability

Before we proceed to prove (2.38), we need the following result.

Lemma 2.4 (Agmon’s Inequality). For a function w ∈ H1, the following inequalities hold:

max
x∈[0,1]

|w(x, t)|2 ≤ w(0)2 + 2‖w(t)‖‖wx(t)‖ ,

max
x∈[0,1]

|w(x, t)|2 ≤ w(1)2 + 2‖w(t)‖‖wx(t)‖ .
(2.40)

Proof. ∫ x

0
wwxdx =

∫ x

0
∂x

1

2
w2dx

= 1

2
w2|10

= 1

2
w(1)2 − 1

2
w(0)2. (2.41)

Taking the absolute value on both sides and using the triangle inequality gives

1

2
|w(x)2| ≤

∫ x

0
|w||wx |dx + 1

2
w(0)2. (2.42)

Using the fact that an integral of a positive function is an increasing function of its upper
limit, we can rewrite the last inequality as

|w(x)|2 ≤ w(0)2 + 2
∫ 1

0
|w(x)||wx(x)|dx. (2.43)

The right-hand side of this inequality does not depend on x, and therefore

max
x∈[0,1]

|w(x)|2 ≤ w(0)2 + 2
∫ 1

0
|w(x)||wx(x)|dx. (2.44)

Using the Cauchy–Schwarz inequality we get the first inequality of (2.40). The second
inequality is obtained in a similar fashion.

The simplest way to prove (2.38) is to use the following Lyapunov function:

V1 = 1

2

∫ 1

0
w2 dx + 1

2

∫ 1

0
w2

x dx . (2.45)

The time derivative of (2.45) is given by

V̇1 ≤ −‖wx‖2 − ‖wxx‖2 ≤ −‖wx‖2

≤ −1

2
‖wx‖2 − 1

2
‖wx‖2

≤ −1

8
‖w‖2 − 1

2
‖wx‖2 (using (2.33))

≤ −1

4
V1.

n48 main
2008/4/7
page 21

�

�

�

�

�

�

�

�

2.3. Pointwise-in-Space Boundedness and Stability in Higher Norms 21

Therefore,

‖w‖2 + ‖wx‖2 ≤ e−t/2
(‖w0‖2 + ‖w0,x‖2

)
, (2.46)

and using Young’s and Agmon’s inequalities, we get

max
x∈[0,1]

|w(x, t)|2 ≤ 2‖w‖‖wx‖
≤ ‖w‖2 + ‖wx‖2

≤ e−t/2
(‖w0‖2 + ‖wx,0‖2

)
. (2.47)

We have thus showed that

w(x, t) → 0 as t → ∞
for all x ∈ [0, 1].

In the example that we consider next, we advance from the simple heat equation
studied so far to considering the stability problem for an advection-diffusion PDE.

Example 2.5 Consider the diffusion-advection equation

wt = wxx + wx , (2.48)

wx(0) = 0 , (2.49)

w(1) = 0 . (2.50)

Let us show the L2 stability of this system by employing the tools introduced above.
Using the Lyapunov function (2.26), we get

V̇ =
∫ 1

0
wwtdx

=
∫ 1

0
wwxxdx +

∫ 1

0
wwxdx

= wwx |10 −
∫ 1

0
w2

xdx +
∫ 1

0
wwxdx (integration by parts)

= −
∫ 1

0
w2

xdx + 1

2
w2|10

= −
∫ 1

0
w2

xdx − 1

2
w2(0) .

Finally, using the Poincaré inequality (2.30), we get

V̇ ≤ −1

4
‖w‖2 ≤ −1

2
V , (2.51)

proving the exponential stability in L2 norm,

‖w(t)‖ ≤ e−t/4‖w0‖. �

n48 main
2008/4/7
page 22

�

�

�

�

�

�

�

�

22 Chapter 2. Lyapunov Stability

2.4 Notes and References
An excellent coverage of the Lyapunov stability method for both linear and nonlinear finite-
dimensional systems is given in [82]. Efforts towards developing Lyapunov theory for
infinite-dimensional systems are made in [71, 182].

It might seem from this chapter that our entire concept of Lyapunov theory for PDEs
reduces to manipulating basic norms and estimating their evolution in time. It might appear
that we are not constructing any nontrivial Lyapunov functions but using only the “diagonal”
Lyapunov functions that do not involve any “cross-terms.” This is actually not the case with
the remainder of the book. While in this chapter we have studied only Lyapunov functions
that are plain spatial norms of functions, in the remaining chapters we are going to construct
changes of variables for the PDE states, which are going to facilitate our analysis in a way so
that we can use Lyapunov results for system norms. The Lyapunov functions will employ
the norms of the transformed state variables, which means that in the original PDE state our
Lyapunov functions will be complex, sophisticated constructions that include nondiagonal
and cross-term effects.

Exercises
2.1. Prove the second inequalities in (2.30) and (2.40).

2.2. Consider the heat equation

wt = wxx

for x ∈ (0, 1) with the initial condition w0(x) = w(x, 0) and boundary conditions

wx(0) = 0

wx(1) = −1

2
w(1) .

Show that

‖w(t)‖ ≤ e− t
4 ‖w0‖ .

2.3. Consider the Burgers equation

wt = wxx − wwx

for x ∈ (0, 1) with the initial condition w0(x) = w(x, 0) and boundary conditions

w(0) = 0 ,

wx(1) = −1

6

(
w(1) + w3(1)

)
.

Show that

‖w(t)‖ ≤ e− t
4 ‖w0‖ .

Hint: Complete the squares.

n48 main
2008/4/7
page 23

�

�

�

�

�

�

�

�

Chapter 3

Exact Solutions to PDEs

In general, seeking explicit solutions to PDEs is a hopeless pursuit. One class of PDEs for
which the closed-form solutions can be found is linear PDEs with constant coefficients. The
solution not only provides us with an exact formula for a given initial condition, but also
gives us insight into the spatial structure and the temporal evolution of the PDE.

3.1 Separation of Variables
Consider the diffusion equation which includes a reaction term

ut = uxx + λu (3.1)

with boundary conditions

u(0) = 0 , (3.2)

u(1) = 0 , (3.3)

and initial condition u(x, 0) = u0(x). Let us find the solution to this system and determine
for which values of the parameter λ this system is unstable.

The most frequently used method for obtaining solutions to PDEs with constant co-
efficients is the method of separation of variables (the other common method employs the
Laplace transform). Let us assume that the solution u(x, t) can be written as a product of a
function of space and a function of time,

u(x, t) = X(x)T (t) . (3.4)

If we substitute the solution (3.4) into the PDE (3.1), we get

X(x)Ṫ (t) = X′′(x)T (t) + λX(x)T (t). (3.5)

Gathering the like terms on the opposite sides yields

Ṫ (t)

T (t)
= X′′(x) + λX(x)

X(x)
. (3.6)

23

n48 main
2008/4/7
page 24

�

�

�

�

�

�

�

�

24 Chapter 3. Exact Solutions to PDEs

Since the function on the left depends only on time, and the function on the right depends
only on the spatial variable, the equality can hold only if both functions are constant. Let
us denote this constant by σ . We then get two ODEs:

Ṫ = σT (3.7)

with initial condition T (0) = T0, and

X′′ + (λ − σ)X = 0 (3.8)

with boundary conditions X(0) = X(1) = 0 (they follow from the PDE boundary condi-
tions). The solution to (3.7) is given by

T = T0e
σ t . (3.9)

The solution to (3.8) has the form

X(x) = A sin(
√

λ − σx) + B cos(
√

λ − σx), (3.10)

where A and B are constants that should be determined from the boundary conditions. We
have

X(0) = 0 ⇒ B = 0 ,

X(1) = 0 ⇒ A sin(
√

λ − σ) = 0 .

The last equality can hold only if
√

λ − σ = πn for n = 0, 1, 2, . . . , so that

σ = λ − π2n2, n = 0, 1, 2, (3.11)

Substituting (3.9) and (3.10) into (3.4) yields

un(x, t) = T0Ane
(λ−π2n2)t sin(πnx), n = 0, 1, 2, (3.12)

For linear PDEs, the sum of particular solutions is also a solution (the principle of superpo-
sition). Therefore the formal general solution of (3.1)–(3.3) is given by

u(x, t) =
∞∑

n=1

Cne
(λ−π2n2)t sin(πnx) , (3.13)

where Cn = AnT0.
The solution in the form (3.13) is sufficient for complete stability analysis of the PDE.

If we are interested in the exact response to a particular initial condition, then we should
determine the constants Cn. To do this, let us set t = 0 in (3.13) and multiply both sides of
the resulting equality by sin(πmx):

u0(x) sin(πmx) = sin(πmx)

∞∑
n=1

Cn sin(πnx) . (3.14)

n48 main
2008/4/7
page 25

�

�

�

�

�

�

�

�

3.1. Separation of Variables 25

Then, using the identity∫ 1

0
sin(πmx) sin(πnx)dx =

{
1/2 n = m

0 n �= m

}
, (3.15)

we get

Cm = 1

2

∫ 1

0
u0(x) sin(πnx)dx . (3.16)

Substituting this expression into (3.13), we get

u(x, t) = 2
∞∑

n=1

e(λ−π2n2)t sin(πnx)

∫ 1

0
sin(πnx)u0(x)dx . (3.17)

Even though we obtained this solution formally, it can be proved that this is indeed a
well-defined solution in the sense that it is unique, has continuous spatial derivatives up to
second order, and depends continuously on the initial data.6 Let us look at the structure of
this solution. It consists of the following elements:

• eigenvalues: λ − π2n2.

• eigenfunctions: sin(πnx).

• effect of initial conditions:
∫ 1

0 sin(πnx)u0(x)dx.

The largest eigenvalue, λ−π2 (n = 1), indicates the rate of growth or decay of the solution.
We can see that the plant is stable for λ ≤ π2 and unstable otherwise. After the transient
response due to the initial conditions, the profile of the state will be proportional to the first
eigenfunction sin(πx), since other modes decay much faster.

Sometimes it is possible to use the method of separation of variables to determine the
stability properties of the plant even though the complete closed-form solution cannot be
obtained, as in the following example.

Example 3.1 Let us find the values of the parameter g, for which the system

ut = uxx + gu(0) , (3.18)

ux(0) = 0 , (3.19)

u(1) = 0 (3.20)

is unstable. This example is motivated by the model of thermal instability in solid propellant
rockets, where the term gu(0) is roughly the burning of the propellant at one end of the fuel
chamber.

Using the method of separation of variables, we set u(x, t) = X(x)T (t), and (3.18)
gives

Ṫ (t)

T (t)
= X′′(x) + gX(0)

X(x)
= σ . (3.21)

6The proof is standard and can be found in many PDE texts; e.g., see [40].

n48 main
2008/4/7
page 26

�

�

�

�

�

�

�

�

26 Chapter 3. Exact Solutions to PDEs

Hence, T (t) = T (0)eσ t , whereas the solution of the ODE for X is given by

X(x) = A sinh(
√

σx) + B cosh(
√

σx) + g

σ
X(0) . (3.22)

Here the last term is a particular solution of a nonhomogeneous ODE (3.21). Now we
find the constant B in terms of X(0) by setting x = 0 in the above equation. This gives
B = X(0)(1 − g/σ). Using the boundary condition (3.19), we get A = 0 so that

X(x) = X(0)

[
g

σ
+
(

1 − g

σ

)
cosh(

√
σx)

]
. (3.23)

Using the other boundary condition (3.20), we get the eigenvalue relationship

g

σ
=
(g

σ
− 1

)
cosh(

√
σ) . (3.24)

The above equation has no closed-form solution. However, in this particular example we
can still find the stability region by finding values of g for which there are eigenvalues with
zero real parts. First, we check if σ = 0 satisfies (3.24) for some values of g. Using the
Taylor expansion for cosh(

√
σ), we get

g

σ
=
(g

σ
− 1

) (
1 + σ

2
+ O(σ 2)

)
= g

σ
− 1 + g

2
− σ

2
+ O(σ), (3.25)

which gives g = 2 for σ → 0. To show that there are no other eigenvalues on the imaginary
axis, we set σ = 2jy2, y > 0. Equation (3.24) then becomes

cosh((j + 1)y) = g

g − 2jy2
,

cos(y) cosh(y) + j sin(y) sinh(y) = g2 + 2jgy2

g2 + 4y4
.

Taking the absolute value, we get

sinh(y)2 + cos(y)2 = g4 + 4g2y4

(g2 + 4y4)2
. (3.26)

The only solution to this equation is y = 0, which can be seen by computing derivatives of
both sides of (3.26):

d

dy
(sinh(y)2 + cos(y)2) = sinh(2y) − sin(2y) > 0 for all y > 0 , (3.27)

d

dy

g4 + 4g2y4

(g2 + 4y4)2
= − 16g2y3

(g2 + 4y4)2
< 0 for all y > 0 . (3.28)

Therefore, both sides of (3.26) start at the same point at y = 0, and for y > 0 the left-hand
side monotonically grows while the right-hand side monotonically decays. We thus proved
that the plant (3.18)–(3.20) is neutrally stable only when g = 2. Since we know that the
plant is stable for g = 0, we conclude that g < 2 is the stability region and g > 2 is the
instability region. �

n48 main
2008/4/7
page 27

�

�

�

�

�

�

�

�

Exercises 27

3.2 Notes and References
The method of separation of variables is discussed in detail in classical PDE texts such
as [40] and [187]. The exact solutions for many problems can be found in [33] and [140].
Transform methods for PDEs are studied extensively in [49].

Exercises
3.1. Consider the reaction-diffusion equation

ut = uxx + λu

for x ∈ (0, 1) with the initial condition u0(x) = u(x, 0) and boundary conditions

ux(0) = 0 ,

u(1) = 0 .

(a) Find the solution of this PDE.
(b) For what values of the parameter λ is this system unstable?

3.2. Consider the heat equation

ut = uxx

with Robin’s boundary conditions

ux(0) = −qu(0) ,

u(1) = 0 .

Find the range of values of the parameter q for which this system is unstable.

n48 main
2008/4/7
page 28

�

�

�

�

�

�

�

�

n48 main
2008/4/7
page 29

�

�

�

�

�

�

�

�

Chapter 4

Parabolic PDEs: Reaction-
Advection-Diffusion and
Other Equations

This is the most important chapter of this book. In this chapter we present the first designs
of feedback laws for stabilization of PDEs using boundary control and introduce the method
of backstepping.

As the reader shall learn throughout this book, there are many classes of PDEs—first
and second order in time; first, second, third, fourth (and so on) order in space;7 systems
of coupled PDEs of various classes; PDEs interconnected with ODEs; real-valued and
complex-valued PDEs;8 and various other classes. Our introduction to boundary control,
stabilization of PDEs, and the backstepping method is presented in this chapter for parabolic
PDEs. There is no strong pedagogical reason why the introduction could not be done on
some of the other classes of PDEs; however, parabolic PDEs are particularly convenient
because they are both sufficiently simple and sufficiently general to serve as a launch pad
from which one can easily extend the basic design tools to other classes of PDEs.

Parabolic PDEs are first order in time, which makes them more easily accessible to a
reader with a background in ODEs, as opposed to second order in time PDEs such as wave
equations, which, as we shall see in Chapter 7, have peculiarities that make defining the
system “state,” choosing a Lyapunov function, and adding damping to the system rather
nonobvious.

This book deals exclusively with boundary control of PDEs. In-domain actuation of
any kind (point actuation or distributed actuation) is not dealt with. The reasons for this
are twofold. First, a considerable majority of problems in PDE control, particularly those
involving fluids, can be actuated in a physically reasonable way only from the boundary.
Second, the backstepping approach is particularly well suited for boundary control. Its
earlier ODE applications provide a clue that it should be applicable also to many problems
with in-domain actuation; however, at the moment, backstepping for PDEs is developed
only for boundary control actuation.

7Respectively, we mean the transport equation, the heat and wave equations, the Korteweg–de Vries equation,
and the Euler–Bernoulli beam and Kuramoto–Sivashinsky equations.

8Respectively, we mean the heat equation, the Schrödinger equation.

29

n48 main
2008/4/7
page 30

�

�

�

�

�

�

�

�

30 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

The main feature of backstepping is that it is capable of eliminating destabilizing
effects (“forces” or “terms”) that appear throughout the domain while the control is acting
only from the boundary. This is at first a highly surprising result. However, as we shall see,
the result is arrived at by following the standard approach in control of nonlinear ODEs,
where nonlinearities “unmatched” by the control input can be dealt with using a combination
of a diffeomorphic change of coordinates and feedback. We pursue a continuum equivalent
of this approach and build a change of variables, which involves a Volterra integral operator
that “absorbs” the destabilizing terms acting in the domain and allows the boundary control
to completely eliminate their effect. The Volterra operator has a lower triangular structure
similar to backstepping transformations for nonlinear ODEs–thus the name backstepping.

In Section 4.10 we shed more light on the connection between backstepping for ODEs
and the infinite-dimensional backstepping that we pursue here.

4.1 Backstepping: The Main Idea
Let us start with the simplest unstable PDE, the reaction-diffusion equation:

ut (x, t) = uxx(x, t) + λu(x, t) , (4.1)

u(0, t) = 0 , (4.2)

u(1, t) = U(t) , (4.3)

where λ is an arbitrary constant and U(t) is the control input. The open-loop system
(4.1), (4.2) (with u(1, t) = 0) is unstable with arbitrarily many unstable eigenvalues for
sufficiently large λ.

Since the term λu is the source of instability, the natural objective for a boundary
feedback is to “eliminate” this term. The main idea of the backstepping method is to use
the coordinate transformation

w(x, t) = u(x, t) −
∫ x

0
k(x, y)u(y, t) dy (4.4)

along with feedback control

u(1, t) =
∫ 1

0
k(1, y)u(y, t) dy (4.5)

to transform the system (4.1), (4.2) into the target system

wt(x, t) = wxx(x, t) , (4.6)

w(0, t) = 0 , (4.7)

w(1, t) = 0 , (4.8)

which is exponentially stable, as shown in Chapter 2. Note that the boundary conditions
(4.2), (4.7) and (4.5), (4.8) are verified by (4.4) without any condition on k(x, y).

n48 main
2008/4/7
page 31

�

�

�

�

�

�

�

�

4.2. Gain Kernel PDE 31

The transformation (4.4) is called Volterra integral transformation. Its most charac-
teristic feature is that the limits of integral range from 0 to x, not from 0 to 1. This makes
it “spatially causal”; that is, for a given x the right-hand side of (4.4) depends only on the
values of u in the interval [0, x]. Another important property of the Volterra transformation
is that it is invertible, so that stability of the target system translates into stability of the
closed-loop system consisting of the plant plus boundary feedback (see Section 4.5).

Our goal now is to find the function k(x, y) (which we call the “gain kernel”) that
makes the plant (4.1), (4.2) with the controller (4.5) behave as the target system (4.6)–(4.8).
It is not obvious at this point that such a function even exists.

4.2 Gain Kernel PDE
To find out what conditions k(x, y) has to satisfy, we simply substitute the transformation
(4.4) into the target system (4.6)–(4.8) and use the plant equations (4.1), (4.2). To do that,
we need to differentiate the transformation (4.4) with respect to x and t , which is easy once
we recall the Leibnitz differentiation rule:

d

dx

∫ x

0
f (x, y) dy = f (x, x) +

∫ x

0
fx(x, y) dy .

We also introduce the following notation:

kx(x, x) = ∂

∂x
k(x, y)|y=x ,

ky(x, x) = ∂

∂y
k(x, y)|y=x ,

d

dx
k(x, x) = kx(x, x) + ky(x, x).

Differentiating the transformation (4.4) with respect to x gives

wx(x) = ux(x) − k(x, x)u(x) −
∫ x

0
kx(x, y)u(y) dy ,

wxx(x) = uxx(x) − d

dx
(k(x, x)u(x)) − kx(x, x)u(x) −

∫ x

0
kxx(x, y)u(y) dy ,

= uxx(x) − u(x)
d

dx
k(x, x) − k(x, x)ux(x) − kx(x, x)u(x)

−
∫ x

0
kxx(x, y)u(y) dy . (4.9)

This expression for the second spatial derivative of w(x) is going to be the same for different
problems since no information about the specific plant and target system is used at this point.

n48 main
2008/4/7
page 32

�

�

�

�

�

�

�

�

32 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

Next, we differentiate the transformation (4.4) with respect to time:

wt(x) = ut (x) −
∫ x

0
k(x, y)ut (y)dy

= uxx(x) + λu(x) −
∫ x

0
k(x, y)

(
uyy(y) + λu(y)

)
dy

= uxx(x) + λu(x) − k(x, x)ux(x) + k(x, 0)ux(0)

+
∫ x

0
ky(x, y)uy(y) dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts)

= uxx(x) + λu(x) − k(x, x)ux(x) + k(x, 0)ux(0) + ky(x, x)u(x) − ky(x, 0)u(0)

−
∫ x

0
kyy(x, y)u(y) dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts) . (4.10)

Subtracting (4.9) from (4.10), we get

wt − wxx =
[
λ + 2

d

dx
k(x, x)

]
u(x) + k(x, 0)ux(0)

+
∫ x

0

(
kxx(x, y) − kyy(x, y) − λk(x, y)

)
u(y) dy . (4.11)

For the right-hand side to be zero for all u, the following three conditions have to be satisfied:

kxx(x, y) − kyy(x, y) − λk(x, y) = 0 , (4.12)

k(x, 0) = 0 , (4.13)

λ + 2
d

dx
k(x, x) = 0. (4.14)

We can simplify (4.14) by integrating it with respect to x and noting from (4.13) that
k(0, 0) = 0, which gives us the following:

kxx(x, y) − kyy(x, y) = λk(x, y) ,

k(x, 0) = 0 ,

k(x, x) = −λ

2
x .

(4.15)

It turns out that these three conditions are compatible and in fact form a well-posed PDE.
This PDE is of hyperbolic type: one can think of it as a wave equation with an extra term
λk (x plays the role of time). In quantum physics such PDEs are called Klein–Gordon
PDEs. The domain of this PDE is a triangle 0 ≤ y ≤ x ≤ 1 and is shown in Figure 4.1.
The boundary conditions are prescribed on two sides of the triangle and the third side (after
solving for k(x, y)) gives us the control gain k(1, y).

In the next two sections we prove that the PDE (4.15) has a unique twice continuously
differentiable solution.

n48 main
2008/4/7
page 33

�

�

�

�

�

�

�

�

4.3. Converting the Gain Kernel PDE into an Integral Equation 33

y

x0 1

1

Figure 4.1. Domain of the gain kernel PDE.

4.3 Converting the Gain Kernel PDE into an Integral
Equation

To find a solution of the PDE (4.15) we first convert it into an integral equation. Introducing
the change of variables

ξ = x + y, η = x − y , (4.16)

we have

k(x, y) = G(ξ, η) ,

kx = Gξ + Gη ,

kxx = Gξξ + 2Gξη + Gηη ,

ky = Gξ − Gη ,

kyy = Gξξ − 2Gξη + Gηη .

Thus, the gain kernel PDE becomes

Gξη(ξ, η) = λ

4
G(ξ, η) , (4.17)

G(ξ, ξ) = 0 , (4.18)

G(ξ, 0) = −λ

4
ξ . (4.19)

Integrating (4.17) with respect to η from 0 to η, we get

Gξ(ξ, η) = Gξ(ξ, 0) +
∫ η

0

λ

4
G(ξ, s) ds = −λ

4
+
∫ η

0

λ

4
G(ξ, s) ds . (4.20)

Next, we integrate (4.20) with respect to ξ from η to ξ to get

G(ξ, η) = G(η, η) − λ

4
(ξ − η) + λ

4

∫ ξ

η

∫ η

0
G(τ, s) ds dτ

= −λ

4
(ξ − η) + λ

4

∫ ξ

η

∫ η

0
G(τ, s) ds dτ . (4.21)

n48 main
2008/4/7
page 34

�

�

�

�

�

�

�

�

34 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

We obtained the integral equation, which is equivalent to PDE (4.15) in the sense that every
solution of (4.15) is a solution of (4.21). The point of converting the PDE into the integral
equation is that the latter is easier to analyze with a special tool, which consider next.

4.4 Method of Successive Approximations
The method of successive approximations is conceptually simple: start with an initial guess
for a solution of the integral equation, substitute it into the right-hand side of the equation,
then use the obtained expression as the next guess in the integral equation and repeat the
process. Eventually this process results in a solution of the integral equation.

Let us start with an initial guess

G0(ξ, η) = 0 (4.22)

and set up the recursive formula for (4.21) as follows:

Gn+1(ξ, η) = −λ

4
(ξ − η) + λ

4

∫ ξ

η

∫ η

0
Gn(τ, s)ds dτ . (4.23)

If this converges, we can write the solution G(ξ, η) as

G(ξ, η) = lim
n→∞ Gn(ξ, η) . (4.24)

Let us denote the difference between two consecutive terms as

�Gn(ξ, η) = Gn+1(ξ, η) − Gn(ξ, η) . (4.25)

Then

�Gn+1(ξ, η) = λ

4

∫ ξ

η

∫ η

0
�Gn(τ, s)ds dτ (4.26)

and (4.24) can be alternatively written as

G(ξ, η) =
∞∑

n=0

�Gn(ξ, η) . (4.27)

Computing �Gn from (4.26) starting with

�G1 = G1(ξ, η) = −λ

4
(ξ − η) , (4.28)

we can observe the pattern which leads to the following formula:

�Gn(ξ, η) = − (ξ − η)ξnηn

n!(n + 1)!
(

λ

4

)n+1

. (4.29)

This formula can be verified by induction. The solution to the integral equation is given by

G(ξ, η) = −
∞∑

n=0

(ξ − η)ξnηn

n!(n + 1)!
(

λ

4

)n+1

. (4.30)

n48 main
2008/4/7
page 35

�

�

�

�

�

�

�

�

4.5. Inverse Transformation 35

k1(y)

y

λ = 10

λ = 15

λ = 20

λ = 25

0 0.2 0.4 0.6 0.8 1
-40

-30

-20

-10

0

Figure 4.2. Control gain k(1, y) for different values of λ.

To compute the series (4.30), note from the appendix that a first-order modified Bessel
function of the first kind can be represented as

I1(x) =
∞∑

n=0

(
x
2

)2n+1

n!(n + 1)! . (4.31)

Comparing this expression with (4.30), we obtain

G(ξ, η) = −λ

2
(ξ − η)

I1(
√

λξη)√
λξη

(4.32)

or, returning to the original x, y variables,

k(x, y) = −λy
I1

(√
λ(x2 − y2)

)
√

λ(x2 − y2)
. (4.33)

In Figure 4.2 the control gain k(1, y) is shown for different values of λ. Obviously,
as λ gets larger, the plant becomes more unstable, which requires more control effort. Low
control gain near the boundaries is also logical: near x = 0 the state is small even without
control because of the boundary condition u(0) = 0, and near x = 1 the control has the
most authority.

4.5 Inverse Transformation
To complete the design we need to establish that stability of the target system (4.6)–(4.8)
implies stability of the closed-loop plant (4.1), (4.2), (4.5). In other words, we need to show
that the transformation (4.4) is invertible.

n48 main
2008/4/7
page 36

�

�

�

�

�

�

�

�

36 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

Let us write an inverse transformation in the form

u(x) = w(x) +
∫ x

0
l(x, y)w(y) dy , (4.34)

where l(x, y) is the transformation kernel.
Given the direct transformation (4.4) and the inverse transformation (4.34), the kernels

k(x, y) and l(x, y) satisfy

l(x, y) = k(x, y) +
∫ x

y

k(x, ξ)l(ξ, y) dξ . (4.35)

Proof of (4.35). First, let us recall from calculus the following formula for changing the
order of integration:∫ x

0

∫ y

0
f (x, y, ξ) dξ dy =

∫ x

0

∫ x

ξ

f (x, y, ξ) dy dξ. (4.36)

Substituting (4.34) into (4.4), we get

w(x) = w(x) +
∫ x

0
l(x, y)w(y)dy −

∫ x

0
k(x, y)

[
w(y) +

∫ y

0
l(y, ξ)w(ξ)dξ

]
dy

= w(x) +
∫ x

0
l(x, y)w(y)dy −

∫ x

0
k(x, y)w(y)dy −

∫ x

0

∫ y

0
k(x, y)l(y, ξ)w(ξ)dξdy ,

0 =
∫ x

0
w(y)

[
l(x, y) − k(x, y) −

∫ x

y

k(x, ξ)l(ξ, y) dξ

]
dy .

Since the last line has to hold for all w(y), we get the relationship (4.35).

The formula (4.35) is general (it does not depend on the plant and the target system)
but is not very helpful in actually finding l(x, y) from k(x, y). Instead, we follow the same
approach that led us to the kernel PDE for k(x, y): we differentiate the inverse transformation
(4.34) with respect to x and t and use the plant and the target system to obtain the PDE for
l(x, y).

Differentiating (4.34) with respect to time, we get

ut (x) = wt(x) +
∫ x

0
l(x, y)wt(y) dy

= wxx(x) + l(x, x)wx(x) − l(x, 0)wx(0) − ly(x, x)w(x)

+
∫ x

0
lyy(x, y)w(y) dy , (4.37)

and differentiating twice with respect to x gives

uxx(x) = wxx(x) + lx(x, x)w(x) + w(x)
d

dx
l(x, x) + l(x, x)wx(x)

+
∫ x

0
lxx(x, y)w(y) dy . (4.38)

n48 main
2008/4/7
page 37

�

�

�

�

�

�

�

�

4.5. Inverse Transformation 37

Subtracting (4.38) from (4.37), we get

λw(x) + λ

∫ x

0
l(x, y)w(y)dy = −2w(x)

d

dx
l(x, x) − l(x, 0)wx(0)

+
∫ x

0
(lyy(x, y) − lxx(x, y))w(y) dy ,

which gives the following conditions on l(x, y):

lxx(x, y) − lyy(x, y) = −λl(x, y) , (4.39)

l(x, 0) = 0 , (4.40)

l(x, x) = −λ

2
x . (4.41)

Comparing this PDE with the PDE (4.15) for k(x, y), we see that

l(x, y; λ) = −k(x, y; −λ) . (4.42)

From (4.33) we have

l(x, y) = −λy
I1

(√−λ(x2 − y2)
)

√−λ(x2 − y2)
− λy

I1

(
j
√

λ(x2 − y2)
)

j
√

λ(x2 − y2)

or, using the properties of I1 (see the appendix),

l(x, y) = −λy
J1

(√
λ(x2 − y2)

)
√

λ(x2 − y2)
. (4.43)

A summary of the control design for the plant (4.1), (4.2) is presented in Table 4.1.
Note that, since the solutions to the target system (4.6)–(4.8) can be found explicitly

and the direct and inverse transformations (4.4), (4.34) are explicit as well, it is possible
to derive the explicit solution to the closed-loop system; see Exercises 4.3 and 4.4 for an
example of how this is done.

In Figures 4.3 and 4.4 simulation results for the scheme (4.44)–(4.46) are presented
for the case λ = 20. The plant has one unstable eigenvalue 20 − π2 ≈ 10. In the top graph
of Figure 4.3 one can see that the state of the uncontrolled plant quickly grows. Note that the
initial condition is rapidly smoothed out even though the plant is unstable, and then the state
takes the shape of the eigenfunction sin(πx) which corresponds to the unstable eigenvalue.
The bottom graph of Figure 4.3 shows the response of the controlled plant. The instability
is quickly suppressed and the state converges to the zero equilibrium. The control is shown
in Figure 4.4.

In the next example, we consider a reaction-diffusion plant with a Neumann, rather
than a Dirichlet, boundary condition at the uncontrolled end, and once again go through all
the design steps.

n48 main
2008/4/7
page 38

�

�

�

�

�

�

�

�

38 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

Table 4.1. Summary of control design for the reaction-diffusion equation.

Plant:

ut = uxx + λu , (4.44)

u(0) = 0 . (4.45)

Controller:

u(1) = −
∫ 1

0
yλ

I1

(√
λ(1 − y2)

)
√

λ(1 − y2)
u(y) dy . (4.46)

Transformation:

w(x) = u(x) +
∫ x

0
λy

I1

(√
λ(x2 − y2)

)
√

λ(x2 − y2)
u(y) dy , (4.47)

u(x) = w(x) −
∫ x

0
λy

J1

(√
λ(x2 − y2)

)
√

λ(x2 − y2)
w(y) dy . (4.48)

Target system:

wt = wxx , (4.49)

w(0) = 0 , (4.50)

w(1) = 0 . (4.51)

Example 4.1 Consider the plant

ut = uxx + λu , (4.52)

ux(0) = 0 , (4.53)

u(1) = U(t) . (4.54)

We use the transformation

w(x) = u(x) −
∫ x

0
k(x, y)u(y) dy (4.55)

to map this plant into the target system

wt = wxx , (4.56)

wx(0) = 0 , (4.57)

w(1) = 0 . (4.58)

n48 main
2008/4/7
page 39

�

�

�

�

�

�

�

�

4.5. Inverse Transformation 39

0

0.5

1 0

0.05

0.1

0

10

20

30

40

t
x

u

0
0.5

1 0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

0

10

20

t
x

u

Figure 4.3. Simulation results for reaction-diffusion plant (4.44), (4.45). Top:
open-loop response. Bottom: closed-loop response with controller (4.46) implemented.

Differentiation of the transformation (4.55) with respect to x gives (4.9) (which does not
depend on the particular plant). Differentiating (4.55) with respect to time, we get

wt(x) = ut (x) −
∫ x

0
k(x, y)ut (y) dy

= uxx(x) + λu(x) −
∫ x

0
k(x, y)[uyy(y) + λu(y)] dy

= uxx(x) + λu(x) − k(x, x)ux(x) + k(x, 0)ux(0)

+
∫ x

0
ky(x, y)uy(y)dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts)

= uxx(x) + λu(x) − k(x, x)ux(x) + ky(x, x)u(x) − ky(x, 0)u(0) (4.59)

−
∫ x

0
kyy(x, y)u(y) dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts).

n48 main
2008/4/7
page 40

�

�

�

�

�

�

�

�

40 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

0

10

t

u(1, t)

Figure 4.4. The control (4.46) for reaction-diffusion plant (4.44), (4.45).

Subtracting (4.9) from (4.59), we get

wt − wxx =
[
λ + 2

d

dx
k(x, x)

]
u(x) − ky(x, 0)u(0)

+
∫ x

0

(
kxx(x, y) − kyy(x, y) − λk(x, y)

)
u(y) dy . (4.60)

For the right-hand side of this equation to be zero for all u(x), the following three conditions
must be satisfied:

kxx(x, y) − kyy(x, y) − λk(x, y) = 0 , (4.61)

ky(x, 0) = 0 , (4.62)

λ + 2
d

dx
k(x, x) = 0 . (4.63)

Integrating (4.63) with respect to x gives k(x, x) = −λ/2x + k(0, 0), where k(0, 0) is
obtained using the boundary condition (4.57),

wx(0) = ux(0) + k(0, 0)u(0) = 0 ,

so that k(0, 0) = 0. The gain kernel PDE is thus

kxx(x, y) − kyy(x, y) = λk(x, y) , (4.64)

ky(x, 0) = 0 , (4.65)

k(x, x) = −λ

2
x . (4.66)

Note that this PDE is very similar to (4.15); the only difference is in the boundary condition
at y = 0. The solution to the PDE (4.64)–(4.66) is obtained through a summation of

n48 main
2008/4/7
page 41

�

�

�

�

�

�

�

�

4.6. Neumann Actuation 41

successive approximation series, similarly to the way it was obtained for the PDE (4.15):

k(x, y) = −λx
I1

(√
λ(x2 − y2)

)
√

λ(x2 − y2)
. (4.67)

Thus, the controller is given by

u(1) = −
∫ 1

0
λ

I1

(√
λ(1 − y2)

)
√

λ(1 − y2)
u(y) dy . (4.68)

�

4.6 Neumann Actuation
So far we considered only the case of Dirichlet actuation (where u(1) is controlled), which
is usually the case in fluid problems where the velocity is controlled using microjets. In
problems with thermal and chemically reacting dynamics, the natural choice is the Neumann
actuation (where ux(1), or heat flux, is controlled). The Neumann controllers are obtained
using the same exact transformation (4.4) as in the case of the Dirichlet actuation, but with
the appropriate change in the boundary condition of the target system (from Dirichlet to
Neumann).

To illustrate the design procedure, consider the plant (4.1), (4.2) but with ux(1) actu-
ated:

ut = uxx + λu , (4.69)

u(0) = 0 , (4.70)

ux(1) = U(t) . (4.71)

We use the same transformation (4.4), (4.33) as we used in the case of Dirichlet actuation.
To obtain the control ux(1), we need to differentiate (4.4) with respect to x:

wx(x) = ux(x) − k(x, x)u(x) −
∫ x

0
kx(x, y)u(y) dy

and set x = 1. It is clear now that the target system has to have the Neumann boundary
condition at x = 1:

wt = wxx , (4.72)

w(0) = 0 , (4.73)

wx(1) = 0 , (4.74)

which gives the controller

ux(1) = k(1, 1)u(1) +
∫ 1

0
kx(1, y)u(y) dy . (4.75)

n48 main
2008/4/7
page 42

�

�

�

�

�

�

�

�

42 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

All that remains is to derive the expression for kx from (4.33) using the properties of Bessel
functions given in the appendix:

kx(x, y) = −λyx
I2

(√
λ(x2 − y2)

)
x2 − y2

.

Finally, the controller is

ux(1) = −λ

2
u(1) −

∫ 1

0
λy

I2

(√
λ(1 − y2)

)
1 − y2

u(y) dy. (4.76)

4.7 Reaction-Advection-Diffusion Equation
Consider the reaction-advection-diffusion equation

ut = εuxx + bux + λu , (4.77)

u(0) = 0 , (4.78)

u(1) = U(t) . (4.79)

It is possible to design an explicit controller for this system based on the formula (4.33).
First, we eliminate the advection term ux from this equation with the following change of
variables:

v(x) = u(x)e
b
2ε

x . (4.80)

Taking the temporal and spatial derivatives, we get

ut (x) = vt (x)e− b
2ε

x ,

ux(x) = vx(x)e− b
2ε

x − b

2ε
v(x)e− b

2ε
x ,

uxx(x) = vxx(x)e− b
2ε

x − b

ε
vx(x)e− b

2ε
x + b2

4ε2
v(x)e− b

2ε
x ,

and the equation (4.77) becomes

vte
− b

2ε
x =

(
εvxx − bvx + b2

4ε
v + bvx − b2

2ε
v + λv

)
e− b

2ε
x , (4.81)

which gives

vt = εvxx +
(

λ − b2

4ε

)
v , (4.82)

v(0) = 0 , (4.83)

v(1) = u(1)e
b
2ε = control. (4.84)

Now the transformation

w(x) = v(x) −
∫ x

0
k(x, y)u(y)dy (4.85)

n48 main
2008/4/7
page 43

�

�

�

�

�

�

�

�

4.7. Reaction-Advection-Diffusion Equation 43

leads to the target system

wt = εwxx − cw , (4.86)

w(0) = 0 , (4.87)

w(1) = 0 . (4.88)

Here the constant c is a design parameter that sets the decay rate of the closed-loop system.
It should satisfy the following stability condition:

c ≥ max

{
b2

4ε
− λ, 0

}
.

The max is used to prevent unnecessary spending of control effort when the plant is stable.
The gain kernel k(x, y) can be shown to satisfy the following PDE:

εkxx(x, y) − εkyy(x, y) =
(

λ − b2

4ε
+ c

)
k(x, y) , (4.89)

k(x, 0) = 0 , (4.90)

k(x, x) = − x

2ε

(
λ − b2

4ε
+ c

)
. (4.91)

This equation is exactly the same as (4.15), just with a constant different from λ and denoted
by λ0:

λ0 = 1

ε

(
λ − b2

4ε
+ c

)
. (4.92)

Therefore the solution to (4.89)–(4.91) is given by

k(x, y) = −λ0y
I1

(√
λ0(x2 − y2)

)
√

λ0(x2 − y2)
(4.93)

and the controller is

u(1) =
∫ 1

0
e− b

2ε
(1−y)λ0y

I1

(√
λ0(1 − y2)

)
√

λ0(1 − y2)
u(y) dy . (4.94)

Let us examine the effect of the advection term bux in (4.77) on open-loop stability and
on the size of the control gain. From (4.82) we see that the advection term has a beneficial
effect on open-loop stability, irrespective of the sign of the advection coefficient b. However,
the effect of b on the gain function in the control law in (4.94) is “sign-sensitive.” Negative
values of b demand a much higher control effort than positive values of b. Interestingly,
negative values of b refer to the situation where the state disturbances advect towards the
actuator at x = 1, whereas the “easier” case of positive b refers to the case where the state
disturbances advect away from the actuator at x = 1 and towards the Dirichlet boundary
condition (4.78) at x = 0.

n48 main
2008/4/7
page 44

�

�

�

�

�

�

�

�

44 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

4.8 Reaction-Advection-Diffusion Systems with Spatially
Varying Coefficients

The most general one-dimensional linear reaction-advection-diffusion PDE has the form

ut = ε(x)uxx + b(x)ux + λ(x)u , (4.95)

ux(0) = −qu(0) , (4.96)

where u(1) is actuated. This equation describes a variety of systems with thermal, fluid, and
chemically reacting dynamics. The spatially varying coefficients come from applications
with nonhomogenous materials and unusually shaped domains and can also arise from
linearization. Also note the mixed boundary condition at x = 0.

Using a so-called gauge transformation, it is possible to convert this system into one
with constant diffusion and zero advection terms. Consider a coordinate change

z = √
ε0

∫ x

0

ds√
ε(s)

, where ε0 =
(∫ 1

0

ds√
ε(s)

)−2

, (4.97)

and a change of the state variable

v(z) = ε−1/4(x)u(x)e
∫ x

0
b(s)

2ε(s)
ds

. (4.98)

Then one can show that the new state v satisfies the following PDE:

vt (z, t) = ε0vzz(z, t) + λ0(z)v(z, t) , (4.99)

vz(0, t) = −q0v(0, t), (4.100)

where

ε0 =
(∫ 1

0

ds√
ε(s)

)−2

(4.101)

λ0(z) = λ(x) + ε′′(x)

4
− b′(x)

2
− 3

16

(ε′(x))2

ε(x)
+ 1

2

b(x)ε′(x)

ε(x)
− 1

4

b2(x)

ε(x)
(4.102)

q0 = q

√
ε(0)

ε0
− b(0)

2
√

ε0ε(0)
− ε′(0)

4
√

ε0ε(0)
. (4.103)

We use the transformation (4.4) to map the modified plant into the target system

wt = ε0wzz − cw , (4.104)

wz(0) = 0 , (4.105)

w(1) = 0 . (4.106)

Here c is a design parameter that determines the decay rate of the closed-loop system. The
transformation kernel is found by solving the PDE

kzz(z, y) − kyy(z, y) = λ0(y) + c

ε0
k(z, y) , (4.107)

ky(z, 0) = −q0k(z, 0) , (4.108)

k(z, z) = −q0 − 1

2ε0

∫ z

0
(λ0(y) + c) dy . (4.109)

n48 main
2008/4/7
page 45

�

�

�

�

�

�

�

�

4.8. Reaction-Advection-Diffusion Systems with Spatially Varying Coefficients 45

ε(x) k(1,y)

x y

u(·, t)

0 0.1 0.2 0.3 0.4

0 0.5 10 0.5 1

0

1

2

3

4

5

-15

-10

-5

0

0

0.5

1

1.5

2

Figure 4.5. Simulation results for (4.95)–(4.96) with controller (4.111). Top left:
ε(x). Top right: The gain kernel. Bottom: The L2-norm of open-loop (dashed) and closed-
loop (solid) response.

This PDE can be shown to be well posed but, unlike the gain kernel equations for the
plants we considered before, it cannot be solved in closed form. However, one can solve it
either symbolically, using the recursive procedure similar to the one given in Section 4.4, or
numerically with finite difference schemes developed for Klein–Gordon-type PDEs, which
is substantially easier than solving an operator Riccati equation arising when one pursues
optimality.

Since the controller for the v-system is given by

v(1) =
∫ 1

0
k(1, y)v(y) dy , (4.110)

using (4.97) and (4.98) we obtain the controller for the original u-plant:

u(1) =
∫ 1

0

ε1/4(1)
√

ε0

ε3/4(y)
e− ∫ 1

y
b(s)

2ε(s)
ds

k

(∫ 1

0

√
ε0

ε(s)
ds,

∫ y

0

√
ε0

ε(s)
ds

)
u(y) dy . (4.111)

The results of a closed-loop simulation are presented in Figure 4.5 for ε(x) = 1 +
0.4 sin(6πx), b ≡ 0, and λ = 10.

n48 main
2008/4/7
page 46

�

�

�

�

�

�

�

�

46 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

4.9 Other Spatially Causal Plants
In this section we design backstepping controllers for plants that are not as common as
reaction-advection-diffusion systems but are important nevertheless and have the “spatially
causal” structure, which makes them tractable by our method. Consider the plant

ut = uxx + g(x)u(0) +
∫ x

0
f (x, y)u(y)dy , (4.112)

ux(0) = 0 , (4.113)

where u(1) is actuated. This equation is partly motivated by the model of unstable burning
in solid propellant rockets [28]. This plant also often appears as a part of the control design
for more complicated systems (see, e.g., our Chapter 8 or [174]). Without the derivation,
we present the PDE for the gain kernel:

kxx − kyy = −f (x, y) +
∫ x

y

k(x, ξ)f (ξ, y) dξ , (4.114)

ky(x, 0) = g(x) −
∫ x

0
k(x, y)g(y) dy , (4.115)

k(x, x) = 0 . (4.116)

In general, this equation has to be solved numerically. We consider one case when the
solution can be obtained explicitly. Let f ≡ 0; then (4.114) becomes

kxx − kyy = 0 , (4.117)

which has a general solution of the form

k(x, y) = φ(x − y) + ψ(x + y). (4.118)

From the boundary condition (4.116) we get

φ(0) + ψ(2x) = 0 , (4.119)

which means that, without loss of generality, we can set ψ ≡ 0 and φ(0) = 0. Therefore,
k(x, y) = φ(x − y). Substituting this expression into the boundary condition (4.115), we
get

φ′(x) = g(x) −
∫ x

0
φ(x − y)g(y) dy . (4.120)

Applying to this equation the Laplace transform with respect to x, we obtain

−sφ(s) + φ(0) = g(s) − φ(s)g(s) ,

φ(s) = g(s)

g(s) − s
. (4.121)

Thus, for any function g(x) one can obtain k(x, y) in closed form.

n48 main
2008/4/7
page 47

�

�

�

�

�

�

�

�

4.10. Comparison with ODE Backstepping 47

Example 4.2 Let g(x) = g. Then (4.121) gives

g(s) = g

s
,

and φ(s) becomes

φ(s) = g

g − s2
= −√

g

√
g

s2 − g
.

This gives
φ(z) = −√

g sinh(
√

gz)

and
k(x, y) = −√

g sinh(
√

g(x − y)).

Therefore, for the plant

ut = uxx + gu(0) ,

ux(0) = 0

the stabilizing controller is given by

u(1) = −
∫ 1

0

√
g sinh(

√
g(1 − y))u(y) dy . �

4.10 Comparison with ODE Backstepping
Before we close this chapter, in which we have introduced the method of backstepping, let
us discuss the rationale behind the method’s name. The method and its name originated
in the early 1990s [80, 97] and is linked to problems of stabilization of nonlinear ODE
systems. Consider the following three-state nonlinear system:

ẏ1 = y2 + y3
1 , (4.122)

ẏ2 = y3 + y3
2 , (4.123)

ẏ3 = u + y3
3 . (4.124)

Since the control input u is in only the last line of (4.124), it is helpful to view it as boundary
control. The nonlinear terms y3

1 , y3
2 , y3

3 can be viewed as nonlinear “reaction” terms and
they are clearly destabilizing because, for u = 0, the overall system is a “cascade” of
three unstable subsystems of the form ẏi = y3

i (the open-loop system exhibits a finite-
time escape instability). The control u can cancel the “matched” term y3

3 in (4.124) but
cannot cancel directly the unmatched terms y3

1 and y3
2 in (4.122) and (4.124). To achieve

the cancellation of all three destabilizing y3
i -terms, a backstepping change of variables is

constructed recursively,

z1 = y1 , (4.125)

z2 = y2 + y3
1 + c1y1 , (4.126)

z3 = y3 + y3
2 + (3y2

1 + 2c)y2 + 3y5
1 + 2cy3

1 + (c2 + 1)y1 , (4.127)

n48 main
2008/4/7
page 48

�

�

�

�

�

�

�

�

48 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

along with the control law

u = −c3z3 − z2 − y3
3 − (3y2

2 + 3y2
1 + 2c)(y3 + y3

2) ,

− (6y1y2 + 15y4
1 + 6cy2

1 + c2 + 1)(y2 + y3
1) , (4.128)

which convert the system (4.122)–(4.124) into

ż1 = z2 − cz1 , (4.129)

ż2 = −z1 + z3 − cz2 , (4.130)

ż3 = −z2 − cz3 , (4.131)

where the control parameter c should be chosen as positive. The system (4.129)–(4.131),
which can also be written as

ż = Az , (4.132)

where

A =
⎡
⎣ −c 1 0

−1 −c 1
0 −1 −c

⎤
⎦ , (4.133)

is exponentially stable because
A + AT = −cI . (4.134)

The equality (4.134) guarantees that the Lyapunov function

V = 1

2
zT z (4.135)

has a negative definite time derivative

V̇ = −czT z . (4.136)

Hence, the target system (4.129)–(4.131) is in a desirable form, but we still have to explain
the relation between the change of variables (4.125)–(4.127) and the one used for PDEs in
this chapter, as well as the relation between the structures in the plant (4.122)–(4.124) and
the target system (4.129)–(4.131) relative to those of the PDE plants and the target systems
in the chapter.

Let us first examine the change of variables y �→ z in (4.125)–(4.127). This change
of variables is clearly of the form z = (I − K)[y], where I is the identity matrix and
K is a “lower-triangular” nonlinear transformation. The lower-triangular structure of K

in (4.125)–(4.127) is analogous to the Volterra structure of the spatially causal integral
operator

∫ x

0 k(x, y)u(y) dy in our change of variable w(x) = u(x) − ∫ x

0 k(x, y)u(y) dy in
this chapter. Another important feature of the change of variable (4.125)–(4.127) is that it
is invertible, i.e., y can be expressed as a smooth function of z (to be specific, y1 = z1,
y2 = z2 − z3

1 − cz1, and so on).
Next, let us examine the relation between the plant (4.122)–(4.124) and those studied

in this chapter such as the reaction-diffusion system ut = uxx + λu, as well as the relation
between the target systems (4.129)–(4.131) and wt = wxx . The analogy between the target

n48 main
2008/4/7
page 49

�

�

�

�

�

�

�

�

4.10. Comparison with ODE Backstepping 49

systems is particularly transparent because they both admit a simple 2-norm as a Lyapunov
function, specifically,

d

dt

1

2
zT z = −czT z (4.137)

in the ODE case and
d

dt

1

2

∫ 1

0
w(x)2 dx = −

∫ 1

0
wx(x)2 dx (4.138)

in the PDE case. A “finer” structural analogy, where one might expect the z-system to be
a spatial discretization of the w-system, does not hold. If we discretize the PDE system
wt = wxx , with boundary conditions w(0, t) = w(1, t) = 0, over a spatial grid with N

points, we get the ODE system ẇi = N2(wi+1 −2wi +wi−1), which is different in structure
from żi = zi+1 − zi−1 − czi , even after the N2 factor (is absorbed into the time variable).
This is where the subtle difference between ODE backstepping and PDE backstepping
comes into play. The recursive procedure used for ODEs does not have a limit as the
number of states goes to infinity. In contrast, the backstepping process for PDEs that we
introduced in this chapter does have a limit, as we have proved in Section 4.4. Let us try to
understand this difference by comparing the plant structure (4.122)–(4.124) with the plant
structure ut = uxx + λu. The former is dominated by a chain of integrators, while the
latter is dominated by the diffusion operator. While the diffusion operator is a well-defined,
meaningful object, an “infinite integrator chain” is not. It is for this reason that the infinite-
dimensional backstepping design succeeds only if particular care is taken to convert the
unstable parabolic PDE ut = uxx +λu into a stable target system wt = wxx which is within
the same PDE class, namely, parabolic. To put it in simpler words, we make sure to retain
the ∂xx term in the target system, even though it may be tempting to choose some other
target system, such as, for example, the first-order hyperbolic (transport equation-like) PDE
wt = wx − cw, which is more reminiscent of the ODE target system (4.129)–(4.131). If
such an attempt is made, the derivation of the PDE conditions for the kernel k(x, y) would
not be successful and the matching of terms between the plant ut = uxx +λu and the target
system wt = wxx − cw would result in terms that cannot be cancelled.

Finally, let us explain the meaning of the term backstepping. In the ODE setting,
this procedure is referred to as integrator backstepping because, as illustrated with the help
of example (4.122)–(4.124), the design procedure propagates the feedback law synthesis
“backwards” through a chain of integrators. Upon careful inspection of the change of
variables (4.125)–(4.127), the first “step” of the backstepping procedure is to treat the state
y2 as the control input in the subsystem ẏ1 = y2 + y3

1 and design the “control law” y2 =
−y3

1 −cy1, then “step back” through the integrator in the second subsystem ẏ2 = y3+y3
2 and

design the “control” y3 so that the error state z2 = y2 −(−y3
1 −cy1) is forced to go zero, thus

ensuring that the statey2 acts (approximately) as the controly2 = −y3
1−cy1. This “backward

stepping” through integrators continues until one encounters the actual control u in (4.128),
which, in example (4.122)–(4.124), happens after two steps of backstepping. Even though
in our continuum version of backstepping for PDEs there are no simple integrators to step
through, the analogy with the method for ODEs is in the triangularity of the change of
variable and the pursuit of a stable target system. For this reason, we retain the term
backstepping for PDEs.

Backstepping for ODEs is applicable to a fairly broad class of ODE systems, which
are referred to as strict-feedback systems. These systems are characterized by having a

n48 main
2008/4/7
page 50

�

�

�

�

�

�

�

�

50 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

chain of integrators, the control appearing in the last equation, and having additional terms
(linear or nonlinear) of a “lower-triangular” structure. In this lower-triangular structure the
first equation depends only on the first state, the term in the second equation depends on
the first and the second states, and so on. In the example (4.122)–(4.124) the cubic terms
had a “diagonal” dependence on the states yi , and thus their structure was lower-triangular,
and hence the plant (4.122)–(4.124) was of strict-feedback type. The change of variables
(4.125)–(4.127) has a general lower-triangular form. The capability of backstepping to
deal with lower-triangular ODE structures has motivated our extension in Section 4.9 of
PDE backstepping from reaction-diffusion systems (which are of a “diagonal” kind) to
systems with lower-triangular strict-feedback terms g(x)u(0, t) and

∫ x

0 f (x, y)u(y, t) dy.
Such terms, besides being tractable in the backstepping method, happen to be essential in
several applications, including flexible beams in Chapter 8 and Navier–Stokes equations in
Chapter 11.

4.11 Notes and References
The material in this chapter is based on the ideas introduced in [113, 154, 156]. It is possible
to modify the controllers developed in this chapter to achieve inverse optimality, which gives
guaranteed robustness margins; see [154].

It is also possible to extend the approach to 2D and 3D PDEs in regular geometries;
see [174] for a 2D extension in polar coordinates and Chapter 11 for a 3D infinite channel.

Some of the basic ingredients of backstepping have appeared in early works such
as [38, 152], where integral transformations are used to solve PDEs and state controllability
results, but not for design of feedback laws. It is interesting that these ideas appeared well
before the development of finite-dimensional backstepping (though we became aware of
them several years after the inception of our research program on backstepping control for
PDEs, essentially rediscovering them, and arriving at the Volterra operator transformations
from the finite-dimensional backstepping context). It is also curious that these powerful
ideas were not pursued further after [38, 152].

Our very first attempt at developing continuum backstepping for PDEs was in [30],
where we developed an explicit feedback law, backstepping transformation, and a Lyapunov
function, but where the plant’s level of open-loop instability was limited. Then, in [11, 26,
12] we turned our attention to a discretization-based (in space) approach, but the approach
was dependent on the discretization scheme and did not yield convergent gain kernels when
the discretization step δx → 0, although, interestingly, the control input was nevertheless
convergent, as it is an inner product of the gain kernel and the measured state of the system.

Exercises
4.1. For the plant

ut = uxx + λu ,

ux(0) = 0 ,

design the Neumann stabilizing controller (ux(1) actuated).

n48 main
2008/4/7
page 51

�

�

�

�

�

�

�

�

Exercises 51

Hint: Use the target system

wt = wxx ,

wx(0) = 0 ,

wx(1) = −1

2
w(1) . (4.139)

This system is asymptotically stable (see Exercise 2.2). Note also that you do not
need to find k(x, y); it has already been found in Example 4.1. You need only use
the condition (4.139) to derive the controller.

4.2. Find the PDE for the kernel l(x, y) of the inverse transformation

u(x) = w(x) +
∫ x

0
l(x, y)w(y) dy ,

which relates the systems u and w from Exercise 4.1. By comparison with the PDE
for k(x, y), show that

l(x, y) = −λx
J1

(√
λ(x2 − y2)

)
√

λ(x2 − y2)
.

4.3. Design the Dirichlet boundary controller for the heat equation

ut = uxx ,

ux(0) = −qu(0) .

Follow these steps:

(1) Use the transformation

w(x) = u(x) −
∫ x

0
k(x, y)u(y) dy (4.140)

to map the plant into the target system

wt = wxx , (4.141)

wx(0) = 0 , (4.142)

w(1) = 0 . (4.143)

Show that k(x, y) satisfies the following PDE:

kxx(x, y) = kyy(x, y) , (4.144)

ky(x, 0) = −qk(x, 0) , (4.145)

k(x, x) = −q . (4.146)

(2) The general solution of the PDE (4.144) has the form k(x, y) = φ(x − y) +
ψ(x + y), where φ and ψ are arbitrary functions. Using (4.146), it can be
shown that ψ ≡ 0. Find φ from the conditions (4.145) and (4.146). Write the
solution for k(x, y).

(3) Write down the controller.

n48 main
2008/4/7
page 52

�

�

�

�

�

�

�

�

52 Chapter 4. Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations

4.4. Show that the solution of the closed-loop system from Exercise 4.3 is

u(x, t) = 2
∞∑

n=0

e−σ 2
n t (σn cos(σnx) − q sin(σnx))

×
∫ 1

0

σn cos(σnξ) − q sin(σnξ) + (−1)nqeq(1−ξ)

σ 2
n + q2

u0(ξ) dξ ,

where σn = π(2n + 1)/2. To do this, first write the solution of the system (4.141)–
(4.143) (just set λ = 0 in the solution obtained in Exercise 3.1). Then use the
transformation (4.140) with the k(x, y) that you found in Exercise 4.3 to express
the initial condition w0(x) in terms of u0(x) (you will need to change the order of
integration in one of the terms to do this). Finally, write the solution for u(x, t) using
the inverse transformation

u(x) = w(x) − q

∫ x

0
w(y) dy

(i.e., l(x, y) = −q in this problem; feel free to prove it).
Note that it is not possible to write a closed form solution for the open-loop plant,
but it is possible to do so for the closed-loop system!

4.5. For the plant

ut = uxx + bux + λu ,

ux(0) = −b

2
u(0) ,

design the Neumann stabilizing controller (ux(1) actuated).
Hint: By transforming the plant to a system without a b-term, reduce the problem to
Exercise 4.1.

4.6. For the plant

ut = uxx + 3e2xu(0) ,

ux(0) = 0 ,

design the Dirichlet stabilizing controller.

n48 main
2008/4/7
page 53

�

�

�

�

�

�

�

�

Chapter 5

Observer Design

The measurements in distributed parameter systems are rarely available across the domain.
It is more common for the sensors to be placed only at the boundaries. This is particularly
true in problems involving fluid flows (in applications such as aerodynamics, acoustics,
chemical process control, etc.). Since state-feedback controllers developed thus far require
the measurement of the state at each point in the domain, we need to design state observers.

5.1 Observer Design for PDEs
Consider the unstable heat equation with boundary actuation,

ut = uxx + λu , (5.1)

ux(0) = 0 , (5.2)

u(1) = U(t) , (5.3)

where U(t) may either represent open-loop forcing or be generated from a feedback law.
Let us assume that only u(0) is available for measurement. We will show that from this
boundary information, it is possible to reconstruct the state in the domain.

We design the following observer for this plant:

ût = ûxx + λû + p1(x)[u(0) − û(0)] , (5.4)

ûx(0) = p10[u(0) − û(0)] , (5.5)

û(1) = U(t). (5.6)

Here the function p1(x) and the constant p10 are observer gains to be determined. It is helpful
to note that the structure of the above observer mimics the well-known finite-dimensional
observer format of “copy of the plant plus output injection.” Indeed, for a finite-dimensional
plant,

ẋ = Ax + Bu ,

y = Cx ,

53

n48 main
2008/4/7
page 54

�

�

�

�

�

�

�

�

54 Chapter 5. Observer Design

the observer is
˙̂x = Ax̂ + Bu + L(y − Cx̂) , (5.7)

where L is the observer gain and L(y−Cx̂) is the “output error injection.” In (5.4) and (5.5)
the observer gains p1(x) and p10 form an infinite-dimensional “vector” which corresponds
to an analog of L.

Our objective is to find p1(x) and p10 such that û converges to u as time goes to
infinity. To do this, we introduce the error variable

ũ = u − û (5.8)

and consider the error system

ũt = ũxx + λũ − p1(x)ũ(0) , (5.9)

ũx(0) = −p10ũ(0) , (5.10)

ũ(1) = 0 . (5.11)

With the (invertible) transformation

ũ(x) = w̃(x) −
∫ x

0
p(x, y)w̃(y)dy , (5.12)

we transform the error system into the exponentially stable heat equation

w̃t = w̃xx , (5.13)

w̃x(0) = 0 , (5.14)

w̃(1) = 0 . (5.15)

Differentiating the transformation (5.12), we get

ũt (x) = w̃t (x) −
∫ x

0
p(x, y)w̃yy(y) dy

= w̃t (x) − p(x, x)w̃x(x) + p(x, 0)w̃x(0) + py(x, x)w̃(x)

− py(x, 0)w̃(0) −
∫ x

0
pyy(x, y)w̃(y) dy , (5.16)

ũxx(x) = w̃xx(x) − w̃(x)
d

dx
p(x, x) − p(x, x)w̃x(x)

− px(x, x)w̃(x) −
∫ x

0
pxx(x, y)w̃(y) dy . (5.17)

Subtracting (5.17) from (5.16), we obtain

λ

(
w̃(x) −

∫ x

0
p(x, y)w̃(y) dy

)
− p1(x)w̃(0)

= 2w̃(x)
d

dx
p(x, x) − py(x, 0)w̃(0) +

∫ x

0
(pxx(x, y) − pyy(x, y))w̃(y) dy. (5.18)

n48 main
2008/4/7
page 55

�

�

�

�

�

�

�

�

5.1. Observer Design for PDEs 55

For the last equality to hold, the following three conditions must be satisfied:

pxx(x, y) − pyy(x, y) = −λp(x, y) , (5.19)
d

dx
p(x, x) = λ

2
, (5.20)

p1(x) = εpy(x, 0) . (5.21)

The boundary conditions (5.10) and (5.11) provide two more conditions as follows:

p10 = p(0, 0) , (5.22)

p(1, y) = 0 . (5.23)

The condition (5.22) is obtained by differentiating (5.12) with respect to x, setting x = 0,
and substituting (5.10) and (5.14) in the resulting equation. The condition (5.23) is obtained
by setting x = 1 in (5.12) and substituting (5.11) and (5.15) in the resulting equation.

Let us solve (5.20) and (5.23) for p(x, x) and combine the result with (5.19) and
(5.23) as follows:

pxx(x, y) − pyy(x, y) = −λp(x, y) , (5.24)

p(1, y) = 0 , (5.25)

p(x, x) = λ

2
(x − 1) . (5.26)

These three conditions form a well posed PDE which we can solve explicitly. To do this,
we make a change of variables

x̄ = 1 − y, ȳ = 1 − x, p̄(x̄, ȳ) = p(x, y) , (5.27)

which gives the following PDE:

p̄x̄x̄ (x̄, ȳ) − p̄ȳȳ (x̄, ȳ) = λp(x̄, ȳ) , (5.28)

p̄(x̄, 0) = 0 , (5.29)

p̄(x̄, x̄) = −λ

2
x . (5.30)

This PDE was solved in Chapter 4, and its solution is

p̄(x̄, ȳ) = −λȳ
I1(

√
λ(x̄2 − ȳ2))√

λ(x̄2 − ȳ2)
(5.31)

or, in the original variables,

p(x, y) = −λ(1 − x)
I1(

√
λ(2 − x − y)(x − y))√

λ(2 − x − y)(x − y)
. (5.32)

The observer gains, obtained using (5.21) and (5.22) are

p1(x) = py(x, 0) = λ(1 − x)

x(2 − x)
I2

(√
λx(2 − x)

)
, (5.33)

p10 = p(0, 0) = −λ

2
. (5.34)

n48 main
2008/4/7
page 56

�

�

�

�

�

�

�

�

56 Chapter 5. Observer Design

5.2 Output Feedback
The exponentially convergent observer developed in the last section is independent of the
control input and can be used with any controller. In this section we combine it with the
backstepping controller developed in Chapter 4 to solve the output-feedback problem.

For linear systems, the separation principle (or “certainty equivalence”) holds; i.e.,
the combination of a separately designed state feedback controller and observer results in
a stabilizing output-feedback controller. Next, we establish the separation principle for our
observer-based output-feedback design.

It is straightforward to show that the observer and control backstepping transforma-
tions (5.12) and

ŵ(x) = û(x) −
∫ x

0
k(x, y)û(y) dy , (5.35)

û(x) = ŵ(x) +
∫ x

0
l(x, y)ŵ(y) dy (5.36)

map the closed-loop system consisting of the observer error PDE and the observer into the
following target system:

ŵt = ŵxx +
{
p1(x) −

∫ x

0
k(x, y)p1(y) dy

}
w̃(0) , (5.37)

ŵx(0) = p10w̃(0) , (5.38)

ŵ(1) = 0 , (5.39)

w̃t = w̃xx , (5.40)

w̃x(0) = 0 , (5.41)

w̃(1) = 0 , (5.42)

where k(x, y) is the kernel of the control transformation and p1(x), p10 are observer gains.
The w̃-system and the homogeneous part of the ŵ-system (without w̃(0, t)) are exponentially
stable heat equations. To show that the system (ŵ, w̃) is exponentially stable, we use the
weighted Lyapunov function

V = A

2

∫ 1

0
w̃(x)2 dx + 1

2

∫ 1

0
ŵ(x)2 dx , (5.43)

where A is the weighting constant to be chosen later. Taking the time derivative of (5.43),
we get

V̇ = −A

∫ 1

0
w̃x(x)2 dx − p10ŵ(0)w̃(0) −

∫ 1

0
ŵx(x)2 dx

+ w̃(0)

∫ 1

0
ŵ(x)

{
p1(x) −

∫ x

0
k(x, y)p1(y) dy

}
dx .

Using the Poincaré and Young inequalities, we estimate

−p10ŵ(0)w̃(0) ≤ 1

4
ŵ(0)2 + p2

10w̃(0)2 ≤ 1

4

∫ 1

0
ŵx(x)2 dx + p2

10

∫ 1

0
w̃x(x)2 dx

n48 main
2008/4/7
page 57

�

�

�

�

�

�

�

�

5.3. Observer Design for Collocated Sensor and Actuator 57

and

w̃(0)

∫ 1

0
ŵ(x)

{
p1(x) −

∫ x

0
k(x, y)p1(y) dy

}
dx

≤ 1

4

∫ 1

0
ŵx(x)2 dx + B2

∫ 1

0
w̃x(x)2 dx ,

where B = maxx∈[0,1]{p1(x) − ∫ x

0 k(x, y)p1(y) dy}. With these estimates, we obtain

V̇ ≤ −(A − B2 − p2
10)

∫ 1

0
w̃x(x)2 dx − 1

2

∫ 1

0
ŵx(x)2 dx

≤ −1

4
(A − B2 − p2

10)

∫ 1

0
w̃(x)2 dx − 1

8

∫ 1

0
ŵ(x)2 dx .

Taking A = 2(B2 + p2
10), we get

V̇ ≤ −1

4
V .

Hence, the system (ŵ, w̃) is exponentially stable. The system (û, ũ) is also exponen-
tially stable since it is related to (ŵ, w̃) by the invertible coordinate transformations (5.12)
and (5.36). We have thus proved that the closed-loop system consisting of the plant with
backstepping controller and observer is exponentially stable.

In Table 5.1 we summarize the output-feedback design for the case when the sensor
and actuator are placed at opposite boundaries (“anticollocated” setup).

5.3 Observer Design for Collocated Sensor and Actuator
When the sensor and actuator are placed at the same boundary, the observer design is
slightly different. Consider the same plant as in the previous section, but with the following
collocated measurement and actuation:

ut = uxx + λu , (5.50)

ux(0) = 0 , (5.51)

u(1) = U(t) , (5.52)

ux(1) − measurement.

We design the following observer:

ût = ûxx + λû + p1(x)[ux(1) − ûx(1)] , (5.53)

ûx(0) = 0 , (5.54)

û(1) = U(t) + p10[ux(1) − ûx(1)] . (5.55)

Note here that the output injection is placed at the same boundary at which the sensor is
located, i.e., at x = 1 (not at x = 0 as in the anticollocated case).

n48 main
2008/4/7
page 58

�

�

�

�

�

�

�

�

58 Chapter 5. Observer Design

Table 5.1. Output-feedback design for anticollocated setup.

Plant:

ut = uxx + λu , (5.44)

ux(0) = 0 . (5.45)

Observer:

ût = ûxx + λû + λ(1 − x)

x(2 − x)
I2

(√
λx(2 − x)

)
[u(0) − û(0)] , (5.46)

ûx(0) = −λ

2
[u(0) − û(0)] , (5.47)

û(1) = −
∫ 1

0
λ

I1(
√

λ(1 − y2))√
λ(1 − y2)

û(y) dy . (5.48)

Controller:

u(1) = −
∫ 1

0
λ

I1(
√

λ(1 − y2))√
λ(1 − y2)

û(y) dy . (5.49)

Introducing the error ũ = u − û, we get the error system

ũt = ũxx + λũ − p1(x)ũx(1) , (5.56)

ũx(0) = 0 , (5.57)

ũ(1) = −p10ũx(1) . (5.58)

We use the transformation

ũ(x) = w̃(x) −
∫ 1

x

p(x, y)w̃(y)dy (5.59)

to convert the error system into the following exponentially stable target system:

w̃t = w̃xx , (5.60)

w̃x(0) = 0 , (5.61)

w̃(1) = 0. (5.62)

Note that the integral in the transformation has limits from x to 1 instead of the usual limits
from 0 to x.

By substituting (5.59) into the plant, we get the following set of conditions on the
observer kernel p(x, y) in the form of a hyperbolic PDE:

pxx(x, y) − pyy(x, y) = −λp(x, y) (5.63)

n48 main
2008/4/7
page 59

�

�

�

�

�

�

�

�

5.3. Observer Design for Collocated Sensor and Actuator 59

with the boundary conditions

px(0, y) = 0 , (5.64)

p(x, x) = −λ

2
x (5.65)

that yield

w̃t = w̃xx + [p(x, 1) − p1(x)]w̃x(1) , (5.66)

w̃x(0) = 0 , (5.67)

w̃(1) = −p10wx(1) . (5.68)

From the comparison of this system with (5.60)–(5.62), it follows that the observer gains
should be chosen as

p1(x) = p(x, 1), p10 = 0 . (5.69)

To solve the PDE (5.63)–(5.65) we introduce the change of variables

x̄ = y, ȳ = x, p̄(x̄, ȳ) = p(x, y)

to get

p̄x̄x̄ (x̄, ȳ) − p̄ȳȳ (x̄, ȳ) = λp̄(x̄, ȳ) (5.70)

p̄ȳ(x̄, 0) = 0 , (5.71)

p̄(x̄, x̄) = −λ

2
x̄ . (5.72)

This PDE was solved in Chapter 4 and its solution is

p(x̄, ȳ) = −λx̄
I1(

√
λ(x̄2 − ȳ2))√

λ(x̄2 − ȳ2)

= −λy
I1(

√
λ(y2 − x2))√

λ(y2 − x2)
.

Therefore, the observer gains are

p1(x) = −λ
I1(

√
λ(1 − x2))√

λ(1 − x2)
, (5.73)

and p10 = 0.

Remark 5.1. The fact that p1(x) = k(1, x) demonstrates the duality between observer
and control designs—a well-known concept in linear control theory for finite-dimensional
systems.

Remark 5.2. We assumed in this chapter that the decay rates of the observer and controller
are the same. One can easily modify the designs to achieve the typically desired time scale
decomposition, where the observer decays faster than the controller.

n48 main
2008/4/7
page 60

�

�

�

�

�

�

�

�

60 Chapter 5. Observer Design

Table 5.2. Output-feedback design for collocated setup.

Plant:

ut = uxx + λu , (5.74)

ux(0) = 0 . (5.75)

Observer:

ût = ûxx + λû − λ
I1(

√
λ(1 − x2))√

λ(1 − x2)
[ux(1) − ûx(1)] , (5.76)

ûx(0) = 0 , (5.77)

û(1) = −
∫ 1

0
λ

I1(
√

λ(1 − y2))√
λ(1 − y2)

û(y) dy . (5.78)

Controller:

u(1) = −
∫ 1

0
λ

I1(
√

λ(1 − y2))√
λ(1 − y2)

û(y) dy . (5.79)

As in the previous section, the collocated observer and controller are combined into
an output-feedback compensator. The summary of the output-feedback design is presented
in Table 5.2.

5.4 Compensator Transfer Function
When both the controller and the observer are given explicitly, one can derive a frequency
domain representation of the compensator.

To illustrate this, we consider the following PDE:

ut = uxx + gu(0) , (5.80)

ux(0) = 0 (5.81)

with u(0) measured and u(1) actuated. We first derive the transfer function of the open-loop
plant. Taking the Laplace transform of (5.80) and (5.81), we get

su(x, s) = u′′(x, s) + gu(0, s) , (5.82)

u′(0, s) = 0 . (5.83)

The general solution for this second-order ODE is given by

u(x, s) = A sinh(
√

sx) + B cosh(
√

sx) + g

s
u(0, s) , (5.84)

n48 main
2008/4/7
page 61

�

�

�

�

�

�

�

�

5.4. Compensator Transfer Function 61

where A and B are constants to be determined. From the boundary condition (5.83) we
have

u′(0, s) = A
√

s = 0 ⇒ A = 0 . (5.85)

By setting x = 0 in (5.84), we find B:

B = u(0, s)
(

1 − g

s

)
. (5.86)

Hence, we get

u(x, s) = u(0, s)
[g

s

(
1 − g

s

)
cosh(

√
sx)

]
.

Setting x = 1, we obtain

u(0, s) = s

g + (s − g) cosh(
√

s)
u(1, s) . (5.87)

This plant has no zeros and has an infinite relative degree. Using a Taylor expansion of the
cosh term, we get an approximate expression for the plant transfer function,

u(0, s)

u(1, s)
≈ 1

1 − g

2 + (
1
2 − g

4!
)
s + (

1
4! − g

6!
)
s2 + · · · . (5.88)

Let us now derive the frequency domain representation of the compensator. The
observer PDE is given by

ût = ûxx + gu(0) , (5.89)

ûx(0) = 0 , (5.90)

û(1) = −
∫ 1

0

√
g sinh(

√
g(1 − y))û(y)dy . (5.91)

Applying the Laplace transform, we get

sû(x, s) = û′′(x, s) + gu(0, s) , (5.92)

û′(0, s) = 0 , (5.93)

û(1, s) = −
∫ 1

0

√
g sinh(

√
g(1 − y))û(y, s)dy . (5.94)

It is easy to show that the general solution of PDE (5.92) with boundary condition (5.93) is
given by

û(x, s) = û(0, s) cosh(
√

sx) + g

s

(
1 − cosh(

√
sx)

)
u(0, s) . (5.95)

Substituting (5.95) into (5.94), and evaluating the integral, we express û(0, s) as a function
of u(0, s):

û(0, s) = cosh(
√

s) − cosh(
√

g)

s cosh(
√

s) − g cosh(
√

g)
gu(0, s) . (5.96)

n48 main
2008/4/7
page 62

�

�

�

�

�

�

�

�

62 Chapter 5. Observer Design

10
−1

10
0

10
1

10
2

10
3

−30

−20

−10

0

10

20

)
Bd(edutinga

M

ω , rad/sec

10
−1

10
0

10
1

10
2

10
3

−90

−75

−60

−45

−30

−15

0

)ged(esah
P

ω , rad/sec

Figure 5.1. Bode plots of the compensator (5.97) .

Setting x = 1 in (5.95) and using (5.96), we get the desired transfer function of the com-
pensator:

u(1, s) = g

s

(
−1 + (s − g) cosh(

√
s) cosh(

√
g)

s cosh(
√

s) − g cosh(
√

g)

)
u(0, s) . (5.97)

The Bode plots of the compensator for g = 8 are shown in Figure 5.1. One can see that it
can be approximated by a second order, relative degree one transfer function. For example,
a pretty good approximation would be

C(s) ≈ 60
s + 17

s2 + 25s + 320
. (5.98)

One might find the observation that the unstable, infinite relative degree plant (5.80),
(5.81) is stabilizable using a relative degree one compensator to be intriguing, perhaps even
fascinating, as one could not expect this to be possible in general. In fact, one also should not
generally expect such a simple compensator to arise from the backstepping design. Even for
this particular simple plant, which can have only one unstable eigenvalue, a higher relative
degree compensator might very well be needed for a higher value of g in the plant.

A legitimate question to raise is that of a possible “spill over” effect of the higher-order
modes under the truncated compensator (5.98). Such a phenomenon, however, is atypical
for parabolic PDEs, in which all but possibly very few eigenvalues are negative real and
very large in absolute value. In this situation, the singular perturbation principle (where
the boundary layer model is exponentially stable) allows us to achieve stabilization with a
compensator of finite order. The actual proof of this, however, is not elementary and, as
such, is beyond the scope of our presentation.

n48 main
2008/4/7
page 63

�

�

�

�

�

�

�

�

Exercises 63

5.5 Notes and References
The material in this chapter is based on ideas introduced in [155].

Exercises
5.1. Design an observer for the following system:

ut = uxx ,

ux(0) = −qu(0) ,

u(1) = U(t)

with only ux(1) available for measurement.
Follow these steps:

(1) Write down the observer for this system, with output injection entering the PDE
and the boundary condition at x = 1.

(2) Use the transformation

ũ(x) = w̃(x) −
∫ 1

x

p(x, y)w̃(y) dy (5.99)

to map the error system into the target system

w̃t = w̃xx , (5.100)

w̃x(0) = 0 , (5.101)

w̃(1) = 0 . (5.102)

Show that p(x, y) satisfies the PDE

pxx(x, y) = pyy(x, y) , (5.103)

px(0, y) = −qp(0, y) , (5.104)

p(x, x) = −q (5.105)

and that the observer gains are given by p10 = 0 and p1(x) = p(x, 1).

(3) Solve the PDE (5.103)–(5.105) for p(x, y) (look for the solution in the form
p(x, y) = φ(y − x)). Find p1(x).

5.2. Find the frequency domain representation of the plant

ut = uxx ,

ux(0) = −qu(0) ,

u(1) = U(t)

with u(0) measured and u(1) actuated; i.e., find G(s) such that u(0, s) = G(s)U(s).

n48 main
2008/4/7
page 64

�

�

�

�

�

�

�

�

n48 main
2008/4/7
page 65

�

�

�

�

�

�

�

�

Chapter 6

Complex-Valued PDEs:
Schrödinger and
Ginzburg–Landau
Equations

In this chapter we extend the designs developed in Chapter 4 to the case of “parabolic-
like” plants with a complex-valued state. Such plants can also be viewed as two coupled
PDEs. We consider two classes of such plants: the Ginzburg–Landau system (Section 6.2)
and its special case, the Schrödinger equation (Section 6.1). For breadth of illustration, the
Schrödinger equation is treated as a single complex-valued equation, whereas the Ginzburg–
Landau equation is treated as two coupled PDEs.

In what follows, j denotes the imaginary unit,
√−1.

6.1 Schrödinger Equation
The simplest complex-valued PDE is a linearized Schrödinger equation

vt = −jvxx , (6.1)

vx(0) = 0 , (6.2)

where v(1) is actuated and v(x, t) is a complex-valued function. Without control, this
system displays oscillatory behavior and is not asymptotically stable.

Interestingly, the Schrödinger equation (6.1) is equivalent to the Euler–Bernoulli beam
equation (8.1), considered later in Chapter 8. (Both the real part of v and the imaginary part
of v satisfy separate Euler–Bernoulli beam equations.)

A striking fact is that the stabilization problem for (6.1) and (6.2) is easily solved
using our control design for parabolic PDEs in Chapter 4. Let us formally think of −j

as the diffusion coefficient in the reaction-advection-diffusion equation (4.77) (with the
advection and reaction coefficients being zero) and follow the control design developed in
Section 4.7. We use the transformation

w(x) = v(x) −
∫ x

0
k(x, y)v(y) dy , (6.3)

along with boundary feedback

v(1) =
∫ 1

0
k(1, y)v(y) dy , (6.4)

65

n48 main
2008/4/7
page 66

�

�

�

�

�

�

�

�

66 Chapter 6. Complex-Valued PDEs

where now k(x, y) is a complex-valued control gain for mapping (6.1) and (6.2) into the
target system (4.86) with ε = −j and with the modified boundary condition at x = 0:

wt = −jwxx − cw , (6.5)

wx(0) = 0 , (6.6)

w(1) = 0 , (6.7)

which is exponentially stable for c > 0 (see Exercise 6.1).
The gain kernel PDE takes the form

kxx(x, y) − kyy(x, y) = cjk(x, y) , (6.8)

ky(x, 0) = 0 , (6.9)

k(x, x) = −cj

2
x . (6.10)

The solution to this PDE was obtained in Example 4.1 (set λ = cj). The control gain is

k(x, y) = −cjx
I1

(√
cj (x2 − y2)

)
√

cj (x2 − y2)
(6.11)

= x

√
c

2
(
x2 − y2

) [(j − 1)ber1

(√
c
(
x2 − y2

)) − (1 + j)bei1

(√
c
(
x2 − y2

))]

where ber1(·) and bei1(·) are the Kelvin functions, which are defined as

ber1(x) = −Im

{
I1

(
1 + j√

2
x

)}
, (6.12)

bei1(x) = Re

{
I1

(
1 + j√

2
x

)}
. (6.13)

In Figure 6.1 the open-loop and closed-loop behavior of the Schrödinger equation are
shown (only for the real part of the state, the imaginary part is similar). The control effort
is shown in Figure 6.2.

Remark 6.1. A simpler boundary feedback, ux(1, t) = −jc1u(1, t), c1 > 0, for the
Schrödinger equation (6.1), (6.2) also achieves exponential stabilization. However, it cannot
provide an arbitrary decay rate of the closed-loop system. Under this feedback, increasing
c1 moves the eigenvalues to the left in the complex plane up to some point, and then the
first several eigenvalues return to the imaginary axis. In contrast, the backstepping design
moves all the eigenvalues arbitrarily to the left. It is in fact possible to combine both designs
by replacing the boundary condition (6.7) of the target system (6.5)–(6.7) with

wx(1) = −jc1w(1) . (6.14)

Then the combined controller for the Schrödinger equation becomes

vx(1) = −j
(c

2
+ c1

)
v(1) +

∫ 1

0
(kx(1, y) + jc1k(1, y))v(y) dy . (6.15)

n48 main
2008/4/7
page 67

�

�

�

�

�

�

�

�

6.2. Ginzburg–Landau Equation 67

0
0.1

0.2
0.3

0

0.5

1
−10

−5

0

5

10

t

x

Re(v)

0
0.1

0.2
0.3

0

0.5

1
−10

−5

0

5

10

t
x

Re(v)

Figure 6.1. The open-loop (top) and closed-loop (bottom) responses of the
Schrödinger equation.

Amore general version of the Schrödinger equation is the Ginzburg–Landau equation,
which is considered next.

6.2 Ginzburg–Landau Equation
In flows past submerged obstacles, the phenomenon of vortex shedding occurs when the
Reynolds number is sufficiently large. A prototype model flow for studying vortex shedding
is the flow past a two-dimensional circular cylinder (Figure 6.3). The vortices, which are
alternately shed from the upper and lower sides of the cylinder, induce an undesirable

n48 main
2008/4/7
page 68

�

�

�

�

�

�

�

�

68 Chapter 6. Complex-Valued PDEs

0 0.1 0.2 0.3
−2

−1

0

1

2

Re(v(1))

t

Im(v(1))

Figure 6.2. Real (solid) and imaginary (dashed) parts of the control effort for the
Schrödinger equation.

periodic force that acts on the cylinder. The dynamics of the cylinder wake, often referred
to as the von Karman vortex street, are governed by the Navier–Stokes equations. However,
a simpler model exists in the form of the Ginzburg–Landau equation,

∂A

∂t
= a1

∂2A

∂x̆2
+ a2 (x̆)

∂A

∂x̆
+ a3 (x̆) A (6.16)

for x̆ ∈ (xd, 1), with boundary conditions

A(xd, t) = 0 , (6.17)

A(1, t) = u (t) , (6.18)

where A is a complex-valued function of (x̆, t), which is related to the transverse fluctuating
velocity, Re(a1) > 0, and u is the control input. The coefficients a1, a2, a3 are fitted to
data from laboratory experiments. Note that the fluid flows in the negative x̆ direction to fit
with our notation in the other chapters of this book, where the control input is at the right
boundary.

The model (6.16)–(6.18) is in fact a simplified version of the full nonlinear Ginzburg–
Landau model. First, the nonlinear model is linearized around the zero solution, and then
the (originally infinite) domain is truncated on both sides. The upstream subsystem (beyond
x̆ = 1) is discarded since it is an approximately uniform flow, and the downstream subsystem
is truncated at some xd ∈ (−∞, 1), which can be selected to achieve any desired level of
accuracy (because sufficiently far downstream from the cylinder, the flow again becomes
uniform).

Our objective is to prevent vortex shedding by applying feedback control at x̆ = 1
using microjet actuators distributed on the cylinder surface. The measurements are assumed
to be taken at the location of the cylinder only (via pressure sensors), collocated with
actuation. Although the “anticollocated” case (with measurements taken at x̆ = xd) can
also be solved by our method, we focus on the collocated case since it avoids the use of
unrealistic mid-flow measurements.

n48 main
2008/4/7
page 69

�

�

�

�

�

�

�

�

6.2. Ginzburg–Landau Equation 69

Figure 6.3. Vortex shedding in the 2D flow past a cylinder.

6.2.1 Problem Formulation as Two Coupled PDEs

We now rewrite equation (6.16) in the form of two coupled PDEs with real states and
coefficients and transform the domain [xd, 1] into the domain [0, 1]. Define

ρ(x, t) = Re(B(x, t)) = (
B (x, t) + B̄ (x, t)

)
/2 (6.19)

ι(x, t) = Im(B(x, t)) = (
B (x, t) − B̄ (x, t)

)
/ (2j) , (6.20)

where

x = x̆ − xd

1 − xd

, (6.21)

B (x, t) = A (x̆, t) exp

(
1

2a1

∫ x̆

xd

a2 (τ) dτ

)
, (6.22)

and denotes complex conjugation. Equation (6.16) becomes

ρt = aRρxx + bR (x) ρ − aI ιxx − bI (x) ι , (6.23)

ιt = aIρxx + bI (x) ρ + aRιxx + bR (x) ι (6.24)

for x ∈ (0, 1), with boundary conditions

ρ (0, t) = 0 , (6.25)

ι (0, t) = 0 , (6.26)

ρ (1, t) = uR (t) , (6.27)

ι (1, t) = uI (t) , (6.28)

where

aR = Re(a1)

(1 − xd)
2 , aI = Im(a1)

(1 − xd)
2 , (6.29)

and

bR (x) = Re

(
a3 (x̆) − 1

2
a′

2 (x̆) − 1

4a1
a2

2 (x̆)

)
, (6.30)

bI (x) = Im

(
a3 (x̆) − 1

2
a′

2 (x̆) − 1

4a1
a2

2 (x̆)

)
. (6.31)

n48 main
2008/4/7
page 70

�

�

�

�

�

�

�

�

70 Chapter 6. Complex-Valued PDEs

6.2.2 Control Design

First, we design the controllers uR(t) and uI (t) to stabilize the system (6.23)–(6.24), as-
suming full-state measurements.

Since the plant consists of two coupled PDEs, we introduce two backstepping trans-
formations:

ρ̆ (x, t) = ρ (x, t) −
∫ x

0
[k (x, y) ρ (y, t) + kc (x, y) ι (y, t)] dy, (6.32)

ῐ (x, t) = ι (x, t) −
∫ x

0
[−kc (x, y) ρ (y, t) + k (x, y) ι (y, t)] dy (6.33)

with two gain kernels k(x, y) and kc(x, y).
For the target system we choose (6.23)–(6.25), with bR(x) and bI (x) replaced by the

different functions fR(x) and fI (x):

ρ̆t = aRρ̆xx + fR (x) ρ̆ − aI ῐxx − fI (x) ῐ , (6.34)

ῐt = aI ρ̆xx + fI (x) ρ̆ + aRῐxx + fR (x) ῐ (6.35)

for x ∈ (0, 1), with boundary conditions

ρ̆ (0, t) = ῐ (0, t) = 0 , (6.36)

ρ̆ (1, t) = ῐ (1, t) = 0 . (6.37)

The controller is obtained by setting x = 1 in (6.32) and (6.33):

uR (t) =
∫ 1

0
[k(1, y)ρ (y, t) + kc(1, y)ι (y, t)] dy , (6.38)

uI (t) =
∫ 1

0
[−kc(1, y)ρ (y, t) + k(1, y)ι (y, t)] dy . (6.39)

One can show that the pair of kernels, k (x, y) and kc (x, y), satisfy the following two
coupled PDEs:

kxx = kyy + β(x, y)k + βc(x, y)kc , (6.40)

kc,xx = kc,yy − βc(x, y)k + β(x, y)kc (6.41)

for 0 < y < x < 1, with boundary conditions

k (x, 0) = 0 , (6.42)

kc (x, 0) = 0 , (6.43)

k(x, x) = −1

2

∫ x

0
β(γ, γ)dγ , (6.44)

kc(x, x) = 1

2

∫ x

0
βc(γ, γ)dγ , (6.45)

n48 main
2008/4/7
page 71

�

�

�

�

�

�

�

�

6.2. Ginzburg–Landau Equation 71

where

β(x, y) = aR (bR(y) − fR(x)) + aI (bI (y) − fI (x))

a2
R + a2

I

, (6.46)

βc(x, y) = aR (bI (y) − fI (x)) − aI (bR(y) − fR(x))

a2
R + a2

I

. (6.47)

These equations are well posed, and hence k, kc are twice continuously differentiable
functions of (x, y) (in particular, this fact ensures that the transformation (6.32), (6.33)
is invertible). Equations (6.40)–(6.47) can be solved numerically using finite-dimensional
discretization or with a symbolic recursive formula similar to (4.22)–(4.24).

The question remains of how to select fR and fI so that the target system (6.35)–(6.37)
is exponentially stable. Let c > 0, and

sup
x∈[0,1]

(
fR (x) + 1

2

∣∣f ′
I (x)

∣∣) ≤ − c

2
. (6.48)

Consider the Lyapunov function

E (t) = 1

2

∫ 1

0

(
ρ̃ (x, t)2 + ι̃ (x, t)2

)
dx . (6.49)

Its time derivative along solutions of (6.35)–(6.37) is

Ė (t) =
∫ 1

0
[ρ̃ (aRρ̃xx + fR (x) ρ̃ − aI ι̃xx − fI (x) ι̃)

+ ι̃ (aI ρ̃xx + fI (x) ρ̃ + aRι̃xx + fR (x) ι̃)] dx

=
∫ 1

0
(ρ̃ (aRρ̃xx + fR (x) ρ̃ − aI ι̃xx) + ι̃ (aI ρ̃xx + aRι̃xx + fR (x) ι̃)) dx

= −
∫ 1

0
aR

(
ρ̃2

x + ι̃2x
)
dx +

∫ 1

0
fR (x)

(
ρ̃2 + ι̃2

)
dx + aI

∫ 1

0
(ρ̃x ι̃x − ι̃x ρ̃x) dx

≤
∫ 1

0
fR (x)

(
ρ̃2 + ι̃2

)
dx. (6.50)

Hence, from (6.48) and the comparison principle, we have

E (t) ≤ E (0) e−ct for t ≥ 0. (6.51)

To show that the state of the target system exponentially converges to zero for all x ∈ [0, 1],
we let

V (t) = 1

2

∫ 1

0

(
ρ̃2

x (x, t) + ι̃2x (x, t)
)
dx . (6.52)

n48 main
2008/4/7
page 72

�

�

�

�

�

�

�

�

72 Chapter 6. Complex-Valued PDEs

The time derivative of V (t) along the solutions of (6.35)–(6.37) is

V̇ (t) =
∫ 1

0
(ρ̃x ρ̃xt + ι̃x ι̃xt) dx

= −
∫ 1

0
(ρ̃xxρ̃t + ι̃xx ι̃t) dx

= −
∫ 1

0
[ρ̃xx (aRρ̃xx + fR (x) ρ̃ − aI ι̃xx − fI (x) ι̃)

+ ι̃xx (aI ρ̃xx + fI (x) ρ̃ + aRι̃xx + fR (x) ι̃)] dx

= −aR

∫ 1

0

(
ρ̃2

xx + ι̃2xx

)
dx +

∫ 1

0
fR (x)

(
ρ̃2

x + ι̃2x
)
dx

+
∫ 1

0
f ′

I (x) (ι̃x ρ̃ − ρ̃x ι̃) dx − 1

2

∫ 1

0
f ′′

R (x)
(
ρ̃2 + ι̃2

)
dx

≤
∫ 1

0
fR (x)

(
ρ̃2

x + ι̃2x
)
dx +

∫ 1

0
f ′

I (x) (ι̃x ρ̃ − ρ̃x ι̃) dx − 1

2

∫ 1

0
f ′′

R (x)
(
ρ̃2 + ι̃2

)
dx

≤
∫ 1

0

(
fR (x) + 1

2

∣∣f ′
I (x)

∣∣)(ρ̃2
x + ι̃2x

)
dx + 1

2

∫ 1

0

(∣∣f ′
I (x)

∣∣ − f ′′
R (x)

) (
ρ̃2 + ι̃2

)
dx

≤
∫ 1

0

(
fR (x) + 1

2

∣∣f ′
I (x)

∣∣) (
ρ̃2

x + ι̃2x
)
dx + 1

2
c2

∫ 1

0

(
ρ̃2 + ι̃2

)
dx,

≤ − c

2
V (t) + c2E (0) e−ct , (6.53)

where we have used (6.48) and defined

c2 � max

{
sup

x∈[0,1]

(∣∣f ′
I (x)

∣∣ − f ′′
R (x)

)
, 0

}
. (6.54)

From the comparison principle, we get

V (t) ≤
(
V (0) + 2

c2

c
E (0)

)
e− c

2 t − 2
c2

c
E (0) e−ct , (6.55)

and hence we obtain

V (t) ≤
(

V (0) + 2c2

c
E (0)

)
e− c

2 t for t ≥ 0. (6.56)

Since, by the Poincaré inequality,

E (t) ≤ 1

2
V (t) , (6.57)

we get
V (t) ≤ c3V (0) e− c

2 t (6.58)

with c3 = 1+c2/c, which proves that the target system (6.35)–(6.37) is exponentially stable
in H1, provided that (6.48) is satisfied.

n48 main
2008/4/7
page 73

�

�

�

�

�

�

�

�

6.2. Ginzburg–Landau Equation 73

The particular choices of fR and fI that satisfy (6.48) have to be made carefully
to avoid unnecessarily large control gains. This is achieved by avoiding the complete
cancellation of the terms involving bR and bI in (6.23) by choosing fR and fI that cancel bR

and bI only in the part of the domain [xs, 1] and that preserve the natural damping that exists
in the plant downstream of xs (in [xd, xs]). It ensures that only cancellation/domination of
the source of instability is performed in the design, and the already stable part is kept
unchanged. One possible good choice is

fR (x̆) =
{ − 1

2c − 1
2

∣∣b′
I (x̆)

∣∣ for xs < x ≤ 1 ,

bR (x̆) for x̆ ≤ xs ,
(6.59)

fI (x̆) = bI (x̆) for all x̆ . (6.60)

where xs is chosen such that fR (xs) + 1
2

∣∣f ′
I (xs)

∣∣ = − c
2 .

6.2.3 Observer Design

Since we consider the collocated actuator and sensor, and the control inputs are already cho-
sen as ρ(1, t), ι(1, t), this leaves yR (t) = ρx (1, t) and yI (t) = ιx (1, t) for measurement.

The observer is designed along the lines of Chapter 5 and consists of a copy of the
plant plus output injection terms both in the domain and in the boundary condition at x = 1:

ρ̂t = aRρ̂xx + bR (x) ρ̂ − aI ι̂xx − bI (x) ι̂

+p1 (x)
(
yR − ŷR

) + pc,1 (x)
(
yI − ŷI

)
, (6.61)

ι̂t = aI ρ̂xx + bI (x) ρ̂ + aRι̂xx + bR (x) ι̂

−pc,1 (x)
(
yR − ŷR

) + p1 (x)
(
yI − ŷI

)
(6.62)

for x ∈ (0, 1), with boundary conditions ρ̂ (0) = ι̂ (0) = 0 and

ρ̂x (1) = p0(yR − ŷR) + pc,0(yI − ŷI) +
∫ 1

0

[
k(1, y)ρ̂ (y, t) + kc(1, y)ι̂ (y, t)

]
dy , (6.63)

ι̂x (1) = p0(yI − ŷI) − pc,0(yR − ŷR) +
∫ 1

0

[−kc(1, y)ρ̂ (y, t) + k(1, y)ι̂ (y, t)
]
dy . (6.64)

In (6.61)–(6.64), ŷR(t) = ρ̂x(1, t), ŷI (t) = ι̂x(1, t) and p1 (x), pc,1 (x), p0, and pc,0 are
output injection gains to be designed. We omit the derivation of those gains and simply
state the result:

p1 (x) = aRk (1, x) + aI kc (1, x) , (6.65)

pc,1 (x) = −aI k (1, x) + aRkc (1, x) , (6.66)

p0 = 0 , (6.67)

pc,0 = 0 . (6.68)

n48 main
2008/4/7
page 74

�

�

�

�

�

�

�

�

74 Chapter 6. Complex-Valued PDEs

0

0.2

0.4

0.6

0.8

1 0

10

20

30

40

50
−4

−2

0

2

4

tx

ρ

0

0.2

0.4

0.6

0.8

1 0

5

10

15

20

25
−2

−1

0

1

tx

ρ

Figure 6.4. Top: Open-loop simulation of the nonlinear plant. Bottom: Closed-
loop response.

The observer gains are expressed through control gains as a consequence of duality between
the observer and control designs noted in Chapter 5.

6.2.4 Simulations

The controller and the observer can be combined into the output-feedback compensator.
The proof of stability of the closed-loop system (“certainty equivalence”) follows along the
lines of Section 5.2.

The top graph in Figure 6.4 shows the open-loop (nonlinear) plant response for xd =
−7, at Reynolds number Re = 60.9 (Only ρ is shown; ι looks qualitatively the same.) The
system is linearly unstable and goes into a quasi-steady/limit-cycling motion reminiscent
of vortex shedding. The feedback gains k(1, x) and kc(1, x), as well as the observer gains
p1(x) and pc,1(x), are shown in Figure 6.5. In Figure 6.6 the Bode plots of the compensator

9Defined as Re = ρU∞D/μ, where U∞ is the free stream velocity, D is the cylinder diameter, and ρ and μ

are density and viscosity of the fluid, respectively. Vortex shedding occurs when Re > 47.

n48 main
2008/4/7
page 75

�

�

�

�

�

�

�

�

6.3. Notes and References 75

0 0.2 0.4 0.6 0.8 1
−400

−300

−200

−100

0

100

200

x

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Figure 6.5. Top: Gain kernels k(1, x) (solid line) and kc(1, x) (dashed line).
Bottom: Observer gains p1(x) (solid line) and pc,1(x) (dashed line).

transfer functions are shown. The compensator is two-input–two-output; however, due
to the symmetry in the plant, only two of the four transfer functions are different. The
closed-loop response is shown in Figure 6.4 (top graph). We can see that vortex shedding
is suppressed.

6.3 Notes and References
For more details on “passive damper” feedbacks for the Schrödinger equation, see [125, 67].
Exact controllability and observability results can be found in [108, 139, 124].

Modeling aspects of flows past bluff bodies are discussed in [110, 74, 148]. Numerical
investigations based on the Navier–Stokes equations are numerous; see, for instance, [137,
65, 70]. Optimal controllers for the Ginzburg–Landau model have been designed for finite-
dimensional approximations of equation (6.16) in [111] and [110]; the latter reference also
provides an overview of previous work on stabilization of bluff body flows. In [2] globally
stabilizing controllers were designed for a discretized nonlinear model.

n48 main
2008/4/7
page 76

�

�

�

�

�

�

�

�

76 Chapter 6. Complex-Valued PDEs

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−90

−80

−70

−60

−50

−40

−30

−20

−10

Frequency (rad/s)

)
Bd(edutinga

M

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−120

−100

−80

−60

−40

−20

0

20

40

Frequency (rad/s)

)ged(esah
P

Figure 6.6. Compensator transfer functions from ρx(1) to ρ(1) (solid lines) and
ιx(1) to ρ(1) (dashed lines).

Exercises
6.1. Prove the exponential stability of (6.5)–(6.7) with the help of the Lyapunov function

V̇ = 1

2

∫ 1

0
|w(y)|2 dy . (6.69)

Note that c > 0.

6.2. Consider the Schrödinger equation

vt = −jvxx , (6.70)

vx(0) = −jqv(0) (6.71)

n48 main
2008/4/7
page 77

�

�

�

�

�

�

�

�

Exercises 77

with q > 0, which is unstable in the uncontrolled case v(1) = 0. Show that the
change of variable

w(x) = v(x) + j (c0 + q)

∫ x

0
e jq(x−y)v(y) dy (6.72)

and the boundary feedback

v(1) = −j (c0 + q)

∫ 1

0
e jq(1−y)v(y) dy (6.73)

convert the closed-loop system into

wt = −jwxx , (6.74)

wx(0) = jc0w(0) , (6.75)

w(1) = 0 , (6.76)

which happens to be exponentially stable for c0 > 0. Note that this control law is
designed to counter a source of instability at x = 0, using actuation at x = 1. (A
similar design is considered in Exercise 7.3 for a wave/string equation.)

n48 main
2008/4/7
page 78

�

�

�

�

�

�

�

�

n48 main
2008/4/7
page 79

�

�

�

�

�

�

�

�

Chapter 7

Hyperbolic PDEs: Wave
Equations

The material covered in the book thus far has dealt with parabolic PDEs—the heat equation,
the reaction-advection-diffusion equations, and their more complicated varieties with u(0, t)

and
∫ x

0 f (x, y)u(y, t)dy terms.
In this chapter we introduce the main ideas for backstepping control of hyperbolic

PDEs, the most basic of which is the wave equation that models various oscillatory phe-
nomena, i.e., string vibrations.

The main distinguishing feature of a wave equation is that it is second order in time.
While the heat equation is

ut = uxx , (7.1)

the wave equation is
utt = uxx . (7.2)

The difference is roughly analogous to that between the first-order ODE ż + z = 0 and a
second-order ODE z̈+ z = 0 and translates into a substantial difference in system behavior.
While the solutions of the former decay monotonically to zero, the solutions of the latter
oscillate. Of course, both heat equations and wave equations can be affected by additional
phenomena which cause instability (instead of a monotonic decay or pure oscillation) but
the key distinction remains: heat equation-type systems (with one derivative in time and two
derivatives in space) have mostly real eigenvalues, whereas wave equation-type systems
(with two derivatives in time and space) have mostly imaginary eigenvalues.

This heuristic discussion should help readers to understand the context in which control
problems for the two classes of PDE systems have developed. While control systems for
parabolic PDEs are mostly developed to accelerate their sluggish transient behavior, or to
prevent exponential instability in the case of some chemically reacting or turbulent fluid
flow systems, the control systems for hyperbolic PDEs are typically developed to damp out
their oscillations (although situations also exist where control is also required to deal with
exponential instabilities in wave equation systems; see Exercise 7.3).

The backstepping control ideas extend from parabolic to hyperbolic PDEs in a man-
ner that is mathematically straightforward but conceptually rather tricky. Consider the
elementary heat equation,

ut = uxx .

79

n48 main
2008/4/7
page 80

�

�

�

�

�

�

�

�

80 Chapter 7. Hyperbolic PDEs: Wave Equations

As we have seen in Chapter 4, a change of variable and boundary control can be designed
to make the closed-loop system behave as

wt = wxx − cw ,

with an arbitrary amount of in-domain damping c > 0. For the elementary wave equation,

utt = uxx ,

it would be highly desirable to design a variable change and boundary control to achieve
closed-loop behavior governed by

wtt = wxx − cwt ,

where the terms −cwt represents the in-domain “viscous” damping. Unfortunately, this is
not possible. As we shall see in this chapter, for wave equations it is necessary to pursue
more subtle forms of adding damping, i.e., through special boundary conditions.

Many of the aspects of the analysis that we have encountered so far for parabolic PDEs
become more delicate for hyperbolic PDEs. One aspect is the eigenvalue analysis—we
devote some time in this chapter to the complex interplay between the boundary conditions
and the resulting eigenvalues. More important, the Lyapunov analysis for wave equations
is much more involved than it is for heat equations. The natural choice for a Lyapunov
function is the total energy of the wave equation system, which consists of a sum of the
potential and kinetic energy. This means that a Lyapunov function will involve the spatial
L2-norm both of the spatial derivative of the system state and of the time derivative of the
system state—a much more complex situation than for parabolic PDEs, where the L2-norm
of the state itself (with no derivatives) was a good choice for a Lyapunov function.

The bulk of this chapter deals with the basic, undamped wave equation. However,
we also discuss a more realistic form of the wave equation that includes a small amount of
“Kelvin–Voigt damping.” The Kelvin–Voigt damping models the internal material damping,
which is present in any application, whether it be structural (strings, beams) or acoustic.
Kelvin–Voigt damping prevents the system from having infinitely many eigenvalues on the
imaginary axis which extend all the way to ±j∞. The presence of such eigenvalues in
completely undamped wave equations is not only physically unrealistic but also a cause of
certain artificial robustness considerations in the control design, as explained in Section 7.4.
It is therefore very important to understand the control designs for wave equations with
Kelvin–Voigt damping, although the study of the undamped wave equation is a key first
step for understanding the peculiarities that arise in the control design and analysis for wave
PDEs.

7.1 Classical Boundary Damping/Passive Absorber
Control

The PDE that describes a vibrating string on a finite interval is

utt = uxx , (7.3)

ux(0) = 0 , (7.4)

u(1) = 0 . (7.5)

n48 main
2008/4/7
page 81

�

�

�

�

�

�

�

�

7.1. Classical Boundary Damping/Passive Absorber Control 81

The boundary conditions (7.4) and (7.5) correspond to the situation where the end of the
string at x = 1 is “pinned” and the end x = 0 is “free.” (The zero-slope boundary condition
at x = 0 has the physical meaning of no force being applied at that end.)

To analyze stability properties of the solutions to this equation, consider the Lyapunov
function

E = 1

2
‖ux‖2 + 1

2
‖ut‖2 , (7.6)

which represents the system energy at time t . The first term is the potential energy (ux is
shear) and the second term is kinetic energy (ut is velocity). Taking the time derivative
gives

Ė =
∫ 1

0
uxuxtdx +

∫ 1

0
ututtdx (chain rule)

=
∫ 1

0
uxuxtdx +

∫ 1

0
utuxxdx

=
∫ 1

0
uxuxtdx + (ut (x)ux(x))|10 −

∫ 1

0
utxuxdx (integration by parts)

= (ut (x)ux(x))|10
= 0 .

Thus, E(t) = E(0) and energy is conserved. In other words, the system is marginally
stable. Of course, this is what is expected of an undamped string.

The classical method of stabilizing this system is to add a damping term to the bound-
ary. Specifically, the boundary condition (7.4) is replaced by

ux(0) = c0ut (0). (7.7)

The physical meaning of this boundary condition is that the force applied to the free end
of the string is proportional to the velocity of the free end, which can be achieved using a
passive damper/absorber.

Instead of using the Lyapunov/energy method to determine stability, we look at the
eigenvalues of the system. First, the solution to (7.3) is sought in the form

u(x, t) = eσ tφ(x) .

Substituting this expression into (7.3) gives

σ 2eσ tφ(x) = eσ tφ′′(x) ,

and using the boundary conditions, we get

eσ tφ(1) = 0 ,

eσ tφ′(0) = c0σeσtφ(0) .

n48 main
2008/4/7
page 82

�

�

�

�

�

�

�

�

82 Chapter 7. Hyperbolic PDEs: Wave Equations

Im

Re

σ

σ

π
2

π
2

π

π
2

3

Figure 7.1. The locus of eigenvalues of the system (7.3), (7.7), (7.5) when c0 grows
from 0 to 1, and then beyond 1.

We have now arrived at the Sturm–Louiville problem

φ′′ − σ 2φ = 0 , (7.8)

φ′(0) = c0σφ(0) , (7.9)

φ(1) = 0 . (7.10)

The solution of (7.8) is given by

φ(x) = eσx + Be−σx . (7.11)

From (7.9) we have B = −e−2σ . From (7.9),

φ′(0) − c0σφ(0) = 0 , (7.12)

σ(1 + e2σ) − c0σ(1 − e2σ) = 0 , (7.13)

e2σ = −1 − c0

1 + c0
. (7.14)

Solving for σ gives

σ = −1

2
ln

∣∣∣∣1 + c0

1 − c0

∣∣∣∣ + jπ

{
n + 1

2 0 ≤ c0 < 1 ,

n c0 > 1 ,
(7.15)

and the solution of the system converges to zero in finite time for c0 = 1. In Figure 7.1 we
can see the locus of eigenvalues (7.15) in the complex plane as the value of c0 changes.

The boundary control provided by (7.7) has the capacity to add considerable damping
to the system; however, it requires actuation on the free end x = 0, which is not always
feasible.

n48 main
2008/4/7
page 83

�

�

�

�

�

�

�

�

7.2. Backstepping Design 83

7.2 Backstepping Design: A String with One Free End and
Actuation on the Other End

Let us now consider the wave equation with damping boundary control at the constrained
end:

utt = uxx , (7.16)

ux(0) = 0 , (7.17)

ux(1) = −c1ut (1) , (7.18)

where c1 > 0. This system has an arbitrary constant as an equilibrium profile. To deal with
this multitude of equilibria, we need a more sophisticated controller at x = 1 (backstepping)
if the boundary condition at x = 0 is to remain free. We will now design such a controller
using the backstepping approach.

We propose the transformation

w(x) = u(x) + c0

∫ x

0
u(y) dy , (7.19)

which maps the plant into the target system

wtt = wxx , (7.20)

wx(0) = c0w(0) , (7.21)

wx(1) = −c1wt(1) . (7.22)

The idea is that a large c0 in the boundary condition at x = 0 can make wx(0) = c0w(0)

behave as w(0) = 0. (Large c0 is not necessary; it is a design option, and hence one should
not view this as employing high gain feedback.)

First, we need to analyze the stability of the target system. Consider the Lyapunov
function

V = 1

2

(‖wx‖2 + ‖wt‖2 + c0w
2(0)

) + δ

∫ 1

0
(1 + x)wx(x)wt(x)dx . (7.23)

The crucial novelty relative to the previous Lyapunov functions used in this book is the
introduction of an “indefinite” spatially weighted cross-term between wx and wt . Using the
Cauchy–Schwarz and Young’s inequalities, one can show that for sufficiently small δ there
exist m1, m2 > 0 such that

m1U � V � m2U, U = ‖wx‖2 + ‖wt‖2 + w2(0) . (7.24)

Therefore V is positive definite.

n48 main
2008/4/7
page 84

�

�

�

�

�

�

�

�

84 Chapter 7. Hyperbolic PDEs: Wave Equations

The derivative of V along the solution of the target system is

V̇ =
∫ 1

0
wxwtxdx +

∫ 1

0
wtwttdx + c0w(0)wt (0)

+ δ

∫ 1

0
(1 + x)(wxtwt + wxwtt)dx

=
∫ 1

0
wxwtxdx

+
∫ 1

0
wtwxxdx + wx(0)wt (0) + δ

∫ 1

0
(1 + x)(wxtwt + wxwxx)dx

=
∫ 1

0
wxwtxdx + wtwx |10 −

∫ 1

0
wtwxtdx + wx(0)wt (0)

+ δ

∫ 1

0
(1 + x)(wxtwt + wxwxx)dx

= δ

(∫ 1

0
wxtwtdx +

∫ 1

0
wxwxxdx +

∫ 1

0
xwxtwtdx +

∫ 1

0
xwxwxxdx

)
+ wt(1)wx(1) .

In the last two integrals we notice that

wxtwtdx = d

dx

w2
t

2
, wxwxxdx = d

dx

w2
x

2
(7.25)

and use integration by parts:

V̇ = wt(1)wx(1) + δ

2

[
(1 + x)(w2

x + w2
t)
] |10 − δ

2

[‖wx‖2 + ‖wt‖2
]

= −c1w
2
t + δ(w2

t (1) + w2
x(1)) − δ

2

[
w2

x(0) + w2
t (0)

] − δ

2

[‖wx‖2 + ‖wt‖2
]

= − (
c1 − δ(1 + c2

1)
)
w2

t (1) − δ

2

(
w2

t (0) + c2
0w

2(0)
) − δ

2

[‖wx‖2 + ‖wt‖2
]

,

which is negative definite for δ < c1

1+c2
1
. Since δ is just an analysis parameter, we can choose

it to be arbitrarily small. It now follows from (7.23) and (7.24) that

U(t) ≤ Me−t/MU(0)

for some possibly large M , which proves the exponential stability of the target system.
The resulting Neumann backstepping controller is obtained by differentiating the

transformation (7.19) and setting x = 1:

ux(1) = −c1ut (1) − c0u(1) − c1c0

∫ 1

0
ut (y)dy . (7.26)

For the best performance (with respect to the case with a “pinned” uncontrolled boundary
condition in Section 7.1), one should choose c0 to be large and c1 approximately 1. Some

n48 main
2008/4/7
page 85

�

�

�

�

�

�

�

�

7.3. Wave Equation with Kelvin–Voigt Damping 85

insight into the properties of the backstepping controller may be obtained by examining
the individual terms in (7.26). The term −c1ut (1) provides boundary damping so that the
action of −c1ut (1) − c0u(1) is similar to PD control. The last term is a spatially averaged
velocity and is the backstepping term that allows actuation at the constrained end ux(1).

The corresponding output-feedback controller with only boundary sensing is

ux(1) = −c0û(1) − c1ût (1) + c0c1

∫ 1

0
ût (y)dy , (7.27)

where the observer state is governed by

ûtt = ûxx , (7.28)

ûx(0) = c̃0(ût (0) − ut (0)) , (7.29)

û(1) = u(1) (7.30)

with c̃0 > 0.

7.3 Wave Equation with Kelvin–Voigt Damping
An entirely different backstepping design is possible when the wave equation has a small
amount of Kelvin–Voigt damping (internal material damping, present in all realistic mate-
rials):

utt = uxx + duxxt , (7.31)

ux(0) = 0 , (7.32)

u(1) = control, (7.33)

where d is a small positive constant.
We use the transformation

w(x) = u(x) −
∫ x

0
k(x, y)u(y) dy

to transform the original system into the target system

wtt = (1 + d∂t)(wxx − cw) , (7.34)

wx(0) = 0 , (7.35)

w(1) = 0 . (7.36)

The nth pair of eigenvalues σn of this system satisfies the quadratic equation

σ 2
n + d

[
c +

(π

2
+ πn

)2
]

σn +
[
c +

(π

2
+ πn

)2
]

= 0 , (7.37)

where n = 0, 1, 2, There are two sets of eigenvalues: For lower n the eigenvalues
reside on the circle (

Re(σn) + 1

d

)2

+ (Im(σn))
2 = 1

d2
, (7.38)

n48 main
2008/4/7
page 86

�

�

�

�

�

�

�

�

86 Chapter 7. Hyperbolic PDEs: Wave Equations

Im

Re
0

σ

σ

Figure 7.2. Open-loop eigenvalues for the wave equation with Kelvin–Voigt damping.

and for higher n the eigenvalues are real, with one branch accumulating towards −1/d as
n → ∞ and the other branch converging to −∞. The open-loop eigenvalues (c = 0) are
shown in Figure 7.2. Increasing c moves the eigenvalues along the circle in the negative real
direction and decreases the number of them on the circle (ultimately they become real). With
a very high value of c all of the eigenvalues can be made real. While possible, this would
not necessarily be a good idea, not for transient response or for disturbance attenuation, and
certainly not from the point of view of control effort. Thus, the flexibility of improving the
damping using the backstepping transformation and controller should be used judiciously,
with lower values of c if d is already relatively high.

The kernel PDE can be shown as

kxx = kyy + ck , (7.39)

ky(x, 0) = 0 , (7.40)

k(x, x) = c

2
x . (7.41)

Note that this is the same PDE as in Example 4.1 from Chapter 4. Its solution is

k(x, y) = −cx
I1

(√
c(x2 − y2)

)
√

c(x2 − y2)
. (7.42)

The controller is given by

u(1) = −
∫ 1

0
c
I1

(√
c(1 − y2)

)
√

c(1 − y2)
u(y) dy . (7.43)

Note that the controller does not depend on d.

n48 main
2008/4/7
page 87

�

�

�

�

�

�

�

�

7.4. Notes and References 87

0

0.5

1

024681012
−1

−0.5

0

0.5

1

x
t

0

0.5

1

024681012
−1

−0.5

0

0.5

1

xt

Figure 7.3. Open-loop (top) and closed-loop (bottom) responses of the unstable
wave equation from Exercise 7.3.

7.4 Notes and References
The literature that covers control of wave equations—hundreds of papers and several books
on controllability, stabilization, optimal control, and state and parameter estimation—is
too vast to review here. We have introduced the ideas for backstepping control of wave
equations in [96, 99].

It is important to comment on the robustness of boundary damper-based control laws
(which includes the backstepping design). The question of robustness of such feedbacks to
a time delay (due to measurement, computation, and actuation) received considerable atten-
tion in the 1980s and 1990s. It has been shown that such feedbacks have a zero robustness
margin to the presence of a delay; namely, they are destabilized by any, infinitesimal amount
of delay. This is in fact true of other more complicated feedbacks, though it is more difficult
to establish analytically due to increased complexity. The reason for the lack of robustness,
however, lies not in the control design but in the model itself. The undamped wave equa-
tion, with its infinitely many eigenvalues on the jω axis, is simply not a physically realistic
model. As soon as the undamped wave equation is augmented by a small amount of Kelvin–
Voigt damping, which is present in any structure and evident in any experiment through a
finite (rather than infinite) number of resonant frequencies in the frequency response or in
the power spectral density, a robustness property of any experimentally stabilizing design
to the presence of a small delay is restored.

It is also important to caution the reader that a wave equation with Kelvin–Voigt
damping cannot be categorized as a hyperbolic PDE. With at most a finite number of
conjugate-complex eigenvalues in its spectrum, such a PDE is a parabolic/hyperbolic hybrid.

n48 main
2008/4/7
page 88

�

�

�

�

�

�

�

�

88 Chapter 7. Hyperbolic PDEs: Wave Equations

Exercises
7.1. Show that the transformation

w(x) = u(x) + c0

∫ x

0
u(y) dy

and the boundary control

ux(1) = −c0u(1) − c1

(
ut (1) + c0

∫ 1

0
ut (y) dy

)

convert the plant

utt = uxx ,

ux(0) = 0

into the asymptotically stable system

wtt = wxx ,

wx(0) = c0w(0) ,

wx(1) = −c1wt(1) .

7.2. In Exercise 7.1 determine c0 and c1 such that the first pair of poles is approxi-
mately −1.15 ± j1.5. In order to do this, use the program downloadable from
http://flyingv.ucsd.edu/krstic/teaching/287/gui_wave2.zip.

7.3. Consider the wave equation

utt = uxx ,

ux(0) = −qu(0) ,

which is unstable with u(1) = 0 when q ≥ 1. Show that the change of variable

w(x) = u(x) + (c0 + q)

∫ x

0
eq(x−y)u(y) dy

and the boundary feedback

ux(1) = −c1ut (1) − (c0 + q)u(1) − (c0 + q)

∫ 1

0
eq(1−y)[c1ut (y) + qu(y)]dy

convert the closed-loop system into

wtt = wxx ,

wx(0) = c0w(0) ,

wx(1) = −c1wt(1) .

Note: In Figure 7.3 it is illustrated that the open-loop plant is unstable and that the
feedback controller designed in this exercise successfully stabilizes the plant.

n48 main
2008/4/7
page 89

�

�

�

�

�

�

�

�

Chapter 8

Beam Equations

While the wave equation is the most appropriate “point of entry” into the realm of hyper-
bolic PDEs, beam equations are considered a physically relevant benchmark for control of
hyperbolic PDEs and structural systems in general.

We start by discussing the main differences between wave equation (string) models,

utt − uxx = 0 , (8.1)

ux(0) = 0 (free end) , (8.2)

u(1) = 0 (pinned end) , (8.3)

and beam models. The simplest beam model is the Euler–Bernoulli model

utt + uxxxx = 0 , (8.4)

uxx(0) = uxxx(0) = 0 (free end condition) , (8.5)

u(0) = ux(0) = 0 (clamped end condition). (8.6)

The obvious difference between the PDEs (8.1) and (8.4) is in the number of spatial
derivatives—the wave equation is second order in x, whereas the Euler–Bernoulli beam
model is fourth order in x. One consequence of this difference is that a wave equation re-
quires one boundary condition per end point (see (8.2) or (8.3)), whereas the Euler–Bernoulli
beam model requires two boundary conditions per end point; see (8.5) or (8.6). A more
important difference is in the eigenvalues. Both the beam and the string models have all of
their eigenvalues on the imaginary axis. However, while the string eigenvalues are equidis-
tant (growing linearly in n), the beam eigenvalues get further and further apart as they go
up the jω axis (they grow quadratically in n). This difference in the eigenvalue pattern is a
consequence of the difference in the number of derivatives in x.

A reader might ask how these differences translate into control. Is it obvious that a
beam is more difficult to control than a string? The answer is not clear and is not necessarily
“yes.” While the presence of higher derivatives clearly generates some additional issues to
deal with in the control design, the wave equation has its own peculiarities that one should
not underestimate. For example, controllability results for beams are valid on arbitrary short

89

n48 main
2008/4/7
page 90

�

�

�

�

�

�

�

�

90 Chapter 8. Beam Equations

time intervals, whereas for strings such results hold only over time intervals that are lower
bounded in proportion to the “wave propagation speed” of the string (which physically
corresponds to “string tension”). Also, it is almost intuitively evident that keeping a string
from vibrating may not be easier than keeping a beam from vibrating.

Beam modeling is not an elementary topic, even for slender beams undergoing only
small displacements (in which case a linear single-PDE 1D model can be arrived at). The
catalog of linear slender-beam models consists of the following four models:

(1) Euler–Bernoulli model,

(2) Rayleigh model,

(3) shear beam model, and

(4) Timoshenko model.

The Euler–Bernoulli model is the simplest and includes neither the effect of shear defor-
mations nor rotary inertia, whereas the Timoshenko model includes both effects and is the
most general and most complex model. (All of the models include the effects of lateral
displacement and bending moment, with the former contributing the kinetic energy and the
latter the strain/potential energy.)

The Rayleigh and shear beam models are mathematically identical although they are
physically different (the parameters that appear in the two models are different). Both
models include derivative terms not only of the forms utt and uxxxx but also of the form
uxxtt .

The traditional way to stabilize the Euler–Bernoulli beam is similar to the passive
damper design for the wave equation: Use a damping boundary feedback at the tip of the
beam

uxx(0) = c0uxt (0), c0 > 0. (8.7)

This design, while damping the higher modes, is not capable of adding a lot of damping to
the first few modes. We present a design based on backstepping implemented by actuating
at the base of the beam, which has the ability to add damping to all the modes and to even
stabilize the beam in the case when it is open-loop unstable due to destabilizing forces acting
at the tip. This design is presented in Section 8.2.

Before dealing with the Euler–Bernoulli beam model, we present a backstepping
design for the seemingly more complex shear beam model. Ironically, the design for the
shear beam is more accessible than that for the simpler, Euler–Bernoulli beam. The reason
for this is that the additional term in the shear beam model, accounting for the finiteness
of the shear modulus, has a particular “regularizing” effect on the system. In more precise
terms, the shear beam model is essentially a partial integrodifferential equation (PIDE) of
order two in x, whereas the Euler–Bernoulli beam is fundamentally of order four in x. This
results in a form of methodological “discontinuity,” where, even though in the “infinite-
shear-modulus” limit the shear beam model becomes the Euler–Bernoulli model, this does
not occur with the designs. The design for the shear beam is defined only when the shear
modulus is finite (the control gains go to infinity as the shear modulus goes to infinity).
The design for the Euler–Bernoulli model is fundamentally different from the design for the
shear beam.

n48 main
2008/4/7
page 91

�

�

�

�

�

�

�

�

8.1. Shear Beam 91

8.1 Shear Beam

8.1.1 Shear Beam Model

We consider the shear beam model, usually written as

utt − εuxxtt + uxxxx = 0, (8.8)

where ε is a small constant inversely proportional to the shear modulus (and unrelated to
damping). We can rewrite this model in the form of the wave equation coupled with a
second-order ODE in x as follows:

εutt = uxx − αx (8.9)

0 = εαxx − α + ux , (8.10)

where α is the deflection angle due to the bending of the beam. The free-end boundary
condition is given by

ux(0) = α(0) , (8.11)

αx(0) = 0. (8.12)

One can verify that this model is equivalent to the model (8.8) by following these
steps:

(a) (8.9)x + (8.10) = (�).
(b) (�)x = (��).
(c) (��) − 1

ε
(8.9) =(8.8).

8.1.2 Control Design

The first step of our design is to solve the ODE (8.10) for α:

α(x) = cosh(bx)α(0) − b

∫ x

0
sinh(b(x − y))uy(y)dy , (8.13)

where b = 1/
√

ε. This solution is easily obtained via Laplace transform in the spatial
variable x.

The constant α(0) in (8.13) can be expressed in terms of α(1) in the following way:

α(0) = 1

cosh(b)

[
α(1) + b

∫ 1

0
sinh(b(1 − y))uy(y)dy

]

= 1

cosh(b)

[
α(1) + b sinh(b(1 − y))u(y)|10 + b2

∫ 1

0
cosh(b(1 − y))u(y)dy

]

= 1

cosh(b)

[
α(1) − b sinh(b)u(0) + b2

∫ 1

0
cosh(b(1 − y))u(y)dy

]
. (8.14)

The integral term on the right-hand side of this equality is not spatially causal, due to the
fourth derivative in the original shear beam model (8.8). To put the system into a strict-
feedback form, we eliminate this integral by choosing

α(1) = b sinh(b)u(0) − b2
∫ 1

0
cosh(b(1 − y))u(y)dy (8.15)

n48 main
2008/4/7
page 92

�

�

�

�

�

�

�

�

92 Chapter 8. Beam Equations

so that α(0) = 0. Then we have

α(x) = b sinh(bx)u(0) − b2
∫ x

0
cosh(b(x − y))u(y)dy . (8.16)

Differentiating α(x) with respect to x and substituting the result into the wave equation (8.9),
we get the system in the form ready for the control design:

εutt = uxx + b2u − b2 cosh(bx)u(0) + b3
∫ x

0
sinh(b(x − y))u(y)dy . (8.17)

Following our procedure, we use the transformation

w(x) = u(x) −
∫ x

0
k(x, y)u(y) dy (8.18)

to map the system (8.17) into the following exponentially stable target system:

εwtt = wxx , (8.19)

wx(0) = c0w(0) , (8.20)

wx(1) = −c1wt(1) , (8.21)

where c0 and c1 are design parameters. It may be surprising that we use the same target
system here as in the control design for the wave equation in the previous chapter. We
discuss this choice in more detail in Section 8.3.

Substituting the transformation (8.18) into the target system, one can derive the fol-
lowing PDE for the kernel k(x, y):

kxx = kyy + b2k − b3 sinh(b(x − y)) + b3
∫ x

y

k(x, ξ) sinh(b(ξ − y))dξ , (8.22)

k(x, x) = −b2

2
x − c0 , (8.23)

ky(x, 0) = b2
∫ x

0
k(x, y) cosh(by)dy − b2 cosh(bx) . (8.24)

This PDE has to be solved numerically.
The second boundary controller (the first one is given by (8.15)) is obtained by dif-

ferentiating (8.18) with respect to x and setting x = 1:

ux(1) = k(1, 1)u(1) +
∫ 1

0
kx(1, y)u(y)dy − c1ut (1) + c1

∫ 1

0
k(1, y)ut (y)dy . (8.25)

In a similar way, one can design the observer to avoid needing of position and velocity
measurements along the beam.

8.1.3 On the Choice of the Wave Equation as the Target System

As we indicated after (8.21), our choice of a wave equation (8.19) as a target system for
shear beam stabilization may seem counterintuitive.

n48 main
2008/4/7
page 93

�

�

�

�

�

�

�

�

8.1. Shear Beam 93

A reader may have concerns on two levels. First, mathematically, there seems to be a
loss of two derivatives in x, from four in the original plant and to two in the target system.
This is only a matter of appearance. Instead of the model (8.8) we use the representation
(8.9)–(8.12), which can be written as a PIDE with two derivatives in x,

εutt = uxx + b2u − b2 cosh(bx)u(0) + b3
∫ x

0
sinh(b(x − y))u(y) dy

−b sinh(bx)

cosh(b)

[
α(1) − b sinh(b)u(0) + b2

∫ 1

0
cosh(b(1 − y))u(y) dy

]
, (8.26)

ux(0) = 1

cosh(b)

[
α(1) − b sinh(b)u(0) + b2

∫ 1

0
cosh(b(1 − y))u(y) dy

]
. (8.27)

This is an explicit way of writing

εutt =
(

∂xx − 1

ε

)−1

uxxxx =
(

1 − 1

ε
∂−1
xx

)−1

uxx , (8.28)

which follows (8.8) and clearly displays a predominantly second-order character in x. When
viewed in this way, namely, as a complicated wave equation in the form of (8.26) with in-
tegral terms and u(0) terms, then the transformation into the “clean” wave equation format
(8.19), with the variable change (8.18), (8.22)–(8.24) and the boundary controls (8.15),
(8.25), is a perfectly natural choice. A reader’s second possible concern about the transfor-
mation of a beam into the wave equation (8.19) may be based on purely physical grounds,
i.e., that we may be forcing a rather rigid object (a beam) to act dynamically as a very
flexible object (a string). This concern is also just a matter of appearance. By observing
in (8.19) that ε is small, we realize that we are transforming our shear beam into a highly
tensioned string, which is a reasonable thing to do.

8.1.4 Simulation Results

In Figures 8.1 and 8.2 we present the simulation results for the beam with the designed
controller. From Figure 8.1 it is clear that our design for shear beam is very effective and
physically reasonable, despite being based on the wave equation as a target system. The
closed-loop damping performance is excellent, whereas the control effort, marked by the
motion of the “dot” on the right side of the domain (in the set of plots on the right side of the
figure) is very low. It is clear that the controller achieves excellent damping performance
by using good “timing” of the control inputs rather than by relying on a large magnitude of
the control inputs.

8.1.5 Extension to an Unstable Beam

The results in Figure 8.1 are actually for an unstable beam, which is being destabilized by a
“repulsive” force at the free end, modeled by a boundary condition ux(0) = α(0) − qu(0),
q > 0, instead of by (8.11). This is similar to the unstable wave equation example from
Exercise 7.3. The control applied is of the same form as (8.25), but the gain kernel is slightly
different, with an extra term −q in (8.23) and an extra term −qk(x, 0) in (8.24).

n48 main
2008/4/7
page 94

�

�

�

�

�

�

�

�

94 Chapter 8. Beam Equations

Uncontrolled Beam Controlled Beam

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [0, 0.4] t ∈ [0, 0.4]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [0.4, 1.5] t ∈ [0.4, 1.5]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [1.5, 2.1] t ∈ [1.5, 2.1]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [2.1, 2.8] t ∈ [2.1, 2.8]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [2.8, 3.6] t ∈ [2.8, 3.6]

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

t ∈ [3.6, 4.2] t ∈ [3.6, 4.2]

Figure 8.1. Snapshots of the shear beam movements with increasing shading
denoting increasing time in the sequences.

n48 main
2008/4/7
page 95

�

�

�

�

�

�

�

�

8.2. Euler–Bernoulli Beam 95

Control u (1, t)

0 1 2 3 4
−0.04

−0.02

0

0.02

0.04

time

Control α (1, t)

0 1 2 3 4

−0.02

0

0.02

0.04

time

Figure 8.2. The controls for the shear beam.

8.2 Euler–Bernoulli Beam
Consider the Euler–Bernoulli beam model

utt + uxxxx = 0 (8.29)

with boundary conditions
ux(0) = uxxx(0) = 0 , (8.30)

which correspond to a “sliding end.” We assume the following boundary conditions at
x = 1:

u(1) = U1, uxx(1) = U2 , (8.31)

where U1 and U2 are control inputs. The open-loop case U1 = U2 ≡ 0 corresponds to a
“pinned end.”

To start the control design for (8.29)–(8.31), we introduce a new complex variable

v = ut − juxx . (8.32)

The direct substitution shows that v defined in this way satisfies the Schrödinger equation
(6.1), (6.2). We can therefore apply the design (6.3)–(6.11) to the Euler–Bernoulli beam.

n48 main
2008/4/7
page 96

�

�

�

�

�

�

�

�

96 Chapter 8. Beam Equations

8.2.1 Gain Kernels

The gain kernel of the transformation (6.3) satisfies the PDE (6.8)–(6.10). Let

k(x, y) = r(x, y) + js(x, y) ; (8.33)

then we get two coupled PDEs for the gains r(x, y) and s(x, y):

rxx(x, y) = ryy(x, y) − cs(x, y) , (8.34)

ry(x, 0) = 0 , (8.35)

r(x, x) = 0 (8.36)

and

sxx(x, y) = syy(x, y) + cr(x, y) , (8.37)

sy(x, 0) = 0 , (8.38)

s(x, x) = − c

2
x . (8.39)

These PDEs can be decoupled into two fourth-order PDEs:

rxxxx(x, y) − 2rxxyy(x, y) + ryyyy(x, y) = −c2r(x, y) , (8.40)

ry(x, 0) = 0 , (8.41)

ryyy(x, 0) = 0 , (8.42)

r(x, x) = 0 , (8.43)

rxx(x, x) − ryy(x, x) = c2

2
x (8.44)

and

sxxxx(x, y) − 2sxxyy(x, y) + syyyy(x, y) = c2s , (8.45)

sy(x, 0) = 0 , (8.46)

syyy(x, 0) = 0 , (8.47)

s(x, x) = − c

2
x , (8.48)

sxx(x, x) − syy(x, x) = 0 . (8.49)

The solutions to these PDEs are obtained from the solution (6.11):

r(x, y) = x

√
c

2
(
x2 − y2

) [−ber1

(√
c
(
x2 − y2

)) − bei1

(√
c
(
x2 − y2

))]
, (8.50)

s(x, y) = x

√
c

2
(
x2 − y2

) [ber1

(√
c
(
x2 − y2

)) − bei1

(√
c
(
x2 − y2

))]
. (8.51)

n48 main
2008/4/7
page 97

�

�

�

�

�

�

�

�

8.2. Euler–Bernoulli Beam 97

8.2.2 Target System

Let us define

α(x) =
∫ 1

x

∫ y

0
Im {w(ξ)} dξdy , (8.52)

where w is the state of the target system (6.5)–(6.7) for the Schrödinger equation. Then it
is easy to verify that α satisfies the following fourth-order PDE:

αtt + 2cαt + c2α + αxxxx = 0 (8.53)

with boundary conditions

αx(0) = 0 , (8.54)

αxxx(0) = 0 , (8.55)

αxx(1) = 0 , (8.56)

α(1) = 0 . (8.57)

That this target system is exponentially stable is easily seen from the definition (8.52) and
the fact that (6.5)–(6.7) is exponentially stable. With a straightforward computation we
obtain the eigenvalues of (8.53)–(8.57):

σn = −c ± j
π2

4
(2n + 1)2 for n = 0, 1, 2, (8.58)

8.2.3 Transformation and Control Laws

From (8.52) and (6.5)–(6.7), it follows that the state w is expressed through α in the following
way:

w = αt + cα − jαxx . (8.59)

The transformation (6.3) becomes

αt(x) + cα(x) = ut (x) −
∫ x

0
r(x, y)ut (y) dy −

∫ x

0
s(x, y)uxx(y) dy , (8.60)

αxx(x) = uxx(x) +
∫ x

0
s(x, y)ut (y) dy −

∫ x

0
r(x, y)uxx(y) dy . (8.61)

The controls are obtained by setting x = 1 in (8.60), (8.61):

ut (1) =
∫ 1

0
r(1, y)ut (y) dy +

∫ 1

0
s(1, y)uxx(y) dy , (8.62)

uxx(1) = −
∫ 1

0
s(1, y)ut (y) dy +

∫ 1

0
r(1, y)uxx(y) dy . (8.63)

Note that the feedback (8.62) would be implemented as integral, not proportional, control.
Another observation we make is that even though the state α exponentially converges to

n48 main
2008/4/7
page 98

�

�

�

�

�

�

�

�

98 Chapter 8. Beam Equations

zero, the same cannot be said about u. This is easy to see from (8.32): when v converges
to zero, u may converge to an arbitrary constant.

Summarizing, we see that the direct application of the control design for the Schrö-
dinger equation to the Euler–Bernoulli beam model results in control laws (8.62), (8.63)
that guarantee the stabilization of the beam to a constant profile. This may be useful when
the control objective is to suppress oscillations, without necessarily bringing the beam to
the zero position.

8.2.4 Control Law That Guarantees Regulation to Zero

To achieve regulation to zero, we are going to modify the control law (8.62). Our objective
is to express uxx in (8.62) through the time derivatives ut and utt .

We start by twice integrating the beam PDE (8.29) with respect to x, first from 0 to
x, and then from x to 1. We get

uxx(x) = uxx(1) +
∫ 1

x

∫ y

0
utt (ξ) dξ dy . (8.64)

Using the expression (8.63) for the control uxx(1), we get

uxx(x) = −
∫ 1

0
s(1, y)ut (y) dy +

∫ 1

0
r(1, y)uxx(y) dy +

∫ 1

x

∫ y

0
utt (ξ) dξ dy . (8.65)

Our objective is to express the second term in (8.65) through the terms with time derivatives.
Let us multiply (8.65) by r(1, x) and integrate from 0 to 1. We have∫ 1

0
r(1, y)uxx(y) dy = −

∫ 1

0
r(1, y) dy

[∫ 1

0
s(1, y)ut (y) dy −

∫ 1

0
r(1, y)uxx(y) dy

]

+
∫ 1

0
r(1, y)

∫ 1

y

∫ z

0
utt (ξ, t) dξ dz dy . (8.66)

Therefore,∫ 1

0
r(1, y)uxx(y) dy

= γr − 1

γr

∫ 1

0
s(1, y)ut (y) dy + 1

γr

∫ 1

0
r(1, y)

∫ 1

y

∫ z

0
utt (ξ) dξ dz dy

= γr − 1

γr

∫ 1

0
s(1, y)ut (y) dy − 1

γr

∫ 1

0
(R(1, y) − (1 − γr)(1 − y)) utt (y) dy, (8.67)

where we denote

R(x, y) =
∫ x

y

r(x, ξ)(ξ − y) dξ , (8.68)

γr = 1 −
∫ 1

0
r(1, y) dy = cosh

(√
c

2

)
cos

(√
c

2

)
. (8.69)

n48 main
2008/4/7
page 99

�

�

�

�

�

�

�

�

8.2. Euler–Bernoulli Beam 99

Substituting (8.67) into (8.65), after several simplifications and integrations by parts, we
get

uxx(x) = − 1

γr

∫ 1

0
s(1, y)ut (y) dy − 1

γr

∫ 1

0
(R(1, y) − (1 − γ1)(1 − y)) utt (y) dy

+
∫ 1

x

∫ y

0
utt (ξ) dξ dy . (8.70)

Substituting (8.70) into (8.62) and noting that (after several integrations by parts)

∫ x

0
s(x, y)

∫ 1

y

∫ z

0
utt (ξ) dξ dz dy = −γ (x)

∫ 1

0
(1 − y)utt (y) dy −

∫ x

0
S(x, y)utt (y) dy ,

where

S(x, y) =
∫ x

y

s(x, ξ)(ξ − y) dξ , (8.71)

γ (x) = −
∫ x

0
s(x, y) dy = sinh

(√
c

2
x

)
sin

(√
c

2
x

)
, (8.72)

we finally obtain the following representation of (8.62):

ut (1) =
∫ 1

0

(
r(1, y) + γ (1)

γr

s(1, y)

)
ut (y) dy

−
∫ 1

0

[
S(1, y) + γ (1)

γr

(1 − y − R(1, y))

]
utt (y) dy . (8.73)

We now integrate (8.73) with respect to time to get the controller

u(1) =
∫ 1

0

(
r(1, y) + γ (1)

γr

s(1, y)

)
u(y) dy

−
∫ 1

0

[
S(1, y) + γ (1)

γr

(1 − y − R(1, y))

]
ut (y) dy . (8.74)

The other controller (8.61) can also be represented in terms of u and ut as follows:

uxx(1) = −
∫ 1

0
s(1, y)ut (y) dy + c2

8
u(1) +

∫ 1

0
ryy(1, y)u(y) dy . (8.75)

The control gains in (8.74) involve a division by γr , which may become zero for certain
values of c. Therefore, c should satisfy the condition

c �= π2

2
(2n + 1)2, n = 0, 1, 2, . . . , (8.76)

which is easily achieved because c is the designer’s choice.

n48 main
2008/4/7
page 100

�

�

�

�

�

�

�

�

100 Chapter 8. Beam Equations

8.2.5 Explicit Form of Transformation

To find out what the actual transformation from u to α is, we start with the definition (8.52)
and note that

Im {w(x)} = Im

{
v(x) −

∫ x

0
k(x, y)v(y) dy

}

= −uxx(x) +
∫ x

0
r(x, y)uxx(y) dy −

∫ x

0
s(x, y)ut (y) dy . (8.77)

We get

α(x) = u(x) − u(1) +
∫ 1

x

∫ y

0

∫ z

0
r(z, ξ)uxx(ξ) dξdzdy

−
∫ 1

x

∫ y

0

∫ z

0
s(z, ξ)ut (ξ) dξdzdy . (8.78)

Integrating by parts the term with uxx and changing the order of integration in both integral
terms, we obtain

α(x) = u(x) −
∫ x

0

(
r(x, y) + cS̄(x, y)

)
u(y) dy −

∫ x

0
S̄(x, y)ut (y) dy

− u(1) +
∫ 1

0

(
r(1, y) + cS̄(1, y)

)
u(y) dy +

∫ 1

0
S̄(1, y)ut (y) dy , (8.79)

where

S̄(x, y) =
∫ x

y

(x − ξ)s(ξ, y) dξ . (8.80)

Then, by substituting (8.74) into (8.79), we obtain the final form of the transformation:

α(x) = u(x)

−
∫ x

0

(
r(x, y) + cS̄(x, y)

)
u(y) dy

+
∫ 1

0

(
cS̄(1, y) − γ (1)

γr

s(1, y)

)
u(y) dy

−
∫ x

0
S̄(x, y)ut (y) dy

+
∫ 1

0

[
S̄(1, y) + S(1, y) + γ (1)

γr

(1 − y − R(1, y))

]
ut (y) dy . (8.81)

Note that (8.81) is a novel type of transformation in this book—it is not of a strict-feedback
form. It contains both spatially causal (Volterra) integrals and full-domain (Fredholm)
integrals.

n48 main
2008/4/7
page 101

�

�

�

�

�

�

�

�

8.3. Notes and References 101

8.2.6 Convergence to a Zero Steady State

To show that (8.74), together with (8.75), stabilizes the plant to zero without computing the
inverse transformation of (8.81), we first determine from (8.32) that ut and uxx converge
to zero. Since ux(0) = 0, this implies that u converges to a constant. Let us show that this
constant is zero. Suppose u(x, t) ≡ A; then from (8.74) we get

0 = A

(
1 −

∫ 1

0

(
r(1, y) + γ (1)

γr

s(1, y)

)
dy

)
. (8.82)

Computing the integral on the right-hand side of (8.82), we obtain

0 = A

γr

([cosh(a) cos(a)]2 + [sinh(a) sin(a)]2
)

, (8.83)

where a = √
c/2. Using the identity sinh(a)2 = cosh(a)2 − 1, we can write (8.83) in the

form

0 = A

γr

(
cosh(a)2 − sin(a)2

)
. (8.84)

Since cosh(a)2 − sin(a)2 > 1 for all c > 0, and γr �= 0, we get A = 0.

8.2.7 Simulation Results

We present our simulation results by first summarizing the control law for the Euler–
Bernoulli beam in Table 8.1. The gain functions r(x, y) and s(x, y) are shown in Figure 8.3.
The results of numerical simulation are presented in Figures 8.4–8.6. The design parameter
c was set to c = 5. In Figure 8.4 we can see the oscillations of the uncontrolled beam.
With control, the beam is quickly brought to the zero equilibrium (Figure 8.5). The controls
u(1, t) and uxx(1, t) are shown in Figure 8.6. Note that the control effort is small (the
maximum displacement of the controlled end is five times less than the initial displacement
of the tip).

8.3 Notes and References
We highly recommend the survey on modeling of beams in [68]. As for control of beams,
particularly those of Euler–Bernoulli type, comprehensive coverage of the topic is provided
in the book of Luo, Guo, and Morgul [122].

The design for the shear beam in Section 8.1 was developed for the case of a free-end
boundary condition at x = 0, but it can be extended to any other kind of a boundary condition
(clamped, hinged, sliding) and even to the case of a destabilizing boundary condition (details
are given in [96]).

The design for the Euler–Bernoulli beam in Section 8.2 is developed for a sliding-end
boundary condition, ux(0) = uxxx(0) = 0. This design can also be extended to the case
of a hinged boundary condition u(0) = uxx(0) = 0. However, it is not clear at this point
how to extend the design to the more basic cases of boundary conditions such as free-end

n48 main
2008/4/7
page 102

�

�

�

�

�

�

�

�

102 Chapter 8. Beam Equations

Table 8.1. Control law for Euler–Bernoulli beam.

Plant:

utt + uxxxx = 0 , (8.85)

ux(0) = 0 , (8.86)

uxxx(0) = 0 . (8.87)

Controller:

u(1) =
∫ 1

0

(
r(1, y) + γ (1)

γr

s(1, y)

)
u(y) dy ,

−
∫ 1

0

[
S(1, y) + γ (1)

γr

(1 − y − R(1, y))

]
ut (y) dy , (8.88)

uxx(1) = c2

8
u(1) +

∫ 1

0
ryy(1, y)u(y) dy ,

−
∫ 1

0
s(1, y)ut (y) dy . (8.89)

Gains:

r(x, y) = x

√
c

2
(
x2 − y2

) [−ber1

(√
c
(
x2 − y2

)) − bei1

(√
c
(
x2 − y2

))]
,

(8.90)

s(x, y) = x

√
c

2
(
x2 − y2

) [ber1

(√
c
(
x2 − y2

)) − bei1

(√
c
(
x2 − y2

))]
,

(8.91)

R(x, y) =
∫ x

y

r(x, ξ)(ξ − y) dξ , (8.92)

S(x, y) =
∫ x

y

s(x, ξ)(ξ − y) dξ , (8.93)

γr = cosh

(√
c

2

)
cos

(√
c

2

)
, (8.94)

γ (x) = sinh

(√
c

2
x

)
sin

(√
c

2
x

)
. (8.95)

and clamped. Nevertheless, it is possible to extend the design to a particular type of a
destabilizing boundary condition at x = 0, as discussed in Exercise 8.3.

The control results in Figure 8.1 are obtained with observer-based feedback, where
an observer state û(y, t), ût (y, t) is used on the right-hand side of the control law (8.25).

n48 main
2008/4/7
page 103

�

�

�

�

�

�

�

�

8.3. Notes and References 103

0

0.5

1

0
0.5

1
0

1

2

x y

) y , x (r

0
0.5

1 0
0.5

1
−2.5

−2

−1.5

−1

−0.5

0

y x

) y , x (s

Figure 8.3. The gain functions r(x, y) and s(x, y) for c = 5.

We are not presenting the observer in this introductory book. Its design follows the ideas
in Chapter 5 and is presented in [96].

The backstepping design can also be developed for the Timoshenko beam model. The
Timoshenko model is given as

εutt = (1 + d∂t)(uxx − θx) , (8.96)

μεθtt = (1 + d∂t)(εθxx + a(ux − θ)) , (8.97)

whereu(x, t)denotes the displacement and θ(x, t)denotes the deflection angle. The positive
constants a and μ are proportional to the nondimensional cross-sectional area, and the
nondimensional moment of inertia of the beam, respectively. The parameter ε is inversely
proportional to the nondimensional shear modulus of the beam. The coefficient d denotes
the possible presence of Kelvin–Voigt damping. The Timoshenko beam can come with

n48 main
2008/4/7
page 104

�

�

�

�

�

�

�

�

104 Chapter 8. Beam Equations

0

0.5

1 0
2

4
6

8

−0.2

−0.1

0

0.1

0.2

t
x

u

Figure 8.4. Open-loop response of the Euler–Bernoulli beam.

0

0.5

1 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

t

x

u

Figure 8.5. Closed-loop response of the Euler–Bernoulli beam.

any of the four basic types of boundary conditions. The free-end boundary condition is
defined as

ux(0, t) = θ(0, t) , (8.98)

θx(0, t) = 0 . (8.99)

The meaning of the first equation is that zero force is being applied at the tip, whereas the
meaning of the second equation is that zero moment is being applied at the tip. The relation
between the Timoshenko beam and the shear beam is that the shear beam is a singular
perturbation of the Timoshenko beam as μ → 0. Unlike the Euler–Bernoulli, shear, and
Rayleigh beam models, which are second order in the time variable t , the Timoshenko beam

n48 main
2008/4/7
page 105

�

�

�

�

�

�

�

�

Exercises 105

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

t

u(1, t)

0.1uxx(1, t)

Figure 8.6. Controls u(1, t) (solid line) and uxx(1, t) (dashed line) for the Euler–
Bernoulli beam.

is fourth order in t . A backstepping boundary control design applied to the most complex
beam model, the Timoshenko model, is presented in [99, 100].

Exercises
8.1. Derive the shear beam model

utt − εuxxtt + uxxxx = 0

from the alternative model

εutt = uxx − αx ,

0 = εαxx − α + ux .

8.2. Show that

α(x) = cosh(bx)α(0) − b

∫ x

0
sinh(b(x − y))uy(y) dy

is a solution of the equation

αxx − b2α + b2ux = 0

with the initial condition αx(0) = 0.

8.3. Consider the Euler–Bernoulli beam model

utt + uxxxx = 0

n48 main
2008/4/7
page 106

�

�

�

�

�

�

�

�

106 Chapter 8. Beam Equations

with a destabilizing boundary condition at the tip given by

uxx(0) = − 1

q
uxt (0) ,

uxxx(0) = qut (0) ,

where q > 0. Show that the transformation

α(x) = u(x) + (c0 + q)

[
1 − cos(qx)

q
u(0) − sin(qx)

q2
ux(0)

−
∫ x

0
sin(q(x − y))u(y) dy +

∫ x

0

cos(q(x − y)) − 1

q2
ut (y) dy

]

along with the controls

uxx(1) = (c0 + q)

[
qu(1) − q cos(q)u(0) − sin(q)ux(0)

−q2
∫ 1

0
sin(q(1 − y))u(y) dy +

∫ 1

0
cos(q(1 − y))ut (y) dy

]
,

u(1) = (c0 + q)

[
cos(q) − 1

q
u(0) + sin(q)

q2
ux(0)

+
∫ 1

0
sin(q(1 − y))u(y) dy −

∫ 1

0

cos(q(1 − y)) − 1

q2
ut (y) dy

]

with c0 > 0 converts the beam into the target system

αtt + αxxxx = 0 ,

αxx(0) = 1

c0
αxt (0) ,

αxxx(0) = −c0αt(0) ,

αxx(1) = 0 ,

α(1) = 0 .

Note that the gain kernels of the control laws are periodic functions of y, whose
frequency grows with the increase of the “instability parameter” q.
Hint: Guided by the Schrödinger equation in Exercise 6.2, introduce

v = ut − juxx ,

w = αt − jαxx

n48 main
2008/4/7
page 107

�

�

�

�

�

�

�

�

Exercises 107

and consider the change of variable (6.72). Show that the transformation satisfies

αt(x) = ut (x) −
∫ x

0
(c0 + q) sin(q(x − y))ut (y) dy

+
∫ x

0
(c0 + q) cos(q(x − y))uxx(y) dy , (8.100)

αxx(x) = uxx(x) −
∫ x

0
(c0 + q) cos(q(x − y))ut (y) dy

−
∫ x

0
(c0 + q) sin(q(x − y))uxx(y) dy . (8.101)

Integrate by parts the second integral in (8.100) to get uxxxx under the integral sign.
Use the plant and the boundary conditions to express all the terms on the right-hand
side of (8.100) through the terms with time derivatives. Integrate the result with
respect to time.

8.4. Consider the plant from Exercise 8.3 for q = 0:

utt + uxxxx = 0 , (8.102)

uxt (0) = 0 , (8.103)

uxxx(0) = 0 . (8.104)

(a) Show that the transformation

α(x) = u(x) − c0

2

∫ x

0
(x − y)2ut (y) dy + c0x

∫ 1

0
(1 − y)ut (y) dy

+ c2
0x

∫ 1

0
u(y) dy (8.105)

along with the controls

u(1) = −c0

2

∫ 1

0
(1 − y2)ut (y) dy − c2

0

∫ 1

0
u(y) dy (8.106)

uxx(1) = c0

∫ 1

0
ut (y) dy (8.107)

maps (8.102)–(8.104) into the target system

αtt + αxxxx = 0 ,

αxx(0) = 1

c0
αxt (0) ,

αxxx(0) = −c0αt(0) ,

αxx(1) = 0 ,

α(1) = 0 .

n48 main
2008/4/7
page 108

�

�

�

�

�

�

�

�

108 Chapter 8. Beam Equations

Hint: Start by showing that (8.105), together with (8.106) and (8.107), gives

αt(x) = ut (x) + c0

∫ x

0
uxx(y) dy , (8.108)

αxx(x) = uxx(x) − c0

∫ x

0
ut (y) dy . (8.109)

(b) Show that the inverse transformation

u(x) = α(x) − c0

∫ x

0
sin(c0(x − y))α(y) dy − (c0 sin(c0x) + cos(c0x) − 1) α(0)

+ 1

c0

∫ x

0
[1 − cos(c0(x − y))]αt(y) dy − sin(c0x)

∫ 1

0
(1 − y)αt (y) dy

satisfies

ut (x) = αt(x) − c0

∫ x

0
sin(c0(x − y))αt (y) dy

− c0

∫ x

0
cos(c0(x − y))αxx(y) dy ,

uxx(x) = αxx(x) + c0

∫ x

0
cos(c0(x − y))αt (y) dy

− c0

∫ x

0
sin(c0(c − y))αxx(y) dy .

n48 main
2008/4/7
page 109

�

�

�

�

�

�

�

�

Chapter 9

First-Order Hyperbolic
PDEs and Delay Equations

In the previous two chapters we considered hyperbolic PDEs of second order that usually
describe oscillatory systems such as strings and beams. We now turn our attention to the
first-order hyperbolic equations. They describe quite a different set of physical problems,
such as chemical reactors, heat exchangers, and traffic flows. They can also serve as models
for delays.

9.1 First-Order Hyperbolic PDEs
The general first-order hyperbolic equation that can be handled by the backstepping method
is

ut = ux + g(x)u(0) +
∫ x

0
f (x, y)u(y)dy , (9.1)

u(1) = control . (9.2)

Unlike in second-order PDEs, here we specify only one boundary condition. For g or f

positive and large, this system (with zero boundary condition at x = 1) can become unstable.
Following our general procedure, we use the transformation

w(x) = u(x) −
∫ x

0
k(x, y)u(y)dy (9.3)

to convert (9.1) into the target system

wt = wx , (9.4)

w(1) = 0 . (9.5)

This system is a delay line with unit delay, output w(0, t) = w(1, t − 1), and zero input at
w(1, t), akin to traffic flow over a stretch of road on which no additional cars are permitted
to enter after t = 0. Its solution is

w(x, t) =
{

w0(t + x) 0 ≤ t + x < 1 ,

0 t + x ≥ 1 ,
(9.6)

109

n48 main
2008/4/7
page 110

�

�

�

�

�

�

�

�

110 Chapter 9. First-Order Hyperbolic PDEs and Delay Equations

where w0(x) is the initial condition. We see that this solution becomes zero in finite time.
One can derive the following kernel PDE from (9.1)–(9.5):

kx(x, y) + ky(x, y) =
∫ x

y

k(x, ξ)f (ξ, y)dξ − f (x, y) , (9.7)

k(x, 0) =
∫ x

0
k(x, y)g(y)dy − g(x) . (9.8)

This is a well posed equation, and after its solution is found, the controller, as before, is
given by

u(1) =
∫ 1

0
k(1, y)u(y) dy . (9.9)

Example 9.1 Consider the plant

ut = ux + gebxu(0) , (9.10)

where g and b are constants. In this case, equation (9.7) becomes

kx + ky = 0 , (9.11)

which has a general solution k(x, y) = φ(x − y). If we plug this solution into (9.8), we get
the integral equation

φ(x) =
∫ x

0
gebyφ(x − y)dy − gebx . (9.12)

The solution to this equation can be easily obtained by applying the Laplace transform in x:

φ(s) = − g

s − b − g
, (9.13)

and after taking the inverse Laplace transform, φ(x) = −ge(b+g)x . Therefore, the solution
to the kernel PDE is k(x, y) = −ge(b+g)(x−y) and the controller is given by (9.9). �

Example 9.2 Consider the plant

ut = ux +
∫ x

0
f eb(x−y)u(y) dy , (9.14)

where f and b are constants. The kernel PDE takes the form

kx + ky =
∫ x

y

k(x, ξ)f eb(ξ−y)dξ − f eb(x−y) , (9.15)

k(x, 0) = 0 . (9.16)

After we differentiate (9.15) with respect to y, the integral term is eliminated:

kxy + kyy = −f k − bkx − bky . (9.17)

n48 main
2008/4/7
page 111

�

�

�

�

�

�

�

�

9.2. ODE Systems with Actuator Delay 111

Since we now increased the order of the equation, we need an extra boundary condition.
We get it by setting y = x in (9.15):

d

dx
k(x, x) = kx(x, x) + ky(x, x) = −f, (9.18)

which, after integration, becomes k(x, x) = −f x.
Introducing the change of variables

k(x, y) = p(z, y)eb(z−y)/2, z = 2x − y , (9.19)

we get the following PDE for p(z, y):

pzz(z, y) − pyy(z, y) = fp(z, y) , (9.20)

p(z, 0) = 0 , (9.21)

p(z, z) = −f z . (9.22)

This PDE has been solved in Chapter 4. We get

p(z, y) = −2fy
I1

(√
f (z2 − y2)

)
√

f (z2 − y2)
(9.23)

or, in the original variables,

k(x, y) = −f eb(x−y)y
I1
(
2
√

f x(x − y)
)

√
f x(x − y)

, (9.24)

and the Dirichlet controller is given by (9.9). �

9.2 ODE Systems with Actuator Delay
Consider a linear finite-dimensional system with the actuator delay

Ẋ = AX + BU(t − D) , (9.25)

where (A, B) is a controllable pair and the input signal U(t) is delayed by D units of time.
Because of the delay, the problem is infinite-dimensional, and this is where PDEs come into
play. The following first-order hyperbolic PDE serves as a model for the delay:

ut = ux , (9.26)

u(D, t) = U(t) . (9.27)

The solution to this equation is u(x, t) = U(t + x − D), and therefore the output u(0, t) =
U(t − D) gives the delayed input. The system (9.25) can be now written as

Ẋ = AX + Bu(0, t). (9.28)

n48 main
2008/4/7
page 112

�

�

�

�

�

�

�

�

112 Chapter 9. First-Order Hyperbolic PDEs and Delay Equations

e−sD Ẋ = AX + BU(t − D)
X(t)U(t − D)U(t)

u(D, t) u(0, t)

x

1 0

direction of convection

Figure 9.1. Linear system Ẋ = AX + BU(t − D) with actuator delay D.

The equations (9.26)–(9.28) form an ODE–PDE cascade which is driven by the input U

from the boundary of the PDE (Figure 9.1).
Suppose a static state-feedback control has been designed for a system with no delay

(i.e., with D = 0) such that U = KX is a stabilizing controller, i.e., the matrix (A + BK)

is Hurwitz. When D �= 0, we choose the target system as follows:

Ẋ = (A + BK)X + Bw(0) , (9.29)

wt = wx , (9.30)

w(D) = 0 . (9.31)

This choice of the target system is natural: w becomes zero in finite time, and after that the
ODE (9.29) is guaranteed to be exponentially stable by the nominal design.

To map (9.26)–(9.28) into (9.29)–(9.31), consider the backstepping transformation

w(x) = u(x) −
∫ x

0
q(x, y)u(y)dy − γ (x)T X , (9.32)

where q(x, y) and γ (x) are to be designed. As usual, let us calculate the time and spatial
derivatives of the transformation (9.32):

wx = ux − q(x, x)u(x) −
∫ x

0
qx(x, y)u(y)dy − γ ′(x)T X , (9.33)

wt = ut −
∫ x

0
q(x, y)ut (y)dy − γ (x)T [AX + Bu(0)]

= ux − q(x, x)u(x) + q(x, 0)u(0) −
∫ x

0
qx(x, y)u(y)dy

−γ (x)T [AX + Bu(0)] . (9.34)

Subtracting (9.33) from (9.34), we get

∫ x

0
(qx(x, y) + qy(x, y))u(y)dy + [

q(x, 0) − γ (x)T B
]
u(0)

+ [
γ ′(x)T − γ (x)T A

]
X = 0 . (9.35)

n48 main
2008/4/7
page 113

�

�

�

�

�

�

�

�

9.3. Notes and References 113

This equation must be verified for all u and X, so we have three conditions:

qx(x, y) + qy(x, y) = 0 , (9.36)

q(x, 0) = γ (x)T B , (9.37)

γ ′(x) = AT γ (x) . (9.38)

The first two conditions form a familiar first-order hyperbolic PDE, and the third one is an
ODE. To find the initial condition for this ODE, let us set x = 0 in (9.32), which gives
w(0) = u(0) − γ (0)T X. Substituting this expression into (9.29), we get

Ẋ = AX + Bu(0) + B
(
K − γ (0)T

)
X . (9.39)

Comparing this equation with (9.28), we have γ (0) = KT . Therefore the solution to the
ODE (9.38) is γ (x) = eAT xKT , which gives

γ (x)T = KeAx . (9.40)

A general solution to (9.36) is q(x, y) = φ(x−y), where the function φ is determined
from (9.37). We get

q(x, y) = KeA(x−y)B . (9.41)

We can now substitute the gains γ (x) and q(x, y) into the transformation (9.32) and
set x = D to get the control law:

u(D) = K

∫ D

0
eA(D−y)Bu(y)dy + KeADX . (9.42)

The above controller is given in terms of the transport delay state u(y). Using (9.26)–(9.27),
one can also derive the representation in terms of the input signal U(t):

U(t) = K

[
eADX +

∫ t

t−D

eA(t−θ)BU(θ)dθ

]
. (9.43)

Notice that this is an infinite-dimensional controller.
Using the same approach as in Chapter 5, one can also design observers for ODEs

with sensor delay; see Exercises 9.2 and 9.3.

9.3 Notes and References
The controller (9.43) is the analog of the Smith Predictor (1957) extended to unstable plants
and was first derived in 1978–1982 [102], [126], [6]. The derivation in these references is
very different and employs a transformation of the ODE state rather than the delay state.
As a result, the analysis in these references establishes convergence of the state to zero or
eigenspectrum properties of the closed-loop system but does not actually capture stability
of the entire ODE + delay system (in the sense of the effect of initial conditions, decay rate,
and overshoot) as does (9.29)–(9.31). The backstepping procedure outlined in this chapter
is more general and is applicable, for example, to parabolic PDEs with actuator and sensor
delays, which is a subject of current research.

n48 main
2008/4/7
page 114

�

�

�

�

�

�

�

�

114 Chapter 9. First-Order Hyperbolic PDEs and Delay Equations

Exercises
9.1. Derive the kernel PDE (9.7)–(9.8).

Hint: use the formula∫ x

0

∫ ξ

0
k(x, ξ)f (ξ, y)u(y) dy dξ =

∫ x

0

∫ x

y

k(x, ξ)f (ξ, y)u(y) dξ dy .

9.2. Consider the system

Ẋ = AX ,

Y (t) = CX(t − D) ,

where the output equation can be also represented as

ut = ux ,

u(D, t) = CX(t) ,

Y (t) = u(0, t) .

Introduce the observer
˙̂
X = AX̂ + eADL

(
Y (t) − û(0, t)

)
,

ût = ûx + CeAxL
(
Y (t) − û(0, t)

)
,

û(D, t) = CX̂(t) ,

where L is chosen such that A − LC is Hurwitz. Show that the transformation

w̃(x) = ũ(x) − CeA(x−D)X̃ ,

where X̃ = X − X̂, ũ = u − û, converts the (X̃, ũ) system into

˙̃
X = (

A − eADLCe−AD
)
X̃ − eADLw̃(0) ,

w̃t = w̃x ,

w̃(D) = 0 .

Note that the w̃ system is exponentially stable and that the matrix A − eADLCe−AD

is Hurwitz (you can see this by using a similarity transformation eAD and using the
fact that it commutes with A).

9.3. Show that the observer in Exercise 9.2 can be represented as

˙̂
X = AX̂ + eADL(Y − Ŷ) ,

Ŷ (t) = CX̂(t − D) + C

∫ t

t−D

eA(t−θ)L(Y (θ) − Ŷ (θ)) dθ .

Hint: Take a Laplace transform of the û(x, t) system with respect to t ; solve the
resulting first-order ODE w.r.t. x with û(0, s) = Ŷ (s) as initial condition and Y (s)−
Ŷ (s) as input; evaluate the solution at x = D and substitute û(D, s) = CX̂(s); take
the inverse Laplace transform; obtain the delayed versions of X̂(t) and Y (t) − Ŷ (t);
shift the integration variable to obtain

∫ t

t−D
.

n48 main
2008/4/7
page 115

�

�

�

�

�

�

�

�

Chapter 10

Kuramoto–Sivashinsky,
Korteweg–de Vries, and
Other “Exotic” Equations

Two equations that are popular in the research communities studying chaos, strange attrac-
tors in PDEs, and soliton waves are the Kuramoto–Sivashinsky and Korteweg–de Vries
equations. The former is frequently used as a model of flamefront instabilities and thin
film growth instabilities, whereas the latter is used as a model of shallow water waves and
ion-acoustic waves in plasmas.

The Kuramoto–Sivashinsky equation is

ωt + δωxxxx + λωxx + ωxω = 0 , (10.1)

whereas the Korteweg–de Vries equation is

ωt + δωxxx + λωx + ωxω = 0 , (10.2)

where δ is positive and λ can be either sign. Even after we linearize these two equations by
dropping the quadratic convective terms ωxω, these equations represent challenging control
problems. In addition to linearizing them, we are going to add a new effect/term to these
equations, which will make them easily tractable using the backstepping ideas introduced
in Chapters 4, 8, and 9. We will consider a “Kuramoto–Sivashinsky-like” linear PDE

ut − νutxx + δuxxxx + λuxx = 0 , (10.3)

and a “Korteweg–de Vries-like” linear PDE

ut − νutxx + δuxxx + λux = 0 , (10.4)

where ν > 0. When ν is small, these systems behave almost the same as the respective
linearized Kuramoto–Sivashinsky and Korteweg–de Vries equations and can be unstable
when λ/δ is positive and large. Let us denote the following new constants:

a = 1

δ
, ε = ν

δ
, γ = 1 + ελ . (10.5)

Then we can write (10.3) as

εut = uxx − vx , (10.6)

0 = εvxx + a(−v + γ ux) (10.7)

115

n48 main
2008/4/7
page 116

�

�

�

�

�

�

�

�

116 Kuramoto–Sivashinsky and Other “Exotic” Equations

and (10.4) as

εut = ux − v , (10.8)

0 = εvxx + a(−v + γ ux) . (10.9)

One should note a striking similarity between these equations and the shear beam model
(8.9), (8.10). Furthermore, for simplicity we adopt the same boundary conditions (8.11),
(8.12) for (10.6), (10.7), namely,

ux(0) = v(0) , (10.10)

vx(0) = 0 , (10.11)

whereas for system (10.8), (10.9), which is one order lower, we need one less boundary
condition at x = 0, and thus we adopt

vx(0) = 0 . (10.12)

In the next two sections we present control designs for the above systems (10.6), (10.7),
(10.10), (10.11) and (10.8), (10.9), (10.12), assuming two Dirichlet inputs v(1), u(1) for
both systems.

10.1 Kuramoto–Sivashinsky Equation
The solution to (10.7), (10.11) is given by

v(x) = cosh(bx)v(0) − γ b

∫ x

0
sinh(b(x − y))uy(y) dy , (10.13)

where

b =
√

a

ε
. (10.14)

The first control

v(1) = γ b

(
sinh(b)u(0) − b

∫ 1

0
cosh(b(1 − y))u(y) dy

)
(10.15)

guarantees that
v(0) = 0 (10.16)

and transforms (10.6), (10.7), (10.10) into the form

εut = uxx + γ

(
b2u − b2 cosh(bx)u(0) + b3

∫ x

0
sinh(b(x − y))u(y) dy

)
, (10.17)

ux(0) = 0 . (10.18)

Taking a feedback transformation

w(x) = u(x) −
∫ x

0
k(x, y)u(y) dy (10.19)

n48 main
2008/4/7
page 117

�

�

�

�

�

�

�

�

10.2. Korteweg–de Vries Equation 117

and second control

u(1) =
∫ 1

0
k(1, y)u(y) dy (10.20)

with a k(x, y) that satisfies

kxx − kyy = γ b2

(
k + b sinh(b(x − y)) − b

∫ x

y

k(x, ξ) sinh(b(ξ − y)) dξ

)
, (10.21)

ky(x, 0) = γ b2

(∫ x

0
k(x, y) cosh(by) dy − cosh(bx)

)
, (10.22)

k(x, x) = −γ b2

2
x , (10.23)

we convert (10.17), (10.18), (10.20) into the exponentially stable heat equation

εwt = wxx , (10.24)

wx(0) = 0 , (10.25)

w(1) = 0 . (10.26)

The entire calculation (10.17)–(10.26) is a straightforward application of the backstepping
design in Section 4.9.

10.2 Korteweg–de Vries Equation
Since (10.7) and (10.9) are the same and (10.11) and (10.12) are the same, we start with the
transformation (10.13) and first control (10.15), which transform the system (10.8), (10.9)
into the system

εut = ux − γ b

(
sinh(bx)u(0) − b

∫ x

0
cosh(b(x − y))u(y) dy

)
. (10.27)

The feedback transformation (10.19), (10.20) with k(x, y) satisfying

kx + ky = −γ b2

(∫ x

y

k(x, ξ) cosh(b(ξ − y)) dξ + cosh(b(x − y))

)
, (10.28)

k(x, 0) = γ b

(
−
∫ x

0
k(x, y) sinh(by) dy + sinh(bx)

)
(10.29)

converts (10.27), (10.20) into the exponentially stable transport equation

εwt = wx , (10.30)

w(1) = 0 . (10.31)

This result is a direct consequence of the design for first-order hyperbolic equations in
Section 9.1.

n48 main
2008/4/7
page 118

�

�

�

�

�

�

�

�

118 Kuramoto–Sivashinsky and Other “Exotic” Equations

10.3 Notes and References
Kuramoto–Sivashinsky and Korteweg–de Vries equations are rich topics for control re-
search. Nonlinear boundary control of these equations (under some parametric restrictions)
was considered in [115, 117, 10], where an abundance of other references is also provided,
particularly on the analysis of these nonlinear PDEs.

Besides being related to the Korteweg–de Vries PDE, equation (10.4) also can be
obtained as an approximation of the linearized Boussinesq PDE system modeling complex
water waves such as tidal bores [57].

Exercises
10.1. Derive (10.3) from (10.6), (10.7).

10.2. Derive (10.4) from (10.8), (10.9).

n48 main
2008/4/7
page 119

�

�

�

�

�

�

�

�

Chapter 11

Navier–Stokes Equations

Navier–Stokes equations, which model turbulent fluid flows, are among the most exciting
problems in applied mathematics and arguably are the most challenging problem in classical
mechanics. Control of turbulent fluid flows is an active area of current research, with many
problems being considered and many methods being developed. In this chapter we will
illustrate the methods we have developed in the previous chapters by applying them to
linearized Navier–Stokes equations in a 3D “channel flow” geometry.

11.1 Channel Flow PDEs and Their Linearization
We consider incompressible, nondimensionalized Navier–Stokes equations:

ut = 1

Re
∇2u − u · ∇u − ∇p , (11.1)

∇ · u = 0 , (11.2)

where u is the velocity vector, p is the pressure, Re is the Reynolds number, and ∇ denotes
the gradient. Equation (11.1) shows that, as the velocities develop, they are affected not
only by a diffusion term ∇2u, an advective term u · ∇u but also by the pressure gradient
∇p. Equation (11.2) imposes an algebraic constraint on the system and comes from the
continuity equation and the incompressible flow constraint.

We shall study the flow in a channel that is infinite in the x and z directions, is bounded
at y = 0 and y = 1 by walls, and is forced by a pressure gradient in the x direction (Figure
11.1). This kind of flow is called the Poiseuille flow. The equilibrium solution to the
Poiseuille flow is

Ue = 4y(1 − y) , (11.3)

V = W = 0 , (11.4)

P e = P0 − 8

Re
x , (11.5)

where U , V , and W are the flows in the x, y, and z directions, respectively.

119

n48 main
2008/4/7
page 120

�

�

�

�

�

�

�

�

120 Chapter 11. Navier–Stokes Equations

y = 0

y = 1

x

y
U(y)

z

Figure 11.1. Poiseuille flow in a 3D channel.

There are two conditions which govern the behavior at the walls. These are the no-slip
and no-penetration conditions. The no-slip condition ensures that the flow in the tangential
directions (x and z directions) is zero at the walls. As the wall is solid, we cannot have fluid
penetrating into the wall; therefore the flow in the normal direction (the y direction) must
be zero at the walls also. We therefore have

u(y = 0) = 0 , (11.6)

u(y = 1) = 0 (11.7)

for boundary conditions.
Is this flow stable? The Reynolds number Re determines stability. A low Re corre-

sponds to a laminar (stable) flow, whereas a high Re corresponds to a turbulent (unstable)
flow which does not remain at the equilibrium (11.3)–(11.5). Physically, Re is the ratio
of the inertial forces to the viscous forces, proportional to the mean velocity through the
channel and the width of the channel, and inversely proportional to the kinematic viscosity.
We would like to stabilize the system around the Poiseuille equilibrium using control inputs
distributed along the top wall (y = 1); the control inputs are implemented by microjet
actuators for blowing and suction.

The first step in this analysis is to introduce the perturbation variables

u = U − Ue ,

V = V − 0 ,

W = W − 0 ,

p = P − P e ,

which are governed by

ut = 1

Re
∇2u − (u + Ue)ux − V (uy + Ue

y) − Wuz − px , (11.8)

Vt = 1

Re
∇2V − (u + Ue)Vx − V Vy − WVz − py , (11.9)

Wt = 1

Re
∇2W − (u + Ue)Wx − V Wy − WWz − pz , (11.10)

ux + Wz + Vy = 0 (11.11)

n48 main
2008/4/7
page 121

�

�

�

�

�

�

�

�

11.2. From Physical Space to Wavenumber Space 121

with boundary conditions at the uncontrolled wall given by

u|y=0) = V |y=0 = W |y=0 = 0 (11.12)

and the boundary conditions at the controlled wall given by

u|y=1 = Uc(t, x, z) , (11.13)

V |y=1 = Vc(t, x, z) , (11.14)

W |y=1 = Wc(t, x, z) , (11.15)

where Uc, Vc, Wc are our control inputs. After linearizing the perturbation system, the
equations become

ut = 1

Re
(uxx + uzz + uyy) − Ueux − Ue

yV − px , (11.16)

Vt = 1

Re
(Vxx + Vzz + Vyy) − UeVx − py , (11.17)

Wt = 1

Re
(Wxx + Wzz + Wyy) − UeWx − pz , (11.18)

ux + Wz + Vy = 0 (11.19)

with (11.12)–(11.15) still holding for boundary conditions.

11.2 From Physical Space to Wavenumber Space
The next step is to transform the equations to the wave space. We take the 2D Fourier
transform

F̃ (t, kx, y, kz) =
∫ ∞

−∞

∫ ∞

−∞
F(t, x, y, z)e−2πj (kxx+kzz)dxdz (11.20)

in the x and z directions, as these directions are infinite. We started with a nonlinear 3D
system, which we turned into a linear 3D system. After taking the Fourier transform, we
will have an infinite number of uncoupled 1D systems parameterized by kx and kz, which
are the wavenumbers in the x and z directions, respectively. One can use this approach for
other applications as well, such as infinite or periodic thin plates.

Recalling the useful property of the Fourier transform under differentiation,

Fx = 2πjkxF̃ , (11.21)

Fz = 2πjkzF̃ , (11.22)

we see that the transform of (11.16)–(11.19) is

ut = 1

Re
(−α2u + uyy) + β

2
y(y − 1)u + 4(2y − 1)V − 2πjkxp , (11.23)

Wt = 1

Re
(−α2W + Wyy) + β

2
y(y − 1)W − 2πjkzp , (11.24)

Vt = 1

Re
(−α2V + Vyy) + β

2
y(y − 1)V − py , (11.25)

2πjkxu + 2πjkzW + V = 0 , (11.26)

n48 main
2008/4/7
page 122

�

�

�

�

�

�

�

�

122 Chapter 11. Navier–Stokes Equations

where

α2 = 4π2(k2
x + k2

z) , (11.27)

β = 16πjkx . (11.28)

The transformed boundary conditions are

u|y=0) = V |y=0 = W |y=0 = 0 , (11.29)

u|y=1 = Uc(t, kx, kz) , (11.30)

V |y=1 = Vc(t, kx, kz) , (11.31)

W |y=1 = Wc(t, kx, kz) . (11.32)

For notational clarity we drop the dependence on kx and kz: u(t, y) = u(t, kx, y, kz).

11.3 Control Design for Orr–Sommerfeld and Squire
Subsystems

To continue the derivation, we employ a standard transformation from flow stability analysis,
and write the flow equations in terms of normal velocity and vorticity, with one caveat: We
consider Vy instead of V . Recalling (11.26), we define the new variables Y and ω as

Y = Vy = −2πj (kxu + kzW) , (11.33)

ω = −2πj (kzu − kxW) . (11.34)

The original variables are expressed through Y and ω as follows:

u = −1

2πj

kxY + kzω

k2
x + k2

z

, (11.35)

W = −1

2πj

kzY − kxω

k2
x + k2

z

, (11.36)

V =
∫ y

0
Y (η)dη . (11.37)

We can see from (11.35)–(11.37) that, to regulate the original variables to zero, it is sufficient
to regulate Y and ω to zero.

The equations for Y and ω (the so-called Orr–Sommerfeld and Squire subsystems)
are derived from (11.23) and (11.24):

Yt = 1

Re
(−α2Y + Yyy) + β

2
y(y − 1)Y − 8πjkx(2y − 1)V − α2p , (11.38)

ωt = 1

Re
(−α2ω + ωyy) + β

2
y(y − 1)ω + 8πjkz(2y − 1)V (11.39)

n48 main
2008/4/7
page 123

�

�

�

�

�

�

�

�

11.3. Control Design for Orr–Sommerfeld and Squire Subsystems 123

with boundary conditions

Y |y=0 = ω|y=0 = 0 , (11.40)

Y |y=1 = −2πj (kxUc + kzWc) , (11.41)

ω|y=1 = −2πj (kzUc − kxWc) . (11.42)

To employ the backstepping method, the system needs to be autonomous, i.e., Yt and ωt must
be in terms of only Y and ω. The pressure term, p, can be replaced by a function of V by
deriving an equation for p and solving this equation in terms of V . We take the divergence
of the velocity equations (11.23)–(11.24), apply (11.26), and arrive at the following equation
for the pressure:

−α2p + pyy = β(2y − 1)V . (11.43)

We find the boundary conditions for equation (11.43) by looking at (11.25) and evaluating
at y = 0 and y = 1,

py |y=0 = 1

Re
Vyy(0) , (11.44)

py |y=1 = 1

Re
(−α2Vc + Vyy(1)) − (Vc)t . (11.45)

Equation (11.43) is nondynamic—it is an ODE in p with external forcing proportional to
V . The solution to this ODE is

p = 1

α

{
β

∫ y

0
V (t, η)(2η − 1) sinh(α(y − η))dη

−β
cosh(αy)

sinh(α)

∫ 1

0
V (t, η)(2η − 1) cosh(α(1 − η))dη

−cosh(α(1 − y))

sinh(α)
py |y=0 + cosh(αy)

sinh(α)
py |y=1

}
(11.46)

= 1

α

{
β

∫ y

0
V (t, η)(2η − 1) sinh(α(y − η))dη

+cosh(αy)

sinh(α)

{
− β

∫ 1

0
V (t, η)(2η − 1) cosh(α(1 − η))dη

+ 1

Re
(−α2Vc + Vyy(1)) − (Vc)t

}

− 1

Re

cosh(α(1 − y))

sinh(α)
Vyy(0)

}
. (11.47)

Before we substitute this expression into (11.38), we slightly modify it. This next step is
similar to the shear beam design in Chapter 8. We design one controller to put the system
into a strict feedback form so that we can use backstepping. Notice the Vc and (Vc)t terms

n48 main
2008/4/7
page 124

�

�

�

�

�

�

�

�

124 Chapter 11. Navier–Stokes Equations

in the equation. We use these to get rid of the unwanted integral term by setting (Vc)t to

(Vc)t = 1

Re

(
Vyy(1) − Vyy(0) − α2Vc

)

−β

∫ 1

0
V (t, η)(2η − 1) cosh(α(1 − η))dη . (11.48)

This gives us the following expression:

p = β

∫ y

0
V (t, η)(2η − 1) sinh(α(y − η))dη

+cosh(αy)

sinh(α)

1

Re
Vyy(0) − cosh(α(1 − y))

sinh(α)

1

Re
Vyy(0) . (11.49)

After substituting (11.49) into (11.38), we obtain

Yt = 1

Re
(−α2Y + Yyy) + β

2
y(y − 1)Y − 8πjkx(2y − 1)V

−α

{
β

∫ y

0
V (t, η)(2η − 1) sinh(α(y − η))dη

+ 1

Re
Vyy(0)

cosh(αy) − cosh(α(1 − y))

sinh(α)

}
. (11.50)

We can now use equations (11.33) and (11.37) to write the system in terms of Y and ω alone
as follows:

Yt = 1

Re
(−α2Y + Yyy) + β

2
y(y − 1)Y − 8πjkx(2y − 1)

∫ y

0
Y (η)dη

−α

{
β

∫ y

0

(∫ η

0
Y (σ)dσ

)
(2η − 1) sinh(α(y − η))dη

+ 1

Re
Yy(0)

cosh(αy) − cosh(α(1 − y))

sinh(α)

}
, (11.51)

ωt = 1

Re
(−α2ω + ωyy) + β

2
y(y − 1)ω − 8πjkz(2y − 1)

∫ y

0
Y (η)dη . (11.52)

By defining

ε = 1

Re
, (11.53)

φ(y) = β

2
y(y − 1) = 8πjkxy(y − 1) , (11.54)

f (y, η) = 8j

{
πkx(2y − 1) − 4π

kx

α
sinh(α(y − η))

−2πkx(2η − 1) cosh(α(y − η))

}
, (11.55)

g(y) = εα2 cosh(α(1 − y)) − cosh(αy)

sinh(α)
, (11.56)

h(y) = −8πkzj (2y − 1) , (11.57)

n48 main
2008/4/7
page 125

�

�

�

�

�

�

�

�

11.3. Control Design for Orr–Sommerfeld and Squire Subsystems 125

we see that equations for Y and ω equations become

Yt = ε(−α2Y + Yyy) + φ(y)Y + g(y)Yy(t, 0) +
∫ y

0
f (y, η)Y (t, η)dη , (11.58)

ωt = ε(−α2ω + ωyy) + φ(y)ω + h(y)

∫ y

0
Y (η)dη , (11.59)

with (11.40)–(11.42) still holding.
Equations (11.58), (11.59), and (11.40)–(11.42) form a plant model ready for the

application of backstepping. Notice that we have a cascade system. The Y system is
autonomous, while the ω system is nonautonomous and forced by the Y system. Also note
that the Y system is unstable, while the ω system is stable without forcing (φ does not cause
instability because it is a purely imaginary valued function; see Exercise 11.1). We use the
following transformations to both decouple and stabilize the overall system:

� = Y −
∫ y

0
K(y, η)Y (t, η)dη , (11.60)

� = ω −
∫ y

0
�(y, η)Y (t, η)dη . (11.61)

The first transformation eliminates the terms with g and f from the right-hand side of
(11.58). The second transformation decouples Y and ω.

The target system is chosen as follows:

�t = ε(−α2� + �yy) + φ(y)� , (11.62)

�t = ε(−α2� + �yy) + φ(y)� , (11.63)

�|y=0 = �|y=1 = 0 , (11.64)

�|y=1 = �|y=1 = 0 . (11.65)

Both the � and � systems are autonomous and stable. The terms φ(y)� and φ(y)� do not
cause instability since the coefficient φ(y) is purely imaginary.

Since the PDEs for the gain kernels have been derived many times previously, we
simply state the PDEs for K and � here without derivation (see Exercises 11.2 and 11.3):

εKyy = εKηη − f (y, η) + (φ(η) − φ(y))K +
∫ y

η

K(y, ξ)f (ξ, η)dξ , (11.66)

εK(y, 0) =
∫ y

0
K(y, η)g(η)dη − g(y) , (11.67)

εK(y, y) = −g(0) , (11.68)

ε�yy = ε�ηη − h(y) + (φ(η) − φ(y))� +
∫ y

η

�(y, σ)f (σ, η)dσ , (11.69)

ε�(y, y) = 0 , (11.70)

ε�(y, 0) =
∫ y

0
�(y, η)g(η)dη . (11.71)

n48 main
2008/4/7
page 126

�

�

�

�

�

�

�

�

126 Chapter 11. Navier–Stokes Equations

After solving for K and � (analytically or numerically), we obtain the controllers of the Y

and ω systems from (11.60), (11.61) which are evaluated at y = 1:

Y (t, 1) =
∫ 1

0
K(1, η)Y (t, η)dη , (11.72)

ω(t, 1) =
∫ 1

0
�(1, η)Y (t, η)dη . (11.73)

The ω controller needs only to use Y , as its purpose is only to decouple ω from Y . After
substituting back into (11.35) and (11.36), the controllers for u and W become

Uc = −2πj

α2

(
kxY (t, 1) + kzω(t, 1)

)
, (11.74)

Wc = −2πj

α2

(
kzY (y, 1) − kxω(t, 1)

)
, (11.75)

which become

Uc =
∫ 1

0

4π2

α2

(
kxK(1, η) + kz�(1, η)

)(
kxu(t, η) + kzW(t, η)

)
dη , (11.76)

Wc =
∫ 1

0

4π2

α2

(
kzK(1, η) − kx�(1, η)

)(
kxu(t, η) + kzW(t, η)

)
dη (11.77)

by using (11.33) and (11.34).
Finally, we transform these controllers back into the physical space. To do so, we

truncate the wavenumbers that we actuate at a certain number. This is feasible because high
wavenumbers are already stable. The controllers in physical space are

Vc =
∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
2πj

Re
χ(kx, kz)

×
{
kx

(
uy(τ, x̃, z̃, 0) − uy(τ, x̃, z̃, 1)

)

+ kz

(
Wy(τ, x̃, z̃, 0) − Wy(τ, x̃, z̃, 1)

)}

×e
α2

Re
(t−τ)e2πj(kx(x−x̃)+kz(z−z̃))dkxdkzdx̃dz̃dτ

−
∫ t

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
V (τ, x̃, z̃, η)(2η − 1)

×χ(kx, kz)16πkxj cosh(α(1 − η))e
α2

Re
(t−τ)

×e2πj(kx(x−x̃)+kz(z−z̃))dkxdkzdx̃dz̃dηdτ , (11.78)

n48 main
2008/4/7
page 127

�

�

�

�

�

�

�

�

11.4. Notes and References 127

Uc =
∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
4π2 χ(kx, kz)

k2
x + k2

z

×
(
kxK(kx, kz, 1, η) + kz�(kx, kz, 1, η)

)
×
(
kxu(t, x̃, z̃, η) + kzW(t, x̃, z̃, η)

)
×e2πj(kx(x−x̃)+kz(z−z̃))dkxdkzdx̃dz̃dη , (11.79)

Wc =
∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
4π2 χ(kx, kz)

k2
x + k2

z

×
(
kzK(kx, kz, 1, η) − kx�(kx, kz, 1, η)

)
×
(
kxu(t, x̃, z̃, η) + kzW(t, x̃, z̃, η)

)
×e2πj(kx(x−x̃)+kz(z−z̃))dkxdkzdx̃dz̃dη , (11.80)

where

χ(kx, kz) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
|kx | > m or |kz| > m

}
and{

|kx | < M and |kx | < M

}
,

0 else,

(11.81)

and m and M are our cutoffs.
Physically, actuating small wavenumbers means that actuators can be spaced further

apart, and the changes in space are relatively slow. Actuating high wavenumbers means
that actuators spaced close together will change quickly in space.

As the ω subsystem in (11.59) is stable with Y = 0, one might ask why we use the
transformation (11.73) and the controller (11.61) to decouple ω from Y . While this may
seem unnecessary mathematically, there is an important practical reason for doing it. The
coupling through h(y) in (11.59) causes a large transient overshoot in the ω subsystem
and is considered one of the principal causes of transition to turbulence, even at linearly
stable Reynolds numbers [14]. The backstepping approach removes this harmful coupling
between the Y (Orr–Sommerfeld) and ω (Squire) subsystems, yielding the first control law
that directly targets the root cause of transition to turbulence.

11.4 Notes and References
Analysis and control of Navier–Stokes equations [1, 7, 13, 18, 20, 19, 24, 37, 39, 59, 60,
61, 64, 66, 72, 75, 78, 142, 146, 162, 163, 165, 170, 171, 172, 173, 180, 179] are exciting
areas attracting the attention of those who seek some of the ultimate challenges in applied
mathematics and control theory. A detailed overview of various efforts in controllability,
optimal control, stabilization, and boundary control of Navier–Stokes is beyond the scope
of this introductory book; however, we point out that good surveys reflecting the state of
the art at the time of their publication are contained in [1, 24, 64].

n48 main
2008/4/7
page 128

�

�

�

�

�

�

�

�

128 Chapter 11. Navier–Stokes Equations

A Lyapunov stabilization effort for Navier–Stokes equations was introduced in [1];
however, it was not until the application of backstepping to Navier–Stokes equations in
[172, 173, 178, 37], which are references by which this chapter is inspired, that stabilization
of the (nondiscretized) channel flow became possible for high Reynolds numbers.

Exercises
11.1. Using the Lyapunov function

�(t) = 1

2

∫ 1

0
|�|2(t, y)dy ,

where � is a complex-valued function and | · | denotes the modulus (��̄), show that
the system

�t = ε(−α2� + �yy) + φ(y)� ,

�(0) = 0 ,

�(1) = 0

is exponentially stable when φ(y) is a purely imaginary valued function.

11.2. Consider the plant

Yt = ε(−α2Y + Yyy) , (11.82)

ωt = ε(−α2ω + ωyy) + h(y)

∫ y

0
Y (η) dη , (11.83)

Y (0) = ω(0) = 0 . (11.84)

Show that the transformation

�(y) = ω(y) −
∫ y

0
�(y, η)Y (η)dη

decouples Y and ω by transforming the plant (11.82)–(11.84) into the target system

Yt = ε(−α2Y + Yyy) ,

�t = ε(−α2� + �yy) ,

Y (0) = �(0) = 0

when the following PDE for � is satisfied:

ε�yy(y, η) = ε�ηη(y, η) − h(y) ,

�(y, 0) = 0 ,

�(y, y) = 0 .

n48 main
2008/4/7
page 129

�

�

�

�

�

�

�

�

Exercises 129

11.3. Show that the transformation

�(y) = Y (y) −
∫ y

0
K(y, η)Y (η) dη

transforms the plant

Yt = ε(−α2Y + Yyy) + φ(y)Y + g(y)Yy(0) ,

Y (0) = 0

into the target system

�t = ε(−α2� + �yy) + φ(y)� ,

�(0) = 0

when the following PDE for K is satisfied:

εKyy = εKηη + (φ(η) − φ(y))K ,

εK(y, 0) =
∫ y

0
K(y, η)g(η)dη − g(y) ,

εK(y, y) = −g(0) .

11.4. The double backstepping transformation

�(y) = Y (y) −
∫ y

0
K(y, η)Y (η) dη, (11.85)

�(y) = ω(y) −
∫ y

0
�(y, η)Y (η) dη, (11.86)

with inverse

Y (y) = �(y) +
∫ y

0
L(y, η)�(η) dη , (11.87)

ω(y) = �(y) +
∫ y

0
�(y, η)�(η) dη , (11.88)

transforms the plant

Yt = ε(−α2Y + Yyy) + φ(y)Y + g(y)Yy(0) +
∫ y

0
f (y, η)Y (η)dη ,

ωt = ε(−α2ω + ωyy) + φ(y)ω + h(y)

∫ y

0
Y (η)dη ,

Y (0) = ω(0) = 0

into the target system

�t = ε(−α2� + �yy) + φ(y)�,

�t = ε(−α2� + �yy) + φ(y)� ,

�(0) = �(0) = 0 .

n48 main
2008/4/7
page 130

�

�

�

�

�

�

�

�

130 Chapter 11. Navier–Stokes Equations

Show that the kernel of the inverse transformation (11.88) can be computed as

�(y, η) = �(y, η) +
∫ y

η

�(y, σ)L(σ, η)dσ

by first plugging (11.87) into (11.86), then plugging the modified (11.61) into (11.88),
and finally using formula (4.36).

n48 main
2008/4/7
page 131

�

�

�

�

�

�

�

�

Chapter 12

Motion Planning for PDEs

This book is almost entirely devoted to stabilization problems for PDEs. As such, the book
deals with the design of feedback laws. However, since the PDEs we address in this book
are linear, the same feedback laws designed for stabilization of zero equilibria are capable of
also stabilizing any other feasible trajectories of these PDEs. To accomplish such tasks, we
need to be able to first generate such trajectories as functions of t and x. In other words, we
need to be able to generate not only the necessary feedback controls but also the feedforward
controls.

This chapter provides an introduction to some recently emerging ideas in trajectory
generation, or motion planning, or, simply put, open-loop control for PDEs.

As we shall see, once we are able to generate a reference trajectory for the state of
the PDE, we can easily combine our feedforward and feedback controls to stabilize this
trajectory. For example, if the control input to the PDE is of Dirichlet type u(1, t) and we
have designed a feedback control

u(1, t) =
∫ 1

0
k(1, y)u(y, t) dy ,

and if we have generated a state reference trajectory ur(x, t), then the overall “feed-
back+feedforward” control law

u(1, t) = ur(1, t) +
∫ 1

0
k(1, y)(u(y, t) − ur(y, t)) dy

will (exponentially) stabilize the trajectory, namely, it will ensure that u(x, t)−ur(x, t) → 0
as t → ∞ (for all x, in an appropriate sense).

While trajectory tracking for a state reference is a relevant problem, a truly important
engineering problem is that of tracking an output reference. To solve such a problem, one
starts from an output reference trajectory, for example, ur(0, t), as the desired temporal
waveform of the system output u(0, t) at x = 0; generates the state trajectory ur(x, t) for
all x (including x = 1, which produces the control reference); and then combines this result
with a feedback control law to stabilize the trajectory ur(x, t) and to force the output u(0, t)

to track the output trajectory ur(0, t). This chapter focuses on the generation of the state

131

n48 main
2008/4/7
page 132

�

�

�

�

�

�

�

�

132 Chapter 12. Motion Planning for PDEs

trajectory ur(x, t) given the output trajectory ur(0, t), which is often referred to as motion
planning.

Our coverage in this chapter is driven not by a desire to achieve generality but to
achieve clarity. Instead of trying to find a state trajectory for an arbitrary output trajectory,
we go through a series of examples with reference outputs common in practice—exponential,
polynomial, and sinusoidal signals—for a series of different PDEs which includes the heat
equation, the reaction-diffusion equation, the wave equation, the Euler–Bernoulli beam, and
a first-order hyperbolic PDE. We also consider different types of outputs, which include the
“Dirichlet” outputs u(0, t) and the “Neumann” outputs ux(0, t).

12.1 Trajectory Generation
Example 12.1 As our first example, we consider the plant

ut = uxx , (12.1)

ux(0) = 0 (12.2)

with reference output

ur(0, t) = 1 + 2t − t2 . (12.3)

In a physical sense, we want to generate a temperature trajectory at x = 1 such that the
temperature evolution at x = 0 is given by (12.3). To find the reference input ur(1, t)

we first need to construct the full-state trajectory ur(x, t), which simultaneously satisfies
(12.1), (12.2), and (12.3). Let us search for the state trajectory in the following form:

ur(x, t) =
∞∑

k=0

ak(t)
xk

k! . (12.4)

This is a Taylor series in x with time-varying coefficients ak(t) that need to be determined
from (12.1)–(12.3). From (12.3)–(12.4) we see that

a0(t) = ur(0, t) = 1 + 2t − t2. (12.5)

The boundary condition (12.2) gives

a1(t) = ur
x(0, t) = 0 . (12.6)

The next step is to substitute (12.4) into (12.1) as follows:
∞∑

k=0

ȧk(t)
xk

k! = ∂2

∂x2

∞∑
k=0

ak(t)
xk

k!

=
∞∑

k=2

ak(t)
k(k − 1)xk−2

k!

=
∞∑

k=2

ak(t)
xk−2

(k − 2)!

=
∞∑

k=0

ak+2(t)
xk

k! . (12.7)

n48 main
2008/4/7
page 133

�

�

�

�

�

�

�

�

12.1. Trajectory Generation 133

We get the recursive relationship

ak+2(t) = ȧk(t) . (12.8)

Using (12.6) and (12.5) with (12.8) results in

a0 = 1 + 2t − t2, a1 = 0 ,

a2 = 2 − 2t, a3 = 0 ,

a4 = −2, a5 = 0 ,

a6 = 0, ai = 0 for i > 6.

This gives the reference state trajectory

ur(x, t) = 1 + 2t + t2 + (1 − t)x2 − 1

12
x4

and the input signal

ur(1, t) = 23

12
+ t − t2. �

Note that the output matches the reference output trajectory only if the initial condition
of the plant is satisfied by the state trajectory, that is, if u(x, 0) = 1 + x2 − 1

12x4. To
asymptotically track the reference signal as t → ∞ for an arbitrary initial condition, we
need to apply feedback.

The basic idea introduced in Example 12.1 is to use the “spatial Taylor series” repre-
sentation (12.4) and to find the temporal coefficients ak(t) using a recursion such as (12.8).
This idea will permeate our developments in the subsequent examples. However, while in
Example 12.1 the Taylor series was finite, in the subsequent examples the series will be
infinite and will have to be summed.

Example 12.2 Consider the reaction-diffusion equation

ut = uxx + λu , (12.9)

ux(0) = 0 (12.10)

with a reference output

ur(0, t) = eαt . (12.11)

Let us find the reference input ur(1, t). We again postulate the full-state reference trajectory
in the form

ur(x, t) =
∞∑

k=0

ak(t)
xk

k! . (12.12)

From (12.11) and the boundary condition (12.10), we have

a0(t) = eαt , a1(t) = 0,

and from the PDE (12.9), we get

ak+2(t) = ȧk(t) − λak(t).

n48 main
2008/4/7
page 134

�

�

�

�

�

�

�

�

134 Chapter 12. Motion Planning for PDEs

These conditions give

a2k+1 = 0 ,

a2k+2 = ȧ2k − λa2k ,

a2 = (α − λ)eαt ,

a4 = (α − λ)2eαt ,

a2k = (α − λ)keαt

for k = 0, 1, 2, . . . , so that the state trajectory is

ur(x, t) =
∞∑

k=0

(α − λ)keαt x2k

(2k)!

=
∞∑

k=0

eαt (
√

α − λx)2k

(2k)!

= eαt

{
cosh(

√
α − λx) α ≥ λ ,

cos(
√

λ − αx) α < λ .
(12.13)

The reference input is

ur(1, t) = eαt

{
cosh(

√
α − λ) α ≥ λ ,

cos(
√

λ − α) α < λ .
�

Example 12.2 was the first to introduce the infinite recursion and summation (12.13).
This example dealt with an exponential reference function. The next few examples will
deal with sinusoidal reference functions.

The following formulae are useful when calculating the trajectories for sinusoidal
reference outputs in the upcoming examples:

cosh(a) =
∞∑

k=0

a2k

(2k)! , sinh(a) =
∞∑

k=0

a2k+1

(2k + 1)! ,

cosh(ja) = cos(a) , sinh(ja) = j sin(a) ,

cos(ja) = cosh(a) , sin(ja) = j sinh(a) .

Example 12.3 Consider the plant

ut = uxx , (12.14)

ux(0) = 0 (12.15)

with reference output

ur(0, t) = sin(ωt) . (12.16)

n48 main
2008/4/7
page 135

�

�

�

�

�

�

�

�

12.1. Trajectory Generation 135

Since sin(ωt) = Im{ejωt }, we can get the reference trajectory by setting λ = 0 and α = jω

in the previous example. We have

ur(x, t) = Im
{

cosh(
√

jωx)ejωt
}

. (12.17)

Using the identity
√

j = (1 + j)/2, we get

ur(x, t) = Im

{
cosh

(
(1 + j)

√
ω

2
x

)
ejωt

}

= Im

⎧⎨
⎩e

√
ω
2 x+j

(
ωt+√

ω
2 x

)
+ e

−√
ω
2 x+j

(
ωt−√

ω
2 x

)

2

⎫⎬
⎭

= 1

2
e
√

ω
2 x sin

(
ωt +

√
ω

2
x

)
+ 1

2
e−√

ω
2 x sin

(
ωt −

√
ω

2
x

)
. (12.18)

Finally, the reference input is

ur(1, t) = 1

2
e
√

ω
2 sin

(
ωt +

√
ω

2

)
+ 1

2
e−√

ω
2 sin

(
ωt −

√
ω

2

)
. (12.19)

�

All the examples so far have dealt with Dirichlet-type outputs u(0, t). The next
example deals with a Neumann-type output, ux(0, t).

Example 12.4 Consider the plant

ut = uxx , (12.20)

u(0) = 0 (12.21)

with the reference output
ur

x(1) = sin(ωt) . (12.22)

Postulating ur(x, t) in the form of (12.12), we get ai+2 = ȧi , and the boundary
condition gives

a2k = 0 , (12.23)

a2k+1 = a
(k)
1 . (12.24)

The state trajectory becomes

ur(x, t) =
∞∑

k=0

a
(k)
1 (t)

x2k+1

(2k + 1)! . (12.25)

The output reference is

ur
x(1, t) =

∞∑
k=0

a
(k)
1 (t)

(2k)! = sin(ωt) = Im{ejωt } . (12.26)

n48 main
2008/4/7
page 136

�

�

�

�

�

�

�

�

136 Chapter 12. Motion Planning for PDEs

Suppose that
a1(t) = Im{Aejωt },

where A is a constant to be determined. Then

a
(k)
1 (t) = Im{A(jω)kejωt }.

From (12.26) we get

Im

{
Aejωt

∞∑
k=0

(
√

jω)2k

(2k)!

}
= Im{ejωt } , (12.27)

Aejωt cosh(
√

jω) = ejωt (12.28)

so that A = 1/ cosh(
√

jω). The state trajectory is now

ur(x, t) =
∞∑

k=0

a
(k)
1 (t)

x2k+1

(2k + 1)! (12.29)

= Im

{
A

∞∑
k=0

(jω)k
x2k+1

(2k + 1)!e
jωt

}
(12.30)

= Im

{
A√
jω

∞∑
k=0

(
√

jωx)2k+1

(2k + 1)! ejωt

}
(12.31)

= Im

{
sinh(

√
jωx)√

jω cosh(
√

jω)
ejωt

}
, (12.32)

which gives the reference input

ur(1, t) = Im

{
tanh(

√
jω)√

jω
ejωt

}
. (12.33)

�

Remark 12.5. If in the above example the output reference is exponential,

ur
x(1, t) = eαt , α ∈ R , (12.34)

then the corresponding input reference is

ur(1, t) = eαt

√|α|
{

tanh(
√|α|), α > 0 ,

tan(
√|α|), α < 0.

(12.35)

All the examples so far dealt with parabolic PDEs. The remaining examples deal with
hyperbolic PDEs.

Example 12.6 Consider the wave equation

utt = uxx , (12.36)

u(0) = 0 (12.37)

n48 main
2008/4/7
page 137

�

�

�

�

�

�

�

�

12.1. Trajectory Generation 137

with the reference output
ur

x(0, t) = sin(ωt) . (12.38)

Searching for ur(x, t) in the form of (12.12), we get

a0 = 0, a1(t) = sin(ωt) = Im{ejωt } ,

ai+2 = äi (t) ,

which gives

a2k = 0 ,

a2k+1(t) = (jω)2kIm{ejωt } .

The state reference becomes

ur(x, t) = Im

{
ejωt

jω

∞∑
k=0

(jωx)2k+1

(2k + 1)!

}

= Im

{
ejωt

jω
sinh(jωx)

}

= Im

{
ejωt

ω
sin(ωx)

}

= 1

ω
sin(ωx) sin(ωt),

and the reference input is

ur(1, t) = sin(ω)

ω
sin(ωt) . (12.39)

Note that, for the same desired reference output trajectory, the reference input for the heat
equation (Example 12.3) has a much more complicated form. �

Example 12.7 Consider a wave equation with Kelvin–Voigt damping,

εutt = (1 + d∂t)uxx , (12.40)

ux(0) = 0 , (12.41)

and with the reference output

ur(0, t) = sin(ωt) . (12.42)

Following the procedure in the previous examples, one can obtain the following
reference state trajectory:

ur(x, t) = 1

2

⎡
⎣e

√
ε

ω

√√
1+ω2d2−1

√
2
√

1+ω2d2
x

sin

(
ω

(
t + √

ε
ω
√√

1 + ω2d2 + 1√
2
√

1 + ω2d2
x

))

+ e
−√

ε
ω

√√
1+ω2d2−1

√
2
√

1+ω2d2
x

sin

(
ω

(
t − √

ε
ω
√√

1 + ω2d2 + 1√
2
√

1 + ω2d2
x

))⎤⎦ . (12.43)

�

n48 main
2008/4/7
page 138

�

�

�

�

�

�

�

�

138 Chapter 12. Motion Planning for PDEs

Example 12.8 Consider the Euler–Bernoulli beam model,

utt + uxxxx = 0 , (12.44)

uxx(0) = uxxx(0) = 0 , (12.45)

with the reference outputs

ur(0, t) = sin(ωt) , (12.46)

ur
x(0, t) = 0 . (12.47)

Note that, because the beam equation is fourth order in x, we are free to assign two indepen-
dent reference outputs and to choose two reference inputs to generate the two independent
outputs.

Searching for ur(x, t) in the form of (12.12), we get

a0 = sin(ωt) = Im
{
ejωt

}
, (12.48)

a1 = a2 = a3 = 0 , (12.49)

ai+4 = −äi . (12.50)

Therefore,

a4k = (−1)ka
(2k)
0 = Im

{
(−1)k(jω)2kejωt

} = ω2k sin(ωt) , (12.51)

a4k+1 = a4k+2 = a4k+3 = 0 . (12.52)

The reference trajectory becomes

ur(x, t) =
∞∑

k=0

ω2k x4k

(4k)! sin(ωt)

=
∞∑

k=0

(
√

ωx)4k

(4k)! sin(ωt)

= 1

2
[cosh(

√
ωx) + cos(

√
ωx)] sin(ωt) ,

and reference inputs are

ur(1, t) = 1

2
[cosh(

√
ω) + cos(

√
ω)] sin(ωt) ,

ur
x(1, t) =

√
ω

2
[sinh(

√
ωx) − sin(

√
ωx)] sin(ωt) . �

Example 12.9 Consider the first-order hyperbolic PDE

ut = ux + gu(0) (12.53)

with the reference output

ur(0, t) = sin(ωt) . (12.54)

n48 main
2008/4/7
page 139

�

�

�

�

�

�

�

�

12.2. Trajectory Tracking 139

Searching for the reference trajectory in the form of (12.12), we get

a0 = sin(ωt) = Im
{
ejωt

}
,

a1 = ȧ0 − gu(0) = Im
{
(jω − g)ejωt

}
,

ak+1 = ȧk = Im
{
(jω − g)(jω)kejωt

}
= Im

{(
1 − g

jω

)
(jω)k+1ejωt

}
.

The reference trajectory becomes

ur(x, t) = Im

{
ejωt +

(
1 − g

jω

) ∞∑
k=1

(jωx)k

k! ejωt

}

= Im

{[
g

jω
+
(

1 − g

jω

)
ejωx

]
ejωt

}

= − g

ω
[cos(ωt) − cos(ω(t + x))] + sin(ω(t + x)) ,

which gives the reference input

ur(1, t) = g

ω
[cos(ω(t + 1)) − cos(ωt)] + sin(ω(t + 1)). (12.55)

�

12.2 Trajectory Tracking
The reference inputs obtained in the previous section achieve the desired output from only
one particular initial condition. One can asymptotically track the reference signal for an ar-
bitrary initial condition by using the feedback controllers developed in the previous chapters
to stabilize the reference trajectory.

Example 12.10 Consider the plant

ut = ux + gu(0) .

Suppose we want the output u(0, t) to track the reference trajectory ur(0, t) = sin(ωt) using
u(1, t) as the input. In Example 12.9 we obtained the following state reference trajectory:

ur(x, t) = g

ω
[cos(ω(t + x)) − cos(ωt)] + sin(ω(t + x)) . (12.56)

Let us introduce the error variable

ũ(x, t) = u(x, t) − ur(x, t) ; (12.57)

then we have the equation

ũt = ũx + gũ(0) ,

n48 main
2008/4/7
page 140

�

�

�

�

�

�

�

�

140 Chapter 12. Motion Planning for PDEs

which we want to regulate to zero. In Chapter 9 we derived the stabilizing controller

ũ(1) = −
∫ 1

0
geg(1−y)ũ(y) dy . (12.58)

Using the definition of ũ(x, t), we get

u(1, t) = ur(1, t) −
∫ 1

0
geg(1−y)[u(y, t) − ur(y, t)] dy (12.59)

= ur(1, t) +
∫ 1

0
geg(1−y)ur(y, t) dy −

∫ 1

0
geg(1−y)u(y, t) dy (12.60)

= g

ω
[cos(ω(t + 1)) − cos(ωt)] + sin(ω(t + 1)) (12.61)

+
∫ 1

0
geg(1−y)

[g

ω
cos(ω(t + y)) − cos(ωt) + sin(ω(t + x))

]
dy (12.62)

−
∫ 1

0
geg(1−y)u(y, t) dy (12.63)

= g

ω
[cos(ω(t + 1)) − cos(ωt)] + sin(ω(t + 1))

− g

ω
[cos(ω(t + 1)) − cos(ωt)] (12.64)

−
∫ 1

0
geg(1−y)u(y, t)dy . (12.65)

Hence, we obtain the complete control law (feedforward plus feedback) as

u(1, t) = sin(ω(t + 1)) −
∫ 1

0
geg(1−y)u(y, t)dy . (12.66)

�

Remark 12.11. Note that the controller above has the form of a pure “unit” advance of the
reference trajectory ur(0, t) = sin(ωt) plus feedback, where the pure advance comes from
the target system used in the control design. This is not an accident. It turns out that the
backstepping controller always has the structure of “reference input designed for the target
system plus feedback.” This greatly simplifies the design for complicated plants since the
target system is usually much simpler than the original plant (see Exercise 12.5).

Example 12.12 Figure 12.1 displays the trajectory tracking results for the open-loop tra-
jectory designed in Example 12.7, and for a feedback law from Section 7.3, for the almost
periodic trajectory given by

ur(0, t) = 1

2

[
sin

(π

2
t
)

+ sin

(√
2π

2
t

)]
. (12.67)

�

n48 main
2008/4/7
page 141

�

�

�

�

�

�

�

�

Exercises 141

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

Time, t (s)

D
is

pl
ac

em
en

t

reference: (1/2)*(sin(πt/2)+sin(sqrt(2)πt/2))
tip displacement: u(0,t)

Figure 12.1. Asymptotic tracking for the wave equation with Kelvin–Voigt damping.

12.3 Notes and References
The foundations for motion planning for several classes of PDEs were laid in the late 1990s
in papers by Rouchon and coworkers [50, 56, 105, 147], Laroche and Martin [104], Fliess
and Mounier [55], Meurer and Zeitz [128], Ollivier and Sedoglavic [134], and Petit and Del
Vecchio [138]. These results extended the concept of “flatness” from finite-dimensional
to infinite-dimensional systems through the parameterizations of trajectories via Gevrey
functions and advance/delay operations on the reference trajectory. In Section 12.1 we
specialized some of these ideas to particular classes of trajectories.

An important new idea for motion planning and trajectory stabilization for systems
more complex than simple heat, wave, or beam equations is introduced in Remark 12.11
and Exercise 12.5.

Exercises
12.1. For the heat equation

ut = uxx ,

ux(0) = 0 ,

find the input reference signal ur(1, t) so that the output u(0, t) obeys the reference
signal

ur(0, t) = t3 .

n48 main
2008/4/7
page 142

�

�

�

�

�

�

�

�

142 Chapter 12. Motion Planning for PDEs

12.2. For the heat equation

ut = uxx ,

u(0) = 0 ,

find the input reference signal ur(1, t) so that the output ux(0, t) obeys the reference
signal

ur
x(0, t) = sin ωt .

12.3. For the Euler–Bernoulli beam

utt + uxxxx = 0 ,

uxx(0) = 0 ,

uxxx(0) = 0 ,

show that

ur(x, t) = sinh
(√

ωx
) + sin

(√
ωx

)
2
√

ω
sin(ωt)

is a solution to the system. This result shows that you can produce the output
trajectory

ur(0, t) = 0 ,

ur
x(0, t) = sin(ωt)

with the controls

ur(1, t) = sinh
√

ω + sin
√

ω

2
√

ω
sin(ωt) ,

ur
x(1, t) = cosh

√
ω + cos

√
ω

2
sin(ωt) .

12.4. Consider the undamped wave equation

utt = uxx ,

ux(0) = 0 .

Find the state reference trajectory ur(x, t) that corresponds to the output reference

ur(0, t) = sin ωt .

Then, recalling that

ux(1, t) = −c0u(1, t) − c1

(
ut (1, t) + c0

∫ 1

0
ut (y, t)dy

)
, c0, c1 > 0 ,

is a stabilizing controller, find the functions M(ω, c0, c1) and φ(ω, c0, c1) to ensure
that the controller

ux(1, t) = M(ω, c0, c1) sin (ωt + φ(ω, c0, c1))

−c0u(1, t) − c1

(
ut (1, t) + c0

∫ 1

0
ut (y, t)dy

)

n48 main
2008/4/7
page 143

�

�

�

�

�

�

�

�

Exercises 143

guarantees that the output u(0, t) achieves asymptotic tracking of the output reference
ur(0, t) = sin ωt .

Hint: First, show that

M(ω, c0, c1) sin (ωt + φ(ω, c0, c1)) = ur
x(1, t) + c0u

r(1, t)

+c1

(
ur

t (1, t) + c0

∫ 1

0
ur

t (y, t)dy

)
.

Note that the left side of this expression is much more suitable for online implemen-
tation because M and φ can be precomputed, whereas the implementation on the
right requires the integration of the reference signal to be done online.

12.5. This exercise presents an alternative approach to doing trajectory tracking, when
compared to the approach in Example 12.2. Consider the reaction-diffusion equation

ut = uxx + λ(x)u ,

ux(0) = 0 .

When λ(x) is spatially varying, the motion planning procedure cannot produce a
closed-form solution, even for basic output trajectories such as ur(0, t) = sin ωt or
ur(0, t) = eαt . (In fact, even for the case λ = const �= 0, the reference trajectory
becomes considerably more complicated than the trajectory for λ = 0.) However, if
our objective is just tracking, namely, not trajectory generation per se but finding a
feedback law that stabilizes a trajectory that corresponds to a certain o utput reference,
then it turns out that the feedback law

u(1, t) = 1

2

[
e
√

ω
2 sin

(
ωt +

√
ω

2

)
+ e−√

ω
2 sin

(
ωt −

√
ω

2

)]

+
∫ 1

0
k(1, y)u(y, t)dy ,

where k(x, y) is the solution of the kernel PDE

kxx(x, y) − kyy(x, y) = λ(y)k(x, y) ,

ky(x, 0) = 0 ,

k(x, x) = −1

2

∫ x

0
λ(y)dy ,

guarantees that

u(x, t) −
∫ x

0
k(x, y)u(y, t)dy

−1

2

[
e
√

ω
2 x sin

(
ωt +

√
ω

2
x

)
+ e−√

ω
2 x sin

(
ωt −

√
ω

2
x

)]
→ 0

as t → ∞ for all x ∈ [0, 1], which means, in particular, that asymptotic tracking of
the reference output ur(0, t) = sin ωt is achieved, namely,

u(0, t) − sin ωt → 0 as t → ∞ .

n48 main
2008/4/7
page 144

�

�

�

�

�

�

�

�

144 Chapter 12. Motion Planning for PDEs

Explain (prove) this result. It is helpful to use the following notation:

w(x, t) = u(x, t) −
∫ x

0
k(x, y)u(y, t)dy ,

wr(x, t) = ur(x, t) −
∫ x

0
k(x, y)ur(y, t)dy ,

w̃(x, t) = w(x, t) − wr(x, t)

and note that all the three w-variables, w, wr , and w̃, satisfy a heat equation with a
Neumann boundary condition at x = 0 and with a boundary condition given by

w̃(1, t) = w(1, t) − wr(1, t) = 0 , (12.68)

which determines the control law.

The point of this exercise is that trajectory tracking can be pursued for complicated,
spatially varying, parabolic, and hyperbolic PDEs if one uses backstepping for tra-
jectory stabilization. It is sufficient to develop trajectory generation for the heat or
wave equation and add the input (labeled in this exercise as wr(1, t)) to the usual
stabilizing backstepping feedback law.

n48 main
2008/4/7
page 145

�

�

�

�

�

�

�

�

Chapter 13

Adaptive Control for PDEs

In applications that incorporate thermal, fluid, or chemically reacting dynamics, physical
parameters are often unknown. Thus a need exists for a “parameter-adaptive” technique
which estimates such unknown parameters, continuously recomputes the controller gains,
and applies the resulting controller to stabilize a potentially unstable, parametrically uncer-
tain plant. Such an objective is incompatible with methods that require solutions of Riccati
equations because solving such equations even once is a formidable task, let alone multiple
times or in real time.

The most remarkable feature of backstepping designs is that they result in explicit for-
mulae for the control gain (or in rapidly convergent symbolic or numerical iterative schemes
for the computation of the control gains, which can be run online). The backstepping gain
functions are explicit both in the spatial variables and in the physical parameters. It is the
explicit dependence of the gain function on the physical parameters that is useful in adaptive
control implementations, which we illustrate in this chapter. We show how one can compute
an estimate of an unknown parameter online, plug it into the explicit gain formula derived
earlier in the book (Chapter 4), and achieve closed-loop stability. This strategy is generally
referred to as the certainty equivalence approach.

In this chapter we design certainty equivalence adaptive controllers with two types of
identifiers: passivity-based identifiers and swapping identifiers.

The passivity-based method (often called the “observer-based” method) uses a copy
of the plant to generate a model which is passive from the parameter estimation error as the
model’s input to the spatial inner product of the “observer error” and a “regressor” function
as the model’s output.

The swapping method (often called the “gradient” or “least squares” method) is the
most common method of parameter estimation in adaptive control. Filters of the “regressor”
and of the measured part of the plant are implemented to convert a dynamic parameteri-
zation of the problem (given by the plant’s dynamic model) into a static parameterization,
where standard gradient and least squares estimation techniques can be used. The swap-
ping method, which employs “one filter per unknown parameter,” has a higher dynamic
order than the passivity-based method, which uses only one filter. However, the swapping

145

n48 main
2008/4/7
page 146

�

�

�

�

�

�

�

�

146 Chapter 13. Adaptive Control for PDEs

approach can handle output-feedback problems and is more transparent due to the static
parameterization.

Closed-loop stability of a system consisting of the plant, the identifier, and the con-
troller is the central issue in adaptive control since the parameter estimates make the adaptive
controller nonlinear even when the PDE plant is linear.

We will illustrate the ideas of the designs and the proofs in two benchmark examples.
The general theory of adaptive control of PDE systems based on the backstepping

approach is beyond the scope of this introductory text and is the subject of a separate
research monograph by the same authors [160].

13.1 State-Feedback Design with Passive Identifier
Consider a reaction-diffusion equation

ut = uxx + λu , (13.1)

u(0) = 0 , (13.2)

where a constant parameter λ is unknown. From Chapter 3 we know that this system (with
u(1, t) = 0) is unstable for any λ > π2.

In Chapter 4 we designed the following stabilizing controller for the system (13.1)–
(13.2):

u(1) = −
∫ 1

0
λy

I1

(√
λ(1 − y2)

)
√

λ(1 − y2)
u(y) dy . (13.3)

We obviously cannot use this controller here since the parameter λ is unknown. Following
the certainty equivalence principle, we need to design an identifier which will provide the
estimate of λ.

13.1.1 Identifier

Let us denote the estimate of λ by λ̂ = λ̂(t) and introduce the following auxiliary system:

ût = ûxx + λ̂u + γ 2(u − û)

∫ 1

0
u2(x) dx , (13.4)

û(0) = 0 , (13.5)

û(1) = u(1) . (13.6)

Such an auxiliary system is often called an “observer,” even though it is not used here for
state estimation (the entire state u is available for measurement in our problem).

The purpose of this “observer” is not the estimation of the system state, since the full
state u(x, t) is measured. Its purpose is to help identify the unknown parameter, as we shall
soon see.

We refer to the system (13.4)–(13.6) as a “passive identifier.” This identifier employs
a copy of the PDE plant and an additional nonlinear term. The term “passive identifier” is

n48 main
2008/4/7
page 147

�

�

�

�

�

�

�

�

13.1. State-Feedback Design with Passive Identifier 147

derived from the fact that an operator from the parameter estimation error λ̃ = λ − λ̂ to
the inner product of u with u − û is strictly passive. The additional term in (13.4) acts as
nonlinear damping, whose task is to slow down the adaptation.

Let us introduce the error signal

e = u − û . (13.7)

Using (13.1)–(13.2) and (13.4)–(13.6), we obtain the following PDE for e(x, t):

et = exx + λ̃u − γ 2e‖u‖2 , (13.8)

e(0) = 0 , (13.9)

e(1) = 0 . (13.10)

We want to find out what stability properties are guaranteed by the identifier (13.4)–(13.6)
for the signals e (estimation error) and

λ̃ = λ − λ̂ (13.11)

(parameter error). With Lyapunov function

V = 1

2

∫ 1

0
e2(x) dx + λ̃2

2γ
, (13.12)

we get

V̇ = −‖ex‖2 − γ 2‖e‖2‖u‖2

+ λ̃

∫ 1

0
e(x)u(x) dx − λ̃

˙̂
λ

γ
. (13.13)

With the choice of the update law

˙̂
λ = γ

∫ 1

0
(u(x) − û(x))u(x) dx , (13.14)

the last two terms in (13.13) cancel out and we obtain

V̇ = −‖ex‖2 − γ 2‖e‖2‖u‖2 , (13.15)

which implies
V (t) ≤ V (0) . (13.16)

By the definition of V , this means that λ̃ and ‖e‖ are bounded functions of time.
Integrating (13.15) with respect to time from zero to infinity, we get

V (∞) +
∫ ∞

0
‖ex(t)‖2 dt + γ 2

∫ ∞

0
‖e(t)‖2‖u(t)‖2 dt ≤ V (0), (13.17)

so that the spatial norms ‖ex‖ and ‖e‖‖u‖ are square integrable functions of time. From
the update law (13.14), we get

| ˙̂λ| ≤ γ ‖e‖‖u‖ , (13.18)

which shows that ˙̂
λ is also square integrable in time; i.e., the identifier indirectly slows down

the adaptation (without explicit normalization in the update law).

n48 main
2008/4/7
page 148

�

�

�

�

�

�

�

�

148 Chapter 13. Adaptive Control for PDEs

13.1.2 Target System

The next step is to investigate effects of the time-varying λ̂ on the target system (which is
a simple heat equation in the nonadaptive case).

For the unknown λ we transform the identifier rather than the plant:

ŵ(x) = û(x) −
∫ x

0
k̂(x, y)û(y) dy , (13.19)

k̂(x, y) = −λ̂ξ

I1

(√
λ̂(x2 − y2)

)
√

λ̂(x2 − ξ 2)

. (13.20)

One can show that the above transformation maps (13.4)–(13.6) into the following target
system:

ŵt = ŵxx + ˙̂
λ

∫ x

0

ξ

2
ŵ(ξ) dξ + (λ̂ + γ 2‖u‖2)e1 , (13.21)

ŵ(0) = 0 , (13.22)

ŵ(1) = 0 , (13.23)

where e1 is the transformed estimation error

e1(x) = e(x) −
∫ x

0
k̂(x, ξ)e(y) dy . (13.24)

We observe that, in comparison to the nonadaptive target system, two additional terms appear

in (13.21), where one is proportional to ˙̂
λ and the other is proportional to the estimation

error e. The identifier guarantees that both of these terms are square integrable in time,
which, loosely speaking, means that they decay to zero barring some occasional “spikes.”

For further analysis we will also need the inverse transformation

û(x) = ŵ(x) +
∫ x

0
l̂(x, y)ŵ(y) dy , (13.25)

l̂(x, y) = −λ̂y

J1

(√
λ̂(x2 − y2)

)
√

λ̂(x2 − y2)

. (13.26)

13.1.3 Boundedness of Signals

Before we proceed, let us state two useful results.

Lemma 13.1. Suppose that the function f (t) defined on [0, ∞) satisfies the following
conditions:

• f (t) ≥ 0 for all t ∈ [0, ∞);

n48 main
2008/4/7
page 149

�

�

�

�

�

�

�

�

13.1. State-Feedback Design with Passive Identifier 149

• f (t) is differentiable on [0, ∞), and there exists a constant M such that

f ′(t) ≤ M for all t ≥ 0 ; (13.27)

•
∫∞

0 f (t) dt < ∞.

Then

lim
t→∞ f (t) = 0 . (13.28)

This lemma, proved in [116], is an alternative (not a corollary) to “Barbalat’s lemma,”
a standard tool in adaptive control.

Lemma 13.2 [97]. Let v, l1, and l2 be real-valued functions of time defined on [0, ∞), and
let c be a positive constant. If l1 and l2 are nonnegative and integrable on [0, ∞) and satisfy
the differential inequality

v̇ ≤ −cv + l1(t)v + l2(t), v(0) ≥ 0 , (13.29)

then v is bounded and integrable on [0, ∞).

In Section 13.1.1 we proved that λ̃ is bounded. This implies that λ̂ is also bounded;
let us denote this bound by λ0. The functions k̂(x, y) and l̂(x, y) are bounded and twice
continuously differentiable with respect to x and y; therefore there exist constants M1, M2,
M3 such that

‖e1‖ ≤ M1‖e‖ , (13.30)

‖u‖ ≤ ‖û‖ + ‖e‖ ≤ M2‖ŵ‖ + ‖e‖ , (13.31)

‖ux‖ ≤ ‖ûx‖ + ‖ex‖ ≤ M3‖ŵx‖ + ‖ex‖ . (13.32)

Using Young’s, Cauchy–Schwarz, and Poincaré inequalities, we estimate

1

2

d

dt
‖ŵ‖2 = −

∫ 1

0
ŵ2

x dx + ˙̂
λ

∫ 1

0
ŵ(x)

∫ x

0

ξ

2
ŵ(ξ) dξ dx + (λ̂ + γ 2‖u‖2)

∫ 1

0
e1ŵ dx

≤ −‖ŵx‖2 + |˙̂λ|
2

‖ŵ‖2 + M1λ0‖ŵ‖‖e‖ + γ 2M1‖u‖(M2‖ŵ‖ + ‖e‖)‖ŵ‖‖e‖

≤ −1

4
‖ŵ‖2 + 1

16
‖ŵ‖2 + |˙̂λ|2‖ŵ‖2 + 1

16
‖ŵ‖2

+ 4M2
1 λ2

0‖e‖2 + 1

16
‖ŵ‖2 + 8γ 4M2

1 M2
2 ‖u‖2‖e‖2‖ŵ‖2 + ‖e‖2

16M2
2

≤ − 1

16
‖ŵ‖2 + l1‖ŵ‖2 + l2, (13.33)

where l1, l2 are some integrable functions of time on [0, ∞). The last inequality follows from

the square integrability of ˙̂
λ, ‖u‖‖e‖, and ‖e‖. Using Lemma 13.2 we get the boundedness

n48 main
2008/4/7
page 150

�

�

�

�

�

�

�

�

150 Chapter 13. Adaptive Control for PDEs

and integrability of ‖ŵ‖2 (or square integrability of ‖ŵ‖). From (13.30) we get boundedness

and square integrability of ‖u‖ and ‖û‖, and (13.14) implies that ˙̂
λ is bounded.

In order to get pointwise in x boundedness, we need to show the boundedness of ‖ŵx‖
and ‖ex‖:

1

2

d

dt

∫ 1

0
ŵ2

x dx =
∫ 1

0
ŵxŵxt dx = −

∫ 1

0
ŵxxŵt dx

= −
∫ 1

0
ŵ2

xx dx −
˙̂
λ

2

∫ 1

0
ŵxx

∫ x

0
ξw(ξ) dξ dx

− (λ̂ + γ 2‖u‖2)

∫ 1

0
e1ŵxx dx

≤ −1

8
‖ŵx‖2 + |˙̂λ|2‖ŵ‖2

4
+ (λ0 + γ 2‖u‖2)2M1‖e‖2 , (13.34)

1

2

d

dt

∫ 1

0
e2
x dx ≤ −‖exx‖2 + |λ̃|‖exx‖‖u‖ − γ 2‖ex‖2‖u‖2

≤ −1

8
‖ex‖2 + 1

2
|λ̃|2‖u‖2 . (13.35)

Since the right-hand sides of (13.34) and (13.35) are integrable, using Lemma 13.2 we get
boundedness and square integrability of ‖ŵx‖ and ‖ex‖. From (13.25) we get boundedness
and square integrability of ‖ûx‖ and, as a consequence, of ‖ux‖. By the Agmon inequality,

max
x∈[0,1]

|u(x, t)|2 ≤ 2‖u‖‖ux‖ ≤ ∞ (13.36)

so that u (and, similarly, û) is bounded for all x ∈ [0, 1].

13.1.4 Regulation

To show the regulation of u to zero, note that

1

2

d

dt
‖e‖2 ≤ −‖ex‖2 + |λ̃|‖e‖‖u‖ < ∞ . (13.37)

The boundedness of (d/dt)‖w‖2 follows from (13.33). Using Lemma 13.1 we get

‖ŵ‖ → 0, ‖e‖ → 0 as t → ∞.

It follows from (13.25) that
‖û‖ → 0 ,

and therefore
‖u‖ → 0 .

Using the Agmon inequality and the fact that ‖ux‖ is bounded, we get the regulation of
u(x, t) to zero for all x ∈ [0, 1]:

lim
t→∞ max

x∈[0,1]
|u(x, t)| ≤ lim

t→∞(2‖u‖‖ux‖)1/2 = 0 . (13.38)

The summary of the passivity-based design is presented in Table 13.1.

n48 main
2008/4/7
page 151

�

�

�

�

�

�

�

�

13.2. Output-Feedback Design with Swapping Identifier 151

Table 13.1. Summary of the adaptive design with passive identifier.

Plant:

ut = uxx + λu , (13.39)

u(0) = 0 . (13.40)

Identifier:

ût = ûxx + λ̂u + γ 2(u − û)

∫ 1

0
u2(x) dx , (13.41)

û(0) = 0 , (13.42)

û(1) = u(1) , (13.43)

˙̂
λ = γ

∫ 1

0
(u(x) − û(x))u(x) dx . (13.44)

Controller:

u(1) = −
∫ 1

0
λ̂y

I1

(√
λ̂(1 − y2)

)
√

λ̂(1 − y2)

û(y) dy . (13.45)

13.2 Output-Feedback Design with Swapping Identifier
As we had indicated in the introduction to this chapter, we give examples only of adaptive
designs for PDEs; a wider, more general presentation is beyond the scope of this book. In
Section 13.1 we provided an example of a state feedback adaptive design. In this section
we provide an example of an output-feedback adaptive design.

Consider the plant

ut = uxx + gu(0) , (13.46)

ux(0) = 0 (13.47)

with only u(0) measured and u(1) actuated.
This system is motivated by a model of thermal instability in solid propellant rockets

[12]. The open-loop system (with u(1) = 0) is unstable if and only if g > 2.
The plant can be written in the frequency domain as a transfer function from input

u(1) to output u(0):

u(0, s) = s

(s − g) cosh
√

s + g
u(1, s) . (13.48)

We can see that it has no zeros (at s = 0 the transfer function is 2/(2−g)) and has infinitely
many poles, one of which is unstable and approximately equal to g as g → +∞. Hence,
this is an infinite relative degree system.

n48 main
2008/4/7
page 152

�

�

�

�

�

�

�

�

152 Chapter 13. Adaptive Control for PDEs

13.2.1 Identifier

We employ two filters: the state filter

vt = vxx + u(0) , (13.49)

vx(0) = 0 , (13.50)

v(1) = 0 (13.51)

and the input filter

ηt = ηxx , (13.52)

ηx(0) = 0 , (13.53)

η(1) = u(1) . (13.54)

The role of filters is to convert the dynamic parametrization (the plant) into a static parametri-
zation, which is obtained as follows.

We introduce the “estimation” error

e(x) = u(x) − gv(x) − η(x) , (13.55)

which is exponentially stable:

et = exx , (13.56)

ex(0) = 0 , (13.57)

e(1) = 0 . (13.58)

Then we set x = 0 in (13.55) (since only u(0) is measured) and take the resulting equation
as a parametric model:

e(0) = u(0) − gv(0) − η(0) . (13.59)

Let us denote the estimate of g by ĝ.
We choose the standard gradient update law with normalization

˙̂g = γ
ê(0)v(0)

1 + v2(0)
, (13.60)

where ê(0) is a “prediction error”:

ê(0) = u(0) − ĝv(0) − η(0) . (13.61)

Using the Lyapunov function

V = 1

2

∫ 1

0
e2 dx + 1

2γ
g̃2 , (13.62)

n48 main
2008/4/7
page 153

�

�

�

�

�

�

�

�

13.2. Output-Feedback Design with Swapping Identifier 153

where g̃ = g − ĝ is the parameter error, we get

V̇ = −
∫ 1

0
e2
x dx − g̃ê(0)v(0)

1 + v2(0)

≤ −
∫ 1

0
e2
x dx − ê2(0)

1 + v2(0)
+ e(0)ê(0)

1 + v2(0)

≤ −‖ex‖2 − ê2(0)

1 + v2(0)
+ ‖ex‖|ê(0)|√

1 + v2(0)

≤ −1

2
‖ex‖2 − 1

2

ê2(0)

1 + v2(0)
. (13.63)

Therefore,
V (t) ≤ V (0) , (13.64)

and from the definition of V we get boundedness of ‖e‖ and g̃. Integrating (13.63) in time
from zero to infinity, we can see that ê(0)√

1+v2(0)
is a square integrable function of time on

[0, ∞). Since

ê(0)√
1 + v2(0)

= e(0)√
1 + v2(0)

+ g̃
v(0)√

1 + v2(0)
, (13.65)

ê(0)√
1+v2(0)

is also bounded. Writing the update law (13.60) as

˙̂g = γ
ê(0)√

1 + v2(0)

v(0)√
1 + v2(0)

, (13.66)

we get boundedness and square integrability of ˙̂g.

Remark 13.3. Note that the passive identifier did not guarantee boundedness of the time
derivative of the parameter estimate. However, thanks to the normalization in the update
law, the swapping identifier does guarantee that.

13.2.2 Controller

In Chapter 9 we designed the following controller for (13.46), (13.47) when g is known:

u(1) = −
∫ 1

0

√
g sinh

√
g(1 − y)u(y) dy . (13.67)

Suppose now that g is unknown. According to the certainty equivalence principle, we
modify (13.67) in two ways: we replace g with its estimate ĝ and replace the unmeasured
state u with its estimate ĝv + η.

The resulting controller is

u(1, t) =
∫ 1

0
k̂(1, y)(ĝv(y) + η(y)) dy , (13.68)

k̂(x, y) =
{ −√

ĝ sinh
√

ĝ(x − y), ĝ ≥ 0,√−ĝ sin
√−ĝ(x − y), ĝ < 0,

(13.69)

n48 main
2008/4/7
page 154

�

�

�

�

�

�

�

�

154 Chapter 13. Adaptive Control for PDEs

where the control kernel is written in a form which acknowledges that ĝ may become
negative during the transient.

13.2.3 Target System

The backstepping transformation is

ŵ(x) = ĝv(x) + η(x) −
∫ x

0
k̂(x, y)(ĝv(y) + η(y)) dy , (13.70)

where k̂(x, y) is given by (13.69). One can show that it maps (13.46), (13.47), along with
(13.68), into the following system:

ŵt = ŵxx + β(x)ê(0) + ˙̂g
[
v +

∫ x

0
α(x − y)

(
ĝv(y) + ŵ(y)

)
dy

]
, (13.71)

ŵx(0) = 0 , (13.72)

ŵ(1) = 0 , (13.73)

where

α(x) = − 1

ĝ
k̂(x, 0) , (13.74)

β(x) = k̂ξ (x, 0) =
{

ĝ cosh
√

ĝx, ĝ ≥ 0 ,

ĝ cos
√−ĝx, ĝ < 0 .

(13.75)

Note that, when we compare this to the nonadaptive target system (heat equation), we
see that we have two extra terms: one is proportional to ê(0) and the other is proportional
to ˙̂g. The identifier guarantees that these terms decay (with occasional “spikes”); however,
we have an extra state in the equation: the filter v. Therefore we rewrite the equation for v

as

vt = vxx + ŵ(0) + ê(0) , (13.76)

vx(0) = 0 , (13.77)

v(1) = 0 (13.78)

and analyze the interconnection of two systems ŵ, v driven by the external signal ê(0).

13.2.4 Boundedness of Signals

Let us denote the bounds on ĝ, α, and β by g0, α0, and β0, correspondingly.
In order to establish boundedness of ‖w‖ and ‖v‖, consider the Lyapunov function

Vv = 1

2

∫ 1

0
v2(x) dx + 1

2

∫ 1

0
v2

x(x) dx . (13.79)

n48 main
2008/4/7
page 155

�

�

�

�

�

�

�

�

13.2. Output-Feedback Design with Swapping Identifier 155

Using Young’s and Poincaré inequalities, we have

V̇v = −
∫ 1

0
v2

x dx + (ŵ(0) + ê(0))

∫ 1

0
v dx

−
∫ 1

0
v2

xx dx − (ŵ(0) + ê(0))

∫ 1

0
vxx dx

≤ −‖vx‖2 + 1

8
‖v‖2 + 4

ê2(0)

1 + v2(0)
(1 + ‖vx‖2)

+ 4‖ŵx‖2 − ‖vxx‖2 + 1

2
‖vxx‖2 + ‖ŵx‖2

+ ê2(0)

1 + v2(0)
(1 + ‖vx‖2)

≤ −1

2
‖vx‖2 − 1

2
‖vxx‖2 + 5‖ŵx‖2 + l1‖vx‖2 + l2, (13.80)

where l1, l2 are some integrable functions of time (due to the properties guaranteed by the
identifier). Using the following Lyapunov function for the ŵ-system:

Vŵ = 1

2

∫ 1

0
ŵ2(x) dx , (13.81)

we get

V̇ŵ = −
∫ 1

0
ŵ2

x dx + ê(0)

∫ 1

0
βŵ dx + ˙̂g

∫ 1

0
ŵv dx

+ ˙̂g
∫ 1

0
ŵ(x)

∫ x

0
α(x − y)(ĝv(y) + ŵ(y)) dy dx

≤ −‖ŵx‖2 + c1

2
‖ŵ‖2 + β2

0

2c1

ê2(0)

1 + v2(0)
(1 + ‖vx‖2)

+| ˙̂g|2(1 + α0g0)
2

2c1
‖v‖2 + c1‖ŵ‖2 + | ˙̂g|2α2

0

2c1
‖ŵ‖2

≤ −(1 − 6c1)‖ŵx‖2 + l3‖ŵ‖2 + l4‖vx‖2 + l5 , (13.82)

where l3, l4, and l5 are integrable functions of time. Choosing c1 = 1/24 and using the
Lyapunov function

V = Vŵ + 1

20
Vv ,

we get

V̇ ≤ −1

2
‖ŵx‖2 − 1

40
‖vx‖2 − 1

40
‖vxx‖2

+l3‖ŵ‖2 +
(

l4 + l1

20

)
‖vx‖2 + l5 + l2

20

≤ −1

4
V + l6V + l7 , (13.83)

n48 main
2008/4/7
page 156

�

�

�

�

�

�

�

�

156 Chapter 13. Adaptive Control for PDEs

where l6 and l7 are integrable. By Lemma 13.2 we proved boundedness and square integra-
bility of ‖ŵ‖,‖v‖, and ‖vx‖. Using these properties we get

1

2

d

dt
‖ŵx‖2 ≤ −‖ŵxx‖2 + β0|ê(0)|‖ŵxx‖ + | ˙̂g|‖ŵxx‖((1 + α0g0)‖v‖ + α0‖ŵ‖)

≤ −1

8
‖ŵx‖2 + l8, (13.84)

where l8 is integrable, and thus ‖ŵx‖ is bounded and square integrable. By the Agmon
inequality we get boundedness of w(x, t) and v(x, t) for all x ∈ [0, 1].

13.2.5 Regulation

Using the fact that ‖vx‖, ‖ŵx‖ are bounded, one can easily show that

∣∣∣∣ d

dt
(‖v‖2 + ‖ŵ‖2)

∣∣∣∣ < ∞. (13.85)

By Lemma 13.1,

‖ŵ‖ → 0, ‖v‖ → 0.

From the transformation, inverse to (13.70),

ĝv(x) + η(x) = ŵ(x) − ĝ

∫ x

0
(x − y)ŵ(y) dy , (13.86)

we have that

‖η‖ → 0

and that ‖ηx‖ is bounded. Using (13.55) we get

‖u‖ → 0

and the boundedness of ‖ux‖. Finally, using the Agmon inequality we get

lim
t→∞ max

x∈[0,1]
|u(x, t)| ≤ lim

t→∞(2‖u‖‖ux‖)1/2 = 0 . (13.87)

The summary of the design with swapping identifier is presented in Table 13.2.
In Figure 13.1 the simulation results for the scheme with swapping identifier are

presented. We can see that the plant is stabilized and the parameter estimate comes close to
the true value g = 5 (sufficiently close so that the controller is stabilizing, but not converging
to the true value because of the absence of persistency of excitation).

n48 main
2008/4/7
page 157

�

�

�

�

�

�

�

�

13.3. Notes and References 157

Table 13.2. Summary of the adaptive design with swapping identifier.

Plant:

ut = uxx + gu(0) , (13.88)

ux(0) = 0 . (13.89)

Filters:

vt = vxx + u(0) , (13.90)

vx(0) = 0 , (13.91)

v(1) = 0 , (13.92)

ηt = ηxx , (13.93)

ηx(0) = 0 , (13.94)

η(1) = u(1) . (13.95)

Update law:

˙̂g = γ
(u(0) − ĝv(0) − η(0))v(0)

1 + v2(0)
. (13.96)

Controller:

u(1) =
∫ 1

0
k̂(1, y)(ĝv(y) + η(y)) dy , (13.97)

k̂(1, y) =
{ −√

ĝ sinh
√

ĝ(1 − y), ĝ ≥ 0 ,√−ĝ sin
√−ĝ(1 − y), ĝ < 0 .

(13.98)

13.3 Notes and References
Early work on adaptive control of infinite-dimensional systems focused on plants stabilizable
by nonidentifier-based high gain feedback [121] under a relative degree one assumption.

State-feedback model reference adaptive control (MRAC) was extended to PDEs
in [73, 25, 161, 135, 23], but not for the case of boundary control. Efforts in [46, 184] made
use of positive realness assumptions: where relative degree one is implicit.

Stochastic adaptive linear quadratic regulator (LQR) with least-squares parameter
estimation and state feedback was pursued in [51].

Adaptive control of nonlinear PDEs was studied in [116, 88]. Adaptive controllers
for nonlinear systems on lattices were designed in [79].

An experimentally validated adaptive boundary controller for a flexible beam was
presented in [144].

An overview and systematization of the adaptive backstepping techniques for PDEs
are presented in [94]. A Lyapunov approach to identifier design is considered in [98].

n48 main
2008/4/7
page 158

�

�

�

�

�

�

�

�

158 Chapter 13. Adaptive Control for PDEs

0

0.5

1 0 1 2 3 4

−20

−15

−10

−5

0

5

10

15

t
x

u

0 1 2 3 4
0

1

2

3

4

5

6

t

ĝ

Figure 13.1. The closed-loop simulation of the adaptive scheme with swapping
identifier. Top: The closed-loop response. Bottom: Evolution of the parameter estimate.

Exercises
13.1. Consider the plant

ut = uxx + bux + λu ,

u(0) = 0 ,

where b and λ are unknown constants and u(1) is the input. Following the cer-
tainty equivalence principle, design the adaptive scheme with passive identifier (the

n48 main
2008/4/7
page 159

�

�

�

�

�

�

�

�

Exercises 159

nominal controller for this plant was designed in Chapter 4). Use the identifier

ût = ûxx + λ̂u + γ 2(u − û)

∫ 1

0
u2

x(x) dx ,

û(0) = 0 ,

û(1) = u(1)

and the Lyapunov function

V = 1

2

∫ 1

0
e2(x) dx + 1

2γ
(λ̃2 + b̃2).

Show that the update laws

˙̂
λ = γ

∫ 1

0
(u(x) − û(x))u(x) dx ,

˙̂
b = γ

∫ 1

0
(u(x) − û(x))ux(x) dx

guarantee that estimation error ‖e‖ and parameter errors λ̃ and b̃ are bounded and

that ‖ex‖, ‖e‖‖ux‖, ˙̂
λ, and ˙̂

b are square integrable functions of time.

13.2. Consider the plant

ut = uxx + gux(0) ,

u(0) = 0 ,

where g is an unknown parameter, ux(0) is measured; and ux(1) is actuated. Design
the output-feedback adaptive controller for this plant. Follow these steps:

(1) Derive the nominal control law for the case when g is known. Use the target
system

wt = wxx ,

w(0) = 0 ,

wx(1) = 0

and show that the gain kernel PDE is

kxx(x, y) = kyy(x, y) ,

k(x, 0) = −g + g

∫ x

0
k(x, y) dy ,

k(x, x) = −g .

To solve this PDE, set
k(x, y) = φ(x − y) , (13.99)

write down the integral equation for φ(x), apply the Laplace transform, solve
for φ(s), and apply the inverse Laplace transform. You should get

k(x, y) = −ge g(x−y) .

n48 main
2008/4/7
page 160

�

�

�

�

�

�

�

�

160 Chapter 13. Adaptive Control for PDEs

(2) Introduce the filters

vt = vxx + ux(0) ,

v(0) = 0 ,

vx(1) = 0 ,

ηt = ηxx ,

η(0) = 0 ,

ηx(1) = ux(1)

and the “estimation” error

e(x) = u(x) − gv(x) − η(x) .

Show that this error satisfies an exponentially stable PDE.

(3) Use the Lyapunov function

V = 1

2

∫ 1

0
e2
x dx + 1

2γ
g̃2

and follow (13.63) to show that

V̇ = −1

2

∫ 1

0
e2
xx dx − êx(0)2

1 + vx(0)2
.

(You will need to use the inequality |ex(0)| ≤ ‖exx‖.) This proves that ‖ex‖
and g̃ are bounded.

Show that the update law

˙̂g = γ
êx(0)vx(0)

1 + vx(0)2

guarantees boundedness and square integrability of ˙̂g (use system (13.65),
(13.66) as an example).

(4) Write down the certainty equivalence controller.

n48 main
2008/4/7
page 161

�

�

�

�

�

�

�

�

Chapter 14

Towards Nonlinear PDEs

Even though the bulk of this book is dedicated to linear PDEs (except for Chapter 13
on adaptive control, where the designs are nonlinear even though they are made for linear
PDEs), our real motivation for studying the backstepping methods comes from their potential
for nonlinear PDEs. To put it plainly we ask, what method would one hope to be successful
for nonlinear PDEs if not the method that has been the most effective from among the
methods for ODEs?

The field of nonlinear control for PDEs is still in its infancy. Its growth to adulthood
and maturity promises to be extremely challenging. The problems that have so far proved
tractable have been problems in which the nonlinearity appears in the PDE in such a way that
it does not affect stability (relative to a simple choice of a Lyapunov function). This is the
case, for example, with [93] for the viscous Burgers equation, and various extensions of this
result for the Burgers equation [9, 114, 116]; the Korteweg–de Vries equation [117, 10]; the
Kuramoto–Sivashinsky equation [115]; and the Navier–Stokes equations [13, 8, 1]. Another
notable result, which in fact involves one step of backstepping on a system consisting of
a nonlinear PDE and two ODEs, was the result by Banaszuk, Hauksson, and Mezić [16]
on stabilization of an infinite-dimensional Moore–Greitzer model of compressor rotating
stall instability. Results such as the ones listed here, most of which involve nonlinear
parabolic PDEs, exist also for hyperbolic and hyperbolic-like PDEs (nonlinear string, plate,
etc. models) and are also characterized by nonhostile nonlinearities and the fact that simple
Lyapunov functions can be used.

Problems where nonlinearities in PDEs do not need to be counteracted are in a
sense easier (such as control design problems) than classical nonlinear control problems
for ODEs [97]. The problems that are of the most practical interest, and also are the
most mathematically challenging, are problems with boundary control and with in-domain
nonlinearities of harmful type, where not only do complex nonlinear infinite-dimensional
feedback laws need to be synthesized, but also complex Lyapunov functions need to be
found. Currently, only a single such result exists, which is boundary control for parabolic
PDEs with Volterre nonlinearities [175, 176, 177]. This result is far too complex to have a
place in an introductory text; however, we will present a condensed version of this result,

161

n48 main
2008/4/7
page 162

�

�

�

�

�

�

�

�

162 Chapter 14. Towards Nonlinear PDEs

as it is in a way the punchline of this book, and because it is a template for the kind of
nonlinear PDE problems that should be pursued in the field.

14.1 The Nonlinear Optimal Control Alternative
Even our highly simplified presentation of the design from [175, 176, 177] will reveal
the daunting complexity of the design, which is linked to the complexity of the problem of
stabilizing a nonlinear PDE with in-domain destabilizing nonlinearities using only boundary
control. Before we begin, we want to discuss one possible alternative to our approach—a
design based on nonlinear optimal control; to be precise, infinite-horizon, Hamilton–Jacobi–
Bellman (HJB) PDE-based nonlinear optimal control.

To develop an HJB-based feedback law, the simplest approach would entail (semi-)
discretizing the nonlinear PDE plant (in space) and developing an optimal feedback law for
the resulting, ODE system. For example, consider the simplest nonlinear PDE boundary
control problem worth studying as a boundary control problem with a possibly destabilizing
in-domain nonlinearity, that is, a reaction-diffusion equation

ut = uxx + f (u) , (14.1)

where f (u) is a continuous function, for instance, f (u) = u2. Let us consider a semi-
discretization in x, which results in a set of ODEs. For instance, one would typically expect
to need at least 10 grid points for a reasonable spatial discretization of a reaction-diffusion
system, so the resulting ODE system would be evolving in R

10.
To solve the HJB PDE for the resulting ODE control system, one would have to grid

the state space of the ODE (or one can think of that as “quantization” of the state space).
It would be reasonable to assume that at least 30 quantization points of the state space are
needed (furthermore, one may employ a log/exp quantization of the state variables to even
out the resolution of the state space for both large and small values of the state). Hence, we
would have 10 ODEs, with each one being approximated to a 30-point grid, as shown in
Figure 14.1.

The solution to the HJB equation would have to be stored in a 10D array, where, for
each point on the state grid in the 10D state space, the value of the solution of the HJB
equation is stored. Provided the HJB equation can actually be solved (which is a highly
nontrivial problem), one needs 3010 bytes of memory, which is approximately 1 petabyte
(PB) of storage space, to store the feedback law.

It is clear that 1 PB is a pretty large amount of disk space, but how large?
One can get a sense for the size of 1 PB of memory by noting that the entire disk space

of Google™ in 2007 was 2 PBs.
That a coarsely quantized 10th-order nonlinear ODE system would require half of

Google’s disk space just to store an optimal feedback law is an extremely discouraging
observation. Such an observation has been known for decades as the curse of dimension-
ality (often mentioned in the context of the “dynamic programming” approach to nonlinear
control).

This dramatic observation carries two clear messages. The first is that one may want
to give up optimality when pursuing control design for nonlinear PDEs; the second is that the
format one pursues for the nonlinear feedback laws should not be a “precomputed feedback

n48 main
2008/4/7
page 163

�

�

�

�

�

�

�

�

14.2. Feedback Linearization for a Nonlinear PDE 163

Figure 14.1. Discretizing and quantizing the state space of the reaction-diffusion
PDE (14.1) for the purpose of applying infinite-horizon HJB PDE-based nonlinear optimal
control design.

map” but a format where only the “gains” of a particular nonlinear feedback formula are
precomputed and the actual control value is computed online, based on the measurements
of the state.

The approach that we will consider in what follows results in feedback laws that are
infinite-dimensional but in which the nonlinear feedback operators are parameterized in a
polynomial manner using Volterra series in space. Hence, only the gain kernels (of the
Volterra series) need to be precomputed and stored. For the particular example (14.1) that
we will consider further in the chapter, the gain storage requirement is only about 1.5 (KBs),
which is twelve orders of magnitude less than the 1 PB requirement mentioned above.

Our feedback laws won’t be simple; quite on the contrary, however, their complexity
will be commensurate with the plant rather than exceeding it by a large margin.

14.2 Feedback Linearization for a Nonlinear PDE:
Transformation in Two Stages

Feedback linearization ideas have been considered for PDEs, using discretization in space or
various forms of ODE model reduction. None have, however, been proved to be convergent
as the discretization step goes to zero or as the reduced ODE model approaches the PDE
limit.

In this chapter we present a design approach that involves no discretization or model
reduction and which results in nonlinear feedback laws based on the backstepping approach
developed in the previous chapters.

n48 main
2008/4/7
page 164

�

�

�

�

�

�

�

�

164 Chapter 14. Towards Nonlinear PDEs

The design approach that we present here is applicable to a very general class of
plants, but it is remarkably involved in the general case. For clarity of presentation, in this
chapter we aim to give the reader only a flavor of the methodology for nonlinear control
design for PDEs, and we do this through the following example:

vt = vxx + v2 , 0 < x < 1 , (14.2)

v(0, t) = 0 , (14.3)

vx(1, t) = boundary control. (14.4)

This system suffers from finite escape time instability in the absence of control.
In order to pursue a feedback linearizing design for this PDE, it helps to recall the

basic principles of feedback linearization for ODEs. Full-state feedback linearization for
ODEs requires that a full relative degree output (the output whose relative degree is equal
to the order of the plant) be guessed correctly. (The Lie bracket tests allow us to establish
whether such an output exists but do not show how such an output can be found.)

For the present example, the full relative degree output is

vx(0, t) . (14.5)

This choice is motivated by the Dirichlet boundary condition at x = 0 (thus we select a
Neumann output) and by the fact that the control enters at the opposite boundary, x = 1.

The feedback linearizing design then proceeds in two stages; namely, the linearizing
transformation is a composition of two transformations.

Transformation 1. The first transformation is very simple (one should view it as a “pre-
transformation”) and is given by

u(x, t) = vx(x, t) . (14.6)

This transformation converts the system (14.2)–(14.4) into

ut (x, t) = uxx(x, t) + 2u(x, t)

∫ x

0
u(ξ, t)dξ , (14.7)

ux(0, t) = 0 , (14.8)

u(1, t) = boundary control. (14.9)

The transformation u = vx is appealing from the regularity point of view, as the
stabilization of u in L2 will automatically yield both H1 and L2 stability of v (due to
the boundary condition v(0, t) = 0). However, the usefulness of the transformation is
not obvious yet, as the simple function v(x, t)2 has been replaced by a more complicated
functional 2u(x, t)

∫ x

0 u(ξ, t)dξ .

Transformation 2. The heart of the feedback linearizing transformation is a backstepping
transformation. Guided by the Volterra form of the backstepping transformation in the linear

n48 main
2008/4/7
page 165

�

�

�

�

�

�

�

�

14.3. PDEs for the Kernels of the Spatial Volterra Series 165

case, we pursue the nonlinear transformation in the form of a Volterra series in the spatial
variable x, namely,

w(x) = u(x) −
∫ x

0
u(ξ1)

∫ ξ1

0
u(ξ2)k2(x, ξ1, ξ2)dξ2dξ1

−
∫ x

0
u(ξ1)

∫ ξ1

0
u(ξ2)

∫ ξ2

0
u(ξ3)k3(x, ξ1, ξ2, ξ3)dξ3dξ2dξ1

− · · · (terms of order 4 and higher). (14.10)

The target system for this transformation is the heat equation,

wt = wxx , (14.11)

wx(0, t) = 0 , (14.12)

w(1, t) = 0 , (14.13)

where the quadratic (destabilizing) reaction term v2 has been eliminated.
The boundary condition (14.13) is achieved with the control law

u(1) =
∫ 1

0
u(ξ1)

∫ ξ1

0
u(ξ2)k2(1, ξ1, ξ2)dξ2dξ1

+
∫ 1

0
u(ξ1)

∫ ξ1

0
u(ξ2)

∫ ξ2

0
u(ξ3)k3(1, ξ1, ξ2, ξ3)dξ3dξ2dξ1 + · · · . (14.14)

The reader should note that this feedback law has no linear component because the linearized
plant is the heat equation, which is exponentially stable, and thus one need not alter the linear
part of the closed-loop system. Hence, we use control with only nonlinear terms (powers
of two and higher), whose sole purpose is to prevent finite escape.

With powers of u going to infinity in (14.10) and (14.14), and having infinitely many
terms in the Volterra series, a crucial question arises—what are the chances that such a
control law would be bounded?

The answer to this question lies in the kernels k2(x, ξ1, ξ2), k3(x, ξ1, ξ2, ξ3), . . . , their
structure, and their rate of growth/decay.

14.3 PDEs for the Kernels of the Spatial Volterra Series in
the Nonlinear Feedback Operator

Let us first note that the kernels of the Volterra series depend on a number of arguments
which grow with the index of the kernel, namely,

k2(x, ξ1, ξ2) (3 arguments)
k3(x, ξ1, ξ2, ξ3) (4 arguments)
k4(x, ξ1, ξ2, ξ3, ξ4) (5 arguments)
k5(x, ξ1, ξ2, ξ3, ξ4, ξ5) (6 arguments)
...

n48 main
2008/4/7
page 166

�

�

�

�

�

�

�

�

166 Chapter 14. Towards Nonlinear PDEs

Figure 14.2. The kernel PDE domain T2 = {(x, ξ1, ξ2) : 0 ≤ ξ2 ≤ ξ1 ≤ x ≤ 1},
with the control kernel k2(1, ξ1, ξ2) defined in the shaded triangle.

As was the case with the linear problems in the book so far, the kernels are governed by
hyperbolic PDEs. The interesting fact, however, is that a cascade structure exists among
the PDEs governing the sequence of kernels in the nonlinear case; namely, the PDE for the
kernel k2 is autonomous, the PDE for k3 is governed by the solution for k2, and so on:

k2 → k3 → k4 → k5 → · · · (14.15)

Next, by matching (14.7), (14.8) and (14.12), (14.13), with the help of the Volterra
transformation (14.10), we obtain the following PDEs for the first two Volterra kernels. The
PDEs for the subsequent kernels become increasingly more complicated, partly because of
both the growing number of their arguments and the growing dimension of the PDEs. For
this reason, we stop after showing the details of k3.

PDE for kernel k2(x, ξ1, ξ2):

∂xxk2 = ∂ξ1ξ1k2 + ∂ξ2ξ2k2 (2D wave equation), (14.16)

k2(x, x, ξ2) = ξ2 − x , (14.17)

∂xk2(x, x, ξ2) = −2 , (14.18)

∂ξ2k2(x, ξ1, 0) = 0 , (14.19)

∂ξ1k2(x, ξ1, ξ1) = ∂ξ2k2(x, ξ1, ξ1) . (14.20)

The domain of this PDE is the pyramid

T2 = {(x, ξ1, ξ2) : 0 ≤ ξ2 ≤ ξ1 ≤ x ≤ 1} , (14.21)

shown in Figure 14.2, where the control kernel k2(1, ξ1, ξ2) is defined in the shaded triangle.
Note that the kernel k2 is nonzero, which is exclusively due to the inhomogeneities in the
boundary conditions (14.17), (14.18).

n48 main
2008/4/7
page 167

�

�

�

�

�

�

�

�

14.5. What Class of Nonlinear PDEs Can This Approach Be Applied to? 167

PDE for kernel k3(x, ξ1, ξ2, ξ3):

∂xxk3 = ∂ξ1ξ1k3 + ∂ξ2ξ2k3 + ∂ξ3ξ3k3

+ 4k2(x, ξ1, ξ2) + 2k2(x, ξ1, ξ3) (3D wave equation), (14.22)

k3(x, x, ξ2, ξ3) = 0 , (14.23)

∂xk3(x, x, ξ2, ξ3) = 3(x − ξ2)
2 , (14.24)

∂ξ3k3(x, ξ1, ξ2, 0) = 0 , (14.25)

∂ξ1k3(x, ξ1, ξ1, ξ3) = ∂ξ2k3(x, ξ1, ξ1, ξ3) , (14.26)

∂ξ2k3(x, ξ1, ξ2, ξ2) = ∂ξ2k3(x, ξ1, ξ2, ξ2) . (14.27)

The domain of this PDE is the “hyperpyramid” 0 ≤ ξ3 ≤ ξ2 ≤ ξ1 ≤ x ≤ 1. Besides noting
the inhomogeneity in boundary condition (14.22), one should also note that this PDE is
driven by the solution for k2.

14.4 Numerical Results
The numerical results for the example from the previous section are shown in Figures 14.3
and 14.4. The first term in the Volterra series for the nonlinear feedback law, u(1) =∫ 1

0 u(ξ1)
∫ ξ1

0 u(ξ2)k2(1, ξ1, ξ2)dξ2dξ1, is already successful in preventing the finite escape
instability for an initial condition of significant size.

If one were interested in replacing the quadratic feedback law

u(1) =
∫ 1

0
u(ξ1)

∫ ξ1

0
u(ξ2)k2(1, ξ1, ξ2)dξ2dξ1 (14.28)

with a quadratic feedback law in the v-variable, one would obtain it as

vx(1) = −v(1)

∫ 1

0
v(x)∂ξ2k2(1, 1, x)dx +

∫ 1

0
v(x)

∫ x

0
v(ξ)∂ξ1∂ξ2k2(1, x, ξ)dξdx .

(14.29)

14.5 What Class of Nonlinear PDEs Can This Approach Be
Applied to in General?

The nonlinear design approach presented in this chapter is applicable to the general class of
plants transformable into the form

ut = uxx + λ(x)u +
∞∑

n=1

∫ x

0

∫ ξ1

0
· · ·

∫ ξn−1

0
fn(x, ξ1, . . . , ξn)

⎛
⎝ ∞∏

j=1

u(ξj , t)

⎞
⎠ dξn . . . ξ1

+ u(x, t)

∞∑
n=1

∫ x

0

∫ ξ1

0
· · ·

∫ ξn−1

0
hn(x, ξ1, . . . , ξn)

⎛
⎝ ∞∏

j=1

u(ξj , t)

⎞
⎠ dξn . . . ξ1 ,

(14.30)

where the nonlinearities are given as Volterra series with kernels fn and hn.

n48 main
2008/4/7
page 168

�

�

�

�

�

�

�

�

168 Chapter 14. Towards Nonlinear PDEs

open-loop response for PDE ut (x, t) � uxx(x, t) + 2u(x, t)
x

0 u(ξ, t)dξ

closed-loop with controller u(1) � 1
0 u(ξ1)

ξ1

0 u(ξ2)k2(1, ξ1, ξ2)dξ2dξ1

Figure 14.3. Open-loop and closed-loop simulation results for the nonlinear PDE
ut (x, t) = uxx(x, t) + 2u(x, t)

∫ x

0 u(ξ, t)dξ . In open loop, the solution blows up in finite
time. In closed loop, the PDE is stabilized to zero. Only the first significant term (the
quadratic term) in the Volterra feedback is applied.

n48 main
2008/4/7
page 169

�

�

�

�

�

�

�

�

14.5. What Class of Nonlinear PDEs Can This Approach Be Applied to? 169

Figure 14.4. The kernel of the quadratic term in the Volterra series feedback law.

The motivation for this class of plants comes from applications. Consider the fol-
lowing system of coupled PDEs, which is a simplified example of dynamics that arise in
chemical process control (reactant concentration dynamics coupled with thermal dynamics):

ut = uxx + μv , (14.31)

εvt = vxx + ω2v + uv + u . (14.32)

When the two subsystems are operating on very different time scales, namely, when ε → 0,
the mapping u �→ v is a Volterra series in x (after an application of a boundary feedback
v(1) that eliminates a Fredholm operator from the solution for v(x)).

14.5.1 Some Bad News

We have observed, by examining the details of the design for a PDE with a simple reaction
term, that the feedback synthesis is quite complex—it contains a Volterra series operator
even when no such complex nonlinear operator is present in the plant. When the plant
class is enlarged to (14.30), where Volterra series appear in the plant, one can expect a
significant increase in the complexity of the feedback design. Indeed, the number of terms
on the right-hand side of the kn PDE in the design for the plant class (14.30) is a staggering
3 · 2n − n − 3.

14.5.2 Some Good News

Fortunately, the volume of the domain of evolution of the kernel PDEs kn decays as 1
(n+1)! .

Furthermore, the volume of the domain of integration of each term in Volterra series (for the

n48 main
2008/4/7
page 170

�

�

�

�

�

�

�

�

170 Chapter 14. Towards Nonlinear PDEs

transformation and the control law) decays as 1
n! . As a result, the control law is convergent

under very nonrestrictive assumptions on the plant nonlinearities, as detailed next.

14.5.3 What Can Actually Be Proved?

The following properties of the control law and of the feedback system can be proved [175,
176, 177]:

• A priori (Lyapunov) estimates can be derived for each kn(x, ξ1, . . . , ξn). The
growth of their L2- and L∞-norms in n can be quantified on domains of increasing
dimension, i.e., for wave equations in nD, as n → ∞.

• The controller can be shown to be convergent. For any plant nonlinearity with a
globally convergent Volterra series, the Volterra series of the backstepping transfor-
mation and feedback law can be proved to be globally convergent for states in L2 or
L∞. The meaning of this is that the plant Volterra kernels are not only allowed to be
large, but they also are even permitted to have a certain rate of growth with n.

• The closed-loop system is asymptotically stable. This is a consequence of the stabil-
ity of the target system and of the fact that the nonlinear backstepping transformation
is invertible.

14.5.4 Is the Complexity Method Induced or Inherent?

The complexity in the design is inherent in the class of plants and the problem being pursued.
The complexity may appear to be method induced when backstepping is considered only
for a stabilization problem, where as many different solutions exist as control Lyapunov
functions. However, the design procedure from this chapter applies also to solving a motion
planning problem for the same class of systems. The motion planning problem is an “exact”
problem, with a unique solution. Hence, the complexity observed in the solution to this
problem is inherent in the problem, not method induced.

14.6 Notes and References
The material in this chapter is based on [175, 176, 177]. Numerous research opportunities
exist for extending the nonlinear control designs for the reaction-diffusion partial integro-
differential equations in this chapter to nonlinear versions of various other classes of PDE
systems discussed in this book.

One regrettable feature of the control problems for nonlinear PDEs is that they are not
always globally solvable. For nonlinear ODEs in the “strict-feedback” class, control prob-
lems (stabilization, motion planning, tracking, disturbance attenuation, adaptive control,
etc.) are always solvable globally. Since this class is the ODE equivalent of the boundary
control problems for nonlinear PDEs, one would hope for global solvability of similar prob-
lems for nonlinear PDEs. Unfortunately, this is not the case, as indicated through counter
examples in [53, 63].

n48 main
2008/4/7
page 171

�

�

�

�

�

�

�

�

Exercise 171

The failure of global solvability of stabilization (and motion planning) problems for
nonlinear PDEs via the method of backstepping manifests itself through the lack of global
invertibility of the backstepping transformation. While the direct backstepping transforma-
tion is always globally well defined, its inverse may be well defined only for a limited size
of its functional argument.

Despite the disappointing observation that we may not be able to achieve global results
for nonlinear PDE problems of interest, the backstepping design allows us to achieve stabi-
lization in large regions of attraction, whose size can be estimated thanks to the availability
of a Lyapunov function, which is constructed through the backstepping transformation.

Exercise
14.1. By matching (14.7), (14.8) and (14.12), (14.13), with the help of the Volterra trans-

formation (14.10), derive the PDEs for the kernels k2 and k3 in (14.16)–(14.20) and
(14.22)–(14.27).

n48 main
2008/4/7
page 172

�

�

�

�

�

�

�

�

n48 main
2008/4/7
page 173

�

�

�

�

�

�

�

�

Appendix

Bessel Functions

A.1 Bessel Function Jn

The function y(x) = Jn(x) is a solution to the following ODE:

x2y ′′
xx + xy ′

x + (x2 − n2)y = 0 . (A.1)

Series representation:

Jn(x) =
∞∑

m=0

(−1)m(x/2)n+2m

m!(m + n)! . (A.2)

Properties:

2nJn(x) = x(Jn−1(x) + Jn+1(x)) , (A.3)

Jn(−x) = (−1)nJn(x) . (A.4)

Differentiation:

d

dx
Jn(x) = 1

2
(Jn−1(x) − Jn+1(x)) = n

x
Jn(x) − Jn+1(x) , (A.5)

d

dx
(xnJn(x)) = xnJn−1,

d

dx
(x−nJn(x)) = −x−nJn+1 . (A.6)

Asymptotic properties (illustrated in Figure A.1):

Jn(x) ≈ 1

n!
(x

2

)n

, x → 0 , (A.7)

Jn(x) ≈
√

2

πx
cos

(
x − πn

2
− π

4

)
, x → ∞ . (A.8)

173

n48 main
2008/4/7
page 174

�

�

�

�

�

�

�

�

174 Appendix. Bessel Functions

0 2 4 6 8 10
−0.5

0

0.5

1

J1

J0

J3
J2

x

Figure A.1. Bessel function Jn.

A.2 Modified Bessel Function In

The function y(x) = In(x) is a solution to the following ODE:

x2y ′′
xx + xy ′

x − (x2 + n2)y = 0 . (A.9)

Series representation:

In(x) =
∞∑

m=0

(x/2)n+2m

m!(m + n)! . (A.10)

Relationship with Jn(x):

In(x) = i−nJn(ix), In(ix) = inJn(x) . (A.11)

Properties:

2nIn(x) = x(In−1(x) − In+1(x)) , (A.12)

In(−x) = (−1)nIn(x) . (A.13)

Differentiation:

d

dx
In(x) = 1

2
(In−1(x) + In+1(x)) = n

x
In(x) + In+1(x) , (A.14)

d

dx
(xnIn(x)) = xnIn−1,

d

dx
(x−nIn(x)) = x−nIn+1 . (A.15)

n48 main
2008/4/7
page 175

�

�

�

�

�

�

�

�

A.2. Modified Bessel Function In 175

Asymptotic properties (illustrated in Figure A.2):

In(x) ≈ 1

n!
(x

2

)n

, x → 0 , (A.16)

In(x) ≈ ex

√
2πx

, x → ∞ . (A.17)

0 1 2 3 4 5

0

2

4

6

8

10
I0 I1 I2 I3

x

Figure A.2. Modified Bessel function In.

n48 main
2008/4/7
page 176

�

�

�

�

�

�

�

�

n48 main
2008/4/7
page 177

�

�

�

�

�

�

�

�

Bibliography

[1] O.-M. Aamo and M. Krstic, Flow Control by Feedback: Stabilization and Mixing,
Springer, New York, 2003.

[2] , Global stabilization of a nonlinear Ginzburg–Landau model of vortex shed-
ding, European Journal of Control, 10 (2004), pp. 105–118.

[3] O.-M. Aamo, A. Smyshlyaev, and M. Krstic, Boundary control of the linearized
Ginzburg–Landau model of vortex shedding, SIAM Journal on Control and Opti-
mization, 43 (2005), pp. 1953–1971.

[4] O.-M. Aamo, A. Smyshlyaev, M. Krstic, and B. Foss, Stabilization of a Ginzburg–
Landau model of vortex shedding by output-feedback boundary control, IEEE Trans-
actions on Automatic Control, 52 (2007), pp. 742–748.

[5] H. Amann, Feedback stabilization of linear and semilinear parabolic systems,
in Semigroup Theory and Applications, Lecture Notes in Pure and Appl. Math.,
116 (1989), Marcel Dekker, New York, pp. 21–57.

[6] Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Transactions
on Automatic Control, 27 (1982), pp. 869–879.

[7] J. Baker, A. Armaou, and P. D. Christofides, Nonlinear control of incompress-
ible fluid flow: Application to Burgers’ equation and 2D channel flow, Journal of
Mathematical Analysis and Applications, 252 (2000), pp. 230–255.

[8] A. Balogh, O. M. Aamo, and M. Krstic, Optimal mixing enhancement in 3D pipe
flow, IEEE Transactions on Control Systems Technology, 13 (2005), pp. 27–41.

[9] A. Balogh and M. Krstic, Burgers’ equation with nonlinear boundary feedback:
H 1 stability, well posedness, and simulation, Mathematical Problems in Engineering,
6 (2000), pp. 189–200.

[10] , Boundary control of the Korteweg–de Vries–Burgers equation: Further re-
sults on stabilization and numerical demonstration, IEEE Transactions on Automatic
Control, 45 (2000), pp. 1739–1745.

[11] , Infinite dimensional backstepping-style feedback transformations for a heat
equation with an arbitrary level of instability, European Journal of Control, 8 (2002),
pp. 165–175.

177

n48 main
2008/4/7
page 178

�

�

�

�

�

�

�

�

178 Bibliography

[12] A. Balogh and M. Krstic, Stability of partial differential equations governing
control gains in infinite dimensional backstepping, Systems and Control Letters, 51
(2004), pp. 151–164.

[13] A. Balogh, W.-J. Liu, and M. Krstic, Stability enhancement by boundary control
in 2D channel flow, IEEE Transactions on Automatic Control, 46 (2001), pp. 1696–
1711.

[14] B. Bamieh and M.A. Dahleh, Energy amplification in channel flows with stochastic
excitation, Physics of Fluids, 13 (2001), pp. 3258–3269.

[15] B. Bamieh, F. Paganini, and M. A. Dahleh, Distributed control of spatially-
invariant systems, IEEE Transactions on Automatic Control, 47 (2002), pp. 1091–
1107.

[16] A. Banaszuk, H. A. Hauksson, and I. Mezić, A backstepping controller for a
nonlinear partial differential equation model of compression system instabilities,
SIAM Journal on Control and Optimization, 37 (1999), pp. 1503–1537.

[17] H. T. Banks, R. C. Smith, and Y. Wang, Smart Material Structures: Modeling,
Estimation, and Control, Wiley, New York, Masson, Paris, 1996.

[18] V. Barbu, Feedback stabilization of Navier–Stokes equations, ESAIM: Control, Op-
timisation and Calculus of Variations, 9 (2003), pp. 197–205.

[19] V. Barbu, I. Lasiecka, and R. Triggiani, Tangential boundary stabilization of
Navier–Stokes equations, Memoirs of the American Mathematical Society, 181
(2006), no. 852.

[20] V. Barbu and R. Triggiani, Internal stabilization of Navier–Stokes equations with
finite-dimensional controllers, Indiana University Mathematics Journal, 53 (2004),
pp. 1443–1494.

[21] J. Baumeister, W. Scondo, M. A. Demetriou, and I. G. Rosen, On-line parameter
estimation for infinite-dimensional dynamical systems, SIAM Journal on Control
Optimization, 35 (1997), pp. 678–713.

[22] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation
and Control of Infinite-Dimensional Systems, 2nd ed., Birkhäuser, Boston, 2006.

[23] J. Bentsman andY. Orlov, Reduced spatial order model reference adaptive control
of spatially varying distributed parameter systems of parabolic and hyperbolic types,
International Journal of Adaptive Control and Signal Processing, 15 (2001), pp. 679–
696.

[24] T. R. Bewley, Flow control: New challenges for a new Renaissance, Progress in
Aerospace Sciences, 37 (2001), pp. 21–58.

[25] M. Böhm, M. A. Demetriou, S. Reich, and I. G. Rosen, Model reference adaptive
control of distributed parameter systems, SIAM Journal on Control and Optimization,
36 (1998), pp. 33–81.

n48 main
2008/4/7
page 179

�

�

�

�

�

�

�

�

Bibliography 179

[26] D. Boskovic, A. Balogh, and M. Krstic, Backstepping in infinite dimension for a
class of parabolic distributed parameter systems, Mathematics of Control, Signals,
and Systems, 16 (2003), pp. 44–75.

[27] D. M. Boskovic and M. Krstic, Backstepping control of chemical tubular reactor,
Computers and Chemical Engineering, 26 (2002), pp. 1077–1085.

[28] , Stabilization of a solid propellant rocket instability by state feedback, Inter-
national Journal of Robust and Nonlinear Control, 13 (2003), pp. 483–495.

[29] , Nonlinear stabilization of a thermal convection loop by state feedback, Auto-
matica, 37 (2001), pp. 2033–2040.

[30] D. M. Boskovic, M. Krstic, and W. J. Liu, Boundary control of an unstable heat
equation via measurement of domain-averaged temperature, IEEE Transactions on
Automatic Control, 46 (2001), pp. 2022–2028.

[31] J. A. Burns and K. P. Hulsing, Numerical methods for approximating functional
gains in LQR boundary control problems, Mathematical and Computer Modeling,
33 (2001), pp. 89–100.

[32] J. A. Burns and D. Rubio, A distributed parameter control approach to sensor
location for optimal feedback control of thermal processes, in Proceedings of the 36th
Annual Conference on Decision and Control, San Diego, CA, Dec. 1997, pp. 2243–
2247.

[33] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press,
Oxford, 1959.

[34] , Feedback control of hyperbolic PDE systems, AIChE Journal, 42 (1996),
pp. 3063–3086.

[35] P. D. Christofides and P. Daoutidis, Robust control of hyperbolic PDE systems,
Chemical Engineering Science, 53 (1998), pp. 85–105.

[36] P. Christofides, Nonlinear and Robust Control of Partial Differential Equation
Systems: Methods and Applications to Transport-Reaction Processes, Birkhäuser,
Boston, 2001.

[37] J. Cochran, R. Vazquez, and M. Krstic, Backstepping boundary control of
Navier–Stokes channel flow: A 3D extension, in Proceedings of the 25th American
Control Conference (ACC), pp. 769–774, Minneapolis, 2006.

[38] D. Colton, The solution of initial-boundary value problems for parabolic equations
by the method of integral operators, Journal of Differential Equations, 26 (1977),
pp. 181–190.

[39] J.-M. Coron, On the controllability of the 2D incompressible Navier–Stokes equa-
tions with the Navier slip boundary conditions, ESAIM Control, Optimisation and
Calculus of Variations, 1 (1996), pp. 35–75.

n48 main
2008/4/7
page 180

�

�

�

�

�

�

�

�

180 Bibliography

[40] R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience Pub-
lishers, New York, 1962.

[41] R. F. Curtain, Robust stabilizability of normalized coprime factors: The infinite-
dimensional case, International Journal on Control, 51 (1990), pp. 1173–1190.

[42] R. F. Curtain, M. A. Demetriou, and K. Ito, Adaptive observers for structurally
perturbed infinite dimensional systems, in Proceedings of the 36th Conference on
Decision and Control, San Diego, CA, Dec. 1997, pp. 509–514.

[43] , Adaptive observers for slowly time varying infinite dimensional systems, in
Proceedings of the 37th Conference on Decision and Control, Tampa, FL, Dec. 1998,
pp. 4022–4027.

[44] R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear
Systems Theory, Springer-Verlag, New York, 1995.

[45] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
Birkhäuser, Boston, 1997.

[46] M. A. Demetriou and K. Ito, Optimal on-line parameter estimation for a class of
infinite dimensional systems using Kalman filters, in Proceedings of the American
Control Conference, 2003, pp. 2708–2713.

[47] M. A. Demetriou and I. G. Rosen, Variable structure model reference adaptive
control of parabolic distributed parameter systems, in Proceedings of the American
Control Conference, Anchorage, AK, May 2002, pp. 4371–4376.

[48] , On-line robust parameter identification for parabolic systems, International
Journal of Adaptive Control and Signal Processing, 15 (2001), pp. 615–631.

[49] D. G. Duffy, Transform Methods for Solving Partial Differential Equations, CRC
Press, Boca Raton, FL, 1994.

[50] W. B. Dunbar, N. Petit, P. Rouchon, and P. Martin, Motion planning for a
nonlinear Stefan problem, ESAIM Control, Optimisation and Calculus of Variations,
9 (2003), pp. 275–296.

[51] T. E. Duncan, B. Maslowski, and B. Pasik-Duncan, Adaptive boundary and point
control of linear stochastic distributed parameter systems, SIAM Journal on Control
and Optimization, 32 (1994), pp. 648–672.

[52] H. O. Fattorini, Boundary control systems, SIAM Journal on Control, 6 (1968),
pp. 349–385.

[53] E. Fernandez-Cara and S. Guerrero, Null controllability of the Burgers’equation
with distributed controls, Systems and Control Letters, 56 (2007), pp. 366–372.

[54] Y. A. Fiagbedzi and A. E. Pearson, Feedback stabilization of linear autonomous
time lag systems, IEEE Transactions on Automatic Control, 31 (1986), pp. 847–855.

n48 main
2008/4/7
page 181

�

�

�

�

�

�

�

�

Bibliography 181

[55] M. Fliess and H. Mounier, Tracking control and π -freeness of infinite dimensional
linear system, in Dynamical Systems, Control Coding, Computer Vision (G. Picci
and D. S. Gilliam, eds.), Birkhäuser, Boston, 1999, pp. 45–68.

[56] M. Fliess, H. Mounier, P. Rouchon, and J. Rudolph, A distributed parameter
approach to the control of a tubular reactor: A multi-variable case, in Proceedings
of the 37th Conference on Decision and Control, Tampa, FL, 1998, pp. 736–741.

[57] S. S. Frazao and Y. Zech, Undular bores and secondary waves—experiments and
hybrid finite-volume modelling, Journal of Hydraulic Research, 40 (2002), pp. 33–43.

[58] N. Fujii, Feedback stabilization of distributed parameter systems by a functional
observer, SIAM Journal on Control and Optimization, 18 (1980), pp. 108–121.

[59] A. V. Fursikov, Stabilization of two-dimensional Navier–Stokes equations with help
of a boundary feedback control, Journal of Mathematical Fluid Mechanics, 3 (2001),
pp. 259–301.

[60] A.V. Fursikov, Stabilization for the 3-D Navier–Stokes system by feedback boundary
control, Discrete and Continuous Dynamical Systems, 10 (2004), pp. 289–314.

[61] A. V. Fursikov, M. D. Gunzburger, and L. S. Hou, Boundary value problems and
optimal boundary control for the Navier–Stokes system: The two-dimensional case,
SIAM Journal on Control and Optimization, 36 (1998), pp. 852–894.

[62] K. Gu and S.-I. Niculescu, Survey on recent results in the stability and control of
time-delay systems, Transactions of ASME, 125 (2003), pp. 158–165.

[63] S. Guerrero and O.Y. Imanuvilov, Remarks on global controllability for the Burg-
ers equation with two control forces, Annales de l’Institut Henri Poincaré. Analyse
Non Linéaire, 24 (2007), pp. 897–906.

[64] M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM,
Philadelphia, 2002.

[65] M. Gunzburger and H.C. Lee, Feedback control of Karman vortex shedding,
Transactions of ASME, 63 (1996), pp. 828–835.

[66] M. D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier–
Stokes flows with boundary control, SIAM Journal on Control and Optimization, 39
(2000), pp. 594–634.

[67] B.-Z. Guo and Z.-C. Shao, Regularity of a Schrödinger equation with Dirichlet
control and colocated observation, Systems and Control Letters, 54 (2005), pp. 1135–
1142.

[68] S. M. Han, H. Benaroya, and T. Wei, Dynamics of transversely vibrating beams
using four engineering theories, Journal of Sound and Vibration, 225 (1999), pp. 935–
988.

n48 main
2008/4/7
page 182

�

�

�

�

�

�

�

�

182 Bibliography

[69] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd ed., Cambridge
University Press, Cambridge, UK, 1959.

[70] J.-W. He, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, Active
control and drag optimization for flow past a circular cylinder: I. Oscillatory cylinder
rotation, Journal of Computational Physics, 163 (2000), pp. 83–117.

[71] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New
York, 1993.

[72] M. Hogberg, T. R. Bewley, and D. S. Henningson, Linear feedback control
and estimation of transition in plane channel flow, Journal of Fluid Mechanics, 481
(2003), pp. 149–175.

[73] K. S. Hong and J. Bentsman, Direct adaptive control of parabolic systems: Al-
gorithm synthesis and convergence and stability analysis, IEEE Transactions on
Automatic Control, 39 (1994), pp. 2018–2033.

[74] P. Huerre and P. A. Monkewitz, Local and global instabilities in spatially devel-
oping flows, Annual Review of Fluid Mechanics, 22 (1990), pp. 473–537.

[75] O.Y. Imanuvilov, On exact controllability for the Navier–Stokes equations, ESAIM
Control, Optimisation and Calculus of Variations, 3 (1998), pp. 97–131.

[76] P. Ioannou and J. Sun, Robust Adaptive Control, Prentice–Hall, Upper Saddle
River, NJ, 1996.

[77] M. Jankovic, Control Lyapunov–Razumikhin functions and robust stabilization of
time delay systems, IEEE Transactions on Automatic Control, 46 (2001), pp. 1048–
1060.

[78] M. R. Jovanovic and B. Bamieh, Componentwise energy amplification in channel
flows, Journal of Fluid Mechanics, 543 (2005), pp. 145–183.

[79] , Lyapunov-based distributed control of systems on lattices, IEEE Transactions
on Automatic Control, 50 (2005), pp. 422–433.

[80] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, A toolkit for nonlinear
feedback design, Systems and Control Letters, 18 (1992), pp. 83–92.

[81] B. van Keulen, H∞-Control for Distributed Parameter Systems: A State-Space
Approach, Birkhäuser, Boston, 1993.

[82] H. Khalil, Nonlinear Systems, 2nd ed., Prentice–Hall, Upper Saddle River, NJ,
1996.

[83] J. U. Kim andY. Renardy, Boundary control of the Timoshenko beam, SIAM Journal
on Control and Optimization, 25 (1987), pp. 1417–1429.

[84] J. Klamka, Observer for linear feedback control of systems with distributed delays
in controls and outputs, Systems and Control Letters, 1 (1982), pp. 326–331.

n48 main
2008/4/7
page 183

�

�

�

�

�

�

�

�

Bibliography 183

[85] T. Kobayashi, Global adaptive stabilization of infinite-dimensional systems, Systems
and Control Letters, 9 (1987), pp. 215–223.

[86] T. Kobayashi, Adaptive regulator design of a viscous Burgers’ system by boundary
control, IMA Journal of Mathematical Control and Information, 18 (2001), pp. 427–
437.

[87] , Stabilization of infinite-dimensional second-order systems by adaptive PI-
controllers, Mathematical Methods in the Applied Sciences, 24 (2001), pp. 513–527.

[88] , Adaptive stabilization of the Kuramoto–Sivashinsky equation, International
Journal of Systems Science, 33 (2002), pp. 175–180.

[89] , Low-gain adaptive stabilization of infinite-dimensional second-order systems,
Journal of Mathematical Analysis and Applications, 275 (2002), pp. 835–849.

[90] , Adaptive stabilization of infinite-dimensional semilinear second-order sys-
tems, IMA Journal of Mathematical Control and Information, 20 (2003), pp. 137–
152.

[91] V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, Res.
Appl. Math., 36, Wiley, Chichester, Masson, Paris, 1994.

[92] A. J. Krener and W. Kang, Locally convergent nonlinear observers, SIAM Journal
of Control and Optimization, 42 (2003), pp. 155–177.

[93] M. Krstic, On global stabilization of Burgers’ equation by boundary control, Sys-
tems and Control Letters, 37 (1999), pp. 123–142.

[94] , Systematization of approaches to adaptive boundary stabilization of PDEs,
International Journal of Robust and Nonlinear Control, 16 (2006), pp. 812–818.

[95] M. Krstic and H. Deng, Stabilization of Nonlinear Uncertain Systems, Springer-
Verlag, New York, 1998.

[96] M. Krstic, B.-Z. Guo, A. Balogh, and A. Smyshlyaev, Control of a tip-force
destabilized shear beam by observer-based boundary feedback, SIAM Journal on
Control and Optimization, 47 (2008), pp. 553–574.

[97] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive
Control Design, Wiley, New York, 1995.

[98] M. Krstic and A. Smyshlyaev, Adaptive boundary control for unstable parabolic
PDEs—Part I: Lyapunov design, IEEE Transactions onAutomatic Control, to appear.

[99] M. Krstic,A. Siranosian, andA. Smyshlyaev, Backstepping boundary controllers
and observers for the slender Timoshenko beam: Part I—Design, in Proceedings of
the American Control Conference, 2006, pp. 2412–2417.

n48 main
2008/4/7
page 184

�

�

�

�

�

�

�

�

184 Bibliography

[100] M. Krstic, A. Siranosian, A. Smyshlyaev, and M. Bement, Backstepping bound-
ary controllers and observers for the slender Timoshenko beam: Part II—Stability
and simulations, in Proceedings of the 45th IEEE Conference on Decision and Con-
trol, San Diego, 2006, pp. 3938–3943.

[101] N. Kunimatsu and H. Sano, Stability analysis of heat-exchanger equations with
boundary feedbacks, IMA Journal of Mathematical Control and Information, 15
(1998), pp. 317–330.

[102] W. H. Kwon and A. E. Pearson, Feedback stabilization of linear systems with
delayed control, IEEE Transactions on Automatic Control, 25 (1980), pp. 266–269.

[103] J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989.

[104] B. Laroche and P. Martin, Motion planning for 1-D linear partial differential
equations, in Algebraic Methods in Flatness, Signal Processing and State Estimation,
(H. Sira-Ramirez, G. Silva-Navarro, eds.), Mexico, 2003, pp. 55–76.

[105] B. Laroche, P. Martin, and P. Rouchon, Motion planning for the heat equation,
International Journal of Robust and Nonlinear Control, 10 (2000), pp. 629–643.

[106] I. Lasiecka, Mathematical Control Theory of Coupled PDEs, SIAM, Philadelphia,
2002.

[107] , Stabilization and structural assignment of Dirichlet boundary feedback
parabolic equations, SIAM Journal on Control and Optimization, 21 (1983), pp. 766–
803.

[108] , Optimal regularity, exact controllability and uniform stabilisation of
Schrödinger equations with Dirichlet control, Differential Integral Equations, 5
(1992), pp. 521–535.

[109] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations:
Continuous and Approximation Theories, 2 vols., Cambridge University Press, Cam-
bridge, UK, 2000.

[110] E. Lauga and T. R. Bewley, Performance of a linear robust control strategy on
a nonlinear model of spatially-developing flows, Journal of Fluid Mechanics, 512
(2004), pp. 343–374.

[111] , Modern control of linear global instability in a cylinder wake model, Interna-
tional Journal of Heat and Fluid Flow, 23 (2002), pp. 671–677.

[112] X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems,
Birkhäuser, Boston, 1995.

[113] W. J. Liu, Boundary feedback stabilization of an unstable heat equation, SIAM
Journal on Control and Optimization, 42 (2003), pp. 1033–1043.

[114] W.-J. Liu and M. Krstic, Backstepping boundary control of Burgers’equation with
actuator dynamics, Systems and Control Letters, 41 (2000), pp. 291–303.

n48 main
2008/4/7
page 185

�

�

�

�

�

�

�

�

Bibliography 185

[115] W.-J. Liu and M. Krstic, Stability enhancement by boundary control in the
Kuramoto–Sivashinsky equation, Nonlinear Analysis, 43 (2000), pp. 485–583.

[116] , Adaptive control of Burgers’ equation with unknown viscosity, International
Journal of Adaptive Control and Signal Proccessing, 15 (2001), pp. 745–766.

[117] , Global boundary stabilization of the Korteweg–de Vries–Burgers equation,
Computational and Applied Mathematics, 21 (2002), pp. 315–354.

[118] H. Logemann, Stabilization and regulation of infinite-dimensional systems using
coprime factorizations, in Analysis and Optimization of Systems: State and Fre-
quency Domain Approaches for Infinite-Dimensional Systems (Sophia-Antipolis,
1992), Lecture Notes in Control and Inform. Sci., 185, Springer, Berlin, 1993,
pp. 102–139.

[119] H. Logemann and B. Martensson, Adaptive stabilization of infinite-dimensional
systems, IEEE Transactions on Automatic Control, 37 (1992), pp. 1869–1883.

[120] H. Logemann and E. P. Ryan, Time-varying and adaptive integral control of infinite-
dimensional regular linear systems with input nonlinearities, SIAM Journal of Con-
trol and Optimization, 38 (2000), pp. 1120–1144.

[121] H. Logemann and S. Townley, Adaptive stabilization without identification for
distributed parameter systems: An overview, IMA Journal of Mathematical Control
and Information, 14 (1997), pp. 175–206.

[122] Z. H. Luo, B. Z. Guo, and O. Morgul, Stability and Stabilization of Infinite Di-
mensional Systems with Applications, Springer-Verlag, New York, 1999.

[123] A. Macchelli and C. Melchiorri, Modeling and control of the Timoshenko beam.
The distributed port Hamiltonian approach, SIAM Journal of Control and Optimiza-
tion, 43 (2004), pp. 743–767.

[124] E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM Journal
on Control and Optimization, 32 (1994), pp. 24–34.

[125] E. Machtyngier and E. Zuazua, Stabilization of the Schrödinger equation, Por-
tugaliae Mathematica, 51 (1994), pp. 243–256.

[126] A. Z. Manitius and A. W. Olbrot, Finite spectrum assignment for systems with
delays, IEEE Transactions on Automatic Control, 24 (1979), pp. 541–553.

[127] F. Mazenc and P.-A. Bliman, Backstepping designs for time-delay nonlinear sys-
tems, IEEE Transactions on Automatic Control, 51 (2006), pp. 149–154.

[128] T. Meurer and M. Zeitz, Flatness-based feedback control of diffusion-convection-
reactions systems via k-summable power series, in Preprints of NOLCOS 2004,
Stuttgart, Germany, 2004, pp. 191–196.

n48 main
2008/4/7
page 186

�

�

�

�

�

�

�

�

186 Bibliography

[129] S. Mondie and W. Michiels, Finite spectrum assignment of unstable time-delay
systems with a safe implementation, IEEE Transactions on Automatic Control, 48
(2003), pp. 2207–2212.

[130] O. Morgul, Dynamic boundary control of the Timoshenko beam, Automatica, 28
(1992), pp. 1255–1260.

[131] T. Nambu, On the stabilization of diffusion equations: Boundary observation and
feedback, Journal of Differential Equations, 52 (1984), pp. 204–233.

[132] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science,
Springer-Verlag, New York, 1982.

[133] A. W. Olbrot, Stabilizability, detectability, and spectrum assignment for linear au-
tonomous systems with general time delays, IEEE Transactions onAutomatic Control,
23 (1978), pp. 887–890.

[134] F. Ollivier and A. Sedoglavic, A generalization of flatness to nonlinear systems
of partial differential equations. Application to the command of a flexible rod, in
Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, vol. 1,
2001, pp. 196–200.

[135] Y. Orlov, Sliding mode observer-based synthesis of state derivative-free model refer-
ence adaptive control of distributed parameter systems, Journal of Dynamic Systems,
Measurements, and Control, 122 (2000), pp. 726–731.

[136] Y. Orlov and J. Bentsman, Adaptive distributed parameter systems identification
with enforceable identifiability conditions and reduced-order spatial differentiation,
IEEE Transactions Automatic Control, 45 (2000), pp. 203–216.

[137] D. S. Park, D. M. Ladd, and E. W. Hendricks, Feedback control of von Kármán
vortex shedding behind a circular cylinder at low Reynolds numbers, Physics of
Fluids, 6 (1994), pp. 2390–2405.

[138] N. Petit and D. Del Vecchio, Boundary control for an industrial under-actuated
tubular chemical reactor, Journal of Process Control, 15 (2005), pp. 771–784.

[139] K.-D. Phung, Observability and control of Schrödinger equations, SIAM Journal of
Control and Optimization, 40 (2001), pp. 211–230.

[140] A. D. Polianin, Handbook of Linear Partial Differential Equations for Engineers
and Scientists, Chapman and Hall/CRC, Boca Raton, FL, 2002.

[141] L. Praly, Adaptive regulation: Lyapunov design with a growth condition, Interna-
tional Journal of Adaptive Control and Signal Processing, 6 (1992), pp. 329–351.

[142] B. Protas and A. Styczek, Optimal control of the cylinder wake in the laminar
regime, Physics of Fluids, 14 (2002), pp. 2073–2087.

[143] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series,
Vol. 2: Special Functions, Gordon and Breach, New York, 1986.

n48 main
2008/4/7
page 187

�

�

�

�

�

�

�

�

Bibliography 187

[144] M. S. de Queiroz, D. M. Dawson, M.Agarwal, and F. Zhang, Adaptive nonlinear
boundary control of a flexible link robot arm, IEEE Transactions on Robotics and
Automation, 15 (1999), pp. 779–787.

[145] M. S. de Queiroz, D. M. Dawson, S. P. Nagarkatti, and F. Zhang, Lyapunov-
Based Control of Mechanical Systems, Birkhäuser, Basel, 2000.

[146] J.-P. Raymond, Feedback boundary stabilization of the two dimensional Navier–
Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), pp. 790–
828.

[147] P. Rouchon, Motion planning, equivalence, infinite dimensional systems, Interna-
tional Journal of Applied Mathematics and Computer Science, 11 (2001), pp. 165–
188.

[148] K. Roussopoulos and P. A. Monkewitz, Nonlinear modelling of vortex shedding
control in cylinder wakes, Physica D, 97 (1996), pp. 264–273.

[149] D. L. Russell, Differential-delay equations as canonical forms for controlled hyper-
bolic systems with applications to spectral assignment, in Control Theory of Systems
Governed by Partial Differential Equations, A. K. Aziz, J. W. Wingate, M. J. Balas,
eds., Academic Press, New York, 1977, pp. 119–150.

[150] , Controllability and stabilizability theory for linear partial differential equa-
tions: Recent progress and open questions, SIAM Review, 20 (1978), pp. 639–739.

[151] H. Sano, Exponential stability of a mono-tubular heat exchanger equation with
output feedback, Systems and Control Letters, 50 (2003), pp. 363–369.

[152] T. I. Seidman, Two results on exact boundary control of parabolic equations, Applied
Mathematics and Optimization, 11 (1984), pp. 145–152.

[153] D.-H. Shi, S. H. Hou, and D.-X. Feng, Feedback stabilization of a Timoshenko
beam with an end mass, International Journal of Control, 69 (1998), pp. 285–300.

[154] A. Smyshlyaev and M. Krstic, Closed form boundary state feedbacks for a class of
1D partial integro-differential equations, IEEE Transactions on Automatic Control,
49 (2004), pp. 2185–2202.

[155] , Backstepping observers for a class of parabolic PDEs, Systems and Control
Letters, 54 (2005), pp. 613–625.

[156] , On control design for PDEs with space-dependent diffusivity or time-
dependent reactivity, Automatica, 41 (2005), pp. 1601–1608.

[157] , Lyapunov adaptive boundary control for parabolic PDEs with spatially vary-
ing coefficients, in Proceedings of the 25thAmerican Control Conference, Minneapo-
lis, 2006, pp. 41–48.

[158] , Adaptive boundary control for unstable parabolic PDEs—Part II: Estimation-
based designs, Automatica, 43 (2007), pp. 1543–1556.

n48 main
2008/4/7
page 188

�

�

�

�

�

�

�

�

188 Bibliography

[159] A. Smyshlyaev and M. Krstic, Adaptive boundary control for unstable parabolic
PDEs—Part III: Output feedback examples with swapping identifiers, Automatica,
43 (2007), pp. 1557–1564.

[160] , Adaptive Schemes for Boundary Control of Parabolic PDEs, in preparation.

[161] V. Solo and B. Bamieh, Adaptive distributed control of a parabolic system with spa-
tially varying parameters, in Proceedings of the 38th IEEE Conference on Decision
and Control, 1999, pp. 2892–2895.

[162] S. S. Sritharan, Stochastic Navier–Stokes equations: Solvability, control and filter-
ing, in Stochastic Partial Differential Equations and Applications – VII, G. Da Prato
and L. Tubaro eds., Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 273–280.

[163] R. Temam, Navier–Stokes Equations, Studies in Mathematics and Its Applications,
Vol. 2, North-Holland Publishing Co., Amsterdam, 1984.

[164] , Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer,
New York, 1988.

[165] J.-P. Thibault and L. Rossi, Electromagnetic flow control: Characteristic numbers
and flow regimes of a wall-normal actuator, Journal of Physics D: Applied Physics,
36 (2003), pp. 2559–2568.

[166] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics. Sixth
Supplemental and Revised Edition, 2 vols., Edwin Mellen Press, New York, 1999.

[167] S. Townley, Simple adaptive stabilization of output feedback stabilizable distributed
parameter systems, Dynamics and Control, 5 (1995), pp. 107–123.

[168] R. Triggiani, Well-posedness and regularity of boundary feedback parabolic sys-
tems, Journal of Differential Equations, 36 (1980), pp. 347–362.

[169] , Boundary feedback stabilization of parabolic equations, Applied Mathematics
and Optimization, 6 (1980), pp. 201–220.

[170] , Exponential feedback stabilization of a 2-D linearized Navier–Stokes channel
flow by finite-dimensional, wall-normal boundary controllers, with arbitrarily small
support, preprint, 2006.

[171] R. Vazquez and M. Krstic, A closed form feedback controller for stabilization of
linearized Navier–Stokes equations: The 2D Poisseuille flow, in Proceedings of the
IEEE Conference on Decision and Control, 2005, pp. 7358–7365.

[172] , A closed form observer for the channel flow Navier–Stokes system, in Pro-
ceedings of the IEEE Conference on Decision and Control, 2005, pp. 5959–5964.

[173] , Higher order stability properties of a 2D Navier–Stokes system with an ex-
plicit boundary controller, in Proceedings of the 25th American Control Conference,
Minneapolis, 2006, pp. 1167–1172.

n48 main
2008/4/7
page 189

�

�

�

�

�

�

�

�

Bibliography 189

[174] R. Vazquez and M. Krstic, Explicit integral operator feedback for local stabiliza-
tion of nonlinear thermal convection loop PDEs, Systems and Control Letters, 55
(2006), pp. 624–632.

[175] , Boundary control laws for parabolic PDEs with Volterra nonlinearities – Part
I: Design, in Proceedings of the 7th IFAC Symposium on Nonlinear Control Systems,
Pretoria, South Africa, 2007.

[176] , Boundary control laws for parabolic PDEs with Volterra nonlinearities –
Part II: Examples, in Proceedings of the 7th IFAC Symposium on Nonlinear Control
Systems, Pretoria, South Africa, 2007.

[177] , Boundary control laws for parabolic PDEs with Volterra nonlinearities –
Part III: Analysis, in Proceedings of the 7th IFAC Symposium on Nonlinear Control
Systems, Pretoria, South Africa, 2007.

[178] R.Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Chan-
nel Flows, Birkhäuser, Boston, 2008.

[179] R. Vazquez, E. Schuster, and M. Krstic, A closed-form observer for the 3D
inductionless MHD and Navier–Stokes channel flow, in Proceedings of the 45th IEEE
Conference on Decision and Control, San Diego, 2006, pp. 739–746.

[180] R. Vazquez, E. Trélat, and J.-M. Coron, Stable Poiseuille flow transfer for a
Navier–Stokes system, in Proceedings of the American Control Conference, Min-
neapolis, 2006, pp. 775–780.

[181] R. B. Vinter and R. H. Kwong, The infinite time quadratic control problem for
linear systems with state and control delays: An evolution approach, SIAM Journal
on Control and Optimization, 19 (1981), pp. 139–153.

[182] J. A. Walker, Dynamical Systems and Evolution Equations, Plenum, New York,
1980.

[183] K. Watanabe and M. Ito, An observer for linear feedback control laws of multi-
variable systems with multiple delays in controls and outputs, Systems and Control
Letters, 1 (1981), pp. 54–59.

[184] J. T.-Y. Wen and M. J. Balas, Robust adaptive control in Hilbert space, Journal of
Mathematical Analysis and Applications, 143 (1989), pp. 1–26.

[185] X. Yu and K. Liu, Eventual regularity of the semigroup associated with the mono-
tubular heat exchanger equation with output feedback, Systems and Control Letters,
55 (2006), pp. 859–862.

[186] H. L. Zhao, K. S. Liu, and C. G. Zhang, Stability for the Timoshenko beam sys-
tem with local Kelvin–Voigt damping, Acta Mathematica Sinica, English Series, 21
(2005), pp. 655–666.

n48 main
2008/4/7
page 190

�

�

�

�

�

�

�

�

190 Bibliography

[187] E. Zauderer, Partial Differential Equations of Applied Mathematics, 2nd ed., Wiley,
New York, 1998.

[188] F. Zhang, D. M. Dawson, M. S. de Queiroz, and P. Vedagarbha, Boundary
control of the Timoshenko beam with free-end mass/inertial dynamics, in Proceedings
of the 36th IEEE Conference on Decision and Control, Vol. 1, 1997, pp. 245–250.

n48 main
2008/4/7
page 191

�

�

�

�

�

�

�

�

Index

actuator delay, 111
adaptive control, 145
Agmon’s inequality, 20

backstepping, 9, 30, 47
backstepping transformation, 30, 54, 58,

65, 70, 83, 112, 125, 148, 154
Barbalat’s lemma, 149
beam models

Euler–Bernoulli, 89, 138
Rayleigh, 90
shear, 90
Timoshenko, 90

Bessel functions, 173
boundary conditions, 16
boundary control, 29
boundary damper, 80, 90
boundedness, 19, 149
Boussinesq equation, 118

Cauchy–Schwarz inequality, 17
certainty equivalence, 56, 145
closed-form solution, 35, 37, 41, 43, 47,

55, 59, 66, 86, 110, 113
collocated sensor/actuator, 57, 81
compensator transfer function, 60, 74

damping
boundary, 80, 90
Kelvin–Voigt, 80, 85, 137
viscous, 80

delay equation, 109
Dirichlet boundary condition, 16

eigenfunctions, 25
eigenvalues, 25, 82, 85, 97
equation

delay, 109
Ginzburg–Landau, 68
partial integrodifferential, 46, 92,

93, 109
reaction-advection-diffusion, 42, 44
reaction-diffusion, 30, 38, 133
Schrödinger, 65
wave, 79, 91, 136

estimation error, 152
Euler–Bernoulli beam, 89, 95, 138

feedback linearization, 163
Fourier transform, 121

gain kernel PDE (partial differential
equation), 32, 40, 43, 44, 46,
55, 59, 66, 70, 92, 110, 113,
117, 125, 166

gauge transformation, 44
Ginzburg–Landau equation, 68

H1 stability, 21
heat equation, 16
hyperbolic PDEs, 79, 109, 138

inequality
Agmon, 20
Cauchy–Schwarz, 17
Poincáre, 17
Young’s, 17

inverse transformation, 36, 56

191

n48 main
2008/4/7
page 192

�

�

�

�

�

�

�

�

192 Index

Kelvin functions, 66
Kelvin–Voigt damping, 80, 85, 137
Korteweg–de Vries equation, 115
Kuramoto–Sivashinsky equation, 115

L2 stability, 18
Laplace transform, 60, 91, 110
Lyapunov function, 16, 48, 56, 71, 81,

83, 147, 152, 154
Lyapunov stability, 16

motion planning, 131

Neumann boundary condition, 16, 41
nonlinear control, 161
norms, 14

observer, 53, 57, 73
Orr–Sommerfeld equation, 122
output feedback, 56, 73, 85, 151

parabolic PDEs, 29, 79
partial differential equations (PDEs)

first-order hyperbolic, 105, 135
hyperbolic, 79
parabolic, 29, 79

partial integrodifferential equation, 46,
92, 93, 109

passive absorber, 80
passive identifiers, 145, 147
Poincaré’s inequality, 17
Poiseuille flow, 119
prediction error, 152

Rayleigh beam, 90
reaction-advection-diffusion equation,

42, 44
reaction-diffusion equation, 30, 38, 133

regulation, 150, 156
Robin boundary condition, 16, 44, 83

Schrödinger equation, 65
separation of variables, 23
shear beam, 90
Smith predictor, 113
Squire equation, 122
string equation, 83
successive approximations, method of,

34
swapping identifiers, 145, 152

target system, 30, 38, 44, 70, 83, 85, 97,
109, 117, 125, 148, 154

Timoshenko beam, 90
trajectory generation, 132
trajectory tracking, 139
transformation

backstepping/Volterra, 30
gauge, 44
inverse, 36

update law, 147, 152

viscous damping, 80
Volterra series, 165, 167
vortex shedding, 68

wave equation, 79, 91
eigenvalues, 82, 85
Lyapunov, 81, 83
motion planning, 136
output-feedback, 85
undamped, 80
with Kelvin–Voigt damping, 85,

137
wavenumbers, 121

Young’s inequality, 17

