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Introduction

This book investigates the behavior of weak or strong solutions of the
boundary value problems for the second order elliptic equations (linear and
quasilinear) in the neighborhood of the boundary singularities. The author’s
main goal is to establish the precise exponent of the solution decrease rate
and under the best possible conditions.

Currently there exists a fully developed theory for linear elliptic equa-
tions with partial derivatives so that it is now possible to advance toward
a nonlinear equations analysis. Considerable success in this direction has
been achieved particularly for the second order quasilinear elliptic equa-
tions, due to the works of Schauder, Caccioppoli, Leray and others (see
[43, 129, 211, 216]). These authors have shaped a method that allows
to prove existence theorems given the appropriate a priori estimates. This
method does not require preliminary construction of the fundamental solu-
tion and allows instead an application of some functional analysis theorems
rather than using an integral equation theory.

On the one hand, it is quite easy to prove the solvability of boundary
value problems for the second order quasilinear equations, given the Holder
coefficients estimate of first derivatives of the solution of the appropriate
linear boundary problem, with a constant which depends only on the max-
imum module of the problem coefficients. Thus, there appeared a necessity
of studying linear problems more deeply and giving them more precise esti-
mates. Many mathematicians’ efforts were directed towards this. L. Niren-
berg [329] obtained the above mentioned estimate for a two-dimensional
nonselfadjoint equation, through which it is possible to establish the ex-
istence theorem of the Dirichlet problem for the second order quasilinear
elliptic equations with minimal assumptions on the smoothness of the equa-
tion coeflicients. In the case of a multi-dimensional equation such an estimate
was obtained by H. Cordes [85], with the assumption that the equation com-
plies with a condition (depending on the euclidean space dimension N > 2)
that is stronger than uniform ellipticity. On the other hand, attempts of
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obtaining the above mentioned a priori estimate for the second order gen-
eral elliptic equations were not successful because such an estimate is simply
impossible.

Thus, to prove the classical solvability of boundary value problems for
second order quasilinear equations, it is necessary to create methods which
produce the needed estimates directly for the non-linear problem itself. Such
methods were created. The ideas for this new method can be already found
in the works of S. Berstein and by De Giorgi and J. Nash ({129, 218)).
O. Ladyzhenskaya and N. Ural’tseva improved upon and further developed
this method and subsequently published their well-known monograph [2186],
in which the method is formulated and applied to different boundary value
problems. Their research has inspired a number of other mathematicians;
we note the works [208], [224] - [238], [367], [401]. All investigations
mentioned above refer to boundary value problems in sufficiently smooth
domains. It should be noted that these investigations represent a major
effort by a large number of mathematicians stretching over a period of more
than thirty years.

However, many problems of physicsand technology lead to the necessity of
studying boundary value problems in domains with nonsmooth boundaries.
We are referring, in particular, to domains which have a finite number of
angular (N = 2) or conical (N > 2) points, edges and other singularities on
the boundary.

The state of the theory of boundary value problems on non-smooth
domains, as it was twenty years ago, is described in detail in the well-known
survey of V.A. Kondrat’ev and O.A. Oleinik [177], in the book of A. Kufner
and A.-M. Sandig [213] as well as in the monographs of V.G. Maz’ya and
his colleagues [263, 198]. For this reason we will focus on the developments
of this theory since that time.

Among the first studies of the behavior of the solution of the boundary
value problem in the neighborhood of an angular boundary point for the
Laplace or Poisson equation, we can find the works [77, 327, 403, 126].
In the work [327] S. Nikol’skiy has established the necessary and suffi-
cient conditions of belonging to the Nikolskiy’s space H of the Dirich-
let problem solution for the Laplace equation. E. Volkov [403] has de-
scribed the necessary and sufficient conditions for belonging to the space
Ck+2(G) (where k is an integer and o € (0,1)) of the Dirichlet problem
solution for the Poisson equation Au = f(x) z € G, in the case where
G is a rectangle. V. Fufaev [126] has considered the Poisson equation
Au = f(z) for z € G in the domain G, where 8G \ O is an infinitely
smooth curve, and in a certain neighborhood of the point O the boundary
OG consists of two segments intersecting at an angle wy. The smoocthness of
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the Dirichlet problem solution depends upon wy. The smaller the angle wy,
the smoother the solution is (if f € C°(G).) There are exceptional values
of wy, for which there are no obstacles for smoothness. In particular, if

u\ag= 0, f = 0 in a certain neighborhood of the point O and if 2= is an

integer, then v € C®(G).

Thus, the violation of the boundary smoothness condition leads to the
situation that for the boundary value problem solution there appear singu-
larities in the neighborhood of the boundary irregular point. As we know,
in the boundary value problems theory for elliptic equations in smooth do-
mains, the situation is as follows: if the problem data are smooth enough,
then the solution is also sufficiently smooth.

Some of the first works studying the general linear boundary value
problems for the domains with conical or angular points were V. Kon-
dratiev’s fundamental works {160, 161] as well as papers of M. Birman &
G. Skvortsov [47], G. Eskin [115, 116], Ya. Lopatinskiy [242], V. Maz’ya
[250]-|253], [255, 294]. These works examine normal solvability and reg-
ularity in the Sobolev weighted spaces of general linear elliptic problems in
non-smooth domaing under assumptions of sufficient
smoothness of both the manifold 8G\ O and the problem coefficients. They
consider solutions in special spaces of functions with the derivatives that
are summable with some power weight. These spaces clearly show the ba-
sic singularity of the solutions of such problems. It has also become clear
that the methods used for the analysis of boundary elliptic problems in
smooth domains are not applicable because it is impossible to straighten
the boundary by using a smooth transformation.

V. Kondratiev [160, 161] has studied this problem in L? Sobolev spaces,
V. Maz’ya and B. Plamenevskiy [271]-[280] (see also [263]-[269], [282])
have extended the Kondratiev results to LP Sobolev and other spaces. There
are many other works concerning elliptic boundary value problems in non-
smooth domains (see the bibliography).

The pioneering works in the study of elliptic boundary value problems in
nonsmooth domains for quasilinear equations has been done by V. Maz'ya,
I. Krol and B. Plamenevskiy [256, 258], [204]-[207], [270].

If we examine a nonlinear elliptic problem, then we would find it
necessary to clarify the smoothness conditions for coefficients and for right
parts of a linear problem under which the solvability in appropriate func-
tional spaces and the necessary a priori estimates for the solution to take
place. This clarification is dealt with in chapters 4 and 5. These chap-
ters study the linear elliptic Dirichlet problem for the nondivergent form
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equation

0 {Lu := a¥ (z) Diju(z) + a*(z) Dyu(z) + a(z)u(z) = f(z), in G,
u(z) = p(z) on 0G

and for the divergent form equation

72 (0¥ (@), + 0 (2)u) + B (@), + c(u =
(DL) = g(z) + a’;z(f) , T€G;
u(r) = p(z), =z e€dG.

The question of the smoothness of solutions in the neighborhood of an
angular point for the linear nondivergence second order elliptic equation was
studied earlier in the works [18]-[22]. There the authors assume that the
equation coefficients are Holder-continuous. Our assumptions concerning
the smoothness of the coefficients are the least restrictive possible; leading
coefficients of the the equation must be Dini-continuous at the conical point
O, whereas lower coefficients can grow and we indicate the exact power
growth order. In §4.7 we construct the examples which show that the Dini
condition for leading coefficients of the the equation at the conical point
as well as the assumption concerning the lower equation coefficients, are
essential for the validity of the estimates derived in the chapters 4 and
5. Otherwise in these estimates the exponent A should be changed to A — ¢
with any € > 0. The fact that the exponent A in these estimates cannot be
increased is shown by the partial solutions of the Laplace equation in the
domain with the angular or conical point. In this sense the estimates of
chapters 4 and 5 are the best possible.

The estimates obtained in §§4.5, 4.6, 4.9 allow us to formulate new
existence theorems for the linear Dirichlet problem solution. These theorems
are formulated and proved in §4.10.

The regularity theory of strong solutions for this problem and its solv-
ability in a smooth domain are well developed [129, 217, 208, 211]. But
theory involving nonsmooth domains is in its infancy. Existence theorems
obtained in §4.10 play a fundamental role in chapter 7 when we consider the
solvability of the quasilinear problem

(QL) @i (2, U, Ug YUz o, + 0(2,u,U) =0, a5 =aj, TEG
u(z) = p(z), z€0G.

As mentioned above, to construct the theory of the Dirichlet problem solv-
ability for quasilinear equations, the appropriate a priori estimates of a
nonlinear task itself are needed. Chapter 7 is dedicated to obtaining such
estimates. The local Holder estimate (near an angular or conical point) of
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the first derivatives of the sclution is a central part in these estimates. Al-
though the results obtained in §7.2 are completely included in the results of
§7.3 (which is quite natural), the special character of the plane case allows
us to single it out. In addition, the methods for obtaining estimates differ
for the N = 2 case from the N > 2 case. We are interested in demonstrat-
ing the possibility of applying the L. Nirenberg method for domains with
an angular point. Thus it becomes possible to establish a basic estimate

lu(z)| < colz|™*7

with a certain v > 0. In the case of a conical point (N > 2) this method
is not suitable because it is purely two-dimensional. To obfain the similar
estimate in this situation we resort to the barrier technique and apply the
comparison principle. Theorems of §7.4 also show that the (QL) problem
solutions have the same regularity (at a conical point} as the (L) problem
solutions.

There is another observation which is worth pointing out. Known in
linear theory, the method of non-smooth domain approximation by a se-
quence of smooth domains while examining nonlinear problems is not ap-
plicable because of the impossibility of the passage to the limit. We avoid
this difficulty by introducing a quasi-distance function r.(z). The introduc-
tion of such a function allows us to work in the given domain, and then to
provide the passage to the limit over £ — +0 (where r.(z) — r = |z].) We
use the same method on studying the problems (L) in Chapter 4 and (DL)
in Chapter 5.

In §7.3.6 we prove the theorems of the solution smoothness rise which
are analogous to the linear case. The results of §4.10 (concerning the solv-
ability of the linear problem) and the estimates for solutions of the nonlinear
problem given in §§7.2, 7.3 allow us to proceed to the (QL) problem solv-
ability in §7.4.

In summary, for chapters 4 and 7, we have completely constructed
the theory of the first boundary problem solvability for second order non-
divergent uniform elliptic equations in the domains with conical or angular
points.

In Chapters 5, 8 and 9 we consider the theory which deals with equations
of divergent type. The history of research development of such equations is
richer because it is possible to study weak solutions of these problems which
in turn change into the equivalent integral identity with no second general-
ized derivatives of the sought function. The detailed history of studies of the
linear problem can be found in the following surveys [91, 133, 172, 177].
We will dwell on some of them. The exact solution estimates near singulari-
ties on the boundary have been obtained in the works [398, 399] under the
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condition that leading coefficients of the equation satisfy the Hélder condi-
tion, and that lowest coefficients are missing. Therate of the solution decreasein
the neighborhood of a boundary point is characterized by the function A(g).
(The latter is the least by the modulus eigenvalue of the Laplace-Beltrami
operator in a domain €2, on the sphere with zero Dirichlet data on 9€,.) In
Chapter 5 we give results of the works [170, 171]. Under certain assump-
tions about the structure of the boundary of the domain in a neighborhood
of the boundary point @ and about the coefficients of the linear equation
(DL), one can obtain a power modulus of continuity at O for a weak so-
lution of the Dirichlet problem which vanishes at that point. Moreover,
the exponent is the best possible for domains with the assumed boundary
structure in that neighborhood. The assumptions on the coefficients of the
equation are essential, as example §5.1.4 shows.

In [21] A.Azzam and V.Kondrat'ev have established the Holder conti-
nuity of the first derivatives of weak solutions of the (DL) problem in the
neighborhood of an angular point, under the condition of Holder continuity
of the equation coefficients. In this case the Holder exponent satisfies the
inequality o < Z- —1. In £5.2 we generalize this result for the case of a
conical point and we also weaken the coefficient smoothness requirements
to Dini-continuity.

In Chapter 6 we study properties of strong and weak solutions of the
Dirichlet problem for semi-linear uniform elliptic second order equations in
a neighborhood of a conical boundary point.

Let us consider the quasilinear problem for the divergence form equation

(DQL) Qu,¢) = /{ai(m, U, Uz )Pg; + a(T,u, uy)d}dz = 0.

G

The regularity theory of weak solutions for this problem and its solvabil-
ity in a smooth domain are well-known [129, 215, 216] (see also (80, 83,
128, 237]). The regularity theory of weak solutions for quasilinear elliptic
equations of the arbitrary order and elliptic systems as well as their solv-
ability in a smooth domain are investigated in the monographs [183]- [185],
[360, 100, 40].

The first investigations of the behavior of solutions for quasilinear el-
liptic equations in domains with angular and conical points were done by
V. Maz’ya, 1. Krol and B. Plamenevskiy [206, 207, 204, 205, 270, 281].
V. Maz’ya and 1. Krol [204]-[207] have given estimates for the asymptotic
behavior near reentrant boundary points of the equation of the type (LPA)
solutions. V. Maz’ya and B. Plamenevskiy [270, 281] have constructed the
asymptotic solution of the general quasilinear elliptic problem in a neigh-
borhood of an angular or conical point.
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Beginning 1981, there has appeared a series of works by P. Tolksdorf
[373}-[378], E.Miersemann [301]-[309] and M. Dobrowolski [98, 99],
where they have studied the behavior of the weak solutions to the (DQL)
(see Chapter 8) in the neighborhood of an angular or conical boundary
point. In [301]-[303] it is shown that a weak solution belongs to W2 n
C7(Q) for a certain v € (0,1), under the assumption that m = 2, wg €
(0,7), ai(z,u,2)i = 1,...,N do not depend on z,u and the function
a(zx,u, z) does not depend on u, z. Some elaborations and generalizations for
a wider class of elliptic equations were made in [307]. In §8.1, chapter 8 of
[133], P. Grisvard has considered the problem (DQL) for N = 2 in a convex
polygon G and a;(z, u, 2) = a(2)z; (i = 1,2); e(z,u,z) = f(z) (here a(z) is
a positive decreasing function and a”/(2) is continuous.) He has proved the
existence and uniqueness of the solution from the space W2™(G)NWy ™(G),
if f(r) e C**(@), a€(0,1),2<m < ﬁ, where wy is the measure of
the largest angle on the polygon boundary. In [373]-[376, 378|, P. Tolks-
dorf has considered the problem (DQL) with a;(x, u, z) = a{|z|?)z + bi(2),
i=1,...,N and a(z,u, z) = f(x) under the following conditions

vk + 82 < a(t?) < plk + ™2 (v - %)a(t) < ta(t) < palt)

with some v > 0,0 > 0,k € [0,1] and V¢ > 0. In addition, it is assumed that

ta’(t m—2 1 b, (z
( ) — _ . é;(z) _a—l("ZIZ):O.
He has obtained the upper- and lower-bounded estimates for the rate of
the positive weak solution decrease in the neighborhood of the boundary
conical point that is characterized by the lowest module eigenvalue of the
nonlinear eigenvalue problem (N EV P) (see Chapter 8, §8.2.2). In Chapter
8 we generalize these results for a wider class of equations and analyze
arbitrary (not only positive) weak solutions. It is also important to note here
that those estimates reinforce the Lipschiz-estimates of the (DQL) problem
solution in the neighborhood of the boundary point by O.Ladyzhenskaya
and N.Uraltseva [218], in the case when the boundary point is conical. In
§8.2 we establish the power weight estimates of weak solutions, similar to
the estimates in §7.3. In the latter the weight exponent is the best possible.
The estimates of §8.2 allow us to obtain the best possible estimates of the
weak solution module and its gradient. Finally, in §8.4 we estimate the
second generalized derivatives of weak solutions in the Sobolev weighted
space again with the best weight exponent.
In Chapter 9 we investigate the behavior of weak solutions of the first
and mixed boundary value problems for the quasilinear second order elliptic
equation with the triple degeneracy and singularity in the coefficients in a

li = ;
t—l—glo a,(t) 2 2 ]zﬁinoo
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neighborhood of the boundary edge. The coefficients of our equation near
the edge are close to coetflicients of the model equation

d

0 (r"|u|?|Vu|™ 2ug, ) + aor™ ™ ufulTt™ 2

Ly

(ME) —purT [l Vu|"sgn u = f(z),
0<u<l, ¢q20, m>1, as=>0, 7>2m-—-2
Chapter 10 is devoted to an investigation of the behavior of strong

solutions to the Robin boundary value problem for second order elliptic

equations (linear and quasilinear) in the neighborhood of a conical boundary
point.
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CHAPTER 1
Preliminaries

1.1. List of symbols

Let us fix some notations used in the whole book:

[I] : the integral part of { (if [ is not integer);

R — the set of real numbers;

R, — the set of positive numbers;

RY — the N-dimensional Euclidean space, N > 2;

N — the set of natural numbers;

Ny = NU {0} — the set of nonnegative integers;

z = (z1,...,zx) — an element of RY;

0 =(0,...,0);

(r,w) = (r,w1,...,wN—_1) — spherical coordinates in R" with pole

O defined by

ry = Trcoswy,
o = rsinwicosws,

rny_1 = rsinwisinwy---sinwy_acoswy_1,
IN = rsinwysinwg:-sinwy_gsinwy_1;

SN-1 _ the unit sphere in RY;

¢ B,(zo) — the open ball with radius r centred at zo;

¢ & & o 5 o o

B, (z¢) — the closed ball with radius r centred at zy;

WN = %2—) — the volume of the unit ball in RY;

on = Nwy — the area of the N-dimensional unit sphere;

RY - the half-space {z : zx > 0};

¥ — the hyperplane {z : zy = 0};

G - a bounded domain in RY;

G’ CC G — G’ has compact closure in G; G’ is strictly contained
in G;

dz — volume element in RY;

ds — area element in RV ~1;
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do — area element in RV 2,

e JG — the boundary of G, in what follows we shall assume that
0 € 0G;

d(z) = dist(z, 0G);

n = (ny,...,ny) — exterior unit normal vector on 8G;
G = G UG - the closure of G;

meas G — the Lebesgue measure of G;

diam G — the diameter of G;

K — an open cone with vertex in O;

Q:=KnSVN-1;

C : the rotational cone {z; > rcos 4 };

OC : the lateral surface of C : {z; =rcos 2 };

(-, ) — the scalar product of two vectors;

Dju = 2.

Diju = 523;

D?u — the Hessian of u;
N

[Vu| = (32 (Diw)?)V/3;

i=1

N
o |D%u|:=( ¥ (Dijw)?)'/?;
i,9=1 ‘
B ={(B,...,0n), Bi € Ny — an N—dimensional multi-index;
|B| := B + -+ + B~ — the length of the multi-index ;
(

8 _ nB . a8 _ . . . .
DE =DF: PRI e a partial derivative of order |3;

% = (Vu, n) — the exterior normal derivative of u on 9G;

87 — Kronecker's delta;

supp u : the support of u, the closure of the set on which u # 0;

¢ = ¢(*,...,*) — a constant depending only on the quantities ap-
pearing in the parentheses. The same letter ¢ will sometimes be
used to denote different constants depending on the same set of
arguments.

e ¢ & o

1.2. Elementary inequalities

In this section we review some elementa.ry‘inequalities (see e.g. [37,
142]) which will be frequently used throughout this book.

LemMmA 1.1. (Cauchy’s Inequality) For a,b > 0 and € > 0, we have

. £ 1
1.2.1 b< a2+ —b2.
(1.2.1) e
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LEMMA 1.2. (Young’s Inequality) For a,b >0, € > 0 and p,g > 1
with % + % =1, we have

(1.2.2) ab < %(ea)p + é- (g)q .

LEMMA 1.3. (H6lder’s Inequality) Let a;,b;, i = 1,..., N, be non-
negative real numbers and p,q € R with % + % =1, we have

N N Ve s N 1/q
(1.2.3) Y aibi < (Zag’) (Zbg) :
i=1 i=1 i=1
LEMMA 1.4. (Theorem 41[142]). Let a, b be nonnegative real numbers
and m > 1. Then
(1.2.4) ma™ (a - b) > a™ — b > mb™ (a - b).

LEMMA 1.5. (Jensen’s Inequality) (Theorem 65[142], Lemma 1
[357]).
Let a;y, i = 1,...,N, be nonnegative real numbers and p > 0. Then

N N P N
(1.2.5) )\Zaf < (Zai) SAZaf,
i=1 i=1 i=1
where A = min(1, NP~1) and A = max(1, NP~1).
LEMMA 1.6. Leta, b€ R, m > 1. Then the familiar inequality
(1.2.6) |b|™ > |a|™ + m|a|™ 2a(b — a).
is valid.

PROOF. By Young’s inequality (1.2.2) withe =1, p=m, ¢ = 25, we
have

mla|™ %ab < mlb| - |a|™ " < [B™ + (m — 1)|a|™ => (1.2.6).

LEMMA 1.7. For m > 1 the inequality
1
(1.2.7) / |(1 = )z + tw|™ 2dt > c(m)(|z| + |w|)™ 2
0

holds for some positive constant ¢(m).
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Proor. This inequality is trivial, if 1 < m < 2, and in this case
e¢(m) = 1. Let m > 2. If |z| + |w| = 0, then this inequality holds with
any ¢(m). Let now |z| + |w| # 0. Setting

= z . w
2] + [wl’ 2] + |w|

we want to prove the inequality

n = [{|+In| =1

1
[\(1 — )¢ + tn|™"2dt > ¢(m).
1]

‘We consider the function
1
£ = 10—t +nm e
0

on the set &€ = {({,n) € RZ}KI +{n| = 1.} This function is continuous on &,

since m > 2. The set € is finite-dimensional and bounded, and therefore it
is the compact set. By the Weierstrass Theorem, such a function achieves
the minimum on € in some point ({g,70) € €. It is clear that f({y,ng) > 0.
Suppose that f{(o,70) = 0. Then we have

|(}- —'t)CO +t770| =0, vt e [071] = (CO?UO) = (070) ¢ €.

Hence it follows that f({o, 7o) > 0 and therefore there is a positive constant
c(m) such that the required inequality is fulfilled. O

1.3. Domains with a conical point

DEFINITION 1.8. Let G C RY be a bounded domain. We say that G

has a conical point in O if
¢ O 0G,

dG \ O is smooth,
G coincides in some neighbourhood of @ with an open cone K,
0K N §¥-1 is smooth,
K is contained in a circular cone with the opening angle wy €
(0,2m).

For a domain GG which has a conical point at @ € 8G we introduce the
notations:
e Q:=KnSN-L;
df) .= area element of €;
Gt :=Gn{(rw):0<a <r<bwe Q}— alayer in RV;
I :=0GN{(r,w): 0 < a <71 <bw € 00}~ the lateral surface
of the layer G2;
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G4 := G\ G¢;

Tg:= B_G’\Fg;

o O, :=GENAB,0), o< d;

e W =G24, k=0,1,2,....

Let us recall some well known formulae related to spherical coordinates

(r,ws,...,wn—1) centered at the conical point O :

(1.3.1) , dz = rN~1drdQ,

(1.3.2) dQ, = pV1dQ,

(1.3.3) dQ = J(w)dw

denotes the (N — 1)—dimensional area element of the unit sphere;
(1.3.4) J(w) =sinV 2w sinV P wsy - - sinwy_g,

(1.3.5) dw =dw; -+ -dwn_1,

(1.3.6) ds = N 2drdo

denotes the (N — 1)—dimensional area element of the lateral surface of the
cone K, where do denotes the (N — 2)—dimensional area element on 9%2;

2
(1.3.7) Vul? = (%‘) + :—2 |V ul®,

where |V u| denotes the projection of the vector Vu onto the tangent plane
to the unit sphere at the point w

1 Ju 1 du
1.3-8 v:d = .00 0y 3
( ) “ { V@1 0wy VAN—1 OwN_1 }
N-11 7 50\2
1- . 2 e —
(139) vl =3 4 ().

where q; = 1, g; = (sinw; -+ -sinw;_1)?, 1 > 2,

8%y N-1du 1

N-1
ij J w) du
(1.3.11) Ayu = w) ; B T 6w)

N—
2 . N-i-1, Ou
g TN awz (SIII w,m)

SlIl
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denotes the Beltrami-Laplace operator

. J(w
(1.3.12) div,u = w) Z B ( (qz )
LEMMA 1.9. Let a € R and v(z) = r*u(x). Then
Div = or®* 2zu+r*Diu,
Vo2 < e (@@r?*?u? + 12| Vul?),
'D,-jv = r*Diu+ ar®* ?(z;Dju + z;Du)
+(a? — 2a)r* Yz ju + ar® 2usl,
|D*v? < o (r?|D%ul? + r?* 2| Vul® + r*?)

with comstants c1,co > 0 depending only on o and N.

LEMMA 1.10. Let there be a d > 0 such that GE is the conver rotational
cone with the vertex at O and the aperture wg, thus

(1.3.13) TId¢= {(r w)lxl = cot? 2 Z:r lwr| = %, wp € (O,ﬂ‘)}.
=2
Then

(1.3.14) i cos(7l, T;)|pg = 0, and cos(i, z1)|rz = —sin %,

PROOF. By virtue of (1.3.13) we can rewrite the equation of I'§ in this
way

N
F(x) = 22 — cot? —29 > zi=0.

=2
aF

We use the formula cos(7, ;) = %ﬁ, Vi=1,...,N. Because of

aF F 9 Wo .

— = = — —x; =2,...,N

B2, 2z, andaxi 2 cot 5 Tis Vi=2,...,N,
then

a 1 _OoF 2 2 2 Wo 2
; B ———— —cot? 2 =0.
mzcos(n,m)]rg IVFII’a’Ei rs  [VE] (a:l co 2. ; y

Because of

|VF|? = (g—£)2+ >

2 2 cos” 5t 4z}
IVFI =4z 1+ 3w = TR !
rg sin® 5% sin® %2
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we have

cos(7, 21) = —2x

1.4. The quasi-distance function r. and its properties

Let us assume as in Definition 1.8 that the cone K is contained in a circu-
lar cone K with opening angle wp. Furthermore, let us suppose that the axis
of K coincides with {(x;,0,...,0) : z; > 0}. In this case we define the quasi-
distance r.(z) as follows. We fix the point Q = (—1,0,...,0) € S¥"1\Q and
consider the unit radius-vector [ = OQ = {-1,0,...,0}. We denote by 7 the
radius-vector of the point z € G and introduce the vector 7, = 7 — el for
each & > 0. Since el ¢ G for all € €]0, d], it follows that re(z) = |F—&l| # 0
for all z € G. Tt is easy to see that r.(z) has the following properties:

(1)
LeMMA 1.11. There exists an h_ > 0 such that
re(z) > hr and r.(z) > he, Vz € G, where

he b if O<wyg<m,
sin ‘¢, if 7 <wy<2m.

ProoOF. From the definition of r.(z) we know that
N
2 =(z1+e)+ szf =(z1+e)2+r?—a? =r2+ 211 + 2
i=

0 < wy <m, we have z; > 0 and therefore we obtain either
r2>r2sr.>2rorri>e =2, >e

If z; = rcosw < 0 and |w| € [§, %], we obtain, by the Cauchy
inequality either

2

. Wo
|2er cosw| < r2cos?w + €2 = 2ercosw > —r?cos’w — &2 = . > r-sm—2—

or
. W
|2er cosw| < % cos?w + 12 = 2ercosw > —r? —e?cos?w = r. > €-sin ?0.
O
(2)

COROLLARY 1.12.

2 —
hr <rc(z)<r+e< Ers(:c); Vo € G, Ve > 0.
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(3) Ifz € Gy, thenre(z) > £ for all e €]0, 4.
(4) liI(I)1+ re(z)=r, forallz € G.
£—

(5) |Vre|* =1, and Ar, = &=L,

Te

ar: __ x1te Ore _ xi (2
PROOF. Because o = a1t and = (i = 2), then

N
, N/ \? @+ Eal
|Vrel*= 2| 552 ) = ——==—=1and
i=1 ! s
N
_ &r, 8r. _ 1 _ {mite)? 1 zZY_ N 12 _
Ae=Sf+l of=n =" tol\n-H)=nE=
= =
= 4=l O

1.5. Function spaces

1.5.1. Lebesgue spaces. Let G be a domain in RM. For p > 1 we
denote by LP(G) be the space of Lebesgue integrable functions equipped

with the norm
1/p
s = ( / IUI”d:v) .

G

THEOREM 1.13. (Fubini’s Theorem, see Theorem 9 §11, Chapter 111
[101]). Let G; C R™ Gy C R™ and f € L}(Gy x G3). Then for almost
all z € G; and y € Gy the integrols

exist. Moreover,

| @iy - G/ (G f(m,y)dy) ds = G/ (c 1=, y)dx) dy.

G1XG2
THEOREM 1.14. (Holder’s Inequality, see Theorem 189 [142]). Let
p,q > 1 with % + % =1 and v € LP(G), v € LYG). Then
(15.2) [ wvlds < el lolznce)
fe:

Ifp=1, then (1.5.1) i3 valid with q = co.
COROLLARY 1.15. Letl < p <q and v € LP(G), v € LU G). Then
(1.5.2) ]l s (@) < (meas G)/P~Y|u]|| La(s).
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COROLLARY 1.16. (Interpolation inequality) Let 1 < p < ¢ <r and
1/g = A/p+ (1 — A)/r. Then the inequality

o < lullee lulil,
holds for oll u € L (G).

THEOREM 1.17. (Minkowski’s Inequality, see Theorem 198 [142]).
Let u,v € LP(G), p> 1. Then u+v € LP(G) and

(1.5.3) lu+ vl zee) < ullLre) + 1V]|zr )

THEOREM 1.18. (Clarkson’s Inequality, see §3.2, Chapter I [363]).
Let u,v € LP(G). Then

u+v|P u—wvl 1 :
S—(u” + [lv||® )25p<oo;
2 L7(G) 2 L7(Q) 2 ” ”LP(G) “ lILp(G) ;
P _
u+v F;Ll u— vilr-? 1 1 ;)_iT
< {5lulf =|lv))? ) 1<p<2.
“ 2 e 3 M (2”“||LP(G)+2||U”L;;(G) <p<

THEOREM 1.19. (Fatou’s Theorem, see Theorem 19 §6, Chapter III
[101]). Let f; € LY(G), k € N, be a sequence of non-negative functions
convergent almost everywhere in G to the function f. Then

(1.5.4) fdz <sup [ frdx.
[z

LEMMA 1.20. [328, Lemma 1.3.8] Let G; C R™, Gz C R™ and f, fr. €
LP(Gy x Ga),k=1,2,..., with1 <p < oo and

Jim | f — frllLr(cixaa) = 0.
Then there is a subsequence {fi,} of {fi} such that
klim ”f(y: l) - sz (y7 Z)HLP(Gz) =0
00
holds for almost every y € Gy.

1.5.2. Regularization and Approximation by Smooth Func-
tions. Let us denote by L] (G) the linear space of all measurable functions
which are locally p-integrable in G, that is p—integrable on every compact
subset of G. Although L} (G) is not a normed spaces, it can be readily

loc
topologized.

DEFINITION 1.21. We say that a sequence {u,,} converges to u in the
sense of L? (G) if {u,,} converges to u in L?(G') for each G' CC G.

loc
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Let r = [z —y| for all z,y € RY and h be any positive number. Further-
more, let ¥, (r) be a non-negative function in C°(RYN) vanishing outside

the ball B,(0) and satisfying [ 1, (r)dz = 1. Such a function is often called
RN
a mollifier. A typical example is the function ¢} (r) given by

ch= - exp( =22 for r < h, ¢ = const > 0;
Pn(r) = { ( Tk )

0 for |r| > h,

where c is chosen so that [ ¢x(r)dz = 1 and whose graph has the familiar
bell shape.

DEFINITION 1.22. For L} (G) and h > 0, the regularization of u, de-

loc

noted by up, is then defined by the convolution

(1.5.5) un(z) = / n(r)u(y)dy
G

provided h < dist(z, 3G).

It is clear that w;, belongs to C*°(G’) for any G’ CC G provided h <
dist(G’, 8G). Furthermore, if u belongs to L(G) and G is bounded, then
up, belongs to C°(RY) for arbitrary h > 0. As h tends to zero, the function
Y (r) tends to the Dirac delta distribution at the point z. The significant
feature of regularization, which we partly explore now, is the sense in which
up, approximates u as h tends to zero. It turns out, roughly stated, that if
u lies in a local space, then wp, approximates » in the natural topology of
that space.

LEMMA 1.23. Let u € C%(G). Then wuy, converges to u uniformly on
any subdomain G' CC G.

Proor. We have

w@= [ weued= [ vl - ri

lz—yl<h |z|<1

(putting z= 3;—31) Hence if G' CC G and 2h < dist(G', 8G),

sup u — up| < sup / (|2 () — u(z — he)ldz <
(el :r:EG"1 <1
z|<

< sup sup |u(z) — u(z — hz)|.
z€G [7|<1

Since u is uniformly continuous over the set By(G’) = {z | dist(z, G’) < h},
the sequence uy, tends to u uniformly on G’. d
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LEMMA 1.24. Let u € L} (G) (LP(@)), where 1 < p < oo. Then up

loc

converges to u in the sense of LY, (G) (LP(G)).

Proor. Using Holder’s inequality, we obtain from (1.5.5)

|un ()P < / ¥ri(|2)lu(z — h2)[Pdz

|lzl<1

so that if G’ CC G and 2h < dist(G’, 0G), then

/ lun (z)Pdz < / / v1(|2)|u(z — h2)Pdzdz =
& & |2i<1

= [ wllzhdz [ @ —ho)pdz < [ upds,
]zél G/’ Bh\(/G')

where By (G') = {z : dist(x, G") < h}. Consequently

(1.5.6) lunllze(ey < llullLeBaicry)-
The proof can now be completed by an approximation based on Lemma
1.23. We choose ¢ > 0 together with a C%(@) function w satisfying

v —wllLe(B,.(c) < €

where 2k’ < dist(G’, 8G). By virtue of Lemma 1.23, we have for sufficiently
small h that ||w — wal/r, ey £ €. Applying the estimate (1.5.6) to the
difference u — w we obtain

1o = unllo(@r) < llu—wlleery + lw — whllLeey + lun —whllLr@) <
<2+ |lu — wl Lo (B < 3¢
for small enough A < h’. Hence u, converges to u in L} (G). The result

for u € LP(G) can then be obtained by extending u to be zero outside G
and applying the result for LY (RV). |

LEMMA 1.25. (On the passage to the limit under the integral
symbol) [361, Theorem III.10] Let x(x) € Loo(G) and let xn(z) be the
regularization of x. Then for any u € L1(G)

i [ xn(euta)de = [x(@uds.
G

G
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1.6. Holder and Sobolev spaces

1.6.1. Notations and definitions. In this section G c RV is a
bounded domain of the class C%!. Let 2o € RY be a point and f a func-
tion defined on G 3 zp. The function f is Holder continuous with exponent
a € (0,1) at zo if the quantity

_ o (@) — f(20)]
Fleseo = S0 ™ e
is finite. [f]q;z, is said to be the a—Holder coefficient of f at 2o with respect
to G.
The function f is uniformly Héolder continuous with exponent o € (0,1)
in G if the quantity

[f] o = sup |f(.’L') — f(y)|
“ z,yEG |z — yl*
TAY

is finite.
We consider the following spaces.

e CY(G) : the Banach space of functions having all the derivatives
of order at most ! (if [ is a nonnegative integer) and of order [{]
(if I is non-integer) continuous in G and whose [I]-th order partial
derivatives are uniformly Holder continuous with exponent [ — [{]
in G. |u|;,¢ is the norm of the element u € C'(G); if | # [I] then

]
. Da _ Da
[ulic = sup|Diul + sup sup 2B = Douly)
G lol=l] #,¥€G |z —yl
TFY

=0

o OL(G) : the set of functions in C'(G) with compact support in G.
. W’“”’(G), 1 < p < o0 : the Sobolev space equipped with the norm

1/p
lullwer@) = (/ > 1Dﬁu\pda:) )

G 18I<k

o WEP(G) is the closure of C§°(G) with respect to the norm || -

llwe.e (-
o Whkp(G\ 0) = WkP(G\ B.(0)), Ve > 0.
e For p = 2 we use the notation

wk(G) = Wh(G), WEG) = Wi (G).

DEFINITION 1.26. Let us say that u € W*P(Q) satisfies u < 0 on 8G
in the sense of traces, if its positive part ut = max{u,0} € WF?(Q). If u
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is continuous in a neighborhood of G, then u satisfies # < 0 on 9G, if the
inequality holds in the classical pointwise sense. Other definitions of the
inequality at OG follow naturally. For example: u© > 0 on 0G, if —u <0 on
G, u=von 0G, if both u —v <0 and u — v > 0 on 9G;

supu = inf{k|u < kon G, k € R}; inf u = —sup(—u).
oG oG G

e For ' C 0G and k € 1,2,..., the space Wk_%’p(l") consists of
traces on T of functions from W*P(G) and is equipped with the

norm
lell .0y = E 1 Rlwen e,

where the infimum is taken over the set of all functions & ¢
WEP(G) such that & = ¢ on T in the sense of traces.
For p = 2 we use the notation

WE1(T) = WEp2(D).

THEOREM 1.27. [129, Theorem 7.28] (Interpolation inequality) Let
G be a CV! domain in RN and let u € W2P(G) with p > 1. Then for all
e>0

IVul (e < ellulwezr ey + e Hullzr )
with a constant ¢ depending only on the domain G.

THEOREM 1.28. [117, Section 4.3] (Trace Theorem) Let 1 < p < 00.
There exists a bounded linear operator

T : WYP(G) — LP(8G)
such that
Tu=u on OG
for alluw € WLP(G) N C°(G).
Henceforth, we will write simply u instead of Tu.

THEOREM 1.29. (see e.g. (6.23), (6.24) Chapter I [214] or Lemma 6.36
[237]). Let &G be piecewise smooth and u € WL(G). Then there is a
constant ¢ > 0 which depends only on G such that

(1.6.1) /|u|ds < c/ (4l + [Vu]) de, VT C 002
r G

If u € WH2(G), then

(1.6.2) / vids < / (5|Vo|? + csv?)dz, Yulz) € WY(G),¥6 > 0.
oG G
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Ifu € W2%(Q), then
u\? 2 2
(1.6.3) B ds <c¢ [ (2|Vu||D?u| + |Vu|?) dz.
G G

1.6.2. Sobolev imbedding theorems. We give the well known Sobo-
lev inequalities and Kondrashov compactness results also called the imbed-
ding theorems (see [363], §§1.4.5 - 1.4.6 [261], §7.7[129]).

THEOREM 1.30. [412, Theorem 2.4.1], [129, Theorem 7.10] (Sobolev

inequalities) Let G be a bounded open domain in RY and p > 1. Then
s

(1.6.4) wir(@) o { LT 7 (G) forp <N,

C%G) forp> N.

Furthermore, there erists a constant ¢ = c(N,p) such that for all u €
Wi P(G) we have

(1.6.5) ull Lverav-e gy < el Vull Loy

forp< N and

(1.6.6) sup |u| < c(meas G)YN VP Vu| Ly ()
G

forp> N.

The following Imbedding Theorems 1.31-1.34 first were proved by Scbo-
lev [363] and can be found with complete proofs in [314], [1, Theorem 5.4],
[210, Sections 5.7,5.8] and [261, Section 1.4]. Let G be a C®! bounded
domain in RN

THEOREM 1.31. Let k ¢ N andp € R withp > 1, kp < N. Then the
imbedding

(1.6.7) WEP(Q) — LYG)

is continuous for 1 < g < Np/(N — kp) and compect for 1 < ¢ < Np/(N —
kp). If kp = N, then the imbedding (1.6.7) is continuous and compact for
any q > 1.

THEOREM 1.32. Let k € Ny, let m € N and let p,q € R with p,q > 1.
If kp < N, then the imbedding

(1.6.8) WmHer (@) — W™(G)

18 continuous for any g € R satisfying 1 < ¢ < Np/(N — kp). If k = Np,
then the imbedding (1.6.8) is continuous for any q > 1.
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THEOREM 1.33. Let k,m € Ng and p > 1. Then the imbedding
Wk,p(G) s Cm“‘ﬁ(G)
15 continuous if
(16.9) (k—m-1p<N<(k—m)p and 0<B8<k—-—m— N/p,

and compact if the inequality in (1.6.9) ¢s sharp. If (k—m —1)p = N, then
the imbedding is continuous for any 3 € (0,1).

THEOREM 1.34. Let u € W*P(G) with k € N, p € R, kp > N and
p>1. Then u € C™(G) for 0 < m < k — N/p and there exists a constent
¢, independent of u, such that

sup |D*u(z)] < cllullwr.s(c)
z€G
for all|a| < k— N/p.

THEOREM 1.35. Let G be a lipschitzian domain and let T, € G be
piecewise C¥-smooth s-dimensional manifold. Let k > 1, p > 1, kp <
N, N—kp<s<Nandl <gq<gx=sp/(N—kp). Then WFP(G) —
Ly(T,) and the inequality
(1.6.10) NullLe(r,y < cllullwrr (@)
holds. If ¢ < g*, then this imbedding is compact.

1.7. Weighted Sobolev spaces

DEFINITION 1.36. For k € Ng, 1 < p < o0 and a € R we define the
weighted Sobolev space V;a(G) as the closure of C§°(G\ 0) with respect to
the norm

i/p
”u“Vp’f,a(G) = (/ Z T.OH-P([m—k) |Dﬂu|1’ diL‘) .

G |BI<k

ForT' C G and k € 1,2,..., the space Vp’f; /e (T') consists of traces on T’
of functions from V;,’fa(G) and is equipped with the norm

lullyrz1re(py = inf v]lve (@)

where the infimum is taken over the set of all functions v € szfa(G) such
that v=wuonT.
For p = 2 we use the notations

Wa(G) = Vio(C) and Wo ™ /2(D) = Vo /A(T).

2,0
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LEMMA 1.37. [161, 198] Let k', k € N with k' <k and
o—pk<do —pk.
Then V;’fa(G) is continuously tmbedded in P;’f;, (G). Furthermore, the imbed-
ding is compact if ' < k and a — pk <o’ — pk'.
LEMMA 1.38. [280, 322] Let (k—|7|)p > N, then for every u € V¥, (G)
the following inequality is valid
|D u(z)| < clz* MNP uys (), Ve e GY
with a constant ¢ independent of u and some d > 0 depending only on G.
In particular
Vpal@) = C™(G)
form <k —(a+ N)/p.
Proor. Without loss of generality we can assume that G is a cone.

We introduce new variables y = (y1,...,yn) by = = yt with ¢ > 0 and set
v(y) := u(z). By the Sobolev Imbedding Theorem 1.34, we have

|Dyv(y)| < ¢ Y IDjollLe(ez), Yy € GI-
I6]<k
Returning back to the variables x
M DYu(z)| < Y [N Dlu|| o gary, Va € G
18] <k
Multiplying both sides of this inequality by t¥/P~%+/P we obtain
gkt NP Dru)) < e > 1t F P Dlu 1ogay, Vo € GE.
|61<k
Therefore, because of t < |z| < 2t in G, we have
[z =+H /B DY ()| < 0 3 flafPF P Dlu ngzey, Ve € G
[8]<k
with a constant ¢ independent of ¢. Thus the assertion holds. a
LEMMA 1.39. Let k,m € Ny, G € R with
(k—-m—-1p<N<(k—m)p and 0<B<k—m—N/p.
Then for any u € VX (G)
v _ D7
p 1228(2) = D)
2,y€G 2y |z -yl

< C|$|k—m~ﬁ_(a+m/p||ul|vpﬁa(c)y
|7|=m

vz € G¢
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with a constant ¢ and some d > 0.

ProOF. The proof is completely analogous to the proof of Lemma 1.38.
a

LEMMA 1.40. [161, Lemma 1.1] Let u € w5 %(I'd). Then

/r“"2k+1u2(m)ds < c|lu||f%k_1/2

rg

T

LEMMA 1.41. Letd > 0 and p € (0,d). Then the inequality
3N 9u 2d.<3<c ri=Nulds + ep||u)|% 2
on =" 2 Wwi_ ~(GE)
rg rg
is valid for allu € v%i_ n(ce) With constants ¢y, co independent of u.
PROOF. Let us first recall that due to Theorem 1.29 we have
2
/ (@) ds < 03/ (rlDz'u[2 + l|Vvlz) dz
on r
rg Gg

with a constant c3 > 0 depending only on G¢. Setting v = rB=N/2y we
have

N
i1
i (3-N)/2 08 L3N 1My, ; v
On 1‘5\0 Onirno 2 r
N
E TiTkg
Since =t < 1, therefore

[ () aesa [{(32) + B 2y e <
e 4

5]

<c:5/(r|D2v[2+r 1vol?) ds+M/ 1-No2ds.
cr r2

The assertion then follows by Lemma 1.9. |
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1.8. Spaces of Dini continuous functions

DEFINITION 1.42, The function A is called Dini continuous at zero if

the integral
d
/ Alt)
t
0

DEeFINITION 1.43. The function A is called an a-function, 0 < a < 1,
on (0,d], if t~*A(¢) is monotonously decreasing on (0, d], that is

is finite for some d > 0.

(1.8.1) Al) <t%17%A(r), 0<r<t<d.
In particular, setting ¢t = er for ¢ > 1, we have
(1.8.2) Aler) <c®Alr), 0<7<cld

If an a-function A is Dini continuous at zero then we say that A is an
a-L¥ni function. In that case we define the function

t
B(t) = / A0y
0

Obviously, the function B is monotonically increasing and continuous
on [0,d] and B(0) = 0. Integrating (1.8.1) over 7 € (0,t) we obtain

(1.8.3) A(t) < aB(t).
Similarly, we derive from (1.8.1) the inequality
d

d d
%dtz /ta—z%t)dt < J“Q.A(é)/t"‘“zdt <(1 —a)‘l%é)—
é ] s
and thus

d
(1.8.4) 6/ %dt <(1-a)"tAW) < a(l —a)1B(),
[

Va € (0,1), 0 < < d.

DEFINITION 1.44. The function B is called equivalent to .A, written
A ~ B, if there exist positive constants Cy and C, such that

C1LA(t) < B(t) < CLA(t) V> 0.



1.8 SPACES OF DINI CONTINUQUS FUNCTIONS 33

THEOREM 1.45. [114] A ~ B if and only if

(1.8.5) li£n igxf A2t)/A(t) > 1
Proor. At first we remark that
25 2h
2B(h) > B(2h) = A( )dt > At )dt > A(h)In2.
0 h

Therefore we must prove the eqmvalence of (1,8.5) to the inequality B(t) <
CA(t).

The sufficiency: Let (1.8.5) be satisfied. Then there is a positive 8
such that for sufficiently small ¢ the inequality A2 > 146 holds and

A(t)
therefore A(2-%t) < (1 + 6)~* A(t). Then

h
B(h) = [ A gt — z f AW gt < In2 z A(27FR) <
0 —1

k= h

< 1n2f:(1 + 6) "% A(h).

k=0
The necessity: Let litm i%f A(2t)/.A(t) = 1. Then there is a sequence

t, such that A(2tn) <1+ 1 and we have
Altn) n

A(nty,) __ Alntn)  Alln—Dtn)  AQ2ts) <
Altn) — Alln—Dtn) Al(n-2)ta)  Alta)
A2t,)1" ! 1)"“‘ ,
< — <e.
<Gl =(ei) =
Therefore
nt,
Blnt,) > / iiﬂdt > lnnAlt,) > %mnA(m:n),
and Blnt,)
Nty .
> - =0.
Alnty) = ln n, nanolo nt, =0
Thus .A(t) and B(t) are not equwalent. O
In some cases we shall consider functions A(t) such that
(1.8.6) sup Alrt) <cA(t), te(0,d],
ocr<1 A(T)

with some constant ¢ independent of t.
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Examples of a-Dini functions .A(t) which satisfy (1.8.5) and (1.8.6) with
c=1 are

t%for 0 <t < o0;
t*In(1/t) for t € (0,d], d=min(e~t,e”V/®), el<a<l.

DEFINITION 1.46. The Banach space C%#(G) is the set of all bounded
and continuous functions u on G C RV for which

_ lu(z) — u(y)|
[U]A;G B m,ygg?x;éy A(IIIJ - yl) < o

It is equipped with the norm

[ulloo.a(ay = llullcowe + [ulae-
If k > 1, then we denote by C*4(Q) the subspace of C*¥(G) consisting of all
functions whose (k — 1)-th order partial derivatives are uniformly Lipschitz

continuous and each k-th order derivative belongs to C®#4(G). It is a Banach
space equipped with the norm

lullgeaa = lullor@ + > [DPulae.
|18|=Fk

Furthermore, let us introduce the following notation

[ |u(z) — u(y)|

Uaz= sup L
Mz vecr(zy Alz—y|)

LEMMA 1.47. If A~ B, then [u]4 ~ [u]B.

LEMMA 1.48. [129, p. 143, 6.7 (ii)] Let G be a bounded domain with
a Lipschitz boundary OG. Then there are two positive constants L and 0,
such that for any y € G with dist(y,0G) < g1 and any 0 < ¢ < g, there
ezists ¢ € B,(y) such that B,/r(z) C G.

THEOREM 1.49. [365, Inequality (10.1)] (Interpolation inequality)
Let OG be Lipschitz. Then for any € > 0 there exists a constant ¢ = c(e, G)
such that for every u € CVA(G) the following inequality holds

N N
> IDiullcoe) < € Y _[Divd ag + cle, G)llullcoe)-
i=1 i=1

PROOF. Let L, p be given as in Lemma 1.48 and let € > 0 be arbitrary.
We choose ¢ > 0 so small, that A{p(1+1/L)) < e. If dist(y, 8G) > g1, there
are for every i € {1,... N} two points y1,y2 € 0B,(y) and a G € B,(y),
such that

IDiu(g)| = 5 fulwr) - ()| < %””LLHCO(G)-
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Thus
1
|Dsu(y)| < [Diu(®)] + |Diu(y) — Deu(@)| < E”“”CU(G) + A(0)[Diu] ac-
If dist(y, 8G) < o1, there are y1,y2 € 0B,/1(r) and § € 0B, (x) such that
L L
| Dw(y)| = 2_Q|“(yl) —u(y2)| < EHUHC‘U(G)-

Since |y — 9| < |y —z| + |z — 7| < o(1 + 1/L) we conclude
— _ L
| Div(y)| < |Dju(@)| + [ Diu(y) — Diu(y)| < E“u”CO(G)‘*‘

1
+Ae(1+ 7)) [Divlac,
which finally implies the statement. 4

DEFINITION 1.50. We shall say that the boundary portion 7' C 0G is of
class C1 if for each point z¢ € T there are a ball B = B(zg), a one-to-one
mapping 1 of B onto a ball B/, and a constant K > 0 such that

(i) BNoG c T, ¥(BNG) CcRY;
(i) ¥(BNIG) C &;
(ili) ¥ € CLA(B), ' € CVA(BY;
() Wllcrai < K, |97 evawy < K.
It is not difficult to see that for the diffeomorphism % one has
(1.87) K™ '(z) —¢(2')] < |z~ 2’| < K|p(z) - 9(z')|, Ve,2’ € B.

LEMMA 1.51. [365, Section 7] Let u,v € COA(G). Thenu-v € C%4(G)
and

u-vlcoa) < llullcoae) - Ivlicoas).-

LEMMA 1.52. [365, Section 7} Let A(t) be an a-function on [0,d] and
let u € C%4(B). Furthermore, let 1y : B' — B be Lipschitz continuous the
Lipschitz constant L. Then uo € CO4(B’) and

(1.8.8) o lco.acmy < L¥|ullgo.a(m), where L = max(1, L).
PrOOF. Indeed, if z,y € B, |z —y| < %, then by (1.8.2)

lu(¥(z)) —u(¥®))| < l|lufco-as) - A(Llz —y]) <
< Jlullgo.acsy - L* - Al ~ y).
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1.9. Some functional analysis

DEeFINITION 1.53. Let X,Y be Banach spaces. Then we denote by
L(X,Y) the linear space of all continuous linear mappings L : X — Y.

THEOREM 1.54. [129, Theorem 5.2] (The method of continuity).
Let X,Y be Banach spaces and Ly, L1 € L(X,Y). Furthermore, let

Li:=(1—-t)Lg+tL; Vte[0,1]
and suppose that there exist a constant ¢ such that
lullx < ellLeully vt e [0,1].
Then Ly maps X onto Y if and only if Ly maps X onto Y.

THEOREM 1.55. [353] (Variational principle for the least positive
eigenvalue). Let H,V be Hilbert spaces with dense and compact imbeddings

VcHcV

and let A: V — V' be a continuous operator. We assume that the bilinear
form

a(u,v) = (Au,v)g
is continuous and V-coercive, that is there are constants ¢; and ¢y such that

la(w, )] < allullv [lvllv,
a(w,u) > caflully

for all u,v € V. Then the smallest eigenvalue 9 of the eigenvalue problem
Au+9u=0

satisfies

8 = inf 209
vev ||v|3

THEOREM 1.56. [129, Theorem 11.3] (The Leray-Schauder Theo-
rem). Let T be a compact mapping of a Banach space B into itself, and
suppose that there exist a constant M such that

lzlls < M

for allz € B and o € [0,1] satisfying x = ocTx. Then T has a fized point.
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1.10. The Cauchy problem for a differential inequality

THEOREM 1.57. Let V(p) be a monotonically increasing, nonnegative
differentiable function defined on [0, 2d) that satisfies the problem

P) { V'(p) - P(2)V(0) + N(D)V(20) + Qp) 20, 0<p<d,
V(d) < Vs,

where P(p),N (@), Q(g) are nonnegative continuous functions defined on
[0,2d] and Vy is a constant. Then

(1.10.1) V(o) _<_exp<j B(T)d?’){‘/b exp(—/d’P('r)dT)-}—

[ oo~ [riorio)ar)

with

20
(1.10.2) B(o) = N(e) exp ( / P(o)do).

ProOOF. We define functions

d

(1.10.3) | w(g) = V(o) exp ( f P(a)do)
d i d

(1.10.4) R(g) =V + / (1) exp(/’P(a)da)dr

Multiplying the differential inequality (CP) by the integrating factor
d
exp ( f ’P(s)ds) and integrating from p to d we get
2

V(d) — V(o) exp ( /d P(s)ds) + /d N (7) exp ( fd P(s)ds) V(2r)dr+

d d
+ Q/ Q(r) exp( [ P(S)dS)dT 2 0.
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Hence it follows that
d
(1.10.5) +/B (TYyw(27)d
e

Now we have

(1.10.6) R(Q) 1-|-/B( )w(zT) 7;((@))
Since R(27) < R(p) for 7 > g, setting
(1.10.7) z(p) = %
we get
d
(1.10.8) 4@51+/Bﬁp@ﬂw

Let us define the function

The from (1.10.8) we have
(1.10.9) 2(0) < Z(p)
and
Z'(0) = —B(0)2(20) 2 —B(0)Z(20)-
Multiplying the obtained differential inequality by the integrating factor
exp (— f B (s)ds) and using the equality
0

d

dig[z(g) exp(_/dB(s)ds>] = Z'(o) exp(—/B(S)ds)-i-

e
d

B exp (- [ Bla)ds ) 2(0)

e
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we have
d d
[2@ex(~ [ Bas)] > eremp( -~ [ Bio)is) (200 - 220
But 9 )
d d
Z(20) =1 B(s)z(2s)ds < 8)z(2s)ds = Z(p),
0 +2[ 2s)s<1+Q/B()(2) (o)
therefore
d
Z(0) - 2(20) >0 = ;E[Z(g) exp(— / B(s)ds)] >0,

Integrating from p to d we have

d d
Z(0) exp (— / B(s)ds) <Z(d)=1 = Z(o) <exp ( Q/ B(s)ds)

e
Hence, by (1.10.9), we get

(1.10.10) z(p) < exp (/d B(s)ds).

Now, in virtue of (1.10.3), (1.10.7), and (1.10.10), we finally obtain

Vig) < exp(—/d’P(a)da)’R(g) exp(/d B(o)da)

or with regard to (1.10.4) the desired estimate (1.10.1). O
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1.11. Additional auxiliary results
1.11.1. Mean Value Theorem.

THEOREM 1.58. Let f € C%a,b] with 0 < a < b. Then there ezist a
8 € (0,1) and a £ € (0,1), such that

b
/ f@dz > (b—a)f((1 — O)a -+ o)

and
b
/ fl@)ds < (b—a)f((1 - E)a+Eb).

PrOOF. Let us assume that
b
/ f@dz < (b—a)f((1 - 6)a-+6b)

for all 6 < (0,1). Integrating this inequality with respect to 6 € (0,1) we
obtain the contradiction

b 1 b
flx)dz < (b—a) | f((1—0)a+6b)de = | f(t)dt.
/ / /

The other assertion is proved analogously. O
1.11.2. Stampacchia’s Lemma.

LEMMA 1.59. (See Lemma 3.11 of [316], [366]). Let ¢ : [ko,o0) — R
be a non—negative and non—increasing function which saetisfies

(1.11.1) w(h)s(—hj%[w(k)]ﬂ for h>k> ko,

where C, «, B are positive constants with § > 1. Then
tp(k() + d) =0,
where
d* = C |g(ko)|P~ 1 228/(8-1
ProoF. Define the sequence

d

k3=k0+d_2_s,

s=1,2,....
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From (1.11.1) it follows that
2(s+1)a

(1112) (,O(k3+1) < —d;'_—[(P(ks)]B’ s = ]_, 2, [N
Let us prove by induction that

(ko) __«
(1.11.3) w(ks) < S where p = -3 < 0.

For s = 0 the claim is trivial. Let us suppose that (1.11.3) is valid up to s.
By (1.11.2) and the definition of d* if follows that

260 [p(kol® _ (ko)
de  9-sBu — 9—(s+L)u’
Since the right hand side of (1.11.4) tends to zero as s — 0o, we obtain
0 < (ko +d) < p(ks) — 0.

(1.11.4) p(kst1) < C

1.11.3. Other assertions.

LEMMA 1.60. (see Lemma 2.1 [78]). Let us consider the function

err —1, x>0,
n(z) = e
—e +1, z <0,

where 3¢ > 0. Let a,b be positive constants, m > 1. If 2z > (2b/a) + m, then
we have

(1.11.5) arf (z) — bln(@)| > %e’“, Yz >0
and
(1.11.6) n(z) > [n (%)] . V& >0.

Moreover, there exist a d > 0 and an M > 0 such that

(1.11.7)  nle) <M [n (%)]m andn'(z) < M [n (%)]m, Vz > d;
(1.11.8) [n(z)] >z, VzreR

PRrROOF. Formula (1.11.5) is easily verified by direct calculation. By
definition, inequality (1.11.6) can be stated as

(1.11.9) ("% —1)" <e* 1, V>0,
We set for z > 0
y=e*m >1and f(y) =(y—- )™ +1—-y™
Then
fy)=my—1)"™ " —my™ ' <o,
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hence it follows that f(y) is decreasing function, that is f(y) < f(1), Vy > 1.
Because of f(1) =0, we get (1.11.9).
Further, the first inequality from (1.11.7) has the form

(1.11.10) Y —1< My —1)™.
We consider the function g(y) = M(y — 1)™ — y™ + 1. Then we have
. M=
9(y) > My —-1)" —y™ >0, 1fyZyo=F_—T>1,

if we choose M > 1. Therefore
x M
g(y)>0,Vy>yo orfor e*m > Il

i
T Z d1 = —TP’— In —-—A{—T———,
x Mw -1
that is the first inequality from (1.11.7) is proved.
Let us now prove the second inequality from (1.11.7). We rewrite it in
the form
M(y = 1) = sey™.

Hence it follows:

1
L 1 Mm
Mm(y—1)2x=(y—1l)y =>y>_—F—7,
Mm — Mm
if M > 3. The last inequality means that
z Mw Mw=
em 2 —— == x_>_d2=mlnﬁ.
Mmw —nm X Mwm —um
Thus, inequalities (1.11.7) are proved, if we take
M=
M > x; d=max(d1,d2):ﬁln . T
V4 m o Mm

(since s > 1).
Finally, we prove the inequality (1.11.8). From the definition we have

@ =4 220
g - e " — 1, z <0.
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It is sufficient prove the inequality
et —-1>x, >0
Since ¢ > 1, this result follows from the Taylor formula, a

1.11.4. The distance function. Let G be a domain in RV having
non-empty boundary 0G. The distance function d is defined by

d(z) = dist(z, 8G).

LEMMA 1.61. The distance function d is uniformly Lipschitz continu-
ous.

PrOOF. Let z,y € RY and let y* € 8G be such that |y — y*| = d(y).
Then
d(z) <z -y < |z —y| +d(y)
so that by interchanging x and y we have

(1.11.11) |d(z) — d(y)| < |z —yl.

1.11.5. Extension Lemma.

LEMMA 1.62. (See Lemma 3.9 [405]). Let D be a convex bounded set in
RN, T C 8D, and f(z) € CYA(D), where A(t) is a non-decreasing function
such that tliI-EO A(t) = 0 and A(2t) < 2A(t). Then there exists a function

F(x) with following properties:
1°. F(z) € C*(D);
2°. F(x) € CYA(D);
3°. DF(z)=D*f(x), z €T; |o| £ 15
£, |DLF(@)| < Kd(z)Ald(),
where d(z) denotes the distance to T and K depends on N and A(t) only.

Proor. We shall use the concept of a partition of unity. Let us consider
a finite covering of D by a countable collection {D;} of open sets D;. Let
{¢;} be a locally finite partition of unity subordinate to this covering, that
is
(i) ¢k € C§°(D;) for some j = j(k);
(i) >0, 3¢ =1in D;
(iii)  at each point of D there is a neighborhood in which only a finite
number of the (; are non-zero;

(iv) Do |ID%k(z)| € Cul +d~%(x)), where C, is independent of T’
k
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(ivv)  there is a constant C independent of k and T such that
diam(supp () < Cd(z).

For the proof of the existence of such a partition see, for example, the pre-
sentation of Whitney’s extension theorem in Hérmander (Lemma 3 [146]).
Let z* € T be a point satisfying d(z) = |z — z*| and let 2* be any fixed
point in the support of (. We write the Taylor expansion of f(z) at y as

f(z) = Pi(z,y) + Ri(z,y), where
of

Pi(z,y) = f(v) + > (35 — 43) 5-(¥)
j 7
and therefore, by the mean value Lagrange Theorem,
0
Rife,) = (7(e) = 1) = (e — 1) 5 0) =
b
— N — ) (2 _oy 2L
-3 (5tv+ 8- 9) - 52)
for some 8 € (0,1). By assumptions about f it follows that
(1.11.12) |R1(z,y)| < |z —ylA(flz - y]) < |z — y[Allz — yl).
Since

we get in the same way

(1.11.13) |DeRy(2,y)| = | Do f(z) — Daf(y)] < KA(|z - yl)-
Now we define F(x) by
%Ck(m)Pl(m,mk) = zk:g,(m) (Pi(z,z*) — Pi(z,2*)) +

F(z) = +Py(z,z*), z€D\T;
f(x)a reTd.

Then we have

D?F(z) =) D*G(x) (Pi(z, %) — Py(z,2*)) +
k
+ QZDO«(SB) (DyPi(z,2%) — D, Py(z,2%)) .
k

But it is obvious that

Pl(m,mk) - Pl(mv x*) = Rl(.’II,.'L'*) - Rl(mﬁwk)
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and therefore

D?F(z) =Y D*(z) (Ri(z,a*) — Ri(z,2h)) +
k

(1.11.14)
+2 " DG(z) (Do Ry(z,2") — DyRi(x,25)) .
k

If z € supp (x, then by (ivv)
(1.11.15) |z —z*| < |& — 2*| + |z* — z*| < d(z) + Cd(z) = (1 + C)d(x).
Therefore we obtain, by (iv) and by (1.11.12)-(1.11.13)

|D%F(z)| < Kd™ () A(d(z))

and 4° is proved.
To prove 2°, first assume that

1
(1.11.16) lz —y| < §d(x).
By the mean value Lagrange Theorem
|DzF(z) — Do F(y)| < |z — y|sup | DF F(2)],

where the supremum is taken over those 2z for which |z — z| < 3d(z). Then
using 4°, it follows that

On the other hand, if d(z) < 2|z — y|, we have
d(y) < d(z) + |z —y| <4z —y|
and by the definition of F(z) and by (1.11.15):

|DzF(z) — Do f(z") < Y ¢k(@)l|DaRa(e,@%) — DaRa(z, o)+
k
+ 3 [DG()||Ru(z, %) — Ra(z,2%)| < KA(d(2)) <
k

< KA(lz - y]).
Similarly,
|DeF(y) — D2 f(y*)| < KA(d(y)) < cKA(jz —y)).
Since by assumption
Do f(z*) — Do f(y")] < A(lz” — ™)) < KA(lz —yl),

the lemma follows with the triangle inequality. |
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1.11.6. Difference quotients. The investigation of differential prop-
erties of weak solutions to the boundary value problems may often be de-
duced through a consideration of their difference quotients.

DEFINITION 1.63. Let v € L™(G) and denote by ex (k=1,...N) the
unit coordinate vector in the z; direction. The function

Atu(z) = Alu(g) — Y& he":) —u®@)  hso

is said to be a difference quotient of u at z in the direction ey.

The following lemmas pertain to difference quotients of functions in
Sobolev spaces.

LEMMA 1.64. Letu € Wb™(@G). Then APu € L™(G') for any G’ CC G
satisfying h < dist(G’, 0G), and we have

| AP ey < | Drullzmay-
PROOF. At first, we suppose that u € C1(G) N WH™(G). Then

u(z + hex) — u(z) _
h

Aly(z) =

==

b
/Dk'ﬂ-(fl:l, ey T—1,Tk +€sxk+15 v ,l'N)df
0

so that by the Hélder inequality

h
1
8@ < & [ 1Dku(orse Bty + € rga - o),
0

and hence setting By (G') = {z| dist(z,G’) < h}

/ | Abu(z) |z < % /h / | Dau|™dzde < / | Dyul™dz.
& ) G

0 Bh(G’

The extension to arbitrary functions in WbH™(G) follows by a straight-
forward approximation argument. O

LEMMA 1.65. Let u € L™(G), 1 < m < o0, and suppose there exists a
constant K such that Ahu € L™(G") and | AMul|pmery < K for all h > 0
and G' CC G satisfying h < dist(G', 8G). Then the weak derivative Dyu
exists and satisfies || Dyul|1m(q) < K.
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Proor. By the weak compactness of bounded sets in L™(G’), there
exist a sequence {h;} tending to zero and a function v € L™(G) with
lv]|zm(ey < K satisfying

hlimO/nAhjudx: /T]’Ud:):, v € CA(G).
G
G G

Now we have
The summation by parts formula is as follows.

(1.11.17) /nAh?'ud:c = —/uA‘hfndx for h; < dist(suppn, 0G).

G G
Hence
hlimo uA"hipdy = / uDgndz =
! G
/ nudr = — / uDyndz,
G G
whence v = Dyu. O

LEMMA 1.66. Let u € WY™(G). Then
HAZJ'U(QJ') — Dyu(z)||gm@y —0, k=1,...,N

for any sequence {h;} tending to zero and for every G' CC G. For some
subsequence {h;,} functions Azj‘u(z) tend to Dyu(z) a.e. in G.

PRrOOF. For sufficiently small |h;| and a.e. x € G’ we have

1
A u(z) — Dyuls) = hl— / %{Jh—ﬁk)dt — Deu(z) =
7
0

1
= /(Dku(x + thjex) — Dru(z)) dt
0
and therefore
1
|AF u(z) — Dyu(z)| tmery < / | Dyu(z + thier) — Diulz)|| L= (c)dt-
0

But the right side in this inequality tends to zero as h; — 0, because Dy u(r)
is continuous in the norm L™(G"). Thus the first part of lemma is proved.
The second part follows from properties of the space L™. EI
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1.12. Notes

The proof of the Cauchy, Young and Holder inequalities §1.2 can be
found in Chapter 1 [37] or in Chapter II [142]. The formulae (1.3.1)-(1.3.12)
are proved in §2, Chapter 1 [310]. For the proof of the Fubini and Fatou
Theorems see, for example, Theorem 9 §11 and Theorem 19 §6, Chapter 111
[101]. The proof of the integral inequalities §1.5 can be found in Chapter
VI [142]. The Clarkson inequality is proved in Subsection 2 §3, Chapter
1 [363]. The material in §1.8 is due to [74, 114]. The simplest version of
Theorem 1.57 in §1.10 goes back to G. Peano [331]; the special case was
formulated and proved by T. Gronwall [137] and S. Chaplygin [79]. The
case N(g) = 0 of this theorem was considered in [170, 171]. The general
case belongs [53, 54, 50].



CHAPTER 2

Integral inequalities

2.1. The classical Hardy inequalities

THEOREM 2.1. (The Hardy inequality, see Theorem 330 [142].)
Letp>1,s#1 and

Ot

f&)de, ifs>1;

f&)dg, ifs<1;

Be—g

then

(2.1.1) /O " PP () ds < (ﬁ)p /0 " et (2 f)Pdz

The constant is the best.

We prove the partial case p = 2.

49

THEOREM 2.2. Let f € L?(0,d), d,8 > 0 and F(z) = [y~ f(y)dy.

Then

(2.1.2) t” 1R (2)dx < fA(z)dz.

o\&
‘Ql —_
o\&
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PRrOOF. Let 0 < 6 < 8. Then by Hélder’s inequality (1.14)

z 2

f v fy)y? 0 ddy
0
x x

/ y* f(y)dy / Y ¥ Ny =
0 0

|F(z)®? < <

A

2(8 - 6)
Therefore, by the Fubini Theorem 1.13,

T
R f y* £ (y)dy.
0

d d T
1
$—2‘5—1F2($)d.’17 < $—26—1 ( y26f2(y)dy) dr =
/ o=\
. d d
-z [ (/ ””_za_ld“”) W=
Y Y
1 7 26 g2, Y 2 —d®
:mo/y f (U)Tdyﬁ

d
1
< m()/f2(w)d:c

Noting, that mg_—a) becomes minimal for 6 = %5, we choose § := %ﬁ and
obtain the assertion. O

COROLLARY 2.3. Let v € C°[0,d) N W12(0,d),d > 0 with v(0) = 0.
Then

d d
4 v\
N-54a,2 s N-3ie [ OV
(2.1.3) /r vi(r)dr < A-N_ap /'r (Br) dr
0 0

for o < 4 — N provided that the integral on the right hand side is finite.

PROOF. We apply Hardy’s inequality (2.1.2) with F = v, 8 := MT_“,

noting that F’(r) = r#~% f(r) and therefore f3(r) = r'=29 (%)2 . a

REMARK 2.4. The constant in (2.1.3) is the best possible.
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COROLLARY 2.5. Ifu € C§°(R™*), a <4 — N end u(0) =0, then

/ re=ty2(z)dg < m / ro=2(Vu(z)2dz

RN RN

provided that the integral on the right hand side is finite.

PRrROOF. The assertion follows by integrating both sides of (2.1.3) over
2 for large enough d and applying (1.3.7). O
COROLLARY 2.6. Ifu € Wl3(@), a <4 — N, then

(214) /r"‘_4u2(a:)da: < 24—:“—1\-;-1:_—&)2/7‘(1_2|VU($)‘207$,

G G
provided that the integral on the right hand side of (2.1.4) is finite.

PRroOF. The claim follows from Corollary 2.5 because C§°(G) is dense
in Wy*(G). O

COROLLARY 2.7. Let v € CYe,d] N W12(g,d),d > 0 with v(e) = 0.
Then

: 4 i ov 2
n-—5+o, 2 < n—3+4+a
(2.1.5) /r ve(r)dr —--(4 72 /r (_87') dr

£

fora<4—n.

PROOF. We apply the inequality (2.1.3) to the function v(r) extended
by zero into [0, ). O

Note also another generalization of the Hardy inequality:

THEOREM 2.8. The inequality

(2.1.6) 0/ﬂC""”If(ér)l”’dch = ﬁo/xﬂf'(x)lpdx

istrue if p > 1, a #p—1 and f(z) is absolutely continuous on [0,00) and
satisfies the following boundary condition

f(0y=0 whena <p—1,
lim f(z)=0 whena>p-—1.

r—4o0
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2.2, The Poincaré inequality

THEOREM 2.9. The Poincaré inequality for the domain in RV
(see e.g. (7.45) [129]).
Let u € WHG) and G is bounded conver domain in R™. Then

(diamG)N

11 —Tlloa < — .
(P11) Iu~Tlc < (V) g oVl
where

_ 1
%= TneasS /u(w)da:,
S

and S is any measurable subset of G.

THEOREM 2.10. The Poincaré inequality for the domain on the
sphere (see e.g. Theorem 3.21 [145]).
Let u € W(Q) and Q is convex domain on the unit sphere SN=1, Then

(PI 2) v — uallza < (N, )| Voullza,

where

uqg —

1
— / w(z)dS2.
Q

Also the following lemma is true.

LEMMA 2.11. (see e.g. Lemma 7.16 [129]). Let u € WY(G) and
G is bounded convez domain in RY. Then

diamG .
221)  |u-7 < J(V”;"ea)s - f oy N Vu()ldy ae. inG,

where

— 1
U= /u(a:)d:t:,
5

and S is any measurable subset of G.
Now we shall prove the version of the Poincaré inequality.

THEOREM 2.12. Let G¢ be convex domain, G§ C G, G 1is bounded do-
main in RN. Let u € L*(G) and [ r*2|Vu|?dr < oo, a<4—N. Then
G3
(2.2.2) /7“"—4|u —|%dz < c/r"‘_2|Vu|2d:z:, Yo € (0,d),
G§ Gg
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where

~ 1
(2.2.3) U= / u(y)dy
/2 y
e/2

and c > 0 depend only on N,d, measSl.

PROOF. Since & < 4—N then from our assumption we have u € W1(G).
By density of C®°(G) N W(G) in W1(G) we can consider u € C'(G). We
use Lemma 2.11, applying it for the domains Gz /o 8nd S = Gg /o By this
Lemma and the Holder inequality, we have

2
224) fuie)-aP <el [ -y utlar) <

e/2

<c [ ey NiTu)iay [t vy =

Gera Gore
= gg'measﬂ / [z — y* V| Vuly)|2dy.
Gora
From (2.2.4} it follows
(2.2.5) / 4 u(z) - )%dz <
Gera
< gg - meass) / r"“"“( [ |z — y|1‘N|Vu(y)|2dy) dz <
o/2 Gora
< ¢ meas§) / 7'“_3( / |z — y|1_N|Vu(y)|2dy) dz =
2/ Gira
=c [ muP( [ ety Vi )ay<e [ revap,
Gera Gora Go/2

since

/ |z* 3z —y|'Vdz < cg*? / |lz—y|*Ndz = g*3- ge-measﬂ <
GZ/ﬂ Gi/z

o—2

<cg
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Replacing in (2.2.5) o by 27%p we can (2.2.5) rewrite so

/ r* 4y —72dz < ¢ / ro2|Vul’dz, Vo € (0,d),
(et Gk)
whence by summing over all k = 0,1,--- we get the required (2.2.2). O

2.3. The Wirtinger inequality: Dirichlet boundary condition

Let © < SV~! be bounded domain with smooth boundary 8Q. We
consider the problem of the eigenvalues for the Laplace-Beltrami operator
A, on the unit sphere

Hpu+9u=0, weQ,
(EVD)

u‘ =0,
1319)

which consists of the determination of all values ¥ (eigenvalues) for which
(EV D) has a non-zero weak solutions (eigenfunctions). In the following, we
denote by ¢ the smallest positive eigenvalue of this problem.

THEOREM 2.13. (The Wirtinger inequality) The following inequal-
ity is valid for all u € Wy (Q)

1

(2.3.1) / W) < / Voul? do.
Q Q

PROOF. Let us consider the eigenvalue problem (EV D) and denote by

a{u,v) :=/<un, Vo )dQ
Q

the bilinear form corresponding to the Laplace-Beltrami operator A,,.
From Theorem 1.55 applied to the spaces V = Wy 2(2), H = L2(Q) follows,
that the smallest positive eigenvalue ¥ of (EV D) satisfies

9 — a(v,v)

vewr2@) lvl3.q

Thus for all u € W(}’Z(Q)
[ 1Vl do = a(u,) > 9l
Q

a

REMARK 2.14. From the above proof follows that the constant in (2.3.1)
is the best possible.
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Now let 8(r) be the least eigenvalue of the Beltrami operator A, on 2,
with Dirichlet condition on 9€2,. According to the variational principle of
eigenvalues (see Theorem 1.55 ) we have also

THEOREM 2.15.
(2.3.2) / w2 (w)dQ, < % / IVouldQy, Yue Wri(Q,).
r Q‘Y‘
2.4, The Wirtinger inequality: Robin boundary condition

2.4.1. The eigenvalue problem. Let 2 C S*~! be a bounded do-
main with smooth boundary 8. Let 7 be the exterior normal to Q. Let
~y(w), w € I be a positive bounded piecewise smooth function. We con-
sider the eigenvalue problem for the Laplace-Beltrami operator A, on the
unit sphere

Apu+Pu=0, wel
(EVR)

Ou
v 'y(w)u‘an ’

which consists of the determination of all values ¥ (eigenvalues) for which
(EV R) has a non-zero weak solutions (eigenfunctions).

DEFINITION 2.16. Function u is called a weak solution of the problem
(EVR) provided that u € W1(Q) and satisfies the integral identity

10udn o=
(IT) !{ : : z9un} dQ +é£ y(w)unde =0

for all n(z) € W(Q).

REMARK 2.17. The eigenvalue problem (EV R) was studied in section
VI [87] and in §2.5 [363]. We observe that ¥ = 0 is not an eigenvalue of
(EVR). In fact, setting in (I7) n = w and ¥ = 0 we have

/|un|2dﬂ + /7(w)|u|2d0 =0 = u=0.
1 o0
Now, let us introduce the following functionals on W1(€Q)

Flu = [ |[Vou|%dQ + | v(w)u?de, Glu]= [ 42dQ,
[t ] /

Hlu| = /<|un]2 - 19u2>dﬂ + /’y(w)quo

Q2 an
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and the corresponding bilinear forms

1 Ou on
F(u,m) = / o Bs B dQ + / Y(w)undo,
! 80

G(u,m) = / undQ.
Q
‘We define yet the set

K={ue W1(9)| Gl =1}.
Since K C W(f), F[u] is bounded from below for u € K. The greatest
lower bound of Fu] for this family we denote by ¥ :
inf Flu] =49
ueK
We formulate the following statement:

THEOREM 2.18. (See Theorem of Subsection 4 §2.5, p. 123 [363)).
Let Q C S™ ! be a bounded domain with smooth boundary 8S). Lety(w), w €
O be .a positive bounded piecewise smooth function. There exist ¥ > 0 and
a function u € K such that

F(u,n) —9G(u,n) = 0 for arbitraryn € W'(Q).

In particular Flu] = 9. In addition, on Q, u has continuous derivatives of
arbitrary order and satisfies the equation A,u + Pu = 0, w € Q and the
boundary condition of (EV R) in the weak sense (for details see the Remarks
2.19 below).

PROOF. Because of F{v] is bounded from below for v € K, there is
¥ = 12;{ F[v]. Consider a sequence {vx} C K such that klim Flvg] = 9 (such
v —0oC

sequence exists by the definition of infimum). From K C W1(Q) it follows
that vy is bounded in W?(Q) and therefore compact in L?(£2). Choosing a
subsequence, we can assume that it is converging in L2(Q2). Furthermore,

(2.4.1) v — w320y = Glox —v] < e

as soon as k,! > N(g). From the obvious equality

G l:’Uk +vz] _ lG[’L’k] + %G[Uz] e [vk ;’Uz]

2 2

we obtain, using G[vg] = G[v;] = 1 and G[%5%] < £, that

Ve + U1 £
G 1-—-
[ 2 ]> 9
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for big k, . The functionals F[v] and G[v]| are homogeneous quadratic func-
tionals and therefore their ratio g%]l does not change under the passage
from v to cv (¢ = const # 0) and hence

Flv] .
—— = inf Flv] =9.
veé{,ﬁ(m G[v] vng [l

Therefore Flv] > 9G[v] for all v € WHQ). Since 2% € W(Q) together
with vg,v; € K, then

vk + U v+ £
— | > —_— _— = — .
F[ 2 ]_ﬁG[ 5 ]>19(1 19) ¥ —e¢, k,l > N(e)

Then, taking k£ and [ large enough that Flug] < ¢+ ¢ and Fly)]| < ¥+ ¢, we
obtain

2

. 1
F [”’“ ”’] = %F[Uk] +5Flu] - F [”’“T“’] <

1 1
< 5(19+€)+§(19+5) — (9 —¢g) =2e.
Consequently,
(2.4.2) Flop—v] —0, k,l— cc.

From (8.2.10), (8.2.12) it follows that ||vx —vi|lw1(q) — 0, k,I — co. Hence
{vi} converges in W1(Q) and as result of the completeness of W(f) there
exists a limit function u € W(€) such that [|vp — ullwrq) = 0, k — co.
In addition,

|Pluk] — Flul] = l [ (90 = (9aupydn+ [ 1)k - 2o
Q o0

= ‘/(vak — Vo) (Vuvg + Vou)dQ+
Q

+ ‘/"y(w)(v;.z —u)(vg + u)da| <
0
1/2

1/2
< |V vk — u)|2d9) ( |V (v + u)|2dﬂ) +
/ /

1/2 1/2
+ (d/ lug — u|2da) (é Y (w)|vg + u2da) — 0,
Q Q
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as k — oo, since by (1.6.2)

1/2
(a/ |’Uk- - ’ll,|2d0') < C”'Uk - U’HWI(Q) - 05 k — 0,
Q

1/2 1/2
while the terms Q;Ww(vk + u)|2dﬂ) and (af Y (w) vk + u|2d0) are
Q
bounded. Therefore we get
Flu] = klim Flug] = 9.

Analogously one sees that Glu] = 1.
Suppose now that 7 is some function from W1(Q). Consider the ratio

Flu+un _ Flul +2uF(u,n) + p?Fn]
Glu+pn]  Glul + 2uG(u, 1) + p2Gn]

It is a continuously differentiable function of ¢ on some interval around the
point 1 = 0. This ratio has a minimum at g = 0 equal to ¥ and by the
Fermat Theorem, we have

(F[u + ;m])' _ 2F(u,n)Glu] — 2Fu|G(u,n) _
Clu+pl ) g Goly]

0,

which by virtue of Flu] = 9, G[u] = 1 gives
F(u,n) - 9G(u,n) =0, Vne W'(Q).

The rest part of our Theorem follows from the smoothness theory for
elliptic boundary value problem in smooth domains (details see in §2.5
[363]). O

REMARK 2.19. Remarks about the eigenvalue problem (EV R)
(see Remarks on pp. 121 - 122 [363])

Consider a sequence of domains {Q'} lying in the interior of Q and
converging to €. Let the boundaries Q' of these domains be piecewise
continuously differentiable. The integral identity (/1) from Definition 2.16
for n € W1(Q) has the form

1 Ou 8n
2.4. 10u 8y i
(2:43) f {‘h’ Auw; O ﬁun} df + / Y{w)undo = 0
@ 50
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But

1 du n . 1 Ou 9y

— —d Q=1 ————Yun p dQ} =

/ {qi Ow; Ow; un} d ey {qi Ow; Ow; m]}
QI
. ou . ou
= Ql’lgﬂ [— /n(Awu + Ju) dQ + / 55 da] = Ql}inn / U do.
o Y aq
Thus, the equation (2.4.3) takes the form
. ou
(2.4.4) Ql’lglﬂ P do + ]’y(w)un do = 0.
oy an

If in addition 9" — 99 in the sense that not only the points of 8Q’ converge
to the points of 92 but also the normals at these points converge to the
corresponding normals of 0€2, then

do = li d
/ yun do = lim / Yun do,
an o

if we assume that « is the value on 3 of some function given on .
Then condition (2.4.4) takes the form

. ou
(2.4.5) n1,151Q / (8_7 + 7u) ndo =0.

a0’
Thus, u satisfies the boundary condition of (EV R) "in the weak sense."

Therefore, an eigenfunction of the problem (EV R) will be defined to be
a function u(x) # 0 satisfying equation in Q for some ¥ and the boundary
condition in the sense of relation (2.4.5). The number ¥ is called the eigen-
value corresponding to the eigenfunction u(z).

Theorem 2.18 proved implies the existence of an eigenfunction v corre-
sponding to the eigenvalue 9 in the sense indicated.

2.4.2. The Friedrichs-Wirtinger inequality. Now from the varia-
tional principle we obtain

THEOREM 2.20. Let 9 be the smallest positive eigenvalue of the problem
(EV R). (It exists according to Theorem 2.18.) Let & C S™~! be a bounded
domain. Let u € W(Q) and v(w), w € 6Q be a positive bounded piecewise
smooth function. Then

(2.4.6) 9 [ v?(w)dQ < [ [Vou(w)?d + | v(w)u?(w)do.
[ s [rasatn]

2193
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PROOF. Consider functionals Flu],G[u], H[u] on W1(Q) described
above. We will find the minimum of the functional F[u] on the set K. For
this we investigate the minimization of the quadratic functional H[u] on all
functions u(w), for which the integrals exist and which satisfy the boundary
condition from (EV R). We use formally the Lagrange multipliers and get
the Euler equation from the condition éH[u| = 0. By the calculation of the
first variation 0 H we have

0H[u| = —-2/(Awu + du)bud) + 2/ B_,éuda + 2/7(w)u5uda
Q 80

Hence we obtain the Euler equation and the boundary condition that are our
(EV R). Backwards, let u(w) be the solution of (EV R). By Theorem 2.18,
u € C?(R2). Therefore we can multiply both sides of the equation (EV R) by
u and integrate over ) using the Gauss-Ostrogradskiy formula:

0= / (uhou + 9u?)dQ = ¥ / u?dQ) — / [Vou2dQ+
Q Q Q

7] J ou 9 9 ou ,
+/8w,—( qza)dw 19/ dQ) — fleul dQ+/ auda—
Q 59

— 9 / u2d0) — / Voul2d0 — / yw)ulds = - Flu=
2 oA (by K)

Q

¥ = Flul.

Consequently, the required minimum is the least eigenvalue of (EV R). The
existence of a function u» € K such that

(2.4.7) Flu] < Fv] for allv € K

was proved in Theorem 2.18. |

2.5. Hardy-Friedrichs-Wirtinger type inequalities

2.5.1. The Dirichlet boundary condition. Let 6(r) be the least
eigenvalue of the Beltrami operator A, on , with Dirichlet condition on
0%, and let a neighborhood G¢ of the boundary point © satisfy the condi-
tion:

8(r) > 6 + 01(r) = 62 > 0, r € (0,d), where
B, 82 are positive constants and
(S) 61(r) is a function that is Dini-continuous at zero

d
lim 61(r) =0, [ Ml gr < 0.
r— 0
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This condition describes our very general assumptions on the structure of
the boundary of the domain in a neighborhood of the boundary point O.

THEOREM 2.21. (Generalized Hardy-Friedrichs-Wirtinger
inequality). Let U(d) = [ r*~2?|Vu|?dz is finite and u(z) =0 for z € T'§.
Gd
Then ’
0
(H-W) /r“_4|u|2dm <H(M\N,a) (1 + Lg—gn) /r“'2|Vu[2dx
ters ’ G
with some g € (0,d), where

H(\,N,a) = [4=o0 L ya 4 N —2)]7"

(*)
A= %(2—N+,/(N—2)2+490)
provided a <4 — N.
PROOF. Integrating (2.3.2) over r € (0,d) we get

41 12 T.a—2 ‘V ul2 ,ra—2 |V u‘2
/ r*Yu|2dx < ) ;’2 dr < o o) :2 d,
G G§

G
but

_._1,___1+(_1__1)_1_~ﬂ)_
Bo + 01(r) fo 6o +61(r) 6o 6y 6a (90 + 91(7’)) -
1 [6u(r)]
< —
=0 " Gobe
because of the condition (S). Hence, applying the mean value theorem with
regard to the continuous at zero of the function 6,(r) we obtain

2
GO/T""i[ulzdm < /r“'ZIV“’;I dr + 161 Q)IU(d)
T 92

Gg Gg
for some ¢ € (0,d).

Now we integrate the Hardy inequality over  and rewrite the result in
the form

4—N — a\2

(—Z—a-) /r“_4|u|2dx < /'r'a_?u%dx, a<4—N.
Gg Gg

Adding two last inequality and applying the formula for |[Vu|? and the de-

finition of the value \ we get the required inequality (H-W). a
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COROLLARY 2.22. V6 > 03dd > 0 such that
]r"“4u2dsc < (H(A N,a) +6) /7‘"‘"2 IVul|? de,
e G

provided the integral on the right hand side is finite and u(z) = 0 for x € T¢
in the sense of traces.

PRrooOF. Because of the function 6;(p) is continuous at zero we establish
the statement. a

For conical domains the following statements are true. »

COROLLARY 2.23. Let [ r*2|Vu|%dz is finite and u vanish on T'¢ in
G¢
the sense of traces. Then

(2.5.1) /T"“4u2(x)dw < (4_—;:—&—)2 /r""z (%)2613:

Gé Gg
Jfora<4—N and
(2.5.2) /ra‘4u2(:c)d:c <
G§

for alla € R.

1 a—4 2
O+ N=2) f’” Vol de
&8

PRrROOF. Integrating both sides of Hardy’s inequality (2.1.3) over Q we
obtain (2.5.1). The inequality (2.5.2) is derived similarly, by multiplying
the generalized Wirtinger inequality (2.3.1) by r®+~¥=5 and integrating over
r € [0,d]. O

THEOREM 2.24. Let u € WV2(GE) vanish on I'§ in the W12(GE) sense.
Then
(2.5.3) / rt2(Dde < H(\ N, ) / ro2 |7y da,
Gd G§
with H(A, N, &) from (*) for « < 4 — N, provided the integral on the right
hand side is finite.

Proor. If @ < 4 — N, then the assertion follows by adding the in-
equalities (2.5.1), (2.5.2) and by taking into account the formula 1.3.7. If
o =4 — N, then (2.5.3) coincides with (2.5.2). O
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COROLLARY 2.25. Let u € W12(Q) with ulse = ¢ € W/%(69). Then

for every 0 > 0 there exist a constant ¢ = ¢(8, A\, N, a) such that
(2.5.4) f r* 4 (z)dr < (1+8)H(A\N,a) / r® 2 |Vu)? dz
G§ Gg

@A N el i s

for @« <4 — N, provided the integral on the right hand side is finite.

PROOF. Let ® € W.,_,(G4) with P|rg = ¢ on I'g. Then the difference
v — ® satisfies the generalized Hardy-Wirtinger inequality

/r““‘l(u —®)%dz < H(M\N,a) /7‘“"2 [Vu—V®|®de, a<4—N.
G§ G§
Applying Cauchy’s inequality twice we obtain
/Ta_4u2dac = /7‘0"4 ((u— ) + 2ud — <I>2) dz
G§ G§
< H(\N, a)/r”‘_z (IVul? — 2(Vu, Ve) + |V|?) dx
Gy
+€ / ro4u2dr 4+ 71 /r"‘"“@Qdm
Gg G§
HO\N,a) / P2 (14 61)|Vul? + (1 + 67 1) VE) do
a3
+e / o4 2dr 4 &7t /r“’4<1>2da:
Jex e

IA

for all £ > 0,41 > 0. Thus the claim follows from the definition of the trace
norm, if we set § = <2 a

COROLLARY 2.26. Lete >0 and u € C°(G:)NWL2(G,) with u(z) =0
for x € Tc. Then for a < 4 — N we have
25.5) f r=t2(g)dz < o / r*=2|Vuf? do
G. G,

with a constent ¢ = ¢(\, N, o).
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Let us denote by ¢ : G — [0,1] a cut off function satisfying

b

1 for 0<r<p/2
() = ol
0 for r>p

I¢’(r)] < const-p~! for 0<r<np.

COROLLARY 2.27. Let u € CO(GE) N W12(GY) vanish on T¢. If a <
4— N and p € (0,d), then

(2.5.6) / ra~4¢2(r)ul(z)dz < H(\, N, ) / r“‘_2((1 + 8)¢3(r)|Vu?+

led G§

+(1+ 87 (r)e() ) da
for all & > 0, provided the integrals on the right hand side are finite.

PRrROOF. The assertion follows directly by applying the generalized
Hardy-Wirtinger inequality (2.5.3) to the product {(r)u(z) and the Cauchy
inequality with § > 0. O

LEmMMA 2.28. Let U(p) = [ r2"N|Vul?dz < o0, p € (0,d) and
G
Vu(p,-) € L2(R2) for almost all g € (0,d). Then

/ u@-FN_Qz
P or 7
Q

where hi(g) <

P U'(p),

do <
= 2X + 61(0)h1(0)

Va0 € (0,d).

ProoF. Writing U(p) in spherical coordinates and differentiating by p

we obtain
J _ a_u 2 l 2
U(p)—/(p(ar +2[%u
Q

Moreover, by Cauchy’s inequality we have for all e > 0

Ou _ ¢ 1 du\>
O 82 2 2(%)
Par = 3% +2&"0 (87*)

dQ.

r=p
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Thus, we obtain by the (2.3.2)

ou N-2, €+N 2
—+ — Q< —
/(puar+ 3 u)d /
Q Q
[
2e

|b
\

/(3
Qf() -
2%9/{5( ) ”N 2|vw 2} ag.

Let us choose € from the equality

%=%?_2=> _%(2 N+ (N - 2)2+46(9))

Then we get
ou N-2 , 0? 2
< £
/(p’uar-{— u)dﬂ_2€/|Vu|dQ,
Q Q
or in virtue of the condition (S)

du N-2 2) oU'(o)
U— + U a2 < .
n/ (" or 2 ee 2= NA+/(N-22+408) +6:(0)]

Because of (*) by elementary calculation we have

e+ N-2 9
< -_— =
< 29(9 /leu\ dQ +

(2-N+V(N-2)2+4[8+61(0)]) — 2\ =

=(2-N+/(N—-22+4]6 +6:(0)]) — (2~ N + /(N —2)2 + 46,)

= 01(0)h (o),

where
4 2
hi(o) = 5 = < :
T V(N =22+ 400, + 6:1(0)] + V(N —2)2+ 46, ~ VB + VB2
Hence follows the statement of Lemma. [l

COROLLARY 2.29. Let Gd be the conical domain, Vu(p,-) € La(Q) for
almost all p € (0,d) and U(p f r2=N|Vu|%dz < 0o, p € (0,d). Then

f u—QEqLN—qu
- 2
0

-
< — .
40 < 2-U'(p)

r=g
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ProoF. Writing U(p) in spherical coordinates and differentiating by p

we obtain
! _ @ 2 _1_ 2
U(p)—[(p(ar + 2V
Q

Moreover, by Cauchy’s inequality we have for all € > 0

ou € 1 ou\?
_— < 2 - 20 Y% .
Par = 2" * 2e" (8’!‘)

de.

r=p

Thus, choosing € = A we obtain by the generalized Wirtinger’s inequality
(2.3.1) with (2.5.11):

p“ar 2 u
Q r=

e+N-2 2 p2/ o\’ P 1
< ST (2% g0 = Ly
SDO+N-2) /'v“’“" W5 [ \5r) B=3U )
Q 19}

O

e+N-2 [ , p2/ au\? |

<L —_— L —
an < S5 /uam+2E ) a0
e Q Q

Let us assume that the cone K is contg,ined in a circular cone K with
the opening angle wy and that the axis of K coincides with {(x1,0,...,0)}
where z; > 0. We define the vector [ € RN by [ = (—1,0,...,0).

LEMMA 2.30. Let v € CO(GI)NW(GY), v(e) = 0. Then for any e >0

(2.5.7) /r“‘4v2dm < H(MN, a)/r“_2|Vv|2dm,
Gé Gé
where H(A, N, a) is determined by (*).

Proor. By Theorem 2.13 the inequality (2.3.1) holds. Multiplying it
by rN—5%2 and integrating over r € (g, d), by (2.5.11), we obtain (2.5.7) for
a=4— N.If a <4— N we consider the inequality (2.1.5) and integrate it
over £; then we have

1 _ -
Z(4—N—a)2/r°‘ oldr < /r“ 2v2dz.
Gd Ge

‘Adding this inequality with above for @ = 4 — N (see (2.5.2) for G%) and
using the formula |Vul? = (%’5)2 + = |Voul?, we get the desired. O
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LEMMA 2.31. Let v € C%(G) N WY(Q), v(0) = 0. Then for anye >0

(2.5.8) /T§_4v2d1; < H(AN,a) /r?‘zivmzdx,
G§ G§
where H(A, N, o) is determined by (*).

Proor. We perform the change of variablesy; = ¢;—€l;, i=1,...,N
and use the inequality (2.5.7); then we get

[ret@de = [ ety ey <
Gg G

< H(\,N, ) / w122 Vyv(y + el) [2dy = H(\, N, o) / re=2|VyPdz.
Gee G

LEMMA 2.32. Let u € WH2(GE) with u(z) =0 for x € T§. Then

3\*° 1 '
5. a—-2,-2,.2 dr<{Z . a—2 2
(2.5.9) /1‘E T u(z)x_(h) ——/\(/\+N_2)j7"€ |Vu|*de
Gé G§

for all o € R, where

sin €2, if 7 <wp < 27

h_{1, if O<wg<m,

PROOF. We consider the Wirtinger inequality (2.3.1). We multiply
both sides of this inequality by (27%d + €)*~2rN—3 with & > 0, taking into
account that

2 ldte<r+e<2%d+e in GW,
and integrate over r € (27%1d,27%d)

1
20—k a~2,2 1. < k a2 2
r 427" + €)* “udz YOy / ((27%d + )**|Vu|?) da.

G G

Since 7 <7+ <2 %d+ ¢ in G® and a < 2, we obtain

/ o= 2| Vu|?dz.

1
~2(9—k a-2,27.
r (27 %d + ¢€) udm_)\(A+N_2)
Gk

Gk}



68 2 INTEGRAL INEQUALITIES

On the other hand, by Lemma 1.11, in G

3
27kd+e=2-27%Fdte<r+e< Te =

3 a—2
27 kd+e)*? > (Z) re=2,

Hence it follows
EAN / PN f r*~2|Vu|3dz
h € “AMA+N-=-2) € ’
G&) felt))

Summing up this inequality for k = 0,1, 2,. .., we finally obtain the required
(2.5.9). O

THEOREM 2.33. Let G be a unbounded domain. Let u € W(G) vanish
for|z| > R>> 1. Then

(2.5.10) /r”‘“4u2(a:)dsc < H(A,N,a)/ra'2]Vu|2dx,
G a

with HO,N,a) = [(4—N —a)2/4+A(A+N —2)!

for o > 4 — N, provided the integral on the right hand side of (2.5.10) is
finite. ’

PROOF. Similarly to the Theorem 2.24, if we apply the Theorem 2.8
with p = 2 and « replied by a + NV — 3. 0

2.5.2. The Robin boundary condition. Let 9, be the smallest pos-
itive eigenvalue of the problem

BV {Aww + 9t =0, w e N,
0

8
=0, > 0.
:9%+%w|aﬂ %Yo

Let us define the value

(2.5.11) N 2NV 2P 4
5. = 5 .
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THEOREM 2.34. The Hardy-Friedrichs-Wirtinger inequality.
Let u € C%G) N WHG) and v(z) € C°(8G \ O), v(z) > 70 > 0. Then

/r"““uzdw < H(\N,0) /ra“2|Vu|2dm+/ra‘g’v(m)uz(m)ds ,
G§ G4 rg
(2.5.12)
1
H(MAMN,a) = ,a<4-—N
ANo) = TN+ la— N —ap ®
provided that integrals on the right are finite.

PRrOOF. By Theorem 2.20 the inequality (2.4.6) holds. Because of the
property of the monotonic increase of the eigenvalues together with the
increase of y(z) (see for example Theorem 6 §2, chapter VI [87]), from the
inequality v(z) > 40 > 0 we obtain ¥ > ¥¢. The latter means the validity
of the inequality

(2.5.13) AMA+N=2) [ ¥?dQ < [ |Vo2dQ+ | v(z)y?do,
[ [t
vy € WH(Q), v(z) € C°(QY), 7(z) = 70 > 0.

Multiplying it by 7V —5+2 and integrating over r € (0,d) we obtain

1 1
2514 a—4,.2 < a—2 2
(2.5.14) /r de”———_A()\+N—2)/T _r2|kul dz+
G G
1 -3 2
o <4 -—N.
+ )\(A+N—2)_/r v(z)u(x)ds, Va <4 - N

g
Hence (2.5.12) follows for & = 4— N. Now, let o < 4— N. We shall show that
u(0) = 0. In fact, from the representation u(0) = u(z) — (u(z) — u(0)) by
the Cauchy inequality we have £|u(0)|? < |u(z)|? + |u(z) — u(0)|. Putting
v(z) = u(z) — u(0) we obtain
1
(2.5.15) §\u(0)\2 / redr < /ra‘4u2(x)dz‘ + /ra_4\v|2d:c < 0.
Gd G G
(The first integral from the right is finite by (2.5.14) and the second integral
is also finite, in virtue of Corollary 2.3.) Since

d
/ro‘_4da: = measQ/ro‘+N_5dr = 00,
G 0
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by a + N — 4 < 0, the assumption u(0) # 0 contradicts (2.5.15). Thus
u(0) =0.
Therefore we can use the Corollary 2.3

4
2.5.1 s < o [,
(2.5.16) /r u x_l4—N—a|2 r® “uidz
e G§

Adding the inequalities (2.5.14), (2.5.16) and using the formula
|Vul? = (%’;{’-)2 + % |V.ul®, we get the desired (2.5.12). a

LEMMA 2.35. Let G¢ be the conical domain, Vu(p,-) € Ly(Q) for almost
all 0 € (0,d) and

Vip) = /TZ—NIVvlzda: + /rl'N'y(:c)v2(a:)ds < 00, g € (0,d).
s re

/ v@—i—N_zvz
“ar 2
Q

ProoOF. Writing V(p) in spherical coordinates

Then

)
< = .
dQ < 2)\V (o)

r=g

e

0
V(o) =/T2_N (/IVU|2dQ) rN_ldT+/7'1—N £/7(x)v|2d0) P24,
L 0

0 Q

:/Qr (/]Vu|2dﬂ) dr+j% (/7(m)|v|2da) dr
0 (9]

0 0

and differentiating with respect to g we obtain

V'(0) =! (9 (%)2 + —Elkum)

Moreover, by Cauchy’s inequality, we have for all € > 0

ov e 1 o2
OV &2 20V}
Par =27 +2£p (Br)

a0+ 2 [ o0 (o .w)do
r=e a0
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Thus choosing € = A we obtain, by the Friedrichs-Wirtinger inequality

(2.5.13),
v N-2, 92/ av\>
= < &£ =
/(Q’Uar*l— 3 'u) dQ_2E o dQ+
Y r=e Q
e+N-2 [, 0 av\?
< & -
5 f dQ < 5 ar dQa+
+ POTN-D /vavl dQ+/'y(m)v (z)do } = 2/\V(g).
3] 80

O

LEMMA 2.36. Let v € C°(G?) N WYGY), v(e) = 0 and y(z) > 7o > 0.
Then for any e > 0

(2.5.17) /r“'4v2dm <
G4

e

< H(\N,aq) /ra_2|Vvl2dm+/r“‘a’y(m)v2(:r)ds ,
Gd rd

where H(A, N, a) is determined by (2.5.12).

Proor. By Theorem 2.20 the inequality (2.5.13) holds. Multiplying it
by rN=5+@ and integrating over r € (£, d) we obtain (2.5.17) for & = 4 — N.
If &« < 4— N we consider the inequality (2.1.5) and integrate it over €2; then
we have

1 _ —
Z(4—N—a)2/ra Y2z < fr“ Zy2dz.
Gd Ge

Adding this inequality with above for o = 4 — N (see (2.5.14) for G¢) and

using the formula |Vu|® = (%)2 +5% |V,ul?, we get the desired result. O
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LEMMA 2.37. Let v € C°(G) N WY(G), v(0) = 0 and y(z) > v > 0.
Then for anye >0

(2.5.18) /rg‘_4v2dm <
Gg

< H(\ N, 0) / ro=2|y[2dg + / re=3a (@ (z)ds b,
Gt rg
where H(A, N, a) is determined by (2.5.12).

PROOF. We perform the change of variables y, = z; —¢l;, i=1,...,N
and use the inequality (2.5.17); we obtain

/r?‘4v2(:c)da: = / ly|*~ %02 (y + l)dy <
s e

SH()«,N,a){f ly[*2|Vyv(y + el)|Pdy+

Gi=

+ / ly|*3y(y + e (y + al)ds} =

= H(\ N, ) / 72| Vo|?dx + / r& 3y (z)v?(z)ds
Ge rg

O

REMARK 2.38. The inequalities (2.5.12), (2.5.17) and (2.5.18) are valid
in the case y(z) =~ (]-fﬂ) = -y(w) with the same constant H(A, N, a) but

—_ / —_ 9\2
(2.5.19) A= 2ZNF (‘;V 445

where ¢ is the smallest positive eigenvalue of the problem (EV R).

2.6. Other auxiliary integral inequalities for N =2

In the following lemmata we assume that IV = 2 and we denote by { a
cut-off function defined in the previous section.
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LEMMA 2.39. Let u € WJ(G). Then
[ receNvutas < clmax @) [ (rz=20%u+
z€GH
Gl ’ G
+ a27.6—2—a4-2|vu|2 + r;“(g’)2|Vu|2)da:
foralla >0, p e(0,d) with a sufficiently small d > 0.

PROOF. Taking into account that {(r)u(z) = 0 on JG§, we obtain by
partial integration

/r;aC2(r)|Vu]4dx = /r;“CQ(r)|Vu|2<Vu, Vu)dz =

Gg leld
N
= - /u(m) ZD,; (r;“{z(r)|Vu|2Diu)dx = —/u(:c) (r;"‘g2|Vu\2Au
G§ =t s
al z—el
+ 2r;%¢? Z D;juDjuD;ju — ar; 1 *(?|Vu|*(Vu, >+
iyg=1
+2r; ¢ | Vul*(Vu, E:—))dm
Therefore

[rencvuitan < [ @) (arst-2¢vap+

& &
+ 4r7 ¢ Vul? | D% + 27| Vul? ) de,

Applying the Cauchy inequality with ¢ > 0 we get

2

[recevttas < sup uie) [ (Er;%%w + Lose2evup)
.’cEG’g & 2 20

G§ H

2 1
+3ar;°‘§2[Vu|4 + ;T;QC2|D2’U]2 + ;r;"lg’|2|Vu|2) dz.

Choosing o = (7sup,egr [u(x)|)™" we obtain the assertion. O
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LEMMA 2.40. Let u € W22(G). Then for alle > 0,0 > 0

fr r& 2| Vyl4dz < c(sup lu(z /()Vu|2 + | D?ul?) dz

+a(sup [u(@))* [ ((2+ (0= D)re HValt 4 1222 Do) do
z€GE
Gd
with a constant ¢ depending only on o and d.
Proor. Taking into account that v vanishes on G, we obtain by par-
tial integration and Cauchy’s inequality

N
/ r’re 2| Vul|lds = /T2T§_2|VUIZZD,~uDiuda: =

G G =1
N
/uZDl 2o 2|Vu]2D u) dr /u(2r§‘2|Vu]2<Vu,m>+

j=1 G

N
+ (o — 2)r*r2 2| Vu|*(Vu, z — el) + 2r?r2 2 Z DyuDjuDjju+
i,j=1

N
+ 722 V2 ) Diiu) dz < / Ju (T2r§‘2|Vu|2|Dzv|+
=1 o

+2rr2 2| Vul 4 o — 2[T2r§"_3|Vu|3) dz <

1 ) 3
< /|u| (TQTQ“z(%IDQuF + -2-|Vu|4) + §6r2r§‘2|Vu|4+

02
+ Mr2rg_4|Vu|2)dx <28 sup |u| | r2r2 2| Vu|tdz+

— 2
re 2| Vy|? + 25 g
zeGy

S| =

G§

1
+ = sup |u| [ (Pr& D%+ (2+ (a— 2)%)r2=2|Vul?) da+
26 zEGY o
(0]

+26; sup Iulfr o=2|Vy|*dr 4 — = sup |u|c(d, a)/(|Vu|2+|D2u]2) dx
zel@ & 201 &
d

for all 4,81 > 0. Setting § = 1/(4sup e [uf) and 6y = 1/(4sup,eq ul), We
obtain the assertion. O
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LEMMA 2.41. Let u € Wo*(G) and

DguDlg’u, — Dlungu
2.6.1 = .
( ) v (DluDlgu - DguDllu

Then there exists a constant K > 0 such that
2
(2.6.2) /r2r§‘2<w,n>da <K / rpo=2 (Z_Z) do.
8G 8G\(réu{o})

Proor. To evaluate the boundary integral we decompose 8G into 8G =
I'd U {0} UT and take into consideration that v vanishes on 8G. At first we
verify that (w,n) =0 on I'f. We write I =T'¢ ; UT, (see the figure)

Figure 1

Now we have:
ou 8%u
Bl =0 37 =0,ni|  =0,m =-1= (w,m) =00nT%,.

Z11TT o T1Tio Tfo T'to
Further
™ .
ny| = cos 5 + wp ) = —sinwg and na , = Coswp.

2,0 2,0
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Let us perform the rotation of axes about the origin O, through an angle

wo
i = zcoswp+ xgsinwy,
xh = —z1sinwg + 2 coswy.
Then
a_ _ a E)
9z; = COSWog,r — silwog.r,
) : 9
Bz =smcu()5,,—$,1 +COSWO,9%:2-
Therefore
_ 2 in(2 .92 .
Ugyz; = COS™ Wolle, 2t — SIN(2Wo0 Uz’ o + SIN° Wolz) oy ;
1. 1.,
Usias = 5 sin(2wo Uyt z; + o8 (2wo )ty o — 5 sin(2wo ) Uz 41 5
.92 .
Ugyz, = SIN” Wolly) zy + SIN(2w0 Uyt 2y + cos? wolgy s ;
Since
ou 0%u
a7 =Y, a2 =Y,
8'7"1 Fg,o ax,] rg,o

then we obtain

(w,n)

. 1 .
= —sinwy {cos woliz, (cos(?wo)ul,flmr2 ~3 sin(2wp)uzyqy | +

d
F2,0

. . 2
+ sin wottg, (sm(Qwo)uxrlxr2 + cos woumémfz) }+
. 1 .
+ coswo — sinwolyy | cos(2wo)uz) o) — 3 Sin(2wo ) tes 2y ) —

— COS Wyl (- sin(2wp )uzt o1 + sin? wouxzzxfz) } =

= 0.

Now we calculate (w, n) ‘r‘ We suppose that T is a smooth curve. The last

means that there is a coordinate system (y;,y2) centered at zy € I' such
that the positive yp-axis is parallel to the outward normal 7 to I" at = and
the equation of the portion of I" has the form

y2 = ¥(y1), where 9" (y1) < K, K >0

and the number K can be choosen independent of xg. Let us perform the
transformation of coordinates

Yi — Cik (mkmxg)a i:1727

where (c;x) is the orthogonal matrix. In particular, we have

nl‘ = €21, n2| = 22,
r r
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8 _ ... 8 R
{8_:1:1 = Cl gy, + co1 D2
8 _ 0 N
Bz = Cl23,; T Ca2p,
Hence it follows

_ a2 2 .
Uzizy = Clthysy; T 2C11C21Uy,y, T Co1Uyayn;
Uz zy = C11C12Usy,y, + (C21C12 + C11622) Uy, g, + €21C22Uy,y,;
— a2 2
Uzyzy = ClalUyy; T 2612022”?1342 + CooUyoys

Because of u' = 0, we have u (y1,%¥(y1)) = 0 near zo. If we differentiate this
equality, then we get

Uy, +uy, Y (11) =0, ,
Uy F 20y WP (Y1) + Ugap ¥ (Y1) + g, ¥ (1) = 0.

But ¥/(y1)

= (, therefore
To

Ou
= ﬁ[m-w"(ya.

= 07 u”ylyl
£

Uy,
In addition,

ou ou

uml(mo) = C218—n|z y uxz(zo) = 022%
4]

&o

Now we can obtain

(w,n)

Ju ou
=21 3 {622 (—011612 E;nﬂb"(yl) + (c11622 + c21€12) Uy, g, +

xo€l

+ 021622Uy2y2) -

ou
—en (—cﬂ% "(y1) + 2c12c221y, 4, + C%zuyzyz) }+

Ou ou
+ ca {021 (—cllclza—n¢"(y1) + (c11022 + 21€12) Uy gy +

+ Cmczzuyzyz) -

ou
— C22 (—C%1 %d’"(yl) + 2e1161Uy,y, + Cgl“yzyz) } =

=" (y1) (%ﬁ‘) 2
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in virtue of det (c;z) = 1. Thus from above calculations we get the desired
(2.6.2). O

LEMMA 2.42. Let u € W2X(G). Then for all v,& >0 and all @ € R

(2.6.3) Juclu] = / r2r&=2((Dyou)? — DyyuDpu)dz <
G
< 7/r2r?‘2]D2ul2dm+C1(oz,’y, h)/?“:'QIVuFdsc-l-
& &
‘e / (IVal? + | D?u?) dz
Gg

with a constant ¢y depending only on «,y,d,diam G and meas G.

PROOF. Since G is a strictly Lipschitz domain and the set of all C§°(G)
functions is dense in W2'*(G), it suffices to prove (2.6.3) for smooth func-
tions.

In order to estimate Ju.[u] we integrate it by parts, once with respect to z;
and once with respect to x5 and add the resulting equations. As a result
we obtain

(2.6.4) 2Jgc[u] = /r2rg_2<w,n>da—
oG

- /r2rg_4<2:c + (a —2)(x —el),w)dz
G

with w defined by (2.6.1). The boundary integral in (2.6.4) we evaluate by

Lemma 2.41
2 o0—2 2..0—2 au 2
r?r2 > (w,n)do < K [ r*r27? | — | do.
on
r

oG

By properties of the function 7. and Theorem 1.29, we obtain

(2.6.5) /rzr?“z(w,n)da <cK /(1D2u|2 + |Vu[?)dz Ve > 0.
aG Gy
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The domain integral in (2.6.4) is estimated using (1.2.5) and the Cauchy
inequality with V- > 0:

(2.6.6) (2-a) / re3p2(
G

x

—el
= ,w)dw+2/ re=?|(z, w)|dz
Te le]
< 7/1"21“5"_2[D2u|2dz+cz(a,7,h)/r§‘2]Vu|2d$.
Pe. G
The desired assertion then follows from (2.6.5) and (2.6.6). O

2.7. Notes

The classical Hardy inequality was first proved by G. Hardy [142]. The
various extensions of this inequality as well the proof of Theorem 2.8 can
be found in [362, 108]. For other versions of the Poincaré inequality, see
§2.22 [108]. The one-dimensional Wirtinger inequality is given and proved
in Chapter VII [142]. The variational principle for the Dirichlet boundary
condition is given more detail in §4.1 [108]. The material in §§2.4.2, 2.5.2
is new. Subsection 2.6 is based on the ideas of [215] (see there Lemma 4.5,
Chapter II and §8, Chapter III).
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CHAPTER 3

The Laplace operator

3.1. Dini estimates of the generalized Newtonian potential

‘We shall consider the Dirichlet problem for the Poisson equation
n -
Av=g+ 3. D;f?, zeG,
j=1

(PE)
v(z) =0,z € 8G.

Let I'(z — y) be the normalized fundamental solution of Laplace’s equation.
The following estimates are known (see e.g. (2.12), (2.14)[129])

1 -
Nz Y N2

|D;L(z —y)| <

Te-v) =+

o 1=N
NWNI:E y 7,

(3.1.1)
1
|DyT(z — y)| < —|z —y|™",
WN
|DPT(z — y)| < C(N, B)|z — y* V2.
‘We define the functions

(312)  2(a) = [ T - o)y and w(z) = D; [ T(a— )W)y,
G G

under the assumption that the functions g(z) and fi(z), j =1,...,N are
integrable on G. The function z(z) is called the Newtonian potential with
density function g(z), and w(z) is called the generalized newtonian potential
with density function divf. We now give estimates for these potentials. In
the following the D operator is always taken with respect to the x variable.

LEMMA 3.1. Let 8G € CYA g € LP(G), p > N and fi € COA(G),j =
1,...,N, where A is an a-Dini.
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Then z € CY(RY),w € C*(G) and for anyz € G

(313) Dix(2) = [ Dir(a - v)alw)ds
G
61 Du = [ DT )W) - F@)ds-
Gy
P [ Dire = v,
e le
(i=1,..., N); here Gy is any domain containing G for which the Gauss

divergence theorem holds and f7 are extended to vanish outside G.

ProOF. By virtue of the estimate (3.1.1) for D;I", the functions

wi(z) = / DTz - y)glw)dy, i=1,...,N
G

are well defined. To show that v; = D;2, we fix a function { € C}(R)
satisfying

0<¢<1,0<¢ <2, ¢(t)=0fort <1,¢(E) =1fort>2

and define for ¢ >0

_ 1z —y
2e(a) = Gf o - )¢ (Z22 ) gtwpay.
Clearly, z.(z) € CY(RM) and

v(z) — Dize(T) = / Dz‘{ (1 —¢ (‘ma;y‘))l“(w - y)}g(y)dy

je—yl<2e

so that

(@) - Dise(o) <suplgl [ (1Dl + 210y <

jz—y|<2e

<o |

Z%A_"; for N > 2,
4z(1 + |1g2e]) for N =2.

Consequently, z. and D;z. converge uniformly in compact subsets of RY to
z and v; respectively as € — 0. Hence, z € C'(RY) and D;z = v;.
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By virtue of the estimate (3.1.1) for D;;I" and the Dini continuous of
17, the functions

wilz) = / DTz — ) (' (v) — 1 (x))dy—
Gg

— Fia) / Dil(z — y)v;(4)dyo, i=1,...,N
0Gg

are well defined. Let us define for £ > 0

ve(a) = ]Dra:— (=22 wpay

Clearly, ve(x) € C'(G) and differentiating, we obtain

ZDvaw) /D DT (z — yc(\ y'))f"(:u)dy=

_fa(x)/p Dil(z — y)C(l l))dy+

e —pe(EZUN (pigy) - 2 _

+C[DJ (Dir (“’f))(f(y) f(m))dy
|z — y| 3 ) — () Y dy—

lﬂy y)c( ))(f () - £ ))dy

— () / DiI'(z — y)v;(y)dyo

3G

provided ¢ is sufficiently small. Hence, by subtraction

lui(z) — ) Djve(z)] =

Jj=1

/D{l—(

lz—y|<2e

1)) pir - W - ) <

/ DT+ 2|Dir) Alle — yl)dy <

y|<ze
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2e N .
< C(N’ G) Of 'éi—t)“dt : _Zl[fg]A;x
j=

n
provided 2e < dist(z,0G). Consequently > D,ve(z) converges to u; uni-
j=1

formly on compact subsets of G as € — 0, and since v, converges uniformly
to v; = D;z in G, we obtain w € C?(G) and u; = D;w. This completes the
proof of Lemma 3.1. 0

Let By = Br(xg),Bs = Bag(xo) be concentric balls in RY and z(z),
w(z) be Newtonian potentials in Bs.

LEMMA 3.2. Suppose g € LP(Bs),p > N/2, and f7 € L*>(Bs),
i=1,...,N. Then

? ! 1
[2lo:z; < )R 7 ()gllms,s N =2;

(3.1.5)
|lo;B, < (P, N)R2_N+N/plllg||p;32’ N >3
N -
(3.1.6) [wlos, < 2R 1|05,
j=1
PRrROOF. The estimates follow from inequalities (3.1.1), Holder’s in-
equality for integrals and Lemma 3.1. a

LeMMA 3.3. Let g € LP(Bs),p > N, fi € C*4(By), j = 1,...,N,
where A is an a— function Dini continuous at zero. Then
z,w € CHB(B;) and

(3'1'7) qul,B;B1 < C(p, N, R, A_I(QR)) “gllp:Bz’
N

(3'1'8) ||w“1,3;31 < C(p, N, R,a,A"l(QR),B@R)) Z ”fjHU,A;BZ'
=1

ProoF. Let z,7 € B, and G = B,. By formulas (3.1.3), (3.1.4), taking
into account (3.1.1) and Holder’s inequality for integrals and setting
|t —y| = t,y — z = tw,dy = "~ 1dtdQ, we have

Dyz] < (Nuw) ™ / & — 3N |g()ldy <
Bz

, 1/¢
318 <Wew)glmf [ 1o -CVF )" =
By

p—1 _ _
= m(mﬂ? M/ =D\ gll 52
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N -
[Diw(z)| < (Non) B 30 1f7@)| [ dyor

i=1 EY:

3110) et SUPlae [ A=Yy <N S P
N prt » 4 |$ _ y|N - =
N 2R.A(t) N ‘ N
VY I ae e [ A <cmpeR Y (1P@)+ Xias).
G=1 4 j=1 j=1

Taking into account (3.1.3) we obtain by subtraction

Diz(z) - Diz(@)] < / DTz — ) — DiT@ — )| - lo(v) dy.
B

We set § = |z — T|,£ = 2(z — T) and represent By = Bs(€) U {B> \ Bs(£)}.
Then

/ IDiT(z — ) — D& — )] - l9(y)ldy <

Bs(g)
< ] DTz — )| - lg(w)\dy + ] DT — y)] - lg(w)ldy <
B;s(¢) B;5(&)
< o) { [ - Mgy + [ - ol Vlgt)lay)} <
Bs(£) Bs(£)
(3.1.11) < 2(Nwy)™? / & — y[*V|g(y)ldy <
Baa/z(m)
< o) ol ([ - pl0 V)" <
B3z (x)
1-N/p
<2WVem) gz (B) N+ N <

2Nuy) VPRR)IY Az g
~ {N+(1-N)yp}-1/» A(ZR) 9llp;B2-

(Here we take into account that 6% < (2R)*A(8)/A(2R) for all & > 0 by
(1.8.1), since 6 < 2R.) Similarly,
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|Dil(z — y) — DT(Z — y)| - l9(y)ldy <

B2\ B;(£)
<le-3l [ IDDIGE- vl low)dy
B3\Bs(£)
(for some Z between = and T)
(3.1.12)
<ourt [ E-y Moyt [ -yl Moty
ly—§[=é ly—§1=6
(since |y — €] < 2|y — 7)
/ 1/17’
(3..13) <2Nuitloln( [ l-u ) <
ly—€1>4

< N § N2y 1P (p — 1)YP | g|lps,

i  Ala—z
<N Ry - e AL,

From (3.1.11) and (3.1.12), taking into account (1.8.3), we obtain
(3.1.14) |Dyz(z) — Diz(Z)| < e(N,p, R) A" (2R)||9ll ;5. Allz — T1)
< ¢(N,p, R)A™'(2R)|gllp:B, B(lz — Z|), Vz,T € By

The first from the required estimates (3.1.7) follows from the inequalities
(3.1.5) and (3.1.14).
Now we derive the estimate (3.1.8). By (3.1.4) for z,T € B; we have

N . . .
Diw(@) - Daw(z) = 3 (ff (2T + (F(a) - £ (z))fzj)

j=1
N

(3.1.15) +Ts+ Ta+ Y _(F1(z) — F1(Z)) Tss + T,
j=1

where

Ty = [ (DiT(z — y) — DT — 4))v; (9)dyo,
8B

Ty = / DiT( — y)v;(y)dyo,

3By
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Js = / DyT(z — ) (F(x) — /(1)) dy,
Bs(&)

Jy = / DT (T — y)(F(y) - f2(z))dy,

B;(¢)

T55 = / D;;T(z — y)dy,
B2\Bs(§)

T = / (Dy;T(z — y) — DyT(T —y)) (F(T) — 7 (v))dy
B2\ B;s(&)

We estimate these integrals thusly

Tl <o -3l [ IDDLE - idyo
8By
(for some point T between z and )

< |z — Z|Nwy! / & — y)[Nd,o < NN~z — 7|R"!
8B
(since | —y)| > Rfor y € 0B,)

< N22N-1A(z —Z))R™16/A(8) < N2V A(|z — Z|)/ A(2R)
(since § = |t — T| < 2R and 6/A(6) < 2R/ A(2R) by (1.8.1))
< N22VaB(6)/A(2R) (by (1.8.3)).

Next,
|Joj| < 2N,
5] < w7 ae / =) "N Alz - yl)dy
Bs(§)
< i Flas / @ — )N Az - yl)dy
B a(x)
36/2

A(t)

= N[ ae / Tdth(%)a[fj]A,zB(a) (by (1.8.2)).

0

By analogy with the estimate for 73 we obtain

| Ja| < N(g)a[fj]A,EB(a)-
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By (3.1.1) it is obvious
| Tss| < 2.
At last

Tl <lo=al [ IDDGT@E =917 @) - F)ldy
Ba\B;(g)
(for some point T between z and T)

< |z - Tle(IV) / F— )™V 1P @) — £ )ldy

ly—¢|>6
< (N8 a2 / & — )|V LA — w])dy
|ly—¢&]>6
<aWilflas [ - y)I“N‘lA(glf _ y|)dy
[y—&|=6

(since [7 3] < Sle — 4] < 3F - )

< C(N)waS(g)a[fj]A;f/Rt—zA(t)dt
5

(since A(—gt) < (g)a.A(t) by (1.8.2))

< cant 2 (3) 1PlasB®) by (189)

Now from (3.1.15) and the above estimates we obtain

N

|Diw(@) - Ditw(z)| < oV, 0) Y (If(z)| A 2R)+
j=1
(3.1.16) +lag +1Flaz)Ble—3) Vo7 e B

Finally, from (3.1.10) and (3.1.16) it follows that w(z) € C%B(B;) and the
estimate (3.1.8) holds. Lemma 3.3 is proved. O

Now we can assert a CL'® interior estimate.

LEMMA 3.4. Let G be a domain in RN, and let v(z) € CHB(G) be a
generalized _s_olutz'on of Poisson’s equation (PE) with g € L%(G),
fi € C%A(G), where A is an a-Dini function. Then for any two concentric
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balls By = Br(xg), Bs = Bagr(xe) CC G we have

N .
(38117  [oluss < C(lvlo;sz gl i, + 3P Ho,A;Bz),

where ¢ = ¢(N, R,a, A"}(2R), B(2R)).
Proor. It is easily shown that the Newtonian potential, given by
V(z) = / I'(z - y)g(y)dy + / D;T(z — y)f (y)dy
el G
is a weak solution of the equation from (PE). We can write

(3.1.18) v(z) =V(z) +9(z), =& By,

where 7(z) is harmonic in B;. By Lemma 3.3, we have

N N
(3.1.19) Wl < <(lolz,m + 3 17 o ).

=1
where ¢ = ¢(N, R, o, A"*(2R), B(2R)). By Theorem 2.10 [129] we obtain

N ~ ~
. _ |D;v(z) — Diu(y)|
(3.1.20) [[olly,BB: < [?]1,8, + sup <
' ;TayiBl B(|z —yl)
THY

~ ~ |z — y|
< |#]1,B, + sup |D*D|. sup ——T< <
l | ! a,-egl | l w,yiB1 B(lm - yl)
z#y

< ci1(R, A"Y(2R)) D28, < c2(R, A7 (2R))[0o,B, < c2(|vlo,5,+[V0,B,) <

N
< ea(|vlo,z, + 9l &z, + 3 177 1l0,5)
j=1

in virtue of Lemma 3.2. From (3.1.18)-(3.1.20) it follows the desired estimate
(3.1.17). O

Corresponding boundary estimates can be derived in a similar way. Let
us first derive the appropriate extension of the estimate for the generalized
newtonian potential w(z) with density function divf.

LEMMA 3.5. Let fi € COA(BF) (j = 1,...,N). Then w € C8(B;)

and

N
(8121)  wl, p,5r < e(p, N, oo, A2R), BER)) Y 11l aiss-
j=1
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PRrRoOOF. We assume that B, intersects J since otherwise the result
is already contained in Lemma 3.3. The representation (3.1.4) holds for
Djw(z) with Gy = By. If either ¢ or j # N, then the portion of the
boundary integral

/ DI'(z — y)v;(y)dyo = / DIz — y)vi(y)dyo =0
aBInz dBfnx
since »; or v; = 0 on X. The estimates in Lemma 3.3 for D;w(z) (i or
j # N) then proceed exactly as before with By replaced by By, Bs(¢)
replaced by Bs(£) N By and 8B; replaced by By \ ¥. Finally Dyyw can

be estimated from the equation of the problem (PE) and the estimates on
Dywiork=1,...,N —1. O

THEOREM 3.6. Let v(z) € C? (B_;) be a generalized solution of equation
(PE) in Bf with g € LT=(B}),fi € COA(B}) (j = 1,...,N), where A
is an a— function satisfying the Dini condition at zero, and let v = 0 on
BN X. Thenv € CYB(BY), and

N
312)  Wollss < <(1vloss + ol o + X 17 o nat ).
j=1

where ¢ = ¢(N, R,a, A™'(2R), B(2R)).

PROOF. We use the method of reflection. Let z' = (xy,...,2n8-1),

%

z* = (', —zn) and define
7’ = . = 1, ceey N .
(@) { Fn vz )

We assume that B intersects Y; otherwise Lemma 3.4 implies (3.1.22).
We set By = {z € RV|z* € Bf} and D = Bf UB; U(By N X). Then
fi(x) € C%4(D) and
I f2llo,ap < 20 fllo aymy (E=1,...,N).
Let
G(z,y)=T@-y)-T-y") =Tz -y) -TE" -y
denote the Green’s function of the half-space Rf , and consider

B@) = [ DG W Wy, Dy= Dy Do)

By
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For each s = 1,..., N let w;(x) denote the component of u (x) given by

wi(z) = / DyT(z — 4)fu)dy + / D, T(z* — 1) f*(y)dy.
Bf BF

We can see that uw(z) and w;(z) vanish on By N X. Noting that

/I‘(x* —y)f(y)dy = / Tz —y)fily)dy, (=1,...,N-1),
By By

we obtain

@l%)w@ﬁ=mP/f@—wﬂmw—/T@—wﬁM@}
BY D

(i=1,...,N—1).

And when ¢ = N, since

f Dy D(z* —y) N (y)dy = / Dy Tz — ) ¥ (y)dy,
B}

By
we have
(3.1.24) wy(z) = Dy f T'(z - )Y (v)dy.
D
Letting

w(z) = —D; / Tz —y) )y, (i=1,..,N),
D

we have by Lemma 3.3

N
||w*||1,3;3;r < c(p, N,R,a, A_I(ZR)’B(QR)) Z I|f£”0,A;D <
j=1

N
S 20(17: N7 Ra «, A_1(2R)’ B(2R)) Z Hf] ”O,.A;B;' *
=1

Combining this with Lemma 3.5, we obtain

N
(3:125)  wly gpr < B, N, Rycy AL 2R), BER)) . 15l a5
j=1
Now let 7(z) = v(z) — V(z), where V() is the Newtonian potential
from Lemma 3.4. Then %(z) is harmonic in By and %(z) =0 on X.
By Schwarz reflection principle ¥(x) may be extended to a harmonic function
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in B, and hence the estimate (3.1.22) follows from the interior derivative
estimate for harmonic functions by Theorem 2.10 [129] (see the proof of
Lemma 3.4). O

3.2. The equation with constant coeflicients. Green’s function

Let . iy .
Eo = azojDij, a:’)j = 0;(7)z

be a differential operator with constant coefficients o satisfying
v[€[? < o &&; < plgl?, VEERY

for positive constants v, i and let det (af)j ) =1.

DEFINITION 3.7. The Green’s function of the first kind of the opera-
tor Ly for the domain G is the function G(z,y) satisfying the following
properties

e LoG(z,y) = 0(x—y), z € G, where §(x —y) is the Dirac function;
e G(z,y) =0, zedG.

For the properties, the existence and the construction of Green’s func-
tions in detail see, for example, §5.1 [43], chapter I [313]. We note the
following statements

LEMMA 3.8. Let G(z,y) be the Green function of Ly in R_IA_’, N > 3.
Then G(x,y) satisfies the following inequalities:
IJ’. - yl2—N5
G(z,y) < { Cynlz —y|*~ Y,
Cryynlz —yI™;
Clx — y|*-V,
DGy < { U
Cynlz —y|™™;
Cl:!: - y]_N:
1Py Gl {Cyzvlw -y,

where C depends only on v, s, N.

Proor. Let A be the matrix (af)j } and T be a constant matrix which
defines a nonsingular linear transformation 2’ = 27 from RY onto RY.
Letting ¥(z') = v(zT') one verifies easily that

ag Dijv(z) = ag Dyso(z’),
where A = T*AT, T* = T transpose. For suitable orthogonal matrix T, A is
a diagonal matrix A whose diagonal elements are the eigenvalues A1,...,An
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of A. If Q = TA~Y/2, where A71/2 = [)\_1/253] then the transformation
z' = zQ takes Logv = A'G(z), that is Ly is transformed into the Laplace
operator. By a further rotation we may assume that @ takes the half-space
zn > 0 onto the half-space 2y, > 0.

Since the orthogonal matrix T preserves length, we have

ATV2a] < o) = |2Q| < XTV/3)a);
A=min{A,...,Anv} =v; A=max{\,...,An} = p.

It follows that é(:r’ , ¥} = G(zQ,yQ) is the Green function of the Laplace
operator in the half-space z/y > 0.

The corresponding inequalities for G(z/,y') are well known, since we
know é(a:’ ,y’) explicitly (see, for example, §2.4 {129] or §§8, 10 Chapter I
[813]). Here C depends on N only . Now required inequalities follow easily,
since the dilation of distance is bounded above and below with 4 and v. O

In the same way we can prove the next Lemma. (Here we use the
explicit form of the Green function for a ball, see, for example, §2.5 [129],-
and a homothety.)

LemMA 3.9. Let G(z,y) be the Green function of L for the ball B,(0).
Then G(z,y) satisfies the following inequalities
G(z,y) < Cle —yI*™", |V.G(z,y)| < Cla —y|'™N, forz,y € B,(0);
32
Oy 0y;
fory € By»(0), |z| =0, N >3,

o
< -N
5y V=Clew)| < Ce,

(z,9)| < Co~™ N1,

where C' depends only on v, 1, N.

Finally, we note the Green representation formula
oG
(3.2.1) u(y) = /u(m) (2, y)d + /G(:r, y)Loudz,
e Yo &

where G(z,y) is the Green function of the operator £y in G and ~ denotes

the conormal derivative, that is the derivative with direction cosines a§n;,
t=1,.-+,N.It is well known that this formula is valid in a Dini-Liapunov
region (see Chapter I [313]).

Now we establish a necessary preliminary result that extends Lemma
3.4 and Theorem 3.6 from Poisson’s equation to other elliptic equations with
constant coefficients. We state these extensions in the following theorem:
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THEOREM 3.10. In the equation
af
(ECC) Lou = a§ Diju = g(z) + ]‘;:c(fr), o =dll, ze @
J
let A= (a) be a constant matriz such that
vigl® <af6g; < ulgl, VEERY
for positive constants v, p.

(a) Let G be a domain in RY, and let v(m) € CYB(G) be a general-

ized solution of equation (ECC) with g € LT-= a(G) e COAG), (5 =
1,...,N) where A is an a-Dini function. Then for any two concentric balls
31 = BR(.’L'(]),BQ = Bapr(xo) CC G we have

(3.2.2)

< c(wo ot loln i, 43 ||ff||0ABz)
Jj=1

where ¢ = ¢(N, R, a, v, i, A"1(2R), B(2R)).

(b) Let v(z) € GO(B;') be a generelized solution of equation
Lov = g(z) + Q%;im%—:l in Bf with g € LTs(B}), fi € C™A(B}),
(j =1,...,N), where A is an a— function satisfying the Dint condition
at zero, and let v=0 on BN X. Thenv € CI'B(B+), and

(3.2.3) vlly 555 < C(\Ule B T Il9ll 2 .ps + Z 177N, 45 B"‘)

where ¢ = ¢(N, R, o, v, i, A"1(2R), B(2R)).

PrOOF. Let T be a constant matrix which defines a nonsingular linear
transformation y = z7T from RY onto RY. Letting 7(y) = v(zT) one verifies
easily that -

a§ Dijv(x) = @ Di;T(y),
where A = T AT, Tt = T transpose. For suitable orthogonal matrix T', A is
a diagonal matrix A whose diagonal elements are the eigenvalues Ay, ..., Ay
of A. If Q = TA~'/2, where A‘I./ 2 = [Ai—l/ 251’- |, then the transformation
y = @ takes Lov = g(x) + %}l into the Poisson equation Av(y) =
i) + ¢ agy(:’). By a further rotation we may assume that ) takes the

half-space zx > 0 onto the half-space yy > 0.
Since the orthogonal matrix 1" preserves length, we have

ATV2Jz] < |yl = eQ| < XTM2|a;
A =min{\Ay,..., Ay} =vand A = max{A,...,An} =p.
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It follows that if B(yp) is the image of B(z) under the transformation

y = () then the norms || & || 4 defined on B and B are equivalent, that is
these norms are related by the inequality

Hllkam < 1Tl 4.5 < ellvlle,am; k=0, 1,
where ¢ = ¢(k, N, v, ).

Similarly if §+(y0) with boundary portion & on yy = 0 is the image of
B (xp) with a boundary portion o on ¥, the norms || @ ||¢_4 defined on Bt

and BY are equivalent, i.e. these norms are related by the inequality
C-IHUHk,A;B‘FUU < ”;J”k,A;EJruﬁ < C””“k,A;B"’UO‘; k= Oa 17
where ¢ = c(k, N, v, ).

To prove part (a) of our Theorem we apply Lemma 3.4 in B(y,) to
obtain

N
ol < el g5, < O(Flas, + 155, + D 1Pl a5, ) <
j=1

N
< 0 (Iolos + ol + 3 1Mo )

j=1
which is the desired conclusion (3.2.2).

Part (b) of our Theorem is proved in the same way, using Theorem
3.6. O

3.3. The Laplace operator in weighted Sobolev spaces

Let G be a conical domain. We consider the Dirichlet problem for the
Poisson equation

(DPE) {Au =f inG,
u=¢ ondG.

It is known from the classical papér by Kondrate’v [161] that the behav-
ior of solutions of (DPE) is controlled by the eigenvalues of the eigenvalue
problem (EV D) for the Laplace-Beltrami operator A,,.

THEOREM 3.11. (See Theorem 4.1 [275], Theorem 2.6.5 [199]).
Let p € (1,00),k € N with k > 2 and a € R. Let A be defined by (2.5.11)
with the smallest positive eigenvalue ¥ of (EVD). Then the Dirichlet problem
(DPE) has a unique solution u € V[, (G) for all f € V}FZ3(G),

S0
v € VEZYP(0G) if and only if
—“A+2-N<k—-(a+N)/p< A
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In this case the following a—priori estimate is valid
lullve, (@ < C{HfHV;;Z(G) + ||90||Vp'j;1/p(ag)} :
3.4. Notes

Section 3.1 is a modification of Chapter 4 {129]: we replaced Holder-
continuity by Dini-continuity.

Discussions of boundary value problems for the Laplacian in nonsmooth
domains can be found in a number of works (see e.g. [2, 9, 91, 89, 113,
116, 126, 127, 133, 135, 161, 177, 198, 199, 213, 242, 243, 249,
278, 248, 322, 327, 332, 347, 350, 356, 398, 403, 407, 408, 409)).
Theorem 3.11 was established for the first time in the work [161] for p = 2.
V.G. Maz’ya and B.A. Plamenevsky [275] extended this result to the case
1 < p < oo. For details we refer to [199] (in particular, see there Notes 1.5,
2.7).

Other boundary value problems for the Laplace equation or for gen-
eral second order elliptic equations and systems with constant coefficients in
nonsmooth domain have been studied in many works: W. Zajaczkowski and
V. Solonnikov [409] - Neumann problemn in a domain with edges; P. Grisvard
[133], M. Dauge [92], N. Wigley [407, 408] - Neumann and mixed problem
on curvilinear polyhedra; L. Stupelis - Neumann problem in a plane angle,
N. Grachev and V. Maz’ya [131, 132] - Neumann problem in a polyhedral
cone; Y. Saito - the limiting equation for Neumann Laplacians on shrink-
ing domains [351]; V. Maz’ya and J. Rossmann [291]-[293] - the mixed
problem in a polyhedral domain. J. Banasiak [30] investigated the elliptic
transmission problem for Laplacian in plane domains with curvilinear poly-
gons as its boundaries. New elliptic regularity results for polyhedral Laplace
interface problems for anisotropic materials are established by V. Maz’ya,
J. Elschner, J. Rehberg and G. Schmidt [262]. Some unilateral boundary
value problems (e.g., Signorini transmission problems with mixed boundary
conditions) in polygonal and polyhedral domains are studied in [82].
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CHAPTER 4

Strong solutions of the Dirichlet problem for
linear equations

4.1. The Dirichlet problem in general domains

Let G C RY be a bounded domain. We consider the following Dirichlet
problem

Lu = a¥(x)Dyju(z) + a*(z) Dyu(z) + a(z)ulz) = f(z) in G,
(L)
u(z) = ¢(z) on 0G,
where the coefficients a®/(z) = a’i(z) and satisfy the uniform ellipticity
condition
VIE® < a¥(2)6é; <l VEERN, 2@
with the ellipticity constants v, u > 0.

Let us recall some well known facts about W?(G) solutions of this
problem.

THEOREM 4.1. (Unique solvability) [129, Theorem 9.30 and the re-
mark in the end of §9.5].
Let G satisfy an exterior cone condition at every boundary point and let
be given p > N. Let
e 0 € CUHG)NL*®(G), a*eLiG),ac’(G), i,j=1,...,N,
where g > N, ifp=N, andg= N, if p > N,
e a(r) <0V eG:
e f€LP(G), ¢ € COOG).
Then the boundary value problem (L) has a unique solution
u e W2P(Q) N CO@).
THEOREM 4.2. [129, Theorem 9.1] (Alexandrov’s Maximum Prin-
ciple) Let u € W'li’cN (G) N C%G) satisfy the boundary value problem (L).
Furthermore let

. (f:mﬂz)m,few(c:),

i=1
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s a(z)<0VzeG.
Then

supu < supu’t + | f| v (g),
G oG

(Ber)”

THEOREM 4.3. The E. Hopf strong maximum principle (see The-
orems 9.6, 3.5 [129]).
Let L be elliptic in the domain G and a*(z),i = 1,...,N;

a(z) € L(Q),a(x) < 0. If u € W2N(G) satisfies Liu] > 0(< 0) in G,

loc
then u cannot achieve a nonnegative mazimum (non-positive minimum) in

G unless it is a constant.

where ¢ depends only on N,v,diam G and

LN¥(G)

Applying the Alexandrov Maximum Principle to the difference of two
functions we obtain the following comparison principle.

THEOREM 4.4. (Comparison principle) Let L be elliptic in G, let
1/2

(fj |ai|2) FELN(@),Vz € G: a(z) <0 andu,v € W2V (@)NCO(G)

loc
i=1

with Lu > Lv in G and w < v on 8G. Then u < v throughout G.

THEOREM 4.5. [129, Theorem 9.26], [383] (Local maximum prin-
ciple) Let G be a bounded domain with subdomains T,G’ such that T C
G' C G and suppose that a* € L9(G),q > N and a € LN(G). Let
u € W2N(G) N C%G) satisfy Lu > f in G and u < 0 on T'N G where
f € LN(G"). Then for any p > 0, we have

supu < ef|fllzaeen + lullzr@n}

where the constant ¢ depends only on N, u,v,p, |la|q.¢, llalnve, T, G, G.

THEOREM 4.6. [129, Theorem 9.13] (L?-estimate) Let G be a bounded
domain in RY and T C 8G be of the class C*'. Furthermore, let u €
W2P(G), 1 < p < 00, be a strong solution of (L) with f € LP(G) and u =0
on T in the sense of WHP(G). We assume that

e a¥ c CUGUT),

e a' € L9G), whereq> N if p< N andq=pifp> N,

e a € L"(G), wherer > N/2 if p< N/2 andr =p if p> N/2.
Then, for any domain G' CC GUT,

(4.1.1) lullwes@) < e(lulzr@) +1flze@)
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where ¢ depends only on N,p,v, i, T,G',G, the moduli of continuity of the
s lallzr@)-

N 1/2
(z W)
i=1 Li(G)

THEOREM 4.7. [4, Theorem 15.2] Let G be a bounded domain of class
Ck with k € N, k > 2 and suppose that the coefficients of the operator
L belong to C*~%(G) and have C*~2— norms bounded by K. Let u be a
solution of (L) with f € W* 22(G) and ¢ € W*1/PP(3G). Then u ¢
WHP(G) and the following estimate is valid

coefficients a¥ on G’ and on

lullwrecy < e{Ilfllwr-20(c) + l@llwi-1er@a) + lulle@ } »

where ¢ depends only on v,u, K, k,p, the domain G, and the modulus of
continuity of the leading coefficients of L.

By use of a suitable cut—off function we obtain the following localized
version of the above theorem.

THEOREM 4.8. [4, Theorem 15.3] Let G be a bounded domain of class
C* with subdomains T,G' such that T C G' C G. We suppose that the
coefficients of the operator L belong to C*~2(G) with k € N, k > 2. Let u be
a solution of (L) with f € WF=2P(G") and ¢ € W*=Y/PP(8G' N 8G). Then
u € W*P(T) and the following estimate is valid

lullweecry < c{lIfllwk-20c1) + @l wi-105 0606 + 1ullLe@eny } -

The stronger result is valid for the case N = 2; it is the Bernstein
estimate (see in detail §19 Chapter II1, the inequality (19.20) [216]).

THEOREM 4.9. Let G C R? be a bounded domain and G' CC G\ O be
any subdomain with a W2P, p > 2 boundary portion T = (0G'NOG) C G\
O. Letu € W%(G) be a strong solution of the equation o (z)D;ju(z) = f(z)
in G' withu =0 on T in the sense of W(G). Let the equation satisfy the
uniform ellipticity condition with the ellipticity constants v, u. Then, for any
subdomain G” CC G' UT we have

”u”%VZ(G”) < C/ (u2 + f2) d.’L‘,
G/

where C depends on v, u,p,T,G",G’.

Finally, we cite one theorem about local gradient bound for uniformly
elliptic equations with two variables in general form.

THEOREM 4.10. [215, Theorem 17.4], [216, Theorem 19.4].
Let G C R? be a bounded domain and G’ CC G \ O be any subdomain with
a WP p> 2 boundary portion T = (8G'NAG) C HG\ O. Let u € W3(G')



4  STRONG SOLUTIONS OF THE DIRICHLET PROBLEM
100 FOR LINEAR EQUATIONS

be a strong solution of the problem (L) in G', where L is uniformly elliptic
and satisfy

la*(2), a(x), f(@)l|Lr(cy < 1 and |o(@)llwzrey < w1
Then for any subdomain G" CC G'UT there is a constant M, > 0 depending
only on v, u, ju1,p, |ull2,cr, lellwee gy and G',G”, T such that

sup |Vu| < M.
Gll

4.2. The Dirichlet problem in a conical domain

In the following part of this chapter we denote by G C RY a bounded
domain with a conical point in O as described in Section 1.3.

DEFINITION 4.11. A (strong) solution of the Dirichlet problem (L) in
G is a function u € W2(G:) N C°(G), Ve > 0 which satisfies the equations
Lu = f for almost all £ € G and the boundary condition u = ¢ for all
z € 0G.

In the following we assume that the coefficients a*(z),a*(z) and a(x)
satisfy the following conditions
(a) the uniform ellipticity condition
vi€|® < a¥(x)éil; < ulél® VE€RN, zeC
with some v, u > 0,
(aa) a*(0) = &7,
(aaa) a¥ € C°(G), o' € LP(G), a € LP*(G), p > N,

(b) there exists a monotonicelly increasing nonnegative function A
such that

1/2

N
> la(@) —a¥)P | < Alz-y) and

i,Jj=1

N 1/2
| (Z a"%x)) + |z)%la(x)] < A(z|)
i=1

forz,y € G.

REMARK 4.12. The Assumption (b) guarantees that the coefficients a'
and a are bounded on G \ B.(0) for every € > 0.
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4.2.1. Estimates in weighted Sobolev spaces.

THEOREM 4.13. Let u be a solution of (L) and let \ be the smallest
positive eigenvalue of (EV D). Suppose that

(4.2.1) Jim A(r) =

and that f € W(G), v € WY2(8G) N C°(BG), where
(4.2.2) 4-N-2<a<2
Then u € W2(G) and

el ) < (Iullzze) + 172 )+ 19l ga )
where ¢ > 0 depends only on v, u, o, A, N, max A(|z|), G. Furthermore,
if N < 4, there exists real constant ¢z indepenée'rcz;t of u such that
(4.2.3) lu(z)| < eolz| N2 vz e GY
for some d > 0.

PROOF. Let ® € W2(G) N C%G) be an arbltrary extension of the
boundary function ¢ into G. The function v = u — ® then satisfies the
homogeneous Dirichlet problem

(L) a* (z)Dyjv(z) + a*(z)Div(z) + a(z)v(z) = F(z) inG,
o v(z) =0 ondG,
where
(42.4)  F(z) = f(z) — (a“(z)Di;®(z) + a'(z) D; ®(z) + a(z)®(z)) .
Since a¥(0) = &7, we have
(42.5) Av(z) = F(z) ~ (e (z) — a¥(0)) Dijv(z)—
— a*(z)Dyv(z) — a(z)v(z) inG.
Case: 4 —-N<a<2
Integrating by parts we show that

/r“'QvAvda: = g% 2 gvdﬂ /(Vv vreo 2v>d:z—-

Ge

= —€% Z/v——dﬂ -/ r*2|\Vo|?dz+



4 STRONG SOLUTIONS OF THE DIRICHLET PROBLEM
102 FOR LINEAR EQUATIONS

+ 2—-a) /r“"“lv(:c, Vu)dz.

Ge

Integrating again by parts we obtain

/ro“4v<m, Vuydr = %/(r"‘“‘m, Vvi)dz
G,

G,
N
= __5 / dQd. ——/ 2ZDi(r”‘_4zi)d:c
i=1

Qe
= ——%50‘—3/1)20795 - --—-——~———N +; —4 ]ra_4v2dsc
Q. Ge

because
N N s
ZDi(Ta_4$i) = NT‘a—4 + (Qt — 4)Ta—5 Z -—;}— = (N 1a-— 4),,.0:—4

Thus, multiplying both sides of (L)g by r® %v(z) and integrating over
G, we obtain

(4.2.6) g°2 / ?dﬂ + f a- 2|vu|2dx+2—;‘3‘-sa—3 / v2dQ.+
Q. Ge Q.

+ g—;—Q(N +a—4) /r““4v2d$ =

- / r“‘zv(‘F (z) + (a¥(z) — a¥(0)) Dyv(z)+

Ge
+ a*(x) Div(z) + a(m)v(a:)) dz

Let us estimate in the above equation the integrals over £1.. To this end
we consider the function

M(e) = max |v(z)]-

Since v € C%(G) and v = 0 on G, we have
sl_1}r£rr10M () =0.
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LEMMA 4.14.

e—+0 o
Qe

(4.2.7) lim 2 f va—:dﬂe =0, Va€ [4-N,2|.

PROOF. We consider the set G2* and we have Q. C 8G%. Now we use
the inequality (1.6.1)

|w|dQe < ¢ [ (jw| + |Vw|)de.
Joinze

2e
GE

Setting w = v% we find

lw| + |Vw| < c(rzvgz + [Vv|2 + 7'_2'02).

Therefore we get
ov
v“

(4.2.8) f 5 dQ. <ec / (rvZ, + |Vo|2 4+ r~20?)dz.
Qs G?s

&

Let us now consider the sets Gil/,ge and G% C Gigs and new variables

z’ defined by = = ez’. Then the function w(z’) = v(ez’) satisfies in G3 /4
the equation

. 2w

(4.2.9) a¥ (sx’)m + ea’(ex’)
9t

dw

a3+ e2a(ex’)w = e F(ex).

Applying the L?-estimate (4.1.1) for the solution w in G? 14 We get

(4.2.10) / (|D12w|2 + |V'w|2) dz' <¢ / (e*F?(ez’) + w?) d’,

2 5/3
Gi G1/2

where ¢ > 0 depends only on v, i, G, max A(|2'|}; and
r’'€G

1/2

2
lD:2w|2 — EN: _82,w_ lvf,w|2 — al _a_ 2
L | O’ Oz" | Z oz’
3,5=1 L) i=1 5

Returning to the variable z, we obtain

(4.2.11) / (r’|D*v]? + Vv +r2v?)dz <c / (r’F? + r~%v%) dz.

2e 5/2
G2 Goee
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By the Mean Value Theorem 1.58 with regard to v € C°(G) we have

5/2e

/ r~2v%dr = /TN—?’/v?(r,w)der

o¥ 2@

(4.2.12)

< 25(818)N_3/v2(015,w)d9
Q

< 26N 20N -3 112 (01¢) meas
for some % <6, < -g—

From (4.2.8), (4.2.11) and (4.2.12) we obtain

(4213) / ’U%‘ dQE < CléN_zMz(g) + ¢ / T2F2d.’12 <
0

5/2
€ (;5/25

< cleN_zMQ(s) + g2 / r*F2dz, Yo < 2.

5/2e
GE/Z

Hence we obtain as well

(4.2.14) 50“2/ Ov dQ. < 16N AM2(e) 4¢3 / r®F2dz, Vo < 2.

v—
or
Q 5/2e
€ G£/2

By the assumption (b) and hypotheses of our Theorem we have that F €
w2 (G), hence

(4.2.15) lim / r®F2de =0
g—+40

5/2
6;5/25

and thus from (4.2.14) with regard to that v(0) = 0 we deduce the validity
of statement (4.2.7) of our lemma. O

Further, we get by the Cauchy inequality

/r"‘_%(x)F(x)dx = /(ra/2_2v(a:))(ra/zF(:r))dx

Ge Ge

(4.2.16) é/r"‘_4v2dm+ %/T"Fﬁx)d:c
Ge

A

2
G
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for arbitrary 6 > 0. Applying assumption (b) together with the Holder and
the Cauchy inequality

(42.17) r* 2y ((a¥(z) — a¥(0)) Diju(z) + a*(z) Dyv(z) + a(z)v(z))
< A() (P 2|1 D)) (%~ 20) + r*7 2| V| (r o) + r®4?)
< A(r) (r*| D] + 272 Vo? + 2r*10?)
Finally, from (4.2.6)-(4.2.17) we obtain

(4.2.18) /"‘“2|Vv|2dw+————(N+a 4)/ o~hyldg

gaa-gf —dQ +‘5/ e~ dy2dr+
Qe

+ —2}3— /ran(a:)d:c + /.A(Ia:i) (7“"|D2v|2 + ra_2|Vvi2 + 21"""4112) dz

for all § > 0.
Let us now estimate the last integral in (4.2.18). Due to the assumption
(4.2.1) we have
(4.2.19) Vo >0 3d > 0such that A(r) <dforallO<r <d.
Let 4e < d. From (4.2.11) and (4.2.12) follows that

/ | D%|2dx < cge® Nt 4¢3 / r*F2dz,

3e 7/2
Ge Gle®

and consequently
[Awreipia = [ awreiitas+ [ A +
G Gs.

-I-/.A(r)r"lDzv]?dm < g A(3)eTN -4

b osA(3e) / rF2dg 4 § / (r* F*(z) + r**)dz

7/2e
Gs/2

G2d
+c5  max A(r /|D2 IPdx
r&(d,diam G]
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for all § > 0 and 0 < € < d/4. Here, c5 depends only on a,d and diam G.

Applying all this estimates to the inequality (4.2.18) we obtain

-
(4.2.20) /r"‘_2lVU|2da: + ——-2—a(N +a —4) /r"““dew
Ge Gs

< sa_2/v%d95 + c5.A(3¢e) (ea_N_4 + / r"deaz) +

2 o

+ 6/(T°‘_2|VU|2 + r*4?)dx + 67/ | D?v|%dx + csfr“F2(x)dx
Ge Ggq G

for all § >0 and 0 < e < d/4.
Finally, we apply Theorem 4.6 to the solution v of (L)y in Gq4

/ |D%v2dx < ¢ / (v + f% + 6 Dy;® + a'D; @ + a®|?)da
Ga Gaj2

(4221) S Cg /(v2+fz)dm+010||S0|l‘2}[/3/2,2(3(;'\]"3/2)'
Gaya

Furthermore, if (2 —a)(N +a—4) = 0, then we apply the inequality (2.5.7).

Now, let § > 0 be small enough and d > 0 chosen according to (4.2.19).
Then we obtain from (4.2.20) and (4.2.21) the estimate

0
/ (r*| D*v|? + ro72|Vo|? + 727 %0?) dz < 272 /va—:dﬂe+
Ge Q.
+ C11A(3€) <6a+N—4 + / raFng;> + Cl?(”””%ﬂ(G) + ”‘in%D (G)+
G?/Ze *

e/2

2
lelyars o, )

where the constants ¢;; and cj2 do not depend on e. Letting € — 40,
applying Lemma 4.14 and noting that

g2 g < 02 gy + 19l 272 e,
we obtain the assertion of our theorem in the case L.
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CaseIl: 4 —N -2\ <a<4—-N.
Due to the embedding theorem (see Lemma 1.37) we have

FeWin©), veR(0G)NCOOG).
Therefore, by case I, u € Wi_y(G) and
/ (r*=N|D?u)? + r*~N|Vu]? + r~Vu?) dz < const.
G
According to (4.2.10) with ¢ =27%d, k= 0,1,2,..., we have
/ (|D’2w|2 + |v'w|2) dx’ < ci3 f (274 d* F?(z'27%d) + w?) do’.
Gl G2

Multiplying both sides of this inequality by (2~ *d+£)*~2 with ¢ > 0, taking
into account that

2% 1ld+e<rte<2®d+e in GW
and returning to the variables £ we obtain
/ r2(r +£)*7?|D?%vldz < ¢13 / (T2(7. I

Gk Gl—NuGkuGk+1)
+r72(r + e)“‘zvz) dz.

Since r. <r+4+¢e < %T‘E in G with A defined as in Lemma 1.11, we obtain
(4.2.22) / r’rg ™| D?v|dz < c14 / (r2r§‘_2F2+

G&) G-1yyGkuG(k+1)

+ r—2rg-2v2) dz.
Summing up the inequalities (4.2.22) for £ =0,1,2,..., we finally obtain

(4.2.23) /1'27'2‘_2[D2v|d:c <ew / (r*F? + r2r22y?) dz,

Gé Jert

since o« < 2 and r. > hr.
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Let us return back to the equation (L)y. Multiplying its both sides by

7%~ 2y and integrating by parts twice we obtain (compare with case I)

2«
2

(4.2.24) / re=2|Vy2ds = 2= %4~ N - a) / ro=ty2dg+
G G

+ /r?‘% ((aij () — a¥ (0)) Dj;v(z) + ai(x)Div(z) + a(:c)’u(:t:)) dr—
G

- fr?_ZvF(x)dx.

G

By assumption (b) we obtain with the help of the Cauchy and the Holder
inequalities and the properties of the quasi—distance

N N
ro=2y ( Z (a¥(z) — a¥(0)) D;jv(z) + Z a*(x)Dyv(z) + a(m)v(m))

i,g=1 i=1
< e(h)A(r) (r&2r?|D?v]? + r2 3| Vo) + 7220~ 2%)
and
r¢ 2P (z) < gr?_Qr_2v2 + c(8, R)r®F?, V&> 0.
Decomposing G into G = G& U G4, we then obtain from (4.2.24)
[retiwtde = omA@ [ (2200l < re 2 wel +
G Gg

9_
2

+r§‘_2r'zv2)da: + - (4-—N-0) / ro~42dz +
G

+~g— /rg_Qr_zvzdx + 15 / (|D*v]? +v?) dzx
(er Gq
(3, h) / r P2 (@)ds = Jy + Jo + Js + T + Js
¢

with an arbitrary § > 0. Let us further estimate the right hand side of this
inequality.
By the inequality (2.5.8),

2-a

2

J1 < (4— N —a)H(\N,a) / r*~2|Vu|*dz.
G
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Thus
C(/\,N,a)frg_2|Vv|2d,r < Jas+Jg+ Jy+ J5,
G

where

CO\N,a) =1 222

(4—= N—-a)H(\, N, ).
The integrals Jy, J3, J4 and J5 can be estimated using (4.2.23), (4.2.21)
and Lemma 2.32 . In this way we obtain
CO\ N, a) / P2\ VolPde < ei [A(d) + 9] / re=2| 7y *da
G G
+ o (Iollza@ + 1145 g+ 19lgor o)

where C(A, N,a) > 0 due to assumption (4.2.2). Choosing § > 0 and d > 0
small enough and passing to the limits as € — 0, by the Fatou Theorem we
obtain the assertion, if we recall (4.2.23).

The estimate (4.2.3) follows directly from Lemma 1.38. O

REMARK 4.15. On the belonging of weak solutions to W?(G).
Suppose that all assumptions of Theorem 4.13 are fulfilled with

0¥ (z) =8, z€C Vi,j=1,...,N; feILXG), p € w/*d6)NC(5G).

We want study the regularity of a weak solution u € W1(G). The following
statement is valid.

PROPOSITION 4.16. A weak solution u € W(G) belongs to W?2(G), if
either

e N >4
or

o N=2and 0 < wy <
or

s N = 3 and the domain G is convers;
or

e N=3and Q C Qp = {(19,(,0)]0 < |9 < ¥p; 0 < ¢ < 27}, where
¥ is the smallest positive root of the Legendre function Py (cos ).

Proor. We apply Theorem 4.13 with o = 0. Since A > 0, then for
N > 4, o = 0 the assumption (4.2.2) of Theorem 4.13 is fulfilled and
therefore we have

(4.2.25) u € Wa(G) = u € WQ).
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If N=2and 0 < wy < 7, then the assumption (4.2.2) with & = 0 of
Theorem 4.13 is fulfilled too, since in this case we have that A > 1. Therefore
we have again (4.2.25).

Let now N = 3. If G is a convex domain, then it is well known (see e.g.
Theorem 3 §2 chapter VI [87]) that A > 1. Then the assumption (4.2.2)
with o = 0 of Theorem 4.13 is fulfilled and therefore (4.2.25) is valid. Let
G C R3 be any domain and denote by €y C S? the domain, in which the
problem (EV D) is solvable for A = 1, thus

A+ 5(1+3)Y =0, we,
«p\ —o.

N

Now the assumption (4.2.2) with @ = 0 of Theorem 4.13 is fulfilled, if
A> % Again in virtue of the monotony Theorem 3 §2 chapter VI [87] we
have Q2 C 2. Let us reduce to the eigenvalue problem above. We shall look
for the particular solution in the form 1 = ¢(99). Then (%) is a solution of
the Sturm-Liouville problem

{ﬁ . % (sinﬁ%) + %Ib =0, |9 <Y,
$(—0) = P(B0) = 0.

A solution of the equation of this problem is the Legendre function of first
genus () = Py/3(cos?). This function has precisely one root on the inter-
val (0,7) (see e.g. example 39, page 158 [404]); we denote it by . O

THEOREM 4.17. Let u(z) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r) Dini continuous at zero. Sup-
pose

o0 3/2
p(z) € Wy_N_\(9G),
(4.2.26)
/ / PA=N=2=1(0) £2(2) g 1 f PN ()2 (2)do < oo,
fe Y]

where H(r) is a Dini-continuous at zero, monotone increasing function, \
is the smallest positive eigenvalue of problem (EV D) with (2.5.11).
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02
Then u(z) € W4_n(G) and

W, _n(G§

42.27) Jul%. < Co® (nu|\%,c,-+ / / PA=N=21 (1) £ (2 dart
G

+ / PN (02 ()do + (] are

ac 4—N—-2x

), 0<p<d,

where the constant C > 0 depends only on v, u,d, A(d), H(d), N, A, measG,

d d
and on the quantities [ ﬂrﬂdr, f Ef;t)-dr.
0 0

PROOF. Since u € Wa_5(G) due to Theorem 4.13, it remains to prove
(4.2.27). Let

U(p) := /rz_N]Vulzda:.
Gg

We write the equation (L) in the form
Au(zx) = f(z) - (aij (z) —a¥ (0)) Dyju(z) — a*(z) Dyu(z) — a(z)u(z),

multiply both sides by r>~Nu and integrate over G§, o € (0,d). As a result
we obtain

(4.2.28) U(p) = /7'2‘Ng0(x)g—zdcr —+—/ (ng% + ?uz) dQ
re !
+ /rz_Nu(x) ((aij(a:) - a%(0)) Dyju(z)+
Gg
+a¥(z) Diu(z) + alz)u(z) - f(z))dz.
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We will estimate each integral on the right hand side of this equation from
above. From Lemma 1.41 and Lemma 1.40 it follows by Cauchy’s inequality

/r*”cp(m)%da = /(\/’}WTG‘N)N%%) . (H‘l/z(r)r(l“m/zgo(z))da

g g

2
(4.2.29) < H—égz]r?’_N (g—:) da-{—%/?{_l(r)rl_N(pz(x)da
r2 e

< CIH(Q)HUH?%Z_N(G& +a /H_l(r)rl_Nc,o2(m)da.
rg

Moreover, as in the proof of Theorem 4.13 we have

/rz'Nu(a:) ((a¥ (z) — a'(0)) Dyju(z) + a*(z) Diu(z) + alz)u(z)) dx <
G§
(4.2.30) < A(p) / (r*N|D2u? + V| Vu? + 2r Nu?) da
G
and

/rz_Nu(:v)f(m)dm = /('\/WT_N/2'LL(.’E)) . (H_l/g(r)rZ_Nﬂf(a:))dx

G§ G§

(4.2.31) <o) / N @)z + / H-1(r)rN £ (c)dz.
GQ

2
Gg
Therefore, using (4.2.29)—(4.2.31) and Corollary 2.29, (2.5.8) from Corollary
2.25 we obtain from (4.2.28) the inequality

U(0) < 200 +elo) [ V1D Puds + K(oU(e) + Flo),
G
where

(2(0) = A(0) + c1H(0),

8(e) = c2(A, N)(A(o) + H(e)),

Flo)=c1 [ H Y r)yr " Np?(z)do+

(4.2.32) < s

+3 [ H N f2 (z)dz+
G§

+ea (A V) (Ale) + H(0)) ||‘P“§%3/2

n(T8)
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Let us now estimate [ r*~"|D?u|?dz. To this end we consider again the
Gg

estimate (4.2.11) with £ replaced by 27%¢. Summing up this inequalities for

k=0,1,..., we obtain

/1‘4_N|D2u|2dw <c3 / (1"4"NF2(:1:) + T_Nuz) dr + cal|@| sz, -
W n (T2
G8 Gge

Inserting the definition (4.2.4) of F and applying (2.5.2) we then obtain

(4.2.33) / r*=N|D%y|?dz < CS(U (20) + 1f%0 a0+
W n(G29)
G§
2
+ ”(P”v\"/i’_’,v(rg@)) 0<p<d

and therefore

(4.2.34) Ule) < 2U"(0) + cse()U(20) + 6(0)U (0) + Flo)+

- 2)\
+ o + llell )
cse(@) (I71ps gy + Wolgrn o

Moreover we have the initial condition (see the proof of Theorem 4.13)

(d) /T (Vul*dz < c| [lullzz2(g) + | F] ) |I(’0“v?/4/_N(6G)
Gg
= W.
From (4.2.34) we obtain the differential inequality (CP) from §1.10 with
P(o) = 2(1-6(0));
(4.2.35) {N(@) = Tese(o);
_ngx £(e) ( 2 2 o2 )
Q(Q) ) (Q) + Cg o ”f” Q Ggg) + ||(70“&4/—N(I‘32)

4~N(

Now we apply Theorem 1.57. For this we have

2p 2p
/P(s)ds =2AIn2 — 2)\/ %)-ds <2Aln2=
o e

(4.2.36) exp (T’P(s)ds) =22 exp (—2)\ ng_(;_)ds) <22,
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Furthermore,

20
B(e) = Moo [ Pls)as) < 2 Bcse(o) =

d d
(4.2.37) / B(7)dr < 2X2% ¢ f @dm
e 0
In addition,

d d
/P(s)ds =2 lng —2A é(.—()‘S—)-(/is =
o

e
d

o - jp(s)ds) < (9)" ool [ <o(8)"

(4.2.38)

_Tss —2,\37‘ d@'g 6_21\
exp( Q/'P()d)i(f) p(%o/ sd)57<79'> ’

O<o<T<d

Now by Theorem 1.57 from (1.10.1) by virtue of (4.2.38), and (4.2.37) we
obtain

(4.2.39) Ule) < CSQ»‘{VB + /dT_Q’\Q('r)dT},

d
where cg is a positive constant depending only on N, A, | ﬂg%g“’—)ds. We
0

d

now have to estimate [ 772*Q(7)dr. For this we recall (4.2.35) and therefore
e

we obtain

d d
(4.2.40) /T_2'\Q(T)d7' < 2A]T—2A—1f(T)dT+
0

e

d
d —2A-1 2 2 d
+ coel )f ! (”f s iz T1Phpern em ) &7
e
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Now, by changing the order of integration in virtue of the Fubini Theorem
in the integral

d T 'l d
/7'_”‘_1(/ T‘a}C(’I‘)d’I’)dT = /'r‘"lC(r) (/ 7_2’\_1d7)dr+
[/ 0 0] [/
d d o~ — -2 g
+/7‘°‘IC(T /T‘Z’\_ld'r)dr = -———/r"‘IC(r)dr+
27
0 T 0
o 1/
. (4] —2)\ < _ (44 —2)\
/\/ K@) (r=>* —d *N)dr < 2)\/1" 0 “*K(r)dr+
0
1 7 1 4
A a-ax <X [ a2
+ o | T K(r)dr < 2)‘/7' K(r)dr,
) 0
we find
d
1) /7"2)“1</ 1"4_NH_1(’I‘)f2(.’L‘)d:L')dT <
e Gg

< % / rA=N=22 =10 £2( ) dez.
G,

< L /TI—N_Z)‘H—I(T)(;Oz(.Z‘)dO'.
2A
rg
In the same way we find
d

3) / 212 0 drs—nsonom
W, n (3" 27

4 N— 2)\(1—‘0)

e
d
g [rRG <ol
Q
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Hence and from (4.2.39) and (4.2.35) it follows that

(4.2.41) U(p) < Cp* (||u||§,G + / A N=2 1) 2 (x)dz+
G

Hlolye o+ f rl-N-ZAH-wrw(x)da), 0<o<d
aG

4—N—2x

At last we apply (4.2.33) and deduce from (4.2.41) the validity of (4.2.27).
a

THEOREM 4.18. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r) Dini continuous at zero. Sup-
pose

00 o 3/2
FeW, n(G) olz) € Wy n(BG)NCO(BG)

and there exist real numbers s > 0, ks > 0 such that

(4.2.42) ks =: sup Q_S(HfH‘,f,Z_N(GS) + \l@llv?,i/a )

-~
Then there are d € (0, %) and a constant C > 0 depends only on v,

d A
u,d, A(d), N, s, A, measG, and on the quantity [ Jr’"—)dr such that Vo € (0,d)
0

(4.2.43) ”u”v?/j_,v(cg) < C(”“H?,G + ”f”v?fj_,\,(G) + ”CPHWZ/_QN(BG) + ks) X
o, if 5> ),
X g*ln?’/z(%), if s = A,
o°, if s <A

PRrROOF. We consider the function v = u — @ as a solution of homoge-
neous problem (L)g in the form (4.2.5) with (4.2.4). Multiplying both sides
of (4.2.5) by r2~Nv and integrating over G§, we obtain

(4.2.44) /rz_NvAvdx = - / (rZ“N(a,"j (z) — a¥(0))vvz,o, +
G§ G§

+ ¥ Naiy, v+ rz“Na(x)vz) dx + /rz_NvF(x)da:
G
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Integrating by parts twice we show that

dv N -2
2-N 2 2-N 2
(4.2.45) /r vAvdr = /(Q’U—ar + > v )dQ — /r |Vv|*dx

leld Q G

We define

Vo) == /r2'N|Vv|2dx.
G§
Because of (b), Corollary 2.29, (2.5.3) and the Cauchy inequality we obtain
for V6 > 0

(4.2.46) V(o) < -—)\V’( 0) + cA(o) / 4-Ny2 dz+

G§

é 1 2 9
+eA@V(@ + 5V + 5 (110 o+l )

+-n~ (5%

If we take into account (4.2.42), by (4.2.33), we get

(4247) V(o) < 55 2 V(@) + cLA(Q)V (22) + 2 (A(0) + 6) V(o) +
+C33k§ 2 V¥6>0,0<p<d.
1)s> A

Choosing 2Aczd = p°, Ve > 0 we obtain from (4.2.47) the problem (CP)
§1.10 with

Pleo) = % — 2)hcg A(g) — oY, N(p) =2Xc; A(QQ) and

Qo) = k2cag® 17",

Now we have

d d
/’P(T)dT =2\ lné - 2)\02/ A7) dr — “- =
0 T 5
]
20

d d
exp(/'P('r)dT) <22 /B(T)d’l’ < 22>‘+1/\01/—A5_T) dr
0 o

0
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and

exp(— fd P(T)dT) < (-g)2A exp(Q)\cz /d Af’dv) exp(e™'d%) =Cs(§)2/\

if we recall (1.10.2).
In this case we have as well

d T d
/Q(T) exp (—/P(a)da)dT < k§040592)‘/723_2)‘_5'1d7' < k2ce0®,
o 0 )

since s > A.

Now we apply Theorem 1.57. From (1.10.1) by virtue of deduced in-
equalities and with regard to (4.2.33), we obtain the first statement of
(4.2.43).

2)s< A
In this case we have from (4.2.47) the problem (CP) §1.10 with
_ m__z,\(1g— 0 _ QACQ—AE)Q ). N(o) = 2rer Aé")

Qo) = kZegd 1?1, V6 > 0.

P(o)

b

Now similarly to the case 1) we have

20 d d
exp( / P(T)dr) < 2209, / B(r)dr < 22*1¢, / AT 4 and
[ 0

T
[«

d d
A(1-6 A(1-6
exp(—/P(r)dr) < (5)2 “ )exp(ZAcngS_T)dh') =cQ(§)2 “ ),
e 0

if we recall (1.10.2).
In this case we have as well

d T d
/Q(T)exp (—/'P(a)da)dT < kicma“lg”(l—‘” /725_”‘(1"5)"1«:17' <
e e

o
2. 2
< kici10°°,

if we choose & € (0, 232).
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Now we apply Theorem 1.57. From (1.10.1) by virtue of deduced in-
equalities we obtain

V(o) < c12(Voo™ 09 +k20%) < c1s(Vp + k2) 0™,

because of the choice of 8. Taking into account of (4.2.33) we deduced the
third statement of (4.2.43).

3)s=2A

As in the proof of Theorem 4.17 we consider the function U/(p) satisfying
the equation (4.2.28). We will estimate each integral on the right hand side
of this equation from above. From Lemma 1.41 and Lemma 1.40 it follows
by the Holder inequality for integrals

ou ou
2-N (3—N)/2 -2
/'r () Bnda = /(r 3 ) (7‘ cp(:c))dcr <

n
g g

1/2 1/2
(4.2.48) < /rB“N(g—u)zda - /rl‘Ngoz(:L')dcr <
ré " H
2
< alelgye oo lths ey TPz o =
< clksg*uunﬁ/: @ + cak2o?

in virtue of the assumption (4.2.42). In the same way

(4.2.49) _/rz"Nu(a:)f(m)da: = /(T_N/Zu(a:)) . ('rz‘N/zf(:E))dm <

G§ G&

[+ 4]
< U1/2 o < ck, 0’ U2 ().
SO S kT

Moreover, as in the proof of Theorem 4.13 we have
(4.2.50) /rz‘Nu(m) ((aij(x) —a%(0)) Diju(z) + o' (z) Diu(z)+
G§

+a(@)u(x))dz < Alg) ul’,»

4-~(GB)
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Therefore, using (4.2.48)—(4.2.50) and Corollary 2.29 we obtain from (4.2.28)
the inequality

O 1yt 2 A
< =U'(o) + Alo)|Ju||% +erkso®|ull o
U() < 55 U'(0) + Alo) HWZ_N(GS) iks@llull gz o)

+ ks MUY %(0) + c2k20™.
Now we apply the inequality (4.2.33). As a result we obtain

(4.2.51) U(p) < %U'(Q) + (Alo) + 8(0))U(20) + A(2)U(0)+
+cskZ67 (0)e®*, V8(g) > 0.

Moreover we have the initial condition (see the proof of Theorem 4.13)

= | 2-Nyg, 24, < 2 2 2
0@ = [N ialds <o (lulfao + 11 g+l o)
Gg
=V.
From (4.2.47) we obtain the differential inequality (C'P) from §1.10 with

Plo) =2 - a0 ) = A8 - 0

k]

Qo) = 2c3Ak26™ (0)0™ ™1, V(o) > 0.

‘We choose )
5(p) = ——————, 0< p < d,
A ed
A22M+1 1n(eg)

where e is the Euler number. Since according to the assumption of theorem
A(p) is Dini-continuous at zero, then we have

exp(]g'P(T)dT) < 2%
exp(iB(’r)ch) < exp (C(A)O/dig—)dr) ln(%), and

—/d'P(T)dT Sln(g)m—i-?)\/dA(T)dTé
0

exp(— /d P(T)dT) < (g)2A exp (C’(,\) /d Ag) dT)
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if we recall (1.10.2). In this case we have as well

/dQ(T) exp (—/T’P(o)da)df < k?C()\)Q”‘/dln(i_d)(i_T <

[4
2 ox .2/ €d
< ksC(/\)g In (——g )

Now we apply Theorem 1.57. From (1.10.1) by virtue of deduced in-
equalities we obtain

(4.2.52) Ulo) < C(Vo + k2)o* In® %, 0<o<d< %

Taking into account of (4.2.33) we deduce the second statement of (4.2.43).
O

Both the following theorems and examples from Section 4.2.5 show that
assumptions about the smoothness of the coefficients of (L), that is Dini
continuity at zero of the function A(r) from hypothesis (b) Theorems 4.17
and 4.18 are essential for their validity.

THEOREM 4.19. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r), which is a continuous at zero
function, but not Dini continuous at zero. Suppose

o0 o 3/2

flx) € Wy_pn(G), wlz) € Wy n(8G) N C*(BG)

and there exist real numbers s > 0, ks > 0 such that

— -3
(42.59) ko= sp 0™ (17 gs_ ey * I9lgorn oo )

Then for ¥e > 0 there are d € (0,1) and a constant C. > 0 depends
only onv,p,d,s,N,e, A\, meas G such that Vp € (0,d)

4.2.54 . <C( +1fll +lloll . +
25 s o< C(llao+ Ml o+ lelgon

A—e :
+ks)- e z'f8>>\,
7%, ifs< A

PROOF. As above in Theorem 4.18 we find (4.2.47), through the Cauchy
inequality, we get the problem (C'P} §1.10 with
2\ 5 A
Plo) = = (1 -5~ CsA@)), Y6 > 0;  N(o) = 2\Cs

Y
Q(0) = k2Cop0™ 1.

(0) and
0
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Therefore we have
; ) 7 A
"‘/P(T)dT =2A(1-2)ln . 2ACg / —(Ild'r.
27 d T
[ e
Now we apply the mean value theorem for integrals

d
/—f%(_z-)'d‘r < A(d) lng

and choose d > 0 by continuity of A(r) so that 2Cg.A(d) < 4. Thus we

obtain
d
2A(1-5)
exp(—f’P('r)cl'r) < (g) , V6 >0
0

Similarly we have

T 2A(1—5)
exp(—/’i’(o)da) < (Q) , Y6 >0.
e

p
Further it is obvious that
20
f’P('r)dT <2XIn2
o

and with regard to (1.10.2)

d d
/B('r)d'r < 22222 Cy / é—f;)d'r < 20222 Cy A(d) lng < 622 lng =
e 2

2 oy —8A2*?
exp(/ B(T)dT) < (E) , V6> 0.
e

Hence by (1.10.1) of Theorem 1.57 we deduce

(4255) U(o) < (g) —6}‘22"{‘/0(%)2)\(1—6)_{_

+jQ(’r) exp(—]P(a)da)d‘r}, vé > 0.
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Now we estimate the last integral

d T d
fQ(T) exp(—/’P(U)da)dT} < ka’gog”‘(l“s)/723—2}‘(1'5)“1627' =
e o 0

2A(1_8) d2s—2x(1-8) _ Q2s—2A(1—6) < k2C21 02)\(1—5)’ ifs> A
25 —2\(1 - 9) - ® 0%, if s < A.

In this connection we choose § > 0 so that § # %
From (4.2.55) and (4.2.56) and because of (4.2.33), the desired estimate
(4.2.54) follows. O

We can now correct Theorem 4.19 in the case s = A, if A(r) ~ Fl_;-

THEOREM 4.20. Let u(x) be a strong solution of problem (L) and as-
sumptions (a) and (b) are satisfied with A(r) ~ ﬁ, A(0) = 0. Suppose

that
o0 o 3/2
f(z) e Wy_n(G) and o(z) € W4_x(0G)

and that there exist real number k), > O such that

4.2. =:sup g™ ‘ '
(4.2.57) b =i 5w 0™ (Ifllge_ gy + Melgern o))

Then there are d € (0, %) and constants C > 0, ¢ > 0 depends only on
v, u,d, N, X, measG such that

(4.2.58) |ul| .2 <C(lulae+flzo  +lelloen  +

W n(G8) Wen@ W (00)
1
+k)\) . o* In°t! 2 O<po<d.
PROOF. As above in Theorem 4.18 we obtain the problem (CP) §1.10
with

P = 2 -0, N(o) =6t 131 g

(o) = c(Nk3(1+ 67 ()%
‘We choose

6(0) =

_—2Aln(e_;i),0<g<d,
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where e is the Euler number. Since according to the assumption of theorem
A(g) ~ 6(p) for suitable small d > 0, we then have:

exp (f’P(T)dT) <22 exp(/d B(T)dT) <C(d,A) lnco‘)(%d) and

d

d
_ Q/’P(T)d‘r < ln(g)% + 2)es Q/ T:(T%T) = ln(g)% + 2AcsIn ln(%l) =

d
_ 2 jpe (&
e:xp( /'P('r)dr) < (d) In (9),
e
if we recall (1.10.2). In this case we have as well

d

d T
-1
/ Q(r) exp (— / P(a)da) dr < K20\ / 1—J-’57(-T—) lnc(g-)dr <
e o ] ¢
< k?\C(/\)Q”‘ 1nc+2 (%) .

Now we apply Theorem 1.57. From (1.10.1) by virtue of deduced in-
equalities we obtain

(4.2.59) U(o) < Ous(Vh + k3)g? In2e+? lg D<o<d< %
From (4.2.59) and because of (4.2.33) the desired estimate (4.2.58) follows.
(I
4.2.2. The power modulus of continuity.

THEOREM 4.21. Let u € W3V (G)NC%(Q) be a strong solution of prob-
lem (L) and assumptions (e) and (b) are satisfied with A(r) Dini continuous
at zero. Suppose, in addition,

o0
a* € LP(G), p> N; a c LN(G), f € L¥(G)nW,_p(G),
o0 3/2
p(z) € W,_n(8G) N Vo'V (8G) n CA(8G)

and there exist real numbers s > 0, k; > 0, k > 0 such that

—_ —$
(4.2.60) B =0 0™ (Ifllg3_ gy + I¥llgr )

N

— 1-s
(4.2.61) b=t sup g™ (I i, + Ielhyamzs )
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Then there are d € (0, -i;) and a constant C > 0 depends only on
v, i, d, s,

d A
N, A\, meas G and on the quantity [ ——T(_ﬂdr such that ¥z € G
0

(262) Ju@)] < C(lulae +7lge o lellpan
|z)*, if s > A,
+ eleroa) + ks +k) : |:t|"ln3/2(%f), ifs=2A
|z|%, if s < A

PRrROOF. Let the functions ®,v and F' be defined as in the proof of
Theorem 4.13. We remark that $(0) = 0 due to Lemma 1.38.
Let us introduce the function

o*, if s> 2,
(4.2.63) v(o) =4 o 1n3/2(lg), if s=A,
0%, ifs <A,

for 0 < p < d and consider two sets GZ§4 and Gg/z - Giﬁ, o> 0. We
make the transformation z = pz’; v(pz’) = ¥(o)w(z’). The function w(z’)
satisfies the problem

0¥ (02" YWaya, + 00t (02" Yy + PPa(er)w = L= F(o'), o' € G2,
w(z') =0, z'e€ F1/4’

where

2

@ l__i ml_iai' YD/ at(pz' YD
W@ = g )~ g (o) e a2t
Alo)

2
+ Qo) 8(ex')) < gslfl + g o] + T5(9'0] + 8.
Let us now note that

/ (\g(gla"(exw) ”

Gl/a

4

+ (gzia(er’)l)N) dr’ <

2d
<) [ 2L o< o, 4V @ meast [ A

20 0
G9/4
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and

2
[ Q
w(g) ”F(QIE’)”LN(G?/‘I) S C(”,A(d))d)(g) (”f”LN(GZ§4) + EI(P”V;TOI/N(F:;Q/;‘Q)

S

(4.2.64) < ke(p, A(d)) 7;29)

because of (4.2.61) and (4.2.63). We apply now Theorem 4.5 (Local Maxi-
mum Principle). Because of the proven estimates we have

< k- const(u, A(d), 8, A, d),

(4.2.65) sup lw(z')] < C(N,v, ,u){ (// w2dsc'> %-I—

sl ffee)’)
.

G

G1/4

Returning back to the variable z and the function v(z) by Theorem 4.18
with (4.2.63), we obtain:

1
(4.2.66) // wide! = —— // rNoyldz <
G2 w (Q)G274

1/4

2
< C’( ullz,g + | fll o el - +k ) ‘
< C(|lullzc Hf“W:]_N(G) ”(‘0||Wi/_2N(6G) s

Because of ¢ € C*(0G) we then obtain

u(@)| < [o(@)] + [@(@)] < o] + () — B0)] < |v| + [2]|wlrae
Hence and from (4.2.64), (4.2.65) and (4.2.66) it follows
sup [u()| < C(lu

Ge/2

o+ 0 0 + 0 3/ +
2 ||f||W4_N(G) Hw”wi_g,v(ac;)

+lelroc + ks + k) (o).
Putting now |z| = 3¢ we obtain finally the desired estimate (4.2.62). O

THEOREM 4.22. Let u(z) be a strong solution of problem (L) and as-
sumptions (a) end (b) are satisfied with A(r), which is a continuous at zero
function, but not Dini continuous at zero. Suppose, in addition,

o0
a' € LP(G), p> N; a € LN(G), f € L (G) nW_n(G),
o 3/2
0 € W4 n(0G) nVao N (0G)y N CN(8G)
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and that there exist real numbers s > 0, k, > 0, k > 0 such that

— —s ;
(4.2.67) k, = sup 0 (Jlfi\v?,g_N(Gg) + ”‘P“v?zi’fN(rg))’
. 1-s
(4.2.68) k=:supg (Ilf Invg2e, + ||90||v;;:/”<r§;’4))'

Then Ve > 0 there are d € (0,1) and a constant C, > 0 depends only
on v, u,d,s,e, N, \, meas G and on A(diamG) such that Vz € G¢

4.2.69 <Ce +7l, el e
(4209) Ju(e)| < Cc(Juloc +1flgo o Hlellgom

lz|}8, ifs> A,

+|‘P|«\,3G+ks+k)'{|xls_e ifs <A

Proor. We repeat verbatim the proof of Theorem 4.21 by taking

A—e 4
) orE, ifs> A
P(o) = { ot ifs<A

and applying Theorem 4.19. O

THEOREM 4.23. Let u(z) be a strong solution of problem (L)and as-
sumptions (a) and (b) are satisfied with A(r) ~ 1—511_-, A(0) = 0. Suppose, in
addition, i

00
a' € LP(G), p> N; a € LY (G), f € LY (G) NW,_y(G),
o 3/2
o(x) € W,_n(9G) N Vi g™ (0G) n C*(8G)

and that there exist real numbers k) > 0, k > 0 such that

4.2.70 k= sup o~ ( ’
( ) \=isupo Hf”vf/z_N(Gg)+“('0”vf/i/_2N(F§))

_. 1-X
(4.2.71) k=:supo (1l wiczs, + lellyasrmgae ))-

Then there are d € (0,1) and constants C > 0,c > 0 depends only on
v, pi,d, N, X\, meas G and on A(diamG), such that Vz € G§

4.2.72 <C TN g0 el i
(42.72) |u(@)| < C(Jullzc Ilse o T 1el22 ey

1

+ |(p|/\,3G -+ k)\ + k) ' |£C|)‘ lnc+1 1.’E|
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PROOF. We repeat verbatim the proof of Theorem 4.21 by taking
Ao+t L
Plo) = " I —
e
and applying Theorem 4.20. |

4.2.3. LP-estimates. In this and the next sections we establish the
exact smoothness of strong solutions of (L).
Let u be a strong solution of (L), where p > N, and let

FeIP(@), ¢eW/rr(aa).

Let us consider the sets GZ? 4 and G’g 2 C Gi? 4, and new variables z" defined

by z = pz’. Then the function 2(z') = v(gz’) = v(z) satisfies in G2 /4 the
problem

P 2 N
0¥ (ox') 52y + 0a*(0x") §5 + *alez’)z = ¢*f(0z')~
(4.2.73) —(a*j(gx’);a—f;f%;'-!- oa*(ox’ g—ﬁ + 0%a(e2')®), =’ € G,
w(z’) =0, z'€l},,

where the functions ®,v be defined as in the proof of Theorem 4.13.

By the Sobolev Imbedding Theorems 1.33 and 1.34 we have
|2(=") — z(y')]

recr, @~y

mlsyl EG%/Q
z'#y’
(4.2.74)

< C“lewz,N(sz), VB e (07 1) and

|V'2(z") — V'2(y')|
sup |V'2(z')| + sup — TN/r )
x' €G], # Yy €G], |z’ = y'|

' Ay’

< ellelwarer . P> N.

By the local LP- a priori estimate (Theorem 4.6) for solutions of (4.2.73)
we obtain

(4275) Jelwan(ey ,) < N, u,u,A(2>){r|anp(Gz )+ & fllzoe

174

)+

2
1/4

+ ||<P||W2—1/w(acf,4)}-
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Returning to the variables z, from (4.2.74), (4.2.75) it follows that

lv(z) —v@®) _ sy -1
(4.2.76) x’yseu(ge/zwéce {7 llpwigzey +1fllvg o2+
e
=y

+ ”(‘OHV;T;/N(I"‘;%)}’ VB e (0: 1):

—1y —N/
(4277)  sup Vol < e {e Pl oqeas,y + I lvs,, oot

e/2

+ “‘P”V:;;f;v (r234)}

and
[Vu(z) — Vu(y)| N_ oy N/
(42.78)  sup <co? o7 |l o (g2e )
myGGi/z l.’L‘ - yll—N/p { L (GRM)
z#Y

+ l|f|‘vz?,2p—N(G274) + ”‘p”V:;:iﬁv(rzﬁh)}'

Moreover, if we rewrite the inequality (4.2.75) in the equivalent form

[ (ip2%p 4 19iap s el ) da < [ (ap+r1117 +

Gi/z G%m

+|D?@[P + [V'BIP + |B|P)da’,
multiply both sides of this inequality by ¢~ % and return to the variables
x, then we obtain
(r*| Dvf? + 1P| Vol|P + r* P |y|P) dz <

2
G@/2

<c / (r*=2P|v|? + r2| f|P + r*| D2®[P + r* P|VR[P + r*~2P|D|P) dz
G*e
e/4

and consequently

(42.79) |vllvz (6 )SC{||””VI§),Q_2P(G27’4)+“f”vz§{a(G§§4)+

e/2
+ ||W1|V;;1/P(r§74)}'

THEOREM 4.24. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.21 be satisfied. Furthermore, we
suppose that

FeV2.(G), ¢eV2VP0G), p>N



4 STRONG SOLUTIONS OF THE DIRICHLET PROBLEM
130 FOR LINEAR EQUATIONS

with

(2—-s)p—N, if s<A
and there is some constant ko > 0 such that

2_Mp—N, i A
a>¥ Ww—N, if s>,

171V c2,00 + I2lyazinee

(4.2.80) kg ==: ?;ID) ) .
where
g"_z'{'#, if s> A,
(4.2.81) x(0) = g’“”%ﬁ In%/2 %, if s=2,
Pk if s<)

for all sufficiently small o > 0.
Then u € V.2, (G) and the estimate

(4.2.82) lullvz, ez < ex(e)
holds with ¢ independent of u.

PROOF. The statement of theorem follows from (4.2.79), since

) i/p
v 20y = 7P |y|Pdz <
” ”Vrg’,a—zp(cei‘i) ( _/ | | ) in virtue of (Q.GZ), (4.2.63)
G322
e/4
v /e N
< cw(p)( / ra 2N ‘ldr) <co % (o) = ex(o)-
e/4

Hence and from (4.2.79), (4.2.80) replacing o by 2%, we have

—k
lullvz,_, cw) < ex(2770).
By summing these inequalities over all £ = 0,1,--- we obtain our desired
assertion. O

In similar way we prove following theorems.

THEOREM 4.25. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem /.22 be satisfied. Furthermore, we
suppose that

FEVR(G), ¢eVyYP(8G), p>N
with '
o> 2-XNp—=N, if s>A

(2—8p—N, if s<A
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and there is some constant ks > 0 such that

A—2—et 2N
4 =, if 8> A
(4.2.83) Hf“v,gu(c:g/?) + ||‘P||vp2';1/v(rg/2) <k {Qs—z—a+L‘*pN if s<A
for all sufficiently small p > 0 and Ve > 0.

Then u € V2,(G) and the estimate

A—2—g il
0 r %f s > /\:
(4.2.84) lullvz, (cg) < ce { IR i s <A

holds with c. independent of u.

THEOREM 4.26. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.23 be satisfied. Furthermore, we
suppose that

FeVRu(G), ¢eVpRP0a), p>N, a>(@2-Np-N
and there is some constant kg > 0 such that
c+1 l

14
for all sufficiently small p > 0, where c is defined by Theorem 4.23.

>\—2+QPN In
e

(4.2.85) |If||V12a(G9/2) + ”‘10“‘/1)2!;1/1’(1“5/2) < k2o

Then u € V2,(G) and the estimate

_opaiN 1
(4.2.86) lullva, (g < Ce*2 55" It p
holds with C independent of u.
4.2.4. C*-estimates. Let known be that
v(z)| < o)), = € G
Then we have
(4.2.87) el L (e, < avle),
_N
(4.2.89) ¢ " olzrazgy < 2¥l0):
N_
(4.2.80) 2l oane,y < ese® Pu(e)-

THEOREM 4.27. Let u be a strong solution of the boundary value prob-
lem (L) and let the assumptions of Theorem 4.21 be satisfied. Let A = 1.
Then

(4.2.90)

CP(G), VvBe(0,1) if s>1
c C*(G), if 0<s<l.
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PROOF. From (4.2.76) and (4.2.87), (4.2.61) it follows

(4.2.91) sup Myﬂ <coPP(0), VB €(0,1),
:z':,yeGif2 |$ - y|
r#yY

where in our case 1(p) is defined by (4.2.63). By Theorem 4.21 it follows
that

e vl _ %y, 07T
(4.2.92) sup DTV o) pi-Be if g1,

_ylB -
m,yEG“’/ ICE yl s— 8 .
oy 2 o~ ", if s<1,

Ve >0, VBe€(0,1).
By definition of the set Gz /2 We have |z — y| < 2p and therefore from
(4.2.92) it follows that

oA, if s>1,
(4.2.93) |v(z) —v()| <clz—ylP{ o' Fc, if s=1, <
0B, if s<1,
<e |$_y|ﬁa if 321,
T llz—-yl%, i s<1

If |x —y| = o = |z|, then from Theorem 4.21 it follows that

V€ (0,1), Vz,y€G2,.

(4.2.94) M%ﬁﬁy—)' < 2v(z)|jx — y| 7P < 2ep(0)o P <

o' P, if s>1,
<cl pl=P—¢, if s=1, < const,
B, if s<1,

if we choose B = s for 0 < s < 1. Together with ¢ € C* we prove our
theorem. ]

By repeating verbatim the proof of the previous theorem we obtain the
next theorems.

THEOREM 4.28. Let u be a strong solution of the boundary value prob-
lem (L) and let the assumptions of Theorem 4.22 be satisfied. Let A = 1.
Then

(4.2.95) ue {C'@(@), vBe (0,1) if s>1,

C*¢(G), Ve>0, if 0<s<l.
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PROOF. In this case we have (4.2.91) with 9(p) from Theorem 4.22,
that is

- 1-A-e i s>1
(4296) sup M <e QS_B_E’ 1 s~>1,
T yeG?,, |z -yl e , if s<1,

zH#y

Ve >0, VGe€(0,1).
Hence follows our statement, if we choose e = 1 — 3 for 3 > 1 and
f=s5—cefor0<s<l O

THEOREM 4.29. Let u be a strong solution of the boundary value prob-
lem (L) and let the assumptions of Theorem 4.23 be satisfied. Let A = 1.
Then

(4.2.97) u € C¢(G), Ve>0.

PrOOF. In this case we have (4.2.91) with 9(p) from Theorem 4.23,
that is

(4.2.98) sup M <col™Fc, Ve>0, YBe(0,1).
:ac,yEG‘g’/2 IZ' - yl
z#y
Hence the desired statement follows, if we choose =1 —e¢. O

THEOREM 4.30. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.21 be satisfied. Let 0 < A < 1.
Then

C*(G), if s> A
(4.2.99) €L CME(G), Ve>0, if s=A,
C*(G), if 0<s<A

Proor. By Theorem 4.21 from (4.2.91) it follows

o8, if s> A

(4.2.100) sup M <cq{prPE i s= ),
z,y€G2 I'T - y‘ P .
e/ 7, i s<A,
THY

Ve >0, VBe(0,1).

Putting
A, if s>A,
B=<SA—g if s=2),
s, if 0<s<A,

we obtain the required assertion. O
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THEOREM 4.31. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.22 be satisfied. Let 0 < A < 1.
Then

A—e(ry . >
(4.2.101) wel® _ (&), ve>0, qosz A
C(G), if 0<s<A

PRrROOF. By Theorem 4.22 from (4.2.91) it follows

- ABe  if s> A
(42102) sup J_’ILUSJN <e e o ) 1 8 2 A,
®y€Gy |z -yl e~ F7e, if s <A,
z7#Y
Ve >0, VBe(0,1).
Putting
ﬁ — )\ - 61 if S 2 )\,
S ls—e i 0<s<A,
we obtain the required assertion. 0

THEOREM 4.32. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.23 be satisfied. Let 0 < X < 1.
Then

(4.2.103) u € Cr¢(G), Ve>0.
PROOF. By Theorem 4.23 from (4.2.91) it follows

(4.2.104) sp &)~ vgy)l < B
2y€Gs,, 1T Y|
7Y

Ve >0, VBe(0,1).
Putting
we obtain the required assertion. [l

Now, let we will fulfill Assumption (bb):
There exists some constant k > 0 such that

eyt _
k —: sup 1|fHV;22P_N(Gz/4) ”(pHVPz,?;i‘;V(FZ?‘;)

N.
() P2
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Then from (4.2.88), (4.2.77), and (4.2.78) we obtain

(4.2.105) sup |Vv| < co™'¢(0),
Go/a
[Vo(z) - Vo@)| . x o
(4.2.106) sup - < o Y(o)-
z,yeC? |z — y|t =/
TAY

THEOREM 4.33. Letu be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.21 and (bb) with () defined by
(4.2.63) be satisfied. Then it is true for the next estimate

|z, if s>,
(4.2.107) |Vu(z)| < ¢! 2> In®/2 mp O 5=

lz|*~ 1, if s<A
Moreover,

o 1) ifA22- T, then

c*7v (@),
ue{C* v ¢(G), Ve>0,
MY (@),

e 2) if1<)\§2—%, then

C)\(@-)v
u € { CA4(G),
C*(G),

Ve > 0,

if s> A
if s=2
if )\—1+%§s<)\.

if s> A
if §=A,
if 1<s<A

PROOF. From (4.2.105), (4.2.106) with (4.2.63) we obtain

o ! if s> A,
(4.2.108) sup |Vv| < eq p* 1 In®/? 5 if s=A
e/2 o1 if s<A,
(4.2.109)
Fan if s>,
sup |V|Z(f) TI_V;;/(;U” < g%_%)"E, Ve>0, if s=A,
oY v PEanand if s <A

Putting |z| = %g we obtain from (4.2.108) the (4.2.107).
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Now we set
0, if s>,
K=< —¢, if s=2,

s—=A if A-1+X <5<

Let us consider the first case A > 2— %. fz,ye Gg/z, then |z—y| < 2p
and therefore ¢* < cjz — y|®, since x <0. Then from (4.2.109) we get

|z — y|t /P, if s> A,
[Vou(z) — Vu(y)] <cl |z —y|'~N/P~e, Ve>0, if s=2A,
|z — gyt N/pts=A) if s<A

If z,y € G and |z — y| > ¢ = |z|, then by (4.2.108) we get

[Vu(z) — Vo(y)|
|z — y|~N/ptn

< 2|Vo||z — y|V/P1mK < PR IR o

N
=cp? 2+ < const;

we have taken into account that in the considered case 1 — N/p+ k > 0.
Thus case 1) of our theorem is proved.

Now we consider the second case 1 < A <2 — %. Ifz,y € GZ /20 then

| — y| < 2p and therefore ¢* < c¢|lz — y|®, since & < 0. Then from
(4.2.109) we get

N

(Vo(z) — Voly)| < clz — y|tmNPow 720000 < oy yA-ldn,
If z,y € G and |z — y| > 0 = |z|, then by (4.2.108) we get

|Vo(z) - Vo(y)]
|z — yAtte

< 2|Vul|z — 1A% < co* IRz — Y14 < const;

we have taken into account that in the considered case 1 — A — x < 0. Thus
case 2) of our theorem is proved as well. O

THEOREM 4.34. Let u be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.22 and (bb) with ¥(p) defined by
Theorem 4.22 be satisfied. Then it is true for the next estimate

A1, if s>,

Ve > 0.
|1, i s< A

(4.2.110) |Vu(z)| < c{

Moreover,
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o 1) if)\22—%,then

02—%—5(6), if s> A
c . = Ve > 0.
’ {cs—m—%-f(c:), ¢ A-1+f<s<n
©2)ifl<A<2-X then
C).~s('§) if s> A
Sl - Ve > 0.
u€ {C,s—-E(G)’ if 1<s<), ¢

PRrROOF. From (4.2.105), (4.2.106) with v(g) from Theorem 4.22 we
obtain

(4.2.111) sup |[Vv| <¢

e/2

o 1E if s> A,
ps17E if s <A,

_ N_2ta—¢ if = A
(42112) sup |V’U($) lv;(y)l SC Q;—2+s_€1 1 s ’
z,yeGE |z —y|-N/p or , i s< A

z#Y

Ve > 0. Putting |x| = 20 we obtain from (4.2.111) the estimate (4.2.110).

Let us consider the first case A > 2— %. Ifx,y € Gy, then jz—y| < 20

and therefore p™¢ < c|z — y|~¢. Then from (4.2.112) we get

— y|l-N/p=e if s>\
ol sz
|z — y[t-N/pta=d—e if 5 <\

IVo(z) — Vu(y)| < C{

If r,y € G and |z — y| > o = |z, then by (4.2.111) we get
o 1) for s > A
[Vu(z) — Vu(y)| N/p—1+e p Y N/p—1+e
|.'Z7 _ yIl_N/p_s < 2|V'UHQ: - yl i <cg |$ - yl g <
24X

N
<clzr—yl» < const.

o 2)for Nlp—1+A<s<A
[Vo(z) — Vu(y)

7 — [l N/p—etax = 2|Vy||z — y|N/PmitemorA <

N
< CQS_I_eliE _ yl1\“’/1’—1'*'5‘*‘)‘_'9 < CQ?—}H‘ < const.

Thus case 1) of our theorem is proved.
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Now we consider the second case 1 < A <2 — %. For this we define
.= —E, if s> A,
B s—A—¢g, if 1<s<A

Ifz,y e Gg/Q, then |z —y| < 2p and therefore o® < c|z—y|®, since & <O.
Then from (4.2.112) we get

Vu(z) — Vo(y)| < clo — y[l-V/Pgs ~2HMR < ojg — yp-tte,
If 2,y € G and & — y| > ¢ = |/, then by (4.2.111) we get

[Vu(z) — Vu(y)|
|£C _ y|>\—1+n

< 2|Vol|lz — yt A < e — y|1A R < const.

We have taken into account that in the considered case 1 — XA — x < 0. Thus
case 2) of our theorem is proved as well. 0

At last, in the same way we prove

THEOREM 4.35. Letu be a strong solution of the boundary value problem
(L) and let the assumptions of Theorem 4.23 and (bb) with ¢(p) defined by

Theorem 4.23 be satisfied. Then the next estimate is true
1
(4.2.113) |Vu(z)| < Clz|** Int! R

Moreover,
e 1) if)\22~%, thenuECQ_%_E(é), Ve > 0;
o2)if1<)\§2—%,thenu60’\_€(§, Ve > 0.

4.2.5. Examples. Let us present some examples which demonstrate
that the assumptions on the coeflicients of the operator L are essential for
the validity of Theorems from Section 4.2.2.

Let N = 2, let the domain G lie inside the sector

8°={(r,w)|0<r<oo,0<w<wo,O<w0§27r}

and suppose that O € 8G and in some neighborhood G¢ of O the boundary
0G coincides with the sides w = 0 and w = wy of the sector G§°. In our
case the least eigenvalue of (EVD) is A = -

ExaMPLE 4.36. Let us consider the function

1\ A-D/(+1)
u(r,w) = (ln }-)

sin(Aw), A= T

wo
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in G¢:={z€R?:0<r<d, 0<w <wp}. It satisfies the equation

2
Z a¥(z)Diju=0 in G§
i,j=1
with
2 3
11 2
- 1-
@ (o) Xt 172In(1/r)’
2 1T
12 _ 521 _ 12
a(z) =a"(2) X+ 1r2In(1/r)’
2 z?
22 _ 1- 1
(@) A+17r2In(1/7)’
a¥(0) = §

and the boundary conditions
w=0 on T§.

If d < €72, then the equation is uniformly elliptic with ellipticity constants

2
v=1-— m and M= 1.
Furthermore,
2 F A(r)
T
A(T) = ()\ + 1) 1n(1/7') 3 / r d’r = +OO,
0

that is the leading coefficients of the equation are continuous but not Dini
continuous at zero. From the explicit form of the solution u we have

A-g A—e
(4.2.114) [u(@) < ez, llull g2 o) < co

for all ¢ > 0. This example shows that it is not possible to replace A — ¢
in (4.2.114) by X without additional assumptions regarding the continuity
modulus of the leading coefficients of the equation at zero.
EXAMPLE 4.37. Let G¢ be defined as in the previous example and let
1 T
=r*In(=)sin(A\w), A=—.
u(z) = In(7)sin(w), A= T
The function u satisfies
Au + T2 lr?(l\l/r)u =0 in Gg’
vu=20 on IT'¢.
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Here

d
O 2) Alr)
AC) = o 0/ D g = +oo.

Thus the assumptions about the lower order coefficients are essential, too.

EXAMPLE 4.38. The function
1 e
2 .
= r* In(= Aw), A= —
u(z)=r n(r)sm( w) o

satisfies

Au= f:= -2Xr*%sin(\w) in GY,
u=0 on I'd.

Here, all assumptions on the coeflicients are satisfied but
]
I g2 ey < co
with s = A. This verifies the importance of conditions of our theorems.

4.2.6. Higher regularity results. Now we begin the study of the
higher regularity of the strong solutions of the problem (L). This smoothness
depends on the value A.

THEOREM 4.39. Let p,a € R,k € N satisfy p > 1,k > 2. Let u €
W2N(G) N C%G) be a strong solution of the boundary value problem (L)
and assumptions of Theorem 4.21 with s > A\ are satisfied. Suppose, in
addition, that there are derivatives D'a/, D'a?, D'a, |l| < k—2 and numbers
1y > 0 such that

N 1/2 N 1/2
Y D@ |+l (Z vD’af‘(w)P) +a}"*2 Dla(e)] <
i,j=1 i=1

zeG |l|=1,2,...,k—2.
If f € VE2(G), ¢ € Via /P(8G) and

— k4 otN
where
(4.2.116) a>p(k—A) — N,

then there are numbers ¢ > 0,d > 0 such that u € V¥, (G§) and the following
estimate is valid

ke oEN
(4.2.117) lullvs (aey < ce* 557, o€ (0,4d).
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PROOF. Let us consider two sets G’Z?4 and Gﬁ/z C GZ?@ o> 0. We

make transformation x = gz'; u({gz’) = *w(z’). The function w(z') satis-
fies the problem
¥ (0z")wzyz, + 0a* (0w + 0%a(0z)w = 0>~ f(0a'),
(L) z' e Gf/4;
w(z') = 07 p(oz’), z'€ Ff/4.
By Theorem 4.7 we have
(42.118) ulwrs(a1,,) < Ck (l0llzoaz, g + 0 IS oz o+

1/4
+ 0 Mg llwr-rrrrs ),

where Ci does not depend on w and depends only on G,N,p,v, u and
max _A(|z|). Returning to the variables z, 4, multiplying both sides of this
zeGe
e/4

inequality by gﬂiﬁ_k and noting that /4 <r < 2pin GZ%, we obtain

(42119) Jully, e, < C{I Ipzaans + Iolyszigezs o+

e

il oo}

ya—kp

By Theorem 4.21 we have |u(x)| < cg|z|* therefore

— —kp+AX
iy oy = [ e u@Pd s g [ o trrae
pPya—Rp e
Gola ol

< Pmeas() - g+ +P(A-K),
Hence and from (4.2.120) with regard to (4.2.115) it follows that
(4.2.120) lullvg, gz ,) < CAH5, 0 € (0,d),

Replacing p in the above inequality by 2~™p and summing up the resulting
inequalities for every m =0,1,2,..., we obtain

00
HUHVP’“Q(GS) < OQ)\—k-{»a-l;N Z 2—m()\—k+#)_

m=0

By (4.2.116), the numerical series from the right converges. Thus the esti-
mate (4.2.117) is proved. O
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THEOREM 4.40. Let u be a strong solution of (L). Suppose that the
conditions of Theorem 4.21 with s > A and Theorem 4.39 are satisfied. Let,
in addition,

(4.2.121) k—1</\§k—%, k>2 p>N.

Then u € C’\(G’_g) and there are nonnegative numbers C; such that
(4.2.122) |D'u(z)| < Gilz]* ™ vz eGd | =0,1,...,k—1
for somed >0.IfA=k—1,p=N, thenu € C’A‘E(G_g), Ve > 0.

PrOOF. We consider the function w(z’) as a solution of the problem
(L)' in the domain G} ,. By the Sobolev Imbedding Theorem 1.33,

Wh2(G) — CE-149(G), 0<B<1- %
and, in addition,

(42.123) > sup |DLuw(z')|+
1| <k—1%'€C1/a

|DE (2 — D’;,"lw(y’)|

su < ellw )
N x’,y’erc,v'%/z " — y/|1-N/P < clfwllw 7(Gl/a)
a' Ay’

with a constant ¢ independent of 4 and defined only by N, p and the domain
G. Returning to the variables z, u, we have for Vo € (0,d)

|| Nte
sup |Dhu(z)| < Qo= lullvs e ll=0,1,...,k—1

z€GE ), 7 o/’
(4.2.124)
| DF—Yu(z) — DF—Lu(y)| _a
i A e 2 S M R S
THY
Since o/2 <1 = |z| < g for z € G5, by (4.2.120), from 4.2.124) it follows
(4.2.125) |Dlu(z)| < CilzP M, |1 =0,1,...,k—1; zeGE;
k—1 _ Dk——l
(4.2.126) sup 2@ — uW)l ¢ pprktd
z.y€G] ), Im - yl P
z#y

Now from (4.2.126) for r= A —k + % < 0 we have
(4.2.127)  |DFu(z) — DFlu(y)l < oz — yPRHT v,y e G§/2.
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Since 7 < 0, we have
T T 2
lz —y|” > (20)" Vz,ye G,y
and therefore from (4.2.127) it follows that
(4.2.128)  |D*lu(z) — DF lu(y)| < 27|z -y va,y € Gg/z'

The inequality (4.2.128) together with the (4.2.125) leads to the assertion

u € CMGY), if the (4.2.121) is fulfilled.
Let now A = k — 1, p = N. Then, by the Sobolev Imbedding Theorem
1.33, we have

(42.120)  sup [De7w(z) - Dy Py
=’y €G] l(l)’ - y116
z'#y'

< dlwlwrrat ,)s

Ve € (0,1); k> 2.

Returning to the variables =, 4 and considering the inequality (4.2.120), we
have for Yp € (0,d)

Dk—2 _ Dk~2 -
sup | DF2u(x) ) u(y)| < e B Jullve ey <
m,yer/z |$ — yl PN /2
T#Y
(4.2.130) <epr KB — gl P, VB (0,1), k>2.

The inequality (4.2.130) for 8 = 1 — &, Ve > 0 together with the (4.2.125)

for |I| =0,1,...,k — 2 means u € C"_E(G_g), ¥e > 0. Thus the assertion
follows. O

4.3. Smoothness in a Dini-Liapunov region

In this Section we shall study strong solutions u € W’fo’f (G)YNWbP(@),
p > N of (L) in a Dini-Liapunov region G. We follow some results in
K.-O. Widman [405], [406].

DEFINITION 4.41. A Dini-Liapunov surface is a closed, bounded
(N — 1)— dimensional surface S satisfying the following conditions:

o At every point of S there is a uniquely defined tangent (hyper-)
plane, and thus also a normal.

o There ezists a Dini function A(r) such that if 6 is the angle between
two normals, and r is the distance between their foot points, then
the inequality 6 < A(r) holds.

o There is a constant p > 0 such that if Q, is a sphere with radius ¢
and center o € S, then a line parallel to the normal at xp meets
S at most once inside €1,.
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A Dini-Liapunov surface is called ¢ Liapunov surface, if A(r) = or”,
v € (0,1). Dini-Liapunov and Licpunov regions are regions the boundary
of which are Dini-Liapunov end Liapunov surfaces respectively.

For the properties of Liapunov regions see Giinter [140]. In particular
we note that a Dini-Liapunov domain belongs to C14,

Since some minor complications arise from the logarithmic singularity of
the fundamental solutions of the elliptic equation with constant coefficients
in the case N = 2, we will concentrate on domains in RY with N > 3.

We note that it is well known, that the first derivatives of v are con-
tinuous functions which are locally absolutely continuous on all straight
lines parallel to one of the coordinate axis except those issuing from a set of
(N —1)— dimensional Lebesgue measure zero on the orthogonal hyperplane.

Further we will always suppose that the following assumptions on the
equation (L) are as follows

o (a) and (b) with det (a*) = 1, which is no further restriction.
(c) There exists a a-Dini function A such that
N 1/2
Yo la¥@ -ai@P ] <Ale-yl), Vr,yel
i,j=1

(cc)
N 1/2
(Z Ia”(w)lz) +la(@)| + |f(2)| < Kd*~*(z),
i=1

where A € (1,2) and by d(x) is denoted the distance from x to 0G.

THEOREM 4.42. Let G be a bounded Liapunov domain in RY with a
C*, 1 < X < 2 boundary portion T C 8G. Let u(x) be a strong solution
of the problem (L) with @(z) € C*(8G). Suppose the coefficients of the
equation in (L) satisfy assumptions (a) - (cc).

Then u € CMG') for any domain G' CC GUT and

(43.1) |ulxerur (N, T,G,v, 1, K k, d')(|U|O;G + | fllzie + |<P|,\;ac:),

where d' = dist(G',0G\T), k= njiax N{”aij’ l
2I=1yey

oach N<p< .
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PROOF. Step 1.

By the definition of Liapunov surfaces, there is a sphere S, of radius
o > 0 and center g € T such that a line parallel to the normal at zg
intersects T at most once inside S,. We can choose ¢ > 0 so small that any
two normals issuing from points of T" inside S, form an angle less than %,
say. It will be no restriction to assume that g = O and that the positive
zn— axis is along the inner normal of T" at (. Then, inside S,, the surface
T is described by

1
xy = h(z') € CM|2'| < §Q+5); z' = (z1,...,TN-1)-

Now we use Extension Lemma 1.62 to extend the function zy — h(z") from

T into G. We denote this extension by H(z). Since &—II{I =1on T we can

consider the connected region G’ that is a connected component of the set

1 OH 1
{I“]Z’l < 59, E > 5, H> 0}

which has T as a portion of its boundary. By Extension Lemma 1.62 H has
the following properties in G’ :

1°.  H(z) € C*(G");
2°.  H(zx) e CMNGY;
3°. Kjlzy — h(z')] < H(z) < Kolzy — h(z')], =
d(z) > K3H(z), Ki,K2,K3>0, (seealso§2[235]);
4. |D3H(2)| < K (z);

5°. H(z) is strictly monotonic considered as a function of
for each ', |7| < %g.
From 3° follows
COROLLARY 4.43.
d(z) > %K3|x|, zed.
PRrROOF. In fact, we have

d(z) > K3H(z) = Ky (H(z) — H(xo)) = Ks|VH| - |z| > %K3|x|.



4  STRONG SOLUTIONS OF THE DIRICHLET PROBLEM
146 FOR LINEAR EQUATIONS

Similarly, let ®(z) be an extension of the boundary function ¢(z) from
T into G. By Extension Lemma 1.62 ® has the following properties in G’ :

1° ®(z) € C®(G");
2°.  ®(z) € CMNG)
3°. |D2,®(x)| < Kd*%(z).

Now we flatten the boundary portion T'. Let us consider the diffeomorphism
1 that is given in the following way

ye =2xx; k=1,...,N -1,
ynv = H(x).

The mapping y = 1(z), £ € G, is one-one and maps G’ onto a region D’
which contains the set {y||y’l < 10,0 <yn < 7} for some 7 > 0, in such a
way that T and {|y’| < 10} correspond.

Let us consider the problem (L) for the function v = u—®. The function
v then satisfies the homogeneous Dirichlet problem

{(L)o

{aij (z)Dijv(z) + ai(z) Dsv(z) + a(z)v(z) = F(z) inG,
v(z) =0 ondG,

where
(4.3.2) F(z) = f(z) — (a¥(z)Dij®(z) + a'(z) D;®(z) + a(z)®(x)) .

Under the mapping y = ¥(z), let ¥(y) = v(z). Since
Ok Ok OYm Yp

Vg, = —0 and vp,., = v —
¢ 8wi Yk o 8331 Ba:j YkYm 833‘181'] Yk

it follows from (L), that ¥(y) is a strong solution in D’ of the problem

@ @ (y) Dy;(y) + '(y) Did(y) + d(y)i(y) = F(y) in DY,
° 5(y") =0 only| < i,
where
F(y) = Fw) - (89D, 3() + 7 ()D:3() +Ew)3W)) |
~ij _ km 5¢z 510 ~3 _ 31/%
(4.33) a (y) - a’k (.’1',' 'é;;ﬁv a (y) - ak(‘r) 623'](;,

a(y) = alz), fly)=Ff(z), S(y)=2(x),
z =97 (y).
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It is not difficult to observe that the conditions on coefficients of the equation
and on the portion T are invariant under maps of class C*. Further by
the ellipticity condition we have

(ézyz) 9(&;0y;) >

0Lm

@ (y)&g; = "™ (x)

N
S ;(m Z@yz) =
N Ay; - Oyn \?
vy (e ) =3 (6 ogn) -
=1 — k=1
-y(§2+2$1v 2§NZ§k +§N[ +N I(Bwk) ])

k=

—

But by the Cauchy inequality with Ve > 0 we have

oh oh\? 1
e X i 1.2
2§Naxk€k _€§N(axk) + €§k

therefore from the previous inequality it follows that

vy 1,2 ) A
Hwee = r{(1- D +1-98 X () + 46} -

k=1
(4.3.4) = (1= D€ + & la+ (- vaP]} >
>v{(1- %)5’2 +E [+ (1KY}, Ve>1.
Now we show that there is € > 1 such that
1-— é =4+ (1-¢)K?
For this we solve the equation

22 _(3+K¥e—-1=0

and obtain
1 3 1 10 9
€=5+ﬂa+Jz+ﬂa+aa-
Hence we see that £ > 1 and we also have

1 8

e K:+5+VEi+10K2+0
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Thus from (4.3.4) it follows finally that
a9 ()& 2 ve(K)E,
(4.3.5)
8

K)= .
oK) K?2+5+VK*+10K2+9

Now we rewrite the problem mo in the form
LW=aiD;t=Gy), yeD
3(y') =0 only| < 30,

where

@ =ai(0),

(436) GW) = flv) - (@7 @)Dy () + & W)D:3() + W) ) -
- ((a7@w) - a9(0)) Disily) + () Div(y) +aW)iy) ) ,
and we can apply to this problem Theorem 3.10

(437) lape < e ([Tlo,or +1Glhor). N <p< o

2-_X)
vD" c D" CcD'.

Noting that dxr = |J|dy, where J = —H is jacobian of the trans-
formation ¥(z) and J = &—II{V > 1, further, from assumptions (a), (b), (c)
- (cc) and (4.3.3), (4.3.6) and (4.3.7) with regard for above properties of
H(zx),®(z) it follows that

virer < calvlogr +elp, 4, K) {c/ <Ap(d(x))|vm|1’ + | fIP+

K

(4.3.8) 1 @pr-2) @) (Vo|P + || + |p|s + 1)>da:} )

N<p<%, VG c G" Cc G

(Here G = ’l,[l_l(D”,), G = w—l(DH).)
Now we apply LP-estimate (Theorem 4.6) to the solution of (L),

(43.9) [aray<c [ (7 +177) ay.

DII DI
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where ¢ depends on N, v, u, K, X\, A, D/, 4|y, [~ with K from the as-
sumption (cc). Considering the property 4° of H, from (4.3.9) it follows

lvge Pz < c1(|H]y) / By Py +
GII DII
ea(9H) / FO-2) ()| VolPde <
Gl/
< oo / (15 +1FPP) dy+
(4.3.10) b

+ec /dp()‘_z)(a:)lvmpd:z: <
Gl/

< [{@P2) (V0P + P + lela + 1)+
GI

+|fP }da

in virtue of the property 3° of ® and the assumption (cc).
Thus from (4.3.8) and (4.3.10) we obtain

(43.11) Jolxgr < alvloer +C{/dp('\—2)($)(le|p + [v]? + [p|a+
G/

-

’ N
+1) +|f|”dsv} , N<p<5g—,¥G"CG CGUT.

Step 2.
Let z¢ € G, z§ € OG be arbitrary points. Put d = %d(mo). We rewrite
the equation (L)g in the form

(L) a¥(z5) Dijv = F + (a¥(z5) — a” (z)) Dijv,
where, by the assumption (ec) and the properties of @,
(4.3.12) 171 < e, K)d*2(z)(1 + o] + V).

Let &(z,y) be the Green function of the operator a¥ () D;; in the ball
B,(0). Then according to the Green representation formula (3.2.1), almost
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everywhere

(4.3.13) v(y) = / U(mﬁ%’ldsﬁ

8B,{0)

+ f &(z,y) {F + (a”(z}) — a¥(z)) Dijv} dz =
By (wo)

= Ji(y) + 2(y), o€ [24,3d].

REMARK 4.44. We observe that the Green representation is valid be-
cause v and D;v are absolutely continuous on almost every line parallel to
one of the coordinate axis, and thus partial integration is allowed.

Now using Lemma 3.9 with the Holder inequality

p

IDeJi ()P < |CoY / wlds.| < Cdi-P-N / lv[Pds,
8By (zo) OB, (zo)

from which follows

(4.3.14) / dPC =2 ()| D Ji(y)|Pdy < CdPP 31 / |v|Pdss,

34(330) aBg(zﬂ)

if we take into account that

d(y) < |d(y) — d(zo)| + d(z0) < d+ 4d = 5d,
d(y) = d(zo) — |y — 0| 2 4d —d=3d
and therefore
(4.3.15) 3d < d(y) < 5d.

Similarly, by Lemma 3.9 and the Holder inequality,

p

| D J2(y)|? = / Dy&(z,y) {F + (a¥(zy) — 0¥ (x)) Dyjv} dz| dx <

e{zo)
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»
<C f lz — y|*~N |F + (a¥(z§) — a¥(z)) Dijv|dz | dz =
3a (%o}
=¢( f o —y| 7 V%
Baa(zo)
x |z — g NI | F 4 (0¥ (25) - 0¥ (2) Dygo| da) Pdr <
p—1
<C / |z —y[*Ndzx X
34 (%o0)
X / |z — y|PA=DFe= NI F 4 (¥ (z}) — 0 () Dijol” da,
Bsa(zo)
Vo € (0,1)
or
[ 2Dy <
By(zo)

< Cgr-Y) / |7 + (a¥(z}) — a¥(z)) Dijv|” de.

Bsa(zo)

Hence and from (4.3.13), (4.3.14) we have

(4.3.16) / dPP=2 ()| Vu(y)[Pdy < CgPP—I+1 / |v[Pds,+
Bqa(zo) BB,(z0)
+ CdPP / |7 + (a¥(z}) — a¥¥(z)) Dijv|” da.

Bag(zo)

Now we take into account that d(zo) < d(z) + |z — zo| and therefore in
Bgd(ZBQ) hold

= %d(zo) < %d(m) + %d s d < d(x).
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Therefore, integrating (4.3.16) with respect to g from 2d to 3d, we get the
inequality

(4.3.17) / dPP=2 ()| Vu(z)[Pde <

Bd({l‘o)
<c / [@0=3 @) of? + PP-D(2) (1717 +
Bsa(zo)
+ |(aij (z) — a* (:r:S))Diij) }da:.
Finally, from the inequalities (4.3.10), (4.3.12) and (4.3.17) it follows that
/ P2 (2)|Vo(z)Pdz < e / dP23=3) ()| V() [Pda-+

By(xo) Baa(zo)
(4.3.18) +co / {d”(A‘S)(m)|v|p + d”(z’\"3)(:c)}d:c.
Byd(zo)
Step 3.

It is well known (see, for example, §2.2.2 [199]), that the smallest pos-
itive eigenvalue ¥ of the problem (EV D) for (N — 1)-dimensional sphere
or half-sphere is equal to IV — 1 and therefore, by the formula (2.5.11), the

corresponding value A = 1. To the problem (L), we apply Theorem 4.21 in
(N — 1)-dimensional sphere with s = A > 1. As a result we obtain

|v(z)] < cod(x), =z € Baa(zo).
Therefore from (4.3.18) we get
f P2 (2)| V() Pdz < 1 / PA=3) ()| Vo(z) Pda+
Ba(zo) Baa(zo)
+c / d?* (z)de.

Bya(zo)

(4.3.19)

Now consider the region G} defined by
G, ={z e G d(z) > t},
where d(z) is the boundary distance function of G while di(x) will be that
of G;. We apply the following lemma on the covering.
LEMMA 4.45. (See Lemma 3.1 [405], §1.2.1 [261]). Let G be any
bounded open domain in RY and let {B} be the set of balls B = B 14(z) ()
with center T and radius $d(z), d(z) being the distance from x to 8G. Then
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there exists a denumerable sequence of balls B*) = B%d(a:(k))(w(k)), {B(k)}se
with the properties
e UB® =g;
e cvery point of G is inside at most C(N) of balls {B' (M} B'(F) —
B%d(z(k))(m(k)) and C(N) depends only on N.

Let us choose a covering {B*)}$° of G.. Assuming the centers of the
balls in the covering to be {z*)}5°, define z(*)* as one the points satisfying
z®* € 8GNAG", |z*) —z*)*| = d(z(*)). Then apply the estimate (4.3.19)
for each k with zo = z(®) and Ty = z*_ Since

Cdy < di(x) < Cady, for |z — 2% < 4d), where dj, = i—dt(a:(k)),

we get
XD ()| Vo(z)Pdz < o1 / P3| yy|Pdz+
By, (x®)) Byay (2®))
+ e / df(A_z) (z)dz.
Bag, (2(9)

Now, summing these inequalities over all k, we have

(4.3.20) f P2 ()| Vo(z) Pdz < e / =7y g+
Ve &
+o / A2 ()dx.
&,

Since ¢; does not depend on ¢t and A > 1, we can find some ¢ which is
independent of ¢ and is such that

() < 2,
if d(z) < t'. Then, if t < ¢/,
_ 1 _
o / #PI| Pz < / ") (1) Vo(z)[Pdz+
&, Ginfd@<t)

+c1 / df(n_?') |Vu|Pdzx.
Gin{d(z)>t'}
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Hence and from (4.3.20) it follows

/df(A_z) (z)|Vu(z)Pdz < C / dPE )|y Pdr+
G, Gin{d(z)>t'}

(4.3.21) ‘
+C/df()‘_2)(1})dﬂi.
GI

It should be noted that the second integral does not depend on ¢, but de-

pends on [Vv| and t/; in fact, since ¢ < 3¢’ we have G} N {d(z) > t'} = G,

and dy(z) = d{z)—t > '—1t' = 1’ on this set. We note that G}, C G} C G'.
Finally, from (4.3.21) we get

fﬁ“”kmvmmmzsqxﬁmmﬂxfwm@mm+
b ¢,

(4.3.22)
+C/df()‘_2)(:c)da:,
G/
since A > 1.
Now we apply the LP-estimate (Theorem 4.6) to the solution of (L)
wsz)  [e@pds e [ (0P 410+ KEOD) da,
Gy G,

where c depends on N, v, pu, |¢|a, A, A, G’ with K from the property 3° of ®.
Then from (4.3.22), (4.3.23) we have

as2) [ & @Ne@Pd<e [ (b +17p + a0 de
J

t Gi
Step 4.
Letzg e Tand N <p< 2—1:%, 1 < XA < 2. Then, by Corollary 4.43,
we get

d
dPO-3 (z)dz < c/'rp()‘_Q)"‘N_ldr < const.
Ba(zo) 0
Performing a covering of G’ by the spheres with centers zp € T hence we
get that
(4.3.25) /#Wmmmgc<w
GI
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Similarly, by setting p(x) = d(z) — t, we obtain
(4.3.26) / dP*= (2)dx = / A2 (r)dz < C < oo.
G, G'n{p(xz)>0}

Hence, if we put ¢ = tx and let k¥ — o0, (4.3.24) and (4.3.26) imply that
(4.3.11) is finite, with Fatou’s lemma. The theorem is proved. O

4.4. Unique solvability results

In this section we investigate the existence of solutions in weighted Sobo-
lev spaces for the boundary value problem (L) under minimal assumptions
on the smoothness of the coefficients. Let A be the smallest positive eigen-
value of (EV D) with (2.5.11).

THEOREM 4.46. Let p € (1,00), o, 3 € R with
“A+2-N<2-(B+N)/p<2—(a+N)/p<A
Furthermore, let us assume that
(4.4.1) z|@P/PA(|z]) -0 as |z|— 0

and suppose that assumptions (a) - (b) are fulfilled. Ifu € Vp2’5(G) s a solu-

tion of the boundary value problem (L) with f € V) (G), ¢ € V%;lfp(aG)
then u € V;2,(G) and the following a priori estimates are valid

(4.4.2) lullvz @ < elifllve @) + lellye-1e 50 + lullve @)
Py P o ( ) P,

with a constant ¢ > 0 which depends only on v, u,a, N, A(diam G) and the
moduli of continuity of a™.

PrOOF. We write the equation Lu = f in the form
Au(z) = f(z)-

(443) - ((aw’(m) — &) afi?xj (z) + ai(m)%(x) * “(”“)“(“’)) '

Due to Theorem 3.11 we then have

(4.4.4) ”u”Vp%a(G) <e {”AU”V,QQ(G’) + H‘P“Vpﬁ‘;l/l’(aa)} .
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Estimating the V) ,-norm of the right hand side of (4.4.3) we obtain from
the condition (b)

lAulEe (g <es (nfnf;ga(g) + [ Aol (107
G

+ 7P| Vul? + 1‘“2”|u|"’) da:)

with c3 depending only on p and N.
Decomposing the domain G into G = Gg U G4 we then obtain

(4.4.5) [Aullyo (@) Sca (”f“vg,a(c) + SlelgA(|ﬂ3|)||“HW2m(Gd)+
T

+ sup |$|(°‘_ﬁ)/pv4(|$l)||u|lv2ﬂ(cg))
z€(0,d) P

with ¢4 depending only on N, p and d. Since all terms on the right hand
side of (4.4.5) are finite, we conclude that u € V2, (G).

Furthermore, from the local LP a priori estimates (see Theorem 4.6)
applied to the solution u of (L) we have

(446) Nullwaoes) < es(Iflzo@am + I@lwesmarymt
Hlulram) < ol lvgaie + Iellyzzomaeyt

+ Hullv,ga(a))

with cg depending only on N, p, v, y, G, d, e, the moduli of continuity of the
coefficients a¥% on G4 and on

N 1/2
i2
[ (Ezj | ) lviey Nellzrer:
Combining the estimates (4.4.4)—(4.4.6) and taking the continuity of
the imbedding
V2,(6) = V24(@)
into account we arrive at

lullvz,) < er sup |2 DPAxz])ullyz, @y

z|€(0,d

+es (1 Flvg,.@ + I€llyazmog) + lullve.@) -
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Choosing d small enough and applying the condition (4.4.1) we obtain

(447 Julvz.@ S e (Il + 1elyzimpe + lullve.@)

THEOREM 4.47. Let p € (1,+00),a € R with

a+ N

“A+2-N<2-— < A

2 : - 0
and let u € Vj(G) be a strong solution of (L) with f € V,,(G) and

o € V23YP(8Q). If u is the only solution in the space V2o (G) then following
a priori estimate is valid

(4.4.8) lullvz.@ < e (Iflvg.@ +19ly21reae) -
ProOOF. Due to Theorem 4.46 we have
lullvz @ <c (llLullv,g,,(G) Hlully2e ey + ||U||vga(G)) :

Let us suppose that (4.4.8) is not valid. Then there exists a sequence
{ui}52, C V;;‘),a(G) such that

luslivz. o 2 3 (IZusllvg,. @ + lusllyzziregag + Iusllve (@) -

After the normalization {u;llvz_(g) =1 we obtain

1
1Z45llve.. oy + Nusllveziegae + luillve @ < 3

Since the imbedding V7, (G) — V;2,(G) is compact, there exists a subse-
quence {u; }2¥_; such that

uj — u* in VPO’Q(G) for some u* € VIEQ(G)-
Moreover, we have
lusr — ugellvz, o) < C(llLuz" —Lujllve o)+
+llue = ugllye-im gy + llue - uj'”‘/ff)-a(a))‘

Thus {u; }37_; is a Cauchy sequence in V2.(G). Consequently u* belongs to
Vzo(G) and is a nontrivial solution of the boundary value problem (L) with
f =0, ¢ =0, in contradiction to the unique solvability assumption. |
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THEOREM 4.48. Let p > N,a € R and suppose that assumptions (a)
and (b) are fulfilled and that a(z) < 0 for all z € G. Then the Dirichlet prob-
lem (L) has o unique solution u € V;(G) for all f € V) (G)NLP(G), ¢ €

sz,gl/p(aG) if and only if
0<2—~(a+N)/p<A

In this case the following a priori estimate is valid

(4.49) lullvz. ) < e {1fIvenie + Ielyamiogo b -

PROOF. We prove the existence of a solution by the method of continu-
ity (see Theorem 1.54). We consider the family of boundary value problems
depending on the parameter ¢ € [0, 1]

Ly {Ltu =thu+(1—t)Au=f inG,
U=y on 9G.
The operator L is uniformly elliptic with the ellipticity constants
py = max{l,u}, v =max{l,v}
and is continuous if considered between the Banach spaces
LF: V2 (G) = V2 (G) x V2S1/?(8G).

Let us denote by u; a solution of the boundary value problem (L)! for
t € {0,1]. We will show that

(44.10)  luellvz, @ < e {Iflve. @) + I9lyzoimpe b VE€ 0,1]

with a constant ¢y independent of ¢,u; and f, . To this end we write the
equation Lsu; = f in the form

(4.4.11) Auy(z) = f(z) — t((aij (z) — aij((])) Djjui(z) + ai(x)Diut(:r)+
+ a(a:)ut(a:)).

Due to Theorem 3.11 we then have

(4412) ledllvz. @ < ez {I18udllvg, ) + ¢l a0y } -

P,a

Estimating the V) ,—norm of the right hand side of (4.4.11) we obtain from
the condition (b)

1A%w]%o o <eallfl%o @+ | AP(z))r®*(|D*wf? + r~? |V [P+
P,l!( ) ;p,a( )
G

+ r_2p|ut|p)dac)
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with cg depending only on p and N.
Decomposing the domain G into G = G& U G4 we then obtain

(4413) | Audlvg (o) < ea(lflvg. () + ADluellvz op+
+ sup A(|2]) [usllwe(c )
G

with ¢4 depending only on N,p and d. Furthermore, from the L,-estimate
(see Theorem 4.6) applied to the solution u; of (L)* we have

(4.4.14)  usllwar ey < Cs(”fHLP(Gd/z) +llellwe-1/pw(r,),)+
+ ”utHLP(Gd/z)) < 66(||fl|v,ga(a) +llelly2z1m oyt

+lwllve, ,, @)

with ¢5 depending only on N, p, v, u, G, d, the continuity moduli of the co-
efficients a*/ on G4 and on

I(50) )

i=1

lallLer2(ay, P> N.

G’

Combining the estimates (4.4.12)—(4.4.14) we arrive at

luellvz (@) < c2caAld)l|uellvz ey + C7(||fllv,;{a(c:) + lelly2z1reaey+
+luillve, ,, @)-
If we choose d small enough, then
cacs A(d) < 1/2

due to the continuity of the function A. Therefore,

(4.415) Jwllvz (@) < 20 (Iflve, () + Ilya-mgoc +

+ ||Ut||v,ga_2p_1(a))-

We remark that according to Lemma 1.38 we have V2 (G) — C°(G) and

@ € C°(8G) for 0 < 2 — (o + N)/p. Thus the boundary value problem (L)
can have at most one solution in the space sz,a(G) due to Theorem 4.1.
Due to Lemma 1.37 the imbedding

V2(G) = V2 01 (G)
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is compact and we can apply the standard compactness argument (see The-
orem 4.47) in order to get rid of the Hut”Vpoa_z,,_l(G) term on the right hand

side of (4.4.15). Thus

luelivz, e < eir (If1ve.@ + 1€llyz-17m a0 ) -

Since the boundary value problem (L)? is uniquely solvable for ¢ = 0 due to
Theorem 3.11 we conclude from Theorem 1.54 that (L)? is uniquely solvable
for t = 1, too. O

THEOREM 4.49. Let 'y € CY! with some d > 0. Let A € (1,2) and the
numbers are given q > %, N < p < q and o € R satisfying the inequality

0<2—(a+N)/p<A
Suppose that assumptions (a) and (b) are fulfilled with A(r) Dini continuous
at zero and, in addition,
(d) a € LN(G) and a(r) <0 for all x € G;

(dd) f € VI, (Q)NLUG), ¢ € Via"UBG) N W2-1/29(3G) and there
exist real numbers s > A, k1 > 0,kg > 0, k3 > 0 such that

ky =: _8( )
1 zligg ”f”‘/?fg_N(Gg) + “(,OHWZ/_ZN(FS) +

1-sg
+ sup ¢ (”f”N;Gf)% Al ||(pHV13}>”N(F§74))’

A a+N

—. 2—A—
kz =i supe g (Ilfllqua<c;§;4> + ||<P||%g;1/q(rzﬁ4)),

N 1/2
(cc) (; |a2‘(x>|2) T la(@)| + |f(@)] < kad*2(z), € G Ve >0,

where d(x) is the distance from x to 0G.
Then the problem (L) has a unigue solution

u € WG NV (G)NCAG)
and the following a priori estimate is valid
(4.4.16) lulloa < K
with the constant K independent of u and defined only by N, q,v, u, A, s, k1,
k2, by 1y ma A, el -vn oy Of 4O 4t and the domain G.

PRrROOF. In virtue of Theorem 4.1 the problem (L) has a unique solution

u € W2Y(G)NCO(G). Using the Holder inequality with s = 1>1, ¢ =%
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we obtain

p/q (g—p)/a
/T"‘If\”dw = /T"/slfl” oSy < /r“lflqdz : /Tadw)
G G G G
<Clfls 6y

since a+ N > p(2 — A) > 0. Now it is easy to verify that all assumptions of
Theorem 4.48 are fulfilled and therefore according to this theorem
u € Vp?,a(G) and the estimate (4.4.9) is true.

Now let us prove u € C*(G) and the estimate (4.4.16). For this we
apply the local estimates of §§4.4, 4.6, 4.9. We consider the partition of
unity

1= Z{k(m), where (i (z) € C°(GY), UG”
k

Let ® € V2,(G)NCY(G) be an arbitrary extension of the boundary function
@ into G. The function v = u — ® then satisfies the homogeneous Dirichlet
prablem

Lv=F inG,
(L)o {

v=20 on I9G.

with F(z) determined by (4.2.4). Setting vx(z) = (x(z)v(r) we have

Log(z) = Fk(@) = Ge(2)F (@) + 209 (@), v, + (0 (@) Cemio, +

(4.4.17) '
+ 0 (2)Cha, ) ().
At first we consider such {x(z) the support of which intersects with the
d-vicinity of the origin O. The assumptions of our theorem guarantee the
fulfilment of all conditions of Theorems 4.21, 4.33 and therefore we have

| Fie(@)] < e (1F(@)] + [Vo(z)| + 2|~ o(2)[) <

(4.4.18) < e (|F(@)] + jz*1) < ck(lf(m)y + |zt

Alz]) Allz])
+ ol + SRV + S @l), =edi,

if we recall (4.2.4). Now we verify that we can apply to the solutions of
(4.4.17) Theorems 4.21, 4.33, too. In fact, by (4.4.18) and the assumption
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(dd), we obtain

fr4_NF,?(z)dz <2 / (r4_NF2(m) + T2A+2”N) dr < 2c2k3 0%+

G§ G
meas§} F o~
+2Cﬁmg2)‘+2 < Okgzs §>A 0€ (Oad)
Similarly
1Bkllvas,, < ek (11 lwioas, + Ielyaamos ) )+
1/N
+ /TN()‘_l)dw < exk10®™ + o™

G

Hence (4.2.61) follows with s > X and F}, € LY (G) since s > A > 1. Thus
we verify the conditions of Theorem 4.21.
Further,

[ Mm@ s [ (NI + e e oY ey

GQ

e
e/2 G

e/2

+rN|®7 + TQ('\-H')_N) dr <

INA

L R e T
G

+ r“_zq@lq) dz + Cje®®+D) <

< ckk§e®, 0€(0,d)

because of the assumption (dd). Thus we verified the assumption (bb) and
therefore all conditions of Theorem 4.33 are fulfilled.

Finally, on the basis of the Alexandrov Maximum Principle (see Theo-
rem 4.2) we have

Mo = sup |u| < sup || +cll fll v (e)-
G aa
Thus, by Theorems 4.21, 4.33, we get vx(z) € C)‘(G_‘Oi) and
(4.4.19) “Uk”C"\(G_g) < K.

Now let us consider such {;(z) the support of which intersects with the
I'y with some d > 0. In this case we can apply the Widman local estimates
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(see §4.9) near the smooth piece of the boundary of G. In particular, by
Theorem 4.42 with regard to the assumption (cc), we obtain

(4.4.20) | Fr(z)| < Crd* ().

The inequality (4.4.20) and the assumption (cc) allow to apply Theorem
4.42 to the equation (4.4.17), too. Therefore we can conclude that

(4.4.21) los (@)l o G, < Ci

Finally, if the support of {x(z) belongs strictly to the angular domain
@ since u € leo’cq (G), ¢ > %, by the Sobolev Imbedding Theorem, we
have that v (z) € CX(G}), VG, CC G and in virtue of Theorem 4.7 for
k = 2 the estimate

(4.4.22) vk (@) erey) < Cllvellweaey) < Ck

holds.
Since v(z) = Y vx(z) and this sum is finite, from the estimates (4.4.19),
3

(4.4.21), (4.4.22) it follows that v € C*(G) and the validity of (4.4.16).
Thus our Theorem is proved. O

Since the Widman results (§4.9) are true for the Liapunov domains, in
this way the following theorem is proved.

THEOREM 4.50. Let 'y € C* with some d > 0. Let the assumptions
of Theorem 4.49 be fulfilled. Then the problem (L) has a unique solution
u € Wﬁ’cq(G) N CMNG) and the estimate (4.4.16) holds.

4.5. Notes

The behavior of the problem (L)-solutions near a conical point was
studied in the case of the Holder continuity coeflicients in [16] - [19], [398,
399]. Our presentation of the results of this chapter follows [53, 56, 57,
58, 63, 66]. These results were generalized in [369, 50] on linear elliptic
equations whose coeflficients may degenerate near a conical boundary point.
Theorem 4.48 was known earlier in two cases: either when the problem (L)
equation is the Poisson equation [400] or when G is a cone, but the lowest
equation coefficients are smoother (Theorem 2.2 [189]). Theorems 4.49 and
4.50 are new because without our new estimates from §§4.5, 4.6 as well
as the Widman estimates from §4.9 they could not be proved. Moreover,
in these theorems we weaken the smoothness requirement on the surface
OG \ O. In Theorem 4.49 these requirements allow a locally smoeoth piece
of surface to "straighten". In Theorem 4.50 the surface G \ O can be the
Liapunov surface because in such a domain the Widman results (§4.9) are
correct, and we use them in the neighborhood of a smooth piece of 0G \ O.



4  STRONG SOLUTIONS OF THE DIRICHLET PROBLEM
164 FOR LINEAR EQUATIONS

Other boundary value problems (the Neumann problem, mixed prob-
lem) for general elliptic second order equations in nonsmooth domains have
been studied by A. Azzam [20], A. Azzam and E. Kreyszig [22, 23],
G. Lieberman [230] and V. Chernetskiy [81].
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CHAPTER 5

The Dirichlet problem for elliptic linear
divergent equations in a nonsmooth domain

5.1. The best possible Hilder exponents for weak solutions

5.1.1. Introduction. In this Section, the behavior of weak solutions
of the Dirichlet problem for a second order elliptic equation in a neighbor-
hood of a boundary point is studied. Under certain assumptions on the
structure of the domain boundary in a neighborhood of the boundary point
O and on the equation coeflicients, one obtains a power modulus of conti-
nuity at O for a generalized solution of the Dirichlet problem vanishing at
that point. Moreover, the exponent is the best possible for domains with
the assumed boundary structure in that neighborhood. The assumptions
on the equation coeflicients are essential, as the example in §5.1.4 shows.

Next, it is shown, with the help of the previous results on the continuity
modulus at boundary points of the domain, that a weak solution of the
Dirichlet problem in a domain G belongs to a Holder space C? in the closed
domain G, the exponent A being determined by the structure of the domain
boundary and being the best possible for the class of domains in question.

‘We consider weak solutions of the Dirichlet problem for the linear uni-
formly elliptic second order equation of the divergent form

a%i(aij(l")uxj + at(z)u) + b4 (@)ug, + c(z)u =

(DL) =g +258, zeg
u(z) = p(z), x€0G
(summation over repeated indices from 1 to N is understood.)
At first, we describe our very general assumptions on the structure of
the domain boundary in a neighborhood of the boundary point O. Namely,

we denote by 6(r) the least eigenvalue of the Beltrami operator A, on €2,
with the Dirichlet condition on 9Q,. According to the variational theory of
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eigenvalues (for the analog of the Wirtinger inequality see (2.3.2) Theorem
2.15), we have

(5.1.1) f ()i, < o / Voul2dR,, Vue Wh(Q,).

"

Assumption L

8(r) > 0o + 61(r) > 62 > 0, where
6y, 82 are positive constants and

1(r) is a Dini continuous at zero function

hmB /|91 dr < oo

Assumption II.
e (i) Uniform ellipticity condition

vIg]? < Z (@)6ig; <ple]> VEeRY, ze@

1,j=1

with some v, u > 0.
e (i) a¥(0) =5§.
o (iii) a¥(z) € C°(G), (i,5 = 1,...,N); ai(z),b}(z) € LP(G),
(i=1,...,N) and ¢(z) € L*%(G), p > N.
e (y) There exists a monotonically increasing nonnegative function

A
such that

4,j=1 i=1

N 1/2 1/2
(Z |0 () —a"j(O)lz) + |z (Zta*(mnz +Z|bz<m>r2) +
+ |z?le(2)] < A(lzl) vz € .

o (i) g(x), fiz)(@=1,...,N) e L3Q), p(z) € Wi(dG).

DEFINITION 5.1. The function u(z) is called a weak solution of the
problem (DL) provided that u(z) — ®(z) € W§(G) and satisfies the integral
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identity

/ {a¥(@)uz, ne, + a*(T)ure, — 6*(x)ug,n — c(z)un} dz =
G

(m - f {F(@)ne, — g(z)n} do
G

for all n(z) € W§(G).
LEMMA 5.2. Let u(x) be a weak solution of (DL). For
Vo(z) € Vi={v e WHGE) | v(z) =0, z € T§}
the equality
/{(aij(x)uxj +a*(z)u — f(@))vs, + (g(z) — b (2) g, — c(m)u)u}d:c =

G

(5.1.2) = /(a”(m)uzj + a*(z)u — fi(z))v(z) cos(r, z;)d,
QQ

holds for a.e. g € (0,d).
PROOF. By u(z) € W§(G) and because of

2
/|Vu|2d:c=/d,g/[Vu(r,w)FdQT,
0 9

G§
from the Fubini Theorem follows that the function

(5.1.3) V) = f Vu(r,w)|2d0,
8,

is determined and finite for almost every r € (0, d). We consider the function

(5.1.4) J(o) = /(aij(x)u:ﬂj + a*(x)u — f’(ac))v(m) cos(r, z;)dS,
{2,

for almost every g € (0,d) for all v € V. By virtue of ellipticity condition
and assumptions on the equation coeflicients we have

a¥ (T)ug, cos(r, z;) < p|Vu| and a*(z)ucos(r, z;) < r~LA(r)|ul,
therefore using the Cauchy inequality, we get

6:15) @) (14 e+ A@) [(Vul i+ P
Q
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Since the integral (5.1.3) is finite for almost every r € (0,d) from (5.1.5)
follows that the function J(g) is determined and finite for almost every
o€ (0,d).

Now let x,(z) be the characteristic function of the set G§ and (x,)» be
the regularization of x (see §1.5.2, chapter 1)

(5.1.6) (xon(e) = [ n(le ~ s xelwdy
G

where ¢ (|z — y|) is the mollifier. It is well known that the regularization
is an infinite-differentiable function in the whole of the space and

B(Xag:)cz(x) _ / Yolt) 6%%;— yl)

(5.1.7) =—/XQ( )W Gi=1,...,N).
G

Let us take a function v € W}(G), and set n(z) = (x,)n(z)v(z) in the
integral identity (II). It is easily seen that such a function n(z) is admissible
and moreover,

g (Xg)h(f)— —'v(:c)/xg W

Denoting by
AUz) = (0¥ (2)ua; +a'(2)u — F(x))vz, + (9(z) — b (2)uz, — c(x)u)v(z)
from (II) follows that

(5.1.8) f () (xo)n (@) da f (g, + a*(z)u — £(2))(z) X

G

x { / Xg(y)%%agr—dey}dx = (by the Fubuini Theorem)
G
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-/ xdy){ [ (@@, +a' oy - ff(w))v(m)wdx}dy -

Ay
G (&
(by the Theorem about differentiability of the integral)
5 g . .
= /Xe(y){a—y_ /(a”(l‘)uxj +a'(@)u — f*(z))v(@)n(lz - yl)dm}dy =
G

G
(by definition of the regularization)

= /Xg(y){%<(aijuxj +a'u — fi)v)h(y)}dy =
G
= / aiyi((aijuxj +atu — fi)v)h(y)dy =
G§

= / ((a“uxj +a'u — fi)v)h(y)cos(—ﬁ,yi)dya =

8Ge

= /(aiju% + a’u — fYv(z) cos(r, z;)dQp+

Q,

- {((am)ux,. Faou— F@)u)) o)

8GE "
— (a“ (W), () + @' (W)uly) — f"(y)>v(y)} cos(T,y:)dyo

in virtue of G =T§ U Q, and v(:c)‘rg =0.

0
Now we show that 2(z) € L1(G). First of all because of the assumptions
on coefficients,

24(@)] < (ulVaul + |2~ A2 el + [ 71)[Vol+
+ (Il + |27 Az Vul + 2] =2 A(2]) [ul)[o].
Using the Cauchy inequality, we have

()] < c(u>(|w|2 Vo 402 gt \712)+

+ A(|z)) (]Vu|2 + |V? + |z 2 (u? + v2)).
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Further, we apply the inequality (2.5.2) (see Corollary 2.23)

f|x|”2u2(m)dm gC/|Vu[2dm.
G8 Ge

Because of this inequality and the above bounds, it is obvious that 2(z) €
LY(G).

Now in virtue of Lemma 1.21 we can then obtain

(519) lm / () (xp)1 (z)dz = ] A()x o (@)de = / A(z)dz =
G a G§

= /((a"j (2)ue, +a* (@)u— f*(z))ve; + (9(z) — b*(2)Uo; — c(m)u)v(m))dm

G§

Next, setting A;(z) = a*(z)uz, + a*(z)u — fi(z) we have A;(z)v(z) €
LY@) (i =1,...,N) and in virtue of Lemma 1.20

(5.1.10) lim [ (Ai(@)v(z)), — Ai@)v()llLrcey =0, (E=1,...,N).

Representing G§ = (0, 0) x Q,, because of Lemma 1.16, we obtain from
(5.1.10) that for some subsequence {h,}

(5.1.11) hljrilo ||(A,L(m)v(x))hn - .Ai(.’E)'U(fE))”Ll(ﬂe) =0 ae.p€(0,d)
t=1,...,N).

Similarly, representing G§ = T'§ x (—wp,wq), because of the same Lemma
1.16, we obtain from (5.1.10) that for some subsequence {h,, }

(112) lim [[(A@(a), , ~ Ale)@) g =0
a.e.wy € (—wo,wp), (i =1,...,N).

Thus, performing in (5.1.8) the passage to the limit over h - 0 by (5.1.9)-
(5.1.12) we get the required equality. Lemma 5.2 is proved. U

5.1.2. The estimate of the weighted Dirichlet integral. Setting
v = u — ® we obtain that v(z) satisfies the integral identity

/ {a" (z)vz,; 0, + &' (x)vne, — b (T)vz,m — c(x)vn} do =
G

= /{F"(g:)nmi - G(z)n} dz (II)o
G
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for all n(z) € Wy'*(Q), where
F(z) = f(z) — a¥(2)D;® — a*(z)®(z) (i=1,...,N),
G(x) = g(x) — b*(z)D;® — c(z)®(z).

At first, we will obtain a global estimate for the weighted Dirichlet
integral.

(5.1.13)

THEOREM 5.3. Let u(z) be a weak solution of the problem (DL) and
suppose that assumptions I, II are satisfied with a function A(r) that is
continuous at zero . Let us assume, in addition, that

(5.1.14) geWe(G), feWo_o(G), p € WiH(dG),

where

4-N-2<a<?
(*)

A= %(2—N+\/(N—2)2+490)
Then we have u(z) € Wo,_,(G) and

65.015) lullg: g < Clllulwrae + llle o+
Hlflge o T el oo

where C > 0 is the constant dependent only on o, A\, wg, N, 4, G and inde-
pendent of u.

ProoF. Replacing u by v = u — ® and setting 7(z) = 2 2v(z), with
regard to
TE'

v(zx)

Nz, = r?‘zvx (a 2)

i

we obtain

(5.1.16) / ro=2|Vy|2dg = 2_Ta / re4(z; — el,)(v)g.do+
G G
a-3%i T & Eliv(m)d:c—

&

~o) [ ((a“ (2) - a9 (O))vs, + a(a)o +P(z))
G
G[ ((a” (@) — a¥(0))vs, + a* (@) + File )) o dot

+ [ @ + el - G o(e)in
G



172 5 DIVERGENT EQUATIONS IN A NON-SMOOTH DOMAIN

We transform the first integral on the right
a—4 2 2 0 a—4
/T’E (.’E@ — Eli)(’U )xida: = —fv a— (TE (IE,,; — Sli)) dx
i
a G

because of v € W(} ?(G). By elementary calculation

O (ra- - _sTi — €l
Oz (TE i Eli)) = Nr2™* + (a—4)(z; — ely)rd °—— - -
~ (N +a-
we obtain
2—a a4 2
(5.1.17) ro=d(z; — ely)(v?)g, dx =

G

(2 - Oé)(42— N —a) /r§‘4v2d.’z.
G

We estimate the other integrals on the right by using our assumptions and
(5.1.13)

\(a”(z) — aij(O))v,;j +ai(x)v + Fi(z)| <
< A(r) Vo] + A(r)r~H(Jof + @) + ulVe| + | f];
|6*(z)ve, + e(z)v — G(2)| <
< A@r)r=H(|Vo] + [VO]) + Ar)r™*(v] + |2]) + lgl.

(5.1.18)

Now from (5.1.16), (5.1.17) it follows that

(5.1.19) /7‘2‘_2|V'u|2d:r < (2= a)(42__ N-o) /rg‘—4v2dx+
G

e

+e(N, &) /{r;"_Q.A(r)<r‘l [Vo|([v]+ @)+ || V| +r~2(v? +|v]|®))+
G

+ IVvlg+> + 1872 (uV ||V + |vflgl) + re > A(r) (o] Vo l+

+rh? 4 )| )) + ur§"3|v||V<I>[}d:r.
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Further, we estimate the following using the Cauchy inequality with ¥d > 0
1 _
3" 2ol

o7l

1 1
r8l o] < 5V + 2ol

r=1Vul[v] < S|V +
V0| 8] < 2|Vl +

1
=20

1
-2 -21..12
d| < ~ +

(5.1.20) p|Vo||Ve| < é]w]z + ”—2[vq>|2;
olie] = = ol)rlgl) < §r=hof + 5zr%lgl%
r7HVoljy] < —[VU|2 + = r—2|fu|2;
pllel < 2P+ Lo

urs V||| < gr_2|v\2 + #—2|V<I>|2.
€ —2°F¢ 26

As a result from (5.1.19) we obtain

(6.1.21) frg_2|Vv|2dx < (Ch a)(42— N-o) /rg_4v2dm+
G e

+olam) [ {r AT 41822 A bl
+rEPA@ (VO + 1720 + re T AWl + e LA o+
+ 72737 AR |0 + r2 2 V) + 57‘“ 2|V

&
+ 57"?“21'*2]0]2 + r§*2r2|g|2}dx.

Now we apply the inequality (2.5.8) to the first integral from the right side;
because of the condition (*) of our theorem we have

COLN,a) =1 2= O‘)(42_ N =) ga N,0) > 0.
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Therefore we can write the inequality (5.1.21) in the following way

CAN,0) [ 12 VoPde < co 4@ + 8 [remvepaos
G G
ey, [ A re 2o 4 rz i o+ 6 [ (r2 2 2o ot
G G

+ ca(N, a,u,wo)/(r““4|¢>]2 +r22|Ve|? + r*|g|*)dz, V6 > 0.
G

(Here we use property 1) of the function r.(z).) We apply now Lemmas
2.30 and 2.31 and choose § > 0 from the condition

1 1
(1 + m)(S: EC(/\,N,O[)

As a result we obtain

/Tg—2|vU|2de < C(N,aay'/\a CU(]) /{'A(T)T?—zlva + |U|2+
z G
+re (VB[ +r2|[?) +r°lgl? }da.

We now write the representation G = G§ U G4 and choose d > 0 so small
that

A(d)e(N, o, pA,wp) < 1.

(This is possible because of the continuity at zero of A(r).)
Thus, finally we obtain

/r§'2|Vu|2d:1: < e(N,a, pA wp) /{u2 + |Vul? 4+ r* 2| V|2 +
G G
+ 127402 +r%|g|?) dx, Ve > 0.

Passaging to the limit when ¢ — +0 by the Fatou Theorem we have the
required estimate (5.1.15). O

We pass now to the derivation of the local estimate for the weighted
Dirichlet integral. For this together with Assumptions I and IT we make the
following

Assumptions III,

o (ivv) the function A(r) satisfies the Dini condition at zero;
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o (w)

rd=Nn=22H~1(r)g?(z)dz < oc;

I
?fr4_N—2’\H‘1(r)<p2(x)dm < 00;
G
S
G

N .
r2=N-2Ap-1(p) (; |fi(z) 2dz + 1V<I>|2) < o0,

where H(r) is a continuous, monotone increasing, Dini continuous
at zero function.

THEOREM 5.4. Let u(x) be a weak solution of (DL) and suppose that
assumptions I, 11, 11T are satisfied. Then there exist positive constants d, C,
independent of u, g, fi, such that

N
[rvivutas s i [ {|u(x)r2 VP + @) + 1P @ P+

e Gz =1

+H@? + [VO|* + r* NN () g (x) + r N PR B2

N
(51.22) 2N L)V 4 2 VD) S Ifi(x)lz}dw,
i=1

p€(0,d).

PrOOF. By the above proved Theorem 5.3 we have that
u(z) € v?/clx_z(G). Therefore we can apply Lemma 5.2 and take the function

r2"(u(z)—®(z)) as v(z) in the equal (5.1.2). Now replacing u by v = u—®
as a result we obtain

f{(a”(cs)vxi + a*(z)v — FH @) (r* N, + (2 - N)yr Naw)+
&

+ (6(z) — b(a)vy, — c(z)v)rz—N'u}dgc -

= Q-/(aij(l')vxj + a*(z)v — Fi(z))v(z) cos(r, 2;)dN.
Q
Hence we have

N -2 ov? v
2-N 27, N, —
(5.1.23) /r |Vo|*dz = 5 fr $18midx+g/vardﬂ+
GE Ge Q
+ /{(a” (z) — a(0)) (N = 2)r Nuziv,, — 1 Nugu,, )+
G§
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+ (N = 2)r Vziai(z)o? + r2 Vo (b (z)vs; + c(z)v — G)+
+ 12 Noa (z)vg, + 12 N Fi(@)ve, + (2 - N)r‘viiF"(:v)}dx+

+ g/.{(a“ (2) — a¥(0)) vy, + a*(z)v? — vF(z)} cos(r, z;)dC.
!

The first integral from the right we transform in the following way.

N Ov?
/r Nmi(‘)xi —/ szm,cos(r,xz)dﬂg—

G Q,

—/vQ(Nr‘N —Nmir"N_l%)dxzfvde.
Ge O

Therefore we can rewrite (5.1.23) in this way

(5.1.24) ]rz—NIVdea::/(gvg; N;2v2)dﬂ+
Q

Gg

/{ (a¥(z) — a¥(0)) (N ~ 2r Nvzivs, — r* Nog v, )+

GQ
+ (N = 2)r Vet (z)v? + r2 Nu (b (2)vs, + c(z)v — G)+
+ r2 " Noat (2)vg, + >N F(z)v,, + (2 - N)T_sz'ifi(z)}dm—F

+ g/{ (aij(z‘) — (O))vvmg. + ai(z)v® — vf'i(:r)} cos(r, z;)dS2.
Q

We set V(p) = [ r2~N|Vv|?dz and estimate every integral from the right
G

side. The first integral is estimated by Lemma 2.28. We estimate other

integrals from the right side by using our assumptions and (5.1.18), (5.1.20)

as well as

P ~Nollg) = (vVH)r T o) (VRO % lgl) < 5 SH(ryr NP+

R P
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and
r2 =Ny, Fi(z)| < %H(T)TQ_NIV’UF + %H_l(r)r2‘N|}'|2 <

<

b =

H(r)r? N |Vl + %'H_l('l‘)TQ_N (| 12+ p?ve? + r‘zAZ(r)|<I>|2).

Then we obtain

P ’ -
(6.1.25) V(o) < T 01(Q)h1(g)v (p) + (N, u)G[{A(r)rz Ny
+ AP)r—No? + AP Y|V 12 + A(r)r N e? + H(r)r* Y| Vo P+
+Hrr N2+ H ()Y (7"292 + ]2+ p?| Ve +’I‘_2A2(7')|‘I’|2) }d:c+
+92‘N/{A(Q)IUIIVUI+9‘1A(9)v2+Ivl(!f|+uIV‘I>I+9‘1A(9)I‘I>I)}dﬂg,

e

where 0 < hy(p) < m—i\/o_z—‘ To estimate the last integral from the right

side we apply the Cauchy inequality and the inequality (H-W)

(5.1.26) o /{A(Q)IUIIVUI +o T Ae)v® + v| (1] + ulVE |+

e

+ 071 A()|®|) }dgg < (A(e) + H(p)) / (0% Vof? +v? + ®2)d+
Q

+ 0 H7 ) [ (VO ) < o, 1,0 (Al@)+ H(@)aV"(0) + Fa(a),
Q

where
(51.27)  Filo) = H (o) / (V8|2 + 12)dQ + Alg) / 1©[2d0
Q Q

Thus, from (5.1.25) - (5.1.27) we obtain

p '
V(o) < 2A+61(9)h1(9)v (p) +e1(N, i, A, 62) (A(g) + H(0))V (0)+

+c2(N, i, A, 62)(A(0) + H(e)) eV’ (o) + Fi(0) + Fa(o),
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where
Fy(p) = [ K(r)dr
/
(5.1.29) k) = [{H @ 4 100

-

+HH (PN Ve + r‘NH'l(r)|<I>[2}dQT.

Finally, setting
9 + 61(0)h1 (o) 1 —c1(Al0) + H(0))

Po) = p 1+ (27 + 61(0)h1(0))e2(Ale) + Hig))
(5.1.29)
(o) = 2\ 4 61(0)h1(0) Fi(e) + Fx(0)

1+ (23 + 61(0)ha(0)) 2 (Ale) + H(0))
we get the differential inequality (CP) §1.10 with N(p) = B(g) =0
(5.1.30) V'(e) =2 P(o)V(e) — Qlo), e < (0,d).

It is easy to verify that

_2x o)

+_!
[ e

where §(p) satisfies the Dini condition at zero. Therefore we have

d o) d 5
/ ’P(s)ds=ln(-§) + / %ds,

From this it follows that

N2 d 2 d5(3)
(5.1.31) (E) < exp(/'P(s)ds) < (E) /—s—ds, Vo € (0,d).
e 0

Now because of Theorem 1.52 we obtain

P(o)

d d T
(5.1.32) V(o) < V(d) exp(— / P(s)ds) + / Q(T)exp(— / P(s)ds)dr,



5.1 THE BEST POSSIBLE HOLDER EXPONENTS
FOR WEAK SOLUTIONS 179

and in virtue of (5.1.31) hence we have

d
(5.1.33) V(o) < Co* (V(d) 4 /T‘”‘Q(T)d’r) ,

e

where C > 0 is a constant independent of v.
Now we estimate the last integral. Because of (5.1.29) we get

d d

d
‘/T_z'\Q(T)dT < 63/7_2"‘1F1(T)d'r-E—C4/T’2>‘“1F2(7')dr
[

e e

From (5.1.27) it follows that

d d

(5.1.34) TR (Ndr < | RN [ (V)R + £2)dQdr+
d

+ / T2AA(T) / |®[2dQdr <
Q

4

< / {T'A‘—ZA—N'H“(T) (F2+IveP) + r‘z’\‘NH“l(r)Qz}dm

G§
Further, because of (5.1.28) we change the order of integration and obtain

d

f 22"y

[ \‘&
\‘
\
a
=
2
"y
I|
o\m
?i
=
Y
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Hence in virtue of (5.1.28) it follows that

d
(5.1.35) /T_Ql\_lpg(T)dT < EIX /{r4_2)‘—NH"1(T)g2(:1:)+
o G
+r PN ) @2 4 22N () (£2 4 (VR ?) }d:c.
From (5.1.33) - (5.1.35) together with Theorem 5.3 follows the required
(5.1.22). Theorem 5.4 is proved. 4

THEOREM 5.5. Let u(z) be a weak solution of the problem (DL) with
¢ = 0 and suppose that assumptions I and II are satisfied with a function

A(r) that is continuous at zero, but not Dini continuous. Let us assume, in
addition, that

(5.1.36) gEWy) N @), FLERS_n_an(G)i=1,...,N.

Then for every € > 0 there exist positive constants d,ce, independent of
u, g, i such that

/TQ_N|V’U,’2d:B < CEQ2A(1—E)/{|U(CE)|2+ |Vu]2-|-
G

(5.1.37)
+ T4—N—2Ag2(z) + T2_N_2)‘f2 (:C)}dl‘,

p € (0,d), Ye > 0.
PRrOOF. Similar to (5.1.24) we get from (DL)

(5.1.38) /rz—NIVuPdm = f(gugﬁ L= Quz) dQ+
ae &

or 2

+ /{(aij(:c) —a¥(0)) (N = 2)r Nuzsua, — 1 Nug,ug, )+
G§
+ (N = 2)r Vol (z)u? + r2 Ny (b (z)ug, + c(z)u - g(x))+
+ 12 Nyt (z)ug, + 72N fix)ug, + (2 — N)T_Numifi(:c)}da:%—

+ Q/{(aij(w) — a"(0))uug, + a*(z)u? — uf(z)} cos(r, z;)dS.
!

We set U(p) = [ 72N |Vu|?dz and estimate every integral from the right
G
side. The first integral is estimated by Lemma 2.28.The other integrals from
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the right side we estimate by using our assumptions and (5.1.18) as well

- _ 1
r? Nullg) < 5r~Mu? + o=t N|gP?,

é
2 26
_ i & 5 1 5
7'2 Nlumi-f ($)| 5 vau|2 + %Tz N’f|2,
vé > 0.

Thus we obtain

(5.1.39) U(g) < (N, p) / { (A +6) (a2 + 2V vuf?) +

G§

1 r2-N|f2 4 p4-N P
+ 55 (VIR Y gl) e+ U o)+

v [La@ulival+ o At + il bao, vo > 0

As above in (5.1.26), to estimate the last integral from the right side we
apply the Cauchy inequality and the Wirtinger inequality

(5.1.40) N [ (A@ulVal + o7 Al@)u? + lull 1), <
2o

]
< Alg) /(92|Vu|2 + u?) L___Qdﬁ +5 /u2
0 et

m+—/ﬁm<

< e(A(e) +9)eU' (o) + %/fzdﬂ’ ¥é > 0.
Q
Thus, from (5.1.39) and (5.1.40) we obtain

(5141) Ue) < (& +80)U(5) + (cAle) + 3)Ule) + File) + Fale),
V¥é >0, o€ (0,d),

where
g

(5.1.42) ﬂ@:%fﬂm,m@=%/mmh
Q

0

K@ = [{rlap + 717 fao

Q,

and
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Finally, since A(r) is continuous at zero and A(g) < A(d), o € (0,d), we
can choose Vé > 0 such d > 0 that cA(d) < %. Therefore we can rewrite
(5.1.41) in this way
(5.143) Ule) < 42(1+8)U'(p) +8U(0) + File) + Fa(e),

V5 >0, o €(0,d).
Setting now

oA 1-34
(5.144) Plo) = 17

() = 12;\5 Fi(o) ZF2(9)7

as a result we get the differential inequality (CP) §1.10. Now, putting
€= 1 - 5 by calculating, we have

(5.1.45) exp(-—/P(s)ds) = ((—‘(‘;)2)\(1—5), Yo € (0,d).

Now, because of Theorem 1.52, we obtain

d
(5.1.46) U(g) < cg®179 (U(d) + / T—”(l—f)g(f)dr),

where ¢ > 0 is a constant independent of w.
Now we estimate the last integral. Because of (5.1.44) we get

d d
G.147) [P0 (rar - = / P91 (1) dr+
e

e
d

2A —oA(1—e)—1
+ 113 /T Fy(r)dr.

e
From (5.1.42) it follows that

d d
(5.1.48) / 72U (1) dr = ié / —2A(1-e)+l / fdQdr =
e 4

— % /T2—N—2)\(1—e)|f‘2d$ < C/T2-2A_Nf2dl‘.

Gd e
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Further because of (5.1.42) we change the order of integration and obtain

d T d

2
/'r‘”‘(l_e)_l (/K(r)dr)d'r = /K(T)dT/T_2)'(1—E)—1dT+
0 0

e
e

[4
d d

+ / K(r)dr / TRl ( / K(r)(o7221=9) — g-2AU-eygr
o r

0

d d
1
~2A\(1—¢) _ j-2A(1—¢) . < —2)
+/lC(r)(r d )dr) AR 05/7' K(r)dr.
0 0

Hence because of (5.1.42) it follows that

d
(5.1.49) / 72Ul p (r)dr < e, / {r4_2’\_N g(z)+r2 PN fz}d;g_
4] Gg

From (5.1.46)-(5.1.49), together with Theorem 5.3, follows the required
(5.1.37). Theorem 5.5 is proved. O

5.1.3. Local bound of a weak solution. We pass now to the estab-
lishing of the local (near the singular boundary point) bound for a weak
solution of the problem (DL).

THEOREM 5.6. Let u(z) be a weak solution of the problem (DL). Sup-
pose that assumptions I, II and III are satisfied. Let us assume, in addition,
that g(z) € LP(G) for some p > N/2, fi(z) € LYG), (i = 1,...,N) for
some ¢ > N, ® € WH*(G), s = max(2p,q) > N and

N
/rzP_N_p)‘lg(m)lpdx < 003 Z]rq_N"qA|fi(w)|qdw < 00,
(5.1.50) G e
/ (F Y@ + N VY %) dr < 0.
G
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Then there exist positive constants d,c, independent of u, g, fi, ¢ such that
u(a)| < cla] ({ J (1 41902 + 20+
G

N
+T4—N—2AH-1(T)92(1.) + T2—N—2AH—1(T) Z |fi(m)[2+

i=1

1/2
(5.1.51) +r N2 =1 () @) 4 #2N ‘2’\H“1(T)IV<I>|2)dw} +
+{ / rzp_N_p’\|g(m)|”d:v}1/p +{ / irq—N-qﬂ f*f(z)\qaz:c}l/ +
b2 a !

2/s
+(/(T—N—“|<1>|S+r8-N—8*|vq>[S)dm) }) z € GE.
G

PROOF. At first we refer to well-known local estimate at the boundary
(see e.g. §8.10 [129]).

LEMMA 5.7. Let the (i) and (iii) of essumptions II are satisfied and
suppose that Fi(z) € LI(G),(i = 1,...,N); G(z) € LP(G)) for some
g>N, p> %

Then if v(z) € WE(G) is a solution of the problem (II)o, we have

2/p
(5.152) suplv(@)|” < Of / vz + ( f |g|”da:) +
¢ & ez
N _ 2/q
+Z(/ 1P|qu) } VG' € &' C G,
'l:=1 G,
where C = const(N,v, u, q, p,dist(G",G')).

We make the change of variables £ = gz’. Then the function v(z’) =
u(pz") — ®(pz’) satisfies the following problem

22 (a9 (oz" Yz, + 0a*(0x")v) + 0b (02" )z + o%c(oz’)v =
(5.1.53) = 0°G(oz') + g%l, e G%/‘i’
v(z') =0, z'€ F%/:;
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in the domain G2 /40 Where

Gloz') = gloz’) — 07 b (0z") B0y — c(0z")®;
Fi(ow') = F(oa') — 0~ "% (02")y — o' (00')

and, therefore, because of the (i) and (v) of assumptions II,

’1G(e")| < @®lg(ea”)| + c(IV'®| + |2]),

(5.1.54) o y ,
olF(ez')| < ol fH(ex")| + c(IV'®| + | 2]).

From an estimate of the type (5.1.52) for (5.1.53) and the domains G” =
Gl/y and G’ = G}/4 we obtain

2/p
sup |v(z’)|2§0{/v2d:r'+g4(/ |g|’°dx’) +
Gl

1/2 G2 G2
N . 2/q
+Q2Z(/ |.77‘|qu’) }
=13

1/4 1/4
1/4

Hence, by (5.1.54) and the Holder inequality, we have

2/p
sup |v(z')]? < C{ / v2dm'+g4(/ |g|pd:c') +
Gl J
/ G1/4

&/a
N . 2/q 2/s
+922(/ |f1|quc’> +(/ (]<D|S+|V’<I>|s)da:’) }
G, s

Now, returning again to the variables x, we find that

2/p
sup |v(a:)|250{ / r_szda:+</ r2p‘N|g|”da:) +

e
(;9/2

S Gota
2/q 2/s
+Z(/ rq—N|fi|4dx) +(/ (r_N|<I>|s+rs_N|V<I>|s)da:) }
e Sl
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We apply the inequality (H-W) to the first integral from the right side

2/p
(5.1.55) sup |U(.’L‘)]2SC{ / r2_N|V'u|2dac—|—(/ rzp_N[g|pd:L‘) +
GQ

e/2

G Gt
N ' 2/q 2/s
+Z(/ rq'N|f’|qu) +(/ (r_N|<I>]5+rS_N|V<I>|S)dx> }
el Gafa

Now, because of the bound (5.1.22} from Theorem 5.4 as well as the Sobolev
imbedding theorem,

max || < C(N, 5)[|VY|

2/2

From (5.1.55) it follows that

L*(G¢,,) s> N.

N .
u@)? <crg? [ {|u(x>|2 IVl 4 2@) + S Ifi @)
G i=1

+ 10 + [V + 1N (r)g2(a) + 7N AR ) B2+

N
+ 2N () VR + 2N () Y f@‘(z)ﬁ}dﬂ
i=1

20p N N2
+ng”{(/ rz”‘N"’*lglpdw) +Z(f rq‘N“”lleqdw) +
i=1

s 0 G
2/s
+ (/(,,,—N—s)\|q)’s+TS—N—8)‘|V(I)|S)d1,‘> }, Vz € GZ/L’
G2

Setting now |z| = 2o hence we obtain the required estimate (5.1.51). Thus
Theorem 5.6 is proved. O

In a similar way, using the bound (5.1.37) and Theorem 5.5 instead of
(5.1.22) and Theorem 5.4, we get the following.

THEOREM 5.8. Let u(z) be a weak solution of the problem (DL) with
@ = 0. Suppose that assumptions I and II are satisfied with a function A(r)
that is continuous at zero, but not Dini continuous. Let us assume, in addi-
tion, that g(z) € LP(G) for some p > N/2, fi(z) € L¥G),
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(t=1,...,N) for some g > N and

N
(5.1.56) / P22~ N=2\|g(0) Pdz; < 00 and 3 / ra=N=93| £i(2) %z < oo.
G =g
Then for every € > 0 there exist positive constants d,c., independent of
u, g, f; such that

[u(2)| < celz|*~® ({/(Iu(-’ﬂ)!2 + |Vuf? + 74N P (@)
G

1/2
(5.1.57) + rQ‘N‘”IfIQ(w))d:c} + { / TQP—N'p)‘Ig(x)lpda:}l/ g
G

N . Y
+ {/ZTQ_N_qu’(x)Pdm} q), r € G, Ve > 0.
o 1

5.1.4. Example. We provide an example to show that the assumption
(v) is essential for the validity of the estimates (5.1.22) and (5.1.51).
Let N = 2, let the domain G lie inside the sector

802{(7‘,01)‘0<r<oo,0<w<w0, 0 <w <27}

and suppose that @ € G and in some neighborhood G¢ of O the boundary
G coincides with the sides w = 0 and w = wy of the sector G§°. In our
case the least eigenvalue of (EV D) is A = 7. We consider Example 4.36 of
Section 4.2.5 and rewrite it in the form (DL)

2 3
My =1 — . 2
" (z) A+1 r2n(l/r)’
2 1T
120N _ 21y ) 1%2
e @) =00 = T
2 z3

(5.1.58) a?(x)=1-

A+1 r2In(1/r)’
a¥(0)y=46,i,5=1,2
b (z) =~ A(r) cosw, H() = L A(r)sin,
al(z) = a*(z) = c(z) = 9(z) = f'(z) = f*(z) = p(z) =0,

where
d

__ 2 Ar) ,
AN = GF DB’ :>/ - dr =+
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Clearly, the (DL) equation with (5.1.58) is uniformly elliptic in G¢ for
0 < d < e~ 2 with the ellipticity constants

=1- _2 and u=1.
In(1/d)
The (DL)equation with (5.1.58) has a particular solution of the form
1\ A-D/A+D)
u(r,w) =1 (ln —)

r

sin(Aw), A= wl’
0

that satisfies the boundary conditions
=0 on T¢

This solution is continuous in G, and easy to verify that it belongs to W!(G).
Clearly, this solution does not satisfy (5.1.51) and therefore not (5.1.22),
since (5.1.22) implies (5.1.51).

5.1.5. Hélder continuity of weak solutions. We shall now assume
that a®(x), 4,7 = 1,..., N are continuous in G and satisfy a Dini condition
on 0@, that is there exists a continuous function .A(t) such that

la¥(z) — ¥ (y)| < A(jz — y])

1
for any points z € G and y € G, with f@dt < oo. Let O be any
0

point on OG. We place the origin at O and perform a linear change of
independent variables such that @/ (Q) = &7, where G/ (0©) is the coefficient
of %.‘ in the equation of (DL), written in terms of the new variables
z'. As in the Introduction, we define a function 6(r) for the point O and
shall suppose that Assumptions I are satisfied for all points O € G, where
6o, 61,82 do not depend on O. For the point O we construct integrals in the
variables z’ of the form (5.1.50) and (w) from Assumptions III and assume
that they are bounded by constants independent of O.

THEOREM 5.9. Let u(z) be a weak solution of the problem (DL). Sup-
pose that Assumptions I, II and III (indicated above) are satisfied. Let us as-
sume, in eddition, that g(z), fi(z) € LP(G), (i =1,...,N); ®(z) ¢ WH?
for some p > %, A < 1, where X is defined by (5.3.1). Suppose that
(5.1.50) is fulfilled.

Then u € CMNG). If A\ = 1 and g, f* € L®(G), (i = 1,...,N), then
u € C*4(G) for Ve > 0.

PROOF. We consider an arbitrary pair of points T,% € G. Let
max(d(Z), d(7)) < 27 - 7.
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By virtue of (5.1.51) of Theorem 5.6, in this case we have

D)~ )| 2o, 2t
E-5p - d@ | P

<Cl’

where C) is the positive constant.

Consider the case 2|T — §| < d(T) = p. We make a change of variables
z — T = oz’. Then the function v(z') = u(ZT + oz’) — ®(T + ez’) satisfies in
the domain G2 the problem

6::: (a¥ (T + oz’ )Um + 0a*(Z + oz')v) + b (T + oz’ )vm + 0%c(ZT + ')V =
—Q2G(w+9w)+gw, x' € G;
v(z') =0, a' €T,

where

G(T + 0z') = 9T + 0z') — 07"V (T + 02)Br; — (T + 02')®;

(5.1.59) P(T-l— oz') = JM( ) — lam(m + Q-T?I)@z;, _ a'i(j—l— o0z')®.

This problem satisfies the ellipticity condition (i) with the same constants
v, pu and its coeflicients are uniformly bounded in virtue of the condition
(v), since G is a bounded domain. On the basis of Theorem 15.3’ in [4], we
have

(5.1.60) /\V’v|pdx < Cy /(|v|”J + 0**|G|P + Q”Z |f’|p)dw

G2

where the constant Cy does not depend on v. Because of conditions (i),
(v), from (5.1.60) and (5.1.59) it follows that

(5.1.61) / vupde’ <G [ (o8 + Pl + 2SI+

G2 i=1
+ V'O + |<I>|p)dz',

where the constant C3 does not depend on v. Since according to Theorem
5.6 the function u(z) is bounded in G, and by our assumptions about g, f*, ®,
it follows from (5.1.61) that v € W'?(G}), where p > 5. From the

Sobolev Imbedding Theorem 1.33 it follows that w € C*(G), if A < 1. We
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therefore have

@) - u@)P = 10(0) —v@)P < Cafi [ (w T g+
G3

N
£ Y IFP + [VOP + P ) s’ <
(5.1.62) =1
< G PHT g™ / [v[? + 0% |g|P+
G{|z—7Z|<e}
N .
+@ DN+ V0P + o ) Ve
i=1
and
lv(z)] < Cslz — 2*|> £ Cs(20)* for z € GN By(xg),
where Cy4,Cs = const, ¥ = ¢~ (¥ — %) and z* is a point of G such that
d(z) = |z — z*|. From (5.1.62) we have
|w(Z) — w(@)| < Co|F — |, Co = const.
If X = 1, then according to the Sobolev Imbedding Theorem 1.33 v(z’) €

C'~¢, where € = const > 0, and therefore u(z) € C'~¢. This proves our
theorem. 0

5.1.6. Weak solutions of an elliptic inequality. In this subsection
we consider the properties of weak solutions of an elliptic inequality

%(aij (17)74’::1:J + a,i(.’L')‘LL) +b1(w)um‘ + c(:z:)u <
(IDL) <g@+22, seGck;
u(z) =0, z€dG\O.

DEFINITION 5.10. The function u(z) is called a weak solution of the
problem (IDL) provided that u(z) € W1(G.), Ve > 0 and satisfies the
integral inequality

[ {aij(:r)um,-”lm,« + ai(-'ﬂ)unxi - bt(I)uzzﬁ - c(.’E)'U/f]} dz <
G

(I1%) < / {Fi @)z, — g(x)n} dz
G

whatever 5 > 0 may be, n(z) € W'(G) and has a support compact in G.
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THEOREM 5.11. Let u(z) be a weak solution of (IDL) in G, let G C K
be a bounded domain, and suppose that Assumptions II are satisfied. Let us
assume, in addition,

e u>0inG,
e [ro72|Vu|2dz < 00, 2< a < N +2),
G

* g€ Wa(G), f €W 5(C).
There exists § > 0 such that A(|z|) < 8, = € K, where § depends only on
o, K, then

(5.1.63) / (ro 2| Vul? + re4u?)dz < e / (211 + r*g%)dz,
G G

where ¢ > 0 is independent of u, g, f* or G.

PROOF. We may redefine the functions u,n beyond G as having a zero
value. Let us assume that a” = §] beyond G. Then from the inequality
(IT*) it follows

(5.1.64) / U, o, 0T < / { (aij(o) - aij(x)) g, s — (), +
K

K

b (g + c(@hun + F (@) —g(x)n}d:c.

Let us set § = max A(|z|) and let us consider a function
G

9(t) € C®(RY), ¥(t) >0,

0 fort<i1
() = ’
®) {1 fort > 2.

Now let us consider the function

n(z) = 29 (r)u(z) where 9. (r) = 19(2)

The function 7(z) can be taken as a probe function in (5.1.64), because

u| = 0. By calculating, we obtain

E-4

Ne, = 120 (r)ue, + (0 — 2)r* 4 (r)z;u(z) + %ﬂ'(g)r"‘_%iu(m).
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Now from (5.1.64) with this probe function it follows that

(5.1.65) / (r*=29.(r) [ Vuf? + (o = 2)r*=0, (r)asuis, +
K

+ ér“‘3ﬁ'(£)xiuuxi>day < f{(aij(O) — a"(z)) [r* e () e, s, +
K

1 T
_ a—4 . Zpa—=3.9( 7\, -
+ (a = 2)r* %0 (r)ziuu,, + -7 0, (E)x,uuxj]
— a'(x) [Ta_2196(r)uuzi + (o — 2)r"‘_4195(r)xiu2 + %r“'3ﬂ’(£)z¢u2}+
+ 0 (@) e (g, + c(@)r® 20 (r)u + 120 (r)ug, fi(x)+
+(a—2)r0‘—4195(T)x,-ufi(a:)—l—éra_gﬁ'(2)ziufi(x)—ra_zﬁe(r)ug(z)}dm.

If we observe that

T 0 forr<e =0 forr<eandr >2e
Pe(r) =9 - )= T =9 ’
) (8) {1 for r > 2¢, e(r) {7& 0 fore<r<2e,

then we obtain
1)
/r““2195(r)|Vu|2d:c = /r“‘zﬁe(r)]Vude;
K

G.
2)

_ a—4 i _a- 2 a—4 B_uz —
(@=2) [ reto.)os, = 252 [ reto (e -
K Ge

_2-a / o9 ()uds + 2-a)(N+a-1) /ra—4q9€(r)u2dx;
G.

2e 2

G2e
3)

1 1

p / P (2 )mitse, = 55 [ 1070 (2 )ulda-

K Gge
Niass / =2 (D)ol
Gae ©

(Here we have integrated by parts.)
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Further we estimate the integrals on the right hand side of (5.1.65) using
the Cauchy inequality and taking into account Assumptions II. As a result
we get

a-24(T 2 < (2—a)(4—N—oz)/ a-49(TY, 2
/r 19(6)|Vu| dr £ 3 r ﬂ(e)u dz+
G, Ge

+c1 / (T“_2|Vu|2 + r""‘4u2)dz+

2e
Ge

+co / A(T)’l?(g) (1"C'_2|Vu|2 + r““lu?) dx
G.

1
oo [9(D) o9+ )+ L gl o)t
Ge
(5.1.66) +ca / 0'(2) (7“"—2|f|2 + r*~*4?)dz, Vo > 0.
Gz

Since all necessary integrals exist (by the assumptions of our theorem), we
may let € tend to zero. Then we obtain

(5.1.67) /ra'2|Vu|2dm < (G a)(42— N-9q) /r”‘_4u2dw+
¢

G
+ (20 + c30) /(7""‘_2|Vu|2 + ro‘_4u2)d:v+
G

+ (;—3(1"’_2|f|2 + ragZ)]da:, Vo > 0.

(Here we took into account that A(r) < § in G by definition of 4.)

Now we apply the Hardy-Wirtinger inequality (see Theorem 2.33) for
unbounded cone that is true at o > 4 — N. Since by the condition of our
theorem

2<a< N+ 2X
then it is easy to verify that

(2—a)(4—N —a)

- H(\N,a) <1,
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where H(A, N, &) is from (2.5.10). Therefore from (5.1.67) it follows that

(5.1.68) C(\,N,a) / P2\ Vul?dz < (c36 + c30) / (re=21vu+
G G

+ r““4u2)d3: + %3 r* 21 f? + rag2)]d:c, Yo >0

with
COWN,0)=1- 2= 0‘)(42" N =) i N,a) > 0.
Now we require that
C(\N,a
(5.1.69) 5= (2—02—)
and choose a constant o so that c3o = $C(A, N, @). Then from (5.1.68) we
obtain the required inequality (5.1.63). d

5.2. Dini continuity of the first derivatives of weak solutions

We consider weak solutions to the Dirichlet problem (DL) in a bounded
domain G € R with boundary AG that is a Dini-Lapunov surface contain-
ing the origin O as a conical point. The last means that G \ © is a smooth
manifold but near O the domain G is diffeomorfic to a cone.

5.2.1. Local Dini continuity near a boundary smooth portion.

THEOREM 5.12. Let A be an a— Dini function (0 < a < 1) satisfying
the condition (1.8.5). Let G be a domain in RN with a CYA boundary
portion T C 8G. Let u{z) € WY(G) be a weak solution of the problem (DL)
with p(z) € CY*(8G) Suppose the coefficients of the equation in (DL)
satisfy the conditions

o (z)&it; > v[E]?, Vz e G, £ €RY; v=const > 0;
a¥,a', f* € C*A(@G) (i, =1,...,N),
bh,ce L®(Q), ge LN Q).
Then u € CYB(GUT) and for every G’ CCGUT

lulls,zier < (N, T,v, k, d') (Iulo;a +llgll e
(5.2.1) N
+3 0 loas + uc,oul,A;aG)

i=1

where d' = dist(G',0G\T) and k = max N{||a‘j, atllo, 456, b, €loa }-
B =1,010y

3,
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PROOF. At first we flatten the boundary portion 7. By the definition
of a CA domain, at each point 2o € T there is a neighborhood B of zy and
a C14 diffeomorphism 4 that flatten the boundary in B. Let B,(zo) CC
B and set v = By(zg) NG, 5 = ¢¥(v); 7 = By(zo) NT C &y and
T = ¢(r) C ¥ (7T is a hyperplane portion of 0¥).Under the mapping y =
Y(z), let v(y) = v(z), 7(y) = n(x). Since

Oy
Uy, = B_a:ivy’” dz = |J|dy,

where J = %(H% is a jacobian of the transformation ¢(z), it follows
from (1), that

f{{ @)%, + )7 - ) Y+

+ (800~ B, ~ )0 i) iy =0 (@

for all 7(y) € Wy72(¥), where

@) = i) g 2, @) = at (o) 5,
Bity) = (x)g_f;, &y) = c(2),
Fily) = F*(z )g;”; G(y) = G(x).

It is not difficult to observe that conditions on coeflicients of the equa-
tion and on the portion T are invariant under maps of class C14A. Indeed,
let us consider the diffeomorphism ¢ that is given in the following way

!

y =cx—1% k=1,...,N-1
yv =zn— k@), z’'=(z1,...,2N-1)

where £y = h(z’) is the equation of the surface 7 and h € CHA(r). Tn
virtue of the property (iv) of ¢ it is easy to see that |[Vh| < K. We have
also that |J| = 1. Further by the ellipticity condition

N N
a7 (y)&t; = o™ (z )a(;;yz) agi,yj) 2 Z(%(Z &'.%’))2 =
k=1 =1
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uyz(zgz 8“") = kZ(&c v )
_u(§2+2§N~2ENNEISk@‘+§N[H ;(%)ZD

But by the Cauchy inequality with Ve > 0
h N\ 1
98 v 2T 1.2
NG fk < EN(azk) + &,
therefore from the previous 1nequahty it follows

B 1 N-1/, o0 \2
we6 2 {1 - D%+ -8 3 (5 ) +46k} =
k=1

(5:22) =o{(1- D"+ &4+ - VAP 2
> u{(l - -i-)g'z + &[4+ (1—-e)K?] } Ve > 1.
Now we show that there is ¢ > 1 such that
1—é:4+(1—e)1{2

For this we solve the equation
K% - (3+K%)e—-1=0

and obtain
1 3 \/ 1 10 9
=it Vit taxe
Hence we see that £ > 1 and we have also

1 8
1—-= .
e K2454+/K44+10K24+9

Thus from (5.2.2) follows finally
@ (y)&i&; > ve(K)E?,

(5.2.3)
8
) = R 5T VR T ORT
Therefore after the preliminary flattening of the portion T by means of
a diffeomorphism ¢ € C1+ it is sufficient prove the theorem in the case
T C X. We use the perturbation method. We freeze the leading coefficients
a¥(z) at 19 € GUT by setting a¥/(z¢) = af and rewrite the equation (DL)
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in the form of the Poisson equation (PFE) for the function v(x) = u(x) —p(x)
with
(5.2.4) G(z) = g(z) — b (z)(Div + D) — () (v(z) + ¢(2)),
Fi(z) = (a¥(z0) — a¥(z)) Djv — a”(z) Djp
- (@) (v(z) + @(@) + Fi(z), (=1,...,N).

Now we can apply Theorem 3.6 and thus we obtain the desired assertion

of our theorem. In this connection we use following estimates for functions
(5.2.4) and (5.2.5):

(5.2.5)

N

(526) [IGl 25+ <9l o ,pt + k(z 1Divlo,py + [vlo,p+
i=1

N
+ Y 1Diblos + oloss ) < llall s+

=1

N
+ k(sz |DiU[0,A;B;F + C€|U|0;B; + |90|1;B.j) (by (1.11.6)),

i=1

N N
(627 Y IF o ups < nkARR)IVolloups +E Y IDivlg s+

=1 i=1

N
+c(k)([vlo,z + lelly,amy) + D 11F o, a2 -

i=1

Taking into account once more the interpolation inequality (Theorem 1.49)
and the condition (1.8.5) that ensures the equivalence |...]4 ~ [...]p, from
(5.2.6) and (5.2.7) we finally obtain the inequality

N
(528) Gl x5t + D 1F o amy <

i=1

<k(e+ NA(2R))||U||1’B;B+ + ce(k)(|v|0;B+ + H‘PH1,A;B+)+
2 2 2

N
+ Z ||fi||o,A;B; + ||9‘||%;13,:,r Ve > 0.
i=1
Since A(t) is the continuous function, choosing ¢, R > 0 sufficiently small
we obtain the desired assertion and the estimate (5.2.1) in a standard way
from (3.2.3), and (5.2.7) and (5.2.8). O
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5.2.2. Dini-continuity near a conical point. We consider the prob-
lem (DL) under the following assumptions:

(i) G 1is a Dini-Lyapunov surface and contains the conical point ©;
(i) the uniform ellipticity holds
ve? < a¥(z)6it; < pe?, Vx € G and RV,
v, = const > 0;a7(0) =&, (i,5=1,...,N);

(i) a'(z),ai(z) € CONG), (i, = 1,...,N), where A(t) is an a —
Dini function on (0,d],a € (0,1), satisfying the conditions (1.8.5)
and (1.8.6) and also

Q}\—l
5.2.9 sup ——— < const,
( ) 0<ggl A(Q)

N 1/2
|| (Z Ib"(w)lz) +lal*le(@)] < A(lal);

(iw) g(z) € LT3 (G), p(z) € CH4(9G), fi(z) € C*A(Q),
ji=1,...,N;

(v) /r4_N_2’\H_1(r)gz(:r)dx < 005
G

N
/rz_N_z,\H-l(r) (172 + 9P +77202) dz < oo,
i=1

where H(t) is a continuous monotone increasing function satisfy-
ing the Dini condition at t = 0.

THEOREM 5.13. Let u(z) be the generalized solution of (DL) and sup-
pose assumptions (i)-(v) are satisfied. Then there ezistd > 0 and a constant
¢ > 0 independent of u(z) and defined only by parameters and norms of the
given functions appearing in assumptions (i)-(v) such that

N

(6.2.10) |u(z)| < clz|A(|z]) (Ilglll_Lu;c + 2 lIf o + el a6+
i=1

N
+ {/(r4_N_2’\H—1(r)g2(a:) + T2—N—2)\H—~1(T) Z Ifi(x)|2+
G

i=1

1/2
+ PN BV ol + V) do ) vz € G,
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N
e+ D o, ac + llell,a0a+

=1

T—a’

(5.211)  |Vu(z)| < CA(fxD(HQHL

N
+ {/ (r‘*—N—?AH—l(r)gZ(z) +r NIRRT ) Y 1S @)
G

=1

1/2
+ r2—N-2AH-—1(T)|V<I)|2 + |u|2 + |Vu|2) dx} ), Vr ¢ Gg.

ProOOF. We use the method of layers, that is we move away from the
conical point of p > 0 and work in GZ%. After the change of variables

z = px', the layer G’Z?4 takes the position of a fixed domain G? /4 with
smooth boundary.

Step 1. We consider a solution u(r) in the domain G3¢ with some po-
sitive d << 1; then u(z) is a weak solution in G2¢ of the problem

a2, (0¥ (2)ug, + a*(2)u) + 0 (2)ts, + c(z)u =
= g(x)+ 252, zeay,
u(z) = p(z), =z eT2¢cC oG

We make the change of variables + = pz’ and v(z') = o1 A (o)u(ox’),
e € (0,d),0 < d << 1. Then the function v(z') satisfies in the domain G2 /4
the problem

=2 (a¥ (0z' )z, + 0a*(0z'v) + 0b*(0x" vy + o’cloz’ v =

= oA (o)g(oa") + A D HFE), o G2y
v(z') = o7t A o)p(0x'), '€ I‘%M.

To solve this problem we use Theorem 5.12 about the local Dini continuity
of the first derivatives for weak solutions of the problem (DL). We check
the possibility of using this theorem. Since under assumption (ii), .A(t) is
monotone increasing function, g € (0,d),0 < d << 1, from the inequality
o Yz —y| > |z — y| it follows that

Allz’ —y') = Ale™ e — yl) > Alz —»l)
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and by (iii) we have

3"l (ex') o, a0, + 03 Hat(ex)llo.ac2,, <
i!j .
<3l @loucz, + 4316 @ o, acz, <o

1.7

Further, let ®(x) be a regularity preserving extension of the boundary func-
tion o(x) into a domain G% with any £ > 0. (Such an extension exists; see
e.g. the Lemma 6.38 [129].) Since ¢(z) € C1A(8G) we have

191, a0, < AG)elly ppos, < const.

By definition of the norm in C** we obtain

(5212)  sup L o) =VeW)

m,yEGih .A(l.’L‘ - yl)

< ”‘1)”1,,4;(;:’54 < C(G)”<P”1,A;r274-

z#y
Now we show that by (v) and by the smoothness of ()
(5.2.13) lp()| < clalA(le]), [VO(z)| < eA(lz]), Vae G,
Indeed from the equality
1
[ d 8@(7-:1:)
plz) ~ 0(0) = [ Zo(r)dr —a / -
0 0

by Hélder’s inequality we have
(5.2.14) lp(z) — p(0)] < r[VE|.
From (iv) it follows that

(5.2.15) / >NV +r N p?)dx = / (rP N BRI Ve P+
Gg Gg
+ (V=21 (1) o) (rPH(r) )z < const - 62 H(p).
Sinee [(0)| < |¢(z)| + |p(x) — ¢(0)], by (5.2.14)we obtain
lp(0)] < [e(z)] +r|V|.
Squaring both sides of last inequality, multiplying by " and integrating

over G§ we obtain

(5.2.16) le(0)? /(’I‘_Nd{L‘ <2 /(7‘2'N|V<I>|2 +rNjpHdz < 0o
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by (5.2.15). Since [ r~Ndx = mesﬂf dr — o0, the assumption (0) #
Ge
contradicts (5.2.16). Thus ©(0) = 0. Then from (5.2.12) we have
V() ~ VO(y)] < constA(lz — y)lil arss,» Yoy € G5,
IVe(y)| < [Ve(x) — VO(y)| +|VE(z)| <
< cAlle —yDliglly, a2, + V()]

Hence considering y to be fixed in G2 o/4 and z as variable, we get

Ve)? [ Nda <2l qas, [ PN A (e - ydos

2e 20
Gola Gora

+2 ] r2-N|Vo(z)

2e
G2/4

or by (5.2.15)
2|V (y)® < c(mess2, k1) (B A%(e) + 0P H(0)), Yy € G5,
Hence the assumption (5.2.9) yields the second inequality of (10.2.85). Now

the first inequality of (10.2.85) follows from (5.2.14) and ¢(0) = 0. Thus
(10.2.85) is proved.

Now we obtain

(52.17) ot AT o)lle(ez )1, a2, < co"ATH )| B0z ) 1, mic2

1/4 1/4
=co 'AT! 9){ sup |B(oz’)]+ sup |V'®(oz")+
z eGI,4 2'€GE
by TEHEN V@I ey gy, TR VRO
< y'eGi,, A(lz" —y'|) B z,yGGr‘;'jd‘ Ao~z —yl)
o' £y’ z#Y

-1 Alt)
= A\ < t, Vo € (0,d),
ta=ated o) mp Aty VP, < consh Ve < (0,4)

by (10.2.85), since by (1.8.6)

Alt) A(ro)
0<tato Al@~18)  o<rea A(T) < cAle)-
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In the same way we have

(5:218) AP (02, ac1,, = A @(1F (@)lo, are,
£2(0) = £y

e (P P
zFY
Since f7 € COA(G), we get
(5.2.19) () — ()| < GA(lz —yl), Va,y € Gf,%
and
(5.2.20) / r2=N| i () Pdz = / (P2~ NP1 (0) | (2)|2) (P H(r) ) de <
e e

< const - 0**H(p)

by (v). Now let y be fixed in Gz‘/"4. Then

17 @) < I ()] + 1 (@) = F )| < 17 ()] + & Az - yl)

Hence
£ ()2 / 2Ny < 222 / 2N g2 (g — y)dx + 2 / r2=N| £1(2)[2da.
G, G, Gl

Calculations and (5.2.20) give

Pl W < e, k1, mes) (e* A% (o) + 0 H(0)) Vy € G22,.

Hence by the assumption (5.2.9) it follows that
(5.2.21) |f (@) < ;Ale) Ve € G5, j=1,...,N.
Further, in the same way as in the proof of (5.2.17),
[f7@) — F W (p A(t)
5.2.22 sup —————+ < [flpagre sSUP ———5= <
G22) o, HeTe-yl) = loac 2, A
THEY
< cA(o)lf? ]o,A;Gf_,§4-

Now from (5.2.18), (5.2.21) and (5.2.22) we obtain

N
(5.2.23) A~1(p) Z ”fj(QmI)Ho,.A;GEM < const.
=1
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It remains to verify the finiteness of 0. A=1(0)||g(ez’)|| ~_ G2, We have

le-ax*
) N
ea (o) [ lotea) ) T =
Gl/a

=@ [ o) T <
G"-’Q

e/4
<aa @ [ lg@Pede) T <const Vee (0,0
&%,

by the condition (1.8.1). Thus the conditions of Theorem 5.12 are satisfied.
By this theorem we have

lelyse,, < (o, + 6 A @le(es) 1, ar2,,+

1/2 1/4 1/4
N

(5.2.24) +QA_1(Q)|IQ(Q$')”1_LQ;G2 +A_1(Q)ZHfj(Qﬂ?')Ho,A;Gﬂ )x

1/4 1/4
j=1

g=1,..., 1/4 1

Yo € (0,d).

XC(N, v, G1 ; ]_Iﬂa'x N(”a’i,j(gxl)”o,A;Gz ’ QHa’i(Qm’)”(),A;Gz/4)7 A(zg)) ’

Step 2.
To estimate |”|0;G?,4 we use the local estimate at the boundary of the

maximum of the modulus of a solution (Theorem 8.25 [129]). We check the
assumptions of this theorem. To this end, we set

z(z') = v(z') — g7 A7 (0)@(ez")
and write the problem for the function z(z’)
ae7 (a7 (02") 24y + 0a*(e')2) + eb* (') 2z, + 0%c(oz’)z =
=G(z') + %fﬁ, z' € G}y,
2(z')=0, z'el},
where
G(z') = oA (0)g(oz") — A ()b (02") By (02")—

(5:2.25) — oA (@)c(ox")®(0z’)
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and
Fi(z') = AN o) f*(ex') — e~ AT (0)a" (02") @4, (02') —
— A7 (0)a’(0z')®(e2’), (i=1,...,N).

At first we verify the necessary smoothness of coefficients. (See the remark
in the end of §8.10 [129].) Let ¢ > N. We have:

/lga’(gw )|%dz’ = TN / |a*(z)|%dz <

1/4 G274
< C(G)d"IWlIo,A;G, Ve € (0,d).

(5.2.26)

(5.2.27)

By (iii) we also obtain

/ ooz’ od’ = o= / b (2)|ode < 495 / b ()| 9d <

G Gi% Gi74
(5.2.28) < 497N / A(r)dz < 2N+ / r~N AY(r)dr =
Goia s
2N+2qm639/ dr < 2Nt 2mes) - AT 2d)fA
o/4

] |Pelee!) | 2dx! = =N / lo(@)|*?dz < 47g™N / Ir2e(z)|8/2dz <

Gl/4 G2, c,
2dA
(5.2.20) <2V*™ / r~N A (r)dz < 2V MmesQ) - AT (2d) f ﬁ’")d

ot
Vo € (0,d).
In the same way from (5.2.25) we get
A @G ez, = 04 @( [ {la@P+

1/4
2e
Ge/4

N
52300  +(>_ |bf(x)|)"/ 2\vde/2 + |c(a:)|‘1/2L<I>(ac)lq/2}g"Ndx) “ !
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By (iv) setting ¢ = N/(1 —a) > N and applying Holder’s inequality for the
integrals we obtain

QA_l(Q)( / o N Ig(:v)l‘I/"’d;c)2/qg

2¢
Ge/‘i

2/
G231) <A (o) / o lg(@)|dz) " <
cle,

< Cp"‘A—l(g)||g||q;Gz;74 (mesQIn8)Y? < ¢(d, o, g, mes, .A(d))||g||q;G274,

since by (1.8.1), oA~ (p) < d*A~1(d) Ve € (0,d). Similarly

047 / V(X @) VR + (o) 210 (z) | }da:) <
G§Q4 =1
/ .
(5.2.32) < c(mesQ)*/| ¢l g2 AT () / —Aff) dr.

o/4
From (5.2.30) and (5.2.32) we obtain

20
1G@) gz, < c(d, g mestt, A@), [ 22 dr) x

r
o/4

I
Vv
2

(5.2.33) (oo, + 10,z ). 3

e/4

Finally, in the same way from (5.2.26) we have

N N N
Z / |Fi ()| da’ < c(N,q,G,j=rxll,§:§N(Zl a7 12 4 ,z;||m”g’A;G))
= =

=1 .3
Gi/a

N
(5.2.34) x / r~N A7) (Z IFi(@)|? + V| + Ié(w)lq)dw-

20 1:=1
Ge/4

It follows from (10.2.85) as ¢ — +0 that |V®(0)| = 0. Therefore

V()| = [Ve(z) — Ve(0)| < Allzl)llelly, arze, Vo € Gol,

and hence we have

|2(z)] < r[Ve(2)| < el A2 |oll, a2, Vo € G2y
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Similarly it follows from (5 2.21) as ¢ — +0 that f7(0) =0, Vj=1,...,N.
Therefore we have Vz € G%¢ 0/4

(@) = 17(z) = PO < Ao, a2,

Consequently, estimating the right side of (5.2.34) and taking into account
the inequalities obtained, we have

ZHF s, <c(Nq,G max_ ZnaﬂnoAG,Zua HOAG))
=1
N

(5.2.35) XmeSQ * (Z ”fz”()"A;GzL/,&l + ”‘70”1,./4;11?54) .

i=1

So all conditions of Theorem 8.25 [129] are satisfied. By this theorem we
get

sup [+()] < o el + 1G] §/4+Z|IF lc,,) <

T EG1/2

6:230) <c(llslacy,, + 910, +Zl|f*

o ol g, )

Setting w(x) = u(x) — ¢(x) we have for w(zx) the problem

52 (0 (2)us, + ()W) + b ()wa, + clz)w =
= G(z) + 6F6;§z) , € G%d;
w(z) =0, =ze€ ng - (')ng

where

G(z) = g(z) — b'(2)@s, — c(z)(2),
Fi(z) = f(z) — a" (2)®s, — a*(x)®(z).

Moreover by assumptions (i) and (ii)

09 (@) - | < "o ucAlal), = €.
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In virtue of the estimate (5.1.22) of Theorem 5.4 there is a constant ¢ > 0
independent on w, G, F* such that

(5.2.37) /TZ"NIV'dea: < co® / {|w(:z:)|2 + |Vw|* + G*(z)+
Ge G3d
N N
+ z |Fi(2)|? + r* V21 ()G (z) + v VP H () Z |Fi(:v)|2}da:,
i=1 im1
p € (0,d).

Qur assumptions guarantee that the integral on the right side is finite. Since
z(z') = gL A7 (o)w(ox’) we obtain from (5.2.37)

(5.2.38) [ |V'z|%dz’ < 2N=2p72472%(p) / r2=N|Vuw|?dz <
Gi/‘k G274

N
<ei A7) | {|w(w>\2 LIV + Ga) + 3 IFi @)+
a =1

N
+ AN DL )G () + 2 VR Y IF"(m)P}dx, p € (0,d).

=1
By assumptions (i)-(iv) we have
G(2)[* < e{lgl® + A(r)(r~2|Ve|® + rte?)},

N I3 N -
(5.239) LIF@E < IF @)1+

i=1 i=1

57 2 2 2
1 (lalouc . la'llo.46) (VB +82)1.

Applying now the Friedrichs inequality and taking into account (5.2.9), we
obtain from (5.2.38) and (5.2.39)

(5-2.40) l2l3c2,, < ellV'2l562,, < 0™ A7) / {|w($)|2+
G

N
+[Vwl? + ¢ @) + ) IF @) + Ve[ + 2 + r* V2 H (r)g? (@) +

i=1
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N
+r2 NIRRT () Y IF @)+ N PR () Ve

i=1

N
+ r“2A2(r)|V<I>[2}dw < mﬂst{llgllzl%;g + Z 1115, a6 + llollT a06+

=1

N -
+ / (T4—N—2AH—1(T)g2(m) + 7,2~N—2AH—1(T) Z |fz($),2+
G

i=1
+ 2 N2 1) VO 4w + leIQ)d:n}

by assumptions (iii)-(v). By the definition of z(z'), inequalities (5.2.36) and
(5.2.40), and assumptions (i)-(v) we finally obtain
(5.2.41) 'Ulo;Gf/4 < |zl0;G§/4 +o ' AT ()lelorz, <

1/4

N
< c(ngH%;G + S 1o, a6 + el w06+

=1
N

+ {/ (r‘*-N-ﬂ*H-l(r)g?(m) I OP DO
G

i=1

1/2
F NP TR+ uf + Tl ) ds )

Step 3.
Returning to the variables z,u(z), we now obtain from inequalities
(5.2.24) and (5.2.41) the inequality

(5.2.42) o' ATHo) sup |u(z)|+ A7 (o) sup |Vu(z)|+
TE€GY s 2€GL)s
Vu(z) ~ Vu(y)| LA
< . .
+ x,yselil(g)glz .A(Q)B}.r — y|) =cC ”g”%,G + 1____21 Hf HO,A,G + H(p”LA:aG—'_
Ay

N
n {/(T4—N—2AH—1(7.)92($) +T2—N—2AH—1(T)Z|fi(m)|2+
J i=1

1/2
+ 2N ) VP2 + uf? + |Vu|2) dm} )
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Setting |z} = 20/3 we deduce from (5.2.42) the validity of (5.2.10), (5.2.11).
This completes the proof of Theorem 5.13. O

REMARK 5.14. As an example of A(r), that satisfies all the conditions
of Theorem 5.13, besides the function r®, one may take A(r) = r*In(1/r),
provided A > 1+ a. In the case of A(r) = r* the result of [21] follows from
Theorem 5.13 for a single equation and the estimate (5.2.10) coincides with
(5.1.51).

5.2.3. Global regularity and solvability.

THEOREM 5.15. Let A be an a-Dini function (0 < o < 1) that satisfies
the conditions (1.8.5), (1.8.6) and (5.2.9). Let G\{O} be a domain of class
CHA and @ € O0G be a conical point of G. Suppose that the assumptions
(i)-(iv) are valid and

(vi) /(c(z)n —a'(zx)Din)dz <0, VYn>0,ne CHG).
G

Then the generalized problem (DL) has e unique solution v € CYA(G) and
we have the estimate

N
lull,a6 < C(HQH—N—;G + 1 o, + [l a0a+

e =1
N
(5.2.43) +{ / (r“‘N “AHTY(r)g (@) + PN TR () Y I (=) P
G i=1

1/2
+r2_N_2’\H_1(r)IVtI>I2)dw} ) .
PRrOOF. The inequality (5.2.42) implies that

[Vu(z) — Vu(y)| < cB(lz — yl) (MI&;G + llellr, a8+

N
(5.2.44) +?;||f "llo,asc + { C[ (IUI2+ |Vu)? + r4= N =211 (r)g? () +

N 1/2
+r2 NN ) S i) P + 7~2-N—2AH-1(7~)1V<1>|2> da:} )

i=1

VI,y € Gz/2’ e € (0,d).

From (5.2.42), (5.2.44) we now infer that u € clvB(E'E). Indeed, let z,y €
G§ and ¢ € (0,d). I z,y € G}, then (5.2.44) holds. If |z —y| > o = |z|
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then by (5.2.42) we obtain

lvulg’ga)-'ﬂ——qu[;(y)l < 2eA(j2)B™" (|z]) (HQHL ¢ tllolhapet

T—a b

i=1

N
3 I o ase + { / (|u12 1Vl + N2 () g () +
G

i=1

N 1/2
+r2 V=R 3 | Fi() P +r2‘N‘2"H_1(T)|V‘I’|2)d"’} ) <

N
< 2ca (Ilgllif—a;c +llellsane + 3 1 lo.ac+

=1

+ {/(|u,|2 +|Vul? + 7'4_N“2’\H’1(1')g2(3:)+
G

N 1/2
+ N TR Y ) + rz_N_z’\H_l(r)IV<1>|2) da:} )

i=1

in view of (1.8.3). Because of the condition (1.8.5) for the equivalence of .A
and B, we derive u € C1B(GE) and the estimate

N
l[ulls, 462 < C(llgl\%;a + 3o, + el a6+

i=1

(5.2.45) +{ / (Iul2 + |Vu? 4+ V=20 )62 (2)+
G

N ' 1/2
+r2 V2 () Z Ifi (@) + r2—N—”H—1(r)|VcI>|2)dx} )

i=1

following from the above arguments.

By means of a partition of unity, from the bounds (5.2.1) of Theorem
5.12 and (5.2.45), we derive

N
lulls, 46 < C(IIQII%;G + Y 1 lo.sse + el ape+

i=1
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+|ulo;e + {‘/(lul2 + |\7u|2 + r4_N_2)"H"1(r)g2(z)+
G
(5.2.46)

N 1/2
A+ NS )P + r2—N*2*H—1(r)IV<I>I2)dx} ) :

i=1

By the assumption (vi) that guarantees the uniqueness of the solution for
the problem (DL), we have the bound (see Corollary 8.7 [129])

N
[+ 1vuP)do < € [+ T IF @ + V87 +9%)de,
G

a =1

which together with the global boundedness of weak solution (Theorem 8.16
[129]) and the bound (5.2.46), leads to the desired estimate (5.2.43).
Finally, the global estimate (5.2.43) leads to the assertion on the unique
solvability in C*+A(G) . This is proved by an approximation argument (see
e.g. the proof of Theorem 8.34 [129]). O

REMARK 5.16. The conclusion of Theorem 5.15 is best possible. This
is shown for the function A(r) =r* A > 1+ a,a € (0,1) in [171]. (See also
examples in Section 4.7 of the Chapter 4.)

5.3. Notes

The best possible Holder exponents for weak solutions was first obtained
in [170, 171]. There the method of non-smooth domain approximation by
the sequence of smooth domains was used. We apply here the quasi-distance
function r.(x). The introduction of such function allows us to work in the
given domain, and then to provide the passage to the limit over ¢ — +0
(where r.(z) — r = |z]).

The LP-regularity of the (DL) in the cone was studied in [84], and in
the domains with angles - in [249]. Finally, let us point out two further
works. In [8] Alkhutov and Kondrat’ev proved the single-valued solvability
in the space W;'P(G) of the (DL) in arbitrary convex bounded domain G
assuming only the continuity in G of the leading coefficients .

Hoélder estimates for the first derivatives of generalized solutions to the
problem (DL) are well known in the case, if the leading coefficients a%/(z)
of the equation are Hélder continuous (see e.g. 8.11 [129] for smooth do-
mains and [21] for the domain with angular point). Here we derive Dini
estimates for the first derivatives of generalized solutions of the problem
(DL) in a domain with conical boundary point under minimal condition
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on the smoothness of the leading coefficients (Dini continuity). The pre-
sentation of Section 5.2 follows [64]. It should be noted that the interior
Dini-continuity of the first and second derivatives of generalized solutions
to the problem (DL) was investigated in [74] and [224] under the condition
of Dini continuity of the first derivatives of the leading coefficients.

Recently, V. Kozlov and V. Maz'ya [195, 196] derived an asymptotic
formula near a point O at the smooth boundary of a new type for weak
solutions of the Dirichlet problem for elliptic equations of arbitrary order.
We formulate an idea of their results for the linear uniformly elliptic second
order equation

- (0(z)ug; = g(z), =€ G;
u(z) =0, ze€dG,

where G C ]RI\" _is a bounded domain with smooth boundary 8G. It is

assumed that a*’ (z) are measurable and bounded complex-valued functions,

u(z) has a finite Dirichlet integral and g = 0 in a certain neighborhood G§
of the origin O. In addition, let there exist a constant symmetric matrix

Ao = (aéj ) with positive definite real part such that the function
A(r) := sup [[A(z) — Ao
z€GY

is sufficiently small for r < d, where A = (a%) . Let us define the function
Q) = < (A(z) — A)n,n > _
"~ on(det A)1/2 < A-lz,z >N/2
_N< A7 (A(z) — A,z ><n,x >< A7 lg,r >71
on(det A)Y/2 < A-1g, 1 >N/2 ’

N
where < a,b >= " arbr and n is the exterior unit normal at O. The

k=1
following asymptotic formula holds

d
2
u(z) =exp | — / Qy)dy + O /'AT(T)dr X
(5.3.1) ai\es !

d
x | Cd(z)+0 | |z|** %dr +0 (|z>),
=

where C' = const and ¢ is a small positive number. The sharp two-sided
estimate for the Holder exponent of u at the origin may be derived from
(5.3.1).



5.3 NOTES 213

They establish also the following criterion. Under the condition

d
S Azr(r) dr < oo, all solutions u are Lipschitz at the origin if and only if
0

(5.3.2) ligi%f f RQ(z)dx > —o00.

G§\G3
Needless to say, this new one-sided restriction (5.3.2) is weaker that the
classical Dini condition at the origin.

We point also to the work [262]. This work investigates L?—regularity
of weak solutions of the Dirichlet problem for linear elliptic second order
equation in the divergent form with piecewise constant leading coefficients
in a Lipschitz polyhedron.

Other boundary value problems (the Neumann problem, mixed prob-
lem) for elliptic variational equations in smooth, convex, or nonsmooth do-
mains have been studied by V. Adolfsson and D. Jerison [2, 3]. They have
investigated LP-integrability of the second order derivatives for the Neu-
mann problem in convex domains. J. Banasiak [27] - [29], J. Banasiak and
G.F. Roach [31, 32] have considered the mixed boundary value problem
of Dirichlet oblique-derivative type in plane domains with piecewise differ-
entiable boundary. K. Groger [136] has established a WP —estimate for
solutions to mixed boundary value problems, P. Shi and S. Wright [358]
have investigated the higher integrability of the gradient in linear elasticity,
M.K.V. Murthy and G. Stampacchia [317] have considered a variational
inequality with mixed boundary conditions, W. Zajaczkowski and V. Solon-
nikov [409] have investigated the Neumann problem in a domain with edges.
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CHAPTER 6

The Dirichlet problem for semilinear equations
in a conical domain

6.1. The behavior of strong solutions for nondivergent
equations near a conical point

In this section we study the properties of strong solutions of the Dirichlet
problem for nondivergent semilinear uniformly elliptic second order equa-
tions in a neighborhood of a conical boundary point

Lu := o (x) Dijju(z) + o*(z) Diu(z) + a(z)u(z) =
= g(u) -+ f(:z') in G,
(5L) g(u) = ag(z)ulu|?1, ¢ > 0;
wz)=0 on OG\O.

Let G C RY be a bounded domain with a conical point in @ as described

in Section 1.3 of chapter 1. We shall assume that G§ is a convez cone for
small d > 0.

DEFINITION 6.1. By a strong solution of the Dirichlet problem (SL) in
G we mean a function u € W2(G) N C%(G \ O) which satisfies the equation
of (SL) for almost all z € G and the boundary condition for all z € 6G\ O.

In the following we will always use these assumptions

a) the uniform ellipticity condition
V|§|2 < aij(ﬂf)ﬁz‘&j < .U|5|2 VEER™, z€ G

with some v, >0; ¥ (0) = &7;
aa) a¥ € C°(G), o* € LP(G) and a € L?/?(G) with some p > N;
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aaa) there erists a monotonically increasing nonnegative continuous at
zero function A(r), A(0) =0 such that forz,y € G

1/2

N
> la¥@) —a@)? ] <Az -y,

i,4=1

N 1/2
2 (Z a*f?(w)) +lal?laz)| < A(lal);

b) ao(x) is a nonnegative measurable in G function;
c) there exist real numbers ki > 0 and 3 > —1 such that

[f @) < Kalzl®.

6.1.1. The weighted integral estimates (0 < ¢ < 1). Now we prove
certain weighted integral estimates of strong solutions of (SL). Here the
function ag(z) can be unbounded.

THEOREM 6.2. Let u be a strong solution of (SL) and the conditions
a), aa), aaa) and b) are satisfied. Suppose that ag(x) € VY% . ~G),
1—g’1—gq

fl@) e We_n(G), 0<g< 1.

Then u(z) € vf/'i__ ~{(G) and there is a positive constant c, determined
by v, u, q, N,max A(|z|), G such that
z€G

f(r4‘N|D2u12 + 72N Dl + 7Nl + ap(2)r® N ul ) dz <
G
(6.1.1)

<c / (u? + VN £2(2) + 2 4 o2 179 () A0~ gy,
G

PROOF. We multiply both parts of the equation of (SL) by r2~Nu(z)
and integrate over the domain (G). Similar to the theorem 4.13 proof from
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Chapter 4 we have

/rg—N]Vulzdw—l—/a.o(x)rg‘N|u]1+qda: <
G G
(6.1.2) < c(h)A(d) / (r2=Np2| D2u? + 727V | Vu? + 127 Ve 2 da+
G§

+c(d) / (1D*ul® +v?) dz + %/rﬁ‘Nfz(z)dz, Ve > 0,d > 0.
Ga G

By the layers method based on the local L?-estimate, we derive the inequal-
ity (see the derivation of (4.2.23)

(6.1.3) /rg_Nr2|D2u|2d:c <c / (r?"N'r"QIuP + 72N 2 () [u?9+
& Gaa

e f2(:z:))d:c, Ve > 0,d > 0,

where ¢ is a constant depending only on v, u,q, N,max A(|z|), G. Taking
zeG

into account that ¢ < 1 by Young's inequality we have

(6.1.4) raNad(@)uf*t = (ryV|uf) (ri-N+Nad(@)) < orsV|uf+

+ (o, q)a D (z)rd/-)-N  y5 5 g,

The estimate (6.1.1) we seek follows from (6.1.2) - (6.1.4) under proper small
d > 0 with the help of the same arguments as during the completion of the
Theorem 4.13 proof. O

THEOREM 6.3. Let u be a strong solution of (SL) and the conditions
a)-c) with A(r) that is Dini-continuous et zero are satisfied. In addition,

suppose f(x) € Ly(G) N vf/g_N(G’), ao(x) € V% 4 _\(G) and there is a
constant ko > 0 such that o

1/(1-q) < po 248
(6.1.5) ”ao||V20/(1_q),4/(1—q)-N(G(Q)) >~ k2Q ] g < (0, d)-
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Then there are positive constants ¢ and d € (0,e™1) such that for p €
(0,d)

1/(1—
lollgs gp S c(nuan(G) 1T,y + ol 2 @Rt
o, fB+2> A,
(6.1.6) +k2) o 1n3/2(§), fB+2=A\
aaxh ifB+2< A

PROOF. At first, because of Theorem 6.2, we have u(x) € v?fi_ ~(G).
Now we introduce the function

U(o) = / ¥ |Dul’dz, o< (0,d)
&

and multiply both parts of (SL) by r>~Nu(zx) and integrate the obtained
equality over the domain G§, g € (0,d). As a result, similarly to Theorem
4.18, we obtain

U(e) + /an(m)f‘2 Nyjitede <
G§
1- —q)— —
(6.1.7) + cA(o) / (a?)/( D(g)rt/ 1=0-N | 44 Nf2(w)) do+
Gie
+ cA(e)U{p) + / 727N |u||f(2)|da.
G§

For this we used the inequalities (6.1.3), (6.1.4) with e = 0,0 = 1.

< 2}\U’(g) +cA(@)U(20)+

From hypothesis (¢) we have

N eD k%measﬂ 4423
(6.1.8) [ r e < B o)
lersd

and apply as well the Cauchy and Poincaré inequalities
(6.1.9) / PNl F (@)ldz < Ky f PB+2=N |yl i —
G3 G§

+ k1 /(T_N/2|u|)rﬁ+2_N/2dm < cdU(p) + o1k g%P+4,
G§
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From (6.1.5) and (6.1.7)-(6.1.9) finally we obtain the differential inequality

(61.10) U(e) < 55U (0) +c1Ae)U(20) + c2(A(e) + 8)Ule)+
+ec36 (K2 + K2) e, V6 >0, 0< o< d.

Moreover, by Theorem 6.2, we have the initial condition
(6.1.11) Up = U(d) = / 2N |Vulds <
G§

<e (uuu%m) e ot ||ao||€,/1{;i_w<c)) :

—gq'l-g
The differential inequality (6.1.10) with initial condition is the same type

as (4.2.47) with s = 3+ 2 or (4.2.51), if 8+ 2 = \. Repeating verbatim the
investigation of these inequalities in the proof of Theorem 4.18 we obtain

Ule) <e (”u”%ﬁ(c) METIE R NN o k%) x

—q'l—q
o, if B+2> ),
(6.1.12) x { o 1n3(§), if B+2=)
2B, i g+2< A
From (6.1.3) and (6.1.4) passing to the limits as € — 0, we obtain

(6:1.13) ] V| D2ufdz < c [ (7Nl + a3/ O (@) -V 4
Gg Gge
+ T4_Nf2(:c))dx, 0<o<d.

Now taking into account the inequality (H-W) from (6.1.12) and (6.1.13)
the desired (6.1.6) follows. O

THEOREM 6.4. Let u € W2N(G) be a strong solution of (SL) and the
conditions a)-c) with A(r) that is Dini continuous at zero are satisfied. In
addition, suppose

a(z) <0, f(z) € Ln(G) NWi_n(G), ao(2) € Vi a-g2an/(1-) (C)-

Then there is o positive constant ¢ such that

0110 lulvgo <e(llT? o+ Il

N/(1—q)i2qN/{1—
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PROOF. By Theorem 4.48, there exists the unique solution u € VI\Z,,O (@)
of the linear problem

u(z) =0, z€dG\O
provided A > 1, F € Ly(G) and
(6.1.15) lullvz @) < clFline,

where ¢ > 0 depends only on v, u, N, max A(lz|), [a*lp.c; lallp/2,c0 > N
T€G

{Lu =F(z), z€G,

and the domain G. The condition A > 1 is fulfilled by the convexity of G§.
From (6.1.15) with F(z) = f(z) + a¢(x)ulu|?"! using the inequality (1.2.5)
we obtain:

(6.1.16) / (1D?ul™ + =™ | DulN + NN dz <
G

< 2N_I/(1@0(76)INlul"“" +|f(z)|Y) de.
G
Using Young’s inequality and taking into account ¢ € (0,1), we have
(6.1.17) |ao(@)|N|u|?N = (r=20¥|y|7V) (128N |go(z)|V) <
< er Wy N 4 £/ (@D 20N/ (0120) | ()| N/ 19, Ve > 0,

By the choice £ = 27 from (6.1.16) and (6.1.17) the desired (6.1.14) follows.
a

6.1.2. The estimate of the solution modulus (0 < g < 1). Now we
want to deduce the estimate of our solution modulus in the case (0 < g < 1).
To that end we introduce the function

o if, A<fB+72;
(6.1.18) Ple) =4 P *?L i, A=p+2
Piax: if, A>pB+2.

THEOREM 6.5. Let u(z) € W2N(Q) be a strong solution of (SL) and
the conditions a) - ¢) with A(r) that is Dini continuous at zero are satisfied.

In addition, suppose a(z) < 0, a(z) € LN(G), f(z) € LN(G) N vffz_N(G),

ao(z) € LN-(@)NVY . _(G) together with (6.1.5) and there exists
1-q*l—gq

o nonnegative constant ko such that

1-29.4
(6.1.19) |]a0(m)||Lif_q(G274) < koo " (0).
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Then there are positive constants cy,d independent of u such that the
following estimates are held:

1) |u(@)| < colz| T, zeGl if A>B+2, 0<q<1_.§;
) |u@)| < colz], zeG if  A<pB+2 1_§gqg1;
3) )< wlal?  zeGh if  A>p+2 1-3<g<l
4) |u(m)|§c0]a:|)‘lnﬁ, zeGE if A>p+2, 1—§§q§1

PROOF. Let us perform the variables substitution ¢ = g2/, u(pz’) =
Y(e)v(z'} in the problem (SL). Let G’ be the image of the domain G under
transformation of coordinates z; = gz}; i =1,---,N. As a result we infer
that v(z’) is a solution of the problem

.. . 2
¥ (0" vz, + 00* (02" )0y, + QPa(oz v = i f(e2')+
(SLy +o*0 (0)ao (e Y[v|t, 2’ € &,
v(z’) =0, 2z’ €dG.

We apply now Theorem 4.5 (Local Maximum Principle)

1/2

2
0
6.1.20 sup |v(z’ SC{ /v2 z')dz' +—IIf 2+
( ) :c'eG§/2| (=] y (=) w(g)“ lev ez,
1/4

1/N

+ @@ | [ loole)Mpit)as }

Gira

By the inequality (6.1.17), we have

(6.121) |a0($)INI’U|qN < EqN/(Q"‘l) |x'|2qN/(1—q)!ao(x)lN/(l—-q)+

+ Nz’ |72V y|N, Ve > 0.
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From (6.1.20) and (6.1.21), we get

1/2

2
’ 27\ ! e
swp @) <c| [ R@ | +efslflivoy )t

:L"EG%/2

G
1/N
(6:1.2) seviofe| [ e |+
Gi/a
/N
+eeT /|m'|%3ﬂq|ao;%dz' } Ve > 0.
G/a

Now we estimate each term on the right in (6.1.22)

1/2 1/2
e | J v2(:r:’)da:’) < 2"/2¢‘1(g)( [ r~Nu?(z)dzx < C,
Gi/a Gota

in virtue of (6.1.6);
/N

o ¥ O fllver,) <297 o) | [ If1Vda

174 %0
G9/4

< ¢ck10%T21(g) < const; here we apply hypothesis ¢) and the
definition (6.1.18) of ¥(g);

1/N 1N
° f |:L"]_2N|U|Ndx’ _<_24 f Q—N|’UiNd:l? <
Gf/ni G274
1/N
/N
< 2%p 2f r=2N|y|Ndz g?ﬁﬁa (fr‘2N|u|Nd:c) :
G2e G
e/4
1/N 1/N
o | [ 121®F a0l ™dr' | <e(g,N)e | S laolTwde
2

2
Gi/a Ge?‘*
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In (6.1.22) we choose € = ﬂgg); then, because of (6.1.16) from two latter
estimates, we obtain

1N
(6.1.23) € / |z’ oV dz’! < const
Gi/a
and
1/N
(6.1.24) &7 f 3 ool de’ | <
G/
/N
-
o Y711 / s
<c|—= - ag|T-7dz < const,
(¢(9)) el ol
Gp?‘i
in virtue of hypothesis (6.1.19). The obtained estimates result for (6.1.22)
(6.1.25) sup |v(z')| < (1 + ¥ o).
' €G1

i/2
Now we show that for all interesting cases of our theorem,
(6.1.26) 0°Y? 1 (p) < 00,Yp >0

is true.

1) B+2<X = (o) = 0°2 In this case we have

Y7 (g) = 0"+ =F < o0,V > 0,

fg+2< %. Choosing the best exponent 3+ 2 = %q < A we
get the first statement of our theorem. In fact, from (6.1.25) and
(6.1.26) we have

lu(2")| < My = const  Va' € G 5.
Returning to former variables hence it follows
2
u(@)| < Mwle) = Mpo™, Vo eGl, o€ (0,d).

Setting |z| = Zp hence follows the required assertion.
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2) B+2>X = (g =" In this case we have

P71 (e) = Y < o0, Y > 0,

if1— % < g < 1. Repeating verbatim above stated arguments as
in the first case, we get the second statement of our theorem.

3) B+2< X = (o) = 0°*2 In this case we have

P97 (o) = o PTIF = g29gFla1) < gRapA=RED) < 00,Vp > 0,

if 1 — £ < g < 1. Repeating verbatim above stated arguments as
in the first case we get the third statement of our theorem.

4) f+2=X1 = o) =o* 1n%? lg. In this case we have

{a—1)
szqq(g) — 92+A(q—1) In#e—? 7 < 00, Vo > 0,

if 1— % < ¢ < 1. Repeating verbatim above stated arguments as
in the first case, we get the fourth statement of our theorem.

O
Now we go on to the deduce some corollaries from Theorem 6.5.

LEMMA 6.6. Let a(x) > ao = const > 0. and hypotheses a) and aaa)
are satisfied. There are positive numbers 1, ¢, determined only by v, u,q,
ag, N such that, if u(x) is a strong solution of the equation or (SL) with

f(x) =0 and 0 < g <1 in the ball B,(0) and |u(z)| < n, z € 8B,(0), then
u(0) = 0.

PROOF. Let s > Tz_q' We set R(zx) = |z|*. Then
LR(z) — ap(z)R¥(z) = sr® 2{2 a*(z) + (s — 2)--—%)2—&-—1 + zia'(z)+
K]

+ éa(x)rQ} —ag(z)r*? <
< spo 2 (u(s +N-2)+ A(r)) — agr9.

By the continuity of A(r) at zero, there exists d > 0 such that A(r) <1 as
soon as r < d. Therefore we obtain

LR(z) — ag(z)R(x) < sr"z(,u(s +N-—-2)+ 1) —apr®? <0,
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provided r < d and r*~2%¢ < o . So
s(1+n(s+N-2))
ag
LR(z) — ag(z)R¥(x) < 0 provided min { d;
() 0() () b e= { (1+uS+N 2))}
By the Maximum Principle (see below Theorem 6.8), |u| < R provided that
1 < o*, hence u(0) = 0. il

THEOREM 6.7. Let u(z) € W2N(G) be a strong solution of (SL) and
the conditions a)-c) with A(r) that is Dini continuous at zero are satis-
fied. Let A\ > f+2, 0<gq<1—%. In addition, suppose that f(z) =0,
ao(z) € LNO-9(@) n V?L;IL—N(G) together with (6.1.5),
alz) <0, a(x) € LY(G), ao(xz) > ap = const > 0, and there exists a
nonnegalive constant kg such that

(6.1.27) lao(@)]] , .

14+-8¢
—a(Ge) T |

< koo

Then there is a positive constant d independent of u such that
u(z) =0, z € G&.

PRrROOF. Let ¢g,d > 0 are chosen according to Theorem 6.4 and such
that G C G. Let zp € G¢. We make the transform z — zp = o/,
u(z) = gﬁfu(z’). The function v(z') is a solution of (SLY with f = 0
and, by Lemma 6.6, we have v(0) = 0 provided |v(z’)| < 7 for |z'| = R
with some positive R,7. Hence u(zg) = 0 provided |u(z)| < ngT}E for
|z — zo| = Re. But the latter condition is satisfied in virtue of assertion 1)

of Theorem 6.5, if we set 7 = co, R = 2. Thus we get u(xo) = 0. Since any
zg € G¢ we obtain the assertion of our Theorem. O

6.1.3. The estimate of the solution modulus (¢ > 1). Let us recall
the well known Comparison Principle.

THEOREM 6.8. (Comparison Principle) Suppose D € RY is
a bounded domain, L is elliptic in D, a(z) < 0 in D. Let us define the
function g(x,u) with the properties

g(z,u1) > g(z,u2) forus > us.
Let u,v € WY (D) N C°(D) satisfy the inequalities
Lu < g(z,u), Lv=>g(x,v)inD.

Then
u>vondD = u > v throughout D.
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PROOF. Let w =u —v. We have
Lw=Lu— Lv < g(z,u) — g(z,v) <0

on D7 ={z € D] w(z) < 0} and w > 0 on 8D. From the Alexandrov
maximum principle (Theorem 4.2) we get

D

Now we consider the case ¢ > 1. For this at first we study the C® N
VVEJI — solutions of differential inequality in RV
(DI signu - Lu — ap(x)|uj? > —k,
In this connection we suppose

(*) L is the uniformly elliptic operator with the ellipticity constants

w1,
(v € p) and with bounded coefficients

N 1/2
(Z [ai(m)|2) + la(z)| < m, a(z) <0,

ao(z) > ap > kNT™', Vz € G,
where m, ag, k are nonnegative constants.

We derive as a preliminary the next statements.

LEMMA 6.9. Let L satisfy (*). There are a bounded domain D C RN
containing the origin O and a positive function U(x) defined in D such that
0 LU —aqgUi< -k, z € D,
(6.1.28) U@©) =1, lim U(x) = oo.
z—0D

N
PROOF. We first set U(z) = 3 y(z;), where y(t) is a positive solution
=1
of the Cauchy problem '
/" ! _ q_ _k
y(0) = %, ¥'(0) =0.

By setting 3’ = p(y) we get
[ d
(6.1.30) t= / il

p—(77—)'-
1/N
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The function p(y) is a solution of the Cauchy problem

pp +mlp| — aoy? = — %,
(6.1.31) {u lp| — a0y &

o(3) o

Now we apply the Hardy theorem (see, for example, Theorem 3 §5, chapter
V [38]). By virtue of this theorem, any positive solution of (6.1.31) fulfills
the asymptotic relation

(6.1.32) p(n) ~n® asn— +oo, Kk €R.

Now we calculate the quantity . From (6.1.31) we infer
un"p'(m) +mn®™ ~ aon? as 7 — +oo or

1
(6.1.33) p'(n) ~ ;(aonq—” —m) asn— +oo.
Integrating the relation (6.1.33) with regard to (6.1.32) we find
6.1.34 L g1
(6.1.34) p(n)NE(aom—mn) as 7 — +00.

From (6.1.32) and (6.1.34) it follows that x = ¢ —k +1 > 1,

orﬁ.z%i,qzlzb'

o oo
dn dn .
6.1.35 f —_— / —= < oo, ifg>1.
(6:1:39) oo~ ) g e
1/N 1/N

From (6.1.30) and (6.1.35) it follows that

t —>ooast—>/—<oo
u(t) p(7)
1/N

Now we remark that because of (¥)

1 aop k
” 0 —_ . S 0
O =1 (s %) >
and, consequently, by the continuity of y”, we have y”(¢) > 0 in a certain
neighborhood of zero. Therefore, returning now to U(z) we have

Uxi = y’(z‘i)ﬁ Umiwj - 53?}"(-'1:@),
N o N N
LU =) a*(@y"(z:) + ) a¥(@)y' (@) +a(z) Y _y(z:) <
=1 i=1 i=1
N

N N
<pdy y(@)+md |y @)l = (aoy(z:) — %) < agU? -k,
=1

=1 i=1
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if we recall (6.1.29) and use the Jensen inequality (1.2.5). Thus we proved
(6.1.28) as well as our Lemma. O

LEMMA 6.10. There exists Ry > 0 such that in the ball Bg,(0) there is
no solution of the inequality (DI), satisfying the condition
lu(0)] > 1.

PRroOF. For Ry we take any number R such that Br(0) DD D, where
D is the domain constructed in Lemma 6.9. Let u be a positive solution of
(DI) in Bg,(0) with u(0) > 1. We define in D the function w = u — U,
where U is the function constructed in Lemma 6.9. By Lemma 6.9, the
function w has the following properties: zE}rgpu)(:c) = —o00, w(0)>0.We

set Dy = {x € D | w(z) > 0}. Since O € D; we have D, # . Now we

apply the comparison principle (Theorem 6.8) to w in D
Lu>aou?—k=g9(u) inD,
LU<agU?—k=g(U) inD,

u<U on 0D.
From the comparison principle it follows that w < 0 in D, and hence w < 0
in D; . We get a contradiction with the definition of D,. O

LEMMA 6.11. If u(z) is a strong solution of the ineguality (DI) in
Bpr(zo) such that |u(xe)| > h, then

(6.1.36) R < Roh'7*,
where Ry depends only on v, 14, q,ap, N.

PROOF. We make the change of variables £ — zg = R Ttz and u =
hv. The function v satisfies (DI), and |v(0)| > 1. Hence, by Lemma 6.10,
v(z') is defined in a ball of radius not exceeding Ry, that is in the ball
lz'| < RhR*T* <Ry = R < Roh'Z". O
COROLLARY 6.12. Let G be a bounded domain containing the origin O.
Let u(x) be a strong solution of inequality (DI) in G\ O. Then
(6.1.37) lu(z)] < clz| 77,
where ¢ > 0 is a constant depending on v, 4, q,ay, N.

Now we are estimating the modulus of a strong solution of (SL). At
first we derive an auxiliary estimate.

LEMMA 6.13. Let u(z) be a strong solution of (SL) and the conditions
a)-c) are satisfied. In addition, suppose ag(x) > ag = const > 0. Then there
are d > 0,cq > 0 such that the inequality

(6.1.38) lu(z)| < colz| T3, z€GY
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holds.

PRrOOF. Let us perform the substitution of variables x = g2/, u(pz’) =
hv(z'), h > 0 in the problem (SL). The function v(z’) is a solution in the
domain G} /2 of the problem

L'v = a¥ (a')vgyzr, + 0a* (02 vy + 0%a(0z")v =
(6.1.39) = 0?h? ™ ag(ox")ulv|? + 0?7 f(oa'), 7' € Gijgs
v(z') =0, z'eTy,.

Now we choose h > 0 so
(6.1.40) o?hi 1l =1

Because of ag(z) > a¢ > 0 and the assumption c), from (6.1.39) and (6.1.40)
it follows that

(6.1.41) signv - L'v — aglu|? > 07T f(o)signu > —ky gt

But 8> -1, ¢ > l,thereforeﬂ+q—2_qi > gf—} >0.Hencefor 0 < p <d <1,
we have gﬁ“LEz'—qT < Q% < d¥t . Now from (6.1.41) we obtain

(6.1.42) signv - L'v — ag|v|? > —kldg'i%,

By setting k = kldg_f—}, we see from (6.1.42) that for a small positive d,
namely

%
ag a
6.1.43 0<d
the following inequalities
(6.1.44) signv - L'v — ag|v|? > —k, ag > kN?!

hold. This allows us to apply Corollary 6.12 and we obtain
lv(a’)| < Mg, &' € Gy,
where M} > 0 is a constant depending only on v, u, g, ag, N, sup A(|z]).
z€G

Returning to the former variables we get

(6.1.45) lu(z)] < M™%, z€G%, o€ (0,d)

Taking |z| = 2% finally we arrive to the desired inequality (6.1.38). O
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LEMMA 6.14. Let L be a linear elliptic operator with the conditions a)-
oaa). Then for ¥y € (—A — N +1,A — 1) there exist a number d > 0 and
the function w € C°(G2) N CX(GY) with the following properties

A+N+y-1)A-v-1) , d
1. < — Y
(6.1.46) Lw< POEN -9 r’7, z € Gy,
(6.1.47) 0 < w(r) < dz|'t, zeGE,
>0, e I'g,
(6.1.48) w(z) Y41 e
w(z) 2 spw— T €% 0< 0 <4,

where ¢ depends only on A, vy, N,

ProOF. Let us consider in the domain ¢ SV—1 the auxiliary Dirichlet
problem for the Beltrami-Laplace operator

Aw¢+(1+’)’)(N_1+7)¢=_1, L(JEQ,
’(,b((d) =0, w € 09,

It is well known (see Subsection 3 §2, chapter 7 [203]) that this problem
has the unique solution having the properties

$ e CA@NC®), ¥ >0, [Yloxe < (v, N, D)
provided the inequality
(6.1.49) (I1+7)(N-14+9) <AA+N-2)
is satisfied. The solutions of the latter inequality are the numbers
vyeE(-A-N+1,A-1).

Now we define the function

(6.1.50) w(z) = |z (v,b(w) + m) .

By direct calculation we get

A+N+y—DA—y-1)
- AP+ N —2) [

Now, by the assumptions a})-aaa), we have

(6.1.51) Aw =

Lw=Aw+ (aij (=) — aij(o))Dijw(ff) + a*(2) Dyw(z) + a(2)w(z) <
< Aw + cA(r)(|D?w| + v Dw| + r3w|) <

"V A+N+y—1)A—y—1)
=7 I(QA(")_ AA TN —2) )
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where ¢ > 0 depend only on A, v, N,Q. By the continuity of A(r) at zero,
we find d > 0 such that

A+N+y-1DA—-v-1)
7SV Wiy vy m—

By this (6.1.46) is proved. The other properties of w are trivial. O

r € (0,d).

DEFINITION 6.15. The above constructed function w we shall call the
barrier function.

THEOREM 6.16. Let u(x) be a strong solution of (SL) and the conditions
a)-c) are satisfied. In addition, suppose 0 < ap < a(z) < a1, where ag, a1
are positive constants.

Then for Ve > 0 there are positive constants ¢.,d independent of v such
that the following estimate holds

(6.1.52) lu(z)| € ce|z*~¢, = €GE,

2
. > 2
i B+22A>1, 4> 14 s

PROOF. Since |ag(z)| < a; then from (SL), in virtue of (6.1.38) and
the assumption c), it follows

(6.1.53) Lu> —ay|ul? — kyrP > —cgalrl_ﬁ—qi — k.
Set

29
(6.1.54) ’Y—l='iTq€(—/\—N,)\—2)

Tt is easily seen that such a number v satisfies L.Lemma 6.14 about the barrier
function. Let

2A(A 4+ N —2)(ky + a1cd)
(6.1.55) BZ(A+N—1+7)(A—1—fy)'

Now from (6.1.53), (6.1.46), (6.1.54) taking into account 3 > A — 2 > 1—2_‘15
it follows that

(6.1.56) L(Bw) < Lu, z€G?%, Ve>D0.
Moreover, from the properties of the barrier function it follows that
(6.1.57) uw(z) =0<w(x), zel? Ve>0,
B 2 2
. > — T2 > -4 >
(6.1.58) Bu(z) > )\(A+N—2)l$[l 7 2 colz|TT 2 u(z),

z€8Q,, 0<o<d, if B>cA(A+ N —-2).
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Thus, if the number B > 0 satisfies (6.1.55), (6.1.58), then it is proved that
{L(Bw) <Lu inGY,
u(z) < Bw(z) ondG2.
By the comparison principle (Theorem 4.4), hence we obtain
u(z) < Bw(z), €G3, Ve e (0,d).
Similarly u(x) is estimated from below. Thus we get
lu(@)| < cla]'*, e GE\O,

where v satisfies (6.1.54). In particular, we can choose 1 +v = A — ¢,
Ve > 0, which gives us the estimate sought for. OQur theorem is proved. [J

6.2. The behavior of weak solutions for divergence equations
near a conical point

Here we study the properties of weak solutions of the Dirichlet problem
for the divergence semilinear uniformly elliptic second order equation in a
neighborhood of conical boundary point

Lu = 2-(a" (T)ug, + 6 (z)u) + bi(T)ue, + c(z)u =

(DSL) =ao(z)ulul?™!, ¢ >0, =z € G
u(z) =0 on T, Ve>0.
DEFINITION 6.17. The function u(z) € W(Ge) N L®(G,) is called a

weak solution of the problem (DSL) provided that it satisfies the integral
identity

./{aij(iﬂ)umj Nz; + ai(m)u"lmi — b (®)ue,m — C(IB)U"7+
G

(III) +a0(m)u|u|q_1n}dx =0
for all n(z) € W(G), which has a support compact in G.

In the following we will always make the following assumptions
i) G C K is a bounded domain;
a) the uniform ellipticity condition
vIg <a(2)6i€; S plef® VEER®, z€G
with some v,p > 0;  a(0) = &7;
aa) a¥(z) € CYG), (i,j = 1,...,N); ai(x),bi(z) € L,(G),
(i=1,...,N); c(z) € Lyp2(G), p> N;
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aaa) there exists ¢ monotonically increasing nonnegative continuous at
zero function A(r), A(0) =0 such that for allz € G

N 1/2 N 1/2
3 la¥(@) — a9 O)F |  +|al (Z “ig(m)) +z*la(z)| < A(lz));

ij=1 i=1

b) 0 < ag(x) < ap = const is a nonnegative measurable in G function;
c) for all n(z) € W1(G) which has a support compact in G

/(c(m)n — a*(z)Dyn)dz < 0.

G
Now we derive a bound of the weak solution of (DSL) modulus. Let A be
the smallest positive eigenvalue of (EV PI) with (2.5.11).

THEOREM 6.18. Let u be a weak solution of (DSL) and the conditions
i) and a)-c) are satisfied. Suppose that

/r“iDu|2das < oo at some x € [2, 2\ + N).
G

Then Ve > 0, there is a positive constent c., determined only by v, u,q, N,
max A(|z|), G such that
z€G

(6.2.1) Ju(z)| < eelz]*C.
PROOF. Let v € W1(G®) be a weak solution of the linear problem
Lv=0 in Gg,

v| =uy, v 0,

Q4

rg

where 14 is the positive part of u. The constant d > 0 we choose so that
G2 C G. Such v exists and is unique. By Theorem 5.8, we obtain

(6.2.2) lu(z)| < eelz|*e.
Let us show that
(6.2.3) u(z) < v(z).

Suppose the contrary is true, that is we have u(z) > v(x) in a domain
D C G&. Then

L{u—v)>0 in D,

(6.2.4) [ D(u — v)?dz < 0o Ya € 2, 2A + N)
G
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is satisfied. In fact, in D we obtain
L(u—v) = ag(z)ulu|?™! > ap(z)v|v|?! >0,

since, by weak maximum principle, v > 0 in G§. Moreover, by Theorem
5.5, it is easily seen that

/r"‘lesz <ooVa€ 22X+ N)

G§
and therefore (6.2.4) is verified. From (6.2.4) and Theorem 5.11 it follows
that » = v. Thus, u satisfies (6.2.1) too. g

Theorem 6.18 is a simple extension of well known results of the linear
equation theory to (DL). It should be noted that we cannot take u > 0
in (6.2.1) without additional restrictions. The following theorem is only
valid for solutions of nonlinear equations. Note that the behavior of u(z) in
the neighborhood of the vertex of the cone is not restricted a priori in the
theorem, which is mandatory in the theory of linear problems. It is usually
required in linear problems that either the Dirichlet integral be limited or
the solution be continuous.

THEOREM 6.19. Ifao{z) > ap=const >0, z € G,q > 1,
2
2. — >2—-N-A
then inequality (6.2.1) is satisfied.

'PROOF. We state the assertion established in [172]. Let ¢ > 1, ag(z) >
ag > 0, and u(z) be a solution of (DSL) in some domain G 3 O, which is
inside the unit sphere |x|<1 and vanishes in that part of &G which is strictly
inside the sphere. Then

(6.2.6) u(0)] < C4, / Vul?ds < G,
|z|<1/2, zeG

where the constants C; and C; are only dependent on the elliptic constants
of (DSL) [assumption a)] and on ao and ¢. If we change the variables so
that z = pz’, u = hv, and p~2 = h9~!, which retains the structure of
(DSL), then we obtain the following assertion from (6.2.6).

Let u(z) be a solution of (DSL) in domain GZ% and vanishes in I‘Zfz.
Then

(6.2.7) / |Vul|?dz < Cap>125+H

30/2
G39/4
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According to (6.2.7)
(6.2.8) /r"‘]VuPda: < o0,
G
whenever
1

(6.2.9) a+2-%+1\r>0
Since, in view of the condition of Theorem 6.19,

1 2

2-—-—2L—g+N:2(—-1+N) >2 - N ~2),
1—g 1—gq

we can choose an a < 2A+ N — 2 which satisfies (6.2.9). In this case (6.2.8)
is satisfied and we can use Theorem 6.18. This is the proof of the inequality
(6.2.1). O

THEOREM 6.20. If0 < g <1, ap{x) > ag=const >0,
%5 <A, u(z) € W3(G), then u(z) =0 in some neighborhood of the vertex
of the cone K.

PROOF. The following statement was proved in [173]. Let G 3 O be
in the unit sphere, let u(z) be the solution of (DSL), and let u(z) = 0
in that part of 8G which is strictly inside the unit sphere. There exists a
B = const > 0 which depends only on g¢,v, 4 and on ae. If |u(z)| < B at
lz| = 1,z € G, then u(0) = 0. The constant B does not depend on either
u or the structure of domain G. Thus, using the transform =z = pz’, u =
hv, 072 = h9 1, we readily obtain the following statement.

Let u(z) be the solution of (DSL) in the part of the domain G 5 O
lying inside the sphere |z| < 2p, and vanishes in that part of G, inside the
sphere. If

(6.2.10) [u(z)| < BoT'@

for |z| = 20, z € G, then u(z) = 0 for |z| < .

If the conditions of Theorem 6.20 are satisfied, we will obtain (6.2.1), by
applying Theorem 6.18. Inequality (6.2.1) yields (6.2.10) at small p. Hence,
u(z) =0if |z| < p. O

Note that if the condition (6.2.5) of Theorem 6.19 is not satisfied, then
(DSL) has unbounded solutions in the neighborhood of z = 0. We will now
prove this fact under the assumption a®(z) = b*(z) = ¢(z) = 0. We state
some assertions about the characteristics of the solutions of linear elliptic
equations in conic domains for which we shall use [161].
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. Let K be a cone in R™®. We consider the boundary value problem

N N .
a T
-'21 3;6niaij($)36:j = 221 gi_zl- -[—fo((l,'), Tc K:
i,j= i=

u(x) =0, z € 0K.

Let 3 be such that Eﬂ%—:—z—ﬁ is not an eigenvalue of (FV D). There
exists a & > 0, which depends on K and @ such that if

la¥(z) - 61| < 6, x € K,
N .
[ et sda+ [ 3 1ol1Pde < o
K K =1

then there exists a unique solution of (6.2.11) such that

/\3:|‘3|Vu|2d:n+/|x|5_2u2dx§0/|x|ﬁ+2f3dx+
K K K

N
+C / S ol £ 2dz.
i =1

This statement is proved for a¥(z) = 87 in [161]. It follows from
the Banach theorem on the invertibility of the sum of an invertible
operator and the operator which is small by the norm.

. (See [161]). Suppose that K is a cone in RY, lim a¥(zx) = &7, the

numbers 8; and G are such that the interval
[ﬂf —(N-2) B-(N- 2)2]
4 ' 4
has no points from spectrum of (EV D), and u(z) is a solution of
(6.2.11),

N N
> / l® | fPdz + ) / |z|%2| 7|2 dz+

’i=1K =1 K

+/|m|’61+2fgdm+/|m|ﬁ’+2f3d:c<oo,
K K

/|m|’32|Vu|2dz+ / |z|”2~2uldzx < oo.
K K
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Then
(6.2.14) /|w|51|Vu|2d:v+ / 2P ~2uldz < oo.
K} K}

Let us consider (6.2.11) where f* =0, i = 0,1,..., N. We will show that
if 4 in (6.2.12) is small, a¥(z) = & at |z| > R1, then (6.2.11) has a non-
trivial solution. Let Tp(z) = |z|>~Y~*®(w), where ®(w) > 0 in K is the
eigenfunction of (EVD) corresponding to ¥. We seek I'(z), the solution of
(6.2.11), in the form of I'(z) = I'o(z) — V(z), where V(z) is a solution of

N . N . N
Zla—%(a‘-”(x)g’%) =X %(a'—"(m) - 55)% =

i,j= ni=1
N
(6.2-15) = Z %Ft(m), T c K,
=1
V(z) =0, z € OK.
Note that
N
(6.2.16) Y / [ |zlPdz < oo,

=1y
if 3> N—2+2\ We fix sothat N —2+2A < 8 < —N+2-2)\L(K),
where AL (K) = %(Q—N /(N —-2)2+ 4192), ¥ is the smallest eigenvalue

of (EVD) which is larger than 9. It follows from (6.2.13) that according to
the condition of (6.2.12) there exists a V(x), a solution of (6.2.15) such that

N
(6.2.17) / 2|2V 2z + / |2|f|VV[2dz < / ||| F¥|dx.
K K i=1 K

We will now discuss some characteristics of V(z) and I'(z). It follows from
the classical estimates of the solutions of the elliptic differential equations
that
(6.2.18) V3(z) < ox N / Vidz, if|z|=A.
K30
From this and (6.2.17) we have
V3(z) < Cy|z| N*278 = o(|z|* N2} as z — 0.

Besides, |To(z)| < C|z|* V> — 0 as |z| — oo. Hence, I' — 0 as £ — 0.
Since T'o(z) = ®(w)|z|> NV~ and V(z) = o(|z|>~N~?), then T # 0. Note
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that

(6.2.19) / (|2 | VT 2de + f {22 dz = oo
K2 K}

at any a such that a < N — 2 + 2A. Otherwise we would have
[T(z)] < C.lz|*¢, that is, I'(z) — 0 as z — 0. This is impossible, in
view of the maximum principle. Finally, from (6.2.14) we have

(6.2.20) /F2|m|3’2dm+/|a:]"|VI‘|2d:J:<oo
K3 K;

regardless of § > N — 2 + 2. According to (6.2.20) and (6.2.18) we also
have that |[(z)| < C.|z|*~N—*~¢ for any € > 0.

Using I'(z), we construct an unbounded solution of (DSL) provided
at(z) = bi(z) = ¢(z) = 0. Suppose that dy is so small that for z € K&
(6.2.12) is satisfied for some 8 > N — 2+ 2). We change a'/(z) at |z| > dj,
making them equal to §]. We constructed I'(z), a solution of (6.2.11) at
f* = 0, that is unbounded in the neighborhood of z = 0 and satisfies
(6.2.20). Suppose that I'(z) — o0 along a sequence z,, — 0.

Let T'x(x) be a solution of (DSL) in the domain Gy : z € K,27% <
|z| < di, k= 1,2,... such that

(6.2.21) u _ =0, u =T, u =

KNG |x]|=d1 [:r:|=2"‘
Then (DSL) has a solution satisfying (6.2.21) and it is unique. It can be
constructed by the variational method. Let us consider z(z) = —TI'(z) +

Tk (z). This function is a solution of

L(2) = ao(x)|T |7 1T = ao(z) Ll Le=llel ™ Ty, 14

—

(6.2.22) +ao(z)|Tk|*"T, =z € KR,

z
o
BKIL,

It follows from Theorem 5.11 that for any o < 2A + N — 2,
/ |z]*|V2|?dz + / lz[*22%dx <

a4 dq
K=k Kok

(6.2.23)

<C / |$|a+2|11(1,)|2qd1.5 CC, / |x|a+2q(2—N—)\)+2—sdm£A’

dq dy
KO KO
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if
(6.2.24) a+2+2¢2-N—-A)—e+N>0.

We can choose o such that (6.2.24) is valid and & < N — 2 4 2 since in
this case 2 > (1 — ¢)(2 — N — A). The constant A on the right-hand side of
(6.2.23) is not dependent on k. Let us consider the boundary value problem
in K
L(Z) = |y (z)||IT(2)|? = fo(z), ze€ K,
2.2
(6:2:25) {Z=07 z € 0K,

where

0 for |z| > d;.

If o satisfied (6.2.24) and o < N —2+ 2, then (6.2.22) has a solution such
that (6.2.25) holds and

(6.2.26) / 1|V 2|2 dz + / 12]°~2 22z < oo.
K K

0 (z) = {ag(m) at |z| < di,

It follows from (6.2.26) and (6.2.18) that Z(z) — 0 as |z| — oo. In view of
Theorem 5.11, Z(z) < 0 in K. From this and (6.2.22) we have

(6-2.27) |Z(z)| < |Z(z)|.

This implies that ge(z) = ao(x) Ir‘klgnlg‘k":llrlq_lr is uniformly bounded with

respect to k in each domain K g;, dog > 0. Hence, the functions Z(z) form a
sequence which contains a subsequence compact in the sense of the topology
of inform convergence in each subdomain Kg;. Let Zo(z) be its limit. Tt
follows from (6.2.24) that Zy(x) satisfies (6.2.26). Thus, u(z) = I'(z)—2(z)
is the solution of (DSL) with a’(z) = b*(z) = c¢(z) = 0 in Kg,. According
to (6.2.19) and (6.2.23)

/ |2/~ 2u2dz = oo for any o < N — 2 + 2},
K

satisfying (6.2.24). It implies that w(z) is the solution of (DSL) with
a'(z) = b¥(z) = ¢(z) = 0 which is unbounded in any neighborhood of the
origin.
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6.3. Notes

The properties of the (SL) solutions in a neighborhood of an isolated
singular point were studied in [172, 173]. Positive solutions of singular
value problems for the semilinear equations in smooth domains were investi-
gated also in [174, 175, 176]. The solutions smoothness of some superlinear
elliptic equations was investigated by S. Pohozhaev [337, 339, 340].

The results of Section 6.1 was established in [62] and of Section 6.2 - in
[165].

We point out other problems which are not investigated here. M. Mar-
cus and L. Veron have studied [245, 246, 247] the uniqueness and expan-
sion properties of the positive solutions of the equation Au + hu — kuP =
0 in nonsmooth domain G, subject to the condition u(z) — oo, when
dist(z,0G) — 0, where h, k are continuous functionsin G, k¥ > 0 and p > 1.
They have proved that the solution is unique, when 9G has the local graph
property. They have obtained the asymptotic behavior of solutions, when
O0G has a singularity of conical or wedge-like type; if G has a re-entrant
cuspidal singularity then the rate of blow-up may not be of the same order
as in the previous and more regular cases.

Many other problems for elliptic semilinear equations was studied by
L. Veron together with colleagues in works [45, 46, 119, 120, 130, 181,
342, 392, 394, 397, 343] as well as by other authors [33, 36, 51, 107,
110, 111, 180, 330, 370].

Semilinear degenerate elliptic equations and axially symmetric problems
were considered by J. Below and H. Kaul [39)].
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CHAPTER 7

Strong solutions of the Dirichlet problem for
nondivergence quasilinear equations

7.1. The Dirichlet problem in smooth domains

Let G C RY be a bounded domain with a smooth boundary 4G. We
consider the Dirichlet problem

(QL) ai;j(z,u, Ug ) Ua;,z; + a(z,u,uz) =0, a;=aj, z€G;
u(z) = ¢(z), =€ 0G.

(Summation from 1 to N is assumed over repeated indices.) The value
My = max |u(z)| is assumed to be known.
zel

REMARK 7.1. For the finding of Mj see for example §10.2 [129].

Let us define the set 9 = {(:I:,u, z).x eGueR,z€ ]RN}. With re-
gard to the equation of the problem (QL) we assume that on the set 97 the
following conditions are satisfied

(A) Caratheodory for the functions a(z,u, z), a;j(z,u, 2) € CAR,
(t,7=1,...,N); that is
(i) for Yu,z the functions a(z,u, 2),a:;(x,u,2) (4,7 =1,...,N)
are measurable on G as the functions of variable z,
(ii) for almost all x € G functions a(z,u, ), a;;(z,u, )
(i,j =1,...,N) are continuous with respect to u, z;
(B) the uniform ellipticity ; that is there exist positive constants v, p
independent of u, 2z and such that

V€ < ayi(z,u, 2)&&; < pe?, VEeRY;

(C) there exist a number uy and functions b(z), f(z) € Lg10c(G), g >
N independent of u, z such that

|a(x7u1 z)l < F’llzl2 + b(x)lzl + f(w)

Let us recall some well known facts about W%?(G), p > N solutions of
this problem.
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DEFINITION 7.2. A bounded open set T C 8G is said to be of type
(A) if there exist two positive constants gg and 6y such that for every ball
B.(xp), zo € T with radius r < gy and every connected component G,
of the intersection B.(zo) NG the inequality measG,; < (1 — 6p)measB,
holds.

THEOREM 7.3. (See §2 [217].) Let u € VVZZD’(fV (G) N C%G) be a strong
solution of (QL) and suppose that assumptions (A)-(C) are satisfied. Let G
be of type (A) and ¢ € CP(G),B € (0,1). Then u € C*(G), a € (0,1) and
|u(z) — ¢(z)|0g € Ma, where o is determined by N,v,p,8,60,G and Mo

depends on the same values and also on py, Mo, ||b||~, | Fllw, @866

THEOREM T7.4. (See Theorem 2.1 [219].) Let u € Wli’,fv (G)n C°(G)
be a strong solution of (QL) and suppose that assumptions (A) - (C) are
satisfied. Let T C OG be a piece of class W24, ¢ > N. Then there is a

constant ¢ > 0 depending only on N,v, u, 11,4, ||bl|q, Mo and the domain G
such that, if cp{T= 0, then |Vulor <c(1+ | fllq)-

Yet let us introduce a set:
m®) = {(z,u,2)|z € G, u=u(z), 2= Vu(z)}.
We assume, in addition, that in the neighborhood of the set 9(®) the
following condition is fulfilled
(D) the functions aj{(x,u,2), (4,5 = 1,...,N) have weak first order
derivatives over all its own arguments and there exist the non-

negative constants po, iz, 43, k2 and the functions g(z),h(z) €
Lg10c(G\ O), g > N independent of u, z such that

N
da;i(x,u,z dair(x,u, z —1/2
Z Jéz ) _ tk(az. ) < 1o (1+ |z|2) / :
id,k=1 k 3
N\ X daij(z,u,z) 5 Oagi(z,u,z)
Z Z £ 2, — Em Zrpzi+
4yj=1|k=1

Oa,;(z,u, z)z B 6akj(a:,u,z)Z'
Oz K Oz ¢
||9(33)H,,7,Gg/2 < k2™ pe(0,d*);

< (1412 (a2l + 9(=)
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N 2 N 9 1/2
Z Ba,-j(;c,u, 2) + Z 6@,;3-53:,11,, z) < h(z);
ij=1 u k=1 Tk
1/2

ZN: daij(x,u,z) 2
sz

1,j,k=1

S H3,

where v is a number from the estimate (7.5.1).

THEOREM 7.5. (See Theorems 4.1, 4.3 [217].) Let G be a bounded do-
main in RY with @ W29— boundary portion T C 8G. Let u € C°(G) N
CHG) NWEIG\ O), ¢ > N be a strong solution of (QL) and sup-
pose that assumptions (A) — (D) are satisfied. Let ¢ € C1T*(8G), a €
(0,1). Then there are the constants My > 0,y € (0,1} depending only on
N, v, by o, 15 B2, 1355 @, || Fllgs 10l s [lglgs 1all g H‘P”C”‘"(BG)’ Mo and the
domain G such that for VG' CC (GUT) the inequality

l|uHCI+"I(—G_T) <M
holds.

7.2. The estimate of the Nirenberg type

7.2.1. Introduction. Until recently the problem of the solution
smoothness to the boundary value problems for the second order quasilin-
ear elliptic equations of nondivergence form remained open. An exception
is Nirenberg’s paper [329], in which this problem was investigated for equa-
tions with two independent variables in a bounded plane domain with a
smooth boundary. In the last decade, thanks to the efforts of many math-
ematicians, first of all O.A. Ladyzhenskaya and N.N.Ural’tseva (see their
survey [217], 1986), this problem has arrived at a definitive solution for
equations in multidimensional domains bounded by a sufficiently smooth
boundary. As concerns the equations in domains with a piecewise smooth
boundary, only the investigation [90] of L. I. Danilyuk is known. (We em-
phasize that here we are talking of elliptic nonlinear and nondivergence
equations.) There the solvability of the Dirichlet problem is proved for a
two-dimensional equation in the Sobolev space W2P for p > 2 and suffi-
ciently close to 2.

In the present section we investigate the behavior of solutions of the
Dirichlet problem for a uniformly elliptic quasilinear equation of second or-
der of nondivergence form near a corner point of the boundary of a bounded
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plane domain. It is here assumed that the coefficients of the equation sat-
isfy minimal conditions of smoothness and coordinated growth (no higher
than quadratic) modulo the gradient of the unknown function. We first ex-
tend to domains whose boundaries contain a corner point and to equations
with an unbounded right side the method of Nirenberg [329] for estimat-
ing the Holder constant of the first derivatives of solutions. The weighted
La-estimate of the second derivatives of a solution obtained in this manner
(we call it the Nirenberg estimate) and the Sobolev imbedding theorems
make it possible to estimate the maximum of the modulus of a solution and
its gradient and thus establish a power rate of decay (temporarily with a
small positive exponent) of a solution in a neighborhood of a corner point.
Using the "weak” smoothness of a solution established in §7.2.4, in §7.2.5
we refine the Nirenberg estimate and obtain a weighted integral estimate
with best-possible exponent of the weight. While for the Nirenberg esti-
mate boundedness of the leading coefficients of the equation is sufficient, it
is now necessary to require their continuity. The estimate of §7.2.5 makes
it possible to obtain sharp estimates of the modulus of a solution and of its
gradient as well as weighted LP-estimates of the second derivatives, and to
prove Holder continuity of the first derivatives of a solution with the best-
possible Holder exponent.

7.2.2. Formulation of the problem and the main result. Let
G C R? be a bounded domain with boundary 8G which is assumed to be
a Jordan curve smooth everywhere except at a point @ € 0G; in some
neighborhood of the point @ the boundary 0G consists of two segments
intersecting at an angle wg € (0,7). We place the origin of a rectangular
coordinate system (x1,z3) at the point O. Let (r,w) be a polar coordinate
system with pole at ©. We direct the abscissa of the rectangular coordinate
system along the ray w = 0 on which one the segments of dG lies, and we
situate the ordinate axis so that the second segment of G lying on the ray
w = wy lies in the upper half-plane z; > 0. For any numbers d > a > 0 we
set
Gé=Gn{(rw)|a<r<d 0<w<wp}
(we henceforth assume that d is a sufficiently small positive number);
F‘li,‘1 ={(r,0)|e < r<d}; I‘g’a ={(r,wo)| a < r < d};
rd = I“f,a Ul"g’a; Sg = {(d,w)| 0 € w L wp}.
DEFINITION 7.6. A strong solution of problem (QL) is a function u €
W2(G) satisfying the equation of the problem for almost all z € G and

the boundary condition u — ® € WZ(G) with any ® € W2(G) such that
®(z) = p(z), z € OG.
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The main result of this section is the proof of the following theorem.

THEOREM 7.7. Suppose u € W*(G) is a solution of problem (QL) with
a;§(0,0,0) = 87 = the Kronecker symbol (i,j,= 1,2}, conditions (A) — (C)
are saotisfied, and the following quantities are known

(7.2.1) My = max|u(z)| and M; = esssup|Vu(z)|
z€G z€G

Suppose the functions a;;(z,u,uz) (i,j = 1,2) are Dini continuous at the
point (0,0,0),
b2, € V3a(G), ¢ € O™/ (8G) Ny *(9G) N V2.V (8G),
p>2 a>p(2—mwlw) -2, 0<wy<m,

and there exist numbers ki, ka > 0 and s > w/wy such that for all p € (0,d)
the following inequalities hold

(7.2.2) H¥Mgﬁvacwamﬁn@$Skmkl

—oypet2
(7'2'3) |[b2l|Vlﬁa(GP )+ “fHV,?,a(G” )+ H(p”sz’;l/p(Fz/Z) < kzp"r/wo 5=,

p/2 rl2
Then the following assertions are true
1) ue Wa(G), and

(7.2.4) el gy S ™ 0<p<d;
2) forO<p<d

(7.2.5) lu(z)] < cilz|™/*°, ze€GE,

(7.2.6) |Vu(z)| < ealz|™“0t, z e GE;

3) ue V2,(G), and

—opot2
7w fwo—2+ Eal

(7.2.7) ”U“sz,a(cg) < czp 0<p<d;

4) ZfPE ﬁw—o with 71'/2 <w <, then u € Cﬂ/wo(ﬁ)_

7.2.3. The Nirenberg estimate. Let ®(z) be any extension of the
boundary function ¢(z) into the domain G. The change of function v(z) =
u(x) — ®(x) reduces the inhomogeneous problem (QL) to the homogenous
problem
(QLYo {aij(x,v + @, v + &(2)) : 50, = Flz,v,%;), TEG,

‘ v(iz) =0, ze€0G,
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(7.2.8) F(z,v,v5) = —a;;(z,v + @, v, + O(x) - Oy, —
—a(z,v + @, vy + B(x)),

where by assumptions (b) and (c) the following condition is satisfied

(7.2.9) |F(z,v,p)| < 2u1|p|* +b(z) - |p| + 201/ Poa|

+2u1 - V]2 +b(z) - |VO| + f(z).
By a solution of problem (QL)p we mean a function v € vfig(G) satisfying
the equation of the problem almost everywhere in G. By Theorem 7.3, such

solution is Holder continuous in G, and there exists v € (0, 1), depending
on v~ 1, i, and wy such that

(7.2.10) lv(z)] < ¢ - lz|™

with a positive constant ¢y depending on v, u, p1, wo, Mo, ||0%||2,6, | fll2,65
and ||¢||lws/2(9G).

THEOREM T7.8. (cf. [329]; see also Chapter IX, §6 [215]). Suppose
u(z) € W2(G) is a solution of problem (QL), assumptions (4) — (C) are
satisfied, and the gquantities (7.2.1) are known. Then there ezists a con-
stant v, determined by the quantities 7y, u, 1, wo, Co, Y0, d, and satisfying the
inequolity

(7.2.11) 0 < < 2min(yg;7/wo — 1) = 7*

. 0 3/2
suzch that if f,6> € W_.(G) and ¢ € CHIG) N WL (BG), then u €
Ww_,(G), and

(7.2.12) ullge_gom Sl 0<p<d

ProoF. First of all, we consider the expression
v v
Y= a,;j’l)_’,hmj (_.7:1:1:1 + _12:52)
a2 a1l
and write it in the form

a11 o 2a12 2

U=(—uv + — Vg2,V + v +

x L1281 Y122 z1T
azy “F Q22 12

a2z o 2a12 2
+ | —v + —VayuyVzzy TV +
all oo a'll 242 142 T1T2

2
+2 (U11m1vx222 - va:ucz) .



7.2 THE ESTIMATE OF THE NIRENBERG TYPE 247

Because of (QL)o, the uniform ellipticity condition (B), hence it follows

v
(7.2.13) ;1'- (’Uglml + zvglﬂ?z + 'ngsz) <
v v
<2(02,,, — VeioaVeans) + F (Tm N a—n) .

Now, let {(r) be a cut-off function for the domain G§, g € (0, d)

1 0<r<0/2
(7.2.14) ¢(r) = <r<ef

0 r=op,

0<((r) <1, [K'(N<ece™, 0<r<e.

Multiplying both sides of (7.2.13) by 77¢%(r) and integrating over G§, we
have

v —
(7.2.15) - [k < 060 + 1),
GP

where
(7.2.16) TN (p) = f 72 T (r) (V2,00 — Vo122 Va122)dT

Go
and

1 _

(7-2'17) Js(2) (p) = 2 fre 742(7') (|U$1x1| + |Vzaza]) « | F(z, v, v2)|d.

G§

Repeating the computations made in the proof of Lemma 2.41, we obtain

(7.2.18) IO (p) = I (p) + I8P (p) + I (p),
(7.2.19) 59y =7 [ Fmuos,
G
(7.2.20) 790 =<3 [ 17772 Crpualo)ts
Gg
and
(7.2.21) J13) (p) = — / r‘“/-CC’(T)%wi(x)dm,

Gg
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where the w;(z) are defined by (2.6.1), by virtue of which

ov ov
(7.2.22) W (T) = Vgy + > — Uy, - B:JZ’

Ow
and therefore (7.2.19) can be rewritten in the form

[ wo
(e y_ 7. =7=2, 2 -?-’l—]ﬂ— _5‘_1;_.2
(7.2.23) J&(p) 2 /TE ¢ (ﬂdr/('um2 O Uz, Ow )dw
0 0

To estimate the integral J1' we perform the transformation of coordinates.
From the rectangular system (xz;,z2) we go over to an affine system (y1,y2)
namely we place the axis QY] along the axis OX; (along the ray w = 0,)
and we direct the axis OY; along the ray w = wp. We then have

Ov,, Ovg, 1 ( Ovy, c%w)

R A sinwyg Y, T M hy
Further, by the boundary condition v(z) = 0, x € G, we have

Uy, (r,0) =0, vy, (r,we) =0,

and hence
P wip
(7.2.24) JW(p) = ZS;WO : f e 22 (r)dr - / {[vyz('r,w)—
0 0
ov 1 Ov 2
— a1y 0)] 2 — [0, (1, 0) — 3 (r, 0)] - 522 oo

By the Holder inequality for integrals

w

avyl(rse)
/ g6

2
<

vy, (7, w) — v, (r, O =

w
Sw-/

0

(7.2.25) 0

8vyl (Ta 6)
a6

2 w
df <wr?. / [V, (r,6)2d8,
0

and, similarly,
Wo

(12:26)  [oga(rien) = o) < (o~ )12 [ V04,0, 0)P
0



7.2 THE ESTIMATE OF THE NIRENBERG TYPE 249

We estimate the integrals in (7.2.24) by Cauchy’s inequality and consider
the estimates (7.2.25) and (7.2.26). As a result, we obtain

p wo
(11) Y ——2,. 2 Fuy, \2 Ovy, \2
Jep) < 4sinwg f?"s e (T){_/[( Ow ) + ( dw ) dw-+
0

0

(2% w wo
s [ [w- [ 9o 0)Pds + o - o) | leyz(r,9)|2d9] dw}dr <
0 w
<2+ wd

2.27
(7 ) — 8sinwg

Y- / P ()2, da

Gg

by property 2) of the function r.(z). By property 3) of this function and
Cauchy’s inequality we can estimate the integral (7.2.20) as follows

(7.2.28) JI?(p) < % / [P (w2, + 72 ()| V)2 da
Gt

Finally, applying Cauchy’s inequality with V4 > 0 and considering (2.6.1),
we estimate the integral (7.2.21)

7.2.29 T3y < [ 46r77 - C(r)2, + lr;”' 2(r) - |Vv|?| da.
£ & 6
G§

Thus, from the representation (7.2.18) and estimates (7.2.27)-(7.2.29), we
obtain

9 2
(7.2.30) TN (p) < (46 + % + 8;:3) f r; ¢ ()l dz+

Gg

+ % /T;7_2C2(T)|VU|2dSB + % /r;”g’z(r)IVvlzdx, V6 > 0.
Gs G
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We now turn to the estimation of the integral (7.2.17). Using Cauchy’s
inequality, considering the condition (7.2.9), and applying Lemma 2.39 to-
gether with the inequality (7.2.10), we obtain

JD(p) < i [+ cd7 (1 + 8u?)c2d™ ] /TE"CZ(T)in‘m‘F

G§
s+ )@ [ (7 G0 417 ) [Voldat
(7.2.31) as
+e(671, p, 1, Mo) f [ro7¢2(r) (b*(@) + £2(2) + 92,) +

G§
+ (r;v—z () DT C'z(r)) |V<1>|2] dz, ¥§>0,0<p<d.
LemMA 7.9. Under the conditions of Theorem 7.8 we have
/7"2"_2 -2 (r)|VvPdz < e, pa, €0, 70,7, w0, d) X
G§

(7.2.32) x{p270—7—2_|_ / r77¢3 (r)l dz + / [r;"(g(r)(b4($)+f2($)+

Go Go

+85,) 47777 )| VP dn, | 0<p<d

PROOF. We multiply the equality (QL)o by r77~2¢%(r)v(z) and inte-
grate it over the domain G§. Integrating by parts, we have

[reremmpas = B0 [t 2yitan-

G§ Gy
—r+2) [ 1T () R e — ez =2 [ 17 ¢ ) vy ot
Gt eld
+ / [aij(z, v + @, v; + B5) — a;5(0,0,0)] vz, 07 723 (r)dz+
G§
(7.2.33) + [ [ote v+ 0,0+ )00+

Gg

+a(z, v+ @,vy + @m)] o772 (r)v(z)dz.



7.2 THE ESTIMATE OF THE NIRENBERG TYPE 251

We estimate the integrals on the right using Cauchy’s inequality, assump-
tions (B), (C), and the estimate (7.2.10) for the Holder continuity of v(z).

As a result, from (7.2.33) we obtain
: /T!"'2C2(T)|Vvl2dm < e1(ep, ¥, 1) (8 + d7°)x

@) ()14

< [re IVl + ealp o, - [ it

s e
(7234) +Ta_7_2ci2 (7‘)'1)2] dz + Cg(u, H1,%0,Wo, da Y, 5_1) X
< [ 127 @ + V@) + @) + 72772 C0) - (98P,
Gg

0<p<d, Véi>0.

Further, by property 2) of the function r.(z) and the properties of the
function ¢(r) with consideration of the inequality (7.2.11), we have

/r;7"2C’2(r)v2dw < (eco)?-p2. /r27°_"’"2d9: =
(7.2.35) Go Go

Since by (7.2.11) the left side of the (7.2.34) contains a strictly positive
constant factor, choosing the quantities é,d > 0 sufficiently small, we obtain
the desired inequality (7.2.32). O

Returning to the inequality (7.2.15), on the basis of (7.2.30)-(7.2.32)
and the choice of the quantities «, d,d > 0 as sufficiently small, we obtain

(7.2.36) / ro ' (r)vl,dz < (v, i, ul,"m,%CO,wo,Mo,d){pz”°*””2+

G§
+ [roemivepds + [ [r7 (@) + (e + 82)+
Go Go

+ (r;"’_QCZ(r) + 7'6_"’('2(1')) . |V<I>|2] dx}, 0<p<d.
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Finally, noting that by the hypotheses of theorem the quantities (7.2.1) are
known, in analogy to (7.2.35) we have
2 ZMZ
/r;"’C’Z(T)WuIzdm < EMZp2. /r"’da: = —_wozc_ 'yl e 7.
Gh Gg

Therefore, by the properties of the functions r. and ((r), the inequality
(7.2.36) gives
/ T‘;yCz(T)uzzdl' < c(yi ey 15 M07 70,75 Cos da wﬂ)x
Gh
x {Mzpr e ot [ Ane) + e + B4
GG

+177 2 ()| Vefdz },

where 0 < p < d. Since the right side does not depend on &, passing to the
limit as € — 40, we finally obtain

/ T_‘Y'llli.md:lf S /r—7(2(r)uimdm < C(V') M, ll'l’MOaer'YOa’YvCOad:wU)x
cel? Gg

- 4 J270—7—2 2|2 2 :
x {d +d e ey T I ety +H(‘DHV\°/3_’$(PS)}'

The assertion of the theorem and the estimate (7.2.12) follow from this
estimate. a

COROLLARY 7.10. Suppose the hypotheses of Theorem 7.8 are satisfied
ezcept for the finiteness of My. Then

/ 'Ufimdl? < C(V’ K, NI,MO,'YOa'Y’cOsda wO)X

Ga?

—-2 2 4 2 2
x& /wmn+/wm+fWWwwwﬁﬂm}
ce e

0

(7.2.37)

ProovF. This follows from (7.2.15), the Hardy-Wirtinger inequality, and
estimates (7.2.30), (7.2.31), and (7.2.34) for v = 0 and sufficiently small
8,d > 0 with consideration of the properties of the functions r; and £(r). O
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7.2.4. The behavior of the solution near a corner point
(weak smoothness). In this Subsection we establish power decay of a
solution of the homogeneous problem (QL)o near a corner point.

THEOREM 7.11. Suppose the conditions of Theorem 7.8 are satisfied,
and let v > 0 be the number determined by this theorem. Suppose, moreover,
that

2-1
B eVI_(G), ¢eCH8G)NV.TYP(8G), p>2

and

(7:2:38) 1fllve @z, + 10%llve 07,00 + llellyzeqes ) < Rap®? 7

Then
(7.2.39) v(z)| < e - |72
(7.2.40) {V¥(z)| < cz - ||/

PROOF. The inequality (7.2.39) follows from the imbedding theorem
(Lemma 1.38) because of Theorem 7.8.

To estimate the modulus of the gradient of the solution in the ring G} /2
we consider the function

(7.2.41) z(z') = v(pz') - p~ /2,
assuming that v = 0 outside of G. In G}, this function satisfies
&zj(x,)z:c;w; = i(xl)v
(7.2.42) dij(2') = aij(pz’, ulpz’), o™ uz (p2')),
F(a') = —p"™"% a(pz’, ulpa’), p~ uw (p2')) = p~1 " 2t145( ) B o1 (p2),

where by assumptions (B), (C)

~ 1
(7.2.43) |F(z")| < (w1 + 5);;-1-7/2 VU 4 e YR(f )+
+ ﬂp—1_7/2|©z’m’|-

To the equation (7.2.42) we apply Theorem 4.10 regarding the boundedness
of the modulus of the gradient of a solution inside the domain and near a
smooth portion of the boundary

(7.2.44) ess sup |V'z| < My
1

1/2
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where M] is determined only by v, y1, i1, wo, and the integrals

1/p
/zzda:', (g/ |F(a:')|pdx') , p>2.
12

1
G1/2

To verify the finiteness of these integrals, we have

/ 22dx’ < / r=Y 4 v2de < /7_7_4v2d:c < c(d)

Gi/s Gora Gg

by Theorem 7.8. Further, by (7.2.43) and the assumption (7.2.38) of the
theorem we have

1/p
(u/ Iﬁ(w')l”dﬂ:’) SC(/L,ul,p){C/ rP1=3)=2 |V + |y [P+

1 P
1/2 p/2

1/p
. M241-7/2
+b* + f"]dw} < c(u,ul,p){ wolMid kl}

+
[p-(1—~/2)]/7
Returning to the function v(z), from (7.2.41) and (7.2.44), we obtain
|Vu(z)| < Mip/2, ze G‘é N Ge.

Setting |z| = 2p/3, from this we obtain (7.2.40). Theorem 7.11 is proved.
O

7.2.5. The weighted integral estimate. We can refine the Niren-
berg estimate on the basis of the weak smoothness of a solution established
in Subsection 7.2.4. This refinement is possible due to the requirement of
continuity of the leading coefficients of the equation.

THEOREM 7.12. Suppose u € W2(G) is a solution of problem (QL) and
the assumptions of Theorem 7.11 are satisfied. Suppose the functions
a;j(x,u,2z) (1,5 = 1,2) are continuous at the point (0,0,0). If, in addition,
82, f € W2(@), ¢ € W2(0G), and

(K) 2-2njwy < a <2,
‘then u € W2(G), and

2
(7:245) ull gz o) < (Ilulla +[1Fllgo g + P7llge o)+

+lellgor2 g, )
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where ¢ > 0 is a constant depending only on v=1, u, 1, a, wg, My, M1, o, co,
meas G and diam G and also on ki,p,c1 and ¢z of (7.2.38)-(7.2.40).

PROOF. Let r.(z) be the function defined in §1.4 of Chapter 1. We
multiply both sides of (QL)g by r® %(x)v(z) and integrate over the domain
G, using the condition (B) and integration by parts

A2
/rg_QIVU\Zdz = (2 204) /'r?"%zdm-l-
G G
(7.2.46)
+/T?_2(w)v(z){[a¢j(:r,u, ug) — a5(0,0,0)]vg,4; — F(z,v,v;)}dz.
G

We decompose G into two subdomains G§ and Gy, in each of which we
obtain an upper bound for integral on the right side of (7.2.46).

Estimates in G§. By the continuity of a;(z,u, 2) at the point (0,0,0)
assumed in the theorem, for any § > 0 there exists do(d) > 0 such that

9 1/2
(7.2.47) (Z |aij(x, u, uz) — ai;(0,0, 0)|2> < 8,

i,j=1
provided that
(7.2.48) |z| + |u(x)| + |Vu(z)| < do.

The smoothness of the boundary function ¢(z) assumed in Theorem 7.11
makes it possible to conclude by Lemma 1.38 that ¢(0) = 0 and
|[V®(0)| = 0. Therefore, by (7.2.39) and (7.2.40) of Theorem 7.11 we have,
for any z € G4,

2| + |u(2)] + {Vu(z)| < |z] + |[v(z)| + V()] + |2(z) — ©(0)|+
V(@) — VE(O)| < d+ c1d"™72 + cpd"? + %dg,

and hence (7.2.48) is ensured because of the sufficient smallness of & > 0.
With the Cauchy inequality we now estimate the integral

/T?_z(a:)v(a:) [aij (@, u,uz) — ai5(0,0,0)] Vg0, dz <

(7.2.49)



7  STRONG SOLUTIONS OF THE DIRICHLET PROBLEM
256 FOR NONDIVERGENCE QUASILINEAR EQUATIONS

Further, by the condition (7.2.9) with the help of Cauchy’s inequality and
(7.2.39) we obtain

1
/rg‘_z(a:)v(x)F(x,v,vz)dx < (5 + 2p1> ey di+/? /r‘;_2|Vv|2dx+
G G§

+ (2420 ) Mode2 / |Vv2dz + 35 r“‘2v—2dm+
2 H 0 2 € r2
(e¥ G
(7.2.50)

+% /r2r?_2 (b*(z) + f2(2)) dz+

G
(s 1, Mo, 51) / (r2ro=282_ 4 1o-2VD|2)dz, V5 > 0.
G

Estimates in G4. By condition (B) and properties of the function r.(x)
we have

(7251) / T'g_z’l)(l') [aij (I7 U, uz) - a’ij([)? 07 0)]U$i17j dz <
G4
1
< %da_z / (vZ, +v?) dz.
Ga

On the basis of (7.2.49)-(7.2.51) and the inequality (2.5.8) from (7.2.46) we
now obtain for Vé > 0

mlwe)? — ((2 — a)}/2)?
oz S [ e

< [25 - H(a,we) + (% + 2u1)c1d1+”’/2] /r§_2|Vv|2dx+
G

2
Gd G

+ g5 [ e 0@ + P@)de + el i, Mod? [ 02, + 7).

o
+5- / 2re=2. 2 da + oy, p1, Mo, 671 / (re 2282 47272 \VO|?)da+

20
G Ga

To estimate the integral with second derivatives in (7.2.52) we apply
the method of S. N. Bernstein (see, for example, [216], Chapter 111, §19).
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We rewrite the problem (Q L), in the form

(7.2.53) {A” =7 z€G,

v(z) =0, z€dG,
where
(7.2.54) F = —[ag(z,v+ vz + B) — 045(0,0,0)]vz,z; + F(z,v,vg).

We multiply (7.2.53) first by r?r2~%.v,,,, and next by r2r®2. v,,,,, and
add the equalities thus obtained. Next we integrate the result over G

(7.2.55) /rzrg‘“z v dx = /1"27'6"‘“2 -Av - Fdz + 2J4 V],
G G

where the last term is defined by (2.6.3) and Lemma 2.42 holds for it. We
estimate the first term on the right in (7.2.55) on the basis of (7.2.53),
(7.2.47) and conditions (B), (7.2.9)

(7.2.56) /r re&=2. Av. Fdz < 61/r2r?_2-vgxda:+
G
o [rire  (Volt 4 b(z) + (o) + 0, + VL)
G
+c(d,)(1 + u)fvgzdx, Vo1 > 0.
Ga

From (7.2.55), (7.2.56) on the basis of Lemmas 2.39, 2.40, 2.42 and with
consideration of (7.2.10) and since d,d; > 0 were chosen sufficiently small,
we obtain

/ Zro—2y? dx < c(a, My, i, meas@, diamG) / (v2, +v*)dz+
G

(7.2.57) + (Mo, p, p1) f [re(6(z) + f3(z) + @2,)+
G

r*2|V®|?|dz + e(a, Mp) | r&2 Vv]zd:r.
€

The next lemma follows from Theorem 4.9 and Lemma 2.39 with o = 0.
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LEMMA 7.13.

(7258) / 2 d$<C 1”7”1’00370)x

y / 2(z) + b(z) + f2(x) + 82, + |V + 3]dz.
Ga
From (7.2.52), (7.2.57), (7.2.58), and the condition (K) of the theorem,
by choosing 6, and d sufficiently small we finally obtain

/(7‘2 o2yl 422 (Va2 4+ rot u)dr <

< C(O!,Cd(), 17 K, M17M0)60,61370777 diava measG’)x

X /[u2 +re(b*(z) + f2(z) + 02,) +r* 2. VB2 4 r2%. 0%dz Ve > 0.

Passing to the limit as € — 40, we establish Theorem 7.12 and (7.2.45). O
7.2.6. Proof of Theorem 7.7.

ProoF. That u belongs to the space v?fg(G) follows from Theorem 7.12
for & = 2 so that to prove assertion 1) we need to prove (7.2.4). For this
we multiply both sides of (QL)o by v(z) and integrate over the domain G§,
0 < p < d. Setting

(7.2.59) V(p) = [ |Vv|’dz
/

‘we obtain
wa

ov
Vipy=p | v—dw+ [ {v(z)]ai;(z,u, uz) —ai;(0,0,0)]vg,q, —
h/ or G/g‘ J 7
—v(z) - F(z,v,v;)}dz.

We shall obtain an upper bound for each integral on the right. For the first
integral we have Corollary 2.29

(7.2.60)

«wo

dv PYO o
4. —_ <
(7.2.61) p/vadw_zw V(p).
0
Condition (7.2.3) of the theorem ensures that (7.2.38) is satisfied, and
hence estimates (7.2.39) and (7.2.3) of Theorem 7.11 are valid. On the

basis of these estimates and the assumed Dini continuity of the functions
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a4 (T, u, ug) at (0,0,0) and the smoothness of the boundary function p(z) it
is not hard to establish the existence of a positive, monotonically increasing
function §(r), continuous on [0,d], which satisfies a Dini condition at zero
and is such that

2 1/2
( Z raij (z‘,u(x), u,,(x)) - aij(O’O! 0)[2) < 6(,0)’ I.’L‘| <p

t,J=1

In fact, by Dini continuity, we have

2 1/2
(Z |ai(z, w(z), u=(2)) — a5(0, 0, 0)|2) < Az + [u()] + [Vu(2)]),

ij=1

where A(t) satisfies the Dini condition at zero, that is fd # < 0¢. But from
estimates (7.2.39) and (7.2.3) it follows ’
|zl + [u(@)] + |Vu(@)| < |2] + eile]* 772 + esle"? < clz["2.
Hence we obtain
Alz] + [u(@)] + [Va(@)]) < A(er™?) = §(r),

where

1 1 ¢
/2
/‘5(’")(17-=/A(CT7 )dr:g/A(t)dKoo_
T T ¥ t

0 0 0

Therefore, by the Cauchy inequality we obtain

/'v(x) - [ai5(z, u, ug) — a5(0,0,0)]vg,q;dx <
Go
(7.2.62)

< %6(,0) . /(r2 2+ 2 y?)de.
96
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Finally, on the basis of (7.2.8) and by the condition (7.2.9) and the Holder
continuity of the function v (inequality(7.2.10)), we obtain

/v(m) -F(z,v,z5)dx <

Gg
1
(7.2.63) < (5 + 2u1)cop™V(p) + (1 + w)p’ - /r‘2v2dx
G§
+e(p, pa, Mo)p~? - / [r2(®2, + b%(2) + f2(z)) + |[VO|*] dz, V6§ >0.

Gg

From (7.2.60) on the basis of (7.2.61)-(7.2.63), the Hardy-Wirtinger inequa-
lity for o = 2, and the estimate (7.2.37) of Corollary 7.10 it now follows
that the function V' (p) satisfies the differential inequality (CP) from §1.10
of the Preliminaries, in which

27

- =" o ) ~vo—1 ﬂ -1 zﬂl 5-1
P(p) 2o 2¢0— ( + 241)p +—p 3(p) + 7t,( +w)p°

N(p) = w—ep_lé(p)c(u, Hy NlaM0,607'707w0)7

2
(7.2.64) Qp) = ke k =k} -l i, Mo) - (1+2%),
0
Vo =V(d) < Mlz -meas G

V5 € (0,25 _ zi) .
Wo

(Here k; and s are defined in condition (7.2.2).) According to Theorem
1.57 the estimate (1.10.1) holds, which together with (7.2.37) leads to the
desired estimate (7.2.4).

The estimate (7.2.5) now follows from the imbedding theorem (Lemma
1.38) and from (7.2.4).

To prove the remaining assertions of Theorem 7.7 we apply the method
of rings and arguments analogous to those in the proof of Theorem 7.11.
We perform the coordinate transformation z = pz’. In G} 1/2 the function

z(z') = p~*v(px’) satisfies (7.2.42) and (7.2.43) with ~ replaced by 2(A—1).

By the Sobolev-Kondrashov theorems on imbedding of function spaces
we have

/p 1/2
(7.2.65) (Cf |V'2 |pdw) <ec- L/ (22, + z2)da:':| , Vp>2

1
1/2
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and

7 n __ vl ’
(7.2.66) sup |V'z|+ sup |V'z(z') z(y')| <
1eTl8 (T8 |z — y’|1“2/P
z EG",,/8 z',y EGs/B
z#y

S cHleWQxP(GZg)’ Vp > 2.

We consider (7.2.42) as a linear equation whose leading coefficients are Dini
continuous. By Theorem 10.17- the LP-estimates for the solution inside the
domain and near a smooth portion of the boundary, we have

1/p

b}

1
1/2

(7.2.67) HZHWR'P(G;;g) < e(v, p,6(1)) L/ (|ﬁ(m')|p + |2/P)dz’

¥p>1, Gy C Gl

Returning to the variable z and the function v(z), from (7.2.64)-(7.2.66) by
(7.2.43) and (7.2.4) we obtain

1/p
(7.2.68) L / IVvlpdw) <. ptwtUrml oy > 9
p

and also, considering the smoothness of the boundary function,

|Vo(z) - Vo) _

sup [Vu(z)|+p'"%P.  sup

_ ylt—2/p
T
wEG;‘:;: m,yEG;’;;: | yl

T#y

v
(7.2.69) SC(V,u,ul,p,c?(p)){f?l"z/p( / IVvlz”dz) +
GP

(24
1
+ ( / r‘p_2|v|7’dm) /p+
Gl /2
24 1/
+ pl_Jé_ . < / [r“(f” +b%P 4+ |<I>w[p) + r”‘_plvti)F’] d:r> p}

I
Gﬂ/ 2
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and

(1270) lellys (gre, < c(u,u,m,a(p»{ L [ werwope-

o/
l/p
+</[r°‘-(f”+b2p+

r
GP/2

+ ro‘_zf’\v]p)dx

%
+ [ ®ga|?) +7*7P |V<I>|p]d:c> p}.

We now note that by the estimate (7.2.5)

Gg a3
p()‘_l)p N
= wocf - = >1
wL G AT
and
7.2.72 a=2py1Pdy < & . [ retA-2pgy = __ dwo 2+a+p(A—2)
(7.2.72) [ r*"*lufPdz <cf - [ r S by ,
G G?

ifA-2+4 2"'70’ > 0. In addition, we also have

1/p
0279 P [ 1vean)"” < oM < i

Gore
and
/p a o

(7.2.74) ( / 7‘°‘|Vv|2pd:z‘) < M2 < eM2g*2H55,

Gl
since 1 < A < 2.

From (7.2.69), on the basis of (7.2.71), (7.2.73)and (7.2.3), we obtain
(7.2.6). This concludes the proof of assertion 2) of Theorem 7.7. The
assertion 3) and (7.2.7) follow in exactly the same way from (7.2.70) on
the basis of (7.2.72), (7.2.74), and assumption (7.2.3). Finally, suppose the
conditions of assertion 4) are satisfied. Returning to (7.2.69), by (7.2.71),



7.3 ESTIMATES NEAR A CONICAL POINT 263

(7.2.73), and (7.2.3) we have

|Vo(z) — Vu(y)| < ep™|z — y[/ o177,
(7.2.75)

Tp/8 _ s 2
Vm,y€G5Z/8, x——&;—2+550.

By the definition of the sets G;z;g we have |z — y|* > (1p)*, since 3 < 0.

Therefore, from (7.2.75) we obtain

Vo(z) — Voly)| < o[z —y[/*0~t, v,y e GI7E,

whence assertion 4) follows. Theorem 7.7 is proved. O

7.3. Estimates near a conical point

7.3.1. Introduction. In §7.2 we have investigated the behavior of
strong solutions to the Dirichlet problem for uniform elliptic quasi-linear
second order equation of non-divergent form near an angular point of the
boundary of a plane bounded domain. There in particular it is proved that
the first order derivatives of the strong solution are Hélder continuous with
the exponent wlo —1,if § < wp < 7 and this exponent is the best possi-
ble. (wp is an angle of intersection of segments of the domain boundary
in the angular point.) Two-dimensionality of the domain is stipulated by
Nirenberg’s method which we have applied to obtain the estimate

(7.3.1) lu(z)| < eolz|tt?

with a certain 4 € (0,1) in the neighborhood of an angular point. Other re-
sults of §7.2 do not depend upon two-dimensionality of the domain and may
be obtained by the methods presented in §7.2 in the multidimensional case.
First we build the barrier function and with the aid of the Comparison Prin-
ciple establish the estimate (7.3.1) with a certain now small v > 0. Then, by
the layers method, using the results of Ladyzhenskaya-Uraltseva-Lieberman
[217, 219, 224] and the estimate (7.3.1), we establish the estimate

(7.3.2) |Vu(z)| < er]z|”.

On the basis of (7.3.1), (7.3.2) we prove the integral weight estimates for
the second generalized derivatives of the solution with the best weight ex-
ponent. These estimates allow us to obtain exact estimates of the solution’s
moduli and its gradient and weight L9-estimates of the second generalized
derivatives of the solution and also to prove the Holder continuity of the
first derivatives of the solution with the best Hélder exponent.

DEFINITION 7.14. A strong solution of the problem (QL) is the function
u(z) e WG\ 0O)NCYG), ¢>N

loc
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satisfying the equation of the problem for almost all x € G and the boundary
condition of the problem for all x € 8G. The value My = max |u(z)| is
z€CG

assumed to be known.

We shall further assume throughout that the below conditions are sat-
isfied

(S) for ¥eg > O there exists dg > 0 such that
dy _ IN T _ do .
Gy —{a:eG|arccos(T)<2 eo}®G0 C{en=>20}=A>1;

(1) olz) € W~ 99(8G), q > N; ai;(z,u,z) € Whi(I), g > N;
there exist a number 3 > —1 and nonnegative number k; such that

(7.3.3) b(z) + f(z) < k1z|?,

where functions b(z), f(z) are from the condition (C).

7.3.2. The barrier function. Let Gy = G§° be an infinite cone,
where Go C {znx > 0} and Iy is a lateral surface. We consider the se-
cond order linear operator

82
:C) Bx,- oz ] ;

ve? < a¥(x)€8; < pg? Va € Go,V€ € RY; v, p = const > 0.

Lo = a*( a(x) = a’*(z), T € Gy,

LEMMA 7.15. (About the existence of the barrier function). There exist
a number h > 0, determined only by Gg, a number yy and a function
w(z) € CH(Go)NC?(Gy) depending only on Gy and ellipticity constants v,
of the operator Ly such that Vv € (0, o]

(7.3.4) Low(z) < —vhz|""L, zeGy

(7.3.5) 0<w() <|z/™" and |Vw(z) <21+ h)V2z[", z€Go.
Proor. We set 2’ = (z1,.2N-2), T =2zny-_1, Y = zn. In the half-

space ¥y > 0 we consider a cone K with the vertex O such that K D Gy

which it is possible since Go C {y > 0}. Let 0K be the lateral surface of K

and the equation of 8K N (zOy) is y = £hx so that inside K the inequality
y > hlz| is true. We consider the function

(7.3.6) w(z';z,y) = (y° — B’y veR.
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Renaming the operator Lg coefficients: o™V ~1N-1 =

aV=LN =p oMV = ¢ we get

a,

Low = aw,, + wamy + CWyy,
(7.3.7)
v < ang + 2bmme + cn < pn?,

where n2 =nf +n2 Vni,m2 € R.
We calculate the operator Ly on the function (7.3.6)

Low = =R’y (), t = /y, [t| <1/h,
(7.3.8)
o(7) = 2(a — 2bt + ct?) — (3ct? — 4bt + ch™2)y — c(h™2 — t2)42.

Since, by (7.3.7), ¢(0) = 2(a — 2bt + ct?) > 2v and @(v) is the square
function, then it is obvious that there is a number vy > 0, depending only
on v, u, h such that ¢(y) > v for v € [0,7]. From (7.3.6) and (7.3.8) we
now obtain all the statements of our Lemma. t

7.3.3. The weak smoothness of solutions. The above constructed
function and the Comparison Principle (see Theorem 4.4) allow us to esti-
mate u(z) in the neighborhood of conical point. Without loss of generality
we assume @(z) = 0.

THEOREM 7.16. Let u(z) be a solution of (QL) and satisfy the condi-
tions (S),(A),(B),(C) on the set IM™. Then there exist nonnegative num-
bers d < dy,~ defined only by values v, u, N, k1, 8,70, do, My and the domain
G such that in G the estimate (7.3.1) holds with a constant cg, indepen-
dent of u(x) and defined only by the values v, u, N, k1, 8,70, do, My and the
domain G.

PROOF. We consider the linear elliptic operator

~ 9 2 . 0
— b i
L =a"(x) FEwry +a'(x) i

a'¥(z) = aij(z,u(z), us(2)); and a’(z) = b(z)|Vu(@)| " us, (2),

ze@G;

where we assume a*(z) =0, i=1,...,N in such points z, for which
|Vu(x)| = 0. Let us introduce the auxiliary function

(7.3.9) v(z) = —1 + exp(v~ yu(z)).
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Then we get

Lu(z) = v~y (0 (2)uez; + v 107 (@) us, sy + b(Z)[Vu(z)]) %
x exp(v ™ pu(e)) = v { (b(@)| Va(@)| - oo, u(z), v (z)) +
+ v ¥ (2)ug, ug, } exp (v uu(z)) > —v pa f(z) exp(v ! pa Mo)

in virtue of the assumptions (B),(C). By the condition (7.3.3), now we
obtain

(7.3.10) Lv(z) > —v  pykir® exp(v M), =€ GE

Let g be the number defined by the barrier function Lemma and the number
~ satisfies the inequality

(7.3.11) 0 <y < min(y, 3+ 1).
We calculate the operator L for the barrier function (7.3.6) thusly

_ ~ _ ou
Tw(z'; 2,9) = R o(7)+|Vyl 1b<(h2(1—~/)x2y” 2+(1+7)y7)a—y—

o
- 2h2xy“"1)8—2) < —vh2y " 421+ R)byY, V(2'sx,y) € Go.

Returning to the previous denotations and considering the inequality (7.3.3),
we get

Luw(z) < (—vh? +2(1 + )k d*P) 71, 2 € GE.
Now let the number d € (0, dy) satisfy the inequality

vh2 1/(1+5)
(7.3.12) d< (m)
Then finally we have
(7.3.13) Luw(z) < —%VhQr'Y_l, T € G
Now let us define a number A
(7.3.14) A > 2k1pv2h 2 exp(Mop V).
Then from (7.3.10) and (7.3.13) with regard to (7.3.11) it follows
(7.3.15) L(Aw(z)) < Lv(z), = e Gl

In addition, from (7.3.5) and (7.3.9) it follows
(7.3.16) Aw(z) >0=v(z), zelg
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Now we compare the functions v and w on 4. In virtue of the assumption
(S) we have on the set GN {r =d} N {xny_10zx} that

TN-1 =dsind, zny = dcosd, |¥| < 7/2 — gg, where d < dy,

and there is a cone K O Gy such that 0 < h < tanep (see the proof of the
barrier function Lemma). From (7.3.6) it follows

(7.3.17) w d2 d 7 (sin )Y~ (sin? g — h% cos? &) > 0.
r=

On the other hand, by Theorem 7.3 we have |u(z)| < Mg|z|*, where a €
(0,1) is determined by v~ !, u, N and the domain G, but M,, is determined by
the same values and My, k1, 3, do- Therefore, by the well-known inequality
et —1<2tif0<t<1, wehave

(7.3.18) v(z) r=dS ~1+exp(v~tu1 Mod*®) < 2071y M, d°,

if d is so small that

(7.3.19) d < QuiMav1)~Ve

holds. Choosing a number A so large that the following inequality
(7.3.20) A > 20y M, d* 1 (singg) !~ (sin® gy — h2 cos? ) 1
would be satisfied, from (7.3.17) and(7.3.18) it follows that

(7.3.21) Aw(z) > v(z), z€Qy.

Thus, if d € (0,dp) is chosen according to (7.3.12), (7.3.19), the number
v is chosen according to (7.3.11), and A is chosen according to (7.3.14),
(7.3.20), then from (7.3.15), (7.3.16), (7.3.21) we obtain

Lv(z) > L{Aw(z)), z € G¢ and v(z) < Aw(z), z€ oGy,

In this case and because of the Comparison Principle (see Theorem 4.4), we

have v(z) < Aw(z), z € G4. Returning to the function u(z), from (7.3.9)
we obtain

w(z) = vt In(l + v(z)) < vptin(l + Aw(z)) < Avplw(z), =€ GL.

In the analogous way the inequality u(z) > —Avuylw(z),z € G_g is proved,
if we consider v(z) = 1 — exp(—v~ g u(z)) as an auxiliary function. By
(7.3.5), the proof of our Theorem is complete. O

Basing on the layer method and the assumption (D), we can now prove
a gradient bound for solutions near a conical point.
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THEOREM 7.17. Let u(z) be a strong solution of the problem (QL),
g > N and the assumptions (S),(4) — (J) on the set M™ are fulfilled.
Then in the domain GS, 0 < d < min(dy,d) the estimate (7.3.2) is true
with a constant c1, depending only on v=1, u, o, 1, 2,4, q, B, v,K1, K2, Mo
and the domain G.

PROOF. Let us consider in the layer G} /2 the function
v(z') = p~ 1" Tu(pz’), taking u = 0 outside G. Let us perform the change
of variables z = pz’ in the equation (QL). The function v(z’) satisfies the
equation
(QLY a¥ (z’)vx’ix; =F(z), z'€ Gi/z
where

a¥(z') = aij(pz’, o' V0(2"), pTver (7)),
F(z') = —p' Va(pz’, o ("), pTver ().
By Theorem 7.5 with regard to assumptions (4) — (D)
(7.3.22) vrai max [V'v| < Mj,

172
where M] is determined only by v, y, 1, k1, o, Mo, 8,7, N, ¢. Returning to
former variables from (7.3.22) we obtain

Vu(@) < M{p", ©€ Gl

Taking |x| = 2p/3, we arrive to the sought estimate (7.3.2). The Theorem
is proved. O

Let us now establish a "weak" solution smoothness of the problem (QL)
in the neighborhood of a conical point.

THEOREM 7.18. Let u(z) be a strong solution of (QL), ¢ > N and
the assumptions (S),(A) — (J) are fulfilled. Let vo be the number defined
by the barrier function Lemma. Then u(z) € GY*V(GE) for some d €
(0, min(dy, d)) and ¥y € (0,7*], where v* = min(vyy; 8+ 1;1 — N/q).

PROOF. Let a number d € (0,min(dy,d)) be fixed so that the esti-
mates (7.3.1), (7.3.2) are satisfied according to Theorems 7.16, 7.17. Let us
consider in the layer Gi /2 the equation of (QL)’ for the function v(z") =

p~1"Yu(pz'). By the Sobolev-Kondrashov imbedding Theorem 1.33
[Vu(e') — V'u(y')]

(7.3.23) sup —
£ WECY |z’ _ylll N/q

z' 2y’

S C(Na q, G)“UHZ,Q;Gl , @ N.

1/2
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Let us verify that for the solution v(z’) we can apply Theorem 4.6 about
L-estimate inside a domain and near a smooth boundary portion. In fact,
by the assumption (A) — (J) and the imbedding theorem, the functions
aj(z,u, ) are continuous on the set o), that is for Ve > 0 there exists
such n(z) that

laij(z, u(z), z(z)) — ai; (Y, u(y), u=(W))| <&,

as soon as
|z =yl + fu(z) — u)] + |u=(z) — us(v)] <), Y2,y € G} )9, p € (0,4).

The assumption (D) guarantees the existence of the local a priori estimate
inside the domain Gz /2 and near a smooth portion of the boundary I‘z /20

namely there exist the number 7z > 0 and the number M; > 0 such that

lu(z) — u()| +Vu(z) - Vu(y)| < Mijz —yl*, Yo,y € G5 5, p € (0,d).

Then the functions a*(z’) are continuous in Gj, and consequently are

uniform continuous. It means that for any € > 0 there exists § > 0 (we
choose the number § such that dd + M;(6d)* < n) such that |a¥(z') —
a9 (y')| < e, ifonly |2’ —y| <4 Vz',y € @ We see that the assump-
tions of the theorem about the local L7 a priori estimate for the (QL)’ are
satisfied. By this theorem, we have

(7320 [0l gy, <o [ (lF + 0 laloa’, 070, e )
¢k,

with a constant ¢4, independent of v and a, and being determined only by

N,v,p, p1,7, B, k1, ¢, Mo, My, dy,d. The estimate (7.3.1) gives rise to

2p
(7.3.25) / |U|qd’~",= / Q_q(1+7)|u($)|q9_Nd:cch,ﬁ,mesQ/%g

G3, G2, p/4

< ¢gymesflIn8.



7 STRONG SOLUTIONS OF THE DIRICHLET PROBLEM
270 FOR NONDIVERGENCE QUASILINEAR EQUATIONS

In the analogous way, by the assumption (C) together with the inequality
(7.3.3) and the estimate (7.3.2), we obtain

pq<1—7)|a(px’,p1+7’v, pug)|%dz’ < pQ(l—‘Y)—N / (1| Vu|2+

e 624
2p
+b(z)|Vu| + f(z))dz < 2V397 1 p¢(1-" esqd pdcHap2ar—1y
11
Gp/a

(7.3.26) 'jr(le]_)q'f'(I(ﬁ-PY)_l + kgrqﬁ_l)dr S C(N7 q,7, 5’ Hi,C1, kl)s
since 0 < v <1+ 8. From(7.3.24)-(7.3.26) it follows
(7327) ||v”2,q;G1 < C(N7 Vauap‘la'Yth kla a, MO:le,cO)Cl)'

1/2

Now from (7.3.23) and (7.3.27) we obtain
[Vio(z') — V'u(y')]

(7.3.28) sup o — =N

' y'€G],,
2’ £y’

<ecs, ¢>N,

where c5 = C(N1 v, iy 1,7, 163 k17 q, Mo, M11 ¢, C1, G)
Returning to the variables x, u, we get
|Vu(z) — Vu(y)|
|z —y|*-N/a

(7.3.29) sup
$’yEG2/2
zFyY

<ecsp? N/, g > N, pe(0,d).

Now let us recall that by the assumptions of our theorem ¢ > N/(1 — ).
Let us put 7=+ — 1+ N/gq <0, then from (7.3.29) it follows

’V’U;((B) - V’U:(y)l < CBPTIx - yl‘y—’r Vx,y € GZ/27 pE (07 d)

By the definition of the set Gg/z, |z — y| < 2p and consequently
|z —y|™ > (2p)7, since 7 < 0. Therefore

(7.3.30) sup [Vo(z) = Vo)l
m,yEG‘;/z 1'7; - y!'y
z#Y

<2775, pe(0,d).

Now, let z,y € 63—‘ and Vp € (0,d). If z,y € Gz/z, then (7.3.30) is fulfilled.
If |z — y| > p = |z|, then, by the estimate (7.3.2), we have

[Vu(z) — Vu(y)|

|z — y|”

< 2p77|Vulz)| < 2¢1.
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From here and (7.3.30) we conclude that
|Vu(z) ~ Vu(y)] _

sup < const.
z,yeGE |z —y|7
z#Y
This inequality together with the estimates (7.3.1), (7.3.2) means u(z) €
C**7(G3). Our theorem is proved. O

7.3.4. Estimates in weighted spaces. On the basis of the estimates
of §7.3.3 let us now derive the weighted integral estimates of the weak second
order derivatives of strong solutions and establish the best-possible weighted
exponent. For the simplicity, we take ¢(z) = 0.

THEOREM T7.19. Let u(z) be a strong solution of the problem (QL),
g > N and the assumptions (S),(A) — (J) on the set M are fulfilled. In
addition, suppose

aij(0,0,0) = &, (i,5 = 1..N).
Then there ezist positive numbers d,cz, independent of u(z) such that if
b(z), f(x) € Vio(G) and

(7.3.31) 4-N-21<a<?,
then u(z) € sz,a(Ggf %Y and the estimate

7.3.32 rou2 + 722 Vul? + r* %)z < ¢y u? + |Vul?+
T
el G2/

+1%(6%(2) + f2(2)) ) da,

is true, where d and ¢z are defined by the values N,v, u, p1,7, B3, k1, 4, do, d,
My, My, A, « and the domain G.

Proor. 1. 2-N<a <2

In this case, by the estimates (7.3.1), (7.3.2),

(7.3.33) /(7‘0“2“7142 +r2~Y?)dz < c(a, N,y)d*tN-2+27,
Gy
Now we obtain the weighted estimate of the second order weak derivatives

of the solution in the following manner. Let us fix d € (0, min(d, do)] and
consider the sets G¥) k = 0,1,2, ... Let us perform the change of variables

x = (27 d)a’, w((27*d)z") = v(z")
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in the equation of the problem (QL). As a result the domain G*) of the
space (z1,...,zxN) transforms at the domain Gi /2 of the space (z},..,z/),
and the equation takes the form

aij(z’)vzgz;_ = F(2'), a¥(z') = ai;((27*d)x’,v(z"), d 12 v,),
F(z') = —(27%d)%a((2"*d)z’, v(z"), d"12%vz).
To its solution let us apply the L2-estimate inside the domain and near a

smooth boundary portion. (To us the possibility this estimate is substanti-
ated under the proof of Theorem 7.18. See the inequality (7.3.24).)

(7.3.34) / v2 . da’ < ey / (v¥(z') + F*(z')) da'
Gi/z G?M

where the constant ¢4 is independent of v and F and is determined only by
the quantities pointed in (7.3.24). In the inequality (7.3.34) we return to
former variables and taking into account the definition of the sets G**) we
arrive at

(7.3.35) / reul dr < ey / (r* *? + r*a?(z,u, uy)) dz.
G G*=1UGF UGHE+D)

We sum the inequalities(7.3.35) over k = 0,1, .., [log,(d/€)] Ve € (0,d) and
we get,

(7.3.36) /r“ugxdm <ecq / (r**u? + r*a®(z, u, us)) dz.
Gé G2,

Taking into consideration the finiteness of the integral (7.3.33) and because
of the assumption (C) and the estimate (7.3.2) from (7.3.36) it follows that

(7.3.37) /r"‘ugmdm < esc(y,d,c1) (r“‘4u2 + 7% f2(z) + rob?(z)+
G ng:

+ r°“2|Vu|2) dr Ve >0,

where ¢4 is independent of €. Therefore, by the Fatou Theorem, in (7.3.37)
one can perform the passage to the limit over ¢ — 40 and as a result we
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get

(7.3.38) /r“uﬁmdm <
Gé

<c4 / (r*~*a?® + rf2(z) + r2b*(z) + r* 2| Vu)?) dz.
G4
The inequality (7.3.38) together with (7.3.33) means that u(z) € Vi, (G§).

We are coming now to the derivation of the estimate (7.3.32).
Let ¢(r} € C?[0,d] be the cut-off function on the segment [0, d]

(=1, ifr € [0,d/2],
0<¢(r) <1, ifr € [d/2,d],
¢=0, ifr > d,

¢(d) =¢'(d) =0.

We multiply both parts of the problem (QL) equation by (?(r)r®2u(z)
and integrate over the domain Gg. Taking into account the assumption
a;;(0,0,0) = &7, twice integrating by parts we obtain

/ CyreVude + LN o 4) / ¢ (r)ro—tu?(z)dz =
Gé Gé

(7.339) = / (N + 20— B)CCT3 + ¢C"ro=2 4 (Pro=2Y2(g)do+

Gd/z

+ / C(ryre2u(x) ({aij (2,4, uz) — ai;(0,0,0) }ug,q, +a(z,u, um)) dz.
G
From the assumptions (4), (D), (J), by the Sobolev Imbedding Theorem,
it follows that a,;j(z,u,z) are continuous at any point (z,u,z) € M%)
(¢, = 1,...,N) and in particular at the point (0,0,0). This means that
for ¥4 > 0 there exists ds > 0 such that

(7340) |a,:j (lﬁ, U,(.’.II), Ug (.’L‘)) — Q5 (0, 0, 0)[ <
as soon as
(7.3.41) lz] + |u{z)] + [Vu(z)| < ds.

By the estimates (7.3.1), (7.3.2),
(7.3.42) lz| + |u(z)] + [Vu(z)| € d+ cod™ +¢;d?  Vz € GE.
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Let us now choose d > 0, maybe more smaller than before such that the
inequality
(7.3.43) d + cod'™7 +c1d” < ds

would be fulfilled. Then the inequality (7.3.40) is fulfilled and therefore, by
the Cauchy inequality and the (7.3.38), we get

(7.3.44) /C2(T)r°“2{a¢j(:c,u, ug) — a5(0,0,0) }uttg, o, dr < 5/(2(r)x
G§ Gé
)
X 172 |u| Jugg |dz < 2 /(r"‘uim + ro ) dr <
a3
< g(l + c4) / (ro*u? + rof2(z) + r®b% (x) + r* 2| Vul|?)dz V8 > 0.
Gae
Further, by the assumption (C), the estimates (7.3.1), (7.3.2) and the

Cauchy inequality, we have

/C2(r)ra_2u(x)a(x,u,u$)d:c 5ulcodp”’/Cz(r)ra'2|Vu|2dm+

& &
r3(ad +4) / Clr)r i (o)de + sad / ()b (z)dz+
G Gg
(7.3.45) +% / C(ryrefi(z)dz, V&> 0.
&

From (7.3.39), (7.3.44), (7.3.45) it follows that

/ ()2 Vul2dz + Q_TQ(N Fa—4) / Cryre 42 (z)dx <

Gé Gg
< cs(6 +d7) / (r*=2|Vuf? + r*4u?)dz + cg / r(8? + £)dz+
ng G%d
(7.3.46) +er / (|Vul®> + u?)dr V6 >0, where
sz

d/2

Ce = c(y1,00,01,04),07 = C(ul,CO,Cl,C4,N,C¥,")’,d), Cg = 0(67 ¥, C1,C4, d)
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If N+ o —4<0, then let us also use the inequality (2.5.3). As a result we
have
(7.3.47) C(\N,a) / r*2|Vul|?dz < co(6 +d) | r272|Vu|2dz+
GY* G
+e10 /(|Vu]2 4?4 ro(6 4 f2))dz V6 >0,
et

where

2 24N - a)H(a,N) >0 (by (7.331),

Cy = C(l’*lvcﬂsch ¢, N, O:,)\), C10 = C(l‘17001cl:c47N7aa7,d7 5)

C(\N,a)=1-

Now we choose the numbers ¢ and d such that
(7.3.48) 5 :}1 S1C(\ N, ),
(7.3.49) cod < %C(A,N, o)
Then from (7.3.47) we finally obtain the inequality

(7.3.50) / ro=2|Vul2ds < ﬁ / (Vul2 +u? +ro(F2 + f2))dz,

Ge? G3*
being true only for a d € (0,mindp,d) such that (7.3.49) and (7.3.43) are
fulfilled with ds being determined by the contimuity of a;;(z,u, z) at (0,0, 0)

for a § from the equality (7.3.48). The inequality (7.3.50) together with
(7.3.38) and (2.5.3) leads us to the desired (7.3.32).

224-N-22A<a<2-N.

By the assumption (J), we have b(z), f(z) € &2_ ~(G), consequently,
u(z) € Wi_n(GY?), that is
(7.3.51) ] (r2Nu2, + N Vu? + r 7V "242)dz < oo,
Gy?

which was proved in the case 1).
Now we use the function r.(z) defined in §1.4. We consider again the
inequality (7.3.34). We multiply both parts of this inequality by
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(27%d + £)*~2 with any ¢ > 0 and take into account that in G*) we have
2=k~1d 4+ e <r+e < 27%d + &. Then returning to former variables we get

/ r2(7°+s)a 2 2 20z < ey / (r_z(r+£)a_2u2+
a Gl—DUGHR UG+
+ (r + &)%a*(z, u, ux)>dm

Hence, by the Corollary 1.12, it follows that

/ rzra 2 2 L4z < cq (r 2 e 2u2+r a?(z,u,uz))dz.

Gk) G-DyGHEIYGk+1)

Summing this inequalities over all £k = 0,1, 2..., we obtain

(7.3.52) / 2ra=2y2 dz <cy f( “2rem?? 4 rla®(z,u, ug))dz.
e G3*

Let us now multiply both parts of the problem (QL) equation by
¢2(r)re~2u(zx) and integrate over G¢; twice having applied the formula of
integration by parts. As a result we have

[ e 19ups = 2524 - N - o) [ Gyt @pdes
Gd
+ / w? () (2(a — 2)¢¢ (x4 —sl)r ro=d L N¢Cr e 4 ¢ 24

Ga/2

+¢¢" e dx + /C2(r)r?_2u(z) ((aij(a:,u, Ug)—

(7.3.53) —04;(0,0,0))uz,z, + a(z, 4, uz)) dz.
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Let d € (0, min(d, dy)] be so small that (7.3.43) is fulfilled, and consequently
(7.3.40) is fulfilled too. Then, by the Cauchy inequality,

/Cz(r)r;"_z(a,;j(w, Uy z) — 6i5(0,0,0)) Utz g, dT <
G§

(7.3.54) <5 / CHr)re 2 (r e ) () <
Gd

<

[ -] =%

(Cz(r)v"zré“?ui:c +¢? (r)r*zr;"“zu?) dz, V6> 0.
Gg

Similarly, by the assumption (C) in view of the estimates (7.3.1), (7.3.2),

(7.3.55) /gz(r)rg_‘?u(:c)a(m,u, ug)dzr <
Gg
<cwomd™" [ G Valdo + jlad +8) [ ot
Gé Gg
+écld"/C2(r)r?b2(w)dx+ -21—5 /CZ(T)T?f2($)d£E, V6 > 0.
Cd G

From (7.3.52) - (7.3.55) with regard to the properties of r.(z) (see §1.4) and
¢(r) it follows

[ e ivupds < el enndd) [ rE@0+ ot

Gire G
(7.3.56) +% (5 +ed"+(2—-a)d—N-— a)) / ro~4yldr
Ga/®
ren(u, e ennd?d+a? [ rz Vs
cir
s -2 a—2_2
—I—§(1 +ec4) | v *ufd.

2d
GO

The second integral on the right we estimate with the aid of (2.5.8), but
for the bound of the latter integral on the right we use Lemma 2.32. As a
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result from (7.3.56) we obtain

C(\ N, o) / r2=2|Vu|2dz < (%(5 +ad)H(\a,N)+

Ge?
6(1 +¢q)3%@ _
2v+2 ox—2 2
(7.3.57) +ci1d + DOIN-D 2)) / e | Vu|*dz+
G2
+c14 /(u2 +|Vul2 + rf2 () + r2b%(x))dz, V>0

2d
GO

with C(N, A, &) being the same as in (7.3.47). Let us now choose ¢ and d
as the following

1 14¢4 -1
(7.3.58) 5= 2O(A,a,N)(H(A,a,N)+ TN = 2)) ,
(7.3.59) —;-cld“’H()\,a, N) +end? < %C(/\,a, N).

Then from (7.3.57) it follows

2
(7.3.60) / r& 2| Vul?de < ﬁ / (u® + |Vul? + o f2(z)+
b H ng

o2
0
+r%b*(z))dz, Ve > 0.

Finally, from (7.3.52) and (2.5.8) with regard to the assumption (C) and
the estimates (7.3.1), (7.3.2), because of (7.3.60), we have

(7.3.61) / (rlroe=2u2 +ro 3| Vu|? + 1o 4u?)dx <

<ep /(u2 + |Vu|? + r*f2(z) + rb?(z))dz
G2?

for any € > 0, where c3 = c¢(N, A, o, v, 1, 1,7, B, k1,9, Mo, do, d) and in-
dependent of £. The inequality (7.3.61) holds for a d € (0, min(dy, d)] for
which (7.3.59) and (7.3.43) are fulfilled with ds, being determined by the
continuity of a;;(z,u, z) at (0,0,0) for d, being assigned by (7.3.58). Taking
the limit € — 40 in the inequality (7.3.61), we get the desired estimate
(7.3.32) by the Fatou Theorem. O
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REMARK 7.20. By the continuity of the equation leading coefficients at
the point (0,0,0) and in virtue of estimates (7.3.1) and (7.3.2), the condi-
tion a,;(0,0,0) = 63, (1,7 =1,...,N) of our theorem is not implied to be
restrictive. In fact, there exists the orthogonal transformation of coordi-
nates, which transforms an elliptic equation with leading coefficients which
are frozen at the point to canonical form. Main part of this canonical form
is Laplacian.

THEOREM 7.21. Let u(x) be a strong solution of the problem (QL),
g > N and the hypotheses of Theorem 7.19 are satisfied. In addition, sup-
pose that 3 > A—2. Then there exist positive numbers d and c15 independent
of u(z) and being defined only by the quantities from hypotheses (B) — (J)
and by G such that u(z) € Wa_ N(Gg/ %) and the inequality

d
A

(7.3.62) Iulﬁ:_N(Gg) <aspt, pe(0, 5)
holds.

PROOF. The belonging of u({z) to W2_ N(Gg/ %) follows from Theorem
7.19, therefore it is required to prove only the estimate (7.3.62). We set

(7.3.63) Ulp) = [ r27N|Vu|?dz.
/

Let us multiply both parts of the (QL) equation by r?~Vu(z) and integrate
over the domain G§, p € (0, ¢

N —

2
5 U (pyw))dw

(1368) UG = [(ulowige| _+
0

+ [u(i)r2—N({aij(m,u, ux) — aij(0,0,0)}umw:j + a,(m, u, um)) dx.
G
Let us use an upper estimate for every integral on the right. The first
integral is estimated by Corollary 2.29. By the assumption (C) and the
Cauchy inequality with
d = pf, Ve > 0 with regard to (7.3.1) and (7.3.2), we have

1
(7.3.65) /r2“Nu(a:)a(m,u, ug)dz < prcop U (p) + Eclp"’ /(T_Nu2+
el G

+ r4"Nb2(:z:))d9: + —;— / (p°r~Nu? 4 p~or?=N f3(z)) dz.
Gp
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Let us also apply the inequality (2.5.3) with & = 4 — N and also (7.3.3).
Thusly

1
(7.3.66) /T2_Nu(3:)a(z, u, Uz )dr < (MlcopH'”T + §H(A, N,4 - N)x
Go

X (p€+clp7))U(p)+(4>\)”1(1+cl)kfmeasﬂp2s_5, Ve >0, s=06+2> A
Further
aij(:v, u, 2) — aij (0, O, 0) = (aij (0, O, Z) — aij (O, 0, 0)) +
+ (aij(z,u, z) — a;;(0,0, 2)) .

From the assumption (J), by the Sobolev imbedding Theorem, taking into
account the estimates (7.3.1) and (7.3.2), we have

N 1/2
(Z laij(z, u(z), uz () —aij(0,0,0)|2) <d(p), |zl <p

i,j=1

d
3(p) = (N> g,co,1,7,d)p",  p€(0,3),

where 0 < v < v* = min(yy;1+ G;1 — %)
Therefore applying the Cauchy inequality, the (7.3.38), the inequality
(2.5.3) with « =4 — N, and the condition (7.3.3) we get

/r2_Nu(x)(a¢j (z,u,uz) — ai5(0,0,0))uz,s,dz <

Go

8p) [ Nul, +rMul)ds < SHOLN, 4= NSV (p)+

2
+%4(H()\, N,4 — N)+1)é(p)U(2p) + %%measﬂc?(p)@p)%.
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From (7.3.64) basing upon Corollary 2.29, (7.3.66)-(7.3.67) we conclude that
U(p) satisfies the inequality for the Cauchy problem (CP) with

2
Plo)="T—cle +e); N =cd™

Qo) = ck? (**17 1 4+ 7 =71), s > A, Ve € (0,2(s — ))) and

2
4-N 2 ClmeaSQ 2(v+2)
Vo = f Vufds < S
Gg
According to the Theorem 1.57 the estimate (1.10.1) holds, which leads
to the estimate U(p) < cp®. (See the proof of Theorem 4.18 in case 1).)
This estimate together with (7.3.37) and (2.5.3) gives the desired estimate
(7.3.62). 0

7.3.5. LP and pointwise estimates of the solution
and its gradient. Let us make precise the exponent v (in the estimates
(7.3.1) and (7.3.2)) and the Holder exponent for the first order weak deriva-
tives of the strong solution in the neighborhood of conical point . We recall
that p(z) =0.

THEOREM 7.22. Let u(z) be a strong solution of the problem (QL),
g > N and it is known the value My = max |u(x)|. Let the assumptions (S),
z€G

(A) — (J) be fulﬁlled with 8 > A — 2> —1. Then there ezist nonnegatwe

deﬁned only by quantztzes N, \, v, u, p1, B, k1,9, Mo, M1, dp, d, and G such
that the following assertions hold

(1) [u(z)| < Tle* and |Vu(z)| <zlzPt, =€ 6%
(2) w(z) € Wy_n(GY") and [lull gz o <

(3) ifa+qg(A—2)+ N >0, then u(z) € q,a(Gg/z) and

7

<Gp*, 0< p<df2;

lullvz, @z < Eip’\_%zgﬁ, 0< p<df2

(4) if 1 <A< 2,q2 5, then u(z) € CA(CY?).

PROOF. Assertion 2) is proved in Theorem 7.21. To prove the remain-
ing assertions we consider the sets G”; /2 and G'i;"i > G'Z /2- Let us perform
the transformation of coordinates x = pz’ in the equation of (QL). The func-
tion v(z') = p~*u(pz’) satisfies in G2 /4 the equation (QL)" for y = A —1.
For the local boundary L?-estimate, Theorem 4.6 seems to be applicable to
the solution »(z'). (For the justification of the possibility of its application
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see the proof of Theorem 7.18.)

(7.3.68) |v|2qG1 <cy /(|v|q + p@N4g(pz’, pru, p*1u,)|9)da

GY/a
Vg>1
with the constant ¢, independent of v and a.
Let at first 2 < N < 4. By the estimate (7.3.62) we have
ol ez , < (NP~ / (K =Nu2, + 2N VU + N u?)de < o(N)ey
9/2

Therefore from the Sobolev imbedding theorem it follows

sup  [o(a")] < o(N,@)llaay,, < AN, ders =T or
.’IGGI/2

[u(2)| < Tz € Gl

Putting |z| = 2p hence we obtain the first bound of statement 1) of our
theorem. The second bound of that assertion follows from Theorem 7.17
having been considered under v = A — 1.

Let now N > 4. In this case let us apply the local maximum principle
(see Theorem 4.5)

(7.3.69)  sup |v(z')] < ¢(N,v” v"‘)(||““w1/4+
='€G]/y

+ 02 Mlalpz', 00, 2 o)l )-

Let us estimate from above the summands of the right part of (7.3.69). The
first summand is estimated as well as above (see (7.3.62))

(7.3.70) R [ Nz < 9N,

G*»

/4

By the assumption (C) in view of (7.3.2), we have

1o
[ |la(pa’, prv, o~ oy )| Nda' < 36 / (uiVIVUIQN+fN(:r)+
G1/4 Gi74
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1
+bN(:r)|Vu|N)r‘Ndac < §6N / (Hllv(r2_N|VUI2)(7“_2|Vu[2N_2)+
G2
/4

+(r2_N|Vu|2)(k{VrﬁN‘2|Vu|N_2) + k{vrﬁN"N) dr <

1
< §6N ('U‘iVC?N—2p2'y(N—1)—2 + k{vczlv-2p~,(N-2)+ﬁN—2) / 1'2'N|Vu]2d,’z+
Gyla
d
(7.3.71) +(38N)71(6k)N meas(2°N — 27PN AN 5 e (0, 3)

Hence with regard to (7.3.62) we obtain

(7'3'72) p2_)‘||a(pa:’, p/\U7 pA_lv:c’)”N,G?/q < Clﬁpz_)\+21+2()\3;lvﬂ +

_ 2(A—1—7) _ d
+epp? AP TEETE ig0P T2 Ve (0, 5)-

From (7.3.69), (7.3.70), and (7.3.72) with regard to § > A — 2 we get
(7.3.73) sup |v(z")| < 19 + czop2')‘+27+LA_N}__v)

m’EG}/Z

Let us recall that A > 1 and «y > 0 which is determined by Theorem 7.16.
Also in the case 2 < N < 4 for the validity of assertion 1) of our
theorem, it is sufficient to derive the bound

(7.3.74) sup |v(z")| < M{ = const.
T'€GY

Let us show that repeating a finite number of times the procedure of
deriving of (7.3.73) with different exponents =, it is possible to deduce the
estimate (7.3.74). So let the exponent of p in (7.3.73) be negative. Otherwise
(7.3.73) means (7.3.74). From (7.3.73) we have

(7.3.75) lu(z)| < egq|a|2H2A-D/N
and from here, by Theorem 7.17 with vy =7

2
(7.3.76) =1+ N()‘ —-1)
we get also the inequality
(7.3.77) |Vu(z)| < eop|z|™.

Let us repeat the procedure of the deduction of (7.3.71) and (7.3.72) having
applied the inequality (7.3.77) instead of (7.3.2), that is replacing «y on ~;.
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As a result we get

(7.3.78) sup |v(z')| < c19 + ey0p? MHAD/N+I(N-D/N
z'€G3 )y

If the exponent of p in this inequality is negative, then putting

_ 2 2(N - 1)
(7.3.79) Te=1+ N(/\ 1)+ T’Yl,
we first obtain by Theorem 7.17 the inequality
(7.3.80) |Vu(z)| < colz|™.
Next repeating the procedure described above, we get also the bound
(7.3.81) sup |U(.’E’)| <c+ Czopz_)‘+2()‘_1)/N+272(N_1)/N.

w’EG’{/2
Let us set
2(N-1) _ 3
.3.82 t=—— L > >

(7.3.82) >3 YN >4

and consider the numerical sequence v
1 is determined by the equality (7.3.76),

v2 = (1 + t)m,
v3 = (1L +t +t*)7yq,

........................... g

Thet1 =L+t 4+t ) =52, k=01,
Repeating the expounded procedure k times we get

(7.3.83) sup [u(z')] < c19 4 cop M, p € (0,d/2).

' eG

1/2
Let us show that for VN > 4 we can find such an integer k that
(7.3.84) 1-2A4+9%+120.
In fact, from the definition of the numerical sequence - and (7.3.76) it
follows
e

+ (

t—1 N(t—-1)

The first addend on the right is positive. For the second addend from
(7.3.82) it follows

1= A+ Y41 = 2tF+l — 2 — Nt 4+ N).

k41 k+2 1 kit
2 —2 - Nt + N =22 (1- —~N>0,

if

aN —2\*' N nX
> — > 2
( N ) 25 or k+12> —
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Hence we obtain the validity of (7.3.84) for

In&

-~
where [a] is the integral part of a. Thus statement 1) is proved.

Now let us refer to the proof of statement 3) of our theorem. Multiplying
both sides of the inequality (7.3.68) by =29 and returning to the variables
x,u we rewrite the inequality obtained in such way replacing p by 27%p and
next sum all inequalities over £ =0,1,.... As result we have

(7.3.85)  lluldy (g < s / (rola(z,u,un)lo +r=-Hue)dz, ¢> 1.
Gge

Taking into account the assumption (C) and the bounds from assertion 1)
proved above, we obtain

la(z, v, uz)|? < C(p1, k1,9, N) (lvul2q + TBQlV’lqu + T‘ﬁq) <
<C (Tzq(h—l) 4 ra(BHA-1) | Tﬁq) _

Hence and from (7.3.85) it follows

2¢
el ey < CmeasQ/(r“""-’("“z) +rat200-1) 4 pata(BA-1)
g,
0

+ r“‘mq)'r'N —dr.,
Since 8> A — 2 and therefore 798 < r22=2) finally we establish

(7.3.86) ”u”(‘lfqz,a(cg) < OtV +0-2),

provided a+ N +¢(A —2) > 0. The latter means the required statement 3).

Finally, let us prove statement 4). By the Sobolev-Kondrashov Imbed-
ding Theorem 1.33

[V'v(z’) = Vo)
|z.l — yfll——N/q

sup
xl )yl E("'%1/2
=’ #y’

<e(N,q, G)vllwasey ) 4> N
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Returning to the variables z, u, we get

V(@) - Va(y)|
R

sup
:v,yGG;’/2
zFy

< Cllllyz, gy < O,

q> N, p€(0,d),

in virtue of (7.3.86). Repeating the proof of Theorem 7.18 with v = A — 1,
provided N + ¢g(A — 2) <0, we get the validity of statement 4). O

7.3.6. Higher regularity results. In this subsection we examine the
question of a smoothness rise of the Dirichlet problem solutions for the
elliptic second order non-divergence quasi-linear equations near the coni-
cal boundary point. Let us consider the strong solution from W29(G) N
C'+7(G) of (QL). As well as in the linear case the solution smoothness in
the quasilinear case depends upon the quantity A determining value of the
cone solid angle in a neighborhood of the point O.

Let us define the set

Mato, v, = {(z,u,2)|z € G, |uf < My, |2] < M1}

As for the equation of the problem (QL) we assume that the following
conditions are satisfied on the set Mz, ar,

(E) for the uniform ellipticity that is there exist the positive constants
v, i such that for V(z,y,z) € Mgy a1y, V€ €RY

ng S aij(x,u’z)gigj < ”{27 aij(oiovo) = 63, 'l,j = 17"'aN;

(F) a;j(z,u,z) € C™(Mpyn,) (6,5 = 1,...,N) for some integer
m > 1 and the partial derivatives of the functions a;;(x,u,2) over
all their arguments up to the order m are bounded on Mz, ar,;

(G) there exist generalized partial derivatives of the function a(x,u, z)
over all their arguments up to the order m > 1, nonnegative func-
tions fi(z) and the numbers iy, k; (I = 1,...,m) such that the fol-
lowing inequalities

(7.3.87) |DDblq(z,u,2)| < w2 + filz); 1<l 4+ 1 < m,

(7.3.88) |Di D2 Db a(z,u, 2)| < |z + filz); 0< L+l <m—1,

(7.3.89) |Dh Dz Dl gz, u,2)| <Py 2 <1y +1lo+13 <m,
where

(7.3.90) flx) <Rz fo < Kolzl?, B> X -2,

are fulfilled.
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THEOREM 7.23. Let A > 1,p > N be given and let the integer m satisfy
the condition

(7.3.91) 1<m<A—2+N/p.

Let the assumptions (A) — (G) be satisfied and let the function
u(z) € V2 (G) be a solution of the problem (QL) with

My = max |u(z)| and M1 = max |Vu(z)|.
z€G z€G

Moreover, let p(z) € I/;,%+2_1/p(8G) N V;:ﬁz_N(@G) and there exist the non-

negative numbers kg,%i, ,Eﬁn and s > | such that the inequalities

W T A—2-m+N/
(13:92) llgllysgz oy < For” andllgllyacsrmongs < 2o,

p €(0,d)

hold. Then u(x) € Vp%"'Z(G), and there ezist the numbers d € (0,d) and
Cp > 0 such that

(7.3.93) ullymsoas < Cmp*2"™4V75, pe (0,d),

where Cy, is determined only by the quantities taking part in the assumptions
of the theorem and by G.

PrOOF. We apply the usual iteration procedure over m. Let m = 1.
Let us consider the equation of (QL) in the domain G‘; /2P € (0,d). The
lateral surface I‘z /2 of GZ /2 is unboundedly smooth, because G¢ is a convex
cone. By definition of smooth domains, for every point zy € I‘Z /2 there
exists a neighborhood " C PZ /2 of this point and a diffeomorphism x from
C?*t™ rectifying the boundary in T'. Let ® C Gz /2 be such that T' C D. Let

us perform the transformation y = x(z) = (x1(), ..., x{x)) and let x(D) =
D', x(I') =I" c 89, (I' is a plane portion of the boundary®’), v(y) =
u(x " 1(y)). In this case x, x ! € C?>T™ and Jacobian |Vx| # 0. Besides, one
can suppose the norms in C%*™ of transformations x determining the local
representation of the boundary Fz /2 to be uniformly bounded with respect

to zg € FZ /2- In the new variables the equation of (QL) takes the form

(QL) Aij(y,v,v9)vy,q, + A(y,v,v5) =0, y € D',
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where
%Xk
Aly,v,vy) = a(z,u, uz) + aii (T, u, g )y, o ;
T F
(7.3.94)
Ox: Ox;
Aij(y,v,vy) = ani(z, u, um)ax' 8:1:;

Let us notice that in ®’ by condition (E)
(7.3.95) g < Ak < mpué?,

where
s = inf |Vx(z)* > 0and s = sup [Vx(z)]? >0
z€D’ zeD’
. The coordinate system can be chosen such that the positive axis yy would
be parallel to the normal toward IV and the axes y1,...,ynN—1 parallel the

rays at plane I'V. Let e; be the fixed coordinate vectors (k =1,...,N —1).
For sufficiently small |h| we define the difference quotients

1
'Uk(y; h) = H{’v(y) - 'U(?ll, ey Ye—1, Yk — h7 Ye+1, -"’yN)}a k= 1’ aN -1
We set

y =ty + (1 - t)(y — her); v'(y) = tv(y) + (1 — )v(y — heg).
Then the function w(y) = vi(y, h) satisfies the linear equation

(L) 0% (Y wy.y; + a*(Y)wy, +a(v)w = f(y), y €D/,
where

a¥ (y) = Ai;(y, v(y), vy (9)),

i 154 l(y vt v ) 1 aA(yt,’Ut,vt)
a*(y) = vy,y(y — h) / L———*’oitJr /0 Tydt’
Y

1 1 t ot ot

al) = vy (u—H) | M,ﬂ o [ AT
0 v

! 6Apl (y ' U 1'U'f/) ! aA(yt7Utvv;)

$@) = vty 1) [ g [
k=1,...,N — 1. Since the directories ey(k = 1,...N — 1) are parallel to the
tangent plane to I', we have w|r = ¥i(y,h),y € IV, ¥{(y) = o(x 'y)- Let
us apply the local L? - estimate near smooth boundary portion (Theorem
4.6) to the solution w(y). Let us verify the fulfillment of all conditions of
the above estimate. (7.3.95) implies the fulfillment of the uniform ellipticity
condition for the (L) equation. Since our solution u(z) € C'*7(G), the
hypothesis (E) guarantees continuity of the coefficients a'7 (y) in ®’. Since,

dt,
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by the assumptions of our theorem uz; € Ly(D’),p > N, then by assertions
1) and 3) of Theorem 7.22 in view of the assumptions (F),(G) we have

N
. 2 1 5
H(gla’(y)l )? N S C(I1xl2.0) (A laal y gsera+
+ s+ (@ + 5Vl + folw)live: ) <

< C(|xlz,2', N, p, kNo,.u,ﬁl,ﬁl) (p+p* + p*"2HN/P 1 A1) < const,
by the inequality (7.3.91). Similarly
llallp,or < C(Ixl2.07) ([lpa|Vul® + 7 [Vul + fo(@)llper , +Falltzsll, goor2)
< C(|xlz,07, N, p, ko, p1, ) (Pz()‘_l)-"N/p 4 2N/
+ p)‘_HN/p) < const;

1 llp7 < C(Ixls07) (lualVel* + 7 [Vl + f1(#)llpco
A-3+N/p_

/2 + My “uzsz,GgP/?)

S C(lX’Z,D’v N’ps EE)? Mlanl)g

So the local LP-estimate for the solutions of (L)’ gives us the inequality

(7.3.96) ||lwll2po < const([[wllpr + [|fllpo + [lox(y — M)ll2-1/ppx),
v e D' ul,
where const is independent of w, f,, ¢k, h and depends only on k,p,v,

i, 31, 363 and the moduli of continuity of the coefficients a*/(y) on @’. The
latter are estimated in the following way:

6™ (y1) — a¥ (y2)| o7 = |Ags (Y1, v(W1), vy (¥1)) — A (Y2, v(y2), vy (y2))] =
_ Ixi(x1) Oxj(z1)
= Jaui(zr, u(e), ua(on)) 75 T L
Oxi(w2) Ox;(T2
Oz dz;
< lari (@1, u(@1), Uz (71)) — ari(22, w(za), ur(x2))| - VX2 +
Oxi(z1) Oxj(z1)  Bxslza) 3Xj($z)‘ <
dxy 0z, Ozy, oz =
+ 3000y (|21 — Ta2| + [u(zy) — w(z2)] + [Vu(z1) — Vu(za)]) <

< 2p(seatty + o *xlao +2167) + C(20)7
by u(z) € C*T7(G). Further, we have by the definition of w(y)

—v(y — he -
ELy k)‘ , < C(|X 1|1)||V’UI(CE)||p,G";/2

~ a2, u(az), s (22)) )| <

%;/2|Xlz,©!$1 — x|+

+u‘

(1.3.97) [wlpor = || 22

»D
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Analogously we obtain

(7.3.98) k@ Wllz-1/mmr < O L@ s 17502 0
and finally

(7399) [ifllpor < Oxlamn) ([l Vol® + Bl Val + i@ +

+ ﬂl”uz:c“p,ggﬂﬂ)
Now from (7.3.96)-(7.3.99) we obtain the inequality

(Rt s const(llp @)l 1/mprs,

IVl g, + V@ gz, + 1 A@lar, + sl ggor2) <

< constg*3tN/P

where const on the right is independent of A. This fact allows us to conclude
on the basis of Fatou’s theorem that there exists a v, € W2P(D") and
perform passage to the limit h — 0

(7.3.100) H

< const (|1()ll3-1/ppirs , + |tbazll, gavra+

”21)9” ﬁ/i‘
- HIVu(w)I lpcr . +IVu@lbc;,, + 1@ ez, ) <
< const*3tN/P k=1, N-1.

We consider again the equation (QL)" and differentiate it over yn thusly

N-1
(7.3.101) AnN(y,v,vy)Vynynyn = _{ Z AxNVyeynynt
k=1
N—1
dA; 0A;; JA;;
+ i;_—;l Aijvygiyn + Bv;j Vysy; Vyyn T (91;3 Vy,y; Vyy + W;jvyew*‘
0A;; 8A BHA ,
+ _B—gvyzyr\l + ByN + %Uym}v y€ D ’
where P
AnN = an(y, v, vy) BD;N B);N v|Vxn(z)|? > sav.

Since u(z) € Wz’p(Gz/z), vy, € W2P(D"), 1 < k < N —1 then from
(7.3.101) we obtain v(y) € W3P(D"), by the assumptions (F),(G). Then
by Sobolev’s Imbedding theorems 1.32, 1.34 we can derive
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1) if p > 2N then v(y) € C?(D") and in this case
lzon < ellvllsprzm5

2) if N < p < 2N then v(y) € W29 (D") with ¢; = 5—% > p and
in particular v(y) € W%2P(D") for p > 3N/2.
By the above statements and equation (7.3.101), we obtain v(y) € W3?(D")
and therefore u(z) € W‘"”P(G’;zﬁ), if p > 3N/2. Now we need to examine
only p € (N,3N/2). From above we have v(y) € W2% (D”) and by (7.3.101)
v(y) € W39/2(D"). Let us use again the following imbedding

and g < N.

N
W3 c W29 where gx = g
N —
As a result, we obtain
v(y) € WH2(D"), g3 = Ng1/(2N — q1) = Np/(4N — 3p),

if N <p<4N/3 and
v(y) € C3(D"),

if p > 4N/3.
We repeat that procedure s times
N
3,05 /21y 2,4, (Y _ D
(7.3.102) viy) e W DY NW=2 (D), ¢, No — (2 —Tp’

if N <p < N/f(1—-27%). We choose an integer number s > 1 in such way
that g5 > 2p. Solving that inequality we obtain s = [log,((2p—N)/(p—N))|,
where [a] is the integral part of a. Thus from (7.3.102) we find

u(z) € W (G{olg) N W(GLPI%), Vip € (0,d).

We proceed to a derivation of the estimate (7.3.93) under m = 1. From
(7.3.101), by (7.3.100), we have

(7.3.103) (//IUyNyNyNI”dy)l/”S(VX1)‘1{“X2NZ_:1HEU~H +
e~ Oyy, 2,p;0

DII
+ (1+ (0 + )| Vylor + fo®)lon ) lIvyslpor+
|12l Zy0f® + (i + 1) Vol + (B + So(wDIVy0] + AW, 00+
+ Billowl 0 + Bl loyallp o (1 +9yvk00) }C(IX|2,0)-
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From (7.3.100) and (7.3.103) in the variables z, u(z) taking into account the
hypothesis (&), we obtain

“u“&mG;Z;: < C(lXIS,Gz/Z:V7 1y N7p7 %17%2’#17—111)(“umme,Ggﬂ/?‘l”

+|[IVul® + [ Vul® + [Vul(1 + fo(z)) + | f1(z)] + uime,Gz/z+

L+ fo(@) + Ve lusallpgz , + 1ella-y/mpre ,)-
From here basing on Theorem 7.22 for p € (0,d)
A—3+N/p’
(73104) Hu||3,p;G;£§g <Cp /I’,

C= C(|X13,G5129V: M, P, 301, 12, ulaﬁlvA'J kOa kl: daa)a?‘)-

Replacing in (7.3.104) p by 27%p, summing the inequalities obtained over
all k=0,1,2,..., and taking into account (7.3.91) under m = 1, we come to
the desired estimate (7.3.93) under m = 1.

Repeating such procedure by induction we conclude the validity of the
assertions of Theorem 7.23. O

THEOREM 7.24. Let all assumptions of Theorem 7.23 excepting of
(7.3.91) be fulfilled. If m > 0 is the integer and

N
(7.3.105) m+l<Asm+2-—, p>N,

then u(x) € CAG). In addition, there exist constants ¢, (k =0,...,m + 1)
independent of u(x) such that

(7.3.106) \V*u(z)| < Crlz**, 2 € GE, k=0,..,m+1.
IfA=m+1, p> N then u € C*5(G), Ve > 0.

PROOF. Let the function v(z') = p~*u(pz’) be a solution in the layer
G} /2 of (QL)'. Verbally repeating the proof of Theorem 7.22 and using the
results of Theorem 7.23 we obtain all assertions of Theorem 7.24. d

7.4. Solvability results

Let us include the problem (QL) to a family of one-parametric problems
for t € [0,1]

QL) {a,;j(:c, U, Up)Ug; o; + (T, U, uz) =0, TEG
¢

w(z) = to(z), ze€dG.

With regard to the problem (QL) we assume the hypotheses (S} and (A) —
(J) to be satisfied. In addition, suppose
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(M) for every solution u(x) of the problem (QL); the value
My = sup |ug(x)|, Yt € [0, 1] is known,

M)MMEW'NWQ V234(8G), ¢ > N,

there exist nonnegative numbers ks, k4, k5 and s > A such that
b(x) + f(z) + [Py (z)| < k3d>\—2($) z € G, Ye > 0;

ks0® 1 < ks M 0,d).
Ielgs g <Het's Nolos o, <k 0c 00
THEOREM 7.25. Let 'y € W2P and the assumptions (S), (4) — (J),
(M),(K) under ¢ = p > N be fulfilled. If either A > 2 or1 < A < 2,
N <p< 2—_N—A, then the problem (QL); has at least one solution u(z) €
V24(G) for ¥t € [0,1].

THEOREM 7.26. Let A € (1,2), p€ (N,525), B>A—2, ¢ > 55 be
given numbers, and let Ty € W2P. Suppose the hypotheses (S), (A) — (J),
(M), (K) are fulfilled. Then the problem (QL): has at least one solution

u(z) € WEI(G) N V24(C) N CM (@)
for ¥t € [0, 1].

PROOF. We first shall establish that for some v € (0,1) and all t € [0,1]
every solution u(z) € W'l 1(G) N CY(G) satisfies the inequality

(7.4.1) (@)l 4y < K

with a constant K being independent of u;(z) and ¢t. Let us represent
G = G3UG, with some positive sufficiently small d. From Theorem 7.18 we
conclude that under given assumptions there exist the positive d and p such
that a u(z) € C17(GE) and the estimate (7.4.1) holds with ¥y € (0,7*],
where v* = min(7; 8 + 1;1 — N/q). The membership u:(z) € C1T7(Gy)
and corresponding a priori estimate follow from the assumption (D) (lo-
cal estimates near a smooth boundary portion have been established in
{217, 219, 224]), but in strictly contained subdomain follows, by the
Sobolev-Kondrashov Imbedding theorem 1.33. In such a way the mem-
bership u;(z) € C117(G) and the a priori estimate (7.4.1) are established.

The bound (7.4.1) allows to apply the Leray-Schauder Fixed Point The-
orem 1.56. To apply this theorem we fix v € (0,1) and consider the Banach
space B = CM(G) for Theorem 7.25 or B = C,P(G) =

= {v € C’1+7(§)’v(0) = |Vv(0)| = 0} for Theorem 7.26. Let us define

the operator %, by letting u; = {Tv, as the unique solution from the space
V2,(G) (Theorem 7.25) or Wi23(G) N V2o(G) N CAG) (Theorem 7.26) for
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any v € B of the linear problem

{a‘ij(x)um:cj = At(x): TE G:

D) u(z) = to(x), z € 0G.

where a¥(z) = a;;(z,v(z),v:(7)), Ai(z) = —ta(z,v(z),v,(x)). It exists by
Theorem 4.48 (Theorem 4.49). In fact, it is not difficult to verify that all
hypotheses of these theorems are fulfilled. In particular, by the assumption
(A4), aij(z,v(z),vz(z)) € WLP(9M), p > N and therefore by the imbedding
theorem a%(z) € C1~V/?(G). In addition, for u;(z) the bound (4.4.9) holds.
In virtue of the assumption (C) it has the form

(742) lullvz, o < e(IVol +[Vollb(@)lp,c+

+ ”f“P,G' + ”(P”V;El/l”(ag))v vt € [0, 1]

It is clear that the solvability of the problem (QL); in the corresponding
space is equivalent to the solvability of the equation u; = {Tv in the Banach
space 8. Now we verify that all hypotheses of the Leray-Schauder Fixed
Point Theorem 1.56 are fulfilled. This theorem guarantees the existence of
a fix point of the map ¥.

At first, we verify that ¥ is the compact mapping of the space 8 onto
itself. From the bound (7.4.2) it follows that the operator ¥ maps sets that
are bounded in B into bounded sets of the space V;,%O(G), and they are
precompact sets in C1H(G), if y < 1— %. Thus ¥ is the compact mapping.
Now we verify that ¥ is the continuous mapping onto B. Let the sequence
{vr(z) C B} converge to v(z) € B. We set ui(z) = Tur(x). As stated above,
ur(x) C V23(G). It is well known that in the space V;2o(G) every bounded
set is weakly compact. We leave the notation uy(x) for a weak convergent
subsequence and denote the weakly limit by klirgo uk(w) = u(zr) € VZ(G).

The last statement means

klim /g(m)Dauk(w)dw=/g(z)D°‘u(m)dx, la| <2,
G G

(7.4.3)
Vg(z) € LP (G) with ~ + = =1
g p p

Since now it is obvious that
ayf () (uk)ziz; — Ar(z) € LP(G),
where

@ (z) = aij(z, vr(2), v (7)), AR(z) = —a(z, Vi(), vke (),
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then we prove that
Jim / g(z) (a}'g(z)(uk)m,- - Ak(x)) dz =
G
(7.4.4)

= [ 9(a) (a9 @unus, ~ A@)) e, Vo(a) € ¥ (G).
G

In fact, by the continuity of a;;(z,v(z),vz(z)) on 9 and because of
vk(z) — v(x) in C1H7(G), we have

(7.4.5) lim a?(a:) = lim a;;(z, vk(z), vie(z)) =
k—o0 k—oo
= Qyj (:E, lim vi(z), lim vkz(:z:)) = a%(z).
k—o0 k—o0
Similarly we verify that klim Ai(z) = A(z). Now for Vg(x) € LP'(G) we
amde o]
obtain

[ 9@) (6 @) wt)esa; — 0 (0tzre;) da <

G
(48)  <suwlaf(z) - 60| [ukselnclaly.c+
X

+/ (Ukziz; — Uziz;) 67 (x)g(z)dz.
G
Since the equation of the problem (QL) is uniformly elliptic then
a' (x)g(zx) € L¥ (G) and by (7.4.3) we get that the last summand in (7.4.6)

tends to zero as k — oco. By the proven above a;;j(x) € Cl'%(G) therefore,
by the Arzela Theorem, the limit (7.4.5) is uniform and, consequently,

lim sup Ia}'cj(a:) —a¥(z)| = 0.
k—00 g

In addition, {vk(z)} is uniformly bounded in 9, hence by the bound (7.4.2)
we obtain that ||tigze|pe < const for Vk. Hence, the first summand in
(7.4.6) tends to zero as k — oo too. Thus

klirglo/g(a:) (a};j(:n)(uk)mﬂj —a" (:v)umcj) dz =0.
G

In the same way we verify that

Jim [ g(z) (Ax(x) - A(z)) dz = 0.
G
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Thus the equality (7.4.4) is proved. Since uy = Tvg, then the left side of
(7.4.4) is equal to zero and hence

[ 90 (@ @)z, - A)) da =0, V(o) € 7 (@),
G
Hence it follows that a*(z)us,.;, = A(z) for almost all z € G. Further,
ur(z) = @(x), = € dG and, by ux(z) C V2,(G) because of the imbedding
theorem ux(z) € C1H1(G), 0 <y <1 — %. Therefore
U2)| o= i, u"’(m)lac= p(@)-

Thus we proved the equality u = Tv. But then we have
lim Rwv(z) = lim ug(z) =u(z) =%v(z) =% ( lim vk(a:)) )
k—o00 k—oo k—oo

that is ¥ is the continuous mapping. All hypotheses of the Leray-Schauder
Theorem are verified and Theorem 7.25 is proved.

Theorem 7.26 is proved in the same way. Let us furn our attention to
some details only. We consider in the space % the bounded set

Vic = {v € G*'@)|o(@)l1 1,5 < K }.

In this case we apply Theorem 4.49 with o = 0 for the solvability of the
linear problem (L):;. We must verify only the assumption A7) of Theorem
4.49. For this point and by our assumption (J) we get

/r4_NAf(z)da: < /1"4_Na2(:1:,v,vx)dm < c/r‘*‘N (M§K4+
Ge e Ge

+ K26 () + fz(m))d:c < c/ (r=N 4 pd=NH20) gz <
G§

1 1
< Q _4 —2ﬁ+4 < 2s . 01_
< cmeas (49 +4+2,69 <Cp*, 8>\ Vtel0,1];

/ |A:(z)|%dz < ¢ / (Wi K?! + K9%%(z) + f¥(z)) dx <

e 2
Ge/2 Ga/2

< cmeasQ (oV + gqa+N) < CVT-De vt e o, 1].
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7.5. Notes

The condition (D) can be replaced by any other condition which guar-
antee the existence of the a priori estimate

[ul14yer < M1, 7v€(0,1)

for any smooth subdomain G’ CC G\ O (see [85, 224, 329, 129]).

The results of Chapter 7 refer to the problem (QL) with its equation
as non-divergent. Such problems in non-smooth domains have not been
studied before. Only the research of L.I. Danilyuk [90] is known here. In this
work, using the methods of complex variable function theory and integral
equations, the author proved the solvability in the space W22+¢(G), € > 0
is sufficiently small, G C R? and contains angular points. However, as will
see below (§7.2), the requirements for these problems in this work are too
high and the number £ > 0 is not precise. The formulated Theorem 7.7
from §7.2.2 shows

-1
0<e<g. T/w0 Vi< wp <.

2—m / Wo 2
The results of Sections 7.2 -7.4 were first established in [54, 55, 57, 58,
59, 60, 61, 63]. We follow these articles.

N. Fandyushina [122] has investigated the solutions behavior in a neigh-
borhood of the boundary without assumption for its smoothness and con-
vexity on quasilinear elliptic equation with two independent variables.

N. Trudinger [382] has established a necessary and sufficient condition
on boundary data for the solvability of the Dirichlet problem for a quasilin-
ear elliptic equation a;(uz)uzz; = 0.

Solutions to some other quasilinear equations in nonsmooth domains
were studied in [10, 102, 295, 296, 333, 334, 335, 336, 410).

The results of this chapter were generalized in [369] on quasilinear
elliptic equations whose coefficients may degenerate near a conical boundary
point namely, the ellipticity condition on the set 9 has the form

v|z|"€2 < aii(x,u,2)6:8; < plx|7€?, VEERY, 0<r1<1;

lw}i_rgro |z~ Tayi(z, u, 2) = &7.
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CHAPTER 38

Weak solutions of the Dirichlet problem for
elliptic quasilinear equations of divergence
form

In this chapter we investigate the behavior of weak solutions to the
Dirichlet problem for uniformly elliptic quasilinear equations of divergence
form in a neighborhood of a boundary conical point. We consider weak
solutions u € WH™(G) N LP(G), m > 1 of the differential equation

(DQL) Qu,¢) = j {04(@ ty )b, + (2 U uz) G} T = O
G

for all ¢(z) € W™ (G) N LP(G). We suppose that Q is elliptic in &, namely
there are positive constants v, u such that

QB 2) 6, < plel™20e?, m > 1
6Zj

for all (x,u,2) € G x Rx RY, veéecRN.

(E) v]z|™ g <

8.1. The Dirichlet problem in general domains

THEOREM 8.1. Maximum principle (see Theorem 10.9 §10.5 [129}]).
Let u € WH™(G), m > 1 be a weak solution of (DQL) and suppose that Q
satisfies the structure conditions

(i) ai(z,u, 2)z 2 v]2|™ — g(z),
(i) a(z,u,2)signz > —pa|z|™ ! — f(z),
where v, iy = const > 0, and f(z),g(z) € LP/™(G) are nonnegative mea-
surable functions. Then we have the estimate
sup [u(@)| < C (| fllp/m,c + 9/lp/m.c)
el

where C = C(N,m,v, s, p, measG).
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THEOREM 8.2. The weak Harnack inequality (see Theorem 1.1
[381]). Let u € WH™(G), m > 1 be a weak nonnegative solution of (DQL)
and suppose that Q salisfies the structure conditions

(1) a"l;(xi U, Z)Zi > Vlzlm - p‘lum7

N
(i) \/Z (ai(z,u,2))* < pal2™ " + pau™ 1,

=
(iii) |a(z,u,2)| < pal2|™ ! + psu™1,
with v, us > 0; w1, us, tia, us > 0. Then for any ball Bzp C G, there holds

N
(811) “u“LP(BzR) <CR>» %llf ?I.(.’L‘),

where C depends only on m, N, p,v, i, iz, 3, pia, 5 and p € (0, =1y i¢
m< N orpe (0,00) if m>N.

THEOREM 8.3. Hélder continuity of weak solutions (see Theorems
2.1 and 2.2 §2, chapter IX [215]).
Let G be of type (A) (see Definition 7.2). Let u € WH™(G) N L™=(G),
m > 1 with vrai mGa.x|u| = My < oo being a weak solution of the (DQL)
and suppose that the following assumptions are satisfied
(a0) ai(z,u, 2)2; > v]2|™ — g(z);

N 2
(b) \/E (as(w,u, 2))° < pa]2|™ 1 + 1 (z);

i=1
(c) la(z,u, z)| < p1f2|™ + a(z),
where 1 <m < N, and g;(x) are nonnegative and
lg@Lormiay, 1@ zerm-0(ay  ll02(2)|Lorm(Gy < const, p>N.

Then u(z) is Holder continuous in G.

REMARK 8.4. We observe that the condition (a)} follows from the ellip-
ticity condition (E} and the condition (b). In fact, we have

1
6 ACTR)
ail(zr,u, 2)z; = z;z; / M dt + z;a;(z,u,0) >
0

Z=tz

0%

v
m-—1

1
> v]af? / =2 5m =24t _ 2i0i(2,1,0) > —2—|2™ — o1 (2)]2] >
0

m —

> (Ll - E) |2|™ — ceg™ (z), Ve >0

in virtue of the Young inequality.
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THEOREM 8.5. Existence Theorem (see Theorem 9.2 §9, chapter IV
[216]). Let 1 <m < N, 1 <p < oo. Let the functions a;(z,u, 2), a(z,u, 2)
be continuous with respect to u,z and satisfy the conditions

(i) Q(u, ) is coercive, that is
Q(u,u) 2 h([|ullim@ynre) — €1 ForVu € Wo™(G) N LP(G),

where ¢; > 0, and h(t) is a continuous positive function such that
tlim h(t) = oo,
—O0

(7‘7') |a'i($"u" z)| < I"'zlm_l + lf'lu|ﬁ/m’ +wi1(z), @i(x) € LmI(G)’

(i) la(z,u, )] < W™ + Pt + oa(a),  pa(a) € L7 (G);
with § < P = max (—ﬂ’iﬁ,p) WD = Ff—l, m' = B,

(iv) (ai(z,u,2) — a;(z,u,w)) (z; — w;) > ¢¥(|z —w|) forz €G,
lu| < Mo, Vz,w € RY, where ¢({) is a continuous, positive for
¢ > 0, nondecreasing function.

Then the problem (DQL) has at least one weak solution from
Wy™(G) N LP(G).

REMARK 8.6. If the functions a;(z, u, 2) are differentiable with respect
to z, then the condition (iv) follows from the ellipticity condition (E). In
fact, let the ellipticity condition (E) be satisfied. Then considering the
following two cases. For 1) m > 2 and 2) 1 < m < 2, we obtain

1) m>2:

1
= (Z«;—w;)/iai (z,u,w+t(z —w))dt =

— w))dt- (2 — wi)(zj — wy) >

1
> vz — w)? / |w + t(z — w)|™2dt > ve(m)|z — w|™
0

in virtue of Lemma 1.7 and m > 2.
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2) 1 < m < 2: We have again

1
(as(z,1,2) — as(a, ww) (s~ wi) 2 vlz —wl [ o+ bz - w)|™ 2t
0

But
lw +t(z —w)| < Jw| + |z —w| = |w+t(z —w)|? > (jw| + t|z — w|)™?

and therefore
1

1
/ o + £(z — w)|™2dt > /(le + ]z — wl)™2dt =
0 0

i+ z—wl 1 m~—1 m~1
a1 (e —w)™t — )

=|z—'w| m—1 |z —w]
|2

Hence it follows that

(ai(z,u, 2) — ai(z, u,w)) (2 — w;) >
v|z —

| et e
> ZE B {wl + 2 — wy™t — w1

It is easy to verify that in both cases the function 1/({) satisfies the condi-
tions of (iv).

THEOREM 8.7. Holder continuity of the first derivatives of weak
solutions (see Theorem 1 [228]).

Let u, My be positive constants. Let G be a bounded domain in RN with
Ccl*e o € (0,1] boundary. Let u(z) be a bounded weak solution of (DQL)
with |u| < My. Suppose (DQL) satisfies the ellipticity condition (E) and the
structure conditions

N
J D laile,u,2) — iy, v, 2 < p(1+ =)™ (Jo = yl* + = v]%),
1=1

la(z, u, 2)| < u(1+[2))™
for all (z,u,z) € 8G x [—~My, Mp] x RN and all (y,v) € G x [—My, My).
Then there is a positive constant v = Y(e, v p,m, N) such that
u € CM7(G). Moreover we have

||u”01+"f(6) < C(Ot, 1/—1[1,, M07 m, N)
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8.2. The m—Laplace operator with an absorption term
8.2.1. Introduction. We consider the Dirichlet problem
(LPA4) Apu = —div (|Vu|™2Vu) = —ao(z)ulu|? 1 + f(z) inG,
u(z) =0 on 4G\ {0},

where 1 < m < oo, ¢ > 0 and ay(x) > 0, f(x) are measurable functions in

G.
DEerFINITION 8.8. A function w is called a generalized solution of
(LPA), if u € WH™(G.) N LI (G,) Ve > 0 and it satisfies

@ [O9um (Y6, Vo) + aofadulult~n - S} dz =0
G

for any n € WH™(G)NLA*1(G) having a compact support in G and u(z) = 0
on I'; for all £ > 0 in the sense of traces.

DEFINITION 8.9. A function w is called a weak solution of (LPA), if
€ WH™(@) N LI*Y(G) and satisfies (IT) for all n € W™(G) n LIHY(Q).

Let us denote

(8.2.1) ai(z) := |2|™ 2z
We verify that the ellipticity condition (F) is satisfied with
-1 f >2 1 f > 2
(8.2.2) p= m orm = , and v = orm =
1 forl<m<2 m—1 forl<m<2.

THEOREM 8.10. Weak comparison principle. Let u,v € Wb™(G)
satisfy Dmu < Apv in the weak sense, that is

/ (ai(Vu) — ai(VV)) g, dz < 0

G
for all nonnegative n € W'™(G) and let
u<v ondG.
Then
u<v inG.

PrOOF. Since u —v <0 on 8G, we may set
n = max(u — v, 0).
By the ellipticity condition (E) and by Remark 8.6, we have
[ @(94) = (90 (az, = o > [ (V=)o >0
G

G
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because (() is a continuous, positive for { > 0, nondecreasing function.
Hence, by standard arguments, we obtain the required assertion. (W

THEOREM 8.11. Let u{x) be a bounded weak solution of (LPA) with
[u(z)| < My. Suppose that ag(z), f(z) € LP/™(G), p > N. If f(x) > 0 in
G, then u(z) > 0 in G.

ProOF. Choose 7 = u~ = max{—u(z),0} as a test function in the
integral identity (II). We obtain

!(lv“—lm + ao(z)|u |7 + f(av)u_>dg; -0 =

/[Vu_|mdx+/a0(:t)|u‘ [9t1dz = —/f(:c)u_da: <0,
G G G

since u~ > 0. By Theorem 8.3, u(z) is continuous in G. Due to ap(z) > 0

and u|3Gz 0 we get v~ (z) = 0 in G and therefore u(z) > 0 in G. O

8.2.2. Singular functions for the m—Laplace operator and
the corresponding eigenvalue problem. The first eigenvalue problem
which characterizes the singular behavior of the solutions of (LPA) can be
derived by inserting in A,,» = 0 the function of the form v = r*¢(w) which
leads to the nonlinear eigenvalue problem
(NEV P) D(A¢d)=0inQ and ¢=0 ondQ,

where

m~2

9(’\,¢) = _divw{(’\2¢2 + |Vw¢|2) 2 vw¢}_
(D) = MA(m — 1) + N = m}(A2¢® + |V,0?) ™7 9.
We formulate the Tolksdorf result as follows

THEOREM 8.12. [374, 375]. There exists a solution (Ao, ¢) € Ry x
C>®(Q) of (NEVP) such that

m—N
m-—1

(8.2.3) X > max {0, } , $>0 inQ, ¢*+|Vué|®>>0 in Q.

REMARK 8.13. In the case N = 2, by direct calculation (see (9.4.14)),
we can obtain

m+n(z—x>(m—22);(;:}1r))(\2/1n:)—x@*")(m‘?’z, if wo < 2m;

(8.2.4) A¢=

3
AN

= if w0=21r,

where 3 = %
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In order to construct a barrier function which can be used in the weak
comparison principle, we prove a solvability property of the operator ©
associated to the eigenvalue problem (NEV P).

THEOREM 8.14. For 0 < X < Mg there exists a solution ¢ of the problem
(8.2.5) DAP)=1 inQ and ¢=0 on 89,
with ¢ > 0 in Q.

This theorem will be proved in a sequence of lemmas. In the proofs of
these lemmas we frequently use the fact that every solution (), ¢) of (8.2.5)
corresponds to a solution of

Am(r’\q‘;) = pA-Dm-1)-1 3, Gg,

which, by local regularity of the pseudo-Laplace equation, implies that ¢ €
CP (@) NWiTe™(Q) for B,e > 0.

LeMMa 8.15. The problem (8.2.5) is solvable for all 0 < X < Aq.

PrOOF. We prove that Fredholm’s alternative holds for (8.2.5) in the
sense that if (8.2.5) is not solvable then X is an eigenvalue of D. For this
purpose, we choose a sufficiently large a € R such that the problem

D\ ¢) +alg" =g nQ, $=0 ondQ

is uniquely solvable for all g € H-L™ (), % + # = 1, and denote the
solution operator by ¢ = ®g. By the regularity of D, &: C#(Q) - C?(Q)
is a compact operator for a 3 > 0. Moreover, ® is homogeneous of degree
—L-. The problem D(A,¢) = f in Q, ¢ = 0 on 59, is then equivalent to

(8.2.6) ¢ —aF¢p=2f,

where F¢ = ®(|¢|™ 2¢) is compact and homogeneous of degree 1. The
operator Id — oF is studied on the unit ball

By ={$cC*Q)| lIgllcs <1}

If 0 ¢ (Id — aF)(8B;) then K. Borsuk’s theorem states that (8.2.6) is
solvable for sufficiently small f. Since (8.2.6) is equivalent to D(\,¢) = f
and D(,-) is homogeneous of degree m — 1 we can solve D(\, ¢) = f for
all f. O

LEMMA 8.16. Let (A, ¢) be a solution of (8.2.5). Then ¢(w) # 0 for all
w €.
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PROOF. Let K = {(r,w)’ 1<r <2 weQ} If (A ¢) is a solution of
(8.2.5) then v = 7 ¢(w) solves

(8.2.7) Ay = rCO-Dm-D-1 4y g =0o0n (1,2) x 8,
(8.2.8) v=cp¢ forr=1,2.

Assume that ¢(wg) = 0 for wy € Q. We apply the weak comparison principle
on the domain K using the function v. It follows that every solution of

Apu=f in K, u=v ondK,

with f € C§°(K), satisfies u(r,wp) < 0 which is a contradiction. O

LEMMA 8.17. For sufficiently small A > 0, the solution of (8.2.5) is
unique and satisfies ¢ > 0 in Q.

PROOF. The operator D(0, ) is strictly monotone on W,"™(§2). Hence,
the problem (8.2.5) is uniquely solvable and the comparison principle implies
¢ > 0 in Q. Since D(A,-) is continuous in A, the conclusion also holds for
sufficiently small A > Q. O

LEMMA 8.18. There ezists a constant ¢ = ¢(A1) such that ||¢||1,m < ¢
for all solutions (X, @) of (8.2.5) satisfying 0 < A < A1 < Ag.

PROOF. Assuming the converse we obtain a sequence ();,¢;) solving
(8.2.5) with

Ai = A, ||dill1,m — 0.

For the normalized functions

. 4
% = el

we obtain that D();, #;) — 0 in W~1™'(Q) and, by regularity, ||¢;||11em <
¢. Hence, we can extract a subsequence {¢;, } such that ¢;, — ¢ in W™ (1)
and D (A, ¢) = 0 with ||@||1,m = 1. This contradicts the fact that there is no

eigenvalue of D in the interval [0, A1). g

ProOOF OF THEOREM 8.14. Lemma 8.18 implies a kind of continuity
of the solutions (A, ¢) in the following sense. If A\; — A with 0 < A;, A < Ag,
then there exists a subsequence {¢;, } such that

éi, — ¢ in C*(Q),

where (A, ¢) is a solution of (8.2.5). Hence, by Lemmas 8.16 and 8.17 there
exists a solution (A, ¢) with ¢ > 0in € for all 0 < A < Ag. O
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8.2.3. Eigenvalue problem for m—Laplacian in a bounded
domain on the unit sphere. For technical reasons we consider eigenvalue
problem for m—Laplacian in a bounded domain Q on the unit sphere S¥—1.

~div, (Vo™ 2 Vt) = plp™ 2% in Q,
¥ =0 on 9.

DerFINITION 8.19. We say that u is an eigenvalue, if there exists a
continuous function 1 € W2™(Q), ¢ # 0 such that

(HQ) ./{lvcﬂﬂm 2 1 g:i 83:)}S “’¢|m—2¢n} d =0
Q

whenever 7(z) € WO1 "(€2). The function v is called a weak eigenfunction (a
weak solution of the eigenvalue problem for m—Laplacian).

We characterize the first eigenvalue p(m) of the eigenvalue problem for
m~—Laplacian by

J IV |™dQ

8.2.9 m)= inf 2
(8.2.9) wm) pewdm@) [ |9|mdQ
P#0 Q

THEOREM 8.20. There exists a solution (i, ) of the eigenvalue problem
for m—Laplacien with u > 0 and v > 0 in Q. Furthermore, the following
Wirtinger’s inequality holds

(W) / o < s [ Vo™ do, Vi€ WE™(Q)

with a sharp constant m.

PROOF. Let us introduce the following functionals on W1™((Q2)

Flu] = / VoulmdQ, Glu] = / umde,
0 0
Hiyl = [((Vou™ — plum)d0
L

and the corresponding forms

1 0u @ _
Flun) = (Vo222 a0, Glum = [ ™ 2unds:
Q2 Q
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Now, we define the set
K={ue Wg"“(n)f Glu] = 1}.

Since K C Wy"™(Q), Fu] is bounded from below for u € K. The greatest
lower bound of F[u] for this family we denote by u

inf Flu] =

uEK
Since F[v] is bounded from below for v € K, thereis p = 13}1:'( Flv]. Consider

v

a sequence {vx} C K such that klim F[vg] = p. (Such a sequence exists by
— 00

the definition of infimum.) From K C W(} () it follows that vy, is bounded
in W,"™(Q) and therefore compact in L™(f2). Choosing a subsequence we
can assume that it is converging in L™(2). Furthermore,

(8210) ”’Uk — ’Ul”znm(g) = G[’Uk - ’U;] <E
as soon as k,l > N(¢). Now we use Lemma 1.6

v+ |
2

We integrate this inequality over Q

/

Further, by the Young inequality (1.2.2) with p = 25, ¢ = m, we have

> fug|™

m _
+ E"Uklm zvk(vg — ), m>1

v + U m

dQ > / |vg | d + % / |’Uk|m_2’vk(‘l}g — Vg )dSL.
Q Q

-1, . m
l < vklvel™ 2 (v —vh)l < —|'Uk|m Yoy — ve] < T 87T [+
1
26m|’Uz—’Uk| Vé > 0.
This fact yields that
m
/ LI BTN (1 - 15%’"?1) [|vk|mdﬂ—
Q

~ ogm /|vl—”uk|mdﬂ vé > 0.

This implies that

Ve + Ut m—1__m
—_— 1 > —_ m-— A
G [ 2 ] (1 7 é 1) Glug] — 26 —Gly — v}, V6 >0
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By using G[vg] = Glv] =1 and Gy, — vg] < €1 we obtain

’Uk-}"Ug m-—1 o €1
G‘:T:l >1—TS 1 ogm’ V5,61>O

m—1 1
for big k,l. Now we choose 6™ =&, ™ . By setting ¢ = 5Ee we get

Ve + U 15
(8.2.11) G [ 2 ] >1-—- p

for big k, 1. The functionals F[v] and G[v] are homogeneous functionals and
therefore their ratio g{%} does not change under the passage from v to cv
(¢ = const # 0) and hence

Flo] . _
ooy Gl = Lk Pl =n
Therefore F[v] > pGv] for all v € Wy'™(Q). Since &% € W;"™(Q) to-
gether with vy, v € K, then

7 [vk;-vz] > uG {vk-zl—vz] >“(1_§) =p—e¢g, k1> N(e).

Let us take k and [ large enough so that Flug] < p+¢ and Fly)] < p +&.
We apply Clarkson’s inequalities (Theorem 1.18)

e1) m>2

2

F [”‘ - “’“] < -;—F[vl] + %F[vk] ~F [""*T”"] <

<pte—(p—e)=2
©2) 1l<mK?2

1 [ v — v 1 1 T
m—1 < —_ —_ —
F [ > ] < (2F[vk] + 2F[vl])

v + W
2

1
_.Frn—l

| <@rom-w-gm <

< Q—E(M + 5)%
m—1
by Lemma 1.4. Consequently,
(8.2.12) Flox—v] —0, ask,l— oo.
From (8.2.10), (8.2.12) it follows that |jvx — v ||W01,m(m — 0, ask,l— oo

Hence {v;} converges in W™ (Q) and as a result of the completeness of
W™ (Q) there exists a limit function u € Wy"™(Q) such that

“'Uk et u”WOl,m(n) — 0, as k — 0.
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In addition, again by Lemma 1.4 and the Hélder inequality
Flon = Flull = | [ (Vond™ = V™) d) <
Q

5m/|V'uklm_1|Vu('uk—u)|dQ§
Q

1/m (m—-1)/m

<m / IV (05 — u)|™dQ / Vo0 ™0
L] Q

— 0, ask — oo,

since vy € Wol’m. Therefore we get
Flu] = lim Flug] = p.
k—co

Analogously one sees that Gu] = 1.
Suppose now that 7 is some function from WO1 (). Consider the ratio
%. It is a continuously differentiable function of € on some interval

around the point € = 0. This ratio has a minimum at £ = 0 equal to p and
by the Fermat Theorem, we have

(F[u + an])’ _  Fluw Gl - FlulGu,m) _
Glu+en/emo Gl

which by virtue of Fu] = p, Glu| = 1 gives
F(u,n) — pG(u,m) =0, Vne Wy™(Q).

Further, if u is an eigenfunction of u, then it follows from the formula
(8.2.9) that |u| is one also. But then, by the weak Harnack inequality,
Theorem 8.2, either |u| > 0 in the whole domain G or u = 0 (the latter case
being excluded for eigenfunctions). By continuity, either u or —u is positive
in the whole domain G. Indeed, suppose that u = 0 at some point z4 € G.
Let Bsg(zg) be a ball with so small R that Bzg C G. Then glf u(z) = 0,

R

s0 in turn |[u|Lr(B,z) = 0 by (8.1.1), that is u = 0 in Bag. Chaining then
gives the conclusion u = 0 in G, thus proving the theorem.

Now we shall prove the inequality (W,,). Consider the described above
functionals Fu],[u], H[u] on W, "™ (). We will find the minimum of the
functional F[u] on the set K. For this we investigate the minimization of the
functional H[u] on all functions u{w), for which the integral exists and which
satisfy the boundary condition 1 = 0 on 9. We use formally the Lagrange
multipliers and get the Euler equation from the condition d H[u] = 0. By the

0,
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calculation (with the help of formulas from Section 1.3) of the first variation
0H we have

m

o= HE%(S:) ) -
=—m/5u (J(‘”) Vo™ g )dw——

q:

- muféu )™ 2udQ =

N-1
0 [J(w m—p Ot
m/éu J(w) = sz( g Vel Bwi)-'_

+ puju|™ 2 }dQ =
= ——m/éu- {dive,(|Vou|™ 2V,u) + plu™ %u} dO =

the eigenvalue problem for m—Laplacian.

Backwards, let u(w) be a solution of the eigenvalue problem for
m~Laplacian. We multiply both sides of the equation from this problem
by u and integrate over £, using the Gauss-Ostrogradskiy formula

= /{u cdive (|Vou™ 2V,u) + plu|™} dQ =

:u/|u|mdﬂ+
N-1
8 J(w) m—ZB_U‘ _
+/u Zaw,( Voul awi)dwu
Q i=1
=p / |u|™dQ2—

Q

J(w)
—Z(

(%)zd‘”
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= [ (ulul™ = 19.u™) 42 = 6]~ Flud =
Q

= — Flul = pu= Flu},
e Bl = = Flu

consequently, the required minimum is the least eigenvalue of the eigenvalue
problem for m— Laplacian.

The existence of a function u € K such that
Flu| < Flulforallve K
has been proved above. O
The one-dimensional Wirtinger inequality.

Now we consider the case N = 2 and thus let ) = [——%l, ﬂzl] be an arc
on the unit circle. Then our eigenvalue problem is

(19/1™=2") + pylyp™ 2 =0, we (-%,%); m>1,
Y (+5) =0.

The Wirtinger inequality in this case take the following form
1 wg Wo
m < ™, , Y Wl,m (___’ __) .
[ wras< e [ Wi, wewsm (<25
_wg
2 2

We want to calculate the sharp constant u(m). First of all, we note that the
solutions of our eigenvalue problem are determined uniquely up to a scalar
multiple. We consider the solution normed by the condition (0) = 1. In
addition, it is easy to see that ¥(—w) = ¥(w) and therefore 4'(0) = 0. Thus
We can suppose

0<9w) <1

This we shall take into consideration for the solution of the problem.
Rewriting the equation in the form

(m — Dy |™ 2" + pply|™ 2 =0

and solving it direct by the preset parameter method we obtain

W™ = —E= (1 -ym).

By integrating from this equation it follows that

1
M dt
+ 7/ w= | ———.
m—1 v / ™1 —tm
v
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Taking into account the boundary condition we get

1
] M ﬂ_/ dt
m—-1 2 | ©/1—im
0

Let I'(z) be a gamma-function and the beta-function B(z,y) = %_
Then we have (see e.g., formula (16) §1.5.1, Chapter 1 [34])

1
/ dt  _ 1,01 1\ _T(5)-Tl-5) _
YI—tm m \m' m mI'(1)
0
:lp(l).p(l_l_)z_______“ .
m m m msm(%)
Here we used the formula

['(z)-T(1-2) = _s_i;?n_z)’ Rez > 0.

Thus we get

2 T

u(m)=(m—1)(wo W(%)) , Ym>1

Hence, in particular, we have the well-known result

- ()

Finally, we calculate p(1) = liI{1+0 i(m). To this end we rewrite ob-
m—

tained result above in this way

2 1 1 1
wm-pH =2 Lop(2)r(1-2).
Wwp m m m
‘We multiply this equality by (m — 1) and use the formula 2I'(2) = I'(1 + 2)
thusly

##(m—1)1‘$‘=§0-r(%)-(1_%) 'P(l__ln—;) =

=1-F(i)‘1‘(2—l) —>lasm—»1+0,
wWo m m wo
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since F(l) = 1. On the other hand, by li%0 z® = 1, we have
m1_1.1'{1+0 i ( — 1)== = p. Hence it follows that

p(1) = w%

This equality leads to the Wirtinger inequality for the case m =1
wo
2
Wo Wo Wo
<=2 = =),
[ o <% /|w|dw v e Wt (-2, 40)
% 5

8.2.4. Integral estimates of solutions. The aim of this section is to
present integral estimates for the solutions of (LPA). Moreover, the weak
comparison principle is not used in the proof so that it may be applied also
to the case of elliptic systems.

b, f0<g<m—1and0 <ag <
ap(z) < a1 (ao,a1 — const.), zfq 2 m — 1. Let fe VOL_I,2(G). Then the
weak solution u of the problem (LPA) belongs to V), o(G) the inequality

(8-2.13) / (IVu™ + 7™ u|™ + ao(z) [u'19) dz < ¢(N, G) / Irf|=-Tdz

holds.
ProOOF. Let us consider the function

0, t<«1,

(8.2.14) © € C*(R), ©(t) 20, 6(t) = {1 t>2

Inserting 7(z) = u(x)® (J%L) with £ > 0 into the integral identity (IT) we
obtain

(8.2.15) G/ (V™ + ao(@)]ul*) © (%) d

<ce™ [lulvarias+ [julsle (‘ ')

G2e G
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By Young’s inequality and (W,,) we get

(8.2.16) ! / || Vu|™dz
Gae

< et / (r|Vu|™ + r1=™|u|™) dz < e3(po) / |Vu|™dz.
Gge G’;’s

From (8.2.15) and (8.2.16) it follows that

< csgé V[ dz + G/ lul|f|e (%) dz.

Passing to the limit as € — 0 and applying the Young inequality to the last
integral on the right hand side of (8.2.17), we obtain the assertion. |

ul™ ) a1+ ||
(8.2.17) Gf(|V| + aof )|u{+)®( )dz

COROLLARY 8.22. Letm > N. Under the suppositions of Theorem 8.21,
a weak solution u(x) of (LPA) is bounded and Hélder continuous in G.

ProoF. This follows from Theorem 8.21 in view of the embedding the-
orem

[u(@)] < colef~# (/ lrfivﬁ) , z€C.
G

O

We set po = (V) and observe that po = po((2) is the smallest positive
eigenvalue of the eigenvalue problem for m—Laplacian for m = N.

THEOREM 8.23. Let m = N and let the following condition be satisfied

/|rf|N/(N_1) dz < ¢p”®.
G§
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I _ 2./A5 )
el X0 = i) m=mN- Then for any weak solution of (LPA) the
bound
/ |Vu|N dz <
G§
(p/d)xe, if Xo < &
(8.2.18) < (N, pp, ) < (p/d)y*° In¥-1(d/p), ifxo =5, pe€(0,d);
(p/d)n, Zf X0 > K

18 satisfied.

REMARK 8.24. It is well known that if m = N = 2, then uo = A% = ;u’%,

where wy is the quantity of the angle with the vertex 0. In this case the
assertion of the theorem was proved in chapter 5 (see Theorems 5.4, 5.5).

The proof of the theorem will be carried out based on the following
lemma.

LEMMA 8.25. Let 2 < m < N. For any function u € W(}’m(G) with
Vu(p,-) € L™(Q) we have

— 2
(8.2.19) / {puur N - mu2} V™2 dw < % [IVulmdw,
0 (97

where
_m =N+ 4u+ (N —m)?
(8.2.20) X = A5 pyma/m .
PRrOOF. From the Cauchy inequality we obtain

< —
5 u” < 5 u+25pur, e>0,

puu, +

and hence
N-—m 4 m—2 2 [[€+ N —~mru\?
/{puur+ 5 U }[Vu| dw < p { 3 (p) +
Q Q

1
+ %uEBigr}|Vu|m'2 dw=: A

The right hand side is estimated by Young’s inequality

u)? m—2 2l \™
(_) Ivulm—Z < __“_____6—2/(m—2)lvu|m +25 (__) ’
m-\ p

P m

W2V < 1”7;1“—25—2/(m—2>|w|m + %5 ™, V8 > 0,
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which implies by Wirtinger’s inequality (W)

AL pzf{%_g%_zé—z/(m—z) (€+N—m—|— —:_—) |Vu|™ +
Y

m
LB (e Nom (ful +i|ur|m dw <
m 2 P 2e
592/{_2_77&_6 2/(m-2) (€+N m + )qu|’"
Q

i(s-l—N—m Vu —I—ll’urlm)}dw
m 7 p €

We choose € > 0 such that i“l’l;m = 1, which gives

£

:g(m_zv+\/m),

and hence,
/ {puur + uz} |Vu]"‘_2 dw <
Q
P T 4o 2(m—2) / m
<2 (22
’“me( 5 5 (u+1)+5) |Vu|™ dw
9]
The lemma is proved by choosing § = (1 + p)m-2)/m, O

REMARK 8.26. For m = N = 2 the constant x is sharp.
Proof of Theorem 8.23.. Let

V(p) = / (Vul" de.
GP

From (LPA) it follows that

Vip) + / ao(z)|u|"* dz = pN 2 / pune | V|V 2 dw + / ufds.

G? 0 Gy
In view of
Vip) ="t [ 190" o
Q
we obtain from Lemma 8.25

V() < Zvi(e) + [1ufida.

G§
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The second term of the right hand side can be estimated by the condition
of the theorem and Wirtinger’s inequality (W,,),

/N (N-1)}/N
/ luf|dz < / r~NulN dg / e /1) g <
G§ Go G5
S Pt T VR (p).
Thus we get the differential inequality for V' (p)
Vip) < 5=V (o) +ep T V(o)

In view of Theorem 8.21, as an initial condition for this differential inequal-
ity, we can use

V(d) < / |Vu|N d < c[ i fIV/ VD) g = v,
G G

N-1

By putting W(p) = V"7 (p), we obtain the differential inequality for W(p)
{W(p) < FLEW(p) +ep~ T, 0<p<d

o}
ety

W)=V, "~ .

Solving the Cauchy problem for the corresponding equation, we get

P xo gt N
W*(p) = (a‘) (Voﬁ‘*‘
NI}E__lll(n %7 ) Nea, ) if X0 = R,
w—x0) _ £—X0 .
P H_;O_N_  ifxo £k
It is well known that the solution of the differential inequality can be
estimated by the solution W*(p) of the corresponding equation, that is
W (p) < W*(p) and hence we obtain finally the required estimate. Theorem
8.23 is proved. d

+ KXo

LEMMA 8.27. Let g > m —1, ap(z) > ap > 0, (ag - const). Let

B>-1 ifm>N,

If(@)] < filzlf, = € Gf, where {,8> m fm<hN.
Then for any generalized solution u(x) of (LPA) the inequality
(8221) ”qu;G’;/z < C(ao’m’Napa%fl)p%_q—’:‘"'l Vp>m

holds.
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Proor. We consider the cut-off function

_ )0, TE[O,B]U[QP,OO),
“’""{1, re (8.

0<¢(M <1, V¢ <™, re [2, 5] ulp2l
By putting in (II)

n(z) = |ul'sgnu - ¢*(|2]) Vt =1, s>0,

we obtain
(8.2.22) t / ¢i(r) (|u|t_1|Vu|m + ag(z)|u|"t?) dz <
Ga
<s [ ulvarievas+ [ e
Goa Gla

By the Young inequality

m—1

slul*[Vu™ ¢ VL] < e fuf' ™! [Vl ™+

1
FeT MM [TV, Ve >0,

m—1

me

and taking into account that V¢ = O(p~!), then

m—1

from (2.13) we get

choosing £ = (ﬂ

m
622)  a [ Wcd<cmis [ i nd
GiF/’4 6574
+ [ s,

2p
GP/4
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Applying the Holder inequality to integrals with p = 29 > 1,

s t+m—1
p = 9 we obtain

g—m+1
(8.2.24) /r"m(|ult+m_1§"’"m)dx§
.
/9 ol
< /r'mp’dz: /|u|t+qc("_m)t4+i~q~_1dm
. &,

Let us now choose s = ™¢+9)  Then from (8.2.23), (8.2.24) it follows that

g—m+1-
(8.2.25) wo [Ttz [ lurisicdor
C;§74 (;274
tfm_1
t+q
s™  Nig-min
+ei(m, Nty q)m—gp™ e " f [ul*+9¢*da

2p
Gp/4

We estimate the first right hand side term in (8.2.25) by the Holder inequal-
ity

T =7
[ wtinica < | [ uriea| | [ ¥
Gl Cria Gota
Then from (8.2.25) we obtain
(8.2.26) ag f ult T3 de < / fI5eds |+
Gria Gola
met
t+gq
teu(m, N, t,q) g T | [ julttecda
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Again, by the Young inequality, taking into account that ¢ > m — 1, we get

e
8™  N(g—m+1)
(8.2.27) c1(m, N, t, q)tm—_lp gt -m / |u|tt9¢eda <
G
g
t+q
< % / |ul*+9¢%dx +ca(m, N, t,q,a9)pta ~T=m,

2p
Gp/4

Now by setting p =t +q > 1+ ¢ > m, from (8.2.26) and (8.2.27) we arrive
at the inequality (8.2.21) sought for. O

LEMMA 8.28. Suppose the conditions of the Lemma 8.27 hold. Let u(x)
be any generalized solution of (LPA). Then the inequality

(1+qa)m

(8‘2'28) / (Ivulm + |u|1+q) dr < C(a(), m, N: q, fl)pN— T+ea=m

p
GP/ 2

18 valid.

PROOF. Let us consider the inequality (8.2.22) with ¢t =1 and Vs > 0

(8.2.29) /]Vu|mCsda:—|-ag / |u|*T9¢edr <
&, &,
<es / ||V ¢ da / || f|¢*de.
Gl Gl

By estimating the first right side term in (8.2.29) with the help of the Young
inequality, we have

(8.2.30) : / Vu™¢*de + ao / ufa¢edz <

20 2p
G.O/4 Go/‘l

< e(m)s™ / r~ ™ ul™ ¢ T ™dr + [ lu||f1¢de.

2p 2p
Gp/4 Gn/4
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By using the Young inequality once again with p = 12 p/ = —1¥9_ a4

V4 > 0 we have " e
e(m)s™r ™™ (jul™¢*™™) < SultHaglm S 4
+¢(d,m, s)r"mﬁ;.
Now we set

(1+g)m
§= -t

14g-—m
As a result from (8.2.30) we get

(8.2.31)

5 f Vu|™¢*dz + ag / [ +o¢ dz < 5 / 9t

G? G3e G3e

pla ple p/a
+ ¢(8,m, q) / r*dx + / lul|fI¢?de V6 > 0.
Gla G2la

Hence, by choosing § = £, we obtain

(8.2.32) / (IVul™ + [u|*9) ¢*dz < clao, m, g, N)p" ~*+

2p
Gp/4

+e€ / ™" u|™¢ dr + . /(r]f|)%(s(r)dm, Ve > 0.

2p 2p
GP/4 Gp/4

Taking into account the inequality (W,,) and choosing £ > 0 properly, from
(8.2.31) and (8.2.32) we get the inequality (8.2.28) sought for. This fact
completes the proof of Lemma, 8.28. a

COROLLARY 8.29. Let q¢ > A’,“_N —1,1 < m < N and the hypothesis of

m

Lemma 8.27 about the functions ag(x), f(x) hold. Then for any generalized
solution u(z) of (LPA) the inequality
(8.2.33) f (IVul™ + =™ [uf™ + u[**) d < c(ag, N,m, ¢, f1,d),
G§
Vp € (0,d)
15 valid.

PROOF. By replacing p with 27%p (k =0,1,2,...) in (8.2.28) and sum-
ming the received inequalities over all k, we obtain (8.2.33). O
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8.2.5. Estimates of solutions for singular right hand sides. We
state two results of M. Dobrowolski (Theorems 1, 2 [99]). Let Ag be the

least positive eigenvalue and ¢(w) be the corresponding eigenfunction of
(NEVP) (see (8.2.3)).

THEOREM 8.30. Let u € W1™(G) be a weak solution of the problem
Apu = f(z), T € GE,

(PL)o u(z) = g(z), z € Qq,
u(z) =0, z eTg.
Assume that g(z) € C(Qy) and
(8.2.34) |f(@)] < fulzl?  with fy >0, B> Xg(m — 1) —m.
Then

lu(x)} < c0|x|>‘°, [Vu(z)| < clla:])‘o"l, forz € Gg.

THEOREM 8.31. Assume that0 < f(z) < fi|z|® with 8 > Ag(m—1)—m
and ao(z) = 0. Then each nonvanishing weak solution of (LPA) admits the
singular expansion

u(r,w) = kr*°¢(w) + v(z)
with k > 0 and
lo(z)| < clz**?, Vo] < ezt fugg| < elafot??,

where the mazimum & > 0 depends on B and the eigenvalue problem
(NEVP).

The proof of these results is based on the weak comparison principle
for the pseudo-Laplace operator. Here we shall prove the estimates of the
modulus of generalized and weak solutions of (LPA) with ag > 0. Let d > 0
be a small fixed number. We also suppose that

N
(8.2.35) If(@)| < falzl?, B> 5
with some p > X,

Observe that a function v = r®¢(w) is a weak solution v € W™, if
@d(w) is sufficiently smooth and

m—N
—
Since Apv ~ r®™m=D=m and the right-hand side of (LPA)

—ao(a)oloft + f(@) ~ 10 417,

(8.2.36) o>
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hence we obtain that
(8.2.37) polm=1)=m  paq 4 4B,
These arguments suggest the following theorems to us.

THEOREM 8.32. Let u(x) be a weak solution of (LPA). Let1 <m < N,
g > 0 be given. Let ap(z) > a9 > 0 (ag is a constant) and let f(x) €
L*(G), p > % Then there exists the constant My > 0, depending only on
“f(x)“LP(G)a measG,N, m,q,p, o, such that

|©]] Lo (@) < Mo-

PROOF. Let us introduce the set A(k) = {z € G, |u(x)| > k} and let
XA(k) be a characteristic function of the set A(k). We note that A(k +d) C
A(k) Vd > 0. By setting ¢(z) = n((|u| — k)+)xa) - sgnu in (II), where
7 is defined by Lemma 1.60 and k > ko (without loss of generality we can
assume that ky > 1), on the strength of the theorem assumptions, we get
the inequality

(8.2.38) f [Vl ™' ((lu] — k)+)dz + ao f [uln((lu| — k)+)dz <
A(k) A(k)

< / |F@)In((ul — k)1 )dz.
A(k)

Now we define the function wg(z) := g ((lul%)ih) . By the definition of

7{z) (see Lemma 1.60)
g H=R)+ | gy m = (T—ni)m [Vwi|™, £>0
K

and by the choice of kK > m according to Lemma 1.60, using (1.11.5) -
(1.11.7), from (8.2.38), we obtain

(8.2.39) %(%) /IVwk[mdm+aok3/|wk|mdm§
A(k) A(k)
<aM [ 1f@lwmdetee ([ |f@lds).
A(k+d) A(RN\A(k+d)

By the assumptions of the theorem we have that f(z) € L,(G), p > %
Then by the Holder inequality for integrals with the exponents p and p’
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1 1 _
(5 + o= 1) we have
t
p;‘
s240) [ Iflwirde < 1@l | [ oo
A{k+d) (k)

Letting m# = o om m, from the interpolation inequality (see Lemma 1.16)
for LP —norms, we obtain:

;}, 9
/lwklm”'dw < /lwk\”‘d‘” ' / |y ™" d

(%) (k) (k)

11—8§m
m

with 8 € (0,1), which is defined by the equality

1, 0m N
jd m# pm

Thus from (8.2.40) we get

0

fle™ds < £ @)z | [ lwlmds | x
Alk+d) (k)

!1"—"9271;
/ ™" dee

(k)

(8.2.41)

By using the Young inequality with the exponents  and (1%95, from (8.2.41)
we obtain

| File|™dz < e “LP(G)/| k[ da+

170
A(k+d)

(8.2.42) o

) /lfwk|m#d:1: , ¥e>o.

(k)
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It follows from (8.2.39), (8.2.42) that

(8.2.43) %(%)m / Ve ™dz + aokd f g™z <
A(k) Alk)
wE
Scs;es_l/"/|fwk|mdac-I—clo.szﬁj /|wk|m#dx +
A(k) (k)

+ e / |f(z)|dz, Ve>0,
A(k)

where
1
co = 0Mer |7 ()7, ) »
Cip = (1 — O)MCT,

C11 = CsBNd.

Now we use the Sobolev imbedding Theorem 1.30. Then from (8.2.43)
we get

hiil

mF

1 m
(8.2.44) —(ﬂ) / wel™de |+ aokd / g | dz <

2\ 1k

(k) Alk)
#
< cge™ M0 f wi [z + c10eTD / |we|™ d +
Alk) (k)

+ecnn / |f(z)|dz, Ve>0.

A(k)

Now, we can choose ¢ in order to have

1 1/ m
.24 =9 — | .
(8.2.45) €108 4 (cm)

and ko such that

(8.2.46) o™ ? = aok]
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From (8.2.44) it follows that

e

mF

(8.2.47) / lwi|™ d < 12 / If(z)ldz Yk > ko.
(k) A(k)
At last, by Young’s inequality we get

[ 11@)ide < 7@l meas '~ Ak

Alk)
Therefore from (8.2.47) it follows that
m%_
(5.2.49) [ 1™ | < e f@)g, ) meas 'FA®)
(k)

Now let [ > k > ko. By (1.11.8) of the preliminaries and the definition
of the function wy(z) we have |wg| > L (|u| — k)4, and therefore

/ lwklm#dx > (l—:nk)m# meas A(l).

Al

From (8.2.48) it now follows that
+#

(8.2.49) meas A(l) < (%) / |wk|””#d“’ <
A(k)

3

m

m# mZ
m " m# 1
< (l_——k) (012 Hf(z)“L,,(G)) meas T (1 p)A(k),
Yi>k > ko.
Now we set
Y(k) = meas A(k).
Then from (8.2.49) it follows that
m#
(8.2.50) (1) < e1s (ﬁ”’—k) o)) % (3.
From the definition of m# and the assumption p > % we note that

#
m 1
=—|1-- 1.
K m( P)>
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Then from (8.2.50) we get
C19
DL ———=y"(k) Vi>k>k
and therefore we have, according to Lemma 1.59 , that ¥(ko+4d) = 0 with §

depending only on the quantities in the formulation of Theorem 8.32. This
fact means that |u{z)] < ko + d for almost all z € G. Theorem 8.32 is

proved. O
COROLLARY 8.33. Let 1 <m < N, q¢> #L —1 and B > —& for
some s > % be given numbers. Let ap(z) > ag > 0 (ap - const) and

|[f(@)| < filz|P. Suppose
ao(z), f(z) € LP'™(G), p > N.
Then any generalized solution u(z) of (LPA) is Holder continuous in G.

Proor. This assertion follows from Theorem 8.32 and Theorem 8.3
according to the inequality (8.2.33). O

THEOREM 8.34. Let 1 <m < N and g >m —1 be given. Let 0 < ag <
ao(z) < a1, (ag,a1 — const) and let (8.2.35) is satisfied with some 3 > 0.
Let u(x) be any generalized solution of (LPA). If, in addition,

g+m mN
(8.2.51) Ap < —— 1 and q > N—m 1,
then
(8.2.52) lu(z)| < colz™, =€ GE.

ProoF. First we apply Lemma 8.27. From the inequality (8.2.21) under
p — o0 the estimate follows
(83.2.53) lu(z)| < clz|7=1=7.
Hence, in view of (8.2.36) the second inequality (8.2.51) is justified. Now
we consider the auxiliary problem
Anv = filzl?, z < G§,
(8.2.54) v(z) = uy(z), ey,
v(z) = 0, z € I'd
with some d > 0, f; > 0, where u, (z) is the positive part of u(z).

Under the assumptions of our theorem, by the existence Theorem 8.5,
there is a weak solution of the auxiliary problem (8.2.54). Further, by

Theorem 8.7, we have that u(z) € C'+7(G¢ ;). Then, in view of Theorem
8.30, we have

(8.2.55) 0 <w(z) < colz|™, and |Vo| < clz|** ! forz € GE.
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We wish to prove that
(8.2.56) u(zx) < v(x) forz € GY,

which will prove the theorem. To do this, we apply the proof by contra-
diction. We suppose that u(z) > v(z) on some set D C G% is fulfilled. By
Corollary 8.33, the set D is a domain. From (LPA) and (8.2.54) we have

Amu < f(z) < filz)? = Ay, Vz €D,

that is

(8.2.57) /(|Vu[m_2um — | V| 2u,, ) N, dr < 0
D

for V(z) € Wy"™(D) N LItY(D), n(z) > 0. We put
w=u—v, u=tut+(l—tw Vtelo,1],

1
da;(ul,)

a¥ (z) = Sut

0

dt,

where a;(2) are defined by (8.2.1). Then from (8.2.57) we obtain

(8.2.58) /aij(z)wmjnmid:c <0
D

for Vn(z) € Wy™(D)N L4+ (D), n(z) > 0. Recall that the ellipticity condi-
tion (E) with (8.2.2) holds. Thus, the function w(z) > 0 in D and satisfies
the integral inequality (8.2.58). Further, by the conditions of the theorem,
the inequality (8.2.33) holds and in particular

(8.2.59) /(]Vulm + 7™ u|™) dz < const.
D

The same inequality is true for the function v(z). In fact (8.2.59) for v(z)
follows from (8.2.55), if we take into account (8.2.3) and m < N. But now
we can state the validity of the inequality

(8.2.60) / (|Vw|™ + 7~ ™|w|™) dz < const.
D
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This circumstance makes it possible to put in (8.2.58) the function 7(z) =
w(x)O ('—’-”—') with O(t), defined by (8.2.14). As a result we obtain

/ o (%) V2 ( /1 |vut|m—2dt) dr <
D 0

1
(8.2.61) <c / r~ | Vw| (/ |Vut|m_2dt) dz <
0

DNG2=

<ec / (|Vw[™ + r~™w™ + |Vv|™) dz,
DnG2e

(by the Young inequality). In view of (8.2.55) and (8.2.60) the right hand
integral is uniformly bounded over € > 0. Therefore, it is possible to take
the limit as € — 0 which produces

(8.2.62) |Vw|? ( \Vutlm‘zdt) dz < 0.
[\

By the continuity of w(z) and in view of w(z) = 0, z € 8D, from (8.2.64)
we get w(z) = 0 Vz € D. The contradiction to our assumption w(z) > 0
Vz € D is finished. By this fact, (8.2.56) and the assertion of Theorem 8.34
are proved. O

LeMMA 8.35. Let u(x) be a weak solution of the problem (LPA). If
f(z) >0 for a.e. z € G then u(z) > 0 a.e. inG.

ProoOF. We define
G~ ={z € G| u(z) < 0}.

Choose n = max{—u(x),0} as a test function in the integral identity (II).
We obtain

[ (v + so@fultt)az = [ f@pute)dz <o.
G- a-

Hence it follows that u(z) =0, £ € G~. Thus u(z) > 0 a.e. in G. O

THEOREM 8.36. Let1 < m < N, g > 0 be given. Let ap(z) > a9 > 0
(a0 is a constant) and let (8.2.35) be satisfied. Let u(z) be a weak bounded
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solution of (LPA) with sup |u(z)| = My. Suppose, in addition,
&

flz) >0; andao(z) < My f(z) a.e. inG.
The following assertion holds. If Ao < 2XT. then

m—1?
(8.2.63) 0 <u(x) < colz*, ze€GE
PROOF. From the equation of (LPA) we have
Apu= F(x), where F(z) = f(z) — ao(z)ulu]?L.

By Lemma 8.35, u > 0. Therefore, in view of our assumptions, we get that
0 < F(z) < fi|z|®. By the assumption on Ao, 3, the conditions of Theorem
8.31 are satisfied. By this theorem we get (8.2.63). a

THEOREM 8.37. Let 1 < m < N, q > 0 be given. Let ag(z) > ap > 0
(ap is a constant) and let (8.2.35) be satisfied. Let u(zx) be a weak solution
of (LPA).

The following assertion holds. If Ao > 5E™ . then

m—11
(8.2.64) lu(z)| < colz| ™1, zeGL
PRoOOF. By Theorem 8.32 we verify that u(z) is a bounded function.
We set A = 2—f‘f By the conditions of our theorem,
0< A< A
We take

v(z) = Alz[*p(w)
as the barrier functions, where YA > 0 and (A, ¢) is a solution of (8.2.5). It
exists in view of Theorem 8.14. In this connection
Apv = AM— g Mm—1)-m o ¢ Gg;
v(z) = Ad*¢(w) > 0, z € Qg;
v(z) =0, z € T§.

By the function ¢(w) properties (see Theorem 8.14 and Lemma 8.18) it is
easy to verify that

0 < v(z) < cAlz),
and
/ (IVo|™ + r~™u|™) dz < const.
G

Wishing to prove that u(z) < v(z) for £ € G¢ (by this the assertion of
the theorem will be proved), we suppose by contradiction that on some set
D C G§ the inequality u(z) > v(z) is satisfied. Since u(z) is bounded in G,
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then by Theorem 8.3 it is Holder-continuous. This fact implies that the set
D is a domain. Further, we have for z € D

Amu(m) S f(.'L') S fll‘q;]ﬁ — f1|:L.I.X(m—1)_m S
< AT PO = A(z), i A2 7

Moreover, (8.2.59) is valid by Theorem 8.21. Really, for this fact it obviously
suffices to show that [ |rf|=-Tdz is finite. Because of (8.2.35) we have
G

d

/|rf|“v?m—“fdm < [T /rm'il(ﬁ+1)+N—1dr < 00,

G 0
if -2+(8+1)+ N > 0. But by (8.2.35) and since N > m we obtain

m m N .m

—_— D4N>——(1—-——)+N>——(1- N=N- 0.
m_l(ﬁ-{- )+ >m—1( p)+ >m—1( m)+ m >
Now we repeat the arguments of the proof of Theorem 8.34 word for word
and obtain the required assertion of Theorem 8.37. il

8.3. Estimates of weak solutions near a conical point

In this section we investigate the behavior of the weak solutions of the
(DQL) near a conical point. Let Ag be the least positive eigenvalue of the
problem (EV D) (see Theorem 8.12). Let us introduce the number

q=£1_—__t)%72.__1)’ f0r0<t51,
Concerning the equation of the (DQL) we make the following Assump-
tions:

the functions a;(x,u,z) and a(x,u,z) are continuously differentiable
with respect to the x,u, z variables in My a1, = G& x [— My, M) x RN and
satisfy the following inequalities

E)  vjul?]a|m 2l < 2uealee; < plujafzm-2(Ef,
V¢ e RY \ {0};

da(z,u,z)
8z;

N
1) >

g=

< plulrHz ™1

2) 2G> vl
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3) |2 — Juldel™ 4 (#l2f + (m - 2)zz) | <

Zj —

< ey (r)rBHm=do(m=1)|y|a| 5|2 4 ¢o(r)rht2—No|y| T,

4) a“iagg;:"z + la(z, u, 2)| < ca(r)rBf=mPo—D |y G2 |y my

tea(r)|ul™e + cs(r)r?,

where v, it > 0,8 > (m — 1)A\o — m are constants, c;(r) are nonnegative,
continuous at zero functions with ¢;(0)=0; i=1,...,5.

At first, we transform our problem (DQL) into such problem in which
the leading coefficients are independent of u explicit.

LEMMA 8.38. Let us make the change of function
(8.3.1) u = vju)t~h foro<t<1.
Suppose that

uaai(m,u,z) _1-t Ba,;(:r,u,z)z__

(V) 5y - ] i=1,...,N.
Then the problem (DQL) takes the form
(3:32) Q:0,8) = [(Ailo, 0200, + Alz,0,0)8 )5 =0

G
for all ¢(z) € Wo™(G) N L™(G), where
Ai(z,¢) = ai(z, vlol* 1, tu[*~1¢),
(8.3.3)
Alz,v,¢) = alz, vlv| 1, tv|~1¢).

PROOF. In fact, by calculating, from (8.3.1)-(8.3.3) it follows that

dA; _ Ba,-(:z:,u, Z) =1 aai(-"f'aua Z) t—2 - —
o= 50 tu|* + o7 tH(t — v “signv - §; =
_ dai(z,u,z2) t-1 , Oai(z,u,2) _ t—2 1-t, _
= 50 tlo[*~" + 97, (t— 1) “signv- |v|""2z; =
1 da;(z,u, z) Oai(z,u, z) .
=3 (tu 5 +(t—1) a7 zj | =0,

which is the required statement. |
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REMARK 8.39. It is easy to see that we can take

t = 1, if a,!a: u z?
(8'3'4) a;lT,u,z
t=1—¢, Vee (0,1), if ——1————1‘ 71:0

The change (8.3.1) transforms our assumptions into the following

(B)  vlcim-2gl? < 248, < pi¢im2¢12, V6 € RV \ {0);

N
1) ;

sz ’ S#lvl_llqm_l;
év) BAﬂaw;)v,C) > Vtm+1|v|_2|C|m;

¥

3) |25 —gmt¢mA (S + (m - zmcj)[ <

< e (r)rPrmmRolm=|(m=2 4 cp(r)rft?=do;

9 Wl + | A(2,0,0)] < es(r)rfmReDIgm 4 ey(r)[o]% +
C:g.(’!')’lwﬂ .

The main statement of this section is presented by the following theorems.
THEOREM 8.40. Let u(z) € WI™(G)NL™®(Q) for 1L <m < N be a

weak solution of the (DQL). Suppose that the assumptions E),(U), 1) — 4)

are fulfilled. Then there exists a constant c¢g > 0, depending only on the
parameters and norms of functions occuring in the assumptions, such that

(8.3.5) lu(z)] < colz|tre.

PROOF. Making the transformation (8.3.1) in the problem (DQL) to
the equation Qt(v ¢) = 0 we shall estimate the function v(z) under the

assumptions (E), 1) — 4) At first, for some d > 0 we consider the auxiliary
problem

Apw = fil|z|?, z€GE;
(8.3.6) w(z) =vi(z), z€Qg
w(z) = 0, z €Tg,

where v, (z) is the positive part of v(z) and the constants

f]_ >0, ﬁ>(m—1))\0—m
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Under the assumptions of our Theorem, by the existence Theorem 8.5, there
is a weak solution w(z) of the auxiliary problem (8.3.6). Further, by Theo-

rem 8.7, we have that v(z) € C'*7(G4 /2)- Then, in view of Theorem 8.30,
we have

0 <wz) < c0|a:|>‘°, |Vw| < cllcc|)‘“‘1,
(8.3.7)
|wm| < cz|:v|)‘°_2, T € Gd

Now let ¢ € Loo(G8) N Wy ™(GE) be any nonnegative function. For the

operator ();, that is deﬁned by (8.3.2), applying the assumptions 3) 4)
and estimates (8.3.7) we obtain

Q) = [ (A, 02)60, + Ay, 02)8 ) =

Gg

_ Gf 0(a) ( = - Al ) + Az w,w.) ) d =

= /¢(x)<—% (A(x, Wy) —tm_lle|m_2wwi) + firP+

+ Ay w,u)e = [ $()(fir - 20 4 a(a, )~
DA; T m— m-— j
_ [__Aggxw ) — ™ V|4 (5] Vw2 +

+ (m — 2)w$iwzj]wzimj >d.7: >

/d)(:l! fT ‘aAi(m wm) IA(x,w,wm)l—
B.Ai(a:,wm) m— med i
- ‘W — 1| ™ (5 |V 2+

+ (M — 2)we, Wy,

[taa| Yo 2

> [$@)(fir? = calr)r s O Tupm = exlr)ul — es(r)r? -

Gg
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— ey (r)rPrm—Rom=1) gy |m=2 |y, . | — cz(r)rﬁ+2‘)‘°|wm|>dm >
5
> [o@r(f -3 a0)ds.
& i=1

Hence, choosing a d > 0 by the continuity of ¢;(r), (¢ = 1,...,5) so small
5
that 3" ci{r) < 1 f1, we get

i=1

Quw,d)2 2h f H(z)r? > 0.
&

Thus, from (8.3.2) and (8.3.6) we get
Q(w,9) >0=Q(v,¢) Y$>0 in Gf;
w(z) > v(x), e BG’g.

Besides that, one can readily verify that all the other conditions of the
comparison principle (Theorem 9.6) are fulfilled. By this principle we get

v{z) S we(z), Vze Z:_g.
Similarly one can prove that
v(z) > —w(x), Ve G_g.
Thus, finally, we obtain
[v(@)] < w(z) < colel, vz € GE.

Returning to the old variables, in virtue of (8.3.1) we get the required esti-
mate (8.3.5). Our theorem is proved. O

THEOREM 8.41. Let u(z) € Wh™(G)NL*®(G) for 1 <m < N be a
weak solution of the (DQL). Suppose that the assumptions (E),(U),1) — 4)
are fulfilled. Suppose, in addition,

N
d Y lai(z, u,2) — @iy, v, 2)” < p(i+ =)™ (jo — y1* + [u—v|*)

=1

for all (z,u,2) € 0G x [—My, Mo] x RN and all (y,v) € G x [—-Mp, Mp).
Then there ezists a constant ¢; > 0, depending only on the the parame-
ters and norms of the functions occurring in the assumptions, such that

(8.3.8) |Vu(z)| < e|z|tro L.
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PrROOF. Let us consider in the layer Gj /2 the function

v(z') = o t*u(pz'), taking u = 0 outside G. Let us perform in the equa-
tion (DQL) the change of variables z = pz’. The function v(z’) satisfies
the equation

J {@:(@',v,v2 Yoy + @2 v, va )@} dz’ = 0,
Gl/a
1, .

(DQLY Vé(z') € W, m(G%/g) n Lw(G%/z):

ai (J‘J: v, v(ﬂ') = ai(gx’, Qt)\ov, Qt}‘o——lvz')v

?J:(SL", v, Ux’) = ga(gx’, Qt)\ovy Qt)‘o_lvz')-
In virtue of the agsumptions of our theorem, we can apply the Lieberman
Theorem 8.7:

sup |V'v| < M7,
172

where M| > 0 is determined only by ¢, Ag, o, v, 4, N, G and ¢y from (8.3.5).
Hence, returning to the function u(z) we get

|Vu(z)] < Mjo?~, ze G} o
Letting |z| = 20, we obtain the desired inequality (8.3.8). O

COROLLARY 8.42. From Remark 8.39 it follows that the estimates
(8.3.5), (8.8.8) can be rewritten in the following form

(8.3.9) (@) < ¢ {120 if fespmal —q,
- T lzPee, Ve e (0,1), if fulzms) g,

lz|)\o—1’ if da,,-(a:,'u.,z) — 0’

8.3.10 v < R
e300 “(m)"c{lxl*o-l—s, Vee (0,1), i 2wy

8.4. Integral estimates of second weak derivatives of solutions

In this section we will derive @ priori estimates of second derivatives
{(in terms of the Sobolev weighted norm) of solutions to the (DQL) in
a neighborhood of a conical boundary point. We give an example which
demonstrates that the estimates obtained are exact.

We define the set 9t = G x R x RY and we will suppose that the
ellipticity condition (F) and the following assumptions are fulfilled

there ezist a number i > 0 and nonnegative functions

f(z) € L}(G) n LI HA/™(G) n LP/™(Q),
g(x) e LZ(m+2)/m(G) N L(m+2)/(m—1)(G) ﬂLp/(m—l)(G),
p>N
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such that

(A) ai(z,u,2),a(z,u,2) € C'(M),i=1,...,N;

N m—2
(B) |M&u¢ﬂ+ggﬁ%ﬁﬁ-SMAm+ﬂMVﬁr;

N 2 N 2 —
(©) % |25+ 5 25 <l + g(a)lal T
= g

N
(D) |z 4| X las(z, u, 2) — ai(y,v, 2)|2 + |a(z, u, 2) — a(y,v,2)| <
=1
Sﬂlz‘m(lw—m"““—ﬂ)a V-‘E,ZUEG, V’LL,’UER;

l@_’: Ba; (2,u,0)
azx;

N

(F) sfk 4 X

o) i\T, 70
Bl |” < g(z).

‘2

i=

We make the transformation z = gz’. Let v(z’) = u(oz’) and G’ be the
image of G under this transformation. Let d > 0 be so small that if g €
(0,d), then G2 /4 C G'. Further, our problem (DQL) takes the form

f {a’é(zla v, Um’)¢.’n£ + a(mla v, U:z;’)¢} dz’ = 0,
Vel

(DQLY Vé(z') € Wy ™(G) N L=(G');
@i(z',v,vp) = ailez’, v, 07 vp),
a(z’,v,vz) = ga(ez’,v, Q_l'U:c’)'

At first we establish the strong interior estimate.

8.4.1. Local interior estimates. In this subsection we derive local
interior integral estimates of weak solutions of the problem (DQL).

THEOREM 8.43. Let u(z) be a bounded weak solution of the problem
(DQL). Let us assume that the hypotheses (A), (B),(C), (D), (E),(F) are

fulfilled on the set 9. Let any G be such G CC GS e G. Then there exists
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the integral I (1Vu™*? + |Vu|™ 2u2 ) dz and we have the estimate
G
/ (Vu|™2 + |Vu™ 22 ) dz <

(8.4.1)
gC/( T+ 2 R 4 M ) g

G

PROOF. Let the image of G be G’ CC G2 14 C G'. For all zf € G’ and
all o such that 0 < ¢ < dist (G, BG? 1/4) We take

¢(2') = A (e Afu(a))

as the test function in the (DQL)’, where {(z') € C$°(B2,(z})) is a cutoff
function such that

¢(z') = 1lin B,(x}), 0<¢(2') <1, |V/¢| < co™tin By, (xh).

Then for sufficiently small |h| < ¢, summing formula (1.11.17) by parts, we
obtain

ca2) [ {Agai(xf,v,%.)(@ B0yv() )+2c<mgA2v<m'))+

Bgo- (:Ca)

+ Aby(aY A2 v, v:,,r)}d:c' =0,

where
h /
APG(a! v, vg) = G (z’)m ('),
8:c
ARG, v, 00) = ¥ (@ ')—” +3(e)
with
i / oai(z' v, vk,) r oa(z’,v,v,)
~if 0N — T\ s Vs Yt} 4y, j Y — s Yy V) g4,
a1 (2/) = f e we = [t
0 2 0 b
8(e') = 7 3 (&' + hew,v(a’ + hew), ve(z' + hex)) -

—@; (2, v(z'), vor (2’ + heg))];
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a{z' + heg,v(z’ + her), vy (z' + heg)) —a(z',v(z'), v (= + hey))

b(z') = -

v (z') = (1 — t)v(z’) + tv(z’ + hey).

Thus we get (for brevity we denote By, = Bas (7))

iy OORU(") 8ARv(2)
F ! k k 2 1.
/a, (z") oz! o ¢ dx 5/

20 B,

v(m’ )

a(z ) 20¢a; D0 ()

349 [P e Al +
+ |V (z )BA(,’;—,()M @] + |b(z") Al ’)Czl}da:'

Letting

(8.4.4) Pe(z') = |V'u(z)| + [V'v(z' + hey)),

by assumptions (C), (D), (E), and applying Lemma 1.7, we have

i Abv(z') 9ARv(2)
a%(z) g:c( (";:c'-
i J

> ve(m)e' "B @)V Agu(a)

~4f il -m pm-—
[a¥ (z')] < m@l P 2(a');
[@*(a)] < pe' "™ PP (&) (1+ [ARv(2']) ;
: m P,
(8.45) b7(2")] < o™ (PPt (@) + e glex) Py T )
Gj=1,...,N)
lb(z’)| < pe' "™ P{a) (1+ |Akv(]) .
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Now from (8.4.3)-(8.4.5) it follows that

[ B et <
B2u

<cwmm) [ (PR3 @)1V Bk I8 Vel+
Bzo
546) BV AL + PP A6
T

+PT @)V Abu(a) || Ak ' o glor)(P+
+PP N &) Do) CVC] 4+ PP ) Al FVICL+

LPP () AL |C + P,z"(z'>|A2v(a:'|2c2)dm'.

Now we estimate each term on the right using the Cauchy inequality with
Ve>0

IV () | A k()< V'C) < IV Aku()2¢+
+ ol kuE) PV
Y (@) V' Alo(a)| < £ B2V Alu(@)? + o PT
PR (&) V' ko) | k(| < S PP 2V Au(a) P+
+ o Pl A
P @)V Ao | Ako(e!l0% g(0x') < SRRV Alu(a)+
+ oAb Pem ')
PP (a!) Albo(@)IVE] < 5 PP Ao ¢+
+ PRIV
PP (@) Dbl 9] < 5 PR @) Al ¢+
L
2
PP @)A1 < 3PP )M + 3PP

+ =P 2 ARo(a)) |2V
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Choosing £ > 0 in an appropriate way we get from (8.4.6)

[ B @ sk P < ctnm) [ {Priatuapes

By Bao
T (PP2(@) Al + PR() (& + V¢ +
(8.4.7) +isz(m'>r2gm92(gm'>cz}dx'.

In order to estimate the integral [ P*|ARv(x')|?¢2dz’ we take

Bzo
$(z') = (v(z') —v(2p)) (@) | AR (a)|?

as the test function in the (DQ@L)'. Then we obtain

(8.4.8) / (@', 0,00) (o) - v(zh) @) AL, +

BQd
+ (@', v,v2r) (o(a") — v(ah)) (") Dfu(a) Jda’ = o.
Now we use the representation

@i(z' v, 2) = @ (z’ v, 2)z; + @i (', v,0),
(8.4.9)

1
(o
@ij(a’,v,2) = /wdﬂ (,7=1,...N).

0(1z;)

Therefore from (8.4.8) it follows that

(8.4.10) /6@-:,-(3:’,v,vz/)vx;%;|A’,§v(z')|2g'2(w')d:c’ =

BZU

= — / {a(qj”v,’vx') (’U(:E’) — v(ms)) !AZ'U(W,)IQCZ(iEI)%—

BZO’

+ 2,;(z’, v, vpr) (v(z') = v(xp)) v (|A (')[2§ng+
+ Al(e) LB 2,

+ (e, 0,0) (&) - (b)) @) Afo(E)),, o'

i
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In the last term on the right we integrate by parts and so obtain

(8.4.11) / B (@0, 00 Y0y U | A () PG ! =
Bﬂa

~ - [ @)~ vl (&' v ko) PR+

BZU

o+ 26 (2', 0, v Yo (|0 (2) ¢y + Doz )“Aa;’(x DOE

Bﬁi(z’,'u,O) aa’i('/t,’vso),, h
—( e v R )}

After a simple computation, using assumptions (B), (E),(F) and taking
into account 0 < g < d < 1, we obtain from (8.4.11)

/lV'UlmlﬁﬁUFCzdﬂ:'SC(V,u,m) / |v(z’)—v(z{,)|{|V'v}"‘|A’,§v|2§2+
By By

HV'u" ARV + [V (AR [V ™Y A0l¢? + 0™ F(0a') | Afw]*¢
(8.4.12)

+0" % f(o2')| V"0 T | D[22 + e’""lg(em')lv’vlIAQUI2C2}I1¢'-

Taking into consideration Remark 8.4 we observe that all hypotheses of
Theorem 8.3 about Holder continuity of weak solutions are fulfilled and
conclude

lv(2') — v(zp)| € 0%, 2z’ € Ba,(xp), € (0,1).
Moreover, we use the Cauchy inequality

Vo™ V] < 5I0ImE + V2V,

[V (&R [V'o]™ Y ARw] < %IV'UI’""zIV’(Ai-,‘v)I2 + V0| ARl
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Hence and from (8.4.12), it follows that

/ V|| ARu[2¢da’ < e(v, p,m)o® / {IV'olm ke +
Bzd BZU
V™2 APV + V(AL PV 03¢ 4 g™ (o2') AL+
(8.4.13)
e+ % foe)IV'o T AR + 0™ g o) Vvl A2

Now we consider the function w(z') = v(z’ + hey). It is easy to observe
that this function is the bounded weak solution of the equation

L@+ he w(E), wer (&) + 8 (@ + hew, ('), wp (&) = 0.

Then we write the corresponding integral identity with the test function
¢(a') = (w(z') — w(zp)) ¢*(a")| Afv(a)

and repeat verbatim the deduction of (8.4.13). As a result we get
[ Ivuimiakeleds’ < e mmyoe [ {ivulmiabpes
Ba, BQo’

+ Vw2 Af PV + [V (AR) 2 V| ™22+
+o™ f (o(z’ + her)) |ARv|2¢? + 0™ g (o(z + hey)) |V'w||ARv|2¢2+

2

(8.4.14) 0 [ (ola’ + hew)) V'] "5 | 6o (P o

Let us sum the estimates (8.4.13) and (8.4.14), applying the inequality
(1.2.5) of Lemma 1.5. Then recalling the notation (8.4.4), we have

[ Pr@iskPcs < v mmye [ {Pr@iabpes
Bao Bao
+ PP @) | DR PIVICE + [V (D) PP 2() ¢+
+0™ (f(e’) + f (o(z” + hex))) | ARv[*¢*+
1 (flex') + f (o(a' + hew)) P T () Afw]¢+
+0™ " (g(ex') + g ((x' + hex))) Pu(a)|Ofwl*¢? .
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Choosing, if it is necessary, ¢ € (0,dist (5, G? /4)) smaller such that
(v, p,m)a® < 1 hence we obtain

[ Pr@)iielcar < pmoe® [ {[v@kPRRA @)t
BZG BZa

FEIR@) ARV + 0™ (Flex') + £ (ole! + hen))) [AkvEC+
+0F (f(on') + 1 (oo’ + hew)) Py ()| AR+
(8.4.15) +0™ " {g(oz") + g (e(z’ + hex))) Pk(m')IAZUlZCQ}dﬂ?'-
In the same way from (8.4.7), (8.4.15)
[ @ s < ) [ { (B @iak
B

Bas 2o

+PP() (G + [VCR) + 0™ (F(ox') + f (o' + hew))) | AJu[2¢3+
1 (flex') + £ (ola’ + hew)) Py (2)|Akol2C2+
+0™ " (gex") + g (ola’ + hew))) Pe(@') | Abof2¢3+

(8.4.16) +9m92(9:r’)!AQv($')Izcz}dm’-

From (8.4.15) and (8.4.16) the estimate follows as

[ r@skl + B atue)?) ¢de’ <
Bzo

< (v, p,m) / {(P,;”'Z(a:’)IA,’;vlz—kP,T(x’)) (C+IVE¢P) +
Bz,

+0™ (f(oa') + f (o(z’ + he))) [ARv[*C? + 0™ g (o) | Afw() P+
+0"E (flox) + 1 (0@ + he))) Py (&) Afol2¢?+
(8.4.17) +0™ " {g(oz') + g (o(2’ + hex))) Pk(w')IAﬁvlzCz}dﬂs’~
Further, by the Young inequality, we have for Ve > 0

- 13
0™ 9(ex') Pi(2) | A0 [ < — P(a )| DjvlP+

m m
+ eTm g™gm 1 (ox')| Alvl?,
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Then choosing £ > 0 from the equality %C(V, H,m) = % , We can rewrite
(8.4.17) in the following way

/ (PP (") Auf? + BP=2(e) |V Alw(a!)|?) (Pda’ <

< c(v, p,m) / {(P,Z"_z(:c')m;:m2 + P,;””(:r’)) (CG+|V¢H)+

Bso
+g"F (flor') + £ (ola’ + hew) Py T (2)| AR+
+e"(f(ox') +  (o(a’ + hex)) + g*(oa')+

(8.4.18) +977 (02') + 977 (ofz’ + hek))>|AZvl2C2}dx'
Again, by the Young inequality, we have for V§ > 0

o F o) Aol < 2| A2

~ 2 m+2 =
s 26 £ (o),
Ql+%f(gx,)Pkm;2 (.’I?’)lA ’U|2 ng 2|A ’U|4 + ‘21_69m+2f2(055')7
o™g?(ex)| Ajul? < Ak
T g2 R (),

+ 2
omg a1 (pz')| Abv)? <

'm 2 L
+ m‘s 9m+29 T (ox')

and therefore from (8.4.18), it follows that

[ (Br@)iatel + Bp-2@)v sku(e) ) ¢’ <
Bao

<cmmm) [{8(8%Im+ PP @)kl +

Ba,
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+(Br2 @) Ak + PEE)) (¢ + IVCP) +
#5712 £2(ea!) + 17 (ola’ + hex)) )2+
+07H (£ (o) + £ (ofe’ + hew) +

(8:4.19) +g7H (o2') + g7 (02) + g (g(w’))cz}d””"
If § > 0 is sufficiently small, we get

[ {pr=2@)1v st + (BrIAkE-

Bio

(v, )8 (| AL+ FP2 @) Alolf) ) b <

<cmmm) [{(Fr2@aol + BE) (@416 +
B

+571 g™ () + 12 (ala’ + hew)) )P+
+5 % g5 (on') + £ (oo’ + hew)) +

E420)  +oFH () + g7 o) + T o)) o

Now we verify that

i [ (PP-2@)Iahel? + @) (¢ + VP e =
Bas

= @2 [ IVlm (¢4 V'GP da
B

20

In fact, by virtue of Lemma 1.66, Aﬁv converges to Dyu in the norm L™
almost everywhere and, by the Egorov Theorem almost uniformly. Analo-
gously, the almost uniform convergence of f (g(z’ + hey)), g (o(z’ + heg))
to f(ex'), g(ex’) respectively is verified.
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Thus, we can apply the Fatou Theorem and take the limit as h — 0 in
(8.4.20). We obtain as a result
2)

2

Ov + V™2

!
oz,

V'
oz},

/ ([2”‘ —c(v, pym) - 8(1 + 2™ 2)] [V'u|™

BZU

xC4z)dz' < ¢ / |Viv|™ (C2 + ]V'C|2) dz’+
BZU
veag™? [ (Pe)+ 15 (@) + g5 (o) + g7 00
BQd
k=1,...,N.

Let us now choose § > 0 from the equality c(v, g, m)-d = 1_?_;—,,:1_2‘ Then we
get

(8.4.21) / (|v'u|m %

B2a

2

+ Ivlvlm—z aivl,U'

!
oz},

2
) (*(a')da’ <

<c / Vo™ (¢ +|V'¢)?) da’+
Bﬂa
veag™? [ (er) + 15 (er') + 95 (o) + g7 (@)
BZU
k=1,...,N.

After summing up over all k = 1,..., N, by the properties of the function
¢(z"), we establish

/ (V0™ + V0™ 2 lupy ) de’ < e [ [V'v|™dz'+
B, B
(8.4.22)

+er0™*? / (FPex)) + £ (02) + g7 (e2) + 4" 7 (ola') Yda.
BZU

20
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By the covering argument we obtain

/ (V™2 + V'™ 2Joge ) do’ < 1 / Vv |mda +
al é/
(8.4.23)
m--2

m+2 mi2 2(m+32)
+eag™? [( (o) + 75 (@) + 75 (o) + g*F (ola) o'
&
Returning to previous variables z,u we get the desired (8.4.1). g

8.4.2. Local estimates near a boundary smooth portion. In this
subsection we derive local integral estimates near a boundary smooth por-
tion of weak solutions of the problem (DQL). Let zf, € IV C I? /74 and

let U'(zp) C @/4 be a neighborhood of zj. Since our assumption on the
boundary of G is such that G \ O is smooth, then there exists a diffeo-
morphism U’(z}) — By, (z}), which flattens the boundary that is maps I”
onto Yg, C {z/y = 0} being a plane part of dBj, (z}).

So we may suppose that G’ = B3 (z}) in the (DQL)’ that takes the

form
.

f {a'i(a:la v, 'U:n’)gbxg + E’:(xlv v, vz’)¢} dz' =0,
B, (=t)

Vo(z') € Wa™ (B (z4)) N L®(BE (zh));
wan; $e') € Wa™ (B, (2h) 0 (B, (ah)
ai(x',v,vzr) = a2, v, 0 tuy),
a(z',v,vx) = galex’,v, 0 vy).

\
We denote U(xp) as the preimage of U’(zy) under the transformation z =

oz’ It is obvious that U(ze) C sz .

THEOREM 8.44. Let u(z) be a weak bounded solution of the problem
(DQL). Let us assume that the hypotheses (A), (B), (C), (D), (E),(F) are

Fulfilled on the set M. Let VG C Gij’,‘ C G. Then we have the estimate

/ (V™ + |Vu|™%e2,) dz <
5
(8.4.24)

<C [ (p72Vul™ + 12+ £ 4 g7 4 g*FH ) da

Qt—
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PRrooOF. Repeating verbatim the procedure of the deduction of the es-
timate (8.4.21), we establish

v
(PAL ;1)
/(|Vv| '_am;g
B+

20

2

1]
+ Ivlv|m—2 alv rUl

7
oz},

2
) ¢*(a')dz’ <

(8.4.25) <o / V™ (2 + IV CP2) da'+
Bf,
+eag™*? / (fz(aw’)+f&mﬂ(ex’)+g“32 (oa') + g7 (o2 Yo,
Bf,
k=1,...,N—1.

It remains only to consider the case £ = N. For this case, by Theorem 8.43,
using the covering argument we can easily establish that

é(z)ai(a’,v,v)) € Wl (G'), i=1,...N,
V(') € WEH™(G'YN L=(G), V&' cc @'

Therefore we have from (DQL)’

—Wa,—(;v’,'u, v,) +a(z’,v,v) =0ae. 2’ € G'.

H

Then we obtain

BEN(x’,U,ywr)v L :a,(m, v.v ,) _Ea&i(gg”v,'uwl)v .
da;(z' v, vy) 8a;(z',v,vy)
T e AT e

1
Hence, in virtue of assumptions (B), (C), (E), the next inequality follows

N-1
V012 oy | < el { (90172 Y
=1

+|V|™+

Vat ot
(L"Itj

T 0% (00| V' % + 0% gloa)| V| }
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Further using the Young inequality, it is easy to obtain the inequality

2
+

Vop? el
zix)

N-1
(8.4.26) |V'v|™™2 |vmer5V|2 < (v, , m){|V'v|’"_2 Z
i=1
2(m+2)
+ V™2 4 g™ 2 2 (ox') + ™2 T (Qm’)}-
Let {(z') € C§°(B3,(z})) be a cutoff function such that

{(z') =1in BJ (z0), 0<((2') <1, V(| < co™ in B, (xp).

Let us now multiply both sides of this inequality by ¢?(z’) and integrate
over B3 (xh). As a result we deduce

(8.4.27) / V0™ |vgs o, 22 (a')da’ <

+
BZU

N-1
<l mm) [ {|V'v|m+2c2(m'> F VY
i=1

+
B2o

: =)+

Von? !
xiwj

+ 0™ 2 (or) + 0™ (ga:')}dx’.
We estimate the first term on the right in (8.4.27) by means of (8.4.25)
/ IV,’U|m_2 ‘vwﬁvl’;\; 2C2(37I)d$’ <c /<lvlv|m+2C2(ml)+
Bj, BZ,
HY[™ (¢4 (9GP e+ cag™? [ (1(er')+
B,
(3.4.28) 17 (@) + g™ F2 (o(e!) + 07 (02" )do.
Summing (8.4.25) and (8.4.28) we obtain
[ 1962 o P P < e [ (90w
BZ, Bf,
V'™ (¢ + [V'CI?) Yda' + ca0™ 2 f {Flea)+
Bj,

(8.4.29) +15 (0a) + 9" (o(a) + g7 (o) o',
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We embark on the estimating of [ |V/v|™"2(%(2')dz’. Because of
By
(8.4.25), it is sufficient to estimate the integral [ |V’v]mvih ¢*(z’)dz’. For
B;—a
this estimating we turn again to the (DQL); and we take

#(@’) = (v(a") — vloh) %, (@)
as a test function. Then, in virtue of the representation (8.4.9), we have
/ Eij(wla v, Uy )'Umifvz;; vi;v C2 (ml)d.’L" =

+
BZU

= - / (U("E,) - '0(276)) <Eij (IB’,’U,‘UIJ)'UQ;; (202:’1\,”3:;3;\,(2(3:’)4_

Bf,
+2C($')ngvzgv) +a(x”v,vm,)vg}v@(;gl»dx/_

_ /Ei(:v’,v,O) <(v(av')—v(m()))1)‘3?\[4“2(:1:')>m’i dz’'.

+
B2a

Hence integrating by parts in the last term on the right and applying the
assumption (E), we obtain

v

Ql_m / |VI'U|m'U§§vC2($I)d$’S
B3,
< [ 10(@) ~ vlah)| (2 (', 0,00 Vg o ¢2(a +
By,
12052, v, v2) [VVIC @)V CoR, + [E(e v, v, ¢ )+
da;(z’,v,0)  Gai(z’,v,0) 2 200 ’
£ + 5 Vgt | Uz € (z )>da: .

i

m—1

+

Now we observe again that all hypotheses of Theorem 8.3 about Hélder
continuity of weak solutions are fulfilled and conclude

lv(z') —v(zg)| < co®, z'€ Bf (z}), ae€(0,1).
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Therefore, by assumptions (B), (E), (F), we get

[ 1vimiE G < et pmio® [ (90 oy o i3+
o, 5,
V"R @) V¢, + V00, (') + o™ Foa o, ¢ la)+
(8.4.30)
++F f(ox') | V0| T2, (&) + 0™ gloa!) |V vl ¢P(e) Yda'.

Let us apply again the Cauchy-Young inequalities

- 1 -
[V'v|™ 1|vx’N||vx’z’| < Elvlvim 2|U$’sc"2 |Vl N;

V|GV, < SV M ¢ %IV’vI"’\V’C\Z;

2 m42
' 2 +2 +2 ot ,

" flea vy, < S lvar [T 4 o @ (0a) <

2 m mt2
< _ Iy |™ m+2 = .
m+ |VU| +m+29 f (Q-T),

= m=2
Ql+7f(gx')|va| b vi‘?v < _‘vI,U'm g/ + 59m+2f2(gx,);

_ -1
o™ tg(ex)|VIvlvd, < = |V’ M2, + T g g (g2, <

—_ ]_ m42
< m+21V’ mvi;\,+ 3" ().

Hence and from (8.4.30) we finally obtain

/|V’v|mv33v(2(m’)dx’§claa /<|V’vlm'2vg,m,c2(x')+
HVOI™E, (') + VIV + ag™ [ (et
B;,

(8.4.31) +f 5 (o) + g (Qw’)>42(m’)dﬂf’
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Combining (8.4.25), (8.4.29), (8.4.31), choosing ¢ sufficiently small and us-
ing the properties of ((z'), we get

/ (|V"U|m+2 + ‘V”Ulm_z I'U:t’:x:’|2) dz’ <e / |V,’U|md.’l,"+

BY B,

(8.4.32)

mt2 mi2 2(m2)
+ea™*? f (Fox) + £ (o) + g7 (or) + g™ 7 (ole!) o',
B,
By the covering argument and returning to the previous variables x, u, we
get the desired (8.4.24). O

From Theorems 8.43 and 8.44 the following theorem follows immediately

THEOREM 8.45. Let u(z) be a weak bounded solution of the problem
(DQL). Let us assume that the hypotheses (A), (B),(C), (D), (E) and (F)
are fulfilled on the set M. Then we have the estimate

/ (V™2 + |[Vu|™2u2,) do <
G3e
(8.4.33)

m+4-2 kes

<G [ (rATum 4 724 R 4 g

4p
Ge/2

=

2(m42)

+g = )d:c, Vo € (0,d).

8.4.3. The local estimate near a conical point.

THEOREM 8.46. Let u(z) be a weak bounded solution of the problem
(DQL). Let Ay be the least eigenvalue of the problem (NEV P) (it is deter-
mined by Theorem 8.12) and t € (0,1] be the number that is determined by
(8.8.4). Let us assume that the hypotheses (U),1) —4) from Section 8.8 and
(A), (B), (C),(D),(E), (F) are fulfilled. In addition, suppose

(8-4.34) / (f2 + f’mT.‘T2 + g%—% + gﬂﬂmﬂ) dx S KQN—Q-I'm(tz\o—l).
Gie
e/2

If vy >2— N —mftAy — 1), then we have the estimate
(8.4.35) / (r7|Vu|™2u2, + 7772 V™ + 72 u™) do <
G§
< CrtEmBReT, v € (0,d).
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Proor. By Theorem 8.45 together with (8.4.34) we have
(8.4.36)
] 7| Vu|™ 2u,dr < C f Y2 Vu|mdz + Ko tN—2tm{Ede—1)
Ge* cle

e/2

Let us now apply Theorems 8.40 and 8.41. According to the estimates
(8.3.5), (8.3.8) and (8.4.36) we obtain

(8.4.37) / (r|Vu|™ 2ul, + 7772 V™ + T2y ™) dr <
a3e
< CortTRmIRTY,  vg € (0,d).

Let us define the sequence g = 2'7%p. We rewrite the inequality (8.4.37)
replacing g by gx. Then we get

/ (r7|Vu|™ 2u2, + 773 V™ + 7772 u|™) dz <
Gtk

(8.4.38) < C2t=R=px  yp e (0,d),
w=7+N-2+m(tho —1) > 0.

Summing the inequalities (8.4.38) over all £k = 1,2,... we have

/ (7| V™ 2u2, + 7772 V™ + P72y ™) dr <

Gpe
— C
< Co* 2(1—)’4:):4 - »
<Co* Y "
k=1
since s > 0. O
Example.

Let us look at the problem
Apu = —div (|Vu|™2Vu) =0 in Go,

U =0,
w=+4wo

where m > 1 and

Go = {a: = (r,w)i() <r <oo, |lwl L %} , wo € (0,27)
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is the plane angle. We use the results of Chapter 9. In Subsection 9.4 of
Chapter 9 we constructed the solution of our problem in the form

Wy wo
?’ ?]v
with ®{(w) > 0 and A = Mg, determined by (8.2.4). By the properties of

®(w), established in Subsection 9.4, it is not difficult to deduce the following
estimates

(8.4.39) 0 < u(z) <, |Vu| < epr?0), fuge| < cprio

w(z) =r@Ww), wel- A>0

Now we can establish the condition of the finiteness of the integral

f (r|Vu™ 22, + r7 72| Vu|™ + 772 y|™) da
G§
From the estimates (8.4.39) it follows that the integral above is finite, if the

2
integral [ pY=1+m(o=1) 4r js convergent. This fact holds under the condition
0

v > (1 — Ao)m and it shows that the statement of Theorem 8.46 is pre-
cise.

8.5. Notes

The properties of weak solutions of the (LPA) in the neighborhood of
isolated singularities have been studied by many authors (see e.g. [157, 393]
and the literature cited therein). We point out the great cycle of the L. Veron
works [384] - [397].

The behavior of solutions near a conical boundary points is treated only
in special cases in {375, 99, 59| for ag(z) = 0, in [52] for bounded solutions
and for m = 2. In this chapter we extend these results to the more general
quasilinear case m # 2.

The problem (N EV P) was studied by P.Tolksdorf [374, 375, 376, 378]
and a more detailed analysis is carried out by Aronsson [11], Krol [204, 205]
and §9.5.2, Chapter 9.

The solvability property of the operator ® associated with the eigen-
value problem (NEV P), Theorem 8.14, as proved here is due to M. Do-
browolski [99, 68].

There is a number of works relating to the estimation of the first eigen-
value of the m~—Laplacian in a Riemannian manifold (see, e.g., [223, 411,
371, 155]). Apropos to the one-dimensional Wirtinger inequality, see also
Theorems 256, 257 [142].

The other L™ — estimates of weak solutions of the problem (DQL) can
be found in §10.5, Chapter 10 [129] and in §7, Chapter IV [2186].
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Integral estimates of second weak derivatives of the (DQL) weak so-
lutions in smooth domains were established in [215, 216, 217, 401]. In
Section 8.4 we make these estimates more precise in the case of smooth
domains as well as establish new estimates for nonsmooth domains and we
follow [57, 70].

G. Savaré [354] obtained recently the certain new regularity results
for solutions of the Dirichlet and Neumann problems to some linear and
quasilinear elliptic equation of the variational structure in the Lipschitz
domains. M. Fuchs & Li Gongbao [125] established L>°—bound for weak
solutions of the Dirichlet problem for the quasilinear elliptic equation on
Orlicz- Sobolev spaces. S. Knobloch [158] considered the Neumann problem
for (DQL) in a plane domain with corners.
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CHAPTER 9

The boundary value problems for elliptic
quasilinear equations with triple degeneration
in a domain with boundary edge

9.1. Introduction. Assumptions.

This chapter is devoted to the estimate of weak solutions to the bound-
ary value problems for elliptic quasilinear degenerate second order equa-
tions. We investigate the behavior of weak solutions of the first and mixed
boundary value problems for quasilinear elliptic equation of the second order
with triple degeneracy and singularity in the coefficients in a neighborhood
of singular boundary point.

Let G be a domain in RN, N > 3, bounded by (N — 1)— dimensional
manifold dG and let T';,I's be open nonempty submanifolds of 8G, pos-
sessing the following properties: 'y NIz = @ and G = I'; UT,, where
T;NT; is smooth (N — 2)— dimensional submanifold that contains an edge
I'y € Ty NT,. We also fix a partition of {0,1,2} into two subsets N and
D. The union of the I'; with j € D is going to be the part of the boundary
where we consider a Dirichlet boundary condition, but with j € A/ is go-
ing to be the part of the boundary where we consider first order boundary
conditions either Neumann or the third BVP. In what follows we suppose
{0,1} € D. If 2 € D, then our problem is the Dirichlet problem, if 2 € N,
then our problem is the mixed BVP.

We derive an almost exact estimate of the weak solution in a neighbor-
hood of an edge of the boundary for the problem

—%—ai(m, U, Uz) + aoa(x, u, ty) + b(z, u, uz) = f(z),
i

(BVP) x € G, where ay > 0;
u(z) =0, z€0G,f2€D andzedG\ T, if2EN;
ai(z,u, ug)ni(z) + o(z,u) = g(z), xze€ly, f2e¢WN.

(summation over repeated indices from 1 to N is understood.) Here: n;(z),
1 =1,...,N are components of the unit outward normal to I's.
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For z = (z1,...,Zn) let us define the cylindrical coordinates (Z,r,w)

= IN-1
T=(Z1,--.,ZN-2), T:\/‘E?V—1+-T12v’ and w = arctan -
N

For the sufficiently small number d > 0 we also define the following sets as
Gi=Gn {(T,r,w)[ TeRVN2 0<r<d, we (—wy/2,w/2)};
r¢=T;nG{caGE, j=0,1,2
Qi =Gn{@,nw)|TeR 2 r=d, we[-w/2,w/2]} C OGE
wo € (0,27).

as

We shall assume the following

e 0G\ T is smooth submanifold in RV;
e there exists a number d > 0 such that

g = {(%,0,0)||Z| <d} C Ty

is the straight edge with the center in the origin;
o G is locally diffeomorphic to the dihedral cone

Dg = {(rw)] 0<r<d, we (—wo/2,up/2)} x RY=2% 0 <wp < 2m;

thus we assume that G& caQ and, consequently, the domain G is
a "wedge" in some vicinity of the edge.
® wr,= —wp/2; and w |r,= wo/2.

Let C°(G) be the set of continuous functions on G and let L., (G) and
W (G}, m > 1 be the usual Lebesgue and Sobolev spaces respectively.
By ML, (v, v0,G) we shall denote a set of functions u(z) € Loo(G) having
first weak derivatives with the finite integral

(9.1.1) / (v(@)|u|?|Vul™ + vo(z)u|™™) dz < o0, ¢>0, m>1,
G

where vo(z) and v(z) are two nonnegative measurable in G functions such
that

VJI(CE) € Ly(G), v Hz) € Li(B); w(zx) € Ls(G),
(9.1.2)

|
o | =

+-<

23

1 N
14t em<N(1+2 , t>max(N,——), N>m>1
t t m-—1
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If X(G) is one of the above spaces, then by X(G,T") with any I' C G we
denote a subset of functions u(z) € X(G) vanishing on I' in the sense of
traces. Now we define the space V

Vi ‘ﬁ}n,q (v, 0, G, 0G), if BVP is the Dirichlet problem,
T |9, (v, 10, G,0G\Ty), if BVP is the mixed problem.

We set also Vp is V for ¢ = 0. Let us define for Ve > 0 the number

0. e %(wo-{- €}, if BVP is the Dirichlet problem,
T Ywo +e, if BVP is the mixed problem,

and let A be the least positive number satisfying

7" [(m— 1)y + X7] (4% + A%) T dy
(

m—1+g+p) (K +I)T + A2 -m+7)(y2 +A?)
(9.1.3) = 6y,
(9.1.4) A™(g+m—1+p)+2X"H2—-m+7) > ao.

e

—2
2 _ ao

We shall use the following notation (ju| — k)4 := max (Jju| — &;0).
Concerning the equation of (BV P) we make the following assump-
tions.

Let 1<m< N, I>N,q>20and0 < p<1 be given numbers and let
a(x),ag(z), bp(x) be nonnegative functions.

1) f(x),a(z),ao{x),bo(xz) and g(x) are measurable functions such
that

vy (z)(ao(z) +bo(z) + f(2)) € Lp(G); a(z) € L (G); 9(z) € La(T2);
L om 1.1 N1 o1 ]

3 (2 » - _=1’
p N t s m—-1-4" m m

a;(z,u,€), i =1,...,N; a(z,u,£),b(z,u,€) and o(z,u) are Caratheodory
functions G x R x N — R, possessing the properties

2) ai(z,u, )& > v(@)|ul?lg|™ — co(z);  a(z, u,Eu = vo(@)lul*t™;
o(x,u) -sign u > 0;

3) 1b(z,u, )| < pr(z)|ul?™HEI™ + bo(x);
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) 1| ad(@,u,€) < v@)ldlelm + v @)™ (@)l +
i=1

+ a(z)= (2);

5) la(z,u, )] < v (2)vy’ ™ (@)ul?|e[™ ! + vo(2)[ultt™1 +
+a(z)ry™ (@)l

6) [lo(z,u)lds <o Vu € Loo(GUTL).
Iy

In addition, suppose that the functions a;(zx,u, &), a(z,u,£),b(z,u, &) and
o(z,u) are continuously differentiable with respect to the z,u,§ variables in
Ma, v, = Gg X [—Mn,Mo] x RY and satisfy in M, Mo

7) (m - 1)u6a;(5:i;u,§) = qaaigé’:’g) é‘j; 1= 1, e ,N;

8) uftlpp; > Y qv(@)|ul?¢™ 7, Vo € R \ {0}

N 2
9) \/; Ma—g—ﬂ| < v(@)|ujrt g™t

10) G > y(g)ule-2jem; 22l > g v (@) uldtm
Bo(z,u) > 0
du =

N
11) \/zzjl

12) aaigé}u’g) — rTlul? g™ (8] (€)% + (m — 2)6:;)

< co(r)rTul 9™ 2 + ea(r) g (r) Jul =T

2

ai(z,u, &) — rTluld|ém—2¢;| < er(r)rT|ul?)€)™ Tt + P (r);

<

18) | PeiR) — oy 2ujajem 2t

(79

< cg(r)r™ Hul?|g™ " +4pa(r);

1) otz ue) - rf-mu1u|q+m-2\ ; \b(z,u,a . mfu|u|q-2|am| <

< ca(r)r|ul €™ + Ju|%4a(r),
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where Ymq > 0, ¢;(r) are nonnegative functions that are continuous at
zero with ¢;(0) = 0. In addition, let there exist numbers k; > 0, such that
Yi(r) < ke, i =1,...,4, where
_U{N-1)-N{(m—-1)
N (N —m)

8, T—-?—(m—l)-i-)\(q-i-m—l);

-2
Br=T-m+2+Mg+m—1)"—;
m—1
(9.1.5) Bs=T—m+A(g+m—1);
_(-m)N 2
_N-m+1)-N_ 2
TN —m) T
REMARK 9.1. Our assumptions 11)-14) essentially mean that the co-
efficients of the (BV P) near the edge I'y are close to coefficients of model
equation

+¢e, VYe>0.

d
—5— (r™ |u|?|Vu|™ 2ug, ) + aor™ Mululttm 2
i

(ME) —pr™ |l Ve msign w = f(z),
O0<u<l, 20, m>1, a=20, T2m-—2.

DEFINITION 9.2. Function u(z) is called a weak solution of (BV P)
provided that u(z) € V and satisfies the integral identity

(1) / (a4, 0, wa)ba, + a0z, 1, Up)$ + b(, U, u) B} do =
G

= /f(m)qbdx—}—/{g(:c) —o(z,u)} ¢ds
G I

for all ¢(z) € V.

One can easily verify that assumptions 1)-6) together with (9.1.2) guar-
antee the correctness of such a definition.
We need the following auxiliary statements

LEMMA 9.3. Let m# denote the number associated to m by the relation

1 1 1 1
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and suppose that assumption (9.1.2) holds. Then there exist constants
c1 > 0, co > 0, c3 > 0 depending only on meas G,wg,N,m,t,HVO‘l||Lz(G),
v |L.(q) such that

(9.1.7) / vo(@)v|dz < o1 / U(z)| Vo)™ da
G G
and

kir]

i
(9.1.8) ( |vlm#dx) < | (wo(@)o|™ + v(z)|Vo|™) dz
/ /
Jor any v(z) € Vy and also

(9.1.9) vo(z)|ul|™dr < c3 [ viz)|u|?|Vu|mdz,
/ /
for any u(z) e V.

Proor. The proof for (9.1.7) had been given either in §1.5 [100] or
in the statements 3.2 - 3.5 [316]. The inequality (9.1.9) is obtained from
(9.1.7) by performing in the latter the following substitution

u=vv|° L, o=—"
g+m
Now we prove the inequality (9.1.8) following the Theorem 3.1 [316]. We
shall deduce the inequality (9.1.8) from the corresponding ones for the
imbedding Sobolev Theorem 1.31, namely if 1 < m < N then

(9.1.10) ||vum,%(a) < Clvllwrmgy, Yo € WH™(G).
If we put ~ =1+ 1 then we have from (9.1.2)

l<mx <N and x-l—%:l.

I

Now, by using the Hélder integral inequality with p = %, p = 1, we
obtain
1

moae

Vil L ey = ( / lo]™* v () vy "(:v)d:r) <
G

< llVo_l(w)llft(G) ’ (/ Vo(m)lvlmdx)

G

(9.1.11)

3
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Similarly,

1

me

VUl Lm(a) = (/ leIm"V"(m)V”"(x)d:c) <
e

< ||V_l(z)”1%t(c)‘ (/ V(sc)|Vv|mdw) ]

G

We consider now the inequality (9.1.10) replacing m by mase. (In this con-

nection we verify that % = m#). Then we obtain

(9.1.12)

[l gt gy < € (el ey + [ 90 () -

Hence and from (9.1.11), (9.1.12) it follows the required inequality (9.1.8).
d

LeMMA 9.4. There exists a constant c4 > 0 depending on N,m,t,G,Ts
such that for any v(z) € N}, o (v, 10, G, G \ Tz)

(9.1.13) ( A |v|°"ds>?1f < (:4{ f (vo(z)[v|™ +u(:1:)|Vu|m)d:c}#,
2 el

where

m(N —1)
9.1.14 o MmN D

PROOF. By the theorem of trace for Sobolev spaces (Theorem 1.35),
we have
V]| Lax (1) < cllvllwrims ()

with o* from (9.1.14). Hence and from the inequalities (9.1.11), (9.1.12) it
follows the desired inequality (9.1.13). O

CoROLLARY 9.5. (From Lemmas 9.3, 9.4).

(9.1.15) ( G[ |v|m#dm) " + ( /F 2 |u|a‘ds)°% <
< C[ (o(@)|e]™ + ()| Vo|™) do

for any v(z) € Ny, o(v, 0, G,8G \ I'2), where the constant cs > 0 depends
on Nvm5t7GaI‘2s ||V()_1”Lt(G)7 “V_IHLt(G)-
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The main statement of this chapter is in the following theorem.

Main Theorem. Let u(z) be a weak solution to (BVP) and let X be
least positive solution of (9.1.8) and (9.1.4). Suppose that the assumptions
(9.1.2) and 1) - 14) with m > 2 are fulfilled. Let there be nonnegative
constants f1,q1 such that

|f(z)| < farm ™ HA@tm-1 g e G4 and
(9.1.16)

Ig(x)l < glrr—m+1+)\(q+m~1)’ re I-wtzi

Then for every e > 0 there exists a constant c. > 0, depending only on the
parameters and norms of functions occuring in the assumptions such that

(9.1.17) lu(z)| < cer* s,

9.2. A weak comparison principle. The E. Hopf strong
maximum principle

Now we shall prove a weak comparison principles for the quasilinear
equation which extend the corresponding results in chapter 10, Theorem
10.7 [129] and in chapter 3, Lemma 3.1 [375] (see also [298]).

Let © C RY be a bounded domain with lipschitzian boundary 9Q =
0:0U 8,Q. We consider the second order quasilinear degenerate operator @
of the form

Q9= [ (Aiarva)oe, + Ale, )6 + B, v,02)-

Q

- f@9)ds + [ (£(,0) - o(a))ods
8,0

for v € M, o(v, 1,2, 00 \ 8,Q) and for all nonnegative ¢ belonging to the
set M}, o(v, 10,9, 00 \ 322) under following assumptions

the functions f(z),g(z) are summable on Q and 0.8 respectively; the
functions A;(z,n), A(z,v), B(z,v,n), £(z,v) are Caratheodory, continuously
differentiable with respect to the v,n variables in M = OxRxRY and satisfy
in M the following inequalities:

(9.2.1)

() 222 pip; > y,u(z)|nm 2, vp € RN \ {0};

N 2
P aB(z,v, - -1,
CURTP PBewa) | < w(z)fv|~tnm Y
1=
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B8B(z,v, — AA(z, - 0r (w,
(i) 2BEnm) > o ()| 2 p|m; 2AL) > o p(x)|ojm=2; 2EEM >,

Here: m > 1, vy > 0 and vy(z) and v(z) are the functions defined by
(9.1.2).

THEOREM 9.6. Let operator @ satisfy assumptions (i) - (iii). Let the
functions v,w € ‘ﬁ}mo(u, v, 2, 002\ 3o?) satisfy the inegquality

(9.2:2) Q, ) < Qw, ¢)
for all non-negative ¢ € N, o(v,v0,Q, 00\ 3:Q) and also the inequality
(9.2.3) v(z) <w(x), on N\ 50
holds in the weak sense. Then
(9.2.4) v(z) < w(z), a.e. ind
PROOF. Let us define
z=v—w; and v* =tv+ (1 —t)w, t € [0,1].

Then we have 02> Qv,¢) — Qw,¢) =

:/<¢Iiz$j]0 94 (x’ )dt—l— ¢/ OA, vt)dt+
1)

(9.2.5) +za, f aB(” OBV v) 4y 4 b / aB(“ e >d:1:+
0

0% (z,vt)
f oz / 5ok —— ‘dtds
for all non-negative ¢ € N}, (v, vo, 2, 0N\ 8,).
Now let & > 1 be any odd number. We define the set
Q= {z € Q| v(z) > w(x)}
As the test function in the integral inequality {9.2.2), we choose

¢ = ma,x:{(v - w)ka 0}'
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By assumptions (i)-(iit) we then obtain

1
kfymfu(a:)zk_l(/ |Vvt|m—2dt)|Vz|2d:r+
0

Q4
1 1
fym/1/0(:1:),2"“'*'1 (/ |'ut[m_2dt)da:+ /V(:z:)z’€+1 (/ ]Ut|‘2|VUt|mdt)dx
0 0
Qy 04
1
(9.2.6) < / v(z)* / o] Vo ) Ve
0
Q4

Now we use the Cauchy inequality
zk|Vz||vt|‘1|Vvtlm_l — ('vtl—lzkgulvvtlm/2> . (zk—;llvzllvvt|m/2—1)

1
< ot 2Rt 4+ S 2E 1 V22| Vet ™2, Ve > 0.
2 2e

Hence, taking ¢ = 2, we obtain from (9.2.6) the inequality

1
(9.2.7) (k'ym — i)ﬂ/ I/(m)zk_1|Vz|2(/0 |V’Ut|m_2dt)dw <0.

Now choosing the odd number k > max| 1; %Lm in view of z(z) = 0 almost

everywhere on 91, we get from (9.2.7) z(z) = 0 almost everywhere in ...
We have finished with the contradiction to our definition of the set .. By
this fact the (9.2.4) is proved. O

REMARK 9.7. The operator @, generated by the model equation (ME)
with ¢ = 0, satisfies all assumption (i)-(iii). In fact, we have for this case

v(z) =17, v(z) = aer™ ™, Ai(z,n) = v(z)n™ 2n,,
A(z,v) = wo(z)olv|™ 2, B(z,v,n) = —pv(z)v~|n|™

Therefore
_ B-A‘l, x, ] m— m—
v 1) 202 gl 4 (o~ e
and hence
0Ai(z,n)

Y g)— e oy PiPi = 7™ 2p|* + (m — 2)|n|™*(Pins)? = Y™ 2(p)?,
J
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where
)1, if m>2
™=V m-1, if 1<m<2,
that is (i) holds.

Furthermore,
66(;;7:)1 77) — _#my(x)v—llnlm_2ni
and hence (%) holds. At last
6"4(3;7'0) _ _ m—2 88(1',1:, 77) _ -2}, |m
) — (= D)ol 2, T = ()l 2™,

and therefore (ii7) holds as well.

Now we want to prove the strong Hopf maximum principle (cf. §3.2
[375].) In addition to (3)-(ii) we shall suppose

@ ol e

ZaA(I ﬂ)l

=1

+|B(z,v,n) +pr(z)vn™| <

< B/ () ™
for some non-negative constants Yp,, i.

LeEMMA 9.8. Let By(y) be an open ball of radius d > 0 centered at

y, contained in @ C RN and v(z) € ML, o(v, 10, Ba(y)) N C'(Ba(y)) be a
solution of

(9.2.8) Qo(v,¢) = / <A,;(z,vm)¢>mi + B(m,v,vm)¢>d:c =0
Ba(y)

for all nonnegative ¢ € Loo(Ba(y)) N WH™(By(y),8Ba(y)). Suppose that
assumptions (i) — (v) are fulfilled. Assume that

{9.2.9) v(z) >0, z € By(y) and v(zo) = 0 for some xy € OBy(y).
Then
(9.2.10) [Vu(zg)| # 0.

Proor. We consider the annular region

R = Ba(y) \ Baya(y) = {$| = <lz—y| <d}

and the function

—alz—y|* _ —od?

w(z)=e e, zeR,0>0.
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Direct calculation gives

(9.2.11) 0 < w(z) < e~°l==vl*,
(9.2.12)  w,, = —20(x; — yi)e"“]z_ylg; |[Vw| = 20|z — y|e_”lm_y|z;
(9.2.13) We,z; = (40 (zi — yi) (@5 — y5) — 20’(5;?)6_612'_”2;
L(ew) = —M + B(z,ew, cwg) =
i
DAz, ewy) 0Ai(z,ew,) B
= —€ B(szj) Wgzy ox; + B(m’€w18wz) -
 _degemolo-yP QA W) (o
deo’e B(waj) (1‘.1 yt)(xﬁl yJ)+
+ 2ege=cle—ul® Az, ewe) - 0Ai(z, swa) + B(z,ew,ew;), Ve >D0.

O(ewsy,) Oz;
By assumptions (%) and (v) it follows that
L(ew) < —sm—ly(:zr)[V'w[”"_26_"“”_1‘”2 Ayl — y[Po?—
(9.2.14)
—29mo — 4|T — y|imo) — pe™ ' v(z)w™! | Vw|™, Ve > 0.
Now we observe by (9.2.11), (9.2.12) that

(9.2.15) 1%"—' > 20z — 1

and therefore we have from (9.2.14) in the region R

L{ew) < =™ Lu(z)[Vw[™ 2e =9 . (4, + )d20? — 2(1 + 2d)Fmo),
e>0.

If we choose ¢ > %’;, then we obtain

(9.2.16) L{ew) <0 inR, Ve >0.

Since v > 0 on 8Bg/5(y) there is a constant £ > 0 for which v —ew > 0
on 0By/a(y). This inequality is also satisfied on 9By(y) where w = 0. By
virtue of (9.2.16) we have

Qolew, ¢) = / oL(sw)dzx £ 0= Qy(v, ¢).

Bu(y)
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Thus we obtain
Qo(v,¢) > Qo(ew, ¢) in R;
9.2.17
( ) {v > ew on IR.

By the weak comparison principle (Theorem 9.6) from (9.2.17) it follows
that

(9.2.18) v > ew throughout R.
Since zg € 8B4(y) and w(zg) = 0 we now have

v(z) — v(z0) > Ew(a:) — w(Zo)
|z —xol — |z —m0f

and therefore
IVo(zo)| > e|Vw(zo)| = 2eade™% >0, Q.E.D.
[l

THEOREM 9.9. (Strong maximum principle of E.Hopf). Assume
that Q is connected and v(z) € N, o(v,v0,Q) N CHQ) is a non-negative
weak solution of

/(.A,L(x, Ug )P + B(:E,v,vz)gb>d:z =0

Q

for all nonnegative ¢ € Loo(Q) N WH™(Q,00). Assume that v(z) # 0.
Suppose that assumptions (i) — (v) are fulfilled. Then

(9.2.19) v(z) >0, z€Q

PROOF. Assume that v(zy) = 0 for some zg € . Then, we can find

a ball By(y) C Q, satisfying the hypotheses of Lemma 9.8, that is zy €

0B,4(y). By this Lemma we have |Vu(zg)| # 0. But 0 = v(zo) = uelf2 v(x)
T

and therefore |Vv(zy)| = 0. This, however, is a contradiction. Therefore,
the conclusion of the theorem must be true. a

LEMMA 9.10. Let u(z) be a weak solution of (BVP) and let the assump-
tions 2), 3) with ap(z) =0, bo(x) = 0 be fulfilled. If in addition

flz) >0, g(z) >0 foraexzeCG
then u(z) > 0 a.e. in G.
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PrOOF. Choose ¢ = 4~ = max{—u(z),0} as a test function in the
integral identity (II). We obtain ‘

/<ai(x, —u",—uy )(—ug,) +ap a(z, —u",—uz )(—u")+
G
e, —u™, —ug () + Floh o=
=- /((—u_)a(:r, —u”) + g(z)u )ds.
Iy
By virtue of assumptions 2) and 3)

(1 p) / v(@)u” |9V~ [ + ao ] vo(a)u [Tz <
G G

< —-/fu_dx - /((—u_)o(m, —u”) + g(z)u” )ds <0,
G

| A

since 4~ > 0. Due to g < 1,ap 2> 0 and u!ac\rz= 0 we get u=(z) =0 ae.
in G, ie. u(z)>0ae. inG. O

9.3. The boundedness of weak solutions

The goal of this section is to derive Lo (G)—a priori estimate of the
weak solution to problem (BVP). The main statement of this section is the
following theorem.

THEOREM 9.11. Let u(x) be a weak solution of (BVP) and assumptions
(9.1.2), 1) - 3) hold. Then there exists the constant My > 0, depending only
on ||gllz,(ra)» V@) 5 (@)l L.(c)s measG,wo, N, m, 1,4, p,1, 5, a0,
llvg ! () (o () + bo (@) + |F (@) (e, such that

[|ul| L (@) £ Mp.

PROOF. Let us introduce the set A(k) = {z € G, |u(z)| > k} and let
X A(k) be a characteristic function of the set A(k). We note that A(k+d) C
A(k) Vd > 0. By setting ¢(z) = n((|u| — k)+)xa) - signu in (II), where
7 is defined by Lemma 1.60 and k > ko (without loss of generality we can
assume kg > 1), on the strength of the assumptions 2) and 3) we get the
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inequality
/ (@)l [Vul™ ((fu] — k) )dz-+
A(k)
tao / vo(@)lulT ™ n((Jul — k)4 )da+
Alk)
+ [ ol uisign wn((ul - k) )ds <
T'anA(k)
(9.3.1) <u [ v@ITulult n((lu] ~ B2 )+
Alk)
+ [ (bol@) + [F@) 1((ful — k) )+
A(k)
+ [ aoy((ul-Bds+ [ la@n(lul - k) )ds.
A(k) T2NA(k)

Now we define the function wg(z) := 75 (W) . By (1.11.7) from

Lemma. 1.60 we have

032 [ lo@inul-Rds <M [ lg@)usmdst

C2nA(k) LaNA(k+d)
+e . lg(x)|ds
Can{A(k+d)\A(k)}

Now we apply Lemma 9.4. In virtue of Holder’s inequality and (9.1.13),
(9.1.14) we get

19(@)| x| ™ds < f wel®ds | -llglls o comy <
TanA(k+d) m_1-

<clldlln s (mn- / (v(@) V| ™ + vo () x| ™) dz.
(>

T2NA(k+d)
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Then by assumptions 2) from (9.3.1) and (9.3.2) it follows that

[ @l vl (ol = 034) ol - B2 e <

Alk)

< Meallglls v - / (@) Veorl™ + vo(@) i ™) do+

‘ Ak)

033+ [ (ool ((ul = k) + Co | FDn(llul - B4) o+
A(k)
te . / lg(z)|ds.
TanA(k)
By the definition of n(z) (see Lemma 1.60) and wy(z)
e x(lul—k)+|vulm - (m)m |Vwg[™, 23>0
»
and by the choice of 3¢ > m + 2 according to Lemma, 1.60, using (1.11.5)-
(1.11.7), from (9.3.3), we obtain

(9.3.4) %(—E)mk(”;/u(m)WmedewM / hMz)|w|"dz+

A(k) Alk+d)

+Medlglle noy o) /(V($)vak|m+V0(:E)|1Uklm)d$+

m—1—

t A(k)
+ cge ”d< / h{z)dx + / |g(:c)|ds>,
A(k)\A(k+d) T2nA(k)
where
(9.3.5) h(z) = ao(z) + bo(z) + | f(z)].

Now, by (9.1.7) from (9.3.4) it follows that
(9.3.6) (Kl — co) / o(2)| V™ dz < ex6 / h(z) we | dz+
A(k) A(k+d)

+ cq1e "d< / h(z)dz + f |g(m)|ds>,
A(RNA(k+d) T2nAk)
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where

M »
(937) co=2(=)"(L+e)Maallglle_yo, a0 =2(=)"Mer;

m—1—-F

Ci1 = 2(%)m68.

By assumptions 1) we get that 1y *(z)h(z) € Ly(G), where p is such
that % <%- % — % By Hélder’s inequality with exponents p and p’ (%-F 1% =
1)

1

»
(9.3.8) / bl de < ||y @R, / V2 ()| ™ dz
A(k+d) (k)
From the inequality % <%- % - % it follows that mp’ < m#, where m# is

defined in (9.1.6). Let j be a real number such that mp’ < j < m¥*. From
the interpolation inequality

1
/ v (@)lwok|™dz | <
(k)
8 (1—;'9)m.
< /uo(:c)»wkmw : fug’m(a:)lwkvdx
(k) (k)

with 8 € (0,1), which is defined by the equality a% = % + 1;—.0, on the

strength of Holder’s inequality with exponents ";—.# and Em##—_j from (9.3.8),
we get

¢ 4
hlwg|™dz < c12 / vo(z)|we|™dx | x
A(k+d) ) J

9.3.9 $
(9:3.9) x / lwg ™ da ,
(k)

|z = [l @], (g 10 @)L (o)
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provided we choose j = ;Z:_—mmi € (mp',m#*) in virtue of (9.1.6) and (9.1.2).
By using the Young inequality with exponents % and ﬁ from (9.2.9) we

obtain

( c
hlwy|dz < ﬁ f vo () [wy | ™da+

A(k+d) A(k) -
mF

(9.3.10) ¢ +eTB (1 — 6) f jwe| ™" dx
k)

1 1-8
ci3 =10 HVo_l(-’ﬂ)h(-’”)Hzp(G) lvo(=) 2y, Ve>0.

It follows from (9.3.6), (9.3.10) that

(kg—cg)/u(a:)|Vwk|md:c§c14£_1/9 / vo(z)|wi|™ dx+

Alk) Alk)
(9.3.11) teis( f h(z)dz + / lo(z)lds) +
Alk) T2nA(k)
i

1 #
vose®™ | [ utas |
(k)

where Ve > 0, c14 = €13¢10, €15 = (1 — 0)co, €16 = c118 *9.
Further, from (9.3.11), by (9.1.7), we get

F
(k3 — co — crc146 ) / V()| V| dz < e156 T / o)™ dz
A(k) (k)
(9.3.12) +016< / h(z)dz + / |g(z)|ds>, Ve > 0, Vk > k.
Alk) TaNA(k)

Let us choose

(9313) {C1014E_% = %kg = £ = (201614)9]%_(19;
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By virtue of (9.1.15) we obtain

mF -
(._l_kg —C]_sé’zﬁj){ / iwklm#d.'lﬁ' + (/ |wk|a*d8) } <
4cs T3nA(k)
(k)
(9.3.14) < 016< / h(z)dzx + / Ig(a:)|ds>,
Alk) TanA(k)
if we choose
(9.3.15) ikg > c15e T,
805
So by (9.3.13), (9.3.15) we choose
(9.3.16) ko > max{l, (8csc15)%6(2c1c14)%, (409)%}
Therefore from (9.3.15), it follows that
F =
(9.3.17) / k™ dz |+ ( f |wk|“*ds) <
TanA(k)

()
sc”( / h(z)dz + / |g(a:)|ds> Vk > ko,
A(k) TanA(k)
where
6 .—6

¢ .—9 —8,6—1 —1
Cci7 = max{4 C1 CgCiy C15 Cl6, 20509 C16, 865016}.

At last, by Young’s inequality with exponents p, s, 1711—_—1—, we get
r 9

— —_1_1
/ h(z)dz < ||vg H@)h(@)|| (@ 0@ 1, () meas *~» 77 A(k).
A(k)

In just the same way

1
l9(z)lds < [|gl|a(rs) - [meas(Ta NAE)]™,  —+— =1,
FzﬂA(k)
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Therefore from (9.3.17) it follows that
o

/ | +(/ |wk|a*ds) <
FzﬂA(k)

(%)
9318) < w([5 @@, ) 170, o mens T AR)+
Hlgllza e - [meas(Ta N AGK))] ™),

where 1 — 117 — 1> 0 in virtue of (9.1.2) and assumptions 1).

Let now ! > k > kg. By (1.11.8) and the definition of the function wg(zx)
we have |wg| > L (|u| — k)4 and therefore

m¥*
/ |wk|m#d.1: > (l——:n—k) - meas A(l)
A(l)
and .
. I—k\*
|wel® ds > (—n—m_) -meas ([y N A(I)).
r2nA(l)
From (9.3.18) it now follows that
m#

(9.3.19) meas A(l) + [meas(I'y N A(I))] =© <

m# ut

< ( m ) . {/ IWk|m#d.T+ (/ |wk|a“d8) }S
-k W T2NA(k)

1 m# wm# 4
<1 (m) - (2e1n) (Huﬂ @)1, 0 1@, 0y +

m¥
m

+Hgl|La<r2>) x {m (=32 Ak) + [mens (T2 nA(k))J*’f—f’},

Vi>k > k.

Now we set

¥ (k) = meas A(k) + [meas(T'z N A(k))] %ﬁ.

Then from (9.3.19) it follows that

(9.320) (1) < exs (l m k) - <[¢(k)1%(l-%—%> + [w(k)]v?»'_;’>-
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Relying on (9.1.2), (9.1.6), (9.1.14) and assumptions 1) we note that

m# 1 1 o*
¥ = min l1——=-], - ¢ > L
m p s ma

From (9.3.20) we then get

P(l) < (chl,c*’)ww“’(k) Vi> k> ko

and therefore we have, because of Lemma 1.59, that ¥(kg + 6) = 0 with ¢

depending only on quantities in the formulation of Theorem 9.11. This fact
means that |u(z)| < ko+ 46 for almost all z € G. Theorem 9.11 is proved. [

To complete this section let us derive some a priori integral estimates
of these solutions.

THEOREM 9.12. Let u(z) be a weak solution of (BVP) and assumptions
(9.1.2), 1) - 3) hold. Let us suppose in addition that

1 _gim
[T @) la) + @) T <00, g(a) € Laga (T,
G
Then the inequality

(9.3.21) / D)l |Vul™ + vo(@)ul*™ ) da <

< C{/Vﬂl“"

G

™ (@) (bo(2) + |£(@))) T do + |95 (@)ao(@)]|, ), +

@I ¢l @I, + [ b )
r

holds, where C > 0 is a constant depending only on N, m, q, u, ag, measG.

PROOF. By setting in (II) ¢ = u we get, in virtue of assumptions 2)
and 3)

(93.22) (1—p) / (@) ul?| Ve ™dz + ao / vo(@)|ult ™ dz <
G G

< / ca(e)dz + [ (bo(o) +17(@)) utaldz + [ lo(a)[u(@)ids.
G T2

G
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. . . _ - +
By the Young inequality with p =¢g +m and ' = q—}_%

(bof x)+|f(m)|)|u(x>|—( q+*"(w)|u<x)|)( T (bo(z) + If(w)l)) <

(9.3.23) < ewp(x)|ulT™ + cevy i () (bo(z) + |f(zv)}) T gertand
l9(2)|[u(z)| < elu(@)] = + celg(z)| " for Ve > 0.

Further, by Lemma 1.29 and by Young’s inequality we have

/ ulw)| 5 ds < s [ (Jute) ™ + (o) # V) dz <

G
< P2 [(h @ Vul @) + (F @)y * (@) o <
G
(9.3.24) < mn—:qCG/<%(V(x)|u|q|Vu|m+Vo(m)|u|q+m)—|—
G
%( (@)t ”‘(a:))>

In addition, we have

s

/ao(w)dﬂC < [|o5 (@0 (@)l 0@, 11l -1 1 and
G
(9.3.25)

Jr @ = [ (@)™ @de < |y @, - (measG)
@ G

where t(m —1) > 1 by (9.1.2).
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From (9.3.22)-(9.3.25) it follows that

(1-p) f () [ul?| Vel dz + a0 / vo (@)l ™dz <
G G

(9.3.26) <er / v (@)|uf?Vu™dz + &5 / vo (@) |ul ™ dz+
G

m 1
+c(€1,52,m, q, Nv L measG){/ |g($)l%qu + Hy—l(m)HZl{(‘é) +
T2

o @ IE + [ @) bale) + 17(@)) F ot
G

@t (ol

Now, if ag > 0, then we choose g1 = 1—}‘—, €2 = %. And if ap = 0, we then

take advantage of (9.1.9) and choose &, = £9c3 = 232. For both cases, from

(9.3.26) we obtain the required (9.3.21). Theorem 3.2 is proved. O

9.4. The construction of the barrier function

Let us set

vigy=r", lzg)=r""™, r>m—2form > 2.

In this section, for N— dimensional infinite dihedral cone

- w w
G0={w=('f,'r,w)|§€RN 20<r <00, ~— <w< =

with the edge 'y = {(T,0,0)I T e RV ”2}, that contains the origin, and
lateral faces

I‘lz{(f,r,—%)|'f€RN“2, ()<'r<oo};

Ty = {(’x‘,r,+—“;—°)|§eRN‘2, 0<r< oo}
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we shall consider only the homogeneous boundary value problem

(fw= —ddi (r™|w|?Vw|™ 2w, ) + aor™ ™ w|w|tm—2—
~prTwlw|? 2| Vw|™ =0, z € G,
3 (BVP)o
w(z) =0, x €eToUT UTy; for the Dirichlet problem;
w(zx)=0, x e TyUTy; %% =0, z € I's for the mixed problem;
L ap>0, 0<u<l, ¢g>20 m>2, 72>2m-—2

and construct the function that will be the barrier for the non-homogeneous
problem. We shall seek a solution of the problem (BVP)q of the form

wy Wo

2,—2—], A>0

(9.4.1) w(z) = dw), we |-

with ®(w) > 0 and A satisfying (9.1.3)-(9.1.4). By substituting the func-
tion (9.4.1) in (BVP)g and calculating in the cylindrical coordinates for the
function ®(w), we get the following Sturm-Liouville boundary problem

'% [(A?cb? + @’2) T |<I)|‘1<I>’] +
FAMg+m—1) — m+ 2+ 7]0|B|T (A2<I>2 + @’2) T
= ap®|®1T™2 — ,|B|e—2 (A2¢>2 + @’2)% , w € (—wo/2,wo/2),
(StL)
®(—wp/2) = ®(we/2) =0  for the Dirichlet problem;
| &(—wo/2) = ®'(wp/2) =0  for the mixed problem.

By setting ®'/® = y, we arrive at the Cauchy problem for y(w)

([(m—1)y? + 2] (5 + ATy + (m — 1+ g+ w5 + A F +
A2 —m+ )2+ AT =ap, w € (—wo/2,w0/2),
< (CPE)
y(0) =0 for the Dirichlet problem;

(Y(wo/2) =0 for the mixed problem.
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From the equation of (CPE) we get:
—[(m = 1)y + X7 (v + 2Ty =

=(m—1+g+p)E + AT + A2 -m+7)(y2 + A" T —ap =
(9.4.2)

=@+ M) -1+ g+ m)E* + ) + A2 —m+7)] —ao >

>+ A T D3 m—1+q+p) +A2—m+7)] —ag >
>Am —14+qg+p) + A" (2 -m+7)—ap >0

by virtue of (9.1.4). Thus, it is proved that y'(w) < 0, w € (—wo/2,w/2).
Therefore y(w) decreases on the interval (—wo/2,wo/2).

9.4.1. Properties of the function ®&(w). We turn in detail our at-
tention to the properties of the function ®(w). The case of Dirichlet problem
see as well [72]. First of all, we note that the solutions of (StL) are deter-
mined uniquely up to a scalar multiple. We consider the solution normed
by the condition

1= {‘D(O) for the Dirichlet problem;

(9.4.3) .
(%) for the mixed problem.

We rewrite the equation of (StL) in the following form

2 [(m - 1e” + 30?| (We? + o) T = gt (202 + o) Ty
+2? (X202 + 2'%) w {Arm-1) —m+2+7] (N0 + @) +

(9.4.4) +(m - 2)A2¢>’2} — ae®™.

Now, since m > 2 from (9.4.4) it follows that

m—4
(94.5) —® [(m —1)@” + )\2<I>2] (,\2<1>2 + @'2) T 9" > g™t

m—2

2

+ (,\2@2 + @'2) {(g+m) (A%? + @'2) FAR(m—1)—m+2+7]8%)} >
>0™{(g+p+m-1DA"+(2-m+7)A" " —ag} >0.

(Here we take into account that (g+pu+m —1)A2+(2—m+71)A >0 by
(9.1.4))

Summarizing the above we obtain the following properties of function
&(w)

(9.4.6) ®(w) >0, ®"(w) <0 VYw e (—wo/2,wp/2).
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COROLLARY 9.13.

(9.4.7) max Plw)=1= 0<P(w)<1 VwE [~wy/2,wp/2).
[—wo/2,w0/2]

Let us proceed with the problem of (CPE) solvability. Rewriting the
equation of (CPE) in the form resolved with respect to the derivative y’ =
g{y), we observe that by (9.4.2) g(y) # 0 Vy € R. Moreover, g(y) and
¢'(y) being rational functions with non-zero denominators are continuous
functions. By the theory of ordinary differential equations the Chauchy
problem (CPE) is uniquely solvable in the interval (—“’421, %1] By integrating
(StL) - (CPE) we obtain

Jy(€)d¢  for the Dirichlet problem;
(9.4.8) ®(w) =exp{ o
[ y(¢€)d¢ for the mixed problem.

(4)0/2

Y m—4
/ [(m = 1)2% + 22 (22 + A2) "7 dz _
J (m—1+q+p)(2+20)% FAC—m+T7)(22 + 22" — g

(9.4.9) _ {~w for the Dirichlet problem,;

P -w for the mixed problem.

Hence, in particular, we get from (9.1.3) that liIfQ Y(w) = +oo. The
w—r—wz +0

last allows us to prove the solvability of the eigenvalue problem (StL). The
expression (9.1.3) yields the equation for the sharp finding of the exponent
Ain (9.4.1).

9.4.2. About solutions of (9.1.3) and (9.1.4). We may calculate
the exponent A explicitly for m = 2 or ag = 0. In fact, integrating the
(9.1.3) we obtain

m= 2.

VT2 (m/60)2 +4ap(l+q+p)—7
2(1+ g+ u) :

(9.4.10) A=

ap =0, m#2.

We denote the value A in this case by Ag as follows
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Mm—2(m—-1+g+p)+(m-1)2-—m+1)
(9.4.11) —
Vim—14+g+p)2A2+(m—-1+g+p)2-m+7)A

= (m —2)(1 — 3) + 27,

where » = %9. Hence we get the quadratic equation and it followsthat

Ao =
m(m—2)+[(1—n)(m—2)+x’r]-\/m2+x(2—m+r)[(m—Z)(Z—x)-I—x'r]+
2u(m——1+q—|—u)[(m——2)(2—~x)+x1‘2]
m—2—71 :
(9.4.12) _ +2(m_——1+q+u) B if 90 < m,
m{m—2)—4r(r4+2—m)+(274+2—m)y/m2+47(v+2—m) . _
8r(m—TTaTr) , iffp=m.

It is easily to see that A9 > 0. From (9.4.12) we have for §p = 7 also
m-—2—7 m(m —2) +7+/72 + 4(m — 1)
9.4.13 Ao = + .
( ) 0T Sm—1+q+p)  2x(m—-1+q+p(m—-2+7
Now from (9.4.12) - (9.4.13) we deduce following special cases of value Aq.

mitac(2— ) (m—2)+ (1—2)/m? —2(2— 3) (m—2)?
2 (m—14q+p)(2—x) !

m—1)* e
71_77” Crswvmn® if g = .

PROOF. We prove the second equality of (9.4.14). Applying the Taylor
formula /T£¢ = 1=+ 3¢+ o(t) for ¢t — 0, from (9.4.12) we obtain

if 0 < 7,
(9.4.14) )Xo =

\ m(m — 2) — 472 + 4(m — 2)7 + m(27 + 2 — m)y/1 4 lrtiom)
Pl 8r(m—1+4+q+u)
m{m — 2) — 472 + 4(m — 2)7 + m(27 + 2 — m) [1+M%?—_M+O(T)]
87(m—1+q+u)
~_ m(=2r+3m —4)+(1+2—-m)(27 +2 —m) +o(7')
- 4m(m —1+q+p) T
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Hence it follows that

_ 2
Xo| _,= lim Aoj ___m-1" qED
¥=2 70 k=2 m(m-—1+q+pu)

Similarly, on the other hand from the first equal of (9.4.14) we have

Ao o=

. o 1O s)y/1 - Z2zm=2)t
=2x(m—1+q+p,) #(m—2) +m 2— B

1 #(l—3)(m—2)? o2 )
= -2 - .

2x(m—1+q+u){%(m )+m 2m + 2—
Hence it follows that
. _ (m-1p
)\0‘1;23_ LI o =0 m{m—1+q+p)

Q.E.D. O

T=m-—2

From (9.4.12) it immediately follows

mm
0y < 7.

Ao = :
0 46p(m — 1+ g + ) -

wg—0

We want to investigate the behavior of A for ¢ — 0. For this fact we rewrite
(9.4.12) in the following way

m—2—-7

Xo = +
T Aam-1+q+n)
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m(m —2)+[m—2+ st —m+ 2)]m\/1 + ”2(2—m+7')+2r(nrle—2)(2—mfr)x
252(m —1+q+p)(r—m+2)+4x(m—2)(m — 14+ g+ pu)

m(m—2)+[m—2+x(t—m+2)]{m+Z@2-m+7)(>+2m—14)}
- 22 (m—1+q+p) T —m=+2) +dse(m —2)(m—1+q+p)

m-—-2—171 o(x)_m(l_%%)"’o(“))
2m —1+q+p) »x  2x(m—1+q+p)
m-—2—7 o(x)
2(m —1+q+p) »
m(r—m+2)+ 5= (2 —m+7) (3 +2m — 4)[x(r —m +2) + m — 2 B
2e(m —1+qg+p)(T—m+2)+4(m—2)(m—1+g+p) B
m

1
= - =+ 0O(1).
2(m —1+q+pu) P 1)

-+

Hence we finally get

_ mn 1
T Am-1+q+p) fo
This fact coincides with the Krol result for the pseudo-Laplacian (¢ = u =
T = ap = 0), see p. 145 [205].

We want to investigate the behavior of Ag for m — +00. For this fact we
rewrite (9.4.12) in the following way
1) if 2 < 2,
m—2—71 N m? — 2m
2(m—14+qg+p)  23(2— 3)m? + O(m)
(1 = s)m + 23¢ — 24 5¢7]4/(1 — 3)2m2 + O(m)

Ao

+0(1) forfy — 0.

Mo = +

+ 25¢(2 — )m? + O(m) -
. m-—2-71 [1+ (1 — 2)[1 — 2]Jm® + O(m3/2)
C2(m—1l4+g+p) 22¢(2 — 3)m? )

Hence it follows that

1 14+4Q-s)1—2 [55y i »<1,
m—s+o0 2 2%(2—3) | 1, if 1<22<2;
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2) if =2,

A _m2—2m+4m'r—4'r2—87'
0= 87(m —1+q+ p)

(27 + 2 — m)my/1 4 ArlriZ=m)
+

8r(m —1+q+p)
_mP—2m(l—-2r) —4r(1+2)
N 8r(m—1+q+p)

[m? — 2m(r + 1)] (1 + 2= 4 (L))

8r(m —1+q+ p)

8mr + O(L) .

m—r+00

Thus we finally have

: ] T
lim A = { Po(m—80) =5y, U 0<6p <3,
m—s+00 1, if % < 0o <.

This fact coincides with the Aronsson result for the pseudo-Laplacian (¢ =
u=T=ag =0), see [11].

9.4.3. About the solvability of (9.1.3) and (9.1.4) with ay > 0.
We set

F(\ a0,0) = G0+

(9.4.15)
+ m—
+ jo [(m — 1)y +A2)(y? + A2) " dy
(m—1+g+w@+A)F + A2 —m+ 72 +A2)"F —ay

By making the substitution: y = tA, ¢ € (0, +0c0) we obtain

+oo

.’F()\,ao,wg) = —fg + / A()\,ag,t)dt,
0
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where

A(X ap,t) =
(9.4.16)
_ [(m—1)t2+1)(2+ 1)
CAm=14g+ R+ DT+ (2 -m+ D)+ 17T —ggAl-m
Then the equation (9.1.3) takes the form

(9.4.17) F(X, ag,wo) = 0.
According to the above, we have
(9.4.18) F(Xo,0,w0) = 0.
The direct calculations yield
%} = —[(m - D)2 +1)(£ +1)"7 x

(9.4.19)

y (m—1+¢+p)(t*+1)% +ag(m —1)/A™" <0

[)\(m Sl gt )+ DT 42— m )2+ 1) - aoAl—m]
Vi, A ap;
aA A= (m — 162 + 1)(2 + 1) =T

0ay  [Am—1+q+m)(E+1)F +2—m+7)E+ 1) —aor-"]’
(9.4.20)
>0 Vi, A, do.

Therefore, we can apply the theorem about implicit functions. In a certain
neighborhood of the point (Ag,0) the equation (9.4.17) (and so the equa-
tion (9.1.3) as well) determines A = A(ag,wp) a8 a single-valued continuous
function of ag, depending continuously on the parameter wg and having
continuous partial derivatives %\g» aﬁ(‘%‘o—. Now, we analyze the properties of

A as the function A(ap,wp). First from (9.4.17) we get:
aF ox  OF OF O  OF

a0 T Bag ™ 3xGwg Ty
Hence it follows that
(9.4.21) B—A——(%) and N __ g_f‘;)
A. =——3 ===,
dag  (55) 9w &)
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But, on the strength of (9.4.19), (9.4.20) we have

400 +oo
oOF oA OF oA oOF
—_— —_ —— = — —— _1
Bag By dt > 0, B3 ) dt < 0, 56, V(A a0)
0 0
(9.4.22)
oF OF dby ﬂ—%, if BVP is the Dirichlet problem,
and o = 20 o Ee
Jwg 06y dwy —1, if BVP is the mixed problem.
From (9.4.21) and (9.4.22) we get:
oA oA
4. —_— - > 0.
(9.4.23) Baq > 0 and B, <0 foranyap=>0

So, the function A(ag,wq) increases with respect to ag and decreases with
respect to wg. Applying the analytic continuation method, we obtain the
solvability of the equation (9.1.3) Vao.

COROLLARY 9.14.
A = Mag,wo) = Ao >0 for anyag > 0.

Further, multiplying the equation of (StL) by ®(w) and integrating over

the interval (—42, £0), we get

huds wo
(9.4.24) (1 — p) / I‘I’lq()\ch)2+@'2)mT_2(I)'2dw=—a0 / III)|Q+'mdw+
_49

_ﬂzl u2
5
FA2(m =14+ g+ p) + A2 —m 7)) / 18[92(A292 4 /%) "2 dw >
_¥o
2

“g
>(A™(m—1+g+p)+A™ 2 -m+7) —ap) / |®|9t™dw > 0,

-2
by virtue of (9.1.4).
LEMMA 9.15. We have the inequality
Y =
(9.4.25) / 1B12|%' ™ dw < e(g, s m, 7, A) / 18[9+ doy.

W, )
5 -5
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PROOF. From (9.4.24), by Young’s inequality with p = 25, p' = 7,
it follows that

ey
A-p) [ 2P "dw <

“o
-2

=

m

<SP (m—1+q+p)+A2-m+7) 1B782(A282 + &%) " dw <

-
2 =y
<e [ |@9(A2@% + &%) Fdw +c. / |87t dw <

- -3

= =

<e / |®]9|®"|"dw + c. / |®|7t™dw Ve >0,
-7 -7
since m > 2. Choosing € = 15£, we obtain the required (9.4.25). O

LEMMA 9.16. Let the inequality (9.1.4) hold and, in addition,
(9.4.26) g+p<l.

Then

(9427) chllmdw = C(Q: :u',mvTa’\vwo)'

M5 i

PROOF. For dividing the equation of (StL) by ®|®|9~2, we get

d 252 12 mT_2 ’ 2 2.2 2 _r_n._z—_g
@E[(’\@ +0°) T o] +g0” (Me240%) T 4
m=2
+’\[’\(Q+m—1)—m+2_|_7-]¢2()\2®2+q>,2) Pl _

= ag|®|™ — p ()\2<I>2 + @’2)7 .
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On integrating the obtained equality we have

(9.428) (1—g—p) [ (A2 + &%) %Fdw +ao

|®|™ dw =

ofE s
“lg\ulé

=AMAm+2-—m+71) 2(A20% + %)™ dw.

T

Since g+u <1, AAm+2—m+71) > 0and m > 2 we shall get the required
(9.4.27), if we apply the Young inequality with p = 2= p’ = &, Ve > 0.

Finally, if there were ¢ + p > 1, then from (9.4.28) we would get

|@[™dw <

w

@9
2
(g — 1+ pAm f 18[™dw + A" L(Am + 2 — m + )
it}
2

o s

< ag |¢|mdw7

\”lg

_wg
2
which would contradict (9.1.4), by virtue of & # 0. The lemma is proved. [J

(9.4.1),(9.1.3) give us the function w = r*®(w), which will be a barrier
for our boundary problem (BVP).

LEMMA 9.17. Let {(r) € C§°[0,d]. Then
{(rw(z) € M, (77,7, GE, GE\ TS).
If (9.1.4) end (9.4.26) hold, then
C(ryw(z) € Ny o(r™, r™ ™, GF, GE\TY).
PROOF. At first, we observe that w € Lo (G%) since A > 0. Now we

shall prove that

(9.4.29) I[w] = / (r™ w4 T |w]? | Vw|™) dz < 0.
G§
The direct calculations give

(9-4.30) - Vo™ = rm3-D(x20? 1+ %)%,
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Therefore

Lol = f {rremODrRgmra(y) 4 rmEmO-DT @[ (9% +-8%) F |do
ot

4 =
< C()\, m)/TT+(m+Q)A—m+ldr / (l@IQI¢/|m+ |<I)|q+m)dw-
%0
2

It is clear that, by virtue of Lemma 9.15, I,[w] is finite. To prove the second
assertion of the lemma we have to demonstrate that

(9.4.31) Ifw] = / (™ + o7 [Va™) dz < oo.
&

We again have

Hu = [{rr D02 + )8 47 mt-Dgm(w) o <
ot

[

d 2
< e(A,m) /r'r"'m)""l_:"‘dr f {()\2<I>2 +87)F + fbm}dw.
0 -3
Ifw] is finite by Lemma 9.16. Thus,
Iw] € e(m, A, N, q, p,wp, d).
Lemma 9.17 is proved. O

ExXAMPLE 9.18. Let m = 2 and we shall consider the boundary value
problem (BVP), for the equation

-;3; (r" Jw|%wg,) = aor™ 2wlw|? — prrwlw|? |\ Vu|®, = € Gy,
(9.4.32)

0020, OSF/<17 (120, TZO
From (9.4.8), {9.1.3) it follows that the solution of our problem is the func-
tion
cog TFTF5 ’;—“’) for the Dirichlet problem,
wr,w) = r* x .
cosTratr [ I — %) for the mixed problem.
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where

)= VT2 4 (m/66)2 +dao(l+q+p)—7
2(1+q+p)
(see (9.4.10)). It is easy to check that for such a A the inequality (9.1.4) is
satisfied.

By calculating ®'(w) one can readily see that all the properties of the
function ®(w) hold. Moreover, we have:

“9
2 3 1—g—
[ = i RN e
- 2
Al YT Wrar e T(EEE)
2

(9.4.33) {1, if BVP is the Dirichlet problem,

i, if BVP is the mixed problem

provided g+ < 1. This integral is nonconvergent, if g+ u > 1. At the same
time Vg > 0 we have

i N Ceern))
aF!2 _ m ) 2(1+Q+#)
/ P = G F(—?—2+ oy
wg Tfgin

1, if BVP is the Dirichlet problem,

(9.4.34) x {1

1, if BVP is the mixed problem

since p < 1. This fact completeiy agrees with Lemmas 9.15-9.17 since

q+3te
oo
\/_ T 2+3q+u q+u)

1+g+p

This fact demonstrates that w(z) € ‘ﬂ%,O(TT,rT—m, GY),if g+ p<1,and
w(z) ¢ ‘Itzl,’o(rT,TT‘m,Gg), if g+ p > 1. For the latter case we have
w(z) € NG (r™,r"~™, GE).

9.5. The estimate of weak solutions in a neighborhood
of a boundary edge

In this section we derive an almost exact estimate of the weak solution
of (BVP) in a neighborhood of a boundary edge. For our purpose we are
going to apply the comparison principle (see Theorem 9.6) and use the
barrier function constructed in §9.4. It is easy to verify by assumptions
8)-10) that all assumptions (4)- (%) of the comparison principle (see §9.2)
are fulfilled.
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Let us make some transformations. At first we introduce the change of
function

(9.5.1) u=vlv|" ! with t = m—1

g+m—1’
By virtue of the assumption 7), the problem (BV P) takes the form

M QW)= [( Ao )b, +00A@,0)6 + Bla,v, )i

a
—f(z)¢)do + /<i(m, v) = g(z) yds = 0
T2
for v(z) € V and any ¢(z) € Vp, where
Ai(.’L‘, 77) = (L,;(.’E, vlvlt_la t]v]t_ln)a .A($, U) = a(:c, 7"Itu|t_13 tlvit-lnL
B(z,v,7) = bz, vlol" Lt M), E(z,v) = oz, vl
And by assumptions 11)-14) we have

11) g:lvl

2

Ai(z,n) —tm1rmipm=2n, < ei(r)rTn|™t + i (r);

18) |2 gmtpripim4 (6 nf? + (m — 2)mny)
< ep(r)rT[n|™ =2 + ea(r)epa(r);

<

18)  |2An) _ pymelpr=2pim=2g.,| < ey(r)rm ™t + 4ha(r);

D |A@) - rT—mmv\m-zl ; |B(m,v,n) T ut”‘“v‘llnl"“ <
< calr)r ™=t + o] yar).

REMARK 9.19. Qur assumptions 11)-14) essentially mean that the oper-
ator of the problem (BVP) is approximated near the edge I'y by the operator
of the problem for the (ME). Furthermore, by the assumption 7) coefficients
ai(z,u,uy) i =1,..., N after the substitution (9.5.1) do not depend on v ex-
plicit. For instance, the model equation (ME) satisfies these assumptions.
In fact, after the substitution (9.5.1) the (ME) takes the form

Lov(z) = —tm‘ld% (r7| Vo™ ?u,,) + aor™ Molu|™ 2 — pt™r e Vo™
i

= f(z), ze€G.
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We shall make additional studies. Let us set

— 1 _
(9.5.2) G =t""ao, F=ty, A= AandFw) =),

Now the function
(9.5.3) w = r'®(w)

will play the role of the barrier. By (StL)-(CPE), (9.1.3) one can easily
check that (X, ®(w)) is a solution to the problem

d [(ﬁ? + 6’2) a 6’} + 7k (X262 + 6’2) ¥ _

m—2
—_ — 2

= @B 2 - A\ —1) ~m+2+78 (V& +F) ©
w € (—wp/2,we/2),

) (NEVP)
O(—wg/2) = ®(wp/2) =0 for the Dirichlet problem,
B(—wp/2) = B (wo/2) =0 for the mixed problem.
and
e [(m = 192+ X°] (2 + X" ay
/ ST NG UL W NG L

\. 0

It is evident that the properties of (A, @) established in §9.4.1 - 9.4.2 also
remain valid for the (A, ®(w)). In particular, (9.1.4) takes the form

(9.5.4) PaR)=(m—14+BA" +@2=m+7)X" "~ >0
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We consider the perturbation of the problem (NEVP). Namely, for Ve €
(0, 27 —wp) on the segment [—3’22'—*5, ﬂ"f—s—], we define the problem for (A, ®.)

m—=2

7 m
| (07402) T ar| ek (3207 02) 7 -
m—=2
= (EO - E)¢)51®s|m_2 - )‘E[As(m - 1) -m+2+ T](bs (}‘E(I)g + @;2) : ’
w € (—uoge, woke),
(NEVP),
(I>5(——""J—2+5) = @E(“’%ﬁ) =0 for the Dirichlet problem,
D (—iate) = @ (wate) = 0 for the mixed problem
and
+ m—
/oo [(m — 1)y + X2] (4% + 227" dy _o
S (m—1+BmE AT +A2-m+ )P+ AT +e—1o :
as well as
L Pn(Ae) +€ > 0.

The problem (NEVP), is obtained from the problem (NEVP) by replacing
in the latter wo by wo +¢ and @y by @ —¢. In virtue of the monotonicity of
the function A(wg, @o) , established in §9.4.2 (see. (9.4.23)), we get

(9.5.5) 0< A <A, lim A=A
e—+0
We denote by X the value of X for @ = 0. It clearly follows from (9.4.12)
that Ao = Ao . In just the same way as in §9.4.2 we calculate that
q=0;p=F

X > Ag. From (9.5.5) it follows that

1— -
(9.5.6) 0< §A0 <A <A

for a sufficiently small € > 0.
Next we shall consider separately the case of the Dirichlet problem and
the case of the mixed boundary value problem.

Dirichlet problem.

LEMMA 9.20. There exists an * > 0 such that

o £
5. =2 v 0,e*).
(957) 5(2)_w0+57 EE(,E)

PROOF. We turn to (9.5.4), that is P,,(X) > 0. Since P,,(}) is a poly-
nomial, by continuity, there exists a *— neighborhood of A, in which (9.5.4)
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is satisfied as before, that is there exists §* > 0 such that P,(A) > 0 for
VA | |A —A] < 6*. We choose the number §* > 0 in the same way. In
particular, the inequality
Pn(A—8) >0 V5c(0,6%)
holds. We recall that X solves (NEVP). By virtue of (9.5.5), now for every
§ € (0,46*) we can put
Ae=A—14

and solve (NEVP), together with this A, with respect to €. Let £(8) > 0 be
the obtained solution. Since (9.5.5) is true,

lim e(8) = 40.

§—+0

Thus we have the sequence of problems (NEVP), with respect to
(9.5.8) (A, B(w)) Ve | 0 < e < min{e(d);m — wp) = *(0), Vo € (0,6").

We consider @.(w) with Ve from (9.5.8). In the same way as (9.4.5) we
verify that

(W) <0, Vwe [—“’0—“ “’0“].

)
But this inequality means that the function ®.(w) is convex upon
[—wote wote] that is

wot+e wogte
& (1w + dows) > a1 B (w1) + aa®(wa), le,wze[— 02 , 02 }

for oy > 0, azz()‘aq-’f-ag:l.

We put
o = wo , Qg = ¢ ; w1=5+—wo, wy = 0.
€+ wp €+ wo 2
By (NEVP), we get
Wp £ £
*(3)> 5500 =55
q.e.d. the lemma is proved. O

COROLLARY 9.21,

(9.5.9) i

wo + £
for anyw € [~wp/2,wp/2] and for any e € (0,e").

<& (w) <1,
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Mixed problem.
LEMMA 9.22. There exists an €* > 0 such that

wo €
5.1 P (— |2 —07—"— ).
(9.5.10) 5( 2)_2(w0+6) and for any e € (0,€)

ProOF. We turn back to (9.5.4), that is P (%) > 0. Since P,(N) is a
polynomial, then, by the continuity, there exists a §*—neighborhood of the
point X, in which (9.5.4) remains valid, that is there exists 6* > 0 such that

Pr(X) >0VA | [A—]A] < 6%
We choose the number 6* > 0 to guarantee this. Particulary the inequality
(9.5.11) Pn(A=38)>0 Vée (0,6

holds. Let us recall that X is a solution of (NEVP). By (9.5.5) we can now
put for every 4 € (0,6*)

(9.5.12) Ae=A—46

and solve (NEVP)_ together with A. with respect to £. Let £(d) > 0 be the
obtained solution. Since (9.5.5) holds, then

lim g(#) = 40.
§—+40
Thus, we get the sequence of the problems (NEVP)_ with respect to
(9.5.13) (s, Pe(w)) Ve such that 0 < & < min{e(d), 27 — wo} = £*(9),
Vo € (0,6%).

We consider @, (w) from (9.5.13). In the same way as in (9.4.5) we verify
that

2 72
This inequality means that the function ®.(w) is convex on the segment
[—4ote, wode] that is

8"(w) <0 VYwe (—“’“*5 “’”5).

wo+e wote
O, (aqwy + azwy) 2> 0 Pelwy) + aaPe(wz) Vw1,w2€[— 02 ) 02 ]
fora120,a220\a1+a2:1.
We put
1
o ——-w—o—l—§€ o = and w =_a+w0 w =a+w0
YT e w7 2(e+wo) ! g ' 2 2

By (NEVP). we get
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The Lemma is proved. O

COROLLARY 9.23.

(9.5.14) 2(“)0“'—“) < B (w)<1 Ywe [-wo/2,wo/2], Ve e (0,e%).
LEMMA 9.24. For any € > 0 the inequalities
, 1 _&o
(9.5.15) 0< & (w) <272, we[ > 2]
and
(9.5.16) —C(q, T, 7,m, \,wg)e 2 < <1>;.’ <0, we [—%, %]

hold, where C(q, I, 7,m, X, wg) > 0.
PROOF. From (NEVP),, (9.5.10) and (9.5.14) we have

&
(9517) m < (I)E(w) < 17 (I’::(w) 2 0$ q)g(w) < 0)
Yw e (_on-FE’ “”"T-I'E) and ¥, (—w(];_e) =0, Ve>0.

wot+€e wogte

Hence it follows that ®.(w) decreases on (— 7 3

) . By the La-

grange mean value theorem, we have

wo +€ Wo € 2r e ! —
—_ — —_—— — - <
o, ( 5 ) o, ( ) 2fI>E(<,u) = e® (W) <2

2

o 2+ 6, —%) . Hence, by decreasing of ®.(w) we get
(9.5.15). From the equation of (NEVP), for &, it follows that

173 1 %
9! = . {n (Agcpz + @;2) +

with some @ € { —

B [(m —1)8.% + A282] (A282 + &) T

+02 (M2 +9%) T {/\E Pe(m —1) —m+2+ 7] (A202 + @;2) +

(9.5.18) +(m — 2))@@’52} +(e— ao)Q?}

and therefore by virtue of (9.5.6), (9.5.15) and (9.5.17)
—®,(w) < [N2(@m —3+7) + (2 —m+T)A +eXF™] &, + 70,107 <
< C(g, T, T, m, Ay wo)e 3.
g
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LEMMA 9.25. There exists a positive constant cg = cp(m,q, 1, 7,wg)
such that

(9.5.19) @;(-“;—0) > oo™, 0 < e 1.

PROOF. By the Lagrange mean value theorem in virtue of (NEVP), we
have

(9.5.20) @;(%) - @;(%) _ ‘I),e(woz-l-s‘) _ —%@’E’(w)

. we wo+E
w1thsomew€(—§2, 02

). From the equation (9.5.18) it follows that

m—4
2

9/, [(m Y T ,\gcbg] ()\3@2 + @;2) S
9.5.21) > <I>;_n< [(E+m—1A™ + (2 +7—m)Am! — 5] + £> > ed™,

by (9.5.11), (9.5.12) and (9.5.4).

. . . . . Wo + €
Since ®.(w) is a decreasing continuous function and & 5 =

0, then for sufficiently small ¢ > 0, we can assert that 0 < ®L(w) < 1,
Wo Wo + £
27 2

1) If m >4, then

wE . Therefore we obtain the following statements.

m—2

2

[m— 18,2 + x207] (3202 +0,) T < [(m-1):?+ 3207 7 <

m—2 m—2

F] . 2
S(m—l+)\§) 5(m—1+)\2) ,we(%g,wo;g),

by (9.5.5). Hence from (9.5.14) and (9.5.21) it follows that

—<I)”(w)> m—1+X 2__ims<1>""1> m—1+X Z—Tm;sm
€ € = [2(1 +wo)|m—1" 7

and, in virtue of (9.5.20), the required (9.5.19) is proved.
2) If 2<m <4, then from (9.5.21), by (9.5.6)

4—m
2

A2@? + @7 1
( A ) SeNTmel —— >

(m — 1)@.2 4 X282 M4m—1

4-—m
1
> 5(&) — S we (ﬂ’woﬂ-f)
2 8(A" +m — 1)(1 +wp)® 27 2

&, (w) > ™!
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and by virtue of (9.5.20), we again obtain (9.5.19). O

9.6. Proof of the main theorem

PROOF. Let (A;, ®.(w)) be a solution of the problem (NEVP). with
fixed € € (0,€*), where €* is determined by (9.5.13). We define the function
which we shall use as barrier function. Namely, let us consider the function

we(Z,rw) = Ar*d (w), YEecRN2 re [0,d], w € [—wo/2,wo/2],

where A > 0 is a number to be chosen below. Let us apply the compar-
ison principle (Theorem 9.6) to the problem (IT), comparing its solution
v(z) with barrier function w,(z) in the domain G§. The direct calculations
demonstrate that

m—2
Lows(f,'r,w):(At)m“lr(m‘l))‘ﬁ_mJ”{—% [(A§<1>§+<I>'§) ’ @'] -

£

m—2
2

~ A[Ae(m —1) —m + 2 + 7], (,\gcpg +977) T +aert

— H_l. ()\zég + q)lz) T} - ET(m—l)AE—m-l-T (tA@E((,‘)))m—l_
.

By virtue of (9.5.1), (NEVP), and by (9.5.14), we obtain
Am—-1) 1™
6. = s em| VTS (m—1)Ae—m+T
(9.6.1) Lowe(F,r,w) > € [295(q+m—1)] T

Further, in virtue of (9.5.5) and (9.5.14) we have

Ae x
In addition,
(9.6.3) we(z) > 0=v(z), z€IGE\ (QyuUTY).

Finally it is not difficult to calculate
(9.6.4)
cpAe™Tirre—1 < |Vw,| < ey Ae~r*~1 and |V2ws\ < cpAeT 32

if we take into account (9.5.15) and (9.5.16) from Lemma 9.24 and (9.5.19)
from Lemma 9.25.
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Now let ¢ € Loo(GHNWL™(GE, 3% \T'4) be any nonnegative function.
For the operator @ that is defined by (II) we obtain

Qusd) = [ 9la){~ Al V) + a0 A(z, we) + Bla,we, V)~
G8

— f($)>dfz: + /¢($)<Ai($, Vwe)ni(z) + £(z, we) — g(w)>ds.
I“d

2

And hence, by the definition of the operator £y we have

(]

Que,d) = [ ¢(m)<—% (A,-(:r, Vu) - tm—lmvw6|m—2wm)
Gg
+ Lowe(x) + ag (A(m, We) — r"'_mlwglm‘gws) +
(9.6.5) + (B(:J:, We, VW, ) + utmrT|Vw€]mw;1) - f(:c)>dw+

rd

+ (Ai(.’t, Vuwe) — tm_lr"'|szim—2w5Ii) n,;(m)>ds.

By the assumption 2),
(9.6.6) +(z,we) = o(z,wt) >0, since w.(z)>0.

Further,

Jw,
on

_ 10w,
r r Ow

(9.6.7)

Wi
= Art~19! (70) > cgAemT3pAe—1

—%0
w==
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by Lemma 9.25. Therefore, in virtue of (9.6.1), (9.6.6) and(9.6.7) from
(9.6.5) it follows that

Q(we, @) 26/(1 ¢($)<gm|: A(m —1) )]m—1r(m_1)l\s_m+7

2wo+e)(g+m—1

N
=S e 'M -

iri=1 Oea;

X (5{|Vwep|2 + (M — 2)Weg,Wes, )

- %;CV%) — 1t T V| P weg, |-
(9.6.8) - ao‘A(x, We) — 7w, [ 2w |~

B(z, we, Vwe) + pt™r | Vwe [™w !

- |f(-'ﬂ)|>ﬂl-’lhL

+/45(:6)<coAtm“1sm+3r"+>"_1IVw5|m_2—

r{

- \g(w)|>d8-

2
Ai(z, Vw.) — ™ 1r7 |V " 2w,

Now, taking into account the assumptions (9.1.16), 11) — 14) (9.1.5) and
the inequalities (9.6.4), from (9.6.8) we get

Q(we, ¢) > Ci(m, g, €, 4, wo) f L B O e
G4

—o(F) = (1 + kg)rm—DE-2) 4rt(m—1)(X—As)>dm+

+Calm, g, e, Avwo) [ Glap ™+ DO (1 ey (r)-
rg
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— (k1 + 91)1‘(m_l) (X_)‘E)>ds,

where ¢(r) = ca(r) + c3(r) + ca(r). Fixing A > 0 and £ > 0, we can choose
d > 0 so small (because of the continuity of the functions e1(r), ea{r), ca(r),
ca(r) at zero) that

(9.6.9) Qwe,§) >0, Yo >0.

Further, by Theorem 9.11

v(z)| < Mé/ t
Qq
therefore, by (9.6.2)
Ae x 1/t
(9.6.10) We| > ﬁd > My > v(z)
Qq € Qa

provided that A > 0 is chosen sufficiently large

(9.6.11) A> %(%)%

Thus, from (9.6.9), (9.6.3), (9.6.10) and (IT) we get

Qwe,¢) 20=Q(v,¢) Y$>0 in Gf,
we(x) > v(z), z€IGI\TE.

Besides that, one can readily verify that all the other conditions of the
comparison principle (Theorem 9.6) are fulfilled. By this principle we get

v(z) S we(x), Vre G_g‘
Similarly one can prove that
v(z) 2 —w:(z), Vre E:g.
Thus, finally, we obtain
lv(z)| < welz) < Ar?e, Vze _C%.

On returning to the old variables in virtue of (9.5.1) we get the required
estimate (9.1.17). The main theorem is proved. O
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9.7. Notes

The presentation of this chapter follows [67]. Boundary value problems
in smooth domains for quasilinear degenerate elliptic second order equa-
tions have been intensely studied recently (see [6, 26, 39, 49, 75, 78,
88, 100, 136, 144, 147, 221, 222, 352] etc., and the vast bibliography
therein). Less studied are the problems of this kind in the domains with
a non-smooth boundary. In the paper [212], the existence results for the
quasilinear degenerate elliptic boundary value problems are considered. The
paper [241] examines the well posedness and regularity of the solution of
degenerate quasilinear elliptic equations arising from bimaterial problems
in elastic-plastic mechanics in lipschitzian domain. The papers [58], [59],
[68], [99], [375] are devoted to the study of the weak solutions behavior
for the special cases of the (BV P) equation in the neighborhood of a con-
ical boundary point. In [72] the Dirichlet problem is studied in a domain
with an edge on the boundary for the model equation (ME). In [133] the
properties of the (BV P) solutions for the Laplace operator have been in-
vestigated in a plain domain with a polygonal boundary (see there Chapter
4). Such studies are important for numerical solving of the boundary value
problems (see, for example, [98]). The Holder continuity of weak solutions
of the Dirichlet problem for the degenerate elliptic linear and quasilinear
divergence equations was proved in Section 3 [118] (linear equation) and in
§2 [26] (quasilinear equation with m = 2.)

Recently, C. Ebmeyer and J. Frehse [104, 105] have considered the
mixed boundary value problems for the quasilinear elliptic equations and
systems of the divergent form in a polyhedron. They have proved W*2, s <
% -regularity and LP— properties of the first and the second derivatives of
a solution.
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CHAPTER 10

Sharp estimates of solutions to the Robin
boundary value problem for elliptic non
divergence second order equations in a

neighborhood of the conical point

The present chapter is devoted to investigating the behavior of strong
solutions to the the Robin boundary value problem for the second order
elliptic equations (linear and quasilinear) in the neighborhood of a conical
boundary point. Such a problem arises, for example, in heat conduction
problems as well as in physical geodesy (see e.g., [143]).

Let G C RY, N > 2 be a bounded domain with the boundary 4G that
is a smooth surface everywhere except at the origin O € 3G and near the
point @ it is a convez conical surface with its vertex at . We consider the
following elliptic value problems

Lu] = a¥ () gz, + a'(T)ue, + alz)u = f(z),
(LRP) o =a’, z € G,
Blul = & + ]%r'y(:c)u =g(z), € 0G\ O.

and
ij\Ly Uy Ug i T y Uy :0: Y= ji: EG,
(QLRP) (;Z(xziu )uz,ij%-a(a:qug b a at, x
aﬁ+|$|"/(x)u—g(m)vm€ \O.

Fhe summation over repeated indices from 1 to NV is understood. 7 denotes
the unite outward normal to 8G \ O. We obtain the best possible estimates
of the strong solutions of these problems near a conical boundary point.

A principal new feature here is the consideration of equations with co-
efficients whose smoothness isthe minimal possible! Our examples demon-
strate this fact. The exact solution estimates near singularities on the
boundary are obtained under the condition that leading coeflicients of the
equation satisfy the Dini condition and the lowest coefficients can increase.
The rate of the solution decrease in the neighborhood of a conical point is
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characterized by the smallest eigenvalue g of the Laplace-Beltrami opera-
tor in a domain 2 on the unit sphere (see (EV R)q §2.4.2).

Let us refer to the problem (QLRP). We obtain the best possible esti-
mates of the strong solutions of the problem (QLRP) near a conical bound-
ary point. Our theorems also show that the quasilinear problem solutions
have the same regularity (near a conical point) as the linear problem solu-
tions.

10.1. The linear problem
10.1.1. Formulation of the main result.

DEFINITION 10.1. A strong solution of the problem (LRP) is a function
u(z) € WY (G)nWG.)NCO(G) that for each € > 0 satisfies the equation
for almost all x € G, and the boundary condition in the sense of traces on

|

We assume the existence d > 0 such that G§ is the convez rotational
cone with the vertex at O and the aperture wy € (§,7) (see (1.3.13)).
Regarding the equation we assume that the following conditions are satisfied

(a) the condition of the uniform ellipticity

ve? <a'i(z)ek; < pe?, Vo€, VEeRY;
v, i = const > 0, and a*(0) = & (the Kronecker symbol),
(b) a¥ € C%(@G), a* € LP(G), p> N, a,f € LN (G) and for these the

inequalities
N 3
( Y la¥(z) - a”(y)lz) < A(lz - yl)
i,j=1
and

N . %
1] (Z |a’(x)|2) T lalae)] < Aljal)
=1

hold for x,y € G, where A(r) is a monotonically increasing, non-
negative function, continuous ot 0, A(0) =0,

(c) there exist numbers f1 >0, g1 >0,3>1, 8>5—2, v > tan 3
such that

1F ()] < filzl?, lg(x)] < gz~ (=) = %0
and
¥(z) € L®(8G) N C1(6G \ 0),
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(d) a(z) <0 inG.
We denote My = max |u(z)| (see Proposition 10.11). Our main results
zel@

are the following theorems. Let A be the number that is defined by (2.5.11)
or (2.5.19) from Section 2.5.

THEOREM 10.2. Let u be a strong solution of the problem (LRP) and
assumptions (a) - (d) are satisfied with A(r) Dini continuous at zero. Sup-
pose, in addition, that

o(z) € Wi_y(0C),
as well as a(z) € We_n(G),7(x) € v\’/é_N(BG), ifu{0) #0

and there exist numbers
ks =:s ‘s( + +
» = Sup o Hfllvgg_N(Gg) “9||v?»j/fN(rg)

+u©@)(llall g0 o+l g2 L))
Wa_n(G2) W

Cn@d)
(10.1.1)

e 1-s
o =t supe'™ (/lwz,, + PuOllalvgs,,)-
Then there are d € (0,1) and a constant C > 0 depending only on v, u,d, s,

d A

N, A 70, IVl cr ooy, meas G and on the quantity f Jrr—)d'r' such that
0

vz € G¢

lu(z) — w(0)] < C(]ulo,G Hlfllge o tlalgz oo tort

het e+ O (14 llalgs o+l o)) x

_n{86)
(10.1.2) . ¥
|z|?, if s> A,
x { |z lns/z(l—;f), if s =A,
|z|*, if s <A
If, in addition, there is a number
Ts =: 85U ‘5( + u(0)a + _1 +
o= oo (I +ualvg,, ey +loly

(10.1.3) lu@)[I7ll_.-2 ;

p,p—pN (FZ/2)
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then
|Vu(z)| < C(|U|0,G +7o+ 1Flige ) F19lig2r2 o0y + 91+

4o+ O+ allge o+ lgan o))

N

10.1.4
( ) |lz[A L, if s> A,
x ¢ |zA1 1n3/2(]%[), if s =X,
x| 1, if s <A

THEOREM 10.3. Let u be a strong solution of the problem (LRP) and
the assumptions of Theorem 10.2 are satisfied with A(r) that is a function
continuous af zero but not Dini continuous af zero. Then there ared € (0,1)
ond for each € > 0 a constant Ce > 0 depending only one, v, u,d, s, N, A\, 7o,
7l crec\0ys meas G and on A(diamG) such that Vz € G§

— <
[u(z) — u(0)] < Ce(luloc +1Flgs_ g +lallgrrn oo +or+

(10.1.5) +Hu(0)| (1 + ”a”‘jf,‘:vﬂg) + ||’Y||V\‘;/;/_2N(3G)) + ks + xs) X
y lz|A,  if s> A,
|z[*7=, s <A

and

Vu(@)] < Ce(julog +1llge g +lalgin 0 +or+

(10.1.6) Hu(O)I(1 + lellgs e * ”'Y“v?/é/_z;v(ac)) + ks + o5 + Ts) x
5 {le*‘l—f, if s> A,

|zje=1==, ifs< A

THEOREM 10.4. Let u be a strong solution of the problem (LRP) and the
assumptions of Theorem 10.2 are satisfied with s > A, .A(r)ln% < const,
r > 0 and A(0) = 0. Then there are d € (0,1) and the constantsC > 0,c¢ >0
depending only on v, u,d, N, A, %0, 7] c1(s6\0), meas G and on A(diamG)
such that Vz € G

(10.17) u(@) ~u©)] < O(ulo + Iflige g+ lsllgi o0 +01+
1

A0+l
RO+ lallgo gy +lgarn o) + ks o+ )l 0 o

~{9G)
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and
(10.18) [Vu(z) < C(luog +[/lge g +lollgar

- 1
+ |U(0)'(1 + ”a”"%Z—N(G) + ”’)’”v%;{_zN(aG)) + ks + 35 + Ts) lez\ 1 lnc+1 m

10.1.2. The Lieberman global and local maximum principle.
The comparison principle.

—
DEFINITION 10.5. Let the domain G be at least Lipschitz. A vector 3
is said to point into G at g € OG if there is a positive constant ¢y such that

zg + tﬁ e G for0< i < tg. A vector field /—3), defined on some subset T of
AG, points into G if B (xp) points into G at zo for all zg € T.

In this section we consider the linear elliptic oblique derivative problem

Lu] = ¥ (z)ugs, +a'(T)ug, + alz)u = f(z),
(OP) a¥ =a’, z € G,
Bolu] = ﬁi(m)g—;‘i + v(x)u = g(z), = € 0G.

DEFINITION 10.6. It is said that the operator By (or the vector field
N
B) is obligue at a point zp € 8G if there is a coordinate system (z1,2’) =

(z1,...,2n) centered at zo such that ﬁ(.’l}o) is parallel to the positive
z;—axis and if there is a Lipschitz function x defined on some (N —1)—
dimensional ball B4(zq) such that

G N By(zo) = {z € RY |71 > x(2'), |z| < d}.

DEFINITION 10.7. It is said that a vector field ﬁ = (8,3 defined in
a neighborhood of some xy € G has modulus of obligueness § near z, if,
for any £ > 0, there is a coordinate system such that

G N By(zo) = {z € RN |21 > x('), |z| < d}
with a Lipschitz function x such that
18|

g1 =0t

sup |Vx|sup

Here §' = (42,...,8Y).

DEFINITION 10.8. Let z = (z1,2') be a point in RN and _5 be a vector
field such that

N
< _ﬂ),_n‘) >= Z,@i cos(, ;) < 0.

=1
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We assume that there are positive constants d, h,m; and € < 1 such that
={z e RV |z, > hlz'|, |z|] <d} CG and
|3’ < m1B* onTS, where hm; <1—ec.

By Definition 10.7, this inequality means that the modulus of obliqueness at
xo € T'¢ is less than 1.

REMARK 10.9. In the definitions above the vector field ﬁ) can have
discontinuities and G is allowed to be piecewise. In this connection see
also [227].

REMARK 10.10. For the convez rotational cone G§ with the vertex at

O, the aperture wo € (0,7) and the vector 75 = —n on I'¢ we have (see
Lemma 1.10), by (1.3.13) - (1.3.14)

w . W
h=cot—§q, ,Blzsm—o and

2
N 4wy 2wy n
cot —ﬂsm =0
2 =3P =22 Y dl=cod P >
4==2 i=2

|ﬂ'l:cos—2~ Smlsin?o = h <mj.

Hence it follows that the modulus of obliqueness at zo € ¢ is less than 1,
if
— ot 20 T
h = cot > <l = wy> 7"
ProPosITION 10.11. The global maximum principle (see Lemma
1.1 [225], Proposition 2.1 [234]; see as well [233]).
Let G be a bounded domain in RY with the C'—boundary 8G\T'§ and G&
be a convex rotational cone with verter at O and the aperture wy € (%, 7).
Let u(z) be a strong solution of the problem (LRP). Suppose the operator L
is uniformly elliptic with the ellipticity constants 0 < v < u, a*(z), f(z) €
LY(@), g(z) € L®(8G), a(z) <0 in G, ¥(z) = v > 0 on 8G. Then

faf?éilu(fﬂﬂ < C(l9llz=@e) + Ifllev @) »
where C = C(V, Yo, N, diamG, “a’i”LN(G)).

REMARK 10.12. We observe that the vector — 7 points into G if G is a
bounded domain in RY with the C*—boundary G \T¢ and G¢ be a convex
rotational cone G¢§ with vertex at O and the aperture wg € (Z, 7).

PropPOSITION 10.13. The strong maximum principle (see Corollary
3.2 [234)).
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Let G be a bounded domain in RN with the C'—boundary 8G\I'8 and G¥
be a convez rotational cone with verter at O and the aperture wy € (3,7).
Suppose u(z) € C°(G) has nonnegative mazimum at some 2o € '3, and
suppose there is o positive constant d such thet u € VVlzo’CN (G2). Suppose the
operator L is uniformly elliptic with the ellipticity constants 0 < v < u,
a‘(z),a(x) € LN(GY), a(z) <0 in G, as well v(z) € L>(T8), y(z) > v >
0 onTE. If

(10.1.9) Llu] >0inGE, Blu] <0 onlE,
then u is constant in G§.

PROPOSITION 10.14. The local maximum principle (see Theorem
3.3 [225], Theorem 4.3 [234]; see as well [233]).

Let the hypotheses of Proposition 10.11 hold. In addition, suppose
a*(z) € LP(G),p > N and a(z) € LN (G). Then for any q > 0 and o € (0,1),
we have

J \ulgdzy
Gg'
suplu@)| €4 | zm | +B(Wlevop + o))
o

where C' = O(V; 1570, N,p,R,G, ”a’i”LF’(G)s ”a“LN(G))'

PROPOSITION 10.15. The maximum principle.

Let G be a bounded domain in RN with the C1—boundary 0G\I'§ and G¢
be a convex rotational cone with vertex at O and the aperture wy € (5, 7).
Let u(z) be a strong solution of the problem

Llu] = f(z) in Gga
Blu] =g(z) on I,
u=h(zx) on QUO

and suppose the operator L is uniformly elliptic with the ellipticity constants
0 <v < yu d(z)ax) € LE(GE), a(x) < 0 in G, as well y(z) €

loc
LT, 9(x) € LX(TE),h(z) € L=(QUO) v(z) > v > 0 on T'¢. In
addition, suppose that the functions wi(x), wa(z) can be found which satisfy

the following inequalities:
Llwi] < f(z) in G,

Blwi] 2 g(z) on T,
wy = h(z) on QuUO
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and
Llws] > f(z) in G,
B[w2] S g(.’L‘) on ng
we L h{z) on QuUO

respectively. Then the solution u satisfies the inequalities
wo(z) < u(z) < wi(z) in G_g.

Proor. Under such circumstance, the function v = u — w; satisfies
these three inequalities

Lv] >0 inGYE,
Blv] <0 onT,
v<0 on{zuUO.

According to the E. Hopf strong maximum principle, Theorem 4.3 , if v
is not identically constant, it can only have a nonnegative maximum at a
point on the boundary. By Proposition 10.13, v cannot have a nonnegative
maximum on I'§ unless it is a constant. Thus v can only have a nonnegative
maximum on Q4 U © and therefore we conclude that v < 0 in G§. To obtain
a lower bound we consider the function v = ws — 4 manner reasoning in the
same as we did for w;. ' il

ProprosiTION 10.16. The comparison principle.

Let G¢ be a convex rotational cone with verter at © and the aper-
ture wy € (%,m). Let L be uniformly elliptic in G§ with the ellipticity
constants 0 < v < p, a¥(z),a(z) € LL(GE), a(z) < 0 in GI. Let

v(z) € L*(Y), y(z) 2 > 0 on I'd. Suppose that v and w are func-
tions in W2V (G3) N CY(GY) satisfying
Liw(z)] < Liv(z)], z€G;
(10.1.10) Blw(x)] > Blu(z)], = €Tg;
w(zx) > v(x), z€eQgUO.

Then v(z) < w(z) in G_g.

Proor. This proposition is the direct consequence of Proposition 10.15.
|

THEOREM 10.17. L,—estimate of solutions of the elliptic oblique
problem in the smooth domain (see Theorem 15.3 of [4]).

Let G be a domain in RN with a C? boundary portion T C 0G. Let
L be uniformly elliptic in G with the ellipticity constants 0 < v < u and
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u € W2P(G), p > 1 be a strong solution of the problem

Lul=f inG,
Bluj=g onT
in the weak sense, where
(i) a¥(z),a’(x),a(z) € C°G); v(z) € CH(T) and
(if) f(=) € L*(Q), g(x) € W'™57(T).
Then, for any domain G' CC GUT we have

lullwaeey <€ (H““L"(G) + I fllzee + |Igllwl_%,p(T),)

where the constant C 1is independent of u and depends only on N,p,v, u,
T,G, G, |la* ()| coay lla@)llco(eys 17 (@) | crery and the moduli of continu-
ity of the coefficients a¥(x) on G'.

10.1.3. The barrier function. The preliminary estimate of
the solution modulus. Let G¢ be a convex rotational cone with a solid
angle wg € (0,7) and the lateral surface I'f such that G§ C {z; > 0}. Let
us define the following linear elliptic operator

5 2
Ly =a%(z)

amiamj’ a (.’E) (m)u TE GO’

where
ve? < a¥(x)eil; < pe?, vz e G, ve € RY and v, p = const > 0
and the boundary operator

B= 5% + I—}:—l'y(m), ¥(z) > v >0, € T
LEmMmA 10.18. (Existence of the barrier function).
Fiz the numbers vo > tan“®,6 > 0,41 > 0,d € (0,1). There exist
h > 0 depending only on wo, the number o € (0,79 cot < — 1), a number
B > 0 and a function w(z) € C1(Go) N C%(Gy) that depend only on wy, the
ellipticity constants v, i of the operator Lo and the quantities o, 6, g1, such
that for any » € (0;min(d, 559)) the following inequalities hold:

(10.1.11) Lolw(z)] < —vh2|z|*7 Y z € G
(10.1.12) Blw(z)] > ¢1|z|°; =z €T\ O;
(10.1.13) 0 < w(z) < Co(s0, B,wo)lz|*t!; z € GI;

(10.1.14) V()| < Cy (50, B,wo)|z|*; z € GE.
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ProoF. Let (z,y,2') € RY, where z = z1,y = 22,2’ = (z3,...,2n). In
{z1 > 0} we consider the cone K with the vertex in @, such that K > G§.
(We recall that G& C {x; > 0}.) Let K be the lateral surface of K and
let 0K NyOx = 'y be z = +hy, where h = cot %¢,0 < wp < , such that
in the interior of K the inequality z > h|y| holds. We shall consider the
following function

w(z;y, ') = 27 1 (x? — h%y?) + Bxt,
(10.1.15)
with some s € (0;1), B > 0.

Let the coefficients of the operator £y be a?? = a, a2 = b, a®*! = ¢. Then
we have

(10.1.16) Low = awyy + 2bwgy + cwyy
where

vn? < an? 4 2bmna + e < uy®  and
(10.1.17)

n?=n?+n3 Vm,e eR.

Let us calculate the operator £ on the function (10.1.15). Fort = ¥, |t| < 4
we obtain

Low = —h*z* "1 (),

where

B(3¢) = 2a — 4bt + 4btse — ch™ (1 + B) (3 + 3) + ct?5® — 3ct? s + 2ct® =
= c(t? — h™3(1 4+ B))s#? + (4bt — ch™%(1 + B) — 3ct?) s + 2(ct® — 2bt + a)

and

2
9 ,_39 (v 1+B B
Because of (10.1.17), we have ¢(0) = 2(ct? — 2bt + a) > 2v and since
¢(#) is a square function there exists the number 5 > 0 depending only
on v, u, h such that ¢(s) > v for s € [0;35]. Therefore we obtain (10.1.11).
Now, let us notice that

(10.1.18) Iy :z==hy, h=cot %, 0<wy <.
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Then we have

y =rsin L(h,y) = ¢
onl_ 4% =7rcos 4, LA, x) =5+ 2,
y = -rsin“ Lh,y) =7+ %

Therefore we obtain
wy = (1 + 2)x”(1 + B) — (e — 1)A%*y%z* 2 = wzlf‘i = [2+ B(1 + »)]z*,
(10.1.19)

Wy = —2h%yr* 1 = wy‘ri = F2hz”.
Because of
ow . .
S| = Wacos (A, x)|  +wycos L(d,y)
n Iy Ty 'y
and (10.1.19), we get
ow h*
| = —————[2(1 + h®) + B(1 .
of " (1+h2)ﬂ2-—1[( TR+ B+ )
T
Hence it follows that
h.’K
T (1+h2)77
Since h > 'yLo for s < 35 we obtain
MO g I
Bw]| > ——L%[B(h'yo—l—x())—Z(l—l—hz)] >girt, 0<r<d<1
rd Qs
= (14+h2)77

if we choose

#<§=>7r*>r" and

(10.1.20)
B> {M+2(1+h2)} . ;
- h#o hv —1—3g ’

(It should be pointed out that we can choose, if necessary, s so small that
3y < hyo — 1)
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Now will show (10.1.13). Let us rewrite the function (10.1.15) in spher-
ical coordinates. Recalling that h = cot “* we obtain

w(z;y,z') = (1 + B)(rcosw) ™ — A2r2sin? w(rcosw)™ ! =

— 17 051 [ B eos? x(w) _Wo wo
T 7% cos w( cos w+sin2%Q , Ywe | 2,2],

where

in (%0 ) sin (22
| x(w)—sm( 5 w) sm(2 +w).
We find x'(w) = —sin2w and x'(w) =0 for w = 0. Now we see that

x"(0) = —=2cos0 = —2 < 0. In this way we have
. 2 Wo
= O = n2 —
e Dax o X(@) =x(0) =sin” 5

and therefore

1
w($§ Y, 55’) < it cog* 1 w(B cosZ w + 1) < plt# oog®tl (B + )

cos? w
<rl*t# B+ : .
cos? w

Hence (10.1.13) follows. Finally, (10.1.14) follows in virtue of (10.1.19). O

Now we can estimate |u(z)| for (LRP) in the neighborhood of a conical
point.

THEOREM 10.19. Let u(z) be a strong solution of the problem (LRP)
and satisfy assumptions (a)-(d). Then there exist numbers d € (0,1) and
s > 0 depending only on v, u, N, 2,wn, f1, 5,7, S, 91, Mo and the domain
G such that
(10.1.21) lu(z) — u(0)] < Colz|**?, =€ GY,
where the positive constant Cy depends only on v,u, N, f1,91, 5, 8, v, Mo
and the domain G, and does not depend on u(z).

PRrROOF. Without loss of generality we may suppose that u(0) > 0. Let
us take the barrier function w(z) defined by (10.1.15) with 3 € (0, 35) and
the function v(z) = u(x) — u(0). For them we shall show

L(Aw(z)) < Lv(z), = € GE,
(10.1.22) B[Aw(z)] > Blv(z)], = € TE,
Aw(z) = v(z), zeQUO.

Let us calculate the operator £ on these functions. Because of Lemma 10.18
and the assumptions (b), (d), we obtain

Lo(z) = Lu(z) — a(z)u(0) = f(2) - a(z)u(0) 2 f(z) 2 —fir
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and

Lw(z) < Low + a*(2)wg, < —vh?r 1 + @C’lr” < —%uhzr”o"l.
By the continuity of A(r), d > 0 has been chosen so small that
(10.1.23) CLA(r) < C1A(d) < —;—yhr" forr <d.
Since 0 < 2 < 2, hence it follows that

L[Aw(z)] < —%Avh2r”°_1 < Lv(z), = eGE,

if numbers sy, A are chosen such that
(10.1.24) m<fB+1, A>=IL 2f1
From (10.1.12) we get
(10.1.25) BlAw] v > Agir.

Let us calculate B[v] on I‘d IfA>1and0<éd<s—1then

_[ v(z)] = 34 z I’Y(w) (u(z) — u(0)) = g(z) - iz Iv(w)U()

<glz) <gir* ™ < gir’ < BlAw]|, zeTl%

(10.1.26)

by (10.1.25). B
Now we compare v(z) and w(z) on 4. Since z2 > h%y? in K, from
(10.1.15) we have

(10.1.27) w(m)‘ = B|£ﬂ|l+"' = Bdl+* cos”+1 20
r=d r=d 2

On the other hand

(10.1.28) a:)’ (u(x) —u(()))‘ < Mo

and therefore from (10.1.27) and (10.1.28), in virtue of (10.1.20), we obtain

an+1
Aw(z)| > ABd" cog”tt 20 >A{M+2(l+h2)}x
Qa 2 - ho
1 14300 1,1+ 3% 2140
xh’m—l—xod h 1+hr5)"72 >
2M0 ZU 3

Qg
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where A is made great enough to satisfy

(10.1.29) A> Molhyo = 1 = o) .
hdt+=o gy + 2o (1+h2) 7 |

Thus, if we choose the small number d > 0 according to (10.1.23) and
large numbers B > 0, A > 1 according to (10.1.20), (10.1.24), (10.1.29), we
provide the validity of (10.1.22).

Therefore the functions v(z), Aw(z) satisfy the comparison principle,
Proposition 10.16, and we have

(10.1.30) u(z) — u(0) < Aw(z), = € G4.
Similarly, we derive the estimate
u(z) — u(0) = —Aw(z),

if we consider an auxiliary function v(z) = %(0) — u(zx). The theorem is
proved, in virtue of (10.1.13). O

10.1.4. Global integral weighted estimate.

THEOREM 10.20. Let u(z) be e strong solution of the problem (LRP).
Let assumptions (a) - (¢) be satisfied. Suppose, in addition, that g(z) €
1
W2 (0G), where

(10.1.31) 4-N<a<?2

Then u(z) € W2(G) and

10.1.32 o <C T e T ’
( ) ||u||W§(G)_ (lullz,c ||f||W2(G) IIQII&E(M))

where the constant C > 0 depends only on v, p,a, N, |la*|pc, i =1,...,N

and |lal|n,g, Y0, 17l crsa\0), the moduli of continuity of the coefficients a®l
and the domain G.

PROOF. Since o/ (0) = ¢/, we have

(10.1.33)  Au(z) = f(z) — (¢¥(z) — a*¥(0)) Diju(x) — a*(z)Dyu(z)—
—a(z)u(z) inG.
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Integrating by parts, using the Gauss-Ostrogradskiy formula, we show

/r"_zuAuda: = —5““2/u@d95+/r°“2u6—:§ds—

or
Ge Qe

that

+ /r"‘_zu—a—zds—/ra'2|Vu|2dx+

T Ge

+ (2 —a)/r“—4u<z, Vu)dz.
G.

Integrating again by parts we obtain

[r“"‘lu(m,Vu)d:c = %/(r“_‘Lz,Vuz)dm—
Ge

Ge
_ %Ea_?’/uzd(la +%/Ta_4u2$i005(ﬁa$i)dsm
Q. Te
1 2 ul a—4 1 a—-3 2
- 2 [ D tain = e [aao +
é. i=1 Q.
) N+a-4
N /r“‘3u2—: o — +—O‘/r°‘_4u2da:,
on 2
T4 Ge

because of
Z Dy(r**z;) = Nr*~* + (@ — 4)r® 5 Z = (N+a—4r>t
_ T
i=1 i=1

and (1.3.14) of Lemma 1.10

Thus, multiplying both sides of (10.1.33) by r*~2u(z) and integrating
over G, and because of the boundary condition of the (LRP), we obtain

2
(10.1.34) /r"“2|Vu|2dx+ Tasa'3/u2dﬂs+/r°“3fy(x)u2ds+

e Q. .
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2-—a a—4, 2 a—2 du a—2
+ T(N+a —4) r® *ufdr = —¢ ua—dﬂs + [ r* *g(z)uds+
Q. T
2 -« a—3 8 -2 i ij
+ 5 T Bn —ds + (—f(m)+ (a’(m) —a’(O)) D;ju(z)+
T4 Ge

a*(x) Dyu(z) + a(m)u(m))dz.

Let us estimate the integral over (2 in the above equality. To this end we
consider the function

M(e) = max [u(x)].

LEMMA 10.21.

(10.1.35) lim e®~2 / w2240, =0, Ya e (4 - N, 2.
e—+0 or
Qe

PROOF. We consider the set G2*. We have (2, C 8G?¢. Now we use the
inequality (1.6.1)

f wldf <c [ (ul+|Vul)do
s

Setting w = u% we find |w|+|Vw| < e(r?ul, +|Vul> + r~2u?). Therefore
we get

(10.1.36) / dQ. <c / (r*ul, + |Vu® + r~2u?)dz.
Q. G2e

€

u@u
or

Let us now consider the sets ngg and G2 C G:jf and new variables

z' defined by = = ez’. Then the function w(z’) = u(ez’) satisfies in Gig
the problem

0¥ (e2’) 72 + eai(ex’) 2% + £2a(ex’)w = £2f(ex'),
Bmiamj o
(LPRY o € G2

1/2
Bu ]%[’y(sw’)w =gg(ez’), z' € I‘?g
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Because of the interior and near a smooth portion of the boundary
L?—estimate, Theorem 10.17, for the equation (LPR)’ solution we have:

/ (wk, +|V'w|?) dr’ < Cy / (e*f? + w?) da'+

2 5/2
Gy (;142

+ Cye?inf / (V'GP + /%) de’,

5/2
(;1/2

where infimum is taken over all G such that G ‘Fs/;}: g and the constants
1/2

C1,C2 > 0 depend only on v,pp, max A(|lz' —¢'|), |7l 1 ,ps2, and the
o'y €G1 )5 @)
domain G.

Returning to the variable z, we obtain

(10.1.37) / (r*|D%ul? + |Vul? + r~2u?) dz <

Gee
<e / (r2f* +r2u?) dz + Cy inf / (r?[VG[® + |G[*)da.
s ce’

By the Mean Value Theorem 1.58 with regard to u € C%(G), we have

Be/2
/ r2uldz = /TN‘3/u2(r,w)der
G&E/Z 5/2 Q

£/2

(10.1.38)
< 26(915)N_3fu2(016,w)dﬂ
Q
< 26N 20N 3 M2 (6,€) meas
for some 3 < 6; < 2. From (10.1.36), (10.1.37), and (10.1.38) we obtain
u% dQ. < claN_2M2(£) ) / r2f2dz+

(10.1.39) Q/ 5

5e/2
N GE/Z
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+ Cyinf / (r2|VG2 +1G|)dx < c1eN2M3(e)+

5e/2
sti

+ cge?™@ / {r"f2 +7|VG|12 + r“'2|g|2}dac, Vo < 2.

5e/2
GE;Z

Also we have

(10.1.40) &>? /

e

u%%‘ dQe < eV AM2(e)+

+ e / {r“ﬁ + VG + r"“2|g\2}da:, Vo < 2.
G55/2
ef2

By the hypotheses of our Theorem, we have f € Wo(Q), g(z) € v?fé (8G),
hence

(10.1.41) lim / {T"f2+ra|Vg|2+r°‘_2|g|2}dm:0.

e—+0

5e/2
Gejz

Because u € C°(G) and 4 — N < a < 2, from (10.1.40) and (10.1.41), we
deduce the validity of the statement (10.1.35) of our lemma. O

Now we estimate each integral from the right hand side of (10.1.34).

1)

on

Fd Fd

b
/ro‘—?’uz——;—ds < da‘?’/uzds sincer > d, a < 2;
hence, applying (1.6.2), we get

(10.1.42) / r“"3u2-§%ds < §d>3 f |Vu|?dz + c5 / |u|?dz; V& > 0.
Ta Ga Ga

2) Using the Cauchy inequality we obtain

fr‘x—2|u||9|ds = /(rg%l \/’:_(m_)]go (Tzf'mlul)ds <
(10.1.43) Te

) 1
<2 [ o3 2 a—127_. .
_2/1“ 'y(x)uds+2570/r g°ds; ¥6 >0
T 8aG
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3) We get, by the Cauchy inequality,

[r @) f@de = [0 2u@) e 1)z
Ge

(10.1.44) Ge

1
< g‘ / r e + o / r® f*(x)dz, V6 > 0.
G. Ge

4) Applying the assumption b) together with the Cauchy inequality
we obtain

(10.1.45) r* 2y ((a"(z) — a¥(0)) Dyju(z) + o’ (z) Diu(x) + a(z)u(r))
< A(r) ((r2 | D?u)(r?~2u) + r*~ 2| Vu|(r~u) + r*4u?)
< A(r) (r*|D%u)? + 22| Vul? + 272 4?)
Finally, by (10.1.42) and (10.1.45) from (10.1.34), we obtain

10.1.46 ro2|Vul|?dz + 2—_a N+a-14 Fe 4y dr+
2
Ge G

€

—I—%/r“‘&y(m)uzds Ssa_zfu@dﬂg +5/r°‘_4|u|2dm+
Gs

or
£ Qa
2—a 2 2 o £2 1 a—1 2
+—5—c (IVul® + |u|*)dz +c5 | vof (a:)dm+-2— r*1g%ds
Gq G 56

+ /A(lml) (r*|D?u)? + 72| Vul? 4+ 2r* *0u?) da
Ge
for Vo > 0.
Let us now estimate the last integral in (10.1.46). Due to assumption

b), we have

(10.1.47) V9 >0 3d>0such that A(r) <éforall0<r <d.
Let 2 < d. From (10.1.37), (10.1.38) it follows that

(10.1.48) / r%|D%u|*dz < c£*2 f r?| D?ul?dx < ce® N M2 () +
Gz Gze
+c / (rc“f2 + VG + r°"2|g|2) dz,

55/2
G572



10 ROBIN BOUNDARY VALUE PROBLEM IN
426 A NONSMOOTH DOMAIN

and consequently

/.A(r)r"‘|D2u|2dw— /‘,4(1")1""|D2 12dz + / A(r)r®|D?u)?dz+
GzE GgE

+ / A(r)r®|D*uf*de < cA(2e) / (T"‘f2 +1%|VG + 72| ) dt

5e/2
st2

+8 / (r"‘fz(x) + r“]VG|2 + 7""‘_2|G|2 + r°‘_4u2)d:1:—|—
sz

&

(10.1.49) +eA29)e Nt p e max  A(r) / | D2u|?dz
r€[d,diam GJ

for V4 > 0 and 0 < € < d/2. Here ¢ does not depend on €.

Applying all these estimates to the inequality (10.1.46), we obtain

(10.1.50) /7“"—2|Vu|2d3: + z%Q(N +a—4) /ra‘_4u2da: <
Ge ' Ge

< cA(2) (EQ+N—4 + f (r"‘ F2+re|VGR + ra—21g|2)dm) +

5e/2
stQ

+5](r“'2|Vu]2 +'r‘°‘_4u2)d:v—l— c/(!D2u|2 + |V’u|2 +u2)da:+

G. Gq
a2, o 2 | a=2p2 a—1,2 a—2 Ou
+e (r fA4rVGI +r27%|G| )dx+c r®'g*ds+¢ ua—dﬂ
G G Q. ‘

for Vé > 0 and 0 < e < d/2.

Finally, we apply L?—estimate, Theorem 10.17, to the solution u of the
(LRP) in G4

(10.1.51) /(|Dzu|2 + [Vulz)dx <c f (u? + f2)dz + cllgl3yirar, )
Ga Gd/z

Now we use the inequality

(10.1.52) / *~1g(2)ds < Clgl’

)
g
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(see Lemma 1.40). Then from (10.1.50), (10.1.51), and (10.1.52) we obtain

(10.1.53) /'ra_2|Vu|2d:v + —%Q(N +a—4) /7‘0‘_4@52013: <
Ge Ge
< g2 / u%dﬂe + eA(2) / (ra 2+ VG + ra-2|g|2) dz+
Q. Gse/z

/2

48 [0 vuf e tddo + cllull e+ 1715, +loly )+
g W2(G) w2 (8G)

+ cA(2e)ex N4

for Vé > 0 and 0 < € < d/2.

Now, since 4 — N < a < 2, we can choose § = min (%, %9‘:9) .
Then

(10.1.54) cq,n /(7""‘_2|Vu|2 +r2~*y?)dz < 6“'2/ug—:dﬂs+
G.

e

+cA(25)( / (T"‘fg+T°‘IVQI2+T“‘2|gl2)da:+s°‘+N‘4)+

Be/2
G=/2

+e(lulde +I1F1% +llgl? '
(relfic + 1715, o) +hol s )

We observe that the constant ¢ in (10.1.54) does not depend on e. Therefore
we can perform the passage to the limit as ¢ — +0 by the Fatou theorem.
Indeed, we apply Lemma 10.21, (10.1.41) and use the continuity of A(r)
and A(0) = 0. Thus, we get

10.1.55 2| Vuf? +ro~tu?)dr < 2 ¥
( ) G/(f‘ Vul® +r “)’“"—“'(”““ZG“L”f“vvg(c)+

+lel?, ).
W2 (50)
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Now from (10.1.37) we obtain

(10.1.56) / r®|D%yu|%dr < ¢ / (r*f? + r**u?) do+

2e 5¢/2
G2 G,

+ Cyin / (r*| VG + 122G ) dx.

Se/2
Ge/Z

Let ¢ = 27%d, (k=0,1,2,...) and let us sum the obtained inequalities over
all k. Then we have

(10.1.57) / (r*u?, 4+ r* 2| Vu|?) dz < C3 / e 4yldr+
e G
2 2
+ Cllln g + ol 1o

From (10.1.55), (10.1.57), and (10.1.51) we deduce the validity of our theo-
Tem. |

THEOREM 10.22. Let u(z) be a strong solution of the problem (LRP).
Let N > 3 and assumptions (a)-(c) be satisfied. Suppose, in addition, that

9(2) € WE(G). Then u(z) € WA(G) and

10.1.58 ull o < C(lu +fll o + R ;
(0158 Tl S Clulo + Wl gy ol s )

where the constant C > O depends only on v,u, N, |at|pq, i = 1,...,N

and ||al|n.¢, Y0, [7llor(6cn\0), the moduli of continuity of the coefficients a*
and the domain G.

PrOOF. We repeat verbatim the proof of Theorem 10.20 with o = 2.
Then from (10.1.53) and (10.1.40) we have

/ Vul2dz < cs / {r22 4+ r1VGP + |0 Ydo+
G,

Se/2
GE/2

+eA(2e)eN 2 4 8, / Vul2da+
(10.1.59) &
+ 32 / r=2u2dz + c;eN TEM2 (e)+
Ge

+e(lullde + 11717 +llgll?
( 2 w2(G) Wf (aa))
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for any 6; > 0, 2 > 0 and 0 < £ < d/2. Now, since N > 3 we can estimate

d V-2
/T_2u2d:c < |u|(2,’GmeasQ/ NV =3dr < ~ 2measﬂ|u[%yg.
o —

G§

Therefore, for §; = 1 it follows from (10.1.59) that

/IVu|2dw<C4 / {725 4 12VGP + (0" }dart

5e/2
G€/2

10.1.60
( ) + 1V 2 M2(e) + cA(26)eN 24

+e(ulg g +IF%,  +lal® y )
W2 (G) w2 (8G)

for any € € (0,d/2). Performing the passage to the limit as £ — +0 by the
Fatou theorem, we deduce the validity of our theorem. O

Now we consider « = 4 — N, N > 2. In order to do this, we turn to
Theorem 10.19, based on Lemma 10.18 about the existence of the barrier
function.

THEOREM 10.23. Let u be a strong solution of the problem (LRP).
Let assumptzons (a)-(d) be satisfied. Suppose, in addition, that g(z) €

_w(8G) mnd a(x) € Wi_n(G)1(x) € W3_y(8G), if u(0) #0.

Then (u(z) — u(0)) € Wi_n(G) and

(10.1.61) (d/ 1Ny (2) () _u(o)|2ds) +llw) - w0l g2 o <

G

<0 (luloe+ Ifllge. g+ 1O (14 g o+

Hlallgs ) 1ol g2 o )

where the constant C > 0 depends only on v,u, N, |a*|pe, i = L,...,N
and ||al|n,c, Y0, [|7]lcr (0\0), the moduli of continuity of the coefficients o™
and the domain G.
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PROOF. Setting v(z) = u(z) — u(0) we have v € C%QG), v(0) = 0
and v is a strong solution of the problem
A" (2)Vg,2, + 0 (2)vz, + a(z)v = fz) — a(z)u(0) =
(LEP)o = folz), € G,
-g—:’.i + Talc_|7($)v = g(z) — ﬁ’y(m)u(()) = go(x), z € G\ O.

We repeat verbatim the arguments of the proof of Theorem 10.20
with @ =4 — N. Then from (10.1.34) with regard to a(z) < 0 we have

(10.1.62) /TQ“NW'ulzdm +/rl_N’y(sc)v2ds <N /v?—gdﬂg +
G.

re <

N-2 o
+/1"2_Ng(x)vds+ \u(O)l/rl_N'y(m)|v|ds+ —2——/1"1_Nv2-6—%,d3
Te g

r.
n / TZ'N'U(— F(@)+u(0)a(z)+(a (z) — ¢ (0)) D,-jv(:v)—i—ai(w)Dw(a:))dw.
Gs
We estimate each term of (10.1.62). First (10.1.40) has the form

v
2-N < _ 2
(10.1.63) ¢ /’Uar dQ. < ¢y gr:ré%):m(x) u{0)|*+
Q.

T s / [P 2 4 AN OGP + 27N |G1 fdr+

5e/2
stz

+ cqu®(0) / {r4_Na2(a:) + 727N VA2 + r‘N'y2(x)}dz.

S5e/2
Gs;2

By the hypotheses of our theorem, we get

(10.1.64) lim >~V / v@dﬂa =0.
e—+0 or

Qe

Using the Cauchy inequality we get

(10.1.65) u(0)| / 1Ny (z)|olds < g f 1Ny () o[2ds+
.

Te

+ %IU(O)P/TI_N’Y(m)ds, Vé > 0.
r.
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Since y(z) > 7o > 0 and because of (10.1.52),

1 c
10.1.66 ri=Noy(z)ds < —/rl“N Yz)ds < — ||| .
10166)  [r=¥y@ds < [ 1V @ds < Sl

& €

From (10.1.62) and (10.1.65) (with é =1) and (10.1.66) it follows that

+

(10.1.67) / r2 N |Voldz + % / ri=No(zp?ds < 2N L/v%dﬂs

& re £

2-N 2 € .2 N-2 1-N 2ﬁ
+ [ oteds + WO il o+ T [P s
T, AP ]

+/ r2=Ny (_f(m)+u(0)a($)+(aij (z) — a¥(0)) Dijv(“’)+ai(m)Di”(x)) dz.

Ge

Taking into account the estimates (10.1.42), (10.1.43) (with § = 1),
(10.1.44), (10.1.45), (10.1.49), (10.1.51), (10.1.52) we obtain

+

(10.1.68) %/rl‘ny(g;)IUFds+/r2~N|VU|2dx < g2 N L/-U%dﬂe

= e =4

2 2 2
+ uOF (e oo +lallpe )+

+c.A(25)(1+ / (rV g2

S5e/2
Gejz

: +r4“N|ng2+r2‘N|g\2)d:c)+

+ 61 /r2‘N|Vv|2d:): + 82 /T“szdm—F

Ge Ge
2 2 2
re(lole+ 1Ge 6 +lols )

4—N

for any 41,02 > 0and 0 < e < d/2.

Finally, we apply Theorem 10.19. The assumptions of our theorem
guarantee the fulfilment of all suppositions of this theorem. Therefore we
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can estimate

d
/T*szdx <C2. measﬂ/ 2t lde < ed® 12, x> 0, =
ad 0
(10.1.69) / r~NVuldz < oo.
G

Now choosing §; = %, because of (10.1.69), we may perform the passage to
the limit as € — 40 by the Fatou Theorem in (10.1.68). By (10.1.64), we
get

(10.1.70) / =N\Vy|2dz + / I-Noy(z)w?ds <
G

<4 / Nurde+or(lulfa+If1%e o+

4+~ (G)

2
Hlaligy o) +et@(lale o+l )

for any § > 0.

From (10.1.69) and (10.1.70) it follows that v € v?/;_N(G); IMOreover,
v(0) = 0. This makes possible to apply the Hardy-Friedrichs-Wirtinger in-
equality (2.5.12). Therefore choosing appropriatly small § > 0 we deduce
from (10.1.70) the inequality

/ (r2 NV 4+ No?) dr + + / ri=Ny(z)vids < ¢ (HU”%,G"‘
2 G
(10.1.71)

2 2 2 2
G e ol o) +en@©@(lellge )+ Il

4-N

N(as))

Finally, putting in (10.1.57) o« = 4 — N and replacing f by fo and g by go
from the (LRP)g we obtain

/ 4 N?Jimdw < Cs / r~No2dr + 04“9”3%1/2(1-‘2d)+
Gg ng o Q
(10.1.72) 2 2 ;
+ Ol 1o gz + Cow* O (lalys

e o)
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From (10.1.71) and (10.1.72) follows the desired estimate (10.1.61). O

THEOREM 10.24. Let u be a strong solution of the problem (LRP) and
A be as above (see (2.5.11) or (2.5.19)) . Let assumptions (a)-(d) with
1

B> X —2 be satisfied. Suppose, in addition, that g(z) € W2 (0G), where
4d—N-2X<a<4—-N
and a(z) € Wo(Q), v(z) € WE_,(8G), if u(0) # 0.

Then (u(z) — u(0)) € W2(G) and

z
(10.1.73) 7% 3y(x) (u(x) — u(O))2ds + [fu(z) — “(O)H‘,f,z o <
«(G)

(&

<0 (fulog + 1l g + loll g

(@) o (ac;)Jr

+ [u(0)] (1 +lallgo ¢ + “””W’icm))’

where the constant C > 0 depends only on v,u,a, N, |a'|lpq, i =1,...,N;

lallv,c: A Yo, |Vlciae\o), the moduli of continuity of the coefficients a™
and the domain G.

ProOF. We consider the function v(x) = u(z) —u(0) which satisfies the
problem (LRP)( and multiply both sides of the equation of the (LRP)o by
79~ 2y(r) and integrate over G. We obtain:

/r;"_szvdx = /'r?_zv{f(x) — a(z)u(0)—
(10.1.74) z z

~{(a7(2) - a¥(0))va,s, + @' (@), +a(z)v) }, Ve > 0.

We transform the integral from the left in (10.1.74) by the Gauss-Ostrograd-
skiy formula

(10.1.75) /r?_QvA'udm = /r?‘%%ds- /r;’_2|Vv|2d:E+
G 8¢ G
2—a [ , 400 0r

+ 2 Te sz 8.’17,,
G

dz.
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Because of the boundary condition of the (LRP)y, we obtain

a=2 _ 2—« / a—3 a’U2 87‘6 _
(10.1.76) /re vAvdx = 5 e 3z, oz, dx
G G
1
- /r?_QIVv|2dw + /r?"zv{g(m) - %'y(a:)u(O) — ;’y(:c)v}ds, Ve > 0.
G e

Now we transform the second integral from the right in (10.1.76). For this
we use the Gauss-Ostrogradskiy formula once more

2
(10.1.77) /T?_?’%Zde: /Tg_31j2% cos (ﬁ,mz) ds_

Baci
G oG

Because of g—; = xj:s, g—% =5 (i>2),0G = rduTy and by (1.3.14), we
obtain

0
10.1.78 r"_?’v2ﬁ cos (N, x;)ds = —esin “o r§_4v2ds+
£

aG rg
_3 oOr
+ / ¢ 31)2—5%6(13.
Ta
However, by the fourth property of r., we have
0 _40r _
(10.1.79) —/028—3%(7”3 389:€¢)d$ =(4-N - a)/'rg‘ v2d.
G e

From (10.1.77)-(10.1.79) it follows that

— 2 9 —
(10.1.80) 2 o‘/ra—3‘% Ore 1y — a/ra—3v2areds—

2 € 6.’31 Bml N 2 & on
G Iy
2 - 2~ 4—-N -
-3 %e sin%9 /r?_4v2ds+ 2=a)( 5 @) /rg_4v2da:, Ve > 0.
rg G
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From (10.1.74), (10.1.75) and (10.1.80) with regard to a{x) < 0 we obtain
the following equality

2 _
(10.1.81) /r?“ZIVUFdx tes—Zgn X0 /r?_4v2ds+

2 2
G rg
1 2 — 4—a—N
+ /rg_2;fy(:r)v2ds = (2=a)( 5 o )/r?‘4v2d:c+
G G

+ [ 187204 (a(@) = 0Y(0)) V.0, + a' (@), + a(@)u(0) - f(z) pdz+
[+ |

2 - < _ 1
+ 2a /r?“gvz%ds—k/ re 2vg(:c)ds—u(0)/r?_z;y(x)vds, Ve > 0.
Ta oG 8G

Now we estimate the integral over I'y. Since we have of on I'y that
re > hr > hd = (o —3)Inr, < (o —3)In(hd), and since a < 2, we have

r@=3|p. < (hd)* > and therefore

2— 2 — _
(10.1.82) 5 < / r?_gvz%%ds < TO‘ (hd)>® / vids.
T'a Fd

By (1.6.2), we obtain

(10.1.83) /v2d3 < Cs /v2dx + 5/ |Vu|2dz, V6 > 0.
I‘d Gd, Gd

By the Cauchy inequality,

w=(rt—==lo) (HVAGIN) < or (@) +

Taking into account property 1) of 7., we obtain

1 2
vé > 0.
2 5’70 ,rg ? >

5
(10.1.84) / 1 ollgldo < 3 / rg_2%7(a:)v2ds+
oG oG
1

- 200

he—? /ra_lg2ds, VYé > 0.

From assumptions (a) — (b) we have

max la* (z) — a*(0)| < A(d), and max la¥(z) — a¥ (0)| < 1+ p.
T d

o]
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Hence by the Cauchy inequality and assumption (b), we obtain

(10.1.85) /rg—%{ (a¥(x) — " (0)) va,s, + |z|a*(z)r~ vy, bz <
Gg

A1 (V) / (rre=22, + 122 Tuf? + r~2r2=%?) da.

Similarly, we have

(10.1.86) / r2 2] (¥ (z) — %(0))uasa, + 0 (2)os, }dz <
Gy
< C3(N, diamG)(hd)*2 / (v2, +|Vv|?) dz
Gy

Further, from the Cauchy inequality we obtain

(10.1.87) / =2y f(x)dz < g / r2r2 2y dg+
G

+ 21_6 r2r§"2f2(m)dsv, Vé > 0;
G

(10.1.88) |u( O)If o= 2p"ln(x)|ulds < - / 20 ly(z)|v|2ds+

aG

+ %M(O)I2 /rg_2r_1'y(:c)ds, Vé > 0;
oG

(10.1.89) /rg“zv(w)u(O)a(m)dm < gjr_gr?_zvzda:—k
G G
|u(0)[2/ 2p0=202 (2, V5 > 0.
G
As a result from (10.1.81)-(10.1.89) we obtain with V§ > 0:

10.1.90 ro®2\Vol2dz + | 72 2y(z)vids <
£ & ’Y
G 8G
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< 2—a)(4d—a—N)
- 2

/T§_4v2dx+J/T"lrg_zfy(a:)vzds-{-
G aG

ho? f r*~1g2ds 4 A(d)Cs (5,,\,N)/ (rPre~20d, +r2 2 Vol
oG

G§

L1

2%

+r"2r?*2v2) dz+Cs /r2r§“2f2 (m)daH—&/ (1"~,§"‘2|Vv|2 + 77222 dz+
a G

+ Cy4 (o, h,d,diam G) / (vZ, + |Vv|?) dx + Cslu(0)? (/ e 2y (x)ds+
Ga el

+ / r2r§“2a2(m)dx) .

G

Now we consider two sets Gi’/’ 4 and GZ 2 C Gi‘/’4, p > 0. We make the
coordinate transformation z = pz'. The function 2(z’) = v(pz’) in G2 /4
satisfies the equation

aij(pml)zng; + pa"(pw’)zwg + pza,(pa:’)z = sz(p$,)7
(LRP)" T’ e G%/‘l

22 + v(ea')z = pg(pz’), @' €12,

Because of the interior and near a smooth portion of the boundary
L?—estimates, Theorem 10.17, for the equation of the (LRP)"” solution,
we have:

/ (224 +|V'2[*) d2' < Cs / (p*f% +2%) dx'+

Gi/a Gf/4

+ Cyo?inf / (IV'GI% +|01%)de,
Gi,,
where infimum is taken over all G such that G ’1*2 = g and the constants
1/4

C5,C¢ > 0 depend only on v, u, max A(lz’)), H’y\lcl(pzm) and the domain
z'e /4

G. Multiplying both sides of this inequality by (¢ +¢)*~2 and returning to
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the variable x, we obtain

/<Q2(g+£)“ 22 4+ (0+e)* 2|Vv|2>d:):<05 / <(92(g+s)“"2f2+

P 2
Gp/2 GP74

+Q_2(Q+E)a_2’02>dm+06(Q+8)°‘"2 inf f (6%|VG|? +|G1*)dz, Ve > 0.

2¢
c;2/4

Now, in the domain G’Z /2> We have

3
g<7'<g=>r<g<2r=>g+e<2'r+5§Ersbytheproperty 1) of ro

= (6+e)*2>3Br 1) %22 sincea < 2.

Similarly in the domain G* o7 We have

1 1 1 1
§<r<2g:>2r<g<4r=>g+s>~r+s> (r+e)> 3Te =

(o+€)2 2 <2722 gince a < 2.

Thus we obtain

[ @i, e woPas <

P
c;p/Z

< Or(h,o){Cs / (rf? 1= 2=22) oy

2p
(;p/4

+ Cg inf /(r"‘lV§|2+T“_2|g| )d:c} Ve > 0.

(;9/4

Let p=2""%d, (k=0,1,2,...) and let us sum the obtained inequalities over
all k. Then we have

(10.1.91) /( 2ra=2y? + 1272 Vu|?) dwgcgfr’2r§‘_2v2da:+
e G

+ C'9||9||W1/z 2y + C10|If||‘2§0(GM), Ve > 0.
o a
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Finally, we use once more the interior and near a smooth portion of the
boundary L?— estimate for the equation (L) solution. We obtain analo-
gously

(10.1.92) /(v£$+\Vv|2)dx§C’11 / (% +1°) da+

Ga Gayse
+Cualgl?y < C@amnG) (Il Hlalun )+
w a/2 W (Gasa) W, (Tas
+ 011 / ’U2 dzx.
Gase

Since o < 2 and by the property 1) of r. we have r2~2 < r®~2 and therefore
with regard to (10.1.52) we get

(10.1.93) /r?‘%_l'y(x)ds < /ra_3'y(:c)ds < %/r"‘_3fy2(a:)ds <
oG -l eles
€ 2
< — .
= %Ml
From (10.1.90)-(10.1.93) we obtain

oG
< (2 — a) (42_ a— N) /T‘g_41)2d$ +4 / T_lrg_2"y($)v2d3+
G sl

(10.1.94) /r"1r§‘2'y(m)v2ds + /(rzr‘:_%gx +r272|Vy|?)dz <
c

+ (A(d) + 8)C13 (d, A, N) /(r?_2|\7v|2 + 7722 2yt do+
G

+ Ol b vodiamG) Lol + 11 o + loll e+
«(G) W, (8G)

2 2 2
O (Jelgo g, + e ), ¥e >0

By our assumptions of the theorem, in virtue of the obvious embedding
Wal(G) — W5(G), w;/*(86) — W/*(96), VB > o,
we obtain

9(z) € WE_5(3G), a(z) € Wi_n(G), 7(x) € WE_y(C),
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and therefore by Theorem 10.23 v(z) € v%i_N(G). But then we can apply
Theorem 2.18 and according to (2.5.13) we have

/’U2(T,w)dﬂ < m{!Iva(r,w)|2dQ+/v(r,w)vzds},

Q 0
for a.e. 7 € (0, d).

a—2,,.N—3

Multiplying both sides of this inequality by (o +¢) and integrating

over r € (£, 0) we obtain

1
a-2,-2,27 o a—2{x7,,|2
/(Q-I-E) T de—A(A+N—2){/(Q+€) |Vo|“dz+
Gor Ger
-1 a=2 2
+ / " (o4 ¢e)* y(x)v ds},Va>0
FQ

or since p+ &~ T,

1
/T?—Q’r‘_2v2dxfm{/Tg_2|VU|2d.’L'+

e
GQ/2

+ / r‘lr?‘zy(:c)Ust}, Ve > 0.

e
I“9/2

Letting p = 27%d, (k = 0,1,2,...) and summing the obtained inequalities
over all k& we get

a-2 — 1 a
(10195) /7"5 27‘ 2’U2d]? S m{/re 2!V’U|2d$+
G§ Gg
+ /T‘lrg"2fy(:c)v2ds}, Ve > 0.
rg

Therefore from (10.1.94), (10.1.95) it follows that

(10.1.96) /r"lré"_?’y(x)v2ds + /(r%g—%a%x + 72 2|Vy|?)dz <
8a G
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Bl [,

+ (A(d) + 6)C15 (d, A, N) (/ ro=2|\Vol’dz + /r‘lrg"zv(m)v2ds) +

G 8G

+C14(a7d,h,5,’)’0,diamG)(””“%,G+||f||2oo gl +
W_(C W (8G)

Finally, we use Lemma 2.37 and take into account that r. > r, because of
the convexity of GZ. Then from (10.1.96) we get

/r”lr;"_2'y(:c)w2ds+/( r2 a—2 gm rg_2]Vv|2)d$§
G

oG

22-a)d-a-N) /a—Z 2

S AN —ap QN e Vit
G

1,.0-2 2 2 2
+8£r re 2 (z)v ds} + Cr4|u(0)] (Ha’"v?/[;(g) + ”7“&"22(0)) *

+C5(A(d) + 6) ( ro=2|\Voldz + [ rlr2 27(w)v2ds)
s [

8G

(10197)  +Cu (nuné,a I

o

Hlgl? i ) Ve > 0.
G) W, (8G)

In our case, by 4 — N — 2\ < o < 4 — N, we have

22—a)(4—a—N)

(A—N-a)2+4XA+N-2) <1

and therefore we can rewrite (10.1.97) in the form

22-a)(4—a—-N) .
(1— (4MN—a)2+4A(A+N—2)){G/rf 2‘V’u|2)dﬂt+
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-+—/7"_1 o= 2'7(:c) 2ds}+/'r2r°‘ zvgzdxg
aG bel

< Ci5(A(d) + 6) {/r§‘2|Vv|2dz+ /’r lpa=2 (m)v2ds} +

G oG

+014(a,d,h,anm,diame)(||v||§,a+nfnio el +
W_(@) W, (66)

«

+ [u(0)[? (Ilallvgo @ ”7”&”2(@))

In this case we choose

5o L (1_ 2(2—a)(4—a—N) )
4015 (4—N—Of)2 +4A()\+N—2)

and next d > 0 such that, by the continuity of A(r) at zero,

1 2(2—a)(4—a—N)
Ci5A(d) < Z(l“ (4—N—a)2+4A(A+N—2))'

Thus we have

/1‘27‘& 2p2 d:c+[7'“_2|Vv|2da:+/r r® 2y(z)?ds <

G G eled

< Cuo(a, d, b, 8,70, diam G) (nvnie Ty
W, (G)

L3

+1lgll® 52 +
W, (9G)

(10.1.98) +|u(0))? (||a||vi,/o @ + uvl}&l,zz(g )) Ve > 0.

We observe that the right hand side of (10.1.98) does not depend on €.
Therefore we can perform the passage to the limit as € — +0 by the Fatou
Theorem. Hence it follows that

(10.1.99) / ro=35(g)v2ds + / (r*02, + 122 Vo) <
aG G

< Cun(and by, 4o &) ([0l + 110

a

+ [u(0)[? (Ila[[“o/o @ ”PYHV%”Z 2(G) ))

Now, by the Hardy-Friedrichs-Wirtinger inequality (2.5.12), from (10.1.99)
we get the desired estimate (10.1.73). d

+1lgll® o +
W, (9G)
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10.1.5. Local integral weighted estimates.

THEOREM 10.25. Let u(x) be a strong solution of the problem (LRP)
and assumptions (a)-(d) be satisfied for A(r) being Dini continuous at zero.
Suppose, in addition, that

g(z) € Wi (0G) and
a(z) € #1_n(G), 1(z) € W3 N (0G), if u(0) 0,
and there is ks from (10.1.1).

Then (u(z) — u(0)) € V?IZ_N(G) and there are d € (0,1) and a constant
¢ >0 dependmg only on v, i, d7 A(d)7 N7 S, )‘7 %Yo, 91, ”7”(71 (OG\O)>» measG

r

d
and on the quantity f Alr) dr, such that Vo € (0,d)
0

lu(@) —u @l gz o < c(yu|o,c +1flge oy T oy et
(10.1.100)

o, if s> A,

Ap3/2(1 o
I+ flallge g+ lgsn o) +E:) § A2 (E), ifs=x,

0°, if s < A

PrOOF. From Theorem 10.23 it follows that v(z) = u(x) — u(0) belongs
to v?/i_ ~(G) , so it is enough to prove the estimate (10.1.100). We set

(10.1.101) Vip) = /rz‘N|V'v|2dm-I-/rl'N'y(x)'v2ds
Gy rg

and multiply both sides of the (L)o equation by r2~Nv(z) and integrate
over the domain G§,0 < p < d. As the result we obtain

(10.1.102) V(o) = / (gv—g%+ N ‘2U2)d9+ / 72N oygds—
0

2
g

~ u(0) /rl—Nv'y(x)ds + /rz‘NU{(a”(m) —a"(0)) vg,a, +

rg Gg
+ a*(z)vg, + a(z)v — f(z) + u(O)a(:c)}da:.

We shall obtain an upper bound for each integral on the right. According
to Lemma 2.35, we estimate the first integral.
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LEMMA 10.26.

/r‘l_NvixdiE < C1 (v, 1, N,d, A(d), 91, |Vl crsc00)) (V(20)+

G
10.1.103 +I1£11% 0 +1lgl1%, 2 +
(10.1.103) 110 ey Il o
2 2 2
0)( + ))
+u(0) ”aHV?/Z—N(GgQ) lh”‘/?’;/_zlv(l‘ﬁe)
PROOF. The proof is analogous to reasoning deriving (10.1.57). O

Now we estimate the second integral in (10.1.102). By the Cauchy
inequality and Lemma 1.40

5
(10.1.104) / P~ Nollglds < 3 / =Ny (z)v2ds+
g 3

02 2
+ — , V4 > 0.
570 “g”vf/i’fN(FS)

By (10.1.65) and (10.1.66), we obtain
-2
rg rg

Cs
+ [u(O) 2|13 2
WO

(10.1.105) |u(0)|/r1_N7(x)|v|ds < é/rl“N’y(w)|U|2ds+
, Vé > 0.

To estimate the last integral in (10.1.102) we use the Cauchy inequality,
(2.5.12) with & = 4— N and with the assumption (b) regarding the equation
coefficients. We get

(10.1.106) r*~Nu? (a¥(z) — a9(0)) va,a, + a*(z)ve, + a(z)v pdz <
foo |

< A(0) / N2 dg + A(9)C2 (L N) V(o)
GQ
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and

(10.1.107) / 2N ()| - £(z) + u(0)a(e)|ds < g / r~N2(z)do+

G§ G§
+ % /r4_N (£3(z) + [u(0)%a*(z)) dz < gH()\, N,4—N)V(o)+
Gg
1 2 2g
+ k2™, ¥6 >0,

because of the supposition (10.1.1). By Lemma 2.35 and (10.1.103)-
(10.1.107), we get from (10.1.102) the differential inequality

(10.1.108) V(@) < 55V'(0) + C1A(@)V (20) + Ca (5 + Al) V(0)+
+ Cs67 K207, V6 >0, 0<p<d.

We adjoin the initial condition V(d) < V; to it. By Theorem 10.23 for
a =4 — N we have

(10.1.109) V(d) = /T2*N|Vu|2dw+frth"y(m)vzds <

G¢ rg

<0 2 2 2
<O(luo+ I o+ loln o+

2 2 2. =VW.
+ 1u(0)] (“7“12?/;’_3(6@) M ”a”v?u_w(@)) i
1) s> A

Setting § = ¢° we obtain, from (10.1.108), the problem (CP) with

Plo) = % —Cr (%9) + 95‘1) ; N(o) = 2,\01%@-;

Q(p) = k2Cg0**~17¢, Ve > 0.
Now we have, by (1.10.2),

d d
e _ A8
fP(r)dT=2A1n§—c7 (/A(T)d'r+d e ) =
0 T £
e 4

2p d d
exp ( / 'P(T)dT) < 2%, / B(r)dr < 22**1aCy / -——-—*AS_T)dT
4 ] 0
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d . d 1
exp<~—/’P(T)dr) < (2) exp(G,/ (r) dT) exp(C-;e_ldE) =
d T
2] 1)
B 0 22
= Cs (d)

In this case we also have

d T d
/Q(T) exp (—— /’P(a)da) dr < kEng”‘ /7'23_2)‘_5_1417' < k?CmQ”‘,
e o o

since s > A,

Now we apply Theorem 1.57, and then from (1.10.1), by virtue of the
deduced inequalities and with regard to (10.1.103), we obtain the first state-
ment of (10.1.100).

2)s=2A

Taking in (10.1.108) any function 6(p) > 0 instead of § > 0, we obtain
the problem (CP) with

_na-de)
0
Qo) = k2Ce8 ™ (0)e™ "

A(o)

Plo) ™2, N(a)zzmlf%

We choose

6(g) = m

where e is the Euler number. Then we obtain

2¢ d d
eXp(/P(T)dT) < 22, /B(T)dT < 22’\+1/\CI/A(T)dT
e e 0

, 0<p<d,

T
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and
d

—ZP(T)CZT < ln(§)2A+/—dT—+C7O/dA(T)dT=

Tln(ﬂi-)
o T

=ln(§)2 +lnln( +C7/A T)dT =

eXp(AjP(T)dO < (%)2’* 1n(%) (CTO/A—(:) )

because of (1.10.2). In this case we also have

/dQ(T) exp(—]P(a)do)dT < kang”j&‘l(T)T_lln(?)dfr <
) e 0

< K2Cpp0? 1n3(%).

Now we apply Theorem 1.57, and from (1.10.1), by virtue of the deduced
inequalities, we obtain

1
V(o) < Cir(Vo + kg)gz)‘ In® %, 0<p<d< o

Taking into account (10.1.103), we obtain the second statement of
(10.1.100).

3)0<s<A
From (10.1.108) we obtain the problem (CP) with

o) = 2)\(19— 5)

- C7A(Q) ; N(Q) = 2)\01&(—91
[ : e

and
Qo) = k2Ce6~10*1, V5 > 0.
Now similar to case 1) we have

d

20
exp( f P(T)dT) < 221-6) / B(r)dr < 22t)\¢y / A(T
o

e
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and

d d
Af{1-8 A(1—8
exp(—/P(T)dT) < (5)2 ' )exp(C7/A£T)dfr) = 013(5)2 “ ),
o 0

because of (1.10.2).
In this case we also have

d T d
/Q(T)exp (—/’P(a’)da)df < ka’lGJ"lgz’\(l_‘”/72‘5‘2’\(1‘5)_1d7 <
e e

e
< k3014928y

if we choose ¢ € (0, A—;Q .
Now we apply Theorem 1.57, and then from (1.10.1), by virtue of the
deduced inequalities, we obtain

V(o) < C15(Voe® (179 + k20%) < Ci(Vp + k2)0™

because of chosen 4.
Taking into account (10.1.103), we deduce the third statement of
(10.1.100). 0

Theorems 10.27 and 10.28 together with examples from Subsection
10.2.7 show that the assumptions about the smoothness of the coefficients
of (L) in Theorem 10.25 (i.e. Dini continuity of the function A(r) at zero
from the hypothesis (b)) are essential for their validity.

THEOREM 10.27. Let u(z) be a strong solution of the problem (LRP)
and the assumptions of Theorem 10.25 be satisfied with A(r), that is con-
tinuous at zero but not Dini continuous at zero. Then there are d € (0,1)
and for each € > 0 a constant C. > 0 depending only on e,v, u,d, s, N, A, o,
IVllc10e\0)s 91, measG, such that Yo € (0,d)

Jutz) = uO)lgs o <C(lWoc+1flgs g+ lallgaro
(10.1.110)

N (36‘)

A7 if s>

+lu(0)|(1 + ”“”&2_ y T ||7|l&1/ N(ac)) + ks) {Qs—s, if s <A

PROOF. As above in Theorem 10.25, we get the problem (CP), that is
(10.1.108) and (10.1.109), with

Plo) = 2: (1- § — CrA(g)), V6 >0, N(p) =2XC,— A(Q)
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and
Qo) = k2C170* L.
Therefore we have

d d
- /’P(T)dT =2X(1- g—) lng + 2)\07/
e

e

Al) dr.

T

Now we apply the mean value theorem for integrals

d
f Alr) dr < A(d) lng

T

and choose d > 0 by continuity of A(r) so that 2C7.A(d) < 6. Thus we

obtain
d
27(1-8)
exp(—/']’('r)dr) < (g) , V6> 0.
e

Similarly we have

[ 2A(1-8)
exp(-/'P(a)da) < (g) , V6 > 0.
e

Further it is obvious that

20
/'P('r)dT <2AIn2

e

and with regard to (1.10.2)

d d
f B(r)dr < 22222 ¢y / A—Y—ldT < 22222 Cy A(d) 1n§ < 6A2%A Ing =
2 e

: oy —6x2
exp(/ B(T)d’r) < (3) , Vo > 0.

e
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Hence, by (1.10.1) of Theorem 1.57, we have

(10.1.111) V(o) < (g)—smﬂ{%(g)m(l—a)Jr

T

s /"Qmexp(_ [pua)ar), o

e

Now we estimate the last integral

d T d
/Q(T) exp(—/'P(a)da)dT < k?C”g”‘(l_‘s)/7'25_2)‘(1_6)_1dT =
o o g
(10.1.112)
d2s=22M(1=8) _ p2s-2)(1-0) 0PM=8) if g > A

<kC
2s — 2X\(1 — 0) =" 18{928, if0<s<A
(We choose § > 0 so thatd;éﬁi—‘i.)

From (10.1.111) - (10.1.112) and because of (10.1.103) Lemma 10.26
follows the desired estimate (10.1.110). O

= 1%?01792’\(1_6)

We can improve Theorem 10.27 in the case s > A, if A(r) ln% < const.

THEOREM 10.28. Let u(x) be a strong solution of the problem (LRP)
and the assumptions of Theorem 10.25 be satisfied with s > A and
A(r)Int < const, A(0) = 0. Then there are d € (0,1) and the constants
C > 0,c¢ > 0 depending only on v,u,d,N, ) v0,91, |7llcrac\0), measG,
such that

() = u@)lgz o < O(Iuloc + Iflge g +lolgrn o+
(10.1.113)

1
Alnctl
Hu©@I( + llallge o +Ilgie o)+ kr)e In S 0<e<d
PROOF. As above in Theorem 10.25, we get the problem (CP), that
is (10.1.108) and (10.1.109). Taking in (10.1.108) any function §(g) > 0
instead of § > 0 we obtain the problem (CP) with

p(o) = 2 ;5(9)) —Cy Aé"), N(e) = 2)@%
and

Q(0) = k2Cs61(0)0* L.
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‘We choose

8(0) , 0<o<d,

~ 2\In(<d)
where e is the Euler number. Because of (1.10.2), since A(p) < Cé(p), we

have
20 d
exp(fP(T)dT) < 2%, exp(/B(T)dT) < lnc(%i>, c>0;
e e
d d
_!P(T)d”' < ln(g)m +CQ[1-lnd@ = ln(g)m +cln1n(%) =

d
o) 27 c ed
— < (£ =
exp( ]'P(T)dfr) < (d) In (Q)
e
for suitable small d > 0.. In this case we also have

d T T .
/Q(T) exp(—/’P(a)da)dT < k301992>‘/5—1(7)72(s—’\) lnc(%)d?’r
e ¢ ‘

< k2Ca0* In°t? (%) )

because s > A.
Now we apply Theorem 1.57 and then from (1.10.1), by virtue of the
deduced inequalities, we obtain

(10.1.114) vugg&g%+ﬁm”m%”5 0<Q<d<§

From (10.1.114) and because of (10.1.103) the desired estimate (10.1.113)
follows. .
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10.1.6. The power modulus of continuity at the conical point
for strong solutions. In this section we prove Theorems 10.2, 10.3, 10.4.

Proof of Theorem 10.2.

We define the functions v(z) = u(z) — u(0) and

e if s > A,
(10.1.115) W(o) = o*In®? (%), if s =\,
o°, ifs<A

for 0 < p < d and consider two sets Giﬁ'4 and G$/2 C GZ%, o> 0. We

perform the change of variables z = gz’ and v{pz’) = ¥(p)z(z’). Because
of (LRP)g, the function z(z") satisfies the problem

0 (02') 2411, + 00 (02') 2, + QPa(ex)z =
) .
e (e smtem), = < 2
£ + hr(en)z = gy (9(ex') — u(O) LD )] <
< 3hy9ex), 2 €T,

(LRPY),

since without loss of generality we can suppose that u(0) > 0. We apply
now Proposition 10.14. Because of the estimates proved there, we have

s 2 / % Q 7
sup IZ(:E)ISC{(! zdw) +¢(g) Sup lg(oz”)|+

1/2 1/4
1/4

(10.1.116)

1

+ ([ 1rte) - oty e )

(,,2
)

1/4

where the constant C > 0 depends only on

ki

La(G2,))
”a‘”LN(Gi/‘l)aMO’gl, Yo, ”7“[4""(3G)7N1 v, diamGa Wo, sup a&y and

3<e0<2

d
J Af,r) dr. Returning to the variable z and the function u(z), by Theorem
0
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10.25 with (10.1.115), we obtain

(10.1.117) /mfmfzwiw /'@Nm@g—umW¢zgc@mmG+

2
G1/4 GQ§4

+||ft|&gw(@)+||gn&1/_zN(BG)+|u(0)|(1+Ha1|v?,3_ ol ) +he)

2z~

(/ £ o'y — )(Qw’)l"dm) - (/ 760) ~ O)a(e) e

( / £(@) = u(0)a(z)|Vda’ ) "<l 4 u(Oally o, ok

i_
7 e

QS
(10.1.118) <

by our assumptions. From (10.1.116}, (10.1.117), and (10.1.118) we get:

< const(N, s, A, d) - s,

sup [u(@) ~ u(O)] < C(lulog +1flgs o + lsll g

G, N(aG)
(10.1.119)
o+ O+ alge o Illgan o) ket )b,

Putting now |z| = ¢ we finally obtain the desired estimate (10.1.2).
By the Sobolev Imbedding Theorems we have

(10.1.120) sup |V'2(z')| < cllzllwar(ary, P> N
x €G1/2 1z

By the local LP a priori estimate, Theorem 10.17, for the solution of the
equation of the (LRP)j inside the domain and near a smooth portion of the
boundary we have

2
4
(101121) IIZIIWz,p(Gi/Q) < C(N, v, W, A(Q)){mnf + u(O)aHLp(GgM)-F
v(ez") ‘
Wi-Ure(r?,,) + ||z||Lp(G§/4) .

+E%ﬂp+um)myl
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Returning back to the variables z, from (10.1.120) and (10.1.121), it follows
that

< oo~ Lo~ N/ . 2-N/p °
sg/pz Vol < co™ {e ™ PIIvll o 20,y + @ If +u(0)all, g2 +
2N, 1-N,
+o N Plglly 5102y + 0 / Pl il girmrae  }
or

(101122)  sup Vo] < o™ {Iol g, +u(@llalyy, (20t

e/2

+ 1 fllys,

Because of (10.1.119), (10.1.2) and by the assumption (10.1.3), we get from
(10.1.122) the required result (10.1.4).

o n (G328 + HgHV;;;i’}v(Fzﬁ) + |“(0)|“7”‘,—;’;1/)\1;(11274)}-

Proof of Theorem 10.3

We repeat verbatim the proof of Theorem 10.2 taking

A—e :
) etE s> A
vle) = { o°7¢, ifs<A

and applying Theorem 10.27.
Proof of Theorem 10.4

We repeat verbatim the proof of Theorem 10.2 taking
1
P(e) = o} In** p
and applying Theorem 10.28.

10.1.7. Examples. We present the examples that show that the con-
ditions of Theorems 10.2 - 10.4 (in particular the Dini condition for the
function A(7) in condition (b) at the point © in Theorem 10.2) are essential
for their validity. We recall also Remark 2.38. Suppose N = 2, the domain
G lies inside the corner

wo

Go = {(r,w) |r > 0; -5

O € 0G and in some neighborhood of O the boundary G coincides with
the sides of the corner w = —%2 and w = 4. We denote

<w< %}, wo €0, 7],

Iy ={(r,w)|r>0; w=i%}
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and we put

'y(:z:)‘ vy = 1 = const > 0.

w=F=

Au=0, x€Gy;
(% + %’yiu) =0.

ry
We verify that the function u(r,w) = r*¢(w) is a solution of our problem,
if A2 is the least positive eigenvalue of the problem

¥ N =0, we (-9,%)
(Y +v19)

=0

B

and 1(w) is a regular eigenfunction associated with A\2. Precisely ) is defined
from the transcedence equation

Ayt +7-)
10.1.123 tan{Awy) = ———.
( ) ( 0) A2 — Yy
Then we find the eigenfunction
(10.1.124) P(w) = Acos[A(w — %)] — Y3 sin[A(w —~ %)]

The existence of the positive solution of (10.1.123) may be deduced by
the graphic method (see Figure 2). This example shows that the exponent
Ain (10.1.2) cannot be increased.

REMARK 10.29. In order to have A > 1 we show that the condition
y(x) > o > tan<? from the assumption (c) of our Theorems is justified.
In fact, we rewrite the equation (10.1.123) in the equivalent form

_ 1 Y+ v-
(10.1.125) A= o (arctan 5y + arctan 5 ) .

Hence it follows that

1
1 < A< — (arctanyy + arctany_) =
Wo

Y+ + -

(10.1.126) wp < arctan 1 , provided y,v_ <1

- Y+7-
has to be fulfilled. But our condition from the assumption (¢) means that
Y+ > Yo > tan “. Hence we obtain

_ 2 2tan &
RE] > 702 > ;w = tanwy, wy < E.
L—vyy- — 1= 1—-tan® 2
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Thus we get (10.1.126). In the case v+ > 7o > tan %t > 1 for wp € [§,7)
the inequality A > 1 is fulfilled a fortiori, because of the property of the
monotonic increase of the eigenvalues together with the increase of v{(x)
(see for example Theorem 6 §2, chapter VI [87]).

A

¥

[l
[ —
[ O
-

[aanlie %

- — i e R B MR R ER W M N S e e e e e e e

—

Figure 2

II. The function

u(r,w) = r (ln %) h(w)
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with A and ¢(w) defined by (10.1.123) - (10.1.124) is a solution of the
problem

N ..
Y a¥(T)ug, =0, z € Gy,
i,j=1
a—z+%fyiu) =0,v>0
'y
in the corner Gy, where
2 x2
11 2
=1- . 0;
o (@) )\+1 r2lnl/r’ r>0
12 T1%2
> 0;
a"(z) = a®(z) = A+1 r2ln1/r r
2
a?(z)=1- i r>0;

A+1 r2Inl/r’
a(0) = &, (i,5=1,2).

In the domain G&, d < e~ 2 the equation is uniformly elliptic with ellipticity

constants p=1and v =1 — - (l/d) Further, A(r) = 27 In~'(1), ie., the

function .A(r) does not satisfy the Dini condition at zero. Moreover, a* ()
are continuous at the point O. This example shows that the condition of
Theorem 10.2 about Dini-continuity of the leading coefficients of the (LRP)
are essential, and it illustrates the precision of the assumptions of Theorem
10.4 as well.

ITI. The function
u(r,w) =r*In %w(w)
A and Y(w) defined by (10.1.123) - (10.1.124) is a solution of the problem
Au+ 2+ 21n u=0, x € Gy,

=0,7>0
ry

in the corner Gg. This example shows that the assumptions of Theorem 10.4
on the lowest coefficients of the (LRP) are precise and essential.

IV. The function
u(r,w) =r*In %1/)(&1)
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with A and ¢(w) defined by (10.1.123) - (10.1.124) is a solution of the
problem

Au = =22 ~2p(w), = € Gy,

(gﬁ-%%WiU)

in the corner Gy. All assumptions of Theorem 10.3 are fulfilled with s = A.

This example shows the precision of the assumptions for the right hand side
of the (LRP) in Theorem 10.2.

=0,v>0
Ty

10.2. The quasilinear problem

10.2.1. Introduction. In this Section we consider the elliptic value
problem (QLRP). We obtain the best possible estimates of the problem
(QLRP) strong solutions near a conical boundary point. The analogous
results were established in Chapter 7 for the Dirichlet problem.

DEFINITION 10.30. A strong solution of the problem (QLRP) is a func-
tion u(z) € COGYNWLG)NWEL(G\O), ¢ > N that satisfies the equation

loc
for almost oll x € G, and the boundary condition in the sense of traces on

G\ 0.

We assume that My = max |u(z)| is known.
LAde

Let us recall some known facts about W.P(G)—solutions (p > N) of
the quasilinear oblique derivative problem in smooth domains.

THEOREM 10.31. Local gradient bound estimate (see Theorems
13.13 and 13.14 [237]).

Let G’ cC G\ O be any subdomain with a C? boundary portion
T = (8G'N8G) C 8G\ O. Let u € W2P(G')NCHT), p > N be a strong
solution of the problem

a'ij(maUﬂ u-’l?)umz',wj +a(x7uaum) = 01 TE G,7
8t + my(@)u = g(2), zeT

with |u] < My. Suppose that

ai;(z,u, 2), a(z,u, z) € Cl(@ X [-Mo, M) x RM),
v(z), 9(z) € CH(T)
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and there are posilive constants v, u, 1, K such that aij(z,u, 2), a(z,u, 2)
satisfy

V§2 < Aij ("E: U, z)éifj < ﬂsz, V& S RN;

da;; Oa;; da;;
o 20 1| By D05
@ )] < s (14 |=F);
da Oa da
o o] 14 | + | | < e

for |z| > K. Then for any subdomain G CC G’ UT there is a constant
M, > 0 depending only on N,v, p,p1, H’Y”CI(T),”g“CI(T)vMCI:K and G/,
G",T such that

sup |Vu| < M.
GI'

THEOREM 10.32. Local Holder gradient estimate (see Lemma 2.3
[236]). Let G' CC G\ O be any subdomain with a C% boundary portion
T = (0G' N 8G) C G\ O. Let u € W?P(G') N CY(T), p > N be a strong
solution of the problem

@i (T, U, Ug ) Uz, o, + 0T, U,uz) =0, TEG,

2 1 Ly(z)u = g(a), zeT
with |u] < My, |Vu| < M. Suppose that

ai;j(x,u,z), a(z,u,z) € CH(G' x [—My, M) x [-M;y, My]),
(z), 9(z) € CH(T)

and there are positive constants v, p, puq such that a;;(z,u, z), a(z,u, z) sat-
isfy
V£2 < Qij (93, U, z)&iéj S ”'627 V& S RN;
8a7;j
sz

aaij Baij
du 3£Uk

for |u| < My, |Vu| < My. Then for any subdomain G” CC G'UT there are
constants C > 0, % € (0,1) depending only on N,v, i, u1, ||vlcr (1)
lgllcr(zy, Mo, M1 and G',G", T such that

143,67 < C.

+ + la(z,u, 2)| <

We assume the existence d > 0 such that G¢ is the convez rotational
cone with the vertex at O and the aperture wy € (5, 7) (see (1.3.13)). Let
M = {(z,u,2)|z € G,u € R,z € RN}. Regarding the equation we assume
that the following conditions are satisfied on 9
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(A) a;j(z,u,2) € WH(M), ¢ > N; ~(z) € L®(8G) N C1(8G \ O);
the condition of Caratheodory: functions

da(z,u, z)

Ou

a(z,u,z), e CAR,

that is
(i) they are measurable on G as functions of variable x for Vu, z,
(i) they are continuous with respect to u,z for almost all x € G,
(B) the condition of uniform ellipticity

ve? < ai;(z, u, 2)&€; < pé?,

VeEeRYN z e G,ueR,zeRY andv, = const > 0,

(C) 3a(xuz) <0,
(D) there erist numbers B> —1,7% > tan%?, 71 > 70, nonnegative

constants 8, u1, k1, go and functions b(z), f(z) € L, (G\O),q > N
such that on M the inequalities

8axuz

(@, u,2) +| 2282 <o L b(@)lel + ),

b(x) + f(x )Skllwl’g, l9(z)| < golzl’,
Yo £v(z) <

hold,
(E) the problem (Q~LRP) coefficients satisfy such conditions that guar-
antee u € C11*(G’) and the existence of the local a priori estimate

[uli+z,6r < My, x€(0,1)
for any smooth G’ CC G \ {O} (see Theorems 10.31 and 10.82).

PRropPOSITION 10.33. The local maximum principle (see Theorem
3.3 [225], Theorem 4.3 [234]; see as well [233]).

Let G be a bounded domain in RN with the C1—boundary 0G \T'¢ and
G& be a convex rotational cone with the verter at O and the aperture wy €
(5,7). Let u(z) be a strong solution of the problem (QLRP) with |u| < M.
Suppose the conditions (A),(B), (C) are satisfied. In addition, suppose that
there are nonnegative number u1 and nonnegative functions b(z) € L*(G),
s> N, f(z) € LN(G), such that

la(z,u, 2)] < palel® +b(z)l2| + f(=).
Suppose finally that g € L™ (0G).
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Then for any ¢ > 0 and o € (0,1), there is a constant
C= C(V,N,,Nl, MOa’YO,w(]aN’pa R, G, ||b”Ls(G)’ “f”LN(G)) such that

1/q

1
21;1; lu(z)| < C{ m / [ul9dz +
GE

+R (||fHLN(G{;t) + ||9'”L°°(6G)) }

10.2.2. Weak smoothness of the strong solution. First we esti-
mate |u(z)| for the (QLRP) in the neighborhood of a conical point. To this
end we use the barrier function, constructed in Lemma 10.18, Subsection
10.1.2.

THEOREM 10.34. Let u(x) be a strong solution of the problem (QLRP)
and assumptions (A)-(D) be satisfied. Then there exist the numbers d > 0
and 3 > 0 depending only on v, u, u1, N, »,wo, k1, B, 98, Y0, go, Mo and the
domain G such that

(10.2.1) lu(z) — u(0)| < Colz|**?, z € GE,

where the positive constant Cqy does not depend on v but depends only on
Y, [y 15 gos N, k1, 8,70, Mo and the domain G.

PRrOOF. Let us take the linear elliptic operator

L = a¥(z)

#2 . B
Gwiawj +a ($)5;i', e G,

where
(10.2.2) a’ (x) = ai;j(z,u(z), ux(x)); a*(x) = b(z)|Vu(z)| Lug, (z).

Here we suppose that a’(z) = 0, i = 1,...,N in such points z, where
|Vu(z)| = 0. Let us take the barrier function (10.1.15) and define the
auxiliary function v(z) as follows

(10.2.3) v(z) = =1 + exp(v ™ g (u(z) — u(0))).
For those functions we shall show that

L(Aw(z)) € Lu(z), = € GF;
(10.2.4) B[Aw(z)] > Blv(z)], z € T¢\ O;
Aw(z) > v(x), zeNgUO.
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Let us calculate the operator £ on the function (10.2.3). We obtain
Lo(z) = v ip (0¥ (2)u,, o F U ula”(z)uxiuxj + b(x)|Vu(z)|) x
x exp(v ™ 1 (u(z) — u(0))) = v~ 1 [b(z)| Vu(@)| - a(z, u(z), us(2))
+ 0¥ (2)ug, ug, | exp(v ™ pa(u(z) — u(0))) 2
> —v 7t f(x) exp(20~ s My)
in virtue of assumptions (C) and (D). Since f(x) < k;7?, we obtain
(10.2.5) Lo(z) > —v  pkir? exp(2v~tuy My), = € G,

Let us calculate the operator £ on the barrier function (10.1.15). Let
the number s be such that Lemma 10.18 holds and suppose s satisfies the
inequality

0 < » < min(4, 35, 8+ 1).
By (10.1.11) and (10.2.2) we obtain

Lw = Low + b(x)

Wy, —1/h,2|:r|“_1 + b(z)|Vuw| <

IV ( )|
< —vh?|z|*71 4 b(z)|z]* /2 + 4h2 + B(1 + 35)2.
Because of b(z) < k17?, we get in G3

; 1
Lw <7} = vh? + d* 1y /2 + 407 + B(1 + “)?) < —Sh’r,

if
1
k14/2 + 4h% + B(1 + 3)2d° T < 3V vh? =
2 .
(10.2.6) < ( vh )1 7
2k14/2 + 4h2 4+ B(1 + 3)?

Hence, in virtue of (10.2.5), it follows that
L[Aw(z)) < Lu(z), = € GE,
if we define the number A such that

(10.2.7) A > 2p1 kv 2R 2d 0B exp (20 L g My).
From (10.1.12) we get
(10.2.8) B[ Aw] 2 Agor?

+

Let us calculate the operator B on the function v(z) that is defined by
(10.2.3)

Blv(z)] = % + %7(3})’0(93), zeldi\o.
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By the (QLRP) boundary condition, we have

ov o -1 ou
Bilrivo ~ v prexp(vp (u(x) — U(O)))aﬁ

ri\o

= v xp(e i (u(o) - w0 (9(0) - Tut).

(10.2.9)

Using (10.2.9) and our assumptions, we calculate

Bl < exn@ o) (gor? - Futa)) + Tuto) <
(10.2.10)
< exp(2v 1 My) gor® + % [v— 1+ u()], v>-1.

Because of (10.2.3), we have
exp(v ™y (u(z) — u(0))) = v +1 = v 1 (u(z) — u(0) =In(l +v) =
= (1+ o) tmu(z) = (14 0)In(l +v) + (1 + v)r pu(0),
and, therefore, from (10.2.10) we obtain

_ x
Blv] ri\o < exp(2v 1y M) gor® + % [U —(1+v)In(1 + 'u)] <

(10.2.11) < exp(2v™  ui Mo)gor®, v > —1,

if only u(0) > 0. Indeed, if we denote f(v) =v — (1 +v)In(l +v), v > -1
we get f'(v) =

= —In(1 4+ v) andf"(v) = _Flv' We see that f/(v) =0 & v =0 and
f7(0) =

= —1 < 0. Then we obtain

max f(v) = f(0) = 0 = (10.2.11).

Taking into account (10.2.8) and (10.2.11), we choose
(10.2.12) A> V'lulggl exp(2v~ uy My)

and we obtain
B[Aw] > BJv] on TL\ O.

If u(0) < 0, instead of the function v(x), defined by (10.2.3), we have to
take the function

(10.2.13) z(x) == 1 — exp(—v 1 (u(x) — u(0))).
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Now we compare v(z) and w(z) on 4. Since 22> > h%y? in K, from
(10.1.15) we have

(10.2.14) w(z)

w
= Blz|***| = Bd'** cos”™ ! —20 .
r=

r=d

On the other hand
v(z)

<

d

= 1+ exp(vym (ua) — w(0))]
< -1+ exp(2v ™' 1 M)
and, therefore, from (10.2.14) and(10.2.15), in virtue of (10.1.20), we obtain:

Qq

(10.2.15)

»n+1
2 2
T4 . 3e+1 0 go(1 +4%) 2
Au(z)| > ABd" cos™t! 2 > A{ - +2(1+h )}x
]. 142
dl—i—xohl-’rm) 1 hZ - =70 >
x h")’o —1—-2 ( + ) 2

> exp(2v M) =12 v

y
d

if we choose A enough great
exp(2v~ p1 Mp) — 1](hyo — 1 — )

[
(10.2.16) A> =
hdt+ gy + 2h=o (14 h?) E ]

Thus, if we choose a small number d > 0 according to (10.2.6) and large
numbers A, B according to (10.1.20), (10.2.7), (10.2.12) and (10.2.16), we
provide the validity of (10.2.4).

Therefore the functions (10.1.15) and (10.2.3) satisfy the comparison
principle, Proposition 10.16, and, by it, we have
(10.2.17) v(z) < Aw(z), T € G§.

Returning to the function u(z) from (10.2.3), on the basis of (10.2.17), we
have

u(z) — u(0) = vuy n(v(z) + 1) < vpi!n(Aw(z) + 1) < vp]tAw(z).
Similarly, we derive the estimate
u(@) — u(0) 2 —vpy ' Aw(z),

if we consider an auxiliary function (10.2.13). In virtue of (10.1.13), the
theorem is proved. O

Now we will estimate the gradient modulus of the problem (QLRP)
solution near a conical point.
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THEOREM 10.35. Let u(z) be a strong solution of the problem (QLRP),
g > N and suppose that assumptions (A)-(E) are satisfied. Let 3¢ > 0 be a
number defined by Theorem 10.34. Then there exists the number d > 0 such
that

(10.2.18) |Vu(z)| < Cyi|z|*, z < G,

where the constant Cy does not depend on u, but depends only on v, u, N, k1,
8, 90,7, M1 and the domain G.

PROOF. Let us consider the set G’Z /2 C G, 0 < p < d. We make the
transformation = px'; v(z’) = p~1=*u(pz’). The function v(z’) satisfies
the problem

(QLRPY “;j(m')vlz’iz; = F(z), =’ € G}y,
5%+ @rr(pe u(a’) = p*g(pz’), z €T,
where
0 (@) = ay(pa’, P (@), PV (2))
and

F(z') = —p'a(px’, o' 0(a'), p" v (2)).
Now we apply the assumption (E)

(10.2.19) max |V'u(z')| < Mj.
z'eG!

1/2

Returning to the variable = and the function u(z) we obtain from (10.2.19)
[Vu(z)| < M1p*, z € G‘;/Q, 0<p<d.

Putting now |z| = £p we obtain the desired estimate (10.2.18). g

COROLLARY 10.36. Let u(z) be a strong solution of' the problem
(QLRP), q > N and suppose that assumptions (A)-(E) are satisfied. Then
u(0) = 0 and therefore the inequality (10.2.1) take a form

(10.2.20) lu(z)| < Colz|*T!, x € GE.
Proor. From the problem boundary condition it follows that
ou .
1(@)u(z) = |zlg(z) —lel5-, 2 €dG\O.
By the assumption (D) and the estimate (10.2.18), we obtain

Tolu(@)| < ¥(z)|u(z)| < |zllg(2)] + |2l|Vul < golz**! + Cy|z**1.

By letting |x| tend to 0 we get, because of the continuity of u(z), that
70|u(0)| = 0 and taking into account 7o > 0, we find »(0) = 0. O
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THEOREM 10.37. Let u(x) be a strong solution of the problem (QLRP),
g > N and suppose that assumptions (A)-(E) are satisfied. Let o be the
number from the lemma about the barrier function. In addition, let g(x) €

Vag " (8G) and

(10.2.21) gl 11 < Cp**

Then u(z) € C’H"(G_g), 0 < 2 < min(3z, 3,0 + 1,1 — %) for some d €
(0,1).

PROOF. Let d > 0 be a number such that estimates (10.1.21) and

(10.2.18) are satisfied. Let us consider the set G, C G; 0 < p < d. We

make the transformation = px’; v(z') = p~ 1 *u(px’), where » > 0 is de-
fined by Theorem 10.34. The function v(x") satisfies the problem (QLRP)’.
By the Sobolev Embedding Theorem, we have

Vu(z') — V'u(y
(10.2.22) sup V(@) 1_ﬂ(y L C(N,q,G)|vllwzact )
',y e G}ﬂ |z —y'|"" 4 ’
ml % yl
where ¢ > N.

We shall verify that the local interior and near a smooth boundary
portion L? a-priori estimate (Theorem 4.8) for the solution of the (QLRP)’
equation holds. On the basis of assumption (F) we have that the functions
ai;(x,u, z) are continuous on I, that is for Ve > 0 there exists such 7 that

|as; (2, w(2), ue () — as;(y, w(v), u=(v))| <&,
if only

|z -yl + Ju(@) — uly)| + |uz(2) —ua(y)l <n, Y,y € G, )y, p € (0,d).

Assumption (E) guarantees the existence of the local interior and near a
smooth boundary portion a priori C't*-estimate. There exist a number
3 > 0 and a number M7 > 0 such that

lu(z) — uy)| + | Vu(z) — Vu(y)| < Milz - y[*, Vz,y € G4, p € (0,4).

Then functions a%(z’) are uniformly continuous in ?/2 It means that for
Ve > 0 exists § > 0 (we choose the number § such that 6d + M;(6d)* < 1)
such that |a¥(z') — a¥(y')| < ¢, if only |2’ — /| < 6, Vz',¥ € 5{7; We
see that the assumptions of Theorem 10.17 about the local L¥—a priori
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estimate for the (QLRP)’ are satisfied. By this theorem, we have

oy ) < Ca [ (ol + o0 laloa', p(e'), o0 ()|}’ +
Gl4

(10.2.23) +Cyinf / (IV'GI® + G]9)da’ - o=,

Gi/a

where the constants C3,C4 do not depend on v. Returning to the variable
x and using the estimate (10.1.21) we obtain

2p
< Clmeas QC(q, ») / % = CimesQC(g, ) In8.
£

4

Similarly, by the assumption (D), the estimate (10.2.18) and the inequality

(

N
¢
Ci) < N1 Zcf for anyc; > 0andt > 1,
1 i=1

E

o
Il

we have

[ o aten, g o), o () P’ <

2
(;1/4

< ptlt=r)=N f (11| V| + b(x)|Vu| + f(z))dz <

G

&
2p
(10.2.25) < 2N3971pt1=ImesQ) / (18 C2ar2a%=1 4 (k) Cy)araB+) =1y

£
4

+kIr9 Y dr < C(N, g, 2, B, 11, C1, k1),
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if only 0 < 3 <1+ . Because of the assumption (10.2.21) of our theorem,
we have

(10.2.26)

/ (IV'G19 +G|%)da" - p~%* = [ (p1IVG|? +|G|%)p~ 9" Nz <

G%/4 Gﬁ‘

<C / (r‘1|vg|q + |Q|q) dx - p~#7 N < const.
G%

4

In virtue of (10.2.23), we obtain from (10.2.24)-(10.2.26)

(10.2.27) <cC.

”U”%V%Q(G{/?) =
From (10.2.22) and (10.2.27) we have
V(") — V'o(y')|

(10.2.28) sup e <Cs,gq>N
'y € Gy |z ~y'| "
o £y
Returning to the variable £ and the function u we have
(10.2.29)

Vu(z) — Vu
wp 732 —Vu)
yecr, -yl
TFY
Let us recall that from the assumptions of our theorem, we have 3 < »* <

— %. From this we obtain ¢ > 1—_137; Wetake 7 =52 — 1+ % < 0. Then
from (10.2.29) it follows that

< Csp™ 1%, ¢> N, pe(0,d).

(10.2.30)  |Vu(z) — Vu(y)| < Csp"lz —y|*™", Vz,y € Gy, p € (0,4d)

Because z,y € Gﬁ/z, then |z —y| < 2p and because 7 <0, |z —y|™ > (2p)".
That is the way we obtain

[Vu(z) — Vu(y)| < C527 7|z —y|™, Vr,y € Gy, p€(0,d) =

|Vu(z) — Vu(y)|

10.2.31 sup
( ) |z — y|*

:zr,yer;/2

TF#yY

< C’52'_7-7 pE (Oa d)



10.2 QUASILINEAR PROBLEM

469

Let now z,y € G&. If z,y € G°,,,,Vp € (0,d) we have (10.2.31). If |z — y| >

p/2?
p = |z| then, because of (10.2.18), we have

[Vu(z) - Vu(y)|

jz —y|*
From this inequality and (10.2.31) it follows that
|Vu(z) — Vu(y)|

|z — y|*

< 207 *|Vu(z)| < 2Ch.

(10.2.32) sup
T,y € G
T #y
Because of (10.2.32), (10.2.1) and (10.2.18), we get that
u € CL1+=(GY).

< const.

O

10.2.3. Integral weighted estimates. On the basis of the obtained
in Subsection 10.2.2 estimates, we deduce integral weighted estimates of
second order generalized derivatives of a strong solution and establish the
best possible exponent of the weight. Let A be the number that is defined

by (2.5.11) or (2.5.19) from Section 2.5.

THEOREM 10.38. Let u(x) be a solution of the problem (QLRP), ¢ > N.
Suppose that assumptions (A)-(E) are satisfied. In addition, suppose that

(AA) a;;(0,4(0),0) = 53 (¢,4 =1,...,N) - the Kronecker symbol.

Then there exist the numbers d,C > 0, which do not depend on u, such
that if b(x), f(z) € W2(G), g(z) € W2 (9G) and v(z) € WL/%(8G) for

a—2

(10.2.33) 4-N-21<a<?,
then u(z) € W2(GY?) and

(10.2.34) / (r*u?, + r7 2| Va2 + ro Y u(z)|?)dr < C{ |ul3+

lend

+ Igllifll,g(rzd) + f (|Vul® + r*(b%(z) + f2(z)))dz + 1

2d
GO

ProoOF. We break the proof into three steps.

}.
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Step 1. 4—N<a<2 N2>3.
By (10.2.18), we obtain

d
(10.2.35) / (ra‘2|vu|2 + 74 dx < CmeaSQ/ra—2+2x N1y
Gé 0

d
+ MgmeasQ / re~*N"dr < C(a, N, Mo, meas(, x) (da+N-2+2"+
0

+ d"‘+N"4) < const.

By assumption (A), we have a;;(z,u,z) € WH9(90),qg > N and, by the
embedding theorem, a;;(z,u, 2), 1,7 = 1,..., N are uniformly continuous on
M. Therefore for Vé > 0 there exists ds > 0 such that

(10.2.36) lasj (2, u(x), ue(2)) — @i (y, u(y), us(y))| < 6
if only
(10.2.37) |z —y| + |u(x) — u(y)| + Juz(z) — ua(y)| < ds.

By (10.2.1), (10.2.18), and (10.2.32) we get:

(10.2.38) |z —y| + |u(@) — u(w)| + |uz(z) — us(y)| < d + Cod'* + C1d*,
Vz € GE.

Now we choose d > 0 such that the inequality

(10.2.39) d + Cod™™ + C1d” < ds

holds. For such d we may guarantee (10.2.36) in Gg. ‘

Now we shall estimate the second derivatives of the problem (QLRP)
solution. We make the transformation z = gz’, u(ez’) = v(z’). Then
(T1y . ZN) € Ggﬂ — G{/z > (z},..,z}) and the function v(z’) satisfies
the problem

(QLRP)" aij(‘cl)%ix; =F(z'), 2’ € Gi/z’
By 1 Noy( Y — ' 1
sw + lez’)v(@’) = eg((ez”), z €T,
where

a"(z') = aij(0x’,v(z’), 0 v (2)),
(10.2.40)
F(z') = —g*a(o’,v(z"), 0™ Tuw ().
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Because of (10.2.36), we can apply Theorem 10.17 about interior and near

a smooth portion of the boundary L?—estimate to the solution of the
(QLRP)" equation:

(10.2.41) / (02, + [Vo2)de’ < C / (v2a) + F2(e)+
Gi/2 G§/4
+*(IV'G1* + G,
where the constant C4 does not depend on v, F, g and it is defined bjf v, i,
“’Y(m)”cl(r‘g/4), the continuity moduli of ¢*/(z') and G ;. Returning to the

variable z and the function u(z) in (10.2.41) we obtain

(10.2.42) / rey2 dr < Cy / ( =42 4 r%2(z,u, ug) + | VG|2+
Gora G2e,
+ r"_292) dz.
Putting in (10.2.42) ¢ = 2~*d and summing up over k = 0,1, ..., logy(d/e)
Ve € (0,d) we get

(10.2.43) /r"‘ugmd:z: < Cq4 / (r"‘ 4% +r%ai(z, u,up)+
& G2,
+1o|VG +7°~2G?) da.
By the assumption (D) and (10.2.18) with regard to (10.2.35), we have
(10.2.44) /raugmdm < Cy / (ra_4u2 + 3 (z) + ro%(z)+
Ge G
+ %72 Vu® + r*|VG|? + 7"""292)d:c, Ve > 0,

where the constant C; does not depend on . Therefore we can perform the
passage to the limit as € — 40, by the Fatou theorem, and we get

(10.2.45) / a2 dr < 04{ / a=4y? + r®f2(z) + r*b3(z) +
G2d

a—2
1o Vul)de 4l e M)}.

On the basis of the inequalities (10.2.35) and (10.2.45), we have u(z) €
v?/i(Gg). Now we shall prove (10.2.34). Let {(r) € C?[0,d] be a cut off
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function such that
C(r)=1forre(0,d/2], 0<((r) <1 forrel[d/2d],
{(r)=0forr>d, ((d)=¢(d)=0,
@l < jorrelafad,

We multiply both sides of the (QLRP) equation by ¢2(r)r®* 2u(z) and
integrate over GI. We get

(10.2.46) /Cg(r)rc‘_gu Audr = — /Cz(r)r“_Qu{(aij(:c,u,uz)—
G§ Gg
— 04;(0,u(0),0))ug, o, + a(z,u, ug) tdz.
We apply the Gauss-Ostrogradskiy formula:

/(2 o 2y A udr = /Cz(r ds~

BGd
— /Cz(r)ra_2|Vu|2dz—
d

(10.2.47) 2

- [ mm o

%

—a 2 . a—4a_u2
—/dC (r)x;r oz, dz.
e

Because of the (QLRP) boundary condition and by the properties of ((r),
we obtain

/Cz(r)ra”Qu Audr = — / CQ(T)ra_2]Vu]2da:—
d Gg

b 2
- [ o)ty S e

T
Gy

2—a 4 Ou?
+ /C2(r)xir°‘ 48:“ dz+

(10.2.48)

+/C2(r)ra'2u{g($) - %'y(a:)u}ds.
l"d
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Now we calculate the second and the third integral from the right in
(10.2.48). For this we use the Gauss-Ostrogradskiy formula once more

f{(r)(’(r)a:,-r"":;%%—j-dxz /C(r){’(r i 3u2z,cos(n,:ci)ds—
Gd

aGE

‘/ “za%(c(r)c'w)mr“*)dw: f ¢(r)¢ (r)r® ™ *uz; cos (i, z;)ds—

Gé Qqurg
(10.2.49)
= [Pt 4 e + a4 N = 3 o
G§
and

f ¢3(r)

= / C2(ryre*ulx; cos(f, z;)ds—

8G3
—/u2(%_i(g2(r Yz r® f 2 (r)yre~4ulx; cos(#, x;)ds—
G4 Q,,;ul"d
(10.2.50) - /u2<2f(r)(”(r)r°‘_3 +(a+N— 4)(2(r)r"“4>dw.

Gg

Since ¢ r)’ =0, ¢'(r)
(10.2.50) it follows that

=0 and =z;cos(, m1) =0, from (10.2.46)-

d/z

[ rutas+ EmRGEEA [rop-tutaos
e £
(10.2.51) / Cr)r* S y(z)ulds = / C(r)r*2ug(z)ds+

+ / u2<(2oz + N =5)¢(r)¢’ (7')7‘ S e(r)(ryre? + (C'(r))2'r°‘"2>dm+

Gia

+/C2(r)r“”2u{(aij(x,u, tg) — @i (0,4(0),0)) gz, + a(x, u, uz) }d.
Gy
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Now, by the Cauchy inequality, we estimate the first integral from the right

/ ) lulglds = / ) (r*7 oslol) (r*5* V@Il ) <

(10252) < —‘/‘42(r)r°‘_37($)u2ds+ i /To‘_lggds.
2 270
rg aG

Choosing an adequate ¢ in (10.2.52) we obtain from (10.2.51) the estimate

/Cz(r r"‘“2|Vu|2d:r + @2- a)(a;- N-4) ]Cz(r)r"‘_4u2d:r+

Gd
/ ClrrSaitds < [ wd((2at N -5 eI

Gl

) ()R + ()2 yde + / () 2ua(z, u, ug)dz+

Gg
+ / (2(r)r““2uumi% (aij(z, u,ug) — a;;(0,u(0),0))dz+
G¢
1
(10.2.53) +/C2(r)r“_2ua(m, t, Uy )dT + o /r"“lg2ds.
0
b]

Using the Cauchy inequality, (10.2.36) and (10.2.45) we obtain

(10.2.54) /C2(r)r°’_2uuximj(a1j(x, U, Ug) — a35(0,u(0),0))dz <

G
< 5/Ta—2|um||u|d:c < g/@na[u%l? +7'a_4u2>dm <
d Gg
< 4Cs / <r"‘—4u2 + 1 f23(z) + rb%(z) + r“'2|V'u,|2>dac+

2d
GO

+— [ r*1g%ds, V6 > 0.
270 9
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From the assumption (D) and by (10.2.1) and (10.2.18) we get
r* 2ua(z, v, ug) < 72 ul(p|Vul? + b(z)|Vu| + f(z)) <
< [Vul(urr®=2|ul|Vul + r*2b(z) ul) + o 2[ul|f] <

é
< Cyd*(ro7?|Vul? + ro4u? + r2b?(z)) + Era‘4u2+
—67'af2, Yé >0
and therefore

(10.2.55) /Cz(r)ro‘_zua(m,u, Uz )dr < Cd"/{z(r)ra_ZIVu\zdm—l—
Ge Gg

+ (Cd" n g) / C(r)yr 2 (z)dz + Cd” / C2(r)rob? () da+
Gd d

+ %/gg(r)raﬂ(m)dx, V6 > 0.

From (10.2.53) and (10.2.54), (10.2.55) it follows that

2— N -4
/ ,ra—2‘vu|2d$_|_ ( CY)(O!2+ ) / ra_4u2dm S
ek Gg/z

0

< Cs(5 +d%) / (2| Vaul? + 7o) da+

Gd/2
(10.2.56) 0
+Cs [ 12(0%(a) + 1%(a))do
G2
+Cy / (|Vul? + v?)dz + -2% /r"_lg2ds, Vé > 0.
G G

d/2

In our case N +a —4 > 0. If o < 2 then we choose d,§ appropriately
positive small and obtain

1
(10257) [ rervaitde <c{+ o [retgdss
G G

+/{Ivu\z+ra(b2(z)+f2(x))}dx}.

2d
G3
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If @« = 2 then again for appropriate positive small d,d and, because of
(10.2.35), we get the validity of (10.2.57). Now we use Lemma 1.40. From
(10.2.45) and (10.2.57) with regard to (10.2.35), (10.2.34) follows.
Step 2. a=4— N, N > 2.
Because of (10.2.1) and (10.2.18), we obtain
(10.2.58) / (r*= N vul? + r N |u(z)?)dz <
Gg

d
< C’measQ/rQ‘NH” rN-ldr < 0d??* < const.
0

Hence it follows that u € v?/é_ ~(G). We repeat verbatim the arguments of
the deduction of (10.2.45) and (10.2.56) for a = 4 — N. We obtain

/T4—Nui$da: < C'4{HQ”3?/1/2 ) + / (T_NUZ + 1‘4—Nf2(x)+

a—n (T3¢
e G§®
(10.2.59) +ri=Np2(z) + rz‘N|Vu|2)d:r}
and
1
(10.2.60) 3 / ri=Noy(z)u?(z)ds + / r2=N|Vu|?dz <
r\g/Z C'vg/2
< Cs(6+d™) / (r2=N|Vu2 +rNu?)dz + Cs / N2 (z) + () dz+
lerek Gg?

2 2 2
+Cr [ (Vul +udz + Callglyn

2d
Gd/z

, V6 > 0.
3

Since u € v?/;_ ~(G) we can apply the Hardy-Friedrichs-Wirtinger inequality
(2.5.12) for & = 4 — N. Then from (10.2.59) and (10.2.60) we obtain again
the validity of (10.2.34).
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Step 3. 4— N -2l <a<4-N.

From the assumption (D) it follows that b(z), f(z) € vi’/g_N(Gg). In the
second step we proved that u(z) € v?/i_ N(Gg/ %). Tt means

(10.2.61) / (r* N2, + 2N Va2 4 rV |u(z)?)dz < .
Gy?
N
In this step we use the quasi-distance r.(x) = 4/(z1+€)2+ Y 22 (see
i=2
§1.4).

Similar to (10.2.41) we obtain

/ (u2, + [V'u?)dz' < Cy / (uZ(x’) + 0*a?(oz', u, 0 Mg )+

Gi/z Gf/4

(10.2.62) +0*( V'GP +6?))da’
We put ¢ = 27%d and notice that
27k ldte<rde<2dte
in G*) and
2P 24 re<rte< 27 lg e
in G~ y Gk U G+1) | We multiply the inequality (10.2.62) by (27%d +

£)®~2. Returning to the variable x, we obtain

(10.2.63) / (TQ(T +e)* %2, 4 (r+ 8)“‘2|Vu|2)d;c <
G
<C / (7'_2(7" +&)* 2% + r(r + &) %a’(z, u, ug)+
G-DUGHR UG+

+r2(r + ) VG2 + (r + e)“—ng) dz, Ve > 0.
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And, in virtue of property 2) for r.(z), we have

(10.2.64) / (rre=u2, + 722 Vu?)de <
G(k)

<C / (r"zr? 202 4+ r2r2 202 (1, u, g )+
Gk—1)ygE ugk+1)
+ r2r2=2|\VG|? 4+ r22G%)dx, Ve > 0.

Hence, by summing up over all k =0,1,2, ..., we get

(10265) [ (re2ul, re Ve )da < [ (rrzbuts

Ge G324

+ 2220z, u, ug) + 72| VG) + rg—2g2) dx, Ve > 0.

Now we multiply both sides of the (QLRP)y equation by (2(r)r22u(x)
and integrate over G¥. We obtain

(10.2.66) /C2(7‘)r?_2uAuda:: —/Cz(r)rg_zu{a(x,u,ux)+
d Gd

+ (@55 (@, Uy uz) — ai5(0,4(0), 0)) gz, }dm, Ve > 0.

Using the Gauss-Ostrogradskiy formula in the integral from the left and the
(QLRP)p boundary condition we obtain

/C2(r)r°‘ 2u A ude = — /C2 22| Vu|?de—

/ (e 2 Sy
(10.2.67)

2 -« 2+ a3 0re OUZ
+ — /C (ryre 9z, 9o, dz+
Gy

+ [ o) - Trlaulds
I‘d
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From (10.2.66), (10.2.67) it follows that
(10.2.68) f{2(r)r§‘2|Vu|2dm+/C2(r)r§“2u2%7(x)ds =
G g

Ou 87'5
a—%{ C (ryre?
Gg

+ /C2(7')7‘§_2u {(aij(m, u, ua:) - aij(o’ U(O)v 0))umimj + a.(iL’, U, uz)} d.’l’)-l-

— ¢ (e 2 ot

+ [ C(r)r®ug(z)ds.
/

We shall estimate the first integral from the right. To this end we use the

Gauss-Ostrogradskiy formula once more and take into account property 5)
of r.(z) and Lemma 1.10

x; cos(7, ;)

=0, cos(n,z1) ra

rg

As a result we obtain

Ou?
(10269) [ 7 {
G§

= —2;assm—— /§2 (ryrg™ 4 2ds+/

Gd

+ a-c ; 2 —a—q— (Cz( =3 g:j) doe = = ; 2&sin -Q;—O-/C2(r)rg_4u2ds+
Gd‘ Pg

+ (O! — 2)(042+ N — 4) /CZ(T),,,S——4u2d$+

Gg
+2(a — 2) /C(’r?“"‘ (r +6%) widz + /u2r2_2(C'2 +¢¢"+
Gd

Gg

( ) o— 387-5 CC/ a—2x’&} —

9 (gc'rg—zf;i) da+

i

+ l;_—lcg') de
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Finally, from (10.2.68) and (10.2.69) we get

esin— /{2 r& 4y 2ds+

/C2 ryre” 2\ Vu|?dz -I-

+/C2('r r?'z 21 'y(x) (2—a)(42—a—N) /C2('r)r§‘_4u2dm+
g cd
+2(a — 2) /QC' a- 4 5%) quw-I—/uzra 2(C'Q+CC”+
G
+J—VT_ECC')dm—!-/Cz(r)rg‘_zug(m)ds—k/Cz(r)r‘j_zu{a(x,u,uz)—{—
ré GS

+ (aij (2, 4, 1) = 0i5(0,(0), 0))iz,, }dz, Ve > 0.

Using the properties of the function {(r) hence follows

(10.2.70) /Cz(r)r§‘2|Vu|2dx+/C2(r)r§_2u2%'y(x)ds <

< (2—a)(42—a—N /C2 ryre~4uldz + ¢ / u’dr+
Gl

+ / ¢ (ryre™ullg(x)lds + / Cryre?u{ale, u,u)+
ré G

+ (2152, 4, U2) = 045(0,u(0), 0))tz,, bdz, Ve > 0.

Let d > 0 be such that (10.2.39) and (10.2.36) hold. Using the Cauchy
inequality we obtain

(10.2.71) /CQ(T)TQ“Q(aij(w,u,um) — a45(0,u(0),0)) v,z dx <

Gt

<«s/c PO (r{ug ) (v uf)dz <

-2
Gs

<§/<g()2g %, 4 ()2 )z, 6 > 0
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In addition, by the assumption (D) and the estimates (10.2.1) and (10.2.18),
we get

(10.2.72) / 2 rreul|a(z, v, u.)|dz <
Gd

%(Cld”+5)/g2 rd 2 2dx+—/<2 re?r? fdz+

+p,1(3’0d1+”/CQ(T)T;’_QWuPder %Cld”‘/c2(7‘)7‘?—27‘2b2d$, V§ > 0.
Gg G

Because of the property of rc(z), we have r. > r. From a < 2 it follows that
re=2 < r%=2 We know also that b(z), f(z) € Wo(G) and therefore

f CHr)re 2% fidx < / 7 f2dz and

G

~ 26
(10.2.73)

1 1

SC1d” / C(r)re b de < SCrd” / rb*da.

G§

By the Cauchy inequality with regard to v(z) >y > 0,

1
2 2

V6 > 0.

lullgl = (7

19) (r= 2V (@)lul) <

NIQ'r

1
V(z)
Taking into account the first property of r. we obtain

(10.2.74) /C2(r)rg_2ug(x)d5 < g/(z(r)rg“z%’y(m)uzds-l—
rg rg

1 -1,2
—_— @ ds, Vé > 0.
+ 7 T ghds >

rg
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From (10.2.70) - (10.2.74) it follows that

/ ro=2Vu)2dz + (1 — 6) / 12y (g)ds <

Gir? ri/z
) 2—a)(4— N —

< = 5 /rg'ro‘ 2u§$da:+( 2)( 5 ) / r?_4u2da:+
Gd Gd/2

0

(10.2.75) += (Cld"+26) / re&=2p=2y%dz + Cd* / r=2|Vul2dz+
Gg/2 63/2
v [ @+ |VuP)dz+C / (b2 + £2)da+
G2 G2

/Ta_lgzds, V6 > 0.

rg

+ 25’)’0

Taking into account (10.2.65) and (10.2.75) and choosing § > 0 sufficiently
small, we get

/(r2 =22 41272 Vu?)dz + / r1re=2y(z)ds <
d/z Fg/z
< 2—a)(4—N—aqa)
- 2

/ =t dz 4 C(d* +6) / re 2= 22 d 4
Gy® G5’
(10.2.76) +C / (u2 + |Vl + 7% (0% + f2) + VG2 + ra-2g2)dm+
fer 2
+—,7 /’I‘a_IQQdS + Cd** / r%72|Vul|?dz, V8 > 0, Ve > 0.

rg lerks

Since by (10.2.61) u(z) € Wi_n(G?), we can apply Theorem 2.20 and
then we have (see the inequality (2.5.13))

/ w2 (r,w)dQ) < W / V. u(r, w)|2dQ + / Wz )u?(x)da},
Q

o0
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for a.e. r € (0,d). Multiplying both sides of this inequality by (o+¢)*~2rV -3
and integrating over r € (%, 0) we obtain

1
/(g+8)a—21‘—2u2dms /\()\+—]\T—2) /(Q+E)a—2|vu|2d1'+

2
o/2 G

! -1 a-2 2
+)\()\+N—2) /7“ (0 +¢e)* *y(z)u"ds, Ve > 0
FQ

e/2

G

or since g+~ 71e

1
/ r;"‘_zr‘guzd:c < _——/\(A-FN — 2){ f T?"2|Vu|2dzc+

e e
Ge/2 Ge/2

+ / r“lrg‘—z’y(m)u2ds}, Ve > 0.

e
I-‘t:'/z

Letting p = 27%d, (k =0,1,2,...) and summing up the obtained inequalities
over all k, we get

(10277) /T?~2T‘—2U2d$ S m{/rg_2|Vu|2dx+
Gd G3
+/r‘1r§‘_2'y(x)uzds}, Ve > 0.
g

In addition, Corollary 10.36 and Lemma 2.37 hold. Therefore from (10.2.76)
in virtue of (10.2.77) and (2.5.18) we obtain

K(\,N,a) / re=2|y[2dz + / L2 (2 V2(z)ds b +

Gg/2 rg/2
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1
+ / TZT?_Quimd:c < Yo /TQ_IQst +C / (u2 + |Vu|2+
G2 s rg G

(10278) 0+ )+ eGP +ro26)dat

+C(d* + §) / %2\ Vu|?dz + / rlro 2y (z)u?(z)ds
Gil rd/?
for any 4 > 0 and € > 0, where

(2 _a)(42_N_a)H()\,N,a) _

22—a)4—N-aq)
(4-N-a)2+4A(A+N-2)

K(\N,a)=1-

=1 >0,

because of 4 — N — 2X < a < 4 — N. We choose § = % and d > 0
such that d* < K(%’CN’EZ. As a result we get

/ (rPre~2u2, + 22| Vul?) dz + / r=re=2y(z)u?(z)ds <

Gcy® ri/?
<C / (u2 + |Vul? + 720 + £2) + 12| VG|? + ,,.oe—2g2)dm+
fez2
(10.2.79) +C f r*~lg’ds, Ve > 0.
g

We observe that the right side does not depend on £. Therefore we can

perform the passage to the limit as £ — +0, by the Fatou Theorem. Hence

we get

(10.2.80) / (r*ul, + T2 Vu) dr < C / (uz + |Vul*+

Gy® G3¢
+ 720 + f2) + r*| VG2 + 7‘“—252)1137 + C/'r""lg2ds.

rg

Finally, using Lemmal.40 we obtain the desired estimate (10.2.34). [

THEOREM 10.39. Let u(z) be a solution of the problem (QLRP), q > N.
Suppose that assumptions (A) - (E) are satisfied for 8 > XA —2. Suppose, in
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o 1/2
addition, that g(x) € W4_n(0G) and there is
(10.2.81) supp °||g|l 5 1/2 =ka, s> A
p>0 W, n(T§

Then there exist numbers d, C > 0 not depending on u such that
w(z) € Wa_n(GY?) and

d
A
(10282)  fu@lge oo <C(lulwi) + k1t k), p € (0,5)

PrOOF. The belonging u(z) € vfli_ N(Gg/ %) follows from Theo-
rem 10.38. So it is enough to derive the estimate (10.2.82). We set
(10.2.83) Vip) = /rz‘N|Vu]2dw+/rl_ny(x)qus

Gf re

and multiply both sides of the (QLRP)g equation by r2~Nu(z) and integrate
over G4, p € (0,2). As aresult we obtain

V(p) = / (pua—u + N- 2u2)dw + /TZ_NugdsH—

or 2
! rg
(10.2.84) + /u(m)rQ_N{(aij(m, U, Ug) — 045(0,u(0),0)) Uz, +
G§

+a(a:,u,ux)}dx, p € {0, g)

‘We shall obtain an upper bound for each integral on the right. First of all,
we use Lemma 2.35

ou N-—-2 4 0
2. - < = .
(10.2.85) /(9u8r+ 5 u)dQ_z/\V(g)
Q

We estimate the second integral in (10.2.84). By the Cauchy inequality with
regard to Lemmal.40, we get

(10.2.86) /Tz_Nugds = /(r#'ylﬂ(x)u(a:)) (r¥7—1/2(x)g(x))ds <

rg T4
< é/7"1_N“y(a:)uz(:z:)ds+ __}_/Ts—Ngz(w)ds <
2 2670 -
T re
4]
=3 / r M@ (@ds + Cllg@)I e, V8> 0.

4—N\to
P
rO
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To estimate the third integral in (10.2.84) we use the assumption (A). Then
we have
1 s N
aij(z,u,2) € WHI(M),g > N = a;;(z,u,2) € C°(IM), 0<d <1— s
(i,j=1,...,N)

?

by the embedding theorem. The last together with (10.2.38) means that
|ai (, u, uz) — ai5(0,u(0),0)] < (o), |z| < o,

where

(10.2.87) §(o) ~ %%, b € (0, 1— %) )

Therefore, by the Cauchy and the Hardy-Friedrichs-Wirtinger (2.5.12) in-
equalities, we obtain

(10.2.88) /TQ_N|u(z)||uxixj| laij(z, v, ug) — a;;(0,u(0),0)|dx <
Gg
< 5(p) / PN g2z + C(p)V (p).
Gy

We apply the inequality (10.2.59) and once more the Hardy-Friedrichs-
Wirtinger inequality (2.5.12). Then from (10.2.88) we get

(10289) [ v V(o) 015z, 1, 17) - 035(0,u(0),0) o <
G§

< CH V) + VO + 10 o 1070 ot

- n (G

gl o}

a-n(T5%)

N (GSP)

Similar to (10.2.55), considering the Hardy-Friedrichs-Wirtinger inequality
(2.5.12), we obtain

(10.2.90) /r2_Nu(:v)a(a:, u, Uz )dx < C’{(,o" + 8V (p)+
Gh

G?, Go
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From (10.2.84), in virtue of (10.2.86) - (10.2.90) for § = p°, Ve > 0, it
follows that

V(o) < 55V'(0) + Co(e)V(20) + C (3(0) + 0" + &) V(o)+

2
+o{ bl
Hence the Cauchy problem for the differential inequality follows
©P) { V'(p) — P}V () + N (p)V (20) + Qo) 20, 0<p<d,

(10.2.91) o X
vz T MMy ol oy )

N

V(d) < W,
where
(10.2.92) Pp) = % _c (@ Ly ps—l) ;
(10.2.93) N(p) = Cé—(:l;
and
(10294 Q) = C{”b"i?fi_mcﬁﬂ) ey

2 —1
+ 19l (ng)}p .

-N
We adjoin it to the initial condition V{(d) < V. By Theorem 10.38 for
a=4—N,

V(d) = /r2_N|Vu|2dx + /rl_N'y(a:)iﬁds < C’{Iu|g+

ad rg
(10.2.95) + / (IVul? + =N (B2 (z) + f2(z)))dz+
ler

2 1=V,
+ IEQHV%/EN(F?) + 0

By Theorem 1.57,

(10.2.96) V(g) <exp (/d B(T)dT) {VO exp (—/d’P(T)dT)+

2

T

+/dQ(T)exp(—/P(a)d0)d'r}

[
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with ,
B(e) = N exp( [ Plois).

Now, by means of simple calculations, from (10.2.92) and (10.2.93) with
regard to (10.2.87) we have

d 2 d
(10.2.97) exp(— /P(T)d’r) < C(E) and jB(’T)dT < C = const.
o P

In addition,

T

— 2, —2A—1 2
(10288 Q(rexp(- [ Ple)o) <CPTH bl o+
p
—£ 2 2
+T ”f“"%i_ + ”g”&:/_z (F%T)}, Ve > 0.

N

~{GE)

Let us recall the assumption (D)

2 < of2-26+4 —|l 112, < ck2r28+4—c
Hb”v?/z_N(Ggf) < ckiT and T ”f“vh_,.,((;gf) < ckiT
Since 8> A — 2, we can put 8= A — 2+ ¢, Ve > 0. Therefore we get
2 —& 2 < k2 2A+e
(10.2.99) ”b“v?/Z_N(Ggf) +77°| £l ° @ S ckiT“ 7%, Ve > 0.

From (10.2.98) and (10.2.99) with regard to (10.2.81) we obtain
d T

(10.2.100) /Q(T) exp(—/'P(a)da) dr < C(k? + k2)0*.
e 2

Finally, from (1.10.1), by (10.2.95), (10.2.97) and (10.2.100), it follows that
(10.2.101) V(p) < C(N, A, d, %)<||u||%w,2(c) + 2+ k§>92)‘.
At last, from (10.2.59) and (10.2.101) we deduce the validity of (10.2.82). O

10.2.4. The power modulus of continuity at the conical point
for strong solutions. Now we shall make the exponent s in the estimates
(10.2.1) and (10.2.18) more precise and prove the Hélder continuity of the
first derivatives of the strong solutions in the neighborhood of a conical
point. Let A be the number that is defined by (2.5.11) or (2.5.19) from
Section 2.5.
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THEOREM 10.40. Let A > 1 and let u(z) be the problem (QLRP)
strong solution, ¢ > N. Suppose the assumptions (4), (AA), (C) - (E)
are satisfied for 3 > A —2 > -1, & > A —1 > 0. Suppose that the
function g(x) satisfies the conditions of Theorem 10.39. Then there ez-
ist numbers d > 0, Cy,C1 not depending on u(x), but depending only on
N, A v, u, 41, 8, k1, k2, q, go, Mo, My and the domain G, such that

1) ju(z)| <ColzP* and |Vu(z)| < CilaP~!, z € G2,
In addition, if g(z) € V;o"%(8G) and

_gpetN
(10.2.102) Hg(m)HVql;l/q(FS) <CMH ) 0<p<d/2

then there exist numbers d > 0, Ca, not depending on u(z) but only on
N, v, u, 11,8, k1, k2, ¢, g0, Mg, M1 and the domain G, such that

2) ifa+g(A—2)+ N >0 then u(z) € V2, (G) and

— a_p4Nte
lu(@)llvz, e < Cap 275, 0<p<d/2

and

3) fl<A<2 g> 3 thenu(:v)eC)‘(G’g/2 .

. 2
PROOF. Let us consider the sets G, and G f, D G} 5,0 < p < d/2.
We make the transformation = = pz’; w(z') = p~*

w(a') satisfies the problem

u(pz’). The function

(QLRPY, { tgi(x')uiz;z;. =F(x'), o' El_Cii/za 1
sw + arY(pz)w(a’) = 0 7*g(pz’), z € Ty,
where
a”(a’) = ay(pz’, u, P war (')
and

F(z') = —p*a(pr’, prw (@), p*  wre (7).

The LI— estimate (10.2.23) is satisfied for the function w(z’) (see the proof
of Theorem 10.37), that is

(10.2.103) ||w\[§vz,q(ai/2) <Cs / {[w] + p™|V'w[?® + g9|b]¢|V'w]+

Gl/q

TNV 4+ CyptY / (IV'gle + |g|)de,

Gi/a
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where the constants C3,Cy do not depend on w.
At first we consider the case 2 < N < 4. By the Sobolev Imbedding
Theorem, we have

(10.2.104) sup |w(z')| < Cllwllzz.c:

.’A:'EG}/,‘2 /2

Returning to the variable  and because of the estimate (10.2.82) of Theorem
10.39, we get

[wlZaey, = [ (lowal+ [70P +u?) s’ <

1/2
G/

(10.2.105) < C(N)p~2* / (7.4—Nlum|2 2Nyt s
Gi/z
+ r_Nu2)da: <C.
From (10.2.104) and (10.2.105) it follows that

sup |uw(z')| < Co,
T'E€G]

and returning to the variable x we get

lu(z)| < Cop*, z€GY
Putting now [z| = Zp we obtain the first estimate of 1) of our theorem.

Let us now N > 4. We apply the Lieberman local maximum principle,
Proposition 10.33. Then, by the condition (D), we have

1
(10.2.106) sup w(z’) <C (/ dem')Q Mgy
o' €G]y y
G1/4

_ _ *
+02( [ la(pa’, ('), 0~ wye)| Vo' ) }

Gl

We shall estimate each integral from the right hand side of (10.2.106). We
estimate the first integral by (10.2.82) of Theorem 10.39 as

(10.2.107) f widz' < p~2* / r~Nuldz < C.

2 2
“i/a Gola
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Because of the assumption (D) and the estimate (10.2.18), we have

(10.2.108) / la(pz’, prw(z"), PP twe )|V dz' < ¢(N) / (M{VIVulzN+

2 2,
G1/4 GpF/’ll

FP @IV 4 @) Ve <o) [ (0PN Tu)x

feild

p/a

x (12| VU2V =2) 4 (12N Tuf?) - (kYN 2 VulN ) 4 ANV Ydr <

< C(N) (”11V0?N—2p2z(N—1)——2 + k{VC{V—an(N—2)+ﬁN-—2) / ,’,2~—N|vul2dm

2p
Gp/4

+ e(N)(B) " (k1) measQ (2PN — 272N pBN 0 < p < d/2.
Because of (10.2.82), hence we obtain

1

N
(10.2.109) p*>> Q/ |a(pm’,pxw(m'),p"“lwmf)lNdm') <
2

1/4

< C(pg—H—(—l2 Al 4 Ze( 1) +p2—>\+ﬂ+—2“g”+—"“}’\,‘2) +pﬁ+2—)‘)’ Vp € (0, g)‘

We recall that 8> A —2, § > A — 1. Hence and from (10.2.106),(10.2.107)
and (10.2.109) it follows that

(10.2.110) Sup W(x’) S C]. + C2p2_A+2('\—1)+Zu(N—1) ‘

z’EG}/z

We recall as well as that A > 1 and s > 0. To prove the validity of 1) (as
in the first case) it is enough to obtain the following estimate
(10.2.111) sup w(z") < const.
z' G} /2

‘We shall show that the repetition by the finite time of the procedure of the
(10.2.110) receiving for various s can lead to the estimate (10.2.111).

Let the exponent of p in (10.2.110) be negative (otherwise the (10.2.110)
means the (10.2.111)). Returning to the function u(z) in (10.2.110) and
putting |z| = Zp we obtain

(10.2.112) u(z) < Cla+* 52,
and hence, by Theorem 10.35 for sr = 2y,
(10.2.113) =14 2020

N b
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we get
(10.2.114) |Vu(z)| < Clz™.

Let us repeat the procedure of receiving the inequalities (10.2.109) and
(10.2.110), applying the estimate (10.2.114) instead of the (10.2.18) (i.e.
changing s for s). As a result we obtain

(102115) sup 'U)(.’.L‘I) S Cl +02p2—'\+2 A=1 +2n](1\1;]—1).
x’GG%/z

If the exponent of p in (10.2.115) is negative, then letting
20-1) 2(N-1)

(10.2.116) g =1+ N + N
by Theorem 10.35 for 3 = 35, we get

(10.2.117) |Vu(x)| < Crolz|™,
and repeating the above procedure we get the estimate
(10.2.118) sup w(z') < Cp + Cap? M2+ 2=

2’ €Gy )y
Letting
2(N-1) _3
10.2.119 t=—=—=>= VYN>4
(10.2119) —L>2 w4,

we consider the following number sequence {7}
s defined by (10.2.113),
My = %1(1 + t),
sy = sa(l +t+t2),
gl —1
t—1 "’
Repeating the stated process k times we obtain the estimates

(10.2120) 3541 =21 (1 4+t + ... +tF) =59 kE=0,1,..

(10.2.121)  sup w(z') < Cy +Copr M 41 0< p<d/2
z'eGt

1/2
kE=0,1,...
Now we shall show that for YNV > 4 exists integer k such that
(10.2.122) 1— A+ 5441 0.
From (10.2.113) and (10.2.120) we have
thtl 1 A-1
+ (
t—1 N(it-1)

1— A+ 541 = 2tFt1 — 2 — Nt + N).
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The first term on the right is positive, by (10.2.119). For the second term
from (10.2.119) it follows that

ol 9 - Nt + N =221 - 1/N)F1 N >0
if {(2N — 2)/N}*+1 > N/2. Hence we get that (10.2.122) holds if

n¥
2
k+12 1 2N-2
N
N
Choosing k = lnl%_—z , where [a] is an integer part of a, we guarantee
T

(10.2.122) YN > 4. By this, the validity of 1) of our theorem is proved.

The validity of the second estimate we get from Theorem 10.35 for
x=A-1.

Now we shall prove the validity of 2). Returning to the variable z and
the function u(x) in (10.2.103) we have

[ (uasl? + 190l + o~ ul7) do < Rl

Gorz G3*
619 Vul? + 117+ [Vgl? + 079l ) da.

Multiplying this inequality by g%, replacing o by 2~*p and summing up over
all £ = 0,1, ... we obtain

Hu[l’g,qg,a(cg) < Cy / (r““quulq + ¥ Vul? 4 r%|b|7| Vu|T+
GZe
+70|f12 + |V glt + 727 9g|?) da, Vg > 1.
Using the estimates from 1), by the assumption (D) and the assumption
(10.2.102) of our theorem, taking into consideration 8 > A —2 > —1 we get

oy otN

if only o+ N + (A —2)g > 0 . From (10.2.123) we obtain the validity of 2)
of our theorem.

Finally, repeating verbatim the proof of Theorem 10.37 for »» = A — 1,
we obtain the validity of 3) of our theorem. O
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10.3. Notes

Many mathematicians have considered the third boundary value prob-
lem. The oblique derivative problem for elliptic equations in non-smooth
domains was investigated by M.Faierman [121}], M.Garroni, V.A.Solonnikov
and M.Vivaldi [127],P. Grisvard [133], G. Liberman [225, 226, 232, 234,
227], H.Reisman [350] and others.

P. Grisvard has investigated (Chapter 4 [133]) the properties of the se-
cond weak derivatives of the weak solutions of the oblique problem for the
Laplace operator in a plane domain with a polygonal boundary. He has
established W2P—a priori estimates for such solutions and conditions, when
such estimates hold.

M. Dauge and S. Nicaise [94] have investigated oblique derivative and
interface problems associated to the Laplace operator on a polygon. They
have obtained index formulae, a calculus of the dimension of the kernel,
an expansion of the weak solutions into regular and singular parts, and
formulae for the coefficients of the singularities in such expansions

M. Faierman [121] has extended the P. Grisvard results to the elliptic
operator of the form

N N
L=- Zaii(m)Df + Zai(m)Di + a(x),
i=1 i=1

in a N dimensional rectangle.

H.Reisman [350] considered elliptic boundary value problems for the
equation from (L) with infinitely differentiable coefficients in a bounded
domain ¢ ¢ RY (N > 3) with non smooth boundary that has dihedral
edges. He considered the boundary conditions that are an oblique derivative
on one side of the edge and an oblique derivative or a Dirichlet condition
on the other side of the edge. The main results in his work are uniqueness,
existence, and regularity theorems for such problems in weighted Sobolev
spaces.

M.G.Garroni, V.A.Solonnikov and M.A.Vivaldi [127] have considered
the following elliptic boundary value problem for the Poisson equation on
the infinite angle

—Au+ su = f(x), z € dy,
(85 +ng)| =wit, =0

where dy C R? is the infinite angle of the opening ¥ € (0, 27} with the sides
~o and 7, given by

vo = {0 <1 < 00, z2 =0},
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Y1 = {z1 =rcosd,zy = rsind,0 <r = y/z} + 22 < 00}

in a Cartesian coordinate system {z1,z9}. Here 7 is the exterior normal
to 7i, ho and h; are given real constants, s is a complex parameter with
Res = a? > 0. The authors have obtained the estimates of the above
problem solution, which are uniform with respect to s in weighted Sobolev
spaces introduced by V.A.Kondrat’ev for the investigation of elliptic bound-
ary value problems in domains with angular and conical points at the bound-
ary. In these spaces the distance |z| from the origin, with an appropriate
exponent, is the weight. The spaces, in which the solution exists, depend
on the sign of Ag + h1.

At last, the oblique derivative problem in Lipschitz domains has been in-
vestigated by G. Lieberman [225, 226, 232, 234, 227]. He has studied the
problem of the existence and the regularity of solutions in Lipschitz domains
for elliptic equations with Holder continuous coefficients. He has proved
[225, 234] the local and global maximum principle (see Propositions 10.11,
10.14) for the oblique derivative problem for general second order linear
and quasilinear elliptic equations in arbitrary Lipschitz domains. Without
making any continuity assumptions on the known functions, he has derived
the Harnack and Holder estimates for strong solutions near the boundary of
the domain. He as well has bounded the maximum of the solution modulus
in terms of an appropriate norms and the known functions.

An important element in the study of elliptic equations is the modulus
of continuity estimate for the gradient of the solutions. Usually this modulus
of continuity estimate is in fact a Holder estimate, so it is often referred to
as a Holder gradient estimate. For elliptic nonlinear oblique boundary value
problem in & smooth domain, the Holder gradient estimate first has been
proved by G. Lieberman [236, 237] and by Lieberman-Trudinger [238].

M. Dauge and S. Nicaise [94] have investigated the oblique derivative
and interface problems on polygonal domains.

L. Lanzani and Zh. Shen [220] have obtained existence and uniqueness
results for harmonic functions satisfying the Robin boundary condition with
boundary data in L,(0G), 1 < p <2+ € and G being a bounded Lipschitz
domain.
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124, 126, 127

for linear Robin problem,
409, 410

for pseudolaplacian, 323

for quasilinear Dirichlet
problem, 281

for quasilinear Dirichlet
problem, 245, 328, 330,
331, 334, 366

for quasilinear Robin
problem, 489

for semilinear equation, 220,
225

barrier function, 231, 264, 382,
415

Beltrami-Laplace operator, 20

Bernstein estimate, 99

Caratheodory’s function, 241
Cauchy’s Inequality, 16
Clarkson’s Inequality, 23
comparison principle
Dirichlet problem
m-Laplacian, 303
linear equation, 98
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semilinear equation, 225
mixed problem, 367, 414
conical point, 18
convex rotational cone, 20

difference quotient, 46
differential inequality (CP), 37
Dini continuity, 32
Dini gradient continuity
global
conical domain, 209
local
smooth boundary, 194
Dini-continuity, 60
Dini-Liapunov region, 144
Dini-Liapunov surface, 143
Dirichlet problem
for the Poisson equation
in a conical domain, 95
in a smooth domain, 81
distance function, 43

eigenvalue, 54-55
eigenvalue problem
for m— Laplacian, 307
for the Laplace-Beltrami
operator
Dirichlet boundary
condition, 54
Robin boundary condition,
55
elliptic inequality, 190
elliptic operator, 299
equation
(ECC), 94
(ME), 363
extension lemma, 43

Fatou’s Theorem, 23

fixed point Leray—Schauder
Theorem, 36

Friedrichs-Wirtinger inequality

INDEX

Robin boundary condition, 69
Fubini’s Theorem, 22
fundamental solution, 81

generalized solution, 303
global bound of a weak solution
quasilinear Dirichlet problem,
324
quasilinear mixed problem, 372
gradient bound
local for linear Dirichlet
problem, 99
local for linear Robin problem,
410, 411
local for quasilinear Dirichlet
problem, 242, 245, 281, 323,
336
local for quasilinear Robin
problem, 489
Green’s function
of a ball, 93
of a domain, 92
of the half-space, 90, 92

Holder continuity, 26
generalized solution, 328
weak solution, 188, 315

quasilinear equation, 300

Holder estimate

linear Dirichlet problem,
131-134

quasilinear Dirichlet problem,
242

Holder gradient estimate

linear Dirichlet problem, 135,
136, 138

quasilinear Dirichlet problem,
243, 302

Hoélder’s Inequality, 17, 22

Hardy inequality, 49, 51

Hardy-Friedrichs-Wirtinger
type inequality



Dirichlet boundary
condition, 61-68
Robin boundary condition,
69
higher regularity
linear problem, 140, 142
quasilinear equation, 287, 292

inequality for boundary and
domain integrals, 27-29, 31,
64, 65, 70

Interpolation inequality, 23, 27,
34

Jensen’s Inequality, 17

linear problem

smoothness in a Dini-Liapunov
region, 144

local bound of a strong solution
semilinear problem, 220, 231

local bound of a weak solution
linear problem, 183, 186
semilinear problem, 233

maximum principle
for quasilinear equations, 299
local, 98
mixed problem
global, 413
of Alexandrov, 97
Robin problem
global, 412
local, 413, 460
strong, 412
strong of Hopf, 98, 371
method of continuity, 36, 158
Minkowski’s Inequality, 23
mixed problem, 359
modulus of obliqueness, 411

Newtonian potential, 81
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oblique operator, 411

Poincaré inequality, 52

problem
(BV P)g, 382
(EVR)Oa 68
(StL), 382
(BVP), 359
(CPE), 382
(DL), 165
(DPE), 95
(DQL), 299
(DSL), 232
(EVD), 54
(EVR), 55
(IDL), 190
(L), 97
(LPA), 303
(LRP), 407
(NEVP), 304
(PE), 81
(QL), 241
(QLRP), 407
(SL), 215

quasi-distance function, 21
regularization of a function, 24

semilinear equation
divergent, 232
nondivergent, 215
set of type (A), 242
Sobolev imbedding theorems, 28
space of Dini continuous
functions, 34
Stampacchia’s Lemma, 40
strong solution, 100, 215, 244,
263, 408, 458

the Bernstein method, 256

unbounded solutions, 235, 238
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uniform ellipticity condition, 97,
100, 166, 198, 215, 232, 241
unique solvability
linear problem
conical domain, 155, 158,
160, 163
smooth domain, 97

variational principle, 36, 55

weak eigenfunction, 54, 55, 307

weak Harnack inequality, 300

weak solution, 166, 232, 299, 303,
363

weighted Sobolev space, 29

Wirtinger inequality

Dirichlet boundary condition,

54-55

Young’s Inequality, 17
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: CPA(QR), 34

: CL(G), 26

: G(z,y), 93

: G 19

: Gb, 18

: Gg, 19

: LP(G), 22

: I (G), 23

: Lu, 97

My, 241

: My, 245
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: Vo /7(T), 29
: Whe(G), 26
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: WE?(G), 26
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: WhEP(T), 27
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: WE(G), 26

: X(G,T), 361

: [ulae, 34

: [f]a;G: 26

1 Ayu, 19

: Ay, 303

: Mz —y), 81

: T8, 18

: Pd, 19

: Q2,18

1 Qp, 19

: (w), 384

: Wh(G), 29

: v?/ﬁ_l/z(I‘), 29
! X0, 316

1 A, 68, 361

: Ao, 304, 385-388
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: B, 407

: £, 382

: D(A, ¢), 304
s 9, 241, 459
: M), 242

: N (v, 00, G), 360
: u(m), 307

: o, 315

: Vou, 19

: wo, 18, 20

: 6(r), 55

1 6., 361

: APu(z), 46
: 9, 54

: 1, 68

: ai(2), 303

: d(z), 43

: d9, 18

: Te(x), 21

T up, 24

: div,,, 20



This Page is Intentionally Left Blank



