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7

Introduction

This book investigates the behavior of weak or strong solutions of the
boundary value problems for the second order elliptic equations (linear and
quasilinear) in the neighborhood of the boundary singularities. The author's
main goal is to establish the precise exponent of the solution decrease rate
and under the best possible conditions.

Currently there exists a fully developed theory for linear elliptic equa-
tions with partial derivatives so that it is now possible to advance toward
a nonlinear equations analysis. Considerable success in this direction has
been achieved particularly for the second order quasilinear elliptic equa-
tions, due to the works of Schauder, Caccioppoli, Leray and others (see
[43, 129, 211, 216]). These authors have shaped a method that allows
to prove existence theorems given the appropriate a priori  estimates. This
method does not require preliminary construction of the fundamental solu-
tion and allows instead an application of some functional analysis theorems
rather than using an integral equation theory.

On the one hand, it is quite easy to prove the solvability of boundary
value problems for the second order quasilinear equations, given the Holder
coefficients estimate of first derivatives of the solution of the appropriate
linear boundary problem, with a constant which depends only on the max-
imum module of the problem coefficients. Thus, there appeared a necessity
of studying linear problems more deeply and giving them more precise esti-
mates. Many mathematicians' efforts were directed towards this. L. Niren-
berg [329] obtained the above mentioned estimate for a two-dimensional
nonselfadjoint equation, through which it is possible to establish the ex-
istence theorem of the Dirichlet problem for the second order quasilinear
elliptic equations with minimal assumptions on the smoothness of the equa-
tion coefficients. In the case of a multi-dimensional equation such an estimate
was obtained by H. Cordes [85], with the assumption that the equation com-
plies with a condition (depending on the euclidean space dimension N > 2)
that is stronger than uniform ellipticity. On the other hand, attempts of
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obtaining the above mentioned a priori  estimate for the second order gen-
eral elliptic equations were not successful because such an estimate is simply
impossible.

Thus, to prove the classical solvability of boundary value problems for
second order quasilinear equations, it is necessary to create methods which
produce the needed estimates directly for the non-linear problem itself. Such
methods were created. The ideas for this new method can be already found
in the works of S. Berstein and by De Giorgi and J. Nash ([129, 216]).
O. Ladyzhenskaya and N. Ural'tseva improved upon and further developed
this method and subsequently published their well-known monograph [216],
in which the method is formulated and applied to different boundary value
problems. Their research has inspired a number of other mathematicians;
we note the works [208], [224] - [238], [367], [401]. All investigations
mentioned above refer to boundary value problems in sufficiently smooth
domains. It should be noted that these investigations represent a major
effort by a large number of mathematicians stretching over a period of more
than thirty years.

However, many problems of physics and technology lead to the necessity of
studying boundary value problems in domains with nonsmooth boundaries.
We are referring, in particular, to domains which have a finite number of
angular (N — 2) or conical (N > 2) points, edges and other singularities on
the boundary.

The state of the theory of boundary value problems on non-smooth
domains, as it was twenty years ago, is described in detail in the well-known
survey of V.A. Kondrat'ev and O.A. Oleinik [177], in the book of A. Kufner
and A.-M. Sandig [213] as well as in the monographs of V.G. Maz'ya and
his colleagues [263, 198]. For this reason we will focus on the developments
of this theory since that time.

Among the first studies of the behavior of the solution of the boundary
value problem in the neighborhood of an angular boundary point for the
Laplace or Poisson equation, we can find the works [77, 327, 403, 126].
In the work [327] S. Nikol'skiy has established the necessary and suffi-
cient conditions of belonging to the Nikolskiy's space H  ̂ of the Dirich-
let problem solution for the Laplace equation. E. Volkov [403] has de-
scribed the necessary and sufficient conditions for belonging to the space
Ck+a{G) (where k is an integer and a e (0,1)) of the Dirichlet problem
solution for the Poisson equation Au = f(x) x G G, in the case where
G is a rectangle. V. Pufaev [126] has considered the Poisson equation
AM = f(x) for x € G in the domain G, where dG \ O is an infinitely
smooth curve, and in a certain neighborhood of the point O the boundary
dG consists of two segments intersecting at an angle LJQ. The smoothness of



INTRODUCTION

the Dirichlet problem solution depends upon o;0. The smaller the angle UJQ,
the smoother the solution is (if / G C°°(G).) There are exceptional values
of WOJ for which there are no obstacles for smoothness. In particular, if
u = 0, / = 0 in a certain neighborhood of the point O and if ^- is an

integer, then u G C°°{G).
Thus, the violation of the boundary smoothness condition leads to the

situation that for the boundary value problem solution there appear singu-
larities in the neighborhood of the boundary irregular point. As we know,
in the boundary value problems theory for elliptic equations in smooth do-
mains, the situation is as follows: if the problem data are smooth enough,
then the solution is also sufficiently smooth.

Some of the first works studying the general linear boundary value
problems for the domains with conical or angular points were V. Kon-
dratiev's fundamental works [160, 161] as well as papers of M. Birman &
G. Skvortsov [47], G. Eskin [115, 116], Ya. Lopatinskiy [242], V. Maz'ya
[250]-[253], [255, 294]. These works examine normal solvability and reg-
ularity in the Sobolev weighted spaces of general linear elliptic problems in
non-smooth domains under assumptions of sufficient
smoothness of both the manifold dG \ O and the problem coefficients. They
consider solutions in special spaces of functions with the derivatives that
are summable with some power weight. These spaces clearly show the ba-
sic singularity of the solutions of such problems. It has also become clear
that the methods used for the analysis of boundary elliptic problems in
smooth domains are not applicable because it is impossible to straighten
the boundary by using a smooth transformation.

V. Kondratiev [160,161] has studied this problem in L2 Sobolev spaces,
V. Maz'ya and B. Plamenevskiy [271]-[280] (see also [263]-[269], [282])
have extended the Kondratiev results to If Sobolev and other spaces. There
are many other works concerning elliptic boundary value problems in non-
smooth domains (see the bibliography).

The pioneering works in the study of elliptic boundary value problems in
nonsmooth domains for quasilinear equations has been done by V. Maz'ya,
I. Krol and B. Plamenevskiy [256, 258], [204]-[207], [270].

If we examine a nonlinear elliptic problem, then we would find it
necessary to clarify the smoothness conditions for coefficients and for right
parts of a linear problem under which the solvability in appropriate func-
tional spaces and the necessary a priori  estimates for the solution to take
place. This clarification is dealt with in chapters 4 and 5. These chap-
ters study the linear elliptic Dirichlet problem for the nondivergent form
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equation

J Lu := a13 (x)Diju(x) + dl(x)Diu(x) + a(x)u(x) = f(x), in G,
I u(x) = <p(x) on dG

and for the divergent form equation

( 3§-(a^(x)ux. + ̂ (xju) + fc^xK, + c(x)u =

' = S(*) + ̂ 0 , xeG;
u{x) = </>(x), x G 9G.

The question of the smoothness of solutions in the neighborhood of an
angular point for the linear nondivergence second order elliptic equation was
studied earlier in the works [18]-[22]. There the authors assume that the
equation coefficients are Holder-continuous. Our assumptions concerning
the smoothness of the coefficients are the least restrictive possible; leading
coefficients of the the equation must be Dini-continuous at the conical point
O, whereas lower coefficients can grow and we indicate the exact power
growth order. In §4.7 we construct the examples which show that the Dini
condition for leading coefficients of the the equation at the conical point
as well as the assumption concerning the lower equation coefficients, are
essential for the validity of the estimates derived in the chapters 4 and
5. Otherwise in these estimates the exponent A should be changed to A — e
with any e > 0. The fact that the exponent A in these estimates cannot be
increased is shown by the partial solutions of the Laplace equation in the
domain with the angular or conical point. In this sense the estimates of
chapters 4 and 5 are the best possible.

The estimates obtained in §§4.5, 4.6, 4.9 allow us to formulate new
existence theorems for the linear Dirichlet problem solution. These theorems
are formulated and proved in §4.10.

The regularity theory of strong solutions for this problem and its solv-
ability in a smooth domain are well developed [129, 217, 208, 211]. But
theory involving nonsmooth domains is in its infancy. Existence theorems
obtained in §4.10 play a fundamental role in chapter 7 when we consider the
solvability of the quasilinear problem

(OT) \aij( xiu>ux)uxi,xj +a(x,u,ux) = 0, aij = aji, x e G
W ' \u(x) = <p(x), xedG.

As mentioned above, to construct the theory of the Dirichlet problem solv-
ability for quasilinear equations, the appropriate a priori  estimates of a
nonlinear task itself are needed. Chapter 7 is dedicated to obtaining such
estimates. The local Holder estimate (near an angular or conical point) of
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the first derivatives of the solution is a central part in these estimates. Al-
though the results obtained in §7.2 are completely included in the results of
§7.3 (which is quite natural), the special character of the plane case allows
us to single it out. In addition, the methods for obtaining estimates differ
for the N = 2 case from the N > 2 case. We are interested in demonstrat-
ing the possibility of applying the L. Nirenberg method for domains with
an angular point. Thus it becomes possible to establish a basic estimate

\u(x)\ < co|z|1+7

with a certain 7 > 0. In the case of a conical point (N > 2) this method
is not suitable because it is purely two-dimensional. To obtain the similar
estimate in this situation we resort to the barrier technique and apply the
comparison principle. Theorems of §7.4 also show that the (QL) problem
solutions have the same regularity (at a conical point) as the (L) problem
solutions.

There is another observation which is worth pointing out. Known in
linear theory, the method of non-smooth domain approximation by a se-
quence of smooth domains while examining nonlinear problems is not ap-
plicable because of the impossibility of the passage to the limit. We avoid
this difficulty by introducing a quasi-distance function re(x). The introduc-
tion of such a function allows us to work in the given domain, and then to
provide the passage to the limit over e —> +0 (where re(x) - » r= |x|.) We
use the same method on studying the problems (L) in Chapter 4 and (DL)
in Chapter 5.

In §7.3.6 we prove the theorems of the solution smoothness rise which
are analogous to the linear case. The results of §4.10 (concerning the solv-
ability of the linear problem) and the estimates for solutions of the nonlinear
problem given in §§7.2, 7.3 allow us to proceed to the (QL) problem solv-
ability in §7.4.

In summary, for chapters 4 and 7, we have completely constructed
the theory of the first boundary problem solvability for second order non-
divergent uniform elliptic equations in the domains with conical or angular
points.

In Chapters 5, 8 and 9 we consider the theory which deals with equations
of divergent type. The history of research development of such equations is
richer because it is possible to study weak solutions of these problems which
in turn change into the equivalent integral identity with no second general-
ized derivatives of the sought function. The detailed history of studies of the
linear problem can be found in the following surveys [91, 133, 172, 177].
We will dwell on some of them. The exact solution estimates near singulari-
ties on the boundary have been obtained in the works [398, 399] under the
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condition that leading coefficients of the equation satisfy the Holder condi-
tion, and that lowest coefficients are missing. The rate of the solution decrease in
the neighborhood of a boundary point is characterized by the function X(Q).
(The latter is the least by the modulus eigenvalue of the Laplace-Beltrami
operator in a domain Qe on the sphere with zero Dirichlet data on d£tB.) In
Chapter 5 we give results of the works [170, 171]. Under certain assump-
tions about the structure of the boundary of the domain in a neighborhood
of the boundary point O and about the coefficients of the linear equation
(DL), one can obtain a power modulus of continuity at O for a weak so-
lution of the Dirichlet problem which vanishes at that point. Moreover,
the exponent is the best possible for domains with the assumed boundary
structure in that neighborhood. The assumptions on the coefficients of the
equation are essential, as example §5.1.4 shows.

In [21] A.Azzam and V.Kondrat'ev have established the Holder conti-
nuity of the first derivatives of weak solutions of the (DL) problem in the
neighborhood of an angular point, under the condition of Holder continuity
of the equation coefficients. In this case the Holder exponent satisfies the
inequality a < ^ - 1. In §5.2 we generalize this result for the case of a
conical point and we also weaken the coefficient smoothness requirements
to Dini-continuity.

In Chapter 6 we study properties of strong and weak solutions of the
Dirichlet problem for semi-linear uniform elliptic second order equations in
a neighborhood of a conical boundary point.

Let us consider the quasilinear problem for the divergence form equation

(DQL) Q(u,4>) = / {at{x, u, ux)(j> Xi + a(x,u,ux)(f>}dx = 0.

G

The regularity theory of weak solutions for this problem and its solvabil-
ity in a smooth domain are well-known [129, 215, 216] (see also [80, 83,
128, 237]). The regularity theory of weak solutions for quasilinear elliptic
equations of the arbitrary order and elliptic systems as well as their solv-
ability in a smooth domain are investigated in the monographs [183]- [185],
[360, 100, 40].

The first investigations of the behavior of solutions for quasilinear el-
liptic equations in domains with angular and conical points were done by
V. Maz'ya, I. Krol and B. Plamenevskiy [206, 207, 204, 205, 270, 281].
V. Maz'ya and I. Krol [204]-[207] have given estimates for the asymptotic
behavior near reentrant boundary points of the equation of the type (LPA)
solutions. V. Maz'ya and B. Plamenevskiy [270, 281] have constructed the
asymptotic solution of the general quasilinear elliptic problem in a neigh-
borhood of an angular or conical point.
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Beginning 1981, there has appeared a series of works by P. Tolksdorf
[373]-[378], E. Miersemann [301]-[309] and M. Dobrowolski [98,99],
where they have studied the behavior of the weak solutions to the {DQL)
(see Chapter 8) in the neighborhood of an angular or conical boundary
point. In [301]-[303] it is shown that a weak solution belongs to W2 n
C1+7(G) for a certain 7 € (0,1), under the assumption that m = 2, UQ €
(O,TT), ai(x,u,z)i = 1,...,N do not depend on x,u and the function
a(x, u, z) does not depend on u, z. Some elaborations and generalizations for
a wider class of elliptic equations were made in [307]. In §8.1, chapter 8 of
[133], P. Grisvard has considered the problem (DQL) for N = 2 in a convex
polygon G and a,i(x,u,z) = a(z)zi(i = 1,2); a(x,u,z) = f(x) (here a(z) is
a positive decreasing function and a"(z) is continuous.) He has proved the
existence and uniqueness of the solution from the space W2>m(G)nWo >m(G),
if f(x) £ C1+a(G), a e (0,1), 2 < m < 2_^, p, where w0 is the measure of
the largest angle on the polygon boundary. In [373]-[376, 378], P. Tolks-
dorf has considered the problem (DQL) with a,i(x, u, z) = a(\z\2)zi + bi(z),
z = 1,... ,7V and a(x,u,z) = f(x) under the following conditions

v(k + t)m~2 < a(t2) < fi(k + t)m~2; (v - ^)a(t) < ta'(t) <

with some v > 0, fi > 0, k e [0,1] and Vi > 0. In addition, it is assumed that

. ta'(t) m -2 1 ,.
t—>oo a( t) 2 2 |z|-+c

He has obtained the upper- and lower-bounded estimates for the rate of
the positive weak solution decrease in the neighborhood of the boundary
conical point that is characterized by the lowest module eigenvalue of the
nonlinear eigenvalue problem (NEVP) (see Chapter 8, §8.2.2). In Chapter
8 we generalize these results for a wider class of equations and analyze
arbitrary (not only positive) weak solutions. It is also important to note here
that those estimates reinforce the Lipschiz-estimates of the (DQL) problem
solution in the neighborhood of the boundary point by O.Ladyzhenskaya
and N.Uraltseva [218], in the case when the boundary point is conical. In
§8.2 we establish the power weight estimates of weak solutions, similar to
the estimates in §7.3. In the latter the weight exponent is the best possible.
The estimates of §8.2 allow us to obtain the best possible estimates of the
weak solution module and its gradient. Finally, in §8.4 we estimate the
second generalized derivatives of weak solutions in the Sobolev weighted
space again with the best weight exponent.

In Chapter 9 we investigate the behavior of weak solutions of the first
and mixed boundary value problems for the quasilinear second order elliptic
equation with the triple degeneracy and singularity in the coefficients in a
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neighborhood of the boundary edge. The coefficients of our equation near
the edge are close to coefficients of the model equation

-j- (rT\u\q\Vu\m-2uXi) +a0r
T-mu\u\'l+m-2-

(ME) -nrT\u\q-1\Vu\msgnu = f(x),
0 < / i < l , q > 0, m > 1, ao > 0, r > m - 2.

Chapter 10 is devoted to an investigation of the behavior of strong
solutions to the Robin boundary value problem for second order elliptic
equations (linear and quasilinear) in the neighborhood of a conical boundary
point.
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CHAPTER 1

Preliminaries

1.1. List of symbols

Let us fix some notations used in the whole book:

 [1]  : the integral part of I (if I is not integer);
 R - the set of real numbers;
 R+ - the set of positive numbers;
 WLN - the iV-dimensional Euclidean space, N > 2;
 N - the set of natural numbers;
 No = N U {0}  - the set of nonnegative integers;
 x = [x\,...,xjy) - an element of M.N;

( , , ) ;
(r, CJ) = (r, OJI, ... ,O;JV-I) - spherical coordinates in M.N with pole
O denned by

XJV-I = r sin wi sin W2  -sinu;jv_2cosa>jv-i,
xN = rsinwi sinw2 ;

 S1*- 1 - the unit sphere in RN;
 Br(xo) - the open ball with radius r centred at xo;
 Br(xo) - the closed ball with radius r centred at xo;
 UN = NV(N/2) ~ t n e v° l u me °f the unit ball in R ;̂
 aw = NLJN - the area of the JV-dimensional unit sphere;
 R+ - the half-space {x : xjv > 0};
 £ - the hyperplane {x : XN = 0};
 G - a bounded domain in M.N;
 G' CC G - G' has compact closure in G; G' is strictly contained
inG;

 dx - volume element in R ;̂
 ds - area element in R^"1;
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 da - area element in M.N 2;
 dG - the boundary of G, in what follows we shall assume that

O € dG;
 d(x) :=  dist(x,8G);
 n = (rii,..., njv) - exterior unit normal vector on dG;
 G = G U dG - the closure of G;
 meas G - the Lebesgue measure of G;
 diam G - the diameter of G;
 K - an open cone with vertex in O;

 C : the rotational cone {x\ > rcos ̂ } ;
 9C : the lateral surface of C : {xi = rcos

- the scalar product of two vectors;

Vw:= {Diu,...,DNu);

D2u - the Hessian of u;

 /3 = (/3i,..., /3;v)j ft S No - an iV-dimensional multi-index;
 \/3\ :=  Pi H \- PN ~ t n e length of the multi-index /3;

 £>^.= D13 :=  fi la%l a $N - a partial derivative of order \f}\\

 |^ = (Vw, n) - the exterior normal derivative of u on dG;

 dj - Kronecker's delta;
 supp u : the support of u, the closure of the set on which u  ̂ 0;
 c = c(*, . . . ,*) - a constant depending only on the quantities ap-

pearing in the parentheses. The same letter c will sometimes be
used to denote different constants depending on the same set of
arguments.

1.2. Elementary inequalities

In this section we review some elementary inequalities (see e.g. [37,
142]) which will be frequently used throughout this book.

LEMMA 1.1. (Cauchy's Inequality ) For a,b>0 and e > 0, we have

(1.2.1) a 6< £ a 2 + J_62.
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LEMM A 1.2. (Young's Inequality ) For a,b > 0, e > 0 andp,q > 1
ith i + ^ = 1, we /ioue

a ft n\ 1  ̂ / _ \V i

.6.6) CLO 5: ~ l^OJ ~r '

P
LEMM A 1.3. (Holder' s Inequality ) Let ai:bi, i = 1,..., N, be non-

negative real numbers and p, q G R with ^ + ^ = 1, we have

N / N \ 1/p / N \ 1/g

LEMM A 1.4. (Theorem 41 [142]). Let a, b be nonnegative real numbers
and m > 1. Then

(1.2.4) W - ^ a - b) > am - bm > mbm-x{a - b).

LEMM A 1.5. (Jensen's Inequality ) (Theorem 65 [142], Lemma 1
[357]).

Let ai, i = 1, . . ., N, be nonnegative real numbers and p > 0. Then

N / N \ p N

(1.2.5) *

where A = min(l, Np 1) and A = max(l, ATp x) .

LEMM A 1.6. Let a, b e K, m > 1. T/ien tte familiar inequality

(1.2.6) |6|m > Mm + m|ar-2a(& - «)

is valid.

PROOF. By Young's inequality (1.2.2) with e = 1, p = m, q — ̂ z j , we
have

m|a|m-2a& < m|6|  \a\m-x < \b\m + (m - l)\a\m = ^ (1.2.6).

D

LEMM A 1.7. For m > 1 the inequality

l

(1.2.7) I |(1 - t)z + tw\m-2dt > c{m)(\z\ + M) m~2

o

holds for some positive constant c(m).
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PROOF. This inequality is trivial, if 1 < m < 2, and in this case
e(m) = 1. Let m > 2. If \z\ + \w\ = 0, then this inequality holds with
any c(m). Let now \z\ + \w\ ̂  0. Setting

*  \z\+w\' ' \z\+w\

we want to prove the inequality

o
We consider the function

2dt

on the set <£ = {(C,v) G ̂ 2 ICI + \v\ = }  This function is continuous on <£,
since m > 2. The set <£ is finite-dimensional and bounded, and therefore it
is the compact set. By the Weierstrass Theorem, such a function achieves
the minimum on <B in some point (£o, T]O) € <B. It is clear that /(Co> Vo)> 0.
Suppose that f(Co,Vo) = 0- Then we have

|(l- i)Co+*r/ 0|=O, Vt€[O,l] =*(Co,»») = (O,O)gg.

Hence it follows that /(COJ Wo) > 0 and therefore there is a positive constant
c(m) such that the required inequality is fulfilled.

1.3. Domains with a conical point

DEFINITION 1.8. Let G c RN be a bounded domain. We say that G
has a conical point in O if

 OedG,
 dG \ O is smooth,
 G coincides in some neighbourhood of O with an open cone K,
 dK n SN~X is smooth,
 K is contained in a circular cone with the opening angle LJQ £

(0,2TT).

For a domain G which has a conical point at O € dG we introduce the
notations:

 Q :=  K n SN~1;
 dft :=  area element of f2;
 Gb

a := G fl {(r , u ) : 0 < a < r < i i , we ft}- a layer in RN;
 T̂  := dG n {(r,w) : 0 < o < r < 6 , wG 9 0 } - the lateral surface
of the layer Gb

a;
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Gd:=G\Gt
Td:=dG\Tt\
Qp:=G$ndBe(0), g<d;

Let us recall some well known formulae related to spherical coordinates
(r, a>i,... ,U>M-I) centered at the conical point O :

(1.3.1) dx = r

(1.3.2) dnp = pN-ld9,,

(1.3.3) dO = J(u))dw

denotes the (N — 1)—dimensional area element of the unit sphere;

(1.3.4) J(w) = sin^"2 ui sin^""3 W2  sin wjv-2,
(1.3.5) du> = du>i  -dcjN-ii

(1.3.6) ds = rN-2drda

denotes the (N — 1)—dimensional area element of the lateral surface of the
cone K, where da denotes the (N — 2)—dimensional area element on 9fi;

(1.3.7)

where |V«,w| denotes the projection of the vector Vu onto the tangent plane
to the unit sphere at the point w

1.3.8 Vuu={ , . . . , _ ^ _ L

N-\

t=l

where q\ = 1, <i% = (sinwi  sinwj-i) , i > 2,

(1.3.10) Au=-—5- + ^ - + -

- N-l „  T / x

(1.3.11) AuU=-—r

d (  N-i-iI sin *
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denotes the Beltrami-Laplace operator

(1.3.12) div.^-L
J(w

LEMMA 1.9. Let a e M and v(x) = rau(x). Then

+(a2-2a)ra iXiXjU + ara 2uS{,

|D2i>|2 < c2 (r
2a\D2u\2 + r2 a~2|Vu|2 + r2a~4u2)

with constants c\,C2 > 0 depending only on a and N.

LEMM A 1.10. Let there be a d > 0 such that G$ is the convex rotational
cone with the vertex at O and the aperture OJO, thus

{ N }

(r,u) x\ =cot2^£> 2; \ux\ = Y '  w° e ^
»=2 JThen

(1.3.14)

PROOF. By virtue of (1.3.13) we can rewrite the equation of PQ in this
way

2!jcos(n,Xi)\rd = 0, and cos(n,xi)|r<i = —sin—,

i = 2

We use the formula cos(n, Xj) = T ^ T , Vi = 1 , . . ., N. Because of

then

Q iTi sir j

^ — = 2xi a n d —- = - 2 c o t2 - ^ z ,, Vi = 2,...,N,

1 dF
do \VF\XidXi rg |VF|

AT

rot2 ^E
c o t ^ "

Because of
i=2

N

= 0.

4 2

sin
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we have

cosin,xi) = —2xi — = — sm—, since Z(n ,x i) > —.

D

1.4. The quasi-distance function rs and its properties

Let us assume as in Definition 1.8 that the cone K is contained in a circu-
lar cone K with opening angle UJQ. Furthermore, let us suppose that the axis
of K coincides with {(xi , 0,. . ., 0) : x\ > 0}. In this case we define the quasi-
distance r£{x) as follows. We fix the point Q = (—1,0,..., 0) € SN~1 \Q and
consider the unit radius-vector I — OQ = {—1,0,..., 0}. We denote by Fthe
radius-vector of the point x e G and introduce the vector re = r — el for
each e > 0. Since ef ^ G$ for all e e]0, d[, it follows that r£(x) = \r- el\ ^ 0
for all x e G. It is easy to see that r£(x) has the following properties:

(1)

LEMMA 1.11. There exists an h> 0 such that
r£{x) > hr and re{x) > he, Vx G G, where

, if n

PROOF. Prom the definition of re(x) we know that
N

r\ = (xi + e)2 + X) A - (xi + s)2 + r2 - x\ = r2 + 2exi + e2.
i=2

If 0 < UJQ < 7T, we have X\ > 0 and therefore we obtain either
r2 > r2 => r£ > r or rf > £2 => re > e.
If Xi = rcosu; < 0 and \u>\ € [^, ^ - j , we obtain, by the Cauchy
inequality either

|2er cosa>| < r cos a; + e => 2er cosu> > — r cos LJ — e =>  r£ > r  sin —

or

|2ercosa;| < £2cos2a; + r2 =5> 2£rcosa> > —r2 — e2cos2a> => re > £  s in—.

a
(2)

COROLLARY 1.12.

ftr < rJx) < r + e <  Tr£(x); Vx € G, Ve > 0.
h
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(3) Ifxe Gd, then rs(x) > if for all e e]0, f [.
(4) lim re{x) = r, for all x € G.

(5) |Vre

PROOF. Because f̂ - =  ̂and fg- = ^ (i > 2), then

| V r e

AT

n

1.5. Function spaces

1.5.1. Lebesgue spaces. Let G be a domain in R^. For p > 1 we
denote by LP(G) be the space of Lebesgue integrable functions equipped
with the norm

*
THEOREM 1.13. (Fubini' s Theorem, see Theorem 9 §11, Chapter II I

[101]). Let Gx C Rm i ,G2 C Mm2 and f € Lx(Gi x G2). T/ien /or
aH x e Gi and y &G% the integrals

I f(x, y)dx and / /(x,

G2

;. Moreover,

/ /(x, y)dxdy = / / /(^,
1XG2 Gi V?2

dx=

G2

THEOREM 1.14. (Holder' s Inequality, see Theorem 189 [142]). Let
p,q>l with i + i = 1 andue LP(G), v £ L9(G). Tftera+
(1.5.1) / \uv\dx < ||U||LP(G)II«IU«(G)-

G

If p = 1, i/ien (1.5.1) is valid with q = 00.

COROLLARY 1.15. Let I <p<q andue i p(G), u € L9(G).

(1.5.2) ||«1|LP(O) <
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COROLLARY 1.16. (Interpolatio n inequality) Let 1 < p < q < r and
\jq = X/p + (1 — A)/r. Then the inequality

holds for allue Lr(G).

THEOREM 1.17. (Minkowski' s Inequality, see Theorem 198 [142]).
Let u,ve L"(G), p > 1. Then u + ve £P(G) and

(1.5.3) < \\U\\L*(G)

THEOREM 1.18. (Clarkson's Inequality, see §3.2, Chapter I [363]).
Letu,v e Lp{G). Then

u + v
2

u + v
LP(G)

U — V

2

u — v

p

LP(G)

L'{G)
HLP(G)

IIP
II LP(G)

THEOREM 1.19. (Fatou's Theorem, see Theorem 19 §6, Chapter III
[101]). Let fk G Ll(G), k £ N, be a sequence of non-negative functions
convergent almost everywhere in G to the function f. Then

(1.5.4) / fdx < sup / fkdx.
G G

andf,fkeLEMMA 1.20. [328, Lemma 1.3.8] LetGx C Mmi,G2 C
Lp(Gi x G2), k = 1,2,..., with 1 < p < oo and

feton, ||/ - fkhp(G1xG2) = 0.

Then there is a subsequence {fkt} of {fk} such that

lim \\f(y,z) - fkt(y,z)\\Lp(G2) = 0
ki—*oo

holds for almost every y e G\.

1.5.2. Regularization and Approximatio n by Smooth Func-
tions. Let us denote by Lfoc(G) the linear space of all measurable functions
which are locally p-integrable in G, that is p-integrable on every compact
subset of G. Although Lfoc(G) is not a normed spaces, it can be readily
topologized.

DEFINITION 1.21. We say that a sequence {um} converges to u in the
sense of Lfoc(G) if {um} converges to u in LP(G') for each G' CC G.



24 1 PRELIMINARIES

Let r = [a; — y\ for all a;, y £ TBLN and h be any positive number. Further-
more, let ^/i(r) be a non-negative function in C°°(R'iV) vanishing outside
the ball B^(0) and satisfying / iph(r)dx — 1. Such a function is often called

a mollifier. A typical example is the function t/>/j(r) given by

' exP(|r|k_fe3) for r < h, c= const > 0;

for \r\ > h,

where c is chosen so that ftph(r)dx = 1 and whose graph has the familiar
bell shape.

DEFINITION 1.22. For L\OC(G) and h > 0, the regularization of u, de-
noted by Uh is then defined by the convolution

(1.5.5) Uh{x) = / i/jh(r)u(y)dy

G

provided h < dist(x,dG).

It is clear that Uh belongs to C°°(G') for any G ' c cG provided h <
dist(G',dG). Furthermore, if u belongs to i 1(G) and G is bounded, then
Uh belongs to C°°(RN) for arbitrary h > 0. As h tends to zero, the function
ifch(r) tends to the Dirac delta distribution at the point x. The significant
feature of regularization, which we partly explore now, is the sense in which
Uh approximates u as h tends to zero. It turns out, roughly stated, that if
u lies in a local space, then Uh approximates u in the natural topology of
that space.

LEMMA 1.23. Let u £ C°(G). Then Uh converges to u uniformly on
subdomain G' CC G.

PROOF. We have

uh{x) = I tph{r)u(y)dy = / ^i(|z|)|u(a; - hz)\dz

\x-y\<h |z|<l

putting z = 2 ^ ) . Hence if G' CC G and 2h < dist(G', dG),(

sup|u — Uh\ < sup / ipi(\z\)\u(x) — u(x — hz)\dz <
G< zee J

< sup sup \u{x) — u(x — hz)\.
x€G'\z\<l

Since u is uniformly continuous over the set Bh(G') = {x \ dist(a;, G') < h},
the sequence Uh tends to u uniformly on G'. D
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LEMMA 1.24. Let u e Lp
loc{G) (LP(G)), where 1 < p < oo. Then uh

converges to u in the sense of Lfoc(G) (ip(G)).

PROOF. Using Holder's inequality, we obtain from (1.5.5)

r
\uh(x)\p < / ibi(\z\)\u(x — hz)\pdz

J

so that if G' CC G and 2h < dist(G', dG), then

I \uh(x)\pdx < j J </>i(kl)Hz - hz)\pdzdx =
G' G' \z\<l

= I ipi(\z\)dz I \u(x - hz)\pdx < / \u\pdx,

\z\<l G' Bh(G')

where Bh(G') = {x : dist(x,G') < h}. Consequently

(1-5-6) ||U/I||LP(G') < Ih

The proof can now be completed by an approximation based on Lemma
1.23. We choose e > 0 together with a C°(G) function w satisfying

\\U ~ 1»\\Lr>(.Bh,(G')) ^ £

where 2h' < dist(G', dG). By virtue of Lemma 1.23, we have for sufficiently
small h that \\w — Wh\\Lp(G') < £- Applying the estimate (1.5.6) to the
difference u - t owe obtain

\\U ~ Uh\\LP(G>) < \\U ~ Hli>(G') + I k - Wh\\Lp(G') + \\Uh ~ ^ | | L P ( G ') <

< 2e + \\u - H|LP(BI.(G')) - 3 £

for small enough h < h'. Hence Uh converges to u in LP
OC(G). The result

for u G LP(G) can then be obtained by extending u to be zero outside G
and applying the result for LP

OC(RN). O

LEMMA 1.25. (On the passage to the limi t under  the integral
symbol) [361, Theorem 111.10] Let x(x) € £«>(<?) and let Xh{x) be the
regularization of \- Then for any u £ L1(G)

lim / Xh{x)u{x)dx = I x(x)u(x)dx.
h

G
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1.6. Holder  and Sobolev spaces

1.6.1. Notations and definitions. In this section G C RN is a
bounded domain of the class Co>1. Let xo € M.N be a point and / a func-
tion defined on G 3 io- The function / is Holder continuous with exponent
a € (0,1) at xo if the quantity

\x-xo\°

is finite. [/]a;x0 is said to be the a—Holder coefficient of / at xo with respect
toG.

The function / is uniformly Holder continuous with exponent a € (0,1)
in G if the quantity

is finite.
We consider the following spaces.

 Cl{G) : the Banach space of functions having all the derivatives
of order at most I (if Z is a nonnegative integer) and of order [/]
(if I is non-integer) continuous in G and whose [Z]-th order partial
derivatives are uniformly Holder continuous with exponent I — [I]
in G. \u\i;C is the norm of the element u G Cl(G); if I  ̂ [I]  then

A . , , \Dau(x) - Dau(y)\
Ul-G = y SUP \D3U\+ SUP SUP : fj—fj? .

^ G \a\=[l]  x,y€G \X - y\l M
J x^y

 CQ(G) : the set of functions in Cl{G) with compact support in G.
 Wk'p(G), 1 < p < oo : the Sobolev space equipped with the norm

VP

\G I PIS

s * ne closure of CQ°(G) with respect to the norm ||
P(G)-

(G\O) = Wk'p(G\B£(0)), Ve > 0.
 For p = 2 we use the notation

Wk(G) = Wk'2(G), W$(G) = W$'2(G).

DEFINITION 1.26. Let us say that u e Wk'p(G) satisfies u < 0 on dG
in the sense of traces, if its positive part u+ = max{u, 0}  € Wo

 >P(G). If u
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is continuous in a neighborhood of dG, then u satisfies u < 0 on dG, if the
inequality holds in the classical pointwise sense. Other definitions of the
inequality at dG follow naturally. For example: u > 0 on dG, if — u < 0 on
dG; u — v on dG, if both u — v < 0 and u - t; > 0 on 9G;

supu = inf{fe| u < k on <9G, fc S R}; inf u = — sup(—u).
dG aG dG

 For T C dG and k G 1,2,..., the space Wk~i'p(T) consists of
traces on F of functions from Wk<p{G) and is equipped with the
norm

where the infimum is taken over the set of all functions $
Wk'p(G) such that $ = y? on F in the sense of traces.
For p = 2 we use the notation

THEOREM 1.27. [129, Theorem 7.28] (Interpolatio n inequality) Let
G be a C1'1 domain in RN and let u e W2>P(G) with p > 1. Then for all
£>0

with a constant c depending only on the domain G.

THEOREM 1.28. [117, Section 4.3] (Trace Theorem) Let 1 < p < oo.
There exists a bounded linear operator

T : W^IG) -» Lp(dG)

such that

Tu = u on dG

forallueW1'p(G)nC°(G).

Henceforth, we will write simply u instead of Tu.

THEOREM 1.29. (see e.g. (6.23), (6.24) Chapter I [214] or Lemma 6.36
[237]). Let dG be piecewise smooth and u e W1'1(G). Then there is a
constant c > 0 which depends only on G such that

(1.6.1) ( \u\ds <c ((|u| + |Vu|) dx, VTCdQ

r G

IfueW^iG), then

(1.6.2) I v2ds < f(S\Vv\2 + csv
2)dx, Vu(a;) € W1'2{G),\/5 > 0.

dG G
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Ifu&W2<2{G), then

(1.6.3) [ (]£) ds-c

1.6.2. Sobolev imbedding theorems. We give the well known Sobo-
lev inequalities and Kondrashov compactness results also called the imbed-
ding theorems (see [363], §§1.4.5 - 1.4.6 [261], §7.7[129]).

THEOREM 1.30. [412, Theorem 2.4.1], [129, Theorem 7.10] (Sobolev
inequalities) Let G be a bounded open domain in R^ and p > 1. Then

(1.6.4) W^(G)^\^
V ' ° V ' \C°{G) forp > N.

Furthermore, there exists a constant c = c(N,p) such that for all u €
WO

1>P(G) we have

(1-6.5) \\u\

for p < N and

(1.6.6) sup |u| < c(measG)1/N~1/p||Vu||LP(G)
G

for p> N.

The following Imbedding Theorems 1.31-1.34 first were proved by Sobo-
lev [363] and can be found with complete proofs in [314], [1, Theorem 5.4],
[210, Sections 5.7,5.8] and [261, Section 1.4]. Let G be a C0'1 bounded
domain in R^

T H E O R EM 1.31. Let k e N and p e l with p > 1, kp < N. Then the
imbedding

(1.6.7) Wk'p(G)  ̂ L*(G)

is continuous for 1 < q < Np/(N — kp) and compact for 1 < q < Np/(N —
kp). If kp = N, then the imbedding (1.6.7) is continuous and compact for
any q>l.

THEOREM 1.32. Let k e No, i e f r aeN and let p,q € R with p,q > 1.
If kp < N, then the imbedding

(1.6.8) wm+k'p(G)  ̂ Wm'q(G)

is continuous for any 5 6 R satisfying 1 < q < Np/(N — kp). If k = Np,
then the imbedding (1.6.8) is continuous for any q > 1.
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THEOREM 1.33. Let k,m e No anrfp > 1. T/ien the imbedding

Wk>p(G) <-+  Cm+I3(G)

is continuous if

(1.6.9) (k-m-l)p<N <{k-m)p and 0 < 0 < k - m - N/p,

and compact if the inequality in (1.6.9) is sharp. If (k — m — l)p = N, then
the imbedding is continuous for any (3 e (0,1).

THEOREM 1.34. Let u e Wk'p(G) with k e N, p e E, kp > N and
p > 1. Then u € Cm(G) for 0 < m < k — N/p and there exists a constant
c, independent of u, such that

sup \Dau(x)\ < c\\u\\Wk,PiG)
xeG

for all \a\ < k - N/p.

THEOREM 1.35. Let G be a lipschitzian domain and let Ts c G be
piecewise Ck-smooth s-dimensional manifold. Let k > 1, p > 1, kp <
N, N -kp < s < N and I <q < q* = sp/(N - kp). Then Wk'p(G) <̂->
Lq(Ts) and the inequality

(1.6.10) ll«lli«(T.) < c||u||Wfc,p(G)

holds. If q < q*, then this imbedding is compact.

1.7. Weighted Sobolev spaces

DEFINITION 1.36. For k e No, 1 < p < oo and a e l we define the
weighted Sobolev space Vk

a{G) as the closure of CQ°(G\Q) with respect to
the norm

i/ p

For F C dG and fc £ 1,2,..., the space Vp,a (r) consists of traces on F
of functions from Vk

a{G) and is equipped with the norm

where the infimum is taken over the set of all functions v e V£a(G) such
that v = w on F.
For p = 2 we use the notations

<(G) = v2*a(<?) and <" 1 / 2( r ) = ^*; 1/2(r).
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LEMM A 1.37. [161, 198] Let k',k€N with k' <k and

a -pk <a' — pk'.

Then Vpa(G) is continuously imbedded in V£a,(G). Furthermore, the imbed-
ding is compact if k' < k and a—pk<a'— pk'.

LEMM A 1.38. [280, 322] Let (k-\-y\)p > N, then for every u G V^
the following inequality is valid

| |yp f c a ( G ), Vx € G%

with a constant c independent of u and some d > 0 depending only on G.
In particular

for m < k — (a + N)/p.

PROOF. Without loss of generality we can assume that G is a cone.
We introduce new variables y = {yi,.-. ,ytf) by x = yt with t > 0 and set
v(y) := u(x). By the Sobolev Imbedding Theorem 1.34, we have

\D;v(y)\ < c J2 H^Mli-^) , Vy e G\.
\s\<k

Returning back to the variables x

t^\Dlu{x)\ < c Y, \\tl5l-N/pDs
xu\\LP{G?), Vz G Gf.

\S\<k

Multiplying both sides of this inequality by tN/p~k+a/p w e obtain

i|7|-fe+(Q+JV)/p|£)Tu(x)| <CJ2 \\tlSl'k+a/pD5
xu\\LP{Gr), Vx G Gf.

\S\<k

Therefore, because of t < \x\ < 2i in Gf, we have

|x|l7l-fc+(«+JV)/p|£,7u(x)| < c ^ \\\x\^-k+a^Ds
xu\\LP{G2t), Vx G Gf

\5\<k

with a constant c independent of t. Thus the assertion holds.

LEMM A 1.39. Let k,m e No, /3 e R with

(k-m-\)p < N <{k- m)p and 0 < / 3 < f c - m- N/p.

Then for any u G V£a(G)

SUP
|7|=m*.»"^.*?=y \ x V\
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with a constant c and some d > 0.

PROOF. The proof is completely analogous to the proof of Lemma 1.38.

LEMMA 1.40. [161, Lemma 1.1] Let u£$k
a
 1/2(F$). Then

f a-2k+l 2/ \ J < r\\,.\\2
IT U [XIQ/S ^ C u ok—1/2

J wa (rg)
rg

LEMMA 1.41. Letd>0 and p e (0,d). T/ien i/ie inequality

^ ) ds <Cl

is valid for all u e ^4_JVT(G'') Wi*^ constants c\,C2 independent of u.

PROOF. Let us first recall that due to Theorem 1.29 we have

Gp
n

with a constant C3 > 0 depending only on GQ. Setting u = r^3 N^2u we
have

JV

dn
3-N

rg\o

Since ^ ^ j : — < 1, therefore

r

<c5 Mrl^w^+r-^Vul 2)
eg

The assertion then follows by Lemma 1.9.

r l'Nu2ds.
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1.8. Spaces of Dini continuous functions

DEFINITION 1.42. The function A is called Dini continuous at zero if
the integral

0

is finite for some d > 0.

DEFINITION 1.43. The function ,4 is called an a-function, 0 < a < 1,
on (0, d], if t~aA(t) is monotonously decreasing on (0, d], that is

(1.8.1) A(t) < tar~aA(T), 0<r<t<d.

In particular, setting t = cr for c > 1, we have

(1.8.2) A{cr) < caA(T), 0 < r < c^d.

If an a-function A is Dini continuous at zero then we say that A is an
a-Dini function. In that case we define the function

o

Obviously, the function B is monotonically increasing and continuous
on [0,d] and 23(0) = 0. Integrating (1.8.1) over T G (0,t) we obtain

(1.8.3) .4(4) < aB(t).

Similarly, we derive from (1.8.1) the inequality

d d d

< S-aA(8)

S S 8

and thus

d

(1.8.4) 8 I ^jjp-dt < (1 - a)~U(5) < a(l - a)

Va G (0,1), 0 < 5 < d.

DEFINITION 1.44. The function B is called equivalent to A, written
A ~ B, if there exist positive constants Ci and C<i such that

Vt > 0.
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THEOREM 1.45. [114] A~ B if and only if

(1.8.5) \iminfA(2t)/A{t) > 1.

PROOF. At first we remark that

f"1 A(t) rm Alt)
2B(h)>B{2h)= / —^-dt> / —^-dt > A(h)\n2.

J0 t Jh t
Therefore we must prove the equivalence of (1.8.5) to the inequality B(t) <
CA{t).

The sufficiency: Let (1.8.5) be satisfied. Then there is a positive 6

such that for sufficiently small t the inequality £>J > 1 + 6 holds and

therefore A{2~H) < (1 + e)~kA(t). Then
h oo 2~kh oo

B(h) = J^dt=Z I ^ < l n 2£
0 fc=02-fc-l/i fe=0

fe=O

The necessity: Let liminf A(2t)/A(t) = 1. Then there is a sequence

tn such that J?*™} < 1 + ^ and we have

A((n-l)tn) A((n-2)tn) A(tn)
-in- l

Therefore

<(1 + - ] <e.
n,

/

A(t) 1

—̂— dt > lnn^4(tn) > - lnnA(ntn),

tn

and
Bint ) 1
—77—̂ -r > — In n, li m ntn — 0.
A(ntn) e n->oo

Thus A(t) and B(t) are not equivalent. D
In some cases we shall consider functions A(t) such that

(1.8.6) sup ^Q<cA(t), te(0,d],
o<r<i Ayr)

with some constant c independent of t.
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Examples of a-Dini functions A(t) which satisfy (1.8.5) and (1.8.6) with
c = 1 are

ta for 0 < t < oo;

taln( l / t ) for te (0,d], d = min(e-\e-1 / a) , e"1 < a < 1.

DEFINITION 1.46. The Banach space C°'A(G) is the set of all bounded
and continuous functions a o n Gc M.N for which

r  ̂ MX) — U(ij)\
[u] A;G = sup  "LU. < oo.

€G^y A(\x - y\)
It is equipped with the norm

If k > 1, then we denote by Ck'A{G) the subspace of Ck{G) consisting of all
functions whose (k — l)-th order partial derivatives are uniformly Lipschitz
continuous and each ft-th order derivative belongs to C°'A(G). It is a Banach
space equipped with the norm

Furthermore, let us introduce the following notation

r i \u(x) ~u(y)\
[U]A,X = sup '—jf x-jf-.

LEMMA 1.47. If A~B, then [U]A  ~ [«]B-

LEMMA 1.48. [129, p. 143, 6.7 (ii)] Let G be a bounded domain with
a Lipschitz boundary dG. Then there are two positive constants L and Qi
such that for any y G G with dist(y, dG) < Qi and any 0 < g < Qi there
exists x € Be{y) such that BQ/L(X) C G.

THEOREM 1.49. [365, Inequality (10.1)] (Interpolation inequality)
Let dG be Lipschitz. Then for any s > 0 there exists a constant c = c(e, G)
such that for every u € C1'A(G) the following inequality holds

N N

\DM\c°(G) < s^2[Diu}A.G + c(e,G)\\u\\co(Gy

PROOF. Let L, g be given as in Lemma 1.48 and let e > 0 be arbitrary.
We choose g > 0 so small, that A(g(l + l/L)) < e. If dist(y,dG) > g\, there
are for every i € { 1 , . . . N} two points 2/1,2/2 £ 9BB{y) and a y e BB(y),
such that

\Diu{y)\ = ^ - | " ( y i ) ~u(y2)\ < - | |u| |c"(G)-
Q Q
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Thus

\Diu{y)\ < \Diu{y)\ + \ D i U { y ) - D i U ( y ) \ <  - | | u | )

If dist(y, dG) < Q\, there are j/i , j/2 G dBe/i,{x) and y € dBe/i,{x) such that

|A«(y)| = 2TI«(J/I) -M(2/2)| < -||w||c°(G)-

Since \y — y\ < \y — x\ + \x — y\ < Q{\ + 1/L) we conclude

\DiU{y)\ < \DiU{y)\ + \DiU(y) - A«(»)| < ̂ ||tt

which finally implies the statement.

DEFINITION 1.50. We shall say that the boundary portion T c dG is of
class C1'-4 if for each point XQ € T there are a ball B = B(XQ), a one-to-one
mapping ip of B onto a ball B', and a constant K > 0 such that

(i) BndGcT, 1>(B n G) c K^;
(ii) V(-B n SG) C S;
(hi) ^ e C1 ^ ^ ) , V" 1 e ^ ' ^ (B ' );
(iv) ^

It is not difficult to see that for the diffeomorphism ip one has

(1.8.7) K-l\4>(x)-ip{x')\<\x-x'\<K\il;{x)-il;(x')\,  Vx,x' G B.

LEMMA 1.51. [365, Section 7] Letu,v e C°-A(G). Thenu-v G
and

LEMMA 1.52. [365, Section 7] Let A(t) be an a-function on [0,d\ and
let u G G°"4(B). Furthermore, let ip : B' —> B be Lipschitz continuous the
Lipschitz constant L. Then u o xjj G C°^(B') and

(1.8.8) ||ti o ̂ 11(70,̂ (5/) < £<Q||u||(70,^(5), where L = max(l, i).

PROOF. Indeed, if x,y G B', \x - y\ < f, then by (1.8.2)

i)(x)) - u(tp(y))\ <  \\U\\CO,A(B)  A(L\x - y\) <

<\\u\\c0,A(ByLa-A(\x-y\).
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1.9. Some functional analysis

DEFINITION 1.53. Let X, Y be Banach spaces. Then we denote by
JC(X, Y) the linear space of all continuous linear mappings L : X —> Y.

THEOREM 1.54. [129, Theorem 5.2] (The method of continuity) .

Let X,Y be Banach spaces and LQ,LI e £(X,Y). Furthermore, let

Lt := (1 - t)L0 + tLi Vt e [0,1]

and suppose that there exist a constant c such that

\\u\\x<c\\Ltu\\Y Vi e [0,1].

Then L\ maps X onto Y if and only if La maps X onto Y.
THEOREM 1.55. [353] (Variational principl e for  the least positive

eigenvalue). Let H, V be Hilbert spaces with dense and compact imbeddings

V c H c V

and let A : V —> V be a continuous operator. We assume that the bilinear
form

a(u,v) = (Au,v)H

is continuous and V-coercive, that is there are constants c\ and C2 such that

\a(u,v)\ < ci||u||v \\v\\v,

a(u,u) > C2||w||v

for all u, v € V. Then the smallest eigenvalue fl of the eigenvalue problem

satisfies

\\v\\2H

THEOREM 1.56. [129, Theorem 11.3] (The Leray-Schauder  Theo-
r e m ) . Let T be a compact mapping of a Banach space B into itself, and
suppose that there exist a constant M such that

\\X\\B < M

for allx € B and a G [0,1] satisfying x = aTx. Then T has a fixed point.
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1.10. The Cauchy problem for  a differential inequality

THEOREM 1.57. Let V(g) be a monotonically increasing, nonnegative
differentiable function defined on [0,2d]  that satisfies the problem

f V*(p) - V(g)V(g) + N{p)V{2p) + Q(p) > 0, 0 < p < d,
V(d) < V0,

where V(g),N(g), Q(Q) are nonnegative continuous functions defined on
[0,2d]  and VQ is a constant. Then

(1.10.1) V(g) <expf fB(T)dT\<Voexp(- f V{i

Q Q

d T

+ JQ{T)exp(- f V(a)da\dr\
S Q

with

(1.10.2) B(g) = AT(Q) exp (j V(a)da).

Q

PROOF. We define functions
d

(1.10.3) w(g) = V(g) exp ( f V(a)da

Q

dd d

(1.10.4) TI(Q) = Vo + f Q(r)exp( f V(<r)dtr\dT
Q T

Multiplying the differential inequality (CP) by the integrating factor
/d \

exp I fV(s)ds I and integrating from p to d we get
\Q )

d d d

V(d) -V(g)exp( f V(s)ds) + f ^(r)expf /V(a)d«V(2r)dT+
g g T

d d

I Q(r)exp( JV(s)dsjdT > 0.+
g
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Hence it follows that

d

(1.10.5) w(g) < H{Q) + f B(T)W(2T)<1T.

Q

Now we have

Q

Since 11(2T) < Tl(g) for r > g, setting

(1-10.7) «.)

we get

(1.10.8) z(g) < 1 + I B(T)Z(2T)<IT.

Q

Let us define the function

fB{T)Z{2 T)(1T.

The from (1.10.8) we have

(1.10.9) z(g) < Z(g)

and

Z'(Q) = -B(Q)Z(2Q) > -B{g)Z{2g).

Multiplying the obtained differential inequality by the integrating factor
/ d \

expl — J B(s)ds I and using the equality

d d

j-Q [Z(g) exp (- I B(s)ds^j ] = Z'(g) exp (- j B(
Q Q

+ B(g)exp(-JB(s)ds\z(g),

Q

d
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we have

^ [Z(g) exp (-1 B(s)<k) ]>B(g) exp ( - J B(s)ds^j [Z(g) - Z(2g)] .

But

a a

Z{2Q) = 1 + f B(s)z(2s)ds < 1 + f B(s)z(2s)ds = Z(g),

2B

therefore
d

Z{Q) - Z{2g) > 0 => j . [z(g)exp(- f B(s)ds\] > 0.
B

Integrating from g to d we have
d d

Z(g)exp(- f B{s)ds) < Z(d) = 1 =» Z(g) < exp( f B(s)ds

B B

Hence, by (1.10.9), we get
d

(1.10.10) z{g) < expT f B{s)ds\

B

Now, in virtue of (1.10.3), (1.10.7), and (1.10.10), we finally obtain
d d

V(g) <exp(- I V(a)da)n(g)exp( f B{a)da\

8 8

or with regard to (1.10.4) the desired estimate (1.10.1).
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1.11. Additional auxiliar y results

1.11.1. Mean Value Theorem.

THEOREM 1.58. Let f e C°[a,b] with 0 < a < b. Then there exist a
9 € (0,1) and a £ e (0,1), such that

b

I f(x)dx >  (6 - a)/((l - 9)a + 9b)
a

and
b

f f(x)dx < (b-

a

PROOF. Let us assume that
b

ff(x)dx < (b-a)f({l-9)a

for all 9 c (0,1). Integrating this inequality with respect to 9 € (0,1) we
obtain the contradiction

6 1

f f{x)dx <{b-a) f /((I - B)a + 9b)d6 = / f(t)dt.
a 0 a

The other assertion is proved analogously.

1.11.2. Stampacchia's Lemma.

LEMMA 1.59. (See Lemma 3.11 of [316], [366]). Let ip : [fc0joo) -> R
be a non-negative and non-increasing function which satisfies

(1.11.1) #)<( | i_^) t t [#)f for h>k>k0,

where C,a,/3 are positive constants with fi > 1. Then

<p(ko + d) = 0,

where

PROOF. Define the sequence

ks=k0+d-—, s = l , 2 , . . ..
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From (1.11.1) it follows that
/~'2( S+1)Q

(1.11.2) y ( f c s + 1) < da [ip(ks)f, 8 = 1,2,....

Let us prove by induction that

(1.11.3) <p(k.) < | ^ , where M = ^ < 0.

For s = 0 the claim is trivial. Let us suppose that (1.11.3) is valid up to s.
By (1.11.2) and the definition of da if follows that

Since the right hand side of (1.11.4) tends to zero as s —> oo, we obtain

0 < <p(kQ + d)< ip{ks) -> 0.

D

1.11.3. Other assertions.

LEMMA 1.60. (see Lemma 2.1 [78]). Let us consider the function

{ P*X — 1 T > f)

e 1, x>U,
-e-**  + 1, x < 0,

where >c > 0. Let a, b be positive constants, m > 1. If K > (26/a) + m, then
we have
(1.11.5) a-n'(x) - b\rj{x)\ > ^e**, Vx > 0
and

(i.n.6) ^ ^ K ^ ) ] " 1 '  Vx-°-
Moreover, there exist a d > 0 antf an M > 0 SUC/J that

(1.11.7) ry(x) ̂ M [ r ? ( ^ ) ] m anrfr?'(x)<M[7/(^)]m, Vx > d;

(1.11.8) |»j(a;)| > x, Va; e R.

PROOF. Formula (1.11.5) is easily verified by direct calculation. By
definition, inequality (1.11.6) can be stated as

(1.11.9) ( ex *  - l ) m < e*x -1, Vx> 0.

We set for x > 0

y = e**  > 1 and /(») = (y - l ) m + 1 - ym.

Then
/'(V) = m(y - I)" 1" 1 - my"1'1 < 0,
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hence it follows that f(y) is decreasing function, that is f(y) < / ( I ) , Vy > 1.
Because of / ( I ) = 0, we get (1.11.9).

Further, the first inequality from (1.11.7) has the form

(1.11.10) ym - 1 < M(y - l ) m .

We consider the function g(y) = M(y — l ) m — ym + 1. Then we have

M in

g(y) > M(y - l)m-ym > 0, if y > y0 = —-, > 1,
Mm — 1

if we choose M > 1. Therefore
Mmg(y) > 0, Vy > j/o or for e*™ >

. , TO

x > d\ = — In

Mm - 1

that is the first inequality from (1.11.7) is proved.
Let us now prove the second inequality from (1.11.7). We rewrite it in

the form

M(y - l)m > xym.

Hence it follows:

AT— — '
IVL m — Xm

if M > K. The last inequality means that

x_ Mm TO
> > >d

Mm TO. Mm
> —i => x >d2 - —In—j  -

Mm — x™ X Mm — Km

Thus, inequalities (1.11.7) are proved, if we take

/ , , % " I , Mm
M > x; a — max(ai,d2) = — in — j j-,

X Mm — Xm
(since x > 1).

Finally, we prove the inequality (1.11.8). From the definition we have
{Pxx _ 1 T > n

. . . . e x, x ^ u,
\n(x)\ — <

e x — 1, x < 0.
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It is sufficient prove the inequality

e*
x - l > a;, x > 0.

Since H > 1, this result follows from the Taylor formula,

1.11.4. The distance function. Let G be a domain in RN having
non-empty boundary dG. The distance function d is defined by

d(x) =dist(x,dG).

LEMMA 1.61. The distance function d is uniformly Lipschitz continu-
ous.

PROOF. Let x,y e RN and let y* e dG be such that \y - y*\ = d(y).
Then

d{x) <\x- y*\ <\x-y\+ d(y)

so that by interchanging a; and y we have

(1.11.11) |d(x)-d(i/)|<|x-i,|.

1.11.5. Extension Lemma.

LEMMA 1.62. (See Lemma 3.9 [405]). Let D be a convex bounded set in
R- ,̂ T C dD, and f(x) € ClyA(D), where A(t) is a non-decreasing function
such that lim A(t) = 0 and A(2t) < 2A(t). Then there exists a function

F(x) with following properties:

1°. F(x) e C

2°. F{x) e C

3°. DaF(x) = Daf(x), xeT; \a\ < 1;

4°. \D2
xxF(x)\<Kd-\x)A(d(x)),

where d{x) denotes the distance to T and K depends on N and Ait) only.

PROOF. We shall use the concept of a partition of unity. Let us consider
a finite covering of D by a countable collection {Dj}  of open sets Dj. Let
{£j }  be a locally finite partition of unity subordinate to this covering, that
is

(i) (k G Ca°(Dj) for some j = j(k);
(ii ) Cfe>0, ECfc = lin£>;
(iii ) at each point of D there is a neighborhood in which only a finite

number of the £fc are non-zero;
(iv) £ \DaCk{x)\ < Ca(l + d-a(x)), where Ca is independent of T;

k
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(ivv) there is a constant C independent of k and T such that

diam(supp £&) < Cd(x).

For the proof of the existence of such a partition see, for example, the pre-
sentation of Whitney's extension theorem in Hormander (Lemma 3 [146]).
Let x* € T be a point satisfying d(x) — \x - x*\ and let xk be any fixed
point in the support of Cfe- We write the Taylor expansion of f(x) at y as

f(x) = P!(x,y)+Ri(x,y), where

Pi(x,y) = f(y)

and therefore, by the mean value Lagrange Theorem,

y) = (f(x) - f(y)) -
j

for some 9 G (0,1). By assumptions about / it follows that

(1.11.12) I f l i f o y ) \ < \ x - y \ A { 6 \ x - y \ ) < \ x - y \ A ( \ x - y \ ) .

Since

I?x*i(x,l/ ) = D«/(a:) - Dxf(y),

we get in the same way

(1.11.13) |

Now we define F(x) by

(Pi(x,xk)-P1(x,x*)) +

+Pi{x,x*),  xeD\T;

x&T.

x) (Pi(x,xk) - Px{x,x*))

But it is obvious that

Pi{x,xk) - Pi(x,x*) = Ri(x,x*) - Ri{x,xk)
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and therefore

D2F(x) = J^D2Ck(x) (Rxfax') - Ri(x,xk))) +

(1.11.14) *
+ 2^£>Cfe(x) (DxR1(x,x*)-DxR1(x,xk)) .

k

If x S supp Cfc, then by (ivv)

(1.11.15) \x - xk\ <\x- x*\ + \x* - xk\ < d(x) + Cd(x) = (1 + C)d(x).

Therefore we obtain, by (iv) and by (1.11.12)-(1.11.13)

\D2F(x)\ < Kd-1(x)A(d(x))

and 4° is proved.
To prove 2°, first assume that

(1.11.16) \x-y\<]rd(x).

By the mean value Lagrange Theorem

\DxF(x) - DxF(y)\ <\x-y\ sup \D2
xxF(z)\,

where the supremum is taken over those z for which \z — x\ < ̂ d(x). Then
using 4°, it follows that

\DxF(x)-DxF(y)\<KA(\x-y\).

On the other hand, if d{x) < 2|x — y\, we have

d(y) < d(x) + \x — y\<4\x — y

and by the definition of F(x) and by (1.11.15):

\DxF(x) -Dxf(x*)\ <J2\Ck(x)\\DxR1(x,x*)-DxR1(x,xk)\+
k

+ J2\D<k(x)\\Ri(x,x*)-R1(x,xk)\<KA(d(x)) <
k

<KA(\x-y\).

Similarly,

\DxF(y) - Dxf(y*)\ < KA(d(y)) < cKA(\x - y\).

Since by assumption

\Dxf(x*) - Dxf{y*)\  < A(\x* - y*\) < KA(\x - y\),

the lemma follows with the triangle inequality.
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1.11.6. Difference quotients. The investigation of differential prop-
erties of weak solutions to the boundary value problems may often be de-
duced through a consideration of their difference quotients.

DEFINITION 1.63. Let u e Lm(G) and denote by ek (k=l,...N) the
unit coordinate vector in the Xk direction. The function

= , MO
It

is said to be a difference quotient of u at x in the direction e^

The following lemmas pertain to difference quotients of functions in
Sobolev spaces.

LEMMA 1.64. Let u e W1>m(G). Then Ahu e Lm(G') for any G' cc G
satisfying h < dist(G', dG), and we have

PROOF. At first, we suppose that u G CX{G) n W1'm(G). Then

= — /

h

0

so that by the Holder inequality

h

|Ahu(x)\m < i f \Dku{Xl,.. .,xk-uxk + £,xfc+i,...,
0

and hence setting Bh(G') = {a;| dist(a;,G') < h}

h

[  \Ahu{x)\mdx < i I f \Dku\mdxd£, < j \Dku\mdx.
G' 0 Bh(G') G

The extension to arbitrary functions in W1'm(G) follows by a straight-
forward approximation argument.

LEMM A 1.65. Let u G Lm(G), 1 < m < oo, and suppose there exists a
constant K such that Ahu G Lm(G') and ||Afcw||Lm(G') < K for all h > 0
and G' CC G satisfying h < dist(G',dG). Then the weak derivative Dku
exists and satisfies ||I?feu||Lm(G) S K.
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PROOF. By the weak compactness of bounded sets in Lm(G'), there
exist a sequence {hj}  tending to zero and a function v G Lm(G) with
IM|i,"*(G) < K satisfying

= [ rjvdx, Vr? e C£(G).
J

lim
G

Now we have
The summation by parts formula is as follows.

(1.11.17) Ir)Ahiudx = - fuA-^ridx for hj < dist(suppr?,9G).

Hence

lim / uA~h'r)dx = /
hj  -*0 J J

G G

/ rjvdx = — j

G G

whence v = Di~u.

LEMM A 1.66. Let u e W1'm(G). Then

|| Afc'u(x ) - Dku(x)\\Lm{G,) -» 0, k = l,...,N

for any sequence {hj}  tending to zero and for every G' CC G. For some

subsequence {%}  functions Afc
;"w(a;) tend to Dku(x) a.e. in G.

PROOF. For sufficiently small \hj\ and a.e. x £ G' we have
l

Ahi , s n / N 1 fdu(x + thjek)
Ak

su(x) - Dku(x) = — / —i——J.—'-dt - Dku{x) =
o

I
= / {Dku(x + thjBk) - Dku(x)) dt

o
and therefore

l

||A£'U(:B) - Dku(x)\\Lm{G,} < j \\Dku(x + %efe) - Dku{x)\\Lm{GI)dt.
o

But the right side in this inequality tends to zero as hj —» 0, because Dku{x)
is continuous in the norm Lm(G'). Thus the first part of lemma is proved.
The second part follows from properties of the space Lm.
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1.12. Notes

The proof of the Cauchy, Young and Holder inequalities §1.2 can be
found in Chapter 1 [37] or in Chapter II  [142]. The formulae (1.3.1)-(1.3.12)
are proved in §2, Chapter 1 [310]. For the proof of the Fubini and Fatou
Theorems see, for example, Theorem 9 §11 and Theorem 19 §6, Chapter II I
[101]. The proof of the integral inequalities §1.5 can be found in Chapter
VI [142]. The Clarkson inequality is proved in Subsection 2 §3, Chapter
I [363]. The material in §1.8 is due to [74, 114]. The simplest version of
Theorem 1.57 in §1.10 goes back to G. Peano [331]; the special case was
formulated and proved by T. Gronwall [137] and S. Chaplygin [79]. The
case Af(g) = 0 of this theorem was considered in [170, 171]. The general
case belongs [53, 54, 50].
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CHAPTER 2

Integral inequalities

2.1. The classical Hardy inequalities

THEOREM 2.1. (The Hardy inequality, see Theorem 330 [142].)
Letp > 1, s ^ 1 and

F(x) =

i/ien

(2.1.1)

The constant is the best.

We prove the partial case p = 2.

THEOREM 2.2. ief / e i2(0,d), d,f3 > 0 and

T/ien

= /yl3~^f{y)dy.

(2.1.2)
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PROOF. Let 0 < 6 < (3. Then by Holder's inequality (1.14)
2

\F(x)\2 <

2(/3-S)

Therefore, by the Fubini Theorem 1.13,
d d

2 ( / ? -

.-28 _ J - 25,y-id-d
25 -dy<

Noting, that 4S(l_S) becomes minimal for 6 = |/3, we choose S := \fl and
obtain the assertion.

d

< 4 f
(4-iV-a)2 J j

COROLLARY 2.3. Let v G C°[0,d] n Wlfi(O,d),d > 0 with v(0) = 0.
Then

d

(2.1.3) jrh

o o
for a < 4 — N provided that the integral on the right hand side is finite.

PROOF. We apply Hardy's inequality (2.1.2) with F = v, 0 :=  4~^~",

noting that F'(r) = r^~if{r)  and therefore /2(r) = r1'2  ̂ ( fQ2 .

REMARK 2.4. The constant in (2.1.3) is the best possible.
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COROLLARY 2.5. Ifu e C£°(R"), a < i - N and u(0) = 0, fften

| rQ-V(s)ds < ( 4 _ ^ _ Q ) 2 J ra~2\Vu{x)\2dx

provided that the integral on the right hand side is finite.

PROOF. The assertion follows by integrating both sides of (2.1.3) over
fi  for large enough d and applying (1.3.7).

COROLLARY 2.6. Ifue W0
ll2(G), a < 4 - AT, then

(2.1.4) Jra-4u2(x)dx< {4_*_a)2Jra-2\Vu(x)\2dx,
G G

provided that the integral on the right hand side of (2.1.4) is finite.

PROOF. The claim follows from Corollary 2.5 because Co°(G) is dense
in W0

ll2(G).

COROLLARY 2.7. Let v e C°[e,d\ n Wl'2(e,d),d > 0 with v(e) = 0.
Then

(2.1.5)

/or a < 4 — n.

PROOF. We apply the inequality (2.1.3) to the function v(r) extended
by zero into [0,e). D

Note also another generalization of the Hardy inequality:

THEOREM 2.8. The inequality

(2.1.6)

is true if p > 1, a  ̂p — 1 and f(x) is absolutely continuous on [0, oo) and
satisfies the following boundary condition

f/(0) = 0 whena <p-l,

1 lim fix) = 0 whena >p— 1.
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2.2. The Poincare inequality

THEOREM 2.9. The Poincare inequality for  the domain in RN

(see e.g. (7.45) [129]).
Let u 6 W1(G) and G is bounded convex domain in M™. Then

where

u

measS
s

' = / u(x)dx,
measS J

and S is any measurable subset of G.

THEOREM 2.10. The Poincare inequality for  the domain on the
sphere (see e.g. Theorem 3.21 [145]).

Let u G W1^) and 0. is convex domain on the unit sphere SN~1. Then

(PI 2) ||«-un||2 in < c(JV,ft)||Vuu||2;n,

where

UQ = — / u(x)dQ,.
measll J

n
Also the following lemma is true.

LEMM A 2.11. (see e.g. Lemma 7.16 [129]). Let u e W1'1^)  and
G is bounded convex domain in RN. Then

(2.2.1) \u — u\ < -j-i  — I \x — yl1 N\S7u(y)\dy a.e. inG,
G

where

u = / u(x)dx,
measS J

s
and S is any measurable subset of G.

Now we shall prove the version of the Poincare inequality.

THEOREM 2.12. Let G$ be convex domain, G$ C G, G is bounded do-
main in RN. Letue L2(G) and f ra~2\Vu\2dx <<x>,  a < 4 - N. Then

Gg

(2.2.2) / ra-4\u - u\2dx <c f ra~2\ Vu\2dx, Vg € (0, d),
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where

G"
Q

and c > 0 depend only on N, d, meastl.

PROOF. Since a < 4—N then from our assumption we have u € W^1 (G).
By density of G°°(G) D W1(G) in W^G) we can consider u e G^G). We
use Lemma 2.11, applying it for the domains Gj7,2 and 5 = G^,2. By this
Lemma and the Holder inequality, we have

(2.2.4) \u{x)-u\2 <c( [  Iz-t/ l1--^

<c J \x - y\l-N\Vu{y)\2dy J \x-y\1~Ndy =

= -Q-measQ. I \x - y\1~N\SJu{y)\2dy.

From (2.2.4) it follows

(2.2.5) j ra~4\u(x) - u\2dx <

f ra-A( f \x-y\1~N\Vu(y)\2dy\dx

Ge/2 GQ/2

<c-measn f ra-3( j \x-y\1-N\Vu(y)\2dy)dx =
Gl,2 G'e/2

= c f \Vu(y)\2( f ix^-^x-y^dx^dyKc I ra-2\

since

/ ix^-^x-y^dxKcg01-3 f \x-y\1

<
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Replacing in (2.2.5) g by 2~kg we can (2.2.5) rewrite so

/ ra'4\u-u\2dx<c I ra-2\Vu\2dx,\/g€(0,d),

G(k)

whence by summing over all k = 0,1,  we get the required (2.2.2).

2.3. The Wirtinge r  inequality: Dirichlet boundary condition

Let f2 c SN~X be bounded domain with smooth boundary dQ.. We

consider the problem of the eigenvalues for the Laplace-Beltrami operator

Aw on the unit sphere

. = 0,

dn

which consists of the determination of all values # (eigenvalues) for which
(EVD) has a non-zero weak solutions (eigenfunctions). In the following, we
denote by $ the smallest positive eigenvalue of this problem.

THEOREM 2.13. (The Wirtinge r  inequality) The following inequal-
ity is valid for all u G Wo' (O)

(2.3.1) I u2(u))dn < ̂  /
n Q

PROOF. Let us consider the eigenvalue problem (EVD) and denote by

a(u,v) :=  /
n

the bilinear form corresponding to the Laplace-Beltrami operator Aw.
From Theorem 1.55 applied to the spaces V = W0

1>2(ft), H = L2(n) follows,
that the smallest positive eigenvalue $ of (EVD) satisfies

,J= inf #
v€W^2(Q) \\v\\

Thus for all u e W0
1>2(fi )

2a; = a(u,u) >

REMARK 2.14. From the above proof follows that the constant in (2.3.1)
is the best possible.
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Now let 6(r) be the least eigenvalue of the Beltrami operator Aw on Or

with Dirichlet condition on 9Or. According to the variational principle of
eigenvalues (see Theorem 1.55 ) we have also

THEOREM 2.15.

(2.3.2) I u2(u})dQr < - ^ - / | V ^ l 2 dQr, Vu e W0
ll2(fi P).

2.4. The Wirtinge r  inequality: Robin boundary condition

2.4.1. The eigenvalue problem. Let 0 C 5n - 1 be a bounded do-
main with smooth boundary 90. Let ~v be the exterior normal to 90. Let
7(u>), u) € 90 be a positive bounded piecewise smooth function. We con-
sider the eigenvalue problem for the Laplace-Beltrami operator Aw on the
unit sphere

{ Auu + flu = 0, u e O,
an + ( ) = 0

w^ 1[ ' an '
which consists of the determination of all values d (eigenvalues) for which
(EVR) has a non-zero weak solutions (eigenfunctions).

DEFINITION 2.16. Function u is called a weak solution of the problem
(EVR) provided that u £ W1(O) and satisfies the integral identity

(II ) / < ———-r duri \ dCt + I "/{(jAuridcr = 0
J I Qi dvi duii J J
n an

for all r)(x) G W^fi) .

REMARK 2.17. The eigenvalue problem (EVR) was studied in section
VI [87] and in §2.5 [363]. We observe that  = 0 is not an eigenvalue of
(EVR). In fact, setting in (//) r) = u and !? = 0we have

/ \Vuu\2dQ + / 7 ( ) | | = 0 => u = 0.

n en

Now, let us introduce the following functionals on

F[u]  = /|Va jw|2dO+ [j(uj)u2da, G[u] = f u2

a an n

H[u]  = j(^7wu\2 - -du^dn + f~f(u)u2da
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and the corresponding bilinear forms

F(u,V)= f-^p-dn
J qidwidui J
n da

G(u, v) = undQ.
n

We define yet the set

K= {ueWl{9) G[u] = 1}.

Since K C W1(Ci), F[u]  is bounded from below for u e K. The greatest
lower bound of F[u]  for this family we denote by d :

inf F\u] = ti
u€K l '

We formulate the following statement:

THEOREM 2.18. (See Theorem of Subsection 4 §2.5, p. 123 [363]).
LetQ c S""1 be a bounded domain with smooth boundary dQ. Let^(w), u G
90 be a positive bounded piecewise smooth function. There exist d > 0 and
a function u € K such that

F(u, r])  - i?G(u, f])  = 0 for arbitrary n £ W1^).

In particular F[u]  = $. In addition, on SI, u has continuous derivatives of
arbitrary order and satisfies the equation A^u + §u = 0, w € Q and the
boundary condition of (EVR) in the weak sense (for details see the Remarks
2.19 below).

PROOF. Because of F[v]  is bounded from below for v e K, there is
# = inf F[v].  Consider a sequence {vk} C K such that lim F[vk] — $ (such

vEK k-*oo
sequence exists by the definition of infimum). Erom K c PF1(O) it follows
that Vk is bounded in WAl(f2) and therefore compact in L2(f2). Choosing a
subsequence, we can assume that it is converging in L2(Q). Furthermore,

(2.4.1) \\Vk - v i \ \ 2
L H n ) = G [ v k - v i ] < e

as soon as k, I > N(s). From the obvious equality

2

we obtain, using G[vk] = G[v{\ — 1 and G[VfcJ*'t] < §, that

'vk + rn]  ̂ - e
G ' " ~
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for big k, I. The functionals F[v]  and G[v]  are homogeneous quadratic func-
tionals and therefore their ratio ^H does not change under the passage
from v to cv (c = const / 0) and hence

inf = i n f54G[v]

Therefore F[v]  > dG[v] for all v e Wl(Q). Since
with Vk,vi £ K, then

W\£l) together

Then, taking k and / large enough that F[vk] <  + e and F[vi]  < fl + s, we
obtain

Consequently,

(2.4.2) F[vk - v{\ -> 0, k, I -> oo.

Prom (8.2.10), (8.2.12) it follows that ||ufe-^||wi(") ~̂  °> k,l  ̂ oo. Hence
{ufc}  converges in W1(O) and as result of the completeness of W1(f2) there
exists a limi t function u £ VF1(17) such that \\vk — w||wi(Q) —> 0, /c —> oo.
In addition,

an

n

/

an

(

- u2)da

1/2

o,
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as k —> oo, since by (1.6.2)

(/'"' "

V / 2

u\2da\ <C||t;fc-u||wi(n)-+0, k -> oo,

, vl/2- x x l / 2

while the terms I / |Vw(«fe + u)\2dQ, I and I / ~/2(uj)\vk + u\2da I are
Vn / V a n /

bounded. Therefore we get

F[u]  = lim F[vk]  =
k—>oo

Analogously one sees that G[u] = 1.
Suppose now that ry is some function from W^1(Q). Consider the ratio

F[u + jj,rj\  _ F[u]  + 2(iF(u,ri) + fj,2F[T]}

G[u + fir]]  G[u\ + 2fiG(u, rj)

It is a continuously differentiate function of fi on some interval around the
point /i = 0. This ratio has a minimum at fi = 0 equal to $ and by the
Fermat Theorem, we have

2F{u,ri)G[u]  - 2F[u]G(u,V) _
— U)

which by virtue of F[u]  = 1?, G[u] = 1 gives

F(u,Tj)-tiG(u,T)) = O, WrieW1{fl).

The rest part of our Theorem follows from the smoothness theory for
elliptic boundary value problem in smooth domains (details see in §2.5
[363]).

REMARK 2.19. Remarks about the eigenvalue problem (EVR)
(see Remarks on pp. 121 - 122 [363])

Consider a sequence of domains {^'}  lying in the interior of Q, and
converging to Q. Let the boundaries 9f2' of these domains be piecewise
continuously differentiable. The integral identity (//) from Definition 2.16
for Tj € W1 (Q) has the form

(2.4.3) I'l-p-p-- #uv) dQ. + f 7(w)ur?d<7 = 0
Q dQ
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But

f [ 1 du dn 1 f f 1 9M dn 1
/ -t — —— 7T i9u?7 > dil = li m / < vurj > dil =

n w

= lim - / 7?(Awtt + tfu) dQ+ rj—^ dcr = lim / n—^ d<r.
n'—n y J du Q'^n J 'du

1 fi' an' J an'
Thus, the equation (2.4.3) takes the form

(2.4.4) lim / j / — ^ da+ 7(CJ)UT? d<r = 0.
an' an

If in addition 90' —* 90 in the sense that not only the points of 90' converge
to the points of 90 but also the normals at these points converge to the
corresponding normals of 90, then

/
'yun da = lim / 'ywn da,

an an'
if we assume that 7 is the value on 90 of some function given on 0.

Then condition (2.4.4) takes the form

(2.4.5) limv ' n'-»s
an'  v '

Thus, u satisfies the boundary condition of (EVR) "in the weak sense."

Therefore, an eigenfunction of the problem (EVR) will be defined to be
a function u(x) ^ 0 satisfying equation in O for some i? and the boundary
condition in the sense of relation (2.4.5). The number 7? is called the eigen-
value corresponding to the eigenfunction u(x).

Theorem 2.18 proved implies the existence of an eigenfunction u corre-
sponding to the eigenvalue  in the sense indicated.

2.4.2. The Friedrichs-Wirtinge r  inequality. Now from the varia-
tional principle we obtain

THEOREM 2.20. Letd be the smallest positive eigenvalue of the problem
(EVR). (It exists according to Theorem 2.18.) Let 0 C Sn~1 be a bounded
domain. Let u £ W/1(0) and 7(0;), u> € 90 be a positive bounded piecewise
smooth function. Then

(2.4.6) 1? fu2(w)da< f \S/Uu(uj)\2dn+ f\(co)u2(cj)da.
n n an
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PROOF. Consider functional F[ix],G[u],.ff[ii ] on W1^) described
above. We will find the minimum of the functional F[u]  on the set K. For
this we investigate the minimization of the quadratic functional H[u]  on all
functions u(w), for which the integrals exist and which satisfy the boundary
condition from (EVR). We use formally the Lagrange multipliers and get
the Euler equation from the condition SH [u]  = 0. By the calculation of the
first variation 5H we have

6H[u]  = -2 f(Auu + du)6udn + 2 / -^5uda + 2 j j(ui)u6uda.
n an an

Hence we obtain the Euler equation and the boundary condition that are our
(EVR). Backwards, let u(w) be the solution of (EVR). By Theorem 2.18,
u £ C2(O). Therefore we can multiply both sides of the equation (EVR) by
u and integrate over Q. using the Gauss-Ostrogradskiy formula:

0 = [(uAuU + §u2)dn = ti fu2dn - I |

dv
an

= tf ! u2d(l - ( |Vuu\2dn - I j(cj)u2da = tf - F[u

an
6 = F[u}.

Consequently, the required minimum is the least eigenvalue of (EVR). The
existence of a function u e K such that

(2.4.7) F[u]  < F[v]  for all v G K

was proved in Theorem 2.18.

2.5. Hardy-Friedrichs-Wirtinge r  type inequalities

2.5.1. The Dirichlet boundary condition. Let 0(r) be the least
eigenvalue of the Beltrami operator A^, on Clr with Dirichlet condition on
d£lr and let a neighborhood Gg of the boundary point O satisfy the condi-
tion:

(S)

0(r) >eo + 6>i(r) > 6»2 > 0, r € (0,d), where
6Q, 82 are positive constants and
0i(r) is a function that is Dini-continuous at zero

lim0i(r) = O, / ™ ^ dr < oo.
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This condition describes our very general assumptions on the structure of
the boundary of the domain in a neighborhood of the boundary point O.

THEOREM 2.21. (Generalized Hardy-Friedrichs-Wirtinge r
inequality). Let U(d) = / ra~2\Vu\2dx is finite and u(x) = 0 for x e F$.

Then

(H-W) Ira~4\u\2dx < H(X,N,a)(l + ^ ^ ) /ra~2\Wu\2dx

with some g € (0, d), where

(*)
A = | ^2 - N + y/(N - 2)2 + 4(9O J

provided a < 4 — N.

PROOF. Integrating (2.3.2) over r e (0, d) we get

t(r) r2

but

Mr)\

because of the condition (S). Hence, applying the mean value theorem with
regard to the continuous at zero of the function 8\(r) we obtain

2 |fl fn\\

f ra-*\u\ 2dx < J r a ~ 2 ^ -dx >-U(d)

for some g£ (0,d).
Now we integrate the Hardy inequality over Q and rewrite the result in

the form
a)2 jra-i\u\2dx<Jra'2u2

rdx,a<4-N.

Adding two last inequality and applying the formula for |Vu|2 and the de-
finition of the value A we get the required inequality (H-W).
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COROLLARY 2.22. V<J > 0 3d > 0 such that

f ra-4u2dx < (H(X, N, a) + 6) f ra~2 |Vu|2 dx,

ai at

provided the integral on the right hand side is finite and u(x) = 0 for x € Fg
in the sense of traces.

PROOF. Because of the function 6i(g) is continuous at zero we establish
the statement.

For conical domains the following statements are true.

COROLLARY 2.23. Let f ra~2\Vu\2dx is finite and u vanish on T  ̂ in

the sense of traces. Then

Gg

for a < 4 — N and

(2.5.2) J
G* Gg

for all a

PROOF. Integrating both sides of Hardy's inequality (2.1.3) over Q we
obtain (2.5.1). The inequality (2.5.2) is derived similarly, by multiplying
the generalized Wirtinger inequality (2.3.1) by r

a+N~5 and integrating over
r€[0,d].

THEOREM 2.24. Let u e Wl>2{G$) vanish on F$ in the W^2{Gi) sense.
Then

(2.5.3) f ra~iu2(x)dx < H(X,N,a) f ra' dx,

with H{\, N, a) from (*) for a < 4 — N, provided the integral on the right
hand side is finite.

PROOF. If a < 4 — N, then the assertion follows by adding the in-
equalities (2.5.1), (2.5.2) and by taking into account the formula 1.3.7. If
a = 4-N, then (2.5.3) coincides with (2.5.2).
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COROLLARY 2.25. Let u € Wl<2(G) with u\aa = v> e &a-2(dty- Then

for every 5 > 0 there exist a constant c = c(5, X, N, a) such that

(2.5.4) f ra-lu2{x)dx < (1 + S)H(X, N,a) f ra~2 |Vu|2 dx

for a < 4 — N, provided the integral on the right hand side is finite.

PROOF. Let $ e # i_2(Go) w i t h $lr g = f o n ro- T h e n t i i e difference
u — $ satisfies the generalized Hardy-Wirtinger inequality

I ra~4(u - $)2dx < H(X,N,a) I ra~2\Vu-'V$\2dx, a<4-N.

Applying Cauchy's inequality twice we obtain

fra-4u2dx = f ra~4 ((u - $)2 -

< H(\, N, a) I ra~2 (|Vu|2 - 2(Vw,

Gi

+e fr^^dx + s-1 fra-^2dx

/"r^Vd i + e"1 fra

for all £ > 0, <5i > 0. Thus the claim follows from the definition of the trace
norm, if we set 8 = ^j-. D

COROLLARY 2.26. Let e > 0 and u e C°(CQ n Wl>2{G£) with u(x) = 0
for x £ Fe. Then for a < 4 — N we have

(2.5.5) / ra-4u2(x)dx <c f ra~2 \Vu\2 dx

Ge G.

with a constant c = c(A, N, a).



64 2 INTEGRAL INEQUALITIES

Let us denote by C, : GQ —> [0,1] a cut off function satisfying

\J) for r > p

|C'(r)| < const  p"1 for 0 < r < p.

COROLLARY 2.27. Let u G C°(G$) n Wl>2{G%) vanish on Tg. If a <
4 - N and p G (0, d], i/ien

(2.5.6) f ra-4C2(r)u2(x)dx < H{X,N,a) jra~2[{l  + 6)C2(r)\Vu\2+

/or o/i S > 0, provided the integrals on the right hand side are finite.

PROOF. The assertion follows directly by applying the generalized
Hardy-Wirtinger inequality (2.5.3) to the product C(r)u(x) and the Cauchy
inequality with S > 0.

LEMMA 2.28. Let U(p) = J r2-N\Vu\2dx < oo, p e (0,d) and

Vu(g,  G is(n) /or almost all g G (0,d). TTien

r=e

where h^g) < 7 ^ 7 ^ , Q € (0,d).

PROOF. Writing f/(p) in spherical coordinates and differentiating by p
we obtain

Moreover, by Cauchy's inequality we have for all e > 0

du e 2 1
2er \dr
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Thus, we obtain by the (2.3.2)

Let us choose e from the equality

1 e + N-2 1

<KQ)
Then we get

or in virtue of the condition (S)

du N-2

r=g
2-N + y/(N - 2)2 + 4[60

Because of (*) by elementary calculation we have

(2 -N+y/(N-2)2 + 4[60 + e1(e)}) - 2A =

= (2 - N +  x / ( W - 2 ) 2 + 4[0o + 0i (<?)]) -(2-N - 2)2 + 40O) =

= 9l{Q)h1{Q),

where

4

~ y/(N - 2)2 + 4[0O + fii(e)] +

Hence follows the statement of Lemma.
- 2 ) 22 ) 2

COROLLARY 2.29. Let GQ be the conical domain, Vu(g, ) £ £2^) /or
a/most aZZ g e (0,d) and ?7(p) = / r2-^|Vti|2dx < 00, p e (0,d). T/ien

du N-2 2

r=e



66 2 INTEGRAL INEQUALITIES

PROOF. Writing U(p) in spherical coordinates and diflferentiating by p
we obtain

/
n

r=Q

Moreover, by Cauchy's inequality we have for all e > 0

du e 2 1
* * 2 * + 2

Thus, choosing e = A we obtain by the generalized Wirtinger's inequality
(2.3.1) with (2.5.11):

du N-2 2

i— -I —vr

e + J V -

T=Q

~ 2A(A + N - 2)

D

Let us assume that the cone K is contained in a circular cone K with
the opening angle U>Q and that the axis of K coincides with {(x%, 0, . . ., 0)}
where x\ > 0. We define the vector I e RN by I = (-1,0,. . ., 0).

LEMMA 2.30. Let v G C°(Gf) n W1(GJ), v(e) = 0. T/ien for any e > 0

(2.5.7) Ira-Av2dx<H{\,N,a) f ra-2\Wv\2dx,
G* Gd

e

where if (A, JV, a) is determined by (*).

PROOF. By Theorem 2.13 the inequality (2.3.1) holds. Multiplying it
by r

N-5+a
 and integrating over r e (s,d), by (2.5.11), we obtain (2.5.7) for

a— 4 — N. I f a <4 — JVwe consider the inequality (2.1.5) and integrate it
over Q; then we have

i( 4 - N - a)2 ( ra~Av2dx < f ra-2v2dx.

Adding this inequality with above for a = 4 — JV (see (2.5.2) for Gf) and
using the formula |Vu| = ygf) + -pi |Vwu| , we get the desired.
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LEMMA 2.31. Let v e C°(G) n W1(G), v(0) = 0. Then for anye>0

(2.5.8) Irf-4v2dx<H(X,N,a) I' r™~2\Vv\2dx,

where H(X, N, a) is determined by (*).

PROOF. We perform the change of variables yi = Xi—ek, i = 1,..., N
and use the inequality (2.5.7); then we get

<H(X,N,a) f \y\a-2\Vyv(

LEMMA 2.32. Let u e Wli2(G{f ) with u(x) = 0 for x e T$. Then

^  / \ h t \ (\ -J— TV 01 /

for all a e l, wftere

" I s i n ^ , i/ 7r<a;o<27r.

PROOF. We consider the Wirtinger inequality (2.3.1). We multiply
both sides of this inequality by (2~kd + e)a~2rN~s with e > 0, taking into
account that

2~k~1d + e < r + e < 2-kd + e in G(fe),

and integrate over r G (2~k~1d,2^kd)

1
N_2) J {(2~kd dx.

Since r£ <r  + e < 2~kd + e in G  ̂ and a < 2, we obtain
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On the other hand, by Lemma 1.11, in

- h
a-2

r?~2.

Hence it follows

Summing up this inequality for k = 0,1,2,..., we finally obtain the required
(2.5.9).

THEOREM 2.33. Let G be a unbounded domain. Let u e W1(G) vanish
for \x\ > R ^> 1. Then

(2.5.10) fra-Au2{x)dx < H(\,N,a) Ira~2 |Vu|2dx,

G G

withH(X,N,a) := [(4 - N - a)2/4 + A(A + N - 2)]"1

for a > 4 — N, provided the integral on the right hand side of (2.5.10) is
finite.

PROOF. Similarly to the Theorem 2.24, if we apply the Theorem 2.8
with p = 2 and a replied by a + N — 3.

2.5.2. The Robin boundary condition. Let i?o be the smallest pos-
itive eigenvalue of the problem

fAwi/> + tfo^ = 0, u e f i ,

Let us define the value

(2.5.11) A
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THEOREM 2.34. The Hardy-Friedrichs-Wirtinge r  inequality.
Let u G C°(G) n W\G) and 7(1) G C°(9G \ O), 7(1) > 7o > 0. TTien

f A 1 f 9 O /" q O
I * , " ^11*" AT *C J-f ( \ l\f r\\ i I T \X7ii \ AT -L I T 'VITH/ ITWO \

d d d

(2.5.12)

provided that integrals on the right are finite.

PROOF. By Theorem 2.20 the inequality (2.4.6) holds. Because of the
property of the monotonic increase of the eigenvalues together with the
increase of 7(1) (see for example Theorem 6 §2, chapter VI [87]), from the
inequality 7(2) > 70 > 0 we obtain $ > $o- The latter means the validity
of the inequality

(2.5.13) A(A + N - 2) f ip2dQ < f |V^ \2dn + f -y(x)ip2da,
n Q da

\/ip G W\^l), 7(1) G C°(m), j{x) > 70 > 0.

Multiplying it by rN~5+a and integrating over r G (0, d) we obtain

(1 5 14"l / ra~iii' 2Hr <

4 "

Hence (2.5.12) follows for a = 4-N. Now, let a < 4-7V. We shall show that
u(0) = 0. In fact, from the representation w(0) = u(x) — (u(x) — w(0)) by
the Cauchy inequality we have ^|u(0)|2 < |u(a;)|2 + \u(x) - M(0)|2. Putting
v(x) = u(x) — u(0) we obtain

(2.5.15) ^|u(0)|2 fr°"-4dx < f ra-4u2(x)dx + Ira~4\v\2dx < 00.

(The first integral from the right is finite by (2.5.14) and the second integral
is also finite, in virtue of Corollary 2.3.) Since

d

I ra~4dx = measO /' ra+N~bdr = 00,
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by a + N - 4 < 0, the assumption u(0) ^ 0 contradicts (2.5.15). Thus
«(0) = 0.

Therefore we can use the Corollary 2.3

(2.5.16) / ra~Au2dx < I ra~2v2

j r u ax s ^ _ N _ ^|2 j r ur
-Gg Gg

v2drurax.

Adding the inequalities (2.5.14), (2.5.16) and using the formula
|Vu|2 = ( f£)2 + £ |Vo,u|2, we get the desired (2.5.12).

LEMMA 2.35. Let G$ be the conical domain, Vu(g,  e I>2( )̂ for almost
all Q € (0, d) and

V{p) = fr2-N\Vv\2dx+ jr l-N
1{x)v2{x)ds < oo,

Then

T̂^  +
N-2

< ^V'(
r=g

PROOF. Writing V{Q) in spherical coordinates

V{Q) = Jr2-N I f\Vv\2dn j rN-1dr+fr 1-N j f >y(x)\v\2d<T J rN'2dr
\n / > /o \n

/= / r

o \n

dr+ f - l f -y(x)\v 2da\ dr

and differentiating with respect to p we obtain

H

Moreover, by Cauchy's inequality, we have for all e > 0

/ 7(p, w)i;2(p, ui)da.
tz J

dv s2 1
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Thus choosing e = A we obtain, by the Friedrichs-Wirtinger inequality
(2.5.13),

 + -
N-2

s + N-2

e + N-2
2A(A + N-2)

Vwv\2dn + I ~f(x)v2(x)da 1 = ^V'(g).

LEMMA 2.36. Let v e C°{Gf) n
TTien /or any e > 0

), u(e) = 0 andj(x) > 70 > 0.

(2.5.17) /"ra-Vdz<

< H(X,N,a) I fra-2\Vv\2dx+ f ra-3-y(x)v2(x)ds i ,

U rj  J

where H(X,N,a) is determined by (2.5.12).

PROOF. By Theorem 2.20 the inequality (2.5.13) holds. Multiplying it
by rN~5+a and integrating over r £ (e, d) we obtain (2.5.17) for a = 4 — JV.
If a < 4 — AT we consider the inequality (2.1.5) and integrate it over O; then
we have

i(4 - AT - a)
2 f ra~\2dx < j ra-2v2dx.

Gi ci

Adding this inequality with above for a = 4 — N (see (2.5.14) for Gf) and
using the formula |Vu|2 = (|^) + p-1Va,u|2 , we get the desired result.
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LEMMA 2.37. Let v e C°(G) n W1(G), v(0) = 0 and 7(1) > 70 > 0.
Then for any e > 0

(2.5.18) fr^4v2dx<

< H(\,N,a) < frf-2\Vv\2dx+ I'r^1{x)v2{x)ds \ ,
V. 0 0 /

where H(\,N,a) is determined by (2.5.12).

P R O O F. We perform the change of variables yi = Xi — ek, i = l,...,N
and use the inequality (2.5.17); we obtain

/ r£ v (x)dx = / \y\a~ v (y + el)dy <

<H(X,N,a)

j\a-3
1(y + el)v2(y + el)ds\ =

r

= H(\,N,a) I frf~2\Vv\2dx+ f r°-3<y(x)v2(x)ds I .
U rg J

REMARK 2.38. The inequalities (2.5.12), (2.5.17) and (2.5.18) are valid

in the case f(x) = 7 ( A J = 7(0;) with the same constant H(\, N, a) but

(2.5.19)

where d is the smallest positive eigenvalue of the problem (EVR).

2.6. Other auxiliary integral inequalities for N = 2

In the following lemmata we assume that N = 2 and we denote by £ a
cut-off function defined in the previous section.
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LEMMA 2.39. Let u e W0
2'2(G). Then

*dx < c(max \u{x)\f
£G

/or a// a > 0, p e (0, d) with a sufficiently small d > 0.

PROOF. Taking into account that £(r)u(x) = 0 on dG$, we obtain by
partial integration

/"r7aC2(r)|Vu|4ii r = [ r-<*<; 2(r)\Vu\2(Vu,Vu)dx =

N

Therefore

/ -a 2( |4 fJ T£ C (r)|VU'  ̂  ~ I
+ 4r£-

QC2|Vu|2|D2u|-

Applying the Cauchy inequality with a > 0 we get

[r- a(2(r)\Vu\4dx< sup \u(x)\ f (^r~aC2\V

x —,

dx.

Choosing a = (7supx6(3p |u(x)|) 1 we obtain the assertion.
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LEMMA 2.40. Let u e W0
2'2(G). Then for alls>0,a>0

r«-2|Vu|4dx < c(sup \u(x)\)2 f (|Vu|2 + \D2u\2) dx
x€G J

G

J
Gd

4(sup \u(x)\)2

Z
(a-2))2r«-2\Vu\2+r?-2r2\D2u\2)dx

with a constant c depending only on a and d.

PROOF. Taking into account that v vanishes on dG, we obtain by par-
tial integration and Cauchy's inequality

DiUDiUdx =
r r N

/ r2rf~2\Vu\4dx = / r 2 r ^ 2 | V u |2^
G G ' = 1

/

N .

uJ2Di (r2r°-2\Vu\2DiU) dx = - w(2rE
a-2|Vu|2(Vu,z

G i = 1 G N

+ (a - 2)r2r^-2|Vu|2(Vu,x - si) + 2r2r

N

2rf~2

N .
Y,Diiu)dx< / \
i=i  I

\a-

25

sup

4\Vu\2)dx < 25 sup \u\ / r2r^

4
sup |u| / r2r'*~ 2\Vu\Adx+—r sup |u|c(d,a) / (IVul2 + |-D2w|2) dx
xeG J 2di age J

Gd Gd

for all (5, Si > 0. Setting 5 = l/(4supxeGd |u|) and 5i = l /(4supxeG |«|), we
obtain the assertion.
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LEMMA 2.41. Let u e W$'2{G) and

(2.6.1) _ - D2UD11UJ

Then there exists a constant K > 0 such that

(2.6.2) fr2rf-2{w,n)da<K f r2r«~2 (
dG fir i\ (vdi I//»*>\\

r 2r r 2 f 1^1 da.

PROOF. TO evaluate the boundary integral we decompose dG into dG =
TQ U {0}  U F and take into consideration that v vanishes on dG. At first we
verify that (w, n) = 0 on rg. We write Tg = Tf>0 U T^o (see the figure)

Figure 1

Now
du

~dxl
Further

we have:
d2u

= 0' d%

ni
1 2,0

1 1,0

= COS

= 0,

(1

m Td

\ =

0, 712
1 1

— sin wo

,0

and

1 =» (w,n)-

n2 = COS Wo-
^2,0
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x'2 = —xi sin wo + X2 cos LJ0 .

Let us perform the rotation of axes about the origin O, through an angle
UJ0

Then

Therefore

= cos2

air =

- sin(2wo)ux'1x^ + sin

+ ( 2 )

cos2

Since
du
dx^

= 0,
d2u

= 0,

then we obtain

(w,n)\ = -si
l r 2 0

r 0

cos2

= 0.

Now we calculate (w, n) . We suppose that F is a smooth curve. The last

means that there is a coordinate system (2/1,2/2) centered at xo e F such
that the positive 2/2-axis is parallel to the outward normal it to F at xo and
the equation of the portion of F has the form

V2 = V»(»i), where ip"(vi) < K, K > 0

and the number K can be choosen independent of a;o- Let us perform the
transformation of coordinates

V% = cik (xk - x°k), i = 1,2,

where (cik) is the orthogonal matrix. In particular, we have

= C21, = C 2 2 ,
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Hence it follows

i + (C21C12 + C11C22) Uy1J/2 +

"x 2x 2 = C12%i2/i

Because of u
equality, then we get

= 0, we have u (yi,ip(yi)) = 0 near £0. If we differentiate this

= 0 ,

uviyi
= 0.

But ip'(yi) = 0, therefore
xo

— U,
Xo

du
dn

In addition,

Now we can obtain

x r

( 2 du ....

(C11C22 + C21C12)

( -> du .... . 2 A I
C22 I -CU —V > (yi ) + 2cUC2lUj ,m +C2 l% 2y 2 > =\ OT / J



78 2 INTEGRAL INEQUALITIES

in virtue of det (CJ&) = 1. Thus from above calculations we get the desired
(2.6.2).

LEMMA 2.42. Let u e W%'2(G). Then for all j,e > 0 and allaeR

(2.6.3) Ja£\u] = f r2rf-2((D12u)2 - DnuD22u)dx <

G

< 7 f r2r°-2\D'2u\2dx + c1(a,"/,h) I'r*~ 2\Vu\2dx+

Gg Gg

+c2 f (|Vu|2 + \D2u\2) dx
Gd

with a constant c2 depending only on a,j, d, diamG and measG.

PROOF. Since G is a strictly Lipschitz domain and the set of all GQ°(G)

functions is dense in WQ'2(G), it suffices to prove (2.6.3) for smooth func-
tions.
In order to estimate Ja£[u] we integrate it by parts, once with respect to x\
and once with respect to x2 and add the resulting equations. As a result
we obtain

(2.6.4) 2JaE[u}  = fr2rf-2{w,n)da-
dG

~ J £

with w defined by (2.6.1). The boundary integral in (2.6.4) we evaluate by
Lemma 2.41

f r2r?-2(w,n)do- < K f r2r^2 (?£\ da.
8G r

By properties of the function r£ and Theorem 1.29, we obtain

(2.6.5) ( r2r°~2{w, n)da < cK f {\D2u\2 + \Vu\2)dx We > 0.
9G Gd
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The domain integral in (2.6.4) is estimated using (1.2.5) and the Cauchy
inequality with V7 > 0:

(2.6.6) (2-a) [r°- 3r2{?—^,w}dx + 2 [ r«~2\{x,w)\dx
J T JG
G

<7 f r2r°-2\D2u\2dx + c2{a,i,h) f rf~2\Wu\2dx.
G G

The desired assertion then follows from (2.6.5) and (2.6.6).

2.7. Notes

The classical Hardy inequality was first proved by G. Hardy [142]. The
various extensions of this inequality as well the proof of Theorem 2.8 can
be found in [362, 108]. For other versions of the Poincare inequality, see
§2.22 [108]. The one-dimensional Wirtinger inequality is given and proved
in Chapter VII [142]. The variational principle for the Dirichlet boundary
condition is given more detail in §4.1 [108]. The material in §§2.4.2, 2.5.2
is new. Subsection 2.6 is based on the ideas of [215] (see there Lemma 4.5,
Chapter II and §8, Chapter III) .
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CHAPTER 3

The Laplace operator

3.1. Dini estimates of the generalized Newtonian potential

We shall consider the Dirichlet problem for the Poisson equation

Aw = s + £
(PE)

Let F(x — y) be the normalized fundamental solution of Laplace's equation.
The following estimates are known (see e.g. (2.12), (2.14)[129])

(3.1.1)

\DijT(x-y)\<—\x-y\-Nt

We define the functions

(3.1.2) z(x) = (Y(X- y)g{y)dy and w(x) = D, JT(x - y)f(y)dy,
G G

under the assumption that the functions g(x) and /J(a;), j =  1,... ,N are
integrable on G. The function z(x) is called the Newtonian potential with
density function g{x), and w(x) is called the generalized newtonian potential
with density function div/. We now give estimates for these potentials. In
the following the D operator is always taken with respect to the x variable.

LEMMA 3.1. Let dG e C^A,g e LP{G), p> N and fj e C°>A(G),j =
1,.. ., N, where A is an a-Dini.
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Then z e C1(RN),w e C2(G) and for anyxeG

(3.1.3) Diz(x)

G

(3.1.4) Au>(*) = y Dtjr(x - y)(fj(v) ~ fj{x))dy-
Go

-P(x) I DiTix - y)vj(y)dya
dG0

(i=l,..., N); here GQ is any domain containing G for which the Gauss
divergence theorem holds and p are extended to vanish outside G.

PROOF. By virtue of the estimate (3.1.1) for A I \ the functions

Vi{x) = / DiT(x-y)g{y)dy, i = l,...,N

G

are well defined. To show that vt — DiZ, we fix a function C G C1(E)
satisfying

0 < C < 1, 0 < C' < 2, £(i) = 0 for t < 1, C(i) = 1 for f > 2

and define for e > 0

z£(x) = T(x-;

G

Clearly, ze(x) € C^R )̂ and

so that

i i J JV-2 for JV > 2,
< sup o  <

Consequently, zs and A-^e converge uniformly in compact subsets of R^ to
z and Vi respectively as e -*  0. Hence, 2 e C1(RJV) and DiZ = «j.
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By virtue of the estimate (3.1.1) for D^T and the Dini continuous of
, the functions

mix) = / DijT(x - y){f(y) - fj{x))dy-
Ga

f(x) I DiT(x - y)Vj{y)dya, i = l,...,

are well denned. Let us define for e > 0

,. (T\ _ / n.pfT _

G

Clearly, v£(x) e Cl(G) and differentiating, we obtain

3=1 n

= f(x)jDj{D iT(x - yK(
Go

Go

-f'(x)  J
dGa

provided e is sufficiently small. Hence, by subtraction

J I?J-
\x-y\<2s

<

J 1 - j/l)dy <
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0 3 = 1
n

provided 2e < dist(x,dG). Consequently Yl Djve(x) converges to ut uni-
3 = 1

formly on compact subsets of G as e —> 0, and since vs converges uniformly
to Vi = DiZ in G, we obtain w € C2(G) and Uj = DiW. This completes the
proof of Lemma 3.1.

Let B\ = BR(XO),B2 =  B2R(XQ) be concentric balls in R^ and z(x),
w(x) be Newtonian potentials in I?2-

LEMMA 3.2. Suppose g e LP(B2),p > N/2, and fj e L°°(B2),
j = 1,...,N. Then

\z\0,Bl < c(p)R  ̂ ln1^ (~)\\g\\p,B2, N = 2;

(3.1.5)

M o ^ < c{p, N)R2~N+N/p' \\g\\p,B,, N>3;
N

(3-1.6) \w\0;Bl <2R^2\fi\o-tBa.

PROOF. The estimates follow from inequalities (3.1.1), Holder's in-
equality for integrals and Lemma 3.1.

LEMM A 3.3. Let g e LP(B2),p > N, f* e C°'A(S2), j = 1,...,N,
where A is an a— function Dini continuous at zero. Then
z, w £ C ' \B\) and

(3.1.7) \\Z\\I,B;BI <c(p,N,R,A-\2R))\\g\\p.B2,
N

(3.1.8) \\w\\1,B;B1<c(p,N,R,a,A-1(2R),B(2R))J2\\f\\o,A;B2.
3=1

PROOF. Let x,x € Bx and G = B2. By formulas (3.1.3), (3.1.4), taking
into account (3.1.1) and Holder's inequality for integrals and setting
\x — y\ = t,y — x = tu>, dy = tN~1dtd$l, we have

\Dtz\ < (NuN)-1 j\x- y\1-N\g(y)\dy <

(3.1.9) < {NwN)-1\\g\\PiBa{J\x-y\l1-NVdy}W =

p-N
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N -

Diw(x)\ < (JVWJV)~ R ~ / J \P(%)\ I dy<j-\-
J = 1 dB2

(3.1.10) -fw]̂ 1 JTlf'U,,  I ^X_~\NdV ^ 2N~l £ \fj(x)\+

N 2f A(t\ N / N

+NY,lfJU,*  / ^r-dt < c(N)B(2R)^(\f(x)\ +  ̂ [/JU,S

i=l  { % J=lK 3=1

Taking into account (3.1.3) we obtain by subtraction

\Dtz(x) - Dtz(x)\ < I \DiT(x -y)- D^x - y)\  \g(y)\dy.

B2

We set 6 = \x-x\,£= \{x - x) and represent B2 = Bs{£) U {B2 \ Bs(£)}.
Then

J \DiT(x-y)-Dir{x-y)\-\g{y)\dy<

Bs(S)

< J \DiT(x-y)\-\g(y)\dy+ J |Ar(3J - y)\  \g(y)\dy <

^(iVo^r 1! I \x-y\1-N\g(y)\dy+ J
BS(Z) B5

(3.1.11) <2(NuN)~1 J ix-yf

x -

B3$/2(%)
1-N/p

2(NuN)(2R)N/p A(\x-x\)
~ {N + (1 - N)P>}-VP' ' A(2R) mip'B2-

(Here we take into account that Sa < (2R)aA{6) /A{2R) for all a > 0 by
(1.8.1), since 5 < 2R.) Similarly,
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J |Z\r(i - y) - Ar(af - y)\  \g(y)\dy

Bs(t)

<\x-x\ J \DDiT{x-y)\'\g{y)\dy

(for some x between x and ~x)

(3.1.12)

<Su^ I \x-y\-N\g(y)\dy<2NSu;],1 J \£-y\-N\g(y)\dy

\v-S\>s \y-S\>8

(since \y - £\ < 2\y-x\)

(3.1.13) <2J v^1| |f f | |p ; B 2( J

From (3.1.11) and (3.1.12), taking into account (1.8.3), we obtain

(3.1.14) \DiZ(x) - DiZ(x)\ < c(iV,p,i?)^l-1(2E)||p||p;B2^(|i - x |)

<c{N,p,R)A-1{2R)\\g\\p,B2B{\x-x\), Vx,x € BL

The first from the required estimates (3.1.7) follows from the inequalities
(3.1.5) and (3.1.14).

Now we derive the estimate (3.1.8). By (3.1.4) for x,x £ B% we have

N

3=1

N

(3.1.15) +J3 + J4 +
3 =

where

JXJ = J (DiT(x -y)- DiT(x

J2j= / DiY(x - y)vj(y)dya,



J3

J4

J5j
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J DijT(x-y)(p(x)-f(y))dy,

J DijT(x-y)(f(y)-P(x))dy,

f DijTix - y)dy,

(DijTix -y)- Dy r (x - y)) (f(x) - f(y))dy

87

We estimate these integrals thusly

\Jii <\x-x\ / \DDiT(x -J

(for some point x between x and x)

< x- toJ,1 f \x - y)\~Ndva < N22N~1\x - x\R

8B2

Next,

(since \x — y)\ > R for y e dBv)

< N22N~lA(\x - xDR^S/AiS) < N22NA{\x - x\)/A{2R)

(since 5 = \x - x\ < 2R and 5/A(5) < 2R/A{2R) by (1.8.1))

< N22NaB(5)/A{2R) (by (1.8.3)).

^vjfWA,, J \x-y)\-NA{\x-y\)dy
Bs(S)

<^[fU, x J \x-y)\-NA{\x-y\)dy

35/2/
= N\f*U, x J ^-dt < N(l)a[f*] AiXB{5) (by (1.8.2)).

o

By analogy with the estimate for J3 we obtain
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By (3.1.1) it is obvious

At last

< x-x \DDiST{x - y)\  \P(x) - f(y)\dy

(for some point x between x and a;)

<\x- x\c(N) j

\y-i\>s

<c(N)5{f]Ai  ̂ J

\y-i\>s

\v-S\>s

(since \x - y\ < -\£ -y\< 3 |i - y)\)

]Atx J t-2A(t)dt
8

(since A^tJ < (^jA(t) by (1.8.2))

by (1.8.4).

Now from (3.1.15) and the above estimates we obtain
N

\DiW(x) - DiW{x)\ < c(N,a)

(3.1.16)

Finally, from (3.1.10) and (3.1.16) it follows that w{x) € C
estimate (3.1.8) holds. Lemma 3.3 is proved.

Now we can assert a C1|B interior estimate.

and the

LEMMA 3.4. Let G be a domain in RN, and let v(x) e C^B(G) be a
generalized solution of Poisson's equation {PE) with g e LT:r^{G),
P G C0'A{G), where A is an a-Dini function. Then for any two concentric
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balls Bi = BR(XO),B2 = B2R(X0) CC G we have

(3.1.17) IMIi.B; ^ <

where c = c(N,R,a, A'1(2R), B(2R)).

PROOF. It is easily shown that the Newtonian potential, given by

V(x) = J T(x - y)g(y)dy + J DsT{x - y)fj(y)dy
G G

is a weak solution of the equation from (PE). We can write

(3.1.18) v(x) = V(x) + v(x), x G B2,

where v(x) is harmonic in Bi. By Lemma 3.3, we have

/ N

(3.1.19) | |F| |l i B ; B l <c

where c = c(N,R,a,A'1{2R),B(2R)). By Theorem 2.10 [129] we obtain

(3.1.20) 11*11̂  < 1*1^+£ sup I A ^ - y <

2~ \x ~ v\
D V  SUP — TT <

i B[\x - y\)

< c1(R,A-1(2R))\v\2tBl < c2{R,A-1{2R))\d\0,B2 < ca(|«

< C3{\v\0,B2 + \\9\\^;B2 +
N

in virtue of Lemma 3.2. Prom (3.1.18)-(3.1.20) it follows the desired estimate
(3.1.17).

Corresponding boundary estimates can be derived in a similar way. Let
us first derive the appropriate extension of the estimate for the generalized
newtonian potential w(x) with density function div/.

LEMMA 3.5. Let p e C°'A(B~f) (j = 1,...,JV). Then w e C^B(BI)

and
N

(3.1.21) \\w\\liB;Bt<c{P,N,R,a,A-1(2R),B(2R))J2\\fJ\\o,A;B+-
3=1
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PROOF. We assume that B2 intersects E since otherwise the result
is already contained in Lemma 3.3. The representation (3.1.4) holds for
Diw(x) with Go = B%. If either i or j'   ̂ N, then the portion of the
boundary integral

J DiT(x - y)vj(y)dva = J DjT(x -y)vi(y)dyo- = 0

since z/j or Uj = 0 on E. The estimates in Lemma 3.3 for DJW(X) (i or
j ^ 7V) then proceed exactly as before with B2 replaced by B2 , B$(£,)
replaced by Bg(£) n B2 and dB2 replaced by dB£ \ E. Finally DNNW can
be estimated from the equation of the problem (PE) and the estimates on
DkkwioT: k = l,...,N-l.

THEOREM 3.6. Let v(x) € C°(B£) be a generalized solution of equation
(PE) in B} with g e L& (B%), fj € C°<A(BJ) (j = 1,. . ., N), where A
is an a— function satisfying the Dini condition at zero, and let v = 0 on
B2 n E. Then v £ C1>B(sf), and

/ N

(3.1.22)

where c = c(N, R, a, A-X(2R), B(2R)).

PROOF. We use the method of reflection. Let x' =
a;*  = (x1, —XN) and define

We assume that B2 intersects E; otherwise Lemma 3.4 implies (3.1.22).
We set B2 = {x e RN\x* e B%} and D = B% U BJ U (B2 n 17). Then
/*(x ) e C°'A(D) and

Let

G(x, y) = T(x -y)- T(x - y*) = T(x - y) - T(x* - y)

denote the Green's function of the half-space R^, and consider

w (x) = - J DyG(x,y)J(y)dy, Dy = (DVl,...,



3.1 DLNI ESTIMATES OF THE GENERALIZED

NEWTONIAN POTENTIAL 91

For each i = 1, . . ., N let Wi{x) denote the component of ~w (x) given by

Wi{x) = j DyiT(x - y)f(y)dy + J DViT(x* - y)f{y)dy.
B+ B+

We can see that ^w(x) and Wi(x) vanish on Bi C\ E. Noting that

J T(x* - y)fi(y)dy = j T(x - y)fi(y)dy, (i = 1,..., N - 1),

we obtain

(3.1.23) Wi(x) = Di [2 J T(x - y)f(y)dy - J T(x - y)fl(y)dy],

And when i = N, since

J DyNT(x* - y)fN{y)dy = J DyNT(x - y)f?(y)dy,
B+ B2"

we have

(3.1.24) wN(x) = DN J T(x - y)f?(y)dy.
D

Letting

w*{x) = -Di JT(X - y)ft(y)dy, (i = 1,...,N),
D

we have by Lemma 3.3

N

N

< 2 c ( p ,N , R , a, A-\2R),B(2R)) ^ \\f | |0 >^.B+.

3=1

Combining this with Lemma 3.5, we obtain
N

(3.1.25) |M|1>B;fl+ < c(p,N,R,a,A-\2R),B(2R)) ^ | | / ' | |0^.B+.

Now let v(x) = v{x) — V(x), where V(x) is the Newtonian potential
from Lemma 3.4. Then v(x) is harmonic in B£ and v(x) = 0 on £.
By Schwarz reflection principle v(x) may be extended to a harmonic function



92 3 THE LAPLACE OPERATOR

in B% and hence the estimate (3.1.22) follows from the interior derivative
estimate for harmonic functions by Theorem 2.10 [129] (see the proof of
Lemma 3.4).

3.2. The equation with constant coefficients. Green's function

Let
Co = atfDij, atf = a>0

%

be a differential operator with constant coefficients a0
3 satisfying

for positive constants v, fi and let det (do) = 1-

DEFINITION 3.7. The Green's function of the first kind of the opera-
tor Co for the domain G is the function G(x,y) satisfying the following
properties

 CoG(x,y) = S(x — y), x e G, where 8{x — y) is the Dirac function;
 G(x,y) =0, xedG.

For the properties, the existence and the construction of Green's func-
tions in detail see, for example, §5.1 [43], chapter I [313]. We note the
following statements

LEMM A 3.8. Let G(x,y) be the Green function of Co in R+, N > 3.
Then G(x, y) satisfies the following inequalities:

[\x-y\2~N,
G(x,y)<lcyN\x-y\1-N,

[CxNyN\x-y\~N;

where C depends only on v, fi, N.

PROOF. Let A be the matrix (a0
J) and T be a constant matrix which

defines a nonsingular linear transformation x' = xT from WLN onto 'RN.
Letting v(x') = v(xT) one verifies easily that

axJDijv(x) = ao
iDi:jv(x'),

where A = T*AT, T* =T transpose. For suitable orthogonal matrix T, A is
a diagonal matrix A whose diagonal elements are the eigenvalues Ai, . . ., \N
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of A. If Q = TA-1/2, where A" 1/2 = [A~1/25f], then the transformation
x' = xQ takes CQV = A'v(x')> that is Co is transformed into the Laplace
operator. By a further rotation we may assume that Q takes the half-space
rcjv > 0 onto the half-space x'N > 0.

Since the orthogonal matrix T preserves length, we have

A~1/2\x\ < \x'\ = \xQ\ < \-1/2\x\;

A = min{Ai,... , Ajv}  = v\ A = max{Ai,..., Ajv}  = (ti-

l t follows that G(x',y') = G(xQ,yQ) is the Green function of the Laplace

operator in the half-space x'N > 0.
The corresponding inequalities for G(x',y') are well known, since we

know G(x', y') explicitly (see, for example, §2.4 [129] or §§8, 10 Chapter I
[313]). Here C depends on TV only . Now required inequalities follow easily,
since the dilation of distance is bounded above and below with fj, and v.

In the same way we can prove the next Lemma. (Here we use the
explicit form of the Green function for a ball, see, for example, §2.5 [129],-
and a homothety.)

LEMMA 3.9. LetG(x,y) be the Green function of Co for the ballT3e{0).
Then G(x, y) satisfies the following inequalities

G(x,y) < C\x - y\2~N, \VxG{x,y)\ <C\x - y\l'N, forx,y e Se(0);

—VxG(x,y) , , - A T - l

/or2/GBe/2(0), | i| = ft AT>3,

where C depends only on v, /i, N.

Finally, we note the Green representation formula

(3.2.1) u(y) = j u{x)dG^v)dsx + j G(x, y)Coudx,
dG G

where G(x, y) is the Green function of the operator Co in G and -  ̂ denotes
the conormal derivative, that is the derivative with direction cosines a0

Jnj,
i = 1,  , N. It is well known that this formula is valid in a Dini-Liapunov
region (see Chapter I [313]).

Now we establish a necessary preliminary result that extends Lemma
3.4 and Theorem 3.6 from Poisson's equation to other elliptic equations with
constant coefficients. We state these extensions in the following theorem:
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THEOREM 3.10. In the equation

(ECC) Cou = a^DijU = g(x) + , â  = aj\ x e G

fei A = (a )̂ be a constant matrix such that

for positive constants v, ji.
(a) Let G be a domain in M.N, and let v(x) £ Cl'B(G) be a general-

ized solution of equation (ECC) with g e L^(G), ft £ C°<A(G),(j =
1,. . ., N) where A is an a-Dini function. Then for any two concentric balls
Bi = BR(x0),B2 =  B2R(X0) CC G we have

(3.2.2) |M|i,BiB l <

where c= c(N,R,a,v,n,A-l{2R),B{2R)).
(b) Let v(x) e C0(B£) be a generalized solution of equation

Cov = g(x) + 2 01 in B+ with g G L&(B+), ft £ C0<A(BJ),

(j — 1,...,AT), where A is an a— function satisfying the Dini condition

at zero, and let v = 0 on B2 n E. Then v e C1'B(Bf), and

( N

(3-2.3) |M|liB .B+ < c( \v\0;B} + \\g\\_^.Bt + ] T \\ft\\OtA.Bt

where c = c(N, R, a, v,n, A'1 (2R), B(2R)).

PROOF. Let T be a constant matrix which defines a nonsingular linear
transformation y = xT from RN onto M.N. Letting v(y) = v(xT) one verifies
easily that

where A = TfAT, T*  =T transpose. For suitable orthogonal matrix T, A is
a diagonal matrix A whose diagonal elements are the eigenvalues Aj , . . . , \N
of A. If Q = TA" 1/2, where A" 1/2 = [A~1/2<Sf], then the transformation
y — xQ takes CQV = g(x) -\—g^y into the Poisson equation Av(y) =

l)(y) + 1j Q}^  By a further rotation we may assume that Q takes the
half-space XJV > 0 onto the half-space yw > 0.

Since the orthogonal matrix T preserves length, we have

A- 1/2|z| < \y\ = \xQ\ < \-1/2\x\;
A = min{Ai,... , AJV}  = v and A = max{Ai,...,
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It follows that if B(y0) is the image of B(x0) under the transformation
y = xQ then the norms ||  H^^ defined on B and B are equivalent, that is
these norms are related by the inequality

C~1|M|fe,.A;B < ll«ll feiiA;B < c\\v\\k>A;B; k = 0, 1,

where c = c(k, N, v, fi).
Similarly if B+(y0) with boundary portion a on y  ̂ = 0 is the image of

B+(XQ) with a boundary portion a on E, the norms ||  \\k,A defined on B+

and B+ are equivalent, i.e. these norms are related by the inequality

C~1|MU,.4;.B+Uff < Nlfc^B+uS - CIIVIU,^;B+U<T; k = 0, 1,

where c = c(k, N, v, fi).
To prove part (a) of our Theorem we apply Lemma 3.4 in B(yo) to

obtain

N

which is the desired conclusion (3.2.2).
Part (b) of our Theorem is proved in the same way, using Theorem

3.6.

3.3. The Laplace operator in weighted Sobolev spaces

Let G be a conical domain. We consider the Dirichlet problem for the
Poisson equation

(DPE) | A " = ' - %
I u = ip on ou.

It is known from the classical paper by Kondrate'v [161] that the behav-
ior of solutions of (DPE) is controlled by the eigenvalues of the eigenvalue
problem {EVD) for the Laplace-Beltrami operator Au.

THEOREM 3.11. (See Theorem 4.1 [275], Theorem 2.6.5 [199]).
Let p e (l,oo),fc e N with k>2 and a 6 R. Let A be defined by (2.5.11)
with the smallest positive eigenvalue  of (EVD). Then the Dirichlet problem
(DPE) has a unique solution u G V£a(G) for all f e V£~2(G),

9 G Vp~1/p(dG) if and only if

-X + 2-N <k-(a + N)/p < A.
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In this case the following a-priori estimate is valid

IMIv^CG) < c{ll/llvfc 2(G) +
3.4. Notes

Section 3.1 is a modification of Chapter 4 [129]: we replaced Holder-
continuity by Dini-continuity.

Discussions of boundary value problems for the Laplacian in nonsmooth
domains can be found in a number of works (see e.g. [2, 9, 91, 89, 113,
116, 126, 127, 133, 135, 161, 177, 198, 199, 213, 242, 243, 249,
278, 248, 322, 327, 332, 347, 350, 356, 398, 403, 407, 408, 409]).
Theorem 3.11 was established for the first time in the work [161] for p = 2.
V.G. Maz'ya and B.A. Plamenevsky [275] extended this result to the case
1 < p < oo. For details we refer to [199] (in particular, see there Notes 1.5,
2.7).

Other boundary value problems for the Laplace equation or for gen-
eral second order elliptic equations and systems with constant coefficients in
nonsmooth domain have been studied in many works: W. Zajaczkowski and
V. Solonnikov [409] - Neumann problem in a domain with edges; P. Grisvard
[133], M. Dauge [92], N. Wigley [407, 408] - Neumann and mixed problem
on curvilinear polyhedra; L. Stupelis - Neumann problem in a plane angle,
N. Grachev and V. Maz'ya [131, 132] - Neumann problem in a polyhedral
cone; Y. Saito - the limiting equation for Neumann Laplacians on shrink-
ing domains [351]; V. Maz'ya and J. Rossmann [291]-[293] - the mixed
problem in a polyhedral domain. J. Banasiak [30] investigated the elliptic
transmission problem for Laplacian in plane domains with curvilinear poly-
gons as its boundaries. New elliptic regularity results for polyhedral Laplace
interface problems for anisotropic materials are established by V. Maz'ya,
J. Elschner, J. Rehberg and G. Schmidt [262]. Some unilateral boundary
value problems (e.g., Signorini transmission problems with mixed boundary
conditions) in polygonal and polyhedral domains are studied in [82].
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CHAPTER 4

Strong solutions of the Dirichlet problem for
linear equations

4.1. The Dirichlet problem in general domains

Let G C R^ be a bounded domain. We consider the following Dirichlet
problem

(Lu :=  aij {x)Diju{x) + ai(x)Diu{x) + a{x)u(x) = f(x) in G,
 ̂ ' \u(x) = <p(x) on dG,

where the coefficients a*J'(x) = aJ*(x) and satisfy the uniform ellipticity
condition

with the ellipticity constants v,fi>0.

Let us recall some well known facts about W2>P(G) solutions of this
problem.

THEOREM 4.1. (Unique solvability) [129, Theorem 9.30 and the re-
mark in the end of §9.5].

Let G satisfy an exterior cone condition at every boundary point and let
be given p> N. Let

 a ^ G C0 ( G ) n L ° ° ( G ), ai e L«(G), a e U>(G), i,j = l,...,N,
where q > N, if p = N, and q = N, if p > N;

 a(x) < 0 V X G G :
 / € LP(G), ip G C°(8G).

Then the boundary value problem (L) has a unique solution

THEOREM 4.2. [129, Theorem 9.1] (Alexandrov's Maximum Prin-
ciple) Let u € Wf£(G) D C°(G) satisfy the boundary value problem (L).
Furthermore let

N \ V2

j
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a(x) < 0 Vx e G.

Then

G dG

when c depends only on N, v, diam G and
/ N

v
W

i
(X

.1/2
2 1

1/ L»(G)

THEOREM 4.3. The E. Hopf strong maximum principl e (see The-
orems 9.6, 3.5 [129];.

Let L he elliptic in the domain G and ai(x),i = 1,...,N;

a(x) e L%c{G),a(x) < 0. If u e W J ^ G) satisfies L[u]  > 0(< 0) m G,
i/ien u cannot achieve a nonnegative maximum (non-positive minimum) in
G unless it is a constant.

Applying the Alexandrov Maximum Principle to the difference of two
functions we obtain the following comparison principle.

THEOREM 4.4. (Comparison principle) Let L be elliptic in G, let
f N \ i/a _
( E I«T ) »/ e LN(G), Vx e G : a(x) < 0 and u, v € W?£{G)nG°(G)

w«i/i Lu > Lv in G and u < v on dG. Then u < v throughout G.

THEOREM 4.5. [129, Theorem 9.26], [383] (Local maximum prin -
ciple) Let G be a hounded domain with subdomains T,G' such that T C
G' C G and suppose that ai € Lq{G),q > N and a € LN(G). Let
u € W2'N(G) n C°(G) satisfy Lu > f in G and u < 0 on T n dG where
f € LN(G'). Then for any p > 0, we have

<c{\\f\\LN(GI

where the constant c depends only on N,/i,v,p, ||aJ||g,G'! \\a\\N,G'->T,G',G.

THEOREM 4.6. [129, Theorem 9.13] (Lp-estimate) LetG be a bounded
domain in M.N and T C dG be of the class C1'1. Furthermore, let u €
W2>P(G), 1 < p < oo, be a strong solution of (L) with f e LP(G) and u = 0
on T in the sense ofWx'p{G). We assume that

 aij eC°(GUT),
 a*  € L9(G), where q> N if p < N and q = p if p > N,
 a e Lr(G), where r > N/2 ifp < N/2 and r=pifp>  N/2.

Then, for any domain G' CC GUT,

(4.1-1) I
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where c depends only on N,p,v,fj,,T,G',G, the moduli of continuity of the
(N . \ 1 / 2

coefficients a1  ̂on G' and on I X) la*|2 I > II aII LT{G)-
\i=l / Li(G)

THEOREM 4.7. [4, Theorem 15.2] Let G be a bounded domain of class
Ck with k G N, k > 2 and suppose that the coefficients of the operator
L belong to Ck~2(G) and have Ck~2— norms bounded by K. Let u be a
solution of (L) with f e Wk~2>p(G) and <p G Wk-1/p'p{dG). Then u G
Wk'p(G) and the following estimate is valid

where c depends only on v,/j,,K,k,p, the domain G, and the modulus of
continuity of the leading coefficients of L.

By use of a suitable cut-off function we obtain the following localized
version of the above theorem.

THEOREM 4.8. [4, Theorem 15.3] Let G be a bounded domain of class
Ck with subdomains T, G' such that T C G' C G. We suppose that the
coefficients of the operator L belong to Ck~2{G) with k &N, k > 2. Let u be
a solution of (L) with f € Wk-2<P(G') and <p G W^^^dG' f~l dG). Then
u G Wk'p(T) and the following estimate is valid

The stronger result is valid for the case N = 2; it is the Bernstein
estimate (see in detail §19 Chapter III , the inequality (19.20) [216]).

THEOREM 4.9. Let G e l 2 be a bounded domain and G ' c c G \O be
any subdomain with a W2'p, p > 2 boundary portion T = (dG'tldG) C dG\
O. Letu G W2(G) be a strong solution of the equation a  ̂(x)Diju(x) = f(x)
in G' with u = 0 onT in the sense ofW1(G). Let the equation satisfy the
uniform ellipticity condition with the ellipticity constants v, \i. Then, for any
subdomain G" CC G' U T we have

ii nO - ~. / / 0 «9\ i

II"IIW 2(G" ) — \ V "*"  )axi
G'

where C depends on v,fi,p,T,G",G'.

Finally, we cite one theorem about local gradient bound for uniformly
elliptic equations with two variables in general form.

THEOREM 4.10. [215, Theorem 17.4], [216, Theorem 19.4].
Let G C M2 be a bounded domain and G' CC G \ O be any subdomain with
a W2'P, p>2 boundary portion T = (dG'ndG) cdG\O. Let u G W2{G')
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be a strong solution of the problem (L) in G', where L is uniformly elliptic
and satisfy

||a*(a;), a(x), /(x)||LP(G/) < fit and\\(p(x)\\W2,P(GI) < nx.

Then for any subdomain G" CC G'L)T there is a constant Mi > 0 depending
only on v,n,ni,p, ||u||2,G') IMIW 2>P(G')

 and G',G",T such that

sup |Vu| < Mi .
G"

4.2. The Dirichlet problem in a conical domain

In the following part of this chapter we denote by G C RN a bounded
domain with a conical point in O as described in Section 1.3.

DEFINITION 4.11. A (strong) solution of the Dirichlet problem (L) in
G is a function u G W2(GS) n C°(G), Ve > 0 which satisfies the equations
Lu = / for almost all x e G and the boundary condition u = <p for all
x€dG.

In the following we assume that the coefficients a^(x),al(x) and a(x)
satisfy the following conditions

(a) the uniform ellipticity condition

with some i/,/j,>0,
(aa) o«(0) = 51

(aaa) o« e C°(G), a*  € £P(G), a £ U>'2{G), p>N,
(b) there exists a monotonically increasing nonnegative function A

such that

V / 2

\aij{x) - o«(y)|2 < A{\x - y\) and

1/2

x\9\a{*)\<AH

for x,y £ G.

REMARK 4.12. The Assumption (b) guarantees that the coefficients a%

and a are bounded on G\ Be(0) for every e > 0.
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4.2.1. Estimates in weighted Sobolev spaces.

THEOREM 4.13. Let u be a solution of (L) and let A fee the smallest
positive eigenvalue of(EVD). Suppose that

(4.2.1) lim A(r) = 0

and that f 6 #° (G), <p <E ti3J2(dG) n C°(dG), where

(4.2.2) 4-JV-2A<a<2.

TTien u G $l(G) and

where c > 0 depends only on is, fx, a, A, N, max^4(|a;|), G. Furthermore,

if N < 4, there exists real constant c-i independent of u such that

(4.2.3) \u(x)\<c2\x\^-N-a^2, MxeG*

for some d > 0.

PROOF. Let $ e #Q(G) D C°(G) be an arbitrary extension of the
boundary function ip into G. The function v = u — $ then satisfies the
homogeneous Dirichlet problem

(L) [aii{x)Dijv{x) + ai(x)Div{x) + a(x)v(x) = F(x) in G,
{ )0 \v(x) = 0 ondG,

where

(4.2.4) F(x) = f(x) - {aii{x)Dij^{x) + ai{x)Di^{x) + a(x)*(x)).

Since a*J'(0) = 8f, we have

(4.2.5) Au(x) = F(x) - (aij(x) - aij(0)) Dijv(x)-

— a%{x)Div(x) — a(x)v(x) in G.

Case I: 4 - N < a < 2.
Integrating by parts we show that

ra-2vAvdx = -ea~2 f v^-dQ.e - f (V«, V r a-
G

01) f o

v—dQE - / ra \Vv\
dr J

= -e<*-2 I v^dQ£ - I ra-*\Vvfdx+

ne
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(2-a) Ira-Av(x,Vv)dx.
Gc

Integrating again by parts we obtain

/ ra~iv{x, Vv)dx = —I (ra~4x,'
Ge

nc a.

because

4 4 (a - 4)rQ-5 ^ — = (N + « - 4) r O" 4-
iV JV 2

t=i »=i  r

Thus, multiplying both sides of (L)o by ra~2v(x) and integrating over
(?e, we obtain

= Ira-2v(-F{x) + (aij(x) - aij(0)) Dijv{x)+

(4.2.6) sa~2 [v^dn£ + fra'2\Vv\2dx + ^^ea~3 I v2

QS GC ns

+ ^^(N + a - 4) /" ra-*v2dx =

+at(x)Div(x) + a(x)v(x)jdx.

Let us estimate in the above equation the integrals over O£. To this end
we consider the function

M(e) = max |t>(x)|.

Since v € C°(G) and v = 0 on dG, we have

lim M(e) = 0.
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LEMMA 4.14.

or
[4-JV,2].

PROOF. We consider the set G2e and we have ft£ c dG2e. Now we use
the inequality (1.6.1)

j \w\d£le <c I (\w\ + \Vw\)dx.

Setting w = v  ̂ we find

w\ + \Vw\ < c{r2v2
xx + \Vv\2 + r~V).

Therefore we get

(4.2.8) dn < c f {r2v2
xx + \Wv\

Let us now consider the sets G£,2
£ and G2s C GJ,  ̂ and new variables

x' defined by x = ex'. Then the function w(x') ~ v(sx') satisfies in G\,A
the equation

(4.2.9) 'iex')  ̂ + e2a(ex')w = e2F(ex').

Applying the L2-estimate (4.1.1) for the solution w in G\ ,4 we get

(4.2.10) f {\D2w\2 + |V'w|2) dx' < c f (e4F2(ex') + w2)d

'1/2

where c > 0 depends only on u, /i, G, max ^4(|x'|); and

N
d2W

N
dw

Returning to the variable x, we obtain

(4.2.11) I (r2\D2v\2 + \Vv\2 + r'2v2) dx < c f (r2F2 + r ~ V ) dx.

Gl'
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By the Mean Value Theorem 1.58 with regard to v £ C°(G) we have

5/2e
f

M — ri  / o / \ , ~

e/2 n

/ r~2v2dx = / r^" 3 I v2{r,w)dQ,dr

(4.2.12)

for some | < 6*i < |.
Prom (4.2.8), (4.2.11) and (4.2.12) we obtain

(4.2.13)
dv j r2F2dx<

Hence we obtain as well

(4.2.14) eQ-2 f v^- dn£ <  Cle
a+N-4M2(e) + c3 f raF2dx, Va < 2.

f2e G5/2e

By the assumption (b) and hypotheses of our Theorem we have that F £
$a(G), hence

(4.2.15) lim / raF2dx = 0
£-++0

and thus from (4.2.14) with regard to that v(0) = 0 we deduce the validity
of statement (4.2.7) of our lemma.

Further, we get by the Cauchy inequality

f ra-2v{x)F(x)dx = f(ra/2-2v(x))(ra/2F(x))dx

< 2J r vdx+^jr t {x)dx(4.2.16)
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for arbitrary S > 0. Applying assumption (b) together with the Holder and
the Cauchy inequality

(4.2.17) ra-2v ((aij(x) - aij(Q)) Di:jv(x) + ai(x)Div(x) + a(x)v(x))

< A(r) ((r*|D2u|)(rt-2u) +r
a -2|Vi; |(r" 1t ;) + r a ~ V )

< A{r) (ra|£>2i;|2 + ra~2|Vt;|2 + 2ra~V).

Finally, from (4.2.6)-(4.2.17) we obtain

/
2 — a f

ra~2\Vv\2dx̂  — (JV + a - 4) / ra~Av2dx
2 J

G,

+ h [raF2(x)dx+ f A{\x
Ge Ge

for all 8 > 0.

Let us now estimate the last integral in (4.2.18). Due to the assumption
(4.2.1) we have

(4.2.19) ^6 > 0 3d > 0 such that A(r) < S for all 0 < r < d.

Let 4e < d. From (4.2.11) and (4.2.12) follows that

I ra\D2v\2dx<cie
OL+N-i + c  ̂ f raF2dx,

and consequently

f A(r)ra\D2v\2dx = f A(r)ra\D2v\2dx + f A(r)ra\D2v\2dx +

G¥

^2v\2dx+ IA{r)r a\D2

+ c3A(Ze) f raF2dx + 5 f (raF2{x)

r/2.

A(r)j\D%+C5 max A(r) / \D v dx
r€[d,diamG]

Gd
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for all 5 > 0 and 0 < e < d/A. Here, c5 depends only on a, d and diam G.

Applying all this estimates to the inequality (4.2.18) we obtain

ra~2\Vv\2dx H (N + a — 4) / ra~iv2dx

2 J

<ea~2 f v-^-dn£ + c6A(3e)(ea~N~i+ f raF2dx) +

+ 6 f(ra-2\Vv\2+r a-4v2)dx + c7 f \D2v\2dx + cs f raF2(x)dx
Ge Gd G

for all 5 > 0 and 0 < £ < d/4.
Finally, we apply Theorem 4.6 to the solution v of (L)o in Gd

\D2v\2dx < c9 / (v2 + f2 + \aijDij$ + aiDi$ + a$\2)dx

Gd Gd/2

(4.2.21) < eg / (v2 + f 2 ) d x + ciO\\ip\\2v3/22Td/2.

Gd/2

Furthermore, if (2-a)(N + a — 4) = 0, then we apply the inequality (2.5.7).

Now, let S > 0 be small enough and d > 0 chosen according to (4.2.19).
Then we obtain from (4.2.20) and (4.2.21) the estimate

(ra\D2v\2 + r«-2|V«|2 + ra~4v2) dx < sa~2 I v

J raF2dx  ̂ +c12(|M
G

,7/2e

72

| 2 ( G )

where the constants en and C12 do not depend on e. Letting e — +0,
applying Lemma 4.14 and noting that

we obtain the assertion of our theorem in the case I.
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Case II : 4 - N - 2A < a < 4 - N.
Due to the embedding theorem (see Lemma 1.37) we have

/ e K-N(G), V e tiZ2
N(dG) n C°(dG).

Therefore, by case I, it € $4-N(G) and

/ {rA-N\D2u\2 + r2-N\Vu\2+r- Nu2) dx < const.
G

According to (4.2.10) with Q = 2~kd, k = 0 ,1 ,2 , . . ., we have

(\D2w\2 + |V'H2) dx' < c13 f (2-4kdiF2(x'2-kd)+w2)dxl.

Multiplying both sides of this inequality by (2 kd+e)a 2 with e > 0, taking
into account that

in

and returning to the variables x we obtain

/ r2(r + e)a~2\D2v\dx < c13 f (r2(r + e)a~2F2+

Since re < r + £ < | rE in G with h defined as in Lemma 1.11, we obtain

(4..2.22) f r2rr 2\D2v\dx < c14 f

Summing up the inequalities (4.2.22) for k = 0,1,2,..., we finally obtain

(4.2.23) f r2r°-2\D2v\dx < c14 f (raF2 + r~2r^-2v2) dx,

G™

since a < 2 and re > hr.
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Let us return back to the equation (£)o- Multiplying its both sides by
r"~2v and integrating by parts twice we obtain (compare with case I)

(4.2.24) Ir«-2\Vv\2dx = ^y^(4 - N - a) f r?~4v2dx+
G G

+ [r°~2v ((aij(x) - aij(0)) Di:jv(x) + ai(x)Div(x) + a(x)v(x)) dx-
G

- ir?-2vF(x)dx.
G

By assumption (b) we obtain with the help of the Cauchy and the Holder
inequalities and the properties of the quasi-distance re

( N N

/ - f l 7 It*  I"*' / — (*  \ " / J -*Sii U\JJ) T^ 7 tt IU/ )J-J% f l X I T CfclXJt/lX/

< c(h)A(r) {r«-2r2\D2v\2 + rr2\Vv\2 + r^r^v2)

and

r°~2vF{x) <  5-r«-2r-2v2 + c{5, h)raF2, \/S > 0.

Decomposing G into G = Gfj U G4, we then obtain from (4.2.24)

r«~2\Vv\2dx = c{h)A{d)

+ ;—(4 - N -a) / r" 4u2

- f rf-2r~2
v2dx + ci6 f (\D2v\2 + v2) dx

Gi Gd

+c(S, h) fraF2{x)dx =: Ji + J2 + J3 + Ji + J5

G

with an arbitrary 5 > 0. Let us further estimate the right hand side of this
inequality.
By the inequality (2.5.8),

Ji < ^^(4- N - a)H(X,N,a) f r^~2\Vv\2dx.

G
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Thus

C(X,N,a)
G

where

C(X, N,a) = l - ^ ^ ( 4 - AT - a)H(A, N, a).

The integrals J%, J3, J4 and J5 can be estimated using (4.2.23), (4.2.21)
and Lemma 2.32 . In this way we obtain

C(X,N,a) f r«-2\Vv\2dx < cie[A(d)+ 6} f r°-2\V

+  C17 (\\V\\LHG)

where C(A, N, a) > 0 due to assumption (4.2.2). Choosing S > 0 and d > 0
small enough and passing to the limits as e -+ 0, by the Fatou Theorem we
obtain the assertion, if we recall (4.2.23).

The estimate (4.2.3) follows directly from Lemma 1.38.

REMARK 4.15. On the belonging of weak solutions to W2(G).
Suppose that all assumptions of Theorem 4.13 are fulfilled with

a»(x) = S{, xeG,Vi,j = l,...,N; / e L2{G), ip e ft3/2(dG)nC°{dG).

We want study the regularity of a weak solution u € Wl{G). The following
statement is valid.

PROPOSITION 4.16. A weak solution u e W1(G) belongs to W2{G), if
either

 N>4;
or

 N = 2 and 0 < UJ0 < vr;
or

 N = 3 and the domain G is convex;
or

 N = 3 and O C fi0 = {(#,¥>)|0 < |i?| < i?o! 0 < tp <  2TT}, where
i?o is the smallest positive root of the Legendre function Pi (cos $).

PROOF. We apply Theorem 4.13 with a = 0. Since A > 0, then for
N > 4, a = 0 the assumption (4.2.2) of Theorem 4.13 is fulfilled and
therefore we have

(4.2.25) u G l
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If TV = 2 and 0 < UJQ < ir, then the assumption (4.2.2) with a — 0 of
Theorem 4.13 is fulfilled too, since in this case we have that A > 1. Therefore
we have again (4.2.25).

Let now N = 3. If G is a convex domain, then it is well known (see e.g.
Theorem 3 §2 chapter VI [87]) that A > 1. Then the assumption (4.2.2)
with a = 0 of Theorem 4.13 is fulfilled and therefore (4.2.25) is valid. Let
G c R3 be any domain and denote by Oo C S2 the domain, in which the
problem (EVD) is solvable for A = \ , thus

Now the assumption (4.2.2) with a = 0 of Theorem 4.13 is fulfilled, if
A > ^. Again in virtue of the monotony Theorem 3 §2 chapter VI [87] we
have ftcflo- Let us reduce to the eigenvalue problem above. We shall look
for the particular solution in the form ip = ij){ff).  Then ip("&)  is a solution of
the Sturm-Liouville problem

A solution of the equation of this problem is the Legendre function of first
genus ip(fl) = Pi/2(cosi?). This function has precisely one root on the inter-
val (0,?r) (see e.g. example 39, page 158 [404]); we denote it by t?0.

THEOREM 4.17. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A{r) Dini continuous at zero. Sup-
pose

o 3/2

fix) e W4_N_2X(dG),
(4.2.26)

1(r)f2(x)dx+ f r1
( ) f i ( ) oo ,

dG

where H(r) is a Dini-continuous at zero, monotone increasing function, A
is the smallest positive eigenvalue of problem (EVD) with (2.5.11).
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o 2

Then u(x) e W4_N(G) and

\\\(4.2.27) H j U Ge < Cg2X I ||U||2>G
4-JV 0 \ G

+ fr1-N-2Xn-1(r)V>2(x)da+\\ip\\2o3/2 ) , 0 < g < d,
JG Wi_N_2X{dG)}

where the constant C > 0 depends only on u, fi, d, A(d),H(d), N, X, measG,

and on the quantities J ^p-dr, f
o o

PROOF. Since u € ^4_Ar(G0 due to Theorem 4.13, it remains to prove
(4.2.27). Let

U{Q):=  I r2~N\Vu\2dx.

We write the equation (L) in the form

Au(x) = f(x) - (aij(x) - aij(0)) DijU(x) - ai(x)Diu{x) - a(x)u(x),

multiply both sides by r2 Nu and integrate over GQ, Q E. (0, d). As a result
we obtain

(4.2.28) U(g) = Jr2-"<p(x)^do- + J (ou^

DijU(x)+

ai(x)Diu(x) + a(x)u(x) - f(x))dx.



112
4 STRONG SOLUTIONS OF THE DIRICHLET PROBLEM

FOR LINEAR EQUATIONS

We will estimate each integral on the right hand side of this equation from
above. Prom Lemma 1.41 and Lemma 1.40 it follows by Cauchy's inequality

) ^ = f (

(4.2.29)

Moreover, as in the proof of Theorem 4.13 we have

fr2-Nu{x) ((aij(x) - aij{0)) DijU(x) + ai(x)Diu(x) + a(x)u(x)) dx <

(4.2.30)

and

ZAteJir'-" 2r~Nu2) dx

Jr2-Nu(x)f(x)dx
G'n

(4.2.31)
H(g) l-jn-l{r)r A-Nf{x)dx.

Therefore, using (4.2.29)-(4.2.31) and Corollary 2.29, (2.5.8) from Corollary
2.25 we obtain from (4.2.28) the inequality

U{Q) <  + e(g) j rl~N\D2u\2dx + 5(Q)U(Q) + Ho),
G«

where

(4.2.32)

= A(Q)+CIH(Q),

A(Q) +
H-1{r)r 1-Nip2{x)da+

+\ 4-N fN f{x)dx+

+c2{X,N)(A(e)+H(Q))M2

W4_N(L  0)
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Let us now estimate / r4 N\D2u\2dx. To this end we consider again the

estimate (4.2.11) with e replaced by 2~~kg. Summing up this inequalities for
k = 0 ,1 , . . ., we obtain

/
4 — J V 1 7 - .2 I 2 J ^ If 4—Nn2/ \ , —N 2\ i n n2

Inserting the definition (4.2.4) of F and applying (2.5.2) we then obtain

(4.2.33) I ri-N\D2u\2dx<cJu{2g) + \\f\\20 . +

3/2 ),0<Q<d
'4-ivUo )/

and therefore

(4.2.34) U(g) < ^rU'(g) + c5e(g)U(2g) + 5(g)U(g) +

Moreover we have the initial condition (see the proof of Theorem 4.13)

U(d) =

" 0

= V0.

Prom (4.2.34) we obtain the differential inequality (CP) from §1.10 with

(4.2.35)

Now we apply Theorem 1.57. For this we have

fv(s)ds = 2\ln2-2\ f -^-ds<
Q Q

2g 2g

(4.2.36) e^p( f V(s)dsS) = 22X exJ-2\ f
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Furthermore,
2g

[ \ < 22X—c5s(g) =>
Q

d d

(4.2.37) / B{r)dr < 2A22Ac5 f ^-dr.

Q o

In addition,
d d

f V(s)ds = 2A In - - 2A f
J Q J
Q

e

(4.2.38)

o
0 < g < T < d.

Now by Theorem 1.57 from (1.10.1) by virtue of (4.2.38), and (4.2.37) we
obtain

d

(4.2.39) U{Q) < c8Q
2Xivo + J

d

where eg is a positive constant depending only on N, A, / ^s'+^a'ds. We
o

d

now have to estimate / T~2XQ{r)dr. For this we recall (4.2.35) and therefore
Q

we obtain
d d

(4.2.40) j T~2XQ{T)dT < 2A I T'2^1 J:(r)dT+
e

d
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Now, by changing the order of integration in virtue of the Fubini Theorem
in the integral

f raI
o

rafZ{r)U T-^^drjdr = ^ / raIC(r)dr+

e o o g
d d

+
Q r

^- [r a!C(r)(r- 2X-d-2X  Irag~2XlC(r)dr+
2A J 2A J

d

)dr<^r f ra-2XK(r)dr,
2A J

o
d

we find
d

1) / r - ^ n ' ri-NH-\r)f2{x)d^\dr <

d

2) Ir-2X-x( jr1-Nn-1(r)(fi 2{x)da\dT <

< -1 />

In the same way we find
d

3) / V ^ I M I 2 ^ dr<i-|M|2os/2

Q

d

f
J
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Hence and from (4.2.39) and (4.2.35) it follows that

(4.2.41) U(g) < Cg2X (\\u\\2>G + J r4-N-2XH-1(r)f(x)dx+

^  G

+ I  r1-N-2Xn-1(r)V
2(x)da], 0 < g < d.JG JMl m

At last we apply (4.2.33) and deduce from (4.2.41) the validity of (4.2.27).

THEOREM 4.18. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r) Dini continuous at zero. Sup-
pose

o 0 o 3/2

/ e ^4 - JV (G) v(x) e W^jfidG) n C°(dG)

and there exist real numbers s > 0, ks > 0 such that

(4.2.42) k. =:

Then there are d G (0, ̂ ) and a constant C > 0 depends only on v,
d

fi, d, A(d),N, s, A, measG, and on the quantity f -^r-dr such that Vg> £ (0, d)
o

ifs<\.

PROOF. We consider the function v = u — $ as a solution of homoge-
neous problem (L)o in the form (4.2.5) with (4.2.4). Multiplying both sides
of (4.2.5) by r2~Nv and integrating over GQ, we obtain

(4.2.44) fr2~NvAvdx = - j (r2~N {aij{x) - aij(0))vvXiXi +

Gl G%

Na(x)vA dx+ f r2~NvF{x)dxr2~No}vXiv + r2-
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Integrating by parts twice we show that

(4.2.45) fr2-NvAvdx = / ( ^ + ^-^v2)dQ. - j r2~N\Vv\2dx

eg n

We define

V(Q):= f r2~N\Vv\2dx.

Because of (b), Corollary 2.29, (2.5.3) and the Cauchy inequality we obtain
for V<S > 0

(4.2.46) V(Q) <  ̂ V'{Q) +  CA(Q) f ri~Nvlxdx+

2 VK/ 25'

If we take into account (4.2.42), by (4.2.33), we get

(4.2.47) V{Q) <  ^V'(Q) +  ClA(g)V(2g) + c2(A{g) + 5)V(g)+

a5 s ' '

1) s> A

Choosing 2Ac2<5 = g£, Ve > 0 we obtain from (4.2.47) the problem (CP)
§1.10 with

V{8) = — - 2Ac2 ̂  - g*-1, AT(Q) = 2ACl ̂  and
Q e Q

Now we have

/ V(r)dr = 2A In * - 2Ac2 /  - d—lL ^
J Q J r e
a Q

2Q d d

exp ( f V(r)dA < 22 \ f B(r)dT < 22A+1 ACl f ^ -
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and

d d
2A

if we recall (1.10.2).
In this case we have as well

T

g(r)expf- fv(a)da)dT < k2
sc4c58

,2A / T2s-2A-e-l

since s > X.
Now we apply Theorem 1.57. From (1.10.1) by virtue of deduced in-

equalities and with regard to (4.2.33), we obtain the first statement of
(4.2.43).

2) s< A

In this case we have from (4.2.47) the problem (CP) §1.10 with

Now similarly to the case 1) we have

2g d d
( f \ r r A(T\„ , „  / -p/_~\j_ I <- o2A(l-5) / c/ u < o2A+l / *̂ H 7 j Jexpi i r\T)(iT N ^ v y

5 i O\TjciT \ z 1 / and

Q e o

2A(l-<5)

if we recall (1.10.2).
In this case we have as well

d r <i

/ Q(r)expf - / P^do-jdT < fcsCio^"1^'1"'5' /

if we choose 8 e (0, ^-)-
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Now we apply Theorem 1.57. From (1.10.1) by virtue of deduced in-
equalities we obtain

V(g) < c12(V0g^-V + k2
sQ

2*)  <  Cl3(V5, + k2)g2°,

because of the choice of 5. Taking into account of (4.2.33) we deduced the
third statement of (4.2.43).

3) s = X

As in the proof of Theorem 4.17 we consider the function U(g) satisfying
the equation (4.2.28). We will estimate each integral on the right hand side
of this equation from above. Prom Lemma 1.41 and Lemma 1.40 it follows
by the Holder inequality for integrals

^ d a = J\r{"- N)l2^

1/2 f N 1/2

(4.2.48) < I I r3-N[^) da

Vs )
< Cl||V||^S/2 , _ > | l ^  w (og) +

+ c2k
2g2X

in virtue of the assumption (4.2.42). In the same way

(4.2.49) f r2-Nu(x)f(x)dx = f (r-N/2u{x)j  (r2~N/2f(x)jdx <

<cU^2(g)\\f\\ o^o  ̂ <cksg
xUV2(g).

Moreover, as in the proof of Theorem 4.13 we have

(4.2.50) / r2~Nu{x) ((aij(x) - aij(0)) Diju(x) + ai(x)Diu(x)+

ii 2+ a{x)u(x))dx<A(g)\\u\\
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Therefore, using (4.2.48)-(4.2.50) and Corollary 2.29 we obtain from (4.2.28)
the inequality

Now we apply the inequality (4.2.33). As a result we obtain

(4.2.51) U(g) < ^U'(g) + (A(g) + 6(Q))U(2Q) + A(g)U(g)+

+ c3k
2
sS-1(g)g2X, VS(g)>0.

Moreover we have the initial condition (see the proof of Theorem 4.13)

U(d) =

= V0.

From (4.2.47) we obtain the differential inequality (CP) from §1.10 with

a nd
Q Q Q

Q{g) = 2c3\k
2
s6-1(g)g2X-1, V6(g) > 0.

We choose
-, 0 < g < d,

where e is the Euler number. Since according to the assumption of theorem
A(g) is Dini-continuous at zero, then we have

exp

o

d / d \

( f B(T)dA < exp I C(X) f ^p-dr I ln(—), and

o V o /
d d

- I V{r)dr < In ( |) ^ + 2A f ^-dr =>

g o

d / d

C{\)
o
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if we recall (1.10.2). In this case we have as well

d T d

f Q(r)exp(- fv(a)dajdT < k2C(X)g2X An(—) — <

Now we apply Theorem 1.57. Prom (1.10.1) by virtue of deduced in-
equalities we obtain

(4.2.52) U(g) < C(V0 + k2)g2X I n 3 - , 0<g<d<-.
Q &

Taking into account of (4.2.33) we deduce the second statement of (4.2.43).

Both the following theorems and examples from Section 4.2.5 show that
assumptions about the smoothness of the coefficients of (L), that is Dini
continuity at zero of the function A(r) from hypothesis (b) Theorems 4.17
and 4.18 are essential for their validity.

THEOREM 4.19. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r), which is a continuous at zero
function, but not Dini continuous at zero. Suppose

o 0 o 3/2

fix) e W4_N(G), <p(x) e wi_N(dG)nc°(dG)
and there exist real numbers s >  0, fcs > 0 such that

(4.2.53) ks=:supg-s(\\f\\oo
e>o ^  w4_e>o

Then for Vs > 0 there are d e (0,1) and a constant C£ > 0 depends
only on v, ft, d, s, N, s, A, meas G such that \/g G (0, d)

(4.2.54) H 2 <Ce(||u||2)G + ||/|| o +||^|| /
V V ( & 5 ) \ W4_N(G) W4_N(dG)

\g3~e, ifs<\.

PROOF. AS above in Theorem 4.18 we find (4.2.47), through the Cauchy
inequality, we get the problem (CP) §1.10 with

-(!-"  C8A(g)),V5>0; M{g) = 2 A C 8 ^ and
g A g

eo?) = -
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Therefore we have

d d

- I V{r)dT = 2A(1 - |) In | + 2AC8 f ^-dr.

g Q

Now we apply the mean value theorem for integrals

and choose d > 0 by continuity of A(r) so that 2C%A{d) < 5. Thus we
obtain

- fv(r)dA < (|)2A(1 5\ V<5 > 0
Q

Similarly we have

Q

Further it is obvious that

/ } \ /o\2A(i-5)
expf- / V(a)da] < ( -J , V<5 > 0.

Jv(T)d7x ,ir<2Aln2

B

and with regard to (1.10.2)

d d

( B(r)dT < 2A22AC8 / ^-dr < 2X22XC8A(d) In - < 5X22X In -
J J T g Q
a Q

ff
Q

d

exp

e

Hence by (1.10.1) of Theorem 1.57 we deduce

(4.2.55)

+ / Q(r)expf- f P(a)da\dT\, V5 > 0.
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Now we estimate the last integral

d T d

I'Q(T)exp(- Jv{a)dc\dT\<k2sC20Q
2X{l-5) f

a Q a
(4.2.56)

2S - 2A(1 - 5 ) - * ' C a i \ ^ , i f . <A .

In this connection we choose 5 > 0 so that S ^ ^s-.
Prom (4.2.55) and (4.2.56) and because of (4.2.33), the desired estimate

(4.2.54) follows.

We can now correct Theorem 4.19 in the case s = A, if A(r) ~ r ^ j .

THEOREM 4.20. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r) ~ ^ T , .4(0) = 0. Suppose
that

o 0 0 3/2

f(x) e W4_N(G) and<p(x) e WA_N{dG)

and that there exist real number h\>0 such that

(4.2.57) kx =: sup g~x (\\f\Uo + \\<p\U3/2 ) .

Then there are d G (0, -|) and constants C > 0, c > 0 depends only on
v,/j,,d,N,X, measG such that

(4.2.58) | | | | (||||2,G ||/|| |M| . /

kx) -Qxlnc+1-, 0<g<d.
> QQ

PROOF. AS above in Theorem 4.18 we obtain the problem (CP) §1.10
with

We choose

, 0<g<d,
2Aln(f)
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where e is the Euler number. Since according to the assumption of theorem
A(Q) ~ 6(g) for suitable small d > 0, we then have:

d

Q e

j

d

< 22\ exp(f B(r)dA < C(d, A) lnc(A) (—) and

- jv(r)dr <ln(f)2A
 + 2AC5 / - *  = Inff

J V r f / 7 r lnl —I  V" ^
Q

= Infff
r ln l —I

e

if we recall (1.10.2). In this case we have as well
d T d

(

d T d

I Q(T) exp(- fv(a)da)dT < k2
xC(X)Q2X f 1 + S~ ( r ) lnc(—

Now we apply Theorem 1.57. From (1.10.1) by virtue of deduced in-
equalities we obtain

(4.2.59) U(g) < C25(V0 + kl)g2X ln2c+2 - , 0 < ^ < r f < - .
g e

From (4.2.59) and because of (4.2.33) the desired estimate (4.2.58) follows.

4.2.2. The power  modulus of continuity.

THEOREM 4.21. Let u e W2>N(G)nC°(G) be a strong solution of prob-
lem (L) and assumptions (a) and (b) are satisfied with A(r) Dini continuous
at zero. Suppose, in addition,

a' e LP(G), p>N;ae LN(G), f e LN(G) n w\_N{G),
3/2

v(*) e W4_N{dG) n V^/N{dG) n c\dG)
and there exist real numbers s > 0, ks > 0, k > 0 such that

(4.2.60) ^

(4.2.61) *
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Then there are d E (0, |) and a constant C > 0 depends only on
v, //, d, s,

N, A, meas G and on the quantity J —*p-dr such that Va; € GQ

(4.2.62) |u(s)| < c(||u||3,G  +
W4_N(G)

\<p\c (8G)

if s> X,

ifs<\.

PROOF. Let the functions $, v and F be defined as in the proof of
Theorem 4.13. We remark that $(0) = 0 due to Lemma 1.38.

Let us introduce the function

{ gx, ifs>A,

0A ln3/2(i) , if s = A,

gs, i fs<A,
for 0 < g < d and consider two sets G2

gJ4 and Ge,2 C G^4, g > 0. We
make the transformation x = gx'; v(gx') = tp(g)w(x'). The function w(x')
satisfies the problem

{ al:>(gx')wx'.x'. + gat(gx')wx'. + g2a(gx')w.= -S^-F{gx'), x' € G\,A
w(x') =0, x' e I* /4>

where
^ 2 O2 1F(gx') =

1*1).

Let us now note that

1/2

(g2\a(gx')\)N

<c(N,p) J
N

2d

< c(N,p)AN'1(d) measO f ^ -
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and
n /

I I / I IL*(G£« 4)
2

os

(4.2.64) < fcc(/x,.4(d))-|p- < k-const(n,A{d),s,X,d),

because of (4.2.61) and (4.2.63). We apply now Theorem 4.5 (Local Maxi-
mum Principle). Because of the proven estimates we have

(4.2.65) sup \w(x')\ < C(N,u,(i)l ( f I w2dx'j
2

Returning back to the variable x and the function v(x) by Theorem 4.18
with (4.2.63), we obtain:

( 4 . 2 . 6 6) J J ^
°l/4 G

0/4

Because of tp G Cx (dG) we then obtain

\u(x)\ < \v(x)\ + |$(x)| < |u| + |$(a;) - $(0)| < \v\ + \x\x\ip\x,aa

Hence and from (4.2.64), (4.2.65) and (4.2.66) it follows

Putting now \x\ = |^ we obtain finally the desired estimate (4.2.62).

THEOREM 4.22. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r), which is a continuous at zero
function, but not Dini continuous at zero. Suppose, in addition,

a1 e Lp(G), p>N; a€ LN{G), f e LN(G) n W4_

v e w4_N(dG) n v 0̂
1/N(dG) n cx(dG)
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and that there exist real numbers s > 0, ks > 0, k > 0 such that

(4.2.67) ks =:

(4.2.68) fc-supeWll/H^.^ +
g>0 \ ' e/4

Then Ve > 0 there are d e (0,1) and a constant Ce > 0 depends only
on v, /i , d, s, e, N, A, meas G and on A{diamG) such that Va; e Gg

(4.2.69) \u{x)\ < C

\ j\xx~e, if s > A,
+ |<PlA,aG + fc5 +  < . S_E

> I \X s E, if  S < \ .

PROOF. We repeat verbatim the proof of Theorem 4.21 by taking

l V - £ , i fs>A,
[gs-e, ifs<\,

and applying Theorem 4.19.

THEOREM 4.23. Let u(x) be a strong solution of problem (L)and as-
sumptions (a) and (b) are satisfied with A{r) ~ \~r-, A(0) = 0. Suppose, in
addition,

a' e Lp(G), p>N;ae LN(G), f G LN{G) D W\_N(G),

o3/2

v(x) G WA_M(dG) n Vvn7 (5G) n i

and that there exist real numbers k\>Q,k>0 such that

(4.2.70) fcA

(4.2.71) fc =: s u p ^-

T/ien there are d e (0, ^) and constants C > 0, c > 0 depends only on
v, fi, d, N, A, meas G and on A(diamG), such that Vx e GQ

(4.2.72)
3/2
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PROOF. We repeat verbatim the proof of Theorem 4.21 by taking

and applying Theorem 4.20.

4.2.3. i p-est imates. In this and the next sections we establish the
exact smoothness of strong solutions of (L).

Let u be a strong solution of (L), where p > N, and let

<p G W

Let us consider the sets G2% and G° ,2 C G2
g
e,4 and new variables x' defined

by x = QX1 . Then the function z(x') = v(gx') = v(x) satisfies in G\,i the
problem

{ d$k x')  ̂ + Q2a{ex')z = Q2f(gx')-

where the functions $, v be denned as in the proof of Theorem 4.13.

By the Sobolev Imbedding Theorems 1.33 and 1.34 we have

\Z(T'\  — z(ii'\\

V-tfV? ^ " I ^ G W ' WeP*1) and

(4.2.74)

sup |V',(x')|+ sup \^fi-^pl<cM p>N.
£G\ ''G{  X y\ i

p ^

By the local IP- a priori  estimate (Theorem 4.6) for solutions of (4.2.73)
we obtain

( 4 . 2 . 7 5 ) \ \ z \ \ W 2 , P { G i / 2 ) < c ( N , u , H / i ) {

/4) f
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Returning to the variables x, from (4.2.74), (4.2.75) it follows that

(4.2.77) sup |V«| < C ^ H

and

Moreover, if we rewrite the inequality (4.2.75) in the equivalent form

f (\D2z\p + | V'z\p + |z|p) dx' < c f (

'1/2

multiply both sides of this inequality by ga 2p and return to the variables
x, then we obtain

f (ra\D2v\p + ra-p\Vv

<c f (ra~2p\v\p + ra\f\p +ra\D2$\p +ra-p\

dx

dx

and consequently

(4.2.79) \\v\\VpU

THEOREM 4.24. Letu be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4- 21 be satisfied. Furthermore, we
suppose that

£ 2 V ) , p>N
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with

a > ((2-\)p-N, if s>\,
a > \(2-s)p-N, if s<\

and there is some constant hi > 0 such that

(4.2.80) k2 =: s u p j ,
£»0 X{0)

where

(gx-2+^,  if  s>X,
(4.2.81) X(Q)^<QX-2+^E^2^ if s = X,

for all sufficiently small g > 0.
Then u £ Vpa(G) and the estimate

(4-2.82) IMIv;%(Gg) < CX{Q)

holds with c independent of u.

PROOF. The statement of theorem follows from (4.2.79), since

= /
2

»/4 V J / i n virtue of (4.2.62), (4.2.63)

< eg p V'(^) = cx(g)-
J

g/4
Hence and from (4.2.79), (4.2.80) replacing g by 2~kg, we have

By summing these inequalities over all k = 0,1,  we obtain our desired
assertion.

In similar way we prove following theorems.

THEOREM 4.25. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4-22 be satisfied. Furthermore, we
suppose that

/ e t o <peV^(dG), P>N
with

a > f(2-A)p-iV, if s>\,

\(2-s)p-N, if s<\
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and there is some constant &2 > 0 such that

(A O CQ\ II / l l _L 11/̂ 11 ^ h ) ' '

/or all sufficiently small g > 0 and Ve > 0.

Then u G V^a(G) and the estimate

(4.2.84) ||u||K2 (Ge) <cAe Jjt' ^ S > A '

urct/i c£ independent of u.

THEOREM 4.26. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4-23 be satisfied. Furthermore, we
suppose that

f^VpJG), <p€Vf-1/p(dC), p>N, a>(2-X)p-N

and there is some constant A?2 > 0 such that

(4.2.85) \\f\\voa(Gl/2) + |MI^- 1 / P ( r, / 2) < k2g
x-2+!  ̂ lnc+1 i

for all sufficiently small g > 0, where c is defined by Theorem 4-23.

Then u e Vpa(G) and the estimate

(4.2.86) IMIv^Gg) ^ CeX~2+S

holds with C independent of u.

4.2.4. CA-estimates. Let known be that

Then we have

(4-2.87) Q^Mvuti" ) ^

(4.2.88) Q-f\\v\\LP{G2e)<c2iP(g)

(4.2.89) Q~2\ ^ 2

THEOREM 4.27. Let u be a strong solution of the boundary value prob-
lem (L) and let the assumptions of Theorem 4-21 be satisfied. Let A = 1.

Then

(4.2.90) u e \ ^ ^ M *
[CS{G), if
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PROOF. From (4.2.76) and (4.2.87), (4.2.61) it follows

(4.2.91) sup , _ ^1 < cg-Pipig), V/3 e (0,1),

where in our case ip(g) is denned by (4.2.63). By Theorem 4.21 it follows
that

if s > 1,
(4.2.92) sup

v£>o, v/3e(o,i).
By definition of the set Ge ,2 we have \x — y\ < 2g and therefore from

(4.2.92) it follows that

(g1-?, if  S > 1 ,
(4.2.93) \v(x)-v(y)\ < c\x-yf I Q 1 - ^ , if s = 1, <

[Q*-?, if s < l ,

If |a; — 2/| > g = |x|, then from Theorem 4.21 it follows that

(4.2.94) ' ^ J j j y < 2|V(x)||x - y\-0 ^

-?, if s>l,

<cl Q1-0'5, if s = 1, < consi,

[ " ^ if s < l ,

if we choose (3 = s for 0 < s < 1. Together with <p e CA we prove our
theorem. D

By repeating verbatim the proof of the previous theorem we obtain the
next theorems.

THEOREM 4.28. Let u be a strong solution of the boundary value prob-
lem (L) and let the assumptions of Theorem 4-22 be satisfied. Let A = 1.

Then

(4.2.95) u e \ L
V ' \Cs-e{G), V£>0, if
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PROOF. In this case we have (4.2.91) with ip(o) from Theorem 4.22,
that is

(4.2.96) sup l ^ ) - y i < J ^ * ' ^ .

Ve > 0, V/3 € (0,1).
Hence follows our statement, if we choose £ = 1 — / ? f o r s >l and

/3 = s - £ for 0 < s < 1. D

THEOREM 4.29. Let u be a strong solution of the boundary value prob-
lem (L) and let the assumptions of Theorem 4-23 be satisfied. Let A = 1.

Then

(4.2.97) u e Cl-£(G), We > 0.

PROOF. In this case we have (4.2.91) with ip(g) from Theorem 4.23,
that is

(4.2.98) sup M ^ - y i Keg1-*-*,  V£ > 0, V/3 e (0,1).
x-y\f>

Hence the desired statement follows, if we choose /3 = 1 — e. D

THEOREM 4.30. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4-81 be satisfied. Let 0 < A < 1.

Then

( L if s>\,

CX-E(G), Ve>0, if s = X,
CS(G), if 0 < s < A.

PROOF. By Theorem 4.21 from (4.2.91) it follows
i f S > A '(4.2.100) sup frWyi <c h-e-<, if  S = A,

fr U" '  if s<A'
Ve > 0, V/3 e (0,1).

Putting

{ A, if s > A,

A-£, if s = X,
s, if 0 < s < A,

we obtain the required assertion.
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THEOREM 4.31. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4-22 be satisfied. Let 0 < A < 1.

Then

(4.2.101) u e { C ^ V £ > ° ' *  S ^
v ' [Cs-e(G), if 0 < s < A.

PROOF. By Theorem 4.22 from (4.2.91) it follows

(4.2.102) sup K*) -y i<Jg A -p if '**>
xjiy

Ve > 0, V/3 G (0,1).
Putting

I A - £, if s > A,

I s - e, if 0 < s < A,

we obtain the required assertion.

THEOREM 4.32. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.23 be satisfied. Let 0 < A < 1.

Then

(4.2.103) u G Cx~e(G), \/e > 0.

PROOF. By Theorem 4.23 from (4.2.91) it follows

(4.2.104) sup H * ) - y i < c gA - / ? -£

V£>0, V/3G(0,l).
Putting

P = X-e,

we obtain the required assertion.

Now, let we will fulfil l Assumption (bb):
There exists some constant k > 0 such that

e > 0
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Then from (4.2.88), (4.2.77), and (4.2.78) we obtain

(4.2.105) sup |Vu| < CQ-Ii}{o),

THEOREM 4.33. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4-21 and (bb) with ip(g) defined by
(4-2.63) be satisfied. Then it is true for the next estimate

(4.2.107)

Moreover,

 1)

|Vu(x;

*/A>2-f,
/ s~i2,— — / s~v\

- ) ftZ £ /~P^

(cs-x+2-f

(
\<c\

I
then

), Ve;

(G),

X

X

>

A - 1

A - 1

s -1

o,

ln3/2 J_

if s>
if 8 =

if X-

A,
A,
H

if
if
if

s

s

s

<

>A,
= A,

< A.

s < X.

2) if I < A < 2 - ^ , then

if s>\,
u e { Cx~e(G), Ve > 0, if s = A,

kCs(G), i/ 1 < s < X.

PROOF. Prom (4.2.105), (4.2.106) with (4.2.63) we obtain

{ gx-\ if s > X,

pA-1^3/2^ i f S = A )

g3'1, if s < A,
(4.2.109)

{ f -2+A i f s > A

^ f _2 + AL £ V £ > 0 if S = A

g"F-2+5, if s < A.
Putting |x| = \Q we obtain from (4.2.108) the (4.2.107).
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Now we set

(0, if s > X,

—e, if s = X,

s — A, if A — 1 + — < s < X.

Let us consider the first case A > 2— ̂ . If x, y £ G'2,2, then |x — y\ < 2g

and therefore gK < c\x — y\K, since K < 0. Then from (4.2.109) we get
r _ II^-NIP if « > X

x-y\l-Nlp-e, Ve>0, if s = A,
, II a <^ A.

If x,y £ G and \x — y\ > g = |x|, then by (4.2.108) we get

— — 24-A

= cgp < const;

we have taken into account that in the considered case 1 - N/p + K > 0.
Thus case 1) of our theorem is proved.

Now we consider the second case 1 < A < 2— ^ . Ifx , ye Ge,2, then
\x — y\ < 2g and therefore gK < c\x — y\K, since K < 0. Then from
(4.2.109) we get

x -
K < c\x - y\\Vv(x) - Vv(y)\ <c\:

If x,y £~G and |x - y\ > g = \x\, then by (4.2.108) we get

\Vv{x)-Vv(y)\  ̂ o _ , , >,1_A _/ e

x~1+K

x —
< 2|V«||o; - y|1"A~K < C£»A-1+K|x - ; "1 < const;

we have taken into account that in the considered case 1 — A — K < 0. Thus
case 2) of our theorem is proved as well.

THEOREM 4.34. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4-22 and (bb) with i>{g)  defined by
Theorem 4-22 be satisfied. Then it is true for the next estimate

(4.2.110)

Moreover,

X-l-e

s-l-e

if S>\,

if s < X.
Ve>0.
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1) if\>2-f, then

if s>\,
:

2) ifl<  \<2-f, then

PROOF. Prom (4.2.105), (4.2.106) with ip{g) from Theorem 4.22 we
obtain

(4.2.111)

(4.2.112)

QSs_
S £, if

-

£, if s = A,

', if s < A.

Ve > 0. Putting |x| = \g we obtain from (4.2.111) the estimate (4.2.110).

Let us consider the first case A > 2 — ̂ . If x, y € Ga,2, then \x — y\ < 2g

and therefore g~£ < c\x — y\~e. Then from (4.2.112) we get

if s>\,
x-% if s<\.  £>0'

If x, y G G and \x — y\> g= |x|, then by (4.2.111) we get

 1) for s > A

jv_oi \

< c|x — 2/1 p < const.

2) for JV/p - 1 + A < s < A

x)V^)l _

<CQ-l-e\x-y\N'-

Thus case 1) of our theorem is proved.

p-l+£+A-s < < const.
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Now we consider the second case 1 < A < 2 — ^ . For this we define

/-£, if s>\,

\s-\-e, if 1 < s < A.

Ifx, y G Ge ,2, then |cc — z/j < 2g and therefore gK < c\x — y\K, since K < 0.
Then from (4.2.112) we get

y\x~1+K

If x,y G G and \x — y\ > g = \x\, then by (4.2.111) we get

c\x - y\1N/PQf2+x+K < c\x - y\x

x — y| A

We have taken into account that in the considered case 1 — A — K < 0. Thus
case 2) of our theorem is proved as well.

At last, in the same way we prove

THEOREM 4.35. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4-23 and (bb) with ip(g) defined by
Theorem 4-23 be satisfied. Then the next estimate is true

(4.2.113) |Vu(x)| < C\x\x~l lnc+1 -!- .

\x\

Moreover,

 1) ifX > 2 - f, then u e C2- f~ £(G), Vs > 0;
 2) if 1< A < 2 - f, then u e Cx~e(G), Vs > 0.

4.2.5. Examples. Let us present some examples which demonstrate
that the assumptions on the coefficients of the operator L are essential for
the validity of Theorems from Section 4.2.2.

Let N = 2, let the domain G lie inside the sector

Gg° — {(r,o;)|0 < r < oo,0 < w < w0, 0 < w0 < 2?r}

and suppose that O G dG and in some neighborhood GQ of O the boundary
dG coincides with the sides LJ = 0 and u = wo of the sector Gg0- In our
case the least eigenvalue of (EVD) is A = —-.

EXAMPL E 4.36. Let us consider the function

u(r,Lj) = rx I In - I sin(Aw), A = —
V r I wo
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in G$ := {x e R2 : 0 < r < d, 0 < u < w0} - It satisfies the equation
2

aij(x)DijU = 0 in Ĝ

with

allw = i-rj T A

a

r2ln(l/r) '

12/™\ _ ,,21/ \ _ 2

o  r 2

a22(x) = 1 - Sl

l r 2 l n ( l / r ) '

a«(0) = <5̂

and the boundary conditions

u = 0 on TQ.

If d < e~2, then the equation is uniformly elliptic with ellipticity constants

a nd M = I -

Furthermore,

o

that is the leading coefficients of the equation are continuous but not Dini
continuous at zero. From the explicit form of the solution u we have

(A. 9 ~\~\A\ ii(r\\  < r\r  A ~e Ili/l l 09 < rn^~£

for all £ > 0. This example shows that it is not possible to replace A - e
in (4.2.114) by A without additional assumptions regarding the continuity
modulus of the leading coefficients of the equation at zero.

EXAMPLE 4.37. Let G$ be defined as in the previous example and let

u(x) = rAln(-)sin(Aw), A = — .
r wo

The function u satisfies

\u = 0 on
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Here

)
ln(l/r) J

0
J r
0

= +00.

Thus the assumptions about the lower order coefficients are essential, too.

EXAMPL E 4.38. The function

u{x) = rx ln( -) sin(Aw), A = —

satisfies

( Au = f :=  -2\rA~2 sin(Au;) in G%,

\u = 0 onTfi.
Here, all assumptions on the coefficients are satisfied but

l l l l ) C0S

with s = X. This verifies the importance of conditions of our theorems.

4.2.6. Higher  regularit y results. Now we begin the study of the
higher regularity of the strong solutions of the problem (L). This smoothness
depends on the value A.

THEOREM 439. Let p,a e R,k e N satisfy p > l,fe > 2. Let u e
W2'N(G) n C°(G) be a strong solution of the boundary value problem (L)
and assumptions of Theorem 4.21 with s > X are satisfied. Suppose, in
addition, that there are derivatives Dlali,Dla%,Dla, \l\ < k — 2 and numbers
[ix  > 0 such that

\Dla(x)\ <

->  € V;~llP{dG) and

(4.2.115) Wf\\v}z2{G2\) + IMIv p*-
1/p(r2» ) - fcieA~fc+a^,

zo/iere

(4.2.116) a > p(ib - A) - JV,

i/ien there are numbers c> 0, d > 0 SUC/J i/taf u e ^ a ( G o) and i/ie following
estimate is valid

(4.2.117) \\u\\Vk (GB) < c eA " f e + 2^ , ge (0,d).
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PROOF. Let us consider two sets G2e,4 and Ge,2 C G2e,4, g > 0. We

make transformation x = gx'; u(gx') = gxw(x'). The function w(x') satis-
fies the problem

( aij (gx')wx'.x>. + ga^gx')™^. + g2a(gx')w = g2~xf{gx'),

x' € G?/4;
w{x') = g~Mgx'), x' e Y\/4.

By Theorem 4.7 we have

(4.2.118) \\

where Ck does not depend on w and depends only on G, N, p, v, n and
max ^4(|a;|). Returning to the variables x, u, multiplying both sides of this

inequality by g p ~k and noting that g/A < r < 2g in G2e,4, we obtain

(4.2.119) ||u||v» iG» ) <

By Theorem 4.21 we have \u{x)\ <  CQ\X\X therefore

G" ) = I ea-kp\<x)\P<ix < eg / ga~kp+Xpdx <
^e/4l J J

ll ullv °

Hence and from (4.2.120) with regard to (4.2.115) it follows that

(4.2.120) H u l l ^ ( ^ / 2 ) < Cgx-k+^, g e (0,d).

Replacing g in the above inequality by 2~mg and summing up the resulting
inequalities for every m = 0 , l , 2 , . . . ,we obtain

m=0

By (4.2.116), the numerical series from the right converges. Thus the esti-
mate (4.2.117) is proved.
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THEOREM 4.40. Let u be a strong solution of (L). Suppose that the
conditions of Theorem 4-21 with s > X and Theorem 4-39 are satisfied. Let,
in addition,

(4.2.121) fc-l<A<fc-—, k>2,p>N.
P

Then u e CX(GQ) and there are nonnegative numbers C\ such that

(4.2.122) \Dlu(x)\ < Ci|z|AH" VxeGjf; \l\ = 0 ,1 , . .. ,k - 1

for some d > 0. If A = k - 1, p = N, then u e CA"£(Gf), Ve > 0.

PROOF. We consider the function w(x') as a solution of the problem
(£.)' in the domain G\ ,4. By the Sobolev Imbedding Theorem 1.33,

Wk'p(G)  ̂ Ck-1+0(G), 0 < p < 1 - —
P

and, in addition,

(4.2.123) Y^

with a constant c independent of u and defined only by N, p and the domain
G. Returning to the variables x,u, we have for Vp G (0,d)

(4.2.124)

S UP J ,_ . .n -v /, < ^ p ll«llv *  (G» „)

Since g/2 < r = |ar| < g for x € G /̂2, by (4.2.120), from 4.2.124) it follows

(4.2.125) |£>yz)|<Q|:r|A - l ( l , |J| = 0 , 1 , . . . , * - 1; x e G$;

'»^" e/2

Now from (4.2.126) for r = A - fc + j < 0 we have

(4.2.127) I D * - 1 ^ ) - D*- 1^^)! < cgT\x - y^+i-r yXjy G Ge/2_
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Since r < 0, we have

\x - V\T > (2QY \/x,yeGB
e/2

and therefore from (4.2.127) it follows that

(4.2.128) ID* " 1^ ) - D^uiy)] < cTT\x - y\x~k+1 Vz,y e G*/2.

The inequality (4.2.128) together with the (4.2.125) leads to the assertion
u € CX(G$), if the (4.2.121) is fulfilled.

Let now X = k — 1, p = N. Then, by the Sobolev Imbedding Theorem
1.33, we have

(4.2.129) sup i - £ / _ * ^ < c\\w\\wk,P{G]; }J
x',y'£G\/2

 x V I

V/3 € (0,1); k > 2.

Returning to the variables x,u and considering the inequality (4.2.120), we
have for Wg e (0, d)

fc-2u(x)-Dfc-2
M(y)l ^ n n

F ^ — - C Q p I|U|I^G-^
(4.2.130) < cQX-k+2-0 = eg1'0, V/3 e (0,1), fc > 2.

The inequality (4.2.130) for /? = 1 - e, Ve_> 0 together with the (4.2.125)
for |/| = 0 , 1 , . . ., fc - 2 means u € CA~£(G?^), Ve > 0. Thus the assertion
follows.

4.3. Smoothness in a Dini-Liapuno v region

In this Section we shall study strong solutions u e Wf£(G) f~l Wl>p{G),
p > N of (L) in a Dini-Liapunov region G. We follow some results in
K.-O. Widman [405], [406].

DEFINITION 4.41. A Dini-Liapunov surface is a closed, bounded
(N — 1)— dimensional surface S satisfying the following conditions:

 At every point of S there is a uniquely defined tangent (hyper-)
plane, and thus also a normal.

 There exists a Dini function A(r) such that if 6 is the angle between
two normals, and r is the distance between their foot points, then
the inequality 8 < A(r) holds.

 There is a constant Q > 0 such that if Qe is a sphere with radius g
and center XQ G S, then a line parallel to the normal at XQ meets
S at most once inside Qo.
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A Dini-Liapunov surface is called a Liapunov surface, if A(r) — cr1,
7 G (0,1). Dini-Liapunov and Liapunov regions are regions the boundary
of which are Dini-Liapunov and Liapunov surfaces respectively.

For the properties of Liapunov regions see Giinter [140]. In particular
we note that a Dini-Liapuno v domain belongs to CllA.

Since some minor complications arise from the logarithmic singularity of
the fundamental solutions of the elliptic equation with constant coefficients
in the case N = 2, we will concentrate on domains in $lN with N > 3.

We note that it is well known, that the first derivatives of u are con-
tinuous functions which are locally absolutely continuous on all straight
lines parallel to one of the coordinate axis except those issuing from a set of
(N — l)— dimensional Lebesgue measure zero on the orthogonal hyperplane.

Further we will always suppose that the following assumptions on the
equation (L) are as follows

 (a) and (b) with det (oy') = 1, which is no further restriction,
(c) There exists a a-Dini function A such that

\ 1 / 2

\aii(x)-ai'(y)\2\ < «4(|ar - y|), Vx,yeG.

\f(x)\ < Kdx~2(x),

where X e (1,2) and by d(x) is denoted the distance from x to dG.

THEOREM 4.42. Let G be a bounded Liapunov domain in M.N with a
CA, 1 < A < 2 boundary portion T C dG. Let u(x) be a strong solution
of the problem (L) with cp(x) e Cx{dG). Suppose the coefficients of the
equation in (L) satisfy assumptions (a) - (cc).

Then u e CX(G') for any domain G' CC G U T and

(4.3.1) \u\x-cuT < c{N, T, G, v, /z, K, k, d') Mu|0;G + | | / | |P ;G + \<PW,BG\ ,

where d' = dist(G',dG\T), k = max {\\a^, ||0 A-G), N <p<  ^
i j l N L ' J *
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PROOF. Step 1.
By the definition of Liapunov surfaces, there is a sphere Se of radius

Q > 0 and center x0 e T such that a line parallel to the normal at Xo
intersects T at most once inside Se. We can choose g > 0 so small that any
two normals issuing from points of T inside Se form an angle less than \,
say. It will be no restriction to assume that XQ = O and that the positive
XN— axis is along the inner normal of T at XQ- Then, inside Se, the surface
T is described by

xN = h(x')eCx{\x'\ < ^g + e); x' = (ar i , . . . ,XAr- i ).

Now we use Extension Lemma 1.62 to extend the function XN — h(x') from
T into G. We denote this extension by H[x). Since J^p- = 1 on T we can
consider the connected region G' that is a connected component of the set

which has T as a portion of its boundary. By Extension Lemma 1.62 H has
the following properties in G' :

1°. H{x) e C°°(G'y,

2°. H(x) G CX(G1);

3°. K^XN - h(x')] < H(x) < K2[xN - h(x% =>

d(x) > K3H(x), K1,K2,K3> 0, (see also §2 [235]);

4°. \D2
xxH(x)\ < Kdx-2(x);

5°. H{x) is strictly monotonic considered as a function oix^

for each x', \x'\ < -g.

From 3° follows

COROLLARY 4.43.

d{x)> l-K3\x\, xeG'.

PROOF. In fact, we have

d(x) > K3H(x) = K3 (H(x) - H(x0)) = K3\VH\  \x\ >  \K3\X\.
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Similarly, let $(x) be an extension of the boundary function <p(x) from
T into G. By Extension Lemma 1.62 $ has the following properties in G' :

1°. ${x) e C°°

2°. $(x) G CX(G!)

3°. \Dlx${x)\ <Kdx~2{x).

Now we flatten the boundary portion T. Let us consider the diffeomorphism
ip that is given in the following way

fj/fc =xk; k = l,...,N-l,

\yN =H{x).

The mapping y = ip(x), x £ G', is one-one and maps G' onto a region D'
which contains the set {y\\y'\ < \Q,0 < y  ̂< T} for some r > 0, in such a
way that T and {|y'| < \Q} correspond.

Let us consider the problem (L) for the function v = u — $. The function
v then satisfies the homogeneous Dirichlet problem

ja^(x)Dijv(x) + ai(x)Div(x) + a(x)v(x) = F(x) in G,
( °̂ \v(x) = 0 ondG,

where

(4.3.2) F(x) = f(x) - (aij{x)Dij^(x) + ai(x)Di^(x) + a(x)$(x)).

Under the mapping y = ip(x), let v(y) = v(x). Since

" & 7 ^ a nd Vx  ̂ ^ x ^ x  ̂ d x d x ^

it follows from (L)o that u(y) is a strong solution in D' of the problem

( )o

{a^(y)Dijv(y)+ai(y)Div(y)+a(y)v(y)=F(y) in D',

v(y') = 0 on\y'\<y,

where

= f(y) - (a

a ( v ) a ( x ) aHv)a(x)
(4.3.3) a { V ) - a {X} dxk dxm' a ^ - a [X) dxk'

a(y) = a(a;), f(y) = f(x),

a; = ip^iy).
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It is not difficult to observe that the conditions on coefficients of the equation
and on the portion T are invariant under maps of class C1'-4. Further by
the ellipticity condition we have

N g N

N / N „  \ 2 JV

But by the Cauchy inequality with Ve > 0 we have
2 -,

therefore from the previous inequality it follows that

Now we show that there is £ > 1 such that

1 _ I = 4 + (1 - e)K2

For this we solve the

and obtain

Hence we see that e

1

equation

K2e2-

1 3
2 ' 2K2

>  1 and we
1

(3 +

 + \

also

K2)e

IV
have

8

- 1 = 0

10 9
4K2 4X4

e K2 + 5 + VK4 + 10K2 + 9
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Thus from (4.3.4) it follows finally that

aij(yMj > vc(K)£2,
(4.3.5)

K2 + 5 + y/K* + 10K2 + 9

Now we rewrite the problem (L)o in the form

J £QV = OQ DijV = G{y), y & D'

a? =
where

(4.3.6) S{y) = f(y) ~ (ai

- ((c?*(y) -2*^(0)) Ajw(l/ ) +ai(y)Div(y)

and we can apply to this problem Theorem 3.10

N
(4.3.7) \v\x,D'" < c (\V\0,D" + \\G\\P,D") , N<p<

2-A'
VD'"  c D"  c W.

Noting that dx = \J\dy, where J = %$.['''''%"]  is jacobian of the trans-
formation ip(x) and J = J -̂ > \, further, from assumptions (a), (b), (c)
- (cc) and (4.3.3), (4.3.6) and (4.3.7) with regard for above properties of
H(x), $(x) it follows that

v\x,G'" <CI\V\0,G Ap(d(x))\vxx\*>+\f\ p+

N <p< -^—, VG'" c G" c G1.
2i — A

(Here G'" = ^(D'"), G" = ^{D").)
Now we apply Lp-estimate (Theorem 4.6) to the solution of (L)o

(4.3.9) J \vyy\
pdy < cj (\v\p + \F\P) dy,
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where c depends on N,v,n,K,\,A,D',\ip\\,\ip x\x with K from the as-
sumption (cc). Considering the property 4° of if , from (4.3.9) it follows

J \vxx\
pdx < c^H^)  J \vyy\

pdy+
G"  D"

+ c2(|V~1|i) /' dp(x~2\x)\Vv\pdx <

G»

< cd f (\v\p + \F\P) dy+

+ c2 I dp{x-2)(x)\Vv\pdx<

(4.3.10)

x) (|Vt;

G'

\f\p}dx

in virtue of the property 3° of $ and the assumption (cc).
Thus from (4.3.8) and (4.3.10) we obtain

(4.3.11) \V\X,G" < ci\v\0,G v\p + \v\p + \<p\x+

1
\f\pdx

Step 2.
Let xo € G, XQ e dG be arbitrary points. Put d = \d{xo). We rewrite

the equation (L)o in the form

(a«(xS) - a«(

where, by the assumption (cc) and the properties of $,

(4.3.12) \F\ < c(/z, K)dx-2(x)(l + \v\ + \Vv\).

Let <S(x, y) be the Green function of the operator at:i(xo)Dij in the ball
Be(0). Then according to the Green representation formula (3.2.1), almost
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everywhere

(4.3.13) v(y)= 'y) dsx+

dBa(xo)

+ J <5{x, y) {3= + (aij(x*0) - aij(x))Di:jv} dx

Be(x0)

REMARK 4.44. We observe that the Green representation is valid be-
cause v and Dtv are absolutely continuous on almost every line parallel to
one of the coordinate axis, and thus partial integration is allowed.

Now using Lemma 3.9 with the Holder inequality

< n-N I \v\ds

1 P

CQ~" I was,
dBe(x0)

< f \v\pdsx

dBe(x0)

from which follows

(4.3.14)

Bd(x0)

if we take into account that

dBe{x0)

d(y) < \d(y) - d(xo)\ + d(x0) <

d(y) > d(x0) - \y - xo\ > id - d = 3d

and therefore

(4.3.15) 3d < d(y) < 5d.

Similarly, by Lemma 3.9 and the Holder inequality,

\DkJ2(y)\p = j Dk<8(x, y) {F + (a«(xS) -
Be(x0)

dx dx<
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<C\ / \x-y\1~N\j :+(aii{xl)-aij{x))Dijv\dx\ dx =

/ \x-y\ *  (a !x

B3d(x0)

X X - ' ) P
dx

p - 1

<C\ / \x-y\*-Nt

I  I*"
B3d(xo)

Va e (0,1)

or

Bd{xo)

B3d{xo)

Hence and from (4.3.13), (4.3.14) we have

(4.3.16) I dp(x-2)(y)\Vv(y)\pdy <

Bd(x0)

/" | ^+ (aij(xZ) - aij(x))DijV\Pdx.

f \v\pdsx+
e(x0)

[  \F+ (aij{x* 0) - aij{x))DijV\vdx.

dBe(x0)

B3d(x0)

Now we take into account that d(xo) < d(x) + \x — xo\ and therefore in
hold

1 1 3
d = -d(x0) < -d(x) + -d=^>d< d(x).
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Therefore, integrating (4.3.16) with respect to g from 2d to 3d, we get the
inequality

(4.3.17) f dp(x-2\x)\Vv(x)\pdx <

f

<c
B3d(xo)

+ |(o«(x)-a«(xS)

Finally, from the inequalities (4.3.10), (4.3.12) and (4.3.17) it follows that

dP(x-2\x)\Vv(x)\pdx < a I dp{-2X-3\x)\Vv{x)\pdx+

B4d(xo)

(4.3.18) +c2 / \dp(x~3\x)\v\p + dp(2X~3\x)\dx.
J - J

Bid(xo)

Step 3.
It is well known (see, for example, §2.2.2 [199]), that the smallest pos-

itive eigenvalue $ of the problem (EVD) for (JV — l)-dimensional sphere
or half-sphere is equal to N — 1 and therefore, by the formula (2.5.11), the
corresponding value A = 1. To the problem (L)o we apply Theorem 4.21 in
(N — l)-dimensional sphere with s = A > 1. As a result we obtain

\v(x)\ < cod(x), x e B4d(x0).

Therefore from (4.3.18) we get

J ~ J
/. r, - n\ Bd(xo) Bid(xo
(4.3.19)

+ c2 J
Now consider the region G't defined by

G't = {x G G'\ d(x) > t},

where d(x) is the boundary distance function of G while dt{x) will be that
of Gf We apply the following lemma on the covering.

LEMMA 4.45. (See Lemma 3.1 [405], §1.2.1 [261]). Let G be any
bounded open domain in WN and let {B} be the set of balls B = B\d^{x)
with center x and radius \d{x), d(x) being the distance from x to dG. Then
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there exists a denumerable sequence of balls
with the properties

 every point ofG is inside at most C(N) of balls
B3d^k)\(x^) andC(N) depends only on N.

Let us choose a covering {B'- '}^° of G't. Assuming the centers of the
balls in the covering to be {x^}]* 5, define x^* as one the points satisfying
x(k)* e dGndG', \xW -XW*\ = d(x^). Then apply the estimate (4.3.19)
for each k with xo = x  ̂ and xj$ = x̂ fc *̂. Since

C\dk < dt(x) < C2dk for |x - x(fc)| < idk where dk = -dt(x
(fe)),

we get

*  ~ * J

+ c2

i

Now, summing these inequalities over all k, we have

(4.3.20) fdp{x'2)(x)\Vv(x)\pdx < a f dp
t
(2X-3)\Vv\pdx+

G i fit

t " i

+ c2 /'dp
t
{X-2\x)dx.

G'

Since c\ does not depend on t and A > 1, we can find some t' which is
independent of t and is such that

if d(x) < t'. Then, if t < \t',

/

I C

* - 2 y
G't G'tn{d(x)<t'}

G'tn{d(x)>t'}
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Hence and from (4.3.20) it follows

j dp
t
l-x~2\x)\Vv{x)\pdx<C

(4.3.21) Gi '
+ C dp

t
{X-2\x)dx.

I t should be noted that the second integral does not depend on t, but de-
pends on |Vu| and t'; in fact, since t < \t' we have G't n {d(x) > t'} = G't,
and dt(x) = d(x)-t > t'-\t' = \t' on this set. We note that G't, C G't C G'.

Finally, from (4.3.21) we get

IdfX~2\x)\Vv(x)\pdx < C(A,p,diam(7) f \Vv(x)\pdx+

(4.3.22) G>t G>t'
+ C dfx-2)(x)dx,

since A > 1.
Now we apply the ip-estimate (Theorem 4.6) to the solution of (£)o

(4.3.23) j | V«(a:) \pdx <c f (\v\p + \f\p + K^~2)>j dx,

where c depends on N, u, fi, \ip\\, A, A, G' with K from the property 3° of $.
Then from (4.3.22), (4.3.23) we have

(4.3.24) [<% {X-2){x)\Vv(x)\pdx < c f (\vf + \f\p +  < ( A ~ 2 ) ) dx
G't

Step 4.
Let x0 € T and N < p < ^ , 1 < A < 2. Then, by Corollary 4.43,

we get
d

f dp(x-V (x)dx <c f r^-^+K-Hr < const.
Bd(x0) 0

Performing a covering of G' by the spheres with centers i o s T hence we
get that

(4.3.25) f dp{x-2){x)dx<C <oo.
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Similarly, by setting p(x) — d(x) — t, we obtain

(4.3.26) fdfx~2\x)dx = f p){x)dx <C < oo.

G't G'n{p(x)>0}

Hence, if we put t = tk and let k —> oo, (4.3.24) and (4.3.26) imply that
(4.3.11) is finite, with Fatou's lemma. The theorem is proved.

4.4. Unique solvability results

In this section we investigate the existence of solutions in weighted Sobo-
lev spaces for the boundary value problem (L) under minimal assumptions
on the smoothness of the coefficients. Let A be the smallest positive eigen-
value of (EVD) with (2.5.11).

THEOREM 4.46. Letp G (l,oo), a,/3 eR with

-X + 2-N < 2 - (/? + N)/p < 2 - (a + N)/p < A.

Furthermore, let us assume that

(4.4.1) Isl^-^MdxD-tO as \x\ -»0

and suppose that assumptions (a) - (b) are fulfilled. Ifu G V^^G) is a solu-
tion of the boundary value problem (L) with f G V£a(G), if G Vpta

P(dG)
then u € V â{G) and the following a priori estimates are valid

(4.4.2) \\u\\Vp* a(G) <  c{H/llvy, a(

with a constant c > 0 which depends only on v, /i, a, N, ̂ 4(diam G) and the
moduli of continuity of ali.

PROOF. We write the equation Lu = f in the form

Au(x) = f(x)~

Due to Theorem 3.11 we then have

(4.4.4) I
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Estimating the V^-norm of the right hand side of (4.4.3) we obtain from
the condition (b)

I Ap(\x\)ra(\D2u\p+
G

with cz depending only on p and N.
Decomposing the domain G into G = GQ U Gd we then obtain

(4.4.5) sup-4(|ar|

with C4 depending only on N,p and d. Since all terms on the right hand
side of (4.4.5) are finite, we conclude that u G Vpa(G).

Furthermore, from the local LP a priori  estimates (see Theorem 4.6)
applied to the solution u of (L) we have

(4.4.6)

with C6 depending only on N, p, v, fj., G, d, a, the moduli of continuity of the
coefficients ali on Gd and on

LN(G)'

Combining the estimates (4.4.4)-(4.4.6) and taking the continuity of
the imbedding

VUG)  ̂*
into account we arrive at

< c7 sup
\x\e(o,d)
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Choosing d small enough and applying the condition (4.4.1) we obtain

(4.4.7) IMIv£a<G) < c9 (\\f\\v°a(G) + WVWVI-V'IOG) + WuWv°a(G))

D

THEOREM 4.47. Let p e (1, +oo), a e R with

P

and let u S Vpa(G) be a strong solution of (L) with f G Vpa(G) and

<P G Vp,a (OG). Ifu is the only solution in the space V â{G) then following
a priori estimate is valid

(4.4.8) ll«llvp%(G) <

PROOF. Due to Theorem 4.46 we have

IMk^cc) ^ C(\\LU\\V°O(G) + \\u\\v
Let us suppose that (4.4.8) is not valid. Then there exists a sequence
{Uj}f=1 C V*a(G) such that

IWkP%(G) > 3

After the normalization [[ti,-||v2 ia\ = 1 we obtain

WLuj\\v°a(G) + lluillv p
2-1/p(aG) + II^'II^CG) <

Since the imbedding Vpa{G) ^^ V^a(G) is compact, there exists a subse-
quence {UJ> }j?=i such that

ur -+ u* in Fp°Q(G) for some u* e V°a(G).

Moreover, we have

< c(\\Lui< - Lur\\vaaiG)+

\\ui> -

Thus {uf }j?=x is a Cauchy sequence in Vpa(G). Consequently u* belongs to
Vpa(G) and is a nontrivial solution of the boundary value problem (L) with
/ = 0, (p — 0, in contradiction to the unique solvability assumption. D
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THEOREM 4.48. Let p > N,a G R and suppose that assumptions (a)

and (b) are fulfilled and that a{x) < 0 for all x G G. Then the Dirichlet prob-

lem (L) has a unique solution u € V2
a(G) for all f G V£a(G)nLp(G), ip G

Vp,a1/p(dG) if and only if

0 < 2 - (a + N)/p < A.

In this case the following a priori estimate is valid

(4.4.9) IMkp%(G) < c{\\f\\v°a(G) +  IMIv PV/p(aG)}
PROOF. We prove the existence of a solution by the method of continu-

ity (see Theorem 1.54). We consider the family of boundary value problems
depending on the parameter t G [0,1]

JLtu:=tLu+(l-t)Au = f in G,
^ ' \u = ip ondG.

The operator L* is uniformly elliptic with the ellipticity constants

Ht =  max{l, /J,}, vt =  max{l, v}

and is continuous if considered between the Banach spaces

L*  VpJG) - Ka(G) x Vp
2~1/p(dG).

Let us denote by ut a solution of the boundary value problem (L)*  for
t G [0,1]. We will  show that

(4.4.10) \\ut\\vla{G) < Cl {ll/lk p0Q(G) + IMIvja-VPpG)}  Vt G [0,1]

with a constant c\ independent of t, Ut and / , if. To this end we write the
equation Ltut = / in the form

(4.4.11) Aut(x) = f(x) - t((aij(x) - aij(0)) DijUt{x) + ai{x)Diut(x)+

+ a(x)ut(x)j.

Due to Theorem 3.11 we then have

(4.4.12)

Estimating the V^-norm of the right hand side of (4.4.11) we obtain from
the condition (b)

F l l p 4- / Ap(\T\\ra(\n2iu\p 4- r~pWiiJP4-

G
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with C3 depending only on p and N.
Decomposing the domain G into G =  GQ U Gd we then obtain

(4.4.13) \\Aut\\voa(G) < ci(\\f\\voaiG)+A(d)\\ut\\Vp2aiG* ) +

with C4 depending only on N, p and d. Furthermore, from the Lp-estimate
(see Theorem 4.6) applied to the solution ut of (L)f we have

(4.4.14) \\ut\\W2,P{Gd) < c5(\\f\\LP(Gd/2)

\LP(Gd/2)) <

with C5 depending only on N,p,v,fi,G,d, the continuity moduli of the co-
efficients a*J' on Gd and on

1/2

£k |2 , p> N.
LP(G) " " l v "

Combining the estimates (4.4.12)-(4.4.14) we arrive at

ll̂ tllVp^G) < c2Ci-^{d)\\ut\\V2a(Gd) + Cr(\\f\\v°a(G) +

If we choose d small enough, then

c2c4A{d) < 1/2

due to the continuity of the function A. Therefore,

(4.4.15) \\ut\\V2a{G) < 2<

We remark that according to Lemma 1.38 we have Vpa(G) -̂> C°(G) and
(fi e C°{dG) for 0 < 2 - (a + N)/p. Thus the boundary value problem (L)
can have at most one solution in the space V£a{G) due to Theorem 4.1.
Due to Lemma 1.37 the imbedding
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is compact and we can apply the standard compactness argument (see The-
orem 4.47) in order to get rid of the ||ut||v° _ (G) term on the right hand
side of (4.4.15). Thus

Since the boundary value problem (£)*  is uniquely solvable for t = 0 due to
Theorem 3.11 we conclude from Theorem 1.54 that (L)* is uniquely solvable
for t = 1, too.

THEOREM 4.49. Let Td e C1'1 with some d > 0. Let A e (1,2) and the
numbers are given q >  TTIT , N < p < q and a e l satisfying the inequality

0 < 2 - (a + N)/p < A.

Suppose that assumptions (a) and (b) are fulfilled with A(r) Dini continuous
at zero and, in addition,

(d) a e LN(G) and a(x) < 0 for all x e G;
(dd) f e V°a(G) n Li(G), <p e Vg~1/q(dG) n W2-1'"'<i{dG)  and there

exist real numbers s > A, k\ > 0, k2 > 0, £3 > 0 such that

k2 =:

|2|a*(x)

where d(x) is the distance from x to dG.

Then the problem (L) has a unique solution

and the following a priori estimate is valid

(4.4.16) \\u\\cm<K

with the constant K independent of u and defined only by N, q, v, /x, A, s, k\,

^2,^3, ||/||L«(G)imax>l(|x|), 11^11^2-1/,^^,/^dt and the domain G.

PROOF. In virtue of Theorem 4.1 the problem (L) has a unique solution
u e W^{G)nC°(G). Using the Holder inequality with s = £ > 1, s' = ^
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we obtain

fra\f\pdx= fra/s\f\p-ra/s'dx< I fra\f\qdx

since a + N > p(2 - A) > 0. Now it is easy to verify that all assumptions of
Theorem 4.48 are fulfilled and therefore according to this theorem
u e Vpa(G) and the estimate (4.4.9) is true.

Now let us prove u G CX(G) and the estimate (4.4.16). For this we
apply the local estimates of §§4.4, 4.6, 4.9. We consider the partition of
unity

1 = £ &(*) , where <k(x) e C?(G*), |J & = G.
k j

Let $ e Vgta(G)nC°(G) be an arbitrary extension of the boundary function
ip into G. The function v = u - $ then satisfies the homogeneous Dirichlet
problem

JLv = F inG,
{L)° \v = 0 ondG.

with F(x) determined by (4.2.4). Setting Vk(x) = (k(x)v(x) we have

Lvk(x) = Fk(x) = Ck(x)F(x) + 2aij(x)(kXjvXi + (aij(x)(kXiXj +
(4.4.17) . V

+ a\x)C,kXijv{x).

At first we consider such Cfc(x) the support of which intersects with the
d-vicinity of the origin O. The assumptions of our theorem guarantee the
fulfilment of all conditions of Theorems 4.21, 4.33 and therefore we have

\Fk{x)\ < ck (\F{x)\ + \Wv(x)

( 4.4.1 8) < Cfe {\F(x)\

if we recall (4.2.4). Now we verify that we can apply to the solutions of
(4.4.17) Theorems 4.21, 4.33, too. In fact, by (4.4.18) and the assumption
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(dd), we obtain

f <lc\< lc\ f

measQ

-

r
2X+2-N) dx <

s > ' e

Similarly

+

l/N

<
1 + ckg\

Hence (4.2.61) follows with s > A and Ffe e LN(G) since s > A > 1. Thus
we verify the conditions of Theorem 4.21.

Further,

f ^-"iFkixWdxKcl f (r2g-N\f(x)

e/2

a f ( r a

<ckk
q
2e

qX, Q€(0,d)

because of the assumption (dd). Thus we verified the assumption (bb) and
therefore all conditions of Theorem 4.33 are fulfilled.

Finally, on the basis of the Alexandrov Maximum Principle (see Theo-
rem 4.2) we have

M 0 = SUp |tl| < SUP \ip\ + C||/||LJV(G).
G 8G

Thus, by Theorems 4.21, 4.33, we get vk(x) G CX(G$) and

(4-4.19)

Now let us consider such Ot(x) the support of which intersects with the
I'd with some d > 0. In this case we can apply the Widman local estimates
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(see §4.9) near the smooth piece of the boundary of G. In particular, by
Theorem 4.42 with regard to the assumption (cc), we obtain

(4.4.20) \\Fk{x)\\<Ckd
x-\x).

The inequality (4.4.20) and the assumption (cc) allow to apply Theorem
4.42 to the equation (4.4.17), too. Therefore we can conclude that

(4-4.21) \\vk{x)\\cx(—k)<Cjk.

Finally, if the support of £k (x) belongs strictly to the angular domain
G since u £ W^(G), q > ^rx, by the Sobolev Imbedding Theorem, we
have that vk(x) £ Cx(G'k), VG'k CC G and in virtue of Theorem 4.7 for
k = 2 the estimate

(4.4.22) \\vk{x)\\CHG'k) < C\\vk\\w,,q{G'k) < Ck

holds.
Since v(x) = ^2vk{x) and this sum is finite, from the estimates (4.4.19),

k _

(4.4.21), (4.4.22) it follows that v G CX(G) and the validity of (4.4.16).
Thus our Theorem is proved.

Since the Widman results (§4.9) are true for the Liapunov domains, in
this way the following theorem is proved.

THEOREM 4.50. Let F̂  G CX with some d > 0. Let the assumptions
of Theorem 4-49 be fulfilled. Then the problem (L) has a unique solution
u G W?£(G) n CX(G) and the estimate (44-16) holds.

4.5. Notes

The behavior of the problem (L)-solutions near a conical point was
studied in the case of the Holder continuity coefficients in [16] - [19], [398,
399]. Our presentation of the results of this chapter follows [53, 56, 57,
58, 63, 66]. These results were generalized in [369, 50] on linear elliptic
equations whose coefficients may degenerate near a conical boundary point.
Theorem 4.48 was known earlier in two cases: either when the problem (L)
equation is the Poisson equation [400] or when G is a cone, but the lowest
equation coefficients are smoother (Theorem 2.2 [189]). Theorems 4.49 and
4.50 are new because without our new estimates from §§4.5, 4.6 as well
as the Widman estimates from §4.9 they could not be proved. Moreover,
in these theorems we weaken the smoothness requirement on the surface
dG \O. In Theorem 4.49 these requirements allow a locally smooth piece
of surface to "straighten". In Theorem 4.50 the surface dG \ O can be the
Liapunov surface because in such a domain the Widman results (§4.9) are
correct, and we use them in the neighborhood of a smooth piece of dG \ O.
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Other boundary value problems (the Neumann problem, mixed prob-
lem) for general elliptic second order equations in nonsmooth domains have
been studied by A. Azzam [20], A. Azzam and E. Kreyszig [22, 23],
G. Lieberman [230] and V. Chernetskiy [81].
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CHAPTER 5

The Dirichlet problem for elliptic linear
divergent equations in a nonsmooth domain

5.1. The best possible Holder  exponents for  weak solutions

5.1.1. Introduction . In this Section, the behavior of weak solutions
of the Dirichlet problem for a second order elliptic equation in a neighbor-
hood of a boundary point is studied. Under certain assumptions on the
structure of the domain boundary in a neighborhood of the boundary point
O and on the equation coefficients, one obtains a power modulus of conti-
nuity at O for a generalized solution of the Dirichlet problem vanishing at
that point. Moreover, the exponent is the best possible for domains with
the assumed boundary structure in that neighborhood. The assumptions
on the equation coefficients are essential, as the example in §5.1.4 shows.

Next, it is shown, with the help of the previous results on the continuity
modulus at boundary points of the domain, that a weak solution of the
Dirichlet problem in a domain G belongs to a Holder space CA in the closed
domain G, the exponent A being determined by the structure of the domain
boundary and being the best possible for the class of domains in question.

We consider weak solutions of the Dirichlet problem for the linear uni-
formly elliptic second order equation of the divergent form

{ -^:{al'^{x)uXi + al(x)u) + bl{x)uXi + c(x)u =

= a(x) +  ̂ fif 1- x e G;
u(x) = <p(x), x e dG

(summation over repeated indices from 1 to N is understood.)
At first, we describe our very general assumptions on the structure of

the domain boundary in a neighborhood of the boundary point O. Namely,
we denote by 6(r) the least eigenvalue of the Beltrami operator Aw on fi r

with the Dirichlet condition on 9Or. According to the variational theory of
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eigenvalues (for the analog of the Wirtinger inequality see (2.3.2) Theorem
2.15), we have

(5.1.1) [u2(u)dnr < - i - [\Vuu\2d£lr, Vu G W0
ll2(fi P).

J 9[r) J

Assumption I.

0{r) > do + 6i(r) > 6»2 > 0, where

60,62 are positive constants and

i (r) is a Dini continuous at zero function

d

rn 0i (r) - 0, f ^~dr < oo.Urn

o

Assumption II.

 (i) Uniform ellipticity condition

N

i/|£|2 < V"*  a*J'(x)£»£- < u]£\2 V£ G M.N, x G G

with some y, /x > 0.
 (ii)  a"(0) = <*?.

(i = 1 , . . ., N) and c(a:) G D>/2{G), p> N.
 (ty There exists a monotonically increasing nonnegative function

A
such that

N \ 1 { N N X1/2

V^ \aij(r) - aij(0)\2 1 + TI I V*  nUrM2 4- V*  IftVrll 2 I 4-
;,j=i y \i=i i=i /

+ |a;|2|c(a;)] < ^4(|a;|) Va; G G.

 ^«; g(x), f{x) (i = 1,..., N) e £2(G), v{x) G Wi (9G).

DEFINITION 5.1. The function u(x) is called a w;eafc solution of the
problem (DL) provided that u(x) — $(x) G W$(G) and satisfies the integral
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identity

/ {atj(x)uXjr] Xi + a%{x)ur] Xi - bl(x)uXir}  - c(x)ur]} dx =

G

(II ) =J{f(x)T1xi-g(x)r)}dx
G

for allr?(ar) G W<$(G).

LEMMA 5.2. Let u(x) be a weak solution of (DL). For

Vv{x) e V := {v G Wl{Ge
0) ] v(x) = 0, x G Tg}

the equality

(aij(x)uXj + a\x)u - f(x))vXi + (g(x) - b\x)uXi - c{x)u)v}dx =

g

(5.1.2) = f(aij(x)uXj+ai(x)u-fi(x))v(x)cos(r,xi)dne

holds for a.e. g G (0, d).

PROOF. By u(x) G W£(G) and because of

Q

f \Vu\2dx = fdg I |Vu(r,w)|2dnr,
Gg o ne

from the Pubini Theorem follows that the function

(5.1.3) V(r)= f \Vu(r,u)\2dQr

is determined and finite for almost every r G (0, d). We consider the function

(5.1.4) J{Q)= f(ai:i (x)uX:i+ai(x)u-fi(x))v(x)cos(r,Xi)dê

for almost every g G (0, d) for all v £ V. By virtue of ellipticity condition
and assumptions on the equation coefficients we have

ali{x)uXj cos(r,£j) < /j|Vu| and al(x)ucos(r,Xi) < r~1A(r)\u\,

therefore using the Cauchy inequality, we get

(5.1.5) J(Q) < (1 + HQ1*- 1 + A(g)gN-2) /(|Vu|2 + u2 + v2)dSl.
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Since the integral (5.1.3) is finite for almost every r e (0, d) from (5.1.5)
follows that the function J(g) is determined and finite for almost every
0€(O,d).

Now let XQ(X) be the characteristic function of the set GQ and (Xgjh be
the regularization of % (see §1.5.2, chapter 1)

(5-1.6) (xe)h(x) = / iph(\x - y\)xe{y)dy
J
G

where t(^h(\x — y\) is the mollifier. It is well known that the regularization
is an infinite-differentiable function in the whole of the space and

(5.1.7)
G

Let us take a function v € WQ(G), and set rj(x) = (xe)h(x)v(x) in the
integral identity (//). It is easily seen that such a function T](x) is admissible
and moreover,

G

Denoting by

2l(x) = (alj(x)uXi + al(x)u - fl(x))vXi + (g(x) - bl(x)uXi - c{x)u)v{x)

from (II) follows that

(5.1.8) j %x)(Xe)h{x)dx = J(ai^x)uXj+ai(x)u-f(x))v(x)x

y >dx — (by the Fubuini Theorem)

G G

\x —'

%
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yl) dx\dy =
G

(by the Theorem about differentiability of the integral)

= f XS(V)I ^T j{^{x)uXj + a'Wu - f {x))v{x) ĥ{\x - y\)dx\dy =
G ^  l G '

(by definition of the regularization)

G

=  / (aijuXj + ̂ u - f)v(x) cos(r, x»

^(x)uXj + a\x)u - f(x))v(x?) (y)-

- ( aij{y)uXj(y) + <J{y)u(y) - f{y))v(y) \ cos(~n,yi)dya

in virtue of 8GQ =  FQ U Cle and v(x) = 0.

Now we show that 2l(a;) € ^(G). First of all because of the assumptions
on coefficients,

+ (\g\

Using the Cauchy inequality, we have

(x)\<c(n)(\Vu v2 + g2

|Vt;|2 + \x\~2(u~2(u2
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Further, we apply the inequality (2.5.2) (see Corollary 2.23)

/ \x\~2u2(x)dx <C \Vu\2dx.

Because of this inequality and the above bounds, it is obvious that 2l(a;) e
L\G).

Now in virtue of Lemma 1.21 we can then obtain

(5.1.9) lim J%x){Xe)h{x)dx = Ja(x)xe(x)dx = J%(x)dx =
G G Gg

t/ . . . . . \

J \ ' Xz * /

Next, setting Ai(x) = atj(x)uXj + al(x)u — f%(x) we have Ai(x)v(x) e
Ll(G) (i = l,...,N) and in virtue of Lemma 1.20

(5.1.10) U h g

Representing GQ = (0,Q) X Qe, because of Lemma 1.16, we obtain from
(5.1.10) that for some subsequence {hn}

(5.1.11) lim || (Ai{x)v(x)) - ^(x)«(a;))|Ui(n,) = 0 a.e. g e (0, d)

Similarly, representing GQ = FQ X (—UIQ,WO), because of the same Lemma
1.16, we obtain from (5.1.10) that for some subsequence {hm}

(5.1.12) lim

Thus, performing in (5.1.8) the passage to the limit over h —* 0 by (5.1.9)-
(5.1.12) we get the required equality. Lemma 5.2 is proved. D

5.1.2. The estimate of the weighted Dirichlet integral. Setting
v = u - $ we obtain that v(x) satisfies the integral identity

/ {atj(x)vXir)Xi + al(x)vr}Xi - 64(a;)uXir? - c(x)vri} dx =

/

.
G

G
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for all r)(x) £ W0
1>2(G), where

(5.1.13) . °
Q(x) = g(x) — b%(x)Di$> — c(x)<&(x).

At first, we will obtain a global estimate for the weighted Dirichlet
integral.

THEOREM 5.3. Let u(x) be a weak solution of the problem (DL) and
suppose that assumptions I, II  are satisfied with a function A(r) that is
continuous at zero . Let us assume, in addition, that

(5.1.14) g e #°(G), / e #a_2(G), <P G tia-2(dG),

where

{ 4-iV-2A<a<2

A = \ (2 - N + y/{N - 2)2 + 40O)

Then we have u(x) G $a-2(G) and

t t o l S O i U lVl. 2 (/~*\ -\~ WOW o 0 -p

(5.1.15) - 2 ( } " ( }

where C > 0 is the constant dependent only on a, A,a>o, N,^i,G and inde-
pendent ofu.

PROOF. Replacing u by v = u — $ and setting 7/(1) = r"~2i;(a;), with
regard to

we obtain

(5.1.16)

+ (2 - a) f((aij(x) - a«(0))«Xi + a^ijw +
G
 V

f (6*(a;)tJ Xi
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We transform the first integral on the right

I rT\xi - ek){v2)Xidx =-J «a A ^.»-
G G

because of v € Wo' (G). By elementary calculation

dx

we obtain

(5.1.17)

_ (2-a)(4-iV-a) t a_4 2

G

We estimate the other integrals on the right by using our assumptions and
(5.1.13)

(5.1.18)

Now from (5.1.16), (5.1.17) it follows that

(5.1.19) f»"-2^,2^  ̂ (2-a)(4-N-a)

+ c(N,a)

| (aij(x) - aij(0))vXj + a*(x)t; + F{x)\ <

< A{r)\Vv\ + A(r)r-\\v\ + |$|) + //|V$| + | / |;

\b\x)vXi + c(x)v - Q{x)\ <

^ A(r)r-2(\v\ + |*|) + \g\.

*-*v 2dx+

G G

a

v\ + \v\\g\) + r?-3A(r){\v\\Vv



5.1 THE BEST POSSIBLE HOLDER EXPONENTS
FOR WEAK SOLUTIONS 173

Further, we estimate the following using the Cauchy inequality with V5 > 0

I v\\v _ - | 2 r

i II  i - 2 i  2

(5.1.20)

1

Ys1

As a result from (5.1.19) we obtain

(5.1.21) frr2\Vv\2dx <  ( 2 ~ a ) ( 4
2

- i V ~ Q ) frr iv2dx+
G G

+ c{N,a,ii) f{r?-2A(r)\Vv\2 +r?-2r-2A(r)\v\2+

+ r«-4A(r)\v\2 + r«-3
r-

1A(r)\v\2+

+ ^2\V\2+

? 2 2

Now we apply the inequality (2.5.8) to the first integral from the right side;
because of the condition (*) of our theorem we have

C(X,N,a) = 1 - ,N,a) > 0.
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Therefore we can write the inequality (5.1.21) in the following way

C(X,N,a) fr«-2\Vv 2dx < c0 [A(d) + S] f r°-2\Vv\2

G

'- 2r- 2M 2 + r^- 4M 2}dz + S I
G

+ c2(N,a,fi,u)0) I {ra~A +r a\g\2)dx, V6 > 0.

(Here we use property 1) of the function re{x).) We apply now Lemmas
2.30 and 2.31 and choose 5 > 0 from the condition

As a result we obtain

(rr +

ra\g\2}dx.

We now write the representation G = GQ U G  ̂and choose d > 0 so small
that

A(d)c(N, a,/j,X,u>o) < 1.

(This is possible because of the continuity at zero of A(r).)
Thus, finally we obtain

f rf-2\Vu\2dx < c(N,a,n\,u0)
G

+ ra-4\$\2+r a\g\2)dx, Ve > 0.

Passaging to the limit when s —> +0 by the Fatou Theorem we have the
required estimate (5.1.15).

We pass now to the derivation of the local estimate for the weighted
Dirichlet integral. For this together with Assumptions /and IT we make the
following

Assumptions III.

 (ivv) the function A(r) satisfies the Dini condition at zero;
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G
" " ' " ' " ~l(r)u?(x)dx<oo\

J ^  ̂ \ ( ) \ \ \ <OO,
G \«=1 J

where 7i(r) is a continuous, monotone increasing, Dini continuous
at zero function.

THEOREM 5.4. Let u(x) be a weak solution of (DL) and suppose that
assumptions I, II, III  are satisfied. Then there exist positive constants d, C\,
independent ofu,g,fi,<p such that

N

Gg

< ClQ
2X J ||u(x)|2 + \Vu\2 + g\x) + jr  \f(x)\2+

Gld i=1

N

-x(r) ^ \f{x)\2(5.1.22) r2- ^ - 2^ - 1^ ) ^ * ! 2 + r2-*- 2^-x(r) ^ \f{x)\2 Ids,

Pe(o,d).

PROOF. By the above proved Theorem 5.3 we have that
u(x) € â-2{G). Therefore we can apply Lemma 5.2 and take the function
r2~n(u(x) — $(x)) as v(x) in the equal (5.1.2). Now replacing u by v = u — $
as a result we obtain

(c?j(x)vXi + a'(x)t; - F{x))(r2-NvXi + (2 - N)r-
N

Xiv) +

(Q(x) - fc^x)^ - c(x)v)r2-Nv}dx =

= Q / (atj{x)vXj + a%(x)v - Jri(x))v(x) cos(r, Xi)dQ..

Hence we have

-N\Vv\2dx=^-  ̂ [ r-
Nx~dx + Q [v^

or
(5.1.23) fr

2-N\Vv\2dx=
J

eg n

(o«(x) - a«(0)) ((AT - 2)r-NvxtvXj - r2~NvXivXj)

Gg
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+ (N- 2)r-Nxia
i(x)v2 + r2-Nv(bi(x)vXi + c(x)v - Q) +

+ r2-Nva\x)vXi + r2-NF{x)vXi + (2 - N)r'NvxiF{x)'jdx+

+ g / {(a* J(z) - alJ(0))vvXj + al(x)v — vF(x)} cos(r,Xi)dQ.

The first integral from the right we transform in the following way.

f -W .^fLA - f S 2 , . W o

J OXi J
o " «

- f v2(Nr~N - Nxir-
N-1—)dx = [v2dQ.J K r> J

as n

Therefore we can rewrite (5.1.23) in this way

(5.1.24) I r2~N\Vv\2dx = f (ffOj- + ^-JZ^'

(aV(x) - o«(0)) ((AT - 2)r-NvxiVxj - r2-NvXivXj

+ (N- 2)r-Nxia
i(x)v2 + r2-Nv(bi(x)vXi + c(x)v - Q)

r2-Nvai{x)vXi + r2-NF{x)vXi + (2 - N)r-Nv

Q [{(a ij(x) - aij(0))vvx. + a\x)v2 - vF{x)} cos(r,Xi)dSl.

We set V(p) = J r2 N\Vv\2dx and estimate every integral from the right

side. The first integral is estimated by Lemma 2.28. We estimate other
integrals from the right side by using our assumptions and (5.1.18), (5.1.20)
as well as

< \n{r)r-N\v\2+
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and

Then we obtain

J{
A(r)r~Nv2 + A(r)r2-N\V$\2 + A(r)r-

N$2 + H(r)r2-N\Vv\2+

r2g2 +1/|2 +/x2|V$]2 +r- 2A2(r)\$A \dx+

where 0 < hi(g) < /g-ljg-- To estimate the last integral from the right

side we apply the Cauchy inequality and the inequality (H-W)

(5.1.26) g2~N

f (g2\Vv\

< c(N,X,e2)(A(g)+n(g))gV'(g) + F1

n

where

(5.1.27) Fi(g) = Q2rH~\g) / ( |V$ |2 + f)dSl + A(g)

n

Thus, from (5.1.25) - (5.1.27) we obtain

c2(N, M) A, 92)(A(g) + H{g))gV'{Q) + F^Q) + F2(g),
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where

g

K{)dr

o

g

F2(Q) = IK{r)dr

(5.1.28) JC(r) = I Ui-\ry-N g2 +H-\r)r 2-N\f\2+

Finally, setting

6l{g)hl{g)

Q ' 1 + (2A + e1(g)h1(g))c2(A(g) + H(g))'

(5.1.29)

61(g)h1(g) F1(g)+F2(g)

V{g) = -

.29)

we get the differential inequality (CP) §1.10 with N{g) = B(g) = 0

(5.1.30) V'{g)

It is easy to verify that

Q Q

where 8{g) satisfies the Dini condition at zero. Therefore we have

d, /A\2X d

V(s)ds =.

e Q

From this it follows that

/ \ 2 A d \2X d

(5.1.31) ( - ) <exp( / V(s)ds) < (- ) -^-ds, Vg€(0,d)
\Qj v ' \QJ J s

Q 0

Now because of Theorem 1.52 we obtain

d d T

(5.1.32) V(g) < V(d)exp(- f V(s)ds\ + f Q(r)exp(- f
*/ J J
0 Q Q
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and in virtue of (5.1.31) hence we have

d

(5.1.33) V(Q) < Cg2X (v(d) + J

where C > 0 is a constant independent of v.
Now we estimate the last integral. Because of (5.1.29) we get

a a a

fr-2XQ{T)dT < c3 /"r-2A-1F1(r)dT + c4 f T'2^1 F2(r)dT
e g Q

Prom (5.1.27) it follows that

d d

(5.1.34) f T-2X~1F1(T)dT < I'T-^^H-HT) /(|V$|2 + f)d£ldT+
g e n

d

+  /*r-2A-U(r) /"|

Further, because of (5.1.28) we change the order of integration and obtain

d T g d

IV2A-X( / fC{r)dryT= I K.{r)dr IV2A-Idr+
e o o e

d d a

+ flC(r)dr [r~2X~ldT=^ f fC(r)(g-2X - d'2X)dr+
0

d

(r-2X - d'2X)dr < JL Jr~
2XIC(r)dr.

g r
d

_t

Q
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Hence in virtue of (5.1.28) it follows that

d

(5.1.35) Jr-2X-1F2(r)dr <  j ^-2X-NH-1{r)g2{x)+

+ r-* x-NH-l{r)&  +  ̂ - " H - ' M (f + | V$|2) \dx.

From (5.1.33) - (5.1.35) together with Theorem 5.3 follows the required
(5.1.22). Theorem 5.4 is proved.

THEOREM 5.5. Let u(x) be a weak solution of the problem (DL) with
if = 0 and suppose that assumptions I and II are satisfied with a function
A(r) that is continuous at zero, but not Dini continuous. Let us assume, in
addition, that

(5.1.36) g G K-N-2X(G), f € K-N-2X(G) i = l,...,N.

Then for every e > 0 there exist positive constants d,ce, independent of
u, g, fi such that

u(x)\2 + \Vu\2+

(5.1.37) G° °
+ r4-N'2Xg2(x) + r2-N-2Xf2(x)}dx,

pe(0,d), Ve>0.

PROOF. Similar to (5.1.24) we get from (DL)

(5.1.38) Jr2-N\Vu\2dx

(aij(x) - aij(0)) ((N - 2)r-
NuXiUXj - r2~NuXiuXi) +

+ (N - 2)r-Nxia
i{x)u2 + r2-Nu(V{x)uXi + c(x)u - g(x)) +

+ r2-Nuai(x)uXi +r 2-Nf(x)uXi + (2 - N)r-
Nuxif

i(x)}dx+

+ Q f{(aij(x) - aij{0))uuXj + o*(a:)«2 - uf(x)} cos(r,Xi)dn.
n

We set U(p) = J r2~N\Vu\2dx and estimate every integral from the right
Gg

side. The first integral is estimated by Lemma 2.28.The other integrals from
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the right side we estimate by using our assumptions and (5.1.18) as well

fi i I I s  ̂ I ^r fv* ft i I w I si I

^ 2 5 '

Thus we obtain

(5.1.39) U(g) < c(N, fi) j i (A{r) + <j) (r~Nu2 +

e, \/8>0.

As above in (5.1.26), to estimate the last integral from the right side we
apply the Cauchy inequality and the Wirtinger inequality

(5.1.40) J(A(Q)\u\\S7u\ + Q-1A{Q)U2 + \u\\f\)dSle <

<A(Q)
r=Q r=g 10

< c(A(g) + 5)QU'(Q) + ̂ J fdtt, W > 0.
n

Thus, from (5.1.39) and (5.1.40) we obtain

(5.1.41) U(Q) <(^+

where

(5.1.42)

and

(cA(g) + ^)U(g) + F^g) + F2(g),

V<5>0, g£ (0,d),

g

= ^ffdn, F2(g) = 1:/'lC(r)dr
zo J Zo J
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Finally, since A(r) is continuous at zero and A(g) < A(d), g £ (0, d), we
can choose V<5 > 0 such d > 0 that cA(d) < |. Therefore we can rewrite
(5.1.41) in this way

(5.1.43) U(g) <  ̂ ( 1 + S)U'(p) + 5U(g) + F^g) + F2(g),

V<5>0, ge (0,d).

Setting now

(5.1.44) T(Q) = — -Y^, B(Q) =0and

F1(g)+F2(g)
1 + 5 g

as a result we get the differential inequality (CP) §1.10. Now, putting
£ = ĵ pj by calculating, we have

/ t \ fg\2H1-£)

(5.1.45) expf - / P{s)ds) = 3 , Vp e (0,d).
^ i / \dj

Q

Now, because of Theorem 1.52, we obtain
dd

(5.1.46) U(g) < cg2^1'^ (u(d) + f
Q

where c > 0 is a constant independent of u.
Now we estimate the last integral. Because of (5.1.44) we get

d d

(5.1.47) lr-2Xi-l-^Q(r)dT = —r f
J l + o J

From (5.1.42) it follows that

d d

(5.1.48) f T-^-^F^dT =  ̂  /"r-2A(l-e) + l f

1
- /
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Further because of (5.1.42) we change the order of integration and obtain

d T g d

f-2\{i-e)-i^ I K,(r)dr^dr= ffC(r)dr f>

i d

K(r)dr I
g r x0

d x d

/

\ 1 f

£Yr )(r -2A(l-£) _ ^-2A(1-E)\^ r I _ L
 < c / r-

2*;(7 rW r .

/ 2A(1 — e) ~ s J
g ' 0

Hence because of (5.1.42) it follows that

d

(5.1.49) JT-2X^-^F2(r)dr < c£ J"{r
4"2*-* 'g2(x)+r2-2X-N f}dx.

g a*

From (5.1.46)-(5.1.49), together with Theorem 5.3, follows the required
(5.1.37). Theorem 5.5 is proved.

5.1.3. Local bound of a weak solution. We pass now to the estab-
lishing of the local (near the singular boundary point) bound for a weak
solution of the problem (DL).

THEOREM 5.6. Let u(x) be a weak solution of the problem (DL). Sup-
pose that assumptions I, II  and III  are satisfied. Let us assume, in addition,
that g(x) e Lp(G) for some p > N/2, f(x) e L9(G), (i = 1,...,N) for
some q> N, $ e WX'S(G), s = max(2p,g) > JV and

Jr2v-N-* x\g(x)\vdx < oo; ̂  jr«-N-«x\f(x)\Hx < oo,
(5.1.50) G i=1°
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Then there exist positive constants d,c, independent ofu,g,fi,tp such that

\u{x)\ < c\x\x[{  f(\u\2 + \Vu\2 + g2(x)+

\r) jh  \f(x)\ 2+

(5.1.51)

G G 1

/ / / -AT-sA S s-N-sX s \ 2 / S \ \

PROOF. At first we refer to well-known local estimate at the boundary
(see e.g. §8.10 [129]).

LEMMA 5.7. Let the (i) and (in) of assumptions II  are satisfied and
suppose that ^(x) € Lg(G),(i = 1,...,N); G(x) € V{G)) for some
q> N, p> Y-

Then ifv(x) G WQ(G) is a solution of the problem (II)o, we have

, f / r \2/p
(5.1.52) sup \v(x)\2 <C\ v2dx + ( / \G\pdx +

G" *>J \J )
G' G'

' - * G'

where C = const(N, v, \i, q, p, dist(G", G')).

We make the change of variables x = gx'. Then the function v(x') =
u(gx') — $(gx') satisfies the following problem

{ + Qbi(gx')vx> i + Q2c{gx')v =

=Q2G(Qx') + g ^ ^ , x'eG2
/4,

v(x') = 0, x'eT\/A
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in the domain G2 #4, where

') = g(gx') - e "1 ^ ' ) * * ; " <Qx')^,

') = f(gx') - Q-WiQx')*  ̂ - ai{ex
f

and, therefore, because of the (i) and (v) of assumptions II ,

Q2\Q{QX')\ <
1

|FW)l < e\f(ex')\
From an estimate of the type (5.1.52) for (5.1.53) and the domains G" =
G\,2 and G' = Gw4 we obtain

fs«+lf(fw«)v'+
\2/p

ip\v(x')\2 <C\ I v2dx' + g4( I \G\pdx
G

i-/z v-(2 (~t2
'Jl/4 lj l/4

N , . N 2 /g

+ ,
G?/4

Hence, by (5.1.54) and the Holder inequality, we have

r  /"  ( f \2/p

sup |v(x')|2 < C< I v2dx' + Q4[  / |g|p<ix' I +
G\/2 W V J )

L/z (~*1 f~*1
N ( f \2/q

1 = 1 G?/4 ^1/4

Now, returning again to the variables x, we find that

2/p
, , . , O I / A T O . / I O _ A T , . _ _

sup
Ge

lr,

N

+

f r~Nv2dx ( f r2p~N\ \pdx\J \ J J
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We apply the inequality (H-W) to the first integral from the right side

(5.1.55) sup \v(x)\2 < C{  f r2-N\Vv\2dx+( f r2p-N\g\pdx) "+

N

Now, because of the bound (5.1.22) from Theorem 5.4 as well as the Sobolev
imbedding theorem,

max\$\<C(N,s)\\V*\\L.iGl )ts>N.
Ge/2

From (5.1.55) it follows that

u(x \2< ClQ
2X J | |U ( x ) |2 + \Vu\2+g2(x) + f ;  \f(x)\2+

i

r \ 2 / p N

Q2X{(J \ E

\r) ^T \f(x)\2\dx+

C 2 Q 2 { J E(/
U O " 0

a 2/

Setting now |a;| = |g hence we obtain the required estimate (5.1.51). Thus
Theorem 5.6 is proved.

In a similar way, using the bound (5.1.37) and Theorem 5.5 instead of
(5.1.22) and Theorem 5.4, we get the following.

THEOREM 5.8. Let u{x) be a weak solution of the problem (DL) with
ip = 0. Suppose that assumptions I and II  are satisfied with a function A(r)
that is continuous at zero, but not Dini continuous. Let us assume, in addi-
tion, that g(x) e D>(G) for some p > N/2, f{x) e
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(i = 1,. . ., N) for some q> N and
N

(5.1.56) f r2p-N-pX\g{x)\pdx < oo and ̂  f rq-N-qX\f(x)\qdx < oo.
G i=1G

Then for every e > 0 i/iere ezisi positive constants d,cE, independent of
u,g,fi such that

u(x)\ < c£\x\x-e ( ( [{\u(x)\2 + |V«|2 + r4-N-2Xg2(x)+

V 2 '  r 2 -N- A "I  1 / P

G

1 1/2 r

(5.1.57) + r2-N-2X\f\\x))dx +{
} G

{J
5.1.4. Example. We provide an example to show that the assumption

(v) is essential for the validity of the estimates (5.1.22) and (5.1.51).
Let N = 2, let the domain G lie inside the sector

Gg° = {(r,w)|0< r < oo,0 < w < wo, 0 < w < 2?r}

and suppose that O € dG and in some neighborhood G$ of O the boundary
dG coincides with the sides LJ = 0 and LJ = w0 of the sector GQ°. In our
case the least eigenvalue of (EVD) is A = ^ . We consider Example 4.36 of
Section 4.2.5 and rewrite it in the form (DL)

2 x2

an(x) = 1 - —  r 2 ] n ( 1 / r ) ,

(5.1.58) a22(x) = 1 -

12/ \ 21
a (x) = a

A + l r2ln( l / r) '

Z .1/ X l Af  L 2 / X 1 , / X

v i r w , v i r \ i

a\x) = a2{x) = c(x) = g(x) = f\x) = f(x) = <p{x) = 0,

where
d
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Clearly, the (DL) equation with (5.1.58) is uniformly elliptic in GQ for
0 < d < e~2 with the ellipticity constants

2 A

v = 1 and u = 1.

ln(l/rf )

The (DL) equation with (5.1.58) has a particular solution of the form/ j \ (A-1)/(A+1) ^
u(r,u) = rx I I n - ) sin(Aw), A = — ,

V rJ w0

that satisfies the boundary conditions

u = 0 on T$.

This solution is continuous in G, and easy to verify that it belongs to W1 (G).
Clearly, this solution does not satisfy (5.1.51) and therefore not (5.1.22),
since (5.1.22) implies (5.1.51).

5.1.5. Holder  continuit y of weak solutions. We shall now assume
that a^(x), i, j =  1 , . . ., N are continuous in G and satisfy a Dini condition
on dG, that is there exists a continuous function A{t) such that

\aV{x)-aV(y)\<Ai\x-y\)

for any points x € dG and y £ G, with f :^p-dt < oo. Let O be any
o

point on dG. We place the origin at O and perform a linear change of
independent variables such that a*J'(O) = 8{, where alJ\O) is the coefficient
of Q®IQX, in the equation of (DL), written in terms of the new variables

x''. As in the Introduction, we define a function 9(r) for the point O and
shall suppose that Assumptions I are satisfied for all points O € dG, where
#o> #i> $2 do not depend on O. For the point O we construct integrals in the
variables x' of the form (5.1.50) and (w) from Assumptions II I and assume
that they are bounded by constants independent of O.

THEOREM 5.9. Let u(x) be a weak solution of the problem (DL). Sup-
pose that Assumptions I, II  and III  (indicated above) are satisfied. Let us as-
sume, in addition, that g(x),fi(x) G £*"(<?), {i  = 1,...,N); $(z) G W^2p

for some p > y ^ , A < 1, where A is defined by (5.3.1). Suppose that
(5.1.50) is fulfilled._

Thenv^e CX(G). If X = 1 and g,f G L°°(G), (i = l,...,N), then
ueCx~s(G) for\/e>Q.

PROOF. We consider an arbitrary pair of points ~x,y G G. Let

max(d(x),d(y)) <2\x-y\.
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By virtue of (5.1.51) of Theorem 5.6, in this case we have

\u(x)-u(y)\ < 2|u(5f)| 2|u(j/)|  ̂ n

where C\ is the positive constant.
Consider the case 2|x — y\ < d(~x) = g. We make a change of variables

x — x = QX'. Then the function v(x') = u(x + QX') — $(x + gx') satisfies in
the domain Gjj the problem

p;(aij(x + QX')VX>. + ga^x + gx')v) + gb^x + gx')vx>. + g2c(x + gx')v =

^ ( x ' ) = 0, x'GTl

where

Q(x + gx') = g(x + QX') — g~lbl(x + gx')$x> - c(x

This problem satisfies the ellipticity condition (i) with the same constants
V, fj, and its coefficients are uniformly bounded in virtue of the condition
(v), since G is a bounded domain. On the basis of Theorem 15.3' in [4], we
have

(5.1.60) I\Vv\pdx' < C2 f (\v\p + Q
\ 2

2p\G\p ^

where the constant C-x does not depend on v. Because of conditions (i),
(v), from (5.1.60) and (5.1.59) it follows that

(5.1.61) j \Vv\pdx' <C3J(\v\p + g2p\g\p
N

t = l

dx',

where the constant C3 does not depend on v. Since according to Theorem
5.6 the function u(x) is bounded in G, and by our assumptions about g, /* , <3>,
it follows from (5.1.61) that v e Wl'p{G\), where p > ^ . FYom the
Sobolev Imbedding Theorem 1.33 it follows that u e CX(G), if A < 1. We
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therefore have

= \v{O)-v{y)\*

N

i=l

<cAe-»*-v

<cA\y\pX J^

v '$ |p + |$|pV)

p * . f

\v\p-

dx' 5

\-Q2p\g\p+

P + Q2p\g\p+

(5.1.62)

< CAQ-VX\X - yfx j

Gr\{\x-x\<g}

N

and
\v(x)\ < C5\x - x*\x < C5(2g)x for x e G n Be(x0),

where C4, C5 = const, y = g~1(y - x) and x* is a point of dG such that
d(x) = \x — x*\. From (5.1.62) we have

\u(x) — u(y)\ < Ce\x - y\x, C6 = const.

If A = 1, then according to the Sobolev Imbedding Theorem 1.33 v(x') €
C1~£, where e = const > 0, and therefore u(x) £ Cl~E. This proves our
theorem.

5.1.6. Weak solutions of an ellipti c inequality. In this subsection
we consider the properties of weak solutions of an elliptic inequality

*)«) + Hx)uXi + c{x)u <

u(x)=0, xedG\O.

DEFINITION 5.10. The function u(x) is called a weak solution of the
problem (IDL) provided that u(x) £ W1(GS:), Ve > 0 and satisfies the
integral inequality

/ {alj(x)uXjriXi + a%(x)wqXi - bl(x)uXir]  - c(x)ur\] dx <
G

(II* ) ^JtfWfo-gWridx
G

whatever 7/ > 0 may be, rj(x) € Wl(G) and has a support compact in G.
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THEOREM 5.11. Let u{x) be a weak solution of (IDL) in G, letG c K
be a bounded domain, and suppose that Assumptions II are satisfied. Let us
assume, in addition,

 u > 0 in G,
 / r " - 2 | V u |2 c f o < o o, 2<a<N + 2\,

There exists 5 > 0 such that A(\x\) < S, x € K, where 6 depends only on
a,K, then

(5.1.63) /(rQ-2|Vu|2 + ra~4u2)dx < c f (ra~2\f\2 + rag2)dx,

G G

where c> 0 is independent of u,g, fl or G.

PROOF. We may redefine the functions u, r\ beyond G as having a zero
value. Let us assume that atJ = b~\ beyond G. Then from the inequality
(II* ) it follows

(5.1.64) / uXirjXidx < \ (alj(0) - a%j(x) )uXjT]Xi - al(x)ur]Xi +

K K

+ bl{x)uXir]  + C(X)UT] + f(x)rjXi - g(x)r) \dx.

Let us set 5 = max^4(|x|) and let us consider a function
G

>0,

l
\l fort>2.

Now let us consider the function

r){x) = ra~2de{r)u{x) where tf£(r) =

The function r)(x) can be taken as a probe function in (5.1.64), because

u =  0. By calculating, we obtain

rjXi = ra-2$s{r)uXi + {a - 2)ra
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Now from (5.1.64) with this probe function it follows that

(5.1.65) I(ra-2& £(r)\Vu\2 + (a - 2)ra-Atie{r)x iUuXi +

K

K

+ (a- 2)ra-A'de{r)x iuuXj + ^ra-3&'(^)xiUuXj]-

- <J{x)[r a-He{r)uuXi + (a - 2)ra-^e{r)x iU
2 + -

+ Vixy^-H^uu  ̂ + c{x)ra-He(r)v? + ra~2'd£{r)uxj
i{x)+

If we observe that

I o r r < £, _ ^ ^ , ^ l - o r r<
I 1 for r > 2s, I ̂  0 for e < r < 2s,

then we obtain

1)

I'  ra~2tie{r)\Vu\2dx = I' ra-He{r)\Vu\2dx;
K Ge

2)

(a - 2) Jra-He{r)XiuuXi = ?-
K

2 ~ a f a ia>{ r\ 2J (2-a)(JV + a-4) f
/ ra~id [-)u2dx+-

2s J \s/ 2 J
G1' Gs

3)

K G\'
7V + a -3

2s

(Here we have integrated by parts.)

"" ¥ - A.
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Further we estimate the integrals on the right hand side of (5.1.65) using
the Cauchy inequality and taking into account Assumptions II . As a result
we get

2dx+) \Vu\2dx < (2 - a ) ( 4
2" N - a) Jr-'tf(I)u

Ge

+ci f (ra-2|Vu|2 +r a-4

+c2

+c3 J ti(^)[a(ra-2\Vu\2 + ra-iu2) + ̂ (ra-2\f\2 +r ag2)]dx+

Gc

(5.1.66) +c4 j tf'Q (ra-2| / |2 + ra-Au2)dx, Va > 0.

Since all necessary integrals exist (by the assumptions of our theorem), we
may let e tend to zero. Then we obtain

(5.1.67) Jr°-2\Vu\2dx < { 2 ~ a){*~  N ~ a) J r ^ u2 d x+
G G

+ (c2S + c3a) f(ra-2\Vu\2 + rQ"V)dx+
G

+ ^(ra-2\f\2+r ag2)]dx, Vcr > 0.

(Here we took into account that A(r) < 6 in G by definition of S.)

Now we apply the Hardy-Wirtinger inequality (see Theorem 2.33) for
unbounded cone that is true at a > 4 — N. Since by the condition of our
theorem

2 < a < N + 2A,

then it is easy to verify that
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where H(X,N,a) is from (2.5.10). Therefore from (5.1.67) it follows that

(5.1.68) C(X,N,a) f ra-2\Vu\2dx < (c25 + c3a) f (ra-2\Vu\2+
G G

+ ra~Au2)dx + —(ra~2\f\2 + rag2) \dx, VCT > 0
/ o"  J

with

C(X, N,a) = l - ( 2~Q ) ( 4~  N, a) > 0.

Now we require that

(5.1.69) ' = ^ 1 ^

and choose a constant a so that C3CT = \C(X, N, a). Then from (5.1.68) we
obtain the required inequality (5.1.63).

5.2. Dini continuity of the first  derivatives of weak solutions

We consider weak solutions to the Dirichlet problem (DL) in a bounded
domain G C M.N with boundary dG that is a Dini-Lapunov surface contain-
ing the origin O as a conical point. The last means that dG \ O is a smooth
manifold but near O the domain G is diffeomorfic to a cone.

5.2.1. Local Dini continuity near  a boundary smooth portion.

THEOREM 5.12. Let A be an a— Dini function (0 < a < 1) satisfying
the condition (1.8.5). Let G be a domain in M.N with a Cl'A boundary
portion T C dG. Let u(x) G WX(G) be a weak solution of the problem (DL)
with ip(x) G ClfA(dG) Suppose the coefficients of the equation in (DL)
satisfy the conditions

i > H^l2) VxgG, £ G R.N; v = const > 0;

b\c€L°°(G), g

Then u e Cl'B(G U T) and for every G ' c c G UT

INI 1,B;G' < c(N, T, V, k, d') ( \u\0;G + \\g\\ J*_;

N
(5.2.1)

where d' = dist(G',dG\T) andk= max {||a*j,ai||0,.A;G, |
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PROOF. At first we flatten the boundary portion T. By the definition
of a C1'-4 domain, at each point x0 € T there is a neighborhood B of XQ and
a C1>A diffeomorphism V that flatten the boundary in B. Let Bg(x0) CC
B and set 7 = Bg(x0) f) G, 7 = ipij);  T = BQ(x0) f l T c 87 and
T = ip(r) C 97 (T is a hyperplane portion of dj).Under the mapping y =

, let v(y) = v(x), rj(y) = r)(x). Since

)k, dx=\J\dy,

where J = J/1'"1'™,' is a jacobian of the transformation ii>(x),  it follows
from (77)o that

 = 0 (77) 0

/ J

for all rj(y) € WQ' (7), where

c(y)=c(x),

It is not difficult to observe that conditions on coefficients of the equa-
tion and on the portion T are invariant under maps of class C1'^. Indeed,
let us consider the diffeomorphism ip that is given in the following way

=xk-x°k;
\j)N = XN — h(x'), x1 = (xi,... ,XN-I)

where XJV = h(x') is the equation of the surface T and h 6 C1"^^). In
virtue of the property (iv) of ip it is easy to see that |Vft| < K. We have
also that | J\ = 1. Further by the ellipticity condition

( £t
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N /N a \ 2
 N

But by the Cauchy inequality with Ve > 0
IT \ 2

therefore from the previous inequality it follows

Now we show that there is e > 1 such that

1 - - = 4 + (1 -

For this we solve the equation

K2e2 - (3 + K2)e - 1 = 0

and obtain

£ = l + J _ + w_ +
2 2K2 V 4

Hence we see that e > 1 and we have also

1 - 1 = , 8

e K2 + 5 + V-ftT4 + 1OAT2 + 9
Thus from (5.2.2) follows finally

(5.2.3)

c(K) =
X 2

Vs> l .

+ 5 + ViiT4 + 10K2 + 9
Therefore after the preliminary flattening of the portion T by means of
a diffeomorphism ip e Cll- A it is sufficient prove the theorem in the case
T C S. We use the perturbation method. We freeze the leading coefficients
a*J(x) at XQ S GUT by setting ay'(^o) = <$ a nd rewrite the equation (DL)
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in the form of the Poisson equation (PE) for the function v(x) = u(x)—ip(x)
with

(5.2.4) Q{x) = g(x) - b'WiDiV + Av ) - c(x)(v(x) + <p(x)),

F(x) = (aij{x0) - aij{x))DjV - aij(x)DjiP
( 5 2 5 )

Now we can apply Theorem 3.6 and thus we obtain the desired assertion
of our theorem. In this connection we use following estimates for functions
(5.2.4) and (5.2.5):

(5.2.6) <

N

%=l

N

_N_.B+

N

V\O-,B+

(5.2.7)
N

i=\

N

i=\

N

i=\

Taking into account once more the interpolation inequality (Theorem 1.49)
and the condition (1.8.5) that ensures the equivalence [... ] ^ ~ [... ]g, from
(5.2.6) and (5.2.7) we finally obtain the inequality

JV

(5.2.8) l |G| |i ^

8 =1

Since A(t) is the continuous function, choosing e, R > 0 sufficiently small
we obtain the desired assertion and the estimate (5.2.1) in a standard way
from (3.2.3), and (5.2.7) and (5.2.8).
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5.2.2. Dini-continuit y near  a conical point. We consider the prob-
lem (DL) under the following assumptions:

(i) dG is a Dini-Lyapunov surface and contains the conical point O;

(ii)  the uniform ellipticity holds

H2 < aij (xftiZj < nf, Var e G and £RN,

v,ft = const > 0; atf (0) = 6?, (i, j = 1 , . . ., N);

(in) aij(x),ai(x) e C°>A(G), (i,j = 1,...,N), where A(t) is an a-
Dini function on (0,d],a G (0,1), satisfying the conditions (1.8.5)
and (1.8.6) and also

x-i

(5.2.9) sup —ri-^r < const,
o i (̂̂ J

(v) frA-N-2XH-1{
G

/

N

|/*|2 + |V $ |2 + r-2$2)dx < 00,

G
wftere 7i(t) is a continuous monotone increasing function satisfy-
ing the Dini condition at t = 0.

THEOREM 5.13. Let u(x) be the generalized solution of (DL) and sup-
pose assumptions (i)-(v) are satisfied. Then there exist d > 0 and a constant
c > 0 independent of u(x) and defined only by parameters and norms of the
given functions appearing in assumptions (i)-(v) such that

(5.2.10)
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N

(5.2.11) |Vu(a;)| < cA(\x

N
2:\r(x)

) l/2\

IVupldxl .VXGG^.

PROOF. We use the method of layers, that is we move away from the
conical point of g > 0 and work in G2^. After the change of variables

x = px', the layer G2e,4 takes the position of a fixed domain G\ ,4 with
smooth boundary.

1. We consider a solution u(x) in the domain Ggrf with some po-
sitive d « 1; then u(x) is a weak solution in G^ of the problem

We make the change of variables x = gx' and v(x') = g~xA"1 (g)u(gx'),
£> G (0,d),0 < d « 1. Then the function u(x') satisfies in the domain G2,4
the problem

Qai(Qx')v) + Qbi(ox')vx>. + g2c(gx')v =

x' e G2
/4;

x> e r2
/4.

To solve this problem we use Theorem 5.12 about the local Dini continuity
of the first derivatives for weak solutions of the problem (DL). We check
the possibility of using this theorem. Since under assumption (ii), A(t) is
monotone increasing function, g € (0, d),0 < d « 1, from the inequality
f)" 1!^ — y\ > \x — y\ it follows that

A(\x'-y'\)=A(g-1\x-y\)>A(\x-y\)
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and by (iii ) we have

Further, let $(x) be a regularity preserving extension of the boundary func-
tion tp(x) into a domain Gf with any e > 0. (Such an extension exists; see
e.g. the Lemma 6.38 [129].) Since ip[x) € C1 ' - 4 ^ ) we have

By definition of the norm in Cl i i A we obtain

Now we show that by (v) and by the smoothness of <p(x)

(5.2.13) |V>(a;)|<C|4A(|z|), |V*(s)| < cA(\x\), Vx e

Indeed from the equality
l l

0

by Holder's inequality we have

(5.2.14) \<p{x) - ^(0)| <

From (iv) it follows that

(5.2.15) j(r2-N\V®\2 + r-N\<p\2)dx = f\

const

Since |^(0)| < |<^(x)| + \ip(x) - ^(0)|, by (5.2.14)we obtain

Squaring both sides of last inequality, multiplying by r N and integrating
over Gn we obtain

o f AT f O AT O M n

(5.2.16) 1 (̂0)1 / (r~Ndx < 2 / (r2~ |V$| +r~N\<p\ )dx < CXD
Ĝ  a*
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g

by (5.2.15). Since / r~Ndx = mes£lf  ̂ = oo, the assumption
Gg o

contradicts (5.2.16). Thus ip(0) = 0. Then from (5.2.12) we have

< constAQx - j / U I M I i , , ^ , Vs ,y e

Hence considering y to be fixed in Go^4 and x as variable, we get

2~NA2(\x-y\)dx+

+ 2 ! r2-N\V${x)\2dx

or by (5.2.15)

o \^&{ii\v  *C C(TTIGS£1 k-\}(o A'(o) ~\~ P rC(oY) Vw G G

Hence the assumption (5.2.9) yields the second inequality of (10.2.85). Now
the first inequality of (10.2.85) follows from (5.2.14) and ^(0) = 0. Thus
(10.2.85) is proved.

Now we obtain

(5.2.17) g~1A~1(p)\\ip(gx')\\i^.r2 <cg~1A~

sup |$(gx')| + sup

+ a = ci + c^-^g) sup (5  [V$]o ̂ .G2e < const, Vp G (0, d),

o<t<4e ^ f f t) e/A

by (10.2.85), since by (1.8.6)

A(t) A(TQ)  ̂ .. ,
SUP V_' = SUP -fjrf < CA(Q).

0<t<4eA(Q H) 0<T<4 A(T)
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In the same way we have

(5.2.18) -4.~1(^)||/"'(^')llo,>t;G2 = * /4~1(<?)(l/3(x)lo^.-G2'; ~^~

+ sup

Since fj e C°'A(G), we get

(5.2.19) |/'(x) - f{y)\ < CjA(\x - y\), Vx,y e $

and

(5.2.20) Jr2-N\f{x)\2dx = J(r'2-N-2X'H-1{r)\P(.x)\2){r 2X'H{r))dx <

< const  Q2XH(Q)

by (v). Now let y be fixed in G2e
/r Then

\fj(y)\ < \fj(x)\ + \fj(x) - fj(y)\ < \fjW\+ZjA\x-y\)

Hence

\f j(y)\2 J r2~Ndx< 27? J r2-NA\\x-y\)dx + 2 J r2-N\f^x)\ 2dx.

Calculations and (5.2.20) give

Q2\f(y)\2 < c{ciM,mestt){Q2A2{Q) +  Q2XH(Q)) Vy 6 G2J}r

Hence by the assumption (5.2.9) it follows that

(5.2.21) \fi(x)\ <  CJA(Q) VX e <%%, j = 1,... ,N.

Further, in the same way as in the proof of (5.2.17),

(5.2.22)

Now from (5.2.18), (5.2.21) and (5.2.22) we obtain

(5.2.23) A~1(Q) 2_, ll/J(^x')llo,^;G2 — const.
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It remains to verify the finiteness of QA~1(Q)\\g(Qx')\\_N_.G2 . We have
1 —a ' 1/4

1 - g

f l-a

<dQ^4-1(d)( / \g(x)\&dx)~ir ' < const Vge(0,d)

by the condition (1.8.1). Thus the conditions of Theorem 5.12 are satisfied.
By this theorem we have

\\v\\l,B;G\/2 < (\v\o;

(5.2.24) 1

vee(o,d).

Step 2.
To estimate \v\0.G2 we use the local estimate at the boundary of the

maximum of the modulus of a solution (Theorem 8.25 [129]). We check the
assumptions of this theorem. To this end, we set

z(x') = v(x') - Q^A-^

and write the problem for the function z(x')

'£r(av{ox')zxl. + gai(ox')z) + gb^gx1)  ̂ + g2c(gx')z =
1

where

Gist) =
(5.2.25)
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and

2

At first we verify the necessary smoothness of coefficients. (See the remark
in the end of §8.10 [129].) Let q > N. We have:

(5.2.27)

/ \ga\gx')\qdx' = gq~N f |a*(

KH<UG. Vee(O,d).

By (iii ) we also obtain

f Igb'igx'^dx' = gq~N j \b\x)\qdx < Aqg'N f |r6*(s)|«da; <

(5.2.28) <

= 2N+2qmesQ

Aq(r)dx < 2N+2q f r-
NAq(r)dx

1Q

f
J

e /4

< 2N+2qmesSl  Aq

2d

\2d) f ^-
J r

f \g2c(gx')\q/2dx'= gq~N f \c(x)\q/2dx < Aqg~N f \r2c{x)\q/2dx <

id

(5.2.29) < 2N+2q I r-NAq/2{r)dx < 2N+2qmesSl  A^(2d) f

Wge(0,d).

In the same way from (5.2.25) we get

(5.2.30)
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By (iv) setting q = N/(l — a)>N and applying Holder's inequality for the
integrals we obtain

(5.2.31) <cpaA-1(e)( I Q-N/2\g{x)\ql2dx}2lq <

<cpaA~1(Q)\\g\\a.cae (mesn\n8)1/q <c{d,a,q,mesSl,A(d))\\g\\o.
q' e/4 H l

since by (1.8.1), gaA~1(g) < daA~1(d) Vg e (0, d). Similarly

QA~1(Q)( / r~ i= l
U i / 4

(5.2.32) ^^mesO)2/9!^!! , 4 r2e A^ig) I
1'*' 1 e/4 7

e/4

From (5.2.30) and (5.2.32) we obtain

( f -A
II^OOIIg^-G2 < c\ d,a,q,mes£l,A(d), / —1/4 \ J

e/4

(5.2.33) x (||0||g;G2e +11^111^^28 ), 1 = J~

Finally, in the same way from (5.2.26) we have
. (

(5.2.34) x /
2

It follows from (10.2.85) as g -> +0 that |V$(0)| = 0. Therefore

|V*(x) | - |V#(i) - V$(0)| < ^(IxDIbl l !^.^ , Vx G

and hence we have

|*(x)| < r|V$(x)| < Ix^dxDII^Il!^.^ , Vx e G2J
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Similarly it follows from (5.2.21) as g -> +0 that f'(0) = 0, Vj = 1,.. ., N.
Therefore we have Vx G ^

|/'(s)| = \f*(x) - f(0)\ < A(r)[f\ l%

Consequently, estimating the right side of (5.2.34) and taking into account
the inequalities obtained, we have

> (< c[N,q,G, max ( E H^llo^o , E IHIO^G) ) *
y J=1,.. . ,JV —̂T T~? /

(5.2.35) xmesfl  (E ll/io,^;G2e
4 + ll'/'lli.^r 2^ )

So all conditions of Theorem 8.25 [129] are satisfied. By this theorem we
get

ŜUp Kx')|<C^||z||2.G?/4 + ||G||_ri^_T.G?/4+Ell^ll T^;G=/4J <

/ N

Setting w(x) = u(x) — <p(x) we have for w(x) the problem

— (ai^(x)wx. + ai(x)w) + bi{x)wXi + c(x)ty =

where

G(x) = o(x) 6*(x)̂ -r- — c(x)^(x)

Moreover by assumptions (i) and (ii)

\aij(x) - 5?\ < lla«|lo^:G^(|x|), x e G.
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In virtue of the estimate (5.1.22) of Theorem 5.4 there is a constant c > 0
independent on w, G, F% such that

(5.2.37) fr2-N\Vw\2dx<cg2X f l\w(x)\2 + \Vw\2 + G2(x)+

Ggd

N N
2 + rt-x-^H-^GPix) + r2-N-2XH-\*{x)\ 2 + rt-x-^H-^GPix) + r2-N-2XH-\r) £ |-F*(a:)|2 \dx,

4=1 j = l '

pe(0,d).

Our assumptions guarantee that the integral on the right side is finite. Since
z(z') = g~1A~1{g)w(gx') we obtain from (5.2.37)

(5.2.38) [ \Vz\2dx' < 2N-2g-2A-2(g) I r2-N\Vw\2dx

N
2 + \Vw\2 + G2/ \ \w(x)\2 + \Vw\2 + G2(x)

G L

JV
2 \ , pe(0,d).

By assumptions (i)-(iv) we have

|G(o:)|2 < c{|5|

(5.2.39) {
i=l  t= l

. .max

Applying now the Priedrichs inequality and taking into account (5.2.9), we
obtain from (5.2.38) and (5.2.39)

+ |Vw|2 + <?2Or)\2 + g2(
i = l
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N

If (*)
t = i

+ ',
t = i

by assumptions (iii)-(v) . By the definition of z(x'), inequalities (5.2.36) and
(5.2.40), and assumptions (i)-(v) we finally obtain

(5-2.41)

N

\
\Vw\2jdx

l/2>

Step 3.
Returning to the variables x, u(x), we now obtain from inequalities

(5.2.24) and (5.2.41) the inequality

(5.2.42) Q^A^io) sup \U{X)\+A~1(Q) sup |Vu(z)|+

*(x)|a|/*(x)|

l/2\
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Setting |a:| = 2g/3 we deduce from (5.2.42) the validity of (5.2.10), (5.2.11).
This completes the proof of Theorem 5.13.

REMARK 5.14. As an example of A{r), that satisfies all the conditions
of Theorem 5.13, besides the function ra, one may take A(r) = ra ln(l/r),
provided A > 1 + a. In the case of A(r) = ra the result of [21] follows from
Theorem 5.13 for a single equation and the estimate (5.2.10) coincides with
(5.1.51).

5.2.3. Global regularit y and solvability.

THEOREM 5.15. Let A be an a-Dini function (0 < a < 1) that satisfies
the conditions (1.8.5), (1.8.6) and (5.2.9). Let G\{O} be a domain of class
C1'^ and O £ dG be a conical point of G. Suppose that the assumptions
(i)-(iv) are valid and

(ui) f(c(x)ri-ai(x)DiT])dx<0, VTJ > 0, 17 e C%(G).
G

Then the generalized problem {DL) has a unique solution u € C1<iA(G) and
we have the estimate

(
\\u\\l,A;G < ci Halloo +

(5.2.43) {  /

PROOF. The inequality (5.2.42) implies that

|Vo(x) - V«(y)| < cB(\x - y\)

1/2

_ l i r i l<M;G -
(5.2.44) i=J -G

N

n
Vx,yeGe

e/2, g£(O,d).
From (5.2.42), (5.2.44) we now infer that u € C1>B(GJ[). Indeed, let x,y €
Gf and g € (0,d). If x,y e Ge

g/2 then (5.2.44) holds. If \x - y\ > g = \x\
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then by (5.2.42) we obtain

<2cA(\x\)B-H\x\)(\\g\\ Ĝ-

N

\\f%,A;G + y(\u

N . . l/2\

J2 ^  \ \
. . l

\dx \I "  \ / I "  ' ~ V / 1 ' ' / I  I

/ N

2C« ||p||iv_.G + IMIi^fl O + E \\f%,A;G+

u\2 + \Vu\2+r i-N-2XH-1(r)g2(x)+
\

G

-1(r)Y\f(x)\2 + ;

in view of (1.8.3). Because of the condition (1.8.5) for the equivalence of A
and B, we derive u G C1>e(G^) and the estimate

N

(5.2.45) {/

N . . l/2\

+r2-JV-2Aw-i (r) J2 {fix)] 2 + r2-N-2XH-\r)\V$\2)dx I

following from the above arguments.
By means of a partition of unity, from the bounds (5.2.1) of Theorem

5.12 and (5.2.45), we derive

JV
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{/(
G

/ (W + |Vu
G

(5.2.46)
N v v l /2\

+r2-N-2XH-l{r) J2 \f(X)f + r2-Ar-2Aw-l ( f .)|V$|2 W I

By the assumption (vi) that guarantees the uniqueness of the solution for
the problem (DL), we have the bound (see Corollary 8.7 [129])

r
/ (\u\2 + | Vu\2)dx <C

N

G G i = 1

which together with the global boundedness of weak solution (Theorem 8.16
[129]) and the bound (5.2.46), leads to the desired estimate (5.2.43).

Finally, the global estimate (5.2.43) leads to the assertion on the unique
solvability in C1>A(G) . This is proved by an approximation argument (see
e.g. the proof of Theorem 8.34 [129]).

REMARK 5.16. The conclusion of Theorem 5.15 is best possible. This
is shown for the function A(r) = ra, X > 1 + a, a e (0,1) in [171]. (See also
examples in Section 4.7 of the Chapter 4.)

5.3. Notes

The best possible Holder exponents for weak solutions was first obtained
in [170, 171]. There the method of non-smooth domain approximation by
the sequence of smooth domains was used. We apply here the quasi-distance
function re(x). The introduction of such function allows us to work in the
given domain, and then to provide the passage to the limit over e —> +0
(where rs(x) —> r = |x|).

The Lp-regularity of the {DL) in the cone was studied in [84], and in
the domains with angles - in [249]. Finally, let us point out two further
works. In [8] Alkhutov and Kondrat'ev proved the single-valued solvability
in the space WQ 'P(G) of the (DL) in arbitrary convex bounded domain G
assuming only the continuity in G of the leading coefficients .

Holder estimates for the first derivatives of generalized solutions to the
problem (DL) are well known in the case, if the leading coefficients ai:i (x)
of the equation are Holder continuous (see e.g. 8.11 [129] for smooth do-
mains and [21] for the domain with angular point). Here we derive Dini
estimates for the first derivatives of generalized solutions of the problem
(DL) in a domain with conical boundary point under minimal condition
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on the smoothness of the leading coefficients (Dini continuity). The pre-
sentation of Section 5.2 follows [64]. It should be noted that the interior
Dini-continuity of the first and second derivatives of generalized solutions
to the problem (DL) was investigated in [74] and [224] under the condition
of Dini continuity of the first derivatives of the leading coefficients.

Recently, V. Kozlov and V. Maz'ya [195, 196] derived an asymptotic
formula near a point O at the smooth boundary of a new type for weak
solutions of the Dirichlet problem for elliptic equations of arbitrary order.
We formulate an idea of their results for the linear uniformly elliptic second
order equation

im-t(^(x)uXi=g(x), x&G;
\u(x) = 0, x e dG,

where G C K^ is a bounded domain with smooth boundary dG. It is
assumed that a*-? (x) are measurable and bounded complex-valued functions,
u(x) has a finite Dirichlet integral and g = 0 in a certain neighborhood G$
of the origin O. In addition, let there exist a constant symmetric matrix

with positive definite real part such that the function
g

Q = (do)
A(r):=

is sufficiently small for r < d, where A = (a*-*). Let us define the function

<(A(x)-A)n,n>

N < A 1(A(x) — A)n,x ><n,x ><  A 1x,x> L

(7j\r(det A)1/2 < A~xx x >NI2 '
iv

where < a,b >= Yl akbk and n is the exterior unit normal at O. The
fe=i

following asymptotic formula holds

u(x) = exp I - / Q(y)dy + O\ f ^^-drx(x) = e xp - J Q(y)dy + o i j

(5.3.1)
r

x|

^dr\  +O(|«|a-)f

where C = const and s is a small positive number. The sharp two-sided
estimate for the Holder exponent of u at the origin may be derived from
(5.3.1).
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They establish also the following criterion. Under the condition

/ —^-dr < oo, all solutions u are Lipschitz at the origin if and only if
o

(5.3.2) liminf f lRQ{x)dx > -oo.

Needless to say, this new one-sided restriction (5.3.2) is weaker that the
classical Dini condition at the origin.

We point also to the work [262]. This work investigates Lq—regularity
of weak solutions of the Dirichlet problem for linear elliptic second order
equation in the divergent form with piecewise constant leading coefficients
in a Lipschitz polyhedron.

Other boundary value problems (the Neumann problem, mixed prob-
lem) for elliptic variational equations in smooth, convex, or nonsmooth do-
mains have been studied by V. Adolfsson and D. Jerison [2, 3]. They have
investigated Lp-integrability of the second order derivatives for the Neu-
mann problem in convex domains. J. Banasiak [27] - [29], J. Banasiak and
G.F. Roach [31, 32] have considered the mixed boundary value problem
of Dirichlet oblique-derivative type in plane domains with piecewise differ-
entiable boundary. K. Groger [136] has established a WltP—estimate for
solutions to mixed boundary value problems, P. Shi and S. Wright [358]
have investigated the higher integrability of the gradient in linear elasticity,
M.K.V. Murthy and G. Stampacchia [317] have considered a variational
inequality with mixed boundary conditions, W. Zajaczkowski and V. Solon-
nikov [409] have investigated the Neumann problem in a domain with edges.
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CHAPTER 6

The Dirichlet problem for semilinear equations
in a conical domain

6.1. The behavior  of strong solutions for  nondivergent
equations near  a conical point

In this section we study the properties of strong solutions of the Dirichlet
problem for nondivergent semilinear uniformly elliptic second order equa-
tions in a neighborhood of a conical boundary point

(SL)

Lu :=  aij(x)Diju(x) + ai(x)Diu(x) + a(x)u(x)

= g(u) + f(x) in G,
g(u) = ao^Hul9" 1, q > 0;
u(x) = 0 on dG\O.

Let G C M.N be a bounded domain with a conical point in O as described
in Section 1.3 of chapter 1. We shall assume that G% is a convex cone for
small d > 0.

DEFINITION 6.1. By a strong solution of the Dirichlet problem (SL) in
G we mean a function u € W2(G) r\C°(G\ O) which satisfies the equation
of (SL) for almost all x £ G and the boundary condition for all x € dG \ O.

In the following we will always use these assumptions

a) the uniform ellipticity condition

with some u, /j, > 0; alJ(0) = 8{;
aa) aij € C°(G), a? G LP(G) and a G D>/2(G) with some p> N;
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aaa) there exists a monotonically increasing nonnegative continuous at
zero function A(r), A(0) = 0 such that for x,y € G

y/ 2

>«(*)-a«(y)|2 <A(\x-y\),
i /

N \ i/a
* a(z)J + \x\2\a(x)\ < A(\x\);

b) ao{x) is a nonnegative measurable in G function;
c) there exist real numbers k\ > 0 and (3 > — 1 such that

\f(x)\ < kt\xf.

6.1.1. The weighted integral estimates (0 < q < 1). Now we prove
certain weighted integral estimates of strong solutions of {SL). Here the
function ao(x) can be unbounded.

THEOREM 6.2. Let u be a strong solution of (SL) and the conditions
a), aa), aaa) and b) are satisfied. Suppose that ao(x) e V\_._i N(G),

f{x) G K-N(G), 0 < q < 1.

Then u(x) e $A-N{G)
 and there is a positive constant c, determined

by v,n,q,N,max.A(\x\),G such that

f(r 4-N\D2u\2 + r2~N\Du\2 + r~N\u\2 + ao(x)r2-N\u\1+")dx  <

(6.1.1)

< c f(u2 + rA-Nf2(x) + 2 + ttf^WrW-ti-

PROOF. We multiply both parts of the equation of (SL) by r2 Nu(x)
and integrate over the domain (G). Similar to the theorem 4.13 proof from
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Chapter 4 we have

I'i*~ N\Vu\*dx + f ao(x)r2e-
N\u\1+gdx <

G G

(6.1.2) < c(h)A(d) f (r2
e-

Nr2\D2u\2 + r2-N\Vu\2 + r^r^u2) dx+

+c(d) f (\D2u\2 + u2)dx + ̂  f rA~Nf(x)dx, Ve > 0, d > 0.
Gd G

By the layers method based on the local L2-estimate, we derive the inequal-
ity (see the derivation of (4.2.23)

(6.1.3) f r2-Nr2\D2u\2dx < c J (r2-Nr~2\u\2 +r4
£-

Na2(x)\u\2"+

z, Ve>0,d>0,

where c is a constant depending only on i/,fi,q,N,max.A(\x\),G. Taking
x€G

into account that q < 1 by Young's inequality we have

(6.1.4) r4
e-

Na2(x)\u\2" = (r-^M) ( )

,q)al/^\x)r^1-^-N, Va > 0.

The estimate (6.1.1) we seek follows from (6.1.2) - (6.1.4) under proper small
d > 0 with the help of the same arguments as during the completion of the
Theorem 4.13 proof.

THEOREM 6.3. Let u be a strong solution of (SL) and the conditions
a)-c) with A(r) that is Dini-continuous at zero are satisfied. In addition,
suppose f(x) € LN(G) n  ao(x) £ V\_._* v(^9 and there is a

1 — q ' 1 —q

constant k  ̂> 0 such that

(6.1.5) ||ao||^o(1-9)
 (Ge)<k2e

2+e, Qe(0,d).
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Then there are positive constants c and d £ (0, e"1) such that for g £
(0,d)

PROOF. At first, because of Theorem 6.2, we have u(x) € ^4-j
Now we introduce the function

U(Q) = I r2~N\Du\2dx, Q e (0, d)

and multiply both parts of (SL) by r2 Nu(x) and integrate the obtained
equality over the domain GQ, g S (0, d). As a result, similarly to Theorem
4.18, we obtain

U(g) + f ao(x)r2-N\u\1+9dx < ^rU'(g)+cA(g)U(2g)+
J 2A

(6.1.7) +cA{g) j (fi

+ cA(g)U(g) + J r2-N\u\\f(x)\dx.

G%

For this we used the inequalities (6.1.3), (6.1.4) with e = 0, a = 1.

From hypothesis (c) we have

(6.1.8)

and apply as well the Cauchy and Poincare inequalities

(6.1.9) fr2-N\u\\f{x)\dx<k1 fr0+2~N\u\dx =

+  fci j(r-N/2\u\)r^2-N/2dx < cSU(g) + cS'1
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Prom (6.1.5) and (6.1.7)-(6.1.9) finally we obtain the differential inequality

(6.1.10) U(g) < ^U'(g) +  ClA(g)U{2g) + c2(A(g) + 8)U(g)+

+  C3CT1 (k\ + k?,)g2f)+i, W5 > 0, 0 < g < d.

Moreover, by Theorem 6.2, we have the initial condition

(6.1.11) U0 = U(d)= I' r2-N\Wu\2dx<

The differential inequality (6.1.10) with initial condition is the same type
as (4.2.47) with s = /3 + 2 or (4.2.51), if /5 + 2 = A. Repeating verbatim the
investigation of these inequalities in the proof of Theorem 4.18 we obtain

U{Q) < c ( | | | | £( G ) H/ll K I I % (

|V\ if^ + 2>A,
(6.1.12) x L M n 3 ( i ) , if 0 + 2 = A,

Prom (6.1.3) and (6.1.4) passing to the limits as e —> 0, we obtain

(6.1.13) Jr4-N\nPu\2dx < c J (r-
Go G2

O
S

r4-Nf{x))dx, 0<g<d.

Now taking into account the inequality (H-W) from (6.1.12) and (6.1.13)
the desired (6.1.6) follows.

THEOREM 6.4. Let u e W2<N{G) be a strong solution of (SL) and the
conditions a)-c) with A(r) that is Dini continuous at zero are satisfied. In
addition, suppose

a(x) < 0, f{x) g LN{G) n K-N(G), aQ(x) e V°/(1_g).

Then there is a positive constant c such that

(6-1.14) \\u\\vlo(G) < c ( l l«o | | )̂ i 2 g i v / ( i q ) ( G) +
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PROOF. By Theorem 4.48, there exists the unique solution u eV£ 0(G)
of the linear problem

f Lu = F(x), xeG,

\u(s) = 0, xedG\O

provided A > 1, F € L^{G) and

(6-1.15) Nlv3,0(G) < c\\F\\N,a,

where c > 0 depends only on V,II,N,TOBXA(\X\), \\ax\\pG, ||«L/2G)P > N
x&G

and the domain G. The condition A > 1 is fulfilled by the convexity of G{).
Prom (6.1.15) with F(x) — f(x) + ao(x)u\u\9~1 using the inequality (1.2.5)
we obtain:

(6.1.16) / (\D2u\N + r~N\Du\N + r-2N\u\N) dx <

v + \f(x)\N) dx.J
G

Using Young's inequality and taking into account q 6 (0,1), we have

(6.1.17) \ao(x)\N\u\gN = (r-29ArM giv) (r

< er-2N\u\N +£<z/^-1V 29jv^1-«Vo(a;)r/ (1~9)
) Ve > 0.

By the choice e = 2~N from (6.1.16) and (6.1.17) the desired (6.1.14) follows.

6.1.2. The estimate of the solution modulus (0 < q < 1). Now we
want to deduce the estimate of our solution modulus in the case (0 < q < 1).
To that end we introduce the function

( gx if, A</3 + 2;

gx ln3/2 i if, A = p + 2;

QP+2 if, A > fl +  2.

THEOREM 6.5. Let u(x) e W2'N(G) be a strong solution of (SL) and
the conditions a) - c) with A(r) that is Dini continuous at zero are satisfied.
In addition, suppose a(x) < 0, a{x) € LN(G), f(x) € LN(G) n $°4_N(G),
ao(x) € i N / ( 1~9 )(G)n V i_._4__jv(G) together with (6.1.5) and there exists
a nonnegative constant ko such that
(6.1.19) ||ao(x)|| JV  2 < kogl~29tpq(g).
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Then there are positive constants co,d independent of u such that the
following estimates are held:

1) |«(x)| < ,

2) |u(a;)| < co\x\\

3) |«(x)| < co|af+2,

$, if X>/3 + 2,
2

A'

x e Gg, if A < 0 + 2, 1 - - < q < 1;

i € G ^ if A > /3 + 2, 1 - Y < 9 < 1;
A

4) lutaOl^colz^ln-^r, x e G%, if A>/3 + 2, 1 - ^ < 1 < 1-
X\ A

PROOF. Let us perform the variables substitution x — gx', u(gx') =
tp(g)v(x') in the problem (SL). Let G' be the image of the domain G under
transformation of coordinates Xi = QX\\ i = 1,  , N. As a result we infer
that t;(x') is a solution of the problem

av (QX')VX,.X>. + Qcfiox'  ̂ + g2a(Qx')v =
+Q2^-1(g)a0(gx')v\v\^-1, x' e G',

v(x') =0, x' e 9G'.

We apply now Theorem 4.5 (Local Maximum Principle)

(6.1.20) sup |v(x')|<c{  f v2(x')dx'

( YN

-\Q) j \ao(gx')\N\v\gN)dx' J
\G2 /
\ 1/'4 /

By the inequality (6.1.17), we have

(6.1.21)

eN\x'\-2N\v\N,Ve>0
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Prom (6.1.20) and (6.1.21), we get

sup

(6.1.22)

1/2

f v2(x')dx'

\GU )

+ CS"̂ T

f \x'\-2N\v\Ndx'\

W )
x'\^\ao\^dx' \,

)

V£>0.

Now we estimate each term on the right in (6.1.22)

y / a

f v2{x')dx'

in virtue of (6.1.6);

/ \ 1 / 2

n^i>-\g) f r-Nu2{x)dx < C,
\G

fi /4 /

/ \f\Ndx

< ckigP+2tp~l(g) < const; here we apply hypothesis c) and the
definition (6.1.18) of tp(g);

l/N i ^ l/N
J \x'\-2N\v\Ndx' I < 24 ( / g-N\v\Ndx

l/N

l/N , ^  l/N
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In (6.1.22) we choose e =
estimates, we obtain

then, because of (6.1.16) from two latter

(6.1.23)

and

(6.1.24)

(i
\

X v\Ndx' < const

(i."
1/N

/ < const,

in virtue of hypothesis (6.1.19). The obtained estimates result for (6.1.22)

(6.1.25) sup |u(x')| < c(l + Q ipq

Now we show that for all interesting cases of our theorem,

(6.1.26) Q2ipq~l{Q) <OO,VQ>0

is true.

1) 0 + 2 < A =̂  ip(g) = QP+2. In this case we have

' < oo,V^>0,

if P + 2 < j ^ - . Choosing the best exponent P + 2 = -^- < A we
get the first statement of our theorem. In fact, from (6.1.25) and
(6.1.26) we have

v{x')\ < M'Q = const Vx' G G\,2.

Returning to former variables hence it follows

\u{x)\ < MQIP(Q) = M'QQT^, VxeG°/2, ge(0,d).

Setting |x| = |g hence follows the required assertion.
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2) /? + 2 > A =>  I/J(Q) = gx. In this case we have

}  < oo, Wg > 0,

i f l — j < q < I. Repeating verbatim above stated arguments as
in the first case, we get the second statement of our theorem.

3) P + 2 < A =*> ip(g) = QP+2. In this case we have

P = gVfo-1) < e*^-2)^-1) < oo,ve > o,

i f l — J < < Z < 1 . Repeating verbatim above stated arguments as
in the first case we get the third statement of our theorem.

4) p + 2 = A =» ip(g) = gx ln3/2 ^. In this case we have

) l n 5 <* l ) i < oo,ve > o,

i f l — j < q < 1. Repeating verbatim above stated arguments as
in the first case, we get the fourth statement of our theorem.

Now we go on to the deduce some corollaries from Theorem 6.5.

LEMM A 6.6. Let a,(x) > ao = const > 0. and hypotheses a) and aaa)
are satisfied. There are positive numbers tj, g, determined only by v, /J,, q,
ao,N such that, if u(x) is a strong solution of the equation or (SL) with
f(x) = 0 and 0 < q < 1 in the ball Bg(0) and \u(x)\ < r],  x e dBe(0), then
u(0) = 0.

PROOF. Let s > ^ . We set R{x) = \x\s. Then

LR(x) - ao(x)Ri(x) = srs-2{^a"(x ) + (s - 2 ) ^ ^ i X i + xia
i(x)+

i

-a{x)r2} - ao(x)rs{x)r}  ao(x)rsg

S

srs~2 (JM(S + N-2) + A{rfj  - aQrsq.

By the continuity of A(r) at zero, there exists d > 0 such that A(r) < 1 as
soon as r < d. Therefore we obtain

LR(x) - ao(x)R9(x) < srs~2^(s + N - 2) + l ) - aor
sq < 0,
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provided r < d and rs~2-sq < —, 2a v . So

LR(x) — ao(x)Rq(x) < 0 provided g — min < d; —(

By the Maximum Principle (see below Theorem 6.8), \u\ < R provided that
r? < gs, hence u(0) = 0.

THEOREM 6.7. Let u(x) e W2>N(G) be a strong solution of (SL) and
the conditions a)-c) with A(r) that is Dini continuous at zero are satis-
fied. Let A>/3 + 2, 0 < q < 1 — j . In addition, suppose that f(x) = 0,
ao(x) G LN/(l-i\G) n V^_._j__N(G) together with (6.1.5),

1 — q ' 1 — q

a(x) < 0, a(x) £ LN(G), ao(x) > a® = const > 0, and there exists a
nonnegative constant ko such that

(6.1.27)

Then there is a positive constant d independent of u such that
u{x) = 0, x e G#.

PROOF. Let co,d > 0 are chosen according to Theorem 6.4 and such
that GQ C G. Let io 6 G*. We make the transform x — xo = gx',
u(x) = gr^v(x'). The function v(x') is a solution of (SL)' with / = 0
and, by Lemma 6.6, we have ) = 0 provided |i>(a;')l < r\ for \x'\ = R
with some positive R,r}. Hence U(XQ) = 0 provided \u(x)\ < ng1  ̂ for
| a; — #o| — RQ- But the latter condition is satisfied in virtue of assertion 1)
of Theorem 6.5, if we set r\ = Co, R = 2. Thus we get U(XQ) = 0. Since any
XQ € GQ we obtain the assertion of our Theorem.

6.1.3. The estimate of the solution modulus (q > 1). Let us recall
the well known Comparison Principle.

THEOREM 6.8. (Comparison Principle) Suppose D e RN is
a bounded domain, L is elliptic in D, a(x) < 0 in D. Let us define the
function g(x, u) with the properties

g(x, u\) > g(x, u2) for ui >u2.

Let u, v 6 Wf£(D) n C°(D) satisfy the inequalities

Lu < g(x, u), Lv > g(x, v) in D.

Then

u>v on 3D  u > v throughout D.
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PROOF. Let w = u — v. We have

Lw = Lu — Lv < g(x, u) — g(x, v) < 0

on D~ = {x £ D | w(x) < 0}  and w > 0 on dD. From the Alexandrov
maximum principle (Theorem 4.2) we get

w(x) > inf w(x) = inf w(x) = 0, Vx € D.
D- 8D-

n
Now we consider the case q > 1. For this at first we study the C° n

Wf£— solutions of differential inequality in R^

(DI) signu  Lu — ao(x)|u|9 > — k,

In this connection we suppose

(*)  L is the uniformly elliptic operator with the eUipticity constants

[y < /i) and with bounded coefficients

(fi«wr +w*)i<™ * x .
i 2_^ \a \x)i I '  a\d')\ -^  " W -i  u>
\i=l /

ao(x) > o0 > fciV9"1, Vx G G,

where m,ao,k are nonnegative constants.

We derive as a preliminary the next statements.
LEMMA 6.9. Let L satisfy (*). There are a bounded domain D c M.N

containing the origin O and a positive function U(x) defined in D such that

(LU - aoU" < -k, x 6 D,
\U(0) = l, lim U(x) = oo.

N

PROOF. We first set U{x) = Yl yixi)i  where y(t) is a positive solution

of the Cauchy problem

(6 1 29)

By setting y' = p(y) we get

dr\
(6.1.30) t= I

p(vY
l/N
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The function p(y) is a solution of the Cauchy problem

-m\p\ -a0y
9 = - 4 ,

(6-1.31)

Now we apply the Hardy theorem (see, for example, Theorem 3 §5, chapter
V [38]). By virtue of this theorem, any positive solution of (6.1.31) fulfill s
the asymptotic relation

(6.1.32) p(r)) ~ r)K as  -> +oo, n € R.

Now we calculate the quantity K. Prom (6.1.31) we infer
/iJ?Kp'(r?) + mrf ~ aorp as f] —> +oo or

(6.1.33) p'(r}) {aQrf-K-m) as r) ->  +oo.

Integrating the relation (6.1.33) with regard to (6.1.32) we find

1 ^
(6.1.34) p{rf) ~ — (ao — m?)) as 7? —» +oo.

\X Q — K + 1
Prom (6.1.32) and (6.1.34) it follows that K = q - K + 1 > 1,
or K = , q > 1 =>

1/iV 1/JV

Prom (6.1.30) and (6.1.35) it follows that
oo

y(t) —> oo as t —> / —r-r < oo.
J P(»/)

l/AT

Now we remark that because of (*)

and, consequently, by the continuity of y", we have y"(t) > 0 in a certain
neighborhood of zero. Therefore, returning now to U(x) we have

UXi = y'ixi), UXiXj = 6iy"(Xi),
N N N

i=i »=i j=i
JV AT JV ,

i=\  i=l
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if we recall (6.1.29) and use the Jensen inequality (1.2.5). Thus we proved
(6.1.28) as well as our Lemma.

LEMMA 6.10. There exists RQ>Q such that in the ball £R<,(0) there is
no solution of the inequality (DI), satisfying the condition
Ko)| > I .

PROOF. For RQ we take any number R such that BR(0) DD D, where
D is the domain constructed in Lemma 6.9. Let u be a positive solution of
(DI) in BRo(Q) with u(0) > 1. We define in D the function w = u - U,
where U is the function constructed in Lemma 6.9. By Lemma 6.9, the
function w has the following properties: lim w(x) = —oo, w(0) > 0. We

set D+ = {x € D | w(x) > 0}. Since O 6 D+ we have D+ ^ 0. Now we
apply the comparison principle (Theorem 6.8) to w in D

— k = g(u) in D,
-k = g(U) in D,

ondD.

From the comparison principle it follows that w < 0 in D, and hence w < 0
in D_)_ . We get a contradiction with the definition of D+.

LEMMA 6.11. // u(x) is a strong solution of the inequality (DI) in
such that \U(XQ)\ > h, then

(6.1.36) R
where RQ depends only on i>,fi,q,ao,N.

PROOF. We make the change of variables x — XQ = h^x' and u =
hv. The function v satisfies (DI), and |u(0)| > 1. Hence, by Lemma 6.10,
v(x') is defined in a ball of radius not exceeding RQ, that is in the ball

< Rh  ̂ < Ro => R<Roh^.

COROLLARY 6.12. Let G be a bounded domain containing the origin <D.
Let u(x) be a strong solution of inequality (DI) in G\O. Then

(6.1.37) \u(x)\ <c\x\^,

where c> 0 is a constant depending on v,/j,,q,ao,N.

Now we are estimating the modulus of a strong solution of (SL). At
first we derive an auxiliary estimate.

LEMMA 6.13. Let u(x) be a strong solution of (SL) and the conditions
a)-c) are satisfied. In addition, suppose ao(x) > ao = const > 0. Then there
are d > 0, CQ > 0 such that the inequality

(6.1.38) |u(x)| <co|a;|^i, x e G%
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holds.

PROOF. Let us perform the substitution of variables x = gx', u(gx') =
hv(x'), h > 0 in the problem (SL). The function v(x') is a solution in the
domain G\,2 of the problem

{ L'v = aij  (gx')vx>.x>. + Qai{ox')vx'. + g2a(gx')v =

= g2h^-1ao(gx')v\v\^-1 + g2h-1f(gx'), x' e G\/2,

v{x') = o, x'eT\/2.

Now we choose h > 0 so

(6.1.40) g2hq-x = 1

Because of ao(x) > ao > 0 and the assumption c), from (6.1.39) and (6.1.40)
it follows that

(6.1.41) sigm;  L'v — ao\v\9 > gi~l f(gx')signv > —kigP+~^1

But P > - 1 , q > 1, therefore /3 + ^ > ^ > 0. Hence for 0 < g < d < 1,

we have g^+i~1 < gv-1 < d*-1. Now from (6.1.41) we obtain

(6.1.42) sigm;  L'v - ao\v\q > -fad^.

By setting k = kid*-1, we see from (6.1.42) that for a small positive d,
namely

(6-1.43)

the following inequalities

(6.1.44) sigm;  L'v - aQ\v\q > -k, a0 >

hold. This allows us to apply Corollary 6.12 and we obtain

\v(x')\<M^, x'eG{/2,

where MQ > 0 is a constant depending only on v,fi,q,ao,N,supA(\x\).
x€G

Returning to the former variables we get

(6.1.45) |u(x)|<M^A, x&Ge
e/2, ge(0,d).

Taking |a;| = ^ finally we arrive to the desired inequality (6.1.38).
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LEMMA 6.14. Let L be a linear elliptic operator with the conditions a)-
aaa). Then for V7 e (—A — N + 1, A — 1) there exist a number d > 0 and
the function w € C°(G$) n C2(GQ) with the following properties

(6.1.47) 0 < w(z) < c|x|1+7, x e

(6148) f^)>0, ^ i

l 1"^ ) ^ i x e fi  ° <
where c depends only on A, 7, N, Q.

PROOF. Let us consider in the domain Q C SN~X the auxiliary Dirichlet
problem for the Beltrami-Laplace operator

j^(w ) =0, we 9fi .

It is well known (see Subsection 3 §2, chapter 7 [203]) that this problem
has the unique solution having the properties

1> e C2(n) n C°(ty, ifr > 0 in

provided the inequality

(6.1.49) (l + 7 ) ( iV - l +7 ) < A(A + iV-2 )

is satisfied. The solutions of the latter inequality are the numbers

7€(-A- iV + l ,A-l) .

Now we define the function

(6.1.50) W(X) = W ^

By direct calculation we get

Now, by the assumptions a)-aaa), we have

Lw = Aw+ (aij(x) - oy(0)) Ajtw(a:) + ai(x)Diw(x) + a(x)w(x) <

<Aw + cA(r)(\D2w\ + r~l\Dw\ + r'2\w\) <
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where c > 0 depend only on A, 7, N, Q. By the continuity of A(r) at zero,
we find d > 0 such that

By this (6.1.46) is proved. The other properties of w are trivial.

DEFINITION 6.15. The above constructed function w we shall call the
barrier function.

THEOREM 6.16. Let u(x) be a strong solution of(SL) and the conditions
a)-c) are satisfied. In addition, suppose 0 < ao < a(x) < a\, where ao,ai
are positive constants.

Then for We > 0 there are positive constants c£, d independent ofu such
that the following estimate holds

(6.1.52) Kx)|<c£|x|A -e, xeGi

if P + 2 > X > 1 , * > l + X T f ^ -

PROOF. Since |ao(a;)| < a\ then from (SL), in virtue of (6.1.38) and
the assumption c), it follows

(6.1.53) Lu > -ai|u|9 - kxr
p > - c g a i r^ - kxr

p.

Set

(6.1.54) 7 - 1 = - ^ - e ( - A - i V , A - 2 ) .
1 -g

It is easily seen that such a number 7 satisfies Lemma 6.14 about the barrier
function. Let

Now from (6.1.53), (6.1.46), (6.1.54) taking into account /3 > A - 2 > j ^
it follows that

(6.1.56) L(Bw) <Lu, xe Gd
E, Ve > 0.

Moreover, from the properties of the barrier function it follows that

(6.1.57) u(x) = 0 < w{x), x e rf, Ve > 0,

(6.1.58) Bw{x) >  B
AT - J g | ?̂ > co |x |̂  > u(x),

X(X + N- 2)

x e fie, 0 < Q < d, if B > c0A(A + N - 2).
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Thus, if the number B > 0 satisfies (6.1.55), (6.1.58), then it is proved that

[L(Bw)<Lu inGf,
\u(x) < Bw(x) on dGJ.

By the comparison principle (Theorem 4.4), hence we obtain

u(x) < Bw(x), x e Gf, Ve G (Q,d).

Similarly u(x) is estimated from below. Thus we get

where 7 satisfies (6.1.54). In particular, we can choose 1 + 7 = A — e,
We > 0, which gives us the estimate sought for. Our theorem is proved.

6.2. The behavior  of weak solutions for  divergence equations
near  a conical point

Here we study the properties of weak solutions of the Dirichlet problem

for the divergence semilinear uniformly elliptic second order equation in a

neighborhood of conical boundary point

jLsU .— r\ i d 1 x)ux  ~\~ a [Xjuj ~\~ 0 \xiux  ~\~ c (x 1 u —

= o0(x)tx|u|9~1, q > 0, x e G£;

u(x) = 0 on T£, Ve > 0.

DEFINITION 6.17. The function u(x) e W1(Ge) n L°°(GE) is called a
weak solution of the problem (DSL) provided that it satisfies the integral
identity

,
i%3(x)uXif]Xi + al(x)ur}Xi — b%(x)uXirj  — c(x)ur)+

(III ) +ao(x)u\u\q-1Ti}dx = 0

for all n(x) & W1(G), which has a support compact in G.

In the following we will always make the following assumptions

i) G C K is a bounded domain;
a) the uniform ellipticity condition

with some V,/J,>0; oJJ(0) = 8f;
aa) a«(x) e C°(G), (i,j = l,...,N); ai(x),bi(x) 6 LP(G),

(i = l,...,N); c(x) e Lp/2(G), p > N;
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aaa) there exists a monotonically increasing nonnegative continuous at
zero function A(r), A(0) = 0 such that for all x € G

N \ 1 / 2 /N

) + \x\'\a(x)\<A(\x\);

b) 0 < ao (x) < ao = const is a nonnegative measurable in G function;
c) for all T)(x) £ W1(G) which has a support compact in G

f(c(x)r) - ai(x)Diri)dx < 0.

G

Now we derive a bound of the weak solution of (DSL) modulus. Let A be
the smallest positive eigenvalue of (EVPI) with (2.5.11).

THEOREM 6.18. Let u be a weak solution of (DSL) and the conditions
i) and a)-c) are satisfied. Suppose that

I ra\Du\2dx < oo at some a e [2, 2A + N).

G

Then Ve > 0, there is a positive constant ce, determined only by v,fj,,q,N,
max.A(\x\),G such that
x€G

(6.2.1) \u(x)\ < ce|ar|A-£.

PROOF. Let v £ Wrl(Gg) be a weak solution of the linear problem

= «+, ,= 0,v
(id 1 o

where u+ is the positive part of u. The constant d > 0 we choose so that
GQ C G. Such v exists and is unique. By Theorem 5.8, we obtain

Let us show that

(6.2.3) u(x) < v(x).

Suppose the contrary is true, that is we have u(x) > v(x) in a domain
D C G$. Then

{ £(u -v)>0 in D,

Jra\D(u - v)\2dx < oo Va G [2, 2A + AT)
G
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is satisfied. In fact, in D we obtain

C(u -v)= aoCaOuM9"1 > a o ^ t ^ l9 " 1 > 0,

since, by weak maximum principle, v > 0 in GQ. Moreover, by Theorem
5.5, it is easily seen that

I ra\Dv\2dx < oo Va e [2, 2A + iV)

and therefore (6.2.4) is verified. Prom (6.2.4) and Theorem 5.11 it follows
that u = v. Thus, u satisfies (6.2.1) too.

Theorem 6.18 is a simple extension of well known results of the linear
equation theory to (DL). It should be noted that we cannot take u > 0
in (6.2.1) without additional restrictions. The following theorem is only
valid for solutions of nonlinear equations. Note that the behavior of u(x) in
the neighborhood of the vertex of the cone is not restricted a priori, in the
theorem, which is mandatory in the theory of linear problems. It is usually
required in linear problems that either the Dirichlet integral be limited or
the solution be continuous.

THEOREM 6.19. Ifao(x) >ao = const > 0, x e G,q > 1,

(6.2.5) YZ~ > 2 - iV - A,

then inequality (6.2.1) is satisfied.

PROOF. We state the assertion established in [172]. Let q > 1, ao(x) >
ao > 0, and u(x) be a solution of (DSL) in some domain G 3 O, which is
inside the unit sphere |x|<l and vanishes in that part of dG which is strictly
inside the sphere. Then

(6.2.6) |u(0)|<Ci, / \Wu\2dx<C2,

where the constants Ci and C<i are only dependent on the elliptic constants
of (DSL) [assumption a)] and on ao and q. If we change the variables so
that x = px', u = hv, and p~2 = hg~1, which retains the structure of
(DSL), then we obtain the following assertion from (6.2.6).

Let u(x) be a solution of (DSL) in domain G % and vanishes in F %.
Then

(6.2.7) I \Vu\2dx<C2Q
2^+N.
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According to (6.2.7)

(6.2.8) j ra\Vu\2dx<oo,
G

whenever

(6.2.9) a + 2 2 + N > 0

Since, in view of the condition of Theorem 6.19,

2
, -. - V 1 1 + iV > 2 - i V - 2 A ,

l-q \l — q I
we can choose an a < 2X + N — 2 which satisfies (6.2.9). In this case (6.2.8)
is satisfied and we can use Theorem 6.18. This is the proof of the inequality
(6.2.1).

THEOREM 6.20. 7/0 < q < 1, ao(x) >ao = const > 0,
j3~ < A, u(x) € W^G), then u(x) = 0 in some neighborhood of the vertex
of the cone K.

PROOF. The following statement was proved in [173]. Let G 3 O be
in the unit sphere, let u(x) be the solution of (DSL), and let u(x) = 0
in that part of dG which is strictly inside the unit sphere. There exists a
B = const > 0 which depends only on q, is, n and on ao- If \u(x)\ < B at
|x| = l,x € G, then u(0) = 0. The constant B does not depend on either
u or the structure of domain G. Thus, using the transform x = gx', u =
hv, g~2 = hq~1, we readily obtain the following statement.

Let u(x) be the solution of (DSL) in the part of the domain G 3 O
lying inside the sphere | i| < 2g, and vanishes in that part of dG, inside the
sphere. If

(6.2.10) \u(x)\<Bg^

for |x| = 2g, x e G, then u(x) = 0 for \x\ < g.
If the conditions of Theorem 6.20 are satisfied, we will obtain (6.2.1), by

applying Theorem 6.18. Inequality (6.2.1) yields (6.2.10) at small g. Hence,
u(x) = 0 if \x\ <g.

Note that if the condition (6.2.5) of Theorem 6.19 is not satisfied, then
(DSL) has unbounded solutions in the neighborhood of x — 0. We will now
prove this fact under the assumption al(x) = 6*(x) = c(x) = 0. We state
some assertions about the characteristics of the solutions of linear elliptic
equations in conic domains for which we shall use [161].
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1. Let K be a cone in M.n. We consider the boundary value problem

«=1

x G

Let /? be such that j s n ot an eigenvalue of (EVD). There
exists a 5 > 0, which depends on K and /? such that if

| ot f ( x ) - ^ | <S, xeK,
(6.2.12)

J\xf+2f2dx
K

N

< oo,
K i=1

(6.2.13)

then there exists a unique solution of (6.2.11) such that

f \xf\Vu\2dx + f \xf-2u2dx <C f \x

4\2dx.+ C
K J =

This statement is proved for oy'(a;) = 8\ in [161]. It follows from
the Banach theorem on the invertibility of the sum of an invertible
operator and the operator which is small by the norm.

(See [161]). Suppose that AT is a cone in RN, lim aij(x) = 8{, the
x—>Q

numbers /3i and fa are such that the interval

4 ' 4

has no points from spectrum of (EVD), and u(x) is a solution of
(6.2.11),

N , N
l2dx+

»=1
K

K

K

E j\AP2\f

x|ft+2/0
2dx + / |x|^+2/0

2dx < oo
K

\fo \Vu\2dx + f \x\&-2u2dx < oo.
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Then

(6.2.14) / \x\  ̂ \Vu\2dx + f \x\01-2u2dx oo.

Let us consider (6.2.11) where /*  = 0, i = 0,1,..., N. We will show that
if S in (6.2.12) is small, a^{x) s <5f at |a;| > J?i, then (6.2.11) has a non-
trivial solution. Let T0(x) = \x\2~N~x®(w), where $(w) > 0 in K is the
eigenfunction of (EVD) corresponding to $. We seek r(x), the solution of
(6.2.11), in the form of T(x) = TQ(X) — V(x), where V(x) is a solution of

(6.2.15)

Note that

(6.2.16)

N

= E ab^OO.
V(x) = 0, xedK.

i=xJ
K

< 00,

if 0 > N - 2 + 2A. We fix /? so that JV-2 + 2A</3<- iV + 2 - 2AL
where Ai (if ) = \(,2 - N - y/(N - 2)2 + 4i?2), i?2 is the smallest eigenvalue
of (EVD) which is larger than $. It follows from (6.2.13) that according to
the condition of (6.2.12) there exists a V(x), a solution of (6.2.15) such that

(6.2.17) / \xf~2V2dx + f \xf\VV\2dx <J2[ ixflF^dx.
K K

We will now discuss some characteristics of V(x) and T(x). It follows from
the classical estimates of the solutions of the elliptic differential equations
that

(6.2.18) V2{x) < C\~N j V2dx, if |x| = A.

Prom this and (6.2.17) we have

V2{x) <

Besides, |ro(x)| < C\x
as x 00 .

Since YQ(X) =

2-N-X

2-N-X
0 as x\ —» oo. Hence, T  0 as x —  oo.

and V(x) = o(\x 2-N-X ) , then T ^ 0. Note
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that

(6.2.19)

THE DIRICHLET PROBLEM FOR SEMILINEAR
EQUATIONS IN A CONICAL DOMAIN

[ \x\a\VT\2dx \x\a-2T2dx = oo

at any a such that a < N — 2 + 2A. Otherwise we would have
|F(z)| < C£\x\x~£, that is, F(a;) —> 0 as x —>  0. This is impossible, in
view of the maximum principle. Finally, from (6.2.14) we have

(6.2.20) ( T2\x\s~2dx + I |x|s|VF|2dx < oo

Kl Kl

regardless of s > N - 2 + 2A. According to (6.2.20) and (6.2.18) we also
have that |F(z)| < C£

,2-N-\-efor any e > 0.
Using F(x), we construct an unbounded solution of (DSL) provided

a%(x) = bl(x) = c(x) = 0. Suppose that di is so small that for x G Kg1

(6.2.12) is satisfied for some /3 > N - 2 + 2A. We change aij(x) at \x\ >
making them equal to <5|. We constructed F(x), a solution of (6.2.11) at
/*  = 0, that is unbounded in the neighborhood of x = 0 and satisfies
(6.2.20). Suppose that Y(x) —+ +oo along a sequence xm —* 0.

Let Ffe(x) be a solution of (DSL) in the domain Gk : x e K,2~k <
x\ < dk, k = 1,2,... such that

(6.2.21) _ = 0, u =T, u
8KnGk \x\=di [x|=2-fc

Then (DSL) has a solution satisfying (6.2.21) and it is unique. It can be
constructed by the variational method. Let us consider z(x) = —T(x) +
Ffe(x). This function is a solution of

(6.2.22)

QKt
= 0.

It follows from Theorem 5.11 that for any a. < 2A + N - 2,

f \x\a\Vz\2dx+ [ \x\a'2z2dx <

Ka Ka

(6.2.23)

C f \x\a+2\r(x)\2<1dx<CCe f \x\a+2g{2-N-x)+2-edx < A,

Kdl Kdl
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if

(6.2.24) a + 2 + 2g(2 -N-X)-e + N>0.

We can choose a such that (6.2.24) is valid and a < N — 2 + 2A since in
this case 2 > (1 — q)(2 — N - A). The constant A on the right-hand side of
(6.2.23) is not dependent on k. Let us consider the boundary value problem
in AT

l|9 = /0(a:), x&K,

xedK,
v

where

°o(x) = 'S , ,
[0 for |x| > di.

If a satisfied (6.2.24) and a < N - 2 + 2A, then (6.2.22) has a solution such
that (6.2.25) holds and

(6.2.26) f \x\a\VZ\2dx + f \x\a-2Z2dx < oo.
K K

It follows from (6.2.26) and (6.2.18) that Z(x) -> 0 as |x| -^ oo. In view of
Theorem 5.11, Z(x) < 0 in K. Prom this and (6.2.22) we have

(6.2.27) \Z(x)\ < \Z(x)\.

This implies that q^(x) = a(,(x)'—!^—r _  ̂ ' is uniformly bounded with

respect to fc in each domain K°£, do > 0. Hence, the functions Z(x) form a
sequence which contains a subsequence compact in the sense of the topology
of inform convergence in each subdomain K^. Let ZQ(X) be its limit. It
follows from (6.2.24) that Z0(x) satisfies (6.2.26). Thus, u(x) = T(x)-zo(x)
is the solution of (DSL) with a%(x) = bl(x) = c(x) = 0 in K^. According
to (6.2.19) and (6.2.23)

\x\g~2u2dx = oo for any a < N - 2 + 2A,

K

satisfying (6.2.24). It implies that u(x) is the solution of (DSL) with
a%(x) = b%(x) = c(x) = 0 which is unbounded in any neighborhood of the
origin.
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6.3. Notes

The properties of the (SL) solutions in a neighborhood of an isolated
singular point were studied in [172, 173]. Positive solutions of singular
value problems for the semilinear equations in smooth domains were investi-
gated also in [174, 175,176]. The solutions smoothness of some superlinear
elliptic equations was investigated by S. Pohozhaev [337, 339, 340].

The results of Section 6.1 was established in [62] and of Section 6.2 - in
[165].

We point out other problems which are not investigated here. M. Mar-
cus and L. Veron have studied [245, 246, 247] the uniqueness and expan-
sion properties of the positive solutions of the equation Au + hu — kup =
0 in nonsmooth domain G, subject to the condition u(x) —> oo, when
dist(x, dG) —>  0, where h, k are continuous functions in G, k > 0 and p > 1.
They have proved that the solution is unique, when dG has the local graph
property. They have obtained the asymptotic behavior of solutions, when
dG has a singularity of conical or wedge-like type; if dG has a re-entrant
cuspidal singularity then the rate of blow-up may not be of the same order
as in the previous and more regular cases.

Many other problems for elliptic semilinear equations was studied by
L. Veron together with colleagues in works [45, 46, 119, 120, 130, 181,
342, 392, 394, 397, 343] as well as by other authors [33, 36, 51, 107,
110, 111, 180, 330, 370].

Semilinear degenerate elliptic equations and axially symmetric problems
were considered by J. Below and H. Kaul [39].
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CHAPTER 7

Strong solutions of the Dirichlet problem for
nondivergence quasilinear equations

7.1. The Dirichlet problem in smooth domains

Let G C RN be a bounded domain with a smooth boundary dG. We
consider the Dirichlet problem

(OL)
av(x>  u> ux)uxi,xj + a(x, u, ux) = 0, Oij = a^, xeG\

\u(x) = <p(x), xedG.

(Summation from 1 to N is assumed over repeated indices.) The value
MQ = max \u(x)\ is assumed to be known.

x€G

REMARK 7.1. For the rinding of Mo see for example §10.2 [129].

Let us define the set 9Jt = {(x,u, z)\x e G, u € R,z G RN} . With re-
gard to the equation of the problem (QL) we assume that on the set 97t the
following conditions are satisfied

(A) Caratheodory for the functions a(x, u, z), ay(x, u, z) S CAR,
(i,j  = 1,..., JV); that is
(i) for\/u,z the functions a(x,u,z),a,ij(x,u,z) (i,j = 1,...,JV)

are measurable on G as the functions of variable x,
(ii) for almost allx G G functions a(x, u, z), a,ij (x, u, z)

(i,j  = l,..., N) are continuous with respect to u, z;
(B) the uniform ellipticity ; that is there exist positive constants v, fj.

independent of u, z and such that

vZ* < an (x,u, zfotj < lit2, V£ e RN;

(G) there exist a number pi and functions b(x),f(x) € Lqjoc(G), q >
N independent of u, z such that

\a(x,u,z)\ < Mikl 2 + b{x)\z\ + f(x).

Let us recall some well known facts about W2>P(G), p> N solutions of
this problem.
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DEFINITION 7.2. A bounded open set T c dG is said to be of type
(A) if there exist two positive constants g0 and 6Q such that for every ball
Br(xo), xo € T with radius r < g0 and every connected component Gr>»
of the intersection Br(xo) n G the inequality measGr  ̂ < (1 — 9o)measBr
holds.

THEOREM 7.3. (See §2 [217].) Let u e W^f (G) n C°(G) be a strong
solution of (QL) and suppose that assumptions (A)-(C) are satisfied. Let G
be of type (A) and ip € C0(G),/3 € (0,1). Then u e Ca(G), a € (0,1) and
\u(x) — <p{x)\a-Q < Ma, where a is determined by N,i/,fj,:0,6o,G and Ma

depends on the same values and also on ni,Mo, ||&|[JV, | | / | |JV, \<p\p,dG-

THEOREM 7.4. (See Theorem 2.1 [219].) Let u e Wf£(G) n C°(G)
be a strong solution of (QL) and suppose that assumptions (A) - (C) are
satisfied. Let T C dG be a piece of class W2'q, q > N. Then there is a
constant c > 0 depending only on N,u,/j,,fj,i,q, ||6||g,Mo and the domain G

such that, ifip =0, then |V«|o,r < c(l + ||/||,)

Yet let us introduce a set:

£0l(u) = {(x,u,z)\x G G, u = u(x), z = Vti(x)} .

We assume, in addition, that in the neighborhood of the set VJl  ̂ the
following condition is fulfilled

(D) the functions Ojj(x,u,z), (i,j = 1,...,N) have weak first order
derivatives over all its own arguments and there exist the non-
negative constants fiQ, /J,2, M3. ̂ 2 and the functions g(x),h(x) €
Lgtioc(G \ O), q > N independent ofu,z such that

daij(x,u,z) daik(x,u,z)N

E < /xo (1 + \-V2,

N

E
N dajj(x,u,z) 2 dakj(x,u,z)

d~u
 Zk du' ZkZi+

,
i

dai:j (x,u,z)

oxk

dakj(x,u,z)
axk

\\9(*)\\q,a:,a <
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daij(x,u,z)

du

N

+£*;=!
da,ij(x,u,z)

dxk

1/2

< h(x);

dij {x, u, z)
1/2

dzk
<

where 7 is a number from the estimate (7.3.1).

THEOREM 7.5. (See Theorems 4.1, 4.3 [217].) Let G be a bounded do-
main in RN with a W2'9- boundary portion T c dG. Let u £ C°(G) n
^(G1) n W^(G \O), q > N be a strong solution of (QL) and sup-
pose that assumptions (A) — (D) are satisfied. Let <p e C1+a(dG), a e
(0,1). Then there are the constants Mi > 0,7 € (0,1) depending only on
N, v,n,/J0,Mi,^2,M3,q,a, H/llg, ||&||g, \\g\\g, \\h\\g, \\(p\\c^+"(dG), Mo and the
domain G such that for VG' CC (GUT) the inequality

holds.

7.2. The estimate of the Nirenberg type

7.2.1. Introduction . Until recently the problem of the solution
smoothness to the boundary value problems for the second order quasilin-
ear elliptic equations of nondivergence form remained open. An exception
is Nirenberg's paper [329], in which this problem was investigated for equa-
tions with two independent variables in a bounded plane domain with a
smooth boundary. In the last decade, thanks to the efforts of many math-
ematicians, first of all O.A. Ladyzhenskaya and N.N.Ural'tseva (see their
survey [217], 1986), this problem has arrived at a definitive solution for
equations in multidimensional domains bounded by a sufficiently smooth
boundary. As concerns the equations in domains with a piecewise smooth
boundary, only the investigation [90] of I. I. Danilyuk is known. (We em-
phasize that here we are talking of elliptic nonlinear and nondivergence
equations.) There the solvability of the Dirichlet problem is proved for a
two-dimensional equation in the Sobolev space W2'p for p > 2 and suffi-
ciently close to 2.

In the present section we investigate the behavior of solutions of the
Dirichlet problem for a uniformly elliptic quasilinear equation of second or-
der of nondivergence form near a corner point of the boundary of a bounded
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plane domain. It is here assumed that the coefficients of the equation sat-
isfy minimal conditions of smoothness and coordinated growth (no higher
than quadratic) modulo the gradient of the unknown function. We first ex-
tend to domains whose boundaries contain a corner point and to equations
with an unbounded right side the method of Nirenberg [329] for estimat-
ing the Holder constant of the first derivatives of solutions. The weighted
I«2-estimate of the second derivatives of a solution obtained in this manner
(we call it the Nirenberg estimate) and the Sobolev imbedding theorems
make it possible to estimate the maximum of the modulus of a solution and
its gradient and thus establish a power rate of decay (temporarily with a
small positive exponent) of a solution in a neighborhood of a corner point.
Using the "weak" smoothness of a solution established in §7.2.4, in §7.2.5
we refine the Nirenberg estimate and obtain a weighted integral estimate
with best-possible exponent of the weight. While for the Nirenberg esti-
mate boundedness of the leading coefficients of the equation is sufficient, it
is now necessary to require their continuity. The estimate of §7.2.5 makes
it possible to obtain sharp estimates of the modulus of a solution and of its
gradient as well as weighted Lp-estimates of the second derivatives, and to
prove Holder continuity of the first derivatives of a solution with the best-
possible Holder exponent.

7.2.2. Formulation of the problem and the main result. Let
G C R2 be a bounded domain with boundary dG which is assumed to be
a Jordan curve smooth everywhere except at a point O € dG; in some
neighborhood of the point 0 the boundary dG consists of two segments
intersecting at an angle wo e (0, TT). We place the origin of a rectangular
coordinate system (xi,:^) at the point O. Let (r,w) be a polar coordinate
system with pole at O. We direct the abscissa of the rectangular coordinate
system along the ray w = 0on which one the segments of dG lies, and we
situate the ordinate axis so that the second segment of dG lying on the ray
u) = wo lies in the upper half-plane X2 > 0. For any numbers d > a > 0 we
set

G* = G n {(r,v)\ a<r<d,0<u<LJQ}

(we henceforth assume that d is a sufficiently small positive number);

I t . = {(r,0)| a < r < d}; r£a = {(r,wo)| a<r<d};
r f = r* o u r£o; sd = {(<*,w)| o < u < u0}.

DEFINITION 7.6. A strong solution of  (QL) is a function u e
W2{G) satisfying the equation of the problem for almost all x S G and
the boundary condition u — $ G WQ(G) with any $ € W2(G) such that
$(x) = <p(x), x e dG.
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The main result of this section is the proof of the following theorem.

THEOREM 7.7. Suppose u £ W2(G) is a solution of problem (QL) with
ay(0,0,0) = 8\ = the Kronecker symbol (i,j,=  1,2), conditions (A) — (C)
are satisfied, and the following quantities are known

Mo = max|u(x)| and Mi = ess sup|V«(a:)|.(7.2.1)

Suppose the functions aij(x,u,ux) (i,j = 1,2) are Dini continuous at the
point (0,0,0),

2, f € V°a(G), <p € C"'"°(dG) n #o/2(0G) n V*
p>2 a>p(2- TT/CJO) - 2, 0 < w0 <

and there exist numbers k\, k% > 0 and s > n/wo such that for all p € (0, d)
the following inequalities hold

(7.2.2) | |£ .2 | |2,Gg

(7.2.3) \\b2\\vo Ĝ;/2) + \\f\\voa{a;/2) +

Then the following assertions are true

1) u i

(7.2.4)

2) / o r 0 < p<d

(7.2.5)

(7.2.6) 1, x € Gg;

3) u € V*a(G), and

(7.2.7) ll«llv p

4) */P ^  2-x/u;

7.2.3. The Nirenberg estimate. Let $(#) be any extension of the
boundary function <p(x) into the domain G. The change of function v(x) =
u(x) — $(x) reduces the inhomogeneous problem (QL) to the homogenous
problem

, vx
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(7.2.8) F(x, v,vx) = -Oij (x, v + $, vx + $(x)  $XiXi -

where by assumptions (b) and (c) the following condition is satisfied

(7.2.9) \F(x,v,p)\ < 2»1\p\2+b(x)  \p\

By a solution of problem (QL)o we mean a function v € $0{G) satisfying
the equation of the problem almost everywhere in G. By Theorem 7.3, such
solution is Holder continuous in G, and there exists 70 E (0,1), depending
on v~1,fj,, and IOQ such that

(7.2.10) \v(x)\ < co  \x\^

with a positive constant Co depending on v~1, fi, £ti, u>o, M)> ||&2||2,G, ||/||2,G>

and ||v?||iv3/a(9G).

THEOREM 7.8. (cf. [329]; see also Chapter IX, §6 [215]). Suppose
u(x) e W2(G) is a solution of problem (QL), assumptions (A) — (C) are
satisfied, and the quantities (7.2.1) are known. Then there exists a con-
stant 7, determined by the quantities 7,/z,/ii,u;o,co,7o,d, and satisfying the
inequality

(7.2.11) 0 < 7 < 2min(70; n/u0 - 1) = 7*

such that if f,b2 G # ° r ( G ) and ip e C1(dG) D tial*.{dG), then u G

$"_7(G), and

(7.2.12) \\u\\02 (rP/2<c(d), 0<p<d.

PROOF. First of all, we consider the expression

fvx x vx X2 \

and write it in the form

2o.io „ \

+wXlX2

{0-22 2 , 2fll2 z .

\an X2X2 an V
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Because of (QL)Q, the uniform ellipticity condition (B), hence it follows

(7.2.13) ji(v
2
XlXl+2v2

XlX2+v2
X2X2)<

<2(w* -

Now, let £(r) be a cut-off function for the domain GQ, Q 6 (0, d)

(7.2.14) CM-j j  ° f *«*
[0 r>g,

0 < C ( r ) < l, IC 'WI^cg-1, 0<r<g.
Multiplying both sides of (7.2.13) by r~7C2(r) »nd integrating over GQ, we
have

(7.2.15) ^

where

(7.2.16) Ji1)^) = Jrr< 2(r)(vl lX2 - «Xli8 t;xlXa)di

and

(7.2.17) Ji2)(p) = i ; jr-^2(r) (\vXlXl\ + \vX2X2\)  \F(x,v,vx)\dx.

Repeating the computations made in the proof of Lemma 2.41, we obtain

(7.2.18) jP(p) = JW(P) + 412)(P) + 413)(P),

(7.2.19) 4nHp) = \ J r-i--*  C2(r)xiWi(x)dx,

eg

(7.2.20) 412Hp) = el  J rp~2  <; 2(r)w2(x)dx

and

(7.2.21) 413\p) = - Jr-i  CC(r) Ŵi(x)dx,



7 STRONG SOLUTIONS OF THE DIRICHLET PROBLEM

248 FOR NONDIVERGENCE QUASILINEAR EQUATIONS

where the Wi(x) are defined by (2.6.1), by virtue of which

(7.2.22) XiU
dvXl

= vx^  — vx du)

and therefore (7.2.19) can be rewritten in the form

p

(7.2.23) Ji»'(p) =  frr~2  r<; 2(r)dr f (vX2  ̂  - vXl  ^ ) d c .rC,2{r)dr  J (vX2

o

To estimate the integral J*1 we perform the transformation of coordinates.
Prom the rectangular system {x%,X2) we go over to an affine system (j/i , 2/2)
namely we place the axis OY\ along the axis OX\ (along the ray UJ = 0,)
and we direct the axis OY2 along the ray u = WQ. We then have

dvX dvX 2 9u«

5w J

Fu r the r, by t he b o u n d a ry cond i t ion v(x) = 0 , i € dG, we have

uBl (r,0) = 0, vy2{r,u>o) = O,

and hence

p

(7.2.24) r--r- 2rC2(r)dr  f {[ Vva(r,u>)-
J J >

- [vyiM ~ vyi(r,0)}

By the Holder inequality for integrals

\vVl(r,u)-vyi(r,0)\2 =

(7.2.25)
I
0

dvyi(r,0)_

<U-J dvVl(r,8)
d6

dO<ujr2- f \VvVl{r,6)\2d6,

0

and, similarly,

Wo

(7.2.26) \vy2(r,m) - vy2(r,uj)\2 < (UJ0 - u)  r2  j \Vvy2{r,e)\2d6.
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We estimate the integrals in (7.2.24) by Cauchy's inequality and consider
the estimates (7.2.25) and (7.2.26). As a result, we obtain

du+

+r 2

(7.2.27)

u  I \VvVl(r,6)\2d9 + (UJQ -ui) / \VvV2(r,6)\2d6\dw \dr <

rdx

by property 2) of the function re(x). By property 3) of this function and
Cauchy's inequality we can estimate the integral (7.2.20) as follows

(7.2.28)

Finally, applying Cauchy's inequality with V£ > 0 and considering (2.6.1),
we estimate the integral (7.2.21)

(7.2.29)

np

{2(r)v2
xx{2(r)v2
x  1V^|2J dx

Thus, from the representation (7.2.18) and estimates (7.2.27)-(7.2.29), we
obtain

(7.2.30) <  (45 + 1

| [
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We now turn to the estimation of the integral (7.2.17). Using Cauchy's
inequality, considering the condition (7.2.9), and applying Lemma 2.39 to-
gether with the inequality (7.2.10), we obtain

+ ^ ( 4M
2 + ^)cgrf270 / (r£-

7-2  C2(r) + r~7  < '>)}  |Vu|2dx+

(7.2.31) ^ Gg

-1, n, MI, Mo) / [r£-
7C2(r) (b\x) + f(x) + $2

X) +

7~2  <2(r) + Te1  (,'2{r))  |V$|2] dx, V<5 > 0, 0 < p < d.

LEMMA 7.9. Under the conditions of Theorem 1.8 we have

/ r~y~2  C2(r)\Vv\2dx <c(n,m,co,7o,1f,vo,d)x

(7.2.32) x

+  C2(r)\V®\2]dx, }  0 < p < d.

PROOF. We multiply the equality (QL)0 by rJ7~2C2(7")t;(a;) and inte-
grate it over the domain G$. Integrating by parts, we have

2) y r ^ - 4  CC(r)^(* i - e )̂w2rfx - 2
G

[ay(a;, w + $, «x + *») - ay (0,0,0)] uXiI .

(7.2.33) + | \fij(x,v + $,ux + ^ x ) ^ ^

Gg
+a(x, v + $, vx + $x) r77~2C2(r)i»(
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We estimate the integrals on the right using Cauchy's inequality, assump-
tions (B),(C), and the estimate (7.2.10) for the Holder continuity of v(x).
As a result, from (7.2.33) we obtain

r  / \ 2 / \ 2-i

x Jr^-2{2(r)\Vv\2dx + £*(/*, 7, " 0 , 0

(7.2.34) +rp-2C'2(r)2

0 < p < d, V5 > 0.

Further, by property 2) of the function re(x) and the properties of the
function £(r) with consideration of the inequality (7.2.11), we have

fr-^-2('2(r)v2dx < (ceo)2  p'2  I r^-^dx =

(7.2.35) GS
(ccp)2

27o-7
270-7-2

Since by (7.2.11) the left side of the (7.2.34) contains a strictly positive
constant factor, choosing the quantities S, d > 0 sufficiently small, we obtain
the desired inequality (7.2.32).

Returning to the inequality (7.2.15), on the basis of (7.2.30)-(7.2.32)
and the choice of the quantities 7,6, d > 0 as sufficiently small, we obtain

(7.2.36) Jr-^2(r)v2
xxdx < c(i/,M,m,7o,7,co^o,Mo,d)|p2^-^2+

Gg ^

-V2(r)|Vtfdz + J [rr< 2(r)(b\x) + f(x) + $2
X) +

+ (re-
7"2C2(r) + r^C2(r))  |V$|2]dx|, 0 < p < d.
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Finally, noting that by the hypotheses of theorem the quantities (7.2.1) are
known, in analogy to (7.2.35) we have

f rpC\r)\Vu\2dx < c2M2p-2  f r^dx =  <t&i Q-i.
J J 2-7

Therefore, by the properties of the functions re and ((r), the inequality
(7.2.36) gives

/ r~~<C,2(r)ulxdx < c(i/,/L/,/zi,Mo,7o,7,Co,d,wo)x

{ V  2 2 /-7*C2(r)(64(x) + f(x) + *2
XX)+

where 0 < p < d. Since the right side does not depend on e, passing to the
limit as e —» +0, we finally obtain

/ r'^ulxdx^

The assertion of the theorem and the estimate (7.2.12) follow from this
estimate.

COROLLARY 7.10. Suppose the hypotheses of Theorem 7.8 are satisfied
except for the finiteness of Mi . Then

f 2

J xx ~
.P/2
0

xlp-2 [\Vu\2dx+ [[b 4(x) + f2{x)}dx+\\ip\\2
3/2 p 1.

I J J ^ o (ro) I
v. r<P nf '

GP/2

(7.2.37)

PROOF. This follows from (7.2.15), the Hardy-Wirtinger inequality, and
estimates (7.2.30), (7.2.31), and (7.2.34) for 7 = 0 and sufficiently small
5, d > 0 with consideration of the properties of the functions re and £(r).
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7.2.4. The behavior  of the solution near a corner  point
(weak smoothness). In this Subsection we establish power decay of a
solution of the homogeneous problem (QL)o near a corner point.

THEOREM 7.11. Suppose the conditions of Theorem 7.8 are satisfied,
and letj>0 be the number determined by this theorem. Suppose, moreover,
that

7 fy P>2
and

(7.2.38) H/Hv^o;,,) + \\#\\v°_ja>/a) + M\v^^iK/2)  ̂ ' ^

Then

(7.2.39) |w(a;)|<ci- |a;|1+7 /2

(7.2.40) |V^(x)|<c2-|xp/2.

PROOF. The inequality (7.2.39) follows from the imbedding theorem
(Lemma 1.38) because of Theorem 7.8.

To estimate the modulus of the gradient of the solution in the ring G\ ,2
we consider the function

(7.2.41) z(x')=v(px')-p-1-^2,

assuming that v = 0 outside of G. In G\,2 this function satisfies

') p^(7.2.42) otjix') = aij(px', u(px'),

F(x') = -p1-^2  aipx'Mpx'lp-^ipx')) - p-1-7/2oii (x
/)

where by assumptions (B), (C)

(7.2.43) \F(x')\ < (  ̂ + ̂ p-1^2  \Vu\2 + pi-il\f + b2)+

To the equation (7.2.42) we apply Theorem 4.10 regarding the boundedness
of the modulus of the gradient of a solution inside the domain and near a
smooth portion of the boundary

(7.2.44) ess sup |V'z| < M[
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where M[ is determined only by u,fi,^ii,LJ0, and the integrals

o , ( f ~ , ,\ *  P

z2dx', / \F(x')\pdx' , p>2.

GJ/2

To verify the finiteness of these integrals, we have

/ z2dx' < / r~7~4  v2dx < / r~1~iv2dx < c(d)
G\,2 Gr,2 Go

by Theorem 7.8. Further, by (7.2.43) and the assumption (7.2.38) of the
theorem we have

\F{x')\Pdx'\ <c{fi,m,p)<

1/2

Returning to the function v(x), from (7.2.41) and (7.2.44), we obtain

|V«(a;)| < M[p-</2, x e GJ D Gg.

Setting |x| = 2p/3, from this we obtain (7.2.40). Theorem 7.11 is proved.

7.2.5. The weighted integral estimate. We can refine the Niren-
berg estimate on the basis of the weak smoothness of a solution established
in Subsection 7.2.4. This refinement is possible due to the requirement of
continuity of the leading coefficients of the equation.

THEOREM 7.12. Suppose u e W2(G) is a solution of problem (QL) and
the assumptions of Theorem 7.11 are satisfied. Suppose the functions
aij(x,u,z) (i,j = 1,2) are continuous at the point (0,0,0). //, in addition,

J
(K) 2 - 2-K/UJ0 < a < 2,

then u G #a(G), and

(7.2.45) \\u\\K{G) < c  (|M|2,G
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where c > 0 is a constant depending only onv 1, n, / j 1( a, LJ0, M O, M I , 70, CQ,
meas G and diam G and also on k\,p,ci and c<i of (7.2.38)-(7.2.40).

PROOF. Let re(x) be the function defined in §1.4 of Chapter 1. We
multiply both sides of (QL)0 by r"~2(x)v(x) and integrate over the domain
G, using the condition (B) and integration by parts

G

(7.2.46)

J

+ Irf-2(x)v(x){[ai:j (x,u,ux) - ^ ( 0 , 0 , 0 ) ] ^. - F(x,v,vx)}dx.
G

We decompose G into two subdomains GQ and Gd, in each of which we
obtain an upper bound for integral on the right side of (7.2.46).

Estimates in G$. By the continuity of aij(x,u, z) at the point (0,0,0)
assumed in the theorem, for any 6 > 0 there exists do(5) > 0 such that

/ 2 \V2
(7.2.47) I ^ \aij{x,u,ux) - aij(0,0,0)\2 \ < 6,

\i,j=l  )

provided that

(7.2.48) |z| + |u(x)| + |Vu(a:)|<do.

The smoothness of the boundary function tp(x) assumed in Theorem 7.11
makes it possible to conclude by Lemma 1.38 that ip(0) = 0 and
|V$(0)| = 0. Therefore, by (7.2.39) and (7.2.40) of Theorem 7.11 we have,
for any x € GQ,

\x\ + \u(x)\ + \Vu(x)\ < \x\ + \v(x)\ + \Vv(x)\ + \$(x) - <p(0)\+

+ |V*(x) - V$(0)| < d + Cld
1+^2 + c2d?'2 + \d0,

and hence (7.2.48) is ensured because of the sufficient smallness of d > 0.
With the Cauchy inequality we now estimate the integral

/
rf  2(x)v(x) [aij(x,u,ux) - aij(0,0,0)]vXiX:jdx <

(7.2.49)
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Further, by the condition (7.2.9) with the help of Cauchy's inequality and
(7.2.39) we obtain

f rf-2{x)v{x)F(x,v,vx)dx < (  ̂ + 2 / ^ cid1+7/2 f rf~2\Vv\2dx+

+ 11 + 2/ii) M0d
a~2 f \Vv\2dx + ^

GGd G

(7.2.50)

G

+cQi,tji 1,M0,5-1) f(r2r?-2$2
xx +re

Q" 2|V$|2)dx, V<5 > 0.

Estimates in G^. By condition (B) and properties of the function re(x)
we have

(7.2.51) Jr?-2v(x)[aij{x,u,ux) - aij{0,0,0)]vXiXidx <

Gd

On the basis of (7.2.49)-(7.2.51) and the inequality (2.5.8) from (7.2.46) we
now obtain for \/5 > 0

G

\ Irf~ 2\H(a,uj0) + (^+2(H)c1d
1+^2\ Irf~2\Vv\2dx+

G

G

+ — I r2ra~2(hA(r\ A- f2(r\\dr A-r(n n, MnWQ~2 / (it2 + «2 W T
2o J J

G Gd

To estimate the integral with second derivatives in (7.2.52) we apply
the method of S. N. Bernstein (see, for example, [216], Chapter III , §19).



7.2 T HE ESTIMATE OF THE NIRENBERG TYPE 257

We rewrite the problem (QL)o in the form

(7.2.53) {AV = ̂  X<£G>
v ' \«(x) = 0, xedG,

where

(7.2.54) T = - [<*y (a:,i; + $, t>K + *«) - fly(0,0,0)]vXiX. + F(x,v, vx).

We multiply (7.2.53) first by r2rf~2  vXlXl and next by r2r"~2  vX2X2, and
add the equalities thus obtained. Next we integrate the result over G

(7.2.55) f r2rf-2  v2
xxdx = f r2r«~2  Av  Tdx + 2Ja,e[v],

G G

where the last term is defined by (2.6.3) and Lemma 2.42 holds for it. We
estimate the first term on the right in (7.2.55) on the basis of (7.2.53),
(7.2.47) and conditions (B), (7.2.9)

(7.2.56) ( r2r%-2  Av  Tdx < 8X f r2r%~2  v2
xxdx+

G G

fr2r°-2(\Vv\4 + b\x) + f(x) + &xx

+ c(d, a)(l + ft) I v

G

I lx, i 0.
Gd

From (7.2.55), (7.2.56) on the basis of Lemmas 2.39, 2.40, 2.42 and with
consideration of (7.2.10) and since d, Si > 0 were chosen sufficiently small,
we obtain

/ v2r*~ 2v2
xxdx < c(a, Mo, n, measG, diamG) / (ylx + v2)dx+

G Gd

(7.2.57) + c(M0,M,Ml) j[r
a{b\x) + f(x) + *»x) +

a,Mo) /'r ^

G

The next lemma follows from Theorem 4.9 and Lemma 2.39 with a = 0.
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LEMMA 7.13.

(7.2.58) / v\xdx<c{v 1,/i,^i,c0,7o)x

f[v2(x) + b\x) + f(x)

Gd

X

Gd

From (7.2.52), (7.2.57), (7.2.58), and the condition (K) of the theorem,
by choosing S, and d sufficiently small we finally obtain

|Vu|2 + rf~*  u2)dx <
G

< c(a,u0, i/" 1,/i,HI,Mo, co,ci, j0,7,diamG,measG)x

x f[u2 + ra(b4(x) + f(x) + $L) + ra~2  |V$|2 + ra~A  $2]dx Ve > 0.
G

Passing to the limit as e —» +0, we establish Theorem 7.12 and (7.2.45).

7.2.6. Proof of Theorem 7.7.

f (

PROOF. That u belongs to the space ^ (^O follows from Theorem 7.12
for a = 2 so that to prove assertion 1) we need to prove (7.2.4). For this
we multiply both sides of (QL)Q by v{x) and integrate over the domain G^,
0 < p < d. Setting

(7.2.59) V{p) = f \Vv\2dx

we obtain

/

° dv f

v—dui + / {v(x)[a,ij(x,u, ux) - ai,(0,0,0)]i>XiX .-
v , 0

 d r Jp
- v(x)  F(x,v,vx)}dx.

We shall obtain an upper bound for each integral on the right. For the first
integral we have Corollary 2.29

UlQ

(7.2.61) p I v—dui <  V'(p).
o

Condition (7.2.3) of the theorem ensures that (7.2.38) is satisfied, and
hence estimates (7.2.39) and (7.2.3) of Theorem 7.11 are valid. On the
basis of these estimates and the assumed Dini continuity of the functions
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a,ij (x, u, ux) at (0,0,0) and the smoothness of the boundary function <p(x) it
is not hard to establish the existence of a positive, monotonically increasing
function S(r), continuous on [0,d], which satisfies a Dini condition at zero
and is such that

\ V2
oy(a;,ii(a;),uB(z)) -ay(0,0,0)|a J < S(p), \x\ < p.

In fact, by Dini continuity, we have

/ 2 \ 1/2

aij(x,u(x),ux(x)) - ai:j (0,0,0)|2 < A(\x\ + \u(x)

where A(t) satisfies the Dini condition at zero, that is / —p- < oo. But from
o

estimates (7.2.39) and (7.2.3) it follows

/
o

|s| + |«(x)| + |Vu(x)| < \x\

Hence we obtain

A(\x\ + \u(x

x|7/2 < c|x|7/2.

= 5(r),

where

fS{r), [Aicr"/' 2), 2 f
/ -^-dr = I — Ldr = -

J r J v l i
0 0 0

2 f A(t)), f () MLdr = - —^-dt < oo.lit
0 0 0

Therefore, by the Cauchy inequality we obtain

/ v(x)  [a,ij(x,u,ux) - aij(0,0,0)]vXiXjdx <

(7.2.62)

9Po
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Finally, on the basis of (7.2.8) and by the condition (7.2.9) and the Holder
continuity of the function v (inequality(7.2.10)), we obtain

/ v(x)  F(x,v,xx)dx <

(7.2.63) < (1 + 2/i1)c0p
7o^(p) + (1 + ii)p*  J r~2v2dx

eg

$2
xx + b\x) + f2(x)) + |V$|2] dx, V5 > 0.J

From (7.2.60) on the basis of (7.2.61)-(7.2.63), the Hardy-Wirtinger inequa-
lity for a = 2, and the estimate (7.2.37) of Corollary 7.10 it now follows
that the function V(p) satisfies the differential inequality (CP) from §1.10
of the Preliminaries, in which

V(p) = ^~ - 2co^ (i + 2M l ) ^ - X + - / ^
UJP Wo 2 7T

Af(p) = —p~15(p)c(v: n, m, Mo,Co,70,w0),wo

(7.2.64) Q(p) = —kp2*- 1-5 k = k\- c(ji, Mi, Mo)  (1 + 22s),
Wo
V0 = V(d) <M?

o,2s-2—V

(Here fci and s are defined in condition (7.2.2).) According to Theorem
1.57 the estimate (1.10.1) holds, which together with (7.2.37) leads to the
desired estimate (7.2.4).

The estimate (7.2.5) now follows from the imbedding theorem (Lemma
1.38) and from (7.2.4).

To prove the remaining assertions of Theorem 7.7 we apply the method
of rings and arguments analogous to those in the proof of Theorem 7.11.
We perform the coordinate transformation x = px'. In G\,2 the function
z{x') = p~xv(px') satisfies (7.2.42) and (7.2.43) with 7 replaced by 2(A-1).

By the Sobolev-Kondrashov theorems on imbedding of function spaces
we have

/ \
(7.2.65) ( I \Vz\pdx' J < c (z2

x,x,+z2)dx'\ , Vp>2
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and

<7.,86, sup
-'5/8

sup
*VeG$

We consider (7.2.42) as a linear equation whose leading coefficients are Dini
continuous. By Theorem 10.17- the Lp-estimates for the solution inside the
domain and near a smooth portion of the boundary, we have

(7.2.67)
'1/2

yp>i,

Returning to the variable x and the function v(x), from (7.2.64)-(7.2.66) by
(7.2.43) and (7.2.4) we obtain

i / p

(7.2.68)

and also, considering the smoothness of the boundary function,

sup  sup | V " ( a)

(7.2.69) <

( /

f
'p/2
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and

(7.2.70) ||v| I {ra\Vv 2p_

ra-2p\v\p)dx

I/P

I / P

We now note that by the estimate (7.2.5)

(7.2.71) fr-p-2\v\pdx < cf  I' r{x~1)p-2dx =

-, A = n/uj0 > 1

and

(7.2.72) fra~2p\v\pdx < c?  f ra+(-x~2)pdx = ^ ° _ p

if A — 2 +  ̂ > 0. In addition, we also have

(7.2.73)

and

(7.2.74)

\Vv\2pdx)1/P < QM2 < M2QX'1

G p / 2

( j ra\Vv\2pdxy/P < CMIQ2? < o*-2+-

G1
p/2

since 1 < A < 2.
From (7.2.69), on the basis of (7.2.71), (7.2.73)and (7.2.3), we obtain

(7.2.6). This concludes the proof of assertion 2) of Theorem 7.7. The
assertion 3) and (7.2.7) follow in exactly the same way from (7.2.70) on
the basis of (7.2.72), (7.2.74), and assumption (7.2.3). Finally, suppose the
conditions of assertion 4) are satisfied. Returning to (7.2.69), by (7.2.71),
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(7.2.73), and (7.2.3) we have

\Vv(x)-Vv(y)\ < _ ,.|ir/aio-l-x

(7.2.75) 7 o /8 77 2
V*>yeG#2, x=--2+-<0.

By the definition of the sets G5 / 8 we have |x — yY* > (jp)x, since xr < 0.
Therefore, from (7.2.75) we obtain

|Vt>(x) - Vv(y)\ <c-\x- yy^-\ Vx,y €

whence assertion 4) follows. Theorem 7.7 is proved.

7.3. Estimates near a conical point

7.3.1. Introduction . In §7.2 we have investigated the behavior of
strong solutions to the Dirichlet problem for uniform elliptic quasi-linear
second order equation of non-divergent form near an angular point of the
boundary of a plane bounded domain. There in particular it is proved that
the first order derivatives of the strong solution are Holder continuous with
the exponent -^— 1, if -̂  < WQ < TT and this exponent is the best possi-
ble. (a>o is an angle of intersection of segments of the domain boundary
in the angular point.) Two-dimensionality of the domain is stipulated by
Nirenberg's method which we have applied to obtain the estimate

(7.3.1) |«(x)| < CO|Z|1+T

with a certain 7 G (0,1) in the neighborhood of an angular point. Other re-
sults of §7.2 do not depend upon two-dimensionality of the domain and may
be obtained by the methods presented in §7.2 in the multidimensional case.
First we build the barrier function and with the aid of the Comparison Prin-
ciple establish the estimate (7.3.1) with a certain now small 7 > 0. Then, by
the layers method, using the results of Ladyzhenskaya-Uraltseva-Lieberman
[217, 219, 224] and the estimate (7.3.1), we establish the estimate

(7.3.2) |Vu(x)| < ci|x|T.

On the basis of (7.3.1), (7.3.2) we prove the integral weight estimates for
the second generalized derivatives of the solution with the best weight ex-
ponent. These estimates allow us to obtain exact estimates of the solution's
moduli and its gradient and weight .^'-estimates of the second generalized
derivatives of the solution and also to prove the Holder continuity of the
first derivatives of the solution with the best Holder exponent.

DEFINITION 7.14. A strong solution of the problem (QL) is the function

«(*) € Wt(G \ O) n C°(G), q > N
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satisfying the equation of the problem for almost allx G G and the boundary
condition of the problem for all x G dG. The value MQ = max|u(x)| is

x€G
assumed to be known.

We shall further assume throughout that the below conditions are sat-
isfied

(S) for Veo > 0 there exists do > 0 such that

G$° = \x G G|arccos(—) < £ - so\ <S> G °̂ C {xN > 0}  ̂  A > 1;

(J) ip{x) G W2-*' q{dG), q>N; Oy(s,u,«) G W^SR), 4 > iV;
fftere eaiŝ  a number j3 > — 1 and nonnegative number k\ such that

(7.3.3) &(*) +/ (* )<* ! M" .

ty/iere functions b(x), f(x) are from the condition (C).

7.3.2. The barrier function. Let Go = Gg0 be an infinite cone,
where Go C {xjy > 0}  and To is a lateral surface. We consider the se-
cond order linear operator

£0 = fl ijW^; <Jl(x) = a^(x), x e Go,

v? < aij(x)tej < /i^2 Vx e Go, V£ e M.N; v,n = const > 0.

LEMM A 7.15. (About the existence of the barrier function). There exist
a number h > 0, determined only by Go, a number 70 and a function
w(x) E G1(Go)nG2(Go) depending only on Go and ellipticity constants u,fi
of the operator LQ such that V7 £ (0,70]

(7.3.4) Low(x) < -vh^xp-1, x e Go

(7.3.5) 0 < w(x) < |x|1+7 and |Vt»(x)| < 2(1 + /i2)1/2|x|7, x G Go".

PROOF. We set x' = (xi, ..XN-2), % = a;jv-ii 2/ = XN- In the half-
space y > 0 we consider a cone AT with the vertex O such that K D Go
which it is possible since Go C {y > 0} . Let d/sT be the lateral surface of K
and the equation of dK n (xOy) isy =  so that inside K the inequality
y > h\x\ is true. We consider the function

(7.3.6) w(xr;x,y) = (y2-h?a?)yf-1
t JGR.
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Renaming the operator Lo coefficients: aN 1<N 1 = a,
a^"1^ = b, aN'N = c we get

Low = awxx + 2bwxy + cwyy,

(7.3.7)

vry2 < ar)l + 2br)ir]2 + cq\ < ^n2,

where rr2 = r\\ + rj2. VJJI, T?2 £ M.
We calculate the operator LQ on the function (7.3.6)

Low = -tfyi-V(7). t = x/y, \t\ < I/ft,

(7.3.8)

=  2(a - 2bt + ct2) - (3ct2 - Abt + cft"2)7 - c(h~2 - i 2)7
2.

Since, by (7.3.7), ip(0) = 2(o - 26i + ct2) > 2v and ^(7) is the square
function, then it is obvious that there is a number 70 > 0, depending only
on v,n,h such that ^(7) > v for 7 6 [0,70]. Prom (7.3.6) and (7.3.8) we
now obtain all the statements of our Lemma.

7.3.3. The weak smoothness of solutions. The above constructed
function and the Comparison Principle (see Theorem 4.4) allow us to esti-
mate u(x) in the neighborhood of conical point. Without loss of generality
we assume ip(x) = 0.

THEOREM 7.16. Let u(x) be a solution of (QL) and satisfy the condi-
tions (S), (A), (B), (C) on the set 9Jl(u\ Then there exist nonnegative num-
bers d < d0,7 defined only by values v, /x, N, k\, /?, 70, do, Mo and the domain
G such that in GQ the estimate (7.3.1) holds with a constant CQ, indepen-
dent of u(x) and defined only by the values i/,/j,,N,ki,l3,jOido,Mo and the
domain G.

PROOF. We consider the linear elliptic operator

alj(x) = a,ij(x,u(x),ux(x)); and a*(or) = 6(ar)|Vu(x)|~1ua;i(a;),

where we assume al(x) =0, i = 1,..., N in such points x, for which
|Vu(x)| = 0. Let us introduce the auxiliary function

(7.3.9) v(x) = -1 + exp(i/~Viw(a;))-
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Then we get

Lv(x) = i/"V i (axj(x)uXiXj + v'1 n^(x)uXiuXj + 6(x)|Vu(x)|) x

x exp(z/~1^itf(x)) = ^ "V i j (&(x)|Vu(x)| - a(x,u(x),ux(x)) +

+ v~1nialj{x)uXiuXj lexp (v~1/iiit(x) ) > —v~ 1/j,if(x) exp(u~ViM))

in virtue of the assumptions (£?), (C). By the condition (7.3.3), now we
obtain

(7.3.10) Lv{x) > -iz-VifciT^exp^-ViMo) , x e Gd.

Let 70 be the number denned by the barrier function Lemma and the number
7 satisfies the inequality

(7.3.11) 0<7<min(7o, /3+l).

We calculate the operator L for the barrier function (7.3.6) thusly

Lw(x';x,y) = -h^-

- 2h2xy~>-1)1^) < - ^ V " 1 + 2(1 + h)by\ V(z'; x, y) e Go.

Returning to the previous denotations and considering the inequality (7.3.3),
we get

Lw{x) < (-uh2 + 2(1 + h)k1(i
1+0) ri-\ x e Gg.

Now let the number d £ (0, do) satisfy the inequality

Then finally we have

(7.3.13) Lw(x) < - - i / f tV" 1, x G Gjj.

Now let us define a number A

(7.3.14) A > 2k1n1u-2h-2 exp(M0/xi/r^).

Then from (7.3.10) and (7.3.13) with regard to (7.3.11) it follows

(7.3.15) L(Aw(x)) < Lv(x), x e Gg.

In addition, from (7.3.5) and (7.3.9) it follows

(7.3.16) Aw(x) > 0 = v(x), x s rg.
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Now we compare the functions v and w on Q^. In virtue of the assumption
(S) we have on the set G n { r = d} n {arjv-iCxjv}  that

XN-I = dsint?, XJV = dcost?, |tf| < 7r/2 — eo, where d < do,

and there is a cone K D Go such that 0 < h < tan eo (see the proof of the
barrier function Lemma). Prom (7.3.6) it follows

(7.3.17) w > d1+7(sin£0)
7~1(sin2£0 - fc2cos2£0) > 0.

r=d

On the other hand, by Theorem 7.3 we have \u(x)\ < MQ|a;|a, where a G
(0,1) is determined by u~1,/j,, N and the domain G, but Ma is determined by
the same values and Mo,fci,/3, do. Therefore, by the well-known inequality
e* - 1 < 2t, if 0 < t < 1, we have

(7.3.18) v(x) < -1 + exp(v-1fi1Mad
a) < 2v-lnxMad

a,
r=d

if d is so small that

(7.3.19) d < (2mMai/-
1)-1/a

holds. Choosing a number A so large that the following inequality

(7.3.20) A > 2i/-ViM Qda-1-7(sine0)1~7(sin2 e0 - h2 cos2 eo)"1

would be satisfied, from (7.3.17) and(7.3.18) it follows that

(7.3.21) Aw(x) > v(x), x € fid-

Thus, if d e (O,do) is chosen according to (7.3.12), (7.3.19), the number
7 is chosen according to (7.3.11), and A is chosen according to (7.3.14),
(7.3.20), then from (7.3.15), (7.3.16), (7.3.21) we obtain

Lv(x) > L(Aw(x)), xeGi and v(x) < Aw(x), x e dG^.

In this case and because of the Comparison Principle (see Theorem 4.4), we
have v(x) < Aw(x), x € Gfi. Returning to the function u(x), from (7.3.9)
we obtain

u(x) = i/fi^1 ln(l + v(x)) < ufi^1 ln(l + Aw(x)) < Av^wix), x e Go-

In the analogous way the inequality u{x) > —Af^i1w(x),x G GQ is proved,
if we consider v(x) = 1 — exp(—U~1/J,IU(X)) as an auxiliary function. By
(7.3.5), the proof of our Theorem is complete.

Basing on the layer method and the assumption (D), we can now prove
a gradient bound for solutions near a conical point.
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THEOREM 7.17. Let u(x) be a strong solution of the problem (QL),
q > N and the assumptions (S), (A) — (J) on the set fUR  ̂ are fulfilled.
Then in the domain G$, 0 < d < mm(do,d) the estimate (7.3.2) is true
with a constant c\, depending only on u'1, fj,, p,o, t^i, ̂ 2,u,q, P,J,KI, K2, Mo
and the domain G.

PROOF. Let us consider in the layer G\,2 the function
v(x') = p~1~"'u(px'), taking u = 0 outside G. Let us perform the change
of variables x = px' in the equation (QL). The function v(x') satisfies the
equation

(QL)' a^(x')vx.iXl.=F(x'), x' e G\/2

where

F(x') = -P
1-'1a(px',p^v(x'),p''vx,(x')).

By Theorem 7.5 with regard to assumptions (A) — (D)

(7.3.22) vraimax|V't;| < M[,
Gl/2

where M[ is determined only by v, fj,, //i, fci, Co, MQ, fl, 7, N, q. Returning to
former variables from (7.3.22) we obtain

\Wu(x)\<M[p\ x€Gp
p/r

Taking \x\ = 2p/3, we arrive to the sought estimate (7.3.2). The Theorem
is proved.

Let us now establish a "weak" solution smoothness of the problem (QL)
in the neighborhood of a conical point.

THEOREM 7.18. Let u(x) be a strong solution of (QL), q > N and
the assumptions (S), (A) — (J) are fulfilled. Let 70 be the number defined
by the barrier function Lemma. Then u(x) € G1+1(G^) for some d £
(0, min(d0, rf)) and V7 e (0,7*], where 7*  = min(70; /3 + 1; 1 - N/q).

PROOF. Let a number d e (0, min(do, d)) be fixed so that the esti-
mates (7.3.1), (7.3.2) are satisfied according to Theorems 7.16, 7.17. Let us
consider in the layer G\ ,2 the equation of (QL)' for the function v(x') =
p"1 ru(px'). By the Sobolev-Kondrashov imbedding Theorem 1.33

Vî y
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Let us verify that for the solution v(x') we can apply Theorem 4.6 about
L9-estimate inside a domain and near a smooth boundary portion. In fact,
by the assumption (A) — (J) and the imbedding theorem, the functions
Ojj (x, u, z) are continuous on the set VJt^, that is for Ve > 0 there exists
such rf(e) that

\a,ij(x, u(x), ux(x)) - Oij(y, u(y), ux(y))\ < e,

as soon as

\x - y\ + \u(x) - u(y)\ + \ux(x) - ux(y)\ <r}(e), Vx,y G Gp
p/2,p G (0,d).

The assumption (D) guarantees the existence of the local a priori  estimate
inside the domain Gp,2 and near a smooth portion of the boundary T^/2,
namely there exist the number x > 0 and the number Mi > 0 such that

u{x) - u(y)\ + |Vu(s) - Vu(i/)| < Mx\x - yf, Vx,y € Gp
p/2, p e (0, d).

Then the functions aJJ(a;') are continuous in GL2 and consequently are
uniform continuous. It means that for any £ > 0 there exists S > 0 (we
choose the number S such that 5d + M^Sd)* < rf) such that |oy'(x') —
a%i(y')\ < e, if only \x' — y'\ < S, Vx',y' G G\,2. We see that the assump-
tions of the theorem about the local Lq a priori  estimate for the {QL)' are
satisfied. By this theorem, we have

(7.3.24) ||v||«ig:Gi <c4 f
' J

with a constant C4, independent of v and o, and being determined only by
N, v, fi,Hi,7,/?, ki, q, Mo,Mi , do,d. The estimate (7.3.1) gives rise to

2p

(7.3.25) f \v\qdx' = f g-q{1+^\u(x)\qg-Ndx < cq,7mesn f — <

p/4

< c,j7mesf21n8.
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In the analogous way, by the assumption (C) together with the inequality
(7.3.3) and the estimate (7.3.2), we obtain

f P*
1-1''>\a(ia?,p1+tv,p'vx>)\ t>dx'<ifl<- 1-i)-N /" (A*I|VU | ,2 +

2p

+6(x)|Vu| + f(x))qdx < 2Ndq-1p^1-j)mesn f {^r2^-1

Gp/i

since 0 < 7 < 1 + /3. From(7.3.24)-(7.3.26) it follows

(7.3.27) H«ll2,,;Gj/a <c(JV,i/,/*,Aii,7,A*i,g,Mo,Mi,eto,ci).

Now from (7.3.23) and (7.3.27) we obtain

where c5 = c(JV, 1/, fi,^1,7,/3,fei,g, Mo, Mi,Co,ci,G).
Returning to the variables x, u, we get

Now let us recall that by the assumptions of our theorem q > N/(l — 7).
Let us put r = 7 - 1 + N/q < 0, then from (7.3.29) it follows

|Vu(:c) - Vu(y)| < c5)o
T|x - yp~r Vx,y e G /̂a, p e (0,d).

By the definition of the set Gp ,2, \x — y\ < 1p and consequently
x — y\T > (2/o)r, since r < 0. Therefore

(7.3.30) sup | V ^ ) V ^ ) l < 2 - 7 c 5 ) (

Now, let x, y e GJf and Vp € (0, d). It x,y £ Gp
p/2, then (7.3.30) is fulfilled.

If \x — y\ > p = \x\, then, by the estimate (7.3.2), we have
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From here and (7.3.30) we conclude that

IVu(x) — Vu(y)|
sup j 1 < const.

This inequality together with the estimates (7.3.1), (7.3.2) means u(x) €
C1+7(G$). Our theorem is proved.

7.3.4. Estimates in weighted spaces. On the basis of the estimates
of §7.3.3 let us now derive the weighted integral estimates of the weak second
order derivatives of strong solutions and establish the best-possible weighted
exponent. For the simplicity, we take <f(x) = 0.

THEOREM 7.19. Let u(x) be a strong solution of the problem (QL),
q > N and the assumptions (S), (A) — (J) on the set SUl̂ "̂  are fulfilled. In
addition, suppose

Then there exist positive numbers d, C2, independent of u{x) such that if
b(x),f(x)€V£a(G) and

(7.3.31) 4-iV-2A<a<2,

then u(x) e V^a(Go' ) and the estimate

(7.3.32) I {rau2
xx + rQ~2|Vu|2 + ra~4u2)dx <c2 f (u2 + \Vu\2+

is true, where d and C2 are defined by the values N, u, fi, fix,7, f3, k\, q, do,d,
Mo, Mi , A, a and the domain G.

PROOF. 1. 2 - JV < a < 2.

In this case, by the estimates (7.3.1), (7.3.2),

(7.3.33) f(ra-2\Vu\2 + ra~\2)dx < c(a,N,

Now we obtain the weighted estimate of the second order weak derivatives
of the solution in the following manner. Let us fix d e (0,min(d,do)] and
consider the sets G^-k\k = 0,1,2,.... Let us perform the change of variables

x = (2-kd)x',u((2-kd)xr) = v(x')
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in the equation of the problem (QL). As a result the domain G  ̂ of the
space (xi,..., XJV) transforms at the domain G\,2 of the space (x[,.., x'N),
and the equation takes the form

aij(x')v<x, = F(x'), aij(x')=aij((2~kd)x',v(x'),d-12kvx,),

F(x') = -{2-kd)2a((2-kd)x',v(x'),d-12kvx,).

To its solution let us apply the L2-estimate inside the domain and near a
smooth boundary portion. (To us the possibility this estimate is substanti-
ated under the proof of Theorem 7.18. See the inequality (7.3.24).)

(7.3.34) j v2
x,x,dx'<c4 f (v2(x')+F2(x'))dx'

where the constant C4 is independent of v and F and is determined only by
the quantities pointed in (7.3.24). In the inequality (7.3.34) we return to
former variables and taking into account the definition of the sets G  ̂ we
arrive at

(7.3.35) / rau2
xxdx < c4 f (ra" V + raa2(x, u, ux)) dx.

We sum the inequalities(7.3.35) over k = 0,1,.., [Iog2((i/e)] We € (0, d) and
we get

(7.3.36) fraulxdx<C4, f (rQ~V +r aa2(x,u,ux))dx.

Taking into consideration the finiteness of the integral (7.3.33) and because
of the assumption (C) and the estimate (7.3.2) from (7.3.36) it follows that

(7.3.37) I rau2
xxdx < c4c(j, d, Cl) f (ra-4u2 + raf(x) + rab2(x)+

where c\ is independent of e. Therefore, by the Fatou Theorem, in (7.3.37)
one can perform the passage to the limit over e —> +0 and as a result we
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get

(7.3.38) I raulxdx <

dx.<d f (ra-Au2 + raf{x) + rab2(x) + r"

The inequality (7.3.38) together with (7.3.33) means that u(x) g V2
2
a(G$).

We are coming now to the derivation of the estimate (7.3.32).
Let £(r) € C2[0, d] be the cut-off function on the segment [0, d]

C(r) = l, ifr€[0,d/2],
0 < C ( r ) < l, iir  e [d/2,d],
< = 0, if r > d,

= C(d) = 0.

G%

We multiply both parts of the problem (QL) equation by C2(r)rtt 2u(x)
and integrate over the domain GQ. Taking into account the assumption
ay (0,0,0) = 8\, twice integrating by parts we obtain

C2(r)rQ-2|Vu|2dx + ^^{N + a-4) f(?(r)ra-Au2{x)dx =

GQ

(7.3.39) = f ((N + 2a - 5)C<VQ-3 + CC"ra~2 + £'2ra-2)u2(x)dx+

+  / C2(r)r a~2u(x)(^{ai:j (x,u,ux) - aij(0,0,0)}uXiXj + a(x,u,ux)Jdx.

From the assumptions (̂ 4), (D), (J), by the Sobolev Imbedding Theorem,
it follows that ay(x, u,z) are continuous at any point (x, u, z) g SDt̂ "'
(i,j  = 1,...,N) and in particular at the point (0,0,0). This means that
for V<$ > 0 there exists dg > 0 such that

(7 % A(W In- (T nlv  ̂ 11 (rW — n- (0 0 fil l <r  fi

as soon as

(7.3.41) |x| + |u(x)| + |Vu(x)| < ds.

By the estimates (7.3.1), (7.3.2),

(7.3.42) |x| + |u(x)| + |Vu(x)| < d + cod1+7 + cid7 Vx € G .̂
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Let us now choose d > 0, maybe more smaller than before such that the
inequality

(7.3.43) d + corf1+7 + cxd
7 < ds

would be fulfilled. Then the inequality (7.3.40) is fulfilled and therefore, by
the Cauchy inequality and the (7.3.38), we get

Gd

(7.3.44) J C2(r)r a-2{aij(x,u,ux) - aij(0,0,0)}uuXiXjdx < 6 j <?{r)

x ra-2\u\\uxx\dx < - f(rau2
xx+r a-'tu2)dx <

Gt

< | (1 + C4) I (ra-4u2 + raf2(x) + rab2(x)+ra-2\Vu\2)

Further, by the assumption (C), the estimates (7.3.1), (7.3.2) and the
Cauchy inequality, we have

f (2(r)r a-2u(x)a(x,u,ux)dx < mcod1  ̂ f (2(r)r a-2\Vu\2dx+

Gd Gd
0

+-(Cld
7 + 5) I C2(r)r a-4u2(x)dx + ^CKF f (?{r)rab2{x)dx+

Gd Gg

(7.3.45) + ^ f C2(r)r af(x)dx, V6 > 0.

at

From (7.3.39), (7.3.44), (7.3.45) it follows that

^(r)r
a-2\Vu\2dx + ?—^(N + a - 4) f (1{r)r a-iu2(x)dx <

Gd

<cs{5 + d?) f (ra" 2|Vu|2 + ra-4u2)dx + cs f ra(b2 + f)dx+

Gld Gld

(7.3.46) +c7 I (\Vu\2+u2)dx V5 > 0, where

CQ = c(/ii,co,ci,c4),c7 = c(/xi,co,ci,c4,A
r,a,7,d), c8 = c(5,7,ci,c4,d).

Gd
Q
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If N + a — 4 < 0, then let us also use the inequality (2.5.3). As a result we
have

(7.3.47) C(X,N,a) f ra-2\Vu\2dx <cg(8+ dTf) f ra-2\Vu\2dx+

cio / l|vu| + u +r  [b +j  )jdx Vo > U,

where

C(\,N,a) = 1 - ^-7^(4 -N- a)H(X,a,N) > 0 (by (7.3.31)),

eg = c(/ni,co,ci,c4,iV,a,A), ci0 = c(fjbi,co,ci,(n,N,a,j,d,8).

Now we choose the numbers 8 and d such that

(7.3.48) 8 =  icj "

(7.3.49) q>d~< <hj{\,N,a)

Then from (7.3.47) we finally obtain the inequality

(7.3.50) J r"-2\Vu\2dx <  C*X°™N) J (I Vu\2 + u2 + r°(b2 + f))dx,

being true only for a d E (O,mindo. )̂ such that (7.3.49) and (7.3.43) are
fulfilled with ds being determined by the continuity of a,ij(x, u, z) at (0,0,0)
for a 5 from the equality (7.3.48). The inequality (7.3.50) together with
(7.3.38) and (2.5.3) leads us to the desired (7.3.32).

2. 4 - i V - 2 A < a < 2 - 7 V.

By the assumption (J), we have b(x),f(x) e ^2-iv(^o)i consequently,

u{x) € #2-JV(GO/ 2) ,
 t h at i s

(7.3.51) f (r2-Nu2
xx + r~N\Vu\2 + r~N-2u2)dx < oo,

which was proved in the case 1).
Now we use the function r£(x) defined in §1.4. We consider again the

inequality (7.3.34). We multiply both parts of this inequality by
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(2~kd + e)a~2 with any e > 0 and take into account that in G  ̂ we have
2~k~ld + £ < r + e < 2~kd + e. Then returning to former variables we get

f r2(r + £)
a-2u2

xxdx < c4 f (r~2{r  + e)a~2u2+

+ (r + e)aa2(x,u,ux))dx.

Hence, by the Corollary 1.12, it follows that

/ r2r*~ 2u2
xxdx < c4 / (r~~2r"~2u2 + r"a2(x,u,ux))dx.

Summing this inequalities over all k = 0,1,2..., we obtain

(7.3.52) ( r2r«-2u2
xxdx < c4 / {r~2r?-2u2 + r°a2(x, u, ux))dx.

Let us now multiply both parts of the problem (QL) equation by
C,2{r)r^~2u{x) and integrate over GQ; twice having applied the formula of
integration by parts. As a result we have

j (2(r)r?-2\Vu\2dx = ^-y^( 4 - N - a) f (2{r)r?-4u2(x)dx+
Gd

Q at

+ J u2(x)(2(a-2)(C(xi-di)^rr i + N<;('r- 1rr 2 + <;' 2rr 2

+tt"rr 2)dx + J e{r)rr2u{x) ((ay (*, u, ux)-
Gi

(7.3.53) -0^(0,0,0) ) ^̂  +a(x,u,ux)^)dx.
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Let d e (0, min(d, do)] be so small that (7.3.43) is fulfilled, and consequently
(7.3.40) is fulfilled too. Then, by the Cauchy inequality,

f C2(r)r^-2(aij(x,u,ux) -ay(0,0,0))uua.i I ,dsr <

(7.3.54) < SJ CVjrr

0.

Similarly, by the assumption (C) in view of the estimates (7.3.1), (7.3.2),

(7.3.55) I C2(r)rf- 2u(x)a(x, u, ux)dx <

<  c i o ^ 1 + 7 j C2(r)rr 2\Vu\2dx + Cl<F + 5 )J C2(r)rr 4u2dx+
Gi Gi

+\ci<P J e(r)r?b2(x)dx + 1 1 C2(r)rff 2(x)dx, V5 > 0.

Prom (7.3.52) - (7.3.55) with regard to the properties of r£(x) (see §1.4) and
C(r) it follows

d'2
rr 2\Vu\2dx < cutjiucuci^diS) j r?(x)(b2 + f)dx+

(7.3.56) + i (« + cuTr + (2-a)(4-JV-Q)) frf-4u2

rf~2\Vu\2dx+

f r-2r?-2u2dx.

The second integral on the right we estimate with the aid of (2.5.8), but
for the bound of the latter integral on the right we use Lemma 2.32. As a
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result from (7.3.56) we obtain

C(X,N,a) f rf-2\

(7.3.57)

,d/2
0

f+cu f (u2 + \Vu\2 + raf2(x) + rab2(x))dx, V<5 > 0

with C(N, X,a) being the same as in (7.3.47). Let us now choose 5 and d
as the following

(7.3.58) S =  + ̂  ̂ 2))~\

(7.3.59) \cid~<H(A, a,N) + cnd27+2 < ]c(X,a,N).
2 4

Then from (7.3.57) it follows

(7.3.60) / r?-2\Vu\2dx <  c ^ 4 / (u2 + |Vu|2 + raf(x)+

Go Go

+ rab2(x))dx, Ve>0.

Finally, from (7.3.52) and (2.5.8) with regard to the assumption (C) and
the estimates (7.3.1), (7.3.2), because of (7.3.60), we have

(7.3.61) / (r2rf-2u2
xx + r^-2|Vu|2 + T£~\2)dx <

<c2 f (u2 + |Vu|2 + raf2(x) + rab2(x))dx

for any e > 0, where ci = c(N,X,a,u,fi,fj.i,j,p,ki,q,Mo,do,d) and in-
dependent of s. The inequality (7.3.61) holds for a d e (0, min(do, d)} for
which (7.3.59) and (7.3.43) are fulfilled with dg, being determined by the
continuity of â  (x, u, z) at (0,0,0) for S, being assigned by (7.3.58). Taking
the limit e — +0 in the inequality (7.3.61), we get the desired estimate
(7.3.32) by the Fatou Theorem.
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REMARK 7.20. By the continuity of the equation leading coefficients at
the point (0,0,0) and in virtue of estimates (7.3.1) and (7.3.2), the condi-
tion a,j(0,0,0) = Sj, (i,j = 1,. .. ,N) of our theorem is not implied to be
restrictive. In fact, there exists the orthogonal transformation of coordi-
nates, which transforms an elliptic equation with leading coefficients which
are frozen at the point to canonical form. Main part of this canonical form
is Laplacian.

THEOREM 7.21. Let u(x) be a strong solution of the problem (QL),
q > N and the hypotheses of Theorem 7.19 are satisfied. In addition, sup-
pose that f3 > A—2. Then there exist positive numbers d and ci5 independent
of u(x) and being defined only by the quantities from hypotheses (B) — (J)
and by G such that u(x) € #4_JV(G0 ' 2 ) and the inequality

(7.3.62) |«| »̂ N(QPQ) < c15p
x, p € (0, | )

holds.

PROOF. The belonging of u(x) to Wl_N(G%2) follows from Theorem
7.19, therefore it is required to prove only the estimate (7.3.62). We set

(7.3.63) U(p)= fr2-N\Vu\2dx.

Let us multiply both parts of the (QL) equation by r2~Nu(x) and integrate
over the domain GQ, p € (0, ̂ )

(7.3.64)

n

+ / u(x)r2~N({ai j(x,u,ux) - aij(0,0,0)}uXiX. +a(x,u,ux)jdx.

Let us use an upper estimate for every integral on the right. The first
integral is estimated by Corollary 2.29. By the assumption (C) and the
Cauchy inequality with
S = p£, V£ > 0 with regard to (7.3.1) and (7.3.2), we have

/

1 r, _

r2~Nu(x)a(x,u,ux)dx < fiiCop1+JU(p) + -CipJ / \r~"u

+ rA-Nb2(x)}dx + i / (p£r-Nu2 + p-er4-Nf2(x)) da
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Let us also apply the inequality (2.5.3) with a = 4 — N and also (7.3.3).
Thusly

(7.3.66) j r2-Nu(x)a(x, u, ux)dx < (MICOP1+7 + ^H(X, N, 4 - N) x

) -£, Ve > 0, s = p+2 > A.

Further

aij(x,u, z) - aij{0,0,0) = (ay(0,0, z) - aij{0,0,0)) +

+ (aij(x,u,z) -a,ij(0,0,z)).

Prom the assumption (J), by the Sobolev imbedding Theorem, taking into
account the estimates (7.3.1) and (7.3.2), we have

/ N \V2
Y, |ay(a;,«(a;))uI(x))-ai j -(0,0,0)|2) <S(p), \x\ < p

S(p) =c(N,q,co,c1,j,d)p1, pe (0,-),

where 0 < 7 < 7*  = min(70; 1 + /?; 1 - j).
Therefore applying the Cauchy inequality, the (7.3.38), the inequality

(2.5.3) with a = 4 - N, and the condition (7.3.3) we get

/ r2~Nu(x)(aij(x,u,ux) - 0^(0,0,0))uXiX;i .da: <

u2
xx + r-Nu2)dx <  N)S(p)U(p)+

(7.3.67)

+ | ( F ( A, N, 4 - TV) + l)S(p)U(2p) +
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Prom (7.3.64) basing upon Corollary 2.29, (7.3.66)-(7.3.67) we conclude that
U{p) satisfies the inequality for the Cauchy problem (CP) with

Q{Q) = ck\ {g28^-1 + Q2»-£-1) , s > A,V£ e (0,2(« - A)) and

Vo = [r*- N\Vu\2dx <  c ^ e a s^ 2 ( 7 + 2)
J 2(2 + 7)

According to the Theorem 1.57 the estimate (1.10.1) holds, which leads
to the estimate U{p) < cp2X. (See the proof of Theorem 4.18 in case 1).)
This estimate together with (7.3.37) and (2.5.3) gives the desired estimate
(7.3.62).

7.3.5. IP and pointwise estimates of the solution
and it s gradient. Let us make precise the exponent 7 (in the estimates
(7.3.1) and (7.3.2)) and the Holder exponent for the first order weak deriva-
tives of the strong solution in the neighborhood of conical point O. We recall
that ip(x) = 0.

THEOREM 7.22. Let u{x) be a strong solution of the problem (QL),
q > N and it is known the value Mo = max |u(x)|. Let the assumptions (S),

G
(A) — (J) be fulfilled with /3 > A — 2 > —1. Then there exist nonnegative
numbers d <d*  = min(d, d) and 5JJ, cj", c^, S3, independent ofu(x) and being
defined only by quantities N,\,v,fi,ni,/3,ki,q,Mo,Mi,do,d, and G such
that the following assertions hold

(1) \u{x)\ < CQ-\X\X and |Vu(x)| < cTl^l*" 1, x £ GdJ2;

(2) u(x) e #1-N{<4/2) and | |« | |̂  ^ ^ < ca/, 0 < p < d/2;

(3) if a + q(X - 2) + N > 0, then u(x) e V2
>a(Gf2) and

j . g 2 + ^ , 0 < p < d/2;

(4) ifl<  A < 2,g > 23X, then u(x) € CA (GQ/ 2) .

PROOF. Assertion 2) is proved in Theorem 7.21. To prove the remain-
ing assertions we consider the sets G'°0,2 and G % D Gp  Let us perform
the transformation of coordinates x = px' in the equation of {QL). The func-
tion v(x') = p~xu(px') satisfies in G\,A the equation {QL)' for 7 = A — 1.
For the local boundary L9-estimate, Theorem 4.6 seems to be applicable to
the solution v{x'). (For the justification of the possibility of its application
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see the proof of Theorem 7.18.)

(7.3.68) \v\lg.

with the constant C4 independent of v and a.
Let at first 2 < N < 4. By the estimate (7.3.62) we have

r~Nv?)dx < c(N)cj5

Therefore from the Sobolev imbedding theorem it follows

sup \v(x')\ <c(JV,g)||u||2i2;G}, <c(N,q)c15=c^ or
*'eGV2

\u(x)\<cZpx,xeGp
p/2.

Putting |x| = |p hence we obtain the first bound of statement 1) of our
theorem. The second bound of that assertion follows from Theorem 7.17
having been considered under 7 = A — 1.

Let now N > 4. In this case let us apply the local maximum principle
(see Theorem 4.5)

(7.3.69) sup |«(x')|<c(JV,i/-11/i)(||t;||aiG? +

Let us estimate from above the summands of the right part of (7.3.69). The
first summand is estimated as well as above (see (7.3.62))

(7.3.70) \Hl,al 4 - 2*P~2X / r'Nu2dx < 2iVc?5

By the assumption (C) in view of (7.3.2), we have

f \a(ox' oxv o^v ,}\Ndx' < -QN f (uN\Vu2N + fN(x)+
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+bN(x)\Vu\N)r-Ndx < N J (/i f (r2~
p/i

(7.3.71) +{3f3N)-1(6k)Nmeasn{20N - 2~l3N)pl3N, p € (0, | ) .

Hence with regard to (7.3.62) we obtain

+ C i7p2" A + / 3 + 7 + H^ Z 21 + C i 8 / + 2 - \ V/9 € (0, | ) .

From (7.3.69), (7.3.70), and (7.3.72) with regard to /? > A - 2 we get

In o TO\ ^~'\l  ̂ i 2—A+2-Y+ 2^A~J ^
(Y.O.Yoj SUp V[X ) \ < C19 + C20/0 ^̂  ™

x'6Gj/ 2

Let us recall that A > 1 and 7 > 0 which is determined by Theorem 7.16.
Also in the case 2 < N < 4 for the validity of assertion 1) of our

theorem, it is sufficient to derive the bound

(7.3.74) sup \v(x')\ <MQ= const.

Let us show that repeating a finite number of times the procedure of
deriving of (7.3.73) with different exponents 7, it is possible to deduce the
estimate (7.3.74). So let the exponent of p in (7.3.73) be negative. Otherwise
(7.3.73) means (7.3.74). From (7.3.73) we have

(7.3.75) |«(a:)| < c2i

and from here, by Theorem 7.17 with 7 = 71

(7.3.76) 7 l = l + l ( A -

we get also the inequality

(7.3.77) \Vu(x)\ <

Let us repeat the procedure of the deduction of (7.3.71) and (7.3.72) having
applied the inequality (7.3.77) instead of (7.3.2), that is replacing 7 on 71.
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As a result we get

(7.3.78) SUp \v(x')\ < 0i9 + C2op2-A+2(A-l)/iV +27l(iV-l)/ JV

If the exponent of p in this inequality is negative, then putting

(7.3.79) 72 = i + l ( A - l ) + ^ ^ 7 l ,

we first obtain by Theorem 7.17 the inequality

(7.3.80) |Vu(z)|<c2 2|a:p.

Next repeating the procedure described above, we get also the bound

(7.3.81) SUp \V{X')\ < C19

Let us set

(7.3.82) t = H ^ z i ) > | , ViV>4

and consider the numerical sequence jk

7i is determined by the equality (7.3.76),

Repeating the expounded procedure k times we get

(7.3.83) sup \v(x')\ < ci9 + c2Op1-A+7fe+\ p G (0,d/2).
x'ea{/2

Let us show that for VAT > 4 we can find such an integer k that

(7.3.84) 1 - A + 7fe+1 > 0.

In fact, from the definition of the numerical sequence 7̂  and (7.3.76) it
follows

The first addend on the right is positive. For the second addend from
(7.3.82) it follows

/ 1 \k+1

2tk+1 -2-Nt + N = 2k+2 11 - j - J - N > 0,

if
'2AT-2\fe+1 N , lnf

> -r- or fc + 1 > , q»r_o.IT)
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Hence we obtain the validity of (7.3.84) for

h
lr

In*

lf
IN-2

N

br , ViV > 4,

where [a] is the integral part of a. Thus statement 1) is proved.

Now let us refer to the proof of statement 3) of our theorem. Multiplying
both sides of the inequality (7.3.68) by ga~2q and returning to the variables
x, u we rewrite the inequality obtained in such way replacing p by 2~kp and
next sum all inequalities over k = 0,1, As result we have

(7.3.85) ^C4 f (ra\a{x,u,ux , q > 1.

eft

Taking into account the assumption (C) and the bounds from assertion 1)
proved above, we obtain

< C ( 2q{\-l) + rq(/3+\-l)

Hence and from (7.3.85) it follows

2«?

J(ra+q(x

Since j3 > A - 2 and therefore rql3 < r«(A"2), finally we establish

\y2

provided a + N + q(X — 2) > 0. The latter means the required statement 3).

Finally, let us prove statement 4). By the Sobolev-Kondrashov Imbed-
ding Theorem 1.33

, S U I \
x ,y €G1,

), q>N.
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Returning to the variables x, u, we get

s up |Vu(s)-V«(y)| < c | | u | k^  ̂ < CoX_2+N/q^

q>N, p€{0,d),

in virtue of (7.3.86). Repeating the proof of Theorem 7.18 with 7 = A — 1,
provided N + q(\ — 2) < 0, we get the validity of statement 4).

7.3.6. Higher  regularit y results. In this subsection we examine the
question of a smoothness rise of the Dirichlet problem solutions for the
elliptic second order non-divergence quasi-linear equations near the coni-
cal boundary point. Let us consider the strong solution from W2'q(G) f~l
C1+1(G) of (QL). As well as in the linear case the solution smoothness in
the quasilinear case depends upon the quantity A determining value of the
cone solid angle in a neighborhood of the point O.

Let us define the set

9KMO,MI = {{x,u,z)\x G G,\u\ < M0,\z\ < Mi}.

As for the equation of the problem (QL) we assume that the following
conditions are satisfied on the set %RMO,MI

(E) for the uniform ellipticity that is there exist the positive constants
v, fi such that for V(:r, y, z) e TlMoiMl, V£ G R^

i/£2 < Oij(ar, u, z)  ̂ < //£2; a (̂0,0,0) = 6f, i, j = 1 , . . ., N;

(F) aij(x,u,z) e Cm{DJlMo,M1) (i,j = 1,-,-W) for some integer
m > 1 and the partial derivatives of the functions aij(x, u, z) over
all their arguments up to the order m are bounded on 971MOIMI ;

(G) there exist generalized partial derivatives of the function a(x, u, z)
over all their arguments up to the order m > 1, nonnegative func-
tions fi(x) and the numbers pt/, fc; (I = 1,..., m) such that the fol-
lowing inequalities

(7.3.87) \DlJDl*a{x,u,z)\ < ̂ zf + Mx); I<h+I 2<m,

(7.3.88) \D^D^D^a(x, u,z)\< ^\z\ + / ,(*) ; 0 < h + k < m - 1,

(7.3.89) \ D l J D l * D l ? a ( x , u , z )\ < & ; 2 < h + l 2 + l 3 < m ,

where

(7.3.90) fi(x) < h\x\x-2-\ /o < fcoM0, /? > A - 2,

are fulfilled.
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THEOREM 7.23. Let A > l ,p > N be given and let the integer m satisfy
the condition

(7.3.91) 1 < TO < A - 2 + N/p.

Let the assumptions (A) — (G) be satisfied and let the function
u(x) G VpO(G) be a solution of the problem (QL) with

Mo =max|u(x)| andM\ = max |Vu(a;)|.
x€G x€G

Moreover, let <p(x) € V™0
+2~1/p(dG) n V%£_N(dG) and there exist the non-

negative numbers k'o, k[,..., km and s > I such that the inequalities

(7.3.92) |M| s r o P M v r

Pe(0,d)

hold. Then u(x) € V^,+2(G), and there exist the numbers d £ (0,d) and
Cm > 0 such that

(7.3.93) IMIv™+2Gg < Cmpx-2-m+N/p, p e (0,d),

where Cm is determined only by the quantities taking part in the assumptions
of the theorem and by G.

PROOF. We apply the usual iteration procedure over m. Let TO = 1.
Let us consider the equation of (QL) in the domain Gp,2,p e (0,d). The
lateral surface V ,2 of G

p ,2 is unboundedly smooth, because GQ is a convex
cone. By definition of smooth domains, for every point XQ € V ,2 there
exists a neighborhood V C V ,2 of this point and a diffeomorphism \ from
G2+m rectifying the boundary in V. Let D C G /̂2 be such that T C D. Let
us perform the transformation y = x(x) = (xiM i x)) and let x(®) =
£)', x( r ) = r C 92)', (r' is a plane portion of the boundary®'), v(y) =
u(x~1(y))- In this case x, x - 1 G (72+m and Jacobian |Vx|  ̂ 0. Besides, one
can suppose the norms in C2+m of transformations \ determining the local
representation of the boundary Tp ,2 to be uniformly bounded with respect
to XQ £ r*\ 2. In the new variables the equation of (QL) takes the form

(QL)' Aij(y,v,vv)vViVi + A(y,v,vy) = 0, y € £>',
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where

A(y,v,vv) = a(x,u,ux) + ay (a;, it, ux)vVk -

(7.3.94)

9Xt ®X'Aij(y,v,vy) = r--f" - - ^ -

Let us notice that in 55' by condition (E)

(7.3.95) x\v£ < Aij£i£j <

where
xi = inf; |Vx(z)|2 > 0 and x2 = sup |Vx(z)|2 > 0

. The coordinate system can be chosen such that the positive axis y  ̂ would
be parallel to the normal toward V and the axes j/i,..., J/JV-I parallel the
rays at plane F'. Let ê  be the fixed coordinate vectors (k = 1, ...,N - 1).
For sufficiently small \h\ we define the difference quotients

vk(y,h) = 1,...,yk-1,yk-h,yk+1,...,yN)}, k = l,...,N - 1.

We set

V* = ty+ (I - t)(y - hek); vt(y) = tv(y) + (1 - t)v(y - hek).

Then the function w(y) = vk(y, h) satisfies the linear equation

(L) atj(y)wyiyj + ai(y)wVi + a(y)w = f(y), y £ 25',

where

al3(y) = Aij{y,v{y),vy{y)),

" -dt,
dvyi

k = 1,..., TV — 1. Since the directories ek(k = 1, ...N — 1) are parallel to the
tangent plane to F, we have w\r> = ipk(y,h),y G T',ip(y) = tp{x~1y)- Let
us apply the local IP - estimate near smooth boundary portion (Theorem
4.6) to the solution w(y). Let us verify the fulfillment of all conditions of
the above estimate. (7.3.95) implies the fulfillment of the uniform ellipticity
condition for the (L) equation. Since our solution u(x) e C1+1{G), the
hypothesis (E) guarantees continuity of the coefficients al:>(y) in 35'. Since,
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by the assumptions of our theorem uxx G -Lp(S'),p > N, then by assertions
1) and 3) of Theorem 7.22 in view of the assumptions (F), (G) we have

N

fo(x)\\N,G;,a) <

<  C(|x|2,©', N,p, k0, fi,ft, Mi) (p + px + px~2+N/P +

by the inequality (7.3.91). Similarly

\\a\\P,B> <

1) < consi,

p / 2

So the local Lp-estimate for the solutions of (L)' gives us the inequality

(7.3.96) ||iy||2,p;j)" < const(\\w\\Ptx)> + | | / | |p;s + \\<Pk(y - h)\\2-i/ptP-T'),

V33" gJ) 'u T',

where const is independent of w, f,,(fk,h and depends only on k,p,v,
fi, xi,x2 and the moduli of continuity of the coefficients oy'(y) on 2)'. The
latter are estimated in the following way:

- a13{

aki(x1,u(x1),ux(x1))-

- aki(x2,u(x2),ux(x2))-

< \aki{x\,u{xi),ux(xi)) - akl(x2,u{x2),ux(x2))\  |Vx|2+

x\ — x2\ + \u(x\) — u(x2)\ + IVu(zi) -

< 2/3 [ K2Jil + fJ,X2 1X12,33 ̂

by u(x) G ̂ ^(G). Further, we have by the definition of w(y)

(7.3.97) |HI»*' = i r ( g )~ t t g~ f t e > t)
'p/i
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Analogously we obtain

(7.3.98) \\Pk(y,h)\\2-i/P,P;r>  <

and finally

(7.3.99) |
p/2

Now from (7.3.96)-(7.3.99) we obtain the inequality

where const on the right is independent of h. This fact allows us to conclude
on the basis of Fatou's theorem that there exists a vVh 6 W2'P(3D") and
perform passage to the limit h —> 0

p, fc = l , . . . , JV - l.

We consider again the equation (QL)' and differentiate it over yjv thusly

. J V - l

(7.3.101)

N-l
fe=l

E
dAdA 1 ,

where

ANN =

Since u(x) e W2'P(G /̂2), % 6 W2^(S"), 1 < k < N - 1 then from
(7.3.101) we obtain v(y) e W3-P(S"), by the assumptions (F),(G). Then
by Sobolev's Imbedding theorems 1.32, 1.34 we can derive
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1) if p > 2N then v(y) G C2(35") and in this case

2) if N < p < 2N then v(y) G W2'qi(®")  with qx = ^  ̂ > p and
in particular v{y) G W2>2p(®")  for p > 3N/2.

By the above statements and equation (7.3.101), we obtain v(y) G W3'P(3D")
and therefore u(x) G W3'p(G7

5^l), if p > 3N/2. Now we need to examine
onlyp G (N, BN/2). Prom above we have v(y) e W2'qiCD") and by (7.3.101)
v(y) G W3i9l/2(2)"). Let us use again the following imbedding

As a result, we obtain

v(y) G W2'^(S"), 92 = JV«i/(2JV - gi) = Np/{AN - 3p),

if AT < p < 4iV/3 and

v(y) G C2(S"),

ifp>4iV/3.
We repeat that procedure s times

(7.3.102) v(y) G T^3^/2(S") n

if AT < p < iV/( l — 2~s). We choose an integer number s > 1 in such way
that qs > 2p. Solving that inequality we obtain s = [Iog2((2p—N)/{p—N))],
where [a] is the integral part of o. Thus from (7.3.102) we find

u(x) G W3'"(Gl P/fl) n W2'2*{Glf &), Wp G

We proceed to a derivation of the estimate (7.3.93) under m = 1. Prom
(7.3.101), by (7.3.100), we have

(7.3.103)

fo(y))\Vyv
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Erom (7.3.100) and (7.3.103) in the variables x, u(x) taking into account the
hypothesis (G), we obtain

+| ||Vu|3 + |Vu|2 + |Vu|(l + Mx)) + \fi(x)\

+ (1 + \fO(x)+Vu\G,/2)\\Uxx\\PtGPp/2 +

From here basing on Theorem 7.22 for p € (0, d)

(7.3.104) ||u||3 7 p / 8<

C =

Replacing in (7.3.104) p by 2~kp, summing the inequalities obtained over
all k = 0,1,2,..., and taking into account (7.3.91) under m = 1, we come to
the desired estimate (7.3.93) under m = 1.

Repeating such procedure by induction we conclude the validity of the
assertions of Theorem 7.23.

THEOREM 7.24. Let all assumptions of Theorem 7.23 excepting of
(7.3.91) be fulfilled. Ifm>0is the integer and

N
(7.3.105) m + KX<m + 2 , p>N,

P
then u(x) € C^(G). In addition, there exist constants Ck, (k = 0,..., m + 1)
independent ofu(x) such that

(7.3.106) \Vku(x)\<Ck\x\x-k, xeGft, fe = 0,...,m + 1.

IfX = m + l,p>N then u e CX~£{G), Ve > 0.

PROOF. Let the function v(x') = p~xu(px') be a solution in the layer
G\ ,2 of (QL)'. Verbally repeating the proof of Theorem 7.22 and using the
results of Theorem 7.23 we obtain all assertions of Theorem 7.24.

7.4. Solvability results

Let us include the problem (QL) to a family of one-parametric problems
for t e [0,1]

(OL) j a « ( x > u> ux)uXi,Xj + ta(x, u, ux)=0, xeG
{ H \u(x)=t<p(x), xedG.

With regard to the problem (QL) we assume the hypotheses (S) and (A) —
(J) to be satisfied. In addition, suppose
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(M) for every solution Ut{x) of the problem (QL)t the value
Mo = sup |u*(a:)|, Vt G [0,1] is known,

G

(K) ip(x) G # ! - J V ( 9 G) n V^hdG), q>N,
there exist nonnegative numbers £3, £4, k<z, and s > X such that

6(x) + f{x) + | * x x (x) | < fe3d
A"2(a;), a: e Ge, Ve > 0;

THEOREM 7.25. Let Yd G W2'p and the assumptions (5), (A) - (J),

(M),(K) under q = p > N be fulfilled. If either X> 2 or 1 < A < 2,
N < p < 23 ,̂ then the problem (QL)t has at least one solution ut(x) e

THEOREM 7.26. Let A e (1,2), p e (N, ̂ ) , / 3 > A - 2, q >  ̂ be
given numbers, and let Tj, € W2'p. Suppose the hypotheses (5), (.4) — (J),
(M) , (i^) are fulfilled. Then the problem (QL)t has at least one solution

«*(*) e <'C
9(G) n

/orVte [0,1].

PROOF. We first shall establish that for some 7 G (0,1) and all t G [0,1]
every solution ut(x) G W^(G) n C°(G) satisfies the inequality

(7-4.1)

with a constant K being independent of ut(x) and t. Let us represent
G — GQ U Gd with some positive sufficiently small d. Prom Theorem 7.18 we
conclude that under given assumptions there exist the positive d and 70 such
that a ut{x) G C1+7(C?g) and the estimate (7.4.1) holds with V7 G (0,7^],
where 7*  = min(70;/3 + 1;1 - JV/g). The membership ut(x) G C1+^(Gd)
and corresponding a pnon estimate follow from the assumption (D) (lo-
cal estimates near a smooth boundary portion have been established in
[217, 219, 224]), but in strictly contained subdomain follows, by the
Sobolev-Kondrashov Imbedding theorem 1.33. In such a way the mem-
bership Ut(x) G C1+" t(G) and the a priori  estimate (7.4.1) are established.

The bound (7.4.1) allows to apply the Leray-Schauder Fixed Point The-
orem 1.56. To apply this theorem we fix 7 G (0,1) and consider the Banach
space «8 = Cl+"<(G)  for Theorem 7.25 or «8 = Cl+1(G) =
= iv G C1+^(G) v(0) = |Vv(0)| = 0}  for Theorem 7.26. Let us define
the operator T, by letting ut = tiv, as the unique solution from the space
Vp,o{G) (Theorem 7.25) or Wffc{G) n V£0(G) nCX(G) (Theorem 7.26) for
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any v G 58 of the linear problem

(L, {aij{x)uXiXj = At(x), xeG,
( h \u{x)=-hp{x), xedG.

where atj(x) — a,ij(x,v(x),vx(x)), At(x) = -ta(x,v(x),vx(x)). It exists by
Theorem 4.48 (Theorem 4.49). In fact, it is not difficult to verify that all
hypotheses of these theorems are fulfilled. In particular, by the assumption
(A), a,ij(x,v(x),vx(x)) e WliP(2)T), p> N and therefore by the imbedding
theorem aij(x) e C1~NI'P(G). In addition, for ut{x) the bound (4.4.9) holds.
In virtue of the assumption (C) it has the form

(7.4.2) ||«t||vp»0(G) < (

+ y\\v2-i/P(gG)), V4 e [0,

It is clear that the solvability of the problem (QL)t in the corresponding
space is equivalent to the solvability of the equation Ut = t%v in the Banach
space 58. Now we verify that all hypotheses of the Leray-Schauder Fixed
Point Theorem 1.56 are fulfilled. This theorem guarantees the existence of
a fix point of the map X.

At first, we verify that T is the compact mapping of the space 03 onto
itself. From the bound (7.4.2) it follows that the operator % maps sets that
are bounded in 55 into bounded sets of the space VpO(G), and they are
precompact sets in C1+1{G), if 7 < 1 — ^ . Thus % is the compact mapping.
Now we verify that 1- is the continuous mapping onto 58. Let the sequence
{vk{x) C 58}  converge to v(x) £ 58. We set Ufe(x) = %Vk(x). As stated above,
Uk(x) C V 0̂(G). It is well known that in the space V^0(G) every bounded
set is weakly compact. We leave the notation Wfe(x) for a weak convergent
subsequence and denote the weakly limit by lim uAx) = u(x) £ K?0(G).

k—»oo p'

The last statement means

lim I g(x)Dauk(x)dx = g(x)Dau(x)dx, \a\ < 2,
k-^ooj J

G G
(7.4.3)

Vg(x) e V'(G) with - + — = 1.
P P

Since now it is obvious that

aiJ(x)(uk)XiXj-Ak(x)eL*>(G),

where

) , Ak(x) = -a(x,vk(x),Vkx(x)),
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then we prove that

lim / g(x) (ak
3(x)(uk)XiXi - Ak{x)) dx =

K—>0O J \ /

G
(7.4.4)

= fg(x) {aij(x)uXiXj - A(x)) dx, Vg(x) G Lp> (G).
G

In fact, by the continuity of aij(x,v(x),vx(x)) on 9JI and because of
Vk{x) —> v(x) in C1+'f(G), we have

(7.4.5) limak
3(x) = lim aij(x,Vk{

fe—»oo k—»oo

= a,,- f x, lim Vk(x), lim ^fcx(x) ) = alj(x).
\ k—»oo fc—>oo y

Similarly we verify that lim Ak(x) = A(x). Now for Vg(x) e IP (G) we

obtain

/ 9(x) {a%k\x){uk)xiXj - alj(x)uXiXjj dx <

G

(7.4.6) < sup \ak
J(x) — o*J(x)[  ||ttfcXx||p,G||<7||p',G+

+ / (ukx  ̂ -UxiXj) alj{x)g(x)dx.
G

Since the equation of the problem {QL) is uniformly elliptic then
a,v(x)g(x) e D>'{G)  and by (7.4.3) we get that the last summand in (7.4.6)
tends to zero as k —> oo. By the proven above ak

3{x) € Cl~~~p{G) therefore,
by the Arzela Theorem, the limit (7.4.5) is uniform and, consequently,

lim sup |4J'(x) - ai j (x)| = 0.

In addition, {vk(x)} is uniformly bounded in 58, hence by the bound (7.4.2)
we obtain that ||ufcXz||p,G 5; const for Vfc. Hence, the first summand in
(7.4.6) tends to zero as k —> oo too. Thus

irn^ / g(x) \at
k
i(x){uk)Xixj - alj{x)uXiXij dx = 0.

k
G

In the same way we verify that

lim / g(x) (Ak(x) - A(x)) dx = 0.
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Thus the equality (7.4.4) is proved. Since u  ̂ — %Vk, then the left side of
(7.4.4) is equal to zero and hence

/ g(x) (alj (x)uXiXj - A(x)) dx = 0,

G

Hence it follows that a**  (x)uXiXj = A(x) for almost all x e G. Further,
Uk{x) = <p(x), x e dG and, by Uk(x) c V£Q(G) because of the imbedding
theorem uk(x) C C1+i~(GJ, 0 < 7 < 1 - ^ . Therefore

dG fe-i-oo 8G

Thus we proved the equality u = 1v. But then we have

lim %Vk(x) = lim Uk(x) = u(x) = 1v(x) = % I lim Vk(x) I ,
fe—>oo fe—*oo \k~>o° /

that is T is the continuous mapping. All hypotheses of the Leray-Schauder
Theorem are verified and Theorem 7.25 is proved.

Theorem 7.26 is proved in the same way. Let us turn our attention to
some details only. We consider in the space 05 the bounded set

In this case we apply Theorem 4.49 with a = 0 for the solvability of the
linear problem (L)t. We must verify only the assumption A7) of Theorem
4.49. For this point and by our assumption (J) we get

dx < fr4-Na2(x,v,vx)dx < c f r4~N

Gg Gg Gg

+K2b2(x) + f2{x))dx < c f (r4-N + r4-N+W) dx <

Gg

< cmeasft Q ^4 + ^l^g^+A < Cg2s, s > A; Vt € [0,1];

\At{x)\qdx < c f (n\l

<  cmeasfi (gN + Qql3+N) < CQN+ix~2)q, Vt € [0,1].
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7.5. Notes

The condition (D) can be replaced by any other condition which guar-
antee the existence of the a priori  estimate

Hi+ 7;G'<Mi , 7 6(0,1)

for any smooth subdomain G' CC G \ O (see [85, 224, 329, 129]).
The results of Chapter 7 refer to the problem (QL) with its equation

as non-divergent. Such problems in non-smooth domains have not been
studied before. Only the research of I.I. Danilyuk [90] is known here. In this
work, using the methods of complex variable function theory and integral
equations, the author proved the solvability in the space W2'2+e(G), e > 0
is sufficiently small, G c R2 and contains angular points. However, as will
see below (§7.2), the requirements for these problems in this work are too
high and the number e > 0 is not precise. The formulated Theorem 7.7
from §7.2.2 shows

0 < £ < 2  ' " , if - < W0 < 7T.
2 — 7T/Wo 2

The results of Sections 7.2 -7.4 were first established in [54, 55, 57, 58,
59, 60, 61, 63]. We follow these articles.

N. Fandyushina [122] has investigated the solutions behavior in a neigh-
borhood of the boundary without assumption for its smoothness and con-
vexity on quasilinear elliptic equation with two independent variables.

N. Trudinger [382] has established a necessary and sufficient condition
on boundary data for the solvability of the Dirichlet problem for a quasilin-
ear elliptic equation CLij(ux)uXiXj = 0.

Solutions to some other quasilinear equations in nonsmooth domains
were studied in [10, 102, 295, 296, 333, 334, 335, 336, 410].

The results of this chapter were generalized in [369] on quasilinear
elliptic equations whose coefficients may degenerate near a conical boundary
point namely, the ellipticity condition on the set SDT has the form

z/|x|r£2 < oy(x,u,«)&& < MM T£2, V£ G RN, 0 < T < 1;

lim \x\~Ta,ij{x, u, z) = 8{.
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CHAPTER 8

Weak solutions of the Dirichlet problem for
elliptic quasilinear equations of divergence

form

In this chapter we investigate the behavior of weak solutions to the
Dirichlet problem for uniformly elliptic quasilinear equations of divergence
form in a neighborhood of a boundary conical point. We consider weak
solutions u e W1'm(G) f]Lp{G), m > 1 of the differential equation

(DQL) Q(u,4>) = / {ai{x,u,ux)4>Xi + a(x,u,ux)$}dx = 0
G

for all <f>(x)  € Wl'm{G) DLP(G). We suppose that Q is elliptic in G, namely
there are positive constants is, /z such that

(E) Mm da{X^Z)

for all (x, u, z) e G x R x RN, V^ e RN.

8.1. The Dirichlet problem in general domains

THEOREM 8.1. Maximum principl e (see Theorem 10.9 §10.5 [129]).
Let u e W1'm(G), m > 1 be a weak solution of (DQL) and suppose that Q
satisfies the structure conditions

(i) ai(x,u,z)zi>u\z\m-g(x),
(ii) a(x,u,z)signz > — H2\z\m~l ~ /(x)>

where v,H2 = const > 0, and f(x),g(x) G IPlm{G) are nonnegative mea-
surable functions. Then we have the estimate

sup |«(s)| < C (||/||p/m,o + \\g\\p/mta)
eG

where C = C(N, m, u, \xi, p, meas G).
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THEOREM 8.2. The weak Harnack inequality (see Theorem 1.1
[381]). Let u € W1'm(G), m > 1 be a weak nonnegative solution of (DQL)
and suppose that Q satisfies the structure conditions

(i) aj{x, u, Z)ZJ > v\z\m -
IN

(ii) J £ (<*(*, «. *

(iii ) \a{x,u,z)\ < jt^

with v, /j.2 > 0; Hi, (is, fi^, [1$ > 0. Then for any ball B^R C G, there holds

(8.1.1) \\U\\LP(B2R) < CR  ̂ inf u{x),
BR

where C depends only on m, N,p, v, ^ i , ^2, A*3, M4> M5 and P G (0, jv-m ) */
m < N or p e (0, oo) ifm>N.

THEOREM 8.3. Holder  continuity of weak solutions (see Theorems
2.1 and 2.2 §2, chapter IX [215]).

Let G be of type (A) (see Definition 7.2). Let u e W1'm(G) n L°°(G),
m > 1 ttrci/i wnai max |u| = Mo < oo being a weak solution of the (DQL)

G
and suppose that the following assumptions are satisfied

(a) ai(x,u,z)zi > v\z\m - g(x);

(b) 4 /E(ai (* ,«,2))2</* iN m-1 + Vi(a:);

(c) \a(x,u,z)\ < fJ.i\z\m + (p2{x),
where 1 < m < N, and <fi(x) are nonnegative and

\\g(x)\\LP/m(G), \\<Pi{x)\\LP/<.m-i){G), \\tp2(x)\\LP/m{G) < const, p>N.

Then u(x) is Holder continuous in G.

REMARK 8.4. We observe that the condition (a) follows from the ellip-
ticity condition (E) and the condition (6). In fact, we have

l
\ f daAx,u,z) . .

ai(x, u, z)Zi = ZiZj I — at + z^a^x, u, 0) >
J OZj z=tz
0

1

>v\z\2 Itm-2\z\m-2dt- ziai(x,u,0) > -Z-

), Ve>0

in virtue of the Young inequality.
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THEOREM 8.5. Existence Theorem (see Theorem 9.2 §9, chapter IV
[216]). Let 1 < m < N, 1 <p < oo. Let the functions a,i(x, u, z), a(x,u, z)
be continuous with respect to u, z and satisfy the conditions

(i) Q(u, 4>) is coercive, that is

Q{u, u) > h(\\u\\wi,m{G)nLP{G)) - Cl forVu e W^'m(G) n £*(G),

where c\ > 0, and h(t) is a continuous positive function such that
lim hit) = oo,

(ii)  \ai(x,u,z)\ < pM™-1 + n\v,f'm' +<p1(x), pi(x) G Lm'(G),

(in) \a(x,u,z)\ < fi\z\m^ + n\uf~l +<p2(x), <P2(x) £
withp<p = max ( )

(iv) (ai(x,u,z) — ai{x,u,w)){zi — Wi)>ip(\z — w\) forxeG,
u\ < Mo, Wz,w G M.N, where V'(C) ^s a continuous, positive for
C > 0, nondecreasing function.

Then the problem (DQL) has at least one weak solution from

REMARK 8.6. If the functions ai(x, u, z) are differentiable with respect
to z, then the condition (iv) follows from the ellipticity condition (E). In
fact, let the ellipticity condition (E) be satisfied. Then considering the
following two cases. For 1) m > 2 and 2) 1 < m < 2, we obtain

1) m> 2:

(fli{x,u,z) -ai(x,u,w))(zi-Wi) =

l

= (zi — Wi) / — en (x,u,w + t(z — w))dt =
o

l

/
dai(x,u,w+t(z— w))

o ^ ' ' ^  ̂̂ '  ̂ "
l

> v\z - w\2 I \w + t(z - w)\m~2dt > vc(m)\z - w
0

in virtue of Lemma 1.7 and m > 2.
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2) 1 < m < 2: We have again

l

(a,i(x,u,z) — di(x,u,w)) (zi — Wi) > v\z — w\2 I \w + t(z — w)\m~2 dt.

But

+ t(z-w)\ < \w\+t\z-w\ => \w + t(z - w)\m~2 > (\w\ + t\z - w\)m~2

and therefore

l l

f\w + t(z - w)\m-2dt > f(\w\ + t\z - w\)m-2dt =

-irbfT
{\w z - - \w m - 1

m — 1
1*1

Hence it follows that

z — w

fib

It is easy to verify that in both cases the function ijj(()  satisfies the condi-
tions of (iv).

THEOREM 8.7. Holder continuity of the first derivatives of weak
solutions (see Theorem 1 [228]).

Let /i, Mo be positive constants. Let G be a bounded domain in M.N with
C1+a, a £ (0,1] boundary. Let u(x) be a bounded weak solution of {DQL)
with \u\ < MQ. Suppose (DQL) satisfies the elliptidty condition (E) and the
structure conditions

\

N

|oi(x,u, z) ,v,z)\2 <n{l  +

\a(x,u,z)\ < n(l

z\r-1 (\x - y\a + \u- v\a),

for all (x,u,z) € dG x [-M0,MQ} x RN and all (y,v) eGx [-M0,M0].
Then there is a positive constant 7 = j(a,v^1fJ,,m,,N) such that

u G C1+1(G). Moreover we have
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8.2. The m—Laplace operator  with an absorption term

8.2.1. Introduction . We consider the Dirichlet problem

(LPA) iAmU : = " d i v dVul m~2Vu) = -aoi^uH"-1 + f(x) in G,
K } \«(x)=0 on9G\{0},

where 1 < m < oo, q > 0 and ao(x) > 0, f(x) axe measurable functions in
G.

DEFINITION 8.8. A function u is called a generalized solution of
{LPA), if u £ Wl'm{Ge) n Li+1(Ge) Ve > 0 and it satisfies

(II )  /"{|Vur" 2{Vu ,  VT? ){ | r { , ?) + o ( ) | | / / / } = 0
a

for any r) € W1'm(G)nLg+1(G) having a compact support in G and u(x) — 0
on T£ for all e > 0 in the sense of traces.

DEFINITION 8.9. A function u is called a weak solution of (LPA), if
u £ W0

1>m(G) D L<* +1{G) and satisfies (II) for all 17 e w£'m(G) n L«+1(G).

Let us denote

(8.2.1) en(z) :=  \z\m-2
Zi.

We verify that the ellipticity condition (E) is satisfied with

, n~s f m - 1 for m> 2 , f l for m > 2
(8.2.2) u= i - ,andi/=<
v ' \l for K m < 2 [m - 1 for 1 < m < 2.

THEOREM 8.10. Weak comparison principle. lei w,v e WltTn(G)
satisfy Amu < Amv in the weak sense, that is

I 7v)) r] Xidx < 0

G

for all nonnegative r\ £ W0'
m(G) and let

u < v on dG.

Then

u < v inG.

PROOF. Since u — v < 0 on dG, we may set

77 = max(u — v,0).

By the ellipticity condition (E) and by Remark 8.6, we have

I (ai(Vu) - ai(Vw)) (uXi - vXi)dx > / ip (|V(u - v)\)dx > 0
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because VKC) is a continuous, positive for £ > 0, nondecreasing function.
Hence, by standard arguments, we obtain the required assertion.

THEOREM 8.11. Let u(x) be a bounded weak solution of (LPA) with
|u(x)| < Mo. Suppose that ao(x),f(x) e Lplm(G), p > N. If f(x) > 0 in
G, then u(x) > 0 in G.

PROOF. Choose n = u~ = max{—u(x),0} as a test function in the
integral identity (//). We obtain

f/\Vu-\m + ao(x)\u-\q+1 + f(x)u~\dx = 0 =>
G

f\Vu-\mdx+ f ao(x)\u-\g+1dx=- f f(x)u~dx < 0,
G G G

since u~ > 0. By Theorem 8.3, u(x) is continuous in G. Due to ao(x) > 0
and u\dG=  0 we get u~(x) = 0 in G and therefore u(x) > 0 in G. D

8.2.2. Singular  functions for  the m—Laplace operator  and
the corresponding eigenvalue problem. The first eigenvalue problem
which characterizes the singular behavior of the solutions of {LPA) can be
derived by inserting in Amv = 0 the function of the form v — r^<f>(tj)  which
leads to the nonlinear eigenvalue problem

{NEVP) S(A,<£)=0inQ and <f>  = 0 on dQ.,

where

G

(2)) - A{A( m - 1) + N - m}(A V + I V ^ I 2 ) " 2 ^ .

We formulate the Tolksdorf result as follows

THEOREM 8.12. [374, 375]. There exists a solution (\o,<t>) e K+ x
C°°(O) of (NEVP) such that

(8.2.3) Ao > max < 0, ̂ — — i , (j>  > 0 in D., (j> 2 + IV^ I 2 > 0 in Q.
{  m~l J

REMARK 8.13. In the case N = 2, by direct calculation (see (9.4.14)),
we can obtain

if
(8.2.4) A o= "

where K = —.
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In order to construct a barrier function which can be used in the weak
comparison principle, we prove a solvability property of the operator 2)
associated to the eigenvalue problem (NEVP).

THEOREM 8.14. For 0 < A < Ao there exists a solution <j>  of the problem

(8.2.5) £>(A, <p) — l inQ, and (j>  = 0 on dtt,

with <f>  > 0 in O.

This theorem will be proved in a sequence of lemmas. In the proofs of
these lemmas we frequently use the fact that every solution (A, <f>)  of (8.2.5)
corresponds to a solution of

which, by local regularity of the pseudo-Laplace equation, implies that 4> 6
C"(!1) n W0

1+e'm(ft) for 0,e > 0.

LEMM A 8.15. The problem (8.2.5) is solvable for all 0 < A < Ao.

PROOF. We prove that Predholm's alternative holds for (8.2.5) in the
sense that if (8.2.5) is not solvable then A is an eigenvalue of S). For this
purpose, we choose a sufficiently large a G K such that the problem

S)(A, 0) + a\(j)\m~2(f>  = 3 infi , cj> = 0 on dQ,

is uniquely solvable for all g £ H~1<m'(Q,), ^ + ^7 = 1) and denote the
solution operator by (f> = $g. By the regularity of 2), $: CP(Q) ~» CP(Q)
is a compact operator for a /3 > 0. Moreover, $ is homogeneous of degree
^ 3 i . The problem 53(A, <j>)  = f in Q, cj> = 0 on d£L, is then equivalent to

(8.2.6) (j>  - aFcj) = $ / ,

where Fcfi = $(|$|m~2<£) is compact and homogeneous of degree 1. The
operator Id — aF is studied on the unit ball

If 0 ^ (Id - aF)(dBx) then K. Borsuk's theorem states that (8.2.6) is
solvable for sufficiently small / . Since (8.2.6) is equivalent to 1)(X,(j)) = f
and 3D (A, ) is homogeneous of degree m - l w e can solve 2) (A, cj>) = / for
all / .

LEMM A 8.16. Let (\,<fi)  be a solution of (8.2.5). Then <p(w) =£ 0 for all
we!) .
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PROOF. Let K = {{r,w) 1< r < 2, w e fi}.  If (\,cj>) is a solution of

(8.2.5) then v = rA#(w) solves

(8.2.7) ^ ^ ^ - l K m - i j - i  inKj t) = Oon ( l , 2 ) xaO,

(8.2.8) v = Cr(f> for r = 1,2.

Assume that (f>{u>o)  = 0 for U>Q G fi . We apply the weak comparison principle
on the domain K using the function v. It follows that every solution of

Amu = / in K, u = v on dK,

with / G CQ°(K), satisfies u(r,u>o) < 0 which is a contradiction.

LEMM A 8.17. For sufficiently small A > 0, the solution of (8.2.5) is
unique and satisfies <j>  > 0 in Q.

PROOF. The operator 3)(0, ) is strictly monotone on Wo'm(fi) . Hence,
the problem (8.2.5) is uniquely solvable and the comparison principle implies
<f>  > 0 in f2. Since S)(A, ) is continuous in A, the conclusion also holds for
sufficiently small A > 0.

LEMM A 8.18. There exists a constant c = c(Ai) such that ||0||i>m < c
for all solutions (\,4>) of (8.2.5) satisfying 0 < A < Ai < Ao.

PROOF. Assuming the converse we obtain a sequence (Aj,0j) solving
(8.2.5) with

Aj->A , ||<fc||l,m -> 00.

For the normalized functions

"*  IMIl. m

we obtain that 33(A,, 4>i) —» 0 in W~1>m (fi) and, by regularity, ||$
c. Hence, we can extract a subsequence {<j>i k}  such that 4>ik —> <f>  in Wo

lim(fi )
and 35(A, 0) = 0 with ||<^||i,m = 1. This contradicts the fact that there is no
eigenvalue of 3D in the interval [0, Ai) .

PROOF OF THEOREM 8.14. Lemma 8.18 implies a kind of continuity
of the solutions (A, <f>)  in the following sense. If A*  —> A with 0 < Aj, A < Ao,
then there exists a subsequence {<f>i k} such that

<j) ik -* 4> in Ca(Tl),

where (A, </>) is a solution of (8.2.5). Hence, by Lemmas 8.16 and 8.17 there
exists a solution (A, <f>)  with <f>  > 0 in Q, for all 0 < A < AQ.
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8.2.3. Eigenvalue problem for  m—Laplacian in a bounded
domain on the unit sphere. For technical reasons we consider eigenvalue
problem for m—Laplacian in a bounded domain Q on the unit sphere SN~l.

" 2 ^ in &,
1 ip — 0 on dCl.

DEFINITION 8.19. We say that (j, is an eigenvalue, if there exists a
continuous function ijj  G W0'

m(Q,), ip ̂  0 such that

(ii2)

whenever T](X) e Wo'm(f2). The function tf> is called a weakeigenfunction (a
weak solution of the eigenvalue problem for m—Laplacian).

We characterize the first eigenvalue /x(m) of the eigenvalue problem for
m-Laplacian by

/ iv^pdn
(8.2.9) u(m) = inf  n ., ,, .

THEOREM 8.20. There exists a solution (fi, ip) of the eigenvalue problem
for m—Laplacian with fj, > 0 and -ip > 0 in fi . Furthermore, the following
Wirtinger's inequality holds

(Wm)

«;?</i a sharp constant } \.

PROOF. Let us introduce the following functionals on W1'm(fi)

F[u]  = f \Vuu\md£l, G[u] = f \u\m<m,
n n

H[u]  =
n

and the corresponding forms

F(u,n) = / Vwi t —-T———dQ, G(u,T]) =
J qi ouii au>i J
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Now, we define the set

= {ue Wo
lim(fi ) G[u] = 1}.

Since K C W0
1>m(f2), F[u]  is bounded from below for u e K. The greatest

lower bound of F[u]  for this family we denote by /x

inf F[u]  = |U.
u€K

Since F[v]  is bounded from below for v 6 K, there is /x = inf F[v\. Consider

a sequence {vk} C K such that lim F[vk] = /i. (Such a sequence exists by
K—*OO

the definition of infimum.) Prom K c Wo'm(J2) it follows that Ufc is bounded
in Wg'm(Q) and therefore compact in Lm(f2). Choosing a subsequence we
can assume that it is converging in Lm(f2). Furthermore,

(8.2.10) ||wfc - vi W£m{n) = G[vk -vi]<e

as soon as k, I > N(e). Now we use Lemma 1.6

m im-2.

We integrate this inequality over O
m

dn:

n n
Further, by the Young inequality (1.2.2) with p =  ̂ j , g = m, we have

m <j\vk\ \Vl-vk\<^-t

1
+ 7^\vi-Vk\m, V<5>0.

This fact yields that

This implies that
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By using G[vk] = G[vi]  = 1 and G[vi — vk\ < £i we obtain

for big k, I. Now we choose 6m = e1
 m . By setting e = ^ £ ™ we get

for big k, I. The functionals F[v]  and G[v] are homogeneous functionals and
therefore their ratio §W does not change under the passage from v to cv
(c = const =£ 0) and hence

inf £ M = inf F[v]  = /i.
wHn) G[u] ^GA: J

Therefore F[v]  > nG[v] for all v G W0
1>m(O). Since a G w£'m(Q) to-

gether with Vk,vi e iiT, then

Let us take k and I large enough so that F[v)-}  < /x + e and -F[î ] < /x + e.
We apply Clarkson's inequalities (Theorem 1.18)

 1) m > 2

< /x + e - (/i — e) = 2e

2) 1 < m < 2

by Lemma 1.4. Consequently,

(8.2.12) F[vk - vi] -> 0, as fc, / -> oo.

Prom (8.2.10), (8.2.12) it follows that \\vk - U J H ^ I , ™^ - ^0, as jfc, I -> oo.

Hence {1;̂ }  converges in W0
1>m(n) and as a result of the completeness of

W0
1>m(fi ) there exists a limit function u e Wo

lim(ft) such that

llufc ~ulliv 1'm(n) ~*  0' as fc ̂  oo.
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In addition, again by Lemma 1.4 and the Holder inequality

\F[vk]-F[u]\  =

a

<m f i

<

—> 0, as k —> oo,

since vk G W0'
m. Therefore we get

F[u]  = li m F[vk]  = fi-
k—*oo

Analogously one sees that G[u] = l.
Suppose now that 77 is some function from W0'

m(Q). Consider the ratio
G[u+e I  ^ *s a continuously differentiable function of e on some interval
around the point e = 0. This ratio has a minimum at e = 0 equal to \x and
by the Fermat Theorem, we have

erj\

/e=o
which by virtue of i^u] = /z, G[u] = 1 gives

F(u, r?) - MG(U, r,) =0, VJ? e < '

= 0,

Further, if u is an eigenfunction of /i, then it follows from the formula
(8.2.9) that |u| is one also. But then, by the weak Harnack inequality,
Theorem 8.2, either \u\ > 0 in the whole domain G or u = 0 (the latter case
being excluded for eigenfunctions). By continuity, either u or — u is positive
in the whole domain G. Indeed, suppose that u = 0 at some point XQ € G.
Let BZR(XO) be a ball with so small R that B3R c G. Then inf u(x) == 0,

BR

so in turn ||U||LP(B2R) = 0 by (8.1.1), that is u = 0 in B2R. Chaining then
gives the conclusion u — 0 in G, thus proving the theorem.

Now we shall prove the inequality (Wm). Consider the described above
functionals .F[M],G[«],.H'[U] on W0'

m(Q). We will find the minimum of the
functional F[u]  on the set K. For this we investigate the minimization of the
functional H[u]  on all functions u(u>), for which the integral exists and which
satisfy the boundary condition ip = 0 on dfl. We use formally the Lagrange
multipliers and get the Euler equation from the condition 5H[u] = 0. By the
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calculation (with the help of formulas from Section 1.3) of the first variation
SH we have

SH[u] = S E l / du \
.=1 ^ \d^i)

a

-mn 6u- \u\m~2udn =

= -m 5u-\ —-r V ^—
n ' -1

m -2

= - m /"(

the eigenvalue problem for m—Laplacian.

Backwards, let u(ui) be a solution of the eigenvalue problem for
m—Laplacian. We multiply both sides of the equation from this problem
by u and integrate over ft, using the Gauss-Ostrogradskiy formula

n — / / , . . J ; V /IT7 ..im—2vv \ . . . | , . |m\ fin —

n

= \i I \u\mdSl+

n

= n j \u dn-
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= I {ii\u\m - | V wu|m) dQ = i*G[u]  - F[u]  =

Q

= u-F[u]=>n  = F[u],
(by K)

consequently, the required minimum is the least eigenvalue of the eigenvalue
problem for m— Laplacian.

The existence of a function u e K such that

F[u]  < F[v]  for all v e K

has been proved above. D

The one-dimensional Wirtinge r  inequality.
Now we consider the case N = 2 and thus let Cl = [— , ̂ j be an arc

on the unit circle. Then our eigenvalue problem is

The Wirtinger inequality in this case take the following form

We want to calculate the sharp constant /j.(m). First of all, we note that the
solutions of our eigenvalue problem are determined uniquely up to a scalar
multiple. We consider the solution normed by the condition tp(O) = 1. In
addition, it is easy to see that  = ^{OJ) and therefore ^'(0) = 0. Thus
we can suppose

0 < VM < 1-
This we shall take into consideration for the solution of the problem.

Rewriting the equation in the form

(m - l ) | ^ ' |m-V + MV#|m~2 = 0
and solving it direct by the preset parameter method we obtain

By integrating from this equation it follows that

/ Ti.

V m - 1
(i r dt
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Taking into account the boundary condition we get
1

wo f dt

Let F(x) be a gamma-function and the beta-function B(x,y) = nx+ V
Then we have (see e.g., formula (16) §1.5.1, Chapter 1 [34])

/ dt

J \/l - m' m

'
msinin(^)

Here we used the formula

T(z)-T(l-z) = ̂ - - , Rez>0.

Thus we get

H(m) = (m - 1) —
msinin(^)

, V m >l

Hence, in particular, we have the well-known result

Finally, we calculate fx(l) = lim /x(m). To this end we rewrite ob-

tained result above in this way

„-(„,_„- *  = A.L
wo m

We multiply this equality by (m — 1) and use the formula zT(z) = F(l + z)
thusly



8 WEAK SOLUTIONS OF THE DIRICHLET PROBLEM FOR

314 DIVERGENCE FORM QUASILINEAR EQUATIONS

since F(l) = 1. On the other hand, by lim xx = 1, we have
x—>+0

lim u™ (m — I)1"™ = u. Hence it follows that

This equality leads to the Wirtinger inequality for the case m = 1

8.2.4. Integral estimates of solutions. The aim of this section is to
present integral estimates for the solutions of (LPA). Moreover, the weak
comparison principle is not used in the proof so that it may be applied also
to the case of elliptic systems.

THEOREM 8.21. Let a0 e L_z»_(G), i / 0 < g < m -l and 0 < ao <
Q>o(x) < ai (ao,o,i — const.), if q > m — 1. Let f e V°m 2(G

f)- Then the
weak solution u of the problem (LPA) belongs to V 0̂(G) the inequality

(8.2.13) a0(x)\u\1+<} )dx<c(N,G)

G

holds.

PROOF. Let us consider the function

(8.2.14) G e C°°(R), 6(t) > 0, 0(t) = [0,
1, t>2.

Inserting rj(x) = u(x)& ( g ) with e > 0 into the integral identity (II) we
obtain

(8.2.15) I (|Vu|m + ao(a;)|u|1+9) 6 0-^) dx
G

<Cle-x j \u\\Vu\m-1dx+ f\u\\f\O 0-^Pj dx.
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By Young's inequality and (Wm) we get

(8.2.16) 5T1 / li/HVul 7™""1^

. r . r
adx.

1 I (r|V«r + r1-m|«r)da;<C3(/io) f \Vu\

-^pj  dx.

Prom (8.2.15) and (8.2.16) it follows that

(8.2.17) j (|Vtx|m + ao(x)|u|1+g) 6 (^-\ dx
G

<c3 f \Vu\mdx + / |
G%' G

Passing to the limi t as e —* 0 and applying the Young inequality to the last
integral on the right hand side of (8.2.17), we obtain the assertion.

COROLLARY 8.22. Let m> N. Under the suppositions of Theorem 8.21,
a weak solution u(x) of (LPA) is bounded and Holder continuous in G.

PROOF. This follows from Theorem 8.21 in view of the embedding the-
orem

\G )

u

We set /̂ o = M-^0 a nd observe that fio = (Uo(f̂ ) is the smallest positive
eigenvalue of the eigenvalue problem for m—Laplacian for m = N.

THEOREM 8.23. Let m = N and let the following condition be satisfied
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Let xo = TjT—^N-2)/N  Then for any weak solution of (LPA) the
bound

/|V. N dx<

(8.2.18) <

is satisfied.

REMARK 8.24. It is well known that if m = N = 2, then /j,0 = X  ̂= ̂ ,
where u>o is the quantity of the angle with the vertex 0. In this case the
assertion of the theorem was proved in chapter 5 (see Theorems 5.4, 5.5).

The proof of the theorem will  be carried out based on the following
lemma.

LEMM A 8.25. Let 2 < m < N. For any function u € Wl'm{G) with
Vu{p,  e Lm{Sl) we have

(8.2.19) / lpuur +  ̂ Y ^ " 2 }  \Vu\m-2du> < ?- f\Vu\mduj,
a n

where

(8220) m (l+/i)(m-2)/m

PROOF. Prom the Cauchy inequality we obtain

N — m 9 e + N — m 0 1 9 9
puur + — - —u l < u2 + TTPK

and hence

j l
a

N — m ol ,„  ,m 9 , o f (s + N — m2 \ \ V \ m - 2 d < 2 J {

+ ^-u2
rBigr}\Vu\m-2 dw =:  A

The right hand side is estimated by Young's inequality

p)
r-2

p) m m

| | m + -8 \ur\
m, W8 > 0,

m m
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which implies by Wirtinger's inequality (Wm)

<p2f J e + N - m + ) \Vu

<p2 II—
- ^ J \ 277

n
5_ fe + N
m \ [i

l\ {Vu

-m V^u

We choose £ > 0 such that E+i^~m = 7, which gives

e = i (m - JV + V(iV - m)2 + 4/z) ,

and hence,

1 v«

The lemma is proved by choosing 5 = (1 + /i)^m 2) /m.

REMARK 8.26. For m = N = 2 the constant \ is sharp.

Proof of Theorem 8.23.. Let

V(p) = j \Vu\N dx.

From {LPA) it follows that

- f ao(x)\u\1+q dx = pN~2 f puur\Vu\N-2duj+ f ufdx.

D

In view of

we obtain from Lemma 8.25

'(p) = pN-1J\Vu\NcL;,
Q

<— ̂ '(P)+ [\uf\dx.
Xo J
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The second term of the right hand side can be estimated by the condition
of the theorem and Wirtinger's inequality (Wm),

l/N , v (N-l)/N

I  \uf\ dx< <

Thus we get the differential inequality for V(p)

V(p) < -?-V'(p)+cpK^
AO

In view of Theorem 8.21, as an initial condition for this differential inequal-
ity, we can use

V(d) < I \Vu\N dx<c f Ir/I^/C^-1) dx = Vo.
G G

By putting W(p) = V^f~ (p), we obtain the differential inequality for W(p)

p)+cpKl^1, 0<p<d

Solving the Cauchy problem for the corresponding equation, we get

-, i f Xo

It is well known that the solution of the differential inequality can be
estimated by the solution W*(p) of the corresponding equation, that is
W(p) < W*(p) and hence we obtain finally the required estimate. Theorem
8.23 is proved.

LEMMA 8.27. Let q > m - 1, oo(x) > ao > 0, (ao - const). Let

\f(x)\<fl x I p > —m ifm<N.

Then for any generalized solution u(x) of (LPA) the inequality

(8.2.21) \\u\\p.Gp/2<c(a0,m,N,p,q,f1)pf~^^+  ̂ Vp > m1) \\u\\p.Gp/2<c(a0,m,N,p,q,f1)f~

holds.
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PROOF. We consider the cut-off function

[0,f]u[2p,oo),
l ,

0 < <(r) < 1, |VC| < cp-\ r G [|, f ] U [p,2p]

By putting in (II)

T)(x) = |u|*sgnu  Cs(kl) Vt > 1, s > 0,

we obtain

(8.2.22) t f £s{r)  (lul'-^Vur + ao(x)\u\t+q) dx <

<sj\u
/-12P

f M 'dr.

By the Young inequality

m
—
m

V£>0,

choosing £ = (;^rj ) "*  and taking into account that V^ = O(p x), then
from (2.13) we get
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Applying the Holder inequality to integrals with p =  t / ^ - l > 1>
V1 = ^ p r we obtain

(8.2.24) /

t+m-l
t+q

dx / \u\t+qC{s

Let us now choose s = ^%ffi - Then from (8.2.23), (8.2.24) it follows that

(8.2.25) a0
J \u\ £dx< J \u\

~i2p n1f>

I
I

We estimate the first right hand side term in (8.2.25) by the Holder inequal-
ity

(

Then from (8.2.25) we obtain

f

(8.2.26) aQ I \u\t+9Cdx < f
\ J \ J

" ' " " ' " ' ^ m - l

sdx

dx
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Again, by the Young inequality, taking into account that q > m — 1, we get

(8.2.27)

* * /

Now by setting p = t + q>l + q>m, from (8.2.26) and (8.2.27) we arrive
at the inequality (8.2.21) sought for.

LEMM A 8.28. Suppose the conditions of the Lemma 8.27 hold. Letu(x)
be any generalized solution of (LPA). Then the inequality

(8.2.28) f

is valid.

PROOF. Let us consider the inequality (8.2.22) with t = 1 and Vs > 0

(8.2.29) f \Vu\mtsdx + a0 f \u\1+<! C

p/4,
n2p
Gp/4

<cs f r-1\u\\Vu\m-1C~1

dx<

u\\f\Cdx.
2p

By estimating the first right side term in (8.2.29) with the help of the Young
inequality, we have

(8.2.30) - / \Vu\mCdx + a0 [ \u\1+gCdx <

I {
<c(m)sm I r~m\u\mC~mdx+ f \u\\f\Cdx.
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By using the Young inequality once again with p = ̂ -, p' = 1_^^5m and
V<5 > 0 we have

c(m)smr-m(\u\mC~m) < S\u\1+%is-m)1^ +

+c(S, m, s)r~m »+ -̂™.

Now we set

(8.2.31) S = j l + S)m

As a result from (8.2.30) we get

i f \Vu\mCsdx + a0 I \u\1+q(sdx<5 f \u\1+q(sdx+
s-i2p s-i2p f-ilp
GP/*  Gp/4 Gp/l

+ c(S,m,q) f r-*dx+ f\u\\f\Cdx V5 > 0.
f~,2p (-,1p
Gp/i Op/4

Hence, by choosing S =  ^j1, we obtain

(8.2.32)
2p

/
Ve > 0.

Taking into account the inequality (Wm) and choosing e > 0 properly, from
(8.2.31) and (8.2.32) we get the inequality (8.2.28) sought for. This fact
completes the proof of Lemma 8.28.

COROLLARY 8.29. Let q > -ff^- - l , l < m < N and the hypothesis of
Lemma 8.27 about the functions ao(x), f(x) hold. Then for any generalized
solution u(x) of (LPA) the inequality

(8.2.33) / (|Vu|m + r-m\u\m + \u\1+q) dx < c{ao,N, m, q, /x , d),

is valid.

PROOF. By replacing p with 2~kp (k — 0,1,2, . . .) in (8.2.28) and sum-
ming the received inequalities over all k, we obtain (8.2.33).
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8.2.5. Estimates of solutions for  singular  right hand sides. We
state two results of M. Dobrowolski (Theorems 1, 2 [99]). Let Ao be the
least positive eigenvalue and 4>(LO) be the corresponding eigenfunction of
(NEVP) (see (8.2.3)).

THEOREM 8.30. Let u e W1'm(G) be a weak solution of the problem

{ Amu = f(x), x e Gg,
u(x)=g(x), xend,
u(x) =0, xe rg.

Assume that g(x) S C1 (fid) and

(8.2.34) |/(x)| < h\xf with /i > 0, /? > A0(m - 1) - m.

Then

\u(x)\ < co\x\Xo, \Vu(x)\ < cilo:^0"1, forx £ G$.

THEOREM 8.31. Assume thatO < f(x) < fi\xf with(3 > A 0(m- l ) -m
and ao(x) = 0. Then each nonvanishing weak solution of (LPA) admits the
singular expansion

u(r,w) = krXo<t>(uj)+v(x)
with k > 0 and

j v c/| j i

where the maximum 6 > 0 depends on /3 and the eigenvalue problem
(NEVP).

The proof of these results is based on the weak comparison principle
for the pseudo-Laplace operator. Here we shall prove the estimates of the
modulus of generalized and weak solutions of (LPA) with ao > 0. Let d > 0
be a small fixed number. We also suppose that

(8.2.35) | / ( * ) |< / i |a f, / 3 > - -
P

with somep > ^ .
Observe that a function v = ra<f>(cj)  is a weak solution v e W0

1>m, if
<f>(uj)  is sufficiently smooth and

(8.2.36) a>^—^-.
m

Since Amv ~ r<*("*-i)- m a nd the right-hand side of (LPA)

-ao(x)v\v\g-1 + f(x) ~ raq + r0,
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hence we obtain that

(8.2.37) ra(m-l)-m „  ^q + r/3_

These arguments suggest the following theorems to us.

THEOREM 8.32. Let u(x) be a weak solution of(LPA). Let 1 < m < N,
q > 0 be given. Let ao(x) > ao > 0 (ao is a constant) and let f(x) e
LP(G), p > ^ . Then there exists the constant MQ > 0, depending only on
\\f(x)\\LP(G), measG,N,m,q,p,a0, such that

|H|L o o ( G )<M 0.

PROOF. Let us introduce the set A(k) = {x e G, \u(x)\ > k} and let
XA(k) be a characteristic function of the set A{k). We note that A(k + d) C
A(k) W > 0. By setting <f)(x) = rj((\u\ — k)+)xA(k)  sgnu in (II), where
r\ is defined by Lemma 1.60 and k > ko (without loss of generality we can
assume that fco > 1), on the strength of the theorem assumptions, we get
the inequality

(8.2.38) I \Vu\mr)'((\u\ -k)+)dx + a0 f \u\gr]((\u\  - k)+)dx <

A(k) A(k)

< I \f(x)\n{(\u\-k)+)dx.
A(k)

f (\u\ — k)+\
Now we define the function wk{x) :=  rj  I  — I . By the definition of\ m J
r}{x)  (see Lemma 1.60)

e K(|«|-fe)+|yu|m _ (™

and by the choice of n > m according to Lemma 1.60, using (1.11.5) -
(1.11.7), from (8.2.38), we obtain

(8.2.39) U^\ J \Vwk\
mdx + aok

q
o J \wk\J J \k\dx<

A(k) A(k)

<c7M J |/(z)|Krdz + c8e
Kd( J \f{x)\dx).

A(k+d) A(k)\A(k+d)

By the assumptions of the theorem we have that f(x) e LP(G), p > £j.
Then by the Holder inequality for integrals with the exponents p and p'
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(p + F = *) w e h a ve

(8.2.40) I \f\\wkrdx<\\f(x)\\Lp{G) J \wk\^'dx
A(k+d) \A(k) J

Letting m # = ™]* mi from the interpolation inequality (see Lemma 1.16)
for Lp—norms, we obtain:

mdx I / \wk\
m'dx

(k) J \A(k)

\wk\
m*>'dx < \ J \wk\

/ \A(fe)

with 0 g (0,1), which is defined by the equality

p' m* pm

Thus from (8.2.40) we get

J \f\\wkrdx<\\f(x)\\Lp{GA J \wk\
mdx\ x

A(k+d) W) /

x I  \wk\
m*dx

By using the Young inequality with the exponents g and jizm, from (8.2.41)
we obtain

J \f\\wkrdx < ^ 7 p ( G ) J
A(k+d) A(k)

/ |u;fc|
m#dx , V£>0.

()
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It follows from (8.2.39), (8.2.42) that

(8.2.43) U^\ J \Vwk\
mdx + aok

q
o j \wk\

mdx <

A(k) A(k)

r ( t
e J \wk\

mdx + cW£^ / K | m #

A(k) V(fc)

+ cn J \f(x)\dx, Ve>0,

A(k)

where

- (1 - 9)Mc7,

Now we use the Sobolev imbedding Theorem 1.30. Then from (8.2.43)
we get

(8.2.44) \{^jm [j  \wk\
m*dx\ +a0k

9
0 J \wk\

mdx<
l(fc) / A(k)

f \wk\
mdx + c10eX^> f \wk\

m*dx

A(k) \A(k)

+ cn I \f(x)\dx, Ve>0.

A(k)

Now, we can choose e in order to have

(8.2.45) " ""

and feo such that

(8.2.46)
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Prom (8.2.44) it follows that

I  r \ r
(8.2.47) / K |m #dx <ci2 / \f(x)\dx

W
At last, by Young's inequality we get

f \f(x)\dx< ||/(x)||ip(G)meas l~
A(k)

Therefore from (8.2.47) it follows that

(8.2.48) J \wk\
m*  < c12 | | /(x)| |Lp(G) meas ^

Now let I > k > fco- By (1.11.8) of the preliminaries and the definition
of the function Wk(x) we have \wk\ > ~(|w| — fc)+, and therefore

m

/ \wk\m dx > I ) measA(l).

From (8.2.48) it now follows that

(8.2.49) meas A(l) < f - — - J / \wk\
m*dx <

A(k)

( \ »n*  / \ —— „

J^) [C12 II/(*)II MG)J meaS ^ {l-^A(k),VI > k > k0.

Now we set

ip(k) = meas A(k).

Then from (8.2.49) it follows that

(8.2.50) V(0 < ci3 \TZl) IWk)}^1-^-

Prom the definition of m# and the assumption p > ^ we note that

m* / 1\ ,
7= 1 - -J >1.

m \ p)
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Then from (8.2.50) we get

and therefore we have, according to Lemma 1.59 , that rp(ko +5) = 0 with 6
depending only on the quantities in the formulation of Theorem 8.32. This
fact means that \u(x)\ < ko + S for almost all x € G. Theorem 8.32 is
proved.

COROLLARY 8.33. Let 1 < m < N, q > ^ ^ - 1 and p > - ^ for

some s > &. be given numbers. Let ao(x) > oo > 0 (ao - const) and
\f(x)\ <fi\x\0. Suppose

aQ(x), f(x) e V'm{G), P>N.

Then any generalized solution u(x) of {LPA) is Holder continuous in G.

PROOF. This assertion follows from Theorem 8.32 and Theorem 8.3
according to the inequality (8.2.33).

THEOREM 8.34. Let I <m< N and q > m - 1 be given. Let 0 < a0 <

o-o(x) < ai, (ao,ai — const) and let (8.2.35) is satisfied with some /? > 0.
Let u(x) be any generalized solution of {LPA). If, in addition,

(g.2.51) A0 ^ , q ^ ,
TO — 1 IS — m

then
(8.2.52) \u(x)\ <Co|a;|Ao, x e GQ-

PROOF. First we apply Lemma 8.27. Prom the inequality (8.2.21) under
p —> oo the estimate follows

(8.2.53) |u(x)| < C | I | ^ T = ?.

Hence, in view of (8.2.36) the second inequality (8.2.51) is justified. Now
we consider the auxiliary problem

(8.2.54) I v(x) = u+(x), x e

with some d > 0, / i > 0, where u+(x) is the positive part of u{x).
Under the assumptions of our theorem, by the existence Theorem 8.5,

there is a weak solution of the auxiliary problem (8.2.54). Further, by
Theorem 8.7, we have that u{x) € C1+7(GJj/2). Then, in view of Theorem
8.30, we have

(8.2.55) 0 < v{x) < CQ\X\XO, and |VU| < clx^0" 1 for x G G$.
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We wish to prove that

(8.2.56) u(x) < v(x) for x e G$,

which will prove the theorem. To do this, we apply the proof by contra-
diction. We suppose that u{x) > v(x) on some set D C G$ is fulfilled. By
Corollary 8.33, the set D is a domain. Prom (LPA) and (8.2.54) we have

Amu < f(x) < h\xf = Amv, Vz e D,

that is

(8.2.57) / (\Vu\m-\Xi - \Vv\m-2vXi) r)Xidx < 0

D

for V?7(x) e Wo'm(D) n Li+1(D), T)(x) > 0. We put

w = u - v, u*  = tu + (1 - t)v Vt e [0,1],

where a,i(z) are defined by (8.2.1). Then from (8.2.57) we obtain

(8.2.58) Jaij(x)wXjT]Xidx<0
D

for VJ?(Z) € W0
1|m(D) nI«+1(D), r}(x) > 0. Recall that the ellipticity condi-

tion (E) with (8.2.2) holds. Thus, the function w(x) > 0 in D and satisfies
the integral inequality (8.2.58). Further, by the conditions of the theorem,
the inequality (8.2.33) holds and in particular

(8.2.59) j (| Vu|m + r-m\u\m) dx < const.
D

The same inequality is true for the function v(x). In fact (8.2.59) for v(x)
follows from (8.2.55), if we take into account (8.2.3) and m < N. But now
we can state the validity of the inequality

(8.2.60) f (\Vw\m + r-m\w\m) dx < const.
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This circumstance makes it possible to put in (8.2.58) the function r}{x)  =
w(x)Q O^f) with 6(t), defined by (8.2.14). As a result we obtain

(8.2.61) <c f r ^HV H ( /|Vu*r-2cft| dx <
o

r~mwm + \Vv\m) dx,

(by the Young inequality). In view of (8.2.55) and (8.2.60) the right hand
integral is uniformly bounded over e > 0. Therefore, it is possible to take
the limit as e —> 0 which produces

(8.2.62) f |VH2 ( / |Vu*|ra-acft ) dx < 0
D \0

By the continuity of w(x) and in view of w(x) = 0, x S dD, from (8.2.64)
we get w(x) = 0 Vx e D. The contradiction to our assumption w(x) > 0
Va; € D is finished. By this fact, (8.2.56) and the assertion of Theorem 8.34
are proved.

LEMMA 8.35. Let u(x) be a weak solution of the problem (LPA). If
f(x) > 0 for a.e. x £ G then u(x) > 0 a.e. in G.

PROOF. We define

G~ = {x G G | u(x) < 0}.

Choose r) = max{—u(x),0} as a test function in the integral identity (77).
We obtain

[  (|Vu|m + ao(x)\u\q+l)dx = I f(x)u(x)dx < 0.

G- G~

Hence it follows that u(x) = 0, x e G~. Thus u(x) > 0 a.e. in G.

THEOREM 8.36. let 1 < m < JV, q > 0 6e given. Let ao(x) > a0 > 0
fao is o constant) and let (8.2.35) be satisfied. Let u(x) be a weak bounded
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solution of (LPA) with sup |u(x)| = MQ. Suppose, in addition,
G

f(x) > 0; and ao(x) < M^9f(x) a.e. inG.

The following assertion holds. //Ao < f^zf j then

(8.2.63) 0 < u(x) < co\x\Xo, x e G$.

PROOF. Prom the equation of (LPA) we have

Amu = F(x), where F(x) = f(x) - ao(x)u\u\9~1.

By Lemma 8.35, u > 0. Therefore, in view of our assumptions, we get that
0 < F(x) < fi\x\@. By the assumption on Ao, /3, the conditions of Theorem
8.31 are satisfied. By this theorem we get (8.2.63).

THEOREM 8.37. Let 1 < m < N, q > 0 be given. Let aa(x) > a0 > 0

(ao is a constant) and let (8.2.35) be satisfied. Let u(x) be a weak solution
of (LPA).

The following assertion holds. //Ao > ^zj, then

(8.2.64) |U(X) |<

PROOF. By Theorem 8.32 we verify that u(x) is a bounded function.
We set A = ^zf  By the conditions of our theorem,

0 < A < Ao.

We take
v(x) = A\x\x<j>(u)

as the barrier functions, where VA > 0 and (A, <f>)  is a solution of (8.2.5). It
exists in view of Theorem 8.14. In this connection

'Amt) = A m-1|x|A (m-1)-m, xeG$;

v(x) = Adx<j)(uj)  > 0, x G Q.d\

<V(x) = 0, i £ To*.

By the function <J>(OJ) properties (see Theorem 8.14 and Lemma 8.18) it is
easy to verify that

0 < v(x) < cA\x\x,

and

I (\Vv\m + r-m\v\m) dx < const.

G
Wishing to prove that u(x) < v(x) for x £ GQ (by this the assertion of
the theorem will be proved), we suppose by contradiction that on some set
D C G Q the inequality u(x) > v(x) is satisfied. Since u(x) is bounded in G,
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then by Theorem 8.3 it is Holder-continuous. This fact implies that the set
D is a domain. Further, we have for x e D

(x) < f(x) <

if A

Moreover, (8.2.59) is valid by Theorem 8.21. Really, for this fact it obviously
suffices to show that J \rf\m~1dx is finite. Because of (8.2.35) we have

G

d

j \rf\^rdx < ff* [

if

<  oo,

G 0

+ 1) + N > 0. But by (8.2.35) and since JV>mwe obtain

m — 1
= N-m > 0.{ l ) + N > (l

m — 1 p m — 1
Now we repeat the arguments of the proof of Theorem 8.34 word for word
and obtain the required assertion of Theorem 8.37.

8.3. Estimates of weak solutions near  a conical point

In this section we investigate the behavior of the weak solutions of the
(DQL) near a conical point. Let Ao be the least positive eigenvalue of the
problem (EVD) (see Theorem 8.12). Let us introduce the number

q=(l^^H,  far0<*<i.

Concerning the equation of the {DQL) we make the following Assump-
tions:

the functions a,i(x,u,z) and a(x,u,z) are continuously differentiate
with respect to the x,u,z variables in %R<i,Mo = ^o x [~-̂ o> Afo] x Mw and
satisfy the following inequalities

E)
\ {0};

N

2) M | p l > i/|u|9-2|^|m;
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daj(x,u,z) \a(x,u,z)\ < n(l-t) ,

where v,fx > 0,/3 > (m — l)Ao — m are constants, c%(r) are nonnegative,
continuous at zero functions with Cj(0) = 0; i = 1,..., 5.

At first, we transform our problem (DQL) into such problem in which
the leading coefficients are independent of u explicit.

LEMMA 8.38. Let us make the change of function

(8.3.1) u = v\v\t~1; forO<t<l.

Suppose that

(CO u
dai(x,u,z)_l — t dai(x,u,z)

du t dzj

Then the problem (DQL) takes the form

zy, i =

(8.3.2) Qt(v, 4>) = , vx)<f> Xi + A(x, v, v = 0

G

for all <t>(x) £ Wo'm(G)nLco(G), where

(8.3.3)

PROOF. In fact, by calculating, from (8.3.1)-(8.3.3) it follows that

-l , dai{x,u,z) ... .... ,t.
dv du

_da,i(x,u,z) t- i da,i(x,u,z)
du

(t — l)\v|* 2signu l - t
Zj =

,*)I f fifl  "IT * 11

= - tu h (t -
v \ du

which is the required statement.
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REMARK 8.39. It is easy to see that we can take

(8.3.4)
f da.i(x,u,z) _ n .

11 du ~ U '
\ t = l - e , Ve 6(0,1), if **%"'* ? ^ 0.

The change (8.3.1) transforms our assumptions into the following

(E) ^|C|m-2|e[2 < ^ ^ t e j < MlC|m-2|^|2, Ve € RN \ {0} ;

1)

2)

N
<

—l\/-\m—4

The main statement of this section is presented by the following theorems.

THEOREM 8.40. Let u{x) € W^m{G) n L°°(G) for 1 < m < N be a
weak solution of the (DQL). Suppose that the assumptions E),(U), 1) — 4)
are fulfilled. Then there exists a constant CQ > 0, depending only on the
parameters and norms of functions occuring in the assumptions, such that

(8.3.5) ^
,\t\o

PROOF. Making the transformation (8.3.1) in the problem (DQL) to
the equation Qt(v,(f>) = 0 we shall estimate the function v(x) under the
assumptions (E), 1) — 4)- At first, for some d > 0 we consider the auxiliary
problem

(8.3.6) w(x) =v+(x), x
,u>(x)=0, x

where v+(x) is the positive part of v(x) and the constants

/ i > 0, P > (m - 1)AO - m.
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Under the assumptions of our Theorem, by the existence Theorem 8.5, there
is a weak solution w(x) of the auxiliary problem (8.3.6). Further, by Theo-
rem 8.7, we have that v(x) e C1+7(G^/2). Then, in view of Theorem 8.30,
we have

0 < w{x) < co\x\Xo, |Vtu| <

(8.3.7)

Now let <j>  e ioo(Go) n Wo'TO(G?o) be any nonnegative function. For the
operator Qt, that is denned by (8.3.2), applying the assumptions 3) — 4)
and estimates (8.3.7) we obtain

Qt{w, <t>)=  I \Ai(x,wx)^)Xi + A(x,w,wx)4>Jdx =

=  / ej>(x) ( - - j — Ai(x,wx) + A(x,w,wx) )dx =
J \ dxi I

A(x,w,wx))dx = J

(m - 2)wXi

8Ai(x,wx) -\A(x,w,wx)\-

dAi(x,wx)
dwXj

(m-2)wXiwXj  \wxxndx >

>/,

{x,w,wx)-
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* /

Hence, choosing a d > 0 by the continuity of Cj(r), (i = 1,..., 5) so small
5

that 53 c«(r) — i/i ) we Se*

QtK^)>^/ iy^x)r^>0.

Thus, from (8.3.2) and (8.3.6) we get

{ ,
Q(W) cp) -̂  0 = Q(V) (f>) v(p ̂  0 in GQ\

w(x) > v(x), x G 8GQ.

Besides that, one can readily verify that all the other conditions of the
comparison principle (Theorem 9.6) are fulfilled. By this principle we get

v(x) < wE(x), Vx G Gjj.

Similarly one can prove that

ti\ I rp \ ^> 11)1 'T*  I V T*  £~" Li

Thus, finally, we obtain

v(x)\ <w{x) <CQ\X\XO, VxeGfi.
Returning to the old variables, in virtue of (8.3.1) we get the required esti-
mate (8.3.5). Our theorem is proved.

THEOREM 8.41. Let u(x) e W1'm(G) n L°°(G) for 1 < m < N be a
weak solution of the (DQL). Suppose that the assumptions (E), (U), 1) — 4)
are fulfilled. Suppose, in addition,

N

*  }T\ai(x,u,z) -ai(y,v,z)\2 < n(l + H)"1" 1 (\x - y\a + \u-v\a)

for all (x,u,z) e dG x [-M0,MQ]  x RN and all (y,v) G G x [-M 0,M0] .
Then there exists a constant c\ > 0, depending only on the the parame-

ters and norms of the functions occurring in the assumptions, such that
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PROOF. Let us consider in the layer G\,2 the function
v(x') = g~tX°u(gx'), taking u = 0 outside G. Let us perform in the equa-
tion (DQL) the change of variables x = gx'. The function v(x') satisfies
the equation

/ {a,i(x',v,vx>)cj)x'. + a(x',v,vx>)<f>}  dx' = 0,

(DQL)'

a(a;',T;,t;x/) = ga(gx',gtXov,gtXo~1vx>).

In virtue of the assumptions of our theorem, we can apply the Lieberman
Theorem 8.7:

sup \V'v\ < M[,

where M[ > 0 is determined only by t, XQ, a, V, n, N, G and CQ from (8.3.5).
Hence, returning to the function u(x) we get

|Vu(x)| < Migtx°-\ x e Ge
e/2.

Letting |x| = |^, we obtain the desired inequality (8.3.8).

COROLLARY 8.42. From Remark 8.39 it follows that the estimates
(8.3.5), (8.3.8) can be rewritten in the following form

,|A0 if daj(x,u,z) _ ,

(8.3.9) |w(ar)|<c" "

(8.3.10) \Vu(x)\<

>»-',Vee(0,l), if

- l if
1 - , Vee(0,l), if

8.4. Integral estimates of second weak derivatives of solutions

In this section we will derive a priori  estimates of second derivatives
(in terms of the Sobolev weighted norm) of solutions to the (DQL) in
a neighborhood of a conical boundary point. We give an example which
demonstrates that the estimates obtained are exact.

We define the set 9JI = G x R x R-̂  and we will suppose that the
ellipticity condition (E) and the following assumptions are fulfilled

there exist a number \i > 0 and nonnegative functions

f(x) G L2(G) n L{m+2)lm(G) n L»/m(G),
g(x) € L2(m+2)/m(G) n L(m+2)/(m

p> N
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such that

(A) (n(x,u,z),a(x,u,z) £ Cl(m), i = 1,.. .,JV;

(B) |o(x,u,
N
E oai(x,i

dXi
,u,z) < ti\z\m + f(x)\z\

da.i(x,ufz)
du

N

£ -1 + g(x)\z\mz2;

(D)

(F)

N
\a,i(x,u,z) -ai(y,v,z)\2 + \a(x,u, z) — a(y,v,z)\ <

\x-y\ + \u-v\), Vx,y e G, \/u,v e R;

N

£
*=i

ujx,u,0)
du < g{x).

We make the transformation a; = QX'. Let v(x') — u(gx') and G' be the
image of G under this transformation. Let d > 0 be so small that if g S
(0,d), then G\,A C G'. Further, our problem {DQL) takes the form

(DQL)'

J {ai(x',v,vx>)(f> x>. +a(x',v,vx')<f)}dx l = 0,
G'

\/4>{x') G Wo
lim(G') n i

Oi(x',v,vx>) sajfp'.ti.g- 1!;^) ,

At first we establish the strong interior estimate.

8.4.1. Local interior  estimates. In this subsection we derive local
interior integral estimates of weak solutions of the problem (DQL).

THEOREM 8.43. Let u(x) be a bounded weak solution of the problem
(DQL). Let us assume that the hypotheses (A),(B),(C),(D),(E),(F) are
fulfilled on the set SDT. Let any G be such G CC Ge ,4 C G. Then there exists
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the integral j (|Vtt|m+2 + |Vu|m~2u^x) dx and we have the estimate
G

( | | | | - 2 t & ) dx ^

G

(8.4.1)

< C j (p-2\Vu\m + f + /*&  + 9^ + 92J^) dx.
G

PROOF. Let the image of G be G' cc Gf/4 C G'. For all x'o £ G' and

all a such that 0 < a < dist (C, dGh4), we take

ttf) = A^h (C2(x')Ah
kv(x'))

as the test function in the {DQL)', where C,{x') £ CQ°(B2(T(^O)) ^S a cutoff
function such that

C(*0 = 1 in B,(x'o), 0 < C(x') < 1, |V'C| < cu'1 in B2tT(x'o).

Then for sufficiently small \h\ < a, summing formula (1.11.17) by parts, we
obtain

(8.4.2) J jA fo^ t +

v',v,vx<) \dx' = 0,

where

A%a(x',v,vx.) = V{x')U^X>) + b(x')

with

a\x') = -[at (x' + hek,v(x' + hek),vX'(x' + hek)) -

- at {x\ v(x'), vx'(x' + hek))] ;
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b,,, = a (x' + hek, v(x' + hek), vx> (x' + hek)) - a (x1, v(x'),vx> (x' + hek))
h

vt{x') = (1 - t)v{x') + tv(x' + hek).

Thus we get (for brevity we denote

j a V) dx -

(8.4.3) + a {X >

v(x')<:2\ \dx'.

Letting

(8.4.4)

by assumptions (C), (D), (E), and applying Lemma 1.7, we have

\aij(x')\ <

|2V)I <
Tfl

(8.4.5)
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Now from (8.4.3)-(8.4.5) it follows that

B 2 l T

<c(i/)Ai,m) I (
BL KBL,

(8.4.6) J ~̂ VJI

+Pk
n(x')\Ah

kv(x'\C2 + Pf(

Now we estimate each term on the right using the Cauchy inequality with

|
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Choosing £ > 0 in an appropriate way we get from (8.4.6)

k k J ^ k k

+ (P™-2(x')\Ah
kv(x')\2 + Pfc

m(x')) (C2 + |V'C|2) +

(8.4.7) +\Ak
lv(x')\2Qmg2(Qx')(2\dx'.

In order to estimate the integral / P^n|Aj^t;(a;')|2C2^a;'we take

<f>(x')  = (v(x')-v(x'0))(;
2(x')\Ah

kv(x')\2

as the test function in the (DQL)'. Then we obtain

(8.4.8) I {*(*' , v,tv) {(v(x')-v(x'0))(
2(x')\Ah

kv(x')\2)x, +

+ a(x', v, vx.) (v(x') - v(x'o)) C
2(x')\Ah

kv{x')\2)dx' = 0.

Now we use the representation

a,i(x',v,z) = aij(x',v,z)zj +ai(x',u,0),

(8.4.9)
1 __

~ / / x f da,i(x',v,Tz) . . . .
aij(x',v,z) = j —v

d ' Jdr, (i,j = l,...N).

0

Therefore from (8.4.8) it follows that

(8.4.10) f aij(x',v,vx,)vx,vx>\Ak
lv(x')\2t2(x')dx' =

B2<,

= - J {a(x',v,vx,) (v(x') - v(x'o)) |A^(x')| 2C2(^)+
B?c

+ 2aij(x', v, vx,) (v(x') - v(x'o)) vx,. (|A
h
kv{x')\2ttx't +

at(x',v,0) ((»(!')-»«
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In the last term on the right we integrate by parts and so obtain

(8.4.11) j ^

(v(x')-v(x'o)) {a(x',v,vx/)\A
h
kv(x')\2<; 2(x')+

v, vx,)vx, ([A£t>(a')l2CC»i + Ah
kv{x')

After a simple computation, using assumptions (B),(E),(F) and taking
into account 0 < g < d < 1, we obtain from (8.4.11)

v\2C2dx' < c(v,fi,m) J \v(x')-v(x'0)\l\Vv\m\Ah
kv\2(

(8.4.12)

Taking into consideration Remark 8.4 we observe that all hypotheses of
Theorem 8.3 about Holder continuity of weak solutions are fulfilled and
conclude

\v(x')-v(x'0)\<ccra, x' 6 B2a(x'o), ae(0, l).

Moreover, we use the Cauchy inequality

'^r^civ'ci < ̂ iv^rc2
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Hence and from (8.4.12), it follows that

f a f {|

(8.4.13)

f(Qx')\ Vv

Now we consider the function w(x') = v(x' + hek). It is easy to observe
that this function is the bounded weak solution of the equation

--r-fTii  (x' + hek,w(x'),wX'(x')) + a(x' + hek,w(x'),wx>(x')) = 0.
axi

Then we write the corresponding integral identity with the test function

<t>{x')  = (w(x') - w(x'0))C
2(x')\Ah

kv(x')\2

and repeat verbatim the deduction of (8.4.13). As a result we get

f

+Qmf (Q(x' + hek)) |AM

(8.4.14)

Xg (Q(X' + hek

Let us sum the estimates (8.4.13) and (8.4.14), applying the inequality
(1.2.5) of Lemma 1.5. Then recalling the notation (8.4.4), we have

/
PFd'VA^vP^dx' < dv a m)aa I ip^ix'

+Q ' + hek))) \Ah
kv\2C2+

hek))) P^(X')\Ah
kv\H2+

') + 9 (Q(x' + hek))) Pk(x')\Ah
kv\2C2}dx'.
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Choosing, if it is necessary, a G (Q,dist(G,dG2u)) smaller such that
c(y, fi, m)aa < | hence we obtain

CW < c(v,n,m)aa J {|V'(A^)

+ Qm {f(Qx') + f (g(x' + hek)))

x') + f (g(x' + hek))) ^

(8.4.15) +Qm~l {g(Qx') + g {g(x' + hek

In the same way from (8.4.7), (8.4.15)

|V'C|2) + Qm {f(gx') + f (Q(X' + hek))) \Ah
kv\

') + f (Q(xf + hek)))P^(x')\Ah
kv\2<2+

') + g {g{x' + hek))) Pk(x')\ Ah
kv\2C2++gm~1

(8.4.16)

Prom (8.4.15) and (8.4.16) the estimate follows as

{P?(x')\Ah
kv\2 + P™-2(x')\VAh

kv(x>)\2) C2dx' <

B2a

+Qm (f(Qx') + f (g(x' + hek))) \Ah
kv\2C2 + gmg2(gx')\Ah

kv(x')\2C2+

+Q1+  ̂ (f(Qx') + f (g(x' + hek))) Pk^(x')\Ah
kv\2<2+

(8.4.17) +gm-1 (g(gx') + g (g(xr + hek))) Pk(x')\A$vf

Further, by the Young inequality, we have for Ve > 0

gm-lg{gx')Pk{x')\Ah
kv\2 < -P?(x')\Ah

kv\2+
fill

m
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Then choosing e > 0 from the equality ^c(y, fi, m) = | , we can rewrite
(8.4.17) in the following way

(P?(x')\Ah
kv\2 + i ^ ~

) C2 + |V'C| 2)
B2<,

(f(ex') + f (e(xf + hek)))

+Qm(f(Qx') + f (g(x' + hefc)) + 92(Qx')+

(8.4.18) +g^{Qx')+g  ̂ (Q(X' + tefc)))|A£i,|2C2 W .

Again, by the Young inequality, we have for V5 > 0

Q
mf(gx')\Ah

kv\2 < ^ h

emg*(0x')\Ah
kv\2 <

and therefore from (8.4.18), it follows that

J (PJT(x')\Ah
kv\2 + P™-\x')\VAh

kv{x')\2) C2dx'

Bia
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+8-lgm+2(f2{gx') + f (e(x' + hek)))c
2+

+6-%Qm+2(f^( Qx>) + /*&  (g(x' + hek))

(8.4.19) +g^{Qx')+g^

If S > 0 is sufficiently small, we get

\2 +j {p™-2{x')\VAh
kv{x')

-c(v,fJ,,m)6(\Ak
lv\m+2 +  J

<c{u^,m) j { (prV) |AM 2 + Pf(*')) (C2 + |V'C|2)

+S-1gm+2(f(gx') + f (g(x' + hek)))e+

( (g(xf + hek))

(8.4.20) +g  ̂ {gx') + g  ̂(gx') + p 1 1 ^ 1 (^(a

Now we verify that

lim J (pr2{x')\Ah
kv\2 + PW)) (C2 + IV'CI2) dx' =

= (2m-2 + 2m) / |V't;| m (C2 + |V'C|2) dx'.

In fact, by virtue of Lemma 1.66, Akv converges to Dku in the norm Lm

almost everywhere and, by the Egorov Theorem almost uniformly. Analo-
gously, the almost uniform convergence of / (g(x' + hek)), g (g(x' + hek))
to f(gx'), g(gx') respectively is verified.
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Thus, we can apply the Fatou Theorem and take the limit as h —> 0 in
(8.4.20). We obtain as a result

I j [2m - c{u, n, m)  6(1 + 2m~2)]  \Vv
B2a ^

xC2(x')dx' <ci I \V'v\m
J

f I m+2

dv m - 2 d\V'v
dx{

|V'C|2) dx'+

+c2g

Let us now choose 5 > 0 from the equality c(v, fi, m)  5 =
get

-a  Then we

(8.4.21) Vv\
dv
dxi

\Vv\
Mk

C(x')dx' <

< ci j \Vv\m (C2 + IV'CI2) dx'+

+c2Q
,m+2 j ^

B2<,

After summing up over all k = 1,. . ., N, by the properties of the function
C{x'), we establish

/ (|V'i;|m+2 + \Vv\m-2\vx.x.\
2) dx' < a f \Vv\mdx'+

B C T B2<r

(8.4.22)

+C2Qm+2 I (f(gx') +
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By the covering argument we obtain

(|V't;r+2 + \Vv\m-2\vx,x,\
2) dx' <j V'v\mdx'+

G'

(8.4.23)

/ <
f(Qx') (ex') + g&$ (QX>) '(Qix'^dx1.

Returning to previous variables x, u we get the desired (8.4.1).

8.4.2. Local estimates near a boundary smooth portion. In this
subsection we derive local integral estimates near a boundary smooth por-
tion of weak solutions of the problem (DQL). Let x'o € T' C ^\u a nd
let U'(x'o) C G\ ,4 be a neighborhood of x'o. Since our assumption on the
boundary of G is such that dG \ O is smooth, then there exists a diffeo-
morphism U'(x'o) —>  B^^X'Q), which flattens the boundary that is maps I"
onto Y,2<r C {x'N = 0}  being a plane part of dB^ix'o)-

So we may suppose that G' =  -B^ZQ) in the (DQL)' that takes the
form

(DQL)'O

J {ai(x',v,vx,)<i) x>. +a(x',v,vx.)<j>}dx'  = 0,

a,i(x',v,vx>) = a^
a(x',v,vx>) = ga(gx',v,Q~1vx').

We denote U(XQ) as the preimage of U'(x'Q) under the transformation x =
gx'. It is obvious that U(XQ) C G e,4.

THEOREM 8.44. Let u(x) be a weak bounded solution of the problem
{DQL). Let us assume that the hypotheses (A),(B),{C),(D),(E),(F) are
fulfilled on the set 971. Let VG c G2e,4 c G. Then we have the estimate

f \Vu\m-2u2
xx) dx <

(8.4.24)

r2|Vw| dx.

G
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PROOF. Repeating verbatim the procedure of the deduction of the es-
timate (8.4.21), we establish

Vv
dv

Vv
8\Vv

C(x')dx' <

(8.4.25) < d t \Vv\m (C2 + |V'C|2) dx'+

J (

It remains only to consider the case k = N. For this case, by Theorem 8.43,
using the covering argument we can easily establish that

(x*) G W0
lim(G') n L°°(G), VG' CC G'.

Therefore we have from (DQL)'

-—jai(x',v,v'x) + a(x',v,v'x) = 0 a.e. x' e G'.

Then we obtain

daN(x',v,vx>)
dvT>

N-l

VX,NX,N = a(x ,v,vx>) -
dai(x',v,vx>)

dvx>.

ai(x',v, vxi) &di(x',v,vxi)
-vx> -dv dx'

Hence, in virtue of assumptions (B), (C), (E), the next inequality follows

\Vv\m~2
 \VX,NX,J < c{V,n,m)\ \Vv

J V - l

v\m-2
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Further using the Young inequality, it is easy to obtain the inequality

+
N-l

(8.4.26) |V ' t ; |m~2 \vx>N*

+ \Vv\m+2 + gm+2f2(gx')

Let C(x') € Co° {^2cr(x'o)) De a cutoff function such that

<(*') = 1 in B+(x'o), 0 < C(x') < 1, |V'C| < ca-1 in J3+ (4).

Let us now multiply both sides of this inequality by (2(xr) and integrate
over B^ix'o). As a result we deduce

(8.4.27) I \Vv\m-2 \VX,NX>N I
2 C2(x')dx' <

N-l

We estimate the first term on the right in (8.4.27) by means of (8.4.25)

+\Vv c2g
m+2 I  (f2(gx')+

(8.4.28) + / 2

Summing (8.4.25) and (8.4.28) we obtain

f |V/wr-2|«x»x/|
2Ca(ar')d!C/<ci I (\V'v\m+2{2(x')+

C2Q
m+2 J<>

(8.4.29) (gX') (8x'))dx'.
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We embark on the estimating of / \Vv\m+2C,2(x')dx'. Because of

(8.4.25), it is sufficient to estimate the integral / |V'v|mu*, (,2(x')dxr. For

this estimating we turn again to the (DQL)'Q and we take

as a test function. Then, in virtue of the representation (8.4.9), we have

f ~ I 2 2 / /

J tj '  Xi Xj X'N

= - (v(x') - v(x'o)) (a,ij(x',v,vx')vx>. (2VX'NVX>.X'NC2(X')+

vl,e(x')) dx'.

Hence integrating by parts in the last term on the right and applying the
assumption (E), we obtain

-Ji-^-™ j \vvrviNe{x>)dx> <
Bt

< J \v(x')-v(x'0)\(2\aij(x\v,vx,)\V'v\\vx,J\vx,x>\C2{x')+

+2\aij(x',v,vx,)\V'v\ax')\VC\v2
x,N + |5^>,^ ' )K W CV) +

da,i(x',v,0) da,i(x',v,0)
ox, ov

Now we observe again that all hypotheses of Theorem 8.3 about Holder
continuity of weak solutions are fulfilled and conclude

\v(x')-v(x'0)\<caa, x'
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Therefore, by assumptions (B), (E),(F), we get

\Vv\mvl C2(Z>)

(8.4.30)

Let us apply again the Cauchy-Young inequalities

m

vl^v2  ̂ < \\Vvrv2
x,N + \Q

m+2f2{Qx>);

\Vv\mV2
x,

1 x- m + 2

Hence and from (8.4.30) we finally obtain

I \Vv\mv2
x,N?{x')dx' <  Cla

a

+\vv\mv2
x,Ne(x')

(8.4.31) 4

c2g
m+2 /(/W)+

R +B2
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Combining (8.4.25), (8.4.29), (8.4.31), choosing a sufficiently small and us-
ing the properties of C(x')> w e 8et

I (\V'v\m+2 + \V'v\m-2 | iw |2) dx' < a f \V'v\mdx'+

B+ Bt

(8.4.32)

+C2Qm+2

By the covering argument and returning to the previous variables x, u, we
get the desired (8.4.24).

From Theorems 8.43 and 8.44 the following theorem follows immediately

THEOREM 8.45. Let u(x) be a weak bounded solution of the problem
(DQL). Let us assume that the hypotheses {A), (B), (C), (£>), (E) and (F)
are fulfilled on the set £Dt. Then we have the estimate

1(|Vu|m+2 + |Vu|m-2nL) dx

(8.4.33)

<C f (r-2\Vu\m + f + f  ̂ +  g£3 + g2-1^  ̂ dx, VpG(0,d).

8.4.3. The local estimate near a conical point.

THEOREM 8.46. Let u(x) be a weak bounded solution of the problem
(DQL). Let Ao be the least eigenvalue of the problem (NEVP) (it is deter-
mined by Theorem 8.12) and t e (0,1] be the number that is determined by
(8.3.4)- Let us assume that the hypotheses (U), 1) — 4) from Section 8.3 and
(A),(B),(C),(D),(E),(F) are fulfilled. In addition, suppose

(8.4.34) J

If j > 2 — N — m(tAo — 1), then we have the estimate

(8.4.35) f (ri\Vu\m-2u2
xx + r7-2|Vu|m + r^2-™^) dx <

\ \/Q
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PROOF. By Theorem 8.45 together with (8.4.34) we have
(8.4.36)

f ^{Vu^u^dx < C I r"<- 2\Vu\mdx +

G AJ4 S

e/2

Let us now apply Theorems 8.40 and 8.41. According to the estimates
(8.3.5), (8.3.8) and (8.4.36) we obtain

(8.4.37) J
Gle

dx

Let us define the sequence Qk = 21 kg. We rewrite the inequality (8.4.37)
replacing g by Qk. Then we get

I dx

(8.4.38) )xex , Vge(0,d),
x = 7 + iV - 2 + m(tA0 - 1) > 0.

Summing the inequalities (8.4.38) over all k = 1,2,... we have

( dx

since x > 0.

Example.
Let us look at the problem

'A m«:=-d i v (
=0,

fc=i

= 0 m

where m > 1 and

Go = la; = (r,w) 0 < r < oo, |w| < y j , w0 G (0,2TT)
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is the plane angle. We use the results of Chapter 9. In Subsection 9.4 of
Chapter 9 we constructed the solution of our problem in the form

w(x)=rx$(u), W 6 [ - ^ ] , A > 0

with $(w) > 0 and A = Ao, determined by (8.2.4). By the properties of
$(w), established in Subsection 9.4, it is not difficult to deduce the following
estimates

(8.4.39) 0 < u(x) < rA°, |Vu| < c i rA °- \ \uxx\ < c2r
Xo~2.

Now we can establish the condition of the finiteness of the integral

/
dx.

Prom the estimates (8.4.39) it follows that the integral above is finite, if the
Q

integral / r7-i+m(A0-i)^ r j s convergent. This fact holds under the condition
o

7 > (1 — Ao)m and it shows that the statement of Theorem 8.46 is pre-
cise.

8.5. Notes

The properties of weak solutions of the (LPA) in the neighborhood of
isolated singularities have been studied by many authors (see e.g. [157, 393]
and the literature cited therein). We point out the great cycle of the L. Veron
works [384] - [397].

The behavior of solutions near a conical boundary points is treated only
in special cases in [375, 99, 59] for ao(x) = 0, in [52] for bounded solutions
and for m = 2. In this chapter we extend these results to the more general
quasilinear case m^=2.

The problem (NEVP) was studied by P.Tolksdorf [374, 375, 376, 378]
and a more detailed analysis is carried out by Aronsson [11], Krol [204, 205]
and §9.5.2, Chapter 9.

The solvability property of the operator T) associated with the eigen-
value problem (NEVP), Theorem 8.14, as proved here is due to M. Do-
browolski [99, 68].

There is a number of works relating to the estimation of the first eigen-
value of the m—Laplacian in a Riemannian manifold (see, e.g., [223, 411,
371, 155]). Apropos to the one-dimensional Wirtinger inequality, see also
Theorems 256, 257 [142].

The other L°°— estimates of weak solutions of the problem (DQL) can
be found in §10.5, Chapter 10 [129] and in §7, Chapter IV [216].
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Integral estimates of second weak derivatives of the (DQL) weak so-
lutions in smooth domains were established in [215, 216, 217, 401]. In
Section 8.4 we make these estimates more precise in the case of smooth
domains as well as establish new estimates for nonsmooth domains and we
follow [57, 70].

G. Savare [354] obtained recently the certain new regularity results
for solutions of the Dirichlet and Neumann problems to some linear and
quasilinear elliptic equation of the variational structure in the Lipschitz
domains. M. Puchs & Li Gongbao [125] established L°°— bound for weak
solutions of the Dirichlet problem for the quasilinear elliptic equation on
Orlicz- Sobolev spaces. S. Knobloch [158] considered the Neumann problem
for (DQL) in a plane domain with corners.
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CHAPTER 9

The boundary value problems for elliptic
quasilinear equations with triple degeneration

in a domain with boundary edge

9.1. Introduction . Assumptions.

This chapter is devoted to the estimate of weak solutions to the bound-
ary value problems for elliptic quasilinear degenerate second order equa-
tions. We investigate the behavior of weak solutions of the first and mixed
boundary value problems for quasilinear elliptic equation of the second order
with triple degeneracy and singularity in the coefficients in a neighborhood
of singular boundary point.

Let G be a domain in R-̂ , N > 3, bounded by (N — 1)— dimensional
manifold dG and let Fi,F2 be open nonempty submanifolds of dG, pos-
sessing the following properties: Fi n T2 = 0 and dG = Fi U F2, where
Fi PI F2 is smooth (N — 2)— dimensional submanifold that contains an edge
Fo C Fi n F2. We also fix a partition of {0,1,2}  into two subsets N and
V. The union of the Tj with j e V is going to be the part of the boundary
where we consider a Dirichlet boundary condition, but with j s AT is go-
ing to be the part of the boundary where we consider first order boundary
conditions either Neumann or the third BVP. In what follows we suppose
{0,1}  € V. If 2 e T>, then our problem is the Dirichlet problem, if 2 e M,
then our problem is the mixed BVP.

We derive an almost exact estimate of the weak solution in a neighbor-
hood of an edge of the boundary for the problem

{BVP)

^ ^ + ^ ^ + b ( ' u '

x 6 G, where ao > 0;
u(x)=0, x e dG, if 2 € V and a; e dG\T2, if 2 e N;
di(x, u, ux)n,i(x) + a(x, u) = g(x), x € F2, if 2 e A/".

(summation over repeated indices from 1 to N is understood.) Here: Ui(x),
i = 1,. . ., N are components of the unit outward normal to F2.
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For x = (xi,... ,XJV) let us define the cylindrical coordinates (x, r, w)
as

= arctan
xN

For the sufficiently small number d > 0 we also define the following sets as
G$ = G f~\ {(x,r,u)\x e RN~2, 0 < r < d, LJ G (-LJO/2,LJO/2)};

r^ivnGjfcaGg, j = 0,1,2;
Qd = Gn{(x,r,u))\xeRN-2, r = d, LO G [-U>0/2,U;0/2]}  C 0G&

wo G (0,2TT).

We shall assume the following

 dG \ Fo is smooth submanifold in RN;
 there exists a number d > 0 such that

is the straight edge with the center in the origin;
 GQ is locally diffeomorphic to the dihedral cone

Dd = {(r,u>)\  0 < r < d, LJ G ( -U;0/2,U;0/2)}  X R^"2; 0 < w0 < 2TT;

thus we assume that GQCG and, consequently, the domain G is
a "wedge " in some vicinity of the edge.

 LJ \r1= — wo/2; and u> \r2— <*>o/2.

Let C°(G) be the set of continuous functions on G and let Lm(G) and
Tyfe'm(G),m > 1 be the usual Lebesgue and Sobolev spaces respectively.
By ^n>q{Vi VQ,G) we shall denote a set of functions u{x) G ioo(G) having
first weak derivatives with the finite integral

(9.1.1) I (u(x)\u\g\Vu\m + vo{x)\u\q+m) dx<oo, q>0, ro > 1,
G

where fo(x) and v{x) are two nonnegative measurable in G functions such
that

vv\x) € Lt(G), v-\x) G Lt(G); m(x) G LS(G), i + l- < ^ ;

(9.1.2)

l + - < m < i V [ l + - J, t> max(N, ), N > m > 1.
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If X(G) is one of the above spaces, then by X(G, Y) with any Y C dG we
denote a subset of functions u(x) € X(G) vanishing on Y in the sense of
traces. Now we define the space V

_ f 91^,(1/, v0, G, dG), if BVP is the Dirichlet problem,

"~ [9l^g(i/ , i/0, G, dG \ T2), if BVP is the mixed problem.

We set also Vo is V for q = 0. Let us define for Ve > 0 the number

J 5(^0 + £), if BVP is the Dirichlet problem,

1 wo + e, if BVP is the mixed problem,

and let A be the least positive number satisfying

/srr A(2 - m + r){y2 + A2)12?2 - o0

(9.1.3) = 0O,

(9.1.4) Xm(q + m- 1

We shall use the following notation (\u\ — k)+ :=  max (|u| — fc; 0).
Concerning the equation of (BVP) we make the following assump-

tions.

Let 1 < m < N, I > N, q > 0 and 0 < [i  < 1 be given numbers and let
a(x),ao(x),bo(x) be nonnegative functions.

1) f(x),a(x),ao(x),bo(x) and g(x) are measurable functions such
that

^\x)(ao(x) + bo(x)+f(x)) e LP(G); a(x) e Lm>(G); g(x) e La(T2);

I m 1_1 N-l £ J
pKN~t~l' > +pKN~t~l' a >

m - l - f m + ri~ '

a,i(x,u,£), i = 1,...,JV; a(x,u,£),b(x,u,£) and cr(a;,u) are Caratheodory
functions G x R x N —*  R., possessing the properties

2) ai(x,u,^% > v(x)\u\<\{\m -ao{x); a(x,u,Z)u > iso(x)\u\i+m;
cr(x, u)  sign u > 0;

3) \Hx,u,Z)\
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4) J E o?(x,«,o < +

5) |a(x,u,OI < v

6) J \a(x,u)\ds< oo Vn G L ^ G U T2).
r2

In addition, suppose that the functions ai(x,u,£),a(x,u,£),b(x,u,£) and
o~(x,u) are continuously differentiable with respect to the x,u,£ variables in

o = Go x h M o , Mo] x R^ and satisfy in 2KdiMo

7)

8) iPj > |m-V, \ {0} ;

AT

E

du
da(x,u)

11)

12)

13)

W

(m _ 2 ) 6^ )

o-2|t|m
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where 7m)g > 0, Ci(r) are nonnegative functions that are continuous at
zero with c,(0) = 0. In addition, let there exist numbers fc, > 0, such that
ipi{f)  < kir^*, i = 1, ...,4, where

-l)-N(m-l) 2. , w 1N
l(N-l)rj(ml)  + X(q

ra — 1
1)1) -;

(9.1.5) /33 = T

/(JV - m)
_» a

REMARK 9.1. Our assumptions 11)-14) essentially mean that the co-
efficients of the (BVP) near the edge To are close to coefficients of model
equation

_ A (r
T\u\q\Vu\m-2uXi) + a0r

T-mu\u\Q+m-2-

(ME) - / x 1

0 < / x < l , q > 0, m > 1, ao > 0, r > m — 2.

DEFINITION 9.2. Function u(z) is called a weak solution of (BVP)
provided that u(x) e V and satisfies the integral identity

(II)  / {ai(x,u,ux)(f>Xi +aoa(x,u,ux)<j>  + b(x,u,ux)(j)}dx =
G

= / f(x)(j>dx+ I {g(x) -cr(x,u)}<j)ds

G r 2

for all <t>(x)  e V.

One can easily verify that assumptions l)-6) together with (9.1.2) guar-
antee the correctness of such a definition.

We need the following auxiliary statements

LEMMA 9.3. Let m*  denote the number associated to m by the relation

(9.1.6) m# rn \ t I N
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and suppose that assumption (9.1.2) holds. Then there exist constants
c\ > 0, C2 > 0, C3 > 0 depending only on meas G,ujo,N,m, t, |[I/'O"1||LJ(G))

ll i/~1||Lt(G) su°h that

(9.1.7) Iuo{x)\v\mdx<d f u{x)\Vv\mdx
G G

and

(9.1.8) lf\v\m*dx\ <c2 f (uo{x)\v\m + u(x)\Vv\m)dx
\ J J J
\G I G

for any v(x) £ Vo and also

(9.1.9) [  vo(x)\u\q+mdx < c3 I' v{x)\u\q\Vu\mdx,
G G

for any u(x) e V.

PROOF. The proof for (9.1.7) had been given either in §1.5 [100] or
in the statements 3.2 - 3.5 [316]. The inequality (9.1.9) is obtained from
(9.1.7) by performing in the latter the following substitution

1 q + m

Now we prove the inequality (9.1.8) following the Theorem 3.1 [316]. We
shall deduce the inequality (9.1.8) from the corresponding ones for the
imbedding Sobolev Theorem 1.31, namely if 1 < m < N then

(9.1.10) ||u|| ^ <C\\v\\wx,m(G), \/v e W1'm(G).

If we put ^ = 1 + j then we have from (9.1.2)

1 < mx < N and x-\— = 1.

Now, by using the Holder integral inequality with p — ̂ , p' — j ^ , we
obtain

(9.1.11)
1 r

J
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Similarly,

l|V«||Lm«(G) = ( j \Vv\m"v"{x)v-*(x)dx j <

(9.1.12)

We consider now the inequality (9.1.10) replacing m by mx. (In this con-
nection we verify that ffj^  ̂ = m*). Then we obtain

NILm#(G) < C (\\v\\Lm~{G) + ||Vu||Lr»«(G)) .

Hence and from (9.1.11), (9.1.12) it follows the required inequality (9.1.8).

LEMMA 9.4. There exists a constant  > 0 depending on N, m, t, G, 1̂
such that for any v(x) £ St^o î vo, G, dG \ T2)

(9.1.13) (f \v\a'ds  ̂ <c4{  f (vo(x)\v\m + v(x)\Vv\
GG

where

PROOF. By the theorem of trace for Sobolev spaces (Theorem 1.35),
we have

IMIi°*(r 2) < c|M|wi.™x(G)
with a* from (9.1.14). Hence and from the inequalities (9.1.11), (9.1.12) it
follows the desired inequality (9.1.13).

COROLLARY 9.5. (Prom Lemmas 9.3, 9.4).

(9.1.15) j f\v\m*dx j + ( f \v\a"dsj <

< c5 f (vo(x)\v\m + v{x)\Vv\m)dx

for any v(x) € Stm.ol̂  VQ,G,dG \ F2), where the constant C5 > 0 depends
on N,m,t,G,T2, II^IUtCG). ll»/~1IUt(G)-
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The main statement of this chapter is in the following theorem.
Mai n Theorem. Let u(x) be a weak solution to (BVP) and let X be

least positive solution of (9.1.3) and (9.1.4). Suppose that the assumptions
(9.1.2) and 1) - 14) with m > 2 are fulfilled. Let there be nonnegative
constants f\,g\ such that

(9.1.16)

\g(x)\ <  ffirr-

Then for every e > 0 there exists a constant cE > 0, depending only on the
parameters and norms of functions occuring in the assumptions such that

(9.1.17) \u(x)\ < c£r
x~£.

9.2. A weak comparison principle. The E. Hopf strong
maximum principl e

Now we shall prove a weak comparison principles for the quasilinear
equation which extend the corresponding results in chapter 10, Theorem
10.7 [129] and in chapter 3, Lemma 3.1 [375] (see also [298]).

Let fi C M.N be a bounded domain with lipschitzian boundary dQ =
2. We consider the second order quasilinear degenerate operator Q

Q(v, <f>)  = (Ai(x, vx)<f> Xi + A(x, v)<t> + B(x, v, vx)cp-

of the form

(9-2.1)

f(x)<f>)dx+ J (Z(x,v) - g(x))<t>d8

for v € ^^^(f , i/oi O) 9SI \ 02 )̂ and for all nonnegative </> belonging to the
set 9T^ 0(i>, vo, fi, dQ \ ^ O) under following assumptions

the functions f{x),g(x) are summable on Q and ^ f i respectively; the
functions  are Caratheodory, continuously
differentiable with respect to the v, n variables indJl = HxMxM.N and satisfy
in SDt the following inequalities:

> lmv(x)\ri\m-2P2, Vp e E^ \ {0} ;
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(iii ) **!%**.  > K*)M- 2Mm; ^ > -w*(*)M m-a;  ̂ > o.

Here: m > 1, 7m > 0 and VQ(X) and v{x) are the functions defined by
(9.1.2).

THEOREM 9.6. Let operator Q satisfy assumptions (i) - (iii).  Let the
functions v, w e S ^ o ^i  uo, ̂ > 9fl \ c^fi) satisfy the inequality

(9.2.2) Q(?,<l>)<Q{w,<t>)

for all non-negative <f>  € 9 1^ 0(z/, ẑ o, S7, d£l \ ^ f i ) and a/so the inequality

(9.2.3) v(z) < to (a;), on dtt \ 92f2

holds in the weak sense. Then

(9.2.4) v(x) <w(x), a.e. inil.

PROOF. Let us define

z = v - w; a nd v* =tv + (l- t)w, t E [0 ,1].

Then we have 0 > Q(v, 4>) - Q(w, <j>)  =

f/j. f19Ai(x,v

n v 3

(9.2.5) +faXl — ' x'dt + j>z I —v ' ' x'dt)dx+
Jo dvl. Jo dv* I

for all non-negative <f>  € 91^,0 i v0i fi> 9

Now let k > 1 be any odd number. We define the set

fi+ := {x € TI | v(x) > w{x)}.

As the test function in the integral inequality (9.2.2), we choose

<j>  = max{(u - w)k, 0} .
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By assumptions (i)-(iii)  we then obtain

f ( f l \
J \Jo  J

n+

lm f vo(x)zk+1( f |^|m-2dt)da;+ / v{x)zk+1{ f ^[-^v^dtjdx

(9.2.6) < Iv{x)zk(j l^r^Vu*!" 1"1

Now we use the Cauchy inequality

< -|^|-2zfe+1|Vw* r + ^ -^ -^V^HV^r - 2 , Ve > 0.

Hence, taking e = 2, we obtain from (9.2.6) the inequality

(9.2.7) (*7m-J) I v{x)zk-1\

Now choosing the odd number k > max! 1; ̂  ̂ I in view of z{x) = 0 almost

everywhere on dQ+, we get from (9.2.7) z(x) = 0 almost everywhere in f2+.
We have finished with the contradiction to our definition of the set fi +. By
this fact the (9.2.4) is proved.

REMARK 9.7. The operator Q, generated by the model equation (ME)
with q = 0, satisfies all assumption (i)-(iii).  In fact, we have for this case

v{x) = r\ uo{x) = o0r r-m

A(x,v) = vo(x)v\v\m~2, B(x,v,ri) = -

Therefore

and hence

 ̂ \V\m-2\p? + (m -
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where

that is (i) holds.
Furthermore,

7 m

[1, if m > 2;
I m - 1, if 1< m < 2,

and hence ( ^ holds. At last

and therefore fraj holds as well.

Now we want to prove the strong Hopf maximum principle (cf. §3.2
[375].) In addition to (i)-(iii)  we shall suppose

(v) \V\.
^dAj{x,rj) N

for some non-negative constants 7m,//.

LEMMA 9.8. Let Bd(y) be an open ball of radius d > 0 centered at
y, contained in fi C RN and v(x) e fH^niQ{v,vo,Bd{y)) n C 1 ^ ^ ) ) be a
solution of

(9.2.8) Qo(v,<j>)=  f (Aifav*)***  + B(x,v,vx)4>}dx = 0
Bd(v)

for all nonnegative <fr  G L00(Bd{y)) n Wl'm(Bd(y),dBd{y)). Suppose that
assumptions (i) — (v) are fulfilled. Assume that

(9.2.9) v(x) > 0, x € .Bd(y) andu(xo) = 0 for some xo G dBd(y)-

Then

(9.2.10) |Vw(xo)| ^ 0.

PROOF. We consider the annular region

^ - y \ < d }U = Bd(y) \ Bd/2{y) = { x \ ^

and the function

w(x) = , x e Tl, a > 0.
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Direct calculation gives

(9.2.11) 0 < w(x) <

(9.2.12) wXi = -2a{Xi - yje'^-

(9.2.13) wXiX. = (A2( )
XiX.

= _dA(x,ewx)
aX

= -£
dAi{x,ewx)

\Vw\ = 2a\x -

dAi(x,ewx) +B(x,ew,ewx) =

d(swXj)

d(ewXi) dxi

By assumptions (i) and (v) it follows that

V, > 0.

C(ew) < -e yf  (4>ym\x - y\2a2-

(9.2.14)

0.

Now we observe by (9.2.11), (9.2.12) that

(9.2.15) t—t>2a\x-y\
w

and therefore we have from (9.2.14) in the region 1Z

C{ew) < - e ^

If we choose a >

(9.2.16)

vf  < (7 m

?, then we obtain

-2(1 +2d)jma),
£>0.

C{ew) < 0 in K, Ve > 0.

Since v > 0 on dBd/2 (y) there is a constant £ > 0 for which v — ew > 0
on dBdj2(y). This inequality is also satisfied on dBd(y) where w =  0. By
virtue of (9.2.16) we have

Qo(ew, <$>) = / <f>C(sw)dx < 0 = QQ{v, 4>).
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Thus we obtain

{Q{t) > Q{,4>) i n ft;
(g 2 1 7)

1 v > ew on &R.
By the weak comparison principle (Theorem 9.6) from (9.2.17) it follows
that

(9.2.18) v>ew throughout U.

Since xo € dB^iif) and w(xo) = 0 we now have

v(x) - v(x0) w(x) - w(x0)
X — Xo \X —

and therefore
Td2 > 0, Q.E.D.

THEOREM 9.9. (Strong maximum principl e of E.Hopf). Assume
that Q, is connected and v{x) € OflJrj0(

l/)l/0)fi) n C1(f2) is a non-negative
weak solution of

I LAi(x,vx)4>Xi + B(x,v,vx)4ndx = 0
n

for all nonnegative </) S L^Q,) n Wl'm(Q.,d£l). Assume that v(x) ^ 0.
Suppose that assumptions (i) — (v) are fulfilled. Then

(9.2.19) v{x) > 0 , i e fl

PROOF. Assume that v(xo) = 0 for some xo e fi. Then, we can find
a ball Bd(y) C fl, satisfying the hypotheses of Lemma 9.8, that is xo 6
dBdiy). By this Lemma we have |Vi;(a:o)| ^ 0. But 0 = V(XQ) = inf v(x)

and therefore |Vu(a;o)| = 0. This, however, is a contradiction. Therefore,
the conclusion of the theorem must be true.

LEMMA 9.10. Let u(x) be a weak solution of (BVP) and let the assump-
tions 2), 3) with ao(x) = 0, 6o( )̂ = 0 fee fulfilled. If in addition

f(x) > 0, g(x) > 0 for a.e. x£G

then u(x) > 0 a.e. in G.
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PROOF. Choose <f>  = u~~ — max{— u(x),0} as a test function in the
integral identity (//). We obtain

a,i(x,-u ,—ux)(-uXi)+ao-a(x,-u ,-ux)(-u )+
G X

+ b(x, —u~, —u~)(—u~) + f{x)u~ \dx =

= - I ((-u~)a(x,-u~) + g(x)u~)ds.

By virtue of assumptions 2) and 3)

/

r
v{x)\u~\q\Vu~\mdx + ao I vo(x)\u~\9+mdx <

G G

< — / fu~dx — / {(—u~)cr(x, —u~) + g(x)u~)ds < 0,

G r2

since u > 0. Due to fj, < l,ao > 0 and w|aG,r = 0 we get u (x) = 0 a.e.
in G, i.e. u(x) > 0 a.e. in G. D

9.3. The boundedness of weak solutions

The goal of this section is to derive Loo(G)—a priori  estimate of the
weak solution to problem (BVP). The main statement of this section is the
following theorem.

THEOREM 9.11. Let u(x) be a weak solution of (BVP) and assumptions
(9.1.2), 1) - 3) hold. Then there exists the constant M$ > 0, depending only
on \\g\\La(v2), \\v~l{x),VQl{x)\\Lt{G), measG,uo,N,m,fj,,q,p,t,s,ao,
\\i/Q1(x)(a0(x) + bo(x) + |/(x)|)||Lp(G), such that

IMIWG) <Mo-

PROOF. Let us introduce the set A(k) = {x e G, \u(x)\ > k} and let
XA(k) be a characteristic function of the set A(k). We note that A(k + d) C
A(k) Vd > 0. By setting 0(x) = rj((\u\ — k)+)xA(k)  signu in (II), where
t]  is defined by Lemma 1.60 and k > ko (without loss of generality we can
assume ko > 1), on the strength of the assumptions 2) and 3) we get the
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inequality

I i/(aO|uHVu|"Y((M - k)+)dx+
)

f vo(x)\u\9+m~1V{(\u\-k)+)dx+

A(k)

/ cr(a;,u)(sign u)rj((\u\ - k)+)ds <

nA(k)

(9.3.1) <fi f v(x)\Vu\m\u\q-1r)((\u\-k)+)dx+
A(k)

+ J (bo(x) + \f(x)\)r,((\u\-k)+)dx+
A(k)

+ J ao(x)rf((\u\ - k)+)dx + J \g(x)\V((\u\ - k)+)ds.
A(k) T2nA(k)

Now we define the function Wk{x) :=  r\ I  — ) . By (1.11.7) from
V m J

Lemma 1.60 we have

(9.3.2) J |ff(z)|t/((M - k)+)ds < M  j \g(x)\\wk\
mds+

J \g(

A(k)

+a0

A(k)

r2nA(k)

r2nA(k) r2nA(k+d)

r2n{A(k+d)\A(k)}

Now we apply Lemma 9.4. In virtue of Holder's inequality and (9.1.13),
(9.1.14) we get

\g(x)\\wk\
mds<( f \ w k \ a * d a ) - | I < ? I IL W_, ( r 2 ) <

s-i (ra)- / {v{x)\Vwk\
m + vQ{x)\wk\

m)dx.
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Then by assumptions 2) from (9.3.1) and (9.3.2) it follows that

/ i/(x)|w|9|Vu|m(r/'((|u| — fc)+) — /zJ7((|u| — k)+)\dx <

A(k)

<Mci\\g\\L JV_1 (r2)- / {v(x)\Vwk\
m + vo(x)\wk\

m)dx+

(9.3.3) + I ^ao(o;)j7'((|u| - k)+) + (bQ + |/|)r?((|u| - k)+)^dx+

A(k)

\g(x)\ds.

r2nA(k)

By the definition of rf{x) (see Lemma 1.60) and wk(x)

e x(|u|-fc)+|Vu|m = W m |Vu; fe[ ro, x > 0

and by the choice of x > m + 2\x according to Lemma 1.60, using (1.11.5)-
(1.11.7), from (9.3.3), we obtain

(9.3.4) - (—J fcg / v(x)\Vwk\
mdx < c7M / h(x)\wk\

mdx+

A{k) A(k+d)

+ Mc4\\g\\L N_, ( r 2 )- [ Ux)\Vwk\
m + vo(x)H\m)dx+

*  A(fe)

/ |ff(x)|d«),

A(k)\A(k+d) r2r\A(k)

where

(9.3.5) ft(») = ao(x) + bo(x) + |/(x)|.

Now, by (9.1.7) from (9.3.4) it follows that

(9.3.6) (fcg-cfe) J v(x)\Vwk\
mdx<cw f h(x)\wk\

mdx+

A(k+d)

J h(x)dx+ J \g(x)\ds),

J
A(k) A(k+d)

A(k)\A(k+d)
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where

(9.3.7) ()
771

N-i (ra)S cio = 2(—) Mc7;
n— 1 — M-

= 2 ( — c 8.

By assumptions 1) we get that i> 0
 1(x)h(x) G LP(G), where p is such

that j < ^ — j — -j- By Holder's inequality with exponents p and p' (h + ̂ r =

1)

(9.3.8) J
A(k+d)

J v%'(x)\Wfe|mp dx

Prom the inequality | < ^ — 7 — 7 it follows that mp' < m# , where m# is
defined in (9.1.6). Let j be a real number such that mp' < j < ?n*. Prom
the interpolation inequality

(fe) J

with 6» e (0,1), which is defined by the equality ^ = ^ + ^ - , on the

strength of Holder's inequality with exponents ^ and J S _, from (9.3.8),
we get

(9.3.9)

A{k+d)

r
/ i/0(x)\wk\r

4(fe)

dx

c12 =
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provided we choose j =  s^ ! ^ # G (mP'>m*)  m virtue of (9.1.6) and (9.1.2).
By using the Young inequality with exponents ^ and TJ^S) fr°m (9-2.9) we
obtain

(9.3.10)

A(k+d)

h\wk\
mdx <^Je J vo{x)\wk\

mdx+

m #

Ar) (1 _ \Wk\™*dx

_ c13 = 6 \\vv\x)h{x)\\lp{G) |M*) |£(G ), Ve > 0.

It follows from (9.3.6), (9.3.10) that

(fcg - C9) y u{X)
A(k)

/ U0(x)\wk\
mdx+

A(k)

A(k)

(9.3.11) +cm(J h(x)dx+ J \g(x)\dsy
r2r\A(k)

J \wk\m*cdx

i(fc)

where Ve > 0, ci 4 = c13c10, ci5 = (1 - 6)cw, c16 = cue 3<d.
Further, from (9.3.11), by (9.1.7), we get

v(x)\Vwk\
mdx <

A(k)
it
\A(k)

\Wk\
m*dx

(9.3.12) +c16( f h{x)dx+ f \g(x)\ds^, Ve > 0, Vfe > k0.

Let us choose

> 4cg.
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By virtue of (9.1.15) we obtain

f \wk\
m*dx\ +([  \wkfds) \<

J I \Jr2nA(k) J I
4(A;) / N ' '

(9.3.14) <c16(f h(x)dx+ J \g(x)\ds),
A(k) r2nA(k)

if we choose

(9.3.15) — kl >ci5etrby.
8c5 ° ~

So by (9.3.13), (9.3.15) we choose

(9.3.16) fco > max< 1, (8C5C15) « (2ciCi4)«, (4cg)« >.

Therefore from (9.3.15), it follows that

(9.3.17) [  \wk\
m*dx\ +([  \wkfds) <

\ J I \Jr2nA(k) J

<c17( I h(x)dx+ I \g(x)\ds) Vfc > k0,

>

A(k)

where

cyj = max.{AdCieclc^c^1cie, 2c5Cg1cm, 8c5cie}-

At last, by Young's inequality with exponents p,s, , | _ i , we get

1
 P 3

h{x)dx < ^UQ {x)h(x) L̂ ,G. H^o^llx, (G) m e as p *
A(k)

In just the same way

\g(x)\ds<\\g\\La(r2y[meas{T2nA(k))}^, I + i = 1.
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Therefore from (9.3.17) it follows that

+ ( / \wk\
a*ds) <

(9.3.18) < i

where 1— ^ — ^ > 0 in virtue of (9.1.2) and assumptions 1).

Let now I > k > feo- By (1.11.8) and the definition of the function Wk(x)
we have \wk\ > ^j(M — A;)+ and therefore

*r jt  /

\wk\
m dx>(

A(l)

I \wk\
a'ds > (—-}  meas (ra n A(l)).

A(i)

and

r2nA(i)
Erom (9.3.18) it now follows that

#
(9.3.19) meas A(l) + [meas(r2 n A(l))]  ̂ <

# 1 1 ™# 1
meas B*r( 1  [meas (T2 n A(k))]%* >,

Vl>k>  k0.

Now we set

=  meas A(k) + [meas(r2 n

Then from (9.3.19) it follows that

(9.3.20)
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Relying on (9.1.2), (9.1.6), (9.1.14) and assumptions 1) we note that

7 = min{  1 , —7 > > 1-
I m \ p s) ma' I

Prom (9.3.20) we then get

r(k) yi>k>k0

and therefore we have, because of Lemma 1.59, that ip{ko + S) = 0 with 5
depending only on quantities in the formulation of Theorem 9.11. This fact
means that \u(x)\ < ko + 5 for almost all x G G. Theorem 9.11 is proved. D

To complete this section let us derive some a priori  integral estimates
of these solutions.

THEOREM 9.12. Let u(x) be a weak solution of (BVP) and assumptions
(9.1.2), 1) - S) hold. Let us suppose in addition that

V^{x){b0{x) + |/(x)|)5*^T < oo, g(x) G
G

Then the inequality

(9.3.21) f (y{x)\u\q\V
G

holds, where C > 0 is a constant depending only on N, m, q, n, ao, measG.

PROOF. By setting in {II)  (j>  = u we get, in virtue of assumptions 2)
and 3)

(9.3.22) (1 - n) f u(x)\u\q\Vu\mdx + a0 f uo{x)\u\q+mdx <
G G

< Jao(x)dx + f(bo(x) + |/(a:)|)|u(ar)|dx + j \g(x)\\u(x)\ds.
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By the Young inequality with p = q + m and p' —

(&o(s) + |/(aO|)KaO| =

(9.3.23) < evo(x)\u\9+m + c£z/0
1~9"m(x)(60(x) + |/(a:)|)^^^̂  textand

-c£\g(x)\ « for Ve > 0.

Further, by Lemma 1.29 and by Young's inequality we have

/ \u(x)\^ds < c6 / (

m + q
m

-ce / \{v™

(9.3.24) < ra-
rn

/ (-(v(x)\u\q\V
J \ Tfi
G

—,

In addition, we have

\ a.Q{x)dx < \\v0
 x{

G

(9.3.25)

rrJ f —

J

i-i- *  a n d

where t(m - 1) > 1 by (9.1.2).



9.4 THE CONSTRUCTION OF THE BARRIER FUNCTION 381

Prom (9.3.22)-(9.3.25) it follows that

(1-H) fu(x)\u\q\Wu\mdx + a0 f vo{x)\u\q+mdx<
G G

(9.3.26) <ei j v{x)\u\q\Vu\mdx + e2 f uo(x)\u\q+mdx+
G G

+c(e1,e2,m,q,N,t,measG)i / {g^l  ̂ ds + \\is~1 (x)

^\x)ao(x)\\ \\uo(x)

Now, if ao > 0, then we choose £i = ^-^, £i =  9f. And if ao = 0, we then
take advantage of (9.1.9) and choose E\ = e^cs =  ̂ -^. For both cases, from
(9.3.26) we obtain the required (9.3.21). Theorem 3.2 is proved.

9.4. The construction of the barrier  function

Let us set

v{x) = rT, i/0(x) = rT~m, r > m - 2 for m > 2.

In this section, for N— dimensional infinite dihedral cone

Go = {x = {x,r,uj)\x eRN~2, 0 < r < oo, - y < w < y , w0e(0,27r)}

with the edge To = {(x,0,0)| x £ SRN~2}, that contains the origin, and
lateral faces

= {(x,r, - ^ ) | x € R^-2, 0 < r < oo}  ;
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we shall consider only the homogeneous boundary value problem

Cw = --f- (rT\w\q\Vw\m-2wXi) +aorT-mw\w\q+rn-2-
-HrTw\w\q-2\Vw\m = 0, x £ Go,

(BVP)o
w(x) = 0, x G To U Fi U F2; for the Dirichlet problem;
w(x) = 0, xeFoU Fi; ^ = 0, x G F2 for the mixed problem;

ao>O, 0 < / i < l , q>0, m > 2, T > m - 2

and construct the function that will be the barrier for the non-homogeneous
problem. We shall seek a solution of the problem (BVP)0 of the form

(9.4.1) w(x) = r A $(o,), U € [ - f , f ] , A > 0

with $(w) > 0 and A satisfying (9.1.3)-(9.1.4). By substituting the func-
tion (9.4.1) in (BVP)o and calculating in the cylindrical coordinates for the
function $(w), we get the following Sturm-Liouville boundary problem

+X[X(q

= ao$|$|"+ m-2 - / i$|$|9-2 (A2$2 + $'2) T , w € (-wo/2, wo/2),

(StL)
$(-wo/2) = $(wo/2) = 0 for the Dirichlet problem;
$(—wo/2) = $'(u>o/2) = 0 for the mixed problem.

By setting $ ' /$ = y, we arrive at the Cauchy problem for y{oj)

[(m - l)y2 + A2] (y2 + X^y' + (m-l+q + fi)(y2 +
+A(2 - m + r){y2 + A 2 ) ^ = a0, ue (-WO/2,UJO/2),

(CPE)
y(0) = 0 for the Dirichlet problem;
y(u)o/2) = 0 for the mixed problem.
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Prom the equation of (CPE) we get:

- [ ( m - l ) y 2 + A2](j/ 2 + A 2 ) ^ ' =

= (m - 1 + q + fi)(y2 + A2)^ + A(2 - m + r)(y2 + X2)  ̂ - a0 =

(9.4.2)

= (y2 + A 2 ) ^ [(m-l+q + n){y2 + A2) + A(2 - m + T)] -ao>

> (y2 + A 2)^[A 2(m - 1 + q + /z) + A(2 - m + r)] - o0 >

> Am(m - 1 + q + n) + Am~1(2 - m + r) - a0 > 0

by virtue of (9.1.4). Thus, it is proved that y'(w) < 0, w e (-wo/2,u;o/2).
Therefore z/(o;) decreases on the interval (— wo/2,a>o/2).

9.4.1. Properties of the function $(w). We turn in detail our at-
tention to the properties of the function <&(w). The case of Dirichlet problem
see as well [72]. First of all, we note that the solutions of (StL) are deter-
mined uniquely up to a scalar multiple. We consider the solution normed
by the condition

J$(0) for the Dirichlet problem;
~ [^(^) for the mixed problem.

We rewrite the equation of (StL) in the following form

- $ [(m - 1)$'2 + A2$2] (A2$2 + $'2) -*"  $"  = (q + ^
m — 4

+$2 (A2$2 + $'2) 2 JA[A(m - 1) - m + 2 + r]

(9.4.4) +(m - 2)A2$'2}  -
Now, since m > 2 from (9.4.4) it follows that

(9.4.5) - $ [(m - 1)$'2 + A2* 2]

> $m{( g + ^ + m - l)Am + (2 - m + ^A" 1"1 - o0}  > 0.

(Here we take into account that (q + fi + m ~ l)A2 + (2 — m + r)A > 0 by
(9.1.4).)

Summarizing the above we obtain the following properties of function
*(w)

(9.4.6) $(w) > 0, $"(w) < 0 Vue {
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COROLLARY 9.13.

(9.4.7) max $(w) = 1 => 0 < $(w) < 1 Vw € [-wo/2,u>o/2].
[ / 2 / 2 ]

Let us proceed with the problem of (CPE) solvability. Rewriting the
equation of (CPE) in the form resolved with respect to the derivative y' =
g(y), we observe that by (9.4.2) g(y)  ̂ 0 Vy € R. Moreover, g(y) and
g'(y) being rational functions with non-zero denominators are continuous
functions. By the theory of ordinary differential equations the Chauchy
problem (CPE) is uniquely solvable in the interval (—^, ^ ] . By integrating
(StL) - (CPE) we obtain

(9.4.8) *(w) = exp I ° w
I J y(Od£ f° r the Dirichlet problem;

/ y(^)6^ f°r tQe mixed problem.

y
[ (m- l )z 2 + A2](z2

(m - 1 + q + /i)(z2 + A 2)^ + A(2 - m + r ) (z2 + A 2 ) 2 ^ - a0

.„  , „ . I —w for the Dirichlet problem;
(949) ^ \

1 ^ — w for the mixed problem.

Hence, in particular, we get from (9.1.3) that lim y(w) = +oo. The
^ + 0

last allows us to prove the solvability of the eigenvalue problem (StL). The
expression (9.1.3) yields the equation for the sharp finding of the exponent
A in (9.4.1).

9.4.2. About solutions of (9.1.3) and (9.1.4). We may calculate
the exponent A explicitly for m = 2 or oo = 0. In fact, integrating the
(9.1.3) we obtain

m-2.

(9.4.10) A = V ^ + frMO2-

ao = 0, m ^ 2.

We denote the value A in this case by AQ as follows
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A0(m - 2)(ro - l +

y/(m - 1 + q + n)2\l + (m - 1 + q + jt)(2 - m + r)A0

(9.4.11)

where x =^-. Hence we get the quadratic equation and it followsthat

Ao =

(9.4.12) = .

]
]

m—2—T

m(m-2) -4T(T+2-m)+(2r+2-m)- i /m2+4r(T+2-m) .„  a
' * 80 =ST(m-l+g+n) ' " '

I t is easily to see that AQ > 0. Erom (9.4.12) we have for 6Q = ^

(9.4.13)
m-2-r m(m - 2) + T^/T2 + 4(m - 1)

Now from (9.4.12) - (9.4.13) we deduce following special cases of value

(9.4.14) Ao =
(m-1)2

, m(m— if e0 = 7r.

PROOF. We prove the second equality of (9.4.14). Applying the Taylor
formula  = 1  \t + o(t) for t -> 0, from (9.4.12) we obtain

Ao

m(m -

m{m

- 2 ) -

- 2 )

4 T 2 4

4 T 2 -

- 4(m -

I- 4(m - 2)T H

8 r ( m-

- 2 )T + m(2r

hm(2r + 2-m)y
1 + q + v)
I o m \ [ i 1 2T(-

^ . 4r(T+2-m)

r+2-m) . / \]

8r(m - 1 + g + /Z)

m(-2r + 3m - 4) + (T + 2 - m)(2r + 2 - m) O(T)

4m(m — 1 + q + /i) r
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Hence it follows that

Ar = lim
(m-1 )2

-, Q.E.D.
<=2 m(m — 1 + q

Similarly, on the other hand from the first equal of (9.4.14) we have

2x(m - 1 + q + fi)

1
~ 2x{m -1+q + n)

Hence it follows that

Ao

x(m — 2) + m

=0

2-x

x(m-2)+m
o(2 - x)

2-x

=  lim Ao
2 2 0

* 2

(m-1 )2

r=o m(m — 1 + q + /i) '

Q.E.D.

From (9.4.12) it immediately follows

m-K
A° 46o{m-l+q + nY  ̂ ~ *'

01

We want to investigate the behavior of Ao for x —> 0. For this fact we rewrite
(9.4.12) in the following way

A o = m — 2 — T

2(m - fi)



9.4 THE CONSTRUCTION OF THE BARRIER FUNCTION 387

f n\ i r 0 1 / 1 n\l /1 1 x2(2-m+T)+2(m—2)(2—m+T)*c
m(m — 2) + [m — 2 + X( T — m + 2)jmy 1 H - ' ^2—" J—L-

2x2(m -l+q + H)(T - m + 2) + 4x(m - 2)(m - 1 + q + /x)
_ m(m - 2) + [m - 2 + X(T - m + 2)] {m + ^ ( 2 - m + r)(x + 2m - 4)}
~ 2x2(m - 1 + q + H)(T - m + 2) + 4x(m - 2)(m - 1 + q + jit)

m-2-r
2( 1 + + )2(m — 1 + q + fi) x 2x(m — 1+q + fi)

m — 2 — T o(x)
+ 2(m-l + q + n) +~~x~

m(r - m + 2) + 2^(2 - m + r)(x + 2m - 4)[x(r - m + 2) + m - 2]
2x(m - 1 + q + H)(T - m + 2) + 4(m - 2)(m - 1 + q + /i)

2(m — 1 + q + fi)
Hence we finally get

^ + 0(1).

4(m - 1 + q + n) 90

This fact coincides with the Krol result for the pseudo-Laplacian (q = /x =
r = a0 = 0), see p. 145 [205].

\m —> +oo]

We want to investigate the behavior of Ao for m —> +oo. For this fact we
rewrite (9.4.12) in the following way

1) if x < 2,

m — 2 — T m2— 2m
0 = 2(m - 1 + q + /i) + 2 x ( 2 - x ) m2 + O(m) +

[(1 - x)m + 2x - 2 + xr ] %/ ( l - x)2m2 + O(m)
+ 2x(2 - x)m2 + O(m) ~

m — 9 — T [1 _L fi — >-V1 — x l lm 2 + Dl1

2(m -1+q + n) 2x(2 - x)m2

Hence it follows that

lim A =1 1 + (1- x) l 1- x l  = (3?fa' if ^ ^1 '
m-*+oo ° 2 2x(2 - x) [ 1 , if 1 < x < 2;
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2) if H = 2,

m2 — 2m + 4mr — 4r2 - 8r
8 r (m — 1+q + fi)

H
8r(m - l + q

m2 - 2m(l - 2T) - 4T(T + 2)
8r(m - 1 + g + n)

8r(m - 1 + q + n)

)
2o8mr + ( )

v ' m-*+oo

Thus we finally have

m->+°o j ^ l , if f < 6>o < 7T.

This fact coincides with the Aronsson result for the pseudo-Laplacian (q =
H =  T = a0 = 0), see [11].

9.4.3. About the solvability of (9.1.3) and (9.1.4) with a0 > 0.
We set

(9.4.15)

+ T [(m-l)y2 +
J (m-1(m — 1 + q + n)(y2 + A2)^ + A(2 — m + r)(y2

o

By making the substitution: y — tX, t € (0, +oo) we obtain

io,wo) = ~^o+ / A(A,OOJO >̂



9.4 THE CONSTRUCTION OF THE BARRIER FUNCTION 389

where

A(A,ao,i) =

(9.4.16)

X(m - 1 + q +  M)(* 2 + 1 )T + (2 - m + T)(£2

Then the equation (9.1.3) takes the form

(9.4.17) T(X,ao,ujo)=O.

According to the above, we have

(9.4.18)

The direct calculations yield

(9.4.19)

v (m - 1 + g + fi)(t2 + 1)9+ ao(m - 1)/A

[A(m - 1 + q + fi)(t2 + i)9+(2-m + r

V t, A, ao;

dA A 1-™^-! )* 2+ 11(̂  + 1)
dao ~ [A(m - 1 + q + M)(*2 + 1)*  + (2 - m + r)(t2

(9.4.20)

> 0 Vi, A, a0.

Therefore, we can apply the theorem about implicit functions. In a certain
neighborhood of the point (Ao,O) the equation (9.4.17) (and so the equa-
tion (9.1.3) as well) determines A = A(oo,w0) as a single-valued continuous
function of ao, depending continuously on the parameter uio and having
continuous partial derivatives J^-, -g£-. Now, we analyze the properties of
A as the function A(ao,u>o)- First from (9.4.17) we get:

d^d\_ dT_ _ a nd aF_9A_ dT _Q

d\ dao 9ao dX d d

Hence it follows that

(9.4.21) | ^ = - » and £ S
9« (|f)
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But, on the strength of (9.4.19), (9.4.20) we have

dT f dA  ̂ A dT f dAJs n dT 1 .... ,
da0 J da0 dX J d\ dd0

o
(9.4.22)

dT d6Q i-\, if BVP is the Dirichlet problem,

1du>o ddo dwo 1—1, if BVP is the mixed problem.

Prom (9.4.21) and (9.4.22) we get:

(9.4.23) 7T— > 0 and —— < 0 for any a0 > 0.

So, the function A(ao,o;o) increases with respect to ao and decreases with
respect to w0- Applying the analytic continuation method, we obtain the
solvability of the equation (9.1.3)

COROLLARY 9.14.

A = A(oo,wo) > Ao > 0 for anyao > 0.

Further, multiplying the equation of (StL) by <J>(o;) and integrating over
the interval (-*& , *f) , we get

(9.4.24) ( 1 - M) I |$|9(A2$2 + $'2)^$'2da; = -ao f

2 2

+ [A2(m - 1 + q + p) + A(2 - m + T)) f

> (Xm(m-l+q + n) + Xm-1(2-m + T)-a0) / \$\q+mdu) > 0,

by virtue of (9.1.4).

LEMMA 9.15. We have the inequality

2 2

(9.4.25) A |$|9|$'|mcL;<c(g,M,m,r,A) A \$\q+mdw.



9.4 THE CONSTRUCTION OF THE BARRIER FUNCTION 391

PROOF. From (9.4.24), by Young's inequality with p = ^ , p'
it follows that

2

(l-/x ) f \$\q\$'\mdu; <

< [A 2(m- l+g + yu) + A(2-m + r)] /
2

< e /" |$ |9(A 2$2 + $ '2)Tdw + ce /

TF ^

<e / \$\9\&\mcLj + ce f \$\g+mdu Ve>0,

since m>2. Choosing e = ^ ^ , we obtain the required (9.4.25). D

LEMMA 9.16. Let the inequality (9.1.4) hold and, in addition,

(9.4.26) q + n<l.

Then

(9.4.27) j |$'|m^<c(g,M ,m,T,A,a;o).

PROOF. For dividing the equation of (StL) by $|$|9~2, we get

+ \[\{q
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On integrating the obtained equality we have

(9.4.28) (1 — q — n) I (A $ + $' )~^du>-\-ao I |$|mdw =
I I

=  A(Am + 2 - m + r) / $2(A2$2 + $'2)I=^da/.

Since q+fi < 1, A(Am+2—m+r) > 0 and m > 2 we shall get the required
(9.4.27), if we apply the Young inequality with p = ^b}, p' = ^ , Vs > 0.
Finally, if there were q + n > 1, then from (9.4.28) we would get

m f m m-1 f m

I  i ~
2

< a,Q I |3>|mdw,

which would contradict (9.1.4), by virtue of $ ^ 0. The lemma is proved.

(9.4.1), (9.1.3) give us the function w — rA$(w), which will be a barrier
for our boundary problem (BVP).

LEMMA 9.17. Let C(r) e C$°[0,d]. Then

C(r)w(x) € q̂{r\  rr~m, Gd, Gd \ Fd).

If (9.1.4) and (94.26) hold, then

C(r)w(x) e ^ ,o (^T . rT~m, Gi Gd \ Td).

PROOF. At first, we observe that w e L^Gft) since A > 0. Now we
shall prove that

(9.4.29) Iq[w]  = { (rr-m\w\q+m + rT\w\q\Vw\m) dx < oo.

The direct calculations give

(9.4.30) \V
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Therefore

Ig[w]  =

<c(A,m) f rr+(m+Q)X-m+ldr t

I t is clear that, by virtue of Lemma 9.15, Iq[w]  is finite. To prove the second
assertion of the lemma we have to demonstrate that

(9.4.31) I[w]  = I ( rT - mM m + rT\Vw\m) dx < oo.

We again have

UJn V

d

< c(\,m) / r
T+mX+1-m

(ir j  ̂(A2$z + $")¥ + $m }du>.

o

I[w]  is finite by Lemma 9.16. Thus,

I[w]  <c(m,\,N,q,[j,,uo,d).

Lemma 9.17 is proved.

EXAMPLE 9.18. Let m = 2 and we shall consider the boundary value
problem (BVP)o for the equation

——(rT\w\qwXi) = aorT~2w\w\q — nrTw\w\q~ [Vw\ , x G Go,

(9.4.32)

a0 > 0, 0 < fi < 1, q > 0, T > 0.

From (9.4.8), (9.1.3) it follows that the solution of our problem is the func-
tion

cos 1+9+f I 22£ J for the Dirichlet problem,
w(r,u>)=r xx { _^_\ °J x

cos i+̂ +f*  I ^ - — T J for the mixed problem.
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where
y/rs + (Tr/gp)2 + 4ao(l

2(1 + q + ft)
(see (9.4.10)). It is easy to check that for such a A the inequality (9.1.4) is
satisfied.

By calculating <&'(w) one can readily see that all the properties of the
function $(w) hold. Moreover, we have:

2

/

J 1, if BVP is the Dirichlet problem,
I j , if BVP is the mixed problem

provided q + fi < 1. This integral is nonconvergent, if q + n > 1. At the same

time Vg > 0 we have

Q?\ CtJ ) W f tiJ IUCL J — — -. —.-—.,— !  — ——  .—  ^

J 1, if BVP is the Dirichlet problem,

1 \ , if BVP is the mixed problem

since /x < 1. This fact completely agrees with Lemmas 9.15-9.17 since

This fact demonstrates that w(x) G «n^0(r r , rT~m,G$), if q + fi<l,  and
ty(x) ^ ^ 0 ( r r , r r ~ m , G ^ ) , if q + fi > 1. For the latter case we have

2

/

9.5. The estimate of weak solutions in a neighborhood
of a boundary edge

In this section we derive an almost exact estimate of the weak solution
of (BVP) in a neighborhood of a boundary edge. For our purpose we are
going to apply the comparison principle (see Theorem 9.6) and use the
barrier function constructed in §9.4. It is easy to verify by assumptions
8)-10) that all assumptions (i)-(iii)  of the comparison principle (see §9.2)
are fulfilled.
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Let us make some transformations. At first we introduce the change of
function

/VVJ 1

(9.5.1) \\t-1itht= vv\t-1witht =
q + m-1

By virtue of the assumption 7), the problem (BVP) takes the form

x, v,(77) Q(v, 4>)= (Ai{x, vx)(pXi + a0A(x, v)4>
G

 v) - g{x)^<j)ds = 0

r2

for v(x) £ VQ and any <fi(x) S Vo, where

Ai(x, rj) = ai(z, ulwl*" 1, tlvf'1^), A(x, v) = a(x, v\v\*~l, t^"1

B(X,V,TJ) = 6(a;,u|u|t~1,t|u|t~17?),  = aix.v^v^1).

And by assumptions 11)-14) we have

IN

71)

+

Is) dAj(x,r)
dxi

A(x, v) — rT mv\v\ l — 2 (x, v, r)) + fitmrTv

< Ci(r)r>c\ri\m 1 + \v\tgip4(r).

REMARK 9.19. Our assumptions 11)-14) essentially mean that the oper-
ator of the problem (BVP) is approximated near the edge FQ by the operator
of the problem for the (ME). Furthermore, by the assumption 7) coefficients
a,i(x, u, ux) i = 1,..., N after the substitution (9.5.1) do not depend on v ex-
plicit. For instance, the model equation (ME) satisfies these assumptions.
In fact, after the substitution (9.5.1) the (ME) takes the form

C*QV\X) == —t (7*  V ^ Vx-} ~t~ <̂ 0̂*  ^

=  f(x), x&G.
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We shall make additional studies. Let us set

(9.5.2) ao=t1~mao, /Z = A = -A and ' = $*(w),

whprp t — m~1

Now the function

(9.5.3) w =

will play the role of the barrier. By (StL)-(CPE), (9.1.3) one can easily
check that (A, $(o>)) is a solution to the problem

(ko
V2^-2 ^ / 2\ - r - — i(_2 2 /2\A * + * J . /_2 2 / ^r-

A $ -

w G (-wo/2 , o;0/2),

- A[A(TO - 1) - m + 2 + r ] $ f A2$2 + $ '2

(NEVP)
$(-wo/2) = $(wo/2) = 0 for the Dirichlet problem,
$(— Wo/2) = $ (wo/2) = 0 for the mixed problem,
and

/ (m-l+/l)(y2 + A2)f +A(2- m + r)(y2
ao

It is evident that the properties of (A, $) established in §9.4.1 - 9.4.2 also
remain valid for the (A, $(w)). In particular, (9.1.4) takes the form

— 1
(9.5.4) Pm(X) = (m - 1 + p)A + (2 - m + r)X - a0 > 0.
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We consider the perturbation of the problem (NEVP). Namely, for Ve €
(0,2?r—WO) on the segment [— Uo£e, " " ^ ] , we define the problem for (A£, $£)

= (So - - A£[A£(m - 1) - m + 2

= 0

= 0

for the Dirichlet problem,

for the mixed problem

and

T
J (
as well as

The problem (NEVP)e is obtained from the problem (NEVP) by replacing
in the latter UJO by UJQ + e and So by So — e. In virtue of the monotonicity of
the function A(wo)flo) > established in §9.4.2 (see. (9.4.23)), we get

(9.5.5) 0 < Ae < A, lim Ae = A.

We denote by Ao the value of A for So = 0. It clearly follows from (9.4.12)

that AQ = . In just the same way as in §9.4.2 we calculate that

A > Ao. Prom (9.5.5) it follows that

(9.5.6) 0 < ^Ao < A£ < A

for a sufficiently small e > 0.
Next we shall consider separately the case of the Dirichlet problem and

the case of the mixed boundary value problem.

Dirichlet problem.

LEMM A 9.20. There exists an e* > 0 such that

PROOF. We turn to (9.5.4), that is Pm(A) > 0. Since Pm(A) is a poly-
nomial, by continuity, there exists a 6*— neighborhood of A, in which (9.5.4)
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is satisfied as before, that is there exists 6* > 0 such that Pm(X) > 0 for
VA | | A — A | < S*. We choose the number 6* > 0 in the same way. In
particular, the inequality

Pm(A-<5)>0 VSe(0,5*)

holds. We recall that A solves (NEVP). By virtue of (9.5.5), now for every
S G (0, S*) we can put

A£ = A - 5
and solve (NEVP)e together with this Ae with respect to e. Let e(S) > 0 be
the obtained solution. Since (9.5.5) is true,

lim e(S) = +0.
5—t+0

Thus we have the sequence of problems (NEVP)e with respect to

(9.5.8) (A£,$£(w)) Ve | 0 < e < mia(e{5);ir - w0) = £*(S), V<5 e (0,5*).
We consider $£(w) with Ve from (9.5.8). In the same way as (9.4.5) we
verify that

$e'(w) < 0, Vw i

But this inequality means that the function $£(w) is convex upon
], that is

I" wo + £ wo + £
L 2 2

for CKI > 0, a2 > 0 |ai + a2 = 1.

We put

Oi\ = , OC2 = j Wi — — , W2 — 0.
£ ~l~ Wo £ ~l~ Wo ^

By (NEVP)e we get

q.e.d. the lemma is proved.

COROLLARY 9.21.

(9.5.9) —^— < $e(w) < 1,
wo + e

for anyu G [—WO/2,WQ/2] and for anye G (0,e*).
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Mixed problem.

LEMMA 9.22. There exists an e* > 0 such that

(9.5.10) <&£ (-?f) >  2{Jo+£) and for any s € (0, £*).

PROOF. We turn back to (9.5.4), that is Pm(\) > 0. Since Pm(\) is a
polynomial, then, by the continuity, there exists a 6*— neighborhood of the
point A, in which (9.5.4) remains valid, that is there exists 6* > 0 such that

Pm(A)>0VA ||A-A|<<5*.

We choose the number 6* > 0 to guarantee this. Particulary the inequality

(9.5.11) Pm(A-<5)>0 V<5e(0,<n

holds. Let us recall that A is a solution of (NEVP). By (9.5.5) we can now
put for every 6 € (0,6*)

(9.5.12) A£ = A-<5

and solve (NEVP)e together with \£ with respect to e. Let e(6) > 0 be the
obtained solution. Since (9.5.5) holds, then

lim e(5) = +0.

Thus, we get the sequence of the problems (NEVP)e with respect to

(9.5.13) (Ae,$£(w)) V£suchthatO<£<min{£(£),27r-wo}=£*(<5) ,

We consider $e(w) from (9.5.13). In the same way as in (9.4.5) we verify
that

*»<o v.
This inequality means that the function <&e(w) is convex on the segment

], that is

for a\ > 0, ot2 > 0 a,\ + a-i — 1.

We put
he £

and wi =
he £ £ +

oii = d 2
By (NEVP)£ we get

'wo+£N

2 y - 2(w0+ £)
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The Lemma is proved.

COROLLARY 9.23.

(9.5.14) £ < $e(a,) < 1 Vwe[-wo/2,wo/2], V £e(0,£*) .
Z(LJO + e)

LEMMA 9.24. For any e > 0 the inequalities

(9.5.15) 0<$»<2e-\ "

(9.5.16) -C(q,-p,T,m,\wo)e-3<$'e<0, w e [ - y , y

fto/d, where C(q,~p,,T,m,\,uJo) > 0.

PROOF. Prom (NEVP)e, (9.5.10) and (9.5.14) we have

(9.5.17) f < $e(w) < 1, $£(w) > 0, *;'(w) < 0,

e -—, - ! !— - and $e — =0, Ve > 0.

Hence it follows that $£(ai) decreases on I —, — -— j . By the La-

grange mean value theorem, we have

with some u £ I —, — — I . Hence, by decreasing of ®e(uj) we get

(9.5.15). From the equation of (NEVP)£ for $£ it follows that

- * , =
[(m -

& e + $;2) " ^ JAE[A£(m - 1) - m + 2 + r]

(9.5.18) +(m

and therefore by virtue of (9.5.6), (9.5.15) and (9.5.17)

-<&e(w) < [A (̂2m - 3 + ]I)  + (2 - m + r)A£ +eA^m ] $£ + p $£
1 ^ 2 <

g, /I, r, m, A, cjo)e~3.

D
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LEMM A 9.25. There exists a positive constant Co = co(rn, q, fi, r, UQ)
such that

(9.5.19) ^ ( ^ ) > c o em + 3 , 0 < e < l .

PROOF. By the Lagrange mean value theorem in virtue of (NEVP)e we
have

(9.5.2o, ,

—, — -— 1. Prom the equation (9.5.18) it follows that

- * > e [(m - 1)K

(9.5.21) > *™ / [(p + m - 1)A™ + (2 + r - m)Xf-1 -ao]+e\>  e$™,

by (9.5.11), (9.5.12) and (9.5.4).

Since $'e(u)) is a decreasing continuous function and $f '
2

0, then for sufficiently small e > 0, we can assert that 0 < <&' e{ui) < 1,

(Wo Wo + £ \
—, j . Therefore we obtain the following statements.

1) If TO > 4, then

[(m - I K 2 + A^ £
2] (A£

2^  + $£
2) ̂  < [(m -

by (9.5.5). Hence from (9.5.14) and (9.5.21) it follows that

and, in virtue of (9.5.20), the required (9.5.19) is proved.
2) If 2 < m < 4, then from (9.5.21), by (9.5.6)
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and by virtue of (9.5.20), we again obtain (9.5.19).

9.6. Proof of the main theorem

PROOF. Let (Ae,$e(u)) be a solution of the problem (NEVP)£ with
fixed e G (0,e*), where e*  is determined by (9.5.13). We define the function
which we shall use as barrier function. Namely, let us consider the function

we(x,r,u) = Arx'®e{u), Vx G RN~2, r G [0,d], w G [-wo/
2><V2] ,

where A > 0 is a number to be chosen below. Let us apply the compar-
ison principle (Theorem 9.6) to the problem (//), comparing its solution
v(x) with barrier function ws(x) in the domain GQ. The direct calculations
demonstrate that

Cowe(x,r,u) =

- A£[A£(m - 1) - m + 2

By virtue of (9.5.1), (NEVP)e and by (9.5.14), we obtain

(9.6.1)

Further, in virtue of (9.5.5) and (9.5.14) we have

(9.6.2) M*)\ ad> ^ff-

In addition,

Finally it is not difficult to calculate
(9.6.4)

ie~1 < |Vwe| < ciAe"1^"" 1 and \\

if we take into account (9.5.15) and (9.5.16) from Lemma 9.24 and (9.5.19)
from Lemma 9.25.
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Now let 4> G Loo(G^)nW1'm(G^, dG$\T$) be any nonnegative function.
For the operator Q that is defined by (II) we obtain

Q(we,<f>)  = / cj)(x)(-—Ai(x,J\7w£) + a0A(x,w£) + B(x,w£,'Vw£)-
J \ ctXi

- f(x)\dx + / <f>(x)(Ai(x, Vw£)rii(x)  +  w£) - g(x)\ds.

And hence, by the definition of the operator Co we have

+ Cow£(x) + a0 A(x, we) - rr-m\we\m-2We +

(9.6.5) B(x,w£,Vwe)

[ (

-f(x))dx+

)ds.

By the assumption 2),

(9.6.6) s) = (?(x, wl) > 0, since w£(x) > 0.

Further,

(9.6.7)
dw£

dn
dwe

L2

K(—) >
2
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by Lemma 9.25. Therefore, in virtue of (9.6.1), (9.6.6) and(9.6.7) from
(9.6.5) it follows that

(9.6.8)

„</>)>  f4>{x)lem\
J \ I

A(m - 1) m - l
(m-l)Ae-m+T

N

x (<5|

+ e)(q + m-l)

-t m-V|V«; £|m-4x

(m -

- a0 A{x, we) - rT m\we\
m 2i

B(x,ws,Wwe) + ^^{S/Ws^w'1

J X \c0 At m- 1 im—2

\

N

2_^ <At\%
i=l

\g(x)\)ds.

m-2,

Now, taking into account the assumptions (9.1.16), 11) — 14) (9.1.5) and
the inequalities (9.6.4), from (9.6.8) we get

Q{we,cj>) > f(t>(x)

- c(r) -
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W

where c(r) = C2(r) + 03(7-) + 04(7-). Fixing A > 0 and £ > 0, we can choose
d > 0 so small (because of the continuity of the functions ci(r), oz{r), c${r),
C4(r) at zero) that

(9.6.9) Q{w£,(f))>0, V<£>0.

Further, by Theorem 9.11

v(x) <MV*
— 1V1Q >

therefore, by (9.6.2)

(9.6.10)
Sid

v{x)

provided that A > 0 is chosen sufficiently large

(9.6.11) A> — ( ^ ) m~~

Thus, from (9.6.9), (9.6.3), (9.6.10) and (II) we get

Q(w£l (pj ̂  0 = Q[v,(p) yep ^ 0 in GQ,

Besides that, one can readily verify that all the other conditions of the
comparison principle (Theorem 9.6) are fulfilled. By this principle we get

v(x) < w£(x), Vx € GQ-

Similarly one can prove that

v(x) > —w£(x), Va; G GQ.

Thus, finally, we obtain

Ka:) | < w£(x) < Arx', Vx e Gfi.

On returning to the old variables in virtue of (9.5.1) we get the required
estimate (9.1.17). The main theorem is proved.
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9.7. Notes

The presentation of this chapter follows [67]. Boundary value problems
in smooth domains for quasilinear degenerate elliptic second order equa-
tions have been intensely studied recently (see [6, 26, 39, 49, 75, 78,
88, 100, 136, 144, 147, 221, 222, 352] etc., and the vast bibliography
therein). Less studied are the problems of this kind in the domains with
a non-smooth boundary. In the paper [212], the existence results for the
quasilinear degenerate elliptic boundary value problems are considered. The
paper [241] examines the well posedness and regularity of the solution of
degenerate quasilinear elliptic equations arising from bimaterial problems
in elastic-plastic mechanics in lipschitzian domain. The papers [58], [59],
[68], [99], [375] are devoted to the study of the weak solutions behavior
for the special cases of the (BVP) equation in the neighborhood of a con-
ical boundary point. In [72] the Dirichlet problem is studied in a domain
with an edge on the boundary for the model equation (ME). In [133] the
properties of the (BVP) solutions for the Laplace operator have been in-
vestigated in a plain domain with a polygonal boundary (see there Chapter
4). Such studies are important for numerical solving of the boundary value
problems (see, for example, [98]). The Holder continuity of weak solutions
of the Dirichlet problem for the degenerate elliptic linear and quasilinear
divergence equations was proved in Section 3 [118] (linear equation) and in
§2 [26] (quasilinear equation with m = 2.)

Recently, C. Ebmeyer and J. Prehse [104, 105] have considered the
mixed boundary value problems for the quasilinear elliptic equations and
systems of the divergent form in a polyhedron. They have proved Ws'2, s <
| -regularity and IP— properties of the first and the second derivatives of
a solution.
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CHAPTER 10

Sharp estimates of solutions to the Robin
boundary value problem for elliptic non
divergence second order equations in a

neighborhood of the conical point

The present chapter is devoted to investigating the behavior of strong
solutions to the the Robin boundary value problem for the second order
elliptic equations (linear and quasilinear) in the neighborhood of a conical
boundary point. Such a problem arises, for example, in heat conduction
problems as well as in physical geodesy (see e.g., [143]).

Let G C RN, N > 2 be a bounded domain with the boundary dG that
is a smooth surface everywhere except at the origin O e dG and near the
point O it is a convex conical surface with its vertex at O. We consider the
following elliptic value problems

{ C[u]  = dlj(x)uXiXj + al{x)uXi + a{x)u = f(x),

aij = aji, xeG,

N = m + Mx> = Sto'  x e dG \ °-
and

(n p, jaij(x,u,ux)uXiXj +a(x,u,ux) = 0, axj = aj\
{Q ] \ i + Mx)u=^ xe dG \ °-
The summation over repeated indices from 1 to N is understood, n denotes
the unite outward normal to dG \ O. We obtain the best possible estimates
of the strong solutions of these problems near a conical boundary point.

A principal new feature here is the consideration of equations with co-
efficients whose smoothness isthe minimal possible! Our examples demon-
strate this fact. The exact solution estimates near singularities on the
boundary are obtained under the condition that leading coefficients of the
equation satisfy the Dini condition and the lowest coefficients can increase.
The rate of the solution decrease in the neighborhood of a conical point is
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characterized by the smallest eigenvalue $Q of the Laplace-Beltrami opera-
tor in a domain Q on the unit sphere (see (EVR)o §2.4.2).

Let us refer to the problem (QLRP). We obtain the best possible esti-
mates of the strong solutions of the problem (QLRP) near a conical bound-
ary point. Our theorems also show that the quasilinear problem solutions
have the same regularity (near a conical point) as the linear problem solu-
tions.

10.1. The linear  problem

10.1.1. Formulation of the main result.

DEFINITION 10.1. A strong solution of the problem (LRP) is a function
u(x) G W%*(G)nW2(G£)nC°(G) that for eache> 0 satisfies the equation
for almost all x G G£ and the boundary condition in the sense of traces on

rv
We assume the existence d > 0 such that GQ is the convex rotational

cone with the vertex at O and the aperture UJQ G (§, TT) (see (1.3.13)).
Regarding the equation we assume that the following conditions are satisfied

(a) the condition of the uniform ellipticity

v,H = const > 0, and ay (0) = 5? (the Kronecker symbol),
(b) aij G C°(G), a*  G LP(G), p> N, a,f e LN{G) and for these the

inequalities

v _ ^ <A(\x-y\)

and

/ ~ ' "N 2 + \x\2\a(x)\ < A(\x\)

hold for x,y G G, where A(r) is a monotonically increasing, non-
negative function, continuous at 0, A(Q) — 0,

(c) there exist numbers /i > 0, g\ > 0, s > 1, /? > s — 2, 70 > tan ^
such that

\f(x)\ < h\xf, \g(x)\ <  gi\xr\ -y(x) > 70
and

~/(x)eL<x(dG)nC1(dG\O),
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(d) a(x) < 0 in G.

We denote Mo = max|u(a:)| (see Proposition 10.11). Our main results
x€G

are the following theorems. Let A be the number that is denned by (2.5.11)
or (2.5.19) from Section 2.5.

THEOREM 10.2. Let u be a strong solution of the problem (LRP) and
assumptions (a) - (d) are satisfied with A(r) Dini continuous at zero. Sup-
pose, in addition, that

g(x) e til
as well asa{x) e ^°4_N(G),-y(x) e #$_N(dG), ifu(0) + 0

and there exist numbers

(10.1.1)

Then there are d £ (0,1) and a constant C > 0 depending only on v, /x, d, s,
d

N, A, 7o, IITIIC^SGXO)! meas G and on the quantity J ^^p-dr such that

(10.1.2)

//, in addition, there is a number

TS =: sup Q~

(10.1.3)

+ 9i +

, )

w^i»v.,
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(10.1.4)

if  s < X.

THEOREM 10.3. Let u be a strong solution of the problem (LRP) and
the assumptions of Theorem 10.2 are satisfied with A(r) that is a function
continuous at zero but not Dini continuous at zero. Then there are d € (0,1)
and for each e > 0 a constant Ce > 0 depending only on e, u, /i, d, s, N, A, 70,
W'y\\c1(dG\O)imea3 G an&  on ^(diamG) such thafix G GQ

\-N(G)
51+

(10.1.5)

and

(10.1.6)

i/j  (ao) )

\x
A-£, ifs>\,
-£, ifs<\

X
~)

A " 1-£, ifs>\,
s~1-£, ifs<\.

THEOREM 10.4. Let u be a strong solution of the problem (LRP) and the
assumptions of Theorem 10.2 are satisfied with s > A, ,4(r) ln£ < const,
r > 0 and A(0) = 0. Then there are d e (0,1) and the constants C > 0, c> 0
depending only on v, /x,d, N, A,70, I^Hc^dGVO)!7716^ ^ and on A(diamG)
such that Vx G Ĝ

(10.1.7) |«(X)-«(O) |<C( |« |O.G-

II II J_ II

' "  "*4-*r(G 0 "
)+ks
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and

(10.1.8) |V«(s)| < C(|«|0,o

+ K0)| (i + \\a\\

10.1.2. The Lieberman global and local maximum principle.
The comparison principle.

DEFINITION 10.5. Let the domain G be at least Lipschitz. A vector ft
is said to point into G at XQ € dG if there is a positive constant to such that
XQ +1 ft G G for 0 < t < to- A vector field ft, defined on some subset T of
dG, points into G if ft (xo) points into G at xo for all £o G T.

In this section we consider the linear elliptic oblique derivative problem

{ £[u]  = a'lj(x)uXiXj + al{x)uXi + a(x)u = f(x),
a" = a?', xeG,

SoM = PWfe +  7(x)u = g(x), x € dG.

DEFINITION 10.6. It is said that the operator Bo (or the vector field
/?) is oblique at a point xo € dG if there is a coordinate system (xi,x') =
(xi, . .. ,a;jv) centered at xo such that (3 (xo) is parallel to the positive
Xi—axis and if there is a Lipschitz function x defined on some (N — 1)—
dimensional ball Bd(x0) such that

G n Bd(x0) = {xe RN\Xl >  X(x'), \x\ < d}.

DEFINITION 10.7. It is said that a vector field /3 = (/3\/3') defined in
a neighborhood of some XQ € dG has modulus of obliqueness 5 near xo if,
for any e > 0, there is a coordinate system such that

GnBd(x0) = {xe RN\xx > x(x'), \x\ < d}

with a Lipschitz function x such that

1/3'Isup|Vx|sup—̂ <5 + e.

DEFINITION 10.8. Let x = (xi,x') be a point in RN and (3 be a vector
field such that

N

< (3,Ti >= JZ/3*cos(~n,xt) < 0.
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We assume that there are positive constants d, h, mi and e < 1 such that

G$ = {x e E^ i i > h\x'\, \x\ <d}cG and

\P'\ < mi/31 onF ,̂ where Ami < 1 - e.

By Definition 10.7, this inequality means that the modulus of obliqueness at
XQ e F̂  is less than 1.

REMARK 10.9. In the definitions above the vector field /3 can have
discontinuities and dG is allowed to be piecewise. In this connection see
also [227].

REMARK 10.10. For the convex rotational cone Gg with the vertex at
O, the aperture UJQ € (0,7r) and the vector /3 = — "n on FQ we have (see
Lemma 1.10), by (1.3.13) - (1.3.14)

h = cot —, p = sm — and

t=2 * i=2

\/3'\ = cos — < mi sin — => /i < mi.

Hence it follows that the modulus of obliqueness at XQ € Fg is less than 1,
if

h t  ̂ 1

PROPOSITION 10.11. The global maximum principl e (see Lemma
1.1 [225], Proposition 2.1 [234]; see as well [233]).

Let G be a bounded domain in ~R.N with the C1 — boundary 8G\TQ and GQ
be a convex rotational cone with vertex at O and the aperture wo G (^ ,ir).
Let u(x) be a strong solution of the problem (LRP). Suppose the operator C
is uniformly elliptic with the ellipticity constants 0 < v < \i, al(x),f(x) G
LN(G),g(x) G L°°(8G), a(x) < 0 in G, j{x) > 70 > 0 on dG. Then

max

where C = C{v,~fQ,N,diamG, \\al\\LN Ĝ))-

REMARK 10.12. We observe that the vector —"n points into G if G is a
bounded domain in RN with the C1— boundary dG\T$ and G$ be a convex
rotational cone G{j with vertex at O and the aperture OJQ G (-| ,TT).

PROPOSITION 10.13. The strong maximum principl e (see Corollary
3.2 [234]).
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Let G be a bounded domain in M.N with the C1 — boundary 8G\TQ and
be a convex rotational cone with vertex at O and the aperture wo € (f ,7r).
Suppose u{x) € C°(G) has nonnegative maximum at some XQ € Fg, and
suppose there is a positive constant d such that u € Wjo'c (Gfi). Suppose the
operator C is uniformly elliptic with the ellipticity constants 0 < v < /j,,
ai(x),a(x) e LN(G$), a(x) < 0 in G}J, as well y(x) € L°°(T^), j(x) > 70 >
0 on rg. //

(10.1.9) C[u] >0in Gg, B[u] < 0 on rg,

then u is constant in Gg.

PROPOSITION 10.14. The local maximum principle (see Theorem
3.3 [225], Theorem 4.3 [234]; see as well [233]).

Let the hypotheses of Proposition 10.11 hold. In addition, suppose
o}{x) e Lp(G),p > N anda(x) € LN(G). Then for any q> 0 anda e (0,1),
we have

where C = C(i/,fj,,jo,N,p, R, G, W^WLP^O), \\a\\L»(G))-

PROPOSITION 10.15. The maximum principle.
Let G be a bounded domain in M.N with the C1 — boundary 8G\TQ and GQ

be a convex rotational cone with vertex at O and the aperture u0 e ( | ,TT).
Let u(x) be a strong solution of the problem

[£[«]=/(x) in Gi
B[u]=g(x) on rjj ,

u = h(x) on £ld U O

and suppose the operator C is uniformly elliptic with the ellipticity constants
0 < v < /i, ai(x),a(x) € L%c(Gi), a(x) < 0 in Gg, as well 7(1) e
L°°(rg),5(x) e L°°(ri),h(x) e L 0 0 ^ U O) 7(2) > 7o > 0 on Td

0. In
addition, suppose that the functions Wx{x), w%{x) can be found which satisfy
the following inequalities:

U[wx}<f{x)  in Gi
lB[Wl}>g{x)  on rg,
[ iwi > h(x) on Qd U O
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and
rC[w2]>f(x)  in
B[w2]  < g(x) on

[  w2< h(x) on ndL)O

respectively. Then the solution u satisfies the inequalities

W?,(x) < u(x) < U>i(x) iflGj .

PROOF. Under such circumstance, the function v = u — w\ satisfies
these three inequalities

fC[v]>  0 inG$,
B[v]  < 0 on Tg,

v < 0 onfidUO.

According to the E. Hopf strong maximum principle, Theorem 4.3 , if v
is not identically constant, it can only have a nonnegative maximum at a
point on the boundary. By Proposition 10.13, v cannot have a nonnegative
maximum on FQ unless it is a constant. Thus v can only have a nonnegative
maximum on Qj U O and therefore we conclude that v < 0 in GQ. TO obtain
a lower bound we consider the function v = w  ̂— u manner reasoning in the
same as we did for wi.

PROPOSITION 10.16. The comparison principle.
Let GQ be a convex rotational cone with vertex at O and the aper-

ture CJO £ (fi71")- Let C be uniformly elliptic in GQ with the elliptidty
constants 0 < v < (i, ai(x),a(x) e L ĉ(Gf), a(x) < 0 in G$. Let
7(0;) e £°°(ro), 7(2) > 70 > 0 on YQ. Suppose that v and w are func-
tions in Wf^{Gfj H C°(Gjf) satisfying

(C[w(x)} < C[v(x)}, x e G&
(10.1.10) I B[w(x)} > B[v(x)], x e T$;

w(x) > v(x), x e Qd U O.

Then v(x) < w(x) in G^.

PROOF. This proposition is the direct consequence of Proposition 10.15.

THEOREM 10.17. Lp—estimate of solutions of the ellipti c oblique
problem in the smooth domain (see Theorem 15.3 of [4]).

Let G be a domain in E.N with a C2 boundary portion T c dG. Let
C be uniformly elliptic in G with the elliptidty constants 0 < v < \x and
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u e W2'P(G), p > 1 be a strong solution of the problem

{ C[u\ = / in G,
B[u]  = g onT

in the weak sense, where
(i) ai^(x),ai(x),a(x) e C°(G); 7(x) € CJ(T) and
(ii) f{x) e L?(G), g(x) € W^'^T).

Then, for any domain G' CC GUT we have

< + II/HLP(G) + \\9\\wi-l,P{Ty)

where the constant C is independent of u and depends only on N, p, i/, fi,
T,G',G, ||a*(x)||c;o(G); ||o(x)j|c70(G)7 HTWI IC^T ) and the moduli of continu-
ity of the coefficients a^(x) on G'.

10.1.3. The barrier  function. The preliminar y estimate of
the solution modulus. Let G$ be a convex rotational cone with a solid
angle a>o € (0, TT) and the lateral surface FQ such that GQ C {XI > 0}. Let
us define the following linear elliptic operator

Co = o « ( a r ) ^ ^; aV(x) = a^x), x € Gd
0,

where

z/£2 < aij(x)^j < n£2, Vx G G%, V^ e R^ and v, n = const > 0

and the boundary operator

B s = + ^7(a;), 7(i) > 7o > 0, x G rg.
dn x\

LEMMA 10.18. (Existence of the barrier function).
Fix the numbers j 0 > tan ^,6 > 0,g.i > 0,d € (0,1). There exist

h > 0 depending only on WQ, the number KQ £ (0,70 cot ^ — 1), a number
B > 0 and a function w(x) £ C1(Go) n C2(Go) t/iai depend only on a>o, t/ie
elliptidty constants v,fi of the operator Co and the quantities 7o,#, <?i, such
that for any x S (0; min(i5, XQ)) the following inequalities hold:

(10.1.11) Co[w(x)} < -vtflx]*- 1; x G G%;

(10.1.12) B[u;(s)]>pi|s|a; a: € rg \ O;

(10.1.13) 0<ti;(a;)<Co(^o,-B,a;o)|x|>c+1; x eG^;

(10.1.14) |Vttf(ar)|<Ci(xo, j



10 ROBIN BOUNDARY VALUE PROBLEM IN
416 A NONSMOOTH DOMAIN

PROOF. Let (x,y,x') e R- ,̂ where x = x\,y — X2,x' = (X3,...,XN). In
{x i > 0}  we consider the cone K with the vertex in O, such that K D GQ.
(We recall that G$ C {zi > 0}.) Let OK be the lateral surface of K and
let dK n yOx =  be x =  where h = cot *f-,  0 < u>0 < n, such that
in the interior of K the inequality x > h\y\ holds. We shall consider the
following function

w(x;y,x') = x*-\x2 - h2y2) + Bx"+1,

(10.1.15)

with some x e (0; 1), B > 0.

Let the coefficients of the operator LQ be a2'2 = a, o1'2 = b, a1'1 = c. Then
we have

(10.1.16) CQW = awyy + 2bwxy + cwxx

where

vrf < arjl + 26771772 + C77I < /irj 2 and

(10.1.17)

Let us calculate the operator £0 on the function (10.1.15). For t = &, \t\ <  ̂
we obtain

Cow = -rfx*- 1^*),

where

4>(x) = 2a- 4bt + 46txr - ch~l(l + B){x? + tt) + ct2x2 - 3ct2x + 2ct2 =

= c(t2 - h-2(l + B))x2 + {Abt - c/T2(l + B)- 3ct2)x + 2(ct2 - 2bt + a)

and

Because of (10.1.17), we have 0(0) = 2(ct2 - 2bt + a) > 2v and since
4>(>c) is a square function there exists the number xo > 0 depending only
on v,ii,h such that <f>(x) > v for x € [0; x$\. Therefore we obtain (10.1.11).

Now, let us notice that

(10.1.18)  =  h = cot —, 0 < w0 < TT.
£1
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Then we have

onT_.

T _ r r o s sala; — rcos 2 ,

x =

2 + 2

Therefore we

wx = (1 + x]

(10.1.19)

Because of

s in

obtain

arx(l +

dw
dn

2

B)-

e

= wx

(x-l)A

>/i 2j /arx-

cosZ(n,

cos-

2y2x*-

x) H

2

2 ^

r  =

= [2

r
and (10.1.19), we get

= —r
r

Hence it follows that

B[w]
r (1 +

x) - 2(1

Since h > — for x < xn we obtain
70 — u

r i
\ 0 < r

if we choose

(10.1.20)

< 5  r*  > rs and

B
ft7o - 1 - x0

(It should be pointed out that we can choose, if necessary, x0 so small that
x 0 < /170 - 1).
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Now will show (10.1.13). Let us rewrite the function (10.1.15) in spher-
ical coordinates. Recalling that h = cot ̂  we obtain

w(x;y,x') = (l

= r1+"cosx~1

where
= sin ( — - wj  sin {—

We find x'(w) = —sin2a; and ~X!(OJ) =0 for a; = 0. Now we see that
x"(0) = —2cos0 = —2 < 0. In this way we have

max v(u;) = Y(0) = sin2 —

and therefore

w(x;y,x') < r1+*cos^"1 u(Bcos2u + 1) < r 1 + xc o s ^1 w fB +
COŜ  U)

1

Hence (10.1.13) follows. Finally, (10.1.14) follows in virtue of (10.1.19).

Now we can estimate |u(x)| for (LRP) in the neighborhood of a conical
point.

THEOREM 10.19. Let u(x) be a strong solution of the problem (LRP)
and satisfy assumptions (a)-(d). Then there exist numbers d € (0,1) and
K > 0 depending only on u,fi,N, HO,UIQ,/I,/3,7o,s,g\,M§ and the domain
G such that

(10.1.21) |u(x) - u(0)| < C0|a;|x+1, x G Gg,

where the positive constant Co depends only on is,/i,N, fi,gi,(3, s,7o,Mo
and the domain G, and does not depend on u(x).

PROOF. Without loss of generality we may suppose that u(0) > 0. Let
us take the barrier function w(x) denned by (10.1.15) with H € (0, x0) and
the function v(x) = u(x) — u(0). For them we shall show

f £(Aw(x))<£v(x),xeGi
(10.1.22) I B[Aw(x)] > B[v(x)}, x € rg,

[  Aw(x)>v(x), xeQ,d\JO.

Let us calculate the operator £ on these functions. Because of Lemma 10.18
and the assumptions (b), (d), we obtain

£v(x) = Cu(x) - a(x)u(0) = f(x) - o(x)u(0) > f(x) > -fxr
p
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and

£w(x) < Cow + ai(x)wXi < - + dr < K
v 2

By the continuity of A(r), d > 0 has been chosen so small that

CiA{r) < CiA(d) < -vh2 for r < d.(10.1.23)

Since 0 < x < *€Q, hence it follows that

C[Aw{x)\ < --Avh2r*°~ l < Cv(x), x e Gd,

if numbers XQ, A are chosen such that

2/i111
vh2'

(10.1.24) xo<P + l, A>

From (10.1.12) we get

(10.1.25) B[Aw] > Agxr
s.

r

Let us calculate B[v] on F^.. If A > 1 and 0 < 5 < s — 1 then

B[v(x)] = -  ̂ + 7—,j(x) (u(x) - K(0)) = g(x) - r—. j(x)u(0)

< g{x) < gir8-1 < gir5 < B[Aw], xeTd

by (10.1.25). _
Now we compare v(x) and w(x) on f2<j. Since x2 > h2y2 in K, from

(10.1.15) we have

(10.1.27)

On the other hand

(10.1.28) v(x)

w(x) > B\x\1+*
r=d

<M 0

and therefore from (10.1.27) and (10.1.28), in virtue of (10.1.20), we obtain

Aw(x) ABdl+*  cosx+1 —

1
^

hj0 - 1 — *CQ

>M0>v

+2(1
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where A is made great enough to satisfy

(10.1.29) A >

Thus, if we choose the small number d > 0 according to (10.1.23) and
large numbers B > 0,A > 1 according to (10.1.20), (10.1.24), (10.1.29), we
provide the validity of (10.1.22).

Therefore the functions v(x),Aw(x) satisfy the comparison principle,
Proposition 10.16, and we have

(10.1.30) u(x) - u{0) < Aw(x), x € Gj.

Similarly, we derive the estimate

u(x) -16(0) > -Aw(x),

if we consider an auxiliary function v(x) = u(0) — u(x). The theorem is
proved, in virtue of (10.1.13).

10.1.4. Global integral weighted estimate.

THEOREM 10.20. Let u(x) be a strong solution of the problem (LRP).
Let assumptions (a) - (c) be satisfied. Suppose, in addition, that g(x) G

ftl(dG), where

(10.1.31) 4-AT<a<2.

O

Then u(x) € W%(G) and

(10.1.32) \\u\\o <C(\\uh,G + H

where the constant C > 0 depends only on v, fx, a, N, ||a*||P[G, i = 1, . . ., N
and ||a||jv,G)70) ||'7l|c71(aG?\e')5 ^ e moduli of continuity of the coefficients a4J

and the domain G.

PROOF. Since aij(0) = Sj, we have

(10.1.33) Au(x) = f{x) - (aij{x) - aij(0)) Diju(x) - ai{x)Diu(x)-

— a(x)u(x) inG.
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Integrating by parts, using the Gauss-Ostrogradskiy formula, we show
that

/

_„  2 r du f ,y_2 du

r uAudx = —e I u-r-d\le + I r u--=rds —
J dr J dn

Gs os re

a-2u^ds- fra-2\Wu

+  (2 - a) I ra-4u(x, Vu)dx.

2dx +

Ge

Integrating again by parts we obtain

f ra-4u(x, Wu)dx = | I (rQ-4z, Vu2)dx -
Ge Ge

- x£a~3 / u2dQE + - I ra~4u2Xi cos(^?, Xijds -

rs

f a-3 2 d r j  N + a ~ 4 f a-i 2 j
I  r u -^=>ds / r u dx,

rd

because of

N N 2

EA(r a-4Xj ) = Nra~4 + (a- 4)ra~5 V ^ - = (AT + a - 4)rQ"4

and (1.3.14) of Lemma 1.10

Thus, multiplying both sides of (10.1.33) by ra~2u(x) and integrating
over Ge and because of the boundary condition of the (LRP), we obtain

(10.1.34) I' ra-2\Vu\2dx
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+ ^—^(N+a-A) Ira-4u2dx = -ea-2 [u^dQ.£+ [r a-2g(x)uds+
2 J J or J

+ ^ ^ fra-3u2-^ds+ [r a-2u(-f(x) + (aij(x) - aij(0)) DijU(x)+

+ al(x)Diu(x) + a(x)u(x) )dx.

Let us estimate the integral over £lE in the above equality. To this end we
consider the function

M(s) = max |u(x)|.

LEMM A 10.21.

(10.1.35) l im oea-2 f u-^dfl£ = 0, Va € (4 - N, 2].

PROOF. We consider the set G2.6. We have Q.e C dG2e. Now we use the
inequality (1.6.1)

/ |tu|dfte < c / {\w\ + \Vw\)dx.
J J

Setting w = u |^ we find \w\ + \Vw\ < c(r2u2
xx + \Vu\2 + r~2u2). Therefore

we get

(10.1.36) f L ^ dQ£ < c f (r2u2
xx + \Vu\2 + r~V)dz.

Let us now consider the sets G£% and G2s C Ge% and new variables

x' defined by x — ex'. Then the function ^(a;') = u{ex') satisfies in
the problem

ex')^r +e2a(ex')w = s2f(ex'),

*  x'eG%2
2,
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Because of the interior and near a smooth portion of the boundary
L2— estimate, Theorem 10.17, for the equation (LPR)' solution we have:

G2 n^/2

inf f (|v'g\2 + \g\2)dx',

where infimum is taken over all g such that g rs/2= o and the constants
X l / 2

G\,C2 > 0 depend only on i/,/z, max ,4(|x' - j/'|), ||Tltc?i(r0/2) anc^ *^e

domain G.

Returning to the variable x, we obtain

(10.1.37) I (r2|£>2u|2 + |Vw|2 + r-2u2) dx <

<c (r2f2 + r~2u2)dx + C2inf / (r2\Vg\2 + \g\2)dx.
I I

By the Mean Value Theorem 1.58 with regard to u e C°(G), we have

be/2

(10.1.38)

j r~2u2dx= / r^" 3 u2(r,i

'l%2 e/2 n

< 2e(6'1£)iV " 3 / u2(i

<2eN 26^ 3M2(6ie) measfi

for some \ < 6i < |. From (10.1.36), (10.1.37), and (10.1.38) we obtain

(10.1.39)
du

u- r*f*dx+
G&%
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inf /

c3e
2~a f \raf + ra\VQ\2 + ra

Also we have

(10.1.40) ea~2 j \u
n

du
fi £ < Ci£a+N~4M2(e)+

J {raf + ra\Vg\2 + ra- , Va < 2.

By the hypotheses of our Theorem, we have / G $a(G), g(x) € $£
hence

f {r Q
(10.1.41)

Because u € C°(G) and 4 - iV < a < 2, from (10.1.40) and (10.1.41), we
deduce the validity of the statement (10.1.35) of our lemma.

Now we estimate each integral from the right hand side of (10.1.34).

1)

(10.1.42)

u? , d.? < da 3 / u as since r > d, a < 2;

hence, applying (1.6.2), we get

3u2—:=>ds < dda~3 / |Vu|2dx + c5 / |u|2cte; V5 > 0.
on J J

Gd Gd

2) Using the Cauchy inequality we obtain

f ra-2\u\\g\ds =

(10.1.43) F*  i s

< ^ / r«-37(ar)u
2ds + ^ - / ra~1g2ds; V<5 > 0.

2 J 2d7o J

Td
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3) We get, by the Cauchy inequality,

fra-2u(x)f(x)dx = I' {ra'2-2u{x)){ra'2f{x))dx

(10.1.44) Gc °° i r

<-]  ra~Au2dx  raf(x)dx, V«5 > 0.

4) Applying the assumption b) together with the Cauchy inequality
we obtain

(10.1.45) ra~2u ((aij(x) - aij(0)) Diju(x) + ai(x)Diu(x) + a(x)u(x))

< A(r) ((r*  \D2u\)(r%-2u) + r^VuKr^u) + ra-Au2)

< A(r) (ra\D2u\2 + rQ-2|Vu|2 + 2ra-\2)

Finally, by (10.1.42) and (10.1.45) from (10.1.34), we obtain

(10.1.46) ft

I / r^jix^ds < ea-2 I u^dtt£ + 8 f ra~i\u

^ c /(|Vu|2 + \u\2)dx + cs fr
af2(x)dx + J- I' ra-x

dGGd G dG

A{\x\) (ra\D2u\2 + ra-2\Vu\2 + 2 ra"V ) dx

Ge

for V5 > 0.

Let us now estimate the last integral in (10.1.46). Due to assumption
b), we have

(10.1.47) V<5 > 0 3d > 0 such that A(r) < S for all 0 < r < d.

Let 2e < d. From (10.1.37), (10.1.38) it follows that

(10.1.48) f ra\D2u\2dx < c£a~2 f r2\D2u\2dx < cea+N-AM2(e)+

f (raf2 +r a\VG\2 +r a~2\g\2)dx,
i

e/2



10 ROBIN BOUNDARY VALUE PROBLEM IN

426 A NONSMOOTH DOMAIN

and consequently

f A(r)ra\D2u\2dx = f A(r)ra\D2u\2dx + f A(r)ra\D2u\2dx+

A(r)ra\D2u\2dx < cA{2e) f (raf2 + ra

Gd Gl%2

+5 [ (raf(x) + ra\Vg\2 + ra~2\g\2

Gld

(10.1.49) +cA(2e)ea+N-4 + c max A(r) [ \D2u\2dx
re[d,diamG] J

Gd

for V<5 > 0 and 0 < e < d/2. Here c does not depend on e.

Applying all these estimates to the inequality (10.1.46), we obtain

(10.1.50) Ira~2\Vu\2dx +2—^{N + a - 4) fra~Au2dx <

Ge Ge

<cA(2e)(ea+N-4+ f (raf2+r a\Vg\2+r a-2\G\2y

Ge/2

5 f(ra-2\Vu\2 + ra~Au2)dx + c f (\D2u\2 + |Vw|2 + u

-lg2ds + ea-2 Iu^

Ge Gd

+ c j{

for V6 > 0 and 0 < e < d/2.
Finally, we apply L2— estimate, Theorem 10.17, to the solution u of the

(LRP) in Gd

(10.1.51) j {\D2u\2 + \Vu\2^dx <c J (v?+ f)dx + c\\g\\2wl/2.

Now

(10.1

Gd

we use the

.52)

inequality

g2(x)ds

Gd/2

< C\\g\\2^l /2(rg)
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(see Lemma 1.40). Then from (10.1.50), (10.1.51), and (10.1.52) we obtain

f _0 o 2 - a , f  n , n
(10.1.53) / r Vu\ dx-\ (iV + a - 4) / r *u dx <J 2 'J

Ge G£

<£«-2 [u—dQe + cA(2e) I (raf2+r a\VG\2
J dv J \

+ cA(2e)ea+N-4

for M5 > 0 and 0 < e < d/2.

Now, since 4 - N < a < 2, we can choose 5 — min f|; (2~O;)( '̂+Q!-4) j
Then

( m i 4̂") r *T I (ra~2\X7ii 2 -I- ra~47/2WT < Fa~2 I 11 rlQ 4-

+ o4.(2£)| / (raf2 + ra\Vg\2 + ra~2\g\2)dx + £a+N~

v 12
 v ^

)

We observe that the constant c in (10.1.54) does not depend on e. Therefore
we can perform the passage to the limit as e —> +0 by the Fatou theorem.
Indeed, we apply Lemma 10.21, (10.1.41) and use the continuity of A(r)
and .A(O) = 0. Thus, we get

(10.1.55) f(ra-2\Vu\2 + ra-Au2)dx < c(\\u\\\G
G

+ llfl'l| 2 i )
wl(dG)
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Now from (10.1.37) we obtain

(10.1.56) I ra\D2u\2dx < c f (raf + ra~V) dx+

*  Ge/2

+ C2inf I (ra

e/2

Let e = 2 kd, (k = 0,1,2,...) and let us sum the obtained inequalities over
all k. Then we have

(10.1.57) [ (rau2
xx + rQ"2|Vu|2) dx < C3 I ra~4u2dx+

Prom (10.1.55), (10.1.57), and (10.1.51) we deduce the validity of our theo-
rem.

THEOREM 10.22. Let u(x) be a strong solution of the problem (LRP).
Let N > 3 and assumptions (a)-(c) be satisfied. Suppose, in addition, that
g(x) e #1(9G). Then u{x) e $l(G) and

do.1.58) (

where the constant C > 0 depends only on v,(i,N,\\ax\\PtG, i = 1,...,N
and ||a||iv,G,7o, IMIc^aGXe)), the moduli of continuity of the coefficients ai J

and the domain G.

PROOF. We repeat verbatim the proof of Theorem 10.20 with a = 2.
Then from (10.1.53) and (10.1.40) we have

f\Vu\2dx<Ci [

+ cA(2s)£N-2 + Si f \Vu\2dx+
(10.1.59) as

+ S2 f r~2u2dx +  Cle
N-2M2(e)+
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for any Si > 0, 62 > 0 and 0 < e < d/2. Now, since N > 3 we can estimate

dN~2

— — - O | |
Af — 2

f fd

/ r~2u2dx < |u|oiGmeasfi / rN~3dr
J ' J o

Therefore, for <5X = \ it follows from (10.1.59) that

Gm G5« /2

Cls
N-2M\e) + cA(2e)eN-2+

i+\\9\\2

for any e € (0, d/2). Performing the passage to the limit as e —* +0 by the
Fatou theorem, we deduce the validity of our theorem.

Now we consider a = 4 — N, N > 2. In order to do this, we turn to
Theorem 10.19, based on Lemma 10.18 about the existence of the barrier
function.

THEOREM 10.23. Let u be a strong solution of the problem (LRP).
Let assumptions (a)-(d) be satisfied. Suppose, in addition, that g(x) €

and a(x) e ^l_N{G)^{x) e $r\_N{dG), ifu(0)  ̂ 0.

Then (u(x) - u(0)) e $l-N(G) and

(10.1.61) f I r1-iV
7(a;)|U(a:) - u(0)\2ds j

where the constant C > 0 depends only on v, //, N, | |O*||P,G> i = l,-.-,N
and ||a||iv,G57o; ||'y||c71(SG\c»)> ^e moduli of continuity of the coefficients a1-7

and the domain G.
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PROOF. Setting v(x) = u(x) - «(0) we have v e C°(G), v(0) = 0
and v is a strong solution of the problem

{ a^(x)vXiXj + al{x)vXi + a(x)v = f(x) — a(x)u(0) =
= fo(x), xeG,

m + R7W« = 9(?) - ^7(^)«(0) = go(x), xedG\o.

We repeat verbatim the arguments of the proof of Theorem 10.20
with a = 4 — N. Then from (10.1.34) with regard to a(x) < 0 we have

(10.1.62) fr2-N\Vv\2dx+ fr1-Nj(x)v2ds<e2-N I v^dS

+ fr2-Ng{x)vds+\u(0)\ Ir l-N-)(x)\v\ds + ̂ -  ̂ jr l~Nv dr
Wn'

+ f r2-Nv(-f(x)+u(0)a(x)+(aij(x) - aij(0)) Dijv(x)+ai(x)Div(x))dx.
Ge

We estimate each term of (10.1.62). First (10.1.40) has the form

(10.1.63) £2-N dv
< ci max \u(x) - w(0)|2+

+r
2-N\g\2}dx+

(0) f \r4-Na2(x) + r2~N
+  C4U

By the hypotheses of our theorem, we get

(10.1.64) lim
e—+o dr

Using the Cauchy inequality we get

(10.1.65) |«(0)| /"^-^(aJlulda < - f r1-N
1(x)\v\2ds+

+ ^\u(0)\2 Jr1-N
1(x)ds,y8>0.
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Since 7(2:) > 70 > 0 and because of (10.1.52),

(10.1.66) jr^l{x)ds < 1

Prom (10.1.62) and (10.1.65) (with S = 1) and (10.1.66) it follows that

(10.1.67) fr2-N\Vv\2dx+  ̂ fr1-N
1(x)v2ds<e2-N fvj-

e A e Me

f 2-N j I  M i 2 C || i|2 N ~2 [ 1-N

J 27o $l N̂(dG) 2 J

+ f r2-Nv(-f(x)+u(0)a(x)+(aij{x) - a1-

dQ,

Taking into account the estimates (10.1.42), (10.1.43) (with 6 = 1),
(10.1.44), (10.1.45), (10.1.49), (10.1.51), (10.1.52) we obtain

(10.1.68) \ jr1-N
1{x)\v\2ds f v^

b

c\u

G«
/

r~Nv2dx+

+ c(||<G+ 11/11̂

for any Si, 62 > 0 and 0 < e < d/2.

Finally, we apply Theorem 10.19. The assumptions of our theorem
guarantee the fulfilment of all suppositions of this theorem. Therefore we
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can estimate

r~Nv2dx < Cg  measfi / r2*+1dr < cd2H+2, x>Q;-
Jo

(10.1.69) I r~Nv2dx< oo.

G

Now choosing 5\ = \, because of (10.1.69), we may perform the passage to
the limit as s -> +0 by the Fatou Theorem in (10.1.68). By (10.1.64), we
get

(10.1.70) f r2~N\Vv\2dx + f r1-7V7(x)u2ds <

G dG

G

+ \\9\t 4 ) + c2u
2(0) (\\a\\\o + h\\2

for any 8 > 0.

Prom (10.1.69) and (10.1.70) it follows that v e $\-.N(G); moreover,
v(0) = 0. This makes possible to apply the Hardy-Eriedrichs-Wirtinger in-
equality (2.5.12). Therefore choosing appropriatly small 5 > 0 we deduce
from (10.1.70) the inequality

j (r2-N\Vv\2 + r-Nv2) dx + + f rl-Nj(x)v2ds < a (||u|||G+
G dG

(10.1.71)

+ Il/Ili o (r, + \\9\\29i )+c2u
2(0)(||a||2oo f ^ + l l7l | 2ov2^)-

W4_N(G) W}_N(dGy V W4_N(G) W2_N(dG)/

Finally, putting in (10.1.57) a = 4 — N and replacing / by /o and g by go
from the (LRP)o we obtain

I r^v^dx <C3 J r-Nv2dx ^
Gg G%d
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Prom (10.1.71) and (10.1.72) follows the desired estimate (10.1.61).

THEOREM 10.24. Let u be a strong solution of the problem (LRP) and
A be as above (see (2.5.11) or (2.5.19)) . Let assumptions (a)-(d) with

/? > A — 2 be satisfied. Suppose, in addition, that g(x) € ^^(dG), where

4-N -2\<a<4-N

and a{x) € #°(G),7(a:) e #L2(SG), tf u(0) ̂  0.

Then (u(x) — u(0)) e ^a(G) and

(10.1.73) I / ra"37(a;)(u(x) - u(0)fds I + \\u(x) -lj

where the constant C > 0 depends only on v, fi,a, N, ||a*||P)G) i = 1 , . . ., iV;
||al|jv,Gi A,7o, ||7||c1(aG\O)) the moduli of continuity of the coefficients a^
and the domain G.

PROOF. We consider the function v(x) = u(x) — u(0) which satisfies the
problem (LRP)Q and multiply both sides of the equation of the (LRP)o by
r®~2v(x) and integrate over G. We obtain:

frf~2vAvdx = fr°-2v{f{x) - a(x)u{0)-
(10.1.74) J

G i
-((a^(x)-a^(0))vXiXj+ai(x)vXi+a(x)v)}, Ve > 0.

We transform the integral from the left in (10.1.74) by the Gauss-Ostrograd-
skiy formula

(10.1.75) fr°-2vAvdx= f r^v^ds - f rf-2\Vv\2dx+
G

f „  *dv2 dre

Jrs dXi dxi

G dG G

2-a f „  *dv2 dreJ2
G
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Because of the boundary condition of the (LRP)o, we obtain

(10.1.76) fr^vAvdx =  ̂  [rr^^dx-
J  ̂ J OXi OX\
G G

- f r?-2\Vv\2dx + f r?-2v{g(x) - --y(x)u(0) - -~/(x)v}ds, Ve > 0.
dG

Now we transform the second integral from the right in (10.1.76). For this
we use the Gauss-Ostrogradskiy formula once more

dG

Because of $£ =  f^ = f- (i > 2), 8G = T$ UTd and by (1.3.14), we
obtain

(10.1.78) / if " V ^ cos {n,Xi)ds = ~e sin ̂  [  r?-4v2ds+
J uXi 2 J

However, by the fourth property of r£, we have

(10.1.79) - v2 (rf~3—)dx — (4-iV -a) rf~Av2

J OXi OXi J
G G

From (10.1.77)-(10.1.79) it follows that

(10.1.80) ~a I «-* v r£ - ~ a

G % Td

2-a . LJ0 f a_A 2 (2-a)(A-N-a) f a_4 2 , w ne sin — / r° *v2ds + ^— / r? 4u2da;, Ve > 0.
2 2 j £ 2 J

ri  G
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Prom (10.1.74), (10.1.75) and (10.1.80) with regard to a(x) < 0 we obtain
the following equality

(10.1.81) f rf-2\Vv\2dx + z2-  ̂ sin ̂  f r^v

+ frf-2v((a^(x) -aij(O))vXiXj +ai(x)vXi + a(x)u(O) - f(x)\dx+
G l J

2 — a. /" dv f /*  1
-I / r"~3v2—-ds+ I r?'~2vg(x)ds—u(0) / r^~2-^f(x)vds, Ve > 0.

J u n J J i
Td dG dG

Now we estimate the integral over IV Since we have of on Td that
re > hr > hd => (a — 3) lnre < (a — 3) \n(hd), and since a < 2, we have

< (hd)a 3 and therefore

(10.1.82) 2 - a idre

dn
2 — a

2 ./ £ dn ~ 2

By (1.6.2), we obtain

(10.1.83) I v2ds <C5 I v2dx + 8 f \X7v\2dx,

f " d " d

By the Cauchy inequality,

Taking into account property 1) of re, we obtain

(10.1.84) jrr 2\v\\9\dv<\jrr2\

(hd)a~3 fv2ds.

rd

V5 > 0.

8G dG

1 _0 /"  _i
/i / r t

2^7o J
9G

2ds, V<5 > 0.

From assumptions (a) — (b) we have

max \aij(x) - aij(0)\ < A(d), and max \aij(x) - aij(0)\ < 1
A dyd

1 0
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Hence by the Cauchy inequality and assumption (6), we obtain

(10.1.85) f r^~2v{ (aij(x) - aij(0)) vXiXj + \x\ai{x)r-1vXi}dx

dx.

Similarly, we have

(10.1.86) fr?-2v{(aij(x) - aij(0))vXiXj +a\x)vXi}dx <

Gd

< C2(N,diamG)(hd)a-2 f (v2
xx + \Vv\2) dx.

Gd

Further, from the Cauchy inequality we obtain

(10.1.87) f rf-2vf{x)dx <-

G

(10.1.88) |u(0)| f rf^r-^x^ds < | f rf-2
r-

1j(x)\v\2ds+
8G dG

Y5 H°)I"  / rf-2r-1-r(x)ds, V5 > 0;
dG

(10.1.89) f r?-2v(x)u{0)a(x)dx < - f r~2r^-2v
G G

+ ^\u(0)\2 Jr2rr 2a2(x)dx, V<5 > 0.
G

As a result from (10.1.81)-(10.1.89) we obtain with V5 > 0:

(10.1.90) I'r«~2\Vv\2dx + f r-^-^ixyds <
dG
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G

5 Jr-hr2l{x>
dG

+r-2 a-2

l-ha-2 j ra-1g2ds + A(d)C3 (5, A, N) J(r2r£
Q"2^L + r?'2]Vu|2+

v2^dx+Cs fr2rf-2f(x)dx+6 f (rf-2\Vv\2 + r~2r?-2v2) dx+
G G

(a, h,d,diamG) f (v2
xx + \Vv\2) dx + C5\u(0)\2 ( f r°-2

r-
1j(x)ds+

a2(x)dxj.r2r«-2

G

Now we consider two sets G2p,4 and Gp,2 C G^4, p > 0. We make the
coordinate transformation x = px'. The function z(x') = v(px') in G2,4
satisfies the equation

^px^z  ̂ + p2a(px')z = p2f(px'),

(LRP)" G G2

/ 4

Because of the interior and near a smooth portion of the boundary
L2— estimates, Theorem 10.17, for the equation of the (LRP)" solution,
we have:

i x'<C5 J (p4

where infimum is taken over all Q such that Q n2 —9 and the constants

C5,CQ > 0 depend only on v,p,, max ^4(|a;'|), HTHC1^2 ) and the domain
Z '6 Gl / 4

G. Multiplying both sides of this inequality by (g + e)a~2 and returning to
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the variable x, we obtain

a'2m{ f (e
2\Vg\2+ \g\2)dx, Ve > 0.

e/i

Now, in the domain Gp ,2, we have

-<r<Q^-r<Q<2r=>g  + e<2r + e< -rs by the property 1) of rs

=>  {g + e)a~2 > {Zh'1)01-2^-2, since a < 2.

Similarly in the domain G p,4 we have

< r < 20 ^ r < g < 4 r >£ + £ > - r + £> - ( r + e) > -rE
Z Z

{g + e)a~2 < 22-ar°-2, since a < 2.

Thus we obtain

J e xx e -

<C7(h,a){c5 J (raf2+r-2rr 2'

+ C6inf J (ra\Vg\2+r Q-2\g\2)dx}, Ve > 0.

Let p = 2~kd, (k = 0,1,2,...) and let us sum the obtained inequalities over
all k. Then we have

(10.1.91) I (r2r«-2v2
xx + rf-2\Vv\2) dx < C8 f r'2rf-2v2dx+

, Ve>0.
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Finally, we use once more the interior and near a smooth portion of the
boundary L2- estimate for the equation (L) solution. We obtain analo-
gously

(10.1.92) f (v2
xx + \Vv\2) dx < Cn f (f2 + v2)dx+

+ C12||5||
2

0l/2 <C(d,diamG)(||/||2o + ||<?||2 1/2
w {vd/2) \ wa(Gd/2) wa (rd/2);

+ Cn / v2 dx.
Gd/2

Since a < 2 and by the property 1) of r£ we have r"~2 < ra~2 and therefore
with regard to (10.1.52) we get

(10.1.93) / rf-2r-1~/(x)ds < f ra~3-y(x)ds < — f ra-3-y2{x)ds <

8G 8G dG

From (10.1.90)-(10.1.93) we obtain

(10.1.94) ( r-^-^ix^ds + f(r2r^-2v2
xx + if

8G G

< (2-Q)(4^-a-iV ) I rr,v2dx + §I
G dG

+ (A(d) + S)C13 (d,\N) f (r?-2\Vv\
G

Cu(a, d, h, 5,-yodiamG) ||v||| G + ||/||2o0 + \\g\\
V Wa(G)

By our assumptions of the theorem, in virtue of the obvious embedding

<{G)  - <(G),</2(9G) ^ til /2(dG), V̂  > a,

we obtain

g(x) e ttl_N(?G), a(x) € K- L
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and therefore by Theorem 10.23 v(x) e $4_N(G). But then we can apply
Theorem 2.18 and according to (2.5.13) we have

Jv2(r,uj)dn< ^ _2){J\Vu,v(r,u)\2d£l + J' 7(r,uj)v2ds},
n Q an

for a.e. r € (0, d).

Multiplying both sides of this inequality by (g + e)a~2rN~3 and integrating
over r e ( |, g) we obtain

f xa-2 -2 2 ! / f \«-2|V7

J {0 + £) T vdx^  \(X + N - 2 ) \ J {0 + £) |V

f . 2 2

or since g + e ~ r£

t T e/2

+ f r"1rf-27(a;)t)2ds j , Ve > 0.

r e/2

Letting p = 2~fcd, (fc = 0,1,2,...) and summing the obtained inequalities
over all k we get

(10.1.95) + ^  _

Gg

+ I r~1r?~2y(x)v2ds\, Ve > 0.

Therefore from (10.1.94), (10.1.95) it follows that

(10.1.96) f r-1r«-2y(x)v2ds+ f {r2r^-2vlx+rf~2\Vv\2)dx <

dG G
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(2 - a) (4 - a - N) iv2dx+

5)C15(d,X,N) lfr?-2\Vv\2dx
\G dG

Cu(a,d,h,6,l0,dmmG)(\\v\\lG + fo 1/2 +
Wa (dG)

Finally, we use Lemma 2.37 and take into account that r£ > r, because of
the convexity of GQ. Then from (10.1.96) we get

dG

<

[, 2 a-2 2

G

2 (2 - a) (4 - a - N)
(4 - iV - a)2 + 4A(A + JV - 2)'

+ y r-Vr 27(a;)u2ds I + C14|M(O)|2 f||a||^0 (G) + ||'
dG '

+Cw(A(d) + 5) I frf-2\Vv\2dx+ / r " 1 ^

(10.1.97) + C i 4 f l b l l | G + ll/ll 2oo +IMI 2oi/2
V ' VV a(G) WQ (dG)

In our case, by 4 — AT - 2A < a < 4 — JV, we have

2 (2 - a) (4 - a - JV)

(i-N-a)2 + 4A(A + N - 2)

and therefore we can rewrite (10.1.97) in the form

< 1

1 -
2 (2 - a) (4 - a - N)

(4 - N - a)2 + 4A(A + N - 2)
G
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/
—I  rv— 2 / \ 2 i I  / 2 rv—2 2 i ^

r re j{-i)v ab > -t- / r r£ uxxax ^
aG G

<Ci5(^(d) + <5) i f r^~2\Vv\2dx + I r'h

C14(a,d,M,7o,diamG) ||t;|||G + |]/||2O o + |M|201/2

In this case we choose

S=J_(1_ 2(2-a)(4-a-JV)

y (4-N-a)'2+4\{\  + N-2)J

and next d > 0 such that, by the continuity of A(r) at zero,

Thus we have

jr 2r«-2v2
xxdx + f rf-2\Vv\2dx + f r^rf-^x^da <

G G dG

f2
0o + llfff . /

wa(G) wa (dG)

(10.1.98) +|u(0)|2 (l|a||^o(G) + ll7ll^i/3 s(G))), Ve > 0.

We observe that the right hand side of (10.1.98) does not depend on e.
Therefore we can perform the passage to the limit as e —> +0 by the Fatou
Theorem. Hence it follows that

(10.1.99) / ra-3j{x)v2ds + f(rav2
xx + ra~2\Vv\2)dx <

d GdG G

| |0o +1|?|| 1/2
wa(G) wa (dG)

Now, by the Hardy-Priedrichs-Wirtinger inequality (2.5.12), from (10.1.99)
we get the desired estimate (10.1.73).
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10.1.5. Local integral weighted estimates.

THEOREM 10.25. Let u(x) be a strong solution of the problem (LRP)
and assumptions (a)-(d) be satisfied for A{r) being Dini continuous at zero.
Suppose, in addition, that

g(x) e #]!* N(dG) and

a(x) e K-N(G), 7(X) e rtt2
N(dG), t/u(0) + 0,

and there is ks from (10.1.1).
Then (u(x) — u(0)) e $A_N{G) and there are d e (0,1) and a constant

C > 0 depending only on v,n,d,A(d),N,s,X,jo,g1,\\j\\ci(dG\0),measG
d

and on the quantity J  such that VQ e (0, d)
o

(10.1.100)

{ gx, ifs>\,

, M n 3 / 2 ( l ) , ifs = X,

Qs, ifs<X.

PROOF. From Theorem 10.23 it follows that v(x) — u(x)-u(0) belongs
to $4_N(G) , so it is enough to prove the estimate (10.1.100). We set
(10.1.101) V(p)-Jr \Vv\dx + Jr l{x)v

and multiply both sides of the (-L)o equation by r2 Nv(x) and integrate
over the domain GQ, 0 < p < d. As the result we obtain

(10.1.102) V{Q) = j (gv  ̂ + ̂ ^vA dn+ f r2-Nvgds-
n rg

- «(0) f r1~Nv1{x)ds + I' r2-NvUaij{x) - aij(0)) vXiXj

a(x) >dx.+ al(x)vXi + a(x)v — f(x) + u(0)

We shall obtain an upper bound for each integral on the right. According
to Lemma 2.35, we estimate the first integral.
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LEMMA 10.26.

Jr4-Nv2
xxdx < d ^,fi,N,d,A(d),g1,\\1\\cr iaG\o)) (V(2Q)+

(10X103) ^ fc

PROOF. The proof is analogous to reasoning deriving (10.1.57).

Now we estimate the second integral in (10.1.102). By the Cauchy
inequality and Lemma 1.40

(10.1.104) fr2~N\v\\g\ds < - f r1~Nj(x)v2ds+

By (10.1.65) and (10.1.66), we obtain

(10.1.105) |u(0)| f r1-N
1{x)\v\ds <  5- I'r1~N'y(x)\v\2ds+

To estimate the last integral in (10.1.102) we use the Cauchy inequality,
(2.5.12) with a = A — N and with the assumption (b) regarding the equation
coefficients. We get

("10 1 infil l / r2~Nti<  ((I^IT) — n^tCl)) v A-^IT^V A- n(r)v Wr <

a ^

: A(g) J r*- Nv2
xxdx + A(g)C2 (A, N) V(g)<
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and

(10.1.107) f r2-N\v{x)\\ - f{x) + u(0)a(x)\dx <  ̂ f r~Nv2{x)dx+

Gl Gl

~N (f(x) + \u(0)\2a2(x)) dx <  8-H{\, N, 4 - N)V(g)+

+ -sk
2
Q

2\ V5 > 0,

because of the supposition (10.1.1). By Lemma 2.35 and (10.1.103)-
(10.1.107), we get from (10.1.102) the differential inequality

(10.1.108) V(g) < ^V'(g) + C1A{g)V(2g) + C4 (6 + A(g)) V(g)+

+ CsS^k^g23, V5 > 0, 0 < g < d.

We adjoin the initial condition V[d) < Vo to it. By Theorem 10.23 for
a = 4 — iV we have

(10.1.109) V(d) = fr2-N\S/u\2dx+ I' r1-N^{x)v2ds <

1) s> X

Setting S — g£ we obtain, from (10.1.108), the problem (CP) with

Q{g) = k^Ceg23-1-6, Ve > 0.

Now we have, by (1.10.2),
d / d \

jv{T)dr = 7 [l^-dr+^U
Q \e I

2Q d d

exp ( f V(T)dr) < 22A; f B(r)dT < 22A+1ACi / ^
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and

d d

exp(- f V(T)dA < (^)2XexJC7 f^p-dA expos'1 de) =
0

In this case we also have

d T d

f Q(r)exp(- fv(a)da\dT < k2
sC9g

2X f

d

T

Q

since s > A.
Now we apply Theorem 1.57, and then from (1.10.1), by virtue of the

deduced inequalities and with regard to (10.1.103), we obtain the first state-
ment of (10.1.100).

2)s = \

Taking in (10.1.108) any function 5(g) > 0 instead of S > 0, we obtain
the problem (CP) with

AQ).
Q Q

Q(g) = k2
sC65-i

We choose

1
, 0<g<d,

where e is the Euler number. Then we obtain

2g dg d

exp ( I P(T)dA < 22A; / B(r)dr < 22A+1Ad f ^ -
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and
d d d

TUed)
Q \TJ 0

fA(r)dr =
J

d

=  ln(|)2A + lnln(-) + C7 J A(r)d
d

A()dr
o

Q 0

because of (1.10.2). In this case we also have

d T d

S(r)expf- / V{a)da)dr < k2CnQ2X I 8~x(T)T~1 \n(—

Now we apply Theorem 1.57, and from (1.10.1), by virtue of the deduced
inequalities, we obtain

V{Q) < C17{VQ + k2
s)g

2X In3 - , 0 < g < d < - .
Q e

Taking into account (10.1.103), we obtain the second statement of
(10.1.100).

3) 0 < s < X

Prom (10.1.108) we obtain the problem (CP) with

7 ,
Q Q

and

Q(g) = h^C6S-1Q2'-1, Vc5 > 0.

Now similar to case 1) we have

expT fv{T)di\ < 22X^~S\ I B{r)dT < 22A+1Ad / ^ 1
Q Q 0
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and

because of (1.10.2).
In this case we also have

d T d

[Q(T)exp(- fv(a)da\dT < k^eS'1 g2^1  ̂ /

if we choose S € (0, ^ j 1) -
Now we apply Theorem 1.57, and then from (1.10.1), by virtue of the

deduced inequalities, we obtain

V(g) < C15(V0g
2^-  ̂ + fcsV

s) < C16(V0 + k2)g2°,

because of chosen 5.
Taking into account (10.1.103), we deduce the third statement of

(10.1.100).

Theorems 10.27 and 10.28 together with examples from Subsection
10.2.7 show that the assumptions about the smoothness of the coefficients
of (L) in Theorem 10.25 (i.e. Dini continuity of the function A(r) at zero
from the hypothesis (b)) are essential for their validity.

THEOREM 10.27. Let u(x) be a strong solution of the problem (LRP)
and the assumptions of Theorem 10.25 be satisfied with A(r), that is con-
tinuous at zero but not Dini continuous at zero. Then there are d G (0,1)
and for each e > 0 a constant Ce > 0 depending only on e, is, /i, d, s, N, X, 70,
Hill C1 (dG\o),9i, measG, such thatVg G (0, d)

_w ( c g) < C(\u o,a

(10.1.110)

;

PROOF. AS above in Theorem 10.25, we get the problem (CP), that is
(10.1.108) and (10.1.109), with

V(g) = -(l-S-- C7A(g)), V«5 > 0,
g z
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and

Q(Q) =

Therefore we have

d

- [ V{r)dT = 2A(1 - ~) In | + 2AC7 /" ^-dr.

Q Q

Now we apply the mean value theorem for integrals

d

[mdT<
J T

and choose d > 0 by continuity of A(r) so that 2CfA{d) < S. Thus we
obtain

, ys  > o.

Similarly we have

f - fexp( - / V(a)da ) < ( 3 ) , V<5 > 0.

Further it is obvious that

IV{r)dT <2Xhx2

Q

and with regard to (1.10.2)

d d

I BMdT < 2X22XC7 I ^-dr < 2X22XC7A(d) In - < <5A22A In -
J J T Q Q

Q

d
- 5 A 22 X

, V8 > 0.
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Hence, by (1.10.1) of Theorem 1.57, we have

(10.1.111)

d T

jQ(r)exp(-J:
e e

Now we estimate the last integral

d T d

J Q ( r ) e xp( - f V(a)da\dr < k2
sCl7g

2^-  ̂ f
Q Q Q

(10.1.112)

i f O < S< A .

(We choose 5 > 0 so that 6 =£*=£.)
Prom (10.1.111) - (10.1.112) and because of (10.1.103) Lemma 10.26

follows the desired estimate (10.1.110).

We can improve Theorem 10.27 in the case s > A, if A(r) In £ < const.

THEOREM 10.28. Let u(x) be a strong solution of the problem (LRP)
and the assumptions of Theorem 10.25 be satisfied with s > X and
^ ( r ) l n ^ < const, .-4(0) = 0. Then there are d e (0,1) and the constants
C > 0, c > 0 depending only on u,fx,d,N, A,70,3i, \\if\\c1 (dG\o), measG,
such that

u(x) - U(0)\\ N̂{GS) < C(\U

(10.1.113)

O,G

I n ^ 1 0 < g < d.

PROOF. AS above in Theorem 10.25, we get the problem (CP), that
is (10.1.108) and (10.1.109). Taking in (10.1.108) any function S(g) > 0
instead of 5 > 0 we obtain the problem (CP) with

r

Q Q

and

Q{Q) = k2
sC65-
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We choose

A l ( f )
where e is the Euler number. Because of (1.10.2), since A(g) < C5(g), we
have

dd

; expf f B(T)<1T\ < lnc(—), c> 0;

Q

Q

for suitable small d > 0.. In this case we also have
d T d

J Q{T)&q>(-JVWdt

because s > X.
Now we apply Theorem 1.57 and then from (1.10.1), by virtue of the

deduced inequalities, we obtain

(10.1.114) V(g) < C21(V0 + kl)g2X ln2c+2 - , 0 < g < d < -.
Q e

Erom (10.1.114) and because of (10.1.103) the desired estimate (10.1.113)
follows.
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10.1.6. The power  modulus of continuity at the conical point
for  strong solutions. In this section we prove Theorems 10.2, 10.3, 10.4.

Proof of Theorem 10.2.

We define the functions v(x) — u(x) — u(0) and

(10.1.115)

>x, ifs>A,

=  <{ gx In3 '2 ( i ) , if a =  A,
gs, ifs<\

for 0 < g < d and consider two sets G2
g
8,4 and Ge,2 C G2%, g > 0. We

perform the change of variables x = QX' and v(gx') = IJ){Q)Z(X'). Because
of (LRP)o, the function z(x') satisfies the problem

(LRP)'O

aij(Qx')zx>.x>. . + g2a{gx')z =

') -u(0)a(Qx>)), x>

fa

since without loss of generality we can suppose that u(0) > 0. We apply
now Proposition 10.14. Because of the estimates proved there, we have

(10.1.116)

sup \z(x')\ < cf ( [  z2dx')2 + -f - sup \g(gx')\+

"1/4

lf{QX' ] ~ uw<gx'^ Ndx'N

where the constant C > 0 depends only on
N 1/2

\MLN(Gl,.)>Mo,9u1oAhh°°{dG),N,v,diainG,u}o, supl /4
and

J ^r-dr. Returning to the variable x and the function u(x), by Theorem
o
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10.25 with (10.1.115), we obtain

(10.1.117) [ z2dx' = -^-- [ Q-N\u(x)-u(0)\2dx<c((\u\0,G+
J V{Q) J V

and

\f{gx') - u(O)a(gx')\ndx' ) " =g~1l / \f{x) - u(O)a(x)\Ndx

G

7T

'e / 4

Tv

(1) - u(0)o(a;)r dx' u(0)a\\NG2,
' e/4

(10.1.118) < const(N, s, A, d)  xs

by our assumptions. From (10.1.116), (10.1.117), and (10.1.118) we get:

sup \u(x) -u(0)\ < C( |U|O,G -
rip V

(10.1.119)

Putting now |x| = |g we finally obtain the desired estimate (10.1.2).
By the Sobolev Imbedding Theorems we have

(10.1.120) sup \X7'z(x')\<c\\z\\W2,P{Gi ) , p>N.
G; 1/2

By the local Lp a priori  estimate, Theorem 10.17, for the solution of the
equation of the (LRP)'O inside the domain and near a smooth portion of the
boundary we have

(10.1.121)

+ g\x' )
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Returning back to the variables x, from (10.1.120) and (10.1.121), it follows
that

sup |Vw| < CQ-1{Q-N'p\\v\\LP(G2aj + Q2~N/p\\f + u(0)a||P|G2e< +

p.o v Q/4' P.O ^ e

or

(10.1.122) sup IVul < eg'1 {\v\n rie +|u(0)|||a||vO

VP,2P-N^Q/4' "P.SP-JVV1 e/4-1

Because of (10.1.119), (10.1.2) and by the assumption (10.1.3), we get from
(10.1.122) the required result (10.1.4).

Proof of Theorem 10.3

We repeat verbatim the proof of Theorem 10.2 taking

JV-e, ifs>A,
\Q°-*, iis<X

and applying Theorem 10.27.

Proof of Theorem 10.4

We repeat verbatim the proof of Theorem 10.2 taking

and applying Theorem 10.28.

10.1.7. Examples. We present the examples that show that the con-
ditions of Theorems 10.2 - 10.4 (in particular the Dini condition for the
function A(r) in condition (b) at the point O in Theorem 10.2) are essential
for their validity. We recall also Remark 2.38. Suppose N = 2, the domain
G lies inside the corner

Go = {(r,u;)|r>0; - y < w < y } , «c, e]0,7r[,

O G dG and in some neighborhood of O the boundary dG coincides with
the sides of the corner u> = — ̂  and w = ^ . We denote
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and we put

7(x) =  — const > 0.

I .

We verify that the function u(r, u) = rxip(to) is a solution of our problem,
if A2 is the least positive eigenvalue of the problem

= 0

and tp{io) is a regular eigenfunction associated with A2. Precisely A is defined
from the transcedence equation

(10.1.123) tan(Awo) = , 9
7 + +

A2 - 7+7_
Then we find the eigenfunction

(10.1.124) ii>{w)  = Acos[A(u; — — ) ] — 7+ sin[A(u; — T T ) \ -

The existence of the positive solution of (10.1.123) may be deduced by
the graphic method (see Figure 2). This example shows that the exponent
A in (10.1.2) cannot be increased.

R E M A R K 10.29. In order to have A > 1 we show that the condition
j(x) > 70 > tan * f from the assumption (c) of our Theorems is justified.
In fact, we rewrite the equation (10.1.123) in the equivalent form

(10.1.125) A = — (arc tan ——\- arctan —
LOQ V A A

Hence it follows that

1 < A < — (arctan 7+ + arctan 7_) =>

(10.1.126) u)0 < arctan — — — , provided 7+7. < 1

has to be fulfilled. But our condition from the assumption (c) means that
7  ^ 7o > tan ^ . Hence we obtain

7 + + 7 _ ^ 27o ^ 2 tan ^ IT
L > > ^ = tanw w <> o > ^ tanwn, wo <

l - 7 + 7 _ " l - 7 2 1- tan2 ^ 2
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Thus we get (10.1.126). In the case 7  > 7o > t a nf > 1 for w0 G [f ,TT)
the inequality A > 1 is fulfilled a fortiori, because of the property of the
monotonic increase of the eigenvalues together with the increase of 7(1)
(see for example Theorem 6 §2, chapter VI [87]).

y

Figure 2

II . The function

u(r,ui) = r I In -



10.1 LINEAR PROBLEM 457

with A and ip(u) denned by (10.1.123) - (10.1.124) is a solution of the
problem

N
(x)uXiXj = 0, x e Go,

= 0, 7  > 0
r

in the corner Go, where

ITT

A + l
T>0-

In the domain GQ, d < e~2 the equation is uniformly elliptic with ellipticity
constants /z = 1 and v = 1 — ww^  Further, .A(r) = -^j ln~1(^), i.e., the
function A(r) does not satisfy the Dini condition at zero. Moreover, ali (x)
are continuous at the point O. This example shows that the condition of
Theorem 10.2 about Dini-continuity of the leading coefficients of the (LRP)
are essential, and it illustrates the precision of the assumptions of Theorem
10.4 as well.

III . The function

u(r, ui) = rx In -i
r

A and ip(w) defined by (10.1.123) - (10.1.124) is a solution of the problem

= 0, x G Go,

= 0, 7  > 0

in the corner Go. This example shows that the assumptions of Theorem 10.4
on the lowest coefficients of the (LRP) are precise and essential.

IV . The function

u(r, LJ) = rx In —MuS)
r
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with A and tp(u) denned by (10.1.123) - (10.1.124) is a solution of the
problem

' Au = -2\rx-2i){uj),  x e Go,

dn = 0, 7  > 0
r

in the corner Go- All assumptions of Theorem 10.3 are fulfilled with s = X.
This example shows the precision of the assumptions for the right hand side
of the (LRP) in Theorem 10.2.

10.2. The quasilinear  problem

10.2.1. Introduction . In this Section we consider the elliptic value
problem (QLRP). We obtain the best possible estimates of the problem
(QLRP) strong solutions near a conical boundary point. The analogous
results were established in Chapter 7 for the Dirichlet problem.

DEFINITION 10.30. A strong solution of the problem (QLRP) is a func-
tion u(x) £ C°(G)nW1(G)nW^(G\O)! q>N that satisfies the equation
for almost all x G G, and the boundary condition in the sense of traces on
8G\O.

We assume that Mo = max |u(a;)| is known.
xEG

Let us recall some known facts about W^{G)— solutions (p > N) of
the quasilinear oblique derivative problem in smooth domains.

THEOREM 10.31. Local gradient bound estimate (see Theorems
13.13 and 13.14 [237]).

Let G' CC G \ O be any subdomain with a C2 boundary portion
T = (dG' n dG) cdG\O. Let u £ W2'P{G') C\Cl{T), p > N be a strong
solution of the problem

(aij(x,u,ux)uXiiXj +a(x,u,ux) = 0, x € G',

l i + H7(z)« = </(*), xeT

with \u\ < MQ. Suppose that

x,u,z), a(x,u,z) eC^G'x [-M0,M0]  xRN),

1{x),g{x)eC\T)
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and there are positive constants v,fi,fii,K such that a,ij(x,u,z), a(x,u,z)
satisfy

v? < aij (x, u, z)Zi€j < rt2, VC e R";

daij
dzk

+ \z

\a(x, u, z)

da
du

+ \z\2

datj
du

I<M
da

~dz~k

da^

dXk

1 (1 + |2

+ da
dxk

for \z\ > K. Then for any subdomain G" CC G' U T there is a constant
Mi > 0 depending only on N,v,fj,,m, ||7||ci(T), \\g\\c~L{T),MQ,K and G',
G",T such that

sup|Vu| < Mi.
G"

THEOREM 10.32. Local Holder  gradient estimate (see Lemma 2.3
[236]). Let G' CC G\O be any subdomain with a C2 boundary portion
T = (dG' n dG) GdG\O. Let u € W2'P(G') n CX{T), p > N be a strong
solution of the problem

(aij(x,u,ux)uXitXj +a(x,u,ux) = 0, x£ G',

1
with \u\ < Mo, |Vu| < Mi . Suppose that

a,ij(x,u,z), a(x,u,z) S C1  ̂ x [-M0,M0]  x [-Mi , Mi]) ,

1(x),g(x)eC1(T)

and there are positive constants v,\x,\i\ such that aij(x,u,z), a(x,u,z) sat-
isfy

v£ < an (x, u, zfatj < nd\ Ve e RN;
datj
dzk

+ da^
du

+ da^

dxk

for \u\ < Mo, |Vu| < Mi . Then for any subdomain G" CC G'UT there are
constants C > 0, x € (0,1) depending only on N, v,(i,n\, ||7||c1(T)»
||gr||ci (r),M0,Mi andG',G",T such that

We assume the existence d > 0 such that GQ is the convex rotational
cone with the vertex at O and the aperture Wo G (f ,TT) (see (1.3.13)). Let
SDT — {(x,u,z)\x G G,u £ R, z e RN}. Regarding the equation we assume
that the following conditions are satisfied on SETt
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(A) Oij(x, u, z) e W^iTt), q>N; 7(x) € L°°(dG) n C\8G \ O);
the condition of Caratheodory: functions

, . da(x,u,z) _, . „
a(x, u, z), — ' G CAR,

£/ia£ is
(i) they are measurable on G as functions of variable x for\/u, z,
(ii) they are continuous with respect to u, z for almost all x G G,

(B) the condition of uniform ellipticity

, xeG,ueR,zeRN and v,n = const > 0,

(Q ^  ̂ < 0,
(D) there exist numbers (3 > — l,7o > t a n ,̂ 71 > 70, nonnegative

constants S,fj,\,ki, g0 and functions b(x), f(x) G Lq
loc{G\O),q > N

such that on 9JI the inequalities

\a(x,u,z)
da(x,u,z) b(x)\z\+f(x),

du

b(x) + f(x)<k1\x\'3, \g(x)\<go\x

7o < -f(x) < 7i

hold,
(E) the problem (QLRP) coefficients satisfy such conditions that guar-

antee u G Cl+>t (G') and the existence of the local a priori estimate

Ml+x,G' <MU XG (0,1)

for any smooth G' CCG\{O}  (see Theorems 10.31 and 10.32).

PROPOSITION 10.33. The local maximum principle (see Theorem
3.3 [225], Theorem 4.3 [234]; see as well [233]).

Let G be a bounded domain in RN with the C1-boundary dG \ F$ and
Gg be a convex rotational cone with the vertex at O and the aperture a>o G
(§,TT). Letu(x) be a strong solution of the problem (QLRP) with \u\ < Mo.
Suppose the conditions (A), (B), (C) are satisfied. In addition, suppose that
there are nonnegative number /ii and nonnegative functions b(x) G LS(G),
s> N, f(x) G LN(G), such that

\a(x,u,z)\ < m\z\2 + b(x)\z\ + f(x).

Suppose finally that g G L°°(dG).
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Then for any q > 0 and a £ (0,1), there is a constant
C = C(v,n,fj,i,M0,'Y0,uo,N,p,R,G, \\b\\L,{G), | | / | |L~(G)) such that

10.2.2. Weak smoothness of the strong solution. First we esti-
mate \u(x)\ for the (QLRP) in the neighborhood of a conical point. To this
end we use the barrier function, constructed in Lemma 10.18, Subsection
10.1.2.

THEOREM 10.34. Let u(x) be a strong solution of the problem (QLRP)
and assumptions (A)-(D) be satisfied. Then there exist the numbers d > 0
and >c > 0 depending only on is,ju, fi\,N,xo,wo,fci,(3,(5,70,go,Mo and the
domain G such that

(10.2.1) \u{x)-u{Q)\ <C0\x "+1

where the positive constant Co does not depend on u but depends only on
v, fi,HI,go,N, ki,f3,70, Mo and the domain G.

PROOF. Let us take the linear elliptic operator

where

(10.2.2) o«(x) = aij(x,u(x),ux(x)); a\x) = ft^V^s)]-1^).

Here we suppose that al(x) = 0, i = 1,...,N in such points x, where
|Vu(x)| = 0. Let us take the barrier function (10.1.15) and define the
auxiliary function v(x) as follows

(10.2.3) v(x) = - 1 + exp(i/~Vi ("(#) - "(0))).

For those functions we shall show that

£(Aw(x)) < £v(x), x e Go1;

(10.2.4) { B[Aw(x)} > B[v(x)], xeT^\O;
Mtlit  T*l "^*  1)1 T l "T*  f̂  C/J I I if
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Let us calculate the operator £ on the function (10.2.3). We obtain

Cv(x) = u~1^ii(alj(x)uXiXj + v~l niali {x)uXiuXj +6(a;)|Vu(x)|)x

x exp(j/~Vi(u(a:) - u(°))) = v~xVi\b{x)\Vu(x)\ - a(x,u(x),ux(x))

+ aij[x)uXiuX

in virtue of assumptions (C) and (D). Since f(x) < k^r13, we obtain

(10.2.5) Cv(x) > —v~1 ̂ i\kir^exp{2y~lH\MQ), X e G$.

Let us calculate the operator C on the barrier function (10.1.15). Let
the number x$ be such that Lemma 10.18 holds and suppose x satisfies the
inequality

0< x<min{5,xo,[3 + l).

By (10.1.11) and (10.2.2), we obtain

Cw = Cow + b(x) "* / wXi < -vh2\x\x~l + b(x)\Vw\ <
Vu(i

< -vtflxl*-1 + b{x)\x\"^2 + 4h2 + B(l + x0)
2.

Because of b(x) < k\r@, we get in GQ

Cw < r1*- 1 ( - vh2 + d0+lk^2 + Ah2 + B{1 + x0)
2  ̂ < - -

if

fci y/2 + 4h2+B{l

(10.2.6) d(

Hence, in virtue of (10.2.5), it follows that

C[Aw{x)} < Cv(x), x € GQ,

if we define the number A such that

(10.2.7) A > 2fj,1k1i^~2h~2d1~>to+0 exp(2 "̂ Vi-^o)-

Prom (10.1.12) we get

(10.2.8) B[Aw] d >Agor
s

Let us calculate the operator B on the function v(x) that is denned by
(10.2.3)

B[v(x)} = 7F + —,l(x)v{x), x € T^ \ O.
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By the (QLRP) boundary condition, we have

(10.2.9)

dv
dn

- 1 , - 1 / , N ,n^9u
= v «iexp(i/ liuu(x) — u(O))) —

r^\o on r%\o

Using (10.2.9) and our assumptions, we calculate

(10.2.10)

< wp(2u-1lj,1Mo)gors + -  ̂ [v - (1 + v)^" Vi"(a;)] . v >-1.

Because of (10.2.3), we have

and, therefore, from (10.2.10) we obtain

B[v]
r \o

(10.2.11) < exp(2i/-ViMo)5or5, v > - 1 ,

if only u(0) > 0. Indeed, if we denote f(v) = v — (1 + v) ln(l + v), v > —1
we get f'(v) =
=  - l n ( l + t?) and/"(v) = - ^ - We see that f'(y) = 0 <=> v = 0 and

/ " (0) =
= — 1 < 0. Then we obtain

max f(v) = /(0) = 0 =J> (10.2.11).

Taking into account (10.2.8) and (10.2.11), we choose

(10.2.12) A > i ^V iS^ 1 exp(2i/"Vi^o)

and we obtain

B[Aw] > B[v]  on r | \ O.

If u(0) < 0, instead of the function v(x), defined by (10.2.3), we have to
take the function

(10.2.13) z{x) := 1 - V
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Now we compare v(x) and w(x) on 0<j. Since x2 > h2y2 in K, from
(10.1.15) we have

w(x) >B\x\1+*  = Bd1+" cos*+1 —.
r=d r=d 2

(10.2.14)

On the other hand

v(x) = —1 + exp(z/^1 fii(u(x) — '

<-l+exp(2i/~ViMo)

and, therefore, from (10.2.14) and(10.2.15), in virtue of (10.1.20), we obtain:

(10.2.15)

Aw(x)
a

ABdi+*  cos +i —

1

2(1

h'yo — 1 —

> exp(2i/~1
;

if we choose A enough great

(10.2.16) A - [ e X p ( 2"~ V l M o ) -
+ 2h"° (1 + /i2)

1 — K
2

Thus, if we choose a small number d > 0 according to (10.2.6) and large
numbers A,B according to (10.1.20), (10.2.7), (10.2.12) and (10.2.16), we
provide the validity of (10.2.4).

Therefore the functions (10.1.15) and (10.2.3) satisfy the comparison
principle, Proposition 10.16, and, by it, we have

(10.2.17) v(x) < Aw(x), x e

Returning to the function u(x) from (10.2.3), on the basis of (10.2.17), we
have

u{x) - u(0) = v^1 \n{v(x) + 1) < V{JL{1 ln(Aw(x)

Similarly, we derive the estimate

u(x) — u(0) > — 1

if we consider an auxiliary function (10.2.13). In virtue of (10.1.13), the
theorem is proved.

Now we will estimate the gradient modulus of the problem (QLRP)
solution near a conical point.
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THEOREM 10.35. Let u(x) be a strong solution of the problem (QLRP),
q > N and suppose that assumptions (A)-(E) are satisfied. Let >c>  0 be a
number defined by Theorem 10.34- Then there exists the number d > 0 such
that

(10.2.18) [Vu(z)| <Ci\x\x, x€G$,

where the constant C\ does not depend on u, but depends only on v, \i, N, fci,
(3,go, jo,Mi and the domain G.

PROOF. Let us consider the set Gp ,2 c G, 0 < p < d. We make the
transformation x = px'\ v(x') = p~1~ltu(px'). The function v(x') satisfies
the problem

(QLRP)' { *J{X')V^ = F{X% X> G G V

where
a^(x') = aij(px',p1+xv(x'),pitvxl(x'))

and
F(x') = -pl-*a{px'', p1+iev(x'), p*vx>(xr)).

Now we apply the assumption (E)
(10.2.19) max \V'v(x')\ < M[.

x-eG\/2

Returning to the variable x and the function u(x) we obtain from (10.2.19)

|Vu(x)| < MlP", x 6 Gp
p/2, 0<p<d.

Putting now |x| = |p we obtain the desired estimate (10.2.18).

COROLLARY 10.36. Let u(x) be a strong solution of the problem
(QLRP), q> N and suppose that assumptions (A)-(E) are satisfied. Then
u(0) = 0 and therefore the inequality (10.2.1) take a form

(10.2.20) \u(x)\ < C0|a:|x+1, x € Gg.

PROOF. From the problem boundary condition it follows that

 = \x\g(x) - \x\ —, xedG\O.
on

By the assumption (D) and the estimate (10.2.18), we obtain

lo\u(x)\ < 7(aO|u(a:)| < \x\\g{x)\ + \x\\Vu\ < go\x\s+1 + d\x\"+x.

By letting |x| tend to 0 we get, because of the continuity of u(x), that
7o|w(O)| = 0 and taking into account 70 > 0, we find u(0) =0.
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THEOREM 10.37. Let u(x) be a strong solution of the problem {QLRP),
q > N and suppose that assumptions (A)-(E) are satisfied. Let x$ be the
number from the lemma about the barrier function. In addition, let g(x) G
l and

(10.2.21) \\g\\ ,
V1,9 \ l p/4>

Then u(x) G C1+*(Gg), 0 < x < min(x, xo,/3 + 1,1 - y) for some d G
(0,1).

PROOF. Let d > 0 be a number such that estimates (10.1.21) and
(10.2.18) are satisfied. Let us consider the set Gp

p/2 C G; 0 < p < d. We
make the transformation x = px'; v(x') = p~1~xu(pxf), where K > 0 is de-
fined by Theorem 10.34. The function v(x') satisfies the problem (QLRP)'.
By the Sobolev Embedding Theorem, we have

(10.2.22) sup ' v / : ; " " ' < C(N,q,G)\\v\\w2,q(Gl },

x\y'£G\/2 W-V'l1-*  1/2

where q> N.
We shall verify that the local interior and near a smooth boundary

portion Lq a-priori estimate (Theorem 4.8) for the solution of the (QLRP)'
equation holds. On the basis of assumption (E) we have that the functions
Qjj(x, u, z) are continuous on 501, that is for Ve > 0 there exists such TJ that

\aij(x,u(x),ux(x)) - aij(y,u(y),ux(y))\ < e,

if only

\x-y\ + \u(x) - u(y)\ + \ux(x) - ux(y)\ < ??, Vx,y G Gp
p/2, p G (0,d).

Assumption (E) guarantees the existence of the local interior and near a
smooth boundary portion a priori  C1+><-estimate. There exist a number
x > 0 and a number Mi > 0 such that

- |V«(x) - Vu(j/)| < Mi\x - yf, Vx,y e Gp p e (0,d).

Then functions a^(x') are uniformly continuous in G\,2. It means that for
Ve > 0 exists S > 0 (we choose the number S such that Sd + Mi(Sd)" < rj)
such that \a^(x') - a^(y')\ < s, if only \x' - y'\ < 5, W,y' G Gj^. We
see that the assumptions of Theorem 10.17 about the local Lq — a priori
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estimate for the (QLRP)' are satisfied. By this theorem, we have

(10.2.23) +cA inf f (|vg\q + \g\q)dx'  p-o*,

where the constants C^,Ci do not depend on v. Returning to the variable
x and using the estimate (10.1.21) we obtain

f \v\qdx'= f p-q{1+>c)\u(x)\qp-Ndx<

(10.2.24) f
 2p

/

dr
— =Cg

Similarly, by the assumption (D), the estimate (10.2.18) and the inequality

JV  t N

( 5 Z C i ) — ^ t~15^c\ ^or  anyci > o a nd i > i)

we have

I pq{1->e)\a{px',p1+>! v(x'),pHvxl{x))\qdx' <

f

2p

(10.2.25) < 2N3q-1pq{1-* )mesQ, / (
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if only 0 < x < 1 + /3. Because of the assumption (10.2.21) of our theorem,
we have

(10.2.26)

P~q" = J (SWOP

<  const.

In virtue of (10.2.23), we obtain from (10.2.24)-(10.2.26)

(10-2.27) \Hw {̂G\/2) ^ a

From (10.2.22) and (10.2.27) we have

\V'v(x')-V'v(y')\
sup ^ _£" " <C5, q>N

x',y'eG\/2 \x'-V'\ «
(10.2.28)

Returning to the variable x and the function u we have
(10.2.29)

sup
x-y\

Let us recall that from the assumptions of our theorem, we have x < x* <
I - f. From this we obtain q > ^ . We take r = x - l + ^ < 0 . Then
from (10.2.29) it follows that

(10.2.30) < C5p
T\x - y\*-T, Vx,y e Gp

p/2, p e (0,d)

Because x, y e Gp ,2, then \x — y\ < 2p and because r < 0, \x — y\T > (2p)T

That is the way we obtain

- Vu(y)| < C52~T\x - y\", Vx,y e G"p/2, p € (0,d)

(10.2.31) sup
x-y*

~T, pe(0,d).
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Let now x,y e G$. If x,y € Gp
p/2,Vp £ (0,d) we have (10.2.31). If \x- y\ >

p = \x\ then, because of (10.2.18), we have

< 2p-*\Vu(x)\ <2Ci.

Prom this inequality and (10.2.31) it follows that

(10.2.32) sup \^)~^(y)\ < cmatm

Because of (10.2.32), (10.2.1) and (10.2.18), we get that
u e C1+*(Gj). D

10.2.3. Integral weighted estimates. On the basis of the obtained
in Subsection 10.2.2 estimates, we deduce integral weighted estimates of
second order generalized derivatives of a strong solution and establish the
best possible exponent of the weight. Let A be the number that is defined
by (2.5.11) or (2.5.19) from Section 2.5.

THEOREM 10.38. Let u(x) be a solution of the problem (QLRP), q> N.
Suppose that assumptions (A)-(E) are satisfied. In addition, suppose that

(AA) aij(0,u(0),0) = &{  (i,j = 1, ...,N) - the Kronecker symbol.

Then there exist the numbers d, C > 0, which do not depend on u, such

that ifb(x),f(x) e K(G),9(x) G tiH2(dG) and^x) G <7_2
2(9G) for

(10.2.33) 4-iV-2A<a<2,

then u{x) € ̂ ( G Q / 2 ) and

(10.2.34) / (rau2
xx + ra-2|Vu|2 + ra~A\u{x)\2)dx < c\ |«|g+

PROOF. We break the proof into three steps.
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Step 1. 4 - N < a < 2, N > 3.
By (10.2.18), we obtain

d

(10.2.35) f ( rQ-2|Vu|2 + ra~Au2)dx < CmeasQ. j r
a'2+2>c  rN~1dr+

a$ o
d

+ MgmeasQ f r^^^dr < C(a,N, M0,measQ, x)
o

+N4^j < const.

By assumption (A), we have a,ij(x,u,z) € Wltq(VJl),q > N and, by the
embedding theorem, a.ij(x, u, z), i, j = 1,..., JV are uniformly continuous on
£DT. Therefore for V<J > 0 there exists ds > 0 such that

(10.2.36) \a.ij(x, u(x), ux{x)) - a^y, u(y),ux(y))\ < 5

if only

(10.2.37) \x-y\ + \u(x) - u(y)\ + \ux(x) - ux{y)\ < ds.

By (10.2.1), (10.2.18), and (10.2.32) we get:

(10.2.38) \x-y\ + \u{x) - u(y)\ + \ux(x) - ux{y)\ <d + Cod
1+>e + dd",

Vx G Gg.

Now we choose d > 0 such that the inequality

(10.2.39) d + Cod
1+H + Cxd* < ds

holds. For such d we may guarantee (10.2.36) in GQ.
Now we shall estimate the second derivatives of the problem (QLRP)

solution. We make the transformation x = gx', u(gx') = v(x'). Then
(XI,...,XN) e GQ,2 —> G\,2 3 (x[,...,x'N) and the function v(x') satisfies
the problem

(OLPPV I Wv^WeG}

where

a*J'(a;') =

(10.2.40)
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Because of (10.2.36), we can apply Theorem 10.17 about interior and near
a smooth portion of the boundary L2— estimate to the solution of the
(QLRP)" equation:

(10.2.41) ( {v2
x,x, + \Vv\2)dx' <C4 f (y2(x') + F2(x')+

where the constant  does not depend on v, F, g and it is defined by v, n,
Il7(a;)llc1(r2 )i the continuity moduli of ai:*(x f) and G2,4. Returning to the
variable x and the function u(x) in (10.2.41) we obtain

(10.2.42) f rau2
xxdx<Ci f (ra~4u2 +r aa2(x,u,ux) +

+ ra-2g2)dx.

Putting in (10.2.42) g = 2~kd and summing up over k = 0,1, ...,log2(rf/e)
Ve G (0, d) we get

(10.2.43) f rau2
xxdx < C4 I (rQ~4u2 + raa2{x, u, ux)+

By the assumption (D) and (10.2.18) with regard to (10.2.35), we have

(10.2.44) / rau2
xxdx < C4 f (ra~4u2 + raf{x) + rab2{x)+

v, Ve > 0,

where the constant C4 does not depend on e. Therefore we can perform the
passage to the limit as e — +0, by the Fatou theorem, and we get

(10.2.45) I rau2
xxdx < C4{  f (ra~ 4u2 + raf(x) + rab2{x)+

+ ra-2\Vu\2)dx+\\g\\2^

On the basis of the inequalities (10.2.35) and (10.2.45), we have u(x) G
#a(G{(). Now we shall prove (10.2.34). Let C(r) G C2[0,d]  be a cut off
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function such that

C(r) = 1 for re [0, d/2), 0 < ((r) < 1 for re [d/2, d],

C(r) = 0 /or r > d, C(d) = C'(d) = 0,

We multiply both sides of the (QLRP) equation by (2(r)r a~2u(x) and
integrate over GQ. We get

.2.46) f (2(r)r a-2uAudx = - /"(10

- a,ij(O,u(O),O))uXiXj +a(x,u,ux)}dx.

We apply the Gauss-Ostrogradskiy formula:

C(r)ra~~2u Audx— / C (r)r u—ds-

J on

J(r)ra~2\Vu\2dx-

(10.2.47)

Gt
2-a

dxi

Because of the (QLRP) boundary condition and by the properties of ((r),
we obtain

/ C2(r)r a~2u A udx = - f (2(r)r a-2\Vu\2dx-
J J

Gd
0 C

-1
( 1 ° - 2 - 4 8) G2-a f du2

+ 2 J c (r^ i r ~dx~

C2(r)r a-2u{g(x) -
1 o
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Now we calculate the second and the third integral from the right in
(10.2.48). For this we use the Gauss-Ostrogradskiy formula once more

f

r Q - 3 ) d x- /

(10.2.49)

- f u £(r)C"(r)r a-2 + (a + N-

and

I <: 2(r)xir
a-i~dx= f C2(r)rQ-4u2xicos(n,a;i)ds-

G*  l dGi

(10.2.50) - f v?

fid
Since CM = 0, <'(r) d / 2= ° a nd XiCos(n,Xi) = 0, from (10.2.46)-

Jc2(r)r a-
(10.2.50) it follows that

f(2(r)r a-21 Vu\2dx +

(10.2.51) + f(2(r)r a-3~f(x)u2ds= I\2{r)r a-2ug{x)ds+

+ [C2(r)r a-'

j(x,u,ux) — aij(0,u(0),0))uXiXj +a(x,u,ux)}dx.
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Now, by the Cauchy inequality, we estimate the first integral from the right

r r 1

rg rg

(10.2.52) < I [ (2(r)r a-3j(x)u2ds + ̂ - [ ra-1g2ds.
* J 270 J

rg da

Choosing an adequate 5 in (10.2.52) we obtain from (10.2.51) the estimate

y ^ (r)r  dx + 2 y ̂ (r)r  u dx+

+ - (,2(r)r a~3i(x)u2ds< / u2((2a + iV - 5)C(r)C'(r)rQ~3+

I ( (T\ 1 (T\1* —I— f 1 I f l 1 T \ / J T —I— I ( I T" 11™ II fl f T II II I/7T-1—

J

+ / C2Wra~2«wXiXi (ay(x,u,ux) -aij(0,u(0),0))dx+

(10.2.53) + f C2(r)r a-2ua(x,u,ux)dx+— [ ra~1g2ds.

J 270 7

Using the Cauchy inequality, (10.2.36) and (10.2.45) we obtain

(10.2.54) / C(r)ra-2uuXiXj (oy(x, w, u )̂ - ay(0, u(0), 0))dx <

<6 I  ra-2\u \u\dx <  5- I{r a\uxx\
2 + r

ai ai

< SC5 f (ra-Au2 + raf(x) + rab2(x) + ra

^- fra-1g2ds, V<5>0.
27o J

dG
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From the assumption (D) and by (10.2.1) and (10.2.18) we get

ra~2ua(x, u,ux) < ^ f(x)) <

a " V + rab2

and therefore

rab2{x)) + - r a~V

(10.2.55) [(2(r)r a-2ua(x,u,ux)dx < Cd* f <2(r)rQ-2|Vu|2dz+
J J

( —„  7- ^ \ / >2 / \ <y 4 2 / \ 7 ŷ> j v i >-2 / \ rv i "2 / \ i

+ ^J(2(r)r af2(x)dx,V5>0.
Gi

From (10.2.53) and (10.2.54), (10.2.55) it follows that

/

_, Qi__ rO j ( ^ QlHQi *T" J*  — ^t) / ,-y A o
T*  \ / ?/ fl T I — —— — I * » " 1 /' lvul  a x+ 2 / ^x<

d/2 id/2

(10.2.56)

< C5(S + d") f (ra-2|Vw|2 + ra-4u2)dx+

GT

+C6 f ra(b2(x) + f(x))dx+

Gld

^-  f ra-1
7o J

+C7 / (|Vu|2 + «2)dx + £ - / r a- y < k , V<J > 0.

G2,^  9G

In our case TV + a — 4 > 0. If a < 2 then we choose d, 5 appropriately
positive small and obtain

(10.2.57) / ra-2\Vu\2dx<c\\u\20 + — [r a~1g2ds+
J L 270 J

+ I {\Vu\2+r a(b2(x) + f2(x))}dxy
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If a = 2 then again for appropriate positive small d, S and, because of
(10.2.35), we get the validity of (10.2.57). Now we use Lemma 1.40. From
(10.2.45) and (10.2.57) with regard to (10.2.35), (10.2.34) follows.

Step 2. a = 4 - N, N > 2.

Because of (10.2.1) and (10.2.18), we obtain

(10.2.58) f ( r ^ l V u l 2 + r~N\u{x)\2)dx <

a*
d

<  Cmeasfi f r2~N+2it  ̂ ^dr < Cd2+2*  < const,
o

Hence it follows that u e $2-N(G)- We repeat verbatim the arguments of
the deduction of (10.2.45) and (10.2.56) for a = 4 - N. We obtain

(10.2.59) +r 4~Nb2(x) +r 2-N\Vu\2)dx}

and

(10.2.60) - f r1-Nj(x)u2(x)ds+ f r2~N\Vu\2dx <
rd/2 nd/2

) f (r2-N\Vu\2+r~Nu2)dx + C6 f r4~N(b2<

+ Cr f (|Vu|2 + u2)dx + C8||ff||^i/a , V^ > 0.
G2d

Since u S $2-N(G)
 w e c an aPPly the Hardy-Friedrichs-Wirtinger inequality

(2.5.12) for a = 4 - N. Then from (10.2.59) and (10.2.60) we obtain again
the validity of (10.2.34).
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Step 3. 4-N-2\<a<4-N.

From the assumption (D) it follows that b(x), f(x) e $4_JV(GQ). In the

second step we proved that u(x) G ̂ 4_JV(GO )  It means

(10.2.61) I

Ml 2

\ N

In this step we use the quasi-distance re(x) = \ (x\ + e )2+ Ylxi (see

V »=2
§1-4).

Similar to (10.2.41) we obtain

f (u2
x>x, + \Vu\2)dx' <C4 I (u2(x') + Q4a2(gx',u,Q-1ux,)+

Gl/2 Gl/ 4

(10.2.62) +Q2(\Vg\2+g2))dx'.

We put Q = 2~kd and notice that

2~k~1d + e < r + e < 2~kd + e

in G  ̂and

2~k~2d + £<r + e< 2~k+1d + e

in G^"1) U G<fe) U G(-k+1\ We multiply the inequality (10.2.62) by (2~kd +
£)a~2. Returning to the variable x, we obtain

(10.2.63) j (r2(r + e)a~2u2
xx + (r + e)a

G( f c )

f<C

c, Ve > 0.
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And, in virtue of property 2) for re(x), we have

(10.2.64) I (r2r°-2u2
xx + r«-2\Vu\2)dx <

G(fc>

< C f (r-2r£-2u2 + r2r«-V(z, u, ux)+

+ r^-2g2)dx, Ve > 0.

Hence, by summing up over all k = 0,1,2,..., we get

(10.2.65) [(r 2r?-2u2
xx + r^Vu^dx < f (r-2r°-2u2+

+ r2r?-2a2(x,u,ux) + r2r«~2\Vg\2 + r^G^dx, Me > 0.

Now we multiply both sides of the (QLRP)Q equation by (2{r)r"  2u(x)
and integrate over GQ. We obtain

(10.2.66) f {2{r)r«- 2u A udx = - f C2(r)rf "2u{a(z, u, ux)+

+ (ai:j (x,u,ux) - aij(0,u(0),0))uXiXj}dx, Ve > 0.

Using the Gauss-Ostrogradskiy formula in the integral from the left and the
(QLRP)o boundary condition we obtain

I £2(r)r«-2u A udx = - f (2{r)r?- 2\Vu\2dx-

f x  du

(10-2.67) G°
2~a ? *-if^<*-3dr £du2

I'
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From (10.2.66), (10.2.67) it follows that

(10.2.68) f {2(r)r°- 2\Vu\2dx + f <^2{r)r^- 2u2~1{x)ds =

J (2(r)r?-2u{(aij(x,u,ux)-aij(O,u{O),O))uXiXj+a{x,u,ux)}dx+

rg

We shall estimate the first integral from the right. To this end we use the
Gauss-Ostrogradskiy formula once more and take into account property 5)
of rE{x) and Lemma 1.10

d

=0, = 0.

As a result we obtain

2 —a . U)Q f

Y~ £Sin —  J

a — 2
di)dx=—£sin f-

— QCC r ? — J

in f - y ^2(^)^

2(a - 2) / CC'r?-4 (r + e ^) u2dx + / u2r«~2

+
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Finally, from (10.2.68) and (10.2.69) we get

C2 (r)rr  2| Vu\2dx + ^

Gd

+ 2(a - 2) /" (C'r*-*  (r + ey) u2dx + f u2r^2 (c'2 + CC"+

Gi Gi

x + J (2(r)rr 2ug(x)ds + J C2(r)rf~  2u{a(x, u, ux)+

+ (a.ij(x,u,ux) - aij(0,u(0),0))uXiXi \dx, Ve > 0.

Using the properties of the function £(r) hence follows

(10.2.70) IC2(rK-2\Vu\2dx + f (2(r)r«-2u2^{x)ds <

Gd
0

Gdo

x n-i 9 f 1 ,
'IT* II nT I /"* I ?/ til* I

|ds+ / C2(r)r^2u|a(2;,u,ux)+

+ (a,ij(x,u,ux) -aij{O,u(O),O))uXiXj jdx, Ve > 0.

Let d > 0 be such that (10.2.39) and (10.2.36) hold. Using the Cauchy
inequality we obtain

(A 0 9 71 "1 / ^ f r V 1 " 2 ^  AT II II \ — n -CO ?/(0'\ O^iwi dr <

_ J e

< i I'(t2(r)r 2rr 24x + Q2{r)r- 2rr 2u2)dx, V5 > 0



10.2 QUASILINEAR PROBLEM 481

In addition, by the assumption (D) and the estimates (10.2.1) and (10.2.18),
we get

(10.2.72) I C2(r)rf~2\u\\a(x,u,ux)\dx <

l ld" + 6) I C2(r)r«-\~2u2dx +
Gt

f (?{r)r«~2\Vu\2dx + \ c  ̂ f (,

Because of the property of re(x), we have re > r. From a < 2 it follows that
ra-2 < ra-2 W e k n ow a l s0 t h at f,(x)j(x) G $°a(G) and therefore

{

r <

1 1 f(r)rr 2r2fdx <^j r"fdx and
Gd

0

(10.2.73)

\cid* U2(r)rr 2r2b2dx < \cxd* f rab2dx.
Gd

0 G

By the Cauchy inequality with regard to ^{x) > 7o > 0,

1 "  '  v VW)
V<5>0.

Taking into account the first property of re we obtain

S I' j ' e uyyxjub \ i t, I/J'£ 7^x^u "*i ^

A o x o

[r a~1g2ds, V5>0.
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Prom (10.2.70) - (10.2.74) it follows that

( r°-2\Vu\2dx + (1 - S) f r-1rf-2j(x)ds <

6 f 2 a 2 2 J (2-a) (4-JV-a) f „  4

< o / r r?~ wL d a; + ^ / r " " M

(10.2.75) + i (Cidx + 25) f r«-2
r-

2u2dx + Cd1+*  f r?-

+C f (u2 + \Vu\2)dx + C f ra{b2 + f)dx+
G2d

0

yd1 0

g2ds,V5>0.

Taking into account (10.2.65) and (10.2.75) and choosing S > 0 sufficiently
small, we get

J s xx e J e -

" 0 0

< ^ J Ve X + +
d/2

(10.2.76) +C j (u2 + |Vu|2 + ra(b2 + f) + ra\Vg\2 + ra~2Q2^dx+

+-j— fra-1g2ds + Cd2iC f r^Nufdx, V<5 > 0, Ve > 0.
2070 J J

G;

Since by (10.2.61) u(x) G V^4_JV(GO/2), we can apply Theorem 2.20 and
then we have (see the inequality (2.5.13))

u2(r, u)dn <  A ( A +
1

j v _ 2 ) { / | Vu«(r, w)\2dn + J j(x)u2(x)da},

n n an.
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fora.e. r € (0, d). Multiplying both sides of this inequality by {g+e)a 2rN 3

and integrating over r e (§, g) we obtain

N-2) J

or since g + s ~ rs

/ r-xr^-2-i{x)u+ / r-xr^-2-i{x)u2dsV Ve > 0.

Letting p = 2 fed, (A; = 0,1,2,...) and summing up the obtained inequalities
over all k, we get

(10.2.77)

Gg

/ -1 Q-2 2 \

1 0

Ve > 0.

In addition, Corollary 10.36 and Lemma 2.37 hold. Therefore from (10.2.76)
in virtue of (10.2.77) and (2.5.18) we obtain

K(\,N,a)l f rf-2\Vu\2dx+ f r-1rf-2
1(x)u2(x)ds\ +
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/
~,d/2

r2rf-2u2
xxdx < C

r o

f (u2 + |Vu +

a(b2(10.2.78) +r a(b ra\Vg\2

f
d/2

for any 5 > 0 and £ > 0, where

= 1 -
2 (2 -a ) (4 -JV-g)

(4 - N - g)2 + 4A(A + N-2)

because of 4 - N - 2A < a < 4 - N. We choose (5 - K ( ^ ' a ) and d > 0
such that d*  < 4'^'"  As a result we get

I (r2rf-2u2
xx+rf- 2\Vu\2)dx+ f r-

1rT2l{x)u2{x)ds <
rd/2

<C I (u2 + \Vu\2 + ra(b2 + f2) + ra\Vg\2 + ra~

(10.2.79) +C > 0.

We observe that the right side does not depend on e. Therefore we can
perform the passage to the limit as e —> +0, by the Fatou Theorem. Hence
we get

+(10.2.80) f (rau2
xx + ra" 2|Vu|2) dx < C f (u2 + \Vu\

a?* Gl*

+ ra(b2 + f) + ra\Vg\2 + ra-2g2yx + C f r'-

Finally, using Lemmal.40 we obtain the desired estimate (10.2.34).

THEOREM 10.39. Letu(x) be a solution of the problem (QLRP), q> N.
Suppose that assumptions (A) - (E) are satisfied for j3 > A —2. Suppose, in
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o 1/2

addition, that g(x) G W4_N(dG) and there is

(10.2.81) supp-s||p|| 01/2 :=k2, s>\.

Then there exist numbers d, C > 0 not depending on u such that
u(x) G v^4_w(G0 ) and

(10.2.82) ||«(ar)|| oa < c( | |u| |w i ( G) + h + k2)p
x, p G (0, - ) .

PROOF. The belonging u(x) e &1-N(GQ/2) follows from Theo-
rem 10.38. So it is enough to derive the estimate (10.2.82). We set

(10.2.83) V(p)= fr2-N\Vu\2dx+ fr1-N-y(x)u2ds

eg rg

and multiply both sides of the (QLRP)Q equation by r2~Nu(x) and integrate
over GQ, p G (0, ̂ ). As a result we obtain

f I du N — 2 9 \ , f o Nugds+

rg
(10-2.84) + fu(x)r2-N[( aij(x,u,ux) - o«(0,u(0),0))«aiXi

E, p e (0,-).

We shall obtain an upper bound for each integral on the right. First of all,
we use Lemma 2.35

(10.2.85)

We estimate the second integral in (10.2.84). By the Cauchy inequality with
regard to Lemmal.40, we get

(10.2.86) jr2-Nugds = f^r^V/2(a>(z)

6
2

^  0

< 5- f r1-Nj(x)u2{x)ds + C\\g(x)fo 1/2  ̂, V<J > 0.
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To estimate the third integral in (10.2.84) we use the assumption (A). Then
we have

Oij(x,u,z) G Wx«(m),q > N =>  oij{x,u,z) G Cs(m), 0<5<l-—,

by the embedding theorem. The last together with (10.2.38) means that

\aij(x,u,ux) -ay(0,u(0),0)| < S(g), \x\ < g,

where

(10.2.87) S(Q) ~ QS", S G (0,1 - — ) .

Therefore, by the Cauchy and the Haxdy-Friedrichs-Wirtinger (2.5.12) in-
equalities, we obtain

(10.2.88) f r2-N\u(x)\\ux%Xj\\aij(x,u,ux) - aij(0,u{0),0)\dx <

<; &\P) I f 'Uxx dx -}- CoipjV(p).

We apply the inequality (10.2.59) and once more the Haxdy-Friedrichs-
Wirtinger inequality (2.5.12). Then from (10.2.88) we get

| dx(10.2.89) / r2-N\u(x)\\uxx\ \aij{x,u,ux) - oy(0,u(0),

Gg

< C5(P){V(P) + V(2P) + \\f\\l : N{GlP) + \\%

Similar to (10.2.55), considering the Hardy-Friedrichs-Wirtinger inequality
(2.5.12), we obtain

(10.2.90) / r2~Nu(x)a(x, u, ux)dx < cl {p* + S)V{p)+

+ pK [r 4-Nb2(x))dx + ^- f rl-Nf2(x)dx), V6 > 0.
J 26 J )
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Prom (10.2.84), in virtue of (10.2.86) - (10.2.90) for 6 = ge, Ve > 0, it
follows that

V(g) < -§rV\Q) +  CS(Q)V(2Q) + C (6(g) + g* + g£) V(g)+
(10.2.91)

Hence the Cauchy problem for the differential inequality follows

j V'(p) - V(g)V(g) +Af(p)V(2p) + Q(p) > 0, 0 < p < d,

\ V(d) < Vo,

where

(10.2.92) V(p) = — -c(5-^-
P \ P

(10.2.93) M{p) =

and

(10.2.94) Q(p) = C{||6||2c,o . +^"£| | / | |2oo

We adjoin it to the initial condition V(d) < Vo- By Theorem 10.38 for
a = 4 - TV,

V(d) = fr2-N\Vu\2dx+ f r1~lf'r(x)u2d8 < c\ |«
Gi rg ^

(10.2.95) + / (|V«|2 + r^ib^x) + f(x)))dx+

By Theorem 1.57,

d

(10.2.96) V{g) < expT f

Q

dd T

/Q(r)expf- fp{a)da\dr\
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with

Q

Now, by means of simple calculations, from (10.2.92) and (10.2.93) with
regard to (10.2.87) we have

d d

(10.2.97) exp(- I'V{T)<IT\ <C{^\2 and / B{T)<1T < C = const.

p p

In addition,

T

(10.2.98) Q(r)exp(- fv(a)da) ^
» J '

Let us recall the assumption (D)

\\b\\%0 <ck\T^+i  and r- £ |

Since /3 > A — 2, we can put (3 = A — 2 + e, Ve > 0. Therefore we get

(10.2.99) 11611^ ,̂ + T-Wftl  ̂ *  ̂ ^ V£ > °-

Prom (10.2.98) and (10.2.99) with regard to (10.2.81) we obtain

d T

(10.2.100) f Q(r)exp(- f' V(a)dajdT < C{k\

Q P

Finally, from (1.10.1), by (10.2.95), (10.2.97) and (10.2.100), it follows that

(10.2.101) V{p) < C(N, A,d,x)( |M| l̂ i a ( G) + fc2

At last, from (10.2.59) and (10.2.101) we deduce the validity of (10.2.82).

10.2.4. The power  modulus of continuity at the conical point
for  strong solutions. Now we shall make the exponent x in the estimates
(10.2.1) and (10.2.18) more precise and prove the Holder continuity of the
first derivatives of the strong solutions in the neighborhood of a conical
point. Let A be the number that is defined by (2.5.11) or (2.5.19) from
Section 2.5.
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THEOREM 10.40. Let X > 1 and let u(x) be the problem (QLRP)
strong solution, q > N. Suppose the assumptions (A), (AA), (C) - (E)
are satisfied for (3 > A — 2 > —1, 8 > X — 1 > 0. Suppose that the
function g(x) satisfies the conditions of Theorem 10.39. Then there ex-
ist numbers d > 0, CQ,C\ not depending on u{x), but depending only on
N,X,v,iJ,,iJ,i,[3,ki,k2,q,gotMo,Mi and the domainG, such that

1) |«(x)| < Co|z|A and |Vu(z)| < e^M*" 1, x £ Gd
0
/2.

In addition, if g(x) € Vqta (dG) and

(10.2.102) Hfl(aOILi-i/«/r., < Cgx-2+s^L, 0 < p < d/2

then there exist numbers d > 0, C2, not depending on u(x) but only on
N, X, v, /i,ni,/3, &i, &2>Q.19oi AfoiM\ and the domain G, such that

2) if a + q(X - 2) + N > 0 then u{x) € 1^2
Q(G) and

IKa0llv«:a(G8) < C2~px-2+N^, 0<P<d/2

and

3) if 1< A < 2, q > 2TX  / 2

PROOF. Let us consider the sets G'\2 and G2
p
p,4 D Gp

p,2,Q < p < d/2.
We make the transformation x = px'; w(x') = p~xu(px'). The function
w(x') satisfies the problem

(OTRPV / " ^W )o I  M +
where

aij(x') = aij(px',u, px'1wxl{x'))

and
F(x') = -/>2-xa(px',/«;(a;'),pA"1t«:c'(x')).

The Lq— estimate (10.2.23) is satisfied for the function w(x') (see the proof
of Theorem 10.37), that is

(10.2.103) IIHIw*,,,^ ! ) ^ ci

+ pq{2~x)\f\q)dx' + C4p
gil-X) I (\Vg\q + \g\q)dx',

G?/«
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where the constants C3, C4 do not depend on w.
At first we consider the case 2 < N < 4. By the Sobolev Imbedding

Theorem, we have

(10.2.104) sup \w(x')\<C\\w\\2t2,Gi .
x'EG\/2

 1/2

Returning to the variable a; and because of the estimate (10.2.82) of Theorem
10.39, we get

} 2

(10.2.105) < C(N)p-2X I (rA~N\uxx\
2

From (10.2.104) and (10.2.105) it follows that

sup |w(ar')| < Co,
x'€Gj/3

and returning to the variable x we get

S x e G>plT

Putting now |x| = |p we obtain the first estimate of 1) of our theorem.
Let us now N > 4. We apply the Lieberman local maximum principle,

Proposition 10.33. Then, by the condition (£>), we have

( / f \ A

(10.2.106) sup w(x') <C\[  w2dx'j + p1~x+sgo+

/ ' '  X J
We shall estimate each integral from the right hand side of (10.2.106). We
estimate the first integral by (10.2.82) of Theorem 10.39 as

(10.2.107) j w2dx' < p~2X f r~Nu2dx < C.

p/4
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Because of the assumption (D) and the estimate (10.2.18), we have

(10.2.108) ! \a{px',pxw{x'),px-1wx,)\
Ndx'<c{N) f (Mf |Vu|22V+

+ bN(x)\Vu\N + fN(x))r-Ndx < c(N)

c

x (r-2|Vu|2JV-2) + (r^lVul 2)  (fcfr0N-2\

u\2dx I v2~N\V

-\k{)s measfi ( 2^ - 2 " 2 ^ ) / J V , 0 < p < d/2.

Because of (10.2.82), hence we obtain

(10.2.109) p2-xl f \a{px',pxw{x'),px-1wx,)\
Ndx'\ <

We recall that / ? > A - 2, 5 > A - 1. Hence and from (10.2.106),(10.2.107)
and (10.2.109) it follows that

(10.2.110) sup w(x') <d + Czp2-^—*-*—*—.

We recall as well as that A > 1 and x > 0. To prove the validity of 1) (as
in the first case) it is enough to obtain the following estimate

(10.2.111) sup tu(z') < const.
x'€G\/2

We shall show that the repetition by the finite time of the procedure of the
(10.2.110) receiving for various K can lead to the estimate (10.2.111).

Let the exponent of p in (10.2.110) be negative (otherwise the (10.2.110)
means the (10.2.111)). Returning to the function u(x) in (10.2.110) and
putting | x | = |p we obtain

(10.2.112) u(x) < C|z|

and hence, by Theorem 10.35 for x = x

(10.2.113) X l = i +
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we get

(10.2.114) \Wu(x)\ < Clxl"1.

Let us repeat the procedure of receiving the inequalities (10.2.109) and
(10.2.110), applying the estimate (10.2.114) instead of the (10.2.18) (i.e.
changing x for x\). As a result we obtain

(10.2.115) sup w(x') < Cx

x'ec;/2

If the exponent of p in (10.2.115) is negative, then letting

by Theorem 10.35 for x = x2, we get

(10.2.117) \Vu(x)\ < CXQIX^2,

and repeating the above procedure we get the estimate

(10.2.118) sup w(x') < Cx + C2p
2~X

x'ec\/2

Letting

(10.2.119) t =  2 ( i V ~ 1}  > - ViV>4,
1V Zt

we consider the following number sequence

xx defined by (10.2.113),

X2 = Xx(l+t),

tk+1 -1
(10.2.120) xk+i = xx(l+t + ...+tk) = xx , fc

L J.

Repeating the stated process A; times we obtain the estimates

(10.2.121) s up w(x') <Cx+ C2p
1~X+* k+1, 0<p< d/2;

Now we shall show that for VA^ > 4 exists integer k such that

(10.2.122) 1 - A + xk+l > 0.

Prom (10.2.113) and (10.2.120) we have
i \ _ i

+ ( 2 t ^ 2 N t +
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The first term on the right is positive, by (10.2.119). For the second term
from (10.2.119) it follows that

2tk+1 -2-Nt + N = 2fc+2(l - l/iV) fe+1 - N > 0

if {(2N - 2)/N}k+1 > JV/2. Hence we get that (10.2.122) holds if

Choosing k =

111 N

, where [a] is an integer part of a, we guarantee

(10.2.122) ViV > 4. By this, the validity of 1) of our theorem is proved.

The validity of the second estimate we get from Theorem 10.35 for
3€ = A - l .

Now we shall prove the validity of 2). Returning to the variable x and
the function u(x) in (10.2.103) we have

I  (\uxx\ dx

Multiplyin g this inequality by Qa, replacing g by 2 kg and summing up over
all k = 0 ,1, . .. we obtain

I  (ra-2q
ra\Wu\2q

ra\f\q + ra\Vg\q

Using the estimates from 1), by the assumption (D) and the assumption
(10.2.102) of our theorem, taking into consideration /3 > A — 2 > —1 we get

(10.2.123) IHv?0(Gg) < CQX~2+£^T

if only a + N + (A - 2)q > 0 . From (10.2.123) we obtain the validity of 2)
of our theorem.

Finally, repeating verbatim the proof of Theorem 10.37 for x = A — 1,
we obtain the validity of 3) of our theorem.
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10.3. Notes

Many mathematicians have considered the third boundary value prob-
lem. The oblique derivative problem for elliptic equations in non-smooth
domains was investigated by M.Faierman [121], M.Garroni, V.A.Solonnikov
and M.Vivaldi [127],P. Grisvard [133], G. Liberman [225, 226, 232, 234,
227], H.Reisman [350] and others.

P. Grisvard has investigated (Chapter 4 [133]) the properties of the se-
cond weak derivatives of the weak solutions of the oblique problem for the
Laplace operator in a plane domain with a polygonal boundary. He has
established W2'p—a priori estimates for such solutions and conditions, when
such estimates hold.

M. Dauge and S. Nicaise [94] have investigated oblique derivative and
interface problems associated to the Laplace operator on a polygon. They
have obtained index formulae, a calculus of the dimension of the kernel,
an expansion of the weak solutions into regular and singular parts, and
formulae for the coefficients of the singularities in such expansions

M. Faierman [121] has extended the P. Grisvard results to the elliptic
operator of the form

N N

L = - y2 au(x)Di + y2 ai(x)Di+a(a;)'
»=i »=i

in a N— dimensional rectangle.
H.Reisman [350] considered elliptic boundary value problems for the

equation from (L) with infinitely differentiable coefficients in a bounded
domain Q. C RN (N > 3) with non smooth boundary that has dihedral
edges. He considered the boundary conditions that are an oblique derivative
on one side of the edge and an oblique derivative or a Dirichlet condition
on the other side of the edge. The main results in his work are uniqueness,
existence, and regularity theorems for such problems in weighted Sobolev
spaces.

M.G.Garroni, V.A.Solonnikov and M.A.Vivaldi [127] have considered
the following elliptic boundary value problem for the Poisson equation on
the infinite angle

—Aw + su = f(x), x e d#,

where d& C R2 is the infinite angle of the opening $ e (0,2ir]  with the sides
7o and 71 given by

7o = {0 < xi < 00, x2 = 0},
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7i = {̂ l = r c os >̂ X2 = r sin i9,0 < r =
in a Cartesian coordinate system {xi,x%}. Here 1? is the exterior normal
to 7J, ho and /ii are given real constants, s is a complex parameter with
Res = a2 > 0. The authors have obtained the estimates of the above
problem solution, which are uniform with respect to s in weighted Sobolev
spaces introduced by V. A.Kondrat'ev for the investigation of elliptic bound-
ary value problems in domains with angular and conical points at the bound-
ary. In these spaces the distance \x\ from the origin, with an appropriate
exponent, is the weight. The spaces, in which the solution exists, depend
on the sign of ho + hi.

At last, the oblique derivative problem in Lipschitz domains has been in-
vestigated by G. Lieberman [225, 226, 232, 234, 227]. He has studied the
problem of the existence and the regularity of solutions in Lipschitz domains
for elliptic equations with Holder continuous coefficients. He has proved
[225, 234] the local and global maximum principle (see Propositions 10.11,
10.14) for the oblique derivative problem for general second order linear
and quasilinear elliptic equations in arbitrary Lipschitz domains. Without
making any continuity assumptions on the known functions, he has derived
the Harnack and Holder estimates for strong solutions near the boundary of
the domain. He as well has bounded the maximum of the solution modulus
in terms of an appropriate norms and the known functions.

An important element in the study of elliptic equations is the modulus
of continuity estimate for the gradient of the solutions. Usually this modulus
of continuity estimate is in fact a Holder estimate, so it is often referred to
as a Holder gradient estimate. For elliptic nonlinear oblique boundary value
problem in a smooth domain, the Holder gradient estimate first has been
proved by G. Lieberman [236, 237] and by Lieberman-Trudinger [238].

M. Dauge and S. Nicaise [94] have investigated the oblique derivative
and interface problems on polygonal domains.

L. Lanzani and Zh. Shen [220] have obtained existence and uniqueness
results for harmonic functions satisfying the Robin boundary condition with
boundary data in Lp(dG), 1 < p < 2 + e and G being a bounded Lipschitz
domain.
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