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Preface  

Matrix equations, such as Lyapunov, Sylvester, Riccati and other linear and non- 

linear equations, are widely used tools in the general, stability and control theory 
for operator equations as well as in many application areas (systems theory, sig- 
nal processing, and others). There is a huge literature on this topic that covers 

existence and uniqueness of solutions, numerical methods and also, more recently, 

perturbation analysis for special classes of such equations. Although perturbation 

theory is not very popular among scientists and engineers, it is essential for un- 

derstanding the problems and estimating the accuracy of the computed results. 

Indeed, the mathematical models that are used to solve application problems are 
typically subject to modelling uncertainties (due to simplifications), and measure- 

ment errors in the data. Furthermore, the solution of the problem is usually carried 

out with numerical methods that may include approximation errors due to trun- 
cation of infinite series and/or discretization of continuous processes. In addition, 
the final result is contaminated by rounding errors due to the implementation 

of computational algorithms in finite precision arithmetic. The influence of the 

above uncertainties and errors on the computed result depends on the sensitivity 

of the problem. Thus, without a detailed perturbation analysis, it is not possible 
to assess the quality of the computed results. 

In the last years, in a sequence of research papers, a general framework has 
been developed by the authors of this monograph in order to perform perturbation 

analysis of general matrix equations in a systematic way and it is the main goal 

of this monograph to present this general scheme in a concise and systematic 

way. Then, for several important classes of matrix equations, the framework is 

specialized and the perturbation results are presented. In all cases both local first 
order and nonlocal perturbation bounds are derived. 

The general framework for perturbation analysis of matrix equations was de- 

rived in part while the authors were cooperating in the development of numerical 

methods in control within the European Community BRITE-EURAM III The- 

matic Networks Programme NICONET (contract number BRRT-CT97-5040). We 
thank the other partners of this network for many helpful discussions. 

We also thank the Departments of Mathematics at the Technical University 



vi 

of Chemnitz, Technical University of Berlin, and University of Architecture, Civil 
Engineering and Geodesy-  Sofia, the Department of Engineering at the Univer- 
sity of Leicester, and the Department of Systems and Control at the Technical 
University of Sofia for providing excellent facilities to carry out this research. We 
also thank the DFG Research Center FZT86 "Mathematics for Key Technologies" 
in Berlin for the support in the final stage of preparing of this manuscript. 

This book would not be accomplished without the help and understanding of 
our wives and children. We cordially thank them all. 
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Chapter 1 

In troduc t ion  

This monograph is devoted to the perturbation analysis of algebraic matrix equa- 

tions. In general, the perturbation analysis of a given problem is aimed at esti- 

mating the perturbation in the solution as a function of perturbations in the data, 

see [65, 206, 134, 135, 127] as well as [119, 16, 60] for a general treatment of this 
subject. 

There are many reasons to look for perturbation bounds for a given problem 
(a perturbation bound is a function whose argument is the perturbation in the 

data and which majorizes the perturbation in the solution). Major sources of 

perturbations are parametric and structural uncertainties in mathematical models 

as well as the effects of finite precision arithmetics in the numerical simulation of 
the models. 

Mathematical models for the description of the physical behavior of a system 

typically contain measurement errors, modelling errors and/or estimated param- 
eters. When such models are treated numerically, discretization and rounding 
errors are introduced. Furthermore, usually a given model is applicable only for 

values of its parameters within certain bounds. For parameter values out of these 

bounds the model is not correct and the solution of the corresponding computa- 

tional problem may not exist or may have no physical meaning. 

Let us consider a real world example which displays these issues. 

E x a m p l e  1.1 To derive a mathematical model that describes the complete traffic 

in a realistic rail network [31], many components are needed, which include the 

dynamic equations for the movement of the train; the constraints for the move- 

ment, like e.g. global velocity constraints; the properties of the real network (e.g. 
local velocity constraints, slopes) and the complex interaction between the trains 

induced from the signal system and the schedule. 

The most simple model for the dynamics of one train is the motion of one 

mass point (the center of mass of the vehicle), governed by the second order 
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scalar differential equation 55(t) = f (x ( t ) ,  u(t)) with initial conditions x(to) = Xo, 
2(t0) = 20. Here x(t) is the position of the point at the moment t and x0, 

20 are the initial values for the position and the velocity of the point. As the 

load of the vehicle changes, the mass is only determined approximately, while 

the center of mass may change as well. Also, due to delays and the interaction 

between the trains, the determination of the initial or the current position and 

velocity is also contaminated with errors. All in all, the model which is a high 

dimensional nonlinear control problem, however refined it may be, will contain a 

lot of simplifications and uncertainties. If one uses a numerical method to solve 

the resulting boundary value problem, then discretization and rounding errors 

occur. It is evident for everybody that  uses such a train network regularly that  

the effect of these measurement and computational errors may be very large even 
if the errors themselves are small. 

This example demonstrates that  it is important to know how much the solution 

of a problem may change when the data vary over certain admissible sets. A 

simple problem (which may be computationally very difficult!) is the evaluation 

of a scalar real continuous function ~ at a given point a E R, i.e., the computation 

of x = ~(a). Let ~a and 5x be perturbations in a and x with 

5 x  = + 5 a )  - 

Then a perturbation estimate is an inequality of the form 

I~xl <_ f(laal), 

where the perturbation bound f is a nonnegative nondecreasing function on certain 

interval [0, c), c > 0, and satisfies f ( 0 ) =  0. 

In this monograph we present basic concepts and tools in perturbation theory 

for the solution of computational problems in finite dimensional spaces. We, in 

particular, derive the following types of perturbation bounds. 

Local (or asymptotic) bounds. These bounds are linear or first order homoge- 

neous functions in the data perturbations and are valid theoretically when 

the perturbations tend to zero. The coefficients in the linear functions are 

known as condition numbers. For particular perturbations, however, asymp- 

totic bounds may be misleading: either because of underestimating signifi- 

cantly the actual perturbation they claim to estimate, or because the per- 

turbed problem does not even have a solution. Asymptotic bounds are often 

obtained by using (or estimating) the Fr@chet derivatives of certain map- 
pings. 

Linear nonIocal bounds. Sometimes it is possible to derive linear bounds which 

are nonlocal and thus do not suffer from the disadvantages of the local esti- 

mates. In general it may be more difficult to get reasonable linear nonlocal 

estimates in comparison with the local ones. 



It must be stressed that  for some problems asymptotic first order bounds, 

both local and nonlocal, do not exist, see Chapter 2. 

- N o n l i n e a r  nonlocal  bounds.  If properly defined, these bounds always estimate 

the true perturbation from above. Moreover, for the domain where these 

bounds are well defined, it is guaranteed that  the perturbed problem has a 

solution for which the bound is valid. Nonlocal bounds are usually defined 

as real analytic functions in subsets of the set of admissible perturbations. 

The first order term of the corresponding Taylor series expansion gives an 

estimate from above (or is equal) to the local bound. As would be expected, 

nonlinear nonlocal bounds are more difficult to derive in comparison with 

the local bounds. A disadvantage of nonlinear bounds is that  they may 

have smaller domain of applicability in comparison with the actual domain 

of perturbations for which the solution of the perturbed problem still exists. 

Obviously this is the price of having rigorous perturbation results. 

E x a m p l e  1.2 Let us illustrate the different types of bounds with a very simple 

but instructive example. Consider the real scalar equation a x  = b for a = b = 1. 

Let 5a, 5b be perturbations in a, b with ]5al < a < 1, lSbl < ~, and let 5x be the 

corresponding perturbation in the solution x = 1. Then we have 

~ b -  x S a  5 b -  5a 
( ~ X  ~ - -  a + 5a 1 + 5a ' lSal < 1. 

For small a,/3 the local estimate 

laxl <~ a + 9, 

linear in a, /3, is often used in practice, since it guarantees an accuracy of order 

O(c2), c ~ 0, where c - max{a,/3}. The bound a +/3 may severely be violated 
for ha approaching -1 .  

A nonlocal nonlinear estimate is 

a + Z  
I~xl _< ~ ,  ~ < 1. 

1 - - a  

This estimate is rigorous but it may be very pessimistic for 5a close to 1. 

For a < 0.5 we may also use the nonlocal linear estimate 

16xl < 2(a  + Z), a < 0.5. 

This estimate is rigorous but may be pessimistic for 5a close to 0.5. Note that the 

above nonlocal estimates "work" better for ~a < 0. 

Finally, there is an interesting phenomenon. For 5a = 5b we have 5x - 0 and 

all estimates are pessimistic. 

In Figure 1.1 we give the local linear, nonlocal linear and nonlocal nonlinear 

bounds, respectively, for/3 - 0 and 0 < a < 1. For 5 < 0 the linear bound always 



4 CHAPTER1. INTRODUCTION 

2.5 t ^^ .~  , ~ ^ ~ .  ~ ^ . , . ~  r ~ r T ~  

--  - N o n - l o c a l  l i nea r  b o u n d  ] / 
�9 -- ~ Nonlocal  nonrmear bound J 

.! 
.! 

2 r 
/ 

! 
/" 

1 

1.5 ./ 
/ 

/ 
/ 

/ 
/ 

1 2 "  

0.5 

0 
0 0.1 0 .2  0.3 0 .4  0.5 0 .6  0.7 0.8 0.9 

Figure 1.1" Local and nonlocal bounds 

underestimates the true perturbation which in this case is equal to the nonlocal 
bound. 

0 

A very effective tool to get both local and nonlinear nonlocal perturbation 
bounds is the technique of Lyapunov majorant functions [160, 85, 135, 127], or 
briefly Lyapunov majorants. We will discuss this technique in great detail in 
Chapter 5 and use it for all classes of matrix equations that we consider. In order 

to apply this technique, the perturbed problem is first rewritten as an equivalent 
operator equation for the perturbation in the solution. It is then shown that the 
corresponding operator maps a certain compact convex set (contracting to the 
origin when the perturbations tend to zero) into itself. Then, according to the 
Schauder fixed point principle, there exists a solution of the operator equation, 
tending to zero together with the data perturbations. If in addition the operator 
is a contraction, the uniqueness of the solution to the perturbed problem is guar- 
anteed in view of the Banach fixed point principle. Estimating the domain of the 

operator by Lyapunov majorants gives the desired nonlocal nonlinear perturbation 
bounds. 

Throughout this monograph we will use the following framework for the per- 
turbation analysis of matrix equations that was suggested in [127]. 

Consider a general matrix equation 

F(A,X) =0, 

where F is a continuous matrix valued function, A = ( A I , . . . ,  At) is a collection 
of matrix parameters and X is the unknown matrix. Let X be a given solution 



and let the data  be changed from A to A + 5A. Then we obtain the perturbed 

equation 

F(A + 5A, X + 5X) = O, 

where 5X is the per turbat ion in the solution. 

Two major  problems then arise: 

�9 Find conditions which guarantee that  the perturbed equation has a solution 

5X = E(aA), depending continuously on 5A and such that  -E(0) = 0. 

�9 Derive computable bounds for a norm 115Xll of 5 x  as a function of the 

perturbat ions 5i = 116Aill. 

To solve these problems we follow a general framework for the perturbation 
analysis of matrix equations [102] tha t  consists of the following stages. 

1. Construction of an equivalent operator equation. This is a matrix equation 

6 x  = n(6A, 6X) 

for 5X, where I1(0, 0) = 0. For this purpose the technique of Fr6chet 

derivatives is used. Via an appropriate representation, the operator equa- 

tion is then represented as an equivalent matrix equation. After this, the 

matr ix  equation is vectorized as x = rr(a,x), where x = vec(aX) and 

a = ( a l , . . . , a r ) ,  a~ = vec(aA,). 

2. Calculation of condition numbers. The quanti ty rr(a,x) is represented as 

rrl0(a) + rru0(a) + 7r2(a, m), 

where 

rrl0(a) = O(l la[I) ,  a --+ O, 

7r20(a) = o(llaJL), a -+ O, 

~ ( a , ~ )  = o(llall + I1~11), liaLI + It 'Ll-~ o. 

When only one component ai of a is nonzero, then the quanti ty Ilrrlo(a)ll/[[ai[[ 
is asymptotically bounded by K~, the absolute condition number for the solu- 

tion X relative to perturbat ions in the matrix Ai. Here Ki is the asymptotic 

Lipschitz constant of 7rlo in ai (if ~rlo is not Lipschitz continuous in a~ then 

the condition number relative to Ai does not exist). If F is Fr6chet differ- 

entiable then the condition numbers (in Frobenius norm) are the spectral 

norms of certain matrices depending on the Fr6chet derivatives of F. 
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3. Derivation of local perturbation bounds and overall measures of conditioning. 
The maximum of 117rl0(a)ll under the constraints Ilaill < 6i, i = 1 , . . . , r  
is estimated to obtain local perturbation bounds and overall measures of 

conditioning. These are solutions to complicated optimization problems. For 

the solution of those problems, simple and easily-computable upper bounds 
are derived. 

4. Construction, analysis and solution of Lyapunov majorant equations. Setting 
6 = (61, . . . ,  6r), a Lyapunov majorant function for the operator 7r(a, .) is 
constructed, This is a function (6, p) H h(5, p) such that  

1lTc(a, x)112 <- h(5, p) 

provided that  Ilaill2 _< ~i and IIx]12 _< p. Under certain conditions on h and 
the majorant equation 

p = h(6, p) (1.1) 

has a solution p0 = f(6), where f is continuous and f(0) = 0. An inclusion 
of the type 6 c f t ,  where f~ is a certain set (possibly small but finite) then 
guarantees that  such a solution exists. 

In many cases the majorant equation (1.1) is an algebraic equation. Then 
there are two approaches to solve this algebraic equation. For a given 6 the 
majorant equation is either solved numerically or (if possible) analytically 
to determine the smallest positive root P0. If there are no positive solutions 
then 6 is too large and the method of Lyapunov majorants does not produce 

nonlocal perturbation bounds. This may also indicate that  the perturbed 
equation has no solutions 6X vanishing together with 6P. A second approach 
is to majorize h(6, p) by a new Lyapunov majorant h(6, p) for which the 

equation p -  h(6, p) has a convenient closed form solution fi0 - f(6) with f 
continuous and f(0) - 0. This guarantees that  the initial majorant equation 
has a solution po < f (6). 

Topological fixed point principles and nonlocal perturbation bounds. If we 
have a smallest solution f(6) of the majorant equation (or some of its upper 

bounds f(6)), then the fixed point principles of Schauder and Banach are 
used to prove that  the equivalent vector equation has a solution x in the 
central, closed ball of radius f(6). In view of the identity 116XIIF = Ilxl12 this 
gives the nonlocal estimate 

A 

1IhXIIF < f(5) _< f(~), 5 E ft. 

The monograph is organized as follows. In Chapters 2-4 we give the problem 
statement and consider general problems with explicit and implicit solutions. We 

present the basic concepts (regularity and conditioning in particular), related to 



the sensitivity of computational problems. The technique of Lyapunov majorants 
is presented in Chapter 5 and singular problems are briefly discussed in Chapter 6. 

General concepts concerning types and properties of perturbation bounds are 
introduced in Chapter 7. Then in Chapter 8 and 9 perturbation bounds for general 
and specific Sylvester equations are derived. Using symmetry, then these bounds 
are extended in Chapter 10 for general Lyapunov equations and in Chapter 11 for 
Lyapunov equations from systems and control theory. 

The perturbation analysis for general quadratic equations is presented in Chap- 
ter 12. These results are then improved for continuous-time Riccati equations that 
arise in the control and filtering of linear time-invariant systems in Chapter 13. 
For systems of coupled Riccati equations the perturbation results are presented 
in Chapter 14. General fractional-affine equations are studied in Chapter 15. In 
Chapter 16 perturbation results are given for discrete-time Riccati equations that 
arise in control theory as well as for a class of symmetric fractional-affine equations. 

The monograph includes several appendices where the following issues are con- 
sidered: elements of algebra and analysis, unitary and orthogonal decompositions, 
Kronecker product of matrices, fixed point principles, Sylvester, Lyapunov and 
Lyapunov-like operators. Finally a list of notation is given that is used through- 
out the monograph. 
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Chapter 2 

Perturbation problems 

2.1 Introductory remarks 

The aim of perturbation analysis is to study the sensitivity of computational prob- 

lems or mathematical models under perturbations. This means to estimate how 

the solution changes when the data of the problem are changed. In a more re- 

stricted framework the objective of perturbation analysis is to provide computable 
bounds for the perturbation in the solution of a given problem as a function of 

the perturbation in the data. At present, perturbation analysis techniques are 
important issues in numerical analysis and control and also in all areas of science 

and engineering. 
In this chapter principal issues in the perturbation analysis of computational 

problems in finite dimensional spaces (matrix equations) are discussed, which in- 

clude: 

�9 properties of the perturbation function, 

�9 sensitivity and conditioning, 

�9 classification of perturbation bounds, 

�9 properties and classification of solutions and solution sets of equations, 

�9 construction of equivalent perturbation operators, 

�9 Lyapunov majorants, 

�9 application of fixed point principles, 

�9 analysis of singular problems, 

�9 scaling of problems and error estimates. 

Examples and case studies are included and are illustrated. 
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2.2 P r o b l e m  s t a t e m e n t  

Independently of their particular nature, most problems in science and engineer- 

ing may in general be formulated in one of the following two ways: as problems 

with explicit solutions, e.g. evaluating functions defined by explicit computable ex- 

pressions, and as problems with implicit solutions, e.g. solving equations. There 

are also modifications of these problems such as computing canonical forms of 

matrices under the action of various transformation groups. This distinction is 
sometimes only formal, since the above ways to formulate a problem may often, 

at least in theory, be transformed into each other. Also, a complicated problem 

may be defined by a chain of explicit and implicit subproblems. 

Consider a function (~ : A -~ X, where the set A of data, or inputs, and 

the set X of results, or outputs, are (subsets of) normed linear spaces, which are 

usually finite-dimensional. The function (I) is continuous and in many problems it 
is differentiable. For every data A E A we have the result 

A particular example for such problems is the evaluation of a scalar or vector 
function. 

Sometimes the dependence of X on A is not functional, in the sense that there 

may be more than one result corresponding to a given data (for some problems this 

type of nonuniqueness may be inherent). In this case we may consider a set-valued 
function ~ �9 A ~ 2 x which assigns a set ~(A) of solutions to every data A c A. 

A useful approach here is to derive computable perturbation bounds which hold 

at least for one of the solutions of the perturbed problem. 

A computational problem is identified with the pair (~, A) when we deal with 
a single collection of data, and with the pair ((I),A) when we have a family of 
problems with data from the set A. 

The function ~ may also be defined implicitly via the equation 

F(A,X) = 0 ,  (2.1) 

where F : A  x X -~ A~ is a given continuous function. (Sometimes F is a function 

from A x X to X1, where A'I is another linear space.) The problem here is to 

compute the solution X for a given A and to investigate (at least locally) the 
behavior of the implicitly defined function (I) : A ~ X, satisfying the identity 

F(B, @(B)) = 0 in a certain neighborhood of A. 

Typical examples of such problems are various classes of linear and nonlinear 

matrix equations in linear algebra and control theory such as the equations of 

Sylvester, Lyapunov, Riccati and others that are discussed in detail below. 

Modifications of implicit problems are various types of matrix decompositions 

and canonical or condensed forms of matrices. They may be formulated by the 
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equation 

P(C(A, U)) = 0, (2.2) 

where U is a t ransformation matr ix  from a certain matr ix group F, C(A, U) is a 

condensed form of A with C being a continuous function and P is a projector. The 

problem here is to compute both U and C(A, U), where U = U(A) is implicitly 

defined by the data  A via equa t ion  (2.2), i.e. P(C(A, U(A))) = 0. We stress 

that  the dependence of U on A may not be functional, especially when condensed 

rather than  canonical forms are considered. 

We consider problems in which a subset A of matrix r-tuples from a linear 

space, interpreted as data,  is t ransformed into the set of matrices X := IF~xm, 

interpreted as results, where IFnxm is the space of n x m matrices over IF and IF 

is the set of real (IF = R) or complex (IF = C) numbers. The spaces X and .4 are 

endowed with norms or generalized norms. 

Both the data  and the result of a given problem may be elements of infinite- 

dimensional (Hilbert or Banach) spaces. But in numerical computat ions one can 

deal only with finite dimensional spaces, and actually, in a finite precision environ- 

ment, only with finite sets of rational numbers. So we typically deal with data  tha t  

are collections of matrices (a collection is a set with possibly repeated elements.) 

The assumption tha t  the da ta  A is a collection of matrices is natural,  since in 

practice all problems depend on finite collections of input parameters.  But  tha t  

the result X is an element of a finite-dimensional space may seem rather restrictive 

having in mind problems defined via differential or other functional equations. In 

fact, it is not. 

Consider a problem, defined by the relations G(A, Y) = 0 and X = H(Y), 
where G : A x 3: --* 3~1 and H : Y -~ X are given functions, and the solution Y 

of the equation G(A, Y) = 0 is an intermediate result. Here the spaces Y and Yl 

may be infinite-dimensional but the final result X is a finite collection of numbers, 

see next example as well as Examples 2.5 and 2.6 below. 

E x a m p l e  2.1 In Example 1.1 the solution z is a function but actually only the 

values of x at a certain finite set of times are needed. (} 

When studying the sensitivity of a problem, identified with a certain function 

(I) : A -~ X, we assume tha t  (I) has some minimal smoothness properties and, in 

particular,  tha t  it is continuous in a neighborhood of given data  A. This issue 

is not trivial, since even simple nonlinear equations of type (2.1), together with 

smooth solutions, may have discontinuous solutions A ~ (I)(A). 

Consider a part icular problem corresponding to a given nominal data A E .4. 
When the nominal da ta  is changed to A + 5A we get a new problem, the so called 

perturbed problem. One of the main characteristics of a problem is its sensitivity. 
Quanti tat ively the sensitivity is a numerical measure of the continuity properties 

of the function (I) near certain nominal data  or in the whole data  space. Func- 

tions whose values change significantly when the argument is slightly changed, 
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correspond to sensitive problems. But "significantly" and "slightly" are not math- 

ematical terms and even for practical purposes they must be described by some 

quantitative measures. 
A practically useful measure of sensitivity must be connected to the parameters 

of the finite precision arithmetic. Thus, typically the sensitivity becomes a joint 
property of both the problem and the finite precision arithmetic. 

A sensitive problem is usually computationally difficult to solve and one must 
expect that  the computed solution is contaminated with large errors. However, 
in a different computational environment the same problem may be solved more 
accurately. Of course, the properties of the implemented numerical algorithm are 
also crucial for the accuracy of the solution computed in finite precision arithmetic. 

As we have discussed before, one of the main purposes of perturbation analysis 
is to study qualitatively and quantitatively the sensitivity of individual problems 
(for fixed nominal data) or of classes of problems (for data from a given set). 
However, for many problems the domain ,4 (or the set of all A such that  (I)(A) is 
well defined) is not known a priori, e.g., when the function (I) is defined implicitly 
via an equation. Here it is important to get an estimate for the natural domain of 
�9 , i.e. for the largest set on which ~ can be defined. This also gives an answer to 
the question whether the solution of a particular perturbed problem exists. 

Perturbation analysis produces local (or asymptotic) and nonlocaI bounds for 
the perturbation in the result as functions of the perturbation in the data. 

Local bounds are linear or first order homogeneous functions of the perturba- 
tions in the data. They are valid asymptotically, for infinitesimal perturbations 
5A --~ 0 in the data only. They are often obtained in a relatively simple way and 
are in many cases easy to compute. 

An example of such a local bound is the condition number of a problem that  
is widely used throughout numerical analysis. 

De f in i t i on  2.2 For a given problem X = ~(A) the finite quantity 

K(A)  "- ~-~olim sup { ]~(A + ~A)IISAII- (I)(A))[[. 5A ~ O, [~A] _< a } (2.3) 

is called the absolute condition number of the problem X = ~)(A). 

In this definition only the dependence of K on the data A is explicitly marked 
assuming that  the function (I) is fixed. Sometimes it is convenient to write the 
absolute condition number also as K(O, A), showing its dependence on the function 

as well. 

When the data of a problems differ widely in their magnitude, then it is often 
better to measure the sensitivity in terms of the relative perturbations 

I[#xl[ [[~All 
p x  - I l x l l '  PA - -  I ln l l  

in the solution and data when X ~ 0 and A ~ O. 
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D e f i n i t i o n  2.3 The  quant i ty  

]IIIxAIII IIAII s ( A )  : K ( A )  - K ( A )  II~(A)I'-------~ 

is called the  relative condition number of the problem (~ ,A) .  

We will re tu rn  to condit ion numbers  in much more detail below. 

In contras t  to local bounds  like condit ion numbers ,  nonlocal per tu rba t ion  bounds 

are usually nonlinear functions and they are valid rigorously in a neighborhood 

of the nominal  data .  The  derivation of nonlocal per tu rba t ion  bounds  is more 

involved. In addi t ion they may be pessimistic in terms of both  the size of the 

predicted pe r tu rba t ion  and the domain  of applicability. 

In ma t r ix  problems the  set A is a subset  of a linear, finite dimensional,  real or 

complex space ]2 of dimension dim(12). Since A" - F nxm, we also have d im(X)  - 

nm.  Hence A may be identified wi th  a subset  of IF d i m ( A )  and F nxm with F nm. In 

the following we assume tha t  A is an open subset  of the Car tes ian  product  l; of 

r _> 1 ma t r ix  spaces l ; 1 , . . . ,  l;~, 

,,At C ~2 " - -  121 X " . .  X ~ r ,  ~ i  " - -  ] F m i x n '  (2.4) 

and 

d im(A)  - d im(P)  - m a u l  -1-"""-~- m r n r .  

Thus,  the da t a  A is a ma t r ix  r - tuple  

A - ( A 1 , . . . ,  At)  E ]2, Ai E 12i. (2.5) 

W h e n  dealing wi th  pe r tu rba t ion  problems we use norms and generalized norms 

for the  corresponding matr ices  a n d / o r  mat r ix  r- tuples.  We denote by Ilxlt E R+ 
and Ixl  - [Ix~jl] ~ R ~  xn the norm and the absolute value of the ma t r ix  X = 

[z~j] E A', respectively. Here II-II is a unitari ly invariant norm such as the spectral  

norm I1" 112 or the Frobenius norm I1" IIF- For a mat r ix  r - tuple  (2.5) we use the 
norm 

IIAIt - t l A l t l - I - - - - - I - I I A r l l  

or the generalized norm 

IIIAII[ - [ I I A I l I , . . . ,  IIA~II] T E :R~_. (2.6) 

We also use the  ma t r ix  absolute value (which is also a generalized norm) 

n m r  • n r  IA] " -  ( I A l l , . . . ,  IArl) E ~2+ "-- R ~  'x  1 x . - .  x R+ . (2.7) 

The  generalized norms Ill" [l[ and I" I are functions of the type  u" ]2 --~/(2. Here 

/(2 is a nonnegat ive  cone, defining a par t ia l  order relation ~ by x __ y if y - x E/(2. 

(In our case _~ is a sys tem of component -wise  inequalities.) A generalized norm 
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satisfies a number of relations similar to those for s tandard scalar norms, e.g., 

u(A) ~ O, u(aA) = lalu(A) for a c F and u(A + B) _-_4 u(A) + u(B). If we define a 

multiplication of r-tuples 12 x 12 --, 12 via 

A o B := (AloB1 , . . . ,  Ar'Br),  

where X . Y  = [x~jy~j] is the Hadamard (elementwise) product of two matrices X 

and Y of same size, then the generalized norm satisfies the inequality 

u(A o B) -< u(A).u(B). 

Let (I) : .4 --~ A" be a continuous function, which maps each r-tuple data  A c ~4 

into the resulting matr ix X = (I)(A) c X. The problem of finding X for a given A 

is also denoted as A ~ (I)(A) or X = (I)(A), while the problem of finding the set X0 

of results for all r-tuples from the subset A0 c A is denoted briefly as A0 ~ (I)(A0) 

or X0 = (~(A0), where (I)(A0) is the image of A0 under (I). In the latter case we 

have a family of problems X = q)(A), parametrized by the data A E A0. Since 

the function (I) is usually fixed, the computational problem X = (I)(A) is further 

identified with the data  A only. Similarly, the problem X0 = (~(A0) is identified 
with the set A0. 

It is often convenient to reformulate a matrix problem into vector form in order 

to use s tandard techniques of matrix theory. For this purpose we utilize the vector 

representations of stacking the columns of a matr ix in one vector, obtaining 

x : =  v e c ( X )  ~ I ~  r ~  

ai := vec(Ai) c F r ~  

T T a - v e c ( A ) ' -  [ a T , . . . , a  r ] E F dim(A) 

(2.8) 

for the matrices X, Ai and the r-tuple A. In this case we use the notation x = ~(a), 
where F := vec o (I). 

E x a m p l e  2.4 A problem with explicit solution is the evaluation of a given scalar 

expression x = ~(a) for a E A, where A E F and the function p : A ~ R is 

defined by an explicit expression in terms of arithmetic operations and elementary 
functions, e.g., 

l + a  2 

7 ) ( a )  - -  1 . 0 0 0 0 0 1  - s i n  a '  a C IR. 

Another example is the evaluation of x = 7~(a), where ~(a) is defined by the series 

(X) 

7)(a) = ~ ck(a - ao) k, (2.9) 
k=0 

convergent for l a -  a0I < e. 
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E x a m p l e  2.5 The  initial value problem 

y'(t) = M y ( t ) ,  t C R, 

y(0) = Y0, 

where y( t )  E R n and M E R ~• gives rise to the problem of evaluat ing the  vector 

function y at a given momen t  t, say t = 1. We have y(1) = exp(M)y0,  where the 

mat r ix  exponent ia l  exp is defined by the convergent power series 

M k 
exp(M)  " -  E k! 

k = 0  

Thus,  the solution of the  problem is x := y(1), corresponding to the da t a  

A - (A1, A2) " -  (M, y0) E V - R n• • I~ n ~ ]~ n2+n 

In this case ~ ( a ) : =  exp(M)y0 e R n and d im(A)  = n 2 + n. 0 

E x a m p l e  2.6 As a general izat ion of Example  2.5, let 

y( t )  = f ( y ( t ) ,  t ,p ) ,  t e [to, t~], y(to) = Yo, 

be an initial value problem, where y( t )  is a function with values in R n and p is a 

vector of parameters .  Then  the value x := y(tf) of the function y at the momen t  tf 

is the solution, depending on the da t a  A = (p, Y0). This problem may be wri t ten  

in the form G ( A ,  y) = 0, x = H(y) ,  where the function G :  A • Y --~ Yl is defined 

as G ( A ,  y ) ( t )  := y ' ( t )  - f (y( t ) ,  t, p) if t E (t0, tf] and G(A,  y)( to)  := y(to) - yo. Here 

Y and ~ 1  a r e  the spaces of differentiable and continuous functions [to, tf] -~ R n, 

respectively. Thus,  we have a problem with da t a  A and result x being elements 

of f inite-dimensional spaces, and with an in termedia te  result y which is a function 
from an infinite-dimensional  space. 

When  solving this initial value problem numerically, we are interested in the 

values of y at certain points t l , . . . ,  tm E (0, tf]. In this case the result is 

x := [ y ( t l ) , . . .  ,y(tm)] C R 

0 

Let us discuss now the formulat ion of problems with implici t  solution. Many 

such problems are defined via ma t r ix  equations. Consider the finite dimensional  

linear space ~ := ]Fp• where usually we assume tha t  ]Fpxq is isomorphic to 

~' = F n• i.e., pq = ran. Let :D c 12 • X be a certain domain (an open 

and connected set). Let the equat ion F ( A , X )  = 0 in X c X be given, where 

F : T~ -~ :P is a continuous function. Here the problem is to find the solution, or 

the result X for a given A, in terpre ted  as data, or as a parameter  matrix.  
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Usually we are interested in a particular solution X - ~(A) of this equation, 

which depends continuously on the data  A, but sometimes it is also necessary to 

determine the solution set of the equation 

E(A)  "= { X "  F ( A , X ) =  0} 

of all solutions for a fixed value of A. Using the vectorizations (2.8) we also have 

f ( a ,  x) = 0, where a - vec(A), x - vec (X)and  f(-, . ) " -  vecoF(vec- l ( . ) ,  vec-l( . ) ) .  

In this s tatement  of the problem there are some important  issues such as exis- 

tence and uniqueness of the solution, which will be discussed as well. 

E x a m p l e  2.7 Consider the algebraic equation 

f ( a , x )  " -  aox n + a l x  n-1 + . . .  + a n - i X  + an - O. 

Here the vector a " -  [ao, a l , . . .  ,an] T E IF n+l is the data. Any particular solution 

x c 1F is a result, and if a0 r 0, then the collection { x l , . . .  ,x~} of n roots xi is 
the solution set ~(a) of this equation. 

E x a m p l e  2.8 Consider the quadratic matrix equation 

F ( A ,  X )  . -  A1 + A 2 X  + X A 3  -Jr- X A 4 X  - O, 

where A1 E F ~xm, A2 E IF nxn,  A3 E IF mxrn, A4 E IF mx'~ are given matrix co- 

efficients and X c IF nxm is the unknown matrix. Here the data  is the matrix 

quadruple A - (A1,A2,  A3,A4) and the solution set A has dimension dim(A) - 
m n  + rn 2 + n 2 + m n -  (m + n) 2. 

The two formulations of problems - with explicit and implicit solutions, are 

closely related. Indeed, a problem with explicit solution X = r may always be 

wri t ten as an equation, e.g. X - O ( A )  = 0, and often the solution X of an equation 

F ( A , X )  = 0 may formally be writ ten as an explicit expression X = (I)(A), see 

Example 2.5 and Example 2.9 below. We stress that  the availability of an explicit 

formula X = (I)(A) in terms of arithmetic operations and elementary or special 

functions does not necessarily mean that  it is good for a reliable computat ion of 

the solution X in finite precision arithmetic. 

E x a m p l e  2.9 Consider the linear system M x  = b, where the matrix M c IF n x n  

and the vector b C IF n are given and x c F n is the solution. The elements of 

M and b form the vector a " -  [vec-C(M), bm] T C IF n2+~ of data. This problem is 

formulated as an equation. If the matrix M is nonsingular, then we may write x = 

~(a) := M - l b ,  obtaining a problem with explicit solution. It is well-known that  

to obtain x by inverting M is usually not recommended when the computations 

are done in finite precision arithmetic. 



2.2. P R O B L E M  S T A T E M E N T  17 

E x a m p l e  2.10 Consider the problem of transforming a square n x n matrix A 

into Schur form T = UHAU, where the matrix T is upper triangular and the 

matrix U is unitary, see Appendix B. Then A is the data and the pair (T, U) is 

the solution. In this case the transformation matrix U is implicitly determined by 
the system of equations Low(UHAU) = O, u H u  = In, where Low is the projector 

to the subspace of lower triangular matrices. Note, however, that  even if T is the 

canonical form of A with respect to the similarity action of the unitary group (i.e., 

T is uniquely determined by A), then the transformation matrix U is not uniquely 
determined. 

Theoretically, problems with nonuniqueness of the solution may be treated 
by introducing equivalence classes of solutions and set-valued mappings. From a 

computational point of view, however, it is important to have a particular solution 
rather than the whole solution set. Accordingly, the aim of perturbation analysis 

in such cases is to obtain computable perturbation bounds, which are valid at least 
for one of the solutions of the perturbed problem. 

Suppose that the nominal data A is perturbed to A + 5A. As a result the 

solution is also perturbed from X = (I)(A) to X + 5X = (I)(A + 5A). 

One of the most important properties of a problem X = (I)(A) is its sensitivity 
which is measured by the size of the perturbation 

5X = ~(A + 5A) - (I)(A) 

in the solution X relative to a given class of perturbations 5A in the data A. 

Intuitively, the problem is sensitive if small perturbations in the data lead to large 

perturbations in the result. Of course, the terms "small" and "large" need to be 
specified. 

As we have mentioned above, the sensitivity of problems is the objective of 

perturbation analysis. Here the perturbations in the data and in the solution are 

expressed in terms of norms or generalized norms, see (2.6) and (2.7). Using norms 

II" II or generalized norms Ill" llI we study the perturbations in the matrices as a 
whole and do not take into account the perturbations in the individual matrix 
elements. To deal with such perturbations, various techniques of component-wise 

perturbation analysis have been developed. One of them is based on the use of 

matrix absolute values and generalized norms I" I as defined in (2.7). 

In summary, we have seen that  there are at least three important reasons to 

study the sensitivity of various problems relative to perturbations in the data from 
a given class. 

�9 Perturbation analysis may give an independent and deep insight in the very 
nature of the problem, being therefore of independent theoretical interest. 
For example, perturbation analysis may provide an estimate for the distance 

from an object of a given set, with data A E ,4o C A, to the complementary 
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set of objects with data from .A\.,4o, see e.g. [51] for a comprehensive study 
of this problem. In brief, the sensitivity of a given object (or of the corre- 
sponding computational problem) is among its most important properties. 

Perturbation bounds provide a realistic framework for most problems in 

mathematical  modelling of objects and processes. Indeed, in practice there 
are inevitable measurement and other parametric and/or  structural uncer- 

tainties. This means that  we have to deal with a family of models rather 
than with a single model. In this case the perturbation bounds define a tube 
in the space of models, to which the characteristics of the particular model 
actually belong. Having a model with given parameters and estimates for 
their values, the only thing that  we can rigorously claim is that  the model 
will behave within the tube predicted by perturbation analysis. 

�9 When a numerically stable algorithm [101,233] is applied to solve a problem, 

then the solution, computed in finite precision arithmetic, will be close to 
the solution of a near problem. Having tight perturbation bounds and a 
knowledge about the equivalent perturbation [233] for the computed solution, 
it is possible to derive condition and accuracy estimates, see e.g., [181]. 
Without  such estimates, a computational algorithm cannot be recognized as 
reliable from the viewpoint of modern computing standards [1]. 

2.3 N u m e r i c a l  c o n s i d e r a t i o n s  

The sensitivity is one of the important factors which determine the accuracy of 
the computed solution when a problem is solved by a numerical algorithm in 
finite precision arithmetic, e.g., in a floating-point computing environment with 
rounding unit eps. Without going into detail, eps is half the distance from 1 to 
the next larger floating point number. 

In finite precision arithmetic one gets the computed solution X which may be, 
or not be, close to the exact solution X - (I)(A). 

D e f i n i t i o n  2.11 The quantities a x  " -  IIX - X]l  and P x  " -  I IX - X I I / I I X I I  (if 

X # O) are called the abso lu t e  and re la t i ve  n o r m - w i s e  e r ror s  in the computed 
solution. 

. - . . .  . - . . .  

Sometimes also the relative error "fix " -  IIX - X ] ] /  XII  is used in practice, since 
the exact solution X usually is, and remains, unknown. 

The desirable case is when the magnitude of px or fix is of order of the rounding 
unit eps, but often this is not the case. 

We shall not define precisely the concept of numerical algorithm. The intuitive 
notion of an algorithm is a sequence of arithmetic operations (and possibly of 

evaluations of elementary functions), which are performed with relative error of 
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the order of the rounding unit. In addition, at each step the algorithm must 

produce results which are in the s tandard range of the finite precision ari thmetic 

in order to avoid over- and underflows., 

In the analysis of computat ional  errors it is convenient to introduce, following 

[101,232, 233], the concept of backward error. 

N 

D e f i n i t i o n  2.12 A collection E - ( E x , . . .  ,Er ) ,  such tha t  X - (I)(A + E),  is 

called an equivalent perturbation (if the equivalent per turbat ion is not unique, we 

take one with minimum norm). The norm [IEII, or the generalized norm ]IIEIII of E, 

is called the absolute norm-wise backward error of the computed solution X. If the 

backward error is small in the sense tha t  IIEII _ clepsliAlI, where Cl is a moderate  
constant (or a low degree polynomial in the dimension of the data  vector a), then 
the algorithm is said to be numerically backward stable. 

Usually, backward stability is achieved not on the whole domain A of (I) but 
on a restricted subset .4o c .4. 

We stress tha t  the equivalent per turbat ion and hence the backward error de- 

pend not only on the problem X = ~(A) but also on the finite precision ari thmetic 

and the numerical algorithm implemented to compute X. 

Unfortunately, the equivalent per turbat ion E may not exist even for very simple 
problems solved in finite precision arithmetic,  as shown in the next example. In 

such cases the norm-wise backward error is formally defined as c~. 

E x a m p l e  2.13 Consider the computat ional  problem 

x = ~ ( a )  : =  1 + 1/a,  a > o. 

For a > 1/eps the computed solution is ~ = I by the definition of the rounding unit 

eps. To find the equivalent per turbat ion e we must solve the equation 1 = ~a(a + e) 

which yields 1/(a + e) = 0. Hence no finite equivalent perturbat ion e exists and 
the backward error is infinite. 

Together with the concept of backward stability, the notion of forward stability 
is also useful. 

D e f i n i t i o n  2 .14 An algorithm is numerically forward stable on A0, if for every 

A E .40 the computed solution X is close to the exact solution X - ~(A) in the 

sense tha t  II X - Xll _< c2epsllXll , where c2 is similar to Cl in Definition 2.12. 

However, forward stabili ty may be achieved only if the problem X = (I)(A) is 

not very sensitive on the whole set .do. For example, an algorithm for solving 
the linear vector algebraic equation M x  = b cannot be numerically forward stable 

on the data  set A, consisting of all nonsingular matrices M. The reason is tha t  

there are matrices from ,4 with arbitrari ly large condition numbers, for which 
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the condition of forward numerical stability does not hold. We recall that  the 

condition number of a nonsingular matrix A with respect to inversion is defined 
as IIAII IIA-11I. 

In order to deal with problems for which the backward error does not exist 

and/or  which are very sensitive (something that  no algorithm is responsible for) 

one may use a more general notion of numerical stability, see [101]. 

N 

Def in i t i on  2.15 Suppose that  the computed solution X is close (if not equal) to 

some X - 0(A + E) with E small. If a computational algorithm produces such 

answers for a set of computational problems with data A c .4o, then it is called 

numerically stable on the set A0. Here the closeness is interpreted in terms of the 
particular finite precision arithmetic as 

I V  I " . .  A 

I I X - X t l  <_c3epsllXll, IIEtl _<c4epsllAll, 

where c3, c4 are moderate constants as in Definition 2.12. 

Note that  X may not be the solution of any problem with data from ,4o as in 
Example 2.13 and in this case the numerically stable algorithm cannot be backward 
numerically stable. 

It may be shown that if an algorithm is backward or forward numerically 

stable, then it is also numerically stable. To show that the opposite is not true 

in general (i.e., that  numerical stability does not necessarily imply backward or 
forward numerical stability) is much more subtle [101]. 

We note also that in the bounds of Definitions 2.11-2.15, it is implicitly as- 
sumed that  the norms of the involved matrices A and X are larger than 1, since in 

this case the rounding errors are supposed to be large. If this is not the case, then 

in the expressions of the form ciepsllZll one should formally set ci = 1 if IlZll _< 1, 
where Z stands for A or X. 

The result X, produced by a numerically stable algorithm from the data A, 
may be far from the exact solution X = (~(A) if the problem is very sensitive and 

the quantity X - (I)(A + E) differs significantly from X. More details about this 

phenomenon are given in Section 2.5. In all cases the perturbation analysis of the 

computational problem is an important stage in the process of obtaining a reliable 
numerical solution. 

There are different concepts of reliability in numerical computations. Here 

we consider a numerical procedure reliable if it provides the computed solution 

together with sensitivity and accuracy estimates. 

2.4 Component-wise and backward analysis 

In this section we briefly consider the concepts of component-wise perturbation 

analysis, see, e.g., [80, 101]. In general, this type of analysis is aimed at estimating 
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the sensitivity of the elements xj of the solution x to perturbations in the elements 

ai of the data a, or in estimating the perturbation in the solution when the elements 

of the data vary in a special way, e.g., when some of them remain constant (in this 
section we use the vector representation x = ~(a) of a problem X = ~(A), where 

a = vec (A), x = vec (X) and ~ = vec o (~). 

This analysis is useful when the perturbations in the components of a and/or 

x differ significantly, since in this case the norms [15al[ or 115x[[ of 5a and 5x are 

relevant measures only for largest of perturbations in a or x, while for smaller or 

structured perturbations the corresponding bound would be pessimistic. The tech- 

nique of component-wise perturbation analysis is well developed and commonly 

applied to various problems in linear algebra and control theory. 

Another technique of perturbation analysis is the derivation of backward per- 

turbation bounds. The aim of this type of analysis is, given certain approximate 

solution ~ of the problem x = ~(a), to find the minimal (in certain sense) pertur- 
bation 5a in the data which satisfies ~ = ~(a + 5a). Thus, 5a is a solution of a 
constrained minimization problem. 

When studying relative perturbations of a computational problem with data 

a ~ 0, having some components ai = 0, it is appropriate to introduce a norm-like 

function which reflects the changes in the data in a component-wise style as shown 
below. 

Suppose that  A c ]Fp. For a vector a = [a l , . . .  ,ap] T E A, having zero entries 

at prescribed positions, we denote by pat(a) = [ s l , . . . ,  Sp] T the zero-pattern vector 
with components 

1 i f a i ~ : 0 ,  
s i -  0 i f a ~ - 0 .  

Define Q(a) C ,4 as the set of all b E A, having the same zero-pattern as a, i.e., 

pat(b) = pat(a). Then for b = [bl , . . . ,  bp] T E Q(a) we define the vector b/a as 

b/a := (d iag(a l , . . .  ,ap))tb c Q(a) 

with components 

(b/a)~ - { b~/a~o ifif aia~ ~-_ 0.0' 

(Here d i ag (a l , . . . ,  ap)~ denotes the goore-Penrose pseudo-inverse [83] of 
d i ag (a l , . . . ,  ap).) 

Def in i t ion  2.16 The quantity 

IIb/all~ = min { ,  _> 0:  Ib, I _< ~la~l} 

is known as the component-wise relative norm of b with respect to a. 
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Replacing the inclusion a + da c A by a + 6a E Q(a) in the definition of the 

relative condition number we obtain a new quanti ty 

~(a) -- lim sup { Ilaxll~ 1 
~ 0  Ilxlloo II~a/alloo 

D e f i n i t i o n  2.17 The quantity ~(a) is known as the mixed relative condition num- 
ber of the problem x = ~(a). 

The use of the mixed condition number often gives sharper estimates, especially 

when computational  processes in finite precision arithmetic are considered. This is 

due to the fact that  usually no rounding errors are introduced in the zero elements 
of the data vector a. 

Since 

we have 

Ilbfr~ 
Ilall~ 

<_ [[b/aI[~ 

~(a) < ~(a), 

where the s tandard relative condition number ~(a) (see Definition 2.3) is taken 
with respect to the infinity norm ]]-I]oo. 

If the F%chet derivative ~ '(a)  exists then 

~ ( a ) -  I I~ ' (a )d iag(a l "" 'an ) l l~  < ~ ( a ) -  II~'(a)ll~176176176 

and for }ha I ~ ala  I we have 

II&ll~ 
Ilxll~ < ~(a)~ + o(~), ~ -~ 0. 

In a similar way we may define yet another component-wise condition number, 
see [80]. 

D e f i n i t i o n  2.18 The quantity 

~(a) " - l i m s u p {  ,]hx/x,,oo } 
a-~o 115a/al]oo 

is called relative component-wise condition number of the problem x - ~(a). 

If the F%chet derivative ~ '(a)  of ~ at a exists and the solution x -- [Xl, . . .  ,Xq] T 

has no zero components, then 

~(a) - I ld iag(1 /x l , . . . ,  1/Xq)~'(a)diag(al ,  . . . , ap)Jl ~ . 

Various relations between the condition numbers 

~(a), ~(a), ~(a) (2.10) 
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are es tabl ished in [80] for the case when ~ = ~2 o ~1 is a composit ion of two 

functions ~1 and ~2. 

Usually the domain  A c F p of the function ~ in the computa t iona l  problem 

x = ~(a)  is of positive p - d i m e n s i o n a l  measure.  Thus,  the per turba t ions  5a in 

a are allowed to vary in a p-dimensional  volume in the definition of ~(a),  and in 

the definition of ~ and ~ if all components  of a are nonzero. At  the same t ime in 

some pract ical  problems the per tu rba t ions  in the da ta  are allowed to vary only in 

a lower dimensional  subset  T c A (see Example  2.19 below). 

In this case we may  consider the new restricted (or structured) computa t iona l  

problem x = ~b(a) for the  restr ict ion ~b := V)I~- of ~ on T.  All three condit ion 

numbers  (2.10), computed  for the problem x = ~b(a), are referred to as structured 
condit ion numbers ,  see [80]. 

E x a m p l e  2 .19  Consider the  opera t ion ~ : G s  ~ GZ:(n,F) of ma t r ix  in- 

version, ~ (A)  := A -1 (Here G s  IF) denotes the group of nonsingular  n x n 

matr ices  wi th  elements  in F. Restr ic t ing ourselves to the inversion of a given 

class of matrices,  say the class T o f  nonsingular  Toeplitz matrices,  we get the  re- 

s tr icted problem A H ~I~-(A) of inversion of Toeplitz matr ices  A, in which the 

per tu rba t ions  ~A are subject  to the  constraints  A + 5A E T.  At the same t ime 

(P'(A)(~A) = - A - 1 5 A A  -1 and ~ ( ~ , A )  = cond(A). (Recall t ha t  a Toeplitz ma t r ix  

is a ma t r ix  t h a t  is constant  on every diagonal.) 

E x a m p l e  2 .20  Consider the mat r ix  inversion ~ from Example  2.19 as a mapp ing  
F n2 ~ ]F n2 with  x = ~(a)  and a " -  vec(A), x "= vec(A-1) ,  ~ "= vec o ~, and set 

y "-- vec ([A-11 [A[ ] A - l [ ) .  

Then  ~(a) = Ilyll~/]]zll ~ and ~(a)  = [[y/xllo~, provided tha t  x has no zero ele- 

ments.  

Another  type  of component-wise  per tu rba t ion  bounds for the computa t iona l  

problem x = v)(a) are inequalities of the form 

~ s x r  is the Lipschitz matrix  of ~ in the p-neighborhood of where C - C(a,  p) c =4+ 

a. Now the influence of the i- th element  of a on the j - t h  element of x is measured  

by the (j, / ) -entry  cj~ of C. If I" ] is the  corresponding mat r ix  absolute value, then  

the quant i ty  

sup Ocpi (a + ha) 
Idal~p 

(if it exists) is an upper  bound for c~j. Similarly, if I �9 I is a generalized norm, and 

I al I I )91(a) 1 a = " , a ~  c I F ~ ' ,  w ( a )  - " , 

ar ~ ( a )  
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where ~j :~'P ~ IF q j  , then 

sup 
15at'<p 

(a + 

is an upper bound for cij. 
In local linear component-wise perturbation estimates the matrix Ip'(a)l may 

be used instead of C. We recall that  in such a case the perturbation in the data 

must be in the asymptotic domain of the local bound, i.e., that  the neglected higher 
order terms are of moderate size relative to the linear (or first order homogeneous) 

terms that  are taken into account. 

Nonlocal nonlinear componentwise estimates will also be discussed, e.g., 

15x] ~ f(l(Sal), 1(Sal ~ p c Nr+, (2.11) 

where 

f "-- I f 1 , . . . ,  fs] x "[0, fill •  X [0, fir] --+ R~_ 

is a continuous vector function such that f j  is nondecreasing in each of its ar- 

guments and f(0) = 0. Sometimes the domain of applicability of these nonlocal 
bounds may be quite complicated. 

2 . 5  E r r o r  e s t i m a t e s  

In this section we describe a general model of error estimation for a computa- 

tional process in finite precision arithmetic, based on perturbation bounds for the 
computational problem. 

2 . 5 . 1  F o r w a r d  e r r o r  

Consider a problem in the form x = ~(a), where ~ is a given continuous function, 
or a function of class C k, k _> 1, or C a ,  x is the solution and a are the data. We 

assume that  x and a are elements of finite dimensional spaces, say x E Fq, a E ]Fp. 

Let K = K(a)  be the absolute condition number of the problem at the data a. 

In finite precision arithmetic with roundoff unit eps the solution of the com- 

putational problem is usually contaminated with rounding errors. In this case the 

actual error in the computed solution depends on three main factors, [102, 134]: 

�9 Properties of the finite precision arithmetic (the roundoff unit eps in partic- 
ular), 

�9 properties of the computational problem (the sensitivity in particular), 

�9 properties of the computational algorithm (the numerical stability in partic- 
ular). 
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When implementing a numerically stable algorithm, the computed solution 
is near to the exact solution ~ -  ~(a + ~') of a slightly perturbed problem. From 
a quantitative point of view this means that  the following inequalities are fulfilled 

112- 211 < epsMl[xll, Ileal < epsN[lall, 

where the constants M, N characterise the properties of the numerical algorithm 

(if Ilxll or Ilall is less than 1 we set M - 1 or N = 1, respectively), see also 
Section 2.3. 

It is possible to estimate the actual absolute error a~ "= II~-xlL and the relative 
error (if x r 0) p~ - ~ / l lx [ I  in the computed solution ~ as follows. Neglecting 
second and higher order terms in eps, we have 

~ - II ~ -  ~ ( a ) l l  - I 1 ~ -  x +  ~ -  ~ ( a ) l l  

< eps MIIzll + Klle-'ll <_ eps (MIIzll + KNIIaII). (2.12) 

The relative error in the computed solution is estimated by dividing both sides 

of (2.12) by Ilxll" 

Px < eps ( M  + NK ,lal' ) - I - ~  - eps (M + n(a)N),  (2.13) 

where n(a) is the relative condition number of the problem. 
The estimate (2.13) reveals directly the main factors which determine the ac- 

curacy of the computed solution: 

�9 the properties of finite precision arithmetic (the rounding unit eps), 

�9 the properties of the problem (the relative condition number n), and 

�9 the properties of the algorithm (the constants M and N). 

If a nonlinear sensitivity estimate of type 1tbxll <_ f(llball) is available, then the 
corresponding estimates are 

and 

cex _< eps Mtlxtl + f(eps Nllall) (2.14) 

f(epsNlla[I) 
px _< eps M + 

Ilzll 

Nonlinear component-wise estimates for I ~ -  x[, similar to (2.14), may be 

derived provided a component-wise bound of type 13xl _~ /(tSar) is awilable. 
This, however, remains an open question for many computational problems. 

The above numerical considerations demonstrate the crucial role of sensitivity 
estimates in the floating point solution of computational problems. In fact, a 
solution computed in finite precision arithmetic cannot be accepted as reliable 
unless a bound on the actual error is known [134]. 
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2 . 5 . 2  B a c k w a r d  e r r o r  

Consider the problem x - ~(a), a r 0, under the assumption that  the Fr6chet 

derivative 7)~(a) of p at the point a exist. Let 2 be an approximate solution (e.g., 

a solution obtained in finite precision arithmetic) and suppose that  2 is the exact 
solution to a slightly perturbed problem, i.e., that  

- ~p(a + ~a) (2.15) 

for some (small) 5a. Then we may consider the problem to estimate the smallest 
perturbation ~a for which (2.15) holds. This leads to the concepts of absolute and 
relative backward errors, corresponding to the approximate solution 2. 

De f in i t i on  2.21 The quantity 

fl(2) "-  min { 115all 
i i a l / } '  

where the minimum is taken over all 5a which satisfy (2.15), is said to be the 
relative backward error of the approximate solution 2. 

The relative backward error may be estimated as follows. Within first order 
terms we have 

= r + 9~'(a)(Sa) + 0(11511 ) - x + 9~'(a)(6a) + o(116 I), 5 ~ 0 

and 

~a - ( ~ ' ( a ) ) * ( ~ -  x ) +  o(11~11), ~ -~ 0. 

Therefore, the estimate for the backward error 

fl(~) < 11(9~'(a))tll Ilall I I x - ~ l l  

is proportional to the norm of the residual x - ~. 

If a is structured as in (2), then the backward error is defined via 

fl "--min {fl" 115a~ll < f l }  
Ita~tl - ' 

where the minimum is taken in accordance with the constraints (2.15). 
Let 2 be an approximate solution to the equation f ( x ,  a) = 0 such that  

f (~, a § 5a) - 0 

for some perturbation 5a. Within first order terms we have 

f(~,  a) + f ' (~ ,  ~)(~a) - O. 
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Thus, the minimum norm perturbation 5a is obtained approximately from 

6a = - ( f~( '~ ,a ) ) f  f('2, a), 

which in turn leads to the estimate 

~(~) < }l(f'(~, a))f]] Iif(2, a)ll. 
Ilall 

The case of an equation with structured data of type (2) is treated in a similar 
way. 

2.6 S c a l i n g  

The scaling of a computational problem consists of applying transformations on 
the data and/or  intermediate (or final) results to avoid over- and underflows, or 
to improve the conditioning of the original problem in order to reduce the effect 
of rounding in finite precision arithmetic. 

It must be pointed out that  the conditioning of a computational problem is 
usually beyond the effective control of the user, although it is a common opinion 
that preliminary manipulations such as scaling may improve the conditioning. 
That this is not exactly the case is demonstrated as follows. 

Consider a scaling of the computational problem X = q)(A), consisting in the 
implementation of two linear nonsingular transformations 

B = U(A),  Y = V ( X )  

in the input and output spaces A and X, respectively. As a result we get the new 
computational problem 

Y = ~(B) ,  �9 : =  V o (I) o U - 1 .  

If (I) is Frdchet differentiable at A with a derivative (I)'(A), then �9 is also Fr4chet 
differentiable at B, and 

�9 ' ( B ) = V o ~ ' ( A ) o U  -1 

Hence, the relative condition numbers n((I), A) of the original problem X = (I)(A) 
and n(~,  B) of the transformed problem Y = ~(B)  are (if A r 0) is given by 

n((I), A) 
llAll 

- II~'(A)l Ij lxj  l, 

llU(A)[[ 
- I lVo r  o U-11l I l v ( x ) l l  

The scaling procedure consists in finding transformations U, V for which n(~,  B) 
is minimal. 
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If we introduce new norms in the input space ,4 and the output space X as 

IIA]lu :--IIU(A)I[, [[X[ly = IIV(X)ll, 

we see that  the corresponding subordinate norm of (~'(A) is 

[[(~'(A)llu, v = IlV o (~'(A) o U - 1 1 1  . 

Hence, the relative condition number of the transformed problem Y = ~(B)  is 
exactly the relative condition number of the original problem X = (~(A) but 

for the norms II" flu, II" fly. Hence, scaling in this case does not decrease the 
condition number, but rather corresponds to finding new norms in input and 
output spaces for which the amplification of perturbations from input to output 
is minimal [76]. Whether this actually improves the numerical behaviour of a 
particular computational algorithm, depends on the application. We stress that 
the use of different norms in order to improve error estimates and stability factors 
is a common practice, in particular in the implementation of numerical methods 
for the solution of differential equations. 

Of course, scaling aimed to reduce the norms of matrices and vectors in order 
to avoid over- and underflows and eventually to reduce the rounding errors, im- 
proves the numerical behavior of the computational procedures in finite precision 
arithmetic. 

2.7 N o t e s  and references  

Modern numerical analysis, taking into account the effects of finite precision arith- 
metic, starts with the fundamental works of yon Neumann, see e.g. [7, 172], and 
A. Turing [226]. The concept of backward error and backward stability was intro- 
duced by J. Wilkinson [232, 233], see also [234]. Stability in the sense of Defini- 
tion 2.15 is first considered by W. Kahan [115, 116]. 

General techniques for perturbation analysis of linear control problems are 
considered in [142, 180, 147, 127]. 

General properties of the perturbation operator have been considered in [133, 
134, 135]. 

For component-wise and backward analysis in a sense similar to that  considered 
in Section 2.4 see [30, 80,100]. Scaling of computational problems in the framework 
presented in Section 2.6 has been discussed in [76]. 

Often computational problems X = (I)(A) are solved decomposing (I) as if)so...o 
(~1. In this some of the subproblems Xi+l = (~i+1 (Xi) may be very ill-conditioned 
(or even singular) even if the original problem is regular and well-conditioned. The 
effects of such decompositions are considered in [102]. 



Chapter 3 

Problems with explicit 
solutions 

3.1 Introductory remarks 

Although the main purpose of this monograph is the perturbation analysis of 

matrix equations, in this section we present some general issues concerning the 
sensitivity of problems with explicit solution X = r These results may be 

extended to problems with implicit solution such as matrix equations F(A,  X )  = 

0. Indeed, let X be a solution of this equation, corresponding to the particular 

value of A. Then under some natural restrictions on F (for instance under the 

conditions of the implicit function theorem, see [173] or Appendix A), there exists 

a continuous function (I), defined in a neighborhood AfA of A, such that  X = 

(~(A) and F ( B ,  (I)(B)) = 0 for all B r ./~fA. So the general considerations about 
sensitivity for problems with explicit solution (explicitly defined functions) apply 

also to problems with implicit solution (implicitly defined functions). 

3.2 Perturbat ion function 

Consider a problem with explicit solution X = q)(A), where �9 : ,4 ~ X is a 

continuous function and .4 is a subset of the Cartesian product ~2 of matrix spaces 

as in (2.4). The spaces 12 and A' are endowed with norms and generalized norms, 

see e.g. (2.6) and (2.7). When relative perturbations are studied, we assume in 
addition that  A r 0 and X r 0. 

Let ~A be a perturbation in the data A such that A + ~A c .4 and let 

9 r :=  { (A ,E) :  A c A, A + E E A}  c A x 12 

be the set of all pairs (A, E) from ,4 • V such that A + E is in .4. (Observe that 

29 
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9 c may not be a subset of A x .4, see Example 3.1 below.) Also, for a fixed A E A 

let CA C V be the set of all E E 12 such that  A + E E .4. Thus 

. 7 -  U {{A} x 
AE.A 

E x a m p l e  3.1 Let 12 - R and let .4 be the open interval (a__, g) C R. Then 9 r is 

the open parallelogram 

= { ( a , e ) ' a  < a < g, a -  a < e < - g - a } .  

<> 

As before, denote by 5X = ~(A, aA) the perturbat ion in the result X, corre- 

sponding to the per turbat ion A ---+ A + 5A in the data, where 

ff2(A, 5A) - (~(A + 5A) - (~(A), for (A, 5A) E .T. (a.1) 

D e f i n i t i o n  3.2 The function ~ �9 Y --+ A" is called the perturbation function of 

the family of problems A ~ (I)(A). 

In this definition we emphasize the dependence of 5X on both A and 5A. For a 

fixed A E A the function ~(A,  .) : s  --+ ~' is the perturbation function of the 
single problem X ~ ~(A). 

As thus defined, the per turbat ion function may not be useful in practice. In- 

deed, one intuitively expects that  if ~(A,  5A) is well defined for some perturbat ion 

aA then it should remain well defined for smaller perturbations.  That  this may 

not be the case when ~ is defined on 5", is shown in the next example. 

E x a m p l e  3.3 For the scalar problem 

x -- l / a ,  a E A "-- IR\{0} 

we have 

7 -  {(a, r 0, r -a} C R 

For a r 0 and aa = - 2 a  we have (a, a + aa) c y ;  but for the smaller perturbat ion 

aa - - a  the solution of the perturbed problem 1/(a + 5) is not defined. (} 

Therefore, we have to impose some additional conditions for connectivity and 

convexity of the domain of the perturbat ion function ~ as it will be done next. 

We are interested in perturbations ~A for which ~(A, ~A) tends to zero together 

with ~A and the expression ~(A,  E) is well defined for all E E 12 with IIEII _< IleAl] 

or IIIEIll ~ IIISAII I. It must be pointed out tha t  not every per turbat ion 5A with 
(A, 5A) E 2 ~ satisfies this requirement. To impose additional restrictions on ~A we 
introduce following definition. 
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D e f i n i t i o n  3 .4  A pair (A, 5A) c ~ is called admissible if A + E c A for all E c 12 

with IIEII < 116All (or IIIElll _4 1116AIII). 

One may  also de termine  the subset  - ~ a d m  C .~" of all admissible pairs (A, 5A). 
Since the  set A is open then  for every A ~ A there  exists e - e(A) > 0 such tha t  

all pairs (A, 5 A ) w i t h  II~All < c are admissible. 

E x a m p l e  3.5 For the da t a  set from Example  3.1 the set .Fad m is the open square 
9Cad m _ ~:(1) ~c(2) " a d m  U where " a d m '  

__ 
d m  

d m  

{ ( a , e ) ' a < a < ( a + ~ ) / 2 ,  a - a < e < a - a } ,  

{ (a, e) " (a_ + -d) /2 < a < ~ ,  a - ~  < e < ~ -  a}. 

The  funct ion q2(A, .) :gA --~ X depends on the mat r ix  pa ramete r  A. W h e n  A 

varies over A, we have a family of functions {~(A,  ")}aeA, which is pa ramet r ized  
b y A E A .  

Let a function ~ : `9 ~ X be given, where `9 is a subset  of A x 12. Then  the 

question arises whether  ~ is the pe r tu rba t ion  function for some family of problems 

A0 --* ~)(A0). If this is the  case, the next  task  is to find the function (I) : A0 ~ A" 

itself, i.e., to solve the  functional  equat ion 

�9 (A + E)  - (I)(A) - ~ ( A , E ) ,  ( A , E )  e ,9 

relative to (I) for a given q~. In this case the function �9 will be de termined up to 

an a rb i t ra ry  addit ive constant  ma t r ix  from X. 

If ~ is a pe r tu rba t ion  function then  ~ (A,  0) - 0. However, not every con- 

t inuous funct ion ~ with  ~ ( A ,  0) = 0 is the per tu rba t ion  function for a family of 
problems. 

E x a m p l e  3.6 Consider the function ~b:F  x IF -~ IF, defined by ~p(a, e) = e 2 + ae. 

If ~(a + e) - ~(a) = e 2 + ae for some continuous function ~ : F ~ IF, then  set t ing 

a = 0 we get p(e)  = ~(0) + e 2. Subs t i tu t ing  this expression back in the functional  

equat ion for ~ we obta in  ae = 0. This is an addit ional  restr ict ion on a and e and 

hence the  domain  of ~p cannot  be F x F and thus, ~p is not a pe r tu rba t ion  function. 

In contrast ,  the  function (a, e) H e 2 + 2ae, defined on ]F x IF, is the pe r tu rba t ion  

function of the  family of problems x = a 2, a E F. 

P r o p o s i t i o n  3 .7  A continuous function q2" $ --~ 2( is a perturbation function if  

and only if  for some A ~ E ,4 the equation 

�9 ( A ~  + A -  A ~ - @ ( A ~  A ~ - ~ ( A , E )  

holds for  all (A, E)  c `9. 
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Since we are interested in problems with continuous mappings ~, it is reason- 

able to define admissible per turbat ion functions according to the following defini- 
tion. 

D e f i n i t i o n  3.8 The function ~ �9 S ~ A' is admissible if there exists a continuous 

function (I)" ,4 ~ X such tha t  ~(A,  E) - 0 (A  + E) - ~(A). 

For a given A E ,4 the domain S A C  1) may be quite complicated even for 

simple problems as the next example demonstrates.  

E x a m p l e  3.9 Let A -  6 s  and O ( A ) " - A  -1. Then 

$A -- { E  e ~ n •  �9 de t (g  + E) ~ 0}. 

The boundary OCA of ~m consists of all matrices E with det(A + E) - 0. It is a 
closed algebraic variety in ~ n •  ~ ~ n  2 of degree n and codimension 1, and has a 
very complicated structure. (} 

The above considerations show that  it is reasonable to restrict the perturbat ions 

hA to certain simple subsets of ~'A containing the origin. An example of such a 
set is the generalized ball 

Bp(A)  "-- {E"  ][]EI[ t ~ p(A)} ,  

where p(A) is a given nonnegative vector. In particular, one may choose p(A) - 
clllAIII, where ~ > 0 is (usually) a small parameter.  

This restriction of the problem is still rather general. It includes as particular 
cases many s t ructured per turbat ion problems as discussed below. 

q~dim(Jt) Taking the generalized norm in ,4 as [a I E ,-+ we obtain a per turbat ion 
problem with interval data, 

up(A )  - [a, 

which is the most s tructured type of perturbation.  Indeed, here we may take 
p ( a )  - a)/2. 

The other extreme (most unstructured) case is when a norm in A is used. This 
leads to the ball 

Bp(A) "-- { E  I[E][ < p(A)},  

where p(A) > 0 is now a scalar. In particular we may choose p(A) - e[IA[I. 

The general case of structured perturbations is also included in our statement.  

It corresponds to a special choice of the data  set A and the function (I) as follows. 

Consider a problem X - r under the s tructured per turbat ion 6A = @(A) E A, 

where A E D, D is an open subset of a finite dimensional space with dimension less 

than dim(A) and O"  7) --+ A is a given continuous function satisfying O(0) - 0 

(in many applications @ is a linear function, see Example 3.10 below). Defining 

the function (I)" 7P ~ X via O(A) " -  r + O(A)),  we get the s tructured problem 
x - 
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E x a m p l e  3.10 Consider the problem of computing the eigenvalues of the matrix 
A E F nxn under the structured perturbations 6A = BAC,  where B E IF nxp, 

C E IF qxn are given matrices, A E ~pXq and pq < n 2. Here ,4 = IF nxn, ~D = IF pxq 

and O ( A ) =  B A C .  ~} 

Under the action of the perturbation function the set Bp(A) is transformed into 
the set 

�9 (A, Bp(A)) "- { ~ ( A , E ) "  E c Bp(A)} C X. 

The aim of nonlocal perturbation analysis is to give bounds for the set ~(A, Bp(A)). 
Although the simple set Bp(A) has some nice properties such as convexity, the 

set ~(A,  Bp(A)) may be of very exotic structure as it is shown in the next example. 

E x a m p l e  3.11 The set of solutions of the linear algebraic interval equation 

M ~  - b; M c [M, M---] c e~• b c [_b, ~1 c R ~, 

where [M, M---] "-  { M - M  -< M -< M}, may have the form of a multi-ray star.<> 

These considerations show that  it is reasonable not to estimate the set 
�9 (A, Bp(A)) itself but rather its norm-wise radius 

max {ll~(A, E)[[  g c Bo<A)} ~ ~+. 

A more ambitious task is to estimate the set 

�9 *(A, Bp(A)) "- {I~(A,E)]"  E ~ ~p(A)} C ] t~  xn 

of the matrix absolute values of the perturbations 5X when the perturbation 5A 
varies over the set Bp(a). We will do this later for linear matrix equations. 

Somewhat easier, although still quite complicated, is the problem of estimating 
the radius vector r* of ~*(A, Bp(A)), i.e., the minimal vector r* C IR~_ relative to 
the component-wise order relation -~ such that 

9" (A, Bp(A) ) C Br". 

In this statement of the problem we include the task of estimating the continuity 
module p" A x R~_ -~ R+ of the function �9 at the point A, given by 

p(A, 5 ) : =  max{ ll ~ (A, E) ]l : IIIEI[I-< ~}. 

In addition to analyzing nonlocal perturbation effects, there are also pertur- 
bation techniques for studying the local behavior of the perturbation 5X in the 

solution as a function of the perturbation 5A in the data. Since in practice we 
always have finite perturbations, it is necessary to define local properties in some 

quantitative way. This may be done by using the concept of asymptotic domain, 
introduced below. 
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Suppose that  we can represent the continuous perturbation function �9 as 

�9 (A, ~A) = II/1 (A, 8A) + o([l~AII), 8A ~ 0, 

where o( z ) / z  ~ 0 for z --. 0 and the function ~I(A,  .) is first order homogeneous, 
i.e., 

IX/1 (A, AE) - [/~[/I/I(A, E), A c :IF. 

Then we have 

llsxII ~ ~(lU~Alll)+ o(ll~All), 5A ~ 0, 

where, for ~ E R~_, the function ~ is defined by 

co(f])-- max{ll~l(A, E)ll" IIIEIII-< ~}. 

In practice we cannot explicitly determine the exact maximum a~(rl) of [ItlJ1 (A, E)I ] 
over E E B~ (except for linear equations). For this reason we use an upper bound 
a~l (~) > c~(~), which is easier to compute.With such a bound we have 

]](~Xll ~ 0) 1(]]]5A]]]) + o([[SAll), 5A ---, O. 

Such bounds are usually considered in chopped form [16Xll _< (.d 1 (lllaAl[I), which 
is obtained by neglecting higher order terms in IlaAII. It should be noted though, 
that  these chopped bounds may be misleading, since actually the opposite inequal- 

ity aXll > CZl(~AIII) may occur if the neglected terms are large. 
In order to use such bounds without a serious underestimation of the actual 

quantity IIaXIt , we introduce the concept of asymptotic domain of the chopped 
bound, which is the set of data perturbations for which the quantity ~I(ilI~AIII) 
produced by the local bound, is N times larger than the neglected terms o(ll~AII). 
Here N is a positive constant and it is desirable that N > 1 but even if N _< 1, 
then the local bound may still be useful. Indeed, if tl6xll and czl([J[SA[t[) are both 

very small, then even for II(~X[t > 021 (rll~Al]l) the quantity wl (tllSAIII) may be a good 
approximation for the actual perturbation II~Xll, at least concerning its order of 
magnitude. 

The local, or asymptotic perturbation analysis produces local (usually linear 
or first order homogeneous) perturbation bounds a~l (tttSAIll) for II~xll by keeping 
first order and neglecting higher order terms in 115Atl. There is nothing wrong 
with such bounds if they are used properly. But one must always bear in mind 
that  a "practically small" or even a "practically negligible" perturbation may not 
be small at all in the rigorous mathematical sense, i.e., it may be far beyond the 
asymptotic domain of the corresponding bound. In contrast, the nonlocal pertur- 

bation analysis gives rigorous perturbation bounds which are valid in a certain 
(possibly small but finite) domain of perturbations in the data. 

There is a variety of viewpoints about of (chopped) local bounds. From a 
strict mathematical position, the use of such bounds is not appropriate unless it 
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is guaranteed that  the data perturbations are in the asymptotic domain. This, of 

course, requires an estimate of the neglected terms which is much more difficult 

than the derivation of local bounds. To estimate higher order terms means in fact 
to derive nonlocal perturbation bounds. Although rigorous, this viewpoint could 

lead to difficulties in practice, where even the derivation of local bounds may be a 
problem. 

On the other hand, there are users of methods, who apply local estimates 

for a wide range of perturbations, hoping that  everything is fine, or simply not 

suspecting that  something may go wrong. Actually, we experience that  many users 

in industry do not like condition and error estimates at all, since they require extra 

computational time, and since the user is not trained to interpret large sensitivity 
estimates. 

It is difficult to determine the reliable "common sense" position, which should 

be a compromise between these the extreme positions of mathematically rigorous 

and sometimes pessimistic nonlocal bounds on one hand and easy to use chopped 

local local bounds on the other hand. 

3.3 Regular i ty  and linear bounds  

As we have discussed, the sensitivity of (numerical) problems is measured by the 

size of the perturbations in the solution relative to the size of the perturbations 

in the data. The ratio of these quantities characterizes quantitatively the local 

sensitivity of the problem. In this subsection we consider the fundamental concepts 

of well-posedness and regularity for problems with explicit solution and the closely 

related issue of constructing linear perturbation bounds. Some of these results can 

be directly extended to problems with implicit solution. 

We recall that  A C 12 is an open set and �9 : A --* X is a given continuous 

function, where F and X are finite dimensional real or complex spaces. For fixed 

A r A the evaluation of X = r is a problem with explicit solution. 

De f in i t i on  3.12 A problem X = O(A), where �9 is continuous in an open neigh- 

borhood of A, is called well-posed. We also say that  �9 is well-posed at A. A 
problem, or a function, which is not well-posed at certain A is said to be ill-posed 
at A. 

The family of problems ~4 ~ r is well-posed if r is continuous on the set 

A (we also say that  ~ is well-posed on A). 

The concept of well-posedness is somehow trivial for problems with explicit 

solution, since it simply means continuity. However, this concept is much more 
involved for problems with implicit solution, see Chapter 4. 

It is instructive to see what ill-posedness means. The function �9 is not well- 

posed on A if it is ill-posed for at least one A E A. If the function r defined 
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on an open neighborhood of certain A, is ill-posed at A, then one of the following 

situations may happen: 

- The function (I) is discontinuous at A. This means that  either the limit 

limu-~A (I)(B) does not exist, or it exists but is different from the value (I)(A). A 

classification of points of discontinuity will not be discussed here. 

- The function �9 is continuous at A but for any s > 0, there exists a data B 

with I I A -  B II < ~ such that  ~ is discontinuous at B. This means that A is an 

isolated point of the set of points of continuity of (~. There even exists a function 

(I) which is arbitrary times differentiable at A but discontinuous at every point 
B # A, see Examples 3.14 and 3.15 below. 

For ill-posed problems little can be said about the quantitative dependence of 

the perturbations in the solution on the perturbations in the data. 

De f in i t i on  3.13 A problem X - O(A) is said to be regular if it is well-posed and 

the ratio 1tbXlt/II~All is uniformly bounded for ~A -~ 0. If a problem is not regular 
it is called singular. 

Regularity means that  there exist positive constants a and/~ such that I]5X]I < 
Z]]bA]] for all 5A with 11bAIl < ~. Also, a regular problem is well-posed but, of 
course, a well-posed problem may not be regular. 

A terminology remark. There is no unified terminology in the field of perturba- 

tion analysis. Here we have adopted terminology close to the Hadamard definition 

of posedness in functional analysis, see [44]. Sometimes problems, which we have 

just referred to as "regular" or "singular", are called in the literature "well-posed" 
or "ill-posed", respectively. 

We will now return to condition numbers. Recall the Definition 2.2. the 
absolute condition number of a problem X = O(A). If a problem X = O(A), with 

a continuous function in an open neighborhood of A, is not regular because the 

ratio tI~XI1//IIbAII is not bounded for 5A ~ O, we set K(A)  = cx~. Thus, for every 

continuous function ~ :  A ~ Z,  relation (2.3) defines the function K :  ~4 ~ [0, cr 

from A to the extended real axis [0, cr 

The absolute condition number is always well defined for well-posed problems. 
Indeed, consider a regular problem X = O(A) and set 

Kn(A) " :  sup { II~(A,E)lli~_li E # o, IIEII } 

for n - 1,2, . . . .  We have 0 < Kn+I(A) < Kn(A) < cr and hence, the sequence 

{Kn(A)} is nonincreasing. Since it is also bounded from below, it is convergent 

to some nonnegative finite value K(A).  
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We may determine the quanti ty K(A)  even for an arbitrary function (I), defined 

in an open neighborhood of A. In this case the inequality K(A) < oe alone does not 

imply regularity of the problem X - ~(A).  It only guarantees tha t  (I) is continuous 

at the point A but not necessarily in a neighborhood of A, see Example 3.14. 

E x a m p l e  3.14 Consider the function ~" R --, R defined as 

~ ( a ) -  { a if a E R \ Q  

0 if a E Q, 

where Q is the set of rational numbers. We have ~(0) = 0 and for a = 0 the 

per turbat ion function is ~(0, e) = ~(e). The function ~ is continuous at 0 and the 

function ~ is continuous at (0, 0). In addition, the absolute condition number for 

a - 0 is K(0)  - 1. However, the problem x - ~(a) is singular at every a. Indeed, 

the function ~ is discontinuous at every point a r 0 and the problem can not be 

regular at a r 0. Furthermore,  the function ~ is continuous only at a = 0 and 

hence, it is not continuous in any open interval containing 0, i.e., the problem is 

singular everywhere. (~ 

In the next example we show that  for every integer m >_ I there exists a function ~, 

defined on R, which is m times differentiable at a given point and is discontinuous 

elsewhere. 

E x a m p l e  3.15 Let the function ~ : R  --, R be defined via 

{ am+l if a c R \ Q  

~ ( a )  - 0 if a E Q.  

This function is m times differentiable at 0 with ~(k)(0) - 0 for k = 0, 1 , . . . ,  m. 

At the same time V) is discontinuous at every point a 5r 0. The absolute condition 

number at a -- 0 is zero in this case. (~ 

If the Fr~chet derivative ~ ' (A)  (see Appendix A and [188]) of the function 

at the point A exists, then the absolute condition number may be computed as 

K(A) = IIr (3.2) 

Here the norm II~'(A)I] of the linear operator ~ ' ( A ) :  ,4 ~ X is defined as 

[Ir  : -  max {[[(I)'(A)(E)]] : [[E]] = 1}. 

Note tha t  ~ ' (A)  depends on A as a parameter. Thus, ~'(A)(E) is the image of 

E c .4 under the action of the linear mapping ~ ' (A) : A ~ X. 

When we consider the vectorizations (2.8) and ~ = vec o ~) then the linear 

operator ~ ' (a)  is identified with the N • M Jacobi matrix 

0 a s  - 
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of the vector function ~a - [~1,..., ~PN] T, evaluated at the point a - [a i , . . . ,  aM] T, 

where ~i and aj a r e  the components of the function ~ and the argument a, and 

N = ran, M = m i n i  q-' '"-}- mrnr. 

E x a m p l e  3.16 Consider the function (I) :IF mxn ~ F mxn, defined by 

(I)(A) := A C I A  + C2A + ACa + C4, 

where C1 E F nxm, (72 E IF mxm, C3 E IF nxn, C4 E •mxn are given matrix coeffi- 

cients. Then the linear operator ~ ' (A) : F  mxn -+ F mx~ is determined as 

~p'(A)(E) = ((72 + A C I ) E  + E(C3 + CIA).  

Setting a = vec(A) E F ran, A = vec- l (a) ,  x : vec(X) E IF ran, g ) =  vec o (I) and 

using the Kronecker product (Appendix C), we obtain 

~ / ( O , )  - -  I n @ (C 2 n L vec-l(a)C1) -Jr (C 3 Jr_ C1vec- l (a))T @Im" 

<> 

It may happen that  the Frdchet derivatives of (~ at some points from A do not 
exist although the problem A ~-+ (I)(A) is regular for all data A E A. 

E x a m p l e  3 . 1 7  T h e  funct ion a ~ v)(a) := Ilail, a E R M, is not differentiable at 

a = 0 but the corresponding problem x = g)(a) is regular with K(a)  = 1 for all 
a c R  n. <} 

For regular problems we may derive component-wise bounds as follows. Con- 

sider a problem in vector form x = qD(a), where x has size n and a is size m. If the 
Fre~chet derivative ~ '(a)  exists and is locally bounded, then for some 0 -4 p E ]R~_ 
we have 

Icp(a + 5a) - g)(a)l -4 L(a, p)laa I (3.3) 

_ lI~nxm is a matrix with for all 5a with laat -< p, where L(a,p)  = [lij(a,p)] E ,.~+ 
elements 

l~j(a, p ) . -  m~x g/Ta (~ + ~) "l~l -< P 

Note that  even if the Fr~chet derivative does not exist, then the bound (3.3) is 
still valid with 

lij(a, p ) : =  max{lqpij(a + e)l:  [e I ~ p}, 

where 

gPi j (a )  "-- lim sup { [gPi(a q- z e j )  - q0i(a)l } 
~-~0 I~1 ~ r 0, Izl _< 

and e l , . . . ,  em are the columns of the identity matrix Ira. 
There is a deep connection between differentiability and regularity as described 

next. It follows from the definition of regularity that  the problem X = ~(A) is 

regular if and only if the function ~ is locally Lipschitz continuous. 
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Def in i t i on  3.18 A function (~ is locally Lipschitz continuous at the point A if 

115Xll = IIq~(A, SA)II ~ L(A,~)IISAII,  IISAi[ ~ (3.4) 

for all a c [0, ao) and some ao = ao(A) > O. Here 

L(A, a ) - -  sup { II~(A'E)IIIIE] ] �9 E ~ o, IIEII <_ ~ }  < 

is the Lipschitz constant of ~ in the closed a-neighborhood of A. 

Since L(A, a) >_ 0 is nondecreasing in a > 0, we see that K(A) <_ L(A, a) and 

lim L(A, a ) =  K(A). (3.5) 
c~--*0 

The connection between local Lipschitz continuity and local differentiability is 
revealed by the theorem of Rademacher. 

T h e o r e m  3.19 If the function ~ is Lipschitz in a neighborhood AfA of A then it 
is almost everywhere Frdchet differentiabIe in AfA. 

Thus, differentiability implies regularity, while regularity implies differentiability 
almost everywhere. 

It is important to observe that  the bound (3.4) is linear but nonlocal. Such 
bounds are of special interest in perturbation theory. Note that  not only may 
K(A) be obtained from L(A,a)  via (3.5), but also vice versa, h nonlocal bound 
(3.4) may be constructed using the absolute condition number K via the relation 

L(A,a)  := sup {K(A + E ) :  [IEII _< a} .  (3.6) 

To utilize (3.6) for a differentiable function ~ = veco (I) in a = vec(A) one may use 
the property that  

K ( a ) -  [0~i(a) ] 
[ Oaj J " 

E x a m p l e  3.20 Consider the problem of computing the power (I)(A) := A p of the 
square matrix A E IF nxn, where p > 0 is a positive integer. Then (I) is locally 
Lipschitz continuous for all A, and 

L Ao, ,A, o P JAp 
- = I[Allaap -1-a 

gt k=O 
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E x a m p l e  3.21 Consider the problem (~(A) "-  A -1, defined on the set of nonsin- 

gular matrices. The function (~ is locally Lipschitz continuous. Let E E ~nxn be 

any matrix with IIEll < a0 "-IIA-111-1. Using the representation 

we obtain 

�9 (A,E)  - (A + E) -1 - A -1 

= _ A - l E A - 1  + (A-1E)2(In + A - 1 E ) - I A - 1  

L (A ,a )  - a~ 1 + ~  , O <_a < ao. 
O~ 0 - -  a 

Regularity (or local Lipschitz continuity) is a desirable property of problems, 

especially when they are solved in finite precision arithmetic. However, there are 

problems for which the function (I) grows (locally) faster than any linear function. 

To deal with such problems we introduce the concept of H61der continuity. 

D e f i n i t i o n  3.22 The problem X - ~(A) is said to be locally Hhlder continuous 
if there exist quantities ao(A) > 0, v(A) > 0 and H(A,  a) > 0 such that  

II6XII <_ H(A,  a)IIhAI['(A) , 115All <_ a 

for all a E [0, ao(A)). Here H(A, a) and 7(A) are the Hhlder constant and Hhlder 
exponent of (I) in the closed a-neighborhood of A. 

If the function ~ is H61der continuous at A with an exponent 7(A) _> 1, then 

it is in fact Lipschitz continuous as well. Indeed, for 7(A) - 1 this holds by 

definition. Suppose that  7(A) > 1. Then for IIEII < a we have 

II~(A, E)I I <_ H(A,  a)llEII ~(A) <_ L(A, a)llE[[ 

with L(A ,a )  "- a ' ( A ) - I H ( A , a ) .  

Functions which are H61der continuous with v(A) < 1 grow faster than any 

Lipschitz continuous function in a neighborhood of A. 

E x a m p l e  3.23 The scalar problem x = [a[ ~~ where 0 < 70 < 1, is H61der con- 

tinuous at a - 0 with constant 1 and exponent 7(0) - V0- (> 

E x a m p l e  3.24 The problem of computing a multiple root x of an algebraic equa- 

tion is H61der continuous with exponent 1/k, where k > 1 is the multiplicity of x. 

E x a m p l e  3.25 The problem of computing a multiple eigenvalue A of a square 

matrix, corresponding to nonlinear elementary divisors, is Hhlder continuous with 

exponent l /k ,  where k > 1 is the size of the largest block with eigenvalue A in the 

Jordan canonical form of the matrix. {} 
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According to the definition of regularity, a H61der continuous problem X = 

(I)(A) with constant 7(A) < 1 is singular. But there are also singular problems 

which are not even H61der continuous, since the function �9 grows (locally) faster 
than any power function. 

E x a m p l e  3 .26 The scalar real function ~" ( -1 ,  1) --, R, defined as 

qo(a) - -  { -sign(a)/0 In lal ifif 0 <alal= 0 < 1 

is not H61der continuous at a - 0. 
( -  1, 1), defined via 

Note that  the inverse function ~-x  " R - - +  

g)_l{x~\j __ f s i g n ( x ) / e x p ( - 1 / l x l )  if x r 0 
0 i f  x - 0 

is infinitely differentiable everywhere and extremely "flat" at the origin. It is 
analytic (i.e., representable by its Taylor series) for x r 0 but not for x - 0. 
Indeed, all derivatives of ~p-1 vanish at x - 0. Hence, the Taylor series of ~p-1 

at x = 0 is identically zero and is thus different from ~-1 on any open interval, 
containing 0. (} 

For a regular problem X - (I)(A) we have the asymptotic bound 

Ile XII K(A)IISAII + o(l[,SAll), 5A O, (3.7) 

where o(z)/z ~ 0 for z ---, 0 and the o-term is typically of the form O(115AII2), 
5A ~ 0. Neglecting the o-term, it would be good if the inequality 

rl6xii K(A)IISAII (3.8) 

would hold, but  unfortunately it does not hold in general for nonlinear problems. 

First, it may not be true for large 115All. Second, if it holds for some small 115AII, 
there is no indication for the size of 115All (it may well happen tha t  (3.8) is valid 
only for 5A = 0 or under some special assumptions on 5A). At the same time a 
true bound is for instance the inequality 

ll5xjI _< L(A,a)II5A]] 

which is rigorously valid for all 5A with 1[SAIl < a. However, while K(A) is usually 

easily computable,  it is much more difficult to calculate or estimate L(A, a). 
In the following examples we s tudy the validity of linear bounds for small finite 

perturbat ions in scalar problems. 
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E x a m p l e  3.27 Consider the scalar problem x - 7)(a), where 7)" R ~ R is ana- 

lytic at a. Suppose tha t  7)'(a) r 0 and tha t  7)(k)(a) is the first nonzero derivative 

of 7) at a with k > 1. Then we have 

15xl- 15al 7)'(a) + 7)(k)(a)(5a) k-1 
k~ 

+ 0(15a  k+l) ,  5a --~ O. 

Hence, the bound (3.8) will be valid for all 5a in a certain small neighborhood if 

and only if k is odd and 7)'(a)7)(k)(a) < 0. This in particular implies k _> 3 and 

thus, a is an inflection point and (3.8) is not valid generically. 

E x a m p l e  3.28 Consider the scalar function a ~ 7)(a) - a 2 in a neighborhood of 

a - 0. Since 7)'(0) - 0, then (3.8) yields I~1- o. Since in fact 6x - (6a) 2, we see 
tha t  the bound (3.8) is valid only for 5a - 0. (} 

Examples 3.27 and 3.28 show that  inequality (3.8) is generically not valid for 
all 5A in an open neighborhood of the origin. 

To avoid this delicate situation of a bound-that-may-be-violated,  we proceed 

as follows. We introduce the special symbol < to denote an inequality within first 
order terms of magnitude,  i.e., 

< 
o~ ~ ,8 (3.9) 

is equivalent to 

c~ < fl + o(fl) ,  fl --, + o. (3.10) 

We use (3.9) instead of (3.10) because in practice we do not deal with limiting pro- 

cesses ~ --~ + 0, but rather with finite (although possibly small) positive quantities 
/9. Wi th  this notat ion we may write 

II~Xll ~ K(A)]ISAf[ (3.11) 

which is a linear local estimate, i.e., it should be used in a small neighborhood 

of A. We again stress that  in contrast to (3.11), the est imate (3.4) is linear but 
nonlocal. 

Linear local estimates of the form (3.11) are widely used in computat ional  

practice in the chopped form (3.8) which typically produces acceptable results. 

However, the bound (3.8) may severely underest imate the actual per turbat ion 

116Nil. Indeed, consider the simple case of a scalar real function 7), having contin- 

uous second derivative on a given interval. If the second derivative of 7) is small, 

the bound (3.8) will give satisfactory results. But  if the second derivative of 7) is 

large, there may be a serious underest imation of the actual perturbation.  

E x a m p l e  3.29 Let 

1 
x - 7 ) ( a ) "  1 0 0 0 0 0 1 - a  

, a _< 1 000000.9999999. 
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For a = 1 000 000 we have x = 1 and ~t(a) = 1. Therefore, if 5a = 0.999999, then 

the es t imate  (3.8) gives 

15xl <_ 15al = 15al - 0.999999, 
( 1 ooo  oo i - a)  2 

while the actual  pe r tu rba t ion  is 

5 x -  5a _- 5a - -999999 ,  
I(1 000 001 - a) (1 000 001 - a - ~a) l 1 - ~a 

i.e., we have an underes t imat ion  by a factor 106. Note tha t  here ~"(a )  = 2 and 

the error is not due to the size of the second derivative, but  ra ther  to the fact tha t  

the remainder  R(a ,  5a) in the Taylor formula 

5x = ~(a  + 5a) - ~(a)  = ~ ' (a)Sa  + R(a,  5a) 

is large (in fact R(a ,  5 a ) =  999 998.000001). 

This example is actual ly not too artificial, since the relative per tu rba t ion  in a 
is less than  10 -6. 

Recalling the definition of relative condition number  n(A) (see Definition 2.3), 

we have for the relative per turba t ions  Px and PA the relationship 

Px < ~(A)pA  + o(pA), PA --* 0 

and hence, 

< (3 12) Px ~ ~(A)pA 

is the linear local pe r tu rba t ion  bound.  

In the definition of the relative condition number,  the assumptions X -r 0 and 

A -r 0 may be too restrictive when we s tudy the local sensitivity of a problem 

and one of the following three conditions holds (i) K ( A )  = oo, (ii) A = 0 or (iii) 

(I)(A) = 0. A typical example here is the evaluation of the function a ~ a ~ : R+ 

R+, where 3' E (0, 1) is a parameter ,  at the point a = 0. Here all three conditions 

(i), (ii), (iii) hold. In such a si tuation,  a generalization of the relative condit ion 

number  may  be int roduced as follows. For A E A set 

81(A) := { E � 9  s := { - A } ,  

E3(A) := { E � 9 1 6 2  

and 

C(A) := CI(A)U C2(A)U C3(A). 

D e f i n i t i o n  3 .30  The limit (finite or infinite) 

n(A)-- lim sup { K(A + E)IIA + Ell 
~-~0 I~(A + EDll 

�9 E ~ 8(A), [IEl[ < c~} (3.13) 

is called a generalized relative condit ion number  of the problem X = (I)(A). 
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When none of the conditions (i), (ii), (iii) holds, then the generalized relative 

condition number is the s tandard relative condition number of the problem. 

D e f i n i t i o n  3.31 A problem X - ~(A) is called R-regular if its generalized rela- 
tive condition number is finite. 

E x a m p l e  3.32 The continuous function a H a ~ �9 ]R+ --~ R+, where 3' E (0, 1), 

is singular at a - 0, since K(0) - oc. At the same time the generalized relative 

condition number exists for all a > 0 and is equal to 7. (~ 

If the data  A is represented as in (2.4), then the local linear bound in terms of 

absolute per turbat ions has the form 

where 

I l a X I I  KA (A)IISA II- K(A)IIISAIll, 
i = 1  

(3.14) 

l x r  K ( A )  "-  [KA1 (A), . . . , KAr (A)] e R+ 

is now the vector absolute condition number and KA~ (A) is the individual absolute 

condition number with respect to Ai. If Ai ~ 0, then an est imate in terms of 

relative per turbat ions is straightforward, 

5x < E ~A~(A)SA~ - ~(A)SA, (3.15) 
i - -1  

where 

n(A) " -  

A "--  

l x r  gAI(A)IIA~II  A (A)IIA, II R+ , 
I l x l l  " '  I l x l l  

[SAl, . . .  5Ar] -]- E ItS; 5ni " - -  l ISA{  I 
' ' I I A { I I  " 

Here ~(A) is the vector relative condition number and ~A~(A) is the individual 

relative condition number with respect to Ai. 

The accuracy of condition number based per turbat ion bounds depends strongly 
on the s tructure of the data, as shown in the next example. 

E x a m p l e  3.33 Consider the problem 

x -  M l a i  + M2a2 - Ma,  M := [M1, M2], a " -  [a T , a T ]T ,  

where the data  al ,  a2 and the result x are finite-dimensional vectors, and M1, M2, M 
are matrices of compatible dimensions. Then 

5x -- M15a1 + M25a2 -- MSa.  
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Hence, in 2-norm the bound 

]lSxll _< IIMI[I [l($al[[ 4-IIM2ll t[Sa21l (3.16) 

based on condition numbers is valid. We also have the bound 

115xll _< IIM[I l[~a[[- I[MIIv/ll&lll 2 + 11&2112. (3.17) 

Which bound is better depends on the data. If did2 r 0 and [IMII > LIMIII, then a 
simple computation shows that  the bound (3.17) is better than (3.16) if and only 
if 

m i r a 2  - v/m21 + m~ - i [15dill m l rn2  + x / m  2 + m 2 - 1 

1-m21 < ~ < 1-m21 
where m~ := IIM~II/IIMII. At the same time, we have a third bound [140] 

IlSx]l < i l lMlll2lldalll  2 + 211MIHM2IIIISaIIIIISa211 + llM2112Ilaa21l i, 
which is always better than (or equal to) the condition number based bound (3.16) 

since 1[ M HM2 II -< II M1 II II M2 II- <> 

Often it is preferable to have a single overall condition number for a given 
problem even when the data are naturally presented in the form (2.4). Suppose 
that the problem is regular and II~A~II _< ~IIA~II, where e > 0 is a small constant. 
Then 

< 

Px  " e~* (A), 

where 
r 

n*(A) "= E n,(A) 
i = l  

is the overall relative condi t ion  n u mb er  of the problem. 
The overall relative condition number n*(A), together with the rounding unit 

eps of the finite precision arithmetic, is among the main factors of determining the 
accuracy of the solution. The relative condition number itself may be considered as 
"large" or "small" only within a particular computing environment. In particular, 
in finite precision arithmetic we have the following heuristic concepts. 

A regular problem ((I), A) is considered as well -condi t ioned if the quantity n* (A) 
is small, and i l l -condi t ioned if it is large in the context of the finite precision 
arithmetic with rounding unit eps, used to solve the problem. Usually the problem 
is considered as very well-conditioned if n*(A) ~ 1 and as very ill-conditioned if 
eps ~* (A) ~ 1. 

The solution of very ill-conditioned problems in finite precision arithmetic may 
lead to a result with no correct digits. More generally, the following heuristic rule 

of  thumb is often used in practice. If eps ~* (A) < 1, then about (or no more than) 

- lOgl0 (eps t~* (A)) (3.18) 

correct decimal digits may be expected in the computed solution. 



46 C H A P T E R  3. PROBLEMS W I T H  EXPLICIT  SOLUTIONS 

E x a m p l e  3 .34 The relative condition number of the problem x = ~(a) :/- 0 of 

evaluating a differentiable scalar function ~ at the point a r 0 is 

laLl '(aDI 

Hence, ~(a) may be large, and the problem may be very ill-conditioned, if lal or 

[~'(a)[ is large and/or  I~(a)l is small. If qD(a) = sina,  then the computat ional  

problem is ill-conditioned for arguments a with large absolute values and/or  close 

to an integer multiple of :r. 

A generalization of the concept of regularity of single problems to families of 
problems is the following. 

D e f i n i t i o n  3.35 A family of computational problems A -~ q~(A) is said to be 
regular if the function ~o : A ~ ?C is continuous and the quantity 

K (A)  := sup {K(A) : A c A} 

is finite. Here K ( A )  is the absolute condition number of the family of problems 
X = (P(A), parametrized by the data A E A. 

Hence, a family of regular problems is regular if the set of absolute condition 
numbers of its members is bounded. 

A relative condition number for a family of problems is defined in a similar 
way. 

D e f i n i t i o n  3.36 A family of cornputational problems A ~ ~o(A) is said to be 
R-regular if the function ~ : .A ~ X is continuous and the quantity 

n(A) := sup {n(A) :  A E A\{0},  (I)(A) ~: 0} 

is finite. The quantity s(A) is the relative condition number of the family of 
problems X = (I)(A), pararnetrized by the data A c A. 

It is interesting to note tha t  a family which is R-regular may have members 
tha t  are not regular. 

A family of problems A ~ r  with (I) being a continuous function may be 

neither regular nor R-regular. In turn, regularity does not imply R-regularity and 

vice versa as shown in the next examples. 

E x a m p l e  3 .37 For the family of problems a ~ a m, a E R+, where m > 0 is a 

parameter ,  the absolute and relative condition numbers are K(a) = mla[ m-1 and 

~(a) = m, respectively. (The values of K for a = 0, m < 1, and of ~ for a = 0, are 

not defined.) Thus, the family is R-regular for all rn > 0. At the same time the 
problem is not regular at a = 0 if m < 1. ~} 
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E x a m p l e  3.38 The family of problems a H sin a, a E [0, 2~) is regular with 

absolute condition number equal to 1, but is not R-regular because its relative 

condition numbers are not finite at a = 0 and a = ~. 

E x a m p l e  3.39 The problem A H A -1 of inverting a square matrix is not R- 

regular on the set of all invertible matrices, since the relative condition number 

cond(A) = ]JAil [JA-I[I of the matrix A with respect to inversion is not uniformly 

bounded on that  set. 

E x a m p l e  3.40 Let a , x  E IF n and x = ~(a) := Ma,  where M E IF n x n  is a given 

nonsingular matrix. Then K(a)  = IIMII and the relative condition number is 

= LIMLL LLall 
LLMall 

The relative condition number with respect to the whole space IF n is 

t~(]F n) - sup { IIM[[IIMall ljaIJ �9 a E ]F n } - cond(M). 

3 . 4  N o n l o c a l  b o u n d s  

The linear local sensitivity bounds (3.11), (3.12) may underestimate the true size 
of the perturbation, since they are valid only in a (usually small) asymptotic 

domain which is not known in practice. But in real applications perturbations in 

the data are always finite, of nonzero size. Hence, without a rigorous bound on the 

neglected higher order o-terms in the corresponding expressions, the use of local 

bounds may lead to erroneous conclusions. Thus, the use of local estimates for 
practical purposes remains, at least theoretically, unjustified unless an additional 

analysis of the neglected terms is made. But to obtain bounds for the neglected 

nonlinear terms means to find a nonlinear perturbation bound. 

Sometimes it is possible to derive linear nonlocal perturbation bounds which 

do not underestimate the actual perturbation in the solution. The problem of the 
accuracy and the domain of applicability of such bounds, however, still remains 

open. It must be stressed that  the behavior of the true perturbation is inherently 

strongly nonlinear even for simplest linear equations, see Section 3.5. 

The disadvantages of local estimates may be overcome by using the technique 

of nonlinear perturbation analysis (Section 8), which has two main purposes: first, 

to show that  a solution of the perturbed problem exists for a given range of per- 
turbations, and second, to find a nonlocal (and in general nonlinear) perturbation 
bound of the form 

115X[[ <_ p(tlhAII ), ]15A][ _< a, (3.19) 



48 C H A P T E R  3. P R O B L E M S  W I T H  E X P L I C I T  S O L U T I O N S  

where a > 0 and p :  [0, a] ~ R+ is a nondecreasing function with p(0) = 0. (We 
use the term "perturbation bound" for both the function p and the inequality 
(3.19).) 

For the representation (2.4) the nonlinear bound has the form 

II Xll P(III AIII), II AII c (3.20) 

where f~ c N~_ is a closed set and p is a function of r arguments, nondecreasing in 
each of them, and satisfying p(0) = 0. 

When matrix absolute values are used for A and X, we have 

fSXI _-5 P(15A]), 15A[ c F, (3.21) 

where F C 12+ is a closed set. The elements of the matrix-valued function P : F -~ 
R~  xn have the properties of the function p in (3.20). 

An important property of the nonlocal bounds is that  they are valid rigorously 

in the corresponding domains for 115All , 1115All I or 15A[, in contrast to the chopped 
first order local estimates, where higher order terms are neglected. 

A desirable property of a perturbation bound is to be unimprovable. 

De f in i t i on  3.41 The perturbation bound (3.19) is said to be unimprovable rel- 

ative to the set of data .4 if  for any positive ~] < 1 there exist A E .4 and 5A 

with A + 5A E .A and lISA)) < a, such that the true perturbation ~X satisfies 

115Xll = vp(llhAII). 

Thus, an unimprovable bound is almost or exactly reached for some data (take 
r/close to 1). Similar definitions apply also for the bounds (3.20) and (3.21). The 
concept of unimprovability is close to that  of almost necessity, see e.g., [135]. Of 
course, an unimprovable estimate may as well give pessimistic results for other 
data  and/or  data perturbations. 

A detailed study of the properties of perturbation bounds is presented in Chap- 
ter 7. 

3 . 5  C a s e  s t u d y  

Consider the scalar equation alx  = a2, where ala2 ~ 0, and let 5ai be perturba- 

tions in the data ai satisfying 5al r - a l .  This equation is reduced to an explicit 
problem 

a2 
(al, a2) ~ x = - - .  (3.22) 

a l  

Although being quite simple, problem (3.22) reveals some important issues in 
perturbation analysis. We have 

(~ x ~-~ 
5 a 2  --  x h a l  

al + 5al 
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and 
5X 5a2 /a2  - - S a l / a l  

x 1 + 5al /a l  

Thus, (~x exposes highly nonlinear behavior in a neighborhood of the vertical line 

dal - - a l  in the plane of per turbat ions  5al, 5a2. Setting 

P X  " ~  

(~X 

X , Pai "-- 
5a_A 
ai 

we get 

P~ < Pa, + Pa2 (3.23) 
1 - Pal 

This is a nonlinear nonlocal bound with domain of applicability 0 < Pa~ < 1. The  

est imate (3.23) is unimprovable.  If we set 

15zl N 

P~ " Iz + Szl 

then for 0 _< p ~ ,  p ~  < 1 we get another  unimprovable nonlinear bound as 

p- <_ Pa~ + Pa~ 

1 - -  P~2 

The relative condition numbers  with respect to al and a2 are both equal to 1. 

Thus, the local linear es t imate  is 

< (3.24) Pz "" Pal + Pa2 

and it underes t imates  the t rue per turba t ion  arbitrarily for 5al approaching - a l .  

Take for instance al  = a2 = 1, 5al = -0 .999999 and 5a2 = 0. Then the t rue 

relative per tu rba t ion  is Px - 999 999, while the local est imate (3.24) gives px < 1. 

In addition, the linear es t imate  formally can be wri t ten down also for 5al = - a l .  

Here the pe r tu rbed  equat ion 0z = a2 + 5a2 either has no solution (if 5a2 # - a 2 )  

or has infinitely many solutions (if 5a2 = - a2 ) .  In the first case the resulting 

est imate p~ < 1 + Pa2 makes no sense. 

To find a linear nonlocal estimate,  we suppose tha t  P~I is allowed to vary only 

in the interval [0, 1 - #], where # < 1 is a positive constant.  Then 

1 1 
< -  

l - p a l  - # 

and 
1 

Pz < - ( P a ,  +Pa2), O<p~,  < 1 - # .  
# 

Taking # - 0.5 we obtain the linear nonlocal est imate 

p~ _< 2 (,Oal + ,o,,~), o _< Pa, _< O.5. 
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3.6 N o t e s  and references  

Properties of problems with explicit solution have been considered in [134, 135]. In 
particular, the concept of perturbation function (Section 3.2) has been introduced 
therein. 

Condition numbers for various types of problems have been considered in [188, 
89]. Condition estimators are discussed in [38, 121, 166]. 

Condition numbers for complex functions which are not FrSchet differentiable 
but have FrSchet pseudoderivatives are analyzed in [140, 145, 137, 127]. 



Chapter 4 

Problems 
solutions 

with implicit 

4.1 Introductory  remarks 

The general considerations made in Chapters 2 and 3 are applicable to problems 

with explicit or implicit solutions. However, problems with implicit solution (e.g., 
solving equations) have many special features which are better considered in a 

specific framework. 

4.2 Posedness  and regularity 

Consider a problem formulated in terms of the equation 

F(A,X) = 0  (4.1) 

relative to the unknown quantity X E A' = IF nxm, where A r V is a parameter and 

the set Y is defined by (2.4). Here F : D ~ I7 pxq is a given continuous function, 

and D c V x A' is a domain, i.e., an open and connected set. 

Equation (4.1) gives rise to several global and local objects. One global object 

is the set of all pairs (A,X) for which (4.1) holds. This is a manifold P c D in 

V x A" of generic dimension dim(V) + r a n -  pq (for manifolds For a fixed A we also 

have (locally) the set _=(A) c A' of all solutions X of (4.1) corresponding to this 

particular value of A. A particular solution X c ~_(A) may or may not depend 
continuously on the data. A rigorous definition of these concepts follows below. 

Denote by 

Dv := {A: (A,X) �9 D} c V (4.2) 

51 
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the projection of D on ]2 which in this case is also a domain. Let 

7 ) := {(A,X) E D :  F ( A , X )  = 0} C D (4.3) 

be the set of all pairs (A, X) from D satisfying (4.1). Thus, 7 ) is a variety of generic 

dimension dim(P) = dim(F) + m n -  pq and we assume that Y' ~r 0. Let finally 

A := {A: (A,X) r 7 ) } c Dv 

be the set of all A from 7)v for which equation (4.1) is solvable. In view of the 

assumption that  7 ) is nonempty, the set ~4 is also nonempty. However, even if the 

set Dv is easily definable, to determine the set A may be difficult. 

The unknown matrix X is defined as an implicit function A ~-~ X via equation 

(4.1), see [173] and Appendix A for the implicit function theorem. 

To avoid trivial results we assume that for every A r A the Fpxq-valued func- 
tions X ~-+ F(A,  X) ,  defined on open subsets of A', are not identically zero. 

When real nonlinear algebraic matrix equations (polynomial or rational equa- 
tions in particular) are considered, it is necessary to deal with the fact that the 

field N of real numbers is not algebraically closed, i.e., that  polynomial equations 
with real coefficients such as x 2 + 1 = 0 may not have real solutions. In this case 

the matrix F(A, X)  is real, provided that X and A are also real, but we usually 

admit complex solutions X as well. This formally corresponds to the case when l; 
is a linear space over R while X r C nxm and F(A, X)  r C pxq are complex matri- 

ces. Thus, real problems are naturally imbedded in a complex environment which 
provides some nice algebraic and geometric properties. In particular an algebraic 
equation of n-th degree in such an environment has always n roots counted with 
multiplicity. 

In what follows we denote by (F, A) the family of problems A ~-~ X defined via 

(4.1) when A varies over A. For a fixed A r ~4 denote by 

~(A) := {X e A': (A, X) e 7) and F(A, X) = 0} 

the solution set of equation (4.1), which is the set of all X, satisfying (4.1). Thus, 

~.(A) c A' is the V-section of the set 7 ) C D C ); x A'. 

We can also define E(A) for all A from the set Dv and set S(A) = 0 if A E 

T)v\A. Thus, the corresponding problem may be defined via the multi-valued 
mapping 

A ~ S ( A )  c X ,  A e A .  

In many problems we are interested in solutions of (4.1) which are matrices of 

a special form (e.g. symmetric or Hermitian solutions when m = n). Suppose that 

A'o c X is a given set. Then we may define the subset A0 c A of data A which 
gives rise to solutions X E A'o, 

Ao := {A ~ A:  S(A) n X0 r q)}. 
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An interesting phenomenon may be observed for some equations of type (4.1), 

namely that  the solution set does not effectively depend on A as in the next two 

examples. 

E x a m p l e  4.1 Let F(A,X)  be a matrix, which may be written as a product 

FI(A)F2(X)F3(A), where the matrices FI(A) and F3(A) are nonsingular for all 

A E T~w. Then equation (4.1) is equivalent to the equation F2(X) = 0 which does 
not depend on A. 

E x a m p l e  4.2 Let Xl,X2 E IF be two distinct numbers and ~ '  IF -o {xl,x2} be a 
surjective (and hence discontinuous) function. Then the solutions of the equation 

( x  - z ~ ) ( ~  - ~ 2 ) ( ~  - ~ ( a ) )  = 0,  a e 

are xl,x2 and therefore, the solution set E(a) = {xl,x2} does not change with a. 

In Example 4.2 the left-hand side of the equation is not continuous. We will 

not consider this case in detail. However, it was included to show that  even in 
such cases the solution set may look nice. 

To avoid trivial results we will make another assumption in order to exclude 

cases in which equation (4.1) does not depend effectively on the parameter A. 

In what follows we assume that  there exist at least two parameters A, B E .4 
such that ~(A) ~- ~(B).  This means that  equation (4.1) depends on the parameter 
A effectively. 

The above assumptions guarantee that, for some value of A, equation (4.1) 

has a solution set -E(A) which is a nontrivial subset of ,u i.e., .~.(A) ~ ~ and 
E(A) ~- X. Moreover, the solution set depends nontrivially on A in the sense that  
E(A) changes along with A. 

Instead of solving the global problem to determine E(A) when E(A) contains 
more than one element, often it is necessary to consider only a particular solution 

X E E(A) of equation (4.1). We are especially interested in solutions which depend 

continuously on the data in a certain neighborhood of a given nominal data A from 
A. 

Def in i t ion  4.3 The equation (4.1) is said to be well-posed at A if there exist 

a neighborhood (not necessarily open) AfA C A of A and a continuous function 

(I) �9 AfA ~ X such that  F(B, (I)(B)) = 0 for all B e ]~fA- 

Thus, a well-posed equation has at least one solution X "= O(A) which depends 

continuously on the data in a neighborhood of A. 
Even if the equation is well-posed at A it may have a solution X E ~(A) for 

A 

which (A, X) is an isolated point of the set P,  defined in (4.3). In this case there 

is no continuous function ~, defined in a neighborhood of A such that X = (I)(A). 
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Thus, a well-posed equation may have solutions which do not depend continuously 

on the data  on neighborhoods of a given nominal value of A. The last clarification is 

essential, since a function is continuous by definition at the isolated points (if any) 

of its domain. In fact, well-posedness just means tha t  at least one solution (but 

not necessarily all solutions) depends continuously on the data. The dependence 

of the solutions on the data  may be a subtle problem even for simple equations. 

E x a m p l e  4.4 Consider the scalar equation in ]F 

( x -  a -  1)(Jxl + Jal) = 0. 

The solution set E(a) here is a single-element set {a + 1} if a r 0 and a two-element 

set {1,0} if a = 0. The set 7 ) in (4.3) consists of the straight line {(a, a + 1 ) : a  E 

F} C F 2 and the isolated point (0, 0) E F 2. Hence, the equation is well-posed at 

any a, since we have the solution x = a + 1, depending continuously on a. For 

a = 0 we also have the solution 0 E .=.(0), which does not depend continously on the 

data. At the same t ime for a = - 1  the solution 0 c ~ ( - 1 )  depends continuously 
o n a .  

D e f i n i t i o n  4.5 For A E A denote by ft(A) the set of all X-valued functions (I), 

defined in a neighborhood N'A C A of A and satisfying F(B, (I)(B)) = 0 for all 

B c HA. The set of continuous functions from ft(A) is denoted by fro(A). The 

elements of ft(A) are called solution functions of equation (4.1). 

We are interested mainly in continuous solution functions, although discontin- 

uous ones may also be of theoretical and practical interest. It must be stressed 

tha t  equations of type (4.1) with F continuous may have discontinuous solution 

functions, and an equation with F discontinuous may have continuous solution 

functions. In fact, if an equation has two or more solution functions (continuous 

or not) it has also infinitely many discontinuous solution functions, see Exam- 

ple 4.7. This is based on the following observation. Let the function A H (I)(A) 

be discontinuous and the function (A,X)  H F(A,X) be continuous. Then the 

function A ~ F(A, ~(A)) may be continuous (the constant zero function in par- 

ticular). For example, a function (A, X) ~ F1 (A, X)F2(A, X) may be continuous 

even if the matr ix  valued functions (A,X)  ~ Fi(A, X) are not. 

E x a m p l e  4.6 If the function ~ : IF x F --, { - 1 , 1 }  is surjective then it is dis- 

continuous at least at one point of its domain (and may as well be discontinuous 

everywhere). At the same t ime a --, ~2(a) is the constant function, equal to 1, 
which is of course continuous on F • F. 

E x a m p l e  4.7 Consider the scalar equation 

f ( a ,  x )  : =  ( x  - - = O, 
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where ~al, ~2 : IF --~ F are given dist inct  functions which in this case are also 

solution functions. Let F1 and F2 be any two nontrivial  subsets of IF such tha t  

F = F1 U F2 and FI N F2 = ~. We may construct  a new solution function ~a : IF -~ 

by the rule ~p(a) = ~i (a)  if a E ]F~. Then  we have the following observations. 

�9 The  solution function ~ is discontinuous. By a suitable choice of the sets ]Fi it 

is possible to make ~a discontinous at any point  a C IF, where ~ (a) % ~a2(a). 

(Take for example  IF1 as the set of all a E IF with  ]hi e Q.) 

�9 If p l  is continuous and ~2 is not, then  f is not continuous. At the same t ime 

we still have the continuous solution function ~Pl. 

We also need the notion of a pa th  in the set ,4 x X. Let �9 :AfA ~ X be any 

function (for a momen t  we do not suppose tha t  the function (I) is continuous nor 

tha t  it is a solution funct ion of equat ion (4.1)), defined in a neighborhood A/A of 

A c .4 and let X := ~(A) .  

D e f i n i t i o n  4.8 A path th rough  the point (A, X)  E ,4 • X is the graph of (I), which 
is the set 

F (~ )  := {(A, ~ ( A ) ) :  A e .]~A} C A • X. 

The  pa th  F((I)) is continuous at (A, X)  if the function (I) is continuous at A. The  

pa th  is continuous on HA if ~ is continuous on AfA, and smooth on AfA if (I) is 

Fr~chet differentiable on HA, see Appendix  A. If r c ~ (A)  then the pa th  F((b) is 

a solution path of equat ion (4.1). 

Together  wi th  the concept of well-posedness of an equat ion for a given data ,  

we will in t roduce the notion of well-posedness for a par t icular  solution. 

D e f i n i t i o n  4.9 A solution X E .=(A) of F(A, X) = 0 is said to be well-posed if 

X = (I)(A) for some ~ E ~tc(A). If the solution X c .W.(A) is well-posed then  every 

q) E ~tc(A) with  (I)(A) = X is referred to as a supporting function of this solution. 

In other  words, the solution X is well-posed if (A, X)  lies on a certain contin- 

uous solution path.  According to the definitions above, this continuous pa th  may  
not be locally unique. 

E x a m p l e  4 .10  The  scalar equat ion x 2 -  a 2 -- 0 is well-posed at every a c IF, and 

even every solution is well-posed. The  solution x = 0, corresponding to a = 0, lies 

on two continuous paths ,  namely  {(a, a) :a  e IF} and { ( a , - a ) : a  e IF}, i.e., there  

are two suppor t ing  functions x = a and x = - a  of the zero solution. In the real 

case F = I~, there  are even four supor t ing  functions x = a, x = - a ,  x = lal and 

x = la[ of the  zero solution. (} 
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A solution X c .~(A) (well-posed or not) may lie on a path in .4 x A' which is 

discontinuous at (A, X) or even everywhere in a neighborhood of (A, X). Also, the 

solution X may lie on a path which is continuous at (A, X) but is discontinuous 
elsewhere, see the next example. 

E x a m p l e  4.11 Consider the real scalar equation 

(~2 _~ (~02(a)) (x -- ~1 ( a ) ) (x  -- ~2(a)) - 0, 

where ~1, ~2 : ]t~ ~ 1~ are two distinct differentiable functions and the function 

p0 : R ~ R is continuous. For every a E R we have the smooth solution functions 

~1 and p2 and hence, the equation is well-posed. Suppose now that  p0(a0) = 0 

and tha t  ~l(a0)q~2(a0) r 0 for some a c R. Then x0 = 0 is an isolated solution, 

since the point (a0, 0) does not lie on any solution path. 

We also have the solution function ~, defined by ~(a) = (pl (a) if a E Q and 

~(a) = ~2(a) if a c R\Q.  For every a c R such tha t  ~ l (a )  ~= ~2(a), there is 

an open interval Ha ~ a such that  ~ is discontinous at every point from Ha. If 

~1 (a) = ~2(a) for some a E R, then p may be continuous or even differentiable at 

a, being discontinuous at every point of the pierced interval Afa\{a}. Indeed, we 
may choose ~P2 = 0 and ~pl(a) = a or ~1 (a) = a 2. (} 

E x a m p l e  4.12 The scalar complex equation 

a l X l  + a 2 x 2  - -  a3  - -  O~ 

where a - [al,a2, a3] T E C 3 and x -- [Xl,X21T E C 2, is well-posed if and only if 

either [al 12 + la2I 2 > 0 or a - 0. If lall 2 + la212 > 0, then there is a one-parametric 
family of solutions 

a l a 3  a 2 a 3  

X l - - [ a l l 2  _}_ la2[ 2 -~-a2z, x2 = [all 2 + ]a2[ 2 - a l z ,  

where z C C is a parameter.  More generally, the linear algebraic equation M x  - b 

is well-posed if and only if rank([M, b]) - rank(M),  or equivalently, b c Rg(M).  

The next problem we study is the uniqueness of the solution. 

D e f i n i t i o n  4.13 solution X C .=(A) is said to be locally unique if there exists an 

open neighborhood Afx of X such that  Afx N ~_(A) = {X}. 

Other equivalent conditions for local uniqueness of the solution are given in the 
next proposition. 

P r o p o s i t i o n  4.14 The solution X E E(A) is locally unique in the sense of Defi- 
nition 4.13 if  and only if  one of the following three equivalent conditions hold. 
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�9 There exists an open neighborhood Afx of X such that Ark N.V(A) - O, where 

A/k " -Afx  \{X} is the pierced open neighborhood of X .  

�9 There exists e - e(A, X )  > 0 such that for every Y E =-(A) with Y # X the 

inequality [ I Y -  Nil > c holds. 

�9 The solution X is an isolated point of the set .~(A). 

Note that  for a locally unique solution X E .=.(A) (being an isolated point of 
E(A) by necessity) the point (A, X) need not be (and generically is not) an isolated 
point of the set P in (4.3). But if (A, X) is an isolated point of P then the solution 
X is an isolated point of =_(A), i.e., it is locally unique. 

Solutions that  are not locally unique may be characterised as follows. 

P r o p o s i t i o n  4.15 A solution X E E(A) is not locally unique if and only if it 
is an accumulation point of the set E(A),  i.e., if and only if there is a sequence 

{Xn}~ c -=(A) such that lim,~__,o~ - X. 

Proof. Indeed, if there is such a sequence, then the solution X cannot be locally 
unique, since any open neighborhood of X contains some member of the sequence 
and hence, infinitely many such members. Suppose now that  X is not locally 
unique. Then any open ball, centered at A and of radius 1/n must contain at least 
one solution Xn E E(A) (otherwise X would be an isolated point of .~(A)). Thus, 
we have constructed the sequence {Xn}~ c E(A) which is convergent to X and 
hence, X is an accumulation point of the solution set E(A). [3 

In the next example we give an equation such that  -=(A) contains a solution X 
together with a sequence {X~}~ which is convergent to X. 

E x a m p l e  4.16 Consider the scalar equation f ( a , x )  - 0, where f is the differen- 
tiable function 

f ( a , x )  (x a ) 3 s i n (  7r ) . . . .  , x ~ a  
X a 

and f (a ,  a) - O. The solution set is 

-~(a) -- {a,a-t- 1, a + 1 /2 , . . . , a -4-  1 / n , . . . }  

and hence, the solution a E E(a) is not locally unique. (> 

In Example 4.16 the solution set E(a) is countable (isomorphic to N) with a 
single accumulation point a. All other points a + 1/n of E(a) are isolated. 

Another possibility for nonuniqueness of a solution X E .~(A) is when X E 
M, where M c E(A) is a connected set. All solutions of the equation from 
Example 4.12 are of this type. Another example is given below. 
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E x a m p l e  4 .17 For c~ < ~ define the analytic function h~,z :R  ~ ( -1 ,  1) by 

- e x p ( 1 / ( x - a ) )  if x < c ~  
h ~ , ~ ( x ) " - 0 if a_<x_< /3  

exp(1 / ( /~ -  x)) if x >/3. 

The inverse function h -1 ~,~ exists and is analytic on ( -1 ,  0) U (0, 1). Consider the 

equation h ~ , z ( x )  - a  - O. It has a unique solution x - h -1 ~,z(a) for any a �9 

( - 1 , 0 )  t2 (0, 1). For a = 0, however, any x �9 [a,/3] is a solution, i.e., ~(0) = [a,/3]. 

A solution which is locally unique may or may not be well-posed. Since we 

are mainly interested in solutions which are simultaneously well-posed and locally 

unique, we come to the following definition. 

D e f i n i t i o n  4.18 The solution X �9 ~(A) is said to be p r o p e r  if it is well-posed 

and locally unique. The solution X �9 .=(A) is i m p r o p e r  if it is not proper. 

Tha t  the properties well-posedness and local uniqueness are independent is 
clear from the next example. 

E x a m p l e  4.19 The solution a �9 E(a) from Example 4.16 is well posed but not 

locally unique. The solution 0 �9 E(0) from Example 4.4 is locally unique but not 
well-posed. 

We stress that  an improper real solution of a real equation may become proper 

if we allow complex solutions, thus imbedding the equation in a complex environ- 
ment. 

E x a m p l e  4.20 Consider the real scalar equation (x - 1)(x 2 + a 2) = 0. Here the 

set 7 ) c R 2 in (4.3) consists of the straight line {(a, 1) : a �9 R} c R 2 and the 

isolated point (0, 0). The solution set is determined by E(a) = {1} if a r 0 and 

E(0) = {1, 0}. Hence, the real solution 0 �9 E(0) is not proper. If we allow complex 

solutions, then we have E(a) = {1, +m} and the solution 0 is proper, since it lies 
on the paths {(a, : l : z a ) : a  �9 R} c C 2. (} 

Below we will also introduce the concept of properness for equations. There 
are two alternatives. An equation may be called proper if it has at least one proper 

solution, or alternatively, if all its solutions are proper. We prefer the first concept. 

D e f i n i t i o n  4.21 The equation (4.1) is said to be p r o p e r  at A E :Dr with ~Pv as 

in (4.2) if there is at least one proper solution X �9 ~(A). The equation (4.1) is 

i m p r o p e r  at A �9 A if all solutions X �9 ~(A) are improper. 
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E x a m p l e  4.22 The algebraic equation from Example 2.7 is proper when at least 

one of the coefficients a 0 , . . . ,  an-1 is nonzero. 

The linear algebraic equation M x  = b, where M c IF n• and b c IF n, is proper 

if and only if m = n = rank(M).  

Since in fact we may not know ,4 and even 7Pv, we may as well say that  

the equation is improper at A c Y if either F ( A , X )  is not defined (A ~ 79v), 

or F ( A , X )  is defined but the equation has no solution (i.e., A E ~Dv\.A and 

E(A) = 0), or the set E(A) is nonempty (i.e. A E A) but all its elements are 

improper. 

E x a m p l e  4.23 The real scalar equation x 2 + a 2 = 0 is improper at every a E N. 

Indeed, for a r 0 the equation has no solution. For a = 0 the solution is x = 0, but 

(0, 0) is an isolated point of P and hence, the only solution 0 E ~(0) is improper. 

The effects discussed in Example 4.23 are due to the fact tha t  we deal with real 

solutions only. If we allow complex solutions then the equation becomes proper 

for all a E R. As a mat ter  of fact, complex algebraic equations are proper at all 

A E A. But complex nonalgebraic equations may as well be improper for some 

(or all) values of the parameter  A. 

E x a m p l e  4 .24 The complex scalar (nonalgebraic) equation Ixl + [al = 0 is solv- 

able only for a = 0 and in this case the only solution is 0 E E(0). In this case 

7 ) c C 2 is reduced to the single point (0, 0) and hence, the equation is improper. 

So far we have introduced a large number of concepts characterizing the prop- 

erties of solution sets and of particular solutions. This variety of properties is 

possible, since we have considered equations of type (4.1) in which the function F 

is continuous (or differentiable, or analytic). 

If we restrict ourselves to algebraic equations, in which the function F is al- 

gebraic in both its arguments, then the set P will be an algebraic manifold (or 

variety) and the number of (possible) properties of the solutions is substantially 

reduced. If in particular IF = C and the function F is algebraic (polynomial or 

fractional-rational in particular) then all solutions X E ~=(A) will become well- 

posed. 

We now come to the last and most important  concept, which characterizes the 

dependence of solutions on parameters. 

D e f i n i t i o n  4.25 The solution X E E(A) is said to be regular if it is proper and 

at least one of its supporting functions r is Lipschitz continuous. The solution 

X E ~=(A) is singular if it is not regular. 
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Regularity means that there are constants a = a(A) > 0 and L(A,  a) > 0, such 

that  

II(~(A + E ) -  (I)(A)[ I _< L(A,a)IIEII, IIEII _< a. 

Note that  if X is a regular solution then some of its supporting continuous functions 

may not be Lipschitz continuous. 

E x a m p l e  4.26 The scalar equation ( x -  a)(x 2 -  a) = 0 is well-posed at every 

a c F. The solution 0 E ~(0) is regular, since one of its supporting functions 

a H a is Lipschitz continuous. At the same time this solution also has the contin- 

uous supporting function a ~ V ~ which is not Lipschitz continuous but H61der 

continuous with exponent 0.5 in a neighborhood of the origin. 

Thus, a solution may be singular for one of the following reasons: 

�9 It is not well-posed. 

�9 It is not locally unique. 

�9 It is well-posed and locally unique but none of its supporting functions is 
Lipschitz continuous. 

E x a m p l e  4.27 Every root of the algebraic equation from Example 2.7 with a0 

0 is regular (respectively singular) if it is simple (respectively multiple). 
The solution of the linear equation M x  = b with M E F ~xm is regular if and 

only if m = n = rank(M). (~ 

In the following we discuss proper problems in which the spaces A' = F nxm 

and F pxq are isomorphic (i.e., m n =  pq) and the solution X c .=.(A) is proper and 

in particular locally unique. In matrix theory and applications, typical problems 

with unique solutions are various classes of matrix equations. In linear systems 

theory such problems are for example the reduction to canonical forms or the pole 
assignment problem for single-input systems. 

The case when the solution of equation (4.1) is not locally unique is not con- 

sidered in detail in the remainder of this monograph. Note that this may be the 

case when the number of scalar unknowns mn is larger than the number pq of 

scalar equations. In matrix algebra such problems include some least square prob- 
lems and the computation of the eigensystem or Schur system of a matrix, see 

Appendix B (respectively the generalized eigensystem or the generalized Schur 

system of a pair of matrices), while in linear systems theory an important prob- 

lem with nonunique solution is the pole assignment for linear multi-input systems. 

It must be stressed, however, that  even a single scalar equation in many scalar 

unknowns may have only locally unique solutions. 

E x a m p l e  4.28 The scalar equation F ( A , X )  := II X -  (I)(A)[ I = 0, where ~ :  A 

X' is a continuous function, has a unique solution X = (I)(A). Observe that the 

function F is not differentiable at the solution. (} 
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The considerations presented so far include many possible types of solutions 

of the equation (4.1) with a continuous left-hand side F. If, however, the par- 

tial Fr~chet derivatives of F exist at the solution, then the continuous solution 

functions may have some nice properties such as uniqueness and differentiability. 

Suppose tha t  for some A E .4 equation (4.1) has a solution X E E(A) such 

that  the partial Fr~chet derivative Fx := Fx(A, X) of the function F relative to 

X at the point (A, X) exists. We recall tha t  Fx is a linear operator 1F nxm ~ lFpxq 
such tha t  

F(A, X + Y) = F(A, X) + f x ( g )  + o(llgll), g ~ o. 

The partial Fr~chet derivative FA "= FA(A, X) of F relative to 

A - ( A i , . . . , A ~ )  E A is the r- tuple FA -- (FAI,...,FA~), where the partial 
Fr6chet derivatives FA~ "= FA~(A,X) of F relative to Ai at (A,X)  are linear 

operators 12i --~ A'. If both Fr~chet derivatives of F in X and A exist, then we 
have 

F(A + E , X  + Y) = F(A,X)  + Fx(Y) + s FA,(E~) (4.4) 
i = l  

+ o(llYII + IIEII); E, Y - ~  O. 
In the following we will use the induced norm IlZ;ll of a linear opera tor /2"  3) 

Z, where y and N are linear spaces, defined via 

IIZ;ll - max {I IZ;(Y)I I"  Y ~ Y, I I Y I I -  1} .  

We recall the following concepts of invertibility of linear operators. 

D e f i n i t i o n  4.29 A linear operator s is right invertible if there exists a linear 

operator s . Z ~ y (called right inverse of s such that  s o / 2 r  1 - Iz, 
where I z  is the identity operator in Z. Similarly, the operator /2  is said to be left 

invertible, if there exists a linear operator s  i �9 Z ~ 3~ (called left inverse of s 

such that/2~-i o/2 - Iv.  If an operator /2  is left and right invertible it is invertible. 

For an invertible operator /2 the left inverse is equal to the right inverse and is 
denoted by s  

If the operator  s : y ~ Z is invertible, then the norm of the inverse operator 
s  : Z ~ y is obtained from 

IJz:-'ll 
- max {llZZ-'(Z)ll �9 IlZll = i }  - m~x { IIL-l(z)llllzII 

{ } { ' = max IIYII . y r 0 - max 
IIZ:(Y)ll IIZ:(r)ll 

l 

min  {IIZ:(Y)II" IIYII = i}" 

. z r  

IIYII - 1 } 
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Let the matr ix  spaces 12i, IFnxm and IFpxq be endowed with the Frobenius 

norm I1" IIF. If we consider invertible operators 12 : IFnx,~ ~ IFpxq, then it is 

necessary to assume that  m n =  pq =: 1. We denote by Lin(p,  m, n, q, IF) the 
space of linear matr ix  operators Ad : IFmxn ~ IFpxq and we use the abbreviations 

L in (m,  n, IF) = L in (m,  m, n, n, IF) and Lin(n ,  IF) = Lin(n ,  n, n, n, IF). 

Any linear operator 12 E Lin(p,  m, n, q) has a matrix representation (or briefly 
a matrix) 

ML := Mat ( s  E IFl• 

defined by the identity vec(L;(X)) - MLvec(X) for all X c IFnxm 

the induced norm of/2 is determined by 
�9 In this case 

IlCll -- m a x  {II (X)IlF" IIXIIF = 1 } -  max  { l lMcxl l2"  I Ix l l2 -  1} 

-- IIMclI2 - (Tmax(Mz;). 

Similarly, for the induced norm of an invertible operator Z2 we have 

I s  IIM21112- 
( r m i n ( L )  " 

Here Crmin(L ) and Crmax(L) denote the minimal and maximal  singular value of the 
matr ix  L, respectively, see Appendix B. 

4 . 3  L i n e a r  b o u n d s  

Let X E E(A) be a fixed solution of equation (4.1). It follows from the implicit 

function theorem (Appendix A) that  if the linear operator Fx  is invertible at 

(A, X)  then the solution X is proper. If in addition the partial  Fr6chet derivative 

FA exists at the point (A, X),  then the solution X is regular. Indeed, as we will 

show, here the solution X E E(A) is well-posed and linear estimates hold. 

Meanwhile it is worth mentioning tha t  the invertibility (or even the existence) 
of F x  is by no means necessary for the regularity of the solution. 

E x a m p l e  4.30 The scalar equation f ( a , x ) " -  ( z -  a) k - O, where k _> 2 is an 

integer, is proper and for any a E IF it has only the regular solution z - a. At the 

same t ime the partial  derivative fx(a, x) - k ( x -  a) k-1 is zero at the solution. 0 

Thus, an algebraic equation may have regular solutions of arbi t rary algebraic mul- 

tiplicity. This is possible only for equations whose coefficients are not arbi trary 

but belong to certain close algebraic varieties. Indeed, choosing k = 2 in Exam- 

ple 4.30, we get z 2 - 2ax + a 2 = 0. This is an equation of type z 2 + a lx  + a2 = 0, 

where the pair (al, a2) lies on the parabola a 2 - 4 a 2  = 0. Another viewpoint here 

is tha t  the singular problem of finding multiple roots is regularized by a special 
choice of the data, see Chapter  6. 
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Let the parameter A E ,4 in equation (4.1) be perturbed to A + 5A c A. This 

leads to the perturbed equation 

F(A  + hA, X + 5X) = 0 (4.5) 

in the unknown matrix perturbation 5X, which may also be written as an equation 

F(A + hA, Z) = 0 in the perturbed solution Z = X + 5X. Suppose that (4.5) has 

a solution for every 5A c Af0, where No is an open neighborhood of 0. Then it 

follows from (4.1), (4.4) and (4.5) that the solution 5X of the perturbed equation 

(4.5) satisfies 

5X = -Fx~(FA(hA) )  + o(p) - - F x  1 o FA(hA) + o(p) (4.6) 

where p := II~Xll + 11SAIl and s ~2~ ~ I~ nxm are linear operators, determined by 

- - F x  1 o 

Thus, the solution X = r of the unperturbed equation (4.1) is regular 

according to Definition 4.25. Moreover, the function �9 : A ~ A' is differentiable 

in some open neighborhood of A, and the partial Fr@chet derivatives of �9 in Ai 
are in fact the operators Z;i, 

~ A i  - -  ~ i  - -  - F x l  0 FAi. 

To estimate the norm of the perturbation in the solution as a function of the 
norms of the perturbations in the data we may use the linear bound 

115Xll < KA, 115A II § o(p), p o, 
i = l  

where 

KA, -- KA~ (A, X) "-  IlFx 1 o FA, II, i - 1 , . . . ,  r 

are the absolute condition numbers of equation (4.1) with respect to Ai, computed 

at the point (A, X). We also say that  KA~ is the absolute condition number of the 

solution X, corresponding to the data A~. 

The evaluation of KA~ via the induced norms I1s of the linear operators s 

~2i --, A' may be a difficult task in general. Of course, we have the estimate KA~ <_ 
I I F x l l l  IIFA~ II, w h i c h  often may be quite pessimistic. However, if the Frobenius 

norm is used, the computation of the condition numbers (at least in theory) is 

straightforward. Indeed, taking the vec operator from both sides of (4.6) we have 

r 

5x - E ML~hai + o(p), p ~ 0, 
i - -1  
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where x := vec(X), ai := vec(Ai) and 

Mn~ := - ( M a t ( F x ) ) -  1 Mat (FA~) 

is the mn x mini  matrix of the linear operator/2i.  Thus, 

and hence, 

Ilsxll~ : IIs~LL~. <_ ~ ILML, ll~ IJ~A~11~ + o(p), p ~ 0 
i - -1  

KA, = IIML, 112. 

A drawback of this approach for evaluating the conditioning of the problem 
may be the large size of the involved matrices. Indeed, for a moderately sized 
matrix equation with 100 x 100 matrices X and Ai, the size of the matrices of the 
linear matrix operators will be 10 000 x 10 000. Condition and error estimates for 
the solution of matrix equations without forming large matrices are proposed in 
[179]. 

The existence of the Fr~chet derivatives Fx,  FA and the invertibility of Fx is 
sufficient but not necessary for the regularity of the solution. For special choices 
of the parameter A, this has been already discussed in Example 4.30. 

4 . 4  E q u i v a l e n t  o p e r a t o r  e q u a t i o n  

Suppose that  the spaces A" = IF nxm and F pxq are isomorphic, i.e., m n =  pq = l. 

Then nonlocal, nonlinear sensitivity estimates for the regular solutions of (4.1) 
may be obtained as follows. First we transform the perturbed equation into an 
equivalent operator equation for the perturbation 5X. We then show that  the 
corresponding operator has a fixed point in a set whose radius is a continuous 
function of ffl~AIII, vanishing at 5A = 0. This radius is then the desired rigorous 
nonlocal perturbation bound for [15X[[. For this purpose the technique of Lya- 

punov majorants is used, see [85, 135]. How this approach works is shown in the 
remaining part of this chapter. 

Consider equation (4.1) along with its perturbed version (4.5). We may apply 
transform the perturbed equation (4.5) into an equivalent operator equation 

5X = II(SA, 5X) (4.7) 

for the perturbation 5X, where II :N'0 A x Af0 x --, X' is a continuous function and 

Af0 A, Af0 x are open neighborhoods of the origins in A and X, respectively. Here 
the operator II satisfies H(0, 0) = 0. Using the vectorizations (2.8) we also have 

5x = 7r(Sa, 5z), lr := vec o 1I. 
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There are several ways to determine the operator II so that  equation (4.7) 

in (iX is locally equivalent to the perturbed equation (4.5). The concept of local 

equivalence here needs some clarification. Local equivalence of two equations de- 

pending on a parameter means that  they have the same solution for all parameters 
in a (small) neighborhood of a given nominal value of the parameter. However, we 

may construct formally equivalent equations for 5X which cannot be used for de- 
riving meaningful results. For example, if the solution of (4.1) is well-posed, then 

we have X = (I)(A), where (I) is a continuous function. So we may write formally 

(iX = ~o(A + 5A) - ~(A), which is an equation that is locally equivalent to the 

perturbed equation (4.5). But since the function (I) is usually unknown (otherwise 

we would have had a problem with explicit solution), this equivalent equation for 

6X does not lead to any concrete perturbation bounds. 

A general approach to construct the operator II is based on the representation 

II(E, Y) : Y + G o F(A + E, X + Y) + H o F(A, X),  (4.8) 

where G, H : A' --, IF pxq are invertible (usually linear) operators and the equality 

F ( A , X )  = 0 is taken into account. The idea is to make II(E, 0) small of order 
O(llEIf), and to make II(0, Y) small of order o(llYII) (or even o(plgll2)) for E ~ 0 

and Y ~ 0. These requirements may be written as 

n ( E ,  Y) : O(]]EII) + o(llEII § IIYll); E, Y ~ 0. 

If the partial Fr6chet derivative Fx of F in X is invertible at the solution, one 

may choose G - - H  "- - F x  1, which corresponds to Newton's method [173] for 

solving the equation. If in addition the partial Fr6chet derivative FA also exists, 
this scheme is applied as follows. 

For every (A, X) E 7 ) and (E, Y) E ]2 x A', such that (A + E, X + Y) c 7 ), we 
have the identity 

F ( A + E , X + Y )  

where 

F ( A , X )  + FA(A,X) (E)  + F x ( A , X ) ( Y )  

+ R ( A , X ) ( E , Y ) ,  (4.9) 

R ( A , X ) ( E , Y )  := F(A + E , X  + Y ) -  F ( A , X )  - FA(A ,X) (E)  

- Fx(A,  X) (Y) .  (4.10) 

we str~s~ that h~r~ FA(A,X)(-) : V --, X ,  F x ( A , X ) ( . )  : X --, X ~r~ l i n ~ r  

operators, and R(A, X)(.,  .) is a mapping from a subset of 12• X' to A', all depending 

on the pair (A, X) as a parameter. To make the notation more readable we use 
the abbreviations 

F A ( E )  

R ( E , Y )  

:-- FA(A,X) (E) ,  Fx(V)  := F x ( A , X ) ( Y ) ,  

:-- R(A, X) (E ,  Y), 
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omitting the dependence of the corresponding expressions on the pair (A, X). We 
finally note that in relations (4.9) and (4.10) it is not assumed that the equalities 
F(A, X) = 0 or F(A + E, X + Y) = 0 hold. 

If X and 5X satisfy equations (4.1) and (4.5), then it follows from (4.9) that 

FA(hA) + Fx(SX) + R(gA, hX) = 0 

and 

Therefore, 

where 

5 X  --  - - F x  I o F A (SA) - F x i o R ( S A ,  5 X ) .  

5X = II(hA, 5X) := Hx (hA) + II2(hA, 5X), 

HI (E) "- - F x  1 o FA (E), II2(E, Y) "- - F x  1 o R(E, Y). 

Thus, we have that 

(4.11) 

rI(E, Y) - Y -  Fx l (F (A  + E , X  + Y) - F(A,X) ) ,  

which is the representation (4.8) with G - - H  " = - F x  1. 
Consider finally the case when the partial F%chet derivative of F in A does 

not exist. Then we have 

F(A + E, X + Y) = F(A, X) + Fx(Y)  + S(E, Y), (4.12) 

where 

S(E, Y ) :=  F(A + E , X  + Y) - F (A ,X )  - Fx (A ,X ) (Y ) .  

If X and 5X solve (4.1) and (4.5), then it follows from (4.12) that 

(4.13) 

Fx(hX) + S(hA, (iX) = 0 

and 

Therefore, 

where 

Note that  again 

5 X  - - F x  1 o S(hA,  5X) .  

h 

5X - II(hA, 5X), 

f i (E ,  Y) - 1 o S ( E ,  V).  

II(E, Y) - Y -  Fx l (F (A  + E , X  + Y ) -  F(A,X)) .  

A 

Hence, I I -  II and the only difference is that the additive representation (4.11) is 
possible for the operator H, while for the operator II such a representation may 
not be valid. 
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The above considerations are il lustrated below for the case of a general quadrat ic  
matr ix equation. Let 

F(A ,X)  := A1 + L(A, X) + Q(A, X) 
P q 

"-- A1 -t- E Li(A,X)  + ~ Qj(A, X), 
i=l j=l  

where Li(A,.) is a linear matr ix  operator, defined by Li(A,X)  = BiXCi, and 

Qi(A,-)  is a quadratic matr ix  operator, determined as Qi(A,X)  = RiXSiXTi .  
Here we have r = 1 + 2p + 3q and 

A = (A1, B1, e l , . . . ,  Bp, Cp, R1, Sl, T I , . . . ,  Rq, Sq, Tq) : (A1, . . .  fl-r)- 

E x a m p l e  4.31 Consider the equation 

F(A, X) := A1 + A2XA3 + X A 4 X  = O. 

We have 

F x ( Y )  = A2YA3 + XA4Y + YA4X 

and, for E = (El ,  E2, E3, E4), 

FA(E) = E1 + E2XA3 + A2XE3 + XE4X. 

Furthermore,  

n ( Z , Y )  A2YE3 + E2YA3 + E2(X + Y)E3 

+ XE4Y + YE4X + Y(A4 + E4)Y. 

Setting e := liE211 + liE311 + lIE411 + Ilgll we obtain 

IIR(E, Y)11 -< cE2 + e3/4, (4.14) 

where c : -  max{llXll , IIA4II, IlA211/2, IIA311/2}. <> 

4.5 Linear equat ions  

There are different techniques to deal with equation (4.1) depending on whether it 

is linear or nonlinear. The technique for nonlinear equations involves topological 

fixed point principles and, of course, it works for linear equations as well. But  

there is also a straightforward approach to get per turbat ion bounds in the case of 
linear equations. 

D e f i n i t i o n  4 .32 Equation (~.1) is said to be linear if the function F(A, .) is 
affine, or equivalently, if the function F(A, .) - F(A, O) is linear. 
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In this section we write a linear equation as 

A1 + s = 0, 

where s  A' -~ X is a linear matrix operator, depending on the parameter 

D, i.e., 

s + #Y) : s163 + ps 

for all X, Y E X and/~, # c IF. We note that  every linear matrix operator may be 

represented in the form 
p 

s = E BiXCi, 
i--1 

where 

D := (B1, C1 , . . . ,  Bk, Ck):-- (A2, . . . ,  At). 

is a given matrix 2k-tuple, see Appendix E. 
Hence, we may set 

A := (A1,BI, C 1 , . . . , B p ,  Cp) = ( A 1 , A 2 , . . . , A r )  

with r = 2p + 1. 

Assuming that  the operator s is invertible we see that  the linear equation 

has a unique solution, which formally may be written as 

X = (~(A) := _ s  (D)(A1). 

Let the parameters D and A be perturbed to D + 5D and A + 5A. If the perturba- 

tion 5D is small enough (in a sense to be discussed later), the perturbed operator 

s + 5D) will be invertible and the perturbed equation 

A~ + 5A1 + s + 5D)(X + 5X) = 0 

will also have a unique solution 

5X = s  - s  + 5D)(A1 + 5A1). 

Below we present two approaches to estimate the perturbation in the solution 

as a function of the perturbation in the data. The first one is classical and is based 
on the following observation. 

We note first that  the set of linear operators X --. X, where X is a linear 

space over F, is also a linear space with multiplication by scalars F • X -~ X 

and summation X x X ~ X, defined by (As = As and (s + AA)(X) = 

s (X) + A/I (X), respectively. 

Let the linear operator s : X -~ X be invertible. Then, if s is a (small) 

perturbation to i:, the resulting operator s + s will be invertible, provided that  

I[s -10~111 < 1. (4.15) 
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This sufficient condition for invertibility of the perturbed operator s + s is also 
"almost" necessary in the sense that  if the inequality is replaced with equality, 

then the operator /2  +/21 may not be invertible. Indeed, choosing s = - /2  we 
have 11/2-1o/21 ]t = 1, and of course, the operator/2 + s - 0 in this case is not 
invertible. 

Under condition (4.15) we have 

(/~ q-/21) -1  -- ( i x  + .Ad) -1 o /~-1  ./~ : = / 2 - 1  o s  

where l x is the identity operator in ,1='. Furthermore, for every integer v >_ 1 we 
have 

Therefore, 

(/2 q-/21) -1 = 

and 

(-rid) '/+ ( - - .A/ l )u+l ( lx  + d~)  -1 0 /2--1 

- M )  i o L -1. 

1[(/2 -1- s < I[s (4.16) 
- 1 - I I M I I  

(12 q-/21) -1 -- /2-1 __ - , A d o  ( l x  + g~/[)-I o /2 -1 .  

When information is available only for the norm of/21, one may use, instead 
of (4.15), the stronger condition 

I1s I1s < 1. 

In this case the quantity I]Ad{] in (4.16) should be replaced by I1s ]]s 
The above relations may be used in the perturbation analysis of linear equations 

setting 

s - s  /21 --  / 2 1 ( D ,  5 D ) - -  s  + 5D) - / 2 ( D )  

and 

AA - A/I(D, 5 D ) ' : / 2 - 1 ( D )  o/21(D, 5D) 

as follows. We may write 5X as 

5X - ( / 2 - 1 ( D )  - s  + 5 D ) ) ( A 1 )  - E . - I ( D  + 5 D ) ( h A 1 )  

= .Ad(A, h A ) ( l x  + .A4(A, a A ) ) - I ( x )  - s + 5D)(aA1). 

Let c~ - [52,. . . ,  5~] n- E R~-I be a given vector and set 

~(c~) "-- max{ ]]/21(D, G)II" [{{G[I { ~ ct}, 

where G "-  ( E 2 , . . . ,  E~) and IllalU- [IIE211,..., IIE~ll] w 
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Since/3 is continuous and fl(0) = 0, then a may be choosen so that 

fl(o011s < 1. 

This yields 

I IM(D, SD)II <_ I Is [Is SD)II <_ fl(o~)ll~-l(D)ll < 1 

and the operator s + 5D) is invertible for all perturbations 5D with IIISDIII _~ ~. 
Moreover, we have 

II~Xll ~ 9(~ (llXl[ + IIs I]~AIlI). (4.17) 
1 - ;~(c~)llZ_:-~(D)ll 

If A1 r 0 then X r 0 and we have the following bound in relative perturbations 

Here 

II~Xll < n(D)cL 3- ([[Alll ]IL-I(D)II/IIXII)~A1 (4.18) 
IlXll - 1 - n(D)r 

t~(D) : :  [[s [[/2-1(D)11 

is the relative condition number of the operator s with respect to inversion, 
and 

fl(oO II(~AII[ 
EL " - - [ [ s  ~ n l  "= IjAlll �9 

Having in mind that 

1 < [[Alll II~-~(D)ll ~ a(D), 
- IlXl[ 

we also have the less accurate bound 

l}SX]l a(D) 
< ( ~ f  3- ~ A 1 ) ,  (4 .19)  

[IXll - 1 - ec(D)ec 

which is usually used in numerical linear algebra, [83]. 
Then using the Banach fixed point principle, see Appendix D it is possible to 

obtain the perturbation bounds (4.17)-(4.19) in an easier and more elegant way. 
We may write the perturbed linear equation in the equivalent form 

5X = II(SA, SX) := -~-1(D)(SA1 3- s SD)(X + (iX)). (4.20) 

Assuming tha t  Ill'DILl -< ~, we have 

IIH(SA, 5X)l[ ~ I[s [15A1[I Jr fl(~)ll~:-l(D)ll(llXll + [[SX[I). 

If f l (~) l lL- l (D)l l  < 1 and II~Xll ~ p, where 

f l (~ ) l l s  (lIXll  + [[L-I(D)IlllSA~Jl) p : =  
1 - ~ (a ) lJz : - l (D) l l  
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then 

IIn(aA, 6x)LI <_ p. 

Therefore, the operator II(SA, .) transforms the closed ball 13p, centered at the 

origin and of radius p, into itself. Since for all Y, Z c X 

[III(6A, Y) - II(SA, Z)]I < 3(a)lls I I Y -  Zll 

and 3(a)llz;-~(D)LI < 1, the operator II(SA, .) is a contraction on B o. According 

to the Banach fixed point principle, there exists a unique solution of the operator 

equation (4.20) for 5X,  satisfying 116211 _< p which is exactly the bound (4.17). 

Linear equations are considered in more detail in Chapters 8, 9, 10 and 11. 

4.6 Case study 

In this section we shall illustrate the concepts introduced so far for the case of a 
real scalar quadratic equation 

X 2 + a l x - t - a 2 - O ,  a ' - -  [a l ,a2]  T C1~ 2. (4.21) 

The computational problem defined via equation (4.21) is regular if the discrimi- 

nant d(a) "-  a~ - 4 a 2  is nonzero, and singular at the parabola 

r "- {[al,a2]-r.a2 = a~/4, al E ][~} C ]t~ 2. 

For a r F the condition numbers for the root x are defined taking the partial 

derivatives in ai of both sides of equation (4.21) 

Ox 
( 2 z - ~ a l ) ~ a l  - l - X - - 0 ,  

Ox 
(2:/: -~- a l ) ~  2 n t- 1 = 0. 

Thus, for al ~: 0, a2 ~- 0, the relative condition numbers n~ of x relative to ai are 

OX 

(~X 

[al[ 

ra21 

al  
= x/-3-~ 

a2 

(note that  here x ~r 0 by necessity). In Figure 4.1 we show the conditioning ~1 + ~2 

of the problem as a function of a for 0 < al,  a2 _< 5. 

In Figure 4.2 we show the relative changes 15x/xl in the solution of the per- 
turbed equation 

(X -2r- 6X) 2 + (gl  ~- 6gl) (X n u 6X) -3 t-" g2 -3 u 6g2 = 0 
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Figure 4.1" Conditioning of a quadratic equation 
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Figure 4.2: Perturbed solutions of a quadratic equation 

for al = 2.0000001, a2 - 1, due to perturbations in a which satisfy -4 .998 x 10 -8 _< 
~al, 5a2 _< 4.998 x 10 -s .  

In Figures 4.3 and 4.4 we show the local linear bound (based on condition 

numbers) and the nonlocal per turbat ion bounds for equation (4.21) with al = 
2.0000001, a2 - 1. 

In Figure 4.5 we give the distance to singularity of the quadratic equation as 
a function of a. 
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Llnear estimate lor the penurbed quadratic squallon 

A 

Figure 4.3: Linear estimates for a perturbed quadratic equation 

Nonlinear esflmafes 101 a perturbed quadranc 8qUaUon 

x 10- i:, 

Figure 4.4: Nonlinear estimates for a perturbed quadratic equation 

Finally, in Figure 4.6 we compare the magnitude of the exact perturbation 
lbzl (denoted by p e r t ( z ) )  with the linear and nonlinear perturbation bounds for 
(1.1 = 3 ,  CLZ = 2 
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Distance to singularity for a quadratic equation 
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Figure 4.5: Distance to singularity for a quadratic equation 
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4.7 N o t e s  and re ferences  

General properties of problems with implicit solution are considered in [134, 135]. 
Perturbation bounds for various classes of equations are derived by many authors, 
see [74, 75, 187, 39, 149, 95, 191, 150, 66] as well as in [177, 178, 136, 140, 211, 
212, 213]. 

A general scheme for perturbation analysis of nonlinear algebraic problems is 
proposed in [195]. 

Perturbation theory of matrix decompositions, which are special problems with 
implicit solution, is considered in [147], see also [28]. 
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Chapter 5 

I yapunov majorants 

5.1 I n t r o d u c t o r y  remarks  

In this section we describe the technique of Lyapunov majorant functions (or 
briefly, Lyapunov majorants) which is an important tool in the perturbation anal- 

ysis of various problems in linear algebra and control theory [85, 135, 147]. 

A Lyapunov majorant is a nonnegative function which bounds from above the 
size of the equivalent operator for the perturbation in the solution. It gives rise to 
the so called majorant equation whose solution is the desired perturbation bound 
for the norm or generalized norm of the perturbation in the solution of the problem. 

5.2 General  theory  

Consider the case of a nonlinear equation (4.1) together with its perturbed version 
(4.5) and the equivalent operator equation (4.7). Suppose that  it is possible to 
find estimates for the size and the rate of change of the operator of II in the form 

IIn(E, Y)II -~ h(n, p), (5.1) 

where r / :=  IIEIIg = [ I I E I l I , . . . ,  IIE~II] T is the generalized norm of E, and 

IIH(E, Y) - H(E, Z)ll _~ hp(TI, p)llY - zll (5.2) 

for all ]I, Z e X with [[YII, [[ZI[ <- P. Here h : G  ~ R+ is a continuous function, 

defined in a domain G c R~ x R+, differentiable in its second (scalar) argument, 
and satisfying h(0, 0) = 0. 

If we set 

9(r/, p) : --  max {lln(E, Y)[I: [IEIIg '< n, IIYII _~ P}, 

77 
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then the ideal case would be to choose h(r/, p) = g(r/, p). However, the determina- 

tion of g(7, P) is possible only for simple linear matrix equations. In general it is 

only possible to find an expression h(~, p) which is an upper bound for g(7, P). 

Note that  h is a function of r + 1 scalar arguments. It may be more convenient 

to work with a function of only two arguments, setting 

ho( , p) := h( 5 ~ p), 

where 60 E R~_ is a given vector with positive elements. 

When applying the technique of Lyapunov majorants  it is convenient to intro- 

duce the concept of backward invariance of sets of nonnegative vectors as follows. 

D e f i n i t i o n  5.1 A set ft c R~_ is called backwardly invariant if it is closed, contains 

a positive vector and for every 5 c f t  the inequalities 0 --<_ rl ~ 5 yield ~? E ft. 

Setting 

for 5 E R~_, we see that  the closed set ft, containing a positive vector, is backwardly 
invariant if 

For a set M C R ~ denote by sup(M) E R ~ and inf(M) E R ~ the supremum and 

infimum of M,  defined as [ ~ 1 , . . . ,  mr] T and [ m l , . . . ,  rn~] T, respectively, where 

mi "= sup{mi �9 m E M}, rn i "= inf{mi �9 m E M} 

and r n -  [ml , . . . ,  mr] -[. 
It is easy to verify that  the following Theorem holds 

T h e o r e m  5.2 A backwardly invariant set ft c R~+ is connected, of positive mea- 
sure and 

0 = inf(ft) E ft, sup(ft) E ft. 

Note that  a backwardly invariant set does not have to be convex. Actually, the 

structure of a backwardly invariant set may be quite complicated. 

E x a m p l e  5.3 The backwardly invariant subsets of R+ are the closed intervals 

[0, a] with a > 0. In R~_ a backwardly invariant set may be described as follows. 

Let f ' [ 0 ,  a] ~ R+ be a continuous nonincreasing function with f(0)  > 0. Then 
the set 

{[(~1, (~2] T" 0 ~ (~1 ~ a, 0 < 52 _< f(51)} 

is backwardly invariant. 

Next we define one of the main tools in nonlocal perturbat ion analysis of opera- 

tor equations (matrix equations in particular) - the Lyapunov majorant  functions. 
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D e f i n i t i o n  5.4 A function h as in (5.1), (5.2) is called a Lyapunov majorant 
function (or briefly Lyapunov majorant) for the operator equation (4.1) if it satisfies 

the following conditions 

1. The domain G admits  the s tructure of a convex cylinder, i.e., there is a 

convex set ft C R~ and a continuous function T" f~ ~ R+ such tha t  either 

G -  {(5, p ) ' p  < 7(5),5 G ft} (5.3) 

or G - f~ x R+. In the latter case we may formally set T - c~, reducing it 

to (5.3). 

2. The function h is nondecreasing and strictly convex in every of its r + 1 

arguments  and 

lim P < 1 (5.4) 
p-,,(~) h(5, p) 

for each 5 C ft. 

3. The relations 

hold. 

h(0, 0) - 0, h;(0, 0) < (5.5) 

The importance of Lyapunov majorants  may be explained as follows. 

equalities (5.1) and (5.2) hold, and for some p > 0 the relations 

If in- 

h(5, p) - p, hp(5, p) < 1 

are fulfilled, then the operator II is a contraction in the ball 

(5.6) 

Bo - { X  ~ X" IlXll _< P}. 

Hence, by the Banach fixed point principle, there exists a unique solution 5X c BR 
to (4.1). At the same t ime the quant i ty  p, satisfying (5.6), depends on 5, namely 

p -  f(5). Hence 

[15X[[ _< f([[SAIIg), []SAIIg ~_ 5 (5.7) 

is the desired nonlocal nonlinear norm-wise perturbat ion bound. 

If only the equation h(6, p) = p holds, then the bound (5.7) is still valid al- 

though the per turbat ion 5X may not be unique. This will be the case e.g. in 

problems with nonunique solution, see [147]. 

D e f i n i t i o n  5.5 The equation 

p - h(5, p) 

is referred to as a majorant equation for the operator equation (4.7). 

(5.8) 
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One of the main problems in this approach is to determine a set ~0 c R~_ such 

that  for 5 E ~0 the relations (5.6) are fulfilled for some p = p(5). If we apply 
the Schauder rather than the Banach principle, then only the majorant  equation 

h(5, p) = p must be satisfied instead of (5.6). But if equation (4.1) admits a 

Lyapunov majorant,  then one may always select a closed bounded set gt0 C R~_ 
with the properties listed above. 

For linear matrix equations the Lyapunov majorant  is an affine function in p, 

h((~, 19) -- h0((~) -~- h i  ((~)p, 

where the functions ho, hi  are nondecreasing in each argument, i.e., h~(c~) < h~(~) 

if c~ ~/3,  and hi(0) - 0, i - 0, 1. In this case there exists a domain ~0 c R~_ such 

that  h1(5) = 1 for 5 c 0f~0 and h1(5) < 1 for 5 c ~-t~ (we recall that  cOf~0 and ~ 
are the boundary and the interior of the set f~0, respectively, see Appendix A). 
Hence the perturbat ion bound here is 

h0(5) 5 c ~ .  
f (5) = 1 - h1(5) '  

In the remainder of this section we consider only the case of nonlinear equations, 
when the Lyapunov majorant  is also nonlinear. 

For several important  problems that  we will discuss below, the Lyapunov ma- 

jorant  h(5, p) is a polynomial in r + 1 variables 51 , . . . ,  5r, p which can be written 
in the form 

h(5, p) - h0(5) + hl(5)p + . . - +  hN(5)p N, N > 2, 

where hi(5) are polynomials in 5 with nonnegative coefficients, the polynomial h g  
is nonzero, and 

h0(0) - hi (0) = 0. (5.9) 

Hence, we have f~ - R~_, G - f~ • R+ and ~- = c~. This is, for example, the case 
for algebraic matrix Riccati equations. 

Another type of Lyapunov majorants is of the form 

N p (5,p) 
p )  = _ 

i--1 

where Pi, qi, ri are polynomials with nonnegative coefficients, such that  qi(0) > 0 

and r~(0, 0) - 0. Here ~-(5) is the smallest among the roots of the N equations 

qi(5) - ri(5, p) -- 0, i -- 1 , . . . , N .  

The case when qi are constants (and hence may be chosen as equal to 1 after 
an obvious scaling) is typical. Lyapunov majorants of this type arise in the non- 
local spectral perturbation analysis of matrices and matrix pencils with distinct 
eigenvalues [I 41]. 
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In general, the Lyapunov majorant has a power series expansion 

(x) 

h(5, p) = E hi(a)Pi' (5.10) 
i = 0  

where hi(5)  are power series in 5 with nonnegative coefficients, and h0, hi satisfy 
(5.9). Here r(5) is the radius of convergence of the series in the right-hand side of 
(5.10). 

E x a m p l e  5.6 Consider the scalar equation 

5x -- rr(aa, 5x) "-- 
5a(1 + 5x) 

2 + 5aSx 

Setting 5 - 15al, for 15x I < p, then we get the estimate 

Irr(aa, 5x)l _< h(5, p) "= 
(1 + p)5 
2 - p5 

The domain ft coincides with R+. Furthermore, 

_ {  a-0. > 0, 

Here the coefficients of the power series (5.10) for the Lyapunov majorant are given 
by 

(2 + 
ho(5) - -~; hi(~) - i >  1 2i+1 ' __ �9 

<) 

In the technique of Lyapunov majorants a crucial role is played by the majorant 
equation (5.8) in the unknown quantity p, where 5 c ft is considered as a vector- 
parameter. 

The solvability theory for equation (5.8) may be quite complex. It may have 
two real solutions, a double solution or no solutions at all depending on whether 
the parameter ~ belongs to a certain bounded set ft0 c f~, to (a part of) its 
boundary 0ft0, or is outside of f~0, respectively. 

Although f~ is convex, the set f~0 may not in general be convex. The set ft0 
has the following important property. For each 5o C ft0 all nonnegative vectors 
with 5 ~ 5o also belong to fro, i.e., 

5o e flo ~ { 5  5-Z_ 5o} c flo. 

Def in i t ion  5.7 Let S C IR~+ be a bounded set. Then  S is said to be quasi-convex 
i f  the fo l lowing condi t ions  hold: 

1. For  all w e S the set [0, w] "-  {tw " t e [0, 1]} is contained in S.  

2. For  all co E OS the sets {tco " t > 1 } and S are disjoint. 
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Thus, a quasi-convex set S satisfies the convexity condition only for pairs 0, w c 
S. It is obvious that a convex set is also quasi-convex, but the opposite is not true 
in general. Intuitively, our notion of convex and quasi-convex subsets of R~_ is 
covered by the sets $1, $2 c ~ _  from the example below. 

E x a m p l e  5.8 The set 

Sl "-- {(W1, td2)" 0 < W2 ~ 1 - w  2, 0 _< W1 < 1} C I~_ 

is convex, but 

$2 "-- {(wl,w2) " 0 < w2 _< (1 - wl)2,0 _< ~d I < 1} C I~_ 

is only quasi-convex, see Figure 5.1. 
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Figure 5.1" Convex and quasi-convex sets 

While Condition 1. in the definition of a quasi-convex set is clear, Condition 
2. needs some explanation. It is introduced in order to exclude some exotic sets, 
satisfying only Condition 1. Indeed, consider the cactus, obtained as the union of 
the set $2 from Example 5.8 and a number of needles 

[~, p~] . -  {(1 + t ) ~ .  0 _< t _< ~ - 1}, 

where w - -  (~dl ,  ( 1 -  ~dl) 2) is a point on the boundary c9S2, and p > 1. This set 
satisfies only Condition 1. and is, therefore, not quasi-convex. 

The following characterization of quasi-convex sets is easily verified. 



T h e o r e m  5.9 A bounded set S E R~+ is quasi-convex if and only if the following 

two conditions are fulfilled: 

1. For all w E R~+ the set {tw " t > 0} has exactly one common point with the 

boundary OS of S. 

2. For all w E S and ~ > 0 the set B~(w) N S is of positive measure, where 

B~(w) c R r is the ball centered at w and of radius 6. 

Using the concept of quasi-convexity we may formulate and prove the follow- 
ing theorem, which justifies the use of Lyapunov majorants in the perturbation 
analysis of nonlinear equations. 

T h e o r e m  5.10 There exists a quasi-convex set ~o C ~t, such that one and only 

one of the following three assertions for equation (5.8) holds: 

5) If  5 E ~o, then equation (5.8) has two roots 

p,(5) < p (5) 

f(5) = Pi(5), 5 E ~t0 

in the interval [0, ~(5)) (Figure 5.2), and we may choose 

in the perturbation bound (5.7). 

(5.ii) 
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. c  1 . 5  

Majorant equation with two roots 
i i | j , | | | 

0 . 5  

. . . . .  t 
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r 

Figure 5.2: Majorant equation with two roots 

(ii) For some ~o E 0~o equation (5.8) has a double root 
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in the interval [0, ~(~)) (Figure 5.3) and we may again choose 

f ( 5o ) - p1(5o), ~o C Of~o 

in (5.7). 

Majorant equation with double root 
| | | | ! ! | i 

(5.12) 

x : 3  

, ~ : "  . . . . .  i" ~ " "  ' -  i _1 i I i i i 
0 . 2  0 . 4  0 . 6  0 . 8  1 1 . 2  ~ . 4  1 . 6  1 . 8  

r 

Figure 5.3: Majorant equation with double root 

(iii) I f  5 r fro, then equation (5.8) has no real roots in the interval [0, T(5)) 

Proof. Let the Lyapunov majorant have the form (5.10). We first note that 
since the function h(5, .): [0, ~-(5)) --. R+ is convex, equation (5.8) may have two 
different roots, one (double) root, or no roots. 

For some a > 0 and for all 5 E ft with I1~11 < ~, there exists a unique quantity 
p0 = p0(~) < T(~) such that 

h;(5, Po) = 1. (5.13) 

Indeed, relation (5.5)implies that h~(5 ,0)= h1(5) < 1 for 115[[ sufficiently small. 
At the same time, according to (5.4), we have h~(5, p) > 1 for p less than but 
sufficiently close to ~b(~). Hence, (5.13) holds for some p0 e (0, Ib(~)). That this 
P0 is unique, follows from the convexity of the function h(5, .): [0, r ~ R+. 

We now show that there exist two positive quantities do < dl such that 

h(5, po) < po, 11511 < do (5.14) 

and 

h(5, Po) > po, 11511 _> dl. (5.15) 
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.c:4 

Majorant equation with no roots 
, , | | i ! i 

J 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
r 

Figure 5.4: Majorant equation with no roots 

Consider first the case when the sum in (5.10) is finite, i.e., h~(5) = O, i > N ,  
for some integer N > 2. Suppose that 

Since 

we get 

N 

i - 0  

N 

hP (~' pO) - E ihi(~)P~ = 1, (5.17) 
i - -1  

N 

p o  - 

i - -1  

Relations (5.16) and (5.18)yield 

(5.18) 

and 

Hence, for i > 2, 

N N 

i = 0  i - -1  

N 

ho(5) >_ E ( i -  1)hi(5)p~. 
i - -2  

ho(5) )1/i 
P0 __ ( i -  1)h~(5) 
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and, using (5.17), we get 

1 <_ h i (5)+  E i h i ( 5 )  ( i -  1)hi(5) 
i=2 
N 

= hl((~)+ E i ( i -  1)l/i-l(ho(~))l-1/i(hi(~)) 1/i (5.19) 
i=2 

N 
< hi(5)-t- 2v/h0(5) E(hi(5))l/i. 

i=2 

Since h0(0) = hi(0) = 0, inequality (5.19), and hence (5.16), is not valid for [[511 
sufficiently small. This proves (5.14). 

Relation (5.15) follows from the second inequality in (5.5). 
Consider the implications of relations (5.14) and (5.15). We have actually 

divided the convex domain ft into the disjoint union of three parts: 

where 

- -  ~1 U ~-~2 U ~3, 

~1 := { 6 e ~ : l t 6 1 1 < d 0 } ,  

a~ := { 6 e a : d 0 _ < l l 6 j j < < } ,  

a~ := { 6 � 9  

For 6 E ftl equation (5.8) has two roots. Indeed, consider the function X: G 
R, given by 

x(6, p) := h(6, p) - p. 

The function 

x(a, .)- [0, r  R 

is convex and has an unique minimum at the point po. Since 

x(6 ,0)  - ho(6) > 0, 

x(6, po) - h(6, po) - po < 0, 

lira X(6, p) > 0, 
p--.r 

it follows that  X(5, ") has at least two roots pl < po and p2 > po in the interval 

[0, ~(5)). But the function X(5, ") is convex and has at most two roots, which are 
then exactly pl and p2. 

Let now 6 c ~t3. Then X(5, Po) = h(5, p o ) -  po > 0, i.e., the minimum of X(6, ") 
is positive and hence X(5, .) has no roots. 

Finally consider the case 5 E ~t2. Select two points 

do 
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and 
2dl 5o (~1 "-- ~ E ~"~3 

such tha t  I1~011 - do~2 and II~lll - dl ,  and consider the homotopy  w : [0, 1] x 
[0, ~(5)) ,  defined by 

w(t, p) = h(5o + t(51 - (~o), P) - P, 

which connects the  points h(5o, p) - p = w(0, p) and h(51, p) - p = w(1, p). For t 

fixed, the  function w(t,-): [0, r  ~ R has two, one or no roots. Let to = t0(~) be 

the sup remum of all t E [0, 1] such tha t  w(t, .) has two roots, and t l  = t1(5) be the 

infimum of all t E [0, 1] for which w(t, .) has no roots. Obviously 0 < to _< t l  < 1. 

We now show tha t  to = t l .  Indeed, suppose tha t  to < t l .  Then  for all t E (to, t l )  
the function w(t, .) does not have two roots but  does have at least one root, i.e., it 

has exact ly  one root and is, in part icular ,  nonnegative.  But,  since 50 r 0, we see 

tha t  w(t, p) is s t r ic t ly  increasing in t. Hence, for t < r with t, r E (to,t1) we get 

w(~-, p) > w(t, p) >_ O. This is a contradict ion to the fact tha t  w(~-, p) has one root. 

Hence the  assumpt ion  to < t l  is false and we have to = tl .  
Set t ing 

do 
t* : =  

- 2 d l  - do' 
we obta in  

Hence the  set 

with bounda ry  

( 50 + t (51--  50) -- d l - - -  ~ - ~ ( t - t * ) .  

~o := {5o + t(5l - 5o): t e [t*, to), 5 e a }  

ado  = { 5o + to ( ~  - ~o): 5 E a } 

has the desired properties.  

As a result  of (5.11) and (5.12) we find the es t imate  

II,~Xll <_ f(llhAIIg), [[hA[[g E c l ( f t o ) :=  fro U afro. (5.20) 

We will now analyze the  three cases in Theorem 5.9 in detail. 

T h e o r e m  5.11 The function f :  cl(f~o) --~ N+ in (5.11) is nondecreasing in each 
of its r arguments and satisfies f (O) = O. Moreover, in the domain fro the function 
f is real analytic, i.e. it may be represented by its Taylor series 

o o  

f(5) - E f~(5), 
i=0 

where 

f~(~) = O(ll~ll~), ~ ~ o 

are homogeneous polynomials in 5 of degree i. 
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Note that  the boundary 0f~0 of the domain f/0 may be obtained by eliminating 

p > 0 from the system of equations 

! h(5, p) = p, hp(5, p) - 1. 

Having a Lyapunov majorant,  the next step is to solve the majorant equation 
and in particular to find its small solution p0 (whenever it exists). It is highly 
desirable to do that  finding the dependence of P0 in 5 in an explicit form. Of 
course, given a fixed 5 the majorant equation can always be solved numerically 

and if it has two roots 0 _< P0 _< Pl one can choose P0 as a candidate for the small 
solution vanishing together with 5. This 'numerical' approach may or may not 

work. The problem is that  it is not clear whether for the computed solution p0 
there is indeed a continuous function I with P0 -~ f(/~) and f(0) - 0 (i.e., whether 
a small solution exists). The next example shows that  the numerical approach 
may be misleading. 

E x a m p l e  5.12 Let 
5p 2 

h(5, p ) = 6 ~ +  1 - p '  5 E R + .  (5.21) 

Then the majorant equation is formally equivalent to the quadratic equation 

(1+(~)p2-(1+65)p+65--O, p:A1. 

For 5 _< ( 3 -  x/~)/6 ~ 0.09175 the small solution 

po = f ( 5 ) -  
125 

1 + 65 + V/1252 - 125 + 1 

is of order 65 and indeed tends to zero with 5 --~ 0. However, for 5 >_ (3 + x/~)//6 _~ 

0.90825 the quadratic equation has roots which are not small because 5 cannot be 
small. For example, if 5 = 1 then the roots are 1.5 and 1. Of course, the latter 

case should in fact be excluded from consideration since h(5, p) in (5.21) is defined 
only for p < 1. But in practice, cases like this may cause problems. 

In many applications the expression h(~, p) has the form 

h(5,  p) - ool ((~, D) ~- 

where gi(5, p) are polynomials in p, gi(5, P) r, = 7~j=o ai,j(5)pJ, i = 1, 2, 3. Here 
the coefficients hi,i(5) and g(5) are polynomials in 5 e ]R~_ with nonnegative co- 

efficients, and g(0) > a3,o(0). Also, we must have al,0(0) - a2,0(0) - 0 and 
a1,1(0) + a2,1(0) < 1. In this case h(5, p) is well defined if 5 e R k and p < r 
where r is the smallest positive root of the algebraic equation 9(5) = g3(5, p). 
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Furthermore, the majorant equation can be reduced to an algebraic equation 

of degree r "= max{r2, rl  + r3, r3 + 1} in p, namely 

d(5, p) := ~ d j ( 5 ) p  j - 0, p < r (5.22) 
j=o 

Note that  the coefficients dj((~) may not be nonnegative and/or  nondecreasing in 
5. 

Here the surface S C Rk+ is defined by the equation A(~) = 0, where A(~) is the 
discriminant of d, see [9] for the corresponding definition. In this case equation 
(5.22) (and hence the majorant equation) has a double nonnegative root. The 
discriminant of d may be constructed by different schemes (whenever appropriate 
we omit the dependence of d and dj on their arguments). Let r >_ 2 and consider 
the derivative d p ( ~ , p )  - r-1 ~ j = 0 ( J  + 1)dj+ltr of d in p which must be zero at the 
double root. Multiplying d by p , . . . ,  p~-2 and dp by p , . . . ,  pr-1 in view of d = 0 

and dp - O, we obtain 2 r -  1 homogeneous linear equations in the quantities 
1, p , . . . ,  p2r-1, which can be written as a vector equation 

[<,->] b<"> . =  tl p, T T (r)b (~) = O, T (~) - t i j  E ..~+ , , . . .  

Here the elements t~. ) of T are given by 

0 i f l _ < i < r - 1  a n d j < i ,  

d j _  i if 1 _< i < r - 1 and i < j < r + i, 
._ 0 i f l _ < i < r - 1  a n d j > r + i ,  

0 i f r < i < 2 r - 1  a n d j < i - r + l ,  
( j - i + r ) d j _ i + r  i f r _ < i < 2 r - 1  a n d i - r + l  < j < i ,  

0 i f r < i < 2 r - 1  a n d j > i .  

E x a m p l e  5.13 For r - 2 and r - 3 the equations for b (2) and b (3) are 

T (2)b (2) = dl 2d2 0 = 0, (5.23) 

0 dl 2d2 

do dl d2 d3 0 1 
0 do dl d2 d3 p 

T(3)b (3) = dl 2d2 3d3 0 0 p2 = 0. 

0 dl 2d2 3d3 0 p3 

0 0 dl 2d2 3d3 p4 

The discriminant of d is A = det(T (r)). Since b (r) r 0 and having in mind that  
T (r) depends on ~, it follows that  S = {~ c 1Rk+ �9 det(T(~)(5)) - 0}. 
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5 . 2 . 1  P o l y n o m i a l  L y a p u n o v  m a j o r a n t s  

In the impor tant  particular case of polynomial or pseudo polynomial [140] matr ix 
equations F(P, X) = 0 the Lyapunov majorant  is a polynomial in p, 

h(5, p) = ~ aj(~)p j, (5.24) 
j=0 

where ai are continuous, nonnegative and nondecreasing functions of ~ E l~k+ 

and at(5) > 0 for some ~ E I~k+. In fact, ai(~) are often polynomials in 5 with 

nonnegative coemcients. In this case the conditions a0(0) - 0 and al(0) < 1 are 
fulfilled (in most applications we even have al  (0) = 0). 

Consider the majorant  equation 

p - ( 5 . 2 5 )  

j=0 

We can always solve this equation numerically for a given 5 E I~ k. Let the com- 

puted solutions be fi0 _< pl. Then we can take P0 as the small solution lying on a 
continuous path  to zero. Despite of that  it is still convenient to have (approximate) 
closed form solutions. Next we consider techniques to construct such solutions. 

We denote by g4 C I~_ the set of all ~ such that  equation (5.25) has a small 
solution P0, denoted as f~(5), where the function f~ is continuous and f~(0) = 0. 

A 

Upper bounds for f~, defined for 5 E g4, are denoted as f~. As we shall see, ~1 
is bounded but not closed, while for r > 1 the set g4 is compact. Obviously we 

have fj+x(5) < fj(5) and ~ j+ l  c t2j, j - 1,2, . . . .  

The case r = 1. Here the function h(5, .) is not strictly convex. Equation 
(5.25) has a unique solution 

a0( ) 
f l  (a) "-- 1 - a1(5) '  5 E ~1\~1, 

where a l  := {6 E I~k 'al (5)  < 1} and $1 "= {d E ]l~k" a l ( ( ~ ) -  1}. This case 
arises in studying linear algebraic equations. 

The case r = 2. Here the function h(5, .) is strictly convex for some 6. The 
domain for 6 is 

~2 - {5 E I~_ '  a l((~)+ 2v/a0(~)a2((~) < 1} ,  (5.26) 

and the surface $2 c gt2 is obtained by replacing the inequality in (5.26) by 

equality. For 5 c gt2\S2 the majorant  equation has two roots, the smaller one 
being 

f2(5) "= 2a0(5) 
. 

1 - a1(5) + V/(1 al(5))  2 - 4ao(5)a~.(5) 
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For 5 c $2 the majorant  equation has a double root f2(5) = 2ao(5)/(1 -a l ( (~) ) ,  
5 E 8 2 .  

Similar results hold for the case when 

h(6, p) = alo(6) + a11 (5)p + 
a20 + a21 (~)p + a22P 2 

g(p) - a31(6)p 

The case r = 3. Here the majorant  equation is cubic. The surface ~ 3  is 

obtained by det(T(3)(5)) = 0, where the matrix T (3) is defined by (5.23). For 

this case there are closed form solutions, given by the Cardano formula. But we 
are interested in the case when the equation has two nonnegative solutions (and 

hence one negative solution as well). This is the so called irreducible case when 

the explicit form solution is not very practical. So we shall find an approximate 
closed form solution. 

Suppose tha t  for a given 6 such that  a1(5) < 1, equation (5.25) has two non- 

negative solutions. Suppose also that  a3(5) > 0, since otherwise the majorant  
equation is of order less than 3. 

For the small solution P0 = f3 (5) it holds that  P0 _< 7-3, where 7-3 is the unique 
solution of the equation 1 = hp(5, p), i.e., 1 = al + 2a27-3 + 3a37- 2. Hence 

7-3 __ 7.3((~ ) __ 1 - al (5) 
a2(5) + v /a2 (5 )+  3a3(5)(1 - a 1 ( 5 ) )  

Furthermore for p _< 7-3 we have 

p <_ ao + alp  + (a2 + a3T3)p 2. (5.27) 

The right hand side of (5.27) is again a Lyapunov majorant  in the form of a second 

degree polynomial in p. So we can apply the estimates already obtained for r = 2 
above. As a result we get the estimate 

f3(3) < f 3 ( 3 ) " -  2a0(3) 
1 - al (5) + V/(1 - al (5)) 2 - 4a0(3)~2(5) ' 5 c ~3, (5.28) 

where 

~3 - {5 C lt~k " al(5) + 2v/ao(5)~d2(5) <__ 1} (5.29) 

and ~2(5) := a2(5) + a3(5)7-3(5). 

We recall tha t  the estimate (5.28), (5.29) is valid under the assumption that  

the majorant  equation p = ao + a l p +  a2p 2 + a3p 3 has nonnegative solutions. And, 
A 

of course, the inclusion a C ~3 by no means guarantees that  such solutions exist 

(in general ~3 may be a proper subset of ~3). Fortunately, here the existence of 
nonnegative solutions is easily checked by the inequality 

A 

f3(5) _< r (5.30) 

involving already computed quantities. In particular the equality in (5.30) is equiv- 

alent to det(T(3)(5)) = 0 or 5 C 83. More precisely, the following result holds. 
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T h e o r e m  5.14 The following assertions are valid in case of a cubic majorant 
equation. 

1. If  (5.30) is fulfilled then the majorant equation has a small solution f3(5) _< 

f3(6). If  (5.30) is violated, then the majorant equation has no nonnegative 
solutions. 

2. The equality in (5.30) describes the surface $3 c I ~  on which the dis- 
criminant of the majorant equation vanishes and this equation has a double 
nonnegative root. 

A 

Proof. The equality in (5.30) means that  the quanti ty f3(6) satisfies both the 
A 

majorant  equation p - h(6, p) and the equation 1 - hp(6, p). Hence f3 (6 ) i s  a 
double root. [3 

Note tha t  inequality (5.30) is equivalent to h(6, T3(~)) < ~-3(5) as well as to 

hp(~, T 3 ( ( ~ ) ) <  1. 

If h(6, f3(6)) < /3(6) then we can construct better  approximations by the 
scheme 

p(q+l) = p(q)ao(5) 
p(q) - h(5, p(q)) + ao(5) ' q - 1, 2 , . . . ,  

where p (0)=  f3(5). 

Example 5.15 Consider the majorant  equation p -  h(5, p ) " -  5(1 + p +  p2+  f13): 

where 5 > 0 is a scalar. Here the interval [0,$3] for 5 is easily obtained noting 
tha t  $3 is the maximum of the expression p/(1 + p + p2 + p3) in p > 0. This 

maximum is achieved for the positive root of the equation 2p 3 -4- p2 _ 1 - 0 and is 

S 3 "~ 0.27695. We have T3(~ ) - -  (1 - 5)/(~ + v/3~ - 252) and 

A 

/ 3 ( ~ )  - 
2~ 

1 - 6 + V/1 - 25 - 62(3 + ~-3(6)) 

The results for the exact small solution f3(~) and its bound f3(~) are shown at 

Table 5.1. The cases when the solution does not exist are marked by double 

asterisk. The bound does not exist in the case marked by asterisk. We see that  

the bound f3(5) is good whenever applicable, i.e., for 5 < $3. But it also 'works' 

a bit after $3 (for example 5 = 0.28) although for this value of 5 the majorant  

equation does not have a small solution. 
<> 

The case r > 3. For r = 4 there is a closed form solution, which is not very 

suitable for practical implementation. For r > 4 in general there are no closed form 

solutions. That  is why for r > 3 we shall construct closed form approximations 

for the small solution of the majorant  equation as in the case r = 3. 
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Table 5.1" Solutions and bounds for a cubic majorant  equation 

0.03000 
0.09000 

. . . .  

O. 15000 

0.21000 

0.27000 

,~3 "-' 0.27695 

f3 
0.03096 

0.09999 

0.18350 

0.29601 

0.52607 

f3 
0.03105 

0.10148 

0.18968 

0.31388 

0.57302 

0.65730 0.65730 - 

0.28000 ** 0.74925 

0.29000 ** * 
. . . . . . .  

Suppose tha t  for a given 5 such tha t  al((~) < 1 and at(5) > 0 equation (5.25) 

has two nonnegative solutions. For the small solution P0 = f~(5) we have p0 <_ T~, 

where T~ = ~-~(5) is the unique solution of the equation 1 - ho(5 , p), 

r -1  

1 -  E ( j  + I)aj+ITJ. 
j=O 

(5.31) 

This equation has a unique solution. Indeed, 1 > al = ho(5,0). On the other 

hand for p sufficiently large (take ra~p ~-1 > 1) we have 1 < ho(5 , p). Hence there 

is a solution r~ of equation (5.31). That  ~-~ is unique follows from the fact tha t  the 
function ho(5 , .) is increasing. 

We have po <_ 9(5, "rr(5), Po) "= ao(5) + al (5)po + a2(5)p 2 + b(5, "r~(5))p 2, where 

r -1  
b(5, "r) "= E aj+l((~)T j - 1  

j=2 

Here ~'(5, p) - -  g(~, T3(~), p) is a new Lyapunov majorant.  Note that  g(5, % p) �9 

h(5, p) for p .  T, where �9 stands for _<, = or >_, respectively. Since for r > 3 there 

is no convenient closed form expression for ~-~ we shall find an upper bound b(5) 

for b(5, ~-~(5)). It follows from (5.31) tha t  (j + 1 )a j+ l  7-j < 1 -  a l  and 

Hence 

and 

1 - a l  ) l / j  
-< (j + 1)aj+  

, j = 2 , . . . , r - 1 .  

�9 1/j ( l - -a1)  1-1/j 
aj+17Jr-1 ~-- OLj+I "-- ceJ+l j-~- i , j = 2 , . . . , r - 1  

r -1  

b(5, < g(5) . -   j+l (5). 
j=2 
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As a result we have p <_ ao(6)+ al(6)p + (a2(5) + ~(6))p2 and 

fr(6) _< f ' r ( 6 ) . _  . 2ao(6) (5.32) 

1 -- al((~) -}- V/(1 - al(~)) 2 -- 4ao(~)(a2((~) + b~5)) 
provided that 

5 C ~ r ' : { s E R k ' a l ( , ) + 2 r  (5.33) 

Thus we have proved the following result. 

T h e o r e m  5.16 Consider the majorant equation 5.25 for r > 3. If the inequality 
f . . .  

f~(5) < 7~(5) is fulfilled then the majorant equation has a small solution f~(5) for 
which the estimate (5. 32), (5. 33) holds. 

E x a m p l e  5.17 The bound (5.32), (5.33) is applicable for r = 3 as well (in this 
case we shall denote the bound as qD3(6)) although it will give slightly worse re- 

sults than the bound (5.28), (5.29). Consider again the majorant  equation from 

Example 5.15. Here qD3(5) is the small solution of the equation (6 + c~3(5))p 2 - 

(1 - 5)p + 5 = 0. The results are shown at Table 5.2. In the case marked by an 
asterisk the bound qo3 does not exist. 

Table 5.2: More solutions and bounds for a cubic majorant  equation 

5 

0.03000 

0.09000 

0.15000 

0.21000 

0.27050 

fa 
0.03096 

0.09999 

0.18350 

0.29601 

0.52607 

q~3 
0.03106 

0.10181 

0.19190 

0.32554 

(> 

E x a m p l e  5.18 Consider the majorant  equation p = h(5, p) - 6(1 + p +  p2 + p3 + 

p4), where 5 > 0 is a scalar. The interval [0, 84] for 5 is obtained by noting that  
6'4 is the maximum of p~ (1 + p + p2 + p3 + p4). This maximum is achieved for the 

positive root of the equation 2p 3 + p2 _ 1 - 0 and is $3 ~ 0.27695. We have 

and 

(1-,) 2/3 

A 

f4(~) = 
25 

1 - ~ + V/(1 - ~) - 4~(~ + ~(~))  
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A 

The results for the small solution f4(5) and its bound f4(5) are shown at Table 5.3. 

The cases when the solution does not exist are marked by a double asterisk. The 

bound does not exist in the case marked by an asterisk. The bound f4(~) is 

satisfactory whenever applicable. We also see tha t  the bound ceases to to exist 

before the critical value 84 for ~. 

Table 5.3: Solutions and bounds for a quartic majorant  equation 

f4 f4 
0.02000 0.02042 0.02047 

0.08000 0.08769 0.09004 

0.14000 0.16831 0.18215 

0.20000 0.27568 0.34254 

0.26000 0.53064 * 

$ 4 ~  0.26079 0.56774 * 

0.26100 ** * 

<} 

We conclude this subsection by justifying certain 'cheap' per turbat ion bounds. 

An interesting feature of these bounds is tha t  while they are valid for any r > 2, 

only the first two or three terms a jp  j of h are taken into account explicitly. The 

influence of higher order terms is implicit by the requirement 5 E f~r- 

T h e o r e m  5.19 Consider the majorant equation 5.25 for r > 2 and let 5 E ~'~r\S1. 
Then 

f~(5) < b2(5) < bl(5), (5.34) 

where 

2a0 3a0(5) 
bl ((~) "-- 1 al (5)' b2(S) " -  (5.35) 

- 1 - al(5) + V/(1 - al(5)) 2 - 3ao(5)a2(5) 

Proof. We note first tha t  the relation ~ c f/~ c f~2 guarantees tha t  a l + 

2v/aoa2 < 1 and hence the quantities by are correctly defined by (5.35). Consider 

now the second est imate f~ < 51 in (5.34). Recall tha t  T~ satisfies (5.31). Set- 

ting cz(5, p) " -  al(5)p j - l  + . . .  + a~(5)p ~-l, where l - 2,3, we see tha t  a1(5) + 

2T~(~)C2(~,Tr(~)) _< 1 and hence c2(5,~-~(5)) <_ ( 1 -  a1(5))/(2Tr(5)). On the other 
hand for every p < f~(5) we have 

p2 
p <_ ao(~) + al(~)p+ c2(~, Tr(~))p 2 <_ a0(/~) + a,(5)p+ (1 -a,(5))2~>(5).  

Since p _< Tr(~), we get tha t  p < ao(5)+al(~)p+(1-al(5))p/2 and hence p <_ b1(5). 
Now the first inequality in (5.34) follows, since p may be chosen as fr(5). 
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Consider next the first bound f~ < b2 in (5.34). We have al (5 )+  232(5)rr(5)+ 
3r~(5)c3(5, rr(5)) _< 1 and hence Ca(a, rr(5))_< ( 1 -  a l ( a ) -  2a2(5)r~(a))/(ar~(5)). 
For every p < f~(5) it is fulfilled that  

<_ ao(5) + al(5)p + a2(5)p 2 + ca(a, rr(5))p 3 
p3 

_< a0(a) @ al(a)fl @ a2(o~)fl 2 @ (1 - 31(5) - 2a2(~)~-r(~)) 3%2(5) �9 

Now p <_ r~(5) yields 

p <_ ao(5) + al(5)p + a2(5)p 2 + (1 - al (5) - 2a2(5)p)p/3 

and 0 _< 3ao(5) - 2(1 - al(5))p + a2(5)p 2. Thus p _< b2(5) for all p < f~(a). 

Finally the inequality b2(5) < b1(5) is verified by direct calculation. This 
completes the proof. [3 

Of course, in applying the cheap estimates (5.34) one has to check whether 

5 ~ ~ .  A sumcient condition for f,.(5) < bi(5) to be valid is h(5, bi(5)) < bi(5). 
We conclude the consideration of cheap bounds with the following remarks. For 

5 --+ 0 the small solution fr(5) is of asymptotic order a(5)+ o([[51]), where a(5) := 

ao(5)/(1 - a 1 ( 0 ) ) .  At the same time the bound b2(5) is of order 23-a(5) + o(1t5}}), 

while bl (5) is of order 23(5) + o(11511 ). We note finally that  b1(5) = b2(5) if and 

only if 5 e $2, i.e., a1 (5 )+  2v/ao(5)a2(5) - 1. 

5.2.2 Asymptot ic  solutions of polynomial majorant equa- 
tions 

Consider the problem of asymptotic expansion of the solution to the majorant  

equatuon. Suppose that  the coefficients aj in (5.24) can be represented as aj(5) = 
aj,0(5) + aj,l(5) + . . .  (the case when some of these expansions contains infinitely 
many terms is not excluded), where aj,l(5) = O(l[5[[z), 5 -+ 0. For example, aj,L can 

be polynomials in ~ of degree I. We recall that  the degree of a nonzero polynomial 

Y~Is>0 ctl...zkh~ 1"" .5~k is l ' =  max{/1 + . . .  + lk "Cll...lk ~ 0}. In particular aj, o are 

nonnegative constants. Since h(5, p) is a Lyapunov majorant  we have a0,0 = 0 and 

al,0 < 1 .  

We shall represent the small solution of (5.24) as p0(5) = ~ l = l  pz(5), where 

01(5) is of order ffh[f ~ for 5 --+ 0 (note that  the expansion for p starts with the 

term p1(5) = O(ffall)). For this purpose we shall use the technique of the fictitious 
small parameter, see [135]. Represent the coefficients aj as ~z=o elaJl and p0 as 

P0 - ~ l=1  eZPl �9 Substitute these expressions in (5.24) and equate the coefficients 

of the equal powers of the parameter e. As a result pl is immediately obtained. 

For the next coefficients p2, p3 . . . ,  a recurrent scheme emerges as described below. 

Finally e is set to 1. We have Pl = a0,1 +a , ,opl ,  p2 - ao,9+al,0p2+a1,1pl +a2,0p~, 

p3 - a0,3 + al,0p3 +al,lp2 +a2,1p 2 + 2a2,0plp2, etc., and pl+l - ao,z+l + al,opz+l + 
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q l ( P l , . . . ,  Pt), 1 _> 3, where qt is a polynomial  of degree l in p l , . . . ,  pl. As a result 
we have 

a0,1 a0,2 + a l , l p l  + a2,0p 2 ao,3 + al,lP2 + a2,1P21 + 2a2,oplp2 
~ ,  P 2 -  , P3 = fll = 1 - al,o 1 - al,o 1 - al,o 

etc., and 
(5.36) 

generalized norms,  i.e. 

I[II(E,Y)[[g -<_ h(llE[[9, p), 

]]II(E, Y) - r I (E,  Z)l[g -< h'p(]]E[[g,p)]]Y - Z[[g 

for all y, z wi th  

}}YII. }}zIl. p :=  p ]T e , ~ ~ -  �9 . ~ ~ - "  

aoj+l  + q l ( P l , . . . , P t )  l > 3 Pl+l = , _ . 

1 - a l , o  

E x a m p l e  5 .20  Consider the majoran t  equat ion p - 51 +52 + 5 1 p + P  2 +p3  where 

5 - [51,52] q- E N~. We have ao,1 - 51 + 52, al,o - O, al,1 = 51, a2,o - 1, a3,o - 1 
and the other  a~,y are zero. Using (5.36) we obtain p - (51 + ~2) + (252 + 35152 + 
~ )  + (753 + 165~2 + 1251~ 2) + O(11(~114), (~ ---+ 0. (} 

E x a m p l e  5 .21 Consider the Lyapunov majoran t  h(5, p) := 5 + 5p + p2 + p3, 

where 5 > 0 is a scalar. The m a x i m um  allowed value 83 for 5 is easily obta ined 

excluding 5 from the equat ions p - h(~, p) and 1 = hp(~, p). As a result we obtain  

5 - 1 - 2 p -  3p 2 and 1 - 2 p -  4p 2 - 2p 3 - 0, which gives p ~ 0.29716 and 

83 ~ 0.14078. Here the asymptot ics  of the small solution is 

f3(5) - ~ + 2~ 2 + 753 + O(54). 

The approx imate  solution ]'3(5) is 

~- 7 52 299 53 f3(5) = d + ~ + - ~  + O((~ 4) "~ (~ -[- 2.33 52 + 8.31 (~3 + O((~4). 

The slightly worse approximat ion  from Example  5.17 is 

( ~ 3 )  52 (20 I__V~V/_~) 54 )93(5) -- 5+ 2 + + - -  + +0(54) -- 5 + 2 . 5 8 5 2 + 7 . 0 9 5 3 + 0 ( 5 4 ) ,  

while the cheap bounds from (5.34) are 

3 21 ~2 105 53 b2(~) - ~ ~ + -~- + ~ + 0 ( 5 4 )  - 1.5 5 + 2.62 ~2 + 6.56 53 + O(~ 4) 

and b1(5) - 25 + 252 + 253 + O(54). 

Assume now tha t  we have est imates of type (5.1), (5.2) for the corresponding 
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Suppose tha t  the function 

h - [ h 1 , . .  ,hs] T r s s �9 "R+ x R+ ~ R+ 

is continuous, differentiable in its last s arguments,  and h(0, 0) = 0. We assume 

also tha t  h(5, p) is nondecreasing in each of its s + r arguments and tha t  the 
relations 

pj = o(hj(5, p)), pj ~ ~ ;  j = 1 , . . . , s  

and 

rad(hlp(0, 0)) < I 

are fulfilled, where rad(A) is the spectral radius of the matr ix  A. 

The application of the method of Lyapunov majorants  here again allows to 

prove tha t  there exists a closed convex domain ft0 c R~, such tha t  for every 5A 

with II~AIIg ~ ~, the per turbed equation (4.5) has a unique solution 5X,  where 

5X is a function of 5A such tha t  5X = 0 for 5A = 0. Moreover, there exists a 
function 

f -  [ f l , . . . ,  fs]T " cl(ft0) ~ R~_, 

such tha t  f j  is nondecreasing in each of its arguments,  satisfies f(0)  = 0, and 

115Xllg -< f (llSAIIg), 115AIIg c ~0. (5.37) 

The boundary 0ft0 of the domain f~0 is obtained by eliminating p E R~_ from 
the system of equations 

h(5, p) - p, det(h;(5,  p) - 5 )  - O. 

The inequality (5.20) or (5.37)) gives nonlinear nonlocal per turbat ion bounds 

for the solution in case of a regular computat ional  problem with implicit solution. 

Consider finally the case when the solution of equation (4.1) is not unique. 

We shall restrict ourselves to the case q > r, i.e., when we have more unknowns 

than the number of equations. Suppose tha t  the linear operator Fx  : X ~ 3; 
is surjective, or equivalently, rank(M) = r, where M := M a t ( F x )  E F rxq is the 
matr ix  representation of Fx.  

Let F* x �9 3; ~ iV be the right pseudo-inverse of Fx ,  such that  

Mt . -  vI (vv ) 

Then all relations from the present section are valid with F)71 replaced by F* x .  

In this case, however, the operator equation (4.7) is not equivalent to the original 

equation (4.1): all solutions of (4.7) are solutions of (4.1) but the converse may 

not be true. This will not cause a problem, since we usually have to find at least 

one solution. In addition, here it is not necessary to prove the uniqueness of 
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the solution of the operator equation, since the original equation has no unique 

solution. 
Thus, when using Lyapunov majorants  h(5, p), it is sufficient to prove tha t  

the majorant  equation p = h(5, p) has a root vanishing together with 5, without  
the requirement that  the derivative h~(~, p) (in case of a scalar h) or the spectral 
radius of the matr ix  h~(5, p) (when h is a vector function) is less than 1. 

5.3 Case s tudy 

Consider the real scalar quadratic equation 

q + 2 a x -  sx 2 = O, (5.38) 

where q > 0 and s > 0. The positive solution of equation (5.38) is 

a + d  
x -  ~ ,  d ' =  v/a 2 + sq. 

Let 5q, 5a and as be perturbat ions in q, a and s, respectively, which preserve the 
form of the equation, i.e., ]aq[ < q and ]5s] < s. The perturbat ion in the solution 
is then 

saa - ass + sd - d(s + as) 
a x =  

s(s+as) 
where 

d ' -  v/(a + ha) 2 + (s + 5s)(q + aq). 

Setting c = (q, a, s) and as = (aq, ha, as), the equivalent operator equation for the 
per turbat ion ax is 

5x = 1-I(ac, 5x) = no(as)  + H1 (5c, 5x) + 1-i2(5c, 5x), (.5.39) 

where 

1-I1((~C ) 
l-Ii (5c, &) 

:= (aq + 2 x a a -  x25s)/(2d), 

�9 - ( h a -  xas)ax/d,  II2(5c, 5 x ) " -  - ( s  + 5s)ax2/(2d). 

Hence, the Lyapunov majorant  is 

h(ac, p) = ao(5c) + al (ac)p + a2(ac)p 2, 

where 

ao(ac) 
al(aC) 

a2(5c) := (s + 5s)/(2d). 

:-- ((~q -~ 2X~a + x2&)/(2d) ,  

:= (aa + xas)/d,  
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If we t a k e q = a = s -  l a n d 6 q - e ,  5 a = e a n d ~ s - - e ,  w h e r e 0 _ < e <  1, 
then after some simple computations we obtain x - 1 + v~  and 

( 1 ) ~v~ i+v~+ 
~ x ( c ) -  1 - e  l + v / l + c  

Furthermore, 

ao(Sc) = c(2 + 1.5v/2), al(SC) -- c(1 q- v/2), a2((~c) - 0.25v/2(1 + r 

As a result we have the perturbation bound 

5x ~ f(c),  c ~ co, 

where 

f(c) "- 
2a0(&) 

- ~ ( ~ )  + v/(~ - ~ ( ~ ) ) ~  - 4 ~ o ( ~ ) ~ ( ~ )  

1 - ~(1 + v~) + V/1 - ~(5 + 4v~) 

and co - 1/(5 + 4v~) - 0.0938 (up to four figures after the decimal point). 
The expressions for the exact perturbation 6x(c) and the bound f(c) have 

equal first order terms, namely 

5x(~) 

f(c) 

- ~(2 + 1.5v~) + ~:(2 + 1 . 3 7 5 ~ )  + o(~ ~) 

= 4.1213c + 3.9445c 2 + O(c3), c ---, 0, 

= c(2 + 1.5v/2) + c2(8 + 5.625v/2) + O(c 3) 

= 4.1213c + 15.9550c 2 + O(c3), c ~ 0. 

In Figure 5.5 we give the graphs of the functions 5x" [0, 1) ~ R+ and f "  [0, Co) --+ 
R+. 

5 . 4  N o t e s  a n d  r e f e r e n c e s  

The method of finite majorant equations was proposed by A.M. Lyapunov in 1893 
for the analysis of series expansions of solutions of ordinary differential equations, 
see [162, 163]. The corresponding majorant functions are known as Lyapunov 
majorants. The use of Lyapunov majorants and fixed point principles in proving 
existence and uniqueness results for operator equations in nonlinear oscillation 

theory was proposed in [160], and, in a more general statement, in [85]. This tech- 
nique had been further developed in [134, 135] for perturbation analysis of matrix 
problems. The combined use of Lyapunov majorants and fixed point principles in 
the perturbation theory for matrix equations is considered in [127], see also [147]. 
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It is worth mentioning that the technique of Lyapunov majorants is in fact 
widely used in many problems of the general theory and perturbation theory of 
operator equations (including equations in abstract spaces), often without stating 
this explicitly. 
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Chapter 6 

Singular problems 

6.1 Introductory remarks 

In this chapter we consider basic concepts for singular problems, such as the dis- 

tance to singularity, and the classification and regularization of singular problems. 

As discussed in Chapters 2, 3 and 4, problems with implicit solution may be 

regular or singular. Fortunately, regular problems are usually generic in the data 

space. At the same time the analysis of singular problems is important from both 
theoretical and practical points of view. 

Singular problems are also often called i n f i n i t e l y  i l l - c o n d i t i o n e d .  The pertur- 
bation in the solution of a singular problem may be extremely large even if the 

perturbation in the data is small. A regular problem which is close to the set of 

singular problems may be very ill-conditioned and there is a close relation between 

the conditioning and the distance to singularity of a given regular problem. 

E x a m p l e  6.1 The problem of computing a particular solution x = xi of the 
algebraic equation 

x n + a l x  n - 1  + . . .  + a n - i X  -t- a n  - 0 

is regular if x~ is a simple root, and singular if xi is a multiple root. A solution of 
multiplicity k corresponds to data a = [a l , . . .  ,an] x E R n, belonging to a closed 

(n - k + 1)-dimensional variety in the data space R ~. The sensitivity of multiple 

roots may be very high. For example, the equation 

( x  - 1)  n = 0 

has a root x = 1 of multiplicity n. Perturbing the constant term in the polynomial 

by a small quantity # we get the equation 

( x -  1)n--/~=O 

103 



104 C H A P T E R  6. S I N G U L A R  P R O B L E M S  

which has roots x + 5x - 1 + ~/-fi. If # - 10 -n,  then the perturbations in the roots 

are of magnitude 10 -1, i.e., they are 10 n-1 times larger than the perturbations in 
the data. 

One should not make an erroneous conclusion that, if an algebraic equation 

has only simple roots, then they are well conditioned. For instance, the famous 

"perfidious" polynomial equation, introduced by Wilkinson [232], 

( X - -  1 ) ( X - -  2 ) . ' '  ( X - -  20) -- X 20 -- 210X 19 n u ' ' "  -~- 2 0 ! -  0 

shows high sensitivity of the roots xi - i relative to changes in the coefficients. 

This is due to the very large condition number of some of the roots.~ 

E x a m p l e  6.2 Similar to Example 6.1, the problem of computing the eigenvalues 
of a matrix A E F n • is regular if and only if the matrix A has only linear elemen- 

tary divisors. This holds for example in the case of pairwise distinct eigenvalues. 

The set of singular problems (corresponding to matrices with nonlinear elementary 
divisors) is a closed (n 2 - 1)-dimensional variety in F n• 

Usually, the set of singular problems B is a variety of co-dimension 1 in the 

data space A. Thus, B has irreducible components, which are hyper-surfaces, 

described by a scalar equation g(A) - O. Furthermore, although the "probability" 

that  a particular problem is singular is zero, for a family of problems the situation 

changes dramatically. Even if we deal with a one-dimensional family (i.e., a curve) 

of problems with data {A t}  c A, parametrized by the scalar t E R, most probably 
it will meet some hyper-surface from B for some t. In such a statement, singular 
problems seem more like a rule rather than just an exception. 

An important characteristic of a regular problem is its distance to the set of 

singular problems. This is the norm of the smallest perturbation that transforms 

a regular problem into a singular one. It is intuitively clear that ill-conditioned 
problems are close to singularity and vice versa. The interconnection between 
conditioning and distance to singularity is studied in [51]. 

The perturbation analysis and the solution of singular problems presents a 

challenge in modern scientific computing. Some issues in the classification and 

analysis of singular problems are considered in the next subsections. 

6.2 Dis tance  to singularity 

An important characteristic of a problem X - ~)(A) is its distance to the closest 
singular problem. 

Def in i t i on  6.3 The absolute distance of the problem X = (I)(A) to the set B C A 
of singular problems is the quantity 

A~bs(A) "- dist(A,/3) -inf{JtSAll �9 A + 5A c B}. 
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For problems with A r 0 we also define the relative distance Arel(A) as 

Arel(A ) "= A~b~(A___~). 
ILAll 

Thus, a problem is singular if and only if its distance to B is zero. 

For many problems the relative distance Arel(A) is inversely proportional to 
the relative condition number n of the problem, or to its square n2 [51]. 

E x a m p l e  6.4 Let A E F nxn be a nonsingular matrix and let 

ZXab~(A) 
Arel(A ) = [{All 

be its relative distance to the set of singular matrices, where Aabs(A) is the norm 
of the smallest perturbation 5A, such that  A + 5A is singular: 

A~bs(A) := min{[15AII : det(A + 5A) = 0}. 

Since Aabs(A) = 1/[[A-I[[ we have cond(A)Arel(A)= 1. (~ 

Hence, the relative distance to singularity and the relative condition number (with 
respect to inversion) of a nonsingular matrix are reciprocal. 

A problem, solved in finite precision arithmetic with roundoff unit eps, for 
which Arel(A) is of order eps, is practically singular. Indeed, when writing the 
data in the computer memory, i.e., rounding A to the closest collection .4 of data 
with exact representation in the finite precision arithmetic, we get a problem with 
data A, which may as well be singular, since [[A - A]{ ~ eps{]A[[. 

6 . 3  C l a s s i f i c a t i o n  

In this section we classify different types of singular problems. Singular problems, 

corresponding to data from the set B, are very sensitive and their numerical solu- 
tions in finite precision arithmetic may be contaminated with large errors. These 
errors may depend on the round-off unit eps in a highly nonlinear way, e.g., they 
may have magnitude of order eps l/k, where k > 1. Different problems may be 
characterized by different values of k. But there are also problems which are so 

sensitive that  no perturbation bound of order eps 1/k exists. 

E x a m p l e  6.5 The function ~ :  ( -1 ,  1) ~ R+, defined by 

~(a) - { 1/l~ ifa=0if0<la] < 1  

increases so fast in the neighborhood of the point a = 0, that  no estimate of the 
type 

l (a) -  (o)l clal 

exists, regardless of how small "1- > 0 is. 0 
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We may classify singular problems according to their sensitivity, see [134], as 

follows. For a given problem X = (I)(A), A c A, with (~ at least continuous in an 

open neighborhood of A, and for a > 0 small enough to ensure A + 5A c .4 for all 

5A with [[SA[[ _< a, set 

co(A, a) := sup {l[~Xll : II~AII ~ ~}. 

Suppose that  co(A, a) may be represented in the form of an asymptotic series 

where 

co(A, a) - ~ coj(A, a), 
j ~ l  

coj+l (A, a) = o(coj(A, a)), a ~ 0 

and o(a)/a ~ 0 for a ~ 0. The function col is called the principal term in the 

expansion of co, and it determines the magnitude of co in the neighborhood of 
o~=0.  

If the problem is regular then 

col (A, a) = K(A)a ,  

where K(A) is the absolute condition number of the problem. 

Singular problems are characterised by a larger rate of increase of co for small 
a, e.g., 

c o l  (A, a) - Ha 1/k, k > 1 

and they may be classified by the behavior of the functions co or col. 

D e f i n i t i o n  6.6 Two problems X = ~(A) and Y = ~(B)  are said to be sensitivity 
equivalent if there exist constants 0 < Cl < c2 < oo, such that  for some a0 > 0 the 
inequalities 

w(A,a) 
< <_ o < < 

hold. 

The sensitivity equivalence relation allows to divide the set .,4 into pair-wise 
disjoint orbits (or equivalence classes) .A1,r such that  two problems belong 

to a given orbit if and only if they are sensitivity equivalent. We suppose that  the 

orbits are numbered such that  more sensitive problems correspond to orbits with 

larger numbers. Thus, r may be the set of regular problems, while the union 

A2 U A3 U.- .  of the remaining orbits is the set B of singular problems. 

For a wide class of problems the expressions coj(A,a) are fractional powers 

in a, which correspond to a function (I) that  is locally H61der continuous in a 

neighborhood of A. Suppose that  the function ~) is locally H61der continuous on 
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A and hence, on B C A. Then for every A c B there exists a number r c (0, 1) 

such tha t  the quant i ty  

H(A T)"=  lim sup { II~xll 
' ~ - ~ 0  IlaAII ~ 

is finite. Then we have 

IlaAll <_ ~ } 

}}6XII _< H(A, r)llaAll" + o(l]6Allr aA --+ 0. 

Denote by r2 < 1 the exact upper bound of the set of all numbers r when A 

varies over B, and let A2 be the set of all A such that  �9 is locally HSlder in a 

neighborhood of A with a power r2. Furthermore,  by induction, we define powers 

r3, 74, . . .  (r2 > r3 > .-.) and sets A3, A4 , . . . ,  such tha t  �9 is locally HSlder 

continuous with a power rj in the neighborhood of A c Aj.  
Setting rl  = 1, we see tha t  ~41 is the set of regular problems (with the restriction 

~lA1 of ~ on A1 being Lipschitz continuous), while the set B of singular problems 

is the union of Aj,  j >_ 2. 
Typically the orbits Aj are manifolds of decreasing dimensions: 

dim(A) = dim(A1) > dim(A2) > . . . .  

If the set B of singular problems is defined as an algebraic variety, then rj  are 

rational numbers, and often rj = 1/j. 

E x a m p l e  6.7 Consider the equation 

x 2 + a  = 0  

with da ta  a E F. Here A1 = 1F\{0} is the set of regular problems, while B = A2 = 

{0} is the set of singular problems. The sequence of H51der exponents is 1 and 

E x a m p l e  6.8 Consider the equation 

x 3 + a l x + a 2  - 0  

with data  a = [al, a2] q- E .4 - ]R 2. Here the set B is the semi-cubic parabola 

} 8 =  . 

It may be represented as B = A2 o A3, where for a E A2 = B\{0} the equation 
has a double root, and for a ~ Aa := {0} it has a triple root. Thus, we have a 

sequence of HSlder exponents r l  = 1, r2 = 1/2 and r3 = l/a, corresponding to the 

manifolds A1, A2 and Aa with dimensions 2, 1 and 0, respectively. <) 
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E x a m p l e  6.9 Consider the general algebraic equation of degree n 

f(a, x) : =  ao xn + al  xn l  + . . .  + an = 0 

with real or complex coefficients, forming the data vector a := [a0, a l , . . . ,  an] T E 
IF n+l. Here we may choose A as the set of all a with a0 ~: 0. The set B is defined 

from the condition that  f(a,x) and f~(x,a) must have a common root. (} 

6.4 Regularization 

The classification of singular problems may be effectively used in numerical anal- 
ysis by applying various regularization techniques. These techniques are based on 

projecting the problem onto the nearest (regularized) problem with higher sensitiv- 

ity. Sometimes regularization means an imbedding of the problem into a problem 
of lower sensitivity; these two approaches are dual in a certain sense. 

We may regularize a problem by restricting the set of possible perturbations so 
that  the new perturbed problem to be of higher sensitivity, since in fact the new 
restricted problem is less sensitive in comparison to the original one. There is no 
contradiction in this (strange at first glance) assertion, see Example 6.12. Indeed, 
the higher sensitivity of the regularized problem is exposed only to general per- 
turbations, while relative to the restricted class of perturbations the new problem 
is of lower sensitivity. These phenomena are explained next. 

If A E Aj, then (I) is locally H61der continuous in A with an exponents Tj, 
and its sensitivity increases when A approaches the boundary OAj of .Aj. This is 
reflected in the increase of the coefficient H(A, ~-j) in the local estimate 

115xII <_ H(A, ~j)IIhAII ~5 

of the perturbation in the solution. In the limiting case we have 

lira H ( A, Tj ) = oo. 
a---*OAj 

Denote by A ~ E Aj+I a point from Aj+I which is closest to A, so that  ]IA ~  All 
is the distance from the point A to the set Aj+I, and consider the regularized 
problem 

X - ~ (d ) ,  d E A c Aj+I. (6.1) 

The essential fact about (6.1) is that  A is a neighborhood of A ~ which lies entirely 
in Aj+I. Now the problem (6.1) is characterized with a sensitivity, determined by 
the power Tj rather than ~-j+l, independently of the fact that  A E Aj+I" 

II Xll -  (A~ < ~ ; j ) I I A -  A~ 

where usually the quantity H(A ~ Tj) is such that  

H(d~ ~-j) 
<<1. 

H(A, ~-j) 
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The regularized problem (6.1) differs from the original problem X - ~(A),  

since the function in (6.1) is in fact the restriction (I)l~ of the original function (I) 
A 

on the lower dimensional variety .4. 

E x a m p l e  6.10 Consider the quadratic equation 

x 2 + a l x  + a2 - 0 

with data  a - [al, a2] T E R 2 which has roots 

Xl,2 z 
- a l  -1- v/a 2 4a2 

For a near to the parabola B C R 2, defined via a 2 = 4a2, the equation becomes 

ill-conditioned. Indeed, we have 

Oxi xi Oxi 1 

Oal al + 2xi ' Oa2 al + 2xi ' 

which gives 

Ni l  ~-- lXil , K i 2 -  1 
v/la21 - 4a2[ v/la 2 - 4a2[ 

Here K i j  is the absolute condition number of the root x~ relative to perturbations 
in the coefficient aj. 

For a E B the equation is singular and Xl = x2 = - a l / 2 .  If now aj is per turbed 
to  a j  q- 5 a j ,  we have 

(~Xl,2 
--(~al :t: v /2a l (~a l  + (Sa l )  2 -  4 5 a 2  

Hence, the per turbat ion may be of order 

/ _  
15x~,21 - v/a~ + 4 Ilaall 1/2 + O(llSaI[), a ~ 0 

and this is achieved for 

a~[ISall -2115all 
5a l - -  ~ , 5 a 2  - -  

v/a  2 + 4 v /a  2 + 4" 

If, however, we choose a special per turbat ion with 

2a15al + (5al) 2 = 45a2 

then the per turbat ion in both roots is - 5 a l / 2  and the problem is regularized. 
This special per turbat ion in fact means that  a + 5a E B. It is interesting to 

observe tha t  the problem is regularized also for a15a1 = 2~a2. In this case the 

per turbat ion in one of the roots is zero and in the other root it is - 5 a l .  In this 
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second regularization the per turbed data a + 5a belongs to the straight line T in 

R 2, parametrized as 

~/~  " - -  {[al n t- t , a~ /4  + alt /2] T" t E N} 

which is in fact the tangent to the parabola B at the point [al, a2/4]. 

Example 6.10 is very instructive. In general we have the following result. 

T h e o r e m  6.11 A singular problem X - ~ ( A )  with data A E B is regularized if  

A + 5A is allowed to vary either in the variety A = B or in the tangent space 

A - 7-~ (A) of 13 at the point A. 

The described regularization technique is applicable also to regular but ill- 

conditioned problems with a E A1 and a large relative condition number n(A).  

In this case we may project the problem to the nearest (or some) point A ~ E A j ,  
A 

obtaining a new family of problems X - O(A), A E A, which are better  condi- 

tioned. Among the problems that  can be solved in this way one should mention 

the solution of ill-conditioned linear algebraic equations, the determination of the 

numerical rank of a matrix, the computation of the eigenstructure of a matrix with 

almost multiple eigenvalues as well as the solution of some basic ill-conditioned 

problems in the theory of linear control systems. 

E x a m p l e  6.12 Consider the problem of rank determination for the matrix A E 

IF ~• Suppose that  rank(A) = n and denote by 

A - U E V  H E - diag((71, ,(Tn) U, V E b/n 

the singular value decomposition of A, see [83] and Appendix B, where (71 ~ (72 _~ 

�9 .. > (Tn > 0 are the singular values of A. If (Tn is relatively small, say (Tn ~ eps al ,  

then the computat ion of rank(A) in finite precision arithmetic with roundoff unit 

eps is a very ill-conditioned problem (practically a singular problem), since the 

rounding of the data  may lead to a matrix A*, which is not of full rank. Now let 

us choose a threshold T > eps and consider as zero all singular values that  are less 

than or equal to ~-. We get a new matrix 

A o . _  u ~ O v H ,  ~ o  ..._ diag((71,. . . ,  (Tk, 0 , . . . ,  0), 

where the integer k is determined from (Tk _> r, (7k+1 < r.  The number k is the 

numerical rank of A corresponding to the threshold r (or, briefly, the r-numerical 

rank of A), and A ~ is the projection of A onto the set of matrices which are of 

rank k. Now the numerical rank determination in a neighborhood f / o f  A ~ is a 

regular, and even a well-conditioned problem, if we consider the singular values of 

matrices A E f~ tha t  are less than the threshold r ,  as zero. 
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This regularization technique uses a projection of a singular problem onto the 
nearest (or some other close) problem of higher sensitivity. Another way to regu- 
larize an ill-posed or a singular problem is imbedding it into a regular problem. 

E x a m p l e  6.13 Consider the linear algebraic equation M x  = b with M E F n• 
singular or close to singularity. If M is singular, then the problem is also singular 
but may even be ill-posed. If M is close to singularity the problem will be close 
to singularity or to ill-posedness. We may regularize the problem by imbedding it 
in the regular problem (M + c~I)x~ = b, where c~ > 0 is a (small) parameter. This 
approach is known as Tikhonov regularization, see [92]. 0 

6.5 N o t e s  and references  

Singular problems in the sense of this chapter (we recall that the problem X = 
�9 (A) is regular if the function ~ is continuous in a neighborhood of the data A, 
and singular otherwise) are called also ill-posed by some authors [51]. Here we 
prefer to use the classical terminology going back to H'Adamard [42, 43, 44]. 

The distance to singularity (sometimes called distance to ill-posedness) and 
related problems have been considered in [51, 52, 53, 67, 93]. 

The classification of singular problems from this chapter had been proposed in 
[133]. 

Regularization schemes have been proposed in [219, 218] and further developed 
as computational procedures in [220, 221]. 
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Chapter 7 

P e r t u r b a t i o n  b o u n d s  

7.1 Introductory remarks 

In this chapter we discuss the main properties of perturbation bounds for the 

analysis of problems with either explicit or implicit solutions. Some important  
concepts are introduced and illustrated by examples. 

7.2 Definitions and properties 

The literature of perturbation theory is rich in various types of perturbation 

bounds. However, for many of them neither quantitative nor qualitative mea- 

sures of exactness are discussed. Also, often the domains of applicability of some 

bounds are not known, or at least not stated clearly. This is particularly true for 
linear local perturbat ion bounds, based on condition numbers. 

In order to compare perturbation bounds, several criteria are important.  Ide- 
ally, the bound should be rigorous, its domain of applicability should be known 

and, if possible, the bound should be sharp or exact in some sense. 

If the bound is too pessimistic in some cases, this should be made clear for the 
user. 

A desirable property of a bound is to be general in the sense that  it imposes 
minimum restrictions and is thus applicable to a general class of problems. 

These requirements do not mean that  bounds with unknown domain of appli- 
cability, as well as some heuristic (or experimentally stated) bounds are practically 

useless. Such bounds are of practical use, but one should be careful if a bound is 
not proven to be rigorous. 

If the above criteria are met and the bound can also be computed numerically 

in a reliable way, then it should be included in software tools for solving engineering 

and scientific problems. We stress that  without sensitivity and error estimates the 

113 
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corresponding software cannot be recognized as reliable. Unfortunately, some of 

the program systems for scientific computing do not include such estimates, and, 

as a result, they sometimes produce erroneous results without warning the user. 

In this section we present the concepts of sharpness, exactness and attainability 

of perturbation bounds, which seem to be intuitively clear but nevertheless formal 
definitions are needed. 

Let X be a solution of a regular problem with data A = (A1 , . . . ,  At), and let 

X + 5X be a solution, corresponding to the perturbed data A + 5A. In case of 
an explicit problem we have X = ~(A), where the function is locally Lipschitz 
continuous, and 

5X = ~(A, 5A) := , f(A + 5A) - r 

In case of an implicit problem, let X be the solution of the equation 

F ( A , X )  = 0 .  

Here ~ is the supporting function, which is locally Lipschitz continuous and sat- 

isfies F(B,  ~(B))  = 0 for all B from a neighborhood of the nominal data A, see 
Chapter  4. We set 

6x : - [ l a x l [ -  lie(A, 6A)II, 

or 5x = 5x(aA),  denoting explicitly the dependence of the quantity 5x only on 
5A for a fixed value of A. 

We recall that  here 5A must belong to the domain gA, which is the set of all 

E such that A + 6A ~ A for all 6A with IlaAIIg _< IIEII~, where 

IIAII~ - [ I I A ,  II,..., IIA~II] T c R; .  

Suppose that  we have a perturbation bound 

6x <_ f(]16A]]g), 116AIIg �9 ~ ,  

where the domain 2) C ]R~_ contains a set 

{z r IR ~ �9 0 < z~ <_ p~} 

of positive measure (Pi > 0 for all i = 1 , . . . ,  r), and let 

(7.~) 

~(5 )  . -  m a x { 6 x ( 6 A )  " ll6Allg -'< 6}  (7.2) 

be the maximal norm of the perturbations in the solution for perturbations in the 
data 5A, varying over the generalized ball 

z36 - { E I  EIIg "< 6}. 

D e f i n i t i o n  7.1 A perturbation 5A = (5A1, . . . ,  5At) in the data A is called full if 
all 5Ai are nonzero. 
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Now we are in a position to define our first concept of exactness of a pertur- 

bation bound. 

D e f i n i t i o n  7.2 The bound (7.1) is said to be asymptotically sharp i f  there exists 
E E I~+ such that 

5x ( sE)  = f(cllEllg) + o(c), c ~ 0. 

We note tha t  for any E E T~ there exists co > 0 such that  s E  c T) for all s E [0, r 

Thus, asymptotical  sharpness is a property tha t  is connected to the existence of 

at least one infinitesimal one-parametric family of full perturbations {sE}, s --, 0, 

for which the bound (7.1) is asymptotically equivalent to the maximum possible 

per turbat ion (7.2) in the solution. More precisely, an asymptotically sharp bound 

is asymptotically equivalent to the actual perturbat ion for the given family of full 

perturbations in the sense that  

lim f(s[[E{[g) = 1. 
~-~+o 5x(cE) 

A good per turbat ion bound should be asymptotically sharp, otherwise it may 

be substantially improved. 

E x a m p l e  7.3 For a scalar problem x = ~(a) with ~ differentiable at a, the 

chopped, condition number based bound is 15xl < I~'(a)l 15al. For ~(a) = a 2 

and a = 0 this bound reduces to 5x = 0 which is not true for all 5a ~ 0. 

If we consider bounds which are asymptotically equivalent to the maximal 

per turbat ion in the solution for all infinitesimal perturbations, then we come to 
the concept of asymptotic exactness. 

D e f i n i t i o n  7.4 The bound (7.1) is said to be asymptotically exact if  

w(5) = f (5) + o(115]]), 5 ~ O. 

Asymptotically exact bounds are asymptotically equivalent to the maximum 

perturbat ion in the solution for all infinitesimal families {E}, E ~ 0, of pertur- 
bations. 

Of course, the most desirable property of a bound is to be exact in the sense 
of the following definition. 

D e f i n i t i o n  7.5 The bound (7.1) is said to be exact if  T) = ~t and f = w. 

Obviously, nothing more can be achieved in the norm-wise perturbat ion anal- 

ysis than an exact bound. And, as may be expected, exact bounds are available 
only in rare cases. 

E x a m p l e  7.6 For the scalar problem x = a 2 the exact bound is f(~) = 5(21a I +5). 
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The only nontrivial bound in this book, that  is proven to be exact, is that  for 

the linear matrix equation A X  = C, see Chapter 9. 

Some perturbat ion bounds known in the literature have the property of attain- 
ability which we define as follows. Denote by T~+ C T) the set of all 5 E :D with 

5~-0 .  

D e f i n i t i o n  7.7 The bound (7.1) is said to be attainable i f  there exists a manifold 

M c l)+ of  d imens ion  dim(j~/I) - r - 1, such that f (~ )  - w(~) for  (5 e ?~4. 

Often attainable bounds are not even asymptotically sharp. In turn, an asymp- 

totically exact bound may not be attainable. The next two examples of scalar 

linear equations illustrate these concepts. 

E x a m p l e  7.8 Consider the scalar equation 

a x - c ,  a # O  

with solution x - c /a ,  and let 5c " - ISc l ,  ~ "-15al  and ~x "-15x] be the absolute 
perturbations in c, a and x. For ~a # - a  we have 

c + 5c c 5 c -  xSa 
X ~ ~ ~ .  

a + 5a a a + 5a 

Hence, the maximum absolute perturbat ion in x is 

+ Ix16  = 
[ a ] - S a  

and the domain ~t for ~ = [~c, 5a] 3- E R~_ is l~+ • [0, ]a]). Consider the following 

expression in 5, depending on two parameters a > 1 and/3 _> 0, 

L,Z(5) "-  ~(5~ + Ix16~) 
] a ] -  ~ 5  a " 

. 

We have five possible cases. 

If a - 1 and/3 < 1, then the inequality ~x _< f1,13(5) may not hold and hence, 

f1,~(5) is not a bound in the strict sense. 

If c~ - /3 - 1, then the bound is exact and hence, asymptotically sharp, 

asymptotically exact and attainable. 

If c~ - 1 and /3 > 1, then the bound is asymptotically exact and hence, 

asymptotically sharp, but not exact and not attainable. Here T) - ~ +  • 

[0, la]/fl) is a proper subset of ft. 

If a > 1 and/3 < 1, then the bound is not asymptotically sharp (and hence 

not asymptotically exact and not exact), but it is attainable. In this case it 

is valid in the domain ~P = n +  • [0, a0], where a0 := ( a -  1)]al/(c~-fl) .  The 

manifold A/I (see Definition 7.7) here is I~+ • {a0}. 
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5. If a > 1 and/3 >_ 1, then the bound has none of the pleasant properties from 

Definitions 7 . 2 -  7.5 and 7.7 but is nevertheless rigorous. 

In Figure 7.1 we compare the exact quantity w with the bound from case 4. 

with lal = 1, x = 1 and a = 2, 13 = 0 in the 3-dimensional space of parameters 

61 = 5c, 52 = 5a and f .  After the intersection of the surface w = (5c + 5a)/(1 -6~ )  

with the plane f = 2(5c + 6a) the expression for f is not a rigorous bound. 0 

Figure 7.1: An attainable bound which is not asymptotically sharp 

The next example shows that  a bound may be asymptotically sharp without 

being asymptotically exact. 

E x a m p l e  7.9 Consider the equation from Example 7.8 together with the bound 

f (5)  "-  V/1 + x 2 V/52 + 52 
l a l - 5 ~  

This bound is defined in the set l)  = f~ but is not asymptotically exact. At the 

same time it is asymptotically sharp and attainable. Indeed, we have f(6) = w(6) 

at the one-dimensional manifold A/l, defined via 6a = Ixl6c < lal. In Figure 7.2 we 

show the exact quantity w and the bound f for lal = 1 and x = 1. 0 

We will show that  the concepts of asymptotical sharpness, asymptotical ex- 

actness, exactness and attainabili ty are applicable effectively to general linear and 
nonlinear matrix equations (as well as to linear and nonlinear operator equations 

in abstract spaces) and, in particular, to the polynomial and fractional-polynomial 
equations tha t  arise in control theory. 
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Figure 7.2: An attainable asymptotically sharp bound which is not asymptotically 
exact 

7.3 C o n s e r v a t i v e n e s s  of  "worst  case" b o u n d s  

Consider a rigorous perturbation bound 

5x <_ f(5),  5 E 79 

for the problem X - (I)(A), where X E X, A E ,4, 5x --II~xll,  

(iX - ~(A, 5A) = (~(A + 5A) - (~(A) 

and iISAlig _~ 5. We recall that  A is a matrix collection (A1, . . .  ,At) .  
Since the bound is rigorous, it is also a 'worst case' perturbation bound in the 

following sense. The bound is valid for all perturbations with II~A[fg ~ ~, including 

those for which the norm-wise perturbation 5x in the solution is maximal. At the 

same time, for other perturbations, the actual perturbation 5x may be much less 
than the bound /(d)  predicts (or even zero). Thus, all rigorous perturbation 
bounds are conservative for certain classes of particular perturbations. This is 
true even for exact bounds f(5) - co(5), where 

a,(5)--- max{ll~(A + 5A) - '~(A)II ' IISAIIg -< 5} 

is the maximal perturbation in 5x when 5A varies over the set of admissible 
perturbations ft. 

It may happen that  for a given class Q of perturbations 5A the perturbation 
5X in the solution X is zero. 
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For an explicit problem X = ~)(A) we consider 

Q := {E E gA: 9 ( A , E )  = 0}. 

For an implicit problem, defined via an equation F(A, X) = 0 with F : A• X 

Y, Y _~ X, we consider 

Q := {E E T): F(A + E , X )  = 0}, 

or, if we have already constructed the perturbation equation 6X = II (6A,6X) ,  
then we consider 

Q : :  {E e ~ :  H(E,O) : 0}. 

In the generic case when the problem is regular and the partial Fr@chet deriva- 

tive FA(A, X)  at (A, X) is surjective, then the set Q is a manifold of dimension 
dim(A) - dim(X). 

Let the matrix collection A be represented as A = (B, C), where B and C are 

in turn matrix collections. Suppose that  we may rewrite the equation F(A, X )  = 0 
in the equivalent form G(B, X) = H(C),  where G and H are continuous functions. 

If B and C are perturbed to B + 6B and C + 5C we obtain the perturbed equation 

G(B + 5B, X + 6X) : g ( c  + 56). (7.3) 

Suppose further that  we have the perturbation bound 

6x _< f(13, V), (/3, V) E fl, 

provided that  116Bllg ~/3, 116cII9 ~ v. 
If the perturbations 6B, 6C satisfy the additional relation 

G(B + 5B, X )  = H(C + 6C) (7.4) 

then the perturbed equation (7.3) has a solution 6X = 0 and accordingly 5x = O. 
Hence, nevertheless how good the bound f(fl, V) is, it may be very conservative in 
this particular case. 

Note that  relation (7.4) will be fulfilled if for example, H is the identity operator 
and 

5C = G(B + 5B, X)  - C. 

The most simple example here is the linear equation B X  = C, where B is 

m • m and C, X are m • n matrices, respectively, with B being nonsingular, and 

C # 0. Assuming that  IIC-1111[6Bll < 1 and 

6C = 6 B X  = 6BB-1C,  (7.5) 

we see that  the perturbed equation 

(B + 6B)(X + 5X) = C + 6C 
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has the unique solution 5X = 0 and hence, ex = II~Xll/llXll - 0. At the same 
time, setting eB = II~B[[/IIBII, we have the standard perturbation bound 

2cond(B)eB 
cx _< f ( e B ) : =  1 -  cond(B)eB (7.6) 

For eB approaching 1/cond(B) the bound f(eB) becomes arbitrarily large, while 
the exact perturbation is zero. 

The observed effect of extreme conservativeness of the perturbation bound (7.6) 
is not typical (or generic) and is destroyed in any neighborhood of the perturbation 
(5C, 6B). Note that the relation (7.5) defines an m2-dimensional subspace Q in 
the m(n + m)-dimensional linear space of pairs (C, B). If (5C, gB) E Q is such 
that B + 6B is close to a singular matrix, then there exists a perturbation 6C such 
that (6C, 5B) ~ Q, the quantity [[5-C-~CII is small, and the relative perturbation 
in the solution, corresponding to the perturbation (5C, 5B), is close to the bound 

f(cB). 

7.4 N o t e s  and re ferences  

In the literature there are only few studies in which the exactness of perturbation 
bounds is analyzed, see e.g. [135]. 



Chapter 8 

Gener al Sylvester equations 

In this chapter we present the perturbation analysis for various types of Sylvester 

equations. We also derive improved first order homogeneous perturbation bounds 

which are applicable to large classes of nonlinear matrix equations as well. 

A linear matrix equation in the form s  = C, where 12 : X ~ y is a linear 
operator and A ' ,y  are (isomorphic) linear finite-dimensional spaces of matrices 

may be written as a linear vector equation L z  = c, where z and c are the vector 

representations of X and C, and L is the matrix of/2. Hence, perturbation bounds 
for linear matrix equations may be obtained using the perturbation theory of linear 

vector equations. This approach, however, neglects the specific structure of L, 

originating from the particular form of s and may lead to pessimistic bounds. 

As a result many of the existing perturbation estimates for particular classes of 
linear matrix equations may be improved and this is true for both norm-wise and 
component-wise bounds, which in turn may be local or nonlocal. 

In this chapter we derive nonlocal nonlinear perturbation bounds for the most 
general type of linear matrix equations in finite-dimensional matrix spaces. 

8.1 Introductory remarks 

We begin the analysis with an informal introduction of some basic concepts in the 

theory of linear matrix equations. 

Sylvester equations are linear matrix equations of the form 

A X B  + C X D  + . . . .  E, (8.1) 

where A , B , . . . , E  are given matrices, called matrix coefficients, and X is the 

unknown matrix, or solution. The matrices in (8.1) are real or complex, or may 

have elements from an arbitrary field. It is assumed that the sizes of all matrices 
are such that  the matrix operations in (8.1) are correctly defined. At this stage, 
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without significant loss of generality, the reader may assume that  all matrices are 

real, square and of equal dimension. 
The left-hand side of (8.1) defines a linear operator s namely 

s  : A X B  + C X D  + . . . ,  

which allows to write the Sylvester equation briefly as 

; ( x )  = E 

We recall that  the linearity means that  

s +/3Y) : c~s +/3s  

for all matrices X, Y and all scalars a,/~. 
Equation (8.1) may be written also as a linear vector equation. This may be 

done in many ways. Let for instance the unknown matrix X be represented by its 
columns xi, i.e., 

X : [Xl ,X2 , . . . ] .  

Then the elements of X may be stacked column-wise in a long vector 

v e c ( X ) -  z2  . 

Stacking accordingly both sides of equation (8.1) (or taking the 'vec-operation' in 
(8.1)) we obtain the linear vector equation 

L  c(X) = v c(E), iS.2) 

w h e r e  

L = B  T |  T |  

is the matrix representation or matrix of s (see Appendix C for definitions and 
properties of the Kronecker product | 

A natural question that  may arise in connection with the vector form (8.2) 
of equation (8.1) is: Why is it necessary to develop a general theory (existence, 
uniqueness, representation of solution, etc.) as well as perturbation theory for 
linear matrix equations when the corresponding theories for vector equations are 
well developed and understood? There are several independent reasons and two of 
them are discussed below. 

First of all, as we have already point out, the vectorization process may make 
the size of the equation (8.2) inacceptably high. It is in general better to apply 
methods for solving linear matrix equations of relatively modest order rather than 
to solve their high order vectorized formulations. Note that  if n • n is the size 
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of the coefficient matrices, then very good methods of computational complexity 
O(n 3) exist, while the vectorized form in general leads to methods of complexity 
O(n6). 

Moreover, perturbation theory for vector equations, when applied to (8.2) with- 
out taking into account the special structure of the matrix L, will lead to rather 
weak results, e.g., the corresponding perturbation bounds may be very conserva- 
tive. 

8.2 Motivating examples 

Equations of type (8.1) arise in both mathematical theory and engineering practice. 
We now present some examples of such equations, associated with continuous and 
discrete time-invariant dynamical systems. When dealing with such systems we 
need the concepts of stable and convergent matrices. 

De f in i t i on  8.1 A square (real or complex) matrix A is called stable if its eigen- 
values )~i(A) have negative real parts (or if the spectrum, spect(A), of A lies in 
the open left complex half-plane C_).  The matrix A is said to be convergent if  
its eigenvalues have absolute values less than 1 (or if  its spectrum lies in the open 
unit disc ID1 in the complex plane). 

Next we recall some facts about the spectra of composite matrices, see [157] 
and Appendix C. Let A and B be m x m and n x n matrices, respectively, and 
c~, ~ be scalars. Then the eigenvalues of the matrix C~Im + ~A are c~ + r 
which may be written as 

spect(c~Im + r = {c~} | r spect(A). 

In turn, the eigenvalues of the matrix Lc = In @ A + B T |  that  represents the 
operator 

X ~ E,c(X) = A X  + X B  

are/~i(A) + Ak(B), i.e., 

spect(Z;c) - spect (In @ A + B T N Ira) = spect(A) | spect(B). 

Finally, the eigenvalues of the matrix Lc = B T | A -  Imn that  represents the 
operator 

X ~ E,d(X)= A X B -  X 

are Ai (A) ,~k (B) -  1, i.e., 

spect(/2d) -- spect (B n- | A -  Iron) -- spect(A) |  spect(B) @ {1}. 

(For definition of operations | @ and | with collections see Appendix A.) 
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Def in i t i on  8.2 A matrix A is called semi-stable i f  its eigenvalues have nonposi- 
tive real parts and the eigenvalues with zero real part correspond to linear elemen- 
tary divisors (i.e., to 1 x 1 blocks in the Jordan canonical form of A).  The matrix 
A is semi-convergent if  its eigenvalues have absolute values less than or equal to 1 
and the eigenvaIues with absolute value 1 correspond to linear elementary divisors. 

Consider the set of two continuous time-invariant real dynamical systems 

x'(t)  = A x ( t ) , x ( O ) = x o ,  (8.3) 

y'(t) = By( t ) ,  y ( 0 ) : y 0 ,  

where t > 0 and x(t)  and y(t) are m- and n-dimensional vectors, respectively. The 
states x(t)  and y(t) are determined by 

x(t) - exp(At)xo,  y(t) - exp(Bt)yo,  

where exp(A) is the matrix exponential of A, defined by the convergent matrix 
power series 

A A 2 oo Ai 
exp(A) - Im + ~. + -~. + . . . .  E C.,  

i = 0  

Let Q c ]K mxn be a given matrix. An important problem in control theory 
and stability analysis [157] is to evaluate the integral 

/0 (/o ) 9~(t) := x T(s )Qy(s )ds  - XTo exp(A r s ) Q  exp(Bs )ds  yo, 

as well as the improper integral 

(/o ) lim 9~(t) = XTo e x p ( d T s ) Q e x p ( B s ) d s  yo. 
t--*cx3 

We have 9~(0) - 0 and 

9~'(t) = x T (t)Qy(t) .  

Consider the task of finding a Lyapunov function [158] v of the form 

v(t) - xTo PYo - x T ( t )Py(t) ,  

(8.4) 

with the matrix P to be determined, and such that v(0) = 0 and v'(t) = 99'(t) for 

t > 0 and all initial states x0 and y0. This would yield v - 9~. Differentiating (8.5) 
in view of (8.3), we get 

v'(t) - - - ( x ' ( t ) )Tpy ( t )  -- xT ( t )Py ' ( t )  = - - x T ( t ) ( A T p  + PB)y ( t ) .  

The comparison with (8.4) shows that P must satisfy the matrix equation 

AT p + P B  + Q = 0. (8.6) 

(8.5) 
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This is a Sylvester equation, which is a particular case of (8.1). It has a unique 

solution if and only if/~i(A) +/~k(B)  ~- 0 for all i ,k,  see Appendix C. If, in 

particular, both matrices A and B are stable, then there exists a unique solution 

P of (8.6) for every Q. Moreover, since in this case both x(t) and y(t) tend to zero 

as t -~ oc, we get the representation 

~0 (X) 
P - exp(A T s)Q exp(Bs)ds.  (8.7) 

Consider next the matr ix differential equation 

X'( t )  = AX( t )  + X ( t ) B  + C (8.8) 

with initial condition X(0) = X0, where the coefficients A, B, C and the solution 

X(t )  are m • m, n • n, m • n and m • n matrices, respectively. The solution of 

(8.8) may be represented as 

X( t )  - exp(At)Xo e x p ( B t ) +  fo t exp(As)C exp(Bs)ds. 

Equation (8.8) is autonomous (or time-invariant) in the sense that  its right-hand 

side does not depend explicitly on t. If its right-hand side vanishes for some 

constant matrix,  then this matr ix will be a solution in the following sense. 

D e f i n i t i o n  8.3 A constant m x n matrix R is a steady-state solution (or an 
equilibrium state)  of the differential equation (8.8) if the substitution R = X( t )  
annihilates the right-hand side of the equation, i.e., if R satisfies the Sylvester 
equation 

A R  + R B  + C = O. 

In this case the differential equation has a constant solution t H R. 

If the matr ix  In | A + B T | Im is stable then we may represent the solution 
matr ix R as 

R - exp(As)C exp(Bs)ds. (8.9) 

In this case the differential equation (8.8) is globally asymptotically stable in the 

sense that  for every initial state X0 the solution X(t )  tends to R asymptotically, 
i.e., 

lim X ( t )  = R. 

These observations for continuous-time systems have discrete-time counter- 

parts. Let two discrete time-invariant dynamical systems 

X k + l  - -  Axk, (8.10) 

Yk+l = Byk, 
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with initial states x0, Y0 be given, where k = 0, 1, 2 , . . .  and xk and Yk are m- and 

n-dimensional vectors. The states xk and Yk are then given by 

xk = Akxo, Yk = Bkyo �9 

Consider the problem of evaluating the power series 

cr "-  ~ x~Qy i  - x~ ( A T ) i Q B  i Yo (8.11) 
i = 0  i = 0  

for arbi t rary choices of the initial states x0, Y0 and a given matr ix  Q. Since 

a - XmoSyo, where 
co 

S "-  E ( A T ) ' Q B  i, (8.12) 

i - - 0  

we see tha t  a is convergent for all x0 and y0 if and only if the matr ix  series S is 
also convergent. If S is convergent then 

S - Q + ~-~.(AT)iQB i - Q + A q- (Aq-)iQB i B - Q + A T S B .  

i = 1  i = 0  

Thus, we have the Sylvester equation 

A q - S B - S + Q = O ,  (8.13) 

which is solvable for every Q if and only if )~i(A))~k(B) ~ 1, or 

1 r spect(A) | spect (B). 

Consider finally the matr ix  difference equation 

Xk+l  = A X k B  + C, k = 0, 1 , 2 , . . . ,  (8.14) 

with initial s tate X0, where the coefficient matrices A, B, C and the solution 

matr ix  Xk are m • m, n • n, m • n and m • n, respectively. The solution of (8.14) 
is 

k - 1  

Xk - A k x o  Bk -Jr- E Ai CB~" 
i--O 

A constant m • n matr ix  T is said to be a steady-state solution (or an equilibrium 

state) of the difference equation (8.14) if the substi tut ion T = Xk makes its right- 

hand side equal to T, i.e., if T satisfies the Sylvester equation 

T = A T B + C .  

In this case the difference equation has a constant solution k ~ T. If the matr ix  

B T | is convergent, then the difference equation is globally asymptotical ly stable, 
i.e., 

lim Xk - T ,  
k---*cxD 
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and the steady state solution T may be represented as 

o o  

T - ~ A~CB i. (8.15) 
i = 0  

8 .3  G e n e r a l  l i n e a r  e q u a t i o n s  

In this section we discuss general linear matrix (Sylvester) equations 

E.(P)(X) = C, (8.16) 

in the unknown matr ix X, where the operator 

/2(P) c Lin(p, m, n, q) 

is given by 

E.(P)(X) "-- P2k-IXP2k " -  E AkXBk  
k = l  k = l  

and P := (P1 , . . . ,P2~) .  Here P2k-1 = Ak, P2k = Bk and C C ]Fp• are given 
matrices and m n =  pq =: s. The matrix equation (8.16) is equivalent to the 
vector equation 

L(P)vec(X) = vec(C), 

where 
r 

L(P) . -  Z B: | e (8.17) 
k = l  

is the matr ix  of the operator  s  see [125] and Appendix E. If r is the Sylvester 
index of Z:(P), i.e., the minimum number of terms in the representation of s 

see again Appendix E, then all 2r matrix coefficients A1 = P 1 , . . . ,  Br = P2r in 
(8.16) are nonzero. Let P0 := C and 

D :=  (Po, P )  = (Po, P I , . . . ,  P2~) e IF ~xq x IF ; x ~  x IF T M  x . . .  x IF p x ~  x IF ~xq 

Remark. We use two sets of notations Pj and Ak, Bk, C for the matr ix coeffi- 

cients in (8.16). This is done in order to keep the usual notation with coefficients 

A, B, C, etc., on one hand, and to have unified notations for all coefficients, on 
the other. 

In general some of the matrices in (8.16) may be mutually dependent, for 

instance A H - B2 - A, B1 - A2 - I, which gives rise to the Lyapunov equation 

A H x  + X A  - C. 

Another example is the equation 

A B X C -  X B  2 = C. 
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Since there is a large variety of such combinations, for simplicity, we assume in 
this chapter that  the matrix coefficients Ak, Bk, C are subject to perturbations in 
such a way that  the matrices that are perturbed are independent. Thus, we exclude 
Lyapunov equations which are considered later. 

Important  cases of (8.16) include the following equations. 

(i) Standard matrix linear equations with possibly several right hand sides 

A X  - C. (8.18) 

(ii) Power Sylvester equations 

r~8 
E ~ i k A i X B  k - C ,  ctik ElF. 

i ,k=l  

(8.19) 

(iii) Continuous-time Sylvester equations 

A X + X B - C .  (8.20) 

(iv) Discrete-time Sylvester equations 

A X B -  a X  - C, o~ E IF. (8.21) 

(v) Linear equations in two matrix unknowns, for example 

A X  + Y B  = C, (8.22) 

where A E IF mxm B E ]~nxn , are matrix coefficients and X E ]~rnxn y E 

]Fm x n are the unknown matrices. Setting 

I X  ] ]~2mxn g " - - I X ,  Y] c IF mx2n and V "- y G 

we may rewrite (8.22) in two equivalent forms 

- -  C ,  

or  

[A, 0]V + [0, Im]VB - C. 

(vi) General equations in several matrix unknowns X1, . . .  ,X~, e.g. 

~ rs 

s= l  s=1 k=l  
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where s : F msxr~s ~ l~ 'pxq Set m := ml + . . "  + miT and n := nl +--"  + na. 

If X = [X~j] �9 IF mxn, where Xij �9 1F m~xnj, is a block-diagonal matrix with 

X~s = Xs, then (8.23) may be written as 

IT r s  

E E (  T A, )x e~| (e~| ) - c ,  
s = l  k = l  

where eo~ is the s-th column of I~. 

(vii) General systems of equations in one matrix unknown, e.g. 

Es(X) = Cs, s = 1 , . . . , a ,  (8.24) 

where Ls : IF m x n  ~ IF p~xq8 . System (8.24) may be written as a single 

equation in X as in (vi), 

IT r s 

E E (eITs | A s k ) X  (eo.rs | Bsk) - diag(C1, . . . ,  Ca) 
s = l  k - -1  

(we use the notations from (vi) having in mind that  the sizes of the involved 
matrices are possibly different). 

(viii) General systems of equations in several matrix unknowns. These are com- 
binations of (vi) and (vii) and are not considered in detail. 

In cases (i) - (iv) we have A �9 I~ m x m ,  B �9 IF n x n  and C, X E ] ~ m x n .  

In what follows we assume that  m n =  pq = s and that the ope ra to r / : (P )  �9 

Lin(p, m, n, q,F) in (8.16) is invertible, i.e., that  its matrix L(P)  E 7r sxs, defined 

by (8.17), is nonsingular. This is equivalent to the requirement that  equation 
(8.16) has a unique solution 

X . - 1 2 - 1 ( p ) ( c ) .  

8.4 P e r t u r b a t i o n  p r o b l e m  

In this section we formulate the problem of perturbation analysis for general 
Sylvester equations. 

8 . 4 . 1  N o r m - w i s e  p e r t u r b a t i o n s  

Suppose that  the matrices Py in (8.16) are perturbed as 

Pj ~ Pj +SPy, j = 0 , 1 , . . . , 2 r  

and that  the perturbed equation has again a unique solution (we recall that  P0 = 

C, P2k-1 = Ak and P2k = Bk). Then the problem is to estimate the perturbation 
in the solution X as a function of the perturbations 5Pj in the data Pj. 
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We assume tha t  the information about the perturbat ions 5Pj is coded in the 

norm-wise inequalities 

116Pj IF _< ~j, j = 0, 1 , . . .  ,2r, (s.25) 

where ~j >_ 0 are given quantities. Denote by 

6P := (6P1 , . . . ,  6 P 2 r ) -  ( 6 A 1 , . . . , a B r )  

and 

5D "- (SPo, 5P1, . . . ,  6P2r) - (6C, 5A1 , . . . ,  5Br) 

the per turbat ions in the matr ix  collections P and D. Then inequalities (8.25) may 
be wri t ten as 

_ . ~ 2 r + 1  116DIIg -< rl = [v0, m , . . . ,  ~2,-] T c ..,,+ , 

where 

IIDII~ - [IIPolIF, IIPIlIF,,,,, IIP2~IIF] T ~ R F  2~. 

If some matr ix  Pj is not perturbed,  then we set the corresponding bound ~j 

to zero. However, often it it more convenient to deal only with the matrices Pj 
tha t  are subject to (nonzero) perturbations.  Suppose tha t  these are the matr ix 
coefficients 

PJ,,Pa,... ,PJ,, 

where 0 < j l  < "'" < jp < 2r. Set 

J ' -  { j l , . . . , j p }  c { 0 , 1 , . . . , 2 r } ,  

Ek - -P j~ ,  5k - V j ~ ,  k -  1 , . . . ,  p. 

and 

E . - ( E l , . . . ,  E~), 6 . - [ 6 1 , . . . ,  6~]~ c R; .  

The vectors ~ and 5 are connected by the relations 

r l -  Rh, 5 -  RTr], 

where the permuta t ion  matr ix  

R -  [rpq] E I[~ ( l + 2 r ) x p  - -  1 2r, q -  1 p, , p 0, , . . . ,  , . . . ,  

satisfies R T R - Ip, and the element rpq is equal to I if q - jp and is zero otherwise. 

E x a m p l e  8.4 Consider the equation A X  + X B  - C which corresponds to D - 

(C, A, I ,  I,  B). In principle it is possible to perturb all five matr ix  coefficients in D 

and we have I 5P j lie < Uj, j -- 0, 1 , . . . ,  4. If, however, only the matrices C, A, and 
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B are perturbed, then we have p = 3, 7]2 : 7]3 = 0, E : (El, E2, E3) : (C,A, B) 
and (~1 = 7]0, (~2 = 711, (~3 = 7]4" The matrix R here is 

R 

1 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 1 

Let 

v(a) : -  {aE: IlaEllg _-L< a} 

be the set of allowed perturbations in E, where 

IIEII~ - [ I IE~IIF,. . . ,  IIEplIF] T C R~_. 

The perturbed Sylvester equation is obtained by replacing E with E + 6E, 
which results in P ~ P + 6P and D -~ D + 6D, i.e., 

s  + 5P)(Y) = C + 5C. (8.26) 

We are interested in conditions which guarantee that  the perturbed operator s  
6P) is also invertible. 

Denote by ft C R~ p the set of all 5 such that  the matrix 

L(P + 6P) = L(P) + 6L 

is nonsingular for every 6P C ~ ) p ( 5 ) ,  where 

r 

5 L -  5L(aP) "- Z (5B-~ | Ak + B-~ | 6Ak + 5B-~ | 5Ak). 
k = l  

In general the set ~ has a very complicated structure and we need a simpler 

criterion to decide how small 6 must be for L(P + 5P) to be nonsingular. 

The minimum singular value Gmin(L(P)) > 0 of the matrix L(P) may be 

interpreted as the distance from s to the set of noninvertible operators. 

Let Ftt be the set of all 6, satisfying the inequality 

1(5) .- ~ (llAkll2n2k + IIBkll2n2k-1 + n2k-~n2k) < ~min(L(P)) 
k = l  

(we recall that  V = RS). The next proposition, based on the fact that  

116L112 _</(6), 

shows tha t  the set fh may indeed be used in the perturbation analysis. 
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P r o p o s i t i o n  8.5 The inclusion ~z c fl is valid. 

Proof. For 5 E ftz the perturbed operator s + ~P) is invertible. If e ~ 5 then 

/(s) < 1(5) < Crmin(L(P)) and e e ft. Hence, 5 e f~ and ~tl c ft as claimed, rl 

For 5 E ftl the perturbed equation (8.26) has a unique solution X + ~X, where 

~X = 5X(hE)  "= s  + 5P)(C + 5C) - s  

Let 

5 x  - 5 x ( h E )  "=  II~X(hE)IIF 
be the absolute norm-wise perturbation in the solution. For ~ c ftz denote by 

w(5) := max {hx(~E)" 5E C V(~)} 

the maximum of 5x(hE) over the set P(5) of allowed perturbations 5E. We note 

that  w(5) is well defined, since according to the Weierstrafi theorem [96] the 

function 5z(.)  reaches its maximum in the compact set 79(5) for some 5E - G c 
P(5), i.e., w(5) - 5x(G). 

The expression w(5) may be represented as w1(5)+ w2(5), where w~(5) - 
O(115]1 ~) for 5 --+ 0. The function Wl(.) is first order homogeneous, i.e., Wl(Ah) - 
)~t~l(5 ) for A _> O. 

Def in i t i on  8.6 Denote by 

G' -- G(~ )  -- ( G ' I ( ~ ) , . . . ,  Gp (~ ) )  

the collection of perturbations, which produce the maximum w(5) of 5x(.) accord- 
ing to w(5) - 5x(G(5)).  The perturbation G - G(5) is said to be an extremal 
perturbation. 

Let sk be the number of entries of Ek and set s "- sl + . . .  + Sp. We may 
consider G - G(5) as a parametrization of a s-dimensional manifold S c Rs: 

S " '-  { G ( 6 ) "  (~ C ~ l }  - -6XI (co ( (~ ) )  �9 

The manifold S is the pre-image of the set of maximal values of the function 

5x(')  : ~PE(5) ~ R+ for all 5 E f~l. In general IIGEk (~)tlF : (~k and S has several 
connected components. 

It is usually a difficult task to construct the true bound w : ft ~ / ~ + .  So we 
approach two easier problems. 

The first problem is to find a simple domain ID C ft of positive measure in 

]~P such that  for every 5 C 7P and for all 5P E Pp(5) the perturbed operator 

Z;(P + 5P) is invertible. 
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�9 The second problem is to derive a bound 

5x _< f(llSDllg), 5D ~ T'D(5), 

or, if we have a perturbation 5D in the set 7~v(5) := {hE:  115E[ig - 5} c 
7 )(5), a bound 

5x <_ f(5), 5 e D, (8.27) 

where f( .)  : T) ~ I~+ is a continuous function, nondecreasing in each of its 
arguments and satisfying f(5) = O(11511), 5 ~ 0. In most applications the 

function f is piece-wise analytic. Also, in some cases it is not differentiable 
at OED. 

The quanti ty f(5) in (8.27) is only an upper bound for the true maximal 
perturbation w(5). One of the important  tasks here is to determine how close 
the expressions f(5) and w(5) are, and, in particular, to decide whether f(5) is 
equivalent to w(5) asymptotically in the sense of the definitions from Chapter 7. 

For some classes of Sylvester equations it is possible to prove that  f(5) is exactly 
equal to w(5). Since to find w(5) for a general Sylvester equation in the form (8.16) 

is a hopeless task, we first consider a bound f (5) and then try to determine a class 

of equations for which this bound is asymptotically sharp or exact in the sense of 
Definitions 7.2, 7.4.  

Note that  the bound (8.27) is nonlocal, since it is valid for a finite (although 
possibly small) d o m a i n / )  for 5. In contrast, local bounds are valid only asymp- 
totically, i.e., for 5 --~ 0. 

In what follows we consider mainly absolute perturbation bounds, since relative 
bounds may be obtained from the absolute ones by simple substitution, namely 

CX "-- [[6XI[F < f ([[Dll[Fel , . . - ,  [[DpllFep) 
I I x I I F  - I I X I I F  ' 

where the quantities ~k := 5k/[[DkllF are the relative perturbations in the matrix 
coefficients Dk. 

8 . 4 . 2  C o m p o n e n t - w i s e  p e r t u r b a t i o n s  

Another task of the perturbation analysis for matrix equations is to find component- 
wise perturbation bounds. In our case it is convenient to work with the vector 
representations 

vk := vec(Ek), 5vk := vec(hEk) 

of the matrices Ek and their perturbations 5Ek. 
Let 

Ak ET/k, k =  1 , . . . , p ,  
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be nonzero vectors with nonnegative entries of the size of the corresponding per- 

turbed vectors vk, where 7-tk is one of the spaces R~_ q, R~ m or R+ q. Suppose that 

the perturbations 5va in vk satisfy the component-wise inequalities 15vkl -'~ Ak. 
Set 

- -  

and 

Z~ "-- ( A I , . . .  ,Ap) ,  Iv[ "-- ( IVl l , . . . ,  Ivpl), I vl - ( l ~ v l l , . . . ,  I~v~l) 

(we recall that  Ix[ is the vector whose dements are the absolute values of the 

dements of the vector x). We write v ~ A if Vk 'r Ak for k - 1 , . . . ,  p. 
Let 

~A C 7 - / ' -  7{1 x . . .  x 7-{p 

be the set of all nonnegative collections A, such that  the operator s + 5P) is 
invertible for all 5E with 15vl _-_4 A. Then the problem is to derive a bound for 
I xl ~ function of lSvl, 

Ivec(SX)l ~ F(f6vl), (8.28) 

or, if 5 E -  A, then 

]vec(SX)l F(A) ,  A c (8.29) 

Here Z)zx is the domain of applicability of the bound F. The function F takes 
values in R~ n, satisfies F(0) - 0 and each of its components is a nondecreasing 

function of the elements of the vectors Ak. 

Bounds of type (8.28) or (8.29) may also be local and nonlocal. The concepts 
of asymptotical sharpness, exactness and attainability for component-wise pertur- 

bation bounds are analogous to those for norm-wise bounds from Definitions 7.2 

- 7.5 and 7.7 from Chapter 7. 

8.4.3 Other perturbations 

The bounds considered in the previous section may be viewed as forward in the 

sense that they solve the problem" given a perturbation in the data, find a bound 

for the perturbation in the solution. There are also other types of bounds (e.g., 
backward perturbation bounds [201, 101, 190]), which are connected with an ap- 

proximate solution X of equation (8.16). Note that X may be the solution that is 

computed in finite precision arithmetic. 

Here we may formulate the following two problems. 

P1  Find a bound for I]X - XIIF or yea(IX - xf) .  

P2  Determine the minimal perturbation 5E in the data, which gives rise to the 

approximate solution X. 
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Both problems are connected. If, for instance, 5E is the minimal perturbation 
in Problem P2, then 

A 

I[X -- XI[ F _~ f(llSEIIg) 

and 
A 

v e t ( I x -  x l ) -<  F(le~vl) 

where f and F are the bounding functions, defined in the previous section. 

A direct solution of Problem P1 may be more efficient and more useful in 
practical computations, see for example [99]. Note that  we cannot simply calculate 
the difference X - X, since in most cases we do not know the exact solution X. 

Problem P1 is solved immediately. We rewrite (8.16) as 

E.(P)(X - X )  = R, (8.30) 

A A 

where R - C - s  the residual, corresponding to the approximate solution 
X. Note that  R is an easily computable quantity. Furthermore, we have 

A 

vec(IX - Xl) -< 

IIX-XIIF _< 

L~l(p)vec(R)  [, 

IL- 1 (P)vec(R) [12 �9 

A 

Of course, for computing X -  X it is not necessary to form and invert L -1 but to 
solve equation (8.30) via an appropriate solver. 

Problem P2 may be further developed as follows. 

Def in i t ion  8.7 Let a vector 0 -4 w c R~ be given. The quantity 

c()(, w)"- min { ~  >_ O" s + ~P)(2) - C + ~C, I1~EI19 _~ aw} 

is said to be the norm-wise backward equivalent perturbation (or error) of 
relative to w. 

We note that  usually the elements Wk of w are taken as wk - 115EklIF and in 
this case e(X, w) is called the relative norm-wise error of X. This concept was 
introduced and analyzed in [190] for standard linear equations Ax  = b. 

Let the collection W - (W1, . . . ,  Wp) ~ 7-/ be given with W ~ O, Wk r O, 
k - 1 , . . . , p .  

Def in i t i on  8.8 The quantity 

e(X, W ) ' -  min {c~ _> 0" f_.(P + 5P)(ff,) - C + 5C, I~v I ~_ e W }  

is said to be the component-wise backward equivalent perturbation (or error) of 
X relative to W.  
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8.5 Local  per turbat ion  analysis  

In this section we consider local perturbation bounds for general Sylvester equa- 

tions. These are bounds in which only the principal term of f(5) of order 0(11511 ) is 
known. If we take only this term as a bound, it will be valid only asymptotically, 
i.e., for 5 -~ 0. An application of such bounds for possibly small but neverthe- 
less finite perturbations 5 requires additional justification (e.g., an estimate of the 
neglected second and higher terms). 

The perturbation bounds that  we present are generically asymptotically sharp. 
They are then fully incorporated into the nonlocal, nonlinear perturbation bounds 
derived later. The local bounds are in general not linear but first order homo- 
geneous functions of the vector of absolute perturbations 5. In particular, these 
bounds are not formulated in terms of condition numbers. The reason is that  linear 

local bounds, based on condition numbers, may wipe out the effect of "useful" can- 

cellations among some perturbed quantities, and thus may be more conservative 
than other first order homogeneous bounds. 

8 . 5 . 1  N o r m - w i s e  b o u n d s  

In this section we study a slightly more general perturbation problem. Suppose 
that  every matrix coefficient Pj is a linear combination of the matrices E l , . . . ,  Ep 
such that  

P 

vec(Pj) - ~ TjkVk, j = O, 1 , . . . ,  2r, (8.31) 
k - - 1  

where Vk := vec(Ek). Obviously, this includes our previous statement of the 
perturbation problem as a particular case. Indeed, taking Tpq = I if q = jp and 
Tpq = 0 otherwise, we get Pyk = Ek. 

Suppose that  we have a perturbation 5E in the set Pw(5) := {hE:  115EI19 = 5}. 
The perturbed equation (8.26) may then be written in the equivalent form 

s  = M I ( 6 E )  + ]~2(6X, 6E), (8.32) 

where J~/[1 contains first order and J~42 contains second and higher order terms in 
6X, 6E, namely 

r 

A41(hE) "- 6 C -  ~-~(hAkXBk + AkX6Bk),  
k = l  

M2(z,  .= -  ( AkZBk + AkZ Bk +  Ak(X + Z) Bk). 
k = l  

(8.33) 

Having in mind the dependence (8.31) of the perturbations 5Pj on 5Ek, it 
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follows from (8.32) and (8.33) tha t  

P 

vec[6X l " -  Avec[A/II(6E)] + o(11~112) = ~ Nk6vk + o(!1~112) 
k = l  

= Nvec(bv) + O(115112), 5 -~ 0, 

where A " -  L -1.  The  matr ices  Nk and N are de termined  by 

Xk  "-- A rok -- E (R2i -  1Z2i- 1,k + R2ir2i,k) , 
i = l  

N " -  [N1, . . . ,Np],  

where 

(8.34) 

(8.35) 

R2i-1 " -  (B iX)  x | Ip e F s• (8.36) 

R2~ "- Iq | (A~X) e IF ~• 

Relat ion (8.34) makes it possible to obta in  different local es t imates  

fix _< est(6) + O(1[~1]2), ~ ~ 0, 

where est(~) is a bound for IIN~vl12 when II~ell~ _~ ~. To do this, one has to 
es t imate  the m a x i m u m  of IlN~vll2 via the  maximiza t ion  problem 

IlNu[[2 --+ max,  u " -  [uT , . .  ., u f ]  7- C IF s, uk C IF sk, (8.37) 

subject  to the constra ints  I[Uk[[2 < 6k, k -  1 , . . . ,  p, or equivalently 

[lull~ = [11u1112,..., IlUpll2] T _ ~. (8.38) 

Since in view of (8.38) the domain  for u is compact ,  the maximiza t ion  problem 
(8.37), (8.38) has a solution 

Wl(5, N)  " -[[Nu~ max{[[Null 2 �9 [[ul{g --< 5} (8.39) 

for some u ~ wi th  [[u~ _ 6, which is the desired local bound. Here we write  

Wl(6, N)  for the  principal  a sympto t i c  t e rm wl(5) (which is of asympto t ic  order 

O([1~1[ ), ~ ~ 0) of the  max ima l  pe r tu rba t ion  w(3) in the  solution in order to 

indicate its dependence not only on 3 but  on the ma t r ix  N as well. 

P r o p o s i t i o n  8.9 The function wl (., N)  �9 ]~P+ ~ I~+ in (8.39) is first order homo- 
geneous in the sense that for )~ >_ 0 we have Wl ()~6, N)  = AWl (5, Y ) .  

Proof For A - 0 the  assert ion of the theorem is trivial. For A > 0 we have 

50 I(A(~, N)  - max{[lgu]12 �9 ]]UlIg ~_ AS} 
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[1 

Typically the quantity CO1(5, N) cannot be determined in a closed form. Since 
CO1(5, N)  is a solution of a large optimization problem (8.37), (8.38) of order s, 
its numerical computation may be very expensive. To overcome this problem, let 
us consider the following approximation of this maximization problem which is of 
order at most ( p -  1). 

L e t  ,),1 - 1, 7k  > 0 for k -  2 , . . . ,  p, 7 "- ['),2,..., 7p] T c R~_-I and 

T ' -  diag (I81 , 7 2 1 8 2 ,  " " " , 7 p I s p )  E 1 ~ 8  X 8 ,  

Then 

IINulI=- I[NT-ITu[I= _< lINT-Ill2 IITull~.- lINT-Ill2 ~ll~kll~. 

Hence, we obtain an optimization problem of order p -  1, 

r N ) : =  min{r , 5, N ) :  7 >- 0} _> CO 1 ((~, N), (8.40) 

where r 5, N) = r (7, N)r 5) and 

r N ) : =  [N~ N~ N~] 
, �9 �9 . , 

'),2 7p r 51 ~ + Z  ~ , 5k_k �9 
2 k=2  

These considerations are justified by the following proposition. 

P r o p o s i t i o n  8.10 The minimization problem (8.~0) has a solution, i.e., there 
exists '),0 >_ 0 such that ~0(~, N) = ~(7 ~ 5, N). 

Proof. Denote by ~ := IINII211~lJ2 the value of r 5, N) for '),2 . . . . .  7p = 1. 
Then the minimization of ~ has to be carried out only for those 7, which satisfy 
~(7, 5, N) _</~. On the other hand for any fixed i E {2 , . . . ,  p} it follows that 

r N) _> / ~ l ( 7 i , N )  "--  $ILII~ + 
, ,  

r 5) _> /32(7~,5) .= d l l  + 7~ 2, 

where d := min{Sk :k = 1 , . . . ,p} .  Since 

IrN~lf2 

r 5, N) _>/31(7i, N)/~2 (%, 5), 

we restrict the minimization of r to those 7i for which 

/31(7i, N)fl2(Ti, 5) </3. 
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The last inequality is equivalent to 

-jff - I INi l l  2 ]ILII22 - 1 7 2  + IlLII2211NiII22 < O. 

The corresponding algebraic fourth-degree equation has exactly two positive dif- 
ferent roots, say ai < bi. Hence, the fourth-degree inequality for 7 / >  0 is satisfied 
if ai < 7i < bi and 7 varies in the domain 

"-  {7" ak <_ 7k <_ bk, j -- 1 , . . . , p -  1}, 

which is compact. According to a Weierstrafl theorem [96] the function r 5, N) 
reaches its minimum for some 7 o c {~. [1 

At least three simple local perturbation bounds may be derived for 5x by 
solving the maximization problem (8.37), (8.38) approximately. They are functions 
of the perturbation vector 5 and the coefficients matrix N. We combine two of 
these bounds in order to get a bound, which is relatively tight and asymptotically 
sharp in particular. 

1) Applying several times the triangle inequality to (8.37), (8.38), one obtains 

P p 

IIN~II2 ~ ~ IINkll211ukll2 ~ ~ IINkl126k, 
k = l  k = l  

Thus, we get the first bound 

5x _< estl (5, N) + O([[~1{2), ~ --, O, (8.41) 

where 
P 

estl (5, N) "- ~ KkSk 
k = l  

and K k "-liNk 112 are the absolute condition numbers of the equation. This bound 
is linear in 5. 

2) The second bound uses the result from the optimization procedure for de- 
termining r N) = r  ~ 5, N) (see (8.40) and Proposition 8.10), i.e., 

ax ~ ~0(a, N) + O(llali2), a -~ 0, 

We note that  r N) _< ~(7, 5, N) for every choice of 7 >- 0. If, in particular, we 
take 7 -  [1, 1 , . . . ,  1] T, then we obtain the second bound 

5x _< est2(5, N) + O(115112), 5 --. 0 (8.42) 

where 

est:(6, N )  - JJNJJ~PI611:. 
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This bound is not a linear but  a first order homogeneous function in 5. 

3) Using the relation 

P 

= uHNHNu= E unNnNkuk 
i , k=l  

P P 

<- E []NHNk][2 [luil[2[[uk[[2 <- E ]tNHNkl12 6i6k 
i , k= l  i , k=l  

we have the third bound 

5x _~ est3(5, N)  + O(ll ll ), ~ 0 (8.43) 

Here 

est3(6, N)  "= ~/STN5 

and N - [nik] c=_ R~_ xp is a matr ix  with elements 

nik "- [INHNk[]2 ; i ,k  = 1 , . . . ,p .  

As in case 2), the bound est3 is a norm-like function which is first order homoge- 
neous in 6. 

We have the following relations between the bounds esti, i - 1, 2, 3. 

T h e o r e m  8.11 The quantity est3(5, N)  is bounded by 

x/~115[[2 _< est3(6, N)_< V/ll/VI]2115][2, (8.44) 

where 
nl  " -  min{nii"  i - 1 , . . . , p } .  

Moreover, both inequalities in (8 .~)  are achievable. 

( s .45)  

A 

Proof. The right inequality is obvious. Since the matr ix  N is symmetric and 
element-wise nonnegative, then according to the Perron-Frobenius theorem [26], its 

A 

norm IIN[12 is an eigenvalue of N and the corresponding eigenvector z may be taken 
h 

as nonnegative. Choosing 6 - z, we see tha t  the equality est(5, N)  -IINII2115112 is 
achievable. 

To prove the left inequality in (8.44), suppose tha t  the minimum in (8.45) is 

achieved for i - k, i.e., nl - rtkk, and consider the minimization problem 

p(5) "-- min{xTNx}  

subject to the constraints 

o x,  11 112 = ll6112, 
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where x = [:/;1,... ,Xp] T E ]~P. We have esta(5, N) _> X/~5), where equality may 
be achieved. Furthermore, 

2 = Ii Li - x ,  
iCk 

and hence, 

x-C Nx  - nkkllbll2 + E ( n i i -  nkk)X2 + E E nijxixj > nkkllbll 2 
~r iCj j 

which proves the left inequality in (8.44). 
_ _  _ _  2 Finally, choosing xi - 0 if i r k and Xkk 115112, we see that xT.Nx nkk]]5]12, 

which proves that the case of equality x/~115112 = est3(5, N) in (8.44) is achievable. 
r] 

The bound estl, based on condition numbers, is bounded from below by est3. 
Indeed, we have 

i eat3(5, N) _< E IINill2IINjll25ibJ = E I[Nil125i - estl(5, N). 
i,j--1 i=1 

Thus, linear local bounds of type estl, based on condition numbers, are generally 
less sharp than first order homogeneous local bounds of type est3 and eventually 

est2. In turn, the bounds est2(5, Y)  = IINII2115112 and est3(5, g )  = v/5-rN5 are 
alternative, i.e., which one is better depends on the particular value of 5, see 
Proposition 8.12 below. 

In case of single perturbations, for example when all perturbations 5k except 
one are equal to zero, then all three bounds estl, est2 and est3 coincide. Also, in 
problems such as A X  = C with very little specified structure, estimates in terms 
of condition numbers produce acceptable results. For general equations of type 
(8.16) with strongly specified structure, however, estimates based on condition 
numbers may be pessimistic. 

As a result of the local perturbation analysis we have the overall homogeneous 
local estimate 

5x _< est(5, N) + O(115112), 5 --, 0, (8.46) 

where 

est(5, N) := min{est2(5, N), est3(5, N)} (8.47) 

= min {[[N[[2[[~[[2, V/(~T/~}. 
Since the bound (8.46), (8.47) is obtained by taking the minimum of the quan- 

tities est2(5, N) and esta(5, N), the overall estimate est(., N) may not be differen- 
tiable for some values of 5. Also, for p > I the function est(., N) is not differentiable 
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at 0 E R~_. As a result we see that est(., N) is a piece-wise real analytic function 
in the domain R~_\{0}. 

In the general case we get the following comparison between the bounds est2 (5, N) 
and esta (5, N). 

P r o p o s i t i o n  8.12 The bounds est2(~, N) and est3(6, N) are alternative, i.e. which 
one of these expressions is smaller depends on the particular choice of 5 and N. 

Proof. We have 

IfNll~ 
N HN1 �9 �9 

�9 

N y N ~  . . .  

[NHNIII2 

[NHNlll2 

1 2 

"... IIN N II  1 
. IINHN II  

-IINll2. 

Moreover, the inequality IINII 2 < IINII2 holds for some equations�9 Since /V is 
nonnegative definite and satisfies /V - /~n- ~_ 0, then according to the Perron- 

A 

Frobenius theorem [26] an eigenvector ~ of the matrix N, corresponding to its 
maximum eigenvalue IINII2, is nonnegative, and we may choose 5 = ~ (if ~ is not 
strictly positive we may choose ~ to be strictly positive and arbitrarily close to ~). 
For this choice of 5 we have est2(5, N) _< esta(5, N). 

To show that the inequality est2(5, N) > est3(5, N) is also possible is more 
subtle (the inequality IINI ~ _> Crmin(N0) is not helpful, since a nonnegative eigen- 

A 

vector, corresponding to the minimum eigenvalue of N, may not exist). Assume 
that p > 1, since otherwise both bounds are equal to IINl11251. 

First we show that 

{ 2 } 
IINII 2 > n l  � 9  m i n  IIN~[12" i -  1 , . . . , p  . 

Indeed, suppose that the opposite inequality IINII~ ~ ?~1 holds�9 Since 

{ 2 } 
IINll~ ~ n2 : :  m a x  IIN~ll2 i -  1 , . � 9 1 4 9  , 

this implies IlN]] 2 - TL 1 - n 2 � 9  Moreover, for any fixed k _> 2 we have ]]NIJ2 

]][N1, Nk]ll2 and hence, II[N1, Nk]ll2 --IINlI[2 --IINkll2 �9 
Let Nk -- UEV H be the singular value decomposition of Nk�9 Then 

II[N1,Nk]rf~ _ UH[N 1 Nk][ .[81 0 
' 0 V 

= I I [UHN~,2 ] [ [ 2  -- [[r~ll2, 

2 
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= II[a,al(Nk),0]112 = JII.11; +g?"k) = 

and hence, a = 0. Therefore, N1 = A must be singular, which is a contradiction 
and hence, IlNllz > nl .  

Let Ic be the index for which nl  = llNkllz, let > 0 be fixed, and let 

be a small positive parameter. Choosing 6i = E for i # k and 6 k  = Jr2 - ( p  - 1 ) E 2 ,  
we get 

Using the inequality J I N J J 2  > fi, we see that the inequalityestZ(6, N) > est3(6, N) 
holds. 0 

For some equations we have llNlli = 11fi112. In these cases the bound est3(6, N )  
is superior to estZ(6, N ) ,  i.e., ests(6, N )  5 estZ(6, N ) ,  for all 6. At the same time 
it follows from the proof of Proposition 8.12, that the opposite is impossible, i.e., 
for a given equation the inequality est3(6, N) 5 estZ(6, N) cannot be valid for all 
6. 

As we have mentioned above, the bound esta(6,N) is as least as sharp as 
estl(b,N) in the sense that est3(6,N) 5 estl(6,N) for all 6 and N .  Going fur- 
ther, it is interesting to  see how much better est3(6,N) can be in comparison 
with estl(6, N). The following result shows that the ratio est3(6, N)/estl(G, N )  is 
bounded from below by a constant, depending only on p (the size of the vector 6). 
Indeed, we have 

ests(6,N) L 11~112 = c I l ~ i l l ; ~ p ,  d i=l 

where T E 

 IT\\^, we obtain 
is a vector with components ~i := (INi1/26i. Since here estI(6,N) = 

and thus 

(8.48) 

The left equality is reached if NFN, = 0 for i # j ,  and 6i = l/llNZJ2, while the 
right one is reached if all 6i except one are equal to zero. 
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It is interesting to note that when NHNj - O, i r j, then 

est2(5, N) - max{llNi[12" i = 1 , . . . ,  p} 115112 

and we may have 

est3(5, N) 
est2 (5, N) 

min{l[Nill2 "i - 1 , . . . ,  p} n l  

max{llNill2, i = 1 , . . . , p }  n2 

This equality is reached when all elements of 5 except 5k are equal to zero, where 
IINkll2 _ IIN~II2 for i = 1 , . . . , p .  Therefore, the ratio est3(5, N)/est2(5, N) may 
become arbitrarily close to zero. A similar argument shows that the same is valid 
for estl (5, N)/est2(5, N). 

The bound (8.46), (8.47) is generically at least asymptotically sharp as shown 
in the next proposition. 

P r o p o s i t i o n  8.13 Let the right singular vector u of the matrix N, corresponding 
to its maximum singular value IIN]I2, satisfy IlUllg ~- O. Then the bound (8.~6), 
(8.~ 7) is asymptotically sharp. 

Proof. Let the perturbation 5E be chosen as vec(SE) = u. Then 

IINu[12 - IINII2 - est2(llUllg, N) ~ est(llu g, N) 

and hence, the bound (8.46), (8.47) is asymptotically sharp. 

Since the inequality Ilull~ ~ 0 holds generically, Proposition 8.13 tells us that 
the bound (8.46), (8.47) is asymptotically sharp generically. 

The bound estl, based on condition numbers, will be asymptotically sharp if 
there exist p -  1 constants Ak > 0 such that Nkuk = AkNlUl, where uj is the right 
singular value of the matrix Nj, corresponding to its maximum singular value 
]INjll2. In this case ,kk = IINklI2/IINlll2 and 

( ) IINull2 -IINlII2 1+ E )~k = E llNkII2" 
k=2 k = l  

The problem whether the bound (8.46), (8.47) is asymptotically exact is more 
difficult and will be discussed later for particular classes of Sylvester equations. 

Note that chopped local estimates of the form 

5x <_ est(5, N), 

obtained from (8.46) by neglecting second and higher order terms in 11511, may 
underestimate the true perturbation arbitrarily. 
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E x a m p l e  8.14 Consider the linear scalar equation ax = c with a, c > 0. 

chopped local estimate in relative perturbations is 

The 

x . . _  

~ ' =  Ix[ < ~ + ~ '  ~ 
15cl 1hal 
lel' ~ ~  $al' 

while for 5c > 0 and - a  < 5a < 0 the exact relative perturbation bound is 

cx = 1 - -  E a 

With 5a approaching - a  the chopped bound arbitrarily underestimates the exact 

perturbation in the solution. (} 

A difficulty that  arises in practice is that  local estimates, being valid only 

asymptotically (for 5 --+ 0) are often used nonlocally, i.e., for fixed values of 5. 

Even when 5 seems small in the sense that  the norm of the relative perturbations 

vector is much smaller than 1, the chopped bound may become useless due to the 

finite escape of the perturbed solution, namely 5x ~ oo as 5P --+ P -  P,  where 

P E 0gt and L ( P )  is not invertible. 

To apply local estimates rigorously one must find the so called asymptotic 

domain of the bound (see [135]), for which the neglected term O(]]5]] 2) can be 

bounded as c]15]] for some constant c. But to estimate this constant may be as 
difficult as to find a nonlocal perturbation bound. 

8.5.2 Component-wise  bounds 

A local component-wise bound for 5X follows immediately from (8.34) - (8.36). 

Recalling that  ]vec(bEk)]--< Ak, we have 

P 

vec(15Xl) _~ ~ IN~l~k + O (ll~ll~), ~ -~ 0 (S.49) 
k = l  

8 . 6  N o n l o c a l  p e r t u r b a t i o n  a n a l y s i s  

In this section we present a nonlocal perturbation analysis of Sylvester equations, 

which gives rigorous nonlocal nonlinear bounds for the perturbation in the solution 

5x as a function of the perturbations in the data 5. A nonlocal perturbation 

bound is defined in a certain domain 7), where it is guaranteed that  the perturbed 

equation still has a (unique) solution. 

Nonlocal bounds often have a practical drawback: their domain of applicability 

may be too small, and they may produce pessimistic results for some equations, 

overestimating considerably the true perturbed quantities. This is due to the fact 

that  such bounds are aimed at the worst case. 
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E x a m p l e  8.15 Consider the perturbed equation (8.26) under a special choice of 

the perturbation in C, namely 

6C = s  + 5 P ) ( s  

This artificial perturbation gives 5x = 0, but of course the perturbation analysis 

machinery cannot recognize this and produces its worst case bounds. 

We emphasize again that  nonlocal perturbation bounds must be at least asymp- 

totically sharp. This means that  the first order part of the corresponding nonlocal 

bound must be asymptotically sharp. 

8 . 6 . 1  A p p l i c a t i o n  o f  t h e  B a n a c h  p r i n c i p l e  

Nonlocal perturbation analysis of nonsingular linear matrix equations may be done 

by an application of the Banach fixed point principle. 

Consider the operator equation 

x = r  ~), (8.50) 

where ~ : A:' • ?-f ~ A" is a continuous mapping. Here A' is a normed space 

with norm I1" ]] : A" ~ R+ and 7-/ is a normed space with generalized norm 

Equations of this type arise naturally in perturbation analysis problems, where 
x is the perturbation in the solution and ~ is a vector, characterizing the pertur- 
bations in the data. It is assumed that ]l~llg -~ 5, where 5 >- 0 is a given vector. 

The problem is to find a domain l) C R~_ and a bound Ilxll _< f(5), 5 e 7P with 

f(~) --- o(ll~ll) for 6 --, 0. For this reason we shall refer to (I) as the equivalent 
perturbation operator. 

The equivalent perturbation operator is constructed as follows. Consider the 
(linear or nonlinear) matrix equation 

F(E,X) =0, 

where F : 7-I x A" --, y is a continuous mapping, X is the unknown matrix and 

E E 7-/ is a collection of matrix or vector parameters. Let X be the solution, 

corresponding to a particular value of E. If the partial Frech@t derivative 

Fx  := F x ( E , X )  : X ~ Y 

of F in X at the point (E, X) is invertible, than the perturbed equation 

F ( E  + hE, X + 5X) = 0 

may be written in the form (8.50), where x := 6X, U := 6E and the equivalent 

perturbation operator is given by 

�9 (x,r]) - F x l ( F x ( x )  - F ( E  + r;,X + x)). 
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E x a m p l e  8 .16 Consider the algebraic Riccati equation 

F(E, X) := E1 + E 2 X  + X E 3  -k- X E 4 X  - 0, 

where the unknown X and the coefficients Ei are square matrices. Then 

Fx(Z) : (E2 + XE4)Z + Z(E3 + E4X). 

Setting x = 5X and r/i = 5Ei we get the equivalent per turbat ion operator 

(I)(x,/']) -- - F x I ( ~ ] I  if- ?]2 x q- 2?73 q- 2?742 )  

-- Fx l ( ( r ]2  + Xr ln )x  n t- x((rl3 + . 4 X )  + x ( E 4  n L- rl4)x). 

(> 

We may rewrite the expression for ~ as O(x, ri) = ~ 1 ( r l ) +  ~2(x, rl) , where 

~1(rl) := ~(0, rl) and <~2(x, 7 ) : =  ~(x,  77) - ~(0, rl). Suppose tha t  ~(.,  r/): X ~ X 
is affine, i.e., tha t  ~2(' ,  7 ) :  X ~ X is linear, and tha t  q)(x, 0) = 0. Setting 

11~2<-, ~)11 = m a x { l l ~ 2 ( x ,  ~)11: Ilxll = 1},  

we note tha t  the function r/ H 11~2(-, ~)ll is continuous and vanishes for 7] = 0. 
Thus, for a given 6 E R~_ the quantities 

#(6) := max {llCz(., ~)11: Ilwllg _~ ~} 

and 

o(5)  : - m a x { l l ~ l ( n ) l l  : II~llg --< 5} 

are well defined and tend to zero as 6 ~ 0. 

Let us choose 6 sufficiently small so as to have #(5) < 1 and denote the set of 
such 6 b y / 9  C R~_. Set 

ss := {x  c x :  Ilxll _< f ( 6 ) } ,  

where 

For x, y E Ba we have 

o(5) 
f(6)-= 1 - p ( 5 )  (8.51) 

II(I)(x, r])ll ~ 11(:I)2(x, 7-])11 + II(I)l(r])ll < lz(6)f(6)+ 0(6) = f ( 6 )  

and 

t l~ (~ ,  ~) - ~ ( y ,  ~)11 = I I ~ ( x  - y, ~)11 < ~ (~ ) l l~  - yll. 

Therefore, ~(.,  r]) is a contraction and maps the closed set B~ into itself. According 
to the Banach fixed point principle there exists a unique solution x of the operator 
equation x = ~(x,  7) in the ball B~, i.e., 

Ilxll _< f(6) ,  5 C 79. (8.52) 
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The estimate (8.52), (8.51) is nonlocal and with a proper choice of 0(~) and 
p(6) it may be asymptotically sharp, asymptotically exact, or even exact in the 
sense of Definitions 7.2, 7.4 and 7.5. 

In order to apply this approach to the perturbation analysis of linear matrix 
equations we first rewrite (8.26) as an operator equation 

5 x  - ~ ( s x ,  5E). 

The main problem is then to estimate properly the quantities 0(5) and #(5) making 
them as small as possible using the underlying structure of the linear operator 
s This is done in a unified way, obtaining a tight bound of type (8.52). We 
note that  for problems with minimum specified structure (such as A X  = C) very 
little can be done in improving the perturbation bound. For highly structured 
equations of type (8.16), however, taking into account the underlying structure, 
one can get tight nonlocal perturbation bounds. 

To derive component-wise perturbation bounds, consider again the operator 
equation (8.50) in x C X = R s under the assumptions already made for 4). Here 

x - vec(X), ~/= 5E and ]~/] ~ A. In order to study component-wise perturbations 
we use the following generalization of the Banach fixed point principle [135], see 
also Appendix D. 

Since (I) is affine, there exist a vector O(A) E 7~ s and a matrix ~(A)  E R~_ xs + 
such that  

!~1(~)1 -~ O(A) 

and 

I~(~, ~) - ~(y,  ~)1 _~ ~ ( ~ ) l x  - yt 

for all x, y E I~ ~ and ~ with I~[ ! A. By the continuity of (I) and the condition 
�9 (0, 0) = it follows that both O(A) and ~(A)  tend to zero as A ~ 0. Hence, for 
A sufficiently small we have 

rad(~(A))  < 1. (8.53) 

Set 

F ( ~ )  := (~ - ( ~ ) ) - ~ O ( ~ )  (8.54) 

and let BF(A) be the set of all x with Ixl _~ F(A).  Then for x E BF(a) we have 

I+(x, v)l _~ v (A)F(~ )  + e ( ~ )  = F(~) ,  (8.55) 

i.e., ~(BF(A), r/) C BF(A). Relations (8.53) and (8.55) show that  �9 is a generalized 
contraction on BF(A). Hence, there exists a unique solution x of the operator 
equation (8.50) in the rectangle BA, for which 

lal ! F(A),  A E ~PA, (8.56) 

where :DA is the set of all A ~ 0 such that  rad(~(A))  < 1. The relations (8.56), 
(8.54) give the desired component-wise perturbation bound. Here the problem is 
again to estimate properly the vector O(A) and the matrix ~(A).  
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8 . 6 . 2  E q u i v a l e n t  p e r t u r b a t i o n  o p e r a t o r  

The equivalent perturbation operator (I) for a general Sylvester equation of type 
(8.16), 

s = C, 

may be written in the form 

+(SX, 6E) = +~ (SE) + +2(5X, 6E), 

where 

+1(5E) - E-~(P)(SC) + (l(p,m,,~,q) - Z:-I(P)o E(P + 5P)) (X), 

(I)2(6X, 6E) - -  ( X ( p , m , n , q )  - -  E-I (P)  o E(P + 5P)) (SX). 

In order to get tight perturbation bounds it is necessary to estimate the norm or 
the components of the operator 

l(p,m,n,q) - E-X(P) o E(P + 5P) 

as accurately as possible. 

8 . 6 . 3  N o r m - w i s e  b o u n d s  

In order to apply the results from Section 8.6.1 we rewrite the perturbed Sylvester 
equation as 

where 

5X - <I:,(SX, 5E) -=  +1 (SE) + +2(5X, 5E), (s.57) 

\ ] k=l  

Taking the vec operation on both sides of (8.57), and using (8.58) and the 
notation of Sections 8.5 and 8.6.1, we have 

II(I)I((~E)[IF ~ 0 ( (~ ) " -  est(5, Y) + IIXll2e2((f), 

1l+2(Z, 5E)IIF 
< ~ ( 6 ) -  ~ 0 )  + ~(6), z r 0, 

llzll~ 

where the quantities e~(5) are given by 

P r 

k--1 k--1 

P 

~ = ~ (IIA (B:  | ~)I1: IIT:~-l,~ll: + ttA (• | A~)II~ ]lT~,~li:) �9 
i--1 

Thus, we have proved the following result. 
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T h e o r e m  8.17 For general Sylvester equations the following nonlocal perturba- 
tion bound holds 

5x <_ f ( 5 ) " =  est(5, N ) +  I l X l l ~ ( ~ ) ,  5 c T~6. (8.59) 
1 - e l ( 5 ) -  e2(5) 

The domain of applicability of the bound (8.59) is the set 

(8.60) 

We note that  ei(5) = o(11611~), 6 ~ 0. Hence, the expression f (5)  may be 
expanded as 

k 
f (5)  - ~ f j (5)  + O([[s[[k+l) ,  5 ---+ 0, 

j= l  

where f j (5)  - O(ltS[[J), 5 ~ O. The first three terms in this expansion are 

f l(6)  := est(5, N),  

f~(6) := 11xI1~2(6) + el(5)est(6, N), 

f3(5) "-  (e2(5) + e2(5)) est(5, N).  

When the matrices in D vary independently (or, in particular, are constant), 
then we have p = 2r + 1 and we may set 

E1 "-C, E2k "----Ak, E2k+l : - -Bk,  k -  1 , . . . , r .  

0 Here 5k - 6k-1, k - 1 , . . . , 2 r  + 1, and 

2r+1 
e 1 ( 6 )  "-- ~-~ /k6k,  Z~ "= IIAII2, 

k=l 

12i "-  ][A ( B [  | Ip)II~, 12i+1 "-- [[A (Iq | A~)II2. 

If a particular matrix Pk is not perturbed, then we have 5k+1 - 5~ - 0 in the 
above relations. 

Since the bound (8.46) is generically asymptotically sharp, so is the bound 

(8.59). The problems of asymptotical exactness and exactness, however, are more 

subtle and, at this stage, will be illustrated using model scalar equations. 

E x a m p l e  8.18 Consider the scalar equation 

ax + xb - (a + b)x - c, x - c /(a + b), 

where a + b r 0 and I~c] <_ 5c, 15al <_ 5a, 15bl <_ 5b. Here s acts as s  - (a + b)x. 
The domain ~t for ~a > O, 5b >_ 0 is the triangle, given by 

6~ + 6b < la + bl 
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and the bound (8.59) becomes 

+ Lxl(5  + 5b) 
5x <_ f (5 )  - la + b [ -  (5~ -t- 5b)" 

At the same time for 5~ + 5b < [a + bl the actual perturbation is 

5 c -  x(Sa + 5b) 
5x = 

a + b + 5a + 5b 

Based on the last expression, a simple calculation shows that  w(~) = f(~) and 
hence, the bound (8.59) is exact. (} 

E x a m p l e  8.19 Consider the scalar equation 

axb = abx = c, x = c/(ab), 

where ab ~ 0 and the notation of Example 8.18 is used. The domain f~ for 5~, 5b 
is the rectangle, described by the inequalities 

Since 
~c - x(b6a + aSb + 5a~b) 

5 x =  
(a + 5a)(b + 5b) ' 

then the exact perturbation bound is 

5c + Ix[(IblSa + ]alSb- 5aSh). 
Cd ( (~ ) 

( la l -  5 )(Ibl-Sb) 

At the same time the bound (8.59) reduces to 

5~ + [x](Ib[5~ + [alSb n t- 5aSb) 
5x < f (5 )  = 

labl - [blS~ - [ a i S b -  5aSb 

and is valid in the set 

(8.61) 

l )  :=  {[(~a, (~b] T ~ 0 :  Ibl~a + lalSb + 5~5b < labl). 

The principal terms of order O(II~LL) of w(5) and f (5 )  coincide and hence, the 
bound (8.59) in this case is asymptotically exact. However, it is not exact. The 

difference between f(~) and w(~) is in the sign of the quadratic term 5a~b in the 
numerator and denominator of both expressions. (} 

Using the results presented in Examples 8.18 and 8.19 it may be shown that  
only in the cases (i) and (iii) of Section 8.3 it is reasonable to expect that  the 
bound (8.59), (8.60) are exact for some classes of equations. 

It was experimentally observed that  for small 5 the exact perturbation behaves 
more as 

est(5, N )  - IlXl12e2(S) , 
5x  < 

_ + 

rather than as according to (8.59), see also expression (8.61) for w(5) in Exam- 
ple 8.19. 
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8 . 6 . 4  C o m p o n e n t - w i s e  b o u n d s  

Consider the problem of deriving nonlocal component-wise perturbation bounds 
for Sylvester equations. Suppose first that all matrices 

C=Po,  P I = A I , . . . , P 2 r = B r  

in (8.16) are perturbed and the perturbations are bounded as 

wc(15Pkf) _~/xk, k = 0, 1 , ,  2~ 

(if a particular matrix Pj is not perturbed, then in the following formulas we set 
Aj = 0). Then, using (8.58), we obtain 

[(I) 1 ((~g)[ -'~ (~}(A):-- 01(A) o r- O2(A)vec([X[), 

[~2(Z, 5E)[ ~_ ~(a)lZl := (tI/l(A) + O2(A))IZ I. 

Here the vector O1 (A) ~ 0 and the matrices O2(A) >-_ 0, ~1 (A) ~_ 0 are determined 
by 

Ol(/N) "-- IAIA0 if- ~ ]A ( ( X B k )  T @ Ip)[ A2k_ 1 (8.62) 
k=l 

+ ~ IA (Iq | (AX))[A2a, 
k=l 

r 

o2(A) := ~IAI (W~ | 
k=l 

r 

till(a) :--- E [A ( S [  @ Ip) I ( i  n @ W2k-1) 
k=l 

r 

+ E IA (Iq | Ak)l (W~ @ Ira) 
k--1 

~ [AI ([ek[ T | W2k-1 -[- W T @ IAk[), 
k=l 

where 

W2k-1 "-- vec-l(p, 7n)(n2k-1), W2 k "-- vec-l(n, q)(A2k). 

Therefore, we have proved the following theorem. 

T h e o r e m  8.20 For general Sylvester equations the nonlocal component-wise per- 
turbation bound is 

Ivee(~X)l ~ f ( a ) ' -  ( 5  - ~ l ( a )  - o ~ ( a ) ) - ~ ( O l ( a )  + o~(zx)lxl) .  

The domain of applicability of the bound is 

A C DA := {A ~ 0 �9 rad(~l(A) + (~2(z~)) < 1}. 

(8.63) 

(8.64) 
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Since Oi(A), tgi(A) are of order O(IIAI] i) for A ~ O, we have 

k 
F(~) -- ~ Fj(A) + o(llAllk§ A ~ 0, 

j = l  

where [[Fj(A)[ I = O([[A][J), A --~ 0. 
F(A) are 

The first three terms in the expansion of 

F3(~) 

= el(A), 

: e2(a)lXl + ~ l ( a ) O l ( a ) ,  
-- ~I / I (Z~)O2(A)IXI-[-  (xI/2(n) -[- 0 2 ( n ) )  e l ( A )  - 

Component-wise bounds may be derived also using the following approach. Let 
the vector equation 

( A + B ) x = b  

be given, where the matrix A is nonsingular and rad(IA-1BI) < 1. Then the 
matrix A + B is also nonsingular and the following component-wise perturbation 
estimate for the solution x is valid: 

Ixl _-< ( I -  IA-~B[) -1 ]A-lb[. 

The trick here is to exploit fully the underlying structure of A, B and b (and hence, 
of the products A-1Z) and not to use directly the inequalities IA-1ZI -~ IA-111ZI. 
The advantage of this approach may be seen for example in the inequality for 
~1 in (8.62) - the second bound for ~I(A) is obtained by direct majorization 
IA-1ZI ~ IA-11 IX] and is hence, worse. 

8 . 7  N o t e s  a n d  r e f e r e n c e s  

Algebraic linear matrix equations have been intensively studied since the times of 
Sylvester and Kronecker [152, 215, 214], see also [196, 193, 229]. Brief historical 
reference may be found in [8]. In particular, the problems of existence, uniqueness 
and representation of the solution are solved for such equations, see e.g. [10, 
12, 19, 20, 33, 36, 56, 69, 84, 94, 101, 106, 107, 153, 155, 165, 167, 189, 206, 
181, 205, 224, 228, 230, 235, 236, 241]. The properties of special linear matrix 
transformations have also been studied [40, 41, 79, 86, 216, 223, 222]. There is a 
variety of techniques, algorithms and software for solving linear matrix equations 
[17, 13, 14, 6, 15, 18, 25, 45, 46, 50, 72, 73, 82, 88, 91, 90, 109, 164, 175, 192, 
194, 202, 239, 240]. The great interest in linear matrix equations is due in a large 
extent to their wide application to various areas [11, 49, 48, 59, 62, 104, 105, 103, 
170, 225]. Also, the perturbation theory for linear matrix equations, including the 
Sylvester and Lyapunov equations arising in linear control theory, has been studied 
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[38, 110, 68, 95, 99, 114, 113, 112, 136]. The perturbation theory for operators in 
abstract spaces [119] and for general linear equations [97, 98] also applies in a large 
scale to the perturbation analysis of linear matrix equations. Other investigations 
are connected with establishing bounds on the solution of linear matrix equations 
are given [171, 176]. 

Some results concerning backward perturbation analysis are given in [99, 101, 
112]. 



Chapter 9 

Specific Sylvester equations 

In this chapter we present perturbation results as well as some general properties 

for classes of Sylvester equations that  arise in linear control theory. The results 

are based on those from Chapter 8. 

We derive bounds of type (8.59) and (8.63) for the types of equations in (i) - 

(iv) in Section 8.3 and we present the expressions for est(5, N), el(~) and e2(~) 

in the norm-wise case, and for O(A) and ~(A)  in the component-wise case. The 

following slightly different notation is used: 

�9 IIZLIF - the norm-wise bound for Z; 

�9 A -  the collection (Ac, AA)in cases (i), or (Ac, AA,AB) in cases (iii), (iv), 

respectively. The same convention is adopted for the vector 5 with elements 

8c, 5A and 5c, (~A, ~B. 

�9 Az  ;2_ vec(lZ[) - a vector component-wise bound for Z; 

�9 Wz -- vec - l ( /kz )  ~ [ZI - a matrix component-wise bound for Z, 

where Z stands for A, B, C or X. To simplify the notation, we use the same letter 

s for the Sylvester operator in all cases. 

The estimates presented below are valid for both real and complex equations. 

9.1 Standard linear equation 

The standard linear matrix equation (8.18), namely 

A X = C ,  (9.1) 

with A invertible, gives rise to some of the most popular and widely used perturba- 
tion bounds (norm-wise, component-wise, structured and backward) in numerical 

155 
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linear algebra [83, 101]. It is instructive to see how the concepts for various types 
of perturbation bounds (see Chapter 7) are applied to this equation. 

We consider the nontrivial case C r 0 which implies X r 0. However, the 
results are valid also for the case C = 0 with the exception of those connected to 
relative perturbation bounds. 

Writing the perturbed equation in the operator form 

(SX - ~(~SX, (SE) "-  A-1((5C - (SAX) - A-I(SArSX, (SE "-  ((5C, (SA), 

we get the following well known a posteriori bound 

ax _< f (a)"--  IIA-1112(~c + IIX]I2(SA) 
1 - IIA-1112~A 

1 
~ .  (9.2) 

, aA < i i j . { i  I ' ' - -1 ' '  2 

This bound is asymptotically sharp (see Definition 7.2) and it is even asymptot- 
ically exact (Definition 7.4) as shown below. We also prove that for m > 1 the 
bound (9.2) in general cannot be exact (see Definition 7.5), and the class of equa- 
tions, for which it is exact, is fully described. Note that here the exact domain for 
•A is the interval [0, 1/llA-ili2). 

For equation (9.1) the bound (8.59) yields 

where 

ax < est(aC, aA,A, NA) aA < 1/11AII2, (9.3) 
- 1-LLhLL a,, ' 

A -  ( I n |  - 1 - I n |  - I ,  NA - - A ( X  T|  

In turn, the component-wise perturbation bound for equation (9.1) is obtained as 
follows. If 

rad (IA-11WA) < 1, 

then the bound (8.63) reduces to 

[vec(6X)l ~_ (In~ - In | ( IA - I IWA) )  (IA[Ac + INAIAA). (9.4) 

The only visible difference between the classical bound (9.2) and the bound 
(9.3) is in the numerator, since the denominators coincide in view of 

Ilail  -IIA-111 . 

The numerator in (9.2) is 

IIA-1ll2(6c + [fX]126A)- est l (Sc,  Sm, A, NA). 

On the other hand we know that 

est _< est3 _< estl. 
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In fact, both bounds coincide for this case. Indeed, 

NA = - A ( X  -c | Ira) = - ( I n  | A-X)(x T | In)  = - X  T | A -1 

N = [A, N A I = [ I n , - X T ] |  -1 

and 

Hence, 

A TNA - --(In | A--C)(X r | A -1) = - X  -r | ( A A r )  -1 

and 

IINAII~ 

ILIA, NA]II2 

= IIA-1112[[Xl]2, [[A TNA[}2 = ]IA-~II21IxII2, 

- ~ /  [[A-11]2 I] [In,--X T] 112 = ]IA-1I[2 i -t-iiX[[2 

est3(~C, SA,A, NA) = [IA-~112(5c + I[X[[25A) = estl(SC, SA,A, NA). 

Consider the bound that is obtained by minimizing the expression r 5, N) 
in 7, see (8.40). We have that 

2 
" 22  

= ~ + 1121122@ + @~2 + IlXl[2~c 72 

The minimum of ~ in ~/> 0 is achieved for 

~o __ I l X l t 2 5 C / S A  

and is equal to estl (we suppose that (~A > 0, since otherwise the results are 
trivial). 

Thus, the local bounds (with the exception of est2) coincide with the bound est. 
The reason is that equation (9.1) has no specific structure. After having shown 
that the bound f(~) is asymptotically sharp, we prove that it is also asymptotically 
exact. 

P r o p o s i t i o n  9.1 The bounds (9.2) and the (8.59) are asymptotically exact for all 
Sylvester equations of type (9.1). 

Pro@ Let 

X = Q E x R  H = Qdiag( ry l (X) , . . . , c rk(X) ,0 , . . . ,0 )R H, 

A - U r a V  ~ = U d i ~ g ( ~ I ( A ) , . . . , ~ ( A ) ) V  H 

be the singular value decompositions of X and A, respectively, where 

k := rank(X). 
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L e t  qj, ri and uj, vj be the columns of the orthogonal matrices Q, R and U, V, 

respectively. If we define integers ko and go via 

ko " -  m i n { i ' o i ( A )  - am(A)}, 

go " -  m a x { i ' o i ( X )  - o-l(X)}, 

(9.5) 

then we have 

J[Nvec(SE)][2- I[vec-l(m,n)(Nvec(SE))[lF = I [ A - I ( 6 c -  5AX)[IF , 

where 

vec(aE) :-- [vec q- (6C), vec T (6A)] T . 

If we fix the integers i c {1 , . . . , g0}  and j E { k o , . . . , m } ,  and choose 

5 C  : =  

~A "-  

(~C (enTi (~ Uj) R H -- (~cujr H, 

where eni is the i-th column of In, then 

A - l u j  - I IA-Xl l iv j ,  q ~ Q E x R  n - O-l(X)ri" 

Since 

we get 

IIA-111~ - 
oTto(A) ' 

][Nvec(6E) [[2 H -I[A-~uj(6A~H+6Aq~Q~xRH)I[F 
= (6c + IIXII26A)[IA-lujrHllF 

= ]]A-1112(5c + IIXII26A)]lvj~nljF 

= IlA-1l]2(Sc + IIXII~6A) = es t (a ,N)  

and hence, 

where 

est(6, N) < col (6, N),  

Wl(a,N) " - -  max{[[Az + NAZAII~ " Ilzll~ ~ 6c, Ilzml(2 ~ 6A}, 

On the other hand 

est(5, N) _> wl (5, N) 

by construction. The last two inequalities yield 

est(5, N) - c o  I (~, N) 

which completes the proof. D 
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Finally we will de termine  the class of equations of type (9.1) for which the 

pe r tu rba t ion  bound is exact.  To find conditions for exactness of the bound (9.2), 

we consider mainly  the case n = 1 when (9.1) is a vector equation,  since it is 

equivalent to n vector equat ions for the columns of X.  ICll Iyll 
C --  " "-- U H C ,  y - " " -  V H X ,  

Cm Ym 

Sett ing 

where ci, Yi C ]~lx n , we get E A y -  c, i.e., 

(TiYi -- Ci, i -- 1 , . . . ,  m, (9.6) 

where ai " -  cri (A). 

We look for ex t remal  pe r tu rba t ions  

C ~ C-~- G c ,  E A ~ E A -~- G E A  

with 

in the pair (EA, c) for which the norm of the per tu rba t ion  

(~Y - -  ( ~ A  -t- G N A ) - - I ( G c  -- G~ay ) 

in the solution 

is maximal ,  i.e., 

y : ~ A l C - -  v H x  

~(a) 
- -  m a x  {JI(EA + 6~)-1(6c- ~Y)IIF " II~cllF ~ ac, II~rllF ~ ~A} 

-- II(~A + G~A)--I(c~--  G~AY)II2- 

To do this we use the notion of an acute per tu rba t ion  of a nonsingular ma t r ix  A. 

D e f i n i t i o n  9.2 A perturbation 5A of A is acute  in the norm I1" II if 

and 

II~AII < 

]I(A + ~A)-lll- 

IIA-~ll 

IIA-111 
1 -[IA-11111e~AIl 

Often it is be t te r  to es t imate  II(A +5A)-1112 as a function of 115AIIF. Then  this 

definition mus t  be slightly modified, since the F-norm is not an opera tor  norm but  

satisfies the  inequali ty 

IIABlIF <_ IIA[12[[B[IF 
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which yields 

II(A + 5A)-1112 <_ 
1 -  IIA-1112115AItF 

D e f i n i t i o n  9.3 A per turbat ion  aA of  A E g s  with 

115AIIF < (rmin(A) 

is said to be F-acute i f  

I[A-1[[2 
I[(A + 5A)-1[[2 = 1 -rlA-1II2]IaAItF a m i n ( A ) -  IlaAIIF 

Given a value a with 
0 < c~ < 1/IIA-1112, 

there are exactly m -  k + 1 different F-acute perturbations 5A with 

lISA[IF -- a, 

namely 

6A - - a  u j v  H, j - k, . . . , m.  

For the matrix EA the F-acute perturbations are 

5SA = - a  E i i ( m ,  m)  

with k0 < i < m. Generically O'm_ 1 > O" m and k0 = m, i.e., there is only one 
F-acute perturbation 

H 
6A = - a  Um Vm. 

The properties of acute perturbations strongly depend on the underlying norm. 
If we consider p-acute perturbations 5A in the H61der p-norm with 

I]SAI]p < 1, 

for which 
LIA-lll  

II(A + 5A)- l]]p  = 1 -112-~llptlSA]lp ' 

then, for instance, if m > 1, there are infinitely many 2-acute perturbations. 

It follows from the inequalities ai > 0 and the diagonal structure of system 

(9.6) that  Gr.a ~ 0 and that  the i-th element of Gr must have the sign of the 
corresponding right-hand side ci, provided that  n = 1. Moreover, Gr.A must be 
diagonal, i.e., 

GZA = - d i a g ( e i , . . . , e m ) ,  ei >_ O, 

Gc = ['Yl s ign(c i ) , . . . ,Tm sign(cm)] T, Vi - > 0. 
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Hence, 
6y{ - • 

7~ + ly~le~ 
O'i -- ~i 

The extremal per turbat ion is then obtained as a solution of the maximization 
problem 

) 7~ + ly{le{ 2 
--~ max (9.7) 

O'i -- ~i . _ _  

subject to the constraints 

m m 

2 < 6~, (9.8) - <  - , 

i=1 i=1 

where hA < am. 
Using particular examples, we see that  in general the bound (9.2) is not exact 

when m > 1. 

E x a m p l e  9.4 Consider the system (9.6) with m - 2, n - 1 and 5c = ( ~ A  - -  ?7. 
The bound (9.2) here is 

( i ) f ( v , v ) -  1+  y~+y~ o ~ - ~  

The maximization problem (9.7),(9.8) in O'~, e~ depends on five parameters G1, G2, 

lYll, lY21 and 77, where 

G1 > 0"2 > O, 0 _< ~7 < G2 

and 

ly~l + ly~l > o. 

Depending on the relations among these parameters we have the following two 
c a s e s .  

First, let (0-1 - a2) or (at  > G2 and lYII < ]Y21)- Then 

~(n, n) - (z + m~x{lyl l ,  l y ~ l t ) ~  
G2 - -  

In this case the extremal perturbat ion Gr~A in EA is F-acute. The bound f(r;, r;) 

is exact if and only if (a 1 >__ G 2  and C l  - -  0) or (al - -  G 2  and c2 = 0). 

Second, if gl > a2 and [yl[ > lY21, then the bound f(~?,~) is not exact. At 
the same time the extremal perturbat ion in Y]A may not be F-acute. Indeed, the 

maximum norm of the perturbat ion by in y for an F-acute perturbat ion Gr.A of 
~ A  is 

G 2  - r] 

Suppose that  

(1 + tylt)O2 > (1 + ly=l)~l 
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and 

r / <  (i + lyll)o2 - (1 + lY21)o1 
l y l l -  ly:l 

Then, taking the perturbat ions in c and EA as 

5c--  1 0 ] 5F.A -- 
0 ' 0 0 

we obtain tha t  the norm of the perturbat ion in y is 

/21 " - -  (1 + ly l l )  > v,2. 
G2 - 7  

Hence, the extremal perturbation,  for which the norm of 5y is at least ul, cannot 

be F-acute. 

The following proposition reveals the role of F-acute perturbat ions in exact 
bounds. 

P r o p o s i t i o n  9.5 I f  the bound (9.2) is exact, then every extremal perturbation GA 

in A is F-acute (this is true in the general case n >_ 1). 

Proof. Suppose tha t  the bound (9.2) is exact (f(5) - w(5)) but the extremal 

per turbat ion GA in A is not acute. Then 

II(A + GA)-XlI2 < 
O'm -- 6A 

which yields 

~(5) - I](A + G A ) - I ( G c  - GAX)II F 
_< II(A + GA)-l l f~  IIGc - G~XI  F 

IICc - CAXIIF ~c + IIXII~A < < 
O ' m  - -  (~ A - -  O ' m  - -  (~ A 

= f(5),  

i.e., the bound is not exact. This contradiction shows tha t  GA must be F-acute. 
[] 

The converse s ta tement  to Proposition 9.5, namely tha t  an extremal perturba- 

tion may be F-acute, while the bound (9.2) is not exact, is not true as demonstrated 

in Example 9.4. Hence, it is important  to determine the class of equations (9.1), 

for which the bound (9.2) is exact. 

T h e o r e m  9.6 I f  n - 1, then the perturbation bound (9.2) is exact i f  and only 

if  there exists an integer j r { k , . . . , m } ,  such that ci - uriC -- 0 for i ~ j (or 

HCII 2 IICII2) where ul, um are the columns of the equivalently, such that Iluj - , . . . ,  

matrix U in the singular value decomposition A = UEA V H of A. 
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Proof. Necessity. Suppose that  the bound (9.2) is exact. Then according to 
Proposition 9.5 the extremal perturbat ion GZA in EA is F-acute, i.e., there exists 

an integer j E {k0 , . . . ,  m} such that  

5 y i -  { 
"Ti/ai if i r j, 

(~j + lY j lSA) / (~m -- 5A) if i - j .  
(9.9) 

Since a~ >_ aj  for all i E {1 , . . .  ,m}, the maximum of 1lSyll2 in ~'1,... ,')'m is 
achieved for 7~ - 0 if i ~= j and "yj - 5c. Hence, 

115yll~ - 1 5 y j l  = 5o + lYjlSA 
a m  - 5 A  " 

Since the bound is exact, it follows from the comparison with the right-hand side 

of (9.2) that  lYj[-  IlY[[2. Having in mind that  y~ - uHC/ai, we see that  y and 

hence, C has all but one element (in the j - th  position) equal to zero. 

Sufficiency. Let ][uHC[] 2 --[[Cl[ 2. Then the only nonzero element of uHc and 
hence, of y is in the j - th  position and (9.9) holds. Choosing 7~ = 0 if i ~ j and 
~ j  • (~C we get 

11@112 - @ j l  - ~c + lYjI~A _ _ ~c + IlYlI2~A _ _ f ( ~ ) ,  
am - 5A am -- 5A 

i.e., the bound f(5) is reached and is thus exact. [3 

In the generic case ko = m Theorem 9.6 tells us that  the bound (9.2) is exact 
if and only if 

c H u  - [ 0 , . . . ,  0, •  -r 

If the perturbations are measured in 2-norm, then we have 

115xII2 ~ IIA-~II2(Ile~CII2 + IIXII2115AII2). 
1 -  IIA-I[I2II6AII2 

The bound (9.10) is asymptotically exact for all n >_ 1. 

rem 9.6 we have the following result. 

(9.10) 

Similarly to Theo- 

P r o p o s i t i o n  9.7 The bound (9.10) is exact for n -  1 if and only if 

Proof. The proof follows immediately by using the 2-acute perturbat ion 

5•A -- diag(0, -~2Im-k+l) 

in system (9.6). V1 

It follows from AX - C that  

IICII2 ~ I[A[[iI[x[12 
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and 
1 IIAtl2 

IlXl12 ~ IICII2 
Substituting the last inequality in (9.10) yields the well known a priori relative 
perturbation bound 

ex G cond2(A)(ec + eA), (9.11) 
1 - c o n d 2 ( A ) e A  

where ez := II~ZII2/IIZII2 for Z = C , A  and 

cond2(A) "-IIAII2IIA-1112, 

Unfortunately, in general the bound (9.11) is not asymptotically sharp, this is 
the price for deleting the a posteriori quantity [IX[12. 

The asymptotically exact (and hence, asymptotically sharp) relative perturba- 
tion bound here is 

e'x < cond2(A)(cec + eA) 
1 - cond2(A)eA ' (9.12) 

where 

Since 

we have 

Ilcll~ IIcIl~ 
C " - -  - ~ "  

IIAII211XII2 IIAII211A-ICll2 

IIA-1CII2 <_ IIA-I[I2[[cII2, 

1 
< c < l .  

cond2(A) - - 

Thus, if cond2(A) is large, c is close or equal to 1/cond2(A) and eA/cC is small, 
then the a priori bound (9.11) may be arbitrarily larger than the true a posteriori 
bound (9.12). 

E x a m p l e  9.8 Let 

and 

[lO 1 Iol 
A =  0 e , C -  1 

0 
5 A -  0 

0] [0] 
- e  2 , 5 C -  e 

where ~ > 0 is a small parameter. The exact relative perturbation in X is 

c X - 
2c  

The a priori bound (9.11) here takes the form 

l + a  
EX __< f a p ( E ) " - -  1 - ~' 
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while the bound (9.12) is reduced to 

2s 
X'u X ~_ ~tr(s  1 -  e 

(and is even exact for this particular case). We see tha t  the ratio of the two bounds 

~tr(s 2s 

tends to infinity as s tends to zero. (} 

It follows from the above considerations tha t  the bound (9.11) is asymptotical ly 

exact (for all n >_ 1) if and only if c -  1, which is equivalent to 

IIcii2 : IIAII211XII2 - IIAII2IIA-1CII2  �9 
(9.13) 

This condition may be reformulated as follows. 

P r o p o s i t i o n  9.9 Set 

m0 "= max{/"  ai(A)  = ( 7 1 ( A ) } .  

The bound (9.11) is asymptotically exact for any n > 1 i f  and only if  one of the 
following alternative conditions holds: 

1. A - aQ, where 0 r a E R and Q is real orthogonal, when mo - m in the 

real case, and A = aQ,  where 0 ~ a c C and Q is unitary in the complex 
case; 

2. u r i C -  0 for i > too, when mo < m, 

Proof. 1. In the real case we have m0 - m if and only if A - aQ,  where Q is 

real orthogonal, i.e. Q c O ( m , R ) .  In this case 

X = Q r C / a  

and 

IIxll2 = IIc112/Ic~1. 

The complex case is treated similarly. Since IIAII2 - l a l ,  we have 

IICII2 = IIAII211XII2. 

to 
2. Consider the t ransformed system (9.6). The condition (9.13) is equivalent 

llclt~ = flrAIl~llyll 22 
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which in turn gives 

Since 

it follows that  

f o r / > m 0 .  D 

mo m 2 mo m 

E c i + a - 2 f f -  ci + ci" 
�9 i = u - t - 1  (7i  i = 1  i = v - t - 1  

(71 > a u + l  _ ~ ' ' "  ~__ Crm, 

ci - uriC -- 0 

Combining Theorems 9.6 and 9.9 we also get the following necessary and suf- 

ficient condition for exactness of the bound (9.11). 

T h e o r e m  9.10 The bound (9.11) is exact i f  and only i f  A = aQ,  where 0 r c~ c R 

and Q c O(m, R) in the real case, and A = aQ,  where 0 7/= a c C and Q is unitary, 

i.e., Q E bl (m)  in the complex case. 

At the same time the relative bound (9.12) is exact together with the absolute 
bound (9.10) under the weaker condition of Proposition 9.7. When A is a scalar 

multiple of an orthogonal or unitary matrix as in the condition of Theorem 9.10 

then k0 = 1 and the condition of Theorem 9.7 holds. 

E x a m p l e  9.11 Let the matrices A, B and C in the Sylvester equation 

A X + X B  = C  

be n x n diagonal with diagonal elements ai, bi and ci, respectively. Let 

c~ := min{[ai + bj[ : i , j  = 1 , . . . , n }  = laio + bjo [ > O. 

Then the solution X is the unique diagonal n x n matrix with diagonal elements 

Xi. 

Note that the above results depend on the used norm. For HSlder p-norms with 

p r 2 the conditions for various types of exactness of the perturbation bounds will 
be different. 

In Figures 9.1 and 9.2 we show the elements of the relative perturbed solu- 

tions 5X/IIXII  of 3rd order well-conditioned and ill-conditioned linear equations 

generated by perturbations in the elements a11, a21 and a31 of the matrix A. The 
perturbations in the data are represented by spheres while the perturbed solutions 

are represented by ellipsoids. 
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Relalive perlurbalions in the SDlUllOn of a linear equation 

Figure 9.1: Perturbed solutions of well-conditioned linear equation 

Relalive perturbations In the solu1ion 01 a linear equation 

Figure 9.2: Perturbed solutions of ill-conditioned linear equation 
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9 . 2  G e n e r a l  e q u a t i o n s  

In the case of (8.19) we have an interesting equation with (8.20) and (8.21) as 

particular cases. The spectrum of the linear matrix operator s is then 

spo t,   

where Ak(Z) are the eigenvalues of the matrix Z. Hence, equation (8.19) is 
uniquely solvable if and only if 0 r spect(s The bound (8.59) may be applied to 

this case by ordering the degrees A i and B j for (i, j )  with/3ij r 0 as {P1, P2 , . . .}  

and using the following result. 

P r o p o s i t i o n  9.12 For every nonnegative integer i and 

~ A -  II~AIIF 

the following estimate holds 

] [ ( A + S A ) ~ - A ~ [ [  F < ([]A[[2 + 5A) i --[[AI[~ - k [[Alli-ksk 
- -  2 

k=l 

- illAII~-ISA + 0(52A) 5A --+ O. 2 (9.14) 

Proof. We prove the inequality in (9.14) by induction on i. For i - 0 the 
inequality reduces to 0 _< 1 -  1 = 0. Suppose that  it holds for i = m > 1, i.e., that  

O~m - -  II(A + 5A) m - AmlIF ~ / ~  :-- (11A[12 + 5A) ~ --IIAI[~- 

For i = m + 1 we have 

Ctrn+l - [[(A + 5A)(A + 5 A )  m - A ' ~ + I [ I  F 

= [[A((A + 5A) m - A m) + 5A(A + 5A)m[[F 

_< [[Al[2Ctm + [[(A + 5A)m][25A 
< ffAfl~Zm + (JlAII2 + ~A)m~A -- Zm+x, 

i.e., am _< ~m implies OZm+ 1 ~ /~rn+l and the proof is complete. D 

9 . 3  C o n t i n u o u s - t i m e  e q u a t i o n s  

The spectrum of the operator s in the continuous-time Sylvester equation 

c ( x )  := A X  + X B  = c (9.15) 
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spect(s - { A ~ ( A ) + A k ( B ) ' i - 1 , . . . , m ,  k - l , . . . , n }  

= spect(A) |  

As corollaries of Theorems 8.17 and 8.20 we obtain the following results. 

Corol la ry  9.13 The norm-wise perturbation bound for equation (9.15) is 

est(Sc, (~A, 5B, A, NA, NB) ' 
5x <_ 

1 -IIAIle(SA + 5B) 

w h e r e A -  (B T @ I m + / n |  -1, 

NA = - A  (X T | Ira), Ns  = -A( In  | X)  

(9.16) 

and the expression for est is given in (8.,~ 7). The bound (9.16) is valid for 

1 
(~A + (~B < = ffmin(A). 

I lhl l~ 

Corol la ry  9.14 The component-wise bound of type (8.68) for equation (9.15) is 

I,~Xl _~ (5 - ~ (A))-IOI(A) 

with 

e,(A) 
~I/I(A) 

- I a l A c  + INAI~A + INBIAB, 

= IA(In | WA)I-k Ia (w; | 
and it is valid if rad(ff~l(A)) < 1. 

E x a m p l e  9.15 Consider the Sylvester equation 

c ( x )  . -  A X  + X B  - C 

with 

A __  
1.5 0 .5 ]  B -  [ 0.5 
0.5 1.5 ' -0.5 

05] c [1 2] 
0.5 ' 2 -1  " 

The Sylvester operator s is invertible and the solution is 

x [01 1]0 
The matrix L of s is 

L m 

2.0 0.5 -0.5 0.0 
0.5 2.0 0.0 -0.5 

-0.5 0.0 2.0 0.5 
0.0 -0.5 0.5 2.0 
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and we have 

1 
N c  - L -1 -- 

12 

7 - 2  2 - 1  

- 2  7 - 1  2 

2 - 1  7 - 2  

- 1  2 - 2  7 

1 
N A - - L  - l ( x  T |  - -  

2 - 1  - 7  2 

- 1  2 2 - 7  

7 - 2  - 2  1 

- 2  7 1 - 2  

Furthermore, 

and 

Hence, 

1 
NB -- - L  -1 (12 | X) = ~-~ 

2 7 1 2 

- 7  - 2  - 2  - 1  

1 2 2 7 

- 2  - 1  - 7  - 2  

I I N ~ N z [ 2  - 1, Y , Z  c { C , A , B }  

IINI12 - ] I [ N c ,  NA,NB]II2 - x/3. 

est2(5, N) -- v/3 V/5~ + 5~ + 5~ _< estl(5, N) - est3(5, N )  - 5c + 5A + 5B 

and the perturbat ion bound is 

5x ~ 5c n a 5A -}- 5B 
1 --SA - -SB 

E x a m p l e  9.16 Consider the Sylvester equation 

s  - A X  + X B  - C 

with 

A -  0 1 0 0 0 1 " 

The Sylvester operator s is invertible and the solution is X - I2. 
representation of s is 

and we have 

L - diag(A + / 2 ,  A) 

N c  - L -1 

2 - 9  0 0 
1 0 2 0 0 

4 0 0 4 - 3 6  

0 0 0 4 

The matrix 
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with  

:= IINcII2 = 9.1098 

and 

NA = NB = - N c .  

Hence, the  nonlocal  p e r t u r b a t i o n  bound  is 

1 5x < v(Sc  + 5A + 5c) 5A + 5B < --. 
- 1 - 12 (5  A -t- 5 B )  ' lJ 

Taking the  pe r tu rba t ions  as 

(9.17) 

[ 0 01 [0 01  B=[0 0] 
- e  0 ' e 0 ' 0 - e  ' 

where e > 0 is a small  pa rame te r ,  a simple compu ta t i on  shows t ha t  the  p e r t u r b e d  

Sylvester ope ra to r  is invert ible if e < eo, where 

e0 - 2/(11 + v / 1 1 7 ) -  0.0917 

(up to four digits) is the  smaller  posit ive root  of the  quadra t ic  equat ion  

e 2 - l l e  + 1 = 0. 

For e < co the  p e r t u r b a t i o n  in X is de te rmined  by 

18e - 4 e  
5 X l l  = 4 -  9e '  5x21 - 4 -  9e' 

- 9 e  e(1 - e) 
~x12 = 1 - 1 1 e + e  2' 6 x 2 2 -  1 - 1 1 e + e  2 

and we have 

340 

~ - ~ x ( ~ ) -  ~ ( 4 -  9~)~ 

At the  same t ime the  bound  (9.17) gives 

1 9 -  2e + e  2 
(1 - l i e  + e2) 2 ' e < 0.0917. 

27.3293e 
5x <_ f ( e ) : =  , e < 0.0549. 

1 - 18.2195e 

9 . 4  D i s c r e t e - t i m e  e q u a t i o n s  

The  spec t rum of the  ope ra to r  Z2 of the  discrete- t ime Sylvester equat ion  

s  := A X B  - c~X = C (9.18) 
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is 

spect(s - {Ai(A)Ak(B) - a" i c {1 , . . . ,m} ,  k E {1 , . . . ,n}}  

= spect(A)N spect(B)Q {a} 

The application of Theorem 8.17 to equation (9.18) gives the following result. 

Corol la ry  9.17 The norm-wise perturbation bound for equation (9.18) is 

6x < est(SC,SA, SB,A, NA,NB) + IIXII211AII*~ASB (9.19) 
- 1 - 1 A S A  - -  1 B S B  - - 1 1 A [ 1 2 5 A S B  ' 

where 
h -  (B T | A -  aims) -1 

and 

NA 

1A 

= - A  ((XB) T | Ira), NB -- - A  (In | ( A X ) ) ,  

- IIA (B T o Im)I1~, Z. -IIA(In <~ A)ll2. 

The domain 7) for 5A, 5 B in (9.19) is defined by the inequality 

ZASA + ZBSB + IIAII25ASB < 1. 

Finally, the component-wise bound (8.63) in this case is as follows. 

Coro l la ry  9.18 The component-wise perturbation bound for equation (9.18) is 

15xI _~ (5  - ~I/1 (A) - -  O2(A))-1(O1(A) + o2(,X)v~c(tXI)), 

where 

01(A) 

~1(~) 
- IAI/Xc + ]NA[AA + fNB]AB, O2(/X) --tAI (W~ + WA), 
- IA (B ~ | z~) ] (z~ | W~)+  LA(z~ | A)L (w~  | Zm). 

9 . 5  N o t e s  a n d  r e f e r e n c e s  

Algebraic linear matrix equations have been intensively studied since the times of 
Sylvester and Kronecker [152, 215, 214], see also [196, 193, 229]. Brief historical 
reference may be found in [8]. In particular, the problems of existence, uniqueness 
and representation of the solution are solved for such equations, see e.g. [10, 
12, 19, 20, 33, 36, 56, 69, 84, 94, 101, 106, 107, 153, 155, 165, 167, 189, 206, 
181, 205, 224, 228, 230, 235, 236, 241]. The properties of special linear matrix 
transformations have also been studied [40, 41, 79, 86, 216, 223, 222]. There is a 
variety of techniques, algorithms and software for solving linear matrix equations 
[17, 13, 14, 6, 15, 18, 25, 45, 46, 50, 72, 73, 82, 88, 91, 90, 109, 164, 175, 192, 194, 
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202,239,240]. The great interest in linear matrix equations is due in a large extent 
to their wide application to various areas [11, 49, 48, 59, 62,104, 105,103,170,225]. 

Perturbation analysis for linear matrix equations, including the Sylvester and 
Lyapunov equations arising in linear control theory, has been done in [38, 110, 68, 
95, 99, 114, 113, 112, 136]. 

Perturbation bounds for the standard vector linear equation A x  = b are given 
in many textbooks [64, 36, 106, 122, 54, 224]. However, the problems of exactness 
of these bounds have benn considered here for the first time. 

The perturbation theory for operators in abstract spaces [119] and for general 
linear equations [97, 98] also applies in a large scale to the perturbation analysis 
of linear matrix equations. Other investigations are connected with establishing 
bounds on the solution of linear matrix equations are given [171,176]. 

Some results concerning backward perturbation analysis are given in [99, 101, 
112]. Backward errors and conditioning for structured linear equations are con- 
sidered in [97]. 
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Chapter 10 

General Lyapunov equations 

10.1 Introductory remarks 

In this chapter we present a complete perturbation analysis for general Lyapunov 
matrix equations. Local and nonlocal, norm-wise and component-wise, perturba- 
tion bounds are derived for real and complex Lyapunov equations, particular cases 
of which are the continuous- and discrete-time Lyapunov equations, arising in the 
theory of linear time-invariant systems. Results in this area have been already 
published in the literature for particular classes of Lyapunov equations, see e.g. 
[95, 125, 134]. 

The first order bounds are based on the standard induced norm as well as on the 
Lyapunov norm of Lyapunov operators. The latter norm allows to obtain tighter 
results for Lyapunov equations under symmetric perturbations of the constant 
term. 

Conditions for invertibility of certain classes of Lyapunov operators are also 
presented. 

Due to the highly specific structure of Lyapunov matrix equations, the results 
for complex equations cannot be deduced trivially from those for real equations. 
For this reason we treat real and complex equations separately. 

10.2 Application to descriptor systems 

Matrix Lyapunov equations arise naturally in many areas of linear systems theory. 
In this section we discuss the use of such equations in studying continuous and 
discrete time-invariant dynamic systems in descriptor form. 

Consider the continuous time-invariant descriptor system 

ESc( t )  - A x ( t ) ,  t C R+; x(0) = x0 E ]l~ n, 

175 
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together with the cost functional 

J~(x) - xr( t )Cx( t )d t ,  

wherex(t)  E R  n a n d E ,  A, C E R  n x n , E r  

Suppose first that we have a regular descriptor system, i.e., that E is nonsin- 
gular and the matrix E - 1 A  is stable, 

spect(E-1A) c C_. 

Then it follows from the Pontryagin maximum principal (see [167]) that 

J~(x) - xXo Xcxo, 

where Xc _> 0 is the unique solution of the Lyapunov equation 

+ c - 0 

Here the continuous-time Lyapunov operator s E Lin(n, R) is defined as 

f,~(X) "- ( E - 1 A ) T X  + X E - 1 A .  

If the matrix E is ill-conditioned with respect to inversion, this may cause nu- 
merical difficulties (the formation of E - 1 A  should be, of course, avoided). An 
approach to deal with this problem is as follows. Setting 

X "= E T y E ,  

the descriptor Lyapunov equation in Y is 

( Y )  + c - o, 

where the continuous-time descriptor Lyapunov operator s E Lin(n,R) is de- 
fined by 

s  . -  A T y E  + E T y A .  

Note that the standard continuous-time Lyapunov equation 

A T x  + X A  + C  = 0  

is a particular case of the descriptor equation for E - In. 
If the matrix E is singular with 

rank(E) - r < n, 

then let 

E -  USV T - UI EV~ 
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be the singular value decomposition of E, where the matrices U - [Ui, U2], V = 

[V1, V2] are orthogonal, U1, V 1 E R nxr, and 

Setting 

and 

S " -  diag(E, 0), E " -  d i a g ( a l ( E ) , . . . ,  a t (E) ) .  

y - V~  x , z -- V2T x , 

H "-  U T A V  - [ H i j ]  

where H is a block 2 x 2 matr ix  with Hl l  E IR rxr,  we get 

Ey(t)  -- H l i y ( t )  + H12z(t),  

0 -- H21y ( t )+  H22z(t).  

Suppose tha t  H22 E ][~(n-r)x(n-r) is nonsingular, i.e., tha t  the descriptor system 

is of index 1 (this can always be achieved, see [24, 167]), and 

Then 

Xo E Ker ( [H21,H22]vT) .  

z(t)  = -H~2i  H2i y(t),  

the vector y is the state of the descriptor system 

P 4 ( t )  - B y ( t ) ,  t c R + ,  y(O) - yo - VlrXO, 

with 

B "-  Hl l  -- H12H2-21H21  �9 

The cost functional takes the form 

where 

If 

then we have 

4 ( ~ ) -  K~(y).-  f0 ~176 y S ( t ) D y ( t ) d t ,  

- H ~  H~2 T ] v T c v  _ H~21 D-=  [~, 

spect ( E -  1 B) C C_, 

K~(y) - y0~Ty0, 

where T solves the Lyapunov equation 

( ~ - I B )  

H21 ] " 

T T  + T E - i B  + D = 0, 
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i.e., the problem is reduced to the regular case. 

Consider similarly the discrete-time descriptor system 

Ex(t + 1) = Ax(t), t E {0, 1, . . .};  x(O) = xo E I[~ n, 

together with the cost functional 

c ~  

Jd(X) - E xT (t)Cx(t), 
t = O  

using the same notation as in the continuous-time case. Suppose first that the 
matrix E is nonsingular and the matrix E-1A is convergent, i.e., 

spect(E-1A) C ]I}l. 

Then, see [167], we have 

&(x)  - x~Xdxo, 

where Xd is the unique nonnegative definite solution of the Lyapunov equation 

c d ( x )  + c = o, 

where the discrete-time Lyapunov operator/2d E Lin(n,  R) is defined by 

E.d(X) := ( E - 1 A ) T X E - 1 A -  X. 

To avoid the computation of the matrix E-1A, we set 

X := ETYE. 

The discrete-time descriptor Lyapunov equation for Y is 

cff  (Y) + c - 0, 

where 

s (y) . -  Aq-YA_ ETyE.  

The standard discrete-time Lyapunov equation 

A T X A - X  +C = 0  

is a particular case of the descriptor discrete-time Lyapunov equation, correspond- 
ing to E = In. 

The case when E is singular is treated similarly as in the continuous-time case. 

Complex descriptor systems with x(t) E C ~, etc., may be studied in the same way, 
see [167]. 
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10.3 Addi t ive  matr ix  operators  

To solve the perturbation problem for general complex Lyapunov equations we 

need some facts about additive matrix operators. In particular, we are interested 

in real representations of complex additive (not necessarily linear) operators. 

Consider a matrix function (or matrix operator) 

[kjl: ] F n x n  -+  I nxn, 

where f~j : ]~nxn  ~ IF are scalar functions of a matrix argument. By ~-T = [fj~] and 

9 rH - [fj~] we denote the transposed and complex conjugate transposed operators 

to the operator 9 c, respectively. 

Every matrix operator 
~" : i ~ n x n  __+ ]~nxn  

is equivalent to a vector function 

f .  F n2 ___+ IF n2 

by setting 

f (X) = vec(~'(vec -1 (x)), 

where 

X := vet(X),  X -~ vec-l(x) .  

In turn, a complex operator ~- : C nxn  --~ C n x n  may be identified with the real 

operator 
fi'IR : iRnxn X R n x n  --+ R n x n  X R n x n ,  

that  is defined as follows. Let X = X0 + ~X1 and 

.)~(X) -- .)~0(X0, Xl)-Jr- ~-1 (X0, Xl),  

where X, and ff~ are real. Then we may set 

.)FIR(x0, Xl ) :--(.~'o(Xo,Xl),..~l(Xo, X l ) ) .  

We can also set 

[ "fi'o(Xo,X1) 1 ")FIR (X0 ' Xl ) "-  ~Fl(X0, Xl)  �9 

In this case the co-domain of ~-R is R 2nxn. 

If Z = Zo + zZ1 c C nxn ,  where Z0, Z1 E R nxn, then set 

vecI~ (Z) := v e c ( a ~  ] E ]i~ 2n2 Z IR " -  

vec(Zl) J 
Zo -Z1 
Z1 Zo 

For 
A, B, Z E C nxn 

C C 2n x 2n 
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and 

we have 

and 

where 

Z : Z 0 -~-$Z 1 E C n ,  ZO,Zl  E R n 

vec~(AZB) - (B T | A)~vec~(Z) 

v e c ~ ( A z ) - A ~ [  Z~ ] 

T@A1 
( B T |  B ~ | 1 7 4  

(B~ |  T| ] 
B ~ | 1 7 4  J" 

Hence, if s E Lin(n, C) and 

Mat(/:) E C n2xn2 

is the matrix of s then 

vec~(s Mat~(s 

We recall [119] the following definitions. 

Definition 10.1 An operator ~ is additive if 

U(X + Y) = f ( X )  + 9c(Y), 

homogeneous if 

f = a x  

and semi-homogeneous if 
=  7(x) 

for all X,  Y E F nxn and a E F. An operator .~ is linear if it is additive and 
homogeneous, 

U ( a X  + ~3Y) = a.~(X) + j3$'(Y), 

and semi-linear if it is additive and semi-homogeneous, 

.T(aX + ~Y) = -&T(X) + -~$'(Y), 

for all X,  Y E IF nxn and a,/3 E F. 

In the real case ]F = R the properties of linearity and semi-linearity coincide. 

Also, a complex semi-linear operator becomes linear if we consider C nxn as a linear 

space over R instead of C. This is based on the observation that a linear space V 

over any field ]F (including V - IF) is also a linear space over any subfield ]E of IF. 
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Any general operator/2 E Lin(n,F) may be represented as 

s  - ~ A i X B i ,  (10.1) 
k = l  

where Ai, Bi E IF" x n  are given matrix coefficients and r is the Sylvester index of s 
i.e., the minimum number of terms, required in the representation of/2 as a sum 
of elementary linear operators X H A i X B i ,  see [125] and Appendix E. Similarly, 
a general semi-linear operator .A4 : C n x n __~ c n  x n admits the representation 

o r  

A 4 ( X )  - s  n) - ~ A i X H B i  (10.2) 
k = l  

l 

M ( X )  - .N'(X) - ~ C~-XDi, 
k = l  

where s c Lin(n, C). The real versions of (10.2) and (10.3) are 

[P 2 vec (z0) 
vec~(M(X)) - MatR(s -P,2vec(X1) 

= MatR(s (Pn2 , -Pn2)  veeR(X) 

(10.3) 

and 

vecR(Ad(X)) - MatR(Af)diag (In2,-In2) veeR(X), 

where 
X - -  X 0 n t - z x l  c c n x n ;  Xo, X l  c=_. I[~ nxn. 

Thus, we come to the following definition. 

Defini t ion 10.2 The matrix representation (or briefly, the matrix) of the real 

version ,M R of the semi-linear operator .hd is 

Mat(M ~) - MatR(s (Pn2, -Pn2) 

= MatR(A/')diag (In2,--In2). 

Note that a semi-linear complex operator 9 r is in general not differentiable. 
However, its real version yR is a linear operator. We note that if ~ is a linear 
operator, so is 9 rT, while 9 cH is semi-linear. 

Taking the vec operation on both sides of the expressions (10.1) and (10.2) for 
a linear and a semi-linear operator we get 

and 

v e c ( C ( X ) )  = L v . c ( X )  

= 
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where 

L . -  M ~ t ( e ) . -  ~ BiT | X~ c F n 2 x n  2 

i=1 

is the matrix of the linear operator 12. 

We also discuss complex additive operators 5", which may be represented as 
sum of a linear and a semi-linear operator, i.e., 

.fi'(X) z/~l(X)-Jr- ~2(xH), (10.4) 

where s163  E Lin(n, C). In this case we have 

vec~(.7"(X)) = Mat (~ )vec~(X) ,  

where the matrix representation of the real version $ca of the semi-linear operator 
5 in (10.4)is 

Mat(ff ~) "- (Mat~(s  Mata(s (Pn~,-P~2)) vec~(X). 

In the following we introduce polynomial and pseudo-polynomial operators. 

Defini t ion 10.3 An operator .P = [fij] is called polynomial i f  its elements f i j  : 
Fn x n __, IF are polynomial functions. 

A polynomial operator 9 r is globally Fr4chet differentiable in the sense that for 
every X0 E F nxn we have 

y(Xo + z) = f (Xo)  + L(Z, Xo) + n(Z, Xo), 

where s Xo) C Lin(n,F) and 

lim [[~(Z, Xo)[[ = O. 
z-~o IIzll 

In this case the linear operator s Xo) is referred to as the Frdchet derivative of 
at the point Xo and is denoted as 9rx (Xo)(.) or briefly as 9rx (.), see Appendix A. 

Defini t ion 10.4 A complex operator ~ is called pseudo-polynomial i f  it may be 
represented as 

~:(X) = ~(X, XH), (10.5) 

where 

:IF n x n  X IF n x n  ~ IF n X n  

is a polynomial operator. 
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Pseudo-polynomial operators are not differentiable, but their real versions are real 

polynomial operators. If ~ is a pseudo-polynomial operator, given by (10.5), we 

may define the additive operator .Px(Xo)(.) by 

. ~ x ( X o ) ( Z )  "-- ~l(X0)(Z) + ~2(X0)(zH), 

where Gk(X0) is the partial Fr~chet derivative of ~(XI,X2 ) in Xk, computed at 

X1 - X0, X2 - X H. We have 

F(Xo + Z) - f (Xo)  + fx(Xo)(Z)  + n(Z, Xo), 

where 

~(Z, Xo) = o ( l l z l l ) ,  z - ~  0. 

Thus, Fx (X0)(.) is an analogue of the Fr~chet derivative in the case of pseudo- 
polynomial operators and is referred to as the Frdchet pseudo-derivative of 9 c at 
the point X0 (Appendix A). Whenever they exist, the Fr~chet derivatives and 
pseudo-derivatives are unique. 

Def in i t ion  10.5 If 11.11 is a norm in I~ nxn ,  then the induced norm of an operator 
s from Lin(n,  IF) is defined as 

LII - m a x { l l ~ ( X ) l l  I l X l l -  1}. 

If the Frobenius norm in I7 nx~ is used, then 

(10.6) 

II~lIF - m a x { l l J : ( X ) l l F ' l l X l I F - -  1} (10.7) 

= max{ l [vec ( s  I I v e c ( X ) l l 2 -  1} 

= max{ [ lMat ( s  Ilvec(X)]]2 - 1} 

= [[Mat(s 112. 

When the operator AA is semi-linear, 

AA(X) = s  s r Lin(n ,F) ,  

we may again define its norm via (10.6) and (10.7) and thus, the induced norm 

of A//is equal to the induced norm of the underlying operator s However, if the 
complex operator $" is only additive, 

IF(X) - s  s  s E Lin(n, C), (10.8) 

then the determination of its induced norm is more subtle. Let 

Lk Lko + ~Lkl E C n2xn2 = , k = 1,2, 

be the matrix of the operator s where the matrices Lkj are real. Define the 
norm of the additive operator 9 ~, induced by the Frobenius norm in C nxn, via 

]].f'll := max{]].f'(X)llF �9 ]IX[[F _< 1}. 
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Then 

Recalling that 

tl.7"11- max{lIvec(.T(X))[[2" [Ivec(X)ll2 ~ 1}. 

vec(~(X)) -- vec(f_.l(X)) + vec(i~2(xH)) 

= L lvec (X)+  L2Pn2vec(X) 

we get 

where 

11711- v(L1,L2)"-IIM(L1,L2)II2, (10.9) 

M(L1, L 2 ) " -  Mat(9 r~) - [ Llo + L20Pn 2 
[ Lll + L21P~ 

- L l l  -}- L21Yn2 ] 
(10.10) 

J LlO - L2oPn~ 

is the matrix of the real version 9 ~ of 9 ~. Thus, we have proved the following 
proposition. 

P r o p o s i t i o n  10.6 The induced norm of an additive operator jz with a repre- 
sentation (10.8) is equal to the induced norm of its real representation when the 
underlying norm in C nxn is the Frobenius norm. 

Defin i t ion  10.7 An operator ~ "  • n x n  ~ F n x n  is said to be symmetric if 

: r"  ( x )  - : r ( x ' ) .  

Linear symmetric matrix operators are also called Lyapunov operators. 

More details about Lyapunov operators are given in [125] and Appendix F. 
Every Lyapunov operator .T may be represented as 

f ( x )  - + L ' ( x  H) (10.11) 

where/2 e Lin(n,F).  Thus, a general Lyapunov operator 9 v c Lin(n,]F) has the 
representation 

r l  r 2  

Jz(x)  - E ( A i X B H  + BiXAH)  + E r (10.12) 
i=1 k = l  

where Ai, Bi, Ck c F n x n  a r e  given matrices and ek -- +1. This form seems 
different from (10.11) in view of (10.1), but it is not, since the symmetric monomial 
terms may be expressed as 

CkXC H = A k X B  H + B k X A  H, 

where 

Ak -- akCk, Bk = ~kCk, 
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and ak, flk are scalars from F wi th  akflk = 1/2. However, we choose the  rep- 

resenta t ion  (10.12), in which the  symmet r i c  t e rms  C k X C  u (if any) are g rouped  

separa te ly  in order  to reduce the  number  of te rms  in the  representa t ion  of /2  as a 

sum of e l emen ta ry  linear opera tors .  As usual, summat ion  from 1 to 0 is considered 

void. Thus,  r l  - 0 means  t h a t  there  are no te rms  A ~ X B  u + B i X A  H, while r2 - 0 

means  t h a t  there  are no symmet r i c  te rms  C k X C  H. 

For Lyapunov  opera to rs  s E L i n ( n ,  lF), in addi t ion  to the  s t a n d a r d  norm 

(10.7), a new symmet r ized ,  or Lyapunov  norm may  be in t roduced,  see [125] and 

Append ix  F. 

D e f i n i t i o n  10 .8  The symmet r ized ,  or Lyapunov  norm of the operator s c Lin(n ,F)  

is given by 

llz::ll. - max{ l Ir - . (X)I IF  �9 IIXIIF - 1, x - x H } .  (10.13) 

In the  real case this  norm may  be compu ted  via 

IIs - I l L Q l l 2 ,  s e L i n ( n , R ) ,  

where  L is the  ma t r ix  of /2  and 

(10.14) 

Q -  [Qij] n,n 
i,j=l 

is a specific n 2 • n(n + 1) /2  matr ix .  It is an n x n block mat r ix  wi th  blocks Qij, 
which are n • j matr ices ,  given by: 

Qij : -  0 if i > j,  

Q l l  :=- 

-~2 I k_ l 0 
1 
0 0 1 
�9 , Qkk - 0 0 , 

�9 

0 
0 0 

1 
Qij : -  v/~Eyi if i < j .  

Here Ey~ is an n • j ma t r ix  wi th  a single nonzero element,  equal  to 1, in posi t ion 

(j, i). For instance,  the  matr ices  Q -  Qn for n -  2, 3, 4 are, wi th  q " -  l / v /2 ,  

1 0 0 

0 q 0 

0 q 0 

0 0 1 

Q2- 

1 0 0 

0 q 0 

0 0 0 

0 q 0 

,Q3-  0 0 1 

0 0 0 
. . . . . .  

o o o 

o o o 

o o o 

0 0 0 

0 0 0 

q 0 0 
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Q4- 

0 0 0 

0 0 0 

q 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

q 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 q 

q 0 0 

0 q 0 

0 0 q 

0 0 0 

The determination of the symmetrized norm in the 
volved. Let the matrix L E C n 2 x n 2  of the operator s E 

as L - Lo + ~L1, where Lo, L1 C ]~ n2• It is shown in 

0 

0 

0 

0 

0 

0 

0 

0 

o " 

0 

0 

0 

0 

0 
0 

1 

complex case is more in- 

Lin(n,  C) be represented 

[125] t h a t  

[ A] LoQ - L I Q  

LIQ LoQ 
, s E Lin(n,  C). (10.15) 

The n 2 • n ( n -  1)/2 matrix ~) is obtained from Q by deleting the columns with 
l 's  and numbered as 

k(k  + 1) /2 ,  k e 1, ~, 

and changing the sign of every second element 1 / v ~  in each column of the reduced 
matrix. 

The ratio 
IIZ:ll. < 1 
IIz:ll - 

of the symmetrized and usual norms may be arbitrarily small for some Lyapunov 

operators s when the underlying norm in F n• is the Frobenius norm. Thus, 

the use of the symmetrized norm is preferable in order to get tighter perturbation 
bounds. 

D e f i n i t i o n  10.9 An operator .T " F nxn ~ I~ n x n  is called affine if it may be 

represented as 

.T(X)  = A + s  

where A E •nxn and s E Lin(n ,F) .  An affine operator .P is called symmetric if 

in the above representation A -  A H and s is a Lyapunov operator. 
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10.4 Perturbat ion problem 

Consider the general Lyapunov equation 

1`1 1"2 

F(X, P ) " -  Ao + E ( A i X B n  + BiXAn)  + E ekCkXCH --O, 
i = 1  k = l  

where X c IF n x n  is the unknown matrix. The function 

(10.16) 

F ( - , P ) :  F nx~ --+ F nxn 

is an affine symmetric matrix operator, depending on the parameter matrix (1 + 
2rl + r2)-tuple 

P := ( A 0 ; A 1 , B 1 , . . . , A  m,B1`I;C1,...,C1`2), 

where A0 = A H. With certain abuse of notation we identify P with the set of the 
matrix coefficients, and write Aj c P, etc. 

In the real case the dependence of F(X, .) on the matrices Z c P is polynomial 
and we denote by 

Fz(X,P) c Lin(n, lR) (10.17) 

the partial F%chet derivative of F in the corresponding matrix argument Z = X 
or Z c P, computed at the point (X, P). 

In the complex case, however, F(X, .) is affine in A0 and is a pseudo-polynomial 

operator in each Z c P\{A0}.  Hence, the partial Fr4chet derivatives in Z E 

P\{A0} do not exist. In this case we use the same notation (10.17) for the partial 
F%chet pseudo-derivative of F in Z c P\{A0}, computed at the point (X, P). 

Since the operator F(.,  P)  is affine, the partial Frdchet derivative 

Px(Xo, P)(') E Lin(n ,F)  

does not depend on X0 and is in the following denoted by Fx(.). We assume 

that the operator Fx(.) is invertible, i.e., that  its matrix Lx  := Mat (Fx)  is 

nonsingular. Then equation (10.16) has a unique solution X for every A0 and, in 
view of A0 - A H, we have X = X H. 

The perturbation problem for equation (10.16) is stated as follows. Let the 
matrices from P be perturbed as 

Ao H Ao + 5Ao, Ai ~ Ai + 5Ai, Bi ~ Bi + 5Bi, Ck H Ck + (fCk, 

where 5Ao - 5AHo . Denote by P + 5P the perturbed tuple P, in which every 
matrix Z E P is replaced by Z + 5Z. Then the perturbed equation is 

F(X  + aX, e + a P )  = 0. (10.18) 
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In general, some of the matrices from P may not be perturbed and we set the 

corresponding perturbations to be zero. Denote by 

N 

P "-  { Z 1 , Z 2 , . . . , Z , . }  C P 

' ' 4  

the set of matrices from P, which are perturbed. We also write P - (Z1, Z2 , . . . ,  Zr) 
and, if necessary, consider P as an element of the linear space (1Fnxn) ~. For in- 

stance, given the standard continuous-time real Lyapunov equation 

A X  + X A  T- + C - O, 

we have 

p = (C;A ,  in, In ,A-r) ,  / 3 =  (C,A), 

if only perturbations in C and A are considered. 

Since the operator F x  is invertible, the perturbed equation (10.18) has a unique 

solution X + 5 X  = ( X  + 5X)  H in the neighborhood of X, if the perturbation aP 

is sufficiently small. Moreover, in this case the elements of the real representation 

of 5 X  are analytic functions of the elements of the real representations of the 
matrices from 5P. 

a 0 _  [a0,aoao a0 
, , ", 2+2r1," ' ,6~ (10.19) 

[SAo ' 5 A 1 , 5 B 1 , . . . ,  5C~1, . . .  ' 5C~2 ] r 

Denote by 

"= E IR~ 

the full norm vector of absolute perturbations 5z " -  I I ( ~ Z I I F  in the data matrices, 
where u := 1 + 2rl + r2. Let also 

"-- [(~1, (~2, .- . ,  (~r] T "-- [(~Z1, (~Z2,""", (~Z,-] T C 1~_ (10.20) 

be the norm vector of perturbations of the matrices 5Z. Note that  some of the 

elements of 50 may be zero (when the corresponding matrices are not perturbed), 

while all elements of 5 are positive, since by assumption they are the norms of the 
nonzero perturbations in the matrix coefficients. 

The perturbation problem is to find a bound 

5x _< f(5), 5 e f~ C IR~, (10.21) 

for the perturbation 

ax "--IlaXllF, 

where ft is a given set and f is a continuous function, nondecreasing in all of its 
arguments and satisfying f(0) = 0. In the following subsections, a first order local 
bound 

ax < + o(11 11 ), --, o, 
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is derived, which is then incorporated in the nonlocal bound (10.21). The inclusion 
5 E ft also guarantees that  the perturbed equation (10.18) has a unique solution 
X + S X .  

Estimates in terms of relative perturbations 

for 

II~ZjIIF 
~ j  --  ~Z~ - -  II Zj lie ' Zj e P, 

s  : =  
I Ix l IF  

are straightforward when A0 5r 0, and hence, X ~- 0. Indeed, we have 

I lXlIF 

In the following sections we present local and nonlocal perturbation bounds for 
the general Lyapunov equation {10.16}. 

10.5 Local  p e r t u r b a t i o n  analys is  

1 0 . 5 . 1  C o n d i t i o n  n u m b e r s  

Consider the calculation of condition numbers for equation (10.16). Since F(X,  P) - 
0, the perturbed equation (10.18) may be written as 

F ( X  + (iX, P + 5P) := Fx(SX)  + E Fz(SZ) + G(SX, 5P) = O, 
Z E P  

(10.22) 

where Fz(.) are the partial Fr6chet derivatives (in the real case) or pseudo-derivatives 
(in the complex case) of F(X,  .) in the corresponding matrix arguments Z E P. In 
both cases Fx (-) is a linear symmetric operator and FAo (') is the identity operator. 
The matrix G(SX, 5P) contains second and higher order terms in 5X, 5P. 

A straightforward calculation leads to 

r l  r2  

Fx(z) - + 8 ZA", ) + Z C zcH' 
i=1  k = l  

FAo(Z) - Z, 

FA, (Z) - Z X B  H + B ~ X z  n, 

FB, (Z) -- A i X Z  H + Z X A  H, 

Fck (Z) - r ( Z X C  H + C k X Z H )  �9 

Since the operator Fx(.)  is invertible, we get 

(iX - ~((fX, ~P) "- - ~ Fx  1 o Fz(SZ) - Fx l (G(SX,  5P)). 

Z E P  

(lo.23) 
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Relation (10.23) gives 

where the quantities 

~:~ < Z Kz~z + o(11511~), 5 - ~  0, (10 24) 
Z C P  

K z  " :  ]lFxlo Fzll, z c ~, (10.25) 

are the absolute individual condition numbers [188] of equation (10.16). Here 
9cJl is the norm or the symmetrized norm of the corresponding linear or additive 

operator jc, induced by the Frobenius norm, i.e., 

IIf l ' -  max{ I l l ( Y ) I I F  IIYI F - 1}, 

see (10.7), (10.9), (10.14) and (10.15) for the corresponding explicit expressions. 

If X # 0 then an estimate in terms of relative perturbations is 

< ~ kz~z + o(11511~), 5-~ 0, 
~ - I JXl l~  

Z E P  

where the scalars 
ZIIF Z + 

kz "- Kz  IlXllF ' 

are the relative individual condition numbers with respect to perturbations in the 

matrix coefficients Z E P. 

The calculation of the condition numbers K z  is straightforward. First we 

consider the matrix representations of the partial Fr6chet derivatives in X and 
A0. Denote by 

Lz ~ I~ n2xn2 

the matrix representation of the operator Fz('), where Z - X or Z = A0. Noting 
that  (A H) T _ ] in both the real and complex case, we get 

rl r2 
Lx  - E (Ai | Bi + -Bi | Ai) + E ek-Ck | Ck, LAo -- In~ 

i=1 k=l 

and 

K A o  - -  1 " - -  IIYx1]l, < I[Lx 1112, 

see (10.14) and (10.15) for the calculation of the symmetrized norm II" It,. The 
computation of the other matrix representations and individual condition numbers, 

however, is different in the real and complex case and we have to treat them 
separately. 

Consider first the real case IF = R. Here Fz(.) E Lin(n ,R)  are the partial 

Fr6chet derivatives of F(X, .) in all Z E P at (X, P) and we denote by Lz their 

matrix representations. Using (10.23), the symmetry of X and the formulae 

vec(DZE) - (E T | D)vec(Z), (A | B)P~2 - P~2(B | A), 
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we obtain 

LA, 

L B  i 

Lck 

- (B~X) | I~ + (In | (B ,X))Pn2 

= (~,~ + P , ~ : ) ( ( B , X ) |  In), 

- (I~. + P,-,~-)((A~X) | In), 
= Ck (In~ + P n 2 ) ( ( C k X )  | In). 

Therefore, the absolute condition numbers in the real case are 

KAo - l ,  K z -  IILx1LzII2, Z c/5\(Ao}. 
In the complex case I F -  C we have 

vec ( y ; '  o y~, (z)) 

vec (Fx  I oFB,(Z))  

wo ( Y ;  ~ o r ~ ( z ) )  

= LxI((B~X) | In)vec(Z) 

+ Lx  1(In @ (BiX))Pn2vec(-Z), 

= LxI ( (A~X) |  In)vec(Z) 

+ Lx  I (In | (AiX))Pn2vec(-Z), 

- ~ k L x I ( ( c k x ) @  In)vec(Z) 

+ ~kL}l(I .  | (CkX))Pn:vec(-2). 

Hence, we may apply relation (10.9) with 

51 -- L x i ( ( B i X )  | In), 52 -- Lxi(In  | (BiX)),  

etc. Setting 

x(Z) .-- ~ ( L x I ( Z  | In) ,Lxl ( In  | Z)Pn2) 

(see (10.9) and (10.10)) we get 

I IFx  I o FA,(SAi)IIF <_ x(BiX)SA,,  

[IFx 1 o FB,(SB,)[] F <_ x(A,X)SB,,  

IIFx 1 o Fc~(aC~)IIF __ ~(c~x)~, 

(10.26) 

(10.27) 

(10.28) 

(10.29) 

for i - 1 , . . . ,  r l  and k - 1 , . . . ,  r2. Thus, the absolute individual condition num- 
bers relative to perturbations in Ai, Bi and Ck in the complex case are given 
by 

KA~ : x (BiX) ,  

KB, : x (A iX) ,  i = 1 , . . . , r l ,  

Kck = x(CaX),  k = l , . . . , r 2 .  

A drawback of this approach is the dimension n 2 • n 2 of the involved matrices. 
Condition and accuracy estimates, avoiding the formation and analysis of large 
matrices, are proposed in [179]. 
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An overall relative condition number may be defined as follows. Since we 
consider P as an element (Z1, Z2 , . . . ,  Zr) of a linear space, we may define the 
product 

oLP - -  (O~Zl,  o l Z 2 , . . .  , o~Zr) 

of P, a c IF, as well as the sum 

P '  + P " -  (Z~ + Z~', Z~ + Z~' , . . . ,  Z' r + Z~') 

of two r-tuples P '  and P". We also introduce the generalized norm 

11PLL, - [llZlli~, I Iz : l ]~ , . . . ,  lIz~iIF] T e < 
. - . . .  

of the r-tuple P. 
Let 5X - 5X(6P)  be the perturbation in the solution, where 

5P - (5Z1,5Z2, . . . ,  6Zr), 

and let -y E ]I{ r be a vector with positive elements. 

Def in i t ion  10.10 The absolute overall condition number with respect to 7 is 

defined as 

K(')') "-- ~--,olim max { 116X(6P)BBF" 116P[Ig ~ 67} 

We have 

K(7  ) - -  max { E FX1 o Fz((~Z ) 
zEP 

�9 115PIIg ~ 7}.  (lO.3O) 

Def in i t ion  10.11 The relative overall condition number with respect to 7 is 

~(7)  := K(7)/lIXiIF 

Def in i t ion  10.12 I f 7  has a single nonzero element 7i = ]]ZiIIF, then the quanti- 
ties K(7) and n(7) are the individual norm-wise relative condition numbers Kz, 
and kz, relative to perturbations in the matrix Zi E P. When 7j - [[ZjIiF for 

all j = 1, 2 , . . . ,  r then K(7 ) and n(7) are the overall relative norm-wise condition 
numbers of equation (10.16). 

Unfortunately, in general there are no closed form expressions for K(7) and 
n(7). Using the matrix expressions Mj for the operators FX 1 o F z j ,  j - 1 , . . . ,  P, 
we find that m x{ 

j = l  2 

In the next section we will derive bounds 

K(7) < est(7, M), M "- [MI , . . . ,  Mr], 

for K(7).  
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10.5.2 First order homogeneous  bounds  

In this subsection we derive local first order homogeneous perturbation bounds, 
which are generally better than the bounds using condition numbers. 

Consider first the real case. The operator equation (10.22) for the perturbation 
5X may be written in vector form as 

where 

and 

Noting that 

vec(SX) - E Nzvec(SZ)  - Lx~vec(G(SX, 5P)), 
Z E P  

N z  "- - L x l L z  e I~ n2xn2, Z e P. 

~x -Ile~XllF- Ilvec(~X)ll2 

]lvec(5Z)ll2 ~ ~z 

we see that  the condition number based estimate is a corollary of (10.31), 

5x <_ estl (5, N) + O(ll~ll2), ~ -~ 0, 

(10.31) 

where 

and 

estl(5, N) := E IINzII25z 
Z E P  

N "- [N1, N 2 , . . . ,  N,.] "- [Nz~, N z 2 , . . . ,  Nz,.] E I~ n2• 

Relation (10.31) also gives a second first order bound 

(10.32) 

5x <_ est2(5, N) + O([[5112), 5 ~ 0, (10.33) 

where 

est2(5, N) "-  [IN112115][2. 

The bounds estl(6, N) and est2(5, N) are alternative, depending on the particular 
value of 5. 

We again have a third bound, which is always less than or equal to estl (5, N). 
Indeed, we have 

5x ~ est3(5, N) + O([[5][2), 5 ~ 0, (10.34) 

where 

est3 (5, N) "-  v/5 T No5. 

Here No is the r x r matrix with elements nij " - I I N ~ N j  112, 
Since 

]IN(Njlt2 <_ ]]N~II2]]NjlI2, 
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we get 

est3(6, N) < estl(6, N) 

for all perturbation vectors 5 and matrices N. Hence, we have the overall estimate 

6x _< est(5, N) + o(11~112), ~ ~+ o, (10.35) 

where 

est(6, N) "= min{est2 (5, N), est3(5, N)}. (10.36) 

The local bound est in (10.35), (10.36) is a nonlinear, first order homogeneous and 
piece-wise real analytic function in 5. 

Consider now the complex case. We have 

vecX(SX) = E NzvecX(SZ) - vecX (Fx I(G(SX' 5P))) , 
Z E P  

where 
/Nz "- -Mat ((Fx'  o Fz) I~) C R 2n~x2n2 

are the matrices of the real versions of the additive operators 

-Fx~ oFz, Z e ~. 

Using (10.10) and (10.28) we obtain 

h i h 

NA, =-~I ' (Bi) ,  NB~- -~ (A i ) ,  Nck =--ck~I'(C'k), 

where 

and 

._ [ L l o ( Z ) +  L2o(Z)Pn 2 r [ Lll (Z) + 521(Z)Pn 2 
-L11(Z) q- L21(Z)Pn2 ] 
f l o ( Z ) -  f2o(Z)Pn2 J 

Llo(Z) ] 
Lll (Z) 
L2o(Z) 
L21(Z) ] 

-- (Lx1)~ [ Re(ZX)|  l 
- I m ( Z X ) |  ' 

= (Lx1)~[ InQRe(ZX) ] 
In | Im(ZX) 

Here 
X - X O--~zxl E C nxn 

is the solution to the unperturbed equation (10.16), the matrix 

Z -  Zo + zZ1 ~ C ~xn 

is arbitrary, 
Xo, X1, Zo, Z1 E ]1~ n x n  
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and 

Re(ZX)  - Z o X o -  Z 1 X 1 ,  

I m ( Z X )  - ZoX1 n t- Z l X o .  

Now we can use the results for the real case, replacing the matrices Nj E N nxn 

with Nj E R 2n2x2n~. The overall bound is 

where 

5x <_ es t (A, /~)  + o(IIAII2), A -~ 0, 

J~ "--[J~l,J~2,...,J~r] "--[j~z1,Nz2,...,Nz~] C 1[~ 2n2x2rn2 

h 

and in the expression for est3(5, N) the elements of the matrix No are 

10.5.3 Component-wise bounds 

The local com 

(10.31) as 

(10.37) 

~onent-wise bound in the real case then follows directly from relation 

vec(SX)l ~ E ILx 1Lz] Iv~c(SZ)l + o(llSll2), 5 -~ o. 
ZCT' 

To implement a component-wise bound one must have information about the per- 

turbations in the components of the data, e.g., Ivec(Z)l ! wz, z c P, where 
wz ~ 0 are given vectors. 

10.6 Nonloca l  perturbat ion  analysis 

In this section we derive nonlinear per turbat ion bounds. For these we obtain a 
domain 

and a nonlinear function 

such that 

f �9 f~ --, R+ 

5x ~ f(5) 

for all 5 E f~. 

Let the tuples P and P be perturbed to P + 5P and P ~ P + 5P and let 

X + 5X be the solution of the perturbed equation (10.18). In what  follows we 

mark only the dependence on the perturbations 5X and 5P, recalling that  X is a 
fixed solution of (10.16). 
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10.6.1 Real  equat ions  

The perturbed equation (10.18) may be rewritten in the form 

5X = (~(SX, 5P) := (~o(SP) + (~1 ((~X, 5P), (10.38) 

where 

~o ( SP) "- - F  Xl ( Go ( SP) ) , 

�9 1(SX, SP) : = - F x I ( G I ( f X ,  SP)) 

and 

Go(SP) 
GI(SX, SP) 

= 5Ao + RI(X, 5P)+ Rz(X, 5P), 

= t~ 1 ((~X, 5P) 4- R2(SX, 5P). 

Here Rk(., 5P) are linear operators of asymptotic order k relative to 5P, ~P ~ 0, 
given by 

r l  

R I(Z, (~P) "-- E ( 5A'ZBTi + A, ZSB? + 5B, ZA~ + B, ZSA~) 
i---1 

'F2 

+ ~ ~k (~CkZCk + CkZ~Ck), 
k = l  

r l  r2 

R2(Z, 5P) "- E (SAiZSB~ + 5BiZSA:) + Er 
i - -1  k = l  

If IIZltF _< p, then we have 

11Oo(SP)llw _~ ao(5), 
I[<~l(Z, SP)llw ~_ al((~)p, 

where 

ao(5) :-- ao1(5) 4- a02(5), (10.39) 

a1(5) "= a11(5) 4- a12((~) 

and where the quantities aik(5) are of asymptotic order 0(11511 k) for 5 -~ 0. These 
are determined as follows. 

In the case i - 0, we have 

ao1(5) := est(5, N), (10.40) 

ao2(A) "= ][FxII[. 112112 2 ~ ~A,~B~ + ~ ~ �9 
i = l  k = l  
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and in the case i -  1 we get 

r l  

a11(5) "-- E IILx I (Z~ + P~)(B~ | (10.41) 
i = 1  

r l  

i = 1  
r2 

+ E IlL2 + P~2)(G | z )ll  ac , 
k = l  

a12(5) "- Ilfxlll ,  2 ~ S A ,  SB, + ~ S g ~  . 
i=1 k=l 

If 

IlZllP, IIZlIF -< p, 

then a Lyapunov majorant (see [85, 135] and Chapter 5) for equation (10.38) is 
a function (5, p) ~ h(5, p), defined on a subset of R+ x 7 ~  and satisfying the 
conditions 

lie(Z, 5P)[IF <_ h(5, p) 

and 

}I(~(Z, 5P) - ~ (Z ,  5P)IIF < hp(5, p)llZ - ZllF. 

Here the Lyapunov majorant  is affine in p and it is determined by 

h(5, p) = a0(5) + a,(5)p. 

In this case the fundamental majorant equation 

h(5, p) - p 

for determining the nonlocal bound p = p(5) for 5x gives 

ao(5) 5 c a,  
5x <_ f (5) "-- 1 -  a l (5) '  (10.42) 

where 

a ' =  {~ ~ 0"al((~) < 1} C ~ ; .  (10.43) 

As a result of the nonlocal perturbation analysis we obtain the perturbation 
bound (10.42), (10.43), where the involved quantities are determined via the rela- 
tions (10.39) - (10.41) .  
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10.6.2 Complex equations 

In the complex case we have again the bound (10.42), where 

A 

a0~ (a) - ~st(a, N)),  

the quanti ty ao2(5) is as in the real case, 

r l  r 2  

a11(5) - E (x(B,)SA, + x(A,)58,)  + ' ~ x ( C k ) a c k ,  
i = 1  k = l  

A 

the quanti ty a12(5) is again as in the real case, the matrix N is given by (10.37) 
and E is as in(10.29). 

10.6.3 Component-wise bounds 

In the derivation of nonlocal component-wise perturbation bounds for Lyapunov 

equations we use again the generalized Banach fixed point principle, see Ap- 
pendix D. 

Let the operator equation x = rr(x) be given, where x c F m and 7r : F  m -+ F m 

is a continuous function. Suppose that  for all x, y E IF m the operator rr satisfies 
the conditions 

I~(xDI ~ ~ + M l x l ,  (10.44) 

i~(x) - ~(y)l _~ M i x  - Yl, 

where p c IR~ and M E R~ xm. If 7r is a generalized contraction, i.e., spect(M) C 

D1, then there exists a unique solution x ~ c F m of the operator equation, such 
that  

Ix~ ~_ (In - M ) - l p .  

Suppose that  we have the following component-wise bounds 

laZI ~ Wz, 
v~c(lazl) ~ ~ = v~o- l (w~)  

-[[~ n X n for the perturbations aZ and vec(aZ) in the matrix coefficients, where W z  c=_ ...~+ 
are given matrices and WAo = WTAo. Set 

W := (Wz~, Wz~,..., Wz~). 

Using (15.14) and (10.26), (10.28) we see that  the right-hand side of the operator 
equation 

x - V(x, 5P) := vec((I)(vec- l (z) ,  (~P)) 
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for x - vec(aX) satisfies the conditions (10.44) with 

#(w)  . -  #~(w) + M~(W)IXI, 

M ( W )  . -  MI(W)  + M2(W).  

The expressions for p(W) and M(W) are different in the real and complex case 
and we present them separately. 

In the real case we have 

#1 (W) -- [LxI[WAo 4- ~ ILx1LzI wz, 
zEP 

rl 
M1 (W) - E {Lx' (In2 + Pn 2) (B~ |  (I~ | WA,) 

i=1 
rl 

+ E ILx 1 (In~ + Pus)(A~ | In)l (In | WB,) 
/ = 1  

r2 

+ ~ ILx 1 (Zn~ + P,~)(Ck | In)l (In | Wc~),  
k = l  

rl 

M~(W) - IL~ll ~ (WAi @ WBi + WB, @ WA,) 
i=1 

r2 

+ I Zx l l~  Wc~ | Wc~, 
k=l 

where the matrices Lz are determined by (10.26). 
In the complex case the corresponding expressions are 

, ~ ( w )  - 

v x ( w )  - 

where 

rl r2 

[Lxll WAo + E (Q(B~X)WA, + Q(AiX)WB,) + E Q(CkX)Wck, 
i=1 k--1 

rl 

E (1LX1 (-Bi @ In)l (in @ WA,) 4- IExl(In | B~) I (WAi @ In)) 
i--1 

rl 

4- E (} LX1 (Ai @ In) l(In | WB,) + ICXl(In | A,) I (WB, | I~)) 
i=1 
r2 

4- E (t LX1 (-'Ck @ In)] (in @ W c k ) - I - I C x l ( i n  @ Ck)] (Wc k @ In)),  
k=l 

and the expression for M2(W) is as in the real case. 
As a result we have the nonlocal component-wise perturbation bound 

Ivec(~X)l-'< ( I ~ -  M ( W ) ) ~ ( W )  
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provided that W is small enough to ensure that 

spect(M(W)) C ]D) 1. 

10.6 .4  Other  b o u n d s  

Let X be an approximate solution to the Lyapunov equation 

F(X,P)  = 0 ,  

in which the Fr@chet derivative 

Z ~ Fx(Z) := F(X, P) - F(O, P) 
N 

is invertible. The matrix X may be, e.g., the solution, computed in finite precision 
arithmetic. 

Denote by 

R .-  F(X, P) 

the residual, corresponding to X. In view of the linearity of the operator Fx we 
get 

.,Y - X - FxI(R) .  

Hence 

and 

(10.45) 

Ivec(J~- X)[--4 [Lxll vec(/~)l (10.46) 

where Lx is the matrix of the operator Fx and I1" II, is the symmetrized norm, 
computed via (10.14) in the real case and (10.15) in the complex case. Note that 
the bounds (10.45) and (10.46) are exact. 

1 0 . 7  N o t e s  a n d  r e f e r e n c e s  

General Lyapunov operators have been considered in [125]. Perturbation analysis 
of the type presented above (for particular classes of Lyapunov equations) is given 
in [132]. 



Chapter 11 

Lyapunov equations in 
control theory 

11.1 Introductory remarks 

In this chapter we use the results of the previous chapter to present a complete 

perturbation analysis for Lyapunov matrix equations arising in systems and control 
theory. Local and nonlocal norm-wise and component-wise perturbation bounds 

are derived for real and complex Lyapunov equations. The first order bounds are 

based on the standard induced norm as well as on the Lyapunov norm of Lyapunov 

operators. The latter norm allows to obtain tighter results for Lyapunov equations 

under symmetric perturbations in the constant term. Invertibility conditions for 

certain classes of Lyapunov operators are also presented. 
separately. 

11.2 General equation 

The perturbation analysis of the general Lyapunov equation (10.12) is based on the 

norm of the inverse operator to the Lyapunov operator s defined by the left-hand 

side of the equation. 

In the real case the matrix representation o f / :  is 

L - f i  (B~- | A~- + A~- | B~- + ~k (C~- @ C~-)) , ~k - +1. 
k--1  

Here one should recall that  instead of IIAII2, where A := L -1, we use the sym- 

metrized norm 

IIAII~ " - m a x  {IIZZ(X)IIF" IlXllF = 1, x = x T } _< IIAI12. 

201 
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As shown in [125], the symmetrized norm of the matrix A of the inverse Lyapunov 
operator s  may be obtained as 

IIALI~- IIAQII2, 

where 
Q "-  [Qij] c ~n2• i , j  -- 1 , . . . , n ,  

is a block upper-triangular projector (QTQ _ In(n+1)/2). The blocks Qij E 7~ nx j  

are defined by 

0 if i > j ,  
[1,0, . . . ,0] T if i - j - l ,  

Q i j -  [diag(qli_l,1),0]T if i - - j > l ,  
qEj i (n , j )  if i < j, 

where q ' -  1/v/-2. 

Consider now the complex Lyapunov operator 

" (cfxc~)) s 1 6 2  - ( A ~ X B k  + B k X A k  + ck 
k=l 

(11.1) 

Here the symmetrized norm of the matrix 

Ac = Lc 1, 

where 

is defined as 

Lc "- ~ (B[  | A~ I + AT | B H + ek ((7/ | c H ) ) ,  
k=l 

IIA~II~ - m a x  {II~(X)]IIF" IIXIIF- X, X -  X H} ~ IIA~II2 

and may be calculated as follows. Let 

Ac - Ao + zA1, 

where A~ are real. Then 

llA~ll~ - [ A] AoQ - A I Q  
AIQ AoQ 2" 

The matrix 
C ~'~ n2xn(n-1)/2 
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is obtained from Q by deleting the columns containing l 's  which are numbered as 
k(k + 1)/2, k - 1 , . . . ,  n, and by changing the sign of each second element q in 

each column of the reduced matrix. This procedure is described as follows. Let 

R = [Rij] " -  [(~i(i+l)/2,j] C • n ( n + l ) / 2 x n ( n - 1 ) / 2 ,  

where 5ij is the Kronecker delta, and 

J "- {(kn + 1, k ( k -  1)/2 + 1)" k - 1 , . . . , n -  1, l =  1 , . . . , k } .  

Then 
~" I (QR)~j if ( i , j ) r  J 
Q i j - ,  - (QR) i j  if ( i , j )  e J. 

It must be pointed out that  the ratio I]AII~/IIAII2 may be arbitrarily close to 

0, i.e. the use of symmetrized norms instead of usual 2-norms for the inverse 
Lyapunov operators may significantly improve the perturbation bounds for both 

real and complex Lyapunov equations. Of course, it is also possible that  IIAII~ = 
IIAII2 and then using any of these norms gives identical results. The description of 
the class of Lyapunov operators for which the last equality holds is an open and 
probably a difficult problem, see also the discussion in [40]. 

11.3 C o n t i n u o u s - t i m e  e q u a t i o n s  

For the standard real continuous-time Lyapunov equation 

s  "- A-rX + X A  - C (11.2) 

the spectrum of A: is 

spect(s - {A~(A) + ) ~ k ( A ) ' i , k  = 1 , . . . , n } .  

C o r o l l a r y  11.1 The norm-wise bound (8.59)for (11.2) is 

where 

ax _< est(5c, hA, A, NA) (11.3) 
1 - 211All,an ' 

A - (A T | 1 7 4  -1, 

NA = - A ( I n  | X + (X @ In)Phi) 

= - A ( / ~ .  + Pn=)(In | X) 

and it is valid for 

5A < 211AII  
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The next example shows that  the bounds est2(5, N) and est3(5, N) are alterna- 

tive for equations of type (11.2) for n - 2. This means that  the overall expression 

est(Sc, 5A, A, NA) -- min{est2(Sc, 5A, A, NA), est3(5c, 5A, A, NA)} 

depends nontrivially on both bounds est2 and est3, being a piece-wise analytic 
function in 5 h 0 for 5 # 0 and 5A < 1/(211AII~). 

E x a m p l e  11.2 Let n -  2 and 

1.415 0.927 ] ,  X -  
A - 0 1.028 

Then, displaying three digits, we have 

0.903 0.462 J 

0.462 0.724 " 

IINII2 - 0.815 < g/llN0112 - 0.884. 

Hence, for 5 equal to the eigenvector of the matrix No, corresponding to its max- 
imum eigenvalue IJ No II 2, we have 

est2(SC, dA,A, NA) -- 0.815 < est3(SC, SA,A, NA)} -- 0.884. 

C o r o l l a r y  11.3 The component-wise bound (8.63) for equation (11.2) is 

I(~Xl ~ (In2 -- ~ l ( n ) )  (=)l(n), (11.4) 

where 

Ol 
xI/I(A) 

-- IAIAc  + INAIAA, 
-IAl(Zn|174 

E x a m p l e  11.4 Consider the n x n continuous-time Lyapunov equation 

s  . -  AI-Ix + X A  - C, 

where the matrix A is stable (i.e., Re(Ai(A)) < 0) and C H - C _< 0. Suppose 

that  the matrices A and C can be simultaneously reduced to diagonal form by a 
unitary congruence transformation. Then we may assume that  

A - diag( ,~l , . . . ,  )~n), OLi :-~ -Re(/~i) > 0 

and 

The solution 

C -  - d i a g ( v 1 , . . . , T n )  , 7i _> 0. 

X -  d iag(x l , . . .  ,Xn) E ]l~ nXn 
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is defined by 

Let 

x~ - % / ( 2 a ~ )  > 0. 

ct -- min{c~l , . . . ,  C~n}. 

Denote by ,7 C { 1 , . . . ,  n} the set of all indices such that  j E J implies a j  - a .  

For j c ,7 fixed, take perturbat ions in A and C as 

5 A  - 5 A E j j ( n ) ,  5 C  - - S c E j j ( n ) .  

Then we have 5 X -  5 x E j j ( n ) .  

E x a m p l e  11.5 Consider the Lyapunov equation 

f_.(X) " -  A T  x --b X A  = C 

in T~, 2x2, where 

1.5 
A - -0 .5  

-05] c-[  7 
1.5 ' - 5  

- 5  

The solution is 
2 -1 ] 

X -  - 1  2 ' 

the matr ix  L of the Lyapunov opera tor /2  is 

L _ 1  
2 

6 - 1  - 1  0 

- 1  6 0 - 1  

- 1  0 6 - 1  

0 - 1  - 1  6 

and we have 

N c - L  -1  = 
1 

48 

17 3 3 1 

3 17 1 3 

3 1 17 3 

1 3 3 17 

Furthermore,  

- 3 1  11 - 5  

N A  = - L - 1 ( I 4  + P4)(I2 | X)  - 1 
3 ~ 1 5 ~ 1 5  

3 - 1 5  - 1 5  

1 - 5  11 

1 
3 

3 

-31 
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Thus,  we have 

IINcII2-0.5, IINAII2- 1.5, II[Nc, NA]II2- 1.5275, IIN~NAII2-0.5. 
Consider  the  pe r tu rba t ions  

g 

5 A  - - - ~  
1 1 

1 1 
[1 11 , 5 C - 2 ~  1 1 

with II~AIIF - ~, II~CIIF - 4~, where 0 _< s < 1. The pe r tu rba t ion  in X is then 

2c [ 1 1 I 2(1+2a) 
( iX  - 1 - e 1 1 ' IIXIIF - -  1 - e 

At the same t ime the first order bounds for 5 x  are 

est l  - 3.5000~, est2 -- 3.4157c, est3 -- 2.3452c. 

Hence, the  norm-wise bound is 

5x <_ 
2.3452e 

1 - c  

Relat ive perturbat ions in the solut ion of a Lyapunov equat ion 

�9 . . . i - ' . .  " 

' . . . . . � 9  ! . .  . 

�9 . . .  . . . . . .  

�9 . 

x 10 -3 . . : '  " . �9 . . . "�9 : " "  
..... . . .  " ' . i .  " ! . . .  . . . .  

�9 . . . 
. .  . . : -  . . ! .  

1 . : '  

, 

~ _ - 0 . 5  

-1 

.5 

X 10 -3 
10 -3 

pert(c12), pert(x12 ) - 1 .5  pert(c 11 )' pert(x 11 ) 

Figure  11.1" Pe r tu rbed  solutions of well-conditioned Lyapunov equat ion 
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Relative perturbations in thf solution 01 a Lyapunov equalion 

Figure 11.2: Perturbed solutions of ill-conditioned Lyapunov equation 

In Figures 11.1 and 11.2 we show the relative changes in the elements of the so- 

lutions 6 X /  1 1  X / /  of 2nd order well-conditioned and ill-conditioned Lyapunov equa- 
tions generated by perturbations in the elements C11, (712 and C22 of the matrix 
C. The perturbations in the data are represented by spheres while the perturbed 
solutions are represented by ellipsoids. 

For the complex continuous-time Lyapunov equation 

C , ( X )  := A H X  + XA = C. (11.5) 

with C = CH, the spectrum of Lc is 

spect(C,) = {&(A)  + & ( A )  : i , k  = 1,.  . . , n } .  

The presence of the term bAH in the perturbed equation makes it more difficult 
to get tight (and in particular asymptotically exact) perturbation bounds. Here 
we use an approach based on the real version 

CR : pp2n2 + R2nZ 

Let the operator : @" + @" be defined via 

N ( u )  := RU + Sii, u E @", 
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where R, S �9 C "~x~ are given matrices. We identify Af with the ordered pair 

(R, S) ~ C ~ x "  x C ~ x "  

and write also A f -  Af(R, S). 

For A �9 C set AAf(R, S) = A/'(AR, AS). Also, if Af~ - Af(R~, S~), i - 1,2, are 
two operators of this type, set 

./V'I Jr-./V'2- J~r(R1 Jr-/:~2, ~1 qL ~2). 

Hence, the set of the operators Af is a linear space (in fact it is isomorphic to 

C 2"~n) and we equip this space with the norm 

~(JV') - ~ , ( R , S ) " =  m a x  {l lJV(~)ll~ �9 u c c ~, I1~11~ _< 1 } .  (11 .6 )  

This concept needs justification, since the operator Af is additive (Af(u + v) - 

Af(u) + Af(v)) but not homogeneous (Af(Au) r Xhf(u) for A e C\I~) and hence it 
is not linear over C if S r 0. 

P r o p o s i t i o n  11.6 The function u" C mxn x C mxn 

norm.  
t~+, defined by (11.6), is a 

Proof. We show that  

.(jv) 
.(xH) 

.(H1 +H~) 

- 0 if and only if .IV" = 0, i.e., R -  S -  0, 

- I~I ,J(N),  ), ~ c ,  

/](JV'I) -1L/](JV'2) , 

(11.7) 

i.e. tha t  u has indeed the properties of a norm. We have 

,.,(R, s)  - m a x  { l tRu + S~II~ �9 ~ c c ~, I1~11~ --- 1} 
max { l lRu + S~II~ .u,  ~ c On; Ilull~, I1~11~ _< 1} 

-- v ~  II [R, s] 11~. 

Similarly, we get 

-(R, S) - -  m a x  { l lRu + S~l l~u ~ C ~, Ilull~ ~< 1} 
_> m a x  { l lRu + S~ll~ �9 u c Im n, Itull~ ~< 1} 

= m~x ( I I (R  + S)ull~ " ~ c R",  Itull~ _< 1} 
_> max { t lRe(R + S)ll~, IlIm( R + S)112} 
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and 

. ( R , S )  - max{iiRu + S~ll2"u E C n, ]lull2 <_ 1} 

>_ max{[[Ru + S~[[2"u E (~R) n, [lull2 _< 1} 

= m a x { l [ ( R -  S)ull2"u e (,R) n, [[u[[2 _< 1} 

>_ m a x  {[ [Re(R-  S)[]e, ] lIm(R- SDll2}. 

Hence, we have 

max {[[Re(R + S)][2, [[Im(R + S)[[2, [[Re(R - S)[[2, I [ I m ( R -  S)I[2} 

< u(R, S) < v/2 [][R, SIll2. (11.8) 

Tha t  AT = 0 ( i.e., R = S = 0) implies u(0, 0) = 0 is obvious. If now u(R, S) -- 0 
then the left inequality in (10.44) gives R + S = 0 and R -  S = 0, which yields 

R = S = 0. Thus, the first condition in (11.7) is fulfilled. The second and the 

third relation in (11.7) follow by inspection. El 

Although the operator A/" is not linear (it is not even differentiable, together 

with the map z ~-+ 7), it becomes linear if we consider C n and C TM as linear spaces 

of complex vectors with IR as the field of scalars. 

To compute the norm /.,(AT), however, it is more convenient to use the real 

version 

N ~ : I R  2~ __+ R2m 

of N" over IR, which is a linear operator. 

Let 

R = R0 + zR1, S --  & q- *S1 

and 

U --  U0 q -~ l t l ,  

where Ri, Si and ui are real. Then the real version of u E C. n is 

Setting similarly 

we have 

where 

Ar(u) = wo + zw, 

[w0}Wl M t,,s,[uO 
Ro+So 

Mat(R,  S ) " -  Mat(Af ~) - R1 + S1 S 1 - R 1  1 
Ro - So 
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is the matrix representation of A/e. Since 

2 

we get 

~(N) - . (R.  s)  - IIMat(R, s)tt~. 

The column-wise vector operator form of the perturbed complex Lyapunov 
equation is 

vec(aX) Ac (vec(C) - (X T | In) Pn2vec(aA) - ( I n  @ X)vec(aA)) 

- Acvec(aAHSX + aXaA), 

where 
Ar - 1 -  (In |  M+A T|  -1 - Ao + ~A1 E C nxn 

and A~ E R nx~. Hence, the norm-wise perturbation bound for this case is 

where 

6x<_ 
, 1 ~st (5c. aA. A ~ N~) aA < 

1 - 21IA~IIEaA 211A~II~' 

A N _ 

N A  ~ --- 

A0 -A1 ] 
A1 A0 ' 

-Mat  (A~(In | X), A~ (X T | I~) P ~ ) .  

Corol lary 11.7 The component-wise bound for the complex Lyapunov equation 
(11.5) has the form (11.~) as for the real Lyapunov equation (11.2) but with the 
vector Ol and the matrix ~1 given by 

o~(zx) - IA~lzx~ + (Ia~ (zn | x ) l  + IA~ ( x  T | z~) Pn~ I) ZX~, 
-- IA~I (I~ 0 W T + W T 0 I~ ) ) .  

11.4 Cont inuous- t ime  equations in descriptor form 

In general, there is no simple expression for the spectrum spect(s of the Lyapunov 
operator s in the continuous-time descriptor Lyapunov equation 

f_.(X) "- A T X B  + B TXA = C (11.9) 

Hence, spect(Z:) may be computed, if necessary, as spect(L), where 

L " -  A T | B T + B T | A T 

is the matrix of Z;. 
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In the following we give three equivalent tests for invertibility of /2,  based 

on n • n matrices. Two of them involve the inversion of an n x n matrix (or the 

solution of n algebraic linear vector equations of n-th order) and a spectral analysis 

of another n • n matrix, while the third one is based on the spectral analysis of 
an n x n regular matrix pencil. 

Let us first recall some facts about matrix pencils. Two matrices A and B of 
the same size determine a matrix pencil 

Pen(A, B ) : =  { ~ A -  a B :  a,/3 e C}. 

D e f i n i t i o n  11.8 A matrix pencil Pen(A, B) is called regular i rA  and B are square 
matrices and d e t ( / 3 A -  a B )  is not identically zero. 

E x a m p l e  11.9 Let A , B  C C 2x2 
only if 

Then the pencil Pen(A, B) is regular if and 

] det(A)] + [ det(B)l + [a12621 + a21612 - a11622 - a22bll] > 0. 

It seems natural  to determine the eigenvalues of a regular pencil Pen(A, B) as 

the nonzero pairs (a,/3) for which the matrix 3 A -  a B  is singular. This defini- 

tion, however, may cause problems, since such pairs are not uniquely determined. 
Indeed, if (c~,/3) is such a pair, then any pair (za,  T~) with w r 0 should also be 

considered as an eigenvalue. To avoid this nonuniqueness we must not distinguish 
such pairs and consider them as equivalent. This is done according to the following 
definition. 

D e f i n i t i o n  11.10 The pairs (a,/3) and (a', fl') are said to be equivalent (denoted 
as ( a, /~ ) = ( c~' , /3' ) ) if  c~ /~' = c~' ~ . 

It is easy to show that  the pairs (a, 3) and (a' ,/3') are equivalent if and only 
if there is a nonzero complex number ~- such that  (a' , /3') = (Ta, 7/3). 

The set C 2 of all ordered pairs (a,/~) may be divided into disjoint subsets, 

called equivalence classes or orbits, such that  two pairs belong to the same class if 
and only if they are equivalent. Thus, each pair (a, 3) c C 2 gives rise to the orbit 

[~,~] := { ( ~ ,  ~ ) : ~  ~ c\{o} } c c ~. 

The set of all equivalence classes in this case is the projective plane I~l(C). 

D e f i n i t i o n  11.11 An element ~/ = ~/(A,B) E I~I(c) is called eigenvalue of the 
regular pencil Pen(A,B)  if the matrix ~ A -  a B  is singular for some (and hence 
fo~ e ~ y )  .~nbe~ (~, ~) of ~. 
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If A,B  E C nx~ and the pencil Pen(A, B) is regular,  then there are (at most) n 
eigenvalues 

7~(A, B) - [a,(A, B ) , / ~ ( A ,  B)] 

= {(Ta,(A, B), T/~(A, B))" T ~= 0}, i - 1 , . . . ,  n, 

of Pen(A, B). We note that if e.g., B is nonsingular then the eigenvalues of B-1A 
a r e  

ai(A,B) (11.10) Ai(B-1A) - ~//(-AI B) 

for any 

~/~(A, B) = [a,(A, B), fl~(A, B)]. 

Now we are in position to formulate necessary and sufficient conditions for 
invertibility of s in terms of n x n matrices only. 

P r o p o s i t i o n  11.12 The operator s in (11.9) is invertible if and only if at least 
one of the following three equivalent conditions holds. 

(i) The matrix A is nonsingular and 

A,(A-iB)  + Ak(A-1B) :/: O; i, k - 1 , . . . , n .  

(ii) The matrix B is nonsingular and 

A,(B-iA) + Ak(B-iA) ~ 0; i ,k - 1 , . . . , n .  

(iii) 
ai(A, B)~k(A, B) + ak(A, B)fli(A, B) r 0; i, k = 1 , . . . ,  n. 

Proof. (i) Suppose that s is invertible but A is singular. Then there exists 
U E O(n) such that A U -  [Ai, 0], where A1 E 7~ nxk and k -  rank(A) < n. We 
have 

0 + jUT B T X A i '  0] = xX 
• 

O(n-k)x(n-k) 

where • denotes unspecified matrix block. Due to the zero bottom right block of 
U Ts  for any X E R nxn, we see that the operator s cannot be surjective 
and hence, not invertible. This shows that A is nonsingular. 

Furthermore, let 
L := B T @A T + A  T @B T 

be the matrix of s which is invertible together with s Set 

Li "- L(A @ A) -T = (A- iB)  s @ In + In @ (A- iB)  T. 



11.4. CONTINUOUS-TIME EQUATIONS IN DESCRIPTOR FORM 213 

The eigenvalues of Lt are A~(A-1B) + .~k(A-1B); i ,k = 1 , . . . , n ,  and, since L1 
is also nonsingular, zero is not among them. Since all arguments go in both 
directions, we have proved that  s is invertible if and only if (i) holds. 

(ii) Conditions (i) and (ii) are equivalent, since interchanging A and B we have 
the same operator s 

(iii) Suppose that  (i) (and hence (ii)) is fulfilled. Then ai(A, B) r 0 and 

0 r A i (A-1B)+)~k(A-1B ) = ~,(A,B) + ~k(A,B) 
ai(A, B) C~k(A,B) 

c~k(A, B )~ (A ,  B) + c~i(A, B)~k(A, B) 
c~(A, B)c~k(A, B) 

for all i, k -  1 , . . . ,  n, which proves (iii). 
Let finally (iii) be valid. Then c~(A,B) ~ 0 and A is nonsingular. Dividing 

the inequality in (iii) by c~i(A,B)c~k(A, B) we obtain (i). B 
To use the conditions (i) or (ii) of Proposition 11.12 it is not necessary to 

explicitly invert A or B but rather to solve n vector equations Axi - bi for the 
columns xi of A-1B,  where B = [bt , . . . ,bn].  Note also that  the invertibility of 
both A and B is a necessary condition for the invertibility of s 

T h e o r e m  11.13 The norm-wise perturbation bound for equation (11.9) is 

est(Sc, (~A, (~B, A, NA, NB) + 211xII2 IIAII~,~A,~8, 
5x <_ 

1 - IAhA -- IBhB -- 211A[[~(~AhB 
(11.11) 

where 

A 

NA 

NB 

1A 

1B 

- ( A  T | B T + B T | A T )  - 1  , 

- + | (B T x ) ) ,  

- -A(In~ + Pn2)(In | (A T X ) ) ,  

= ilA(In2 + Pn2)(In | BT)II2, 

- IIA(  = + | AT)II  

and the quantities hA, 5B satisfy the inequality 

1AhA + lBhm + 211AII~hAhB < 1. 

Proof. The expressions for NA, NB and lA, 1B are obtained as follows. First 
we note that  p2 = I,~2 and n2 

Pn~ (A | B)Pn: - B @ A, 

see e.g. [107]. Then the matrix NA is defined by considering the vector 

Vl "-- v l ( h A )  := -Avec(hATXB + B TXhA) 
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in the vectorized expression 

vec(SX) - vec((I)(aX, 5D)), 5D "- (5C, 5A, 5B), (11.12) 

of the operator equation 

for 5X. We have 

a x  - e (ax ,  aD) 

V 1 = - A  (((B T X)  <9 In) vec(aA T) + (In <9 (B T X)) vec(aA)) 

= - A  ( ( (BTx)  | In) Pn2 + In | (BTX))vec(aA) 

= - A  (Pn2 (Pn~. ((BTX) | In) P ~ )  + In | (BTX))vec(aA) 

= - a  (p~: + &~) (in o (e  Cx))  v~c(~A) 

= NAvec(SA). 

In turn, the quantity 1A is obtained from 

N 

1 A -  IINAII2, 

where NA is the matrix NA with X replaced by In, 

/VA -- -A(In~ + Pn2)(In | BT).  

The expression for 1A is obtained by estimating the norm of the vector 

v2 = v2(aX, 5A) := -Avec(aA T 5XB + B -r 5XaA) 

in the right-hand side of (11.12). Similarly to the expression for vl we have 

V2 - _A((aXaA)TB + BT(aXaA)) 

: - A  (/~= + Pn=) (In <9 B T) vec(aXaA) 
N 

= NAvec(aXSA) 

and hence, 

IIv:112 _< 1AaAax. 

The quadratic terms in the numerator and denominator of (11.11) are obtained 
by bounding from above the norms of the matrices 

-A(SA TXSB + 5B T XA)  

and 
-A(SAT 5XSB + 5B T 5XA) 

respectively, and using the concept of the symmetrized norm of A. D 
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The component-wise perturbation bound for equation (11.9) is 

I~XI ~ (I,, - ~ ( A )  - O2(A))-I(OI(A) + O2(A))vec(lXl)), 

where 

(11.13) 

OI(A) - IA]~c + INAIZ~A ~L_ INBIAB, 
O2(A) -- IAI (WB T O W~ + W T ~ WT),  

r - IA (B ~ | z.)l (z- | w~)  + IA (z. | B*) I  (w~ | z.) 
+ IA (A T | X.) [ (Z. | W.  ~) + IA (z. | AT)I (W.  ~ | ~-)- 

For the complex continuous-time descriptor Lyapunov equation 

s := AHXB + BHXA = C (11.14) 

we obtain the following result. 

P ropos i t i on  11.14 The operator s defined by (11.1~), is invertible if and only 
if at least one of the following three equivalent conditions holds: 

(i) The matrix A is nonsingular and 

A~(A-1B) +Ak(A-1B) r 0; i ,k = 1 , . . . , n .  

(ii) The matrix B is nonsingular and 

Ai(B-1A) + -Ak(B-1A) 7/= 0; i, k - 1 , . . . ,  n. 

(iii) 
a~(A,B)/3k(A,B ) +-Sk (A ,B)~(A ,B)  r O, i,k = 1, . . .  ,n. 

T h e o r e m  11.15 The norm-wise perturbation bound for equation (11.1~) is 

5x <_ est(Sc, 5A, 5B, A s, N],  N~) + 211Xl[211A~[I~SASB 
1 --I~A6A - - l ~ S s  -- 2]IA=II~SASB 

provided that 
I~SA + I~SB + 21[AcI[~SASB < 1. 

Here 

and 

i ~ _ 

N~ = 

l~  - 

Z~ - 

A0 -A1 ] 
A1 A0 ' 

- M a t  (At(In | (BHX)),Ac ((XB) T | In) Pn2), 

- M a t  (At(In | (AHx)), Ac ((XA) T | In) P~2), 

IIMat (At(In | BH), A~ (B T | In) Pn2)112' 

liMit (A=(I,~ | A"), A~ ( A  T | zn) Pn~) ]!2 

Ac "- (B T | A H + A T @ BH) -1 -- A0 + zA1. 

(11.15) 
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T h e o r e m  11.16 The component-wise bound for the complex equation (11.1~) has 
the form (11.13) with Oi and ~1 defined by 

01(A) 

o~(A) 
tIs 1 (A)  

-- IAclAc -Jr- (lie (In | (BHX))[ + IAc ((XB) T | In) Pn 2 I) AA 

+ (IAc (In | (AHX))[ + [Ac ( (XA)  T | In) Pn2 I) AB, 

-IA~I(W/|174 
- IAr (B T | I , )  ] ( I ,  | WA T) + IAr (In | BH)[ (WA T | In) 

+ la~ (A ~ | • I (• | W~) + la~ (• | A") I (W~ | • 

1 1 . 5  D i s c r e t e - t i m e  e q u a t i o n s  

The spectrum of the Lyapunov operator /2 in the real discrete-time Lyapunov 
equation 

/2(X) := A TXA - a X  = C (11.16) 

is 

spect(/2) = {)~i(A))~k(A) - a :  i, k = 1 , . . . ,  n}. 

T h e o r e m  11.17 The norm-wise perturbation bound for equation (11.16) is 

est(~c, 5A,A, NA) + IIXII211AII~ 2 
,~x _< 

1 - 21A6A --IIAIIGa~ ' 
(11.17) 

where 

and 

1A + v/Z2A + 4IIAIIG 

A = (A T | A T - OLin4) -1 , 

N~ = -A(• + P.~)(• | (X ~ x ) ) ,  
~A - Ila(~,,~ + P,,~)(• | A T) I1~. 

T h e o r e m  11.18 The component-wise bound for equation (11.16) is 

I,~Xl --< (/n~. -- ~ 1 ( ~ )  -- O ~ ( A ) ) ( 0 1 ( ~ )  + o 2 ( A ) ) v e c ( I X l ) ) ,  (11.18) 

where 

Ol(ZX) 
o~(Lx) 

= I A I L X c + I N A l a A ,  

- IAl(wJ |  

- la (A ~ | z~) I (• | w~)  + la (I~ | A~)I (W~ | I~). 
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The spectrum of the linear operator/:~ in the complex discrete-time Lyapunov 
equation 

Z:c(X) "- A H X A  - a X  -- C 

spect(s - {A{(A)Ak(A) - a "  i, k = 1 , . . . ,  n}. 

T h e o r e m  11.19 The norm-wise perturbation bound for equation (11.19) is 

5x <_ est(Sc, 5A, h ~,  NA ~) + IlXll211A~ll~@ 
1 - 21RASA --IIA~II~@ 

where 

and 

A ~ - 

NA ~ - -  

A0 -A1 ] 
A1 A0 ' 

- M a t  (Ac(In @ (AHx)),  A~ ((XA) T @ In) Pn2), 

I]Mat (Ac (In | An) ,  Ar (A T | In) P~)1[2 

A c = L c  1 -  (A T |  n - a I n 4 )  - l = A o + ~ h l .  

(11.19) 

(11.20) 

T h e o r e m  11.20 The component-wise bound for the complex equation (11.19) has 
the form (11.18) with Oi and ~ 1 defined by 

O1(A) 

~I/I(A) 

- IA~IAc + (]Ac (In | (AHX))I + (<XA> T P =l) AA, 

- [Ac (A T @ In) l (In | W T) + ]Ac (In @ AH)[(W~. |  

11.6 Discrete- t ime equations in descriptor form 

Again, no simple expression for the spectrum spect(s of the Lyapunov operator 
s in the descriptor discrete-time Lyapunov equation 

s  "-  A TXA - B T X B  - C (11.21) 

is available in the nontrivial case when neither A nor B are multiples of In. Hence, 
spect(s may be computed (if necessary)as spect(L), where 

L - -  A T | A T - B T | B T (11.22) 

is the matrix of/2. In this case we again have a test for invertibility of s in terms 
of n x n matrices instead of the n 2 x n 2 matrix L. 

P r o p o s i t i o n  11.21 The operator s is invertible if and only if at least one of the 
following two conditions is fulfilled: 
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(i) At least one of the matrices A or B is nonsingular and either 

Ai(A-1B)i~k(A-1B) r 1; i ,k  = 1 , . . . , n  

(if A is nonsingular), or 

)~i(B-1A))~k(B-1A) r 1; i ,k = 1 , . . . , n  

( i i )  

(if B is nonsingular). 

c~(A,B)~k(A,B)  r O~k(A,B)I~i(A,B); i ,k = 1 , . . . , n .  

Proof. (i) We show first tha t  if/2 is invertible then at least one of the matrices 
A or B is nonsingular. If both A and B are nonsingular there is nothing to prove, 

so suppose that  A is singular. Then there exists V E �9 such that  

AV=[AI ,0nx l ] .  

Part i t ion the matrix B V  = [B1, b] accordingly, where b E R n. 

In view of the invertibility of the operator t; its matrix L, given in (11.22), is 
nonsingular. Hence, the matrix 

L 1 := (V T | VT)L 

is also nonsingular. We have 

L1 - ( A V )  T | ( A V )  T - ( B y )  T | (BV) T 

: [AoTll| T DT ] | (BY) 

= [ A T |  T Q ( B V ) T  
--b T | (Bv)T ] " 

Therefore, the matrix 
b T | (Bv )T  

must be of full row rank, equal to n. Since 

E R nxn2 

rank(b T | (BV) T) - rank(b)rank(B),  

we see that  b r 0 and rank(B) must be n, i.e., B is nonsingular. 
Next we show that  in this case 

Ai(B-1A))~k(B-1A) r 1; i , k -  1 , . . . ,  n. (11.23) 

Indeed, the matrix 

L2 := L(B | B) -T  = (B-1A)  T | (B-1A)  T - . /n4 
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is nonsingular together with the matrix L from (11.22), since its eigenvalues 

Aj(L2) = A , ( B - 1 A ) A k ( B - 1 A )  - 1 

are nonzero. 
That (i) implies the invertibility of 12 is checked by repeating the above argu- 

ments in reverse order. 
(ii) Suppose that (i) holds and that e.g. B is nonsingular. Then the identities 

A~(B_~A ) _ a ~ ( A , B )  
f l i(A,  B)  ' i - 1, . . . , n, 

together with (11.23) yield (ii). In turn, if B is nonsingular then (ii) yields (11.23). 
0 

T h e o r e m  11.22 The norm-wise  perturbation est imate for  equation (11.21) is 

where 

est(ac, aa,au,A, NA NB) + IIXII~IIAII~ (a~ + @) 
ax < ' (11.24) 

- 1 - 1 A S A  - -1uSB --[[A[[~ (5~ + 52) ' 

A - (A T | A T - B T | BT) -1 , 

NA -- -A(In~ + Pn~)(In | (A T X ) ) ,  

N~ - A(~  + P ~ ) ( ~  | (B ~x)) ,  

ZA -- IIA(I~ + Pn =) (In | AT)I I= ,  
lB -- ][A(In= + Pn~)(In |  

The domain  for  5A, 5B in (11.2~) is determined by 

ZASA + 1BSB + ]IA[I~ (5~ + 6~) < 1. (11.25) 

If X is nonnegative or nonpositive definite, then the expression 5~ + 5~ may 
be replaced by max {5~, 5~} in both the numerator and the denominator of the 
norm-wise bound (11.24) as well as in the left-hand side of (11.25). 

T h e o r e m  11.23 The component-wise  bound for  equation (11.21) is 

]~X  I --K (In2 - II~r I ( A )  - ( :~ )2(n) ) (e  I ( A )  --[-- O 2 ( A ) ) v e c ( l X l ) ) ,  (11.26) 

where 

Ox(/X) 
e ~ ( A )  

~I(A) 

= IAIcSo + INAIAA § INBI/XB, 
--IAI(WS,|174 
- IA (A T | In) I (In | W2) + la (• | AT)I (W2 | Z,~) 
+ IA (B ~- | •176 I (• | W~) + IA (• | 8T)I (W~ | • 
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Consider finally the complex discrete-time descriptor Lyapunov equation 

Ed(X) "- A H X A -  BHXB - C. (11.27) 

A result, similar to Proposition 11.14 is the following. 

P ropos i t ion  11.24 The operator s is invertible if at least one of the following 
conditions is fulfilled: 

(i) At least one of the matrices A or B is nonsingular and either 

)~i(A-1B)-Xk(A-1B) ~ 1; i , k -  1,. . .  ,n 

(if A is nonsinguIar), or 

)~i(B-1A)-Xk(B-1A) ~ 1; i, k - 1 , . . . ,  n 

(if B is nonsingular). 

( i i )  
k 

ai(A,B)/3k(A,B ) ~-~k(A,B)fl i(A,B); i , k -  1 , . . . , n .  

T h e o r e m  11.25 The norm-wise perturbation bound for equation (11.27) is 

where 

5x <_ 
est(Sc, 5A, 5B, A ~, N~, N~) + IIXII211A~I[~ + @) 

1 - l~SA --I~BSB --]]Acl[~ ( ~  + 5~) 
(11.28) 

A N: _ 

- 

l ~  - 

A0 -A1 ] 
A1 A0 ' 

- M a t  (At(In @ (AHx)), Ar ((XA) T | In) P ~ ) ,  

Mat (At(In | (BHX)),Ac ( (XB)  -r | In) Pn2) , 

[]Mat (A~(In | An), Ac (A T | In) Pn2) []2, 

liMit (i=(In | B"), A= (B T | In) P,+) 

and 
Ac - (A T | A H - B -I- | B H )  - 1  - -  A0 + ~A1. 

The domain for 5A, 5B in (11.28) is given by 

l~5A + l~Se + [[A~II ~ (5~ + 5~) < 1. (11.29) 

If X is positive or negative semidefinite we may, as in the real case, replace 
5~ + 52 by max {5~, 5~} in both the numerator and the denominator of the norm- 
wise bound (11.28) as well as in the left-hand side of (11.29). 
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T h e o r e m  11.26 The component-wise bound for the complex equation (11.27) has 
the form (11.26) with 0i and q21 defined by 

(~1(A) - [A~]Ac + ([Ar (I~ | (AHx))[ + ]A~ ((XA) T | In) Phi. I) AA 

+ ([A~ (In | (BHX))[ + ]a~ ((XB) -r | In) Pn=l)/"B, 
= 

- IAc (A T | In) l ( I  n | W~) + tAc (In | gn)  l (WA x | In) 

+ Imc (1~ -I- (~ In) l (I n (~ W~)  + IAc (I n (~ BH)] (W T (~)In). 

11.7 N o t e s  and  re ferences  

The presented results are partially published in the literature for particular classes 
of Lyapunov equations, see e.g. [95, 3, 134, 132, 136, 125]. The presentation above 
follows the paper [132]. Residual bounds for the standard discrete-time Lyapunov 
equation are given in [78]. 

Descriptor Lyapunov equations are studied in [207], while condition and error 
estimates for the solution of Lyapunov equations are given in [179, 146]. 
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Chapter 12 

General quadratic equations 

12.1 I n t r o d u c t o r y  r e m a r k s  

In this chapter we present a complete perturbation analysis for general quadratic 
matrix equations. We also briefly consider symmetric quadratic matrix equations, 
particular cases of which are the continuous-time Riccati equations, arising in the 
optimal control and filtering (including 7-/o0 control and filtering) of continuous 
time-invariant control systems. 

12.2 P r o b l e m  s t a t e m e n t  

Consider the general quadratic matrix equation 

F(X,P)  := A(X, P1) + Q(X, P2) = 0 ,  (12.1) 

where X E F "~xn is the unknown matrix. The function 

F(., P) : ]~mxn ~ I~pXq 

is a quadratic matrix operator, depending on the matrix collection P = (P  I, P2). 
In (12.1) 

A(., P1): ~ •  _~ ~p• 

is an affine operator, 

A(X, P1) "- Ao + ~ A~XB~, (12.2) 
i - - 1  

depending on the matrix collection 

P1 : -  (A0, A 1 , B 1 , . . . , A r l , B r l ) ,  

223 
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where 
Ao c F pxq, Ai ~ F pxm, Bi E F nxq 

are given matrix coefficients. Furthermore, 

Q( ' ,P2) :  F mxn ~ F pxq 

is a homogeneous quadratic operator, 

r 2  

Q(X, P2) "- E C k X D k X E k ,  
k = l  

depending on the matrix collection 

/:)2 : =  (C1,Di ,E1, . . . ,Cr2 ,Dr2,Er2) ,  

where 

(12.3) 

Ck E IF pxm, Dk C IF nxm, Ek E ]F nxq 

are given matrices. 

It is assumed that  mn = pq := 1. The matrix (2rl + 1)-tuple P1 depends on 

pq + rl (rnp + nq) parameters - the elements of the matrices A0, Ai and Bi, while 

the 3r2-tuple P2 depends on r2(pm + nm + nq) parameters. 
Denote by 

Fz(X ,  P) : F rxt ~ F pxq 

the partial Fr6chet derivative of F in the corresponding r x t matrix argument 

Z E 7 ) : =  {Ao,A1,B1, . . . ,Cr2 ,Dr2 ,Er2} ,  (12 .4)  

computed at the point (X, P). 

We assume that  equation (12.1) has a solution X, such that  the linear operator 

Fx := F x ( X , P ) :  F mxn ~ F pxq 

is invertible (we recall that  mn = pq and hence the matrix spaces F mxn and 

F pxq are isomorphic). Then according to the implicit function theorem (see [117, 

173] and Appendix A) the solution X is isolated, i.e., there exists c > 0 such 

that equation (12.1) no other solution X with I I X -  Xll < e. The problems 

of existence and uniqueness of the solution of quadratic matrix equations are of 

independent interest but they are not the subject of this monograph. We only 

mention that the general solution (i.e., the set of all solutions) of equation (12.1) 
is the intersection of I quadrics and is thus a closed algebraic variety in the Zariski 
topology of F pxq ~_ F I. For the geometry of such sets see [198, 199]. 

The perturbation problem for equation (12.1) is stated as follows. Let the 
matrices from P be perturbed as 

Ao ~ Ao + 5Ao, Ai ~ Ai + 5Ai, Bi ~ Bi + 5Bi, 

Ck ~ Ck + 5Ck, Dk ~ Dk + 5Dk, Ek ~ Ek + 5Ek. 
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Denote by P + 5P the perturbed collection P, in which every matrix Z E 7 ) is 

replaced by Z + 5Z. Then for a given solution X, the perturbed equation is 

F ( X  + 5X, P + 5P) = 0. (12.5) 

Typically, some of the matrices from 7 ) are not perturbed. Denote by 

P "-- { Z l ,  Z 2 , . . . , Z r }  C "]9 

the set of matrices from P, which are perturbed. 

Since the operator Fx is invertible, equation (12.5) has a unique isolated solu- 

tion X + 6X in the neighborhood of X if the perturbation 5P is sufficiently small. 

Moreover, in this case the elements of 5X are analytic functions of the elements 
of 5P. 

Denote by 

o o "-- , , . . . ,  (~v_2,  ( ~ v _ l ,  (~ 0] (12.6) 

"-- [SAo,  (~A1, (~B1, " " �9 , 5C~ 2 , 5D,~ 2 , 5E,- 2 ] T v CI~+ 

the full vector of absolute norm perturbations 5z := 115ZIIF in the data matrices 
(12.4), where 

v := 1 + 2rl + 3r2. 

Let also 

(~ "-- [(~1, ( ~ 2 , . . . ,  (~r] T "-- [(~Zi, ( ~ Z 2 , " " " ,  (~Zr] -[- e R ;  ( 1 2 . 7 )  
.-v 

be the vector of nonzero norm perturbations of the matrices 5Z for Z E 7 ). 

The perturbation problem is to find a bound 

5x <_ f(5), 6 e a c R ; ,  (12.8) 

for the perturbation 

6x := 116XIIF, 

where f~ is a given set and f is a continuous function, nondecreasing in each of its 

arguments and satisfying 

f(O) = 0 .  

We first derive a local bound 

, x  _< f l ( , )  + o ( l l , l l ~ ) , ,  -* 0, 

which is then incorporated in the nonlocal bound (12.8). The inclusion 5 E f~ 
guarantees that  the perturbed equation (12.5) has a unique solution X + 5X in 

the neighborhood of the solution X of the original equation (12.1). 
Estimates in terms of relative perturbations 

116ZjJlF zj e ~, 
PJ := Ilzjll------T' 
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f o r  

-IlXll  
are straightforward when X r O. Indeed, we have 

px < 
f (IIZIIIFpl , . . . ,  IIZ<IIFP<) 

Itxll  

Suppose now tha t  p - q = m - n and tha t  we have a symmetric quadratic 

matr ix  equation of type (12.1). 

D e f i n i t i o n  12.1 A symmetric operator 

G ( ' , t ~ )  " ~ n x n  ____> I ~ n x n ,  

depending on a collection of matrices R, satisfies 

G T (X, R) - G(X T, R) 

in the real case and 

in the complex case. 

a" (x, R) - a ( x ' ,  n) 

Hence, in symmetric  quadratic matr ix equations we must assume tha t  A and 

Q are symmetric  operators. Thus, in the real case the symmetric operator A is of 
the form 

where 

and 

11 kl 

A(X, R1) - Ao + ~ (AiXBi + B~XA~) + ~-~eiMiXM?, 
i=1 i=1 

A0 - A0 n-, ei - +1, 2/1 + kl - r l  

R1 " -  {A0, A 1 ,  B 1 ,  . . . , A l l ,  B l l  , M 1 ,  . . . , M k l  } .  

Similarly, the symmetric operator Q is determined by 

12 k2 

Q(X, R 2 ) -  ~ (CkXDkXEk + E-~XD-~XC-~) + ~ ekTkXSkXT[, 
k = l  k = l  

where 

and 

Sk -- sT ,  r = =t=1, 2/2 + k2 -- r2 

R2 "-- { C l , D 1 , E 1 , . . . , C l 2 , D l 2 , E l 2 , T 1 , S 1 , . . . , S k 2 , T k 2 } .  
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In the complex case we have 

ll kl 

A(X, R1)- Ao + Z (A XB  + BpXAp) + Z 
i=1 i = l  

and 

12 k2 
H H Q(X, R 2 ) -  E (CkXDkXEk + EHXDk X C  k ) + E ekTkXSkXT2 '  

k--1 k = l  

where Ao - A H and Sk - S~. 
The symmetr ic  quadrat ic  matr ix equations, arising in the optimal control and 

filtering of continuous time-invariant linear systems, are called continuous-time 
algebraic Riccati equations. An example of a real continuous-time algebraic Riccati 

equation is given in the next section. 

1 2 . 3  M o t i v a t i n g  e x a m p l e  

Nonsymmetr ic  quadratic matr ix  equations arise in the analysis of continuous time- 

invariant systems as shown in the following example. 

E x a m p l e  12.2 Consider the continuous time-invariant dynamic system 

2(t) - Ax(t), t > O, 

with initial condition x(0) - x0, where x(t) c IF n. Let n -  q + p, where p, q >_ 1 

are integers. We may write the system in a parti t ioned form 

5:1(t) 
~:(t )  

-- Al lXl( t ) -~-  A12x2(t), 

- A21xl(t)-~- A22x2(t), t > O, 

with initial conditions xi(0) - xi0, where 

x(t) [x: (t), x~ (t)] ~ ~ ~ ,  - -  , X l ( t ) E  , x 2 ( t )  C 

The system admits a mutual observation property [128] if there exists a matr ix  

X c ]Fp• such tha t  for every x0 E ]F n one has 

x 2 ( t )  - -  X X l ( t )  ~ - v 2 ( t ) ,  t ~ O, 

where v2(t) E IF p is the state of a time-invariant system, 

,~( t )  = B ~ ( t ) ,  t > 0, v~(0) - x~o - Xx~o,  
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and 

lim sup ~ ]lv2(t)l[ �9 
~-~oo l IIx(t) ll 

Using the change of variables 

where 

we see that  

where 

x0 C F  n } 

x(t) - u ( x ) v ( t )  u ( x )  . -  [ I~ 
' [. X 

v(t) - 

i~(t) = B(X)v( t ) ,  

< oc. 

0 

B ( X )  := U - I ( X ) A U ( X )  = 
All + A 1 2 X  

A21 q- A22X - X A 1 1  - X A 1 2 X  

Hence, the mutual observation property will be valid with 

A12 1 
A22 - X A 1 2  J " 

B2 = A22 - XA12 

if the matrix X satisfies the nonsymmetric Riccati equation 

A21 + A22X - X A l l  - X A 1 2 X  - 0 

under the additional condition Re(A2) < Re(A1) for every A1 c spect(All + A12X) 
and A2 E spect(A22 - XA12). 

Consider also two types of descriptor systems, 

Elx( t)  -- Ax(t),  g I : :  diag (F1, Ip), 

and 

E22(t) = Ax(t),  E2 := diag (Iq, F2), 

where the matrices Fi are nonsingular and the matrices E~-IA are stable. In 

the first case, to ensure the mutual observation property, we have to solve the 
nonsymmetric Riccati equation 

for Y := TF~-1 

A21 + A22YFx - YA11 - YA12YF1 = 0 

�9 In the second case the nonsymmetric Riccati equation is 

A21 + A22X - F 2 X A l l  - F2XA12X = O. 

<> 

Similar nonsymmetric quadratic matrix equations arise in the problem of de- 

t e r m i n i n g i n v a r i a n t s u b s p a c e s o f t h e f o r m R g [  U11 f o r t h e m a t r i x A E F n x n  
U2 

where the matrix UI E F q• is nonsingular. 
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12.4 Local perturbation analysis 

In this section we derive local perturbation bounds for the general quadratic matrix 
equation (12.1). A detailed study of its symmetric real and complex versions is 
given in Chapter  13. 

1 2 . 4 . 1  C o n d i t i o n  n u m b e r s  

Consider the conditioning of equation (12.1). Recall that  Lin(p, m, n, q,]F) is the 
space of linear operators ~ 7 m •  ._...+ ff:'p• Having in mind that  F(X, P) - 0, the 

perturbed equation (12.5) may be written as 

F(X  + 5X, P + 5P) "- Fx(SX) + E Fz(SZ) + G(aX, aP) - O, 
Z E T:' 

where 

(12.9) 

Fx(.) 

FB,(.) 

:= Fx(X,P)( . )  E Lin(p,m,n,q),  

:= FAo(X,P)(.) e Lin(p,p,q,q,F), 

:= FA, (X, P)(.) e Lin(p, p, m, q, F), 

:= FB,(X,P)(.) e Lin(p,n,q,q,F), 

:= Fck(X,P)(.)  e Lin(p,p,m,q,F), 

:= FDk(X,P)(.) E i in(p ,n ,m,q ,F) ,  

:= FEk(X,P)(') C Lin(p,n,q,q,F) 

are the Fr6chet derivatives of F(X ,P)  in the corresponding matrix arguments, 
evaluated at the solution X and the matrix G(SX, 5P) contains second and higher 
order terms in 5X, 5P. A straightforward calculation leads to 

r l  r2  

Fx(Z)  - E AiZB~ + E ( C k X D k Z E k  + CkZDkZEk),  
i = 1  k = l  

FAo(Z) -= Z, 

FA~ (Z) = ZXBi ,  

FB~ (Z) = A~XZ, 

Fck (Z) = ZXDkXEk ,  

FDk (Z) -- CkXZXEk ,  

FEk (Z) = CkXDkXZ.  

Since the operator Fx(.) is invertible we get 

(~X - - E F x  1 

z c p  

o Fz(SZ) - Fxl(G(SX, 5P)). 

(12.10) 

(12.11) 
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Relation (12.11) gives 

a~ <__ Z KzSz + o(11~112), a -~  0, (12.12) 
ZE7' 

where the quantities 

Kz . - I I F x  1 o Fzll, z ~ ~,  (12.13) 
are the absolute individual condition numbers [188] of the quadratic matrix equa- 
tion (12.1). Here I1.11 is the norm, induced by the Frobenius norm in the corre- 
sponding space of linear operators, i.e., 

lgrll .= max{l[.T(Y) llF. IIYIIF - 1}. 

If X 5r O, then an estimate in terms of relative perturbations is 

P x  " ~  

IlaxIJF 
<_ ~ kzpz + O(llal12), ,~-~ o, 

IIXlIF, 
Z C'P 

where the scalars 

k~ . = / (~  liXll~' 
I I  I T 

are the relative individual condition numbers with respect to perturbations in the 
matrix coefficients Z c 7 ). 

A calculation of the condition numbers K z  is straightforward. Denote by 
L z  E F pqxrt the matrix representation of the operator Fz(.) E Lin(p, r, t, q). We 
have 

r ' l  r2 

L x  - E B ?  | Ai + E (E[  | (CkXDk)  + (DkXEk)  T | Ck) , 
/ = 1  k = l  

L Ao -- II , 

LA, - (XBi )T  | Ip, 

LB, - Iq | (AiX) ,  

Lck = ( X D k X E k )  T | Ip, 

LDk -- (XEk)  T @ (CkX), 

LEk = Iq | ( C k X D k X ) .  

(12.14) 

Thus, the absolute condition numbers are 

K Z : I [ L x 1 L z l l 2  , Z c "P. (12.15) 

A drawback of this approach is the large size of the involved matrices. Condition 
and accuracy estimates, avoiding the formation and analysis of large matrices, are 
proposed in [179]. 
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An overall relative condition number may be defined as follows. Denote by 

O-- (Z l , . . . ,Zr )  
N 

the r-tuple of matrix coefficients from 7 ). The matrix collection O may be consid- 
ered as an element of a linear space (the Cartesian product of the matrix spaces, 
to whom the matrices Zi belong). Hence, we may define the product 

a O  - ( a Z l ,  a Z 2 ,  . . . , a Z r )  

of O and a c F as well as the sum 

- ( - _ - )  
O + O -  Z l + Z l , Z 2 + Z 2 , . . . , Z r + Z r  

of two r-tuples O and O. We also introduce the generalized norm 

IIO[[g "-- [ [ [ Z I l I F , [ [ Z 2 1 1 F , - - ' , [ [ Z r ] [ F ]  T E 1~;  

of the r-tuple O. 

Let 

5 x  - 5 x ( 5 o )  

be the perturbation in the solution, where 

~ 0  "-- [ ~ Z l ,  ( ~ Z 2 , . . . ,  (~Zr], 

and ~ E R r is a vector with positive elements. 

De f in i t i on  12.3 The absolute overall condition number with respect to ~ is 

~ ( 7 ) - -  lim max {[[SX(50)[IF �9 [150[[g ~ sT} .  
r 0 

We have (see Chapter 8) 

o F z ( ~ Z )  " llS@llg ~ 7 } -  (12.16) 

When 7j - It Zj ]IF and 7i = 0 for i ~ j,  then the quantity ~(~) is the individual 
absolute condition number with respect to the matrix Zj c P, determined above. 

When ~ / -  []O[Ig then ~(7) is the overall norm-wise relative condition number of 
equation (12.1). 

In general there does not exist a closed form expression for ~(7). However, we 

will derive bounds for ~(7) in the next section. 
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1 2 . 4 . 2  F i r s t  o r d e r  h o m o g e n e o u s  b o u n d s  

In this section we derive local first order homogeneous estimates. 
The perturbed equation may be written in vector form as 

vec(SX) = E Nzvec(SZ) - Lxlvec(G(SX, 5P)), 
Z E7 ) 

where 

(12.17) 

and 

where 

where 

estl(~) "-- E IINzII2~z- ~ Kz~z. 
ZE'P ZE7' 

Relation (12.17) also gives 

6x _< est2(5) + O(lI~ll~), ~ -~ o, 

est2(5) "-IINII211~112 

N := [N1, N 2 , . . . ,  N~] := [Nz~, Nz~ , . . . ,  Nz,.]. (12.20) 

The bounds estl(5) and est2(3) are alternative, i.e., which one is of less value 
depends on the particular value of 5. 

Again, a third bound, which is always less than or equal to estl(5), is given by 

6x _< est3(6) + o(11~11~), ~ -~ o, (12.21) 

where 

est3(6) := v/STM5 (12.22) 

and M = [mij] is an r • r matrix with elements [mij] := IIN HNj 112. 
Hence, we have the overall estimate 

5x <_ est(5)+ O(115]12), 5 --, 0, (12.23) 

where 

est(5) := min{est2(5), est3(5)}. (12.24) 

The local bound est in (12.23), (12.24) is a nonlinear, first order homogeneous and 
piece-wise real analytic function in 5. 

(12.18) 

(12.19) 

Nz  "- - L x I L z ,  Z E ~. 

The absolute condition number based estimate is a corollary of (12.17). When 
using the Frobenius norm, the estimate is obtained as follows. Set 

~x = II~XllF = Ilvec(~X)ll2. 

Since 5z >_ IIvec(SZ)ll2, we have 

5x _< estl(S) + o(l l~l l i ) ,  ~ -~ o, 
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1 2 . 4 . 3  C o m p o n e n t - w i s e  b o u n d s  

A local component-wise perturbation bound follows from (12.17)- 

Ivec(SX)] -< E ILx1Lz[ Ivec(~Z)[ +O(II5112)' 5 ~ 0. 

ZE'P 

Its implementation requires information about the perturbations in the compo- 

nents of the data such as Ivec(Z)[ _--< Wz,  Z E T', where Wz >'- 0 are given vectors. 

12.5 Nonloca l  perturbat ion  analysis 

In this section use nonlinear perturbation analysis to determine a domain ft C R~_ 
and a nonlinear function f "  f~ ~ R+ such that 

5x < f(5) 

for all ~ E D. 

The inclusion 5 E fl guarantees that the perturbed equation has a solution. 
Also, the estimate 5x <_ f(5) is rigorous, i.e., it is true for perturbations with 

E ~t, unlike the local bounds. 
Let the collections Pi be perturbed to Pi + 5Pi and hence P ~ P + 5P. Set 

Y = X + 5X for the solution of the perturbed equation (12.5). In what follows we 
shall mark the dependence of certain quantities only on the perturbations 5X, 5Pi 
and/iP,  recalling that they are evaluated at the nominal collection P, and that X 
is a fixed solution of (12.1). 

The perturbed equation (12.5) may be rewritten as an operator equation 

~X - ~(SX,  5 P ) ' -  Oo(SP) + (I)l ((~X, 5P) + ~2(5X, 5P), (12.25) 

where 

 o(SP) 
5P) 

�9 = - F x l ( X , P ) ( G o ( S P ) ) ,  

"= - F  X I ( X ,  P)(G~(SX, ~P)), i = 1, 2, 

are homogeneous functions of order i in 5X. Here the quantity Go(SP) depends 
only on 5P, while G~(SX, SP), i - 1,2, depend on both 5X and 5P, as shown 
below. We have 

Go(6P) 
Cl(SX, SP) 

-- GOl ((~P) -+- Go2(SP) + ao3((~P2), 

- G~(SX, 5P) + a12(SX, 5P) + al3(t~X, (~P2), 
- Guo(SX, 5P) + G2~ (SX, 5P) + G22(SX, 5P) + a23(Sx,  5P2), 

where the matrices Gij(SX,  5P), i - 0, 1, 2, are sums of perturbed terms of order 
j with regard to 5P and are defined as follows. 
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In  t h e  case i - 0  we have  

Gol(6P) "- 

Go2(~P) "- 

ao3( P2) - 

r l  

6Ao + Z(6AiXBi + AiX6Bi) 
i : 1  

r2 

+ Z(6CkXDkXEk + CkX6DkXEk + CkXDkX6Ek), 
k : l  

r l  

Z 6AiX6Bi 
i = 1  

I- 2 

+ Z(aCkXSDkXEk + CkX6DkX6Ek + 6CkXDkX6Ek), 
k = l  

r2 

6CkXSDkXSEk. 
k = l  

In  t h e  case i - 1 it holds  t h a t  

G11(Z, (SP) "-- 

G12(Z, 6P) "= 

G13(Z, ~p2) . -  

r l  r2 

Z(6AiZBi + AiZ6Bi) + ~ 6Ck(XDkZ -}- ZDkX)Ek 
i - 1  k - 1  

r2 
+ E Ck(X6DkZ + Z6DkX)Ek, 

k = l  

r2 

+ ~ Ck(XDkZ + ZDkX)6Ek 
k=l 

rl 

Z 6AiZ6Bi 
i:1 

~2 

+ Z 6Ck(X6DkZ + Z6DkX)Ek 
k=l 

?'2 

+ Z Ck(X6DkZ + Z6DkX)6Ek 
k : l  

r2 

+ Z 6Ck(XDkZ + ZDkX)6Ek, 
k : l  

r2 

Z(6CkX6DkZ6Ek + 6CkZ6DkX6Ek). 
k:l 

Finally, in t h e  case i -  2 t h e  c o r r e s p o n d i n g  express ions  are  

a 0(z) - -  

a 2 1 ( z ,  6P ) . -  

r2 
Z Ck ZDa ZEk, 
k = l  

r2 

E ( 6 C k X D k Z E k  Jr CkZ6DkZEk + CkZDkZ6Ek), 
k=l 
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r2  

G2z(Z, SP2) - E (SCkXSDkZEk  + CkZSDkZSEk + 5CkZDkZSEk), 
k=l  

r2  

G23(Z, 5P2) "- E 5CkZSDkZaEk. 
k=l  

Suppose that  Ilzll, <_ p. Then we have 

[[ r (SP) [[ F _< a0(5), 

IIr ~ al(a)p, 
IIr SP)IlF <_ a2(5)P 2, 

where 

~o(a) "-  

a l  ((~) "= 

a2(5) "-  

a01(5) + a02(5) 4- a03(5), 

all (5) 4- a12(5) 4- a13(5), 

a2o + a21 (5) + a22(5) + a23(($). 

(12.26) 

The quantities aij(5) are of order o(ll~[tJ) for 5 -+ 0 and are given by the following 
formulae. 

In the case i - 0 we have 

aol((~) "-- e s t (5 ) ,  
r l  

ao2(~)  "-- IILxl][2 IIXl[2 ~ ~Ai~Bi 
i=l 

r2 

+ [[X]]2 E [ILx 1 ( (XEk)T | In) 112 5CkaDk 
k=l  

r2  

+ [[xll2 ~ ]ILx 1 (Iq | (CkX))][ 2 5D~ 5E~ 
k=l  

r2  

+ []Lx 1 I]2 Itx]]2 ~ 5C~5E~, 
k=l  

?"2 

ao3(*) "- ]ILx 1112 I[xii22 ~*C~*D~*E~" 
k=l  

(12.27) 

The case i = 1 is characterized by 

a11(5) "- 
r l  

I I ( L x  1 ( BT | Ip) ll2 ~Ai --[- ( n x  1 (Iq | di)ll 2 (~Bi) (12.28)  
i=1 

~2 

+ E II(Lx 1 (El  | Ip)112 II In | (ZDk) + (DkX) q- | Im]l 2 ($ck 
k=l  
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a 1 2 ( 5 )  "-- 

a13(~) "-- 

r2  

+ 21[xll2 ~ II(Lx 1 (Es 0 Ck)112 ao~ 
k=l 

r2  

+ E Jl (LX1 (Iq @ Ck)lJ 2 IlZn | (XDk) + (DkX) T | I.~lt 2 5Ek, 
k=l 

r l  

IILxlII2E6A,6B, 
i=1 

r2 
+ E II (LX1 (E ;  | IP)112 IlIn | x + x -r | all ' c, ' Dk 

k=l 
r2  

+ ~ II(L~ ~ ( ;  | c~)112 II I.  | x + x ~ | I~11~ '~Dk'~E~ 
k=l 

r2  

+ IILxll]2 E I I  In | (XDk)+ (DkX) T | Iml/2 5CkSEk, 
k=l 

r2  

2 JlLx 1 I1= IlXl12 E 6c~ ~Ok ~Ek" 
k=l 

Finally, in the case i - 2 the expressions are 

r2  

a20 - ~ ]ILx I (E~ O Ok)I1~ IID~lt~, 
k=l 

F2 

a21 (5) "-- E IILx 1 ( E2- | Ip)112 IIDkl125Ck 
k=l 

1"2 

-[- E ]1LX1 ( E2- | Ck)112 ~Dk 
k=l 

r2  

+ ~ IlLx x (/~ | ck)ll2 IlDkl125E~, 
k=l 

r2  

a22(5) "= E I]Lx 1 (E :  | Ip) l[2 ~Ck~Dk 
k=l 

r2  

+ E II Lxl (/qT | Ck)112 ~Dk ~Ek 
k=l 

r2  

+ IlLx 1112 E IIDklI26c~6E~' 
k=l 

r2  

a23(6) "- IIL;~IlI~ ~ IlOkll~6ck'SOk'SE~, 
k = l  

(12.29) 

In the following we apply again the technique of Lyapunov majorants and 
Banach fixed point principle in order to show that the operator equation (12.25) 
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has a (unique) solution and to estimate its norm. 
Let 

IIZIIF, IIZIIF < p. 

The Lyapunov majorant (see Chapter 5) for equation (12.25) is a function (5, p) H 
h(5, p), defined on a subset of R~ • R+, and satisfying the conditions 

[[r 5P)IIF _< h(5, p) 

and 

liB(Z, 5P) - ~(Z,  5P)IIF _< hp(5, p)llZ - ZIIF. 

The Lyapunov majorant here is 

h(5, p) = ao(5) + al (5)p + a2(5)p 2 

and the majorant equation 

h(5, p) = p 

for determining the nonlocal bound p = p(5) for 5x is quadratic, 

a2(5)p 2 - (1 - al(a))p + ao(5) = O. (12.30) 

Suppose that 5 c ~, where 

"-- {~ )'- 0" a l (~ )q -  2v/a0(5)a2(5) < 1} C 

Then equation (12.30) has nonnegative roots pl(5) _< p2(5) with 

Pl(a) "-- f(5) . -  2a0(5) 
1 - al(5) + V/(1 - a1(5)) 2 - 4ao(5)a2(5) 

The operator ~(., 5P) maps the closed convex ball 

(12.31) 

(12.32) 

B(6) : -  { z  ~ ~m• : IIZIIF ~ f(5)} C F mxn 

into itself. According to the Schauder fixed point principle there exists a solution 

6 x  e B(6) 

of equation (12.25), for which 

(12.33) 

In addition, the elements of 5X are continuous functions of the elements of 5P 
and hence of those of 50. 

If 5 E ~1, where 

: =  < 1} c 
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then 
/ 

Pl(~) < P2(~), hp(pl, ~) < 1 

and the operator ~(., ~) is a contraction on B(5). Hence, according to the Banach 

fixed point principle the solution 5X, for which the estimate (12.33) holds, is 

unique. This means that  the perturbed equation has an isolated solution X + 5X. 
Moreover, in this case the elements of ~X are analytic functions of the elements 
of 5P. 

As a result of the nonlocal perturbation analysis we have the perturbation 
bound (12.31)-(12.33), where the involved quantities are determined via the rela- 
tions (12.26) - (12.29). 

12.6 N o t e s  and references  

Results similar to those that  we have presented were obtained in [149, 120, 150, 
134, 211]. The perturbation bounds, given in this chapter, are derived in [131] and 
are an improvement over the results from [150] . 



Chapter 13 

Continuous 
equations 

-t ime Riccati 

13.1 Introductory remarks 

In this chapter we present perturbation bounds for continuous-time matrix Riccati 

equations as they arise in control and filtering of linear multivariable systems. Both 

standard and descriptor, real and complex equations are considered. As before, we 

derive condition numbers, first order local bounds and nonlinear nonlocal bounds. 

13.2 Motivating example 

Consider the stabilizable and detectable continuous-time control system 

x'(t)  = Ax(t)  + Bu(t) ,  t > O, x(O) = xo, (13.1) 

y( t )  = C x ( t ) ,  

where x(t)  e F n, u(t) e F m and y(t) = IF ~ are the state, control and output 
vectors, respectively, and A E ~n• B C ~n• C C ~r• are constant matrices. 

The system is real or complex if the underlying field IF is R or C, respectively. 

We recall that  the system (13.1), or the pair [A,B),  is stabilizable if there exists 
a gain matrix H E F m x ~ such that the closed-loop system matrix A + B H is stable, 
i.e., has its spectrum in the left open complex half-plane. The system (13.1), or 
the pair (C, A], is detectable if the pair [A n, C H) is stabilizable. Systems of type 

(13.1), or triples ( C , A , B ) ,  that  are both stabilizable and detectable are called 
regular. 

Let the quadratic performance index 

/o J(u,  xo) "-- (yH(t)y(t) + uH(t)Ru(t))dt  ~ min (13.2) 

239 
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be given, where R = R H > 0 is a positive definite weighting matrix. The control 

that  minimizes J(u,  xo) for every initial state x0 c F n can be realized as a state 
feedback u(t) = - R - 1 B H X o x ( t ) ,  where X0 - X H is the nonnegative definite 
solution of the standard continuous-time matrix Riccati equation 

Q + A H x  + X A  - X S X  - O, Q = c H c ,  S " -  B R - 1 B  H. (13.3) 

In this case J(u,  xo) - xHoXoxo. It follows from the regularity of ( C , A , B )  that  
equation (13.3) has a unique symmetric (in the sense X0 = X H) nonnegative 

definite stabilizing solution X0. At the same time the Riccati equation may have 

other solutions (which necessarily are not nonnegative definite and not stabilizing), 
including nonsymmetric ones. 

Consider also the descriptor system 

Ex'( t )  = Ax( t )  + Bu( t ) ,  t > O, x(O) = xo, (13.4) 
y(t)  = Cx( t ) ,  

with the same performance index (13.2). Here the matrix E E IF nxn is nonsingular 

but may be ill-conditioned with respect to inversion. Formally we have 

x'(t)  = E - l A x ( t )  + E -1Bu( t ) .  

If the triple (C, E - 1 A ,  E - 1 B )  is regular then the optimal control in (13.4), (13.2) 

may again be realized by a feedback u(t) - -R-~BHE-H2ox(t), where )(0 is the 
nonnegative stabilizing solution of the Riccati equation 

@ + (E-1A)H)(  + . X E - 1 A  - ,X,E-1SE-Hff ,  - O. (13.5) 

There are two ways to deal with equation (13.5). First, setting Q - EHQE,  

�9 = E - 1 A E  and S - =  E - 1 S E  - g  we have the Riccati equation 

O, + ~ ~ E  + E H 2 ~  - E H X S X E  = O. (13.6) 

To avoid even the formal inversion of E one may also set )(0 = EHXoE.  

Then it follows from (13.5) that  the matrix X0 is the nonnegative solution to the 
descriptor continuous-time matrix Riccati equation 

Q + A H X E  + E H X A  - E H X S X E  = 0 (13.7) 

In the following we will work with equation (13.7) instead of (13.6). 

Matrix Riccati equations of the types considered arise also in many other areas 
of linear control systems theory. For example, in the so called filtering problem 

the standard Riccati equation is in the dual form S + A X  + X A  H - X Q X  = O. 

In 7-/oo control problems Riccati equations of type (13.3) arise without the 

assumptions that  Q is nonnegative definite and/or  R is positive definite, e.g., 

the matrix R may be symmetric nonsingular and indefinite. With regard to the 
perturbation analysis the real and complex cases are treated similarly. A H A H is 
not linear (it is additive but not homogeneous). 
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13.3 Standard equation 

13.3.1 S t a t e m e n t  of  the  p r o b l e m  

Consider first the real s tandard equation 

F ( P , X )  := Q + A T x  + X A -  X S X  = O, P := (Q,A,S) ,  (13.8) 

under the assumption that  it has a symmetric solution X0 such that  the linear 
matrix o p e r a t o r / C : R  nxn --, R nxn, defined by 

/C(Z) = ( A -  SXo)TZ -t- Z ( A -  SXo), 

is invertible. The eigenvalues of K: are the eigenvalues of its matrix 

K "-  In | (A - SXo) T + (A - SX0) T |  E I[{ n2xn2 

and are equal (with multiplicity counted) to ) ~ ( A -  SXo) + )~ j (A-  SXo), i , j  = 
1, 2 , . . . ,  n. We recall tha t  the matrix K of a linear matrix operator K: is defined 

by vec(K:(Z))=  Kvec(Z)  for all Z. 

Note tha t  if Q, S are nonnegative definite and the triple (Q, A, S) is regular then 

there is a (unique) nonnegative definite solution X0 such that  the matrix A -  SXo 
is stable and hence, the operator/(2 is invertible. This latter case is interesting 

from the point of view of applications but the perturbat ion analysis given below 

holds also under the weaker assumption that  a solution X0 = X~- exists with K: 

invertible. There are also other sets of sufficient conditions for invertibility of K: 

which are not considered here. 

The matr ix parameter  P may be regarded as a matrix triple (Q,A, S) from 
R n x n x R n x n X R n x n or as a matr ix [Q, A, S] from IK n x 3n. Hence, we may introduce 

a norm and a generalized norm of P by 

I1PII - I I [ Q , A ,  s]ll c R+, IIIPIII - [ I IQ I I ,  IIAII, IISlI] T c R 3, 

where I1" II is any matr ix norm. 

Let the matr ix  coefficients in (13.8) be subject to perturbations Q F-+ Q + 6Q, 

A ~-, A + ~ A ,  S ~ S + 6 S .  I f Q  = c T c  and S = B R - 1 B  T and C , B , R  are 

per turbed as C ~-~ C + 6C, B ~-, B + ~B, R ~-+ R + ~R with ~R = 6R T and 

R + 6R invertible, then the perturbations 6Q = C TrjC + 6 c T c  + 6C T6C and 
~S = B R - I ~ B  T + ~ B R - 1 B  T + ~ B R - 1 6 B T - ( B + 6 B ) R - I ~ R ( R + ~ R ) - I ( B + ~ B )  T 

in Q and S respectively, are also symmetric. 

The analysis given below applies to both symmetric and nonsymmetric pertur- 

bations in the matrices Q and S. The aim of perturbat ion analysis here is to find 

computable bounds for the norm 

ax := Ilaxll - 
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of the perturbation in the solution X0 as a function of the perturbation vector 

whose components 

5Q "--1ISQIIF, 5A --115AIIF, aS '--115SlIF 

are the Frobenius norms of the perturbations in the data matrices Q, A, S. Thus, 
5 -  5 P .  

Relative perturbations in the solution of a Riccati equation 

X 1 0  -3 �9 . . 

�9 . . 
�9 

. . .  : . ' "  . . . .  " ' . ( .  . 

i ill i ili i ili  t . . ' .  

8 . . . - "  . . . . . . .  ".. . . . . .  . ".. : 

6 

4 

o. 0 

. .~-2 

c ) - _ 4  

- 6  

- 8  

. . . .  . .  . . . . . . .  . . .  : . . ' .~ . . .  ..... - . . .  

6 : : ' - . .  . .  ' i : : - .  . . . .  . . . . . . . . . .  .::': ! 
4 �9 ' " -  i . - ' "  . . " ' " .  " . . " ' "  . " ' . . "  

2 . : ' : .  . . ' " "  . - ' : " "  . . "  " 
10- a 0 ...... . . . . .  ..-.... 5 X 

- 6  v - ,  - 5  x 10 -3 

pert(q12 ), pert(x 12 ) pert(q 11), pert(x 11 ) 

Figure 13.1" Perturbed solutions of Riccati equation 

In Figure 13.1 we show the elements of the perturbed solutions 5X/IIX[J of a 
2nd order Riccati equation, generated by perturbations in the elements qll, q12 
and q22 of Q. The perturbations in the data are represented by a sphere and the 
changes in the solution are represented by an ellipsoid. 

1 3 . 3 . 2  P e r t u r b e d  e q u a t i o n  

The perturbed equation is obtained from (13.8) by replacing a nominal value P = 
(Q, A, S) of the collection of data matrices with P +SP - (Q +SQ, A +SA, S +~S)" 

F(P + rSP, X + 5 X )  - O. (13.9) 
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A priori it is not clear whether, given a perturbation 5P, the perturbed equation 

(13.9) has a solution at all. So, formally, we have to assume that  a solution to 

(13.9) exists for the given 6P. However, from the nonlinear perturbation analysis 

presented below, we will obtain conditions for the solvability of equation (13.9). 
We may rewrite (13.9) as an equivalent equation F(P, X) = 0, where X c R nxn 

is the unknown matrix and P = ( P 1 , . . . , P k )  a k-tuple of matrix parameters 

P1 , . . .  ,Pk, and use the general scheme, that  has been described in Chapter 12. 
We have, for any P, SP = (SP1,...,SPk) and X , Z  E R nxn, that  

F(P + 6P, X + Z) - F(P,X)  + Fx(P ,X) (Z)  + Fp(P,X)(6P) + .T'(P,X)(6P, Z), 

where Fx(P ,X)  �9 R nxn ~ R nxn is the partial Fr6chet derivative of F in X 

calculated at the point (P, X). Similarly, 

k 

Fp(P, X)(3P) - E Fp~ (P, X)(3P~). 
i - - 1  

In the complex case the operators Fp~ (P, X) are not Fr6chet derivatives but 

some related additive operators constructed as follows. Suppose that  F(P, X) is 

written in the form F(P1, P1, . . . ,  Pk, Pk, X) and, for X fixed, consider the function 

( Y 1 ,  Z l ,  �9 �9 �9 , Yk, Zk) H F ( Y 1 ,  Z 1 ,  �9 �9 � 9  Yk, Zk, X) .  

Assume that  the partial Fr6chet derivatives Fy, (P, X), Fz, (P, X) of this function 
exist. Then we set 

k 

Fp(P, X)(6P) - E (Fy~ (P, X)(6P~) + Fz, (P, X)(5-P~)) . 
i = 1  

The operator Fp(P,X) �9 C nxn ~ C nxn is additive in the sense that  Fp(U + 
V, X) - Fp(U,X) + Fp(V, X) but it is not homogeneous. 

The term ?(P,X)(6P,  Z) contains second and higher order terms in 5P, Z, 

II(t(P,X)(SP, z ) l l -  o(ll6Pll 2 + IIzll2), llsPII + [fz[r--+ o. 

Suppose that  the linear operator Fx(P, Xo) is invertible, where F(P, Xo) -O.  
Then we may rewrite the perturbed equation F(P + 6P, Xo + 5X) - 0 as 

5X - -Fx I (P ,  Xo) o Fp(P, Xo)(SP) - F x l ( p ,  Xo) o .~'(e, Xo)((~P~(~Xo). (13.10) 

Note that  Fp(P, Xo)(O) - 0 and 9c(P, X0)(0,0) = 0. This guarantees that  for 

small 5P the perturbed equation (13.10) has a "small" solution 5X in the sense 
that  

5X - -Fx I (P ,  Xo) o Fp(P, Xo)(6P) + O(]]Spll 2) - O(]ISPII), 5P --+ 0. 
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In the following we abbreviate F x ( P ,  Xo) as F x ,  etc., thus, omitting the de- 
pendence on the fixed quantities P, X0 whenever appropriate. 

For equation (13.9) we then obtain 

lC - F x ,  F p ( 6 P )  - 6Q + 5A TXo  q- X o 6 A  - X o 6 S X o .  

Therefore 

where 

1C(SX) - UI (aP) + U2(SP, 5X) ,  

U1 (5P) 

u2(aP, Z) 
"-  X o S S X o  - 5Q - 5A T Xo - XoSA,  

�9 - Z ( S  + 5 S ) Z  + Z S S X o  + X o S S Z  - 5A T Z  - ZSA.  

Note that IIU,(aP)tl-- o( I laPI [ ) ,  5P ~ o. 
Since/C is invertible we have 

5 X  - H(aP, ovX)"= HI(aP) + II2(5P, 5X) ,  (13.11) 

where 

HI(aP)  " -  KT-I(uI((~P)),  H2(aP, aX)  "= IC-I(U2(aP, aX) ) .  

The equivalent operator equation (13.11) and its vectorized counterpart are the 
basis of the local and nonlocal perturbation analysis presented next. 

It is convenient to rewrite (13.11) in vectorized form using the formulae 

v e c ( A B C )  = (C r | A)vec(B), (B | A)P~2 - P ~ ( A  | B), 

where Pn2 c ]1~ n2xn2 is the vec-permutation matr ixsuch that  vec(A T) = P~2vec(A). 
Introducing 

#1 

# 

�9 - v e c ( S X ) ,  

�9 - vec(SQ), #2 "= vec(SA), #3 "= vec(SS) C ~ n2, 

�9 - vec(SP) - [pi T, > f ,  #~]T ~ Ran =, 

we have (iX = vec- 1(~), 5P - vec- l (#)  and 

(13.12) 

-" 7r(#, ~)"- -  7r 1(#) q- 7F2(#, ~), (13.13) 

vchere 

"if1 (].t) :-- 

M1 :-- 

M2 "-- 

M3 "-- 

K- lvec (Ul (aP) )  = M I #  1 q- M2#  2 q- M3#3,  
_ / ( - 1  

- K  -1 (In2 + Pn 2) (I,~ | Xo), 

K-~(Xo| 
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and 

= K-I (u2 ( sP ,  6X) = K - l v e c ( S X ( S  + 6S)5X) (13.14) 

+ K - l ( x 0  | In)vec(6X6S) + K - l ( I n  | Xo)vec(6S6X) 

- K- l ( vec (SA  TSX) + vec(SXSA)). 

For the complex equation 

Q 4- A H x  4- X A  - X S X  = O. (13.15) 

we obtain 

r - -  U1 (SP) + U2(SP, 5X), 

where the linear matrix operator K:" C nx~ ~ C n x n  is defined by 

K.(Z) - ( A -  SXo)HZ + Z ( A -  SXo) 

and 

. . . . .  

UI(SP) 
N 

u2( P, z) 
"- XoSSXo - 5Q - 5AHXo - XoSA, 

�9 - Z (S  + 5S)Z 4- ZSSXo 4- X o S S Z -  5AHz - ZSA. 

Since/C is invertible we have 

5X - II(SP, 5 X ) . =  I I I ( , P )  + II2(~P, 5X), ( l a . 1 6 )  

where 

i l ( S p )  . -  fI ( p, sz )  .= SZ)). 

As in the real case we rewrite the equivalent operator equation (13.16) in 
vectorized form 

-- ~(~, ~)"-- ~1(~) 4. ~2(~, ~). 

Here we have used the substitutions (13.12) (having in mind that  now ~, #i c C n2 
and # E C 3~2) as well as 

~1(~) "-- 

M1 "= 

M22 "~ 

MI~I + M21~2 + M22~2 + M3/~3, 

__~'-1 /~21 :--- --ff[-l(ln | No) 7 

- ~ ' - l ( z 0  @ In)P~2, /~3 := ~ ' - l ( x 0  | X0) 

(13.17) 

and 

 2(p, - K - l v e c ( 6 X ( S  + 5S)5X) + K-I(--Ro | In)vec(SXSS) (13.18) 

+ K - I ( / . ,  | X o ) v e c ( S S S X ) -  B[- l (vec(dAHdX)+ vec(SXSA)). 

In (13.17), (13.18) we have utilized the fact that  Xo is Hermitian. 
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13.3 .3  C o n d i t i o n  n u m b e r s  and local  b o u n d s  

In this section we use the results from Section 13.3.2 to determine the condition 
numbers and to derive local, first order perturbation bounds for the perturbation 

5x - 115XIIF in solution X0 of the standard Riccati equations (13.8) and (13.15). 
If we suppose for the moment that the solution ~ of (13.13) exists, when this 

is the case will be proved in the next section, then based on (13.13) we have 

~" --  71"1(#) if- 0(1[#112 q-11~112), II~ll Jr I1~tl -~  0. 

Since II~ll = o(11~11), ~ -~ 0, this is equivalent to 

= M ~ I  + M ~ 2  + M3~3 + O(11~11~), ~ ~ 0. 

Hence, using the fact that  5x = ]1~1]2, we have the following theorem. 

T h e o r e m  13.1 In Frobenius norm the absolute condition numbers K z  for the 
solution Xo of the real equation (13.8) relative to the matrix coefficients Z = 
Q , A , S  are 

KQ 

KA 

K s  

--  [tM1[[2 - - ] 1 K - 1 1 t 2 ,  

= IIM2tl2 = IIK-l(In2 + Pn2)(fn @ X o ) l l  2 , 

- 1[M3112 - I I K - i ( x 0  @ X0)[I 2 �9 

In particular, if only one matrix Z from the set 79 := {Q, A, S} is perturbed, we 
have 

~: <_ ~:zll~ZlIF + o(~z) ,  ~z  --~ o. 

Note, however, that  if more than one matrix coefficient is perturbed, then the 
condition number based linear bound 

6x _< estl(5) + o(11~1[ ~) . -  ~ Kz~z  Jr o(11~11~), ~ -~ 0, 
ZEP 

may not give good results. 

In addition to the condition number based estimates we also have 

5x _< est2(5) + o(11~11~), ~ -~ 0, 

where 

est2(5) := II[M1, 5//2, M3][[2115112. 

Another perturbation bound is 

5x < ests(6) + O(I]6112), 6 --, 0, 

where 

est3(5) := v/STM5 
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and M - [rnij] c R 3x3 is the matrix with elements 

m~j - J I M ,  Mill2, i , j -  1,2,3. 

The bounds est2 and est3 are again alternative, in the sense that  in general 

both inequalities est2(5) _< esta(5) and est2(5) > est3(5) are possible. Thus, we 

obtain the following theorem. 

T h e o r e m  13.2 The perturbation 5x in the solution Xo of the real equation (13.8) 
satisfies the local perturbation estimate 

5x _< est(5) + O(llal12), a -~ o, 

where 

est(a) . -  min{est2(5), est3(5)}. 

Fr the complex Riccati equation (13.15) we obtain similar results. 

Recall some results about nonlinear additive operators. Let F = Fo + ~F1, 

A = A0+zA1 be complex m x  n matrices (with F0, F1, A0, A1 real), and z = zo+~zl 
be a complex n-vector  (with z0, Zx real). Then according to Chapter  10 we have 

where 

max{llrz + A~II2" Ilzll2 ~ a} - allO(r, zX)II=, 

I~(F, A)--  [ F0 nt- A O F 1  q- A1 1-'0A1- rl ] _  A0 " (13.19) 

N 

T h e o r e m  13.3 In Frobenius norm the absolute condition numbers K z  for the 
solution Xo of the complex equation (13.15) relative to the matrix coefficients 
Z - Q , A , S  are 

/~'Q --11/~'--1112, /~'A --I[e(-M21, *~22)[]2, .t~s I[/~'-l(Xo @ No)l[2, 

where the matrices M21, M22 are displayed in (13.17). 

To derive local first order bounds in the complex case observe that  

-- MI~I + M21~2 + M22~2 + MaP3 + 0([[#[[2), P --+ O. (13.20) 

For the product  Fz of a complex matrix F = F0 + ~F1 E C m x n  and a complex 

vector z - z0 + ZZl c C n with F0, F1 and z0, Zl real, we have the real versions 

(Fz) e := Fez e ~ R 2m, 

where 
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Note that  (Pz + Ag) ~ = e ( r ,  ZX)z ~ and e ( r ,  0) - r ~. 

Now it follows from (13.20) that 

~I~ _ M~lep,~ + 0(M21,  ~r22)#~ + .t~r3~p,a~ + o(11#I~11~), #~ ---, o. 

Since 11~112 -I1~11~, we have 

I1~[12 ~ es~2(,N) + 0(11,~[[2), ,N ~ o, 

where 

and 

es'--t2(5) "- I[ [ M~ M~ M~ [12 115112 

M~ "-  ~[1 N, M~ "-- O(~[21, J~[22), M~ "-  M~. 

Similarly, it is also fulfilled that  

where 

es"-t3(5) "- v/5 T M~ 

and M ~ - [m~ c R 3x3 is the matrix with elements 

0 _ TM~ i j = 1 2  3. rn~j II(M ~ [12, , , , 

Thus, we get the following theorem. 

T h e o r e m  13.4 The perturbation 5x in the solution Xo of the complex equation 
(13.15) satisfies the local perturbation estimate 

,~x _< es~(6) + o(ll61l~), 6 -~ o, 

where 

es"t(5) '= min {e~2(5), esst3(5)}. 

Note that  the bounds given in Theorems 13.2 and 13.4 may be tight. Indeed, 
let w E F n be the right singular vector of the matrix W c F m• corresponding 
to its maximum singular value ]]W]]2. Then ]]Wwll2 = ]]WI]2. Also, for v = aw, 
where c~ c IF, we have [[Wv[[2 = I a] []WII2. Suppose now that the vector p is 
proportional to the singular vector of the matrix [M1, M2, M3], corresponding to 
its 2-norm. Then I]Trl(p)l]2 is equal to est2(5) and hence, to est(5). Similarly, the 
quantity ][~1(~)112 may be equal to its bound esst(5). 
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13.3.4  N o n l o c a l  b o u n d s  

For the nonlocM perturbation analysis we show that,  for ~ from a certain small 
set Ft, the equivalent operator 7r(#, .) in (13.13) maps a closed convex set B C N n2 

into itself. The set B is also small, of diameter f(5) = 0(11511 ). Then according to 
the Schauder fixed point principle, see Appendix D, there exists a solution [ E B 
of (13.13) and hence, 5x = IL~II2 -< f(5). It even turns out that  for 5 e ft\Ftl,  
where f/1 is a part of the boundary OFt, the operator 7r(#, .) is a contraction and 
according to the Banach fixed point principle (see Chapter D) the solution to the 
perturbed equation is unique. 

Consider first the real equation (13.8) which is equivalent to the operator equa- 
tion (13.13). Suppose that  11~112 = ~x < p for some p > 0. Estimating the 
right-hand side of (13.13) we get 

Since 117r1(#)112 < est(5) and, in view of (13.14), 

11~2(~, ~)112 _< II K-~ 112(11s112 + ~ s ) ~  
+ ( I IK-I (Xo | In)l[2 -~-IIK-l(In • 2o)112 ) @52 + 211K-1]]26AhX, 

we obtain 

where 

I1~(~, ~)11~ _< h(5, p) : -  ao(5) + al (5)p + a2(5)p 2, (13.21) 

a0(~) : -  e~t(~), 

a~(~) : -  i lK-il i~(l iS[t~+~s).  

The functions ai " N~_ --~ ~+,  i - 1, 2, 3, are nondecreasing in the sense that  
0 ~ 5 ~ 5 implies a~(5) < a~(5) (here ~ is the component-wise partial order 
relation in N3). 

The function h is a Lyapunov majorant (Chapter 5) for the operator equation 
(13.13). It is a quadratic polynomial in p and we may apply directly the results 
from Chapter 5. 

Consider the domain 

f~ "- {5 E R3 " al(5) + 2v/ao(5)a2(5) < 1}.  (13.22) 

Since co(0) = al (0) = 0, a continuity argument shows that  for some 5 with positive 
elements it is fulfilled a1 (5 )+  2v/ao(5)a2(5) < 1. Hence, the set Ft C R 3 is well 
defined and has a nonempty interior. This set is bounded by the coordinate planes 
and by part  of the surface S c R 3 given by (1 - a1(5)) 2 = 4ao(5)a2(5). Due to the 

nonlinearity of ao the set f~ may have a complex geometry. In particular it may 
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h 

not be convex. However, it has the property that  5 E ~ and 0 _~ 5 ~ 5 implies 
A 

5 C ~.  If one chooses a l inear ao(.), say a0(5) - es t l (5) ,  then  8 is a quadric.  
If 5 E ~t then the majorant equation p -  h(5, p), equivalent to 

a2(5)p 2 - (1 - al(5))p + ao(5) - 0, 

has a root 

p ( 5 ) -  f(5)"-- 2a0(5) . (13.23) 
1 - al (5) + V/(1 - a1(5)) 2 - 4ao(5)a2(5) 

Hence, for 5 E ~ the operator u(p, .) maps the set Bf(~) into itself, where 

z3,..- Rn " I1 11  < r} 
is the closed central ball of radius r _> 0. Then according to the Schauder fixed 
point principle (Appendix D) there exists a solution ~ c Bf(5) of equation (13.13) 
and we have the following result. 

T h e o r e m  13.5 Let 5 c ~t, where ~ is given in (13.22). Then the nonlocal per- 
turbation bound 

5x < f (5) 

is valid for the real equation (13.8), where f(5) is determined by (13.23). 

Note that  if the perturbation vector 5 is in the subdomain of fl defined by the 
strict inequality in (13.22) then 7r(#, .) is a contraction and the operator equation 
(13.13) (and hence, the perturbed equation (13.9)) has a unique solution. 

In the complex case we have a similar nonlocal result. The quantities ai(5) in 
the expressions determining the domain ~t and the bound f(5) need to be replaced 
by ai(5), where 

 0(5) - 

. =  

. =  

est(5), 

11. -1112(ll,S'112 + 5s). 

As a result we can formulate the following nonlocal bound. 

T h e o r e m  13.6 For the complex equation (13.15) the nonIocal bound 

5x < 
1 - -  a l  ((~) + V/(1 - al((~)) 2 - -  4a0((~)a2((~ ) 

is valid provided that 5 c 1~3+ is small enough to ensure 

a l  ((~) -}- 2 4ao((~)a2((~) ~ 1. 
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To i l lustrate  the  pe r tu rba t ion  bounds  we present  some examples.  

E x a m p l e  13 .7  Consider the scalar version of (13.8) Q + 2 A X  - S X  2 = 0, where 

S > 0 and Q > 0. Let the nominal  values of the parameters  be Q - S - 1 and 

A = 0, which gives the  positive solution X0 = 1. We have K = - 2 ,  M1 = 0.5, 

M2 - 1, 3//3 - - 0 . 5  and 1[ M-~ 

The  bounds  est2(5) and est3(5) are 

121] 
2 4 2 

1 2 1 

est2(5) 

est3(5) 

- [[[0.5, 1,-0.51112[[5112 = 1x/~.5V/~2 + 52 + 52, 

- x / ~ M 5  - 0.5(51 + (~3) -~- (~2. 

Here the bound  est3(~) is always be t te r  than  est2(5) since 

est2(5) _ est2(5) = ((~1 - (~3) 2 -~- (2(~1 - (~2) 2 -~- ((~2 - 2 ~ 3 )  2 
4 

> 0 .  

The  two bounds  are equal only when/~1 = 53 = 52/2.  

A right singular value of the mat r ix  [ M 1 , M 2 ,  M3] corresponding to its norm 

v/1.5 is [1, 2 , - 1 I T / x / 6  and this suggests tha t  the corresponding per tu rba t ions  may  

be taken as ~Q - 0. >_ O, 5 S  = - 0 .  ~_ 0 and 5A  - 20. >_ O, i.e., ~ P -  (0., 20.,-0.) 

and ~ - [0., 20., 0.IT. For 0. < 1 the  positive solution to the pe r tu rbed  equat ion 

1 + 0. + 40.(1 + 5 X )  - (1 - 0.)(1 + 5 X )  2 - 0 is 

5 X -  
20. + v/1 + 30. 2 

1 - 0 .  
- 1 .  

At the same t ime a0(5) = 30., a1(5) - 30. and a2(5) = (1 + 0 ) / 2 .  Thus,  the 

local and nonlocal  bounds  are est(5) - 30. and 

f (5)  = 
60. 

1 - 30. + v / 1  - 120.  + 30. 2 

respectively, where the nonlocal bound  is valid for 1 - 12a + 3a 2 ~_ 0 or 0. _< 

2 -  v / l l / 3  ~ 0.0851. Since for 0. > 0 it is fulfilled 

2a + 1 3a 
5 X  > 1 -  > 3a, 

1 - 0 .  1 - a  

we see tha t  the local bound always u n d e r e s t i m a t e s  the t rue pe r tu rba t ion  for this 

par t icular  s t ruc tu re  of the  pe r tu rba t ion  5P.  

In Table 13.1 we give the exact  pe r tu rba t ion /~x  = 5 X ,  the local bound est and 

the nonlocal bound  f as a function of a >_ 0. The  cases when the nonlocal bound  

does not exist are marked  by asterisk. 
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Table 13.1" Exact perturbation, local and nonlocal perturbation bounds 

(7 

0.01 

0.02 

oi03 
o.o4 
0.05 

0.06 

0.07 

0.08 

o.09 
0.10 

(~x 

0.03046 

0.06184 

0.69417 

local nonlocal 

0.03000 0.03144 

0.06000 0.06621 

0.105i6 0.09000 

0.12750 0.12000 0.14959 

0.16183 0.15000 0.20156 

0.19722 0.18000 0.26485 
.... 

0.23368 0.21000 

0.24000 0.27125 

0.30997 

0.34769 

0.47842 

0.27000 * 

0.34988 0.30000 * 

We see the main drawback of the nonlocal bounds - their relatively small 

domain of applicability. On the other hand in this case the local bound is not an 

upper bound for the perturbation in the solution but only gives information for 
its order of magnitude. (} 

E x a m p l e  13.8 Consider the same equation as in Example 13.7 but with no per- 

turbation in A. Here the exact perturbation in the solution is 

1 + cr 1 - ~ + + O(cr 3) 
~ X  - 1 - a  Y " 

The local perturbation bound is est(5) = a < 5X for a > 0, while the nonlocal 
one is 

2or 
/(~) - 1 - a + v / 1  - 4 ~  - ~ 2 ,  z < v ~ -  2 ~_ 0.2361. 

The corresponding results are presented in Table 13.2. 

Here again the local bound always underestimates the true perturbation. ~} 

The case n = 2 already reveals some nontrivial sensitivity properties of Riccati 

equations for multivariable systems. The following two examples are devoted to 
this case. 

E x a m p l e  13.9 Consider the standard equation (13.8) for n -  2 and 

[0 0] [0 Is 0] 
Q -  0 q ' a 0 0 0 ' 

where q, a, s > 0. The positive definite solution here is Xo = [ 

X : q l / 2 8 - 1 / 2 ,  X l  --  V / 2 q l / 4 a l / 2 s  - 3 / 4  

1 

Xl X ] ,  where 
x x2  J 

, x 2  = v/-2q3/4a-1/2s -1/4. 
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Table 13.2" Exact perturbation,  local and nonlocal per turbat ion bounds 

a 5x local nonlocal 

0.03 0.03046 0.03000 0.03145 

0.06 0.06191 0.06000 0.06631 

0.09 0.09444 0.09000 0.10558 

0.12 0.12815 0.12000 0.15084 

0.15 0.16316 0.15000 0.20486 

0.18 0.19959 0.18000 0.27323 

0.21 0.23760 0.21000 0.37154 

0.24 0.27733 0.24000 * 

0.27 0.31899 0.27000 * 

0.30 0.36277 0.30000 * 

We take the nominal parameters to be q = s = 1, a - 2, which gives X l - 2, 

[ - 2  - 1 ] a n d  x - x 2 - 1 .  Hence, A - S X o -  2 0 

2 0 0 4 

1 0 2 - 2  4 1 
M I - ~  0 - 2  2 4 , M 2 - ~  

1 - 2  - 2  6 

4 2 4 4 

0 0 4 4 

0 - 0  4 4 ' 

0 - 1  2 6 

12 8 8 6 

1 4 6 2 4 
M 3 - - ~  4 2 6 4  " 

2 2 2 3 

The condition numbers are K Q  - 1.18596, K A  -- 2.73749, K s  - 2.64920. Fur- 
thermore, we have 

M m 

1.40651 3.04150 2.57588 ] 

3.04150 7.49386 6.89220 

2.57588 6.89220 7.01826 

and II[M1, M2, M3]II2 - 3.90524. Taking the perturbations as 

[ J [ 1 [ 1 18 45 - 6 7  0 
6 - 2  , 5 A - s  , 5 S - e  

f i Q - s  - 2  27 7 49 0 0 ' 

where a > 0 is a small parameter,  then 5Q = 27.8029~, (~A - -  69.2748~, 5s = 67c 
and 

estl(5) - 400.1096, est2(5) = 391.7136, est3(5) - 392.2336. 
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Table 13.3: Exact  per turba t ion ,  local and nonlocal pe r tu rba t ion  bounds 

k 

10 

9 

8 

7 

6 

5 

4 

3 

2 

5x local 

3.2388 x I0 -8 3.9171 x i0  -8 

3.2388 x 10 .7 3.9171 x 10 .7 

3.2388 • 10 -6 3.9171 • 10 -6 

3. 3.2388 x 10 .5  

3.2390 x 10 -4 

9171 x 10 -5 

9171 x 10 .4  

nonlocal 

3.91;/1 x 10 - s  

3.9171 x 10 -7 

3.9172 x 10 -6 

3.9175 x 10 .5 

3.2411 x 10 -3 3.9171 • 10 .3  

3.2626 • 10 .2  3.9171 • 10 .2  4.2966 x 10 -2 

3.4924 x 10 -1 3.9171 • 10 -1 

10.2532 3.9171 

3.9204 • 10 . 4  

3.9503 x 10 -3 

We see t h a t  here est2(a) gives best  results and hence, the local pe r tu rba t ion  bound 

according to Theorem 13.2 is a0(a) = est(5) = est2(a). Fur thermore ,  a1(5) = 

370.2295 and a2(5) = 1.18596 + 79.45935. Therefore,  the  nonlocal pe r tu rba t ion  

bound  described in Theorem 13.5 is 

f ( 5 )  = 
783.4265 

1 - 370.2295 + v/1 - 2598.6825 + 12568.54952 

The  results  are i l lustrated in Table 13.3 for 5 = 10 -k and k = 10, 9 , . . . ,  2. 

We see t ha t  for k = 2 the  local bound underes t imates  the t rue  pe r tu rba t ion  

more  than  twice. However, in this case the  relative pe r tu rba t ion  in S is 67 percent  

and is not small at all. 

E x a m p l e  13 .10  Consider again the s t andard  equat ion for n = 2 from Exam- 

ple 13.9. Let now q = 1, a = 2 and s = cr -4, where ~ > 0 is a pa ramete r .  In this 

example  we s tudy  the  condit ioning of the  s t andard  equat ion as a function of the 

p a r a m e t e r  or. For this case the stabilizing solution X(cr) and the  corresponding 

closed-loop sys tem mat r ix  are 

x ( r  = A -  S(o-)X(o-) - 
cr 2 ~ ' 2 0 

In Table 13.4 we give the  individual condit ion numbers  KQ(cr), KA(Cr), K s ( a )  

as well as the  quant i ty  K , ( r  II[MI(~),M2(~D, M3(~)]II2 for  ~ = 10 k and k = 

- 5 , - 4 , . . . ,  1, 2. 
<> 
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Table 13.4: Individual condition numbers 

k KQ 

-4 

-3 

1.2500 x 103 

1.2500 x 102 

1.2505 x i01 

K A  

-2 

-1 1.3014 x 100 

0 1.1860 x 100 

1 5.0504 x 102 

2 ..... 5.0005 x 105 
. . . .  

2.5000 x 10-5 

2.5000 x 10 - 4  

2.5020 x i0 -3 

2.6940 x 10 .2  

2.7375 x 10 ~ 

1.0198 x i05 

1.0001 x 1010 

Ks 
3.7500 x 10 -13 

3.7500 x I0-  lO 

3.7508 x 10 -7 

K* 

1.2500 x 10 3 

1.2500 x 102 
.. 

1.2505 x I01 

3.8344 x 10 .4 1.3017 x 100 

2.6492 x i0 ~ 3.9052 x 100 

1.5084 x 107 1.5084 x 107 

1.5001 x 1014 1.5001 • 1014 

13.4 Descriptor equation 

13.4.1 S ta tement  of the problem 

In this section we consider the descriptor Riccati equation (13.7). The per turbat ion 

analysis for this equation is similar to tha t  for the s tandard Riccati equation except 

tha t  the calculations (and corresponding expressions) are more involved. So we 

follow the scheme from Section 13.3 but omit some of the details. 

Consider first the real descriptor equation 

G ( T , X )  " -  Q + A T X E  + E T X A  - E T X S X E  - O, T " -  ( Q , E , A , S ) ,  (13.24) 

where the matr ix  E is nonsingular and Q = QT, S = S T . We assume tha t  

equation (13.24) has a symmetric  solution X0 such tha t  the linear matr ix operator 
/2 . Rn x ~ ~ R n x ~, defined by 

/2(Z) " -  (A - S X o E )  T Z E  + E T Z ( A -  S X o E ) ,  

is invertible. The eigenvalues of 12 are the eigenvalues of its matr ix  

L " -  E T | ( A -  S X o E )  T + (A - S X o E )  T N E T C R n2xn2. 

The opera tor /2  is invertible if and only if the matr ix ( A -  S X o E ) E  -1 - A E  -1 - 

S X o  has no eigenvalues of opposite signs, i.e., 

A~(AE -1 - S X o )  + A j ( A E  -1 - S X o )  # O, i , j  - 1 , 2 , . . . , n .  

Note tha t  if Q , S  > 0 and the triple ( Q , E - 1 A ,  E - 1 S E  - T )  is regular, then 

there is a (unique) stabilizing solution X0 >_ 0 such tha t  the matr ix  A E  -1 - S X o  

is stable and hence, the operator  s is invertible. 
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13.4.2 Perturbed equation 

Let the matrix coefficients in (13.24) be subject to perturbations Q ~-~ Q + 6Q, 
E H E + 6E, A H A + 5A, S ~ S + 6S. 

The perturbed equation is obtained by replacing T with T + 6T : (Q + 6Q, E + 
6E, A + 6A, S + 6S) in (13.24): 

G ( T  + 6T, X + 6X)  : O. (13.25) 

This equation is quite technical, since its left-hand side contains 50 terms (a prod- 
uct of k perturbed matrices produces 2 k terms), which after some manipulations 
reduce fortunately to only 26. 

We can rewrite (13.25) as an equation for the perturbation 6X,  

s  - VI(6T) + V2(6T, 6X) ,  

where 

and 

V~ (~T) "- 

Vl1 (~T) : 

Vi2(6T) " :  

Vii ( S T ) +  Vi2(6T),  

- 5Q - 6E T X o ( A  - S X o E )  - (A - S X o E ) T X 6 E  

- 6AT X o E  - E T Xo6A  + E T X o 6 S X o E ,  

- 6 A T X o 6 E  - 6E T X o 6 A  + 6E T X o S X o 6 E  

+ 6E T X o 6 S X o E  + E T X o 6 S X o 6 E  + 6E T X o 6 S X o 6 E  

V2 ( ST, Z)  "-  

V21(~T, Z) . :  

V22 ( 6T, Z) ": 

v~ (~T, Z) + V~2(~T, Z), 

- 6E T Z A  - A T Z 6 E  - 6AT Z E  - E T Z S A  

+ E T ( Z ( S  + 5S)Xo  + X o ( S  + 6 S ) Z ) 6 E  

+ ~E t (Z(S + ~S)Xo + Xo(S + ~S)Z)E 

-}- E T ( Z 6 S X o  -}- X o 6 S Z ) E  + 6E T ( Z ( S  + 6S)Xo  

+ Xo(S + ~S)Z)~E, 

~E v Z(S + ~S)ZE + E v Z(S + 6S)Z~E 

+ E T Z(S + ~S)ZE + ~E s Z($ + ~S)Z~E. 

Note that  I IVi i (6T)[[ -  O(llST[[i), 6T ~ 0 and IIV2i(ST, Z)[[ = O(llZ[Ii), Z --+ 0, 
i = 1 , 2 .  

The aim of perturbation analysis here is to find computable bounds for the 

norm 5x - 116X[[F of the perturbation in the solution X0 as a function of the 
perturbation vector 
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with elements 5Q "--II~QIIF, 5E --1ISEIIF, 5A "= {15AIIF, 5s -1[5SlIF, which are 
the norms of the per turbat ions in the data  matrices Q, E, A, S. 

Since the operator s is invertible we have 

6 X  -- r 6X)  "- (I)1(6T) + ~2(6T, 6X) ,  (13.26) 

where 

(I)I((~T) " - /~ - I (v I ( t~T) ) ,  ~2(ST, SX) = ~.-I(v2(ST, t~X)). 

The equivalent operator equation (13.26) is 

/24 --- 

v e c ( ~ X ) ,  /21 " -  vec( (~Q) ,  v 2 "--~ v e c ( S E ) ,  /23 "= v e c ( S A ) ,  

vec(SS) c R ~ ,  . - vec(~T) - [~1 ~, -~ ,  .3 ~, -~]~  e R ~ (13 27) 

We have 5X = vec- l ({ ) ,  (~T-- vec-l(r~) and 

-- 99(/2, ~) "-- 991 (/2) -[- 992( v, ~),  (13 2s) 

where 

991(/2) "-- L-Ivec(VI (ST)), 992(u,~)"= L-lvec(V2(ST, SX)). 

We now may represent 991 and 992 as 

991 (/2) "-- 9911 (/2) -[- 9912(/2), 992(/2, ~) :-- 9921(/2, ~) -[- 9922(/2, ~), 

where 

991i(/2) "-- L-Ivec(Vli(ST)), 992i(v,~)"- L-lvec(V2i(ST, SX)), i -  1,2. 

After some computat ions we obtain 

9911 (/2) --- NiP1 + N2/22 + N3v3 + N4/24, 

where 

N 
1 " - - -  

N 3 -~ 

- L  -1, N2 "- - L - l ( I n  2 + Pn 2) (In | (A - SXoE)TXo) , (13.29) 

- g - l ( I n  2 + Pn2) (In | E T X o ) ,  N4 "-  L-I (ETXo | E T x 0 ) .  

We also obtain the bound 

(13.30) 

where 

~3 

~4 

. _ _ _  IIL-1]]2[IXo]]22][S]]2, /32 =2[]L-l[12[]Xol[2, 

IIXoII2 (ll5 -1 (E | + [] z -1  tin | ETXo) lI2), 
Ilz-lll21IXoll~. 
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For the complex descriptor equation 

Q + A H X E  + EHXA - E H X S X E  - O. 

we obtain 

~_.(~X) -- Vl (~T) + V2(~T, ~X), 

where the linear matrix operator/2" C nxn --~ C nxn is defined by 

with 

and 

N 

s  - ( A -  SXoE)HZE + E H Z ( A -  SXoE),  

VI (6T) "- 

V 1 1 ( ~ T )  " :  

Vl~(~T) . :  

Vii (6T) + V12(6T), 

- 6Q, - 6EHXo(A - SXoE) - (A - SXoE)HXo6E 

- 6AHXo E -- EHXo6A + EHXo6SXo E, 

- 6AHXo6E - 6EHXo6A + 6EHXoSXo6E 

+ 6EHXo6SXoE + EHXo6SXo6E + 6EHXo6SXo6E 

V2(6T, Z) . -  1,'21(6T, Z) + V22(6T, Z), 

V21(6T, Z) ": - 6EHZA - AHZ6E - 6AHZE - EHZ6A 

+ E"(Z(S + ~S)Xo + Xo(S + ~S)Z)~E 

+ ~E~(Z(S + ~S)Xo + Xo(S + ~S)Z)E 
+ EH(z6SXo -}- Xo6SZ)E + 6EH(Z(S -t- 6S)Xo 

+ Xo(S + ~S)Z)~E, 

Vz2(6T, Z) "- 6EHZ(S + 6S)ZE + E H z ( s  + 6S)Z6E 

+ E"Z(S + ~S)ZE + ~E"Z(S + ~S)Z~E. 

Since 12 is invertible, we have 

where 

6X - ~(6T, 6X) "- (~1(6T) + ~2(6T, 6X), 

(13.31) 

(13.32) 

~ (-) - ~11(~) + ~1~(-), ~ ( ~ ,  ~) - ~ 1 ( - ,  ~) + ~ ( - ,  ~), 

~1(6T) ": s , ~2(6T, 6X) := s 6X)). 

As in the real case we rewrite the equivalent operator equation (13.32) in vectorized 
form 

- ~(~, ~) "- ~1(~) + ~(~, ~). 

Here we have used the substitutions (13.27) noting that now (,ui 6 C n2 and 
/" C C 4n2 . Then, 
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N 

where ~ i j ( ' ) -  L - l v e c ( ~ i j ( ' ) ) ,  i , j  - 1,2. In particular 

~11(~) - 

NI "- 
A ~  

N22 -- 

N32 .-- 

NI~ 1 -}- N21p2 q- N22~2 n t- N31#3 q- N32P 3 -~- N4//4, (13.33) 

_~-1 ,  J~21 "-- _~ -1  (in @ (A - S X o E ) n X o )  , 

_~-1  ((A - SXoE)T-Xo | In) Pn 2, N31 "- _ ~ - 1  (In | EHXo) , 

_ ~ - 1  ( E T ~ o  | In) Pn ~-, N4 " :  ~-1 (ET~o  @ EnZo) ,  

where in (13.33) we have used the fact that  Xo r - X o .  
Finally, we obtain the bound 

where 

fll "-- 

fl3 "-- 

fl4 "-- 

]]~12(~)]12 _< (~E(fll(~E q-" /~2(~A -Jr- fl35S q- f145E(~S), 

I]L-1112[[Xo[]2]IS[12, f12 "- 211L-11121[Xo[[2, 

Ilxll2 (IlL -1 ( E T ' 0  | In) l]~ + IlL -1 (In @ EHXo) 112 ) , 

I L-1112l[Xo[[ 2 . 

(13.34) 

1 3 . 4 . 3  C o n d i t i o n  n u m b e r s  a n d  l o c a l  b o u n d s  

In this section we use the results from Section 13.4.2 in order to derive the condition 

numbers and to derive local, first order bounds for the perturbation 5x - [[SXIIF 

in the solution X of the descriptor Riccati equation (13.7). 
Based on (13.28) we have 

- -  ~ 1 ( / / )  -4- o(11~112 + 11~112), I1~11 + I1~11 -~ o 

Since I ~ ] ] -  o(1~11), ~ -~ o, this is equivalent to 

- N~.I  + N2-2 + N3~3 + N4-4 + o(]l-ll2), ~ ~ o. 

Hence, using the fact that  5x - [[~[12, and having in mind (13.29), we see that  the 

following result holds. 

T h e o r e m  13.11 In Frobenius norm the absolute condition numbers K z  for the 

solution X of the real equation (13.2~) relative to the matrix coefficients Z = 
Q , E , A , S  are 

KQ - i lL- i l l : ,  K~ - I lL  -1 (I~ + Pn~) (In | (A - SXoE)~Xo)][~, 

K~ - i l l  -1 ( ~  + Pn:) (~n | ~ X 0 ) I ] : '  K~ -- IlL -1 (E ~xo  | ~ X o ) I ] ~  

In particular, if only one matrix Z from the set {Q, E, A, S} is perturbed, we 
have 

6x < KZI[SZIIF + 0(52z), 6Z -~ O. 
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We again have two more bounds. First observe that 

5x <_ est2(r/)+ o(11~11~), ~ ~ o, 

where 

est2(r/) - II[N1,52, 53, N4311211~112 

and the matrices Ni are displayed in (13.29). 
The other perturbation bound is 

5x <_ est3(v)+ o(11~112), ~ -~ 0, 

where 

est3(~?) "-  ~ N r /  

and N - [nij] E R~_ x 4 is the matrix with elements 

nij = IIN NjII, = 1 , 2 , 3 , 4 .  

The bounds est2 and est3 are again alternative, since both inequalities est2(r]) _< 
est3(~) and est2(~) > est3(~) are possible. Thus, we have the following theorem. 

T h e o r e m  13.12 The perturbation 5x in the solution X of the real equation (13.2~) 
satisfies the local perturbation estimate 

5x < est(~) + o(11~11~), ~ ~ o, 

where 

est(r/) - -  min{est2(r/), est3(~)}. 

For the complex descriptor Riccati equation (13.31), we give only the final 
results, since the technique for their derivation had already been described in 
detail. 

T h e o r e m  13.13 In Frobenius norm the absolute condition numbers K z  for the 

solution Xo of the complex equation (13.31) relative to the matrix coefficients 
Z - Q, E, A, S are 

KQ 

KA 

2 
-- I1(~)(N31, J~32)112 , K s -  II ~-1 ( E T ' o  (~)EHXo)II2 

Define the real 2n • 2n 2 matrices 

J~l 0 :--N11~, N ~ :---{~)(J~21, iV22), N30 ._~ (~(J~31, J~32), N40 -= J~4 R 

and let 

N "- [nij ] c R y 4 - �9 n N~ i, j = l 2 3 4. , - I I ( N ~  �9 If , , , ,  
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As in the real case, set 

es~'t2(r/) "-II [ No No NO N~ II~ , , , 3, 1~112 ~ 3 ( ~ ) -  V / ~ T N ~ -  

Thus, we have the following result. 

T h e o r e m  13.14 The perturbation 5x in the solution Xo of the complex equation 
(13.31) satisfies the local perturbation estimate 

~x s es--~(~) + o(!1~112), ~ -~ o, 

where 
es~'t(r/) "- min {esst2(r/), est3(T])} . 

1 3 . 4 . 4  N o n l o c a l  b o u n d s  

The nonlocal perturbation analysis is similar to that  of Section 13.3.4. Consider 
first the real case. Suppose that 11~112 -< P for some p > 0. Estimating the right- 
hand side of (13.28) we get 

11~(~,~)112 _< 11~1(~)112 + ll~2(u,5)l12. 

Furthermore, 

11~1(~)112 < bo(~) :-  est(~) + ~E(91~E + ~2~A + ~3~S + ~4~E~S) 

and 

where 

I1~(~, r _< bl(r/)p + b2(rl)p 2, 

bl (r/) 
b~(v) �9 - (llSll~ + ~s) (~o + "Yl~E + " Y ~ )  

Here the constants ai  and "),j are given by 

C~2 
(~3 
~4 

and 

C~ 1 " ~  II L-1 ( AT ~ I~)II~, + [I L-1 (In e AT) []2 
+ (llSll2 + ~s ) ( [ ]  L-1 ( ETX0 @ In)[12 + [] L-1 ( In @ ETXO) 112) 
+ IiXoll2(llSll2 + ~s)(IlL -1 (E T | + II L-1 (& | ET)II~), 
I] L-1 ( ET | In)112 -~- I[ L-1 (/n @ ET)!12' 

II L-~ (E ~xo | E ~) II~ + II L-1 ( E~ | E~Xo)112, 
211L-111~llXolli(llSlli + ~s). 

~o - IIs-'(z ~| 
~1 : :  IIs-1 (z  < | • + IIS-' (In | Z ~) I1~, 
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Hence, we get 

I1~(~, ~)112 ~ l(~,p).-  bo(~)+ bl(r/)p-t-b2(r/)p 2. (13.35) 

The Lyapunov majorant  function 1 is a quadratic polynomial function in p and 
we may apply directly the results from Chapter  5. Consider the domain 

"-- {~TE R 4 "  b107)+ 2v/bo07)b207)_~ 1}.  (13.36) 

If r/E ~,  then the majorant  equation p - / ( ~ ,  p), equivalent to 

b2(rl)p 2 - (1 - bl(r/))p + bo(r/) - O, 

has a root 

p(r/) -- g(r /) ' - -  2b~ . (13.37) 
1 - 61(77) -t- V/(1 - bl(~/)) 2 - 4boO/)b20/) 

Hence, for ~ E �9 the operator ~(~, .) maps the set Bg(5) into itself. Applying the 
Schauder fixed point principle we obtain the following result. 

T h e o r e m  13.15 Let ~7 c ~, where ~ is given in (13.36). 
equation (13.24), the nonlocal perturbation bound 

Then, for the real 

~x < g(n) 

holds, where g(~) is determined by (13.37). 

In the complex case we have a similar nonlocal result. Let 

bo(~) 
51(77) 

�9 - est(r/) + 5E(~15E +/325A +/335S +/345ESS), 

- -  ~lSE + ~25A + ~35S + ~45~, 

"-- ([[Sll2 -4- ~s) (~o -[- ~I(~E -4- ~2(~)  , 

where 

. - . . .  

C~2 

C~3 
N 

C~4 . w  

i1~1 (AT ~ ~n)112 + II ~-1 (~ ~ AH) 112 

+ ~,,sll2 + ~)(ll ~-1 (~T~o | ~)12 + I ~-1 (~ ~ ~HXo) 112) 
§ ~ o ~ L ~  + ~)(ll~ -~/~ ~ ~ ~/ll~ + II ~-1/~ ~ ~/II~)' 
II ~-1 / ~ ~ ~/ll~ + II ~-1/~ ~ ~/II~' 

II~ 1/~~o ~~/ll~ + II~ 1/~ ~ ~~o/I]~, 
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and 

3/0 .-- 

3/1 .-- 

")/2 "-- 

11 1< 
1[~-1 (ET @ in)112 _+_ I1~-1 (z~ o EH)][ , 

11~-1112, 

then  we obta in  the  following theorem. 

T h e o r e m  13 .16  For the complex equation (13.31) the nonlocal bound 

6x ~_ 2bo(~) / 
I - (r/) + ~(I - "bl (?7)) 2 - -  ~o(~)S~(~) 

holds, provided that q E R 4 is such that 

bl (T])-~- 2v/'bo(r/)b"2(~]) < 1. 

To i l lustrate the pe r tu rba t ion  bounds consider the following example  of a 2 x 2 

descriptor  equat ion under  special per turbat ions .  

E x a m p l e  13 .17  Consider the descriptor  2 x 2 Riccati  equat ion wi th  matr ices  

[00 01 [001 01 
Q -  0 q ' 0 e2 ' a 0 ' 0 0 ' 

v 
where q, el,  e2, a, s > 0. Set t ing Xo - [ Xl 

[ X 
equat ion becomes 

[ e l ( 2 a x - e l s x  2) e2(ax2-e lSXl)  ] 
G ( T , X )  - e2(ax2 - elSXXl) q _ e22sx2 - 02x2. 

The  positive definite solution is given by 

-1/2e21/2 1/2,3-3/4 x -- ql/2e21s-1/2 Xl -- v/2ql/4el a 

X2 - -  V / - 2 q 3 / 4 - l / 2 e 2 3 / 2 a - 1 / 2 s - 1 / 4  
~1 

_ , 3 x  1 
Note tha t  XlX2-  x 2 - qe21s -1 and the mat r ix  (AE - 1 -  SXo) - a/el 

has eigenvalues v/2ql/4e-[1/2e21/2 1 1/4 a /2s ( - 1  + z). 

"1 
x ] ,  the element-wise version of the 

X2 J 

- x]0 
We choose nominal  values of the da ta  as q = el - e2 - s - 1, a - 2, which 

g i v e s X o -  2 1 1 1  1 ' A - S X ~  [ --22 - 1  ] a n d 0  

2 0 0 4 - 2  0 - 4  - 2  

1 0 2 - 2  4 1 0 0 - 4  - 2  
N l - g  0 - 2  2 4 , ~ v 2 - ~  0 0 - 4  - 2  

1 - 2  - 2  6 1 1 - 4  - 3  
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4 2 4 4 12 8 8 6 

1 0 0 4 4 1 4 6 2 4 
N 3 - ~  0 - 0 4 4  , N 4 - - ~  4 2 6 4  " 

0 - 1  2 6 2 2 2 3 

The condit ion numbers  are KQ -- 1.18596, KE -- 4.60750, KA -- 2.73749, 

K s  - 2.64920. Fur thermore ,  we have 

N m 

1.40651 5.37067 3.04150 2.57588 

5.37067 21.22907 12.40750 10.83322 

3.04150 12.40750 7.49386 6.89220 

2.57588 10.83322 6.89220 7.01826 

and I I[N1,N2,N3,N4]II2-  5.9781. 

Let the per turba t ions  in the da ta  be ~q - a > 0, ( ~ e l  - -  ( ~ e 2  - -  (~s  - -  - - ( 7 ,  

~a -- 2(7, which gives ~ - a l l ,  x/-2, 2, 1] T. Then the per tu rba t ion  in the solution is 

(~X - -  [ (~x 1 (~X , where 
[ ~x ~x2 

(~X 

5x2 

- (1 + a)1/2(1 - a) -3/2 - 1, (~Xl = 2(1 + (7)3/4(1 - (7) - 7 / 4  - 2,  

- ( 1  + ( 7 ) 1 / 4 ( 1  - (7) - 5 / 4  - 1 .  

We also have 

e s t l ( 5 ) -  15.8261(7, e s t 2 ( 5 ) -  16.9087(7, e s t 3 ( 5 ) -  15.5487(7. 

Thus,  est(5) - est3((~) - 15.5487(7. The quanti t ies bi(5) in the nonlocal bound 
from Theorem 13.15 are 

bo(5) = 15.5487(7, b1(5) - (7(23.4487 + 25.5479(7), 

- 1.1860 + 4.5404(7 + 5.7263(72 + 2.3719(73. 

The  results for this example are given in Table 13.5. 

E x a m p l e  13 .18  Consider the descriptor equation from Example  13.17 with the 

same nominal  da ta  but  now with per turba t ions  

[3_2] [~176 [1029] 
5 Q - ( 7  - 2  19 , 5 E = - ( 7  - 4  37 , 5 A - ( 7  3 33 ' 

42 0 ]  
~ S -  -(7 0 0 ' 

where (7 > 0 is a small parameter .  Hence, 5 - (7119.4422, 76.8765, 45.1553, 42.0] T 

and 1t511 - 100.454(7. Fur thermore,  we have estl(~) - 612.1449(7, est2(5) - 
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Table 13.5: Exact perturbation, local and nonlocal perturbation bounds 

O" 

0.001 
O.OO2 

0.003 

0.004 

0.005 

0.006 

0.007 

0.008 

0.009 

0.010 

5x 
0.005945 

0.01191 

0.01789 

0.02388 

0.02989 

0.03592 

0.04197 

local 

0.01555 
0.03110 

0.04665 

0.06219 

0.07774 

0.09329 

0.1088 

nonlocal 
0.01624 

0.03409 

0.05394 

0.07643 

0.1025 

0.1341 

0.1752 

0.04803 0.1244 0.2410 

0.05411 0.1399 * 

0.06020 0.1555 * 

600.5259a, est3(5) - 601.2477a. Thus, est(5) - est2(5) = 600.5259a. The quanti- 
ties a~(5) in the nonlocal bound are 

a0(5) 
al(5) 

a2(5) 

- 103a(0.60053 + 95.577a + 1997.2a2), 

- 103a(1.0859 + 36.7a + 1541.4a2), 

- (1 + 42a)(1.186 + 182.343a + 7009.3a2). 

The results for these perturbations are presented in Table 13.6. 

13.5 N o t e s  and re ferences  

There are several studies in the literature on perturbation analysis of continuous- 
time Riccati equations arising in linear control theory [35, 149, 87, 66, 150, 120, 
4, 237, 131, 211], see also [184, 186, 185]. Until recently, however, the results for 
the complex case had not been clarified. Here the treatment in [211] had to be 
complemented with the analysis from [145]. The analysis for the descriptor case 
is new [127]. 

Condition and error estimates for the solution of Riccati equations are given 
in [182, 183, 179, 146]. 

Residual bounds for algebraic Riccati equations are given in [210]. 
Perturbation analysis of pairs of Riccati equations arising in the Ho~ control is 

done in [144]. 

Backward errors for the Riccati equation are derived in [77]. 
Computational methods for Riccati equations are considered in [37, 181, 167, 

159, 200, 32, 21, 22, 23, 168]. General theory of algebraic Riccati equations is 
presented in [81, 61, 154, 156, 108]. 
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Table 13.6: Exact perturbation, local and nonlocal perturbation bounds 

0.00002 
0.00004 
0.00006 
0.00008 
0.00010 
0.00012 
0.00014 
0.00016 
0.00018 
0.00020 

5x local 
0.0112 0.0120 
0.0225 0.0240 
0.0338 0.0360 
0.0452 0.0,i80 
0.0566 0.0601 
0.0681 0.0721 

, , ,  

0.0797 0.0841 
0.0913 0.0961 
0.1030 0.1081 
0.1147 0.1201 

nonlocal 
0.0125 
0.0261 
0.0411 
0.0577 
0.0764 
0.0979 
0.1233 
o.155o 
0.1989 

In this book we do not consider differential and difference matrix equations. 
Perturbation bounds for matrix differential and difference Riccati equations are 
given in [120, 143, 139, 138, 123]. 



Chapter 14 

Coupled Riccati equations 

In this chapter we present the perturbation theory for coupled systems of continuous- 
time Riccati equations 

FI ( X I ,  X2, P1) 

F2 ( X I  , X2 , P2 ) 

�9 - (A1 + BIX2)-rX1 -~- XI(A1 + BIX2) 

+ C1 - XIDIX1 = 0, 

" :  (A2 + X 1 B 2 ) X 2  + X2(A2 -~- XIB2) T 

+ C2 - X 2 D 2 X 2  - O, 

(14.1) 

where Xi c 7~ are the unknown matrices, Ai, Bi E T~, Ci, Di E S, i = 1,2, 

are given matrix coefficients and Pi := (Ai, Bi, Ci, Di) E T~ 4. Here we use the 
abbreviations ~ = I~ nxn and S = {A c T~:A = A T} c 7~. 

Equations of this type arise in the 7-/2/7-/oo analysis and design of linear mul- 

tivariate control systems [27, 227, 118] and in differential games [5]. 

1 4 . 1  P r o b l e m  s t a t e m e n t  

For the perturbation analysis we set 

P "-- ( P 1 , P 2 ) =  (A1,BI,C1,D1,A2, B2, C2, D2) 

: "  (El,  E2, E3, E4, E5, E6, ET, E8) C 7~ s, 

i.e., the individual matrix members of P are denoted as E l , . . . ,  E8. The general- 
ized norm of the matrix 8-tuple P is the vector 

IIIPIll := [[[EIIIF,..., IIE811F] T e R 8. (14.2) 

Although the matrices Ci, D~ are symmetric, system (14.1) may have solutions 

(X1, X2) in which one (or both) of the matrices Xi is not symmetric. In this work 

267 
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we are interested only in symmetric solutions of system (14.1), i.e., (X1,22) C S 2. 
The nonsymmetric case may be treated similarly. 

Note that the system (14.1) may be written as one matrix equation. This may 
be done in several ways. Set, for example, 

X :--[Xl,X2] e ]~n• C :--[C1,C2] c ~nx2n 

Then we have the single equation 

o] ( [ 
0 Av2 + A ~ + X  

+ ( A 2 + X [  _ D  2B2T ] ) X  00 

0 0 
o o ]+[ 

-D1 
1) x 

0 

~ [~ 
B~ X 0 = 0  

and the condition (X1, X2) E 82 may be expressed as 

0 

Thus, we may apply the general perturbation theory for quadratic equations of 
Chapter 12. However, in this case it is difficult to take into account the special 
structure of the coefficient matrices and the resulting perturbation bounds will not 
be tight. 

Another desired property of the solutions of (14.1) is whether they stabilize 
the corresponding closed-loop system matrices. 

Defini t ion 14.1 The solution pair ( X 1 , X 2 )  C 8 2 is called stabilizing if the ma- 
trices 

G1 := A1 + BIX2 - D1X1, 

G2 := A2 -~- X1B2 -- X2 D2 

are stable. 

Note that Fi as defined by (14.1) are functions from 7~ x 7~ x ~2~. 4 - -  ,]-~6 to 7~. It 
will be convenient to write the (14.1) as one operator equation. For this purpose 
we set 

X := (Xl,X2), F := (El, F2) 

and obtain 

v(x, P) =o. (14.3) 

Here F is considered as a mapping Tr 1~ -~ 7~ 2, or equivalently, as a mapping 
~nx2n X ~8 ____+ ~nx2n 
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Finding conditions for existence of solutions (X1, X2) E 82 with Xi nonnegative 

of system (14.1), as well as of stabilizing solutions, is difficult. Even if both triples 

(Ci, Ai, Bi) are controllable and observable the system may have no solution in S 2 

with nonnegative definite X1, X2, nor a stabilizing solution, see Example 14.2. 

E x a m p l e  14.2 Consider the simplest case n -  1, 

2(al -t- b lx2)x l  + C l  - -  dl x2 - O, 

2(a2 + b2xl)x2 + c2 - d2x 2 - O, 

(14.4) 

where ai, bi, ci, di and the unknowns xi are scalars. Suppose that  blb2ClC2 r O, 

thus excluding trivial solutions xi = 0 as well as cases of decoupling. If in addition 

did2 7 ~ 0 then the system (14.4) is equivalent to a quartic equation. Geometrically, 

the solution is given by the intersection points of two hyperbolas with two branches 

each. We have 

and 

where 

dix2i - 2aixi  - ci 
, i C j ,  

x j  = 2b~x~ 

4 
~-~OLikXki --0, 
k = O  

O ~ i o  "---~ 

O L i l  " - -  

O L i 2  �9 _ _  

O L i 3  �9 _ _  

O L i 4  �9 _ _  

-c2idj, 
-4(bic~aj  + a~c~dj), 

2 (c~d~dj + 2b2cj - 2a~dj - 2b~cibj - 4aib~aj),  

4 (bidiaj + aididj  - 2aibibj) ,  

di(4blb2 - did2). 

Let ai - bi - c~ - di = 1, i - 1,2. Then we have a double root (Xl,X2) = 

( - 1 , - 1 )  and two more roots (a, fl), (fl, a) ,  where a " -  1 -  2/v/3 ~ -0 .1547 and 

/3 "-  1 + 2 / v ~  ~ 2.1547. Hence, the system has no solution with Xl,X2 >_ O. Also, 

the closed loop system matrices ai q - b i x j - d i x i  - 1 + x j - x i  are not simultaneously 

negative on any of the solution pairs (x l, x2). Hence, there do not exist stabilizing 

solutions as well. (~ 

In what  follows we assume that  (14.1) has a solution X - (X1, X2) c S 2 such 

that  the partial Fr6chet derivative F x ( X ,  P)( . )  of F in X at the point (X, P)  is 

invertible. 

The partial Fr6chet derivative of F in X at (X, P)  is a linear operator ~ 2  __~ ~'~2 

calculated as follows. Let Y = (Y1, Y2) c 7Z 2 be arbitrary. We have 

F x ( X ,  P ) ( Y )  - ( F I , x ( X ,  P1)(Y), F 2 , x ( X ,  P2)(Y)) 
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and 

Fi , x ( X , Pi ) ( Y ) = Fi , x ~ ( X , Pi) (Y1) + Fi , x = ( X , Pi ) ( Y2 ) . 

A direct calculation gives 

F1,x~(X, P1)(Z) -- GTI Z + ZG1, 

F1,x2(X, P1)(Z) - X 1 B I Z  -~- zTBTI X1, 

F2,xI(X,  P2)(Z) - X2BT2 Z-r + ZB2X2,  

F~,x~ ( x ,  P ~ ) ( z )  - a ~ z  + z a ~ .  

(~4.5) 

We use the following abbreviations for the partial Frdchet derivatives of F and 
F~ 

L(.) : =  

L~( . )  : =  

Lij ( ' ) : =  

F x ( X ,  P)(.) c Lin(Tr162 

Fi ,x (X ,  Pi)(') e Lin(Tr 2, 7r 

Fi,xj (X, Pi)(') e Lin(Tr 7r 

Thus, we have 

F x ( X , P ) ( Y )  = (LI(Y), L2(Y)) = (L11(Y1) + L12(Y2), L21(Y1) + L22(]/'2)). 

Note that  Lii(') are Lyapunov operators. At the same time Lij(.),  i r j ,  are 
associated Lyapunov operators when Xi E S, see [125]. 

Applying the vec operation to the pair F x ( X ,  P ) ( Y )  and using the identity 
(A | B)Pn~ = Pn~(B | A) we obtain that  the matrix representation of the linear 
operator L(.) is 

L := M a t ( L ( . ) ) =  Lll L12 I ]t~2n2 x2n 2 
L21 L22 C 

where 

Lll 

L12 

L21 

L22 

�9 - i n | 1 7 4  

:= (In2 -t- Pn2)(Zn | (XIB1)), 
�9 - ( ~  + Pn=)((B~X~) T | •  

:= I ~ | 1 7 4  

Here Liy E R n2xn2 is the matrix representation of the operator Lij(.), i , j  - 1, 2. 

E x a m p l e  14.3 For the system from Example 14.2 we have 

L _ 2 [ al + blx2 - dlXl blxl ] E R2X2 
b2x2 a2 + b2xl - d2x2 

and 

det(L) - 4((al - d l x l ) ( a 2 -  d2x2) + blx2(a2 - d2x2) + b2xl(al - d lx l ) ) .  
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By assumption and using the implicit function theorem [173] it follows that  

the solution X is isolated, i.e., there exists e > 0 such that equation (14.3) has no 
N 

other solution X with I I X -  Xi[ < c. 

In the following, with a certain abuse of notation, we consider Pi both as an 

ordered pair (and hence, as an element of the linear space T~ 4) and as a collection. 

The perturbation problem for (14.1) is formulated as follows. Let the matrices 
from Pi be perturbed as 

Ai ~ Ai + 5Ai, Bi ~ Bi + 5Bi, Ci ~-, Ci + 5Ci, Di ~ Di + 5Di 

(if some of the above matrices are not perturbed then the corresponding pertur- 
bations are assumed to be zero). 

We assume that the perturbations 5Ci and 5Di are symmetric. This assump- 

tion is necessary to ensure that  the perturbed equation, considered below, also has 
a solution in S 2. 

Denote by Pi + 5Pi the perturbed collection Pi, in which every matrix Z E Pi 

is replaced by Z + 6Z and let 5P = (6P1,SP=). Then the perturbed version of 
equation (14.3) is 

F ( X  + 5X, P + 6P) = 0. (14.6) 

The invertibility of the operator Fx and the symmetry of the matrices Ci + 5Ci, 
Di + 5Di implies that  equation (14.6) has a unique isolated solution X + 5X E 8 2 
in the neighborhood of X if the perturbation 5P is sufficiently small. Moreover, in 

this case the elements of 5X are analytic functions of the elements of 5P. Setting 

where 

E R s , 
5"= 52 

6~ "-- [6A,, 6B,, 6C,, 6D,] T C R 4, 

the vector of absolute Frobenius norm perturbations 5z := 115ZIIF in the data 

matrices Z c P, then the perturbation problem for (14.1) is to find bounds 

5x~ < fi(5), 5 E f t  C Rs+, i -  1,2, (14.7) 

for the perturbations 5x~ := llsx~llF. Here ft is a certain set and f~ are continuous 

functions, nondecreasing in each of their arguments and satisfying fi(0) = 0. The 

inclusion 5 E ft guarantees that  the perturbed equation (14.6) has a unique solution 

X + 5X in a neighborhood of the unperturbed solution X such that  the elements 

of 5X1, 5X2 are analytic functions of the elements of the matrices 5Z, Z c P, 
provided 5 is in the interior of ft. 

In the next section, first order local bounds 

6x, _< est,(6) + o(116112), 6 0, i = 1, 2, (14.8) 
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are derived with esti(5) - O(11~11), ~ -~ 0, which are then incorporated (see Sec- 
tion 14.3) in the nonlocal bounds (14.7). Here the functions est ,"  RS+ ~ R+ are 
nonlinear first order homogeneous, i.e., esti(AS) - Aesti(5) for every A >_ 0. 

Estimates in terms of relative perturbations 

for 

e z ' - ~ ,  O:/=ZEP, 
IIzIIF 

II~X~IIF �9 = ~ ,  i = 1 , 2 ,  
~x, IIX~IIF 

are straightforward when X1 r 0, X2 r 0, and are therefore not given in detail. 

1 4 . 2  L o c a l  p e r t u r b a t i o n  a n a l y s i s  

In this section we present a local perturbation analysis for the system (14.1) by 
determining the functions esti in (14.8). 

1 4 . 2 . 1  C o n d i t i o n  n u m b e r s  

Consider first the conditioning of (14.1). Let 

Lin := Lin(TZ, 7~) 

ge the space of linear operators 7-4 --+ ~ .  Since we want that  Fi(X, Pi) = O, the 
perturbed equations may be written as 

2 

Fi(X + SXi, Pi + SP~) = E L i j ( S X j )  + E Fi,z(SZ) + Hi(SX, SPi) - O, i - 1 , 2 ,  
j = l  ZEPi 

where 

Fi,z(') := Fi,z(X, Pi)(.) e Lin, Z e Pi, 

are the F%chet derivatives of Fi(X, Pi) in the matrix argument Z, evaluated at 
the point (X, Pi). The matrix expressions 

m ( ~ x ,  ~P~) - o (IliON, ~P~]l12), ~x  ~ o, ~P~ ----> o, 

contain second and higher order terms in 5X, 5Pi. In fact, for Y = (Y1, Y2) E ,.~2 
we have 

Hi(Y, (~P1) = ((~B1Y2 - (SD1Y1)Tx1 4- Xl((SBIY2 - (~D1Y1) (14.9) 

+ Y15B~X2 + X25BT1Y1 

- YI(D1 4- 5D1)Y1 4- Y15A1 4- 5ATIY1 

+ YI(B1 + ~B1)Y2 + Y2(B1 + ~B1)T5 
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and 

H2(Y, 5P2) - X2 (Y15B2 - Y25D2) T + (Y15B2 - Y25D2) X2 (14.10) 

+ XISB2Y2 + Y25B~X1 

- Y2(D2 + 5D2)Y2 + 5A2Y2 + Y25A~ 

+ Y2(B2 + 5B2)Ty1 + YI(B2 + 5B2)Y2. 

We stress that  the first four terms in the right-hand sides of (14.9) and (14.10) 
have extra structure that  will be exploited later in the derivation of tighter nonlocal 
bounds. Indeed, suppose that  we want to bound from above the 2-norms of the 
vector Avec(BZC),  where A, B and C are given matrices and the only information 
about the matrix Z is that  

IIZIIF --Ilvec(Z)ll2 _< ~z. 

Then we have the rough bound 

IIAvec(BZC)[[2 < IIAII211vec(BZC)II2= IIAII211BZCIIF (14.11) 

<_ IIAII211BII211CII211ZIIF <_ IIAII21]BII211CII25z. 

But we have also the bound 

]Avec(BZC)]]2- [[A(C T | B)vec(Z)[[2 _< [[A(C T | B)I]25z, (14.12) 

and since 

t lA(C T | B)II2 < IIAII211BII211C]I2 
and since the strict inequality is possible, we see that  the bound (14.12) is tighter 
than (14.11). 

Note that  we have already calculated the operator Fx(X,P) ( . )  - L(.) via the 
operators Fi,xj(X, Pi)(') = Li(-) and Fi,xj(X, Pi)( ' )= Lij('), i , j  - 1,2, namely 

Fx (X, P)(Y)  = (Li (Y), L2(Y)), 

where 

L,(Y) = L,~(Yi)+ Lij(Yj). 

Recalling that  the matrix representation of Lij(.) is denoted by Lij, we have for 
(X1,X2) E S 2 tha t  

El,A1 ( Z )  - X 1Z n t- Z T X1, 

El,B1 (Z)  - X 1 Z X 2  -Jr X2 Z T X1, 

F~,c, (Z)  - Z, 

F1,D, (Z) - -  - X I Z X 1 ,  

F2,A2(Z) - ZX2 + X2 ZT, 

F2,B2 (Z) = X1ZX2 + X2 z v x l ,  

F2,c2(Z) - Z, 

F2,D2(Z) = - X 2 Z X 2 .  
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The inverse 
M ( . )  . -  i ( . )  -1  ~ i i n ( n  ~ • n ~) 

of the operator L - F x ( X , P ) ( . )  may be represented as 

L- l ( . )  -- (MI(-), M2(-)), 

where, for Z "-  (Z1, Z2) e 7r 2, 

Mi (Z)  - Mil(Z1) + Mi2(Z2), Mij(.)  E Lin, i - 1,2. 

Hence, we have 

where 

5X - - M ( W I ( S X ,  5P1), W2(SX, 5P2)), 

w~(y, 5P~) . -  ~ v~,z(~z) + H~(y', 5P~). 
ZEPi 

In this way we obtain 

(14.13) 

2 

5Xi - - E M i j ( W j ( S X ,  5 5 ) ) ,  i - 1, 2, 
j = l  

which gives 

2 

5Xi = - E E Mi j  o Fj ,z (SZ)  
j = I  ZCPj 

2 

-ZM~j(&(~x,~Pj)) ,  i -  1,2. 
j = l  

Therefore, we have the bounds 

(14.14) 

2 

j = I  ZEPj 

where the quantity 

Kij, z "-  [IMij o Fj,z ]]Lin, i, j --  1, 2, 

is the absolute condition number of the solution component Xi with respect to the 
matrix coefficient Z E Pj. Here II.lliin is the induced norm in the space Lin of 
linear operators 7~ --, 7~. 

If Xi r 0, then estimates in terms of relative perturbations are given by 

2 

j = I  ZEP~ 
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where the quantity 

Ilzll~ 
k~j,z = K~j,z IIX~llF ~ ,  i , j  = 1,2, 

is the relative condition number of the solution component Xi with respect to the 
matrix coefficient 0 ~ Z E Pj. 

The calculation of the condition numbers Kij ,z  is straightforward when the 
Frobenius norm is used in 7~. Indeed, for U E Lin we have 

fluIl~i. := max[[[[U(Z)[[F'[[Z[]F- 1} 

= max{[[vec(U(Z))l]2"llvec(Z)]]2- 1} 

= max{]lMat(a)vec(Z)[[2" Ilvec(Z)lI2 - 1} 

= [[Mat(U)[[2 = ~max(Mat(U)), 

where Crmax(A) is the maximum singular value of the matrix A. 

Let Li,z  E R n2xn2 be the matrix of the operator Fi,z E Lin. Then a direct 
calculation yields 

L1,A1 = (Pn2 zr- In2)( In  | Xl),  

L2,A2 = (Pn2 + In2) (X2  @ In) ,  

L i ,B  1 -= (Pn 2 n t- I n : ) ( X 2  @ X1), 

L2,B: = (P.~ + I,~ )(X2 | X~ ), 

L1,c1 = In:, 

L2,c~ = In~ , 

L1,D 1 -- Xl @ Xl,  

L2,D2 = X2  | X2.  

Denoting the matrix representation of the operator 

M ( . ) -  F x l ( X , P ) ( . )  E Lin(7~2,7~ 2) 

by 

M . - M a t ( M ) - L  -1 .= [MllM21 M22M12] 
the absolute condition numbers are calculated from 

, Mij E R n~x'~- 

Kij,z -[]M~jLj,z[[2, Z E Pj, / , j  = 1,2. 

A possible disadvantage of this approach may again be the large size n 2 • n 2 of 

the involved matrices. 
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14.2.2 F i r s t  order homogeneous estimates 

If we rewrite equations (14.14) in vectorized form as 

2 

vec(SXi) - E E Ni ,zvec(SZ)  
j--1ZEPj 

2 

- E M i j v e c ( H j ( S X ,  5Pj)),  i - 1, 2, 
j= l  

where 

(14.15) 

Ni , z  " -  - M i j L j , z  E l~ n2xn2, Z E Pj, i , j  - 1, 2, 

then the condition number based perturbat ion bounds may be derived as an im- 
mediate consequence of (14.15), as 

5Xi --ItsxiIIF -Iivec(SZi)l[2 ~ est} 1)(5) + o([[5112), 5 -+ 0, 

where 
2 

est'1)(5) "-~-~ ~ IIN~,zII25z. 
j=I ZEPj 

Note that  the bounds est} 1) (.) are linear functions in the per turbat ion vector 5 E 
R s" 

Relations (14.15) also give the second perturbat ion bound 

5x, _< est~ 2)(5) + o(1151t~), 5 --+ o, 

where 

and 

est}2)(5) "-IIN~II~IISII~ 

Ni 

Ni,j 

:-- [Ni,1, Ni,2] E ]~ n2xSn2' 
:= [Ni,Aj , Ni,B~ , Ni,cj  , Ni,Ds ] E ]~ n2 x 4n2 , i = 1, 2. 

The b o u n d s  est~ 1) ((~) and est} 2) (5) are again alternative and we also have the 

third bound, which is always less or equal to est~ 1) (5). We have 

(~2Xi -- vecT  (~Xi )vec(~Xi )  = ~TNTNi~ + o(11511~), 5 -~ 0, 

where 
rl " -  [vec T (5A1), vec T (SB1) , . . . ,  vec T (5D2)] T 

We will represent the matrix 

C ]R sn2 �9 

I~8n 2 x 8n 2 N ~  g i  e : . +  
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as a 8 x 8 block ma t r ix  wi th  n 2 x n 2 blocks as follows. Let the  n 2 • n 2 blocks of 
A 

N~ be denoted as Ni,k, k -  1 , . . . ,  8, i.e., 

where 

x ~  - ,~, N ~ , : ,  . . . , ~ , ~  , . ~ , k  ~ R n , •  

A A A 

N i ,  1 . - -  N i , A 1  , N i , 2  . - -  N i , B I , . . .  , N i , 8  :-~ N i , D 2 .  

Then  we have t h a t  
7]-r N (  NiT? <_ a-C Ni6, 

where Ni - [ n i , p q ]  E ]1~ 8xs, i = 1, 2, is a mat r ix  with  elements 

i,p 'q 2 

In this way we obta in  

where 

and since 

5x, <_ estl a) ( 5 ) +  o(115112), 5 ~ 0, 

then  estl a) (5) < est{ 1) (5) and we have the overall es t imates  

5x~ - esti(5) + O(115112), a -+ O, i = 1, 2, (14.16) 

where 

esti(5) "= min {est~2)(5),est~3)(5)}, i = 1,2. (14.17) 

The  local bounds  considered in this section are continuous, first order homoge- 

neous, nonlinear  functions in 5. Also, for 5 # 0 these functions are real analytic.  

All three  bounds  est~ k) are in fact ma jo ran t s  for the  solution of a complicated 

opt imiza t ion  problem, defining the condit ioning of the problem as follows. Set 

and 

Then  we have 

and 

{i := vec(SXi),  i = 1, 2, 

"-- [ (~1, . . . , (~81T "-- [ ~ A 1 , ' ' ' , ~ D 2 I  T E R ~ .  

8 

r - ~ N~,k~k + o(11~112), 5 --, o 
k = l  
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where 

k = l  2 

is the exact upper bound for the first order term in the perturbation bound for the 
solution component X~ (note that  K~(5) is well defined,,since the minimization in 
r/is carried out over a compact set). 

The calculation of Ki(5) is a difficult task. Instead, one can use again a bound 
such as esti(5) :> K~(5). 

For a given vector V E ~I~_ we may define the relative conditioning of the 
problem as follows. 

De f in i t i on  14.4 Let X~ ~ O. The quantity 

- IIX  IIF 

is the relative condition number of Xi with respect to 7. 

If [I[P[[[ is the generalized norm (1~.2) of P, then ~i(]l[P]ll) is the relative norm- 
wise condition number of Xi. 

Note that  if all elements Vk of V are zero except one, equal to I]Ez]]F in t h e / - t h  
position, then the quantity ~i(7) is the individual relative condition number of Xi 
with respect to perturbations in the matrix coefficient El. 

1 4 . 3  N o n l o c a l  p e r t u r b a t i o n  a n a l y s i s  

1 4 . 3 . 1  I m p l i c i t  b o u n d s  

As in the previous section, we obtain nonlinear bounds by using the techniques of 
nonlinear perturbation analysis. As a result, we get a domain f~ C 7~_ and two 
nonlinear continuous functions f l ,  f2 :f~ --*/Z+, satisfying 

fl  (0) = f2(0) = 0, 

and such that  

5x~ _< fi(5), 5 C ~, i =  1, 2. (14.18) 

The inclusion/[ c f~ guarantees that  the perturbed equation has a unique solution 
in a neighborhood of the unperturbed solution. Furthermore, the estimate (14.18) 

is rigorous, i.e., the inequality holds for all perturbations with 5 c f~. To get the 
nonlinear nonlocal bounds the perturbed equation 

F ( X  + 5X, P + 5P) = 0 
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is again rewrit ten as an operator equation for the per turbat ion 5X 

#X = II(aX, aP) ,  rl = (II1,II2), (14.19) 

where 

Here 

FI(Y, 5P) := - M ( F p ( X ,  P ) ( a P )  + H(Y, 5P)). 

H(Y, SP) := (HI(Y, SP1),H2(Y, SP2)) 

contains second and third order terms in Y and 5P, see (14.9), (14.10). 
Equation (14.19) comprises two equations, namely 

5X~ = II(SX, 5P~), i = 1, 2, (14.20) 

where the right-hand side of (14.20) is defined by relations (14.14). Setting 

~i " -  vec(SXi) E l~ n2, i -  1, 2, 

~2 E 

we obtain the vector operator equation 

= 7r(~, 77) (14.21) 

in R 2n2 which is reduced to two coupled vector equations 

~i = 7ri(~, ~), i = 1, 2, 

in IR n2 , respectively. 

To obtain Lyapunov majorants  we define generalized norms in IR 2n~ and R sn2 
by 

[ ['~12] E R 2 

and 

For p E R~_ let 

Ill 1112 1 �9 E IR 8 .  II1 111 - 11 8112 

be the ball centered at the origin and of generalized radius p. We determine 

h [hl] 
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such that  the functions hi " IR~_ x R~_ ~ R+ are nondecreasing in all of their scalar 

arguments; for all ~ E R~_ the function h(., ~) �9 R~_ --. R 2 is differentiable; and the 
relations 

h(0, 0) = 0, rad(hp(0, 0)) < 1 

hold. Here hp(p, 5) is the Jacobi matrix of the function p H h(p, 5) for a fixed value 
of 5. In our case the matrix hp(p, 5) is nonnegative and according to the Perron- 
Frobenius theorem [26] its spectral radius is equal to its maximum (nonnegative) 
eigenvalue. 

Suppose that  for all p e R~_, all ~, ~ e Bp and all r / e R sn2 with lilt/Ill ~ 5, the 
inequalities 

II1~(~, ~)111 _~ h(p, 5) 
and 

hold, then the function h is a Lyapunov majorant and there exists a domain 
f~ C R~_ such that  for 5 E f~ the vector majorant equation 

p = h(p, 6) 

has a solution 

f2(5) 

Here f �9 ft  ~ R~_ is a continuous function, the components fi of f are nonde- 
creasing in each of their scalar arguments (i.e., 5 ~ ~ implies f(5) ~_ f(5)),  and 
f (0)  = 0 .  

For 5 E f / t h e  operator 7r(., 5) �9 R 2n~ --, R 2n~ maps the closed convex set Bf(6) 
into itself. Hence, according to the Schauder fixed point principle (Appendix D), 
there exists a solution ~ E By(6) of the operator equation (14.21) and the desired 
nonlocal perturbation bounds for the solution are 

6x, = 11~ll2 _< f~(6), 6 e a .  

where 

We have 

~ ( ~ ,  v) = N~v~ + r v), 

r " j = l  

The next step is to show that  the operator 7r(., 5) �9 7Z 2n= ~ T42n= is a contrac- 

tion on a certain small set of diameter that  vanishes together with a. An estimate 
of this set in terms of the perturbation vector 5 will give us the desired nonlocal 
perturbation bound. 
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The vectorizations of the matrices Hi(Y, 5Pi) are given by 

vec(H1 (Y, 5P1)) (In | Xl)(In~ + Pn~)Vec(aB1Y2 - ($DIY1) 

+ (X2 | In)(In 9- + Pn~)VeC(YlrSB1) (14.22) 

- vec(Yl(D1 + 5D1)Y1) + vec (Y15A1 + 5A[Y1) 

+ vec (YI(B1 + 5Bl)Y2 + Y2(B1 + 5B1)TY1) 

and 

vec(H2(Y, SP2)) 

Let 

(X2 | In)(In2 + Pn2)vec(Y15B2 - Y25D2) 

n t- ( I n  | X1) ( ins  n t- Pn2)vec(SB2Y2) (14.23) 

- vec(Y2(D2 + 502)Y2) + vec (aA2Y2 + Y25A{) 

+ yea (Y2(B2 + 5B2)-rY1 + YI(B2 + aB2)Y2). 

[[Y~IIF --< Pi, i - -  1,2, 

where p~ are nonnegative constants. Then it follows from (14.22), (14.23) that 

where 

and 

j=l  2 
2 

esti(~) + E [[Mijvec(gj(v, 5PJ))[12 
j = l  

h~(p,a), 

P-- P2 

Here 

hi(pl,P2,~) "- esti(5) + a i l  (($)Pl -+- ai2((~)P2 

+ 2b~(~)plp~ + ~ , l (~)pl  ~ + ~ ( ~ ) p ~ ,  i - 1, 2. 

ail(~) := 
ai2(~) : =  

bi ( ( $ ) : =  

Cil ((5) :'-- 

c i 2 ( a )  : =  

2][M/1]I2~A 1 -~-///I((~B1 -Ja ~D1) + ///2~B2, 

2[]M/2[]2~A2 +///2((~B2 + ~D2) ~- /]/1~B2, 

IIM~III2(IIBII[2 + ~B1) + IIMi2II2(IIB2112 + ~B~), 

]]M/III2(IIDIII2 + ~D,), 

]IMi2]]2(IID2[]2 + 5D~), i = 1, 2, 
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and 

/2il 

/2i2 
:= IIMil(In @ Xl)(In2 n a P~=)l12, 

The function h" IR~_ x IR s -+ R~_ that we have constructed is a vector Lyapunov 
majorant for the operator equation (14.21) and the majorant system of two scalar 
quadratic equations 

Pi = hi(p1, p2, 5), i = 1, 2, (14.24) 

may also be written in vector form as 

p = h(p, 5), 

where 

We have 

h(p, a) .-  [ h~(p, ~) 
h~(p, ~) ] 

h ( 0 , 5 ) -  [ estl(5) 
est2 (5) ' 

hp(p, (~)- [ all((~)+ 251(~)p2 + 2Cll(~)fll a12((~)+ 251((~)pl + 2C12((~)p2 ] 
[ a21 ((~) -~- 252((~)p2 -~- 2c21 ((~)PI a22((~)-~- 252(5)Pl -~- 2c22(~)P2 J ' 

and 

h(O, O) = O, hp(O, O) = O. 

Therefore, for 5 sufficiently small, the system (14.24) has a solution 

[ f1(5) ] 
P--f(a)-- f2(a) ' 

which is continuous, real analytic in 5 7~ 0 and satisfies f(0) = 0. The function f(-) 
is defined in a domain ft c R~_ whose boundary Oft may be obtained by excluding 
p from the system of equations 

p = h(p, 5), det(/2 - hp(p, 5)) = O. (14.25) 

The second equation in (14.25) implies that the Jacobi matrix hp(p, 5) of h in p has 
an eigenvalue 1. In fact, in this case the spectral radius of hp(p, 5) is equal to 1. 
Relations (14.25) form a system of 3 scalar functionally independent equations of 
4-th degree in 10 unknowns (the elements of p and 5). This defines a 7-dimensional 
algebraic variety ~ c R~ ~ In a neighborhood of the origin the variety ~ may be 
parametrized as 

p -  ~(t), a = a~(t), t ~ ~ ,  



14.3. NONLOCAL PERTURBATION ANALYSIS  283 

where fi(.)" •7 _~ R~_ and ~(.) �9 R~_ ~ R s are algebraic functions. In turn, the 

surface (an algebraic variety of co-dimension 1) in R~_, parametrized by 

- ~( t ) ,  t c R r 

forms part of the boundary of the set ~t C R s .  
The second equation in (14.25) is equivalent to 

~ ( p ,  5)  . -  1 - :(5) + a l  (5)p: + a2(5)p2 + 2~(5)plP2 
-~- ' ) '1((~)P2 _~_ ~2 ( (~ )p2  2 __ 0 ,  

where 

: ( 5 )  . -  

(21(~) " =  

~ : ( 5 )  . =  

Z ( 5 )  . -  

~ : ( 5 )  . -  

~ : ( ~ )  . -  

a11(5)  + a22(5)  - a :1 (5 )a22(5 )  + ai2(5)a21(5), 
- 2 ( c 1 1 ( 5 ) ( 1  - a22(5))  + b2(5)(1 - a11(5))  

~- a12 (5)c21(5)  -~- b1((~)a21(5)),  

- -2 (c22(5 ) (1  -- a11(5))  + b1(5)(1 - a22(5))  

-4- a21 (5)C12((~) "~- b2(5)a12(5) ) ,  

4(C11 (5)C22(5) -- C12(5)C21 (5)) ,  

4(b2((~)Cll (5) - 51 ((~)c21 ((~)), 

4(bl  (5)r  - b2(5)c12(5)) .  

Thus, for the determination of (part of) the boundary 0R of the set ft we have 
a system of 3 scalar full 2-nd degree equations in pl, p2, whose coefficients are 
2-nd degree polynomials in 5. For 5 c ~t denote by p = f(5) the smallest nonneg- 
ative solution of the majorant system (14.24). As a result, we have the nonlocal 
nonlinear perturbation bounds 

5x, < f~(5), 5 E ft, i =  1, 2. (14.26) 

Note that  if 5 is not on the boundary of ~t, in the sense that  w(p, 5) > 0, then 

rad(hp(p, 5 ) ) <  1. 

In this case 7r(., 5) is a generalized contraction on Bp and, according to the Banach 
fixed point principle, the solution for fiX is locally unique. Moreover, its elements 

are real analytic functions in the elements of the perturbations in the coefficient 
matrices. 

1 4 . 3 . 2  E x p l i c i t  b o u n d s  

In practice, it is not necessary to explicitly determine the domain ~ and the 
functions fi. It suffices, for a given 5, to solve numerically the majorant system 
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(14.24) and then to check the condition w(~, 5) >_ 0, where ~ is the computed 

solution. Then, if such solutions exist (which is guaranteed for 5 sufficiently small), 

one has to choose the smallest nonnegative solution of the system (14.24). We can 
again avoid the numerical solution by finding a new Lyapunov majorant g, such 

that  

h(p, 5) ~_ g(p, 5) 

and for which the equation 

p = g(p, 6) (14.27) 

has an explicit form solution. This can be done in many different ways. The 

sharpest result is obtained by considering Consider the function l = [11,12] n- with 
components 

li(5, p)"--  ei + ailPl + ai2P2 + 2bplP2 + clp21 + c2p 2 

together with the majorant equations 

p~ = l~(p, 5), i = 1, 2. 

Subtracting both sides of these equations we get 

P l  - -  P2 - -  a l l P l  q- a 1 2 P 2  --  a 2 1 P l  --  a 2 2 P 2  + e l  - -  e2 .  

If we assume that  aii < 1 + aji, then we have 

P l  = ) ~ P 2 + P ,  

where 
1 + a12 - a22 1 

A:= , # : =  . 
1 + a21  - -  a l l  1 + a21  - -  a l l  

Substituting this expression in any of the equations Pi = li(p, 5) we get the 
quadratic equation 

fl2p 2 - (1 - i l l ) P 2  n t- fl0 - -  0 

for P2, where the coefficients flk = ilk(5) are given by 

/3o : =  e s t l  q- C l p 2 ( e l  - -  e 2 )  2,  

f l l  : =  /~a21 if- a22 + 2 p ( b  + C l ) ~ ) ( e l  - -  e 2 ) ,  

/32 := c2+c lA  2+2bA. 

If 

then we obtain the perturbation bound 

_ _ _  

1 - f l l ( (~)  q- V/(1 - Z1 ( (~ ) )2  _ 4f10(~)f12( (~)  

Hence, we also have the bound 

pl < 
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14.4 N o t e s  and re ferences  

Coupled linear and quadratic matrix equations arise in many areas of control 
theory, see [27, 227, 57, 118]. Their sensitivity analysis, however, is less developed. 
Perturbation analysis of coupled Lyapunov equations is done in [47]. Complete 
local and nonlocal perturbation analysis of coupled Riccati equations, as presented 
above, is published in [124], see also [2]. The test examples presented in [124] show 
that the perturbation bounds presented above can be very tight. 
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Chapter 15 

General fractional-affine 
equations 

15.1 In tro duc to ry  remarks 

In this chapter we present the perturbation analysis for general fractional affine 
matrix equations of the form 

F1JF F2 F31F4 : 0 , 

where the Fi are affine matrix expressions in an unknown matrix X. We also briefly 

discuss symmetric fractional affine matrix equations, particular cases of which are 

the discrete-time Riccati equations. A detailed t reatment  of this equation is given 
in Chapter 16. 

Each fractional affine term in a fractional affine matrix equation includes the 

inversion of a matrix, depending on the solution. Thus, in general the equation is 

not defined over the whole space of matrix arguments. This significantly compli- 

cates the proof of existence theorems for the solution, and still little is known in 

this area for general fractional affine matrix equations. 

15.2 P r o b l e m  s t a t e m e n t  

Consider the general fractional atfine matrix equation 

F ( X , P )  "- FI(X, P1) + F2(X, P2)F31(X,  P3)F4(X, P4) -- O, 

where X c 1F mxn is the unknown matrix. The function 

F(-, P) :IF mxn --* IF pxq 

(15.1) 

287 
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is a fract ional  affine mat r ix  operator ,  depending on the  ma t r ix  collection 

P = ( pl ,  P:, p4) 

and 

are affine operators ,  

Fi(', Pi) : ~m• .__+ IF p, Xqi 

r i  

Fi(X, Pi) "- Ci + E A~kXBik, 
k = l  

depending  on the  ma t r ix  collections 

(15.2) 

Pi := (Ci, Ai l ,Bi l , . . . ,Ai ,r~,Bi ,r~) ,  i = 1 ,2 ,3 ,4 .  

Here 
C i C ~pixqi Aik C ~pixm Bik C ~nXq~ 

are given ma t r ix  coefficients. It  is assumed tha t  m n =  pq := 1 and 

Pl = P2 = P, P3 = P4 = s, ql = q4 = q, q2 = q3 = s. 

The  ma t r ix  (2ri + 1)-tuple Pi depends on p~q~ + r~(rnp~ + nqi) paramete r s  - the  

e lements  of the  matr ices  Ci, Aik and Bik. 
The  most  general  fractional affine mat r ix  equat ion 

Fl (X, P1) n L- ~ F2j(X, P2j)Fgl(x ,  P3j)F4j(X, P4J) 
j = l  

includes r _> 1 fractional  affine t e r m s  F2jF@.IF4j. 
Denote  by 

Fz(X ,  P)  : F rxt  ~ IF pxq 

the  par t ia l  Fr@chet derivative of F in the corresponding r x t ma t r ix  a rgument  

Z E P  := {C1,A11,B11, . . . ,C4, . . . ,A4,r4,B4,r4},  

compu ted  at the  point  (X, P) .  

We assume t h a t  equat ion (15.1) has a solution X,  such t ha t  the linear opera tor  

Fx := F x ( X , P )  : I~ m• ~ F p• 

is invertible. We recall t ha t  we assume in general t ha t  mn = pq and hence, the  

ma t r ix  spaces F m x n and lFpx q are isomorphic. 

The  problem of existence and uniqueness of the solution of general  fractional 

affine ma t r ix  equat ions  is of independent  interest  but  it is not the  subject  of this 

monograph .  
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According to the implicit function theorem, (see Appendix A) the solution X 
is isolated, i.e., there exists s > 0 such that  equation (15.1) has no other solution 

N ~ A A 

X with I I X -  XII < s. The matrix F3(X, P3) is invertible in an open neighborhood 
of the pair (X, P3) and hence, the functions F3(-,-) and F(.,  .) are properly defined 
and even analytic in some neighborhoods of (X, P3) and (X, P),  respectively. 

The perturbation problem for equation (15.1) is stated as follows. Let the 

matrices from P be perturbed as 

Ci ~ Ci + 5C~, A~k ~ A~k + 5A~k, B~k H Bik + 5B~k 

(if some of the above matrices are not perturbed then the corresponding pertur- 
bations are assumed to be zero). Denote by P + 5P the perturbed collection P, in 

which each matrix Z c P is replaced by Z + 5Z. Then the perturbed equation is 

F(Y, P + 5P) = 0. (15.4) 

In general some of the coefficient matrices from 7 ) may not be perturbed. For 
instance, some of the matrices Ci may be zero, or some Aik or Bik may be unit 
matrices as in the symmetric fractional affine matrix equations discussed below. 

To treat  such cases we shall need some more notation. Denote by 

�9 = { z ~ , z 2 , . . . , z , . }  c p 

the set of all matrices from :P, which are perturbed, and let X* 
the characteristic function of the subset 7 ~, i.e., 

1 if Z c P ,  

x * ( Z ) -  0 if Z E P \ ' P .  

�9 P ~ {0,1} be 

Consider for example the following equation in F n x n  

C1 -4- A1X + XB2(I,~ + X ) - I A 4 X  = O. 

Then 

and 

7 :) -- {C1,Al,In;O, In, B2;In,In, In;O, A4, In} 

P --  {C1 ,  A1, B2, A4} 

if perturbations in C1, A1, B2 and A4 are considered. 

Since the operator Fx is invertible, equation (15.4) has a unique isolated solu- 
tion X + 5X in the neighborhood of X if the perturbation 5P is sufficiently small. 
Moreover, in this case the elements of 5X are analytic functions of the elements 
of 5P. 
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Denote by 

T 

. _  ( 1 5 . 5 )  
~ "  " " ' 4 + 2 ( r l + r 2 + r 3 ) '  " " " ~ v - l ,  

[5C1, (~All, 5Bll,""", 5C4,""", 5A4,r4,5B4,rn ] T �9 = c R ~  

the full vector of absolute norm perturbations 5z - 1ISZllF in the data matrices 

(15.3), where 

u ' -  4 + 2(rl + r2 + r3 + r4). 

Similarly, let 

(~ " - -  [(~1, ( ~ 2 , . . . ,  ~ r ]  T " - -  [5Z1, (~Z2,""", (~Z~] T E ]t{; (15.6) 

N 

be the vector of non-zero absolute norm perturbations in the data matrices Z E P. 
Thus, some of the quantities 5 ~ >_ 0 may be zero, while all 5j are positive. 

The perturbation problem for equation (15.1) is to find a bound 

5x _< f(5), 5 E Ft C R~_, (~5.7) 

for the perturbation 5x " -  16XIIF. Here f is a continuous function, non-decreasing 
in each of its arguments 5j and satisfying 

f (0) -0 .  

The inclusion 5 EFt  guarantees that  the perturbed equation (15.4) has a unique 
solution X + 5X in a neighborhood of the unperturbed solution X, such that  the 

N 

elements of 5 X  are analytic functions of the elements of the matrices 5Z, Z E 7 ) ,  

provided 5 is in the interior of Ft. We derive a first order local bound 

5x <_ fl((~) + O(115112), 5 --+ 0, 

which is then incorporated in the non-local bound (15.7), where 

f l ( 5 )  - -  o(If~l l ) ,  ~ -~ 0. 

Estimates in terms of relative perturbations 

116ZII_____LF, Z ~ ~, 
Pz  ' - I I Z I I F  

for Px " -  115XIIF/IIXIIF are straightforward when X ~ 0, and are not given in 
detail. 

An important  special case of fractional affine equations are symmetric fractional 

affine matrix equations of type (15.1). Symmetry means that  the operator F 
satisfies 

F T (X, P) - F ( X  T , P)  
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in the real case and 

FH(x ,  P) - F ( X  H, P) 

in the complex case. Hence, we must assume that F1 and F2F 31F 4 a r e  symmetric 

operators. This will be the case when the operators F1 and F3 are symmetric and, 
since they are affine, that their linear parts 

r i  

Z H E AikZBik, i = 1, 3, 
k = l  

are Lyapunov operators, see Appendix F and that the operator F4 is the trans- 
pose or the complex conjugate transpose of the operator F2. Hence, in the real 
symmetric case 

r i  

Fi(X, Pi) - Ci + E ( AikxB~k + BikXA~ + eikDikXD~) , i - 1, 3, 
k = l  

with C 1 --  CT1, C3 - C : ,  Cik --  + 1 ,  and 

r2  r2  

F2(X, 1'2) - C2 + E A2kXBT2k' F4(X,/)2) = C f  + E B2kxAT2k" 
k = l  k = l  

In the complex case we have 

r i  

Fi(X, Pi) - Ci + E ( AikXBH + BikXAH + e~kDikXDH) ' i -- 1, 3, 
k = l  

with C 1 = C p ,  C3 - C H,  and 

T2 r2  

F2(X, P2) - C2 + E A2kXBHk ' F4(X,/)2) - C H + Z B2kXA2H" 
k--1 k = l  

Note that the above conditions on F2, F3 and F4 imply symmetry of the fractional 
affine term F2F a l F  4 but they are not necessary for symmetry to occur as shown 
next. 

Symmetric fractional affine matrix equations, as they arise in optimal control 
and filtering of discrete-time linear systems, are often called discrete-time algebraic 
Riccati equations, see Chapter 16. 

15.3 Local perturbation analysis 

In this section we present the local perturbation analysis of equation (15.1). 
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1 5 . 3 . 1  C o n d i t i o n  n u m b e r s  

Consider the conditioning of equation (15.1). The perturbed equation (15.4) may 
be written as 

where 

and 

F ( X  + 5X, P + 5P) "- Fx(SX) + ~ Fz(SZ) + G(SX, SP) (15.8) 
Z ET'  

= Fx(aX) + ~ x*(Z)Fz(SZ) + G(SX, SP) 
Z E T:' 

= Fx(SX) + ~ Fz(SZ) + G(SX, 5P) - O, 

Z C7 ~ 

Fx(.) "- Fx(X,P) ( . )  c Lin(p,m,n,q,F)  

Fc,(.) := Fc~(X,P)(.) E Lin(p, pi, qi, q,F), 

FA,k(') := FA~k(X,P)(') e Lin(p, pi, m,q,F), 

FB,~(.) := Fs, k (Z ,P) ( . )eLin(p ,n ,q~ ,q ,F)  

are the Fr6chet derivatives of F(X ,P)  in the corresponding matrix arguments, 
evaluated at the solution X (see Appendix A), and the matrix G(SX, 5P) contains 
second and higher order terms in 5X, 5P. 

A straightforward calculation leads to 

Fx(Z)  - ~-~AlkZBlkn t- A2kZB2k N (15.9) 
k = l  k k = l  

and 

F< (Z) 
Fc,(Z) 
Fc, (Z) 
Fc, (Z) 

where 

= Z, FAlk (Z) = ZXBlk ,  FBlk (Z) = AlkXZ,  

= ZN, FA2k (Z) = ZXB2kN, FB~k (Z) = A2kXZN,  

= - M Z N ,  FAak(Z) = - M Z X B 3 k N ,  FBak(Z) = - M A 3 k X Z N ,  

= MZ,  FA4k (Z) = MZXB4k,  FB.,k (Z) = MA4kXZ,  

M "- F2(X,P)F31(X,P) ,  N "- F g l ( X , P ) F i ( X , P ) .  

Since the operator Fx(.) is invertible, we get 

5X - - ~ Fx 1 o Fz(SZ) - Fxl(G(SX,  5P)). 

Z C T  ) 

(15.10) 

(15.11) 
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Relation (15.11) gives 

5x <_ Z K z S z  + O(115112), 5--+ O, (15.12) 

Z E'P 

where the quantities 

K z  " - - [ IFx  1 o F Z I [ ,  Z E "P, (15.13) 

are the absolute individual condition numbers [188] of equation (15.1). Here I1-11 is 

the induced norm in the corresponding space of linear operators. 

If X r 0, then an est imate in terms of relative perturbat ions is given by 

II~XIIF 
px -IIXIIF < ~ kzpz + o(llall~),  a + 0, 

ZEP 

where the scalars 
IIZlIF Z ~ ~, 

kz - Kz IIXlI~' 

are the relative condition numbers with respect to perturbations in the matrix 
N 

coefficients Z E P. 
The calculation of the condition numbers Kz is straightforward. Denote by 

Lz E F pqxrt the matrix representation of the operator Fz(') E Lin(p, r, t, q). We 
have 

T1 r2  

L x  - E BTlk | Alk + Z ( B 2 k N ) T  | A2k (15.14) 
k=l  k=l  

r3  r4  

- E ( B 3 k N )  T | (MA3k) + E B:k @ (MA4k) 
k=l  k=l  

and 

LC1 -- 

Lc~ - 

Lc3 - 

Lc4 - 

Ii, LAlk -- (XBlk)  T | Ip, Ls,k -- Iq | (AlkX) ,  

, = , - N T @ (A2kX) N T | Ip LA~k  (XB2kN)  T | Ip Ls~k 

- N  T @ M, LAak -- - ( X B 3 k N )  T @ M, LBak -- --NT | (MA3kX) ,  

Iq | M, LA4k -- (ZB4k) T @ M, LB4k -- Iq @ (MA4kX).  

With these expressions, the absolute condition numbers are calculated from 

Kz - I ILxILz]I2,  Z E ~. (15.15) 

A possible disadvantage of this approach may again be the large size of the involved 
matrices Lx and Lz. Condition and accuracy estimates, avoiding the formation 
and analysis of large matrices, are proposed in [179]. 
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15.3.2 First order homogeneous  bounds 

As in Section 12, we derive local first order homogeneous estimates. For this we 
rewrite the perturbed equation in vector form as 

vec(SX) - E Nzvec(SZ) - Lxlvec(G(SX, 5P)), (15.16) 

Z ET' 

where 

Nz  "- - L x  1Lz, Z C P. 

The condition number based estimate is an immediate consequence of (15.16), 
taking into account that  5z >_ [[vec(SZ)ll2, 

~ x  - [I~XIIF = IIv~c(~X)ll2 <_ estl(5) + o(11~112), ~ -~ 0, 

where 

estl(5) "= E [INzlI25z" 
Z E 7  ) 

Relation (15.16) also gives 

5x <_ est2(5) + o(ll~ll2), ~ - .  o,  

where 

and 

est2(5) := ]]Nll2115112 

N := [N1,N2, . . . ,Nr ]  := [N z , ,N z2 , . . . ,N z~] .  

The bounds estl(5) and est2(5) are again alternative, i.e., which one is better 
depends on the particular value of A. Again, there is a third bound, given by 

5x <_ est3(5) + O([[5112), 5 --~ 0, 

where 

esta(5) := v/57-M5 

and M is a r • r matrix with elements 

m i j  " - - ] I N i H N j ] I 2  . 

Since 

mij <_ IINiII2IINj]]2 

then 

est3(5) _< estl (5). 

Therefore we have the overall estimate 

5x _< est(5) + 0([15112), 5 --~ 0, (15.17) 
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where 

est(5) "-  min{est2(5), est3(5)}. (15.18) 

The local bound est in (15.17), (15.18) is a non-linear, first order homogeneous 

and piece-wise real analytic function in 6. 

1 5 . 3 . 3  C o m p o n e n t - w i s e  bounds  

A local component-wise bound follows directly from relation (15.16) as 

Ivec(SX)l -<- E ILx iLz [  [vec(SZ)l + ~ 5 -~ 0. 

Z E P  

To compute the componentwise estimate one must have information about the 
perturbations in the components of the data of the form Ivec(Z)l _~ Az, z c P, 
where A z ~ 0 are given vectors. 

1 5 . 4  N o n - l o c a l  p e r t u r b a t i o n  a n a l y s i s  

To derive non-local bounds we use the matrix Taylor expansion of (A + E) -1 in 
E, where A is invertible and rad(A-1E)  - rad(EA -1) < 1. It is a generalization 
of the scalar Taylor expansion 

a + e  

1 e e 2 
a a 2 + a 3 " = tm(a,e)  + rm(a,e) ,  

where m E N and 

_ 1 e ( - 1 ) m e  m l f i  ( )  t~(a,~) - a - a - ~ + " "  + = -  (-1)k -~ k 
a m + l  a a 

k = O  

. _  (_1)m+1 /' e'~ rn+l [, J _ 1 
r m ( a ,  e) 

a a + e '  

which is valid for a r 0 and le[ < [a I. The generalization to the matrix case is 
straightforward 

(A + E) -1 = A-1  _ A - l E A - 1  + A - l E A - l E A - 1  . . . .  

= T , ~ ( A , E ) +  R m ( A , E ) ,  

where 

T m ( A , E )  

R m ( A , E )  

m 

._  A - 1 E ( _ I ) k ( E A - 1 )  k, 
k=0 

�9 - -  ( _ l ) r n + l ( A - 1 E ) l ( A  nt_ E ) - I ( E A - 1 )  rn+ l -k  
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Here k may take any of the values l - 0, 1 , . . . ,  m + 1, since the value of Rm in 

fact does not depend on k. Thus, we have m + 2 different forms for the remainder 

Rm. In particular for m -  0 and m -  1 we have 

(A + E) -1 - A -~ - (A + E ) - I E A  -1 - A -~ - A - ~ E ( A  + E) -1 (15.19) 

and 

(A + E) -1 = A -1 - A - l E A  -1 -Jr-(A + E ) - I ( E A - 1 )  2 (15.20) 

= A - 1  _ A - l E A - 1  + A - 1 E ( A  + E ) - I E A  -1 

= A - 1  _ A - l E A  -1 + ( A - 1 E ) 2 ( A  -~- E) -1, 

respectively. 

Let now the collections Pi be perturbed to Pi + 5Pi. Then in equation (15.4) we 

may represent the perturbed quantities F i ( X  + 5X, Pi + 5Pi) as described below. 
In what follows we mark only the dependence on the perturbations 5 X  and 5Pi, 

recalling that  X is a fixed solution of (15.1). We have 

F~ - F~ ( X + 5 X , P~ + ~ P~ ) = F~ + E ~ ( S X , 5 P~ ) , 

where Fi "-  Fi (X, Pi) and 

E~(aX, (5P~) " -  L i ( S X )  + K~(SP~) + Q~(SX, 5P~). 

Here Li (.) " F m x n _~ Fp~ x q~ is a linear operator, defined by 

The term 

r i  

Li (Z) := E Aik ZBik .  
k : l  

r i  

Ki(SPi)  " -  5Ci + y ' ~ ( S A i a X B i k  + A iaXSBia )  
k--1 

contains the first order perturbations in Pi, and Qi(', 5Pi) is the affine operator 

r i  

Q~(Z, ~P~) .= ~ ( ~ A , k Z B ~ k  + A~kZ~B~k + ~A~k(X + Z)~B,~). 
k=l  

Thus, the expression Qi(SX,  5Pi) contains the second and third order terms in 5 X  

and 5Pi. The perturbed equation 

may be written as 

. - v  

F ( ~ )  "-- F1 n t. ~1 n t. (F2  -~- ~ 2 ) ( F 3  -J- ~ 3 ) - 1 ( F 4  -~- ~4) - 0, (15.21) 
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where g "-  (~1,~2,~3,~4) and gi "- Ei(aX, aPi). We may represent F($)  as the 
, . , . ,  

sum L(g) of its partial Fr6chet derivatives FE~ (0) in g~ at g = 0 plus the second 

and higher order terms Q(g) in g, 

F(C) - L(g) + Q(E). 

Then we have 

N 

vE,(0)(z) 
Fca (0) ( z ) 

- Z ,  F e  2 ( 0 ) ( Z )  - ZN, 

- - M Z N ,  FE4 ( 0 ) ( Z )  - MZ, 

where the matrices M and N are defined in (15.10). Hence, 

L(g) - E1 + g2N - Mg3N + M$4. (15.22) 

The expression for Q(g) is more tricky. It may be written in six different forms 

which lead to 12 possible norm estimates. We present only one of them, which 

is based on the two representations in (15.19) and the three representations in 

(15.20). We use the 'most symmetric' form, using both representations in (15.19) 

and the second one in (15.20). This gives 

Q(~) - ~2(F3 + ~3)-1~4 - E2(F3 q- ~'3)-1E3 N (15.23) 

+ Ms + g3)-193 N - MC3(F3 + ~3)-1~4 
= ( s  - Mg3)(F3 + ~ 3 ) - 1 ( ~ 4  - -  g 3 N ) .  

In the following we give an estimate for 

~(E) . - I IF~I (Q(E) ) I IF  . 

When estimating the Frobenius norm of the expression g~(F3 + g3)- l~j ,  we get 
two different bounds based on the representations 

~ i ( f 3  Jr- ~3)-l~j -- ~i (Is  -~- F31~3) -1F31~j  -- ~ i f  31  (Is  Jr- ~3F31) -1 ~j, 

namely 

and 

IIE tF  + _< 
1-IlFa- 'E~II~ 

(15.24) 

iis 3 + s163 < IIs IIs (15.25) 

In order to have equal denominators we must choose the first (15.24) or the second 

(15.25) option in all four terms in the first equality in (15.23). Let us for example 
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choose the first option (15.24). Then we have 

~(c) < I[LxII[ 1l<ll2][Ya-l&[] I~) 
- 2 1 - , ,  , , l I Y a - l & l l F  2 + [ILK1 (NT + II= 

[[s [[21[F3--1s l]2 
-}- []Lx 1 (Iq | M)I1~ 

1 -  IlF -lE3[IF 

+ IIL l(N | Mill IIE311~ IlF -lE ll  
1-IIF -lE311F 

Using the second equality in (15.23) we also get 

II&ll= IlY3-1&[]2 
1 -  [IFa--I&I[F 

~(E) < IlLxlll IIc2 - MC3112 [[F31(C4 - C3N)[ [  2 (15 .26)  

- 2 1 _ 11F3--1s I[F 

The implementation of (15.26) and (15.26) may produce different overall perturba- 
tion bounds. This, however, will result in small (second and higher order) changes, 
so we shall consider only bounds based on (15.26). 

The perturbed equation may be rewritten as an equivalent operator equation 
for (iX, 

5X - ~(5X, 5P) "- (I)1(5P)+ ~2(5X, 5 P ) +  ~(5X, 5P), (15.27) 

where 

(I)I(($P) "= -FxI(KI(aP1)+ K2(aP2)N (15.28) 

-MK3(aP3)N --? MK4(aP4)), 

-FxI(QI(Z, (~P1) + Q2(Z, SP2)N 
- MQa(Z, 5P3)N + MQ4(Z, 5P4)), 

-FxI((Eu(Z,  SP2) - MEa(Z, SP3)) 

x (F3 + Ea(Z, 5P3))-1(En(Z, 5P4) - E3(Z, 5P3)N)). 

q~2 (Z, 5P) " :  

�9 (z, sP) .= 

We again apply the technique of Lyapunov majorants and fixed point principles 
(Chapter 5) in order to derive non-local perturbation bounds. 

Let IIZIIF < p, After some straightforward calculations we get 

IIE2(Z, ~P2) - ME3(Z, ~P3)112 

[IF31E3( Z, aPs ) I[F 
[]F31(E4(Z, SP4) - E3(Z, SP3)N)I[2 

where, for i -  2, 3, 4, 

< O~3 ((~) n t-/~3((~)p, 

< ~4(~) + Z4(a)P, 

(15.29) 

~(a) 
Z~(a) . m  

~(~)  + ~ (a ) ,  

9~0(a) + Z~l(a) + Z~(~). 

(15.30) 
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The quantities 

are determined as follows. 
Case i - 2" 

0~21 ((~) "--  

~22(~) "- 

52o(~) - 

/321((~) "-- 

Z22(5) - 

r 2  

~c= + ~-'~(llXB2kll2~A=~ + IIA=kXll2am~) 
k = l  

r 3  

+ IIMII25c~ + ~-~(IIMII211XB3kII25A~ + IIMA3kX[I25B~), 
k=l 

Ihxl1292~(A), 
7"2 r3  

E B~#, | A2k - E B3Ck | (MAak) , 
k=l k = l  2 

r2  

~--~(IIB2klI2~A~ + IIA2klI25B=~) 
k = l  

r 3  

k = l  
r2  r 3  

E 5A2k 5Bg~k + [IMI[2 E 5A3k 5B3k" 
k = l  k = l  

Case i = 3: 

0~31((~) 

~:(~) 

g3o(5) 

/~31((~) 

Case i - 4" 

. w  

r 3  

+ E (llf -lll= + [If31A3kXl[25B~), 
k = l  

IX112~32(~), 

E B:k | (Ff 1A3k) ' 
k = l  2 

r 3  

( l l f~ l l [=  IlB3kl125A~ + []f31A3k[]2 5B3k) , 
k = l  

r 3  

k = l  

O~41(~) 

r 4  

+ E (11F3-1112 IIXB4kIIISA4~ + I[F31A4kXIIISB4~) 
k = l  

(15.31) 

( 1 5 . 3 2 )  

(15.33) 
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OZ42 ((~) "-- 

/~40 (~) "-- 

~41((~) "-- 

/~42 (~) "-- 

+ IIF~IlI~= IINJl2~c~ 
r3 

+ E (][F3-11[2 IlXB3kNlI25Aak + IIF31A3kXII2[[Nl125Bak) ' 
k=l 

IIxII2Z42(/',), 
r4 r3 

Z B4~ | (F~-IA4~) - Z ( B ~ N )  ~ | (F~-IA~) , 
k=l k=l 2 

r4 
(llFa-ll[2 IlB4kl125A~ + IIF~-IA4k[I2 5B~) 

k=l 
r3 

+ ~'~ ([[F~II[= [[B3kN[]25A=k + [[F/IA3k[I2 IlNII26mk), 
k=l 

IIF~-I [1~ ~A4~B4~ + IINII2 Y~ ~A~ ~ 
k=l 

It follows from ( 1 5 . 2 9 ) - ( 1 5 . 3 3 ) t h a t  

[[+1(5P) -4- +2(z, 5P)IIF 

provided that 

Here 

II~(z, e~P) IIF 

ao(5) + al (<~)fl, (!5.34) 

bo((~) -~- bl (~)fl + b2((~)p 2 
1 -  ~ ( 5 ) -  Z~(5)p 

1 - a3(/~) P < Z3(5) " (15.35) 

ao(5) "- 

a1(5) "- 

all((~ ) --- 

a12(5) "- 

aol(5) + ao2(6)"- est(6) + IlXl12a12(6), 

a11(6)+a12(5), 
rl rl 

E {[Lx 1 ( B~  | Ip)[]2 (~Alk + E ]l LX1 (Iq | Alk)]t2 (~Blk 
k----1 k=l 

r2 r2 

+ E 1[ L ~ l  ( (g2kN)T @ Ip)[12 ~A2k + E 1[ L ~ l  ( N T  @ A2k)[]2 5B2k 
k=l k=l 
r3 

+ E ] l  LX1 ((B3kN) T | M)[[2 (~A3k 
k=l 
r3 

+ ~ IIL~ 1 (N ~ | (MA~))I1~ ~ 
k=l 
r4 r4 

+ E ][ LXI (B4~ | M)[[2 (~A4k + E I [  LX1 (Zq @ (MAnk))][ 2 5Bnk, 
k----1 k--1 

rl r2 

k=l k=l 

(15.36) 
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r3 r4 
+ E I] Lxl(Nq- | M)II2 5A3kSBak -Jr E 11Lxl(Iq | M)][2 5A4kSB4k 

k=l  k=l  

and 

bo(5) := 

bl (5) := 

b2(5) := 

IILx 1 I]2 o~2 ((~)~4 (($), 

IILxIII2 ((~2((~)/~4((~) ~- o~4(A)/~2(A)), 

IIL~IlI~/~2 ((~)/~4 ((~). 

(15.37) 

Using (15.34) we see that the Lyapunov majorant h(5, p) for equation (15.27), 
such that 

II~(Z, 5P)]]F < h(5, p), 

h(5, p) = ao(5) + al (5)p + 
bo(5) + bl (~)p + b2(5)p 2 

1 - 3 3 ( 5 ) -  f la(a)p 

Thus, the fundamental majorant equation h(5, p) = p for determining the non-local 
bound p = p(5) for 5x is quadratic: 

d2((~)p 2 - dl((~)p + do((~) -- O, (15.38) 

where 

d0(a) := 

dl (5) :=  

d2(A) := 

bo(5) + ao(5) (1  - 33 (5 ) ) ,  

ao(5)/33(5) + (1 - 33 (5 ) ) (1  - a l ( a ) )  - -  bl(/~), 

b2(5) + ~a(5) (1  - a l  ((~)). 

(15.39) 

Suppose that 5 E f~, where 

(15.40) 

Note that the inclusion 5 C ft guarantees that inequality (15.35) is fulfilled. Then 
equation (15.38) has non-negative roots pl(p) <_ p2(5), 

Pl((~) - -  f ( 5 )  "-  2do(5) . (15.41) 
d1(5) + v/d2(5) - 4do(a)d2(5) 

Hence, the operator ~(., 5P) maps the closed convex ball 

B(5) : -  {Z ~ IF'~• : IIZIIF _< f(5)} C IF mxn 

into itself. According to the Schauder fixed point principle there exists a solution 
5X E B(5) of equation (15.27), for which 

5x = 1{5XI]F _< f(5), 5 C ft. (15.42) 



302 CHAPTER 15. GENERAL FRA CTIONAL-AFFINE EQ UATIONS 

If 5 E ~1, where 

then pl ((~) < P2((~) and the operator (I)(., 5P) is a contraction on B(5). Hence, the 
solution 5X, for which the estimate (15.42) holds true, is unique. This means that 
the perturbed equation has an isolated solution X + 5X, where the elements of 
5X are analytical functions of the elements of 5P. 

As a result of the non-local perturbation analysis, presented above, we have the 
perturbation bound (15.40)-(15.42), where the involved quantities are determined 
via the relations (15.30)-(15.31), (15.37) and (15.39). 

15.5 N o t e s  and re ferences  

Local and nonlocal perturbation bounds for general fractional-affine matrix equa- 
tions have been derived in [130]. The problem of existence of solutions of certain 
classes of nonsymmetric matrix quadratic equations is addessed in [217]. 



Chapter 16 

Symmetric fractional-affine 
equations 

16.1 Introductory remarks 

Symmetric fractional-aifine equation in general form may be described as 

k 

Q + Z.o(X) + ~ s , ( x ) z . ; l ( x ) s ; ( x  *) - o, 
i - -1  

where Q is symmetric (Q* = Q),/:0, s  are Lyapunov operators and $i are 
Sylvester operators (see Appendices F and E). 

The corresponding general perturbation results are cumbersome and we shall 
not give them here. Instead, we shall consider two important classes of symmetric 
fractional-affine equations: the descriptor discrete-time Riccati equation arising in 
the theory of optimal control and filtering, and a special equation arising in some 
applications. 

16.2 Discrete-t ime Riccati  equations 

1 6 . 2 . 1  S t a t e m e n t  o f  t h e  p r o b l e m  

In this section we present perturbation bounds for the decriptor discrete-time 
matrix Riccati equations arising in the control and filtering of linear multivariable 
systems. Both real and complex equations are considered. We derive condition 
numbers, first order local bounds and nonlinear nonlocal bounds. 

We note that a complete perturbation analysis for the descriptor discrete-time 
Riccati equation has not been published up to the moment. 

303 
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We use the notations 9r4 = F nxn x F nxn X IF n x n  x ]~nx n and accordingly 
~4 - R nxn x ]~nxn x R nxn x ]~nxn, C4 = C. nxn x C nxn x C nxn x C nxn 

16.2.2 Motivating example 

Consider the stabilizable and detectable discrete-time control system 

E x ( t  + 1) = Ax( t )  + Bu( t ) ,  t = O, 1 , . . . ,  x(O) = xo, (16 .1)  

y(t)  = Cx( t ) ,  

where x(t) E ~n, U(t) E IF rn and y(t) = F r are the state, control and output  vectors, 

respectively, and E, A E F nx~, B E ~nxrn  C E IF rxn are constant matrices. It is 

supposed that  the matr ix E is nonsingular but may be ill-conditioned with respect 

to inversion. The system is real or complex if the underlying field F is R or C. 

Accordingly, we use A* to denote A T in the real case and A H in the complex case. 

We recall tha t  the system (16.1), or the pair [E-  1A, E -  1B), is stabilizable 

if there exists a gain matrix H E F mxn such that  the closed-loop system ma- 

trix E - I ( A  + B H )  is convergent, i.e., has its spectrum in the central open unit 

disc in the complex plane. The system (16.1), or the pair (C ,E-1A] ,  is de- 

tectable if the pair [ A ' E - * ,  C*) is stabilizable. Systems of type (16.1), or triples 

(C, E - 1 A ,  E - 1 B ) ,  that  are both stabilizable and detectable are called regular. 

Let the quadratic performance index 

o o  

J(u,  xo) "- ~-~.(y*(t)y(t) + u*(t)u(t)) -+ min 
t = 0  

be given. The control sequence u = {u(t)}, t = 0, 1 , . . . ,  tha t  minimizes the 

quanti ty J(u,  xo) for each initial state x0 E IF n can be realized in the form of a 
state feedback 

u(t) = -(Ira + B * X o B ) - I B * X o A x ( t ) ,  

where X0 - X~ _> 0 is the solution of the descriptor discrete-time Riccati equation 

E * X E  = C*C + A * X A -  A*XB( I ,~  + B * X B ) - I B * X A .  (16.2) 

In this case J(u,  xo) - x;Xoxo.  

The closed-loop system is described by the equation x(t  + 1) = E-1Aox( t ) ,  
where 

A0 := A -  B(Im + B * X o B ) - I B * X o A  

and the matrix E-1Ao is convergent. 

Matrix Riccati equations of this type arise also in other areas of control and 
filtering theory for discrete-time linear systems. 
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1 6 . 2 . 3  S t a t e m e n t  o f  t h e  p r o b l e m  

Recall that  for arbitrary matrices U, V over IF such that  the products U V  and 

V U  are defined, the nonzero eigenvalues of U V  and V U  coincide (the eigenvalues 

are counted according to their algebraic multiplicity). Hence for B c IF nxm and 

S "-  B B *  the spectra of In + S X  and In + X S  coincide since spect(In + M) - 

1 + spect(M) for an arbitrary matrix M E F nxn Moreover, for m _< n the 

eigenvalues of S X  are those of B * X B  plus n -  m zero eigenvalues. In particular 

the matrices In + S X  and Im + B * X B  are simultaneously singular (if B* X B has 

an eigenvalue - 1 )  or nonsingular. Suppose further on that  - 1  r s p e c t ( B * X B ) .  

Using the identities 

(In + S X )  -1 = In -- B ( I m  + B * X B ) - I B * X ,  

(In + X S )  -1 = In - X B ( I m  + B * X B ) - I B  * 

we can rewrite equation (16.2) in the equivalent form 

R ( P , X )  - E * X E  - Q - A * X ( I n  + S X ) - I A  - 0, (16.3) 

where P - -  (Q, E , A ,  S) E ~4, X c F nxn. We also have the form 

E * X E -  Q - A*(In  + X S ) - ~ X A  - O. 

It follows from the regularity of the system that  equation (16.3) has a unique 

symmetric (in the sense X0 = X~) nonnegative stabilizing solution X0. At the 
same time the Riccati equation may have other solutions (which necessarily are 

not nonnegative and not stabilizing), including nonsymmetric ones. Note also that  

Ao - A -  B ( I m  + B * X o B ) - I B * X o A -  (In + S X o ) - I A .  

In many applications the systems under considerations are real (IF - R) and 
the corresponding equation is also real, 

E T X E  - Q - A T X ( I n  + c o x ) - l A  - O, (16.4) 

P := ( Q , E , A , S )  c Tr X E R nx~ 

In the complex case IF = C the descriptor equation is 

E H X E -  Q - A n X ( I n  + S X ) - I A  = 0, (16.5) 

P - ( Q , E , A , S )  E C4, X r C n• 

The real and complex cases are treated similarly as a whole with one excep- 

tion. In calculating condition numbers and constructing first order estimates the 
technique from [147, 139] must be used which is based on the theory of additive 
complex operators. The reason is that  the function A H A H is not linear (it is 
additive but not homogeneous). 
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Consider equation (16.3) under the assumption that is has a solution X0 - X~ 
such that the linear matrix operator s IF n• -~ IF nxn, defined by 

s  - E * Z E -  A ~ Z A o ,  Z ~ IF ~• 

is invertible. The eigenvMues of 12 are the eigenvMues of its matrix 

L - -  E T | E* - A0 m | A~) E F ~ x  ~: 

We recall that  the matrix L of a linear matrix operator s is defined by the relation 

v e c ( s  Lvec(Z) for all Z. 

It is easy to show that  s is invertible if and only if )~{j " -  I { ( E - 1 A o ) ~ j ( E - ~ A o )  - 

1 # 0, i, j - 1 , . . . ,  n. Indeed, the matrix L is invertible if and only if so is the 
matrix 

L ( E T  @ E , ) _  1 _ in 2 _ (E_IA0)T | (E_IA0) ,  (16.6) 

But the eigenvalues of the matrix (16.6) are exactly the numbers )~ij, i, j - 1 , . . . ,  n. 
Note that  if Q , S  > 0 and the triple ( Q , E - 1 A ,  E - 1 S E  -*)  is regular then there 

is a (unique) stabilizing solution X0 _> 0 such that  the matrix E -1A0 is convergent 
and hence the operator/2 is invertible. This latter case is interesting from point 

of view of applications but the perturbation analysis given below holds also under 

the weaker assumption that  only a solution X0 - X~ with s invertible exists. 

Let the matrix coefficients in (16.3) be subject to perturbations Q ~ Q + 5Q, 

E ~ E + S E ,  A ~ A + S A ,  S ~ S + 5 S .  I f Q  - c * c  and S - B B *  and 
C, B are perturbed as C ~-~ C + 5C, B ~ B + 5B,  then the perturbations 5Q - 

C ' 5 C  + 5C*C + 5 C ' 5 C ,  5S  - B S B *  + 5 B B *  + 5BSB*  are also symmetric (here 
symmetry means Q - Q*, etc.). 

The analysis given below is different for symmetric and nonsymmetric pertur- 
bations in the matrices Q and S. We shall consider symmetric perturbations only. 

The nonsymmetric case can be treated by the scheme proposed in [153]. 

The aim of the norm-wise perturbation analysis is to find computable bounds 
for the norm 

~x - I I~xI IF  

of the perturbation in the solution X0 as a function of the perturbation vector 

�9 - [~1, ~2, ~3, ~4] T - [~Q, ~E,  ~A, ~s]  T e R 4 

whose elements 5Q "--II~QIIF, ~Z --II~EIIF, ~A "= iiSAIIF, 5s "= II~SlIF are the 
Frobenius norms of the perturbations in the data matrices Q, E, A, S. 

Having a perturbation estimate 

5x _< 1(5) 

in absolute perturbations 5z - 1[SZ]]F, a perturbation bound in relative perturba- 
tions 

5z 
" - ~ , Z ~ O ,  

~z IlZll~ 
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is straightforward, namely 

ex < f (De) 
-IlXltF 

where e "-  [CQ, eA, eE, eS] C R 4, D "- diag(llQIIF, IIAIIF, IIEIIF, IISlIF)- 

1 6 . 2 . 4  P e r t u r b e d  e q u a t i o n  

G e n e r a l  case  

The perturbed equation is obtained from (16.3) replacing the nominal value P = 
(Q, E, A, S) of the collection of data matrices with 

P + 5P - (Q + 5Q, E + 5E, A + 5A, S + 5S), 

namely 

R ( P  + 5P, Y) = 0. (16.7) 

A priori it is not clear whether the perturbed equation (16.7) has a solution with 
the required properties. So we shall assume that  a solution to (16.7) exists for the 
given 5P. However, from the nonlinear perturbation analysis presented below we 
shall find conditions for solvability of equation (16.7), see also Chapter 13. 

Setting Y - Xo + 5X we may rewrite (16.7) as an equivalent equation for the 
perturbation 5X in X0. 

The construction of the equivalent perturbed equation is based on the following 
scheme, described in Chapter 13. 

Suppose that  the linear operator Rx(P ,  Xo) is invertible, where R(P, Xo) = O. 
Then we may rewrite the perturbed equation 

R ( P  + 5P, Xo + 5X) - 0 

aS 

(52 -- - R x I ( P ~  No) o Rp(P~ Xo)(SP) - Rx l (P ,  Xo) o 7~(P, Xo)(SP, 5X). (16.8) 

Note that  Rp(P,  X0)(0) - 0 and T~(P, Xo)(O,O) - 0. This guarantees that  for 
small 5P equation (16.8) has a small solution 5X in the sense that  

(~X - - R x I ( P ,  X0)  o Rp(P, Xo)((~P) + o(115PII2), 5P ~ 0. 

Further on we shall abbreviate Rx(P ,  Xo) as R x ,  etc., omitting the depen- 
dence on the fixed quantities P, X0 whenever appropriate. We shall also write the 
unperturbed solution as X. 
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R e a l  case  

In the real case/2 := R x  is a real Lyapunov operator R nxn ~ R nxn, defined by 

s  - E T Z E  - A-~ZAo, Z E ][~nxn, 

and has a matr ix 

We also have 

L - E  T |  T - A o  T Q A o  T E R  ~:x n~ 

RQ(Z) 
RA(Z) 

- - Z ,  -RE(Z) - -  Z T X E  -t- E T X Z ,  

- - z T X A o -  AToXZ, Rs (Z )  = AToXZXAo 

and hence 

Rp(SP)  - - 6 Q  + 6E T X E  + E T X 6 E  - 5A TXAo  - ATo X 6 A  + A ~ X 6 S X A o .  

Thus we can write equation (16.8) as 

( iX = II(SP, ( iX) = II1(SP) + II2(5P, ( iX), 

where I - I I (6P) :=  - - s  Rp(UI(6P)) ,  II2(6P, 6 X ) : =  -/2-1(7~(6P, 6X)). 

Set 

(16.9) 

N 

M . -  In + SX ,  M - M + H, H . -  S Z  + SS (X  + Z) (16.10) 

and 
N "-  M -1 - / ~ r  -1 - M - 1 H / ~ r  - i  - M - i H M - i  

Note also that  
A T X N  - A T X H M  -1, N A -  M - 1 H A o .  

Using the inequalities ( 16.10)-(16.12), the term 

(16.11) 

(16.12) 

Tg(SP, Z) = R(P  + 5P, X + Z) - R(P, X)  - R x ( Z )  - Rp(SP)  

can be writ ten in the form 

n(~P, z) : :  ATo X S S Z A o  - ATo X H M - 1 H A o  

+ 5EZE + E T ZSE + 6E TXSE + 6E T ZSE 

- A T ZM-i6A - 6AZAo - 6A TXM-i6A - 6A T ZM-16A 

+ 5A T (X  + Z ) N S A  + A T (X  + Z ) N S A  

+ AT Z N A  + 5AT (X + Z)A.  

We shall rewrite (16.9) in a vector form. Denote 

A 4 : :  

vec(~X), A 1 :-- vec(~Q), A 2 :-- vec(~E), A 3 "= vec(~A), (16.13) 
wc(~S) s R ~ ,  zx := vec(~P) = [ZXT, zXZ, ZX~, zXZ] s s R ~ 
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We have 
= ~(zx, ~ ) :=  ~ (A) + ~ ( A ,  ~), 

where 7rl (a) := L-1vec(Ul((~p)), 7r2(A, ~) := L-1vec(U2((SP, (SX)). 
After some computat ions we obtain 

(16.14) 

7r1(A) = MIA1 + M2A2 + M3A3 + M4A4, 

where 

M1 "-  L -1,  M2 "= L - I ( I n  2 + Pn2) (In | E T X )  , (16.15) 

M3 "-  - L - l ( I n  2 + Pn 2) (In |  

M4 "-- - L - I ( A - ~ X  Q A-~X) .  

For 5x _< p the Frobenius norm of II2(SP, 5X) can be estimated as 

bo + blp + b2p 2 
IIH2(aP, 5xIIF < ~o + a lp  + 

co - c lp 

where co > 0 is a constant and the coefficients a0, al ,  bi and Cl are nondecreasing 

nonnegative functions of 5 with a0(0) = al (0) = b0(0) = bl(0) = 0. 

We do not present here the coefficients in explicit form since this can be done 

immediately using the expression for (s - L(TZ). 

C o m p l e x  case  

In the complex case of equation (16.5) there are certain modifications. For prop- 

erties of nonlinear complex additive operators see Chapter 13. We recall tha t  for 

complex m x n matrices G = Go + ~G1, H = Ho + ~H1 we set 

O ( G , H )  "-  [ Go + Ho 
[ G1 +H1 

H1 - G1 

Go - Ho 

We may define the real version z ~ E R 2n of the vector z E C n as 

Z0 ] ~2n Z R := E . 
Zl 

This gives (Gz)  ~ := G e z  ~ r R 2m, where 

GR.= [ GOG1 

is the real version of G. Note that  

- G 1  1 E ~[2mx2n 
Go J 

and O(G, 0) = G ~. 

(Gz  + H-2) ~ = O(G, H ) z  ~ 
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acts as 

The complex Lyapunov operator 

and has a matrix 

i~  " =  R X  " C n x n  ~ C n x n  

1C(Z) - E H Z E -  AHZAo, Z c C ~• 

K - E | E "  - Ao | Ao 

Due to the invertibility of/C we have 

5X = ~(hP, 5 X ) : =  ~ 1 ( 5 P ) +  ~2(5P, 5X), (16.16) 

where 

~ l ( ~ P )  :--/ tC-I(vI(~P)),  ~ 2 ( ~ P , ~ X ) : =  ]C-I(v2(c~P,~X)). 

The expressions Vi are similar to Ui in the real case, with transposition replaced 
by Hermitian conjugation. 

As in the real case we rewrite the equivalent operator equation (16.16) in a 
vector form 

r  r  r  e l ( A )  -~- r  r 

Here we have used the substitutions (16.13) having in mind that  ~, Ai E C n2 and 
A E C 4n~. We have r "-  K - l v e c ( ~ i ) .  In particular 

r  - 

N1 "-- 

522 "-- 

532 "-- 

N1#1 + N21#2 -}- N22~2 -Jr- N31~3 + N32A3 -}- N4A4, (16.17) 
K -1, N21 " - K  -1 ( In |  

K -1 (ATo-XQIn) Pn 2, N31 " - - K  -1 ( / n Q E H x ) ,  

- K  -1 ( E T X  @ In) Pn 2 , 54 "-- - K  -1 (A-~--X @ A H x )  . 

16.2 .5  C o n d i t i o n  n u m b e r s  and local  b o u n d s  

In this section we give condition numbers and derive local first order bounds for 
the perturbation 5x - 115XIIF in the solution X of the descriptor Riccati equation 
(16.3). 

Real equation 

Based on (16.14) we get 

= ~ ( A )  + O(ll~Xll 2 § i1~11~), ii/Xll + I1~11 ~ 0, 

Since I1~11 = O(IIAII), A ~ 0, this  is equivalent to 

-- M1A1 + M2A2 + M3A3 + M4A4 + O(llAii2), A ~ 0. 

Hence, using the fact that  fix = I1~11:, ~nd having in mind (16.15), we see that  the 
following result is valid. 
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T h e o r e m  16.1 In Frobenius norm the absolute condition numbers Cz for the 
solution X of the real equation (16.~) relative to the matrix coefficients Z - Q, 
E , A , S  are 

CQ --IIMl112, CE --IIM2 12, CA- IIM3112, C s -  IIM4112. 

The determination of the relative condition numbers cz "- CZIIZIIF/IIXIIF is 
straightforward provided Z, X -r 0. 

Except condition number based estimates we also have 

5x < est2(5) + O(ll~lf 2) . -  [[[M1,M2,M3,M4]II2[[bl12 + 0(115[12), 5 ~ O, 

where the matrices M~ are displayed in (16.15). 
Another perturbation bound is [133] 

5x <_ est3(5) + O(115112) "- V/5 TM05 + o(11~112), ~ -~ 0, 

where 

Mo "-[mij] E 1[~ 4 , IIM MjlI , i , j -  1,2,3,4. 

We stress that  the matrix Mo may not be nonnegative definite, i.e., it may 
have negative eigenvalues. At the same time 5 T Mob > 0 for 5 c R~_. 

The bounds est2 and est3 are alternative since both inequalities est2(/i) _< 
est3(5) and est2(5) > est3(5) are possible. 

Thus we see that  the following theorem is valid. 

T h e o r e m  16.2 The perturbation 5x in the solution X of the real equation (16.4) 
satisfies the local perturbation estimate 

5x <_ est(5) + o(ll~ll2), ~ ~ 0, 

where 

est(5) "-  min{est2(5), est3(5)}. 

C o m p l e x  e q u a t i o n  

Consider the complex descriptor Riccati equation (16.5). We give only the final 
results. 

T h e o r e m  16.3 In Frobenius norm the absolute condition numbers K z S  for the 

soluti'on X of the complex equation (16.5) relative to the matrix coefficients Q, E, A, S 
are 

KQ 

KA 

- IINlll2, K E -  ]]0(N21,N22)l12,  

- lIO(N31,N32)[12, K s -  ]IN4112. 
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If Z , X  7/= 0 the relative condition number for X relative to Z is kz := 

KzIIZIIF/IIXIIF. 
Define the matrices 

T1 " -  N1 N, 7'2 " -  ~(N21,  N22), T3 " -  O(N31, N32), T4 " -  N4 ]R 

from R :n2xgn2 and let 

4 x 4 ,  . i, j - 1 2, 3, 4. T c R+ - I ITyT j l I= ,  , 

As in the real case, set 

Est2(5) "-  II[Tx, T2, T3, T41112115112, Est3(5) "-  ",/STTS. 

Then we have the following result. 

T h e o r e m  16.4 The perturbation (ix in the solution X of the complex equation 
(1 6.5) satisfies the local perturbation estimate 

where 

5x _< Est(~) + o(11~112), ~ -~ 0, 

Est(5) := min {Est2(~), Est3(~)}. 

The bounds given in Theorems 16.2 and 16.4 have the properties of the similar 
bounds in the real case. In particular they may be very accurate. 

Suppose that  the perturbations in the coefficient matrices Z E {Q, E, A, S} sat- 

isfy IISZII F - -  cllZ'l[ F for some e > 0. Let di(P, X) be the quantity esti(ll]Pll])/llXIIF 
in the real case or Est~(lllPIII)/llXllF in the complex case, i = 2, 3. The quantities 

ed~(P, X)e are first order bounds for the relative perturbation ~x/IIXF in the 
solution X. Thus we may define the overall relative conditioning of X as 

d(P, X) := min{d2(P, X), d3(P, X)}. 

16.2.6  N o n l o c a l  b o u n d s  

The local estimates from Theorems 16.2 and 16.4 are valid for asymptotically small 
perturbations. 

To avoid the disadvantages of the local bounds one can apply the methods 

of nonlocal perturbation analysis. As a result one gets nonlocal (and in general 

nonlinear) perturbation bounds of the form 5x _< f(5) for 5 E f~, where f~ is a 

certain domain in the space of the norms of the perturbations in the coefficient 
matrices, see Chapter 13. Here the inclusion 5 c f~ guarantees that  the perturbed 

equation (16.7) indeed has a solution Y = X + ~X for which the bound 5x _< f(5) 
holds true. 

The nonlocal perturbation analysis is based on the techniques of Lyapunov 
majorants and fixed point principles. 
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Real equation 

Set ao(6):= ao(6) + est(6). Then we have the Lyapunov majorant 

bo(6) + bl (6)p + b2(6)p 2 
h(6, p) = ao(6) + al (6) + 

Co -- C 1 ( 5 ) p  

For a1(6) < 1 the majorant equation p = h(6, p) reduces to the quadratic 
equation 

fr t2(~)p 2 -- ml ( (~ )p  + fr~0(~) : 0, 

where 

.~(~) 

m1(6) 

too(5) 

:= 52(6) + c1(5)(1 - al(6)) ,  

: :  ao(6)c1(6)  -t- Co(1 - a l ( 6 ) ) ,  

:=  bo(5) + coao(6). 

Thus we come to the following statement. 

T h e o r e m  16.5 Let 6 is small enough in order to satisfy the inequality 

-~1(5) > 2v/-~o(5)~n~(Si " 

Then'the nonlocal bound 

5x < f ( 6 ) " -  2m0(5) 
m l  (6) n t- 477"i,21((5) - -  4rno(6)rn2(6) 

ia valid for the perturbation 6X in the solution X .  

16.2.7 Complex equation 

In the complex case we have similar nonlocal result with some differences, e.g. 
s is replaced by /C, est(6) - by Est(6), and the t ranspos i t ion-  by Hermitian 
conjugation. 

16.2.8 An alternative approach 

An alternative approach to the construction of Lyapunov majorant for the operator 
equation is given in [153]. It is based on the following considerations. Suppose that 
the matrices S + 5S and Q + 5Q are symmetric and nonnegative definite and that 
the perturbed system is regular. Then the perturbed equation has a nonnegative 
definite solution Y = X + 5X. It is shown in [153] that for every nonnegaive 
definite S + 6S and Y one has 

[[Y(In + Sy)-I I IF  = [[(In + YS) - IY[[  <_ [[Y[[, (16.18) 

I[Y(In + (S + 6S)Y)-IIIF < IIYII, 

II(In + S Y ) - l S l l  _< IlSll 
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for both the spectral and Frobenius norms. Indeed, the first inequality is obvious if 
Y is nonsingular since Y ( I n + S Y )  -1 - ( Y - I + S ) - I  and Y - I + S  > y - 1  This gives 
(y -1  + S)-1 _< y.  If Y is singular we may consider the matrix Y(p) - Y + pin, 
p > 0, and pass to the limit p -~ 0. 

Consider for simplicity only the real case. The complex case is treated similarly 
using the expressions for the induced norms of additive operators. 

We can rewrite the perturbed equation as 

R(P, Y) + R(P  + 5P, Y) - R(P, Y)  - O. (16.19) 

Furthermore we have 

R(P, Y) - R(P, x) + nx(aX) + z(~P), (16.20) 

where 

In turn, we have 

B(Z) " -  AToZ(I~ + S ( X  + Z ) ) - I S Z A o .  (16.21) 

R(P + 5P, Z) - R(P, V) - A T y ( I n  + S Y ) - I ~ s Y ( I n  n c (S -F 5 S ) Y ) - I A  

- A T y ( I n  + (S + ~SS)y)-15A - 5ATy( In  + (S + ~ S ) y ) - I A  (16.2:2) 

- 5ATy( I~  + (S + 5 S ) y ) - I S A  - 5Q 

+ 5 E T y E  + E T y S E  + 5ETyaE .  

It follows from (16.21), (16.22) and(16.18) that 

II~-IB(z)IIF -< 11 L-1 (Ao T | Ao T) 112 [[Z(In + S ( X  + Z ) ) - I S Z  F 
2 _< [I L-1 (A~ | A~)II~ IlSll~llZllF, 

and 

(16.23) 

II~-I(R(P + 5P, Y) - R(P, Y))[[F ~ IIL-1II2(5Q + (llXl12 + ax)a~) 
+ []L-l(In 2 + Pn 2) (In Q Er)[12 aE(llXll~ + ~x) 
+ I[L-I(A T | At)ll2as(llXll2 + 5x) 2 

+ IlL-l(In2 q- Pn2)(In | AT)I[2 aAClIXll~ + ax) ~. 

Relations (16.23) and (16.24) yield the Lyapunov majorant 

h(~, p) - olo ((5) q- oL1 (~5)p -}- 0~2 (~5)p 2, 

(16.24) 

where 

~0(a) IlL c 1125Q + [[L-~(In ~ + P~)  (In 0 E T) l[2 IlXll2aE 
-+- [[L-l(In 2 + Pn 2) (In Q An-) [12 I[X[[ 28A 



16.2. D I S C R E T E - T I M E  R I C C A T I  E Q U A T I O N S  315 

Oll((~) 

a2(5) 

+ I I L - I ( A  -r | A-r)I[211XII 2 25s 

+ IIg-Xl1211XII2 ( ~  + ~) 
. -  IIL-~(Zn: + P~:)(• | E~)rl: ~ 

+ ] l L - l ( I n  2 + P n 2 ) ( I n  ~ AT)II2 6A + 2]IL-i(A T | AT)II25s 
+ IIL-111~ ( ~  + ~), 

- [[ L-x (Ao -r | A~)II= Ilsil2 + ] IL- I (A  T | A-r)l125s �9 

Hence we have the following result. 

T h e o r e m  16.6 Let 

E P " -  {ol1((~)~- 24Olo((~)~2((~ ) < 1}. 

Then the nonlocal nonl inear perturbation est imate 

2ao(5) 
5x <_ g(6) - 

- ~1 (~) + v~(~)  

is valid, where 

~(5) . -  ~1~(5) - 4 ~ o ( 5 ) ~ ( 5 ) .  

1 6 . 2 . 9  N u m e r i c a l  e x a m p l e  

We shall illustrate the implementation of Theorem 16.6. 
Consider a third order standard discrete-time matrix algebraic Riccati equation 

X - A T X ( I 3  + S X ) - I A  - Q = 0 

with matrices Q -- V Q o V ,  A = V A o V ,  S = V S o V ,  where V is an elementary 
reflection, V = / 3  - 2vv T /3 ,  v = [1, 1, 1] T, and 

Qo = diag(10 k, 1, 10-k), Ao = diag(0, 10 -k, 1), So = diag(10 -k, 10 -k, 10 -k) 

for some positive integer k. The sensitivity of this equation increases with the 
increasing of k. 

Due to the diagonal form of the matrices Qo, Ao and So, the solution is given 
by X . =  V X o V ,  Xo := d i a g ( x l , x 2 , x 3 ) ,  where 

2 a~ + qisi - 1 + ((a 2 + qisi - 1) 2 + 4qisi) 1/2 
Xi -- 

2si 

and qi, ai and si are the corresponding diagonal elements of Qo, A0 and So. 
The perturbations in the data are taken as AQ = V A Q o V ,  A A  = V A A o V ,  

A S  = V A S o V ,  where 

AQ0 = - 5  1 3 x 10 - j ,  
7 3 10 k 
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Table 16.1" Exact  perturbation,  local and nonlocal per turbat ion bounds for k - 0 

J II XIIF/IIXIIF 
, ,  

est2 est3 

10 7.51x 10 -10 1.72x10 -9 6.21x 10 -9 1.02x 10 - s  

9 7 .51x10 -9 1 .72x i0 :8  6.21x10 -8 1.02x10 -7 

7.51x10 -s  1.72x10 -7 6.21x10 -7 1.02x10 -6 

7.51x10 -7 1.72x10"6 6 .21x10-6 1.02xlO -5 

6 7.51x10 -6 1.72x 10 -5 6.21x10 -5 1.02x 10 4 

5 7 .51x10 -5 1.72x10 -4 6.22x 10 -4 1.03xlO 3 

4 7.51x10 -4 1.72x 10 -3 6.27x 10 -3 1.06xlO 2 

3 7.51• -3 1 .72•  -2 6.83x10 -2 1.70• -1 

2 7.51x10 -2 1.72x10 -1 1 72x10 -1 * 
, 

. . . . . . . . .  

3 - 4  8 ]  

AA0 - - 6  2 - 9  x 10 - j  

2 7 5 

10 -k - 1 0  -k 2 x 10 -k J 
A S 0 -  - 1 0  -k 5 x 10 -k - 1 0  -k x 10 - j  

2 X 10 -k --10 -k 3 x 10 -k 

for j = 10, 9, ..., 2. 

The per turbat ion 115X[[F in the solution is estimated by the local bounds 
est2(5), est3(6) and the nonlocal bound g(6). 

The cases when the nonlocal estimate is not valid since the existence condition 
5 c F is violated, are denoted by asterisk. 

The results obtained for different values of k and j are shown at Tables 16.1- 
16.2. 

16.3 S y m m e t r i c  fractional- l inear equat ion  

1 6 . 3 . 1  S t a t e m e n t  o f  the problem 

In this section we present per turbat ion bounds for the complex matr ix equation 

F ( X ,  A) := X - A1 - crAHX-1A2 = 0, (16.25) 

where A1 E C. nxn and the solution X c C nxn are symmetric matrices, and A := 

(A1, A2). Real equations of type (16.25) are formally obtained replacing C by I~, 

and the complex conjugation A H - by the transposition Af .  
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Table 16.2: Exact  perturbation,  local and nonlocal perturbat ion bounds for k = 1 

II XllF/llXlIF 
, ,  

est2 est3 

10 

9 

8 

7 
. . . .  

6 

5 

4 

3 
. .  

2 

1.07x10 -10 

1.07xi0 -9 

1.07x10 -s 

3.26x10 -9 

3.26x10 -s 

3.26x10 -7 

2.84x10 -9 

2.84x10 -8 

2.84x10 -7 

1.07x10 -7 3.26x10 -6 2.84x10 -6 

1.07x10 -6 3.26x10 -5 2.84xi0 -5 

1.07x10 -5 3.26xi0 -4 

1.08xi0 -4 3.26x10 -3 

2.84x10 -4 

2.84x10 -3 

1.09x10 -3 3.26x10 -2 2.84x10 -2 

1.17x10 -2 3.26x10 -1 2.84x10 1 

2.36x10 -s  

2.36x10 -7 

2.36 x 10 .6  

2.36x10 -5 

2.36 x 10 .4  

2.39x10 -3 

2.78x10 -2 

First order local bounds and nonlinear nonlocal bounds are derived for equation 

(16.25) following the general scheme described in this book. The technique used is 

based on Lyapunov majorants  and fixed point principles [137]. The perturbations 

in the data  A and the solution X are estimated in terms of the Frobenius matrix 

norm 1[" ]IF. The use of this norm allows to obtain explicit expressions for the 

indiviklual condition numbers of X relative to perturbations in Ak. The pertur- 

bation bounds allow to derive condition and accuracy estimates for the computed 

solution when a numerically stable algorithm is applied to solve (16.25). To avoid 

trivial results we assume that  A2 r 0. 

16.3.2 Ex i s tence  and uniqueness  of the solut ion 

We do not consider in detail the problems of existence and (local) uniqueness of 

the solution of equation (16.25) which may be quite complicated. In particular 

this equation may have no solutions or may have both symmetric (in the sense 

X H - H) and nonsymmetric solutions. In turn the solutions may be isolated (or 

locally unique) or belong to certain algebraic manifolds. An idea of these problems 

is illustrated in the following low order examples for real equations. 

E x a m p l e  16.7 For n - 1 the equation X - A1 + A 2 / X  with A2 ~ 0 is equivalent 

to the quadratic equation 

X 2 - A 1 X -  A~ - 0  

and has real solutions 
A1 • v/A~ + 4A~ 
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E x a m p l e  16.8 Let n = 2, A1 = 0 and A2 = diag(1,w), where w E R is a 

parameter. If X is a solution of the equation then 

det X = (det A2)2/det  X = w2/de t  X 

and hence for w = 0 the equation has no solution. For w ~= 0 we have det X = =i=w 
and the equation has two isolated solutions X1,2 = =i=A2, two 1-parametric families 
of solutions 

1 t ] -X(t), t e R, x(t ) -  ' 

and one 2-parametric family of solutions 

X ( t l , t 2 ) -  [ t2tl w(l_t~tl-t21)/~;2 , t l  E R, ~;2 E ]1~\{0}. 

The isolated solutions are symmetric, each 1-parametric family of solutions con- 
tains one symmetric matrix (take t = 0) and the 2-parametric family of solutions 
contains a 1-pararnetric family of symmetric matrices (take t~ + t~/w - 1). 

We assume that  equation (16.25) has an (local) unique solution. Conditions for 
existence and uniqueness of extremal solutions to (E.3) are given in [58] and [63]. 
Applications of this equation to a number of problems in control theory, networks, 
dynamic programming, filtering and statistics are considered in [111, 242], while 
a computational algorithms for its solution is proposed in [171]. 

In the following the subindexes k, 1 take values 1,2. 
Consider the matrix equation (16.25) under the assumption that  for a partic- 

ular value A ~ of A it has a symmetric solution X ~ such that  the partial E%chet 
derivative of F in X at the point (X ~ A ~ is invertible. Further on we omit the 
superindex "0" and denote the matrix parameter and the particular solution as A 
and X. 

The perturbed equation is obtained from (E.3) by replacing a nominal value 

A -- (AI~ A2) of the collection of data matrices with A + S A  = (AI +~AI~ A2+SA2) : 

F(X + 5X, A + 5A) = 0. (16.26) 

Let 5k > 0 and suppose that  

~k := [[SAklIF ~ #k- 

Set 

5A := (5A1, ~A2). 

For 5k sufficiently small the perturbed equation (16.26) has a solution 

5X = T(SA), 



16.3. S Y M M E T R I C  FRACTIONAL-LINEAR EQUATION 319 

depending on 5A and such that  T(O) = 0. The solution with this property is 

unique and, moreover, the elements of the matrix valued function T are analytic 

functions of the elements of 5Ak. 

Denote 

and 

Then we have 

where 

:-II~XIIF 

(~ "--[(~1, (~2] T - - [ [ [ S A l l ] F ,  115A21[F] -r E N2. 

_< r(~) ,  

F(5) := sup{IIT(SA)IIF : ~k _< 5k}. 

Thus the aim of perturbation analysis is to estimate the quantity F(6) from above 

since its exact determination is a hopeless task. In particular the local perturbation 

analysis produces the individual condition numbers ck which are defined by 

r((~) = Cl(~ 1 -]- c2(~2 -4- o(11~112), ~ ~ o. 

In what follows we shall also find a first order homogeneous function g �9 R~_ ~ R+ 

such that  

r(5) _< g(~) + o(115112), 5 -~ 0, 

and 

g((~) ~ Cl~l -}-C2~2. 

However, the use of the "chopped" bounds 

_'~ Cl(~ 1 --[-C2~ 2 

or  

may be misleading since for some values of 5 the opposite inequalities may in fact 
hold. 

To obtain rigorous perturbation bounds one can use the techniques of nonlocal 

perturbation analysis. As a result one gets a domain f~ C R~_ and a function 

f :f~ ~ R+ such that  

where f is nondecreasing in each of its arguments and f(0) = 0. 
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1 6 . 3 . 3  L o c a l  p e r t u r b a t i o n  a n a l y s i s  

We may rewrite (16.26) as an equivalent equation for the perturbation 5X in X. 
We have 

F ( X  + 5X, A + 5A) = F ( X , A )  + F x ( X , A ) ( S X )  + FAI (X,A)(6A1) 

FA2 (X, A)(SA2) + F--A2 (X, A)(SA~.) + G(X, A)(~X, 6A), 

where F x ( X , A )  : C n• --. C n• is the partial F%chet derivative of F in X 

calculated at the point (X,A) ,  and FAI(X,A)  : C n• ~ C nx~ is the partial 

F%chet derivative of F in A1 calculated at the point (X, A). Similarly, 

FA2 (X, A)(SA2) + F--~ (X, A) (5A2), 

is the partial Fr6chet derivative of F ( X  + 5X, A + 6A) in A2. The operator 
FA2(X,A) is additive but not homogeneous. This specific difficulty arises due 
to the fact that  complex conjugation (and hence the map A --~ A M) is not a linear 
operation. 

Set 

/ :  :--- Fx, 121 : =  FA1, s  = / ~ 2 1  -[-/Z22 :--  FA2 -[- F-~, 

than 

F(X+~X,  A+SA) - F(X,  A)+s163 (SA~ )--[-C21(SA2)+s ~A), 

where G contains second and higher order terms in 5X, 5A, 

G(SX, 5A) - 0(~ 2 + a 2 + a~), ~ + Ctl + Ct2 ~ O. 

Having in mind that  F(X,  A) - 0 and supposing that  the operator s is invert- 
ible we obtain 

(~X - _ s  o s  - / ~ -1  o s - s  o s + O(llal12), ~ -~  0 

and 

Here 

are n2-vectors, 

x -- Mlal  + M21a2 + M22 a2 + O(llal12), a --~ 0. (16.27) 

x . -  a k  . -  vec( Ak) 

a vec/ A/ [al I C n2 
a2 

M1 "- -L -1L1  E C n2xn2, is the matrix of the operator _ s  o/21, M2k -- 
-L-1L2k  E C n2xn2 is the matrix of the operator _ s  o s and L, L1,L2k c 
]t~ n2xn2  a r e  the matrices of the operators/2, 121,/22k respectively. 
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Recall the fact tha t  for nonlinear additive operators the following is fulfilled, 
see [139]. 

For the complex m x n matrices H = Ho + ~H1, A = Ao + ~A1 (with 

Ho, HI, Ao,/~1 real), and the complex n - v e c t o r  z = zo + ~Zl (with zo, Zl real) we 
have 

m a x { l l g z  + zX:ll2 : Ilzll2 _< a} = allO(H, zX)ll2, 

where 

. _  r + Ao O(H, A) 
L HI + A 1  

A1 - H1 

Ho - Ao 
(16.28) 

Hence for the product  H z  of a complex matr ix  H = Ho + ~H1 E C n x n  and a 

complex vector z = zo + ~Zl E C n with Ho, HI and zo, Zl real, we have the real 
versions 

[zo]zl L .1] o 
(Hz  + A~) ~ = O(H, A)z R 

and O(H, 0) = H R. 

Now it follows from (16.27) tha t  

Since 

E I~ 2mx2n 

it follows tha t  

x ~ - M ~ a ~ l  + O(M21,  M22)a~ + O(l[aRII2), a ~ ~ 0. 

s  - Y + a A ~ X -  I y X - 1 A 2  

L - In2 + a ( X - 1 A 2 )  T @ (AHX-1).  (16.29) 

By definition, the eigenvalues of the operator 12 are the eigenvalues (counted 

according to their algebraic multiplicites) of its matr ix  L which in turn are 

1 + a A i ( X - I A 2 ) A j ( A ~ X - 1 ) ,  

where Ai(Z) are the eigenvalues of the matr ix  Z. Hence the operator 12 and its 
matr ix  L are invertible if and only if 

~ 5r  (16.30) 

In what  follows we assume that  the inequalities (16.30) hold true. 
Ftir thermore we have 

s  - - Y ,  s - - a A ~ X - 1 y ,  s - - a y H x - I A 2  

and hence 

L1 = - I n 2 ,  

L ~  - - ~ •  | (A~X-1) ,  

L22 = - ~ ( ( X - ~ A 2 )  T | I . )P .~ ,  

(16.31) 
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where Pn2 c C n~xn2 is the so called vec-permutation matrix such that 

vec(Y n-) - Pn2 vec(Y) 

for each Y E C nxn. For the matrices M1, M2k we obtain 

M1 = - L  -1 ,  

M21 - -crL-l(zn @ ( A H X - 1 ) ) ,  

M22 - - o L - I ( ( ( X - 1 A 2 )  T @ In))Pn 2 

Recalling that ~ - I I ~ x  IF -Ilxl12 and since Ilxll2 --Ilz~ll2 we have 

_< c~ + o(11~112) - Cl(~I -}-C2(~2 -}-o(11~112), ~ -~ 0, 

where 

and 

C "--[Cl,  C2] E ~1X2  

(16.32) 

C 1  - -  11M~ M1 ~ - M1 ~, 

C2 -- I[M~ M 0 "-- I ~ ( M 2 1 , M 2 2 ) .  

Hence the absolute individual condition numbers are calculated from 

C 1 - - [ IMOl l~ ,  ~ -  [IM~ (16.33) 

where the matrices M ~ M ~ are the real version of the matrices M1, O(M21, M22), 
given by (16.32), (16.28), and (16.29). The relative individual condition numbers 

are then computed from 3`k -- ckl lAkllF/l lXllF.  
Relation (16.27) also gives 

_<est2(5)+O(ll~ll 2 ) ' -  [M1 ~  ~ 2), 5_~0,  

and 

_< est3(5) + O(llSll2) "= v / S T M ~  + 0(115112), ~ ~ o, 
2x2 where [M ~ M ~ c R n2x2n2 and M ~ [m~z ] E R+ is a symmetric matrix with 

elements r n ~ l -  II  T oll  I I  | A  

Since c5 <_ v/a T M o 6  (see [142]) we find the local perturbation estimate 

_< g(~) + o(11~112), ~ -~ 0, (16.34) 

where 

9(5) " -  min {est2(5), est3(5)}. (16.35) 

The estimate (16.34), (16.35) allows to define the overall relative condition number 
as follows. Let 6k -- cllAkllF, where e > 0 (in floating point arithmetic the quantity 
e may be taken as a multiple of the rounding unit). Then g(5) - eg(a~ where 
a ~ "- [[IAIIIF, ItA2llF] -r. Hence the relative perturbation in the solution can be 
estimated as II6XIIF/IIXllF <_ 3`c, where 3' "= g(a~ is the overall relative 
condition number of equation (E.3) at the particular solution X. 



16.3. SYMMETRIC FRACTIONAL-LINEAR EQUATION 323 

16.3.4 Nonlocal perturbation analysis 

Suppose that  the perturbed equation (16.26) has a solution with 

II~XllF < 1/112-1112--~min(X). 

Equation (16.26) may be written in the form 

s = ~0(5A) + ~1 ((~X, 5A) + ~2(5X, 5A), 

where 

~o(5A) := 

(~1 (SX, 5A) : =  

�9 2(5X, aA) := 

E : =  

5A1 + aAHX-laA2 + aaAHX-1A2 + o'5AHx-laA2, 

_o-AHX-15XX-15A2 _ o-5AHx-laxX-1A2 _ 

o-5AHX-laxx- laA2,  

o(A2 + 5A2)HE(A2 + 5A2), 

( x - l  csx)2(in Jr- x - l  csx) - lx  -1. 

The above relations are based on the identity 

( X  -}- ~SX) - 1  - -  X - 1  - x - l ( ~ x x  -1 + (x-lr~x)2(In Jr- x - l ( s x ) - l x  -1. 

As a result we get the operator equation 

5X = II(5X, 5A) := n0(aA) + HI (5X, 5A) + H2(SX, 5A), (16.36) 

where H~ = J ~ - l ( ( i ) r ) .  

We shall show that  under certain conditions on the F-norms 5k of 5Ak the 
operator H(., 5A) maps a central ball Bp of diameter p = f(a) into itself, where f 
is continuous and f(0) = 0. Hence according to the Schauder fixed point principle, 
see Appendix D, the operator equation (16.36) has a solution 5X E Bp. Finally 

the ei t imate [[aXIIF _< f(a) is the desired nonlocal perturbation estimate for a 
belonging to a certain set Ft c R2+ containing the origin. 

Suppose that  { _< p, where p < 1/llX-1ll2 = ( 7 m i n ( X )  is a positive quantity. 
Then, after some calculations, we obtain the inequality 

[IF(SX, SA)IIF <_ h(p, 5) := a 0 ( 5 ) + a l ( 5 ) p +  
a2(5)p 2 

1 - #p 

Here p : =  [I X -  ~112, 

a0(~) - -  g(~) + ~ , ~ ,  
a1(5) "-  a1152 +a125~, 

a2(~) "-  a20 +a21~2 +a225~ 
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and 

a l l  

a12 

a20 

a21 

a22 

"-- ~ ( l tL  -1 (In @ ( A H X - 1 ) ) I I  2 § IlL -1  ( ( X - 1 A 2 )  T 

�9 - c1~ 2, 

�9 - .31IL- (A- eA )II , 
- tlL-  | § L -1 | A )I1 ' 
�9 -- Clp 3 ' 

The function h is a Lyapunov majorant  for the operator H, see [85, 137]. The 

corresponding majorant  equation p = h(p, 5) is equivalent (for p < l / p )  to the 
quadrat ic  equation 

(a2(6) + p(1 - a l (5)))p 2 - (1 - a1(5) + pao(~))p + ao(~) - O. 

Denote 

d(~) " -  (1 - al((~) § pa0((~)) 2 - 4ao(~)(a2(~) + p(1 - al((~))). 

Consider the domain 

"-- { ~ C  ~ 2  . a l -  pao + 2v/ao(a2 + p ( 1 -  a l ) ) ~  1}.  (16.37) 

If 5 C ~ then the majorant  equation p -  h(p, ~) has a root 

p(~) _ f ( ~ ) . _  2ao(5) 
1 - a l  § #ao  § ~ "  (16.38) 

Hence for 5 E ft the operator H(., 5A) maps the set Bf(5) into itself, where 

is the closed central ball of radius r > 0. Then according to Schauder fixed point 
principle there exists a solution 5X c B/(5) of equation (16.36). 

Thus we have the following result. 

T h e o r e m .  Let 5 E ft, where ft is given in (16.37). Then the nonlocal pertur- 
bation bound 1ISXII F ~ f(5) is valid for equation (E.3), where f (5) is determined 
by (16.38). 

As an example consider the complex fractional-affine matr ix  equation X -  A 1 -  
aA H X -  1A2 - 0 with matrices 

0.6192+0.3963i -0.5293- 0.3246i -0.2048- 0.8099i ] 
A1 - - 0 . 5 2 9 3 -  0.3246i - 0 . 0 5 4 6 +  1.2761i - 1 . 1 5 6 6 -  0.3197i ] , cr - +1, 

-0 .2048 - 0.8099i -1 .1566 - 0.3197i 0.2078 + 0.1764i 
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A1 

A2 

1.3808 + 1.6037i 

= 0.5293 + 0.3246i 

0.2048 + 0.8099i 

0.2190 + 0.0535i 

- 0.0470 + 0.5297i 

0.6789 + 0.6711i 

0.5293 + 0.3246i 

2.0546 + 0.7239i 

1.1566 + 0.3197i 

0.6793 + 0.0077i 

0.9347 + 0.3834i 

0.3835 + 0.0668i 

0.2048 + 0.8099i ] 
1.1566 § 0.3197/ 
1.7922 + 1.8236/ 

0.5194 § 0.4175/ ] 
0.8310 + 0.6868/ 
0.0346 + 0.5890/ 

, c r - - 1 ,  

The per turbat ions in the da ta  are taken as 

1 + i  1 + i  

(~A2 - (~X = 10 (-k) 1 + i 1 § i 

1 + i  1 + i  

-0 .0448 + 0.0168i 

~A1 - 10 (-k) 0 .1832+0.1004i  

-0 .0689 + 0.1286/ 

a -  +1, 

2.0448 + 1.9832i 

5A1 - 10 (-k) 1.8168 + 1.8996i 

2.0689 + 1.8714i 

o r - - 1  

1 + i  , 

1 + i  

0.1832 + 0.1004/ 

-0.1901 - 0.8913/ 

0.6213 - 0.1385i 

1.8168 + 1.8996i 

2.1901 + 2.8913i 

1.3787 + 2.1385i 

-0 .0689 + 0.1286i ] 

0.6213 - 0.1385i ] 

0.1007 + 0.4331i 

2.0689 + 1.8714i 

1.3787 + 2.1385i J 
1.8993 + 1.5669i 

for k = 10, 9, ..., 2. 

This problem was designed so as to have solutions X = / 3  and X + a X  = Ia+6X 

of the unper turbed and per turbed equation respectively. 

The per turbat ion tl~xIIF in the solution is est imated by the local bounds 

est2(5), esta(5) from Section 3 and the nonlocal bound (16.38), (16.37) from Sec- 
tion 4. 

The cases when the nonlocal est imate is not valid since the existence condition 

6 E ft is violated, are denoted by asterisk. 

Ttie results obtained for different values of k are shown at Table 16.3, for the 

equation with cr = 1. When k decreases from 10 to 2 the nonlocal est imate is 

slightly more pessimistic than  the local bounds est2(5), est3(5). We also see tha t  

for this part icular  example the bound est3(5) is superior to est2(5). 
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Table 16.3: Exact perturbation and perturbation bounds for ~- 1 

k est2 est3 p(5) (16.38) 

10 4.24• -1~ 

9 4.24• -9 

8 4.24• -8 

7 4.24• -7 

6 4.24• -6 

5 4.24• -5 

4 4.24• -4 

3 4.24• -3 

2 4.24• -2 

1.48x10 -9 1.43x10 -9 1.43• -9 

1.48• 10 -s  1.43• 10 -s  1.43• 10 -s  

1.48• 10-7 i.43• 10-7 1.43• 

1.48• -6 1.43• 10 -6 1.43• -6 

1.48• 10-5 1.43• 10-5 1.43• 10-5 

1.48• 10 -4 1.43• -4 1.44• i0 -4 

1.48• 10 -3 1.43• i0 -3 1.44z 10 -3 

1.47• 10 -2 1.43• 10 -2 1.48• -2 

1.47• -1 1.43• -1 * 

16.4 N o t e s  and references  

The local bounds of the type est(5), presented in Section 16.2.5, had been proposed 
in [133]. 

There is a number of papers devoted to the perturbation analysis of discrete- 
time Riccati equations arising in linear systems theory [151, 153, 210, 214, 213, 

130]. Until recently, however, the results for the complex case had not been clar- 
ified. Here the treatment in [213] for the standard Riccati equation should be 

complemented with the analysis from [147], see also [215]. 

Perturbation analysis of the periodic discrete-time Riccati equation is done in 
[163]. 

Backward errors for the standard discrete-time Riccati equations are analyzed 
in [211]. 

Perturbation analysis of the special symmetrix fractional-affine equation from 

Section 16.3 is given in [241, 123, 132, 216]. 



Appendix A 

Elements of algebra and 
analysis 

A.1 Introductory  remarks 

In this book we s tudy per turbat ions  in matr ix  equations, and, in a less extent,  

problems of existence and uniqueness of the solution to such equations. Hence, a 

basic knowledge of algebra and analysis is assumed. For convenience of the reader 

in this appendix  we recall some facts from algebra (including linear algebra) and 

analysis tha t  are used in the book. A good introduction to this subject is the 

classical t ex tbook  [29]. 

A.2 Sets  and funct ions  

A set X is defined by the characteristic proper ty  of its elements x, X - {x : s(x)}, 
where s(x) is a s ta tement  about  x. Thus, x is an element (or a point) of X,  

denoted as x E X,  if and only if the s ta tement  s(x) holds. A set is also denoted 

by explicitly describing its elements, e.g., X - {x, y , . . . } .  

If x is not an element of X we write x ~ X. The set X is a subset of the set 

Y if x E X implies x E Y. In the lat ter  case we write X C Y. Two sets X and Y 

are equal, wri t ten  as X = Y, if they consist of the same elements, or equivalently, 

if and only if X c Y and Y c X.  The union X U Y of the sets X and Y is the 

set of all x with x E X or x E Y. The intersection X N Y is the set of all x with 

x E X and x E Y. 

The set, containing no elements, is referred to as empty set and is denoted by 

0. The empty  set is a subset of any set. A set {x} containing a single element x is 

called a singleton. An element of a set can itself be a set. Also, an object x must  

be distinguished from the singleton {x} containing x as its single element. 

327 
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E x a m p l e  A.1  The set {0} ~ 0 is a singleton with element ~. 0 

Two sets X and Y are disjoint if X N Y - 0. The complement Y \ X  of the set 

X relative to the set Y is the set of all x, such tha t  x c Y and x ~ X.  Obviously 

X \ X  = 0 and, more generally, Y c X implies Y \ X  - O. 

The set X • Y of all ordered pairs (x,y) with x c X and y c Y is called 

the Cartesian product of X and Y. We also write X • X = X 2. The Cartesian 
n-th degree power X n, 2 <_ n E N, of the set X is defined inductively as X n "= 

X • X n - l ,  or as the set of ordered n-tuples (xl,  x2, . . . ,  Xn) with xi E X. The set 

of all pairs (x, x) with x E X is the diagonal of a set of X • X. 

A subset R of X • Y is said to be a relation. The relation R is functional if 

for each x E X there is an unique y c Y, such tha t  (x, y) E R. In this case we 

also say tha t  the relation R defines a function, or a mapping f �9 X ~ Y with a 

domain X and co-domain Y. For every x E X the (unique) element y c Y, such 

tha t  (x, y) E R, is said to be the image of x under f and is denoted as y - f (x) .  
We also say tha t  x is the argument, and y is the value of the function f at the 

point x. 

Let f "  X ~ Y be a function a n d A  C X, B C Y. The set f ( A ) " -  { f ( x ) "  

x c A} of the images of the elements of A under f is called the image of A under 

f ,  or simply the image of A if the underlying function f is preassumed. The set 

f - l ( B )  "- {x E X "  f ( x )  E B}  is the pre-imageof B. When B - {y} is a singleton 

we write f - l ( y )  instead of f - l ( { y } ) .  Similarly, if f - l ( B )  is the singleton {x} we 

write f - ~ ( B )  - x. If in particular the pre-image of y E Y is the singleton {x} we 

write f -  1 (y) _ x. 

The function f "  X ~ Y is onto, or a surjection, if Y = f ( X ) ,  i.e. if each y E Y 

is the image of some x E X under f .  The function f is an injection if X l ~ x2 

implies f ( x l )  ~ f (x2) ,  or equivalently, if the pre-image of each y c Y contains 

at most one element. The function f is a bijection, or one-to-one function, if it 

is simultaneously a surjection and an injection. In the latter case there exists an 

inverse function f - 1  . y ~ X ,  which maps each y c Y into its (unique) pre-image 
x -  f - l ( y ) .  

When dealing with objects such as systems of vectors, spectra of matrices, etc., 

it is convenient to consider collections, or sets with repeated elements, such as 

E - {a, a,/3}. From set-theoretical point of view a collection is indistinguishable 

from the set, obtained by deleting the repeated elements. For example, as a set 

{(~,~,/3} is the same as {~,/3}. Note tha t  a finite collection with n elements 

is different from the corresponding vector (or ordered n-tuple) having the same 

elements in a certain order. 

We now define some operations with sets (or with collections) such as summa- 

tion and multiplication, which are useful in the description of the spectra of linear 

matr ix  operators. These operations are different from the s tandard set operations 

such as union, intersection, complement, etc. 
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Let  A be a c o m m u t a t i v e  a lgeb ra  over t he  field F, i.e. (i) A is a l inear  space  

over F, and  (ii) in A • A a m u l t i p l i c a t i o n  (x, y) ~ xy = yx E A is defined for each 

x, y c A, which  obeys  t he  d i s t r i bu t ive  law (x + y)z = xz  + yz. 

Let  X ,  Y be subse t s  of A. We define t he  sum and  the  product of X and  Y as 

X + Y := {x + y : x E X,  y E Y }  c A and X Y  := {xy : x c X,  y c Y }  c A. For 

n E Z we also define t he  p r o d u c t  n X  by n X  :=  {nx : x  c X }  c A and,  if n c N, 

t he  power  X (n) :=  {x n : x E X }  C A. If all e l emen t s  of X are inver t ib le  t h e n  we 

m a y  define X (n) for nega t ive  in tegers  n as well. 

It  is easy  to  verify t h a t  n X  c X + . . .  + X (n s u m m a n d s ) ,  X (n) c X - . . X  

(n factors)  as well as ( X  + Y ) Z  C ( X Z )  + ( Y Z )  and  (m + n ) X  C m X  + n X  for 

n, m c N .  

F i n a l l y  we define t h e  difference of t h e  sets  X and  Y as X - Y :=  X + ( -  1) Y = 

{ x - y : x E X ,  y c Y } c A .  

A.3 Algebraic systems 

In th is  sec t ion  we recal l  some  basic facts  a b o u t  a lgebra ic  sys tems .  

Let  F be  a nonvo id  set. A unary operation on F is a func t ion  F ~ F. An n-ary 

operation, or s imp ly  an operation on F, where  n c N, is a func t ion  F n -~ F. An 

algebraic system is a set  F t o g e t h e r  w i th  one or more  o p e r a t i o n s  on it. B i n a r y  

o p e r a t i o n s  F • F --~ F are  of specia l  in te res t  w h e n  s t u d y i n g  a lgebra ic  sys tems .  

A m o n g  t h e m  are  var ious  t y p e s  of s u m m a t i o n  and  mul t ip l i ca t ion .  

A group is a set  F of e l emen t s  a ,  fl, 7 , - . - ,  t o g e t h e r  wi th  a b i n a r y  o p e r a t i o n  

o .  F • F ~ F (cal led a group operation or a composition law) with  t he  fol lowing 

p roper t i e s .  

�9 Associative law: a o (~ o 7) - ( a  o 15) o V for all a , /5,  7. 

�9 Identity law: T h e r e  exis ts  a neutral element, or an identity r E F, such t h a t  

a o s - s  o a - a  for all a .  

�9 Inverse law: For  every  (~ t he r e  exis ts  an inverse, d e n o t e d  as ~ - 1 ,  sa t i s fy ing  
OLOO1-1 --O~--1 oo l - -C .  

It  is easy  to  show t h a t  in any  g roup  the  equa t ions  ~ o c~ - 15 and  c~ o r/ - / ~  

in ~ and  ~?, respect ive ly ,  have  un ique  so lu t ions  ~ = ~ o a - 1  and  ~? - a - l o  15. 

Hence,  each  of t he  equa l i t i e s  (~ o/5 - (~ o V and  ~ o c~ - 7 o c~ impl i e s /5  - 7. As a 

consequence  we see t h a t  t h e r e  is exac t ly  one i den t i t y  c and  for every  c~ t h e  inverse 

c~- 1 is un ique .  

S o m e t i m e s  t he  g roup  o p e r a t i o n  o is cal led multiplication. T h e n  we s imply  

wr i te  ~ o / 5 -  c~/5 and  d e n o t e  t he  i den t i t y  as c -  1 or s = l r .  In  th is  case we 

have a multiplicative group. W h e n  the  g roup  o p e r a t i o n  is cal led addition we wr i te  

o/5 - c~ + / 5  and  refer to  F as an  additive group. Here  we d e n o t e  t he  i den t i t y  as 

s - 0 or  s - Or and  t he  inverse  of a as -c~. 
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A group (F, o) is commutative, or Abelian, if the group operation is commuta- 

tive: c~ o/3 = /3  o c~ for all c~, ti- 

The following sets are commutat ive groups: 

�9 The sets Q*, R* and C* of nonzero rational, real and complex numbers, 

respectively, are multiplicative groups. 

�9 The sets Q~ and R~ of positive rational and real numbers are multiplicative 

groups. 

�9 The sets Z, Q, R and C of integer, rational, real and complex numbers, 

respectively, are additive groups. 

�9 The set of complex numbers e x p ( ~ ) ,  where ~ E R, is a multiplicative group. 

A field �9 is an algebraic system with two binary operations (called field op- 
erations), namely addition (c~,/3) ~ c~ + fl and multiplication (c~, ~) ~ c~/3, such 
tha t  

�9 Under addition ~ is a commutat ive group with identity, called zero and 

denoted 0 or 0e. 

�9 Under multiplication the nonzero elements of �9 form a commutat ive group 

with identity, called unit and denoted 1 or 1~. 

�9 The distributive law c~(/3 + 3') = c~r + c~/is valid for all c~, ~, ~/c ~. 

Let (F, o) be a group with identity e E F and A C F. If (A, o) is again a group, 

it is called a subgroup of (F, o). When the group operation is not mentioned 

explicitly, we say tha t  A C F is a subgroup of the group F. Obviously {e} and F 

are the smallest and the largest subgroups of F. They are called trivial subgroups. 

A subgroup is proper if it is not trivial. 

If A1 and A2 are subgroups of F then their intersection A 1 n A 2 is again a 

subgroup of F. It is the largest subgroup of F, contained in both A1 and A2. 

Dually, the smallest subgroup of F, containing A1 and A2, consists of all products 

of powers of elements of A1 and A2. It is called the join of Z~ 1 and A2. 

Let two multiplicative groups F and A be given. The function h : F  --, A is a 

homomorphism of F to A if h(c~r = h(c~)h(/3). Under the homomorphism h the 

identity l r  of F goes to the identity lzx of A, i.e., h ( l r )  = lzx. The set of all c~ c F, 

such tha t  h(c~) = lzx, is a subgroup of F, called the kernel of the homomorphism 

h, and denoted as Ker(h). Thus, K e r ( h ) : =  {c~ E F :  h(c~) = 1A} = h - l ( l z x ) i s  

the pre-image of 1A under h. If the homomorphism h : F ~ A is a bijection, it is 

called isomorphism between the groups F and A. An isomorphism F --, F is called 

automorphism. For instance the function c~ H c~ -1 is an automorphism on F. 

Note tha t  a bijection F ~ F is not necessarily an automorphism. For instance, if 

c~ r l r is fixed, the bijection fl H c~fl is not an automorphism since l r H c~ r l r.  
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A . 4  L i n e a r  a l g e b r a  

We first cons ider  t he  f u n d a m e n t a l  concep t  of a l inear  space. 

Let  V be a set a n d  E be a field (such as C, R, Q, etc.) .  T h e  e lements  of V are 

called vectors and  are  d e n o t e d  by x, y , . . . ,  z and  07.  The  e lements  of 1g will be 

referred to  as scalars (no te  t h a t  t h e  case V = IE is not  exc luded)  and  d e n o t e d  by 

c~, r  7- T h e  uni t  and  zero e lement  of lg are d e n o t e d  as 1 and  0. T h e  pair  (V, I13:) 

is said to  be a linear (or vector) space if two algebraic  ope ra t ions  - multiplication 
of a scalar  and  a vec to r  (c~, x) ~ c~x = xc~ E V and  summation of two vec tors  

(x, y) ~ x + y = y + x e V are defined wi th  t he  following add i t iona l  p roper t i e s ,  

valid for all x, y, z E V and  a ,  ~ E E: 

1. (x + y) + z = x + (y + = x + y + z; 

2. (c~ + r + y) = c~x + c~y + / 3 x  + ~y; 

3. l x  = x and  c~(~x) = ( c ~ ) x  = c ~ x ;  

4. t he r e  exis ts  a zero vector Ov c V, such t h a t  x + Ov = x and  c~Ov = Ox = Ov. 

T h e  fact  t h a t  (V, E) is a l inear  space  is expressed  by saying t h a t  V is a l inear  

space  over ]E. If V is a l inear  space  over IE it is also a l inear space  over any  subfield 

]E' of ]]3:. However ,  t he  p rope r t i e s  of t he  l inear  spaces (V, Ig) and  (V, Ig') m a y  be 

qu i te  different.  

E x a m p l e s  of l inear  spaces  over a field IE are as follows. 

�9 T h e  vec to r  space  E n and  the  m a t r i x  space  ]~m,n. 

�9 T h e  set  of all po lynomia l s  in one or more  i n d e t e r m i n a t e s  of a degree,  no t  

exceed ing  a given n u m b e r ,  and  wi th  coefficients f rom Ig. 

�9 T h e  set of func t ions  V --~ W,  where  W is a l inear  space over lg. 

We cons ider  co lumn  n x I and  row I x n vectors  x wi th  real or complex  e lements  

(x)i  = xi and  de n o t e  t h e m  as x = [xi]. Cons ider  for example  the  set F n of co lumn  

n-vec to r s  w i th  e l emen t s  f rom t h e  field F = R or IF = C. The  set  IF n is a linear space 
over IE in t he  following sense. T h e  (e lement-wise)  multiplication IF x IF n + F n of a 

scalar  ~ and  a vec tor  x = [xi] is def ined via  (~, x) ~ ~x  = [~xi] and  the  (e lement -  

wise) summation F n x IF n + IF n of two vectors  x = [xi] and  y = [Yi] is given by 

(x, y) ~ x + y = [z~ + y~]. T h e  vec tor  wi th  zero e lements  is called the  zero vector 

and  is d e n o t e d  by 0, or 0 n x l .  

To recall  t he  concep t s  of l inear  dependence ,  r ank  and  d imens ion  which  are 

f u n d a m e n t a l  in t h e  t h e o r y  of l inear  spaces,  let S := {x, y , . . . ,  z , . . . }  be a s y s t e m  of 

one or more  vec tors  f rom a vec tor  space  V over IF, and  let E := {a ,  ~ , . . .  "y , . . .}  c IF 

be a col lect ion of scalars,  which  is in one- to -one  co r r e spondence  wi th  S, i.e., for 

every  s e S, t he re  is a cr e E and  vice versa  (note  t h a t  t he  case when  the  set  
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S and hence, E is infinite, is not excluded). The collection E is called trivial if 

~ = ~  . . . . .  7 . . . . .  0. 
A vector u := a x  + ~y + . . .  + 7z + ' "  is a linear combination of the vectors 

from S. Thus, given the system S, every collection E of scalars defines a linear 

combination of vectors from S. The linear combination u is zero if E is trivial. 

However, the vector u may be zero even if E is not trivial, i.e., if some of the 

scalars are not zero as in the case u = x + y, where S = {x, y} and y = - x .  

A system S is said to be linearly independent if u = 0 implies tha t  E is trivial. 

Alternatively, a system S is linearly dependent if u = 0 for some nontrivial col- 

lection E of scalars. If a system S is linearly independent (or dependent),  we say 

tha t  its vectors x, y , . . . ,  z are linearly independent (or dependent).  

If a system S contains one vector x, i.e., S = {x}, then it is linearly independent 

if and only if x # 0. Equivalently, a system {x} is linearly dependent if and 

only if x = 0. When a system S consists of two or more vectors it is linearly 

dependent  if and only if one of the vectors may be expressed as a linear combination 

of the other vectors. A linearly independent system S cannot contain the zero 

vector. Indeed, if for example 0 = x ~ S then the nontrivial linear combination 

1 . 0  + 0 . y  + . . .  + 0.  z + . . . +  (with a collection of scalars {1 ,0 , . . . } )  is zero and 

hence, the system is S linearly dependent. 

A finite system 5' = {x, y , . . . ,  z} is of rank r if it contains r linearly independent 

vectors and each subsystem of S with more than r vectors is linearly dependent. 

We also say tha t  the rank of S is the (maximum) number of its linearly independent 

vectors. Thus, a system S is of zero rank if and only if x = y . . . . .  z = 0. 

A linear space V over IE has an important  integer characteristic, called dimen- 
sion, which may be defined as follows. A linear space, containing only the zero 

vector, is of dimension zero. Let now n be a positive integer. The linear space 

V is n-dimensional if there is a linearly independent system S C V, containing n 

vectors, and any system with more than n vectors from V is linearly dependent. 

If, for any n, there exist a linearly independent system with n vectors, the linear 

space is infinite-dimensional. The dimension of V is denoted by dim(V). 

A linearly independent system S = {x, y , . . . ,  z} is a basis for the linear space 

V if every vector v c V may be represented as a linear combination v = (~x + 

~Y + "'" + 7Y of vectors from S. In this case the representation, i.e., the choice of 

scalars, is unique. The basis itself is, of course, not unique. If dim(V) < cr and S 

is a basis for V, then dim(V) = rank(S).  

A set X C V is said to be a (linear) subspace of V if for every ~,/~ c IE and 

x, y E X we have c~x + ~y E X,  i.e., if any linear combination of vectors from X 

belongs to X. Given a system of vectors S C V, the set of all linear combinations of 

vectors from S is a subspace, called the span of S and denoted as span(S).  A basis 

for the subspace X is any linearly independent system S, such that  span(S) = X. 

The dimension dim(X) of the subspace X of a finite dimensional space V is the 
rank of its basis. 
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We consider m • n matrices A - [a~j] with real or complex elements (A)~j - a~j, 

i.e., A c IFm• where IF - R or IF - C. Matrices with elements from smaller fields 

such as Q are not considered, since the solution of a nonlinear matr ix  equation 

with rational coefficients is generically not a matr ix  over Q, as in x 2 - 2. At the 

same t ime matr ix  equations with real coefficients may have complex solutions as 

in the simplest case x 2 - - 1 .  

The s tandard  operat ions with matrices are the element-wise multiplication with 

a scalar IF x IFm• __+ IFmxn, defined by (~, A) ~ ~A - A~ = [~a~j], the element- 

wise s u m m a t i o n  IFm• x IFm• ~ IFm• defined by (A, B) H A + B, (A + B)~j = 

aiy + biy and the row by column mult ipl icat ion IFmxn x IFnxp __+ IFmxp, given by 

(A,  B )  ~-+ A B ,  where (AB)~ j  - ~ k = l  a~kbkj. Other  types of matr ix  multiplications 

are described in Appendix  C. 

The matr ix  space IFm• is a linear space over IF of dimension ran. A basis for 

IFmxn is the set of m n  matrices E~j(m,  n).  Here E~j(m,  n) is an m x n matr ix  with 

a single nonzero element, equal to 1, in position (i, j ) .  

The set I~ m• will always be considered as a linear space over ll~ and then its 

(real) dimension is ran. However, the set C m• may be considered as a linear 

space over C with a complex dimension ran, or as a linear space over I~ and then 

it is of real dimension 2ran. The terms 'real' and 'complex' here are interpreted 

as follows. A space V is of real dimension 1 if one needs 1 real scalars to determine 

a vector (or a point) from V. Similarly, V is of complex dimension 1 if a vector 

from V is determined in general by 1 complex scalars. 

The number  of linearly independent  columns of a matr ix  A is equal to the 

number  of its linearly independent  rows. This number  is called the rank of A and 

is denoted by rank(A).  Thus,  if A is m x n then rank(A) < min{m,n} .  The  

matr ix  A is of ful l  rank if rank(A) = min{m, n}. In turn,  a full rank m x n matr ix  

A is either of fu l l  row rank if rank(A) = m, or of ful l  column rank if rank(A) - n. 

Therefore to say tha t  the matr ix  A is of full row rank simply means tha t  it is of 

full rank and the number  of its rows is less than  or equal to the number  of its 

columns. 

If A E IFm x ~, the span of the columns of A is said to be the range (or image) of A 

and is denoted by Rg(A).  It is the image of IF ~ under the linear mapping x ~ A x ,  

namely Rg(A) "= { A x  �9 x c IF~} C IF m. The  set of solutions to the equation 

A x  - 0 is the kernel  of A and is denoted by Ker(A) "= {x"  A x  - 0} c IF~. It 

is easy to see tha t  Rg(A) is a subspace of IFm and Ker(A) is a subspace of IFn. 

Moreover, d im(Rg(A))  - r and dim(Ker(A))  = m - r, where r = rank(A).  

A square matr ix  A is invertible if there exists another  matr ix  B of the same size 

such tha t  A B  - I ,  where I is the unit  matrix. In this case we also have B A  - I ,  

the matr ix  B is referred to as the inverse of A and is denoted as A-1.  

If A is a rectangular  matr ix  of full rank then we may define its left and right 

inverses as follows. A matr ix  B is a right (respectively left) inverse of A if A B  = I 

(respectively if B A  = I) .  Thus, a matr ix  is simultaneously right and left invertible 
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if and only if it is square and invertible. A square ma t r ix  is invertible if and only 

if it is of full rank. In this case we also say tha t  the mat r ix  is nonsingular .  

If a ma t r ix  A is not square, it has a right (respectively left) inverse if and 

only if it is of full row (respectively column) rank. In this case the corresponding 

inverse is not unique. For a ma t r ix  A of full row rank over IF a right inverse is 

A H ( A A H )  -1.  If A is of full column rank a left inverse is ( A H A ) - I A  H. Here, A H 

denotes  the conjugate  t ranspose  of A and analogously A T denotes the t ranspose 
of A. 

Let A be an n • n real or complex matr ix.  A pair (/~, x), where A is a number  

and x ~ 0 is an n-vector,  is said to be an eigenpair  of A, if A x  - )~x. The 

number  A is an eigenvalue and the vector x is an eigenvector  of the  mat r ix  A. 

The  eigenvalues of A are uniquely determined.  We have ()~In - A ) x  = 0 and since 

x ~ 0, then  A satisfies the characteris t ic  equation X A ( / ~ )  "--  det(AIn - A) - 0 of 

the ma t r ix  A. At the same t ime the eigenvectors are de termined within a nonzero 

scalar factor. Indeed, if x is an eigenvector of A, corresponding to the  eigenvalue 

A, then  for every nonzero number  a the vector a x  is also an eigenvector of A, 

corresponding to the same eigenvalue. It is usually assumed tha t  the eigenvectors 
are normed  as Ilxl12 - 1. 

There  are various types of matr ices  according to their  form, pa t t e rn  of specified 

elements  (for example  zero a n d / o r  unit  elements) and other  properties.  

A ma t r ix  A - [ a i j ]  (not necessarily square) is" 

�9 diagonal, if aij - 0 for i ~= j ;  

�9 upper  triangular,  if aij - 0  for i > j ;  

�9 s tr ict ly  upper  triangular,  if aij = 0 for i > j;  

�9 lower t r iangular  if aij - 0 for i < j ;  

�9 s tr ict ly  lower triangular,  if aij = 0 for i < j .  

A square mat r ix  A is: 

�9 orthogonal,  if A T  A = I .  In this case we also have A A  T = I; 

�9 uni tary ,  if A H A  - I .  In this case we also have A A  n = I; 

�9 n o r m a l  if A H A  - AAH;  

�9 s y m m e t r i c  if AT- = A; 

�9 s k e w - s y m m e t r i c  if A T - - A ;  

�9 H e r m i t i a n  if A H = A; 

�9 s k e w - H e r m i t i a n  if A H - - A ;  
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�9 positive definite if xHAx > 0 for all nonzero vectors x E Fn; 

�9 nonnegative definite if xHAx >_ 0 for all nonzero vectors x E IF n. 

A.5  N o r m e d  s p a c e s  

The concept of a length of a vector is natural ly  generalized for abstract  objects in 

the following way. Let x be a real or complex n- th  vector with elements xi. Then  

its Euclidean length, or 2-norm, is defined as IlxiI = Ilxl12 = V/IXll 2 ~ - " "  ~-]Xnl 2. 
Thus, the length is a nonnegative function with three impor tan t  properties.  

First ,  if x ~: 0 then ]]xll > 0. Second, if we mult iply the vector x by the 

scalar (~, then the length of the new vector a x  is lal times the length of x, i.e., 

IIc~xit = I(~ I Itxt]. This may  be interpreted as homogenity of the length. And third, 
if x and y are two n-vectors,  then they, together  with their difference x -  y, form 
a triangle and the length of the third vector x - y does not exceed the sum of the 

lengths of the other two, i.e., ] i x -  Yll -< Iixi] + Iiyi]. Replacing y with - y  and using 

the second proper ty  we have the more symmetr ic  relation ]ix + Yll <- ]]xi] + ]]yi], 
called the triangle inequality. 

Given a linear space, we may introduce the concepts of a norm, which is similar 

to the concept of length, considered above. 

Let V be a linear space over IE with a zero element 0v. A function II" II : v -~ 1~ 
is said to be a norm, if it satisfies the following conditions: 

1. ]Ixi] ~ 0 if x ~ Oy (nontriviality of the norm); 

2. IIc~xll - ]~] ]lxll (homogenity of the norm); 

3. ]ix + YI] -< Iixi] + ][Yll (the triangle inequality for norms). 

Two impor tan t  propert ies  of norms can be deduced as follows. Sett ing a - 0 in 

Condi t ion 2 we see tha t  IlOy II = o. Fur thermore,  sett ing y - - x  in Condit ion 3 and 

using Condi t ion 2 and the identi ty ]10y II - 0 we obtain II0y I] = 0 < Iixll + ]I-  xiI = 
2]]xiI, i.e., xi] >_ 0. Thus,  the norm is a nonnegative homogeneous function, 
satisfying the triangle inequality. 

The triple (V, ]1" I], ]13:) is said to be a normed space. We also say tha t  (V, I1" II) is 

a normed space over IE, or even more briefly tha t  V is a normed space. If we have 

several normed spaces V, Ms,... the corresponding norms are denoted as I1" IIy, 

I1" IIw, etc. 

Let V be a l i n e a r  space o v e r ] F -  C o r ] F - -  R. The function V •  V - ~  F i s  

called a scalar product if it is" not identically zero, semi-linear in its first a rgument  
and linear in its second argument .  Hence, if (x, y) E ]F is the scalar product  of 
x, y E 9,  and A E F, then (Ax, y) = A(x, y), (x, A y ) -  A(x, y) and (x, y) - (y, x). 
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E x a m p l e  A . 2  For F equal to C or R a scalar p roduc t  in ]F n is (x,y) = xHAy, 
where  A - A H c F nxn is a posit ive definite matr ix .  For A - I we have the  

standard scalar p roduc t  (x, y) = xHy. (} 

Having  a scalar p roduc t  (x, y) in a linear space V over C or R, the  function 

x ~-~ V/(Xl X) i s  a norm in Y. 

The  norm ] i x -  Yll of the  difference of two vectors x and y is the  distance 
between  x and y. W i t h  the  not ions of norm and dis tance it is convenient  to use 

the  geometr ic  language and in par t icular  to call the  e lements  of V 'points '  

A sequence in a set V is a funct ion x �9 N ~ V. Set t ing xi - x(i) c V for i E N 

we denote  the  sequence as { x i } ~  or briefly {xi}. Thus,  the  sequence is a numbered  

infinite collection. W i t h  cer ta in  abuse of no ta t ion  we also wri te  {xi} C V (instead 

of the  r igorous x(N) C V). 

The  sequence {xi} of points  xi from a normed  space V converges to a point  

a c Y if for every c > 0 there  exists n - n(e)  e N such tha t  ] ] x i -  all < c for 

all i > n. The  sequence X is a Cauchy sequence if for every c > 0 there  exists 

n - n(~) e N such t ha t  Ilxi - xjl  I < ~ for all i, j > n. 

The  normed  space V is said to be a Banach space if every Cauchy  sequence 

X c V converges to a point  a E V. The  finite dimensional  spaces over F = R 

or F = C, are Banach  spaces. According to the  Bolzano-Weiers t rass  theorem 

[96] every bounded  sequence {x~}~= 1 in a finite dimensional  space over 1F has a 

convergent  subsequence  {xik }k~_-l. 

Let x E V and p > 0. The  sets Bp(x):= {y E V ' l l y - x l l  < p}, Bp(x) := {y E 

v l l y  - xll <__ ~} and  S p ( z ) - =  {y ~ V'Ily-  xll - p} are called open ball, closed 
ball and sphere, respectively, centered at the  point  x and wi th  radius p (for p = 0 

we have Bo(x) - 0  and B0(x)  - So(x )= {x}). 

The  set X C V is open if for every x E X there  exists a n o n e m p t y  open ball 

Bo(x ) c X.  The  set X is closed if its complement  V \ X  is open. Any (open) set, 

conta in ing  a par t icu lar  point  x c V, is said to be a (open) neighborhood of x. 

A set may  be open,  closed, nei ther  open nor closed or even open and closed 

simultaneously.  

E x a m p l e  A . 3  The  e m p t y  set 0 and the whole space V are open as well as closed. 

The  open  ball Bp(x) is an open set, while the  closed ball Bp(x) and the  sphere 

Sp(x) are closed sets. The  set B l ( x ) \ { x }  of all y ~ x wi th  I l y -  xlt -< 1 is nei ther  

open  nor closed. 

A more  subt le  example  is the  set of all vectors x - [x 1 , . . . ,  xn] T wi th  entries 

x~ c Q, satisfying IIxil _< 1. This  set is nei ther  open nor closed in R n. 

Let X C V. A point  x c X is a boundary point for the  set X if every Bp(x) 
contains  points  from X as well as points  from V \ X .  Note t ha t  a b o u n d a r y  point  of 

X may  not  belong to X.  The  set of b o u n d a r y  points  of X is called the  boundary of 

X and is denoted  by 0X .  The  union X "- X U OX of the  set X and its b o u n d a r y  
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OX is the  closure of X.  A set X is closed if and only if X = X.  The  set of all 

x E X,  for which X is an open  ne ighborhood,  is said to be the  interior of X and 

is deno ted  by X ~ Thus,  X is open if and only if X = X ~ 

E x a m p l e  A . 4  The  sphere  So(x ) is the  b o u n d a r y  of the  open Bo(x ) as well as of 

the  closed ball B--p(X). The  set B---p(X) - Bp(x)tO So(x ) is the  closure of B~,(x). 
Also, Bp(x) is the  interior  of Bp(x) provided p > 0. (} 

A set X c V is bounded if it is conta ined in a ball of finite radius. 

A family of open sets {Oi}iez is an open cover of X if their  union UiezOi is 

equal  to X .  A set X is compact if for every open cover there  is a finite sub-cover. 

In a finite d imensional  space over IF a set is compac t  if and only if it is closed and 

bounded .  

A subset  X of a l inear space V is convex if for every x, y E X we have tx  + 
( 1 - t ) x E X  f o r 0 _ < t < _  1. 

E x a m p l e  A . 5  If p > 0, then  the  balls Bp(x) and Bp(x) are convex, while the  

sphere So(x ) is not  convex. (} 

For x E V and X C V the  quan t i ty  d i s t ( x , X )  " -  i n f { l l x -  Y[I " Y E X }  

is the  distance between  the  point  x and the  set X.  The  quan t i ty  d i a m ( X )  "= 

sup{llx - YtI" x, y E X }  is the  diameter of the  set X.  

A.6  M a t r i x  func t ions  

In this sect ion we consider the  problems of cont inui ty  and differentiabili ty of matrix 
functions, i.e. of mat r ix -va lued  funct ions of ma t r ix  arguments .  Firs t  we discuss 

the  cor responding  problems for funct ions in normed  spaces. 

Let f �9 D --~ W be a funct ion with  a domain  D C V, where  V and W are 

no rmed  spaces over the  field IE C IF wi th  norms I[" II, where  IF s tands  for R or C 

(we use the  same no ta t ion  for norms II" IIy and II" IIw in y and W).  Typical ly  we 
assume t h a t  V - IF n and W = F m. 

If D C R is an interval  and W = R m, then  the  funct ion f (or its image 

f ( D )  c R m) is in te rpre ted  as a curve. I f D  C ]R m-1 and W -  R m then  f (or 

its image f ( D ) )  defines a surface in R TM (under  this definition, in R 2 curves are 

surfaces and  vice versa).  

W h e n  W - IF m, to de te rmine  a funct ion f -  D ~ W means  to de te rmine  its 

componen t s  fi " D -~ IF, i - 1 , . . . ,  m. In this case we write f - [ f l , . . . ,  fm] T or 

s imply f - ( f l ,  �9 �9 �9 fro). 

A funct ion  f is continuous at the point xo E D if for all e > 0 there  exists 

5 - ~(C, xo) > O, such t h a t  [If(x) - f(xo)ll < ~ for any x E D with  [ I x -  xo[I < 5. 

The  funct ion f is continuous on the set E C D if it is cont inuous at all points  of 
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E. A function f = ( f l , . . . ,  fro) : D ~ F m is continuous at x0 E D if and only if 

every component fi : D  ~ IF of f is continuous at x0. 

The function f : D  ~ W is bounded on the set E C if the image f ( E )  of E 

under f is a bounded set. The function f is locally bounded on D if it is bounded 

on each bounded subset E C D. 

If D C F n is compact (i.e., closed and bounded in this particular case) and the 

function f : D ~ R is continuous on D, then f is bounded on D and reaches its 

minimum and maximum values on D. 

A function f : D  ~ W is uniformly continuous on the set E C D if for every 

e > 0 there exists 5 = 5(e) > 0 such tha t  Ilf(x) - f(xo)l l  < c for all x, xo c E with 

tlx - xotl  < ~. Note tha t  uniform continuity is not connected with a particular 

point from E, but with the whole set E. 

A difference between the (usual) continuity and uniform continuity of a function 

on a set is as follows. Recall from the above definitions that  the function f : 

D ~ W is continuous on E C D if for every e > 0 and x0 E E there exists 

5 = 5(e, xo) > 0 such tha t  IIf(x) - f(x0)ll < ~ for all x E E with I l x -  x011 < 5. 

Thus, for the usual continuity the quanti ty 5 = 5(e, x0) depends on e and x0, while 

in the uniform continuity it depends only on e. 

Uniform continuity on E implies continuity on E, but the opposite may not be 

true. Let the function f : D --, W be continuous on D and 5(e, x0) be the quanti ty 

in the corresponding (e, 5)-definition. If 5 ~  inf{5(e, x0 ) :  x0 E D} > 0 then 

the function is uniformly continuous. Indeed, in this case we may take 5 to be 5 o 

in the definition of uniform continuity. If a function f : D ~ W is continuous 

then it is also uniformly continuous on every compact subset E of D. 

E x a m p l e  A.6  Consider the scalar real function x H x 2, defined on the interval 

[0, a) C R, where a > 0. We have Ix 2 - x~l - Ix - xollx + xol. If Ix - x01 < 5 then 

Ix + x01 < 2Ix01 + 5. In this case the inequalities I x -  xollx + x01 < ~(21x0l + ~) _< c 

yield 5 -  5(~, x 0 ) " =  ~/(Ix01 + v/x 2 + e) .  

I f a  < ee, then we have ~(e, xo) >_ 5 ~  e / ( a + v / a 2 + e )  > 0 and the 

function x H x 2 is uniformly continuous on [0, a). If the interval Y is not bounded 

(a = ~ ) ,  then the infimum of 5(e, x0) in x0 E [0, oc) is zero. Therefore the function 

x ~ x 2 is continuous but not uniformly continuous on [0, ec). 

If the function f : D - .  W is continuous at the point x0 c D and the sequence 

{xi} c D converges to x0 then the sequence {f(xi )}  C W converges to f ( xo ) .  But 

f may not be continuous at some point Xo, or even may not be defined at x0, and 

still the sequence {f(x~)} may converge to some point Y0 E W. Of course, in this 

case x0 must  either belong to D or be 'close' to D in the following sense. 

The point x0 is an accumulation point for the set D if there is a sequence from 

D, which converges to x0. Let x0 be an accumulation point for the set D. The 

function f : D ~ W has a l imit yo at the point x0, denoted as lim~__.~ o f ( x )  = yo, 
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if the sequence { f (x i )}  converges to Y0 provided the  sequence {x~} c D converges 

to x0. 

Consider a sequence of functions { f  i}, mapping  the  set D into W. For a given 

x c D we have the sequence of points {f~(x)} C W. Suppose tha t  the  limit 

f ( x )  "-  lim~_~o~ f~(x) exists for every x e D. Then  we say t ha t  the function 

sequence {f~} converges point-wise on D to the function f .  If the functions fi are 

continuous then  the  l imit  function f may or may not be continuous. To ensure 

t ha t  a limit of continuous functions is itself a continuous function we need the  

s t ronger  concept  of uniform convergence of a function sequence. 

A function sequence {fi } with fi  " D ~ W converges uniformly to the function 

f �9 D ~ W if for every c > 0 there  exists N = N(e)  _> 1 such tha t  for all i :> N 

and all x c D we have Ilfi(x) - f (x)l l  < c. If a sequence of continuous functions 

{fi} with a common  domain  D converges uniformly to the function f ,  then  the 

limit function f is continuous on D. 

A function f �9 V --~ W is called linear if, for all scalars a ,  ~ c IE and vectors 

x, y E V, it is fulfilled t ha t  f ( ~ x  + ~y) = ~ f ( x ) +  ~ f ( y ) .  The function f "  V ~ W 

is hi:fine if f ( x )  - b + / ( x ) ,  where b e W and the function l "  Y ~ W is linear. 

The  affine function, defined via f ( x )  - Yo - l ( x o )  + l(x), takes a prescribed value 

y0 at the  point  x0. Linear and affine functions are often referred to as linear and 

affine operators. 

Linear and affine opera tors  in vector and mat r ix  spaces may be defined as 

follows. A linear opera tor  f �9 ]F n --, IF m is defined via f ( x )  - Ax,  and an affine 

opera tor  - via f ( x )  = A x  + b, where A E F mxn and b E F m. A linear opera tor  

L" I~ mxn ~ I~ pxq may be defined by L ( X )  - ~ k = l  A i X B i ,  X e IF mxn, where Ai 

and Bi are given p x m and n x q matr ices,  respectively. An affine opera tor  F has 

the  form F ( X )  - B + L(X) ,  where B e ]Fpxq and L is a linear operator .  

A function f �9 V ~ W is called homogeneous (absolutely homogeneous) of order  

k E N if f ( ~ x )  - c~kf(x) (if f(c~x) - Ic~[k f (x ) ) .  
Let V and W be linear spaces over C. A function f " V --~ W is semi- 

homogeneous of order k e 1M if f ( a x )  = -Ski(x).  A function f is semi-linear if it 

is addit ive and semi-homogeneous  of first order, i.e., f ( x  + y) - f ( x ) +  f ( y )  and 

f (c~x) - -h f (x). 
A function f "  V1 • V2 ~ W, where V1 and V2 are linear spaces, is bilinear if 

for fixed xi E Vi the  functions f ( . , x 2 ) ' V 1  -~ W and f ( x l ,  . ) '1 /2  ~ W are linear. 

Similarly, the function f �9 V1 • . . .  x Vn ~ W of n a rguments  is multi-linear if it 

is linear in each of its arguments .  

Let a function f �9 D ~ W be defined on the  open set D C V and let x be a 

fixed point  from D. A function f is said to be Frdchet differentiable (or simply 

differentiable) at the point  x if there  exists a linear opera tor  l �9 V ~ W such t ha t  

f ( x  + h) = f ( x )  + l(h) + w(h) for all h e Y with x + h e D, where the function 

~ "  Y --~ W satisfies limh-,0 IIw(h)ll/llhll = 0. The  linear opera tor  l ( . )"  Y ~ W 

depends on bo th  the function f and the  point x. It  is called the  Frdchet derivative 
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of f at x and is denoted as i f (x ) ( . ) ,  f~(x)( . )  or J(x)( . ) .  When it exists, the 

Fr~chet derivative is unique. Below we describe the Fr~chet derivatives of some 

matrix-valued functions of matr ix arguments. 

If V = W = R then the Fr~chet derivative f~(x) c R is the s tandard derivative 

of the real-valued function f of a real argument at the point x c D. If V = W = C 

then the Fr~chet derivative i f ( z )  E C is the s tandard derivative of the complex- 

valued function of a complex argument at the point z c D. If V = IF ~ and W = IF m 

then the Fr~chet derivative of f = I f1 , . . . ,  fm] -r at x E D is the m x n matr ix 

(known also as the Jacobi matr ix  of f at x) 

] f '  ( x )  = J ( x )  . [ ( x )  . 

If f : V1 x ..- x V~ --, W is a function of n (matrix) arguments x 1 , . . . ,  Xn, 

then we define the partial Frdchet derivative l~(.) = f ~  (x)(.) : Vi ~ W of f in the 

argument  xi at the point z = ( x l , . . . ,  Xn) via f ( x  + h) = f ( x )  + li(hi) + w(hi), 
where h = ( h l , . . . , h ~ )  and hk = 0 for k 7~ i. 

The existence and uniqueness of the solution as well as the per turbat ion anal- 

ysis problems for nonlinear equations are often t reated on the basis of the implicit 

funct ion theorem. The implicit function theorem gives conditions which guarantee 

tha t  the solution of a nonlinear equation, depending on a parameter ,  exists and 

continuously depends on this parameter.  Usually the existence of the solution is 

claimed locally, in an open neighborhood of a fixed solution of the equation. 

Let the continuous function f( . ,  .) : A x X ~ Y be given, where A, X and Y 

are open subsets of the finite dimensional normed spaces A', .4 and 3;, respectively, 

with norms I1" II, where X and 3; are isomorphic. 

Let the point (a0,x0) satisfy the equation f (ao,  xo) - O. We are interested in 

conditions for solvability of the equation 

f ( a , x )  = 0  (A.1) 

in a neighborhood of (ao,xo) in the form x = ~(a),  where ~ is a continuous 

function, satisfying ~(a0) = x0. Setting 5a := a -  a0 and 5x := x -  x0 we get 

5x = ~(a0 + ha) - ~(a0). 

T h e o r e m  A . 7  [173] Suppose that the partial Frdchet derivative fx(ao,xo)( . )  : 

2d ---, y of f in x at the point (a0,x0) exists and is invertible. 
Then there is an open set D C A and a continuous function ~ : D ~ X ,  such 

that Xo = ~(ao) and f (a ,  ~(a)) = O, a e D. 

If f = I f1 , . . . ,  fn]T:  F n • IF m ---* F n, and x = Ix1, . . .  ,x~] T then the conditions 

of the implicit function theorem reduce to the existence of the nonsingular Jacobi 

matr ix  

-5-;x (ao,xo) [Oxj(ao,xo) 
i , j=l 
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When the partial Fr6chet derivative fa(ao,xo) of f in a at (ao,xo) also exists, 

we have x = Xo - f ~ l (ao , xo )  o f a ( a o , x o ) ( a -  ao) + w ( a -  ao), or 

6x = - f ~ l ( a o ,  xo) o fa(ao,xo)(6a) + w(6a), 

where limz--.0 II (z)ll/llzll = o.  

The above concepts apply to matr ix valued functions of matrix arguments as 

follows. Let F : D --~ lFpxq be a matrix-valued function of a matrix argument,  
defined in an open neighborhood D C IF mxn of the matrix X E F mxn. The 

function F is said to be differentiable at the point X if there exists a linear operator 
s  m x n  - 4  I~ p x q  such that  

F ( X  + H) = F ( X )  + f_.(H) + o~(H), (A.2) 

where the matrix-valued function c~:lF mxn --~ 1Fpxq satisfies 

lim IIc~(H)ll = 0. (A.3) 
H---*0 IIHII 

The linear operator s in (A.2) in general depends on X, i.e.,/2(.) = s X).  It is 

called the Frdchet derivative of F at the point X and is denoted by s = F' (X) ( . ) .  

If it exists, the Fr6chet derivative is unique. The value F ' ( X ) ( H )  of the Fr6chet 

derivative is the (best) linear approximation to the increment F ( X  + H) - F ( X ) .  

If the function F is differentiable for all X E D it is differentiable on the set 
D. 

Let now F : D1 • .-- • Dr ~ IF px q be a function of the multi-matrix argument 

X = (X1 , . . .  ,Xr) ,  where Di C IF m~xn' are open neighborhoods of some points 

Xi0 E 1F m~ x ~  The function F is said to be differentiable in Xi at the point 
X0 = (X10, . . .  ,Xr0) if there exists a linear operator s  I~ m`xn* ~ lFpxq such 
that  

F ( X  + H) = F ( X )  + s  + c~i(Hi), 

where H = ( H l , . . . , H r ) ,  Hk = 0 for k r i, and a~ satisfies (A.3). The linear 

operator s  is said to be the partial Frdchet derivative of F in Xi at the point 

X and is denoted by s = Fx, (X)(.) ,  or briefly Fx, (-) if the point X at which 

it is calculated is clear from the context. 

The Fr6chet derivative of matrix-valued functions has many properties of the 

s tandard derivative of scalar functions of a scalar argument as shown below. 

If F = F1 + f2,  where F1,1;'2 : D ~ IF pxq and D C ]~rnxn then 

F'(X)  = F;(X) + G ( X ) ,  

or, more generally, 

+ . . .  + Fk(X)) '  = F (X) + . . .  + 
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Here and in the rest of this section we suppose tha t  the  corresponding Fr6chet 

derivatives exist. 

If F = G o H : F mxn --~ ]Fpxq is a composi t ion of the differentiable matr ix-  

valued functions G :IF r• --+ ]Fp• and H :IF m• --+ IF r• then  F is also differen- 

t iable,  and F '  = G' o H ' ,  or equivalently, 

F ' ( X )  - G ' ( H ( X ) ) H ' ( X ) .  

This is known as the  chain rule and it may be extended for a function F = 

F 1  o F 2  o . . .  o F k  as 
F ' ( X )  : F~ o F~ o . . .  o F~ (X) .  

I f  F - FIF2 is a product  of two functions F1 " D ~ IF p• and F2 " D ~ IF ~• 
then  

F ' ( X )  -- F ~ ( X ) F 2 ( X )  + F I ( X ) F ~ ( X ) .  

This is the Leibn i t z  rule; which can be extended to k > 2 factors as follows. I f  

F ( X )  - FI ( X ) F 2 ( X )  . . . F k ( X )  then  

F ' ( X )  - F ~ ( X ) F 2 ( X )  . . . F k ( X )  + F ~ ( X ) F ~ ( X )  . . . F k ( X )  

+ . . .  + F I ( X ) F 2 ( X ) . . . F ~ ( X ) .  

Another  example  of differentiation of composi te  functions is when F may be 

r~pr~s~nt~d ~s F(X) - Fi(X)Fi-I(X)F3(X), wher~ F i  " ~ •  -~ ~ ' •  F2 " 
F m• --~ F sxs  and F3 �9 I~ m x n  ~ IF sXq. In this case 

v ' ( x )  F~ (X)F21(X)F3(X)  --[- F1(X)F21(X)F~(X)  

- F1 (X)F21(X)F~(X)F21(X)F3(X) .  

E x a m p l e  A . 8  Let F ( X )  = A X  + X B  + X C X  + D X - 1 E ,  where A, B, C, D, E c 

F n• and X c F n• is nonsingular  matr ix .  Then  F ' ( X ) ( H )  - (A  + X C ) H  + 

H ( B  + C X )  - D X - 1 H X - 1 E .  <> 

A . 7  T r a n s f o r m a t i o n  g r o u p s  

Let S be a set and F be a group of au tomorphisms  S --+ S. The  elements  of F are 

called t rans fo rma t ions  and F itself is called a t rans fo rma t ion  group on the set S. 

The  group F defines an equivalence relation - on S according to the  rule x - y if 

there  is a t r ans format ion  7 E F such tha t  y = 7(x).  

The  set of all e lements  y C S, equivalent to a given x E S, is said to be the orbit 

of x and is denoted  as F(x),  or as [x] := {y c S :  y - x} = { 7 ( x ) :  7 E F}. We 

note t ha t  for every y E S ei ther  both  x and y belong to one orbit  (i.e., Ix] = [y]), 

or [x] N [y] = 0. Thus,  the  set S is divided into disjoint orbits. The  set S~ =_ of 

all orbits  is called the orbit space (or the  factor-space)  of S relative to the action 
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of F. The mapping x ~-~ Ix], which assigns to every member of S its orbit from 

S~ - ,  is called the canonical projection and is denoted by 7r : S ~ S~ =-. 

A function f : S ~ T, where T is a given set, is said to be an invariant  

relative to F if x - y implies f ( x )  = f ( y ) .  This means tha t  f is constant on the 

orbits, induced by F. It is usually assumed tha t  an invariant is surjective, i.e., tha t  

f ( S )  = T,  since this can easily be achieved. If in addition I ( x )  = f ( y )  implies 

x - y, then the function f is a complete invariant  for the action of F on the set S. 

If F0 c F is a subgroup of F, then there exist complete invariants f : S ~ T 

and f0 : S ~ To for F and F0 respectively, such tha t  f is a 'part '  of f0 in the sense 

tha t  f0 may be represented as f0 = (f, g), where g :  S ~ To is another invariant 

for F0. 

A subset C c S is called a canonical set for F if it contains exactly one member  

Zc of each orbit [z]. The element Xc E C is the canonical form of z relative to 

F. In this case the mapping x ~-~ Zc of S onto C is a complete invariant for F. 

When S is a set of objects with internal structure (such as general matrices), the 

canonical set usually is a set of objects of simplified structure (e.g., t r iangular 

matrices). The construction of canonical sets is an important  task in the analysis 

of the action of t ransformation groups, and of matr ix t ransformation groups in 

particular. 

A.8  N o t e s  and re ferences  

Elements of algebra and analysis can be found in classical textbooks such as [29, 

961. 
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Appendix B 

Unitary and orthogonal 
decompositions 

B.1 Introductory remarks 

This appendix is an introduction to unitary and orthogonal decompositions (or 

factorizations) of a matrix. First we consider elementary unitary matrices. Then 

we describe the unitary-triangular,  or QR decomposition, as well as some related 

matrix decompositions. We also present the Schur decomposition of a square 

matrix, and the polar and singular value decomposition of an arbitrary matrix. 

Transformations with unitary and orthogonal matrices (we identify transfor- 

mations with the corresponding matrices when the type of action of the transfor- 

mation group is clear from the context) are useful in practical computations, since 

the absolute values of their elements do not exceed 1 and hence, the elements and 

the norms of the transformed matrices are not changed much. This is important,  

since most matrix computations are performed in finite precision arithmetic, where 

the rounding errors are usually proportional to the magnitude of the computed 
quantities. 

Recall that  a matrix U E F n x n  is unitary if u H u  - -  In, and orthogonal if 

UTU = I~. A complex unitary or a real orthogonal matrix U is also called 

orthonormed, since its columns ui satisfy the conditions uHuj -- 5ij, where 5ij is 

the Kronecker delta. 

The sets of n x n unitary and orthogonal matrices over IF (where IF = R or 

F = C) are denoted by/~(n)  and O(n,]F), respectively. They are multiplicative 

groups under the standard matrix multiplication. 

The spectral, or 2-norm IIAII2 = max{llAxll 2 : Ilxl12 = 1} and the Frobenius, 

or F-norm IIAIIF = v / t r (AnA)  play an important role in connection with unitary 
transformations. The reason is that  these norms are unitary invariant, in the 

345 
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sense that  they preserve the norm of the transformed matrix: IISII2 = IIAII2 and 

IISlIF = IIAIIF. Also, we have the useful inequality IIABIIF _< IIAII211BIIF which is 
easily generalized to 

IIAIA2"'" A~IIF _< IIAklIF H IIAill2 (B.1) 
iCk 

for each k c { 1 , . . . , r } .  

If U c /~ (n )  or U E O(n ,R)  then [lUll2 = 1 and [[UllF = v/n. Thus, b/(n) C 
C nxn and O(n ,R)  c R nxn are closed balls of radius ~ relative to the distance, 
induced by the scalar products (U, V) = tr(UHV) and (U, V) = t r (UTV) (or by 
the Frobenius norm). 

If a square (complex) matrix U is represented as U = U0 + zU1, where U0, 

Ularerea l ' t hen i t i sun i tary i fand~  [ UOU1 -U1 ] i s U o  

orthogonal. 

In many applications a general matrix A is decomposed as a product, involving 
unitary or orthogonal matrices, namely A = USV H or A = USV T, where the 
matrix S has the size of A, while U and V are unitary or orthogonal matrices. 
The matrices U and V may not be independent (for example V may be equal to U), 
or one of them may be the identity matrix or a permutation matrix. The matrix 

S typically has a simple condensed form, e.g., triangular or diagonal. It reflects 
the invariant structure of A under unitary transformations A ~ S = UHAV. 

B.2 Elementary unitary matrices 

A general unitary matrix may be decomposed into a product of "elementary" 
unitary matrices. There are several types of matrices, considered as elementary. 
Among them are the plane (or Givens) rotations and the elementary (or House- 
holder) reflections. 

An elementary complex plane rotation (Givens rotation) is a unitary matrix, 
which differs from the identity matrix in at most four positions, occupied by the 
elements of a 2 x 2 unitary matrix and has determinant 1. More precisely, a 
rotation in the (p, q)-plane, p < q, is an n x n matrix Rpq, whose (i, k) elements 
rik are determined as follows. The 2 x 2 matrix 

rpp rpq ] (B.2) 
rqp rqq 

is unitary and rik is the Kronecker delta if {i, k} N {p, q} = 0. 

An elementary real plane rotation is defined similarly. It is a real orthogonal 

matrix with the structure of R~q, where the matrix (B.2) is orthogonal. 
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Another  type  of e lementary uni tary  matrices are the elementary reflections. 

Let u E C n be a nonzero vector. The matr ix  

2uu H 
�9 c C n• H(u)  - In uH u 

is said to be a elementary complex (or Householder) reflection. It follows from tha t  

H(u)  = H ( a u )  for each nonzero scalar c~. The matr ix  H(u)  is both Hermit ian 

and unitary. Elementary real reflections are defined similarly as 

2vv T eR nxn, O ~ v E R  n 
H(v)  "-  In vT v 

The matr ix  H(v)  is both  symmetr ic  and orthogonal.  

The multiplication of a vector x c C n by a reflection H(u)  is reduced to the 

calculation of a single scalar product  uHx, multiplication of a vector by a scalar 

and substract ion of two vectors according to 

H ( u ) x  = x -  u. uHu 

In part icular  we have 

(.u) 
H ( u ) u  - u -  u = u -  2 u  - - u  uHu 

and d e t ( H ( u ) ) = - 1 .  

A multiplication with H(u)  reflects any vector relative to Ker(un) .  Based on 

this we have an elegant solution to the following problem. Given two different 

vectors x, y c C n of equal 2-norm, find a uni tary matr ix  U, which transforms x 

into y, i.e. y = Ux. It follows from the reflection proper ty  of H(u)  tha t  a solution 

of this problem is U = H ( x -  y), i.e., 

H ( x -  y)x  = y, Ilxll  = Ilyll2 > 0. 

It is often necessary to t ransform a nonzero vector x into a form with only 

one nonzero element in the k-th position. Suppose tha t  the vector x E C n is not 

proport ional  to the k-th column ek of the identity matr ix In. Let c~ E C and 

Ic~l = 1. Then  the required t ransformat ion is 

H ( x  - y )x  = y, y := ~ll~l12~k # x. 

In the real case we have c~ = +1 and 

(B.3) 

H ( x -  y)x  = y, y := +]lxll2ek. (B.4) 

The choice of c~ in (B.3), respectively of the sign in (B.4), is done from numer- 

ical considerations in order to avoid possible cancellations in substract ing close 
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quanti t ies .  If the  a rgumen t  of xk is ~k, i.e., xk = Pk exp(~qPk), then  we choose the  

a rgumen t  of c~ as ~k + 7r which gives c~ = - exp(~qPk). In this way the  k- th  element  

of the  vector  x - y becomes (Pk + I[xll2)exp(~pk). 

In the  real case if xk is nonnegat ive  (respectively negat ive)  we choose y = 

Ilxll2ek (respect ively y =--I lxl l2ek) .  

Since the  ma t r ix  H(x T Ilxll2ek) is bo th  Hermi t ian  and un i ta ry  we have 

x = H ( x  - y ) y  = c ~ l l x l [ 2 H ( x  - y ) e k  - -  c~][x[12hk(x  - y ) ,  

where  h k ( x -  y) is the  k-th column of H ( x -  y). 
Now we may  solve the  following problem. Given a uni t  vector  x E C n find a 

n x ( n -  1) ma t r ix  V such t ha t  the  mat r ix  U := [x, V] is unitary.  If x is colinear to 

some column ek of In, then  V contains the  o ther  columns of In. Suppose  now tha t  

x is not  colinear to a column of In. Let h i , . . . ,  hn be the  columns of the  reflection 

H(x  ~= el) which t rans forms  x into el. Then  a solut ion is V = [h2,. .  �9 hn]. Indeed,  

in this case x = + h i .  

B.3 QR decomposition 

Using a finite number  of or thogonal  or un i t a ry  t r ans fo rmat ions  it is possible to 

cons t ruc t ,  the  un i ta ry- t r iangular ,  or Q R  decomposi t ion  of a general  rec tangular  

matr ix .  Firs t  we define the  echelon form of a matr ix .  

Let A = [aij] be an m x n ma t r ix  of rank  r > 1. Denote  by k l , . . . ,  kr the  

numbers  of the  first r l inearly independen t  columns of A. Let s c { 1 , . . . ,  r} be a 

given integer.  We say tha t  A is in row s-echelon form if aij = 0 for i = 1 , . . . ,  s 

and j < ki as well as for l = 1 , . . . , s  and i > kl, j = kl. The  ma t r ix  A is in row 
echelon form if it is in row r-echelon form (for completeness  we assume tha t  the  

zero ma t r i x  is in row echelon form and tha t  every mat r ix  is in row 0-echelon form). 

Thus ,  the  row echelon form is a ma t r ix  A with  ai,ki 7 s 0 for i = 1 , . . . , r  and 

zero e lements  before and below each e lement  ai,k~. If A is in row s-echelon form 

t h e n  ai,ki ~ 0 for i -- 1 , . . . ,  s. Also, if A is in row echelon form then  aij  = 0 for 

i > r. It  is obvious also tha t  if A is in row s-echelon form with  s > 1 it is also in 

row/ -eche lon  form for 1 = 1 , . . . ,  s -  1. 

The  row echelon form A is an upper  t r iangular  matr ix ,  and even an upper  

t r apezo ida l  ma t r ix  if kr > r, e.g. if the  first r rows of A are not  l inearly indepen- 

dent.  

An i m p o r t a n t  observat ion  is t ha t  if a ma t r ix  A of rank  r is in row k-echelon 

form, then  A = [ Ak x ] ,  where  the  k x rk matr ix  Ak is in row echelon form [ 0 Ak+l J 

and the  ( m - k )  x ( n - r k )  ma t r ix  Ak+l is of rank  r - k .  the  cor responding  matrix.  

Given a general  m x n ma t r ix  A of rank r, we may  cons t ruc t  a un i t a ry  mat r ix  

Q c b/(m),  such t ha t  

A = QR, (8.5) 
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where the m x n matr ix  R is in row echelon form. Note that  if r < m then the 

last m -  r rows of R are zero and we have 

] = Q1R1, (B.6) 

where R1 is an r x n full row rank upper triangular matrix in row echelon form and 

Q1 is the matrix,  formed by the first r columns of Q. The factorizations A = Q R 
and A = Q1R1 are referred to as the QR decomposition and the condensed (or 
skinny) QR decomposition of A. 

Sometimes the QR decomposition includes a right multiplier, A = QRII, where 

II is the n x n permutat ion matrix, chosen so that  the first r columns of AH are 

linearly independent. This is called QR decomposition with column pivoting. 
There is also a triangular-unitary, or LQ decomposition A = LP H, where L is 

in column echelon form and P E/d(n) .  If r < n then the last n -  r columns of L 
are zero and 

A - L p H - [ L I , O ] [  PH ] =L1P1H 

Here L1 is of full column rank and P1 is the matrix, formed by the first r columns 
of P. 

If the matr ix  A is real, then all matrices in the QR and LQ decompositions 

may be chosen real with Q and P being orthogonal. 

If some additional assumptions on R and L are imposed, then these matrices 

will be canonical forms for the actions A ~ R = QHA and A H A P  of U(rn) and 

/d(n) on C mx~. To achieve this, one may impose the requirement that  the pivots 
in R and L are real and positive. 

Let l 1 , . . . ,  lr be the numbers of the first r linearly independent columns of A 

and hence, of L. The canonical forms R and L contain at most r(n + 1 ) -  ~-~iL1 ]~i 
and r (m  + 1) - ~ - - 1  l~ nonzero elements (among them r positive), respectively, 

which constitute the algebraic invariant of A relative to the left and right mul- 

tiplicative actions of L/(rn) and b/(n). Generically k~ = l~ = i and we have 

r(2n - r + 1)/2 and r(2m - r + 1)/2 scalar algebraic invariants, respectively. At 

the same time the integer r-tuples ( k l , . . . ,  kr) and ( / 1 , . . . , / r )  constitute the arith- 

metic invariant for the above actions. The arithmetic and the algebraic invariants 

form a complete set of invariants for the multiplicative action of the corresponding 
unitary group. 

Using the QR decomposition it is easy to solve the following problem. Given 

an m x n matr ix  X with n < m orthonormal columns, find a rn x ( m -  n) matrix 

Y such that  the matr ix IX, Y] is unitary. If X = QR is a QR decomposition of 

X, then Y is the matrix,  formed by the last m - n columns of Q. 

If the rank r of A is less than min{m, n} then the canonical forms R and L may 

be further compressed, resulting in the QCP (or URV)-decornposition, described 
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below. Let R1 - [ C 1 , 0 ] P  H be the LQ decomposition of the matrix R1 in (B.6). 

Then we have the QCP decomposition 

A - Q C P  H - Q [ C1 
L O(m--r)xr 

Or• ] pH (B.7) 
O(m-r) x (n-r) J 

where the r • r matrix C1 is nonsingular. The QCP decomposition may also be 
written in the condensed form A = Q1C1 PH, where Q, and P1 are the matrices, 
formed by the first r columns of Q and P, respectively. 

In contrast to the singular value decomposition, described below, the QCP 
decomposition is achieved in a finite number of steps and may be easily updated. 
The decomposition (B.7) allows also to derive easily the polar decomposition and 
the singular value decomposition, considered below. 

B.4 Schur decomposition 

One of the most useful results in applied linear algebra is the following theorem 
of Schur. It allows to obtain the spectrum of a general square matrix using only 
unitary (or orthogonal) transformations. 

T h e o r e m  B.1 [83] Let A c F nxn �9 Then there exists U E bl(n), such that 

A -  U T U  H, (B.8) 

whcFc 

T - u H A u  -- 

t l l  t12 .. .  t in 

0 t22 ...  t2n 
�9 �9 �9 �9 

�9 . 

0 0 . . .  tun 

(B.9) 

The decomposition (B.8), (B.9) is called the Schur decomposition of the matrix 
A. 

The diagonal elements tii of T are the eigenvalues ,~i =/~i(A) of A. The upper 
triangular matrix T is said to be the Schur form of A. The columns of the unitary 
matrix U form the Schur basis of I~ n relative to A (or, briefly, the Schur basis for 
A). The pair (T, U) is referred to as the Schur system of the matrix A. 

In this statement of the problem the Schur system of a matrix, and the Schur 
form, in particular, is not unique. That is why we do not call this Schur form 
canonical. For canonical forms of square matrices relative to the unitary similarity 

action see [197]. Note that it is possible to achieve any ordering of the eigenvalues 
of A on the diagonal of T. 

If the matrix A is real and has only real eigenvalues then the matrix U may 
be chosen real and orthogonal, i.e., U c (.9(n,R). If, however, A is real but has 
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at least one pair of complex conjugate eigenvalues, then U cannot be real with T 
being upper triangular and hence, complex. 

Let for instance the real matrix A have n l real and 2n2 complex eigenvalues 
(nl + 2n2 = n). Set p = nl -Jr n2. In this case there exist W E O(n,I~)  and a real 
upper triangular p • p block Schur form 

T O _ W T A W  = 

T l l  T12 . . .  T i p  

0 T22 . . .  T2p 

�9 i ~  �9 " 

0 0 . . .  T~p 

of A, where the blocks Tii are 1 x 1 and equal to ,ki when they correspond to 
real eigenvalues ,ki, or 2 x 2 when they correspond to pairs of complex conjugate 
eigenvalues ai + ~/3i of A. 

A diagonal 2 x 2 block, corresponding to the eigenvalues a i ~;9, may be further 

reducedt~ [ aV a5 ] w i t h V h - - / 9 2 , o r  [ 0' /9 - / 3 ]  w i t h 7 + 5 - 2 ~ ' 6  

In contrast to the QR decomposition, the Schur decomposition in general can- 
not be constructed by a finite number of algebraic operations (arithmetic opera- 
tions plus taking roots). This is a principal limitation following from the famous 
Abel-Ruffini-Galois theorem [29], which states that the roots of a general algebraic 
equation of degree > 5 cannot be expressed by its coefficients in a finite number 
of algebraic operations. Now, if a general n x n matrix with n >_ 5 could be trans- 
formed into Schur form by a finite algebraic algorithm, then this would be true for 
the companion matr ix  

C p  " ~  

0 1 . . .  0 0 
0 0 . . .  0 0 

�9 . . �9 . 

�9 �9 . 

0 0 . . .  0 1 

- - a n  - - a n - 1  �9 . .  - - a 2  - - a  l 

of a general polynomial p(,~) = An + a l a n - 1  + . . .  + an of n-th degree. But the 
eigenvalues Ai(Cp) of the matrix Cp are the roots of the polynomial p, which 
cannot be computed by a finite algebraic procedure. Hence, an algorithm for the 
computation of the Schur decomposition of a general matrix must be iterative. 
An example of such an algorithm is the famous QR algorithm of Francis and 
Kublanovskaya [83]. 

If the matrix A is normal, i.e. A H A  = A A  H, then its Schur form T from 
(B.9) is diagonal. Indeed, it follows from the identities A H A  = U T H T U  n and 
A A  H - U T T H U  H that A is normal if and only if its Schur form T is normal, 
i.e., T H T  = T T  H. If we set t = [ t12, . . .  , t in]  E ]Fn-1 then a direct computation 
shows that the (1, 1) element of T H T  is It1112, while the (1, 1) element of T T  H is 
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I t l l l  2 -~ Iltll~. Hence, t = 0 and T must be of the form T - diag(tll ,T2), where 

T2 is ( n -  1) • ( n -  1) upper triangular matrix. But now the normality of T is 

equivalent to normality of T2. Hence T2 = diag(t22, :/"3) and T = diag(tll ,  t22, T3). 
After a total of n -  1 such steps we come to the conclusion that  T is a diagonal 
matrix. 

The Schur decomposition allows to compute analytic functions of normal ma- 

trices as follows (analytic functions of general matrices may be computed using 
the Jordan decomposition). 

Let f : D ~ C be an analytic function, 

(X) 

f (z) -- ~ ak(z -- a) k z ~ D 
k=O 

in the domain D C C, defined on the spectrum of the normal n x n matrix A (i.e., 

spect(A) c D) with Schur decomposition A = UTU H. In view of the normality of 

A we have T = diag(t11,.. .  ,tnn). Now we may define the matrix-valued function 
f as follows (we use the same letter f for the scalar-valued function and for its 
matrix-valued counterpart) 

0(3 

f (A )  = E a k ( A -  aIn) k, spect(A) C D. 
k=O 

The expression f ( A )  is correctly defined if I IA -  aInll is smaller than the distance 
from the point a c C to the boundary of D. Since A k - UTkU H we may com- 

pute f ( A )  from f ( A )  := U f ( T ) U  H, where f ( T )  := d iag( f ( t11) , . . . , f ( tnn) ) .  In 
particular, if A is Hermitian and nonnegative definite, then T is real diagonal 

with nonnegative diagonal elements and we may compute the nonnegative definite 
square root of A as A 1/2 "= Udiag ( t x / ~ , . . .  , tx/~nn) U s.  

B.5 Polar decomposit ion 

A direct consequence of the QR and Schur decompositions is the so called polar 
decomposition of a square matrix A. Suppose first that  A is nonsingular. Then the 

matrices AHA and AA n are Hermitian positive definite and normal in particular. 
Consider the matrix Ul "- A(AHA) -1/2. We have 

UIU H - A (AHA) - I /2 (AHA) - I /2AH - A ( A H A ) - I A  H - A A - 1 A - H A H  = In 

and hence, Uz is unitary. Now we have the identity 

A =  Ul(AHA) 1/2, 

where the matrix (AHA) 1/2 is Hermitian positive definite. 
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The decomposition (B.10) is called a polar decomposition of A. There is also a 

similar polar decomposition, defined as 

A = (AAH)I/2u~, (B.11) 

where the matrix (AAH) 1/2 is Hermitian positive definite and the matrix Ur := 
(AA H ) - t / 2 A is unitary. 

The decompositions (B.10) and (B.11) are generalizations of the polar decom- 
position z = v~exp(z~a)  = Izi exp(~)  of the complex number z r 0 and this is 
the origin of their name. 

Decompositions of type (B.10) and (B.11) are valid also when A is a singular 

n x n matrix of rank r < n. Here the Hermitian factors are nonnegative definite 

and the unitary factors are defined in a different way. Indeed, in this case the we 
obtain 

~ 

0 0 

where P = [P1, P2], Q = [Q1, Q2] c U(n), the matrices Q1 and P1 are n x r and the 
r x r matrix C1 is nonsingular. A straightforward calculation shows the existence 
of the polar decompositions 

A -  VI(AHA) I/2, V/-- [QIC1 (cHICI) -1/2 , Q2] pH C IAf(n), (B.12) 

and 

A --(AAH)I/2Vr, V r "-- Q [P1CH (cICH) -1/2 , P2] H 

Note that  here 

and 

(AHA)I/2 - p [ (cHc1) 1 /20rx(n--r)  ] 
0(~-,-) x,- O(n-,-) x (r,-,-) 

e / / ( n ) .  (B.13) 

pH 

(AAH)I/2_Q [ (c1cH) 1 / 2 0 r x ( n - r )  ] QH. 

O(n-r) x ," O(n-r) x (n-r) 

A polar decomposition of a rectangular matrix may also be defined as the 

product of a Hermitian matrix and a matrix with orthonormal columns or rows. 
For instance, if A is rectangular with full column rank then relation (B.10) is 

valid, where Uz is a rectangular matrix with orthonormed columns. Similarly, if 

A is rectangular of full row rank then (B.11) is valid with Ur being a rectangular 
matrix with orthonormed rows. 

For real matrices we have similar results, replacing "Hermitian" by "symmet- 
ric" and "unitary" by "orthogonal". 
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B.6 Singular value decomposition 

As a direct consequence of the QR decomposition, the Schur decomposition and the 

polar decomposition we may deduce the singular value decomposition of a general 

matrix.  This decomposition is widely used in matr ix theory and its applications. 

A singular value decomposition (or briefly SVD) of the m • n matr ix  A is the 

product  A - U S V  H if A is complex, or A - U S V  T if A is real, where the matrices 

U, V are uni tary in the complex case and orthogonal in the real case. The matrix 

S in both cases is real diagonal with nonnegative diagonal elements ordered in 

descending magnitude. It is a canonical form of A under the above action of 

b/(m) • b/(n) or O(m,  R) • (.0(n, I~). The description of S depends on the integers 

m, n and r = rank(A). In the trivial case A = 0mx~ we have S = 0mxn. If r > 1 

we have four possibilities" r - m = n, r = n < m, r = m < n and r < min{m, n}. 

1. The case r - m - n. Consider the polar decomposition A - Ut(AHA) 1/2 
of A, where Ut - A(AHA) -1/2 Since the matr ix  (AHA) ~/2 is Hermitian positive 

definite, its Schur decomposition is (AHA) 1/2 = VEV H, where V E bt(n) and 

E = d i a g ( a l , . . . , a ~ ) ,  or1 > . . .  > or, > 0. Hence, we have the singular value 

decomposition A = U S V  H, S = E, where U "= UlV E bt(r) and the matr ix 

U~ = A(AHA) - I /2  E Ll(r) is the left uni tary factor in the polar decomposition A = 

UI(AHA) 1/2 of A. Thus, we have proved the existence of the SVD for nonsingular 

matrices. 

2. The case r -- n < m. Here the QR decomposition of A is A = QR - Q~R1, 
where Q = [Q1, Q2] E b/(m), the matr ix Q1 is m x r and the r • r upper triangular 

matr ix  R1 is nonsingular. If R1 = U1EV n is the SVD of R1, where U1, V E b/(r), 

then the SVD ~ A is A = U [ E ] VH where U "- 

3. The case r = m < n. The LQ decomposition of A here is A - L P  H = L1 p H  
where P = [P1, P2] e b/(n), the matr ix  P1 is n • r and the r • r lower tr iangular 

matr ix  L1 is nonsingular. If L1 = UEV1H is the SVD of L1, where U, 1/1 E b/(r), 

then the SVD of A is A = U[E, 0n_,]V H, where Y := [PIV1, P2]. 

4. The case r < min{m,n} .  Consider the compressed QCP decomposition 

A = Q C P  n = Q I C I P  n from (B.7), where the matrices Q1 and P1 are formed by 

the first r columns of Q and P respectively. Let A1 = U1EV H be the SVD of the 

nonsingular r • r matr ix  A1. Then the SVD of A is 

A = u s v H = u  [ E 0rx(n-~) IV H (B.14) 
O(m-r)xr O(m--r)x(n--r) 

where U := [Q1U1, U2], P = [PiV1, P2]. 

The singular value decomposition of a general matr ix  A may always be writ ten 

in the form (B.14), where any of the zero matrices 0pxq is considered void if p = 0 

or q = 0 .  

The numbers ai = hi(A) _> 0 are called the singular values of the matr ix  A. 
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Their number is min{m, n}. The first r of them, where r - rank(A), are the 
positive eigenvalues of (AHA) 1/2 or (AAH) 1/2. 

Since 
A H A -  Vdiag(E 2 V H , O ( n - r ) x ( n - r ) )  

and 

AAH - Udiag(E 2, 0(m-r) x (m-r)) UH, 

we see tha t  U and V are the matrices of eigenvectors of AHA and A A  H, respec- 

tively. The columns of U and V are also referred to as the left and right singular 

vectors of A. Using the left and right singular vectors of A, the SVD of A may be 
writ ten as 

A - U1EV H - ~ aiuiv H, 
i=1 

where r - rank(A) and the matrices U, V are parti t ioned as U = [U1, U2], V = 

[1/1, V2] with U1 being m x r and V1 being n x r. Hence, we get the following 
orthonormed bases for the subspaces Rg(A) and Ker(A): 

Rg(A) - R g ( U 1 ) -  Net ( u H ) ,  K e r ( A ) -  Ker (V H) - Rg(V2). 

The SVD is also used in the determination of the so called pseudo-inverse of 
an arbi t rary matrix.  

Consider the SVD (B.14), where 0 < r _< min{m, n}, i.e., the case A - 0mxn 

is not excluded. As usual, the matrices 0px0 and 00xq are considered void. 
The n x m matr ix  

E - 1  Orx(m-r)  ] U H (B.15) 
A t " -  v s t u  H " -  V O(n-r) xr O(n- r )x (m-r )  

is called a pseudo-inverse of the rn x n matr ix A. Since there are other pseudo- 

inverses as well, this particular one is also referred to as the Moore-Penrose pseudo- 
inverse. The pseudo-inverse A t exists for any matr ix  A. In particular, 0tmxn = 
0~xm and (At)t  = A. 

All solutions of the least squares problem 

m i n { l l A x -  bll2 " x E IF n} 

are given by 

x - Atb + (In - A tA)  c, 

where the vector c E F n is arbitrary. Under the additional requirement Ilxl12 --+ 
min the solution x ~ - At  b is unique. 

B.7  N o t e s  and references  

Unitary and orthogonal matr ix  decompositions are considered in most books on 

linear algebra and matr ix  theory, see [70, 71, 83, 107, 228] and [157, 36, 54, 224]. 
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Appendix C 

Kronecker product of 
matrices 

C.1 Introductory remarks 

In this appendix we present some basic facts about the Kronecker product  of 

matrices which is a very useful tool in analyzing and solving matr ix  equations. 

C.2 Definitions and properties 

Let the matrices A = [aij] E IF mxn and B e Fpxq be given. 

D e f i n i t i o n  C.1  The matr ix  

A | B := [aijB] = 

a l l B  a12B 
a21B a22B 

: 

am l B am2 B 

alnB 
a2nB 

a m n  B 

E IF m p  x nq  

is called the Kronecker product (or the tensor product) of the matrices A and B. 

The Kronecker product  A | B is an m • n block matrix,  whose (i, j )-block 

is the p • q matr ix  aijB.  In the above representation A in turn  may be a block 

matrix, i.e., Definition C.1 is valid with aij being arbitrary mi • nj matrices. Note 

that  no restrictions on the sizes of A and B are imposed for the matr ix A | B to 

exist. 

Usually the s tandard  matr ix  product,  the Kronecker product and the s tandard 

matr ix summat ion are considered as algebraic operations of decreasing priority, 

e.g., the expression E = ( (AB)  | C) + D is wri t ten without brackets as E = A B  | 
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C + D. However, to avoid misunderstandings, we shall consider all multiplications 

as operations of equal priority, resulting here in the expression E = (AB) | + D. 
Some important applications of the Kronecker product to the theory of matrix 

equations and other areas are based on the column-wise vector representation of 

the product A X B ,  namely (we assume that the standard matrix products are 
correctly defined) 

vec(AXB) = (B T | A)vec(X) (C.1) 

and in particular 

vec(AX) - (I n @ A)vec(X), vec(XB) = (B T | Ira) vec(X). 

As a direct corollary we have 

JJAXllF = Ilvec(AX)JI2 = II(In| <_ I[In | = IIAII211XJlF. 

Here we have used the fact that In | A = d iag(A, . . . ,  A) and hence, IlIn @ All9 = 
IIAIJ2. Similarly, IIXBII F = IIBTx TIIF <_ [[BII211XIIF and 

IIAXBIIF < IIAII~IJXBIIF < IIAJl211CII21JXJlF. 

The generalization of this result to the product of any number of matrices now 
follows by inspection. 

If the matrix X is m x n then 

where 

v c(X r)  = 

m n 

Pm,n : E E Eij(?Tt' ft) @ Zji(?Tt , ft) E ~rnnxmn 
i=1 j = l  

and Eij(m, n) C Nmxn is defined in Appendix 10.17. Here Pm,n is a permutation 

matrix (its columns are a permutation of the columns of the identity matrix Imn), 
called the vec-permutation matrix. It has the property 

Pmn = p T  1 f t ~ m  ~ r ~ ,  (c.2) 

The matrix P~,~ is denoted also as P ~ .  

The matrices A | B and B | A have equal sizes mp x nq. This is in contrast 

to the standard matrix product, where one (or both) of the products AB and BA 
may not be defined, or AB and BA may be defined but have different sizes. 

The Kronecker product is in general not commutative, i.e. A | B ~ B | A. 

In addition, A ~ I | A and A ~ A | I unless I = 1 (the scalar unit). However, 

the Kronecker product is associative, and distributive relative to the standard 
summation: 

( A | 1 7 4  = A | 1 7 4 1 7 4 1 7 4  (C.3) 

( A + B ) |  = A | 1 7 4  C |  
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A basic relation between the standard matrix product and the Kronecker prod- 

uct is 

(A | B)(C N D) = (AC) @ (BD). (C.4) 

Furthermore we have 

(A | B )  T - A T | B T, A | B - A | B ,  (A | B)  H - A H | B H (c.5) 

If the matrices A and B are square and nonsingular then their Kronecker 

product A | B is also square and nonsingular, and 

(A N B) -1 = A -1 | B -1. (c.6) 

E x a m p l e  C.2 Let the matrices A and B be nonsingular and A be a 2 x 2 matrix. 
Then 

(A | B ) - I  _ 1 [ a22B-1 -a12 B-1 ] 
- det (A) -a21B -1 allB -1 " 

The transposition and inversion of a Kronecker product do not invert the order 
of factors, in contrast to the standard matrix product, where (AB) T = BTA T and 

(AB)-1 __ B - 1 A - 1  To invert the order of multiplication in a Kronecker product, 
one may use the formula [107] 

(A | B)Pn,q = Pm,p(B | A), (c.7) 

or, equivalently, A | B = Pm,pB | APq,n. 
Using (C.7) we may derive an expression, similar to (C.1), for the row-wise 

vector representation of the product AXB.  Denote by 

row(X) = [~1, ~ 2 , . . . ,  ~m] E IF l x r n n  

the row-wise vectorization of the m x n matrix X with rows ~1 , . . .  ,~rn E I~ lxn. 
We have row(X) - vec-C(X T) - vecT(X)Pn,m. Representing both sides of the 

relation Y = A X B  as row vectors we obtain the row-wise counterpart of (C.1) 

row(AXB) = row(X)(A T @ B). (C.8) 

The singular values of the matrix A | B are the products a~(A)ak(B), where 

cry(A) and ak(B) are the singular values of A and B. Indeed, let A - UASAV~ 
and B - UBSBV~ be the SVD of A and B, respectively. Then A | B = (UA | 
UB)(SA | SB) (V~ | V~) is the SVD of A @ B (up to reordering of the diagonal 
of SA | SB). Since the matrices SA and SB are diagonal with diagonal elements 

a~(A) and ak(B), respectively, the diagonal elements of SA @ SB are all possible 
products cri(A)ak(B). 
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Similarly, if A E F m x m  and B E F nxn, then the eigenvalues of their Kronecker 

product A |  are all possible products ;~i(A)Ak(B), where Ai(A) and ;~k(B) are the 

eigenvalues of A and B. Indeed, let A = WATAW H be the Schur decomposition 

of A. Then A |  - (WA NIn) (TA |  H |  and the eigenvalues of 

A | B are those of T A N  B. But TA | B is an upper triangular block matrix with 

diagonal blocks A~(A)B. Each of these blocks has spectrum A~(A)spect(B). The 

union of these spectra is the collection spect(A) |  of all possible products 

Ai(A)Ak(B) (for operations with collections see Section A.2). 
If A E C mxm, B E C nxn,  C E C nxm, X E C l and F is an analytic function, 

then we have 

det(B N A) 

exp(B N A) 

F ( I ~ |  

C N x  

= (det(B))m(det(A)) n, t r (B | A) = t r (B)tr(A),  

= exp(B)exp(A),  

= In | F(A),  F(A  | In) = F(A) | In, 

- -  ( i  n | x ) C ,  C | x T - -  C ( I  m |  

Let A E C mxm and B E C nxn. The Kronecker sum of the matrices B and A 

is the matrix 

B |  := B | + In |  E C mnx'~n. 

Note that  the Kronecker summation is not commutative. 

The eigenvalues of B | A are all possible sums Ai(A) + Ak(B). Indeed, let 
B = W B T B W  n be the Schur decomposition of B. Then the matrix B | A is 
similar to 

(U H | 1 7 4  +In  | A - TB | A. 

The matrix TB | A is n x n upper block triangular with m x m diagonal blocks 

A + Ak(B)Im. The spectrum of such a block is spect(A) + {Ak(B)}. The whole 

spectrum of TB | A and hence, of B | A is the union of the spectra of the diagonal 

blocks, which is exactly the set spect(A) + spect(B). 

Thus we have the problem of finding a simple expression for the spectrum of the 

matrix M := A | B + C | D, where A, C are m x m and B, D are n x n. This is only 

possible if some special structure of the involved matrices is preassumed. Suppose 

for instance that  the matrices A and C have a joint Schur basis U, i.e., that  there 

is a unitary matrix U, such that  the matrices TA := UHAU and Tc := u H c u  are 

upper triangular. Then the matrix M is similar to M - (U H | In) M ( U  N In) - 

TA | B + Tc N D. The matrix M is m x m upper block triangular with n x n 

diagonal blocks Ai(A)B + Ak(C)D. Thus, the spectrum of M and hence, of M is 

the sum of collections 

m 
spect(M) = ~ spect(Ai(A)B + Ak(C)D)). 

i , k = l  
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The above results are directly applicable to the analysis of spectra of linear 

matr ix  operators. 

E x a m p l e  C .3  Let A E C m• and B E C n• Consider the operators s and s 

in the continuous- and discrete-time Sylvester equations s  := A X  + X B  = C 

and s  := A X B -  X = C, respectively, where X is an m • n unknown matrix.  

The spectrum of a linear operator is the spectrum of its matrix. Hence, 

spect(s  = spect (In | A + B T @ Ira) = spect(A) + spect(B) 

and 

spect(s  -- spect (B T | A -  Im,~) - spect(A)spect(B) - {1}. 

C.3 N o t e s  and re ferences  

More detailed information about the Kronecker product and sum of matrices and 

their applications may be found in [19, 230, 84], see also [107, 157, 231]. 
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Appendix D 

Fixed point principles 

D.1 Introductory remarks 

Among the most powerful tools to s tudy the problems of existence and unique- 

ness of the solutions of various classes of equations, including equations arising in 
per turbat ion analysis of matr ix  problems, are the topological fixed point principles 
named after Banach and Schauder (the Schauder principle in its finite dimensional 

version is known also as the Brauer principle). In this section we briefly s tate  these 

principles for operators in finite dimensional spaces. 

D.2 Banach principle 

Consider a finite dimensional space X endowed with the norm ]]. II and let YI : 

/3~ --~ X be a (nonlinear) operator,  defined in the ball B~ := {x e A' : ]lxll < a} 
for some c~ > 0. We are interested in the existence and uniqueness of solutions to 

the operator equation 

x = H(x). (D.1) 

The solutions of (D.1) are called fixed points of the operator II. 

D e f i n i t i o n  D.1  The operator II is said to be a contraction (or a contractive oper- 

ator) if  there exists a nonnegative constant l < 1 such that II satisfies the Lipschitz 

condition 

IIn(x) - II(y)ll -< Zll x - yll, x, y c B~. 

The quantity 1 = l(c~) is the Lipschitz constant of II. 

The main result for contractions is formulated in Theorem D.2 below. 
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T h e o r e m  D.2  (Banach principle). Let the inequality 

OL 0 " - - -  

I}n(o){{ < 
1 - 1  - 

be fulfilled for the operator II " Ba ~ X with Lipschitz constant 1 < 1. 
Then the following assertions hold. 

1. The contractive operator II has a unique fixed point ~ e B~ and I1r ~ ~o. 

2. The unique solution ~ of equation (19.1) may be obtained as the limit point 
of the iterative process 

Xk+l -- 1-I(Xk), k -- 0,  1 , . . . ,  (D.2) 

where the point xo E B~ o is arbitrary�9 

The rate of convergence of the iteration (19.2) to the solution ~ is determined 
by 

O1 k 
11r xkll < ( D . 3 )  

- 1 - 1 '  

where 0 "-  ]Ix1 - Xoll - IlII(xo) - Xoll- 

Proof. First we show tha t  the operator II maps the set B~ o into itself which 

yields tha t  the sequence {xk } is well defined. Indeed, for x E B~ o we have 

IIn(x)ll - {In(x) - n(o)  + rI(OD{{ ~ { I n ( x ) -  n(o)l{ + IlrI(O)ll 

<_ lllul{ + IIn(0)l{ _< l~o + I ln(0)}} -  ~o. 

Furthermore,  we have 

I l x k + ~ - x k l l  - {{II(Xk) -- l-l(Xk-1)ll _~ lllXk -- Xk-1 ~_ 12{{Xk-1 -- Xk-2{I 

< l k l l X l - - X o l {  -- lkO. 

Using the last inequality, we may est imate the quanti ty Ilxk+m - xkl{ for m _> 2 

subtract ing and adding some terms in order to get differences of the type xi+ 1 - x i ,  
�9 m N-"k+ m -  1 whose norms have been already est imated We have X k + m -  Xk Z-. , i=k ( X i + l -  

Xi) and 

< 

k + m - 1  k + m - 1  

E ( X i + l - - X i )  ~ ~ {{Xi+l --Xil{ 
i=k i=k 

k+m-1 m-1 O1 k 
0 E l i - o l k E l i < l - - - Z ~ _  l" 

i = k  i = o  

(D.4) 

Since l < 1 we have limk--,oo {{Xk+m--Xkl{ -- 0 and hence {Xk} is a Cauchy sequence. 

Thus, it is convergent to some element ~ C B~ o, namely limk-~oo xk - ~. Passing 
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to the limit k - .  oc on both  sides of (D.2) we see that  ( is a fixed point of H, i.e., 
= 

In turn, letting m -~ cc in (D.4) we have Xk+ m ~ ~ and hence the estimate 

(D.3) for the rate of convergence holds. 

To demonstrate  tha t  the solution ~ c B~ o is unique in B~, suppose tha t  there 
is another solution ~ E B~, different from ~. Then 

This is a contradiction, which proves that  the solution is unique. [:] 

E x a m p l e  D .3  Suppose that  we have a scalar equation f ( x )  = 0, where the func- 

tion f is defined on the interval [-c~, c~] and satisfies there the two-sided Lipschitz 

condition mix  - Yl <- I f (x)  - f(Y)l  <- M i x -  Yl, where 0 < m _< M < cx~. Then we 
can rewrite the equation in an equivalent operator form x = I I ( x ) " -  x -  K f ( x ) ,  
K "= 2 / ( M  + m).  The operator II is a contraction with Lipschitz constant 

l -  ( M -  m ) / ( M  + m) < 1. Hence, the equation has a unique root ~ E [ - ~ , a ] ,  

such tha t  I~[-< c~0, provided that  a0 " - I f ( 0 ) 1 / ( 1 -  l) - I f ( O ) l / ( m K )  <_ c~. (> 

D.3 Generalized Banach principle 

Consider now the case when the space A' is endowed with the generalized norm 

I t " X ~ R~_, s > 1. Suppose that  the operator H �9 Bp ~ A' satisfies the 
generalized Lipschitz condition 

I n ( x ) -  rI(y)] -< L I x -  y[; x, y e BR. 

Here BR := {x c X "Ix I -< p} C A' is the generalized ball centered at the origin 
and of generalized radius p E R~, while L - L(p) E R~_ xs is the Lipschitz matrix 
of the mapping 1-I. 

D e f i n i t i o n  D . 4  The operator 1-I is said to be a generalized contraction on the set 

Bp if  the matrix L is convergent, i.e. i f  its spectral radius rad(L) is less than 1. 

We recall tha t  according to the Perron-Frobenius theorem [26] the spectral 

radius of a nonnegative matr ix is equal to its largest nonnegative eigenvalue. For 

a nonnegative convergent matr ix  L the matrix Is - L is invertible and the matrix 

( I -  L)-1 is well defined and nonnegative. 

E x a m p l e  D.5  Let H = [H1,. . .  ,Hq] s : D ~ ]Fq, where D c ]Fq. If the Jacobi 
matrix 

OI-Ii(x) ]~qxq 
H'(x) = [Jij(x)] "= . Oxj E , x - - [ X l , . . .  ,Xq] T 

exists, then the Lipschitz matr ix may be taken as L -- [/ij], where lij is the 

supremum of tJij(x)l in x over the domain D of H. (> 
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For generalized contractions we have similar results as for usual contractions 
according to the following theorem. 

T h e o r e m  D.6  (Generalized Banach principle). Let the inequality 

po = ( I -  L) -~pn(o)J  _~ p 

be fulfilled. 
Then the following statements hold. 

1. The contractive operator H has a unique fixed point ~ c Bp and [~] ~ Po. 

2. The unique solution ~ of the operator equation (D.1) may be obtained as the 
limit point of the iterative process 

Xk+l -- I-I(Xk), k --- O, 1 , . . . ,  (D.5) 

where Zo c Boo is arbitrary. 

3. The rate of convergence of the approximations xk to the solution ~ is deter- 
mined by 

]~-  Xk] -4 L k ( I -  L)-lfl, (D.6) 

where/3 "= I X l -  xol = [H(xo) -  xo[ e R~_. 

Proof. We have 

In(x)t - In(~)  - n ( o )  + n ( o ) l  _~ In(x) - n(o)t + In(o)l 

~_ LIx[ + IH(O)I ~_ Lpo + In(O)l- po 

and the operator H maps the set Bpo into itself. Hence, the sequence {Uk}~ is 
well defined via (D.5). 

Furthermore 

Ixk+l - xkl - IH(xk) - II(xk_l)[ ~ L]xk - xk-1] 

~_ L2[xk-1 -- xk-21 ~ "" -'r LkIxl - xo[ "-- Lk/3 

and 

IXk+m -- Xkl 

k+m-1 k+m-1 

E (XiTi--Xi) ~ E Ixi+l - x i ]  
i=k i=k 

}~. L ~ ~ =  L k L ~ ~ ~_ L k ( I -  L) -I~ .  
i=k \ i=O 

(D.7) 
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Since limk__,o~ L k = 0 then the sequence {Xk } is convergent to an element ~ E Boo. 

Passing to the limit k -+ oc in (D.5), we see that  ~ = H(~), i.e., the operator 

equation (D.1) has ~ as a solution. 

Setting m ~ oc in (D. 7) we get the rate of convergence (D.6) for the generalized 

norms of the differences ~ - Xk. 
To show tha t  the operator H has no other fixed points in Bp except ~ E Boo, 

let r/E B o be any solution of the equation x = II(x). Then 

and I~-~1 _-4 Lk l~ -~ l  for all k E N. Taking the limit k ~ cx~ in view of rad(L) < 1, 

we obtain I ~ -  rll = 0, i.e. ~ = ~. 

A norm-wise est imate for the rate of convergence in case of generalized con- 

tractions may be obtained as follows. For each positive e < 1 -  rad(L) there exists 

[1071 a norm 11" II : Rs ~ ItS+ such tha t  IILll = rad(L) + e < 1 for the corre- 

sponding operator norm IILII of L c R sxs. Hence, if Ilxll _< II Ixl II for the norms 

I1" l l  x -~ R+ and 1. I" X ~ R~, we have also a norm-wise est imate for the rate 
of convergence: 

I1~- ~kll ~ IILk(l-  L)-I~II ~ IILIIkll(I- L)-Ir �9 

E x a m p l e  D . 7  Consider the equation f (x )  = 0, where f : Fq ~ Fq. Suppose 

that  f satisfies the generalized Lipschitz condition I f ( x ) -  f(Y)l ~ M i x -  Yl, 
M - [Mij] E R~_ xq, as well as the lower growth bounds milhl ~_ If(x + he i ) -  f (x) l ,  

mi > 0, where ei is the i-th column of the unit matr ix  Iq. Then we may rewrite 

the equation in an equivalent operator form x = ll(x) := x -  K f ( x ) ,  where 

K := d i a g ( K 1 , . . . ,  Kq), K~ := 2/(Mi~ + mi). As in Example D.3, the operator II 

satisfies the generalized Lipschitz condition I I I ( x ) -  II(y)l ~ L I x -  Yl, where the 

elements lij of the matr ix  L are determined from 

{ ( M ~ - m ~ ) / ( M i i + r n i )  if i = j  

lij "= 2Mij/(Mii  + rni) if i r j. 

Hence, the equation will have a unique solution if rad(L) < 1. If m := min{m~} 

and p := max{M~j : i r j}  then the inequality rad(L) < I will be fulfilled provided 
that  p < ( q -  1)m. 

The use of generalized contractions is very useful in many applications, includ- 

ing some impor tant  problems in per turbat ion analysis. In particular, there are 

problems for which it is easier to show that  the equivalent operator is a general- 

ized contraction rather than  a contraction. This will be the case when the operator 

is a generalized contraction with a Lipschitz matr ix  L such tha t  IlL(f _> ~ for some 
of the commonly used matr ix  norms. 
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E x a m p l e  D.8  Let L -  [ A1 l 0 A2 , where ~1,)~2 E [0, 1) and 1 > 0. Any H61der 
L 

p-norm of L satisfies IILIIp >_ l and may become arbi trary large for large 1. At the 

same t ime the spectral radius rad(L) = max{A1, A2} does not depend on 1 and is 
always less than 1. 

The main application of generalized contractions in per turbat ion analysis is 

in the derivation of component-wise per turbat ion bounds which are usually more 

informative in comparison with the norm-wise bounds. 

D.4 Schauder principle 

Consider now the implementat ion of another powerful topological fixed point prin- 

ciple, the so called Schauder (or Brauer) principle, which gives sufficient conditions 

for existence of solutions to the operator equation x = II(z) in X. 

If II : S ~ X is a map and T C S, we denote by II(T) the set of all II(z) when 
z varies over T. 

T h e o r e m  D.9  (Schauder principle). Let the operator II : B ~ X be continuous 
and II(B) C B, where B C 2( is a convex compact. 

Then the operator equation x = II(x) has a solution ~ E B.  

Proof. For a complete proof see [173, 117, 34]. However, it is instructive to give 

the proof in the scalar real case X = R. Here the nontrivial convex compact sets 

are the closed intervals with different end points, say B = [0, 1]. Let II : B --~ B be 

a continuous function. If II(0) = 0 or II(1) = 1 then II has a fixed point ~ = 0 or 

= 1 and there is nothing to prove. Therefore assume that  II(0) > 0 and II(1) < 1, 

and consider the function r  B ~ B, defined from r  = x -  II(z). According 

to the last two inequalities we have ~(0) = - I I (0 )  < 0 and r = 1 - II(1) > 0. 

By a continuity argument,  there exists a point ~ E (0, 1) such tha t  r = 0 which 
is equivalent to ~ = II(~). [:] 

Since in most applications the operator II : X ~ X is continuous, to apply the 

Schauder principle one must construct a suitable convex compact set B C X, and 
then to show tha t  II(B) C B. 

We see tha t  the price of the substantial  reduction in the requirements, imposed 

on the equivalent operator II in the Schauder principle (no Lipschitz conditions, 

only continuity), is tha t  we claim only existence but not uniqueness of the solution. 

Thus, the Schauder principle is applicable to problems with nonunique solutions. 

Conditions for an operator to be a contraction or a generalized contraction 

(in order to use the Banach principle), or to map a certain compact convex set 

into itself (so tha t  to apply the Schauder principle), may be formulated using the 

technique of Lyapunov majorants  [85, 135, 127], see Section 5. 
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D.5  N o t e s  and references  

There are many standard text books and review articles that discuss fixed point 
principles and their applications, e.g., [117, 173, 34, 55]. 
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Appendix E 

Sylvester operators 

E . 1  I n t r o d u c t o r y  r e m a r k s  

In this appendix Sylvester operators in real and complex matrix spaces are studied, 

which include as particular cases the operators arising in the theory of linear time- 
invariant systems. Let M : IF mxn ~ lFpxq be a linear operator, where F = R 

or IF = C. The operator M is elementary if there exist matrices A c IF pxm and 

B c F qx~, such that  M ( X )  = A X B .  Every 3,t can be represented as a sum of 

minimum number of elementary operators, called the Sylvester index of 3//. An 

expression for the Sylvester index of a general linear operator Ad is given. For this 
purpose a special permutat ion operator ~2p,m : IF p q x m n  ---+ I~ pmxnq is considered, 

such that  the image Pp,m(B T |  of the matrix B n- |  of the nonzero elementary 

operator 3/l is equal to the rank 1 matrix vec(A)row(B). The application of Vp,m 

reduces a sum of Kronecker products of matrices to the standard product of two 
matrices. 

E . 2  B a s i c  c o n c e p t s  

Denote by Lin(p, m, n, q, F) the linear space of linear matrix operators 3 / / :  F mxn 
F pxq, i.e., M ( X )  E F pxq, X C F mxn. In what follows a linear operator will often 

depend on a collection of 2r matrices 

C := (A1 ,B1 , . . . ,A~ ,B~)  c E~ := (IF p• x Fn• ~, (E.1) 

where Ak E F pxm, Bk E F nxq. To emphasize this dependence we write St(C) E 

Lin(p, m, n, q,F) for the operator itself and C~.(C)(X) c F pxq for its matr ix value 

at a given X. Thus, we have a family of operators {$r(C)}cez~ and Sr may be 
considered as a mapping 

: • (E.2) 
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quadratic in its first argument C E Er and linear in its second argument X E 
IF r r ~ •  . 

An operator 34 E Lin(p, m, n,q,F) may be determined as follows. Let pq 
vectors rni,j E IF ran, i = 1 , . . .  ,p, j = 1 , . . . ,  q, be given. Define the linear func- 
tionals p~,j �9 ]F mxn --, F from tz~, j (X)"-  rn~jvec(X) E ]F, X E F mxn. Then the 
operator A/t" Fmxn ___+ ]Fpxq, given by jM(X) = [#,,j(X)] p'q is a linear matrix i,j--- l ~ 
operator. The matrix M := Mat(AA) E F pq• of AA, is defined via the equality 

vec(s  = Mvec(X) and hence 

M = [ml , l ,m2 ,1 . . . ,mp , l ,ml ,2 ,  m2 ,2 , . . . ,mp ,2 , . . . ,ml ,q ,m2,q . . - ,mp ,q]  T 

Def in i t i on  E.1 The operator gl (A, B) E Lin(p, rn, n, q, IF), such that 
gl(A, B ) (X)  "= A X B ,  X E F r~xn, where A E IF pxm and B E F nxq, is called an 

elementary Sylvester operator with a pair of generating matrices (A, B). 

The zero operator O p , m , n ,  q E Lin(p, m, n, q,]F) and the identity operator lm, n E 
Lin(m,  n, IF) are elementary Sylvester operators CI(A, B) with pairs of generating 
matrices (A, 0nxq) (or (0pxm, B)) and (Ira, In), respectively, where A E F pxm (or 
B E IF '~ x q) is arbitrary. A pair (A, B), corresponding to the zero operator (with 
at least one of its components A or B being zero), is said to be a trivial pair. 

Let a matrix 2r-tuple as defined in (E.1) be given. Consider a nonzero operator 
C~(C) E Lin(p, m, n, q, F), which is represented as a sum of r nonzero elementary 
Sylvester operators gl(Ak, Bk), i.e., 

r 

g~(C)(X) "= g l (Ak ,Bk ) (X)  = E A k X B k ,  X E IF mxn. (E.3) 
k = l  k = l  

Operators of the form (E.3) are called Sylvester operators. 
Every 3d E Lin(p, m, n, q,F) may be represented in the form (E.3), i.e., A/t = 

E~(C) for some r and C. Applying the vec operation to the expression for g~(C)(X) 
we get 

vec(s ) = E,.(C)vec(X), (E.4) 

where 
r__L 

Er = Er(C) "= Mat(E~(C)) = ~ B [  | Ak E F pqxmn (E.5) 
k- -1  

is the matrix of the operator C~(C). 

Using the vec operator and its inverse, vecp, lq �9 F pq -+ IF pxq, any operator 
A/l E Lin(p, m, n, q,F) and its matrix representation M E ]F pqxmn are related via 
the relations vec(Ad(X)) - Mvec(X) and Ad(X) = vec~,l(Mvec(X)), X E F mxn. 
There exist different collections C E N~, such that  A/t has a representation of type 

(E.3), i.e., 3/I = gr(C) for some collection C, which satisfies the bilinear matrix 
equation 

r 

E B [  | Ak = M. (E.6) 
k = l  
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Def in i t ion  E.2  The m i n i m u m  number ~ E N, such that the nonzero operator 

A/I E L i n ( p , m , n , q , F )  may be represented as a sum of ~ elementary Sylvester 

operators, is said to be the Sylvester index of Ad and is denoted by indp,m,n,q(Ad). 

The zero operator is of Sylvester index 1. Any  representation of M as a sum of 

m i n i m u m  number of elementary operators is called a condensed representation. 

We also abbreviate indm,n := indm,m,n,n and indn := indn,n,n,n. 

For M E Lin(p, m, n, q, F) we have 

IIM(X)IIF = Ilvec(M(X))ll2 ~ IIMII2lIvec(X)ll2- IIMII2IIXIIF 

with equality holding if vec(X) is a right singular vector of the matrix M, corre- 

sponding to its maximum singular value ]IMI]2. Hence, we may define a norm in 
Lin(p, m, n, q, F) as follows. 

Def in i t ion  E.3 The (Frobenius)norm of Ad E Lin(p, m, n, q, IF) is 

IIMIIF - -  max( l lM(X) l lF  " IlXllF -- 1} -IIMll2. 

Other norms as [[MI[~,~ - m a x ( l l M ( X ) l l ~  �9 [[Xl[e - 1}; ~ , ~  ~ 1, where 

II. II. i~ ~ H~ld~r norm, m~x ~lso b~ used. H~re convenient ~xpressions for I1" II~,Z 
are known only for ~ = /5 = 2 when M is the standard continuous-time X H 
A * X E  + E * X A  or discrete-time X H A * X A -  E * X E  Lyapunov operator of 
(generically) Sylvester index 2, see e.g., [95, 68]. 

E . 3  R e p r e s e n t a t i o n s  

Consider the problem of representing a general linear matrix operator A/I with 
associated matrix M in the form (E.3). The dimension (real or complex) of 
L i n ( p , m , n , q ,  IF) ~ IF pqxrnn ~ ~pmnq is pmnq.  In particular, for every matrix 

M E IF pqxmn there exists C E Er with r - indp,m,n,q(.hd), such that the associ- 

ated matrix Er(C)  of the operator s c Lin(p, m, n, q, IF) is equal to M, i.e., 
E ~ ( C ) - M .  

Relation (E.6) may be considered also as an equation for both r c N and C E 
E~. A particular solution is obtained as follows. Partition the matrix M E IF pqxmn 
into nq blocks of size p x m as 

M -  [Mid], M~,j E ]Fpxm; i -  1 , . . . , q ,  j -  1 , . . . , n .  (E.7) 

Then M may be written as M - }-~i,'j=lq n E i , j (q ,n )  | Mi,j .  Therefore, in view 

of (E.6), a possible solution for C is Ak -- Mid ,  Bk = Ej, i(n,  q), k - k ( i , j )  := 

i + (j - 1)q, in which the number of nontrivial pairs ( A k , B k )  is the number of 
nonzero blocks Mi,j of M, which is at most nq. Thus the resulting operator g~(C) 

and hence AJ are of Sylvester index at most nq. A similar argument shows that 
this index is at most pro. 
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Next we calculate the Sylvester index of a linear operator and construct a 

representation of type (E.3). For this purpose we introduce a special linear matrix 

operator Fp,m, defined on matrix spaces F p~176 when PlPo and mlmo.  

Let p, m, po, mo E N be given integers such that  PlPo and mira0. Then each 
matr ix  Z c IFpoxmo may be partit ioned into nq blocks Zi,j of size p x m, where 

q := PoIP, n := m0lm: 

ZI,1 Z1,2 . . .  Z l , n  

Z2,1 Z22 ' ' '  Z 2 n  
Z = . .' . .' , Z~,j c IF pxm (E.8) 

�9 . �9 

Z ,l 

D e f i n i t i o n  E .4  Set zi,j "-  vec(Zi,j) .  The linear operator 

~ p , m  " ] F P q x m n  ~ I F p r n x n q  (E.9) 

is defined by 

~ ) p , m [ Z ]  " -  [Zl,1, z2 ,1 , . . . ,  Zq,1 ,  Zl,2, z2 ,2 , . . . ,  Zq,2 t  . . . , Z l , n ,  Z 2 , n ,  . . . , Zq ,n ] .  (E.10) 

The properties of the operator )2p,m are described in the next two propositions. 

P r o p o s i t i o n  E.5  The operator )2p,m is a permutat ion operator, for  which the 
following relations hold 

~,2p,q o "~)p,m = ])p,q o ],2p, n = V q , p  o Vq,m =- V q , p  o V q , n  --~ l p , m , n , q .  (E.II) 

Proof. The proof follows by inspection. 

P r o p o s i t i o n  E .6  Let M E IF p q x m n ,  A c F pxm and B = [bid] E ]F nxq. Then 

Vl,1 (M) 
(M) 

-- (vec(M)) T , Vl ,mn(M)  - M T , Vp,m(M) - (12q,n(I-In,qMI-In,rn)) T, 

: M,  ~2pq,m n ( M )  = vec(M), lZp,m(II,~,p) - H,~,p, 

and 

lzp,m(B T | A) - row(B)@ vec(A) = vec(A)row(B). (E.12) 

Proof. Relations (E.12) follow from the definition of l~p,m. To prove (E.12) we 
note tha t  

bl , lA b2,1A . . .  bn,lA 
n,q bl,2A b2,2A . . .  bn,2A 

B T | A - E bi,jEi,j(q, n) | A - 
�9 . . 

i , j = l  �9 �9 

bl,qA b2,qA . . .  bn,qA 



E.3. R E P R E S E N T A T I O N S  375 

and hence 

Vp,,~(B T | A) - [bl,lVeC(A), bl,2vec(A),. . . ,  bl,qVec(A), 

b2,1vec(A), b2,2vec(A),..., b2,qVec(A),..., 

bn,lvec(A), bn,2vec(A), . . . , bn,qVec(A)] 

= row(B) |  vec(A) - vec(A)row(B) 

as claimed. [] 

The operator Fp,m allows the reduction of a sum of Kronecker products of 
matrices into a product of two matrices. Thus one may solve efficiently equation 
(E.6). 

Suppose that  M E I~ p q x m n  is the matrix representation of the operator jr4 E 
Lin(p, m, n, q,F), partitioned as in (E.7), and set M # "= IIp,qMIIn,m - [Mk#l], 

where M : l  E F qxn, k -  1 , . . . , p ,  1 -  1 , . . . , m .  

Using the operator )&,. define the matrices 

M - )2p,,~(M) - [vec(Ml,1), . . . ,  vec(Mq,1), . . . ,  vec(Ml ,n) , . . . ,  vec(Mq,n)] 
E ]Fpm x qn  

and 

M # �9 -- Vq,n(M #) - -[vec(Ml#, l ) , . . .  ,vec(Mp#,l),...,vec(Ml#,m),...,vec(Mp#,m)] 

C ~ q n  x p m  

Now we can determine the Sylvester index of an arbitrary operator 

A4 E Lin(p, m, n, q, F) and construct a matrix collection C E Er such that  Ad = 
&(c). 

P r o p o s i t i o n  E.7  Let M E IF pqxmn be the matrix representation of the operator 
3 / / r  Lin(p, m, n, q, IF). Then 

indp,,~,n,q(A4) = indp,m,n,q(M)= indq,n,m,p(M)= max{l,  p(M)}, 

where p(M)  := r a n k ( M ) =  rank(M#) .  

Proof. It follows from Proposition E.6 that  for given r E N equation (E.6) for 
C = (A1, B1 , . . .  ,A~, B~) may be written as a bilinear equation 

A B  = M (E.13)  

in the unknown matrices 

A "- [vec(A1),vec(A2),...,vec(A~)] E IF pmx~, (E.14) 

row(B1) 

B "-  [vec(B1),vec(B2),. . . ,vec(Br)]TIIq,n row(B2) - -  . E. ~ - " r x n q .  

row(B~) 
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Equation (E.13), (E.14) is fundamental for determining the indices as well 

as for the construction of the linear matrix operator A/I as a sum of elementary 
operators, provided the matrix M of A/l is given. 

Let Or (M) c lFpm x r x ]F r x nq be the set of solutions of (E. 13). We shall show 

that  Or(M) r 0 if and only if r >_ p(M) and hence equation (E.13) is solvable 

for r = p(M).  The proof is constructive and provides explicit expressions for 

Op(M)(M). 
In the trivial case A/f = 0p,m,n,q we have r = 1 by definition and the solu- 

tion of (E.13) may be taken as (A, 01• or (0pmxl,B) with max{pm,  nq} free 
parameters. Hence, 

Ol[Op,m,n,q]- (IF pm x { 0 1 x n q } ) U  ( (0pmxl}  x ]Flxnq) . 

Consider the general case A/I r Op,m,n,q. It follows from (E.13) that  

p(M) <_ min{rank(A),rank(B)} < r. 

We prove that  if r = p(M), then (E.13) is explicitly solved. Consider the three 
possible cases. 

1. If r = p(M)  = pm <_ nq then the solution set is 

O r ( M ) -  { ( P , p - 1 M ) "  P C Gs F)} �9 

2. If r = p(M)  = nq < m n  then the solution set is 

Or(M) - { ( M P  - 1 , P ) "  P E gs  F)} .  

3. If r = p(M)  < min{pm, nq} then M may be decomposed as 

M - Udiag (It, O(pm-r)x (nq-r)) V -  1, 

where U c gs V c gs Thus, the solution set may be represented 
as 

~)r(M)- { (U-1 [ P 
O(pm-r)xr �9 P C gs  lF)}. 

Similar arguments hold for the transposed operator with a matrix M #, showing 
that indp,m,n,q(M) = indq,n,m,p(M). Note finally that M # = M T, see Proposition 
E.6. D 

We see from the proof of Proposition E.7 that in the nontrivial case Ad 
Op,m,n,q the set of all collections C in the condensed representation of Ad is iso- 
morphic to Gs where r is the Sylvester index of j~4. Hence, it is an open 
algebraic variety (of real or complex dimension r 2) in the corresponding Zariski 
topology. 
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When A// ~ 0p,m,,~,q the solution set Or(M) of (E.13) with r = t~(M) is 
parametrized by the r 2 free elements of the matrix P c gs  IF). Note that  the ma- 
trix equation (E.13) is equivalent to pmnq scalar quadratic equations in r (pm + nq) 

scalar unknowns (the elements of A and B). Hence, we may expect that  in general 
the solution set Or(M) is a k-parameter family, where k := r ( p m + n q ) - p m n q  is the 
number of unknowns minus the number of equations. Since r 2 - k  = ( p m - r ) ( n q - r )  
and generically u(M) = min{pm, nq}, we may indeed expect that  k = r 2. 

E x a m p l e  E.8 Consider the transposition operator Tm,n C Lin(n,  m, n, m, ]F), act- 
ing as 7"m,n (X)  = X T The matrix representation of Tm,n is Ilm,n. Since 
Yn,,~(II,~,n) = IIm,n (see Proposition E.6) and rank(IIm,n) = ran, we see that  
indn,m,n,m (Tin,n) = ran. In particular we have [107] 

X q- 
n ~Yt't 

- m ) .  

i , j=l  

Consider the case when m n  = pq and the operator M c Lin(p, m, n, q,F) is 
invertible, i.e., its associated matrix M E I~ r n n x m n  is nonsingular. For some classes 

of invertible operators it may be shown that  

indp,m,n,q (M)  = indm,p,q,n ( M -  1 ). (E.15) 

It is interesting to determine whether (E.15) holds for all invertible operators 
A/[ c Lin(p, m, n, q, IF). 

E.4  N o t e s  and  re ferences  

Linear matrix equations and linear matrix operators have been studied since the 
pioneering work of Sylvester and Kronecker [152, 215, 214], see also [196, 193, 
229] and [8]. Now there are hundreds of papers, surveys and many books, e.g., 
[12, 10, 69, 106, 107, 205, 228] devoted to the analysis, existence, uniqueness and 
representation of the solution and also to the numerical algorithms and software 
to solve various types of linear matrix equations. Most of the existing results, 
however, are connected with particular classes of such matrix equations. 

The problem of representing a general linear matrix operator has only recently 
been studied in [125]. 
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Appendix F 

Lyapunov operators 

F . 1  I n t r o d u c t o r y  r e m a r k s  

In this appendix Lyapunov operators in real and complex matrix spaces are stud- 

ied, which include as particular cases the operators arising in the theory of linear 

time-invariant systems. 

A linear operator s :~F n x n  - 4  IF n x n  is a Lyapunov operator if 

(c(x))* : c(x*), 

where the star denotes transposition in the real case and complex conjugate trans- 
position in the complex case. Characterizations and parametrizations of the sets 

of real and complex Lyapunov operators are given and their dimensions are de- 

termined. Relevant Lyapunov indices for Lyapunov operators are introduced and 

calculated. Similar results are given also for several classes of Lyapunov-like linear 

and pseudo-linear operators. The concept of Lyapunov singular values of a Lya- 

punov operator is introduced and the application of these values to the sensitivity 

and a posteriori error analysis of Lyapunov equations is discussed. 

Despite of the existence of a large amount of literature on Lyapunov equations 
and operators some general properties of finite-dimensional Lyapunov operators, 

however, have not been studied to a sufficient extent. In particular, the notion 

of the minimal singular value of a Lyapunov operator is sometimes misused. In- 

troducing the new concept of Lyapunov singular values of a Lyapunov operator, 

some well-known estimates in the sensitivity theory of matrix equations may be 

substantially improved. 

In this appendix we denote by ft(n,F) C IF 2nx2n  the set of all matrices L c 

F 2nx2n such that LPn2 = Pn2-L. We use the notation from Appendices E and 

10.17. 

379 
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F.2 Real  operators  

An important class of linear operators are the Lyapunov operators which are au- 
tomorphisms in F n• In this section we consider the class of real Lyapunov 
operators in Lin(n,  R). 

Def in i t i on  F.1 An operator s E Lin(n, ]~) is called a real Lyapunov operator if  

( ~ ( x ) ) T  __ f___,(X m), X E ]~nxn 

We denote by Lyap(n ,  R) C Lin(n,  ]~) the set of real Lyapunov operators. 

It follows from Definition F.1 that  X = X T => s  = (s  T and X = - X  T 

s  - ( s  r provided s c Lyap(n ,R) .  Hence, the subspaces Her (n ,R)  
of symmetric and S l i e r (n ,  R) of skew-symmetric real matrices are invariant sub- 
spaces for operators from Lyap(n ,R)  (see also [40], where the particular case 
s  = A H x  + X A  has been considered). 

Below we need the operator ~;~ := ]4~,n :F  2nx2n ~ F 2nx2~, defined by (E.9), 

(E.10) for p = m = n = q, which in the given case is an involutary permutation, 
~ = ln,n. 

The set Lyap (n ,R)  itself is a linear subspace of Lin(n ,R) ,  which may be 
characterized in the next proposition. 

P r o p o s i t i o n  F.2  The following four statements are equivalent: 

(i) /: E Lyap(n ,R) .  

(ii) There exists A/t C Lin(n,]~), such that 

z:(x) = M ( x )  + (M(x - r ) )  -r, x c ~,n• 

r T T i.e., s  - E k = l  ( A k X B k  + B k X A  k ), or equivalently 

T 

L -  M t(c) - Z (B[  | + | 
k = l  

where Ak , Bk E R n • n are given matrices. 

(iii) L E ~(n, R), where ~(n, R) is the subspace of real n 2 • n 2 matrices L, satis- 

fying the equation Pn2L = LPn 2 . 

(iv) The matrix  L : =  ~;n(L) is symmetric.  

Pro@ The equivalence between (i) and (ii) follows from the definitions. To 
prove (iii) we perform the vec operation on both sides of the characteristic equation 
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( s  T - s  T) of the Lyapunov operator E with associated matrix L, which 
gives 

vec((s T) - -  vec(/~(xT)), 

Pn2vec(s - Lvec(XT), 

Pn2 Lvec(X) - LPn~vec(X) 

for all X c ~n• and hence, Pn2L = LPn=. 

To prove (iv) note that  the relation ~-~k=l ( B [  | Ak + Ak | B [ )  - L from 
(ii) is an equation for the matrices A 1 , B 1 , . . . , A r ,  Br, similar to (E.6). After 
some calculations we get the following counterpart of the bilinear equation (E.13), 
(E.14): 

AB + (AB) T = L (r.1) 

and hence, the matrix L is symmetric. [:] 
Representations of L: E Lyap(n,I~)  as in Proposition F.2(ii) usually arise in 

the theory of continuous-time standard and descriptor dynamical systems. They 
involve 2r terms and cannot be condensed in the sense of Definition F.1. In 
particular, the representation of the Lyapunov operator X H D X D  T (of Sylvester 
index 1) in the form (ii) requires two terms, e.g. r = 1 and A1 = D, Bt = D T/2. 

As in the case of a general Sylvester operator A4 E Lin(n,]F), the real Lya- 
punov operator L: C Lyap(n ,  R) may be represented in a condensed form as a sum 
of indn (s elementary linear operators (not necessarily Lyapunov) but in this case 
the formal symmetry in Proposition F.2(ii) may be lost. To preserve this symme- 
try, characterizing Lyapunov operators, we introduce the following two symmetric 
representations that  hold for every nonzero operator/2 c Lyap(n ,  I~). 

The continuous-time representation is of the form 

t~c 
T T ] l~nxn, (F.2) z:(x) - (AkXZ k + X A k ) ,  X 

k = l  

while the discrete-time representation is 

t~d 
s  = ~ ~ j D j Z D ~ ,  Z E I~ ~• (F.3) 

j= l  

where gj - -  =]=1 and D j , A k , B k  E I~ n• Obviously 2go > indn(s and ~d 

indn(s 

Mixed representations as s  = D X D  T + AT x + X A  may be reduced to 
some of the above two types (F.2) or (F.3). 

De f in i t i on  F .3  The representations (F.2) and (F.3) of f~ e Lyap(n ,  I~) are said 

to be cl-condensed and dl-condensed respectively, if there are no representations 

of f~ of the corresponding types with less terms. The numbers clindn(/:) "-  2gc 
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and dlindn(s := gd in the cl-condensed representation and in the dl-condensed 
representation are called the continuous-time Lyapunov index and the discrete- 
time Lyapunov index of 12. 

E x a m p l e  F.4  Let )~1,,~2 E ~ ,  with A1 > 0. Then the operator s E Lin(2, R), 
defined via 

1 2 ( X )  " -  . , ~ x 2 2  , X - x 2 1  37,22 

has both its Lyapunov indices equal to 2. It admits the cl-condensed representation 
s  = A X + X A  and the dl-condensed representation s  = D I X D 1 - D 2 X D 2 ,  
where A := diag(A1, A2) and 

D l " = d i a g (  2V/~l A l + A 2 )  ( ) , ~ , D2 "= diag O, AI.~_A_7- A2 . 

Explicit expressions for the Lyapunov indices of Lyapunov operators are given 
below. Obviously indn(s >_ clindn(s dlind~(s In fact we will show that the 
Sylvester index of a Lyapunov operator is equal to its discrete-time Lyapunov 
index. 

P r o p o s i t i o n  F.5 The continuous-time and the discrete-time Lyapunov indices of 
the nonzero operator 12 c Lyap(n,  R) are determined by 

clindn(s 

dlindn(s 

: 2 max(u+ (L), v_ (L)}, 

= v+(L) + u_(L) = rank[L]. 

In particular, the Sylvester and the discrete-time Lyapunov index of an operator 
s E Lyap(n,  R) coincide, i.e. 

indn (s = dlind~ (s _> clindn (s 

Proof. Consider first the continuous-time case and set C - AB in equation 
(F.1). Hence, the number r := clindn(s may be computed from 

-min~rank(C)'CE]R n2 xn2 C + C  T - L ~  r ( 

Denoting a := v+ (L), fl := ~,_ (L) and 3' := c~ + fl we will show that r = c~. Indeed, 
there exists P E Gs 2, R) such that the matrix L is factorized as L = PALP T, 
where A L "- diag(2I~,-2Ifi ,  0n~-~). Setting C - p y p T  we obtain that r is the 
minimum of the ranks of the matrices Y, such that Y + y T  = At.. The general 
form of Y is 

Y - Y21 -Ifi  + Y22 - Y ~  , (F.4) 
Yai Ya2 Y3a 
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where the matrices Yll E S H e r ( a , R ) ,  Y21 E ]~flxc~, Y31 E I[~ (ng-3')xs,  Y22 E 

SHer(f l ,  R), Ya2 E R ( ~ - ' ) x ~ ,  Ya3 E S H e r ( n  2 -  7, R ) a r e  arbitrary. Suppose 

w.l.o.g, tha t  a > ft. The eigenvalues A(Is + Yll) of the matr ix  Is  + Yll are equal 
to 1 + A(Yll). In turn, Yll has its eigenvalues on the imaginary axis, i.e., the 

eigenvalues of I s  + Yll have real part  1. Hence, the diagonal block Is  + }Ill of Y 
in (F.4) is nonsingular and rank(Y) _> rank[Is + Jill] -- ct. Moreover, for certain 

Y the equality rank[Y] - a is achieved. To see this, take Yll, Yal, Y22 and Ya3 as 

zero matrices, and let Y21 " - [ I ~ ,  0flx(s_fl) ]. Then Y21Y2 T - I~ and hence, 

o o] 1 -Y21 I~ 0 Y - -  0 0 0 

0 0 In 2 _~ 0 0 0 

which yields rank(Y) - a.  Therefore we may find matrices A, B, satisfying 
A B  + (AB)  T - L with r - a.  Since the continuous-time representation of a 

Lyapunov operator has 2r terms, we have proved the first part  of the proposition. 

Consider now the discrete-time case. Denote D - -  [vec(D1), . . . ,vec(D~)]  E 

R n2x~ and let E E Gs  be a diagonal matr ix with elements cj - +1 on the 
T diagonal. Then the equation ~ k = l  ek(Dk | Dk) -- L for the matrices D 1 , . . . ,  Dk 

becomes D E D  T - L. We have r > "y - rank(L).  Consider again the factorization 

L - P A L P  -c. Part i t ioning the matr ix  P as P - [P1,P2] with P1 E IR n2x~, we 

may choose r - 7  and D - P1, E - d iag( I s , - I /~ ) .  El 
According to parts (i) and (iii) of Proposition F.2, a matr ix L E I~ n2xn2 is the 

matr ix  representation of a Lyapunov operator if and only if it has the symmetry  

property Pn~L - LPn~, or, equivalently, L - P~2LPn~. This leads to the following 
proposition. 

P r o p o s i t i o n  F .6  The subspace f~(n, IR) C ~]~. n2xn2 o f  matrix representations of 

real Lyapunov operators is isomorphic to the subspace 

Ker ( I ~  | Pn 2 - P ~  | In2) - Ker ( P ~  | P~2 - In4) C R n4 . (F.5) 

Proof. Multiplying the last equation on the left with Pn2 and taking into 

consideration tha t  Pn22 = In2, we also get L = Pn2LPn 2 . The characterization 

of ~ ( n , R )  by the subspace (F.5) is obtained taking the vec operation on both 

sides of the equalities Pn2L - LPn2 = On2xn2 and P~2LPn2 - L = 0n2xn~, namely 

Next we will give two explicit parametrizat ions of the set ~t(n,R), which in 

particular yield the dimension of the space of real Lyapunov operators. For this 

purpose we need the Jordan form dn of Pn~. The matr ix Pn2 has two eigenvalues: 

A1 = 1 with multiplicity nl  := n(n  + 1)/2 and A2 = - 1  with multiplicity n2 := 

n ( n -  1)/2. Thus, the Jordan form of P~= is 

J n  - ( ~ T n P n 2 ~ n  - -  d i a g ( I n l , - I n 2 ) ,  
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where the orthogonal matrix O n E O(n 2, R) may be obtained as follows. The 
permutation L ~ Pn~L leaves n rows of L at their positions ( k -  1)n + k, k = 
1 , . . . ,  n, and interchanges the positions of the rows in the remaining n ( n -  1)/2 
pairs of rows. Hence, there is a permutation matrix O~, such that  

' 1 0 ' " "  

0 1 
, 0 ] ) "  

Let 

, . . . ,  , w "-- 1/V/-2.  
03 Cz) ~.d W 

Then 
/ / t  T / l /  (one,,) P n 2 e n O  n - -  diag(/n, 1 , - 1 , . . . ,  1 , -1 ) .  

Let O~ ~ - 14 and, if n > 2, let O~n" be the permutation matrix, corresponding to 
the permutation n + 21 ~ n 2 + 1 - 2/, 1 = 1 , . . . ,  ( n -  1 ) ( n -  2)/2, leaving the other 
elements of {1 , . . . ,  n 2} unchanged. Then 

o" '  (F.7) e~ - e : e " _ ~ .  

E x a m p l e  F .7  For n = 2 the transformation of II2 into -/2 is done via 

1 0 0 0 

0 0 w - w  
0 2 -  0 0 w w 

0 1 0 0 

, -/2 - O{YI2@2 - diag(1, 1, 1 , -1 ) .  

P r o p o s i t i o n  F .8  The subspace ft(n, I~) is parametrized as 

ft(n, R) = 12 n 1 ( H e r ( n 2 ,  IR)) 

[  110]  
0 L22 On 

" Lii E I~ ni xni } .  

In particular the (real) dimension of L y a p ( n , R )  and f~(n,g{) is n 2 + n~ - n2(n 2 + 
1)/2. 

Proof. The first parametrization of ~(n,  R) follows immediately from Proposi- 
tion F.2(iv) and we see that  the dimension of gt(n, R) is that  of H e r ( n  2, R), i.e., 
~: (~: + 1)/2. 

Consider the second parametrization. The matrix equation Pn2L = LPn 2 for 
the matrix L is equivalent to 

JnL  -- LJn ,  L "-  OTnLOn �9 (F.S) 
i 

The general solution of equation (F.8) is of the form L - diag(L11,L22), where 
the matrices Lii c 7~Sni • ni are arbitrary, which completes the proof. [] 
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E x a m p l e  F .9  For n - 2 and n - 3 the sets ft(2, lR) and t2(3, IR) are 10- and 

45-dimensional real spaces with patterns A2 and A3 of the free parameters as 
follows: 

: 6 : 7 : 8  2 0 2 1  2 3 2 4  
A-1 2 2 3= 7 10 13 7 11 14 2 : 1 2  15 

A 2 -  ~ 5 6 . A 3 -  25 26 27 26 28 29 27 29 30 . 
4 6 5 r ~ ' ~ 32 33 34 7s 36 37 38 

_8 9 9 16 19 22 17 20 23 18 21 24 

31 34 37 32 35 38 33 36 39 
40 41 42 41 43 44 42 44 45 

In both cases the underlined elements are in the positions, corresponding to the 

zero scalar identities for the elements of L in the matrix equation Pn2L - LPn 2 . 

If AJ c L i n ( n , R )  is a general Sylvester operator, then according to Defini- 

tion E.3 we have I[./~I[F "-- O 'max(J~[ )" - -  a l (Mat (~d) )  - m a x { l i M ( X ) l l F  �9 IIXIIF = 
1}. Similarly 

(7min(-A/l) "-- an2 (Mat(Ad)) - m i n { l l M ( X ) l l F  " IIXIIF - 1} 

and if 3,t E Lin(n ,  R) is invertible, then IIM-1IIF - l/ffmin(gVI). 

For Lyapunov operators 12 E Lyap (n ,  R), however, in addition to the standard 

maximum and minimum singular values am~x(t;) and f fmin(s  we  may also define 
the maximum and minimum Lyapunov singular values 

IIZ:ll~ = Crma~'~(/2)": max{llZ:(X)llF " PIXIIF : 1, x = X T} 

and 

O'mi~--n(/2) "-- min{llZ:(X)llF " IIXIIF - 1, X - X 

If/2 is invertible, then IIZ;-IlI~ - 1/a-~ln(Z;). Obviously 

ffmin(~) _~ ~Tmi~-n(~) _~ ffma%(/~) <_ ffmax(/~). 

T}. 

Each of these inequalities may be strict, i.e., the inequalities ffmin(/2 ) < (Tmi~--n(s 

and Crm~'-~(s < am~x(/2) are possible. Moreover, as we show below, the differences 

ami~-~(s amin(/2) and a m ~ x ( s  am~'-~(s may be arbitrarily large, see Exam- 
ple F.12. 

Let A E R nx~ and a "= vec(A) c ~. n2. Using the notation vec~T(a) -- 

(VeCnl(a)) T define the set Z ( n ) " -  {a  c ]R n2 " VeCnl(a) = vec~ T (a)}, correspond- 

ing to the symmetric matrices A - vec n 1(a), which is an n(n  + 1)/2-dimensional 

subspace of R &. We will show that  Z ( n )  - Rg(In2 + Pn2) -- Rg(Pn), where 
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Pn - [Pn,ij] E ~ n2xn(n+l)/2, i , j  - 1, . . .  ,n, is an upper block-triangular matrix. 
The blocks Pn,~j c ~nx j  a r e  defined by 

On• 

Pn,~ "-- [ I~ 
[ O(n-i)xi 

Ej (n,j) 

if i > j ,  

if / - j ,  

if i < j .  

If L is the matr ix  representation of s E L y a p ( n ,  1~), then we can rewrite the 
expression for &~-~(s in the equivalent form 

-- m a x {  ]]La]12]lall2 " 0 # a E Z ( n ) }  = m a x {  I[LPnbll211P~b]]2 

= IILQ.It - m  (LQn), 

�9 0 ~= b E ]~n(n+l)/2} 

where 

Qn "- Pn(PTPn)  -1 --[Qn,ij] e ]~ n2• i, j = 1 , . . . ,  n, (F.9) 

is an upper block-triangular projector 7- (QnQn - In(n+1)~2). The blocks Qn,ij E 
~n• a r e  given by Qn,ij - 0  if i > j ,  Q~,11 - [ 1 , 0 , . . . , 0 ]  T E R n, Qn,kk - 
[diag(wIk_l, 1), 0] T and Qn,ij - wEj i (n , j )  if i < j ,  where w "= l /v/2.  

The matrices Pn and Qn have the same sign-patterns, the only difference being 
tha t  the nonzero elements of Pn are equal to 1, while the nonzero elements of Qn 
are equal to 1 or w. 

E x a m p l e  F .10  The matrices Q2, Q3, Q4 are 

1 0 0 

0 w 0 
Q 2  - -  0 ~d 0 , Q 3  - -  

0 0 1 

1 0 0 

0 w 0 

0 0 0 

0 w 0 

0 0 1 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 

0 0 0 

w 0 0 

0 0 0 

0 0 0 

0 w 0 

co 0 0 
0 w 0 

0 0 1 
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Q4- 
w 0 0 

0 w 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

w 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 w 0 0 

0 0 0 6  
0 0 0 0 

0 0 0 0 
0 0 w 0 

w 0 0 0 

0 w 0 0 

0 0 w 0 

0 0 0 1 

Similarly, we have for the minimum Lyapunov singular value 

(Tmi-~(/Z) -- grmin ( L Q n  ) 

Def in i t i on  F .11  The singular values of the matrix LQn are called Lyapunov sin- 

gular values of the Lyapunov operator s with associated matrix L. The set of 

Lyapunov singular values of s is denoted as a ( s  (7(LQn). 

To compare the standard and Lyapunov maximum and minimum singular val- 
ues, consider the following example. 

E x a m p l e  F .12  Let operators El, s E Lyap(n ,  R) be determined by 

/~l(X) 
&(x) 

"= E 1 1 X E 2 2  + E 2 2 X E 1 1  - E 1 2 X E 1 2  - E 2 1 X E 2 1 ,  

"-- X - ~ - / ~ l ( X ) ,  X E ~ 2 x 2 ,  

where E~j "-  E~j(2, 2) and/3 > - 1 / 2 .  Setting L~ "- Mat(s we have 

L1 -- 

0 0 0 0 1 0 0 0 

- 0 1 + / 3  - / 3  0 0 1 1 0 L 2 -  
0 - 1  1 0 ' 0 -/3 1 + / 3  0 

0 0 0 0 0 0 0 1 

Since (Ymax(/~l) -- 2 a n d  L I Q  2 --- 04x3 ,  t h e  m a x i m u m  s i n g u l a r  value amax(/3/21) - 

21/31 of the operator/3s may be arbitrarily larger than its maximum Lyapunov 

singular v~l.~ ~ - ~ ( 9 ~ )  = o. ~rthermore, we have ~ (&)  = { 2 ~ +  ~, 1, ~, ~} ~nd, 
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since L2Q2 = Q2, we obtain K(s = {1, 1, 1}. Then for large fl the maximum 
singular value amax(s = 2fl + 1 of s is arbitrarily larger than its maximum 
Lyapunov singular value a-~'~x(s = 1. Finally, let fl = - 1 / 2  + s/2, where c > 0 
is a small parameter. Then the minimum singular value O'min(s : s of s may 
be arbitrarily smaller than its minimum Lyapunov singular value, which is equal 
to 1. 

The relationship between the sets of standard and Lyapunov singular values of 
a Lyapunov operator is revealed by the following assertion. 

P r o p o s i t i o n  F.13 I f  s e Lyap(n ,R)  then ~(s  C a(s  

Proof. The set Her(n,  I~) is an invariant subspace of the operator 
/: c Lyap(n,  I~). The orthogonal complement of that invariant subspace, the set 
S l ie r (n ,  R), is also an invariant subspace of s It follows that ~(s C ~(s D 

From an application viewpoint it is important to define the class of Lyapunov 
operators s with Sylvester index indn(s < 2 such that 

(Tmin(~) -- 6rmi'-'-~(~) a n d  (7max(s  -- (7ma'~(s (F.10) 

As Example F.12 shows, for indn(s _ 4 it is possible that O'min(~ ) < O'mi~~(~ ) 
and/or amax(s > ama~'-~(s The results in [40] can be extended to show that for 
n = 3 and ind3(s = 2 relation (F.10) is not valid in general. 

If (F.10) holds, then for Lyapunov operators that are most used in practice, 
e.g. for the descriptor continuous- and discrete-time operators s and s given 
by s  - A T X E  + E T X A  and s  -- A T X A  - E T X E ,  it is justified to 
use the minimum and maximum standard singular values, since they are equal 
to the corresponding Lyapunov singular values. For general Lyapunov operators, 
however, one should use the Lyapunov singular values, since they produce tighter 
bounds. 

Note finally that the converse of Proposition F.13 is not true, i.e., the inclusion 
~(A/I) c or(A4) for some A// e Lin(n,R) does not imply A/I e Lyap(n,I~), as is 
demonstrated in the following example. 

E x a m p l e  F. 14 Let 

M 

1 0 0 0 

0 1 1 0 
0 2 2 0 " 
0 0 0 1 

Then ~ ( A 4 ) -  a ( M Q 2 ) =  {v/i-g, 1, 1} c a ( M ) -  {x/~,  1, 1,0}, but M r ft(2, I~) 
and hence, the corresponding A4 is not a Lyapunov operator. 
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F.3 Complex operators 

The results for real Lyapunov operators have their counterparts for complex Lya- 
punov operators, defined next. 

An operator Ad c Lin(n,C) may always be represented in the form (E.3), 
where Ak, Bk E C nxn Definition E.3 is directly applicable to such operators and 
Proposition E.7 holds as well. Definition F.I is modified as follows. 

Defin i t ion  F.15 The complex operator ~ c Lin(n, C) is said to be a Lyapunov 
operator if 

( ~ ( X ) )  H - ~ ( x H ) ,  X e C nxn. 

The set of complex Lyapunov operators is denoted by Lyap(n,  C). 

It follows from Definition F.15 that X = X n ~ s  = (s n and X = 

- X  H =~/:(X) - - ( L ( X ) )  H provided s e Lyap(n,  C). Therefore Her(n,  C) and 
SHer(n,  C) are invariant sets for complex Lyapunov operators. 

In the complex case, due to the nonlinearity of the complex conjugation, the 
set Lyap(n,  C) c Lin(n, C) of Lyapunov operators is not a subspace of Lin(n, C) 
and the set ~t(n, C) c C 2nx2,~ is not a subspace of C 2nx2'~ (these sets may become 

subspaces if we consider linear spaces of complex matrices with l~ as a field of 
scalars or if we pass to the representation C 2 n x 2 n  "~ ]~2n2x2n2). 

We have the following analogue of Proposition F.2 in the complex case. 

P r o p o s i t i o n  F.16 The following four statements are equivalent: 

(i) s E Lyap(n,  C). 

(ii) There exists AA c Lin(n, C), such that 

z:(x) - M ( x )  + ( M ( x " ) )  H, x e c nxn, 

r H H i.e., s  Y~k=l (AkXBk  + B k X A  k) and 

L " -  M a t ( t : )  - ~ (B[ | Ak + -Ak @ BH), 
k = l  

where Ak, Bk E C nxn are given matrices. 

(iii) L E ~(n, C), where ~t(n, C) is the set of complexn2xn 2 matrices L, satisfying 
the equation Pn2L = LPn2. 

(iv) The matrix L "- Yn(L) is Hermitian. 



390 A P P E N D I X  F. L Y A P U N O V  O P E R A T O R S  

Proof. The proof is similar to this of Proposition F.2. In particular we have 
the equation 

AB + (AB) s = L, 

showing that L is Hermitian. D 
If we represent L E C n~ • as L - S + ~T, where S, T E I~ ~2 • then Propo- 

sition F.16(iii) yields 

Pn2S = SPn2, Pn2T = -TPn2.  (F.11) 

Hence, we come to the following analogues of Propositions F.6 and F.8. 

P ropos i t i on  F.17 The set f t(n,C) c C 2nx2n of matrix representations of com- 

plex Lyapunov operators is isomorphic to the subspace 

Ker [diag (In2 | Pn2 -- Pn2 | In2, In2 | Pn2 + Pn2 | I~2 )] 

Ker [diag (Pn 2 | Pn 2 -- In4, Pn 2 | Pn 2 + In4)] C R 2Tt4. 

Proof. The proof follows directly from (F.11). 
Using the Jordan form (F.6) of Pn2 and the matrix On from (F.7) we can 

parametrize the set f~(n, C) and determine its real dimension according to the 
following proposition. 

P ropos i t i on  F.18 The set D(n, C) is parametrized as 

~ ( n , C ) -  Vnl (Her(n  2 C ) ) - { O  n [ Lll 
' ~L21 

~L12] T ]l~n{ xnj } 
L22 (~n " Lij E 

In particular the real dimension of Lyap(n ,  C) and fl(n, C) is n 4. 

Proof. The first representation follows from Proposition F.16(iv). The second 
is based on equations (F.11) for the matrices S and T. Using the Jordan form Jn 
of Pn~ we obtain the equivalent equations 

J g- gJn, g -- O:SO ; Jn 7- - e : T e . .  

The general solution of (F.12) is of the form 

 =[L11 0] L12] 
0 L22 ' L21 0 ' 

(F.12) 

~d 
s  - ~ ~ j D j X D  f ,  

j=l 

where the matrices Lij E I~ n~ x nj are arbitrary. Cl 
Similarly to the real case, a complex Lyapunov operator s E Lyap(n,  C) admits 

also the Hermitian representation 
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where ej = 4-1 and Dj E C nxn  Accordingly, the concepts from Definition F.3 are 

easily extended to the case of complex Lyapunov operators. In particular we see 
that  Proposition F.5 holds also in the complex case. 

The maximum and minimum Lyapunov singular values of the operator /2 c 
Lyap(n ,  C) are defined as 

f fmax(~)  " - -  m ~ x { l l Z : ( X ) l l F  " I IX I IF  - 1, x - x H } ,  (F.13)  

~ m i n ( s  " - -  m i n { l l z ; ( X ) l l F  �9 IIXIIF - 1, x - x H } ,  

respectively. 

The Lyapunov singular values of a complex Lyapunov operator s E Lyap(n ,  C) 
with matrix 

L = S + ~T; S e Her (n ,  R), T e S l i e r (n ,  R), 

are defined as follows. Let 

L ~ ' - [  ST -T]s C R 2nx2n 

be the real version of L. Let X = Y + ~Z, where Y, Z E R nx~. Then the restriction 
X - X n in (F.13) means that  Y is symmetric and Z is skew-symmetric, i.e., 
y := vec(Y) E Rg(I~2 - P~2) and z := vec(Z) c Rg(I~= + P ~ ) .  Furthermore, we 
have 

] . 
Z 2 

Therefore, as in the real case, we obtain 

~max(~)  - - I I ~ ( L ) I I 2  - a l ( ~ n ( L ) ) ,  ~ m i n ( ~ ) -  O'n2(~n(L)) ,  

where the matrix ~n(L)  is defined by 

~n(L) "-Ladiag(Qn R n ) - [  SQn 
' k TQn 

-TI~sRn ] E ]1:( 2~2x~2 

Here the matrix Rn C R n2xn(n-t)/2 is obtained from Qn (see (F.9) and Example 

F.10) by deleting the columns containing l 's  (which are numbered as k(k + 1)/2, 

k - 1 , . . . ,  n) and by changing the sign of each second element w in each column 
of the reduced matrix. Formally this procedure is described as follows. Let An = 
[An]i,j "-- [hi(i+t)/2,j] C •n(n+l)/2• where 5~,y is the Kronecker delta, and 

J "- {(kn + l,k(k -1 ) /2  + l) . k - 1 , . . . , n -  l, l - 1 , . . . , k } .  

Then the elements [P~]ij of the m a t r i x / ~  are given by 

[QnAn]i, j 
[Rn]i,j - _[QnAn]i J 

if ( i , j ) r  

if (i, j) e J .  
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E x a m p l e  F .19  The matrices R2, R3, R4 are 

0 

R2 - , R3 - 
- - W  

0 

0 

W 

0 

m t d  

0 

0 

0 

0 0 

0 0 

- w  0 

0 0 

0 0 

0 w 

- w  0 

0 - w  

0 0 

0 

t~ 

0 

0 

0 

0 

0 
R 4 -  

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

w 0 

0 0 

w(.d  

0 

0 

0 

0 

0 

02 

0 

0 

m~d 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 0 

0 0 0 

0 0 0 

0 w 0 

0 0 0 

0 0 0 

0 0 0 

0 0 w 

- w  0 0 

0 - w  0 

0 0 - w  

0 0 0 

A similar s tatement  ~(s  c a(/ :)  as in the real case can be stated for complex 

Lyapunov operators s 

Consider now some problems concerning the inversion of Lyapunov operators. 

The operator s E Lyap (n ,  F) is invertible if and only if its matrix L is nonsingular, 

and in this case we have Mat ( s  -1) - L -1. In addition, the inverse of a Lyapunov 

operator  is again a Lyapunov s operator since for L c Gs the equations 

Pn2L - LPn2 and Pn2L -1 - L-1Pn 2 are equivalent. Conditions for invertibility 

of general real and complex Lyapunov operators are given in [132]. 

The continuous-time Lyapunov indices of the operator and its inverse may 

differ, see Example F.22. 

D e f i n i t i o n  F .20  The Lyapunov singular values of the complex Lyapunov operator 

/2 c L y a p ( n ,  C) with associated matrix L c ~t(n, C) are the singular values of the 
matrix ~n(L) ,  namely ~(s "- cr(~n(L)). 
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Consider the continuous-time and discrete-time Lyapunov operators from 
Lyap(2,  I~). 

E x a m p l e  F.21 Given the matrix A E I[~ 2• the continuous-time operator s E 
Lyap(2,  I~) is defined by s "-- $2(A T,/2, I2,A) - A r x  + XA, X E R 2• 
It is invertible if and only if tr(A) ~= 0 and det(A) ~- 0. Also, it is of index 1 if and 
only if A is a scalar multiple of I2, and of index 2 otherwise. 

The discrete-time operator ~A,d E Lyap(2, R), defined by 

s  - -  32(A T A, In - I n )  = AT X A -  X, X E R 2x2 

is invertible if and only if det(A) # 1 and tr(A) - det(A) # 1. It is of index 1 if 
and only if A is a scalar multiple of/2,  and of index 2 otherwise. 

E x a m p l e  F.22 Let A = [ A 
[ 0 

1 ] where 0 # A c l~. Then 
A J ' 

2AXll X l l  n t- 2AX12 ] X I~ 2x2 
s  -- X l l  -~- 2Ax21 x21 -~- x12 -[- 2Ax22 . , = [xij] C 

) - z ] , v - [ y , ~ ] e R  ~• ,lc( Y Yll Y12 -- ly l l  s Y21 -- ly11 2/2yll -- ly21 -- ly12 + Y22 

where l ' -  1/(2A). Hence, the matrix LA,~ of s is 

L A , c  - -  

2A 0 0 0 
1 2A 0 0 

1 0 2A 0 " 

0 1 1 2A 

The matrix 
2// 1 0 2A 
1 0 0 1 

V2(LA,~)-- 0 0 2~ 0 

2A 1 0 2A 

has two eigenvalues 2A :k x/4A2 + 2 of opposite sign and two zero eigenvalues. 
Hence, clind2(s -- dlind2(s = 2. The matrix 122(LA,lc) E Her(4,  I~)has two 
eigenvalues of the same sign and two zero eigenvalues. Therefore dlind2(s = 

- 1  2, clind2(s -- 4. If for example A > 0, then we have the following discrete- 

t imerepresen ta t ions  1 [ 1 0 ] A,~(Y) -- DIYDT1 + D2YDT2, where D1 "- v/1 -1 1 ' 

D2 "- lvq [ O1 O0 1" 

So far we have made an analysis of general Lyapunov operators. In the following 
section, we discuss the application of these results to the sensitivity and a posteriori 
error analysis of Lyapunov equations. 
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F . 4  S e n s i t i v i t y  a n d  e r r o r  a n a l y s i s  

Consider the Hermitian Lyapunov equation 

s  Q H _ Q r  (F.14) 

with an invertible Lyapunov operator/ : .  The minimum symmetric singular value 
~mi~-n(s of s is a relevant measure for the sensitivity of the Lyapunov equation 
(F.14) relative to perturbations in the coefficient matrices of s and Hermitian 
perturbations A Q -  AQ H in the matrix Q. 

Denote by X0 - X s = / : - I ( Q )  the solution of (F.14) and let X = Xo + 5 X  

be the solution to the perturbed Lyapunov equation s  = Q + 5Q. We have 
5 X  - s and hence, 

1 
ll XllF < IIZ:-*II IlaQIIF-- ----IlaQIJF. 

- -  O-min ( ~ )  

In terms of relative perturbations it holds that 

1 IIQtJF 
e x  < ~ Q ,  ~ "-  .--._.- 

--  O'min(/~) ]]X011F 

where ez  "-  IlaZilF/llZlIF and ~ is the relative condition number of the Lyapunov 
equation (F.14) with respect to Hermitian perturbations in Q. Note that usually 
Q - D H D  and when the matrix D is perturbed, then the perturbation 5Q - 

5DHD + DHSD + 5DHSD in Q is Hermitian. 

Most of the perturbation bounds in the literature [95, 68] are based on amin(s 
instead o n  C r m i n ( Z ] ) ,  e.g. the condition number is taken as 

*~ "-[IQllF/(llXollF~min(s 

Since a >_ ~ may be much larger than ~, it is clear that in case of Hermitian 
perturbations one should use the relevant sensitivity estimates, based on symmetric 
singular values instead on standard singular values of Lyapunov operators. At the 
same time sensitivity estimates, based on the standard singular values, should be 
used in case of non-Hermitian perturbations. 

Consider now the a posteriori error analysis of equation (F.14). Suppose that 
J ~  

X is an approximate solution of equation (F.14). For example this may be the 
solution, produced by a numerical method in finite precision arithmetics. Then 
it is important to have a sharp computable bound on the actual relative error 

57 "-  JJX-XoJJF/]IXoJ]F. Such a tight bound may be derived using the symmetric 
singular values of/2 and in particular the symmetric relative condition number of 
s defined below. 

Denote by Q "= s  the residual, corresponding to the approximate solution 
X. We have s  Xo) - Q -  Q, which gives X -  Xo - s  Q) and 

Ilx - X01tF < IIQ - QllF (F.15) 
- -  Y m i n ( / : )  " 
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Since IIQIIF -< am~• it holds that 

1 Gmax (~) 
_< ~ .  (F. 16) IIXolIF IIQIlF 

Combining (F.15) and (F.16) we get the desired estimate 

A 

5~ < con~-d2(Z:) ]]Q - QI[F 
- IIQlIF 

Ym~x(~:) where cond2(/:) "- ami,(z:) is the symmetric relative condition number of ~ with 
respect to inversion. This condition number may be used also for a posteriori error 
analysis of approximate solutions to symmetric matrix Riccati equations. 

F . 5  N o t e s  a n d  r e f e r e n c e s  

Since the fundamental work of Lyapunov on stability of motion, Lyapunov matrix 
equations have been widely used in stability theory of differential equations [236], 
in the theory of linear-quadratic optimization and filtering [181], in the perturba- 
tion analysis of linear and nonlinear matrix equations [68, 95, 120, 151] and other 
fields of pure and applied mathematics. This has motivated a continuous interest 
to both the theory and numerical treatment of Lyapunov operators and equations 
[40, 41, 79, 203, 204, 216, 69] and also recently in the context of the analysis and 
numerical simulation of descriptor systems via generalized Lyapunov equations 
[167]. 

The results presented in this chapter are entirely based on the papers [126, 125]. 
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Appendix G 

l yapunov-like operators 

G . 1  I n t r o d u c t o r y  r e m a r k s  

In this appendix we consider six more classes of Lyapunov operators and present 

their parametrizations and dimensions in particular. The proofs are similar to 
these from Appendix F and are omitted. 

G . 2  S k e w - L y a p u n o v  o p e r a t o r s  

Real skew-Lyapunov operators s from Lin(n,  R) are defined via 

( ~ ( x ) ) T  __ _ ~ ( X  T), X e ][~n• 

and may be represented as 

r 

s  = ~ ( A k X B k  -c 7- Rnxn  -- B k X A  k ) ; Ak, Bk E 
k=l 

(G.1) 

The matrix L C ]t~ n2• of a skew-Lyapunov operator satisfies Pn2L - - L P n  2 and 
has the form 

0 L12 T 
L - On L21 0 On'  

where the matrices Lij  c IR n' x nj are arbitrary. Hence the space of real skew- 

Lyapunov operators is of dimension 2nln2 = n 2 ( n 2 - 1 ) / 2 .  Since A B -  (AB) T = L 

then the matrix L := ~;n (L) of a real skew-Lyapunov operator/2 is skew-symmetric. 

Complex skew-Lyapunov operators s from Lin(n,  C) are defined by the relation 

(e(x))" - -e(xH), x ~ c "• 

397 
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and may be represented as 

s - ~ ,  (AkXBk  - - B ~ X A f ) ;  Ak ,Bk E C nxn (G.2) 
k=l 

The matrix L - S+  yT c C n2xn2 with S , T  E R n2xn~ of a complex skew-Lyapunov 

operator /2 satisfies the equation Pn2L = --EPn2 and hence, Pn2S = -SPn2,  
Pn~ T = TPn~ . Thus 

L__ On [ 2Ll1 L12 ] T 
L21 2L22 On' 

where the matrices Lid c ~ni x n j  are arbitrary. Hence, the space of complex skew- 
Lyapunov operators is of real dimension n 4. The matrix L := 12n (L) for a complex 
skew-Lyapunov operator s is skew-Hermitian since AB - (AB) n = L. 

The skew-Lyapunov index of a skew-Lyapunov operator is defined as the mini- 
mum number of terms in the representations (G. 1) or (G.2) and may be determined 
as follows. 

Consider the equation C -  C* = L in C := AB for a skew-Lyapunov operator. 
The matrix L is congruent to the matrix 

diag ( [  01 -1]0  " ' "  01 - 1  1 0  'O(n2-2r)x(n2-2r)) 
with r blocks of size 2 x 2 on the diagonal in the real case, and to the matrix 

diag (~Io,, -~Iz, O(n2_,T)x (n2--"y)) 
in the complex case, where-~ "-  c~ + fl - rank(L). Hence, the n:dnimum achievable 
rank of C is the rank of L. Thus, the skew-Lyapunov index of the skew-Lyapunov 
operator s c L in(n ,F)  with matrix L is equal to the rank of the matrix L "= 
"ldn ( L ) . 

G.3 Associated Lyapunov operators 

Associated Lyapunov and Riccati equations have been considered in [148] in the 
real case and in [140] in the complex case. Below we present the parametrizations 
of associated Lyapunov operators. 

Real associated Lyapunov operators s from Lin(n, R) are defined by 

(~(X)) T = /~(X), X e ]l~ nxn, 

and are given by 

r 

T T ~nxn .  s - E (AkXBk  + B T X  A k ) ;  Ak,Bk C 
k=l 
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The matr ix 

L - ~ ( B [  | Ak + Ak | B [ P n  2) E l~ n2xn2 

k=l  

of the associated Lyapunov operator s satisfies Pn 2 L - L and has the form 

L1 ]OTn, 
L - O n  On~ x n2 

where the matrix L1 E 7~snl x n 2 is arbitrary. Hence the space of real associated 

Lyapunov operators is of dimension n3(n + 1)/2. It may be shown that  Lq - L~,  

where Lq  are the n x n blocks in the partition L - [L~j] of the matrix L " -  ~2~ (L). 

Complex associated Lyapunov operators C ~xn ~ C nx~ are defined by 

( ~ ( X ) )  H -- ~.,(X), X e C nxn, 

and may be represented as 

H H cnxn.  s  - ( A k X B k  + B k X A~);  Ak,Bk  C 
k=l  

Complex associated Lyapunov operators are not linear, but pseudo-linear opera- 
tors, see Chapter 13 and [140]. For pseudo-linear operators s  nx~ ~ C nxn we 

have s = .h/ t l  (X)~-.A/12(XH), .Adi E Lin(n,  C), and vec(/2(X)) = M l v e c ( X ) +  

M2Pn2vec(X), Mi := Mat(Adi). Thus, the set of these pseudo-linear operators is 
of complex dimension 2n 4. 

For a complex associated Luapunov operator it is fulfilled M2 = M1, i.e., 
vec(s  = Avec(X) +Avec(X),  A E C ~x~. Hence, the set of complex associated 
Lyapunov operators is of complex dimension n 4. 

The values of an associated Lyapunov operator are symmetric matrices in the 

real case and Hermitian matrices in the complex case. Hence, these operators 
are not surjective if considered as mappings IF nxn ~ 1F nxn and thus, one should 

consider associated Lyapunov operators as mappings F nxn --. Her (n ,F ) .  

G.4 Associated skew-Lyapunov operators 

Real associated skew-Lyapunov operators s from Lin(n,  R) are defined by 

(z : (x ) )  - - z : ( x ) ,  x e R n• 

and may be represented as 

s  ~ ( A k X B k  T T Rnx', - -  - B k x A[); A k , B k e  . 

k=l  
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The matr ix  
r 

L : ~ (B-~ | Ak -- (Ak | B-~ Pn~)) ~ R n~ xn~ 
k=l 

of an associated skew-Lyapunov operator satisfies Pn~L = - L  and has the form 

L_On [ Onlxn 2 ] T 
L2 On' 

where the matr ix  L2 E I~ n2xn2 is arbitrary. Hence the space of real associated 

skew-Lyapunov operators is of dimension n2n 2 = n 3 ( n -  1)/2. 

It is easily proved tha t  Lij - - L  T-, where Lq  are the n x n blocks in the 
part i t ion of the matr ix  L " -  ]d~ (L). 

Complex associated skew-Lyapunov operators C ~xn ~ C nxn are determined 
by 

= - z : ( x ) ,  x c c nx , 

and may be represented as 

s  E (AkXBk  H U U Cn• - - B  k X  A k) ;  A k , B k r  
k = l  

These operators are pseudo-linear and satisfy vec(s  - Avec(X) - A--vec(X), 

A r C nxn Thus the set of complex associated skew-Lyapunov operators is of 
complex dimension n 4. 

The values of associated skew-Lyapunov operator are skew-symmetric matrices 
(in the real case) or skew-Hermitian matrices (in the complex case) and these oper- 
ators are not surjective if considered as mappings F nxn --, F nx~ Hence, one may 

consider associated skew-Lyapunov operators as mappings C ~x~ ~ S l i e r ( n ,  F). 

G.5 N o t e s  and references 

Lyapunov-like and other related (bilinear and Riccati) operators have been con- 
sidered in [125]. 



Appendix H 

N o t a t i o n  

We usually use upper  case for matr ices,  lower case for vectors and lower case Greek 

for scalars. 

In what  follows we list the  common nota t ion  which is used th roughou t  the text .  

H.1  S e t s  a n d  s p a c e s  

-- v/-2-f-  the  imaginary  unit; 

IR and C - the fields of real and complex numbers;  

R+ - [0, ec) - the  set of nonnegat ive  real numbers;  

sup{A/I} - the s u p r e m u m  (least upper  bound) of the  set 3,t C R, i.e., the  least 

real number  such t h a t  c~ E 3/I implies c~ _< s u p { M } .  The sup remum of the  empty  

set is assumed to be - o e ;  

inf{,~4} - the inf imum (largest lower bound) of 3//, i.e., the  greates t  number  

such t h a t  c~ E M implies c~ _> inf{Ad}. The infimum of the empty  set is assumed 

to be c~; 

IF - a rep lacement  of ei ther R or C; 

C_ - the  open left complex half-plane; 

I [}  1 - -  the  open unit  complex disc, centered at the origin; 

IF mxn - the  space of rn x n matr ices  A = [aq] with elements  a~j c F. The  

elements  of A are also denoted as (A)~j. The pair (m, n) is the  size of A ~ lFmxn; 

F n - IF nxl  - the  space of column n-vectors  x = [x~] with elements  xi ~ F; 

2 x - the  set of subsets  of the set X. 

401 
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H.2 M a t r i c e s  

In (or I)  - the  n • n ident i ty  matr ix;  

0mxn (or 0) - the  m x n zero matr ix ,  or a zero matr ix ,  whose size is clear from 

the  context .  If m - 0 or n - 0 the  ma t r ix  O m x  n is void; 

E i j ( m , n )  E ~ m x n  _ a mat r ix  wi th  a single nonzero element ,  equal  to 1, in 

posi t ion ( i , j ) ;  E i j ( n ) -  E i j ( n , n ) ;  

A T  _ [aji] E I~ n x m  - -  the  t r anspose  of A = [aij] E Fmxn;  

A - [~ij] E Fmxn _ the  complex conjugate  of A E F'~• 

A H "-'~T i ~ n  x m - E - the  complex conjugate  t r anspose  of A E ~ r n x n .  

Re(A) E I~ mxn and Im(A) E I~ mxn - the  real and imaginary  par t s  of A E 
C mxn, i.e., A - Re(A) + r im(A);  

d i a g ( a l , . . . ,  an) - a (block) diagonal  ma t r ix  wi th  diagonal  (block) elements  ai, 

where  ai are scalars or matrices;  

rank(A)  - the  rank of A, equal  to the  number  of its l inearly independen t  
columns or rows; 

de t (A)  and t r (A)  - the  de t e rminan t  and t race  of A; 

A I ( A ) , . . . , A n ( A )  E C - the  eigenvalues of A E Fnx~,  counted  according to 
their  algebraic multiplicity;  

spect (A)  - { / k l ( A ) , . . . , ~ n ( A ) }  C C - the  spec t rum of A E IF nxn.  We note  

t h a t  spect (A)  is a collection, i.e., a set wi th  (possibly) r epea ted  elements;  

t ad (A)  - max  {Izl" z E spect (A)}  - the  spectral  radius of A; 

GI(A) ~ - . .  ~ a k ( A )  >_ 0 - the  singular values of A E F mxn, where  k = 

ra in{m, n}. The  posit ive singular values of A (whose number  is r - rank(A))  are 

the  posi t ive square  roots  of the  posit ive eigenvalues of A H A  or A A  H. We also 

deno te  ama• - GI(A) and Gmin(A) - err(A); 

Ker(A)  - {x E F n �9 A x  - 0} c F n and Rg(A) - { A x ' x  E I~ n}  C I~ TM - -  the  

kernel and  range (or image) of A E Fm• 

A | B - [aijB] E IF mk• - the  Kronecker  p roduc t  of A - [aij] E F m• and 
B E F kxl" 

G E ( n , F )  c I~ n x n  - -  the  group of nonsingular  n x n matr ices  over F; 

b/(n) C Gs  C) - the  group of un i ta ry  matr ices  U E C nxn ( u H u  - In); 

( ~ ( n , ] F )  C I~ n X n  - the  group of o r thogonal  matr ices  U E IF n x n  ( u T u  - In); 

H e r ( n ,  F) C I~ nXn - -  the  set of Hermi t ian  matrices,  satisfying A s - A. In the  

real case H e r ( n ,  I~) c I~ n x n  is the  set of symmet r ic  matrices;  

•+ (A), ~_ (A) and ~0(A) - the  number  of positive, negat ive and zero eigenvalues 

of the  ma t r ix  A E H e r ( n ,  IF); 
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S l i e r ( n ,  F) C IF~xn _ the  set of skew-Hermit ian matrices,  satisfying A H - - A .  

In the  real case S l i e r ( n ,  IR) C IR n x n  is the set of skew-symmetr ic  matrices;  

We wri te  A _-< B if a i j  <_ bij  for all i, j ,  where A - [a~j] and B - [b~j] are real 

matr ices  of equal size. 

H . 3  M a t r i x  o p e r a t o r s  

For A - [aij] E IFm x n we denote by 

( )  [ IT vec A - all~ �9 �9 �9 , a m l ,  a12~ �9 �9 �9 , am2~ �9 �9 �9 , a l n ,  �9 �9 �9 ~ a m n  C 

the column-wise vector representa t ion of A. If A is represented by its columns 
T T a~ C IFm as A -  [ a l , . . . , a n ]  then  v e c ( A ) -  [ a T , . . . , a ~ ]  . When  the size (re, n) 

of A is essential, we also write vec(A) as vecm,n(A) (vecn = vec~,n) . We also 
consider VeCm,n as a linear opera tor  IFmxn  ____+ IFmn; 

. IFmxn  IFmn vec~l VeCn 1, vec~ n " IFmn ___+ IFmx n _ the inverse of VeCm,n - - - +  , - -  - ,  " 

P m , n  E ~ m n •  _ the  vec-permuta t ion  mat r ix  such tha t  

vec (M T) - P m , n v e c ( M )  

for M E Y m• P~2 - Pn,n; 

rOWm,~(A) - (vec(AT)) T - - [ ~ l , . . . , C ~ m ] -  (vec(A))TP~,m c F l x m ~ -  the 
T T IFmxn  row-wise vector representa t ion of the  mat r ix  A = [~lT,...,C~m] E , where 

~i c IFI• are the rows of A. We also use the shorter  notat ion row(A); 

The  ma t r ix  representa t ion (or briefly the matr ix)  of a linear mat r ix  opera tor  

s is denoted by M a t ( s  If Y - s  where X and Y are matrices,  then  
v e c ( Y ) -  M a t ( s  

Lin(p ,  m, n, q, IF) - the space of linear mat r ix  (Sylvester) operators  A/I �9 IFmxn  __+ 

IF~xq We abbrevia te  L i n ( m , n ,  I F ) -  L i n ( m ,  m ,  n ,  n ,  IF) and 

Lin(n ,  IF) - L in (n ,  n, n, n, IF). 

An opera tor  A/ /E Lin(p ,  m, n, q, IF) may  be represented as 

. A 4 ( X )  - ~ A i X B i ,  X c IFmxn, 

i--1 

where A i  E IFpxm and B~ E IFnxq are given matrices.  In this case the mat r ix  of j~4 
is 

Mat(A/l) - ~ BY | A i  ; 

i-1 

Op,m,n,q and l m , n  - the  zero opera tor  in L i n ( p ,  m ,  n ,  q, IF) and the identi ty 
opera tor  in L i n ( m ,  n, iF), respectively; 
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L y a p ( n ,  F) C L i n ( n ,  F) - the  set of Lyapunov  opera tors /2 ,  defined by ( s  = 

~(x") .  
T h e  s ingular  values ai(A//) of an ope ra to r  M E L in (p ,  m,  n, q,]F) are the  sin- 

gular  values r ) of its m a t r i x  represen ta t ion  M,  i.e., cri(dk4) = a i ( M ) .  For 

ope ra to r s  s E L y a p ( n , ] F )  we also define Lyapunov  singular  values ~ i ( s  

H . 4  N o r m s  

[[. [ - a no rm in ]~n or Fmxn;  

]]x[I p - a Hblder  p -no rm of x e F n, 

( 
i=1 

In pa r t i cu la r  we have 

n 
i=1 i=1 

, p > _ l .  

, I[xlloc -- m a x  {Ix~l " 1 <_ i < n} ;  

]]A[[p, e - an induced no rm of the  ma t r i x  A E I~m• 

IIAIJp,q - m a x  { t]Axl lq 'X  E IF n, IIX[Ip - 1}, p, q > 1. 

We set I AIIp -IIAIIp,p; 
[IAI[F - the Frobenius norm of A - [aij] E F m• 

[IAIIF _ ( t r ( A n A ) )  1/2 

\ i ,y=l 

1/2 

I A I -  [la~j[] E R~ • - the  m a t r i x  absolute  value of A - [ a i j ]  E Fro• 

Illalll- [llal I1, . . . ,  Ilarll] T E R~_ - a general ized norm of the  r - tup le  

a - -  ( ~ l , . . . , a ~ ) ,  

where  ai are vectors  or matr ices .  W h e n  all ai are scalars,  then  the  general ized 

no rm agrees wi th  the  vector  absolute  value lal; 

For a l inear or addi t ive  m a t r i x  opera to r  A/t �9 F m• --~ F p• we denote  

[ I M I I p - - m a x { l l M ( X ) l l p  I lX l lp -  1}, 

where  p c [1, oc) of p - F; 

Bp(a) - -  {x  e IF n " l l x -  all _~ p} c IF n - a closed ball, centered  at  a e IF n and of 

radius  p > 0. T h e  same no ta t ion  is used for a general ized ball Bp(a) = {x c F n : 

I x -  a I ! p} C F n, centered  at  a and of general ized radius  p E R~.  
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H.5 Perturbation analysis 

A, A', y - (subsets of) linear finite dimensional  spaces, isomorphic to F p, Fq, F r, 

respectively. An example  is A" = lFq or X = IF mxn _~ 1F ran. Typical ly A is the 

space of da t a  and X is the space of results of a given problem; 

I1" Ilac - a norm in X; 

II ]]x,y - a norm in the  space of linear opera tors  X ~ 3;; 

C(X, y )  - the space of continuous functions X ~ y ;  

(I) (or ~) : ,4 --, X - a function, defining a problem with da t a  A (or a) E A 

and result  X = (I)(A) E A' or x = ~a(a) E X. The  da ta  A is usually a collection 

( A 1 , . . . ,  A~) of matr ices  As; 

F : A x A" -~ y - a continuous function, defining a computa t iona l  problem 
with da t a  A and result  X via the  equat ion F(A, X) = 0; 

~A E .4 and ~X E X - per tu rba t ions  in A E A and X E X, such tha t  X + 5X 
is a solution of a pe r tu rbed  problem with da ta  A + ~A; 

~x --lldxll- an absolute  norm per tu rba t ion  in X E X; 

Cx --II~Xll/llXll- ~ relative norm per tu rba t ion  in X -r 0; 

- a pe r tu rba t ion  operator ,  defined via 

�9 (A, E)  = ~ ( A  + E)  - ~(A) .  

Wi th  this no ta t ion  we have 5X = r 6A); 

1[SX[[ _< f(llSAil) or [[SXI[ < f(lllgAlll)- a per tu rba t ion  bound for a problem 
X = (I)(A). Obta in ing  such bounds is the goal of per tu rba t ion  analysis; 

Fx(Ao, Xo) : A" ~ y - the part ia l  Fr6chet derivative of the mapping  F : 

A x A" ~ 32 in X,  evaluated at the  point (A0,X0).  Thus  Fx(Ao, Xo) is a linear 

opera tor  from A" to Y. The  par t ia l  Fr~chet derivative of F in A at (A0,320) is 

denoted FA (A0, X0) and it is a linear operator  from A to y .  Often the par t ia l  

Fr~chet derivatives are abbrevia ted  as Fx and FA; 

Fx(Ao, Xo)(Y) E Y and FA(Ao,Xo)(Z) E y - t h e  images of Y E X and Z E A 

under  the linear mappings  Fx(Ao,Xo) and FA(Ao,Xo). 

12 : X ~ A' or II : X x ,4 ~ A' - a (nonlinear) opera tor  which is locally 

equivalent to the  pe r tu rba t ion  analysis problem. Usually the pe r tu rba t ion  problem 

is rewri t ten  as an opera tor  equat ion ~X = II(~X, ~A). It is fur ther  shown tha t  II 

has a fixed point in a set B C X of d iameter / ( I I~A[[)  = O([[~AI[), ~A --. 0. As a 

result  a pe r tu rba t ion  bound II~XII _< f(l[bAII ) follows. 
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H.6 Other  nota t ion  

We denote by eps the roundoff unit of the finite precision arithmetic (the floating 
point computing environment in particular). For many computer platforms eps is 
of order 10 -16 , see also [174]. 

The notation rain (m divides n) means that  m, n, n /m  c N. 
The symbol := stands for "equal by definition" and [::1 marks the end of proofs. 
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group operation, 329 

HSlder constant, 40 
H61der continuous problem, 40 
HSlder exponent, 40 
homogeneous function, 339 
homomorphism, 330 
Householder reflection, 347 

ill-conditioned problem, 45 
ill-posed problem, 35 
image, 328, 333 
image of a set, 328 
imbedding, 111 
implicit function, 52 
implicit function theorem, 340 
implicit solutions, 10 
improper solution, 58 
individual relative condition number, 

44 
induced norm, 183 
infimum, 78 
injection, 328 
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interior, 337 
intersection, 327 
invariant relative to a group, 343 
invariant structure, 346 
inverse function, 328 
inverse of a matrix, 333 
isomorphism, 330 

Jacobi matrix, 37, 340 

kernel, 333 
Kronecker product, 357 
Kronecker sum, 360 

least squares problem, 355 
left inverse, 61,333 
Leibnitz rule, 342 
limit of a function, 338 
linear combination, 332 
linear function, 339 
linear nonlocal bounds, 2 
linear operator, 180 
linear space, 331 
linear subspace, 332 
linearly independent vectors, 332 
Lipschitz condition, 363 
Lipschitz constant, 39, 363 
Lipschitz continuous function, 39 
local bounds, 2, 12 
locally unique solution, 56 
LQ decomposition, 349 
Lyapunov indices, 379 
Lyapunov majorant, 77, 79, 197, 249 
Lyapunov norm, 185 
Lyapunov operator, 184, 379 
Lyapunov singular values, 385, 387, 

392 

majorant equation, 77, 79, 250 
mapping, 328 
matrix 

diagonal, 334 
Hermitian, 334 

invertible, 333 
lower triangular, 334 
nonnegative definite, 335 
normal, 334 
orthogonal, 334 
positive definite, 335 
skew-Hermitian, 334 
skew-symmetric, 334 
strictly lower triangular, 334 
strictly upper triangular, 334 
symmetric, 334 
triangular, 334 
unitary, 334 

matrix absolute value, 13 
matrix exponential, 124 
matrix function, 337 
matrix norms, 13 
matrix pencil, 211 
matrix representation, 181 
mixed condition number, 22 
Moore-Penrose pseudo-inverse, 355 
multiplication of matrices, 333 
multiplicative group, 329 
mutual observation property, 227 

natural domain, 12 
nominal data, 11 
nonlinear nonlocal bounds, 3 
nonlocal perturbation bounds, 13 
nonsingular matrix, 334 
norm, 335 
norm-wise backward equivalent per- 

turbation, 135 
normal matrix, 351 
normed space, 335 
numerical algorithm, 18 
numerically stable algorithm, 20 

open ball, 336 
open cover, 337 
open set, 336 
orbit, 342 



428 I N D E X  

orbit space, 342 
orthogonal matrix, 345 
orthonormed matrix, 345 

parameter matrix, 15 
Perron-Frobenius theorem, 142, 365 
perturbation analysis, 1 
perturbation bound, 1, 2 
perturbation estimate, 2 
perturbation function, 30 
perturbed equation, 63 
perturbed problem, 11 
point, 327 
polar decomposition, 353 
pre-image of a set, 328 
principal term, 106 
product of sets, 329 
projection, 111 
proper solution, 58 
pseudo-inverse matrix, 355 
pseudo-polynomial operator, 182 

QCP decomposition, 350 
QR decomposition, 349 
QR decomposition with column piv- 

oting, 349 

R-regular problem, 44 
range, 333 
rank, 332 
real Lyapunov operator, 380 
regular problem, 36 
regular solution, 59 
regular system, 304 
regular systems, 239 
regularization techniques, 108 
regularized problem, 108 
relation, 328 
relative backward error, 26 
relative condition number, 13, 46 
relative distance, 105 
relative norm-wise error, 135 
relative overall condition number, 192 

relative perturbations, 12 
reliable numerical procedure, 20 
right inverse, 61,333 
rigorous bound, 113 
row echelon form, 348 
row-wise vector representation, 359 

scaling, 27 
Schauder principle, 363, 368 
Schur basis, 350 
Schur decomposition, 350 
Schur form, 350 
Schur system, 350 
semi-convergent matrix, 124 
semi-homogeneous function, 339 
semi-linear function, 339 
semi-stable matrix, 124 
sensitivity, 17 
sequence, 336 
set, 327 
sharp bound, 113 
singleton, 327 
singular problem, 36 
singular solution, 59 
singular value decomposition, 354 
singular values, 354 
singular vectors, 355 
skew-Lyapunov index, 398 
skew-Lyapunov operators, 397 
solution path, 55 
solution set, 16 
span, 332 
sphere, 336 
stabilizable pair, 239 
stable matrix, 123, 239 
steady-state solution, 125, 126 
structured computational problem, 23 
structured condition numbers, 23 
structured perturbations, 32 
subgroup, 330 
subset, 327 
sum of sets, 329 
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summation of matrices, 333 
supporting function, 55 
supremum, 78 
surjection, 328 
SVD, 354 
Sylvester equations, 121 
Sylvester index, 127, 373 
Sylvester operator, 372 
symmetric operator, 184, 186 

tensor product, 357 
Tikhonov regularization, 111 
transformation group, 342 
triangle inequality, 335 
trivial pair of generating matrices, 372 

unary operation, 329 
uniformly continuous function, 338 
unimprovable perturbation bound, 48 
union, 327 
unitary invariant norm, 345 
unitary matrix, 345 
URV-decomposition, 349 

value of a function, 328 
vec-permutation matrix, 244, 358 
vector, 331 
vector relative condition number, 44 
vector space, 331 

well-conditioned problem, 45 
well-posed problem, 35 

zero vector, 331 
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